
On D ual G oldie D im ension

by

C h ris tia n  Lom p

A thesis subm itted for the degree of Master of Science 

in the University of Glasgow

Department of Mathematics 

University of Glasgow

October, 1996



ProQuest Number: 13834265

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13834265

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



' i t t . l ' f

l o ^ \ z



To

m y p a re n ts



A cknow ledgm ents

I would like to express my gratitude to my supervisor, Professor P.F.Smith, for 
all his guidance, help and advice. My thanks go also to Professor R.Wisbauer 
from the Heinrich-Heine Universitat Diisseldorf, Germany for suggesting the topic 

of this dissertation and for all his encouragement. For additional assistance through 

inspiring talks, I also wish to thank Dr. N.V.Dung,

Thanks are also due to the staff and all postgraduate students of the Departm ent 

of Mathematics, University of Glasgow for all their kindness and help.

Last but not least I would like to thank my parents for all their crucial support tha t 

made this dissertation and my stay in Glasgow possible.



Sum m ary
This dissertation reviews attem pts of dualizing the Goldie dimension. Moreover 

we choose one of these attem pts as the dualization of Goldie dimension and study 

modules with this finiteness condition under various aspects.

Chapter 1 defines basic ideas as dualizations of well-known notions. Small sub- 

modules, hollow modules, small covers, supplements, coclosed submodules and coin

dependent families of submodules are introduced as dual concepts of essential sub- 
modules, uniform modules, essential extensions, complements, closed submodules 

and independent families of submodules.

In Chapter 2 existing attem pts of dualizing the Goldie dimension are reviewed 

and compared. Section 2.1 is devoted to the earliest approach while in section

2.2 three equivalent approaches are considered. Section 2.3 states a general lattice 
theoretical approach equivalent to the approaches in 2.2.

The core of this dissertation is formed by Chapter 3. In Section 3.1 we choose 

one of the approaches as dualization of Goldie dimension and call it hollow dimen

sion. The main characterizations and properties are stated. Dimension formulas as 

for vector spaces are considered in Section 3.2. We show in Section 3.3 th a t rings 

with finite hollow dimension are exactly the semilocal rings. The situation when 

the hollow dimension of a module coincides with the hollow dimension of the endo

morphism ring is studied in Section 3.4. Here we study properties of modules with 
semilocal endomorphism rings as well. Relationships of certain chain conditions and 
hollow dimension are stated in Section 3.5. In Section 3.6 modules with property 

A B b * whose submodules have finite hollow dimension are considered.

The dual concept of extending (or CS) modules namely lifting modules is intro

duced in Chapter 4 and their relation to hollow modules is studied. Basic definitions 

of lifting modules and a decomposition of lifting modules with finite hollow dimen
sion are given in Section 4.1. The structure of lifting modules with certain chain 

conditions on the radical is given in Section 4.2.

In the last chapter of this thesis, Chapter 5, we study dualizations of singular 

and polyform modules in connection with Goldie’s Theorem. The notion of M-small 

and non-M -small modules are introduced in Section 5.1 as dual concepts of M-  

singular and non-M-singular modules. Eventually co-rational submodules and co
polyform modules are defined in Section 5.2 as dual notions of rational submodules 
and polyform modules.
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Introduction
The title of this dissertation suggests falsely th a t there exists just one dual Goldie 

dimension. In fact there are at least four different definitions of the notions of a dual 

Goldie dimension. So the correct title should probably be ”On the dualization of the 

Goldie dimension” . But since, as we will see, most of these attem pts are equivalent 

to each other, we keep this title.
Uniform modules, essential extension and independent families of submodules 

play an im portant role in Goldie’s work. An R-module M  with finite uniform 

dimension (Goldie dimension) can be characterized by one of the equivalent state

ments:

(U l)  M  contains no infinite direct sum of non-zero submodules.

(U 2) M  contains an essential submodule, which is a finite direct sum of uniform 

submodules of M.

(U 3) for every ascending chain of submodules N i C iV2 C iV3 C • • • there is an 

integer n, such tha t N n is essential in N k for every k > n.

One of the earliest attem pts to define a dual Goldie dimension was done by P.Fleury 

[13] in 1974. He called his dual Goldie dimension spanning dimension and intro

duced the notion of hollow modules, as the dual concept of uniform modules th a t 

appeared in Goldie’s work. Fleury’s spanning dimension dualizes chain condition 

(U3). Modules with finite spanning dimension are closely related to artinian, re

spectively hollow, modules and the rings with finite spanning dimension are exactly 

the artinian, respectively local, rings. T.Takeuchi [59] introduced coindependent 

families of submodules as a dual notion of independent families of submodules in 

1975. W ith the help of this notion he dualized (U l) and called his dual Goldie 

dimension cofinite-dimension. Actually his definition was based on an early paper 
by Y.Miyashita [38] in 1966, where he introduces a dimension notion for modular 

lattices. In 1979 K.Varadarajan approached the dualization of the Goldie dimension 

in a more categorical way by dualizing (U2). He called his dual Goldie dimension 

corank. Comparing his definition with Fleury’s he showed th a t ’’finite spanning 

dimension” implies ’’finite corank” . Varadarajan’s corank was probably the most 

often used definition of the dual Goldie dimension in the past. E.Reiter [49] gave 

a definition of a dual Goldie dimension in 1981. He called his dual Goldie dimen

sion codimension and dualized property (U3) as Fleury did. It is quite easy to 

see th a t Reiter’s and Takeuchi’s definition are equivalent to each other. In 1984
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P.Grezeszcuk and E.R.Puczylowski [20] compared all four named approaches and 

showed th a t Takeuchi’s, V aradarajan’s and Reiter’s definitions are equivalent to 

each other. Their approach was lattice-theoretical by defining the Goldie dimen

sion of a modular lattice and by setting the dual Goldie dimension of a modular 
lattice to the Goldie dimension of the dual lattice. Eventually they applied these 

notions to the lattice of submodules of a module. Moreover they showed th a t mod

ules with finite spanning dimension satisfy their definition of dual Goldie dimension 

as well. Since hollow modules play an im portant role in our study we call the 

dual Goldie dimension of a module M  hollow dimension (analogously to calling the 

Goldie dimension of M  uniform dimension) if M  satisfies Takeuchi’s, Reiter’s or 

V aradarajan’s definition. We will state a result by S.Page [44] in Section 3.1, tha t 

the hollow dimension of a module RM  can be computed by the uniform dimension of 

the dual module Horn# (M, Q )t, where RQT is an injective cogenerator in 27—Mod 
and T  :=  End^ (Q).

The existence of complements plays an im portant role in the study of modules 

with uniform dimension. The dual concept of complements is the notion of sup

plements. Following Zoschinger [74] we introduce weak supplements and weakly 

supplemented modules (i.e. every submodule has a weak supplement). In Section
1.3 we show tha t semilocal rings are exactly the rings th a t are weakly supplemented 
as left or right modules over itself. Moreover we will show in Section 3.3 tha t a 

finitely generated module M  has finite hollow dimension if and only if it is weakly 

supplemented if and only if M j Rad (M) is semisimple. This shows th a t rings with 

finite hollow dimension are exactly the semilocal rings. This fact was first shown by 
Varadarajan in [62].

The relation between the hollow dimension of a module and the hollow dimension 

of its endomorphism ring is studied in Section 3.4. Using a result by J.L. Garcia 

Hernandez and J.L. Gomez Pardo [15], T.Takeuchi [60] showed th a t the hollow di

mension of a module is invariant under equivalences. Moreover he showed th a t a 

self-projective module has finite hollow dimension if and only if it has a semilocal en

domorphism ring. Since modules with semilocal endomorphism ring have interesting 

properties we state some results by D.Herbera and A.Shamsuddin [29], A.Facchini 
et al. [11] as well as K.R.Fuller and W .A.Shutters [14].

Modules with finite uniform dimension can be characterized by ACC (respec

tively DCC) on complements. If we assume the existence of amply supplements 

then a dual characterization in terms of supplements is also possible for hollow di

mension. This was observed by T.Takeuchi [59] and K .Varadarajan [62] and we



Introduction iv

will state this in Section 3.5. A result by V.P.Camillo [6] characterizes modules 

whose factor modules have finite uniform dimension. We examine a dual version 

of Camillo’s theorem and consider modules whose submodules have finite hollow 

dimension. This leads to a characterization of artinian modules in terms of hollow 

dimension.

Since the uniform dimension of a torsionfree abelian groups coincides with the 

ordinary rank, K .Varadarajan [62] as well as Hanna and Shamsuddin [24] studied 

the hollow dimension of abelian groups. They showed th a t hollow Z-modules are 

exactly the modules Zpk with p prime and 1 < k <  oo and th a t a Z-module with 

finite hollow dimension is a finite direct sum of hollow modules and hence artinian.
Inspired by a question in [2] E.R.Puczylowski asked in [46] if the radical of 

a module has Krull dimension if every small submodule has Krull dimension. 

E.R.Puczylowski himself showed in the same paper tha t the answer to this question 

is in general negative but we are able to give a positive answer if the module has 

property A B 5*.
In Section 3.6 modules with property A B 5* whose submodules have finite hollow 

dimension are considered. P.N.Anh et al.[3] as well as G.Brodskii [5] showed th a t 

those modules are lattice anti-isomorphic to linearly compact modules.

As the concept of extending (or CS) modules can be seen as a generalization 

of injective modules their dual concept, lifting modules can be seen as a generaliza

tion of semiperfect modules. This class of modules is introduced and considered in 

Chapter 4.
We state a decomposition theorem of lifting modules with finite hollow dimen

sion and obtain some results from S.H.Mohamed and B.J.M uller [39] as well as 

R.W isbauer [67]. The structure of lifting modules with certain chain conditions on 

their radical is given in Section 4.2.

In the last chapter of this thesis, Chapter 5, we study dualizations of M -  

singular and polyform modules in connection with Goldie’s Theorem. We define 

M-small modules and non-M-small modules as dualizations of M -singular and non- 

M -singular modules as they appear in [10]. These modules form torsion theories and 

are related to dual polyform modules. The concept of polyform modules appeared 

first in Zelmanowitz’ work [70]. A slightly improved version of Goldie’s theorem

[10] states th a t the endomorphism ring of the M -injective cover of a module M  is 

semisimple artinian and is the classical quotient ring of End (M ) if and only if M  

is polyform with finite uniform dimension. The aim of this section was to prove a 
dual result in terms of hollow dimension. For tha t reason co-rational and co-polyform
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modules are introduced in Section 5.2 as dual notions of rational and polyform mod

ules. Co-rational submodules and extensions appeared first in R.C. Courter’s work 

[9]. Finally as a partial result we can prove tha t if a module M  has a projective 

cover P  then End (P ) is semisimple artinian if and only if M  is co-polyform with 

finite hollow dimension.
Since the purpose of this dissertation is a review of existing knowledge most of 

the results stated here are known and are indicated by one or more references. Apart 

from some corollaries and lemmas the following results are due to the author: 1.2.1, 

Section 1.3, 2.1.6, 3.1.6, 3.1.12, 3.4.13, 3.5.6, 3.5.18, 3.5.20, 3.5.21, 4.1.4 - 4.1.7, 

Section 4.2 and all results in Chapter 5 except from 5.1.2 and 5.2.1.

For the reader’s sake an effort was made to avoid citations of papers and to 

include most of the proofs in a way tha t they fit in the context of this dissertation. 

As main reference R.W isbauer’s text book [67] is most cited. Further the language 

of o[M] is used to indicate that some results only depend on properties of the given 

module M  and not on properties of the ring.

Christian Lomp, Glasgow, October 1996
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C hapter 1 

B asic notions

In what follows R  always means an associative ring with identity. We will denote the 

full category of left i7-modules by R —Mod and the full category of right i?-modules 

by M od—R.  Unless mentioned otherwise by an i2-module we mean a unitary left 

i?-module. Let M  and N  be A-modules. Arguments of module homomorphisms are 

w ritten 011 the same side as scalars, i.e. write ( x ) f  for a left itt-module homomor

phism /  : M  —y N  and x E M.  N  is called generated by M  or M-generated if there 

exist an index set A and an epimorphism M ^  —> N. N  is called subgenerated by 

M  if it is isomorphic to a submodule of a M-generated module, i.e. there exist an 
index set A, an ^-m odule X ,  an epimorphism g : M ^  —> X  and a monomorphism 

f  : N - + X .
N

f

Af(A) — g—+ X  ------ > 0
We denote by <j[M] the full subcategory of R —Mod whose objects are all modules 
subgenerated by M.  For basic properties of cr[M] we will refer to [67].

1.1 Sm all m odules

Let M  be an _R-module. A submodule K  of M  is essential or large in M  provided 

for all non-zero submodules L C M ,  J f n L / 0  holds. We will denote essential 
submodules by K  < M  and M  is called an essential extension of K .  Let N  be 

an i?-module and /  : N  —> M  a monomorphism. Then /  is called an essential 
monomorphism  if Im ( /)  <j M. Hence N  is an essential extension of a submodule 

K  if and only if the inclusion map K  —> N  is an essential monomorphism. If N  is 
a submodule of a module M  then we say N  is an essential extension of K  in M.

1
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We will introduce dual definitions for essential submodules and essential ex

tensions.

D efin itio n . Let M  be an A-module. A submodule K  of M  is small in M  pro

vided for all proper submodules L of M , L  + K ^ M  holds. We will denote small 

submodules by / f  <  M  and M  is called a small cover of M / K .  An epimorphism 

/  : M  —> L  is called small if Ker ( / )  is small in M. Hence M  is a small cover 

of M / N  if and only if the canonical projection M  M j N  is a small epimorphism. 

Dual to an essential extension N  of K  in M ,  we say N  lies above K  in M  if M / K  

is a small cover of M / N , i.e. N / K  <C M / K .  Clearly a submodule N  is small in M  

if and only if N  lies above 0 or equivalently if M  is a small cover of M / N .

Remarks: Let M  be an A-module and K  C N  submodules of M. In [59] Takeuchi 

calls K  a coessential extension of N  in M  if N  lies above K.

Before we list some properties of lying above, let us state an easy, but useful 

lemma:

L em m a  1.1.1. ( [49, Lemma 2.2]) Let K , L , N  be submodules of M . I f K  + L  =  M  

and ( K D L )  + N  = M  hold, then I< +  (L n  N)  =  L  +  {K  n  N )  =  M .

P ro o f: K  +  (L n  N )  =  K  +  (L n  I<) +  {L n  N )  =  IC +  (L n  ({L n  K )  +  N ))  =  
K  +  (L D M ) = K  +  L — M. Applying the same argument to L  +  (K  Pi N )  we get 

L  +  {K  n  N ) = M.  □

1.1.2. P ro p e r t ie s  o f ’’ly ing  ab o v e” . ([59, 1.1,1.2,1.6], [32, Lemma 2])
For submodules L  C N  of M  the following properties hold:

1. N  lies above L in M  if and only if L  +  K  = M  holds for all K  C M  with 

N  + I< = M .
In this case, N  Pi K  lies above L  Pi K , for all K  C M  with N  +  K  =  M .

2. N  <C M  if  and only if  N  lies above L and L  <C M .

3. For submodules K  C L  C N  of M , N  lies above K  if and only if  N  lies above 

L and L lies above K .

4- Let G C H  be submodules of M . I f  N  lies above L and H  lies above G and 

N  +  H  = M , then L  +  G =  M  and N  H H  lies above L n G .
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P ro o f: (1) Suppose th a t N lies above L in M. If N  +  K  = M,  then

M / L =  ( N + K ) / L  = N / L  + ( K + L ) / L  = { K + L) /L.

Hence K  +  L  =  M.  Conversely, suppose tha t L  +  K  — M  for all K  C M  with 

N  + K  ~  M.  If there is a K  C M  containing L  such tha t N / L  + K / L  =  M/ L ,  then 

M  = N  4- K  yields M  = L  +  K  = K,  so N  lies above L.  Furthermore, let K  be 

a submodule of M,  such th a t N  -\- K  = M.  If there is a submodule X  containing 
(1/ n  Jf), such th a t

M / ( L  n K)  =  ( N  n I<)/{L n k )  +  X / { L  n K) ,

then ( N  fl K)  +  X  — M.  By applying Lemma 1.1.1 twice we get

M  = N  + ( K  n X )  = L  +  (I< n X )  = ( L n K ) + X  = X.

Thus N  n  K  lies above LC\ K .

(2) Easy check using (3); (3) Easy check using (1);

(4) Applying (1) twice we get M  =  N  +  H  =  L +  — L + G and N  n  H  lies

above L n H  and L n H  lies above LC\G. So by (3) we have N f ) H  lies above L n G .  

□

A non-zero JAmodule M  is called uniform if every non-zero submodule of M  is 

essential in M .  Dual to the concept of uniform modules, Fleury defined the notion 
of hollow modules in [13].

D efin itio n . An i?-module M  is called hollow if M  ^  0 and every proper submodule 

N  of M  is small in M. M  is called local if it has exactly one maximal submodule 

th a t contains all proper submodules.

Remarks:

1. M iyashita calls hollow i?-modules R-sum-irreducible (see [38]).

2. Hollow modules are indecomposable modules and every factor module of a 
hollow module is hollow.

3. Clearly a local module is hollow and the unique maximal submodule has to be 

the radical. Examples of hollow modules are simple or uniserial modules, e.g. 
Z poo or h pk with p prime and
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1.1.3. P ro p e r t ie s  o f hollow  m odules.

Let M  be an R-module.

1 . M  is hollow if and only if every factor module of M  is indecomposable.

2. The following statements are equivalent:

(a) M  is local;

(b) M  is hollow and cyclic (or finitely generated);

(c) M  is hollow and Rad (M) ^  M.

3. I f  M  is self-projective then the following statements are equivalent:

(a) M  is hollow;

(b) End (M) is a local ring.

P ro o f: See [67, 41.4] for (1) and (2) and [47, Proposition 2.6] for (3). □

1.2 C oclosed subm odules

A closed submodule N  of a module M  has no proper essential extension in M. Let 

us consider a dual notion of closed submodules.

D efin itio n  (G o lan ). Following Golan [16], we will call a submodule N  of M  co
closed in M  if and only if N  has no proper submodule K  such tha t N  lies above K  

(or N  has no proper coessential extension).

A submodule N  of an A-module M  is called a complement of a submodule 

L  in M  if it is maximal with respect to N  n  L  =  0. By applying Zorn's Lemma 
there exists always for every submodule L  of M  a complement N  of L. Moreover a 
submodule is a complement in M  if and only if it is closed in M  (see [10, pp. 6]). 

Dual to the concept of complements we define the notion of supplements.

D efin itio n . Let N  and L  be submodules of M, then we call N  a supplement of 
L  if N  is minimal with respect to N  +  L = M. Equivalently A" is a supplement of 

L  if and only if N  -f L  = M  and TV n  L  -C N.  A submodule N  of M  is called a 

supplement if there is a submodule L  of M  and A  is a supplement of L. Following
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Zoschinger [74] we call N  a weak supplement of L  in M  if and only if N  +  L  — M  

and N  n  L  -C M . N  is called a weak supplement in M  if there exists a submodule 
L  such th a t N  is a weak supplement of L  in M. Clearly any supplement is a weak 

supplement.

Remarks:

1. Complements always exist but supplements do not. For example no proper 
submodule in gZ has a supplement in Z. To see this assume tha t a proper 

submodule N  of Z has a supplement L  in Z. Then N  D L  Z holds implying 

N  fl L  =  0 since Jac (Z) — 0. But since Z is uniform we have tha t N  or L  is 

equal to zero.

2. Let H  be a hollow submodule of an 72-module M. If H  is not small in M  then 
there exists a proper submodule K  C M  with H  + K  — M .  Since H  is hollow, 

H  fl K  -C H. Thus H  is a supplement in M  (see also [32, Proposition 6]).

3. Let L  C N  C M . By 1.1.2, N  lies above L  if and only if N  +  K  =  M  implies 

L  +  K  = M  for all K  C M. If N  is minimal with respect to N  +  K  — M  for 

some K ,  then there cannot be a submodule L  of N  such th a t N  lies above K.  
Thus N  is coclosed.

The classes of complements and closed submodules are the same. We now de

termine the relation between supplements and coclosed submodules in the following 

Proposition.

P ro p o s it io n  1 .2 .1 . Let N  be a submodule of M . Consider the following state
ments:

(i) N  is a supplement in M;

(ii) N  is coclosed in M ;

(in) for all K  C N , K  <C M  implies K  N .

Then (i) =$■ (i i) (Hi) holds and if N  is a weak supplement in M , then (Hi) => (i) 
holds.

P ro o f: (i) =̂> (ii) Assume that A  is a supplement of L  C M .  For all submodules 

K  C N  such tha t N  lies above AT, we have tha t N  +  L — M  implies K  +  L  =  M
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(see 1.1.2(1)). By the minimality of N  with respect to this property we get K  =  N. 

Hence N  is coclosed.

(ii) => (iii) Let K  <  M  and K  C N.  Assume N  =  K  +  A  for A C  A; then for 
every Y  C M  with N  +  Y  =  M  we get M  — A  4- y  since A  <C M. By 1.1.2(1) N  

lies above A . By the coclosure of N  we get A  — N  and thus K  <€. N .

Assume A  to be a weak supplement of L  C M. (iii) => (i) N  is a weak supplement 

of L, so A  fl L  <C M . By assumption A  n  L  <C A. Thus A  is a supplement of L in 

M. □

Remarks: The equivalence between (i) and (ii) appeared in [59, 2.6] and [32, Propo

sition 3] in the following form: if A  has a supplement K  in M  and A  is coclosed in 

M  then A  is a supplement in M . In 1.2.1 we showed th a t a coclosed submodule A  

of M  having a weak supplement in M  is a supplement in M.

D efin itio n . An A-module M  is called supplemented if every submodule has a 

supplement in M . M  is called amply supplemented if for every submodules A  and 

L  of M  with A  +  L — M , A  contains a supplement of L  in M. Clearly every amply 

supplemented module is supplemented.

The next proposition is dual to [10, 1.10] and states some properties of coclosed 

submodules.

P ro p o s it io n  1.2.2. Let M  be an R-module with submodules K  C L  and N .

1. I f  M  is amply supplemented then every submodule of M  that is not small in 

M  lies above a supplement in M.

2. I f  L is coclosed in M , then L / K  is coclosed in M / K .

3. Assume that L is a supplement in M . Then K  is coclosed in L if and only if 
K  is coclosed in M .

P ro o f: (1) Let M  = A  +  A  with A  a supplement of A; then A  contains a supple
ment Y  of A  in M .  Hence A n A « A  implies

(A  n  A  )/(Y  n A ) «  x/(Y n  A ).

Since (A  n  A ) / ( Y  fl A ) ~  N / Y  and X / ( Y  n  A ) ~  M / Y  we get N / Y  <  M / Y .  
Thus A  lies above Y  in M.
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(2) Since L  is coclosed in M, for every proper submodule N / K  of L / K ,  

( L / K ) / ( N / K )  ~  L / N  is not small in M / N  ~  { M / K ) / { N / K ) .
(3) Let L  be a supplement o f l c M ,  Assume K  is coclosed in M  then it is coclosed 

in L  since whenever K / N  <C L / N  we get K / N  <C M / N  as L / N  C M / N .  Now 

assume th a t K  is coclosed in L  and tha t K  lies above a proper submodule H  C K  

in M.  Since K  is coclosed in L, K  does not lie above H  in L. Hence there exists a 

proper submodule G of L  containing H  such tha t K / H  + G / H  — L / H  holds. Hence 

M  = L T  X  = K  +  G +  X  implies M  — H  -\-G R X  =  G +  X  since K  lies above H  

in M .  But since L  is a supplement of X  in M  we get G — L\ a contradiction to G 

being a proper submodule of L. Hence K  is coclosed in M. □

D efin itio n . Let M  be an A-module and N  e  cr[M]. A projective module P  in a[M] 

together with a small epimorhpism w : P  —Y N  is called a projective cover of N  in 
a[M}.  We will write (P, 7r) or just P  for a projective cover P.  If u[M] =  R —Mod 

we call P  a projective cover of N.  A module N  £ a[M] is called semiperfect in 

a[ M) if every factor module of N  has a projective cover in <j[M]. A ring R  is called 

semiperfect if R  is semiperfect as a left (right) P-module (see [67, 42.6]).

Note the following im portant fact: A projective module P  in a[M] is semiperfect 

if and only if it is (amply) supplemented (see [67, 42.3]).

1.3 W eak supplem ents

D efin itio n . Following Zoschinger [74] we say that M  is called weakly supplemented 

if every submodule N  of M  has a weak supplement.

Remarks: Applying 1.2.1 we see, tha t in a weakly supplemented module, supple

ments and coclosed submodules are the same.

It is well-known tha t the rings tha t are supplemented as a left (right) module 

over themselves are exactly the semiperfect rings (see [67, 42.6]). The notion of weak 

supplements generalizes the notion of supplements and we will discover th a t the rings 

th a t are weakly supplemented as left (right) module over themselves are exactly the 

semilocal rings (see 1.3.4). Moreover we will see tha t modules with finite dual Goldie 

dimension are weakly supplemented modules and tha t a finitely generated module 

has finite dual Goldie dimension if and only if it is weakly supplemented. Before we
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give a summarizing list of properties of weakly supplemented modules, we will state 

a general result:

P ro p o s it io n  1.3.1. Let M  be an R-module and N  a proper submodule of M . The 

following statements are equivalent:

(a) M / N  is semisimple;

(b) for every L  C M  there exists a submodule K  C M  such that L  +  K  = M  and 

L  n K  C N;

(c) there exists a decomposition M  = Mi 0  M2 such that M i is semisimple, N  <3 

M2 and M 2/ N  is semisimple.

P ro o f: (a) =>(c) Let Mi be a complement of N. Then Mi 0  iV is essential in M .  

M i =  (Mi © N ) / N  is a direct summand in M / N , hence semisimple and there is a 

semisimple submodule M 2/ N  such tha t (M i0 M2)/iV =  M / N .  Hence M  =  M x+M 2 

and Mi  n  M2 C i Vf l  M2 =  0. Thus M  — Mi  © M2. Because Mi is a complement, 

N  is essential in M2.

(c) =>(a) Clear, since M / N  ~  (Mi 0  M 2 /N) .
(a) =^(b) Clear, since (L +  N ) / N  is a direct summand in M / N .

(b) =>(a) Let L / N  C M / N \  then there exists a submodule K  C M  such tha t 
L  +  K  = M  and L  n  K  C N.  Thus L / N  © K / N  — M / N .  Hence every submodule 

of M / N  is a direct summand. □

1.3.2. P ro p e r t ie s  of w eak ly  su p p lem en te d  m o d u les .

Let M  be an R-module.

1 . I f  M  is weakly supplemented then the following properties hold:

(i) M j Rad (M) is semisimple;

(ii) M  =  Mi 0  M2 with Mi semisimple and Rad (M ) < M 2;

(iii) every factor module of M  is weakly supplemented;

(iv) i f  N  is a small cover of M, then N  is weakly supplemented;

(v) every supplement in M  and every direct summand of M  is weakly sup
plemented.
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2. Let K  and Mi be submodules of M  such that Mi is weakly supplemented and 

M i +  K  has a weak supplement in M , then K  has a weak supplement in M .

3. I f  M  =  Mi +  M2j with Mi and M2 weakly supplemented, then M  is weakly 

supplemented.

P ro o f: (l)(i),(ii) follows from 1.3.1 since for every L  C M  there exists a weak 

supplement / ( C M  such th a t L  +  K  = M  and L  fl K  C Rad (M ).

(iii) Let / { C M  and N / K  C M / K .  Then N  +  L  =  M  and IV n  L  «  M  for a 
submodule L  C M.  Hence N / K  +  (L +  K ) / K  =  M / K  and N / K  Pi (L +  K ) / K  = 

((X  fl L)  +  K ) / K  <  M / K  holds.

(iv) Let M  ~  X /X  for some K  TV. Then for every submodule L  C TV, 

(L +  X ) /X  has a weak supplement X /X  in N / K ,  with ((L + K ) r 1 X ) / K  <C N / K .  

By 1.1.2(ii) (L + X )n X  is small in TV. Thus L C X  C (L n X )+ X  =  (L + X )n X  <  X  

and L +  X  =  N . Hence X  is a weak supplement of L  in N.

(v) If N  C M  is a supplement of M, then N  + K  ~  M  for some K  C M  and 

K  n  N  «  X. By (iii) M /X  cr: X /(X  n  X) is weakly supplemented and by (iv) 

X  is weakly supplemented. Direct summands are supplements and hence weakly 

supplemented.

(2) By assumption Mi + X  has a weak supplement X C M ,  such tha t Mi +  X  +  

X  =  M  and (M i+ X )f lX  <C M.  Because is weakly supplemented, (X -f X )n M i 

has a weak supplement L  C M i . So

M  =  M i +  X  +  X  =  L +  ((X  +  X) fl Mi) +  X  +  X  =  X  +  (L +  X)

and

x n ( L + x )  c  ( ( x + L ) n x ) + ( ( x + x ) n L )  c  ( ( x + M ! ) n x )  +  ( ( x + x ) n L )  <  M.

This means th a t N+L is a weak supplement of X  in M.

(3) For every submodule X C M ,  M i +  (M2 +  X) has a trivial weak supplement 

and by (2) M2 +  X  has one. Applying (2) again we get a weak supplement for X.

□

We get the following corollary from 1.3.2(l)(ii).

C o ro lla ry  1.3.3. An R-module M  with Rad (M) =  0 is weakly supplemented if  

and only i f  it is semisimple.
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For modules M  with small radical (e.g. finitely generated modules) we see by 

1.3.2(l)(iv) and the previous corollary, tha t it is equivalent for M  to be weakly 

supplemented or M j Rad (M) to be semisimple:

C o ro lla ry  1.3.4. Let M  be an R-module with Rad (M)  <C M .
Then M  is weakly supplemented if  and only if M /R ad (M ) is semisimple.

D efin itio n . A ring R  is called semilocal if R / Jac (R) is semisimple.

Remarks:

1. We see, tha t a ring R  is semilocal if and only if it is weakly supplemented as 
a left (or right) R-module.

2. Recall th a t a ring is semiperfect if and only if it is supplemented as a left (or 

right) R-module. Moreover a ring is semiperfect if and only if it is semilocal 

and idempotents in R /Jac(R ) can be lifted to R (see [67, 42.6]). Since the class 
of semilocal rings is strictly larger than the class of semiperfect modules there 

are modules th a t are weakly supplemented but not supplemented. Consider, 

for example, a semilocal commutative domain with two maximal ideals. Then 

there exists a non-trivial idempotent in R /Jac  (R) tha t cannot be lifted to R. 

Take for example :=  {§|a, 6 £ 21,6 7̂  0 , p \  b and q \  6}, where p and q are 

primes. Then Zp>5 is a semilocal noetherian domain with two maximal ideals.

1.3.5. E n d o m o rp h ism  rin g s  o f w eakly  su p p lem en te d  m o d u les .

Let M  be a self-projective, finitely generated, weakly supplemented R-module. Then 

End (M) is semilocal.

P ro o f: Since M / Rad (M) is semisimple and finitely generated we get

th a t End (M /R ad (M)) is a semisimple ring. By [67, 22.2] we have

End (M )/Jac  (End (M))  End ( M / Rad (M )). Thus End (M) is semilocal. □

1.4 C oindependent fam ilies o f subm odules

A non-empty family { N \ } a of non-zero submodules of a module is called indepen

dent if for every A £ A and subset F  C A \  {A} the following holds:

JV * n £ jV i =  o,
i£F
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with the convention tha t the summation with an empty index set is zero.
As a dualization of independent families we define the notion of coindependent 

families of submodules.

D efin itio n . Let M  be an A-module. A non-empty family {N^}a  of proper submod

ules of M  is called coindependent if for any A G A and any finite subset F  C A\{A}

N x + f ] N i  = M,
ieF

with the convention, tha t the intersection with an empty index set is set to be M.  

Remarks:

1. Miyashita in [38] calls a coindependent family d-independent, Zelinsky in [69] 

independent.

2. A coindependent family {AT} a tha t contains more than  one submodule is 
a set of comaximal submodules of M, i.e. N \  +  N M =  M  for all /i, A G A 

with /i A, but the converse is not true. For example consider the two 

dimensional real vector space E2 over E. Then {E(l, 0), E (0, 1), E ( l, 1)} is 

a set of comaximal submodules of E2, but E(1,0) fl E (0 ,1) =  (0,0) yields 

E (l, 1) +  (1 (1 ,0 )0 1 (0 ,1 ) )  ^ R 2.

3. Clearly {N }  is a coindependent family for every proper IV c  M  by the con

vention tha t the intersection with an empty index set is set to be M.

4. A module is hollow if and only if every coindependent family of submodules 

has exactly one element.

1.4.1. P ro p e i'tie s  o f c o in d ep e n d e n t fam ilie s .([59, 1.3,1-6])

Let {Aa}a be a coindependent family of submodules of M . The following properties 

hold:

1. Every subfamily {A ^ jr with non-empty subset T C A is coindependent.

2. Let {Nx}h be a family of proper submodules of M , such that for every A G A, 

K \  Q Then {N \}a  is coindependent.

3. Let L  c  M , such that Of Nx + L = M  for every finite subset F  of A. Then 

{I<x}a U {A} is coindependent.
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4- Let {La} a a family of submodules of M , such that K \  lies above L \  for
every A G A, then for every finite subset F  of A,

(i) { K \} ^ \ f O {Li}p ~is coindependent;

(ii) Of  K i  lies above Of  Li-

Moreover {L \ i s  coindependent.

P ro o f: (l)Clear; (2) since

m = k x + n  R i q  + n  Ni ^  m
iEF i&F

for every A G A and finite subset F  C A \  {A} holds.

(3) Let A1 be a finite subset of A and p e  A \ F .  Let K  = H f then by hypothesis 
K  +  ~  M  and ( K  n  Kff) +  L = M.  Hence by Lemma 1.1.1 we get M  =  

( K  n  L)  +  Kp as K  +  L = M.  This means that { K \} a U {L} is a coindependent 

family of submodules of M.

(4) (i) By induction on the cardinality of F  and applying (3). Hence {La}a is 
coindependent since for every finite subset F  and A G A we get by (i) and (1) th a t 

{L-i}jrU {L \ } is coindependent and thus M  — L \  + Of Li- By induction and 1.1.2(4) 

it is easy to see tha t (ii) holds. □

1.4.2. C h a ra c te r iz a t io n  o f co in d ep en d en t fam ilies. ([24, Lemma 7])
Let be a family of proper submodules of M . Then the following statements

are equivalent:

(a) {-LiIm is a coindependent family;

(b) {Li, • • ■ , L n} is a coindependent family, for every n  G N;

(c) L n +  (Li n  ■ • • fl Ln- i )  — M  holds, for every n  > 1;

(d) f |/  Li +  f lj Lj =  M  holds, for all disjoint finite subsets I , J  C N.

P ro o f: (a) =>(c) Clear.

(c) =>(b) By induction on n and 1.4.1(3).

(b) =>• (a) Let F  C N be a finite subset and i G N \  F. Let n  :=  ?naa;{z} U F, then 

{ L i , . . .  , L n} is coindependent and hence Li +  Of Lj =  M .
(d) =^(c) Clear; and (c) => (d) by induction on the cardinality of I  and 1.1.1. Let
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J  be a finite subset of N and n :=  |/ | ,  for n =  1 our claim is clear. Assume th a t for 

all finite subsets I  C N with cardinality n  and I  fl J  =  0,

f |  Lt + f t L ^ M
I  J

holds. Let 11\ =  n +  1 and i £ I. By the coindependency of

Li + ( f l ^ n  f l  L j )  = M  
VJ AW /

holds. By 1.1.1 we get f]j Lj  +  fli Li = M. □

L em m a  1.4.3. C h inese  R e m a in d e r  T h eo rem .

Let M  be an R-module. For any coindependent family of submodules {A*}/ with I  

finite M /  fhe/ Hi — (BiziM/Ki holds.

Proof: Let us prove this by induction on n :=  |/ |. For n =  1 our claim is trivial. Let 

n >  1 and suppose tha t our claim holds for all coindependent families { Li , . . .  , Ln_i} 

of submodules of M.  Let { K \ , . . .  , K n} be a coindependent family of cardinality n; 

then {Ax, . . .  , A n_x} is a coindependent family. Set K  := DJS.1 Aj. By induction 

we have M / K  ee ©’L]1 M / K.L. Further K  +  K n =  M, so

M / f ] K i  =  M / { K D K n)
i~l

= K/(I< n K„) © K n/(I< n K„) 

~ M/ Kn ® M/ K

□

D efin ition . Let M  be an .R-module and {1Va}a a family of proper submodules. 

Then { /VA}A is called completely coindependent if for every A €  A:

N x +  f |  =  M

holds.

Remarks:
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1. Oshiro defines a family of proper submodules {AC}a of M  to be co
independent if it is completely coindependent and M / f ] A N\  ~  ® a M/AC 

(see [41, pp. 361]).

2. Completely coindependent families of submodules are coindependent, but the 

converse is not true in general. For example, the collection of submodules Zp  

where p runs through the primes in Z, is coindependent but not completely 

coindependent.

D efin itio n . An 12-module M  has property AB5* if and only if for every submodule 

N  and inverse systems of submodules of M  the following holds:

f f  + Mi =  n  i a ( N  + Mi)

Examples for modules having AB5* are artinian or more generally linearly com

pact modules (see [67, 29.8]).

L em m a 1.4.4. Every coindependent family of submodules of a module with prop

erty AB5* is completely coindependent.

Proof: Let M  be an 12-module with the property ABh* and {AC} a a coindependent 

family of submodules of M . Define

• Q { J  C A| J  is finite };

• M j  := DjeJ Nj, for every J  G D;

• Q\ { J  G D|A ^ J}, for every A G A.

Clearly { M j } q x forms an inverse system and N\  +  M j  — M  holds for all A G A and 

J  G Da- Thus we get for each A G A:

n x +  n  n » = +  n  m j  =  n  ( ^ + m v  = m .
A J € d \

Thus {AC}a is completely coindependent. □

Now we are able to extend 1.4.1(4).

L em m a 1.4.5. Let M  be an R-module with A B 5*, {Aa}a & coindependent family 

of submodules such that for each A G A there exists a submodule AC Q L \  such that 

L \  lies above N \  in M . Then Ha Aa lies above Ha AC in M .
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P ro o f: Using the same notation as in Lemma 1.4.4, £7 denotes the set of all finite 

subsets of A. Define for all J  G  D

A j  := p | Lj and B j  f]  N j.
j e J  j <e j

By 1.4.1(4) A j  lies above B j  for all J  G  O. Since and { P j} jgo are inverse

systems, we get for a submodule K  C M:

m  = k + [ } l x = k + ri4/= n(^+̂ )= n(^+̂ )
AgA J  J  i/Gfi

= k  +  n  B j = k  + n  n x.
Jen \ ea

□

1.4.6. W eak C hinese R em ainder Theorem .

Let M  be an R-module, {N \}a  a family of non-zero R-modules and { f \  : M  — N \}a  
a family of epimorphisms. Write K \  Ker (/a) for every A G  A. Then there is a 

homomorphism f  : M  -» L[a ^ a  and the following holds:

1 . Ker ( /)  =  P|a K \.

2 . I f  f  is epimorph, then {1L\}a “Is a completely coindependent family.

3. I f  A is finite and {Aa}a is a coindependent family, then f  is epimorph.

Proof: By the universal property of the product, there is a homomorphism /  : M  —> 

11a Nx such th a t fx =  fir  a, where 7Ta : [I a -^a Nx is the canonical projection. 

Hence we get (m )/ — {(ua)/a}a for all m  G M.

(1)
( x ) f  = Q 4 5  {x ) f\  — 0 for all A G A <=> x G  P| Kx-

xeA
Hence Ker ( / )  =  Ha ^ a-
(2) Let A G A. We prove, tha t

M  = K X+ p | K r-
f.iE A\{A}

Let m  G  M .  If m  f  K x , then (m ) f \  ^  0. Hence (5ftx{'^)fx)neA is an element of 

I I a ^ a ,  where 5^x denotes the Kronecker symbol

. _ j  I r if a* =  A

[ Or if p ^ X

for every p, A G A. Since /  is epimorph, there is an element mx  G  M  such tha t 

(m x ) f  =  {Sftx irrijfx)^-  Thus for all p  G  A:
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(m x)U  = <W m )/A-

Hence for all /z ^  A, m \  G yields m x G flMeA\{A} And f°r P 

(m ) fx yields ( m  -  m A )  G  J < a - Eventually we get

m  =  m  -  m x +  nix e  K \  +  fVeA\{A} Kp-

(3) Apply Lemma 1.4.3. □

A ,  O a ) / a  =



C hapter 2 

A pproaches to  dual G oldie  
dim ension

Several attem pts have been made to dualize the Goldie dimension. One of the 

earliest of these was done by Patrick Fleury in [13], blit his definition of the dual 

Goldie dimension turned out to be restrictive. After tha t three other definitions 
were given by Varadarajan [62], Takeuchi [59] and Reiter[49] and fortunately they 

were all equivalent to each other. A general lattice theoretical definition of the dual 

Goldie dimension was given by Grezeszczuk and Pucylowski in [20] and by applying 

this definition to the lattice of submodules of a module it was shown th a t their 

definition corresponds to Varadarajan’s (Takeuchi’s, Reiter’s) definition.

An R-module M  with finite Goldie dimension or finite uniform dimension can 
be characterized as follows (see [10, 5.9]):

( U l)  M  contains no infinite direct sum of non-zero submodules.

(U 2) M  contains an essential submodule, which is a finite direct sum of uniform 
submodules of M.

(U 3) For every ascending chain of submodules N% C N 2 C N 3 C ■ • • there exists 

an integer n, such tha t N n is essential in N k for every k > n.

2.1 F leury 5s approach: F inite spanning dim en-

sion

Fleury dualized property (U3) of the above characterization of modules with finite 
uniform dimension. His definition was:

17
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D efin ition . (Fleury, [13, Definition 1.1] ) An i2-module M  has finite spanning 
dimension if for every descending chain of submodules Ni D N 2 D N s D ■ • ■ there 

is a number k such th a t iY,: <C M  for alH  >  k.

Examples for such modules are obviously artinian and hollow modules. We will 

see th a t these are the only examples in the class of self-projective modules.

P rop osition  2.1.1. Every supplement of an R-module with finite spanning dimen
sion has finite spanning dimension.

Proof: Let L  be a supplement in M  and Ni D N 2 D N 3 D ' ■ ■ be a descending 

chain of submodules of L. Then there exists a number k such tha t <C M .  By 

1.2.1 Ni L. Hence L  has finite spanning dimension. □

Remarks: We can refer to a module M  with finite spanning dimension as a module 

tha t has DCC on submodules tha t are not small in M.

In [47] Rangaswamy recalls Fleury’s definition incorrectly. He defines finite spanning 

dimension for a module M  as follows: for every descending chain of submodules 

Ni D N 2 D N^ D • ■ ■ there is a number k such tha t N{ = Afi. or Ni <C N k for all 

i >  k. The next example will show tha t Rangaswamy’s and Fleury’s definitions do 

not match.

E xam ple 2.1.2. Let K  be a field and V  an infinite dimensional K-vector space; 

define

Then R  is a ring by standard matrix addition and matrix multiplication and M  and 

N  are left R-modules. r M  is a local module, hence it has finite spanning dimension, 

and Rad ( r M )  — k V .  r N  is simple and r R  =  r N  ( B r M .  Since V  is an infinite In
vertor space, there are infinitely many independent subspaces Vi such that Vi C

then R  — Lj M  holds for all j  6 N. Thus we get an infinite descending chain of 

submodules of R  that are not small in r R :

V. Let

L i D L 2 D L s D
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Thus r R  can be expressed as a direct sum of two R-modules with finite spanning

spanning dimension it does not satisfy Rangaswamy’s definition. Consider

for all j  £ N, then all Nj  are small in M } but N N j  for all numbers k < j .  Thus

Nr L N 2 D N 3 D • ■ ■

is a proper descending chain not having Rangaswamy’s property but having Fleury’s.

P rop osition  2.1.3. ([IS, Lemma 2.4]) Every R-module with finite spanning di

mension is amply supplemented.

Proof: Let M  be an Ahmodule with finite spanning dimension and N,  L  submodules 

of M  with N  +  L — M  and L ^  M.  Assume that N  does not contain a supplement 

of L; then there exists a strictly descending chain

of submodules of N  with Ni + L  =  M.  This is a contradiction to the finite spanning 

dimension of M.  Hence N  must contain a supplement of L i n  M .  Thus M  is amply 
supplemented. □

Remarks: An itbmodule P  tha t is supplemented and projective in a[M} is semiper

fect in a[M] and by [67, 42.4] a direct sum of local modules. Hence a projective 

module P  in a[M] with finite spanning dimension is a finite direct sum of local 

modules.

The following collection of properties of modules with finite spanning dimension 
was obtained from [13] and [47].

2.1 .4 . P rop erties o f m odules w ith  fin ite spanning dim ension .

Let M  be an R-module with finite spanning dimension. Then the following state
ments hold:

dimension, but does not have finite spanning dimension. Although M  has finite

N  =  N  i D N 2 D N 3 D . . .

1. every factor module of M  has finite spanning dimension;

2. i f  N  M  then M / N  is artinian;
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3. M  is indecomposable or artinian;

4. if  Rad (M) is not essential in M , then M  is artinian;

5. M  has A C C  and D C C  on supplements;

6 . M /R ad  (M) is semisimple finitely generated.

Proof: (l)+ (2 ) Let M / N  be a factor module of M. For every strictly descending 

chain of submodules
L x/ N  3  L 2/ N  3  L 3/ N  3  ■ • •

there is an index k such tha t Lf. <C M  implying L ^ /N  <C M / N  and IV <  M  by 

1.1.2(2). Thus M / N  has finite spanning dimension. If N  was not small then =  N  

must hold. Hence in this case M / N  is artinian.

(3) If M  is not indecomposable, then there exists a decomposition M  =  M i® M2. 

By (2) Mi and M 2 are artinian.
(4) By (6) M /R ad  (M) is semisimple. If Rad (M) is not essential in M , we can 

get a simple submodule S  with S  fl Rad (M) =  0 and S  not small in M. By (2) 

M / S  is artinian and so is M.
(5) Since every supplement submodule is not small, every strictly descending 

chain of supplements has to stop. Let

Ni  C N 2 C N 3 C • • ■

be a strictly ascending chain of supplements in M. Since M  is amply supplemented, 

we will get a supplement Li of Ah. Clearly A2+ Iq  =  M  and we can get a supplement 

L 2 ® L\ of N 2. If Li — L 2j then N 2 ~  Ah T {N2 n  Lfij with N 2 fl L\ M .  This 

implies N 2 lies above Ah in M  contradicting tha t N 2 is coclosed. Hence L\ 3  L 2. 

Getting supplements Li in the same way for every Ah leads to a strictly descending 

chain of supplements, tha t has to stop.

(6) Since M  is supplemented by 2.1.3, M /R ad (M) is semisimple by 1.3.2. By
(5) M /R ad  (M ) has ACC on supplements and so on direct summands. Hence 

M /R ad  (M) is a finite direct sum of simple modules. □

The next definition is due to Zoschinger (see [74]),

D efin ition . An iAmodule M  is called a Minimax-module if there exists an exact 

sequence

0 ------ > F   y M   ---> A   y 0

with F  finitely generated and A  artinian.
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Remarks: Zoschinger proved in [73, 1.7] tha t every linearly compact module over 

a commutative noetherian ring is a Minimax-module. Moreover his student Rudlof 

showed in [52] tha t a module M  over a commutative noetherian ring is a Minimax- 

module if and only if every decomposition of a homomorphic image of M  is finite.

C o ro lla ry  2.1.5. Let M  be an R-module with finite spanning dimension. Then M  
is a Minimax-module or an indecomposable module with Rad (M) =  M .

P ro o f: If M  is not indecomposable then M  is artinian by 2.1.4(3) and hence a 

Minimax-module. Assume Rad (M) ^  M  and let 0 ^  x  G M  \  Rad (M ). Then 
R x  M  and the following sequence is exact;

0  y  R x   y  M   y  M /R x   y  0

with R x  cyclic and M /R x  artinian by 2.1.4(2). Hence M  is a Minimax-module. □

Applying 2.1.4(3) we can easily prove a slightly modified version of a result by 

Rangaswamy [47], saying tha t modules with finite spanning dimension are either 

hollow or artinian if they satisfy a certain generalized projectivity condition.

P ro p o s it io n  2.1.6. Let M  be an R-module such that every supplement is a direct 
summand. Then M  has finite spanning dimension if and only if  it is hollow or 

artinian.

P ro o f: The sufficiency is clear. Assume that M  is not hollow. Then there exists 

a submodule N  tha t is not small in M. By 2.1.3, M  is amply supplemented. So 

N  has a supplement K  in M.  By hypothesis K  is a direct summand. Hence there 

exists a decomposition M  =  K  0  L  holds and by 2.1.4 M  is artinian. □

Remarks:

1. We will call amply supplemented modules with the property th a t every sup

plement is a direct summand lifting modules in Chapter 4. Thus we showed 
th a t a lifting module has finite spanning dimension if and only if it is hollow 
or artinian.

2. Rangaswamy in [47, Proposition 3.5] proved the previous result for self- 

projective modules. Self-projective modules always satisfies the condition tha t
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the intersection of mutual supplements is zero. Hence an amply supplemented 

self-projective module satisfies the condition tha t every supplement is a direct 

summand, since for each supplement N  in M  we can find a supplement K  of 

N  such tha t N  and K  are mutual supplements. Thus a projective -R-module 

(e.g. R  itself) has finite spanning dimension if and only if it is local or artinian.

3. We will show in Chapter 3.2 tha t one can assign a unique ”dimension” number 

to a module having finite spanning dimension. This number is an invariant of 

the module.

4. More on finite spanning dimension can be found in Satyanarayana’s papers 

[54], [55] and [56].

2.2 R eiter’s, Takeuchi’s and Varadarajan’s ap

proach

Takeuchi’s approach to dual Goldie dimension was by dualizing (Ul):

D efin ition . (Takeuchi, [59, Definition 4.7])

An .R-module M  is co,finite-dimensional if M  contains no infinite coindependent 

family of submodules.

Reiter dualized chain condition (U3) as Fleury, but in a stricter way. His defini

tion of finite dual Goldie dimension was:

D efin ition . (R eiter, [49, Definition 1.2])

An R-module has finite codimension if there is no infinite descending chain of 

intersections

Ux d Ul n  u2 d Hi n  u2 n  h 3 d  ■ • -
of submodules U{ C  M  such tha t for all n G  N ,  {Hi , . . .  , Un} is a coindependent 

family.

Remarks;

1. Reiter called an intersection of submodule Hi fl • • * D Un in [49] to be a direct 
intersection if {Hi , . . .  , Un} forms a coindependent family of proper submod

ules.
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2. If M  admits an infinite coindependent family { [ / / } ^  of proper submodules 
of M , then M  admits an infinite descending chain of direct intersections U\ fl 

■ • ■ D Un. Hence M  does not have finite codimension. If M  admits an infinite 

descending chain of direct intersections Ui H • • • fl Un then { U i } ^  forms an 

infinite coindependent family of proper submodules of M  by 1.4.2. Hence we 
see tha t R eiter’s and Takeuchi’s definitions are equivalent.

2.2 .1 . D escen d in g  chain condition  for fin ite codim ension .
Let M  be an R-module. M  has finite codimension if  and only i f  for every descending 

chain of submodules N\ D N 2 D D • • • there exists an integer n such that N n lies 
above N^ for all k > n.

Proof: For the proof we refer to 3.1.2 (a) (d) or [49, Theorem 2.5]. □

Remarks:

1. Comparing condition (U3) for finite uniform dimension to Reiter’s descending 

chain condition we see, tha t the property "N n is essential in N C  was dualized 

to ” N n lies above IV/.” (or in Takeuchi’s words ” N n is a coessential extension 

of AT,” ).

2. One can easily see, tha t if a module satisfies Fleury’s chain condition, it also 
satisfies R eiter’s chain condition, because if N n is small in M , than N n/Nk  <C 

M /Nh  for every submodule of N n. (see 1.1.2)

V aradarajan proceeded in a more categorical way to dualize the Goldie dimen
sion.

D efin ition . (Varadarajan, [62, Definition 1.8])

An R-module M  has corank(M) = k if there exists an epimorphism from M  to a 

product of k non-zero factor modules, but there is no epimorphism from M  to a 
product of k +  1 non-zero factor modules.

Remarks:

1. If corank(M) — k then by 1.4.6 there exists 110 coindependent family with more 

than k submodules. Hence a module with finite corank is cofinite-dimensional. 

We will show th a t the converse is also true.
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2. Varadarajan defined the notion of weak corank: A module M  has weak corank 

k if there is a small epimorphism from M  to a direct sum of k non-zero, hollow 

modules. Sarath and Varadarajan proved tha t an irkmodule M  has finite 
corank if and only if there is a small epimorphism from M  to a finite direct 

sum of hollow modules (see [53, Theorem 1.8]). This can be seen as the dual 
property of (U2).

2.3 A  la ttice  theoretical approach

In [20], Grzeszczuk and Puczylowski gave a lattice theoretical definition of the dual 
Goldie dimension. In this section we will state their results and give a dualized proof 

of their main theorem for Goldie dimension. Let us recall basic notions for lattices:

D efin itio n . For a complete lattice £  = <  L\ V ,  A, 1,0 > with 0 / l w e  say:

« An element a E L  with a /  1 is small in C if for any element x E L  with 

a: /  1, a V /  1 holds.

•  A lattice C is hollow if every element a E L \  {1} is small in C.

• A subset I  of L  \{1} is meet-independent if for any finite subset X  of I  and 

x  E I  \  X  we have (A X )  V  x = 1.

These definitions correspond obviously to the definition of small submodules, 

hollow modules and coindependent families of submodules.

Remarks:

1. It is easy to see, th a t { a* } ^  is a meet-independent set of elements of L  if and 

only if for all k > 1 (ai A - • ■ Aa/._i) Va& =  1 holds (see also the characterization 

for coindependent submodules 1.4.2).

2. The set A4 := { I  C L\ I is meet-independent } is partially ordered by set- 

theoretical inclusion. Moreover Uaga is again a meet-independent set for 

a chain {Ia}a€A in Ad, because we have to ’te st5 meet-independence only for 
finite subsets. Hence A i  has a maximal member by Zorn’s lemma.

The next lemma was proved for submodules in [49, 3.1] and [24, 7.3].
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Lem m a 2.3.1. Let C be a complete modular lattice that does not contain an infinite 
meet-independent set. Then for every element 1 ^  b G L there exists an element 

6 <  c /  1 m  L such that [c, 1] is hollow.

P ro o f: Assume th a t there is no element b < c ^  1 in L  such tha t [c, 1] is hollow, 

then by induction we construct a sequence Ci, c2, . . .  of elements of L \  {1} such tha t 

the set {ci, c2). . .  } is meet-independent and, for any k, q  A ■ • • A is not small 
in [6,1]. For k = 1 the construction is clear, since [b, 1] is not hollow. Hence there 

exists an element cx > b% such tha t c\ is not small in [6,1]. Now let us assume that 

we have constructed elements c i , . . .  , ck- \ .  Since ci A ■ ■ • A ck_i is not small in [6,1], 

there exists b <  d 1 such th a t (cj. A • • • A ck~i) V d = 1. By assumption the lattice 

[d, 1] is not hollow. Hence there exist d < d2 ^  1 with d\ V d2 =  1. P u t ck := d\. 

Clearly {ci, • ■ ■ , ck} is meet-independent (see above remark (1)) and ci A ■ • • A c& is 

not small in [6,1] as (cx A • • • A ck) V d2 = 1 and d2 ^  1 (see 1.1.1). Thus we will get 

an infinite meet-independent set of elements of L. This contradicts our hypothesis. 

Thus there must exist an element b < c /  1 such th a t [c, 1] is hollow. □

Note th a t the terminology N  lies above K  in M  for submodules N  and K  of a 

module M  is exactly the same as N  is a small element in the lattice [Ki M\.

The next lemma is the dual version of [20, Corollary 4],

Lem m a 2.3.2. Let C be a complete modular lattice with elements G q , . . .  ,a n and  

b i , . . .  }bn of  L  such that { f q , . . .  , bn} is a meet-independent set and a* is small in  

[ibi, 1 ]  fo r  all i. Then  G q  A  • • ■ A  an is small in  [& i A  • • • A  bnj 1 ] .

P ro o f: The proof is the same as in 1.4.1(4). □

In [49, Lemma 3.5] Reiter proved the following result for modules.

Lem m a 2.3.3. Let C be a complete modular lattice. Assume there exists a meet- 

independent set { a i , . . .  , an} in L such that [a*, 1] is hollow for all i and eq A • ■ ■ Aan 

is small in £ . Then an element b G L is small in £  if and only i f  cq V b ^  1 holds 

for every i 6 {1, . . .  , n}.

P ro o f: The necessity is clear. Assume Gq V b ^  1 for all i G {1, . . .  , ?r}. Then a* V 6 

is small in [cq, 1] as [cq, 1] is hollow. By Lemma 2.3.2 (cq V b) A • • • A (an V b) is small 

in [ai A  • • • A  an, 1]. Since aq A  • • • A  an is small in £ , we get th a t (oq Vb) A  ■ * • A  (an Vb) 

is small in £  (see also 1.1.2). Hence 6 <  (ai V 6) A  • • • A  (an V b) is small in £ . □
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Now we are able to state a dualized proof of Grzeszczuk and Puczylowski’s main 

theorem.

2,3.4. M o d u la r  la ttic e s  w ith  fin ite  hollow  d im ension .

For a complete modular lattice C the following are equivalent:

(a) C does not contain infinite meet-independent sets.

(b) C contains a finite meet-independent set {a,i,. . .  , an} such that a± A • • ■ A an 

is small in C and the lattices [aj, 1] are hollow for  1 <  i < n.

(c) sup{k\C contains a meet-independent subset of cardinality k} =  n < oo.

(d) For any descending chain a\ > 0 2  > • ■ • of elements of L  there exists j  such 

that for all k > j ,  aj is small in [a*, 1].

P ro o f: (a) (b) As in above remark (2) the set

M-h := { I  E A t|for all a E I  : [a, 1] is hollow} C M.

is partially ordered by set-inclusion where M  is the set of all meet-independent 

subsets of L. Let X  E M h  be a maximal meet-independent subset of L  such tha t 

the lattice [a:, 1] is hollow for all x E X .  By (a) X  is finite, say X  =  {.Ti,. . .  ,

We claim tha t x\  A • ■ • A xn is small in C. Assume tha t (s i A • • • A xn) V a = 1 for 
some 1 /  a G f .  By Lemma 2.3.1 there exists an element l ^ c > a  such th a t the 

lattice [c, 1] is hollow. Obviously the set {#1, . . .  , £n,c} is meet-independent. This 

contradicts the maximality of X .
(b) (c). Assume that L  contains a meet-independent set ,6^} with

k > n. We show by induction tha t by rearranging a i , . . .  ,a„, if necessary

(*) for any 0 < j  < n the set {<21, . . .  , a^, fy+i, ■ ■ ■ , 6/,} is meet-independent.

For j  =  0 (*) is clear. Now let j  > 0 and c := ai A • • • A a,j-i A bj+i A • ■ • A £>*.. As 

c V bj = 1, c is not small in C. By Lemma 2.3.3 c V as =  1 holds for some 1 <  s < n. 

Clearly s > j  otherwise as =  1. By sorting {a,-,. . .  , ara} we put j  =  s and obtain 

th a t the set { d i , . . .  , aj,bj+1, . . .  , bn} is meet-independent. Thus (*) holds.

In particular (*) implies th a t the set { a i , . . .  , an, 6n+i, . . .  , 6jt} is meet-independent.

This is impossible as ai A . . .  A an is small in C. Thus every meet-independent set

of L  has at most n elements.

(c) =>(d). If (d) is not satisfied, then there exists a chain 1 /  a\ > <22 > ■ ■ * of
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elements of L  such th a t for any j  >  1 there exists a number k(j)  > j  such tha t aj 

is not small in [afty),l]. Let {j m}mon be a sequence of indices defined as follows: 

j i  := 1 and j m := for all m  > 1. By the foregoing there exist elements d'-m
such th a t a,j ,, <  a'- A  1 with a.* V a'- =  1 for all m. Thus•— Jnl i Jm Jm

(d! A a[ A ■ • • A V a'jm >  ajm V a'jm =  1

for all m  > 1. Then by the above remark (1) we get th a t {ai > ai'2’ * * ■ > a'jm > ■ • • }
is meet-independent. This contradicts (c).

(d) =>> (a). If (a) is not satisfied, then L  contains an infinite meet-independent 

set { a i ,  d 2, . . .  } •  Then d i  >  a i  A  a 2 >  A a2 A • and for any k  G N ,

(cii A  • • • A  ah) V  a*.+i =  1 implies that a\ A • • • A  au is not small in [a,! A  ■ • ■ A  dj, 1] 

for all I >  k .  This contradicts (d). □

Remarks: Looking at the proof it is obvious that the numbers n  from (b) and from
(c) must be the same and unique.

Let C —< L;V, A, 0,1 > be a complete modular lattice with 0 ^ 1 .  The dual 

lattice £° — L\ A, V, 1, 0 A" is modular as well. By the Duality Principle we know, 

th a t a lattice has a property if and only if the dual lattice has the dual property. 

Exchanging V and A we get dual definitions and a dual theorem:

D efin itio n . Let £  be a lattice:

• An element a £ L \  {0} is essential in C if for any element x  G L \  {0}, 

d A i / 0 .

® A lattice is uniform if every element a € L \  {0} is essential in C.

•  A subset I  of L  \{0} is join-independent if for any finite subset A  of J  and 

x  e  I  \  X  we have (V X )  A x  — 0.

2.3 .5 . M odular la ttices w ith  fin ite uniform  dim ension .

For a complete modular lattice C the following are equivalent:

(a) C does not contain infinite join-independent sets.

(b) C contains a finite join-independent set {d i , . . .  ,a„} such that a\ V • • • V an is
essential in C and the lattices [0, a*] are uniform for  1 < i < n.

(c) sup{k\C contains a join-independent subset of cardinality equal to k} = n  < oo
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(d) For any ascending chain ai < 02  < ■ ■ ■ of elements of L there exists j  such 

that for all k > j , aj is essential in [0, a*.].

Let C be the lattice of submodules of a module. Then the above theorem is a 

well-known characterization of modules having finite Goldie dimension. Hence it is 
convenient to define the Goldie and dual Goldie dimension of a modular lattice.

D efin ition . If £  satisfies one of the equivalent conditions (a)-(d) of Theorem 2.3.5, 

then the Goldie dimension of a modular lattice udim(C) of L is equal to n. If £  

does not satisfy the conditions, we put udim(C) = 00.

D efin ition . If £  satisfies one of the equivalent conditions (a)-(d) of Theorem 2.3.4, 

then the dual Goldie dimension hdim(C) of L is equal to n. If £  does not satisfy 

these conditions, we put hdim(C) =  00. Obviously we have hdim(C) = udim(C°) 

and udim(jC) =  hdim(C°).



C hapter 3 

H ollow  dim ension

3.1 F in ite hollow dim ension

Since the lattice C(M)  of all submodules of a module M  is complete and modular, 

we can apply the results from Chapter 2.3 to the lattice of submodules of a module.

One can easily see tha t the notions of essential (small) submodules, uniform 

(hollow) modules and independent (coindependent) families of submodules match 

with the notions of essential (small) elements, uniform (hollow) lattices and join- 

independent (meet-independent) sets of sublattices.

By 2.3.5 we get the following well known result:

3.1.1. M odules w ith  finite uniform  dim ension.
For a non-zero module M  the following are equivalent:

(a) M  does not contain an infinite independent set of submodules.

(b) M  contains a finite independent set of submodules {N±t . . .  ,N n} such that 

©?=i ^  <3 M  and Ni is a uniform submodule for every 1 <  i <  n.

(c) sup{k\M  contains an independent family of submodules of cardinality ft} — 

n < oo.

(d) For any ascending chain Ni C N 2 C • ■ • of submodules of M  there exists j  

such that for all ft > j , N j < N k.

D efin ition . An .R-module M  is said to have finite uniform dimension if it satisfies 

one of the conditions in 3.1.1. Let udim (M )  denote the number n  from 3.1.1.

29
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Note th a t if TV is a submodule of M ,  then the sublattice [N , M] of the lattice 

C(M )  is isomorphic to C (M /N ).  Now we can apply 2.3.4.

3.1 .2 . M odules w ith  fin ite hollow dim ension.
For a non-zero module M  the following are equivalent:

(a) M  does not contain an infinite coindependent family of submodules,

(b) M  contains a finite coindependent family of submodules { N i , . . .  ,N n} such 

that is small in M  and M /N i is a hollow module for every 1 <  i < n.

(c) sup{k\M  contains a coindependent family of submodules of cardinality equal 

to k} = n < oo.

(d) For any descending chain N i E N 2 E • ■ - of submodules of M  there exists j  

such that for all k > j ,  Nj lies above Nf, in M.

(e) There exists a small epimorphism from M  to a finite direct sum of n hollow 

factor modules.

Proof: (a) ^  (b) (c) (d) follow by -2.3.4. (b) (e) follows by the Chinese

Remainder Theorem 1.4.3. □

D efin ition . An i?-module M  is said to have finite hollow dimension if it satisfies 

one of the conditions in 3.1.2. Let hdim(M )  denote the number n  from 3.1.2. If 

M  =  0 we write hdim(M ) = 0 and if M  does not have finite hollow dimension we 

write hdim (M )  =  oo.

Remarks:

1. Obviously every artinian module has finite hollow dimension. A module is 

hollow if and only if it has hollow dimension 1.

2. In 3.1.2 (a) corresponds to Takeuchi’s definition and (d) to Reiter’s Theorem

2.2.1. Applying the Chinese Remainder Theorem 1.4.1, we see th a t (c) states, 

th a t there cannot be an epimorphism from M  to a finite direct sum of more 

then n summands. Hence condition (c) is equivalent to V aradarajan’s defini

tion of corank. The equivalence between V aradarajan’s corank condition and

(e) was proved in [53, Theorem 1.8].
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3. Since modules with finite spanning dimension satisfy the chain condition (d) 

we get tha t these modules have finite hollow dimension.

4. In [17] Golan and Wu pointed out tha t since the lattice of subobjects of an 

object in a Grothendieck category is also a modular lattice, one can define 

the Goldie and dual Goldie dimension of such objects using Grzeszczuk and 

Puczylowski’s definition.

5. Using the same arguments Page in [44] as well as Park and Rim in [45] defined 

the dual Goldie dimension relative to a torsion theory.

The following results are analogue to chapter 5 in [10]. Let us consider a techni

cal, but useful lemma first.

L em m a 3.1.3. ([50, Theorem 5]) Let M  be an R-module. Assume M  has a proper 

ascending chain of submodules 0 =: N 0 C Ni C N 2 C IV3 C • • •, such that for all
k > 1, N k does not lie above N k_i in M . Then M  contains a.n infinite coindependent

family of submodules.

Proof: By assumption N k/ N k~i is not small in M / N k_i  for every k > 1. For every 

k > 1 there is a proper submodule L k of M  such tha t N k_x C L k and L k -1- N k =  M  

holds.
Claim: L k =  N k- 1 +  (L\ D ■ ■ ■ n  L k) holds for all k >  1.

We will prove this by induction on k: 

for k = 1 this is clear; 

k -4 k +  1: M  — N k +  L k implies

L k+1 =  N k -\- (L k+i fl L k)

=  N k +  L k+1 n  (Nk- i  +  (Li n  • • ■ n  L k))

=  N k +  N k- 1 +  (Li n  • • • n  L k+1)

-  ivfc +  (Lx n  ■ ■ ■ n L fc+1).

Thus for every k > 1 we get

M  =  N k_i +  L k- 1 =  +  N k _ 2  +  {L\ n  • ■ • n  Lfc-i) Q L k -\- (Li n  ■ ■ • n  L k_ 1) c  m .

Hence by 1.4.2 {1^}^ is an infinite coindependent family of proper submodules. □
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3.1 .4 . M odules w ith  hollow  factor m od u les.([49, 3.1], [45, 11])

Let M  be a non-zero R-module such that every coindependent family of submodules 

is finite. Then M  has a hollow factor module.

P ro o f: The proof is the same as in 2.3.1. On the other hand Lemma 3.1.3 allows us 

to prove it quickly: Assume M  is not hollow and has no hollow factor module. Then 

we can construct an ascending chain of proper submodules Ah C  N 2 C  IV3 C  . . .  

such tha t for no k > 1, N k lies above AA-i as follows: for each k G N, M /N ^  is not 

hollow and there exists a submodule Ah+i/AL i t  M/Nf. . By 3.1.3 M  has an infinite 

coindependent family of submodules. This contradiction shows, th a t M  must have 

a hollow factor module. □

Remarks: W ith the same argument as in the proof of 3.1.4 we get tha t every non-zero 

factor module M / N  has a hollow factor module.

D efin ition . An i?-module M  is called conoetherian if every finitely cogenerated 

module in cr[M] is artinian (see [67, 31.6]).

Corollary 3.1.5.

1. Any non-zero artinian module has a hollow factor module.

2. Let M  be a locally artinian module. Then any non-zero module in a[M] has a 

hollow subfactor.

3. Let M  be a conoetherian module. Then any non-zero module in cr[M] has a 

hollow factor modtde.

4 . Let R  be a left conoetherian ring, then any non-zero R-module has a hollow 

factor module.

Proof: (1) Clear by 3.1.2 and 3.1.4;
(2) any finitely generated module in a[M] is artinian. Thus any non-zero cyclic 

submodule of a module in a[M] has a hollow factor module.
(3) Every module N  £ cr[M] has a non-zero finitely cogenerated factor module L. 

By hypothesis L  is artinian and by (1) it has a hollow factor module.

(4) Set M  := R  and apply (3). □
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3.1 .6 . Sm all subm odules and hollow factor m odules.
Let M  be a non-zero R-module such that every non-zero factor module has a hollow 

factor module. Then M  contains a coindependent family {AT}a of submodules such 

that M / K \  is hollow for every A £ A and Ha AT i5 small in M .

Proof: Let Ad denote the set consisting of all non-empty coindependent families of 

submodules K  of M  with M / K  hollow, i.e.

Ad = {{Arw}n|{AT}n coindependent, 0 ^ 0 ,  M / K w hollow for all to £

Ad is partially ordered by set-theoretical inclusion: {AT}n C {Aa}a if for every 
io £ O there is a A G  A such tha t = L\.  Let

be a chain of elements of Ad. Then we have to show, that

U — I J i /C jn ,-  =  {K Ui}n where D := (J  ^  
i e l  i & I

is a coindependent family of submodules. Consider submodule £ U and a finite 

number of submodules {AA2, ■ ■ ■ , K in } C U \  {AT }- Then there must be an element 

{A T jo , such tha t {AT, . . .  t K in} C { A T J^ . Since {A T jn . is coindependent, 

K ix +  (K h n  • • • n  K in) =  AI holds.

Hence we can apply Zorn’s Lemma. So Ad has a maximal member {AT}a th a t is 

a coindependent family of proper submodules, such th a t M /AT is hollow for every 

A G A. Let K  — Da AT denote the intersection of this family. If K  is not small in 
M, then there is a proper submodule L  of M  such tha t K  + L  — M. By hypothesis 

M /L  has a hollow factor module M /N .  So L  C N  and K  N  =  M  holds. By 

1.4.1(2) {AT}a U { N }  is a coindependent family and hence it is an element of Ad. 

But this is a contradiction to the maximality of {AT}a- Hence K  must be small. □

C orollary 3.1.7. Let M  be a conoetherian module, then every non-zero module 

N  G a[M] contains a maximal coindependent family {AT}a of submodules such that 

N / K \  is hollow for every A G A and Da AT is small in N .

Proof: By 3.1.5 and 3.1.6. □

Together with 3.1.4 and 3.1.6 we are able to prove 3.1.2(a) (e) without using

the lattice-theoretical result 2.3.4.
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3.1.8. F in iteness condition  and hollow  m od u les.([45, 12])
Let M  be a non-zero module that contains no infinite coindependent family of proper 
submodules. Then there is a small epimorphism from M  to a finite direct sum of 

hollow modules.

Proof: By 3.1.4, 3.1.6 and the Chinese Remainder Theorem 1.4.6. □

The next theorem restates 2.3.3 for submodules of a module.

3.1.9. Sm all subm odules and hollow  factor m o d u les.([49, 3.5])

Let M  be an R-module, N  a submodule of M  and f  : M  —> © ”=i Hi a small 
epimorphism, with Hi re M /K { hollow factor modules of M  and Ki submodules of 

M . Then

N  is small in M  if and only if N  +  Ki /  M  for every 1 <  i < n.

Proof: The proof is the same as in 2.3.3. □

Let N  C M  and n : M  M / N  be the canonical projection. Let g : M / N  —> 

© i =1 Ni be an epimorphism with Ni 0.

0 ------ > N  ------ ► M  —=-► M / N  ------ > 0

9

Then there exists an epimorphism from M  to a direct sum of k non-zero modules. 

Hence hdim (M ) > hd im (M /N ).  This shows that the hollow dimension of a factor 

module M / N  is always smaller than the hollow dimension of M. If h d im (M /N )  =  oo 

then hdim (M ) — oo. Assume h d im (M /N )  =  k and N  <C M .  Then Ker (g) M / N  

holds and irg is a small epimorphism. Hence hdim(M )  =  k — h d im (M /N ).  Thus 

hdim (M )  — hd im {M /N )  whenever N  <C M.

3.1 .10. F in ite  hollow  dim ension.
Let N  and K  be submodules of an R-module M .

1. I f  M  — M i ® • ■ • 0  M}., then hdim(M ) — hdim(Mfi) +  • • • +  hdim(Mf.).

2. I f  N  <C M , then hdim (M )  =  hdim (M / N ) .
Conversely, if  M  has finite hollow dimension and hdim (M ) = h d im (M /N ), 

then N  <C M .
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3. Assume N  is a weak supplement of K  in Ad. Then hdim (M ) = hdim (M /N)-\-  

h d im (M /K )  holds.

4- Any module with finite hollow dimension is weakly supplemented.

5. Assume both N  and M / N  have finite hollow dimension. Then Ad has finite 

hollow dimension.

6. Assume the following sequence is exact:

0 ------  ̂ N    ̂M   y L   y 0.

Then the following holds: hdim(L) < hdim(M )  < hdim(L)  +  hdim (N).

7. Assume M  has finite hollow dimension, then any epimorphism f  \ M  —y Ad is 

small. I f  M  is self-projective, then f  is an isomorphism.

Proof: (1) hdim(Ad) > hdim(Mi) holds by above remark. Thus if hdirn(Adi) — 00 

for any direct summand Mi, then hdim(M ) — 00. Assume th a t for all i € {1, . . .  ,k }  

hdim(Mi) = < 00 and there exists a small epimorphisms fi : Mi —> ® ”=i Hij with
Hij hollow for all 1 <  j  < n». Then we get a small epimorphism /  =  ( / 1, . . .  , /*)

M  © t i  ( 0 £ i  Hij) ------  ̂ 0.

Thus hdim{M ) = hdim{M\) +  ■ • • +  hdim(Mk).
(2) clear by above remark. Assume hdim(M ) — n < oo, f  : M  -y  ©"_! M /K i  

a small epimorphism and N  ^  M. Then by 3.1.9 there exists an index i such 

th a t N  A Ki — M. Thus M / ( N  fl Kf) ce M /N  © M /K i.  By (l) hdim (M )  > 

h d im (M /N ) +  hd im (M / Kf) > h d im (M /N )  holds but this is a contradiction to 

hdim (M )  =  hd im (M / N ) . Hence N  <C M.
(3) By assumption, K  N  N  — Ad and K  Pi N  <C M  yields:

hdim (M ) ~  h d im (M /(K  C\ N)), by (2) 

=  h d i m ( K / ( K n N ) ® N / ( K n N ) )  

=  h d im {K /(K  n N))  +  h d im (N /(K  n N ) ) y by (1) 

=  hd im (M / N )  +  hdim (M / K ) , by (2).

(4) By 3.1.8 M  is a small cover of a finite direct sum of hollow modules. Since 

hollow modules are (weakly) supplemented, M  is weakly supplemented by 1.3.2.
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(5) Suppose, to the contrary, tha t M  does not have finite hollow dimension and 

let be an infinite coindependent family of submodules of M .  Then let

L\ = K \ , l 2 =  k 2 n  i^3, ■ • • ,L n = Kt+i n  ■ • ■ n  K t+n,

with integer t = n(n  +  l) /2 . For every n  G N we have M / L n ~  0 ”- i  M / K t+i as 
{ K t+ i/L n t . . .  , K t+n/ L n} is coindependent. Hence n < h d im (M /L n). is again

an infinite coindependent family of submodules of M  (see 1.4.2). Since hd im (M /N )  

is finite { N  +  L i is not coindependent and so IV +  L n — M  for almost all n. 
Choose n such th a t n > hdim(N)  and N -\-Ln =  M. Then M / L n ~  N /(N C \L n) is a 

factor module of N.  Thus n < hdim (M / Ln) < hdim (N )  < n yields a contradiction. 

Hence M  cannot contain an infinite coindependent family of proper submodules. 

Thus it has finite hollow dimension.

(6) Clearly hdim(L) < hdim(M )  is always true for a factor module 4  of M  by 
above reamrlc and if hdim (M )  is not finite, then the equation is clear by (5). Let 

M  have finite hollow dimension, then every submodule N  has a weak supplement 
K .  By (3) we get:

hdim (M ) = hd im {M /N )  +  hd im (M /K )  < hdim(L)  +  h d im (N ), 

since M / N  L  and M / K  ~  N / ( N  fl K).
(7) Since M  has finite hollow dimension and hdim (M )  =  h d im ( lm ( f ) )  =  

h d im (M /Ker ( / ) )  we get by applying (1) that Ker ( /)  <C M .  If M  is self-projective, 

then Ker ( /)  is a direct summand and hence 0. □

Remarks:

1. The properties (1), (2) and (5) appeared in various papers: e.g. (1) [38, 5.13], 

(2) and (5) [23] and [45]. For (3) see [49, Theorem 4.1]; for (4) [24],

2. Let M  =  X)a M x with M x /  0 for all A 6 A and consider

© a M a - U _ >  M  ------- >■ 0

with {{mx} h ) f  =  Z A mA- By above remark we have hdim (M ) < 
hd im (® A M \). If |A| =  oo then clearly /id«m (0A M x) = oo =  hdim (M x). 

If |A] < oo then by (1) we get hdim(@A M x) = Y lAhdim (M x). Thus we get 
hdim (M )  <  Y,A ^dim (M x).

3. If hdim (M )  =  n is finite, {iCi, , . .  ,K n} a maximal coindependent family and 

N  a small submodule of M, Then we get by 3.1.9 th a t Li := N  +  Ki is a
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proper submodule of M  for all 1 < i < n. Hence {L X). . .  , L n} is a maximal

coindependent family in M  and N  C L x n  • ■ • H Ln holds. Thus every small

submodule N  of a module M  with finite hollow dimension is contained in an 

intersection L x fl • • • n  L n <  M  such tha t { L i , . . .  , L n} form a coindependent 

family of submodules in M  (see [49]).

A further characterization of a module M  with finite uniform dimension is tha t 

the M-injective hull M  of M  is isomorphic to a finite direct sum of uniform modules 

and the endomorphism ring of M  is semiperfect. As an analogue we get the following 

result:

3.1.11. P ro jective  covers w ith  fin ite hollow  dim ension.

Let M  be an R-module with a projective cover P in <j[M]. Then the following 

statements are equivalent.

(a) M  has finite hollow dimension and is semiperfect in ct[M];

(b) P  — ©"=i Li with Li non-zero local modules;

(c) E nd(P ) is semiperfect;

Proof: (a) (b) Assume tha t M  has finite hollow dimension and consider the

following diagram:
P  ©?=i Pi

M  © " =1 Hi-----------> 0

0  0

where /  is a small epimorphism to a finite direct sum of hollow modules H(. Since 

M  is semiperfect, there exist projective covers P* in a\M] for each Hi th a t are hollow 
and by [67, 19.7] local. By [67, 19.5] 0"_! Pi forms a projective cover for 0 " =1 Hi in 

a[M] and P  ~  © ”=1 Pj. Each Pi is isomorphic to a direct summand Li of P . Thus

P  =  © SU £i.
(b) =$> (a) By [67, 42.3(3)] M  is semiperfect in a[M] and by 3.1.10 hdim (M )  =  

hdim(P) < oo.

(6) (c) By [67, 42.4(1)] P  is equal to a finite direct sum of local modules

(projective covers of simple modules) if and only if P  is finitely generated and
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semiperfect in cr[M}. Since P  is finitely generated and self-projective it is projective 

in a[P] by [67, 18.3] and hence semiperfect in <j[P]. Thus by applying [67, 42.12]: 

P  is finitely generated and semiperfect in <t[P] if and only if End (P) is semiperfect. 
□

The next result is due to Page [44] and shows the duality between hollow and 

uniform dimension. For tha t we have to introduce some notation of annihilator 
conditions in M  and Horn (M, Q) for an injective cogenerator Q in a[M],

Assume r M  to be an jR-module, r Q  to be an injective cogenerator in a[M\. Let 

T  Endjz (Q), N  E cr[M] and N* := Horn# (N , Q )t  a right T-module. Define for 

any i?-submodule K  C N  and T-submodule X  C N*:

A n(K )  := { /  E N * \(K ) f  = 0} C  N \

K e (X )  := f |{K er (g)|s € X }  C N

By definition A n (K \  +  K 2) =  A n(K \)  n  A n (K 2) holds for all K \, K 2 C  N.
By [67, 28.1] the following conditions hold since r Q  is an injective cogenerator 

in a[M]\

(AC1) K e(A n (K ))  = K  for all K  C  N;

(AC2) A n (K e (X ))  = X  for every finitely generated T-submodule X  C  N * ;

(AC3) n  I<2) -  A n(K i)  +  A n (K 2) for all K u K 2 C  N.

3.1.12. H ollow  d im en sio n  a n d  d u a lity .([44, Proposition 1])

Let M  be an R-module and r Q  an injective cogenerator in <y[M], T  End {rQ)- 

For any modide N  E a[M] set N* := Horn (7/, Q)t- Then hdim(RN) = udim (N^)  

holds.

P ro o f: Assume N  admits the following exact sequence, with Hi non-zero factor 

modules of N :

N     ■> (Bihi Hi  y 0.

Since Q is iV-injective, Hom#(—, Q) is exact in a[M] (see [67, 16.3]) and by applying 
this functor we get the exact sequence:

0 ------ ► © t i H o m  (Hh Q) ------  ̂ N*

where all Horn (Hi, Q) are non-zero submodules of N*, since the Hi were non-zero 

and Q a cogenerator in a[M]. Hence N* contains a direct sum of k submodules.
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Thus hdim (RN ) < itdim(N^).

On the other hand, assume that N* contains a submodule X  which is a direct sum 

of k non-zero submodules. W ithout loss of generality suppose this sum is a sum 

of cyclic submodules, so take X  = f i T  0  ■ • • 0  f kT  with 0 /  / i  G F .  Obviously 

K e( f iT )  = Ker (/*) is a proper submodule of N  for every 1 < i < k.
Next we will show, tha t {Ker ( /x) , . . .  , Ker (/*,)} is a coindependent family of proper 

submodules of N.  Applying {AC1) — (AC 3) we get for all 1 <  i < k the following:

o =  fiT n  Y, fjT

=  An( Ke( f t T ) )  n  A n ( K e ( ^  f jT) )  ,by (AC2)

=  A n ( K e i ( f t )  +  K e ( J 2 f j T ) )

=  An (Ker (/*) +  An(Ker {fj)))) ,by (AC 2)
jW

=  j4re(Ker (/•) 4- K e ( A n ( f )  Ker (f j ))))  ,by (AC3)  

=  An(Ker (ft) +  f l  Ker i f , ) ) >by (A C 1)

Applying (ACT) yields

N  =  I<e(0) =  K e ( A n (Ker (ft) +  f )  Ker (fj )))  =  Ker (ft) +  f |  Ker (fj).

Hence {Ker ( / i ) , . . .  , Ker (/*)} is coindependent. Thus u d im (N f)  < hdim(RN). □

Remarks: Since there exists always an injective cogenerator RQ in cr[M] we are 

able to express the hollow dimension of a module N  <E cr[M) in terms of uniform 
dimension.

Denote by <Jf[M\ the full subcategory of a[M] whose objects are submodules 

of finitely M -generated modules. Note tha t fff[R] just consists of submodules of 

finitely generated 17-modules. For the definition and characterization of dualities we 

refer to [67, Chapter 47], Page’s result gives us the following corollary.

C o ro lla ry  3 .1.13. Let U be a left R-module and S  := End (RU) and assume

Horn* ( - ,  U) : o~f[RU] crf [Ss ] 

to be a duality. Then for all N  E crf[RU] the following hold:

hdim (N )  =  udim(N*) and udim(N)  =  hdim(N*).
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Remarks: Since Horn# (—,£/) is a duality between crf[nU] and cr/[jS's'] every module 

in o~f[jiU] is linearly compact (see [67, 47.3]). Hence every module in CTf[nU] has 
finite uniform dimension, finite hollow dimension and a semilocal endomorphism 
ring as we will see in Section 3.5.

3.2 D im ension  formulas

In [7] Camillo and Zelmanowitz have pointed out tha t the Goldie dimension does 
not satisfy the familiar formulas for vector space dimension:

(1) d im (M ) = d im (M /N ) +  d im (N );

(2) d im (N  +  L) — dim (N)  +  dim(L) — d im (N  n  L);

for subspaces 77, L  C M, and have found the corrections required (see [7, Lemma 3 

and Theorem 4]):

(1) If N  is essential in L  and L  a complement in M, then

udim (M )  =  u d im (M /N )  +  udim (N) — u d im (L /N )

(2) If N  and L  are submodules of M, /  a maximal monic extension of the identity 

map Iatpil considered as a homomorphism from N  to L, and K  =  D o m a in ( f ), 
then

u d im (N  +  L) — udim (N )  +  udim(L) — udim (K )  H- u d im (K /(N  n  L))

These formulas are called the first and second Camillo-Zelmanowitz formulas. In 

[22] Haack showed, tha t the duals of the Camillo-Zelmanowitz formulas hold for 

hollow dimension if there are enough supplements.

3 .2 .1 . F ir s t  d u a l C am illo -Z elm anow itz  fo rm u la .([22, Theorem 5])

Let M  be an R-module and N  and L submodules of M. I f  N  lies above a supplement 

L in M  then hdim (M )  =  h d im (M /N )  +  hdim(N) — hd im (N /L).

P ro o f: Assume L  is a supplement of a submodule K  of M  and N  lies above L. 
Then N  n  K  lies above L n  K  by 1.1.2 and since L (1 I f  <  M  we get N  Pi K  -C M  
by 1.1.2. Hence N  is a weak supplement of K  in M . By 3.1.10(3)

hdim (M )  =  hd im (M /N )  +  h d im (M /K ) .
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Further N  fl K  is a weak supplement of L  in N  since by modularity

N  = N n { L  + K)  = L + { ND K)  

and (IV fl K)  fl L  =  L  n  K  C  L  C N  holds. Applying 3.1.10(3) again, we get 

hdim (N ) = h d im (N /(N  n  K ))  +  hdim (N /L) = h d im (M /K )  +  hdim (N /L).  

Subtracting these two dimension formulas we get the result:

hdim(M ) — h d im (M /N )  +  hdim(N) — hd im (N /L ).

□

Remarks:

1. Haack’s original assumption on the submodule N  were: N  has a weak supple

ment K  in M  such that there exists a supplement L  C N  of K  in M. From 

this follows, tha t N  lies above L, because whenever N  +  X  =  M  holds for a 

proper submodule X  C M, then M  = N  + X  = L + (N  C\K) +  X  = L  +  X  is 
satisfied since N f \ K  M.  Thus by 1.1.2 N  lies above L  in M.  On the other 
hand assume tha t N  lies above a supplement L  of a submodule K .  Clearly 

N  +  K  = M  holds and by 1.1.2 N  n  K  lies above LC\ K  and since L  O K  is 

small in M  this implies N  C\ K  <C M.  Hence N  is a weak supplement of K.

2. If M  is amply supplemented then every submodule N  of M  lies above a sup

plement L  (see 1.2.2). Hence the formula in 3.2.1 holds for every submodule 
N  of M  (independent from the supplement L).

C o ro lla ry  3.2.2. ([23, 7.8], [45, Lemma 19]) Let M  be an R-module and N  a 

supplement in M , then

hdim (M ) = hd im (M /N )  +  hdim (N ).

C o ro lla ry  3.2.3. Let M  be an R-module with finite hollow dimension and N  a 
submodule of M . Then the following holds:

N  is a supplement in M  4$ hdim(M ) = h d im (M /N )  +  hdim(N).
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P ro o f: If A  is a supplement, then the formula holds by the previous corollary. 

Assume tha t the above formula holds for a submodule N  of M .  Since M  has finite 

hollow dimension N  has a weak supplement K ,  by 3.1.10(4), such th a t by applying 

3.1.10(3)

hdim(M ) — hdim (M  /  N )  +  h d im (M /K ) .

Thus hdim (N)  =  h d im (M /K )  =  h d im (N /(N  n  K))  holds and hdim (N )  is finite. 

Applying 3.1.10 we get N  fl K  <C A, but this means A" is a supplement of K  in M .
□

Let lg(M) denote the length of a module M.

C o ro lla ry  3.2.4. Let M  be an R-module then the following statements are equiv

alent:

(a) M  is semisimple;

(b) hdim (M )  =  h d im (M /N ) + hd im (N ) holds for every A C M  and M  is weakly 

supplemented;

(c) udim (M )  =  ud im (M / N)  +  udim(N) holds for every N  C M.

In this case hdim (M )  =  udim (M )  =  lg(M).

P ro o f: (a) => (6), (c) Obvious, since every submodule is a direct summand and the

dimension notions hdim  and udim  are additive with respect to decompositions.

(ib) =>■ (a) For every small submodule K  of M, h d im (M /K )  =  hdim (M )  holds by

3.1.10 and implies hdim (K ) = 0. Hence K  — 0 and so Rad(M ) = 0. Since M  is 

weakly supplemented, it is semisimple by 1.3.3.
(c) =̂> (a) For every essential submodule K  of M, ud im (K )  =  udim (M )  holds and 

implies u d im (M /K )  — 0. Hence K  = M  and Soc{M ) =  M.
In the case th a t M  is semisimple, then M  — with E \  simple. Hence

|A| — lg (M ) =  udim (M )  =  hdim (M )  holds. □

A supplemented module with finite hollow dimension can be written as an irre- 

dundant sum of hollow submodules. This was first shown by Fleury in [13] and also 

by Varadarajan in [62],

D efin itio n . A sum M  — Yia M \  of non-zero modules M \  is called irredundant if 

for all A <= A : £ ^ a  /  M.
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The next theorem was obtained from several papers (see [23, Theorem 7.10], [20, 

Theorem 14], [50, Lemma 1]).

3.2.5. Su pplem ented  m odules w ith  finite hollow  dim ension .

Let M  be an R-module.

1. I f  M  ~  Hi is an irredundant sum of hollow modules. Then hdim (M )  — n.

2. I f  M  is supplemented and hdim(M ) — n. Then there are hollow submodules 

Hi of M  such that M  =  £ ”=1 Hi is an irredundant sum.

Proof: (1) Consider the following epimorphism

f  : H i © • • • © H n -> M

( h i , . . .  , hn) t-> hi +  • ■ • +  hn.

Then Ker ( / )  =  K \  0  • ■ • 0  K n with '.= Hi Pi (H\  +  • ■ • +  Hi—i T  Hi^i +  • • * +  Hnf  

Since Ki <C Hi as the given sum was irredundant and Hi hollow, we get tha t 

Ker ( / )  <C Hi  0  • • • 0  Hn. Thus hdim(M )  =  hdim(Hi 0  • • • 0  Hn) =  n.

(2) We will prove this by induction on n. For n =  1, M  is hollow. Let n >  1 and
assume tha t all modules with hollow dimension n —1 can be written as an irredundant

sum of n — 1 hollow modules. Since M  has finite hollow dimension there exists a 

non-zero hollow factor module M j N  by 3.1.4. Since M  is supplemented N  has a 

supplement Hi in M. Since

hdim{Hi)  =  hdim {H i/{H i  n  N)) = h d im (M /N )  =  1,

we get th a t Hi is hollow. Let H' be a supplement of Hi in M . Since Hi  is hollow, 

Hi is a supplement of H' as well. By 3.2.2 we have

hdim (M ) = hdim(H')  +  hd im (M / H') =  hdim(H')  +  hd im (H i/(H i  n  H 1))

=  hd im ffi ')  +  1.

Thus hdim(H ') = n — 1. By assumption H 1 — ^ ”=2 an irredundant sum 
of hollow modules. Thus M  =  £"=1 Hi is irredundant as H' and Hi are mutual 
supplements. □

Remarks:

1. Whenever hdim (M ) = n < 00 and M  — A- an irredundant sum of hollow 
modules Li then m  =  n as hdim(M )  is an invariant number.
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2. Modules M  with finite spanning dimension have finite hollow dimension (see

3.1.2) and are (amply) supplemented (see 2.1.3). Thus Fleury denoted the 

unique number of summands of this irredundant sum by sd(M)  = n and set 

sd (M ) =  oo for modules without finite spanning dimension. We see th a t 

sd(M)  =  hdim (M )  holds, but as example 2.1.2 showed there are modules 
having finite hollow dimension but not finite spanning dimension.

3. If M  is a supplemented module with finite hollow dimension such tha t ev

ery supplement is a direct summand then M  is a finite direct sum of hollow 

modules (see 4.1.6).

4. As a module M  with finite spanning dimension is amply supplemented, every 

submodule TV of M  th a t is not small in M  lies above a non-zero supplement 

L  in M  (see 1.2.2). Based on this fact Satyanarayana defined in [56] a new 

notion of the dimension of a module M  with sd(M)  < oo: For every N  C M  

set
r 0 if N  <  M  

SdM(N)  =  < sd(L)  for a supplement L  C N  in M

and N  lying above L  in M

Applying 3.2.2 it is easy to show, tha t SdM(N)  is well-defined. By defini

tion and 3.2.2 SdM satisfies the ordinary vector space formula SdM{M)  =  
S d M(N) + S d M{M/ N) .

Recall th a t for the dimension notion of vector spaces A, B  the following holds: 

dim (A  +  B) — dim(A)  +  dim(B)  — dim (A  n  B). There have been two approaches to 
prove a second dual Camillo-Zelmanowitz formula; one by Xin in [68] and the other 

one by Haack in [22].

3.2,6. X in ’s Second dual C am illo-Zelm anow itz formula.
Let M  be an R-module and TV, L proper submodules of M . Consider K  := M/ { Nf \ L )  
as a submodule of M / N ®  M / L  under the canonical monomorphism. I f  K  lies above 
a supplement K ' in M / N  ® M /L  then the following formula holds:

h d i m{ M/ { N+L ) )  = h d im { M /N )+ h d im (M /L ) -h d im { M /(N n L ) )  + h d im {K /K ') .  

Proof: Consider the homomorphism:

g : M / N  © M /L  M / { N  © L),
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(x H- IV, y P  L) i—y x  — y A N  5- L.

Then g is an epimorphism. Clearly K  C Ker (g). Let (x +  IV, y +  L) 6 Ker (g). 
Then x — y G N  L  implies x — y + 1 +  n for some I G L  and n £ N.  Hence we get 

(x +  N }y + L) =  (z +  IV, z +  L) for z  =  y +  1. Thus Ker (g) — K  — M / ( N  H L)  and 

the following sequence is exact:

0 ------ » M / { N H L ) -------- ► M / N ®  M / L  —^  M / ( N  + L ) ------ > 0

Since K  lies above a supplement K '  we may apply the first dual Camillo-Zelmanowitz 

formula 3.2.1 and get: 

hdim (M  fN )  +  h d im (M /L )

=  h d im ((M /N  © M / L ) / K )  +  hdim (K) — hd im (K / K ’)

=  h d im (M /(N  +  L)) +  h d im (M /(N  n  L)) — h d im ( K jK ') , □

Remarks: Since every factor module of an amply supplemented module M  is again 
amply supplemented (see [67, 41.7]) we get th a t the above formula holds for all 
submodules N, L  of M.

C o ro lla ry  3.2.7. Let M  be an R-module with M/ R a d ( M)  semisimple. Then for  

all submodules N , L of M  that contain Rad(M) the following holds:

h d im (M /(N  n  L)) +  h d im (M /(N  +  L)) =  h d im (M /N )  +  hd im (M /L ).

We will state Haack’s version of the second dual Camillo-Zelmanowitz formula 

without a proof because it would be too technical.

3 .2 .8 . H a a c k ’s second  d u a l C am illo -Z elm anow itz  fo rm u la .
Let M  be an R-module and N ,L  submodules of M . Assume there is a submodule 
K  of M  minimal with respect to N  C K  C N  +  L and the property that there is an 

epimorphism g : M /L  —> M / K  with grjK =  r]L, where tjx  : M / X  —y M / ( N  +  L) 

denotes the canonical projection for all X  C JV +  L.

Assume further that there are weak supplements for

{(m i  +  77, m 2 +  L) : m x +  K  — (m 2 +  L)g}  c  M / N  © M /L ,

{m + N  0  L : m  +  K  =  (m +  L)g} C M / ( N  n  L).

Then the following holds:

hd im (M / (N  C\ L)) — hdim (M / N )  -f- h d im (M / L)

+  hdim ((N  +  L ) / K )  -  h d im (M /K )
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Proof: For the proof we refer to [22]. □

3.3 Sem ilocal rings

We have seen in 3.1.10, tha t modules having finite hollow dimension are weakly 
supplemented. By 1.3.2 every weakly supplemented module is a direct sum of a 

semisimple submodule and a submodule with essential radical. By 3.1.10 both 

summands have finite hollow dimension. A semisimple module having finite hollow 

dimension is obviously finitely generated.

Corollary 3.3.1. An R-module M  with finite hollow dimension is a direct sum of 
a finitely generated semisimple module and a module having finite hollow dimension 

and having an essential radical.

Corollary 3.3.2. ([53, 1.10]) An R-module M  with R ad(M ) =  0 has finite hollow 

dimension if and only if it is finitely generated semisimple.

In this case hdim(M )  =  lg(M) = udim(M ).

Corollary 3.3.3. ([53, 1.11], [23, 7.14]) I f  M  has finite hollow dimension, then 

M /R ad  (M) is finitely generated semisimple.

Proof: If M  has finite hollow dimension so has the factor module M / Rad (M). 

Since Rad (M /R ad (M )) =  0 the result follows by the above corollary. □

Remarks: The converse of the last corollary is in general false. For example consider 

%Q. Since Rad (Q) — Q, we have th a t Q /Rad (Q) =  0 is trivially finitely generated 

semisimple. But Q /Z  has infinite hollow dimension and hence so too does Q.

3.3.4. H ollow  dim ension and sm all radical.
Let M  be an R-module with Rad (M) <C M . Then the following statements are 

equivalent:

(a) M  has finite hollow dimension;

(b) M  is weakly supplemented and finitely generated;

(c) M /R ad  (M) is finitely generated semisimple;
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(d) M /R ad  (M) is finitely cogenerated.

In this case hdim (M )  =  l g ( M/ Rad (M))  holds.

Proof: ( a) =£■ (c) by 3.3.2; (c) => (a) by 3.1.10; (a) => (b) since M  is finitely 

generated if and only if Rad (M) <C M  and M j Rad (M) is finitely generated. By

3.1.10 M  is weakly supplemented.
(b) =j> (a) by 1.3.2 M /R ad (M) is semisimple and since M  is finitely generated, 

M / Rad (M)  is semisimple and finitely generated. Hence by 3.1.10 M  has finite 
hollow dimension.

(c) &  (d) is a well-known fact (see [67, 21.6]). □

Remarks: The equivalence between (a) and (c) appeared in various papers, e.g. [38], 

[53] and [23].

The last corollary can be applied to rings. Recall tha t a ring is called semilocal 

if R /Jac  (R) is semisimple.

Corollary 3.3.5. For a ring R  the following statements are equivalent:

(a) r R  has f in ite  hollow dimension;

(b)  r R  is weakly supplemented;

(c) R  is semilocal;

(d) R r  is weakly supplemented;

(e) R r  has fin ite  hollow dimension.

In  this case h d im (R R )  = lg(Rf  Jac (17)) =  hd im (R R ) .

Proof: Follows from 3.3.4 and the fact tha t (c) is left-right symmetric. □

Remarks:

1. The equivalence between (a) and (c) appeared also in [53, 1.14].

2. The last corollary shows, tha t semilocal rings and rings with finite hollow 

dimension are exactly the same. Furthermore the hollow dimension of a ring 

is left-right symmetric and we can set hdim(R) hdim(RR) = hdim (RR) =  

lg(R/3ac (R))  for any ring R.
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Before we state a summarizing characterization of semilocal rings, we will give a 

characterization in terms of hollow dimension:

3.3.6. C haracterization  o f sem ilocal rings by hollow  dim ension.

For a ring R  the following statements are equivalent:

(a) R  is semilocal;

(b) R  has finite hollow dimension as a left R-module;

(c) every finitely generated left R-module has finite hollow dimension;

(d) every finitely generated left R-module is weakly supplemented;

(e) every finitely generated, self-projective, left R-module has semilocal endomor

phism ring;

(f) any injective cogenerator r Q of R —Mod has finite uniform dimension as a 

right T-module, where T  := End(RQ);

(g) the left-right duals of the statements above.

In this case hdim(R)  =  lg(R/Ja,c (R)) = udim(QT))'

Proof: (a) <=> (b) <=̂ (c) clear by 3.1.10 and 3.3.5; (c) <£> (d) by 3.3.4; (c) <£► (e) by 

3.4.6 and (a) <t̂ >(f) by 3.1.12. □

For the next characterization, we have to define some notions:

D efin ition . An jR-module M  is called extending if every submodule is an essential 

submodule of a direct summand of M  (see [10].

A submodule N  of an itbmodule M  is called pure in M if X  <g> N  —» X  <g> M  is 

monic for all right ii-modules X  (see [67, 34,5]). An jR-module M  is called regular 

if every finitely generated submodule of M  is pure in M. A ring R  is von Neumann  
regular if and only if it is regular as left (right) module over itself (see [67, 37.6]). 

Let r M  be a left itbmodule. For every s £ R  denote

r.anriM(s) :=  {m  £ M \sm  =  0}.

Moreover write R  i7/Jac(T2) and for every element r  £ R  write f  :— r +  Jac(i7) £ 

R.
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3.3.7. C h a ra c te r iz a t io n  o f sem ilocal rings.

For a ring R  the following are equivalent:

(a) R  is semilocal;

(b) R / Jac (R) is finitely cogenerated;

(c) every product of simple left R-modules is semisimple;

(d) for every left R-module M , Soc(M) ~  { m £ M  : Jac ( R) m  =  0}/

(e) R /Ja c  (R) is regular and every regular left R-module is semisimple;

(f) every left R-module M  with Rad (M) = 0 is an extending module;

(g) every left R-module M  with Rad (M) =  0 is self-injective;

(h) there exists a ring S  and an R  — S bimodule M , such that udim (M s) is finite

and r.amiM (?’) 7̂  0 for all non-units r £ R;

(i) there exists an integer n and a function d : R —> {0, • • - , n} such that for all

s , t  £ R

(1) d(s — sts) = d(s) 4- d( 1 — ts) and

(2) i f  d(s) = 0 then s is a unit in R;

(j) there exists a partial order > on R  satisfying the minimum condition, such 

that for all s , t  £ R, if 1 — ts is not invertible in R, then s > s — sts;

(k) the left-right duals of the statements above.

Then hdim(R)  < n, where n is the integer in (i) and hdim(R) < udim (M s) where 

M s is the module in (h).

P ro o f: (a) (b) Clear by [67, 21.6] since a module M  is finitely generated and

semisimple if and only if M  is finitely cogenerated and Rad (M ) =  0.

(a) (d) Denote AnM(Jac(i2)) {m  £ M  : Jac(R) m = 0} for every M  £ R —Mod.

Since Jac (R )A n M(3&c {R)) =  0 holds AnM(Jac (R)) is a R f  Jac (J?)-module, hence 
semisimple and contained in Soc (M).  On the other hand it is well-known tha t 

Jac (_R)Soc (M)  — 0 holds for all R-modules M  (see [67, 21.12]). Thus Soc (M)  = 

Anjw(Jac (R))-
(d) => (c) If M  is a product of simple R-modules, then Jac (R)m =  0 for all elements
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m  £ M  and by (d) we get Soc (M) =  M, i.e. M  is semisimple.

(c) =>■ (a) R /Jac  (R) is a submodule of a product of simple R-modules. By (c) this 

product is semisimple and hence R /Jac  (R) is semisimple.

(a) (e) Clearly R /Jac  (R) is regular. Let M  be a regular left .R-module and N  a
finitely generated submodule of Jac (R)M. N  is pure and so N  =  Jac(R)7V (see [67, 

34.9]). By Nakayama’s lemma we have N  — 0 implying Jac ( R ) M — 0. Thus M  is 

a left R /Jac  (R)-module and hence semisimple, and semisimple as a left R-module.
(e) =>(a) If R /Jac  (jR) is regular, then it is regular as an .R-module and hence 

semisimple.

(a) => (g) Let M  be an .R-module with Rad (M) = 0. Then Jac (R ) M  = 0, hence 

M  is also a left R j Jac (R)-module. Thus M  is semisimple as an R /Jac  (R)-module 

and also as an jR-module. By [67, 23.2] M  is self-injective.

(g) =4> (f) Clear (see, for example, [10, 7.2]);
(f) (a) P u t R  := R /Jac  (R). Then r R  and r R  are semiprimitive and hence 

extending modules. Hence for each set A, r R ^  is a left extending R-module. Thus 

r R  is a E-extending R-module. Applying [10, 11.13] this yields, th a t R is semiperfect 

and hence semisimple as Jac (R) =  0.

(a) => (h) Let S  := R /Jac  (R) and note that the image of a non-unit in R  is a 

non-unit in S.  Consider M  := S  as an R — S —bimodule. Then M s  is semisimple 
and udim (M s)  is finite. Since f  is a non-unit in S  whenever r  G R  is a non-unit 

and hence f  a left zero divisor in S. Thus r.annMir) ^  0.

(h) => (i) Note tha t r.anriM(t) is a right R-module for all t  £ R. Set n udim(M s)  

and define d : R —>■ {0, • • • , n} by d(r) := udim{r.annM^')s)  f°r all r  £ R. Then 
d(r) — 0 ^  i\anriM{r) =  0 r is a unit in R. For every s j  G R,r.anriM{s) 0  

r.annjvf (1 — ts) = r.anriM(s — sts) holds. Thus d(s ~  sts) =  d(s) +  d( 1 — ts).
(i) => (j) For every s, t G R set s > t if d(s) < d(t). This implies for s , t  G R and 

1 — ts a non-unit, d( 1 — ts) 7̂  0 and hence d(s — sts) > d($). Thus s — sts < s holds, 

(j) => (a) (see [8, Theorem 1]):

we describe a procedure which yields an element a' £ R, for a given element a £ R 
with O ^ o a n  idempotent in R such tha t the following three properties hold:

(1) a > a1]

(2) {1 — a, a — a\  a'} is a complete set of orthogonal idempotents in R;

(3) R{d — d1) is a simple left R-module.

Recall th a t a £ Jac (R) if and only if 1 — ba is invertible in R for all b £ R. Choose 

an element ba £ Ra  \  Jac (R) minimal with respect to the partial ordering <.



C H APTER 3. H O LLO W  DIMENSION 51

Let x G  R  and 1 — xba not invertible in R. By (j) we get th a t ba > ba — baxba. 

Since ba is minimal in Ra \  Jac (R) we get tha t ba — baxba G  Jac (R).  Thus we have 

proved the following for all x  G  R:

(*) 1 — xba is not invertible in R  implies ba =  baxba.

Since ba ^ Jac (R) there exists an element c G  R  such tha t 1 — cba is not invertible 

in R. Define a' a — acba and let us check tha t this element satisfies the above 

three properties:
(1) Since 1 — cba is not invertible in R  we get by (j) th a t a > a — a(cba)a = a1.
(2) Since 1 — cba is not invertible in R  we get by (*) ba — bacba. Thus cba is an 

idempotent and hence a — a1 — acba is an idempotent in R.

a! a! — a2 — a2cba — acba2 +  dcbafcba = a — acba — acba +  acba = a — acba =  a1

Thus a1 is an idempotent in R  and {1 — a, a — a!, a'} is a complete set of orthogonal 

idempotents in R.
(3) Since a — a’ = acba we have tha t Rba D R(a — a') = Racba D Rbacba = Rba. 

We show th a t Rba is a simple ^-m odule. Let dba G  Rba\J&c(R). Since dba ^  Jac(i?) 

there exists an element e G R  such tha t 1 — edba is not invertible. By (*) we get th a t 

bci =  baedba. Hence Rba D Rdbd D Rbaedba — Rbd holds. Hence Rba is simple.

Let us now consider the following sequence:

1 =  a0 > ai > a.2 > . . .  where a* := a'-_1 for all i > 0.

By (j) this sequence has to stop. Since > satisfies the minimum conditon there exists 

a number ra such th a t am =  0 and {a0 — a1} a,i — a2 j. . .  , am_i — um} is a complete 

set of orthogonal idempotents in R  where each R{di — i) is simple. Thus R  is 

semisimple artinian and hence R  is semilocal. □

Remarks: (a)-(d) were taken from [67, 21.15], (e) was considered in Fieldhouse [12],

(f) and (g) were considered in Hirano et al. [30] and (h) - (k) were obtained by 

Camps and Dicks [8],

C o ro lla ry  3.3.8. Let R ,S  be rings and f  : R  —> S  be a ring homomorphism such 

that non-units r G  R  are carried to non-units f ( r ) G  S. I f  S  is semilocal then R  is 

semilocal and hdim(R) < hdim(S).



C H APTER 3. HO LLO W  DIMENSION 52

P ro o f: The canonical projection 7r : S  S / Jac (5) is a ring homomorphism such 

tha t non-units of S  are carried to non-units of S'/Jac (S'). Hence 7r f  : R  5 / Jac (S') 

is such a ring homomorphism as well. If S  is semilocal then S / Jac (S) is semismple 

artinian. So let us assume that S  is semisimple artinian and th a t there exist a 

ring homomorphism from /  : R  —> S  such that non-units of R  are carried to non- 

units of S. We will apply 3.3.7(h) (a)To show th a t R  is semilocal. Clearly

S is a left 12-module by the multiplication r * s := f{r)s .  Let M  := S  and as 

M s  is semisimple artinian we get tha t ud im (M s ) =  lg(Ms)  is finite. It remains 

to show tha t r.annM{r) ^  0 for all non-units r G R. Let r be a non-unit in R  

then f ( r )  is a non-unit in S.  Consider the descending sequence f ( r ) S  D f ( r ) 2S  D 

f { r ) 3S  D • ■ •. Since S  is artinian there must be a number n  G N and an element 

s G S  such tha t f ( r ) n = f ( r ) n+1s and so f ( r ) n( 1 — f ( r )s) — 0 holds. Since f ( r )  
is not invertible we get tha t 1 — f ( r ) s  /  0. It is easy to see tha t there must be 

a number k < n such tha t f ( r ) f { r ) k(l  — f ( r)s)  =  0 with f ( r ) k( 1 — f ( r ) s )  ^  0. 

Thus f ( r ) k( 1 — f ( r ) s )  G r.amiMM - By 3.3.7 we get th a t R  is semilocal and th a t 

hdim(R)  < udim(M s) — hdim(S)  holds. □

Remarks: As a consequence from the last corollary we get th a t if G is a group and 

R  a ring such tha t the group ring RG  is semilocal. Then for every subgroup H  of 

G, R H  is semilocal and hdim (RH )  < hdim(RG).

3.4 Endom orphism  rings and hollow dim ension

In the following we will discuss the relation between the hollow dimension of a 

module and the hollow dimension of its endomorphism ring.

The next theorem was obtained from Herbera & Shamsuddin in [29] and uses 

Camps & Dicks characterization of semilocal rings (see 3.3.7).

3.4.1. Sem ilocal endom orphism  ring. ([29, Theorem 3])

Let M  be an R-module and S  End( M) .

1. I f  M  has finite hollow dimension and every epimorphism f  G  S  is an isomor
phism, then S  is semilocal and hdim(S) < hdim(M ).

2. I f  M  has finite uniform dimension and every monomorphism f  G  S  is an

isomorphism, then S  is semilocal and hdim(S)  <  udim (M ).
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3. I f  M  has finite uniform and hollow dimension, then S  is semilocal and 

hdim(S)  <  hdim (M ) I-ud im ^M ).

P ro o f: Let / ,  g G 5; then clearly Ker ( /)  n  Ker (1 — fg )  =  0 and Ker ( /  — f g f )  = 

Ker ( / )  +  Ker (1 -  f g)  since for all x G Ker ( /  -  f g f ) ,  x = (.x ) ( f g  +  1 -  fg) ,  where 

( x ) f g  G Ker (1 -  f g)  and (x)( l  -  f g)  G Ker ( /) . Thus

Ker ( /  -  f g f )  = Ker ( / )  © Ker (1 -  fg) .

Dually, let Coke ( /)  := M /Im  ( /) ; then M  = Im (gf )  +  Im (1 — gf )  = Im ( / )  +  

Im (1 -  gf )  and Im ( /  -  f g f )  =  Im ( /)  n  Im (1 -  gf )  implies

Coke ( /  -  f g f )  ~  Coke ( / )  0  Coke (1 -  # /) .

(1) Let ?zi := h d im (M ); define

di : S' —> { 0 , 1 , . . .  , n i} ,

/  i->- fidim(Coke (/)) .

Then for all f yg G 5, <A(/ — / # / )  =  d i( /)  +  d i( l — g f)  holds and whenever 0 =  

dx( f )  — hd im (Coke ( /) ) , then Im ( /)  =  M  implies /  is an epimorphism and by as

sumption an isomorphism. By 3.3.7(i) S  is semilocal and hdim (S) < n\ = hdim (M ).

(2) Let n2 := u d im (M ); define

d2 : S  {0, 1, . . .  , n 2},

/  udim(Ker ( /) ) .

Since for every f , g  G 5, /  gives an isomorphism between Ker (1 — fg )  and 

Ker (1 - g f ) ,  we get d2{ l ~ f g )  =  d2{ l ~ g f ) .  Hence d2{ f - f g f )  =  d2( /)  +  d2( l - ^ / )  
and whenever 0 =  d2(/)  =  udim(Kev ( /) ) , then Ker ( / )  =  0 implies f  is a 

monomorphism and by assumption an isomorphism. By 3.3.7(i) S  is semilocal and 

hdim(S) < n 2 =  udim (M ).
(3) Define

d — d\ d2 '■ S  —̂ {0 ,1, . . .  , ni +  n2}.

For every f , g  G 5, d ( /  -  / # / )  =  d (/)  +  d (l -  g f)  holds. Assume d( f )  = 0, then 

di ( f )  — 0 implies Ker ( /)  =  0 and d2( f )  = 0 implies Im ( / )  =  M.  Hence /  is an 
isomorphism. Again by 3.3.7(i) S  is semilocal and hdim (S) < udim(M )-\-hdim(M ).  

□
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Remarks: Since a self-projective module with finite hollow dimension has

the property tha t every epimorphism is an isomorphism (see 3.1.10), we get 

h d im (E n d (M )) <  hdim(M )  as a corollary of the above theorem. We will show 

th a t more generally hdim(M ) = hd im (Horn (P, M))  holds for a self-projective mod

ule P  and a finitely P-generated module M.

The next lemma is due to Garcia Hernandez and Gomez Pardo; it will allow us 
to prove Proposition 3.4.3 below.

L em m a 3.4.2. Let M  be a finitely generated R-module and {Ah, . . .  , N m} a coin

dependent family of proper submodules. Then there exist finitely generated submod

ules Li C Ni for each i G { 1 ,...  , m} such that { L i,. . .  , L m} forms a coindependent 

family of M .

P ro o f: (see proof of [15, Theorem 4.2]) Let M  =  X)”=1 Rxi  for some generating 

elements { x i , . . .  , rc„} C M.  For each k G {1, ■ ■ ■ , ra} and each % G ( 1 , . . .  , n} we 

have
Rxi C N k -f- (") Nj.

j^k
Thus there exist pairs of elements yik G N k and zik G fl Nj  such tha t Xi — yik +  zik
holds. Note tha t R yik C N k and Rzik C Nj for all j  k holds. Define for each

k G { 1 ,.. .  , m}

L k := R yik -1- £  ( f ^ R z i j
i = 1 j ^ k  \ i ~  1

Clearly L k C N k is finitely generated. Since for each k G ( 1 , . . .  , m}:

L » +  (1 Li  2 E  R yik + E  R ^ k  5 E  R x i =  M
j ^ k  i = l  i = l

holds (because Yfi=i Ryik C L k and Yh=i R^ik G Lj)  we Set tlia t {^i> ■ ■ ■ 
is a coindependent family of proper finitely generated submodules of M. □

D efin itio n . Let M  and P  denote left P-modules and let S  — End(P) .  For every 
5-submodule X  Cs Horn# (P, M)  set

( P ) X  := Y ,  Im ( /) . 
f ex

Remarks:
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(1) (P)Hom  (P, N) = T r ( P , N)  C  iV holds for every N  C  M.

(2) Assume tha t P  generates M, then M =  TV(P, M) holds by [67, 13.5]. Let

N  C M  and assume Hom(P, N)  =  Hom{P, M) .  Then

M  =  TV(P, Af) =  (P)Hom (P, M) -  (P)Hom (P, 77) =  T r(P , AT) C  N.

implies N  =  M.  Hence iV is a proper submodule of M  if and only if Hom(P, N)  

is a proper submodule of Horn (P, M).

(3) Assume P  to be self-projective and X  a finitely generated A-submodule of

sHorn# (P, M ). Applying [1, Proposition 4.9] we get: A  =  Horn (P, (P )X ).

(The notation in [1] is : VS(N) — Horn (P, IV) and 7']V/(X) =  (P)X. )

P ro p o s it io n  3.4.3. ([15, Theorem 4-2])

Let P  be a self-projective R-module, S  := End (P) and M  a P-generated R-m,odule 

with sHom (P, M ) finitely generated as an S-module. Then the following statement 

holds:
hdim(sHomR (P, M ))  < hdim(RM).

P ro o f: Assume tha t hdim(sHom  (P, M)) > m. Then there exists a coindepen

dent family { N i , . . .  , N m} of proper submodules of Horn (P, M ). By Lemma 3.4.2 

there exist finitely generated submodules Li C N{ such tha t { L \ , . . .  ,L m} form a 

coindependent family of submodules of Horn (P, M).
Define Kj := (P)Li for every 1 < i < m. Since Li is finitely generated we get by

above remark (3) tha t Li =  Horn (P, K.[) holds. Hence Ki is a proper submodule as

Li is proper by above remark (2). From the coindependency of the LJs it follows, 

that:

Horn (P, M) = Horn (P, Ki) +  f |  Horn (P, Kfi

= Horn (P, Kf) +  Horn (P, f )  Kfi)

C Horn (P, Ki +

Thus by above remark (2), M  = Ki +  f |j & K j  holds for every 1 < i < m.  We 
conclude th a t {A h,. . .  , K m} is a coindependent family of proper submodules and 

th a t hdim (M )  >  m. □
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Remarks: sHom# (P, M)  is finitely generated as an 5-module if for example M  is 

isomorphic to a finite direct sum of copies of P  or more generally if M  is finitely 

P-generated. In this case there exists an exact sequence

P k  y M   y 0.

Since P  is self-projective, the covariant functor Horn (P, —) is exact with respect to 

this sequence (see [67, pp. 148]). Thus we get the exact sequence

H o m (P ,P fc)  y Horn (P ,M )  y 0.

Hence Horn (P, M )  is finitely generated as an 5-module because S k ~  Horn (P, P k),

The next definition is due to Takeuchi [60].

D efin ition . An P-module P  is called cofinitely M-projective if P  is projective for 
every exact sequence

0  y K  —— y M   y N   y 0

with N  finitely cogenerated, i.e. for every diagram

P

/

M   N   y 0
h

with N  finitely cogenerated and exact row, there exists a homomorphism g from P  

to My such th a t gh =  / .

A similar definition can be found in Hiremath [31].

We will need a technical lemma to prove a theorem due to Takeuchi.

L em m a 3.4.4. ([60]) Let P  be cofinitely M-projective and {Ah, • • • , N n} a coinde
pendent family of proper non-zero submodules of M, such that M/Ah is finitely cogen
erated for every 1 < i < n. Then for any homomorphisms / i ,  • • • , f n in Horn (P, M )  

there exists a homomorphism g e  Horn (P, M ) such that g — f i  G  Horn (P, Ah) for  
every 1 <  i < n.

P ro o f: Define /  : P  -y  ©JL1 M/Ah by 

V ^  {(p)fi +  Ah, • ■ • , (p)fn +  N n)
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for every p & P  and consider the following diagram:

P

f

M  ©?=1 M /N ,  ------ ► 0.
7T

where 7r denotes the canonical projection. Since {A^, ■ • • , N n} is coindependent tt 

is epimorph and there is a homomorphism g : P  M  such th a t gir = f  as P  is 

cofinitely M - projective. Let 7r* : M  M / N z for all i. Then (g — =  0 and

therefore we have (P)(g — fi) C iV* for every i and g — fi  E Horn (P, Nfi. □

P rop osition  3.4.5. ([60, Proposition 3[) Let P  be a cofinitely M-projective R-  

module and M  be a P-generated R-module. Then the following statement holds:

hdim(RM) < hdim(sHom  (P, M)).

Proof: Let L  be a proper submodule of M.  Then L  is contained in a proper 

submodule N  of M, such tha t M / N  is finitely cogenerated. Assume {L1} • • * ,L n} 

is a coindependent set of proper submodules of M.  Then every submodule L{ is 

contained in a proper submodule Ni, such tha t {Ah, - ■ • ,AT7l} is a coindependent 
set of submodules. Since P  generates M  and Ni is proper in M,  we have tha t 

Horn (P, N[) is a proper submodule of Horn (P, M) (see remark (2) before 3.4.3). 

Let /  E Horn (P, M)\  then by the preceding lemma, for every i there exists a 

Qi G Horn (P, M)  such th a t gz -  f  E Horn (P, Ni) and ^  —0 £ Horn (P, Nj) for every 

j  /  i. Thus

Horn (P, Ni) +  f )  Hom (P > Ni) =  Hom (P > M )
jjLi

for every i and hence {Horn (P, Afi), ■ -  ,Hom (P, 77n)} is a coindependent set 

of proper non-zero submodules of Hom (P, M ). This yields hdim (uM ) < 

hdim(sHom  (P, M )). □

As a corollary to 3.4.3 and 3.4.5 we get the following.

Corollary 3.4.6. (see [60])

1. I f  P  is self-projective and M  finitely P-generated, then

hdim(M ) — hdim(sHomR  (P, M)) .
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2. I f  M  is a self-projective R-module, then hdim(M ) — hd im (E nd{M )).

P ro o f: (1) Since P  is self-projective and M  finitely P-generated we get tha t 

Horn (P, M )  is finitely generated as an 5-module (see remarks after the proof of
3.4.3). Hence we can apply 3.4.3. On the other hand since M  is finitely P-generated, 

there exists an integer k and an epimorphism from P k to M. Since P  is self-projective 

it is P k-projective and hence M-projective (see [67, 18.2]). Thus it is cofinitely M -  

projective as well and we can apply 3.4.5;

(2) follows from (1). □

Remarks:

1. A self-projective module has finite hollow dimension if and only if its endo

morphism ring is semilocal (see 3.3.5 and 3.4.6).

2. G upta and Varadarajan proved in [21, 4.22] tha t if P  is a finitely generated 

self-projective P-module and M  a P-generated module such th a t P  is M-  

projective. Then hdim(M ) = hdim(Hom (P, M))  holds.

Takeuchi’s result shows, tha t hollow dimension is invariant under equivalences. 

We show this next: let M  be an P-module and S  a ring. By [67, 46.2], cr[M] 

is equivalent to 5 —Mod if and only if there exists a finitely generated projective 
generator P  in a[M ] with End (P) ce S. Moreover the equivalence is given by 

the functor sHom# (P, —) and the inverses P(g>s~. A finitely generated projective 

generator in a \M ] is called a progenerator.

C o ro lla ry  3.4.7. Let M  be an R-module and S  a ring such that a[M] is equivalent 

to 5 —Mod with progenerator P  in a[M] and End (P) ~  S.  Then we have for every 

finitely generated R-module N  in a[M]: hdim(N)  =  hdim(sHomR  (P, AT)) 

and for every finitely generated S-module T: hdim(T) — hdim(P<S>sT).

Together with the characterization of semilocal rings by Camps and Dicks see 

3.3.7(a) 4=̂  (i) and Takeuchi’s result we can generalize Herbera and ShamsuddhTs 

Theorem [29, Theorem 1].

C o ro lla ry  3.4.8. Let M  be a self-projective R-module and let S  End( M) .  Then 
the following statements are equivalent.
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(a) M  has finite hollow dimension.

(b) There exists an integer n and a function d : S  —>• {0, • • • , n} such that for all 

f \ 9

(i) d ( f  -  f g f )  = d( f )  +  d{ 1 -  gf )  and

(ii) i f  d( f )  =  0 then f  is an isomorphism.

We will consider properties of modules with semilocal endomorphism ring. We 

have seen tha t examples of such modules are modules with finite hollow dimen

sion whose surjective endomorphisms are bijective or modules with finite uniform 

dimension whose injective endomorphisms are bijective (e.g. artinian modules).

3.4.9. B a ss’ T heorem .
Let R  be a semilocal ring, a £ R  and I  a right ideal of R. I f  aR + I  =  R , then there 

exists an r E I  such that a +  r is a unit.

Proof: (The proof we will give is due to Swan and was obtained from [34].) Since

an element r E R  is a unit in R  if and only if f  is a unit in R / Jac (R) we may

replace R  by R /  Jac (R) and assume tha t R  is semisimple. Since R  is semisimple we 

are able to find a right ideal J  in I  such tha t I  =  (aR  f l / )  0  J . Thus R  = aR  0  J. 
Consider the exact sequence:

0  K  ------ ► R  — f— > aR  > 0

with /(?') := ar for all r G R  and K  Ker ( /) . Since aR  is a direct summand of R  

and projective, the sequence above splits. Hence there is an h : aR  —» R  such tha t 
R  — Im [h) 0  K .  Let g : R  —> K  be the canonical projection onto K .  Thus

(/, g) : R  —» aR  0  K

is an isomorphism. Since R  = aR  0  J } there exists an isomorphism 7 : K  —>■ J. 
Consider the composition

R  aR  © K  ^ 2 4  aR(B J =  R

mapping an element s e  R  to a s 0 q^(s). Since this composition is an isomorphism, 

the image of 1 E R  is invertible in R. Thus

al  +  70(1) — a T r
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is a unit, with r :=  7<?(1) G J  C I, □

Remarks: Clearly Bass’s Theorem holds also for left ideals I  of R  as the property 
semilocal is left-right-symmetrical.

D efin ition . A ring R  is said to have right stable range 1 if, whenever aR + bR =  R  

for elements a,b e  R, there exists an element r 6 R  such th a t a +  br is a unit.

By Bass’ Theorem, a semilocal ring has right (left) stable range 1.

D efin ition . An jR-module is said to cancel from direct sums if whenever M ® iV  x

M  0  L  for A-modules N  and L  then JV ~  L  holds.

The next theorem is due to Evans and was obtained from [34].

3.4.10. C ancellation  T h eorem .([34, 20.11])
Let M  be a left R-module such that End( M)  has right stable range 1. Then M  
cancels from direct sims.

Proof: Assume M  0  N  ce M  0  L  holds for left jR-modules N  and L. Then we get 

a splitting epimorphism h = ( f , g)  M  © N  —¥ M  with Ker (h) re L.  Since h splits 
there exists a homomorphism h' =  ( / ' ,g') : M  —> M  0  N  such tha t

idM = h'h = f ' f  +  g’g

holds. Thus S  =  f ' S  +  g*gS with S  :=  End (M). Since S  has right stable range 1

there exists an element e G S  such tha t

« : = / '  +  {g'g)e

is invertible in S.  Define k : M  ® N  —> M b y / c : = ( l ,  ge). Then

h'k = ( / ',  g')( 1, ge) = f  +  (g'g)e = u.

Thus the following diagram is commutative:

0 -------> Ker 0 ) -------► M © N   y M   y 0
h

0 —— > Ker (k) ------ > M  & N  —^  M  ------ >■ 0
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Since the splitting homomorphism for h is h' and k is u 1h \  we get

Ker (k) ~  (M  0  N ) / l m  (h ') ~  Ker (h) ~  L.

On the other hand the mapping n (—(n)ge, n) £ M  0  IV for all n £ IV gives an

isomorphism between IV and Ker (k). We conclude N  ~  L, □

Lem m a 3 .4 .11. ([11, Lemma 1.4]) Let PI be an R-module and S  := End( M) .  
Then there exists a bijection a  between the set of all finite direct-sum decompositions 

of r M  and finite direct-sum decompositions of sS:

a  : {Mi j j  ^  {Set},

where M  =  © 7 M i; I  a finite set and e* =  TTiCi is an idempotent ( : M  —¥ Mi and
€{ : Mi —> M  denote the canonical projection, respectively inclusion). The inverse 
mapping a~xis given by

{*%}/ l—̂ {{M)Si }i

where S  =  ® 7 Si and I  a finite set. Then the following holds for all decompositions
PI = ® j PR and i, j  £ J:

(1) Mi is indecomposable if and only if  Si is indecomposable;

(2) Mi ~  Mj as R-modules i f  and only if Si ~  Sj as S-modules.

Proof: Clearly 5S' =  ® 7 ^Se* holds whenever M  — ® 7 Mi and M  =  ® /(M )S i holds 

whenever S =  ©/S^. Further we have Q- 1(o:(Mj)) =  a~1(Sei) =  (M)Se^ =  Mj and 

Q'(a“1(Sj)) =  a((M )Si) =  Si since S{ — S&i for an idempotent e» £ S.
(1) and (2) are easy to check. □

3.4 .12. T he n th root uniqueness p roperty .([11, Proposition 2.1])

Let PI and N  be left R-modules such that End( M)  and En d ( N)  are semilocal. Then 

for any n  £ N the following holds:

PIn ~  N n PI ce. N  (nth root uniqueness).

Proof: Let L  := © ^ M j  =  ©?=1 N { with ~  PI and N { ~  N  for all

« £ {1, . . .  , n}. By Lemma 3.4.11 we get two decompositions of the semilocal endo

morphism ring S  — End(L) .  Write S =  ®"=1 Set =  © J L ^ / i  where e i , . . .  , en
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and A , . . .  , f n are orthogonal idempotents such tha t £ "=1 e* =  TZ=i fi = ls> 
End (M ) — Se{ and End (N) ~  S f i  for all 1 < i < n.

Let S  := 5r/Jac (5 ). For all idempotents e> f  E  S  the following holds: Se re S f  
Se ~  S f .  (see [67, 21.17(3)]). Thus we get two decompositions S  =  ® ”=1 5e t- =  

® ”=1 S fi  in which every S&i ~  S&j and S fi  cz S f i . But since S  is semilocal, the ring 

S  is semisimple artinian and therefore Sei ~  Sf i .  Thus En d ( M)  ~  Sei  cs S f i  ot 
End( N)  yields M  ~  N  by 3.4.11(2). □

The number of isomorphism classes of direct summands of a self-projective mod

ule M  is bounded if the module has finite hollow dimension. As a generalization of 

[11, Proposition 2.1(ii)] we get the following theorem.

3.4.13. P ro jective  direct sum m ands.
Let M  be an R-module with finite hollow dimension and small radical. Then the 

number of non-isomorphic Ad -projective direct summands of M  is bound by 2k with 

k := hdi m(M) .

Proof: If M  has finite hollow dimension, then M /R ad  (M)  is finitely generated 

semisimple (see 3.3.3). Let M /R ad  (M)  =  E\  ® ■ • - © E}. with simple for all 

1 <  i <  and k = l g ( M/ Rad (M))  < hdim(M ). Let P  and Q be two M -projective 

direct summands of M . Since M  has small radical P  and Q have small radical. 
Then

P/Rad (P) ~  E[Xl) © • • • © and Q/Rad (Q) ~  e [vi) © ■ • ■ © E ^ k)

where x ^ y i  E  {0,1} for all i E  {1 If X i  = y i  for all i, then P  maps

epimorphically onto Q as P  is Q-projective and Rad (Q) <C Q. Since Q is P- 

projective; Q is isomorphic to a direct summand of P. On the other hand, applying 
the same argument, P  is isomorphic to a direct summand of Q.

Hence hdim(Q) < hdim(P) and hdim(P)  < hdim(Q) implies hdim(P)  =  
hdim(Q). Assume P  ~  Q ® X .  Then hdim(P) = hdim(Q) +  hdi m( X)  implies 

hdi m( X)  = 0 and X  =  0, because hdim(P) is finite. Hence P  ~  Q.

Thus we get: P  cfiQ implies th a t there exists an index i E  { 1 , . . .  , k} such tha t 

7^ V i  holds. There are at most 2 k  distinct n-tuples (®i, . . .  , % k )  with X i  E  { 0 ,1}. 
Thus there are a t most 2k non-isomorphic M-projective direct summands of M. □

As a corollary of the above theorem we get a result by A.Facchini, et al. (see 
[11, Proposition 2.1]).
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C o ro lla ry  3 .4.14. Let M  be an R-module such that S  := E n d ( M)  is semilocal and 

k \= hdim (M ). Then M  has at most 2k isomorphism classes of direct summands. 
Moreover if  M  is artinian then k <  udim(M) .

P ro o f: The number of non-isomorphic direct summands of M  is equal to the number 

of non-isomorphic direct summands of S  — End( M)  by Lemma 3.4.11. By Theorem 

3.4.13 this number is finite and at most 2h where k =  lg(S/J&c (S))  =  hdim(S). If 

M  is artinian, then we have hdim(S) < udi m(M)  by 3.4.1(2). □

W ith the same proof as in [14] we are able to generalize slightly a theorem by 

Fuller and Shutters.

3 .4 .15. F in ite ly  g e n e ra te d  in d eco m p o sab le  p ro je c tiv e  m o d u les  in  a[M].  
Let M  be an R-module with finite hollow dimension and small radical. Then there 

are only finitely many isomorphism classes of finitely generated indecomposable pro
jective modules in a[M].

P ro o f: (see [14, Theorem 9]) By 3.3,4 M  is finitely generated and M / Rad (M)  is 
semisimple. Let M /R ad  (M) E 1 ® • • • © E n with Ei simple for all 1 < i < n 

and n  := hdim(M ).  Let P  and Q be non-zero finitely generated indecomposable 

projective modules in a[M].  Hence there exist positive integers k and I such th a t P  

is a direct summand of M k and Q is a direct summand of M l.

P /R ad  (P ) ~  e [xi) ® ■ ■ ■ ® £(*’>> and Q /R ad (Q) ~  E{yi) ® ■ ■ ■ ® E <»">

where X( and yi are non-negative integers. If X{ > Pi for all i E {1, . . .  ,n}  then 

P j Rad (P ) maps epimorphically onto Q /R ad (Q) and since P  is Q-projective P  
maps onto Q. As the canonical projection Q Q /R ad (Q) is a small epimorphism 

P  maps epimorphically onto Q (see [67, 19.2]). On the other hand, Q is P-projective 

implies th a t Q is isomorphic to a direct summand of P  and hence P  ~  Q as P  is 

indecomposable. Thus we have:

(*) P  ~  Q Xi =  yi, for alH  E {1, . . .  , n} Xi > Pi, for all i E {1, . . .  , n}.

The next argument is of a combinatorical nature: Let X  denote the set of all 71- 

tuples (a?!,. . .  , xn) tha t correspond to the isomorphism classes of finitely generated 

indecomposable projective modules in a[M].  Assume X  is infinite, then it must be 

unbounded in at least one component. Renumbering E i , . . .  , E n we may assume X
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is unbounded in the first component to obtain an infinite sequence in X:

(Oq, ,̂ ■ ■ •

with

Xl± < x i2 < x u  < • • •

By (*) all n — 1-tuples (x2i, . . .  , x ni) must be distinct. Otherwise assume th a t there 

are two equal n — 1-tuples (x2i, . . .  , x n.) and (x2j, . . .  t x nj) and let sq. <  aq then 

Xu E Xkj for all k. Thus by (*) these n-tuples must be equal - a contradiction. Thus 

by renumbering E 2). . .  , E n we can find a subsequence

(C^itj ) )•••■> x ni- ))jeN

with

Xu < X\. < Xu < ■ • • and x 2. < x 2. < x 2. < ■ • •
m  l 3 '1 l 2 *3

Continuing this process n times we see tha t X  must be unbounded in every compo

nent. Hence we obtain two n-tuples (.Ti,. . .  }x n) and (yi , . .. , yn) with x\ > yi for 

allz E {1, . . .  , n}. But this contradicts (*). Hence X  must be finite. □

As a consequence we get Fuller and Shutter’s original version of above theorem 

as a corollary.

C o ro lla ry  3.4.16. A semilocal ring has only finitely many isomorphism classes of 
finitely generated indecomposable projective modules.

Remarks: Summarizing we have seen, tha t modules with semilocal endomorphism 

ring cancel from direct sums, have the n th root property and have only a finite 

number of non-isomorphic direct summands. Moreover there are only finitely many 

non-isomorphic finitely generated indecomposable projective module in cr[M] if M  

has finite hollow dimension and a small radical.

Not every module with semilocal endomorphism ring has finite hollow dimension. 
This is shown by the next example taken from [29, Example 10].

E x a m p le  3.4.17. (1) Let R  be a ring that can be embedded in a local ring S, then 

R  can be realized as the endomorphism ring of a local module.
(2) There exists a cyclic module with infinite hollow dimension whose endomorphism 
ring is semilocal.
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P ro o f: (1) Let R  C  S  and consider the ( S , A)-bimodule M  :=s Horn# (r S ,  r S / R ) r  

where the action of S  on M  is defined as s f  : x  i—>■ (s x ) f  and the action of R  on 

M  is defined as f r  : x ( xr ) f  for all s G  S, /  <E M ,  r G R  and x G S.  Consider 

the ( S y  i?)-submodule N  : =  { f  G M \ ( R ) f  =  0}. Clearly the canonical projection 

k r  : r S  r S / R  is in N.  For all s G S  we have s N  C  N  <(=> s G R  since whenever 

s N  C  N  then ( s ) t t r  = ( 1 ) s t c r  =  0 implies s G R.  On the other hand if s E  R,  then 

Rs  C  R  and so s f  G N  for all /  G N.  Clearly f  G N  &  f R  C N  holds. Let

(  S  M  \  f  0 N \
T  := ] and I  := [ I .

\ 0  R  )  V 0 R  )

Then I  is a right ideal in T. The idealizer I'  of the right ideal I  is defined as 

I 1 := {t G T  : t l  C I}.  Hence the idealizer of I  is

R N

0 R

( s f  \
because an element is in I 1 if and only if s N  C N  and f R  C N.

\ 0  r j
Hence s G R  and f  G N  by the foregoing. Applying [51, Proposition 1] we get 

E n d i T / I )  — I ' / I  — R.  Every proper right ideal of T  containing I  is of the form 
/  J  I < \

, where J  is a proper right ideal of S.  and K  is a submodule of M  con-
\ 0  R  )
taining N  such th a t J M  C AT. Now assume that S  is local. Then J  C Jac (S)  holds 
for every right ideal J  of S.  Hence every right T-submodule of T / I  is contained in 
(  Jac (S) M  \
I I . Thus T / I  is a local right T-module with endomorphism ring R.

(2) Assume R  is semilocal and S  is not semilocal (e.g. R  := K  a field and 

S  :=  iL[A]), thus S  allows an infinite coindependent family of right ideals.
(  At M \

The right ideals of T, will give an infinite family of coindependent
V 0 ^ /  i€N

submodules of T / I .  Thus T / I  has infinite hollow dimension, but its endomorphism 

ring is the semilocal ring R.  □

Using the fact, th a t epimorphisms in modules with finite hollow dimensions are 

small (see 3.1.10) we can dualize [10, 5.16].

3.4 .18 . E ndom orphism  rings and artinian p rojective  covers.

Let M  be an indecomposable R-module with an artinian projective cover P  in a[M].  
Then S  := En d( M)  is local and Jac (5) is nil.
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Proof: An artinian module is amply supplemented, thus P  is semiperfect in <j[M] 
(see [67, 42.3(1)]). M  is a factor module of P  and so artinian and semiperfect in 

a[M } as well. Let /  G S. The descending chain

Im  ( / )  D Im  ( / 2) D Im  ( f )  D ■■■

of submodules of M  becomes stationary and hence Im (f n) =  Im (f n+1) for some 

n G  N. For K  =  Ker (f n) we have M  = K  +  Im (/" ) . Since ( K ) f  C A , /  induces 
an epimorphism /  : M / K  -»  M /A , (m  0  A) i-> (m )/ +  A. Since M /A  has finite 

hollow dimension, we get by 3.1.10 tha t /  is small. As P  is semiperfect every factor 

module of P  has a projective cover. Let P0 be a projective cover of M /A  with small 

epimorphism n : P0 —> M /A . Since (Po,7r) and (P0, 7r /)  are projective covers of 

M / K  we get an automorphism g : Po —̂ Pq such tha t gir = n f  (see [67, 19.5]).

We show, tha t /  is an automorphism. Let L  := Ker (tt/ )  c  P o- For every x  G L 

we have (x)g7rf ~  ( x ) i r f f  = (0 ) /  — 0. Thus Lg C L  holds. Since L  is artinian 

the chain Lg D Lg2 D Lg3 D ■ • • has to stop. So there is a number k such 

th a t Lgk =  Lgh+1. But since g is a monomorphism, we get L = Lg. This yields 

Ker (n f)  =  L — Lg = (Ker (gir))g C K er(7r). Thus /  is a monomorphism and 

hence an automorphism.
Consider an arbitrary element m  G  K e r ( /2n), then (m ) f n G  A  and hence (m  +  

A ) / n =  0. Since f  is monomorph, m  G  A  holds showing A  =  Ker (f n) =  Ker ( / 2n). 

Since Im (f n) =  Im ( / 2n) holds we get M  =  Im ( / n) 0  Ker ( / n).

But as M  is indecomposable Im ( / n) =  0 or Ker (f n) =  0 must hold. Thus /  is 

nilpotent or an isomorphism. □

Remarks: A similar proof of the above theorem can be found in Takeuchi [58].

3.5 Chain conditions and hollow dim ension

In this section we will state some results about the relationship between chain con

ditions and hollow dimension. We will need the first two lemmas to prove our first 

theorem of this section.

L em m a 3.5.1. Let M  be an R-module and Ah C N 2 C M  submodules of M  such 

that Ah and N 2 have the same supplement in M . Then N 2 lies above Ah-

Proof: Let L  be a supplement of Ah and N 2. Then M  =  Ah +  L =  A2 +  L implies 

Ah =  Ah +  (Ah n  L). Assume tha t there is a submodule X  of M  with M  = N 2-\- X .
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Then M  — N\  +  (iV2 n  L) +  X  — Afi +  X  as N 2 fl L  <C L. By 1.1.2 N 2 lies above Ni 
in M .  □

L em m a 3.5.2. Let M  be an R-module and { N \ } a  & coindependent family of proper 

submodules of M . Let p  G  A and assume that N /  has a weak supplement L in M .  

Then {(L  +  (N \  fl iYAt))/L}a\{/i} w a coindependent family of proper submodules in

P ro o f: Let A* :=  A \  {/i} and A G A'. If M  = L  +  (A7\ fl A^) then iVM =  (iVM fl L) +  

(iYx fl N/j,) with Nn fl L  -C M  since L  is a weak supplement of in M. Hence

Let us recall tha t a coclosed submodule N  of a module M  has no proper sub- 

module K  such th a t N  lies above K  (i.e. N / K  <C M /K ) .

3.5.3. C h a in  co n d itio n s  on  coclosed  su b m o d u le s .([59, f.5, 4.6, 4-H])
Let M  be an R-module.

1. I f  M  has finite hollow dimension then M  satisfies D C C  and A C C  on coclosed 

submodules.

2. I f  M  is amply supplemented then the followi7ig are equivalent:

(a) M  has finite hollow dimension;

(b) M  has D C C  on coclosed submodules;

(c) M  has A C C  on coclosed submodules.

M /L .

M  — N \  +  Nfj, — N \  +  (Np D L) = Nx

holds. This is a contradiction to N \  being a proper submodule. Moreover for A G  A 1 

and a finite subset F  C  A' \  {A} we have:

L + AT„ n \ N X + n  Ni

l  + n „ = m .
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P ro o f: (1) If M  has finite hollow dimension, then for every descending chain 

Ni D N 2 D ■ ■ ■ of submodules of M, there is an integer n, such tha t N n lies 

above N k for every k > n (see 3.1.2(d)). If the Ni are coclosed, then this yields 

N n =  N k for all k > n. Let 0 =: Nq C N\ C N 2 C • • ■ be an ascending chain of 

coclosed submodules of M. Since N k does not lie above N k- i  for all k > 0 we get 

by 3.1.3 th a t M  contains an infinite coindpendent family of submodules.

(2) Recall tha t coclosed submodules of a weakly supplemented module are supple

ments (see 1.2.1). (a) => (b), (c) clear by (1).
(b) => (c) If there is an ascending chain Ni c  N 2 C  • • • of coclosed submodules of 

M , then, by hypothesis, for every integer i, there are supplements Li of N{, such 

th a t Li D L 2 D • • ■. Supplements are coclosed, so there is an integer n, such th a t 

L n =  Lk for every k > n. By Lemma 3.5.1, N k lies above N n for every k >  n and 

thus N n = Nk, because Nk is coclosed.
(c) => (a) Assume tha t M  contains an infinite coindependent family { N \ } a  of proper 

submodules. We show by induction tha t there exists a strictly ascending chain of 

supplements

L l C  L2 C  L3 C  ■ • •

in M  such tha t M /L k  contains an infinite coindependent family of proper submod

ules for all k € R  Let /i G A, A 1 := A \  {jli} and L\  a supplement of in M . By 
Lemma 3.5.2 we know, tha t {{Li + (ATA n  }A 1 is an infinite coindependent

family of proper submodules of M /L \ .  Now assume k >  1 and there exists an as

cending chain L\ C  L2 C  • • • C  Lk such that each Li is a supplement in M  and M /L i  

contains an infinite coindependent family for all 1 <  i < k. Let { N \ / L k}^  be an 
infinite coindependent family of proper submodules of M /L k.  Let fi €= A and choose 

a supplement V  of in M. Let L k+i := Lk + V . Then L k+ i/L k +  N ^/Lk  = M /L k  

holds. As Np fl L; «  L' we get

(Lk+i n  N ^ / L k  =  (Lk +  (L1 n  N ^ / L k  <  (Lk +  L ' ) / L k =  L k+1/ L k.

Thus L k+ i/L k is a supplement of JV^/L/. in M / L k. Applying Lemma 3.5.2 M / L k+1 
contains an infinite coindependent family. Hence if M  contains an infinite coin

dependent family of proper submodules we can construct an ascending chain of 

supplements in M. □

Remarks:

1. M  need only to be supplemented for (c) (a).
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2. Takeuchi defined in [59, pp 18] the notion of a supplement composition series:

0 =  L 0 C Li C L 2 C • ■ • C L n =  M

such th a t for all 1 < i < n Li is a supplement in M  and there exists no 
supplement between Lj+i and L*. If M  is supplemented this is equivalent to 

Li is a supplement in M  and L i+i/L i  is hollow for all 1 < i < n. Let

sdg(M )  := sup{k : there exists a supplement composition series of length k in

Takeuchi proved in [62, 4.13] tha t for a supplemented module M  hdim (M ) — 

s.lg(M)  holds. Moreover Varadarajan proved a similar result in [62, 2.28].

In [6] Camillo gave a characterization of modules whose factor modules have 

finite uniform dimension. We will examine a dual version of Camillo’s result in 

terms of hollow dimension.

Our first observation is easy, but useful.

Lem m a 3.5.4. Let M  be an R-module. Then Soc (M ) is finitely generated if and 

only if there exists a submodule K  of M  such that M / K  is finitely cogenerated and 

Soc (K)  =  0.

Proof: (=^) Let K  be a complement of Soc (M) in M. Note th a t K  flSoc (M)  =  0, 
so Soc (if) =  0, and K ©Soc (M) < M. Since K  is closed in M , (S o c (M )® if) / if  is 
a finitely generated semisimple essential submodule of M / K . Hence M / K  is finitely 
cogenerated as Soc (M /K )  -  (Soc (M) © K ) /K .

(<=) Since K  fl Soc (M) -  0, we have Soc (M) ~  (Soc (M )  0  K ) / K  C Soc (M /K ) .  
Hence Soc (M)  is finitely generated. □

Let us state Camillo’s result (see [6]) and extend it a little bit (property (d)).

3.5.5. M odules w hose factor m odules have fin ite uniform  dim ension.

The following statements are equivalent for an R-module M :

(a) Every factor module of M  has finite uniform dimension;

(b) every factor module of M  has finitely generated socle;

(c) every submodule N  of M  contains a finitely generated submodule K  such that 
N / K  has no maximal submodules;
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(d) every non-zero factor module M / N  of M , has a finitely cogenerated factor 

module M / K  such that K / N  has no simple submodules.

P ro o f: For (a),(b),(c) see [10, Theorem 5.11]. For (b) (d) apply Lemma 3.5.4. □

Remarks:

1. Modules whose factor modules have finite uniform dimension are also called 

q.f.d. (quotients are finite dimensional).

2. Properties (c) and (d) in Theorem 3.5.5 can be seen as dual to each other.

3. A module is called a Maxmodule if every non-zero factor module contains a 

maximal submodule. It can be shown that M  is a Maxmodule if and only 

if every submodule has small radical (see [57]). Moreover every submodule 

of a Maxmodule is a Maxmodule. Thus we see by property (c) from the 
above theorem that a Maxmodule whose factor modules have finite uniform 

dimension is noetherian.

Trying to state a similar theorem for hollow dimension we get the following:

3.5.6. M o d u les  w hose su b m o d u les  have fin ite  hollow  d im en sio n .

Let M  be an R-module. Consider the following statements.

(i) Every submodule of M  has finite hollow dimension.

(ii) For every submodule N  of M , N /R a d (N ) is finitely cogenerated (and hence 

finitely generated, semisimple).

(Hi) Every non-zero factor module M / N  of M  has a finitely cogenerated factor 
module M / K  such that K / N  has no simple submodule.

(iv) Every factor module of M  has finite uniform dimension.

Then the following holds: (i) =$> (ii) => (in) (iv).
Moreover, i f  N /R a d (N )  has essential socle for every N  C M , then (Hi) => (ii)

holds. Also i f  Rad(N)  <C N  for every N  C M  (e.g. M  is a Maxmodule), then
(ii) =£■ (i) holds.
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P ro o f: (i) (ii) For a module N  with finite hollow dimension N /R a d (N )  is finitely

generated and semisimple by 3.3.3.

(ii) (iii) Let TV be a proper submodule of M. Then Soc (M /N )  =  H / N  for some 

H  C  M .  Since H /N  is semisimple it follows tha t Rad(H)  C  N  and hence H /N  

is finitely generated since it is a factor module of the finitely generated semisimple 
module H /R ad(H ).  By Lemma 3.5.4, there exists a submodule K / N  such tha t 

K / N  has no simple submodules and M / K  is finitely cogenerated.

(iii) &  (iv) By Theorem 3.5.5 above.

If N / Rad(N)  has essential socle for every TV C M  then:

(iii) =>- (ii). Let TV be a submodule of M.  Then, by assumption, for every TV C M, 

M / Rad(N)  has a finitely cogenerated factor module M / K  such tha t K /R a d (N )  has 

no simple submodules. So (TV fl  K )/R a d (N )  has zero socle and is a submodule of 

N /R a d (N )  having essential socle. Hence TV f l  K  = Rad(N)  yielding N /R a d (N )  — 

TV/(TV n  K )  ~  (TV +  K ) / K  is finitely cogenerated as M / K  is finitely cogenerated.

If Rad(N)  TV for every TV C M, then:

(ii) =>(i) hdim (N)  =  h d im (N /K )  holds for K  <C TV (see 3.1.10). Thus hdim (N )  =  

hd im (N /R ad(N ))  < oo for every submodule TV of M. □

vector space. Then hdim(R)  =  1 as R  is local but udim (nR)  is finite if and 

only if dirriK^y) is finite.

2. In general, the converse of (iv) => (ii) is false. For example consider Z: is 

noetherian, hence p/L has property (iv), but not property (ii) since %h/Rad('£L) 
is not semisimple.

3. If a module M  has property (i) of the theorem above, then every subfactor 

of M  has finite uniform and finite hollow dimension and hence a semilocal 

endomorphism ring by the previous section.

Recall tha t a module is called uniserial if its lattice of submodules is linearly

Remarks:

1. It is not true th a t a module M  with finite hollow dimension has finite uniform

dimension. For example consider

ordered.

P ro p o s it io n  3.5.7. Let M  be an R-module. Then the following statements are 
equivalent:
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(a) M  is uniserial;

(b) every non-zero submodule of M  is hollow;

(c) every non-zero factor module of M  is uniform.

P ro o f: (a) =P (b) Clear, since for two proper submodules AT, L  of M , K-\-L = L ^  M  

or K  + L = K ^ M  holds.

(5) =>■ (c) Let 0 ^  N  C M  and assume L  n  N  =  0 for a submodule L  C M. Then 

N & L  C M . But since N  0  L  is hollow we have L — 0. Hence M  is uniform. Since 

factor modules of hollow modules are hollow the same argument can be applied to 

any factor module of M.
(c) (a) Let K  ^  L  be non-zero proper submodules of M. By hypothesis M / ( K  Pi

L) is uniform and K / ( K  fl L) D L / ( K  n  L) =  0 implies K  =  K  fl L  C L  or 

L  = I< n  L  C K .  □

Recall the definitions of modules with A B 5* and completely coindependent fam

ilies from Chapter 1.

L em m a 3.5.8. Let M  be an R-module and {AT\}a c l completely coindependent fam 

ily of proper submodules in M . Let N  Ha -^a- Then { N \ / N } ^  is a completely 

coindependent family of proper submodules of M / N  and i f  |A| — oo, then M / N  
contains an infinite direct sum of submodules.

P ro o f: Clearly { N \ /N } ^  is a completely coindependent family in M /N .  Thus 

by induction one can easily see, tha t for every finite subset J  C A there exists a 

decomposition

If |A| — oo, then M /N  cannot have finite uniform dimension and must contain an 

infinite direct sum of submodules. □

Under certain conditions we can state a converse of Theorem 3.5.6.

3.5.9. A B 5* m odules w hose factor m odule have fin ite uniform  dim ension .
A ssum e M  satisfies A B 5* such that every factor module o f M  has fin ite  uniform  

dimension. Then every submodule o f M  has finite hollow dimension.
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Proof: (see Lemma 6 in [29]) If M  has infinite hollow dimension, then there exists 

an infinite coindependent family of proper submodules { N \ } a - Since M  has A B 5*; 

{ N \} a is completely coindependent by Lemma 1.4.4. By Lemma 3.5.8 M j  Da-^a 

contains an infinite direct sum. Thus it does not have finite uniform dimension. The 

same argument applies for every submodule of M .  □

Remarks: The above observations aboiit hollow and uniform dimensions can also be 

found in [5] and [63, Proposition 13].

It is well-known tha t a linearly compact module M  has property A B 5* and has 

finite uniform dimension (see [67, 29.8]). Since every factor module of a linearly 

compact module is linearly compact (see [67, 29.8]) every factor module has finite 

uniform dimension. Thus we get as a corollary of the above theorem:

C orollary 3.5.10. ([69, Proposition 6],[59, 400])
Every submodule of a linearly compact R-module M  has finite hollow dimension.

Applying 3.4.1(3) this yields:

C orollary 3.5.11. A linearly compact module has semilocal endomorphism ring.

Al-Khazzi and Smith characterized modules with noetherian (artinian) radical 

in [2]. This dualizes [10, 5.15] and will be useful for the following observations,

3 .5 .12. C hain conditions on sm all subm odules.

Let M  be an R-module.

1. M  has ACC on small submodules if  and only if  Rad (M) is noetherian;

2. M  has DCC on small submodules if and only i f  Rad (M ) is artinian;

Proof: (see [2, Proposition 2 and Theorem 5]) □

D efin ition . An A-module M  is called semiartinian if every non-zero factor module 

of M  has a simple submodule.

Semiartinian modules are also called Loewy modules or Min modules (see [57]). 

They can be characterized by the following lemma:
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L em m a 3.5.13. ([57, Proposition 2.1])
A non-zero R-module M  is semiartinian if and only if  every factor module has 

essential socle.

P ro o f: If M  is semiartinian then every factor module of M  is semiartinian so it 

remains to show, tha t a semiartinian module has essential socle. Let N  be a non-zero 

submodule of M  and K  a complement of N  in M.  Since K  is closed, N  ~  ( N ® K ) /K  

is essential in M /K .  This implies Soc (M /K )  =  Soc ((N  0  K ) / K )  c=l S o c  (N). By 

hypothesis 0 ^  Soc (M /K ) .  Thus for every submodule N  of M , 0 ^  Soc (N) = 

N  n  Soc (M)  holds. Hence M  has an essential socle. The converse is clear. □

Remarks: It is easy to see, tha t for a semiartinian module M  every subfactor (to be 

more precise every module in cr[M]) is semiartinian and combining this property with 

condition (iii) of 3.5.6, we see, tha t every factor module of M  is finitely cogenerated,

i.e. M  is artinian.

Now we are able to state a comprehensive characterization of artinian modules 

in terms of hollow dimension.

3.5.14. A r tin ia n  m odu les.

The following statements are equivalent for an R-module M .

(a) M  is artinian;

(b) every submodule of M  is semiartinian with finite hollow dimension;

(c) M  is semiartinian and one of the following properties hold:

(i) M  is linearly compact or

(ii) every submodule of M  has finite hollow dimension or

(iii) every factor module of M  has finite uniform dimension;

(d) M  has finite hollow dimension and one of the following properties hold:

(i) Rad (M) is artinian or

(ii) M / N  is finitely cogenerated for every small submodule N  of M  or

(iii) every small submodule is artinian.
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P ro o f: (a) 44- (b) by 3.5.6 and above remarks;

(a) 4=> (c)(i) by applying [67, 41.10(2)];

(c)(1) =4> (c)(ii) by 3.5.10; (c)(ii) (c)(iii) by 3.5.6; (c)(iii) => (a) Assume every 

factor module has finite uniform dimension, then by 3.5.5 every factor module has 

finitely generated socle. Because M  is semiartinian, the socle of every factor module 

is essential and hence every factor module of M  is finitely cogenerated (see [67, 21.3]). 
Thus M  is artinian.

(a) implies all properties in (d). Further (d) (ii) => (d) (iii) and (d) (iii) (d)(i) 
by the Al-Khazzi Smith Theorem 3.5.12 so it remains to prove (d)(i) =4- (a). But 

since M  has finite hollow dimension M / Rad (M) is artinian. Hence M  is artinian 

as Rad (M) is artinian. □

Remarks: (a) (c)(iii) was also proved by Shock in [57, Proposition 3.1], but with

a different proof. Moreover Hanna & Shamsuddin proved (a) 44- (d) in [24] without 

using Al-Khazzi and Sm ith’s Theorem. (d)(n) =4- (a) and (d)(iii) =4 (a) was proven 

in [49, 4.2,4.3].

For torsionfree abelian groups A the uniform dimension coincides with the or

dinary finite rank of A; udim(A) — dim^{Q A) (see [19, 4L]). Moreover the 
only uniform Z-modules are the ones tha t are isomorphic to Z p k for a prime p  and 

1 <  k <  oo (see [33, Theorem 10]) or tha t are isomorphic to a torsionfree Z-module 
with dim q(A  ®Z Q) = 1.

Let us now examine the situation for hollow dimension of abelian groups. Let 

t(A) denote the torsion submodule of a Z-module A. For basic group-theoretical 
notions we refer to [33].

3 .5 .15. A b e lian  g ro u p s  w ith  fin ite  hollow  d im en sio n .

Let A  be a Z -module.

1. I f  A  is non-zero and torsionfree then hdim(A) ~  oo.

2. A  is hollow if  and only if  A  ce. lLpk for a prime number p and 1 < k <  oo.

3. A  has finite hollow dimension if and only if it is a finite direct sum of hollow 
modules.

P ro o f: (1) If A  is not reduced, then it contains a direct summand isomorphic to Q 

(see [33, Theorem 4]). Since Q /Z  is an infinite direct sum of non-zero modules, we 
conclude tha t Q has infinite hollow dimension.
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Suppose A  is reduced, and let P  be the set of prime numbers p for which pA  ^  A. 

Then {pA}pEP forms a coindependent family of submodules of A  since pA + qA — A  

and pAC\qA = (pq)A  holds for all relatively prime numbers p and q. If P  is infinite, 
then A  has infinite hollow dimension.

Assume th a t P  is finite. Then pA ~  A  holds for infinitely many prime numbers 

p. Let these be p i ,p 2> • • • and let 0 ^  a E A. Since A  is torsionfree and p(A — A  

holds division in A  by each Pi is unique for all i =  1, 2, —  Hence the elements 

p“ 1a H- Z a ,p j 2a +  Z a , . . .  generate a direct summand of A /Z a  isomorphic to Zp°o 

for every i —  1 , 2 , . . . .  Hence A /Z a cannot have finite hollow dimension and so A 
cannot have finite hollow dimension.

(2) Let A  be hollow. Since A /t(A )  is hollow and torsionfree, we get by (1) th a t 

A = t(A). By [33, Theorem 10] we get th a t an abelian indecomposable torsion group 

is isomorphic to Zp& for a prime p and 1 < k <  oo. Conversely Zpk is uniserial for 

all primes p and 1 <  k < oo and therefore hollow.

(3) Suppose tha t A  has finite hollow dimension. Let t(A)  be the torsion sub- 
module of A. By (1) hdim (A /t(A ))  =  oo and hence hdim(A)  =  oo. Hence 

A =  t(A)  is torsion. By induction on hdim(A)  we show th a t A is a finite di

rect sum of hollow Z-modules. If A is hollow, we are done. Assume th a t all Z- 

modules with 1 <  hdim(A)  < n are a finite direct sum of hollow modules. Let 

A be an abelian torsion group with hdim(A) = n  +  1 and n > 1. Then A can

not be indecomposable. Thus there exists a decomposition A =  A* © A2 with 

hdim(A)  =  hdim{A1) +  hdim (A2) and Ai, A2 7̂  0. Hence hdim{A1) < n  and by 

assumption Ai is a finite direct sum of hollow modules. The same argument holds 
for A2. So A is a finite direct sum of hollow modules. □

Remarks:

1. (1) and (3) of the above theorem were obtained from [24, Theorem 2.8]. See 

also [62, Proposition 1.13].

2. (2) was obtained from [62, Proposition 1.14] which arises from a characteriza

tion of hollow modules over Dedekind domains by Rangaswamy in [47].

C o ro lla ry  3,5.16. A Z -module has finite hollow dimension if  and only if  it is ar

tinian.

P ro o f: By 3.5.15(3) every Z-module with finite hollow dimension is a finite direct 
sum of hollow modules. By 3.5.15(2) every hollow Z-module is isomorphic to an
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artinian module of the form Z p k with p  a prime and 1 <  k <  oo. Hence every 

Z-module with finite hollow dimension is artinian. The converse is always true. □

Remarks: More general Zoschinger proved that a module over a commutative noethe

rian domain with infinitely many maximal ideals has finite hollow dimension if and 

only if it is artinian (see [74, Beispiel 3.9]).

A well-known theorem by Goodearl (see [18, Proposition 3.6] or [2, Proposition 

4]) asserts th a t M / Soc (M) is noetherian if and only if every factor module M / N  

with N  essential in M  is noetherian. This can easily be extended to show tha t 

M / Soc (M) has Krull dimension if and only if M / N  has Krull dimension for every 

essential submodule N  of M  (see [46, Proposition 2]). Dual to Goodearl’s result 

Al-Khazzi and Smith proved tha t Rad(M) is artinian if and only if every small 

submodule of M  is artinian (see 3.5.12). Puczylowski asked if Al-Khazzi and Sm ith’s 

Theorem can be extended for arbitrary Krull dimension and answered this question 

in the negative by showing tha t there exists a Z-module M  such tha t every small 

submodule is noetherian and hence has Krull dimension but Rad(M )  does not have 

Krull dimension (see [46, Example]).

We will show tha t the Al-Khazzi-Smith Theorem can be extended for arbitrary 
Krull dimension to modules which satisfy property ABh*.

Let us first prove a useful lemma.

L em m a 3.5.17. Let M  be an R-modide and {AG}a « completely coindependent 

family of proper submodules. Assume that for every A G  A there exists a submodule 

L \  such that N \  C L\. Let L := Daga A\- Then {Nx fl L}a forms a completely 
coindependent family of proper submodules in L.

P ro o f: Let A G  A, V  := f |^A  aild N ' ■= D ^ a  Then

N x +  L = N x +  (La D V )  = L XC\ {Nx +  L') = L x n M  = L x

(because Nx P  L' D Nx + N ' ~  M). Thus Nx n L  is a proper submodule of L  

(otherwise L  C  Nx would imply N \  =  N \  +  L =  L a ,  a contradiction).
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Moreover:

(Nx n  L) +  Nn n  L

=  L  n (iVA +  (N 1 f i L ' n  L\))  

= L n (N \  +  (N 1 n L\))

=  L n  (LA n (Nx +  N'))

= L  n L x n M  = L.

Thus {N \  fl L }a forms a completely coindependent family of proper submodules of

P ro o f: Consider first the following fact:
Let L, N  be submodules of M  such tha t L  lies above N  in M. We will show, tha t 

L / N  has finite hollow dimension. First note tha t M  is amply supplemented as it 

has A B T  (see [67, 47.9]). If L  is small then by hypothesis L  and so L / N  has finite 

hollow dimension.
Assume L  is not small in M  and let K  be a (weak) supplement of L  in M .  Then 

M  = L + K  = N  + K  implies L = N  +  (L n  K).  Hence L / N  ~  (L n  K ) / ( N  n  K).  
Since L  fl K  <C M  we get by hypothesis, that L  n  K ,  and so L / N  has finite hollow 

dimension.

Let G be a submodule of Rad(M )  with G M  and assume H  is a (weak) supple

ment for G in M.  Then H  n  G <C M  and the following sequence is exact:

0 —*H  n  G - ^ G  ~ ^ M /H  ->0.

Thus hdim(G) < hdim (H  DG) +  h d im (M /H ) (see 3.1.10(6)).
Since H  (~)G is small in M, hdim (H  flG) < oo, by assumption. It is enough to show 

tha t M / H  has finite hollow dimension:

Assume th a t M / H  contains an infinite coindependent family {N x /H } ^  of proper 

submodules of M /H .  For any A A we have N \  +  G =  M .  Since G C Rad(M )  

and N \  is a proper submodule of M , there exists an element x £ Rad(M ) \  N \  such

L. □

3.5.18. S m all su b m o d u les  w ith  fin ite  hollow  d im ension .

Let M  be an R-module having A B 5* such that every small submodule of M  has finite 

hollow dimension. Then every submodule of Rad(M) has finite hollow dimension.
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th a t R x  <§C M  and
L x := N x +  R x ^  N x.

Let N  := Ha-^a and L  := OaAa- Applying Lemma 1.4.4, every coindependent 
family is completely coindependent and, applying Lemma 3.5.17, we get th a t {N x fl 

L}a is a completely coindependent family of L. Since N  C  N x fl L  /  L  holds for 
all A G  A we get th a t N  C  L. By Lemma 3.5.8 L / N  does not have finite hollow 

dimension. But since L x lies above N x for all A G  A, we get by applying Lemma 1.4.5 
th a t L  lies above N  in M, and thus, by the above argument, L / N  has finite hollow 

dimension. This contradiction shows tha t M /H  must have finite hollow dimension. 

Hence every submodule G C  Rad(M) has finite hollow dimension. □

We refer to [10, Chapter 6] for the definition of Krull dimension. Note the 

following result by Lemonnier. This will help us to prove a corollary to the above 

theorem.

P ro p o s it io n  3.5.19. Let M  be an R-module such that every non-zero factor mod

ule of M  has finite uniform dimension and contains a non-zero submodule having 

Krull dimension. Then M  has Krull dimension.

P ro o f: See [35, Proposition 1.3]. □

C o ro lla ry  3.5.20. Let M  be an R-module having A B 5* such that every small sub- 

module of M  has Krull dimension. Then Rad(M) has Krull dimension.

P ro o f: It is well-known that a module having Krull dimension has finite uniform 

dimension (see [10, 6.2]). Hence every factor module of a small submodule N  of 

M  has finite uniform dimension. Since N  has ABh* every submodule of N  has 

finite hollow dimension by 3.5.9. Hence by 3.5.18 every submodule of Rad(M )  has 

finite hollow dimension. By 3.5.6 every factor module of Rad(M )  has finite uniform 

dimension. In order to apply Lemonnier’s proposition, we need to show, th a t every 

non-zero factor module of Rad(M )  contains a non-zero submodule having Krull 

dimension. Let L  C  Rad(M )  and x G  Rad(M) \  L\ then R x  «  M  so tha t R x  has 

Krull dimension and hence (R x + L ) /L  C  R a d (M )/L  has Krull dimension. Applying 
Proposition 3.5.19, Rad(M)  has Krull dimension. □
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Corollary 3.5.21. Let M  be an R-module such that Rad(M ) has A B 5* and every 

small submodule of M  has Krull dimension. Then every submodule of Rad(M ) that 

has a weak supplement in M  has Krull dimension.

Proof: By Corollary 3.5.20, the radical of every submodule contained in Rad(M )  

has Krull dimension. Since Rad(N) = N  D Rad(M) holds for every supplement N  

in M  (see 1.2.1), every supplement in M  that is a submodule of Rad(M )  has Krull 
dimension. Let L  C  Rad(M )  such that there exists a K  C  M  with L + K  =  M  

and L  n  K  -C M. Then Rad(M) — L  +  (R ad(M ) n  K ). Since Rad(M )  has ABh* 

it is amply supplemented. Thus there exists a supplement N  C L  in Rad(M )  such 

tha t Rad{M) = N  +  (Rad{M ) n  K )  and N  n  Rad(M )  n  K  =  N  D K  <  N  holds. 

Moreover L — N  +  (L n  K )  and M  — N  +  K  holds. Thus N  is a supplement of 
K  in M , implying tha t N  has Krull dimension. Because L / N  ~  (L fl K ) / ( N  Pi K)  

with L D K  M , L / N  has Krull dimension and hence so has L. □

The following result is an attem pt to dualize [2, Proposition 3].

3.5.22. E ssential subm odules w ith  finite hollow  dim ension.

Consider the following statements for an R-module M.

(i) M j Soc (M) has finite hollow dimension.

(ii) There exists an integer n  £ N such that for every essential submodule N  of 

M , h d im (M /N )  < n.

(iii) There exists an integer r g N  such that every coindependent family of essential 
submodules of M  has at most n elements.

Then (i) =4- (ii) (iii) holds.

Proof: (i) (ii) If M /Soc(M ) has finite hollow dimension, then so has every factor 

module of M f Soc (M).  Set n  := h d im (M fSoc (M)).
(ii) (iii) Note th a t the intersection of a finite number of essential modules is es

sential again. Let {Ah,. . .  , Ah} be a coindependent family of essential submodules 

in M  and N  := N\ f l . . .  HiV*,. By 1.4.1 M / N  ~  M /N \  © - • • © M /N ^  holds and thus 

n > h d im (M /N ) > k implies (iii).

(iii) =>■ (ii) Let N  be an essential submodule of M  and {JVi/lV,. . .  , Nf . /N}  a coin

dependent family of M / N .  Then {Ah,. . .  , N{.} is a coindependent family of M  too. 

Hence n  > k implies (ii).
□
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3.6 A B 5 *  and hollow dim ension

In this chapter we will establish equivalent conditions for a module to be lattice 

anti-isomorpliic to a linearly compact module. First note the following lemma:

Lem m a 3.6.1. Let M  be an R-module with property A B 5* such that the socle of 

every factor module of M  contains only a finite number of non-isomorphic simple 

modules. Then every factor module of M  has finite uniform dimension.

Proof: Every submodule of a factor module has AB5* (see [67, 47.9(i)]) and when
ever N  is a module with property AB5* such tha t N  ~  EA)  holds then A must be 

finite (see [67, 47.9(iii)]). Hence the socle of a module having A B 5* cannot contain 

a summand tha t is isomorphic to an infinite direct sum of copies of a simple mod

ule. By hypothesis every factor module has only a finite number of non-isomorphic 

simple modules. Hence we conclude tha t the socle of every factor module has to 

be a finite direct sum of simple modules. By 3.5.5 every factor module has finite 

uniform dimension. □

Remarks:

1. Note tha t every simple module in <r[M] is a factor module of a submodule 

of M. This can easily be verified: let E  be a simple submodule of a M -  
generated module X .  Let /  : M ^  —> X  be an epimorphism for an index set 

A. Since E  — R x  with x e  X  we get tha t there is an element ( ? t ia ) a  such th a t 

( ( ™ a) a ) /  == Only finitely many mRs  are not zero; say m i , . . .  , m k. Thus /  

induces an epimorphism from Yh=i R m i T M  to E.

2. An R-module is called a self-generator if it generates all its submodules. Let 

M  be a self-generator such tha t M / Rad (M) is semisimple and finitely gener

ated. Then every simple module in a[M\ is isomorphic to a simple module of 

M /R ad  (M).  Thus a[M] contains only a finite number of non-isomorphic sim

ple modules. Thus every module N  £ a[M] with AT?5* satisfies the hypothesis 

of Lemma 3.6.1 and hence every submodule of N  has finite hollow dimension 

by 3.5.9. In case M  — R  we get: If R  is semilocal and M  an R-module with 

A B 5* then every submodule of M  has finite hollow dimension.



CH APTER 3. H O LLO W  DIMENSION 82

D efin ition . Let R  and T  be rings, RM  a left A-module and iVT a right T-module. 

A mapping a  : C( rM)  —>■ C(Nt )  is called a lattice anti-isomorphism if it is an 

order reversing lattice isomorphism.

Lem m a 3.6.2. Let R  and T  be rings, M  E J?—Mod and N  E Mod—T. Assume 

that a  : C(RM)  —v C(Nt )  is a lattice anti-isomorphism. Then r M  and N r  have 

property A B 5*.

Proof: This lemma is quite obvious, but for the sake of completeness we will state 

a proof here. Let {Aa}a be a family of submodules of M. For every A E A we have 

o t { K \ )  C  a(flA K x). Thus X)a& { H \ )  Q  a  (Ha La). O n  the other hand let {La} a  be a 
family of submodules of N.  Then for every A E A we have o r 1 (La) A cv_1E a  La). 

Thus n A« _1(LA) L q:_1(X)aLa). Hence c^Ha ocHLa)) ^  E a L a  holds. Letting 
La := g:(/La) for every A E A we get c^HaLT) =  X)aq'(La)- Let L be a submodule 
of M  and { K \}  be an inverse family of submodules of M . It is easy to see tha t a  

carries inverse families of M  to direct families of N.  Together with the foregoing we 

get:

* ( L + n * A )  =  a ( L ) n a ( f )  K x) = a ( L ) n J 2 ® ( K x)
AGA AgA AgA

=  y ( a ( Z .) n a ( J f x)) =  J 2 ( a ( L  +  K , ) )
AeA aga

-  a ( f ] ( L R K x)).
AeA

Hence L  +  D a L a =  D a ( L  +  K \)  implies tha t M  has property A B 5*. The same 

argument holds for N . □

Remarks: Let M  be an Lhmodule and let {La}a be a minimal representing set of the 

isomorphism classes of simple modules in a[M]. Then the M-injective hull of © A E \  
always forms a ’minimal’ injective cogenerator in a[M] with essential socle (see [67, 

16.5, 17.12]). Hence there always exists an injective cogenerator with essential socle 

in cr[M].

Let r Q be an injective cogenerator in a[M}. Let T  =  End (Q), N  E a[M] and 

N * := Horn (N , Q). Recall the definitions from Chapter 3.1 for submodules K  C  N  

and X  C  N*: A n (K )  := { /  E N * \ ( K ) f  -  0} and K e ( X )  := flsGx K er (g) and the 

properties (AC  1) — (A C 3). Note th a t the mappings A n ( - )  and Ke(~~) are order 

reversing. By definition we have for all X tY  C  N*:

K e ( X )  fd K e ( Y )  D K e ( X  +  Y)  and K e ( X )  +  K e( Y)  C I<e(X n  Y).
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L em m a 3.6.3. Let M  be an R-module, r Q  an injective cogenerator in cr[M), T  := 

End (Q) and N  E a[M\. Then the mappings A n  : £ { N)  —> £(N*)  and K e  : 

jC(N*) —> £ ( N )  carry inverse families to direct families and direct families to inverse 

families.

P ro o f: This follows easily from the following four observations:

Let K x, K v be submodules of N.

(1) If K x +  Kn C K v then A n{K \)  n An(K^) = A n (K x +  K^) D A n (K v).

(2) If K \  n  Kfj, T. Kv then A n (K x) +  An{KjL) =  A n (K \  fl K^)  C A n {K v).
Let X x, X /i) X v be submodules of N*.

(3) If X x +  Xf, C X v then I<e{Xx) H Ke(X^)  D K e ( X x +  X^)  D K e ( X v).
(4) If X A f l  D X u then K e { X x) +  K e ^ )  C I<e{Xx n X^)  C K e { X v). □

Remarks: (1) Let {Xa}a be a direct family of submodules of N* then Ke{Y,A X x) C 

Ha K e ( X x) holds. On the other hand let x E Ha-K^P^x) and g E J2aKx . Then 
g E X Xl +  • ■ • +  X Xk. Since {Xa}a is direct we get g E X^  for an index p  E A. Thus 
(x)g = 0 and hence

K e ( Y , X x) = C l K e ( X x).
A A

(2) Let {Aa}a be a direct family of submodules of N  then a similar argument 

as in (1) shows tha t
A n ( J 2 K x) = C \A n (K x)

A A
holds.

The next theorem was obtained from Anh, Herbera and Menini in [3].

3 .6 .4 . M o d u les  an ti-iso m o rp h ic  to  a  lin ea rly  co m p ac t m o d u le ([3, 1.2]. 

Let M  be an R-module, r Q  be an injective cogenerator in a[M ] and T  := End ( r Q ) .  

For every module N  E a[M] the following statements are equivalent:

(a) For any inverse family {ATa } a  of N ,

An I fl ic) = E  MIC).
\\eA )  xea

(b) The mapping K  I-)- An( K)  is a lattice anti-isomorphism of £ { r N )  into £ (N} )  

whose inverse is given by the mapping X  Ke ( X) .
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In this case N f  is linearly compact, r N  has property A B b * and every submodule 
of r N  has finite hollow dimension. I f  r Q  has essential socle then (a) and (b) are 

also equivalent to:

(c) r N  has property A B b * and every factor module of RN  does not contain an 

infinite number of non-isomorphic simple modules.

(d) r N  is anti-isomorphic to a linearly compact right S-module with S  a ring.

Proof: (a) =4 (b) Let X  C N* and denote by T  the set of all finitely generated 

submodules of X .  Since Fi 4- F2 is again a finitely generated submodule of X , 

{ F } FeX forms a direct family of submodules of N*. By 3.6.3 { K e ( F ) } Fex  forms an 

inverse family of submodules of M.  Thus by (a) and (AC2) we get:

X = Y / F = J 2  An(Ke(F))  = An f  f |  I<e{F))  = A n ( K e ( X )),
Fgf fgf Vfgf /

since K e ( X )  =  p\f e X K e i ( f )  =  f]feX K e ( f T )  =  D f g f Ho(F).  Thus A  =  
A n ( Ke ( X ) )  for all X  C  N *. By (ACl) we have K  — Ke( An ( K) )  for all K  C  N . 

For submodules X , Y  C  N* we have

X  + Y  = An( Ke (X ) )  4- An{I<e{Y)) = An{I<e{X) n Ke{Y)) .

Hence K e ( X  + Y)  = K e ( X )  n K e( Y)  holds. I<e(X flK ) =  K e ( X )  +  K e ( Y )  can 
be shown similarly. Thus A n (—) and K e ( - )  are lattice anti-isomorphisms and each 

others inverses.

(b)=» • (a) By the above remarks, we have for a direct family { V \} a of submodules 

of IV*

K e ( Y : X x) =  f l  W a ) .
aga aga

Hence for any inverse family { N x}a of submodules of N*:

An j p | N x j = An  \ f ]  K e ( A n ( N x) ) \  = A n(A e(]T  A n ( N x))) =  ^  A n ( N x). 
\agA /  \\<aA J aga aga

N  and N * have property ABb* by 3.6.2. Let us check th a t N * is linearly compact. 

Let {Aa}a be an inverse family of submodules of N* and ( f x 4- X x ) a  € Ifm N* / X \ . 
Consider the following diagram:

0 ------ > E a g a ^ ( ^ a )  — U  N

a

Q
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with canonical inclusion i and a  defined as follows: ( Z Z ^ a ) ^  : =  Z ) a ( & a ) / a  for 
all elements k \  G  K e ( X \ )  and A G  A. Clearly a  is an .R-module homomorphism. 

Since r Q  is injective in a[M) we get a homomorphism /  G  N* such th a t a  = i f .  

Thus for every A G  A we have 0 =  ( K e ( X \ ) ) ( f  — a) =  ( K e ( X x)){ f  — / a ) -  Hence 
/  — f \  G  A n ( K e ( X \ ) )  = X \  implies tha t f  — f x mod X x holds for every A G  A. 
Hence the following sequence

is exact. Thus N* is linearly compact.

Since N* is linearly compact every factor module has finite uniform dimension. 

By 3.1,12 we get for every submodule K  C  N: hdim (K )  =  udim (Horn (AT, Q)). 
Since Horn (AT, Q) is a factor module of N* = Horn (N , Q) it has finite uniform 

dimension. Hence every submodule of r N  has finite hollow dimension.

(a) +  (6) =>■ (c) Assuming (a) or (b) yields that every submodule of N  has finite 

hollow dimension and by 3.5.6, 3.5.5 tha t every factor module of N  has finitely 

generated socle. Thus every factor module of N  contains only a finite number of 
simple modules.

Assume tha t r Q  has essential socle. We show (c) =>(a). By Lemma 3.6.1 every 

factor module of N  has finitely generated socle. Hence for every /  G  N* we have 

Soc ( N /K er ( /) )  — Soc (Im ( /) )  C  Q  is finitely generated. Since r Q  has essen

tial socle, Soc (Im ( /) )  is essential in Im ( /) . Thus Im ( / )  os N /K er ( / )  is finitely 

cogenerated.

Let { A T , \ } a  be an inverse family of submodules of N.  Since A n (K \)  C  A?i(Ha AT) 

for all A G  A we get C  An(f}A K \) .  We will show th a t An( f ]RX\ )  T

£ a  A n {K x) holds. Let /  G  An(f)A K\)-  Then Ker ( /)  D Ha ATa- Since N  has AB5*

By the above remarks, N j Ker ( /)  is finitely cogenerated. Hence by [67, 14.7] there 

exists a finite subset F  C  A such that +  Ker ( /) )  =  Ker ( /) . Hence

f k e F  A A  C  Ker ( /) . Consider the following diagram:

0 ------ > RaAT  > N*  y Ijm N * / X x   ̂ 0

we have

f l  ( ( Kx + Ker ( /) ) /K e r  ( /) )  =  K x) +  Ker ( / )  /K er ( / )  =  0.

a

0 ------ !■ Im ( / ) Q
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with a  : 71 +  f ) F  n - h  Ker ( / )  and e  the inclusion map. Since r Q  is injective in 

a[M] there exists a homomorphism <j> : 0 ^  N / K i  —> Q which makes the diagram 

commute. Hence for every n £ N  :

(■n ) f  =  ({n + Ki)i€F)<l> 

holds. Define for every k £ F  the following composed map

f k : N  N / K k Q i z r N / K i  Q,

with 7T the canonical projection and i the inclusion map. Note th a t (n ) f k := ((5*jtn +  

Ki)  holds for all n £ N  where 5^ £ R  denotes the Kronecker symbol. Then 

clearly (K k)fk = 0 and hence f k £ A n ( K k) holds for every k £ F.  Since (n ) f  = 

{{n +  Ki)ieF)4> = Y,ieF(n )fi  holds, we get /  e  E if:jrAn(Ki) C J2A A n (K x). Hence 
we have proved th a t (a) holds.

(b) =>• (d) is obvious. We show (d) (c): By 3.6.2 we see th a t N  has property

ABb*. Let us assume th a t Ys is a linearly compact module over an appropriate 

ring S. Note tha t for any submodule K  of N , C ( N / K )  can be seen as the sub

lattice [JVT, JV] £ £{N)  and a([K , N}) can be seen as a lattice of submodules of a 

submodule of Y . It is easy to check, that independent families of submodules of 

Y  are carried over by a  to coindependent families of submodules of N.  Since Y  is 

linearly compact, every submodule has finite hollow dimension, i.e. contains no in

finite coindependent family of submodules. Thus every factor module of N  contains 

no infinite independent family of submodules, i.e. it has finite uniform dimension. 

□

Corollary 3.6.5. ([3, 1.3]) Let R b e  a ring, rQ  an injective cogenerator in jR—Mod 

and T  := End {Q). Then the following statements are equivalent:

(a) For any inverse family {La}a of left ideals of R

d n ( f i y  =  E M y .
A A

(b) A n  : £ { r R )  — > £ ( Q t )  is a lattice anti-isomorphism with inverse K e ( - ) .

In this case Q t  is linearly compact and r R  has A B b*. Moreover every submodule of 
a finitely generated R-module has finite uniform dimension, finite hollow dimension 

and a semilocal endomorphism ring. I f  r Q has an essential socle then (a) and (b) 

are also equivalent to
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(c) r R  has ABb*.

Proof: Recall tha t hdim(M)  =  udim(Horn (M, Q)) holds for all M  G R —Mod.

(c) => (a) r R  is semiperfect whenever it has A B b * (see [67, 47.9]). Hence there 

is only a finite number of non-isomorphic simple R-modules. □

C orollary 3.6.6. Let M  be an R-module such that there is only a finite number 

of non-isomorphic simple modules in a[M]. Let rQ  be an injective cogenerator in 

<j[M\ with essential socle. Then for every N  G <r[M] the following statements are 

equivalent:

(a) r N  has ABb*;

(b) A n  : C(r N)  —» £ ( N t ) is a lattice anti-isomorphism;

(c) r N  is lattice anti-isom orphic to a linearly compact module.

In this case every module in 0y[AT] has finite uniform dimension, finite hollow di

mension and a semilocal endomorphism ring.

Proof: Since there are only finitely many non-isomorphic simple modules in a[M] 

every factor module of N  G cr[M] has only finitely many non-isomorphic simple 

modules. Then (a) <t̂> (b) and (a) (c) follow by 3.6.4.

Since every submodule of N  has finite hollow dimension by 3.6.4 every submodule 
of a finitely JV-generated module has finite hollow dimension. Hence every L  G 

<jf [N] has finite hollow dimension, finite uniform dimension by 3.5.6 and a semilocal 

endomorphism ring by 3.4.1. □

Remarks: A semilocal ring R  has the property tha t there are only finitely many 

non-isomorphic simple modules in R —Mod. Since we can always choose an injective 

cogenerator with essential socle we get by the last corollary th a t an R-module M  
has ABb* if and only if it is anti-isomorphic to a linearly compact module.

Let us summarize the relationship between uniform and hollow dimension under 

the hypothesis of ABb*.

C orollary 3.6.7. Let M  be an R-module. Then the following statements are equiv

alent:
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(a) M  has A B 5* and one of the following properties hold:

(i) every submodule of M  has finite hollow dimension, or

(ii) every factor module iV/Rad (N) with N  C  M  is finitely generated, or 

(Hi) every factor module of Ad has finite uniform dimension.

(b) r M  is lattice anti-isomorphic to a linearly compact module.

In this case every module N  £ cr/[M] has property ABh*, finite uniform dimension, 
finite hollow dimension and a semilocal endomorphism ring.

P ro o f: (a)(i) =4* (a,)(ii) by 3.5.6. By [67, 47.9(1)] every module N  with AB5* is 

amply supplemented. Hence iV/Rad (N) is semisimple. Thus (a)(ii) (a) (iii) by

3.5.6. (a)(iii) (a)(i) follows from 3.5.9.
(a) (b) Choose an injective cogenerator RQ in <j[M] with essential socle and

apply 3.6.4. □



C hapter 4 

T he lifting property

Consider the following list of properties for an TL-module M  (see [39, pp 18]):

(Ci) Every submodule of M  is essential in a direct summand of M.

(C2) Every submodule isomorphic to a direct summand of M  is also a direct sum

mand.

(C3) If M i and M 2 are direct summands of M  with Mi fl M 2 =  0, then M i © M 2 is 

a direct summand of M.

An jR-module M  is called continuous if it has (Ci) and (C2); M  is called quasi- 
continuous or ir-injective if it has (Ci) and (C3) and M  is called an extending or 

CS-module if it has property (Ci). For more information about these notions we 

refer to [10] and [39].
Extending modules can be seen as a generalization of injective modules and 

the development of this notion can be tracked down to von Neumann’s work on 
continuous geometry (see [40]). The following hierarchy of properties holds:

injective => self-injective =>■ continuous =$► 7r-injective => extending.

Let us dualize each property (Ci), (C2), (C3) (see [39, pp 57]):

(C i) Every submodule of M  lies above a direct summand of M.

(C 2) If N  C  M  such tha t M J N  is isomorphic to a direct summand of M ,  then N  

is a direct summand of M.

( C 3 )  If M i and M 2 are direct summands of M  with Mi +  M 2 = M, then M i 0  M 2 
is a direct summand of M.

89
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A module M  is called discrete if it has (Di) and (D2); M  is called quasi- 

discrete if it has (Dj.) and (£>3) and M  is called lifting if it has property (H i). 

I11 [59] Takeuchi called lifting modules codirect. The properties (D 2) and (D 3) 

are called Condition (I) and Condition (II). In [41] Oshiro called (quash)discrete 

modules (quasi-)semiperfect.
A module M  is called n-projective or ( co-continuous) if for every two sub- 

modules A", L  of M  with N  + L = M  there exists an endomorphism /  e. End (M)  

with

Im ( / )  C  N  and Im (1 — / )  C  L.

Theorem 4.1.9 shows th a t a module is quasi-discrete if and only if it is supplemented 

and 7r-projective .
A lot of use was made of the existence of complements in the study of extending 

modules. Under the assumption tha t there are supplements in a module we get the 

following dualized hierarchy for su p p lem en te d  modules.

pro jective => self-projective discrete => 7r-projective => lifting.

Clearly ’projective1 =4> ’self-projective’ and ’discrete’ =4> ’quasi-discrete’ ’lifting’. 

As mentioned we will see tha t a module is quasi-discrete if and only if it is supple

mented and 7r-projective . A self-projective supplemented module is 7r-projective 

supplemented and hence lifting. It is easy to check th a t a self-projective module 

has property {D2). A projective supplemented module is nothing but a semiper
fect module. Therefore discrete, quasi-discrete and lifting modules can be seen as a 

generalization of semiperfect modules.

4.1 Lifting m odules

Recall th a t we say for submodules L  C  N  C  M, N  lies above L  (in M) if N / L  <C 

M / L  and we say th a t a submodule N  of M  is coclosed (in M) if N  does not lie 

above any submodule of N .
A submodule N  C  M  is a supplement in M  if and only if it is a coclosed, weak 

supplement in M  (cf. 1.2.1). Hence in a weakly supplemented module M  every 

submodule th a t is coclosed in M  is a supplement in M.
Note th a t an i?-module is hollow if and only if it is indecomposable lifting.

This is clear since in an indecomposable module M  the only proper direct sum

mand is 0. Hence every submodule of M  lies above 0 (i.e. every submodule of M  is 

small in M ).
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From [39, Proposition 4.8] we get the following characterization of lifting mod
ules:

4.1.1. L ifting m odules.

Let M  be an R-module. Then the following statements are equivalent:

(a) M  is lifting;

(b) for every submodule N  of M  there is a decomposition M  = M i 0  M 2 such that 

Mi C N  and N  Pi M 2 M;

(c) every submodule N  of M  can be written as N  =  Ni  0  N 2 with Ni a direct

summand of M  and N 2 M;

(d) M  is amply supplemented and every coclosed submodule of M  is a direct sum

mand of M .

Proof: (a) (b) Every submodule N  of M  lies above a direct summand Mi of

M . Thus there is a decomposition M  =  Mi 0  M 2 with N /M i  <C M/ M i .  Since 

M / M i  — M 2 and N / M i  ~  ( N  n  M 2) we get N  n  M 2 is small in M 2 and hence in M.

(b) =>■ (c) For every submodule N  there is a decomposition M  = Mi  0  M 2 with

Mi  C N  and N  fl M 2 «  M.  Hence N  =  M x 0  (N  n  M2).
(c) => (d) Let M  = L  +  K  for submodules K y L C M.  We will show, tha t K  

contains a supplement of L. By hypothesis: K  ~  N  0  H  with H  <C M  and N  a 

direct summand of M. Hence M  — L + N.  By hypothesis L  fl IV — Ni  0  S  with 

S  M  and Ni  a direct summand of M.  Hence N\  is a direct summand of N  and

S  <C N . Let N  — Ni  0  N 2 for some submodule N 2 of N.  N 2 is a supplement of

Ni  in N.  We claim tha t N 2 is a supplement of Ni  +  S  in N.  To see this consider 
a submodule X  C jV2 such tha t N  =  X  +  Ni  +  S. Then N  — X  +  Ni  holds as 

S  <€. N  and X  — N 2 as N 2 is a supplement of Ni  in N.  Hence N 2 is a supplement 

of Ni  S  — L  Pi N  in N . So M  — L N  = L  +  (L Pi IV) T  N 2 — L  -b N 2 and 

L n J V2 =  ( L O N )  C\N2 <C iV2 holds. Thus N 2 is a supplement of L  in M.
Let iV be a coclosed submodule in M, then N  =  Mi 0  5  with 5  small in M. Clearly 

N  lies above M\  in M. Hence N  — Mi as N  is coclosed.
(d) (a) By 1.2.2 every submodule of M  tha t is not small in M  lies above a

coclosed submodule and hence above a direct summand. □

Remarks:

1. For a characterization of ” lying above direct summands” we refer to [67, 41.11].
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2. Lifting modules are exactly the amply supplemented modules whose supple
ments are direct summands.

In general, direct sums of lifting modules are not lifting. Dual to [10, 7.4] we 

state an example from [43]:

L em m a 4.1 .2 . Assume M  is an uniserial module with composition series 0 ^  V  C 

U C M . Then the module M  © (U / V ) is not lifting.

P ro o f: See [43, Lemma 2.3]. □

A module is called uniform-extending if every uniform submodule is essentially 

contained in a direct summand. As an attem pt to dualize the notion of uniform- 

extending we will consider the following definition.

D efin itio n . An 72-module M  is called hollow-lifting if M  is amply supplemented 

and every hollow submodule of M  lies above a direct summand of M .

Equivalently M  is hollow-lifting if and only if M  is amply supplemented and 

every hollow, coclosed submodule of M  is a direct summand of M. Of course, every 

lifting module is hollow-lifting.

L em m a 4.1.3. Any coclosed submodule (and so every direct summand) of a 
(hollow-)lifting module is (hollow-)lifting.

P ro o f: Let M  be a (hollow-)lifting 72-module and N  a coclosed submodule of M . 

Then A" is a supplement in M . By [67, 41.7(1)] N  is amply supplemented. Let K  

be a (hollow) submodule of A, tha t is coclosed in A. Since A  is a supplement in 

M  we get K  is coclosed in M  by 1.2.2 (3). Hence K  is a direct summand of M  and 
hence of A . □

The next lemma is dual to [10, 7.7].

L em m a 4 .1 .4 . Let M  be a hollow-lifting module and K  C M  a coclosed submodule 

with finite hollow dimension. Then K  is a direct summand of M .
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P ro o f: Since K  has finite hollow dimension, there is a submodule L  of K  such th a t 

K /L  is hollow. By the previous lemma, K  is hollow-lifting. Let ./V be a supplement 

of L  in K \ then N  is hollow since N / ( N n L )  ~  K / L  and N d L  N.  Furthermore 
N  is coclosed in K  and K  is a supplement in M, so N  is coclosed in M  (cf. 1.2.2). 

Hence N  is a direct summand of M.  Let M  =  N  0  N 1. Then K  =  IV © ( K  fl N')  

and hdim (K ) =  hdim (N )  +  hd im (K  n  N 1) hold. By induction K  fl N 1 is a direct 

summand of M . Let M  =  (K  fl N ') ® N "  then N 1 =  (K  D N 1) ® (N f fl N ") such 

tha t M  = K ®  ( N ' DN " ) .  □

Corollary 4 .1 .5 , Let M  be an R-module with finite hollow dimension. Then M  is 

hollow-lifting i f  and only if M  is lifting.

In the following proposition we show that a lifting module with a finiteness 

condition can be decomposed into a finite direct sum of hollow modules.

P rop osition  4 .1 .6 . Let M  be a non-zero R-module with finite uniform dimension 

or finite hollow dimension. Then the following holds:

1. I f  M  is lifting, then M  — ® ”=1 Hi with 0 ^  Hi hollow and n = hdim (M );

2. I f  M  is extending, then M  = ®"=i U{ with 0 /  Ui uniform and n = udim (M ).

Proof: (1) Assume M  to have finite uniform dimension or finite hollow dimension. 

Because the additive dimension formula for direct summands holds for both dimen

sion notions, the result can be proved by induction on udim  or hdim. In the following 

dim  will denote either udim  or hdim. If M  is indecomposable or di m(M)  = 1 then 
M  is hollow since an indecomposable lifting module is hollow. Let n > 1 be a 

number and assume tha t for all _R-modules with di m(M)  < n  our hypothesis holds. 

Assume di m( M)  — n +  1 and tha t is decomposable M  — M x © M2 with Mx and 

M2 non-zero submodules of M.  Then di m(M)  — dim (M i) +  dim (M 2) — n  +  1 and 

dim (M i)  and dim {M 2) are at most equal to n. By hypothesis M i and M 2 are finite 

direct sums of hollow modules. Thus the result follows.

The proof of (2) is similar to (1), since an indecomposable extending module is 
uniform. □

The Osofsky-Smith Theorem (cf. [10, 7.13]) states, th a t a cyclic module whose 

cyclic subfactors are extending can be expressed as a finite direct sum of uniform
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submodules. The next corollary can be regarded as an attem pt to dualize this 

theorem.

Corollary 4.1.7. I f  M  is a lifting R-module that is either finitely generated or 

finitely cogenerated, then M  is a finite direct sum of hollow submodules.

Proof: By 3.3.4 a finitely generated, weakly supplemented module has finite hollow 

dimension. A finitely cogenerated module has finitely generated essential socle and 

hence finite uniform dimension. Thus the result follows by applying 4.1.6. □

Remarks: Recall the definiton of a 7T-projective module. It can easily be seen, tha t 

the condition ?r-projective is equivalent to the splitting of the epimorphism

N ® L  -> M

(?2., I) i—y n -\-1.

In [71] Zoschinger calls these modules ko-stetig (i.e. co-continuous) as a dualization 

of U tum i’s definition of continuous modules in [61].

P rop osition  4.1.8. ([67]) For a n-projective R-module M  the following state

ments hold:

1. Each direct summand of M  is it-projective .

2. I f  N  and L are mutual supplements in M , then N  fl L — 0.

Proof: (1) Let A  be a direct summand of M  with an idempotent e £E End (M) and 

M e  =  N . Then M  =  M e © M (l-e )  holds. If M e =  K + L ,  then M  =  K + L + M ( l -  

e), and there exists /  € End (M)  with Im ( /)  C K  and Im (1 — / )  C L  +  M ( l - e ) .  

Now f e  and e — f e  = (1 — f ) e  can be seen as endomorphisms of End (Me), satisfying 

Im ( fe)  C K  and Im ((1 — f )e)  C L.
(2) If N , L  are mutual supplements, then we have N  fl L  <C N  and IV nL  <C L. Let 

4> denote the epimorphism N  © L  —y M , (n, I) i—y n +  1. Then the kernel of 4>

Ker (0) =  {(n, - n )  : n  € N  n  L}  C (N  n  L, 0) 0  (0, N  n  L) «  N  © L

is small and splits by assumption. Thus Ker (<j>) =  0 and so N  fl L = 0. □

Remarks: More properties and characterizations of 7r-projective modules can be 

found in [71] or [67, 41.14 - 41.17],
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As mentioned in the begining of this section 7r-projective supplemented modules 

are exactely the quasi-discrete module. We state a characterization of such modules 

from [67, 41.15]:

4.1 .9 . Q uasi-d iscrete m odules.

For an R-module M  the following assertions are equivalent:

(a) M  is supplemented and n-projective ;

(b) (i) M  is amply supplemented, and

(ii) the intersection of mutual supplements is zero;

(c) (i) M  is lifting, and

(ii) if  U ,V  are direct summands of M  with M  =  U T V ,  then U D V  is a 

direct summand of M .

Proof: (see [67, 41.15]) □

Remarks:

1. Recall th a t property (c) of above theorem is the definiton of quasi-discrete.

2. There exists a decomposition theorem for quasi-discrete module (see [67, 41.17] 

or [39, Theorem 4.15]) tha t states tha t any quasi-discrete module can be ex

pressed as a (not necessarily finite) direct sum of hollow modules.

The next proposition dualizes [10, 7.5] and was obtained from [39, Lemma 4.47] 
and [67, 41.14].

Lem m a 4 .1 .10. Let M i and M 2 be R-modules and let M  = M \ ® M 2. Then M i 
is M 2 — projective i f  and only if for every N  C M  with M  = N  +  M 2 there is a 

submodide L  C N  with M  — L  © M 2.

Proof: (=>) Let p : M  —> M /N  be the canonical projection and Pi — p \^ . for 

i = 1,2. Then p2 is epimorph since M /N  ce. M 2/ ( M 2 f l  N ) and by hypothesis the 

commutative diagram:
M x

pi

M 2 M / N   ► 0
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can be extended by a homomorphism /  : M x —> M2. Let

L  :=  {x -  ( x) f \ x  € Mi} C M :

then L  n  M 2 =  0, since Mi  D M 2 =  0 and L  ® PI2 — M  as a; =  (a: — (x) f )  +  ((x) f )  
for all x  G  Mi implies Mi C  L +  Im ( /) . Also L  C  N  holds, since {L)p — 0.

Every element m  G  M  can be expressed as m  =  mi +  m 2 with mi G  Mi and 
m 2 G  M2. Since p is epimorph we will find for any m i G  Mi an element x G  M2 

with (x)p =  (m i)/. Thus m — (mi — re) +  (x 4- m 2) implies M  =  iV +  M 2. By 

hypothesis there is a submodule L  C N  such tha t M  =  L  ® M2. Let e : M  -G M2 

be the projection with respect to this decomposition. This yields a homomorphism 
from Mi to M2:

Since M i(l — e) C  L  C  N  we get mi — (mi)e G  N  for all m^ G  M x and hence 

( ^ 1) /  — (mie)p. Thus /  =  ep. Therefore is M2-projective. □

D efin ition . J?-modules M* (« G  /}  are called relative projective if Mi is Mj-  
projective for all distinct i tj  G  I.

The next corollary is dual to [10, 7.6]

Corollary 4 .1.11. An R-module M  is quasi-discrete if  and only if  PI is a lifting 

module such that whenever PI = PI1 © M2 is a direct sum of submodules, then M\  
and M 2 are relatively projective.

P ro o f: (=>) By 4.1.9 M  is lifting. Let M  =  Mx © PI2. Assume M  =  N  +  M2 for a 

submodule N  C M , then N  lies above a direct summand L . Hence M  — L +  M2.

(<£=) Consider any factor module A1 of M2 with projection p and a homomorphism 
/  : Mi F.

0  y Mi ------ )■ Il<fi © PI2   ̂ M2  y 0

■¥ L ® PI'2 M2 ------ > 0
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By 4.1.9 L f]  M2 is a direct summand of M  and so it is a direct summand of L , say 

L  =  K  © (L  n  M 2 ), which yields M  — K  © M2. By 4.1.10 M i is M2-projective. A 

similar argument shows tha t M2 is Mi-projective.

(<̂ =) Assume U, V  C  M  with M  = U +  V. Since M  is lifting, U lies above a 

direct summand M \. Let M  — M x © M2. Clearly M \ +  V  = M . Since M 2 is 

M i-projective we get by 4.1.10 a submodule W C  V such th a t M  ™ Mi © W. 
Consider the canonical projection n : M  M i with kernel W  and the inclusion 

map e ; Mi —>■ M  with respect to the decomposition M  =  Mi © W. Then /  :=  rre 

is an endomorphism of M  such tha t (M )/ C  U and (M )(l — / )  C  V. Thus M  is 

7r-projective and since M  is lifting it is supplemented. □

Remarks: Baba and Harada studied in [4] when a finite direct sum of hollow modules 

with local endomorphism rings is lifting. They showed th a t this is closely related to 

a generalized projectivity condition between the direct summands. Let M  and N  

be two jR-modules. M  is called almost N-projective if every diagram

N

9

M  — F  ------ > 0

can be either extended commutatively by a homomorphism h : N  —* M  or there 

exists a direct summand Mi of M  and h : Mi —> N  such th a t hg =  e i f  where 

&i : Mi —> M  is the canonical inclusion map. They proved in [4, Theorem 1] tha t 
a finite direct sum M  =  © ”=i Hi of hollow modules whose endomorphism rings are 

local is lifting if and only if Hi is almost LTj-projective for all i ^  j .  For more 

information about direct sums of lifting modules and almost projectivity we refer to 

[4], [26], [27] and [28].

4.2 Lifting m odules w ith  chain conditions

The following results are dual to [10, 18.5-18.7]. Let us first observe an easy lemma.

L em m a 4.2.1. Let M  be an R-module with essential radical For every direct 

summands D\ C D 2 of M  we have Rad (Di)  =  Rad (D2) if  and only if  D \ = D 2-

P ro o f: Let M  =  D 1 © _DJ. Then D 2 — D x © (D2 f l  D'̂ f) and Rad (D2) =  Rad (D i) © 

R ad {D2nD[) ,  If R ad(D i) =  R ad(D 2) then 0 =  R ad (D2nD[)  = R ad(M )n£>2nZ>i. 

This implies D2 n  D[ =  0 since Rad (M) <  M  and hence Di  =  D 2. □
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Remarks: Let M  be an i?-module. It follows from this lemma th a t if Rad( M)  < M  

and Rad (M) has ACC (DCC) on direct summands, then M  has ACC (DCC) on 

dir ect s umm ands.

4.2 .2 . L ifting m odules w ith  radical chain condition.
Let M  be a lifting module such that Rad (M) has ACC on direct summands. Then 

M  is a direct sum of a semisimple module and a finite direct sum of hollow modules.

P ro o f: By 1.3.2, every weakly supplemented module M  can be decomposed as 

M  — M xB M 2 where Mi is semisimple and M2 has essential radical. Since Racl(M) — 

Rad (M2) <3 M 2 has ACC on direct summands M2 has ACC on direct summands by
4.2.1. Since M2 is lifting, it is amply supplemented and every coclosed submodule 
is a direct summand by 4.1.1. By 3.5.3 M2 has finite hollow dimension and by 4.1.6 

M2 is a finite direct sum of hollow modules. □

Corollary 4.2.3. Let M  be a lifting module.

1. I f  M  has ACC on small submodules, then M  — 5 ®  N , where S  is semisimple 

and N  is noetherian.

2. I f  M  has DCC on small submodules, then M  = S  © A, where S  is semisimple 

and A  is artinian.

P ro o f: (1) By 3.5.12 Rad (M) is noetherian and hence it has ACC on direct sum

mands. By 4.2.2 M  — S  © N } where S  is semisimple and N  is a finite direct sum 

of hollow modules. Let N  =  0 "=1 Hi then Rad (Hf) is noetherian for all i. Since

Hi / Rad (Hi) is simple (or zero) we get that Hi is noetherian. Thus N  is noetherian.

(2) By 3.5.12 Rad (M) is artinian and by 1.3.2 M  = S  ® A  with Rad (M) < A. By 

4.2.1 A  has DCC on direct summands and by 3.5.3 A  has finite hollow dimension. 

Applying 3.5.14 A  is artinian. □

Corollary 4 .2 .4 . Let M  be a lifting module with finite hollow dimension or finite  
uniform dimension.

1. I f  M  has ACC on small submodules, then M  is noetherian.

2. I f  M  has DCC on small submodules, then M  is artinian.



C hapter 5

D ual polyform  m odules w ith  finite  

hollow  dim ension

In this chapter we will give an attem pt to dualize the notions of singular and non- 

M-singular modules, rational submodules and polyform modules. The notion of 

polyform modules was defined by Zelmanowitz in [70], where he generalizes Goldie’s 
Theorem (see [10, 5.19]).

5.1 N on-M -sm all m odules

A module N  in a[M] is called M-singular (or singular in <j [M}) if iV ~  L / K  with 
K  essential in L  E a[M}.  In case M  =  R  we just say singular (or cosmall in [48]) 

instead of R-singular. The M-singular modules

Sm = {N  E a[M]\N is Af-singular}

are closed under submodules, homomorphic images and direct sums. Any N  E a[M] 

contains a largest M-singular submodule

S m (N) := T r ( S M , N)  =  £ { I m  ( / ) | /  € Horn (L, N), L 6

Then Sm{N)  = Q N \ L  E Sm}  holds. A module N  in cr[M] is called non-M - 

singular if Sm( N)  ~  0, i.e. N  has no M-singular submodule. For basic facts about 
these modules we refer to [10, Chapter 2]. Let us now dualize these notions.

D efin ition . Let M, N  be A-modules. N  is called M-small (or small in a[M ]) 

if N  ce K  <C L  for K ,L  E cr[M], In case M  = R  we just say small instead of 

R-small.

99
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Remarks: Let N  be M-small with K  and L  as above. Denote by K  the M-injective 

hull of K . Consider the following diagram:

0 --------> K  — L

i

K

with i the inclusion map from K  into its M-injective hull K  and e the inclusion 

map from K  to L. Since K  is injective in <r[M], the diagram can be extended 

commutatively by a homomorphism /  : L  —» K . Then e f  = i holds. Since Im (e) <C 

L  we get K  =  Im (ef )  -C K.  Since K  ~  N  it follows, th a t N  is small in its 

M-injective hull as well. Thus a module is M-small if and only if it is small in 

its M-injective hull (see [36, Theorem 1]). Dual to this fact Rayar proved in [48, 
Proposition 1] th a t a module M  is singular (or cosmall) if and only if the kernel of 

every epimorphism from a projective module P  to M  is essential in P .

D efin ition . Denote the class of all M-small modules in cr[M] by

Tm := { N  E <r[M]\N is M-small}.

Then TJjJ- is closed under submodules, homomorphic images and finite direct sums. 
For any N  E u[M] define

T ^ ( N )  := Re (N,  7 £ )  =  f |{K er  (g)\g 6 Horn* (N,  L ) , L e  T ^ }

Then Tl , {N)  =  n {L  C N \ N / L  e  7 ^ }  holds. A module N  e  <j[M] is called non-

M-small if T ^ ( N )  =  IV, i.e. N  has no non-zero M-small factor module. In case 

M  = R  we just say non-small instead of non-R-small. Clearly N  is not M-small 

if it is non-M-small. Moreover the class P*M of non-M-small submodules can be 

described as

:=  { L  e  (7[M]|for all N  E 7 ^  : Horn (L, N )  = 0}.

Remarks:

1. In [36] Leonard defined a module N  to be small in R —Mod if it is a small 

submodule of some P-module. He showed that N  is small if and only if N  is 

small in its injective hull. M.Rayar in [48] and in her thesis calls a module
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N  non-small if it is not small in any module. In our sense, N  is non-M- 

small if N  lias no non-zero M-small factor module, dual to the definition of a 

non-M-singular module N  which has no non-zero M-singular submodules.

2. Oshiro called a ring R  a left H-ring if every injective left .R-module is lifting 

(see [42]). He showed that a ring R is a left H-ring if and only if R  is left 

artinian and every left R-module contains a non-zero injective left R-module. 

Moreover he showed that a ring is a left H-ring if and only if every left R- 

module is a direct sum of an injective module and a small module. Oshiro 

and W isbauer studied this situation in a[M] and showed th a t every injective 

module in <j[M] is lifting if and only if every module in cr[M] is a direct sum 
of an M-injective module and an M-small module (see [43]).

3. While every module over a left H-ring is a direct sum of an injective module 

and a small module, Rayar showed in [48, Theorem 7] th a t every left R-module 

is a direct sum of a projective module and a small module if and only if the 

ring R is QF.

The next statem ent dualizes [10, 4.1].

5.1.1. N on-M -sm all m odules.

Let M  be an R-module.

1. The following are equivalent:

(a) N  is non-M-small;

(b) for any 0 K  E cr[M] and 0 7  ̂ f  \ N  K ,

(c) for any 0 7̂  K  E cr[M] and 0 /  /  : N  K,

2. Assume that M  has a projective cover P  in a[M].  

with Horn (P, N )  =  0 is M-small.

3. Assume M  is non-M -small and has a projective

(i) T£r = { N e  cr[M][Horn (R, N ) = 0}.

(ii) Tm  is closed under extensions, direct sums and products (in a[M]).

(iii) Let N  E cr[M] and consider the following exact sequence

0 ------ ► 7 X W  ------> N   ► N/ 7%{ N)   ► 0.

Then TJJ(JV) is non-M -small and N / T m (N)  is M -small.

Im ( / )  is coclosed in K ;

Im ( / )  is not small in K .

Then any module N  E a[M] 

cover P  in cr[M]. Then
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P ro o f: (l)(a ) =>■ (6) Let f  : N  K  be a non-zero homomorphism and assume L  C 

Ln ( / )  C AT such tha t Im ( f ) / L  <C A /L . Then Im (f ) / L  £ 7jJ. Let 7r : AT —̂ K / L  

denote the canonical projection; then fir : N  —$■ Im ( f ) / L  is a homomorphism. Since 

N  is non-M-small, Ker ( f n)  =  A/” implies Im ( /)  =  A. Hence Im ( / )  is coclosed in 

K.

(6) =>■ (c) Clear;

(c) => (a) If there is a g : ./V —> L  with L  £ T J , then L <C L. Let i : L  —> L  be the 
inclusion map. Then gi : A7” —> L  is a non-zero homomorphism with Im (gi) L.

(2) Let N  denote the M-injective hull of N.  By [67, 17.9] N  =  T r ( M t E( N) )  

is M -generated (where E( N)  denotes the injective hull of N  in R —Mod). Since M  

is P-generated, N  is P-generated. If N  is not M-small, then it is not small in its 

M-injective hull N.  Assume there exists a submodule K  C N  such th a t N + K  = N . 
Then N / ( N  fl K)  ~  N / K  is a non-zero P-generated P-module. Thus there exists 
an index set A and a non-zero epimorphism /  such tha t the following diagram

p(A)

f

N  — n / { N H K )  ------ ► 0

can be extended commutatively by a non-zero homomorphism g : P ^  —> N  such 
tha t gn — /  holds. Hence there exists a non-zero homomorphism in Horn (P, N).

(3) Let us first note tha t P  is non-M-small. Denote M  ~  P / K  with K  <C P . 

Assume there exist a submodule L C P  such th a t P / L  is M-small. Then P/(L-j-AT) 

is M -small as well. But since M  is non-M-small, we have L  +  K  =  P  and hence 

L — P.  Thus S M{P) =  P .
(i) Since P  is non-M-small, P  £ Hence for every M-small N  £ a[M] we 

get Horn (P, N)  =  0. The converse follows from (2).

(ii) Let 0 Ni  —> N 2 —> 7V3 0 be an exact sequence with Ah and M-
small. Applying (i) and the exact functor Horn (P, —) we get th a t Horn (P, Ah) =

0. Thus N 2 is M-small. Let L[a be a product of M-small modules; then

Horn (P, IIa-Wa) ^  bUKom ( P , NX) =  0 (see [67, 11.10]). Let 0 a AIa be a di

rect sum of M-small modules. As 0 A N x is a submodule of J1a N x we get th a t 
0 A-/VA is M-small. Moreover direct products of M-small modules are M-small if 

the product is in cr[M]. In general cr[M] is not closed under taking direct products, 

but it has a product (in the categorical sense) defined as Ha := Tr ( Ue) 11a N\ )  
with Ue :=  0 { D  C M ^ \U finitely generated } (see [67, 14.1]). By definition 

r f f  Ax C f lA N x. Thus the product in <j[M] of M-small modules is M-small.
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(iii) As a consequence of (i) and (ii) we get Horn (P, N / T ^ ( N ) )  =  0 since 

N / 7 £ { N )  is isomorphic to a submodule of a product of M-small modules. Assume 

there exists a submodule L  C TJJ-(JV) such that T m( N) / L  is M-small. Then

0 7m ( N ) / L  -► N / L  N / T ^ N )  -► 0

is an exact sequence and by (ii) we get N / L  is M-small. But then 7~m{N) C L  and 

hence Tm(N)  = L. Thus TjJ(N)  is non-M-small. □

Remarks:

1. In [37] McMaster defines the notion of a cotorsion theory induced by a pro

jective P-module P . He defines the class of cotorsion modules to be all R- 

modules N  such th a t Horn (P, N ) — 0 and the class of cotorsionfree modules 

to be all P-modules L  such tha t Horn (A, N ) ~  0 for all cotorsion P-modules 

N . Under the hypothesis of 5.1.1(3) we see tha t (PJr, 7JJ) is the cotorsion 

theory (in cr[M]) tha t is induced by P .

2. A class of modules is called a TTF  class or Jansian class (see [37]) if it is 
closed under submodules, direct products, homomorphic images, extensions 

and isomorphic images. Hence we see tha t under the assumptions made in 

5.1.1(3) Tm forms a Jansian class.

Cotorsion theories can be described by trace ideals (see [37, 1.2, 1.3]).

5,1 .2 . P ro jective  non-sm all m odules.
Let P  be a projective, non-small R-module. Let T  := TV(P, P ) be the trace ideal of 

P . Then the following holds for a module N  E P —Mod:

(1) N  is small i f  and only i f T N  =  0.

(2) The following statements are equivalent:

(a) N  is non-small;

(b) N  =  T N ;

(c) R /T  ®r N  = 0;

(d) N  is P-generated.
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Proof: (1) Let N  be small. If there exists an element n £ N  such th a t T n  ^  0 

then there exists a non-zero homomorphism P  —̂ T  T n  C. N.  Hence Tn  = 0 for 

all n £ N.  Thus T N  = 0. On the other hand T P  =  P  holds by [67, 18.7]. Hence 

Tr(P, N)  = (P)Horn (P, N)  =  T(P)H om  (P, N)  C T N  =  0. Thus Horn (P, N) = 0 

implies by 5.1.1(3)(i) tha t N  is small.
(2) (a) =4> (b) Since T ( N / T N )  = 0 we get by (1) th a t N / T N  is small. Hence 

N  =  T N  must hold since N  was non-small.
(b) => (a) For every small P-module X  we have T r ( N , X )  — (N)Horn (IV, X)  =  

T(IV)Hom (IV, X )  C T X  =  0. Hence N  is non-small.

(b) (c) By [67, 12.11] R / T  ®R N ~  N / T N  holds.

(b) &  (d) Since P  =  T P  holds for a projective P-module, we have T r(P , N )  =  

(P)Hom  (P, N ) =  T(P)H orn (P, N ) = T(TV(P, 77)) C T N . On the other hand let 

p e  p , /  : P  H >■ P  and n  6 77. Then {jp)fn £ T N  and every element in T77 is 
a finite sum of elements of this form. Clearly /  and n induces a homomorphism 

f n : P —$ N  such tha t p ^  (p ) f n . Hence (p ) f n  £ Im ( /n) C T?’(P, 77) implies 

TIV C T r(P , 77). Thus IV =  T77 if and only if T r(P , 77) -  77. □

Remarks: Let <7en(P) denote the set of all P-generated modules. Then under 

the assumptions of 5.1.2 we have Tm =  R / T —Mod and PJf =  Gen(P).  (Note 

tha t the trace ideal of a projective P-module is a two-sided ideal; see [67, pp. 
154]). Moreover if P  is commutative and P  a finitely generated projective P-m odule 

then P  =  T 0  AnnR(P) holds (see [67, 18.10]). Thus if P  is non-small we have 

Tm = Annji(P)—Mod and Tm  ~  Gen(T).

D efin ition . An P-module M  is called co-semisimple if every simple module in 

<j[M] is M-injective (see [67, 23.1]). A ring P  th a t is co-semisimple as a left P - 

module is called a left V-ring.

Corollary 5.1.3. Assume M  to be projective in cr[M]. Then the following state

ments are equivalent:

(a) M  is non-M -small and a generator in cr[M];

(b) TS- =  0;

(c) Rad (77) =  0, for every N  £ a[M];

(d) M  is co-semisimple.
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P ro o f: (a) => (b) clear by 5.1.1(2); (b) (c) clear by definition; (c) (d) by [67,

23.1]; (d) =>■ (a) by [67, 23..8(1)] M  is a generator in cr[M] and by (b) Tm = 0 hence 

M  is non-M-small. □

Remarks: The last corollary shows, tha t a ring R  is (left) non-small if and only if it 
is a (left) V-ring (see also [25, Proposition 2.2]).

Recall th a t every simple module in a[M] is a factor module of a submodule of 

M  (see Chapter 3.6). The next statement dualizes [10, Proposition 4.2].

P rop osition  5.1.4. Let M  be an R-module.

1. Every simple R-module is M -sm all or M-injective.

2. I f  Tm (M)  -\- Rad (M) =  M,  then M /L  is injective in a[M] for every maximal 

submodule L  of M .

3. I f T f j ( M)  +  Soc (M) =  M,  then every maximal submodule L  such that M /L  

is M -sm all is a direct summand of M .

4■ I f  Rad (M) =  M  then every simple module in a[M] is M -small.

Proof: (1) A simple module which does not belong to cr[M] is trivially M-injective. 

Assume the simple module E  6 a [M] is not M-small; then it is not small in its 

M-injective hull E.  Therefore there exists a proper submodule K  c  E  such th a t 

E  = E  + K.  E  n  K  = 0 holds since K  is proper and hence E  is a direct summand 
of E  and hence M-injective.

(2) Let L be a maximal submodule of M. Assume M / L  is M-small, then 

Tm(M)  C L  implies M  =  TJ/(M) +  Rad (N ) C L  a contradiction to L being a 

maximal (proper) submodule. Hence by (1) for all maximal submodule L C M  we 

have M /L  is M-injective (and hence injective in cr[M]; see [67, 16.3]).

(3) Let L be a maximal submodule of M  with M /L  being M-small. Then 

Tm(M) C L and hence there must be a simple module E  in Soc(M) with L(&E — M .
(4) Every simple module E  in cr[M] is a factor module of a submodule of M. 

Hence there exists a submodule L C M  such tha t the following holds:

0 ------ ► L  ► M

f

E
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with /  an epimorphism. If E  is M-injective, then the diagram can be commutatively 
extended by an epimorphism from M  to E.  By hypothesis M  has no simple factor 
module. Thus there are no M-injective simple modules in a[M] and by (1) every 

simple module in cr[M] is M-small. □

The next statem ent dualizes [10, Proposition 4.5],

P rop osition  5.1.5. Let M  be an R-module and N  an M -sm all module. I f  M  is 
self-injective then for any f  6 Horn (N , M ), Im ( /)  <C M.

P ro o f: Let N  denote the M-injective hull of N.

0 ------ ► N   ► N

f

M

Since M  is injective in cj[M], the diagram can be extended commutatively by an 
homomorphism g : N  —¥ M . Since N  <C N  we get Im ( /)  =  Im (j) <  M, □

5.2 C o-rational subm odules

In this section we will define dual notions for rational submodules and polyform 
modules. A submodule U of a module M  is called rational if Horn (M/C/, M ) =  0 

where M  denotes the M-injective hull of M. Equivalently U is rational in M  if and 

only if for all submodules U C V  C M , Hom(V/C/, M) =  0. Moreover every rational 

submodule is an essential submodule of M. Zelmanowitz called a module poly form  if 

every essential submodule is rational. These notions were used to generalize Goldie’s 

Theorem (see [10, 5.19]).

D efin ition . Let M  be an .R-module. A submodule N  of M  is called co-rational 

in M  if for every L C TV, Horn (M, N/ L)  =  0.

This is a slightly different definition of co-rationality than the one by Courter 

(see [9]).

P rop osition  5.2.1. Let M  be an R-module having a projective cover P  in <r[M].

1. Let N  C M  then the following are equivalent:
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fa) N  is co-rational in M ;

(b) HornR (P, N)  =  0.

2. Every co-rational submodule of M  is small in M .

Proof: Denote M  — P /K  with K  <C P .

(1) (a) =>■ (b) Let g G  Horn (P, N )  and L  := (K)g  and h be the induced ho
momorphism h : M  —y N / L  with p +  K  i—y (p)g +  L.  But then h = 0 since N  is 

co-rational. Hence (P)g — (K)g  and for all p G  P  there exist k G  K  and I G  Ker (g) 

such th a t p =  k +  I. Thus P  =  K  +  Ker (g) — Ker (p), implying g = 0.

(b) (a) For 0 ^  /  G  Horn (M, N/ L) ,  the diagram

P  ------ > M   y 0

f

N  ------ ► N / L  ------  ̂ 0

can be extended commutatively by a non-zero homomorphism from P  to N.

(2) Let N  be a submodule of M  such tha t N  +  L  =  M  for L  C M.  Write 
M  = P / K ,  N  = X / K ,  L = Y / K  for some submodules X  and Y  of P  such th a t 

X  +  Y  =  P , Y  ^  P  and K  C X  n  Y.  Then

0 - y Y - y P ^ y  X / { Y  H I ) g O

holds. Since P  is projective we get a non-zero homomorphism P  —y X / K  — N.  
Thus Horn# (P, N)  ̂  0 and N  is not co-rational in M.  □

D efin ition . A module M  is called co-polyform if every small submodule of M  is

co-rational.

P rop osition  5.2.2. Let M  be an R-module such that M  has a projective cover P  

in a[M], Then the following are equivalent:

(a) M  is co-poly form;

(b) Jac (End (P )) - 0 .

Moreover in this case every f  G  End (M ) lifts to an f  G  End (P ) and every small 
epimorphism in End (M ) is invertible in End (P).
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Proof: Recall, th a t the Jacobson radical of the endomorphism ring of a self- 

projective module P  can be expressed as Jac (End (P )) =  { /  E End (P) : Im ( /)

P} [67, 22.2].
(b) (a) Let /  : P  —y K  be a non-zero homomorphism with K  a small submodule

of M . Consider the following diagram

P  ------ » IC
f

9 i

P  ------ ► M    y 0
p

Where p denotes the projection from P  to M, and there is a non-zero g E End (P) 

with f  = gp and Im ( / )  =  Im (gp) C  M.  Hence Im (g) <C P  because p has small 

kernel, implying g = 0 and so /  =  0, a contradiction. This shows Horn ( P, K)  — 0 

for every small submodule K  of M  and by 5.2.1 every small submodule of M  is 

co-rational.
(a) => (b) Consider /  E  End ( P )  with Im ( /)  <C P . Then for all g E  Horn (P, M ), 

U  Im (/p ) -C M, but then /p  E  Horn (P, P) and hence is zero. This implies 

Im ( / )  C Ker (p) and so

I m ( / ) C  n  Ker (g) = Re (P, M) .
gGHom (P, M)

But P  is cogenerated by M  (see [67, 18.4]). Hence Re (P, M) =  0 implies f  — 0. 

Thus Jac (End (P)) =  0.

For every /  E  End (M ), the following diagram can be extended by an /  E  

End (P).
P   y M  ------  ̂ 0

/

P  ------ » M ------- ► 0
p

If /  is a small epimorphism, then /  is a small epimorphism and hence an isomor

phism. □

Remarks: The above theorem shows th a t a ring is co-polyform as a left P-module 

(right P-module) if and only if Jac (P) =  0. Moreover this shows us th a t these 

notions differ in their behaviour from their duals, since an P-module M  is non-M - 

singular if and only if it is polyform. In contrast to that: gZ has zero radical (i.e. 
it is co-polyform) but it is not a K-ring (e.g. Z /p fcZ with p prime and k > 2 has 
non-zero radical).
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5.2.3. C o-polyform  and non-sm all m odules
Let M  be an R-module.

1. I f  N  is non-M-small, then N  is co-polyform.

2. I f  M  is co-polyform and self-injective then Horn (M/1V, M ) =  0 for all N  C  M  

with M /N  E Tm-

3. Assume M  is self-injective and Horn (M/ N,  M)  ^  0 for all non-zero N  C  M . 

Then M  is co-polyform if  and only if M  is non-M-small.

Proof: (1) Let L  <C N , then L /K  <C N /K  for every K  C L. Let /  €

Horn (N, L / K ) ,  then /  =  0 since Tm (N) — N

(2) Let /  E Horn ( M/ N,  M) .  Then Im ( /)  <C M  holds by 5.1.5. Since M  is co

polyform we have Horn (Im ( /) ,  M)  =  0. Thus /  =  0.
(3) This is a consequence of (1) and (2). □

Combining 5.2.2 and 3.4.6 we get for co-polyform modules:

5.2.4. Sem isim ple artinian endom orphism  ring.
For an R-module M  having a projective cover P  in a[M ] the following are equivalent:

(a) M  has finite hollow dimension and is co-poly form;

(b) End (P ) is semisimple artinian.

I f  M  has this property, then every epimorphism f  E End(M ) is invertible in E nd(P ).

P ro o f: By 3.1.10 M  having finite hollow dimension is equivalent to P  having finite 

hollow dimension. By 3.4.6 and 3.3.5 this is equivalent to S  := End (P) being 

semilocal. By 5.2.2 M  co-polyform is equivalent to Jac (S) =  0. So M  having 

finite hollow dimension and being co-polyform is equivalent to S  being semisimple 

artinian. □
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