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SUMMARY

In this thesis, two problems which commonly arise in the 
context of clinical trials, but which are often dealt with 
inappropriately are considered. The thesis consists of two parts, 
one corresponding to each of the problems considered.

Part I (Chapters 2-4 inclusive) considers the problem of how 
to handle incomplete multivariate data, while Part II (Chapters 
5-7 inclusive) looks at some methods for comparing groups which 
have an a priori ordering.

Chapter 1 provides a general introduction to clinical trials 
methodology, describing some of the basic concepts involved, for 
example randomisation and blinding. In addition, some recent 
developments, for instance meta-analysis, are outlined. The 
chapter ends with an informal review of the last two years' 
issues of two leading medical statistics journals, namely 
"Statistics in Medicine" and "Controlled Clinical Trials", in 
order to highlight some of the topics of current interest.

Chapter 2 introduces the problem of handling incomplete data. 
The basic terminology for describing missing data mechanisms is 
given, with special emphasis being given to the ideas of "Missing 
at Random" as described in Rubin(1976). The chapter ends with a 
review of some of the commoner methods of analysis used. Some of 
the potential problems which can arise when using these methods 
are outlined.

In Chapter 3, the ideas of maximum likelihood estimation in 
the presence of incomplete data are developed. After describing 
some existing likelihood-maximisation techniques for handling 
single groups in isolation, these ideas are then extended to the 
multiple-group problem. Methods are developed for fitting models 
where several groups are constrained to have a common covariance 
matrix, but are allowed to have different means. This allows 
emulation of the likelihood ratio testing procedures usually only 
applicable if the data are complete.

In Chapter 4, the techniques of the previous two chapters are 
applied to three real examples. Some of the work of Section 4.1 
has appeared previously in Murray and Findlay(1988).
The main results of chapters 2-4 are summarised. Emphasised is 
the fact that inappropriate handling of even a relatively small
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amount of incomplete data can have a substantial effect on the 
results obtained.

Chapter 5 marks the beginning of Part II of the thesis. The 
ideas of order-restricted inference are introduced, and some 
potential areas of application are outlined. After a review of 
some of the existing literature, it becomes clear that there 
exist certain common clinical trials scenarios where no 
appropriate testing procedures are available. Notably, there is 
no procedure available for testing for differences between 
ordered groups of Normally distributed data while incorporating 
covariate information. After devising a suitable testing 
technique for such problems, eight different tests are defined 
which incorporate differing degrees of information and
assumptions about the data under study, in terms of
distributional assumptions, covariate information and prior group 
ordering information.

In Chapter 6 the aim is to compare the performance of the 
eight tests defined in Chapter 5 under a variety of conditions, 
after evaluating and optimising the specifications of one 
relatively recent test (Marcus and Genizi(1987)).

The performance of the eight tests are assessed :
(a) as the group separation is varied,
(b) as the covariate/response correlation is varied, and
(c) as the error distribution is made other than Normal.

The conclusions drawn are that while the incorporation of
covariates and ordering information is always worthwhile, the 
assumption of Normality does not greatly affect the sensitivity 
of the analyses performed. It is noted that there could be some 
difficulties in gaining acceptance by clinicians for the more 
complicated procedures described, and that, in practical terms, 
gaining statistical sensitivity could well be at the cost of
losing credibility.

In Chapter 7, ordered testing procedures are applied to some 
published data sets, and the results thus obtained are compared 
to those which were published.

Finally, Chapter 8 outlines the conclusions for the thesis as 
a whole, stressing the important implications as regards clinical 
research. Some ideas for future research in the topics covered 
are proposed.
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Chapter 1 - Introduction

In the dynamic pharmaceutical industry, new products are 
continuously being developed, for which there are often made 
claims of improved efficacy over existing products. Behind such 
statements lie years of research into the products' actions, 
including side-effects, involving Clinical Trials.

Several good general texts are available describing the 
philosophy behind clinical trials and also their execution, for 
example Pocock(1983), Meniert(1986), Shapiro and Louis(1983), 
Schwartz et al(1980).

1.1 : What is a Clinical Trial ?

A clinical trial is a planned experiment designed to study, in 
man, the effects of two or more medical interventions, where one 
of these interventions might well be some new "test" treatment. 
Of interest tend to be questions like :

"Does the proposed treatment produce the desired effect ?" 
or "What would be the most appropriate treatment for future 

patients with a given medical condition ?"

The American Food and Drug Administration (F.D.A.) has 
classified clinical trials for drug development into four 
categories or "phases", as defined below, these phases all 
occurring after initial animal experimentation into the general 
drug safety.

Phase I : Such experiments represent the first exposure in
man to the treatment under study. Here, the aims are to 
establish, principally, the drug safety and tolerability (in 
terms of side-effects), rather than its efficacy. Information is 
gained on the drug metabolism, pharmacokinetics, duration of
action, etc.

Usually, Phase I trials are conducted in normal, healthy 
volunteers, rather than in those types of individual to whom the 
treatment would, ultimately, be applied.

Phase II : Such experiments tend to be relatively small, and
aim to study drug efficacy and safety. At this stage, a new
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treatment, possibly at a variety of doses, is generally compared 
to a placebo (dummy) treatment, and assessment is made of the new 
treatment's potential.

Phase III : Unlike Phase II, comparison is generally made
against the standard treatment(s) used, with a greater number and 
wider range of patients, under conditions simulating the intended 
conditions of use, in order to see if the treatment's potential 
is realised in clinical practice.

Phase IV : This final phase takes the form of post-marketing
surveillance, monitoring the longer-term implications of the 
treatment including its efficacy, toxicity, its effects on 
mortality, and, in particular, rare side effects which would not 
be picked up in the Phase II and III trials.

Note that the distinctions between the Phases are not as
clear-cut as the above paragraph would suggest. Although the 
general chronological order of the main features is as described, 
it might be difficult to distinguish between a "late Phase II" 
and an "early Phase III" trial.

Throughout the following work, only Phase II and III trials 
will be given any emphasis.

Before commencing any clinical trial, clearly the most 
important question is, "Which treatment has to be assessed ?". 
Having established the treatment of interest, this gives an 
indication as to which class of patients are going to be eligible
for inclusion into the study. For example, if the aim was to
assess a new anti-hypertensive agent, clearly the patients of
interest would be those who had some form of high blood pressure.

Having a clear definition of the aims of the study would also 
identify a broad class of responses which could be of interest. 
In the situation above, an indicator of blood pressure reduction 
would probably be an appropriate response measure. This could be 
simply the magnitude of blood pressure reduction, or, 
alternatively, criteria could be set out in advance defining 
blood pressure "control" - e.g. an individual could be defined to 
have "controlled" blood pressure if their systolic blood pressure 
was lower than 140 mmHg and their diastolic blood pressure was 
lower than 95 mmHg (and "uncontrolled" otherwise).
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1.2 : Treatment Assessment

One obvious point which should hardly need to be stated is 
that all patients are different : otherwise there would be
little need for clinical trials. The same medical condition in 
two individuals will not necessarily follow the same course, and 
through time, even the condition of a single patient may either 
deteriorate or stay about the same or even spontaneously improve 
to the point of "cure".

As a result, any improvement seen in a person's disease state 
during the course of a clinical trial may not necessarily be due 
to the applied treatment.

This is the reason why, in clinical trials, it is necessary to 
obtain results under control conditions, to act as a reference 
point for results obtained under test conditions. Note that the 
control treatment may take the form of either a standard 
treatment or a placebo (dummy) treatment. Such control results 
can originate from many different sources.

In Parallel Group Studies, the control and test results are 
evaluated concurrently in separate, independent, groups of 
individuals,

In Grossover Studies, each individual receives sequentially 
the control and test treatments under similar conditions. A 
random mechanism (see later) is used to dictate the order in 
which an individual receives the control and test treatments. 
Careful study design ensures a balance of the number of cases 
receiving the test treatment first and the number of cases 
receiving the control treatment first.

In Self-Controlled Studies, each case acts as their own 
control. A single treatment is assessed by comparing the results 
obtained under that treatment to those obtained in the same cases 
at some point (not specified) when no treatment was being 
applied.

In Studies with Historical Controls, control results are 
obtained from previous cases who happened to have been given a 
standard treatment. This can be problematic if there have been 
changes in the patient population through time, or if the type of 
cases who were given the standard treatment were systematically
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different in some way. For example, certain treatments are not 
recommended for use in the elderly. If the standard treatment had 
such restrictions, but the new treatment did not, this could lead 
to comparisons of the treatments being biased due to these 
differing age distributions.

1.3 : Treatment Assignment

1.3.1 : Treatment Assignment in Parallel Group Studies

Clearly, for parallel group studies, there have to be means by 
which individuals are assigned to the different groups. One 
simple way would be either to allow people to select their own 
treatment, or to allow the clinician involved to perform the 
selection.

However, this can, again, lead to systematic differences in 
the cases in the different groups. For example, the investigator 
might favour one treatment for the more severe cases (probably 
the non-control treatment, or the treatment the perceived to be 
"better") and another for the less severe cases. This could lead 
to the new treatment being shown in a misleadingly unfavourable 
light, since the most severely ill cases would, generally, be 
expected to fare less well than their healthier counterparts.

A family of methods of case assignment which could be thought 
of as an improvement on the judgemental methods of assignment 
above, would be the family of Systematic Methods of Case 
Assignment. Some examples of systematic assignment are described 
below. Throughout, let A and B represent assignment to treatments 
A and B, respectively.

Alternate Assignment : Cases are alternately assigned to the
treatment groups, so that looking at the assignments of the first 
few cases, we would have A B A B A B A B  ... .

Assignment by Date of Birth *, If day of birth EVEN , assign 
to treatment A, and otherwise assign to treatment B.

Alphabetic Assignment : Assign using the initial letter of
the first name : this has been shown to introduce biases, since 
certain ethnic groups are over-represented for certain letters of 
the alphabet.

One real problem with each of these systematic methods is that
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the assignment for any particular patient is predictable. This 
could lead to biases, again, if the investigator had a preference 
for one or other treatment for a given patient, since if the 
patient was not going to receive the preferred treatment, then 
the investigator could choose not to enter the patient into the 
study at that particular time.

It begins to emerge that it would be better if patients could 
be assigned to their groups in some objective, unpredictable way, 
i.e. it would be better to use some form of randomisation (random 
assignment) procedure. In its simplest form, where there are two 
groups and approximately 50% of the cases are to be assigned to 
each group, assignment could be based on the result of tossing a 
coin (e.g. If a Head, assign to A and if a Tail, assign to B). 
Tor more complicated situations, assignment procedures could be 
devised based on using tables of random numbers. The correct use 
of randomisation means that there is no bias in the patient 
selection for the different treatment groups, and so the results 
obtained can be more reliably assessed.

1.3.2 ; Methods of Randomisation for Parallel Group Studies

Simple randomisation procedures as described in the previous 
paragraph have certain advantages and disadvantages compared to 
more complicated schemes. Firstly, by virtue of their simplicity, 
errors are less likely to occur in their application than they 
are for more complicated procedures. Also, in the long term, 
approximately the correct proportions of individuals will be 
assigned to the different groups. However, in the short term, 
there can sometimes be produced fairly serious imbalances in the 
numbers of cases assigned to the different groups.

To surmount this problem, two alternative approaches have been 
devised : the Random Permuted Blocks design and ’’Biased Coin” 
approaches.

In the Random Permuted Blocks Design, if we let K represent 
the number of treatments to be assessed, patients are assigned in 
blocks of mK. Within each block, each treatment is assigned a 
total of m times. Thus, within each block, the treatment 
assignments are exactly balanced. A value of m should ideally be 
chosen to be large enough such that the next assignment is 
difficult to predict.
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In "Biased Coin11 Approaches (see Efron(1971)), before each 
patient is randomised, the current balance of treatment 
allocations is considered. Whichever treatment has had fewest 
allocations so far is assigned to the next case with a 
probability of greater than 0,5.

At times, however, merely balancing groups with respect to 
sample size will not be enough. Often, for each patient there 
will be certain prognostic factors known to affect the outcome 
(age, for example), and these should be balanced, as far as 
possible, in the different treatment groups. Simple randomisation 
procedures do not guarantee such balance. Here it is advisable to 
use techniques involving stratification, such as those described 
below.

Random Permuted Blocks Within Strata : Patients are divided
into strata according to the prognostic factors known to be 
relevant, for example, patient ages might be divided into Young, 
Middle-Aged and Old strata. Within each stratum, the treatment 
allocations are balanced as in the case of the Random Permuted 
Blocks design. This allocation method is useful as long as either 
there are only few strata or the study is very large.

Minimisation : This method is useful for matching groups for
a large number of prognostic variables. Each patient allocation 
is made by a random mechanism , but biased so as to make the 
groups as well matched as possible. For example, if, at a
particular stage in a study, patients assigned to A were, on 
average, older than patients assigned to B, then a young recruit 
would be assigned to A with a probability greater than 0.5.

1.3.3 : Randomisation in Crossover Studies

Recall that in crossover studies, each case receives more than 
one of the treatments under consideration, so that within-patient 
comparisons are possible, rather than just between-patient 
comparisons as in the case of parallel group studies.

Such studies, where appropriate, can increase the precision of 
treatment comparisons, by eliminating the factor of inter
individual variability from the treatment comparisons.

It must be noted, however, that crossover studies are not 
always possible. For example, if one wants to compare the
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long-term effects of treatments, it will not be possible to 
assess such effects for several treatments within the same 
individual. Crossover studies are really only appropriate where 
short-term responses to therapy are being studied in patients 
with a stable chronic disease state, for example in essential 
hypertension.

Time plays an important role in crossover studies :
How long should the period on each treatment be ? Ideally, one 

would want to allow sufficient time for each treatment to reach 
its maximal effect in the course of their period of study.

How long should be allowed between the first and second 
treatment periods ? A sufficiently long washout period should be 
allowed so as to let the effect of the treatment in the first 
period disappear, or at least reduce to a minimal level, before 
the second period commences.
What if there is a time effect on the disease state ? It could 
occur that patients would tend to be admitted to a trial when 
their disease state was particularly bad, as well as there 
probably existing an underlying progressive disease state. It 
could easily occur, then, that the condition of patients in 
Period 1 would be systematically different from their condition 
in Period 2. Such an effect would be confounded with the 
treatment effects unless some cases received treatment A in 
period 1 and some received treatment B in period 1 (confining 
consideration only to the simple two treatment, two period case).

As in the parallel group situation, the assignment of cases to 
their treatment regimen should be made using randomisation. Here 
there are two regimens to be considered : A followed by B (A-B) 
and B followed by A (B-A).

When using such study designs, as well as estimating the 
differences between the treatment effects, it would also be 
desirable to be able to estimate such factors as period effects, 
group effects and treatment by period interactions. However, in 
the simple two treatment, two period study, certain groups of 
parameters are confounded with each other, i.e. they may not be 
estimated separately. For example, the treatment by period 
interaction and the difference between the carry-over effects 
cannot be estimated separately. Some of the problems of 
confounding can be avoided either by carrying out the treatment 
comparisons over three periods instead of two (e.g. by repeating
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the second period treatment : see Morrey(1985)) or by taking
run-in and wash-out readings into account (see Jones and 
Kenward(1989)).

It should be noted that the use of crossover designs can 
sometimes eliminate the need for stratification - the cases 
receiving the different treatments are often automatically 
balanced with respect to most prognostic factors likely to be of 
interest.

No specific details of the analysis of crossover studies will 
be given here, since the problem has been well-documented 
elsewhere, in, for example, Hills and Armitage(1979), 
GrizzleC1965), Kershner and Federer(1981), Jones and 
Kenward(1989).

It would be misleading to think of randomisation as some kind 
of "cure-all" for the problems of bias in clinical trials. Even 
using the best of randomisation methods, it is still easy to 
obtain distorted results if the administered treatment is 
identifiable by either the investigator or the patient.

For example, if the patient knows he is receiving a standard 
treatment rather than the new "revolutionary" treatment, 
psychological factors could adversely affect his results.

If the investigator knows that a patient is receiving the new, 
perceived to be better, treatment, he may convey this, possibly 
indirectly, to the patient. Again, this could have some effect on 
the results.

Such problems can sometimes be avoided using blinding.

1.4 ; Blinding

In a single-blind procedure, the patient is not informed of 
which treatment is being given. In a double-blind procedure, 
neither the investigator carrying out the patient assessment nor 
the patient knows the treatment assignment. However, such 
blinding is not always possible.

If the aim was to compare two forms of medical intervention, 
one involving drug therapy, and the other involving surgery, 
clearly it would not be possible to "blind" the patient to the 
effects of surgery! Neither would it be possible, ethically, to
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subject patients to "sham" surgery, just so as to mimic the 
visible effects of the alternative treatment - the mechanisms of 
blinding should certainly never put patients at risk 
unnecessarily.

In order that blinding be effective, there must be no obvious 
differences between the competitive treatments. However, what can 
be done if there is no effective rival treatment, and comparison 
is to be made to a "no treatment" alternative? This is where the 
use of placebo control is required.

What is a Placebo ? A placebo is a totally inert treatment 
given as a substitute for an active treatment. Desirable 
properties of a placebo would be that it should :

(i) look like the active treatment (size, shape, colour, etc.) 
(ii) taste like the active treatment

(iii) smell like the active treatment
(iv) be administered by the same route and with the same 

frequency as the active treatment.

Although the constituents of a placebo are inert, patients 
will still usually react in some way, purely due to the 
psychology of being treated. Often, dramatic improvements in the 
patient state can be observed. Also, it is common for 
side-effects to be reported.

It is natural to assume that such spontaneous changes in the 
patient's condition will also underly the observed responses to 
active treatment. It would thus give a truer indication of the
"real" treatment effect if comparisons were made to a placebo,
rather than to a no treatment alternative.

1.5 ; Ethical Considerations

In 1960 the World Medical Association issued a set of 
guidelines to the ethical requirements of clinical research : The 
Declaration of Helsinki (revised in 1975).

Basically, it is unethical to conduct poorly planned research. 
More specifically, investigators should try to avoid :

(a) Bias : which could lead to exaggeration of the treatment 
effect.
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(b) Using too few patients : if too few patients are used* 
the results obtained will be neither precise nor reliable.

(c) Not publishing their findings : if the aim of clinical 
research is, ultimately, to further medical knowledge, 
then clearly there is an ethical responsibility for 
investigators to publish their findings.

One important issue covered by the Declaration of Helsinki is 
that of informed consent. The Declaration states that in clinical 
research, the investigator should obtain the patient's written 
consent, where this is possible. Such consent must be obtained 
without duress, with the patient fully understanding the personal 
implications of the research. This means that they must be made 
aware of the possible side-effects and risks of treatment, as 
well as the possible benefits. They must also be informed if 
there is a possibility that they could receive an inert (placebo) 
treatment.

Some of the practical difficulties of obtaining a patient's 
informed consent to participate in a randomised study can be 
avoided by using the Randomised Consent Design (see Zelen(1979)) . 
Instead of randomising patients to a given treatment group, they 
are randomised to one of the two groups below :

(i) Seek consent group
(ii) Do not seek consent group .
All patients in group (ii) receive the standard treatment, A, 

which they would usually receive, thus their consent is not 
required. Those patients in group (i) are offered the new 
treatment, B. If they accept, then they are given treatment B. 
Otherwise, they receive treatment A as usual. An important point 
about this design is that in the analyses, all of the cases in 

i group (i) are compared to the cases in group (ii), rather than
comparing purely cases on A to cases on B,

What results, rather than a comparison of treatment A with 
treatment B, is a comparison of the policy of offering treatment 
B to the policy of not offering treatment B.

Recently, much interest has been generated by the ideas 
meta-analysis. Here, sample sizes are artificially increased by 
pooling together the data from several similar small 
(individually uninformative) studies to produce a concensus view.
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The reasoning behind meta-analysis is described in the following 
section.

Meta-Analysis (see e.g. Yusuf et al(1985), Murray(1990), 
Boissel et al(l989)) : Certain circumstances dictate the need
for very large clinical trials. For example, to study conditions 
with low occurrence-rates, or in order to demonstrate a modest, 
but clinically relevant treatment difference, requires a 
surprisingly large number of patients. However, it is more common 
for a large number of small studies to be performed, often 
resulting in contradictory results, rather than one larger, 
adequate study.

Meta-analysis aims to draw reliable conclusions about a 
treatment benefit by integrating the findings of several similar 
small studies involving that treatment. Criticisms aimed at 
meta-analysis tend to be that even if trials are broadly similar 
in their aims, it is almost inevitable that there will be some 
differences in, for example, the patient populations under study, 
which could lead to systematically different results. What is 
hoped is that, generally speaking, the results will tend to be 
inclined in the same direction, even if the actual magnitude of 
the treatment effects are different. In order to make the pooling 
of trial results relatively straightforward, it is usually most 
appropriate to opt for uncomplicated measures of outcome, for 
example success/failure or alive/dead, so that essentially only 
the appropriate "event rates" need to be combined.

One of the most difficult aspects of meta-analysis is the 
choice of the small trials for inclusion. Ideally, all relevant 
trials, including aborted trials, would be included, but it is 

i difficult to identify all of these trials, partly due to the lack
of any formalised registration of research in progress (except in 
a very few areas such as cancer research). Reliance simply on 
published trial findings as a source of results is not 
sufficient, due to the well-known phenomenon of publication bias, 
whereby a trial leading to "positive" findings is more likely to 
be published than one leading to "negative" findings. Clearly, if 
a meta-analysis was performed only on the basis of published 
trials, a very distorted view of the treatment benefit could be 
obtained.

Also, bias can be introduced into a meta-analysis if the
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results of non-randomised studies are included. The general 
concensus of opinion seems to be that it is best to restrict 
attention only to randomised studies in the area of interest, 
taking care to assess other possible bias-sources within each 
trial used e.g. All patients should be included in an Intention 
to Treat type of analysis, with all withdrawn patients accounted 
for and incorporated, as far as possible.

Various algorithms have been proposed for the assessment of 
trial quality e.g. the scoring system of Chalmers et al(l981). 
Chalmers et al argued that sensitivity analyses should be 
performed in order to assess whether trials of poorer quality 
could be distroting the meta-analysis results.

Despite the many difficulties which can arise in performing 
meta-analyses, they can sometimes provide valuable insight into 
problems where individual small trials are uninformative and very 
large trials are impractical.

An idea which has become popular relatively recently is that 
of the competition between individual and collective ethics. 
Ideally, each patient would receive the treatment of benefit to 
him, but this could be contrary to the aims of benefit to future 
patients - in order to make useful progression in medical 
knowledge, it could well be more efficient for the patient to 
receive the alternative treatment.

Another idea which has become popular recently is the 
distinction between two types of trial : explanatory trials and
pragmatic trials (see Schwartz et al(1980)). These have quite 
different aims, and as a result are quite different in other 
aspects, including their limitations and also the possible 
conclusions which can be drawn.

Generally speaking, in drug development, early (Phase II) 
trials tend to be of the explanatory type, whereas later (Phase 
III) trials tend to be of the pragmatic type.
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1.6 s A Comparison of Explanatory and Pragmatic Trials

1.6.1 : Explanatory Trials

The Aims : These aim to provide useful information at a
biological level, perhaps looking at the mechanisms of a drug's 
action. The criteria for outcome assessment are chosen to be of 
biological importance, e.g. tumour regression.

Properties
(a) Useful for assessing whether a new drug has any effect at 

all, by comparison with no therapy.
(b) Patients are chosen to be as homogeneous as possible, and as 

likely as possible to respond to treatment.
(c) The aim is to maximise the biological effect.
(d) Treatments are compared using standard statistical tests.
(e) Experimental conditions are equalised as far as possible 

(e.g. the same method of administration is used for the 
different treatments, and these treatments are given in 
equal doses), using refined laboratory conditions.

(f) Patients violating the study protocol are omitted from 
analyses.

(g) The type of measurements used are objective, and are chosen 
to have biological importance e.g. biochemical measurements.

Type of Conclusions Possible : Valuable biological
information may be obtained about drugs’ actions, leading to 
advancement of scientific knowledge.

Drawbacks : Since the study has used a carefully chosen,
homogeneous, responsive set of patients, the findings obtained
may not be applicable to the intended population of future
application. A positive result in the selected group will not 
necessarily imply positive results in general.

1.6.2 : Pragmatic Trials

The Aims : These trials compare treatments under conditions
reflecting current clinical practice. Measures of outcome are 
chosen to be of direct relevance to the patient, for example
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survival time taken in conjunction with quality of life during 
that time.

Properties
(a) Such trials are useful for assessing whether a new treatment 

is better than the treatment currently in use.
(b) Patients are chosen to be representative of those to whom 

the treatment would be applied in practice, rather than 
being chosen to be as homogeneous as possible.

(c) The aim is to optimise the patient benefit, i.e. to get a 
reasonable response without excessive side-effects.

(d) Analyses are based on decision theory, trying simultaneously 
to consider several different factors in order to select the 
best treatment overall,
NOTE : Although this is the natural consequence of the 
pragmatic approach as described by Schwartz et al(1980), 
such analyses are rarely used in practice.

(e) Conditions of administration might be chosen so that for 
each patient the drug is at its optimal dose level, rather 
than equalised doses being used as in the explanatory 
situation. These experiments are performed under as natural 
conditions as possible, rather than under restrictive 
laboratory conditions.

(f) Patient withdrawals can be incorporated, since one is only 
comparing the policies "A if possible11 and MB if possible11, 
rather than the purer hypotheses of HTreatment A” versus 
"Treatment B".

(g) Instead of simply looking at criteria with clear biologiocal 
interpretation, here one wants to provide an overall 
assessment of the competing treatments, taking into account 
such subjective factors as patient well-being as well as 
more directly measurable factors such as survival time.

Type of Conclusions Possible : Such studies do provide an
answer to the general, practical, problem of interest, without 
restricting attention to one very specialised, probably atypical, 
subgroup of patients.

Drawbacks : Although a negative result in a large, well
conducted, pragmatic study is useful as an indication that there
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is no clinically relevant treatment difference overall, this does 
not exclude the possibility that, within certain patient 
subgroups there could be relevant differences. While such studies 
are useful for producing treatment recommendations, they do not 
generate leads for further research.

1.6.3 : The Choice Between Explanatory and Pragmatic Trials

from the above section, it appears that before performing a 
clinical trial, one would have to decide whether the aim was to 
solve some practical problem (leading to a pragmatic trial) or, 
alternatively, to advance scientific knowledge (leading to an 
explanatory trial). Certainly, some trials could be purely 
explanatory and others could be purely pragmatic. Examples of the 
former tend to occur in early Phase II trials, where the aim is 
purely to assess whether a new drug has any effect at all. 
Examples of the latter tend to occur in late Phase III trials, 
where the aim is purely to decide on the best patient management 
strategy.

More commonly, what is desired is some balance between these 
two extremes. Ultimately, the aim will be to further medical 
knowledge, but this cannot ethically be done in a way contrary to 
the good of the individual patient.

1.7 ; Statistical Aspects of Clinical Trials

The roles of the statistician in the planning and execution of 
clinical trials are wide and varied. In fact, the involvement of 
the statistician should begin at the outset of the trial, and
continue until its final termination and evaluation. To
illustrate this, some of the tasks of the clinical trials
statistician are outlined below.

Trial Design : Given the aims and objectives of a given
study, it is for the statistician to decide which trial design is 
most likely to answer the questions of interest in the most 
efficient manner. Indeed, it is often the statistician who forces 
the clinicians to think critically about the exact aims and
objectives of the trial.
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Sample Size Calculations : Before the appropriate sample
size can be calculated, certain information must be made 
available to the statistician :
(a) The main aim of the study, e.g. estimating a proportion or 

comparing two means or comparing two death rates.
(b) The chosen significance level.
(c) The minimum difference between the groups under study which 

is important to detect and
(d) With how much certainty (Power).
(e) An estimate of the underlying variability in the responses 

of interest.

Given these constraints, there are available standard 
statistical approaches for calculating the required sample size 
for the problem under consideration. Note that for the case of 
survival analyses, the number of expected deaths in the groups 
form the basis of the sample size calculations. Studies of 
conditions with a low death rate automatically require a greater 
number of cases to detect the same magnitude of treatment effect 
as in a similar study with a higher underlying death rate.

No specific details of sample size calculation will be given 
here, since much work has been done in this area, and the 
appropriate methodology for a wide range of situations has been 
widely documented (e.g. Machin and Campbell(1987)).

It should be noted that often, there will be financial 
constraints or time limitations on a study, so that there will be 
a ceiling on the number of patients which it is possible to 
study. In such cases, sample size calculations are commonly used 
in reverse, working from the maximum number of patients available 
to obtain an estimate of the resultant power to detect a given 
treatment difference - if the power is too low, then there is 
little point in performing the study at all, unless more limited 
objectives can be accepted, perhaps tipping the balance towards 
explanatory rather than pragmatic questions.

As mentioned earlier, much interest has been generated 
recently by the ideas of meta-analysis, where sample sizes are 
artificially increased by pooling together the data from several 
similar small studies to produce a concensus view.
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Randomisation : Assuming that a trial has reached the point
where the appropriate sample sizes are attainable, it is the role 
of the statistician to devise an execute an appropriate
randomisation procedure.

Data Checking : From this point, the statistician takes on
more of an administrative and regulatory role. As the data
accumulates, careful checking is required, looking for any 
obvious administrative errors. For example, was a patient
actually eligible for inclusion in the study at all? If so, are
all of their data forms complete, and if incomplete, can any of 
the "blanks" be filled? Are there any obvious errors, e.g. an age 
of 156, or a categorical variable coded as "4" when the only 
valid codings are "0" and "1"? Are there any inconsistencies in 
the data, for example a date of birth occurring after a date of 
randomisation?

Monitoring the Trial Progress *. One important task of the 
statistician is to monitor the study as regards drug safety and 
possible adverse drug reactions. Unexpected deaths or 
side-effects on any treatment must be investigated, especially if 
one group appears to have many more problems compared to the 
other groups under study. . Depending on the circumstances, 
appropriate action in such cases can be as simple as withdrawing 
a particular treatment from certain "at risk" groups, or as 
radical as stopping the study altogether.

At the opposite end of the spectrum of trial monitoring, the 
statistician must, ethically, be able to stop a study if 
sufficient evidence has emerged to show beyond reasonable doubt 
that a given treatment is better than the alternatives - from 
that stage, it would be unethical to continue to randomise 
patients to the inferior treatment. To decide what would 
constitute "beyond reasonable doubt", the ideas of Interim 
Analyses and Stopping Rules are use.

Interim Analyses and Stopping Rules : The title should be,
to some extent, self-explanatory. Interim Analyses are data 
analyses which are performed in advance of the scheduled end of a 
study. Pre-determined Stopping Rules are then applied to 
determine whether the trial should stop at that stage, due to the
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emergence of overwhelming evidence in favour of a certain 
treatment, or whether it should continue further.

Clearly, if each interim analysis was performed at a 
significance level (S.L.) of 5%, the overall S.L. after several 
such analyses would be in excess of 5%. Armitage et al(1969) gave 
some resultant S.L.s for multiple testing at the 5% level. For 
example, even with only one interim analysis, the overall S.L. is 
increased to 8%, and with four interim analyses, this has risen 
to 14%.

Several different measures are possible to ensure that, 
overall, a 5% S.L. is preserved. For example, the S.L. for each 
analysis can be lowered by the same extent (see Pocock(1978)). 
This would mean that if, for example, a total of five analyses 
were performed, a result would only be considered to be 
significant if the observed significance was less than 0.016. 
Alternatively, it is possible to perform all interim analyses at 
a very stringent S.L., stopping the trial only for a very 
significant result, so that the final test could still be 
performed at just below the 5% level. (See Pocock(1983) for 
details).

Data Analysis : Not necessarily the most important job of
the statistician, but often seen as such.

The analysis of clinical trials data is rarely 
straightforward, for a variety of reasons; in part due to the
sheer volume of data generally collected, and also due to the
wide ranges of possible approaches to handling such data. To 
highlight some of the problems, an example will be considered. 
Imagine that the aim is to "Compare the effects on blood 
pressure of two anti-hypertensive agents". Such a simple-sounding 
problem can disguise a fairly complicated task for the 
statistician :
- How will the "effects" be measured ? Will they be based on the 
raw blood pressure reduction over the study period, or on some 
dichotomisation of the results into blood pressure controlled
/ not controlled ?

- What if each patient visits the treatment centre for 
assessment at certain fixed periods during the study ? Should 
the blood pressures at these times also be incorporated into 
analyses using regression or repeated measures methodologies ?
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- If intermediate results are to be incorporated, what if some 
of the planned visits are missed ?

- What should be done with the protocol violators ?
- Which prognostic variables should be incorporated into 

analysis of the responses of direct interest ?
- Is there any prior information available which could simplify 
analyses, or make them more efficient ?

- Should Normal or non-parametric techniques be used ?

The questions seem to be endless!
The multitude of problems behind such a simple question 

highlights the importance of having a clear set of objectives and 
a proposed method of analysis laid out in advance, in order to 
avoid accusations of Mdata-dredging" arising from having an 
ill-defined question of interest.

From the above section it is clear that there is a wide range 
of topics liable to be of interest to the practising medical 
statistician. To illustrate this, the following section aims to 
provide an overview of the current topics of interest, by 
reviewing some of the more recent issues of two leading medical 
statistics journals, Statistics in Medicine and Controlled 
Clinical Trials (years 1988 and 1989). Each article is classified 
according to its principal subject matter. It must be stated that 
the reviewing procedure used was purely subjective.

1.8 : Review of "Statistics in Medicine" and
"Controlled Clinical Trials" 1988-1989

The results of reviewing "Statistics in Medicine" (SIM) and 
"Controlled Clinical Trials" (CCT) are shown in Table 1.1.

Since the style of these two journals is so different, with 
"Controlled Clinical Trials" inclined more towards the practical 
issues in performing clinical trials than "Statistics in 
Medicine", the reviews will be summarised separately.
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Table 1.1 : Assessment of “Statistics in Medicine” and
"Controlled Clinical Trials" 

(Number of Papers)

RESEARCH TOPIC SIM CC

1988 1989 1988

STUDY DESIGN A 3 2

SAMPLE SIZE / POWER CALCULATIONS 9 5 1

INTERIM ANALYSIS / STOPPING RULES 1 3 2

DATA ANALYSIS
Repeated Testing 1 2 0

/ Multiple Comparisons
Meta-Analysis 1 1 0
Handling missing data 5 2 0
Ordinal Categorical data 2 4 0
Analysis of Covariance / Regression 2 6 0
Discrimination / Diagnosis 6 4 0
Identification of Clustering 3 1 0
Survival analysis 11 14 1
Case / Control Studies 2 5 0
Crossover Studies 1 2 0
Repeated Measures Studies 5 1 0
Time Series Analysis 4 5 0
Eactorial Studies 0 2 0
General Statistical Modelling 7 3 0

EPIDEMIOLOGY
Estimating trends 5 19 0
Assessment of risk factors 6 9 0
Estimation problems in epidemiology 2 4 0
Miscellaneous problems in epidemiology 4 5 0

(contd.)
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Table 1.1 ; contd.

MISCELLANEOUS
Issues in Clinical Trials Methodology 4 7 14 10
Detailed Statistical Methodology 14 8 1 2
Medical Applications 6 6 0 0

CLINICAL TRIAL REVIEWS 0 0 1 7

TOTAL 105 121 22 35
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1.8.1 ; "Statistics in Medicine11

It can be seen that consistently, certain research topics 
received much attention compared to other important topics. The 
problems of survival analysis and the estimation of trends in 
epidemiology were devoted much attention, whilst, for example, 
the problems of stopping rules, the handling of missing data and 
the analysis of repeated measures/crossover studies received 
little emphasis, despite being of some considerable importance.

This leads to a concern that, perhaps, some of the areas 
requiring further investigation are being under-researched, while 
research could be being "duplicated11 in the more popular areas.

It should be noted that this could conceivably be a slightly 
gloomy view of the situation : SIM periodically publishes special 
issues on topics of general interest. The January/February issue 
in 1988 looked at "Longitudinal Data Analysis" while the January 
1989 issue looked at "Methods for Modelling the AIDS Epidemic", 
and so, probably, there will be disproportionately many papers on 
such topics as Estimating Epidemiological Trends. (In fact, 5 
of the papers in 1988 and of the papers in 1989 on that
topic came from these special issues). Similarly, the March 1989 
issue studied "Statistics in Surveillance", and so, again, it 
would be expected that there would be a high proportion of papers 
on epidemiological topics.

It could be reasoned, however, that these special issues would 
not have been produced if there had not been sufficient current 
interest in the topics covered.

1.8.2 1 "Controlled Clinical Trials"

Certain features distinguish the style of CCT from that of SIM.
(i) CCT contains substantially fewer papers on detailed

statistical methodology and analysis.
(ii) CCT tends to carry quite a number of papers purely 

reporting study findings.
(iii) CCT contains, mainly, a variety of general discussion

papers on a wide range of topics relating to the planning
and execution of clinical trials. These range from
discussions on the role of the National Institutes of 
Health (N.I.H.) in the sponsorship of clinical trials
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(1988 ppl03-106) to the properties of randomisation 
(1988 No4 , full Issue) to the problems of data 
collection (1989 pp282-289) and management 
(1989 pp386-406).

As with SIM, certain topics received a disproportionate amount 
of attention, these topics being interim analysis and stopping 
rules, while other, equally important issues such as
meta-analysis and the handling of missing data received 
comparatively little attention,

1.9 ; Conclusions for Chapter 1

The areas of research studied in this thesis were chosen to 
reflect a few of the "gaps" in the existing literature in
clinical trials methodology.

This work began in 1985, but it is clear from the above review 
of the most recent two years of two leading medical statistics 
journals that these areas are still receiving little attention in 
the literature.

The first topic which will be studied is the problem of how 
best to handle incomplete data and/or dropouts in clinical 
trials, where inappropriate handling of such data can lead to 
substantial bias in the results obtained.

The second looks at a common problem in Phase II clinical
trials : the analysis of data arising from treatment groups with
an a priori ordering. Such data can be obtained if the responses 
of patients to differing doses of the same drug are being 
compared. Here, inappropriate analyses can lead to a substantial 
loss of statistical efficiency.

Both of these problems have been highlighted by the analysis 
of data from actual clinical trials, and indeed this research has 
been been sponsored by a pharmaceutical company (Janssen 
Pharmaceutics, Beerse, Belgium) which recognised the importance 
of developing appropriate statistical methodology to address 
these problems.
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PART I i Inference in the Presence of Missing Data.

Chapter 2 : Background to the Problem

2.1 : Introduction and Literature Review

In the context of clinical trials, the problem of missing data 
is a very common one. Sometimes, even if a study protocol 
dictates that multiple measurements are made on each individual, 
not all of the possible measurements will be made. (This can 
happen either by design or by accident).

The situation where data are missing by design could arise 
when the time until the next visit of a patient to a blood 
pressure clinic depends on some critical threshold blood 
pressure, x, where if the blood pressure on a given visit exceeds 
x, the patient returns for assessment in two weeks, and if the 
blood pressure is less than x, the patient returns in four weeks.

The more common situation where observations are accidentally 
missing arises, for example, if a machine malfunction occurs (and 
no observation is taken), or if an individual forgets or is 
unable to return for assessment, or if unscheduled patient 
withdrawals are made due to, for example, side effects, etc.

The problem of missing data must, in fact, be as old as 
experimentation itself.

However, standard statistical procedures have, traditionally, 
been developed for the analysis of complete rectangular data sets 
(i.e the data may be laid out as a rectangle of values, the rows 
representing different cases and the columns representing 
different variables, with no "gaps" where observations should 
be).

Fortunately, over the years, several approaches to the 
treatment of missing data have been proposed, some of these on 
intuitive grounds, and others with more theoretical basis.

For any of the suggested approaches to give unbiased results, 
it is necessary to make certain assumptions about the mechanisms 
which could lead to data being missing. Several classifications 
of missing data mechanisms were defined by Rubin(1976) as 
explained in the following section.
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2.2 i Missing Data Mechanisms

Let 0 be some parameter of the data of interest and let <j> be 
the parameter of the process leading to the missing data. Then 
the missing data are defined to be Missing at Random (M.A.R.) if 
the conditional probability of the observed pattern of missing 
data given the missing data and the observed data is the same for 
all possible values of missing data (for each possible value of 
(j)). This means that inferences about 0 can be based solely on the 
likelihood function for the observed data, without having to 
model the missing data mechanism, i.e "missingness" itself is 
uninformative. The observed data are defined to be Observed at 
Random (O.A.R.) if the conditional probability of the observed 
pattern of missing data given the missing data and the observed 
data is the same for all possible values of the observed data 
(for each possible value of and for each possible value the 
missing data). If the observed data are observed at random and 
the missing values are missing at random, then the missing data 
are said to be Missing Completely at Random. (See Rubin(l976) for 
details).

To illustrate these terms, consider a simple bivariate 
example.

Example : Let X and Y be two random variables, where X is
completely observed and Y is incomplete, and let the data be 
represented as follows :

Xi X2 ... xm Xm44 ... xn (i.e. X complete)
Yi Y2 ... Ym (i.e. Y incomplete)

Then Ym .̂̂  ... Yn are missing at random if their probability of
being missing depends on X but not on Y. The Y^ ... Ym are
observed at random if their probability of being observed does
not depend on X. Finally, Ym+i ... Yn are missing completely at 
random if the probability of being missing is independent of X 
and Y.
Imagine, for example, the situation where any Yj is only 

observed if the corresponding Xj takes a value lower than some 
predetermined threshold. Then, even although the Yj are clearly 
missing in a systematic fashion, they are still, technically, 
Missing at Random, since their presence or absence does not 
depend on the value which they would have taken.

Methods described in the following sections will assume that,
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at least, the data are missing at random, and often that they are 
also observed at random (i.e. missing completely at random). 
Although it would be theoretically possible to model the missing 
data mechanism (if it was known), this would seriously complicate 
any statistical analyses performed. In any case, generally no 
such information would be available. One common exception is 
where the data take the form of survival times. If a response is 
missing ('’censored1’), then that itself is informative - if a 
response is censored, then the implication is that the survival 
time exceeded the length of follow-up. In this situation of 
’’informative missing data” it is certainly not reasonable to 
assume a "missing at random” scenario.

Since such censoring problems are well documented, and since 
standard analyses have long been available, no further discussion 
will be given.

The problems considered from now on will be those where no 
strong information is available about the mechanism leading to 
the missing data, or where it is known that the data are M.A.R.

The approaches to be considered fall into three principal 
categories :

(1) Relatively simple ad hoc approaches using available
data (or a subset of the available data).

(2) Approaches where imputation is made for the missing 
values, and then complete-data techniques are employed.

(3) Approaches based on fitting certain models (usually 
Multivariate Normal) to the observed data and maximising 
the likelihood function obtained (valid when the missing 
data are missing at random),

In previous literature, the problems which have been addressed 
have, generally, been those of parameter estimation in isolated 
groups. In reality, however, it is more common to have two or
more groups under study, where it is of interest to compare these
groups in some sense, for example to test for equality of the 
group means while assuming a common covariance matrix, or to find 
interval estimates for differences between linear combinations of 
the group mean components, etc.

The following sections will, first, review and compare some of 
the possible approaches to parameter estimation in the single 
group situation, and then extend these approaches to cover the 
multiple group problem.
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With the exception of those cases highlighted, the approaches 
which will be described are equally applicable in repeated 
measures applications (where each individual has repeated 
measurements made on the same variable through time) and in 
general multivariate applications.

2.3 : Approaches to Dealing with Missing Data

(1) Relatively Simple ad hoc Approaches

(a) Complete Cases (C.C.) : Analyses are performed using only 
those cases for which no data are missing. If the missing data 
are Missing Completely at Random, then this will be valid, 
leading to unbiased parameter estimation. However, there is 
the potential for the loss of important information by 
discarding the incomplete cases.

(b) All Available Data (A.A.D.) : Analyses are performed using 
all of the data on each variable, so that calculations for 
different variables will be based on observations from 
different numbers of individuals, making results, at best, 
difficult to interpret.

As long as the missing data are Missing Completely at 
Random, the estimates of means and variances will not be 
biased. However, problems arise when looking at combinations 
of two or more variables. To estimate covariances, clearly 
only cases with all of the variables of interest present may 
be used. Thus the estimates of variance of a variable and of 
its covariance with other variables may be based on different 
numbers of cases, leading to the possibility of estimates of 
correlation outside the range [-1, 1]. This problem can be 
solved by estimating the individual variances using only those 
cases with both variables of interest observed (so that the 
variance and covariance estimates are based on the same 
individuals). (See Matthai(1951) for details).

(2) Methods Based on Imputation

The idea of substituting in "suitable" values for missing 
variables is appealing in the sense that, after imputation has
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been made, familiar complete-data methodology may be employed. 
The choice of method of imputation is largely subjective, 
with, as a result, a large number of options available. As in 
the previous sub-section, strong assumptions must be made 
about the missing data mechanisms in order that such analyses 
are valid.

(a) Imputing the Mean of The Observed Values For a Variable : For 
each variable under study, any missing values are replaced by 
the average of all available measurements on that variable. If 
a M.C.A.R. setup can be assumed, then clearly the sample means 
for the completed data matrix will give unbiased estimates for 
the true means (since the available case method did). However, 
such imputation will artificially reduce the estimated 
variances by a factor dependent on the number of cases where 
imputation was necessary.

(b) Last Value ; For each variable under study, any missing 
values for a given case are replaced by the last observed 
value for that case. Clearly such an approach would only be 
sensible if the data represented repeated measurements on the 
same variable. For example, it would not make sense to impute 
an individual's height in place of their unknown weight.
Example : Measurements are intended to be made on the blood
pressure of individuals at five defined time points. Imagine, 
instead, that the following data were observed (where the 
asterisks represent the missing values).

1 2
Time Point

3 4 5

1 170 165 122 ft ft
2 145 142 138 124 116
3 129 118 115 115
4 182 * 147 147 145
5 131 135 * * ft

Then if last value imputation was employed, the completed data 
matrix would take the form :
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1 2
Time Point

3 4 5

1 170 165 122 122 122
2 145 142 138 124 116
3 129 118 118 115 115
4 182 182 147 147 145
5 131 135 135 135 135

(The values in bold type are those which would be imputed).
Tor this approach, even if the data were missing Completely at 
Random, the results obtained would be biased, unless the 
underlying means of the imputed variables were the same as 
those variables which were used to perform imputation - fairly 
unlikely in practice.

(c) Imputation using Regression Models : Represent the data as 
Yik where i = l ,  2, ..., n , k = l ,  2, ..., p , 
with n = total number of cases 
and p = number of variables which could be measured.

Then, if a Multivariate Normal model can be assumed for the 
data, much progress can be made.
Let Yt = ( Yu. .... Ylp) represent the data for case i.
Assume that ~ Np( p , Z )
Let p^ , represent the portions of p and Z , respectively, 
corresponding to the observed variables for case i, and let 
P2 » Z2 represent the portions corresponding to the missing 
values.
Let Z^2 represent the portion of Z corresponding to 
covariances of combinations of one missing and one observed 
value for case i.
Then it would be intuitively appealling to replace the missing 
values for case i by their conditional expectations given the 
observed values for that case. If Y^ are the observed values 
for case i and Y2 are the missing variables, Y2 would be 
imputed using regression on Y^, 
i.e Y2 would be replaced by

<E( Y2 I Y]_ ) = P2 + 121 l l l ~ l ( Yi - Pi )
where the components of p and Z would be estimated using
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those cases with the relevant components present 
Such imputation would be valid under M.C.A.R. as before, but 

would also be valid even if the missing data were only M.A.R. 
The means obtained under this method are unbiased for the true 
means, but the variances and covariances are, again, 
underestimated, this time due to failing to model any random 
variability about the regression model fitted.
Note : This method of imputation forms an important part of 
one of the likelihood - based methods to follow in the next 
section.

(3) Methods based on Modelling the Data

This third approach will be covered in detail in the following 
chapter. Briefly, the data are modelled under a M.A.R. 
assumption, using, most commonly, the Multivariate Normal 
distribution (although certain other models are possible, as will 
be seen later). Parameter estimates are then obtained using 
Maximum Likelihood techniques.
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Chapter 3 : The Development of Likelihood-Based Approaches

3.1 : Introduction

This chapter first looks at various techniques for maximising 
the Multivariate Normal likelihood function for incomplete data 
from isolated groups. It then moves on to extend some of these 
techniques to cover the multiple group problem.

Also discussed are certain alternatives to the Multivariate 
Normal model, for which maximisation of the likelihood function 
can be achieved by only slight modifications of the techniques 
used for the Multivariate Normal model.

3.2 ; The One-Sample Problem

3.2.1 : Introduction

Before proceeding to look at two general approaches for
maximising Multivariate Normal likelihood functions in the 
presence of missing data, one special case will be considered

Throughout the following sections, it will be assumed that the 
missing data are Missing at Random (M.A.R.).

3.2.2 : Maximising the Likelihood Function When the Missing
Data form a Nested Pattern :

As long as they are missing at random, when the missing data 
form a nested pattern (nesting will be defined below), it can be 
shown that a useful factorisation of the Multivariate Normal
likelihood function can be made, making parameter estimation 
straightforward.

Note : Different possible patterns of missing data can be 
simply described using a set of p binary variables, taking value 
0 if the corresponding observation is absent and a value 1 if the 
corresponding observation is present.

For example, for the case p = 5,
[ 1 1 0  1 0 ] would represent the situation where the third and 

fifth measurements were missing, and the rest were observed.
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Notation : Y-j-i = Observed data for the i^h case with
missing data pattern t (i = 1, ..., nt

t = 1, ..., T )
For the complete cases, Y-j-i “ N ( p , 2 )
For the incomplete cases, define a matrix, Dk, for each 
pattern, t, such that

Yti ~ N ( pt > ) = N ( Dt p , Dt 2 DtT)
Dt is a matrix composed of rows each containing a single M1M
with the remaining elements ’'O’1, such that each row picks out one
observed component of the mean vector.

e.g. If p = 5 , and the missing data pattern is [ 1 1 0 1 0 ] ,  
then the form of Dk would be

1 0 0 0 0 
0 1 0  0 0 
0 0 0 1 0

The data Yk  ̂ (t = 1, ...,T ; i = l, ..., n^) are said to be
nested if it is possible to label the groups so that the 
D-f- (t = 1, . . ., T) satisfy the condition

Dr = hrDkTDk for r \ k (3.1)
Putting this in more tangible terms, the types of data 

matrices satisfying (3.1) are, for example, those where the data 
can be arranged so that for a given missing data pattern, t+1, 
the observed variables are a subset of those measured in the 
previous pattern, t.

This would be the case if, for example, the data could be
arranged into the patterns shown below :

Pattern

1 1 1 1 1 1
2 1 1 1 1 0
3 1 1 1 0 0
A 1 1 0 0 0
5 1 0 0 0 0

Complete cases
Cases with only last point missing 
Cases with last 2 points missing 
Cases with last 3 points missing 
Cases with only first measurement

When the data form a nested structure, analyses under a 
Multivariate Normal model with M.A.R. assumed are relatively 
straightforward.
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Return to the earlier notation for simplicity.
Let Y-jj = measurement on the j^h variable for case i.

( i - 1, . . . , n ; j = 1, ..., p)
It can be seen that, for the example above, variable 1 is 

more observed than variable 2, which in turn is more observed 
than variable 3, etc. As a result, the corresponding likelihood
can be factorised by dividing it into several components, each
one being related to the conditional density of a variable, given 
all previous variables (see Anderson(1957)).

If we let L( 0 j Y ) represent the likelihood function,

nl n2 np
L(0; Y) = n pCYiilG!) n p(Yi2lY11,02) . . .II p(Ylp I Y u  ,. . , Y* ip.! ,0p)

i=l i=l i=l
where 0 ]̂ ,..., 0p are distinct, so that inferences about 0^

can be based on the n^ components involving ©]_ (i.e. those
corresponding to cases with the first variable recorded), 
inferences about ©2 can be based on the n2 components involving 
02 (i.e. those corresponding to cases with both the first and 
second variables recorded), etc.

Also, the joint density of Y]_, ..., Yp may be reconstructed
using a similar expression, namely
p(Y!, Yp l S) = p(Yil0!) pCYzlYi.Ga) ... pCYplY^ ...Yp.1;ep)

Due to the factorisation of the likelihood function, maximum 
likelihood estimates for the parameters of the joint distribution 
can easily be found as functions of the p individual factors.

Example : p = 2 ; Bivariate Normal Model

Yil
*i2 N n

h2
°i p ° m  
Pal°2 CT2

with the Y-q complete and Y-ĵ  incomplete. 
p(Yl*Y2 'hl» V2» al> °2» P) = p(Y2»Yi, ai2» $12> a12) pCYf Itjli, o^)

where a^2 anĉ  1̂ 12 are the regression parameters for Y -̂2 on 
Y-q, with

a12 b2 " Pl2 hi
Pl2 = P a2 / °1

a12^ “ Conditional variance of Y-ĵ  given ^il 
a22 (1 - p2)
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Let ni cases be complete and n2 cases have only the second 
variable missing. The likelihood function is then

nl nl'*'n2
L(0 ; Y) = n p(Yii,Yi2i P]_, p2, al2> CT22) n P(Yil1 Pl> al2) 

i=l i=n^+l

n l n l+n2
= n p(Y i 2 ! Y il>a 1 2 ^ 1 2 » a 122 ) 11 p(Y il' Pl> a l2 )
i=l i=l

Maximum likelihood estimates for p^ and are found by
maximising the second factor. The results obtained are just the
usual univariate Normal maximum likelihood estimates for mean and
variance, namely

A nl+n2 N
K1 = (ni+ n2)-l E YU  = N-l E Yn  = Yj.

i=l i=l
where N = n^ + n2

A N
012 = N-l E (Yn  - Y!>2

i=l
To maximise the likelihood with respect to the conditional 

parameters, ct̂ 2, Pl2> a122* °nly the first factor of the 
likelihood function need be considered. Here the usual regression 
estimates of the parameters are obtained, namely

nl

A
Pl2

E (Yii - Yl’)(Yi2 - y2*) 
i=l

n l
E (YU  - Yi1)2 

1=1

A - A -
a12 = y2' ~ ^12Y1’

A nl - A nl012 = "I-1 [ S (Yi2-Y2')2 - Pi22 S (Yjj-Y!')2]
i=l i=l

where Y^' and Y2! are the averages of the Y-q  and the Y^2, 
respectively, calculated using the n^ complete cases. The 
outstanding parameters of the joint distribution are then found 
by substituting the maximum likelihood estimates for the 
conditional parameters into the formulae for Py, Oy^ and p as 
shown below.
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A A A A
h2 = a12 + Pl2 hi

A 9 A ? A A .
a2 = CT12 + Pl2 °2

A
P

A A A
Pl2 al / a2

Clearly, as the number of variables (and the number of 
missing data patterns) increases, the calculations required to 
proceed from the parameters of the separate factors of the 
likelihood function to those for the joint distribution will 
become increasingly complex, but there would be no theoretical 
difficulties in so doing.

3.2.3 : Maximising the Likelihood function when the Data

More problematic is the situation where the data do not form a 
nested pattern (as defined in the previous section). In that 
case, no simple factorisation of the likelihood function is 
available to make calculation of the maximum likelihood estimates 
straightforward, and, in fact, solutions cannot be found 
analytically.

As a result, two main numerical techniques have been proposed 
in the past :

(i) The Method of Scoring 
(ii) The EM Algorithm

( Note : Throughout the following sections a M.A.R. setup is

These two numerical methods will be described in the context 
of a Multivariate Normal model for the data (although certain 
other distributions can be fitted easily using a minor 
modification of the latter technique).

are not Nested

assumed.)

(i) The Method of Scoring : This method (described by Hartley and 
Hocking(1971) for the situation where the data are 
Multivariate Normal and simplified by Hocking and Marx(1979))



36

involves solving the likelihood equations, i.e. solving the 
equations obtained when the first derivatives of the 
likelihood function with respect to y and with respect to £ 
are set to zero.
Consider the situation described earlier, where there are 

present T different missing data patterns. Then for each of 
these patterns, there will be defined a likelihood function - 
a Multivariate Normal likelihood based on the observed 
variables for cases with that particular pattern. The overall 
likelihood will then be given by the product of these T 
individual factors.
If we let Lf- represent the likelihood function for pattern T 

and let L represent the total likelihood,
T

l = n L+-
t=l

with
log(Lt) = lt = (-nt/2) log l2ll£tl - ( V 2) tr(£t_1Mt)

A A A
where Mt = nt (£t + (yt - yt)(yt - yt) )

2t = nt^I ^ t i  " Ut)(Yti - Ut)T

A nt
1% - nt_1  ̂ *ti

i=l

Thus, L can be seen to be a fairly awkward function to work 
with (and is unable to be factorised in the way shown in the 
previous section). It can be shown that the first derivative 
of the log-likelihood function with respect to y is

6 log(L)
 ̂nt®t^t  ̂nt-Dt^t ^bt

leading to likelihood equation for y as
T T A
E ntDtT2t_1Dt u = £ nt DtT£t_1yt

t«l J t=l
Similarly, the likelihood equations for £ can be shown to be
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T
Z ntDtTZt-lDt 

t=l

T
l DtTst-lMt St-lDt

t=l

Note here that the expression on the left is, in fact, the 
information matrix for p (i.e. the second derivative of the 
log-likelihood function evaluated at the maximum likelihood 
estimates of the parameters) which gives a large-sample 
covariance matrix for the maximum likelihood estimate for p.
Hocking and Marx(1979) made the estimation of p and Z 
relatively straightforward (compared to the original paper) by 
observing that the likelihood equations could be written as

T T
A A

for p : (I - Z (Nt/n]L)BtDt) p = pj_ - Z (Nt/nj_)Btpt
t=2 t=2

T T
for Z : (I - Z (Nt/n1)BtDt) Z = n ^ M x  + n^ 1 Z (}At /

t=2 t=2
t

where Nt = Z n.j_
i=l

n^ = Number of cases in the complete block 

and B-j- — (-n-|-/N-{-) Z D-j-̂’Z-j- ^

This observation led to the suggestion of an efficient 
computational procedure for the maximum likelihood estimation 
of p and Z, as follows :

(1) find initial estimates of the parameters p and Z 
(e.g. from the complete cases).

(2) Use the current estimate Z to calculate B^ and hence p.
(3) for the current estimate of p, calculate M^, and hence 

re-estimate Z.
(A) Repeat steps (2) and (3) until successive estimates of 

the mean agree to within a specified tolerance.

for each iteration through (2) and (3), it can be seen that 
the p x p matrix in brackets on the left hand side of the 
likelihood equations need only be inverted once : the same 
expression is used in both steps (2) and (3). This is more 
efficient than in the original paper, where, for each
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iteration, it was required to invert two such matrices - the 
information matrix for p and that for E, where that for E was 
order 2 p(p+l) x l !i p(p+D *
As a direct consequence of the iterative procedure, easily 
obtained at the final step is the large - sample covariance 
matrix for the maximum likelihood estimate of p, p say. It can 
be shown that

T
cov(u) = (I - Z (Nt/ni)BtDt)~l Zj (3.2)

t=2 '*•'

where n^ is the number of cases in the complete block.

(ii) The EM Algorithm (see Dempster et al(1977)) : Let Y^j 
represent the observation for case i on variable j 
(i = 1, ..., n ; j = 1, ..., p).
As before, define partitions of the mean vector and covariance 
matrix according to the available data on a given case.
Let represent the observed data in case i and let Y2>i
represent the missing data in the same case.
The EM Algorithm involves the familiar elements of imputation 
for missing values, and the use of complete-data techniques.
As with the Method of Scoring, initial parameter estimates are 
required. From that stage, the algorithm consists of two steps 
per iteration.

The Expectation Step (E - Step) : The missing values
for a given case are replaced by their conditional 
expectations given the current parameter estimates and the 
observed data for that case.
The complete data sufficient statistics are then calculated 
using the completed data matrix at that iteration.
Let YijCO be the value of Y^j at iteration t. Then

Y a a if Y-; -i observed
v (t) — J
^  ~ ^ i j ^ l , ^  ©(t)) = h2 " “ Hi)

if Y^j missing

where 0^0 represents the parameter estimates at iteration t.
The sufficient statistics then calculated (in order to be 
able to estimate p and Z at that iteration) are as shown below



39

(a) Sv , a p-dimensional vector with component
n n

Sy(j) = €( E Yijl Y 1 > ± , oCt)) = E Yij^)
i=l i=l

(b) Syy , a p x p matrix with (jjk)^ element

Syy(j.k) = €( S YyYifcl Ylji; 0<t))
i=l

= " ^i1(t)Yik(t) + ciki(t)
i=l

where is an estimate at iteration t of
cov (Y ^j  >?ik' Yi,i» e(t)), given by

'jki(t) = 0 if either Y^j or Y-ĵ  observed
(j>k)t 1̂ element of E22 " ^21^1l"^^12 

otherwise

The Maximisation Step (M - Step) : This step is
straightforward. The estimates of p and S are updated using 
the various summary measures of the completed data matrix 
shown above :

.jth element of y :

Uj(t+1) - n-l 2 YjjCt) j = 1, ..., p
i=l

» n"1 Sy(j)

(/Lk)*-*1 element of E :

sjk(t+1) = "‘I €( S Yi;jYiki Ylti, ®(t)) - vij(t+l)Uk(t+l)
i=l

= n-1 ( Syy(j,k) - n_1 Sy(j) Sy(k) )

This algorithm proceeds by alternation between E - Step and 
the M - Step until successive parameter estimates agree to 
within some specified tolerance.
Note : This algorithm is not equivalent to filling in 

conditional expectations for the missing data and then using 
complete data techniques. The calculation of the sufficient



40

statistics at each stage explicitly takes into account the fact 
that certain of the data were originally missing.

3.2.4 : Discussion

Since both the EM Algorithm and the Method of Scoring maximise 
the likelihood function, the parameter estimates obtained under 
the two methods will be identical.

In the discussion section of Dempster, Laird and Rubin(1977) 
Murray pointed out that there can sometimes be problems of 
multiple maxima in the likelihood function, and, dependent on the 
starting values for the parameters, the EM Algorithm will 
sometimes converge to a local, rather than the global, maximum. 
This problem can be solved by running the algorithm for several 
different starting values and comparing the results.

Three possible options for the starting values are :
(i) p set to zero and E set to be an identity matrix
(ii) p and E set to be their complete-case estimates

(iii) p and E estimated using complete-data techniques after 
some form of simple imputation has been made for the 
missing values.

So, which of the two numerical methods, described above, 
should be used ?

Two arguments often put forward to recommend the Method of 
Scoring as opposed to the EM Algorithm are :

(i) The large-sample covariance matrix for the maximum
likelihood estimate of p is given out automatically at the 
end of the Method of Scoring.

(ii) The convergence rate for the Method of Scoring is greater 
than for the EM Algorithm (the rate being quadratic rather 
than linear as in the EM approach).

These features of the Method of Scoring do not give cause to 
"write off" the EM Algorithm in any sense. Eeature (i) above is 
not such an immense advantage as is sometimes conveyed in the 
literature. The large-sample covariance matrix for the maximum 
likelihood estimate of p can easily be found at the end of the EM 
Algorithm by substituting the estimates obtained at the EM 
Algorithm's final step into equation (3.2) in the Method of
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Scoring section, i.e. all that is required is one extra matrix 
inversion at the end of running the EM Algorithm - hardly a 
severe problem.

Feature (ii) above cannot be dismissed so lightly. The 
convergence rate for the Method of Scoring is certainly superior 
to that of the EM Approach. However, with powerful computers now 
readily accessible, convergence rate is not such a serious issue 
as it was in the past. Certainly, in the analysis of a single 
data set, there would be little difference in the times required 
for running the two algorithms. If, however, a large-scale 
simulation study was to be performed, the comparative convergence 
rates would be a more important issue.

Some features to recommend the EM Algorithm as opposed to the 
Method of Scoring are :

(i) The EM Algorithm is very simple to implement and is 
appealing on intuitive grounds - it calls upon "natural” 
techniques which have long been used, and yet has a firm 
theoretical basis.

(ii) Because of its simplicity, the algorithm is not difficult 
to amend to perform other, more specialised, tasks.
e.g. fitting models for distributions other than 
Multivariate Normal, fitting multiple groups with a common 
covariance matrix, etc.

So far, several different approaches for dealing with missing
data have been described, each approach reliant on certain
assumptions about the missing data mechanism. The approaches have 
ranged from several ad hoc and intuitively appealing approaches 
(sometimes, but not always, leading to unbiased results in the 
presence of a M.C.A.R. mechanism), to approaches with more 
theoretical grounding, based on maximising the likelihood 
function, after making distributional assumptions about the data 
themselves. The latter were only valid if the data were Missing
at Random. Three alternative numerical methods were described for
maximising the likelihood function.
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3.3 ; The K~Sample Problem

3.3.1 : Introduction

As mentioned earlier, although it is useful to have at one's 
disposal valid approaches for dealing with single groups in 
isolation, it is much more common to have several groups under
study, where it is of interest to compare these groups in some
sense. It is in such areas that the remaining work will be 
concentrated.
Note : Since there exist standard approaches for dealing with
complete Multivariate Normal data, there will be no computational 
difficulties in performing the ad hoc analyses or analyses using 
imputed data as before.

3.3.2 : Fitting the Model ui„ u?. ...» Uv> Z to Incomplete
K ~ Sample Multivariate Normal Data

The aim is to fit a "common covariance matrix, separate means" 
MVN model to data consisting of multivariate measurements on N 
individuals divided into K separate groups. The algorithm 
proposed below for this situation shows more than a passing 
similarity to the EM Algorithm described earlier for the one - 
sample problem. As a result, the previous algorithm will now be 
referred to as EM(a), while the following algorithm will be 
referred to as EM(b).

Notation : Let Yg^j represent the observation for case i in 
the g11*1 group on variable j (i = 1, ..., ng ; g = 1, ..., K ; 
j = 1, ..., p. For each case, let Yg  ̂ = ( Ygn* ..., Ygip), and 
define a partition of their own group's mean vector pg and the 
covariance matrix* Z, as follows :

Hl,i(s) *11 *12 '
yg " ^2,i(g) *21 *22

where contains the elements of pg corresponding to the
observed variables in case i, and h2,i^s) contains those 
corresponding to the missing variables in case i. Similarly* 
contains the elements of Z corresponding to the observed values,
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^22 contains those for the missing values and Z2I = ^12^ contains 
those for combinations of observed and missing variables.

The Method EM(b)

(1) Start with initial estimates of the K mean vectors, and 
the common covariance matrix (e.g. from the complete 
cases).

(2) Complete the data matrix using

Y ..(t) = mij ^(^mij 1 U2,i(m) " ^21^11 ^(Yl,i ^l,i(m))
if Ymij missing

where Yf f and Y25f represent, respectively, the 
observed values and the missing values for case i.

Calculate sufficient statistics for the completed data 
matrix, these statistics being :

nm f . % nm (A
€( S Ymijl Y^i, e(t)) = Z Ymij

i=l i=l
for j = 1, ..., p ; m = 1, ...,K

nm ✓ .x nm /. x ✓ x
<E( I YmijYmik * Yl,i» ® ) =  ̂Ymij Ymik cjki

i=l i=l
where cjki = cov(Ymij ,YmiklYt#±t q M )

0 if either variable observed
(j,k)th element of Z22 “ ^21^11~^12 

if both variables missing

(3) Calculate updated estimates of the K mean vectors and the 
common covariance matrix using the summary statistics 
from (2) above as follows :

The jth Component of :

Pj(m)(t+1-) = nm"l
i=l

where nm = Number of cases in group m.
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The (j,k)th element of I :
K nm

Ejk(t+1) = N-1 E {€( Z YmijYmlkIYlil( ®(t)) 
m=l i=l

(4) Repeat steps (2) and (3) until successive estimates of 
the mean vectors agree to within some specified tolerance.

The use of algorithm EM(b) easily leads to calculation of the 
maximised likelihood for the problem under consideration.

3.3.3 : A Likelihood Ratio Testing Procedure for
K - Sample Multivariate Normal Data

In the situation where we have complete K-group multivariate 
data, a common testing procedure carried out is as follows 
(where each test performed is a likelihood ratio test).

Stage 1 : Test for equality of the K covariance matrices, 
i.e. test

Ho = E ; Pi vs Hx : p± ;
i.e.

H0 * ^mij Np( pmj 2 ) vs Np( pm , Zm )
If Hq may not be rejected, go on to stage 2.

Stage 2 : Test for equality of the K group means under an
assumption of equality of the covariance matrices, 

i.e. test
Hq : Pi = ..• = PR = h i s vs H1 : Ui > 2

i.e. test
Ho : ^mij Np( p , 2 ) vs Np( pm , Z )

In the tests described at Stage 1 and Stage 2 above, the test 
statistic used is the likelihood ratio test statistic,

2 log(X) = 2(1^ - 1q ) ~ x^(dim - dim Hq) under Hq
Here,

1q = maximised log-likelihood under the null hypothesis 
being tested ,

1  ̂ = maximised log-likelihood under the alternative
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hypothesis of interest , 
dim Hq = Number of fitted parameters under Hq ,
dim H;l = Number of fitted parameters under Hi[ .

The algorithm EM(b) leads to similar testing procedures being 
possible in the incomplete data situation. The required maximised 
log-likelihoods are calculated as follows :

(a) For model ( p , Z ), all of the available data are pooled 
together, and EM(a) is run, treating the data as though 
from a single group.

(b) For model ( y]_, • ••» Pk >  ̂ )> algorithm EM(b) is run.
(c) For model ( p]_, ..., ^1» •••» 2K )> algorithm EH(a)

is run on the K groups separately, giving K groupwise 
maximised log-likelihoods, The overall maximised log- 
likelihood is obtained by summing up these K individual 
quantities.

The likelihood-ratio testing procedure described at Stages 1 
and 2 above can then be performed using these maximised log- 
likelihoods from the incomplete data. Thus, as desired, the 
complete data procedures can be emulated in the incomplete data 
situation.

NOTE : It is well documented that covariance tests, for
example Bartlett's Test and its Multivariate analogue, tend to be 
sensitive to non-Normality of the underlying data. Because of 
this, any significant results from Stage 1 should be tempered 
with the appropriateness, or otherwise, of the Normal model for
the data. In certain cases, a significant result could be more
indicative of an inappropriate Normal model than of a real 
difference between the groups.

3.3.4 : Follow-Up Procedures

Having rejected the null hypothesis at Stage 2, it would be
desirable to perform the same sorts of follow-up procedures that 
would be carried out if the data were complete, for example

(i) Find out which of the K means are significantly 
different.

(ii) Find interval estimates for differences between linear 
combinations of the mean vector components for the
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different groups 
e.g. In a hypertension trial measuring blood pressure 
over a number of hospital visits while concurrently 
administering one of a possible set of anti-hypertensive 
agents, of interest might be to compare the changes in 
blood pressure produced during the study by the 
different agents.

Large Sample Covariance Matrices for the Maximum Likelihood
Estimates of the K Means

To perform either of these tasks, it is necessary to produce 
some kind of estimated covariance matrices for the maximum 
likelihood estimates of the K mean vectors under the model

Utilising the methods of Hocking and Marx(1979) in the one- 
sample problem, it can be shown that the large-sample covariance 
matrix for the maximum likelihood estimate of the k^h group mean 
is given by

A , A m i  1
cov( Pk ) = [ 2  ntk Dti2t 1Dt]"1

t=l
where Dt , 2t are as defined in the one-sample problem, 

ntk = number of cases in group k with missing 
data pattern t , 

and Tk - number of different "patterns” observed in 
group k

A A A
while cov ( pk »PS ) = 0 for k ^ s.

Approximate 95% Confidence Intervals

Returning to the questions of interest
Problem (i) : Of interest in comparing the K groups would be

K
to find intervals for expressions of form 2 <Hp^. Clearly this

i=l
K A

expression will have a maximum likelihood estimate of 2 c^p^
i=l
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*  , A Aand an estimated covariance matrix of £ c^z cov(pi).
i=l

This leads to approximate 95% confidence intervals for the 
expressions of interest of form

K K K ")
f jLt± : ( E Cj(ni-Mi))T (,E c*2 cov(Pi))-1 ( I c* )) < *2(p; 0.95)jL i=i i=l 1=1

where p = number of repeated measures. 
Clearly, if several such intervals were required (e.g. if all 

of the pairwise group comparisons were to be made) then some
allowance for the multiple comparisons would have to be made in 
the deviate chosen.

Problem (ii) : Of interest was to look at differences between 
linear combinations of the mean vector components in the
different groups, that is, look at expressions of the form

T  Tc■Lp i - c ]ij .

The maximum likelihood estimate of this expression would 
simply be

t A t A t  A A
cL\i± - c ipj =  c 1 ( pi - pj )

with corresponding large-sample covariance matrix given by :

T  A A A Ac 1 ( c o v ( p i )  +  c ov (p j)  ) c ,

leading to approximate 95% confidence intervals of form : 

cT(pi - pj) ± N(0, 1; 0.975) /{ cT[ cov(pi) + cov(pj)] c}

Again, clearly, if several such intervals were to be 
calculated, some allowance would be required for the multiple- 
comparisons aspect of the problem.

Alluded to earlier was that the EM Algorithm may be modified 
to fit models other than Multivariate Normal. These other models 
tend to be aiming, in a sense, to downweight the more "extreme" 
data values, and so could be thought of as robust methods.
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3.4 : Robust Approaches

3.4.1 : Introduction

The use of robust methods was clearly described in 
Little(1988), where the models considered were the Multivariate t 
distribution (which could be thought of as similar to the 
Multivariate Normal distribution, but with more weight 
concentrated in the "tails"), and the Contaminated Multivariate 
Normal distribution (where one Multivariate Normal distribution 
is contaminated by forming a mixture distribution, with a small 
weight being associated with a much more diffuse Multivariate 
Normal distribution). In each of these models, weights are 
assigned to cases, the more extreme points being assigned lower 
weights. What would be desired would be that :

(i) For the Multivariate t (MVt) model, a steadily decreasing 
set of weights would be assigned as the data became more 
extreme*.

(ii) For the Contaminated Multivariate Normal (CN) model,
similar weights would be assigned to the majority of cases 
with very low weights being given only to those cases 
deemed to be "contaminating".

The classification of cases into levels of "extremity" is 
performed using the squared Mahalanobis distances for the cases, 
calculated using their observed data, i.e.

di2 = (Yl,i - hl)T S n "1 (Yi^i - Pi)

where p^ and I n  are calculated using the 
EM Algorithm.

To carry out the robust estimation procedures, the general 
form of model is as given below (which covers the MVN model as a 
special case),

Model : Conditional on unknown scalars q^, ..., qn , Y^, ..., Yn
form a random sample from a Multivariate Normal Distribution ,
N ( p , (l/q^)S), where the q^ are independent and identically 

distributed, from distribution h(q^), so that the form of h(q^)
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will determine the distribution of Y.
Then it is possible to find maximum likelihood estimates of p 

and Z by treating the and the as missing data.
In this situation, if there were no missing data, then the 

data would be from a regular exponential family, with sufficient 
statistics

n n n
So = s qi sy = Z qiYi Syy = Z qiYjYp

i=l i=l i=l
leading to maximum likelihood estimates of p and Z as

n n
p = Z (qiYi) / Z qi = Sy / Sq 

i=l i=l

Z = n"^ ( S y y  “ S y S y ^ /  Sq )

Thus if there are missing data, the extension of the standard 
EM Algorithm is obvious :

(1) Estimate Sq, Sy and Syy by their conditional expectations 
given the observed data and the current parameter estimates.

(2) Re-estimate p and Z using Sq * Sy and Syy.
(3) Repeat steps (1) and (2) until successive parameter 

estimates agree to within a given tolerance.

The Conditional Expectations of Sn> Sy and Syy

n n
Ssx : CCSQlY^i) = <£( Z - Z

i=l i=l
where w-^t) is the estimate for q^ at iteration t, the form of

w^(t) dependent on the model being fitted.

The jth Component of S y  :

n
(E(Sy(j ) IYf ̂ i) = Z €[q^ ^(^ij ̂ 1 , i»9i) ' ̂ l,i)

i~l

= l Wi(t) YijCt)
i=l

where Y-jj(t) = € (Y-̂ j t Y^^) as in the standard EM Algorithm.



The (i,k ) ^  Component of S,„,

C(Syy(j,k)lYl>1)

= € ( I qiYiY^ i Ylji)
i=l

n
= l €  ( q i  (E C Y i Y i T i Y ^ i ,  q i ) I Y1 ( i )

i=l
n

= H  ( q i W i j ^ ^ Y i ^ t )  +  cov(Yi j ( t ) !Y . k ( t ) l Y 1 > i > q i ) l  Y1 ; 1 )
i=l

= S Wi<t) Yij(t) Yik(t) + Cjki 
i=l

where

'jki
0 if Y-jj or observed
(jyk)^ element of ^22^ ^  “

otherwise

All that remains is to specify the form of h(q^), and hence 
the weights w^. As mentioned earlier, the form of h(q^) and hence 
w^ depends on the model being fitted.

3.4.2 ; The Models

The Multivariate t Model (MVt) : It can be shown that to
achieve a distribution for as tp( p, 2, v), the suitable
choice of model for q^ is that q^v ~ x^(v)* If that is the
case, the required case weights are

Wi(t) = €( qil Y U i , p(t>, s(t))
= (v + pi) / ( v + d^t)2) 

where d^ ^ ) 2 is the estimate of d^2 at iteration t and 
Pi is the number of variables observed in case i 
(since the distribution of (v + di2)qi conditioned on Y]_ i 
and the current parameter estimates is X^(v + Pi) )•

The Contaminated Multivariate Normal Model (CN) : If it is
desired that Yi be Contaminated Multivariate Normal (i.e a
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mixture of two Multivariate Normal distributions), N ( p , Z ) in 
proportion (1-5) and N ( p , Z/X) in proportion <5, where <S (the 
"contaminating fraction") is very small and 0 L X L 1 
(<5 and X both known) , then the appropriate form of h(q^) is

hUi) =
1 - 6  if qp = 1
6 if qj_ - X
0 otherwise

For this model, the correct form for the case weights is 

1 - 6 + 6x1*0*^pi exp {0.5( l-X)d-j^t)2}
(t) =

1 - 6 + SX0-5Pi exp (0.5(1-X)di(t)2}

where d-ĵ *)2 the estimate of d^2 at iteration t.
Incidentally, to fit a Multivariate Normal (MVN) model, unit 

weights are assigned to all cases.

For each of the models described ( MVN, MVt, CN ), clearly it 
would not be difficult to calculate the likelihood function 
corresponding to the data at each iteration.

For a MVN model, the likelihood function is as given earlier. 
For a MVt model, the log-likelihood function is defined by : 

n
1 ” Z [ -0.5 log 12nsiiI - 0.5(v + pi) log(l+di2/v) 

i=l
-0.5pilog(0.5v) + log { r(0.5(v+pi) / r(0.5v) } ]

while for a CN model, the log-likelihood function is given by 
n

1 - Z [ -0.5 logl2nZnl - 0.5 &±2
i=l

+ log (1 - 6 + SX0-5?1 exp(0.5 (1-X) dt2) ] 
where p^ = number of variables observed for case i.

It would then seem natural to assess the relative merits of 
the three models by comparing their maximised log-likelihoods.

3.A.3 : The Choice of Model

Superficially, it would be desired that in many circumstances,
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the Multivariate Normal model would be sufficiently flexible to 
provide reasonable fit to the data under study (after 
transformation of the data if necessary), with more complicated 
models only used as a "last resort".

So, a useful initial step would be to assess, in some way, the 
validity of the MVN model. One method described by Gnanadesikan 
(1977), Little and Smith(1987) and Little(1988) involved the 
quantities defined earlier, and is known as the "Transformed 
Distance Plot".

The Transformed Distance Plot

If a Multivariate Normal model was correct for a given data 
set, then the squared Mahalanobis distances (&i^) obtained at the 
final iteration of the MVN EM Algorithm would have x2(Pi) 
distribution (where p-̂ is the number of variables observed for 
case i). These could then be transformed to approximately 
Standard Normal deviates by using the so-called "Wilson Hilferty 
Transformation" as outlined in Johnson and Kotz(1970), defined as

P(x2(v) L x ) - $ [ (x/v)!/3 - 1 + 2/q v'1] /(9v/2)
where $ represents the Standard Normal cumulative 
distribution function.

Using this result, it can be seen that if the data were indeed 
Multivarite Normal,

z± = ( (d-^/pi)l/3 - 1 + 2/(9p^) } /(9p^/2) would have
an approximate N(0,1) distribution, while unusually large values 
of z^ would suggest that the data were more dispersed than would 
be expected for a Multivariate Normal distribution. In the 
examples to follow later, a very simple technique was used to 
assess objectively whether observed values of z^ were "too large" 
or were what could be reasonably expected within a MVN framework.

The Plots.

Let n be the sample size. Nineteen N(0,l) order statistics of 
size n were generated using NAG program G05DDE. Then for each of 
the ordered z^ from the data, the range of the corresponding 
twenty simulated values was calculated. This gave an "envelope" 
within which the observed z^ could be expected to lie if a MVN
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model was reasonable, the "envelope” composed of the n pointwise 
intervals. It could be expected that if the data were MVN, that 
the would fall ouside the "envelope” approximately n/20 times. 
(See Barnard(1963), Marriott(1979) for details).

In any examples given later, the form of the transformed 
distance plots will be with :

(i) z^ plotted against <E(ẑ ) (the expected value of the 
corresponding point in a N(0,l) order statistic. Letting 
denote the i^h smallest z-value,

€(z(i)) = $-1[(i- 3/8)/ (n+V4) ]
(ii) A dotted line drawn in at = <E (z^).

(iii) The pointwise intervals joined to give a continuous
"envelope".

If such a plot contained many more points outside the 
intervals than could be expected by chance, then it would be 
necessary to look for some alternative way to model the data 
under study, for example using the robust methods already 
described. Even specifying a particular form of robust model 
still leaves some important choices to be made :

If a MVt model is chosen : How many degrees of freedom would be
appropriate to give good fit to the data (i.e. the choice of
parameter v) ?

If a CN model is chosen : What contamination fraction and
variance inflation should be used (i.e. the choice of 6 and X) 7

A natural approach would be to use the parameter values which 
maximised the likelihood function. This is not difficult for the 
MVt model, where the maximised likelihoods for various values of 
v could be plotted , and the overall maximising value of v found 
by inspection. The choice of the two parameters, 6 and X, for the 
CN model is more awkward. In theory it would be possible to 
calculate the maximised likelihoods over a grid of values for 6 
and X and pick out the maximising combination. In practice, this 
would involve much effort. More simple would be if either of 
these parameters was known in advance, so that the maximisation 
was only necessary over one parameter rather than two.

To decide objectively whether a given robust model fits 
significantly better than the MVN model, their maximised log- 
likelihoods can be compared. However, only for the MVN vs MVt 
comparison are standard likelihood ratio tests valid. In the case
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where the MVN and GN models are to be compared there is failure 
of the regularity conditions on which the asymptotic theory of 
the likelihood ratio test is based.

The one- and K- Sample procedures covered so-far will now be 
illustrated by way of several examples. Throughout, the notation 
for representing missing data patterns given in the "nested data" 
section will be used.
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Chapter 4 : A Comparative Study Based on Three Clinical
Data Sets

4.1 : Ketanserin vs Metoprolol in the Treatment of
Hypertens ion.

(see Rosendorff & Murray(1986) ; Murray & Findlay(1988);
Lewis(1989))

Background : A multicentre randomised clinical trial was
performed to assess and compare the hypotensive (blood pressure 
lowering) effects of two drugs, Metoprolol (a p-blocker) and 
Ketanserin (an S2 receptor blocking agent) during a twelve-week 
study period.

Assessment of individuals was carried out at five stages :
Week 0 (Randomisation) , plus Weeks 2, 4, 8 and 12 weeks after 
commencement of active treatment. In addition, there followed an 
"open-phase" where patients with inadequate blood pressure 
reduction in the preceding period could be administered 
additional compounds in order to reduce the blood pressure to a 
more satisfactory level (The open phase will not be analysed 
here).

In the study protocol, it was stated that patients with 
diastolic blood pressure exceeding 110 mmHg at either the 
four-week or the eight-week assessment could "jump" straight to 
the open phase of the study, due to ethical problems associated 
with maintaining patients on a treatment which was, for them, 
ineffective.

Thus, clearly, it will be expected that there will be several 
.patients with missing data at the end of the study, and so 
provision for such cases must be made in analyses performed.

The Data : The data consisted of 429 cases, split into 211
Ketanserin cases and 218 Metoprolol cases, with missing data 
patterns as shown in Table 4.1. For both drugs, the majority of 
cases with missing data were those who had "jumped" to the open 
phase. Since, in these cases, the reason for the data being 
missing was related only to the earlier blood pressure 
measurements, the missing data could be considered to be Missing 
at Random in the sense of Rubin(1976), although they could
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Table 4.1 Hissing Data Patterns

Ketanserin Group

Weeks after Randomisation 

0 2 4 8 12
Number

of
Cases

1 1 1 1 136
1 1 1 0 19
1 1 0 0 41
1 0 0 0 4
0 0 0 0 1
1 1 0 1 1
1 0 1 1 2
0 1 1 1 2
0 1 1 0 1
0 1 0 1 1
0 0 1 1 2
0 0 1 0 1

211

Metoprolol Group

Weeks after Randomisation Number
of

0 2 4 8 12 Cases

1 1 1 1 1 162
1 1 1 1 0 14
1 1 1 0 0 30
1 1 0 0 0 2
1 0 0 0 0 1
1 1 1 0 1 2
1 1 0 1 1 1
1 0 1 1 1 2
1 0 1 0 1 1
1 0 1 0 0 1
1 0 0 1 1 1
1 0 0 0 1 1

218
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certainly not be considered to be Missing Completely at Random - 
In no way could the incomplete cases be described as a random 
sample of all the cases under study.

In addition to the planned withdrawals during active 
treatment, there were also several other '’unplanned1' cases of 
missing data. For simplicity in analyses, due to the small 
proportion of unplanned missing data, these cases will also be 
assumed to be missing at random, although this will not 
necessarily be the case.

Noticeable from the observed missing data patterns is that 
there are many more planned withdrawals in the Ketanserin group 
than in the Metoprolol group, suggesting that the Ketanserin was 
not as successful in controlling blood pressure quickly as the 
Metoprolol.

The Analyses

Comparison of the EM Algorithm Results to those from Three Naive
Approaches :

Tor each group separately, the five-component mean vector was 
estimated by three different "naive” approaches :
Complete Cases (CC), All Available Data (AAD), and Last Value 
(LV) and the results were compared to those obtained using a 
maximum likelihood approach (EM(a)).

Note here that CC, AAD and LV approaches will not be valid 
since the data are not Missing Completely at Random (MCAR).
The estimates obtained under the four approaches are shown in 
Table A.2 and in Figures 4.1 & 4.2 and could be summarised in a 
few points (in each case the maximum likelihood approach will be 
used as a ’’yardstick" to compare with other results, since it is 
the approach with most theoretical grounding).

The results of applying EM(a) to the two groups are shown in 
Figure 4.3.

(i) The CC approach is generally producing estimates of the 
mean which are too low - this is what could be expected, 
since those cases reaching the twelve-week assessment are 
those whose blood pressure was fairly well controlled even 
by Week 4.
During the study, cases found to have excessively high



58

Table 4.2 : Comparison of CC. AAD. LV and EMC a) (Meanfs.e, 1)
Ketanserin Group

Time Point
1 2  3 4 5

CC 105.8(0.6) 97.4(0.7) 93.8(0.7) 92.9(0.7) 92.0(0.8)
AAD 108.7(0.7) 101.5(0.8) 99.5(0.9) 95.3(0.9) 91.9(0.8)
LV 108.7(0.7) 102.0(0.8) 100.2(0.9) 99.9(1,0) 99.2(1.0)

EM(a) 108.7(0.7) 101.6(0.8) 99.8(0.9) 98.4(1.0) 96.3(0.9)

Metoprolol Group

Time Point 
3

CC 106.6(0.6) 95.3(0.8) 92.7(0.7) 92.1(0.8) 92.7(0.7)
AAD 108.0(0.6) 97.5(0.8) 96.3(0.8) 93.6(0.8) 93.1(0.7)
LV 108.0(0.6) 97.8(0.8) 96.6(0.8) 96.2(0.8) 96.6(0.8)

EM(a) 108.0(0.6) 97.5(0.8) 96.5(0.8) 95.1(0.8) 95.1(0.7)
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Figure 4.1 Comparison of CC. AAD and EM(a) (Ketanserin)
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blood pressure were excluded from, at the very least, the 
final (Week 12) visit.

(ii) The AAD approach agreed with the EM(a) approach at Week 0, 
where the data was complete, and gave results close to the 
CC approach for the Week 12 data. This is natural. At Week 
0, the data are complete, so that the sample mean of these 
data will be optimal in terms of maximising the 
likelihood. At Week 12, the cases with observed data tend 
to be those who have been present throughout the study 
(i.e. the complete cases), and so the CC and AAD 
approaches give similar results.

(iii) The LV approach, again, agreed with the EM(a) approach at 
the first time point for reasons as given above for AAD. 
However, as time progresses, the LV mean estimates diverge 
from the maximum likelihood values, overestimating the 
mean values.
Again, this is not surprising. By the nature of the Last 

Value approach, previous (generally larger) data values 
are being used to replace missing values, and the 
proportion of missing data increases through time.

(iv) From the maximum likelihood results, the reason for the 
larger proportion of withdrawals in the Ketanserin group 
can be seen. Although, by the end of the study, the 
average blood pressure reductions are approximately equal 
in the two groups (especially if corrected for the slight 
imbalance at randomisation), the time courses for the two 
drugs appear to be quite different.
For Ketanserin, there is a steady fall in blood pressure 
throughout the study, whereas, for Metoprolol, there is an 
initial rapid blood pressure reduction over the first two 
weeks, with little change seen over the remainder of the 
study. This would imply that at the four-week and 
eight-week points in the study, the Ketanserin group will 
have proportionately more cases with relatively high blood 
pressure than in the Metoprolol group, so leading to the 
compulsory removal of a greater number of cases, despite 
the fact that, eventually, the drug-effects level out.
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Model Checking : To assess the suitability of the Multivariate 
Normal model, transformed distance plots (as discussed earlier) 
were produced for each group separately. These are shown in 
Figures 4.4 & 4.5. Recall that if a Multivariate Normal model was 
appropriate, then approximately one twentieth of the data points 
could be expected to lie outside the "envelopes" shown on the 
plots, (To illustrate the type of plots expected under a 
Multivariate Normal (MVN) model, several MVN data sets were 
simulated and deletion of observations was performed to give the 
same set of patterns as seen in the two groups. Transformed 
distance plots were then produced. One typical plot is shown in 
Figure 4.6).

From the transformed distance plots, it can be seen that the 
MVN model does not appear to be ideal. As a first stage, various 
transformations were used in an attempt to "Normalise" the data. 
The results of applying log-transformation and square-root 
transformation can be seen in Figures 4.7-4.10. The 
transformations appeared to have done little to improve the 
non-Normality of the data.

Due to the assessments made above, robust techniques were 
applied. For each group separately :

(i) MVt models were fitted for various degrees of freedom. The 
maximised log-likelihoods for each of the fitted models 
are shown in Table A.3 and in Figures A.11 & 4.12 . A 
suitable integer value of degrees of freedom was chosen to 
give the largest maximised log-likelihood (for Ketanserin,
5 degrees of freedom, and for Metoprolol 8 degrees of 
freedom).

(ii) CN models were fitted over a grid of values for 6 and A as 
defined earlier and the combination was, again, chosen to 
maximise the log-likelihood function. Much work was 
involved in this since no prior information was available 
about either of the parameters. The maximising 
combinations were found to be :
For Ketanserin : 6 = 0.09 A = 0.27
For Metoprolol : 6 = 0.23 A = 0.22

The maximum likelihood estimates for the means and standard
deviations under the chosen MVt and CN models are shown in
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Figure 4.7--- :— T . D . Plot for logy (Ketanserin)
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o --

-10 -2. s -2.0
'EXPECTED VALUE

0.0 0.S 2.0 2. S 10



OB
SE

RV
ED

 
VA
LU
E 

OB
SE

RV
ED

 
VA

LU
E

66

Ei.gure 4.9 : T.D. Plot for ^(Ketanserin)
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Table 4.3 : Fitting MVt Models - Maximised
Log-Iikelihood as a Function of df

Degrees Ketanserin Metoprolol
of Freedom Group Group

1 -3329.8105 -3593.4643
2 -3288.0618 -3546.0497
3 -3275.6994 -3529.8560
4 -3271.5633 -3522.7995
5 -3270.5540 -3519.4491
6 -3270.8991 -SSlAaeie
7 -3271.8597 -3517.1952
8 -3273.0927 -3517.0385
9 -3274.4285 -3517.1736

10 -3275.7801 -3517.4780
11 -3277.1026 -3517.8797
12 -3278.3725 -3518.3352
13 -3279.5802 -3518.8176
14 -3280.7218 -3519.3098
15 -3281.7973 -3519.8011
20 -3286.2838 -3522.0817
25 -3289.6117 -3523.9684
30 -3292.1468 -3525.5010
50 -3298.1150 -3529.4139
75 -3301.6205 -3531.9115

100 -3303.5212 -3533.3295
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Figure 4.11 : Maximised Log-Likelihoods Produced by Pitting
Various MVt Models to the Ketanserin Data
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Table 4.4 together with the results obtained in fitting model 
EM(a). A comparison of the methods is shown in Figure 4.13 & 4.14 

For information, plots of the case-weights are shown as a 
function of d-ĵ  for the two robust models (see Figures 4.15-4.18)

It can be seen that under the three different models, the 
maximum likelihood estimates for the group means are similar. 
However, the standard deviations are quite different, being 
substantially smaller under the two robust approaches. (Note that 
the quoted standard deviations refer to the whole population, 
including outliers, not just to the "uncontaminated" portion of 
the population). The reason for this is that whenever any 
calculations are performed with the robust methods, the more 
extreme values are downweighted, so that they have less effect on 
the parameter estimates (e.g. of the standard deviations, means, 
etc). The result is that the standard deviations are smaller and 
the means are also slightly smaller, since extreme values tend to 
be values which are "too large" rather than "too small".

One important point to emphasise is that if the ultimate aim 
after application of the robust methods was to compare the group 
means, it would be desirable to fit similar models to these 
groups, in the sense that for the MVt model, it would be 
desirable to fit models to the groups which had the same degrees 
of freedom and common E, while for the CN model, it would 
desirable to fit models with the same values of 6 and X and 
common E.

Although it has not been done here, there would be no 
theoretical difficulties in extending algorithm EM(b) to cover 
such models.

Do the Robust Methods Provide a Better Fit to the Data ?

The question in the title was addressed by performing 
likelihood ratio tests on the maximised log-likelihoods under the 
various models.

Let 1q = maximised log-likelihood under the simpler model
being considered (i.e. MVN) 

and let 1  ̂ = maximised log-likelihood under the more complex
model being considered.
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Table 4.4 : Comparison of Robust Methods to EM(a)
(MeanC s.d.) )

Ketanserin Group

Time Point 
2 3

EM(a) 108.7(10.1) 101.6(11.9) 99.8(13.8) 98.4(13.3) 96.3(12.1)
MVt 107.0(7.7) 99.6(9.5) 97.8(10.8) 96.2(10.9) 94.4(9,5)
CM 107.2(7.2) 99.8(9.0) 98.2(10.1) 96.9(10.5) 94.8(9.2)

Metoprolol Group

Time Point 
3

EM (a) 108.0(8.4) 97.5(11.1) 96.5(11.5) 95.1(11.5) 95.1(10.1)
MVt 107.3(7.3) 97.4(9.9) 96.2(10.0) 95.2(10.4) 94.7(9.3)
CM 107.5(7.5) 97.5(10.3) 96.4(10.4) 95.1(10.6) 94.9(9.6)
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Figure 4.15 : w ; versus ch * . MVt Model (Ketanserin)
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Figure 4.17— ;— y. versus d<z. MVt Model fMetoorolol)
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The Ketanserin Group : the maximised log-likelihoods were as 
shown below.

Model Maximised log-likelihood

MVN -3309.881
MVt -3270.554
CN -3268.750

(a) Comparison of the MVN and MVt Models
2 log(X) = 2(1! - 10) = 78.65

This test statistic is compared with > 0.95) = 3.841.
Conclusion : the MVt model fits the data significantly better 

than the MVN model.

(b) Comparison of the MVN and CN Models
2(l! - 10) = 82.26

Conclusion : the CN model appears to fit the data better than 
the MVN model.

It can be seen that there is little difference between the 
maximised log-likelihoods under the two robust models, so that 
probably the model with fewer parameters to fit, i.e the MVt 
Model, would be preferred.

The Metoprolol Group : the maximised log-likelihoods were as 
shown below.

Model Maximised log-likelihood

MVN
MVt
CN

-3538.415
-3517.039
-3521.648



(a) Comparison of the MVN and MVt Models
2 log(A) = 2(lx - 10) = 42.75

Compare this test statistic to 5 0.95) = 3.841.
Conclusion : The MVt model fits the data significantly better 

than the MVN model.

(b) Comparison of the MVN and CN Models
2(l! - 10) = 33.47

Conclusion : The CN model appears to fit the data better than 
the MVN model.

Here it can be seen that the MVt model, despite fitting fewer 
parameters than the CN model, provides a better fit to the data.

The following section could be considered to be slightly 
controversial in the light of the results of the last section in 
that it will go back to fitting MVN models to the data. From the 
transformed distance plots one could argue that although the z^ 
fall outside the expected range in several cases, the only 
serious deviations are to be seen in the distribution tails, so 
that the results of fitting MVN models should not be too 
misleading. Also, since the sample sizes are large, the goodness 
of fit tests will be be sensitive even to small (and unimportant) 
departures from Normality.

The Comparison of Ketanserin and Metoprolol

Recall that earlier it was suggested that the maximised log- 
likelihoods obtained by implementation of the algorithms EM(a) 
and EM(b) could be used in order to test sequences of hypotheses 
of form
Stage 1 Hq : Ul* 1 vs H1 : V-l> H2> s2 *
followed up by
Stage 2 Hq : 1J , I vs , P2* 2
if the first null hypothesis could not be rejected.

The maximised log-likelihoods for the various models shown 
above for the Ketanserin vs Metoprolol problem are shown below.
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Model Maximised log-likelihood

V - l >  P2> 2 1> s 2 

Pl» P2> s 
U > 2

-6848.295
-6858.937
-6868.813

The Tests.

Stage 1 : H0 : Pi, U2> s H1 : Pl> U2» s2
2 log(A) = 2(1]_ - 10) = 21.28

This is compared to x2(^/2 p(p+l) > 0.95)
= x2(15 i 0.95) = 25.00 .

Conclusion : There is no strong evidence that the covariance
matrices are unequal. Therefore, proceed to Stage 2.

Stage 2 : H0 : p , 2 H]̂  : plf p2» s
2 log(A) = 2(li - 10) = 19.75

This is compared to x2(p » 0.95) = x2(5 j 0.95) = 11.07
Conclusion : There is some evidence that the group means are not
equal.

Proceeding a stage further, how correct were the impressions 
that, despite the differing time - courses, the drugs produced a 
similar ultimate effect on the blood pressure ?

In an attempt to answer the above question, an approximate 95%
confidence interval was produced for the difference between the 
overall changes in blood pressure (in mm Hg) in the two groups, 
i.e for

CT(p1 - P2) where c^ = ( 1 0 0 0 -1) .

The Calculations

m A A 
cHhi - P2) ~ 0*046 mm Hg

cT( cov(p^) )c = 0.6200

cT( cov(p2) )c = 0.5494

Therefore the required interval is given by
0.046 ± N(0,1 ; 0.975) /(0.6200 + 0.5494) mm Hg 
= 0.046 ± 2.120 mm Hg
= [-2.1 , 2.2] mm Hg
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Conclusion : The conclusions from using maximum likelihood
techniques to analyse this study would be that despite the time 
courses of the two drugs being different, there is no strong 
evidence that their ultimate effects are different. Even at the 
extremes of the interval above, there would be no difference of 
clinical relevance between the two treatments.

If, alternatively, one of the naive approaches had been 
employed, the results obtained could have been quite different. 
Looking at the differences between the average blood pressure 
reductions in the two groups, the answers obtained ranged from a 
difference of approximately 2 mm Hg in favour of ketanserin using 
the AAD approach, to a similar difference in favour of metoprolol 
using the LV approach, where each of these differences had 
approximately unit standard error. Thus different conclusions 
could have been obtained, dependent on the method of analysis 
employed. The reasons why the results from the maximum likelihood 
approach could be most readily accepted can be seen from the 
context of the problem. The very design of the study in question 
dictates that a large proportion of the missing data should be 
missing at random. An analysis which builds in that information 
will be preferable to one which does not.

Note *. The estimates of means and standard errors under EM(b) are 
not given, as these are, for all practical purposes, the 
same are those obtained under EM(a).

A.2 ; Rat Study (taken from Grepeau et al(1985)

Background : The data considered are those from a study of the 
effect of various doses of halothane on the responses of rats to 
induced irreversible myocardial ischaemia and subsequent 
infarction (leading to death in a large number of cases).

The halothane was administered in different doses to five 
groups of rats, and the resultant blood pressures were recorded 
through time (nine time points in all). The five groups were 
defined as :

Group 1 
Group 2 
Group 3 
Group 4

Controls (11 cases)
0.25% halothane (10 cases)
0.50% halothane (11 cases)
1.00% halothane (11 cases)
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Group 5 : 2.00% halothane (11 cases)

The Data : From the design of the study, the data were almost
bound to be incomplete (clearly no data will be available after 
death !). The authors in the original paper carried out analyses 
based on assuming a "missing at random" set up, but did not state 
this assumption explicitly. Instead, they justified their 
analyses on the grounds that the blood pressure did not appear to 
be related to mortality, and that even the pharmacologist 
responsible for the experiment was unable to predict which rats 
would die by looking at their blood pressure responses. It is 
unclear from such statements whether a MCAR or a MAR assumption 
is implied.
(Note that for this example, since the data form a nested 

pattern, the use of iterative procedures would not be essential).
Following the approach of the original authors, the 2.00% 

halothane will be excluded from analyses, since no cases were 
completely observed in that group.

The patterns of missing data present in the remaining groups 
are shown in Table 4.5.

Due to the small number of cases per group, it would not be 
possible to perform the full likelihood ratio testing procedure 
described earlier, since it would not be possible to fit the full 
Pi , Si model (i.e. cannot apply EM(a) to each group separately).

Comparison of the Results of EM(b) and Some "Naive" Approaches

The means and standard errors obtained from the CC, AAD and 
EM(b) approaches are shown in Table 4.6 , with plots shown in 
Figures 4.19-4.22. The results could be summarised as follows:

As in the previous example, approaches EM(b) and AAD agreed at 
the first time point, while CC and AAD agreed at the final time 
point. Recall that the reasons were

(i) The first time point included data from all individuals, 
and so the average of these (as in AAD) would produce unbiased 
estimates of the four group means, and so would agree with the 
maximum-likelihood approach (EMi(b)).

(ii) At the last time point, the cases still available would be 
those present throughout, and so the CC and AAD approaches would 
produce the same results.
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Table 4.5 : Missing Data Patterns

Control Group
Minutes Number

of
1 5 10 15 30 60 120 180 240 Cases

1 1 1 1 1 1 1 1 1 6
1 1 1 1 1 1 1 0 0 1
1 1 0 0 0 0 0 0 0 4

11

0 25% Halothane Srouo

Minutes
Number

of
1 5 10 15 30 60 120 180 240 Cases

1 1 1 1 1 1 1 1 1 6
1 1 1 1 1 1 1 0 0 1
1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1

10

0.50% Halothane Crouo

Minutes Number
of

1 5 10 15 30 60 120 180 240 Cases

1 1 1 1 1 1 1 1 1 5
1 1 1 1 1 1 1 0 0 1
1 1 1 1 1 1 0 0 0 1
1 1 1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 3

11

1.00% Halothane Croun

Minutes Number
of

1 5 10 15 30 60 120 180 240 Cases

1 1 1 1 1 1 1 1 1 8
1 1 1 1 1 1 0 0 0 1
1 1 0 0 0 0 0 0 0 2

11
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Table 4.6 : Comparison of CC. AAD and EM(b) (Meanfs . e . ) )

Group 1 : Control
Time Point

1 2 3 4 5
6 7 8 9

CC 100.8(3.8) 101.3(7.9) 99.2(5.6) 96.3(4.0) 99.2(5.1)
107.9(2.9) 103.8(3.1) 101.7(2.1) 100.5(4.0)

AAD 101.8(7.0) 99.4(8,0) 101.4(5.2) 98.6(4.1) 100.7(4.6)
108.2(2.5) 107.1(4.3) 101.7(2.1) 100.5(4.0)

EM(b) 101.8(5.7) 99.4(8.1) 98.6(8.0) 95.3(7.8) 97.7(5.8)
105.5(5.4) 104.0(5.7) 101.5(5.8) 100.3(5.9)

Group 2 : 0.25% Halothane
Time Point

1 2 3 4 5
6 7 8 9

CC 103.8(5.7) 103.0(10.1) 91.7(8.8) 90.4(9.2) 108.8(5.4)
104.2(5.0) 107.9(5.5) 105,4(4.7) 108.8(5.3)

AAD 103.8(4.0) 98.1(7.6) 99.1(9.2) 93.4(7.2) 107,2(4.1)
104.1(4.0) 107.1(4.7) 105.4(4.7) 108.8(5.3)

EM(b) 103.8(6.0) 100.3(8.6) 98.5(7.8) 93.1(7.7) 106.2(5.9)
103.4(5.5) 107.2(5.9) 104.5(6.0) 108.0(6.0)

Group 3 : 0.50% Halothane
Time Point

1 2 3 4 5
6 7 8 9

CC 94.0(4.6) 95.5(5.3) 93.0(5.3) 93.1(7.2) 93.5(7.8)
98.0(6.9) 96.2(6.8) 94.0(7.2) 90.5(6.5)

AAD 89.1(4.4) 83.7(8.0) 89.3(8.2) 89.1(9.1) 95.7(5.6)
99.6(4.9) 99.8(6.6) 97.1(6.7) 90.5(6.5)

EM(b) 89.1(5.7) 83.7(8.1) 85.2(7.6) 85.0(7.5) 86.6(5.7)
91.4(5.3) 91.8(5.8) 89.7(5.8) 86.0(6.0)

Group 4 : 1.00% Halothane
Time Point

1 2 3 4 5
6 7 8 9

CC 81.6(9.0) 81.6(12.8) 87.5(9.5) 86.2(10.2) 86.9(8.3)
85.7(8.2) 79.4(8.6) 75.3(9.2) 75.0(8.5)

AAD 82.0(7.6) 79.3(10.5) 88.9(8.5) 87.8(9.1) 88.1(7.4)
86.4(7.3) 79.4(8.6) 75.3(9.2) 75.0(8.5)

EM(b) 82.0(5.7) 79.3(8.1) 86.7(7.4) 85.4(7.2) 85.5(5.5)
84.3(5.1) 78.5(5.6) 74.7(5.6) 74.2(5.5)
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Figure 4.19 :__Comparison of CC. AAD and EM(b) (Control)
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Figure 4.21 : Comparison of CC. AAD and EM(b) (0.50% Group)
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The estimated means obtained from using the CC and AAD 
approaches tended to be higher than those obtained from using 
approach EM(b). This could be a product of some mechanism whereby 
individuals with Xoujey blood pressure were being removed. 
Alternatively, these could merely be chance findings due to the 
general lack of data (any observed differences between the means 
calculated under the different approaches could be explained away 
in terms of the large calculated standard errors).

The results of EM(b) are compared for the four groups in 
Figure 4.23.

Model Assessment : As mentioned earlier, it was not possible to 
fit separate models to the four groups. As a result, it was 
necessary to produce a transformed distance plot (Figure 4.24) 
using the weights obtained in the procedure EM(b). From the plot, 
there appears to be no strong evidence that a MVN model is 
inappropriate.

Comparison of the Groups
The maximised log-likelihoods obtained under the various 

models are shown below.

Model Maximised log-likelihood

Pi , Cannot be fitted (lack of data)
Pi , Z -1063.022
p > I -1082.097

The Test
2 log(A) = 2(1], - 10) = 46.15

Refer this to a x^(27) distribution, where x^(27 ; 0.95) = 40.11.

Conclusion : There is some evidence that not all four group 
means are equal, i.e. there is evidence that the different doses 
of halothane produced different effects on the rats' blood 
pressures.

On examining the results for the four groups, it would appear 
that much of the difference between their means could be



BLO
OD 

PR
ES

SU
RE

84

Figure 4.23 Results of EM(b) on All Gtouds
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explained by the differences in the initial blood pressures, in 
the sense that if linear adjustment was made for the differences 
in the initial pressures, there would be little difference 
between the blood pressure curves.

To investigate this, individuals had their initial blood 
pressure measurement subtracted from each of their subsequent 
measurements. The analyses described earlier were then repeated 
using these ’'adjusted” blood pressures for time points two 
onwards. This resulted in the loss of the one case for the 0.25% 
Halothane group who only had data at the first time point. The 
results obtained were as shown below.

Model Maximised log-likelihood

Pi , S-l Cannot be fitted (lack of data)
Pi , E -893.743
p , E -905.743

The Test
2 log(X) = 2(li - 1q ) = 24.00

Refer this to a x^(24) distribution, where x^(24 j 0.95) = 36.42

Conclusion : It would appear that after adjustment for the
differing starting values, there are no significant differences 
among the blood pressure curves for the different groups. The 
estimated means under model EM(b) are shown in Table 4.7 and 
plotted in Figure 4.25.

It should be noted that the conclusions reached for the raw 
data differ from those in the original paper. There, the authors 
concluded, on the basis of a Score test, that there were no 
significant differences among the group means. This discrepancy 
in results probably reflects, more than anything else, the 
general lack of data. Both the Likelihood Ratio test and the 
Score test rely on approximate chi-squared distributions for 
their test statistics. It is likely that in neither case would 
these distributions be particularly appropriate, since there was 
so little data available. The most reasonable conclusion overall 
would probably, unfortunately, be one of uncertainty as to 
whether the groups were different.
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Table 4.7 : Rat Study . Adjusted Data . EM(b) (Meanfs.e,))
Group 1 : Control

Time Point
1 2 3 4 5

6 7 8 9
EM(b) 0.0(0.0) -2.5(4.5) -4.6(7.5) -7.5(6.5) -5.5(5.1)

-2.2(5.0) 1.2(4.0) -1,3(3.9) -2.5(5.0)

Group 2 : 0.25% Halothane
Time Point

1 2 3 4 5
6 7 8 9

EM(b) 0.0(0.0) -3.8(5.0) -4.5(7.1) -10.2(6.2) 3.2(5.0)
0.5(4.8) 4.2(4.0) 1.4(3.8) 5.1(4.9)

Group 3 : 0.50% Halothane
Time Point

1 2 3 4 5
6 7 8 9

EM(b) 0.0(0.0) -5.3(4.5) -3.6(7.0) -3.8(6.1) -2.6(5.0)
2.3(4.8) 2.5(4.1) 0.5(3.9) -3.2(5.1)

Group 4 : 1.00% Halothane
Time Point

1 2 3 4 5
6 7 8 9

EM(b) 0.0(0.0) -2.7(4.5) 4.3(6.6) 3.1(5.8) 3.1(4.6)
1.8(4.5) -3.7(3.7) -7.5(3,5) -8.0(4.5)
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4*3 t The “Third Drug” Study (see Herrick et al(l989))

Background : a common mode of treatment for individuals with
hypertension is by the use of so-called "Beta-blockers" and 
"Diuretics", often in combination. However, commonly, a 
proportion of cases will not have their blood pressure
sufficiently controlled by such treatment, and will have some 
"third drug" added in.

The aim of this study was to compare four possible agents
which could be added in at this stage, namely Placebo, Captopril, 
Hydralazine and Nifedipine. (The beta-blocker and the diuretic 
were, respectively, atenolol and bendrofluazide.)

Patients to take part in the study, after an initial run-in 
period on only the two baseline treatments, were randomised to 
receive one of the four possible "third drugs". Their blood
pressure was then monitored through increasing dose levels of 
their third drug, until their blood pressure was controlled (or 
until a preset maximum dose was reached), from which point the 
patient remained under study for a further six weeks. The 
endpoint of the study was with the assessment of blood pressure 
after six weeks at the maximum dose.

The Data : The data analysed here will be at most two blood 
pressure measurements per case (one at randomisation, one after 
the six-week final period).

The patterns of missing data observed for this study are shown 
in Table 4.8.

(Note : Here, again, the data follow a nested pattern, and so 
iterative procedures would not be essential)

For this study, a large number of cases were removed due to 
side-effects :

( Placebo : V g  of the removed cases
of the removed cases 
of the removed cases 
of the removed cases ).

Placebo
Captopril

Hydralazine
Nifedipine

v 6
5/s
10/l3

9h



90

Table 4.8 : Missine Data Patterns

Placebo Grouo

Time Point Number
1 2 of Cases

1 1 32
1 0 6

38

CaDtoDril Grouo

Time Point Number
1 2 of Cases

1 1 32
1 0 8

40

Hydralazine GrouD

Time Point Number
1 2 of Cases

1 1 28
1 0 13

41

Nifedioine GrouD

Time Point Number
1 2 of Cases

1 1 32
1 0 9

41
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Here it would be desirable to model the missing data 
mechanism, but no background information about the mechanism is 
available. Thus, in order to produce some kind of "answer” (more 
valid than if the CC or AAD approaches were used, where a MCAR 
setup is assumed), it was decided to proceed, with caution, using 
the maximum likelihood approaches.

Only the supine diastolic blood pressures (SDBP) will be 
studied here (although several other measurements were taken).

Comparison of the Maximum Likelihood Approach with AAD and CC

The results obtained using EM(a), AAD and CC are shown in 
Table 4.9 and can be summarised as follows :

(i) At the first time point, the maximum likelihood and AAD 
approaches agree (for reasons given in previous examples).
(ii) At the final time point, the CC and AAD approaches agree 
(again, for reasons given in previous examples).

Subjectively, the results are similar for the three active 
treatments, but these results are different from the placebo 
results.

Model Checking : From the transformed distance plots (Figures
4.26-4.29) there would seem to be no strong grounds on which to 
reject the relatively simple Multivariate Normal model in favour 
of the more complicated MVt or CN models. To give more objective 
results, MVt models with various degrees of freedom were fitted 
to the different groups. The maximised log-likelihoods produced 
are shown in Table 4.10 and Figures 4.30-4.33.

It was found that at the degrees of freedom for which the MVt 
log-likelihood was maximised, there was no significant difference 
between the MVN and MVt results for any of the groups.

Thus, a MVN model would be preferred for simplicity.

Comparison of the Groups :

(Note : The estimated means and their standard errors were 
practically the same for EM(a) and EM(b) ).
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Table 4.9 : Comparison of CC. AAD and EM(a)
Meanfs.e, of MeanT

Placebo Group

Time Point
2

CC 92.9(1.9) 91.1(2.3)
AAD 93.9(1.7) 91.1(2.3)
EM(a) 93.9(1.7) 91.8(2.2)

Captopril Group

Time Point
2

CC 99.9(1.8) 87.8(2.2)
AAD 98.6(1.6) 87.8(2.2)
EM(a) 98.6(1.6) 86.6(2.0)

Hydralazine Group

Time Point
2

CC 98.4(1.6) 86.6(2.1)
AAD 98.6(1.3) 86.6(2.1)
EM(a) 98.6(1.3) 86.7(1.9)

Nifedipine Group

Time Point
2

CC 98.0(1.8) 88.1(1.7)
AAD 97.7(1.6) 88.1(1.7)
EM(a) 97,7(1.6) 88.0(1.6)
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Figure 4.26 : T.D. Plot for Placebo Group
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Figure 4.27 : T.D. Plot for Captopril Group
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Figure 4.28 T.D. Plot for Hydralazine Group
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e 4.29 ; T.D. Plot for Nifedipine Group
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Table 4.10 : Fitting MVt Models - Maximised
Log-likelihood as a Function of df

Degrees Placebo Captopril Hydralazine Nifedipine
of Freedom Group Group Group Group

1 -268.1483 -276.1701 -250.7770 -272.1264
2 -263.8977 -269.7437 -245.9749 -265.9452
3 -262.7012 -267.4859 -244.5694 -263.9604
4 -262.2839 -266.3832 -244.0180 -263.0835
5 -262.1420 -265.7473 -243.7759 -262.6331
6 -262.1122 -265.3406 -243.6676 -262.3804
7 -262.1308 -265.0614 -243.6235 -262.2306
3 -262.1704 -264.8595 -243.6118 -262.1386
9 -262.2181 -264.7075 -243.6172 -262.0810

10 -262.2680 -264.5895 -243.6315 -262.0447
11 -262.3170 -264.4955 -243.6503 -262.0221
12 -262.3637 -264.4190 -243.6711 -262.0085
13 -262.4076 -264.3557 -243.6925 -262.0009
14 -262.4485 -264.3026 -243.7137 -261.9975
15 -262.4865 -264.2573 -243.7344 -261.9968
20 -262.6383 -264.1055 -243.8235 -262.0128
25 -262.7441 -264.0195 -243.8900 -262.0371
50 -262.9900 -263.8606 -244.0536 -262.1223
75 -263.0823 -263.8117 -244.1172 -262.1623

100 -263.1304 -263.7881 -244.1507 -262.1846
105 -263.1373 -263.7847 -244.1556 -262.1879
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Figure 4.32 ; Maximised Log-Likelihoods Produced by Fitting
Various MVt Models to the Hydralazine Data
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Figure 4.33 : Maximised Log-Likelihoods Produced by Fitting
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Model Maximised log-likelihood

P I » •••» P4 » 2 1 » •••> 2 4
PI, • • • > U4 » 2 

p ; S

-1033.522
-1037.980
-1049.504

The results of the likelihood-ratio testing procedure were 
then as follows :

2 log(X) - 2(1]. - 10) = 8.92
Compare this with x^(^/2 P^P+l) > 0-95) = 16.92 
Conclusion : The covariance matrices for the four groups are 

not significantly different, therefore proceed to Stage 2.

2 log(X) = 2(1l - 10) = 23.05
Compare this to x^(6 ; 0.95) = 12.59 

Conclusion ; There is evidence that not all four group mean 
vectors are equal.

Follow-up Procedure : From the means and standard errors alone, 
there can be seen to be differences between the placebo results 
and the results of the active treatments, but it is uncertain 
whether any of the other treatment differences are significant.
To assess this, a set of simultaneous confidence intervals were 
produced for all pairwise differences in the blood pressure 
reductions in the four groups. (In these intervals, significance 
levels were adjusted using Bonferroni correction). The 
calculations are shown below. Each interval was calculated using, 
for - cTVj :

Stage 1 : Hq : Pi , 2 Hi : Pi , Hi

Stage 2 : H q : p , 2 Hi : Pi , 2

m A m A n nr m A A A Ac^p i  - c^pj ± N ( 0 , 1  ; l - 0* 05 /^ 2)  / ( c ™ ( c o v ( p i )  +  c ov (p j) )  c}
i = 1, ..., K-l
i L j



99

The Results

Comparison
Point

Estimate Interval

p vs c -9.724 ± 6.125 = -15.8 > -3.6 ] A

p vs H -9.851 + 6.324 -16.2 > -3.5 ]
A

p vs N -7.751 + 6.122 = -13.9 J -1.6 ] *

c vs H -0.127 ± 6.319 -6.4 5 6.2 3
c vs N -1,973 ± 6.117 = -4.1 » 8.1 3
H vs N -2.100 + 6.316 = -4.2 5 8.4 3

where * denotes cases where a significant difference between 
two groups has been found. (In the table, the drug names have 
been replaced by their initial letters).

For comparison purposes, the results using a standard 
follow-up t-interval procedure on the complete cases are shown 
below (again, Bonferrini correction has been applied).

Comparison
Point

Estimate Interval

P vs C -10.35 + 6.39 = [ -16.7 >

oi 3 *
P vs H -10.05 ± 6.61 = [ -16.7 i -3.4 3 *
P vs N o001 + 6.39 = [ -14.4 ) -1.7 3 *

C vs H 0.30 ± 6.61 = [ "6.3 6.9 3
C vs N 2.29 ± 6.39 = [ -4.1 y 8.7 3
H vs N 1.99 + 6.61 = [ -4.6 5 8.6 3

A slight difference can be seen between the maximum-likelihood 
results and the complete case results in terms of the point 
estimates of the treatment differences.

The complete-case intervals are wider than the corresponding 
likelihood intervals, but the overall conclusions are unchanged,
i.e. no significant differences among the active treatments, but 

each of the active treatments significantly different (greater 
blood pressure reduction) from placebo.

In this example, the method of analysis appeared to be largely 
irrelevant, with similar results obtained from the CC, AAD and 
EM(a) approaches. One would assume that this is because removal 
of cases due to side effects is a "missing completely at random"
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process, rather than a "missing at random" process.

4.4 : Summary and Conclusions

Chapters 2-4 have dealt with a problem which commonly arises 
in the analysis of clinical data - that of missing data. 
Comparison was made of various different approaches to dealing 
with incomplete data, some of these ad hoc and others with more 
theoretical basis. The ad hoc approaches generally required that 
a greater number of assumptions be made about the missing data 
mechanism than the more theoretical approaches did (the former 
requiring that a "Missing Completely at Random" assumption be 
made, while a "Missing at Random" assumption was sufficient for 
the latter).

It was found that the mode of treatment of even a relatively 
small amount of missing data could greatly influence the results
obtained (as illustrated in Example 4.1).

However, usually the analysis of clinical data is performed 
using one or both of the ad hoc techniques "Complete Cases" (CC) 
and "All Available Data" (AAD) (as described earlier). This is 
disturbing in that the results obtained could well be misleading. 
What would be proposed is that one of the theoretically-based, 
likelihood maximising, algorithms should be used instead, since 
such algorithms would be appropriate in a greater number of
situations than the ad hoc approaches would be.

One drawback would be that it would be computationally 
prohibitive to apply the theoretically-based algorithms without 
the aid of a computer.

In that case, the following compromise would be proposed :
Look for two ad hoc techniques which would tend to be biased 

in opposite directions in the particular application of interest, 
thereby enclosing the "true" result. (For example, in the context 
of blood pressure trials, Last Value analyses would tend to 
overestimate the components of the mean, while All Available Data 
analyses would tend to underestimate them, due to the fall in 
blood pressure through time). Then, if there are large 
differences between the results obtained using the two ad hoc 
techniques, at that stage implement an approach such as EM(a).

Obviously this is not ideal, since information is being lost 
by using AAD or LV, but hopefully is a reasonable solution to a
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difficult problem.
It should be noted that situations can arise where neither a 

MCAR nor a MAR assumption is appropriate, for example when the 
data take the form of survival times. However, unfortunately it 
is not possible to test the MCAR and MAR assumptions, since to 
test these assumptions, one would have to analyse the values 
which would have been observed - this is not possible.

Instead, it is necessary to go back to the context from which 
the data arose.

In the example comparing Ketanserin with Metoprolol, it could 
be seen from the design of the study that a large proportion of 
the missing data could be attributed to a MAR mechanism, while 
for the Third Drug Study, data were more likely to be missing due 
to a MCAR mechanism.

Section 3.3 progressed to the K-sample problem and attempted 
to provide an answer to the problem of how best to handle 
incomplete data from multiple groups.

The likelihood approaches from the one-sample problem were 
extended to allow estimation of the parameters from more than one 
group, while assuming a common covariance matrix for these 
groups,

This allowed emulation of the techniques for comparing groups 
usually applied only to complete data.

In addition, large-sample covariance matrices for the, 
estimated mean vectors were provided, allowing approximate 
confidence intervals for contrasts of the means (or linear 
combinations of the means) to be produced.
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PART II : Order Restricted Inference

Chapter 5 : Background to the Problem

5.1 ; Introduction and Literature Review

As mentioned in the Chapter 1, in the analysis of clinical 
data, there will often exist some prior information as regards 
the magnitude of the expected responses under different 
treatments, enabling an ordering to be imposed on the underlying 
group mean responses during analysis.

For example, in the early stages of development of a drug, it 
is common to assess its effect by comparing the magnitude of
responses obtained under different doses of the drug to those
obtained under placebo.

Clearly, if the drug has no effect, then the responses in the 
different groups would be expected to be similar.

However, if the drug does have some effect, then there is a 
natural ordering in the magnitude of responses which would be 
expected, in that the placebo would be expected to produce the 
least response and the highest dose of drug would be expected to 
produce the greatest response, with intermediate doses expected
to produce intermediate, ordered, levels of response.

Imagine, for example, that in the study of an antihypertensive 
agent, X, individuals are randomised to one of three groups :

Group 1 : Placebo
Group 2 : Low dose of X
Group 3 : High dose of X

Let the response of interest be the fall in the Mean Arterial 
Pressure during eight weeks of treatment.

Letting pi represent the underlying mean response for 
Group i, ( i= 1, 2, 3), it would be expected that there would be
an ordering : ^ P2 = P3

In this context, when testing for the presence of a treatment
effect, instead of testing the Null Hypothesis,

Hq : Pi - P2 = P3
against the usual alternative hypothesis of
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: Not all of the are equal ,
it would utilise more prior knowledge, and give a more powerful
test, if the same null hypothesis was tested against the
alternative hypothesis

: h i  S P2 = R3 where at least one of
the inequalities is strict.

Since the objective here is to increase the statistical
sensitivity of analyses performed, by incorporation of what 
useful background information we have, it is natural to consider 
in the same light other means of improving the sensitivity, such 
as by incorporating useful covariates into analyses and/or by 
making appropriate distributional assumptions about the responses 
under study.

The Notation

( Y^j , X-ĵj ) = ( Response , Covariate ) pair for
Subject j of Group i, (i=l,...,k

j=l,.,.,ni)

n^ = Number of cases in Group i (i=l,...,k)

Pj_ = Mean response for Group i (i=l,...,k)

5.2 ; Statistical Approaches

5.2.1 : Review of the Existing Literature

Over the last forty years, much work has been carried out in 
the area of ’’Order Restricted Inference”, (i.e testing hypotheses 
of form H q  v s  above).

Two methods which have essentially been adopted as standard, 
and so have been used consequently as a comparison to other 
methods emerging, are those proposed by Bartholomew(l959) and 
Jonkheere(1954). (The method of Jonkheere was also proposed 
independently by Terpstra in 1952.)

For the situation where F^(Y) represents the (continuous) 
cumulative distribution function of Group i, and where interest
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lies in testing whether
FX(Y) S ... S Fk(Y)

Jonkheere adopted a non-parametric approach to the problem, 
proposing the test statistic :

k-1 k
J = 2 X X pij

i=l j=i+l

lt-l k 
X I 
i=l j—i+1
X X ni nj

where

with

Pij

Pirjs

n± nj
E X Piris 

r=l s=l

1 H  ^ir 2 ^js
0 if Yir £ Yj s

Under the null hypothesis, Pirjs would have equal probability 
of taking value 0 and taking value 1, so that J would have 
expectation zero.

With the group means ordered as in the alternative hypothesis, 
Pirjs would have a higher probability of taking value 1, so that 
J would have expectation greater than zero. Jonkheere established 
that under Hq , J could be represented, asymptotically, by a 
Normal random variable, with mean zero and variance

k
V18 ( N2 (2N + 3) - E (2nt + 3) )

i-1

where N = E in - 
i=l

If we let MWjj represent the Mann-Whitney(1947) statistic for 
comparing samples i and j, then J can be written as :

k-1 k 
J = X X

i=l j=i+l

where MW-

MW

ni nj
X E~ l(Yir,Yis) 

r=l s=l

with I(u,v) an indicator of the event u L v .

Bartholomew's method was constructed under an assumption of 
Normality in the responses for the populations under study.
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Let Y^j represent the response for Subject j from Group i, and
let Y^j ~ N (y.[ , o2)

To form Bartholomew’s test statistic, it is necessary to 
calculate the minimised Sum of Squares for the responses about 
their group means as estimated under the alternative hypothesis, 
thus it is necessary to calculate maximum likelihood estimates 
for the k population means, p^, ..., pk , under the ordering
restrictions imposed by the alternative hypothesis. These
estimates are found by carrying out a technique known as 
'Isotonic Regression’ on the k sample means weighting by the 
group sample sizes.

Several algorithms for Isotonic Regression were described by 
Barlow et al in 1972. The algorithm used for the present work was 
the ’Up and Down Blocks Algorithm' (proposed by Kruskal(1964)), 
as described in Appendix 1.

Bartholomew's test statistic was then defined as :

- 2 k Aa A 2 k nt A 2
Ek = Z ni(pi - p) / Z Z (Yij - p)

i=l i=l j=l

A^ ,
where p{ is the isotonic estimate of the itn

population mean, and

A  k „ k
p = Z n-jY-̂  / Z n^

i=l i-1

is the maximum likelihood estimate estimate for the common 
population mean under Hq . The null distribution of the test 
statistic is given by:

“ 2 k
P(Ek ^ c I H q ) = Z P( H,k;w) P( p( t-l)/2, (N-!l)/2 = c)

S,=l

where P(&,k;w) is the probability that, under H q , and for
weights w^, the isotonic regression on the k sample means yields
exactly £, distinct values, and denotes the Beta distribution
with a and b degrees of freedom.

Note : To calculate the value of c corresponding to a given
significance level, it is necessary to use numerical methods 
(e.g. bisection techniques). However, some limited tables of 
critical values are available for the case of equal sample sizes 
in, for example, Bartholomew et al (1972)).
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In addition to Jonkheere’s test, other distribution-free 
approaches have been suggested. Chacko(1963) proposed a technique 
(extended by Shorack(1967)) whereby observations were replaced by 
their rank (Rij corresponding to Y^j) in the order statistic for 
all of the observations. Isotonic regression was then carried 
out on the mean group ranks, to produce R£ * their 
corresponding isotonic estimates. The test statistic was then 
defined as ^

%  = 12/n(n+l) Z ni(Ri ' (N+1)/2)2 
i=l

with null distribution given by

-2  k  2 
P(Hk ^ c I H0) = 2 PU,k) P( X 51-1 ^ c)

1=1
where P(£,k) is the equal-weights equivalent of P(£,kjw),

Doksum(1967) and Hollander(1967) both proposed tests based on 
scores, the scores measuring the "magnitude” of difference 
between given pairs of groups. It was noted that many common 
rank-based statistics could be written in the form 

k-1 k
Z Z where Sji is some measure of the difference
i=l j-i+1 .. , .between groups i and j .

For example, if some score is defined as taking value 1 if 
Y^r = Yjs and value 0 otherwise, and then these quantities are 
summed over r and s, to produce S-jj, the statistic defined in the 
previous paragraph would be equivalent to Jonkheere's J 
statistic.

Hollander and Doksum modified the form of S-jj to take account 
of the magnitude of the difference between the pairs of groups. 
Their test statistics were based upon ranking the differences 
between the pairs of observations in each pair of groups, and 
constructing

n
Sij - Z K ? h l /  W  R ij(h) 

h=l
where R^j(h) is the rank of lYk^- YkjI among all such 

quantities for fixed i and j, 
and l(Yk Ẑ. Ykj) is an indicator of the event YkiZ.Ykj

Hollander’s statistic was then defined as :
k-1 k 

Yi = Z Z
i=l j=i+l

while Doksum’s statistic was given by the related statistic
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k-1 k 
Y2 = £ 2 Si - S1

i=l j«i+l
However, Yi and Y2 are not distribution-free, even 
asymptotically, since the correlation between any pair of 
observations would depend on the form of the underlying 
distribution, F(y). It is possible, however, to use techniques 
proposed by Lehmann(1964), whereby the correlation coefficients 
are estimated from the data, to produce asymptotically 
distribution-free tests.

Several papers have been published carrying comparisons of the 
aforementioned test statistics.

^Bartholomew(1961) compared the asymptotic power functions of 
and J with a classical E-test (i.e. prior information with 

respect to group ordering ignored), for k = 3 and k = 4, and 
for :

Case 1 : Equal-sized spacings of the true
population means 

Case 2 : All-except-one of the population means
equal

In each case the responses were assumed to come from independent
Normal populations.

His conclusions were that for both k = 3 and k = 4, and for
both Case 1 and Case 2, there was little difference between 
-  2 -  2 
E^ and J, with J slightly more powerful in Case 1 and E^ slightly
more powerful in Case 2. (However, both of these tests were
substantially more powerful than a classical F-test.

-  2
For k x 4, J would still be more powerful than E^ for Case 1, 
but much less powerful for Case 2.

Puri(1965), after proposing a family of test statistics, V, 
encompassing both the Normal Scores test (V($)) and Jonkheere1s 
test,^J, went on to make asymptotic power comparisons of V($),
J, E^ and F (the classical F-test), under an assumption of 
Normality in the responses. Again, cases 1 and 2 as defined above 
were considered. His results were as follows :

(i) All three tests incorporating the ordering
information always surpassed the classical F-test.
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(ii) The power of all three ordered tests were lower for 
Case 2 than for Case 1, where compared here were 
tests with the same value for the quantity, A,
defined by : 2 k

E (ui“ h) 
i=l

2

(iii) The Normal Scores test was more powerful than both
J and E^ in Case 1, and more powerful than J but less
powerful than for Case 2.

Magel(1983) performed a Monte Carlo simulation study to 
compare the Kruskal-Wallis test (l-way non-parametric Analysis 
of Variance), with J and Chacko's statistic. The response 
distributions considered were Uniform, Normal and Cauchy. In each 
situation, the conclusions were that for Case 1 (defined above),
J was most powerful, and for Case 2, was most powerful, with 
the Kruskal-Wallis test performing the worst in each case.

5.2.2 : Covariates

Returning to a point made in Chapter 1, it is common to have 
available covariate information corresponding to the response for 
each individual, and it would often be desirable to adjust, in 
some sense, for this covariate information when performing any 
analyses of the responses. The reasons for this are twofold, 
firstly, the adjustment for appropriate covariates can increase 
the sensitivity of statistical analyses performed, by reducing 
the response variability. Secondly, by incorporating covariates 
into analyses, one can nullify the effects of imbalances in the 
covariate distributions for different groups (although such 
differences should be small for randomised studies).

In the absence of any prior information with respect to 
ordering, there exist standard techniques for comparing 
treatments while allowing for covariate information, the 
appropriate form of analysis being chosen dependent on whether 
certain assumptions could be made about the data.

for a standard Analysis of Covariance based on the model :

2

J 2 
N ( 0 , oe )



the necessary assumptions would be

(1) Normality of the conditional responses, given the
covariate values, i.e. Y-jjI X-y

(2) Equality of the conditional Y-variances for the
different groups.

(3) Linearity of the within-group regressions
(4) Equal regression slopes for each of the groups 

concerned.
(5) Random assignment of individuals to the treatment 

groups.
(6) Error-free measurement of the covariate values
(7) Eixed treatment levels, i.e. not randomly selected 

from the population of all treatment levels.
(8) Independence of the { E^j}.

In addition, interpretation of results is eased if it can be 
assumed that the treatment levels and the covariates are 
unrelated.

In a standard parametric Analysis of Covariance, the test 
statistic considered is

E2 = SSAT / (K-1)
k

SSresw / ( Sn^-K-C) 
i=l

where K = Number of groups 
and C = Number of covariates

SSresw = Within-groups Residual Sum of Squares
k k k

= 2 SyyjL - 2 Sxy^/ 2 Sxx^
i=l i=l i=l

SSres^ = Total Residual Sum of Squares
Syy - Sxy / Sxx

SSAT = SSrest - SSresw

In these expressions,
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k n-̂  _
Sxy = E E xijYij “ N X ..Y ..

i=l j=l
In each case, a dot and a bar denote averaging over all

possible values of that particular subscript. The remainder of
terms in the Test Statistic defined follow logically.

Under a Null Hypothesis of
Hq : 11 No difference between the treatment effects ",

i.e equality of the group means when adjusted for the
covariates, k

F2 ~ F ( K-l , Eni-k-C ) 
i=l

If a situation arose where it was not possible to make any/all 
of the assumptions (1) - (3), it would be advisable to adopt a
distribution-free approach to the problem.

One method based on ranks was proposed by Quade(1967). For the 
moment, only the one-covariate case will be detailed, although 
generalisations for the case of more than one covariate are
straightforward.

For this one-covariate case, the procedure was clearly
laid-out by Huitema(1980) as follows :

(i) Rank separately the responses, Yijj and the 
covariates, X-j j.

(ii) Convert these ranks into "deviation ranks", by 
subtraction of the mean rank, i.e take

xrank(^>j) ” xrank^O^ ~ xrank
Xrank^jj) = Yrank^>j^ “ Yrank

(iii) Regress yrank on xrank . The slope parameter yields
the value of Spearman's rank correlation coefficient, rs>

(iv) Use the xranĵ to predict the corresponding deviation
rank for y, yrank :A

yrank(^>j) = rs * xrank(i»j)
(v) Calculate a "residual", z-4-j, for each individual usingA

zij = Xrank^»j^ " Xrank^»3^
(vi) A valid test for equality of the conditional

distributions of Y given X can then be performed by 
carrying out a standard parametric analysis of Variance 
on the "residuals", z^j
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Little work has been published about methods appropriate where 
there is both prior information about the ordering of the 
population means and also covariate information available.

Quade(1982) proposed a method for non-parametric Analysis of 
Covariance which was extended by Marcus and Genizi(1987) for the 
situation where ordering information is available. In Quade's 
paper, the reasoning was as follows : If the null hypothesis was
true, then the samples from different groups could be pooled.
Therefore, to test whether the populations were identical, one 
could pool the samples to determine the relationship of Y and X, 
then compare each true response Y^j with the value which would be 
predicted for Y-jj from the relevant covariate, X^j and the fitted 
regression line for the pooled data.

A score could then be assigned, its value dependent on whether 
the observed response was larger or smaller than its predicted 
value. A one-way Analysis of Variance could then be performed on 
these scores. The method proposed by Quade for estimating the 
responses from their covariates involved a technique called
"Caliper Matching", where two individuals are described as 
’matched' if their covariates are, at most, a distance e apart 
( D(X-^j,X^tji) < e ). This could be interpreted as identifying 
cases whose background information was "similar" in some sense.

Quade proposed estimating the response for each case by the 
average of the responses of all cases matched-by-covariate with 
that case.

A k ni'
Yij = E S Yij I( D(Xij ,Xi i j i ) £ e ) / M i:j

i1 —1 j1=1
where I(D(u,v) $ e) is an indicator of the event D(u,v) S e and

Mij is the number of cases matched-by-covariate with case (i,j).
The "score" to be used in the one-way analysis of variance would 
then be the difference between Y^j and Y^j.

Marcus and Genizi's application and adaptation of Quade's 
techniques were as follows :

Let 0^, ©2, ...» ©k denote the k treatment effects, where
interest lies in testing the hypotheses

H0 : ©x = ©2 = against the alternative
HA : ©1 = e2 = e3 where at least one inequality is strict.

Define M(X-xj ,Xx i j 0  as the matching funtion for cases (i,j)



112

and (i',j'). In Marcus and Genizi’s paper * M(X^j,X^iji) took the
simple form of a binary variable taking a value zero if these
cases were not matched ( D(X^j}X^tjt)  ̂ e ) , and taking a
value 1 if they were matched ( D(X-^j,X^iji) S e ).

In Quade’s 1982 paper, another, more complicated form of 
matching function was proposed, although this possibility was not 
investigated by Marcus and Genizi. This 'other' form of matching 
function was defined as

M(X^j, X i  j i ) = exp ( - d )
where d = D ( X^j, X^ t j t)

Clearly, a more flexible form of this function to use would be 
M(X^j, X-pji) = exp ( - k d )

Here, M(Xij ̂ X^ t j i) would take values of 0 and 1 at the
extremes of d = °° and d = 0 , respectively, with a continuous
exponential decay function between these extremes (rather than a 
discontinuous step function).

k-1 k
Let M = 2 2 2 M CX-h^i a t )

1=1 i«=i+l j,j«

k-1 k
and L - I 2 2 M (Xi-wX-p-ii) . I ( Y ^ ,  Y ^ i )

i=l i’=i+l j,j'

where I(u,v) is an indicator of the event u L v .
For the case of a binary matching function, M could be 

interpreted as the "Total number of matched pairs", and L could
be interpreted as the "Number of these pairs which are
'correctly' ordered in terms of the alternative hypothesis". 

Marcus and Genizi proposed a test statistic 
Q = (W - 0.5) / sw 

where W = L / M , and sw^ is a conditional estimate of the 
variance of W ( conditional on the continuous covariate, X ).

It was suggested that, due to the asymptotic Normality of Q, 
an asymptotic a-level test of Hq against could be performed by 
referring Q to the (1-a) quantile of the Standard Normal 
distribution. To find sw ,̂ Marcus and Genizi extended the Method 
of Components of Sen(1960) as in Quade(l974), showing that
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2 2 _ k 

i=l
M sw = X X L

2 LiO 
ij 2W

n j

LiOMiO

+ w X M
2 MiO
ij

..2 n

where
k-1 k

*ij = Z E X MCXij^iijOKYij^iiji)
i=l i'=i+l j,j 1

k-1 k 
X X 

i'=l i=i1+1 j, j '
+ 2 X X M(Xij ,Xi i j . )

i-1 n-̂ i n4 I
Mij = X X MCXijjXiiji) + X X M(Xij,Xtij•

i'=1 j'=1 i'=i+l j 1=1

LiO = * Lij Mi0 = X Mi:j
j j

5.2.3 ; Discussion

From the papers discussed, several points emerged :
When looking at response data there will often exist potential 

sources of useful information, where 'appropriate' use of such 
information would lead to more sensitive analyses of the 
responses themselves.

e.g (i) Covariate Information corresponding to each response
(ii) Normality Assumptions about these responses

(iii) Prior Ordering Information about the group means

However, no papers were available to compare statistical tests 
incorporating varying amounts of the prior information as defined 
in (i) - (iii) above.

In addition, it became evident that there were no tests 
available to incorporate information from all three of the 
sources simultaneously, i.e there was not available a test 
incorporating a Normality assumption about the (conditional) 
responses, prior ordering information about the group means and



also covariate information.
If the ordering of responses was due to differing doses of the 

same treatment in the groups, one possibility might be to include 
the dose of drug as a covariate in the analysis of the responses. 
However, a difficulty arises in that the dose-response 
relationship is generally a non-linear one. Typical dose-response 
curves tend to be of sigmoidal form. This means that as dose 
increases, there is a lower rate of change in the responses at 
low and high doses than there is within some central dose-range. 
Thus, with the linearity assumption violated, it would not be 
appropriate simply to incorporate dose as a covariate.

Because of the 'gaps' in the existing literature, the 
following objectives emerged.

5.2.A : The Obj ectives

(1) To produce a method which incorporates information from 
all three sources identified in the previous
section.

(2) To compare this derived test to existing tests which 
incorporate varying amounts of prior knowledge about 
ordering, covariates, and distributional form for the 
responses, looking at the tests' performances when :

(a) The magnitude of the group spacings are varied
(b) The relative spacings of the groups are varied
(c) The correlation between the responses and covariates 

is varied
(d) The error distribution is non-Normal

Note : in the simulations to follow, the number of observations 
per group will be fixed at twenty. It is natural to 
assume that the pattern of results for other choices of 
sample size would be similar (although obviously not 
identical). One change which would be expected as the 
sample size increased would be that the performance of 
the non-parametric tests would be expected to improve, 
so as to become more similar to that of their 
corresponding Normal test.
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Clearly there are eight possible combinations of the three 
two-level factors of interest :

(i) Covariates : Incorporated / Ignored
(ii) Normality of the (conditional) responses :

Assumed / Not assumed
(iii) Ordering Information : Incorporated / Ignored

- each one of these eight combinations defining a certain type 
of test (see Table 5.1). Certain of these tests are well-known 
(e.g Analysis of Variance for the combination "Covariates 
ignored, Normality assumed, Ordering Information ignored" ) while 
others have either been described in the literature review or 
will now be described.

5.2.5 : The Tests

Test 1 : No covariates ; Normality assumed ; No Ordering 
Analysis of Variance on the response data.

Test 2 t Covariates used ; Normality assumed ; No Ordering 
Analysis of Covariance on the response data.

Test 3 : No Covariates ; Normality not assumed ; No Ordering
- Kruskal-Wallis Rank Analysis of Variance on the responses

Test A : Covariates used ; Normality not assumed ; No Ordering 
Rank Analysis of Covariance on the responses (Huitema(1980))

Test 5 : No Covariates ; Normality assumed ; Ordering Used
Bartholomew's test on Y^j (Bartholomew(1959))

Test 6 : Covariates used ; Normality assumed ; Ordering used 
A proposed modification of Bartholomew’s test (Test 5) to 
allow incorporation of covariate information.
Strictly sneaking, it was the responses, rather than the 
form of Efc which were modified. Let (Xj_j, Yjj) represent 
the (Covariate , Response) pair for case j in group i 
(i=l,...,k , j=l,...,n^) , and let X t> denote the grand 
mean for all of the covariates , i.e.
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Table 5,1 The Tests

FACTOR 
(i) (ii) (iii)

X X 1 Analysis of Variance on the Y-jj

/ X 2 Analysis of Covariance on Y-̂ j vs X-jj

X X X 3 Kruskal - Wallis Rank Analysis of

v v

X X

J

TEST PERFORMED

Variance on Y

A Rank Analysis of Covariance on Y^j
vs Xij

(cf Huitema(1980))

5 Bartholomew's test on Y-jj
(cf Bartholomew(1959))

6 Proposed test (Ea^j)
(See following section for details)

7 Jonkheere's test, J
(cf Jonkheere(195A))

8 Marcus and Genizi's test, based on Q
(cf Marcus and Genizi(1987))

Where / denotes Assumed / Incorporated 
and x denotes Not assumed / Ignored

Recall that the factors were as shown :
(i) Covariates

(ii) Normality of the (conditional) responses
(iii) Ordering Information
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_ k
X. . = N_1 2 2 Xti

i“l j=l

Each response, j, v/as adjusted using its own covariate 
value, and the regression of Y against X . Transformation 
of the responses was made, using

Yij' = Y±j - fj (Xij - X..)
A

where (3 is the maximum likelihood estimate for the gradient
of the linear regression of Y against X, assuming the same
slope parameter for each group. In addition to reducing the
variability in the responses, this adjustment procedure
would also correct for differences among the covariate
means for the groups, although such differences should be
small for randomised studies.

-  2
Bartholomew's Ê - test was then simply performed on the 
adjusted responses, Y^j1, rather than on the original 
responses, Y-jj.

Test 7 : No Covariates ; Normality not assumed ; Ordering used 
Jonkheere's test, J, on the responses (Jonkheere(1954))

Test 8 : Covariates used ; Normality not assumed ; Ordering
used

Marcus & Genizi's test, Q (Marcus & Genizi(1987))
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Chapter 6 : A Comparative Study Based on Simulation

6.1 : Scope of the Simulations

In this chapter, data will be simulated from linear regression
models of the form

Yfj = Xtj + e-jj
where ~ N( 0 , Oy2)
and Xj_j ~ N( px , ox2)

i = 1, . . . , k
j = 1, , . . ,

In the simulations, certain parameters will be fixed, namely 
px = 115 , ax2 » 25 , ay2 = 45

Although the chosen family of models appears to be very 
specific and limited, a few important points should be made :

(i) The choice of px is irrelevant - a different choice of px 
would alter only the location of the responses, not the 
conclusions.

(ii) The only critical model choices to be made are
(a) The correlation, p, between the response and 

covariate variables
(b) The number of observations in the groups, 

n-L (i = 1, ..., k)
(c) The differences between the intercepts in relation 

to Oy (the marginal standard deviation for Y)
(d) The covariate variance, ax2

In some of the later stages of the chapter, where stated, the 
error distributions will be of certain given non-Normal forms.

6.2 ; Refinement of the Models

6.2.1 : Evaluation of the Marcus & Genizi Test

Before progressing to compare tests 1-8 above, it was 
necessary first to decide on a suitable form for the matching 
function in Test 8. Recall that Marcus and Genizi !s test 
statistic, Q was defined as

Q = (W - 0.5) / sw
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1=1 i1=1+1 j,j '
where W =

k-1 k
Z Z Z M(Xij ,Xi i j i ) KYij.YitjO

k-1 k
2 2 Z M(Xi:j ,Xii i )
i-1 i'=i+l j,j'

M(Xij,Xiiji) was the function defining the matching 
relationship of cases (i,j) and (i1 > j1 )» the form of which had 
not yet been chosen.

The Choice of Matching Function

Two general forms of matching function were considered
(A) Caliper Hatching, where the matching function was defined as

M(Xij,Xi1ji) = [ 0 if D(Xtj,Xi'j1)  ̂ c . IQR
I 1 if D(Xij,Xi«jO ^ c . IQR

( This was studied for c = 0.05, 0.25, 0.5, 0.625,
0.75, 1.5, 2.5, °° )

(B) Continuous Matching Function, where the matching function 
was defined as

k . D(Xij,Xiijt)
M(X.y ,Xiijt) = exp -________________________

IQR
( This was studied for k = 20, 7.5, 5.0, 2.5, 0.5 )

In each case, D(Xij,Xi«jt) is the 'distance' between the 
covariates, i.e iXij - Xi«jil , and IQR denotes the
interquartile range for the covariates.

In both (A) and (B), the justification for the introduction of 
the interquartile range was to eliminate the dependence on the 
units of measurement. Otherwise, a different choice of units for 
the same data would lead to a different choice of c or k.

Clearly, the optimal choice of c or k will depend on the 
number of observations in the groups. To exploit the ordering 
properties of matched observations, it is desirable to have a 
large number of these matched observations. So if the sample
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sizes were small, leading to very sparse data, the optimal 
caliper width would be wider, in order to take in more pairs (i.e 
c would be larger), and the optimal choice of decay function 
would be one with a more gradual fall (i.e k would be smaller), 
than they would be if the data was more abundant. Similarly, 
increasing the covariate variability would lead to larger optimal 
values of c and smaller optimal values of k.

The choice of matching function is analogous to the choice of 
smoothing parameter in the problem of density estimation : in
both cases, it is desirable to perform greater smoothing if fewer 
observations are available (See Silverman(1986)).

6.2.2 ; Optimisation of the Marcus and Genizi Test

A simulation study was carried out to assess and compare the 
performance of Marcus and Genizi1s test for the several choices 
of c and k defined above. The study consisted of two parts :

(A) Tor a given model, simulate data sets a large number of 
times (20000) and calculate statistics Q and W.

(a) Assess the Normality of these statistics by way of 
their samples skewness and kurtosis and by
histograms of the test statistic values.

(b) Assess the Standard Normal approximation for Q by 
studying its sample variance, comparing the 
histograms of Q to those expected from a Standard 
Normal distribution, and by finding the percentage 
of the values of Q which would be rejected if they
were compared to the 95th and 90th percentiles of
a Standard Normal distribution.

(c) Estimate the critical values for Q and W directly 
from their simulated distributions.

(B) Use the estimated critical values from (A) to carry 
out simulations to assess and compare the performance 
of the different test-options.
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Model Specifications for (A)

Ux = 115
a 2 = °x 25
a 2 =ay 45
P2 = 0.80
ai = 0L2 ~ a3 = “15
(3 = p a y  / ax

= 20 i=l, ,.., k
k = 3

Here the choices of ax >̂ p, and px were made to mimic the 
results seen in a typical clinical trial, where Y was the final 
systolic blood pressure, and X was the inital (baseline) systolic 
blood pressure.

The Results for (A)

The sample skewness and kurtosis for the simulated 
distributions are shown in Tables 6.1 & 6.2 together with
sample means and variances. It can be seen that for W, the 
skewness and kurtosis are not inconsistent with what would be 
expected if the distributions were, indeed, Normal (i.e Skewness 
= 0 and Kurtosis - 3 ).

Tor Q, again, the skewness is not inconsistent with Normality. 
However, this is not the case for the kurtosis, with all of the 
test-statistic distributions having kurtosis greater than would 
be expected for Normal data.

Figures 6.1 - 6.13 show histograms of Q for the various
defined options for the matching function. In these histograms, 
broken lines denote the expected form of the histograms if Q was, 
truly, Standard Normal. The simplest summary of these would be 
that ’’Sometimes the Normal approximation to Q appears to be 
better than others".

More specifically, away from the more extreme choices of 
c = 0.05 or 0.25 and k = 20 or 7,5 (7.5 to a lesser extent), 

the observed distribution of Q does not deviate too seriously 
from its Standard Normal approximation, although there are 
noticable differences in the distribution tails.

To assess the seriousness of the deviations from the Normal
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Table 6.1 : Mean. Variance. Skewness and Kurtosis
from Simulated Null Distribution of 
Marcus and Genizi’s W Statistic

(i) Caliper Matching

Matching
Function

Specification
MEAN VARIANCE SKEWNESS KURTOSIS

0.05 x IQR 0.500 0.010 0.021 2.996

0.25 x IQR 0.500 0.005 0,017 2.973

0.50 x IQR 0.500 0.004 0.006 3.015

0.625 x IQR 0.500 0.003 0.006 3.026

0.75 x IQR 0.499 0.003 0.006 3.024

1.50 x IQR 0.500 0.003 -0.014 2.967

2.50 x IQR 0.500 0.004 -0.014 2.958

Infinite 0.500 0.004 -0.014 2.950
Caliper

fiil Continuous Matchine Function

exp(-20d / IQR) 0.500 0.007 0.014 2.968

exp(-7.5d / IQR) 0.500 0.005 0.014 2.978

exp( -5d / IQR) 0.500 0.004 0.011 2.990

exp(-2.5d 1 IQR) 0.500 0.003 0.009 2.996

exp(-0.5d f IQR) 0.500 0.003 -0.007 2.956

NOTE : s,e.(skewness) =* j (6/n)
Compare observed values to 1.96 x s.e = 0.034

s.e.(kurtosis) = V (24/n)
Compare observed values to 3 + (1.96 x s.e.) = 3.068

(based on 20000 simulations)
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Table 6.2 : Mean. Variance. Skewness and Kurtosis
from Simulated Null Distribution of 
Marcus and Genizi’s Q Statistic

(i) Caliper Matching

Matching
Function

Specification
MEAN VARIANCE SKEWNESS KURTOSIS

0.05 x IQR 0.004 0.816 0.000 4.380

0.25 x IQR -0.002 0.977 0.016 3.480

0.50 x IQR -0.003 1.026 0.000 3.371

0.625 x IQR -0.002 1.030 -0.001 3.329

0.75 x IQR -0.001 1.032 0.000 3.273

1.50 x IQR 0.001 1.060 -0.010 3.182

2.50 x IQR 0.002 1.096 -0.012 3.301

Infinite 0.003 1.105 -0.013 3.331
Caliper

(ii) Continuous Matching Function

exp(-20d / IQR) 0.003 0.896 0.007 4.013

exp(-7.5d / IQR) 0.000 0.992 0.006 3.589

exp( -5d / IQR) -0.001 1.020 0.006 3.493

exp(-2.5d / IQR) -0.001 1.043 0.004 3.342

exp(-0.5d I IQR) 0.002 1.071 -0.003 3.203

NOTE : s.e.(skewness) = / (6/n)
Compare observed values to 1.96 x s.e. - 0.034

s.e.(kurtosis) = V  (24/n)
Compare observed values to 3 + (1.96 x s.e.) = 3.068

(based on 20000 simulations)
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Figure 6.1 : Histogram of Q : Caliper = 0.05 * IQR
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Figure 6.2 : Histogram of Q ; Caliper = 0.25 * IQR
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Figure 6.3 : Histogram of Q : Caliper = 0.50 * IQR
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Figure 6.4 : Histogram of Q : Caliper = 0.625 * IQR
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Figure 6.5 : Histogram of Q ; Caliper = 0.75 * IQR
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Figure 6.6 : Histogram of Q ; Caliper = 1.50 * IQR
110° -411111111111111II111111111111111111111111111111111111111111,11! 111| (,, |, I, | , , |,, I,,, |,, |,, I,,, |,,,,

>-c_>2:
LU=3◦

L
iii,...
iiiliij;- 

: jHili-iljiI !|!| !N ill

i1' i! ii ii |! Wiii: !!■! Sifi i * 111! i! • ]!! i;! •' ■ ’ i1 •! 11 * i < n ! • i ' i' •!! i i I • 11 ̂ I! *; : i 1 1
!!! • t:; i:" i

o 44iin iiii|iiiirn4 IWHWHI1111
' INTERVAL '



FR
EQ

UE
NC

Y 
P. 

FR
EQ

UE
NC

Y

127

Figure 6.7 : Histogram of Q ; Caliper = 2.50 * IQR
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Figure 6.9 : Histogram of Q ; M.F. = expt-20d / IQR)
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Figure 6.10 : Histogram of Q ; M.F. = exp(-7.5d / IQR)
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Figure 6.11___:__ Histogram of Q : M.F. = exp(-5d / IQR)
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gure 6.12 : Histogram of Q : M.F. » exp(-2.5d / IQR)
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Figure 6.13 : Histogram of Q ; M.F. = exp(-0.5d / IQR)
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approximations, the proportions of the observed values of Q (for 
each option seperately) lying above the 95th and 90th percentiles 
of the Standard Normal distribution were calculated. These 
results are shown in Table 6.3 & 6.4 . (If the N(0,1)
approximation was exactly correct, then 5% of the values of Q 
would be expected to lie above the 95th percentile, and 10% would 
be expected to lie above the 90th percentile).

It can be seen that, again, at the more "extreme” choices of 
matching function, the approximation was fairly poor (e.g for 
c = 0.05 , only 3.5% of the values of Q lay above the 95th 
percentile, and only 7.25% lay above the 90th percentile (instead 
of the nominal values of 5% and 10% respectively)) . For the less 
extreme choices of c or k, the proportion of tests which would be 
rejected using Normal critical values were similar to the nominal 
values.

The 95th and 90th percentiles for the simulated distributions 
of Q and VI are shown in Tables 6.5 & 6 . 6 (these being the 19000th
and 18000th values, respectively, in the simulated
distributions).

The conclusions from Part (A) would be that, although, 
obviously, a Normal approximation for Marcus and Genizi's tests 
is not ideal in some cases, in many cases the observed deviations 
from that approximation were not sufficiently serious to merit 
disregarding the Standard Normal approximation for Q (and the 
advantages of simplicity that such an approximation would 
bring).

However, due to the inadequacies of the Normal approximation 
for more extreme choices of c and k, it was decided to carry 
forward to Part (B) the critical values derived by simulation, so 
that meaningful interpretation could be made of the results using
these extreme choices, and so that comparison could be made of
all of the test options on an equal footing.

Also, since using Q brings in the complication of estimating 
the standard deviation of W at each stage, it was decided to use 
the statistic, W, rather than its standardised version, Q.

Model Specifications for (B)

Of interest was to make power comparisons of the various 
Marcus and Genizi options. Carried forward from Part (A) were the
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Table 6.3 : Proportion of simulations where Q 
exceeded the N(O.l) 90th and 95th 
Percentiles (20000 simulations)

(20 cases per group)

(i) Calioer Matching

Matching
Function

Specification
Proportion larger 

than 95th 
Percentile

Proportion larger 
than 90th 

Percentile

0.05 x IQR 3.54 % 7.25 %

0.25 x IQR 4.76 % 9.56 %

0.50 x IQR 5.12 % 1 0 . 0 2 %

0.625 x IQR 5.16 % 9.60 %

0.75 x IQR 5.08 % 9.62 %

1.50 x IQR 5.49 % 10.27 %

2.50 x IQR 5.75 % 10.90 %

Infinite 5.70 % 1 1 . 0 0 %
Caliper

(ii) Continuous Matching Function

exp(-20d / IQR) 4.00 % 8 . 2 0 %

exp(-7.5d / IQR) 4.90 % 9.44 %

exp( -5d / IQR) 5.04 % 9.86 %

exp(-2.5d / IQR) 5.26 % 9.96 %

exp(-0 .5d / IQR) 5.48 % 10.61 %

NOTE : If a given test’s distribution was truly Standard
Normal, the proportion of tests "rejected" at 5% and 
10% would be expected to be within 5% + 0.3% and 
10% +0.4% respectively.
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Table 6.4 : Proportion of simulations where Q 
exceeded the N(O.l) 90th and 95th 
Percentiles (20Q0Q simulations)

(50 cases per group)

(i) Caliper Matching

Matching
Function

Specification
Proportion larger 

than 95th 
Percentile

Proportion larger 
than 90th 
Percentile

0.05 x IQR 3.38 % 7.65 %
0.25 x IQR 4,80 % 9.56 %
0.50 x IQR 4.93 % 9.78 %

0.625 x IQR 4.90 % 9.90 %

0.75 x IQR 4.99 % 9.87 %

1.50 x IQR 4.89 % 9.90 %

2.50 x IQR 4.92 % 9.82 %
Infinite 5.08 % 9.83 %

Caliper

(ii) Continuous Matching Function

exp(-20d / IQR) 4.04 % 8.64 %

exp(-7.5d / IQR) 4.74 % 9.68 %

exp( -5d / IQR) 4.96 % 9.88 %

exp(-2.5d / IQR) 5.02 % 9.74 %

exp(-0.5d / IQR) 4.90 % 9.72 %

NOTE : If a given test's distribution was truly Standard
Normal, the proportion of tests "rejected" at 5% 
and 10% would be expected to be within 5% + 0.3% 
and 10% +0.4% respectively.
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Table 6.5 : Critical Values for Marcus Sc Genizi Statistic. W

(i) CALIPER HATCHING

Hatching 
Function 

Spec.
5 % 10 %

.05 x IQR 0,660 0.628

.25 x IQR 0.614 0.589

.50 x IQR 0.599 0.576

.625 x IQR 0.593 0.572
.75 x IQR 0.589 0.569

1.5 x IQR 0.589 0.569

2.5 x IQR 0.598 0.577

Infinite
Caliper

0.600 0.579

(ii) CONTINUOUS MATCHING

exp(-20L) 0.634 0.605

exp(-7.5L) 0.612 0.587

exp( -5L) 0.603 0.581

exp(-2.5L) 0.592 0.571

exp(-O.SL) 0.590 0.570

where L - d / IQR
(Based on 20000 simulations)
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Table 6.6 : Critical Values for Marcus & Genizi Statistic. 0

(i) CALIPER MATCHING

Matching 
Function 

Spec.
5 % 1 0 %

.05 x IQ 1.489 1.119

.25 x IQR 1.611 1.229

.50 x IQR 1.655 1.262

.625 x IQR 1.669 1.274

.75 x IQR 1.671 1.280

1.5 x IQR 1.673 1.288

2.5 x IQR 1.702 1.311

Infinite
Caliper

1.704 1.322

(ii) CONTINUOUS MATCHING

exp(-20L) 1.533 1.171

exp(-7.5L) 1.617 1.234

exp( -5L ) 1.651 1.249

exp (-2. 5L) 1.677 1.273

exp(-0.5L) 1.693 1.294

where L ** d / IQR
(Based on 20000 simulations)

\
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simulated critical values for test statistic, W. Although the 
general form of the simulation model was as before, the
intercepts for the groups were separated by known amounts 
(measured in units of Oy). The intercepts were equally spaced, 
with a 3 = -15 and aq ^ a.2  ̂a.3 .

Starting with a 3 = a 2 = 0,3 , simultaneously (0,2 - ctq) was
increased in steps of 0.125ay and (0.3 - a^) was increased in
steps of 0.25ay . 
i. e
Step 0 aq = -15 a2 = -15 a3 = -15
Step 1 aq = -15 a2 = a^ + 0.125cjy a3 = a^ + 0.25ay
Step 2 aj_ 85 -15 a2 = a^ + 0.25ay a3 = a^ + 0.50ay

Step 8 aj_ = -15 a2 = a^ + Oy a3 = + 2ay

Tor every choice of a^, a2 > 0,3 , 7500 simulations were
performed, and the proportion of times that each form of test 
statistic was rejected was calculated (where test statistics 
would be "rejected" if they were greater than their own specific 
critical value). The results are shown in Table 6.7. The 
conclusions from Part (B) are as shown below :

The Results for (B)

(i) Away from the more extreme choices of c or k, the tests 
are fairly insensitive to the choice of matching function 
made.

(ii) For the caliper matching approach, a reasonable choice of 
c was 0.5 (although this choice would not be too critical),

(iii) For the approach using a continuous matching function,
k = 5 would seem to be the most suitable choice, although, 
again, this choice would not be too critical.

(iv) It would appear to be more serious to choose a value of k 
too small than to choose too large a value - the power of
test falls away more rapidly as k decreases than it does
as k increases away from its "optimal" value
(see the plots of Power vs k in Figures 6.14 & 6.15 .̂

Due to its relatively favourable performance and the intuitive 
desirability of having a continuous matching function, it was
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Table 6.7 : Comparison of the Marcus & Genizi Options - 
The Proportion of Tests Rejected at 5 %

(7500 simulations)
(A) Caliper Matching

ALPHA 3 - ALPHA 1
(a) (b) (c) (d) (e) (f) (g) (h) (i)

(i) 4.9 27.7 67.1 92.3 98.9 99.9 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

(ii) 5.0 42.0 89.0 99.7 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

(iii) 5.3 44.4 91.1 99.8 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

(iv) 5.1 44.1 90.5 99.8 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

(v) 5.1 42.0 89.3 99.8 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

(vi) 5.3 27.2 65.4 91.9 98.9 99.9 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

(vii) 5.2 20.5 48.9 78.1 94.3 98.9 99.9 1 0 0 . 0 1 0 0 . 0

(viii) 5.2 19.3 45.8 74.7 92.6 98.4 99.9 1 0 0 . 0 1 0 0 . 0

fB) Continuous Hatching Function

( i x ) 5.0 35.6 80.0 98.0 99.9 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

( X ) 5.3 42.5 89.1 99.7 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

( x i ) 5.4 44.2 90.8 99.8 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

( x i i ) 5.1 43.1 89.9 99.8 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

( x i i i ) 5.2 27.8 66.4 92.4 99.1 99.9 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

The Matching Function Specifications

(i) 0.05 x IQR
(ii) 0.25 x IQR
(iii) 0.50 x IQR
(iv) 0.625 x IQR
(v) 0.75 x IQR

(vi) 1.5 x IQR
(vii) 2.5 x IQR

Alpha 3 - Alpha 1

(viii) Infinite Caliper 
(ix) exp(-2 0 d / IQR) 
(x) exp(-7.5d I IQR) 
(xi) exp(-5.0d I IQR) 

(xii) exp(-2.5d / IQR) 
(xiii) exp(-0.5d/ IQR)

(s.d. units)

(a) 0.00 (b) 0.25 (c) 0.50 (d) 0.75 (e) 1.00
(f) 1.25 (g) 1.50 (h) 1.75 (i) 2.00
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Figure 6.14 : Power vs k = 0.25q„
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decided to represent Marcus and Genizi's method (Test 8 in the 
full testing program) by the test using a continuous matching 
function of form :

5 D(X±j,Xi'ji)
M(Xt j j i ) = exp

IQR

It must, of course, be borne in mind that the "ideal" choice of 
k would be dependent on the sample size, the covariate 
variability, etc., as was discussed previously in Section 6.2.

6.3 : The Main Study

6.3.1 : Aims and Objectives

Recall that of main interest was to compare the eight tests as 
defined in Section 5.2 earlier, under several different 
conditions, namely :

(1) Changing the magnitude of group spacings
(2) Changing the relative group spacings
(3) Varying the magnitude of correlation between the 

response and covariate variables.
(4) Varying the error distributions

6.3.2 ; The Procedures Followed

Procedure for objectives (1) to (3)

for = 0, .2, .4, .6, .8, .99 and using a basic
regression model as described earlier, with Normal errors :

(a) The intercepts were varied as in Part (B) of the 
previous section (i.e equal spacing of the intercepts, 
measured in units of Oy).

(b) The intercepts were varied such that aq = a,2 and a3, 
the intercept for Group 3, increased in steps of 0.25oyt

The results of this section are shown in Tables 6.8 - 6.19 , 
Figures 6.16-6.27 , and are summarised within Section 6.3.5,
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Table 6.8 : Normal Errors, p2 - 0. Equal Spacing

(a) (b) (c) (d) (e) (f) (g) Ch) (i)

TEST 1 5.1 9.4 26.6 53.4 79.1 94.2 99.2 99.9 100. 0

TEST 2 5.0 9.3 25,8 52.6 78.2 93.8 99,9 99.9 100.0

TEST 3 4.8 9.1 25.1 51.3 76.7 92.7 98.7 99.8 100.0

TEST 4 5.1 9.4 25.5 51.3 76.5 92.6 98.6 99.8 100. 0

TEST 5 4.8 17.8 44.3 72.6 91.5 98.3 99.9 100.0 100.0

TEST 6 5.2 18.9 45.7 73.3 91.5 98.1 99.9 100.0 100.0

TEST 7 4.9 18.1 45.4 74.2 91.9 98.2 99.9 100.0 100.0

TEST 8 5.1 16.4 39,6 66.1 85.5 95.6 99.2 99.9 100.0

Table 6.9 : Normal Errors, p2 =* 0, Unequal Spacing

(a) (b) (c) td) (e) (f) eg) (h) (i)

TEST 1 5.1 11.1 33.7 67.5 90.3 98.5 99.9 100.0 100.0

TEST 2 5.0 10.8 33 .1 66.3 89.5 98.3 99.8 100.0 100.0

TEST 3 4.8 10.6 31.2 64.3 88.2 97.7 99.7 100.0 100.0

TEST 4 5.1 10.8 31.9 64.0 88.2 97.8 99.7 100.0 100.0

TEST 5 4.8 18.8 49.2 80.5 96.5 99.5 100.0 100.0 100.0

TEST 6 5.2 19.6 49.9 81.2 96.2 99.5 100.0 100.0 100.0

TEST 7 4.9 18.0 43.5 72.6 91.0 97.9 99.7 100.0 100.0

TEST 8 5.1 16.5 38.9 65.1 84.6 95.3 98 .7 99.7 99.9

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRU8KAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8 : MARCUS & GENIZI

Group Spacings (Alpha 3 - Alpha 1) (s.d. units)

(a) 0.0 (b) 0.25 (c) 0.50
(d) 0.75 (e) 1.00 (f) 1.25
(g) 1.50 (h) 1.75 (i) 2.00
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Table 6.10 : Normal Errors, p2 = 0.20. Equal Spacing

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 4.9 10.0 26.6 52.8 79.6 94.2 99.1 99.9 100.0
TEST 2 5.2 11.1 30.8 62.2 86.8 97. 7 99.7 99.9 100.0

TEST 3 4.8 9.2 25.1 49.9 76.6 92.5 98.7 99. 9 100.0
TEST 4 5.1 10.5 29.3 58.9 84.1 96.7 99.5 100.0 100.0

TEST 5 5.1 18.5 43.5 72.0 91.5 98.3 99.8 100.0 100.0

TEST 6 5.5 22.1 51.8 80.5 95.3 99. 6 100.0 100.0 100.0

TEST 7 5.2 18.6 45.4 73.3 91.8 98.5 99.8 100.0 100.0

TEST 8 5.2 19.7 44.8 73.2 90.9 98.3 99.8 100.0 100.0

Table 6.11 : Normal Errors. p2 = 0.20, Uneaual Spacing

(a) (b) (c) Cd) (e) (f) (g) (h) (i)

TEST 1 4.9 11.9 33.1 66.0 89.7 98.5 99. 9 100.0 100.0

TEST 2 5.2 13.2 40.4 75.9 94.7 99.7 99. 9 100.0 100.0

TEST 3 4.8 11.5 31.7 63.2 87.9 98.0 99.7 100. 0 100.0

TEST 4 5.1 12.7 38.3 72.4 93.4 99.3 99. 9 100.0 100.0

TEST 5 5.1 19.8 49.0 79.6 95.5 99.6 100.0 100.0 100.0

TEST 6 5.5 23.6 57.6 87.9 98.3 99.9 100.0 100.0 100.0

TEST 7 5.2 19.0 44.4 72.6 90.7 98.0 99.6 100.0 100.0

TEST 8 5.2 19.5 44.5 72.3 90.6 97.8 99.6 99.9 100.0

The Tests

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRUSKAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8 : MARCUS & GENIZI

Group Spacings (Alpha 3 - Alpha 1) (s.d, units)

TEST 2 
TEST 3 
TEST 4

(a) 0.0
(d) 0.75
(g) 1-50

(b) 0.25
(e) 1.00
(h) 1.75

(c) 0.50
(f) 1.25
(i) 2.00
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Table 6.12 : Normal Errors, p~ ~ 0.40. Equal Spacing

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 4.5 9.8 26.9 53. 5 79.5 94.1 99.0 99.9 100.0
TEST 2 4.9 12.5 40.0 75.9 95.3 99.6 100. 0 100.0 100.0
TEST 3 4.7 9.3 24.7 50.7 77.3 92.6 98.6 99.9 100.0
TEST 4 4.7 12.3 36.9 71.3 93.4 99.0 100.0 100.0 100.0
TEST 5 4.9 18.5 43.4 72.0 91.3 98.2 99.8 100.0 100.0

TEST 6 5.0 24.6 61.9 89.8 98.9 99.9 100.0 100.0 100.0

TEST 7 5.0 18.9 44.2 73.2 92.3 98 .5 99. 9 100.0 100.0

TEST 8 5.3 22.1 54.1 83.1 96.6 99.9 100.0 100.0 100.0

Table 6.13 : Normal Errors, p2 = Q.40, Unequal Spacing

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 4.5 10.9 33.7 67.2 89.4 98.3 99.8 100.0 100.0

TEST 2 4.9 16.0 51.7 87.5 98.9 100.0 100. 0 100.0 100.0

TEST 3 4.7 10.5 31.2 63.8 87.5 98 .3 99.8 100.0 100.0

TEST 4 4.7 15.1 47.5 84.2 97.7 99.9 100.0 100.0 100.0

TEST 5 4.9 19.5 49.3 80.9 95.6 99.7 100.0 100.0 100.0

TEST 6 5.0 27.5 68.8 94.9 99.8 100.0 100.0 100.0 100.0

TEST 7 5.0 19.0 44.8 73.1 90.8 98.3 99.6 100.0 100.0

TEST 8 5.3 22.8 53.3 82.6 95.7 99.3 99. 9 100.0 100.0

The Tests

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRUSKAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8 : MARCUS & GENIZI

Group Spacings (Alpha 3 - Alpha 1) (s . d.  units_l

(a) 0.0 (b) 0.25 (c) 0.50
(d) 0.75 (e) 1.00 (f) 1.25
(g) 1.50 (h) 1.75 (i) 2.00

TEST 2 
TEST 3 
TEST 4
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Table 6.14 : Normal Errors, = 0.60. Ecrual Spacing

(a) (b) ' (c) (d) (e) (f) (g) (h) (i)

TEST 1 5.1 10.2 25. 6 53.1 79.7 94.5 99.1 99.9 100.0

TEST 2 5.2 17.5 56.2 91.5 99.3 100.0 100.0 100.0 100.0
TEST 3 4.8 9.5 24.1 50.6 76.9 93.4 98.7 99.9 100,0
TEST 4 5.4 15.7 50.2 86.7 98.3 100.0 100.0 100.0 100.0
TEST 5 4.7 18.1 43.4 72.9 91.4 98.3 99.9 100.0 100.0
TEST 6 5.4 32.9 76.0 97.4 99.9 100.0 100.0 100.0 100.0

TEST 7 4.6 18.8 44.3 74.1 91.8 98.5 99.9 100.0 100.0
TEST 8 5.1 28.2 67.3 93.9 99.4 100.0 100.0 100.0 100.0

Table 6.15 : Normal Errors. p2 3 0. 60, Unecmal Spacing
..

(a) (b) (c) (d) (e) (£) (g) (h) (i)

TEST 1 5.1 10.9 35.1 66.4 90.1 98.5 99.8 100.0 100.0

TEST 2 5.2 21.9 70.8 97.1 99.9 100.0 100.0 100.0 100.0

TEST 3 4.8 10.7 32.5 63.7 88.1 97.8 99.7 100.0 100.0

TEST 4 5.4 19.6 64.3 94.6 99.7 100.0 100.0 100.0 100.0

TEST 5 4.7 19.2 50.4 80.2 95.9 99.5 100.0 100.0 100.0

TEST 6 5.4 35.6 84.1 99.1 100.0 100.0 100.0 100.0 100.0

TEST 7 4.6 18.4 45.5 73.1 91.3 98.1 99.7 100.0 100.0

TEST 3 5.1 28.7 67.5 92.4 99.2 100.0 100.0 100.0 100.0

The Tests

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRUSKAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8 : MARCUS Sc GENIZI

Group Spacings (Alpha 3 - Alpha 1) (s.d, units)

(a) 0.0 (b) 0.25 (c) 0.50
(d) 0.75 (e) 1.00 (f) 1.25
(g) 1.50 (h) 1.75 (i) 2.00

TEST 2 
TEST 3 
TEST 4
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Table 6.16 : Normal Errors, p2 = 0,80. Equal Spacing

(a) (b) (c) (d) (e) (f) (g) (h) (i)
TEST 1 5.0 9.6 27.0 53.8 79.8 94.5 99.0 99.9 100.0
TEST 2 4.9 31.8 86.7 99.8 100.0 100.0 100.0 100.0 100.0
TEST 3 4.7 9.5 25.2 51.3 77.5 93.3 98.6 99.8 100.0
TEST 4 4.7 25.9 79.2 98.9 100.0 100.0 100.0 100.0 100.0
TEST 5 4.6 18.1 44.9 72.9 91.6 98.2 99.8 100.0 100.0
TEST 6 5.3 51.9 95.5 100.0 100.0 100.0 100.0 100.0 100.0
TEST 7 4.6 18.3 45.4 74.0 92.1 98.6 99.9 100.0 100.0
TEST 8 5.1 44.2 89.9 99.6 100.0 100.0 100.0 100.0 100.0

Table 8.̂ 17 : Normal Errors, o2 = 0.80. Unequal Spacing

(a) (b) (c) (d) (e) (£) (g) (h) (i)

TEST 1 5.0 12.0 35.0 66.7 90.3 98.4 99.9 100.0 100.0
TEST 2 4.9 40.8 95.1 100.0 100.0 100.0 100.0 100.0 100.0

TEST 3 4.7 11.2 32.7 63.5 88.4 97.9 99.9 100.0 100.0
TEST 4 4.7 34.9 90.2 99.8 100.0 100.0 100.0 100.0 100.0
TEST 5 4.6 19.9 50.1 80.3 95.9 99.5 100.0 100.0 100.0

TEST 6 5.3 58.9 98.6 100.0 100.0 100.0 100.0 100.0 100.0

TEST 7 4.6 19.3 45.4 73.2 91.1 98.2 99.8 100.0 100.0

TEST 3 5.1 44.1 89.7 99.4 100.0 100.0 100.0 100.0 100.0

The Tests

TEST X 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRUSKAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8  : MARCUS St GENIZI

Group Spacings (Alpha 3 - Alpha 1) (s.d. units)

(a) 0.0 (b) 0.25 (c) 0.50
(d) 0.75 (e) 1.00 (f) 1.25
(g) 1.50 (h) 1,75 (i) 2.00
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Table 6.18 : Normal Errors, = 0,99, Equal Spacing

(a) (b) (c) (d) <e) (f) (g) (h) (i)

TEST 1 4.9 9.9 26.1 53.7 80.4 94.7 99.2 99. 9 100.0
TEST 2 5.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
TEST 3 4.8 9.1 25.2 51.5 78.2 93.1 98.9 99.9 100.0
TEST 4 5.3 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
TEST 5 4.8 17.9 44.3 73.1 92.2 98.5 99.9 100.0 100.0
TEST 6 5.4 100.0 100.0 100.0 100.0 100.0 100. 0 100.0 100.0
TEST 7 4.7 18.8 45.7 74.4 92.8 98.6 99.9 100.0 100.0

TEST 8 3.2 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 6.19 ; Normal Errors, o2 * 0.99, Unequal Spacing

(a) (b) (C) (d) (e) <f) (g) (h) (i)

TEST 1 4.9 11.7 34.1 67.6 89.5 98.3 99,9 100.0 100.0
TEST 2 5.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TEST 3 4.8 10.8 31.5 64.5 87.9 97.9 99.8 100.0 100.0

TEST 4 5.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TEST 5 4.8 19.2 49.9 80.9 95.6 99.6 100.0 100.0 100.0

TEST 6 5.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TEST 7 4.7 18.1 44.6 73.0 90.9 98.3 99.7 100.0 100.0

TEST 8 3,2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRUSKAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8 : MARCUS fit GENIZI

Group Spacings (Alpha 3 - Alpha 1) (s.d. units).

(a) 0.0 (b) 0.25 (c) 0.50
(d) 0.75 (e) 1.00 (f) 1.25
(g) 1.50 (h) 1.75 (i) 2.00
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Figure 6.16 : Normal Errors, = 0, Equal Spacing

H

ceIU:*
2

no
m

RH)-Squ«r«d (eonpl 0.00

i 1
ALPHA3 - ALPHA 1 (unte« of «d(yl)

Figure 6.17 : Normal Errors, p2 = 0. Unequal Spacing
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Figure 6.18 : Normal Errors, = 0.20. Equal Spacing
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Figure 6.19 : Normal Errors, = 0.20. Unequal Spacing
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Figure 6.20 : Normal Errors, p2 = 0.40. Equal Spacing
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Figure 6.21 : Normal Errors, = 0.40, Unequal Spacing
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Figure 6.22 : Normal Errors, p2 = 0.60, Equal Spacing
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Figure 6.24 : Normal Errors, p2 = 0.80. Equal Spacing
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Figure 6.25 : Normal Errors, p2 = 0.80. Unequal Spacing
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Figure 6.26 : Normal Errors, p2 = 0.99, Equal Spacing
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Procedure for objective (4)

The work on varying the error distribution was carried out in 
several phases. Letting (3 represent the skewness of the error 
distribution, and y represent its kurtosis, the phases were :

(a) Fixing (3 = 0 (as in the Normal distribution) while
varying y

(b) Fixing y = 3 (as in the Normal distribution) while
varying (3

(c) Assessing the effect of reversing the skewness of the 
error distribution

(d) Varying both 3 and y together

(a)-(c) were performed using mixture distributions composed of
two Normal components, while (d) was performed using various
Lognormal distributions.

The general procedure followed consisted of simulating errors 
from a distribution where 3 and y were as required (but this not 
necessarily being the case for the mean and variance) . The 
simulated values were then scaled to produce values with the
required mean and variance. The scaling consisted of subtracting 
the true mean for the simulation distribution from each simulated 
value, then multiplying by a factor of

(Required Standard Deviation)

(Standard Deviation of the Simulation Distribution)

The required standard deviation depended on the Normal-error 
simulations to which the results were to be compared. For
example, if the aim was to compare the simulation results to 
those from the Normal-error simulations with = 0.8 , then the 
simulated non-Normal errors would be scaled to have the same
variance as these Normal errors, i.e the numerator of the scaling 
factor would be O y / ( 1-0.8) , i.e /(0.2) O y

Only two values of were chosen for the comparison
procedures, namely p^ = 0 and p^ = 0.8
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6.3.3 i The Error Distributions

(a) Mixture Distributions

As mentioned earlier* for Phases (a) - (c) of this set of
simulations, the error distribution used was that of a mixture 
distribution composed of two Normal components.

For a mixture containing k Normal components, the probability 
density function, f(x), is given by

k 1
E At (\/(2Il)at) exp 

t=l

(x-pt)2

2 a t 2

where A^, ..., Â- are known as the weights of the component 
distributions ( A ^ ^ 0 , i = l ,  ...,k 

k
! > t = 1 )

t=l
Thus for a two-component mixture, the probability density 

function (p.d.f.) would be
f(x) » A N( p^cn2) + (1-A) N( P2»°22)

where N(p , a 2 ) represents the p.d.f of a Normal distribution
with mean p and variance a 2 .

From the moment results of Johnson and Kotz(1969) it can be 
seen that for such a two-component mixture,

€(X) = Ap! + (1-A)p2
<E(X2) = A (p^2 + u^2) + (1—A) (p22 + 02^)
<E(X3) « A (p^3 + 3 P]_cf̂ 2) + (1-A)(p23 + 3 P2°22)
<E(X̂ ) = A (pi^ + 6 Pi2a^2 + 3o^) + (1-A) (p2^ + 6 h22°22 3a2 )̂

For simplicity, it was decided to set A = V 2 an(i Ml = -P2 ” a» 
so that the simulated distributions would automatically have zero 
expectation, and so that the moments, above, would equal their 
corresponding central moments.

Also, simulations were performed using distributions with unit 
variance (the error variances then being scaled as necessary). 
Note that for a mixture distribution as defined above, and 
letting cr̂ 2 = b and 022 = c,

<E(X) = 1/2 (a - a) = 0
<£(X2) = I/2 (2a2 + b + c)
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€(X3) = 3/2 a(b - c)
€(X4) = 1/2 ( 2aA + 6a2(b+c) + 3(b2 + c2) )

so that to achieve unit variance, it would be necessary to set 
^ f 2 (2a2 + b + c) = 1 ,

i.e 2a2 + b + c = 2

It was of interest to control the skewness (p) and/or the 
kurtosis (y) while keeping the mean and variance fixed.

Here m3 €(X3)
P  =  _ _ _ _ _ _  = _ _ _ _ _ _ _ _ _ _ _ _ _ _

and y =

m23/2 <E(X2)3/2

m4 <E(X*)

m22 <E(X2)2

(b) The Lognormal Distribution

For phase (d) of the simulations, various lognormal 
distributions were used for the errors. A lognormal distribution 
is defined as follows :

For a random variable, X, if there exists a number, 9, such 
that Z = log(X - 0) is Normally distributed, then X is said to 
have a lognormal distribution. If the mean and variance of Z are 
denoted by £ and a2 respectively, then the p.d.f of X is as shown 
below.

p(x)
[(x-e)o /(2II)]-1- exp {-3/2 ( log(x-e)-C )2 / CJ2 }

if x 9 
0 otherwise

If 9, a parameter affecting only the location of the 
distribution, takes value zero, then the 1 two-parameter lognormal 
distribution1 is obtained, where

<£(X) = exp(£ + V 2cr2)
V(X) = exp(2C) w(io - 1)
(3 = y ( u ” l) (to + 2)

y = (0^ +  2 w 3 +  3w2 - 3 where to = exp (a2)
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It can be seen that the value of C does not affect p or y . 
Since any simulated values could easily be scaled to give the 
required mean and variance, both 0 and C were set to zero, so 
that

<£(X) = exp(l/2C^)
V(X) = u)(w - 1)
p = /(to - l) (oj + 2)
y = u/* + 2tô  + 3u)̂  - 3

6.3.A : The Simulations

The error distributions used were of the form shown in 
Figures 6.28-6.37 . In each case, for the plots, the
distributions have been scaled to have unit variance, and a 
Standard Normal Distribution is superimposed for comparison 
purposes.

The simulations performed were as detailed below.

(a) Fix P = 0 , Vary y (Using a mixture distribution)

Let Z represent the error variable. Setting a = 0 guarantees 
that p = 0 for a mixture distribution (using the earlier
notation).

Then <E(Z) = 0
V(Z) = V 2 (b + c)
p = 0
■y = 3/^(b2 + c^)

It was desired to fix the variance, V(Z), to take a value 1
(i.e (b + c) = 2 ) . To vary y , different values of b and c 

were chosen such that b + c = 2 , then y was calculated using 
the formula above.

Simulations were carried out for y ~ 3.5 (i.e. b = 0.6) and 
for y = 5.4 (i.e. b = 0.1). The results were as shown in 
Tables 6.20-6.23 , Figures 6.38-6.41 and are summarised within 
Section 6.3.5 .



156

Figure 6.28 : Error Dlstn : Mixture . — 0 , y - 3.48
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Figure 6.29 : Error Distn : Mixture . g = 0 , y = 5.43
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Figure 6.30 : Error Distn : Mixture . g = 0.45 . v - 3
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Figure 6.31 : Error Distn : Mixture , g = 0.6 , y = 3
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.Figure 6.32 : Error Distn : Mixture ,13 = 0.7 , r = 3.47
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Figure 6.33 : Error Distn : Mixture . P = 4.39 . y = 37.0
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Figure 6.34 : Error Distn : Mixture , g = -4.39 , y « 37.0
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Figure 6.35 : Error Dlstn : Lognormal , o = 0.3
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Figure 6.37 : Error Distn : Lognormal , o = 0,5
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Table 6.20 : P2comp ~ 0 . II O • r = 3.48

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 4.9 9.1 25.7 54.1 80.0 93.4 98.9 100.0 100,0
TEST 2 4.9 9.1 25.4 53.5 78. 7 93 .2 98.9 100.0 100,0
TEST 3 4.8 9.1 25.3 53.8 79.0 93.9 99.0 99.9 100.0
TEST 4 4.9 9.3 25.8 54.0 78.9 93.6 100.0 99.8 100.0
TEST 5 5.1 18.1 43.4 72.8 91.5 97.9 99.8 100.0 100.0
TEST 6 5.5 18.7 44.2 73.5 91.4 98.0 99.8 100.0 100,0
TEST 7 4.9 18.5 46.3 76.0 93.1 98.5 99.9 100.0 100.0
TEST 8 5.3 16.9 40.4 67.9 87.2 96.5 99.4 99.9 100.0

Table 6 21 : P2■'rtmp a 0.80 3 = 0 . y =* 3.48

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 4.9 9.9 26.1 53.1 79.2 94.0 98.9 99.8 100.0
TEST 2 4.7 31.4 87.3 99.7 100.0 100.0 100.0 100.0 100.0
TEST 3 4.7 9.5 24.3 50.2 76.2 92.4 98.4 99.8 100.0
TEST 4 4.4 26.6 80.4 99.0 100.0 100.0 100.0 100.0 100.0

TEST 5 4.8 18.3 43.8 72.1 90.9 98.3 99.8 100.0 100.0

TEST 6 5.1 52.1 95.6 100.0 100.0 100.0 100.0 100.0 100.0

TEST 7 4.7 18.5 45.0 73.6 91.6 98.5 99.9 . 99.9 100.0

TEST 8 4.7 45.1 90.7 99.6 100.0 100.0 100.0 100.0 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5
ANCOVA TEST 6
KRUSKAL - WALLIS TEST 7
RANK ANCOVA TEST 8

BARTHOLOMEW 
BARTHOLOMEW - ADJ 
JONKHEERE 
MARCUS & GENIZI

Group Spacings (Alpha 3 - Aloha 1) fs.d. units)

(a) 0.0
(d) 0.75
(g) 1.50

(b) 0.25
(e) 1.00
(h) . 1.75-

(c) 0.50
(f) 1.25
(i) 2,00
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Table 6.22 : P ^ n m p  = 0 . ff = 0 , r = 5.43

(a) (to (c) (d) (e) (f) (g) (h) (i)

TEST 1 4.5 10.3 26.5 55.0 79.2 93.2 98.4 99.7 100.0

TEST 2 4.5 10.2 26.0 54.6 78.7 93.0 98,2 99.7 100.0

TEST 3 4.5 15.1 44.0 76.1 92.1 97.9 99.5 99.5 100.0
TEST 4 4.7 15.3 43.9 76.1 91.7 97.8 99.5 99.9 100.0

TEST 5 4.4 19.1 44.7 73.7 90.7 97.9 99.6 100.0 100.0

TEST 6 4.8 19.7 45.7 73.9 90.7 97.9 99.6 100.0 100.0

TEST 7 4.8 29.7 68.7 91.7 98.1 99.7 100.0 100.0 100.0

TEST 8 5.1 26.0 59.1 84.9 94.6 98. 7 99.8 99.9 100.0

Table 6.23 : P2™ mr a Q-30 . 3 = 0 . r « 5.43

(a) (b) (c) (d) (e) (f) (g) <h) (i)

TEST 1 4,7 10.0 27.1 52.9 78.9 93.8 99.1 99.9 100.0

TEST 2 5.0 32.9 86.2 99.6 100.0 100.0 100.0 100.0 100.0

TEST 3 4.7 9.3 25.7 51.1 76.9 92.5 98.9 99.8 100.0

TEST 4 4.7 30.2 81.5 98.9 100.0 100.0 100.0 100.0 100.0

TEST 5 4.8 18.3 44.0 72.5 91.5 98.1 99.8 100.0 100.0

TEST 6 5.5 53.5 95.1 99.9 100.0 100.0 100.0 100.0 100.0

TEST 7 4.8 19.0 45.2 74.4 92.2 98.3 99.9 100.0 100.0

TEST 8 4.9 57.8 95.5 99.8 100.0 100.0 100.0 100.0 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRUSKAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8 : MARCUS & GENIZI

Group Spacings (Alpha 3 - Alpha 1) fs.d. units)

(a) 0.0 (b) 0.25 (c) 0.50
(d) 0.75 (e) 1.00 (f) 1.25
(g) 1.50 (h) 1.75 (i) 2.00
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Figure 6.38__ :__ p2Cnmp = 0__ . 3  = 0__ . r  = 3.48
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Figure 6.40__ :__ p.2CQap. = 0__ , g = 0 , y = 5.43
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(b) Fix y = 3 ,  Vary p (Using mixture distributions)

For unit variance, 2a^ + b + c = 2  (using the earlier
notation).
The expression for y was 
•y - a^ + 3a^(b+c) + ^^(b^ + c^) = 3 ( in this case). (6.1)

Substituting for a^ = l/2(2-b-c) in equation (6.1) gives
1/4(2 - b - c)2 + 3/^(2 - b - c)(b + c) + 2/2(b^ + c2) = 3
i.e b^ + c^ + 8b + 8c - lObc = 8 (after some algebra)

Completing the square in b,
(b - 5c + 4)2 = 24 (c - 1)2

i.e b = 5c - 4 ± 2/6 (c-1)

To vary p while constraining y to take value 3, the procedure 
followed was as follows:

(i) Choose 02^ = c 
(ii) Calculate b = 5 c  - 4 ± 2/6 (c-1) and choose the

value for b (or a value for b) giving both b and (2-b-c)
as non-negative.

(iii) Calculate a = / [ V 2 (2-b-c) ]
(iv) Calculate p

Simulations were performed for p = 0.45 (c = 0.41) and 
P = 0,59 (c - 0.30). The results were as shown in 
Tables 6.24-6.27, Figures 6.42-6.45 , and summarised within 
Section 6.3.5.

One further mixture distribution was chosen for this section, 
to give a skewness more severe than could have been achieved 
while constraining y = 3, but the kurtosis not permitted to 
exceed the lower value used in simulations (a). The chosen 
distribution was one with p = 0.72, y - 3.5. It was intended to 
compare these results to those obtained from the rest of Phase
(b), essentially disregarding the small discrepancy between the 
kurtosis used and that of a Normal distribution. The results are
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Table 6.24 P ~amp. = 0 . 3 - 0,45 . y = ft

(a) (b) (c) (d) (e) (f) (s) (h) (i)

TEST 1 5.1 8.8 26.2 53.2 80.0 94.3 98.9 99.9 100.0
TEST 2 5.2 8.8 25.8 52.4 79.1 94.1 98.9 99.9 100.0

TEST 3 5.1 8.5 25.5 51.3 78.5 93.8 98.5 99.9 100.0

TEST 4 5.5 8.8 26.2 51.5 78.4 93.5 98.3 99.9 100.0
TEST 5 5.1 17.8 43.9 72.2 91.6 98.1 99.8 100.0 100.0

TEST 6 5.4 18.7 44.3 72.5 91.7 98.2 99.7 100.0 100.0

TEST 7 5.0 18.9 45.9 74.5 92.7 98.6 99.8 100.0 100.0

TEST 8 5.4 17.3 40.1 66.6 86.7 96.1 99.0 99.9 100.0

Table 6.25 : p2 pnmp ” 0.80 . ff » 0.45 r = 3

(a) (b) (c) (d) (e) (f) (8) (h) (i)

TEST 1 5.8 9.8 26.1 53.3 79.0 94.3 99.0 99.9 100.0

TEST 2 5.1 31.7 87.7 99.8 100.0 100.0 100.0 100.0 100.0

TEST 3 5.3 9.2 24.0 50.2 76.0 93.0 98.5 99.8 100.0

TEST 4 5.2 27.2 80.2 98.9 100.0 100.0 100.0 100.0 100.0

TEST 5 5.5 18.5 43.9 72.0 91.2 98.3 99.9 100.0 100.0

TEST 6 5.5 51.8 95.8 100.0 100.0 100.0 100.0 100.0 100.0

TEST 7 5.1 18.6 45.2 74.2 92.0 98.3 99.9 100.0 100.0

TEST 8 4.9 44.4 91.0 99,6 100.0 100.0 100.0 100.0 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5
ANCOVA TEST 6
KRUSKAL - WALLIS TEST 7
RANK ANCOVA TEST 8

BARTHOLOMEW 
BARTHOLOMEW - ADJ 
JONKHEERE 
MARCUS & GENIZI

Group Spacines (Alpha 3 - Aloha 1) fs.d. units)

(a) 0.0
(d) 0.75
(g) 1-50

(b) 0.25
(e) 1.00
(h) 1.75

(c) 0.50
(f) 1.25
(i) 2.00
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Table 6.26 : p 2^ , ^  , 3 = 0.6 . y = 3

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 5.1 9.5 26.2 53.0 79.1 94.1 98.9 99.9 100.0
TEST 2 5.0 9.6 25.6 52.5 78 .1 93.6 98.7 99.9 100.0

TEST 3 5.1 9.6 27.2 53.5 79.2 93.7 98.5 99.9 100.0
TEST 4 5.2 9.8 27.4 53.8 78.9 93.4 98.5 99.8 1 0 0 . 0

TEST 5 5.0 18.1 43.8 72.2 91.6 98.3 99.8 100.0 100.0

TEST 6 5,4 19.1 44.4 72.8 91.7 98.4 99.8 100.0 100.0

TEST 7 5.0 20.0 47.8 76.7 94.0 98 .8 99.8 100.0 100.0

TEST 8 5.5 18.0 41.1 68.1 87,7 96.5 99.2 99.9 100.0

Table 6.27 * o2n n m n 0.80 , 3 = 0.6 . y = 3

(a) Cb) (c) (d) (e) (f) (g) (h) (i)

TEST 1 4.8 9.9 25.4 52.8 78.9 94.9 99.0 99.9 100.0

TEST 2 4.7 30.7 86.7 99.8 100.0 100.0 100.0 100.0 100.0

TEST 3 4 . 5 9.4 24.2 50.3 76,5 92.9 98.8 100.0 100.0

TEST 4 5.0 26.2 79.2 100.0 100.0 100.0 100.0 100.0 100.0

TEST 5 5.1 18.8 43.2 71.7 91.0 98.4 100.0 100.0 100.0

TEST 6 5.2 51.1 95.4 100.0 100,0 100.0 100.0 100.0 100.0

TEST 7 5.0 19.0 44.5 72.9 91.7 98.6 99.9 100.0 100.0

TEST 8 4.8 44.9 90.7 99.7 100.0 100.0 100.0 100.0 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5
ANCOVA TEST 6
KRUSKAL - WALLIS TEST 7
RANK ANCOVA TEST 8

BARTHOLOMEW 
BARTHOLOMEW - ADJ 
JONKHEERE 
MARCUS & GENIZI

Group Spacings (Alpha 3 - Alpha 1) fs.d. units)

(a) 0.0
(d) 0.75
(g) 1.50

(b) 0.25
(e) 1.00
(h) 1.75

(c) 0.50
(£) ‘1.25
(i) 2.00
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Figure 6.42 : R.2_Q om p. = 0__ , 0 = 0.45 , 7  = 3
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Figure 6.44 : p2?^ p = q , g = 0.6 , r = 3
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shown in Tables 6.28 & 6.29 , Figures 6.46 & 6.47 and summarised 
within Section 6.3.5 .

(c) Assessing the Effect of Reversing the Skewness of the
Error Distribution

Here the results of using two severely non-Normal, oppositely 
skewed, mixture distributions were compared (one of these being 
the exact mirror-image of the other, reflecting over the line 
X = 0), to confirm that the results were invariant with respect 
to sign of skewness.

The distributions both had zero mean, the same variance,
Y = 37.0, while one had a skewness of 4.4 and the other had a 

skewness of -4.4 .
These results are shown in Tables 6.30 & 6.31 ,

Figures 6.48 & 6.49 , and are summarised within Section 6.3.5 .
Note that here, a larger number of simulations was carried out 
than previously, in order to make any differences between the 
results more evident.

(d) Simultaneously varying 3 and y

For the Lognormal distribution, as defined earlier, the 
skewness and kurtosis were varied by altering the parameter a. 
The chosen values were a = 0.3, 0.4, 0.5, leading to ((3 , y ) 
combinations of (0,95 , 4.6), (1.32 , 6.2) and (1.75 , 8.9)
respectively. These results are shown in Tables 6.32-6.37 , 
Figures 6.50-6.55 , and are summarised within Section 6.3.5 ,
below.

6.3.5 : The Results

(l) In general, incorporating covariate information (in the 
case of non-zero 'correlation1), and/or ordering information 
about the group means, increased the power of the tests. Also, in 
the presence of Normal errors, Normal tests tended to perform 
better than their non-parametric counterparts. Two noticeable 
exceptions were :

(i) Marcus and Genizi's test (Test 8) performed unexpectedly 
poorly, compared to what would be expected from the pattern of 
the other results. In fact, almost every 'unexpected' result for
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Table 6.28 : P2?nmp = 0  , 3 = 0 . 7 , r = 3 . 6

(a) (b) (c) (d) (e) (f) eg) (h) (i)

TEST 1 4.8 9.4 26.3 53.0 78.9 94.3 99.2 100.0 100.0
TEST 2 4.8 9.2 26.1 52.4 78.0 93.7 99.2 99.9 100.0
TEST 3 4.7 9.6 27.9 55.6 79.2 93.6 98.9 99.9 100.0
TEST 4 5.1 10.0 28.6 55.9 79.4 93.6 98.9 99.9 100.0

TEST 5 4.7 18.1 43.8 72.7 91.2 98.4 99.9 100.0 100.0
TEST 6 5.1 18.7 44.7 73.3 91.4 98.4 99.9 100.0 100.0

TEST 7 4.8 20.5 49.5 79.1 93.6 98.9 99.9 100.0 100.0

TEST 8 5.4 18.7 44.0 69.9 87.7 96.5 99.2 99.9 100.0

Table 6,29 : o z ^ r ? ^0.80 . g ^ 0 . 7 , r = 3 . 6

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 5.3 9.9 25.4 53.8 79.7 94.3 98.9 99.9 100.0

TEST 2 5.2 32.0 87.4 99.8 100.0 100.0 100.0 100.0 100,0

TEST 3 4.9 9.6 23.9 50.9 77.1 92.8 98.4 100.0 100.0

TEST 4 4.9 26.9 80.2 99.0 H* O O O 100.0 100.0 100.0 100.0

TEST 5 5.3 18.7 43.6 73.0 91.9 98.2 99.8 100.0 100.0

TEST 6 5.5 52.0 95.5 99.9 100.0 100.0 100.0 100.0 100.0

TEST 7 5.2 19.3 44.7 74.1 92.2 98.4 99.7 100.0 100.0

TEST 8 5.0 46.4 91.0 99.6 100.0 100.0 100.0 100.0 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5
ANCOVA TEST 6
KRUSKAL - WALLIS TEST 7
RANK ANCOVA TEST 8

BARTHOLOMEW 
BARTHOLOMEW - ADJ 
JONKHEERE 
MARCUS & GENIZI

Group Spacings (Alpha 3 - Alpha 1) (s.d. units)

(a) 0.0
(d) 0.75
(g) 1.50

(b) 0.25
(e) 1.00
(h) 1.75

(c) 0.50
(f) 1.25
(i) 2.00
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Figure 6.46 : p2c^mp = 0 , 3 = 0.7 , y = 3 ._6

/ S

0.00Q H 0-5< ju «r»d  (comp)

X •a • X/

ALPHA3 - ALPHA 1 (unie* of »d(y)»

6.47 : P2^ mp = 0.80 . 8 = 0.7 . r = 3.6

ax

V » r 'X )  .  25  

'earofl 0. 80

X ] X f X •

ALPHA3 - ALPHA I (uni t» of »d (y))



174

Table 6.30 : p2^nmP = 0 .13 = 4.4 . y  = 37.0

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 5.0 9.9 26.3 53.8 79.2 94.2 98.9 99.9 100.0
TEST 2 5.0 9.6 26.1 53.0 78.5 93.8 98. 7 99.9 100.0
TEST 3 4.9 10.7 30.6 60.0 84.0 95.7 99.2 99.9 100.0

TEST 4 5.2 11.0 31.0 60.4 83.9 95.5 99.1 99.9 100.0

TEST 5 4.7 18.7 43.9 72.6 91.4 98.2 99.7 100.0 100.0

TEST 6 5.1 19.1 44.9 73.4 91.7 98.2 99.8 100.0 100.0

TEST 7 4.7 21,8 53,2 81.8 95.2 99.2 99.9 100.0 100.0

TEST 8 5.1 19.7 46.8 73.7 90.4 97.4 99.5 99.9 100.0

Table 6.31 : P2™ mr = 0 . 3 = -4.4 . r = 37.0

(a) (b) (c) (d) (e) (f) (g) (h) (i)

TEST 1 4.7 9.6 26.8 53.5 79.4 93.9 98.4 99.9 100.0

TEST 2 4.8 9.6 26.5 52.4 78.6 93.5 98.8 99.9 100.0

TEST 3 4.6 10.5 31.5 60.1 83.9 95.6 99.2 99.9 100.0

TEST 4 5.0 10.9 31.8 60.2 83.6 95.5 99.1 99.9 100.0

TEST 5 4.5 18.4 44.5 72.4 91.0 98.0 99.8 100.0 100.0

TEST 6 4.9 19.3 45.1 73,1 91.1 98.1 99.8 100.0 100.0

TEST 7 4.8 21.7 53.8 81.5 95.5 99.3 99.9 100,0 100.0

TEST 8 5.1 19.8 46.9 73.1 90.2 97.2 99.5 99.9 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRUSKAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8 : MARCUS & GENIZI

Group Soacings (Alpha 3 - Alpha 1) fs.d. units)

(a) 0.0 (b) 0.25 (c) 0.50
(d) 0.75 (e) 1.00 (f) 1-25
(g) 1.50 (h) 1.75 (i) 2.00
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Figure 6.48 : p2?nmp = 0  , p = 4 . 4 , r = 3 7 . 0
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Table 6.32 <?nrnP = 0 . Lognormal . o = Q.3

( a ) (b) ( c ) (d) (e) (f) (g) (h) (i)

TEST 1 4.7 9.7 26.6 54.3 80.3 93.5 98.8 99.8 100.0
TEST 2 4,6 9.5 26.0 53.9 79.3 93.0 98.7 99.7 100,0
TEST 3 4.4 9.9 28.7 57.8 83.3 95.4 99.4 99.9 100.0

TEST 4 4.9 10.0 29.3 57,8 83.3 95.1 99.4 99.9 ■100.0

TEST 5 4.8 18.3 44.0 72.4 91.0 97.8 99.8 99.9 100.0

TEST 6 5.0 19.0 45.2 72.9 91.2 97.7 99.8 99.9 100.0

TEST 7 4,9 20.3 50.2 79.8 95.1 99.1 99.9 100.0 100.0

TEST 3 5.1 19.2 43.9 71.5 89.9 96.9 99.7 99.9 100.0

Table 6.33 : p 2 r*nn^p = 0.80 , Loffnorraal CJ = 0.3

(a) (b) ( C ) <d) (e) (f) (g) (h) (i)

TEST 1 5.3 9.5 25.9 53.6 79.6 94.1 98.8 99.9 100.0

TEST 2 4,8 31.7 87.1 99,6 100.0 100.0 100.0 100.0 100.0

TEST 3 5.0 9.2 24.1 50.8 77.1 92.6 98.3 99.8 100.0

TEST 4 4.7 27.6 81.1 98.9 100.0 100.0 100.0 100.0 100.0

TEST 5 5.3 18.4 43.3 72.1 92.0 98.2 99.7 100.0 100.0

TEST 6 5.6 52.5 95.7 99.9 100.0 100.0 100.0 100.0 100.0

TEST 7 5.3 18.7 45.0 73.8 92.7 98.4 99,8 100.0 100.0

TEST 8 5.2 47.5 92.8 99.8 100.0 100.0 100.0 100.0 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5
ANCOVA TEST 6
KRUSKAL - WALLIS TEST 7
RANK ANCOVA TEST 8

BARTHOLOMEW 
BARTHOLOMEW - ADJ 
JONKHEERE 
MARCUS & GENIZI

Group Spacings (Aloha 3 - Alpha 1) fs.d. units).

(a) 0.0
(d) 0.75
(g) 1.50

(b) 0.25
(e) 1.00
(h) 1.75

(c) 0.50
(f) 1.25
(i) 2.00
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Table 6.34 : P2'/ifnp “ 0 . Lognormal , a = 0. 4

(a) (b) ( C ) (d) (e) (f) (g) (h) (i)

TEST 1 4.5 9.8 28.0 54.4 79.1 93.5 98.5 99.8 99.9

TEST 2 4.4 9.5 27.6 53.5 78.2 93.2 98.4 99.7 99.9

TEST 3 4.3 10.7 32.7 63.3 87.5 97.3 99.6 100.0 100.0

TEST 4 4.5 11.0 33.1 63.5 87.1 97.1 99.5 100.0 100.0

TEST 5 5.3 18.8 45.5 72,9 91.3 97.8 99.7 100.0 100.0

TEST 6 5.6 19.4 46.4 73.5 91.1 98.0 99.7 100,0 100.0

TEST 7 5.2 22.8 55.4 84.1 96.9 99.7 100.0 100.0 100.0

TEST 8 5.5 20.4 49.2 76.3 92.1 98.3 99.8 100.0 100.0

Table 6.35 : P2 0.80 , Lognormal . a = 0.4

(a) ( b ) (c) ( d ) (e) ( f ) (g) ( h ) ( i )

TEST 1 4.5 9.5 26.5 53.7 79.7 93.5 99.0 99.9 100.0

TEST 2 5.2 32.9 87.0 99.3 100.0 100.0 100.0 100.0 100.0

TEST 3 4.5 9.1 24.8 51.4 77.4 92.6 98.9 99.8 100.0

TEST 4 4.9 29.6 82.6 99.0 100.0 100.0 100.0 100.0 100.0

TEST 5 4.6 17.8 43.9 73.5 91.3 98.2 99.8 100.0 100.0

TEST 6 5.1 52.7 95.1 99.9 100.0 100.0 100.0 100.0 100.0

TEST 7 4.8 18.5 46.2 74.7 92.2 98.5 99.8 100.0 100.0

TEST 8 5.1 51.1 94.1 99.8 100.0 100.0 100.0 100.0 100.0

The Tests

ANOVA TEST 5 : BARTHOLOMEW
ANCOVA TEST 6 : BARTHOLOMEW - ADJ
KRUSKAL - WALLIS TEST 7 : JONKHEERE
RANK ANCOVA TEST 8 : MARCUS & GENIZI

Group Spacings fAlpha 3 - Alpha I) fs.d. units)

(a) 0.0 (b) 0.25 (c) 0.50
(d) 0.75 (e) 1.00 (f) 1.25
(g) 1.50 (h) 1.75 (i) 2.00

iii&i x
TEST 2 
TEST 3 
TEST 4
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Table 6.36 : P2('nmp ~ 0 . Lognormal . o = 0 .5

(a) (b) (c) (d) (e) (f) (s> (h) (i)

TEST 1 4.8 10.0 28.1 55.6 79.8 93 .0 98.2 99.5 99,9

TEST 2 4.8 9.9 27.8 55.0 79.1 92.8 98.2 99.5 99.9

TEST 3 4.9 12.4 37.7 70.4 90.8 98.3 99.9 100.0 100.0
TEST 4 5.2 12.8 38.4 70.4 90.8 98.3 99.9 100.0 100.0
TEST 5 4.8 19.0 46.2 73.8 90.2 97.4 99,5 99.8 99.9

TEST 6 5.2 19.7 46.7 74.1 90.4 97.4 99.5 99.8 99.9

TEST 7 5.1 24.5 61.4 38.6 97.8 99.8 100.0 100.0 100.0
TEST 8 5.0 21.7 53.6 81.2 94.9 98.7 99.8 100.0 100.0

Table 6.37 . O2P. - 0.80 Lognormal o = 3.5

(a) (b) (c) (d) (e) Cf) (g) (h) (i)

TEST 1 4.5 9.0 26.0 54.2 79.7 93.7 99.0 99.8 100.0

TEST 2 4.6 33.4 86.8 99.2 100.0 100.0 100.0 100.0 100.0
TEST 3 4.6 8.6 24.5 51.8 77.9 92.6 98.7 99.8 100.0

TEST 4 4.8 29.6 83.8 99.0 100.0 100.0 100.0 100.0 100,0

TEST 5 5.1 17 i 7 43.8 72.7 91.5 98.1 99.9 100.0 100.0

TEST 6 5.2 54.1 94.7 99.8 100.0 100.0 100.0 100.0 100.0

TEST 7 5.4 18.2 45.9 74.6 92.3 98.3 99.9 100.0 100.0

TEST 8 5.2 54.5 96.0 99.9 100.0 100.0 100.0 100.0 100.0

The Tests

TEST 1 
TEST 2 
TEST 3 
TEST 4

ANOVA TEST 5
ANCOVA TEST 6
KRUSKAL - WALLIS TEST 7
RANK ANCOVA TEST 8

BARTHOLOMEW 
BARTHOLOMEW - ADJ 
JONKHEERE 
MARCUS Sc GENIZI

Group Spacings (Alpha 3 Alpha 1) fs.d. units)

(a) 0.0
(d) 0.75
(g) 1.50

(b) 0.25
(e) 1.00
(h) 1.75

(c) 0.50
(f) 1.25
(i) 2.00
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Figure 6.50 : p2onT  = 0 . Lognormal . q = 0.3
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Figure 6.52 : P2Cr,̂ p = 0 , Lognormal . o = 0.4
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Figure 6.54 : p2r^mp = Q , Lognormal , o = 0.5
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Figure 6.55 : p2crt[pp = 0.80 . Lognormal , o = 0.5
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the Normal errors situation was attributable to the poor 
performance of Test 8.

e.g Normal errors, zero correlation, and for both
configurations of the group means : Test 8 performed very much
worse than Test 6, where both tests incorporated ordering and 
(uninformative) covariates, but Test 6 had the additional
assumption of Normal errors. The difference between these two
tests was much greater than any other such pair of tests 
(i.e Tests 1 & 3 , Tests 2 & 4 and Tests 5 & 7).
For Pc0mp =0.2 , Test 6 still performed substantially better 

than Test 8. For the case of unequal spacing of the group means, 
the latter had similar power to Jonkheere's test (Test 7), and to 
Rank Analysis of Covariance (Test 4), despite incorporating more 
prior information. For Pc0mp = 0.80, Test 4 still out-performed 
Test 8 in certain circumstances.

An interesting feature which arose in connection with the 
Marcus and Genizi test was that other power curves commonly
crossed that for the Marcus and Genizi test. The latter appeared 
to perform relatively well at small group separations but
relatively poorly for larger separations. The gain in power as 
the group separation increased was relatively small compared with 
other tests.

It could be suggested that, perhaps, the poor performance of 
Marcus & Genizi's test could be attributed to a poor choice of k, 
the ’’smoothing parameter" in the matching function. This is 
unlikely, however, since the work of Section 6.2 would indicate 
that the performance of the test is relatively insensitive to the 
choice of k.

(ii) As observed in previous literature (e.g. Puri(1965)),
Jonkheere's non-parametric test performed better than its Normal 
counterpart, Test 5, for equal spacing of the group means, but 
less well where all-except-one of the group means were equal.

(2) When the error distribution was Normal, the Normal tests 
performed better than their non-parametric counterparts, but not 
by a large margin.

For example, for a given correlation, and for the separation 
of the groups giving approximately 50% power for a given 
non-parametric test, the gain in power by using the corresponding 
Normal test was generally less than 5% . (This excludes
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comparisons involving the Marcus and Genizi test, which performed 
unexpectedly poorly.)

(3) Only at the more extreme deviations from Normal errors did 
the non-parametric tests perform more favourably than their 
Normal counterparts.

(4) As expected, there was little, if any, difference between 
the results obtained in the presence of positively skewed errors 
and those obtained in the presence of negatively skewed errors.

The deviations in significance level from the nominal 5% were, 
in general, small enough to be attributable to random 
variability. (Tor 15000 simulations, the observed significance 
levels should be within 5 % ± 0.35 % . In only two cases were
the observed significance levels outside this range.)

(5) As the error distribution became progressively non-Normal, 
the performance of the non-parametric tests increased, while the 
power of the Normal tests stayed approximately constant.

This was the pattern seen
(i) as p increased with y held constant at y = 3

(ii) as y increased with p held constant at p = 0
(iii) as a increased for the lognormal error distributions

-  2
(6) It is worth noting that the proposed test, Ea(jj, performed 

very well, both in the presence of Normal errors and in the 
presence of non-Normal errors, for all values of correlation 
studied.

Normal Errors *. In the presence of Normal errors, the 
-  2

proposed test, Ea^j (Test 6) was the most powerful of all the
tests compared, for  ̂0, for both equal spacing of the group
means and for^unequal spacing. The margin of improvement of 
^adj over E^ was much larger than the difference between any 
other such pairs of tests (i.e Tests 1 & 2 , Tests 3 & 4 and 
Tests 7 & 8). The test also performed favourably for = 0 
(performing similarly to the best of the other tests).

Non-Normal Errors : Let Pcomp represent the squared correlation
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defining the Normal model to which a given set of results were to
? “ 2 be compared. Then for Pcomp x -̂n g ^ ^ a l  Eaĉ j still performed

better than the other tests, with the exception of the cases with
error distributions defined as :

(i) A mixture distribution with (3 = 0 and y = 5.4
(ii) A lognormal distribution with p = 1.75 and y = 8.90

where it performed marginally worse than its non-parametric
competitor.

For P2omp= 0, in general, as would be expected, the
non-parametric test intended for use in the absence of covariates

- 2
(Test 7) performed best. Eacjj generally performed second-best, 
followed by Test 8, Marcus and Genizi1s test.

6.4 : Summary and Conclusions

The aim of Chapter 6 was to assess, using simulation, the 
benefits of inclusion of various forms of background information 
into the analysis of response data.

The background information was classified into three basic 
types :

(1) Covariate Information
(2) Information allowing a Normality assumption to 

to be made about the responses (or the responses 
given the covariates).

(3) Ordering information

The results obtained could be summarised as follows :
In general, the greater the amount of information which can be 

incorporated into an analysis, the more powerful the resulting 
test will be.

For example, even if a covariate is only moderately correlated 
with the response variable, its incorporation into an analysis 
can produce sufficient gains in sensitivity to make its inclusion 
worthwhile.

From the simulation results, it can be seen that for Normal 
errors, and for most cases using non-Normal errors which were 
considered, the tests assuming Normality performed better than 
their non-parametric counterparts. Even for the most severely 
non-Normal cases considered, any gains in power achieved by using 
non-parametric tests were minimal.
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Thus, ideally, it would be recommended to use Normal-tests as 
a matter of course, and to incorporate information with respect, 
to covariates and/or ordering where possible. One exception would 
be where it is desired to have as simple a test as possible. Then 
a non-parametric test would, generally, be more straightforward 
to apply than its Normal counterpart, and any losses of power 
incurred would not be large.

One practical problem which can arise is that when analyses 
are carried out on the basis of strong distributional assumptions 
about the data, this can arouse suspicion on the part of non
statisticians involved. Here, possibly the results of non- 
parametric analyses would be more credible, without much loss of 
statistical efficiency.
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Chapter 7 : Practical Applications

7.1 ; Introduction

The original aim of this chapter was to look at some published 
papers where order restricted inference would be appropriate, and 
to compare the published results to those which would be obtained 
by using the appropriate ordered inference methodology.

The sources of examples used were "The British Journal of 
Clinical Pharmacology" and "Clinical Pharmacology and 
Therapeutics" (years 1985-1989) which publish the results of 
clinical trials of all phases, as well as reporting advances in 
the pharmacological field.

As the tone of the first sentence of the chapter would 
suggest, this was not as straightforward as might be expected, 
for a variety of reasons :

(1) In the investigation of responses to differing drug 
doses, crossover studies were much more common than parallel 
group studies. It was not unusual to have as few as six 
individuals participating in studies of as many as five different 
dosing schedules.

(2) Often, there was insufficient information published even 
to reproduce the authors' own analyses, and certainly not enough 
to perform alternative analyses. Incidentally, all that is 
required in order to perform a Bartholomew's test is the sample 
means and their standard errors for the groups under study, plus, 
of course, the numbers of cases per group. However, often the 
standard errors were not supplied with the published results.

In the published papers, analyses tended to be based on either 
Analysis of Variance or Kruskal-Wallis tests, followed up by 
either tests or confidence intervals for differences between 
pairs of groups (often with no signs of correction for the 
multiple testing).

Despite there often being clear evidence of the 
appropriateness of order restricted inference, in no papers 
whatsoever were such testing procedures applied. This must, 
surely, be an indication of the need for better promotion of some
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simple ordered testing procedures (e.g. Jonkheere's test would 
not be difficult to apply, in general, and has a simple 
approximate null distribution).

There now follow re-analyses of some studies for which there 
was sufficient published information to allow the application of 
alternative testing procedures. The poor standard of reporting of 
trials discussed above made it difficult to locate convincing 
examples. Indeed in order to find an example where raw data were 
available, the search needed to be extended beyond the more 
specialised journals. Thus the first example comes from a recent 
report in the British Medical Journal, whereas the remaining 
examples, all based on summary statistics, came from the journals 
set out at the start of this chapter.

7.2 ; A Re-Analysis of the Plasminogen Activator Data
(See McNeill et al(1988))

The aim of this study was to investigate the thrombolytic 
efficacy of recombinant tissue plasminogen activator in acute 
myocardial infarction. This plasminogen activator works in a 
clot-specific manner (unlike more traditional treatments), 
activating the conversion of plasminogen to plasmin, which 
subsequently breaks down fibrin to fibrin degradation products.

In this study, fifty patients with acute myocardial infarction 
of four hours duration or less were randomised to receive either 
20mg, 50mg or lOOmg of recombinant tissue plasminogen activator 
intravenously, over ninety minutes.

After the ninety minute infusion period, the reperfusion grade 
of the affected coronary artery was assessed using coronary 
arteriography. Four grades of reperfusion were defined as 
follows:

(0) No perfusion
(1) Penetration with minimal perfusion
(2) Partial perfusion
(3) Complete perfusion .

In addition to the reperfusion data, various clotting factors 
were assessed after the ninety minute infusion period.

In the published paper, the reperfusion data were presented in 
the form of a 4 x 3 table of reperfusion grade against dose of 
plasminogen activator, and conclusions about the effects of the
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activator on the reperfusion grade were drawn on the basis of a 
Chi-Squared test on that 4 x 3  table. Clearly such an analysis 
exploits neither the knowledge about the ordering of the doses of 
the activator nor the knowledge about the ordering of the 
reperfusion grades. In the following section, the results of a 
more appropriate analysis will be presented.

In the paper, for each of the clotting factor variables, the 
data were assessed using Analysis of Variance. Again, this does 
not make use of the prior ordering information available. A 
re-analysis of one such variable follows later. It should be 
noted that for some of the clotting factor variables presented in 
the paper, quite apart from being inefficient, the Analysis of 
Variance procedure would not even be appropriate, due to the 
widely differing variabilities in the groups under study. For 
example, for the total degradation products, the estimated 
standard deviations were 1.08, 4.55 and 11.35. One assumes that 
for such data, at the very least some form of transformation 
should have been applied before any analyses were performed.

The Re-Analyses

(a) A Re-Analysis of the Reperfusion Data

The reperfusion data were as shown below :

Reperfusion Dose of Tissue Plasminogen Activator
Grade 20mg 50mg lOOmg Total

0 4 4 1 9
1 4  1 2  7
2 3 5 4 12
3 5 7 10 22

Total 16 17 17 50

Due to the known thrombolytic properties of the tissue 
plasminogen activator, it would be natural to assume that as the 
dose of the compound increased, the thrombolytic effects would 
also increase i.e. the reperfusion grade would become higher. To 
re-analyse these data, a variant of Jonkheere's non-parametric
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test making allowance for tied values was used, as shown below.

k-1 k
Test Statistic : J = 2 E E p^j

i=l j=i+l

k-1 k 
E E 
i=l j=i+l
E E  ni nj

where
np nj

Pij -  Y E Pirjs 
r=l s=l

with Pirjs

1 if Yir * Yjs
12 if Yir = Yis
0 if Yir  ̂Yjs

When applied to the reperfusion data, a value of 205 was 
obtained for J, with an estimated variance of 227154/^g t This 
gave rise to a tail probablility of 0.034.

The conclusions from this analysis are in contrast with those 
which were published, where the three doses were not found to be 
significantly different with respect to the resultant perfusion 
grade (x^ = 6.22, on six degrees of freedom, leading to a tail 
probability of 0.40). This illustrates how the appropriate use 
of an ordered test can increase the sensitivity for detecting 
specified forms of group differences. It must be stated, however, 
that the analysis used in the paper was extremely insensitive. 
Some form of rank correlation test, or even a Kruskal-Wallis test 
on the data would have been preferable to the Chi-Squared test 
which was used. If a Kruskal-Wallis test, adjusted for ties, is 
performed, a value of 3.81 is obtained, which on reference to a 
Chi-Squared distribution on two degrees of freedom leads to a 
tail probability of 0.149. A better indication of the effect of 
incorporating ordering information is given by comparing the 
result of the Jonkheere's test (p = 0.034) to that from the 
Kruskal-Wallis test (p = 0.149), rather than comparing to the 
published Chi-Squared test result (p = 0.40).

(h) A Re-Analysis of the Percentage Fibrinogen Data

Due to the known mode of action of the tissue plasminogen
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activator, it would be expected that as the dose increased, the 
percentage of fibrinogen remaining after the ninety minute 
infusion period would decrease. However, as mentioned earlier, no 
use was made of such information in the published analysis. These
data will now be re-analysed using a Bartholomew's test.

A
Let pi be the sample mean for the i^11 group (i = 1,2,3) and

let sd| be the sample standard deviation for that group.
A* .

Let p'{ be the isotonic estimate for the ith mean. The results
of Bartholomew's test could then be calculated as shown below.

20mg 50mg lOOmg
i~l i=2 i=3

ni 16 17 17
A
Pi 86.3 75.1 62.8

sdi 14.92 14.12 20.61

p* 86.3 75.1 62.8

p = Grand Mean = 3725.10/^^ = 74.502

~ 2  3  yy yy
Denominator of = Z {(ni~l)sdiz + n̂ p- /̂} - N pz

i=l

= 17886.53

Numerator of = Z ni (p£ - p)2 = 4561.0898
i=l

-  2
Thus = 0.255 .

This result is statistically significant, with tail 
probability of 0.00037. This compares with a tail probability of 
0,001 if an Analysis of Variance test is used. Although it is 
clear that the overall conclusions of the two tests are the same, 
the strength of evidence available from the more appropriate 
Bartholomew's test is substantially greater.
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7.3 : A Re-Analysis of the Cefotaxime Study
(See Matzke et al(1985))

Cefotaxime is a cephalosporin, effective in the treatment of 
most clinically relevant gram-positive and gram-negative 
bacteria. The aim of this study was to assess the kinetics of 
cefotaxime and its active metabolite, desacteyl cefotaxime in 
patients with varying degrees of renal function.

Subjects entering the study were classified into five groups, 
namely :

(I) Normal creatinine clearance (CLcr i 90ml/min)
(II) Mild renal insufficiency (30  ̂CLcr £ 89 ml/min)

(III) Moderate renal insufficiency (16 ^ CLcr 5 29 ml/min) 
(IV) Severe renal insufficiency (4 S CLcr ^ 15 ml/min)
(V) End-stage renal disease requiring maintenance 

haemodialysis (CLcr L 6 ml/min)

Each subject received a single lmg dose of cefotaxime, after 
which blood samples were drawn at fixed times and urine samples 
were collected, in order to determine the individual patient 
kinetics using established evaluation techniques.

In the published paper, separate Analysis of Variance
procedures were used to compare each of the kinetic parameters 
among the different groups. Here, as an example, the results for 
G m a X i the peak serum concentration for the desacetyl metabolite 
will be re-analysed.

Note that here, instead of the treatments applied having some 
prior ordering, it is the stage of advancement of the patients1 
disease state in the different groups which has a natural 
ordering. It could be expected that, since the drug clearance
from the kidneys would be impaired in the groups with renal 
insufficiency, that the serum drug concentrations would therefore 
be higher in these groups, the magnitude of the concentration
dependent on the degree of impairment. It would seem to make
sense incorporate the prior ordering information, and employ some 
form of ordered testing technique on these data.

Erom the paper, it is not clear why the CLcr data were 
categorised to produce the five patient groups. Rather than group 
the CLcr data, possibly some form of rank correlation or robust 
regression approach would have been more appropriate.
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The estimated means and standard deviations for the Cmax 
parameter in the different groups are shown in the following 
section.

The Re-Analysis
A

Let p^ be the sample mean Cmax value for the iTin group 
(i - 1,2, 5) and let sd^ be the sample standard deviation.
for that group.

A* ^Let p'̂  be the isotonic estimate for the i1111 mean. The results
of Bartholomew's test could then be calculated as follows :

I II III IV V
i=l i=2 i=3 i=4 i=5

8 8 8 8 8
A
Pi 7.9 9.A 8.8 14.7 21.0

sdi 6.0 6.1 2.5 5.5 4.1
**
Pi 7.9 9.1 9.1 14.7 21.0

A
p = Grand Mean = 4 9 4 . 4 / = 12.36

Denominator
- 2 

of Ek =
5 A 
£ {(n^-l)sd^^ + niP 
1=1

i2> - N A2

1857.256

Numerator
- 2 

of Ek = 5 A*£ nt (p'{ - £)2 = 970.176
i=l

-  2
Thus Ek = 0.522 .
(Significant, with tail probability of p = 1.1*10“^).

Comparison of the Results of Bartholomew's Test to the
Results of Analysis of Variance

For this example, clearly the method of analysis should be 
relatively unimportant, due to the large magnitude of difference 
between the groups. Even procedures with relatively poor 
sensitivity could pick up such overwhelmingly large group
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differences easily.
As in the previous example, it was found that although the 

conclusions which could be drawn from the Analysis of Variance 
and the Bartholomew's tests were the same, the strength of 
evidence of group differences available from the more appropriate 
Bartholomew's test was greater (but both tests gave results which 
were highly statistically significant).

While a classical Analysis of Variance yielded a tail 
probability of 2.3*10"^, the result for a Bartholomew's test was 
even more significant with a tail probability of 1.1*10_6.

7.4 : A Re-Analysis of the Tolrestat Study
(See Raskin et al(1985))

In this study, the effects of various doses of the inhibitory 
compound, tolrestat, on the red blood cell sorbitol level were 
compared. Individuals entering the study were assigned at random 
to receive either

(I) A placebo
(II) Tolrestat, 25mg b.i.d.

or (III) Tolrestat, lOOmg b.i.d.
After two weeks of treatment, the red blood cell sorbitol 

level was measured, and the percentage change from the 
pre-treatment baseline value was calculated.

In the published paper, conclusions were drawn on the basis of 
an Analysis of Variance procedure performed on these percentage 
changes, plus follow-up multiple comparisons. The conclusions 
were that while both of the doses of active compound were 
significantly different from placebo, there was no significant 
difference between effects of the two active doses.

Although the result of the Analysis of Variance was not given 
in the paper, the results will be calculated here. It must, of 
course, be borne in mind that in working purely with the 
published figures, one is always limited by the precision to 
which the published figures are given.

In these data, due to the nature of the compound being 
studied, and due to the type of measurements being analysed, 
there is a natural ordering of the expected magnitudes of the 
results in the different groups, in that the higher the dose of 
the inhibitor, the greater the expected magnitude of sorbitol
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reduction would be. The data will now be analysed using both a 
Bartholomew's test and an Analysis of Variance test.

The Analysis 

A
Let Pi be the sample mean difference for the itn group 

(i = 1,2,3) and let se^ be its standard error. Let p£ be the 
isotonic estimate for the i^h mean. The results of Bartholomew's 
test were then calculated as follows :

Placebo 25mg lOOmg
i=l i=2 i=3

ni 8 8 7
A
Pi 20.4 -25.8 -57.5

sei 13.8 11.3 13.2

20.4 -25.8 -57.5

p = Grand Mean = “445,7/23 = 19.38

- 2 3 A A
Denominator of = 2 {ni(ni-l)seiz + n^pi^} - N p^

i=l

= 48294.6

Numerator of E^ - I ni (p£ - p)^ = 23161.3
i=l

-  2
Thus Efc. = 0.480 .
(Statistically significant, with tail probability of 0.00037).

When a standard Analysis of Variance procedure was performed 
on the same data, the test statistic obtained had an associated 
tail probability of 0.0015. Thus, as with the previous example, 
although the conclusions which could be drawn from the two tests 
are the same, the strength of evidence from the Bartholomew's 
test is greater.
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7.5 ; A Re-Analysis of the Felodipine Study
(See The Canadian Felodipine Study Group(1988))

The aim of this study was to look at the anti-hypertensive 
effects and side-effects of the calcium-antagonist felodipine in 
patients with persistent hypertension despite (E-blocker therapy.

After a four-week placebo run-in period, patients with supine 
diastolic blood pressure exceeding 95mmHg were randomised to one 
of the following three treatment groups :

(1) Placebo
(2) Felodipine, 5mg per day
(3) Felodipine, lOmg per day ,

where their progress was monitored after two weeks and after four 
weeks of study treatment.

In the published paper, analysis of the changes in blood 
pressure was performed using multiple regression on drug dose, 
initial blood pressure and age. Whether the use of dose as a 
covariate was appropriate is doubtful, since there are usually 
problems of non-linearity of the dose-response relationship. 
Probably, what would be more appropriate would be to perform some 
form of ordered test, possibly after adjustment for the initial 
blood pressure and age. Unfortunately, the authors omitted to 
publish the means and standard errors for the blood pressure 
differences, so that even the simplest of ordered tests on the 
raw differences could not be performed.

The adverse effects associated with felodipine tend to be 
mainly flushing, plus side-effects related to fluid retention, 
for example ankle swelling and weight gain. Presented in the 
paper were the average weight gains and ankle swellings plus 
their standard errors for the different groups. Here the results 
of ankle swelling will be re-analysed. It could be expected that 
as the dose of felodipine increased, that the problem of ankle 
swelling would also increase, and so order restricted testing 
should be appropriate.

The means and standard errors for the changes in right ankle 
circumference at weeks two and four are shown in the following 
section.

In the paper, the analyses used were a global Analysis of 
Variance test followed up be pairwise t-tests between the groups 
(with no indication given of any adjustment of the t-deviates
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used for the multiple testing).
The conclusions drawn from these analyses were that there was 

a "slight increase" in the ankle circumference for both 
felodipine groups after two weeks (compared to placebo), that 
there was a "significant increase" after four weeks, and that 
there were "no changes" in the placebo group.

The Re-Analysis

(a) Analysis of the Changes After Two Weeks
A ,Let p-i be the sample mean difference for the i*1*1 group

A...(i = 1,2,3) and let se^ be its standard error. Let p£ be the 
isotonic estimate for the i^h mean. The results of Bartholomew’s 
test were then calculated as follows :

Placebo 5mg lQmg
i=l i=2 i=3

32 36 34
A
Pi - 0.1 0.3 0.4

0.2 0.2 0.2

- 0.1 0.3 0.4

p = Grand Mean = 21.2/^2 = 0.208

Denominator of = Z (n^(n^-l)se^^ + npp-j^} - N p3
i=l

139.554

- 2 3 A *  A _
Numerator of = £ n^ (p^ - p)^ = 4.594

i=l

-  2
Thus E^ = 0.033
(Non-significant with tail probability of p = 0.066).
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(b) Analysis of the Changes After Four Weeks

Using the same notation as in (a), the results of 
Bartholomew's test were as follows :

ni
A
Pi

sê
A*
Pi

Placebo 5mg lOmg
i=l i=2 i=3

24 31 29

-0.1 0.6 C
O

o

0.2 0.2 0.2

-0.1 0.6 0.8

= Grand Mean = 39.4/84 = o.469

- 2 J „ A _ A_
Denominator of = Z {n^(n^-l)se^z + n^p^ } “ N \x̂

i=l 

= 103.240

" 2 3 A* A „Numerator of Ek = Z n^ (p£ - p)z = 11.480
i=l

-  2
Thus Ek = 0.111
(Statistically significant with tail probability of p = 0.002)

Comparison of the Results of Bartholomew's Test to the
Results of Analysis of Variance

As in the previous examples, it was found that although the 
conclusions which could be drawn from the two types of test were 
broadly similar, the strength of evidence of group differences 
available from the more appropriate Bartholomew's test was 
substantially greater than that available from a classical 
Analysis of Variance.

For the Week 2 data, a classical Analysis of Variance yielded 
a tail probability of 0.191, compared to the much more 
"borderline" value of 0.066 for the Bartholomew's test. 
Similarly, for the Week 4 data, an Analysis of Variance yielded a 
tail probability of 0.008, compared with a value of 0.002 for the 
Bartholomew's test.
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7.6 : Conclusions

The re-analyses of the published results illustrate how, with 
the use of appropriate order restricted inference, one is able to 
improve the statistical sensitivity for detecting specified forms 
of differences between treatment groups with an a priori 
ordering. Tor most of the examples considered, no major changes 
in conclusions resulted from using the appropriate methodology. 
However, for the example of Section 7.2, the conclusions drawn 
about the comparative effects of the applied treatments depended 
on the method of analysis used. While the published Chi-Squared 
test was fairly convincingly non-significant, the more sensitive 
Jonkheere's test produced a result indicating significant 
differences among the groups. It is not difficult to imagine 
cases where a non-signifleant, but borderline, result from an 
Analysis of Variance could correspond to a highly statistically 
significant result from an order restricted test. In that case, 
the conclusions drawn, and hence the plans for future research, 
could be different dependent on the method of analysis used.

The re-analyses shown in this chapter have worked purely on 
the basis of performing a single global test of equality versus 
some ordered alternative. What is more common is that if the 
global test was rejected, some form of follow-up procedure would 
be used to establish where the significant treatment differences 
lay. In the context of order restricted inference, a suitable 
follow-up closed testing procedure which preserves the required 
overall significance level was described by Marcus et al(1976).

Often, one would want to produce confidence intervals for the 
group means or for differences between groups means. Tor problems 
where order restricted inference is clearly appropriate, the 
confidence intervals could be based around the isotonic mean 
estimates, rather than around the original sample means.
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Chapter 8 : Conclusions and Further Work

The aim of the work which has been described in the previous 
chapters was to look at two practical problems which are common 
in the context of clinical trials, but which are often dealt with 
inappropriately.

Chapters 2-4 looked at the problems of dealing with incomplete 
data while Chapters 5-7 looked at the potential benefits of 
incorporating ordering information into the analysis of response 
data.

In general terms, the techniques which are normally applied to 
these problems are not always invalid, but do always involve 
disregarding some of the useful information available.

In this thesis, various alternatives were put forward to 
replace the existing methods used in these problems, and to allow 
incorporation of more of the information available. Also, 
compromise solutions were provided for use in circumstances where 
the performance of complex analyses would not be possible.

In the analysis of incomplete multivariate data, the methods 
in common use (e.g. using only complete cases) tend to be 
invalid, and the presence of even relatively few incomplete cases 
can cause very large biases in the results obtained. Clinicians 
need to be made aware of this problem, and should be educated 
about the simple checks which can be made to assess whether there 
are likely to be severe bias problems in using the simpler 
methods. Statisticians, meanwhile, need to give more thought to 
the development of simple approaches which could be accepted by 
the clinicians without undue suspicion.

On the topic of incorporating ordering information, the 
picture is less clear. One can gain efficiency in analyses by 
using appropriate methodology, but this could be at the expense 
of losing credibility in the eyes of the clinicians involved. In 
effect, the appropriate methodology amounts to a generalisation 
of one-sided tests, and these can cause great controversy even in 
their simplest forms (see Salsburg(1989), Fleiss(1987), 
Fleiss(1989)). Further work in this area could run the risk of 
being an exercise in mathematical statistics, with little, if 
any, relevance to clinical medicine.
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The basic overall conclusions were that, to achieve 
statistical efficiency, within the computational constraints in 
force, as much of the useful information available should be
included as possible, be it ordering or covariate information, or 
information from incomplete cases, since the gains in precision 
and/or accuracy in the results obtained could be surprisingly
large. However, the use of complex statistical procedures could
prevent the results obtained being credible in the eyes of the
clinicians involved.

As is always the case, the research described in this thesis 
could not possibly hope to answer all of the questions of 
interest in the areas covered. Rather, this work can only be 
thought of as a starting point and source of ideas for future 
research. On the topic of analysis of incomplete data, it would 
be interesting to look at some models for multivariate data where 
the covariance matrix is restricted to have a given structural 
form, for example, the compound symmetry model which is commonly 
used in the analysis of complete repeated measures data. Although 
some work has been done on fitting restricted models in the 
single-group case (see Jennrich and Schluchter(1986)), little 
such work has been done for the multiple-group problem.
(Some coverage is given in Murray(1989)).

On the topic of ordered-restricted inference, there are many 
possibilities for further research. For example, a common design 
of Phase II studies is where each individual receives in turn 
each of the treatments under investigation e.g. a single patient 
may receive the placebo, and the low dose and the high dose of 
the active compound, in a random order. Clearly the observations 
from a given case could not be assumed to be unrelated, and so 
some form of multivariate analysis would be required, for example 
by fitting a Multivariate Normal model to each case, then 
performing an overall test for ordering of the mean vector 
components. Although some early work is available for testing 
such multivariate hypotheses (see Kudo(l963)), little work seems 
to have been done in the intervening period. It would be 
interesting to look at such models with a view to incorporating 
covariate information, perhaps in some form of multivariate 
regression model with ordered intercept parameters. As a side 
issue, it could also be worth investigating the reasons for the 
poor performance of the Marcus and Genizi test used in the
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simulations of Chapter 6.

Although the ideas for further research work are useful, 
probably the most important "further work", and, arguably, the 
most difficult to achieve, is the problem of how to gain 
acceptance of fairly complex statistical procedures in the 
medical community without losing credibility. It could be argued 
that it is far more important to heighten the awareness of 
clinical investigators to, for example, the possible problems of 
bias in the standard ad hoc analyses of incomplete data, and to 
suggest alternative analyses, rather than to advance research 
into more and more complicated statistical procedures, leaving 
the clinical parties involved behind.
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Appendix 1 : Isotonic Regression and the
Up and Down Blocks Algorithm

Definitions : (i) Let X = { x^, X2, . .., x^} , with the elements 
of X conforming to the simple order ^ X2  ̂ ... = x^ .
A function f on X is isotonic with respect to this ordering if

f(x]_)  ̂f(x2) ^ ...£ f(x^)
(ii) Let w(x) denote a positive weight function 

defined for x, and let g denote a given function of X.
Then, a function g" is defined as an isotonic regression on g

with weights w if and only if g'f is an isotonic function which 
minimises

Z (g(x) - f(x))2 w(x) among all such functions, f.
xeX

The Problem of Interest :
We have k samples drawn from Normal populations.
Let Y^j - Observation j from Sample i

(i = 1,...,k ; j = 1,...,ni)
with Y-̂ j ~ N(pi , a2) , where it is known that the k means
conform to an ordering pi  ̂P2 = D3
Let the sample means for the k groups be represented by

Yj_, Y2» • ••* Y^ . It is of interest to produce maximum 
likelihood estimates for the population means which follow the 
known ordering conditions. Due to sampling variability, however, 
the sample means may not follow the desired ordering.

For the k samples, the likelihood function is given by

{ a /(2h) }N
exp

1 k ni (Yy 
 X X ______
2 i=l j=l

>i>2

where N is the total number of observations.

To maximise the likelihood, subject to the defined constraints, 
it can be seen that this is equivalent to finding values for 
Pi, . . , , pk to minimise 

k n-̂
Z Z (Yjj - Pi)2 subject to p^  ̂ ... S pĵ

i~l j®!
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This can easily be shown to be equivalent to minimising
k
2 n^ (Y± - subject to h i  ^  • • •  ^  U k

i=l

The Up and Down Blocks Algorithm

The identical nature of this problem and the isotonic regression 
problem defined in (ii) above can be seen by inspection.
One algorithm for performing isotonic regression, the 'Up and 

Down Blocks Algorithm' was described succinctly by means of a 
flow-chart in the 1972 book by Barlow et al(1972) (reproduced 
below).

The aim was to take a set of values, X = {x^, and
provide an isotonic regression for these. For the problem defined 
in the previous section, each x^ e X would be a sample mean.

For the algorithm, a block is defined as a set of consecutive 
values of X. The method begins with each individual x^ as a block 
on its own, and progressively pools together consecutive blocks 
if they do not follow the required ordering, continuing to pool 
until there are no further ordering violations. The flow-chart 
describing the operation of the algorithm was as shown below.

At each stage of the algorithm, one block is specified as 
active (i.e specified as a possible candidate for amalgamation 
with its surrounding blocks).

A block is defined as up-satisfied if the mean for that block 
is less than the mean for the immediately-following block. 
Similarly, a block is defined as down-satisfied if the mean for 
that block is greater than the mean for the immediately-preceding 
block.

In the chart, the abbreviations are :
U.S. *. The active block is up-satisfied
D.S. : The active block is down-satisfied
P.U. : Fool the active block with the next higher

block, the new block becoming active 
P.D. : Fool the active block with the next lower

block, the new block becoming active 
N.H. : The next higher block becomes active
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Figure A 1 ,1 : The Up and Down Blocks Algorithm
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