A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF

STATISTICS IN THE UNIVERSITY OF GLASGOW

PROBLEMS IN THE ANALYSIS OF BINARY MIXTURE DISTRIBUTIONS

BY

MUHAMMAD FARID KHAN

THE UNIVERSITY OF GLASGOW

MARCH, 1989




ProQuest Number: 13834269

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13834269

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



™TMesis
{20




To Hina and Madeeha;

and Maria and my mother.




Acknowledgements

I would like to express my gratitude to my supervisor Professor D.M,
Titterington for starting me on this line of research, for his guidance
throughout the period of research and for his patience.

I would also like to thank the Government of Pakistan for sponsoring
me .

Finally, my thanks go to my wife Hina for typing a difficult manuscript

with great skill.




CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CONTENTS

Introduction and Background.

Definition of a finite mixture distribution.
Two types of applications of finite mixture models.
Examples of applications of finite mixture models,
Estimating the parameters of mixture distributions,
Binary mixtures and the associated invariant.

Kernel-based density estimation:

Scme mathematical results about binary mixtures .

Introduction.
A linear dependence condition.
An additional theorem.

Looking ahead.

A review of two critical papers,

Introducticn.

Two non-parametric tests,

A test statistic: continuous data.

Introduction .

~ ~

Expressions for mean and variance of t and Q(t).

Elaboration of terms comprising the expressions
~ ~

of mean and variance of t and Q(t) in section 4.2.

Page

11

12

13

18

23




CHAPTER 5

CHAPTER 6

6.1

6.2

Explicit expressions for the basic guantities
comprising mean and variance of t and Q(t).

~ ”~

Calculation of mean and variance of t and Q(%).
A simulation study .

The distribution of Q(E) and the normal
distribution.

Dominant part of the mean and variance of Q(t)

under the null hypothesis.

A test statistic: discrete data.

Introduction.

A ~

Expressions for mean and variance of t and Q(t).

Elaboration of the terms comprising the expressions

~ ~

of mean and variance of t and Q(t) in section 5.2.

~ ~

Expressions for mean and variance of t and Q(t)

(for different orders of & under the null hypothesis).

Relevant moments of z~N(Q,V) .

Expressions for mean and variance of ; and Q(;)
(under the null hypothesis) in terms of the
covariance matrices Vi'

A simulation study.

The likelihood ratio test.

Application to some fish data .

A Bootstrap version of the test.

Introduction

The smoothed bootsirap technique

Page

49

60

81

84

86

93

97

115

121
129

133

140

140




CHAPTER 7

CHAPTER 8

A simulation study.

A drawback of the test.

A necessary condition for three binary mixtures to

have the same two components.

Introduction.

Infimum and supremum of the ratio of two densities.
Two preliminary theorems.

A necessary condition for three densities to be
proper mixtures of the same two components.
Geometrical view of the extreme points of the ratio
of two densities fl and f2 which are mixtures of the
same two components for the case of unimodel
components.

A graphical study.

Further remarks and suggestions

Introduction.

Two graphical representations of the null hypothesis
for the case of three densities.

A general theorem and an associated method.

Finite mixtures having more than two components.

Page
142

142

144
144

150

151

154

155

169

180
172

173




SUMMARY
In Chapter 1, a finite mixture distribution is defined and background
literature is briefly mentioned.
A theorem is proved in Chapter 2 which states that if three density
functions are proper mixtures of the same two components then one of them
is a proper mixture of the other two., It is shown, with the help of a
counter example, that the converse of this theorem is not necessarily
true,
In Chapter 3, two critical papers are reviewed.
In Chapter 4, a distance functien, based on the necessary condition of
this theorem,is defined which 'measures' the deviation from the hypo-
thesis that one of the densities is a proper mixture of the other two.
The expressions for the mean and variance of this distance function are
calculated for continuous data. Simulations are carried out to generate
values of the distance function for a number of cases (null as well as
non-null). For the several values of the distance function thus obtained
the sample mean and sample variance were calculated and compared with
the theoretical values obtained from the above mentioned expressions.
The distribution of the distance function is considered and it is shown,
diagrammatically, that the 1ogaritﬁm of this distance function is approx-
imately normally distributed. Finally, in this chapter, a test of the
null hypothesis is suggested. In Chapter &, expressions for the mean and
variance of the distance function are discussed for discrete data. A
simulation study is carried out and a 'parametric' test of the null
hypothesis is suggested and carried cut on several data sets. Also, a
non-parametric test of the null hypothesis is suggested and carried out
on the same data sets. Finally, in this chapter, the various tests

suggested are also applied to some fish data.




In Chapter 6, a Monte Carlo test based on the above-mentioned distance
function is introduced.

In Chapter 7,a theorem is proved which determines another necessary
condition for three densities to be proper mixtures of the same two
components.

In Chapter 8, the theory and metﬁods developed in this thesis (which
are applicable only to the case of three density functions) are gene-
ralised to the case where we have more than three density functions.
Finally, finite mixtures having more than two components are discussed

in some detail.




CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Definition of a finite mixture distribution

Suppose that a random variable or vector, X, takes values in a sample
space, X, and that its distribution can be represented by a probability

density function (or mass function in the case of discreteX) of the

form
k
p(x) = £ 1@n,f (x) (xeJ0), (1)
. i1
J=1
where
N and, for je[ 1,2,....k] ,
j=1"
(i) m. >0

(ii) £.(.) >0
J

and (iii) fj(x)dx=l.
X

In such a case, X is said to have a finite mixture distribution and

p(.) is called a finite mixture density function.

The parameters Hj and the functions fj(')’ for je[l,2,....k ] will be
called the mixing weights and the component densities, respectively,
of the mixture.p(.) will be called a proper mixture of the fi(.)’s if

the parameters “j (j= 1,2,3,¢...k) lie between O ang 1.

1.2 Two types of applications of finite mixture models

Finite mixture models are applied in two different ways. One is called
a direct application and the other an indirect one.

If we believe in the existence of k (refer to equation (1) ) underlying
categories such that the experimental unit on which the observation X

is made belongs to one of these categories (we do not, however, observe




directly the source of X ) then in this form of application, fj(') is
the probablity distribution of X given that the observation actually
derives from category j, and Hj denotes the probability that the obser—
vation comes from this source. This is called a direct application of a
finite mixture model.

By an indirect application we mean a situation where the finite mixture

model is simply being used as a mathematical device in order to provide

an indirect means of obtaining a simpler form of analysis.

1.3 Examples of applications of finite mixture models

We now mention, briefly, a few areas of application of finite mixture
models where the model is intended as a direct representation of the
underlying physical phenomenon.

For the continuous case, finite mixture distributions with normal comp-
onents, and, for the discrete case, finite mixture distributions with
multinomial components are most widely used.

Example 1 Fisheries research

Cassie (1954) gives frequency data for the lengths of 256 snappers.

The underlying categories are the possible age groups to which an
individual fish might belong. Thus the component densities describe the
length distributions for fish of different ages and the mixing weights
indicate the age distribution of snappers in the total population.

Example 2 Grain sizes in samples of particles

Brazier et al., (1983) give grain size distributions at various dist-
ances downwind from Mount St. Helens, deposited from a certain eruption.
The samples are analysed by sieving and we get a distribution measured
by percentages of total weight in various ranges of size.

At three different distances, recorded, there is evidence of a mixture




of two components, although the mixing weights change from place to
place.The physical explanation for the mixture offered by Brazier et al., is
that some of the fine ash aggregates to form the larger particles that
contribute to one of the components.

Example 3 Sex distribution of twin pairs

Blischke (1978, Vol 1,p.l175) gives an example of a mixture of two tri-
nomial distributions, i.e. ,the sex distribution of twin pairs.A twin
pair must be from one of three classes: male/male, male/female,female/female.
Thus we are dealing with a trinomial distribution.However, twin pairs
come in two types,dizygotic and monozygotic, so that we have, in fact,
a mixture of two trinomials. The mixing proportions are the relative
magnitudes of the two types of twin pairs.

Finally we give a few examples of indirect applications of finite
mixture models.

Example 4

To approximate an intractable heavy-tailed distribution we may use a
two-component normal mixture where one component has an inflated var-
iance.

Example 5

The kernel methods of density estimation employ a finite mixture as a
smooth curve-fitting device; see Section 1.6.

i.4 Estimating the parameters of mixture distributions

If, in equation (1), fl(.),........,fk(.) have specified parametric

forms then the right hand side of {1) will have the more explicit rep-

resentation




where Ej denotes the parameters occurring in fj(°)'

Many methods have been devised and used for estimating the parameters of
mixture distrbutions. Some methods are of general applicability while
there are methods which are restricted to particular types of components,
see Everitt and Hand (1981) and Titterington, Smith and Makov (1985)

for detailed accounts.

1.5 Binary mixtures and the associated invariant

In this thesis we will be interested in binary mixtures. A binary mixt-
ure is a mixture having two components. It will be shown that there is
an invariant quantity (constant} associated with any three binary mixt-
ures which are expressible as mixtures of the same two components.

If in a binary mixture we regard the two components as binary mixtures
themselves, én the sense that the other component has zero weight, then
it follows that there is an invariant quantity associated with each
binary mixture.

Some statistical tests will be developed which are based upon the above-
mentioned invariant.

In our work, parametric models will not be assumed for the component
densities. As a consequence, kernel-based density estimates will form

an important tool in our analysis ard we provide a brief introcduction

to them now.

1.6 Kernel-based density estimation

A kernel based density estimate is defined as follows.

....xn] be a sample of size n drawn from the true density £ (x),
say .

As mentioned in example 5 of section 1.3, we write down the estimate

~

f(x) of f(x) as




where k is a density function which we will always take to be normal.
Thus, f(x) is being approximated by a finite mixture of n components.
Each component has, as its mean, one of the data points. However, each
component has the same variance h? and all the components have the same

mixing weight %. The function k is called the kernel of the density

estimate.

Thus if k is taken to be normal then k(y) is a gtandard normal density.

~

The mean and variance of f(x) are given by

Eg(x)zf(x)+zh2Ilf”(x)+o(h2)

where Ilzkgvzk(v}dv

and
var £(x)= L= I, £(x)+0(1/n)+o0(nn) ">
nh 2

where

Iazu[kz(v)dv and, in practice, h=o(1)

Thus, approximately,

Ef(x):f(x)+zh211f” (x)

var ;(x)=(nh)_llaf(x).

Therefore the mean squared error of f(x) is given by

MSE ;(x)= ihali (f”(x))2+(nh)_11 £(x).

4 2




Differentiating MSE f(x) with respect to h and equating it to zero,

gives , for fixed x,

7] 2
Il[f (x)]

-~

Since the second derivative of MSE f{x) is positive, therefore the opt-

imal h (asymptotically) to minimise MSE f(x) is proportional to n“l/5.

Also the integrated MSE of f(x) gives the optimal h {(asymptotically)
to be proportional to n_l/5. We shall use this asymptotically optimal

choice for the smoothing parameter in what follows.




CHAFTER 2

SOME MATHEMATICAL RESULTS ABOUT BINARY MIXTURES.

2.1 Introduction

Suppose fl(x), f2(x) and fs(x) are three distinct densities. For brevity
we will write them as fl, f2 and f3 respectively. In this chapter we
determine the conditions under which one of the fi’s (i=1,2,3) is a pro-
per mixture of the other two. Further, we determine the additional
condition under which the fi’s are expressible as proper mixtures of

the same two components.

2.2 A linear dependence condition

We prove a necessary and sufficient condition for f,, f

1 5 and f3 to be

linearly dependent.

By definition, fl, f2 and f3 are linearly dependent iff

- : -0 ¥x
Af +Bf ,+Cf =0 (i.e, Afl(x)+Bf2(x)+Cf3(x) 0 ) (1)
where the constants A, B and C are non-zero and A+3+C=0. (2)

Obviously, A,B and C cannot all be positive. Thus it follows that at
least one of them is negative. We assume, without loss of generality
that A<O.

Using (2), (1) can be written as

—(B+C)f1+Bf2+Cf3=O. (3)

Also, obviously, out of B and C one (at least) must be positive. Again,
without loss of generality,weé assume that B is positive. Thus (3) can

be written as

B C
£ - Bsc T2 ~ Bic 70 (4)

If C is positive, we write (4) as

B c
f1= 56 2 * 8¢ Ta

If C is negative we write (4) as




Thus, in either case, one of the fi's is a proper mixture of the other two.
This proves the necessary condition for the fi's to be linearly dependent,
If we assume that one of the fi’s is a proper mixture of the other two then
it is obvious that the three fi's are linearly dependent. Hence we have

proved the following theorem.
Theorem 1

Three densities are linearly dependent i1ff one of them is a proper
mixture of the other two.
The next theorem establishes the necessary condition (but not sufficient,

as we will show later) that fl,f2 and f_ are proper mixtures of the same

3
two components.

Theorem 2
If fl,f2 and f‘3 are proper mixtures of the same two components then

fi - fj = tijik(fi —fk), where tijik is constant, i £ j # k and

i,j,ke [1,2,3]
Proof

Let 8 and h be the common components of the fi’s.

Let £, = p.g + (1 - pi)h

(i=1,2,3) -
Thus £, - fj =(p, - pj) (g -~ h)
and £, -1 = (p, - p,) {g - h)-
Therefore
f_f‘=..f._j.‘.__—_.€.ij_( _f)

where

p. = P,

[ constant =t ,,., . This proves Theorem 2.
pi - pk ijik

Now,if fl’fZ and f3 are related as

B =y =ty (Fy) - )

then,rewriting this as

(1 -t .,

1jik)fi_ fj +t T o,

ijik k
we note that the sum of the coefficients of fi,fj and fk is zero. Thus

by Theorem 1, one of the fi’s is a proper mixture of the other two.

This proves the following theorem.




(o]

o=l
ul

o]

(=]

Theorem 3

and fS are related as

f,
i

If fl’f2

;= t (fi—fk) ifjk

is constant, i,j,ke[1,2,3],

ijik
where tijik
then one of the fi’s is a proper mixture of the other two , and conversely.
The following graphical example demonstrates that the converse of theo-

rem 2 is not necessarily true.

Example
!L
|
:L f'l ]Cg
| UNIT UNIT
Looao, [ SEMICIRCLE, ) | [ SEMI CIRCLE
0.0 05 10 1.5 2.0 2.5 30 35 40 &S5

Let f3=afl+(l—a)f2, - where O <a< 1.Then, obviously, fl and f2are not
proper mixtures of the same two components.

In the next section we determine the additional condition under which
the converse of theorem 2 is true.

2.3 An additional theorem

Consider the identities

p,f_-p,f

2 1
£, 5Py + (1-p)) _te 2l (6)
P17Ps P17Py
_ (1-p, )£ ~(1-p))f, p TPty
f. =p + {(1-p.) (7)
2 T2 P —p 2 -
17P» P~ Po

where 0 < pl,p2 < 1 and without loss of generality, we choose p1 > Py

Let
defn. ﬁl~p2)fl—(l—pl)f2
g = (8)
PPy
defn. p. T -p,f
and h = 12721 (9)

p1—p2
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Now g and h are densities iff

(i) fgdx= 1 and fhdx = 1

(ii) g20 and h>0 Vx
Condition (i) is obvious from (8) and (9). For condition (ii) to hold
it is necessary (and sufficient) that

(1- p,)f, 2 (1-p))f, (10)

and p,f,2 pyf, e (11)

(10) and (11) together imply that

Iy o T (12)

1-p, o Po .

This means that fl and f2 are proper mixtures of the same two components

if (12) holds. In other words, if fl and f, are proper mixtures of the

2
same two components then f; lies between finite and non-zero limits.
f
Conversely,let dls f;g d2 2where dl is the infimum and d2 the supremum.
f
We take d1 to be nongzero.Obviously d2 is positive. Since fl and f2 are

densities therefore it is not possible that flg f2 or f13 f2 for ail x.

This implies that 0<df 1 and d2>l.

i-p p.
Put dl =7 ;_l and d2 = :l
Py Py
Th p. b and p ﬁ
us =
1 d,—d, 2 7 d,—d,

Note that Ei>5é and O<ﬁ1, 5;< 1. Thus we have proved the following
theorem,

Theorem 4

Two densities fl ang f2 are proper mixtures of the same two components
f

iff }i lies between finite non-zero limits at all points (except the
2
fi 0
points where N takes the indeterminate form 5).

2
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2.4 Locking ahead

In Chapters 4 and 5, Theorem 3 is used as the basis for forming a

distance function which measures the deviation from the hypothesis that
one density is a proper mixture of the other two. In other words, if we
decide that the condition in Theorem 3 is not satisfied then we can st-

ate that none of the fi’s is & proper mixture of the other two.
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CHAPTER 3

A REVIEW OF TWO CRITICAL PAPERS

3.1 Introduction

The hypothesis that the distribution function of one of three populations

is a proper mixture of the distribution functions of the other two pop-

ulations may be tested either by a parametric method or by a non-param—

etric one. In this thesis the problem has been attempted by several non-

parametric methods.

A review of the literature shows that this problem was attempted by

Falmagne (1968) and Thomas (1969). The tests proposed by both were non-

parametric, rurthermore, the test proposed by Falmagne was a non-stat-

istical one .

This problem, for the continuous densities case, has not been attempted,

to the best of our knowledge, by any parametric method,

If we are testing the hypothesis that the density functions, or, equiv-

alently, distribution functions, of three populations are proper mixtures

of the same two components, then we are considering a related problem as

explained in what follows.

According to Theorem 2 of chapter two it is clear that if we decide that

the above mentioned hypothesis is true then it follows that the null

hypothesis that the
is a proper mixture
populations is also
Thus if we consider

parametric approach

distribution function of one of three populations
of the distribution functions of the other two
true.

the null hypothesis in its stronger form then the

inveolves fitting mixtures of the same two component

densities and then deciding whether the parameters of the component den-

sities are the same

for each of the three given densities.




13

Kornbrot(1983) introduces a method by which the parameters of the fitted
mixtures are estimated simultaneously as opposed to the other methods
which estimate the parameters of the densities individually. But this
paper does not suggest (or attempt ) ways of deciding whether the com-
ponent densities are the same for the given densities,

In the next section we elaborate on the papers by Falmagne (1968) and
Thomas (1969).

3.2 Two non-parametric tests

In this section we first discuss the paper by Falmagne {1968). He proves

a theorem which states that if Fl and F2 are proper mixtures of the same

two component distribution functions which intersect at a peoint,say,
X=Xy then any mixture of the same two distribution functions also
intersects at x:xo. Note that the property expressed by this theorem
‘also holds for density functions. Fglmagne applies the theorem to six
empirical distributions and concludes that a model involving two basic
distributions cannot be fitted to the six empirical distributions for
any reasonable hypothesis about the basic distributions. Observe that
the test here is a non-statistical one.

Thomas (1969} discusses distribution~free methods for testing the hyp-

othesis that the distribution function,say F_,of one of the populations

3

isa proper mixture of the distribution functions, say, F. and F2, of

1

the other two populations.

He introduces two statistics 1t % and 172 which are defined as
n n

<o

im0 [[BF (x)+aF, (x)-F (x) ]2 dF ()

—CO

and 1£2=n j{ggl(x)+a§2(x)—Fa(x)}ZdFB(x)

e 0O

respectively.
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~ ~ ~

Fl(x), F2(x) and FB(X) are the estimates of the distribution functions

Fl(x), FZ(X) and FS(X) respectively.
Fl(x),Fg(x) and Fs(x)are related as

Fs(x)=pFl(x)+qF2(x), where 0<p<l and g=1-p.

p is the estimate of the mixing weight p, and similarly q the estimate
of q.

Each of the three samples, for simplicity, is assumed to be of size 2n.
Two sets are constructed. The first set consists of a random choice of
n readings from each of the three samples. The second set consists of

the remaining 3n readings. The first set is used to estimate p. The
second set is used to construct Fl(x), Fz(x) and F3(x). It is assumed

~

that the estimate p of p constructed from set one is such that

~

E(P:p)=0(n-1)

~

and E(p~p)2=v2n—1+0(n—2).

2
if yl, ...... ,yn is the ordered sample from F3 then the statistic Tn is
given by

n AN AN ~ n
T; - ki]_[pFl(yk)+qF2(yk)_F3(yk)]ZE ki [V(yk)]2

n ~ ~
=n 5 [psk(l)+qsk(2)—k}2. (1)

Here Sk(h) is the number of x .'s less than or equal to x_, , where the

hi 3k
h=1,2 i=1,..,n k=1,..,n

t i P seree ‘e
hree samples are given by (xll, ’xln)’(x21’ X2n} and (x31’ XBn)

~

for Fl(x), F2(x) and F3(x) respectively. Note that T; does not involve

the assumption that F3(x) is given by

Fs(x)=pFl(X)+qF2(x)- (2)




15

Thus equation (1) can be used to obtain Etnz without the assumption
given by equation (2}.
The function v(x), with the condition given by (2) incorporated in it,

can be written as
V=D(F1-F1)+Q(F2-F2)+(p—p)(Fl—F2)+F3—F3.
Thus

(x) - (4)

Using (3) we have

2y_ 2 _ 2 _ 2 - 2 _
nk( v?*)=p Fl(l Fl)+q F2(l F2)+v (F1 FZ) +F3(1 F3).

Substituting in (4) we have, after performing the integrations

r2_1 4 2 1 _
ETn =3+ 3 v 5 pa(1+2p)-pg (1-2p)a
2 2 2z 2
-2(v°-p q)Bl—Z(v -pq )82- (5)
In equation (5) 8 = { F_ (x)F,(x)dF, (x) (h=1,2)

and o = JFl(x)ng(X).

A theorem is proved which states that if (2) is true then for arbitrary

§>0,
2 ; 2
Lim P[| v -t | <8 ] =1 .
n n
Naw
This theorem ensures that the moments of Tnzare approximately equal

to those of Téz .
Consider (5). v2 depends on how p is estimated.If the relation

z -0.
n rj(S) 0 5n1n2n3

z -
nyt 8, (1) + 2 r (3) ~nn,n, (6)
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is used, where

rj(S) is the number of x3k s less than or equal to X2j and Sk(l) is the

number of xli’s less than or equal to Xap and n1=n2=n3, then v¥ can be

expressed in terms of p and o where o can be estimated by

= Ir (1) ;
)

rj(l) is the number of xli’s less than or equal to X2j'

Thus, since p,a and similarly B, and B, can be estimated,from (5)it follows
that ET;E can be estimated. Also ETn2 can be estimated, the difference

? does not. Thus,

being that ET;_l2 contains the null assumption while ETn
when the null hypothesis is true, Eréz and ETHZ, according to the theo-
rem, should be approximately equal.

Thomas proposes the following test

Suppose F3(x)= p(X)Fl(x)+(l—p(x)) Fz(x)‘ (7)

Hy: p(x)= p(0<p<l)

Hl;p(x)¢ const. +

Let the quantity, under the null hypothesis, estimated by p in (6) be
Po. Thus (7) may be written as

FS(X)= poFl(X)+un (x)+e(x)

2

where e(x)= (p(x)-p,)[F (x)—Fg(X)]-

1

Thus if p is given by (6) and V is as defined earlier then

E(Tga)=“ :i E(Vz(x))dFa(x)+n ;i ez(X)dFS(x).

var ng is seen to be of order 0(1).

2

Under H,, Bt ° is given by (5) with p=p,.

Under Hl, since e(x)#0 in a non-degenerate interval, it follows that
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@

therefore ‘fez(x)dFS(x)>O, and Lim Ergz=m.

w00 n+m

Thus, since under Hl’ since var ng= 0(1) for <>0,

we have Lim p (|an>c)=1.

n+*oc

Here Dn is the difference between the estimates of the two sides of
equation (5).

A test with rejection region of the form IDn|>c would be consistent and
asymptotically unbiased. However, Thomas (1969) does not describe how

critical values for ¢ might be obtained.




18
CHAPTER 4

A TEST STATISTIC: CONTINUQUS DATA

4.1 Introduction

According to Theorem 3 of Chapter 2, if fl, f2 and fs are three densit-
ies which are related as

£ fj = tijik(fi“ ) 1£34k ()

where tijik

is constant and i,j and ke[1,2,3], then one of the fis is a
proper mixture of the other two,and conversely. This means that if (1)
is not true then it is not possible that any of the f,'s is a proper

i

mixture of the other two.This suggests that if we consider the square of

(fi" fj)‘tijik(fi' fk)

and construct a quantity which is actually the sum of the above mentio-
ned squares over a number of chosen values of the random variable x then
the quantity thus constructed can become the basis of a test which
decides whether or not one of the fi’s is a proper mixture of the other
two.,

~ ~

Let fl, f2 and f3 be kernel estimates of fl, f2 and f3 respectively.

Choose a number of points (say m ) on the x-axis, xl,xz,....,xm. In

general, we will assume samples of different sizes underlying the actual

densities.

Define the distance function Q(t) as
2

m g A ~ ~ ~
Q(t) =ijl{[(fl(xi)-f2(xi)]— ESICIDEINE I ]] . (2)
Then , m A ~ r“ ~ 7
Q (L) = -2 3 [fl(xi)~f3(xi)] gfl(xi)~f2(xi)
i=1
—e[ £, () ~F4(x )]
Thus _ /
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m ~ ~ ~ ~
z [fl(xi)—fz(xi)}[fl(xi)—fa(xi)] .

t= i=1 =t. (3)
m - - 2
oz [fl(xi)—f3(xi)]
i=1
m ”~ -~ .
Now Q#(t) =2 ¢ [fl(xi)—f‘s(xi)]2 is positive, therefore Q(t) is minimi-
i=1
sed by t=t. Thus .
Q(t) = 5 [(F) e )=r,(x ))=t(f (x )£ (x, D) ]
(o1
m ~ ~ ] m ~ ~ ~ ~ ..
=.Zl(f1(xi)—f2(xi)) - izl(fl(xi)—fZ(xi))(fl(xi)-fs(xi)))
1= =

(4)
In (4), the points xi(i=1,2,....m) may be chcgsen in a variety of ways.
In our simulation study we will choose them to be equally spaced.

/N
The points X, may also be cheosen in such a way that the MSE of t is

minimised. Now,MSE of t is given by

~

E(t-t)*=(bias t )2 +var t

I ~ ~
The formulae for Et and E t ? (and, equivalently, the formula for var t)

as derived in section 4.2 of this chapter, are based on the true fi’s

ral
(and the smoothing parameters, h, used to form their estimates, fi)'

Thus the variables for selection on which the formulae for the mean and

~

variance of t depend are the points x,,x

PrXprees e X and the smoothing

parameter h.
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This is a problem in optimal design where the independent variables
are the xi's and the smoothing parameters h, the function being the

A

MSE of t.

Denoting MSE of % by M(xi,........xm, h’s) , our problem is to find
xl,......xm and h's to minimise M. Suppose that, given the xi’s, the
a’s minimise M over the h’s. Then compute M(xl,......x R g's ) and mini-
mise with respect to the xi's, giving the ;i’s. Our solution will be

~ ~

(xl,......xm, h’s ).

In practice, this minimisation procedure will be very difficult because

of the large number of variables if m is large.

-~

We will introduce some notation which will enable us to write t
and Q(t) in a convenient form. This form will make a number of
necessary calculations feasible and will alsoc explain a number

of sateps, otherwise not possible.

Let [xi]i=1,2,...m be the chosen values of the variable x, along the

X-axis.

t = 8
Let (Xi) H1i+ Ly

~ ~ ~

= 6, .= - .
where M,i Efl(xi) and 15 fl(xi) Efl(xi)

Define

AT ~ ~
fl:[fl(xl)’fl(xz)’"""’fl(xm)]'




TR S T T
1 11 12 1m

and §7=[8 ,6 ,eeveeneedd ]
1 11 12 m

~ ~

T

Thus ngz u +§_T. Similar results held for f2 and fS'

1 i

Thus (3) can be written as

~ ~ "~ T ~ ~

= (£ - £) (- )
~ ~ T -~ ~
(£, - £3) (f,-13)

and (4) can be written as

T, o N 2
Qt) = (£,- £,) (£~ £,) = [(£- £,0(£,- £3)]

~ ~ ~ ~

T
(£,- £ (£,-£)

Further, we introduce the notation

o= - 5
12 = B
890 = 8175,

~

with similar meaning for f S etc.

13’ =23
Thus (5) and (6) may, respectively, be written as

~ ~ ~

T
t= I3
/\T ~
f13%13
and Q(t) = £ £ - (£ £ )
12 12 12 13
(£ £ )
13 13 ’

Furthermore, breaking up the f.
i

(7) and (8) as

21

(5)

(7)

(8)

's in terms of u and § we may write down




22

12 12 Ty T

(9)
(b +8 )T(g +§ )
13

and

ot) = (u +8 )T +6 )= ((u +6 )T s )
2 1 -

12 12 12 1 2 12 13 13

(10)

(g +8 )7 (p +8 )
13 13 13 13

respectively.
In section 4.2 we write down expressions for the mean and variance of
t and Q(t). These expressions were initially obtained uptil order two

in §, but it turned out that for +the null case, i.e when eguation (1)

was true, the leading term of EQ(t) was of order two in § and that of

var Q(t) was (as expected) of order four in §. For the non-null case,

~

the leading term of EQ(t) was of order zero in 6 and that of var Q(t)
of order two in &, Thus expressions for the mean and variance of Q{(t)

were derived uptil order four in §. The expressions for mean and

variance of t, however, were good enough uptil terms of order two in §.

~ ~

The reason why, for the null case, leading terms in EQ{t) and var Q(t)

were of orders 2 and 4, respectively,in ¢ will be explained in section

4.8.

In section 4.3 and 4.4 the basic quantities comprising the expressions

for mean and variance of t and Q(t) are elaborated.

In section 4.5 the computatiocnal details for the expressions for mean

and variance of t and Q(t) are given.

~

In section 4.6 simulations were carried out to generate values of Q(t)

for a number of cases (null as well as non-null) . For the Q(t)'s thus
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obtained, the values of sample mean and sample variance were calculated

and compared with the theoretical approximations mentioned above., It

was found that the mean and variance of Q(t) obtained by both methods

did not differ much.
Finally, in section 4.7, the distribution of Q(t) is considered and it

is shown, diagrammatically, that log Q(t) is apbroximately normal. A

test for the null hypothesis is also suggested.

4.2 Expressions for mean and variance of t and Q(%)

In this section we write down the expressions for the mean and variance
of % and Q(;). The detailed calculation is done in section 4.5.
We have
var ;:E(;)z—(E;)2

and varQ(;)=E[Q(;)]2—[EQ(;)]Z.
Thus it is enough to write down expressions for E%, E(;)a, EQ(;) and
E[Q(;)]a. Now, since the last two expressions are extremely lengthy,
both of them will be written in three parts. Part one is all terms up-
til order two in §, part two is only terms of order three in § and

part three is only terms of ocrder four in 6.

(1) EQ(t)

We have, uptil terms of order two in 6§,

(u w2
A T 12 13 T T
EQ(t) =u~ u ~ ———— + E& & +E5° 8
12 12 ___T_L_J_ T1Ty T2 2
13 13
[ T T T T 1
2 2
et U E( S ) hE(RT 8 ) top(nh 8 ynt 8
T 12 1 13 1 12 1 13 1
T T
13 13 :
JE(B S hEE S %o (1 noygsTs
L 13 2 12 3 12 13 1 1
T o 57
+an u (W 8yl 8 yupn 8)?
12 13 12 1 13 1 13 1
T T
w8 ut 4
(_E.T BO)E +E(“13_“3) (_:2_3)
13 13 -
S )| aE’ 8 e 8 )
12 13 13 1 13 3
T, s | -fa )(esTs 4rsTs )
tExagla) 1313 171 s




We have, considering terms of order three iné ,

> 2 T T
BQ(E) = - [E (7 s 16T ) e w8 10s% ) J
T 12 1 1 1 13 1 1 1
B W
13 13
T T T T T
+2 Elp” 8 J{p" 8 1% +E[p” 8 1® +2E[p" & J{p $
T 13 1 12 1 13 1 12 3 13 1
(™ p 12
13 113 T T T T T
+2[p" w JE[p” 8 (88 ] +E[p s 1%[n s )
12 13 13 1 1 1 12 3 13 3
+2 uTu T T T T
12713 E[}L S ][ﬁi] +E[£ ﬁ][i_‘i]
12 1 1 1 13 1 1 1
T
(1 12 . .
b3 -E[p” s J[s's ]
12 3 3 3
T
-8l u T
[ 12 13] E “T.‘i ]Z[H,T_‘S_]'i’ h[}i s ]3
13 1 12 1 13 1
T
TR VR o .
13 13 "E[_H_ 5 ]2[}1‘- i]
113 3 12 3
-4[£T T

slu’ u 1° . T
+ 12 13 E[}i § J°-E [u 8 ]°
[pT u ]q 13 1 1373
133

24
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we, have, consldering terms of order four in &,

bo(s) o - & | Els's F + sl )* 4 Bles 17+ Bla s )7

11 1 3 1 2 2 3




)
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27

T T T T T
16p Elu 8 J{u 8 ]+ 3E[p 8 J[p s JE[p s ]2
12 13 12 1 13 1 12 1 13 1 13 3
+ —_—
T
(" n J*
13 13
16uT | T T T
_12£13 E{p' 8 ]* + 3E[p" s J*E{u s ]°
+ EEE AN 1371 13 3
T :
ST
13 i3
bt i i
16 Ll
Lo tr el ee(u" s 1R s 1wt s )+ B’ s 17T s ]
13 1 12 3 13 3 13 3 12 3
T
(0" p I N
13 13
2
T 2 n 2 T 2
(W m ] E{8°6 ]* + 4E[8°5 ]* + E[8 s ]
12 i3 11 1 3 3 3
- T T
T +2E[8°8 JE[& s
[}i u I [_1_1] [_3"3]
13 113
T 2 ]
1205 v 1| B[ s 12(sTs )+ B[u” 5 )?E[sTs )
12 13 13 1 1 1 13 1 3 3
+
T T T
T +E[p J2E{8°6 ] + E[p~ & .)2[6"s
[i{ o ]“ £_13 3 [_1—1} [ 13 3] [_3_3}
13 13 -
T T T
+a8[y" 8 J[u' 5 ][6"s ]
13 1 13 1 3
T
60w u J* T T T T
_ b2 13 E(p™ 8 |* + 6E[n & J2E{p" & )% + E{p” s ]*
13 1 13 1 13 13 13 3
T
[0 p ]°
13 13
2
(ii)  H Q(t)]




We have, uptil terms of order two in ¢,

~ 1t T T T
Bloee)) = [w w17 [x w10 _eln w
12 12 12 13 12
T T
(0p 2 B
13 13 13
T i T T i
+2[p u ] E[676 ] + E[878 ||+ E[n
12 12 1 H 2 2
3 T
+4[gT poo ]2 E[}LT § ]* + E[u” 8 ]* + E[n
12 13 12 1 13 1
T T T
K +2E{p- 8 J[u 8 ]
13 13 | 12 1 13 1
s2lu’ w17l B[ s ]2+ BT 8 )% 4 2B[y
12 13 12 1 13 1
T T
T +E[u 2 4L E[p s ]2
[E B ]2 [_13 2] [_xz""a:l
13 13
. )
LS b 7 T T
124 E[p” 8 J[u" 8] +E[1" 8
13 1 12 1 13
T
[p"w PP

SEIRNTE 7 o
12 13 E[_};l. 6 ]2+E[£ E]Z
13 1 13 23
T
TR TR




e
]
E[p
u 2
13 E[_E.T
]2
1a] E[UT2
]
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T T ,
—8[}}-12 12][£12£i3] T T T T
Efu" 6 J[68 ] -E[u & ][ss ]
13 1 1 1 13 13 3 3
T
(v n ]°
13 13
T T

12 12 12 13 E[_ET 6 ]3 - E[E _6_ ]3
13 1 13 3
T
(0 p J®
13 13
T T

i
=2
=
o
o
fos
|

T T - -
-16[u" w Ju p ) . 7 T
12 12 127 13 E[p" 6 ][_’i 8 ]2 +E[£ E
12 1 13 1 13 1
T 3
(' p ] T T
13 13 _E[£ s ][l‘_ s 12
12 3 13 3
T —
P22 JE[p 8 J[n 8 ) + Elu 8 ) +2E[p & J[u
13 1 12 i 13 1 12 1
T
(0" n ]2
PR T T Ef,T T
w2yt w JB[uT s J(sTs J-E[uT 5 J[uT s
— 12 13 13 1 1 1 13 3 12 3
T
"‘4[£ H ] T T T
t2 12 |Blp 8 1[e8 ) +E[p 8 ][ss ]
12 1 1T 1271 T
T
(2" n )
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T T
12 13 E[_E_ 6 }[i_(s_] 12 13 E[_E 6 ][ﬂ 6 ]2
12 1 1 1 12 1 13 1
T T
[ p ]? (0w ]°
13 13 13 13
T T
+16[p u ]
ST R s 2wt s )+ E[ut s Wt s ]2
12 1 13 1 12 1 13 1
T
T
13 13
- 4 T T T
E[p” 8 ]° + E[p" 8 J[u & ]°
12 i 12 1 13 1
T
v w ]

T
a4 oy 2 T T
2 Elu” 6 J{8s ]
T 13 1 1 1
(0" p ]2
13 13
T B ]
-4 g ]
st T
e E(y s )[8'e )+ et & (676 )
12 1 1 1 13 1 1 1
T
(2" n ]
13 13 T T
-E[p” 8 ][8°¢ ]
13 2 2 2 .

We have, considering terms of order four in s,

~ e 2

E(0(t) ] Blss T+ anls”s 1* + 5s"s )7+ ex(s”s ) E(s%s ]

2 2 1 1 2 2
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+8(p" u ) E(p 6 )" 8 )(8°6 )+E(u 6 )*3(s°6 ) i
12 12 12 1 1% 1 11 13 1 1 1
T T T T T T
( T 2 +B(p 8 ) 6 ME8)+E( u” 8 Mu 8 )(s°8 )
ooy 1T 1372 T2 1371 127y T
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We have, uptil

terms of order two in §,

-~ T
Et = ["lix 1S [Elz T
2 e E[6°8 J+E[878 ]
] - ! 17y
whe 1 ' :
13713 1y 1
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T
+4[£12£xs] T T
BT s 12E(n’ s ]2]
i3 1 13 3
113
(- » J°
13 13
T m T T
-2 [ E[HF ] [ul § J#E(p” 8 ){p” 8 ME[p ]2}
12 1 13 1 12 3@ id 3 13 1
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(Bn 12
1y 13
+1 E[QTQ]
1 1 .
o7
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13 13
(iv) E[t)?
we have, uptil terms of order two in §,
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4,3 Elaboration of terms comprising the expressions of means and

~ A

variance of t and Q(t) in section 4.2

In section 4.2 a few of the typical terms were

(1) Eg?g

(2) E[p 8 )y 8 ]
(3) E(p 8 1878 ]

(@) Blu’ s I’ 8

(6) E[m
(7) E[u’ & ut s (878 ]

All the terms occuring in the expressions of section 4,2 belong to one
of the above-mentioned seven types. In this section we express the typ-

es explicitly.

E(aTs ) = E i [f‘(xi)uEfx(xi)]z

Lo i=1

m ~
I var £ (x,).
=1 vt

k4

. E{fl_(xi)—Efl(Xi”z =
1

1 i

I o~ 3




We have

m ~ ~ ~ ~
=E | Z [Ef,(xi)—Efz(xi)][fl(xi)_Efl(xi)
=1

m -~ ~ A ~
x X [Efl(xi)uEfa(xi)][f,(xi)—Efi(xi)

i=1

”~

=LL [Ef,(xi)~Ef2(xi)][Efl(x_)—Ef,(x_)]
ij J J

x E [fl(xi)~Ef,(xi)][f,(xj}nEfx(xj)]

=II [Efl(xi)»Efz(Xi)][Efz(xj)—Ef;(Xj)]

ij
| x [E{fl(xi)fl(xj)} - Ef,(xi)Efl(xj)]
Similarly,
E(E? $§ )(g?g )= IZ (B, (x )-Ef,(x,)]
12 1 11 lJ
x E [}fl(xi)-ﬂf,(xi)][f,(xj)uﬂf;(xj)}ﬂ
Similarly,
B(u’ )%y 5 )
12 1 13 1 _
rp [Efl(xi)vE§2(xi)][Ef,(xj)_Efg(xj)][Ef;(xk)-Ef;(xk)]
ijk

E l~[;,(xi)~E;1(xi)][;l(xj)wE%(xj)][f;(xk)—Ef,(xk)?]

el
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Similarly,

T T

E(p 8 )°(u 8 )
12 1 13 1
zfiii [Ef,(xi)«Efz(xi)][Efl(xj)mEfz(xj)][Efl(xk)wEf,(xk)]
x{ Ef,(xb)-mfa(xL)]
x E [f,(xi)—Efl(xi)][fl(xj)-—Efl(xj)]
x[f"(xk)v—Ef,(xk)][ fl(xL')—Ef,(xL)]
S8imilarly,
EGut s )y 6 (s )
12 1 13 2 12
= i?i [Ef%(xi)—Efz(xi)] [Efl(xj-Efa(xj)]
xE [[f;(xi%Efl(xi)] x [f,(xk)uEfl(xk)]ﬂ
L. "‘[fl(xj)-Efl(xJ.)]
Finally,
B(a 8 (" 8)(s%8)
12 1 13 2 1 2
:fjlf {Efl(xi)-Ef2(xi)][Ef‘l(xj)mEf!(xJ.)]

~ ~

xE [fl(xi)uEfl(xi)][fz(xj)—Efz(xj)}

x[fx(xk)“Efx(xk)][fz(xk)“Efz(Xk)]

48
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- o [EEEl(xi)~E}2(xi)][Egl(xj)_EQB(xj)] |
x E r_{;‘l(xi)—mtl(xi)][gg(xj)—Egz(xj)] |

wE, (5 )-BE, () 11 ()BT, (3,0 ) |
-2z —IE;l(xi)«Egz(xi)][Egl(xj)wEEB(xj)] 7

XE L[fl(xi)~Efl(xi)][fl(xk)»Efl(xk)]]

xE LI;2(XJ)MEf2(XJ)][ fz(xk)~Ef2(xk)i] .

~

Thus, it follecws that the expressions for the mean and variance of t
and Q(t) are combinations of four basic quantities, which, written for
fl’ are

~

Ef (x) ,E[fl(xi)fl(xj)],E[fl(xi)fl(xj)fl(xk)] and

E[fl(xi)fl(xj)fl{xk)f (x)].
In section 4.4 we will evaluate these quantities with the help of the

kernel (a normal kernel will be assumed) of the density estimate.

4~4 Explicit expressions for the basic quantities comprising mean

~ ~

and variance of t and Q(t).

(1) Egl(xi)

N n X,-V
We have Efl(xi)=E by 1 k [ lh p}where ie[1,2,v00evem]

and pe [1,2,.....n]. The xi’s are the chosen values of the random vari-
able used to construct Q(t)} and the vp’s are the data points used to

construct the density estimate of fl.




~

1
Thus Efl(xi)z h k

o

X~y
h fl(y)dy

X, -y

1 i
]

n } fl(y)dy-

where fi= piN(pl,cf)+(1_pi)N(u2,og) a

1=1,2,3
Using the definition

we have,

Efl(xi)=

= Lo
l

Consider part of the

!

of the function k, 1

~

k(x)= —
2

(l—pl)
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-(1/2)%°
e

—(Y_U2)2
2 ot
— e
valo,
(11)

expression on the right hand side of (11).We have

1 [m) g e
2 h 2 [ g,
Py
dy.
2Tho,
—x 2 2 ’
- M i
2h’ 20% n o2 °2h*  2¢?
e xe x€e dy
Py
2ho, &
‘u/z
- x;* ui S (N W N P I L
- 2 h? O’f Y ha Uf
2
2h 202
) p, e e dy.
~ 2hho,
(12)

The integral in (12)

can be written as

dy
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(G§Xi+h2p1)2 ~(o%+h?) ofxi+h2u1ﬁ 2
—_— —_— g

2h® 62 (o2+h?) 2n® o2 o+ h?

e e dy . (13)

In the integral in (13) change the variable y to w by the substitutions

2 2
°1Xi+h Wy

a?+h?

and w= v/o?sh?

ho,

Thus, the integral in (13) becomes

- %wzdw
o.h e o, hval
/oi+h? R T
Hence (12) becomes
-x.5ui (ofx,+h 1)
P, o\ h/oT 2h® 202 2h? 62 (o2+h*)
x (<] xe
2ho,  voi+h?
__(Xi---pl)2
2(o§+h2)
P1
= e
v2Iy0, +h® '

Thus (11) can be written as




Efl(x.) = == +

3 12
Y2n /Ol‘f‘h /0§+hz

Similarly for Ef (xi) and Efg(xi).

2

(ii) E[fl(xi)fl(xj)]

We have

BT, (x,)f,( )] = E[; 1 k[ N s L 5T
(£, () (x50) = [r nh | T h nh | Th

"(Xi"uz )2
2(c2+h®)

Xl -y as k.
[ h '

s
where i,jel 1,2,.4...m] and r,se[ 1,2,....n] .
| o T ] E
For brevity, we will write k{7i 'rlas kir’ ki i Y
h

Xy vr?
and Ek h as Ek etc..

. B

a - 1 1
Thus E[fl(xi} fl(xj)]ﬁ E[i = Kin i s kjs]

i

1
LEoTg E[klrkjs]_ L TR ir jr
r s r r#s

1 1 1
Ky k f (y)dy + LD E(h kir)E(Ekjs)
r‘;es

R
~ nh?
l ~ ~
= nh‘g;lkjfl(y)dy+ ) EEfl(xi)Efl(xj)
L

I‘?eS

It

n{n- 1)
nhqu? k. £, (y)dy+ = (x )Ef (x )

11

1 ~ ~
nhz k k f (y)dy+ (1- n)Efl(xi)Efl(xj)'

In (15), kikjfl(y)dy is given by

1
E[k, k, ]+ L & pERwy

Ek, Ek,
ir js

. (14)

(15)
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[(xi—u1)2+(xj—u1)F

I 02 (x.~x.)?
G,(xi xj)
2h?* (202+h% )
P
h 1
k.k.f (y)dy= =— e
A
—Oi(xiux.ﬁ
2h® (202+K°
+(1- pl)e
v20i+h?

(1ii) E[fl(xi)fl(xj}fl(xk)]

We have

BLE () F (e E, () )= E[é nh'iq _ nh

—k, I —Kk

2(202+h% )

[(xi~u2)2+(xj—u2)2

-

2(202+h?)

Z —_—
jr s nh kks

- —1 :::E[K k k]
PR qrs iq jr ks
= =5 5 B[k Kk, Kk ]+ £z E[k, k. ]Ek
n® h? iq Jjq kq P h adr 1g Jg kr
+ » ¢ B[k, k ]Ek, + t » B[k, k_]Ek,
2 he q%r iq kq Jr n®hd q#r Ja ka ir
+ y ¢ ¢ Ek, Ek, Ekk
n’h? afris QoJr ks
l ) —_ ~
= kok k£ (y)dy + n{n-1)] 1 . (y)dy | BT (x,)
n® h® J n? nh? 1
+n(n-1) 1 ~ n(n-1) 1
kikkfl(y)dy Ef (x5) + —— | —— k.k £ (y)dy
n? nh? n’ nh? J

~
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+ n{n-1)(n-2)

E .
- Efl(xi)Efl(xj) fl(xk)

Using (15), (16} can be written as

”~ ~

E[fl(xi)fl(xj)fl(xk)]

g b[k k k£, (v)dy
2 3

[i % (Ef Lx ) IE f (x, )f (x,) - {}‘%} BE (x )BT (x,)]

+[? %} Ef (x ) JE f (x, )fl(xk)— {}M%]Efl(xi)Efl(xk)]

+[1 %} Ef, (x yIE El(xj)gl(xk) ~[}- %] Egl(xj)Egl(xk)]

17 2] .o - .
+,}_ H} ﬁ_ EJ Efl(xi)Efl(xj}Efl(xk)-

Thus
E[fl(xi)gl(xj)gl(xk)]
1

= k k, k T (y)dy
ke J

-

1
+ [l— HJ Ef (x, )E[f (x ;f (x )3+Ef (x, )E[fl(xk)fl(x )]

+Efl K E[f (x, )fl(xj)]

ol 11 .2 ~ A
_[__ EJ[?- H] Efl(xi)Efl(xj)Efl(xk)'

In (17)’k5kikjkkfl(y)dy is given by

(16)

(17)
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kikjkkfl(y)dy

— ) _ 2 - 2 - 2
ox[(xi xj) + (xi X, ) +(xj xk) ]
2h® (3g2+h%)
= h Py
3% 2 ©
(2m) ** | ¥30i+n?
— - 2 - 2 _ 2
[(Xi Hi) +(¥J Hy) +(xk uy )2l
‘o 2(30%+h?)
—og? _ 2 _ 2 - 2
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2h® (30%4h?)
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i x€ |

(iv) E[fl(xi)fl(xj)fl(xk)fl(xt)]

We have
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p q Ja .

~
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+ 1
n'h"
'+ ¢ ¢ E{k, k _]Ek, Ek,_+I I ZE[k, k, ]Ek,k Ek 7}
ip k T kr
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Using (17), we have

~

E[fl(xi)fl(xj)fl(xk)fl(xL)]

- ke ke k£ (y)dy+“(“;1) 1 ik (KK
kL n k™1
n h nh

n(n-1) 1
+ 2

(y)dy Efl(xL)

L2

" n(n-1)
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3
n h n
L

+ n{n-1) 1
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n n h
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nh? bkl t
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+n(n-1)(n-2) [ 1 - -
—_— 2u[kiktf1(y)dy Efl(xj)Efl(xk)
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3

'-_l | ~ ~
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n
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+ n(n=-1)(

1,13

n-2) 1
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n 1

+BE) (3BT, ()1, (x;)]

1

~

+EE) (% JE[£) (%, )€ (x )]

e

l ~ ~ ”~
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+n(n-1)(n-2) |

n3

+n(n-1)

mn-1) [ .2 0 - o
___;:_— +BE (x)) | E[£) () (x)F (x))]
-(1_%) Bf (x,)E] l(xk)fl(x
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+(1-3)(1- 2)EF. (x.)Ef. (x )EF. (x
B n n 171 1k 1
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)

58

L)]+Efl(xk)E[f1(xi)fl(xi)]

(xj)E[fl(xk)fl(xL)]+Efl(xk)E[fl(xj)fl(xL)]
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~
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~
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S
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L

3
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+n{n=1) X ELfl(xj)f

i ~ ~

1(XL)]

1 ~ ~
-(1- H)Efl(xj)Efl(xL{}

~

+ E[fl(xi)fl(xL)]—(l- %)Efl(xi)Efl(xL{]

”~ -~ 1 ~ ~
x|BLE, (x )8, (%) ]=(2- H)Efl(xj)sfl(xk)l
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Thus

~

E[fl(xi)fl(xj)fl(xk)fl(xt)]

1
= -5+ |k.k.k k £ (y)dy
S h[ 15k

~ N ”~

+(1- %) BE (x, )E [f (x. )fl(xk)fl(x )]+Ef CRLIENCH Ot (X f
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£ (e ) 148 (x,
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+(1- %) BLL, (x)F) (x JIBLE, (x, fl(xL)1+E[fl<xi)f1(xk)]E{fl(xj)fl(xL)j‘

)E [fl(xi)fl(xj)fl(xk)]
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1% L 4% )]
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+E[f1(xi)fl(xk)]Efl(xj)Efl(xL)

+E[fl(xi)fl(xl)]Efl(xj)Efl(Xk)

1(xi)Ef1(xLJ

1(xk)

+E[fl(xj);1(xk)]E;

+E[fl(xj)fl(xt)]Efl(xi)Ef
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b —

1 ~ ~ ~ -~
H)Efl(xi)Efl(xj)Efl(xk)Efl(xL). (19)

1 1
+(1- ;)(2— H)(3—

In (19)'Lfkikjkkk fl(y)dy is given by

‘JL k kkkal(y)dy
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- sl y - 2 - 2 - —';] —
g? (xi xj) +(xi xk) +(xi xL) )
2 2
+(xj xk) +(xj- xL)+(xk xt)_
0 2h? (403+h?)
h 1 e
2 2
(21.[)2 /40;+h
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xe
4,5 Calculation of mean and variance of t and Q(t)

In this section we derive the expressions for the mean and variance of
t and Q(t) stated in section 4.2.

Consider (10) of section 4.1, i.e.,
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Thus, uptil terms of order 4 in §,we have
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The part of -g- consisting only of terms of order 3 in 6 is
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Using equation (21) of section (4.5) we have,
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Expected values of t , t°, Q(t) and [Q(t))® in terms of u's and &’s

are evaluated using the building blocks established in section 4.3.

The basic quantities comprising the building blocks are derived in

section 4.4.

~ ~ ~

Note that since fl, f2 and f_ are

3 constructed from

independent data
sets, therefore, there is zero covariance between any two of the three
corresponding 6’s . Thus terms like , say,

3 )(QTQ ),Eng andE[(gT s _Tg] etc. are all zero.
1 1 3 1 2 12 1 2 3

The expressions for t,

T
E(y_
1

2

uptil order 2 in 8§ and for Q(t) and [Q(t) J?

uptil order 4 in § have already been stated in section4.2.
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4.6 A sgimulation study

A simulation study was carried out in order to check the effectiveness
of the theoretical approximations, to the mean and variance of ; and
Q(;), that we have obtained in this chapter. In the study, the theoret-—
ical results are compared with corresponding empirical values generated
by the simulated data ; see Table 1 -

Only a few runs were possible because of the large computation time
required for each run. However, it can be seen that theoretical approx-
imations compare very well with the corresponding sample means and var-
iances, even for the null cases.

In the simulation study n(k) is the size of the sample underlying the
estimate of the density fk’ where k varies from 1 to 3. M is the number
of points on the x-axis used to construct Q(;) (and its mean and varia-
nce as well). Limit points are the points on the x-axis between which
all the M points lie. We are including the limit points among the M
points. Also,the M points will be chosen to be equidistant.

We will take n(1)=n(2)=n(3)=n for simplicity. In the simulation study M

~

is taken to be 9. nQ is the number of Q(t)’s used to construct the sample

mean and variance of Q(t).

The following sets of functions were used in the simulation study.

SET 1

fl=O.lN(l,1)+O.9N(2,l)
f2=0.3N(1,1)+O.7N(2,1)

£,=0.7N(1,1)+0.3N(2,1)

SET 2

f1=0.3N(1,1)+O.7N(3,1)

f2=0.5N(l,1)+O.5N(3,1)
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53=O.8N(1,1)+O.2N(3,1)

SET 3

fl=o.1N(1,1)£o.9N(4,1)
f2=0.3N(1,l)+O.7N(4,1)
f3=0.7N(l,l)+0.3N(4,1)

SET 4

flzo.SN(1,1)+O.7N(6,l)
f2=0.5N(1,1)+O.5N6,1)
f3=0.8N(1,l)+O.2N(6,1)

SET 5

fl=0.2N{1,1)+0.8N(3,1)
f2=0.4N(1,1)+O.6N(4,1)

£,=0.6N(1,1)+0.4N(4,1)

SET 6

£,=0.2N(1,1)+0.8N(3,1)
£,=0.4N(1,1)+0.6N(3.5,1)
£,=0.6N(1,1)+0.4N(4,1)

SET 7

fl=N(1,1), f2=N(2,1), f3=N(3,1).

Note that the first four sets correspond to the null case because the
three densities are proper mixtures of the same two components and

therefore by Theorems 2 and 3 of Chapter 2 one of the densities is a

proper mixture of the other two.
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\
4.7 The distribution of Q(%} and the normal distribution

In this section the kernel estimates of the fi's have been constructed
from samples of size 1000.
Consider figures 1 to 5 at the end of this chapter. In figure 1, the

normal kernel estimates of f_ , f

1 5 and fB’ where

fl=0.lN(l,1)+O.9N(2,l)

£,=0.3N(1,1)+0.7N(2,1)

and f3=0.7N(1,1}+O.3N(2,1)

are the underlying densities, are simulated to obtain 250 values of
Q(;). The histogram of Q(;) is plotted. It is obvious from figure 1
that the distribution of Q(g) shows deviation from the normal.

In figure 2, the blue curve is the normal kernel density estimate of
log Q(%), plotted with an appropriate value of the smoothing parameter
h. The sample mean and variance of log Q(%) is calculated and a normal
curve (red curve) drawn with the same mean and variance.

In figures 3 to 5 the blue curves are the kernel density estimates of
log Q(%) and the red curves are the normal curves, drawn, with mean
and variance equal to the sample mean and variance of log Q(%).

As is obvious from figures 2 to 5, the plot of log Q(E) is approxima-—
tely normal.

The fi’s used in figures 3 to 5 are

fl=N(l,1),f2=N(2,l) and f3=N(3,1} in figures 3,
fl=0.lN(l,l)+O.9N(4,l), £,=0.3N(1,1)+0.7N(4,1)

and f,=0.7N(1,1)+0.3N(4,1) in figure 4

and fl:O.lN(1,1)+O.9N(4,l), f2=0.3N(1,1)+O.7N(4,1)

and f3=N(2.5,1) in figure 5.
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Note that figures 2 and 4 deal with the null case and figures 3 and

5 with the non-null case. Also note that the sample mean of log Q(;)
tends to be smaller for the null cases, as expected.

The mean and variance of log Q(%), in terms of mean and variance of Q(%),

may be written , approximately, as

E log Q(t)= log E Q(%) (24)
and var log Q(%) = ———%—-—~ var Q(t) {(25)
[EQ(t)]? ’

~

To evaluate EQ(t) and var Q(t) in (24) and (25), we use the formulae
derived in this chapter.

As mentioned earlier, rename the fi’s, if necessary, such that t lies

between zero and 1. Since 212= tf therefore §2= (1—t)£l+€£ .

137 3

~

Now evaluate EQ(t) and var Q(t) by replacing, in their formulae, f. and

1
f3 by fl and f3 , respectively, and f2 by (l—t)fl+ t£3'
Refer the observed log Q(t) to N( ﬁ,SZ)
where W= E logQ(t) and 9°= var log Q(t) are functions of £, £, and

(1—t)£l + t£3.
We will reject He if

log Q(t)>n + 1.645 0,

This is a 5% test.
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4,8 Dominant part of the mean and variance of Q(t) under the null

hypothesis.

With different meanings for the u’s and §’s, as stated in section 5.1

of chapter 5, it will be shown in section 5.4 of chapter 5 that, under

the null hypothesis, the leading terms in the mean and variance of Q(t)
are of orders 2and 4, respectively, in & .

The null hypothesis , in the context of chapter §, isp = tp , i.e,
12 13

Rl" 22 =t(El— 23). Here gl, P, ang 23 are the vectors representing

three multinomial densities. The density estimates are LS and T

These vectors are the relative frequency vectors.

We have

Er.= p, ie [1,2,3].

Thus,the means of the estimates are unbiased.
On the other hand, in chapter 4, the means of the density estimates are
biased. Consider the density fl, say. We have, approximately,

Efl(xi)—fl(xi)+ 5hy Ilfl (xi). (26)

In equation (26)
—Yv?

I, is given by ‘gvak(v)dv, where, k(v)= —%: e is
Vel

the kernel function, h, is the smoothing parameter in fl

1

and ie[1,2,.00.m ],

Equation (26), in vector form, may be written as

~

V4
Ef, = £+ ‘/gzlh"’f .

1 141
~ ’ y
Thus Ef , = f,, +% I, [h;;"_l- haz_f_z ] . (27)
Also, Ef . = £+ % I [ B - nif'] . (28)
13 = 213 1t M3 T et
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Now, the null hypothesis, in the context of chapter 4,

is £l = tf

5 fa0 but, unlike chapter 5, where Er

= tEr_ _, we do not have

12 13

A~

Ef, ,= tELf;

12 3°

Note that, from the null hypothesis, it follows that

4 4
Lo = a3

Thus, from (27) and (28), it follows that, if hl,h2 ang h3 are not very

different then Ef, = tEf i.ee p =% . Thus, for such cases the

13’ = -

12 13

12

leading terms in the mean and variance of Q(%) are of orders 2 and 4,

respectively,in §

For the non-null cases the leading terms in mean and variance of Q(%)

are of orders zero and 2, respectively, in g.

The following table shows the smoothing parameters hi’ ie[1,2,3 ]

for the density estimates ;i in sets 1 to 4, mentioned in section 4.6,

which correspond to the null case. In all of the four sets mentioned

below, the sample sizes underlying the density estimates are 1000.

Set No. hl h2 h3
1 0.2760 0.2940 0.2940
2 0.3336 0.3695 0.3076
3 0.2785 0.3027 0.3027
4 0.2944 0.3024 0.2859

Note that the hi’s in each set are not very different. This explains
why the leading terms in the mean and variance of Q(%) are of order 2
and 4,respectively , in .

Thus to eliminate any possibility of error the expressions for mean and

~

variance of Q(t) have been derived till orders 2 and 4 in , respectively.
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CHAPTER 5 93

A TEST STATISTIC: DISCRETE DATA

5.1 Introduction
This chapter is analogous to Chapter 4 . Here, instead of three densities
we have three multinomial distributions with data in the form of vectors

of relative frequencies Lo r

r, and Lye In general, we will assume samp-

les of different sizes underlying the '"densities" Ry By and p.
Let the number of cells in each multinomial be m.

Thus
P, =P, + N, TFZ. 4N, W, vees (1)

j:13233

where gjﬁN(Q,Vj), if nj is large, and
T

V.= diag (D..yseeesseD, )= pP.D. .

J & Py Pim’™ B3Bj

We are interested intesting whether or not the p’s are related as

p.~p. = (p.- p.) (2)

=1 =] tijik =i k
or, equivalently, whether or not one of the p's is a proper mixture of

the other two.

~

Here we define the function Q(t) as follows.

)=t(r, - r ) (3)

L 3L

~ m
Q(t) = i [(rli— rgt

(=1
rji(i=l,2,......m and j=1,2,3) are the components of Ej'

~

The minimum distance estimator t is given by




Putting t=%t in (3) we get

=1 1t 2 =1
m
z r, -r_ ) .
( 4 3L)
{=1
Using the notation Lyj = &y - &y we may write (4) and (5) as
~ T T
g = (I~ Ep) () - mg) | mpong
T T
(£ - 230 (g - 50 Epamg

and Q%) = (£,- r,) " (2~ r,) = [(2,= £,) (2~ £ )

(£,- rg) (2, -r,)

T
_ (v, 5 )
= Dypfypm 1213
) .

(rT r
-13-13

From (1) we have
.- p.~n, Z. + N, W,.

J =

Let_gj—_gj be denoted by 5j and EEJ by b respectively.

Obvicusly, BJ= Ej' Thus (6) and (7} may be respectively written as

(5)

(6)

(7)

(8)

(9)
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In section 5.3 the terms comprising the expressions of mean and variance

~ ~

of t and Q(t) are expressed explicitly. In section 5.4 the expressions
for the mean and variance of Q(;) under the null hypothesis are stated
for different orders in §. It is shown that for the . mean of Q(;)

the term of corder zero in § is equal to zero. It is also shown that for
the mean of [Q(;)]2 the terms of orders +two and three in 8§ are equal to
zero. The expressions for the mean and variance of ; are also mentioned
uptil order 2 in §. The corresponding situation for the non-null case

is also discussed at the end of section 5.4.

The expected values for various powers of the normal random variable
with zero mean are derived in section 5.5. These results are necessary
in evaluating the building blocks defined in section 5.3 and appropri-
ately approximated in section 5.4.

In-section 5.6 the expressions for the mean and variance of ; and Q(;),
under the null hypothesis, are stated in a very convenient and compact
form. A simulation study is carried out in section 5.7 and a'parametric'
test of the null hypothesis is suggested and carried out on several

data sets.In section 5.8 a non-parametric test of the null hypothesis is
suggested:and carried out on the same data sets. In section 5.9,the

various tests suggested are applied to some fish data.

5.2 Expressions for mean and variance of t and Q{(t)

With different meanings for the u's and g’s, the expressions for mean
and variance of E and Q(%) in terms of M and § are , obviously, exactly
the same as those derived in section 4.2 of Chapter 4, Thus this section

may be considered to be identical to section 4.2 of Ghapter. 4.

5.3 Elaboration of the %terms comprising the expressions of mean and

variance of t and Q(%) in section 5.2
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The typical terms in section 5.2 expressed explicitly are those involving

up to order -2 in ng.

(1) E(6°6 )= E[n, z  +n w J{n z +n w

-1 ¥, -2

T T
E(Elyl)+n E(Elgl).

1

(2) E(u™ 8 )(p” §)

Il
=
[ v ]
o™
—~
ke
)
T8
1
T
N

(p

i
[
™

2
117 Pos’| By BlZ3% 50+ 0y




(5)

(6)

{7)

5.4

a7

—72 -2 -2 "W
E
ny o Blzyy2y g2y )eng Bl v ey Bl w2 )
-2
ny Bz sz w,) .
T T
E(u™ 8 ) (u” s )?
12 13 1
=5 L L2 _ _ - D, - -
. (p11 921)(;)lJ ng)(p1k p3k)(plL pSL)
ij ke
-2
x g E(ZlizljzlkzlL)'
T T T
E(u' 6 )u" 8 )(8"8 )
12 1 13 1 1 1
=21 I (p, .~p,,)(p,.=p )nToE(z, .z, 2%, ).
: 11 Ppi /Py 7P/ B213%1 5%k
ijk
T T T
pu” 8 )" 8 (8% )
12 1 13 2 1 2
= i i (pli_p2i)(plj_pSJ)E(611 2581182k
= I ? bN (pli—pEi)(plj_ij)E(sl lk)E(5 2k)
=121t (p,.-p,.)(p. ~p. N n T E(z..z. )E(z, .z ).
PR s RS W RCH M T A T e

~ ~

Expressions for mean and variance of t and Q(t) (for different

orders of § ) under the null hypothesis

MB -p .

The null hypothesis means that 212=t213’ where

;Bye hdel1,2,3],




In terms of p the relationship is B tBlS'

Thus under the null hypothesis, we have the following.
{1) EQ(t), uptil terms of order 2 in § , is given by

EQ(;)z(l—t)zE(ng )+E(ng )+t2E(gT§ )

- = [(1~t)2E(ET 8 )2+E(£T § )2+t2E(ET § ).

1371 1372 1373
E B

(2) E[Q(t)])?, uptil terms of order 2 in § , is given by

E{Q(t)]2=t“(ET n )2+4t2[E(pT § ) +E(u

187 13 T1371 137 2

#28 (0 u [E(S'8 )+E(878 )]+t (u' u )
1 1 i 2 2 13 1

3 13 3

+4t° tzE(ET 8 )2+E(E_T 3 V+HP E(u
13

13 1

+2tf | YE(p 8 )2+E(ET $§ )2+2tE(ET 8 ) +E (-

§
1371 1371 1371 13

tEE(ET s )2+2t(BT B )E(QTQ )

13 3 13 13 1 1

-16t3[tE(ET $ )2+E(ET § )2 +tE(p
1

371 1371 137 3

+12t"[E(HT 8 )2+E(£T 8 )]

+8t3[tE(ET3§§)2+E(ET 8

(10)

2

)2
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T
-2t tzE(_ET 3 VP +E(u 8 )*+2tE(n
1

3 1 13 1 13 1

T T T T
+E(p 8 PP+ E(n 8 Y 28(p p JE(S 8 )
13 2 13 3 13 13 11

T
+8tPE(p s )°
1

3 1

~8t* [tE(u 6 )7+E(y’ § P4E(y 8 )]
13 1 13 1 13 2
2t (3" u [E(ss J+E(s'8 )]
13 13 11 2 2

It turns out that everything cancels out, giving, upto terms of order

two in § ,
E[Q(¢) J? 0.
(3) E[Q(;)]z, for terms of order three only in & , is given by
E[Q(;)]2=4t[E(£T § )(8°6 )-E(r 6§ )(8 6§ )]

+4t2[tE(gT 6 )(676 )4E(u 8 )(578 )]

31 1 1 13 1 1 1

4t ~ T -
e TR E(u" 5 )P+tE(u" § )P+28E(u s )°
liT T13T T3 1371
Bou
13 13
w282 (0 p JE(p § )(88 )+BE( § )
13 13 13 1 1 1 13 1
T T T T
+E(p 8 )P+2tE(p 8 P+2t(p p IE(p 8 )(878 )
13 1 13 1 13 13 13 1 1 1
T T
~FE(QE 8 PR s )
13 3 13 2
. - .
2O e E( s P B s )3+2tE(ET § ) -t E(p_T § )
T 1371 1371 1371 13 3
LB
13 13 - J
-8t° T T T 7]
T tPE(u 8 P+E(u s P +2tE(y s )°
]‘i E. 13 1 13 1 13 1
13 13
T T T T
w2ty p JE(w 8 )(s8 )-t*E(u s )’
13 13 13 1 i1 13 3
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48%° T
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13 13
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2
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by
13 13
t? T T
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-4t T T
T PE(n 6 P+E(n §)3+2tE(ET s )?
371 1371
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T T T
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B E( 8 (878 )

T T T

4t tE(n" 8 )(8'8 )+E(n' 8 )(8'8 )-E(u’ § )(s's )].
1371 1T 1371 17 1372 272

Again, all terms cancel out so that, for terms of order 3 in ¢ ,

E[Q(%)]?=0.

(4) E[Q(%)]®, for terms of order four only in &, is given by

B[Q(£)]2=E(8"8 )2+4E(878 )P +E(s'8 )?+2E(s’6 )E(s s )
1 1 1 2 2 2 1 1 2 2
+ L x
T
(W w ¥
13 13

T
t”E(uT 8 )“+E(uT 8 )“+4t2E(uT 8 )“+E(uT § '+t E(n 8 )
T137) 13T 13T Ti13 2 T1373

)E[E(QTQ )2+E(§T§ y+E(§T§ )2+E(ng )? ]
1 1 1 3 1 2 2 3

8 )"+2tE(uT 8 )“+E(].1T
T137T T137T T13T 137 2

AEEQT s PEQT s a2ty JE( s )P (878 )
1 3 13 3% 1

13T 1373 371 1

T T T
+4tE(HT § )'42E(p & )QE(ET § ) +2t?E(u 8 ¥E( & )°
13 1 13 1 13 2 13 1 13 3

... T
s2¢ 2(n p BT 8 92 (8T yop(eT 8 yepwT 6 )2
1 I Rt —1

- 31 —13—2

13 13

T T T
+2tEE(E? § )ZE(_E1 §3)2+4t(£T po)E(p "8 ) (s s )
2 1

3T 3713 1371 11
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After considerable algebra, we have, E[Q(t)]®, uptil terms of order 4

in ¢ only, given by
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From equation (10) of this section on page 98 we have
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Thus, using equations (11) and (12) we have

var Q(£)=E[Q(%)]? ~[EQ(t)]?

=(1“t)“[E(ng )2—(E§T§ )? ]
11 11

+[E(g'8 )P —(ES 8 ]
2 2

2 2
T
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3 3 3 3
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1 2 2 3
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1 3
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(5) Et and var t, uptil terms of order 2 in § are given by

Bt=ts ———((1-t)Es 6 ~tEs § |
u 1 1 3 3
_13513
2 T T
- — [(1-6)E(u § )’ -tE(y ¢ )° ]
( ) 13 1 13 3
Ela}ila
and
- T T
E(6)'= tf + ———[ (1-t)Es § ~tEg ¢ ]
.E 11 3 3
13 13
+ Tl (5t2—6t+1)E(£T 5 )°
(H U )2 13 1
13 13
+E(p_T ) )2+5t2E(HT § ) .
13 2 13 3
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Thus

~

var t, uptil terms of order 2 in &§ is given by

~ ~

var t:E(t)z-(E;)2

= ——T—i—-— [(1-t)2E(ET § )2+E(HT 8 )2+t2E(£T § ).

(H u )2 13 1 13 2 13 3

13 13

For the non-null case there is no reason why the zero order term

in § , and the second and third order terms in § , in the mean and

~

variance of Q(t), respectively,are zero. Thus the leading terms are
of order zero in § for the mean of Q{(t), and of order two in § for
the variance of Q(t). Hence the expressions for the mean of Q%) uptil

~

order zero in & and for the variance of Q(t) uptil order two in §,
as mentioned in section 5.2, are sufficient for the non-null case.

The basic components of the mean and variance of Q(t) are elaborated

in sections 5.3 and 5.5.

{Continued on next page)
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~

Since it is enough to consider terms uptil order n'—2 in var Q(t), there-

fore, the building blocks, defined in section 5.3, are given by

T . 2, T 5 =2 T .
'8 )= -
E(—x_x} En "(z72))"= n "E(z)2))
T -1
8§16 =
E‘n—x n, Ezlzl
T, w2 _-1-1, T .
5§76 )%=
E(—r‘z) 1 0, Bz z,)
T T -2
E § 12878 = ) - _ .2, .28
(Exa“x) 1T i ijk (pll pal)(plj p33)XE(lezllek )
g T -2 T
E(p "6 )*E8 5 =n_ E(z.z_)x L & .= Po. ) (p. .- JE(z, .2, .)
E,,“,) -~ 1 \—1—1) i (pll p31 le pBJ ( 1i71j
T T T
E(p” 6 )(p J(878 )
13 1 13 2 1 2
=nT'nt s 2 x (.-, ) (p, .- Pl )E(z 2z E(z, .7, )
12 ] K 1i” 7311 T3y 1i“1k 2j°2k
By 8 )"
13 1
211z (p,.~ Py ) {p, .= P ) (P = Pay)(P.,— P, )
S 117 T3i/ YT P35 PikT Pk tR1nT T3
1Jk L
XE(zlizljzlkzla
and
E(u' & )2=n" (p,.= Pa:) (P, .= P4 E(Z, .2, .).
= 1 117 Pei’ 13T 3y 1i°1;

In the next section we determine the expected values of various powers
of the normal random variable 2z with zero mean.

5.5 Relevant moments of z~N{Q,v)

Let gz(zl,zz,.....zm).

The moment generating function of z is

M(t)=exp(t Vt)
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5.6 Expressions for mean and variance of t and
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)

~

R(t) (under the null

hypothesis) in terms of the covariance matrices V

i

Using the results derived in section 5.5 eguation

s (10) and (13) of

section 5.4 for the mean and variance of Q(t),respectively, can be

written as

EQ(t)=(l—t)2n—ltPV +n“1t:rV2+tztI‘V:3

1 1%
1 , =1 T -1 T ,
T [(1-t)n,"pi ViR, o#0, 7Dy gV,Ry g+t
ou
13 13
1.,
~ 3 D-
~1 i
EQ(t)= 3 n] o, [trV - — ]
i=1 wou
13713
where D, = T \ for i=1,2,3
i~ Bas YiPi3 =i

a,=(1-t)*, a,=1, a,=t*, and

T
2
NP3 3V5R13
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var Q(t)
i 4 -2 2 2 9 4 -2 2 -
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ij o (b w )

Similarly, equations (14) and (15) of section 5.4 for the mean and

~

variance of t, respectively, can be written &as




B e—————

- 1 -1 -1
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where 8,=1-t, B,=0 and B,= ~-t.

Also

~1./T
var t= [éni SEIRAN TS

(p" w )2 i

/ s s
where 8 ,=(1-t)®, 8,=1 and 83=t2.

B.7 A simulation study
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(14)

(15)

Given three multinomial data sets our problem is to determine whether,

or not, one of the three underlying multinomial densities is a proper

mixture of the other two. In the simulation study, the cell probabili-

ties of the three multinomial densities are approximated in the density

A
estimates by the relative frequencies of the cells. Et was evaluated

using (14) of section 5.6. Since ve are working with the density estimates,

therefore, t and the Dij’S(izl,Q,B andj=1,2,3,...0) which comprise tne right

hand side of (14) were replaced by t and the relative frequencies of

the cells.

For reasons mentioned later, it is important that Et lies between zero

and one. This can always be managed by appropriately renaming the den-

sities. As obtained in section 5.4, under the null hypothesis, the

minimum order terms in EQ(t) are of order two in & and the minimum order

terms in varQ(%) are of order four in 6. When the null hypothesis is not

A
true then the minimum order terms in EQ{t

) are of order zero in § and the

~
minimum order terms in var Q(t) are of order two in 9.
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When the null hypothesis is not true then, since the leading term in

EQ(E) is of order zero in & , therefore;the term of order two in § is
negligible, comparativelg. Also, the leading term in varQ(%) being of

order two in §, the term of order four in § is negligible, comparatively.
In the computer programme for the simulation, the expression for EQ(%)iS
taken as the sum of the zero order term in ¢ (not under the null hypothesis)
and the second order term in § (under the null hypothesis). Similarly,

the expression for varQ(%) is the sum of the second order term in § (not
under the null hypothesis) and the fourth order term in 8 (under the null
hypothesis). After suitably renaming the densities so that E% lies between

zero and one, let the null relation be
- = t -
Py~ B, tlp - p.)

ice. p,= (1‘t)El+tR3'

where the mixing weight t is replaced by E%. After the first simulation,
for the purposes of all the other simulations the densities considered

were p . Each simulation yielded a value of EQ(%t)

1'Bg and (1_Et)21+(Et)B

and varQ(%).

3

For each case of three densities one thousand simulations were performed.

Three null and four non-null cases were considered. Each run of the
programme yielded one value each of Q(%),EQ(%) and var Q(%). Two densi-
ties, i.e., the gamma and the lognormal fitted the null situation very
well. An algorithm to compute the incomplete gamma integral was used in
the computer programme, see Moore (1982). For each run the mean and
variance of Q(%) obtained were equated to the mean and variance,respectively,
of the gamma distribution . The null-hypothesis was rejected at 90% if

~

Q(t) did not lie below the 90% quantile of that gamma distribution.
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Similarly for rejectionsat the 95% and 99% levels. Similar procedure was

followed for the lognormal distribution where the mean p and variance

(of the corresponding normal distribution) are related to EQ{t) and

~

var Q(t) as

0.2

~

w =[1og(EQ(%))]- %log [_____"EPQﬁfJ ﬂ
2

[EQ(t) ]
and 0?=2[ 1og[BQ(t) ]-u]
and the new random variable is =2&lQ(E)]1-u

%)

whose values for the 90%, 95% and 99% quantiles are 1.2815, 1.6448
and 2.3263 respectively.

The following sets of densities were used.

SET 1 (Mull case)

9§= (0.1,0.1,0.1,0.1,0.1,0.5)

Egi (0.2,0.2,0.2,0.2,0.1,0.1 )
p= (1-t)p+tp; where O<t<l.

SET 2 (Null case)

E$= (0.05,0.15,0.30,0.30,0.15,0.05)

g§= (0.10,0.35,0.25,0.15,0,10,0.05)
T T T

p,= (1—t)gl+tg3 where O<tcl.

SET 3 (Null case)
EI: (0.5,0.36,0.10,0.08,0.00,0.00)
§g= (0.25,0.20,0.20,0.15,0,10,0.10)

T T T
p,= (1—t)gl+t23 where O<t<1.
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SET 4 (Non-null case)

E§= (0.50,0.35,0.10,0.05,0.00,0.00)

T
Bj

R§= (0.375,0.275,0.15,0.10,0.10,0.00)

= (0.25,0.20,0.20,0.15,0.10,0.10)

Here Egm O.SQf+O.SET

5 for the first four cells only.

SET 5 (Non-null case)

El and ES same as in set 4,
T
P,= (0.375,0.275,0.15,0.20,0.00,0.00).,

T T T
Here p,= O.5_p_l+O.Sg3 for the first three cells only.

BET 6 p., and p, same as in set 4,

1 3

T
p,= (0.375,0.200,0.225,0.20,0.00,0.00).
T T T .
Here py= 0.521+0.593 for the first cell only.

same as in set 4,

SET 7 B, and By

Bgﬂ (0.00,0.65,0.15,0.10,0.10,0.00),
T T T .
Here p,= 0.531+O.5R3 for third and fourth cells only.
In tables 1 to 4 , n denotes the common sample size of the density

estimates. For sets 1 to 3, i.e. the null case , the cases tried are for

£=0.25,0.50 and 0.75.,
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TABLE 1
n=800

Total number of simulations=1000

Set No. t Gamma Distribution Lognormal Distribution
No. of rejections of null hypothesis No. of rejections of null hypothesis
Level= 10% 5% 1% Level= 10% 5% 1%
1 0.25 g3 44 10 105 45 5
0.50 104 52 13 124 57 8
C.75 89 43 10 108 43 ]
2 0.25 99 45 9 122 49 8
0.50 95 57 17 112 60 11
0.75 78 37 12 96 41 11
3 0.25 92 43 13 123 53 9
0.50 78 51 17 99 58 12
0.75 S0 49 16 108 55 9
4 - g98 990 888 1000 992 829
5 - 1000 1000 1000 1000 1000 1000
6 - 1000 1000 1000 1000 1000 1000
7 -~ 1000 1000 1000 1000 1000 1000
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Set No.

N OO o N

0.25
0.50
0.75
0.25
0.50
0.75
0.25
0.50
0.75

TABLE 2
n=400

Total number of simulations=1000

Gamma Distribution Lognormal Distribution

No. of rejections of null hypothesis No. of rejecticns of null hypcothesis

Level=10% 5% 1% Level=10% 5% 1%
97 45 14 1186 50 8
99 54 10 115 58 6

108 54 10 124 60 9
103 52 17 111 58 11
74 40 8 95 41 6
90 51 16 106 56 12
83 41 11 110 54 9
111 59 24 136 67 20
100 52 14 114 56 11
845 670 268 887 717 203
1000 299 980 1000 999 970
1000 1000 1000 1000 1000 999
1000 1000 1000 1000 1000 1000
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TABLE 3
n=200
Total number of simulations=1000
Set No. t Gamma Distribution Lognormal Distribution
No. of rejections of null hypothesis No. of rejections of null hypothesis
Level= 10% 5% 1% Level=10% 5% 1%
1 0.25 95 40 8 107 47 7
0.50 111 54 18 120 60 12
0.75 81 41 6 95 44 6
2 0.25 89 45 14 105 47 9
0.50 95 48 16 113 55 13
0.75 75 29 4 g2 35 2
o) 0.25 105 60 16 120 71 12
0.50 77 40 11 95 47 7
0.75 88 a7 16 112 53 12
4 - 420 245 50 493 275 39
5 - 935 824 514 g51 848 448
6 - 998 988 871 899 989 829
7 - 1000 1000 1000 1000 1000 1000
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Set No.

~N o M

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

Gamma Distribution

No. of rejections of null hypothesis

Level=10%
90
87
108

77
84
g2

85
78
89

. 224
559
839

1000

5%
48
44
63

39
45
44

39
44
51

132
410
682
1000

TABLE 4
n=100

Total number of simulations=1000

1%
5

14
12

9
14
9

10
10
5

27
166
387
999

Lognormal Distribution

Level=10%
108
105
127

93
102
110

106
104
109

267
614
871
1000

5%
56
48
66

46
47
50

52
47
56

148
439
718
1000

No. of rejections of null hypothesis

1%
1
8

17
125
322
999
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5.8 The: likelihocod ratio test

For the multinomial densities P

11 By and Pg» the general loglikelihood

functlonxi(gl,ga,ga) is given by

D=

L (o) (1-t)p #tpgupg)= & £ log p, s

£ . log p..
. 3] 3J
J=1 J

I

I 13

1

13

A fgj log [(1"t)p1j+tp3j ]

where plj is the probability of the jth cell in By

flj is the frequency of the jth cell in R-
.- - . t ..
and p2J (1 t)le+ p3J

(1~t)pl.
Define w. =

Maximum likelihood estimates of p_, P and t can be found using the EM

1

algorithm which generates a sequence of estimates of plj’pEj and t

starting with the initial values,

(0) (0)_ ~(0)

B, =r'1» By =Ig and t = value used already.

The iterative formulae are

..
1
’ n.+ 5 f_ .w (r)
172 25"
J
(r)
(p+1) Taytfoy(1-wy D)
Py, =
J )
(n.- ¢ f wr)
Hgtifo™ & 4%
J

(r)
If_.w,
(r+2)_,_J°23 3

and t = " (16)
2

~
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(l_;(r) (I.‘)
(r) 1]

where w. =
(1- t( )) (r) T(r) (3‘) '

) p

(17)

In the above, nl, n2 and n, are the sizes of samples forming the estimates
of PR, and P, respectively.

We thus evaluate L(r)=gf(gir),(l—t(r))Pér)+t(r)é;32ér))'

Our stopping rule will be to stop when

@ L0y 5 0001 (say) .

The likelihood ratio test is based on
¥* ¥*
2 logf = 2[;{:(531,?_2,“53)— ;{;(gl, (1=t )p+t*pJ,p%) ]

where Q;, g§ and t* are the final estimates from the EM algorithm.

The approximate null distribution of 2 log)) is obviously X?(4) in our
examples, in which the number of multinomial cells is 6. In the general
k-cell case, the number of degrees of freedom would be

3(k~-1)-[2(k-1)+1] = k-2,

Similarly, as in section 5.7, for each of the seven sets of densities

mentioned there , one thousand simulations were performed. Using the

EM algorithm, as explained,the maximum likelihood estimates of Efg3 and t,i.e.
P¥,p} and t*, respectively were obtained .Thus using the value of 2 logh ,
given by equation (17), and the fact that the approximate null distri-

bution of 2 logN is,obviously ,X.?(4), as mentioned earlier, we will

reject the null hypothesis at 90% if the value of 2 logf\ did not lie

below the 90% quantile of the chi-square distribution with four degrees

of freedom. Similarly, we will reject the null hypothesis at 95% and

99% levels. In tables 5 and 6, n is the common size of the samples under-—

lying the density estimates.
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Set No.

N a0 b

0.25
0.50
0.75

0.25
C.50
C.75

0.25
0.50
0.75

TABLE 5
Total number of simulations=1000

Log likelihood method

Case 1 - n=800 Case 2 n=400
No. of rejections of null hypothesis No. of rejections of null hypothesis
ﬁm<mHnHo& 5% 1% Level=10% 5% 3%
95 47 9 98 51 18
1086 52 14 94 51 10
84 39 10 113 54 12
89 47 9 100 47 14
103 47 10 83 36 7
83 40 7 94 52 15
112 56 14 92 48 11
77 36 7 113 67 15
99 54 9 99 56 13
1000 1000 1000 1000 1000 1000
100C 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 100C
1000 1000 1000 1000 1000 1000
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TABLE 6
Total number of simulations=1000

loglikelihood Method

Set No. t Case 3 n=200 Case 4 n=100
No. of rejections of null hypothesis No. of rejections of null hypothesis
Level=10% 5% 1% Level=10% 5% 1%
1 0.25 91 45 12 95 52 4 .
0.50 105 57 17 89 48 13
0.75 80 34 8 110 63 9
2 0.25 82 46 18 89 36 9
0.50 84 40 g 73 37 10
0.75 79 39 8 106 50 10
3 0.25 111 65 5 116 59 10
0.50 85 42 9 102 50 3
0.75 99 57 12 101 51 13
4 - 1000 1000 981 904 788 468
5 - 997 995 960 891 814 604
6 - 1000 1000 1000 985 965 8785
7 - 1000 1000 1000 1000 1000 1000
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It was mentioned in the beginning of section 5.7, that it is important
that E% lies between O and 1. It is obvious that this can always be
managed by appropriately renaming the densities.When fitting the gamma
and lognormal distributions, in all cases, more correct rejection rates
of the null hypothesis were obtained for E; lying between O and 1. On
the other hand, when applying the likelihood ratio test, if we did not
start the EM algorithm with ; lying between O and 1 then the final est-
imate, t*salways turned out to be either O or 1, thus introducing a
serious error.

Consider equations (16) and (17). If t(o) lies between O and 1, then,

(0), ~(1)

obviously, w\j s, for all j, lie between O and 1 and so t© lies bet~
ween 0 and 1. The same is true for all the subsequent estimates of t
generated by the EM algorithm.

From (17) it is clear that if an estimate of t gets close to 1 then the
corresponding wj’s get close to O. Consider (16),It is clear that the
estimate of t starts converging to 1. Similarly if an estimate of t gets
close to O then the wj’s get close to 1 and so the estimate of t starts
converging to 0. It was noted in a number of examples that, when the
actual value of t was greater than one, the value of % started converg-
ing to one. Also, when the actual t was negative, ; started

converging to 0.

5.9 Application to some fish data.

In this chapter, for the case of three multinomial densities, three
methods of testing the null hypothesis were suggested. The methods
were also applied to several sets of simulated data. In this section we
apply those methods to some sets of actual data. The data were obtained
courtesy of Dr., C.W. Anderson of Sheffield University. They consist of

the measurement of the number of plates for fish (stickleback) from
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various sites not too far from Sheffield (though there are a couple of
Scottish outliers). The number of plates on a fish is a skeletal chara-
cteristic,

The two subpopulations in each case are fish with and without a carina
(rudder). We are interested in determining whether, or not, the data
obtained from various sites are proper mixtures of the same two
components. The two components are the distributions of fish with carina
and fish without carina.

Consider Theorem 2 in section 2.2 of Chapter 2. If the necessary condition
of Theorem 2 does not hold, then, clearly, the three densities are not
proper mixtures of the same two components. In three different sets of
data tested in this chapter it turned out that the necessary condition
of Theorem 2 did not hold.

In two of the three methods mentioned, the necessary condition is tested
through the distribution of the function Q(E). In the third methed, the
and Py i.e. 22=(l—t)gl+93,is used in the maximum

2

]
i
| relation in v R
|
| likelihood method.

} In alloef the three sets of fish data it was not necessary to mention
the two subpopulations in each frequency vector. The reason is, as
mentioned earlier in this section,that, if the necessary condition of
Theorem 2, of Chapter 2, which does not involve the subpopulations, is
demonstrated to be not true then we conclude right there that the three
multinomials are not mixtures of the same two components.
Also, in the data, the number of plates on a fish varied from 1 to 30,
But since the data were very sparse for number of plates nearer 1 and
nearer 30, therefore, a few plates near 1 and, also, a few plates near
30 were pooled together to make the results meaningful. Also as mentioned

in section 5.8, the densities were renamed, if necessary, to keep the
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estimate of t between O and 1.

In Table 7, the three densities of set 1 are defined together with their
sources and sample sizes. In the raw data, the data points were class-
ified according to the number of lateral plates. Thus the number of the
cell and number of lateral plates were synonymous. In Table 7 we

have pooled together the first four cells and the last seven cells. ThLis
reduces the number of cells to 21, and the number of the cell and the
number of lateral plates do not remain synonymous. Dividing the frequency
of each cell by the sample size of the data set gives us the density
estimates of set 1. Similarly, Tables 8 and 9 describe the density

estimates of sets 2 and 3 respectively.

In Table 8, the first four cells and the last nine cells have been pooled.
In Table 9, the first three cells and the last thirteen cells have been
pooled.

For each of the three sets of data, all of the three methods of this
chapter rejected the null hypothesis.

The null hypothesis was rejected at 90%, 95% or 99% level if, for the

method of the lognormal distribution, the log of the value of the standacr-

disea normal random variable was greszter than 1.28,1.64 or 2.32 respectively.

The variable was represented by the symbol LN in Table 10.

In the method of the gamma distribution the algorithm (mentioned in
section 5.7) used in the programme yielded the quantile position of the
gamma random variable. The variable was represented by the symbol GD in
Table 10.In the likelihood ratioc test method the distribution was chi-
square. The degrees of freedom of the distribution being given by k-2

where k is the number of cells in the multinomial density estimates.
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Density 1 , Source ( Conisbrough ,year 1982 ) , Sample size 219

Cell No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Frequency 27 59 356106 2 4 106 12 8 6 5 3 2 1 5 6 6 3 3

Density 2 , Source (Rawcliffe bridge , year 1981 ), Sample size 215
Cell No. i1 2 3 4 5 6 7 8 @ 10 11 12 13 14 15 16 17 18 19 20 21

Frequency 18 40 13 9 3 10 13 17 12 13 12 7 6 7 4 5 3 1 4 7 11

Density 3 , Source (Swinton , year 1982 ) , Sample size 250

Cell No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Frequency 3 17 47 407 3 4 13 12 14 13 8 11 5 5 4 7 5 9 14 9

Table 7
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Density 1 , Source {York (Foss), year 1980 ), Sample size 236

Cell No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Frequency 348366134 1 4 4 6 3 2 3 1 3 1 0] 0 1 2

Density 2, Source (Appleby-Lincs, year 1981 ) , Sample size 188

Cell No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Frequency 0O 122116128 7 9 7 5 3 7 11 8 4 8 4 5 41

Density 3 , Source (Thorne , year 1980 ) , Sample size 165

Cell No. 1 2 3 4 5 6 7 8 ¢ 10 11 12 13 14 15 16 17 18 19

Frequency 7 31162 2 4 2 5 8 8 8 6 6 10 3 6 1 5 35

Table 8
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Cell No.

Frequency

Cell No.

Frequency

Cell No.

Frequency

Density 1, Source (York (Foss), year 1980), sample size 236

Density
1 2

2 15

Density

1 2

3

88 66 13 4

4

1C

11

12

13

14

2, Source (Stainforth, year 1980}, sample size 300

3

55 39 9

4

10

12

11

12

12

10

13

14

14

13

15

15

3, Source (Bramwith bridge, year 1980), sample size 345

3

46 48 16 9

4

11 16 25

10

20

11

20

12

19

13

15

14

15

i4

16

16

72

16

60




LN

GD

Chi square

Set 1

0.3013

-3.3953

0.9999

49.3512

TABLE 10

Set 2

0,8535
4.,3089
0.9999

63.8296

139

Set 3

0.5819

7.5171

1.0000

139.15666
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CHAPTER 6

A BOOTSTRAP VERSION OF THE TEST

6.1 Introduction

In this chapter we illustrate the use of a Monte Carlo test based on

~

the test statistic Q(t) introduced in chapter four.

The distance function Q(t) is constructed from the normal kernel estim-

ates fl, f2 and f3 of the underlying densities fl, f2 and f_ respective

3
ely.

Using the 'smoothed' bootstrap technique explained in the next scction

we construct another data set from fl, fs and (l-—%)f‘l + tfs, respectiv-

ly, where, for reasons to be mentioned later, the functions have been
named such that E lies between zero and one.

The new three data sets give another set of estimates for the densities
and hence lead to another value of Q(%)-

This procedure is repeated nine times in the first instance.Thus,we
obtain, in all,ten different values for Q(;),If the first value is
greater than the other nine then we reject the hypothesis that one of
the densities is a proper mixture of the other two, the level of rejec-
tion being ten percent. By repeating this procedure another ten times,
we obtain, in all, twenty different values for Q(E). If the first
value of Q(%) is greater than the remaining nineteen then we reject

the hypothesis, the level of rejection being five percent.

6.2 The smoothed bootstrap technique

Let there be some interesting property of a distribution function that
depends on it in some complicated way. Now, even if the distribution
function is unknown,the property can most easily be estimated by repeat-
edly simulating samples from it.

In many statistical problems the distribution function itself is un-
known but a sample of observations from the distribution is available.

The bootstrap technique, introduced by Efron(1982}!consists of simulat-
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ing samples from the empirical distribtution function of the observed
data. A sample from the empirical distribution function is generated by
successively selecting uniformly with replacement from the sample of
observations.
In bootstrap simulation, all members of the samples will be drawn from
the original sample and nearly every sample will contain repeated
values.,
The smoothed bootstrap technique is a variation which will not lead teo
samples with repeated values. Here the simulations are constructed not
from the empirical distribution function but by using an algorithm (as
explained later in this section) to simulate from a smoothed version
of the empirical distribution function.
This technique obtains a new data set from the original one used to
form the kernel estimates of the density. We simulate a value z of the
random variable from the standard normal distribution. The interval
between zero and one is divided into n egual parts where n is the size
of the sample underlying the density. Generate a number from the uniform
distribution. If the number lies in the rth of the n sub-intervals, then,
the first new data point will be defined as

y:xr+hz re(l,2,3.....0), (1)
In equation (1), X is the rth point (in the order of generation) in
the original data set. Continuing this procedure n times we obtain a
new set of data points.
The new data set is constructed from (1—€)§l+€;3 as follows. A num-
ber is generated from the uniform distribution. If the generated num-
ber u is greater than l—; then the previously mentioned procedure is

~

repeated with f3 or otherwise with fl. Note that it is necessary that
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~

t lies between zero and one because, otherwise, all of the new data

-~ ~

set will be generated from fl alone or fs depending on whether t is

negative or greater than one.

6.3 A simulation study

The procedure mentioned in 6.1 was repeated for three null as well as

two non-null cases. It is clear from Table 1 that the rejection rates(%ages)
were approximately correct for the null cases. For distinctly non-null

cases the number of rejections was extremely high.

In Table 1 the f’s are all mixtures of normals or are pure normals. Data

sets of sizes 100 and 400 (n in the table) were used. In the construction

of Q(E) the limit points (i.e., the extreme left and the extreme right
of thé chosen points on the x-axis) were taken to be -1.5 and 6.85.
Finally m, the number of points used to construct Q(%),was taken to be
9. The reason for choosing this number was that there was not enough

workspace on the computer for a bigger number.

6.4 A drawback of the test

In its use of density estimates, the Monte Carlo test introduced in this
chapter is '"non-parametric".A parametric version was used by Aitkin,
Anderscon and Hinde (1981) to try %to assess the structureof latent class
models, using the standard likelihood ratio statistic. In neither their
case nor ours can the rejection rates under the null model be regarded
as exactly known, because the null hypothesis is not simple. In contrast
to that case (see Hope 1968), data-based estimation is required of some

features of the null model and this destroys the exactness of the test.
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Rejection
Levels
£ £, fq n 10% 5%
0.1N(1,1)+0.9N(4,1) 0.3N(1,1)+0.7N(4,1) 0.7N(1,1)+0.3N(4,1) 100 8.70 4.5
»s s )y 400 9.58 4.47
0.1N{1,1)+0.9N(2,1) 0.3N(1,1)+0.7N(2,1) 0.7N(1,1)+0.3N(2,1) 100 7.80 3.70
' ' ., 400 9.78 5.83
0.2N(1,1)+0.8N(3,1) +0.4N(1,1)+0.6N(3,1) +0.6N(1,1)+0.4N(3,1) 100 7.50 3.20
' 'y ., 400 8.98 4.38
0.2N(1,1)+0.8N(3,1) 0.4N(1,1)+0.6N(3,1) 0.6N{1,1)+0.4N(2,1) 100 12.30 6.50
v - . 400 19.74 12.59
O.Hzﬁw,ﬁv+o.©2ﬁb.wu 0.3N(1,1)+0.7N(4,1) N(2.5,1) 100 61.19 48.95
T’ Y ' 400 98.21 96.43

Table 1
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A NECESSARY CONDITION FOR THREE BINARY MIXTURES TO HAVE THE SAME TWO
COMPONENTS -

7.1 Introduction
In section 2.2 of ghapter 2, Theorem 2 states a necessary condition for

three densities to be proper mixtures of the same two components. In
this chapter we determine another necessary condition for three densit-

ies to be proper mixtures of the same two components.

7.2 Infimum and supremum of the ratio of two densities
Let fl = p.g+ (1—pl)h (1)
and f2 = pog + (1‘92}h’ (2)

where fl and f2 are the densities, g and h the component densities and

0 < Py Py <1, by > Py

Referring to (12) of chapter 2 we have

Py o Ty Py (3)

-p, I, P,

We now show with the help of a counter example that it is not necessary

that l_pl and Eiare the infimum and supremum of fl respectively.

1—p2 92 f2
Example
1 (X_Pl)z - _1__(3‘{"“2)2
203 202
e
f.(x) = P, +(1-p, ) (4)
1 /2o, /2llo,
1 (x-p,)? 1 (x-py)?
2a 202
le ! 1l e 2
f (x) =P +(1~p,) (5)
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/
£, £, - £,

d
Then (fl/fz) = 72 = 0, where

dx

fff2~ flfgz 0. Thus the extreme points of the ratio of f, and f,are

given by the equation

(x=u, )% (x-p,)?

2 2
207 203

(6)
1 X—u X~
L ‘le =0,

2 2
2Nlg,0, o1 (]

Equation (6) is satisfied when

X=u, X~y

(7)

S o}

(7} has no solution for the case when o,=0,. For the case o,fo,we

have
H103-H,0]
X = ———— "
oi-0?
2 2 # " / ! /
Consider -g;?(fl/fg) = £2(f,f,- £,f,)-2f,f,(f,f,- £,f,)
f;
Thus, at the extreme point,
U ’
, o) £,f,- £,1
d (r./f =
ax? 172 £2
(X*UI)Z”O% (X—pz)z—cg
A2 (p-p )y 1 _
f% 2]—10'10'2 0“; Glzn

1 (x=py)? 1 (x=y,)°

- r——

2 2
20% 202

xe
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(p,-p,) (0%-0%) _ (8)

2noioifs .

Now, at the point where (7) is true,

fi _ o,py+0,(1-p,)

;: 02p2+01(l—p2)

We have
0,0,+0,(1~p,) P, o,(1-(p,/p,))
= — 3
0,p,+0, (1-p,) P 0,p,+0, (1-p,) (10)
and also
6, P, P2
(11)
= +

Uzp2+01(1_pz) l-p, Uzp2+01(1—pz)

If p,>p, then from (10)

02p=+dx(l—p1) < D,

0,P,+0,(1~p,) P2

]
1—
Uzp1+01(1-p1) 1~p1 P2
and from {(11)

G,p,+0, (1-p,) 1-p,

G,p,+0,(1-p,) 1-p, .

Thus

0,0, to,(1-p ) < P

1 < (12)

6,040, (1-p,)} p, .

Since iﬂz(fl/fz) is non-zero as is obvious from (8) therefore, at
dx

has either a maximum or a minimum.
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Hence, it is clear from (9) and (12), that, in the example, either the
Wyo%-p,0}
infimum or the supremum will not be attained if x= ——— 1is an
0Zm-g2

extreme point.

Note that, in the absence of an extreme point, i.e. when o,=0, but ul#pz,

f
—= is a monotonic function.

P

This case is illustrated in Figure 1 on page 148 where

f = 0.45N(1,1)+0.55N(4,1)

and f2= 0.55N(1,1)+0.45N(4,1).

Note that fi is monotonic.
f2

In figure 2 on page 149

£,=0.2N(4,1)40.8N(3,2)
and f2=0.4N(4,l)+0.6N(3,2) '

Note that, according to theorem 4 of Chapter 2, fl lies between finite
£
2 B 03=H,07]
(and non-zero) limits. Again, since o,40,, therefore, x= ~————— =5
03-of
2

is an extreme point (a minimum, since & (fl/f2)>0 ) of fl . The value

dx? f
fl 2 i
of N at x=5 is evaluated to be 0.8262308. From the definition of L ,
2 f2
we have,
1 fl 4
2 3F $3 ¢
2

Note that the supremum is attained but the infimum is not.
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7.3 Two preliminary theorems

In this section we establish two theorems which are of relevance in sec-
tion 7.4 The first theorem is a slightly different version of Theorem 1

of Chapter 2.

Theorem 1

If fl' f2 and f3 are mixtures of the same two components with mixing

weights P,1 Py and Py respectively such that pl > p. > Py then f. is a

2 2

proper mixture of the other two.

Proof

Let fl = p,g+ (1—p1)h
f, =pyg + (l—pz)h

and f3 = pg + (l—pa)h,

where,0 < pl, p2, 93 < 1, p1 > p2 > p3 and g and h are the components.

Thus fl - f2 = (pl—pz)(g—h)

and fl - f3 = (pl—ps)(g—h) .

— — - _ b.-pP
Thus fl f2 = t(fl fs),where t=%1 Y2 .
Pl PB
Thus f2 = (1-t)fl + th.

Note that with ocur choice of ordering of pi’s, t lies between 0 and 1.
Thus f2 is a proper mixture of fl and f3.

Theorem 2

If fl and f2 are proper mixtures of the same two components then the

. f
extreme points of 1 are dependent on the components and not on the

f2
mixing weights.

Proof

Let

1 = P&+ (l—pl)h

where g and h are the components and PPy the mixing weights.
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Then
/ / /
d f f = - -
o ( 1 2) 0 when f2f1 f1f2 = 0,
X
/ ’
i.e where 8&8h—gh=0 . (13)

Note that (13) also gives the extreme points of g/h.
From Theorem 2 it folliows that if fl, f2, +++.. are densities which are

mixtures of the same two components then the ratio of any two of the

densities has the same extreme points (if any) .

7.4 A necessary condition for three densities to be proper mixtures of the

same two components.

Let fl,f2 and f3 be proper mixtures of the same two components, i.e,

= - 4
£, =pg + (1-p;)h (14)
£, = pyg + (1~p2)h (18)
£y = pge + (1—p3)h (16)

where g and h are the components and 0 < pl, p2, p3 < 1. We assume,

without loss of generality, that Py > P, > Pgy-
Now, according to Theorem 1, f2 is a proper mixture of fl and f3'

Consider fl and fB' From the example in 7.2 it is clear that it is not

necessary that 1-pl and El are the infimum and supremum,respectively,of
T P F3 £
7o Let a and b be the infimum and supremum, respectively, of _1 .
3 f
3
1-p p
Let a = ——:l and b = :_"lw .
1-p, Pg

Since 0 < a < 1 and b > 1s;therefore,

= _ b(l-a) _ 1-a ] -
Py = — 7= and Py = va satisfy 0 < Py Py < 1

and our choice of a and b ensures that El > D

Py Thus (14) and (18) may

be written as




152

= — :— o —-' h 7
£ plg+(l pl)h plg+(l pl)h (17)
fo= p3g+(l~p3)h=p3g+(l~p3)h (18)
_ (1-pg )£ = (1-p )1,
where g= —
PP
p,f,~p.f
and = 1*3 —3 1
P =Pgy .

Note that é and h satisfy the requirements of a density because

1-p f B
1.1 0
-~ S
l—p3 f3 p3 .
b fl _
In the region where F Z inf (E—}, i.e. a, we have g = 0 as follows from
3 3
fl ) p1g+<1~pfh :~ 1-p,
N R B .
3 p3g+(l—p3)hJ 1-p
fl f‘l
Bimilarly, in the region where — Zsup ( == }, i.e. b,
f3 f3

we have h z 0.

Now, fz, being a proper mixture of fl and fB’ can be written as
f2= tfl+{1—t)f3 (where 0<t<1)
=[tp,+(1-t)p,Jg +[1-(tp +(1~t)py)]
=p,e+(1-p, A,

where p2=tpl+(1-t)p3.

Since O<t;ﬁl{5341 therefore it is obvious that 0452<l. Thus f, is also a

proper mixture of E and h. It follows from Theorem 1 that El>32553.




In the region where éE 0 we have — =——

1563

f_ 1-p

2 ~ 2

f -
3 1—p3

and in the region where hZ0 we have

w}mﬁ
2
NS

. Hence

w
‘T
W

£

of == .
fS

1~p2 P

and -2 are the infimum and supremum, respectively,

1'53 Pa

f

Hence solving the infimum and supremum of El for Bl and 53, and the

infimum and supremum of -2 for E

weight 53.

3
f

F and 53 gives the same value for the

3 2

Now we state the procedure for determining the necessary condition for

three densities to

be proper mixtures of the same two components.

f f
Let a < §l < b, where a is the infimum and b the supremum of fl .
2 2
f2 T
Let t £ o < d, where t is the infimum and d the supremum of s
3 i 3
1-p P
Put a= — and b= — .,
1Py P

Solve for p D
olve for pland P,
Now if a angd t (or

then put

in terms of a and b.

equivalently b and d) are attained at the same point

If, however, a and d are attained at the same point (or,equivalently, b
and t at the same point) then put

S =
t - -2 and d = 1y,
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Solve for 52 and 53. Thus if 52 £ 52 then £ , f, and f, are not proper

-mixtures of the same two components.

7.5 Geometrical view of the extreme points of the ratio of two dens-

ities f1 and fa which are mixtures of the same two components for the

case of unimodal components.

il

Let fl p,g + (1—p1)h

From before we have that the ratio of f1 and f2 has extreme points where

g(x)hlx)—glx)n(x) = 0 (19)

Case 1
f

gf(x) and h?x) are both zero at some point. It follows that §l has an
2

extreme value at the same point.
Case II
g/(x) and h/(x) are not both zero at the same point. Let g’(x) =0
at x = x_ . Then (19) can only be satisfied at x =x, if
g(x)h’(x) = 0 at x =X_ . Now h/(x)# 0
at x = X i.e g(xé) = 0, This is not possible because gﬁx) at x='xais
zero and g(x) is given to be unimodal,
Hence the extreme points of (f. /f_) will not lie at the point where
g4{x)=0 and the point where 12
hfx):O. Thus in Case 11, the extreme points of (fl/f2) lie where (19)

holds, i.e, where

g(x) - h(x)
gix)  H(x)

This geometrically means that the points where the tangents to the.curve g

and h intersect the x-axis at the same point,
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7.6 A graphical study

Let fl = plN(U1r0§ ) + (1—pl)N(u2,0§)

I

and f2 pZN(p3,0§} + (l—pz)N{p“,GE) .

In figures 1 to 12 the red curve is the plot of (fl/fz)' The blue

curve is the plot of (fl/fZ)’ where f. and fg are normal kernel estima-

1

tes of fl and f2 respectively, constructed using appropriate window

widths.
The following table illustrates the three cases considered (for four

different sample sizes) in figures 1 to 12. In the table, n is the

sample size underlying the estimates fl and f2.

Table 1
Fig.No. n 1 Py Wi My My Uy O}

1 10000 0.45% 0.60 1 4 1 4 1 1 1 1

2 AQOC

3 1000 ' ' s
4 500

5 10000 0.75 0.25 1 2 1 2 1 1 1 1

6 4000
7 1000 1 1 17
8 500

9 10000 0.50 0.30 1 3 1 5 1 1 1 1

10 4000
11 1000 ) ) )
12 500

Note that, in cases one and two,fi’s are mixtures of the same two comp-

~ ~

onents. Also note that the agreement between (fl/fz) and (fl/fg) is not

very good in the tails. As expected, for a bigger value of n, (fl/fZ)

and (fl/fg)are closer:
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f

Figures 1 to 8 illustrate Theorem 4 of Chapter 1 which states that §£
2

will have finite (and non-zero) limits iff fl and f2 are mixtures of the

same two components. Note that the condition of theorem 4 is not fuifilled

for case 3, hence the pattern is different in figures 9 to 12.
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CHAPTER 8

FURTHER REMARKS AND SUGGESTIONS

8.1 Introduction

In section 8.2 we give two graphical representations of the null hypo-
thesis for the case of three density functions. In section 8.3, the
theory and methods developed in this thesis (which are applicable only
to the case of three density functions) are modified to cover the gene-
ral case, i.e., when the number of density functions is greater than
three. We start with Theorem 1 of Chapter 7 and state and prove its
generalisation. It is pointed out that the converse of this theorem is
not true always. Given n {where n is greater than 3) density functions
it is explained how to check whether n-2 of them are proper mixtures of
the other two.

In section 8.4, the case of three densities is considered where each one
of the three is a mixture of the same three components. It is shown that
a particular property of binary mixtures is not unconditionally true for
the case of mixtures having more than two components. It is also shown
that a mixture of more than three components can be 'mathematically'
reduced to a binary mixture. Finally, in this section it is demonstrated
that if the densities are mixtures of the same components then to obtain
a linear relationship between the densities, the number of densities
should be one more than the number of components.

8.2 Two graphical representations of the null hypothesis for the case

of three densities.

Consider three density functions f f2 and f_ which are such that one

1’ 3

of them (say f2) is a proper mixture of the other two. In other words,

the null hypothesis is true.

Let xi,ie[l,z,...m] be the m chosen points which were used to construct
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~

the 'distance! function Q(t) earlier in the thesis. Also, let

defn.

florn = Tplx)-flx)
defn.

and flSr‘ - fl(xr)—fS(xr)

where re[1,2,....,m],

In Fig.l below, the m values of ]fl2rl are plotted on the vertical axis
and, similarly, the m values of ]f13r| are plotted on the horizontal axis.
The corresponding points are joined together by straight lines,

Now, since f2 is a proper mixture of fl and f3, therefore, it follows
that f12r: constant xf13r

¥re[1,2,...,m]. Thus, the transverse lines in Fig 1 are all parallel.

| Fiar

Fig 1




| Fiar
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A line QA is drawn from the origin of the axes, perpendicular to the

transverse lines.

Note that we have

| £

|
as tan ! —12E tan_lltl
!flsrl
le
where — =t, i.e., f = (1-t)f_ +tf_.
£ 2 1 3
13

Ideally, all the transverse lines are parallel but,in practice, when we
are dealing with density estimates, the perpendiculars from 0 to each

line will be different lines. The distribution of & , where

ESUN!
& = tan™t _?lgﬁ_ may prove to be of some use.
lflSrl

The second graphical representation is given by Figure 2.

ref

v
| Fizr )
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Figure 2 is different from Figure 1 in that the line through 0 is drawn
through the m points (fl3r’f12r)' Thus, lines 0OA and OB are different.
When we are dealing with density estimates then the circled points will
not lie on a single line and a least squares estimate will need to be

obtained.

8.3 A general theorem and an asscciated method

For the case of n (n>3)fi’s, ie[1,2,+4v..n],

Theorem 1 (on page 150), in Chapter 7, generalises as follows.
If fl,f2,.....,fn are proper mixtures of the same two components with
C . . 3 DD D a >

mixing weights pl,p2,...pn respectively, such that P, p2 P,

then f2,f goes .fn_ are proper mixtures of fl and fn'

3 1

Proof
C id £ 's,
onsider 17 fn and one of the other fi s. We have pl:>pi>pn
where i€[2,8,...n-1}, From Theorem 1 on page 150 it is clear that fi is

f oo f

a proper mixture of f and f . Hence it follows that f ye
1 n 3 n-1

>
are proper mixtures of fl and fn.

Note that the same result follows when the pi’s are cordered as
pl<p2<......<pn.

As demonstrated by the example in section 2.2, the converse of Theorem 1
of Chapter 7 is not necessarily true. Hence, the converse of its gene-
ralised version is also not necessarily true. The converse is,

"If n-2 of the n fi’s are proper mixtures of the remaining two then all
of the fi’s are proper mixtures of the same two components.'

Note that if the 'component' fi’s are removed from the set of the fi’s
then the remaining n-2 fi’s can be considered to be mixtures of the same

two 'components'!'. This way of looking at it is not very meaningful unless

the number of fi’s is more than three.
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Suppose there are n{n>3) density functions fi which are proper mixtures of
the same two components. Using any two of the n relations express the com-
ponents in terms of two of the fi’s. Substituting the expressions for

the components (in terms of the fi's) in the other relations, we obtain
n-2 independent relations in the fi’s. Thus, as we know very well, three
fi’s will give one independent relation in the fi’s. Similarly, four fi’s
give two independent relations.

Finally, in this section, suppose we are given four densities fi and we
want to determine the 'component!' fi’s (if any). Consider any three of

the fi’s. Using the tests developed in this thesis if we conclude that

one of the fi’s is a proper mixture of the other two then dropping that fi

we apply the same test again to the remaining three fi’s. If, again, we

conclude that one of the fi's is a proper mixture of the other two then
it follows that two of the fi’s are proper mixtures of the other two,

and f_, f_. is a proper

Explaining in more detail, suppose, of fl,f2 3 3

mixture of the other two. Thus, dropping f

3 consider fl, f

5 and f4. Ir

f4 is a proper mixture of f1 and f2 then it is clear that f8 and f‘4 are

proper mixtures of fl and f2. It fl is a proper mixture of f2 and f4

then, the fact that f3 is a proper mixture of fl and f2 implies that f3

is a proper mixture of f2 and f . Thus fl and f

4 are proper mixtures of

3

f2 and f Similarly, if f2 is a proper mixture of fl and f4 then f2

4

and f3 are proper mixtures of fl and fd'

8.4 Finite mixtures having more than two components

Consider three densities fi which are proper mixtures of the same tnree

components g,h and j.
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Let £, =p, g+q,h+(1-p ~q )]

£,=p,g+q,h+(1-p,-q,) ]
and f3=p3g+q3h+(l—p3—q3)3
where Py sP, and p8 and ql,q2 and q, are the mixing weights.
Unlike the binary case (as explained in Chapter 2), here, it is not
necessary that one of the fi’s is a proper mixture of the other two unless
the mixing weights are related in a particular way. Suppose f2 is a

proper mixture of f. and f3 with mixing weight a,given by

1
f2=af1+(1—a)f3,

then, it follows that

P.,—P
, 2 73
P2—3P1+(1—u)p3 i.e. =a
P17Ps
and q,.=aq,+{1l-a)q i.e. fols =a .
2 1 3 _
9793

P,—P q,—a
Thus 2_ 3 = 2_ 3 .
Pl PB ql QS

This is the necessary condition for f, to be a proper mixture of fl and

2
fS.
For the cases where this necessary condition holds, given three densi-
ties, (fi’i=1’2’3) we will conclude that one of the fi’s is a proper
mixture of the other two.

Note that a mixture with three (or more) components may be 'mathematically!

reduced to a binary mixture. For example the fl mentioned above may be

written as
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flzplg+qlh+(l—pl—ql)3

q 1-p,-q
1 171
= - ——— h —_—
p,&+{1-p,) i-p, + Ip, J

:plg+(l~pl)W.

where
a, 1~P1-Q1
w= 7T h+ .
Py Py

obviously satisfies the conditions of a density.

Lastly, if we have four fi’s which are proper mixtures of the same three
components then solving for the components in terms of the fi’s,using
any three relations, we may substitute the expressions,thus obtained,

in the fourth fi to obtain a linear relation between the four fi’s where
it is easy to check that one of the fi’s is a mixture of the other three.
Hence to obtain a linear relation between the fi’s the number of fi’s

required is one more than the number of components comprising each fi.
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