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Summary

This dissertation reviews attempts of dualizing the Goldie dimension. Moreover
we choose one of these attempts as the dualization of Goldie dimension and study
modules with this finiteness condition under various aspects.

Chapter 1 defines basic ideas as dualizations of well-known notions. Small sub-
modules, hollow modules, small covers, supplements, coclosed submodules and coin-
dependent families of submodules are introduced as dual concepts of essential sub-
modules, uniform modules, essential extensions, complements, closed submodules
and independent families of submodules.

In Chapter 2 existing attempts of dualizing the Goldie dimension are reviewed
and compared. Section 2.1 is devoted to the earliest approach while in section
2.2 three equivalent approaches are considered. Section 2.3 states a general lattice
theoretical approach equivalent to the approaches in 2.2.

The core of this dissertation is formed by Chapter 3. In Section 3.1 we choose
one of the approaches as dualization of Goldie dimension and call it hollow dimen-
ston. The main characterizations and properties are stated. Dimension formulas as
for vector spaces are considered in Section 3.2. We show in Section 3.3 that rings
with finite hollow dimension are exactly the semilocal rings. The situation when
the hollow dimension of a module coincides with the hollow dimension of the endo-
morphism ring is studied in Section 3.4. Here we study properties of modules with
semilocal endomorphism rings as well. Relationships of certain chain conditions and
hollow dimension are stated in Section 3.5. In Section 3.6 modules with property
AB5* whose submodules have finite hollow dimension are considered.

The dual concept of extending (or CS) modules namely lifting modules is intro-
duced in Chapter 4 and their relation to hollow modules is studied. Basic definitions
of lifting modules and a decomposition of lifting modules with finite hollow dimen-
sion are given in Section 4.1. The structure of lifting modules with certain chain
conditions on the radical is given in Section 4.2.

In the last chapter of this thesis, Chapter 5, we study dualizations of singular
and polyform modules in connection with Goldie’s Theorem. The notion of M-small
and non-M-small modules are introduced in Section 5.1 as dual concepts of M-
singular and non-M-singular modules. Eventually co-rational submodules and co-
polyform modules are defined in Section 5.2 as dual notions of rational submodules

and polyform modules.
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Introduction

The title of this dissertation suggests falsely that there exists just one dual Goldie
dimension. In fact there are at least four different definitions of the notions of a dual
Goldie dimension. So the correct title should probably be ”On the dualization of the
Goldie dimension”. But since, as we will see, most of these attempts are equivalent
to each other, we keep this title.

Uniform modules, essential extension and independent families of submodules
play an important role in Goldie’s work. An R-module M with finite uniform
dimension (Goldie dimension) can be characterized by one of the equivalent state-

ments:
(U1) M contains no infinite direct sum of non-zero submodules.

(U2) M contains an essential submodule, which is a finite direct sum of uniform
submodules of M.

(U3) for every ascending chain of submodules Ny C Ny C N3 C --- there is an

integer n, such that N, is essential in Ny for every k& > n.

One of the earliest attempts to define a dual Goldie dimension was done by P.Fleury
[13] in 1974. He called his dual Goldie dimension spanning dimension and intro-
duced the notion of hollow modules, as the dual concept of uniform modules that
appeared in Goldie’s work. Fleury’s spanning dimension dualizes chain condition
(U3). Modules with finite spanning dimension are closely related to artinian, re-
spectively hollow, modules and the rings with finite spanning dimension are exactly
the artinian, respectively local, rings. T.Takeuchi [59] introduced coindependent
families of submodules as a dual notion of independent families of submodules in
1975. With the help of this notion he dualized (Ul) and called his dual Goldie
dimension cofinite-dimension. Actually his definition was based on an early paper
by Y.Miyashita [38] in 1966, where he introduces a dimension notion for modular
lattices. In 1979 K. Varadarajan approached the dualization of the Goldie dimension
in a more categorical way by dualizing (U2). He called his dual Goldie dimension
corank. Comparing his definition with Fleury’'s he showed that "finite spanning
dimension” implies ”finite corank”. Varadarajan’s corank was probably the most
often used definition of the dual Goldie dimension in the past. E.Reiter [49] gave
a definition of a dual Goldie dimension in 1981. He called his dual Goldie dimen-
sion codimension and dualized property (U3) as Fleury did. It is quite easy to

see that Reiter's and Takeuchi’s definition are equivalent to each other. In 1984
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P.Grezeszcuk and E.R.Puczytowski [20] compared all four named approaches and
showed that Takeuchi’s, Varadarajan’s and Reiter’s definitions are equivalent to
each other. Their approach was lattice-theoretical by defining the Goldie dimen-
sion of a modular lattice and by setting the dual Goldie dimension of a modular
lattice to the Goldie dimension of the dual lattice. Eventually they applied these
notions to the lattice of submodules of a module. Moreover they showed that mod-
ules with finite spanning dimension satisfy their definition of dual Goldie dimension
as well. Since hollow modules play an important role in our study we call the
dual Goldie dimension of a module M hollow dimension (analogously to calling the
Goldie dimension of M wntform dimension) if M satisfies Takeuchi’s, Reiter’s or
Varadarajan's definition. We will state a result by S.Page [44] in Section 3.1, that
the hollow dimension of a module g M can be computed by the uniform dimension of
the dual module Homp (M, Q)r, where rQq is an injective cogenerator in R—Mod
and T := Endg (Q).

The existence of complements plays an important role in the study of modules
with uniform dimension. The dual concept of complements is the notion of sup-
plements. Following Zoschinger [74] we introduce weak supplements and weakly
supplemented modules (i.e. every submodule has a weak supplement). In Section
1.3 we show that semilocal rings are exactly the rings that are weakly supplemented

: as left or right modules over itself. Moreover we will show in Section 3.3 that a
finitely generated module M has finite hollow dimension if and only if it is weakly
supplemented if and ounly if M/Rad (M) is semisimple. This shows that rings with
finite hollow dimension are exactly the semilocal rings. This fact was first shown by
Varadarajan in [62]. »

The relation between the hollow dimension of a module and the hollow dimension
of its endomorphism ring is studied in Section 3.4. Using a result by J.L. Garcia
Hernandez and J.L. Gomez Pardo [15], T.Takeuchi [60] showed that the hollow di-
mension of a module is invariant under equivalences. Moreover he showed that a
self-projective module has finite hollow dimension if and only if it has a semilocal en-
domorphism ring. Since modules with semilocal endomorphism ring have interesting
properties we state some results by D.Herbera and A.Shamsuddin [29], A.Facchini
et al. [11] as well as K.R.Fuller and W.A Shutters [14].

Modules with finite uniform dimension can be characterized by ACC (respec-
tively DCC) on complements. If we assume the existence of amply supplements
then a dual characterization in terms of supplements is also possible for hollow di-

mension. This was observed by T.Takeuchi [59] and K.Varadarajan [62] and we
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will state this in Section 3.5. A result by V.P.Camillo [6] characterizes modules
whose factor modules have finite uniform dimension. We examine a dual version
of Camillo’s theorem and consider modules whose submodules have finite hollow
dimension. This leads to a characterization of artinian modules in terms of hollow
dimension.

Since the uniform dimension of a torsionfree abelian groups coincides with the
ordinary rank, K.Varadarajan [62] as well as Hanna and Shamsuddin [24] studied
the hollow dimension of abelian groups. They showed that hollow Z-modules are
exactly the modules Z, with p prime and 1 < k£ < co and that a Z-module with
finite hollow dimension is a finite direct sum of hollow modules and hence artinian.

Inspired by a question in [2] E.R.Puczylowski asked in [46] if the radical of
a module has Krull dimension if every small submodule has Krull dimension.
E.R.Puczytowski himself showed in the same paper that the answer to this question
is in general negative but we are able to give a positive answer if the module has
property AB5*.

In Section 3.6 modules with property AB5* whose submodules have finite hollow
dimension are considered. P.N.Anh et al.[3] as well as G.Brodskii [5] showed that
those modules are lattice anti-isomorphic to linearly compact modules.

As the concept of extending (or CS) modules can be seen as a generalization
of injective modules their dual concept, lifting modules can be seen as a generaliza-
tion of semiperfect modules. This class of modules is introduced and considered in
Chapter 4.

We state a decomposition theorem of lifting modules with finite hollow dimen-
sion and obtain some results from S.H.Mohamed and B.J.Miiller [39] as well as
R.Wisbauer [67]. The structure of lifting modules with certain chain conditions on
their radical is given in Section 4.2.

In the last chapter of this thesis, Chapter 5, we study dualizations of M-
singular and polyform modules in connection with Goldie’s Theorem. We define
M-small modules and non-M-small modules as dualizations of M-singular and non-
M-singular modules as they appear in [10]. These modules form torsion theories and
are related to dual polyform modules. The concept of polyform modules appeared
first in Zelmanowitz' work [70]. A slightly improved version of Goldie’s theorem
[10] states that the endomorphism ring of the M-injective cover of a module M is
semisimple artinian and is the classical quotient ring of End (M) if and only if M
is polyform with finite uniform dimension. The aim of this section was to prove a

dual result in terms of hollow dimension. For that reason co-rational and co-polyform
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modules are introduced in Section 5.2 as dual notions of rational and polyform mod-
ules. Co-rational submodules and extensions appeared first in R.C. Courter’s work
[9]. Finally as a partial result we can prove that if a module M has a projective
cover P then End (P) is semisimple artinian if and only if M is co-polyform with
finite hollow dimension.

Since the purpose of this dissertation is a review of existing knowledge most of
the results stated here are known and are indicated by one or more references. Apart
from some corollaries and lemmas the following results are due to the author: 1.2.1,
Section 1.3, 2.1.6, 3.1.6, 3.1.12, 3.4.13, 3.5.6, 3.5.18, 3.5.20, 3.5.21, 4.1.4 - 4.1.7,
Section 4.2 and all results in Chapter 5 except from 5.1.2 and 5.2.1.

For the reader’s sake an effort was made to avoid citations of papers and to
include most of the proofs in a way that they fit in the context of this dissertation.
As main reference R.Wisbauer’s text book [67] is most cited. Further the language
of o[M] is used to indicate that some results only depend on properties of the given

module M and not on properties of the ring.

Christian Lomp, Glasgow, October 1996




Notation

ot [M]

N

Hompg (M, N)
End (M)
Im (f)
Ker (f)
Coke (f)
Tr(M, N)
Re(M, N)
KaM
K< M
Soc (M)
Rad (M)
udim(M)
hdim(M)
lg(M)
sd(M)
Ke(X)
An(K)

o
5

i

Fi

associative ring with unit

category of left R-modules

category of right R-modules

Jacobson radical of R

injective hull of a module M

a complete modular lattice

the lattice of submodules of a module M

subcategory of R—Mod subgenerated by a module M

subcategory of o [M] of all submodules of
finitely M-generated modules

M-injective hull of a module N € o[M]
R-homomorphisms from M to N
endomorphism ring of M

image of a map f

kernel of a map f

cokernel of a map f

trace of a module M in N

reject of a module N in M

K is an essential submodule of M
K is a superfluous submodule of M
socle of M

radical of M

the uniform dimension of M

the hollow dimension of M

the length of M

the spanning dimension of M

Nyex Ker (f), for X € Hom (M, N)
{f € Hom (M, N){(K)f =0} for K C M
inverse limit of modules M;
Kronecker symbol

class of M-small modules

class of non-M-small modules

vi




Chapter 1
Basic notions

In what follows R always means an associative ring with identity. We will denote the
full category of left R-modules by R—Mod and the full category of right R-modules
by Mod—R. Unless mentioned otherwise by an R-module we mean a unitary left
R-module. Let M and N be R-modules. Arguments of module homomorphisms are
written on the same side as scalars, i.e. write (z)f for a left R-module homomor-
phism f: M — Nand z € M. N is called generated by M or M -generated if there
exist an index set A and an epimorphism M) — N. N is called subgenerated by
M if it is isomorphic to a submodule of a M-generated module, i.e. there exist an

index set A, an R-module X, an epimorphism ¢ : M®) — X and a monomorphism

FiN =X,
N

l |
| MW 2 X > 0
} We denote by o [M] the full subcategory of R—Mod whose objects are all R-modules

subgenerated by M. For basic properties of o[M] we will refer to [67].

1.1 Small modules

Let M be an R-module. A submodule K of M is essential or large in M provided
for all non-zero submodules . C M, K N L # 0 holds. We will denote essential
submodules by K << M and M is called an essential extension of K. Let IV be
an R-module and f : N —» M a monomorphism. Then f is called an essential
monomorphism if Im (f) << M. Hence N is an essential extension of a submodule
K if and only if the inclusion map K — N is an essential monomorphism. If N is

a submodule of a module M then we say IV is an essential extension of K in M.

% 1



CHAPTER 1. BASIC NOTIONS 2

We will introduce dual definitions for essential submodules and essential ex-

tensions.

Definition. Let M be an R-module. A submodule K of M is small in M pro-
vided for all proper submodules L of M, L + K # M holds. We will denote small
submodules by K <« M and M is called a small cover of M /K. An epimorphism
f: M — Lis called small if Ker (f) is small in M. Hence M is a small cover
of M/N if and only if the canonical projection M — M/N is a small epimorphism.
Dual to an essential extension N of K in M, we say N lies above K in M if M/K
is a small cover of M/N, ie. N/K <« M/K. Clearly a submodule N is small in M
;, if and only if N lies above 0 or equivalently if M is a small cover of M/N.

Remarks: Let M be an R-module and I C N submodules of M. In [59] Takeuchi

calls K a coessential extension of N in M if N lies ahove K.

Before we list some properties of lying above, let us state an easy, but useful

lemma:

Lemma 1.1.1. ([49, Lemma 2.2]) Let K,L,N be submodules of M. If K+L =M
and (KN L)+ N = M hold, then K + (LNN) =L+ (K N N) = M.

Proof: K+ (LNN)=K+ (LNK)+(LNN)=K+ (LN{(LNK)+ N)) =
K+ (LNM)=K -+ L= M. Applying the same argument to L + (K N N) we get
L+ (KNN)=M. O

1.1.2. Properties of "lying above”. ([59, 1.1,1.2,1.6], [32, Lemma 2])
For submodules L C N of M the following properties hold:

1. N lies above L in M if and only if L + K = M holds for all K C M with
N+ K =M.
In this case, N N K lies above LN K, for all K C M with N+ K = M.

2. N &« M if and only if N lies above L and L < M.

3. For submodules K C L C N of M, N lies above K if and only if N lies above
L and L lies above K.

4. Let G C H be submodules of M. If N lies above L and H lies above G and
N+ H=M, then L+ G =M and NN H lies above L N G.
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Proof: (1) Suppose that N lies above L in M. If N + K = M, then
M/L=(N+K)/L=N/L+(K+L)/L=(K+L)/L.

Hence K + L = M. Conversely, suppose that L + K = M for all K C M with
N+ K = M. If there is a K C M containing L such that N/L+ K/L = M/L, then
M =N+ K yields M = L+ K = K, so N lies above L. Furthermore, let X be
a submodule of M, such that N + K = M. If there is a submodule X containing
(LN K), such that

M/(LNK)=(NNK)/(LNK)+X/(LNK),
then (NN K)+ X = M. By applying Lemma 1.1.1 twice we get
M=N+(KnX)=L+{KNX)=(LNK)+ X =X.
Thus N N K lies above L N K.

(2) Easy check using (3); (3) Easy check using (1);

(4) Applying (1) twice we get M = N+ H = L+ H = L+ G and NN H lies
above LN H and LN H lies above LNG. So by (3) we have NN H lies above LNG.
]

A non-zero R-module M is called wuniform if every non-zero submodule of M is
essential in M. Dual to the concept of uniform modules, Fleury defined the notion

of hollow modules in [13].

Definition. An R-module M is called hollow if M £ 0 and every proper submodule
N of M is small in M. M is called [ocal if it has exactly one maximal submodule

that contains all proper submodules.

Remarks:
1. Miyashita calls hollow R-modules R-sum-irreductble (see [38]).

2. Hollow modules are indecomposable modules and every factor module of a

hollow module is hollow.

3. Clearly a local module is hollow and the unique maximal submodule has to be

the radical. Examples of hollow modules are simple or uniserial modules, e.g.

Zipeo OF Zipi with p prime and & € N,

I
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1.1.3. Properties of hollow modules.
Let M be an R-module.

1. M 1s hollow if and only if every factor module of M is indecomposable.
2. The following statements are equivalent:

(a) M is local;
(b) M is hollow and cyclic (or finitely generated);
(c) M is hollow and Rad (M) # M.

3. If M is self-projective then the following statements are equivalent:

(a) M is hollow;
(b) End (M) is a local ring.

Proof: See [67, 41.4] for (1) and (2) and [47, Proposition 2.6] for (3). O

1.2 Coclosed submodules

A closed submodule N of a module M has no proper essential extension in M. Let

us consider a dual notion of closed submodules.

Definition (Golan). Following Golan [16], we will call a submodule N of M co-
closed in M if and only if N has no proper submodule K such that N lies above K

(or N has no proper coessential extension).

A submodule N of an R-module M is called a complement of a submodule
L in M if it is maximal with respect to N N L = 0. By applying Zorn’s Lemma
there exists always for every submodule L of M a complement NV of L. Moreover a
submodule is a complement in M if and only if it is closed in M (see [10, pp. 6]).

Dual to the concept of complements we define the notion of supplements.

Definition. Let N and L be submodules of M, then we call N a supplement of
L if N is minimal with respect to N + L = M. Equivalently N is a supplement of
Lifandonlyif N+ L =M and NNL <« N. A submodule N of M is called a

supplement if there is a submodule L of M and N is a supplement of L. Following




CHAPTER 1. BASIC NOTIONS ' 5

Zoschinger [74] we call N a weak supplement of L in M ifand only if N+ L = M
and NN L < M. N is called a weak supplement in M if there exists a submodule
L such that N is a weak supplement of L in M. Clearly any supplement is a weak

supplement.

Remarks:

1. Complements always exist but supplements do not. For example no proper
submodule in zZ has a supplement in Z. To see this assume that a proper
submodule N of Z has a supplement L in Z. Then N N L <« Z holds implying
NN L = 0 since Jac (Z) = 0. But since Z is uniform we have that N or L is

equal to zero.

2. Let H be a hollow submodule of an R-module M. If H is not small in M then
there exists a proper submodule X € M with H + K = M. Since H is hollow,
HNK <« H. Thus H is a supplement in M (see also [32, Proposition 6]).

3. Let LC N C M. By 1.1.2, N lies above L if and only if N 4+ K = M implies
L+K=M forall KC M. If N is minimal with respect to N + K = M for
some K, then there cannot be a submodule L of N such that N lies above K.

Thus N is coclosed.

The classes of complements and closed submodules are the same. We now de-

termine the relation between supplements and coclosed submodules in the following

Proposition.
Proposition 1.2.1. Let N be a submodule of M. Consider the following state-
ments:
(i) N is a supplement in M;
(i) N s coclosed in M,
(113) for all K C N, K <« M implies K < N.
Then (1) = (i1) = (i42) holds and if N is a weak supplement in M, then (ii1) = (1)

holds.

Proof: (i) = (ii) Assume that N is a supplement of L C M. For all submodules
K C N such that N lies above K, we have that N + L = M implies K +L = M
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(see 1.1.2(1)). By the minimality of N with respect to this property we get X = N.
Hence N is coclosed.

(ii) = (iii) Let K « M and K C N. Assume N = K + X for X C N; then for
every Y C M with N+Y = M we get M = X +Y since K < M. By 1.1.2(1) N
lies above X. By the coclosure of N we get X = N and thus I < N.

Assume N to be a weak supplement of L C M. (iil) = (1) N is a weak supplement

of L, so NN L < M. By assumption NN L <« N. Thus N is a supplement of L in
M. O

Remarks: The equivalence between (i) and (ii) appeared in [59, 2.6] and [32, Propo-
sition 3| in the following form: if NV has a supplement K in M and N is coclosed in
M then N is a supplement in M. In 1.2.1 we showed that a coclosed submodule N

of M having a weak supplement in M is a supplement in M.

Definition. An R-module M is called supplemented if every submodule has a
supplement in M. M is called amply supplemented if for every submodules N and
L of M with N+ L = M, N contains a supplement of L in M. Clearly every amply

supplemented module is supplemented.

The next proposition is dual to [10, 1.10] and states some properties of coclosed
submodules.
Proposition 1.2.2. Let M be an R-module with submodules K C L and N.

1. If M is amply supplemented then every submodule of M that is not small in

M lies above a supplement in M.
2. If L is coclosed wn M, then L/K 1is coclosed in M/K.

3. Assume that L is a supplement in M. Then K is coclosed in L if and only if
K is coclosed in M.

Proof: (1) Let M = N + X with X a supplement of N; then N contains a supple-
ment Y of X in M. Hence N N X < X implies

(NN X)/(Y N X) < X/(YNX).

Since (NN X)/(YNX)~ N/Y and X/(Y NX) =~ M/Y we get N/Y < M/Y.
Thus N lies above Y in M.
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(2) Since L 1is coclosed in M, for every proper submodule N/K of L/K,
(L/K)/(N/K) ~ L/N is not small in M/N ~ (M/K)/(N/K).

(3) Let L be a supplement of X C M. Assume K is coclosed in M then it is coclosed
in L since whenever K/N < L/N we get K/N <« M/N as L/N C M/N. Now
assume that /{ is coclosed in L and that K lies above a proper submodule H ¢ K
in M. Since K is coclosed in L, K does not lie above H in L. Hence there exists a
proper submodule G of L containing H such that X/H+G/H = L/H holds. Hence
M=L+X=K+G+X implies M = H+G+ X =G+ X since K lies above H
in M. But since L is a supplement of X in M we get G = L; a contradiction to G

being a proper submodule of L. Hence K is coclosed in M. [J

Definition. Let M be an R-module and N € ¢[M]. A projective module P in o[M]
together with a small epimorhpism 7 : P — N is called a projective cover of N in
o[M]. We will write (P, w) or just P for a projective cover P. If o[M] = R—Mod
we call P a projective cover of N. A module N € o[M] is called semiperfect in
o[ M] if every factor module of N has a projective cover in o[M]. A ring R is called
semiperfect if R is semiperfect as a left (right) R-module (see [67, 42.6]).

Note the following important fact: A projective module P in o[M] is semiperfect

if and only if it is (amply) supplemented (see {67, 42.3]).

1.3 Weak supplements

Definition. Following Zéschinger [74] we say that M is called weakly supplemented

if every submodule N of M has a weak supplement.

Remarks: Applying 1.2.1 we see, that in a weakly supplemented module, supple-

ments and coclosed submodules are the same.

It is well-known that the rings that are supplemented as a left (right) module
over themselves are exactly the semiperfect rings (see [67, 42.6]). The notion of weak
supplements generalizes the notion of supplements and we will discover that the rings
that are weakly supplemented as left (right) module over themselves are exactly the

semilocal rings (see 1.3.4). Moreover we will see that modules with finite dual Goldie

dimension are weakly supplemented modules and that a finitely generated module

has finite dual Goldie dimension if and only if it is weakly supplemented. Before we
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give a summarizing list of properties of weakly supplemented modules, we will state

a general result:

Proposition 1.3.1. Let M be an R-module and N a proper submodule of M. The

following statements are equivalent:
(a) M/N is semisimple;

(b) for every L C M there exists a submodule K C M such that L+ K = M and
LNK CN;

(¢) there exists a decomposition M = My & M, such that My is semisimple, N <
My and My /N is semisimple.

Proof: (a) =(c) Let M; be a complement of N. Then M; @& N is essential in M.
My = (M; & N)/N is a direct summand in M/N, hence semisimple and there is a
semisimple submodule My /N such that (M;®M,)/N = M/N. Hence M = M+ M,
and My N My € NN My =0. Thus M = M; & M,. Because M; is a complement,
N is essential in M.

(c) =(a) Clear, since M/N ~ (M; & M,/N).

(a) =(b) Clear, since (L + N)/N is a direct summand in M/N.

(b) =(a) Let L/N C M/N; then there exists a submodule KX C M such that
L+K=Mand LNK C N. Thus L/N & K/N = M/N. Hence every submodule
of M/N is a direct summand. O

1.3.2. Properties of weakly supplemented modules.
Let M be an R-module.

1. If M 1is weakly supplemented then the following properties hold:

(1) M/Rad (M) is semisimple;

(1) M = My & My with M, semisimple and Rad (M) < Mo;
(iii) every factor module of M is weakly supplemented;
(iv) if N is @ small cover of M, then N is weakly supplemented;

(v) every supplement in M and every direct summand of M is weakly sup-

plemented.
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2. Let K and My be submodules of M such that M; is weakly supplemented and
M + K has a weak supplement in M, then K has a weak supplement in M.

3. If M = My + M, with My and M,y weakly supplemented, then M is weakly
supplemented.

Proof: (1)(i),(ii) follows from 1.3.1 since for every I C M there exists a weak
supplement K C M such that L + K = M and LN K C Rad (M).

(iii) Let K € M and N/JK C M/K. Then N+ L =M and NNL <« M for a
submodule L C M. Hence N/K + (L + K)/K = M/K and NJKN(L+ K)/K =
(NNL)+ K)/K <« M/K holds.

(iv) Let M ~ N/K for some K <« N. Then for every submodule L C N,
(L + K)/K has a weak supplement X/K in N/K, with (L+ K)NX)/K < N/K.
By 1.1.2(ii)) (L+K)NX issmallin N. Thus LNX C (LNX)+K = (L+K)NX < N
and L + X = N. Hence X is a weak supplement of L in N.

(v) If N C M is a supplement of M, then N + K = M for some K C M and
KNN <« N. By (iii) M/K ~ N/{N N K) is weakly supplemented and by (iv)
N is weakly supplemented. Direct summands are supplements and hence wealkly
supplemented.

(2) By assumption M7 + K has a weak supplement N C M, such that M; + K +
N = M and (M, +K)NN < M. Because M, is weakly supplemented, (K +N)NM;
has a weak supplement L C M;. So

M=M+K+N=L+(K+N)NM)+K+N=K+(L+N)
and
KN(L+N)C (K+L)NN)+((K+N)NL) C (K+M)NN)+((K+N)NL) < M.

This means that N+L is a weak supplement of K in M.
(3) For every submodule N C M, M; + (M, + N) has a trivial weak supplement

and by (2) M, + N has one. Applying (2) again we get a weak supplement for N.
OJ

We get the following corollary from 1.3.2(1)(ii).

Corollary 1.3.3. An R-module M with Rad (M) = 0 is weakly supplemented if
and only if it is semisimple.
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For modules M with small radical (e.g. finitely generated modules) we see by
1.3.2(1)(iv) and the previous corollary, that it is equivalent for M to be weakly
supplemented or M/Rad (M) to be semisimple:

Corollary 1.3.4. Let M be an R-module with Rad (M) < M.
Then M is weakly supplemented if and only if M/Rad (M) is semisimple.

Definition. A ring R is called semilocal if R/Jac (R) is semisimple.

Remarks:

1. We see, that a ring R is semilocal if and only if it is weakly supplemented as
a left (or right) R-module.

2. Recall that a ring is semiperfect if and only if it is supplemented as a left (or
right) R-module. Moreover a ring is semiperfect if and only if it is semilocal
and idempotents in R/Jac(R) can be lifted to R (see {67, 42.6]). Since the class
of semilocal rings is strictly larger than the class of semiperfect modules there
are modules that are weakly supplemented but not supplemented. Consider,
for example, a semilocal commutative domain with two maximal ideals. Then
there exists a non-trivial idempotent in £/Jac (R) that cannot be lifted to R.
Take for example Zypq := {$]a,b € Z,b# 0,p{ b and ¢ { b}, where p and ¢ are‘

primes. Then Z, , is a semilocal noetherian domain with two maximal ideals.

1.3.5. Endomorphism rings of weakly supplemented modules.

Let M be a self-projective, finitely generated, weakly supplemented R-module. Then
End (M) is semilocal.

Proof: Since M/Rad (M) is semisimple and finitely generated we get
that End (M/Rad (M)) is a semisimple ring. By [67, 22.2] we have
End (M)/Jac (End (M)) ~ End (M/Rad (M)). Thus End (M) is semilocal. O

1.4 Coindependent families of submodules

A non-empty family {N,}, of non-zero submodules of a module is called indepen-
dent if for every A € A and subset ¥ C A\ {A\} the following holds:

NAHZNiZO,

ieF
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with the convention that the summation with an empty index set is zero.
As a dualization of independent families we define the notion of coindependent

families of submodules.

Definition. Let M be an R-module. A non-empty family {Ny}4 of proper submod-
ules of M is called coindependent if for any A € A and any finite subset F C A\ {A}
Ny + () Ni= M,

icF

with the convention, that the intersection with an empty index set is set to be M.

Remarks:

1. Miyashita in [38] calls a coindependent family d-independent, Zelinsky in [69]

independent.

2. A coindependent family {N,}, that contains more than one submodule is
a set of comaximal submodules of M, ie. Ny+ N, = M for all u, A € A
with o # A, but the converse is not true. For example consider the two
dimensional real vector space R? over R. Then {R(1,0),R(0,1),R(1,1)} is
a set of comaximal submodules of R%, but R(1,0) N R(0,1) = (0,0) yields
R(1,1) + (R(1,0) NR(0,1)) # R2.

3. Clearly {N} is a coindependent family for every proper N C M by the con-

vention that the intersection with an empty index set is set to be M.

4. A module is hollow if and only if every coindependent family of submodules

has exactly one element.

1.4.1. Properties of coindependent families. /59, 1.3,1.6])

Let {Kx}a be a coindependent family of submodules of M. The following properties
hold:

1. Bvery subfamily {I, }r with non-empty subset ' C A is coindependent.

2. Let {Ny\}, be a family of proper submodules of M, such that for every X € A,
Ky C Ny. Then {Nx}a is coindependent.

3. Let L ¢ M, such that Np K\ + L = M for every finite subset F of A. Then
{Kx\}a U{L} is coindependent.
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4. Let {Ly}a be a famaly of submodules of M, such that K lies above Ly for
every A\ € A, then for every finite subset F' of A,

(1) {K\}ar U {L;}r is coindependent;
(1) Np K; lies above Ng L;.

Moreover {Ly}4 is coindependent.

Proof: (1)Clear; (2) since

M=K+NKCN+NMCM

ieF icF
for every A € A and finite subset F' C A\ {A} holds.
(3) Let F be a finite subset of A and € A\ F. Let i = Ny K, then by hypothesis
K+ K, =Mand (KNK,)+L = M. Hence by Lemma 1.1.1 we get M =
(KNL)+ K, as K+ L = M. This means that {K,}, U {L} is a coindependent
family of submodules of M.
(4) (i) By induction on the cardinality of F and applying (3). Hence {L,}, is
coindependent since for every finite subset F' and A € A we get by (i) and (1) that
{L;}rU{L,} is coindependent and thus M = Ly +p L;. By induction and 1.1.2(4)
it is easy to see that (ii) holds. (I

1.4.2. Characterization of coindependent families.(/24, Lemma 7])

Let {L;}n be a family of proper submodules of M. Then the following statements
are equivalent:

(a) {L;}n is a coindependent family;
(b) {L1,---,La} is a coindependent family, for every n € N;
(¢) Lo+ (LiN---NLyy) =M holds, for every n > 1;
(d) N; Li + Ny L; = M holds, for all disjoint finite subsets I,J C N.
Proof: (a) =(c) Clear.
(c) =>(b) By induction on n and 1.4.1(3).
(b) = (a) Let FF C N be a finite subset and ¢ € N\ F. Let n := maz{i} U F, then

{L1,..., Ly} is coindependent and hence L; + g L; = M.
(d) =(c) Clear; and (c) = (d) by induction on the cardinality of I and 1.1.1. Let
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J be a finite subset of N and n := |I|, for n = 1 our claim is clear. Assume that for

all finite subsets I C N with cardinality n and I N J = {,
ﬂ L; + ﬂ Lj =M
I J

holds. Let |I| =n+ 1 and 7 € I. By the coindependency of {L;}n,

@4—0}@r1ﬂ_h)=ﬂd

J IN\{i}
holds. By 1.1.1 we get N; L; + Ny L; = M. O

Lemma 1.4.3. Chinese Remainder Theorem.
Let M be an R-module. For any coindependent family of submodules {K;}; with I
finite M/ Mier K = @ier M/ K; holds.

Proof: Let us prove this by induction on n := |I|. For n = 1 our claim is trivial. Let
n > 1 and suppose that our claim holds for all coindependent families {Ly, ... , Ln—1}
of submodules of M. Let {K3,...,K,} be a coindependent family of cardinality n;
then {Ki,...,K,_1} is a coindependent family. Set K := N K;. By induction
we have M/K =~ &' M/K;. Further K + K, = M, so

M/ K = M/(KNK,)
=1
= K/(KNK)®K,/(KNK,)
~ M/K,® M/K

~ o, M/K;.

Definition. Let M be an R-module and {N,}, a family of proper submodules.
Then {N,}4 is called completely coindependent if for every A € A:

N+ (| Nu=M

HFEN
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1. Oshiro defines a family of proper submodules {Nx}4 of M to be co-
independent if it is completely coindependent and M/ Ny Na =~ @, M/N,
(see [41, pp. 361]).

2. Completely coindependent families of submodules are coindependent, but the
converse is not true in general. For example, the collection of submodules Zp
where p runs through the primes in Z, is coindependent but not completely

coindependent.

Definition. An R-module M has property AB5* if and only if for every submodule
N and inverse systems { M, };c; of submodules of M the following holds:

N+ Nier M = Nyier(N + M;)

Examples for modules having AB5* are artinian or more generally linearly com-
pact modules (see [67, 29.8]).

Lemma 1.4.4. Every coindependent family of submodules of a module with prop-

erty AB5* is completely coindependent.
Proof: Let M be an R-module with the property AB5* and { Ny} a coindependent
family of submodules of M. Define

o O :={J CA|J is finite };

o My :=jes N, for every J €

e Q) :={J € QA ¢& J}, for every A € A.

Clearty {M;}q, forms an inverse system and Ny + M; = M holds for all A € A and
J € Q. Thus we get for each A € A:

N)\"f—ﬂNp:N,\—F ﬂ MJ= n (N,\—I‘]V_[‘])EM
BEA Jeqy JEQy

Thus {N,}4 is completely coindependent. [
Now we are able to extend 1.4.1(4).
Lemma 1.4.5. Let M be an R-module with AB5*, {Ly}a a coindependent family

of submodules such that for each A € A there exists a submodule Ny C Ly such that
Ly lies above Ny in M. Then (4 Ly lies above Ny Ny in M.
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Proof: Using the same notation as in Lemma 1.4.4, Q denotes the set of all finite
subsets of A. Define for all J € Q2

Ay =) L; and By := ﬂ Nj.
jed jed
By 1.4.1(4) A; lies above By for all J € Q. Since {As}seq and {B;}seq are inverse
systems, we get for a submodule K C M:

M = K+ (VIh=K+ (4= E+A)=((K+By)

A€A Je JeQ JEQ
= K+ ()B;=K+ ()] N
Jeq AGA

1.4.6. Weak Chinese Remainder Theorem.
Let M be an R-module, { Ny} a family of non-zero R-modules and {f» : M — Nx}a
a family of epimorphisms. Write I := Ker (f)) for every A € A. Then there is a
homomorphism f: M — [[p Ny and the following holds:

1. Ker (f) = Ny K.
2. If f is epimorph, then {I\}a is a completely coindependent family.

3. If A is finite and {K\}a s a coindependent family, then f is epimorph.

Proof: By the universal property of the product, there is a homomorphism f : M —
[1a Ny such that fy = fmy, where my @ [, Ny — N, is the canonical projection.
Hence we get (m)f = {(m)fa}a for all m € M.

(1)

(2)f =0& (z)fA=0foralAe A= ze [) K.
PYIN
Hence Ker (f) =Ny K.

(2) Let A € A. We prove, that
M=K+ ()| K.
AN}
Let m € M. If m ¢ K, then (m)fy # 0. Hence (6,1(m)f)uea is an element of
[14 Na, where 0, denotes the Kronecker symbol

Sun = '
OR if J2s # A
for every u, A € A. Since f is epimorph, there is an element m, € M such that
(ma)f = (6ua{m) fA)pea- Thus for all € A:
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(ma) fu = ua(m) fx.

Hence for all 1 # A, my € K, yields my € Nyeay(p K And for p = A, (ma)fa =
(m) £y yields (m —m,) € K,. Eventually we get

m = m —my +my € Kx + Nueayfry Kp

(3) Apply Lemma 1.4.3. O




Chapter 2

Approaches to dual Goldie

dimension

Several attempts have been made to dualize the Goldie dimension. One of the
earliest of these was done by Patrick Fleury in [13], but his definition of the dual
Goldie dimension turned out to be restrictive. After that three other definitions
were given by Varadarajan [62], Takeuchi {59] and Reiter[49] and fortunately they
were all equivalent to each other. A general lattice theoretical definition of the dual
Goldie dimension was given by Grezeszczuk and Pucytowski in [20] and by applying
this definition to the lattice of submodules of a module it was shown that their
definition corresponds to Varadarajan's (Takeuchi’s, Reiter’s) definition.

An R-module M with finite Goldie dimension or finite uniform dimension can

be characterized as follows (see [10, 5.9]):
(Ul) M contains no infinite direct sum of non-zero submodules.

(U2) M contains an essential submodule, which is a finite direct sum of uniform

submodules of M.

(U3) For every ascending chain of submodules Ny € Ny C N3 C --- there exists

an integer n, such that IV, is essential in Ny for every k > n.

2.1 Fleury’s approach: Finite spanning dimen-
sion

Fleury dualized property (U3) of the above characterization of modules with finite
uniform dimension. His definition was:

17
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Definition. (Fleury, [13, Definition 1.1] ) An R-module M has finite spanning
dimension if for every descending chain of submodules N; D Ny D N3 D --- there
15 a number k such that V; < M for all ¢ > k.

Examples for such modules are obviously artinian and hollow modules. We will

see that these are the only examples in the class of self-projective modules.

Proposition 2.1.1. Every supplement of an R-module with finite spanning dimen-

sion has finite spanning dimension.

Proof: Let L be a supplement in M and Ny D N3y D N3 D -+ be a descending
chain of submodules of L. Then there exists a number k£ such that N; < M. By
1.2.1 N; < L. Hence L has finite spanning dimension. [J

Remarks: We can refer to a module M with finite spanning dimension as a module
that has DCC on submodules that are not small in M.

In {47] Rangaswamy recalls Fleury’s definition incorrectly. He defines finite spanning
dimension for a module M as follows: for every descending chain of submodules
Ny D Ny D N3 DO --- there is a number & such that N; = N, or N; <« N, for all
i > k. The next example will show that Rangaswamy’s and Fleury’s definitions do

not match.

Example 2.1.2. Let K be a field and V an infinite dimensional K -vector space;

define
K V
R .= , M = oV , N = &0 )
0 K 0 K 0 0

Then R is a ring by standard matriz addition and matriz multiplication and M and
N are left R-modules. g M is a local module, hence it has finite spanning dimension,
and Rad (M) = V. rN is simple and RR = g N ® pM. Since V is an infinite K -

vector space, there are infinitely many independent subspaces V; such that @32, V; C

V. Let
K @©2.V
Lj = @2—3 N
0 0

then R = L;j + M holds for all j € N. Thus we get an infinite descending chain of

submodules of R that are not small in pR:

1 DLy DLy D -
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Thus rR can be expressed as a direct sum of two R-modules with finite spanning
dimenston, but does not have finite spanning dimension. Although M has finite

spanning dimension it does not satisfy Rangaswamy’s definition. Consider

0 B2,V
Nj = eBli] N
0 0

for all j € N, then all N; are small in M, but Ny, & N; for all numbers k < j. Thus
Ny DNy DNz O---

18 a proper descending chain not having Rangaswamy’s property but hoving Fleury’s.

Proposition 2.1.3. ({18, Lemma 2.4/} Every R-module with finite spanning di-

mension is amply supplemented.

Proof: Let M be an R-module with finite spanning dimension and N, L submodules
of M with N+ L = M and L # M. Assume that N does not contain a supplement

of L; then there exists a strictly descending chain
N:NIDNQDN;g:)...

of submodules of N with N; 4+ L. = M. This is a contradiction to the finite spanning
dimension of M. Hence N must contain a supplement of L in M. Thus M is amply

supplemented. O

Remarks: An R-module P that is supplemented and projective in o[M] is semiper-
fect in o[M] and by [67, 42.4] a direct sum of local modules. Hence a projective
module P in o[M] with finite spanning dimension is a finite direct sum of local

modules.

The following collection of properties of modules with finite spanning dimension
was obtained from [13} and [47].

2.1.4. Properties of modules with finite spanning dimension.

Let M be an R-module with finite spanning dimension. Then the following state-

ments hold:

1. every factor module of M has finite spanning dimension;

2. if N & M then M/N is artinian;
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3. M 1is indecomposable or artinian,

4. if Rad (M) 1is not essential in M, then M is artinian,
5. M has ACC and DCC on supplements;

6. M/Rad (M) is semisimple finitely generated.

Proof: (1)+(2) Let M/N be a factor module of M. For every strictly descending

chain of submodules

Li/N S Ly/NDLs/ND -+

there is an index k such that L, < M implying Ly/N <« M/N and N < M by
1.1.2(2). Thus M/N has finite spanning dimension. If N was not small then Ly = N
must hold. Hence in this case M/N is artinian.

(3) If M is not indecomposable, then there exists a decomposition M = M; & M.
By (2) My and M; are artinian.

(4) By (6) M/Rad (M) is semisimple. If Rad (M) is not essential in M, we can
get a simple submodule S with S N Rad (M) = 0 and S not small in M. By (2)
M/S§ is artinian and so is M.

(5) Since every supplement submodule is not small, every strictly descending

chain of supplements has to stop. Let
Ny C Ny CNyC---

be a strictly ascending chain of supplements in M. Since M is amply supplemented,
we will get a supplement L; of Ny. Clearly No+L; = M and we can get a supplement
Ly C Ly of Ny. If Ly = Ly, then Ny = Ny + (No N L) with No N Ly <« M. This
implies IV lies above V; in M contradicting that N, is coclosed. Hence Ly D Ls.
Getting supplements L; in the same way for every N; leads to a strictly descending
chain of supplements, that has to stop.

(6) Since M is supplemented by 2.1.3, M/Rad (M) is semisimple by 1.3.2. By
(5) M/Rad (M) has ACC on supplements and so on direct summands. Hence
M/Rad (M) is a finite direct sum of simple modules. [

The next definition is due to Zoschinger (see [74]).

Definition. An R-module M is called a Minimaz-module if there exists an exact

sequence

0 y K > M > A

~
je]

with F finitely generated and A artinian.
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Remarks: Zoschinger proved in [73, 1.7] that every linearly compact module over
a commutative noetherian ring is a Minimax-module. Moreover his student Rudlof
showed in [52] that a module M over a commutative noetherian ring is a Minimax-

module if and only if every decomposition of a homomorphic image of M is finite.

Corollary 2.1.5. Let M be an R-module with finite spanning dimension. Then M

is a Minimaz-module or an indecomposable module with Rad (M) = M.

Proof: If M is not indecomposable then M is artinian by 2.1.4(3) and hence a
Minimax-module. Assume Rad (M) # M and let 0 # z € M \ Rad (M). Then
Rz « M and the following sequence is exact:

0 y Rz » M —— M/Rx —— 0
with Rz cyclic and M/Rz artinian by 2.1.4(2). Hence M is a Minimax-module. O

Applying 2.1.4(3) we can easily prove a slightly modified version of a result by
Rangaswamy [47], saying that modules with finite spanning dimension are either

hollow or artinian if they satisfy a certain generalized projectivity condition.

Proposition 2.1.6. Let M be an R-module such that every supplement is a direct
summand. Then M has finite spanning dimension if and only if it is hollow or

artinian.

Proof: The sufficiency is clear. Assume that M is not hollow. Then there exists
a submodule N that is not small in M. By 2.1.3, M is amply supplemented. So
N has a supplement K in M. By hypothesis K is a direct summand. Hence there
exists a decomposition M = K @ L holds and by 2.1.4 M is artinian. O

Remarks:

1. We will call amply supplemented modules with the property that every sup-
plement is a direct summand {zfting modules in Chapter 4. Thus we showed
that a lifting module has finite spanning dimension if and only if it is hollow

or artinian.

2. Rangaswamy in (47, Proposition 3.5] proved the previous result for self-

projective modules. Self-projective modules always satisfies the condition that
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the intersection of mutual supplements is zero. Hence an amply supplemented
self-projective module satisfies the condition that every supplement is a direct
summand, since for each supplement N in M we can find a supplement X of
N such that N and K are mutual supplements. Thus a projective R-module

(e.g. R itself) has finite spanning dimension if and only if it is local or artinian.

3. We will show in Chapter 3.2 that one can assign a unique ”dimension” number
to a module having finite spanning dimension. This number is an invariant of

the module.

4. More on finite spanning dimension can be found in Satyanarayana’s papers
[54], [55] and [56].

2.2 Reiter’s, Takeuchi’s and Varadarajan’s ap-

proach

Takeuchi’s approach to dual Goldie dimension was by dualizing (U1):

Definition. (Takeuchi, {59, Definition 4.7])
An R-module M is cofinite-dimensional if M contains no infinite coindependent

family of submodules.

Reiter dualized chain condition (U3) as Fleury, but in a stricter way. His defini-

tion of finite dual Goldie dimension was:

Definition. (Reiter, [49, Definition 1.2])

An R-module has finite codimension if there is no infinite descending chain of

intersections
U, > UlﬂUz:) UnNnU,nUs D...
of submodules U; € M such that for all n € N, {Uy,...,U,} is a coindependent
family.
Remarks:

1. Reiter called an intersection of submodule Uy N -+ NU, in [49] to be a direct

intersection if {Uy, ... ,U,} forms a coindependent family of proper submod-

ules.
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2. If M admits an infinite coindependent family {U; }ien of proper submodules
of M, then M admits an infinite descending chain of direct intersections U; N
- NU,. Hence M does not have finite codimension. If M admits an infinite
descending chain of direct intersections U; N - N U, then {U;}ien forms an
infinite coindependent family of proper submodules of M by 1.4.2. Hence we

see that Reiter’s and Takeuchi’s definitions are equivalent.

2.2.1. Descending chain condition for finite codimension.
Let M be an R-module. M has finite codimension if and only if for every descending

chain of submodules Ny D Ny D N3 D .- - there exists an integer n such that N, lies
above Ny for all k > n.

Proof: For the proof we refer to 3.1.2 (a) < (d) or [49, Theorem 2.5]. O
Remarks:

1. Comparing condition (U3) for finite uniform dimension to Reiter’s descending
chain condition we see, that the property "N, is essential in N,” was dualized

to ” N, lies above N;.” (or in Takeuchi’s words " N,, is a coessential extension
of N”).

2. One can easily see, that if a module satisfies Fleury’s chain condition, it also
satisfies Reiter’s chain condition, because if N, is small in M, than N, /N, <
M /Ny for every submodule Ny, of N,. (see 1.1.2)

Varadarajan proceeded in a more categorical way to dualize the Goldie dimen-

sion.

Definition. {Varadarajan, [62, Definition 1.8])
An R-module M has corank(M) = k if there exists an epimorphism from M to a

product of k non-zero factor modules, but there is no epimorphism from M to a

product of k + 1 non-zero factor modules.

Remarks:

1. If corank(M) = k then by 1.4.6 there exists no coindependent family with more
than k submodules. Hence a module with finite corank is cofinite-dimensional.

We will show that the converse is also true.
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2. Varadarajan defined the notion of weak corank: A module M has weak corank
k if there is a small epimorphism from M to a direct sum of & non-zero, hollow
modules. Sarath and Varadarajan proved that an R-module M has finite
corank if and only if there is a small epimorphism from A to a finite direct
sum of hollow modules (see [53, Theorem 1.8]). This can be seen as the dual

property of (U2).

2.3 A lattice theoretical approach

In [20], Grzeszczuk and Puczylowski gave a lattice theoretical definition of the dual
Goldie dimension. In this section we will state their results and give a dualized proof

of their main theorem for Goldie dimension. Let us recall basic notions for lattices:

Definition. For a complete lattice £ =< L;V, A, 1,0 > with 0 # 1 we say:

e An element a € L with @ # 1 is small in £ if for any element € L with
x#1,aVaz#1 holds.

e A lattice £ is hollow if every element a € L\ {1} is small in L.

o A subset I of L \{1} is meet-independent if for any finite subset X of I and
ze I\ X wehave (AX)Vz=1.

These definitions correspond obviously to the definition of small submodules,
hollow modules and coindependent families of submodules.

Remarks:

1. It is easy to see, that {a;},en 1s @ meet-independent set of elements of L if and
only if for all k > 1 (a1 A-- ‘Aaj-1)Vag = 1 holds (see also the characterization

for coindependent submodules 1.4.2).

2. The set M := {I C L| I is meet-independent } is partially ordered by set-
theoretical inclusion. Moreover Uycp Iy is again a meet-independent set for
a chain {I)}rea in M, because we have to ’test’ meet-independence only for

finite subsets. Hence M has a maximal member by Zorn’s lemma.

The next lemma was proved for submodules in [49, 3.1] and [24, 7.3].
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Lemma 2.3.1. Let L be a complete modular lattice that does not contain an infinite
meet-independent set. Then for every element 1 # b € L there exists an element
b<c#1in L such that [c,1] is hollow.

Proof: Assume that there is no element b < ¢ # 1 in L such that [c, 1] is hollow,
then by induction we construct a sequence cy, ¢y, . .. of elements of L\ {1} such that
the set {c1,ca,...} is meet-independent and, for any &, ¢; A -+ A ¢ is not small
in [b,1]. For k = 1 the construction is clear, since [b, 1] is not hollow. Hence there
exists an element ¢; > by such that ¢, is not small in [b, 1]. Now let us assume that
we have constructed elements ¢, ... ,cp_;. Since ¢; A -+ - Acg_y is not small in [b, 1],
there exists b < d # 1 such that (c; A+ - Acy-1) Vd = 1. By assumption the lattice
[d, 1] is not hollow. Hence there exist d < dy,ds # 1 with di V dy = 1. Put ¢ :=dy.
Clearly {cy, - ,ci} is meet-independent (see above remark (1)) and ¢; A+ A gy is
not small in [b,1] as (g A+ Acg) Vde =1 and dy # 1 (see 1.1.1). Thus we will get
an infinite meet-independent set of elements of L. This contradicts our hypothesis.

Thus there must exist an element b < ¢ # 1 such that [c, 1] is hollow. [J

Note that the terminology N lies above K in M for submodules N and K of a
module M is exactly the same as N is a small element in the lattice [K, M].

The next lemma is the dual version of [20, Corollary 4].

Lemma 2.3.2. Let £ be a complete modular lottice with elements as,. .. ,a, and
bi,... by of L such that {by,...,b,} s a meet-independent set and a; ts small in
[bi, 1] for alli. Then ar A--- A ay is small in [by A -+ A by, 1].

Proof: The proof is the same as in 1.4.1(4). O

In [49, Lemma 3.5] Reiter proved the following result for modules.

Lemma 2.3.3. Let L be o complete modular lattice. Assume there exists a meet-
independent set {ay, ... ,a,} in L such that [a;, 1] is hollow for all i and a3 A~ - - Aay
1s small in L. Then an element b € L is small in L if and only if a; Vb # 1 holds
for everyi € {1,...,n}.

Proof: The necessity is clear. Assume q; Vb # 1foralli e {1,...,n}. Then a; Vb
is small in [a;, 1] as [a;, 1] is hollow. By Lemma 2.3.2 (a; Vb) A - -+ A (a, V b) is small
in [ag A+ Aap, 1]. Since a1 A---Aay is small in £, we get that (a3 VO) A+~ A(an V)
is small in £ (see also 1.1.2). Hence b < (a; Vb)) A+ A{a, Vb) issmall in £. O
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Now we are able to state a dualized proof of Grzeszczuk and Puczylowski’s main

theorem.

2.3.4. Modular lattices with finite hollow dimension.

For a complete modular lattice L the following are equivalent:
(a) £ does not contain infinite meet-independent sets.

(b) L contains a finite meet-independent set {ay,...,an} such that ag A --- A ay

is small in L and the lattices [a;, 1] are hollow for 1 <1 < n.
(c) sup{k|L contains a meet-independent subset of cardinality k} = n < oo.

(d) For any descending chain a; > ay > --- of elements of L there exists j such

that for all k > j, a; is small in [ay, 1].

Proof: (a) = (b) As in above remark (2) the set
My = {I € M|tor all a € I : [a,1] is hollow} C M

is partially ordered by set-inclusion where M is the set of all meet-independent
subsets of L. Let X € M, be a maximal meet-independent subset of L such that
the lattice [z, 1] is hollow for all z € X. By (a) X is finite, say X = {x1,... ,za}-
We claim that z; A -+ Az, is small in £. Assume that (z1 A+ Az,)Va=1 for
some 1 # a € L. By Lemma 2.3.1 there exists an element 1 # ¢ > a such that the
lattice [c, 1] is hollow. Obviously the set {z,..., %y, c} is meet-independent. This
contradicts the maximality of X.

(b) = (c). Assume that L contains a meet-independent set {b1,...,bg} with

k > n. We show by induction that by rearranging a4, ... ,a,, if necessary
(%) for any 0 < j < n the set {a1,...,a;,bj41,..., b} is meet-independent.

For j = 0 () is clear. Now let j > 0 and c:=ay A+ Aaj_1 Abjpga A+~ Abg. As
cVb; =1, cisnot small in £. By Lemma 2.3.3 ¢V a, = 1 holds for some 1 < s < n.

Clearly s > j otherwise a, = 1. By sorting {a;,...,a,} we put j = s and obtain
that the set {a1,...,a;,0j41,--.,b,} is meet-independent. Thus (*) holds.
In particular (%) implies that the set {a1,... ,an, byt1, .- - , br} is meet-independent.

This is impossible as a; A ... A a, is small in £. Thus every meet-independent set

of L has at most n elements.

(c) =(d). If (d) is not satisfied, then there exists a chain 1 # a; > az > --- of
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elements of L such that for any j > 1 there exists a number k(j) > j such that a;
is not small in [ag(;), 1]. Let {jm}men be a sequence of indices defined as follows:
j1:=1and jn = k(jm-1) for all m > 1. By the foregoing there exist elements a}

such that a;, ., <a} # 1 with a;, Vaj =1 for all m. Thus

(ay Nay A+ ANa  )Va,

Jm-—1 Jm

L—
2 aj"" v ajm =1

for all m > 1. Then by the above remark (1) we get that {a1,a},,a},,... a5, ,...}
is meet-independent. This contradicts (c).

(d) = (a). If (a) is not satisfied, then L contains an infinite meet-independent
set {a1,02,...}. Then a3 > a; Aay > ay Aag Aag > --- and for any & € N,
(ag A -+ Aag) V agyr = 1 implies that a3 A -+ A ag is not small in [ag A -+ - A ay, 1]

for all I > k. This contradicts (d). O

Remarks: Looking at the proof it is obvious that the numbers n from (b) and from

(c) must be the same and unique.

Let £ =< L;V,A,0,1 > be a complete modular lattice with 0 £ 1. The dual
lattice £® =< L;A,V, 1,0 > is modular as well. By the Duality Principle we know,
that a lattice has a property if and only if the dual lattice has the dual property.
Exchanging V and A we get dual definitions and a dual theorem:

Definition. Let £ be a lattice:

e An element a € L\ {0} is essential in L if for any element z € L\ {0},
anzs#0.

e A lattice is wniform if every element a € L \ {0} is essential in £.

e A subset I of L \{0} is join-independent if for any finite subset X of I and
z eI\ X wehave (VX)Az=0.

2.3.5. Modular lattices with finite uniform dimension.
For a complete modular lattice L the following are equivalent:

(a) L does not contain infinite join-independent sets.

(b) L contains a finite join-independent set {ai,... ,a,} such thata; V-V a, is

essential in L and the lattices [0, a;] are uniform for 1 <1 < n.

(c) sup{k|L contains a join-independent subset of cardinality equal to k} = n < oo
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(d) For any ascending chain a1 < as < --- of elements of L there exists j such

that for all k > j, a; is essential in [0, a).

Let £ be the lattice of submodules of a module. Then the above theorem is a
well-known characterization of modules having finite Goldie dimension. Hence it is

convenient to define the Goldie and dual Goldie dimension of a modular lattice.

Definition. If £ satisfies one of the equivalent conditions (a)-(d) of Theorem 2.3.5,
then the Goldie dimension of a modular lattice udim (L) of L is equal to n. If £

does not satisfy the conditions, we put udim(L) = co.

Definition. If £ satisfies one of the equivalent conditions (a)-(d) of Theorem 2.3.4,

then the dual Goldie dimension hdim(L) of L is equal to n. If £ does not satisfy

these conditions, we put hdim(L) = co. Obviously we have hdim(L) = udim(L")
and udim(L) = hdim(LC).




Chapter 3

Hollow dimension

3.1 Finite hollow dimension

Since the lattice L{(M) of all submodules of a module M is complete and modular,
we can apply the results from Chapter 2.3 to the lattice of submodules of a module.

One can easily see that the notions of essential (small) submodules, uniform
(hollow) modules and independent (coindependent) families of submodules match
with the notions of essential (small) elements, uniform (hollow) lattices and join-
independent (meet-independent) sets of sublattices.

By 2.3.5 we get the following well known result:
3.1.1. Modules with finite uniform dimension.
For a non-zero module M the following are equivalent:
(a) M does not contain an infinite independent set of submodules.

(b) M contains a finite independent set of submodules {Ny,...,N,} such that

"1 N; < M and N; is a uniform submodule for every 1 <1 < n.

(c) sup{k|M contains an independent family of submodules of cardinality k} =

n < 00.

(d) For any ascending chain Ny C Ny C --- of submodules of M there ewists j
such that for all k > j, N; < Ny.

Definition. An R-module M is said to have finite uniform dimension if it satisfies

one of the conditions in 3.1.1. Let udim(M) denote the number n from 3.1.1.

29
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Note that if N is a submodule of M, then the sublattice [V, M] of the lattice
L(M) is isomorphic to L(M/N). Now we can apply 2.3.4.

3.1.2. Modules with finite hollow dimension.

For a non-zero module M the following are eguivalent:
(a) M does not contain an infinite coindependent famaly of submodules.

(b) M contains a finite coindependent family of submodules {Ny,...,Nn} such
that ﬂ?zé N; is small in M and M/N; is o hollow module for every 1 <1i < n.

c) sup{k|M contains a coindependent family of submodules of cardinality equal
y
tok} =n < co.

(d) For any descending chain Ny D Ny O --- of submodules of M there exists j
such that for all k > j, N; lies above Ny, in M.

(e) There exists a small epimorphism from M to o finite direct sum of n hollow

factor modules.

Proof: (a) & (b) & (c) & (d) follow by 2.3.4. (b) < (e) follows by the Chinese
Remainder Theorem 1.4.3. O

Definition. An R-module M is said to have finite hollow dimension if it satisfies
one of the conditions in 3.1.2. Let hdim(M) denote the number n from 3.1.2. If

M = 0 we write hdim(M) = 0 and if M does not have finite hollow dimension we
write hdim(M) = 0.

Remarks:

1. Obviously every artinian module has finite hollow dimension. A module is

hollow if and only if it has hollow dimension 1.

2. In 3.1.2 (a) corresponds to Takeuchi’s definition and (d) to Reiter’s Theorem
2.2.1. Applying the Chinese Remainder Theorem 1.4.1, we see that (c) states,
that there cannot be an epimorphism from M to a finite direct sum of more
then n summands. Hence condition (c¢) is equivalent to Varadarajan’s defini-
tion of corank. The equivalence between Varadarajan’s corank condition and
(e) was proved in [53, Theorem 1.8].
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3. Since modules with finite spanning dimension satisfy the chain condition (d)

we get that these modules have finite hollow dimension.

4. In [17] Golan and Wu pointed out that since the lattice of subobjects of an
object in a Grothendieck category is also a modular lattice, one can define
the Goldie and dual Goldie dimension of such objects using Grzeszczuk and

Puczylowski’s definition.

5. Using the same arguments Page in [44] as well as Park and Rim in [45] defined

the dual Goldie dimension relative to a torsion theory.

The following results are analogue to chapter 5 in [10]. Let us consider a techni-

cal, but useful lemma first.

Lemma 3.1.3. (/50, Theorem 5]) Let M be an R-module. Assume M has a proper
ascending chain of submodules 0 =: Ny C Ny € Ny C N3 C -+, such that for all
kE > 1, Ny does not lie above Ni_1 in M. Then M contains an mnfinite coindependent

family of submodules.

Proof: By assumption Ny/Nj_; is not small in M /Ny, for every k > 1. For every
kE > 1 there is a proper submodule Ly of M such that Ny C Ly and Ly + N, = M
holds.

Claim: Ly = Np_1 + (L; N+ N Lg) holds for all k£ > 1.

We will prove this by induction on k:
for & = 1 this is clear;
k—=k+1. M= Ny+ L implies

Ly = Ni+ (Lggy N L)
= Np+ L N (Ne—y + (Ly N0 Ly))
= Np+ Ny—1 -+ (LiN- N Lgy)
= N+ (LyN0--0 Liyy).

Thus for every & > 1 we get
M=Ny 1 +Lp1=Ny1+Np o+ (LN NLp1)C L+ (LyN---N Ly 1) C M.

Hence by 1.4.2 {L;}y is an infinite coindependent family of proper submodules. I




CHAPTER 3. HOLLOW DIMENSION 32

3.1.4. Modules with hollow factor modules.(/49, 3.1/, [45, 11])
Let M be a non-zero R-module such that every coindependent family of submodules
18 finite. Then M has a hollow factor module.

Proof: The proof is the same as in 2.3.1. On the other hand Lemma 3.1.3 allows us
to prove it quickly: Assume M is not hollow and has no hollow factor module. Then
we can construct an ascending chain of proper submodules Ny C Ny C N3 C ...
such that for no k > 1, Nj lies above Ny as follows: for each k € N, M/N,, is not
hollow and there exists a submodule Ny, /Ny €« M/Ny, . By 3.1.3 M has an infinite
coindependent family of submodules. This contradiction shows, that M must have

a hollow factor module. OJ

Remarks: With the same argument as in the proof of 3.1.4 we get that every non-zero

factor module M /N has a hollow factor module.

Definition. An R-module M is called conoetherian if every finitely cogenerated
module in o[M] is artinian (see [67, 31.6]).

Corollary 3.1.5.
1. Any non-zero artinian module has a hollow factor module.

2. Let M be a locally artinian module. Then any non-zero module in oc[M] has a

hollow subfactor.

3. Let M be a conoetherian module. Then any non-zero module in o[M] has o

hollow factor module.

4. Let R be a left conoetherian ring, then any non-zero R-module has a hollow

factor module.

Proof: (1) Clear by 3.1.2 and 3.1.4;

(2) any finitely generated module in o[M] is artinian. Thus any non-zero cyclic
submodule of a module in o[M] has a hollow factor module.

(3) Every module N € ¢[M] has a non-zero finitely cogenerated factor module L.
By hypothesis L is artinian and by (1) it has a hollow factor module.

(4) Set M := R and apply (3). O
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3.1.6. Small submodules and hollow factor modules.
Let M be a non-zero R-module such that every non-zero factor module has a hollow
factor module. Then M contains a coindependent family { Ky} of submodules such
that M /K, is hollow for every A € A and N, K is small in M.

Proof: Let M denote the set consisting of all non-empty coindependent families of
submodules K of M with M/K hollow, i.e.

M = {{K,}a|{K.}q coindependent, Q # (), M/K, hollow for all w € Q}.

M is partially ordered by set-theoretical inclusion: {K,}q C {La}a if for every
w € £ there is a A € A such that K, = L,. Let

{I{WI}QI C {I{wz}ﬂz - {I(WS }Qs T

be a chain of elements of M. Then we have to show, that

U= U{I(wi}gi = {K,, }ao where Q := U Q;
i€l il

is a coindependent family of submodules. Consider submodule K; € U and a finite
number of submodules {K;,,- -, K; } C U\ {K;,}. Then there must be an element
{K, }q, such that {IG,,... ,K; } C {K.}q,. Since {K,,}q, is coindependent,
K + (KN N K;, ) = M holds.

Hence we can apply Zorn's Lemma. So M has a maximal member { K}, that is
a coindependent family of proper submodules, such that M/K}, is hollow for every
A e A Let K = N, K, denote the intersection of this family. If K is not small in
M, then there is a proper submodule L of M such that K + L = M. By hypothesis
M/L has a hollow factor module M/N. So L C N and K + N = M holds. By
1.4.1(2) {Kx}a U {N} is a coindependent family and hence it is an element of M.

But this is a contradiction to the maximality of {Ky}a. Hence K must be small. [

Corollary 3.1.7. Let M be a conoetherian module, then every non-zero module
N € o[M] contains a mazimal coindependent family {K)\}a of submodules such that
N/K is hollow for every A € A and N, K is small in N.

Proof: By 3.1.5 and 3.1.6. [J

Together with 3.1.4 and 3.1.6 we are able to prove 3.1.2(a) <> (e) without using
the lattice-theoretical result 2.3.4.
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3.1.8. Finiteness condition and hollow modules. ([45, 12])
Let M be a non-zero module that contains no infinite coindependent family of proper

submodules. Then there is a small epimorphism from M to a finite direct sum of

hollow modules.

Proof: By 3.1.4, 3.1.6 and the Chinese Remainder Theorem 1.4.6. O

The next theorem restates 2.3.3 for submodules of a module.

3.1.9. Small submodules and hollow factor modules.([{9, 3.5])
Let M be an R-module, N a submodule of M and f : M — ], H; a small

epimorphism, with H; ~ M/I; hollow factor modules of M and K; submodules of
M. Then

N is small in M if and only of N + K; # M for every 1 <1¢ < n.

Proof: The proof is the same as in 2.3.3. O

Let N C M and w : M — M/N be the canonical projection. Let g : M/N —
@%_ | N; be an epimorphism with N; # 0.

0 > N >y M —— M/N —— 0
/|
®§:1 IV’L
Then there exists an epimorphism from M to a direct sum of k& non-zero modules.
Hence hdim(M) > hdim(M/N). This shows that the hollow dimension of a factor
module M/N is always smaller than the hollow dimension of M. If hdim(M/N) = co
then hdim(M) = co. Assume hdim(M/N) =k and N <« M. Then Ker (g) < M/N

holds and g is a small epimorphism. Hence hAdim(M) = k = hdim(M/N). Thus
hdim(M) = hdim(M/N) whenever N < M.

3.1.10. Finite hollow dimension.
Let N and K be submodules of an R-module M.
1. If M =M, ® - & My, then hdim(M) = hdim(M;) + - - - + hdim(My,).

2. If N« M, then hdim(M) = hdim(M/N).
Conversely, if M has finite hollow dimension and hdim(M) = hdim(M/N),
\ then N < M.
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3. Assume N 1is a weak supplement of K in M. Then hdim(M) = hdim(M/N)+
hdim(M/K) holds.

4. Any module with finite hollow dimension is weakly supplemented.

5. Assume both N and M /N have finite hollow dimension. Then M has finite

hollow dimension.

6. Assume the following sequence is exact:

0 > N > M » L > 0.
Then the following holds: hdim(L) < hdim(M) < hdim(L) + hdim(N).

7. Assume M has finite hollow dimension, then any epimorphism f : M — M 1s

small. If M 1is self-projective, then [ s an isomorphism.

Proof: (1) hdim (M) > hdim(M;) holds by above remark. Thus if hdim(M;) = oo
for any direct summand M;, then hdim(M) = co. Assume that for allz € {1,... ,k}
hdim(M;) = n; < oo and there exists a small epimorphisms f; : M; — @}, H;; with
H;; hollow for all 1 < j < n;. Then we get a small epimorphism f = (fi,oo o fo)

M B, ()i, Hy) — 0.

Thus hdim(M) = hdim(My) + - - - + hdim(M},).

(2) clear by above remark. Assume hdim(M) =n < oo, f: M — @, M/K;
a small epimorphism and N <« M. Then by 3.1.9 there exists an index ¢ such
that N + K; = M. Thus M/(NNK;) ~ M/N & M/K;. By (1) hdim{M) >
hdim(M/N) + hdim(M/K;) > hdim{(M/N) holds but this is a contradiction to
hdim(M) = hdim(M/N). Hence N < M.

(3) By assumption, { + N = M and X N N < M yields:

hdim(M) = hdim(M/(K N N)), by (2)
= hdim{K/(KNON)® N/(KNN))
= hdim(K/(K N N))+ hdim{N/(K N N)), by (1)
— hdim(M/N) + hdim(M/K), by (2).

(4) By 3.1.8 M is a small cover of a finite direct sum of hollow modules. Since

hollow modules are (weakly) supplemented, M is weakly supplemented by 1.3.2.
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(5) Suppose, to the contrary, that M does not have finite hollow dimension and

let {K;}n be an infinite coindependent family of submodules of M. Then let
Ly =Ky, Ly =Ky N K3z, Ly = Kgp1 N N Ky,

with integer ¢ = n(n + 1)/2. For every n € N we have M/L, ~ @, M/K,,; as

{Ki1/Ln, ... ,Kipn/Ly} is coindependent. Hence n < hdim(M/L,). {L;}x is again

an infinite coindependent family of submodules of M (see 1.4.2). Since hdim(M/N)

| is finite {N + L;}y is not coindependent and so N + L, = M for almost all n.

L Choose n such that n > hdim(N) and N+L,, = M. Then M/L, ~ N/(NNL,)isa

factor module of N. Thus n < hdim(M/L,) < hdim(N) < n yields a contradiction.

Hence M cannot contain an infinite coindependent family of proper submodules.
Thus it has finite hollow dimension.

(6) Clearly hdim(L) < hdim(M) is always true for a factor module L of M by

above reamrk and if hdim (M) is not finite, then the equation is clear by (5). Let

M have finite hollow dimension, then every submodule N has a weak supplement
K. By (3) we get:

hdim(M) = hdim(M/N) + hdim(M/K) < hdim(L) + hdim(N),

since M/N =~ L and M/K ~ N/(N N K).
(7) Since M has finite hollow dimension and hdim(M) = hdim(Im (f)) =
hdim (M /Ker (f)) we get by applying (1) that Ker (f) < M. If M is self-projective,

then Ier (f) is a direct summand and hence 0. OJ
Remarks:

1. The properties (1), (2) and (5) appeared in various papers: e.g. (1) [38, 5.13],
(2) and (5) [23] and [45]. For (3) see [49, Theorem 4.1]; for (4) {24].

2. Let M =3, M) with M, ## 0 for all A € A and consider

Oy My —L M y 0

with ({ma}a)f = Sama. By above remark we have hdim(M) <
hdim(@, My). If |A| = oo then clearly hdim(@, My) = co = 34 hdim(M,).
If |A] < oo then by (1) we get hdim (P, My) = S hdim(M,). Thus we get
hdim(M) < 35 hdim(My).

3. If hdim(M) = n is finite, {K7, ..., K, } a maximal coindependent family and
N a small submodule of M. Then we get by 3.1.9 that L; := N + K; is a
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proper submodule of M for all 1 < 4 < n. Hence {Ly,...,L,} is a maximal
coindependent family in M and N € Ly N ---N L, holds. Thus every small
submodule N of a module M with finite hollow dimension is contained in an
intersection Ly N---N L, <« M such that {L,,...,L,} form a coindependent
family of submodules in M (see [49]).

A further characterization of a module M with finite uniform dimension is that
the M-injective hull M of M is isomorphic to a finite direct sum of uniform modules

and the endomorphism ring of M is semiperfect. As an analogue we get the following

result:

3.1.11. Projective covers with finite hollow dimension.

Let M be an R-module with a projective cover P in o[M). Then the following

statements are equivalent.

(a) M has finite hollow dimension and is semiperfect in o[M];
(b) P =@, L; with L; non-zero local modules;

(c) End(P) is semiperfect;

Proof: {a) = (b) Assume that M has finite hollow dimension and consider the

following diagram:
P =4 @M, P

L

ML @r H — 0

L

0 0
where f is a small epimorphism to a finite direct sum of hollow modules H;. Since

M is semiperfect, there exist projective covers P; in o[M] for each H; that are hollow
and by [67, 19.7] local. By [67, 19.5] @B}_, P; forms a projective cover for @i, H; in
o[M] and P >~ @}, ;. Each P; is isomorphic to a direct summand L; of P. Thus
P=®, L.

(b) = (a) By [67, 42.3(3)] M is semiperfect in o[M] and by 3.1.10 hdim(M) =
hdim(P) < oo.

(b) < (c) By [67, 42.4(1)] P is equal to a finite direct sum of local modules

(projective covers of simple modules) if and only if P is finitely generated and




CHAPTER 3. HOLLOW DIMENSION 38

semiperfect in o[M]. Since P is finitely generated and self-projective it is projective
in o[P] by [67, 18.3] and hence semiperfect in ¢[P]. Thus by applying [67, 42.12]:
P is finitely generated and semiperfect in o[P] if and only if End (P) is semiperfect.
O

The next result is due to Page [44] and shows the duality between hollow and
uniform dimension. For that we have to introduce some notation of annihilator
conditions in M and Hom (M, Q) for an injective cogenerator @ in o[M].

Assume pM to be an R-module, zQ to be an injective cogenerator in o[M]. Let
T := Endg (Q), N € o[M] and N* := Homp (N, Q)7 a right T-module. Define for
any R-submodule K C N and T-submodule X C N*:

An(K) = {f € N*|(K)f = 0} C N*,
Ke(X) :={|{Ker(g9)lge X} C N
By definition An(K; + ) = An(K1) N An(XK5,) holds for all Ky, Ky C N.

By [67, 28.1] the following conditions hold since r@ is an injective cogenerator
in o[M]:

(AC1) Ke(An(K)) = K for all K C N,
(AC2) An(Ke(X)) = X for every finitely generated T-submodule X C N*;

(AC3) An(K, N I) = An(K;) + An(K>) for all K1, K, C N.

3.1.12. Hollow dimension and duality. (44, Proposition 1])
Let M be an R-module and rQ an injective cogenerator in o[M], T := End (rQ).
For any module N € o[M] set N* := Hom (N, Q)r. Then hdim(gN) = udim(N3)
holds.

Proof: Assume N admits the following exact sequence, with H; non-zero factor
modules of N:

N — ®F, H —— 0.

Since @ is N-injective, Homg(—, Q) is exact in o[M] (see {67, 16.3]) and by applying

this functor we get the exact sequence:
0 — &%, Hom (H;,Q) —— N*

where all Hom (H;, Q) are non-zero submodules of N*, since the H; were non-zero

and @ a cogenerator in o[M]. Hence N* contains a direct sum of k& submodules.




CHAPTER 3. HOLLOW DIMENSION 39

Thus hdim(gN) < udim(N}).

On the other hand, assume that N* contains a submodule X which is a direct sum
of & non-zero submodules. Without loss of generality suppose this sum is a sum
of cyclic submodules, so take X = f1iT & -+ & fi,T with 0 £ f; € N*. Obviously
Ke(f;T) = Ker (f;) is a proper submodule of N for every 1 <1 < k.

Next we will show, that {Ker (f;),... ,Ker (f)} is a coindependent family of proper
submodules of V. Applying (AC1) — (AC3) we get for all 1 <14 <k the following:

0 = fiTﬂijT
= An(K]e;(é;"iT)) N An(Ke(3 f;T)) by (AC2)
= An(Ker (/) + Ke(3 f;ﬁ
—  An(Ker (f) + KeE An(Ker (£;)))) \by (AC2)
= An(Ker (f;) + Ke(z(m' Ker (£;)))) ,by (AC3)
= An(ier (£) + () Ker &3) by (AC1)

Applying (AC1) yields
N = Ke(0) = Ke(An(Ker (f;) + [ Ker (f;))) = Ker (f;) + () Ker (f;).
Jii jki

Hence {Ker (f1),...,Ker (fi)} is coindependent. Thus udim(Ny) < hdim(gN). O

Remarks: Since there exists always an injective cogenerator r@Q in o[M] we are

able to express the hollow dimension of a module N € o[M] in terms of uniform

dimension.

Denote by oy[M] the full subcategory of o[M|] whose objects are submodules
of finitely M-generated modules. Note that o;[R| just consists of submodules of
finitely generated R-modules. For the definition and characterization of dualities we

refer to [67, Chapter 47). Page’s result gives us the following corollary.

Corollary 3.1.13. Let U be a left R-module and S := End (grU) and assume
Hompg (—,U) : 04[grU] — 04[Ss]
to be a duality. Then for all N € of[gU] the following hold:

hdim(N) = udim(N*) and udim(N) = hdim(N*).
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Remarks: Since Hompg (—, U) is a duality between o;[rU] and o[Sg] every module
in o[gU] is linearly compact (see [67, 47.3]). Hence every module in o[gU] has
finite uniform dimension, finite hollow dimension and a semilocal endomorphism

ring as we will see in Section 3.5.

3.2 Dimension formulas

In [7] Camillo and Zelmanowitz have pointed out that the Goldie dimension does

not satisfy the familiar formulas for vector space dimension:
(1) dim(M) = dim(M/N) + dim(N);
(2) dim(N + L) = dim(N) -+ dim(L) — dim(N N L),

for subspaces N, L C M, and have found the corrections required (see [7, Lemma 3

and Theorem 4]):

(1) If N is essential in L and L a complement in M, then

udim(M) = udim(M/N) + udim(N) — udim(L/N)

(2) If N and L are submodules of M, f a maximal monic extension of the identity
map 1yng considered as a homomorphism from N to L, and K = Domain(f),

then
udim(N + L) = udim(N) + udim(L) — udim(K) + udim(K/(N N L))

These formulas are called the first and second Camillo-Zelmanowitz formulas. In
[22] Haack showed, that the duals of the Camillo-Zelmanowitz formulas hold for

hollow dimension if there are enough supplements.

3.2.1. First dual Camillo-Zelmanowitz formula.(/22, Theorem 5])
Let M be an R-module and N and L submodules of M. If N lies above a supplement
L in M then hdim{M) = hdim(M/N) + hdim(N) — hdim(N/L).

Proof: Assume L is a supplement of a submodule K of A and N lies above L.
Then N N K lies above LN K by 1.1.2 and since LN K « M we get NNK < M
by 1.1.2. Hence N is a weak supplement of K in M. By 3.1.10(3)

hdim(M) = hdim(M/N) + hdim(M/K).
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Further N N K is a weak supplement of L in N since by modularity
N=Nn(L+K)=L+(NNK)
and (NNK)NL=LNK < LCN holds. Applying 3.1.10(3) again, we get
hdim(N) = hdim(N/(N N K)) + hdim(N/L) = hdim(M/K) + hdim(N/L).
Subtracting these two dimension formulas we get the result:
hdim(M) = hdim(M/N) + hdim(N) — hdim(N/L).
U
Remarks:

1. Haack’s original assumption on the submodule NV were: N has a weak supple-
ment K in M such that there exists a supplement L C N of K in M. From
this follows, that N lies above L, because whenever IV + X = M holds for a
proper submodule X ¢ M,then M =N+ X =L+ (NNK)+ X =L+ X is
satisfied since NN K < M. Thus by 1.1.2 N lies above L in M. On the other
hand assume that N lies above a supplement L of a submodule K. Clearly
N + K = M holds and by 1.1.2 N N K lies above L N K and since L N K is
small in M this implies N N K <« M. Hence N is a weak supplement of K.

2. If M is amply supplemented then every submodule N of M lies above a sup-
plement L (see 1.2.2). Hence the formula in 3.2.1 holds for every submodule

N of M (independent from the supplement L).

Corollary 3.2.2. (/28, 7.8/, [45, Lemma 19]) Let M be an R-module and N a
supplement in M, then

hdim{M) = hdim(M/N) + hdim(N).

Corollary 3.2.3. Let M be an R-module with finite hollow dimension and N a
submodule of M. Then the following holds:

N is a supplement in M < hdim(M) = hdim(M/N) + hdim(N).
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Proof: If N is a supplement, then the formula holds by the previous corollary.
Assume that the above formula holds for a submodule N of M. Since M has finite

hollow dimension N has a weak supplement K, by 3.1.10(4), such that by applying
3.1.10(3)

hdim(M) = hdim(M/N) + hdim(M/K).

Thus hdim(N) = hdim(M/K) = hdim(N/(N N K)) holds and hdim(N) is finite.
Applying 3.1.10 we get NN K < N, but this means N is a supplement of K in M.
O

Let lg(M) denote the length of a module M.

Corollary 3.2.4. Let M be an R-module then the following statements are equiv-

alent:
(a) M is semisimple,

(b) hdim(M) = hdim(M/N)+ hdim(N) holds for every N C M and M is weakly

supplemented;
(c) udim(M) = udim(M/N) + udim(N) holds for every N C M.

In this case hdim(M) = udim(M) = lg(M).

Proof: (a) = (b), (¢) Obvious, since every submodule is a direct summand and the
dimension notions hdim and udim arve additive with respect to decompositions.
(b) = (a) For every small submodule K of M, hdim(M/K) = hdim(M) holds by
3.1.10 and implies hdim(K) = 0. Hence K = 0 and so Rad(M) = 0. Since M is
weakly supplemented, it is semisimple by 1.3.3.
(c) = (a) For every essential submodule K of M, udim(K) = udim(M) holds and
implies udim(M/K) = 0. Hence K = M and Soc(M) = M.

In the case that M is semisimple, then M = @, £y with E) simple. Hence
|A] = lg(M) = udim(M) = hdim(M) holds. O

A supplemented module with finite hollow dimension can be written as an irre-

dundant sum of hollow submodules. This was first shown by Fleury in [13] and also

by Varadarajan in [62].

Definition. A sum M = 3, M, of non-zero modules M, is called irredundant if
forall Ae A: XS, M, # M.
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The next theorem was obtained from several papers (see [23, Theorem 7.10], [20,
Theorem 14], [50, Lemma 1]).

3.2.5. Supplemented modules with finite hollow dimension.
Let M be an R-module.

1. If M = Y%, H; 1is an irredundant sum of hollow modules. Then hdim(M) = n.

2. If M is supplemented and hdim(M) = n. Then there are hollow submodules
H; of M such that M = 1", H; is an irredundant sum.

Proof: (1) Consider the following epimorphism
- Hi® - @H,—» M

(hi, .. hp) = hy 4+ by
Then Ker (f) - I{l & @Kn with I(z = Htﬂ (Hl + - +Hz'__1 -+ Hz'+1 R Hn)

Since I; <« H; as the given sum was irredundant and H; hollow, we get that
Ker (f) < Hi @+ @ H,. Thus hdim(M) = hdim(H, & --- & H,) = n.

(2) We will prove this by induction on n. For n =1, M is hollow. Let n > 1 and
assume that all modules with hollow dimension n—1 can be written as an irredundant
sum of n — 1 hollow modules. Since M has finite hollow dimension there exists a
non-zero hollow factor module M/N by 3.1.4. Since M is supplemented N has a
supplement H; in M. Since

hdim(H;) = hdim(H,/(H; N N)) = hdim(M/N) =1,

we get that H; is hollow. Let H' be a supplement of H; in M. Since H; is hollow,
Hj is a supplement of H' as well. By 3.2.2 we have

hdim(M) = hdim(H") + hdim(M/H') = hdim(H'") + hdim(H, /(H, 0 H'))

= hdim{(H') + 1.

Thus hdim(H') = n — 1. By assumption H' = Y.}, H; is an irredundant sum
of hollow modules. Thus M = %, H; is irredundant as H' and H; are mutual

supplements. [

Remarks:

1. Whenever hdim(M) =n < oo and M = ¥, L; an irredundant sum of hollow

modules L; then m = n as hdim(M) is an invariant number.
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2. Modules M with finite spanning dimension have finite hollow dimension (see

3.1.2) and are (amply) supplemented (see 2.1.3). Thus Fleury denoted the
unique number of summands of this irredundant sum by sd(M) = n and set
sd(M) = oo for modules without finite spanning dimension. We see that
sd(M) = hdim(M) holds, but as example 2.1.2 showed there are modules

having finite hollow dimension but not finite spanning dimension.

. If M is a supplemented module with finite hollow dimension such that ev-

ery supplement is a direct summand then M is a finite direct sum of hollow
modules (see 4.1.6).

. As a module M with finite spanning dimension is amply supplemented, every

submodule N of M that is not small in M lies above a non-zero supplement
L in M (see 1.2.2). Based on this fact Satyanarayana defined in [56] a new
notion of the dimension of a module M with sd(M) < co: For every N C M

set
0 N <M

Sdy(N) =< sd(L) for a supplement L, C N in M
and N lying above L in M

Applying 3.2.2 it is easy to show, that Sdpy(N) is well-defined. By defini-

tion and 3.2.2 Sdj; satisfies the ordinary vector space formula Sdy (M) =
Sdp(N) + Sdu{M/N).

Recall that for the dimension notion of vector spaces A, B the following holds:

dim(A+ B) = dim(A) + dim(B) — dim(AN B). There have been two approaches to

prove a second dual Camillo-Zelmanowitz formula; one by Xin in [68] and the other

one by Haack in [22].

3.2.6. Xin’s Second dual Camillo-Zelmanowitz formula.
Let M be an R-module and N, L proper submodules of M. Consider K := M/(NNL)
as o submodule of M /N @ M /L under the canonical monomorphism. If K lies above
a supplement K' in M/N & M/L then the following formula holds:

hdim(M/(N+L)) = hdim(M/N)+hdim(M/L)—hdim(M/(NNL))+hdim(K/K").

Proof: Consider the homomorphism:

g:M/N&M/L — M/(N + L),
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(z+N,y+L)—az—y+N+L
Then g is an epimorphism. Clearly K C Ker (g). Let (z + N,y + L) € Ker (g).
Then ¢ —y € N+ L implies ¢ = y +{ -+ n for some [ € L and n € N. Hence we get
(z+ N,y+L)=(z+N,z+ L) for z =y + 1. Thus Ker (g) = K = M/(NNL) and

the following sequence is exact:

0 — M/(NOL) — M/N®M/L —2— M/(N+L) —— 0

Since K lies above a supplement K’ we may apply the first dual Camillo-Zelmanowitz
formula 3.2.1 and get:
hdim(M/N) + hdim(M /L)

= hdim((M/N & M/L)/K) + hdim(K) — hdim(K/K')

= hdim(M/(N + L)) -+ hdim(M/(N N L)) = hdim(K/K'). O

Remarks: Since every factor module of an amply supplemented module M is again

amply supplemented (see [67, 41.7]) we get that the above formula holds for all
submodules N, L of M.

Corollary 3.2.7. Let M be an R-module with M/Rad(M) semisimple. Then for
all submodules N, L of M that contain Rad(M) the following holds.

hdim(M/(N N L)) + hdim(M/(N + L)) = hdim{(M/N} + hdim(M/L).

We will state Haack’s version of the second dual Camillo-Zelmanowitz formula

without a proof because it would be too technical.

3.2.8. Haack’s second dual Camillo-Zelmanowitz formula,
Let M be an R-module and N, L submodules of M. Assume there is a submodule
K of M manimal with respect to N C K C N + L and the property that there is an
epimorphism g : M]L — M/K with gn™ = n*, where n* : M/X — M/(N + L)
denotes the canonical projection for all X C N + L.

Assume further that there are weak supplements for
{(mi+N,mg+ L) :m +K=(my+L)g} C M/N & M/L,
{m+NNL:m+K=(m-+L)g} CM/(NNL).
Then the following holds:
hdim(M/(NNL)) = hdim{M/N) + hdim(M/L)
+ hdim((N + L)/K) — hdim(M/K)
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Proof: For the proof we refer to [22]. OJ

3.3 Semilocal rings

We have seen in 3.1.10, that modules having finite hollow dimension are weakly
supplemented. By 1.3.2 every weakly supplemented module is a direct sum of a
semisimple submodule and a submodule with essential radical. By 3.1.10 both
summands have finite hollow dimension. A semisimple module having finite hollow

dimension is obviously finitely generated.

Corollary 3.3.1. An R-module M with finite hollow dimension ts a direct sum of
a finitely generated semisimple module and o module having finite hollow dimension

and having an essential radical.

Corollary 3.3.2. (/53, 1.10]) An R-module M with Rad (M) = 0 has finite hollow
dimension if and only if it is finitely generated semisimple.
In this case hdim(M) = lg(M) = udim(M).

Corollary 3.3.3. ([53, 1.11], [23, 7.14]) If M has finite hollow dimension, then
M/Rad (M) is finitely generated semisimple.

Proof: If M has finite hollow dimension so has the factor module M/Rad (M).
Since Rad (M/Rad (M)) = 0 the result follows by the above corollary. O

Remarks: The converse of the last corollary is in general false. For example consider
zQ. Since Rad (Q) = Q, we have that Q/Rad (Q) = 0 is trivially finitely generated

semisimple. But Q/Z has infinite hollow dimension and hence so too does Q.

3.3.4. Hollow dimension and small radical.
Let M be an R-module with Rad (M) < M. Then the following statements are

equivalent:
(a) M has finite hollow dimension;
(b) M is weakly supplemented and finitely generated;

(¢) M/Rad (M) is finitely generated semisimple;
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(d) M/Rad (MY} is finitely cogenerated.
In this case hdim(M) = lg(M/Rad (M)) holds.
Proof: (a) = (c) by 3.3.2; (¢) = (a) by 3.1.10; (a) = (b) since M is finitely
generated if and only if Rad (M) <« M and M/Rad (M) is finitely generated. By
3.1.10 M is weakly supplemented.
(b) = (a) by 1.3.2 M/Rad (M) is semisimple and since M is finitely generated,
M/Rad (M) is semisimple and finitely generated. Hence by 3.1.10 M has finite

hollow dimension.
(¢) & (d) is a well-known fact (see [67, 21.6]). [}

Remarks: The equivalence between (a) and (c) appeared in various papers, e.g. {38],
[53] and [23]. '

The last corollary can be applied to rings. Recall that a ring is called sem:ilocal

if R/Jac (R) is semisimple.
Corollary 3.3.5. For a ring R the following statements are equivalent:

(a) rR has finite hollow dimension;

(b) rR is weakly supplemented;

(c) R is semilocal;

(d) Rg is weakly supplemented;

(e) Rg has finite hollow dimension.

In this case hdim(grR) = lg(R/Jac (R)) = hdim(Rg).

Proof: Follows from 3.3.4 and the fact that (c) is left-right symmetric. O
Remarks:
1. The equivalence between (a) and (c) appeared also in [53, 1.14].

2. The last corollary shows, that semilocal rings and rings with finite hollow
dimension are exactly the same. Furthermore the hollow dimension of a ring
is left-right symmetric and we can set hdim(R) = hdim(gR) = hdim(Rg) =
lg(R/Jac (R)) for any ring R.
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Before we state a summarizing characterization of semilocal rings, we will give a

characterization in terms of hollow dimension:
3.3.6. Characterization of semilocal rings by hollow dimension.
For a ring R the following statements are equivalent:
(a) R is semilocal;
(b) R has finite hollow dimension as a left R-module;
(c) every finitely generated left R-module has finite hollow dimension;
(d) every finitely generated left R-module is weakly supplemented;

(e) every finitely generated, self-projective, left R-module has semilocal endomor-

phism ring;

(f) any injective cogenerator Q) of R—Mod has finite uniform dimension as a
right T-module, where T := End(gQ);

(g) the left-right duals of the statements above.

In this case hdim(R) = lg(R/Jac (R)) = udim(QT)).

Proof: (a) < (b) <(c) clear by 3.1.10 and 3.3.5; (¢) & (d) by 3.3.4; (c) < (e) by
3.4.6 and (a) «<(f) by 3.1.12. O

For the next characterization, we have to define some notions:

Definition. An R-module M is called extending if every submodule is an essential
submodule of a direct summand of M (see [10].

A submodule N of an E-module M is called pure m Mif X @ N - X ® M is
monic for all right R-modules X (see [67, 34.5]). An R-module M is called regular
if every finitely generated submodule of M is pure in M. A ring R is wvon Neumann
regular if and only if it is regular as left (right) module over itself (see [67, 37.6]).
Let s M be a left R-module. For every s € R denote

r.annp(s) == {m € M|sm = 0}.

Moreover write R := R/Jac(R) and for every element r € R write 7 := r+Jac(R) €

R.
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3.3.7. Characterization of semilocal rings.

For a ring R the following are equivalent:
(a) R is semilocal;
(b) R/Jac (R) is finitely cogenerated,
(c) every product of simple left R-modules is semisimple;
(d) for every left R-module M, Soc(M) = {m € M : Jac (R)m = 0};
(e) R/Jac (R) is regular and every regular left R-module is semisimple;
(f) every left R-module M with Rad (M) = 0 is an extending module,
(g) every left R-module M with Rad (M) = 0 is self-injective;

(h) there exists a ring S and an R — S bimodule M, such that udim{(Mg) is finite

and r.anny(r) # 0 for all non-units r € R;

(i) there exists an integer n and o function d : R — {0,--- ,n} such that for all
s,t € R

(1) d(s — sts) = d(s) + d(1 — ts) and
(2) if d(s) =0 then s is a unit in R;

(j) there exists a partial order > on R satisfying the minimum condition, such

that for all s,t € R, if 1 — ts 1s not invertible in R, then s > s — sts;
(k) the left-right duals of the statements above.

Then hdim(R) < n, where n is the integer in (i) and hdim(R) < udim(Ms) where
Mg 1s the module in (h).

Proof: (a) < (b) Clear by [67, 21.6] since a module M is finitely generated and
semisimple if and only if M is finitely cogenerated and Rad (M) = 0.

(a) = (d) Denote Anp(Jac(R)) := {m € M : Jac(R)m = 0} for every M € R—Mod.
Since Jac (R)Anp(Jac {R)) = 0 holds Any(Jac (R)) is a R/Jac (R)-module, hence
semisimple and contained in Soc {M). On the other hand it is well-known that
Jac (R)Soc (M) = 0 holds for all R-modules M (see [67, 21.12]). Thus Soc (M) =
Anyr(Jac (R)).

(d) = (c) If M is a product of simple B-modules, then Jac (R)m = 0 for all elements
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m € M and by (d) we get Soc (M) = M, i.e. M is semisimple.

(c) = (a) R/Jac (R) is a submodule of a product of simple R-modules. By (c) this
product is semisimple and hence R/Jac (R) is semisimple.

(a) = (e) Clearly R/Jac (R) is regular. Let M be a regular left R-module and N a
finitely generated submodule of Jac (R)M. N is pure and so N = Jac (R)N (see [67,
34.9]). By Nakayama’s lemma we have N = 0 implying Jac (R)M = 0. Thus M is
a left R/Jac (R)-module and hence semisimple, and semisimple as a left R-module.
(e) =(a) If R/Jac (R) is regular, then it is regular as an R-module and hence
semisimple.

(a) = (g) Let M be an R-module with Rad (M) = 0. Then Jac (R)M = 0, hence
M is also a left R/Jac (R)-module. Thus M is semisimple as an R/Jac (R)-module
and also as an R-module. By [67, 23.2] M is self-injective.

(g) = (f) Clear (see, for example, [10, 7.2]);

(f) = (a) Put R := R/Jac (R). Then zrR and zR are semiprimitive and hence
extending modules. Hence for each set A, g R™) is a left extending R-module. Thus
gl is a Y-extending R-module. Applying [10, 11.13] this yields, that 1 is semiperfect
and hence semisimple as Jac (R) = 0.

(a) = (h) Let S := R/Jac (R) and note that the image of a non-unit in R is a
non-unit in S. Consider M := § as an R — S—bimodule. Then Mg is semisimple
and udim(Mg) is finite. Since 7 is a non-unit in S whenever » € R is a non-unit
and hence 7 a left zero divisor in S. Thus r.anny(r) # 0.

(h) = (i) Note that r.anny (¢) is a right S-module for all t € R. Set n := udim(Mg)
and define d : R — {0,--- ,n} by d(r) := udim(r.anny(r)g) for all » € R. Then
d(r) = 0 = ranny(r) = 0 = r is a unit in R. For every s,t € R,r.annp(s) ®
r.anny (1 — ts) = r.anny (s — sts) holds. Thus d(s — sts) = d(s) + d(1 — ts).

(i) = (j) For every s,t € R set s > t if d(s) < d(t). This implies for s,t € R and
1—ts a non-unit, d(1 —£s) # 0 and hence d(s — sts) > d(s). Thus s — sts < s holds.
(3) = (a) (see [8, Theorem 1]):

we describe a procedure which yields an element o’ € R, for a given element a € R

with 0 # @ an idempotent in R such that the following three properties hold:
(1) a > a';
(2) {1—a,a—a’,a'} is a complete set of orthogonal idempotents in R;
(3) R(a — @') is a simple left R-module.

Recall that a € Jac (R) if and only if 1 — ba is invertible in R for all b € R. Choose

an element ba € Ra \ Jac (R) minimal with respect to the partial ordering <.
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Let z € R and 1 — xba not invertible in R. By (j) we get that ba > ba — bazba.
Since ba is minimal in Ra \ Jac (R) we get that ba — bazba € Jac (R). Thus we have

proved the following for all z € R:
(%) 1 — zba is not invertible in R implies ba = bazba.

Since ba ¢ Jac(R) there exists an element ¢ € R such that 1—cba is not invertible
in R. Define ¢’ := a — acba and let us check that this element satisfies the above
three properties:

(1) Since 1 — cba is not invertible in R we get by (j) that @ > a — a(cba)a = a'.

(2) Since 1 — cba is not invertible in R we get by () ba = bacba. Thus ¢ba is an

idempotent and hence @ — a' = acha is an idempotent in R.

a'a’ = a’ — a’cba — acba” -+ acba’ch b b ba = @
Thus @' is an idempotent in R and {1 —a,a—a',a'} is a complete set of orthogonal
idempotents in R.

(3) Since @ — &' = acba we have that Rba O R(a—a') = Racba 2 Rbacba = Rba.
We show that [2ba is a simple R-module. Let dba € Rba\Jac(R). Since dba ¢ Jac(R)
there exists an element e € R such that 1 —edba is not invertible. By () we get that
ba = baedba. Hence Rba D Rdba D Rbaedba = Rba holds. Hence Rba is simple.

Let us now consider the following sequence:
1l=ag>a; >ay>... where a; :==a}_, for all 7 > 0.

By (j) this sequence has to stop. Since > satisfies the minimum conditon there exists
a number m such that @, = 0 and {@y — @1,a; — @2, ... ,dm—1 — Gm } 1S & complete
set of orthogonal idempotents in R where each R(&; — @;_,) is simple. Thus R is

semisimple artinian and hence R is semilocal. [J

Remarks: (a)-(d) were taken from [67, 21.15], (¢) was considered in Fieldhouse [12],
(f) and (g) were considered in Hirano et al. [30] and (h) - (k) were obtained by
Camps and Dicks [8].

Corollary 3.3.8. Let R,S be rings and f : R — S be a ring homomorphism such
that non-units v € R are carried to non-units f(r) € S. If S is semilocal then R is
semilocal and hdim(R) < hdim(S).
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Proof: The canonical projection 7 : .S — S/Jac (S) is a ring homomorphism such
that non-units of S are carried to non-units of §/Jac(S). Hence nf : R — S/Jac(S)
is such a ring homomorphism as well. If S is semilocal then S/Jac (S) is semismple
artinian. So let us assume that 5 is semisimple artinian and that there exist a
ring homomorphism from f : B — S such that non-units of R are carried to non-
units of S. We will apply 3.3.7(h) = (a)To show that R is semilocal. Clearly
S is a left R-module by the multiplication 7 * s := f(r}s. Let M := S and as
My is semisimple artinian we get that udim(Ms) = lg(Ms) is finite. It remains
to show that r.anny(r) # 0 for all non-units » € R. Let r be a non-unit in R
then f(r) is a non-unit in S. Consider the descending sequence f(r)S D f(r)2S 2
f(r)3S 2 ---. Since S is artinian there must be a number n € N and an element
s € S such that f(r)" = f(r)**'s and so f(r)*(1 — f(r)s) = 0 holds. Since f(r)
is not invertible we get that 1 — f(r)s # 0. It is easy to see that there must be
a number k < n such that f(r)f(r)5(1 — f(r)s) = 0 with f(r)*(1 — f(r)s) # 0.
Thus f(r)*(1 — f(r)s) € r.anny(r). By 3.3.7 we get that R is semilocal and that
hdim(R) < udim{Mg) = hdim(S) holds. O

Remarks: As a consequence from the last corollary we get that if G is a group and

R a ring such that the group ring RG is semilocal. Then for every subgroup H of
G, RH is semilocal and hdim(RH) < hdim(RG).

3.4 FEndomorphism rings and hollow dimension

In the following we will discuss the relation between the hollow dimension of a
module and the hollow dimension of its endomorphism ring.
The next theorem was obtained from Herbera & Shamsuddin in [29] and uses

Camps & Dicks characterization of semilocal rings (see 3.3.7).

3.4.1. Semilocal endomorphism ring. (/29, Theorem 3])
Let M be an R-module and S := End(M).

1. If M has finite hollow dimension and every epimorphism f € S is an isomor-
phism, then S is semilocal and hdim(S) < hdim(M).

2. If M has finite uniform dimension and every monomorphism f € S is an

isomorphism, then S is semilocal and hdim(S) < udim(M).
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3. If M has finite uniform and hollow dimension, then S s semilocal and
hdim(S) < hdim(M) + udim(M).

Proof: Let f,g € S; then clearly Ker (f) NKer (1 — fg) = 0 and Ker (f — fgf) =

Ker (f) + Ker (1 — fg) since for all z € Ker (f — fgf), ¢ = (z){fg +1 - fg), where
(2)fg € Ker (1 — fg) and (z)(1 — fg) € Ker (f). Thus

Ker (f — fgf) = Ker (f) & Ker (1 — fg).

Dually, let Coke (f) := M/Im (f); then M = Im (gf) + Im (1 — gf) = Im (f) +
Im(1—gf)and Im (f — fgf) =Im (f) NIm (1 — gf) implies

Coke (f — fgf) =~ Coke (f) & Coke (1 — gf).
(1) Let n; := hdim(M); define
d1:S—>{0,1,... ,?’Ll},

f — hdim(Coke (f)).

Then for all f,g € S, di(f — fgf) = di{f) + d1(1 — gf) holds and whenever 0 =

di(f) = hdim(Coke (f)), then Im (f) = M implies f is an epimorphism and by as-

sumption an isomorphism. By 3.3.7(1) S is semilocal and hdim(S) < ny = hdim(M).
(2) Let ng := udim(M); define

dy: S = {0,1,... ,na},

= udim(Ker (f)).

Since for every f,g € S, f gives an isomorphism between Ker (1 — fg) and
Ker (1—gf), we get do(1— fg) = do{1—gf). Hence do(f — fgf) = do(f)+da(1—gf)
and whenever 0 = dy(f) = wudim(Ker (f)), then Ker (f) = 0 implies f is a
monomorphism and by assumption an isomorphism. By 3.3.7(i) S is semilocal and
hdim(S) < ny = udim{M).
(3) Define
d=dy, +dy:S—{0,1,...,n1 +n2}.

For every f,g € S, d(f — fgf) = d(f) + d(1 — gf) holds. Assume d(f) = 0, then
di(f) = 0 implies Ker (f) = 0 and do(f) = 0 implies Im (f) = M. Hence f is an
isomorphism. Again by 3.3.7(1) S is semilocal and hdim(S) < udim(M)+hdim(M).
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Remarks: Since a self-projective module with finite hollow dimension has
the property that every epimorphism is an isomorphism (see 3.1.10), we get
hdim(End(M)) < hdim(M) as a corollary of the above theorem. We will show
that more generally hdim(M) = hdim(Hom (P, M)) holds for a self-projective mod-
ule P and a finitely P-generated module M.

The next lemma is due to Garcia Hernandez and Gomez Pardo; it will allow us

to prove Proposition 3.4.3 below.

Lemma 3.4.2. Let M be a finitely generated R-module and {Ny, ..., Ny} a coin-
dependent family of proper submodules. Then there exist finitely generated submod-

ules Ly C N; for eachi € {1,... ,m} such that {L1,...,Ln} forms a coindependent
famaly of M.

Proof: (see proof of [15, Theorem 4.2]) Let M = .7 | Ra; for some generating
elements {x1,...,z,} © M. For each k € {1,... ,m} and each 7 € {1,... ,n} we
have

Rz; C N+ [ N;.
J#k
Thus there exist pairs of elements y;, € Ny and 2y, € ;2 IV; such that z; = yi+2zix
holds. Note that Ry C N and Rz C Nj for all § # k holds. Define for each
Ee{l,...,m}
L, = Z Ryik + Z (Z RZ”) .
i=1 j#k \i=1

Clearly Ly C Ny is finitely generated. Since for each k € {1,... ,m}:

L+ (VL 2) Ryp+Y Rz 2 Y Ray=M

VEZS i=1 7=1 =1

holds (because 3°7_; Rya € Ly and T Rz © Ny L) we get that {Ly, ..., Ly}

is a coindependent family of proper finitely generated submodules of M. U

Definition. Let M and P denote left R-modules and let S = End(P). For every
S-submodule X Cg Homp (P, M) set

(P)X := > Im(f).

fex

Remarks:
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(1) (P)Hom (P,N)=Tr(P,N) C N holds for every N C M.

(2) Assume that P generates M, then M = T»(P, M) holds by [67, 13.5]. Let
N C M and assume Hom(P,N) = Hom(P, M). Then

M =Tr(P,M) = (P)Hom (P, M) = (P)Hom (P, N) = Tr(P,N) C N.

implies N = M. Hence N is a proper submodule of M if and only if Hom (P, N)
is a proper submodule of Hom (P, M).

(3) Assume P to be self-projective and X a finitely generated S-submodule of
sHomp (P, M). Applying [1, Proposition 4.9] we get: X = Hom (P, (P)X).
(The notation in [1] is : {5(N) = Hom (P, N) and r,(X) = (P)X.)

Proposition 3.4.3. ({15, Theorem 4.2])

Let P be a self-projective R-module, S := End (P) and M o P-generated R-module
with sHom (P, M) finitely generated as an S-module. Then the following statement
holds:

hdim(sHompg (P, M)) < hdim(gM).

Proof: Assume that hdim(sHom (P, M)) > m. Then there exists a coindepen-
dent family {Ny,..., Ny} of proper submodules of Hom (P, M). By Lemma 3.4.2
there exist finitely generated submodules L; C N; such that {L;,..., L} form a
coindependent family of submodules of Hom (P, M).

Define I; := (P)L; for every 1 < ¢ < m. Since L; is finitely generated we get by
above remark (3) that L; = Hom (P, K;) holds. Hence K; is a proper submodule as

L; is proper by above remark (2). From the coindependency of the Lis it follows,
that:

Hom (P,M) = Hom (P,K;)+ (| Hom (P, ;)
J#
= Hom (P, K;) + Hom (P, () ;)
J#t
C Hom (P, K; + ﬂ K;).
it

Thus by above remark (2), M = I + N;zi K; holds for every 1 < i < m. We
conclude that {Ki,..., K} is a coindependent family of proper submodules and
that hdim(M) > m. O
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Remarks: sHompg (P, M) is finitely generated as an S-module if for example M is
isomorphic to a finite direct sum of copies of P or more generally if M is finitely

P-generated. In this case there exists an exact sequence

Pt —— M — 0,

Since P is self-projective, the covariant functor Hom (P, —) is exact with respect to

this sequence (see {67, pp. 148]). Thus we get the exact sequence
Hom (P, P*) —— Hom (P, M) —— 0.
Hence Hom (P, M) is finitely generated as an S-module because S* ~ Hom (P, P*).

The next definition is due to Takeuchi [60].

Definition. An R-module P is called cofinitely M -projective if P is projective for

every exact sequence

M >y N > 0

with N finitely cogenerated and exact row, there exists a homomorphism g from P
to M, such that gh = f.

A similar definition can be found in Hiremath [31].

We will need a technical lemma to prove a theorem due to Takeuchi.

Lemma 3.4.4. ([60]) Let P be cofinitely M -projective and {Ny, -+, N,} a coinde-
pendent family of proper non-zero submodules of M, such that M /N; is finitely cogen-
erated for every 1 <i < n. Then for any homomorphisms fi,- - , fn in Hom (P, M)

there ezists a homomorphism g € Hom (P, M) such that g — f; € Hom (P, N;) for
every 1 <17 < n.

Proof: Define f: P — @, M/N; by

p=r ((p)fr + Ny, - - , (0)fn + Np)
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for every p € P and consider the following diagram:

P

lf

M s @, M/N; —— 0.

where 7 denotes the canonical projection. Since {Ny,---, N, } is coindependent 7
is epimorph and there is a homomorphism g : P — M such that gn = f as P is
cofinitely M-projective. Let m; : M — M/N; for all i. Then (g — fi)m = 0 and
therefore we have (P)(g — f;) C N; for every 7 and g — f; € Hom (P, N;). O

Proposition 3.4.5. ([60, Proposition 8]) Let P be a cofinitely M -projective R-
module and M be a P-generated R-module. Then the following statement holds:

hdim(gM) < hdim(sHom (P, M)).

Proof: Tet L be a proper submodule of M. Then L is contained in a proper
submodule N of M, such that M/N is finitely cogenerated. Assume {L;, -, L.}
is a coindependent set of proper submodules of M. Then every submodule L; is
contained in a proper submodule Nj;, such that {Ny,---, N} is a coindependent
set of submodules. Since P generates M and [V; is proper in M, we have that
Hom (P, N;) is a proper submodule of Hom (P, M) (see remark (2) before 3.4.3).
Let f € Hom (P, M); then by the preceding lemma, for every ¢ there exists a
g; € Hom (P, M) such that g; — f € Hom (P, N;) and g; — 0 € Hom (P, N;) for every
j # i. Thus
Hom (P, N;) -+ (] Hom (P, N;} = Hom (P, M)
J#

for every 7 and hence {Hom (P, Ni),---,Hom (P, N,)} is a coindependent set
of proper non-zero submodules of Hom (P, M). This yields hdim(gM) <

hdim(sHom (P, M)). O

As a corollary to 3.4.3 and 3.4.5 we get the following.
Corollary 3.4.6. (see [60])

1. If P 1s self-projective and M finitely P-generated, then

hdim(M) = hdim(sHompg (P, M)).

-
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2. If M is a self-projective R-module, then hdim(M) = hdim(End(M)).

Proof: (1) Since P is self-projective and M finitely P-generated we get that
Hom (P, M) is finitely generated as an S-module (see remarks after the proof of
3.4.3). Hence we can apply 3.4.3. On the other hand since M is finitely P-generated,
there exists an integer k£ and an epimorphism from P* to M. Since P is self-projective
it is P*-projective and hence M-projective (see [67, 18.2]). Thus it is cofinitely M-
projective as well and we can apply 3.4.5;

(2) follows from (1). O

BRemarks:

1. A self-projective module has finite hollow dimension if and only if its endo-

morphism ring is semilocal (see 3.3.5 and 3.4.6).

2. Gupta and Varadarajan proved in [21, 4.22] that if P is a finitely generated
self-projective R-module and M a P-generated module such that P is M-
projective. Then hdim(M) = hdim(Hom (P, M)) holds.

Takeuchi’s result shows, that hollow dimension is invariant under equivalences.
We show this next: let M be an R-module and S a ring. By [67, 46.2], ¢[M]
is equivalent to S—Mod if and only if there exists a finitely generated projective
generator P in o[M] with End (P) ~ S. Moreover the equivalence is given by
the functor sHomp (P, —) and the inverses P®g—. A finitely generated projective

generator in o[M] is called a progenerator.

Corollary 3.4.7. Let M be an R-module and S a ring such that o[M] is equivalent
to S—Mod with progenerator P in o[M] and End (P) ~ S. Then we have for every
finitely generated R-module N in o[M]: hdim(N) = hdim{sHompg (P, N))

and for every finitely generated S-module T: hdim(T) = hdim(P®gT).

Together with the characterization of semilocal rings by Camps and Dicks see

3.3.7(a) < (z) and Takeuchi’s result we can generalize Herbera and Shamsuddin’s
Theorem [29, Theorem 1].

Corollary 3.4.8. Let M be a self-projective R-module and let S := End(M). Then

the following statements are equivalent.
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(a) M has finite hollow dimension.

(b) There exists an integer n and a function d : S — {0,---,n} such that for all
figes

(i) d(f — fgf) = d(f) +d(1 - gf) and
(i) if d(f) = 0 then f is an isomorphism.

We will consider properties of modules with semilocal endomorphism ring. We
have seen that examples of such modules are modules with finite hollow dimen-
sion whose surjective endomorphisms are bijective or modules with finite uniform

dimension whose injective endomorphisms are bijective (e.g. artinian modules).

3.4.9. Bass’ Theorem.

Let R be a semilocal ring, a € R and I o right ideal of R. If aR+ I = R, then there

exists an v € I such that a + 7 15 a unit.

Proof: (The proof we will give is due to Swan and was obtained from [34].) Since
an element » € R is a unit in R if and only if 7 is a unit in R/Jac (R) we may
replace R by R/Jac (R) and assume that R is semisimple. Since R is semisimple we
are able to find a right ideal J in I such that 7 = (aRNI)@ J. Thus R=aR & J.

Consider the exact sequence:

0 v K s R — oR v 0

with f(r) :=ar for all7 € R and K := Ker (f). Since aR is a direct summand of R
and projective, the sequence above splits. Hence there is an A : aR — R such that

R=Im(h)® K. Let g : R — K be the canonical projection onto K. Thus
(f,9) : R—aR®K

is an isomorphism. Since R = aR @ J, there exists an isomorphism v : K — J.

Consider the composition
RY% sRo Kk Y sRJ =R

mapping an element s € R to as+yg(s). Since this composition is an isomorphism,

the image of 1 € R is invertible in R. Thus

al+vg(1)=a+r
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is a unit, with r :=vg(1) € J C I. O

Remarks: Clearly Bass’s Theorem holds also for left ideals [ of R as the property

semilocal is left-right-symmetrical.

Definition. A ring R is said to have right stable range 1 if, whenever aR+bR = R

for elements a,b € R, there exists an element » € R such that a + br is a unit.
By Bass’ Theorem, a semilocal ring has right (left) stable range 1.

Definition. An R-module is said to cancel from direct sums if whenever M @ N ~
M & L for R-modules NV and L then N ~ L holds.

The next theorem is due to Evans and was obtained from [34].

3.4.10. Cancellation Theorem.(/34, 20.11])
Let M be a left R-module such that End(M) has right stable range 1. Then M

cancels from direct sums.

Proof: Assume M & N ~ M @ L holds for left R-modules NV and L. Then we get
a splitting epimorphism h = (f,g9) : M & N — M with Ker (h) ~ L. Since h splits
there exists a homomorphism h' = (f',¢') : M — M & N such that

idy =h'h=f'f+4gg

holds. Thus S = f'S + ¢'gS with S := End (M). Since S has right stable range 1

there exists an element e € S such that
u:= f'+(g'g)e
is invertible in S. Define k: M & N — M by k := (1, ge). Then
Wk =(f',9)(1,g¢)=f"+(g'g)e =

Thus the following diagram is commutative:

0 — Ker(h) —— M&N — M

ok

0 — Ker (k) — M&N —2y M 0

~
as}

~

~
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Since the splitting homomorphism for h is A’ and k is u™1h/, we get
Ker (k) ~ (M & N)/Im (h') ~ Ker (h) ~ L.

On the other hand the mapping n — (—(n)ge,n) € M @& N for all n € N gives an
isomorphism between N and Ker (k). We conclude N ~ L. [J

Lemma 3.4.11. ({11, Lemma 1.4]) Let M be an R-module and S = End(M}).
Then there exists a bijection o between the set of all finite direct-sum decompositions

of rRM and finite direct-sum decompositions of ¢S
Qo {Mz}] — {Sei}[

where M = @; M;, I a finite set and e; = m;e; is an tdempotent (w; : M — M; and
€; 1 M; — M denote the canonical projection, respectively wnclusion). The inverse
mapping o~ is given by

{Sitr = {(M)Si}s
where S = @7 S; and I a finite set. Then the following holds for all decompositions
M=®;M; andi,j€l:

(1) M; is indecomposable if and only if S; is indecomposable;

(2) M; >~ M; as R-modules if and only if S; ~ S; as S-modules.

Proof: Clearly 55 = @; sSe; holds whenever M = @; M; and M = P;(M)S; holds
whenever S = @;S;. Further we have o *(a(M;)) = a(Se;) = (M)Se; = M; and
ala™(8;)) = a((M)S;) = S; since S; = Se; for an idempotent e; € S.

(1) and (2) are easy to check. O

3.4.12. The n™ root uniqueness property.(/11, Proposition 2.1])
Let M and N be left R-modules such that End(M) and End(N) are semilocal. Then
for any n € N the following holds:

M"™ >~ N"= M ~ N (n™ root uniqueness).

Proof: Let L = @, M; = @, N; with M; ~ M and N; ~ N for all
i€ {l,...,n}. By Lemma 3.4.11 we get two decompositions of the semilocal endo-
morphism ring S = End(L). Write S = @}, Se; = D, Sf; where ey,... ,en

f\r
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and fi,...,f, are orthogonal idempotents such that >7 ,e; = >0, fi = 1g,
End (M) ~ Se; and End (N) =~ Sf; for all 1 < < n.

Let S := S/Jac(S). For all idempotents e, f € S the following holds: Se ~ Sf <
Se ~ Sf. (see [67, 21.17(3)]). Thus we get two decompositions S = @7, Se; =
@1, Sf; in which every Sg; ~ Se; and Sf; ~ Sf;. But since S is semilocal, the ring
S is semisimple artinian and therefore S&; ~ Sf;. Thus End(M) ~ Se; ~ Sf; =~
End(N) yields M ~ N by 3.4.11(2). O

The number of isomorphism classes of direct summands of a self-projective mod-
ule M is bounded if the module has finite hollow dimension. As a generalization of

[11, Proposition 2.1(ii)] we get the following theorem.

3.4.13. Projective direct summands.
Let M be an R-module with finite hollow dimension and small radical. Then the

number of non-isomorphic M-projective direct summands of M is bound by 2% with
k= hdim(M).

Proof: If M has finite hollow dimension, then M/Rad (M)} is finitely generated
semisimple (see 3.3.3). Let M/Rad (M) = E, & --- ® E;, with E; simple for all
1 <i<kand k= lg(M/Rad (M)) < hdim(M). Let P and @ be two M-projective
direct summands of M. Since M has small radical P and @ have small radical.
Then

P/Rad (P) ~ B @ ... @ E®) and Q/Rad (Q) ~ B @ ... @ EW)

where z;,9; € {0,1} for all ¢ € {1,...,k}. If ; = y; for all 7, then P maps
epimorphically onto ) as P is Q-projective and Rad (Q) <« Q. Since @ is P-
projective; ¢} is isomorphic to a direct summand of P. On the other hand, applying
the same argument, P is isomorphic to a direct summand of Q.

Hence hdim(Q) < hdim(P) and hdim(P) < hdim(Q) implies hdim(P) =
hdim(Q). Assume P ~ Q @& X. Then hdim(P) = hdim(Q) + hdim(X) implies
hdim(X) = 0 and X = 0, because hdim(P) is finite. Hence P ~ Q.

Thus we get: P 2 @ implies that there exists an index 7 € {1,... ,k} such that
x; # y; holds. There are at most 2% distinct n-tuples (zy,...,z;) with z; € {0,1}.

Thus there are at most 2% non-isomorphic M-projective direct summands of M. O

As a corollary of the above theorem we get a result by A.Facchini, et al. (see
[11, Proposition 2.1}).
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Corollary 3.4.14. Let M be an R-module such that S := End(M) is semilocal and
k = hdim(M). Then M has at most 2% isomorphism classes of direct summands.
Moreover if M is artinian then k < udim(M).

Proof: The number of non-isomorphic direct summands of M is equal to the number
of non-isomorphic direct summands of S = End(M) by Lemma 3.4.11. By Theorem
3.4.13 this number is finite and at most 2* where k = lg(S/Jac (S)) = hdim(S). If
M is artinian, then we have hdim(S) < udim(M) by 3.4.1(2). O

With the same proof as in [14] we are able to generalize slightly a theorem by
Fuller and Shutters.

3.4.15. Finitely generated indecomposable projective modules in o[M].
Let M be an R-module with finite hollow dimension and small radical. Then there

are only finitely many isomorphism classes of finitely generated indecomposable pro-

jective modules in o[M].

Proof: (see [14, Theorem 9]) By 3.3.4 M is finitely generated and M/Rad (M) is
semisimple. Let M/Rad (M) ~ E1 & --- @ E, with E; simple forall 1 < i < n
and n := hdim(M). Let P and @ be non-zero finitely generated indecomposable
projective modules in o[M]. Hence there exist positive integers k& and [ such that P

is a direct summand of M* and @Q is a direct summand of M.
P/Rad (P) ~ ngl) @@ E7(zw") and Q/Rad (Q) ~ E£y1) ®-D Er(ly")

where x; and y; are non-negative integers. If x; > y; for all ¢ € {1,... ,n} then
P/Rad (P) maps epimorphically onto @/Rad (Q) and since P is Q-projective P
maps onto (). As the canonical projection @ — @Q/Rad (@) is a small epimorphism
P maps epimorphically onto @ (see {67, 19.2]). On the other hand, @ is P-projective
implies that @ is isomorphic to a direct summand of P and hence P ~ @Q as P is

indecomposable. Thus we have:
(x) PQ@&ax; =y, forallie {1,... ,n} & z; >y, foralli e {1,... ,n}.

The next argument is of a combinatorical nature: Let X denote the set of all n-
tuples (z1, ..., z,) that correspond to the isomorphism classes of finitely generated
indecomposable projective modules in o[M]. Assume X is infinite, then it must be

unbounded in at least one component. Renumbering E1, ... , E, we may assume X
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is unbounded in the first component to obtain an infinite sequence in X:

((mlﬂmzil s 1$77-i))'i€N
with

Ty, < T1, <o, <
By () all n — 1-tuples (@s,, ... ,Z,,) must be distinct. Otherwise assume that there
are two equal n — 1-tuples (2g;,...,%y;) and (zg,,... ,%s;) and let z;, < zy; then
zy;, < ay; for all k. Thus by () these n-tuples must be equal - a contradiction. Thus
by renumbering Fs, ... , F, we can find a subsequence

((mlij ) 2:2'}' gy a:ﬂ-ij ))jEN
with
T1;, < Ty, < T, <+ and T, < Tz, < T2, <L v

Continuing this process n times we see that X must be unbounded in every compo-
nent. Hence we obtain two n-tuples (zy,...,z,) and (y1,...,Yn) With z; > y; for

allt € {1,...,n}. But this contradicts (). Hence X must be finite. O

As a consequence we get Fuller and Shutter’s original version of above theorem

as a corollary.

Corollary 3.4.16. A semilocal ring has only finitely many isomorphism classes of

finitely generated indecomposable projective modules.

Remarks: Summarizing we have seen, that modules with semilocal endomorphism
ring cancel from direct sums, have the n'® root property and have only a finite
number of non-isomorphic direct summands. Moreover there are only finitely many
non-isomorphic finitely generated indecomposable projective module in o[M] if M

has finite hollow dimension and a small radical.

Not every module with semilocal endomorphism ring has finite hollow dimension.

This is shown by the next example taken from [29, Example 10].

Example 3.4.17. (1) Let R be a ring that can be embedded in a local ring S, then
R can be realized as the endomorphism ring of a local module.
(2) There exists a cyclic module with infinite hollow dimension whose endomorphism

ring is semilocal.
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Proof: (1) Let R C S and consider the (S, R)-bimodule M :=5 Hompg (S, zS/R)r
where the action of S on M is defined as sf : z — (sz)f and the action of R on
M is defined as fr:z — (zr)f foralls € S,f € M,r € R and v € S. Consider
the (S, R)-submodule N := {f € M|(R)f = 0}. Clearly the canonical projection
g rS — rS/Risin N. For all s € § we have sN C N < s € R since whenever
sN C N then (s)mg = (1)swg = 0 implies s € R. On the other hand if s € R, then
RsC Randsosfe Nforall f € N. Clearly f € N < fR C N holds. Let

S M 0 N
T = and I := .
(O R) (O R)

Then I is a right ideal in 7. The idealizer I’ of the right ideal I is defined as
I':={t € T:tI C I} Hence the idealizer of I is

s (RN
0 R

s f
because an element ( 0 / ) is in I' if and only if sN C N and fR C N.
,

Hence s € R and f € N by the foregoing. Applying [51, Proposition 1] we get
End(T/I) = I'/I = R. Every proper right ideal of T' containing I is of the form

0
taining IV such that JM C K. Now assume that S is local. Then J C Jac(S) holds
for every right ideal J of S. Hence every right T-submodule of T/I is contained in
Jac (S)
™
(2) Assume R is semilocal and S is not semilocal {e.g. R := K a field and

S := K[X]), thus S allows an infinite coindependent family {A;}n of right ideals.

J K
( B ) , where J is a proper right ideal of S, and K is a submodule of M con-
M . . . . .
R ) Thus 7'/I is a local right T-module with endomorphism ring R.

A M
The right ideals of T', ( 0 R ) will give an infinite family of coindependent
N

ic
submodules of T'/I. Thus 7'/ has infinite hollow dimension, but its endomorphism

ring is the semilocal ring R. [J

Using the fact, that epimorphisms in modules with finite hollow dimensions are
small (see 3.1.10) we can dualize [10, 5.16].

3.4.18. Endomorphism rings and artinian projective covers.
Let M be an indecomposable R-module with an artinian projective cover P in o[M].
Then S := End(M) is local and Jac (S) is nil.
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Proof: An artinian module is amply supplemented, thus P is semiperfect in o[M]
(see [67, 42.3(1)]). M is a factor module of P and so artinian and semiperfect in
o[M] as well. Let f € S. The descending chain

Im(f) DIm () D>Im (f*) D ---

of submodules of M becomes stationary and hence Im (f™) = Im (f™*!) for some
n € N. For K = Ker (f*) we have M = I + Im (f™). Since (K)f C K, f induces
an epimorphism f : M/K — M/K,(m + K) + (m)f + K. Since M/K has finite
hollow dimension, we get by 3.1.10 that f is small. As P is semiperfect every factor
module of P has a projective cover. Let P, be a projective cover of M/K with small
epimorphism 7 : Py — M/K. Since (Py,n) and (P, 7 f) are projective covers of
M/K we get an automorphism g : Py — P, such that gm = 7 f (see [67, 19.5]).

We show, that f is an automorphism. Let L := Ker (v f) C Py. For every z € L
we have (z)grf = (z)nff = (0)f = 0. Thus Lg C L holds. Since L is artinian
the chain Lg D Lg? D Lg® O --- has to stop. So there is a number & such
that Lg* = Lg*t!. But since g is a monomorphism, we get L = Lg. This yields
Ker (nf) = L = Lg = (Ker(gm))g C Ker (). Thus f is a monomorphism and
hence an automorphism.

Consider an arbitrary element m € Ker (f**), then (m)f" € K and hence (m +
K)f* = 0. Since f is monomorph, m € K holds showing K = Ker (f") = Ker ().
Since Im (") = Im (/") holds we get M = Im (/™) & Ker (™).

But as M is indecomposable Im (f™) = 0 or Ker (f*) = 0 must hold. Thus f is

nilpotent or an isomorphism. [J

Remarks: A similar proof of the above theorem can be found in Takeuchi [58].

3.5 Chain conditions and hollow dimension

In this section we will state some results about the relationship between chain con-
ditions and hollow dimension. We will need the first two lemmas to prove our first

theorem of this section.

Lemma 3.5.1. Let M be an R-module and Ny C No C M submodules of M such
that N1 and Ny have the same supplement in M. Then Ny lies above Nj.

Proof: Let L be a supplement of N; and Ny. Then M = Ny + L = Ny + L implies
Ny = Ny +(Ny N L). Assume that there is a submodule X of M with M = N, + X.
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Then M = Ny + (NoNL)+X =N+ X as NN L < L. By 1.1.2 NV, lies above N,
in M. O

Lemma 3.5.2. Let M be an R-module and { Ny} a coindependent family of proper
submodules of M. Let p € A and assume that N, has a weak supplement L in M.

Then {(L + (Nx N N,))/L}a\(u @s a coindependent family of proper submodules in
M/L.

Proof: Let A" := A\ {p} and A e A'. f M = L+ (NxNN,) then N, = (N, N L)+
(NxNN,) with N, N L < M since L is a weak supplement of N, in M. Hence

MZN)\—FN#:N)\-{—(N”QL):N)\

holds. This is a contradiction to Ny being a proper submodule. Moreover for A € A/
and a finite subset F C A"\ {\} we have:

(L+(NANN))+ (N(E+(N;AN,)) 2 L+ (NaNN,)+ (ﬂ NmNﬂ>
el iCF

= L+N,m(NA+ N Ni)

ieFu{u}
= L+N,=M

Let us recall that a coclosed submodule N of a module M has no proper sub-
module K such that N lies above K (i.e. N/K < M/K).

3.5.3. Chain conditions on coclosed submodules.([59, 4.5, 4.6, 4.11])
Let M be an R-module.

1. If M has finite hollow dimension then M satisfies DCC and ACC on coclosed

submodules.

2. If M is amply supplemented then the following are equivalent:

(a) M has finite hollow dimension;
(b) M has DCC on coclosed submodules;
(c) M has ACC on coclosed submodules.
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Proof: (1) If M has finite hollow dimension, then for every descending chain
Ni D Ny D --- of submodules of M, there is an integer n, such that N, lies
above Ny for every k > n (see 3.1.2(d)). If the N; are coclosed, then this yields
Np,=Npforallk >n. Let 0 = Ny C Ny C Ny C -+ be an ascending chain of
coclosed submodules of M. Since N does not lie above Ny_; for all & > 0 we get
by 3.1.3 that M contains an infinite coindpendent family of submodules.

(2) Recall that coclosed submodules of a weakly supplemented module are supple-
ments (see 1.2.1). (a) = (b), (¢) clear by (1).

(b) = (c) If there is an ascending chain N; C N, C - of coclosed submodules of
M, then, by hypothesis, for every integer 4, there are supplements L; of NN;, such
that Ly D Ly D ---. Supplements are coclosed, so there is an integer n, such that
L, = L, for every k > n. By Lemma 3.5.1, N lies above N,, for every k > n and
thus N,, = NV, because IV} is coclosed.

(c) = (a) Assume that M contains an infinite coindependent family {Ny} of proper
submodules. We show by induction that there exists a strictly ascending chain of

supplements

L1CL2CL3C"'

in M such that M /Ly contains an infinite coindependent family of proper submod-
wles for all £k € N. Let p € A, A .= A\ {t} and L, a supplement of N, in M. By
Lemma 3.5.2 we know, that {(L, + (Nx N N,))/L1}a is an infinite coindependent
family of proper submodules of M/L;. Now assume k > 1 and there exists an as-
cending chain Ly C Ly C - -+ C Ly, such that each L; is a supplement in M and M/L;
contains an infinite coindependent family for all 1 < i < k. Let {Ny/Ly}s be an
infinite coindependent family of proper submodules of M/Ly. Let p € A and choose
a supplement L' of N, in M. Let Ly, := Ly +L'. Then Ly 1/Ly,+ N,/ Ly = M/ Ly
holds. As N, N L' « L' we get

(Lgs1 NN/ Ly = (L, + (L' N N,))/ Ly, < (Ly + L)/ Ly = Lyy1/ Ly

Thus Ly1/Ly, is a supplement of N, /Ly in M/Ly. Applying Lemma 3.5.2 M/ Ly
contains an infinite coindependent family. Hence if M contains an infinite coin-

dependent family of proper submodules we can construct an ascending chain of

supplements in M. O
Remarks:

1. M need only to be supplemented for (¢) = (a).
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2. Takeuchi defined in [59, pp 18] the notion of a supplement composition series:
O=LyCclyCLyCc---CL,=M

such that for all 1 < ¢ < n L; is a supplement in M and there exists no
supplement between L; and L;. If M is supplemented this is equivalent to
L; is a supplement in M and L;./L; is hollow for all 1 <7 < n. Let

s.lg(M) = sup{k : there exists a supplement composition series of length k inM }.

Takeuchi proved in [62, 4.13] that for a supplemented module M hdim(M) =
s.lg(M) holds. Moreover Varadarajan proved a similar result in [62, 2.28].

In [6] Camillo gave a characterization of modules whose factor modules have
finite uniform dimension. We will examine a dual version of Camillo’s result in
terms of hollow dimension.

Our first observation is easy, but useful.

Lemma 3.5.4. Let M be an R-module. Then Soc (M) is finitely generated if and
only if there exists a submodule K of M such that M /K is finitely cogenerated and
Soc (K) = 0.

Proof: (=) Let K be a complement of Soc (/) in M. Note that K N Soc (M) = 0,
so Soc(K) =0, and KX ®Soc(M) < M. Since K is closed in M, (Soc(M)@ K)/K is
a finitely generated semisimple essential submodule of /K. Hence M/K is finitely
cogenerated as Soc (M/K) = (Soc (M) & K)/K.

(«<=) Since K N Soc (M) = 0, we have Soc (M) =~ (Soc (M) @ K)/K C Soc (M/K).
Hence Soc (M) is finitely generated. O

Let us state Camillo’s result (see [6]) and extend it a little bit (property (d)).

3.5.5. Modules whose factor modules have finite uniform dimension.

The following statements are equivalent for an R-module M :
(a) Every factor module of M has finite uniform dimension;
(b) every factor module of M has finitely generated socle;

(c) every submodule N of M contains a finitely generated submodule K such that

N/K has no mazimal submodules;




CHAPTER 3. HOLLOW DIMENSION 70

(d) every non-zero factor module M/N of M, has a finitely cogenerated factor
module M/K such that K /N has no simple submodules.

Proof: For (a),(b),(c) see [10, Theorem 5.11]. For (b) < (d) apply Lemma 3.5.4. [

Remarks:

1. Modules whose factor modules have finite uniform dimension are also called

q.f-d. (quotients are finite dimensional).
2. Properties (c) and (d) in Theorem 3.5.5 can be seen as dual to each other.

3. A module is called a Mazmodule if every non-zero factor module contains a
maximal submodule. It can be shown that M is a Maxmodule if and only
if every submodule has small radical (see [57]). Moreover every submodule
of a Maxmodule is a Maxmodule. Thus we see by property (c) from the
above theorem that a Maxmodule whose factor modules have finite uniform

dimension is noetherian.

Trying to state a similar theorem for hollow dimension we get the following:

3.5.6. Modules whose submodules have finite hollow dimension.
Let M be an R-module. Consider the following statements.

(i) Every submodule of M has finite hollow dimension.

(i1) For every submodule N of M, N/Rad(N) is finitely cogenerated (and hence

finttely generated, semisimple).

(1i1) Every non-zero factor module M/N of M has a finitely cogenerated factor
module M /K such that K/N has no simple submodule.

(iv) Every factor module of M has finite uniform dimension.

Then the following holds: (i) = (ii) = (i1i) & (iv).

Moreover, if N/Rad(N) has essential socle for every N C M, then (ii1) = (i)
holds. Also if Rad(N) <« N for every N C M (e.g. M 1s a Mazmodule), then
(i1} = (i) holds.
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Proof: (i) = (ii) For a module N with finite hollow dimension N/Rad(N) is finitely
generated and semisimple by 3.3.3.

(ii) = (iii) Let N be a proper submodule of M. Then Soc (M/N) = H/N for some
H C M. Since H/N is semisimple it follows that Rad(H) € N and hence H/N
is finitely generated since it is a factor module of the finitely generated semisimple
module H/Rad(H). By Lemma 3.5.4, there exists a submodule K/N such that
K /N has no simple submodules and M /K is finitely cogenerated.

(iii) < (iv) By Theorem 3.5.5 above.

If N/Rad(N) has essential socle for every N C M then:

(iii) = (ii). Let N be a submodule of M. Then, by assumption, for every N C M,
M/Rad(N) has a finitely cogenerated factor module M/K such that K/Rad(N) has
no simple submodules. So (N N K)/Rad(N) has zero socle and is a submodule of
N/Rad(N) having essential socle. Hence N N K = Rad(N) yielding N/Rad(N) =
N/(NNK)~ (N + K)/K is finitely cogenerated as M/K is finitely cogenerated.
If Rad(N) < N for every N C M, then:

(i1) = (i) hdim(N) = hdim(N/I) holds for K < N (see 3.1.10). Thus hdim(N) =
hdim(N/Rad(N)) < oo for every submodule NV of M. [

Remarks:

1. It is not true that a module M with finite hollow dimension has finite uniform

K V
dimension. For example consider 0 K where K is a field and ¢V a

vector space. Then hdim(R) = 1 as R is local but udim(gR) is finite if and
only if dimg (V) is finite.

2. In general, the converse of (iv) = (i) is false. For example consider Z: 37 is
noetherian, hence zZ has property (iv), but not property (ii) since 32/ Rad(z7Z)

is not semisimple.

3. If a module M has property (i) of the theorem above, then every subfactor
of M has finite uniform and finite hollow dimension and hence a semilocal

endomorphism ring by the previous section.

Recall that a module is called wuniserial if its lattice of submodules is linearly

ordered.

Proposition 3.5.7. Let M be an R-module. Then the following statements are

equivalent:
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(a) M is uniserial;
(b) every non-zero submodule of M is hollow;

(c) every non-zero factor module of M is uniform.

Proof: (a) = (b) Clear, since for two proper submodules K, Lof M, K+L =L # M
or K + I, = K # M holds.

(b) = (c) Let 0 # N C M and assume LN N = 0 for a submodule L C M. Then
N& L C M. But since N @ L is hollow we have L = 0. Hence M is uniform. Since
factor modules of hollow modules are hollow the same argument can be applied to
any factor module of M.

(c) = (a) Let K # L be non-zero proper submodules of M. By hypothesis M /(K N
L) is uniform and K/(K NL)NL/HK NL) = 0 implies KX = KNL C L or
L=KnNnLCK.O

Recall the definitions of modules with AB5* and completely coindependent fam-
ilies from Chapter 1.

Lemma 3.5.8. Let M be an R-module and { Ny} a completely coindependent fam-
ily of proper submodules in M. Let N := Ny Nx. Then {N)/N} is a completely
coindependent family of proper submodules of M/N and if |A] = oo, then M/N

contains an infinite direct sum of submodules.

Proof: Clearly {N,/N}, is a completely coindependent family in M/N. Thus
by induction one can easily see, that for every finite subset J C A there exists a
decomposition
MN =~ (@(M/Nj)) ® (M/ n Nu) .
jed peEA\T
If |A] = oo, then M/N cannot have finite uniform dimension and must contain an

infinite direct sum of submodules. O

Under certain conditions we can state a converse of Theorem 3.5.6.

3.5.9. AB5* modules whose factor module have finite uniform dimension.
Assume M satisfies AB5S* such that every factor module of M has finite uniform

dimension. Then every submodule of M has finite hollow dimension.
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Proof: (see Lemma 6 in [29]) If M has infinite hollow dimension, then there exists
an infinite coindependent family of proper submodules {N,}. Since M has AB5*;
{Ny} is completely coindependent by Lemma 1.4.4. By Lemma 3.5.8 M/, N
contains an infinite direct sum. Thus it does not have finite uniform dimension. The

same argument applies for every submodule of M. UJ

Remarks: The above observations about hollow and uniform dimensions can also be
found in [5] and [63, Proposition 13].

It is well-known that a linearly compact module M has property AB5* and has
finite uniform dimension (see [67, 29.8]). Since every factor module of a linearly
compact module is linearly compact (see [67, 29.8]) every factor module has finite

uniform dimension. Thus we get as a corollary of the above theorem:

Corollary 3.5.10. (/69, Proposition 6/,[59, 4.10])

Every submodule of a linearly compact R-module M has finite hollow dimension.
Applying 3.4.1(3) this yields:
Corollary 3.5.11. A linearly compact module has semilocal endomorphism ring.

Al-Khazzi and Smith characterized modules with noetherian (artinian) radical

in [2]. This dualizes [10, 5.15] and will be useful for the following observations.

3.5.12. Chain conditions on small submodules.
Let M be an R-module.

1. M has ACC on small submodules if and only if Rad (M) is noetherian;

2. M has DCC on small submodules if and only if Rad (M) is artinian;

Proof: (see [2, Proposition 2 and Theorem 5]) O

Definition. An R-module M is called semiartinian if every non-zero factor module

of M has a simple submodule.

Semiartinian modules are also called Loewy modules or Min modules (see [57]).

They can be characterized by the following lemma:
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Lemma 3.5.13. (/57, Proposition 2.1])
A non-zero R-module M 1is semiartinian if and only if every factor module has

essential socle.

Proof: If M is semiartinian then every factor module of M is semiartinian so it
remains to show, that a semiartinian module has essential socle. Let IV be a non-zero
submodule of M and K a complement of N in M. Since K is closed, N ~ (N@K)/K
is essential in M/K. This implies Soc (M/K) = Soc (N @ K)/K) ~ Soc (N). By
hypothesis 0 # Soc (M/K). Thus for every submodule N of M, 0 # Soc (N) =
N N Soc (M) holds. Hence M has an essential socle. The converse is clear. [

Remarks: It is easy to see, that for a semiartinian module M every subfactor (to be
more precise every module in o[M]) is semiartinian and combining this property with
condition (iii) of 3.5.6, we see, that every factor module of M is finitely cogenerated,

l.e. M is artinian.

Now we are able to state a comprehensive characterization of artinian modules

in terms of hollow dimension.
3.5.14. Artinian modules.
The following statements are equivalent for an R-module M.
(a) M is artinian;
(b) every submodule of M is semiartinian with finite hollow dimension;
(c) M is semiartinian and one of the following properties hold:

(i) M is linearly compact or
(ii) every submodule of M has finite hollow dimension or

(iii) every factor module of M has finite uniform dimension;
(d) M has finite hollow dimension and one of the following properties hold:
(1) Rad (M) is artinian or
(1) M/N is finitely cogenerated for every small submodule N of M or

(iii) every small submodule is artintan.
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Proof: (a) < (b) by 3.5.6 and above remarks;

(a) < (c)(i) by applying [67, 41.10(2)];

(c)(i) = (c)(ii) by 3.5.10; (c)(ii) = (c)(iii) by 3.5.6; (c)(iil) = (a) Assume every
factor module has finite uniform dimension, then by 3.5.5 every factor module has
finitely generated socle. Because M is semiartinian, the socle of every factor module
is essential and hence every factor module of M is finitely cogenerated (see [67, 21.3]).
Thus M is artinian.

(a) implies all properties in (d). Further (d)(ii) = (d)(iii) and (d)(iii) < (d)(i)
by the Al-Khazzi Smith Theorem 3.5.12 so it remains to prove (d)(i) = (a). But
since M has finite hollow dimension M /Rad (M) is artinian. Hence M is artinian
as Rad (M) is artinian. OJ

Remarks: (a) & (c)(iil) was also proved by Shock in [57, Proposition 3.1], but with
a different proof. Moreover Hanna & Shamsuddin proved (a) < (d) in {24] without
using Al-Khazzi and Smith’s Theorem. (d)(4¢) = (a) and (d)(247) = (a) was proven
in [49, 4.2,4.3].

For torsionfree abelian groups A the uniform dimension coincides with the or-
dinary finite rank of A; udim(A) = dimg(Q ®z A) (see [19, 4L]). Moreover the
only uniform Z-modules are the ones that are isomorphic to Z, for a prime p and
1 <k < oo (see [33, Theorem 10]) or that are isomorphic to a torsionfree Z-module
with dimg(A ®7 Q) = 1.

Let us now examine the situation for hollow dimension of abelian groups. Let
t(A) denote the torsion submodule of a Z-module A. For basic group-theoretical

notions we refer to [33].

3.5.15. Abelian groups with finite hollow dimension.
Let A be a Z-module.

1. If A is non-zero and torsionfree then hdim(A) = co.
2. A is hollow if and only if A ~ Z for a prime number p and 1 < k < oco.

3. A has finite hollow dimension if and only if it is a finite direct sum of hollow

modules.

Proof: (1) If A is not reduced, then it contains a direct summand isomorphic to Q

(see [33, Theorem 4]). Since Q/Z is an infinite direct sum of non-zero modules, we

conclude that @@ has infinite hollow dimension.
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Suppose A is reduced, and let P be the set of prime numbers p for which pA # A.
Then {pA}pep forms a coindependent family of submodules of A since pA+gA = A
and pANgA = (pg) A holds for all relatively prime numbers p and g. If P is infinite,
then A has infinite hollow dimension.

Assume that P is finite. Then pA = A holds for infinitely many prime numbers

p. Let these be p1,pa,... and let 0 £ a € A. Since A is torsionfree and p;A = A

holds division in A by each p; is unique for all @ = 1,2,.... Hence the elements
p;ta - Za,p;a + Za, ... generate a direct summand of A/Za isomorphic to Lipeo
for every « = 1,2,.... Hence A/Za cannot have finite hollow dimension and so A

cannot have finite hollow dimension.

(2) Let A be hollow. Since A/t(A) is hollow and torsionfree, we get by (1) that
A =t(A). By [33, Theorem 10| we get that an abelian indecomposable torsion group
is isomorphic to Z, for a prime p and 1 < k& < co. Conversely Z,x is uniserial for
all primes p and 1 < k£ < oo and therefore hollow.

(3) Suppose that A has finite hollow dimension. Let ¢(A) be the torsion sub-
module of A. By (1) hdim(A/t(A)) = oo and hence hdim(A) = oco. Hence
A = t(A) is torsion. By induction on hdim{A) we show that A is a finite di-
rect sum of hollow Z-modules. If A is hollow, we are done. Assume that all Z-
modules with 1 < hdim(A) < n are a finite direct sum of hollow modules. Let
A be an abelian torsion group with hdim{A) = n+ 1 and n > 1. Then A can-
not be indecomposable. Thus there exists a decomposition A = A; @ A, with
hdim(A) = hdim(A;) + hdim(Ay) and Ay, As # 0. Hence hdim(4;) < n and by
assumption A; is a finite direct sum of hollow modules. The same argument holds

for A;. So A is a finite direct sum of hollow modules. [J

Remarks:
1. (1) and (3) of the above theorem were obtained from [24, Theorem 2.8]. See
also (62, Proposition 1.13].

2. (2) was obtained from [62, Proposition 1.14] which arises from a characteriza-

tion of hollow modules over Dedekind domains by Rangaswamy in [47].

Corollary 3.5.16. A Z-module has finite hollow dimension if and only if it is ar-

tinian.

Proof: By 3.5.15(3) every Z-module with finite hollow dimension is a finite direct

sum of hollow modules. By 3.5.15(2) every hollow Z-module is isomorphic to an
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artinian module of the form Z, with p a prime and 1 < & < oco. Hence every

Z-module with finite hollow dimension is artinian. The converse is always true. [

Remarks: More general Zoschinger proved that a module over a commutative noethe-
rian domain with infinitely many maximal ideals has finite hollow dimension if and

only if it is artinian (see {74, Beispiel 3.9]).

A well-known theorem by Goodearl (see [18, Proposition 3.6] or [2, Proposition
4]) asserts that M/Soc (M) is noetherian if and only if every factor module M/N
with N essential in M is noetherian. This can easily be extended to show that
M /Soc (M) has Krull dimension if and only if M/N has Krull dimension for every
essential submodule N of M (see [46, Proposition 2]). Dual to Goodearl’s result
Al-Khazzi and Smith proved that Rad(M) is artinian if and only if every small
submodule of M is artinian (see 3.5.12). Puczylowski asked if Al-Khazzi and Smith'’s
Theorem can be extended for arbitrary Krull dimension and answered this question
in the negative by showing that there exists a Z-module M such that every small
submodule is noetherian and hence has I{rull dimension but Rad(M) does not have
Krull dimension (see [46, Example]).

We will show that the Al-Khazzi-Smith Theorem can be extended for arbitrary
Krull dimension to modules which satisfy property AB5*.

Let us first prove a useful lemma.

Lemma 3.5.17. Let M be an R-module and {Ny}r a completely coindependent
family of proper submodules. Assume that for every A € A there exists a submodule
Ly such that Ny C Ly. Let L := Nyep Lx. Then {Nx N L} forms a completely

coindependent family of proper submodules in L.

Proof: Let A € A, L' := N2\ Ly and N' := 2y N Then
Nyx+L=Ny+(LyNLY=LyNn(Ny+L)=LyNM =L,

(because Ny + L' O Ny + N’ = M). Thus Ny N L is a proper submodule of L
(otherwise L C Ny would imply Ny = Ny + L = L, a contradiction).
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Moreover:

(NanLy+ (N W,NL) = LN (NA+ (ﬂ N“HL))

PpFEX HFEA
= LN(Ny+ (N'NL'NLy))
= LN(Ny+ (N'NLy))
= LN (Lyn(Ny+ N"))
= LNLyNM=L.

Thus {N, N L}, forms a completely coindependent family of proper submodules of
L. O

3.5.18. Small submodules with finite hollow dimension.
Let M be an R-module having AB5* such that every small submodule of M has finite

hollow dimension. Then every submodule of Rad(M) has finite hollow dimension.

Proof: Consider first the following fact:

Let L, N be submodules of M such that L lies above N in M. We will show, that
L/N has finite hollow dimension. First note that A is amply supplemented as it
has AB5* (see [67, 47.9]). If L is small then by hypothesis L and so L/N has finite
hollow dimension.

Assume L is not small in M and let K be a (weak) supplement of L in M. Then
M =L+ K =N+ K implies L = N + (LN K). Hence L/N =~ (LN K)/(N NK).
Since L N K « M we get by hypothesis, that L N K, and so L/N has finite hollow
dimension.

Let G be a submodule of Rad(M) with G €« M and assume H is a (weak) supple-
ment for G in M. Then H NG <« M and the following sequence is exact:

0 -HNG —G —M/H —0.

Thus hdim(G) < hdim(H N G) + hdim(M/H) (see 3.1.10(6)).

Since HNG is small in M, hdim(H NG) < o0, by assumption. It is enough to show
that M/H has finite hollow dimension:

Assume that M/H contains an infinite coindependent family {N,/H}s of proper
submodules of M/H. For any A € A we have Ny + G = M. Since G C Rad(M)
and N, is a proper submodule of M, there exists an element @ € Rad(M) \ N, such
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that Rz <« M and
L,\ = .N'A + Rz # N,\.

Let N := Ny Ny and L := (N, Ly. Applying Lemma 1.4.4, every coindependent
family is completely coindependent and, applying Lemma 3.5.17, we get that { N\ N
L}, is a completely coindependent family of L. Since N € Ny N L # L holds for
all A € A we get that N € L. By Lemma 3.5.8 L/N does not have finite hollow
dimension. But since Ly lies above N, for all A € A, we get by applying Lemma 1.4.5
that L lies above N in M, and thus, by the above argument, /N has finite hollow
dimension. This contradiction shows that M/H must have finite hollow dimension.

Hence every submodule G C Rad(AM) has finite hollow dimension. [

We refer to [10, Chapter 6] for the definition of Krull dimension. Note the
following result by Lemonnier. This will help us to prove a corollary to the above

theorem.

Proposition 3.5.19. Let M be an R-module such that every non-zero factor mod-
ule of M has finite uniform dimension and contains e non-zero submodule having

Krull dimension. Then M has Krull dimension.

Proof: See [35, Proposition 1.3]. O

Corollary 3.5.20. Let M be an R-module having AB5* such that every small sub-
module of M has Krull dimension. Then Rad(M) has Krull dimension.

Proof: It is well-known that a module having Krull dimension has finite uniform
dimension (see [10, 6.2]). Hence every factor module of a small submodule N of
M has finite uniform dimension. Since N has AB5* every submodule of N has
finite hollow dimension by 3.5.9. Hence by 3.5.18 every submodule of Rad(M) has
finite hollow dimension. By 3.5.6 every factor module of Rad(M) has finite uniform
dimension. In order to apply Lemonnier’s proposition, we need to show, that every
non-zero factor module of Rad{M) contains a non-zero submodule having Krull
dimension. Let I C Rad(M) and = € Rad(M) \ L; then Rz <« M so that Rz has
Krull dimension and hence (Rx+L)/L C Rad(M)/L has Krull dimension. Applying
Proposition 3.5.19, Rad(M) has Krull dimension. {J
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Corollary 3.5.21. Let M be an R-module such that Rad(M) has AB5* and every
small submodule of M has Krull dimension. Then every submodule of Rad(M) that

has a weak supplement in M has Krull dimension.

Proof: By Corollary 3.5.20, the radical of every submodule contained in Rad(M)
has Krull dimension. Since Rad(N) = N N Rad(M) holds for every supplement N
in M (see 1.2.1), every supplement in M that is a submodule of Rad{M) has Krull
dimension. Let L C Rad(M) such that there exists a K C M with L+ K = M
and LN K <« M. Then Rad(M) = L + (Rad(M) N K). Since Rad(M) has AB5*
it is amply supplemented. Thus there exists a supplement N C L in Rad(M) such
that Rad(M) = N + (Rad(M)N K) and NN Rad(M)NK = NN K <« N holds.
Moreover L = N + (LN K} and M = N + K holds. Thus N is a supplement of
K in M, implying that N has Krull dimension. Because L/N ~ (LN K)/(N N K)
with LN K <« M, L/N has Krull dimension and hence so has L. [

The following result is an attempt to dualize (2, Proposition 3].

3.5.22. Essential submodules with finite hollow dimension.

Consider the following statements for an R-module M.

(i) M/Soc (M) has finite hollow dimension.

(1i) There exists an integer n € N such that for every essential submodule N of
M, hdim(M/N) < n.

(iii) There exists an integer n € N such that every coindependent family of essential
submodules of M has at most n elements.
Then (i) = (i1) < (4i1) holds.

Proof: (i) = (ii) If M/Soc(M) has finite hollow dimension, then so has every factor
module of M/Soc (M). Set n := hdim(M/Soc (M)).
(ii) = (iii) Note that the intersection of a finite number of essential modules is es-
sential again. Let {Ny,..., Ny} be a coindependent family of essential submodules
in M and N := NyN...NN,. By 1.41 M/N ~ M/N, @ --- & M/Nj, holds and thus
n > hdim(M/N) > k implies (iii).
(iil) = (i) Let N be an essential submodule of M and {N;/N,... ,N;/N} a coin-
dependent family of M/N. Then {Ny, ..., Ny} is a coindependent family of M too.
Hence n > k implies (ii).

U
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3.6 AB5* and hollow dimension

In this chapter we will establish equivalent conditions for a module to be lattice

anti-isomorphic to a linearly compact module. First note the following lemma:

Lemma 3.6.1. Let M be an R-module with property AB5* such that the socle of
every factor module of M contains only a finite number of non-isomorphic simple

modules. Then every factor module of M has finite uniform dimension.

Proof: Every submodule of a factor module has AB5* (see [67, 47.9(i)]) and when-
ever N is a module with property AB5* such that N ~ E(*) holds then A must be
finite (see [67, 47.9(iii)]). Hence the socle of a module having AB5* cannot contain
a summand that is isomorphic to an infinite direct sum of copies of a simple mod-
ule. By hypothesis every factor module has only a finite number of non-isomorphic
simple modules. Hence we conclude that the socle of every factor module has to
be a finite direct sum of simple modules. By 3.5.5 every factor module has finite
uniform dimension. [

Remarks:

1. Note that every simple module in ¢[M] is a factor module of a submodule
of M. This can easily be verified: let F be a simple submodule of a M-
generated module X. Let f : MM — X be an epimorphism for an index set
A. Since F = Rz with x € X we get that there is an element (m) )4 such that
({my)a)f = z. Only finitely many m,’s are not zero; say my,... ,mg. Thus f

induces an epimorphism from ¥% , Rm; € M to E.

2. An R-module is called a self-generator if it generates all its submodules. Let
M be a self-generator such that M/Rad (M) is semisimple and finitely gener-
ated. Then every simple module in o[M] is isomorphic to a simple module of
M/Rad (M). Thus o[M] contains only a finite number of non-isomorphic sim-
ple modules. Thus every module N € o[M] with AB5* satisfies the hypothesis
of Lemma 3.6.1 and hence every submodule of N has finite hollow dimension
by 3.5.9. In case M = R we get: If R is semilocal and M an R-module with

ABS5* then every submodule of M has finite hollow dimension.
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Definition. Let R and T be rings, g M a left R-module and Np a right T-module.
A mapping o : L(rM) - L(Nr) is called a lattice anti-isomorphism if it is an

order reversing lattice isomorphism.

Lemma 3.6.2. Let R and T be rings, M € R—Mod and N € Mod-T. Assume
that o + L(gM) — L(N7) is a lattice anti-isomorphism. Then gM and Nr have
property AB5*.

Proof: This lemuma is quite obvious, but for the sake of completeness we will state
a proof here. Let {I,} be a family of submodules of M. For every A € A we have
a(Ky) C a(Ny Ky). Thus Yp aK)) € (N4 Ky). On the other hand let {Ly}a be a
family of submodules of N. Then for every A € A we have a™1(Ly) 2 o 1(3x Ly)-
Thus Ny a2 (Ly) 2 o (X4 Ly). Hence ooy (L)) € 34 Ly holds. Letting
Ly = a(K,) for every A € A we get (N, K) = 24 a(K)y). Let L be a submodule
of M and {K,} be an inverse family of submodules of M. It is easy to see that «

carries inverse families of M to direct families of N. Together with the foregoing we

get:
alL+ () Ky = al)ne()K)=a@)n ) alK,)
AeA xeA XeA
= AZ;(CY(L) Na(K,)) = ;\(Q(L + K3))
= a(AﬂA(L + IK))).

Hence L + Ny Ky = Na(L + K) implies that M has property AB5*. The same
argument holds for N. U

Remarks: Let M be an R-module and let { )} be a minimal representing set of the
isomorphism classes of simple modules in o[M]. Then the M-injective hull of B, E,
always forms a 'minimal’ injective cogenerator in o{M] with essential socle (see [67,

16.5, 17.12]). Hence there always exists an injective cogenerator with essential socle
in o[M].

Let pQ be an injective cogenerator in o[M]. Let T = End (Q), N € o[M] and
N* := Hom (N, Q). Recall the definitions from Chapter 3.1 for submodules X C N
and X C N*: An(K) :={f € N*|(K)f = 0} and Ke(X) := N,ex Ker (g) and the
properties (AC1) — (AC3). Note that the mappings An(—) and Ke(~) are order
reversing. By definition we have for all X, ¥ C N*:

Ke(X)NKe(Y) 2 Ke(X+Y) and Ke(X) + e(Y) C Ke(X NY).
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Lemma 3.6.3. Let M be an R-module, rQ an injective cogenerator in oM, T :=
End (Q) and N € o[M]. Then the mappings An : L(N) — L(N*) and Ke :
L(N*) — L(N) carry inverse families to direct families and direct families to inverse

famalies.

Proof: This follows easily from the following four observations:
Let Ky, K, K, be submodules of N.
(1) If Ky + K, C K, then An(K)) N An(K,) = An(K, + K,) 2 An(K,).
(2) If Kyn K, 2 K, then An(K») + An(K,) = An(K\ N K,) C An(XK,).
Let X, X,,, X, be submodules of N*.
(3) If Xy + X, C X, then Ke(X,) N Ke(X,) 2 Ke(X)+ X,) 2 Ke(X,).

(4) If X, N X, D X, then Ke(X,) + Ke(X,) C Ke(X,NX,) C Ke(X,). O

Remarks: (1) Let {X}a be a direct family of submodules of N* then Ke(¥, X)) C
Na Ke(X,) holds. On the other hand let z € N, Ke(X,) and g € >3y X». Then
g€ Xy, +--+X,,. Since {X,}4 is direct we get g € X, for an index p € A. Thus

(z)g = 0 and hence

Ke(D> X)) =) Ke(X)).
A A

(2) Let {K }a be a direct family of submodules of N then a similar argument

as in (1) shows that
An(Y 1) = ) AnlKy)
A A

holds.

The next theorem was obtained from Anh, Herbera and Menini in [3].

3.6.4. Modules anti-isomorphic to a linearly compact module(/3, 1.2].
Let M be an R-module, rQ be an injective cogenerator in o[M| and T := End (rQ).

For every module N € o[M] the following statements are equivalent:

(a) For any inverse family {K\}a of N,

An (ﬂ K,\) = Z An(K,).

AcA AgA

(b) The mapping K — An(K) is a lattice anti-isomorphism of L(zN) into L{NF)
whose inverse 1is given by the mapping X — Ke(X).
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In this case Ny 1s linearly compact, gIN has property AB5* and every submodule
of N has finite hollow dimension. If rQ has essential socle then (a) and (b) are

also equivalent to:

(c) rN has property AB5* and every factor module of RN does not contain an

infinite number of non-isomorphic simple modules.

(d) rN is anti-isomorphic to a linearly compact right S-module with S a ring.

Proof: (a) = (b) Let X C N* and denote by F the set of all finitely generated
submodules of X. Since F; + Fy is again a finitely generated submodule of X,
{F}per forms a direct family of submodules of N*. By 3.6.3 {Ke(F')} per forms an
inverse family of submodules of M. Thus by (a) and (AC2) we get:

XY F=Y An(Ke(F)) = An ( N Ke(F)) = An(Ke(X),

FeF FeF FeF
since Ke(X) = NgexKer (f) = Npex Ke(fT) = Nper Ke(F). Thus X =
An(Ke(X)) for all X C N*. By (AC1) we have K = Ke(An(K)) for all K € N.
For submodules X,Y C N* we have

X +Y = An(Ke(X)) + An(Ke(Y)) = An(Ke(X) N Ke(Y)).

Hence Ke(X +Y) = Ke(X) N Ke(Y) holds. Ke(X NY) = Ke(X) + Ke(Y) can
be shown similarly. Thus An(—) and Ke(—) are lattice anti-isomorphisms and each
others inverses.

(b) = (a) By the above remarks, we have for a direct family { X} of submodules
of N*

Ke(Y) X)) = (] Ke(Xa).

AeA AeA
Hence for any inverse family {/Ny}, of submodules of N*:

An (ﬂAN,\) = An (ﬂ Ke[An(N,Q)) = An(Ke(d_ An(Ny))) = D An(N,).
e YN XeA AeA

N and N* have property AB5* by 3.6.2. Let us check that N* is linearly compact.
Let { X} be an inverse family of submodules of N* and (fy + Xx)a € lim N*/X,.

Cousider the following diagram:
0 —— Then Ke(Xy) —— N

g

Q




CHAPTER 3. HOLLOW DIMENSION 85

with canonical inclusion ¢ and « defined as follows: (35 ka) @ = Y4 (kx)fa for
all elements &y € Ke(X,) and A € A. Clearly « is an R-module homomorphism.
Since rQ is injective in o[M] we get a homomorphism f € N* such that o = if.
Thus for every A € A we have 0 = (Ke(X)))(f — a) = (Ke(X,)))(f — f»). Hence

I = fr € An(Ke(X,)) = X, implies that f = f, mod X, holds for every A € A.
Hence the following sequence

0 — Mo X y N* » Lim N* /X,

> 0

is exact. Thus N* is linearly compact.

Since N* is linearly compact every factor module has finite uniform dimension.
By 3.1.12 we get for every submodule X C N: hdim(K) = udim(Hom (X, Q)).
Since Hom (K, @) is a factor module of N* = Hom (XN, Q) it has finite uniform
dimension. Hence every submodule of z N has finite hollow dimension.

(a) + (b) = (c¢) Assuming (a) or (b) yields that every submodule of N has finite
hollow dimension and by 3.5.6, 3.5.5 that every factor module of N has finitely
generated socle. Thus every factor module of N contains only a finite number of
simple modules.

Assume that p@ has essential socle. We show (¢) =-(a). By Lemma 3.6.1 every
factor module of N has finitely generated socle. Hence for every f € N* we have
Soc (N/Ker (f)) = Soc (Im (f)) C @ is finitely generated. Since rQ has essen-
tial socle, Soc (Im (f)) is essential in Im (f). Thus Im (f) ~ N/Ker (f) is finitely
cogenerated.

Let { K} be an inverse family of submodules of N. Since An{K)) C An(Ny K))
for all A € A we get o0 An(K)) C An(Np K). We will show that An(N, K») C
Ya An(K,) holds. Let f € An(Ny K)). Then Ker (f) 2 Na K. Since N has AB5*

we have

A€A A€A

() ((Kx+ Ker (f))/Ker () = (( (] K\) + Ker (f)) /Ker (f) = 0.

By the above remarks, N/Ker (f) is finitely cogenerated. Hence by [67, 14.7] there
exists a finite subset F' C A such that M;ep(K; + Ker (f)) = Ker (f). Hence
MNicr Ki € Ker (f). Consider the following diagram:

g

0 —— Im(f) — Q
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with a: n+Np K; = n+ Ker (f) and € the inclusion map. Since r() is injective in

o[M] there exists a homomorphism ¢ : @;cp N/K; = Q which makes the diagram

commute. Hence for every n € N :

(n)f = ((n+ Ki)ier)®

holds. Define for every k € F' the following composed map

fo i N =" N/E, —— @ier NJK; —2 Q,

with 7 the canonical projection and 7 the inclusion map. Note that (n)fy := ((din+
K)ier)¢ holds for all n € N where §;; € R denotes the Kronecker symbol. Then
clearly (K)fr = 0 and hence fi, € An(Kj}) holds for every k € F. Since (n)f =
(n + K)ier)¢ = Tiep(n)fi holds, we get f € Yiep An(K;) € X4 An(K)). Hence
we have proved that (a) holds.

(b) = (d) is obvious. We show (d) = (c): By 3.6.2 we see that N has property
ABbB*. Let us assume that Yy is a linearly compact module over an appropriate
ring S. Note that for any submodule K of N, L(N/K) can be seen as the sub-
lattice [K, N] € L(N) and of[K, N]) can be seen as a lattice of submodules of a
submodule of Y. It is easy to check, that independent families of submodules of
Y are carried over by « to coindependent families of submodules of N. Since Y is
linearly compact, every submodule has finite hollow dimension, i.e. contains no in-
finite coindependent family of submodules. Thus every factor module of N contains

no infinite independent family of submodules, i.e. it has finite uniform dimension.

O

Corollary 3.6.5. (/3, 1.3]) Let R be a ring, rQ an injective cogenerator in R—Mod
and T := End (Q). Then the following statements are equivalent:

(a) For any inverse family {Lx}a of left ideals of R

An(Q L) = %j An(Ly).

(b) An: L(rR) — L(Qr) is a lattice anti-isomorphism with inverse Ke(—).

In this case Q is linearly compact and pR has AB5*. Moreover every submodule of
a finttely generated R-module has finite uniform dimension, finite hollow dimension

and a semilocal endomorphism ring. If gQ has an essential socle then (a) and (b)

are also equivalent to




CHAPTER 3. HOLLOW DIMENSION 87
(c) rR has AB5*.

Proof: Recall that Adim(M) = udim{Hom (M, @)) holds for all M € R—Mod.
(c) = (a) gR is semiperfect whenever it has AB5* (see [67, 47.9]). Hence there

is only a finite number of non-isomorphic simple R-modules. O

Corollary 3.6.6. Let M be an R-module such that there is only a finite number
of non-isomorphic simple modules in o[M]. Let rQ be an injective cogenerator in
o[ M] with essential socle. Then for every N € o[M] the following statements are

equivalent:
(a) RN has AB5*;
(b) An : L(rN) — L(N}) is a lattice anti-isomorphism;
(c) rN is lattice anti-isomorphic to a linearly compact module.

In this case every module in of[N] has finite uniform dimension, finite hollow di-

mension and a semilocal endomorphism ring.

Proof: Since there are only finitely many non-isomorphic simple modules in o[M]
every factor module of N & o[M] has only finitely many non-isomorphic simple
modules. Then (a) < (b) and (a) < (c) follow by 3.6.4.

Since every submodule of N has finite hollow dimension by 3.6.4 every submodule
of a finitely N-generated module has finite hollow dimension. Hence every L €
o¢[N] has finite hollow dimension, finite uniform dimension by 3.5.6 and a semilocal

endomorphism ring by 3.4.1. [J

Remarks: A semilocal ring R has the property that there are only finitely many
non-isomorphic simple modules in R—Mod. Since we can always choose an injective
cogenerator with essential socle we get by the last corollary that an R-module M

has AB5* if and only if it is anti-isomorphic to a linearly compact module.

Let us summarize the relationship between uniform and hollow dimension under
the hypothesis of AB5*.

Corollary 3.6.7. Let M be an R-module. Then the following statements are equiv-

alent:
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(a) M has AB5* and one of the following properties hold:

(i) every submodule of M has finite hollow dimension, or
(ii) every factor module N/Rad (N) with N C M 1is finitely generated, or

(111) every factor module of M has finite uniform dimension.
(b) rRM is lattice anti-isomorphic to a lnearly compact module.

In this case every module N € of[M) has property AB5*, finite uniform dimension,

finite hollow dimension and a semilocal endomorphism ring.

Proof: (a)(i) = (a)(ii) by 3.5.6. By [67, 47.9(1)] every module N with AB5* is
amply supplemented. Hence N/Rad (N) is semisimple. Thus (a)(ii) = (a)(iii) by
3.5.6. (a)(iil) = (a)(i) follows from 3.5.9.

(a) « (b) Choose an injective cogenerator rQ in o[M] with essential socle and
apply 3.6.4. O




Chapter 4
The lifting property

Consider the following list of properties for an R-module M (see [39, pp 18]):
(C;) Every submodule of M is essential in a direct summand of M.

(Cy) Every submodule isomorphic to a direct summand of M is also a direct sum-

mand.

(C3) If M; and M; are direct summands of M with M; N My = 0, then M, & M, is

a direct summand of M.

An R-module M is called continuous if it has (C}) and (Cy); M is called quasi-
continuous or w-injective if it has (C) and (C3) and M is called an eztending or
CS-module if it has property (Cy). For more information about these notions we
refer to [10] and {39].

Extending modules can be seen as a generalization of injective modules and
the development of this notion can be tracked down to von Neumann’s work on

continuous geometry (see [40]). The following hierarchy of properties holds:
injective = self-injective = continuous => m-injective = extending.
Let us dualize each property (Ch), (Ca), (C3) (see [39, pp 57]):
(Dy) Every submodule of M lies above a direct summand of M.

(Dy) If N € M such that M/N is isomorphic to a direct summand of M, then N

is a direct summand of M.

(D) If My and M, are direct summands of M with M; + My = M, then My N M,

is a direct summand of M.

89
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A module M is called discrete if it has (D;) and (Ds); M is called quasi-
discrete if it has (D;) and (D;) and M is called [lifting if it has property (D;).
In {59] Takeuchi called lifting modules codirect. The properties (D2} and (D3)
are called Condition (I) and Condition (II). In [41] Oshiro called (quasi-)discrete
modules (quasi-)semiperfect.

A module M is called w-projective or ( co-continuous) if for every two sub-
modules N, L of M with N + L = M there exists an endomorphism f € End (M)

with
Im (f) ¢ N and Im (1 — f) C L.

Theorem 4.1.9 shows that a module is quasi-discrete if and only if it is supplemented
and m-projective .

A lot of use was made of the existence of complements in the study of extending
modules. Under the assumption that there are supplements in a module we get the

following dualized hierarchy for supplemented modules.
projective = self-projective = discrete = mw-projective = lifting.

Clearly ’projective’ = ’self-projective’ and ’discrete’ = ’quasi-discrete’ = ’lifting’.
As mentioned we will see that a module is quasi-discrete if and only if it is supple-
mented and w-projective . A self-projective supplemented module is m-projective
supplemented and hence lifting. It is easy to check that a self-projective module
has property (Dj). A projective supplemented module is nothing but a semiper-
fect module. Therefore discrete, quasi-discrete and lifting modules can be seen as a

generalization of semiperfect modules.

4.1 Lifting modules

Recall that we say for submodules L C N C M, N lies above L (in M) if N/L <
M/L and we say that a submodule N of M is coclosed (in M) if N does not lie
above any submodule of N.

A submodule N C M is a supplement in M if and only if it is a coclosed, weak
supplement in M (cf. 1.2.1). Hence in a weakly supplemented module M every
submodule that is coclosed in M is a supplement in M.

Note that an R-module is hollow if and only if it is indecomposable lifting.

This is clear since in an indecomposable module M the only proper direct sum-

mand is 0. Hence every submodule of M lies above ( (i.e. every submodule of M is
small in M).
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From [39, Proposition 4.8] we get the following characterization of lifting mod-

ules:

4.1.1. Lifting modules.

Let M be an R-module. Then the following statements are equivalent:
(a) M is lifting;

(b) for every submodule N of M there is a decomposition M = My @ My such that
My CNand NN My, < M;

(c) every submodule N of M can be written as N = Ny @ Ny with Ny a direct
summand of M and Ny < M;

(d) M is amply supplemented and every coclosed submodule of M is a direct sum-
mand of M.

Proof: {a) = (b) Every submodule N of M lies above a direct summand M; of
M. Thus there is a decomposition M = M; & M, with N/M; <« M/M,. Since
M/M, ~ My and N/M; ~ (NN M) we get NN M, is small in M, and hence in M.
(b) = (c) For every submodule N there is a decomposition M = M; & M, with
M; C N and NN M, <« M. Hence N = M, & (N N My).

(c) = (d) Let M = L + K for submodules K,L C M. We will show, that K
contains a supplement of L. By hypothesis: K = N @ H with H < M and N a
direct summand of M. Hence M = L + N. By hypothesis LN N = N; & S with
S <« M and N; a direct summand of M. Hence N; is a direct summand of N and
S <« N. Let N = N; @ N, for some submodule Ny of N. N, is a supplement of
Nj in N. We claim that Ny is a supplement of Ny + S in N. To see this consider
a submodule X € N, such that N = X + N; + 5. Then N = X <+ N; holds as
S <« N and X = N, as N, is a supplement of Ny in N. Hence N, is a supplement
of i+S=LNNinN. SoM=L+N=L+(LONN)+ N, =L+ Ny and
LN Ny =(LNON)NNy < N; holds. Thus N; 1s a supplement of L in M.

Let N be a coclosed submodule in M, then N = M; & S with S small in M. Clearly
N lies above M7 in M. Hence N = M, as N is coclosed.

(d) = (a) By 1.2.2 every submodule of M that is not small in M lies above a

coclosed submodule and hence above a direct summand. O
Remarks:

1. For a characterization of "lying above direct summands” we refer to [67, 41.11].
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2. Lifting modules are exactly the amply supplemented modules whose supple-

ments are direct summands.

In general, direct sums of lifting modules are not lifting. Dual to [10, 7.4] we

state an example from {43]:

Lemma 4.1.2. Assume M is an uniserial module with composition series 0 # V C
U C M. Then the module M & (U/V) is not lifting.

Proof: See [43, Lemma 2.3]. O

A module is called uniform-eztending if every uniform submodule is essentially
contained in a direct summand. As an attempt to dualize the notion of wuniform-

extending we will consider the following definition.

Definition. An R-module M is called hollow-lifting if M is amply supplemented

and every hollow submodule of M lies above a direct summand of M.

Equivalently M is hollow-lifting if and only if M is amply supplemented and
every hollow, coclosed submodule of M is a direct summand of M. Of course, every

lifting module is hollow-lifting.

Lemma 4.1.3. Any coclosed submodule (and so every direct summand) of a
(hollow- )lifting module is (hollow- )lifting.

Proof: Let M be a (hollow-)lifting R-module and N a coclosed submodule of M.
Then N is a supplement in M. By [67, 41.7(1)] N is amply supplemented. Let K
be a (hollow) submodule of N, that is coclosed in N. Since N is a supplement in
M we get K is coclosed in M by 1.2.2 (3). Hence K is a direct summand of M and
hence of N. O

The next lemma is dual to [10, 7.7].

Lemma 4.1.4. Let M be a hollow-lifting module and K < M a coclosed submodule

with finite hollow dimension. Then K is a direct summand of M.
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Proof: Since K has finite hollow dimension, there is a submodule L of K such that
K /L is hollow. By the previous lemma, K is hollow-lifting. Let N be a supplement
of L in K; then N is hollow since N/(NNL) ~ K/L and NNL < N. Furthermore
N is coclosed in K and K is a supplement in M, so N is coclosed in M (cf. 1.2.2).
Hence N is a direct summand of M. Let M = N @ N'. Then K = N& (K N N')
and hdim(K) = hdim(N) + hdim(K N N') hold. By induction K N N’ is a direct
summand of M. Let M = (K N N')@® N" then N' = (K N N') ® (N' N N") such
that M = K& (N'nN"). O

Corollary 4.1.5. Let M be an R-module with finite hollow dimension. Then M ts
hollow-lifting if and only of M 1is lifting.

In the following proposition we show that a lifting module with a finiteness

condition can be decomposed into a finite direct sum of hollow modules.

Proposition 4.1.6. Let M be a non-zero R-module with finite uniform dimension

or finite hollow dimension. Then the following holds:
1. If M is lifting, then M = @, H; with 0 # H; hollow and n = hdim(M);

2. If M is extending, then M = @}, U; with 0 # U; uniform and n = udim(M).

Proof: (1) Assume M to have finite uniform dimension or finite hollow dimension.
Because the additive dimension formula for direct summands holds for both dimen-
sion notions, the result can be proved by induction on udim or hdim. In the following
dim will denote either udim or hdim. If M is indecomposable or dim(M) = 1 then
M is hollow since an indecomposable lifting module is hollow. Let » > 1 be a
number and assume that for all R-modules with dim(M) < n our hypothesis holds.
Assume dim(M) = n + 1 and that is decomposable M = M; & M, with M; and
M, non-zero submodules of M. Then dim(M) = dim(M;) + dim(M;) =n + 1 and
dim{ M) and dim(My) are at most equal to n. By hypothesis M; and M, are finite
direct sums of hollow modules. Thus the result follows.

The proof of {2) is similar to (1), since an indecomposable extending module is

uniform. O

The Osofsky-Smith Theorem (cf. [10, 7.13]) states, that a cyclic module whose

cyclic subfactors are extending can be expressed as a finite direct sum of uniform
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submodules. The next corollary can be regarded as an attempt to dualize this

theorem.

Corollary 4.1.7. If M s a lifting R-module that is either finitely generated or

finitely cogenerated, then M is a finite direct sum of hollow submodules.

Proof: By 3.3.4 a finitely generated, weakly supplemented module has finite hollow
dimension. A finitely cogenerated module has finitely generated essential socle and

hence finite uniform dimension. Thus the result follows by applying 4.1.6. [

Remarks: Recall the definiton of a w-projective module. It can easily be seen, that

the condition w-projective is equivalent to the splitting of the epimorphism
N&L—-M

(n,) = n+L

In [71] Zoschinger calls these modules ko-stetig (i.e. co-continuous) as a dualization

of Utumi’s definition of continuous modules in [61].

Proposition 4.1.8. ([67]) For a m-projective R-module M the following stote-
ments hold:

1. Each direct summand of M is w-projective .

2. If N and L are mutual supplements in M, then N N L = 0.

Proof: (1) Let N be a direct summand of M with an idempotent e € End (M) and
Me = N. Then M = Me®M (1—e) holds. If Me = K+L, then M = K+L+M{(1—
e}, and there exists f € End (M) with Im (f) C K and Im (1 — f) C L+ M (1 —e).
Now fe and e— fe = (1— f)e can be seen as endomorphisms of End (Me), satisfying
Im (fe) ¢ K and Im ((1 — f)e) C L.

(2) If N, L are mutual supplements, then we have NNL <« N and NNL < L. Let
¢ denote the epimorphism N & L — M, (n,l) = n + . Then the kernel of ¢

Ker (¢) ={(n,—n):ne NNL}C(NNLO®ONNL)KNGL
is small and splits by assumption. Thus Ker (¢) =0 and so NN L =0. O

Remarks: More properties and characterizations of m-projective modules can be
found in [71] or {67, 41.14 - 41.17].
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As mentioned in the begining of this section w-projective supplemented modules

are exactely the quasi-discrete module. We state a characterization of such modules
from [67, 41.15]:

4.1.9. Quasi-discrete modules.

For an R-module M the following assertions are equivalent:
(a) M 1is supplemented and m-projective ;

(b) (i) M is amply supplemented, and
(ii) the intersection of mutual supplements is zero;
(c) (i) M is lifting, and

(ii) if U,V are direct summands of M with M = U +V, then UNV 1is a
direct summand of M.

Proof: (see [67, 41.15]) O
Remarks:

1. Recall that property (c) of above theorem is the definiton of quasi-discrete.

2. There exists a decomposition theorem for quasi-discrete module (see [67, 41.17]
or [39, Theorem 4.15]) that states that any quasi-discrete module can be ex-

pressed as a (not necessarily finite) direct sum of hollow modules.

The next proposition dualizes [10, 7.5] and was obtained from [39, Lemma 4.47)
and [67, 41.14].

Lemma 4.1.10. Let M; and My be R-modules and let M = My @& Ms. Then M,
18 My — projective if and only if for every N C M with M = N + M, there is a
submodule L C N with M = L & M,.

Proof: (=) Let p : M — M/N be the canonical projection and p; = pla, for
i = 1,2. Then p, is epimorph since M/N ~ M,/(Ms N N) and by hypothesis the

commutative diagram:
M

.|

M, 2+ M/N —— 0
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can be extended by a homomorphism f: M; — M,. Let
L= {z— (2)fle € M1} C M,

then LN M, =0, since My "My =0and LB My = M as z = (z — (z)f) + ((z)f)
for all ¢ € My implies My C L +TIm (f). Also L € N holds, since (L)p = 0.

(<) Counsider any factor module F' of M, with projection p and a homomorphism

f]'lf[l—)F
M,

i
My —2 5 F — 0

Set
N = {ms —my € M|my € My, my € My and (my)p = (1)}

Every element m € M can be expressed as m = m; + mg with m; € M; and
my € M;. Since p is epimorph we will find for any m; € M; an element z € M,
with (z)p = (mq)f. Thus m = (my — ) + (x + my) implies M = N + M,. By
hypothesis there is a submodule L C N such that M = L & M;. Let e : M — M,
be the projection with respect to this decomposition. This yields a homomorphism

from M; to My:
0O — M, —— Mi®My —— My —— 0
0 —— L — Lé&M, —— My —— 0

Since Mi(1 —e) € L € N we get my; — (my)e € N for all m; € M; and hence
(m1)f = (mye)p. Thus f = ep. Therefore M; is My-projective. 0

Definition. R-modules M; (¢ € I} are called relative projective if M; is M;-
projective for all distinct 4,7 € 1.

The next corollary is dual to [10, 7.6]
Corollary 4.1.11. An R-module M is quasi-discrete if and only if M 1s a lifting

module such that whenever M = My ® M, is a direct sum of submodules, then M
and My are relatively projective.

Proof: (=) By 4.1.9 M is lifting. Let M = M, & M,. Assume M = N + M, for a
submodule N C M, then N lies above a direct summand L. Hence M = L + M.
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By 4.1.9 L N M is a direct summand of M and so it is a direct summand of L, say
L =K & (LN M,), which yields M = K & M,. By 4.1.10 M, is My-projective. A
. similar argument shows that M, is M;-projective.

(<) Assume U,V € M with M = U + V. Since M is lifting, U lies above a
direct summand M;. Let M = M; @ M;. Clearly My + V = M. Since M, is
Mi-projective we get by 4.1.10 a submodule W C V such that M = M; & W.
Consider the canonical projection 7 : M — M; with kernel W and the inclusion
map € : My — M with respect to the decomposition M = M; & W. Then f := me
is an endomorphism of M such that (M)f C U and (M)(1 — f) C V. Thus M is

m-projective and since M is lifting it is supplemented. (J

Remarks: Baba and Harada studied in [4] when a finite direct sum of hollow modules
with local endomorphism rings is lifting. They showed that this is closely related to
a generalized projectivity condition between the direct summands. Let M and N
be two R-modules. M is called almost N-projective if every diagram
N
|
ML F > 0

can be either extended commutatively by a homomorphism h : N — M or there

exists a direct summand M; of M and h : M; — N such that hg = e;f where
ey : My — M is the canonical inclusion map. They proved in [4, Theorem 1] that
a finite divect sum M = @7, H; of hollow modules whose endomorphism rings are
local is lifting if and only if H; is almost Hj-projective for all 7 # j. For more
information about direct sums of lifting modules and almost projectivity we refer to
[4], [26], [27] and [28].

4.2 Lifting modules with chain conditions

The following results are dual to [10, 18.5-18.7]. Let us first observe an easy lemma.

Lemma 4.2.1. Let M be an R-module with essential radical. For every direct
summands D1 C Dy of M we have Rad (D) = Rad (D)} if and only if Dy = Ds.

Proof: Let M = Dy @ D;. Then Dy = D; & (DN D)) and Rad (D;) = Rad (D) @
Rad(D.NDj). If Rad(D;) = Rad(D;) then 0 = Rad(D;ND}) = Rad(M)NDyND;.
This implies Dy N D] = 0 since Rad (M) <4 M and hence D; = D,. [J
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Remarks: Let M be an R-module. It follows from this lemma that if Rad(M) < M
and Rad (M) has ACC (DCC) on direct summands, then M has ACC (DCC) on

direct summands.

4.2.2. Lifting modules with radical chain condition.
Let M be a lifting module such that Rad (M) has ACC on direct summands. Then

M is a direct sum of a semisimple module and a finite direct sum of hollow modules.

Proof: By 1.3.2, every weakly supplemented module M can be decomposed as
M = M;® M, where M is semisimple and M, has essential radical. Since Rad(M) =
Rad (M2) < M; has ACC on direct summands M, has ACC on direct summands by
4.2.1. Since M, is lifting, it is amply supplemented and every coclosed submodule
is a direct summand by 4.1.1. By 3.5.3 M, has finite hollow dimension and by 4.1.6
My is a finite direct sum of hollow modules. O

Corollary 4.2.3. Let M be a lifting module.

1. If M has ACC on small submodules, then M = S@® N, where S is semisimple

and N is noetherian.

2. If M has DCC on small submodules, then M = S & A, where S is semisimple

and A 15 artinian.

Proof: (1) By 3.5.12 Rad (M) is noetherian and hence it has ACC on direct sum-
mands. By 4.2.2 M = 5@ N, where S is semisimple and N is a finite direct sum
of hollow modules. Let N = @]_, H; then Rad (H;) is noetherian for all . Since
H;/Rad (H;) is simple (or zero) we get that H; is noetherian. Thus N is noetherian.
(2) By 3.5.12 Rad (M) is artinian and by 1.3.2 M = S & A with Rad (M) < A. By
4.2.1 A has DCC on direct summands and by 3.5.3 A has finite hollow dimension.
Applying 3.5.14 A is artinian. [J

Corollary 4.2.4. Let M be a lifting module with finite hollow dimension or finite

uniform dimension.
1. If M has ACC on small submodules, then M 1is noetherian.

2. If M has DCC on small submodules, then M 1is artinian.




Chapter 5

Dual polyform modules with finite

hollow dimension

In this chapter we will give an attempt to dualize the notions of singular and non-
M-singular modules, rational submodules and polyform modules. The notion of
polyform modules was defined by Zelmanowitz in [70], where he generalizes Goldie’s
Theorem (see [10, 5.19]).

5.1 Non-M-small modules

A module N in o[M] is called M-singular (or singular in o[M]) if N ~ L/K with
K essential in L € o[M]. In case M = R we just say singular (or cosmall in [48])

instead of R-singular. The M-singular modules
Sy = {N € o[M]|N is M-singular}

are closed under submodules, homomorphic images and direct sums. Any N € o[M]

contains a largest M-singular submodule
Sur(N) :=Tr(Sy, N) => {Im (f)|f € Hom (L, N), L € Sy}

Then Sp(N) =3 {L C N|L € Sy} holds. A module N in ¢[M] is called non-M-
singular if Sp(IN) =0, i.e. N has no M-singular submodule. For basic facts about

these modules we refer to [10, Chapter 2]. Let us now dualize these notions.

Definition. Let M, N be R-modules. N is called M-small (or small in o[M])
if N~ K <« L for K,L € o[M]. In case M = R we just say small instead of
R-small.

99
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Remarks: Let N be M-small with K and L as above. Denote by K the M -injective
hull of K. Consider the following diagram:

0 sy K — L

|

K

with 7 the inclusion map from K into its M-injective hull K and e the inclusion
map from K to L. Since K is injective in o[M], the diagram can be extended
commutatively by a homomorphism f : L — K. Then ef = i holds. Since Im (e) <
L we get K = Im (ef) < K. Since K ~ N it follows, that N is small in its
M-injective hull as well. Thus a module is M-small if and only if it is small in
its M-injective hull (see [36, Theorem 1]). Dual to this fact Rayar proved in (48,
Proposition 1] that a module M is singular (or cosmall) if and only if the kernel of

every epimorphism from a projective module P to M is essential in P.

Definition. Denote the class of all M-small modules in o[M] b
Tar i= {N € o[M]|N is M-small}.

Then 7, is closed under submodules, homomorphic images and finite direct sums.
For any N € o[M] define

T (N) :=Re (N, ﬂ{Kel )lg € Hompg (N, L), L € Ty}

Then T3 (N) = N{L € N|N/L € Ty} holds. A module N € o[M] is called non-
M-small if T3 (N) = N, i.e. N has no non-zero M-small factor module. In case
M = R we just say mnon-small instead of non-R-small. Clearly N is not M-small
if it is non-M-small. Moreover the class Fjy; of non-M-small submodules can be

described as

Fir = {L € o[M]|for all N € T;; : Hom (L, N) = 0}.

Remarks:

1. In [36] Leonard defined a module N to be small in R—Mod if it is a small
submodule of some R-module. He showed that NV is small if and only if N is

small in its injective hull. M.Rayar in [48] and in her thesis calls a module
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N non-small if it is not small in any module. In our sense, N is non-M-
small if N has no non-zero M-small factor module, dual to the definition of a

non-M-singular module N which has no non-zero M-singular submodules.

2. Oshiro called a ring R a left H-ring if every injective left R-module is lifting
(see [42]). He showed that a ring R is a left H-ring if and only if R is left
artinian and every left R-module contains a non-zero injective left R-module.
Moreover he showed that a ring is a left H-ring if and only if every left R-
module is a direct sum of an injective module and a small module. Oshiro
and Wisbauer studied this situation in ¢[M] and showed that every injective
module in o[M] is lifting if and only if every module in o[M] is a direct sum

of an M-injective module and an M-small module (see [43]).

3. While every module over a left H-ring is a direct sum of an injective module
and a small module, Rayar showed in [48, Theorem 7] that every left R-module

is a direct sum of a projective module and a small module if and only if the
ring R is QF.

The next statement dualizes [10, 4.1].

5.1.1. Non-M-small modules.
Let M be an R-module.

1. The following are equivalent:
(a) N is non-M-small;
(b) for any 0 # K € o[M] and 0 # f : N — K, Im (f) s coclosed in K;
(c) for any 0 # K € o[M] and 0 # f: N — K, Im (f) s not small in K.

2. Assume that M has a projective cover P in o[M]. Then any module N € o[M]
with Hom (P, N} = 0 is M-small.

3. Assume M 1is non-M-small and has a projective cover P in o[M]. Then
(i) Tar = {N € o[M]|Hom (P, N) = 0}.
(ii) Tny is closed under extensions, direct sums and products (in o[M]).

(1ii) Let N € o[M} and consider the following ezact sequence

0 —— T(N) » N » N/Ty(N) —— 0.

Then Ty (N) is non-M-small and N/T;;(N) is M-small.
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Proof: (1){a) = (b) Let f : N — K be a non-zero homomorphism and assume L C
Im (f) € K such that Im (f)/L < K/L. Then Im (f)/L € T;;. Let 7 : K — K/L
denote the canonical projection; then fr : N — Im (f)/L is a homomorphism. Since

N is non-M-small, Ker (fm) = N implies Im (f) = L. Hence Im (f) is coclosed in
K.

(b) = (c) Clear;
(c) = (a) If thereis a g : N — L with L € T3, then L < L. Let i : I, — L be the
inclusion map. Then gi : N — I is a non-zero homomorphism with Im (g7) < L.
(2) Let N denote the M-injective hull of N. By [67, 17.9] N = Tr(M, E(N))
is M-generated (where E(IN) denotes the injective hull of N in R—Mod). Since M
is P-generated, N is P-generated. If N is not M-small, then it is not small in its
M-injective hull N. Assume there exists a submodule X C N such that N+ K = N.
Then N/(NNK) ~ N /K is a non-zero P-generated R-module. Thus there exists

an index set A and a non-zero epimorphism f such that the following diagram

pa)

|

N -2 N/(NNK) — 0

can be extended commutatively by a non-zero homomorphism g : P® — N such
that g = f holds. Hence there exists a non-zero homomorphism in Hom (P, N).

(3) Let us first note that P is non-M-small. Denote M ~ P/K with K <« P.
Assume there exist a submodule L C P such that P/L is M-small. Then P/(L+ K)
is M-small as well. But since M is non-M-small, we have L + K = P and hence
L =P. Thus Sy(P)=P.

(i) Since P is non-M-small, P € F},. Hence for every M-small N € o[M] we
get Hom (P, N) = 0. The converse follows from (2).

(i1) Let 0 — Ny — Ny — N3 — 0 be an exact sequence with N; and N3 M-
small. Applying (i) and the exact functor Hom (P, —) we get that Hom (P, Np) =
0. Thus Ny is M-small. Let [[, Ny be a product of M-small modules; then
Hom (P,TIp N)) =~ TIxHom (P,N,) = 0 (see [67, 11.10]). Let @, Ny be a di-
rect sum of M-small modules. As €, Ny is a submodule of [{, Ny we get that
@, Ny is M-small. Moreover direct products of M-small modules are M-small if
the product is in o[M]. In general o[M] is not closed under taking direct products,
but it has a product (in the categorical sense) defined as [T¥ Ny 1= Tr(U,, 14 Ni)
with U, := ®{U C MM™|U finitely generated } (see [67, 14.1]). By definition
[TA" Ny C [Tp Na. Thus the product in ¢[M] of M-small modules is M-small.
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(iil) As a consequence of (i) and (ii) we get Hom (P, N/T;(N)) = 0 since
N/ Ty (N) is isomorphic to a submodule of a product of M-small modules. Assume
there exists a submodule L C T3 (N) such that 75(N)/L is M-small. Then

0— Ty(N)/L — N/L — N/T;;(N) =0

is an exact sequence and by (ii) we get N/L is M-small. But then 7(N) C L and
hence Ty (N) = L. Thus T;;(N) is non-M-small. O

Remarks:

1. In [37] McMaster defines the notion of a cotorsion theory induced by a pro-
jective R-module P. He defines the class of cotorsion modules to be all R-
modules N such that Hom (P, N} = 0 and the class of cotorsionfree modules
to be all R-modules L such that Hom (L, N) = 0 for all cotorsion R-modules
N. Under the hypothesis of 5.1.1(3) we see that (Fj;, T,;) is the cotorsion
theory (in o[M]) that is induced by P.

2. A class of modules is called a TTF class or Jansian class (see [37]) if it is
closed under submodules, direct products, homomorphic images, extensions
and isomorphic images. Hence we see that under the assumptions made in

5.1.1(3) Ty forms a Jansian class.

Cotorsion theories can be described by trace ideals (see [37, 1.2, 1.3]).

5.1.2. Projective non-small modules.
Let P be a projective, non-small R-module. Let T := Tr(P, R) be the trace ideal of
P. Then the following holds for a module N € R—Maod:

(1) N is small if and only if TN = 0.
(2) The following statements are equivalent:

(a) N is non-small;
(b) N=TN;

(c) R/T ®@r N =0;
(d) N is P-generated.
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Proof: (1) Let N be small. If there exists an element n € N such that Tn # 0
then there exists a non-zero homomorphism P — 7T — Tn C N. Hence Tn = 0 for
allm € N. Thus TN = 0. On the other hand TP = P holds by [67, 18.7]. Hence
Tr(P,N) = (P)Hom (P, N) = T(P)Hom (P,N) C TN = 0. Thus Hom (P,N) =0
implies by 5.1.1(3)(i) that N is small.

(2)(a) = (b) Since T(N/TN) = 0 we get by (1) that N/TN is small. Hence
N =TN must hold since N was non-small.
(b) = (a) For every small R-module X we have T7(N,X) = (N)Hom (N, X) =
T(N)Hom (N, X) CTX =0. Hence N is non-small.
(b) < (c) By [67, 12.11) R/T ® g N ~ N/TN holds.
(b) & (d) Since P = TP holds for a projective R-module, we have T7(P,N) =
(P)Hom (P, N) = T(P)Hom (P, N) = T(Tr(P,N)) € TN. On the other hand let
pe P, f: P - Randn € N. Then (p)fn € TN and every element in TN is
a finite sum of elements of this form. Clearly f and n induces a homomorphism
fu : P — N such that p — (p)fn. Hence (p)fn € Im (f,) € Tr(P,N) implies
TN C Tr(P,N). Thus N =TN if and only if Tr(P,N) = N. (I

Remarks: Let Gen(P) denote the set of all P-generated modules. Then under

the assumptions of 5.1.2 we have 7;; = R/T—Mod and Fj; = Gen(P). (Note

that the trace ideal of a projective R-module is a two-sided ideal; see [67, pp.
154]). Moreover if R is commutative and P a finitely generated projective R-module

then R = T @& Anng(P) holds (see [67, 18.10]). Thus if P is non-small we have
= Anng(P)—Mod and Fj, = Gen(T).

Definition. An R-module M is called co-semisimple if every simple module in
o[M] is M-injective (see [67, 23.1]). A ring R that is co-semisimple as a left R-

module is called a left V-ring.

Corollary 5.1.3. Assume M to be projective in o[M|. Then the following state-
ments are equivalent:

(a) M is non-M-small and a generator in o[M];

(b) Ty =0;

(¢c) Rad (N) =0, for every N € o[M];

(d) M is co-semisimple.
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Proof: (a) = (b) clear by 5.1.1(2); (b) < (c) clear by definition; (c) < (d) by [67,
23.1]; (d) = (a) by [67, 23..8(1)] M is a generator in o[M] and by (b) 757 = 0 hence
M is non-M-small. [

Remarks: The last corollary shows, that a ring R is (left) non-small if and only if it
is a (left) V-ring (see also [25, Proposition 2.2]).

Recall that every simple module in o[M] is a factor module of a submodule of

M (see Chapter 3.6). The next statement dualizes [10, Proposition 4.2].

Proposition 5.1.4. Let M be an R-module.
1. Every simple R-module is M-small or M -injective.

2. If Ty (M) +Rad (M) = M, then M/L is injective in o[M] for every mazimal
submodule L of M.

3. If Ta(M) 4+ Soc (M) = M, then every mazimal submodule I such that M/L

is M-small is o direct summand of M.

4. If Rad (M) = M then every simple module in o[M] is M-small.

Proof: (1) A simple module which does not belong to o[M] is trivially M-injective.
Assume the simple module E € ¢[M] is not M-small; then it is not small in its
M-injective hull &. Therefore there exists a proper submodule X C E such that
E=F+K. ENnK =0 holds since K is proper and hence F is a direct summand
of & and hence M-injective.

(2) Let L be a maximal submodule of M. Assume M/L is M-small, then
Tu(M) C L implies M = T3 (M) + Rad (N) C L a contradiction to L being a
maximal (proper) submodule. Hence by (1) for all maximal submodule L C M we
have M/L is M-injective (and hence injective in o[M]; see [67, 16.3]).

(3) Let L be a maximal submodule of M with M/L being M-small. Then

(M) C L and hence there must be a simple module F in Soc(M) with LOE = M.

(4) Every simple module E in o[M] is a factor module of a submodule of M.

Hence there exists a submodule L C M such that the following holds:

0 > L > M




CHAPTER 5. DUAL POLYFORM MODULES 106

with f an epimorphism. If F is M-injective, then the diagram can be commutatively
extended by an epimorphism from M to E. By hypothesis M has no simple factor
module. Thus there are no M-injective simple modules in ¢[M] and by (1) every

simple module in o[M] is M-small. O]

The next statement dualizes [10, Proposition 4.5].

Proposition 5.1.5. Let M be an R-module and N an M-small module. If M is
self-injective then for any f € Hom (N, M), Im (f) < M.

Proof: Let N denote the M-injective hull of N.

—

0O — N — N
|
M

Since M is injective in o[M], the diagram can be extended commutatively by an

homomorphism g : N — M. Since N < N we get Im (fi=Im(g) < M. O

5.2 Co-rational submodules

In this section we will define dual notions for rational submodules and polyform
modules. A submodule U of a module M is called rational if Hom (M/U, M )=20
where M denotes the M-injective hull of M. Equivalently U is rational in M if and
only if for all submodules U C V' C M, Hom{(V/U, M) = 0. Moreover every rational
submodule is an essential submodule of M. Zelmanowitz called a module polyform if

every essential submodule is rational. These notions were used to generalize Goldie’s
Theorem (see [10, 5.19]).

Definition. Let M be an R-module. A submodule N of M is called co-rational
in M if for every L € N, Hom (M, N/L) = 0.

This is a slightly different definition of co-rationality than the one by Courter

(see [9]).

Proposition 5.2.1. Let M be an R-module having a projective cover P in o[M].

1. Let N C M then the following are equivalent:
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(a) N is co-rational in M;
(b) Hompg (P, N) = 0.

2. Every co-rational submodule of M s small in M.

Proof: Denote M ~ P/K with K < P.

(1) (a) = (b) Let g € Hom (P,N) and L := (K)g and h be the induced ho-
momorphism h : M — N/L with p + K + (p)g + L. But then h = 0 since N is
co-rational. Hence (P)g = (K)g and for all p € P there exist & € X and [ € Ker (g)
such that p =k + 1. Thus P = K + Ker (g) = Ker (g), implying g = 0.

(b) = (a) For 0 # f € Hom (M, N/L), the diagram

P — M — 0
a2
N — N/L — 0

can be extended commutatively by a non-zero homomorphism from P to N.

(2) Let N be a submodule of M such that N+ L = M for L C M. Write
M =P/K, N=X/K, L =Y/K for some submodules X and Y of P such that
X+Y =P Y#Pand K CXNY. Then

0—=Y2>P->X/(YNX)—=0

holds. Since P is projective we get a non-zero homomorphism P — X/K = N.
Thus Hompg (P, N) # 0 and N is not co-rational in M. [

Definition. A module M is called co-polyform if every small submodule of M is

co-rational.
Proposition 5.2.2. Let M be an R-module such that M has a projective cover P
in o[M]. Then the following are equivalent:

(a) M is co-polyform;

(b) Jac (End (P)) = 0.

Moreover in this case every f € End (M) lifts to an f € End (P) and every small
epimorphism in End (M) is invertible in End (P).




CHAPTER 5. DUAL POLYFORM MODULES 108

Proof; Recall, that the Jacobson radical of the endomorphism ring of a self-
projective module P can be expressed as Jac (End (P)) = {f € End (P) : Im (f) <
P} [67, 22.2].

(b) = (a) Let f: P — K be a non-zero homomorphism with K a small submodule

of M. Consider the following diagram

P———f——)K

b

P—s M — 0
P

Where p denotes the projection from P to M, and there is a non-zero g ¢ End (P)
with f = gp and Im (/) = Im (gp) < M. Hence Im (g) < P because p has small
kernel, implying g = 0 and so f = 0, a contradiction. This shows Hom (P, K) =0
for every small submodule K of M and by 5.2.1 every small submodule of M is
co-rational.

(a) = (b) Consider f € End (P) with Im (f) < P. Then for all g € Hom (P, M),
U :=Im(fg) < M, but then fg € Hom (P,U) and hence is zero. This implies
Im (f) C Ker {g) and so

Im (f) C (1  Ker(g) =Re (P, M).
g€Hom (P,M)
But P is cogenerated by M (see [67, 18.4]). Hence Re (P, M) = 0 implies f = 0.
Thus Jac (End (P)) = 0.
For every f € End (M), the following diagram can be extended by an f €

End (P).
P

~
g
~

[en]

P > M > 0

P

If f is a small epimorphism, then f is a small epimorphism and hence an isomor-

phism. [

Remarks: The above theorem shows that a ring is co-polyform as a left R-module
(right R-module) if and only if Jac (R) = 0. Moreover this shows us that these
notions differ in their behaviour from their duals, since an R-module M is non-M-
singular if and only if it is polyform. In contrast to that: 3Z has zero radical (i.e.
it is co-polyform) but it is not a V-ring (e.g. Z/p*Z with p prime and & > 2 has

non-zero radical).
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5.2.3. Co-polyform and non-small modules
Let M be an R-module.

1. If N 1is non-M-small, then N is co-polyform.

2. If M 1is co-polyform and self-injective then Hom (M /N, M) =0 for all N C M
with M/N € Ty;.

3. Assume M 1is self-injective and Hom (M /N, M) 0 for all non-zero N C M.
Then M 1is co-polyform if and only iof M is non-M -small.

Proof: (1) Let L <« N, then L/K « N/K for every KX C L. Let f €
Hom (N, L/K), then f = 0 since T;3(N) = N

(2) Let f € Hom (M/N,M). Then Im (f) <« M holds by 5.1.5. Since M is co-
polyform we have Hom (Im (f), M) = 0. Thus f = 0.

(3) This is a consequence of (1) and (2). [J

Combining 5.2.2 and 3.4.6 we get for co-polyform modules:

5.2.4. Semisimple artinian endomorphism ring.
For an R-module M having a projective cover P in o[M] the following are equivalent:

(a) M has finite hollow dimension and is co-polyform;

(b) End (P) is semisimple artinian.
If M has this property, then every epimorphism f € End(M) is invertible in End(P).
Proof: By 3.1.10 M having finite hollow dimension is equivalent to P having finite
hollow dimension. By 3.4.6 and 3.3.5 this is equivalent to S := End (P) being
semilocal. By 5.2.2 M co-polyform is equivalent to Jac (§) = 0. So M having

finite hollow dimension and being co-polyform is equivalent to S being semisimple

artinian. O
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