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SUMMARY

Radiologists and neurosurgeons debate the need to refer all 

head injured patients for radiography. Whilst radiologists have 

constructed a management strategy for referring recent head 

injured patients for computerised tomography scanning and X-ray, 

neurosurgeons have devised guidelines for the management of 

patients with a head injury for which the presence/absence of a 

skull fracture is an important feature for admission to hospital.

To examine whether individuals with a high risk of a skull 

fracture could be identified, a study based on 3424 patients from 

the Accident and Emergency Department at the Monklands District 

General Hospital was carried out. Twelve variables for each 

attender were considered. By employing different discrimination 

procedures, it was hoped that a classification rule with low 

error rates could be identified to determine the presence of a 

skull fracture.

The second section of this thesis deals with estimating the 

risk of a head injured patient developing an intracranial

haematoma in an attempt to reduce the number of unnecessary 

admissions. Data were available on 8504 head injured patients

from Accident and Emergency Departments in Great Britain plus 988

head injured patients from the Haematoma Study at the Southern

General Hospital.

The medical background to the two questions posed in this 

study are described in more detail in Chapter 1.

In Chapter 2, a comprehensive examination of the twelve 

variables recorded at Monklands District General Hospital is 

carried out. Combining categories of some variables and the 

construction of the new variable Glasgow Coma Sum from the three
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variables Eyes Open, Motor and Verbal are discussed.

The application of the linear logistic regression model to 

the two class discrimination problem (absence/presence of a skull 

fracture) is considered in Chapter 3. The performance of this 

method is assessed using error rates - sensitivity and 

specificity, the Youden Index and the area under the receiver 

operating characteristic curve. The linear logistic regression 

model employing the three variables - Glasgow Coma Sum, 

Headache/Vomiting and Facial Injury - seem to perform well in 

terms of the three aforementioned methods of assessment. At the 

end of this chapter, the linear discriminant is contrasted with 

the linear logistic regression model utilising the subsets 

{COMASUM, VOM, FAC) and {COMASUM, VOM, FAC, SCALP). Both models 

appeared to perform equally well.

In Chapter 4, an alternative procedure to the linear logistic 

regression model for the discrimination problem based on 

classification trees is described. A comparison of the two 

methods is made using the Brier Score. Although only small 

differences existed, the classification tree approach is 

preferable on the basis of being a simpler method in practice for 

allocating future patients and being able to handle missing data.

To answer the second question, the absolute and relative 

risks of developing an intracranial haematoma are considered in 

Chapter 5. The calculation of confidence intervals for both 

types of risks are described. Two approaches for calculating the 

confidence intervals for relative risks are considered.

In Chapter 6, four features of the data set - Cause of 

Injury, Glasgow Coma Sum, Sex and Skull Fracture - are employed 

to estimate the risk of a head injured patient developing an 

intracranial haematoma. Risks are also extended to include



children. Only Skull Fracture and Glasgow Coma Sum were useful 

for considering future management of a head injured patient. An 

adult head injured patient with no skull fracture and Glasgow 

Coma Sum of 15 has a low risk of a haematoma. Patients who have

no skull fracture and Glasgow Coma Sum of 9-14 or 3-8 or have a

skull fracture present with Glasgow Coma Sum of 15 have 

intermediate levels of risk, while patients with a skull fracture 

and Glasgow Coma Sum of 9-14 or 3-8 have a high risk of 

developing an intracranial haematoma.

Children suffering from a head injury with no skull fracture

and Glasgow Coma Sum of 15 have a low risk of developing an

intracranial haematoma, while children with a skull fracture and 

Glasgow Coma Sum of 3-8 have a high risk of developing an 

intracranial haematoma.

Ammendments to the existing guidelines for admission or 

transferral to a Neurosurgical Unit plus appropriate management 

strategy for referring head injury patients for radiography are 

discussed in Chapter 7.
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CHAPTER 1 

INTRODUCTION

Head injuries account for a notable part of the work of 

Accident and Emergency (A and E) Departments, and because of the 

risk of serious complications, are a source of concern to the 

clinicians who staff them. A recent survey in Scotland indicated 

that head injuries accounted for 11% of all attenders at Accident 

and Emergency Departments (Strang et al., 1978). This represents 

in the United Kingdom, about one million new head injury 

attenders every year; one for every 65 of the population (Jennett 

and MacMillan, 1981). Most attenders are only mildly injured and 

require no special treatment. In 1983, Guidelines for the 

management of patients with a recent head injury were drawn up 

by a group of neurosurgeons (Appendix I) to define criteria aimed 

at reducing unnecessary admissions and allocating more effective 

care to those patients whose brain injury demands close 

attention.

The aim of the clinician is to prevent or reverse any 

preventable or reversible complication as a result of a recent 

head injury, and in particular to detect and remove intracranial 

haematomas - accumulations of blood within the tissues of the 

brain that clots to form solid swellings - as soon as possible.

Whilst infection can be prevented by appropriate head injury 

management, the recovery of a head injured patient with an 

intracranial haematoma will depend on early recognition of the 

haematoma and rapid surgical intervention.

The traditional approach in the management of patients with a 

recent head injury was to wait until a patient showed a 

deterioration in the level of consciousness and then to transfer



the patient for treatment. This approach is too late to prevent 

or reverse any serious complications.

Intracranial haematomas are now often detected by computed 

tomography but only for patients with a high risk of an 

intracranial haematoma. Therefore there is a need to estimate 

the risk of an intracranial haematoma to decide which patients 

are at such a low risk that they can be sent home, which patients 

have a medium risk and need to be admitted to hospital simply for 

observation and which patients have such a high risk that 

referral for immediate scanning is justified without a period of 

observation.

Developing a management strategy using risk levels may result 

in haematomas being detected earlier and by reducing the number 

of admissions and the number of CT scans, resources may be better 

employed.

Earlier work by Mendelow et al. (1983) indicated that the 

presence of a skull fracture is a powerful indicator of the risk 

that an adult (aged 15 or over) will develop a surgically 

significant haematoma after a recent head injury. Only a small 

percentage of radiographs indicate the presence of a skull 

fracture. A survey in 1974 of all A and E Departments in 

Scotland showed that of 2865 patients who attended after a head 

injury, 58% had a skull X-ray and of these, only 2.7% had a 

fracture (Strang et al.,1978). The incidence of a skull fracture 

then falls to 1.5% if it is assumed that patients not X-rayed do 

not have a skull fracture.

Radiologists dispute the need to X-ray so many head injuries 

even although the presence of a skull fracture may indicate 

intracranial damage (Brocklehurst et al., 1987). A

Multidisciplinary Panel of Radiologists (Masters et al., 1987)



identified two main groups of head injured patients - those at 

high risk of intracranial injury and those at low risk of such 

injury - and developed a management strategy for managing the two 

groups. The patients in the high risk group were designated as 

candidates for emergency CT scanning, neurosurgical consultation, 

or both. Patients identified as belonging to the low risk group 

- patients who are asymptomatic or who have one or more of: 

headache, dizziness, scalp haematoma, laceration, contusion or 

abrasion - should not be recommended for radiographic imaging. 

In a study to validate this management strategy, data on 7035 

patients in 31 hospitals were collected. The results showed that 

on the basis of the panel's criteria no intracranial injuries 

would have been detected in any of the patients assigned to the 

low risk group. Employing such a management strategy would 

result in a large decrease In the use of skull radiography, 

reduce unnecessary radiation exposure and savings of resources.

In order to use this management strategy in practice, certain 

results should be investigated. This study attempts to answer 

the two main questions:

(i) Can individuals with a high risk of skull fracture be 

identified (or at least can individuals with negligible risk 

of a skull fracture be eliminated) as needing an X-ray?

(ii)Can the risk of developing a haematoma be estimated to 

improve the existing guidelines for admission or transfer to 

a neurosurgical unit? Alternatively, can any other easily 

elicited clinical features replace skull fracture to assess 

the presence of an intracranial haematoma?
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CHAPTER 2 

DESCRIPTION OF THE DATA SET

2.1 Explanation of Variables Used in the Study

Over 48000 new attenders are treated at the Accident and 

Emergency Department at Monklands District General Hospital per 

annum. Approximately 4200 of these are diagnosed as having a 

head injury.

The basic data for each attender is directly entered onto the 

computerised records system in the Accident and Emergency 

Department and for the duration of the head injury study, 1st 

April to 31st December 1984, additional data relating to the head 

injury were recorded.

Over this 9 month period, data were collected on 3971 head 

injury patients. During this time, head injuries accounted for 

10.5% of all attenders.

Before formal analysis was carried out, the variables in the 

data set, received from Monklands hospital, were examined and 

screened for consistency.

16 variables were recorded and bearing in mind that the goal 

is the identification of individuals with a high risk of a skull 

fracture, the variable "Skull Fracture" is of initial importance. 

This variable is divided into six exclusive categories:

1. Unknown

2. No skull X-ray

3. X-ray no fracture

4. Clinical fracture of base (CSF/blood in nose 

or ear)

5. Linear fracture
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6. Depressed fracture

As this variable is of primary importance to future analysis, 

categories 1-4 are grouped as "no skull fracture" and categories 

5 and 6 are grouped to give the "skull fracture" category, 

creating the "new" variable:

SKULL FRACTURE:

1. No fracture (n=3905)

2. Fracture (n=66)

Of the total study population, 98.3% fall into category 1 and 

1.7% into category 2. However, treating the category "no skull 

X-ray" as "no fracture" can lead to serious complications. The 

absence of a fracture does not exclude serious brain damage. A 

patient may therefore present at the Accident and Emergency 

Department as a mild head injury and is sent home rather than 

being admitted. The patient is re-admitted for developing 

complications and by then it is too late for intervention by the 

doctor (Jennett and Miller,1972).

The remaining variables in the study were examined to assess 

their usefulness as predictors. The percentage of patients with 

a skull fracture for different features are shown in Table 2.1.

An additional variable which identified where the patients 

went on their discharge from hospital was also recorded. 

However, as the problem posed was to discover what variables aid 

in the prediction of a skull fracture, it was clear that the 

aforementioned variable was irrelevant in this context and it was 

thus omitted from the analysis.

To use the variables as shown in Table 2.1 would produce 

tedious calculations and take up excessive computing time in any 

further analysis to be carried out. Also, it is noticed that 13 

of the 14 variables contain less than 6 patients with a skull
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Table 2,1 Percentage of Skull Fracture for Variables in 

the Study

VARIABLE

AGE
1.14 and under 
2.15-64 
3.Over 65

Not recorded

SEX
1.Male
2.Female
Not recorded

SCALP INJURY
0.Unknown
1.No external injury 
2.Swelling only
3.Abrasion/contusion only 
4.Superficial laceration

<5cm long 
5.Superficial laceration 

>5cm long
6.Laceration through galea 

<5cm long
7.Laceration through galea 

>5cm long

FACIAL INJURY
0.Unknown
1.None
2.Facial abrasion/contusion
3.Facial laceration
4.Periorbital haematoma
5.Fractured nose
6.Fractured other facial bones
7.Fractured mandible

EYES OPEN
1.None
2.To pain
3.To speech
4.Spontaneously 
Not recorded

MOTOR
1.No motor response
2.Extension
3.Spastic flexion
4.Normal flexion
5.Localises
6.Obeys commands 
Not recorded

no. of %age with Skull 
n fracture Fracture

1965 21 l.l
1692 33 2.0
205 5 2.5
109 7 6.4

2704 55 2.0
1249 11 0.9
18

13 -
1446 12 0.8
653 17 2.6
598 15 2.5

1088 13 1.2

104 2 1.9

38 2 5.4

31 5 16,2

30 3 10
2457 36 1.5
590 7 1.2
686 5 0.7
100 10 10
66 1 1.5
36 4 11.1
6 -

22 8 36.3
24 4 16.7
25 3 12.0

3886 51 1.3
14

15 5 33.4
4 2 50
4 1 25
13 4 30.8
56 4 7.1

3854 50 1.3
25
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Table 2.1 (con)

VARIABLE
no. of %age with Skull 
fracture Fracture

VERBAL
1.None 21 8 38.1
2.Incomprehensible sounds 63 3 4.8
3.Inappropriate words 10 2 20
4.Confused 83 6 7.2
5.Orientated 3768 46 1.2

Not recorded 26 

HISTORY OF UNCONSCIOUSNESS/AMNESIA

1 3.8

0.Unknown 167 8 4.8
1.None 3497 41 1,2
2.Less than 5 mins with full 
recovery of consciousness

(i.e. orientated) 
3.5-30 mins with full recovery

195 4 2.0

of consciousness
(i.e. orientated) 68 1 1.5

4.30-60 mins with full recovery
(i.e. orientated) 7 1 15

5.>1 hour and/or still
disorientated or worse 37 11 30

DETERIORATION
0.Unknown 46 3 6.5
1 .No 3897 57 1.5
2. Yes 28 6 21.4

EPILEPSY
0.Unknown 129 5 3.9
1. No 3799 59 1.6
2.Focal 6 - -

3.Generalised 15 2 13.0
4.Chronic 21 - -

HEADACHE/VOMITING
0.Unknown 52 5 9.6
1.None 3224 34 1.1
2.Headache 422 13 3.1
3.Vomiting 177 7 3.9
4.Headache and vomiting 96 7 7.3

PUPILS
0.Unknown 43 3 7.0
l.Both reacting equal 3876 55 1.4
2.Both reacting unequal 28 2 7.1
3.One reacting 4 - -

4.Neither reacting 11 5 45.5
5.Local factors affecting one
or both pupils 9 1 11.1



Table 2,l(con)

VARIABLE

ALCOHOL 
0.Unknown 
1 .No
2.Suspected
3.Definite (not measured)
4.Definite (measured <199)
5.Definite (measured 200-399)
6.Definite (measured >400)

FOCAL SIGNS 
0.Unknown 
1-None
2.Hemiparesis
3.Hemiplegia
4 .Dysphasia/Aphasia
5.2 or 3+4

no. of %age with Skull 
n fracture Fracture

179 10 5.6
3213 41 1.3
98 4 4.1
405 7 1.7
24 1 4.2
50 3 6.0
2 -

140 2 1.4
3810 56 1.5
10 2 20.0
2 2 100.0
5 2 40.0
4 2 50.0
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fracture in one or some of their categories. As the "skull 

fracture" variable is of primary importance to the study, to have 

numbers as small as these would produce results from which very 

little information could be obtained. Thus, after discussion 

with clinical colleagues, the variables were regrouped as 

presented in Table 2,2.

The Glasgow Coma Scale (Teasdale and Jennett, 1974) consists 

of the three variables Eyes Open (Eye opening in response to

stimulation), Motor (Motor response of best limb in response to

stimulation) and Verbal (Verbal response to stimulation). In

this study, the "not recorded" category within each of the 

variables was omitted. These three variables when added together 

produce the variable COMASUM (Table 2.2) which measures, in this 

case, the depth of coma for a patient entering the Accident and 

Emergency Department. This term is known worldwide in medical 

literature as the Glasgow Coma Sum (Teasdale et al., 1979a).

After the initial screening of the data, it was decided to

use a more stringent definition of a head injury to be consistent 

with the Scottish Head Injury Management Study (SHIMS) (Jennett 

et al., 1977). To conform with this and other studies, patients 

with only (1) Simple facial abrasion/contusion or
(2) Simple facial lacerations 

were excluded from the analysis. This did not alter the 

regrouping of the variables. This leaves a total of 3424 

patients with a head injury, representing 9.1% of all new 

attenders at Monklands Accident and Emergency Department.

2.2 Missing Values

This sample consisted of 66 attenders with a skull fracture 

and 3358 without. Values were missing from a total of 90 data
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Table 2>_2 Regrouping of Variables

Variable
AGE

Description 
Age, grouped as 14 and under,15 
and over

ALC Level of alcohol on admission, 
recoded as 0 (unknown), 1 (none) 
or 2-6 (else)

COMASUM The sum of the raw Eyes Open, Motor 
and Verbal scores, in the range of 
3 to 15 but recoded as 3-14 (abnormal) 
or 15 (normal)

DETERN Deterioration, recoded 0 (unknown), 
1 (no) or 2 (yes)

EP Epilepsy, recoded 1 (none) or 
0,2-5 (some)

FAC Facial injury, recoded as 0-2 (none) 
and 3-7 (some)

FOC Focal signs on admission, recoded 
as 0,1 (none) or 2-5 (some)

PUP Pupil reaction to light, recoded 
0,1 (both) or 2-5 (one or neither)

SCALP Scalp injury, recoded as 1 (none) 
or 2-7 (some)

SEX

UNCON

Sex, recorded 1 (male) or 2 (female)

History of unconsciopsness/amnesia, 
recoded as 1 (none) or 
0,2-5 (unconsciousness)

VOM Headache/vomiting after head injury, 
recoded 1 (none) or 0,2-4 (some)
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vectors.

2 data vectors which were classified as fracture (3*) and 88 

vectors classified as no fracture (3%) were incomplete.

From Table 2.2, it is easily seen that within certain 

variables, the "unknown" category has been grouped along with the 

recorded categories. This was decided by the clinicians involved 

in the study as the relevant "unknown" category contained a 

relatively large percentage of skull fractures in comparison to 

the remaining classes within the variable.

Several variables, however, have the number of missing values 

recorded within each category of SKULL FRACTURE as shown in Table 

2.3.

Table 2.3 Missing values within SKULL FRACTURE

2.3 Identification of Possible Predictors

As a preliminary examination to determine potential

predictors to be considered in the linear logistic regression

model and discrimination models, Chi-squared statistics were 

evaluated.

The tabulated values in Table 2.4 indicate that all but one 

of the variables (SCALP) show a significant marginal association

with SKULL FRACTURE at the 5% significance level. However,

"marginal" significance can alter in a multivariate approach. 

Although one variable may be non-significant "marginally", when 

used in multiple regression, the variable along with the other

Variable

No. of missing 
values in fracture 
 category____

No. of missing 
values in no 
fracture category

AGE
SEX

SCALP
COMASUM

1 (1.5*)
1 (1.5*)

53 (1.6*)
17 (0.5*)
9 (0.3*)
26 (0.8*)
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variables may produce useful information. It was therefore 

decided to construct discrimination functions based on all or 

subsets of the above variables.

Table 2.4 Chi-squared statistics of explanatory variables 
in the study

degrees of
Variable x2 freedom Tail probability

AGE 5.79 1 0.02

ALC 21.59 2 <0.001

COMASUM 92.00 1 <0.001

DETERN 64.10 2 <0.001

EP 5.84 1 0.02

FAC 10.12 1 0.001

FOC 146.20 1 <0.001

PUP 50.58 1 <0.001

SCALP 3.07 1 0.08

SEX 5.38 1 0.02

UNCON 34.10 1 <0.001

VOM 31.30 1 <0.001



13
CHAPTER 3

STATISTICAL DISCRIMINATION TECHNIQUES

3.1 General Introduction to Discrimination

When a population is known to consist of two totally 

exclusive classes and it g * the two class predictive

discrimination problem may be thought of as determining which 

class a future individual belongs given a vector of k 

observations. To develop a discrimination procedure, a training 

sample of size N is randomly selected from the population, for 

which the class of origin is known and a k-vector of observations 

is available; say come from class it-̂ and n2 come from class 

(n^+n2=N). In general, let the k dimensional observation vector

be denoted by X = (Xj xk̂ '1' anc* t l̂e sample data-vector of

the individual in class ni be denoted by Xjj (i=l,2 and

j = l *ni)* For both classes, X is assumed to be a random

vector with random variables ..... X^. Then a decision rule

for discriminating between future individuals, constructed on the 

training sample of N observations, assigns an individual with

data vector X to population if some real-valued function of X 

is less than a given real number, otherwise the individual is 

classified as belonging to 1I2 ■ Clearly the task of identifying 

whether a future patient belongs to the skull fracture or no

skull fracture class is a discrimination problem. In this 

instance, there are 12 potential discriminators, with n^-GG and 

n2=3358.



3.2 The Linear Logistic Regression Model

3.2.1 Introduction

The linear logistic regression model is commonly used in 

medical statistics to model outcomes which are binary in nature. 

In this particular application the outcome variable, Y, is SKULL 

FRACTURE. As Y can take only two possible values of interest 

(skull fracture or no skull fracture), it is unrealistic to 

assume the linear regression model
k

E(Y) = « + PjXi + ...... + £kXk = cc +1?13iXi

where cc is a constant,

P= O i  >0k)T is a vector of known parameters,

X=(Xj,....,Xk)̂  is a vector of known constants.

k
As cc + I 3iXj is assumed to be the expected value of a normal

1=1 k
distribution and if the vector J3 is unrestricted, <x + £ J3,-Xi willi=l
lie in the interval (-»,»).

Considering the expected value of Y, which is equivalent to 

the probability that Y=1 (denoted by p), a more sensible and 

realistic approach would be to model log(P/l-p) which belongs to 

the interval (-»,«), Therefore representing the probability of a 

fracture, Y=l, by Pr(Y=l|X), for an individual with covariate 

values X=x, the linear logistic regression model is specified as:

log
Pr(Y=1|x)

1-Pr(Y=lfx)
= log

Pr(Y=l|x)

Pr(Y=0|x).
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k

= « + E
i=l

or equivalently,

kexp(« + Z PiXt)
1=1Pr(Y=1|x) = ------------------

k1 + exp{« + £ PiX,-)
1*1

Having the model in this form, several methods of 

analysis can be carried out. It is worth noting that non-linear 

functions of the explanatory variables (e.g. interactions) can be 

included in models of this type. Fitting such models by maximum 

likelihood is computationally much more complicated than for 

standard normal theory based models, but there is a very close 

analogy with such methods.

3,2.2 Variable Selection

Many variables may be initially considered as suitable

predictors. However.it is important to eliminate those variables 

which are irrelevant to the analysis. Using a smaller set of

variables also reduces the computing time for setting up the 

discriminant procedure and the effort involved in allocating 

future individuals of interest. Thus some method of finding an 

"optimal" set of predictors based on a criterion, f say, for

comparing the discriminative power of two sets of variables is

required. Two such criteria are suggested and are described below 

In this particular application, a stepwise procedure is used to 

select the subset of variables to be employed in future analysis.

Using a criteria, this procedure selects the best one 

dimensional predictor: denote the best one dimensional subset by 

Si={X(j j }. If the realisation of the criterion function, ftS^),



exceeds a certain threshold value, d^( then the procedure 

continues to a second stage. Otherwise, it is assumed that there 

are no worthwhile predictors in the full set of variables.

If the second stage is reached, the (p-1) two-variable 

subsets containing X(^) are considered, and that with the maximum 

f, say S2={X( ,X(2)} - is selected. If f(S2)-f(S1) > dlf then

the procedure continues; otherwise Sj is chosen for use in the 

linear logistic regression model.

Future steps using this procedure are similar. However, in 

some procedures at stage i (a3) once Sĵ has been selected, each 

of the subsets S-jj of produced by deleting X(j) is considered. 

If, for any j, f(S^)-f(S^j) < d2 (another threshold) then that 

X(j) for which f ( )  —f (S-̂ j ) is minimal, is deleted from 

is then redefined to be Sjj and the next step continues as 

before. The procedure carries on until no variables can be added 

or removed. However, the subset obtained by such a procedure may 

not maximise f over all possible subsets.

When k is large, to consider all 2^-1 variable-subsets 

directly requires a vast amount of computation and hence a 

"suboptimal" approach such as a stepwise procedure is commonly 

considered.

This stepwise strategy is implemented with the BMDP program 

PLR which can fit models either by full maximum likelihood 

(method MLR) or by an approximation to this which is far more 

efficient computationally (method ACE - asymptotic covariance). 

These are described in more detail below.

(l)Maximum Likelihood Ratio

At each stage, the maximum likelihood estimate of P, say P* , 

is calculated, some of whose components are held at zero. A
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revised estimate of § is computed for each variable, Xj, that may 

be entered or removed. Denote this estimate by £(i)- From these 

estimates the maximum likelihood:

n exp (y ■» (z -j. P ))
L(P) = n ---------— -

1 + exp{zj.p)

where j=l,,..,n (n = sample size) 

yj=response variable

and z=(zj, zn) designates the vector of design

variables generated from the set of categorical variables. For 

example, a categorical variable with 3 categories - 2 degrees of 

freedom - would be translated into 2 design variables.

Variables may then be entered or removed from the model on 

the basis of the significance of the approximate Chi-squared 

test:

*i = 2 I log(L <»)/L(p(1))) |

(2) Asymptotic Covariance

In this method, the asymptotic covariance matrix of the 

parameter estimates is evaluated at each stage. From this, the 

significance of the change in the residual sum of squares due to 

entering or removing a particular variable can be computed by 

means of an F-test.

Although computationally more quicker, the Asymptotic 

Covariance method may yield less reliable estimates of the 

significance of entering or removing a variable. Therefore, it 

is possible that the ACE method may select a slightly different 

subset of predictors.



3.3 Error Rates

Let nj, n2 denote a set of populations to which a patient may 

be allocated; it will be assumed that a patient belongs to one 

and only one of these populations.(In this application, n2 may be 

assumed to be the population of patients with a skull fracture). 

The performance of a discrimination rule is assessed by how well 

individuals are allocated to their true population. In the 

linear logistic regression context, a rule is a value, Z, for the

probability of belonging to n2, such that if a case has

probability (p) greater than Z, then action is taken as if the

patient belongs to n2, and if p is less than z, then no skull

fracture is assumed. Clearly, as shown in figure 3.1, an 

arbitrary choice of Z results in two possible errors.

Figure 3.1

Population of 
actual no fractures one possible value

Population of 
actual fractures

DECISION AXIS — ►

The false-positive error rate (FPR) is the proportion of 

patients without a skull fracture who obtain a probability 

greater than Z, while the false-negative error rate (FNR) is the 

proportion of patients with a skull fracture who obtain a 

probability less than Z. No overlapping between the two 

populations in figure 3.1 above would result in a perfect test.



The above diagram assumes that there are an equal number of 

patients in the two populations. In this study however, the 

number of patients in population n-̂  vastly exceeds that of n2. 

The area under the curve corresponding to population would 

therefore increase with the area under the curve corresponding to 

population n2 decreasing accordingly. Consequently, this results 

in population having more patients with p>2 than population

n2-
Expressed in the terms used in figure 3.1, sensitivity is 

TPR TNR
defined as ---------  and specificity as ---------  . The

TPR + FNR TNR + FPR
values yielded by each of these measures may vary from 0 to 1,

with 1 representing perfection.

3.4 Youden Index

Various proposals for a combined single score have been 

recommended. One such recommendation is the Youden Index which 

has been defined as: sensitivity -*• specificity - 1 (Youden, 1950) 

This index has many desirable features:

(1) The values of the Index lie between 0 and 1 inclusively if 

the test indicates a greater proportion of positive results for 

population n2 than for population ilj : it takes the value 0 

whenever a test gives the same proportion of positives for both 

populations. This class of test is clearly worthless. The Index 

takes the value 1 when no errors are present (i.e. a perfect 

test).

(2) The Index is not dependent of the relative and absolute sizes 

of the study populations.

(3) Tests having the same Index make the same total number of 

misclassifications per hundred patients.

(4) A standard error for the Index can be calculated which allows



two classification rules to be compared.

One drawback of the Index, however, is that false positive 

errors and false negative errors are assumed to be equally 

undesirable, which is clearly not the case in this application.

3.5 The Receiver Operating Characteristic (ROC) Curve

Sensitivity and specificity do not provide a unique 

description of the discrimination performance or accuracy of a 

test as they depend on the arbitrary selection of a cut-off 

point, 2. By lowering Z, both the True Positive (TPR) and False 

Positive (FPR) rates will increase, both rates being independent 

of the disease prevalence. By plotting the pairs 

(True Positive , False Positive) for a range of values of the 

cut-off point Z, a receiver operating characteristic curve is 

obtained (see figure 3.2). This curve must pass through the 

origin, as all tests can be called negative, and similarly must 

pass through the point (1,1) as all tests can be called positive.

The curve also lies above the line y=x, as a positive 

decision is more probable when a case is actually positive than 

when a case is actually negative.

Essentially, z must be chosen to yield an appropriate 

compromise between the two types of error. When the disease 

prevalence is low, the false positive rate has to be kept small 

otherwise all positive predictions will be false positive 

decisions. This may lead to unnecessary expensive follow up 

treatment. Alternatively, if finding positive cases is of 

overriding importance, then selection of a low cut-off point is 

essential.



2
Figure 3.2 An Example of an ROC Curve 

1.0

False Positive 
Rate
(• 1-speclflcity)

0.3

True Positive Rate 
(• sensitivity)

Metz (1978) describes various methods to compare the 

discriminative ability of two tests by means of ROC curves. By 

plotting the curves on the same diagram, the performance of the 

two tests concerned can be compared. In general, better 

discrimination performance is indicated by the ROC curve which is 

further toward the top left hand corner in the diagram. 

Alternatively, if the two ROC curves cross, the situation to 

which the discrimination procedure has been employed will have to 

be reexamined.

Another technique to compare the discriminative power of two 

tests using ROC curves has been suggested by Hanley and 

McNeill (1982). This method reduces the entire ROC curve to a 

single quantitative index, namely, the area under the ROC curve. 

Hanley and McNeill interpret this area as "the probability that a 

randomly chosen diseased subject is (correctly) rated or ranked 

with greater suspicion than a randomly chosen non-diseased 

subject". This probability is equivalent to the non-parametric 

Wilcoxon Statistic, W, where
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1 nl n2W = Z Z S(x1(x2)
nl n2 1 1

where n-̂ = total number of patients with skull fracture

n2 = total number of patients with no skull fracture

S(x1,x2) =

1 if Xj > xg

1/2 if xi - x2

0 if Xi < x2

and x is some quantative variable. (In this particular 

case, x is the levels of the probabilities from linear logistic 

regression).

An advantage of this procedure is that no assumptions have to 

be made about the underlying population distributions of n-ĵ and 

ir2 . The value of W is equivalent to the area under the curve 

calculated using the trapezoidal rule. The statistic, W, is 

therefore an approximation to the true area under the curve.

3.6 Results

Data from 3424 cases with known outcome were recorded. This 

data set was split randomly into two sets, Set A and Set B, using 

the random number generator within BMDP. (Each case in the data 

set was assigned a value from the Un(0,l) generator: cases with 

values greater than or equal to 0.5 were allocated to Set A; 

cases with values less than 0.5 were allocated to Set B). Using 

the particular value of 3394173 for the pseudo-random generator 

resulted in 1788 cases being allocated to Set A - 43 (2.4%) skull 

fractures and 1745 no skull fractures - and 1636 cases allocated 

to Set B - 23 (1.4%) skull fractures and 1613 no skull fractures.
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3.6.1 Performance of Linear Logistic Regression

To Identify the number of variables to be used in a linear

logistic regression equation for predicting future outcomes,

equations with 1 to 10 variables were established. It was

expected that using a maximum of 10 predictor variables would be

more than adequate to identify patients with a skull fracture.

The maximum number of probabilities for each logistic equation

can be explained by the expression n ct where c-s = number ofi-l a
categories in i*-*1 variable entered and j = number of variables 

entered into the equation.

Method 1

Using Set A as the training data set to generate the

equations mentioned above, resulted in the variables indicated in

Table 3.1(a) being entered. The goodness of fit for each

equation was calculated using the Chi-squared statistic -
observed

2 E observed.log as generated by BMDP. This
expected

statistic is approximated by the Chi-squared distribution when 

the sample size is much larger than the number of categories. 

However, if the observed number of individuals in some categories 

is small, usually taken to be < 5, this approximation may break 

down. Modelling with many variables, some categories may contain 

less than 5 patients and so caution has to be taken when 

interpreting the Chi-squared statistic. Set B, the test data 

set, was then run through the 10 equations, and by adjusting the 

cut-off point (or probability of a fracture, say z), "true" 

sensitivity and "true" specificity could be assessed.

Method 2

The analysis as described above was carried out with the 

roles of the data sets A and B reversed. Results are shown in
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Table 3.1(b).

Tables 3.1 (a) and (b) indicate that the Chi-squared goodness 

of fit criteria decreases when a further variable is added. 

However, after 3 or 4 variables have been added in both methods, 

smaller decreases are obtained at the cost of adding a further 

variable. To identify the "best" variable subset, it is 

necessary to assess the relative merits of each equation by the 

performance of the sample error and true error rates. In this 

Head Injury Study, as the ratio of patients with no skull 

fracture to those with a skull fracture is approximately 50:1, 

the best sample error and true error rate are obtained by taking 

a cut-off point such that all patients are allocated to the no 

skull fracture category. Clearly, unless the cost of

misclassifying a patient with a skull fracture is greatly 

increased, using such error rates to select the best variable 

subset are invalid. Alternatively, the best variable subset may 

be chosen by considering the sensitivity and specificity of the 

discrimination rules for each equation.

3.6.2 Assessment of Sensitivity and Specificity

From the complete data cases, sensitivity, specificity, 

"true" sensitivity and "true" specificity ("true" sensitivity and 

"true" specificity were assessed using the test data set) were 

evaluated for each equation generated in Method 1 and Method 2. 

Values for the equations containing 1-8 variables from both 

methods are shown in Tables 3.2(a) and (b) respectively. To 

compensate for the small number of patients with a skull 

fracture, small values of the probability of a skull fracture in 

the range 0.01-0.2 were selected to obtain interpretable results. 

The actual cut-off points chosen were identified to reflect the



TABLE 3.2 (a)
Values of sensitivity, specificity, 'true* sensitivity and 'true1 
specificity from Method 1
1 Variable.

point

2 Xa_r.ia.bles,

'True1 'True1

cut-off point

3 Xaniaklea

cut-off point

Sensitivity Specificity Sensitivity Specificity
3.02 0.33 0.94 0,41 0.94

Sensitivity Specificity
'True*

Sensitivity
'True*

Specificity
0.02 0.58 0.77 0.59 0.76

0.05 0.33 0.94 0.41 0.94
0.1 0.21 0.98 0.36 0.98

Sensitivity Specificity
'True'

Sensitivity
'True*

Specificity
0.02 0.7 0.65 0.68 0.63
0,03 0.58 0.77 0.59 0.76
0.06 0.44 0.91 0.41 0.92
0.1 0.26 0.97 0.41 ' 0.97

1 Variables

cut-off point

Sensitivity Specificity
'True1

Sensitivity
'True'

Specificity
0.01 0.98 0.14 0.86 0.14

0.03 0.6 0.78 0.43 0.78
0.06 0.44 0.95 0.38 0.95
0.1 0.35 0.97 0.38 0.98
0.2 0.23 0.98 0.38 0.99



TABLE 3.2 (a) (cont'd)
5. Variables

0.01

0.03
cut-off point

0.06

0.1

0.2

£ Variables

0.01

0.03
cut-off point

0.06
0.1

0.2

1 Variables

0.01

0.03
cut-off point

0.06
0.1

0.2

3. Xarla.bles.

0.01

0.03
cut-off point

0.06
0.1

0.2

28
'True' 'True'

Sensitivity Specificity Sensitivity Specificity

0.98 0.14 0.86 0.14

0.6 0.78 0.43 0.77
0.46 0.91 0.38 0.91
0.35 0.97 0.38 0.97
0.14 0.997 0.19 0.996

'True1 'True1
Sensitivity Specificity Sensitivity Specificity

0.98 0.16 0.86 0.16

0.58 0.79 0.43 0.78

0.47 0.91 0.38 0.91
0.35 0.98 0.38 0.97
0.23 0.99 0.33 0.99

'True' 'True'
Sensitivity Specificity Sensitivity Specificity

0.98 0.16 0.86 0.16
0.58 0.8 0.43 0.78
0.44 0.94 0.38 0.95
0.37 0.97 0.38 0.97
0.21 0.99 0.33 0.99

'True' 'True'
Sensitivity Specificity Sensitivity Specificity

0.93 0.21 0.67 0.23
0.58 0.82 0.43 0.81

0.47 0.93 0.38 0.93
0.35 0.97 0.38 0.98

0.23 0.99 0.24 0.992



TABLE 3.2 (b)
Values of sensitivity, specificity, 'true* sensitivity and 'true' 
specificity from Method 2

1 Variable

Sensitivity Specificity
•True*

Sensitivity
'True*

Specificity
cut-off 0.02 
point

0.65 0.8 0.23 0.81

2 Variables

Sensitivity Specificity
'True'

Sensitivity
'True'

Specificity
0.02

cut-off point
0.1

0.73 0.77 0.44 0.77
0.32 0.98 0.11 0.98

3. Variable
Sensitivity Specificity

'True1
Sensitivity

'True'
Specificity

0.02 0.73 0.8 0.26 0.81

0.03
cut-off point

0.06
0.45 0.94 0.16 0.93
0.36 0.98 0.14 0.98

0.1 0.32 0.99 0.09 0.99

it Variables.
Sensitivity Specificity

'True'
Sensitivity

'True*
Specificity

0.02 0.77 0.76 0.44 0.76

0.03
cut-off point

0.06
0.55 0.94 0.19 0.93
0.45 0.97 0.16 0.97

0.1 0.32 0.99 0.09 0.99
0.2 0.18 0.995 0.07 0.997



TABLE 3.2 (b) (cont’d)

5. Var.ialalfia
30

Sensitivity Specificity
^rue1

Sensitivity
'True'

Specificity
0.01 0.77 0.8 0.39 0.81

cut-off point
0.03 0.55 0.95 0.19 0.95
0.06 0.45 0.98 0.16 0.97
0.1 0.32 0.99 0.09 0.99
0.2 0.18 0.996 0.05 0.998

6. Variables
Sensitivity Specificity

'True1
Sensitivity

•True1
Specificity

0.01 0.77 0.8 0.39 0.8

cut-off point
0.03 0.55 0.95 0.19 0.95
0.06 0.45 0.97 0.16 0.97
0.1 0.27 0.99 0.09 0.99
0.2 0.27 0.995 0.09 0.998

1 Variables.
Sensitivity Specificity

'True*
Sensitivity

'True'
Specificity

0.01 0.77 0.79 0.4 0.8

cut-off point
0.03 0.59 0.92 0.21 0.92
0.06 0.45 0.98 0.14 0.98
0.1 0.36 0.99 0.12 0.99
0.2 0.27 0.995 0.09 0.997

& Variables.
Sensitivity Specificity

'True*
Sensitivity

'True*
Specificity

0.01 0.77 0.79 0.4 0.8

cut-off point
0.03 0.59 0.93 0.21 0.92
0.06 0.45 0.98 0.14 0.98
0.1 0.32 0.99 0.12 0.99
0.2 0.27 0.994 0.09 0.997



probabilities of a skull fracture obtained from the linear 

logistic regression models.

As mentioned previously, sensitivity and specificity are 

inversely related: increasing the cut-off point z reduces

sensitivity and increases specificity. Consequently, it is 

important to consider the values of "true" sensitivity and "true" 

specificity at each cut-off point. These values are considered 

to assess the relative merits of each cut-off point, using data 

which has not been used to generate the equations.

It appears that in both methods, after the third or fourth 

variable has been entered, there is no improvement in the best

pair of values for "true" sensitivity and "true" specificity.

For the ideal test, the best pair of values for "true" 

sensitivity and "true" specificity would be (1,1). Inevitably, a 

perfect test very seldom exists and hence it is necessary to

select a pair of values which will have the best overall 

consequence for the whole population.

Although four variables may be the maximum considered in

Method 1, it would seem difficult from this crude method to 

identify the best subset. The use of three variables with 

cut-off point 0.1, may not appear to be any different from 

selecting one variable with the cut-off point of 0.02. However, 

in the practical context, the equation based on three variables 

would assign 44 less patients for skull fracture treatment.

It would appear that there is no clear superior variable 

subset in Method 2. To obtain a "true" sensitivity value greater 

than 0,4 results in "true" specificity of approximately 0.8. 

Similarly, to achieve a "true" specificity value of greater than

0.95, reduces the "true" sensitivity value to approximately 0.15.



Clearly. In this method the relative importance of the two types 

of errors has to be considered: is it more important to not

diagnose a skull fracture than to refer a patient for unnecessary 

skull fracture treatment.

3.6.3 Results of the Youden Index

Calculating the values of the Youden Index, for all ten

equations in both methods (see Tables 3.3(a) and (b) for the 

equations containing 1-8 variables), as expected, yield similar 

results to those obtained by considering "true" sensitivity and 

"true" specificity. An advantage of the Youden Index is that one

figure characterises the performance of the rule. It is noticed

that in Method 1, the 8 variable subset achieved negative values 

of the Youden Index at the lowest cut-off point. This has been 

caused by a test showing a greater proportion of positive results 

for the no skull fracture population than for the skull fracture 

population. Such a test is clearly worthless.

Although this Index appears to identify the variable subset 

selected using the "true" sensitivity and "true11 specificity

pair, the identification of the best cut-off point may be more 

difficult. As discussed previously, identifying the best cut-off 

point requires some consideration of the relative importance of 

the two types of errors. The Youden Index, in this example, may 

therefore be impractable as it assumes that both errors have the 

same weight.

3.6.4 Assessment of the ROC Curve

As with sensitivity, specificity and the Youden Index, the 

receiver operating characteristic curve requires knowledge of the 

true outcome of each patient. The entire curve represents the



TAB
LE 

3*3
 
(a)
 

You
den

 
In
de
x

33

oo

O
w<vr-HX)ro*Ht-nj>
O
fc.a>
g3S5

LTi

on

OJ

=r r* OJ VO OJ onr- r— =? OJ on on on OJ OJ• • • • • « • • • •o O o o o o o o o

CM CO T— CO on un OJO on OJ on on m on OJ on• 0 • • • • • • * •O O o o o o o o o o

r̂ OJ E' T—* CO cr> on un CM*— o en OJ on OJ on on r— on• • • • • « • • • •o o o o o o o o o o

•
t- vOOJ oo E' On OJ un on OOon OJ en OJ on on r— T—• • • • 0 • • • •o o o o o O o o o o

OJ CO r— CTn on OJ vO E'r— on CM on on on on CM en* • • • • • • • •o o o O o o o o o o

LPl un un un on on ooon on on on on on OJ on• • • • • • • «o o o o o o o o

in un t- un On =ron on Ol on T— on• • 0 * • «o o o o o o

c— unCM on• •o o

o
o

OJo

I-Pa>s

mo

Cm<w +5

s ao

ITiO vOo OJ
o

>1
4-5•I—Io

8a,
•acCO
>.-P■r-f
>

COc<uw
b£>c•H
CO3
X0)T3CM
COJ-a3O>-* Yo

ud
en
 
Ind

ex
 
usi

ng 
’t
ru
e’ 

se
ns
it
iv
it
y 

and
 
’t
ru
e1 

sp
ec
if
ic
it
y.



TAB
LE 

3.3
 
(b)
 

You
den

 
In
de
x

34

* +

oo

to 03 I—Inm•Ht-ro>
Cmo
u<DX)

VO

in

on

OJ

vO CVJ on on OJ VO ONin OJ in «— sr T” on «— OJ o* • * * • • • • . .o o o o o o o o o o

VO on on OJ in VO ONin OJ in i— =t on T“* OJ o» « • . • . * . • *o o o o o o o o o o

c— ON OJ on vO CO VO ONin r— in =r r— OJ o OJ o• • • • • . . • • •o o o o o o o o o o

ooc- on on t— CO COln OJ in 1— =r v— on o v— o• • • • • • • • . •o o o o o o o o o o

t-on Crv OJ OJ on 1“ oo oo voin OJ «*“ =T <— on o r— o* • • . m • . • . *o o o o o o o o o o

on t"- CT\ CTV =r OJ ooin o on o on T-* on o• • • • • . . •o o o o o o o o

*—- ONin OJ on o* • • «o o o o

in rr
=r o• •o o

OJo mo

Cm
Cm  4->
O  C

vOO (M
O

I
4-3
3o

>.4-3
•HO

8Q,to
•Ocnj
>.
4-3•rH>

toc<uto
tcc1-4to3
X<uTJcM
C
03■o3O

OQ,

Yo
ud
en
 
In
de
x 

usi
ng
 
’t
ru
e'
 
se
ns
it
iv
it
y 

and
 
't
ru
e1 

sp
ec
if
ic
it
y.



performance of each equation over all possible cut-off points. 

This curve can then be used to compare the equations with, in 

general, the better discriminator having a curve closer to the 

upper left hand corner.

A smooth curve fitted subjectively by eye for each ROC curve, 

in equations containing 1-8 variables for both methods, (Figures 

3.3(a)-(h),3.4(a)-(h)), will often provide an adequate estimate 

of the full ROC curve. Subjective impressions initially were 

that in Method 1, a discrimination procedure using the 3-variable 

subset would produce better results. As would be expected, the

shape of the ROC curves for all 8 equations based on Set A is 

similar. The relative merits of each equation should be assessed 

using the completely new data set, Set B; hence the choice of the 

3 variable subset .

Considering Method 2, the 4 variable subset would appear to 

give a better discrimination of skull fracture but a more 

objective procedure may be required. The area under the curve

(W), was evaluated for all eight equations (see Tables 3.4(a) and 

(b)), A detailed calculation of W and its standard error for 4 

variables in Method 2 (Set B) is detailed on the following page. 

It would seem that the area under the curve, W, derived in this 

way agrees with the subjective impressions. However, the 

statistic W identifies a measure of the difference between the 

equations. As Metz explains, no fully satisfactory procedure has 

been constructed to test the significance of the apparent 

differences between the area under the ROC curves.

To assess how well the 3 and 4 variable subsets perform, the 

subsets {COMASUM,VOM,FAC) , {COMASUM,VOM,FAC,SCALP) ,

{COMASUM,ALC,DETERN) and {COMASUM,ALC,DETERN,PUP) were used to 

generate equations in both methods. The data set not used in the
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TABLE 3.4 Area under the ROC curve

(a) Method 1

Training data (Set A) Test data (Set B)

Area (W) S.E.(W) Area (W) S.E.(W)
1 . 63.2 0.052 67.6 0.069
2. 69.8 0.047 71.2 0.067
3. 72.6 0.045 71.8 0.066

Number 4. 74.8 0.044 62.7 0.077
of 5. 74.6 0.044 62.3 0.077

variables 6. 74.4 0.044 62.9 0.076
7. 74.9 0.043 63.2 0.076
8. 74.5 0.045 58.0 0.085

)) Method 2

Training data (Set B) Test data (Set A)

Area (W) S.E.(W) Area (W) S.E_,(W)

1 . 72.7 0.058 52.0 0.045
2. 77.7 0.058 61.4 0.048
3. 79.4 0.059 54.1 0.048

Number 4, 81.6 0,057 61.1 0.048
of 5. 82.8 0.056 61.0 0.048

variables 6. 82.8 0.055 61.0 0.048
7. 82.6 0.056 60.6 0.048
8. 82.5 0.056 60.8 0.048
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generation of the equations was then used to assess the 

performance of the discrimination. Areas under the ROC curve

were calculated as a measure of performance (Table 3.5)

Table 3.5 Areas Under the ROC Curve

Subsets of Variables

COMASUM COMASUM 
COMASUM COMASUM VOM ALC
VOM ALC FAC DETERN
FAC DETERN SCALP PUP

Method 1

Training data (Set A) 72.6 62.8 74.8 63.2
Test data (Set B) 71.8 71.0 62.7 69.7

Method 2

Training data (Set B) 67.6 79.4 69.0 81.6
Test data (Set A) 68.1 54.1 71.3 61.1

From this table, the best 3 and 4 variable subsets are 

{COMASUM,VOM,FAC) and {COMASUM,VOM,FAC,SCALP}. The relative

performance of these two equations may be assessed by the 

unbiased (or less biased) area achieved by running Set B and Set 

A through Method 1 and Method 2 respectively. Although both 

subsets have their own particular merits, the 3 variable subset 

(COMASUM,VOM,FAC) should be recommended, as the unbiased area 

appears to be larger on the whole, and the inclusion of another 

variable does not alter the performance of the discrimination.

3.7 The Linear Discriminant

It has been established on a similar set of data 

(Titterington et al., 1981) that the performance of the linear 

logistic regression model can be similar to that of the linear 

discriminant.

In population n^, i=l,2, if X is a multivariate normal random 

vector with mean vector and common covariance matrix, I, then



in linear discrimination, an individual is assigned to llj if and 

only if:

P(n2)
(££l”£i2)TE'’15 > loS

P(Hl)

i.e XT\ > ci

where X = [ (mi -«2 )TE"‘1 ]T =

Ci = log r p(n2 ) ’
I P(ni) .

and p(Hi) is the probability of an individual belonging to group 

i before X is observed.

Using the maximum likelihood estimates of u 2 an(* E

obtained from the training sample:

1 ni
ai = Xi * ------  tZ Xij

ni J-1
(1=1 ,2)

and E = S e (nifi + n2f2)
ai + n2

where Ei - ___  E (Xij - X j X X i j  - X i ) T (1=1,2)n .• n=l

(Xi-X2)t S~1x > log + 1/2(X1-X2)TS-1(X24-X1) (3.2)

the sample based equivalent of (3.1) is assign a future 

individual to population ni if and only if:

' P(ir2 ) ‘

. P("i) .
However in this application, all the variables are discrete 

and clearly non-normal. Fisher (1936) derived exactly the same 

rule as (3.2) using a different approach to the discrimination 

problem, not based on any particular parametric form but by 

merely looking for some sensible rule based on a linear function
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of the X's.

Using sample estimates to ascertain whether the linear 

logistic regression model performed as well as linear 

discrimination using this particular data set, the values from 

the linear logistic regression equation (for the 3 and 4 variable 

subset) were plotted against the corresponding linear combination 

of the variables (XTx-c) obtained from the BMDP program P7M (see 

Figures 3.5(1) and (ii)).

The values from the linear logistic regression are negatively 

correlated with the corresponding values obtained from linear

P anddiscrimination, since the large values of log
1-p

values of X^X-c < 0 correspond to predicting patients with a 

skull fracture. Thus the linearity of both these graphs indicate 

that the two methods have similar discriminative power.
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Figure 3.5 Plots of the linear discriminant and linear logistic 
regression

(i) Three Variables
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CHAPTER 4
50

CLASSIFICATION AND REGRESSION TREES (CART)

4.1 Explanation of the Method

A classification tree, in this study,, is a tree structured 

classification rule which assigns an incoming head injured 

patient to the Accident and Emergency Department to one of the 

mutually exclusive groups, skull fracture or no skull fracture. 

In more general terms, given J mutually exclusive classes, a 

classification tree or classification rule is a systematic way of 

predicting what class a case is in given a measurement or data

vector x = (xltx2 ,xn), say. That is, given any x 6 X, where

X denotes the measurement space containing all possible 

measurement vectors, a classification rule, d(x), assigns one of 

the classes to x.

Ideally, a classification tree should be constructed using 

past knowledge or as in this particular situation, using a 

training set of data which would provide insight and 

understanding into the predictive nature of the data (different 

relationships will exist in different subsets of the measurement 

space X). The binary tree structured classification trees are 

constructed by repeated splits of subsets of the measurement 

space X into two descendant subsets beginning with X itself. 

These subsets are termed nodes in tree theory, with the root node 

tj - X. The entire construction of a tree, then, is determined 

by three characteristics:

(1) Selection of the splits.

(2) Determining whether a node is terminal or non-terminal.

(3) The assignment of each terminal node to a class, or more
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generally, probabilities of class membership.

For any node t, suppose that there is a split s of the node 

which divides it into tL and tR such that a proportion pl of the 

cases in t go into tĵ and a proportion p̂  go into tR (Figure 

4.1).

Figure 4.1

t

The first problem in the construction of a classification 

tree is to determine which binary splits separate out the 

different classes in the measurement space. Each split of a 

subset should be selected such that the descendant subsets are
ii - . , _ _ _ i»purer

The goodness of split of a node is defined to be the decrease 

in the impurity measure

M(s.t) = i (t) - pLi(tL) - pRi(tR)

which is derived from an impurity function. As defined by 

Breiman et al.(1984), an impurity function 4> defined on the set

of all J-tuples of numbers (pj_, Pj)» where p^ denotes the

proportion of class i profiles in any node, satisfying pj  ̂ 0, 

j=l.... J, £ Pj = 1 with the properties:

(1) * is a maximum only at the point (1/j,1/j....... 1/j),

(2) $ achieves its minimum only at the points (1,0.... ,0),
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(0 ,1 ,0 , ... ,0 )  {0,0 ,0 ,1)

(3) $ is a symmetric function of pj.......pj.

The impurity measure of any node is then defined as:

i(t) = *(p(l|t),p(2 |t)..... ,p(j|t))

where p(j|t) is the proportion of cases xn e t which belong 

to class j.

The selection of the next split, s*, is then chosen at the 

split which gave the largest decrease in impurity. By successive 

splits, a large binary tree, Tmax, is developed which has all 

nodes declared terminal.(A node is declared terminal when the 

node cases are all in the same class or the nodes are small - 

contain less than 5 cases).

A tree constructed in this manner will generally be much too 

large and will require "pruning" back to obtain the right sized 

tree. Selecting the "best" sized tree requires estimating the 

"true misclassificatidn rate", R*(T),(see Appendix II), 

calculated from a test set for example, at each stage in the 

pruning process. The pruning process begins with the largest 

tree Tmax, computing the misclassification rate R(T) for each 

node t G Tmax. and progressively pruning Tmax upward to the root 

node such that at each stage of pruning, R(T} is as small as 

possible. Thus in this process, the sequence of smaller and 

smaller trees Tmax,Tj,T2 .t^ (the root node) is constructed.

The "best" sized tree is then identified as the simplest tree 

whose accuracy or estimated true misclassification rate is 

comparable to the minimum R*(T) (within one standard error).

In mathematical terms, the right sized tree selected, T^, 

can be defined as the maximum k satisfying
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R(Tkl) < R(Tk0) + SE(R(Tk0))

where R(Tko) = min R(Tk )k

and SE(R(Tk0)) = C^(TkO> U'R(Tk0)) /N]5*

where N = number of cases in the test sample or cross validation 

technique.

Finally, having identified this tree with a set of terminal 

nodes denoted by T, each t E T has to be assigned a class

j € {1 , J) according to a class assignment rule. Essentially

a class assignment rule allocates class j to node t, if 

P(jIt) = max p(i|t)

(In the case of ties, the assignment rule arbitrarily assigns one 

of the maximising classes to node t).

4.2 Splitting Rules within CART

Two splitting rules available within CART to construct 

classification trees are the Gini Index of diversity and the 

twoing rule.

The Gini Index of diversity assigns the measure of node 

impurity to be

i(t) = I p(i|j)p(j|t) 
i*j

At a node t, with s splitting t into tL and tg, the twoing 

rule choses the split s that maximises

P L P R  | |  I P < j I t L ) -  p ( j | t R ) |  ] 2

It has been suggested (Breiman et al.) that properties of the 

final tree are insensitive to the choice of splitting rule and it 

has been proposed that the criterion used to prune or recombine 

upward is more important.
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4.3 Missing Values

Unlike most discrimination techniques, CART uses an algorithm 

to deal with missing values. At a node t, the algorithm 

identifies the best split s of t using the variable x s and then 

selects the next best split, s '  , on the variables other than . 

s' is defined as the best surrogate for s .  The algorithm 

continues to identify a second best surrogate, third best, and So 

on. Therefore, if a case has xs missing, it goes to tL or tR 

using the best surrogate split, or if xs/ is missing, use the 

second best surrogate split and so on.

4.4 Performance of CART

The resubstitution estimate of the misclassification cost of 

a tree T, as described in Appendix 2, tends to be less accurate 

than the other two estimates. Using an independent test sample 

is computationally more efficient and is preferred when the 

learning sample contains a large number of cases resulting in a 

relatively unbiased estimate of the misclassification costs.

Although computationally more expensive, the cross-validation 

estimate makes use of all the cases and gives more information 

regarding the stability of the tree structure.

In the particular application to the head injury study, the 

method using cross-validation estimates was selected to construct 

the tree, T, with the training set (Set A) mentioned in the 

previous chapter.

Using all the cases in the training set, no useful 

classification tree could be constructed.(A tree with only 2



terminal nodes). However, a table of variable importance (Table 

4.1) was listed. Evidence from this table suggests that the 

method of linear logistic regression (LLR) selects nearly the 

same variable subset as classification trees - LLR selected 

{COMASUM,VOM,FAC,SCALP) as the best variable subset. These 

variables are in the top 5 in order of variable importance.

Thus employing only the four variables selected by LLR and by 

varying the cost of misclassifying a class j object as a class i 

object, say C(i|j), and the number of cases in the randomly 

selected subset of no fractures, a more useful tree was 

constructed. Subset sizes of 43, 86, 172 (ratios of skull

fracture patients to no skull fracture patients of 1 :1, 1 :2 , 1 :4 ) 

and a larger subset of 500 no fracture cases were chosen. Using 

the CART package, only the subset of 172 no skull fracture cases 

and 43 skull fractures with the cost of misclassifying a no skull 

fracture as a skull fracture equal to 1 and misclassifying a 

skull fracture as a no skull fracture equal to 5, gave a useful 

tree - Figure 4.1 (all other trees had 4 or less terminal nodes).

Having obtained the best tree, all training cases (1788 

patients) and test cases (1636 patients) were run down the tree. 

The number of cases misclassifled and the probability of 

misclassifying a patient at each node were calculated, (see 

Tables 4.2(i) - (iii)).

It would appear that the probability of misclassification at 

each node differs - at terminal nodes assigned the class no skull 

fracture, the performance is extremely good with the performance 

at terminal nodes assigned the class skull fracture being 

extremely poor. As in the linear logistic regression model, the 

poor performance of the method results from the small proportion 

of cases in the data set having a skull fracture. However, there
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Table 4.1 Variable Importance

Variable Relative Importance

COMASUM 100

FAC 37

VOM 36

SEX 33

SCALP 31

FOC 28

DETERN 11

AGEGROUP 9

UNCON 8

EP 4

ALC 3

PUP 0

Number of Categories 

2 

2 

2 

2 

2 

2 

3 

2 

2 

2 

3 

2

* Defining the measure of importance of variable xm, 

the Gini splitting rule, as

“t i T

where p(t) = the probability that a case is in node t and

the surrogate split on xm

Then relative importance is defined as:

100 M(xm)/max M(xm )
M

using

t v>
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Table 4.2 The proportion of cases misclassified for the three 
populations

(i) 215 cases - 43 fractures and 172 no fractures

No. of No. of cases Probability of
Node Classification cases misclassified misclassification
1 No fracture 27 1 0.04
2 No fracture 100 12 0.12
3 Fracture 11 8 0.73
4 No fracture 10 1 0.10
5 Fracture 16 12 0.75
6 Fracture 3 1 0.33
7 No fracture 7 - -
8 Fracture 41 21 0.51

Total Tree 215 56 0.26

(ii) 1788 cases - 'Training Set (Set A)

No. of No.. of cases Probability of
Node Classification cases misclassified misclassification
1 No fracture 197 1 0.01
2 No fracture 966 12 0.01
3 Fracture 45 42 0.93
4 No fracture 64 1 0.02
5 Fracture 146 142 0.97
6 Fracture 13 11 0.85
7 No fracture 113 - -
8 Fracture 244 224 0.92

Total tree 1788 433 0.24

(iii) 1636 cases - Test data (Set B)

No. of No,. of cases Probability of
Node Classification cases misclassified misclassification
1 No fracture 173 - -
2 No fracture 857 7 0.01
3 Fracture 28 28 1.00
4 No fracture 59 1 0.02
5 Fracture 152 150 0.99
6 Fracture 12 11 0.92
7 No fracture 104 3 0.03
8 Fracture 251 242 0.96

Total tree 1636 442 0.27



may be subtle differences between these two types of analysis,

4.5 Comparison of CART with Linear Logistic Regression

The difference between the classification tree analysis and 

linear logistic regression was assessed for skull fracture and no 

skull fracture separately using the Brier Score (Brier,1950). In 

this particular application, the Brier Score can be thought of as 

the average "distance" between the estimated probabilities of 

fracture and no fracture and a perfect prediction which assigns 

probability 1 to the correct classification. For a fracture 

case, the contribution to the Brier Score is:

Cp(tt) - l]2 + [p(no ft) - 0]2

which reduces to 2[1 - p(«)]2 , and for a no fracture case the 

contribution is:

CP(*) “ 0]2 + [p(no #) - l]2 

which reduces to 2[p(#)]2.

(p(#) denotes the estimated probability of a skull fracture).

The Brier Score is then obtained by averaging these 

contributions over all cases in the test data set. The score may 

take values between 0 and 2 , with small values indicating good 

performance. Table 4.3 shows the contributions separately for 

the skull fracture and no skull fracture cases, and separately 

for each cell. The overall scores were 0.026 for CART and 0,025 

for LLR which again emphasise the similarity of performance of 

the two approaches.

Although only small differences exist, the classification
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tree approach results In a simpler method for allocating future 

patients. Medical staff could easily follow the pathway in the 

tree for a particular patient in the prediction of a skull 

fracture without having to carry out the complex mathematical 

procedure of calculating the probability of a skull fracture from 

the linear logistic regression approach.

Another advantage of a tree structure is that once a 

classification tree has been constructed, there is no need to 

interpret the probability of a skull fracture or what probability 

to select for deciding whether a patient has a skull fracture.
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CHAPTER 5

CALCULATION OF CONFIDENCE INTERVALS FOR RISKS OF HAEMATOMA

Recently in the medical literature, Mendelow et al.(1983)

estimated the risk of an adult (age 15 or over) developing a 

surgically significant intracranial haematoma after a head injury 

using two easily measured features - presence/absence of a skull 

fracture and determination of the conscious level. Mendelow et 

al. calculated their risks of a haematoma based on a sample of 

545 patients with haematomas at the Southern General Hospital, 

2773 head injured patients at A and E Departments, and 2783 head 

injured patients at Primary Surgical Wards. The main aim of this 

study is to extend the risk factors of haematoma to children and 

to include more features to estimate risks such that patients

could be identified as either having a low or high risk of 

developing an intracranial haematoma

5.1 The Data Set

For the purpose of this study, the A and E Department data 

discussed in Mendelow et al. was used with the addition of the 

head injury data from the A and E department at Monklands

District General Hospital employed in the previous chapters. The 

head injury data from the Haematoma Study conducted at the

Southern General Hospital was extended to cover the years 

1974-1984 inclusively. The number of head injured patients, of 

all ages, in each study involved in the A and E data is shown on 

Table 5.1.



63

Table 5.1 No. of patients in the different studies in the 

A and E data

Study No. of patients

Monklands 3424

Glasgow Royal Infirmary 797

SHIMS 3567

Teesside 716

Total 8504

Patient A and E data from the SHIMS and Teesside studies were 

recorded on the same type of form which differed from both forms 

used at the Glasgow Royal Infirmary (GRI) and Monklands District 

General Hospital. Despite this, 5 features common to all studies 

could be identified. Each of the 5 features identified - Age, 

Cause of Injury, Glasgow Coma Sum, Sex and Skull Fracture - had a 

good proportion of patients in each category and a low proportion 

of missing observations as compared to other variables recorded 

(Table 5.2).

For consistency over all studies, the Cause of Injury

variable had categories reduced to Road Traffic Accident (RTA) or

Non-Road Traffic Accident (Non-RTA).

The Glasgow Coma Sum was recorded in both Monklands and GRI 

studies but had to be "manufactured" for the SHIMS and Teesside 

studies in the following manner:

If a patient was talking sensibly and obeying commands he was

scored as having a Coma Sum of 15 ;

a) If a patient was obeying commands but was not orientated or
b) If a patient was not obeying but was talking sensibly or

confused, he was allocated to the 9-14 category ;
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Table ■ 2 A and E Characteristics (n

VARIABLE n

AGE
1. • <15 3614

2.15-64 4258

3.65 or over 534

Not recorded 98

CAUSE OF INJURY
1.RTA 1068

2.Non-RTA 7045

Not recorded 391

GLASGOW COMA SUM 
1.3-8 69

2.9-14 421

3.15 7973

Not recorded 41

SEX
1.Male 5941

2 .Female 2543

Not recorded 20

SKULL FRACTURE
1.No 8333

2.Yes (Vault and/or Base) 171

= 8504)

%

42.5 

50.1

6.3

1.2

12.6 

82.8

4.6

0.8

5.0

93.8 

0.5

69.9

29.9 

0.2

98.0

2.0



If a patient was not obeying and was not talking or talking

unspecified, he was allocated to the category 3-8.

The remaining 3 variables were consistent throughout all 

studies.

The "not recorded" category for each feature was omitted and

initially calculations were conducted on adults only (i.e.

patients ^15 years of age). This left a total of 4574 (95%)

adults with complete data out of 4792 head injured patients from 

the A and E data set.

The corresponding number from the Haematoma Study carried out 

at the Southern General Hospital resulted in 844 (85%) adults

with complete data from a total sample of 988 haematoma cases.

Employing these data sets, the frequency of features in the 

study were calculated for the A and E and Haematoma data (Tables

5.3 and 5.4 respectively) and the subsequent absolute and 

relative risks evaluated. Using so many risk factors leads to a 

small number of patients in some categories (e.g. Table 5.3 has 

13 of the 24 categories with <10 patients). Due to this 

characteristic, an alternative methodology based on log linear 

modelling was used to produce more reliable estimates of the 

relative risk.

To demonstrate the statistical methodology, it is easier to 

consider 3 dimensional tables. Results from such tables can be 

readily extended to 4 and higher dimensional contingency tables. 

To apply the procedure to a 3-way table, the Skull Fracture 

variable was collapsed leaving the three variables; Cause of 

Injury, Glasgow Coma Sum and Sex to be employed in the 

methodology.
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Table 5.3 A and E Data Set (n = 4574)

CAUSE COMASUM SEX FRACTURE

NO YES

15 Male 481 3
Female 251 5

9-14 Male 36 2
Female 9 3

CO i CO Male 8 8
Female 4 2

Non-RTA 15 Male 2547 37
Female 920 14

9-14 Male 147 15
Female 58 0

3-8 Male 13 8
Female 3 0

Table 5.4 Haematoma Data Set (n = 844)

CAUSE COMASUM SEX FRACTURE

YES

12
5
50
20
83
14

53
15
160
14
198
28

NO

RTA 15 Male 6
Female 2

9-14 Male 9
Female 4

3-8 Male 11
Female 7

Non-RTA 15 Male 22
Female 5

9-14 Male 53
Female 21

3-8 Male 37
Female 15



5.2 Risks of Intracranial Haematoma

Although the estimated probability (Gjjfc) of falling into the 

(i,j,k)th cell is useful, more information may be gained by 

estimating the risk, or calculating approximate 95% confidence 

intervals for the risk, that a head injured patient will develop 

a surgically significant intracranial haematoma.

5.2.1 Calculating Absolute Risks from the Raw Data

The absolute risk is expressed as the frequency of a 

traumatic haematoma in the total number of patients with a given 

set of features in the referral population - that is, Accident 

and Emergency departments in the West of Scotland. The total 

number of head injured patients who attend A and E departments in 

the West of Scotland during the eleven years over which the 

haematoma data had been collected had to be estimated. These 

yearly estimates were based both on the Scottish Head Injury 

Management Study and on the Scottish Mortality records. Over the 

eleven years, the number of adult attenders with a head injury, 

allowing for an increase in such patients in the A and E 

departments each year, was estimated to be 344000. Estimation of 

the risk of an intracranial haematoma in absolute terms, requires 

data about the total number of head injured patients in the 

different groups seen at A and E departments. Complete data were 

available in only 844 of the 988 patients with a haematoma. 

Therefore the total A and E estimates for this period were 

reduced by a corresponding factor, assuming that the missing 

cases were randomly distributed.

Using the corrected figure of 293711 as a base, the values of 

the 12 different combinations, of the features in the A and E 

patients during the period of analysis, were estimated from their



frequencies in the samples in Table 5,5{i). These estimates, A 

and E "scaled up" are shown in Table 5.5(11). The absolute risks 

for each of the feature combinations were evaluated by dividing 

the A and E "scaled up" value by the corresponding values from 

the Haematoma sample (Table 5.5(ii)).

5.2.2 Confidence Intervals for the Absolute Risks

In this section, interest is in estimating the ratio, 'P, of 

the proportions of head injured patients in the A and E and 

Haematoma studies who fall into a particular category. This 

ratio, when multiplied by the overall risk, is often called the 

Absolute Risk. The overall risk is simply:

total no. of patients in A and E "scaled up" sample 

total no. of patients in Haematoma sample

Katz et al.(1978) produced a method for calculating 

confidence intervals for this ratio when each of the proportions 

were relatively small. Recently however, Bailey (1987) has 

produced an alternative method allied to that recommended by Katz 

et al. but which is more stable and simpler to use.

5.2.3 Calculating Intervals

Let X be the number of patients in the A and E sample in cell 

(i,j,k) say, with associated probability X. Then X ~ Bi(m,X) 

where m is the total number of patients in the A and E sample.

Similarly, for the Haematoma sample, let Y - Bi(n,iu) where n 

is the total number of patients in the Haematoma sample and ju is 

the probability of a head injured patient- with a haematoma 

falling into cell (i,j,k).
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Table 5.5 Data Sets Employed in the Construction of Absolute 

Risks

(i) Haematoma A and E
CAUSE COMASUM SEX Sample Sample

RTA 15 Male 18 484
Female 7 256

9-14 Male 59 38
Female 24 12

3-8 Male 94 16
Female 21 6

Non-RTA 15 Male 75 2584
Female 20 934

9-14 Male 213 162
Female 35 58

3-8 Male 235 21
Female 43 3

844 4574

(ii)

A and E sample Absolute Risk 
CAUSE COMASUM SEX Scaled Up__________l:______

RTA 15 Male 31079 1700
Female 16439 2300

9-14 Male 2440 41
Female 771 32

3-8 Male 1027 11
Female 385 19

Non-RTA 15 Male 165927 2200
Female 59975 3000

9-14 Male 10403 49
Female 3724 110

3-8 Male 1348 6
Female 193 4

293711 348



Denote © = and let pjj = x/m and py = Y/n be the observed 

proportions of patients falling into cell (i,j,k) in the A and E 

and Haematoma study respectively. Provided m and n are not too

normally distributed for constant t.

Bailey states that U has zero mean and

Var(U) =t^Cx2’t_1(i-\)/m + /n]

Replacing X and u with the estimators and Py respectively,

results in the pivotal random variable

where = l_Px anc* <3y = l~Py* Approximate confidence 

intervals for 9 can be obtained by setting Z equal to an 

appropriate deviate of the standard normal distribution. Solving

(5.1) for 0, the general form of the two limits for the 

confidence interval are given by:

small, it can be assumed that U = p^ - 0^py is approximately

Z = (p^-0tpy)/(t(p|t 1qx/m + e ^ p ^  1qy/n)^) (5.1)

PX
_g—-75 ^/tz2t2qyqx

xy
0 ~,e+ =

PY 1 - z^t^lqy
y

Bailey suggests that a suitable choice of t is the value that 

minimises the skewness of Z. After rearranging, the first order 

term in the third central moment of Z is 0 when
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5>2.4 Numerical Results

Employing the data from the Haematoma and A and E studies, 

95% confidence intervals for v were obtained for all 12 feature 

vectors. By multiplying these intervals by the overall risk

(estimated to be 350), the corresponding confidence intervals for 

the absolute risk of an intracranial haematoma were induced - 

Table 5.6. These intervals may however, be too narrow due to the 

uncertainty in the overall risk

5.3 Relative Risks

For the IJK cells 1,2, IJK (IJK = 12 in this case)

defined by the three variables Cause of Injury, Glasgow Coma Sum 

and Sex, the A and E sample of head injured patients over all IJK

cells will have a multinomial distribution with expected
(A) (A) (A) I J K  (A)

proportions 0111,6211 -eIJK where .E E E ©ijk = 1.1—1 j 1 k-1
.(A) .(A) .(A)

Denote the respective observed proportions by 0 m  .0211» • • • *elJK•

Similarly, the Haematoma sample of head injured patients over the
(H) (H) (H)

IJK cells will have expected proportions 0m » 02ii.....elJK' with
I J K

^E^ .Ê  = * anC* resPect*ve observed proportions

-(H) .(H) .(H)
0 111'0 211» *•*'eIJK- T^e relative risk is then defined as the
risk that a patient with feature vector (i,j,k) will develop an

intracranial haematoma as compared with a patient in a reference 

cell. If, say, cell (I,J,K) is the reference cell, denoted by

0REF * tîe relative risk of a haematoma for cell (i,j,k) is

defined as
(H) 

eijk
(A)

^EF



Table 5.6 95% Confidence Intervals for Absolute Risks

CAUSE OF INJURY

RTA

Non-RTA

COMASUM SEX

ABSOLUTE RISK 

1 :

15

9-14

3-8

Male

Female

Male

Female

Male

Female

[1100,2900] 

[1200,5600] 

[ 28 , 62 ]

[ 16 , 63 ]

[ 6 , 18 ]

[ 6.7, 43 ]

15

9-14

3-8

Male

Female

Male

Female

Male

Female

[1800,2800] 

[2000,4800] 

[ 41 , 59 ] 

[ 71 , 160] 

[ 3.6, 8 .8 ] 

[ 1.2, 13 ]
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and is estimated by
-(H)
eREF (5.2)

In this study, two methods of calculating approximate 95% 

confidence intervals for relative risks were proposed. Although 

relative risk may not be as relevant as the absolute risk, it 

does not need an estimate of the A and E population and hence the 

properties of the model can be modelled.

5.3.1 Confidence Intervals for Relative Risks: Method A

In general for the (i,j,k)th cell, considering only the four
(H) (A) (H) (A)

cells with expected proportions jK ’ 0ijk, ®REF * ®REF *n a 2x2
table formed from two unrelated binomial distributions with

.(H) A A ) „ (H) A A )
observed proportions ©ijR, ©ijk* eREF- eREF> tiie relative risk
may be written as:

(H) (A)
^EF /  °REF--------  X    (5.3)

(H) /  (A)
1 - ®REF ' 1 - ®REF

(H) (H)
In the 2x2 table, Qjjk = 1 - q ref and similarly

(A) (A)
eijk = 1 - eREF*

The maximised likelihood estimate of (5.3) is obtained by 

replacing the expected proportions by their respective observed 

proportions. Taking logarithms, the estimated relative frequency 

is *.

r ~(h ) i 
°REF log

r .(A) 
®REF

.(H)
1 " eREF -

.(A) 
L 1 - ©REF



which is a linear combination of the observed cell 

proportions with asymptotic variance

1 1 1 1
+   +   (see Bishop et al.,1975)

(H) (H) (A) (A)
nREF nijk nREF nijk

(H) (H) (A) (A)
where nREF, , nREF, njj^ are the observed entries in the

2x2 table. The reference cell for this method was identified as

the cell corresponding to min
ijk (A)+ (H)

nijk nijkJ
Approximate 95% confidence intervals calculated using this 

method are shown in Table 5.7,

In general, these intervals, which are easily computed, may 

be too wide in practice. An alternative method of calculating 

95% confidence intervals for the relative risk of an intracranial 

haematoma based on the log linear model is discussed in the 

following section. Firstly, the statistical methodology of the

log linear model is described.

5.4 The Log Linear Model

Looking at several categorical variables simultaneously 

presents particular problems of analysis and interpretation. 

Such multidimensional contingency tables where each variable 

corresponds to one dimension of the table have become easier to 

handle by the wide range of statistical computing packages now 

available. In this particular application, three categorical



Table 5.7 95% Confidence Intervals for Relative Risks

CAUSE OF INJURY

RTA

Non-RTA

COMASUM SEX RELATIVE RISK

15 Male £ 0.9, 3.4]

Female C 0.5, 3.1]

9-14 Male £ 39 , 130]

Female £ 41 , 220]

3-8 Male £ 140, 550]

Female £ 58 , 460]

15 Male £ 0 .8 , 2 .2]

Female 1

9-14 Male C 37 , 100]

Female C 15 , 52 ]

3-8 Male £ 280, 990]

Female £ 190,2400]



variables are dealt with.

In general, for a three dimensional IxJxK contingency table 

with a total sample size of N, refer to the number of individuals 

in the (i,j,k)th cell as Denote to be the probability

that an individual falls into the (i,j,k)th cell. The simplest 

model for a three dimensional table corresponds to complete 

independence between all the three variables. For this model, 

the natural logarithm of the cell probabilities can be written in 

the form:

log = a + <xi + |Bj +

subject to the restrictions:

I J K  
E = E P-j  = E yjr = 0 i=l j=l 3 k=l K

where u denotes the grand mean

and the ccj_, J3j, y^ represent main effects.

In any modelling exercise, it is very unlikely that the three 

variables for the data are indeed independent and hence a more 

complex log linear model containing two factor and higher order

interaction terms will be required to adequately explain the

data, particularly if N is large. In this study, only

hierarchical log linear models will be considered. A

hierarchical log linear model is one in which whenever an

interaction term is included, all lower order interactions

involving variables in the higher order term must be involved in

the final equation. For example, in the full model

log e ijk = ^ + a i + Pj + + ( ^ i j  + ( ^ i k  + (Py )jk + ijk
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if the term (ocfŝ ) ijK is represented in the model, the terms 

(<xP) j j, (o£?)ĵ  and (Pr)jk must also be included. Conversely, if 

(ocjs) ij = 0 for all values of 1 and j, then - 0 for all

i,j and k.

To select a working model, it is necessary to perform 

goodness of fit tests to identify the particular model which 

achieves a balance between simplicity and adequately fitting the 

data. The likelihood ratio test statistic is one general 

criterion for comparing expected values for two different log 

linear models, where one model is a special case of the second. 

Denoting the two fitted values for the observed frequency 

for model 1 and model 2 as Ne^j^(l) and NGjjk(2) respectively, 

where model 2 is a special case of model 1 , the likelihood ratio 

test statistic is defined as:

2 I .Xijklog. .
1,J'k L Neijk(2) .

r N^ijkf1
L N0 i1k(2;

(5.3)

ih
This statistic tests whether the difference between the 

expected values for the two models is simply due to random 

variation, given that the true expected values satisfy model 1 , 

This conditional test statistic has an asymptotic Chi-squared 

distribution under the null hypothesis (i.e. the extra parameter 

in model 2 equals 0 ), with degrees of freedom equal to the 

difference in the degrees of freedom of models 1 and 2 . 

Expression (5.3) is simply the difference in the values of the 

likelihood ratio goodness of fit statistics for the two models. 

Thus by formulating a nested hierarchy of models of interest and 

by calculating the respective likelihood ratio goodness of fit 

statistics, it is possible to identify a working model which



adequately fits the data (Fienberg, 1977).

In multidimensional tables in general, before formulating a 

nested hierarchy of models of interest and simplifying the task 

ahead, it is often useful to identify the highest-order 

interactions in the full model which are definitely not zero.

Parameters in the full model having approximate 95% confidence 

intervals not containing zero can be identified as those 

parameters whose standardised estimates (i.e. parameter estimate

4- standard error of estimate) are greater than 1.96. Having 

identified the highest-order interactions, the fullest model in 

the sequence of the nested hierarchy should include these 

parameters plus all lower order interactions including the 

appropriate variables to obtain a hierarchical model.

5.4.1 Examples on Selection of a Model

Whilst 4 and higher dimensional contingency tables may 

require a method to identify the highest order interactions in 

the full model which are definitely not zero, to simplify the

task ahead, the sequence in a nested hierarchy for a 3-way table, 

because of their relative simplicity, can begin with the full 

model or the model containing all two-way interactions (if the 

three way interaction can be assumed to equal zero). If a 

different nested hierarchy of models was chosen, by adding the 

two-factor effect terms in a different order, the method 

described previously may yield alternative "best" models.

The following notation is used in all further analysis:

Denote ^ as the grand mean

s^ as the i^h level of the variable Sex (i=l,2 )

mj as the level of the variable Coma Sum (j=l,2,3)

c^ as the k^h level of the variable Cause of Injury (k=l,2)



(sm)jj as the (i t j) level of the Sex and Coma Sum interaction 

{sc)^ as the (i.k)**1 level of the Sex and Cause of

Injury interaction 

(mc)jk as the (j,k)th level of the Coma Sum and Cause of

Injury interaction

5.4.2 The A and E Study

Assuming the 3-way interaction to be zero, employing the 

model containing all 2-way interactions, the sequence of 4 models 

forming the nested hierarchy in Table 5.8(i) was constructed. 

Evaluation of the respective likelihood ratio goodness of fit 

statistics, G2(l)-G2 (4) say, and the degrees of freedom df1-df4 

was performed using the BMDP program P4F (shown in Table 5.8(1)). 

As mentioned earlier in the chapter, the differences between the 

likelihood ratio goodness of fit statistics are of the form

(5.3), and so G2 (3)-G2 (4), G2 (2)-G2 (3), G2 (l)-G2 (2) can be used 

to test whether the difference between the expected values of 

models (3) and (4), (2) and (3), and (1) and (2) respectively,

might simply be due to random variation.

From Table 5.8(i), the value of G2(3)-G2(4) (=3.19) when

referred to a Chi-squared distribution with df3 ~df4 (=2) degrees 

of freedom is not significant at the 0.05 level. This indicates 

that model 3 is preffered to model 4 and hence continue up the 

hierarchy. Proceeding to G2(2)-G2(3) (=17.19) which exceeds the 

upper 5% level of the Chi-squared distribution with 1 df by a 

considerable amount. It thus makes sense to continue no further 

and to employ the model

log ©ijk = u + Si + mj + ck + (sc)ik + (mc)jk 

to describe the data. Using this model, the estimate of the



A and E DATA

Table 5.8(i) Selection of Model

Model G2 d.f.

1. n+s-j+m j+Cfc 45.19 7

2. u+si+mj+ck+(mc)jk 22.92 5

3. iJL+si+m j+Cfc+(sc) ik+(mc) jk 5 -72 4

4. n+Si+mj+Ck+tsm)ij+tsc)ik+(mc)jk 2.54 2

G2 (3)-G2 (4)= 3.19 referred to X2 (4-2;0.95) = 5.99

G2(2)-G2(3)=17.19 referred to X2 (5-4;0.95) = 3.84

G2(1)-G2(2)=22.27 referred to X2 (7-5;0.95) = 5.99

Table 5.8(11) Probabilities Calculated from "best" Model

SEX

CAUSE OF INJURY COMASUM MALE FEMALE

RTA 15 0.1072 0.0546

9-14 0.0072 0.0037

3-8 0.0032 0.0016

NON-RTA 15 0.5657 0.2034

9-14 0.0354 0.0127

00iCO 0.0039 0.0014
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probability of falling into each of the 12 cells is given in 

Table 5.8(ii).

5.4.3 Haematoma Study

Using exactly the same methodology as in 5.4.2 on the 

Haematoma data, the model

log 0 jjk = u + Sĵ + mj + Cfc +(sc)ifc

was selected to explain the data, when employing the sequence of

four models in Table 5.9(i). The estimated probabilities of a 

head injured patient falling into each of the 12 cells, using the 

above model, are given in Table 5.9(ii)

5.4.4 Confidence Intervals for Relative Risks: Method B

Approximate 95% confidence intervals for relative risk of a

haematoma taking as a reference the cell corresponding to female, 

Coma Sum 15 and Non-RTA, (©232^' were calculated. 9232 was 

identified as the cell with the lowest absolute risk of haematoma 

in Table 5.5(ii).
(A) (H) (A)

Taking logarithms and replacing ©ppp and ©^gp with ©332 and
(H)

©232 respectively, 5.1 reduces to:

(A) (A) (H) (H)
Clog ©232 " log ©ijKl " Clog 0232 - log ©ijk]

with corresponding approximate 95% Confidence Interval:

(A) (A) (H) (H)
C(log ©232 - log ©ijk) - (log ©232 " x°£ 0ijk>3 *

/  ~ ro (A)-   chi-------m
1 .96/ Var(log 0232 - log ©ijk) + Var(log ©232 - log ©ijk)

(A) (H)
Substituting log ©ijk and log 0ijk by the parameters in the

log linear model obtained from section 5.4.2 and 5.4.3



HAEMATOMA DATA

, 9{i) Selection of Model

Model d.f

1. y+Sj+mj+Cfc 15.84 7

2. n+Si+mj+Cfc+(sc) 9.74 6

3. u+s^+mj+Cj^+(sm) ̂ j+(sc) 7.41 4

4. xi+Sj+mj+Ck-Msm) ij+(sc) i^+(mc) jk 2.90 2

G2(3)-G2 (4)=4.51 referred to X2 (4-2;0.95) =5.99

G2(2)-G2(3)=2.33 referred to X2(6-4;0.95) =5.99

G2{1)-G2(2)=6.10 referred to X2(7-1;0.95) =3.84

Table 5.9(ii) Probabilities Calculated from "best" Model

SEX

CAUSE OF INJURY COMASUM MALE FEMALE

RTA 15 0.0288 0.0088

9-14 0.0795 0.0242

3-8 0.0943 0,0287

NON-RTA 15 0.0882 0.0165

9-14 0.2430 0.0455

3-8 ' 0.2885 0.0540



respectively, formulae for the interval estimates for the 

logarithm of the relative risk of haematoma were obtained. For

example, using the log linear model obtained from section 5.4.2
(A) (A)

Clog ©232 “ 1°6 elll3 reduces to:

Cu+S2+in3+C2+ ( s c ) 2 2 + (mc)32^ + [tf+S'i+mi+C] + (mc) j_ i+ (sc )  n ]

=-2s1-2mi-2ci-m2+(mc)21 (5.4)

2 3 2 3 2
with E s i = E m - i = E c k  = E (mc)ik = £ (mc)-^ = 0i-1 1 j=l J k=l K j=l JK k=l JK

The variance term associated with (5.4) is :

4var(si) + 4var(mi) + 4var(ci) + var(m2 ) + var((mc)2 i)

+ 8cov(si,mi) + 8cov(sj,Ci) + 4cov(si,m2) - 4cov(si,(mc)2i)

+ 8 c o v ( m i , c i )  + 4cov(m1 ,m2 ) -  4 c o v ( m i , (mc)2 i ) + 4cov(m2 , C i )

- 4cov(ci,(mc)2i ) - 2cov(m2 ,(mc)2i )

(H) (H)
Similarly, formulae for log ©232 ~ eijk was obtained. 

Using the maximum likelihood estimates for the parameters in the 

log linear models in sections 5.4.2 and 5.4.3 (obtained from 

BMDP, P4F package) interval estimates of the relative risk of 

haematoma were induced from the corresponding interval estimates 

of the logarithm of the relative risk of haematoma (Table 5.10). 

Although more difficult to computate, and requiring more 

distributional assumptions, these intervals are generally 

narrower than the corresponding intervals evaluated using Method 

A.

For simplicity, the methodology used in this chapter was 

evaluated on the 3 categorical variables; Cause of Injury, 

Glasgow Coma Sum, and Sex. However, as mentioned previously, the 

main interest of the clinicians involved in the study was to



Table 5.10 95% Confidence Intervals for Relative Risks

CAUSE OF INJURY

RTA

Non-RTA

COMASUM SEX RELATIVE RISK

15 Male C 2.5, 4.4]

Female C 1.4, 2.9]

9-14 Male C 87 , 210]

Female C 49 , 130]

3-8 Male c 210, 630]

Female c 120, 400]

15 Male [ 1.5, 2.4]

Female 1

9-14 Male [ 60 , 120]

Female i—it>ioCO 
1 _1

3-8 Male [ 550,1500]

Female [ 300, 760]
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calculate the risks of intracranial haematoma based on the four 

categorical variables and to evaluate the risks for children. 

These points are dealt with in the following chapter.



86
CHAPTER 6 

FURTHER ANALYSIS

The two objectives in this particular study were identified 

in Chapter 5. The first objective was the construction of 95% 

confidence intervals for Relative and Absolute risks of an 

intracranial haematoma employing four potential features of the 

data. The second was to widen the risk of intracranial haematoma 

to include children and will be discussed later in this chapter. 

The 95% confidence intervals for the relative risk of an

intracranial haematoma were calculated employing Method B as the 

computation was reduced substantially using the widely available 

statistical package BMDP, P4F. Also, the small number of

observations in some of the cells would evoke large confidence

intervals.

Considering the four variables Cause of Injury, Glasgow Coma 

Sum, Skull Fracture and Sex recorded in the A and E study and the 

Haematoma Study, and employing the statistical methodology 

discussed in the previous chapter, log linear models were 

identified which adequately described the A and E and Haematoma 

data (Tables 6.1 and 6.2). In Table 6.1, when G2(3) (=20.72) is 

referred to the 95% level of the Chi-squared distribution with 13 

degrees of freedom (=22.36) it can be concluded that this

particular model fits the A and E data reasonably well. 

Similarly from Table 6.2, the model identified as being the most 

adequate had a likelihood goodness of fit statistic equal to 

22.74 which, when compared to the 95% level of the Chi-squared 

distribution with 13 degrees of freedom (=22.36) indicates that 

model 3 fits the data very well. It is worth mentioning that in
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Table 6.1 Selection of a Model - A and E Data

Model g2 d. f

1.w+Sj+mj+Ck+fi+(mf) 6 2 . 8 8  16

2.u+si+mj+ck+fi+(sc)ik+(mf)jl 45.22 15
/

* 3-M+Si+nij+Ck+fi+(sc)ik+(mc)jk+(mf)ji 20.72 13

4.M+si+mj+Ck+fi+(sm)ij+(sc)ik+(mc)jk+(mf)jx 18.62 11

5.n+si+mj+Ck+fi+(sm)jj+(sc)ik+(mc)jk+(mf)jl

+(cf)ki 18.45 10

6-̂ +si+nij+Ck+fi + (sm)i j + (sc)ik+(sf )il + (mc)jk
+ (mf)ji + (cf )ki 18.45 9

7.y4-si+nij+Ck+fi + (sm)ij + (sc)1k + (sf )n + (mc)jk
+(mf)j1+(cf)kl+(scf)iki 14-97 8

8.̂ +si+nij -t-Ck+fi + (sm)ij + (sc)ik+(sf )il + (mc) jk

+(mf)ji+(cf)ki+(scf)ikl+(mcf)jki 12.86 6

g 2(7)_g 2(8) = 2.11 referred to X 2( 8-6 ;0.95) = 5.99

G2(6)-G2(7) = 3.48 referred to X 2( 9-8 ;0.95) = 3.84

G2(5)-G2(6) = 0 referred to X 2(10-9 ;0.95) = 3.84

G2(4)-G2(5) = 0.17 referred to X 2(11-10;0.95) = 3.84

G2(3)-G2(4) = 2.10 referred to X 2(13-11;0.95) = 5.99

G2(2)-G2(3) = 24.5 referred to X 2(15-13;0.95) = 5.99

G2(l)-G2{2) = 17.66 referred to X2(16-15;0.95) = 3.84

* denotes "best" model

(Note that sj, mj, ck are as described in Chapter 5 with fj 

denoting the 1th level of the variable SKULL FRACTURE)
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Table 6.2 Selection of a Model - Haematoma Data

Model G2 d.f.

1.y+Si+mj+c^+fi+(sc)j.k+(sf)n  39.62 16

2,ju+Sj+mj+Ck+f i+(sc) ik+(sf 33.47 15

* 3.At+Sj+mj+ck+f i+(sc) ik+(sf) il+(mf) jl+(cf )ri 22.47 13

4.w+s1+mj+cic+fi+(sc)ik+(sf) ii+fmc) jk+(mf)

+(cf)kl 19.76 11

5.a+si-Hnj+ck+fi + (sm);jj + {sc)ik+(sf ̂ ^(mc) jk

+ (mf)ji+(cf)kl 17.62 9

e . ^ S i + m j - h c ^ f j  + f s n O i j  + fscJi jc + t s f  ) i i  + (mc)-jk

+ (mf) ji + (cf )ki + (smf )j[ j2 12.01 7

7.M+si+mj-t-ck+f1 + (sm)ij + (sc)ik + (sf )il + (mc)jk

+(mf)ji+(cf)kl+(smfJjjj + tmcf)jk* 7.89 5

G2(6)-G2(7) = 4.12 referred to X2( 7-5 ;0.95) = 5.99

G2(5)-G2(6) = 5.61 referred to X2( 9-7 ;0.95) - 5.99

G2(4)-G2(5) = 2.14 referred to X2(ll-9 ;0.95) = 5.99

G2(3)-G2(4) = 2.71 referred to X2(13-ll;0.95) = 5.99

G2(2)—G2(3) = 11 referred to X2(15-13;0.95) = 5.99

G2(1)-G2(2) = 6.15 referred to X2(16-15;0.95) - 3.84

* denotes "best" model



Tables 6.1 and 6.2 only one sequence of nested hierarchical 

models was considered. Although no other nested hierarchies were 

deliberated, it is noted that by employing a different sequence 

of nested hierarchies from the one chosen may produce an 

alternative "best" model.

After identifying the log linear models to explain the A and 

E and Haematoma data, 95& confidence intervals for the relative 

risk of an intracranial haematoma were produced (Table 6.3) using 

Method B in 5.4.4. The relative risk here, is defined as the

risk that a patient with feature vector (i,j,k,l) will develop an 

intracranial haematoma as compared with a patient who is female, 

has Glasgow Coma Sum equal to 15, had not been involved in a road 

traffic accident and had no skull fracture.

Interpreting Table 6.3, it is noticed that the relative risks 

for females are similar to that of males in the no skull fracture 

group - with the exception of Non-RTA and Glasgow Coma Sum 15. 

Considering the skull fracture group, the relative risks for 

females are approximately double that of males. However, as 

these risks tend to be low, a clinician would not be interested

in recording the sex of a patient.

In addition, the relative risks of intracranial haematoma for 

Non-RTA are similar to RTA in the no skull fracture group and 

approximately double in the skull fracture group. These two 

results indicate that there is little point in using either of 

the features Sex or Cause of Injury in any of the models to 

predict risk.

It would therefore seem reasonable to omit these features

from the model and recalculate relative and absolute risks of 

intracranial haematoma employing the two variables; Glasgow Coma 

Sum and Skull Fracture.
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Table 6,3

CAUSE

RTA

Non-RTA

95% Confidence Intervals for Relative Risk of a 

Haematoma, Taking as a Reference Non-RTA, Glasgow 

Coma Sum 15, Female, No Fracture:

COMASUM SEX FRACTURE

NO

15 Male [0.70, 2.0]

Female [0.88, 2.2]

9-14 Male [ 14 , 58 ]

Female [ 28 , 110]

3-8 Male [ 56 , 290]

Female [ 69 , 330]

YES 

[ 200, 640] 

t 93 , 350] 

[1400,5800] 

[ 700,2900] 

[ 790,3400] 

[ 360,1900]

15 Male [0.74, 1.5]

Female 1

9-14 Male [ 26 , 76 ]

Female [ 28 , 65 ]

3-8 Male [ 240,1000]

Female [ 250, 890]

[ 110, 330] 

[ 43 , 140] 

[ 860,3100] 

[ 340,1300] 

[1900,7600] 

[ 730,3100]



Although interest was initially focussed on extending the 

number of risk factors to that used by Mendelow et al. , it is 

noted that in this study a different pair of risk factors are 

suggested to identify those patients at high risk of developing 

an intracranial haematoma. The variable SKULL FRACTURE is common 

to both studies.

Based on these two variables, the A and E and Haematoma data 

sets were reexamined with the risks and 95$ confidence intervals 

for the risks being extended to children. 4767 adults with 

complete data out of 4792 and 3599 children with complete data 

out of 3614 were available from the A and E data. The Haematoma 

data produced 861 adults with complete data out of a total sample 

of 988 and 99 children with complete data out of 119.

These patients were allocated to one of the six categories - 

produced from the two variables Glasgow Coma Sum and Skull 

Fracture - and their Absolute risk of developing an intracranial 

haematoma within each category was calculated. Tables 6.4 and 

6.5 indicate these features for Adults and Children respectively.

Using Method A in 5.3.2 and the method described in 5.2.3, 

95$ confidence intervals for the relative and absolute risks of 

an intracranial haematoma were then produced for both adults and 

children (Tables 6.6 and 6.7 respectively). (The relative risk 

in these tables is defined as the risk that a patient with 

feature vector (x,y) will develop an intracranial haematoma as 

compared with a patient who has a Glasgow Coma Sum of 15 and no 

skull fracture present. For children, the overall risk required 

to induce the confidence intervals for absolute risk was 

calculated to be 2100).

In these tables, the intervals for the absolute risks are 

probably too narrow due to the uncertainty of the overall risk,



Various Features for Adults and Children

Table 6.4

ADULTS

No Fracture

Haematoma
sample

A and E 
sample

A and E 
scaled up

Absolute
risk 1:

GCS 15 
9-14 
3-8

35
90
72

4378
258
31

275318
16225
1949

7900
180
27

Fracture

GCS 15
9-14
3-8

86
248
330

61
20
19

3836
1258
1195

45
5
4

Total 861 4767 299781 348

Table 6.5

CHILDREN

No Fracture

Haematoma
sample

A and E 
sample

A and E 
scaled up

Absolute 
risk 1:

GCS 15
9-14
3-8

16
12
10

3409
118
11

200943
6956
648

13000
580
65

Fracture

GCS 15
9-14
3-8

18
19
24

48
8
5

2829
472
295

160
25
12

Total 99 3599 212143 2100



95% Confidence Intervals for the Relative and Absolute Risks 

of Intracranial Haematoma for Adults and Children 

Table 6.6

ADULTS

No Fracture

GCS

Fracture

GCS

15

9-14

3-8

15

9-14

3-8

Relative Risk

[ 29 , 66 ] 

[ 170, 500]

[ 110, 280] 

[ 870,2800] 

[1200,3900]

Absolute Risk 1:

[5800,11000]

[ 140, 230]

[ 19 , 44 ]

[ 33 , 63 ]

[ 3.0, 7.4]

[2.2, 5.6]

Table 6.7

CHILDREN

No Fracture

Fracture

GCS 15 

9-14 

3-8

GCS 15 

9-14 

3-8

Relative Risk

[ 10 , 47 ] 

[ 71 , 530]

[ 38 , 170] 

[ 190,1300] 

[ 340,3100]

Absolute Risk 1

[8200,20000]

[ 350, 1100]

[ 25 , 160]

[ 92 , 260]

[9.2, 47 ]

[2.9, 20 ]



thus giving the impression that the estimates of risk are more 

precise than they actually are. Nevertheless, from Tables 6.6 

and 6.7, there is clearly a consistent rank order of risks of a 

patient developing a haematoma with the presence of a skull 

fracture or Glasgow Coma Sum of 3-8 or both. In both adults and 

children, the presence of a skull fracture and having a Glasgow 

Coma Sum of 3-8 indicates the highest risk of developing an 

intracranial haematoma (Diagram 6.1). When both these features 

are present, the risk of developing an intracranial haematoma is 

several orders of magnitude greater than if one/neither was 

present.

Finally, it was suggested by the clinicians involved in this 

study to include the variable "disruption of consciousness" with 

the two variables Glasgow Coma Sum and Skull Fracture in the 

construction of 95% confidence intervals for the relative and 

absolute risks of developing an intracranial haematoma. This 

variable is defined as a patient who has any post traumatic 

amnesia or any history of unconsciousness.

Using these three variables in further analysis involves 4767 

adults with complete cases out of 4972 from the A and E sample 

and 357 adults with complete cases out of 399, from the pre-1978 

Haematoma Study together with the 1984 cases from the Haematoma 

Study, to produce the Haematoma data. Calculations were 

restricted to Adults as only data from 45 children were available 

from the aforementioned sources. (This number is too small to 

obtain any meaningful estimates of risks).

An initial look at the A and E and Haematoma data for the 

three variables indicated that the "disruption of consciousness" 

variable should only be recorded for those patients with Glasgow 

Coma Sum 15. The number of patients in the four cells determined



Diagram 6.1

Relative Risks of Haematoma for Adults and Children 
with Approximate 95% Confidence Intervals

4000 Adults

Children

3000 -

Relative Risk 
of a 

Haematoma

2000 -

Skull Fracture 
Coma Sum



by Glasgow Coma Sum 9-14 and 3-8 with the "disruption of 

consciousness" categories were too small. The information about 

the Haematoma, A and E and A and E "scaled up" data are

summarised in Tables 6.8(1)—(iii) respectively. The relative 

risk in this analysis is where each feature vector is compared to 

a patient who has Glasgow Coma Sum 9-14 and has no skull 

fracture. 95% confidence intervals for the relative risk of a 

patient developing an intracranial haematoma are shown in Table 

6.9. The absolute risks calculated from Tables 6.8(i) and (iii) 

are shown in Table 6.10 with the corresponding 95% confidence

intervals.

It is noticed (Table 6.10) that the inclusion of the variable 

"disruption of consciousness" provides the clinician with more 

information as to the risk of a patient developing a haematoma in 

the Glasgow Coma Sum 15 category. For example, taking a patient 

with no skull fracture present, the risk of developing an 

intracranial haematoma with no signs of disruption is 1 in 31000 

whereas if the patient does have signs of disruption, the risk is 

vastly increased to 1 in 6700 - although both these risks are

very low. Similarly for the skull fracture group i.e. if a

patient has no disruption, the risk of developing a haematoma is 

1 in 81 whereas if the patient shows signs of disruption, the 

risk is increased to 1 in 29. The category of no skull fracture 

and Glasgow Coma Sum of 9-14 produces a slightly lower risk of 

haematoma in Table 6.10 to that of Table 6.4 and similarly for no 

skull fracture and Glasgow Coma Sum of 3-8. However, when 

comparing the skull fracture category along these two Glasgow 

Coma Sum categories to Table 6.4, it is noticed that although the 

risk in the 9-14 category remains the same, the risk of 

developing an intracranial haematoma rises from 1 in 4 in Table
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Table 6,8(i)

Haematoma Sample

COMASUM 15
COMASUM 9-14 COMASUM 3-8

No disruption Disruption

No
Fracture 3 3 30 26

Fracture 16 10 111 158

Table 6.8(ii)

A and E Sample

COMASUM 15
COMASUM 9-14 COMASUM 3-8

No Disruption Disruption

No
Fracture 3611 767 258 31

Fracture 50 11 20 19

Table 6.8{iii)

A and E Scaled Up

COMASUM 15
COMASUM 9-14 COMASUM 3-8

No Disruption Disruption

No
Fracture 94109 19989 6724 808

Fracture 1303 287 521 495
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Table 6.9 95% Confidence Intervals for Relative Risks

COMASUM 15
COMASUM 9-14 COMASUM 3-8

No Disruption Disruption

No
Fracture [0.002,0.024] [0.010,0.11] 1 [3.7,14]

Fracture [1.4,5.5] [3.0,20] [26,89] [38,130]

Table 6.10 Absolute Risks and 95% Confidence Intervals for the 

Risks

COMASUM 15
COMASUM 9-14 COMASUM 3-8

No Disruption Disruption

No
Fracture

31000

[13000,140000]

6700

[2700,29000]

220

[170,350]

31

[16,52]

Fracture

81

[46,140]

29

[11,59]

5

[2.7,6.9]

3

[1.9,4.9]



6,4 to 1 in 3 in Table 6.10 for the 3-8 category.

Thus the "disruption of consciousness" variable has 

considerable use in the detection of a haematoma and had this 

variable been omitted, necessary and useful information regarding 

the management of head injured patients may have been lost.
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CHAPTER 7 

DISCUSSION

Radiologists and Neurosurgeons debate the correct management 

strategy for head injured patients, particularly the necessity to 

perform radiography on all patients. To identify the individuals 

with a high risk of a skull fracture, two discrimination models 

were employed, namely linear logistic regression and 

Classification and Regression Trees (CART). Both of these 

procedures perform reasonably well using the identical subset of 

four indicator variables {COMASUM, VOM, FAC, SCALP).

Initially using test and training data sets, the best subset 

was identified using true error rates (obtained by testing the 

model on a large number of new cases) and receiver operating 

curves. Having obtained the "best" subset, the resulting linear 

logistic regression equation was compared to the corresponding 

linear discrimination model employing the same subset. The 

results from this comparison indicated that both models would 

perform equally well.

Using the same test and training data sets, the 

classification and regression tree procedure was executed by the 

CART package. Again the same four indicator variables were 

selected to construct the best tree. A direct comparison between 

the linear logistic regression equation and the tree obtained 

from CART was made using the Brier Score. Results of this test 

indicated a slight improvement in the performance of the 

discrimination using the classification method.

Conveniently, all the methods discussed above essentially 

discriminate between no skull fracture and skull fracture equally 

well. It is important to distinguish the method which is easily



communicated to clinicians and whose application would lead to 

few difficulties. Clearly, to apply linear logistic regression 

and the linear discriminant would require access to either a 

programmable calculator or computer. Also, difficulties arise if 

any components of the measurement vector are missing. Of the 

three discrimination procedures mentioned, only the 

classification tree analysis can deal with missing data and 

moreover it Is easily communicated to clinicians.

In conclusion, the procedure based on classification trees 

using the 4 variable subset {COMASUM, VOM, FAC, SCALP) would 

classify future patients most easily. In practice, clinicians 

should have no inhibitions from employing this method, and no 

interpretation of probabilities is required.

On the more theoretical side, the linear logistic regression 

model used in this study would almost certainly have more 

discriminative power if interaction terms were included. 

However, to achieve a simple system which, in practice, has to be 

used and understood by clinicians, interaction terms in this 

method were omitted. CART, on the other hand, will include some 

interactions in the optimal tree without complicating the 

discrimination.

Due to the large number of no skull fracture patients in the 

data set, both discrimination procedures could be used to 

identify those individuals at a low risk of having a skull 

fracture. Using CART, nodes at which there is a very low 

probability of misclassifying a patient with no skull fracture 

are easily identifiable. Therefore, eliminating those patients 

at a low risk of having a skull fracture for radiography may be 

the best course to take and may be acceptable to both 

radiologists and neurosurgeons.



In calculating the risk of developing an intracranial 

haematoma, the data from several sources were combined, perhaps 

causing opportunities for inaccuracies. Nevertheless, the data 

from each study were recorded on specifically designed forms thus 

enhancing the validity of the results produced.

The actual' levels of risk calculated assumed that the data 

included all the surgically significant haematomas to have 

occurred in the West of Scotland over the eleven years under 

study. This study provides a basis for determining the 

management of head injured patients which will ensure that the 

maximum available resources are allocated to minimising avoidable 

mortality and morbidity. This can be achieved by reducing the 

total number of head injured patients admitted to hospital, but 

at the same time providing adequate facilities for the urgent 

scanning of patients at highest risk.

From the analysis, it is determined that the adult head 

injured patients with no skull fracture and Glasgow Coma Sum of 

15 at the time of examination have an extremely low risk of a 

haematoma, even if there are signs of disruption. If such adults 

were sent home from A and E departments, there would be major 

savings with minimal risk.

Patients who have no skull fracture and Glasgow Coma Sum of 

9-14 or 3-8, or have a skull fracture present with Glasgow Coma 

Sum of 15, have intermmediate levels of risk. Clearly these 

patients should be admitted to hospital for observation.

Patients with a skull fracture and Glasgow Coma Sum of 9-14 

or 3-8 have a very high risk of developing an intracranial clot. 

After any necessary initial resuscitation, all such patients 

should be referred without further delay for CT scanning. This 

should not unduly overload existing facilities, as it is
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estimated that there are only nine such patients per 100000 

population a year (Mendelow et al.).

In this thesis, the risks of an intracranial haematoma were 

also evaluated for children, employing only the two variables 

skull fracture and Glasgow Coma Sum. It was determined that 

children with no skull fracture and Glasgow Coma Sum of 15 have a 

very low risk of developing an intracranial haematoma. Children 

with a skull fracture and Glasgow Coma Sum 3-8 have a relatively 

high risk of developing an intracranial haematoma and should be 

referred immediately for CT scanning.

The existing guidelines for admission or transfer to a 

Neurosurgical Unit could be altered accordingly. It appears that 

no other easily elicited clinical features investigated in this 

study could replace the presence or absence of a skull fracture 

for determining the presence or absence of an intracranial haematoma.



APPENDIX I

Guidelines for Skull X-ray after Head Injury

CRITERIA FOR NEUROSURGICAL CONSULTATION ABOUT 

PATIENTS WITH RECENT HEAD INJURY 

Neurosurgical Department 

Institute of Neurological Sciences, Glasgow 

Fractured skull

with confusion or worse impairment of consciousness, 

with focal neurological signs, or 

with fits, or

with any other neurological symptoms or signs.

Coma continuing after resuscitation - even if no skull 

fracture.

Deterioration in level of consciousness or other 

neurological signs.

Confusion or other neurological disturbances persisting fo 

more than 6-8 hours, even if there is no skull fracture. 

Compound depressed fracture of the vault of the skull. 

Suspected fracture of base of skull (CSF rhinorrhoea or 

otorrhoea, bilateral orbital haematoma. mastoid haematoma) 

or other penetrating injury (gunshot etc.).

Patients in categories 1-3 should be referred urgently.

Note: The diagnosis and initial treatment of serious 

extracranial injuries should always take priority over 

transfer to the neurosurgical unit.
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Treatment of Head Injured Patients in Cona 

or with Possible Nnltiple Injuries
1. Assess for respiratory difficulty, for shock, and for 

internal injuries especially after a high velocity injury, 

e.g. a road traffic accident.

2. Perform: a) chest x-ray; b) blood gas estimation;

c) cervical spine x-ray; d) other investigations as relevant.

3. Appropriate treatment may include:

Intubate (e.g. if airway obstructed or threatened)

Ventilate (e.g. cyanosis, Pa02<60mmHg, PaC02>45mmHg 

Mannitol, only after consultation with neurosurgeon 

Application of cervical collar or cervical traction 

Immobilisation of fractures, treatment of internal injuries.

4. If accepted for transfer the patient should be accompanied 

by medical or nursing staff who are able to insert or to re

position endotracheal tube, and to initiate or to maintain 

ventilation.



GUIDELINES FOR THE MANAGEMENT

OF PATIENTS WITH RECENT HEAD INJURY

Criteria for Skull X-ray after recent Head Injury

Clinical judgement is necessary but the following criteria are

helpful: (any of the following)

1. Loss of consciousness or amnesia at any time.

2. Neurological symptoms or signs.

3. Cerebrospinal fluid or blood from the nose or ear.

4. Suspected penetrating injury.

5. Scalp bruising or swelling.

6. Difficulty in assessing the patient (i.e. Alcohol 

intoxication, epilepsy, children)

Criteria for Admission of Adults to Hospital
1. Confusion or any other depression of the level of 

consciousness at the time of examination.

2. Skull fracture.

3. Neurological symptoms or signs.

4. Difficulty in assessing the patient e.g. alcohol, epilepsy.

5. Other medical conditions - e.g. haemophilia.

6. The patient's social conditions or lack of a responsible 

adult/relative.

Post-traumatic amnesia or unconsciousness with full recovery is 

not necessarily an indication for admission.

Patients sent home should receive advice to return immediately if 

there is any deterioration.
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Adapted from Harrogate Seminar Report 8 "The Management of Acute 

Head Injury" DHSS 1983 and "Guidelines for the Initial Management 

after Head Injury in Adults" British Medical Journal 1984 288 

p983 -985
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APPENDIX II 

MisclassifIcation Rates

Every patient in the population is assumed to belong to one 

of J mutually exclusive classes - denote the set of classes to be

C = '{1,.... J}, Partition the measurement space X into J

distinct subsets  Aj such that for every x G Aj, j is the

predictive class.

The misclassification cost of classification rule d, R*{d). 

can be estimated using the CART package in three ways, namely 

the resubstitution estimate, the test sample estimate and the 

cross-validation estimate. Denote these misclassification cost 

estimates for tree T. by R(T), Rts(T), and RCV(T) respectively.

Before describing misclassification costs further, it is 

useful to introduce further notation:

Let

(1) T denote the set of terminal nodes of tree T.

(2) C(i|j} is defined on the cost of misclassifying a class j 

patient as a class i patient.

(3) p(jIt) denote the probability of a patient falling into class 

j given that it falls into node t,

(4) p(t) denote the probability that a case falls into node t.
jjj(5) Q (i j j) be the probability that a patient in j is classified 

into i by d.

(6) R*(j) = t C(i|j)Q*(i|j)i
i.e. the expected cost of misclassification for class j 

patients.

1. Resubstitution Estimate

The resubstitution estimate calculated with the same data
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used to construct Tr is defined to be

R(T) = Z r(t)p(t) 
t e T

where r(t) = min Z C(i|j)p(t) 
i j

2. The Test Sample Estimate

In this method, all patients are divided randomly into two

sets and L2 with sample sizes and N2 respectively. The

cases in Lj are used to construct the tree T and the cases in L2

are used to estimate R*(T). Using t2, the test sample estimate

is defined as :

R (T) =   Z . C (i | j) Njj
N2

where Njj is the number of cases in class j whose predicted 

outcome is class i.

3. The V-fold Cross Validation Estimate

Define the complexity of a tree T as the number of terminal 

nodes, denoted by |Tj. The cost - complexity measure R<x(T) is 

then defined as:

Roc(T) = R(T) + <x | T |

where <x (̂ 0) is called the complexity parameter and R(T) is

estimated using the learning sample.

To estimate RCV(T{«)), all cases, L, are randomly divided

into V subsets, denoted by L-^...... Ly of approximately equal

sizes. For every v, v - the procedure is applied to

obtain the largest tree, T ^  , using the learning sample l -l ,̂ ,max K
and the corresponding minimal cost - complexity subtree of Tmax,

T^J. For complexity parameter a, the cross-validation estimate max
Rcv(T(oc)) is then defined as
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Rcv(T(<x)) = ~~1—  X  CdlJjNn 
N i. J J

where

(̂ )
" u  - I Nu

( \ r  \and Njj is the number of class j cases in L v classified as i

by t (^) (<x).
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