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ADDENDUM
The following: paragraph should be inserted immediately before 

the paragraph beginning 'Table 2.7 shows the Brier score’ on 
p. 152:-

'For consistency, we have rescaled the Brier score as l-J£Sg 
where SB is given by (1.13), so that the rescaled score ranges from 
0 to 1, with high values indicating good performance as for the log 
and modified log scores.1

ERRATA 
Chapter 1

p. 15 line 8 up. For 'qualitative ordinal discrete variables' 
read 'quantitative ordinal discrete variables'.

p.27 line 9. For '£ or (x) f(x) 1 read ’D <i>j(x) f(x)'.
x x

p.43 line 19. For 'n-V cases' read 'n-sv cases, where sv is 
the size of the vth subset.
Chapter 2

p. 151 line 11. For 'most notably relative to method 2' read
'most notably method 2'.
Chapter 3

p.176 Formula (3.7) should read

K(x|X, X) = H dX i (i_Xi) ix j - ®  jl .
j=l J

p.184 line 6. For 'IT11 p(Xj)‘ read 'TTn p(X-j^)'.
j=l i=l

p. 193 line 4 up. For 'S”1 = diag W 2"*1 ,  Wr”1 ) 1
read 'S = diag (w^- 1 , W 2_ 1 ...... wn-1)'.
Chapter 4

p.199 line 3 up. For 1X ' read 'X'.
p. 228 line 6. For 'Once more MV XVAL is superior' read 'Once

more STD XVAL is superior'.
Chapter 5

p. 282 line 8 up. For 'most notably relative to method 2' read 
'most notably method 2'.

p.284 line 15 up. For 'g(x) 3 f-j^xjej- f2 (x)e2 ' read 

'g(x) e f1 (x)eI- f2 (x)e2 '.



SUMMARY

This thesis addresses the question of how to achieve reliable 
estimation of the posterior probability function in discriminant 
analysis, both for continuous and ordered discrete feature
variables. In the latter instance we are also concerned with the
estimation of a posterior, which, regarded as a function of the
feature variables, is ordered with respect to one or more
independent variable.

Chapter 1 introduces the discrimination problem, establishes 
notation and describes the possible approaches. Methods of density 
estimation, for use in discriminant analysis, are described, 
including the kernel method, as are some more direct approaches to 
discrimination and classification. Some comparative studies and 
their conclusions are reviewed. Means of assessing the performance 
of a discriminant rule are described with emphasis on measures of 
reliability rather than separation. The final section mentions 
briefly the important problem of variable selection, although this 
is not addressed elsewhere in the thesis.

Chapter 2 addresses the problem of choosing smoothing 
parameters in kernel density estimation with continuous variables 
when this is to be used in the discrimination context. It is 
natural to suspect that the optimal degree of smoothing for 
marginal density estimates may not be that which will produce an 
optimal density ratio or posterior probability function when two 
such estimates are combined.

A simulation study confirms that some popular methods for 
choosing the smoothing parameter can produce an estimated density 
ratio which is poor in terms of mean square error. Some 
alternatives are proposed based on direct assessment measures of 
reliability, not of the marginal estimates but of the predicted 
probabilities. These are compared to the marginal approaches. To 
a more limited extent, the optimal (minimum mean square error) 
kernel method is compared to an optimal spline estimate of the 
density ratio.

Both the marginal and direct methods are then applied to a real 
data set and the resulting estimates compared with a spline 
estimate.

Chapter 3 discusses ordered variables, from qualitative 
orderings to grouped continuous variables, ways in which ordering



can affect a data set and suitable models in each case. Particular 
emphasis is given to discrete kernel estimators and isotonic 
regression techniques. Some problems in applying existing
algorithms for the latter are described and suggestions made for 
overcoming these.

Chapter 4 applies ordered kernels and isotonic regression to 1- 
and 2-dimensional problems using the data of Titterington et a l . 
(1981), concluding that the kernel methods are unable to recover
the type of ordering manifested by the data and that a diagnostic
approach is required. The results are compared in the univariate
case to those in Chapter 2, Section 2.6 which used continuous 
kernels. The use of isotonic regression is then compared with 2 
logistic models and an independence model using the same data set 
but with 3 variables. Suggestions are made for further smoothing
of the isotonic estimator, 2 of which are implemented.

Finally, Chapter 5 draws some conclusions and makes suggestions 
for further work. In particular, isotonic splines may be worthy of 
investigation.
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CHAPTER 1 DISCRIMINANT ANALYSIS

1.1 INTRODUCTION
Discriminant analysis is a term applied to a set of statistical 

techniques used to allocate an object to one of a number of 
disjoint categories on the basis of data measurable on any such 
object. It is assumed that an effective means of allocation does 
exist, but for reasons of cost, time or convenience, for instance, 
that we wish to develop an alternative method. An obvious 
application would be in medical diagnosis, or. less commonly, 
prognosis, where a patient is allocated to a particular disease 
category on the basis of signs, symptoms and the results of 
laboratory tests. However, the potential applications are much 
more numerous than this and examples occur in almost any field of 
research e.g. classification of archaeological discoveries to a 
particular culture or era, species identification in botany or 
anthropology, problems of disputed authorship, and image processing 
(see, for instance, Ripley and Taylor, 1987).

Classic references are Anderson (1958, Chapter 6), and 
Lachenbruch (1975a), with Hand (1981a) providing a more recent and 
more general treatment. A recent collection of papers on advances 
in the theory and applications can be found in Choi (1986).

1.2 NOTATION
No matter what the practical application, the basic elements of 

the problem are formally identifiable as the following
Individuals/objects/cases are assumed to belong to one of k 

disjoint, exhaustive populations
These populations have associated prior probabilities or 

incidence rates p(tr^) = e^, i = 1,..., k such that E0-[ = 1.
Feature variables or indicants with realisations ....  x^ are

measurable, giving a feature vector x for each case. The 
distribution of x within the ith class p(x|7Tj_) is denoted by f^(x), 
{fj_(x), i = 1,..., k) being known as the class conditional
densities.

A set of design or training cases is available, from past 
experience, whose feature vectors are known and populations of 
origin have been confirmed. The training set will be used to 
derive a discriminant or classification rule with which to classify 
a future case with feature vector x. Often a further set of
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confirmed cases is available, known as a test set, with which to 
assess the discriminant rule, by means of performance measures or 
scores. (A test set is not strictly necessary, and means of 
assessment are discussed further in Section 1.6)

1.3 APPROACHES

1.3.1 Introduction
The aim of discriminant analysis is to assign future cases or 

objects of unknown class, on the basis of their feature vectors, to 
one of 7t , 77̂ , usually in order to minimise the error rate, or, 
more generally, a loss function. In an automated setting, such as 
industrial quality control procedures, an allocation rule may be 
all that is required. However in more complex situations, such as 
arise in a medical context, other factors (e.g. expert knowledge) 
will enter into the decision making process and it may be more 
useful just to provide the estimated probabilities, 
{p(7T|[x), i = 1 ,..., k), which may then be used in conjunction with 
other sources of diagnostic information. Equivalently, the 
estimated posterior odds ratios

P(*i |x)

P(*jl2)

may be specified, either as point or interval estimates. For 
recent work on confidence intervals for the log-odds ratio see, for 
instance, Rigby (1982), Critchley and Ford (1985) and Davis (1987).

1.3.2 Classification
The classification procedure involves partitioning the sample 

space of the feature variables into decision regions ,..., R^
such that a case with feature vector x is allocated to if x e
Rj: . Welch (1939) suggested choosing the partition in order to 
minimise the probability of misclassification. More generally if 
cost C(j|i) can be associated with misallocation of an observation 
arising from to ttj , the class of Bayes' procedures are those 
which minimise expected loss,

Ik 0i Ek C {j|i) P (j|i,R ) 
i=l j=l 

j^i
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where P(j|i,R) -
R
f ̂ (x ) d x .

It can be shown (e.g. Anderson, 1958, Chapter 6) that this is 
achieved by the partition (R^,..., R^) such that

R j = x : Ek ©j fi(x) C(j | i) < 
i=l 
i^ j

Ek ©j fi(x) C(l|i), 1 = 1,.., k; 1 t j
i=l
i^l

where ©^ ^i(x) C (j f i ) is proportional to the expected loss 
i=l 
i^j

associated with assigning an object to n j .
For equal costs i.e. to minimise probability of 

misclassification

Rj * (x : ©i fi(x) < © j fj(x), VI * j}

so that allocation is on the basis of the highest posterior 
probability. The expression 9j fj(x) is called the jth
discriminant score.

When k = 2, the 2 population case, to minimise expected loss

C (2 11) p(2[1,R) + C (1 I 2) p(l|2 ,R) 02

the optimal partition becomes

Ri = x : fi(x) ^ ©2 C (1|2)

f2 (x) ©j C (2|1) 

or, for equal costs,

, R2 = Ri,

Ri = x : f1 (x) ^ ©2 (Welch, 1939; Hoel and Peterson, 1949),

f2(x) 9l
which minimises the probability of misclassification

f-jjx) dx + ©2 
r 2

f2 (x) dx 
R 1

Where priors {©j[} are not known, the decision rule will be 
based on the likelihood ratio, with



Ri = x : f-jjx) > c where c would be chosen to minimise

f2 (x)

conditional expected loss given the population of origin,

C (211) p(2|l, R) = r(l, R) (risk) if x e -jt-̂ ,

C(l|2) p (1 j 2 , R) = r(2, R) if x e  it 2 .

In this case Anderson (1958, Chapter 6) shows that the Bayes'
rule generates the class of admissible procedures. (In practice, 
in the absence of known priors, they are commonly assumed equal,
or, if the training data has been sampled from a mixture, estimated 
from the sample proportions, n-j/n, the maximum likelihood estimates 
(MLEs)).

In practice, eliciting costs, or even cost ratios, can be 
difficult, though Anderson (1969) proposed a method of optimal 
allocation subject to constraints imposing upper bounds on the 
probabilities of misallocation, which to a certain extent avoids 
the need to do so. However, costs are usually assumed to be equal.

1.3.3 Estimation
Modelling effort may be focussed directly on the ( p ^ j x ) }  or 

indirectly, on the class conditional densities, reformulating

as fi(x) ©j , i = 1,.., k, (1.1)

Ek fj(x) 0-j

and hence

p(7Ti|x) = fi(x) ©j > via Bayes’ Theorem.

p U k |x) ffc(x) ek

Where the { Q ^ }  are unknown, the sample relative frequencies are 
used as plug-in estimates. In either case, a parametric or 
nonparametric approach may be taken. Dawid (1976) termed the 
direct and indirect approaches the ''diagnostic" and "sampling" 
paradigms respectively, and advocated use of the diagnostic method 
in that it is less sensitive to changes in the target populations. 
However the sampling method has in its favour a much richer class 
of models. The sampling and diagnostic approaches are discussed in 
the next two sections, on density estimation and odds ratio
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estimation respectively.

1.4 DENSITY ESTIMATION

1.4.1 Introduction
Using the sampling method one estimates {p(wj_|x)} indirectly by 

modelling the class conditional densities (fjjx)}, making available 
the wide class of density estimation methods, both parametric and 
nonparametric. Nonparametric models, discussed in Section 1.4.3, 
rely on weaker assumptions than the former, such as smoothness 
properties (see the kernel and orthogonal series methods) or 
unimodality (maximum likelihood estimators). The data are allowed 
to "speak for themselves" to a greater extent than by imposing a 
particular parametric model upon them. Certain nonparametric 
methods extend readily to higher dimensions, while multivariate 
parametric models are less abundant, especially for continuous 
data. The type of parametric model which is appropriate also 
depends more upon the type of feature variables, which in some 
fields, e.g. in medical applications, tend increasingly to be 
discrete rather than continuous. Discrete variables may be 
qualitative, or ordered, in some sense reflecting an underlying 
continuous scale whether or not this has been measured (as in 
grouped continuous data) or is not directly measurable (as, for 
instance, in specifying degree of pain). It is important with 
respect to model choice to distinguish between genuinely discrete 
and ordered variables, and this is discussed further in Chapters 3 
and 4.

1*4.2 Parametric estimators

Continuous variables
For continuous feature variables the most common practice has 

been to assume that their joint distribution within each population 
is Multivariate Normal. For 2 populations with f^fx) - N tei» Ei)» 
i = 1,2, assuming equal costs and equality of covariance matrices, 
Ej = E2 = E, the Bayes' procedure gives the decision regions

£ '• £TE 1 (iii - £%) ~ 54tel + J±2)TE 1(hl “ ^2) > l°g ©2
G1

( 1 . 2 )
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r2 = ^i» (Welch, 1939), while for k regions we have

r j - x : ujm (x) ^ log 9m , m = 1,.., k; j ^ m 

0.J

, where

jm

If priors are assumed equal (1.2) becomes

Rj = fx : xtE_1(H1 - u 2 ) > 1(U! + W2)TE_1(Hl ”_J£2) R2 ~ R l- (1.3

In practice the parameters (u^r u2 , E) are not usually known 
and are most commonly replaced by their sample equivalents

U i  = x-[, i = l,2 where x$ = 1 E i Xjj and
Hi j=l

1 £2 Eni (xij- Xi)(xij ~ M ) T ’  i=l j=i
ni+n2-2

the pooled sample covariance matrix, assuming we have samples 

(x^2...... * ^ln^) anc* ^ 2 1 - ....  ^ 2n2  ̂ from populations and rr2

respectively. This yields from (1.3)

Ri = x : [x - l^(xi + X2 )]TS 1 (x1 _ x2 ) > c 
2

(1.4)

c a constant, where the term on the left-hand side is the 
Wald-Anderson classification statistic after Wald (1944) and 
Anderson (1951), For c = 0 (equal priors and equal costs) this is

the procedure of Fisher (1936) and xTS 1 (x], - x2 ) is Fisher's

Linear Discriminant Function (LDF) which he showed to be the linear 
combination, bTx, of the feature variables which maximises the 
ratio of between-sample separation (bTa1 - h^u^)2 to within-sample 
variance bTE b. (1.4) is referred to as the (sample) linear 
discriminant rule.

If the assumption that E^ = ^2 -̂s relaxed the optimal procedure 
is the Quadratic Discrimination Function rule (QDF) (Smith, 1947),
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x : - 1 ~ x ) k  + 2 (a2T^21 " Hl1^ 1 );

- ua^g1̂  + fii^^i - log j£2l < ~2 in e2

l*il 01

although best linear discriminants have been proposed for use in 
this context (Clunies-Ross and Riffenburgh, 1960; Anderson and 
Bahadur, 1962). The QDF will be appropriate for separation of 2 
populations with a common mean which will therefore be dependent on 
exploiting differences in covariance structure (Bartlett and 
Please, 1963) though Laehenbruch (1975b) used the LDF on the 
absolute value of deviations from the mean.

Due to sampling variability neither sample-based rule will be 
Bayes' optimal even when the distributional assumptions are 
satisfied i.e. they will not minimise expected loss, although 
results of Glick (1972) show that they are consistent in the sense 
that expected loss tends to that of the optimal rule.

Rather than replace unknown parameters, o say, in the 
likelihood ratio by their estimates, the "predictive" method of 
Geisser (1964) and Aitchison and Dunsmore (1975) assigns to the 
parameters a prior probability density p(o) , based on ignorance, 
and instead of r(x|ir^, z) = ptxl^i. o(z)) where z is the available 
data, uses the "predictive" density function

q(x|7Ti, z) * p(x|7Ti, <j>) p(o|z, 7rjl) do , where
o

p(o|z, Tr-jJ « p(z|o, irj) p(o)

and hence averages out the effect of sampling variability.

Assuming multivariate normality, if a vague prior (Aitchison and

Dunsmore, 1975, p. 21) is used, while r ( x | 7 , z) - N^fx-^, S^),

2 ) ~ std p li“1, ^i * [1+\ ] S*]> 3 ^-dimensional Student

density, both centred on the same mean vector but the latter being 
a less concentrated distribution. Asymptotically the two
approaches are seen to be identical.
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Aitchison, Habbema and Kay (1977) compared the ’’estimative" and 
"predictive" approaches in this situation and showed that the ratio 
q/r could vary enormously, while Aitchison (1975) showed that 
viewed as a function of x, in terms of a measure based on the 
Kullback-Leibler directed divergence (Kullback, 1959, pp. 6-7), 
overall q estimates the true density more closely than r and 
therefore the predictive method more reliably estimates the ratio 
of densities. Murray (1977b) strengthened this result to show that 
the predictive estimator is also the optimal estimator minimising 
this distance function which is invariant to translation and 
non-singular linear transformation of the sample space. Aitchison 
et a l . (1977) carried out a simulation study using various
parameter configurations, a range of dimensions and moderate to 
small sample sizes, to compare the 2 approaches, both for equal and 
unequal covariance matrices, in terms of mean absolute deviation of 
assessed log-odds from true log-odds, averaged over simulations. 
The results indicated that the QDF was by far the worst procedure 
even when £  Eg, presumably due to the difficulties in reliably 
estimating so many parameters, and that in each case the 
appropriate predictive method was superior to either the LDF or 
alternative predictive method, markedly so when Ei = Eg- They also 
found that the estimative method tends to produce over-extravagant 
log-odds while the predictive approach was much more conservative. 
Moran and Murphy (1979) showed that for the case E^ = Eg the mean 
bias of the estimative log-odds is positive and increases with 
dimension while that of predictive log-odds is much smaller, 
negative and does not alter with dimension. Extending the
simulations of Aitchison et a l . to cover LDF and QDF rules 
corrected for bias, they found that, while the advantage remained
with the predictive methods, the bias-corrected methods were
comparable for estimation of log-odds and that there was little 
difference in terms of percentage of test cases misclassified, 
whether or not the covariance structures were assumed equal. 
Murphy and Moran (1986) found the predictive LDF to be clearly
superior to the standard and bias-corrected LDFs for estimation of 
log-odds, and concluded that while the uncorrected procedure should 
never be used for this purpose, the predictive approach was still 
better than the corrected LDF, especially as the number of 
variables increased relative to sample size.



Its widespread availability, simplicity and nonparametric 
justifications have led to the LDF rule commonly being used even 
when the assumptions required for its optimality in the likelihood 
ratio sense are clearly violated.

Gilbert (1969) studied the performance of the LDF relative to
the QDF, assuming known parameters and Eg = c Ei> where c is a
constant, and all correlations assumed equal, and also concluded 
that LDF may often be useful for classification but not for 
estimation of log-odds. Error rates were similar only for a 
moderate range of c (not too far from 1) and with some amount of 
linear separation of the populations. LDF became worse as the 
dimensionality increased.

Marks and Dunn (1974) considered a slightly wider variety of 
situations and also considered the best linear discriminant such 
that Rj = {x : x^b < + t^ b^Ejb) where
b = (T:iEi + t2E2)_1(H2 “ Hi) anc* (t]_, t2 ) is chosen to minimise 
the misclassification probability. In each case parameters were 
estimated. For large samples and E^ quite distinct from Eg> QDF 
was much better in terms of misclassification, provided the 
dimension was not too large. For similar {E^} QDF was only 
slightly better. QDF was increasingly poor as sample size
decreased especially as the number of variables increased. Small 
sample sizes affected the LDF and best linear methods less. Where 
{Ei> were similar the best linear and LDF methods were similar also 
and, for bigger differences in covariance, while the best linear
method could be much better this was often when QDF was better 
still.

Lachenbruch, Sneeringer and Revo (1973) studied robustness of 
LDF and QDF rules to non-normality using 3 non-linear 
transformations of normal data with independent variables and found 
that both were seriously affected. The quadratic rule was very 
poor especially for heavy-tailed distributions while the LDF could 
be badly misleading in that error rates were distorted, one being 
higher than optimal and the other lower. Their sum also increased 
for some distributions. Consequently transformation to approximate 
normality was recommended before using the LDF.

In short, for estimation purposes, estimative methods may be 
erratic and an appropriate predictive method should be used, or 
else the unbiased LDF or QDF of Moran and Murphy (1979) . For
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allocation purposes the estimative, predictive and unbiased 
methods are equivalent for equal-sized samples. For unequal sample 
sizes, provided {E^} are reasonably similar, the LDF may be useful
in low dimensions. If {E^} are quite distinct, a QDF is to be
preferred unless samples are small relative to dimension, in which
case a best linear method should be used. In any event, prior 
transformation to approximate normality is advisable. In practice 
it may be difficult to find blanket transformations to transform 
each feature variable to approximate normality in all populations 
simultaneously, and hence nonparametric rules may be preferred.

Discrete variables
The most general model that can be assumed for discrete

explanatory variables is that their joint distribution is 
Multinomial. This makes very few assumptions about the form of the 
distribution. In practice the maximum likelihood estimates of the 
cell probabilities {p(x|7r-jj}, the observed sample relative 
frequencies n^(x)/n^, would be used as plug-in estimates, where 
n-^(x) is the number of observations arising from the ith population 
with the feature vector x and

nf = E nj(x). 
x

Unfortunately as the number of variables, d, increases, the number

of cells nd s-j where s-j is the number of states assumed by

the jth variable, increases exponentially and hence the number of 

parameters to be estimated. Ud s-s - 1, can quickly become
J=1

prohibitive. Even for large samples empty cells or cells 
containing only 1 or 2 observations are common, giving at best 
unreliable estimates and at worst none. This is a particular 
problem in discriminant analysis as future cases may arise 
displaying patterns of feature variables not encountered in one or 
more of the design sets, with consequent difficulty in 
classification. Especially for disproportionate sample sizes, when 
interest is often in the less commonly occurring population, a zero
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estimate for a given state in may represent a different, or
higher, probability from a zero, or non-zero estimate for the same 
state in n  2 with the result that error rates can be misleading 
(Goldstein and Dillon, 1978, pp. 14, 45).

Two main approaches have been taken to remedy this :
1) smoothed relative frequency estimators, discussed in Section 

3.4.2, and
2) imposition of some degree of parametric structure on the 
multinomial probabilities so as to reduce the number of parameters 
to be estimated. Saturated reparametrised models will generally 
have the same number of parameters as the full Multinomial but 
simpler models can be sought in the hope that a reasonably close 
fit will be obtained and comparable classification performance 
achieved but problems of sparse data more easily dealt with. Where 
the parameters are known the likelihood ratio rule based on the 
full Multinomial distribution would incur a . smaller 
misclassification rate than a reduced model but due to unreliable 
parameter estimates a sample-based reduced model may well achieve 
smaller error rates than the full maximum likelihood rule. In some 
cases formal statistical model fitting is feasible as, for 
instance, with log-linear models. Where this is not possible a 
more arbitrary choice will be made, as with latent class models.

The most restrictive model is to assume complete independence 
between feature variables within each class (Warner et al. , 1961).
In practice this will rarely be justified but independence models 
have proved surprisingly robust to lack of independence (de Dombal 
et a l . , 1972, and Horrocks et al., 1972; Titterington et a l . , 
1981). In fact, Hilden (1984) shows that while conditional 
independence of the feature variables is a sufficient condition for 
the independence-based Bayes' rule to hold, it is not necessary, in 
that the model is still valid under certain types of 
interdependence. Independence models also have the advantage of 
being very simple to apply and coping easily with missing values. 
As parameter estimation relies only on the marginal distributions 
it does not suffer to the same extent from data sparseness.

For binary variables Bahadur models provide a wide range of 
models incorporating interaction terms. Bahadur (1961) showed that 
the Multinomial model for a binary feature vector x can be 
represented as
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P(x|^i) = pI (x|7ri ) J: ^ Pjk zjzk + ^ Pjkl zjzkzl 
j<l< j<k<l

Pl2
(1.5)

where Pi(xfir-[) fits the independence model. n1̂ e jxj(1_0j)1 xj •
j = l

Qj = E(Xj), Xj - Bi(l,9j), and the term in brackets models any 

interactions. Zj s  (Xj-0j)/ v'ej(l-ej), pjk = H (z j Z )

Pl2...d = E (zl •••■zd^

so that (Pi.2’--’ Pd-l,d  Pl2....d) are correlation
coefficients. Setting p = 0 gives the independence model or 1st 
order Bahadur model, while a 2nd order model sets interactions of 
2nd order and above to zero, utilising 1st and 2nd order marginal 
distributions to estimate {©j}, {Zj> and (Pjk }, maximum likelihood 
estimates being given by

9j = I n(x) , zj = xj - 0j and pjk = I  n(x) - 0j 0k
w. w

V0j(l 0j)
jk

where w-

^0j(l-0j)9k (l-9k )

= {x : Xj = 1} and Wjk = {x : Xj = 1 and xk = 1). The
model has the disadvantage that it can lead to negative estimates 
when sample correlations are used to estimate population 
correlations (Moore, 1973).

Lancaster models (Victor, Trampisch, and Zentgraf, 1974) 
provide an alternative for general discrete variables and reduce to 
the corresponding order of Bahadur model for binary variables. 
Based on the definition of mth order interaction of Lancaster 
(1969, pp. 252-256), for d random variables, Zentgraf (1975) showed 
that if interactions of order m and higher disappear, that

P(X1 = Sj , . . , Xd = sd ) =
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+ (-1 )m j^d-1 j-d ĵ d-2j j . nd P(Xi = 

where Si is an outcome of variable i and is the set of all
combinations of j elements out of {1..... , d) and (i^,..., i^„j) =
(1,..., d) \ (k^,..., k j ) . Again cell probabilities are estimated 
by use of marginals of orders 1 to m and relative frequency 
estimates should be stable for m sufficiently small even for 
moderate sample sizes, as explains the robustness of the 
independence model in the presence of associations compared to more 
complex models (Victor et a l ., 1974; Titterington et al., 1981).
It is easily fitted sequentially, increasing the order m. Like the 
Bahadur model, the 1st and dth order models correspond to the 
independence and full Multinomial models, and in certain cases the 
model may yield negative estimates.

For m = 2 the model becomes

Trampisch (1978) compared the performance of the independence, 
multinomial, linear and quadratic discriminant rules and the 2nd 
order Lancaster model in terms of error rate, for 2 populations 
where equal priors were assumed. Five binary variables were used 
and a wide range of sample sizes. In all cases the error rates of
the independence model and LDF were very close as were those of the
2nd order model and QDF, despite the continuous methods being
inappropriate for discrete data. Where the variables were nearly
independent the former were to be preferred whereas these were poor 
for data of unknown structure (generated randomly) where the 
Multinomial was always superior even for very small sample sizes. 
Where the data followed a 2nd order Lancaster model the full 
Multinomial would only be recommended for very large sample sizes 
but there was little to choose between any of the other methods.

Log-linear models, used in contingency table analysis, provide

P(Xd = Sl,., xd = sd ) -

i d - 2  id-2
s .
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a wide class of models for representing the joint distribution of 
discrete variables such that all states have non-zero probability, 
parametrising p(x|wi) in terms of main effects and interactions of 
all orders ^ d,

In p(X = (x1(.., X(j)ki) = oĉ 1 ) + E aj1 )(x1) + E E « { i ^ x l- x j )
1 l<j J

+ ..........  + “ j1 ? _ .d <x l ’---- - xd>

subject to the identifiability constraints

ESl aji) (x^) = 0, VI = 1,..,d where s^ is the number of states of
Xj = l

the 1th variable, I «j^){xlt x j ) = 0 = E ocji^x^, x j j , V l,j.
X 1 xj

E d (xj,..., xd ) = 0, V k  = 1,.., d.
xk

The full representation is again equivalent to the Multinomial 
model. Here reduced models may be fitted by a hierarchical 
goodness-of-fit approach based on Pearson’s x 2 or the Generalised 
Likelihood Ratio Test statistic, testing each model within the 
saturated one. Maximum likelihood parameter estimates are obtained 
iteratively by iterative scaling (iterative proportional fitting) 
(Bishop, Fienberg and Holland, 1975, pp. 83-96) or iteratively 
reweighted least squares (Finney, 1971, pp. 52-57; Nelder, 1974).

Log-linear models extend to ordinal variables and a survey of 
suitable models is provided by Agresti (1983). They are also 
closely related to logistic models, considered in Section 1.5, and 
are equivalent for the special case of binary variables.

The study of Gilbert (1968) used data generated from a 
log-linear model though her parameterisation was slightly 
different.

A less used class of models is latent class models (see for 
instance Skene (1978), while Everitt (1984) provides a general 
introduction to such models). These are based on assuming the 
existence of an additional discrete latent variable y, taking 
values n = 1,..., m which contains all the information provided by 
the d-dimensional feature vector and defines "latent classes" of 
similar feature vectors. Within each class the feature variables 
are generally assumed to be independently distributed so that the
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number of parameters is automatically reduced. This gives

p(x|iri) = £m Hd pj(xj|0jn ) p(y=n|7ri), 
n=l j=l

a mixture, where only the mixing weights depend on the outcome of 
interest, , and 9jn is a vector of parameters. The choice of the 
number of levels m by statistical means is non-trivial. Latent 
class models are examples of mixture models (Titterington, Smith 
and Makov, 1985, pp. 25-27) and choosing the order m is equivalent 
to estimating the number of component densities, the problem of 
which is well known. Titterington et al. (1985), pp. 148-167,
discuss formal statistical procedures, of which p. 157 relates 
specifically to latent structure models. Maximum likelihood
estimates of the parameters {©jn , p(y=n|77^)} are obtained using the 
EM algorthm (Dempster et a l . , 1977) and the classification
procedure is then based on p(7rjjx) as usual.

While the assumptions of the model may not be justified, 
various features make it useful in that, due to the assumption of 
independence, incomplete training cases are easily incorporated, 
different forms may be used for data of mixed type, and the 
estimated mixing weights characterise the outcome classes. When 
the numbers of latent and outcome classes are equal and there 
exists a 1 to 1 correspondence between the latent classes and 
outcomes, p(x|7r^) reduces to the independence model.

Skene (1978) gives an example using the data of Jennett et al. 
(1976) (considered further in Chapter 4) using 2 variables treated 
as normal, 1 Binomial and a nominal variable, with 500 training 
cases of 2 outcome types. Of 500 test cases, 382 were correctly 
classified but the method was not compared with any other.

Discrete variables and linear models.
Categorical variables range from categorised continuous 

variables and qualitative ordinal discrete variables such as number 
of symptoms displayed, to qualitative ordinal ones, such as degree 
of pain, and qualitative nominal variables with no intrinsic 
ordering at all e.g. race. Where qualitative variables are 
encountered, numerical scores are commonly assigned to them, hence 
inducing a linearity which may not exist. For nominal variables 
the problem is removed by replacing an s-category variable with s-1 
linearly independent binary design variables. For ordinal
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variables scoring is more sensible but the problem remains that the 
categories do not necessarily reflect an interval scale, while use 
of design variables would obscure the ordering completely. Whether 
or not scores have been assigned, in practice standard procedures 
such as the LDF have commonly been applied to discrete data as if 
it were continuous. Various authors have studied the robustness of 
the LDF when used in this way. Some representative results of 
these studies are now given.

Gilbert (1968) studied the performance of the LDF, the full 
Multinomial model, the independence model and 2 linear logistic 
models, on multivariate binary data generated from a 1st order 
(log-linear) interaction model, using 6 variables and 15 pairs of 
populations, comparing them in terms of misclassification rates and 
correlation between estimated and true log likelihood ratio. Over 
100 simulations for mixed sample sizes of 100 and 500 there was 
little to choose between the 4 linear methods, which all 
outperformed the Multinomial, and the LDF was recommended as it 
should remain stable as the number of variables increases (due to 
only using 2nd order marginals in parameter estimation), and is 
readily adaptable for use with mixed data.

Moore (1973) also studied the Multinomial, independence, and 
LDF models, comparing them to the QDF and 2nd order Bahadur models 
((1.5) et seq. ) on data generated from the latter, on the grounds 
that the Bahadur models represent a wider class of distributions 
than those used by Gilbert and conclusions can be drawn in terms of 
correlation structure. Again 6 binary variables were used, and now 
19 pairs of populations such that within each population variable 
means were equal, as were non-zero correlations, for 50 samples 
each of size 50 and 100. In general, the LDF and independence 
models were superior in populations with zero correlations, and 
were comparable, while 2nd order procedures were poorer but better 
than the full Multinomial, as was also true for populations with 
only 1 non-zero correlation. Where all correlations were positive, 
2nd order models were at least as good as any other procedure. 
Where log likelihood ratios featured reversals i.e. were not 
monotonic in the number of positive x j 's , no linear model would do 
well and LDF and independence methods were poorer than the full 
Multinomial while the 2nd order Bahadur model was best. However 
the superiority of the latter did not maintain in further sampling 
from higher order models. In such situations the full Multinomial
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was recommended. The quadratic rule rarely performed as well as 
the LDF and its use was not recommended for binary variables.

Dillon and Goldstein (1978), again using 6 binary variables, 
considered a wider variety of situations than Moore (1973), and 
also considered a distance method and 2 Martin-Bradley models (see 
Section 1.4.3) - the main effects model and 1st order interaction 
model. For equal sample sizes the distance method would behave 
identically to the Multinomial model in classification and 
therefore disproportionate sample sizes were used. For 3 types of 
correlation structure and comparing methods in terms of mean error 
rate over 100 simulations the distance method was almost always 
better than the Multinomial, especially for large differences in 
correlations between populations, or large correlations where a 
common correlation structure was assumed. These situations also 
caused poor performance of the linear models, as did the case of 
similar mean vectors. For the LDF, large negative correlations 
appeared less detrimental than large positive ones. The results 
confirmed those of Moore (1973) that linear models can be poor in 
the presence of reversals in log likelihood ratios. In general the 
2nd order Bahadur model was better than other procedures though 
Martin-Bradley main effects and 2nd order models were reasonable in 
situations of small differences in population means, and the latter 
superior to the 2nd order Bahadur when correlations of large 
magnitude were present.

Lachenbruch (1975a, pp. 44-45) quotes Revo (1970) as having 
studied the performance of the LDF and full Multinomial procedures 
as well as a nearest-neighbour method, relative to the sample 
likelihood ratio rule based on the appropriate model for ordered 
data generated from discretised Normal distributions partitioned 
into 6 categories, Poisson and Negative Binomial distributions in 1 
and 2 dimensions. Equal samples of sizes 10, 20 and 50 were used 
in 1 dimension and 20 and 50 in the bivariate case. In terms of 
various error rates, the LDF compared favourably to the optimal 
rule in most cases and in general the likelihood ratio rule did as 
well as the LDF. Especially for small samples, the
nearest-neighbour and multinomial rules were poorer due to sampling 
error in parameter estimation. The discriminatory ability of the 
LDF decreased as correlation between variables increased, 
confirming the results of the studies above, but the performance of 
the multinomial and nearest-neighbour methods improved.
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In a comprehensive study of discrimination techniques on a real 
data set, Titterington et a l . (1981) found the LDF and independence
methods to be consistently robust. Lancaster models also performed 
well and were comparable to the LDF. The QDF, latent class and 
nonparametric kernels were poor by comparison. Further details are 
given in Chapter 4.

Some general conclusions of these studies are therefore that 
the LDF and independence models will perform well when used with 
many real data sets, but though robust to non-normality and lack of 
independence respectively, will perform less well if interactions, 
reversals in the log likelihood ratio, or large differences in 
dispersion matrices/population correlation structure are present. 
Given sufficient data relative to dimension to enable reliable 
parameter estimation, where these features are present a higher 
order model is preferable - the QDF for continuous data transformed 
to approximate normality, or, say, a 2nd order Bahadur or Lancaster 
model for discrete variables. Reliable fitting of the full 
Multinomial will only be feasible for very large samples. In 
general, model fit is less crucial when classification rather than 
estimation of odds is the aim.

Mixed variables
Where feature variables are a mixture of continuous and binary 

or discrete variables it is common to treat the discrete variables 
as continuous and use, say, the LDF as discussed above, or less 
commonly, to convert the continuous variables to categorical ones 
and use discrete procedures. Cochran and Hopkins (1961) advocated 
the latter on the grounds that discrete procedures are simpler 
since distinct discriminants are required for each multivariate 
state defined by the discrete variables (Linhart, 1959) if mixed 
data are retained. For large numbers of independent normal random 
variables and 2 populations little discriminatory power was lost by 
partitioning into 5 or 6 states. For fewer variables relative 
efficiencies were a little lower.

Mixed models are available however. As indicated above, the 
latent class model readily adapts. The "location model" of 
Krzanowski (1975) for q binary variables X and p continuous 
variables Y, assumes that for each realisation of X, Y|X = x is 
Multivariate Normal so that the unconditional distribution of Y is 
mixed Normal. The Bayes' classification procedure is then to
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allocate on the basis of 23 separate LDFs, one for each cell X = x. 
Assuming common dispersion matrices, E , in all cells and writing X 

(X^,.., Xq) as multinomial Z = (Zj,.., Zs ), s - 23 and p^m 
denoting

Pr (X = Zm ki), m = 1 + Eq Xj_ 2 (1-1 > ,
i = l

we have the rule :

allocate to tt^ if (n™ - Mg )T E_1(y - + Plm ^ r ’

P2m

where uj1 is the mean in population i and cell m, and r is the usual 
cut-off depending on costs and prior probabilities. This 
generalises the work of Chang and Afifi (1974) for q = 1, although 
they allowed distinct covariance matrices for each cell.

If Y and X are independent so that X does not affect 
classification the location rule reduces to the standard LDF based 
only on the p continuous variables. As for the LDF, the rule is 
Bayes1 risk consistent in that the probability of correct 
classification converges uniformly to the optimal rate (van Ryzin, 
1966; Glick, 1972). In practice the procedure requires estimation 
of more parameters and therefore may give less reliable error rates 
than the LDF especially for multiple binary variables, or 
equivalently a single polychotomous variable, to which the method 
generalises (using 23 LDFs for q binary variables or 1 23-cell 
multinomial). In view of the difficulty of parameter estimation 
due to small n^ relative to s, causing some cell frequencies to be 
close to zero, Krzanowski suggested fitting reduced models for 
estimation purposes, such as a 2nd order log-linear model for the 
(Pim ) and an additive linear model for the means deriving E
in the usual way from These estimates would then be
substituted into the optimal rule. Goldstein and Dillon (1978), 
pp. 94-95, note that the location model extends immediately to q

polychotomous variables with Il3 s-: states but that state sparseness
j = l

becomes more problematic, (see also Krzanowski, 1980), and, 
further, that it can be generalised from linearity in the obvious 
way by taking cov(Y|X) = E^ under but common to all states.
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A suitably small number of binary/discrete variables may be 
chosen by a step-down variable selection procedure of Krzanowski 
(1983b), based on a measure of distance between 2 populations in 
terms of mixed variables, where the location model holds 
(Krzanowski, 1983a).

Comparing the LDF (treating all variables as continuous) and 
the location model, for 1 continuous variable and q independent 
binary variables with common mean p-̂  in ir^, i = 1, 2, and unit 
Mahalanobis distance between populations in each cell, assuming the 
location model to hold, Krzanowski (1975) found that optimum error 
rates were very similar for a range of p-̂  and q = 2, 3 and 4 where 
there were no interactions, but the LDF error rate was up to 50% 
higher in all cases where there was interaction between binary 
variables and the populations, since the hyperplanes separating the 
populations in each cell are then no longer parallel and averaging 
them reduces discriminatory power. In a simulation-based
comparison for 2 continuous variables, 2 to 5 binary variables, and 
moderate pj_, average actual error rates over 10 simulations of 50 
observations from each population were seen to increase with the 
number of variables for the location method, due to poorer 
estimation, whereas the LDF was more stable. Consequently, an 
upper limit of 6 or 7 binary variables were recommended, or fewer 
for smaller samples.

Five medical data sets were also used to compare the location 
model, the LDF, logistic discrimination (Anderson, 1972) and a 
discrete nonparametric rule of Hills (1967) (see Section 3.4.2), 
dichotomising continuous variables, in terms of leaving-one-out 
error rate. In 3 out of 5 cases the LDF and location model were 
comparable while the latter was superior in the 2 larger data sets 
due to better estimation, although cases misclassified differed 
considerably. The logistic method was almost identical to the LDF 
in both respects while Hills' procedure was consistently poorest. 
The results therefore indicated that treating discrete variables as 
continuous is less serious than the reverse (although 
dichotomisation represents an extreme loss of information).

Krzanowski (1977) also compared use of the LDF and location 
model when the latter holds, assuming population parameters to be 
known, in a wide variety of situations. The joint distribution of 
the binary variables was represented as a 2nd order Bahadur model 
with equal correlations between all binary variables and common
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binary means in a given population so that the within category 
discriminant functions are parallel. Like Lachenbruch et a l .
(1973) he found that error rates for the LDF were almost always 
higher than optimal in one population and lower in the other, and 
confirmed the results of Moore (1973) that the LDF fared worse with 
binary variables when correlation terms in the Bahadur 
representation were non-zero except where plm = P2m , i.e. where 
binary variables contributed no information. The largest
differences in performance of the LDF between independent and 
correlated binary variables occurred for widely separated 
populations, especially as dimensionality increased. Again the 
increase in mean error rate over optimal was much higher where the 
relationship between the continuous variable means in the 2
populations varied from cell to cell, causing the optimal 
discriminants not just to be non-parallel but also change direction 
from cell to cell. On the grounds of Moore's results for all 
binary variables, he recommended that if the sample correlation 
matrices of the variables reveal numerous moderate positive
correlations that the multinomial rule or another discrete
procedure be used and that the same correlation structure indicates 
for mixed data that the location model is more appropriate than the 
LDF, as it will also be for high correlation between a binary and 
continuous variable or between-population differences in magnitude 
and/or sign of such correlations.

Vlachonikolis and Marriott (1982) proposed a slightly different 
procedure, the modified LDF. The q binary variables are replaced 
by s = 2*3-1 design variables z^,..., zs representing a particular 
pattern of (x^, ..., xq ) , so that the LDF on
(z^..., zs , y i ( . yp) requires estimation of 2*3 + p coefficients 
rather than p + q + i and the LDFs dividing the continuous 
variables at each location will be parallel but their positions 
determined separately for each state. More generally, including 
products {zjyj} would involve 2*3(1 + p) coefficients, as does the 
location model, and also fits 2*3 separate LDFs but is more general 
in not assuming common dispersion matrices at each location. 
Including the {z^} and {z^yj} allows for any interaction due to 
binary variables. Again unless q is small the number of parameters 
is large. Since (zlt..., zs+i) is equivalently represented by 
(...x^,.., x-jx j , . . , x-^XjX^, . . , x^xgXg . . .Xq) , i.e. the full 
Multinomial, reduced models may be fitted, a 2nd order model, for



22

instance, involving a LDF using {x^}, {xixj}, (yk>- {x iVk}’ and
{x^xjy^}, i / j = 1 ....  q and k = 1,.., p. Alternatively, the
location model approach to parameter reduction could be used.

Using a data set of Krzanowski (1975) where the LDF had been 
seen to be far poorer than the location model , 1st and 2nd order 
modified LDFs were also used as was the kernel method used by 
Habbema, Hermans and Remme (1978) with both (transformations of) a 
single and separate smoothing parameters for the discrete and 
continuous variables. The 2nd data set involved a large number of 
variables and locations and the location method was not used. 
Stepwise methods were used for a logistic model and the LDF 
methods. In terms of leaving-one-out error rate, on both data sets 
the kernel methods were poor, though 2 smoothing parameters were 
preferable to 1. The modified LDFs were better than the simple LDF 
on both data sets, but the location model still much superior on 
the 1st data set. The logistic model was slightly better than the 
simple LDF but did not identify interactions. The conclusions were 
that despite the LDF and independence models being robust against 
non-normality and dependence respectively, neither is robust 
against interaction, and hence the location and modified methods 
can remove the disadvantages of the simple LDF,

It therefore seems that the LDF (or the logistic model) is 
comparable to the location model in terms of error rate except 
where there are interactions between discrete variables or between 
discrete and continuous variables, when the LDF loses power. The 
location model may be superior for larger samples but where samples 
are small relative to dimension it will suffer due to poorer 
estimation. The number of discrete states with which it will cope 
well is relatively small, and in higher dimensions modified LDFs 
may provide an alternative.

1.4.3. Nonparametric methods
While parametric methods are the most powerful when the model 

assumed is appropriate, often weaker assumptions may be preferred. 
Various nonparametric means of density estimation are described 
below, which may be used for discrimination by substitution in 
(1.1). The final section discusses some nonparametric procedures 
which bypass density estimation and classify directly.
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Kernel density estimators
The kernel method replaces the assumptions of a specific 

parametric form for a density with weaker assumptions of 
smoothness.

Given a random sample ,..., Xn , a kernel density estimator
takes the form

f (x ) = 1 En K
—  i=l 
nh

x-X-

L h

where K(t), the kernel function, is a smooth function, usually a 
probability density function (p.d.f.), and h, the smoothing 
parameter, determines the width of K(y) and hence the degree of 
smoothness of f(x). While the choice of K ( ‘) does not greatly 
affect the appearance of the estimate, the size of h is critical. 
Many methods have been proposed for its choice, some of which are 
discussed in Section 2.3. While Rosenblatt (1956) showed that the 
estimator is biased, Parzen (1962) showed that subject to the 
conditions

dt = 11) Jk (t )

2) J|K(t)1dt < »

3) sup | K (t ) | < co

4) lim |t K(t) | = 0 (1.6)
t 00

5) lim h(n) = 0 
n —» »

6) lim nh(n) = « 
n ^

f(x) is consistent, asymptotically unbiased and asymptotically 
normal. Much of the literature has been concerned with 
establishing suitable conditions on the sequence <h(n)> to ensure 
desirable asymptotic behaviour. Cacoullos (1966) and Epanechnikov 
(1969) extended the method to multivariate x. It also extends 
readily to discrete variables, the method of Aitchison and Aitken 
(1976) being the most commonly used, estimating p(x) by

p(x) = 1 En K(x|X1( X) 
n i=l
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where X now plays the role of the smoothing parameter. For a 
single binary variable

: ( x | x i (  x) = x1 x i I ( i - x ) Ix -  x . x i = x

1-x,  x i /  X

It can be extended to multiple dimensions and/or general nominal or 
ordinal discrete variables. For mixed data, z = (x, y) Aitchison 
and Aitken (1976) proposed

p(z) = 1 En (x|Xj, X) Kg(y!Y j , h) (1.7)
n j=l

where x and y denote discrete and continuous random vectors, is 
a discrete kernel and Kg a continuous one and x, h are 
corresponding smoothing parameters. Alternatively, Goldstein and 
Dillon (1978, pp. 95-96) suggest generalising a location model by 
relaxing the assumption of conditional normality and allowing a 
more general joint distribution of the continuous variables Y|X, 
possibly distinct within each state and each population (though 
this is probably only feasible for a very few binary variables X 
and fairly high frequencies in each state). If the continuous 
density of YjX in state m is fim(y) under tt̂ , the discriminant rule 
would be to allocate an observation (x, y) to if

W E > -  Pin. > r '

W E ) -  P2m
where (Pim }> the probabilities of state m in , are estimated from 
n-[m sample observations, and by any suitable nonparametric
density estimation technique. This approach allows use of standard 
continuous kernels rather than mixed ones.

Thus the kernel method is readily applicable to continuous, 
discrete or mixed data, either univariate or multivariate, making 
it a flexible and widely used approach. Discrete kernels are 
discussed in more detail in Section 3.4.2 and continuous kernels in 
Chapter 2, as is their use in classification.

Nearest-neighbour methods
The kernel method described above determines the width spanned 

by each kernel by its choice of h, the smoothing parameter. An
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alternative, proposed by Loftsgaarden and Quesenberry (1965) is to 
determine the number of neighbouring points, k, to be spanned by 
the kernel. If r^(x) is the kth largest Euclidean distance of x 
from each of the n sample points, then the kth-nearest-neighbour 
estimator is given by

f(x) - k
nVk (x)

where V^(x) is the volume of the d-dimensional hypersphere of
radius r^(x) centred on x. It provides a consistent estimator, and
is closely related to the kernel method, but has the disadvantage 
that it is not a p.d.f.. It leads naturally to a discriminant rule 
based on the ratio of the density estimates ; if the order k is 
common to both samples, and sample relative frequencies are used to 
estimate p(tr^), classification is on the basis of the smallest 
volume (x) . Alternatively, if the sample points from each
class are pooled and amongst the k nearest neighbours contained in 
the hypersphere of volume V are k-̂  originating from class i and
P(x |tt̂ ) is now given by k^/(n^V), the resulting Bayes' rule would 
be :

allocate to class i if kj, = max (kj).
j

This is known as the kth-nearest-neighbour classification rule and 
is considered again below.

Hand (1981a, p. 103) shows that the method can be used for 
categorical variables also. For instance, for multiple binary 
variables where the distance between any 2 points is the number of 
components on which they differ, the volume V is given by

Ei_1
r=0

d + k-ni_i d

r _ ni-ni-l i

where the kth-nearest neighbour is at distance i from x,

n^_^ < k < nj where n^ is the number of points at distance i from

x, and a proportion of the cells at distance i are included.

Orthogonal series estimators
Another type of nonparametric estimator, due to Cencov (1962),
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views a univariate density as a waveform and expands it in terms 
of a series of orthonormal basis functions, e.g. as a Fourier 
series, or using certain sets of polynomials. If is a set of
basis functions such that

| <t>i (x) <Dj (x) dx = 6} j ,

where 6jj is the Kronecker delta, and

p (x |tt|) = E00 a-̂  <l>i(x) where the {a^} are coefficients, a suitable 
i=l

estimator is obtained by truncating the series to a finite number 
of terms, m, either arbitrarily or selecting a model on the basis 
of goodness-of-fit. Including too few terms corresponds to 
oversmoothing, while too many terms will overfit, corresponding to 
undersmoothing. Tarter and Kronmal (1976), who provide a useful 
introduction to series methods, give an example. The coefficients 
are estimated by minimisation of an error criterion such as 
integrated square error,

( p(x|wi) - E m ai«>i(x) )2 dx, 
i=l

from which aj = E{<t>j(x)} and hence

p (x 17r± ) « Em 
j=l

ni ,
1 E Oj(xk ) \ Oj(x).
ni k=l J

A disadvantage is that where the sample points occupy a small 
region of the sample space a large number of terms may be required 
for an adequate fit (Hand, 1981a, p. 41).

In principle the method extends to vector-valued x. However, 
as the number of dimensions increases, the number of terms in the 
series increases exponentially, limiting its applicability.

Hand (1981a, p. 42) notes that the series estimator is of 
kernel form, writing for the general multivariate case

K x-xk ] = h Em <t>j (xk ) «j(x) 
j=l

For multivariate binary variables, Ott and Kronmal (1976) 
represented f(x) as
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f (x) = 2 ^ 2 «r or (x), 
r

a linear combination of the orthogonal polynomials 

xTr<fl>r (x) - (-1)- ->

where r is a binary index vector labelling' the 2^ points in the 
sample space. The orthogonality is such that

E ®r (x) <&j(x) = 2d , r = j 1 , (1.8)
- 0, r s* j J

The parameters {ar } are such that <xj = E (<&j(x)}, since

E or (x) f(x) = E Oj(x)}, 
x

with maximum likelihood estimator

f(x) = 2_d E «r <t>r (x), «r = E <i>r {x) n(x).
r x -----------

n

Here f(x) involves 2^-1 independent parameters and is equivalent to 
the full Multinomial model. Kronmal and Tarter (1968) used the 
change in mean summed square error

E E (f(x) - f(x))2
X

as a goodness-of-fit criterion for inclusion of terms, while 
Goldstein and Dillon (1978, p. 38) suggest in the 2 population 
discrimination problem use of E [ (f^(x)-f2 (x)) - (f^(x)-f2 (x))]2 .
Ott and Kronmal (1976) used these and 2 other criteria with these 
models, in the 2 population case, comparing them with the 
independence, Multinomial and a logistic model in terms of mean 
error rate and also assessed density estimators in terms of mean 
sum of squares. For 11 multinomial populations and 5 variables 
they found that the independence method did best for 1st order 
interaction models of the type studied by Gilbert (1968) and the 
logistic model was nearly as good. Both also did reasonably well 
in general except where optimal error rate was high. Three out of 
4 of the series methods behaved very similarly, while a weighted 
mean summed squared error method was generally better. Both for 
classification and density estimation, a basic mean summed square 
error method almost always outperformed the Multinomial. However.
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the Kronmal-Tarter models suffer from the disadvantage that density 
estimates can be negative.

A different class of polynomials was used by Martin and Bradley 
(1972), again for multivariate binary data, who fitted models of 
the form

f* (x) = f (x) [1 + h(a(i) , x) ],

in a manner similar to Bahadur models (1.5), where f^(x) is the ith 
class conditional density, and h(a(*), x) is a polynomial in x with 
coefficients a ^ )  in ,

h ( a ^  > x) = E aj(j-) <Bj (x) 
j=0

The polynomials used were

<t>0 (x)

4>i(x)

= 1

°d+l (*) = (2xj-l)(2x 2-1)

<d (x)
d+ fd1[3 = (2xd_1-l)(2xd-l)

(2x^-1)(2xj-l)(2x^-1), i < j < k ^ d

o (x) = nd (2x-;-l)
2d-l i=l

with orthogonality as in (1.8).

An equivalent representation of the model is

h(a(*), x) = fi(x) - f(x) , f(x) £ 0, whence

f(x)

a .(i) = 2_d E <t>. (x)
3 x  3

fi(x) - f (x ) 

f (x)

As in the previous series estimators, the coefficients (a-j^)} 
may be interpreted as main effects and interactions so that 
measures the ability of the jth binary variable to indicate the ith
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population and a i tj(i) the joint ability of the 1th and jth 
variables to do so. Therefore variables which do not contribute 
singly to classification may still contribute jointly with other 
variables. Including all 2^ polynomials again gives the full 
Multinomial model and a reduced model will be used involving 

' m denoting a subset of polynomials corresponding to 
main effects and low order interactions. Iterative maximum 
likelihood is required for parameter estimation. As with Bahadur 
and Tarter-Kronmal models, ?i(x) is not necessarily positive, nor 
will the probabilities necessarily sum to 1, and additional 
restrictions are imposed to avoid these problems. Other similar 
models are those of Brunk (1978), who expanded

p(x) , where Pq (x ) may be thought of as a prior estimate of p(x),

Pote)

but then used a Bayesian approach, putting a prior on the 
coefficients of the terms in the orthogonal series in order to 
estimate them from a posterior mode. Brunk and Pierce (1974) did 
the same but expanded

log P(x)

.Pl(x).

where pj(x) is the independence model.

Martin-Bradley models were used in a comparative study by 
Dillon and Goldstein (1978) (see Section 1.4.2). Butler and 
Kronmal (1985) extend Bahadur, Martin-Bradley, and Ott-Kronmal 
models from binary to polychotomous predictors, while Hall (1983b) 
describes orthogonal series methods for the general case of 
multivariate mixed data. The former compared the models using 
discrete Fourier functions, and Kronmal and Tarter1s (1968) mean 
square error rule for inclusion of terms, in terms of the increase 
in average actual error over the optimal error rate. For 4 and 5 
trichotomous variables, samples of equal sizes of 50 to 400, with 
"small", "medium", and "large" differences between the populations, 
were simulated from 2 populations represented by 2nd order 
log-linear models. They found the Martin-Bradley model to be 
superior, improving with repect to other methods as the difference 
between populations increased, especially for sparse data. The 
Ott-Kronmal model also improved over the full Multinomial for 
relatively small sample sizes and low interaction differences. The
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Bahadur model was generally poor, contradicting the results of 
Dillon and Goldstein (1978), and rarely improved over the
independence model. This was attributed to the inclusion rule 
used. The logistic model, when it was estimable, was very poor.

Spline estimators
A polynomial spline of degree 2m-l is a piecewise polynomial of

order 2m-l with smooth joins such that the first 2m-2 derivatives
of the spline are continuous. The (abscissae of the) join points 
are known as "knots". Commonly m = 2, giving a piecewise cubic.

Let L2 (a, b) denote the set of measurable square integrable 
functions in (a, b) and Wm (a, b) the set of functions on (a, b) 
such that DJ f , j ^ m-1, is absolutely continuous and Dm f e L2 , 
where D is the differential operator. Then mathematically, given 
data (x^, y-̂ ) i = 1,.., n, the "cubic interpolating spline" is the 
solution s(x) of the problem:

minimise over Wgf-00, w ) { D2 f(x) }2 dx such that
J “03

1) Dj f € L2 (-*», «) , j = 0, . ., 2

2) f(xj) = yj , i = 1, . . . , n.

More generally, replacing D2 and W2 by Dm and Wm respectively, 
so that the first m-1 derivatives are absolutely continuous and the 
mth is square integrable, the solution s(x) is such that D2m s(x) = 
0, and is an interpolating spline of order 2m-l, with knots at the 
sample points. More generally still, Dm may be replaced by a 
general linear differential operator, L, of order m, with constant

coefficients, L = £ D p  The solution is found by solving
i=l

systems of linear equations imposed by the constraints. The 
polynomial character of the solution is a consequence of the 
operator L and other forms of spline are possible.

Implicitly such splines are appropriate in the absence of 
noise. Smoothing splines provide a more general class of 
estimators, of which there are 3 main classes. (Wegman and Wright,
1983).
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1) Penalised least squares splines minimise, over Wm 

In (f(Xi) - Yi)2 + X fb (Lf(x))2 dx,
i = l J a
where X is a constant, X > 0, so that the first term replaces the
interpolating constraints and again the second term is a measure of
curvature, now penalising for lack of smoothness. As X 0 the 
interpolating spline results while as X <*> faithfulness to the 
data is smoothed out, and, as for kernel estimators, as n -> «, x 
0. Various authors have suggested cross-validation as a means of 
choosing a suitable value of X e.g. Wahba and Wold (1975), 
Silverman (1984a). This is an important technique, described in 
the kernel density estimation context in Section 2.3.2. With L = 
Dm the solution is again a polynomial spline of order 2m-l with 
possible knots at the data points (Kimeldorf and Wahba, 1970). 
Kimeldorf and Wahba (1971), and Wahba (1978) approach computation
by quadratic programming algorithms.
2) The 10035 confidence interval approach is an alternative,
appropriate when error terms are bounded, which relaxes the 
constraints rather than generalising the objective function. If 
(oc-jL, is a 10035 confidence interval for f(xjj, oĉ  < then we
minimise

CL(f(x))]2 dx, such that f e Wm and oq < f(x-^) < j3j_, i = 1,.., n.
„ a

Again the solution has the same order and polynomial form.
3) The third approach is to assume the piecewise polynomial form, 
choosing the degree m and number of knots N (usually rather less 
than n) whose positions may also be specified. Satisfying 
continuity of the spline and of its first m-1 derivatives leaves
m + N i- 1 coefficients to be determined. For fixed knots the 
spline function may then be uniquely determined by ordinary least 
squares. This is the regression spline approach.

Splines were first used in density estimation rather than 
nonparametric regression by Boneva, Kendall and Stevanov (1971),
Wahba (1971), and Good and Gaskins (1971), the last of which is
discussed in the next section. Boneva et a l . defined a class of 
estimators called "histosplines", which essentially fit an 
interpolating spline to the usual histogram, finding the unique
solution which minimises
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jk [f'(x)]2 dx over W^ .

such that the areas under the function between each pair of 
ordinates, defined by bins of width h, are equal to the observed 
relative frequencies represented by the histogram.

Rather than use a fixed bin width, Wahba (1971, 1976)
interpolated the empirical cumulative distribution function 
(c.d.f.) evaluated at m + 1 order statistics by an mth degree 
polynomial and estimated the density by the derivative of the 
fitted polynomial. This is equivalent to the histospline method 
with bin widths determined by order statistics.

Wegman and Wright (1983), in a survey paper on the use of 
splines in statistics, comment that since they are based on 
interpolating rather than smoothing splines, histosplines cannot be 
expected to perform much more adequately as density estimates than 
the histogram itself in the presence of noise. Wahba (1975) 
confirmed this, showing that both variants of the histospline have 
the same order of magnitude of mean squared error as the kernel 
method, certain orthogonal series estimators and the ordinary 
histogram, when smoothing parameters and bin widths are optimally 
chosen.

Unlike most other methods of density estimation, confidence 
regions are readily obtainable for splines, by taking a Bayesian 
view of curve fitting (Silverman, 1985; Wahba, 1983; Wecker and 
Ansley, 1983).

Splines extend to higher dimensions, where the problem becomes 
one of surface fitting. Suitable penalty functions become more 
unwieldy and computation more difficult (Silverman, 1985). Wegman 
and Wright (1983) discuss relevant work of Wahba and others.

Penalised maximimum likelihood estimators
In general maximisation of the likelihood function

Hn f(x|) subject to the constraints 
i=l

kf(x) dx = 1 
a

f(x) ^ 0, V x e  [a, b]
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does not have a smooth solution over most sets of functions of 
interest. Good and Gaskins (1971) suggested instead maximising

TIn f (x^) exp {-j50(f) } 
i = l

or equivalently

£ log f(xj) - P*(f),
i

subject to the same conditions, where is a functional of f,
$( • ) 5: 0, which penalises for roughness, and p is a constant
smoothing parameter. They demonstrated that if

k(log f(x))2 f(x) dx < co 
v a

then f(x) is consistent in that

k f( x )  dx -» kf( x )  dx , a < b .
„ a P J a
The solution f(x) is called the maximum penalised likelihood
estimator (MPLE) of f(x). The roughness penalty $ is often a 
function involving a second derivative, and commonly, to avoid the 
non-negativity constraint, ®(v) is used instead where v is the root 
density, v = f^, or log f (Silverman, 1982a). De Montricher, Tapia 
and Thompson (1975) proved the existence and uniqueness of f(x) and 
characterised it, for suitable choice of penalty function, as a 
polynomial spline with knots at the data points. Klonias (1984) 
constructed a general class of MPLEs which includes those of Good 
and Gaskins (1971) and De Montricher et a l . . The method has a 
Bayesian interpretation (Good and Gaskins, 1971), regarding e-<t as 
proportional to a prior density on the function space, so that the 
MPLE maximises the posterior density over this space. The related 
estimators of Leonard (1978) use the Bayesian approach more 
directly, enforcing smoothing via a prior on the derivative of the 
logistic transform of f, rather than by means of a roughness 
penalty. MPLEs are closely related to the smoothing spline 
approach to density estimation and Silverman (1984b, 1985) shows
that both the penalised least squares smoothing spline with penalty 
function
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{ f ’’(x)}2 dx

and the MPLE with the same penalty imposed on the log density are 
approximately equivalent to an adaptive kernel estimator (see 
Section 2.2.2) with local bandwidth n~^ f(x)~^ where X is the
coefficient of the penalty function.

Titterington and Bowman (1985) and Simonoff (1983) consider 
MPLEs for discrete probability functions and, as in Good and 
Gaskins (1980), estimate the roughness penalty coefficient from 
the data. Simonoff (1983) demonstrated with simulations from the 
uniform probability vector that in terms of mean squared error his 
MPLE could considerably improve over a simple smoothed relative 
frequency estimator of Fienberg and Holland (1973) (see Section
3.4.2). He also suggested suitable higher-dimensional penalty 
functions.

In principle, MPLEs also extend to multivariate continuous 
densities and Good and Gaskins (1971) discuss suitable penalty 
functions.

While "nonparametric" methods typically involve rather fewer 
"parameters" than "parametric" estimators, once a given method has 
been selected in general there still remain 2 choices, one of which 
is more crucial to the success of the model. These are, for the 
series methods the order of the model/ number of terms to be 
included, while for each of the other methods the critical factor 
is the degree of smoothing or order of nearest neighbour. (See also 
Silverman, 1978c). Less important is the kernel function, set of 
polynomials chosen (series methods), penalty function (MPLEs), and 
degree of polynomial and, possibly, number and position of knots 
(smoothing splines).

The kernel method is simple, flexible, widely used and 
conceptually appealing, and is the one on which we concentrate 
henceforth.

Distance based and clustering procedures
Assuming equal costs and equal priors, the LDF is easily seen 

to assign an object x to the population which is nearest in terms 
of the Mahalanobis distance, (x - Mi)TE-1{x — u-j_) , i = 1,.., k (see 
e.g. Mardia, Kent and Bibby, 1979, pp. 303-304).
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Numerous nonparametric procedures dispense with the likelihood 
ratio criterion but also use distance measures as a means of 
classification.

For discrete data Matusita (1955) proposed the distance measure
II Fl~F2 M 2 = Ej (^Pl(5j) “ ^P2 (xj))2 , where F 1 = (Pifx-j)} and 
F2 - {p2 (xj)} are 2 discrete distributions defined on the same 
sample space, which also equals 2(l-p) where p = Ej (xj)i/p2 (xj), 
a measure of affinity. If n and m observations are sampled from 
each population, with empirical distributions Sn and Sm , Dillon and 
Goldstein (1978) suggested the classification rule :

assign to ir1 if | | Sn+1 - Sm | | > ] | Sn - Sm+1 | | '

assign to 7r2 otherwise

where Sn+1 and Sm+1 are respectively the empirical distributions of 
the n and m observations augmented by the observation to be 
classified, i.e. assign to tt^ if the inter-sample-based 
distributional distance is greater than if it were assigned to tt2 . 
For equal sample sizes n = m this classifies as the multinomial 
rule would. However, where a zero is observed in one sample, often 
the smaller of 2 disproportionately sized samples, the multinomial 
rule automatically classifies to the other population, whereas the 
distance-based rule is more sensitive and allows the possibility of 
classification to the smaller population, usually when the non-zero 
observation is small relative to other counts in that sample. A 
related point for disproportionate sample sizes is that while total 
error rate/misclassification probability may be low, often rules 
tend to misclassify almost all observations from the smaller sample 
and therefore may be poor in practice (Goldstein and Dillon, 1978, 
pp. 45-47). Goldstein and Dillon (1978), pp. 47-50 give an 
example comparing the distance rule with the LDF and multinomial 
rules where the former was far superior in the smaller group and 
only slightly poorer overall than the LDF which, like the 
Multinomial, displayed the behaviour described but to a lesser 
degree. The multinomial rule had the lowest overall error rate. 
In practice of course it is often the rare population which is of 
most interest, as in medical screening for instance.

The 1-nearest-neighbour (1-NN) procedure is one of the simplest 
distance methods and simply classifies a point x to the population 
of its nearest neighbour in the training sample, while more
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generally the kth order procedure assigns x to the population most 
heavily represented in the set of k closest points, V^(x). The 
number of points, n, in the training sample must be sufficiently 
large relative to k for the number of points in each population in 
the design set to be greater than or equal to k. Fix and Hodges 
(1951) showed that it is consistent if kn such that kn/n -> 0.
Cover and Hart (1967) showed that in terms of error rate the 1-NN
method is admissible amongst the class of kn-NN rules for the
n-sample case and that asymptotically the error rate is bounded 
above by twice the Bayes' optimal rate. Heilman (1970) discussed 
error bounds when a reject option or classification of doubt is 
permitted.

Loftsgaarden and Quesenberry's (1965) modification of the
procedure provides a means of consistent density estimation.

The nearest-neighbour method is also a clustering procedure, 
known as single linkage. Other clustering procedures (see, for 
instance, Cormack, 1971) may also be used in classification. 
Fisher and Van Ness (1973) compared the k-NN method, LDF and QDF 
and the Bayes1 procedure using kernels, in terms of 7 admissibility 
criteria, with the furthest neighbour or complete linkage method 
(if zj is the farthest point from x in group j and d( • , ■) is a
distance measure,

classify to group k s.t. d(x, z^) = min d(x, z j )),
j

the centroid method which chooses the group with closest centroid 
to x, average linkage (classifying on the basis of the smallest 
average sample distance) and the least squares method. The latter 
is used for batch classification by partitioning it into sets such 
that the new within-cluster sum of squares is minimised, and is 
only feasible, without use of iterative approximation, for very 
small batch sizes. For single point classification it is similar 
to the centroid method. The conclusions were that for the criteria 
considered, the nearest-neighbour method satisfied more than any 
other procedure while the furthest-neighbour and kernel methods 
were next best. Of the clustering methods only the centroid method 
satisfied none at all.

An alternative nonparametric approach to classification is 
provided by binary classification trees (Breiman et al. , 1984).
These recursively partition subsets of the sample space S,
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beginning with S itself, into 2 disjoint sets on the basis of a 
"splitting rule" such that descendant "nodes" or subsets become 
progressively "purer" in the sense that they contain fewer classes 
of training cases than parent nodes. "Terminal" nodes are 
encountered when further splitting produces no appreciable 
improvement in purity. The resulting tree structure is used for 
classification by associating with each terminal node a particular 
diagnosis on the basis of the class most heavily represented by 
that node.

In practice of course such methods are only useful when 
classification itself is the aim rather than estimation of 
posterior probabilities or odds of class membership.

1.5 ODDS RATIO ESTIMATION
The diagnostic method involves direct modelling of one or more 

odds ratios of the form p (-nr̂ jx) /p(w2 !x ) ■ While in theory any 
suitable function defined on [0, <») may be used, in practice a 
parametric approach is the most common, using a logistic regression 
model.

1-5.1 Logistic regression
As discussed in Section 1.4.2, if {f^(x)> are assumed to have 

the Multivariate Normal form with equal covariance structure then 
the log-odds ratio is seen to be linear in the observations x.

= <xq + P^x, where ccq anc* £ are unknown parameters.
(1-9)

Day and Kerridge (1967) noted that this also holds for a much wider 

class of models of the form

f i (x) = <xj[ exp {-!£(x - ai)TE_ 1 (x - u-jj} ©(x), i = 1,..., k, (1.10)

where ©(x) is an arbitrary non-negative scalar function, is the 
mean vector in population , E is the common covariance matrix, 
and {<x̂ } are normalising constants. Model (1.10) is satisfied by a 
wide range of distributions, including

1) the Multivariate Normal with equal covariance matrices
2) multivariate independent binary variables

log fl(x)

^2(x)
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3) multivariate binary variables satisfying the log-linear model 
with 2nd and higher order effects equal in each population

and
4) a combination of 1) and 3).

The linear logistic model (Day and Kerridge, 1967; Cox. 1970, 
p. 104),

p U ^ x )  = exp { p.Q+ p? * }. p(7rk jx)

p(7rk |x) = 1 / { 1 +  exp Ek_1 (Ps0+ x )}
s=l

, i = 1, . . . . k-1 (1.11)

where psT = (0si. PS2 ’  ^sd) *n ^ dimensions and for
s = 1,.., k-1, with (k-1)(d+1) parameters, is seen to be equivalent 
to (1.9), putting P0 = a0 + (0 i/e2) where x arises from it^ with
prior probability 9^, The model can be generalised by relaxing the 
assumption of linearity and incorporating quadratic or interaction 
terms in PST , as would be required with different dispersion 
matrices in 1) or for a binary vector x following a log-linear 
model having unequal 1st and 2nd order interactions but equal 
higher order interactions. Although a full quadratic model
involves many more parameters than can be reliably estimated in
more than a very few dimensions, especially as iterative maximum 
likelihood estimation is required (Day and Kerridge, 1967;
Anderson, 1972), Anderson (1975) suggested an approximation to Pq + 

+ Q x, where fl = - Ek-1, based on the spectral
decomposition of 0 , which greatly reduces the number of parameters 
(from (k-1)(d+1) + (k-1)d(d+l)/2 to (k-1)(d+1) + (k-l)d). 
Transformations can also easily be incorporated by including 
functions of (x-̂ , x 2 ..., x^) in the exponent, making it a flexible 
and widely applicable model. Various authors have considered 
logistic type models for ordered dependent and explanatory
variables, and these are discussed in Chapter 3.

Rather than assume a particular parametric model for {f^(x)>, 
estimate its parameters, and derive P q and {Ps } indirectly,
logistic regression provides a unified approach for all underlying 
distributions, finding the MLEs of the parameters in (1.11) 
directly (so that fewer parameter estimates may be required).
Halperin, Blackwelder and Verter (1971) compared the 2 approaches
assuming model 1) to hold and found that the results were similar
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though direct maximum likelihood tended to produce better fits to 
the data. On the other hand, surprisingly, Efron (1975) showed 
that in terms of asymptotic relative efficiency the logistic
approach is typically (for root Mahalanobis distance > 2.5, and
equal prior probabilities) 1/2 to 2/3 as effective as the LDF 
approach when multivariate normality with equal covariance matrices 
holds. O'Neill (1980) extended these results to non-normal 
continuous distributions, concluding that wherever possible the
maximum likelihood approach should be used for the specific
distributions at hand.

Complete separation of the samples causes non-uniqueness of the 
MLEs although such parameter estimates should still yield
reasonably good discriminators (Day and Kerridge, 1967), while
problems can also arise with small samples if zeroes occur in the 
one-way margins with qualitative data, causing the procedure to be 
singular (Anderson, 1974). Anderson and Richardson (1979) reduce
the bias in the MLEs and hence in the resulting LDF, as do Moran 
and Murphy (1979) (see Section 1.4.2).

Day and Kerridge (1967) assumed sampling was from the mixture 
distribution 0ifi{x), in unknown proportions, while Anderson
(1972) and Anderson and Blair (1982) considered various sampling 
schemes, showing the model to hold subject to suitable
re-interpretation of the parameters, Anderson and Blair also 
introduce penalised likelihood estimators (see Section 1.4.3) for
continuous variables in separate and mixture sampling, from which 
the parameters 0 are as before, pQ is approximately the same for 
large samples and the estimate of the mixture density f(x) turns 
out to be a spline function. Splines are introduced in the next 
section.

1.5.2 Nonparametric approaches

A spline ratio estimator
Silverman (1978a) took a completely nonparametric approach to 

direct estimation of the odds ratio. Given 2 independent samples 
of size n-̂  and n2 respectively from densities f(x) and g(x) , let N
= nj + n2 , Z i   Z^ be the combined order statistic of the data
and be an indicator function, = 1 if Z^ arose from f(x) and 0 
otherwise. Assuming n-̂  and n2 reasonably large, Silverman showed 
that a smooth MLE of f/g is found by maximisation of the penalised
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conditional log-likelihood

log L (oc)
i = l

c i a (zi) “ log [1 + exp{a{21 )>]

(1 .12)
- *3 {« ( x ) d x

where «(x) = log n2 . f(x) 

ni- g(x)

, I is an arbitrary interval containing

the data and the roughness penalty {<x''(x)}2 dx imposes smoothness
I

on a. The degree of smoothness of <x is determined by P, a
smoothness parameter to be chosen. Expression (1,12) is maximised
over the class of functions on I which are continuous, have
continuous 1st derivative and piecewise continuous 2nd derivative. 
Silverman states the unique maximiser of (1.12), for a specified /3 
to be the cubic spline s (Section 1.4.3) with knots at the data
points Z}, . . . , ZN satisfying the conditions that

1) s ' '(Z}~) = s ,',(Z1~) = s''(ZN+ ) = s'''(ZN + ) = 0, and

2) for i = 1,.., N, s 1,l(Z^ + ) - s ' l'(Z^~) = <x>{s(Z-[), e^} where

4>{t, e} = - et/(l + e1 )).

Numerical methods are required to solve 2 non-linear equations 
in 2 unknowns, in order to identify s for any given value of p. As 
it is given, this method is only applicable in 1 dimension and 
therefore its usefulness in practice, where multiple feature 
variables are more common, is limited.

An alternative nonparametric approach was provided by Lauder 
(1983) who used kernel smoothing to find a direct estimate of 
P(tt|x ) rather than use kernel density estimation to estimate it by 
the sampling method. On several real data sets the method was 
compared to logistic regression and found to be comparable but more 
conservative in its diagnostic probabilities than the estimative 
parametric approach, though less so than a predictive logistic 
method. However, when a large number of variables relative to the
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size of the training set were used it was consistently
overconfident and in some cases reversed predictions from those of 
the logistic methods.

1.6 ASSESSING PERFORMANCE

1.6.1 Error rates
Most often, error rate (or equivalently non-error rate) has 

been used to assess a classification rule and variants of error
rate are the most widely used assessment criteria in the 
literature. These are of two types. Traditionally the emphasis 
has been on parametric estimation of error rates, assuming
multivariate normality with equal covariance matrices (2 
populations) and use of the LDF, while more recently this has given 
way to empirical methods which do not assume a specific 
distributional form for the data.

Parametric estimators
The optimal error rate is that associated with the optimal 

(Bayes1) classifier when all parameters are known, and will always 
be unknown. In practice parameters will be estimated, and the
error rate associated with use of a sample-based rule, the 
true/actual/conditional error rate will also depend on unknown 
parameters. The unconditional or expected error rate is the 
expectation of the latter over the distribution of all possible 
parameter estimates. In practice these may be estimated by plug-in 
estimators, substituting estimates for the unknown parameters in 
the appropriate expression. For instance, Hills (1966) showed that 
average actual probability of error and the mean plug-in version of 
an unbiased estimator will always be greater and less than optimal 
respectively. Using the sample LDF, Dunn (1971) estimated the 
overall unconditional probability of correct classification by 
sample means of both the conditional probability and the plug-in 
estimator, and found the former to considerably underestimate the 
true probability for moderately sized samples, while the latter 
tended to be higher than optimal, confirming the results of Hills 
(1966). In each case the difference increased with dimension.

Various less biased estimators have been suggested. 
Lachenbruch and Mickey (1968) proposed a less biased version ("DS") 
of the usual plug-in estimator ("D") of conditional error, and
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2 estimators ("0" and "OS") based on the expansion of expected 
error of Okamoto (1963), while Lachenbruch (1968) ("L") and Sorum
(1971) suggested others. Numerous studies have compared the 
available methods, mostly as estimators of the conditional error, 
but also, e.g. Sorum (1972, 1973), Page (1985), of expected and
optimal error rates. No one estimator is uniformly superior though 
Lachenbruch and Mickey (1968), in simulations, found D consistently 
poor while overall OS was superior to both 0 and D S , particularly 
as dimensionality increased, in terms of absolute deviation from 
the true error. McLachlan (1974a) proposed an asymptotically 
unbiased technique ("M"), with lower actual bias than OS, and 
requiring less computation than the leaving-one-out method (see 
below) (though see Fukunaga and Kessell (1971), and Habbema, 
Hermans and van der Burgt (1974), for the multivariate normal case 
and also the kernel method) and found it to be comparable, in terms 
of asymptotic mean square error, and average absolute deviation 
from the actual error over simulations, to Okamoto's estimator. 
McLachlan's method tended to underestimate actual error. McLachlan 
(1974b) using the asymptotic unconditional mean squared error 
criterion broadly confirmed the results of Lachenbruch and Mickey 
(1968) and also those of McLachlan (1974a), finding M to be 
comparable to or better than OS especially as dimension increased, 
and M and OS always and generally better than L respectively. Page 
(1985) extended the previous studies by evaluating a range of 
techniques as estimators of both conditional and optimal error, in 
terms of absolute deviation from the appropriate error rate, and 
for conditional error obtained similar conclusions, though the best 
estimators of each error rate differed. Snapinn and Knoke (1984) 
considered non-normal populations as well, and for small samples 
compared D and DS with the nonparametric apparent and 
leaving-one-out estimators described below, using unconditional 
mean square error.

Empirical estimators
In practice, empirical methods are probably more useful and can 

be superior even when normality does hold (Snapinn and Knoke,
1984). Of these, the apparent or resubstitution error rate or 
proportion of training cases misclassified, is well recognised as 
being an over-optimistic estimate of future performance (Hills, 
1966; Lachenbruch and Mickey, 1968). A less biased estimate may be
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obtained either by the holdout method, using a test set (a further 
set obtained from past records, ongoing data collection, or, where 
the sample is sufficiently large, by randomly splitting the 
available data into a training and test set before constructing the 
discriminant rule) or by the leaving-one-out method of Lachenbruch 
and Mickey (1968) where the rule is obtained on each set of n-1 
observations in turn to allocate the remaining case. This is a 
cross-validatory assessment in the sense of Stone (1974a) using the 
(0,1) loss function. The former, although unbiased, can have large 
variance unless the sample is large (Hand, 1986a), while the latter 
is nearly unbiased but can also have high variability, especially 
for small data sets (Efron, 1983). In fact Toussaint (1974) quotes 
Glick as showing that for discrete distributions the 
leaving-one-out method has much greater variablility than the 
apparent error rate. Between these two extremes is the V-fold 
cross-validation method (see, for instance Breiman et. a l ., 1984,
p. 12) which divides the available data into V subsets of as nearly 
equal size as possible, and classifies the cases in each subset on 
the basis of the rule constructed on the remaining n-V cases. The 
average of the V resulting error rates is then taken as the 
estimate. As all n observations are used to construct the final 
classifier, the procedure might be criticised in that the estimated 
error rate may not be that of the final classification rule. Efron 
(1983) gives some improvements on cross-validation, based on the 
bootstrap method of correcting the apparent error rate for bias 
(Efron, 1979), as do Chernick, Murthy and Nealy (1985). The 
smoothed error rate estimators of Glick (1978) and Tutz (1985) 
reduce variance as well as bias, and one such estimator was found 
by Snapinn and Knoke (1985) to be considerably superior to the 
resubstitution error and frequently also to leaving-one-out and an 
ideal bootstrap, in terms of unconditional mean squared error, for 
samples from both normal and non-normal populations.

Toussaint (1974) gives a bibliography of misclassification rate 
estimation, while Hand (1986a) and McLachlan (1986) review 
subsequent developments, thereby concentrating on empirical 
techniques.

1.6.2 Reliability measures
There are, however, 2 aspects to performance of a discriminant 

rule :
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1} group separation, concerned with how accurately the rule 
classifies, and

2) reliability, or calibration, concerned with good estimation of 
the posterior probabilities.

Plainly, no matter which error rate is used, it only measures 
separation, not the actual value of the estimated probabilities, 
with the result that a near miss and an extremely poor prediction 
are treated equally, as are a correct confident, and a correct but 
diffident prediction. Often we will require not only that a rule 
classifies well, but also that the predicted probabilities are 
reliable i.e. realistic. To some extent, the degree of confidence 
or "sharpness" of a method may be assessed from error rates by 
introducing a category of doubt to which cases are assigned whose 
highest predicted probability lies below a specified threshhold 
value. Alternatively, the average probability assigned to the 
correct population of the test cases may be used. Knoke (1986) 
notes that the latter may be considered as a smoothed error rate 
estimator. Habbema, Hilden and Bjerregaard (1978, 1981), Habbema
and Hilden (1981) and Hilden et a l . (1978a, 1978b) consider various
aspects of performance and present a number of functions of the 
assigned probabilities which are sensitive to calibration as well 
as separation. Particular continuous scores discussed with respect 
to reliability are the Brier or quadratic score of Brier (1950), 
the average logarithmic score and e-modified logarithmic score, all 
of which make use of the actual values of the predicted 
probabilities. For example, for k = 2, if p(Tr-jJx) and pf^jx) are 
0.8 and 0.2 respectively, for a case originating from rr-y, then its 
contribution to the Brier score is (1— .8)^ + (,2)2 . Averaging
contributions over the sample, the formal definition of the Brier 
score is

I-, -I k n ■, SB = 1 E E 1
n j=l i=l

[l-p(7Tj jxji)]2 + Ek C p ( ^i| Xji )]i

l^j

(1.13)

where xj-[ is the ith observation from population j, i = 1,.., nj, 
j = 1,..., k, E nj = n. Each contribution takes a minimum value of 
0 and maximum of 2, when probabilities of 1 and 0 respectively are 
assigned to the correct group. Hence the score itself can vary 
over this range, with low values indicating good performance.
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The average log score is an alternative to the Brier score and 
is defined as

SL = 1 1 1  log Cp(«rj Ix^) ] (1.14)
n j 1

e (-03. 0], with a best possible value of 0. A disadvantage of SL 
is that a few very poor predictions will result in an extremely low 
score due to the properties of the log function.

The e-modified log score Sgg essentially sets a lower bound to 
the contribution which any one observation can make to SL and is 
defined as

1 H  { log W (p(ffj|Xji)) + e E log [w(p(irj|Xji) )/e]> (1.15)
„ J i

e C (l~e ) log e, 0], where w(z) = (l-e)z + e for 0 < z < 1, so that 
e < w(z) c 1 and, say, e = 0.01. It can be shown that

SEL ~ I S I  log [ p U j  |Xji)+e3. 
n j 1

Unlike SL , Sgg penalises very small and zero values roughly 
equally.

Again the leaving-one-out method may be employed with any of 
these scores if a test set is unavailable.

Blattenberger and Lad (1985) show formally that in certain 
contexts the Brier score can be separated into 2 distinct parts 
reflecting the separation and calibration aspects of performance. 
In theory, reliability could also be assessed by ongoing data 
collection, by comparing the predicted posterior probabilities for 
a specified feature vector x with the proportion of cases with 
those observed indicants x and confirmed as belonging to each 
population. Where some of the feature variables are continuous, 
the probability of a particular observation recurring is of course 
zero and grouping of some sort would be necessary. A "pure" 
reliability score of this type which is practicable and can be 
derived from the test set is given by Titterington et al. (1981),
p. 154.

Finally, although these measures do make use of the actual 
estimated probability values, they still do not take account of the 
relative seriousness of different types of error. When this is 
important and a loss matrix can be specified a priori, an average 
loss measure will also be a useful means of assessment.
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1.7 VARIABLE SELECTION
Given a large set of potential predictors, correlations may 

render some variables redundant and reliable parameter estimation, 
reduction of data collection costs and computational difficulties 
may necessitate some further reduction of dimensionality while 
hopefully retaining most of the information in the original 
variable set.

Ideally one would compare the classification rules 
corresponding to all possible subsets of predictors in terms of a 
given criterion. In practice this will only be feasible for a 
moderate number of variables, say 15 at most. Otherwise 
(suboptimal) stepwise procedures (forward selection, backward 
elimination or a combination of the two), or intermediate 
accelerated search procedures (Hand, 1981b) will be necessary .

Traditionally measures of distance between populations have 
been used to assess how well a given set of variables separates 
them, for instance the F-statistic or related measures such as 
Wilks' A or Mahalanobis distance, appropriate for testing equality 
of population means assuming multivariate normality with equal Ej_, 
(e.g. Cochran, 1964; Rencher and Larson, 1980) and allow tests of 
sufficiency of a specified set of variables (Rao, 1965, pp. 467-470 
and p. 482). Due to the analogy of discriminant analysis with 
regression (Lachenbruch, 1975a, pp. 17-19), R2 , the squared 
multiple correlation of predictor and response variables, or 
equivalently residual sum of squares (Draper and Smith, 1966, 
Chapter 6), have also been used (e.g. Weiner and Dunn, 1966). More 
recently Krzanowski (1983b) used a stepwise procedure based on a 
distance measure for mixed variables (Krzanowski, 1983a). For 
discrete variables, based on work of Glick (1973) which suggested 
that large values of the distance

D = min | Vg^(x) - ^g2 (x)|, where gj(x) is the jth discriminant

score, were associated with low misclassification rate, Goldstein 
and Rabinowitz (1975) proposed selecting variables in 2 population 
discrete classification by maximising sample-based versions of D 
over all possible subsets;

x

(1.16)
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where x-j_ denotes the ith subset of j variables. Variants of (1.16) 
to correct for dimension were also discussed. Also for
discrimination, Hills' (1967) based a stepwise procedure on the 
discrete Kullback-Leibler divergence

E {p!(x) - Pg(x)} In Pi(x). 
x -----

P 2 ^ )
Goldstein and Dillon (1978, Chapter 4) discuss several other 
approaches for multinomial data.

Kittler (1975) discusses numerous distance measures closely 
related to the Bayes1 error rate including the Kullback-Leibler 
divergence and also the Kolmogorov variational distance, but notes
that most rely on multivariate integration and are therefore
generally not computationally feasible as means of feature 
selection. Different evaluation criteria may lead to different
variable subsets being chosen. Habbema and Hermans (1977) 
therefore argued in favour of basing variable selection in 
discriminant analysis on error rate or expected loss, preferably 
using a leaving-one-out method, as, unlike measures of separation 
such as the F-statistic, these are directly related to the eventual 
aim of the procedure, and also provide a natural stopping rule. 
They note in passing that criteria taking account of the actual 
estimated posterior probabilities would be preferable to error
rate. Habbema et a l . (1981) refer to such a variable selection
program using the continuous scores of Section 1.6.

McLachlan (1976) who considered multivariate normality with 
equal covariance matrices and use of the LDF, proposed the use of 
an asymptotically unbiased estimator of the difference in 
conditional error rate by deletion of a subset of variables, and 
derived its asymptotic distribution, thus associating a confidence 
level with the increase in error rate.

While theoretical error rate declines with the inclusion of 
each extra variable, in practice with finite sample sizes inclusion 
of additional variables may not add discriminatory power. Murray 
(1977a) cautioned against the indiscriminate use of stepwise 
procedures based on apparent error rate, noting that if the best 
subset of each size is selected, although error rates do intitially 
decrease with increasing dimension they will eventually rise again 
so that a smaller subset can give superior discrimination results.
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This was explained in terms of bias due to selection of the subset 
which performs best on the given data set, the bias being greatest 
for moderately sized variable sets. Apparent error rate was found 
to be a hopelessly misleading estimate of the true error. 
Including "dummy" variables (i.e. variables known to be
uninformative) in the original variable set may be helpful in 
indicating at which point the subset chosen becomes "too large" 
(Hill, 1979, pp. 8, 25 and 37).

Habbema, Hermans and van den Broek (1974) used a stepwise 
procedure with product kernel density estimation (see Section
2.1.3), with an expected loss criterion, estimated by
leaving-one-out. Pfeiffer (1985) also used a stepwise kernel-based 
procedure but his criterion considered for a given point x an 
average measure based on the ratio of the estimated correct class 
conditional p.d.f. to the maximum of those of the remaining 
classes, claiming that while distance measures may be appropriate 
when multivariate normality with equal covariance matrices is 
assumed, for nonparametric discrimination functions of the p.d.f.s 
are more useful. Pfeiffer considered that error rate or loss 
measures are too insensitive and may not be able to distinguish 
between several subsets of a given order.

Finally, the choice of variables can influence performance more 
than the choice of method or model employed to construct the 
classification rule (Titterington et a l . , 1981). Given this, it is 
natural to require that the criteria by which variable selection is 
made be related to both the context and aims of discrimination
(Pfeiffer, 1985; Habbema and Hermans, 1977). Although variable
selection is clearly an important aspect of discriminant analysis, 
it will not be considered any further here.
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CHAPTER 2 CONTINUOUS KERNEL DENSITY ESTIMATION IN DISCRIMINANT 
ANALYSIS

In this chapter we consider use of the kernel method to 
estimate the class conditional densities as required by the
sampling or indirect approach.

2.1 FIXED KERNELS

2.1.1 Introduction
There is a vast literature on kernel density estimation. 

Historically, the idea originated with Fix and Hodges' (1951) 
"running histogram", also considered by Rosenblatt (1956).

Viewed as a density estimate, the conventional histogram has a 
number of disadvantages (see, for instance, Tarter and Kronmal. 
1976):
1) Its appearance depends crucially on the choice of classes or 
bins, both on choice of origin and, more particularly, on bin
width.
2) The fixed nature of the cell structure means that the estimated 
density at two points a given distance apart may be very different 
depending on whether or not they lie in the same cell or in
adjacent cells.
3) Although the underlying density will often be assumed smooth, 
the histogram is a step function - a particular problem if 
derivatives are required.
4) The estimate is zero outside of a given range.

The "running histogram" is defined, for a univariate sample
   Xn , as

f(x) = 1 [ Fn (x + h) - Fn (x - h) ]
2E

where Fn (x) is the empirical distribution function, and derives

naturally from the fact that f(x) = f '(x ) where F is the cumulative

distribution function (c.d.f.). Silverman (1986, pp. 11-12) calls

this the "naive estimator".

Equivalently, f(x) = 1 {no. of X-j in [x - h, x + hj>
2Kn
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1 Tn W x-X^ where W(u) = %  if ]u| < 1 (2 .1 )

nh i = l h

0 otherwise

and hence is seen to be an average of "boxes" of width 2h and 
height l/2h centred at each data point , so that the points 
within distance h of x contribute l/2h, the remainder contributing 
zero. Compared to the usual histogram where the estimate at x is 
given by the height (at the midpoint) of the cell containing x, x 
itself becomes the centre of a cell of width 2h and the estimate 
the height of the histogram at x. Difficulty 2) has therefore been 
overcome, as has the choice of origin. The estimate is still 
discontinuous and h remains to be chosen.

2.1.2 Univariate kernels
The kernel estimator of Parzen (1962) and Rosenblatt (1956) 

generalises the naive estimator by replacing W by a function K, 
where K is symmetric and

| K(u) du = 1. If K(u) is defined on the whole real line (and

decreases monotonically with increasing |u|), all data points now 
contribute to the estimate, and the problem of the lack of tails is 
removed. Since

it inherits the properties of K and so K is usually chosen to be a 
smooth p.d.f. with the result that f(x) is now smooth and also a 
p.d.f.. However non-negativity is not essential, and allowing K to 
take negative values may allow bias reduction (Bartlett, 1963; 
Schucany and Sommers, 1977), as may relaxing the requirement that 
the kernel integrates to 1 (Terrell and Scott, 1980).

If X is a univariate, continuous random variable and if we have 
a sample X ^ ,..., Xn , a p.d.f. is centred on each observation and 
the resulting estimate at any point x is given by averaging the 
contributions of these p.d.f.s over the sample, so that points 
close to x contribute more than those further away. See Figures

f(x) = 1 I  K x-X* (2 .2 )
—  i —
nh h
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2 .1 (a) and (b).
K is called the "kernel" function and h. the "smoothing 

parameter", "window width" or "band width", determines the width of 
K and hence the degree of smoothness of the resulting estimate. 
Both the form of K and size of h remain to be chosen.

Epanechnikov (1969) derived the kernel which asymptotically 
minimises mean integrated square error (MISE)

1-t2 , 11 f < V5 (2.3)K(t) = 3
4V5

0 , otherwise

However, on grounds of relative asymptotic MISE efficiency 
there is little to choose between kernels (even the naive 
estimator's rectangular kernel), and Silverman (1986, p. 43) 
recommends choice of kernel on considerations of ease and speed of 
computation (especially important with multivariate data) or for 
desirable differentiability properties. For speed, kernels of 
finite support, such as the Epanechnikov kernel itself, are 
appropriate but at the expense of the resulting estimate having no 
tails. In general the conclusion in the literature is that the 
form of K is relatively unimportant. For instance, van Ness and 
Simpson (1976) in a study described in more detail in Section 
2.3.3, compared use of normal and Cauchy kernels and found their 
performance to be very similar. Consequently K is usually chosen 
for mathematical ease and is most often taken to be Normal with h 
as its standard deviation.

By contrast, the choice of h is crucial, as can be seen from 
Figures 2.1 (c)-(e). As h 4 0 the estimate tends to a series of 
infinite spikes at the data points. At the other extreme, as h 4 ® 
the resulting estimate becomes increasingly flat and the effect of 
the data is lost altogether, although in general oversmoothing will 
be less serious than the reverse (Fryer, 1976). We consider in 
Section 2.3,2 how to choose an appropriate value of h between 
these two extremes.

The asymptotic behaviour of the kernel estimator is well 
documented. For instance while results of Rosenblatt (1956) and 
Yamato (1972) show that for finite samples and non-negative kernels 
the kernel estimator is biased for any choice of density f(x),
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"-I-°Ure 2 ' 1- FittinS a kernel density estimate to a random sample of 
10 observations from the bimodal Normal mixture 

N(4. 1 ) + a  N (8 . l) using a Normal kernel function.

p (x)
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(a) the true mixture density.
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(b) h = . 65 - an appropriate amount of smoothing which retains the 
bimodality.



Figure 2.1 c o n t ’d .

0 (x)
0. 7
0.6
0.5
i. 4

i. 3

I. 2

i.O
0 32 10 125 7 3 96
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(d) h - 2.0 - oversmoothing loses the bimodality.
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e) h * 15.0 - effectively infinite smoothing.
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Parzen (1962) showed that subject to certain conditions (1.6) on K 
and f, if lim h = 0 as n « then fn (x) is asymptotically unbiased 
at all points of continuity of f(x), consistent and asymptotically 
normal. Van Ryzin (1969) states conditions under which strong 
consistency obtains. Fryer (1977) reviews various methods of 
density estimation including the kernel method, as does Wegman 
(1972), with Wertz and Schneider (1979) providing a more complete 
bibliography. More recently, Hand (1982) summarises some of the 
more important mathematical results while Silverman (1986) provides 
a less mathematical overview of the subject.

2.1.3 Multivariate kernels
The kernel method extends straightforwardly for multivariate 

data. At its most general the estimate in d dimensions is given 
by

f(x) * 1 En K(x - Xj_: S) 
n i=l

where K is a d-variate kernel function and S is a dxd array of 

smoothing parameters. Usually S is taken to be diagonal giving, 

for suitable choice of K,

f(x) = En K 
i = l

n h- hd

X1 x il -•■ > xd x id

or for common smoothing parameters, h^ =

f(x) = 1 En K
—  i=l

n h

x - X

(2.4)

h^ = h say,

(2.5)

A further simplification of (2.4) and (2.5), immediate for certain 

forms of K, gives

f(x) “
n n h

1
  i=l

n k 
j

Xj-Xfj ( 2 . 6 )

and

f(x) =

n hd

En
i = l xJ-X ij (2.7)
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respectively. Kernels of this type are known as "product kernels". 
They can be generalised by allowing the form of the marginal kernel 
to vary, as is appropriate for discrete or mixed data, giving

f(x) = 1 l n H Kj xj X ij (2 .8 )
i-1 3

n n hj
. hJ .

Continuous data may be standardised before applying a 
symmetric kernel and then transformed back (Habbema, Hermans and 
van den Broek, 1974), allowing use of a single smoothing parameter 
and hence forms (2.5) or (2.7). Similarly, Fukunaga, (1972,
p. 175), suggests linear transformation of multivariate data to a 
unit covariance matrix prior to use of a radially symmetric kernel.

Cacoullos (1966) extended the results of Parzen (1962) for 
multivariate kernels and product kernels of the form (2 .5 ) and 
(2 .6 ), also commenting that the product kernel has stronger 
invariance properties, as (2 .6 ) is invariant under different scale 
transformations of each variable while (2,5) requires a common 
scale transformation for invariance. Apart from its simplicity, 
this may partly explain why in practice the product kernel is by 
far the most commonly used for continuous data, as does ease of 
parameter estimation since marginal or univariate methods may be 
used. Usually the Kj are of the same parametric form, most often 
normal. Epanechnikov1s kernel (2.3) minimises the asymptotic MISE 
when product kernels of the form (2.7) are used. Sacks and 
Ylvisaker (1981) found the kernel of type (2.5) minimising the
asymptotic mean squared error (MSE) at a point x (which they take 
to be 0). Studying the asymptotic relative efficiency of product 
kernels, they found Rosenblatt's uniform kernel to be inferior to
that of Epanechnikov but concluded that standard kernels were not 
far from optimal provided that the point of estimation is an 
interior point of the support of f. Otherwise standard kernels 
introduced a large bias term. This would suggest that in
high-dimensional spaces, where the tails exert more influence, the 
product kernel may be inappropriate. There is also some evidence
from a study by Remme, Habbema and Hermans (1980) that product 
kernels may not be optimal when used on correlated data. They 
found, in a study described in more detail in Section 2.3.3, using 
normal product kernels on multivariate normal data with correlated 
variables, that a slight decrease in performance was observed with



correlations from 0.4 to 0.5 but that in 6 dimensions and with 
correlations over 0.6 a more serious decrease in performance 
occurred as compared with results for uncorrelated variables.

Van Ness and Simpson (1976) compared normal product kernels 
with a multivariate Cauchy kernel and found little difference
between them but the data were from Multivariate Normal 
distributions with uncorrelated variables of unit variance.

Murphy and Moran (1986) studied sensitivity of the product 
kernel method to correlation between variables, comparing it to the 
usual estimative LDF, an unbiased LDF (Moran and Murphy, 1979) and 
the predictive LDF in terms of classification and estimation of the 
log-odds. Equal sample sizes and equi-correlated variables were 
used with similar configurations to those of van Ness and Simpson
(1976). (See Section 2.3.3). A single smoothing parameter was 
chosen to minimise MISE exactly. They confirmed the superiority of 
the kernel method, found by van Ness and Simpson, for high 
dimensions (> 8 ) and uncorrelated variables, though this was not as 
marked, and unlike the previous study classification with the
kernel method was inferior to the parametric method for all cases 
for dimensions 4 8 , nor did error rates follow those of the optimal 
LDF using the known covariance matrix. For moderately positively 
correlated variables the product kernel was still superior to the 
best parametric method in terms of both classification and 
estimation of log-odds, but with other correlation structures could 
behave erratically.

2.2 ADAPTIVE METHODS
In our discussion so far the width of the kernel centred on ,

i = 1 ,.., n has been determined by a constant h, independent of
both the point of estimation, x, and the location of the sample 
points. Such kernels are called "fixed". As a consequence of h 
being fixed there is a tendency to oversmooth in areas of high
density and undersmooth where the data are sparse. This is a
particular problem for long-tailed distributions, especially in
more than 1 dimension.

2.2.1 Nearest-neighbour estimators.
Instead of fixing the window width h, Loftsgaarden and

Quesenberry (1965) fixed the number of points, k, spanned by the
kernel. If r^(x) is the kth largest Euclidean distance of x from
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the n data points and Vk (x) is the volume of the d-dimensional 
hypersphere of radius rk (x) centred on x, then the 
"kth-nearest-neighbour" estimator is derived by equating the 
expected number of observations in the hypersphere, which as rk (x) 

0 is given by nf(x) Vk (x), with the observed number k. We then 
have

fn (x) = k / nVk (x).

Equivalently, f(x) = k (2.9)
n  C d  r k d (x)

where c^ is the volume of the unit sphere in d dimensions. 
Loftsgaarden and Quesenberry prove the estimator to be consistent. 
The role of the smoothing parameter is now taken by k, though 
unlike h its value is not critical. It is chosen to be rather less 
than n itself and the authors recommended k = n^. The estimator 
can be seen to adapt the degree of smoothing to an initial estimate 
of the local density of the data, since for a point x in the tails 
of the distribution the distance rk (x) to its kth-nearest neighbour 
will be larger than for a point in an area of high density, but for 
a given point x the estimator is essentially of the fixed kernel 
type.

Hand (1982, p. 235) comments that by using the distance from x 
to a single point as the radius this estimator may be expected to 
have a larger standard deviation than the kernel estimator which 
uses an averaging process. Mack and Rosenblatt (1979) showed that
nearest-neighbour estimators reduce noise in the tails at the
expense of introducing considerable bias, which will then dominate 
global goodness-of-fit measures such as MISE (Rosenblatt, 1979). 
Bias is caused by the inverse variation of f(x) with rkd (x) which 
increases as |x| increases, no matter what the tail behaviour of
the data. This slow rate of decay, dependent on x itself, also
causes the estimate to integrate to ». Though a continuous 
positive function, it is not therefore a p.d.f., and its derivative 
is discontinuous at every point of discontinuity of the derivative 
of rk (x).

The generalised kth-nearest-neighbour estimator (Moore and 
Yackel, 1977) is defined as
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f(x) = 1 E K x - Xj (2 .10)
i

nrkd (x) rj<(x)

which is the kernel estimator at x with window width r^(x), i.e. 
kernels of common width r^(x) are used to obtain the estimate at x, 
the width depending on x itself and the density of data near x. 
The overall degree of smoothing is controlled by k. Using a 
uniform kernel, (2 .10) reduces to (2.9), the relationship being 
analagous to that between the kernel and naive estimator. It can 
therefore be seen that the estimate at a single point for any order 
of nearest-neighbour, k, will be identical to that for a certain 
value of h given by the fixed kernel method. For more than one 
point the values would not coincide. The tail behaviour of the 
generalised estimator depends on the kernel used, and Moore and 
Yackel (1977) prove consistency properties, but again f(x) will not 
generally integrate to 1. In view of these difficulties the 
nearest-neighbour estimator is not ideal for an overall density 
estimate.

2.2.2 Variable kernels
The "variable" kernel estimator of Breiman, Meisel and Purcell

(1977) combines the smoothness properties of the fixed kernel 
method with the adaptive properties of the nearest-neighbour 
estimator. It is defined as

where dj^ is the distance from X-̂  to its kth-nearest neighbour. 
Thus, a greater amount of smoothing is done in regions of sparse 
data, where d-^ is large, while more peaked kernels are associated 
with high density areas as d ^  decreases. For given k, the overall 
level of smoothing depends on h, while k determines the degree of 
responsiveness to local density. Unlike the nearest-neighbour 
method, the window width is independent of the point of estimation, 
x, depending only on the distance between the data points 
themselves, and so, provided K is a p.d.f., f(x) also integrates to 
1, and it inherits the smoothness properties of K. The variable 
kernel is therefore to be preferred to the nearest-neighbour

f(x) = n n 1 K x-Xj
1 =  1

n hdik hdik
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method. There are now 2 parameters to determine, h and k. Breiman 
et a l . (1977) used a grid search method to optimise a
goodness-of-fit statistic in terms of h and k, as did Raatgever and 
Duin (1978), both finding that the value of k was not critical. 
Habbema, Hermans and Remme (1978) used a two-stage procedure, 
reaching the same conclusion.

Silverman (1986, pp. 100-106) unifies the fixed and variable 
kernel methods and the method of Abramson (1982) (see below) into 
the "adaptive" method. A pilot estimate of f(x) is found such that 
f (X-[) > 0, Vi. "Local bandwidth factors" {X^},

x,- = f (Xi

S

are defined where <x, the "sensitivity parameter", lies in the range 

0 ^ a ^ 1 and g is the geometric mean of the f(Xj[), i.e.

1/nIT f ( X A ) 
l i

The adaptive kernel estimator in d dimensions is then given by

f (x ) = 1 E
- i

(hXj_)'

x-X^

hx.

As usual h is the bandwidth and K a symmetric kernel integrating to
1. Setting a to 0 and d-1 give the fixed and variable kernel 
methods respectively. The overall degree of smoothing is 
determined by h, while the larger a is the more sensitive the x^ 
will be to variations in the pilot density. Including g0̂ 
explicitly frees the X^ from the scale of the data and forces their 
geometric mean to equal 1. As with the fixed and variable kernel 
methods, provided K is non-negative the estimator is a p.d.f., it 
inherits the smoothness properties of K and does not suffer from 
heavy tails. It is relatively insensitive to the pilot estimate 
(Breiman, Meisel and Purcell, 1977; Abramson, 1982) so that a 
quick, simple method such as the fixed kernel method with an 
Epanechnikov type kernel and deterministic choice of h is 
appropriate for the pilot stage. Silverman (1986, pp. 106-110) 
found the adaptive method to improve on the fixed method both in 
the tails and main part of the density. His examples suggest that
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while a should be rather less than 1 , the variable kernel (cc = 1/d) 
adapts too much to the pilot estimate. The method of Abramson
(1982) uses a = based on a result that if the x^ were exactly
equal to f(X^)-^ the asymptotic bias reduces to order h4 rather 
than h2 for the fixed kernel. No other value of a will achieve 
this. Abramson also found cc = ^ to give good results in practice 
and Silverman's results confirmed this. As usual, h remains to be 
chosen.

Although adaptive methods can therefore be expected to give a 
better estimate of a continuous density than the fixed kernel
method, for reasons explained in Section 2.7.1 we do not consider 
their use any further.

2-3 CHOICE OF SMOOTHING PARAMETER IN DENSITY ESTIMATION
Much of the literature concentrates on establishing

mathematical conditions on the sequence {hn > as n -» « to produce 
certain asymptotic behaviour, For a given finite sample size n, 
however, these are unhelpful in suggesting a suitable value for the 
smoothing parameter. The optimal choice of h depends on the 
smoothness of the density itself, which is of course unknown.

2.3.1 Subjective criteria
Where a density estimate is required for purposes of

exploratory data analysis a subjective choice of h may be adequate, 
one method being to plot the density estimate for various values of 
h, choosing a value that is judged, in accordance with prior ideas, 
neither to over- nor undersmooth the data (see e.g. Scott, Tapia 
and Thompson, 1977). Silverman (1978b) suggested the "test graph" 
method, based on a theoretical result concerning the rate of 
uniform convergence. This involves plotting the graph of the 
estimated second derivative f''(x) for various h and choosing a 
value producing "rapid fluctuations which are quite marked but do 
not obscure the systematic variation completely". Both of these 
methods would be difficult to apply successfully in more than 1 
dimension.

2.3.2 Automatic choice of h
Automatic procedures are based on optimisation of criteria of 

goodness-of-fit, whether asymptotic or exact. Some require 
numerical optimisation or iterative procedures, others yield
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deterministic formulae, while others require cross-validation to 
yield a non-trivial solution.

An asymptotic method
While pointwise goodness-of-fit properties are of interest, 

global measures are more intuitively appealing. The most tractable 
and commonly used of these is Mean Integrated Square Error (MISE),

where the expectation is with respect to the true density f(x). 
Minimisation of the Taylor expansion of MISE, from Parzen (1962) 
gives the asymptotically optimal smoothing parameter

An obvious way to proceed is to use a pilot estimate of h, perhaps 
chosen subjectively, to construct an estimate of the measure of 
smoothness which is then substituted into (2.11). (Nadaraya, 1974; 
Woodroofe, 1970). Scott, Tapia and Thompson (1977) extended this 
to an iterative procedure where h^+  ̂ =

Using normal kernels an analytic expression may be found for
(2.12). While h = 0 is always a solution, choosing h0 as the 
sample range guarantees convergence to the largest solution such 
that h ^ 0 .

Bowman (1981) compared the resulting solution for h with values 
obtained by direct minimisation of MISE for mixtures of Normal 
distributions and for two sample sizes, finding that while the 
asymptotically optimal choice was always smaller, "the difference 
was not serious".

h = [ j  t2 K(t) dt] 2 / 5 [ J  K2 (t) dt ] 1 / 5 [ J  [f''(x)]2dx] 1/5 n"1/5

( 2 . 1 1 )

where t f ' ( x )]2 ^x is a measure of smoothness of the true density.

(2 .1 2 )

Deterministic methods
Using normal data and normal kernels, Fryer (1976) minimised
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the exact MISE, which is a function of h, n and o, the population 
standard deviation, by plotting MISE/o as a function of log(n) and 
log(h/o) , for sample sizes 0 ^ n ^ 22,000. Approximating the line 
of best fit through the contours gave the simple formula

He also studied mixtures of Normals, finding that the optimal 
degree of smoothing was close to that given by (2 .:") for both 
bimodal and skew distributions, as well as being insensitive to 
kurtosis.

Bowman (1981) modified Fryer's formula for smaller sample 
sizes, 20 ^ n < 100, giving

h ~ 1.261 n~0 -226 a  {2.14}

and used Hogg's median absolute deviation estimator

o •- median [ |X^ - median{X-[}l /0.6745] (2.15)

as a robust estimator for o to guard against outliers and 
heavy-tailed distributions. (See, for example, Hogg, 1979). As 
discussed in more detail below, Bowman found the method to work 
well for a variety of unimodal distributions.

A similar formula was derived by Silverman (1986, pp. 45-48). 
As an alternative to successive re-estimation of h in (2.11)

parametric distribution. Silverman also used a Normal distribution 
and normal kernels, which gives

He remarks that for multimodal data this will oversmooth somewhat 
since

deviation. Unlike Fryer (1976) (who did not estimate o), he found, 
replacing o by the sample standard deviation (s.d.), that as a

h ~ 1.31 n- 0 '205 o (2.13)

may be calculated by reference to a standard

h = 1.06 n o . (2.16)

will be large relative to the standard
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mixture of 2 unit Normal distributions became more strongly bimodal 
that (2.16) oversmoothed more and more. It also oversmoothed 
heavily skewed data but was insensitive to kurtosis. Using 
inter-quartile (IQ) range as a robust estimate of a multiple of o 
improved performance on the long-tailed and skew distributions but 
oversmoothed still more for the bimodal case. Silverman
recommended a compromise choice of

0.9 A n_1/5 (2.17)

where A = min (s.d., (IQ range)/I.34 }

as giving near-optimal MISE for all except skewness > 1.8 and
separations > 3o where both skewness and bimodality should still be 
clear for samples of size > 100.

Methods based on cross-validation
Habbema, Hermans and van den Broek (1974) and Duin (1976) took 

a maximum likelihood approach instead.

Maximising IIn fn (^i) readily seen to yield the solution h = 0 
1=1

and the estimate then consists of a set of spikes, one at each data 
point. Habbema et a l . resolved this by using a leaving-one-out 
modification, maximising instead

ITn fn-i(1) (X± ) (2.18)
i=l

where fn-1 ^  (^i) the estimate of the density at the point Xj_, 
obtained by using the remaining (n-1) sample points.

Maximising (2.18) may be shown (Bowman, 1984) to be equivalent 
to minimising

1 En [ I{6 (x-Xi ), fn_1 (i )(x)} - I(6 (x-Xif f(x)> 1 (2.19)
n i=l

where I(g, g) = g(x) log g(x) dx is the Kullback-Leibler loss 
g(x)

function (Kullback, 1959, pp. 6-7) and ©(•) is the Dirac delta 
function. This is a cross-validatory choice in the sense of Stone 
(1974a) (Titterington, 1980). It can be shown (Silverman, 1986,



64

pp. 52-53) that, up to a constant, (2.19) is an unbiased estimator 
of the expected Kullback-Leibler error for an estimate using the
same smoothing parameter on a sample of size n-1 , subject to
certain restrictions on f and K. Scott and Factor (1981) observed
that this method is very sensitive to outliers, tending to
oversmooth to avoid very small values of log ^ n - l ^  at
outlying observations, although in simulations it performed well on
average. Bowman (1981) suggests that oversmoothing will not be
serious unless the outlier is a considerable distance from the rest 
of the data, but that apparent gross outliers should be removed for 
the purpose of applying (2.19). Schuster and Gregory (1981) showed 
that for distributions where either tail decays at or more slowly 
than an exponential rate, this method leads to inconsistent density 
estimates while Chow, Geman and Wu (1983) prove consistency when 
both kernel and density have finite support. Recently Hall (1987) 
has shown that the asymptotic properties of Kullback-Leibler
cross-validation depend heavily on interaction between the tail 
properties of the kernel and the unknown density. There are also 
potential difficulties with discretised data. Silverman (1986, pp. 
54-55) shows that if there are no isolated data points then (2.19) 
tends to infinity as h -» 0 (Scott and Factor (1981) provide an 
example) and that if there are some isolated points but a lot of 
ties in the data the behaviour of (2.19) as h 0 will depend on 
the tail properties of the kernel.

Another loss function, used by Bowman (1981, 1984) and Rudemo
(1982), yielding a mathematically tractable criterion from (2.19) 
is Integrated Square Error, ISE,

Using normal kernels and results on convolutions of Normal 
densities the integration can be done analytically though as with 
the Kullback-Leibler criterion the optimising value of h is found 
numerically. Minimising (2.21) may be seen as maximising

(2 .20)

In this case we minimise

1 t n  Cfn- l (i) (x)]2 dx - 2 En fn_i ) (Xt) (2 .2 1 )
n i=l

1 l fn_i U) (X±) 
n i
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subject to a roughness penalty

E C (x) ]2 dx.
2n i J

Again, it can be shown that up to a constant factor (2.21) is an 
unbiased estimator of MISE between f(x) and fn- l ^  (x) (Silverman, 
1986, pp. 48-49), and Stone (1984) has shown that subject to mild 
conditions on f(x), and if K has finite support, the ratio of
minimised ISE using (2.21) to the true minimised ISE tends to 1 as 
n <», with probability 1. Hall (1983a) also proves that 
minimising (2.21) is equivalent asymptotically to minimising ISE 
and also MISE, but does not restrict the domain of K.
Unfortunately there may be severe problems with discretised data. 
Silverman (1986, pp. 51-52) shows that if the number of ties in the 
data relative to sample size is greater than a threshhold value 
dependent on the form of the kernel (.55 for normal kernels) then 
(2 ,21) tends to as h 0 and hence an answer of no smoothing 
will be returned. In the light of this, and the difficulties 
described above with the modified maximum likelihood method, he
urges caution in applying these methods without first restricting 
the range of h, suggesting (.25h*, 1.5h*), where h* is given by
(2.17), as a sensible range to use.

Bowman (1981, 1985) in simulation studies using normal kernels
on samples of size 25, 50 and 100 from mixtures of Normal
distributions, Student's t, Cauchy, x2 and Beta distributions 
compared use of his modification of Fryer's method (2.14), the 
asymptotically optimal MISE choice (2.12), cross-validation with 
both the Kullback-Leibler and ISE measures, a method based on the 
Cramer-von-Mises statistic

D(F, Fn ) = n | [F(x) - Fn (x)]2 dF(x) and several variable kernel

techniques. Performance was measured in terms of 3 goodness-of-fit

statistics of the form J  [f(x) - fn (x)]2 w(x) dx. Fryer's Normal

Optimal method was found to be superior to all others for unimodal 
data except for the long-tailed distribution with the larger sample 
size, where, not surprisingly, a variable kernel method was the 
best. Caution was advised in applying it indiscriminately, 
especially in higher dimensions where multimodality is more likely.
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Cross-validation when used with the Kullback-Leibler criterion 
performed well in all cases (except with variable kernels) and was 
usually superior to the ISE criterion, but not for long-tailed 
distributions. Bowman (1984) found that in simulations from a 
standard Cauchy distribution that ISE was greatly superior to 
Kullback-Leibler cross-validation, even for samples as small as 25, 
and gives an example where the latter vastly oversmooths. Bowman 
(1985) recommended the ISE criterion as being the most generally 
dependable, at least for reasonably large samples. The
asymptotically optimal method tended to undersmooth and did not 
perform very well except for the bimodal case. Scott and Factor 
(1981) also compared the modified maximum likelihood and asymptotic 
optimal methods on 25 samples of size 50 and 100 for normal data 
and a mixture of Normals, and found that in general the former 
method outperformed the latter in terms of MISE although the 
difference was not great.

2.3.3 Multiple smoothing parameters
The discussion above applies to univariate data, but any of the 

univariate methods may also be applied when product kernels of the 
type (2 .6 ) are used, a separate window width being chosen for each 
variable marginally before multiplying individual kernels to give 
the estimate f(x) in d dimensions. However continuous data are 
usually pre-standardised so that observations on each variable are 
pooled to estimate a single parameter h, as in (2.7) (use of (2.7) 
without prior standardisation would be expected to result in a 
degraded performance). Habbema, Hermans, and van den Broek (1974) 
applied this method with normal kernels giving

f (x) =
1 l n  exp 
- i=l

(tn/2ir)d . Sd n

. d 12-1 E Xr x ij
2 j=l hSj

where sj is the sample standard deviation of the jth variable. The 
modified maximum likelihood method applied to the standardised 
data,

Y ij - x ij , i = 1 ,.., n ; j = 1 ,..., d, was used to choose h.
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The method was applied to a 2 population discrimination problem 
using 75 training and 23 test cases from what appeared to be near 
Bivariate Normal distributions with equal covariance matrices. 
Comparing estimated posterior probabilities, the authors found that 
the results were very similar for most of the test cases to those 
obtained by fitting Muitivariate Normal distributions (i.e. using 
the LDF). Remme, Habbema and Hermans (1980) used the same method, 
in the same context, on samples of 15 or 35 training cases from 
each of populations of Multivariate Normal, logNormal and mixture 
distributions in 2 to 10 dimensions, evaluating the performance of 
the kernel, LDF and QDF methods on samples of 50 test cases from 
each population. Their conclusions were that the kernel method was 
the best or near-best method in all cases considered except for the 
multinormal case with equal covariance matrices where as expected 
the LDF was optimal. The kernel method was disappointing for the 
lognormal case, where a variable kernel was found by Habbema, 
Hermans and Remme' (1978) to be more appropriate. Except in this 
case, where improvement was slow, the kernel method performed 
increasingly well as sample sizes were increased (to 100 or 200 
cases) though did surprisingly well even for relatively small 
samples. The modified maximum likelihood method was compared to a 
choice of h over the range 0.0 to 1 .0 , setting h equal in both 
populations, and found to produce satisfactory though slightly high 
values of the smoothing parameter (except for the lognormal case) 
leading to rather conservative estimates of the posterior 
probabilities. This accounts for the method making fewer very poor 
predictions than either the LDF or QDF. The results of Remme et 
a l . (1980) also suggested caution in applying product kernels to
highly correlated data, as mentioned in Section 2.1.3.

Van Ness and Simpson (1976), who compared the effects of 
dimension on kernel and parametric methods, took a different 
approach by choosing h to give the best classification rate for 
each separation of 2 Multivariate Normal populations (which had 
equal unit covariance structure) in each dimension (between 1 and 
30) studied. Unfortunately they used completely independent sets 
of training and test cases to select h before applying it to the 
final simulations, giving the kernel method a headstart over the 
LDF and QDF. As might be expected, h was seen to increase with 
both separation and dimensionality, though sensitivity to 
separation was slight for high dimensionality. Error rate was
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found to be extremely insensitive to h once h was sufficiently 
large, though van Ness (1979) found that this did not maintain for 
populations with unequal covariances. For equal sample sizes of 10 
and 20 the kernel method performed similarly to the optimal LDF 
even in high dimensions, and performed well compared to parametric 
methods involving estimation of E even for very low dimensions. 
Van Ness (1979) used a cross-validation method to select h (on the 
basis of error rate). The performance of the kernel method with 
normal kernels and equal smoothing parameters, h^ and h2 . in the 2 
populations, was compared with the same method but where h2 was set 
proportional to h ^ , the constant of proportionality being 
determined by the sample standard deviations. Within populations 
the same value of h was used for each variable since the data were 
generated from MVN^O, I) and MVNcj(u, MI) distributions 
respectively. As would be expected, the latter method was found to 
perform much better than the former for moderately large dimensions 
(d ^ 4 or 5). In general using a single h was comparable to the 
LDF, while QDF was poorest, attributed to difficulties in parameter 
estimation for high dimensions relative to sample size. The 
stability of the kernel method as dimension increases was 
confirmed, provided separate smoothing parameters are used.

2 -4 CHOICE OF SMOOTHING PARAMETERS IN A DISCRIMINANT ANALYSIS 
CONTEXT

While there are many criteria by which to choose the smoothing 
parameter for good estimation of a single density, simultaneous 
estimation of more than 1 density (and hence choice of more than 1 
smoothing parameter) to produce a good discrimination procedure is 
largely ignored in the literature.

In discriminant analysis we explicitly or implicitly estimate 
one or more ratios of densities. Hand (1982, pp. 73, 85)
recognises that good estimation of each separate p.d.f. will give 
good estimation of their ratio and accordingly recommends 
simultaneous estimation of the smoothing parameters using a 
criterion of the form

J| |D(fi(x)? fi(x))| + 1D (fg(x), f2 (x))|| . w(f1 (x), f2 (x)) dx

where D(a, b) is a difference function, such as M S E , and w(a, b) is 
a weight function which decreases monotonically with increasing
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distance between a and b. In practice of course {fj_(x)} are 
unknown and, again, a cross-validatory approach would be necessary.

However, whether or not they are chosen simultaneously, it is 
easily seen that the optimal choice of smoothing parameter for each 
separate density will not necessarily be optimal with respect to 
estimation of the density ratio(s). Although a rather contrived 
example, this is illustrated for the 2 population case (considered 
henceforth) where both populations are identical and the priors are 
known. Writing p-p(■ j■} for the true function, we therefore have

= 9 | , Vx, the prior odds ratio, and see that if infinite 

PT (tt2 |x) 02

smoothing is applied to both samples (c.f. Figure 2 .1 (e)) we also 

have p(7r^jx) = 9^ , Vx. so that the effect of the data is lost, 

p {rr2 j x ) e2

Infinite smoothing, clearly far from optimal from the "marginal" 
point of view, produces exactly the right answer in this case. (In 
theory there may be other choices of h which would also achieve 
this but, due to sampling variability, the estimated densities will 
not be identical). We note in passing that in general 63/02 not
known, so that the related but separate issue of reliable
estimation of the prior odds ratio also arises, considered for
instance by Hand (1986b).

Rather than estimate densities separately we therefore consider 
the posterior probability function p{7r-|Jx) to be of more direct 
interest and in particular would choose (h^, h2 ) to optimise a
goodness-of-fit criterion between the estimated and true predicted 
probability functions, such as MSE. In the simulation study 
reported in Section 2.5 below we illustrate the poor performance of 
several of the marginal methods discussed above, with respect to 
MSE.

In practice of course pT (ir1 )x) is not known and wholly
data-based procedures are required. As noted by Hand (1982, 
pp. 66-67, 83-85), the optimality of a particular (h^, h2 ) depends 
on the criterion/criteria by which our final discriminant rule is 
to be assessed. It is therefore natural to choose the smoothing 
parameters directly to optimise the assessment score of most 
interest, if such a score can be provided at the outset.

Tutz (1986) considered choosing the smoothing parameters to
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minimise the leaving-one-out error rate (Lachenbruch and Mickey, 
1968) and showed the resulting rule to be Bayes' risk consistent 
(van Ryzin, 1966; Glick, 1972) when used with discrete Aitchison 
and Aitken (1976) kernels. He applied the method to a 2 group 
allocation problem using 6 discrete feature variables, comparing it 
to variants of the modified maximum likelihood method used by 
Aitchison and Aitken (1976) in a discrete kernel context, but 
originally advocated by Habbema, Hermans and van den Broek (1974) 
with continuous data. In practice it is awkward to optimise a 
discrete function such as error rate. Tutz avoided the problem by 
using a smoothed approximation to the error rate, proposed by Glick
(1978). Nevetheless, in terms of non-error rates using a test 
sample of 90 cases, allowing separate smoothing parameters for each 
variable and in each population, Tutz1s method allocated only one 
more test case correctly than the best of the maximum likelihood 
methods considered. This is not altogether surprising as error 
rate is of course measuring only group separation and is known to 
be very insensitive (Shapiro, 1977; Hilden, 1984; Remme et a l . , 
1980; Titterington et a l . , 1981) to small changes in the estimated 
predicted probabilities. In some contexts, separation may be all 
that is of interest, but we would argue that often the value of the 
probabilities themselves is at least as important. For instance, 
in medical applications the clinician may be provided with the 
predicted probabilities, which he can treat like the result of a 
clinical test, using them as just one of several aids in arriving 
at his final diagnosis. He can then assess the "cut-off" point at 
which the odds ratio p(ff-jjx) / p (Trg Ix) becomes indicative of i 

rather than in a more natural manner than having to specify an 
appropriate cost/loss structure a priori, or assuming equal costs 
as is often done. (Kerridge, 1966; Aitchison and Aitken (1976) also 
comment on lack of agreed loss structure necessitating provision of 
realistic estimates of type probabilities rather than an allocation 
rule). In this case, and where we know from past experience that 
it is unlikely that any new model will effect a great improvement 
in error rate, fine-tuning of probabilities will be important, and 
assessing reliability more important than separation. Reliable 
probabilities should of course yield a near-optimal error rate 
automatically.

For this reason, we consider optimisation of the continuous 
assessment scores (Brier (1.13), log (1.14) and modified log (1.15)
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scores) discussed in Section 1.6,2. As a squared error loss 
function, the Brier score is of particular interest, and reflects 
both reliability and separation. In practice cross-validation is 
required when choosing h to optimise these scores on the training 
data, otherwise no smoothing will be indicated. This is because 
each score involves

p(tfj|x )= p{x|7Tj)9j, j = l. 2 and for x e 77̂ , pfw^jx)

p(x|w1 )§1 -t- p(x|v2 )e2

is maximised when p(x|ir2 ) = 0 and similarly for x e tt2 . We note 

that as maximising average log score (1.14) means maximising

IT2 nn i p U i  !Xjj), where Xjj is the jth observation in sample i, 
1=1 j=l

this is seen to be analagous to cross-validation with the 
Kullback-Leibler loss function. As the modified log score (1,15) 
essentially sets a lower bound to the average log score we would 
expect the 2 methods to give similar answers. Also, in the 2 group 
case optimisation of the Brier score (1.13) requires minimisation 
of

1 I 2 Kn i  [ p K I X i j ) ] 2 -  2 E2 Eni  p f i r j l x ^ )
i=l j=l i=l j=ln n

and is therefore analagous to cross-validation using the ISE 
criterion (2.20). Again numerical optimisation is required.

Henceforth we refer to smoothing parameter estimation methods 
based on (1.13)-(1.15) as "direct" or "assessment" methods, and 
those which estimate parameters separately or without reference to 
the predicted probabilities as "marginal" or "indirect" methods.

2.5 SIMULATION STUDY

2.5.1 Description and methods
In the simplest case where we have a single continuous feature 

variable x, 2 populations, and 7r2 , and where the true densities 
{p,j.(x|7rj_)) and hence (given the mixing weights {0|}) (PT^ilx)} are 
known, we can compare the performance of various methods with 
respect to mean square error (MSE)
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[pT (fl-l|x) - pfT^lx)]2 f(x) dx,
Jx

where f(x) = 9^ p(x[7r1) + e2 p (x 17r2 ),

by means of contour plots of MSE as a function of the 2 smoothing 
parameters h^ and h2 .

A simulation study was carried out, using normal random 
variables and fixed normal kernels. The prior probabilities, ©^ 
and ©2 , were estimated using the sample proportions, and the 
density estimates were calculated by means of the fast Fourier 
transform (Silverman, 1982b) with modifications as in Jones and 
Lotwick (1984). Numerical integration was used to find MSE using 
the trapezoidal rule over a fine grid.

Apart from considerations of sample size (as n -» «, hn -» 0) we 
would expect the optimal degree of smoothing for a ratio to depend 
on the degree of separation of tt  ̂ and 7t2 (and hence on expected 
error rate), less being required for well separated populations. 
It was also of interest to vary the ratio oj2 : o22 . For given 
equal sample sizes nj and ng and no separation, we would expect
that if o22 > o-i2 then optimal h2 > optimal h ^ . How different 
would ojl2 and o22 need to be before the difference between h^ and 
h2 becomes important ? We might also hope that the behaviour of h 
as separation and o -̂2 : o22 alter, would be fairly stable across
sample sizes.

Accordingly, tfj was chosen to be standard Normal and tt2 ~ 
N(ju, o2 ) where o2 = l2 , 22 , and 32 . Both balanced and unbalanced 
cases were considered, for small and medium-sized samples, n^ : n2
taken as 10 : 10, 25 : 25, 10 : 25 and 25 : 10. The separation a
was standardised by choosing u  to give an expected Bayes’ optimal 
error rate (Lachenbruch 1975a, pp. 10-11, 29-30) of 5 % ,  2 0 % ,  or
5035, assuming the 0/1 cost structure, for each (n-p n2 , o2 )
combination. Further details are given in Appendix 1, and of the
means of simulation in Appendix 2. Table 2.1 shows the
configurations used.

The marginal methods considered were :

1) the Normal Optimal method (2.14) (N0PT), using (2.15) for o
2) the Asymptotically Optimal MISE method (2.12) (ASOPT)
3) Cross-validation with the Kullback-Leibler criterion (2.19) 

(XVKL) and



Table 2.1 Configurations used in the simulation study

Error
rate

20% 50%

3. 29 1.68 0.00
and 4.83 2.31 0.00

(25.78%)6.26 2.40 0.00

3.16 1.40 0.00
4.92 2.47

6.56 2.92 0.00

3.16 1.40 0.00

4.35 1.14 0.00

5.42 0.00

Note : 1) Error rate interacts with o2 and n^ : n2 • The figures 
in brackets are the closest possible to the required 
error rate for the configurations in the last column.

2 ) 1.16 is the smallest u for which the roots of the 
quadratic equation are real, (see Appendix 1),
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4) Cross-validation with the Integrated Square Error (2.21) 
(XVISE) criterion.
Method 5 is notional and corresponds to optimisation of the 

true M S E .
The direct methods with the cross-validated Brier, log and 

e-log criteria were also used. These are methods 6-8 , denoted XV 
BRIER, XV LOG and XV e-LOG respectively. Numerical optimisation 
for methods 6-8 was carried out using NAG (1984) subroutine E04JBF, 
a quasi-Newton type algorithm.

Preliminary work suggested considerable variability of contours 
between simulations for a given configuration. In the light of 
this, rather than display average contours, we simply illustrate 
each case with a small number of individual plots. Figures 
2.2-2.36 display contour plots of MSE for 3 simulations from each 
configuration in Table 2.1, from which the relative performance of 
the methods may be judged.
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2-5-2 Contour plots and discussion

Figures 2.2-2.36 (overleaf)
Contour plots of MSE of p(ir-|Jx) as a function of smoothing 

parameters (hj, h2 ) used in the normal kernel density estimates of 
each class conditional distribution, for the configurations of
sample size and population moments given in Table 2.1. The
configuration of sample sizes n ^ , and n 2 , normal mean u and 
standard deviation o in population rr2 is denoted by (n^, n2 . u, o ) . 

The smoothing parameters given by methods 1-4 and 6-8 , as described
in the text, are superimposed on each plot, or. where these would
be off the scale or are unclear, the values are given.
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Figure 2.2

(n^. n2 : u . o) = (10. 10; 3.29, 1) 

(a)

C O N T O U R  K E Y
1 0. 0 1 0 0
2 0. 0 2 0 0
3 0. 0 3 0 0
4 0. 0 4 0 0
5 0. 0 5 0 0
6 0. 0 6 0 0

(b)

C O N T O U R  K E Y
1 0. 0 1 0 0
2 0. 0 2 0 0
3 0. 0 3 0 0
4 0. 0 4 0 0
5 0. 0 5 0 0
6 0. 0 6 0 0

(c)

C O N T O U R  K E Y
1 0. 0 2 0 0
2 0. 0 3 0 0
3 0- 0 4 0 0
4 0. 0 5 0 0
5 0. 0 6 0 0
6 0. 0 7 0 0
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1 2 3 4567991icr2 3 4 567991

Figure 2.3

(nj, n2 : u, o) = (10, 10 

(a)

C O N T O U R  K E Y
1 0. 0 4 0 0
2 0. 0 5 0 0
3 0. 0 6 0 0
4 0. 0 7 0 0
5 0. 0 8 0 0
6 0, 0 9 0 0

C O N T O U R  K E Y
1 0. 0 0 5 0
2 0- 0 1 5 0
3 0. 0 2 5 0
4 0. 0 3 5 0
5 0. 0 4 5 0
6 0. 0 5 5 0

C O N T O U R  K E Y
1 0- 0 3 0 0
2 0. 0 4 0 0
3 0. 0 5 0 0
4 0. 0 6 0 0
5 0. 0 7 0 0
6 0. 0 8 0 0

1 .6 8 , 1 )
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Figure 2.4

(nj, n2 : u, o) = (io. 10

(a)

3 4 567891 3 4 5 67891

3 4 567891 3 4 5 67891

3 4 5 6 7891 3 4 567891

■ “ I1 C O N T O U R  K E Y  ‘
i 1 0 . 0 0 0 1  j
j 2 0 . 0 1 0 1
! 3 0. 0 2 0 1
I 4 0. 0 3 0 1
i 5 0. 0 4 0 1

6 0 . 0 5 0 1  |
L 1

C O N T O U R  K E Y
1 0. 0 0 0 5  |
2 0. 0 1 0 5  |
3 0. 0 2 0 5

| 4 0. 0 3 0 5
5 0. 0 4 0 5  i
6 0. 0 5 0 5

—  . m |

C O N T O U R  K E Y
1 0. 0 0 0 5
2 0. 0 1 0 5  |
3 0. 0 2 0 5  |
4 0. 0 3 0 5  !
5 0. 0 4 0 5  I
6 0. 0 5 0 5

— ......  . ... .
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C O N T O U R  K E Y
1 0. 0 1 5 5
2 0. 0 2 5 5
3 0. 0 3 5 5
4 0. 0 4 5 5
5 0. 0 5 5 5
6 0. 0 6 5 5

C O N T O U R  K E Y
1 0. 0 2 2 5
2 0. 0 3 2 5
3 0. 0 4 2 5
4 0- 0 5 2 5
5 0. 0 6 2 5
6 0. 0 7 2 5

HI
2 3 4 567891 2 . 3  4 567891 2 3
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Figure 2.5

( .  n 2 : u . o ) = (10

(a) 6- .581. 4.108
7- .538. 4.351
8- .541, 4.584

3 4 567891 3 4 567891

C O N T O U R  K E Y
1 0. 0 0 2 5
2 0. 0 1 2 5
3 0. 0 2 2 5
4 0. 0 3 2 5
5 0. 0 4 2 5
6 0. 0 5 2 5

1 0 ;
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| 5 0 . 0 7 0 0  i
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’ _ 1

) 6- .780, 3.782
7- .667, 3.682
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! C O N T O U R  K E Y
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0. 0 5 2 0

.... --------------------

C O N T O U R  K E Y
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Figure 2.7

(nlt t\2 : u . a) = (10, 10; ( 
(a)

C O N T O U R  K E Y
1 0. 0 1 0 0
2 0. 0 2 0 0
3 0. 0 3 0 0
4 0. 0 4 0 0
5 0. 0 5 0 0
6 0. 0 6 0 0

C O N T O U R  K E Y
1 0. 0 1 7 5
2 0. 0 2 7 5
3 0. 0 3 7 5
4 0. 0 4 7 5
5 0. 0 5 7 5
6 0. 0 6 7 5

C O N T O U R  K E Y
1 0. 0 1 5 0
2 0. 0 2 5 0
3 0. 0 3 5 0
4 0. 0 4 5 0
5 0. 0 5 5 0
6 0. 0 6 5 0

.00, 2 )
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(nj. n2 : a . o) = (10. 10: 6.26, 

(a) 3-
4-

.650, 3.532 

.663, 3.349

C O N T O U R  K E Y
1 .0. 0 1 6 5
2 0. 0 2 6 5
3 0. 0 3 6 5
4 0. 0 4 6 5
5 0. 0 5 6 5
6 0. 0 6 6 5

) 4- .847, 3.951

C O N T O U R  K E Y
1 0. 0 0 1 0
2 0. 0 1  1 0
3 0. 0 2 1 0
4 0. 0 3 1 0
5 0. 0 4 1 0
6 0. 0 5 1 0

4- l . 031, 3.482

CONTOUR K E Y
1 0. 0 1 3 0
2 0. 0 2 3 0
3 0. 0 3 3 0
4 0. 0 4 3 0
5 0. 0 5 3 0
6 0. 0 6 3 0

10; 6.26, 3)

6- . 561 3 363
7- . 531 3 442
8- .537. 3 357

6- 1.383, 3.482
7- 1.261. 3.140
8- 1.286, 3.078
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Figure 2.9

(nlt n2 ; o) = (10, 10: 2.40,

(a) 3- .650. 3.532 7- .554.
4- .663. 3.349 8- .565.

C O N T O U R  K E Y
1 0. 0 2 5 0
2 0. 0 3 5 0
3 0. 0 4 5 0
4 0. 0 5 5 0
5 0. 0 6 5 0
6 0. 0 7 5 0

) 4- .847, 3.951

C O N T O U R  K E Y
1 0. 0 0 5 0
2 0. 0 1 5 0
3 0. 0 2 5 0
4 0. 0 3 5 0
5 0. 0 4 5 0
6 0. 0 5 5 0

4- 1 .031, 3.482

C O N T O U R  K E Y
1 0. 0 0 7 5
2 0. 0 1 7 5
3 0. 0 2 7 5
4 0. 0 3 7 5
5 0. 0 4 7 5
6 0. 0 5 7 5

6-

7-
8-

.815. i. 

.696. ( 

.727, I

3)
4.363
4.022

.999

.341

.892
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Figure 2.10

(n1( n2 : u, o) = (10, 10; 0.00. 3)
) 3- .650, 3.532

4- .663, 3.349

C O N T O U R  K E Y
1 0- 0 1 2 0
2 0. 0 2 2 0
3 0. 0 3 2 0
4 0. 0 4 2 0
5 0. 0 5 2 0
6 0. 0 6 2 0

) 4- .847, 3.951

C O N T O U R  K E Y
1 0. 0 1 5 0
2 0. 0 2 5 0
3 0. 0 3 5 0
4 0. 0 4 5 0
5 0. 0 5 5 0
6 0. 0 6 5 0

) 4- 1.031, 3.482

C O N T O U R  K E Y
1 0. 0 1 2 5
2 0. 0 2 2 5
3 0. 0 3 2 5
4 0. 0 4 2 5
5 0. 0 5 2 5
6 0. 0 6 2 5

8-

.735. 3.333 

.692. 3.220 

.713. 3.323

7-
8-

,359. 3.204 
.368. 3.202 
.367. 3.212

7- 1.013, 3.328
8- 1.006. 3.349
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Figure 2.11

(nlt n2 : a. o) = (25. 25; :

C O N T O U R  K E Y

i 1 0. 0 0 5 0  !
i 2  | 0. 0 1 5 0  !
! 3  1 0. 0 2 5 0  |

I 4  ! 0. 0 3 5 0  j
5  1 0. 0 4 b 0
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I " " ' jt C O N T O U R  K E Y  j
I 1 0. 0 0 5 0  i

2 0. 0 1 5 0  i
3 0. 0 2 5 0
4 0. 0 3 5 0  I
5 0. 0 4 5 0  !
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L_ ■
0. 0 5 5 0

3 4 567991 2 3 4 567991 2 3

3 4 567991 3 4 5 67991

! C O N T O U R  K E Y
I 1 0. 0 0 5 0

! 2 0. 0 1 5 0
i 3 0. 0 2 5 0
! 4 0 . 0 3 5 0
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! 6 0. 0 5 5 0  ; 
.........
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Figure 2.12

(nj, n2 : a, o) = (25 25

:--tC O N T O U R  K E Y
1 0. 0 1 0 0
2 0. 0 2 0 0
3 0. 0 3 0 0
4 0. 0 4 0 0
5 0. 0 5 0 0
6L__

0. 0 6 0 0

[ C O N T O U R  K E Y  
1 ^  0. 02001i2

3
4
5
6
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0. 0 7 0 0

C O N T O U R  K E Y
12
3
4
5
6

0. 0 1 0 0  0. 0200 
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0. 0 4 0 0  
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Figure 2.13

(nlf n2 : u. o) = (25. 25; ( 

(a)

C O N T O U R  K E Y
1 0. 0 0 0 1
2 0. 0 1 0 1
3 0. 0 2 0 1
4 0. 0 3 0 1
5 0. 0 4 0 1
6 0. 0 5 0 1
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Figure 2.14

(nlt n2 : u, o) = (25, 25 

(a)

C O N T O U R  K E Y
1
2
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6
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■ - ' — _
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Figure 2.15

(nlt n2 : u. a )  = (25. 25; 2.31, 2) 

(a)
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(b)
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(c)

C O N T O U R  K E Y
1 0. 0 0 8 0
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Figure 2.16

(n1# n2 ; a, a) = (25, 25; ( 
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Figure 2.17

(nlf n2 ; u. o) = (25. 25; 6.26. 3) 
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Figure 2.19
(nlt n2 ; u, o) = (25, 25; 0.00, 3 )
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Figure 2.21

(nlP n2 ; u, o) = (io. 25 
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Figure 2.22

(nj. n2 : a, o) = (10, 25 
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Figure 2.23

(n1( n2 ; u ,  a ) = (10, 25 

(a)

1 2 3 4"S6799f
10

C O N T O U R  K E Y
1 0. 0 1 2 5
2 0. 0 2 2 5
3 0. 0 3 2 5
4 0. 0 4 2 5

I 5 0. 0 5 2 5
! 6 0. 0 6 2 5

2 3 4 567071 . 2 3
10" ’  10°

2 3 4 567091 2 3 4 567091

3 4 5 670913 4 567091

C O N T O U R  K E Y
1 0. 0 0 7 5
2 0. 0 1 7 5
3 0. 0 2 7 5
4 0. 0 3 7 5
5 0. 0 4 7 5
6 0. 0 5 7 5

C O N T O U R  K E Y
1 0. 0 0 5 0
2 0. 0 1 5 0
3 0. 0 2 5 0
4 0. 0 3 5 0
5 0. 0 4 5 0
6 0. 0 5 5 0

4.92, 2)



Figure 2.24

(nj. n ? ; u .  a ) = (10,
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Figure 2.25

(ri}, n2 ; u , o) = (10, 25; :
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Figure 2.26

(n^, r*2 : u, o) = (10. 25; <
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Figure 2.27

(ni, n2 ; u, o) = (10. 25; <
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(n1# n2 ; u ,  a )  = (10.
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(nj, n2 : u , o) = (25. 10; 1.40, 1) 

(a)
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Figure 2.31

(n^, n 2 ; u, o) = (25, 10 
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Figure 2.32

(n^, ri2 ; u, o) = (25, 10; <■ 
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Figure 2.34

(n1( n2 ; u. o) = (25. 10; ( 
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Figure 2.35

(n^, ri2; u, o) = (25, 10; 5.42, 3) 
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Figure 2.36

(n^. 112; li , o) = (25, 10; 0.00, 3) 
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Discussion of Figures 2.2-2.36

Several trends may be detected from the contour plots. 
Comparing equal-sized samples with n^=10 and 25, the contours of 
the former are always closer, at least near the centre, than those 
of the latter, especially noticeable as the ratio of the standard 
deviations, a, becomes more extreme (c.f. especially Figures 2.2 
and 2.11 (5%, o=l), and Figures 2.6 and 2.15 (20%. o=2)), and tend
to be located further to the north east of the plot. Also for 
unbalanced o, h2 may be larger relative to h^ for the smaller 
sample sizes, see e.g. Figures 2.10 and 2.19 (50%. o=3). The 10:10 
examples also display less of a central plateau (e.g. Figures 2.5 
and 2.14 (5%, o =2), and Figures 2.10 and 2.19 again (50%, o=3)).
This is to be expected as it indicates that more smoothing of 
smaller data sets is appropriate, and that the degree of smoothing 
and ratio of smoothing parameters is more crucial than with the 
larger sample size. Not surprisingly, contours also tend to be 
less stable across simulations than for bigger samples (c.f. for 
example Figures 2.3 and 2.12 (20%, o=l), Figures 2.5 and 2.14 again 
(5%, o=2), and Figures 2.8 and 2.17 (5%, o=3)) and also methods
more variable across simulations (e.g. Figures 2.8 and 2.17 (5%,
o=3)). Allowing for these differences, the two sample sizes 
produce qualitatively similar contour plots and the conclusions 
from these are much the same.

In particular, for a given o and fixed sample sizes, as error 
rate increases contours become more regular, they become steeper 
and/or there is less of a central plateau - compare for instance 
the very irregular contours of Figure 2.11 (5% error, o=1) where
there is considerable scope for variation of both the magnitude of 
smoothing parameters and of their ratio, with Figures 2.12 (20%,
o=l) and 2.13 (50%, o=l) where this is much less evident. This is 
to be expected. Also, relative to each other methods 1-4 tend to 
be fairly stable across error rates (in fact for our simulations 
methods 1-4 are fixed for given o2 and sample sizes (see Appendix
2)) and similar, while 6-8 vary more, e.g. for n^=25, Figures 
2.11-2.13 (o=l) and Figures 2.17-2.19 (o=3) . The increase in
regularity of contours is more marked between 5% and 20% than 
between 20% and 50% (though note that ”50%" is in fact always less 
than 35% (see Table 2.1)), and also for the smaller sample size 
(c.f. e.g. Figures 2.8 and 2.9 relative to Figures 2.9 and 2.10 
(n jj_=10, o=3) with Figures 2.17 and 2.18 relative to Figures 2.18
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and 2.19 (ni=25, o=3 )).
For given sample sizes and fixed error rate, as o increases not 

surprisingly the contour plots are qualitatively comparable but are 
centred higher up, indicating a larger h2 . e.g. Figures 2.13 and 
2.19 (n-[=25, 50%, o=l and o=3). The exact multiple h2 of h^ may
not be crucial, at least for lower error rates, and varies.

The features discussed above are shared to some extent by the 
unbalanced sample size cases though these especially can produce 
very variable and irregular plots, e.g. Figure 2.24 
(10:25, 20%, a=2), Figure 2.30 (25:10, 20%, o=l) and Figure 2.35
(25:10, 5%, o=3), (a) especially. The effect of increasing o in
the 10:25 case is also not surprisingly somewhat less clear, as the 
imbalance in the sample sizes balances out that in the standard 
deviations, and can produce plots which on a linear scale would be 
fairly symmetric with approximately equal being optimal, e.g. 
Figure 2.25 (10:25, 50%, o=2).

The practical effect of differences in position of the various 
methods relative to the contours of MSE may be judged from plots of 
the predicted probability function p(ir-jjx), some of which are given 
in Figures 2.37-2.44.

From both the contour plots and the latter, most notably 
methods 6-8 improve at least slightly on the marginal methods for 
the equal population case, (o=l, 50%) where a high degree of
smoothing is indicated, for all sample sizes, especially for 2 out 
of 3 simulations for n ^ :n2 = 10:25 (Figure 2.37) where 6-8 are much 
better than the marginal methods for (2) and (3), and 25:10 where 
6-8 are uniformly better, markedly so for the first 2 simulations, 
especially (2). (Of 1-4 themselves, for equal-sized samples 4 is 
best, but all are very poor, while for 10:25 and 25:10 4 or 3 and 4 
are best). This is no longer true as o increases for equal sample 
sizes, where for zero separation and both o=2 and o=3, 1-4 could
generally be at least slightly better for (1) and (3) though the 
best of 1-4 are near the optimal kernel (method 5) for (2) in each
case. (For the smaller sample size 1 and 2 are best on (2) and
(3), and 2 on (1) where method 1 is poor. For n^ = 25, 4 is worst
in each case, and 3 best at least on (2) and (3).) However, though
similar to the best of 1-4 for (1), 6-8 are worse or compare to the 
worst for (2) (and are bimodal) and (3) (very poor for o=2) for the 
smaller sample sizes nj=10, while for n^=25, 7 and 8 at least are 
comparable to or slightly better than 1-4 in each case. For the
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Figures 2.37-2.44 (overleaf)
Examples of predicted probability functions p(^i|x), 

corresponding to the contour plots in Figures 2.22, 2.36, 2.3,
2.5. 2.11. 2.18. 2.21 and 2.33 respectively. In. each case kernel 
methods 1-4 and 6-8 are represented by broken lines, and the spline 
estimate by the dashed and dotted line, as shown in the key below. 
The true function is given by the heavy solid line and the 
MSE-optimal kernel (method 5) by the thinner solid line.

Kev: -

IETH0Q LINE

OPTIMAL KERNEL

SPLINE



Figure 2.37 (n1( n2 ; u , o) = (10. 25: 0.00. 1 )
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Figure 2.38 (nlf n2 : u. o) = (25. 10; 0.00. 3)
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Figure 2.39 (nj_, n2 : u. o) = (10. 10: 1.68. 1)
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Figure 2.40 (nj, ; u, o) = (10. 10; 4.83. 2)
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Figure 2.41 (n-p n2 : u, o) = (25. 25: 3.29. 1)
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Figure 2.42 (n-p n2 ; u. o) = (25 . 25: 2.40. 3)
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Figure 2.43 (n^. ri2 : u. o) = (10. 25: 1.40. 1)
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Figure 2.44 (Hi. : u, o) = (25, 10; 1.14, 2)
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unbalanced cases, for 25:10 and o = 2 , none Is optimal for (1) or (2) 
where for (1) 6-8 compare to (the best of) 1-4. which are poor, and 
are among the best for (2) and not unlike the optimal kernel though 
a little undersmoothed. For (3) 6-8 are slightly better but all
are within the 1st contour, if slightly suboptimal. (Of 1-4. 4 is 
worst on (1) and (2). 3 best on (2) and 3 and 4 best on (3).) For 
o=3. all are similar for (1) and (3), again none quite optimal for
(1) and are best for (2), though 6-8 again slightly undersmoothed 
(see Figure 2.38), being inside the 1st contour. (On (1) 2 is best 
and 4 worst. 3 best on (2) and all similar on (3).) For 10:25. for
o=2 (u2 = 1.16), 6-8 are at least as good as 1-4 for (1), next best
to 3, which is near-optimal, for (2) but could be better in each
case and are near-optimal for (3) but comparable to 3 (and also 4).
For o=3, 6-8 compare to the best of 1-4 (3 and 4) for (1), are
similar for (3) and for (2) 7 and 8 compare to 3, the best but not 
quite optimal, while 6 is poorer and compares to 1, 2 and 4. In
each case 6-8 still leave room for improvement. (Of 1-4. for both 
o=2 and 3. 3 and 4 are best for (1) and (3), and 3 clearly best for
(2 ).)

For nj=10, of the marginal methods 4 is slightly poorer in all 
cases on simulation (3), 1 poorer on (1) and 2 and 4 better on (2). 
so that the best one varies. For o=l, 5% and more especially for 
20% (see Figure 2.39) 1-4 are very poor on both (1) and (3), but 
not as bad for (2). For o=2 at 5% on (1) and (3) 1-4, though not 
unlike optimal kernel method 5, are poor but for (2) the best of 
1-4 is reasonable (see Figure 2.40). For 20% for (3) again all are 
relatively poor. Here unusually 2 and 4 are the best for (2),
where all are acceptable, and (1), where there is room for
improvement. For o=3, for 5%, on (3) though all are poor, 1 and 2
especially are near to optimal method 5, as are 1-4 on (1), again
poor. Again on (2) each estimate is acceptable. For 20%, in each 
case the best of 1-4 are close to method 5 though none quite
optimal for (1) nor (3) but are good for (2), especially 2 and 4.

Methods 6-8 are typically very similar, though 6 may be better 
than 7 and 8, seen for 5% and simulations (1) and (2) (Figures 2.2. 
2.5 and 2.8), and to some extent at 20% for o=l and 2 (Figures
2.6(a) and 2.3) and 7 slightly worse than 6 and 8 on (2) for 5% 
error (again Figures 2.2, 2.5 and 2.8). For o=2, 20%, 8 is better 
than both 6 and 7 on (2), Figure 2.6(b). Generally for n^=10, 6-8 
offer no improvement on 1-4 where for o=l for both 5% m d  20% (see
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Figure 2.39), they are similar or worse. For 5%, 6-8 are far too
sharp on (2) but, though noticeably undersmoothed, on (3) 6-8 are
very similar to optimal kernel method 5. For o=2, at 5% 6-8
compare to 1-4 for (1) but especially for (3) they are a lot worse 
as they are very badly undersmoothed, having h2 too small, and also 
too sharp for (2) (see Figure 2.40). For 20%, 6-8 are comparable
to 1-4 for (3), compare to the pooorer of 1-4 for (2) but to the
best for (1). For o=3, for 5%, 6-8 are again worse and far too
sharp for (2) and also poorer for (3) while for (1) they compare to
the better marginal ones though none are optimal. For 20%, again 
6-8 compare in each case to method 5. For (1) 6-8 are comparable 
to 1-4, and for (3) compare to the best. For (2) 7 appears poor, 8 
relatively so and 6 compares to the better marginal methods, which 
are good, but in terms of pf-ff-jjx) all are similar.

For n^=25, 4 now appears consistently poorer than 1-3, and now 
3 is generally best or near-best though method 2 (and 1) appears 
better in simulation (1) throughout. For o=l and 5% error, there 
is a little improvement potential at least on (3), Figure 2.11(c). 
For 20%, there is more room for improvement, though all are near to 
optimal method 5 on (3). On (2) 2 and 4 are slightly poorer than 1 
and 3. For o=2, at 5%, 1-4 are reasonably good, with 3 best on (2) 
but none are quite right. For 20%, for (1) all are very poor, also 
poor on (3), and on (2) though 1 especially is near the optimal 
kernel, again all are poor. For o=3, at 5% on (2) 1-3 are
near-optimal, but there is scope to improve on (1) and (3). At 
20%, the pattern is similar, with 1-4, especially method 4, 
relatively poor on (1) and (3) but again good on (2).

Apart from the zero-separation case where they are very 
similar, 6-8 differ more for n^=25 than for 10:10. Not 
surprisingly 7 and 8 are very similar and slightly distinct from 6 
except for o=2, 5% on (3), Figure 2.14(c), where 7 differs and is 
worse, as it is also for o=3, 5% on (1), Figure 2.17(a), where
there are larger differences. 7 and 8 are now superior at 5% for 
o=l and 2 on (2), Figures 2.11 and 2.14(b) and slightly better for 
o=3 on (3), Figure 2.17(c) and also at 20% for o=l and 2, at least 
for (1), Figures 2.12 and 2.15. However 6 is obviously superior on
(1) at 5% for both o=2 and 3, Figures 2.14 and 2.17(a), and also 
for o=3, 20%, Figures 2.18(b) and (c).

Compared to n-̂  = 10, 6-8 are now more successful. For o=l, for 
5% (Figure 2.41), 6-8 are good especially for (1) and 7-8 very good
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for (2), though no method is fur from optimal, but despite 
appearing comparable (in terms of M5E) to 1--4 for (3) in contour 
plot Figure 2.11(c), 6-8 are quite distinct, undersmooth t̂  and 
p (7r-j_ | x ) is a little jagged. For 2035, 6-8 are at least as good on 
both (1) and (3), especially 7 and 8 which are near-optimal for
(1). but compare to the poorer marginal methods (2 and 4) on (2).
For o=2, 6-8 again appear better for 5%, especially 6 for (1) and
(3), although in fact on (1) while 6 is near-optimal 7 and 8 
greatly undersmooth and produce a jagged curve, and while 6 and 8 
slightly improve on 1-4 in (3), 7 is again undersmoothed. 7 and 8 
compare to 3, the best of 1-4, for (2) but are still not quite 
right. For 2 0 % ,  6-8 appear slightly better for (1) though still
poor, better for (3) where 7 and 8 especially are near-optimal, but
worse and bimodal for (2). For o=3, at 5%, 6 and 8 are slightly 
better than 1-4 for (1) though 7 undersmooths and p(v-jjx) is
jagged, each of 6-8 is slightly better for (3) where 6 compares to
3, but worse again for (2), where 1-3 are near-optimal, as they 
are also for 2 0 %  where 6-8 undersmooth (2) and the only improvement 
is for simulation (3), but despite having the correct general shape 
for p(7TjL|x) 6-8 are actually extremely jagged as h^ is very small 
(see Figure 2.42).

For 10:25, 3 is generally the best of 1-4 on (2) where 4 is
poorest, while 3 and 4 are superior on (1) and (3) with 1 poorest. 
For o=l, at 5 % ,  of 1-4 1 and 4 are poorest for (1), 3 best on (2)
but none quite right for (3). Again for 2035, all appear good but
similar for (3), though in terms of p(Tr-̂ jx) none are quite right, 3 
is best on (2), and for (1) all are very poor. For o=2, 535. 3 is 
best on (2) and 3 and 4 best on (1) and (3) but not quite optimal. 
For 2035, all are similar but poor for (1), very poor for (2) and 1 
the poorest for (3). For o=3, at 5%, 1-4 are all poor for (1) and 
(3) while for (2) 3 is obviously better than 1, 2 and 4. For 203s, 
none are optimal.

Again 6 can be distinguished from 7 and 8. In each case 7 and 
8 are at least slightly superior on (2), with 6 slightly better or 
similar on (1) and (3). Comparing 6-8 with 1-4, for o=l, 5?6, 6-8
are good only for (2) where they are near-optimal and compare to 3, 
the best, but are slightly worse for (3) and compare to the poorest 
for (1). For 2035, on (1) and (3) 6-8 compare to the poorest, but 
again are at least as good and compare to 3 for (2), though pfw^ix) 
is strikingly undersmoothed (Figure 2.43). For o=2, 535, again they
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are slightly worse for (1), but similar to 1-4 for (3), good and 
comparable to 3 for (2), For 20%, 6-8 are similar and do not
Improve on 1-4 for (1), 7 and 8 are slightly better for (2) but 
also all very poor, and although 6-8 are slightly worse for (3)
they compare to method 1. For o=3, at 5%, 6-8 are similar to 
method 1 on (1) while for (2) 6-8 compare to 3, the best. For (3)
6-8 are slightly worse than the better marginal ones. For 2 0 % ,  6-8 
are among the best for (1) and also for (3), where they are good, 
but 7 and 8 at least are better for (2) and near-optimal, though 
still relatively poor.

For 25:10. 4 is consistently poorest on (2) and 3 best, with 3 
and 4 best on (3). For (1), 2 appears best except for o=l, 2 0 %

(Figure 2.30(a)) where again 3 and 4 are better. More 
specifically, for o=l, 5 % ,  1-4 could be better especially for (1)
and (3). 3 is better on (2). For 20% none are good on (1) and (3)
though for the latter 2 is as the optimal kernel, while on (2) 3 is 
again superior to 1, 2 and 4. For o=2, 5%, all have the correct 
shape on (1) but are poor on (3) and again 3 is best for (2). For
20%, all methods are within the 1st contour for (3) but none quite
right for (1) and (2) where for the former 1-4 are seen to vary in 
terms of p(Tr-jJx) (Figure 2.44) with 1 especially poor. For o=3, 
5%, for (2) 1-4 seem relatively poor with 1 and 4 slightly poorer
in terms of pt^lx), while for (1) all are similar with 1 slightly
worse, though none optimal. None are quite right for (3). For
20%, Figure 2.38, for (1) all are similar but none optimal, nor are
they for (2) while for (3) all are similar and inside the 1st
contour.

The pattern is not quite as consistent now, but as usual 6 is 
often slightly different from 7-8, which are as good as or often
superior to 6 on (2), at least at 5%, but all appear similar in
terms of MSE on (1) and (3). For o=l, for 5%, 6-8 are best and
near to optimal method 5, though could still be better, for (1) and 
(3), as they are also for (2) where they compare to 3, the best of
1-4. For 20%, 6-8 are better for (3), though none good, while for
(2) 7 and 8 compare to 3, the best, and are better than 6 which
compares to the poorer of 1-4. 6-8 are no better than 1-4 for (1).
Now for o=2, 5%, 6-8 are slightly better for (1) and (3) and near
to the optimal kernel on (3), but still not good though all have
the correct shape on (1). For (2) 7 and 8 are also better and
near-optimal with 6 similar to 3. For 20%, they are slightly
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better for (3) while for (2) they compare to the best of 1-4 and 
for (1) 7 and 8 are better (6 compares to 3) but none is optimal. 
For o-3. 5%, for (2) 6-8 are best, being on the edge of contour 1. 
but are similar in terms of p(irj_|x) to 1-4, and compare to the best 
of 1-4 for (1). For (3), 6-8 are superior (and optimal) though
still not quite right. For 20%. Figure 2.38, 6-8 compare on (1)
and (3) to 1-4, but for (2) though 6-8 are better and near-optimal 
they are multimodal.

In short, the scope to improve on marginal methods 1-4, which 
seem similar (on the contour plots, though are seen to vary more in 
Figures 2.37-2.44, with 3 often best or near-best and 1 sometimes 
very poor), appears limited except for equal populations, where 6-8 
are considerably better and often near-optimal. In general the 
improvement potential is greater for balanced small samples (n^=10) 
where 1-4 are often poor, though 6-8 in fact tend to be similar or 
worse. For n^=25, 6-8 are usually comparable or slightly better
(but generally for low error rate where 1-4 themselves are not far 
from optimal), as is also true for unbalanced samples, although for 
the latter the performance of 1-4 and potential to improve on them 
varies. In particular 6-8 can be very undersmoothed, even when in 
terms of MSE they seem to improve on 1-4.

Further examination of the plots comparing p(n'1 |x) and p(^i|x) 
however, shows that the MSE-optimal kernel estimator (method 5) 
itself leaves something to be desired. In general method 5 is near 
the truth for identical populations, e.g. Figure 2.37, though not 
quite as good for equal samples when n^lO. At 5 %  for o=l though 5 
may leave a little room to improve especially for n-^=10 where it 
can be poor, (on (3), though (2) is excellent) mostly it is 
acceptable (e.g. Figure 2.41). For o=2 it is not just as good. 
For n^=25 its performance varies but again for n^=10, for all error 
rates (e.g. Figure 2.40), (3) is poor and undersmoothed though (1)
and (2) vary. For sample sizes 25:10 there could be at least a 
little improvement and more still for 10:25. It is poorer still at 
20%, where for o=l, though a little undersmoothed for 2 out of 3 
simulations, with n^=25, (1) and (3) are extremely poor for n^=10,
especially (1) which is vastly undersmoothed, though (2) is very 
good (see Figure 2.39). (3) is slightly undersmoothed for
unbalanced samples, for which (2) is poor, as is (1) also for 10:25 
which is again very undersmoothed (Figure 2.43). For o=2, 20%, for 
n-j[ = 25 method 5 is poor on all simulations, grossly undersmoothed
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on (1), and also poor at 50% where (1) and (2) are bimodal. For 
both error rates 5 is poor for n ^ l O , at least on (3). Again at 
20%. while (3) is reasonable. (1) and especially (2). are poor for 
10:25 and (1) poor for 25:10 (Figure 2.44). The same is true for 
25:10 at 50% while for 10:25 2 out of 3 estimates could be better. 
Finally, for o=3 generally method 5 leaves at least some room for 
improvement, and can be very poor, e.g. at 5% for 10:25 on (1) and 
at both 5% and more especially 20% for 25:10 for (1) again. Figure 
2.38, where it is very undersmoothed. (1) is also poor for n^=25 
at each error rate (e.g. Figure 2.42) though for n-^10 is not as 
bad. Given that an estimate may be undersmoothed yet its MSE be 
relatively small, MSE may not be the best criterion by which to 
judge reliability.

2.5.3 Comparison of kernel and spline methods
In the light of the frequent inability of these kernel methods 

to produce a near-optimal predicted probability curve, in each case 
we compare the MSE-optimal kernel estimates (method 5) with the 
estimates provided by the spline ratio estimator of Silverman 
(1978a) (Section 1.5.2), which, as it estimates directly the 
density ratio or a one-to-one function of the ratio and is subject 
to a roughness penalty, might be expected to be a more flexible 
method. The smoothing parameter of the spline, P , was chosen to 
approximately minimise MSE using a grid search method. For a given 
P , a Simplex method (NAG (1984) algorithm E04CCF) was used to solve 
numerically the 2 non-linear equations whose solution determines 
the spline.

For n^=10, the spline was generally unsuccessful. It avoids 
the conspicuous undersmoothing of the kernel method which can 
produce a multimodal curve (notably o=l, 20%, simulations (1) and 
(3), see Figure 2.39, to a lesser extent o=2, 50%, (3), and also 5% 
(3), seen in Figure 2.40), but tends instead to oversmooth, 
producing too gradual an "S-shape", too wide and flat (and often 
skew) a "density shape", or even more extreme, a sigmoid rather 
than a concave curve. It did not improve on the variability across 
simulations of the kernel method, and sometimes reversed the 
direction of the "S" . It's generally poor performance may be due 
to a suboptimal p  and the possibly ill-conditioned nature of the 
spline-fitting problem (see Section 2.6, where the smoothing 
parameter is selected to give a curve of comparable smoothness to



128

those of the other methods). The spline only rarely improved on 
method 5. For o=l , 5%, the spline was superior for (1) and (3) but 
inappropriately smoothed on (2) where method 5 was excellent. 
Similarly, for o=l , 20%, Figure 2.39, it was again considerably
better both for (1) and (3) but much poorer for (2). The only 
other success was for o=2 , 5%. simulation (1), where its rather
gradual but correct S-shape improved to some extent on method 5's 
concave estimate, though (2) and (3) were both very poor (see 
Figure 2.40).

For equal populations, o=l, 50%, where method 5 does very well,
and for all sample sizes, the spline is generally poorer (Figure
2.37 shows the 10:25 case).

For n-^25, the spline's performance is less variable - it does 
not, for instance, reverse the direction of the curve. For o=l, 
5 % ,  Figure 2.41, the spline improves for (2), where it is very 
good, but is at least slightly poorer for (1), where method 5 was
not far from optimal, and also for (3), while for o=l, 2 0 % ,  it is
comparable or better, especially for (1), and has the correct shape 
whereas method 5 undersmoothed both (1) and especially (2). For 
o=2, 50%, where method 5 generally was slightly undersmoothed, the 
spline oversmoothed, and was worse - again wide, and also skew for
(1) and (2). For 5%, the spline improves on the shape of method 5, 
especially for (2) which was undersmoothed, and is slightly better 
for (1) but worse for (3). For 20%, while especially for (1) 
method 5 was greatly undersmoothed and poor, despite having a 
concave rather than an S-shape, the spline, which is sigmoid, is 
equally poor. For o=3, 5%, the spline is consistently sigmoid 
rather than flatly concave and worse for 2 out of 3 simulations, 
even for (1) where method 5 was also poor. For 20% too, Figure 
2.42, it oversmooths and is wide, skew and poor for (3) and 
particularly skew for (1), though slightly better than method 5 for
(2). For 50%, it was smoother and slightly better or comparable to 
method 5.

For the unbalanced 10:25 situation, again the spline was the 
most successful for o=l, 5% and 20%, especially for (1) and (2) of 
5% and (1) of 20% where method 5 is again extremely poor. Here, 
despite slightly oversmoothing, the spline is uniformly better (see 
Figure 2.43). For o=2, the spline is generally better for (1),
where for both 5% and 20% method 5 is poor, but worse for (2) and
(3). For 5%, the S is a little too gradual, and it is also a
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gradual S rather than concave for 20% where it was especially poor 
for (3) unlike the kernel method. For 50%, it is again very
oversmoothed, and also skew for (2) and (3). This is also true of 
o=3 for 20% and especially 50% where it is uniformly very poor.
For 5%, the spline is not concave, again a gradual S, and is
slightly better only for (1).

For n^:n2 = 25:10, most notably there are rare examples of
undersmoothing of the spline on simulations (2) and (3) of o=3. 
20%, where it is extremely poor (Figure 2.38). On (1) however, 
where method 5 was clearly bimodal, it is better although rather 
skew. For o=3. 5%, the spline is not concave but improves on
method 5 for (1) which was undersmoothed and is comparable for (2) 
but worse for (3). For o=2, 5%, where method 5 was reasonable, if
a little undersmoothed, at least for (1) and (2), the spline is now 
poor, especially for (2) and (3), with too gradual a curve or a 
completely wrong direction. For 20%, the spline was only very 
slightly worse for (3), which was good, better for (2) despite 
being oversmoothed (a little wide) and comparable for (1) in terms 
of MSE despite its lack of concavity, but here method 5 was 
obviously undersmoothed (Figure 2.44). For 50%, method 5 was 
extremely poor for (1) and the spline is even worse, being very
skew, slightly better for (2), but slightly worse for (3). For 
o=l, again for 20%, where method 5 is very undersmoothed for (2), 
the spline is good, while (1) and (3) are also comparable or better
and now the correct S-shape, if a little too gradual a curve. For
5%, again the spline is slightly better for (1) and smoother, 
better and very good for (2) but worse for (3).

In general, therefore, in contrast to the kernel method which 
tends to undersmooth, the spline does the opposite. It
occasionally improves on the optimal kernel but is more usually 
disappointing and can be very poor, especially for smaller sample 
sizes. Given the spline estimator's asymptotic foundation
(Silverman, 1978a) this is possibly not surprising. We compare its 
performance to the empirical kernel methods for a much larger data 
set in Section 2.6.

2.5.4 T-statistics, discussion and conclusions
To enable more objective assessment of the differences between 

the kernel methods, 200 simulations of each configuration were 
carried out and paired t-statistics derived for all possible
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comparisons between methods in terms of error rate, Brier score, 
log and modified log scores, and MSE.

Figures 2.45-2.48 provide summary plots of the significant 
differences between methods for all 5 scores, ranking the methods 
from best to worst by their mean score and connecting with a 
straight line those methods with nonsignificant t-statistics, in 
the usual way. To correct to some extent for making multiple 
comparisons a critical value of t(199|.995) = 2.576 was used for a
2-sided test

Tables 2.2-2.5 present the numerical results for the Brier, 
modified log and MSE scores, where the signs of the t-statistics 
have been adjusted so that a positive t-statistic for methods A and 
B (denoted A, B) indicates superiority of method A. Of the initial 
5 scores, MSE was retained to allow comparison with the contour 
plots, error rate dropped as it is the least sensitive measure, and 
modified log score taken as representative of the two log scores, 
being more sensitive in general than the ordinary log score and 
having smaller standard deviation (the latter judged from tables of 
means and standard deviations for each score and method, which are 
not presented here).

Discussion of t-test Tables 2.2-2.5 and summary Figures 2.45-2.48
Although no one method seemed consistently superior in Section 

2.5.2, and method 1 particularly could be poor (as, for instance, 
in Figures 2.40 and 2.44), Figures 2.45-2.48 in general give the 
impression that on average marginal methods 1 and 3 are overall 
best, 4 and 2 poorer, and direct methods 6-8 poorest for easier 
discrimination problems (5% error). For o=l usually 1 is 
significantly better than the rest, or at least better than all 
except 3 (and sometimes 4) , and at least 7 and 8 poorer than 1-4 
(not for n|=25), and for n^=10 3 is also better than 6-8. As o 
increases the pattern is similar but typically there are fewer 
differences, although 3 still betters 7 if not 8 also, except for 
o=3 and equal n^ where at least 6 and 8 move up past 2 and for 
n^=10 1, 3 and 4 are not distinguishable from 8.

As classification becomes more difficult and error increases 
6-8 appear to improve relative to the marginal methods and are best 
or near-best for identical populations and those differing only in 
variance, though rarely significantly better than the very simple 
marginal method 1. Except for o=3 and 25:10 where there is little



Methods (as described above)

Marginal methods:
1) Normal Optimal (NOPT)
2) Asymptotically Optimal MISE (ASOPT)
3) Cross-validation with Kullback-Leibler (XVKL)
4) " " " Integrated Square Error (XVISE)

Direct methods:
6) Cross-validation with the Brier score (XV BRIER)
7) " " " the log score (XV LOG)
8) " " " the modified log score (XV e-LOG).
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Table 2.2(a) Paired t-statistics of differences between methods

(nl , n2 ) - (10, 10)

Methods Scores

Brier e-Log MSE Brier e-Log MSE Brier e-Log MSE

w 3.29 1 .68 0.00
o=

1, 2 3.11 3.22 3.85 4.84 4.34 5.27 3.43 3.86 5.17
1,3 0.58 0.72 0.63 1.90 1.59 2.76 -1.10 0.09 -0.02
1,4 3.00 3 .18 3.83 ; 4.42 3.35 4.68 -0.71 -0.04 0 .42
1.6 2 .68 3.59 3.20 | 3.05 2.81 3.45 -1.55 0.05 -1 .92
1,7 3 .17 4.47 4.79 3.51 3.15 5.12 -1 .60 0. 13 -2.20 .
1,8 4.01 4.88 4.69 3 .82 3.37 5.22 -2.00 -0.60 -2.72
2,3 -2.10 -2 .17 -2.39 !-2.63 -2.64 -2.31 -3. 89 -3.36 -4.10
2 , 4 -0.38 -0.90 -1.67 -1,74 -2.74 -2.82 -5. 94 -6.54 -9.26
2,6 0.51 1.27 0.23 -1.08 -0.67 -0. 29 -3.94 -2.84 -5.68
2,7 0.61 1.56 2 .32 0.06 0.24 0.91 -4. 02 -2.95 -5.80
2,8 1.35 2 .10 1.99 -0.25 -0.09 0.54 -4.31 -3.48 -6.17
3,4 2 .14 2 .02 2 .12 2.02 1.47 1. 26 0.54 -0. 13 0.33
3,6 2.09 2 .79 2 .63 1.51 1.69 1.92 -0.91 -0.05 -2.47
3,7 2.68 3 .64 4.96 2.64 2.38 4.11 -1.07 0.09 -4.00
3,8 3.74 4 .50 5.08 2.62 2.57 3.98 -1.63 -1.06 -4.57
4,6 0.66 1.63 0.75 -0.19 0.56 0.64 -1.12 0.07 -2.04
4,7 0.81 2 .06 2.84 0.80 1.23 1.91 -1.17 0.16 -2.35
4,8 1.58 2.60 2.55 0.61 1.07 1.61 -1.58 -0.57 -2.81
6,7 0.04 0.15 2.53 1.17 0.94 1.56 -0.06 0.15 -0.73
6,8 0.93 0.77 2.02 1.13 0.76 1.23 -1.31 -1.88 -1.83 :
7,8 1.37 1.02 -1.18 -0.46 -0.48 -0.78 -1. 22 -1.68 -1.64

4.83 2.31 0.00
o=2x xv

1,2 3.26 3.20 3.79 3.59 3.44 4.39 4. 26 4.08 5.35
1,3 -0.32 0.05 0.51 1.03 0.83 2.22 -0.54 0.45 0.20
1,4 2.91 2.81 3.40 2.82 2.04 3.18 2.22 1.64 2.95
1,6 2.42 3.78 2.81 2.89 2.82 4.12 -0.42 0.20 0 .42
1,7 3.90 4.89 5.02 2.92 2.90 3.56 -1.03 -0.65 -0.19
1,8 ; 3.43 4.50 3.76 2.86 2.87 3.66 -1.33 -1.05 -0.90
2,3 1-2.90 -■2,64 -2.57 -2.01 -2.34 -1.58 -4.04 -3.22 -3.82
2,4 L 1.38 -■1.77 -2.08 -1.95 -3.21 -3.31 1-4.01 -4.85 -5.39
2,6 -0.69 0.53 -0.34 -0.03 -0.24 0.30 j -3.28 -2.95 -3.72
2,7 1.29 2.33 2.49 -0.11 0.03 -0.14 ! -3.85 -3.75 -4.10
2,8 0.50 1.52 0.93 CMO1 -0.14 -0.06 1-4.16 -4.09 -4.66
3,4 2.69 2.28 1.99 1.23 0.90 0.41 1 2.22 0 .81 1.81
3,6 3.39 4.53 3.38 3.08 3.19 3.19 ■ 0.09 -0.22 0.16
3,7 4.56 5.29 5.40 2.26 2.71 1.91 j  -0.54 -1.01 -0 .45
3,8 3.91 4.73 4.11 2.20 2.60 2.12 !-0.86 -1.37 -1.20
4,6 0.01 1.51 0.40 0.76 1.15 1.42 i -1.74 -0.97 -1.78
4,7 1.97 3.18 3.13 0.68 1.35 0.94 i  -2.37 -1.91 -2.27
4,8 1.15 2.36 1.61 0.59 1.24 1.02 -2.71 -2.35 -2.91
6,7 3.14 3.01 3.94 :-0.15 0.46 -0.76 -1.06 -1.16 -0.91
6,8 1.83 1.66 2.05 1-0.34 0.18 -0.66 -1.53 -1.64 -1.94
7,8 -1.49 --1.62 -3.10 I-0.53 -0.81 0.40 -1. 75 -2.71 -4.10
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Table 2.2(b) Paired t-statistics

(n1( n2 ) = (10, 10)

Methods Scores

Brier e-Log MSE Brier e-Log MSE | Brier
i

e-Log MSE

u 6.26 2.40 0 . 00

1 . 2 2 93 2 88 3 48 4 16 4 10 4 54 4 38 4 15 5 .34
1,3 -0 56 -0 29 0 33 0 34 0 58 1 62 0 21 0 98 0 .94
1.4 2 31 1 87 2 50 2 67 2 14 3 39 3 29 2 58 4 .38
1,6 2 09 3 00 2 20 0 87 0 94 2 24 1 48 1 96 2 .33
1,7 2 73 3 75 3 67 0 56 1 09 2 21 0 15 1 04 1 .03
1,8 1 19 1 29 0 66 0 83 1 29 2 03 0 27 1 08 1 . 05
2,3 -2 84 -2 57 ~2 44 -3 20 -3 26 -2 10 -3 58 -2 78 -3 .38
2,4 -1 67 -2 33 -2 82 -2 09 -3 59 -3 10 -2 85 -3 82 -3 00

2,6 -0 22 0 56 -0 55 -2 45 -2 67 -1 80 -1 32 -0 61 -1 .72
2 , 7 0 81 1 81 1 69 -2 68 -2 50 -1 71 -3 02 -2 32 -3 .24
2,8 -1 05 -0 88 -2 08 -2 54 -2 52 -1 94 -2 94 -2 30 -3 . 25
3,4 2 35 1 73 1 41 2 24 1 43 0 95 2 32 0 94 2 .11
3,6 3 08 3 37 2 27 0 62 0 42 0 66 1 39 1 29 1 .45co 3 49 4 03 3 83 o 30 0 69 0 73 |-0 05 0 02 0 .00
3,8 1 65 1 44 0 41 0 63 0 89 0 45 1 ° 09 0 05 0 .03
4,6 0 64 1 81 0 50 !-i 38 -0 80 -0 54 j-0 15 0 74 -0 .50
4,7 1 60 2 90 2 51 |-1 62 -0 58 -0 50 -1 87 -0 74 -2 .08CO -0 31 0 15 -1 08 ;-l 42 -0 43 -0 72 j -1 76 -0 71 -2 .08
6,7 1 45 1 86 2 55 1-0 46 0 22 0 06 i-1 81 -1 57 -1 .94
6,8 -1 00 -1 58 -2 05 -0 04 0 42 -0 44 ! -1 70 -1 54 -1 .93

-0 CO -1 91 -2 64 -3 74 1 10 0 51 -0 76 . 1 71 0 65 0 .35
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Table 2.3(a) Paired t-statistlcs
r

(n x , n2 ) = (25, 25)

Methods Scores

Brier e-Log
1

MSE ; Brier e-Log MSE
i

Brier e-Log MSE

u

0 = 1

3.29 i
!

1.68
1
I 0 .00

1
1.2 4.06 3.79 4.53 ! 5.09 4.72 6.23 : 7.41 7.00 8.47 j
1.3 2.23 2.98 2.10 ; 3.54 3.46 4.55 4.00 4.12 3.95 j
1,4 4.06 4.30 4.51 | 5.70 4.60 6.94 1 3.90 3.84 4.50 !
1,6 5.35 5.68 7.35 4.10 4.11 5.60 1.50 2 . 86 1.60 |
1,7 5.34 6.06 6.63 5.03 5.18 6.10 -0.66 0.92 -0.67 |
1,8 5.08 5.69 6.06 4.68 4.81 5. 72 -0.59 0 . 91 -0.66
2,3 -2.52 -1 .81 -2.90 -2.55 -2.04 -3.22 -3.65 -3.38 -5.36
2,4 -2.34 -2.01 -1.84 i -2.08 -2.85 00toCM1 -9.67 -8.35 --10.15
2,6 0.84 2.23 1.33 |-1.83 -0.91 -1.69 -4.77 -3.31 -5.78
2,7 1.62 3.26 1.93 I 00101 0.43 -0.11 -7.02 -6.32 -8.85
2,8 0.88 2.62 1.17 -1.34 -0.07 -0.70 -7.06 -6.39 -8.86
3,4 1.77 0.92 2.91 j 1.99 0.84 2 .73 -0.63 -1.08 0.51 ■
3,6 3.56 4.18 4.76 j 0.88 1.16 1.48 -2.52 -0.56 -1.86 !
3,7 4.13 4.95 4.93 2.94 3.57 3.70 COoto1 -3.68 -5.43 !
3,8 3.44 4.27 4.19 1.83 2 .45 2.54 -5.02 -3.71 -5.47 |
4,6 2.15 3.22 2.35 -0.89 0.46 -0.52 -1 .28 0.41 -1.78 !
4,7 2.75 4.10 2 .86 0.15 1.92 1. 18 -3.56 -2.28 -4.30
4,8 2. 08 3.48 2 .08 -0.31 1.33 0.49 -3.52 -2.31 -4.29 :
6,7 1.44 2.24 1.27 1.21 1.89 2 .54 -2 . 74 -2.60 -2 .76
6,8 0.19 1.10 -0,09 0.72 1.24 1.69 -2.68 -2.62 -2.79 ■
7,8 -1.77 --2.02 -2.50 -0 .94 -1.25 -1 .59 0.74 -0 . 21 0.03 |

4.83 2.31 0 .00
1I
j

o=2\. I
1,2 3.99 3.77 4.90 5.67 5.75 6.75 5.51 5.26 6.20
1,3 1.97 2.62 2.43 3.39 3.50 4.17 2.39 2.60 3.13
1,4 3.28 3.01 4.59 4.85 4.22 5.78 4.56 4.12 4.87
1,6 4.09 4.73 4.96 4.78 4.21 5 .97 2.09 2.33 3.80
1,7 4.80 6.01 5.96 5.20 5.18 6.15 0.74 1.66 2.92
1,8 4.84 5. 72 5.73 4.56 4.61 6.33 0.97 1 .62 3.01
2,3 -2.46 --1.66 -3.07 -3.05 -2.66 -4.33 -3.61 -3.11 -3.90
2,4 -2.38 --2.70 -2,67 -3.92 -4.75 -5.43 -3.71 -4.06 -4.36
2,6 0.37 2.13 -0.25 -1.92 -2.05 -1.95 -2 .98 -2.11 -3.14
2,7 1.44 3.46 1.39 -1.05 0-3*o1 -0.86 -5.12 -4.20 -4.71
2,8 1.33 3.18 0.58 -1.34 -1.05 -1.17 -5.04 -4.30 -5.05
3,4 1.56 0 .17 2.42 1.37 0.16 2.17 2 .20 1.46 1.98
3,6 3.07 3.56 2.74 1.58 0.71 2.94 0.01 0.30 0.20 |
3,7 4 .49 5.55 4.99 3.06 2.85 4.05 -2.26 -1 .59 -1.38|
3 , 8 4.52 5.20 4.05 2.35 1.98 3.88 -1.99 -1 .65 -1.53 j
4,6 1. 72 3.33 1.01 ; 0.01 0.51 0. 72 -1.58 -0.52 -1.23|
4,7 2.58 4.62 2.64 ] 1.22 2.20 1.84 -3.97 -2.66 -2.87
4,8 2.57 4.35 1.87 ; 0.71 1.44 1.61 -3.86 -2.80 -3.21 !i
6,7 1.48 2.17 2.00 1.62 2.42 1.60 -1,84 -1.47 - 1 .84|
6,8 1.42 1.89 1.14 0.96 1.33 1.23 -1 .66 -1.57 -2 .13
7,8 -0.41 -0.84 -1.78 -0.88 -1.71 -0.95 1.07 -0.47 -0.41
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Table 2.3(b) Paired t-statistics

(n1( n2 ) = (25, 25)

Methods Scores

Brier e- Log MSE Brier e- Log MSE Brier e --Log MSE |

6 26 2 40
f

0 00 i

i

1,2 4 55 4 43 5 30 5 38 5 27 6 27 ! 4. 61 4. 72 5. 35
1,3 1 84 2 71 2 94 2 68 2 78 3 99 ! 1 91 2 22 2 19
1,4 3 36 2 83 4 49 4 14 3 56 5 35 4 52 4 19 5 09
1,6 3 00 4 00 4 93 4 24 4 50 6 04 j 3 62 3 66 4 46
1,7 3 80 5 26 5 26 3 09 3 86 5 29 1 83 2 47 3 16

f-J- 00 3 49 4 87 4 98 2 35 3 01 4 05 2 01 2 42 3 17
2,3 -3 03 -2 20 -3 24 -3 00 -2 63 -3 80 -2 95 -2 89 -4 10
2,4 -3 31 -4 21 -4 08 -3 83 -4 12 -4 54 -1 83 -3 07 -2 89
2,6 -1 49 -0 23 -0 81 -1 12 -0 83 -1 69 -0 63 -0 33 -1 13
2,7 -0 44 1 52 0 05 -2 03 -1 11 -1 64 -3 06 -2 86 -3 67
2,8 -0 85 1 09 -0 28 -3 25 -2 73 -3 06 -3 06 -2 99 -3 66
3,4 1 51 -0 41 1 59 0 86 0 22 1 63 2 71 1 96 3 87COCO 1 71 2 22 2 48 1 78 1 66 2 28 2 01 2 08 2 65
3,7 3 27 4 46 3 58 1 0 95 1 61 2 44 -0 20 0 08 0 51
3,8 2 93 3 94 3 21 : -0 53 -0 17 0 39 -0 11 -0 05 0 49
4,6 0 28 2 22 1 11 1 11 1 .48 0 73 0 18 1 03 -0 00
4,7 1 29 3 .77 1 95 0 .04 1 .12 0 66 -2 43 -1 55 -2 79
4,8 0 88 3 .36 1 61 ' “I 21 -0 .33 -0 95 -2 41 -1 69 -2 77
6,7 1 52 2 96 1 .49 ' -1 .44 -0 .50 -0 03 -2 51 -2 .37 -2 78
6,8 0 97 2 26 0 .96 -3 .55 -2 .73 -3 00 -2 49 -2 .48 -2 75
7,8 -1 48 -2 .49 -1 .65 -1 .88 -2 .16 -3 .18 0 22 -0 .47 0 01



144

Table 2.4(a) Paired t-statistics

(nj, n2 > - (10, 25)

Methods Scores

Brier e--Log MSE Brier e -Log MSE Brier e--Log MSE

o= 1 \ .
3 .16 1 .40 0 00

1,2 3 .66 3 65 4 .63 4 03 4 .22 5 .03 4 .95 5 06 5 99
1,3 2 .69 2 .73 2 .68 2 .11 2 .50 2 .78 2 .08 2 50 1 .74
1,4 4 .33 4 .42 5 .54 3 .37 2 .98 4 .24 1 .96 1 80 2 .21
1,6 4 46 5 .27 4 .01 4 13 4 .04 5 73 0 .71 1 20 -0 .05
1,7 5 88 6 .38 5 .72 3 .86 3 .87 5 25 0 .22 0 79 -0 .46

l-i 00 5 78 6 .41 5 .27 3 oCD 3 .52 4 72 0 79 1 38 -0 .05
2,3 -1 68 -1 67 -3 .24 -2 45 -2 .33 -3 COCO -3 28 -3 06 -5 22
2,4 -1 92 -2 17 -2 37 -3 12 -4 .45 -4 69 -7 72 -7 65 -10 60
2,6 1 30 2 45 1 88 -0 28 0 .04 -0 37 -2 93 “2 39 -4 68
2,7 3 37 4 17 3 92 ~o 14 0 .07 -0 36 -3 50 -2 93 -5 36
2,8 2 72 3 78 3 63 -0 50 -0 40 -0 78 -3 14 -2 52 -5 07
3 , 4 0 75 0 57 2 82 0 86 "0 09 1 11 -0 26 -1 04 0 45
3,6 2 88 3 89 3 31 2 57 2 44 3 51 -0 66 -0 35 -1 27

CO —J 4 91 5 65 5 27 2 99 2 .67 4 22 -1 48 -1 08 -2 21COCO 4 29 5 28 4 76 2 44 2 06 3 40 -0 72 -0 31 -1 52 1
4,6 2 22 3 53 2 38 1 48 2 12 2 15 -0 43 0 25 -1 37
4,7 4 14 5 02 4 37 1 58 2 14 2 03 -0 93 -0 20 -1 88 I
4,8 3 62 4 78 4 04 1 18 1 69 1 50 -0 40 0 39 -1 46 1
6,7 2 98 3 00 4 21 0 23 0 06 -0 11 -0 91 -0 76 -0 72 j

O) CO 2 30 2 62 3 62 -0 42 -0 71 -0 72 0 12 0 20 0 01
7,8 -i 96 -1 71 -0 16 -1 38 -1 78 -3 13 1 65 1 79 1 30 ,

u 4 92 2 47 1 16

Q II ro /

1,2 3 52 3 36 3 71 4 72 4 55 5
.... 1
95 5 24 4 84 6 19

1,3 1 44 1 83 1 26 2 34 2 55 2 40 2 23 2 18 2 76 j
1,4 3 70 3 30 4 05 2 74 2 55 3 46 3 61 2 73 4 20
1,6 3 92 5 03 5 45 3 27 3 21 4 09 3 24 3 51 4 40
1,7 4 06 5 39 5 46 3 23 3 29 4 59 0 66 1 42 1 51
1,8 4 35 5 63 5 84 3 69 3 49 4 68 2 39 2 58 3 00
2,3 -1 84 -1 67 -2 70 -2 17 -2 00 -3 90 -3 56 -3 00 -4 83 ;
2,4 -1 93 -2 50 -2 38 -4 93 -5 78 -7 69 -5 64 -5 90 -8 06
2,6 0 59 2 14 1 58 -0 81 -0 30 -0 71 -1 90 -0 71 -2 38
2,7 1 29 2 86 3 25 -0 90 -0 22 -1 13 -3 65 -2 03 -4 22CO 1 58 3 15 3 17 -0 59 -0 02 -0 94 -2 16 -0 79 -2 97CO 1 35 0 74 2 15 -0 06 -0 43 0 49 1 02 -0 01 1 49
3,6 2 57 3 75 4 53 1 23 1 49 2 45 1 65 2 16 2 37CO 3 64 5 00 5 12 1 36 1 82 3 09 -1 28 0 03 -0 92
3,8 3 72 5 06 5 32 1 67 1 99 3 24 0 92 1 60 1 02
4,6 1 35 3 30 2 72 1 25 1 75 2 18 0 53 1 88 0 94
4,7 1 96 3 84 3 93 1 03 1 70 2 12 -1 73 0 03 -1 76
4,8 2 25 4 13 3 97 1 41 1 90 2 31 -0 03 1 29 -0 16
6,7 1 04 1 50 3 04 -0 17 0 07 -0 43 -2 70 -1. 94 -3 21
6,8 1 50 2 10 2 89 0 25 0 35 -0 20 -1 15 - 0 . 40 -1 66
7,8 0. 62 0 71 -0 53 1 04 0 79 0 88 2 43 2. 22 2 93
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Table 2.4(b) Paired t-statistics 

(n1; n2 ) = (10, 25)

Methods Scores

Brier e-■Log MSE Brier e--Log MSE Brier e~ Log
r

MSE |

0 = 3
\

6 56 2 92 0 00 |

1,2 3 37 3 38 3 37 4 96 4 46 6 38 3. 75 3 64 5 43
1,3 1 88 2 11 1 01 1 66 1 88 2 71 0 97 1 17 1 44
1,4 3 11 2 56 2 89 3 12 2 50 4 20 3 06 2 17 4 58
1,6 2 99 4 08 4 30 2 14 2 26 4 25 1 75 1 84 3 29
1,7 3 81 5 55 4 92 2 13 2 77 3 62 0 92 1 42 2 34 .
1,8 3 79 5 04 4 96 2 64 2 97 3 74 1 00 1 46 2 24 .

| 2,3 -1 05 -1 18 -2 44 -3 04 -2 40 -4 61 -2 82 -2 19 -4 73 !
2,4 -2 52 -3 38 -3 30 -5 62 -5 55 -7 62 -3 34 -3 91 -5 53
2,6 0 37 1 64 0 98 -2 41 -1 32 -2 39 -2 38 -1 41 -2 58

to -0 1 27 3 10 2 73 -1 89 -0 40 -2 56 -2 59 -1 73 -3 78

CO 00 1 20 2 61 2 36 -1 61 -0 24 -2 53 -2 62 -1 78 -3 92 i

CO 0 28 -0 22 1 33 0 97 0 04 1 30 1 48 0 32 2 58 j
; 3,6 1 95 3 46 4 64 0 77 0 99 2 29 0 85 0 92 2 14 |
•3,7 3 40 5 28 4 88 1 08 1 82 2 09 0 14 0 66 1 3700CO 2 84 4 39 4 86 1 55 2 02 2 18 0 17 0 60 1 14
4,6 1 19 2 98 2 39 -0 .28 0 83 0 81 -0 79 0 62 -0 .05

; 4,7 2 13 4 .48 3 71 -0 02 1 48 0 51 -1 25 0 13 -1 .28
4,8 1 99 3 89 3 48 0 36 1 67 0 57 -1 26 0 10 -1 .49
6,7 1 37 2 42 2 .79 0 .32 1 .23 -0 .40 -0 86 -0 .57 -1 31
6,8 ! i 65 2 .17 2 .52 0 .95 1 .53 -0 .31 -0 91 -0 .63 -1 54
7,8 i-0I

J----
.06 -0 .57 -1 .06 1 .27 0 .86 0 .22 0 06 -0 .20 -0 .85
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Table 2.5(a) Paired t-statistics

(ni- n2 ) = (25, 10)

Methods Scores

Brier e-Log MSE Brier e-Log MSE Brier e-Log tMSE

0=1
3.16 1.40 0.00 ii

!
1 , 2 3.25 3 .17 4.01 3.84 3.94 5.22 4.77 4.39 6.93
1,3 2. 25 2.80 2.19 0.84 1.63 1.74 2.05 1.98 2.22
1,4 3.03 3.00 3 .68 3.18 2.73 4.05 1 .63 1 .45 1 . 73
1,6 4.13 5.01 4.49 3.21 3.58 4.76 -0.13 0.39 -2,46
1,7 3.65 4.54 5 .18 3.78 4.48 5.51 -0.28 -0.01 -2 .16
1,8 3.48 4.30 4.69 3.80 4 .39 5.37 -0.88 -0. 14 -2 . 84
2,3 -1.45 -0.96 -2.53 -3.12 -2.80 -4.29 -2 .08 -2.41 -4.33
2,4 -0.63 0.03 -0.07 -2.88 -3.16 -3.40 -7.17 -6.15 -9.20
2,6 1.69 3.18 2.81 -0.12 0.32 -0.11 -3.70 -3.25 -7.38
2,7 1.55 3.10 3.86 0.47 1.17 0.92 -3.98 -3.78 -7.85
2,8 2.02 3.56 3.79 0.52 1.08 0.76 -4.09 -3.52 -7.57
3,4 0.80 0.72 2.14 1.82 0.76 2.42 -1.12 -1.06 -0.93

j 3,6 2.69 3.71 3.93 3.50 3.12 3.81 -2 .25 -1.63 -4.62
J 3,7 2.62 3.57 4.83 5.52 5.02 6.96 -3.07 -2.74 -5.60
3,8 2.90 3.78 4.37 5.26 4.65 5.97 -3.13 -2 .43 -5.11
4,6 1.87 2.85 2.69 1.21 1.76 1.27 -1.13 -0.57 -3.33
4,7 1.69 2.70 3.70 1.81 2.55 2.41 -1.28 -0.97 -3.24

' 4,8 2.14 3.15 3.72 1.86 2.46 2 . 23 -1.74 -1.05 -3.50 ;
6,7 -0.12 0.04 1.36 1.00 1.38 1.53 -0.30 -0.78 0.20
6,8 0.43 0.69 0.95 1.10 1.31 1.54 -1.54 -1.04 -0.60
7,8 0.61 0.74 -0.37 0.16 -0.41 -0.39 -1.04 -0. 28 -0.73 |

4.35 1.14 0.00
o = 2 ^ x ^

1,2 3.11 3.01 4.11 4.33 4.15 4.95 4.11 4.49 5.04
1,3 2. 29 2.68 2 .31 1.94 2.08 1.90 0.42 1.31 0 .47
1,4 3.26 2.95 3.68 3.20 2.62 3.42 3.09 2.99 2.97
1,6 4.29 5.25 6.00 2.78 2.71 3.56 2.03 2.51 3.05
1,7 3.98 5.02 5.78 2.90 2.95 4.99 1.80 2.46 3.22
1,8 4.15 5.05 5.80 3.00 2.97 4.,65 1.72 2.37 2.98
2,3 -1.02 --0.73 -2.42 -2.27 -2 .42 -3.70 -3.14 -3.39 -4.57
2,4 -1.07 --0,94 -0.78 -2.38 -2.42 -3.23 -2.20 -2 .78 -4.60
2,6 1.71 3.04 3.00 -1.02 -1.31 -1.50 -0.99 -1. 26 -1.43
2,7 1.51 2.97 2.79 -1.17 -1.39 -1.49 -1.35 -1.58 -1 .57
2,8 ! 1.67 2.99 2.73 -0.59 -0.58 -0.77 -1.46 -1.73 -1 .80
3,4 0.32 --0.08 1.63 0.73 0.44 1.76 1.70 1. 28 2 .04
3,6 3.05 3.93 5.24 1.30 0.97 2.46 1.99 1.58 2 .98
3,7 2.76 3.90 5.04 1.23 0.92 2.60 1.60 1.36 2 .73
3,8 2.93 3.94 5.11 1.90 1.78 3.47 1.48 1.18 2 . 45
4,6 2.22 3.35 3.45 1 0.29 0.33 0.33 0.02 0.13 0.60
4,7 1.98 3.21 3.30 ' 0.15 0.21 0.22 -0.35 -0,14 0.43
4,8 2.15 3.24 3. 27 0.63 0.75 0.89 -0.44 -0.27 0.19
6,7 -0.42 0.11 -0.64 -0.31 -0.28 -0.16 -0.66 -0.51 -0.27
6,8 -0.05 0.20 -0.88 0.59 0.73 1.04 -0.86 -0.76 -0.70
7,8 0.88 0.29 -0.56 1.26 1.29 1.58 -0.81i!

-1.32 -1 .38



Table 2.5(b) Paired t-statistics

(nlt n2 ) - (25, 10)

Methods Scores

Brier e-Log MSE Brier e-Log MSE

x a 5 .42 0.00
o=3X\ ^

1 , 2 2 .83 2 .86 4.04 4.07 4.10 4.44
1,3 2 ,65 2 .79 2.56 1.20 2.04 1.23
1,4 2 . 76 2.40 3.41 3.03 2. 88 3.86

; i,6 3.55 3.56 5.66 3.43 4.05 4.57
1,7 3.84 4 . 43 6.47 3.77 4.22 4.83
1,8 3 . 78 4.43 6.36 3.80 4. 21 4.93
2,3 -0.16 -0.30 -1 .85 -3.27 0CO1 -3.57
2,4 -1.73 -2 .35 -2.34 -0.41 -0.89 -0.78
2,6 0.99 1.51 2.00 0.56 1.07 0.08
2 , 7 1.67 2 .67 2.92 0.58 0.97 0.31
2,8 1.69 2.80 2.83 0.61 0.98 0.37
3,4 -0.99 -1.52 0. 24 1.98 1 .33 2.68
3,6 1.28 1.92 4.07 3. 29 3.65 3.91
3,7 2.30 3.32 5.39 3.90 4.01 4.49
3,8 2.31 3.43 5.10 3.94 4.01 4.61
4,6 2.19 2.85 3.62 0.82 1.65 0.54
4,7 2.53 3.62 4.28 0.81 1.48 0.75
4,8 2.48 3.62 4.16 : 0.84 1.52 0.81
6,7 1.19 1.85 1.88 -0.07 -0.38 0.38
6,8 1.22 2.04 1.77 -0.03 -0.37 0.48
7,8 0.05 0.50 CMCO01 0.33 0,12 0.94
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change from 5%, at 20% error at least one of 6-8 moves up to 4th 
place or better (displacing 2) for each o, though less noticeably 
for o=l and 10:25. For o=l however 1 is still generally superior, 
though for equal samples 3 is no longer better than 6 and 8, but 
for o=2 and 3, 2 is generally poor if not last and for n^ = 25 at o=3 
8 is significantly better than 2, and 1 better than 2 and 4 alone 
for n^ = 10 and possibly no better than 8 for n^=25. For 10:25 and 
o=3, 1 may be no better than 6 and 7 except on MSE. At 50% error. 
2 is last and generally poorest for all o. and now at least 2 of 
6-8 (usually 7 and 8) are in the 1st four, most notably for o=l, 
n^=10 and 25:10, where uniquely 1 is poorer than a direct method as 
8 improves on each of 1-4, at least on MSE. For n^=25 1 is no
better than (3 and) 6-8 except on MSE, nor are 1 and 3 different 
from 6-8 for o=3 and n^=10, and 1 clearly betters 6 (and 2) only 
for n^=25. For unbalanced samples, 25:10 has 1, 8 and 7 all better 
than 2, if not 3 also. For o=2 at least one of 7 and 8 are in the 
1st four, and for 10:25 both better 6, which is generally last 
along with 2. 2 is worse than at least 1 for o=3 also, where there
are no other differences.

More specifically, from Tables 2.2-2.5, for 10:10, there is 
little difference between 3 and 4. While some differences are 
nearly significant, notably for 5%, the only significant result is 
that 3 betters 4 for 5% with o=2 (on Brier score only). For 5%, 3 
is better than 6-8 for o=l and 2, and better than 6 and 7 for o=3. 
For 20%, 3 is better only than 7 and 8 for o=l, better than each of
6-8 on at least one score for o=2, but no longer better for o=3 
where there are no differences for 50% either. For 50%, the only 
differences between 3 and 6-8 are on MSE for which 3 is worse than
7-8 for o=l. Comparing 4 to 6-8, for 5% 4 is better than 7 on MSE 
for o=l and better than 8 on at least one score. 4 is also better 
than 7 for o=2 and on at least one score for o=3. For 20% there 
are no differences, while for 50%, for o=l and 2, 4 is worse than 8 
on MSE at least. 6-8 are the same at 20% for all o, 6 better than 
7 at 5%, o=2 only where 7 is also worse than 8 on MSE, as is also 
true for o=3 (on both e-log and MSE). For o=2 alone, at 50% 7 is 
poorer than 8. 2 is consistently poorer than 3 and 4 at 50%, is
poorer on at least 2 scores for 20% (not quite significantly poorer 
than 3 for o=2). For 5%, it is worse than 4 only on MSE (at least 
for o=3), but declines as error rate increases, being poorer than 
6-8 for all scores at 50% for o=l and 2, and poorer than 7 and 8
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only, on at least 2 scores, for o=3 where it is approaching 
significance or worse than 6-3 for 20% as well. 1 is better than 2 
for each case, and for 5% 1 is better than all except 3 for o=l and 
2. For o=3 1 is better than 6 and 7 on at least one score and is
not far from improving on 4 also. For 20%, again 1 is better than
all except 3 for o=l and 2. and better than 3 also, on MSE only, 
for o = l (and almost o=2), but for o=3 1 is better than 2 and 4 
alone (and not quite significantly better than 6-8 on MSE). For 
50%, for o=l 1 is now worse than 8 on MSE but not significantly 
worse than 6 and 7. For o=2, 1 is better than 4 on MSE only, and 
for o=3 does not decline as much relative to 6-8, though the 
differences between 1 and 6-8 are nonsignificant, and 1 is still 
better than 4.

For 25:25 there are more differences, which are now more 
consistent. 3 is better than 4 on MSE only for o=l, 5% and 20%, 
and on 2 out of 3 scores for 50%, o=3. For 5%, o=l and 2, 3 is
better than 6-8 while for o=3 it betters 7 and 8 only. For 20%, 3 
is now only better than 6 on MSE for o=2 and better than 8, on MSE 
at least, for o=2 and possibly o=l, but still better than 7 for 
both o=l and 2. As error rate increases 3 declines relative to 6-8 
(though for o=3, at 50% 3 is still better than 6 on at least MSE) 
so that at 50% there are no differences for o=2, while for o=l 3 is 
now clearly worse than both 7 and 8. The same is also evident for 
4 relative to 6-8, as at 5%, for o=l and 2, 4 betters 7, and 6 and 
8 on at least one score, though 4 is better than 7 and 8 only and
on MSE alone for o=3, but for 20% there are no significant
differences, while for 50% 4 is worse than both 7 and 8 for a=l and 
2, and also for o=3 (on MSE at least). Between 6-8 there are few 
differences. 6 is worse than both 7 and 8 for o=i, 50% and on at 
least MSE for o=3, where for 20% error 7 is also worse than 8, 
again on MSE. For 5%, o=3, 6 is better than 7 but only on e-log. 
2 is consistently poorer than 3 and 4 especially for higher error 
rates. It is better than 7 and 8 only for o=l and 2, 5%, (on
e-log) and declines, being poorer than 8 for 20% and o=3, poorer 
than 6-8 for both o=l and 2 at 50% and also for o=3 poorer than 7 
and 8. Once again 1 is better than 2 in all cases. 1 is better 
than all others for 20% and all o, and for 5% clearly better than 
all except 3 which it betters on at least one score. For 50%, 1 is 
better than 4 for all o, better than 3 for o=l and 2, better than 6 
on at least one score especially as o increases, and better than 7
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and 8 for at least one score for o=2 and 3 only. As it does for 6,
1 improves relative to 7 and 8 as o increases.

For unbalanced sample sizes, for n1 :n2 = 10:25 there are few 
significant differences between 3-4 and 6-8 for any o and 20-50% 
error, except that 3 is better than 6-8, at least for o=l. For 5%. 
3 and 4 are better than 6-8. 6 improves on 7 and 8, especially for
5% and 20%, In each case 2 is generally worse than 3 and 4, at 
least for higher error rates, and also declines relative to 6-8 as 
error increases, from being superior at 5% to inferior at 50%, For
1 versus the rest, as for balanced sample sizes, 1 is always better 
than 2. For 5%, o=l, 1 is best overall and also better than all
except 3 for o=2 and 3, as is true for 20% for all o (at least on
MSE). For 20%, 1 is also better than 3 for o=1, borderline for
o=2, and better for o=3 on MSE only, while for 50%, for o=l it is 
only better than 2 with 3 borderline (in particular 1 is no better 
than 6-8) but for o=2, 1 is better than all except 7. and for o=3, 
it is clearly better only than 2 and 4, bettering 6 on MSE alone.

For the 25:10 configurations, there is generally little
difference between 3 and 4, as 3 improves on 4 only for MSE and 
o=3, 20%. For 5%, 3 betters 6-8 for o=l and 2, and for o=3 on at 
least MSE. It is also better for o=l and 3 at 20%, and better on 
MSE for o=2, 20% or higher, but worse at least on MSE for o=l, 50%. 
For 5% and each o, 4 is better than 6-8 on at least 2 scores 
including MSE, but there is no difference for o=2 and 3 for higher
error rates. For o=l, 6-8 are better on MSE for 50% but 4 nearly
better than 7 and 8 for 20%. There are no differences between 6-8.
2 is worse than 3 and 4 for 20% or higher (worse than 3 only for 
o=3) and for o=3 may be worse than 4 at 5%. For o=l, 2 again 
declines relative to 6-8 from better to markedly worse as error 
rate increases, but for o=2 and 3 from better (or same) to 
nonsignificant. Comparing 1 to the rest, as usual 1 is better than 
2 in all cases, for 5% is better than all others, including 3 on at 
least one score, and for 20% is better than all except 3. For 50%, 
o=l, 1 is borderline with 3, but worse than or borderline with 6-8 
on MSE, and for o=2, 1 betters 4, and is superior to 6-8 at least
on MSE.

Conclusions
Of the marginal methods, in all cases method 1 is consistently

better than 2. 2 is consistently poorer than 3 and 4 which are
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usually similar, or 3 slightly superior.
Comparing 1 to the rest, at 5% and 20%, 1 was generally best of

all or better than all except method 3. though for n-̂  = 10 at 20% and
o=3 1 could not be distinguished from 6-8, nor from 8 at 5%.

Direct methods 6-8 are similar, especially for 25:10. but 6 may
be better than 7 and 8 for 10:25, especially for 5% and 20% error. 
For equal smaller samples, 6-8 are similar at 20%, but 8 superior 
for o=3 and n^=25. while at 5% 7 may be poorer, and at 50% 7 and 6 
respectively worse than 8 for n^=10 and 25.

Relative to 6-8 the marginal methods generally deteriorated as 
error rate increased, most notably relative to method 2 (the 
poorest marginal method) against which 7 and 8, at least, improved 
from poorer or comparable at 5% to comparable or better at 50%. By 
50%, 3, which was generally superior to 6-8 at 5%, may be worse
than 7 and 8 for equal samples for o=l but comparable to 6-8 for 
larger o, and 4 also worse than 7 and 8 for larger samples (n^=25), 
being comparable to 6, but worse than 8 only for n-j^lO. For 25:10 
at 50%, and o=l only, 6-8 were better than 3 and superior to 4 on 
MSE. For 10:25 6-8 were comparable to 3 at 50% for all o. 6-8 
were comparable to 4 by 20% for 10:25, and for equal samples (for 
which 7 and 8 were superior at 50%), and also for o > 1 for 25:10. 
At 50% for o=l, 1 was no different than 7 and 8 for n^=25, worse 
than 8 and comparable to 6 and 7 for n-[=10, no better than each of 
6-8 for 10:25 and worse or nearly worse than 6-8, on MSE, for 
25:10. For equal n-[, n^ = 10 only, for o=2 and 3 1 was no better 
than each of 6-8, but still superior for n^=25. For o=2, 1 was
better than all except 7 for 10:25 and still superior on MSE for 
25:10. For o=3 and 10:25 1 was still better on MSE than 6 but 
comparable to 7 and 8.

2.6 APPLICATION OF 2.5 TO A REAL DATA SET
The data used consist of observations on a set of 1000 patients 

who suffered a severe head injury. These cases were randomly split 
into a training and test set, each of 500 cases.

The aim was to predict a patient's recovery status as one of 2 
outcomes at 6 months after injury, on the basis of age (in years). 
Population irj consists of those who die or will remain in a 
permanent vegetative state and those who are severely disabled, 
moderately disabled or who make a good recovery. Age is one of 2 
particularly important feature variables in this context, and was
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chosen here to allow comparison with results in Chapter 4, where 
age has been grouped into 5-year categories and treated as a 
discrete variable. A fuller description of the data may also be 
found in Chapter 4. For reasons explained there, the data were 
reduced to 472 training and 476 test cases, comprising 248 and 239 
cases originating from and 224 and 237 cases of type ir2

respectively. The data are given in Table 2.6 and displayed in 
Figures 2.49 and 2.50, where the category 70-75 includes all cases 
of 70 years.

Table 2.7 shows the Brier score, log scores and error rate 
achieved by marginal methods 1-4 and direct methods 6-8, as used in 
Section 2.5. Of the former, methods 2 and 3 are almost identical 
while method 4 smooths slightly more in each population, and 
achieves slightly better scores as a result. Method 1 is 
strikingly different, smoothing considerably more, and, unlike any 
other method, gives more smoothing to tt^ than n 2 . It achieves 
better scores all round, and while the differences are not great, 
the estimated posterior probability function, seen in Figure 
2.51(a), is rather more realistic than any other method achieved, 
including the direct methods 6-8. Of the latter, method 6 is best, 
indicating the most smoothing and achieving slightly better scores, 
followed by method 8 with method 7 in 3rd place. Methods 7 and 8 
are comparable to method 4 while 6 is slightly better. However in 
all cases the differences are small and the direct methods do not 
even approach the very simple Normal Optimal method. Direct 
optimisation of the test Brier score (see again Table 2.7) shows 
that method 1 is not quite optimal and that more smoothing of each 
population increases the Brier score and produces an even smoother 
predicted probability function (Figure 2.51(b)), although the other 
scores deteriorate very slightly. It will be noted that while the 
difference between the scores corresponding to method 1 and the 
rest may not be thought important (and the differences in error 
rate are negligible) Figure 2.51 clearly illustrates the potential 
benefit in attempting to optimise the Brier score, although in this 
instance cross-validation is not the best means of achieving this. 
Figure 2.52 which shows a contour plot of the Brier score, 
calculated on the test data, and the performance of the various 
methods, also demonstrates this. It will be noted that in relation 
to the simulations considered in Section 2.5 the contour plot is 
rather flat, presumably due to the much larger sample sizes.



Table 2.6 Age data

Training
frequencies

Test 
frequencies j

Training
frequencies

Test
frequencies

Age n l "2 ffl "2 Age *1 n 2 irl v 2

0 0 1 0 0 22 3 2 3 5
1 1 1 2 0 23 2 8 8 3
2 7 1 1 5 24 5 6 1 1
3 3 3 1 3 25 3 5 7 8

j 4 0 4 3 2 26 2 3 6 3
5 2 4 3 9 27 2 7 3 3
6 4 5 1 6 28 0 4 2 1
7 1 3 1 3 29 | ■ 4 1 2 6
8 2 5 1 9 30 3 5 8 4
9 0 2 3 2 31 4 3 5 3

10 2 3 3 3 32 3 1 1 4
11 1 9 0 2 33 0 2 3 5
12 3 4 3 5 34 0 2 4 2

1 13I 2 4 2 5 35 4 6 4 0
1 14 1 8 2 2 36 3 2 4 2
I 15 5 6 1 6 37 2 1 2 1

16 6 10 1 9 38 4 2 2 2
17 3 10 8 2 39 2 3 1 7
18 8 4 5 15 40 4 3 2 6
19 4 13 6 12 41 3 4 4 4
20 3 6 5 6 42 2 2 5 1
21 6

]i .
2 2 6 43 4 3 3 3

Continued.
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Table 2.6 cont'd. Age data

Training 
frequencies frequencies

Training 
frequencies frequencies

Test Test

Age; Age

44 66

47
70

50
51 73

74
53 75
54 76
55
56
57
58 80

82
61
62
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Figure 2.49 Histograms of Age distribution for the training data. 
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Figure 2.50 Histograms of Age distribution for the test data.
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Table 2.7 RESULTS FOR REAL CONTINUOUS DATA

Method Smoothing
Parameters

Scores
i

i1

hi h2 Brier
Score

Log
Score

e-Log
Score

l
Error
Rate
(%)

i
1 Marginal methods

1 NOPT (1) 11.917 7.045 .7730 -.6413 -.5941 38. 2

2 ASOPT 2 .459 2 .812 .7671 -.6524 -.6053 40.3

: 3 XVKL 2.288 2.735 .7667 -.6533 -.6062 40.3

. 4 XVISE 3.390 3.848 .7692 -.6477 -.6007 39.9

Direct methods

6 XV BRIER 3.429 4.286 .7694 -.6474 -.6004 39 . 9

7 XV LOG i 3.416 3.552 .7692 -.6478 -.6008 39.9

8 XV e-LOG
1
! 3.428
!

3.703 .7693
. .

-.6476 -.6006 39.9

Spline £3 = 220,500 .7309 -.8264 -.7562 38.9

TEST BRIER 
optimisation

: 16.589

j—  ... ..

12.778 .7739 -.6420 -.5945 39.9

NOTE : (1) Fryer’s method (2.13) was used here since each sample
size is larger than those to which modification (2.14) 
applies, though the degree of smoothing indicated by the 
latter was only slightly less in each population.
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Figure— 2.51(a) Predicted probability of as a function of Age 
for marginal methods 1-4 and direct methods 6-8. Method 1 clearly 
stands out as the smoothest curve, methods 2 and 3 smooth least and 
4 and 6-8 are intermediate.
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Figure— 2.51 ( Predicted probability of jt̂  as a function of Age 
for the Brier-optimal kernel and the spline ratio estimate 
(sigmoid).
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Figure 2.52 Contour plot of the test Brier score as a function of 
the smoothing parameters (h^, ^2^' where h-̂  is associated with Age 
in the ith population, and parameter estimates for methods 1-4 and 
6-8. Contour heights are .7735, .7715, .7695, .7675, .7655,
.7635 and .7615.
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Nevertheless Figure 2.51 still shows clear differences between 
methods.

Methods 2 and 6 are taken as representative of each distinct 
group of methods, being the best of each group, and estimated class 
conditional distributions of age for these and method 1 are found 
in Figures 2.53 and 2.54, together with the Brier-optima. ones. 
Comparing these to the raw relative frequency histograms in Figures 
2.49 and 2.50. method 1. although a marginal method, is seen to 
grossly oversmooth the raw data in terms of providing an acceptable 
density estimate, although the effect of the data is still visible 
using methods 2 and 6. Especially in population 1, method 1. 
although marginal, effectively applies infinite smoothing. In each 
case, especially in tt2 , the Brier-optimal curves are flatter still. 
This exemplifies our argument of Section 2.4 that more smoothing 
than is marginally optimal is likely to be required for optimal 
estimation of the posterior probability function, or, equivalently, 
the density ratio, although here it is in fact a marginal method 
which "oversmooths".

In order to apply the spline ratio estimator of Silverman 
(1978a), the algorithm for which rests heavily on successive 
differences in the combined order statistic of the 2 training 
samples, the many ties in the data were broken by adding to each 
observation in the training samples an observation generated from a 
Un(-J£, % ) random variable. Here, the smoothing parameter was
selected by eye to give a suitable degree of smoothing and 
comparable scores to those of the kernel methods. The
approximately optimal parameter was taken to be M  220,500, but 
the problem seems ill-conditioned in that the solution of the 
non-linear equations (see Sections 1.5.2 and 2.5 above) is heavily 
dependent on the initial estimate provided, much heavier smoothing 
than is approximately optimal produces a rougher curve of 
completely different appearance, comparable to that of a smaller /3. 
and the degree of smoothness/direction of the curve is not a 
unimodal function of p. The resulting spline estimate is shown 
superimposed on Figure 2.51(b). Even on this much larger data set, 
although again smoother than most of the kernel estimates the 
spline has poorer performance.
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Figure 2.53 Estimated class conditional density of Age in rr^ for 
marginal method 2, slightly smoother direct method 6 and best 
method 1. The solid line denotes the Brier-optimal kernel which is 
slightly flatter again.
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Figure 2.54 Estimated class conditional density of Age in ng f°r 
marginal method 2, direct method 6 (smoother) and best method 1. 
The solid line denotes the Brier-optimal kernel which is much 
smoother still.
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2.7 EXTENSIONS

2.7,1 Variable kernels
Variable kernels were introduced in Section 2.2.2. Breiman. 

Meisel and Purcell (1977), using normal product kernels and samples 
of size 400 from both a Bivariate Normal and a mixture of Bivariate 
Normal distributions and estimating smoothing parameters to 
optimise directly 3 sample-based measures of error, found in each 
case that the best variable kernel was markedly superior to the 
best fixed kernel. Habbema. Hermans and Remme (1978) used 
Multivariate Normal, mixtures of Multivariate Normal, and logNormal 
distributions in 2 dimensions (and 1 case in 6 dimensions), with 
sample-based performance measures of a discriminant analysis nature 
using posterior probabilities, weighting small disagreements 
between p(TJ-jJx) and p(7rjjx) less than larger ones. They concluded 
that for skew distributions, as exemplified by the logNormal, 
variable kernel methods led to substantial improvement over fixed 
kernels but that for symmetric distributions and mixtures little 
improvement was made. Raatgever and Duin (1978) studied Normal and 
logNormal distributions in 1, 2 and 5 dimensions, using smaller
samples. Assessing results in terms of the Kolmogorov variational 
distance,

1 - min {f(x), f(x)) dx,
x

they found that for normal data, variable kernels seemed to improve 
on fixed ones only for sample sizes large relative to the 
dimension, but again there was considerable improvement for 
lognormal distributions. Copas and Fryer (1980) and Bowman (1981) 
considered transforming univariate skew data to approximate 
symmetry, applying fixed kernels, then transforming back. Bowman's 
transformation was in fact an application of variable kernel 
techniques. He found using data from mixtures of Normals, and 
measures of goodness-of-fit of the form

[f(x) - f(x)]2 w (x ) dx ,

that one such technique did particularly well for a one-tailed 
distribution but not so well for a skew distribution. Hand (1982, 
p. 121) summarised this by saying that "it seems that the variable
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kernel should be used in preference to fixed kernels, as it never 
perforins substantially worse than the latter and, especially for 
skew distributions, will often do markedly better". Abramson 
(1982) also comments favourably on their use in practice. While it 
seems therefore that using variable kernels will give an improved 
fit to a single density and therefore, probably, to the density 
ratio, we would expect that the conclusions of experiments similar 
to those in Sections 2.5 and 2.6, but using variable kernels, would 
be qualitatively the same i.e. that marginal approaches to 
smoothing parameter estimation are often suboptimal and can be very 
poor, so that more direct methods appear necessary, choosing 
smoothing parameters simultaneously. However it is possible that 
any potential improvement may not be as great with variable 
kernels, as Breiman et a l . (1977) noted that the estimated optimal
smoothing parameter for fixed kernel estimators was much more 
sensitive to the error criterion chosen to assess it than for 
variable methods.

2.7.2 Multivariate kernels
Rarely in practice would we have only 1 feature variable. We 

would also expect a more dramatic improvement for the direct 
assessment methods over "marginal" methods in the multivariate 
case, although illustrating this by means of contour plots as above 
will only be possible if a single smoothing parameter is used in 
each population. (For example, by standardising each variable as 
in Habbema, Hermans and van den Broek, 1974).

Calculation of MSE extends directly although numerical 
integration in more than 2 dimensions will now be necessary and may 
be time consuming. The wholly data-based assessment methods also 
extend readily but unless standardisation is used optimisation may 
be difficult as technical problems were encountered with numerical 
optimisation even in 2 dimensions.

Of the "marginal" methods those based on cross-validation
extend directly, but may be impracticably time consuming. In 
principle the asymptotic optimal method (2.12) extends to multiple 
dimensions. For a common smoothing parameter h and identical
product kernels, Epanechnikov (1969) gives the asymptotically
minimising MISE choice for h, while a similar expression may be 
obtained from results of Cacoullos (1966) for a single h but with a 
general multivariate kernel. In either case h is 0(n”1//̂ +4M  and
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for multivariate normal kernels is defined up to a factor involving 
multiple integration of a function of second partial derivatives of 
the true density.

In general, a direct extension of Fryer's Normal Optimal

multivariate normal kernels with an array S of smoothing 
parameters,

MISE(S, n, E, d) =

(4jr)-d/2 {|e|-J£ - 2 d / 2  +  1 \ 2 l  + S T *  + n*1 | S | + (n~i)/n [E + S \ ~ ^ }

using results on convolutions of Normal densities (Miller, 1964, 
pp. 25-26).

Even in the simplest case, using product kernels and common 
smoothing parameter h, a similar approach to that of Fryer (1976) 
is not possible. In any given instance, after (possibly robust) 
estimation of E, numerical optimisation would be required to 
identify the optimal smoothing parameter(s ). Murphy and Moran 
(1986) quote the corresponding formula using the kernel 
MVNd(0, hM), where M is a positive definite matrix, but minimised 
it directly in the context of a simulation study.

2.7.3 Multiple populations
With k > 2, the MSE generalises to

though again it is not possible to identify the minimum MSE choice 
of h diagrammatically and while the data-based assessment methods 
generalise straightforwardly, again numerical optimisation may be 
required in more than 2 dimensions.

2.7.4 Discrete variables
Feature variables are often discrete or binary rather than 

continuous. Product kernels are usually used for multivariate 
discrete or mixed data, and since computation is easier kernels are 
more easily applied than in the multivariate continuous case. 
Direct methods will be appropriate no matter what the data type. 
Discrete kernels are considered in more detail in Chapters 3 and 4.

method (2.13) is not possible. Using MVN^u, E) data, and
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CHAPTER 3 ORDERING IN DISCRIMINANT ANALYSIS

3.1 INTRODUCTION
We noted in Section 1.4.2 the nature of ordinal variables. 

These arise commonly in many fields, particularly in medicine and 
the social sciences. Some examples are :

1) severity of pain, assessed as "nil/mild/moderate/severe"
2) degree of pain relief after treatment, with categories 
"worse/same/slight improvement/marked improvement/complete relief"

3) degree classification : 1 / 2(1) / 2(2) / 3 / Unclassified /Fail
4) number of years of education
5) age group : 0-9 / 10-19 / 20-29 / ......

These are seen to range from the very soft "assessed" variables
such as 1), through more quantitative orderings to categorisations 
of a continuous scale of measurement such as 5) at the other 
extreme. Commonly, methods of modelling ordinal variables assume 
that the underlying distribution is smooth. For variables such as
5) with an interval scale arising from equal groupings of a
continuous variable, a smooth histogram is to be expected, provided 
that the true distribution is itself smooth. However had age been 
grouped into categories of unequal width, the smoothness would be 
lost. Similarly there is no reason to assume that data collected 
on degree of pain relief would yield a smooth histogram since the 
steps on scale 2) are not equal, and there is no reason why the 
proportion of cases experiencing "slight improvement" should be 
close to that of "marked improvement", say. This has important 
implications for modelling as the degree to which an ordered 
variable resembles an interval scale should be reflected in the
approach chosen. Anderson (1984) also notes this.

Most standard categorical data methods treat all variables as
nominal in that the results are invariant under permutations of the 
categories. Agresti (1984, p. 3) notes that the distinction 
between continuous and discrete variables is often rather less 
important than that between nominal or qualitative variables and 
ordinal or quantitative ones. Since the latter are inherently 
quantitative they should be treated more like interval than nominal 
variables. Some advantages of using ordinal methods are that they 
have greater power to detect some important alternatives to
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independence, and within the standard classes such as log-linear 
or logistic models, provide a richer hierarchy of models than is
possible with the standard nominal models, yet are mostly more 
parsimonious. easier to interpret, and can be applied where 
standard models are either trivial or else have too many parameters 
to be tested for goodness-of-fit. (Agresti, 1984, p. 3).

3 -2 TYPES OF ORDERING
Ordering can affect a data set in various ways :

1) through one or more explanatory variables being ordinal in
nature, examples of which were given above.
2) through an ordinal response variable, such as recovery status
after injury, which might be recorded as "dead / poor / moderate 
/ good recovery". Various authors have recently dealt with
ordered outcome models by fitting generalised logistic regression 
type models, notably McCullagh (1980) and Anderson (1984). (See 
Section 3.3).
3) A further possibility is that, viewed as a function of x,
response may be ordered with respect to the value or ordering of 
one or more independent variables, in the sense that the posterior 
probability of at least one outcome p(TTjJx) is an ordered function 
of x, either decreasing or increasing as one or more elements in x 
increase. More generally, rather than be monotonic p(v-[|x) might 
be convex/concave. The condition

p(77-jjx) = 1 requires that if p (tt̂ |x ) is ordered in the sense
i=l

described, then p(v2 |x) obeys the reverse form of ordering if k = 2,

whereas pfwjlx) does so if k > 2.

Conditioning on x, the training data can be regarded as having
arisen from a series of related Binomial experiments. If x is 
univariate then monotonicity of p(7r^|x) requires the same ordering 
of the Binomial parameters i.e. they are "simply" ordered (see 
Section 3.5.1), while in the multivariate case p(ff-jjx) is monotonic 
in each element of x if the remaining variables are fixed, so that 
the parameters are non-decreasing or non-increasing in each 
row/column/layer etc., having a "partial" order (see Section 
3.5.1). In this case the degree of smoothness of the marginal 
p.d.f. p(x|7r^) is irrelevant. Rather, we require a particular type
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of ordering to be exhibited in p(wi|x). Therefore to exploit 
ordering of this kind, the diagnostic approach, modelling p (tt̂ |x ) 
directly, appears to be necessary. The logistic regression class 
of models (Section 1.5.1} is well developed but either typically 
brings in variables in a linear fashion, which is too strong an 
assumption with non-interval variables, or more generally relaxes 
linearity by using a separate parameter to contrast all but one 
category back to a reference category. The latter, however, 
ignores the ordered structure completely. More generally still we 
might express p (i r 1 x ) as <t>(x) but bring in the appropriate form of 
ordering by suitable constraints on the parameters {<&(x)>. This 
brings us to isotonic regression techniques.

In d dimensions, if (n^j...i)» the number of observations in 
i t with x = (i, j,..., 1), are realisations of Binomial
(N ij..l» Pij..l) random variables, it can be shown (Barlow et a l . , 
1972, p. 102) that the MLEs of the (Pij l) subject to 
non-increasing rows/columns etc. are the solution of the problem,

minimise E E •...E 
G i j 1 n ij..l Sij..i

ij. .1

2 ATNij . .1

where G is the class of functions {gjj. i : i < p, j < q, . . and
1 s£ s => Spq...s )> re-ordering categories if necessary.
This is an example of the isotonic regression problem described in 
Section 3.5.1 below.

MODELS AND METHODS

3.3 MODELS FOR ORDERED RESPONSE
McCullagh (1980) developed a general class of models for a 

single ordinal response with one or more independent variables, 
either continuous or unordered categorical variables, based on the 
assumption of an underlying continuous latent variable, either
observable (as with grouped continuous response) or not (for 
assessed qualitative response). Categories can therefore be 
thought of as contiguous intervals on a continuous scale.

For k ordered categories the models have the form 
link (Pj) = 9j - where x is the vector of explanatory
variables, pj = Pr (Y *£ y j } j =1,.., k where yj is the jth outcome
category, and (©j)- J = 1,.., k, are the "cut-points" on the link
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function scale. The response Y - yj can be interpreted as 
indicating that the underlying continuous variable Z is such that 
Qj-1 < z 4 0j . Equivalently Pr(Y < yj|x) = F(®j ~ £Tx) where F is 
any suitable c.d.f.. The logistic link function has the advantage 
that the resulting parameter estimates are invariant to reversal of 
the order of the categories, as is desirable for ordinal variables, 
rather than to arbitrary permutations thereof, as occurs with 
standard models for nominal variables. This gives the model

log Pj = ej - PTx - j = l ,..,k-l

1-PJ
91 <  e2 . . . ek-l

fitted by means of iterative maximum likelihood techniques. 
McCullagh (1980) used a version of iteratively reweighted least 
squares.

Anderson and Phillips (1981) apply this model with more than 1 
explanatory variable, and also consider y-conditional sampling. 
They noted that with respect to parameter estimation, amalgamation 
of categories gave similar parameter estimates but the loss of 
information was reflected in higher standard errors. Ashby, Pocock 
and Shaper (1986) applied the method to a very large data set with 
5 explanatory variables.

Anderson (1984) argued against the general applicability of 
McCullagh type models on the grounds that the "cut-points" {©s } are 
difficult to interpret unless response is directly related to a 
latent variable, as in the case of a grouped continuous outcome. 
Secondly, they involve only 1 function £Tx to distinguish between 
all categories. The "stereotype regression" models on the other 
hand provide a hierarchy of models within which to test 
dimensionality (number of independent linear functions needed to 
distinguish between different categories) and, once this is 
established, distinguishability. Two categories are
"indistinguishable" with respect to x if x cannot separate them. 
Only if the model is 1-dimensional should an ordered model be 
considered. The McCullagh model is inherently a 1-dimensional 
ordered regression model suitable for a grouped continuous 
response. For assessed variables, the stereotype model generalises 
the standard logistic model (1.9) or equivalently (1.11), and 
therefore has the advantage of belonging to the exponential family.
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Structure is imposed on the (ps ) to generate m-dimensional models, 
m = 1, . . , q where q is the rank of d by k array (p^,..., p^) i.e. q 
4 min(d, k-1). A 1-dimensional model is obtained by constraining 
the (Ps ) to be parallel i.e. Ps = ~ t s P, s = 1,.., k and = 0,
= 1 for identifiability. The stereotype ordered regression model 
requires in addition that 1 = Vj_ > urg >. . . > = 0 (or the reverse,
by changing the sign of p) . Similarly, a 2-dimensional model has 
3S = s = !>■■> k with = 0, and constraints such
as V} = 1, = 0 and irg = 0, d>2 = 1 for identif iability.

Parameter estimation again requires numerical maximum 
likelihood estimation but is simpler for the y-conditional sampling 
case than if McCullagh models are used.

The simplest model is chosen on the basis of goodness-of-fit. 
If a 1-dimensional model is adequate one could then test for 
orderedness. (The model is ordered automatically if the parameter 
estimates are.) Indistinguishability is tested for by means of 
hypotheses of the forms H0 : §s = P t ■

The stereotype ordered model is also ordered in the sense that 
the class conditional distributions {fs (x)> are ordered with 
respect to each other. If z = pTx then Yz , where the subscript 
makes explicit the dependence of outcome Y on z , is stochastically 
increasing with respect to index z in the sense that 
Pr(Yp > z) ^ Pr(Yg > z) Vz <=> p > s, Vs, p. Anderson (1984) 
comments that the models can be modified for use with ordinal 
regressors.

3 -4 MODELS FOR ORDERED EXPLANATORY VARIABLES

3.4.1 Log-linear and logistic models
For ordinal explanatory variables Simon (1974), Haberman 

(1974), Goodman (1979, 1983) and Agresti (1983, 1984) amongst
others have used log-linear and logit models, assuming that 
meaningful scores can be assigned to the categories. In the 
bivariate r by c case, for instance, the standard log-linear model 
has the saturated form

log miJ = u + + \jY + M j X Y > 5>iX = S>jY = EXijXY = E X i / Y  = 0
i j i J

with re - 1 parameters to be estimated, where (m ij) are ^he
expected cell counts. The independence model is the only standard
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alternative. If both variables are ordered and suitable scores 
U 1 < u2 <•-•< ur anc* v i < v2 < --< vc can assigned to the
categories of X and Y respectively (usually the integers, (u^ = i). 
(vj = j), or at least evenly spaced scores for ease of
interpretation), the model

log m-jj = u  + + 3(uj_-u) (vj-v) (3.1)

describes the association between X and Y but with only 1 more 
parameter than the independence model, no matter how many
categories there are, and is a special case of the saturated model 
while 3 = 0 gives the independence model. (3.1) is called the 
"linear-by-linear association" model since for a fixed X the
deviation of log ntjj from independence is linear in Y through the
scores (vj) with slope P(uj-u) and similarly for fixed Y. 
Non-linear generalisations are also possible by inclusion of 
interaction terms. Equally spaced scores give the "uniform
association" model of Goodman (1979). As with the usual log-linear 
models iterative maximum likelihood estimation techniques are 
required for fitting. With 1 ordinal variable Y, say, or where the 
ordering of the other variable is not relevant, the "linear row 
effects" model is

log mAj = u  + XjX + \jY + Ti(v-j-v), E\ix = E\jY = Et* =  0
1 j i

with (r-1) independent association parameters. Similarly, a
"linear column effects" model can be defined. Either has the
independence model as a special case, putting p = 0, or = 0, Vi.
The models generalise in the obvious way to higher dimensions. 
Log-multiplicative models (Agresti, 1984, pp. 138-147) dispense 
with the need to assign scores a priori by replacing them with
parameters to be estimated, but at the expense of increased
difficulty in fitting.

Alternatively, logit models of a similar nature are available.
For instance, if m-jj^ is the expected frequency of a binary
response k given X = i and Y = j, then the simple additive model 
for the logit,

log (m|j2/ raijl) = + + TjY , E tj = E t j — 0,
i j

for nominal variables X and Y, with r + c - 1 parameters, gives way
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to models with a linear effect on the logit through the scores {vj} 
or (uj),

log(m-j_j2/miji) = a + + pY (v j-v)

or

log{m-^ j2/n>i ji) = « + j3x (u^-u) + 3Y (vj-v)

for ordinal Y or both X and Y ordinal, having r + 1 and 3
parameters respectively. {t^} and {tj} pertain to the partial 
association between X or Y and the response. a represents the mean 
of the r x c logits and the ( t ) are deviations from the mean due to
the location of X or Y. Again gY has a slope interpretation,
representing the change in the logit, and exp{/3} the multiplicative 
change in the odds, for a unit change in the ordinal variable. If 
response is ordered also, the "cumulative" logits (as used by
McCullagh (1980) and Anderson (1984), see Section 3.3) or other 
suitable logits (Agresti, 1984, pp. 113-115) may be expressed in a 
similar manner.

We noted that for non-interval ordinal variables, methods such 
as logistic regression make assumptions which may be inappropriate. 
The nonparametric kernel method of density estimation can also 
recognise ordered categories. We describe below its extension to 
discrete and ordered variables.

3.4.2 Discrete kernels

Smoothed relative frequency estimators
We noted in Section 1.4.2 the difficulties of using the MLE of 

a probability function given sparse data. In attempts to overcome 
the problem of empty cells a number of authors (e.g. Good, 1965, 
pp. 23-25; Fienberg and Holland, 1973; Stone, 1974b) have 
considered smoothed relative frequency estimators of the form

p(x) = (l-«) n(x) + a , (3.2)

n k

k = n o . of cells, 0 ^ <x < 1, or more generally

p(x) = (l-«) n(x) + oc<&(x) (3.3)

n
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where « is a vector of probabilities and n(x) is the frequency of 
outcome x. a is a smoothing parameter to be chosen (see below), so 
that we are smoothing to a greater or lesser extent away from the 
MLE and towards uniformity (3.2) or towards a parametric or other 
suitable model (3.3). The models can be derived from geometrical 
(Fienberg and Holland, 1973) or Bayesian arguments. From the 
latter, Good (1965), p. 25, and Fienberg and Holland (1973) put a 
Dirichlet prior on {p(x)> with mean o(x), deriving p(x), though 
with a slightly different parameterisation, as the mean of the 
posterior distribution. Therefore (3.2) reflects prior ignorance. 
For multiple variables, Fienberg and Holland (1973) chose o(x) to 
reflect the multivariate structure of the data. Leonard (1977) 
provides an approximate alternative to exact Bayesian estimates. 
For the univariate case with ordered categories, an alternative 
Bayesian approach is that of Leonard (1973), extending work of 
Whittle (1958), who incorporates ideas of smoothness into the 
covariance matrix of a Multivariate Normal distribution on the 
logit cell probabilities, though this leads to non-linear 
estimators. Leonard (1975) generalised this to 2-dimensional 
tables. We noted in Section 1.4.3 the Bayesian spirit of maximum 
penalised likelihood methods. Titterington and Bowman (1985) 
consider related discrete minimum penalised distance methods, some 
of which also yield linear estimators.

Fienberg and Holland (1973) noted that since the MLE is also 
the minimum variance unbiased estimator, no unbiased estimator can 
have a smaller risk function, defining risk as n E I(p(x) - p(x))^, 
nor can a biased estimator have uniformly lower risk as Johnson
(1971) has shown that the MLE is admissible with respect to risk. 
However this is due to the MLE performing well where p(x) is 
extreme (one element of x being close to 1). In some small sample 
comparisons (3.3) was found to be superior in terms of risk to the 
MLE for more moderate p(x) over a large region of the sample space 
especially as the number of categories increases. As n <» for 
fixed k, the risks are approximately equal so that (3.3) is also 
consistent, while for n ^ « and k » such that n/k is constant 
(corresponding to sparse data) the smoothed estimator has almost 
uniformly smaller risk, V

The kernel estimator
The kernel method is equally applicable to discrete as to
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continuous data. Instead of centering a continuous p.d.f. at each 
observation, a histogram is used so that the resulting estimate is 
built up by each observation contributing a fixed proportion X to 
the cell in which it lies, rather than the usual weight of 1. x 
plays the role of the smoothing parameter and, as in the continuous 
case, essentially determines the shape of the resulting estimate. 
The exact manner in which the remaining probability mass is 
allocated to the other cells depends on the type of data. For 
nominal discrete variables it is divided equally between the 
remaining cells whereas for ordinal ones adjacent cells recieve 
more weight than more distant ones. This may be seen to be more 
appropriate for grouped continuous data where the underlying 
distribution is in fact smooth, so that the probabilities of 
neighbouring cells are very similar, than for more qualitative 
non-interval scaled ordered variables such as severity of pain. 
Therefore one might expect kernels for ordinal data to perform 
rather better on the former type of data than the latter.

Aitchison and Aitken kernels
The simple form of kernel just described is due to Aitchison 

and Aitken (1976) and is the most widely used discrete kernel.
Formally, for a single binary variable and data ....  Xn , the
kernel estimator

p(x) = 1 En K(x |Xj[, X) , 
n i=l

where rj is the relative frequency of the jth cell and K(x|X^, x) = 
K (x | j , X) if X| = j. (3.4) is therefore seen to be a weighted 
average of relative frequencies.

The Aitchison and Aitken kernel is given by

becomes Ek r,- K(x|j, X) 
j=l

(3.4)

K(x|Xi, X) = x 1 Xi' (1-x) Xii (3.5)

so that K(xjX^, X) X , X^ = x 
1-X , X-t * x

and where the usual monotonicity requirement is satisfied by the 
condition < X ^ 1. No smoothing corresponds to x = 1, (c.f.
h = 0 in the continuous case), yielding the usual MLE, while x = %
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gives the uniform distribution and corresponds to infinite
smoothing. K(x(X, X) is seen to define a discrete probability
function. The d-dimensional equivalent of (3.5), employing a
common smoothing parameter X, is given by Aitchison and Aitken 
(1976) as

KfxIXi. X) , xd-d <Xi'X> (1.X )d<Xi,£)t * 4 x « l  ,3.6)

(= x^ . where a  = (1-x)/ X , 0 s£ cc < 1)

where d(X,x) is the Euclidean distance (X-x)^(X-x) which 
corresponds to the number of variables on which X and x differ.
K(x[X, X) in the form (3.6) provides a discrete counterpart of the 
commonly used spherical normal kernel,

K = (2n-h) d/2 exp -1 (x-X)T (x-X)

. h . . 2h

and is seen to be equivalent to the product kernel in d-dimensions,

Hd x1”*xj“ j i (l - x )lxj~(X)jI ( 
j=l

the "cubical binomial" density or product density function of d 
independent Binomial trials. As standardisation is not possible in 
the same way as for continuous data (though see the single 
parameter kernel estimator of Titterington et a l . (1981) described
in Section 4.2), a different kernel K j  may be required in each 
dimension j = 1 ....  d, corresponding to distinct Xj, whence

K ( x  |X, X) = nd X i1"«x J-^)jf (l-X)i*r<K>jl (Aitken, 1978) (3.7)
j=l

Mixed kernels of the form (1.7) are also possible.
For the general nominal variable with kj categories Aitchison 

and Aitken (1976) suggested

K ( x | X , X j ) = X j  , X  =  x

1-Xj , X 7 x

1/kj < Xj 1, (3.8)

for monotonicity, which, for kj = 2, reduces to the binary kernel
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Titterington (1980) demonstrated that for a single k-category 
variable Aitchison and Aitken's kernel can be written in the form 
of the convex relative frequency estimator (3.3) with a 
= k( 1-x) / (k~l) . Here <&(x) = 1/k, V x and hence we are smoothing 
towards uniformity.

For an ordered kernel, the weighting given to observation X-[ 
should reflect the distance |x-X^|. Aitchison and Aitken (1976) 
gave one such kernel for the trinomial case, defining K(x|X, X) as 
follows :

x \ 1 2 3

1 X2 2X(1-X) (1-X)2

; 2I !£(1-X2 ) X2 j m - x 2 ) |
i 3 u - M 2 2X(1-X) x2 !

i

so that V X, E3 K(xJX, X) = 1, This is only sensible for X > 2/3.
x=l

Alternatively, Titterington (1980) suggested one based on a linear 
decline of K(x|X, x) with increasing distance |X-x|. For example, 
for a 4-cell Multinomial, K(x|X, X) takes the form:

'N \  X
x \

1 2 3 4

1 X 3/6(1-X) 2/6(1-X) 1/6(1-X)

2 3/9(1-X) X 4/9(1-X)
1

2/9(1-X)

3 2/9(1-X) 4/9(1-X) X 3/9(1-X)

4 l/6(l-\) 2/6(1-X) 3/6(1-X) X

For a k-cell variable, write
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(3.9)

p(x) = rj K(x|j, X) as p(x) = CTr where r = (ri, r g   r^) is
j = l

the vector of relative frequencies and C is a k x k array such that 

CAj ^ 0 V i ,j and each row sums to 1. Letting C = I+(1-X)G where

Gjî  = -1, i = 1,..,, k and

Gi j ^ 0 > i ^ j , such that G1 = 0 where 1T = (1,. . . , 1) 

provides the Aitchison and Aitken kernel (3.8) if Gij = (k-l)-1, 

i ^ j, and the general form of Titterington1s (1980) ordered kernel 

is given by

G i j ~ 3 j , j < i

. (3.10)
2 (k+1-j) , j > i

(k-1)(k+l-i)

For k = 2, this again reduces to the binary Aitchison and Aitken 
kernel. For multiple variables, ordered or not, the product kernel 
is given in the bivariate case by

P(^) ~ clT R ^2 where G-̂  e Mk^xk  ̂ corresponds to the ith variable

with k^ categories and P and R e Mk lxk2 are now arrays of estimated 

probabilities and relative frequencies. In general we have

= Zk l  Ekd ( C i T ) i j . . . ( C dT ) lm r j i . . n .
j=l m=l

A more general prescription still is that of Habbema, Hermans 
and Remme (1978) who proposed

K(x|X^, Xj) Xj X̂ ’ where D^(-, •) is a suitable distance

measure,
Each of these kernels can be adapted to deal with missing data. 

There are 2 possibilities; either "missing" may be treated as an 
extra category, destroying any ordinal nature (unless k = 2 in
which case "missing" is considered to lie between "absent" and 
"present"), as in Titterington (1977), or a new kernel form 
developed. Murray and Titterington (1978) provide such a kernel 
which may be used with either ordered or nominal variables and the 
appropriate form of basic kernel such as those described above.
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Titterington (1980) provides another similar one.
Aitken (1978) compared performance of Aitchison and Aitken's 

(1976) kernels with both a single and separate Xj (chosen 
marginally), with that of the generalised Hills’ estimator (see 
below) and 2 parametric models, namely the independent binary model 
and a (predictive) logistic model, using Anderson et al.'s (1972) 
Keratoconjunctivitis Sicca data with 10 binary indicants and 2 

outcomes and a second data set with 7 and 5 binary symptoms and 2 
outcomes also. Comparing methods in terms of leaving-one-out error 
rate, log-likelihood and the number of classifications when a grey 
area was introduced, the conclusion was that overall no one method 
was better or worse than any other. In particular the performance 
of the kernel (with common X) and nearest-neighbour methods were 
identical, though the latter was much more computationally time 
consuming, especially as the number of variables increased, since 
various values of t (see below) were used. The kernel method did 
best on grounds of doubt, and well on log-likelihood where the 
multivariate kernel improved slightly, and has only one parameter 
to estimate. The multivariate kernel could perform very poorly 
with respect to error rate.

Hills' estimator
Although Aitchison and Aitken type kernels are the most 

commonly used, probably on grounds of simplicity and consistency 
properties, the earliest discrete kernel estimator was provided by 
Hills (1967) who used the kernel

K(x | Xj) = 1 , d(x , Xj ) < t 

0 , otherwise
(3.11)

where d(- , •) is a measure of distance and t is a threshhold
distance beyond which observations Xj cease to contribute to the 
estimate at x. Hills termed this a near-neighbour estimator but in 
fact it is a discrete analogy of Rosenblatt's rectangular kernel 
for continuous data (2.1) and suffers from the same lack of
smoothness properties. If t is chosen to be less than the smallest 
inter-cell distance the MLE results so that zero cell estimates are 
still possible, with consequent inability to assign test cases
which fall into such cells. Also consistency is only guaranteed
for t = 0 i.e. the MLE, noted by Aitchison and Aitken (1976) who
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provided a generalised version of Hills' near-neighbour estimator 
based on their own kernel, namely

K(x j X, X) = xd d ^-’ (1-K)d(— ’

B(d, t , X)
, d(X, x) £ t

0 , otherwise

with < x < 1 and B(d, t, x) , a normalising factor, =

Zt
j=0

xd-j (r-x)J ,

which reduces to Hills' estimator for X = J£, and for t = d becomes 
the usual Aitchison and Aitken kernel (Aitken, 1978). For X > %  

this assigns a smoother sequence of weights than Hills' method, 
more distant neighbours receiving lower weights. To choose X, the 
same criterion would be used as for the usual kernel. Again, t, 
the order of nearest-neighbour, must be chosen to avoid occurrence 
of points for which there is no near-neighbour. Aitchison and 
Aitken (1976) found it necessary to go to t = 3 in an application 
of the method to an example involving 10 binary variables and 77 
training cases of 2 types. With a suitable choice of x, the kernel 
method, however, will always assign non-zero probability to every 
point in the sample space, and the extent to which neighbouring 
points contribute is determined by the data through the choice of 
X.

Wang and van Ryzin kernels
While the multivariate kernels of Aitchison and Aitken are of 

product kernel form, more genuinely multivariate kernel estimators 
are provided by the weighted relative frequency estimators of Wang 
and van Ryzin (1981) and Hall (1981b). For univariate data Wang 
and van Ryzin provide the discrete analogue of the continuous 
Parzen type estimators and hence generalise the method of Hills 
(1967). As above, but with y  - 1-x, the estimator is

p(x) = 1 En K(x|X^, 7 ). K(xjX, 7 ) is a probability function
n i=l
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defined on the integers {0, ± 1 ,  ± 2 ,,,,}
additional constraints

and subject to the

K (x | X , 0) = 0  , X t̂ x 

1 , X - x

corresponding to delta functions for

continuous variables as h 0, so that with no smoothing the 
multinomial estimator results. y  belongs to an interval R' of the 
real line containing the origin. If pr(x e R') = 1 and 7n 0 in 
probability (with probability 1) the estimator is (strongly) 
consistent and in addition asymptotically normal as n ** « if rn^n -» 
0 in probability, as is also true if the MLE (as a consistent 
estimator) is substituted in any expression obtained for y n  (Wang 
and van Ryzin, 1981). They considered the Uniform weight
function,

K(x|X, y )  —  y  f 2t , |X-x| - 1, . . , t
1-7 , X = x

0 [X-x| > t

(3.12)

t a fixed constant, t 3s 1, and y  e (0, 1), similar to the Aitchison 
and Aitken kernel, and a geometric function

K(x|X, y ) = (1-x) xlx _ x l , |X-x| Ss 1

1-7 , X = X
, 7 6 (0, 1), (3.13)

which has a more gradual decline. The former was recommended with 
t = 1 or 2 on the grounds of its simplicity and the fact that it 
leads to an exact optimal y  (see below). Where the probability 
function to be estimated is supported on the non-negative integers, 
Wang and van Ryzin suggest adding the weights which would be 
assigned to X, X < 0, to that given to cell X = x.

H a l ^ s  relative frequency estimator
While the conclusion of Wang and van Ryzin (1981) was that the 

form of the kernel is not vitally important, Hall (1981b) provided 
an alternative relative frequency estimator for multivariate binary 
data, choosing the linear combination of frequencies to minimise 
directly the discrete analogue of MISE (c.f. the (asymptotically)
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optimal kernel of Epanechnilcov, 1969)

E {I (p(x) - p(x))2 )■ For the nearest-neighbour type estimator, 
x

p(x) = 1  2 t wj Nj(x) where t is a threshhold distance, t < d-1.
n j=0

and Nj(x) is the no. of observations at distance j from x, i.e.

N,(x) = I NotXi),
<̂ i : (Xi-x)T(Xi-x) = j>

Hall shows that the optimal choice of w is given by 

w = { P + n“*(D-P) p where w = (w q . w j  , . . , w^-)T ,

D = diag d d
0 t

*■
, p = E Po(x) p(x), where 

x

p(x) = (p0 (x), Pi(x)  Pt(x))T , P = I p(x) p(x )T ,
X

Pj(x) = E m P0 (X) > j =   t -
{X: (x-X)T (x-X) = j>

and Po(X) is the probability of observing feature vector X. 
Rewriting w and substituting relative frequencies for the {Nj(x)> 
to give MLE P, gives

w = {(1-n-1) It+i + n”1 P_1 D}_1 i,

where i = (1, 0,.., 0)^ e R^*1 and P is non-singular. A modified
version w^ is given which will ensure that the resulting estimates
will sum to 1, namely,

Hi = An~2 < p + (l-hT An“2 p) h / (hT An“2 h)} 

or

Hi = H + Bn_1 lt+1 (l-hT Bn_1 i) / (hT B ^ 1 It+i). where

T • - - ,-1h = d , d d
0 1 t

Bn h (1-n 1 ) It+1 + n-1

A ~2 Mn

D.

= P + n 1 (D-P), and

Probability estimates using either w or w^ may be negative and
are slightly biased. Improved estimates of the weights may be
obtained by iteration using w or w^ as a startpoint and
re-estimating p{x) . For t = 1, 2, and 3, Hall compared his
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estimators with those of Hills (1967) (3.11) and Aitchison and
Aitken (1976) (3.6), which are also linear combinations of the 
{Nj(x)}, on simulated data (Hall, 1981a). With 2 disease classes 
and 4 binary variables, w and w^ gave very similar predicted 
probabilities, which for each t were similar to those using 
Aitchison and Aitken's kernel with the smoothing parameter of Hall 
(1981a), especially for t = 1. Hills' method, for each t, produced 
quite different probabilities from either method. Hall's method, 
for given t, is simple to calculate, and, being based on a measure 
of distance, extends immediately to categorical and multiple 
variables.

In conclusion, while the above are all weighted combinations of 
relative frequencies, the method of Aitchison and Aitken (1976) is 
the most general since it extends to mixed and ordered variables as 
well as multivariate categorical ones, via the product kernel form. 
Those of Hills and Hall would require more generalised distance 
functions to cope with mixed data. The latter method, though quick 
to compute, can lead to negative estimates while the former can be 
time consuming, especially in multiple dimensions, its consistency 
is not guaranteed and, unlike the kernel method (for suitable 
choice of x) can lead to zero cell estimates. Like both Hills' and 
Hall's methods, in principle Wang and van Ryzin's estimator is 
potentially more genuinely multivariate than that of Aitchison and 
Aitken.

Choice of smoothing parameter X
Most of the literature makes use of product rather than 

genuinely multivariate kernels and assumes a common form of kernel 
for each variable. We may either assume a common smoothing 
parameter a priori, or allow separate degrees of smoothing, 
possibly combining these (for instance by averaging) if a single 
parameter is required. Secondly, if the (kj) are not constrained 
to be equal these may either be estimated on a marginal basis or 
simultaneously estimated to optimise a global multivariate 
criterion. One would expect a multivariate density estimate to 
require more smoothing than marginal ones, and the study of 
Titterington (1980) found that the latter approach does produce 
smaller {Xj}.
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As with continuous kernels there are numerous methods by which 
to choose X.

Maximum likelihood
Aitchison and Aitken (1976) showed that maximisation of the 

likelihood

Hn p {X j ) yields Xj = 1, v j , indicating no smoothing, as in the
j = l

continuous case. Substitution of x = 1 into the discrete kernel 
estimator (3.7) gives the usual MLE p(x) = n(x)/n and the usual 
problems associated with the multinomial estimator arise unless 
n/ IT kj is sufficiently large, and no empty cells occur - often not 
the case.

Methods based on cross-validation
Given this difficulty Aitchison and Aitken (1976) adopted the 

methodology which Habbema, Hermans and van den Broek (1974) used 
for continuous variables, maximising instead the modified 
likelihood

Hn P (i )(2£i) where p(j)(x) is the kernel estimate obtained by 
i=l

omitting Xj from the design set, that is 

P(i) (X) = rn K(x |Xj , X).
1 j=1n-1 ...J^i

Analagous to the procedure for continuous variables, the

cross-validatory choice of X for a given loss function L(6(x), p(x))

which measures the distance between the vectors s(x) and p(x), with

the multinomial indicator

6j(x) = 1, x = Xj

0, otherwise ,

minimises 1 En L(6j(x), Pj(x)). (Bowman, 1980). 
n i=l

The discrete Kullback-Leibler distance

L (s i ̂ £ j ) _ E <5j(x) log 6 j (x) = c - log Pi(Xj), c a constant, can
x------------- -----

Pi(x)
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again be shown to yield the modified maximum likelihood estimate

(MMLE) of Xj. Similarly, the discrete analogue of ISE, the Summed

Square Error, L(6-^, ) = E (fi^tx) - Pi(x))2 (3.14)
x

again yields a tractable criterion, X being chosen to minimise

I  l n  Pi(Xi)2 - 2 En Pi(Xi), 
x i = l i=l

as does the weighted version L(6-^, ) = E C©i(x) - Pi(x)]2 / Pi(x)
x

which emphasises good estimation of the cell probabilities of less 
common outcomes. In the context of smoothed relative frequency
estimators, Stone (1974b) chose a by cross-validation, to minimise 
both quadratic loss (3.14) and modulus loss functions Ej |<5j-pj|, 
noting that « is not robust to the choice of loss function. He
compared the use of these, in terms of cross-validated quadratic 
loss (Stone, 1974a, 1974b) with that of Fienberg and Holland
(1973), (see below), one of Good (1965), and the MLE on 6 
examples, finding that none was uniformly superior. Use of modulus
loss results in an estimator that can still have some zero
estimates (Hand, 1982, p. 145).

For a single binary variable the modified maximum likelihood 
estimator of x can be found explicitly, giving X 
max {&, -(rj2a^ + r22a2 )n/a1a2> (Titterington, 1980), where r^ and 
r2 are the relative frequencies of each outcome and a^ = n(r^-r2 )“l 
and a2 = n(r2-r1 )-l. However, full multivariate optimisation
requires numerical methods, even if a single smoothing parameter is 
assumed.

Using common x and binary variables Aitchison and Aitken (1976)

showed that X -» 1 as n -> «> and hence p(x) -> p(x). Bowman (1980)
P P

established pointwise consistency for the same estimator.
Hall (1981a) noted that if several cells are empty and all 

other cells contain more than 1 observation that the modified 
llikelihood can have a local maximum at x = 1.

Hall's method
In view of this potential difficulty Hall (1981a) suggested in 

such situations minimising the expected sum of squares (c.f. MISE
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for continuous variables),

E{E (p(x) - p(x))2 } or weighted mean sum of squares, 
x

E p(x) E{(p(x) - p(x))2}. Based on a Taylor expansion of p(x) in 
x

terms of powers of (1-X), and using the Aitchison and Aitken kernel 
with common x,

X(x) = 1 - p(x){d{1 - p(x) + Pi(x)} / n{p!(x) - dp(x)}2

was found to minimise the asymptotic mean square error, where Pj(x) 
now denotes the probability of falling into a cell at distance i 
away from x. This is location dependent and would yield a discrete 
analogue of the variable estimator, but suffers from the problem 
that if sample estimates are substituted for p(x) and Pi(x) and x 
is empty then x(x) = 1.

Asymptotic minimisation of the 2 suggested global criteria 
yields overall estimators

X = 1 - [d + E p(x){p1 (x) - dp(x)}] / nE (Pi(x) - dp(x))2 
x x

and

X = 1 - [E p(x)2{d(l - p (x )) + Pi(x)}] / nE p(x) (Pi(x) - dp(x))2
X X

respectively.
Again p(x) and Pi(x) are replaced by their MLEs, or, 

alternatively an iterative procedure may be used, starting with x0 
= 1, say, evaluating the criterion based on the kernel estimate of 
<p(x)}, re-evaluating X etc. until convergence is achieved.

Hall's method has the advantage over those of the previous 
section of not requiring numerical optimisation.

The above estimates rely on 1st order expansions of p(x). Hall 
(1981a) also gives the corresponding X for the mean summed squared 
error criterion based on the 2nd order expansion. Hand (1983) 
compared this with the modified maximum likelihood method on 5 
moderately large real data sets involving 10, 5, 12, 8 and 20
binary variables respectively. The 3rd data set was an extension 
of the 2nd. Each involved 3 populations except the 1st, which had 
2 outcomes. Allowing separate xs for each class, but common for
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each variable, it was found that MMLE consistently produced 
slightly smaller X, and hence more smoothing, than Hall's method 
but in terms of error rate on a separate test set there was 
negligible difference, suggesting that the choice of method may 
not be critical and that simpler methods may be adequate. For the 
5 variable case and assuming common x in each class, sensitivity to 
the value of X was investigated in terms of the same error rate and
it was found that the range of error rates was very small, any x e
(.7, 1.0) giving very similar results. Both MMLE and Hall's method
using separate \s produced near-optimal error rates. However using
more general loss functions, appropriate where different costs of
misclassification apply, the choice of loss criterion was seen to 
have a critical effect, not only on the size of the range of x 
producing acceptable results but also on the optimal value of x.

For data sets 1 and 4, involving more variables, and in each
case using 2 classes only, a range of (xlt \2 ) were chosen, X^ 
referring to the smoothing parameter used in class i. In 
contrast to the continuous variable situation, where different
degrees of smoothing are to be preferred in different classes, the 
smallest error rates consistently occurred for X-̂  = x2 , for both 
data sets for both apparent and test set error rates. The
leaving-one-out error rate was minimised for the overall best of
these. Both MMLE and Hall's 2nd order method undersmoothed
slightly but with only a slight increase in error rate.

Wang and van Ryzin (1981) also minimised mean summed squared 
error. For the uniform kernel (3.12) an exact expression was
obtained for the parameter y  while for the geometric kernel (3.13) 
an approximate solution was found by truncating the weight 
function. In either case 9  is dependent on (p(x)} and again 
relative frequencies are substituted, yielding consistent 
estimators. The asymptotic mean summed square error was shown to 
be strictly less than that of the MLE (except in the degenerate 
case).

For samples of size 10, 20, 50, 100 and 200, and 500
simulations of data from Negative Binomial and Poisson 
distributions, the uniform kernel with t=l and 2 and the geometric 
kernel were compared with the MLE and the parametric models with 
estimated parameters, on grounds of mean summed squared error, and 
found to perform uniformly better than the MLEs though worse than 
the appropriate parametric model. There was little to choose



between these kernels and more complex ones. As Aitchison and 
Aitken (1976) also commented of their estimator, the advantage of 
such smoothed estimators is that their large sample properties 
equal those of the MLE but are better for small samples when some 
degree of smoothness is present, while choice of the wrong
parametric model will not give a consistent estimator.

Minimum mean squared error (MMSE)
Fienberg and Holland (1973) chose the degree of smoothing to 

minimise risk, following the standard procedure of substituting 
relative frequencies in the resulting expression for cc. Hand 
(1982, p. 149) notes that here too an iterative procedure is
possible. As for MMLE full multivariate optimisation requires 
numerical methods, even if a single smoothing parameter is .assumed, 
which can be time consuming. For multiple dimensions increasing 
sparsity of the data may mean multivariate MMSE is not possible. 
For a single k-cell variable an exact MMSE solution can be
obtained, using the formulation p(x) = CTr, either substituting 
relative frequencies or using an iterative approach. In principle 
an optimal form for G may be found to minimise MSE, subject to the 
constraints (3.9), though not explicitly. If G is specified 
marginal estimation will be quick. Brown and Rundell (1985) 
minimised instead an unbiased estimator of mean summed square
error, to avoid substitution of probability estimates in the 
resulting parameter estimator.

For the purposes of smoothing ordered discrete data, 
Titterington and Bowman (1985) compared unordered kernels with an 
ordered kernel of Habbema, Hermans and Remme (1978) and Wang and 
van Ryzin’s uniform-1 kernel, with smoothing parameter chosen by 
MMSE and cross-validation with both quadratic and Kullback-Leibler 
loss, with several logistic-normal Bayesian estimates. Unusually, 
variation amongst means of choosing the degree of smoothing was 
less than that amongst the methods used. For the purposes of 
smoothing sparse data the uniform kernel was found to undersmooth, 
removing rather few zero cells. A logistic-normal approximation 
also undersmoothed, and the ordered kernel was superior to both 
these and unordered kernels. The same was true for simulated data 
from ordered Multinomial distributions, assessing methods in terms 
of average squared error relative to that of the MLE, where the 
Habbema kernel excelled. For unordered distributions unordered
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kernels were best, but the former were close behind. In all cases 
the logistic-normal methods were outperformed by a kernel method.

Pseudo-Bayes methods
Titterington (1980) estimated x by giving it a Beta prior. 

The posterior for X is then a mixture of Betas to which in
principle exact Bayesian methodology may be applied. To avoid
heavy computation, a fractional updating method was proposed, 
approximating the mixture by a single Beta distribution whose 
parameters are updated iteratively. The posterior mean is then 
readily estimated from the final parameter estimates, setting it to 
XA if the estimate is smaller than this. Over 20 simulations with 
sample sizes of 10, 30, and 50 of univariate binary observations
with p = .1, .3 and .5 and 2 sets of initial parameters (/3q , y0 ) =
(1, 1) and (6, 1), in terms of bias and root mean square error the 
approximate and exact Bayesian methods were found to give similar 
results but the former achieved considerable saving in time. Both 
were competitive with the use of MMLE. Fienberg and Holland’s MMSE
approach was at least as good as MMLE and a deterministic method
similar. The unsmoothed MLE had the smallest bias though the other 
estimators were often close behind and good in terms of root mean 
square error.

For multivariate binary observations, if independent Beta priors 
are assumed for the {X^> the posterior is also a product of Betas 
and in principle both exact and pseudo-Bayes methods extend, though 
the former quickly becomes prohibitive as n and the number of 
variables increase. For polychotomous variables the same applies.

Titterington (1980) compared 12 methods on the 10-dimensional
data of Anderson et a l . (1972), in terms of the estimates of {x^}
and ordering of test cases on the basis of estimated likelihood 
ratio of one population rather than the other. He found that 
marginal methods, while very quick, produced rather sharp estimates 
compared to those of the corresponding multivariate ones and that 
MMSE produces less smoothing than MMLE. The fractional updating
methods compared well to full multivariate MMLE with separate x^ 
but was much faster. The different methods produced roughly 
similar orderings on the basis of likelihood ratio and therefore 
for practical use he recommended use of a couple of marginal
approaches plus a fractional updating method for speed. Treating 
the data as a 1024-cell Multinomial and applying smoothed relative
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frequency estimators led to misclassification of 4 rather than 0 
test cases, so that it appears worthwhile to make use of the 
multivariate structure of the data.

Summarising, we have described a number of means of automatic
choice of smoothing parameter for a density estimator. As in the
continuous case, within the context of discrimination these methods 
may be expected to perform suboptimally in terms of good likelihood 
ratio estimation, a more direct approach being appropriate.

3 *5 ISOTONIC REGRESSION

3.5.1 The isotonic regression problem
Let X be a finite set (x^, x2 .....  xn ) ■ A binary relation <

on X establishes a "simple order" on X if < is

1) reflexive : x < x, x e X
2) transitive : x < y, y < z =*> x < z, x, y, z e X
3) antisymmetric : x < y, y < x =» x = y, x, y e X and
4) every two elements are comparable : x, y e X = ^ x < y o r y < x  .

A "partial order" is reflexive, transitive and antisymmetric
but there may be non-comparable elements. Thus every simple order 
is a partial order.

A real-valued function g on X is defined to be "isotonic"
("antitonic"), or order preserving, with respect to the order < if 
x < y, x, y e X g(x) < g(y) (g(x) ̂  g(y)).

Given a positive weight function w ( ■) , the (least squares)
"isotonic regression" g* with weight w of a fixed function f(')> f
and w both defined on X, minimises

En (f (xiJ-gUi) )2 w(xi)
1=1
over the class of isotonic functions g on X. Barlow et al.
(1972), pp. 24-26, show that g is unique.

Solving for g is a constrained quadratic programming problem
but due to its wide applicability (see Barlow et a l . , 1972) a
number of specialised algorithms have been proposed.

3.5.2 Algorithms
For a univariate simple ordering or amalgamation of simple



orderings, g* is easily found, commonly by using the
Pool-Adjacent-Violators (PAV) algorithm of Ayer et a l . (1955) (or
see Barlow et a l . , 1972, pp. 13-15). This progressively pools
adjacent points , x^+ 1 , where the ordering is violated i.e. f(x^)
> f(xi+i)> defining a block { x ^ ,  with function value
f(x i , x ifl) = {f(x1 )w(x1) + f(xi+1)w(x1+1)} / {w(Xi) + w(x1+1)} 
and associated weight (w(x^) + w(x^+1)}. The ordering is such 
that {x-̂  t x i+i} < Xj if x i < Xj and x^ + 1 < x j • Once all such pairs
of points have been pooled, blocks are amalgamated in the same
manner, if necessary, until no reversals of the ordering occur. 
Another version of this is the Up-and-Down-Blocks algorithm of J.B. 
Kruskal (Barlow et a l ., 1972, pp. 72-73). Cran (1980) gives a
Fortran algorithm based on the latter. Both algorithms apply only 
to simple orderings.

For partial orders and/or more than 1 dimension, more complex 
algorithms are required. An example of a d-dimensional partial 
ordering was given in Section 3.2, with X = {(i,j,..,l) :
(i,j..,l) < (p, q, . . , s ) if i < p, j ^ q ....  and 1 < s), with a
finite range for each of i, j,...,l. Again such algorithms involve 
averaging of function values over subsets of X. Four are discussed 
in Section 2.3 of Barlow et a l . (1972). Murray (1983) cautions
that the Minimax Order algorithm of Alexander (Barlow et a l ., 1972, 
pp. 81-88), can lead to cycling. Others are given by Gebhardt 
(1970), Lee (1983), who notes a problem with a sub-algorithm of the 
former, and Dykstra (1981). The latter is efficient when f is 
nearly isotonic. Lee (1983) compared his Min-Max algorithm with 
those of Gebhardt and 2 others on 2 real data sets and 3 simulated 
ones, showing his to be much the most efficient. All of these are 
exact methods but most require considerable computation and 
identification of a great many subsets of X, tending to be slow. 
Alternatively, approximate iterative methods are available which 
converge to the correct solution. In principle, the following 
methods should be very quick.

Dykstra and Robertson (1982) give an iterative algorithm based 
on successive 1-dimensional smoothings for the least squares 
isotonic regression which is increasing in each of several 
variables, while Dykstra (1983) gives a generalisation of this to 
solve general restricted least squares regression problems. Both 
successively project the current solution (less the incremental 
change due to enforcing the same constraint previously) onto the
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solution space corresponding to a given constraint. In the latter, 
each constraint is treated separately, whereas the former treats 
blocks of constraints simultaneously, using the PAV algorithm (see 
Section 4.4 of Dykstra (1983)). Since isotonic regression is a 
special case of quadratric programming subject to linear 
constraints, the general approach can be used and there can be 
advantages in doing so (see below). Section 4.2 of Dykstra (1983) 
gives the means of projection.

A Fortran implementation for the 2-dimensional case of Dykstra 
and Robertson (1982) is given by Bril et a l . (1984), using the PAV
algorithm to perform the univariate smoothings, though see Murray 
and Wilson (1987) for some corrections to this. The solution is 
not uniquely determined for zero-weighted cells as these may be 
replaced by any values satisfying the order constraints.

For the purposes of smoothing, Dykstra and Robertson (1982) 
replaced near zero-weights with a small positive weight, 6, 
suggesting the value 10- 5 . However we have found in practice with 
several real data sets that this can lead to very slow convergence 
(Murray and Wilson, 1986), When a near-zero weighted cell is 
involved in a row or column smoothing its smoothed value is almost 
entirely determined by the values of adjacent cells, meaning that 
the smoothed value can be very different from the original one. In 
turn this implies that certain components of the matrices of row 
and column adjustments can become very large. This means that in 
practice G, the isotonic regression of the array F, is approached 
so slowly that it is not possible to know when the solution has 
been obtained to within a desired accuracy. It can be shown for 
the simple

'I O' '1-6 6"
2 by 2 array F = with weights W =

.0 -l. .6 1-6.
(6 < » ),

that after 2n iterations of the algorithm (n row and n column

f1 -1smoothings) the estimate of G, G2n = (1-6)(1-26)2n-l
ll - 1.

Using 6 = 10~5 as suggested, after 50,000 and 100,000 iterations 

respectively, we have

G5 0 ,000 =
'•37 -■37' '•14 -•14'

and G100,000 =
.■37 -'37. .‘14 -•14.
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whereas the solution is given by

G = (obtained, for instance, by using the algorithm of

Dykstra, 1981), Thus, after 100,000 iterations the results are not 
even correct to 1 significant figure.

In practice we have overcome the problem of slow convergence by 
setting the F value of zero-weighted cells to the overall weighted 
mean of the data array and by taking 6 to be a substantial fraction 
(e.g. 0.5) of the smallest non-zero cell weight. Murray and Wilson 
(1986) provide the necessary Fortran code to implement this 
suggestion within the algorithm of Bril et a l . (1984). While this
moves the solution away from the isotonic regression, it introduces 
extra smoothing in areas of the array where the reponse is poorly 
determined. Section 4.4.2 reports an example in which this was 
found to be beneficial.

In general, starting with row rather than column smoothing, or 
vice-versa, can also substantially affect the speed of convergence, 
as also noted by Dykstra and Robertson (1982), although this was 
not in itself sufficient to overcome the zero-weighted cell 
problem.

Wollan and Dykstra (1987) provide a Fortran implementation of 
Dykstra (1983), Section 4.2, to solve the problem

minimise (f~g)T S * (f-g) 
g : Ag < b

(3.15)

where f and b are specified vectors of length n and 
respectively, S e Mnxn is a given positive definite matrix and

A e M^xn = a( 1)

a. (k )

corresponds to the k linear inequality

constraints. The isotonic regression problem is seen to be a
-1 -1 )special case of (3.15) , with S-1 = diag (w-j/, w2  .....   »n

where (w^, w2 ,....  wn ) is the vector of weights, and b = 0,
arranging the arrays F and W into vector form for the multivariate 
case. Immediately it is seen that any zero weights must again be
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replaced by a positive weight 6.
Not surprisingly, applying the algorithm to the 2 by 2 example 

above, again with <5 = 10~5 , caused exactly the same problems, the 
same formula for the current solution applying after n applications 
of each constraint. However, Wollan and Dykstra (1987) warn that 
unequal weights may cause slow convergence, and state that the 
addition of redundant constraints can speed up convergence. With 
the only possible extra constraint, g-^ <; g£2 . in the above
example, convergence to the correct solution was in fact achieved 
in a very few iterations. This is encouraging since the more 
general algorithm also has the advantage of being able to find the 
closest convex/concave function (in terms of least squares) to f 
i.e. the closest function which is isotonic on one side of an 
unspecified turning point and antitonic on the other. Section 4.1 
of Dykstra (1983) relates to concave restrictions. Other than in 1 
dimension, this is non-trivial using the isotonic regression 
algorithm.

Finally, we note that the isotonic regression is defined only 
at the points e X. For intermediate values it can only be given 
within limits imposed by the ordering constraints. It is 
characterised, by means of the pooling procedures used to derive 
it, as a rough step function or surface, taking a uniform value 
within a "solution block" or "level set". We return to this point 
in Section 4.4.
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CHAPTER 4 ORDERING-A COMPARATIVE STUDY

4 ■1 THE DATA AND BACKGROUND
The data arise from an ongoing prospective study of patients 

suffering severe head injury ("severe" being defined as being in 
post-injury coma for at least 6 hours), initiated at the Southern 
General Hospital, Glasgow, but currently involving several centres 
internationally. The "Head Injury Study" was set up to investigate 
the feasibility of predicting eventual recovery status on the basis 
of data collected shortly after injury, both in order to enable 
concentration of limited and expensive resources on those patients 
most likely to "recover", since almost half of such patients will 
die even with intensive care, and provide an objective means by 
which to carry out clinical trials of new management regimes. In 
practice the response variable used is recovery status at 6 months 
after injury, by which time the condition has usually stabilised 
(Jennett et a l ., 1976). A fuller description of the data,
prediction problem and references may be found in Titterington et 
a l . (1981) who used the data in an extensive comparative study of
discrimination techniques. This is described in Section 4.2 below.

The "Glasgow Outcome Scale" (Jennett and Bond, 1975) defines 
recovery status as one of 5 outcome categories, namely "death", 
"persistent vegetative state", "severe disability", "moderate 
disability", or "good recovery", so that outcome is seen to be an 
ordered response variable. The important predictor variables are 
age and various measures of brain damage (as evidenced by degree of 
brain dysfunction), such as eye, motor and verbal response to 
stimulation. These 3 scores collectively constitute the "Glasgow 
Coma Scale" (Teasdale and Jennett, 1974). Their sum, ranging from 
3 (no response) to 15 (normal), is referred to as the "Coma Sum" or 
"Coma Score" and is a particularly powerful single predictor 
(Teasdale et a l . , 1979). All such predictor variables are either
binary or ordered discrete variables, apart from age although in 
the 1981 study age was grouped into decades and also treated as an 
ordered categorical variable. The data used here consist of 
observations on the same 1000 patients (collected between 1968 and 
1976) as were used in the existing study. These were split 
randomly into a training and test set, each of 500 cases and the 
sample relative frequencies of each outcome used as plug-in 
estimates of the prior probabilities.
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Like the kernel estimator (see Section 3.4.2) the isotonic 
method may be used with incomplete data, by treating "missing" as 
an extra category but constraining the isotonic estimate in those 
cells to lie between those corresponding to the lowest and highest 
values of the variable which is missing. In practice, given 
existing problems with isotonic regression algorithms (see Section 
3.5.2), this may prove difficult and to facilitate model 
comparisons only complete cases were used.

4-2 AN EXISTING STUDY
The paper of Titterington et al. (1981) describes an extensive

study to compare numerous discrimination techniques applied to the 
large and complex data set described above. The complexity is due 
to multidimensionality, substantial missing data, and a mixture of 
variable types, namely ordered categorical variables (which may be 
regarded as either nominal categorical or continuous), binary 
variables and a continuous variable.

Three ordered categories of outcome were used, 
"dead/vegetative", "severely disabled", and "moderately 
disabled/good recovery", although none of the models used took 
account of this ordering. Four subsets of variables (comprising 4, 
4, 6, and 10 variables repectively) displaying differing degrees of 
dependence, and with different proportions of missing data, were 
chosen (on grounds of prior knowledge) on which to compare the 
methods. Set 1 comprised Age, EMV Score (i.e. Coma Sum) and 2 
others - weakly dependent and with appreciable missing data. Set 2 
consisted of the highly dependent variables Age and the raw Eye, 
Motor, and Verbal Scores, on which there was little missing data. 
Set 3 was an extension of Set 1 and Set 4 resulted from Set 3 by 
breaking down the "created indicants" such as EMV Score.

Three discrete parametric models were considered, based on 
assumptions of independent variables but allowing for a single 
overall association factor (equal to 1 for complete independence), 
Lancaster models allowing for 1st order interactions, and latent 
class (i.e. mixture) models assuming the underlying models to have 
the independence form (see Section 1.4.2). All of these coped 
straightforwardly with missing data but none took account of 
ordinality. Discrete kernel methods were used, both treating 
"missing" as an extra category and hence losing the ordered nature 
of the variables, and using the missing data kernel suggested by
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Murray and Titterington (1978) which adapts a basic kernel (either 
ordered or nominal). Product kernels were used with Aitchison and 
Aitken's (1976) kernel (3.8) for general categorical variables and 
Titterington1s (1980) kernel (3.10) for ordered categorisations. 
Two means of choosing the smoothing parameters were employed, 
namely marginal minimisation of mean squared error, and the
multivariate pseudo-Bayesian fractional updating technique of 
Titterington (1980), Further, for the case where "missing'' was 
treated as an extra category, a single smoothing parameter, u, 
0 < u < 1, was chosen in order to optimise assessment criteria and 
the degree of smoothing for a k-category variable controlled by 
where X^ was set to l-(k-l)u/k. This compares to the method for 
continuous variables whereby each variable is pre-standardised and 
a single parameter h used, the effective smoothing in the ith 
dimension then being proportional to the ith standard deviation. 
Finally, the variables were treated as continuous, and the linear 
and quadratic discriminant rules applied, with the usual 
assumptions of normality. Missing data were treated both by proper 
maximum likelihood estimation and the cruder method of substituting 
sample means. The latter was also used in the linear logistic 
model, again as if the data were continuous. The methods were 
compared in terms of error rate, average logarithmic and Brier 
scores, and an average loss measure as well as 2 measures of
reliability, one based on comparison of predicted and actual degree 
of recovery at 6 months after injury and also, for discrete 
parametric models, one given by Hilden et a l . (1978a).

Overall, the independence model was the best, proving 
surprisingly robust to variable interdependence, with a moderate 
association factor being optimal. It was only bettered, in data 
set 2, by a Lancaster model and has the advantage of ease in
dealing with incomplete data. Latent class models were generally
poor, only doing well for data set 4. Of the continuous models, 
the results of the linear discriminant function (with maximum 
likelihood estimation of missing values) were comparable to those 
of the discrete parametric models, but the former provides a single 
method which did well for each variable set, whereas choice of an 
appropriate discrete model could be critical. It also has the 
advantage of recognising ordered categories, as does the linear 
logistic model, which despite its cruder treatment of missing data, 
was comparable to the LDF for all except data set 4. The QDF was
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consistently poor.
The kernel methods had consistently disappointing log and Brier 

scores and only even approached other models for variable set 2 
(which had little missing data). This was thought to be due to the 
high dimensionality of the data and a discrete kernel being unable 
to cope well with such sparse data. Neither the marginal MMSE nor 
the multivariate pseudo-Bayes methods provided sufficient smoothing 
in this multivariate problem, resulting in very low density 
estimates and unreliable predicted probabilities. The single 
parameter method was much the best of the kernel methods despite 
taking no account of ordering. Of the methods which used Murray 
and Titterington1s (1978) missing data kernel, those using an 
ordered kernel were better for all variable sets than those which 
did not, and overall they outperformed the methods using an extra 
category for "missing" with the marginal, and pseudo-Bayes choices 
of smoothing parameter. This suggests that the single parameter 
method might more closely approach the better parametric models if 
used with an ordered kernel, although Titterington et a l . (1981)
noted that if we can assume normality for the LDF then continuous 
or mixed kernel models rather than discrete ones might also prove 
useful in this context.

A general conclusion of the study was that variation in 
performance among the methods tended to be smaller than that 
amongst variable sets and therefore, given sufficient informed 
prior knowledge to construct sensible "created indicants", such as 
the Coma Sum, a simple model such as the independence model will do 
just as well if not better than either a more complex parametric 
model or the robust LDF used in an uninformed manner.

4.3 A COMPARATIVE STUDY
As in Section 2.6 we treat the 2 population case, collapsing 

outcome to "dead/vegetative" (^i). and "severely
disabled/moderately disabled/good recovery" (n^)- Age was grouped 
into 15 5-year categories allowing treatment as an ordinal 
variable.

4.3.1 A univariate example
Age was chosen as a single predictor, both to allow comparison 

with the results of Section 2.6, which used it as a continuous 
variable, and since it is the single most important indicator of
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recovery at or after 24 hours post-injury (prior to that Coma Sum 
is known to be more informative). Table 4.1 and the histograms in 
Figures 4.1 and 4.2 display the data for both the training and test 
samples.

While the likelihood of death after severe head injury 
increases with age (Figures 4.1(c) and 4.2(c)), it will be noted
that the conditional distribution of given age is convex rather 
than strictly isotonic, due to the different response to injury of
the brain of a very young child. Modification of the isotonic
regression algorithm to allow for this is straightforward in 1 
dimension. However, as we noted in Section 3.5.2, with multiple 
predictors this is awkward and it is then simpler to collapse the 
categories to induce isotonicity.

The ordered discrete kernel (3.10) of Titterington (1980), and 
the isotonic method (denoted ISO) of Section 3.5.2 are used to
estimate p(7r-j_|x), using both marginal and direct means to choose 
the smoothing parameters, namely

1) Marginal Minimum Mean Squared Error (MMSE) with 2 parameters.
2) Marginal Kullback-Leibler Cross-validation (XVAL) with 2 

parameters.
3) Marginal Minimum Mean Squared Error (MMSE) with common parameter.
4) Marginal Kullback-Leibler Cross-validation (XVAL) with common 

parameter.
5) Multivariate Minimum Mean Squared Error (MV MMSE) with common 

parameter.
6) Multivariate Kullback-Leibler Cross-validation (MV XVAL) with 

common parameter.
7) Bivariate Brier Score optimisation (MV BRIER) with 

cross-validation.
8) Brier Score optimisation (BRIER) with cross-validation and 

common parameter.

In principle one might collapse the 2-dimensional contingency 
table across "population", analagous to the usual procedure for 
marginal parameter estimation where the table is collapsed across 
one or more variables. However the former would base estimation of 
X upon a larger than appropriate sample size, and so marginal 
methods 3 and 4 simply average the parameter estimates of methods 1 
and 2 respectively, whereas the corresponding "multivariate"
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Table 4.1 Univariate data
............  ...

Training sample
......  .......  "— ... . - ■ -

Test sample

Age Cell Frequency Relative Cell Frequency Relative
count ^l Frequency count O f Frequency

O f  TTj of n

0-4 21 11 . 524 17 7 .412
5-9 28 9 .321 38 9 . 237

10-14 37 9 .243 27 10 .370
15-19 69 26 .377 65 21 .323
20-24 43 19 .442 40 19 .475
25-29 31 11 .355 41 20 .488
30-34 23 10 .435 39 21 .538
35-39 29 15 .517 25 13 .520
40-44 31 18 .581 34 15 .441
45-49 26 21 .808 31 15 .484
50-54 31 20 .645 28 14 . 500
55-59 24 11 .458 28 20 .714
60-64 31 24 . 774 22 19 .864
65-69 27 23 .852 17 13 .765

^70 21 21 1 .000 24 23 . 958

Total1 472 248 .525 476 239 .502
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Figure 4.1 Histograms of the raw training relative frequencies.
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methods 5 and 6 set X^ equal to X2 in the original expression to be 
optimised (as does method 8), The estimated smoothing parameters 
and resulting Brier scores achieved on the 500 test cases for the 
various methods are shown in Table 4.2(a), where x^ denotes the 
smoothing parameter used in population 77-̂ . Error rates are also 
provided for interest and are seen to be very similar. Lower and 
upper limits on the Brier score for these methods, achieved by no 
smoothing at all of the raw MLEs (denoted RFTR) , and use of the 
cell relative frequencies in the test set (RFTS), respectively, are 
provided for comparison in Table 4.2(b). Table 4.3 contains the 
fitted proportions for each method.

XVAL is seen to perform slightly better on both criteria than 
MMSE in each case, both marginal and multivariate, smoothing 
slightly more, although differences in the Brier score are small. 
Although differences in computation time are minimal in this case, 
little is gained by using 2 parameters rather than a common one, 
nor by a multivariate approach, as methods 3 and 4 smooth slightly 
more than 5 and 6 respectively and are slightly superior. 
Differences in the fitted distributions are small and the 
corresponding histograms are visually very similar. Method 2 is 
presented, as the best, in Figure 4.3(a). Table 4.2(b) provides 
the highest Brier scores achievable with these kernel methods, by 
direct optimisation of the test Brier score (using either 2 
parameters (method 7T) , or a common parameter (8T)), and we find 
that the isotonic method (Table 4.2(a)) achieves a Brier score very 
close to the optimum. The potential for improvement over the 
indirect methods (1-6) is considerable but, disappointingly, the 
direct methods (7 and 8) using cross-validation, which are 
virtually identical (see Table 4.3), are poorer on Brier score than 
any other method, smoothing rather less than would be optimal, 
especially in , as is also seen from the fitted class conditional 
distributions in Figures 4.5 and 4.6. While the value of smoothing 
is seen in that each method outperforms the unsmoothed relative 
frequencies, in terms of Brier score, isotonisation alone comes 
close to being optimal (see Figures 4.3 and 4.4). Figure 4.7, a 
contour plot of the Brier score as a function of the smoothing 
parameters (Xj, X2 ), shows the relative performance of some of the 
kernel methods.

It is of interest to compare the results here to those obtained 
in Section 2.6 using age as a continuous variable. Particularly



Tab1e 4.2(a) RESULTS FOR THE UNIVARIATE EXAMPLE

Method Smoothing
i

Scores

Parameters

X1 x2

!

Brier

Score

Error 

Rate ( % )

Marginal methods

1 MMSE - 2 parameters .811
!
i

.862 .76933 41. 8

2 XVAL - 2 parameters .761 .827 1 .77027 39.3 !ii
3 MMSE - 1 parameter .836 .836 .76926

1
41 .8 !

4 XVAL - 1 parameter .794 .794 .77018 41.8

Multivariate methods

5 MV MMSE - 1 parameter .842 .842 .76915 41.8

6 MV XVAL - 1 parameter .796 .796 .77013 41.8

Direct methods

7 MV BRIER SCORE - 
2 parameters

.946 .935 .76649 41 .8

8 BRIER SCORE - 
1 parameter

.939 .939 .76655 41.8

ISOTONIC REGRESSION
(with quadratic modification) .77397 39.3



Table 4.2(b) RESULTS FOR THE_ UNIVARIATE EXAMPLE

- ■“
Method

.......... . ...
Smoothing

Parameters

....  '.. ....... iScores j
|
i

X1 x2 Brier Error ;i1
Score Rate ( % ) :

........  . . i
Reference methods •

Direct optimisation 
on the test set :

7T MV BRIER SCORE - 
2 parameters

8T BRIER SCORE - 
common parameter

.322 .065 

.475 .475

.77399 38.0 

.77336 38.6

TEST PROPORTIONS (RFTS)
| (resubstitution)

; TRAINING PROPORTIONS (RFTR)

.78341 37.0 

.76455 41.8



206

Table 4.3 Fitted distributions: p (x | )

Age RFTR 1 2 3 4 5 6 7 7T 8 8T RFTS |
0-4 .044 040 .038 .040 .039 . 040 .039 . 043 .028 .043 .032 .029

j 5-9 . 036 037 .037 .037 .037 .037 .037 . 036 .039 .036 . 038 .038 1
10-14 .036 040 .041 .040 . 041 .040 .040 .037 .050 .038 .047 .042 11■ 15-19 . 105 097 .094 .098 .096 .098 .096 . 102 .076 . 102 .082 .088 !
20-24 . 077 076 . 076 .076 .076 .076 .076 .076 .076 .076 .076 . 080 j25-29 .044 052 .054 .051 . 053 .051 .053 .047 .073 .047 . 066 .084

! 30-34i .040 050 .052 .049 .051 .048 .051 ,043 .075 .043 . 067 .088
f 35-39 .061 066 .068 .066 .067 .065 .067 . 062 .082 .062 .077 .054
j 40-44 .073 076 .077 .076 .076 . 075 .076 .074 . 085 .074 . 082 .063
! 45-49 .085 085 . 085 .085 .085 .085 .085 .085 .087 . 085 .086 .063
j 50-54 . 081 081 .081 .081 .081 .081 .081 .081 . 082 . 081 .082 . 058
55-59 .044 051 .053 .050 .052 . 050 . 052 .046 . 069 . 046 .063 . 084
60-64, .097 090 .088 . 091 .090 .091 . 090 .095 . 073 . 095 . 079 .080
65-69 .093 084 .082 .085 .083 .085 .083 .090 . 062 .090 .069 .054
3:70 .084 073 .070 . 075 .072 ,075 . 072 .081 , 044 .081 .053 .096

P(x| ir2 )
1

RFTR 1 2 3 4 5 6 7 7T 8 8T RFTS

0-4 .045 042 .042 .042 .042 .042 .042 .044 .038 .044 .037 .042
5-9 .085 080 . 079 .080 .078 .080 .078 .083 . 071 . 083 .068 . 122

10-14 . 125 117 .115 . 116 .113 . 116 . 114 . 121 . 101 . 122 . 096 .072
15-19 . 192 176 . 172 . 173 . 168 . 173 .168 . 184 . 141 . 185 .130 .186
20-24 . 107 105 . 104 . 105 . 104 . 105 . 104 . 106 . 101 . 106 .099 .089
25-29 . 089 090 .090 .090 .091 .090 .091 .090 .092 .090 .093 .088
30-34 .058 064 .065 .064 .066 .064 .066 .061 .075 .060 . 079 .076
35-39 .063 067 . 068 .068 .069 .067 .069 .064 .076 .064 . 078 .051
40-44 .058 062 .063 .063 .064 .063 .064 .060 .071 .060 .073 . 080
45-49 .022 031 .033 . 032 . 035 .032 .035 . 026 .049 . 026 .054 .067
50-54 .049 052 .053 .052 .053 .052 . 053 .050 .058 .050 . 060 .059
55-59 .058 058 .058 .058 .058 .058 .058 .058 .058 .058 .058 . 034
60-64 .031 033 .034 .034 .034 .034 .034 .032 .038 .032 .039 .013
65-69 .018 020 .020 .020 .021 .020 .021 .019 .024 .019 .026 .017
370 .000 002 .003 .003 .004 .003 .004 .001 .008 .001 .009 .004

P(tr1 |x)
I

RFTR 1 2 3 4 5 6 7 7T 8 8T RFTS ISO

0-4 .524 508 .504 .514 .512 .515 .512 .522 .448 .520 .488 .412 .524
5-9 .321 338 .343 .340 .345 .339 .345 .328 .380 .328 .386 .237 321

10-14 .243 275 .284 .275 .284 .274 .283 .254 .357 .255 .354 .370 .243
15-19 .377 378 .379 .385 .388 .385 .388 .381 . 373 .380 .412 .323 .377
20-24 .442 446 .447 .447 .448 .447 .448 .444 .455 .444 . 459 .475 .405
25-29 . 355 391 .400 .386 .393 .385 .392 .365 .466 .367 .442 .488 405
30-34 .435 466 .472 .455 .459 .454 .459 . 440 .524 .443 .485 .538 .435
35-39 .517 524 .526 .518 .518 . 518 .518 .516 .544 .518 .520 .520 .517
40-44 .581 576 . 575 .571 .569 .572 .569 .576 .571 .577 .554 .441 .581
45-49 .808 754 .742 .745 .730 .746 .731 .781 .662 .783 .637 .484 .642
50-54 .645 633 .630 .631 .627 .631 .627 .639 .610 .640 .601 .500 .642
55-59 .458 494 .503 .490 .497 .489 .497 .469 .568 .470 .548 .714 .642
60-64 .774 749 .743 .749 .742 .750 .743 .765 .681 .765 .688 .864 .774
65-69 .852 824 .816 .823 .815 .824 .816 .842 .737 .841 .748 . 765 .852
370 1.000 971 .962 .966 .957 .968 .957 .987 .864 .988 .864 .958 1 .000
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BRIER SCORE
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Figure 4.7 Contour plot of the test Brier score as a function of 
the smoothing parameters (Xj, x^) used in populations and 
respectively. Methods 1. 2 and 7 are as in Table 4.2(a). Contour 
heights are .7735, .7725, .7715. .7705, .7695, .7685 and .7675.
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striking is the fact that the best continuous method, namely the 
Normal Optimal, achieves a predicted probability function, Figure 
2.51(a), which strongly resembles a smoothed version of the
isotonic estimate, Figure 4.3(c), while the other continuous 
functions, the result of not smoothing nearly as much, follow the 
irregularities of the raw relative frequency histogram, Figure 
4.1(c), and are comparable to the discrete kernel methods.
Surprisingly, perhaps, the Brier score achieved by NOPT, although
similar, is not quite as high as that of the rougher discrete 
isotonic estimate.

4.3.2 Bivariate examples

A 15 x 10 table
The example above is unrealistic in that in practice multiple 

predictors are much more common. Here we use both age, categorised
as above, and Coma Sum, with 10 categories (namely 3, 4 ,....  11,
and 12-15), as indicants, with product kernels. The data are shown 
in Tables 4.4(a) and 4.4(b) and as 3-dimensional isometric 
projections in Figures 4.8 and 4.9, where X and Y denote age and 
Coma Sum respectively. It will be seen that while p(ir^|x) 
increases with age it is antitonic with respect to Coma Sum, i.e. 
it decreases as Coma Sum increases. (See also Figures 4.1(c),
4.2(c) and 4.10).

With the kernel method there are now 4 smoothing parameters to 
choose and the following criteria were used :

1) Marginal Minimum Mean Squared Error (MMSE) with 4 parameters.
2) Marginal Kullback-Leibler Cross-validation (XVAL) with 4

parameters.
3) Marginal Minimum Mean Square Error (MMSE) with 2 parameters.
4) Marginal Kullback-Leibler Cross-validation (XVAL) with 2

parameters.
6) Multivariate Kullback-Leibler Cross-validation (MV XVAL) with 4 

parameters.
8) Multivariate Kullback-Leibler Cross-validation (MV XVAL) with 2 

parameters.
10) Standardisation Kullback-Leibler Cross-validation (STD XVAL) 

with 2 parameters.
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Table 4 4(a) Relative frequencies Of 77 ̂ for the 15 x 10 table

Training data
\

Coma Sum ji
Age 3 4 5 6 7 8 9 10 11 >12 j

0-4 1.000 1. 000 .500 . 667 .500 . 250 .525 . 000 .525 .500 .
5-9 .525 .500 .714 . 167 . 286 .000 .000 . 000 .525 .525 ;

10-14 . .525 .500 .400 .000 .428 . 167 . 333 .000 .000 .000
15-19 1. 000 . 714 .500 .381 . 167 .125 . 000 .000 .525 .ooo :
20-24 1.000 .800 . 500 .462 .222 .444 .500 .525 .000 .000
25-29 1.000 .667 .600 .428 . 167 .333 .000 .000 .000 .525 !

! 30-34 1. 000 1.000 .667 .454 .000 .000 .000 . 525 .525 .000 ■
'• 35-39 i1.000 1.000 .500 .600 .250 . 333 .000 .525 .000 .000 }
; 40-44 1.000 1.000 1.000 .750 .556 . 200 .000 .525 .333 .000
' 45-49 1.000 1.000 .333 .875 .500 .525 .525 .525 .525 .000 j
■ 50-54 1.000 1.000 1.000 .667 .600 .500 .525 . 000 .525 .250
! 55-59 .525 1.000 .500 .400 .750 . 143 1.000 .525 .525 000
! 60-64 .525 .750 .500 1 .000 1.000 1.000 1.000 .000 .000 000
• 65-69 .525 1.000 1.000 1 .000 1.000 .500 .667 . 000 .000 525

>70 1.000 1 .000 1.000 1.000 1.000 1.000 .525 1 .000 .525 525

Test data

Coma Sum

I Age 3 4 5 6 7 8 9 10 11 >12

j 0-4 .502 .667 .333 .500 .667 .000 .000 .502 .000 502
j 5-9 .502 .600 1.000 .071 .375 .000 .000 . 000 .502 502
| 10-14 1.000 .667 .400 . 286 .333 .500 . 250 .502 .000 000
! 15-19 1.000 .875 .700 .200 .071 . 167 .502 .000 . 000 000
j 20-24 1.000 .778 .667 .583 .111 .000 .000 .000 1.000 502 |
i 25-29 1.000 .500 .500 .533 .400 .000 .500 .502 .502 333 |
' 30-34 1.000 .857 1.000 .636 .333 .600 .000 .000 .000 000 j
35-39 1.000 .667 1.000 .667 .167 .667 .000 .502 .502 000
40-44 .000 1.000 1.000 .625 .200 .167 .000 .000 .000 000
45-49 1.000 1.000 .333 .500 .333 .167 1.000 .502 .000 000

j 50-54 .500 .714 .750 .250 .200 1.000 .000 .667 .000 502
! 55-59 1.000 1.000 1.000 .714 .667 .500 .502 .000 .502 333
j 60-64 1.000 1.000 1.000 1.000 1.000 .000 .502 .000 .000 1 000
■ 65-69 .502 1.000 1.000 .500 .833 .502 .000 1.000 .502 000
j 5*70
i

1.000 1.000 1.000 1.000 .833 1.000 1.000 .502 .502 502

Note: The data presented are slightly smoothed in that the
relative frequency of -ir̂  in empty cells has been set to 
the overall relative frequency, .525 or .502 for the
training and test data respectively.
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Table 4.4(b) No. of cases in each cell

Training data !
1

Age

Coma Sum |
i

3 4 5 6 7 8 9 10 11 5=12 |

0-4 1 2 2 3 6 4 0 1 0 2 •
5-9 0 2 7 6 7 4 1 1 0 o ;

10-14 0 4 5 7 7 6 3 3 1 i
15-19 7 7 6 21 12 8 4 3 0 i
20-24 1 5 2 13 9 9 2 0 1 i
25-29 ! 1 3 5 7 6 3 4 1 1 0
30-34 : 2 1 3 11 1 2 2 0 0 i
35-39 , 2 7 2 5 4 3 1 0 2 3

1o ■ 1 4 3 4 9 5 1 0 3 1
i 45-49 i 2 10 3 8 2 0 0 0 0 1
! 50-54 , 1 4 4 3 10 4 0 1 0 4
| 55-59 ’ 0 3 2 5 4 7 1 0 0 2
; 60-64 0 4 4 7 6 5 1 1 2 1
1 65-69 0 4 2 8 6 2 3 1 1 0

M O 1 4 2 3 7 3 0 1 0 0

Test data

Coma Sum :

Age 3 4 5 6 7 8 9 10 11 M 2

0-4 0 3 3 4 3 2 1 0 1 0
5-9 0 5 2 14 8 5 2 2 0 0

! 10-14 1 3 5 7 3 2 4 0 1 1
! 15-19 1 8 10 15 14 12 0 3 1 1
| 20-24 1 9 3 12 9 1 3 1 1 0
| 25-29 3 4 2 15 10 2 2 0 0 3
j 30-34 1 7 2 11 6 5 2 3 1 1
35-39 1 3 1 9 6 3 1 0 0 1

| 40-44 1 5 3 8 5 6 1 2 1 2
1 45-49 4 6 3 2 3 6 1 0 2 4
50-54 2 7 4 4 5 1 1 3 1 0
55-59 2 6 2 7 3 4 0 1 0 3
60-64 2 1 2 8 5 1 0 1 1 1
65-69 0 1 5 2 6 0 1 1 0 1

M O 1 5 2 7 6 1 2 0 0 0



215

Figure 4.8 Relative frequencies 
displayed as 3-dimensional 
isometric projections for the 
training data.

(a) p(x | tt1 )

(b) p (x | tt2 )

(c) p(TTj | x)



2ie
Figure 4.9 Relative frequencies 
displayed as 3-dimensional 
isometric projections for the 
test data.

(a) p(x | rr1 )

(b) p(x | n 2 )

(c) p (wi I x)
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12) Standardisation Kullback-Leibler Cross-validation (STD XVAL) 
with 1 parameter.

13) Multivariate Brier Score method (MV BRIER) with 4 parameters.
14) Multivariate Brier Score method (MV BRIER) with 2 parameters.
15) Standardisation Brier Score method (STD BRIER) with 2

parameters.
16) Standardisation Brier Score method (STD BRIER) with 1

parameter.

For methods 1-4 parameters are chosen to optimise functions of 
the marginal distributions whereas in 6-16 simultaneous 
optimisation of multivariate criteria is used. The multivariate 
methods were not used with the MSE criterion as the resulting
computation proved too time consuming, hence the absence of methods 
5, 7, 9 and 11 (which are used below). The 4-parameter methods
allow a different parameter for each variable within each of the 2 
populations, whilst the 2-parameter ones assume a common smoothing 
parameter for a given variable across populations. (As in Section 
4.3.1, our 2-dimensional marginal methods simply average across 
populations the appropriate 4-dimensional marginal parameter 
estimates.) Although this is generally thought to lead to a
suboptimal rule (though see Hand, 1982, pp. 162-164, for some 
counter-examples) it was considered that age is sufficiently 
different in type from Coma Sum to warrant a different degree of
smoothing. Since age is of interval type we would expect p e l a g e )
to be smoother than the corresponding function of Coma Sum. An 
alternative, which still allows a degree of difference in smoothing 
of the 2 variables for a given population, is the method of 
Titterington et a l . (1981) (see Section 4.2), which adjusts the
smoothing parameter according to the number of categories in a 
roughly analagous manner to pre-standardisation of continuous 
variables followed by use of a single smoothing parameter. The 2- 
and 1-dimensional ’’standardisation1' methods 10 and 12 may be 
compared to the 4- and 2-dimensional methods 6 and 8, and 15 and 16 
with 13 and 14.

Again the Brier scores are tabulated, in Tables 4.5(a) and (b), 
together with the corresponding smoothing parameters and the 
results for the isotonic method. Results for the reference methods 
are given in Table 4.5(c),

Compared to the results of Section 4.3.1, in each case the



Table 4.5(a) RESULTS FOR THE 15 X 10 TABLE

Method Smoothing

Parameters

Scores

Age
Coma Sum

n 2 Brier

Score

Error 

Rate ( % )

Marginal methods

1
1 MMSE - 4 parameters .811 862 .82150 27.1

j .941 902
i

2 XVAL - 4 parameters ! .761 827 .82089 26.3
i .942 972

3 MMSE - 2 parameters .836 836 .82117 26.3
.922 922

4 XVAL - 2 parameters .794 794 .82258 26.3
.957 957

Multivariate methods j

6 MV XVAL .447 519 .82379 25.0
- 4 parameters .893 716

j 8 MV XVAL .442 442 .82409 25.8
| - 2 parameters .861 861

i 10 STD XVAL .704 614 .82090 26.3
j - 2 parameters . 715 628
i
j 12 STD XVAL .664 664 .82010 27.3

- 1 parameter .676 676
1------------------ 1



Tab1e 4.5(b) RESULTS FOR THE 15 X 10 TABLE

Method Smoothing Scores

Parameters

*1 n 2Age
Brier Error

Coma Sum Score Rate { % )

Direct methods

13 MV BRIER SCORE - .838 .806 .82236 26.0
4 parameters .966 .923

14 MV BRIER SCORE - .808 .808 .82222 26.3
2 parameters .971 .971

15 STD BRIER SCORE - .906 .846 .82054 27.3
2 parameters .909 . 852

16 STD BRIER SCORE - .876 .876 .81912 27.7
1 parameter .880 .880

ISOTONIC REGRESSION .82599 26.0
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Table 4.5(c) REFERENCE METHODS FOR THE 15 X 10 TABLE

Method Smoothing Scores

Age
Coma Sum

Brier Error

Score Rate { % )

Direct optimisation
on test set :

13T MV BRIER SCORE - .566 .575
4 parameters .935 .894

14T MV BRIER SCORE - .558 .558
2 parameters .932 . 932

1ST STD BRIER SCORE - .819 .712
2 parameters .826 .722

16T STD BRIER SCORE - .758 .758
1 parameter .766 .766

TEST PROPORTIONS (RFTS) (1)

TRAINING PROPORTIONS (RFTR) (1)

.82518

.82512

.82224

.82098

.86951

.80221

25.8

25.8 

27.5

27.9

19.8 

30. 7

NOTE (1) : Relative frequencies in zero weighted cells have been
set to the overall relative frequency or estimated prior 
in the population of interest.
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value of the extra variable is demonstrated in higher Brier scores 
and lower error rates. It is also evident that less smoothing is 
desirable for Coma Sum than age (as would be expected), as each 
method indicates this.

Of the marginal methods 1-4, the differences in fitted class 
conditional distributions (not shown) are small as all smooth 
similarly, although there is a noticeable difference in both the 2- 
and 4-parameter cases between XVAL and MMSE in the predicted 
distributions (ptv^jx)} (see Figure 4.11).

The multivariate approach (methods 6 and 8) is now superior for 
XVAL in each case (here, unexpectedly, 2 parameters are better than 
4, as is also true of the marginal XVAL methods) and as expected 
indicates rather more smoothing, of age especially and most 
noticeably in it j , than the marginal methods (see Figure 4.12 for 
methods 4 and 8). Method 6 smooths a little less but rather 
more and overall appears slightly smoother than method 8 (Figure 
4.11), though its Brier score is lower.

The estimated class conditional distributions of the direct 
Brier methods are very similar although there are some differences 
in the predicted distributions (Figure 4.13). In each case the 
data-based method smooths less (age especially, for the 
non-standardisation methods) than direct optimisation suggests and 
differences can be seen in the marginals also (Figure 4.14 shows 
methods 13 and 13T). They now perform better than all marginal 
methods except 2-D XVAL (4) on Brier score, though not quite as 
well as the corresponding MV XVAL methods which specify near 
optimal degrees of smoothing. Again the isotonic method does well 
in that its Brier score in fact outperforms that achieved by direct 
optimisation of the test Brier score using the kernel approach. 
(Table 4.5(c)). Figure 4.15 shows the unsmoothed data and fitted 
predicted probabilities for the best Brier method (13), best 
non-Brier kernel method (8) and the isotonic method.

Of the standardisation methods, Table 4.5(c) shows that they do 
not allow sufficient variability of smoothing parameters between 
variables, as the optimum achievable Brier score is rather lower in 
each case than the usual 4- and 2-parameter methods with less and 
more than optimal smoothing of age and Coma Sum respectively in 
each population (see Figures 4.13 and 4.14). The data-based 
standardisation methods are also poorer than the corresponding 
methods which use more parameters, both the multivariate and direct



Figure 4.11 p(^i | x)

(a) MMSE with 4
parameters (1).

(c) MMSE with 2
parameters (3).

(e) MV XVAL with 2 
parameters (8) .

(b) XVAL with 4
parameters (2)

(d) XVAL with 2
parameters (4)

(f) MV XVAL with 4
parameters (6)



Figure 4.12

(a) p(x J ir1 ) for XVAL 
2 parameters (4).

with (b) P(x |1 n 2 ) for (4).

(c) p(x | >r1) for MV XVAL 
2 parameters (8).

with (d) P(X 1 jr2 ) for (8) .

(e) p (x | ir1) for STD XVAL 
2 parameters (10).

with (f) p(x 1 7r2 ) for (10)
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Figure 4.13 p(wi | x)
(a) MV BRIER with 4 (b) STD BRIER with 2

parameters (13). parameters (15).
(c) MV BRIER with 2 (d) STD BRIER with 1

parameters (14). parameter (16).
(e) 13 optimised on (f) 15 optimised on

test data (13T). test data (15T).



Figure 4.14

(a) p (x | ir:) for MV BRIER with 
4 parameters (13).

(b) p(x | * 2 ) for (13).

(c) p (x | for (13) optimised 
on the test data (13T).

(d) p(X 1 for (13T)

(e) p (x | ttx) for STD BRIER with 2 
parameters optimised on the 
test data (15T).

(f) p(x ! 7T2 ) for (15T)



Figure 4.15 pftrj | x)

(a) Unsmoothed training (b)
relative frequencies.

(c) MV XVAL with 2 (d)
parameters (8).

MV BRIER with 4 
parameters (13) .

Isotonic regression.
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Brier ones, on both Brier score and error rate, and compare poorly 
to the marginal methods. The fitted class conditional
distributions are intermediate between those of the marginal and 
multivariate methods, but generally speaking are more like the 
former (Figure 4.12). Again there are differences in the predicted 
distributions (see Figure 4.16). Once more MV XVAL is superior to 
the direct Brier methods, smoothing more, although not as 
noticeably.

The contour plots, Figures 4.17 and 4.18, show the test Brier 
score as a function of smoothing parameters Xj and \2 . In the 
former is associated with age and x2 with Coma Sum, taken to be 
common to both populations, while the latter associates x^ with age 
in the ith population and uses the standardisation approach. The 
former shows the value of allowing a separate smoothing parameter 
for Coma Sum as this clearly requires rather less smoothing than 
age, while in the latter less smoothing is indicated for 77̂  than 7t2 
as may be expected from Figures 4.2(a)-(b). In both cases 
data-based methods fall short of optimal, though less so in the 
latter instance.

A 5 x 5 table
Strictly speaking, in the 15 x 10 example the isotonic method 

is slightly handicapped in that no modification has been made to 
the isotonic algorithm to allow for the quadratic effect of age 
upon outcome. Collapsing the data from a 15 x 10 table to, say, a 
5 x 5  one, removes any observed convexity in the raw relative 
frequencies, while retaining age groups of equal width gives the 
ordered kernel its best possible chance to perform well. Use of 
15-year age groups will reduce the effect of the few cases of very 
young age, making isotonicity a reasonable assumption, and although 
collapsing Coma Sum to 5 categories reduces informativeness it also 
removes empty cells. Table 4.6 and Figures 4.19 and 4.20 show the 
data for the 5 x 5  table, and the corresponding results for the 
smaller table are found in Tables 4.7(a)-(c). Here the 
multivariate MMSE methods are now feasible and corresponding MMSE 
results are also shown for the standardisation approach, so that in 
addition to the methods above we have:-

5) Multivariate Minimum Mean Square Error (MV MMSE) with 4
parameters.



Figure 4.16 p(w1 | x)

(a) MV XVAL with 4 
parameters (6).

(c) STD XVAL with 2 
parameters (10)

(b) MV XVAL with 2 
parameters (8).

(d) STD XVAL with 1 
parameter (12).
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BRIER SCORE

0

0 .9

0.8

0 .7

0.6

0 .5

0 .4

0 .3

0.2

0.1

0.00.0 0.1 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9 1 .0

Figure 4.17 Contour plot of the test Brier score as a function of 
the smoothing parameters (x-p X2 ), where x1 and x2 are associated 
with Age and Coma Sum respectively in each population. Symbol B 
denotes method 14. Methods are as in Tables 4.5(a) and (b).
Contour heights are .824, .822, .820, .818, .816, .814, .812 and
.810.
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BRIER SCORE

1 . 0  r-

0.9 - 

0.8 -  

0.7 -

I
0.6 I

0 .5  - 

0 .4  j- 

0 .3  -  

0.2 - 

0.1 -

o.o L.. .. i i___ i_i i i_ _ _ _ _ _ i___ i_ _ _ _ _ i_ _ _ i ''i
0 .0  0.1 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1.0

Figure 4.18 Contour plot of the test Brier score as a function of 
the smoothing parameters (x^, ^2^* where x^ is associated with Age 
in the ith population. Symbols A. B, C and D denote methods 10. 
12, 15 and 16 respectively (see Tables 4.5(a) and (b)). Contour
heights are .820, .818, .816, .814, .812, .810 and .808.
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Table 4.6 Raw data for the 5 x 5  table

Method Age Coma Sum

3-4 5-6 7-8 9-10 11-15

Raw training 0-14 .667 .367 .294 .111 . 250
proportions 15-29 . 833 .444 .234 .071 . 000

30-44 1. 000 .607 . 333 .000 . 100
45-59 1 . 0 0 0 .680 .481 .500 . 143

^60 .923 .923 .966 .571 . 000

No. of cases 9 30 34 9 4
in each cell 24 54 47 14 4

II 17 28 24 4 10
20 25 27 2 7

j 13 26 29 7 4

| Raw test .667 . 286 .304 , 1 1 1 .000
proportions .808 .491 . 167 . Ill .333

i " .833 . 706 .322 .000 .000
i .889 .591 .364 .500 . 100
3 1.000 .962 .842 . 600 .333

No. of cases 12 35 23 9 3
in each cell 26 57 48 9 6

! 18 34 31 9 6
27 22 22 6 10

.. 10
26 19 5 3



233

(a)

(b)

(c)

Figure 4.19 Relative frequencies 
displayed as 3-dimensional 
isometric projections for the 
training data and the 5x5 table.

(a) p(x | tr1)

(b) p(x | ir2 )

(c) p (*! | x)
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(b)

( c )

Figure 4.20 Relative frequencies 
displayed as 3-dimensional 
isometric projections for the 
test data and the 5x5 table.

(a) p(x | wx)

(b) p(x 1

(c) P ^ i  i x)



Table 4.7(a) RESULTS FOR THE 5 X 5  TABLE

Method Smoothing 

Parame ters

Scores

fflAge
Coma Sum

ff2 Brier

Score

Error 

Rate { % )

Marginal methods

1 MMSE - 4 parameters .906 .947 1 .82453 25. 2
.970 .956 j

2 XVAL - 4 parameters .871
!

.931 j .82443 25. 2
.971 .950 j1

1 3 MMSE - 2 parameters .926
I

.926 i .82464 25. 2
.963 . 963 j

! 4 XVAL - 2 parameters .901 .901 .82458 25. 2
.960 .960

Multivariate methods

5 MV MMSE .850 .910 .82439 26.5 |
- 4 parameters .941 .916

6 MV XVAL .702 .862 .82340 26.5
- 4 parameters . 942 .901

7 MV MMSE .885 .885 .82451 25 . 2
- 2 parameters .929 .929

8 MV XVAL .805 .805 ,82393 25.2
- 2 parameters .928 .928

9 STD MMSE .903 .913 .82433 25.2
- 2 parameters .903 .913

10 STD XVAL .903 .883 .82441 25.2
- 2 parameters .903 .883

11 STD MMSE .908 .908 .82446 25.2
- 1 parameter .908 .908

12 STD XVAL .895 .895 .82425 25 . 2
- 1 parameter .895 .895



Table 4.7(b) RESULTS FOR THE 5 X 5 TABLE

j Method Smoothing

Parameters

!Scores

*1Age
Coma Sum

n 2 Brier

Score

Error 

Rate { % )

Direct methods

13 MV BRIER SCORE - .963 941 . 82474 25.2
4 parameters .956 961

1 14 MV BRIER SCORE - .945 945 .82469 25.2
| 2 parameters .958 958
! 15 STD BRIER SCORE - ,957 951 .82474 25.2

2 parameters . 957 951

16 STD BRIER SCORE - . 956 956 .82470 25 . 2
1 parameter .956 956

ISOTONIC REGRESSION .82548 25.2

-- . ___ . _J



Tab1e 4.7(c) REFERENCE METHODS FOR THE 5 X 5 TABLE

Method Smoothing

Parameters

Scores

Age
Coma Sum

Brier Error

Score Rate ( % )

Reference methods

Direct optimisation 
on test set :

13T MV BRIER SCORE - 
4 parameters

.990

.940
.918
.902

.82497 25. 2

14T MV BRIER SCORE - 
2 parameters

. 959 

.943
.959
.943

.82473 25.2

15T STD BRIER SCORE - 
2 parameters

.952

.952
.913
.913

,82486 25.2

16T STD BRIER SCORE - 
1 parameter

| .946
.946

___ . ..............

.946

.946
.82472 25.2

TEST PROPORTIONS (RFTS) .83213 25. 2

TRAINING PROPORTIONS (RFTR) .82392 25.2
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7) Multivariate Minimum Mean Square Error (MV MMSE) with 2 
parameters.

9) Standardisation Minimum Mean Square Error (STD MMSE) with 2 
parameters.

11) Standardisation Minimum Mean Square Error (STD MMSE) with 1 
parameter.

Tables 4.8(a)-(c) give the predicted probabilities, some of 
which are also shown in isometric plots, Figures 4.21-4.25. Tables 
4.9(a)-(c) and 4.10(a)-(c) contain the corresponding class 
conditional density estimates for the kernel methods.

Error rates are not in fact seriously affected, and,
surprisingly perhaps, fractionally improved. The smaller table 
retains the advantage over use of age alone. Each marginal method 
(all fairly comparable both in terms of Brier score and fitted
distributions) improves slightly over use of the 15 x 10 table, 
whereas the multivariate XVAL methods are slightly poorer on Brier 
score. Collapsing age indicates rather less smoothing, as would be 
expected, whereas the Coma Sum requires only a little less 
smoothing than previously.

In each case MMSE outperforms XVAL on Brier score, though the 
former smooths less. Both multivariate methods 5 and 7 are 
noticeably less smooth on age, best seen in , than 6 and 8, with 
slight differences in predicted probabilities. (See Figure 4.21 
for the best method of each type, and 4.22 and 4.25(b) for the 
predicted probabilities.) For both MMSE and XVAL, 2-parameter
methods are superior to 4-parameter ones and marginal methods are 
superior to multivariate ones, though this is less marked for MMSE 
than XVAL as methods 5 and 7 produce similar fitted distributions. 
Compared to the marginal methods, 7 especially is a little smoother 
in 77-jl but the differences are small, whereas again 2 and 4 are
noticeably less smooth than 6 and 8, of which 8 is smoother (see 
Figure 4 .22) .

Now both Brier score methods outperform the other data-based 
methods slightly, although marginal 2-D MMSE (3) is close to 
multivariate 2-D BRIER (14), and are near to optimal, (c.f., for 
the better Brier method, Figures 4.23(a)~(c) and 4.23(d)-(f)), 
especially in the 2-dimensional case. Figure 4.24 compares the 
optimal 2- and 4-dimensional methods.

Since we are now using a square table the standardisation



Table 4.8(a) 5 x 5  table : pUilx)

Method Age Coma Sum

3-4 5-6 7-8 9-10 11-15

Marginal methods

1) MMSE 0-14 .669 . 378 . 299 . 128 . 238
4-D 15-29 .815 .448 . 251 .099 . 063

30-44 .974 .608 .364 . 108 . 113
45-59 . 983 .677 .493 .466 . 160

^60 .921 .904 . 937 .574 .078

2) XVAL ,674 .382 .300 . 127 . 232
4-D .813 .449 .256 .100 .067

It .970 .609 .372 . 117 . 113
.980 .677 .496 .449 . 158
.920 .898 .928 .565 .079

3) MMSE .671 .378 .300 . 134 .246
2-D .820 .450 . 252 . 105 .068

it .974 .600 .354 . Ill . 117
.983 .671 .488 .464 . 165
.921 .899 .930 .583 .090

4) XVAL .678 .382 .302 . 136 . 243
2-D .820 .452 . 256 . 109 .075u .969 .598 .359 . 122 . 118

.979 .668 .488 .449 . 166

.921 .891 .919 .578 .096 j
i

Continued.



Table 4.8(a) cont.1 d . 5 x 5  table : p (ttiIx )

Method
_ f 

Age j Coma Sum
i

3-4 5-6 7-8 9-10 11-15
i

Multivariate methods

5) MV MMSE 0-14 .664 .385 .303 . 143 . 235
4-D 15-29 .799 .450 . 264 .122 . 101 I

30-44 .953 .607 .382 . 167 . 128 |j 45-59 .968 .675 .501 .457 . 179 i
^60 .918 .890 .916 .581 . 138

6) MV XVAL j .687 .399 .305 . 142 . 214
4-D : .793 .452 .281 . 127 . 117‘ M .942 .615 .415 .203 . 129 I

.958 .678 .512 .434 . 173

.915 .867 .884 .541 . 141

7) MV MMSE .665 .384 .304 . 154 . 248
2-D .806 .453 ,264 . 133 .111

i .953 .596 .367 . 173 . 133
.969 .666 .493 .464 . 188 !

■ .919 .885 .909 .596 . 157 !

8) MV XVAL ; .690 .397 .310 .158 . 239
2-D .811 .461 . 278 .141 .120 |

" .942 .590 .379 .190 . 137 |
.960 . 657 .493 .428 . 185
.917 .859 .872 .575 .159 !

|
9) STD MMSE * .650 .378 .302 .166 .258 |

2-D ; .796 .448 .263 . 148 . 135 i
" .951 .597 .370 . 205 . 144

.967 .669 .496 .505 . 206

.918 .892 .919 .618 . 201 j
|

10) STD XVAL .640 .384 .308 .165 . 250 !
2-D .787 .456 .269 . 147 . 128 1ft .934 .594 .369 .193 . 146 !

.956 .665 .498 .461 .207 !

.916 .884 .906 .616 .204

11) STD MMSE .647 .380 .304 .162 .255
1-D .795 .450 .263 . 143 . 127II .948 .597 .368 . 193 . 142

.966 .668 . 496 .489 .203

.918 .892 .917 .616 . 192

12) STD XVAL
1
1 .645 .382 .305 . 170 .256Q1 .789 .451 .268 .153 ,140
1 .941 .595 .372 . 211 . 148

.960 .667 .498 .489 .212
; .916
i

.887 .910 .620 .215



Table 4.8(b) 5 x 5 table : p (tt]Jx )

Method Age Coma Sum

i 3-4 5-6 7-8 9-10 11-15

Direct methods
.

13) MV BRIER 0-14 . 660 .374 .300 . 138 . 254
4-D 15-29 .818 .449 .249 . 109 .072

i 30-44 .975 .598 ,346 .110 . 120!1 45-59 .984 .670 .486 .482 . 1721!| 5s60 .921 .904 .937 .597 . 103

' 14) MV BRIER . 662 .374 .299 . 136 . 250
i 2-D .816 . 448 .250 . 107 .072

.974 .601 .352 . 113 . 118

.983 .673 .488 .482 . 170

.921 .905 .938 .592 .099

15) STD BRIER .655 .374 .299 .136 .250
2-D .813 .448 .249 . 107 .071

i IT .973 .601 .350 .110 . 119
j .982 .674 .489 .480 . 172
I .921

1
.907 .940 .595 . 102

! 16) STD BRIER j  .657 .373 .298 . 137 .251
' 1-D ! .815 .447 .248 . 108 . 073
j II i  .975 .602 .351 .113 .119
1 ! .984 .674 .489 .491 . 172
i j .921 .908 .942 .596 . 103

: ISOTONIC j .667 .367 .259 .089 .089
REGRESSION I .833 .444 ,259 .089 .089

tl .980 .607 ,333 . 089 .089
' . 980 .680 .483 .483 .091

.980 .945 .945 .571 .091
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Table 4.8(c) 5 x 5  table : p(iri|x)

Method Age Coma Sum

3-4 5-6 7-8 9-10 11-15

Reference methods

13T) MV BRIER 1 0-14 . 629 .378 .308 . 144 . 246
1 4-D j15-29 . 798 .458 . 256 .118 .079
i i30-44 .948 .592 .342 . 115 . 129i i
i 45-59 .966 .666 .490 .430 .186
)i ^60 .918 .899 .926 . 612 . 137

j 14T) MV BRIER ; .649 .372 .299 . 143 . 254
j 2-D j .808 .447 .250 . 116 .08711 >I i

it . 970 . 602 . 353 . 133 . 124| .981 .675 .491 .502 . 181
i
i

.920 .908 .942 .606 . 128

'15T) STD BRIER .643 .381 .307 . 137 .239
! 2-D .802 .457 .257 . 110 .071
i .952 .596 .351 . 110 . 124

.968 .668 .492 .420 . 176
i\ • .919 .897 .923 .595 .112
i.... - —  — ...
i16T) STD BRIER .655 .374 .299 .142 .252
1 1-D .811 .448 .251 .115 .085
! .970 .601 .354 . 132 . 124
1 ! .980 .673 .490 .490 . 178
1 i! .920 .905 .937 .600 . 122i
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(a) (b)

(c) ( d )

( f )

Figure 4.21 Fitted distributions.
(a) p(x | for MMSE with (b) p(x | ir2 ) for (3).

2 parameters (3).
(c) p(x | tt±) for MV MMSE with (d) p(x | for (7).

2 parameters (7).
(e) p (x | rr: ) for MV XVAL with (f) p(x | n z ) for (8).

2 parameters (8).
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Figure 4.22 p O i  | x)

(a) XVAL with 2 
parameters (4).

(b) MV MMSE with 2 
parameters (7)

(c) MV XVAL with 2 
parameters (8).

(d) MV XVAL with 4 
parameters (6).
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(d)

lb)

If)(c)

Figure 4.23 Fitted distributions.

(a) p(x 1 irx ) for MV BRIER 
with 4 parameters (13)

(b) p(x | tt2 ) for (13).

(d) p(x | * i )  optimising 
on the test data (13T)

(e ) p(x I ir2 ) for (13T) .

(c) p(*i | x) for (13). (f) p(n  | x) for (13T) .
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Figure 4.24 p(?r1 | x)

(a) MV BRIER with 2 parameters 
optimised on the test data (14T)

(b) MV BRIER with 4 parameters 
optimised on the test data (13T).
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! (b)

(c) ( d )

Figure 4.25 p { n 1 | x)

(a) Unsmoothed training 
relative frequencies.

(c) MV BRIER with 4 
parameters (13).

(b) MMSE with 2 
parameters (3).

(d) Isotonic regression.



Table 4.9(a) a x 5 table : p(x|irj_)

Method Age Coma Sum

3-4 5-6 7-8 9-10 11-15

Marginal methods
r1) MMSE j 0-14

4-D [15-29
! 30-44 
45-59 
: ^60

.0261 . 0446 . 0394 .0048 . 0041

. 0775 .0935 . 0465 .0058 . 0012

.0685 .0710 .0374 . 0022 .0045

.0778 .0704 .0545 .0059 .0046

.0478 . 0909 . 1034 .0164 .0013

,0268 .0450 .0392 . 0047 .0040
. 0769 .0929 .0471 .0058 .0013
. 0690 .0722 .0390 .0025 .0044

1 .0774 .0713 .0553 . 0060 .0045
.0476 .0891 .1005 . 0158 .0013

2) XVAL 
4-D

MMSE .0256 .0443 .0394 .0050 . 0043
2-D .0775 .0936 .0463 .0060 . 0013

,0679 .0700 .0364 .0023 .0046
.0777 .0698 .0540 .0062 .0047
.0479 .0917 . 1048 .0171 .0016

XVAL , i .0261 .0445 .0392 .0050 .0042
2-D .0770 .0930 .0467 . 0062 .0015

- .0681 .0709 .0377 .0027 .0046
,0773 .0704 .0546 .0064 .0048
.0477 .0903 . 1025 . 0168 .0017

Continued.



Table 4.9(a) cont'd. 5 x 5  table : p{x|iri)

Method

i

Age Coma Sum j;

3-4 5-6 7-8 9-10 11-15 jsi
Multivariate methods |f
5) MV MMSE 0-14 .0270 .0446 . 0387 . 0055 1.0043 !

4-D 15-29 .0752 .0911 .0479 .0073 .0022 !
30-44 . 0679 .0721 . 0404 .0041 .0050 j
45-59 .0756 .0712 .0557 .0076 .0051 \

^60 .0473 .0870 .0974 .0170 .0024 j

6) MV XVAL | .0302 .0460 .0380 . 0054 '!.0039 !
4-D | .0727 . 0884 .0503 .0075 .0028

" .0700 .0773 . 0475 .0055 .0049
.0739 .0749 .0589 .0082 .0049
.0465 .0796 .0854 .0146 .0025

7) MV MMSE .0262 .0440 .0388 .0059 .0046
2-D .0752 .0912 .0475 .0079 .0024

i .0669 .0704 .0388 . 0043 .0052
, .0754 .0701 .0549 .0080 .0055 .
i .0474 .0884 .0996 .0182 .0029

— ... ....
8) MV XVAL

i
| .0278 . 0448 .0384 . 0059 .0044

! 2-D 1 .0738 .0897 .0488 .0080 .0028
| IT .0680 .0732 .0427 .0051 .0052
: ; .0745 .0721 .0566 . 0084 .0054
i i .0470 .0844 .0932 .0170 .0029

: 9) STD MMSE I .0256 .0434 . 0385 .0066 .0049
: 2-D .0743 .0903 .0476 .0091 .0031ti .0655 .0690 ,0383 .0052 .0057
I j .0743 .0692 .0545 .0092 .0061

.0474 .0884 .0998 .0199 .0038

10) STD XVAL ; .0256 .0434 .0386 .0066 .0049
i 2-D .0743 .0903 .0476 .0091 .0031
1 * M .0655 .0690 .0383 .0052 .0057
J I .0743 .0692 .0545 .0092 .00611 j1. .(

.0474 .0885 .0998 .0199 .0038

1 11) STD MMSE ! . 0256 .0434 .0386 .0064 .0049
j 1-D ! .0747 .0907 .0474 .0088 .0029
! 1 11 .0657 ,0690 .0380 .0049 .0056
j .0747 .0692 .0544 .0089 .0060
j . 0475 .0889 . 1005 . 0197 .0036
!"■" — .. — *■..
; 12) STD XVAL .0257 .0433 .0384 .0068 .0050

1-D .0738 .0898 .0478 .0096 .0034
" .0652 .0691 .0388 .0057 .0058

.0738 .0692 .0546 .0096 .0063

1 ... .... ..... -u. ......
.0473 .0878 .0987 .0202 .0041



Table 4.9(b) 5 x 5  table: p(x|7ri)
1

Method !
i!11

Age Coma Sum

3-4 5-6 7-8 9-10 11-15

Direct methods

13) MV BRIER 0-14 . 0247 .0438 .0395 .0052 .0044
4-D 15-29 .0778 . 0939 .0458 .0064 .0014 j

39-44 . 0670 . 0685 . 0347 .0023 .0048 !
45-59 .0778 .0687 .0532 .0063 .0050

>60 .0480 .0933 .1074 .0180 .0018

14) MV BRIER .0251 .0440 .0394 .0051 .0044
2-D .0776 .0937 .0460 .0063 . 0014

" .0674 .0692 .0356 .0023 .0047
.0777 .0692 .0536 .0063 .0049
. 0480 .0925 . 1060 .0176 .0017

15) STD BRIER .0249 .0439 .0395 .0052 .0044
2-D .0778 .0938 .0458 .0063 . 0014

" .0672 .0688 .0350 . 0023 .0047
.0778 .0689 .0534 . 0063 .0049
.0480 .0930 . 1069 .0179 . 0018

16) STD BRIER .0249 .0439 .0395 .0052 .0044
1-D . 0777 .0938 .0459 .0064 .0014

I " .0672 .0688 .0351 . 0023 .0047
i .0777 .0689 .0534 .0064 .0049

.0480 .0930 .1068 .0179 .0018



Table 4.9(c) 5 x 5  table: p(x | i r i )

Method !Age : Coma Sum

3-4 5-6 7-8 9-10 11-15

Reference methods

13T) MV BRIER 0-14 .0241 .0433 .0394 .0056 .0047
4-D 15-29 . 0776 .0937 .0456 . 0071 .0018

30-44 .0659 .0671 .0336 .0027 .0050
45-59 . 0773 .0678 .0526 .0070 .0054

^60 .0481 .0941 . 1087 .0193 .0024

; 14T) MV BRIER .0248 .0436 .0393 .0055 .0046
2~D .0772 .0932 .0460 .0070 .0018

" 1 .0665 .0683 .0351 .0029 .0050
■ .0771 .0686 .0533 .0070 .0052
1 .0480 .0927 . 1064 .0186 .0023

1ST) STD BRIER
11 .0249 .0439 .0394 .0053 .0045

2-D 1! .0775 .0936 .0460 .0065 .0015
.0670 .0688 .0353 .0025 .0048
.0775 .0689 .0535 .0065 .0050

1 .0480 .0927 .1063 .0180 .0019

16T) STD BRIER
iii .0250 .0438 .0393 .0054 .0045

1-D 1i .0771 .0932 .0462 .0069 .0017M '1 .0668 .0688 .0357 .0028 .0049! .0771 .0690 .0536 .0069 .0052
i .0479 .0921 .1055 .0182 .0022

Raw training |.0242 .0444 .0403 .0040 .0040
proportions I .0806 .0968 .0444 .0040 .0000

(RFTR) 1.0685 .0685 .0322 .0000 . 0040
S .0806 .0685 .0524 .0040 .0040
iI . 0484 .0968 .1129 .0161 .0000

Raw test ! 1 .0335 .0418 .0293 .0042 .0000
proportions ■: .0879 .1172 .0335 .0042 .0084

(RFTS) l .0628 . 1004 .0418 .0000 .0000
. 1004 .0544 .0335 .0126 .0042

f
i .............

.0418 .1046 .0669 .0126 .0042



Table 4.10(a) 5 x 5 table p(x )

Method Age Coma Sum !

3-4 5-6 7-8 9-10 111-15 |

Marginal methods
j

1) MMSE 0-14 .0143 .0815 . 1024 .0361 .0146 !
4-D 15-29 .0194 . 1278 . 1533 . 0580 .0202 ;

30-44 .0020 .0507 .0723 . 0204 .0387 j
45-59 .0015 .0371 .0621 .0075 .0264 |

^60 .0045 .0107 .0077 .0134 .0173

2) XVAL .0143 .0807 . 1013 .0360 .0148 j
4-D .0195 . 1263 . 1516 .0576 .0206 i

" .0024 .0513 .0728 .0210 .0384 !
.0018 .0376 .0622 .0082 .0264 i
.0046 .0112 .0086 .0135 .0172 |

3) MMSE i .0139 .0809 . 1018 .0356 .0145
2-D .0188 . 1266 . 1522 .0570 .0201

i " .0020 .0517 .0735 .0206 .0386
1 .0015 .0379 .0629 .0079 .0265
I
i

.0045 .0114 .0087 .0135 .0174

- 4) XVAL \
1 .0138 .0799 . 1005 .0352 .0146

j 2-D f .0186 .1247 . 1501 .0562 .0204
i ! ti .0024 .0527 .0745 .0212 .0382 1

.0018 .0388 .0634 .0087 .0265
|

.0045 .0122 .0100 .0136 .0173

Continued



Table 4.10(a) cont'd. 5 x 5  table : p(x|7T2)

Method Age j Coma Sum

3-4 5-6 7-8 9-10 11-15

Multivariate methods

5) MV MMSE 0-14 .0152 .0788 . 0986 .0366 .0156
4-D 15-29 .0209 . 1230 . 1475 .0582 . 0220

ioCO .0037 .0517 .0725 .0226 .0377
45-59 .0027 .0380 .0614 .0100 .0261

3̂ 60 .0047 .0119 .0099 .0136 .0169

6) MV XVAL 1 . 0152 .0766 .0956 .0362 ,0160
4-D 1 .0210 . 1189 . 1428 . 0572 . 0230

" . 0048 .0535 .0740 .0241 .0369
. 0036 .0395 .0620 .0118 .0260
.0048 .0135 .0124 .0138 .0167

7) MV MMSE .0146 .0783 .0981 .0358 .0154
2-D .0200 . 1219 .1465 .0569 .0218

i ii . 0036 .0529 .0741 . 0227 .0376
i .0027 .0390 .0625 .0102 .0262

! .0046 .0127 .0111 .0136 .0170

! 8) MV XVAL ' .0139 .0754 .0945 .0345 .0155
1 2-D .0190 .1163 .1405 .0542 .0224

ii .0046 .0562 ,0775 .0243 .0366
.0035 .0416 .0645 .0125 . 0264
.0047 .0153 .0151 .0139 .0170

9) STD MMSE .0153 ,0789 .0986 .0368 .0157 ;
2-D .0211 .1231 .1475 .0585 .0222

H .0037 .0515 .0722 .0226 .0377
.0028 .0379 .0612 .0100 .0260

i
.0047 .0118 .0098 .0136 .0168

10) STD XVAL .0159 .0768 .0957 .0371 .0164
2-D ! .0222 . 1194 .1430 .0586 . 0235

" i .0051 .0523 .0725 .0243 .0369
j .0038 .0386 .0608 .0119 .0258
| .0048 .0128 .0114 .0137 .0165

11) STD MMSE
i —
! .0154 .0786 .0981 . 0368 .0158

1-D | .0213 .1225 . 1468 .0585 .0224
" .0039 .0517 .0723 . 0229 .0376

.0029 .0380 .0612 .0103 .0260
i

.0047 .0120 .0100 .0136 .0168

12) STD XVAL .0157 .0776 .0968 .0370 .0161
1-D .0218 .1208 .1448 ,0586 .0230

K .0046 .0520 .0724 .0236 .0372
I .0034 .0383 .0610 .0111 .0259
| .0048 .0124 .0108 .0136 .0166
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Table 4.10(b) 5 x 5  table: p(x)tt2 )

Method
'

Age j Coma Sum 1
3-4 5-6 001 9-10 11-15

Direct methods

13) MV BRIER 0-14 .0141 .0813 . 1023 .0359 .0145
4-D 15-29 .0191 . 1275 . 1531 .0576 .0201

30-44 .0019 .0511 .0727 .0204 . 0387
45-59 .0014 .0374 .0624 .0076 .0264

>60 .0045 .0109 .0080 .0135 .0174

14) MV BRIER .0142 .0814 . 1024 .0360
1

.0146
2-D .0193 . 1277 . 1533 .0578 .0201 ;

.0020 .0509 .0724 .0204 .0387

.0014 .0372 .0622 .0075 .0264 i

.0045 .0108 .0078 .0135 .0173 !
i

15) STD BRIER .0145 .0814 .1023 .0363
1

.0147 ;
2-D .0197 .1278 .1532 .0583 .0203 ;

it .0021 .0505 .0719 .0205 .0387
.0016 .0370 .0618 .0076 .0263
.0046 .0106 .0075 . 0134 .0172 ;

16) STD BRIER .0144 .0818 .1028 .0363 .0146
1-D .0196 . 1284 . 1539 .0583 .0201tl .0019 .0504 .0719 .0203 .0388

.0014 .0368 .0618 .0073 .0264

.0045
i... ... -

.0104 .0072 .0134 .0173



Table 4.10(c) 5 x 5  table: p (x j 77-3 )

Method Age Coma Sum 11
3-4 5-6 7-8 9-10 11-15 I1

Reference methods J
13T) MV BRIER 0-14 .0157 .0787 .0982 .0372 .0159 ;

4-D 15-29 .0218 . 1228 . 1470 .0591 .0225 ;
30-44 J . 0040 .0512 .0716 . 0229 .0376 !
45-59 | .0030 .0376 .0607 .0102 .0259 .

5:60 J . 0047 .0117 .0096 .0136 ,0167 ;

14T) MV BRIER .0148 .0815 . 1022 .0367 . 0149
2-D .0202 . 1279 . 1532 .0589 .0206

"
.0022 .0501 .0713 .0206 .0387
.0017 .0366 .0613 .0076 .0262
.0046 .0103 .0072 .0134 ,0172

15T) STD BRIER .0153 .0789 .0986 .0368 .0157
2-D .0211 .1231 . 1475 .0585 .0221

i| It .0037 .0515 .0722 .0226 .0377
| .0028 .0379 .0612 .0100 .0260
1
1

.0047 .0118 . 0098 .0136 .0168

16T) STD BRIER .0146 .0811 . 1018 .0364 .0148
1-D .0199 .1272 . 1525 .0583 .0206

i
It .0023 .0506 .0720 .0208 .0386

| .0017 .0371 .0617 .0079 .0263
1 .0046 .0107 .0078 . 0134 .0172
1 " " ' ' . . . . . . . . . .
| Raw training .0134 .0848 . 1071 .0357 .0134
proportions .0178 .1339 .1607 .0580 .0178

j (RFTR) tt .0000 .0491 .0714 .0178 .0402
i .0000 .0357 .0625 .0045 .0268

.0045 .0089 .0045 .0134 .0178

Raw test .0169 .1055 .0675 .0338 .0126
' proportions .0211 .1224 .1688 .0338 .0169
j (RFTS) 11 .0126 .0422 .0886 .0380 .0253
l .0126 .0380 .0591 .0126 .0380
J

1
.0000 .0042 .0126 .0084 .0084



256

methods set the smoothing parameters to be common across variables 
and allow comparison of this approach and setting them equal in 
each population. The standardised methods now have more potential 
as the optimum Brier scores (Table 4.7(c)) are not far from those 
of the usual methods and the direct Brier methods 15 and 16 are 
very similar to 13 and 14 with nearly identical Brier scores and 
fitted distributions. Both STD XVAL methods (10 and 12) are 
superior to MV XVAL (6 and 8) in terms of Brier score, but still 
slightly inferior to the marginal methods (2 and 4) though similar 
to the latter in terms of their fitted distributions. STD 1-D XVAL 
(12) is inferior to STD 2-D XVAL (10), but again the fitted 
distributions are similar. STD 2-D MMSE (9) is inferior to both MV 
MMSE methods (5 and 7). STD 1-D MMSE (11) which is superior to 2-D 
(9), is also better than MV 4-D MMSE (5) but worse than 2-D (7), 
and therefore also worse than the marginal MMSE ones. In terms of 
the fitted probabilities 9 and 11 are similar and similar to 7, 
while these only differ slightly from the MV 4-D method 5. 
Comparing MMSE to XVAL, the 1-parameter methods are virtually 
identical but now STD 2-D MMSE (9) is inferior (in w2 ) to the 
corresponding XVAL method (10) which produces a slightly smoother 
predicted distribution.

Despite the removal of convexity, the Brier score achieved by 
the isotonic method is in fact slightly lower than that of the 15 x 
10 case. However, once more, it is overall best, although it is 
not surprising that with rather less sparse data the isotonic 
estimate does not improve as much over the kernel methods as with 
the larger table. Figure 4.25 shows the unsmoothed data, and 
predicted probabilities for the best Brier method (13), best 
non-Brier kernel method (3) and the isotonic method.

Conclusions
Overall, we conclude that marginal methods tend to perform 

similarly and produce similar fitted distributions. Multivariate 
methods not surprisingly were superior to marginal ones in the 
sparse table. In either table, the difference between marginal and 
multivariate methods is more marked for XVAL than MMSE, while 
standardisation methods of either type tend to be more like 
marginal methods than the usual multivariate methods. In the 
smaller table, where less smoothing is required, MMSE was generally 
superior to XVAL, though the opposite is true for the 1-dimensional
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and 15 x 10 examples. Surprisingly, in the smaller table for both
the XVAL and MMSE approaches, and in the larger table for the
non-standardisation XVAL methods alone, using a common parameter 
for a given variable in each population is in fact slightly
superior to using 4 separate parameters.

Except for the less sparse table, where the degree of smoothing 
is less crucial and the potential to improve on standard methods is 
smaller, the data-based Brier methods using cross-validation tend 
to be disapppointing and can be even poorer than marginal methods. 
Here 4 parameters rather than 2 are better.

The overall best method is the isotonic approach which alone 
recovers the required ordering and outperforms or has a 
near-optimal Brier score compared to the kernel methods, although 
again for the smaller table no method was far from isotonic.

4-4 SMOOTHING THE ISOTONIC ESTIMATE
The results of Section 4.3 suggest that where response is known 

to be ordered with respect to the explanatory variables, directly 
modelling its posterior distribution, rather than indirectly via 
estimation of the class conditional distributions, is the more 
appropriate approach. In these examples the isotonic regression 
method was the only one which completely recovered this underlying 
ordering. However, a major disadvantage of isotonic regression is 
that it produces a step function estimate with disappointing 
continuity properties, unlike the smoother kernel-based 
nonparametric estimator or a direct parametric method such as 
logistic regression. While the isotonic method is applying 
smoothing to the unconstrained MLEs, extra smoothing of some sort
would seem to be desirable.

4.4.1 Convex smoothing
In density estimation we have seen (see Section 3.4.2) that the 

1-dimensional kernel estimator of Aitchison and Aitken (1976) can 
be viewed as a convex combination of the data, expressed as 
relative frequencies, and a vector of probabilities, such convex 
estimators smoothing the M L E . In a similar spirit we might apply 
additional smoothing to the isotonic estimates of posterior 
probabilities (p(^i|x)} by smoothing towards those of a suitable 
parametric model, such as a logistic or independence model, or a 
smoother nonparametric model such as the kernel estimator, in order
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to achieve a compromise between the ordered but rough nature of the 
former estimator, and the desirable continuity properties but 
overly structured nature of the latter ones. It can be shown (see 
Appendix 3) that the Brier score of a convex model such as XISO + 
(l-x)PARA, 0 < X < 1, where ISO and PARA denote the isotonic and a 
parametric model respectively, is a quadratic in X, so that the
optimising value of X is easily found.

Smoothing towards a kernel estimate unfortunately was unable to 
improve on the Brier score of the isotonic estimate in any of the 3 
discrete examples above.

4.4.2 Adding in pseudo-observations
One motivation of smoothed relative frequency estimators is to

avoid zero estimates. In the context of log-linear and logistic
models, Goodman (1970, 1971) suggested adding a pseudo-count of %

to every cell when empty cells occur, while Gart and Zweifel (1967) 
used % or 1, adding these either to all cells or to each empty 
cell. Grizzle, Starmer, and Koch (1969) replaced zero counts by 
1/k, k = total number of cells. Following the same procedure for 
maximum likelihood estimation of multinomial probabilities is 
equivalent to convex smoothing (Fienberg and Holland, 1973). 
Goodman's procedure specifies <x = &k/(n+J£k) with ©(y) = 1/k, Vy, as 
in (3.2). More generally, adding a pseudo-count of }£ke(y) to each 
cell recovers the estimator (3.3), again with oc = J£k/(n+J6k),

One means of further smoothing the isotonic estimate is to 
adjust the cell weights {w -j j }. We noted in Section 3.5.2 the 
difficulties caused by zero-weighted (i.e. empty) cells, and stated 
that the Brier score could be improved and these difficulties 
overcome, by setting the cell relative frequencies to the overall 
relative frequency of and assigning a non-trivial weight 6 to
them, 0 < 6 < 1. This has the effect of introducing further 
smoothing in the region of each empty cell, smoothing away from the 
isotonic regression. An alternative, applicable whether or not 
zero-weighted cells are present, is to add in a small number of 
extra observations, X, to every cell weight and to each population 
in proportion to p(n^) . This is analagous to the type of convex 
smoothing described above, but is followed here by isotonic 
regression. It has the effect of biasing all the (pt^lx)} towards 
uniformity, in a Bayesian spirit, the degree of smoothing being 
controlled by the value of X. For X = 6 a 0 both reduce to the
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usual isotonic method of Dykstra (1981), assuming that 
zero-weighted cells are in any case set to p{n-^). The methods are 
referred to below as Methods 1 and 2 respectively, while Dykstra's 
method is referred to as the basic isotonic procedure.

Figure 4.26 shows that in the 15 by 10 example both methods 
improve the Brier score on the test data over that of Dykstra's 
standard isotonic method with 6 set to 10- 5 , and, where there are 
zero-weighted cells, that overall additional smoothing produces a 
greater improvement than extra smoothing around the empty cells 
alone. In practice of course the parameters cannot be chosen to 
optimise performance on the test set and optimising on the training 
data will lead to an answer of no extra smoothing. Ideally a 
leaving-one-out procedure is required, but full cross-validation 
would be too time consuming to compute. Randomly partitioning the 
design set several times into a "design subset" and somewhat 
smaller "test subset", and then averaging the resulting parameter 
estimates may provide an acceptable compromise.

Ten random samples of size 157 were taken from the basic set of 
472 observations and used as a test subset, the remaining 315 cases 
then being used to reformulate the isotonic regression in each 
case. The choice of 6 was made by a rough grid search to optimise 
the "test" Brier score; candidate values of 6 were taken in steps 
of .1 over the range (0, 1), and (0, 10) for methods 1 and 2 
respectively. The average of 5 over the 10 simulations was used 
with the full training set to find the corresponding estimate. The 
Brier score quoted corresponds to the original test set.

The estimated smoothing parameters and Brier scores for the 
subsampling methods are given with those for full optimisation on 
the test set in Tables 4.11(a) and 4.11(b), for the 15 by 10 and 5 
by 5 cases respectively. For the latter, since there are no empty 
cells, method 1 is not an appropriate way to apply extra smoothing.

Even this rather crude version of method 2 produced in the 5 by 
5 example a slight improvement in the Brier score over the basic 
isotonic method, bringing it close to what would be achieved by 
optimisation on the full test set. The estimated degree of 
smoothing is of the same order of magnitude as that of the latter 
method and the resulting probabilities are also closer than they 
are to those of the basic isotonic regression. (See Table 4.12). 
The basic isotonic probabilities and those produced using method 2 
with subsampling are shown in Figures 4.27(a) and (b) respectively.
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3RIER SCORE

0.8280

0.8275

0.8270

0.8265

0.8260

0.3255

0.8250

0.8245

0.8240

0.8235
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.26 Brier score as a function of 6, for the 15 x 10 array, 
where 6 controls the degree of extra smoothing imposed on the basic 
isotonic regression. The dotted line corresponds to method 1 and 
the solid line to method 2.
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Table 4.11(a) EXTRA SMOOTHING WITH THE 15 X 10 TABLE

Isotonic methods Brier
Score

Error
Rate {%)

Method 1 6 = .29 ; .826400
1

26.0

Method 2 , 6  = .23 1 .827166 26.0

Method 1 with subsampling !
i

6 = . 55 i .826278
\\

26.0

Method 2 with subsampling ; 6 = .47
1

j .826604 26.0

Table 4.11(b) EXTRA SMOOTHING WITH THE 5 X 5  TABLE

Isotonic methods Brier Error 
Score Rate { % )

Method 2

Method 2 with subsampling

5 - .81

6 = .92

.825789 25.2 

.825783 25.2

Table 4.12 Fitted distributions p(irj|x) for the 5 x 5  table

Method Age Coma Sum

3-4 5-6 7-8 9-10 11-15

Isotonic 0-14 .667 .367 .259 .089 .089
15-29 .833 .444 .259 .089 .089
30-44 .980 .607 .333 .089 .089
45-59 .980 .680 .483 .483 .091
5*60 .980 .945 .945 .571 .091

Method 2 .655 .371 .264 .131 . 131
.823 .446 .264 . 131 . 131

11 .959 ‘ ,605 .340 . 131 . 131
j .959 .675 .485 .485 . 146
i

.959 .933 .933 .567 .146

Method 2 with 1 .654 .371 .265 . 136 .136
subsampling .822 .446 .265 . 136 . 136

! " .956 .604 .340 . 136 .136
| , ! .956 .674 .485 .485 . 153
1

I
j .956 .932 .932 .566 . 153
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Figure 4.27 ] x) displayed
as 3-dimensional isotonic 
projections for the 5x5 table.

(a) Basic isotonic regression.

(b) Method 2 with subsampling.
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Visually, there is little difference between them though the latter 
are fractionally smoother.

In the 15 by 10 case, both methods 1 and 2 with subsainpling 
improved the Brier score of the basic isotonic estimate, although
in both cases the suggested degree of smoothing is greater than 
optimal. In both cases the probabilities (not shown) are smoothed
towards those of the optimal isotonic regression with extra 
smoothing and away from the basic one, although this is less 
noticeable for method 1. Sampling method 1 produced a slightly 
nearer optimal degree of smoothing than did sampling method 2, but 
nevertheless the latter still outperformed it and in fact achieved 
a better Brier score then method 1 would if optimisation were
carried out directly on the full test set. Three-dimensional 
plots, Figures 4.28(a)-(c), show that while method 2 produces
smoother probabilities than the basic isotonic regression, sampling 
method 2 is intermediate between the two but still very similar to 
optimal. Again a more marked difference is apparent between 
methods for the larger table, where the value of extra smoothing 
would be expected to be greater.

While 6 varies considerably between subsamples, and an 
occasional answer of 6 = 0 is returned with the Brier score
declining smoothly from that of the basic isotonic regression, 
where S is non-zero smooth curves of the type illustrated in Figure 
4.26 are seen. These are encouraging results for the isotonic
estimator. Hence it appears that taking the mean parameter 
estimate over a reasonable number of subsamples will suggest a 
sensible degree of extra smoothing and will effect an improvement, 
in terms of the Brier score, over the method of Dykstra. 
Particularly for sparse tables, we would recommend use of method 2.

4.4.3 Isotonisation of a parametric model
A further possibility (not implemented here) is to take a 

smooth parametric model as our starting point, constraining the 
parameter estimates suitably in order to produce an "isotonised" 
estimate of the { p ^ i  |x -jj )}. With the 2 population logistic model 
we would have
pt^llxij) = exp(0ij)/{l + exp(ei:j)}, i = 1 ....  k-ĵ ; j = 1 .....   k2
and hence requiring that pf-n-̂ lx-jj) ^ p(^ilxj^) iff i ^ k and j < 1 
is equivalent to the conditions on the parameters (eij) that 
©ij iff i < k and j < 1. In principle the procedure would be



264
Figure 4.23 p(*i I x) for the 

15 x 10 table.

(a) Basic isotonic regression.

(b) Method 2.

(c) Method 2 with subsampling.
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to estimate {0ij} by constrained maximum likelihood, but this would 
be more readily accomplished in practice by fitting the logistic 
model in the usual way and then finding the isotonic regression of 
the (eij}. using the inverse estimated standard errors of the 
parameters as cell weights.

4.5 A 3-DIMENSIONAL EXAMPLE

4.5.1 Data
We consider now 3 variables, using the same data set, namely 

the raw (24 hour best) Eye, Motor and Verbal Scores (EMV Scores) 
from which the Coma Sum is derived, which have 4, 6, and 5 ordered 
categories respectively. In each case a low score is poor. Again 
the 6 month outcome is the response variable of interest.

Five sample sizes were used as training data, consisting of the 
1st 100, 200, 300, 400 and the full set of 500 training cases,
omitting incomplete cases as before. In each case the test set was 
as previously, namely the 2nd set of 500 cases. Use of the same 
test set allows comparisons to be made between training samples of 
different sizes. The full test and training samples were also 
reversed as a check against spurious results.

Initially the full 120-cell contingency table was used, (shown 
for the full sample of 500 cases in Tables 4.13(a)-(b)) and is 
obviously sparse, especially for the smaller sample sizes. 
Secondly, this was collapsed to a 24-cell table (Table 4.14) by
recoding Eye and Verbal scores to 2 categories each (1, and > 1). 
Motor score is the most informative and its 6 categories were 
retained,

4.5.2 Models
At this point we dispense with the kernel method as it would 

seem that the diagnostic approach is the more appropriate for this 
data set. We therefore compare 2 logistic models with the isotonic 
method, but for comparison also include an independence model as a 
simple but robust example of the sampling approach, found by
Titterington et a l . (1981) to perform well on this data set. The
models used are as follows :

1) The independence model (INDEP) is as used by Titterington et a l . 
(1981), namely
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Table 4.13(a) 120-CELL TABLE

Training sample cell countsCategory

19

49 7 
41 3439 13
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Table 4.13(b) 120-CELL TABLE

Category Test sample cell counts

18
60
33
63
27

55 8 
41 21

10
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Table 4.14 24-CELL TABLE

Training sample 
cell counts

Category Test sample 
cell counts

19 0
55 2
30 2
57 8
39 14

18
60
33
63
27

13 0
12 3
55 10
41 24

18 2 
49 8
41 38

12 26 
1 15

19 22
1 15
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■ n n-i (xr ) + l/kr'
r=l

. Nj_ (r ) + 1

where d is the number of variables, xr denotes the observation on 
the rth variable, n^(xr ) is the number of cases in the training set 
with outcome irj_ and score xr on variable r, kr is the number of 
categories of the rth variable, and N^(r) is the number of cases in 
the training set of outcome ir^ for which variable r is not missing, 
B is an overall association factor.

For simplicity and more faithfulness to the basic model B was 
set to 1.

2) and 3) Logistic models
Both the linear logistic model (LINT), which treats each 

variable as continuous or interval-scaled, and the nominal 
categorical equivalent (LCAT) were used. In view of the ordered
nature of the variables we would expect the former to be superior. 
These models were fitted using the BMDP program PLR (Dixon, 1985). 
Scores for the slightly smoothed raw test and training relative 
frequencies, replacing zero-weighted cells by the overall relative 
frequency of the appropriate outcome, are also provided as 
reference points and are denoted RFTS and RFTR respectively. These 
relative frequencies were used as input to the isotonic regression 
algorithm.

4) Isotonic Regression
In view of the difficulties with sparse data described

previously, the algorithm of Dykstra (1981) was used with a weight 
of 6 = .1, as this was found to give convergence within a
reasonable number of cycles, here taken as 500. Again
zero-weighted cells were given a relative frequency of the overall 
mean. While this will impose a little extra smoothing (as in 
Method 1 of Section 4.4.2), practical considerations require it. 
Convergence was extremely slow when the training sample consisted 
of the first 100, 200, 300, 400, or 500 cases with &  = 10- 5 , as it
was also with the alternative algorithm of Wollan and Dykstra 
(1987). The latter algorithm also encountered difficulties with 
the 2nd 500 cases in both the 24- and 120-cell multinomials and was 
disappointing here, perhaps not surprisingly as in the 120-cell
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case it imposes a basic set of 286 constraints and an augmented one 
of 360, In the 24-cell example the corresponding numbers are 44
and 48. Being rather less sparse, all examples considered with
the 24-cell problem converged quickly with the specialised isotonic 
algorithm as did the 120-cell case with the 2nd 500 cases used as 
training data, so that extra smoothing is not strictly speaking 
necessary here but was retained for better comparison between the 2 
sets of results. The method is denoted ISO.

For the larger and smaller tables respectively, Tables 
4,15(a)-(b) and 4.16(a)-(b) give continuous performance scores and 
error rates, for each sample size and model, together with 
benchmark models RFTR and RFTS as previously. Means of assessment 
of the confidence of each method, namely probability assignment and 
doubt matrices (see Section 1.6.2), are found in Tables 4.15(c)— (d) 
and 4.16(c)-(d). The threshhold value of .85 for a classification 
of doubt was chosen as being the level at which differences appear 
between the various methods.

4.5.3 Discussion
Especially for smaller sample sizes 100-200, LINT is noticeably 

better than LCAT, which is poorer than any other method on all 
scores, especially on Brier score, and even on error rate. For 
larger samples, however, error rates are closer, and LCAT is 
fractionally better on error rate for the 1st 500 cases then LINT, 
and fractionally better overall with the 2nd 500 cases.

For larger samples particularly, ISO is poorer on error rate 
relative to the parametric methods, and Is characterised by more 
unbalanced error rates which may be a disadvantage, although, 
except for the 1st 100 cases where the reverse is true for all
except INDEP, more type 2s than type Is are misclassified by all
methods. This is not surprising as itg represents more widely 
varying outcomes than , but, given the potential use of such 
predictions for patient management, misclassification of type 2s 
may be considered to be the more serious mistake and ISO to be 
deficient in this respect. On Brier and modified log scores ISO 
tends to be slightly better than INDEP.

Overall LINT is best and better on Brier, log and modified log
scores in all cases except that noted above, and for 24 cells and
100 training cases where INDEP was slightly better.

Hilden (1984) remarks that the independence model is typically
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Tab1e 4.15(a) RESULTS FOR THE 120-CELL MULTINOMIAL

Method Brier
Score

Log
Score

e-Log
Score

Error
Rate

Error
Rate
%ir2

Error
Rate
%  Overall

Sample Size = 100

LCAT . 7588 -.8941 -.6624 62.34 20.25 41.39
LINT .7900 -.6100 -.5634 51.05 15.19 33.19
ISO . 7839 -.6885 -.5842 66.53 6.75 36.76 |

; INDEP . 7743 -.6780 -.6123 34.73 45.15 39.92 j
| RFTR .7512 -.9511 -.6731 61.92 18.99 40.55 |
| RFTS
!j

.8128 -.5436 -.5017 23.85 35. 86 29.83 i|

| Sample Size = 200

I LCAT .7677 -.8231 -.6254 23.85 60 .34 42.02 I
j LINT .7820 -.6265 -.5791 10.88 61.18 35.92
; ISO .7754 -.7375 -.6039 8.37 69.20 38.66
| INDEP .7630 -.7064 -.6391 10.88 62.87 36.76
! RFTRi .7565 -1.1022 -.6811 13.39 74.26 43.70 |
| RFTS .8128 -.5436 -.5017 23.85 36. 29 30.04

Sample Size = 300

LCAT .7816 -.6970 -.5849 12.97 61.60 37.18
LINT .7930 -.6036 -.5568 14.23 54.85 34.45
ISO .7827 -.7379 -.5997 8.37 70.04 39.08
INDEP .7772 -.6692 -.6061 13.39 56.12 34.66
RFTR .7716 -1.1683 -.6622 10.04 70.04 39.92
RFTS .8128 -.5436 -.5017 23.43 36.71 30.04

Sample Size = 400

LCAT .7869 -.6843 -.5748 24.27 43.88 34.03
LINT .7974 -.5944 -.5478 25.52 37.55 31.51
ISO .7854 -.7347 -.5956 8.37 70.04 39.08
INDEP .7851 -.6558 -.5936 13 .39 56.12 34.66
RFTR .7761 -1.1598 -.6539 9.62 67.93 38.66
RFTS .8128 -.5436 -.5017 23.43 35.44 29.41
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Table 4.15(b) RESULTS FOR THE 120-CELL MULTINOMIAL

Method Brier
Score

Log
Score

e-Log
Score

Error
Rate
%ir^

Error
Rate
%TT £

Error
Rate
%  Overall

Sample Size - 500

LCAT .7900 -.6720 -.5688 24.27 40.51 32.35 I
LINT .7952 -.5976 -.5514 24.27 40.93 32.56 j
ISO ,7905 -.6746 -.5708 14.23 57.81 35.92 l

1 INDEP 1 .7862 -.6467 -.5913 24.69 38.82 31.72
RFTR .7676 -1.4835 -.7168 21.34 48.52 34.87

; RFTS1 .8123 -.5436 -.5017 23.43 35 .86 29.62

Sample = 2nd 500

LCAT .7960 -.5909 -.5455 32.66 35.27 33.90
LINTi . 7976 -.5881 -.5423 32.26 34.82 33.47

| ISO .7961 -.5896 -.5441 33.47 33.93 33.69
j INDEP .7891 -.6185 -.5692 33.47 33.93 33.69
; RFTR .7826 -.9220 -.6144 33.06 37.95 35.38
j RFTS
i

.8150 -.5291 -.4893 27 .02 37.50 31.99
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Tab 1e 4.15(c) RESULTS FOR THE 120-CELL MULTINOMIAL

Me thod

Average
assigned
outcome

Probability 
to correct

Doubt Matrix 
(doubt < 0.85)
%  classified to 

tt^ and it 2

*1 7rl n 2 V 1

Sample Size = 100

LCAT .513 .602 8.37 1 .69 3.35 15.61 |
LINT . 539 .602 - - 1 .26 4.22
ISO .541 . 605 7.53 0.84 3.77 16.88
INDEP .566 .577 7.53 0 . 84 5.02 20.68
RFTR .508 .584 8.37 1.69 1.67 6.75
RFTS . 627 .624 9.20 0.84 0.42 20. 25

Sample Size = 200

LCAT .674 .491 8.37 1.27 2.93 16.03
LINT .693 .481 7.53 0.84 1.67 10.55
ISO .686 .489 33.47 6.75 3.77 18. 14
INDEP .727 .472 32.64 6.33 3.77 19.83
RFTR .677 .459 34.31 8.02 2.93 11.39
RFTS .627 .624 9.20 0.84 0.42 20.25

Sample Size = 300

LCAT .642 .527 8.37 1. 27 2 .93 " ....;15.61 ;
LINT .647 .534 7.53 0.84 1.67 10,55
ISO .638 .540 7.53 0.84 3.77 18.14
INDEP .705 .513 32.64 6.33 4.18 20.68
RFTR .633 .528 9.21 2.95 3.77 16.03
RFTS .627 .624 9. 21 0.84 0.42 20.25

Sample Size = 400

LCAT .630 .557 8.37 1.27 2 .93 16.03
LINT .626 .570 7.53 0 . 84 2 .51 14. 77
ISO .627 .562 33.47 6.75 3.77 16.88
INDEP .688 .555 33.47 6.75 5.44 23.63
RFTR .625 .551 34.31 8.44 3.77 15.61
RFTS .627 .624 9.20 0.84 0.42 20.25
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Table 4.15(d) RESULTS FOR THE 120-CELL MULTINOMIAL

Method

Average
assigned
outcome

Probabi1ity 
to correct

Doubt Matrix 
(doubt ^ 0.85)
%  classified to 

■n j and it 2

i V1
ii "1 n2 nl n2

Sample Size = 500 i

LCAT .642 .554 33.47 6.75 2 .93 13.92
LINT .638 .555 7.53 0.84 1.67 7.60 j

' ISO .642 .558 33.47 6.75 3.77 16.88 ;
| INDEP .688 .562 33.47 6.75 6 . 28 22.36
! RFTR .645 .534 35.56 12 . 66 3 . 35 14.77 '
| RFTS
!

.627 .624 9. 20 0.84 0 .42 20.25
1
! Sample =j 2nd 500

; LCAT .583 .614 7.66 - 2.82 14.73
LINT .581 .607 7.66 - 0.81 15.18

i ISO .588 .612 7.66 _ 1 .21 11.61
INDEP .620 .628 29.84 3 .57 6.05 26.34
RFTR .582 .600 8.47 0.89 4 .44 13.39
RFTS j . 648 . 610 33.87 3.57 - 18.75
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Table 4.16(a) RESULTS FOR THE 24-CELL MULTINOMIAL

Method Brier
Score

Log
Score

e-Log
Score

Error
Rate
% it1

Error
Rate
% tt2

Error
Rate
%  Overall

Sample Size = 100

LCAT .7648 -.8877 -.6395 64.02 13.92 39.08
LINT .7837 -.6231 -.5761 49.79 18.14 34 .03
ISO . 7830 -.7819 -.5927 66.53 7 .17 36.97
INDEP . 7853 -.6339 -.5832 39.75 30.80 35.29
RFTR .7570 -.9051 -.6564 62.34 18.99 40 .76
RFTS .8064 -.5672 -.5228 25.94 35.02 30.46

Sample Size = 200

LCAT .7740 -.7036 -.5995 23.85 55.70 39.71
| LINT . 7839 -.6196 -.5729 9.62 62 .87 36.13
 ̂ ISOi . 7777 -.7931 -.6035 8. 79 65.82 37.18
| INDEP .7721 -.6604 -.6097 12.13 56.96 34.45
| RFTR .7696 -.9434 -.6379 16.74 64. 14 40.34

RFTS .8064 -.5672 -.5228 25.94 35.44 30.67

Sample Size = 300

LCAT .7899 -.6702 -.5671 14.64 53. 16 33.82
LINT !i .7947 -.5966 -.5506 14.23 55.27 34.66
ISO .7871 -.7724 -.5835 8.79 65 . 82 37.18
INDEP .7844 -.6375 -.5857 14.64 52.74 33.61
RFTR .7815 -.9178 -.6132 9.20 62.87 35.92
RFTS .8064 -.5672 -.5228 25.10 35.44 30.25

Sample Size = 400

LCAT .7948 -.6604 -.5576 25.94 35.86 30.88
LINT i .7978 -.5902 -.5445 25.52 37.98 31.72
ISO | .7886 -.7704 -.5815 8.79 65.82 37. 18
INDEP i .7892 -.6348 -.5812 14.64 52.74 33.61
RFTR i

i .7853 -.9109 -.6064 9.20 62.87 . 35.92
RFTS 1 . 8064 -.5672 -.5228 25.10 35.44 30.25
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Table 4..16(b) RESULTS FOR THE 24-CELL MULTINOMIAL

Method Brier
Score

Log
Score

e-Log
Score

Error
Rate
% tt1

Error
Rate
%if2

Error
Rate
%  Overall

Sample Size = 500

LCAT .7955 -.6592 -.5565 25.94 36.71 31.30
LINT . 7953 -.5961 -.5501 23.43 41 .35 32.35 1 1
ISO . 7913 -.6696 -.5663 14.23 57 . 81 35.92 |
INDEP .7901 -.6293 -.5770 25.94 35.44 30.67 j
RFTR .7758 -1.2060 -.6689 20.50 45 .57 32.98
RFTS . 8064 -.5672 -.5228 25.10 35.44 30.25 ii

Sample = 2nd 500

LCAT | .7973 -.5878 -.5424 32.66 34.82 33.69
LINT 1 .7968 I -.5892 -.5436 32.66 34.82 33.69
ISO ! .7949 -.5931 -.5474 33.87 33.93 33.90
INDEP j .7886 -.6185 -.5704 33.47 33.93 33.69
RFTR '■ . 7864 -.8828 -.6037 33.06 34.82 33.90
RFTS . 8084 -.5553 -.5125 27.42 37 . 95 32 . 42
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Method

Average
assigned
outcome

Probability 
to correct

Doubt Matrix 
(doubt < 0.85)
%  classified to 

and ir 2

n 2 rr-l n 2 7rl ff2
Sample Size = 100

fj
(

LCAT .522 . t>80 j 7.53 0 .84 2.09 7.60 !
LINT .530 . 599 - - _ i
ISO .540 .599 7.53 0.84 1.26 6.75 |
INDEP . 558 .589 7.53 0.84 2.09 7.60 :1
RFTR .505 .601 8.37 1.69 1.26 6.75
RFTS . 614 .611 8.37 0.84 1 2.09 18.14 j

Sample Size = 200

LCAT .678 .470 32.64 6 . 33 0.84 6.33
LINT .692 .469 7.53 0.84 - -
ISO .685 .476 33.47 7.17 1.26 6 . 75
INDEP .721 .482 32.64 6.33 4.18 16.03
RFTR .676 .474 34.31 8.02 1.26 6.75
RFTS .614 .611 8.37 0.84 2.09 18 . 14

Sample Size = 300

LCAT .639 .533 7.53 0.84 1.26 6.75
; LINT .648 .530 7 .53 0 .84 0.84 6 .33
! ISO .636 .537 7.53 0.84 1.26 6.75

INDEP .695 .536 32.64 6.33 4.18 18.14
RFTR .633 .535 9.20 2.53 1.26 6.75
RFTS .614 .611 8.37 0.84 j 2.09 18.14

■ Sample Size = 400

LCAT .627 .564 32.64 6 .33 1.26 6.75
; LINT .629 .563 7.53 0.84 0.84 6.33
: ISO .626 .561 33.47 7.17 4.18 16.03
! INDEP .681 .572 32 .64 6.33 4.18 18.14
; RFTR .626 .559 34.31 8.02 4 .18 16.03
j RFTS .614 .611 8 .37 0 . 84 2.09 18 . 14
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Method

Average Probability 
assigned to correct 
outcome

Doubt Matrix 
(doubt < 0.85)
%  classified to 

tt-l and tt g

Sample Size = 500

LCAT | .643 .553 32 64 6, 33
LINT !! .641 .551 7 53 0 84 0. 84 6 33
ISO .642 .554 33 47 7 17 4. 18 16. 03
INDEP .686 .569 32 64 6 33 4 18 18 14
RFTR . 650 .535 36 40 12 24 4 18 16. 03
RFTS j

!
.614 .611 8 37 0 84 2 09 18 14

Sample = 2nd 500

LCAT .583 ,612 7 66 2 42 18 30
LINT .582 .611 7 66 2 42 18 75
ISO .585 .613 7 66 0 81 7 14

; INDEP .618 .629 29 84 3 57 5 64 26 34
! RFTR . .581 .608 8 .47 1 CO 4 44 13 84

RFTS .635 .596 33 .06 3 .57 2 42 19 64
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overconfident, producing over-extreme odds, while not distorting 
much the ranking of the alternative diagnoses. He attributes this 
to violation of conditional independence. Titterington et al. 
(1981) also found this. We see that in terms of average 
probability assigned to the correct group for cases from it±, while 
LCAT. LINT and ISO are reasonably similar, INDEP assigns higher 
probability. (Tables 4.15(c) — (d) and 4.16(c) — (d)) . On the 1st and 
2nd 500 cases it is also more confident at predicting cases 
though for 120 cells it gives lower probability to the latter when 
the training set is smaller (100 - 300 cases). There is little 
difference with 100 - 400 cases and the smaller table. However, 
since overall LINT performs the best of the parametric models, this 
was the one chosen to use in conjunction with ISO for convex 
smoothing.

Tables 4.17 and 4.18 overleaf give the results of smoothing 
using the model CON = X ISO + (1~X) LINT for the 120- and 24-cell 
tables respectively. Only in the 24-cell case with the smallest 
sample size was there a marked improvement seen in scores (to the 
3rd rather than 4th decimal place). In fact in this instance INDEP
was the best parametric model on Brier score rather than LINT, and
the convex method betters it. In all other cases if any
improvement was possible it was very slight. Although we have not 
used it here, the isotonic Method 2 would presumably once more be a 
superior means of improving on the basic isotonic method, bringing 
it closer to LINT.

However, the superior performance of LINT may well be due to 
the nature of the Coma Score with its equal steps, and it may be 
expected to improve less on LCAT for an ordered scale with less 
even steps. In such a situation ISO might come into its own.
especially if implemented with extra smoothing, and outperform both 
logistic models. In either situation it would be interesting to 
compare the various isotonic approaches with the isotonised 
logistic models suggested in Section 4.4.3.
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Table 4.17 120-CELL TABLE :
CONVEX SMOOTHING USING MODEL XISO + (l-X) LINT

Sample size ' X Method Brier
Score

Log e-Log 
Score Score

Error
Rate { % )

100
i|

LINT . 7900 -.6100 5634 33.19
ISO . 7839 -.6885 5842 36.76

.2157 ; CON . 7905 -.6085 5619 33.19
;

, 200 LINT .7820 -.6265 5791 35.92
ISO . 7754 -.7375 6039 38 .66

.0842
.

‘ CON . 7821 -.6265 5790 35.92

i

300 LINT .7930 -.6036 5568 34.45
ISO . 7827 -.7379 5997 39.08

0 CON AS LINT

400 LINT .7974 -.5944 5478 31.51
ISO .7854 -.7347 5956 39.08

0 CON AS LINT

1st 500 j LINT .7952 -.5976 5514 32.56

t
ISO . 7905 -.6746 5708 35.92

1 .1053
1
«

CON .7952 -.5975 5512 32 . 56

2nd 500
!j

LINT .7976 -.5881 5423 33.47
s ISO .7961 -.5896 5441 33.69

.2275
i--------

CON . 7977
L _____________

-.5872 5416 33.47
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Table 4.13 24-CELL TABLE :
CONVEX SMOOTHING USING MODEL XISO + (l-X) LINT

'
Sample size X Method Brier

Score
Log
Score

e-Log
Score

Error 
Rate ( % ) |

100 LINT . 7837 -.6231 -.5761 34.03 |
ISO . 7830 -.7819 - .5927 36.97

.4624 CON .7858 -.6174 -.5706 33.61

200
! ..

LINT
!!| .7839 -.6196 -.5729 36.13 |

| ISO i .7777 -.7931 -.6035 37.18 ;
. 0552 CON

i
! .7840| -.6194 -.5727 36.13 !

300 LINT
ii
: .7947 -.5966 -.5506 34.66

. j ISO ! .7871 -.7724 -.5835 37.18
: 0 i CON i AS LINT

400
ij LINT

i

i .7978 -.5902 -.5445 31. 72
ISO | .7886 -.7704 -.5815 37.18

0 CON AS LINT

1st 500 LINT | .7953 -.5961 -.5501 32.35

I ISO ! .7913 -.6696 -.5663 35.92
! .0884
i

CON i .7953
j

-.5962 -.5502 32 .35

2nd 500
1

LINT .7968 -.5892 -.5436 33.69
1
i ISO .7949 -.5931 -.5474 33 . 90
' 0 CON • AS LINT
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CHAPTER 5 CONCLUSIONS AND FURTHER WORK

Kernel smoothing and limitations of the present work
Hitherto we have addressed the question of how to achieve 

reliable estimation of posterior probabilities through the use of 
estimators involving data smoothing.

In Chapter 2, comparing marginal and direct methods for 
estimation of smoothing parameters in fixed (continuous) kernel 
density estimators in terms of MSE, using contour plots and plots 
of the predicted probability function p ( |x) r the scope to improve 
on the former appeared limited, except for equal populations where 
direct methods generally improved substantially. The potential to 
improve in general seemed greater for smaller samples but here 
direct methods were typically no better or worse than marginal ones 
and could be very undersmoothed. The MSE-optimal kernel itself was 
often poor, at its best again for equal populations, which are not 
of practical interest, and generally acceptable for well separated 
populations (expected error rate of 5%) but for intermediate 
problems frequently disappointing and undersmoothed. Trying to 
improve on the kernel method with a spline ratio estimator was also 
disappointing as the latter tended to over- rather than undersmooth 
and could be very poor, again especially for small samples.

From t-statistics, it was found that marginal method 1 (NOPT) 
was consistently better than 2 (ASOPT), and 2 consistently poorer 
than 3 (XVKL) and 4 (XVISE) which were similar, or 3 slightly 
superior. At 5% and 20%, 1 was in fact generally best of all or 
better than all except method 3. Direct methods 6-8 (XV BRIER, XV 
LOG and XV e-LOG respectively) were similar also, especially for 
nj:n2 = 25:10, though for other sample sizes 6 might have the edge 
for well-separated populations but, especially for equal-sized 
samples, 8 the edge for higher error rates, when 6 is poorer.

Relative to 6-8 the marginal methods generally deteriorated as 
error rate increased, most notably relative to method 2 (the 
poorest marginal method), becoming comparable to or poorer than 6-8 
for an expected error rate of 50%. Again this was especially 
marked for equal populations, where for equal smaller sample sizes 
even the overall best method 1 was inferior to method 8, rather 
than just comparable to the direct methods, and for the unbalanced 
25:10 case worse or nearly worse than 6-8, These are isolated 
cases however, and the improvement of 6-8 relative to (the better
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of) 1-4 was disappointingly inconsistent.
On the much larger real data set in Section 2.6 methods 2 and 3 

were undersmoothed, as was 4 which was slightly smoother. Method 1 
alone, despite grossly oversmoothing both rr  ̂ and tj-2 in terms of 
providing acceptable density estimates, gave a realistic predicted 
probability function and was near-optimal. Direct methods 7 and 8 
were comparable to 4 while 6 smoothed only slightly more.

An obvious limitation of the work in Chapter 2 is the 
restriction to normal populations and a single feature variable. 
In particular, if a variety of distributional shapes were studied, 
we might see some deterioration of the simple Normal Optimal method 
in the same cases as in density estimation alone (i.e. long-tailed 
and multimodal distributions, especially in higher dimensions, 
Bowman (1981, 1985). See Section 2.3.2.) and better relative
performance of the assessment methods, as there is no reason to 
expect a decline in performance of these for a change in density 
shape.

Less obviously, an unfortunate consequence of the manner of 
generating the simulated normal data used in Section 2.5 (see 
Appendix 2), chosen for better comparability of different 
(balanced) sample sizes, is that for a given simulation and 
constant sample sizes the sample from is the same, as is the
sample from rr2 f°r specified sample sizes and fixed o2 , so that the 
variability in the data is rather limited.

Smoothing parameter estimation method 1 depends by definition 
only on sample size and population variance, as for normal data do 
methods 2-4. The consequence of this and the lack of variability 
in the data is seen in Appendix 2 to be that for a given 
simulation, for fixed sample sizes and constant o2 , methods 1-4 do 
not vary at all. Also, for a given simulation and given sample 
sizes, the samples from tt2 are functionally related. While methods 
6-8 depend in a complex manner on both u2 and o2 , as does the mean 
squared error of p(jr]_|x), certain trends observed from the contour 
plots and t-statistics may depend to some considerable extent on 
the means of simulation rather than being invoked merely by 
increasing variance, separation etc.. Were such work to be
extended it would be helpful for there to be more natural 
variability in the data.

While the work of Chapter 2 was largely based on simulated 
data, the opposite is true of Chapter 4 where the real data set
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introduced in Section 2.6 was used more extensively to study the 
performance of class conditional and posterior probability function 
estimators on univariate and multivariate ordered categorical 
variables. Discrete kernel estimators are an example of smoothed 
relative frequency estimators and are a special case of convex 
estimators of the type (3.3). In Chapter 4, as in Chapter 2. 
data-based Brier methods using cross-validation tended to be 
disappointing and could be even poorer than marginal methods, 
except for the less demanding, less sparse problem where the degree 
of smoothing is less crucial and the potential to improve on 
standard methods is smaller.

Another approach to .joint smoothing parameter estimation
An alternative approach to joint estimation of the smoothing 

parameters {x^} (for ordered or unordered discrete kernels) or {h^} 
(for continuous kernels) for discrimination purposes is proposed in 
a recent paper by Hall and Wand (1988). Rather than base 
estimation on density ratios directly they use the equivalence of 
allocation to i r when

fl(x),©! 5* 1 with allocation on the basis of the difference in 

f2 (x).02

discriminant scores using the rule : 

allocate to if g(x) = f^tx)©^- f2(x)e2 ^

and jointly estimate the smoothing parameters to minimise the 
difference between g(x) and g(x). Minimising an unbiased estimator 
of (or equivalently using cross-validation with) mean summed square 
error or integrated square error they demonstrate consistency in 
that for the former the estimated smoothing parameters tend 
asymptotically to those minimising mean summed square error itself, 
and for the latter the minimised ISE tends to the true minimum ISE. 
As in Tutz (1986) the results of applying the method to 3 examples 
are quoted only in terms of error rate, with the usual small 
differences between methods. It would be interesting to compare 
Hall and Wand's estimation method with our direct assessment 
methods based on functions of the density ratio, and in terms of 
continuous performance scores as well as error rate. Also, Hall 
and Wand note, for categorical data, that optimal performance is
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sometimes achieved using negative smoothing parameters. While our 
convex estimators XISO + (l-x)LINT (Section 4.5) rarely yielded any 
improvement in Brier score over that of the better individual 
estimator for 0 ^ X ^ 1, some optimising values outside of this 
range were returned, although not used as the interpretation of the 
new estimator is then lost.

Smoothed isotonic estimators
Isotonic regression also provides smoothed relative frequency 

estimates, although it accomplishes the smoothing in a different 
manner and through a diagnostic rather than a sampling approach. 
For discrete data, we have considered the imposition of further 
smoothing on an isotonic estimate by imposing a convex structure 
upon the predicted probabilities, smoothing between a parametric 
model and the isotonic estimator. The former brings in prior ideas 
of smoothness while the latter imposes ordering. More
successfully, a different approach smoothed the raw relative 
frequencies using a Bayesian type convex estimator by adding in 
extra pseudo-observations, and then allowed the standard isotonic 
algorithms to bring in the required ordering. For continuous 
feature variables, we introduced smoothing via spline estimators of 
densities and density ratios in Sections 1.4.3 and 1.5.2 
respectively. Isotonic splines provide a further possibility for 
the addition of extra smoothing. Wright and Wegman (1980) note the 
analogy between isotonic regression estimators and penalised least 
squares smoothing splines. Both are implicitly defined as 
minimisers of a squared distance term (or penalised squared 
distance term) over a certain class of functions. The difference 
is the subspace of functions over which optimisation takes place. 
They remark that the marriage of the two approaches, by optimising 
over the intersection of the relevant subspaces, may give the 
desired ordering while overcoming the disappointing continuity 
properties of the isotonic estimators.

The predicted probability function of the best continuous 
(kernel) method in Section 2.6 strongly resembled a smoothed 
version of the isotonic estimate for the discretised problem 
(Section 4.3.1). Although the performance of a 1-dimensional 
spline estimator in Section 2.5 as well as 2.6 was often 
disappointing, it was generally smooth and it would be interesting 
to investigate the performance of isotonic splines in higher
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dimensions, although implementation appears to be non-trivial 
(Wright and Wegman, 1980; Wegman and Wright, 1983).

The relevance of ordering
Implicitly we have assumed the ordered nature of our response 

variable with respect to the explanatory variables to be of
fundamental importance in modelling predicted probabilities and 
argued that this is best accomplished by a diagnostic approach.

We noted however in Section 3.3 an advantage of Anderson's
stereotype models for ordered response variables over McCullagh's 
models to be that while the latter inherently assume the relevance 
of ordering, the former allow this to be tested. Analagous to 
McCullagh models, isotonic models take our definition of ordering 
as their endpoint, which may be seen as a disadvantage. While 
ordering known to be present may not be strictly relevant for 
modelling purposes the nature of discriminant analysis is such that 
we are able to assess how well a model performs in practice with 
respect to a given criterion. Good performance is the aim and
provided this is achieved the assumptions underlying the model may
not be too important. In Chapter 4 however, while isotonic
regression alone recovered the required ordering, in each case
considered it also outperformed the kernel methods and achieved
near-optimal Brier scores, especially when implemented with extra 
smoothing. In Section 4.5 a simple ordered logistic model,
treating the feature variables as interval-scaled, improved on a 
basic isotonic estimator for a 3-dimensional problem while 2 
unordered models were poorer than both.

It would be useful to verify the conclusions of Chapter 4 on a 
variety of distributions with inherent ordering, as for instance in 
Titterington and Bowman (1985) (see Section 3.4.2) who surveyed and 
compared, for ordered categorical variables, numerous smoothed 
relative frequency estimators of probability functions and means of 
estimating their smoothing parameters.

Multiple ordered populations
In both Chapters 2 and 4, we considered only the most commonly 

studied 2 population problem. Had we not dichotomised outcome in 
Chapter 4, 3 rather than 2 types of ordering would have been
present as the outcome variable is also ordinal. For ordered 
populations some misclassification errors are inherently more
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serious than others, allocation to an adjacent or nearby category 
being less serious than a more extreme misclassification. Ashby et 
a l . (1986) use in this situation a modified error rate, comparing
the number of classifications to the correct or an adjacent 
category, to assess performance of 3 allocation rules based on a 
McCullagh (1980) model. It is not immediately obvious how one 
would incorporate unequal misclassification costs into assessment 
criteria of the type emphasised in this thesis.
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APPENDIX 1 STANDARDISATION OF CONFIGURATIONS USED IN SIMULATIONS 
IN SECTION 2.5

Using Lachenbruch's (1975a) notation, the Bayes' optimal error
rate

T(R,f) - ©i f^(x) dx + ©2 
*2

fg(x) dx, where (fj;(x)} are the class

conditional distributions and {R^} the decision regions for i r ^ ,

i = 1, 2, Ra = . *2 = Ri>
f2 (x) 02

using the Bayes1 optimal allocation rule with costs C(j|i) = 0 if
i = j, 1 otherwise and C(j|i) is the cost of allocating an
observation from to ir j . {©-[} are known incidence rates.

For tt2 - N(0, 1) and ir2 - N(a, o2 ), o2 ^ 1, identifying R-j_ =
{ x: ur^x2 + t 2 K  + ^3 > 0 )» f°r constants y j , y2 , ^3> requires
finding the roots of a quadratic equation in x, a and b, say.

T (R,f ) = ©2 <S> h-p. _ $ a-a | + 0^
o a J I<&(a) + 1 - <t(b) = D, say,

if Rj = (x : a < x < b},

and = 1 - D if R^ = (x : x e (-«, a) U (b, «)}, where $ is the 

standard Normal c .d .f ..

For o2 =1, T (R, f ) = B 1 <t ln(©2/©2) - J£62 ~t~ 0 2 ^ - ln(©2/©i) + )£62

6 5

where 62 = a2 is the Mahalanobis distance between and v2 • 
~2

If ©^ = ©2 and o2 = 1, T{R,f) = -6
1~2J

and solving T(R,f)-E = 0,

where E is the required error rate, is trivial. Otherwise, it was 

solved numerically, using NAG (1984) subroutines C05ADF, and S15ABF 

to evaluate the standard Normal c.d.f.. Maximum likelihood plug-in 

estimates were used for {©}}.
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APPENDIX 2 A NOTE ON THE MEANS OF SIMULATION OF THE DATA IN 
SECTION 2.5

The random number generator used to simulate the normal data in
Section 2.5 from each configuration was initialised each time with
the same seed, for better comparability of different (balanced) 
sample sizes, generating first then v2 for each simulation in
turn. For given sample sizes, NAG (1984) subroutine G05DDF 
generates an observation from a N(0, 1) random variable and derives 
a N(a, o) observation by direct transformation of the former.
Consequently, initialising simulation 1 at the same place each time 
means that for a given simulation, and constant sample sizes the 
sample from is the same, and for specified sample sizes and 
fixed o2 , so is the sample from ir2 . (Equally for a given
simulation and given sample sizes, the samples from tr2 are
functionally related).

Smoothing parameter estimation method 1 depends trivially on 
sample size and population variance. Where each observation is 
drawn from a normal population, since N(u, o) = o N(0, 1) + u ,
methods 2-4 of smoothing parameter estimation, each of which 
optimises a function involving the observations only through data 
differences, for a given sample size also depend only on the 
population variance and not on its mean. The result of the means 
by which the data were simulated is therefore that for a given 
simulation, for constant sample sizes and fixed o2 , the estimates 
from methods 1-4 do not vary at all.
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APPENDIX 3 OPTIMISING THE BRIER SCORE OF A CONVEX COMBINATION OF 2 
MODELS

If Pjj is the probability assigned to class j for the ith case 

and d(jj is the outcome associated with that case,

the Brier score, Sg = 1

n
(i-Pidm)2 " E 1J

may be written as 1 - 2Q^ + Q2 where = 1 E Pid^j- an(^
-  l
n

«r 1 i e Pij2.
- i j

Let { P ij} and {P jj) denote probabilities arising from two

models with corresponding scores q 'j , 1 = 1 ,  2, and define

Q12 as 1 H  p*ij p 'ij’ then SB (XP* + (l-X)p') where 0 ^ x < 1, 
- i j 
n

is easily shown to be of the form a + bx + cx2 ,

with a = 1 - 2Q i + Q 2* b = 2Q \ - 2Q j - 2Q 2 + 2 Q12,

and c = Q*2 + q ’2 - 2 Q 12.

Similarly, the rescaled Brier score, 1 - %  Sq = a^ + b^X + c^X2 , 

where aj = 1- J£a, b ± = -J£b, and c^ = - % c .  Either, as quadratics in 

X, are optimised by X = -b/(2c), with a corresponding Brier score of 

a - b2/(4c), provided c > 0. Otherwise, we cannot improve on the 

Brier score by taking a simple linear combination of the 2 methods. 

Even with c > 0, X does not necessarily lie in the range (0, 1), in 

which case we are again restricted to one or other endpoint.
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