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SUMMARY

The problem considered in this thesis is the prediction of the 

quality of survival after severe head injury. A model of the 

recovery trend of the patient through time is derived and this 

model is used to predict ultimate outcome.

Chapter 1 introduces the problem of prognosis in clinical 

decision making, and in particular, its importance in the context 

of severe head injuries. It identifies the need for a new 

statistical approach to this problem.

Chapter 2 describes the development of the Head Injury Study 

data bank from the initial stages when terminology needed to be 

carefully defined to the present day. It gives a detailed 

description of the Glasgow Coma and Outcome Scales. The data 

collection methods are described along with the problems 

encountered in establishing a reliable data bank. Suggestions are 

given to minimise these problems.

In Chapter 3 discriminant analysis is introduced and its 

terminology defined. The factors involved in variable selection, 

the problem of missing data and the assessment of the performance 

of a discriminant rule are discussed in general terms. Two major 

studies are described where the prediction of outcome after severe 

head injury is made using information from the Head Injury Study 

data bank: first the early work using an independence model, and

then a comparative study which was carried out to assess the 

relative merits of different discrimination techniques. Chapter 3 

finishes by illustrating that, while these methods are successful 

in the prediction of death or survival, a new approach is required 

to predict the quality of survival.

Chapter 4 contains the work involved in modelling the recovery



trend of the survivors. This is done by modelling the coma score

through time. The first order autoregressive model which was

initially adopted is described along with the modifications 

required to give an adequate decription of the data. Ways of

reducing the number of parameters which need to be estimated are

considered, as well as the effect of using a pseudo maximum 

likelihood approach to reduce the computation involved in obtaining 

the parameter estimates. Three methods which adequately model the 

recovery trend are obtained.

Chapter 5 examines the performance of these methods by 

assessing their ability to predict the quality of survival. This 

assessment is based on the classification matrices and three 

separation measures (the error rate, average logarithmic score and 

average quadratic scores). How performance is affected by 

different priors and the ’jack-knife' technique is examined. The 

performance of the models incorporating trend is compared with that 

of other available models. Age is shown to have a substantial 

effect on the prediction of prognosis.

In Chapter 6 , age is incorporated into the models considered in 

Chapter 5 and the performance is re-assessed.

Chapter 7 discusses the possible clinical reasons for the 

general lack of success of the methods considered in Chapter 5 and 

Chapter 6 . The use of the verbal component of the coma scale is 

considered, and alternative data which may be useful to predict the 

quality of survival are discussed. Recommendations are made for 

future work, the importance of the quality of the information 

collected is stressed, and the vital role which simple statistical 

techniques have to play is emphasised.



CHAPTER 1

INTRODUCTION

1.1 The Importance of Prognosis in Clinical Decision Making

The ability to predict the course or consequence of disease is 

fundamental to most clinical decisions. Before an investigation is 

ordered, a drug prescribed or even an operation advised the 

clinician needs to know the likely benefit, the associated risk and 

the result of withholding any such measures. These decisions 

demand an estimate of prognosis, however crude. The extent of the 

problem is illustrated by Wagner et al. (1978), who, in a review of 

the problems in diagnosis, cite 827 references.

In a formal approach to such difficult decisions the problem 

can be split into four steps

(i) the strict definition of relevant terminology 

(ii) careful record keeping

(iii) the identification of factors affecting prognosis 

(iv) the construction of a model to estimate prognosis.

In adopting such a strategy, the clinician uses his accumulated 

experience and judgement to go through these steps and make an 

estimate of prognosis.

1.2 The Importance of Prognosis in Severe Head Injury

Predictive thinking is particularly important in the management 

head injured patients. In those with a minor head injury the 

doctor needs to decide if admission for observation or transfer to 

a specialist unit is justified, and this depends on the likelihood 

of certain complications developing. In patients with a severe



head injury who remain in coma after effective treatment has been 

given, prognosis about the ultimate outcome is of particular

concern. Many of those patients will die or be permanently 

disabled no matter what treatment is given. Resources are always 

limited and the deployment of facilities to one patient limits 

their availability to others, whether this is in the Intensive

Therapy Unit in the early stages after injury or later, in the

rehabilitation of survivors. Even if this were not the case, 

needlessly prolonged intensive care can be demoralising for the 

patient and relatives, as well as being sometimes unnecessary or 

even hazardous. Similarly over optimism about recovery can lead to 

fruitless efforts at rehabilitation rather than realistic 

adjustments to cope with handicaps and minimise consequent

limitations.

It is therefore important to identify as early as possible the 

patients who will benefit from the facilities of a specialist unit 

in order that their management can be appropriate and humane, 

rather than intuitive or defensive.

1.3 Prognosis of Severe Head Injury

The reasons that even experienced clinicians have difficulty in 

making firm predictions about outcome after severe head injury are 

not hard to discover. It would take the average consultant until 

he retired to look after 1 0 0 0 patients with severe head injury. 

Even if he could remember the clinical details and ultimate outcome 

of all his patients, his capacity to analyse accurately how these 

inter-relate, and how they can be used in a new case, would be 

imperfect. In practice clinicians tend to remember the 'remarkable 

recovery1 or the 'disappointing failure to respond', and their



estimations of prognosis are affected by their most recent 

memories.

In the late sixties the advances in computer technology and 

their increased availability made the storage and analysis of data 

on head injured patients a realistic possibility. The Head Injury 

Study was initiated in Glasgow in 1968 by Professor Bryan Jennett 

and was joined by centres in the Netherlands and the U.S.A., in 

1972 and 1974 respectively.

As already mentioned, before clinical information can be stored 

on computer in a form suitable for analysis it is vital to develop 

accurate record keeping methods, and this in turn requires clear 

definitions of the features to be recorded. The work involved in 

setting up the data bank is described in detail in Chapter 2. The 

problems encountered were similar to those encountered later by 

de Dombal (1978) in his study of the computer diagnosis of acute 

abdominal pain and by Marshall et al. (1983) in setting up a 

National Traumatic Coma Data Bank in the U.S.A..

Once the data bank was established it was possible to identify 

features which affected prognosis. There are many reports 

identifying such features, both by those involved in the Head 

Injury Study (Avezaat et al., 1979; Braakman et al,, 1980; Jennett 

et al., 1977b; Jennett et al., JL979; Teasdale et al., 1982b) and 

others (Becker et al., 1977; Marshall et al., 1979; Miller et al., 

1977; Overgaard et al., 1973; Pagni, 1973; Pazzaglia et al., 1975).

The natural progression from identifying single features which 

affect prognosis is to use combinations of features in the hope 

that a more accurate prediction of prognosis can be made. Thus the 

aim was to use the data bank of stored information to construct a 

model of the recovery pattern after severe head injury which would 

allow a prediction of prognosis for a new case. There are many



different methods of model building, but the simple approach used 

initially in the Head Injury Study gave promising results (Jennett 

et al., 1976). Stablein et al. (1980) used a logistic regression 

approach and this was the basis of a criticism of the Head Injury 

Study methods by Becker (1979). This criticism was a factor in 

instigating a comparative study (Titterington et al., 1981) of the 

different methods available, and so the various approaches were 

applied to the cases in the Head Injury Study. Chapter 3 describes 

the evolution of the study from the identification of single 

features affecting prognosis through to the comparative study.

1.4 The Need for a New Approach in Modelling Prognosis

While the models studied had been largely successful in 

predicting which patients would make a good recovery and which 

would die, no method was successful in identifying which patients 

would remain disabled after their head injury. The identification 

of this group of patients is important for several reasons. First, 

they impose a burden, both financial and social, on the community 

in which they live. Secondly, it is this group who are most likely 

to benefit from a new or intensified treatment since most other 

patients will clearly die regardless of treatment or will recover 

with conventional intensive care.

I was disappointed by the fact that no method used in the 

comparative study had been successful in identifying this group of 

patients and therefore it seemed to be worthwhile to try to find a 

new approach to this problem. It is this exercise which forms the 

main part of this thesis.

During the course of the study, which I joined in 1975, I dealt 

with data from many head injured patients, and after some time I



was struck by the fact that many cases who remained disabled had 

shown little change over time (either improvement or deterioration) 

in the early stages after injury. By contrast, those with good or 

very poor outcomes seemed to separate out more quickly. The 

existing methods of prediction had used the state of the patient at 

a particular time point, so that an attempt to model the time 

trends in the data offered a new approach. In Chapter 4 the 

various possible models that can incorporate time trends are 

reviewed and a model derived which described the data adequately 

while using as few parameters as possible.

The logical sequel to the derivation of a model is to assess 

its discriminatory power. The performance of the derived model was 

assessed by comparison with that of other more standard models. 

This exercise is described in Chapter 5. The comparison of the 

results obtained from the derived model with those from a model 

incorporating the age of the patient showed that a worthwhile 

improvement in performance could be achieved by incorporating age 

into the derived model. Two different methods of incorporating age 

were considered and the performance of all models is re-assessed, 

with age included, in Chapter 6 . Chapter 7 reviews the results of 

Chapters 5 and 6 and considers their further implications. These 

are relevant both to the statistical approach, and in particular, 

to the clinical data that seem likely to be relevant in future work.



CHAPTER 2

HISTORICAL DEVELOPMENT OF THE HEAD INJURY STUDY DATA BANK

2.1 Epidemiology of Head Injury

In Britain almost one, million patients attend Accident and 

Emergency Departments each year with a head injury (Jennett et al., 

1977a), Fortunately most are only mildly injured; only one in 

five of these patients is admitted to hospital and of these two 

thirds are discharged within 48 hours (McMillan et al., 1979; 

Strang et al., 1978).

In Scotland, about 15,000 head injuries each year are admitted 

to hospital. The majority of minor head injuries are wholly 

treated in primary surgical wards which are in general surgical, 

accident, orthopaedic and paediatric departments, while the more 

severe head injuries are treated in the four regional neurosurgical 

units in Glasgow, Aberdeen, Dundee and Edinburgh.

In Glasgow the regional unit is the Institute of Neurological 

Sciences, located within the Southern General Hospital, and it 

serves a population of 2.7 million in the West of Scotland. 

Patients are taken only as transfers from other hospital units, 

never directly from the scene of the accident; even in the 

Southern General Hospital all head injuries are dealt with first by 

primary surgeons. Jennett et al. (1977a) showed that Glasgow was 

similar to Dundee and Aberdeen in its head injury practice with 

4-5% of admitted cases being transferred to the regional unit. 

However, their survey did not include hospitals in the Lothian 

Health Board. These are served by the Edinburgh Neurosurgical Unit 

which has a policy of admitting a large proportion of head injured 

patients, including the mildly injured, directly to a ward



supervised by neurosurgeons, although still not in the main 

neurosurgical department.

In 1977 guidelines (Teasdale et al., 1982a) were adopted and 

later formalised (Briggs et al., 1984) for the transfer of head 

injured patients to the Institute. The current guidelines for the 

management of head injured patients are shown in Figure 2.1. This 

change in transfer policy led to an increase in the number 

transferred per year, from just over 220 to around 500. Essential 

details of the features of the head injured patients admitted to 

the Institute of Neurological Sciences in 1986 are given in 

Table 2.1.

2*2 Definition of Terminology

2.2.1 Assessment of Conscious Level

Impairment of consciousness is an indication of dysfunction in 

the brain as a whole and is one of the most consistent features of 

head injury. In the acute stages, changes in conscious level 

provide the best indication of the development of complications 

such as an intracranial haematoma, while the depth and duration of 

coma indicate the degree of ultimate recovery which can be 

expected. Reliable assessment of the extent of impaired 

consciousness is therefore of prime, practical importance in the 

management of head injured patients.

The various levels of impaired consciousness have been 

described and recorded by an abundance of alternative terms. 

Expressions such as comatose, semi-comatose, stuporous and 

semi-conscious have often been used, and a range of inconsistent 

systems described (Frowein, 1976), This problem led Teasdale and 

Jennett (1974) to examine the existing systems and to develop the
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Table 2.1 Details of the cases admitted to the Institute 

Neurological Sciences in 1986

Number of cases 592

Under 20 years old 31%

Road traffic accident victim 38%

Admitted within 6 hours of injury 45%

In coma or intubated on admission 23%

In coma > 6 hours 19%

Skull fracture 58% -

Operated haematoma 17%

Extracranial complications 57%

Non-reacting pupils an admission 7%
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Glasgow Coma Scale. They found that existing systems suffered from 

one or more of three defects. Some depended on specific 

anatomical-clinical correlations, whereas studies of the brain 

after severe blunt injury (Mitchell and Adams, 1973) had shown that 

most cases had lesions widespread throughout the brain. Some 

described coma by a series of arbitrary steps, assuming groups of 

clinical features unique to each level, whereas Teasdale and 

Jennett observed that the reality is a continuous spectrum of 

responsiveness between deep coma and full consciousness. Finally, 

few scales had been tested for the consistency with which the signs 

and symptoms upon which they depended could be elicted by different 

observers. To find wide practical application, a system must be 

simple and based upon clearly defined criteria, which can be 

elicited reliably by a wide range of medical and nursing staff. 

The Glasgow Coma Scale took account of all these considerations and 

provided an effective method of describing the various states of 

impaired consciousness encountered in clinical practice.

2.2.2 The Glasgow Coma Scale (GCS) and Score

Three separate aspects of the patient's behaviour are evaluated 

independently of each other:-

(i) the stimulus required to induce eye opening (E)

(ii) the verbal response (V)

(iii) the best motor response (M).

Each aspect of behaviour is assessed in terms of a well defined 

series of responses which indicate the degree of dysfunction. Each 

step in each component has to be allocated a notation, with a score 

of 1 indicating maximum dysfunction, and Figure 2.2 illustrates the 

scores possible for each aspect of behaviour. Summation of the 

scores of the three components yields the overall Glasgow Coma



Figure 2.2 The Glasgow Coma Scale
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GLASGOW 'COMA' SCALE

obeys M6
y r  localises 5

Best withdraws 4
Motor-------------------- abnormal flexion 3
R e s p o n s e ^ \^ ~ ~ - extensor response 2

N il 1

orientated V 5
confused conversation 4

Verbal —  inappropriate words 3

Response^:̂ \ ~ ~  incomPr ehensible sounds 2
'N il 1

.^-spontaneous E 4
Eye opening ~  to speech 3

N v  to pain 2

N il 1



Score (Teasdale et al., 1979a).

When eliciting the eye opening score, spontaneous opening 

indicates that the arousal mechanisms in the brain stem are active. 

It does not necessarily imply awareness. If spontaneous opening is 

not present then a spoken command is given, usually the patient's 

name is called and he is requested to open his eyes. If this is 

unsuccessful then a painful stimulus is applied by exerting 

pressure on the finger-nail bed with a pen or pencil. No eye 

opening in response to a painful stimulus implies a marked degree 

of depression of the arousal system.

After the patient has been roused as fully as possible, verbal 

and motor performance are assessed.

With the verbal response, orientation requires the patient to 

know who he is, where he is, and the month and year. If he is 

unable to answer these questions but capable of producing phrases, 

sentences and even conversational exchange, then the patient is 

termed confused. Inappropriate words refer to intelligible 

articulation used in an exclamatory, random way while moaning and 

groaning constitute incomprehensible sounds. While the presence of 

speech indicates a high degree of integration in the nervous 

system, no verbal response may, of course, be the result of causes 

other than impaired consciousness, such as dysphasia.

When scoring the best motor response, to reflect the functional 

state of the brain as a whole, the best or highest response from 

any limb is recorded. Obeying commands is judged from the response 

to instructions such as 'lift your arms' or 'put out your tongue'. 

Reflex grasp responses occur in unconscious patients, and asking a 

patient to squeeze the examiner's fingers is not a reliable test. 

If the patient does not obey commands then a painful stimulus is 

applied. This is applied first at the finger-nail bed, but



subsequently it may be necessary to apply pressure over the 

supra-orbital notch. Localising is recorded if the patient moves a 

limb in such a way as to locate the painful stimulus on the head in 

an attempt to remove it. If the arm bends at the elbow but does 

not achieve a localising response then a flexion response is 

recorded. This can vary from normal rapid withdrawal to abnormal 

slow dystonic movements in which the limbs assume stereotyped 

postures. Extension responses of the limbs when the elbows or 

knees straighten are clearly abnormal. The limbs may even adopt 

this position without stimulation. No response to pain is scored 

when repeated and varied stimulation elicits no detectable movement 

or change in tone of the limbs. The GCS has been universally 

adopted as a bedside test, and the introduction of the scale has 

greatly enhanced the value of routine observations (Teasdale, 

1975). A chart on which the responses are recorded provides a 

visual profile of the patient's progress which can be rapidly 

assessed (Teasdale et al., 1975). A typical chart of a patient who 

suddenly deteriorates but after operation gradually improves is 

shown in Figure 2.3.

With the help of the GCS, Teasdale and Jennett (1976) defined 

coma as the inability

(i) to open the eyes to any stimulus

(ii) to utter any recognisable words 

and (iii) to obey commands.

In terms of the GGS, this implies an eye score (E) of 1, a 

verbal score (V) of 2 or less and a best motor score (M) of 5 or 

less. If any of (i)-(iii) above could be achieved then the patient 

was regarded as not in coma.
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2.2.3 The Glasgow Outcome Scale

Much of the difficulty which doctors experience when making 

decisions about head injured patients, both in the acute stage and 

during recovery, results from the uncertainty about the outcome, 

Barlow and Teasdale (1986) found that, in a multi-national group of 

59 neurosurgeons, 56% chose 'estimated prognosis' as the most 

important factor in determining a difficult clinical decision. 

Jennett and Bond (1975) saw the definition of outcome as the first 

step towards making possible the prediction of outcome. They 

reviewed recent papers on outcome after head injury and found that 

a wide range of terms were used. As persisting disability after 

head injury usually comprises both mental and physical handicap 

they devised a simple scale, the Glasgow Outcome Scale, for 

describing overall social outcome. This scale has five

categories :-

(i) death

(ii) vegetative state

(iii) severe disability

(iv) moderate disability 

(v) good recovery.

Death might seem to require no further definition. However, 

advanced technology can now keep other major organs functioning 

when irreversible brain damage has occurred and strict criteria now 

exist to determine brain death. It is now agreed that in such 

cases the time of death is when brain death is confirmed and not 

some later time when the heart stops.

The vegetative state was defined by Jennett and Plum (1972) in 

rigorous terms which limited it to patients who showed no evidence 

of meaningful responsiveness. Patients who obey even simple 

commands or utter any words are assigned to a better category.



Vegetative patients breathe spontaneously, have periods of 

spontaneous eye opening, when they may follow moving objects with 

their eyes, show reflex responses in their limbs (to postural or 

painful stimuli), and they may swallow food placed in their mouths. 

This non-sentient state must be distinguished from other conditions 

of wakeful, reduced responsiveness — such as the locked-in 

syndrome, akinetic mutism and severe aphasia.

Severe disability indicates that a patient is conscious but 

dependent and needs the assistance of another individual every day 

for some activities of daily living. This may range from 

continuous total dependency to the need for assistance with only 

one activity such as dressing, getting out of bed, moving about the 

house or going outside to shop. Most often, dependency is due to a 

combination of physical and mental disability, but many patients 

who have little or no physical deficit are unable to organise their 

day to day lives effectively and must be classed as severely 

disabled. Some require the care and protection which only a mental 

hospital can provide: others cope at home with the support of

attentive relatives but could not be left alone for a whole day 

because they would be unable to organise their meals, or to deal

with callers, or any domestic crisis which might arise.

Moderate disability means that patients are independent but _ 

disabled. Such a patient is able to look after himself at home, to 

go out to shop and to travel by public transport. However, some 

previous activities, either at work or in their social life, are 

now no longer possible because of physical or mental deficit. Some 

patients in this category are able to return to certain kinds of 

work, even to their own job if this happens not to involve a high

level of performance in the area of their major deficit.

Good recovery indicates the capacity to resume normal



occupational and social activities although there may be minor 

physical or mental deficits. The patient need not have resumed all

his previous activities, and may not be working because

unemployment may be due to many factors other than the degree of 

recovery.

The time after injury at which outcome is assessed is

important. During the first year an increasing number of those 

initially vegetative or severely disabled die: on the other hand,

some severely or moderately disabled reach a better outcome. 

Jennett and Bond (1975) state that a third of those still

moderately disabled at 3 months after injury had made a good 

recovery by 12 months, and over 80% of those who improved their 3 

month outcome by 12 months had already achieved the higher grade 

within 6 months of injury.

2.3 The Establishment of an International Data Bank

2.3.1 Introduction

Head injury is a common cause of death and disability, 

particularly in the young, and patients with a severe head injury 

put a considerable burden on acute hospital services in the early 

stages after injury. If they survive, the burden then falls on 

many aspects of the health services in the community and can last 

for many years (Jennett, 1975).

The value of a data bank of clinical cases collected in a 

standardised way as a basis for the management of new cases and for 

relating therapeutic efforts to outcome was pointed out by Fries 

(1976). The collection of such a data bank of patients with severe 

head injury was initiated at the Institute of Neurological Sciences 

in 1968. Extension of the data collection to two Dutch centres



(Rotterdam and Groningen) in 1972 and to an American centre (Los 

Angeles) in 1974 (Jennett et al., 1977b) made it possible to test 

the feasibility of standardising methods of clinical recording 

among several teams of clinicians. Another American centre (San 

Francisco) joined the study in 1980.

2*3.2 Definition of Criteria for Admission to the Data Bank

It was essential to establish at an early stage if a case was 

sufficiently severe to be admitted to the data bank. The most 

widely accepted indicator of brain damage was the extent and 

duration of impairment of conscious level. Because of the lack of 

generally agreed scales of assessment, it was during this time that 

the Glasgow Coma Scale and the Glasgow Outcome Scale were devised 

and developed. For inclusion in the data bank, the patient had to 

be in coma, as defined in Section 2.2.2, for at least six hours. 

Patients who were lucid after injury and then deteriorated so that 

they were in coma for six hours or more were included. Patients 

who died within six hours of injury were excluded.

The choice of the duration of coma as six hours was to some

extent arbitrary. However, the period was chosen to allow time for 

the diagnosis and management of other injuries and their associated 

complications, such as shock and respiratory insufficiency. It is 

well known that these may affect several parameters of neurological 

function, in particular the pupil reaction and the level of 

responsiveness. The extent of brain damage may therefore be 

over-estimated on the basis of the patient's state in the first few 

hours after injury.

All cases who were admitted to each of the participating

centres during their period of study and who were eligible were

accepted into the data bank.



2.3.3. Data Collection

Data were recorded by one of a series of specified clinical 

trainees who had been made aware of the purposes of the study and 

the categorisation of the various features agreed between 

participating centres. The evolution of these naturally began in 

Glasgow, but when other centres joined the study considerable care 

was taken to ensure uniformity of eliciting, interpreting and 

recording clinical data.

Several different types of data were collected. Personal 

details such as the age and sex of the patient were recorded, as 

well as the history of the patient from injury until admission to 

neurosurgery. The investigations carried out, such as X-rays and 

intra-cranial pressure monitoring, and treatment given were also 

noted, as well as aspects of coma. Data from the bedside day 

sheets on the coma scale, pupil reaction, eye signs and several 

autonomic activities (respiration, heart rate, blood pressure and 

temperature) were collected. Some of these observations are so 

labile that at any one time they alone may be unreliable as a guide 

to the degree of brain damage, while others change less rapidly. 

All are dynamic, however, and an essential feature of the study was 

that data on the patient were noted repeatedly at the bedside. 

This gave rise to a massive amount of data, so it was decided to 

summarise them by the best and the worst state within a series of 

time periods after the onset of coma. The time periods chosen 

were:-

(i) the first twenty-four hours (24H)

(ii) two to three days (2-3D)

(iii) four to seven days (4-7D)

(iv) eight to fourteen days (8-14D)

(v) fifteen to twenty-eight days (15-28D).



It was also noted whether the best coma score came before or after 

the worst* by coding whether the patient was improving, not 

changing, deteriorating or fluctuating within the time period.

The data collected also included an assessment of the six month 

outcome using the Glasgow Outcome Scale and, once this was 

available, the data were transferred into the computer data bank. 

Great efforts were made to follow up every case — an extremely 

time-consuming occupation. However, a few cases had to be classed 

as out of hospital and lost to follow-up,

2.4 Problems Associated with Data Collection

2.4.1 Observer Variability

An important feature of any practical measurement scale is that 

it should give consistent results when used by different observers. 

Teasdale et al. (1978) performed a detailed study of the observer 

variability associated with the GCS and with some alternative terms 

often used to describe patients with acute brain injury. The 

observers used ranged from nurses to consultant neurosurgeons. 

Patients in a specially prepared film were observed and scored by 

groups in Britain, Europe and North America. Nurses and general 

surgeons were found to be as consistent as neurosurgeons when using 

the GCS and it was relatively resistant to language or cultural 

differences between observers. The practical reliability of the 

scale enhanced its value both in monitoring individual cases and 

for making meaningful comparisons between series of patients with 

acute brain injury. Indeed, such has been the success of the scale 

that within a few years it was used in more than half the 

neurosurgical units in Britain (Gentleman & Teasdale, 1981) and is 

now widely used in North America and throughout the world,



including countries such as Russia and Japan (Schein, 1988).

As with the GCS, there was good agreement between different 

observers when the Glasgow Outcome Scale was used (Maas et al,, 

1983). Indeed Langfitt (1978) suggested that both Glasgow scales 

should be adopted worldwide, at least for a period of five years, 

to facilitate the comparison of different studies.

2.4.2 Form Design

Even with strict definition of the terminology, substantial 

problems can still be encountered in data collection. The physical 

means by which this is achieved can vary. Nowadays it is 

relatively simple to collect data directly on to a microcomputer 

using a database program. However when the Head Injury Study was 

initiated such programs were not available and the data collected 

were transcribed onto a form by the clinicians involved.

Good design of such a form (or database program) plays an 

important role in careful record keeping. The larger the study 

the more important it becomes to have a well designed form, and 

effort at this stage can be rewarded when the subsequent data 

collection and analysis are made as simple as possible. Useful 

general guidelines have been produced by Gore and Altman (1982) and 

comments specific to head injury on this problem have been made by 

Miller and Teasdale (1985).

Numerous versions of the data collection form have been used 

throughout the duration of the study. In 1978 a great deal of 

effort, in which I had a leading part, was put into refining 

existing approaches to create a final well designed method of data 

collection. The form which is included in Appendix 1 was used to 

collect most of the data used in this thesis.



2.4.3 Data Checking

After the data were stored on computer they were checked before 

any analysis was carried out. At a simple level all values 

recorded were confirmed to be within their permitted range and 

important features which had not been coded were identified. More 

sophisticated checks were also incorporated to detect unusual or 

unlikely combinations. For example it is unlikely that a head 

injured patient whose best motor response is nil will be opening 

his eyes spontaneously.

2.5 Reduction of Dimensionality

2.5.1 Introduction

As many as 300 items of information can be collected on some 

head injured patients and not all of this information is relevant 

to prognosis. A reduction in the dimensionality of the data 

normally takes place at the modelling stage, but a rational 

clinical approach to this problem can also be incorporated at an 

earlier stage. The Glasgow Coma Score and created eye indicant are 

examples where the dimensionality of the data has been reduced 

after discussing the results of exploratory data analyses with the 

clinical staff involved in the study.

2.5.2 The Glasgow Coma Score

In spite of summarising aspects of coma by the best and worst 

in the period, the dimensionality of the data is still large. In 

particular, the coma scale is composed of three separate responses. 

These responses tend to be related to each other, particularly when 

responsiveness is severely depressed in the first few days after 

injury. For example, a patient whose best motor response is



extension will not be speaking and is unlikely to be opening his 

eyes at this stage. There is, therefore, some redundancy in 

recording all three items in this circumstance, indicating that 

combination of all three results into an overall measure of 

responsiveness might be accomplished without undue loss of 

information.

The simplest measure is the sura of the three component scores 

and indeed this total is now widely known as the Glasgow Coma 

Score. It ranges from three to fifteen, with scores of less than 

eight usually indicating coma; scores of nine or more are out of 

coma (Teasdale et al., 1983). However, at least in theory, the 

same total score could be made up in a number of different ways. 

Teasdale et al. (1979a) showed that, in practice, the overall score 

proves to result, in the majority of cases, from one characteristic 

combination of responses. This was particularly the case with 

scores in the lower half of the range (3 - 8) during the first week 

after injury. Even when the same overall score encompasses groups 

of patients with different component scores, the outcomes of the 

different groups prove to be similar. However, information is lost 

when using the sum or some subset of the components instead of the 

three individual results. This loss of information may be partly 

compensated for by„ the conceptual simplicity of one number versus 

three.

If any of its component scores is missing then the Glasgow Coma 

Score is also missing. This happens most frequently with 

ventilated patients, who have an endotracheal tube in position or a 

tracheostomy, in which case the verbal response cannot be elicited.

2.5.3 Created Eye Indicant

Plum and Posner (1972) pointed out the value of studying eye



movements as an indication of brain stem function. The data bank 

records spontaneous eye movements and reflex eye movements from the 

oculocephalic and oculovesticular reflex response. Patients 

frequently had one or more of these three observations missing 

because the test was not carried out. For example, it would be 

unlikely that the reflex tests would be carried out if the patient 

had orientating (normal) spontaneous eye movements. To reduce the 

problems of missing data, dimensionality and dependency between 

features, a method was devised to take account of one or other 

feature being absent, impaired or normal and a 'created eye 

indicant1 was devised to combine the information contained in the 

three features, whether tested or not.

2,6 The Current State of the Data Bank

In spite of the effort and cost involved, data collection in 

Glasgow has been continuous and all head injuries up to the end of 

1986, a total of 2005 cases, are now available for analysis. This 

brings the total in the data bank to 3078, with 305 cases from 

Rotterdam, 113 cases from Groningen, 225 from Los Angeles and 430 

from San Francisco in addition to those from Glasgow.

Since 1985, Edinburgh, Liverpool and Southampton have joined 

Glasgow in a multi-centre study of the effect of providing 

predictions of prognosis to clinicians. By the end of this study 

in December 1988 it is anticipated that the data bank will have 

around 4000 cases of severe head injury.

This extensive carefully documented data bank provides a unique 

resource which is invaluable in the study of severe head injury.
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CHAPTER 3

THE USE QE DISCRIMINANT ANALYSIS TO PREDICT THE SIX MONTH OUTCOME 

OE PATIENTS IN THE HEAD INJURY STUDY

3.1 Introduction

After scales for the assessment of conscious level and outcome 

had been developed and a database of the features of patients with 

a severe head injury set up, an attempt could be made to predict, 

using data collected shortly after injury, the degree of recovery 

which patients will attain. The first step in the procedure was to 

examine the relationship between the individual features and 

outcome. As mentioned in Chapter 1, there are numerous reports 

identifying such features, and the data bank of 1356 Glasgow cases 

was used to illustrate examples of the relationships of coma score, 

pupil reaction and eye indicant to the six month outcome, based on 

the patient's best state in the first twenty-four hours (Tables 3.1 

- 3.3). Similar relationships can be shown using the patient's 

worst state or data from different time periods. These findings 

confirmed that depth and duration of coma are reliable markers of 

severity of brain damage and hence indicators of likely outcome. 

The natural way forward from this was to use combinations of 

features to predict outcome. This brings the problem into the 

framework of discriminant analysis, where the aim is to assign an 

observation to one of two or more distinct classes or groups, on 

the basis of a training set of observations whose classes of origin 

are known. However, here the analysis is used for prognosis rather 

than the more common medical application of discriminant analysis 

for diagnosis.



Table 3.1 Relationship between 24 hour best coma score and six

month outcome from the data bank of 1356 Glasgow

cases

Six
Month
Outcome 3-5

Coma

6-7

Score

8-10 11-15

Death 226 236 88 24
78% 54% 27% 16%

Vegetative 9 8 3 1
State 3% 2% 1% 1%

Severe 21 66 44 17
Disability 17% 15% 14% 11%

Moderate 16 58 70 44
Disability 6% 13% 22% 29%

Good 16 70 117 66
Recovery 6% 16% 36% 43%

Total 288 438 322 152
100% 100% 100% 100%



Table 3.2 Relationship between 24 hour best pupil reaction and

six month outcome from the data bank of 1356 Glasgow

cases

Six
Month
Outcome

Pupil Reaction 

Reacting Not Reacting

Death 409 222
39% 83%

Vegetative 13 10
State 1% 4%

Severe 146 21
Disability 14% 8%

Moderate 196 9
Disability 19% 3%

Good 276 7
Recovery 27% 3%

Total 1040
100%

269
100%
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Table 3.3 Relationship between 24 hour best eye indicant and

six month outcome from the data bank of 1356 Glasgow

cases

Six
Month
Outcome

Eye

Absent/Bad

Indicant

Impaired Good

Death 196 102 168
90% 59% 29%

Vegetative 2 6 10
State 1% 3% 2%

Severe 9 36 85
Disability 4% 19% 15%

Moderate 8 22 124
Disability 4% 12% 22%

Good 3 25 185
Recovery 1% 13% 32%

Total 218
100%

191
100%

572
100%



3.2 Terminology of Discriminant Analysis

Before proceeding, it is useful to introduce the notation and 

terminology of discriminant analysis (Duda and Hart, 1973; 

Aitchison and Dunsmore, 1975; Lachenbruch, 1975) in relation to 

prognosis.

(i) Individuals in the study are assumed to belong to one of a 

finite set of k outcome categories, n^> ..., 11̂ .

(ii) Associated with these outcome categories there may be a 

set of prior probabilities, arrival rates or relative 

incidences, p(n^), ..., pClI^) which sum to unity and which 

summarise our knowledge of the frequency of occurrence of 

the different categories.

(iii) Each individual has information available in the form of a 

finite set of feature variables or indicants. These

measurements will form a feature vector for the patient,

(iv) A training data set, D, is available of n individuals 

whose outcome categories and feature vectors are known and 

represented as

D « {(oi, x ), i=l, ..., n} .

The outcome category of individual i is denoted by o^ and 

the feature vector by x^.

(v) A discriminant rule is set up for assigning an individual

to one of the outcome categories or for specifying the

probability of each of the different outcome categories*

given the feature vector of the individual. The 

discriminant rule is developed from the training set of 

data, D.

(vi) A test data set is provided of individuals whose outcome 

categories and feature vectors are also known, so that the



performance of the discriminant rule can be evaluated. 

Often the training and test data sets are the same, and 

less biased evaluation can be achieved provided 

cross-validatory assessment is used (Lachenbruch and 

Mickey, 1968).

For a new individual with feature vector y, . the discriminant 

rule gives a means of obtaining estimates for the conditional 

probabilities {p(n.jJy,D), i=l, ..., k). These estimates may then 

be used to assign that individual to the outcome category 

associated with the largest probability.

There are two approaches to this problem, which Dawid (1976) 

calls the diagnostic and the sampling paradigms. With the 

diagnostic paradigm p(n-}Jy,D), the distribution of the outcome 

category for a given feature vector, is modelled directly. With 

the sampling paradigm, Bayes1 theorem is used to give

p(lli|y,D) « p(y|iii,D) p(lli), i=l, ..., k 

and both pClI^), the prior probability, and p(y|n^,D), the 

distribution of the feature vector within a given disease category, 

are modelled.

The diagnostic paradigm is restricted mainly to the use of 

generalised logistic models, whereas by adopting the sampling 

paradigm the main effort is in modelling p(y111^,0) and so density 

estimation, either parametric or non-parametric, is of prime 

concern. This approach gives wide scope for the many methods of 

density estimation available, but certain decisions have to be 

made, such as which variables to include, before proceeding with 

the density estimation problem.
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3.3 Factors Important in Comparative Discriminant Analysis Studies

3.3.1 Introduction

In a comparative study of different discriminant rules, some 

important choices have to be made in addition to that of the model 

to be. used. These include:—

(i) the variables to be selected for inclusion in the rule,

(ii) the criteria to be used for the evaluation of the 

performance of the rule

(iii) the method to be adopted to deal with missing data, if it 

exists.

3.3.2 Variable Selection

In many practical discriminant analysis problems, data on a 

very large number of variables are collected. Indeed, in the Head 

Injury Study over 300 separate items can be available for some 

patients. In such cases a subset of the variables has to be 

selected which it is hoped will be almost as informative as the 

entire set.

There are many factors which might influence the choice of 

variables and this makes the problem a difficult one. If the aim 

was to produce a simple nomogram for diagnostic screening then 

perhaps only three or four variables could be chosen. However, if 

computing facilities were available, more variables could be 

incorporated in a more complex screening rule. Missing data can be 

important in variable selection. A variable might be a powerful 

discriminator but be recorded so rarely that it cannot be 

incorporated into the model. Similarly, the cost or time involved 

in measuring certain variables has to be considered, in view of the 

fact that the result of an expensive and time-consuming bioassay



may be no more informative than an easily obtained item of clinical 

information.

These factors are all concerned with the practical 

applicability of the final discriminant rule, but its statistical 

properties are also important. Lachenbruch (1975), Hand (1981) and 

Habbema and Gelpke (1981) discuss various methods of variable 

selection which are widely used, and the problem of variable 

selection is in itself a separate research area. The problem of 

variable selection for head injury prognosis was important in the 

early development of a prognostic model and will be discussed 

further in Section 3.4.3.

3.3.3 Criteria for the Evaluation of the Performance of a 

Discriminant Rule

To compare the performance of different discriminant rules on a 

particular sets of variables or of a single discriminant rule on 

different sets of variables, appropriate criteria must be employed. 

Two quite separate aspects of performance must be considered. 

Historically, the more important aspect is how well the groups 

corresponding to the various outcome categories are separated. 

However, more recently it has become increasingly important to know 

whether or not the probabilities assigned to each group are 

realistic. For example, if there are two outcome categories, a 

rule which invariably assigns a probability of 0.51 to the correct 

category gives perfect separation but unrealistic probabilities. 

At the other extreme a rule which for every case just assigns the 

prior probabilities does in some sense give accurate probabilities 

but is of no use for separation. Habbema et al. (1978, 1981),

Habbema and Hilden (1981) and Hilden et al. (1978a, 1978b) give an 

extensive discussion of these points and present a large number of



measures of efficiency for a discrimination procedure.

The measures of separation considered here will be 

(i) the error rate,

(ii) the average logarithmic score,

(iii) the average quadratic or Brier score.

(i) The error rate (the proportion of cases allocated to an 

incorrect category) is the most commonly used measure of separation 

and was the one used in the early work on variable selection for 

the Head Injury Study. It is, however, very insensitive as it 

takes no account of the relative seriousness of different errors, 

or of near misses, although it does have respectable decision 

theoretic foundations.

(ii) The logarithmic score for a patient whose true category is, 

for example, II i is

- logc p(n1|y,D) = - log pi, say.

This measure is sensitive to changes in the diagnostic 

probabilities. It has, however, one serious drawback from an 

applied point of view, namely, that if a probability of zero is 

attached to the actual category, then the penalty associated with 

this is infinite. In practice, there are methods of dealing with 

this if it poses a problem (Hilden et al., 1978b).

(iii) The quadratic or Brier score -for the above patient is

(i - P 1 >2 + .1 Pi2 .1-2
This measure takes account of the distribution of probability to 

all outcome categories and not simply that assigned to the actual 

outcome.

Both the quadratic and logarithmic scores can be interpreted as 

the distance of the predicted outcome from the actual outcome. If 

the predicted outcome {p(lIi|y,D) i=l, ..., k} is denoted by



p = (p^, ..., Pk)T and the actual outcome by q = (qj, . qfc)T 

where q^ = 1 if i is the actual outcome and 0 otherwise, then the 

Euclidean measure, A Q(p,q), where

A Q(p»q) = p - q 2 = (p - q ) T ( p  _ q ) 

and the Kullback-Leibler measure, A KL(p>q), where

A | Qi log 21
i-1 Pi

give the quadratic and logarithmic scores respectively.

For good performance from the point of view of separation, all 

the above measures should be close to zero. A useful benchmark for 

comparison is to assign the prior probabilities to each individual 

and to evaluate the performance obtained using the measures 

described.

3.3.4 Missing Data

The problem of missing data often arises in practical 

applications of discriminant analysis. These missing values can 

arise for many different reasons. Studies extending over time are 

particularly vulnerable to missing observations. For example, a 

new test might be developed which is thought to provide 

discriminatory information, but if it is included in the study then 

its value would be missing in the early cases. Information can be 

lost through truncation. If a measuring device is only calibrated 

to give accurate results within a given range of values then any 

values outside that range would be missing. Other physical factors 

may also prevent information being recorded. For example, in head 

injured cases it is not possible to record the eye opening response 

in a patient with severely swollen eyes or the verbal response of



an intubated patient. These three examples differ in one important 

aspect. In the first example the data can be said to be missing at 

random in that, although they are missing in a systematic pattern, 

the fact that an item of information is missing gives no 

information about the value it might have taken. This is not the 

case in the second example, where if an item of information is not 

recorded, then it lies outside a possible range of values. In the 

third example it is much more difficult to ascertain whether the 

data are missing at random or not. Little (1979) gives the 

following definition of missing at random which is equivalent to 

that given by Rubin (1976). If n d-variate observations are 

denoted by the (n x d) data matrix X - [x^j], and the (n x d) 

random matrix R = [r^j] is defined so that r^j = 0 or 1 according 

to whether x^j is missing or observed, then any missing values are 

missing at random if the conditional distribution of R given X is 

independent of the missing values. In particular, the probability 

that a value x^j is observed must not depend on the value x-̂ j (thus 

excluding truncation from the definition), although it may depend 

on the value of an observed variable x ^ .  Rubin (1976) gives this 

as the weakest definition of missing at random which allows the 

mechanism generating the missing values to be ignored.

One method of dealing with missing data is to use only cases 

where the data are complete to obtain the parameter estimates for 

the specified model. This however is not always acceptable and 

other means have to be found to deal with the problem of parameter 

estimation with incomplete data. Assuming that the data are 

missing at random as defined previously, Murray (1979) compares 

different methods of dealing with missing data in the Head Injury 

Study. With many of the sophisticated statistical modelling 

techniques now being developed in discriminant analysis, a limiting



factor in their use is how well they can be adapted to cope with 

missing values.

In the Head Injury Study the mechanism by which a measurement 

became missing was ignored. In fact, the data were implicitly 

assumed to be missing at random within each prognostic category. 

It is fair to say that this is unrealistic. However, it is 

difficult to avoid this assumption by convenient realistic 

modelling and the incorporation of the incomplete data does add 

useful information (Murray, 1979).

3.4 Application of an Independence Model to the Head Injury Data 

Bank of 600 Cases

3.4.1 Introduction

By 1976 the data bank contained 428 cases from Glasgow and 172 

cases from the Netherlands. Jennett et al. (1976) confirmed that 

the clinical features of the Dutch and Glasgow cases on entry to 

the study were very similar (Table 3.4). The main difference was 

that 30% of the Glasgow cases were admitted to the neurosurgical 

unit more than 24 hours after injury while almost all the Dutch 

cases were admitted to a neurosurgical or neurological unit within 

24 hours. All patients were treated with the techniques and vigour 

which is normal in a fully equipped unit. In the two countries 

there were differences in the proportions of patients receiving 

various therapies, such as mannitol, steroids, and ventilation, and 

investigations such as angiography. Despite these differences the 

distributions of six month outcomes in the two centres were similar 

(Table 3.5). This suggested that, given the standard of care 

available in a specialised unit, the variations in details of 

management were not crucial in determining outcome.



Table 3,4 Initial features (24 hour best) of patients from 

Glasgow and Netherlands from the data bank of 600 

patients

Feature Glasgow Netherlands

(n=428) (n-172)

Mean age (years) 34 33

Lucid interval 31% 25%

Coma score 3-7 70% 73%

Eye movements impaired 46% 42%
or absent

Non-reacting pupils 19% 29%

Hemiparesis 19% 21%
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Table 3.5 Outcome of patients from Glasgow and Netherlands six 

months after injury in the data bank of 600 patients

Glasgow Netherlands 

(n-428) (n-172)

Death 52% 52%

Vegetative State 2% 1%

Severe Disability 8% 5%

Moderate Disability 17% 15%

Good Recovery 22% 27%



Tor the purpose of predicting prognosis the five categories in 

the Glasgow Outcome Scale were reduced to three:—

(i) death or vegetative state (D/V)

(ii) severe disability (SD)

(iii) moderate disability or good recovery (M/G)

The 600 cases from the two countries were divided at random 

into three groups of 200. Two of the groups were combined to 

produce a training data set of 400 cases. The remaining 200 cases 

acted as a test data set. Predictions were made at the end of the 

first three time periods i.e. at 24 hours, 3 days and 7 days after 

injury.

3.4.2 Independence Model

This model for unordered categorical data was chosen initially 

for its simplicity. For a given feature vector, y, Bayes1 Theorem 

was used to give

p(ni |y,D) cc p(y|rii,D) p(ni ) , i= l, . . . ,  k.

The prior probabilities or relative incidences 

(p(lli), i=l, ..., k} were estimated using the proportions among the 

training cases. For y complete, the density estimate for p(y| 11^,0) 

took the form

p(y|lli,D) = n p(yr |lIi,D)

= g  nj(y,) * 1 ( 3 . 1 )
r-1

n-^(r) + cr

where

d is the no. of variables, 

yr denotes the r*-h component of y,



n l(yr) is the no. of cases in the training set in outcome 

category n w i t h  score yr on variable r, 

cr is the number of categories in variable r, 

and n^(r) is the number of patients in the training set in

outcome category 11̂  with variable r not missing.

Thus it was assumed that, within each outcome category, 11̂ , 

variables were independent and p(y|n^,D) was given by the product 

of the estimates of the marginal probabilities. The addition of 1 

to the numerator and cr to the denominator provided a small amount 

of smoothing to prevent a probability of zero resulting from an 

empty cell count. One of the most appealing features of this model 

was that it was trivial to deal with missing data. When yr was 

missing, the appropriate factor on the right-hand side of 

Equation 3.1 was replaced by unity.

3.4.3 Variable Selection

Although many items of information about the patient had been 

recorded in the data bank, it was decided, after lengthy 

discussions with the clinicians, to restrict the number available 

for possible inclusion in the discriminant rule to around 25. 

Chosen for possible inclusion were those indicants which had 

already been shown to be related to outcome, such as coma score, 

pupil reaction, eye signs, motor response patterns, age, etc. If 

the indicant had a best and worst score available then both were 

included. The program used at this time to predict the outcome of 

the patients was provided by Dr Robin Knill-Jones who had used it 

in the diagnosis of jaundice (Knill-Jones, 1975). It had the 

following method of variable selection. From the list of indicants 

available, one was chosen at random, yj_, say. The prior 

probabilities were updated using Bayes' theorem to obtain the



posterior probabilities of each of the outcome categories

p(ni|yi,D) « p(nt) pCyijni^).

If any of the posterior probabilities, pCn^ly^), i-1, ..., k,

exceeded a pre-determined level then no more information was added 

for that patient; if not, then another indicant was chosen at 

random and the probabilities updated again. This continued until 

either the pre-determined level was reached or all the indicants 

had been included. In much of the early work the pre-determined 

level was set arbitrarily at 0.97, and pCn^) > 0.97 for some

i=l, ..., k was termed a confident prediction.

The increase in the probability of the actual outcome given by

the inclusion of a particular indicant was termed the reduction in

uncertainty. After all cases had been predicted, the average 

reduction in uncertainty for each indicant was given. During the 

development of the prognostic system I carried out many runs of the 

program using different training sets and data from different time 

periods. It became apparent that a relatively small number of

indicants (about 4) were consistently useful in reducing 

uncertainty.

As well as comparing the performance of different variable sets 

using the error rate, I examined optimistic and pessimistic errors. 

An optimistic error is defined as a confident prediction of an

outcome of M/G in a patient whose actual outcome is D/V, while a 

pessimistic error is a confident prediction of an outcome of D/V in 

a patient whose actual outcome is M/G. While optimistic errors as 

a result of the statistical methodology were acceptable to the 

clinicians, pessimistic errors were not. A closer examination of 

the pessimistic errors revealed that they were occurring in cases 

where the worst data were included rather than the best data. A



case with poor worst data and good best data would be predicted to 

have a poor prognosis if the worst data alone were chosen. As a 

result of the clinical unacceptability of pessimistic errors, it 

was decided at an early stage in the development to use only the

best scores in the time periods.

. By the end of the second time period almost twice the number of 

indicants were available for inclusion, with most clinical 

information being available as the 24 hour best score and the 2-3 

day best score. When both the 24 hour and 2-3 day score were

available for selection I invariably found that the reduction in 

uncertainty from the 2-3 day score was greater than that from the 

24 hour score. Similarly, at 4-7 days the reduction in uncertainty 

was greater with the 4-7 day data than with that for the previous 

time periods. This reinforced the clinicians' conviction that the 

current state of the patient was more important than their past

state. As fewer than eight variables were customarily all that was 

used to predict outcome, it was decided, for the time dependent 

variables, to use only the data for the current time period when 

predicting outcome. Thus, if a prediction was made at the end of 7 

days, only the 4-7 day best data were used along with other

variables such as age or time elapsed between injury and coma.

As a result of this developmental work, six variables (age,

coma score, motor response pattern, pupil reaction, eye indicant

and change in neurological function) were found to be consistently 

useful and were adopted in practice. If the indicant had more than 

three or four response levels, as for example with coma score, then 

these were grouped together in such a way as to retain as much of 

the prognostic information as possible. This was done using an 

entropy measure based on the conditional outcome given the

(grouped) coma score (Teasdale et al., 1979a). As a result of
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recovery and selection processes the marginal distribution changes 

through time so that the grouping used at 24 hours was 3-5, 6-7, 

8-15 whereas at 28 days it was 3-10, 11-13, 14-15,

3.4.4 Results of the Predictions using the Independence Model

The six month outcomes of the test and training groups are 

given in Table 3.6. The classification matrices arising from the 

predictions using 24 hour, 2-3 day and 4-7 day data are given in 

Tables 3.7(a), 3.8(a) and 3.9(a) respectively. When predicting the 

outcome at 3 days after injury all cases who died in the first 24 

hours were excluded from the test and training sets. Similarly, 

all cases who died within the first 3 days were excluded from the 7 

day predictions. The error rates corresponding to these 

classification matrices and the error rates obtained by allocating 

the prior probabilities to each case are given in Table 3.10(a).

While it might be expected that more accurate predictions could 

be made at later time periods, the error rate increased from 24 

hours to 3 days to 7 days. This was because the early deaths were 

excluded; these cases usually have correct predictions and so the 

problem of predicting prognosis becomes more difficult.

These error rates were unacceptable to the clinicians and so it 

was decided not to classify a patient unless he had a confident 

prediction of outcome as previously defined (p(n^Jy) > 0.97 for 

some i). This reduced the number of cases being classified to 38%, 

52% and 45% at 24 hours, 3 days and 7 days respectively. It also 

substantially reduced the error rate. The classification matrices 

for the first three time periods and their error rates for the 

confident cases are given in Tables 3.7(b) - 3.10(b).

By classifying only cases with confident predictions there was 

no pessimistic error and the few optimistic errors were acceptable



Table 3.6 Six month outcome of test and training data sets in 

the data bank of 600 patients

Frequencies

Outcome

Training Set Test Set

Death or 213 106
Vegetative State

Severe Disability 31 12

Moderate Disability or 156 82
Good Recovery

Total 400 200



Table 3.7

45

Classification matrices for the independence model 

using the 24 hours best data with the data bank of 

600 patients

a) for all cases predicted and

b) for cases with a confident prediction

Predicted
Outcome

Actual Outcome

D/V SD M/G Total

D/V 90 4 14 108

SD 2 1 0 3

M/G 14 7 68 89

Total 106 12 82 200

(a)

Predicted
Outcome

Actual Outcome

D/V SD M/G Total

D/V 45 1 0 46

SD 0 0 0 0

M/G 2 1 27 30

Total 47 2 27 76

(b)



Table 3.8

46

Classification matrices for the independence model 

using the 2-3 day best data with the data bank of 600 

patients

a) for all cases predicted and

b) for cases with a confident prediction

Predicted Actual Outcome
Outcome

D/V SD M/G Total

D/V 59 3 12 74

SD 2 0 0 2

M/G 10 9 70 89

Total 71 12 82 165

(a)

Predicted Actual Outcome
Outcome

D/V SD M/G Total

D/V 37 0 0 37

SD 0 0 0 0

M/G 2 1 46 49

Total 39 1 46 86

(b)



Table 3.9

47

Classification matrices for the independence model 

using the 4-7 day best data with the data bank of 600 

patients

a) for all cases predicted and

b) for cases with a confident prediction

Predicted
Outcome

Actual Outcome

D/V SD M/G Total

D/V 35 3 9 47

SD 3 0 3 6

M/G 7 9 70 86

Total 45 12 82 139

(a)

Predicted Actual Outcome
Outcome

D/V SD M/G Total

D/V 21 1 0 22

SD 0 0 0 0

M/G 1 3 36 40

Total 22 4 36 62

(b)
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Table 3.10 Error rates from classification matrices

a) for all cases predicted

b) for cases with a confident prediction

Time
Period

Classification
Error
Rate

Prior
Error
Rate

24 hours .205 .470

2-3 days .218 .570

4-7 days .245 .410

(a)

Time
Period

Classification
Error
Rate

Proportion
Confident

24 hours .053 .380

2-3 days .035 .521

4-7 days .081 .446

(b)



on the grounds that complications can develop in patients who, soon 

after injury, appear to have the potential for recovery.

It should also be noted that few cases were predicted to have 

an outcome of severe disability. This can be largely explained by 

the low prior probability attached to this outcome and the fact 

that this group overlaps both of the other outcome categories.

3.4.5 Discussion

This early work produced encouraging results and was one of the 

first examples of such methodology to be published in the medical 

press. In spite of this success our use of the independence model 

was seen by some commentators (Becker, 1979; Stablein et al., 1980) 

to be simplistic. In particular they suggested that a logistic 

regression technique would obviate the problems of dependence and 

interaction amongst the variables. A comparative study of

different discrimination techniques using a large data set is in 

itself an interesting statistical exercise. Partly for this reason 

and partly to answer the critics such a comparative study was

carried out and this is described in Section 3.5.

3.5 Comparative Study of Discrimination Techniques

3.5.1 Introduction

As the comparative study was a major undertaking, all the

statisticians who were involved in the Head Injury Study 

collaborated to make the report possible (Titterington et al., 

1981). My main contribution was to the design of the study, and in 

particular to the selection of the variable subsets to be

considered.

The purpose of this study was to compare statistical



methodology, and therefore certain standardisation in the data is 

needed so that the results of different methods would be based on 

equivalent information. Thus the five categories of the Glasgow 

Outcome Scale were reduced to three as in Section 3.4.

The various indicants considered are shown in Table 3.11. 

These factors have already been shown tp be indicators of the 

degree of brain damage. For the purpose of this study, the 

indicants were based on the patient's best state during the first 

24 hours after onset of coma, and the work was limited to 

estimating the probability of attaining one or other of the three 

outcome categories six months after injury. It can be seen that 

the variables are all categorical and are either binary or ordered. 

This means that methods based on continuous data might be 

considered as possible, albeit unsatisfactory, alternatives to 

categorical data techniques. Different subsets of these variables 

were chosen to compare how well the various methods were able to 

exploit the information in subsets of different sizes, and to see 

how the methods reacted to the degree of dependence among the 

variables as well as to the proportion of missing data. The four 

subsets used are given in Table 3.12. Set I consisted of four 

weakly dependent variables with appreciable missing data while set 

Il^consisted of four highly dependent variables with little missing 

data. Set III was an extension of I and set IV was obtained from 

set III by expanding the coma score and created eye indicant into 

their components. There was therefore high dependence and 

appreciable missing data within this set. The data bank had risen 

to 1000 cases by this time and these were split randomly into two 

groups of 500 to give separate test and training sets. The 

distribution of outcome in the two groups is given in Table 3.13.



Table 3.11 Feature variables used in the comparative study

Variable Description

Age Age, grouped into decades 0-9, 10-19, 60-69, 70+

E score Eye opening in response to simulation, graded 1 (nil)
to 4 (normal), but grouped as 1 and 2 - 4  for these 
comparisons

H score Motor response of best limb in response to
stimulation, graded 1 (nil) to 6 (normal)

V score Verbal response to stimulation, graded 1 (nil) to
5 (normal), but grouped as 1 and 2 - 5  for these 
comparisons

Coma score The sum of the raw E, M and V scores, in the range
3 to 15, but grouped as 3, 4, 5, 6, 7, 8, 9 - 15 for 
these comparisons

MRP Motor response pattern, an overall summary of the
motor responses in all four limbs, graded 1 (nil) 
to 7 (normal)

Change Change in neurological function over the first 24
hours, graded 1 (deteriorating), 2 (static) or 3 
(improving)

Pupils Pupil reaction to light, graded 1 (non-reacting) or
2 (reacting)

SEM Spontaneous eye movements, graded 1 (nil) to 4
(normal)

OCS Oculocephalics, graded 1 (nil) to 4 (normal)

OVS Oculovestibulars, graded 1 (nil) to 4 (normal)

Eye indicant A summary of SEM, OCS and OVS, graded 1 (bad),
2 (impaired) or 3 (good)
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Table 3.12 Subsets of the feature variables used in the 

comparative study

Set Variables

I Age, Coma score, Change, Eye indicant

II Age, E score, M score, V score

III Age, Coma score, MRP, Change, Pupils, Eye indicant

IV Age, E score, M score, V score, MRP, Change, Pupils, 

SEM, OCS, OVS
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Table 3.13 Six month outcome of test and training data sets in 

the comparative study

frequencies

Training set Test set

Death or 259 250
Vegetative State

Severe Disability 52 48

Moderate Disability or 189 202
Good Recovery

Total 500 500



3.5.2 Statistical Techniques

The statistical methods used can be brought together under the 

following general headings.

(i) Independence-based models for unordered categorical data, 

allowing for a single overall association factor.

(ii) Lancaster first-order interaction models for unordered 

categorical data.

(iii) Latent class models.

(iv) Kernel-based procedures for categorical data.

(v) Linear and quadratic discrimination based on normality 

assumptions.

(vi) Linear logistic discrimination.

All but (vi) involve density estimation in one form or another. 

Details of the different models and references are given in the 

paper.

(i) Independence based models

In these the density estimates took the form, for y complete,

pCyjn̂ D) «
d ni(yr ) + /cr
n --------------

r=l n^(r) + 1

where d, yr , n^(yr ), cr and n^(r) are as defined in Section 3.4.2 

and B is an overall assosciation factor. Three independence-based 

models, INDEP1, INDEP2, and XNDEP3 were used corresponding to the 

choices of 1,0, 0.8 and 0.5 respectively for the value of B. This 

factor B imposes some smoothing and represents the proportion of 

non-redundant information in the variables (Hilden and Bjerregaard,

1976). An association factor of 1.0 corresponds essentially to the 

model described in Section 3.4.2 and missing data were dealt with 

as described in that section.
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(ii) Lancaster models

The structure of these models is such that a full range from 

basic independence to full multinomial models is permitted. 

Missing data treatment was the same as for the independence model, 

and when the independence model had to be used to avoid negative 

probabilities, the same three choices of association factor gave 

rise to the methods LANC1, LANC2 and LANC3 respectively.

(iii) Latent class models

In latent class analysis, mixture models are assumed for the 

density functions being estimated. Thus, for each 11̂ , it is 

assumed that
L

p(y|iti) = Pj(y)>

where

L is the number of terms (latent classes) in the mixture,

Pj(*)> J = L ar© the densities involved in the

mixture

and w-jj are, for each i, a set of mixing weights (Fielding,

1977).

For each of the variable sets the two best consecutive numbers of 

latent classes gave rise to methods IATCL1 and IATCL2.

(iv) Kernel-based procedures 

With this procedure

p(y|ni,D) = t -  K(y|xij,X),

where

n^ - number of patients in the training set in category n^, 

x-^j, j = 1, ,, ., n^ denote their feature vectors,

K(.|x,A) is a probability density over the sample space of y, 

and X describes the degree of smoothing of the relative 

frequencies.
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The kernel methods used were:-

KERUN1: The kernel method of Murray & Titterington (1978) -

unordered categories with the smoothing parameters chosen 

marginally.

KKEUN2: As KERUN1 but with the smoothing parameters chosen by a

multivariate pseudo-Bayesian technique.

KER0KD1 and KER0RD2: As KERUN1 and KERUN2 but assuming ordered

categories.

KEREX1 and KEREX2: Marginal and multivariate choices of the

smoothing parameters, treating 'missing* as an extra category.

KEREX3: 'Missing' treated as an extra category and a single

smoothing parameter chosen for all dimensions.

(v) Normal Methods

These methods assume multivariate normality and estimate the 

mean vectors and covariance matrices by maximum likelihood. The 

methods used were:-

N0RLIN1: Govariance matrices were assumed equal and sample means

from available data were substituted for missing data.

N0RLIN2: As for N0RLIN1 but with proper maximum likelihood

treatment for missing data via the EM algorithm (Dempster et al.,

1977).

NORQUAD: As for N0RLIN2 but without the assumption of equal'

covariance matrices.

With all three methods, incomplete test cases were classified 

on the basis of the relevant marginal distributions.

(vi) Linear Logistic Method

This is the only method in which (p(n^jy), i=l, ..., k) is 

modelled directly. The models take the parametric form

p(n-jjy) / p(n^|y) = exp(ai + 3iTy) i=l, ...» k-1



where {a^} and {f^} are to be estimated. The technicalities are 

described by Anderson (1972). Missing data were replaced by group 

means in the training cases and grand means in the test cases, 

giving the method LINLOG.

3.5.2 Results of the Comparative Study

To provide a benchmark for the performance of the different 

methods the prior probabilities were assigned to each case and the 

error rate, average logarithmic score and average quadratic score 

were calculated for the test data set. This discriminant rule 

would score 0.500, 0.939 and 0.579 respectively on the three

measures. The results for the four variable sets are given in 

Tables 3.14 - 3.17.

Many comparisons can be made. These were considered as 

follows:

(i) within groups of similar methods

(ii) among groups of similar methods

(iii) among the sets of variables.

(i) The discrete parametric models were considered first, namely 

the independence, Lancaster and latent class models. For variable 

set I INDEP1 and INDEP2 performed well, giving similar results; 

INDEP3 had poorer results, as had the latent class models. The 

Lancaster models all gave similar results which were also inferior 

to those of the independence model. The independence model still 

performed well with variable set II even though the variables were 

highly dependent. The Lancaster models again gave similar results 

which were superior to those of the independence model in terms of 

error rate but inferior in terms of the logarithmic score. The 

latent class results were poorer than the others with respect to 

the quadratic and logarithmic scores. For variable set III the



Table 3.14 Results of the comparative study for variable set 

Age, Coma score, Change, Eye indicant

Measure of Separation

Method
Error Average Average
Rate Logarithmic Quadratic

Score Score

INDEP1 .278 .685 .377
INDEP2 .268 .681 .379
INDEP3 .268 .708 .400

LANC1 .292 .737 .397
LANC2 .294 .735 .398
LANC3 .296 .742 .404

LATCL1 .264 .719 .390
LATCL2 .290 .752 .409

KERUN1 .316 .934 .467
KERUN2 .308 .925 .449
KER0RD1 .292 .874 .443
KER0RD2 .302 .900 .430
KEREX1 .320 ,889 .453
KEREX2 .328 1.037 .477
KEREX3 .282 .800 .420

N0RLIN1 .286 .707 .396
N0RLIN2 .284 .702 .396

NORQUAD .294 .779 .404

LINLOG .290 ,721 .400



Table 3.15 Results of the comparative study for variable set II 

Age, E score, M score, V score

Measure of Separation

Method
Error Average Average
Rate Logarithmic Quadratic

Score Score

INDEP1 .338 .775 .438
INDEP2 .340 .762 .436
INDEP3 .338 .771 .445

LANC1 .298 .808 .435
LANC2 .298 .809 .437
LANC3 .296 .818 .445

LATCL1 .328 .819 .447
LATCL2 .310 .822 .446

KERUN1 .346 .924 .481
KERUN2 .328 .872 .463
KER0RD1 .352 .905 .471
KERORD2 .332 .856 .454
KEREX1 .334 .953 .491
KEREX2 .326 .903 .475
KEREX3 .340 .852 .466

NORLIN1 .316 .760 .433
N0RLIN2 .306 .757 .431

NORQUAD .304 ,884 .450

LINLOG .314 .764 .436



Table 3.16

Method

INDEPl
INDEP2
INDEP3

LANC1
LANC2
LANC3

LATCL1
LATCL2

KERUN1
KERUN2
KER0RD1
KER0RD2
KEREX1
KEREX2
KEREX3

N0RLIN1
NORLIN2

NORQUAD

LINLOG

Results of the comparative study for variable 

set III: Age, Coma score, MRP, Change, Pupils, Eye

indicant

Measure of Separation

Error Average Average
Rate Logarithmic Quadratic

Score Score

.248 .686 .364

.246 .656 .358

.232 .652 .362

.254 .738 .382

.256 .728 .378

.244 .727 .376

.298 .726 .412
,262 .718 .372

.332 1.103 .500

.338 1.267 .537

.328 1.030 .482

.316 1.270 .514

.310 1.013 .467

.344 1.412 .548

.278 .769 .395

.256 .665 .368

.258 .661 .367

.276 .907 .411

.272 .676 .370



Table 3.17

Method

INDEPl
INDEP2
INDEP3

LANC1
LANC2
LANC3

LATCL1
LATCL2

KERUN1
KERUN2
KER0RD1
KERORD2
KEREX1
KEREX2
KEREX3

NORLIN1
NORLIN2

NORQUAD

LINLOG

Results of the comparative study for variable set IV 

Age, E score, M score, V score, MRP, Change, Pupils 

SEM, OCS, OVS

Measure of Separation

Error Average Average
Rate Logarithmic Quadratic

Score Score

.272 .839 .399

.264 .757 .385

.264 .673 .368

.286 .829 .410

.286 .800 .403

.280 .768 .395

.282 .726 .396

.244 .709 .381

.350 . 1.417 .566

.390 1.932 .645

.340 1.414 .543

.374 1.923 ,628

.388 1.645 .634

.398 2.143 .652

.298 .806 .412

.270 .804 .404

.250 .663 .361

.274 .947 .424

.286 .772 .412



independence models were better than the Lancaster models which in 

turn were better than the latent class results. With variable set 

IV the differences in results were most marked. INDEP3 clearly 

bettered INDEP2 which in turn bettered INDEPl. There was a similar 

pattern for the Lancaster models. INDEP3 was better than LANC3 and 

for this variable set alone the latent class models performed well.

The comparison among the discrete kernel methods was clear cut 

with KEREX3 being the best for all variable sets.

The continuous parametric models N0RLIN1, N0RLIN2, NORQUAD and 

LINLOG (strictly speaking this method is not restricted in 

application to continuous data) also gave a clear pattern of 

results over the four variable sets, with the quadratic method 

performing poorly. With the linear method it was always preferable 

to use the EM algorithm. The difference with the EM algorithm was 

small for sets I-III but marked for set IV. The results for the 

linear logistic method were slightly poorer than those of the 

linear methods, but better than NORQUAD. The results of LINLOG 

were particularly encouraging when the crude treatment of missing 

data is also considered.

(ii) Table 3.18 gives the results for the best method from each of 

the 3 groups of similar methods for each variable set. When it was 

not obvious which method was best they were ordered by the average 

quadratic score. Comparisons among groups of similar methods 

showed that the kernel methods had the most disappointing results, 

especially for the logarithmic and quadratic scores, and it was 

only for variable set II that they even approached the other 

methods. This was perhaps because a discrete kernel approach in 

this problem was too ambitious. The results for the linear methods 

were remarkably similar to those achieved with the discrete models. 

Eor sets I and III the discrete models had the edge while for sets
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Table 3.18

Method

INDEPl

KEREX3

N0RLIN2

LANC1

KER0RD2

N0RLIN2

INDEP2

KEREX3

N0RLIN2

INDEP3

KEREX3

N0RLIN2

Overall summary of the results of the comparative 

study

Measure of Separation

Error Average Average
Rate Logarithmic Quadratic

Score Score

.278 .685 .377

.282 .800 .420

.284 .702 .396

.298 .808 .435

.332 .856 .454

.306 .757 .431

.246 .656 .358

.278 .769 .395

.258 .661 .367

.264 .673 .368

.298 .806 .412

.250 .663 .361



II and IV this was true of the linear models. The differences were 

so small as to be of little importance in practice. However, with 

the linear method there was a single model which performed well for 

each variable set, whereas with the discrete methods the choice of 

model could be critical.

(iii) In the assessment of the overall performance of the 

different variable sets, it can be seen from Table 3.18 that the 

variation in performance among methods tended to be smaller than 

among the variable sets. The best overall set of results was 

obtained with method INDEP2 on variable set XII and it was 

interesting that, although set IV contained strictly more 

information, the discrete model could not exploit this. In 

contrast, with the linear method, the performance improved going 

from set I to set III to set IV although the results for III and IV 

were very similar. This emphasised the robustness of the linear 

approach, which appeared to make sensible use of the available 

information, whereas the discrete parametric models had to be 

matched carefully to the variables being used.

This suggested that, while the linear approach with the EM 

algorithm was preferable for a quick, uninformed analysis, it was 

possible to achieve similar, if not better, performance with the 

much simpler independence model if prior, background information 

was used to combine groups of highly dependent variables into 

single created indicants.

3.5.4 Discussion and Conclusions of the Comparative Study

The results of this comparative study went some way towards 

defending the use of the independence model. Its robustness, 

together with the ease with which incomplete data are dealt, make 

it appealing even though the assumptions it makes are often



violated. This was partly explained by Hilden (1984), who 

describes weaker conditions than conditional independence under 

which the model is still valid. These findings highlight a 

fundamental feature of discriminant analysis, namely that any 

modelling involved is only an intermediate step and that methods 

should be assessed in terms of performance rather than in terms of 

goodness-of-fit.

The results of the more complex Kernel methods were 

disappointing and emphasise the need for more work on the choice of 

smoothing parameters.

No method was particularly successful in identifying patients 

who will be severely disabled. As these cases are in need of 

continuing medical and social care, this is an important practical 

aim. The lack of success is due, as stated previously, partly to 

the relatively low prior probability of this outcome and partly 

because, geometrically, the severe group is overlapped by those in 

both the other two outcome categories. A simple univariate example 

to illustrate how large these misclassification probabilities can 

be is given in Appendix 2. In view of the ordering of the outcome 

categories it is possible that, with further development, the 

methods of McCullagh (1980) and Anderson (1984a) might be useful. 

The class of McCullagh models is based on an underlying continuous 

latent variable, which may not be observable. The ordered outcomes 

correspond to adjacent grouped intervals on the latent scale. The 

'stereotype regression' models of Anderson are more general in that 

they they do not assume an ordered structure, but they do allow one 

to test whether an ordered structure is appropriate.
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3.6 Glinical Implications for Prognosis

One of the main features of the methods described in Sections 

3.A and 3.5 was the lack of success in predicting the outcome of 

severely disabled patients. Initially it was thought that making 

the prediction at a later time period might help solve the problem, 

but when the independence model was used with the data available at 

28 days, as in Section 3.A, poor results were obtained (Tables 3.19 

(a) and (b)). One of the reasons for this was that almost all 

survivors had by this time achieved the best score possible in the 

features used for the discriminant rule so the discriminatory power 

of these features had diminished. Table 3.20 illustrates this 

point.

The cases who are severely disabled are physically dependent to 

varying but significant extents on other individuals. This is 

particularly relevant in severe head injuries whose mean age is 3A 

years so that many still have the greater part of their life to 

live. It is thus of great clinical interest to be able to identify 

those cases who will be severely disabled soon after injury. On 

the one hand, intensified treatment at an early stage might reduce 

their dependence, on the other, the fruitlessness of long continued 

/ rehabilitation might be recognised and thus more emphasis put on

the readjustments necessary to cope with handicap.

It was therefore thought to be important to pursue a new 

approach to try to identify these cases.
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Table 3.19 Classification matrices for the independence model

using the 15-28 day best data with the data bank of

600 patients

a) for all cases predicted and

b) for cases with a confident prediction

Predicted Actual Outcome
Outcome

D/V SD M/G Total

D/V 18 1 4 23

SD 1 0 1 2

M/G 7 17 70 94

Total 26 18 75 119

(a)

Predicted Actual Outcome
Outcome

D/V SD M/G Total

D/V 1 0 1 2

SD 0 0 0 0

M/G 0 1 25 26

Total 1 1 26 28

(b)
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Table 3.20 Distribution of some features of the data set of 600

cases at 24 hours and 15 -28 days

Time Proportion of
Feature Period those alive

with feature

Coma score 13-15 24H 2%

15-28D 71%

Normal eye movements 24H 55%

15-28D 93%

Normal motor response 24H 56%
pattern

15-28D 77%
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CHAPTER 4

MODELS USING TIME TRENDS

4.1 Introduction

A major criticism of all the methods used in the comparative 

study is that they ignore the dynamic nature of the recovery 

process. Over a long period of working with the data I gained the 

impression that the individuals who were ultimately severely 

disabled were characterised by a lack of detectable change in 

neurological function in the first few weeks after injury. They 

often did not have low coma scores on admission: indeed some cases

with lower coma scores improved to make a good recovery while 

others with higher scores deteriorated and died. From this came 

the idea of trying to model the recovery trend through time in an 

attempt to use the different trends to identify those who would be 

severely disabled.

4.2 Exploratory Analysis of Recovery Trends

As the coma score had been shown previously to be consistently 

useful in predicting outcome, it was intuitively sensible and 

clinically acceptable to use this as the feature with which to try 

to develop the model. Up to ten scores can be available for each 

case from the best and worst coma scores at each of the five time 

periods within which the patient is monitored. Since much of the 

previous work was based on the best coma score within each time 

period this was chosen again for the analysis of trends. Thus each 

patient has up to five scores with which to model the trend in 

recovery.



The head injury data bank now had 1356 Glasgow cases and it was

decided to use only those Glasgow cases to develop the model.

Their outcomes are given in Table 4.1.

To obtain an overall impression of the recovery trends within 

each outcome category, each patient within that group had their 

coma score plotted at each of the 5 times with coma scores at 

successive times joined to give an impression of trend. To avoid 

the problem of missing data, only cases with complete data were 

used. The time scale used to plot the trends was chosen 

arbitrarily. As the time periods used in data collection were all 

unequal and the best coma score could occur at any time within the 

period there seemed no advantage or disadvantage in using an 

equally spaced time scale to try to model the trend. This scale 

was adopted throughout the study, but it must be emphasised that 

its choice was entirely arbitrary.

The results for each of the five outcome categories are shown 

in Figures 4.1(a) - 4.1(e) with each line representing a patient. 

A small random shift has been introduced to separate coincident 

lines. While the picture is somewhat confusing, the overall 

subjective impression from the figures seemed to reinforce the 

hypothesis that the coma scores of the severe disability group did 

indeed change more slowly than those of other survivors.

To summarise the data, the mean and standard deviation of the 

coma score at each time period for each outcome category are given 

in Table 4.2 and the mean trend is plotted in Figure 4.2.

From Figure 4.2 it appears that the severe disability, moderate 

disability and good recovery groups have similar recovery patterns 

while the vegetative survivors and deaths appear to follow a quite 

different pattern. Efforts were therefore concentrated on 

modelling the recovery trend in the severe disability, moderate



Table 4.1 Outcome of the 1356 Glasgow cases in the head injury 

data bank

Outcome N

Death 650 (48%)

Vegetative State 23 (2%)

Severe Disability 174 (13%)

Moderate Disability 211 (16%)

Good Recovery 291 (21%)

Lost to Follow-up 7 (1%)
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Figure 4.1(a) Trend in coma score for patients in the good

recovery group
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Figure 4.1(b) Trend in coma score for patients in the moderate

disability group
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Figure 4.1(c) Trend in coma score for patients in the severe

disability group
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Figure 4.1(d) Trend in coma score for patients in the vegetative

group
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FiRure A.1(e) Trend in coma score for patients who died
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Table 4.2 Mean and standard deviation of the best coma score at 

each time period for each outcome category

Mean Coma Score 
Standard Deviation

Outcome

24 2-3 4-7 8-14 15-28
hours days days days days

Death 6.13 5.98 6.46 7.68 8.52
2.11 2.50 2.91 3.21 3.26

Vegetative 6.00 6.00 5.87 6.28 7.12
State 2.57 2.43 2.03 2.40 2.23

Severe 7.75 8.42 9.94 10.97 12.01
Disability 2.19 2.67 2.91 2.67 2.33

Moderate 8.39 9.73 11.30 12.42 13.36
Disability 2.49 2.92 2.97 2.34 1.78

Good 8.85 10.94 12.46 13.41 14.01
Recovery 2.51 2.84 2.61 1.95 1.50
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disability and good recovery groups.

A.3 Approaches to the Analysis of Repeated Measures Data

A.3.1 Introduction

The data displayed in Figures A. 1(a) - (e) have a typical

repeated measures structure where the same variable is measured C 

times on each of the N individuals in the study. Thus the 

extensive literature on the analysis of repeated measures data can 

be exploited. Before proceeding with the analysis of the Head 

Injury Study data this literature is briefly reviewed.

There are two broad approaches to the analysis of repeated 

measures data, univariate and multivariate. These are

distinguished by the basic unit for analysis. In the univariate 

approach each measurement of the variable forms the basic unit and 

is analysed individually whereas in the multivariate approach the 

vector of C measurements from each of the cases is the basic unit 

analysed. Overviews of the analysis of repeated measures data are 

given by Frane (1980), Davidson (1983) and Fleiss (1986, Chapter 8 ),

A.3.2 Univariate Approach

The univariate approach to repeated measures data essentially 

consists of performing a mixed model analysis of variance. The 

effect due to the individual is modelled as a random effect and 

usually any grouping variables and trial factors are modelled as 

fixed effects. This model imposes a strong circularity condition 

on the covariance structure of the vector of measurements from each 

individual, namely that all possible pairwise differences of 

measurements must have the same variance. When, as in the Head 

Injury Study, the repeated measurements are taken through time,



this assumption is almost certain to be untrue as the difference

between two well separated measurements would be expected to be

more variable than that between two successive ones.

A number of techniques have been developed which allow 

conservative hypothesis tests to be performed when the circularity 

conditions do not hold (Greenhouse and Geisser, 1959; Huynh and 

Feldt, 1976). However, these are not relevant to the Head Injury 

Study as these techniques adjust the degrees of freedom to 

compensate for the lack of fit of the underlying models, whereas in 

the Head Injury Study, the models themselves are of interest and 

not simply the derived test statistic.

4.3.3 Multivariate Approach

As mentioned in Section 4.3.1, the main feature of this 

approach is that the basic unit for analysis is the vector of 

measurements through time. This approach consists not of a single 

technique but of a spectrum of methods ranging from the restrictive 

univariate mixed model analysis of variance to the completely 

general multivariate model which imposes no structure on the mean 

vector or covariance matrix. Often the full multivariate model is 

too general, in that it involves a large number of parameters, and 

does not explicitly take account of the fact that the data are 

recorded through time. Therefore it is appealing to consider the 

models which lie between the extremes of the over restrictive 

univariate model and the full multivariate model.

One such approach is to summarise the data vector by a single 

number, for example, 'the area under the curve1, or at least by a 

vector with fewer components than the original measurements. This 

includes the various growth curve models, where parametric models 

are fitted to each individual's data vector and the parameter



estimates from such an analysis are used in place of the original 

data. For example, a large number of measurements through time may 

be replaced by the gradient and intercept of the regression line 

through these points.

Another way to reduce the generality of the full multivariate 

model is to regard the data for each individual as a time series. 

There are many examples of such an approach in the medical 

literature, but in general they require a much longer series of 

observations (Smith and West, 1983). However a paper by Ulm (1984) 

described a way of parameterising the mean vector and covariance 

matrix in the multivariate approach by using a standard time series 

model on a data set with a short time series. This approach seemed 

to be particularly relevant and its application to the Head Injury 

Study data, and the modifications which were later found to be 

necessary, are described in Sections 4.4 - 4.6.

4.4 First Order Autoregressive Stochastic Model

4.4.1 Introduction

Ulm (1984) described a model for the classification of an 

individual into one of two disease categories on the basis of an 

enzyme level which was monitored at intervals over a period of 

time. The feature vector x = {x^, ..., xĵ } thus consists of the 

enzyme level at times 1, ..., N. In our application the feature 

vector consists of the best coma score at each of the five time 

periods.

Ulm then models the feature vector using an autoregressive 

approach relating the component at time t to the component at time 

t- 1 where t = 2 , ..., N .



4.A.2 Derivation of the Model

Suppose that the distribution of feature vectors 

X = {X^, . Xt} of patients in category 11̂  is and that

the coma score at time t, where t - 2, 5, depends on the coma

score at time t-1 in the following way

a - Xt = $(a ~ ^t-1^ + Gt (4.1)

where E(e-t) = 0 

and 0 < $ < 1 .

Thus

E(a - Xt ) » - Xt_i).

Applying this recursively gives

E(a - Xt ) = E<|»t_1(ot - Xx).

If

E(X^) = a - p,

then

E(Xt) = a -

Thus

■ Xi ■ = ■ a  -  p

*2 a  -  <f>3

x3 a  -  $2(3

x4 a  -

. x5 . . a  -  .

This is illustrated in Figure 4.3.

The usual assumptions made about the error term e-j- with this 

type of model are:-

(i) E(et) = 0 

(ii) var(c^) = cj2 (constant)

(iii) cov(Et , “ 0» t * t !.

Wegman (1974) shows that the variance
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covariance structure of e can still be derived if assumption (ii)

is modified to:-

(ii) var(Et) = at (depending on t).

This means {e^} is an uncorrelated sequence of random variables 

with expectation 0 and variance depending on t.

To derive the variance covariance structure, let

Yt = a - Xt .

Thus from Equation 4.1

Yt = *Yt-l + Et . (4.2)

Multiplying both sides by Yt-s gives

^t ^t-s = ^t-1 Y-t-s + St Yt-S .
Thus

E(Yt Yt.s) = *E(Yt-! Yt_s). (4.3)

From Equation 4.2

E(Yt) = cJ>E( Yt — 1 ) (4.4)

so

E(Yt Yt_s) - E(Yt)E(Yt.s) = (J>(E(Yt _ 1 Yt_s) - E(Yt.1 )E(Yt.s)).

Thus

cov(Yt, Yt-S) - cf>cov(Yt_i, Yt_s). (4.5)

Applying Equation 4.5 recursively gives

cov(Yt , Yt_s) - cj>svar(Yt_s) .

For the variances, from Equations 4.2 and 4.4,

Yt - E(Yt) = d>Y-f-_! + Et - ^(Yt-i).

Thus

Yt - E(Yt) = *(Yt-i - E(Yt_1)) + et . (4.6)

Applying Equation 4.6 recursively gives

Thus

tYt - E(Yt ) = ^<|>(t-j) Ej.

E(Yt - E(Yt ) ) 2 - Ef I (})(t-j) e-)2 .



85

Since, from the assumptions,

var £■{■ = E(Et - E(£t) ) 2 ” E(e-t^)

and

cov(Et , Et O  = E(ct - E(et))(et i - E(Et i )) = 0,

E(Yt - E(Yt )) 2 = I cf) 2^t_^ v a r  E-;.
j=l

Thus

var Y-j- = S <j) ^a-j2 .
j=l 3

Since

Xt - E(Xt) = (Xt - a) - (E(Xt) - a)

= - (Yt - E(Yt)),

and similarly

Xt_s - E(Xt.s) = - (Yt_s - E(Yt.s)),

var Yt = var X^

and

cov (Y^, ^t"*s^ cov(X^-, X-|--.g).

Thus

and

cov (X̂ -, X^_s) = cj)s var (X-|-_s).

Thus

var X^ - cj;l2

var X 2 = cj)2 ai2 + a2 2

var X 3 - d»̂cj 12 + <j)2a2 2 + 2°3Z

var X 4 = cf.6 ^ 2 + (fî0 2 2 + cf)2 a3 2 + a4 2

var X5 = (}>®CT̂ 2 + + <f^a32 + <j)2 <J42 +
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and

varX^ (jivarXj (fî varX̂ cfî varXi (fĵ varXi

(tjvarXj varX2 ({>varX2 (J)2varX2 <})̂ varX2

cjĵ varXi <ftvarX2 varX3 $varX3 <j)̂ varX3

tfî varXi (f)̂ varX2 <f>varX3 varX^ (})varX4

. cfî varXi <J)̂ varX2 cfî varX3 (J)varX4 varX5

Thus for the estimation of p-̂  and it is sufficient to estimate 

a, (3 and <J) and the variances of the X^ where t = 1 , • 5, a

reduction from 20 parameters to 8 for the case where all 5 time 

periods are considered.

4.4.3 Parameter Estimation

A maximum likelihood approach was used to estimate the 

parameters for the mean and covariance matrix of each of the three 

outcome categories severe disability, moderate disability and good 

recovery.

Let be the best coma score of the patient in the i ^

outcome group at the t ^  time, so that x-jj, where j = 1 , ..., n ^  

are the feature vectors of the patients from category II ̂ then, 

since the distribution of these feature vectors is with p.j_

and constrained as specified in Section 4.4.2, the likelihood 

function is

where C is the no. of time periods considered and n^ > C.

Since the exponent is written in terms of the maximum

likelihood estimates of p-̂  and ^  say, were found. In the

likelihood function the vectors x^ j , j=l» n^ are fixed at the

sample values and is a function of p-̂  and Then the
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logarithm of the likelihood function is

1 1 1 1  log Li - - ^ Cnilog(2 n) + ^ nilog|^i|

1 ni
2 ” ^ i ^  ^i ^xij ” ^i)*

Since log Li is an increasing function of Li, its maximum 

occurs at the same point in the space of p ^  ^i as the maximum of

Lt.

If Xi is the sample mean vector then

-  1 V 1
x i  ___  ^  x i j

n i  J = 1

—  £  x i n l  ni j=i X i . l

1 ni
iT -S,xijC
1 J = 1 xi.C

and the matrix of sums of squares and cross products about the mean

is

n-;.

so that

Ai *- £ C^i-i ~ x i)(x ii ~ Xi)1̂
j=l

^Ai)mn  ̂ (xijm ~ xi.m^xijn ~ xi.n^ 
j=l

where m,n = 1, .,., C.

Now

£ (xi4 - Pi)(xi4 - pi)T
j-1

can be written as

£ (xij - Xi)(xij - Xi)T + ni(xi - Pi)(xi -pi)T
j=l
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= A± + ni(xi - Ui)(xi~ Ui)T

and so

ni
E ( x - h  -  \x±)T ^ i ( x i i  -  U i )

j=l
ni

= tr " yi)T ^  (xiJ " yi)
ni

= tr E (xij - UiXxij - Ui)T 
j=l

= tr ii>i Ai + tr \p-i_ni (x^ - Pi)(xi - Pi)T

= tr Ai + niCxi - iii)T ifJiCxi- p-̂  ).

Thus log L-̂  can be written as

log Li - - j Cn^ log(2n) + ~ ni log|^i | - ~ tr ^i Ai

- ^ ni(xi - ui)T xfji - |ii). (A.7)

This function was maximised numerically with respect to a, f3, <|> and 

the five variances, using the NAG routine EQAJBF. Starting values 

were 15.0, 12.0, 0.8 and 5.0 for a, (3, cf> and the five variances 

respectively.

To avoid the problem of missing data, the model was initially 

fitted with cases who had a best coma score recorded at all 5 time 

periods. As the coma score has a maximum of 15, this was taken as 

the upper bound of a in each case. The parameter estimates for 

each of the three outcome categories are given in Table A.3.

From these, estimates of p-j_ and were calculated and these 

are given in Table A.A. For comparison, the sample means and 

covariance matrices for the same data used to fit the model are 

given in Table A.5 and the means from the fitted model and the data 

are plotted together in Figure A.A.

As the estimate for a took the value of the upper bound set, it
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Table 4.3 Parameter estimates for the first order 

autoregressive stochastic model

Parameter Severe Moderate Good
Disability Disability Recovery

a 15.00 15.00 15.00

p 7.76 7.06 6.80

<f» 0.81 0.71 0.6A

ui2 A.18 6.35 5.85

a2 2 A.13 6.01 5.82

a32 3.7A 3.9A 3.62

a/ 2 3.01 3.95 2.21

a5 2 3.1A 2.A6 2.13



Table 4.4 Estimates for the mean vector and covariance matrix 

for each outcome for the first order autoregressive 

stochastic model

90

Outcome

ni

Mean
Vector

Hi

Govariance

^i

Matrix

7.24 4.18 3.39 2.75 2.23 1.81

8.71 3.39 6.87 5.57 4.52 3.66
Severe

9.90 2.75 5.57 8.26 6.69 5.43
Disability

1 0 . 8 6 2.23 4.52 6.69 8.43 6.83

11.65 1.81 3.66 5.43 6.83 8.61

7.94 6.63 4.51 3.20 2.27 1.61

9.99 4.51 9.21 6.54 4.64 3.30
Moderate

11.44 3.20 6.54 8.59 6 . 1 0 4.33
Disability

12.47 2.27 4.64 6 . 1 0 8.28 5.88

13.20 1.61 3.30 4.33 5.88 6.63

8 . 2 0 5.85 3.75 2.41 1.54 0.99

10.64 3.75 8.23 5.28 3.38 2.17
Good

1 2 . 2 0 2.41 5.28 7.01 4.50 2 . 8 8
Recovery

13.21 1.54 3.38 4.50 5.09 3.26

13.85 0.99 2.17 2 . 8 8 3.26 4.23



91

Table 4.5 Sample mean vector and covariance matrix for each 

outcome from the data used to fit the first order 

autoregressive stochastic model

Outcome

ni

Sample
Mean
Vector

Ui

Sample
Covariance

^i

Matrix

7.24 4.18 3.57 2.92 2.19 1.97

7.97 3.57 6.63 5.07 4.27 3.46
Severe

9.11 2.92 5.07 7.56 5.92 4.20
Disability

10.41 2.19 4.27 5.92 7.61 5.17

11.94 1.97 3.46 4.20 5.17 6.09

7.94 6.35 4.28 3.12 1.36 0.41

8.84 4.28 7.58 6.06 3.38 1.44
Moderate

10.39 3.12 6.06 8.67 5.18 2 . 1 0
Disability

11.81 1.36 3.38 5.18 6.93 3.28

13.39 0.41 1.44 2 . 1 0 3.28 3.20

8 . 2 0 5.85 3.96 3.76 2.46 0.82

9.93 3.96 8 . 0 0 6.25 3.92 0.98
Good

11.34 3.76 6.25 8.18 4.81 1.39
Recovery

12.78 2.46 3.92 4.81 5.00 1.52

14.10 0.82 0.98 1.39 1.52 1.76
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was decided to increase the upper bound on the grounds that the 

cases were tending in the long run to some value over 15. The 

parameter estimates in this case are given in Table 4.6 and Pi and 

Si from these estimates in Table 4.7, the means from the fitted 

model and the data are plotted in Figure 4.5,

4.4.4 Fit of Model to Data

The results in Figures 4.4 and 4.5 suggest that the model is a 

poor fit to the data. However, this was tested formally using an 

asymptotic likelihood ratio test.

Suppose under a more general model the distribution of the 

feature vectors of category TL-̂ is with no constraints on

Pi and 2-̂ . The maximised likelihood for outcome 11̂ , L^, is

obtained from

Log = | C n^ log(2Il) + - n^ log | |  - ^ tr 

~ 2 n±

Since is positive semi-definite,

ni(xi - Pi)T \|>i (xi - pi) S 0
and is 0 if

Pi = Xi-

Anderson (1984b, pp 62-63) shows that

\ ni log |^i| - j tr it>i Ai 

is a maximum when

^i * niAi" 1 

and takes the value

| n i log |niAi| - | ni C.

The maximised logarithm of the likelihood for outcome under
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Table 4.6 Parameter estimates for the first order 

autoregressive stochastic model with the upper bound 

of 15 for a removed

Parameter Severe Moderate Good
Disability Disability Recovery

a 16.27 15.40 15.39

p 9.03 7.46 7.19

<J> 0.84 0.73 0.66

a!2 4.18 6.35 5.85

<J2 2 4.11 6.01 5.80

0 3 2 3.77 3.93 3.60

a4 2 3.01 3.97 2.22

as2 3.10 2.44 2.13
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Table 4.7 Estimates of the mean vector and covariance matrix 

for each outcome for the first order autoregressive 

stochastic model with the upper bound of 15 for a 

removed

Outcome

Hi

Mean
Vector

V»i

Covariance

*i

Matrix

7.24 4.18 3.50 2.94 2.46 2.06

8.71 3.50 7.05 5.90 4.95 4.14
Severe

9.93 2.94 5.90 8.71 7.30 6 . 1 2
Disability

10.96 2.46 4.95 7.30 9.13 7.65

11.82 2.06 4.14 6 . 1 2 7.65 9.51

7.94 6.63 4.61 3.35 2.43 1.76

9,98 4.61 9.36 6.79 4.93 3.58
Moderate

11.47 3.35 6.79 8 . 8 6 6.43 4.67
Disability

12.55 2.43 4.93 6.43 8.65 6.28

13.33 1.76 3.58 4.67 6.28 7.00

8 . 2 0 5.85 3.88 2.57 1.70 1.13

10.62 3.88 8.37 5.55 3 . 6 8 2.44
Good

12.23 2.57 5.55 7.27 4.82 3.20
Recovery

13.30 1.70 3.68 4.82 5.41 3.59

14.00 1.13 2.44 3.20 3.59 4.51
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the general model with no constraints on and is thus

log Cn^ log(2n) + — n^ log|njAjJ " \ nic *

The results for the approximate likelihood ratio test for each 

outcome are given in Table A .8 for both a bounded and unbounded. 

Constraining the mean and variance reduces the number of parameters 

to be estimated in this case from 20 to 8 so that under the null 

hypotheses the test statistic will be distributed approximately as 

X2 ( 1 2 ) . The rejection region at a significance level of 5% for the 

constrained model corresponds to values of the test statistic 

greater than 2 1 .0 3  so the model was rejected in each case, thus 

endorsing the subjective impression of Figures 4.4 and 4.5.

4.4.5 Discussion

The fit of this model to the data was disappointing as the 

model was chosen initially from the pattern of recovery in 

Figure 4.2. On a re-examination of the approach it was found that, 

to avoid the problem of missing data, only cases with complete data 

at all five times had been used in fitting the model, while 

Figure 4.2 was based on all data available at each time. The main 

source of missing data is due to the fact that patients are 

discharged from the unit before the end of the monitoring period. 

One therefore might expect these cases to have, on average, higher 

coma scores than those who remain in hospital. This is indeed the 

case and Table 4.9 illustrates this fact.

It therefore seemed appropriate to use a different approach to 

constrain the general model.



Table 4.8 Test statistics for the approximate likelihood ratio 

test for each outcome for both a bounded and 

unbounded

Outcome Test Statistic

a bounded a unbounded

Severe 26.07 25.53
Disability

Moderate 62.13 61.81
Disability

Good 68.64 67.83
Recovery



Table 4.9 Mean best coma score at 8 - 14 days for cases with 

complete data at all times and for cases with only 

the 1 5 - 2 8  day score missing

Mean Coma Score
Outcome

Data Data Missing
Complete at 15-28 days

Severe 10.41 11.95
Disability

Moderate 11.81 13.31
Disability

Good
Recovery

12.78 13.99



4.5 Constrained Linear Model

4.5.1 Introduction

After the poor fit of the model described in Section 4.4 it was 

clearly necessary to employ a more appropriate data set when 

fitting a model. It was decided that if the model was being fitted 

at the end of the 15-28 day period then only cases with complete 

data at all times should be used, while if the model was being 

fitted at the end of the 4-7 day period then all cases with 

complete data at that time should be used, and so on. This was 

clinically and statistically acceptable in that it was not possible 

to have future information regarding the patient when making a 

prediction about prognosis. To simplify this description let Dc 

represent the data set of cases with a 6 month outcome of severe 

disability or better, who have best coma score available for all 

time periods up to and including time C (C - 1, ..., 5). Thus D5 

is the set of patients with complete data at all five times whose 

six month outcome is at least severe disability.

The mean best coma score at each time for each of the data sets 

D 3 , ..., D 5 is given in Table 4.10 and plotted in Figure 4.6.

4.5.2 Derivation of the Model

Figure 4.6 suggested that a suitable model might take into 

account the following features

(i) The mean best coma scores for a given outcome category 11̂ , 

i = 1,2,3, at a particular time period t, t = 1, ..., G, 

are not all equal for all data sets Dq, C =  1, ..., 5, for 

which they exist.

(ii) Within each data set D^, C = 3,4,5, for any particular 

outcome category, the mean best scores at the different
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Table 4.10 Mean best coma score at each time period for the 

outcome categories severe disability, moderate 

disability and good recovery and the data sets D5 , D 4 

and D3

Data Set
Time Number of Gases

Period %
236

D4
406

d 3
528

SD
63

MD
83

GR
90

SD
103

MD
138

GR
165

SD
124

MD
168

GR
236

24
hours

7.24 7.94 8 . 2 0 7.44 8 . 2 0 8.55 7.54 8.46 8.84

2-3
days

7.97 8.84 9.93 8.26 9.54 10.39 8.46 9.76 10.87

4-7
days

9.11 10.39 11.34 9.82 1 1 . 0 2 12.06 10.04 11.24 12.52

8-14
days

10.41 11.81 12.78 11.01 12.41 13.28

15-28 11.94 13.39 14.10
days
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Figure 4.6 Mean best coma score at each time period for each 

outcome with data sets D5 , D4 and D3
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15

12

^5 9

6

.. -  * GR 
' -  - MD 

  SD

_!
5

15

12

d3 9

6

3

-  - GR 
- -  MD 
.... SD

2 3
Time Period



103

times, apart from that at 24 hours, are related in a

simple linear manner.

(iii) Within each data set D^, C = 3,4,5, the lines defined in 

(ii) for each outcome category are parallel.

From this the following model was proposed for data sets, Dq ,

C = 3,4,5.

Let represent, as before, the best coma score of the jth

patient in the ith category at time t, so that x-̂  j , j = 1 , ..., n^, 

are the feature vectors of the patients from category n^. Then if 

Pit i-s meaa score for category 11̂  at time t, t - 3, ..., G 

Pit = hit-1 +  ̂ where 6 “ constant.

Thus, for each data set Dq , C = 3,4,5, the means can be

specified using only 7 parameters

hll> h2 1 » U31» U1 2 * ^12* "Y13 and 6 

where Y 12 = h22 " hl2 and ^13 = h32 “ hl2 *
This is illustrated in Figure 4.7.

4.5.3 Parameter Estimation

If the x^j ( j  — 1, ..., n^; i = 1,2,3) are assumed to be

normally distributed with mean p^ = (pii, hic)^> where

C = 3,4,5, and with p^ structured as specified in section 4.5,2 and 

common covariance matrix, E, then a maximum likelihood approach can 

again be used to estimate the parameters. The likelihood function,

L, is

1 3 ni -1
-  E E (xij-pi)T E (x-H-pi) ,
2 i-1 j-1

where N = n^ + n2 + n 3

L = exp

(2n) 5CN iN

and so the logarithm of the likelihood function, log L, is
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log L = -

I f

CN
2

3 nj
log(2n) - | log|XJ - i X - m ) T

i=l j=l

= (yn >  y2 1> ^31* U1 2 » Y12» ^13» 6)T

then the constraint on y-j_ is such that

where =

M 2 =

M 3 =

Thus

3 T1
2 2* (x^j - yi)T 2 * (xtj - y^)

1=1 J= 1 J J

2 21 (xi-s - M^O)^ 2"1 (x -h  - M^O)
i=l j=l J J

]x± = MiQ,

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 G-2

0 1 0 0 0 0 0
0 0 0 1 1 0 0

L 0 0 0 1 1 0 C-2J

r 0 0 1 0 0 0 0

0 0 0 1 0 1 0

0 0 0 1 0 1 C-2J ,

= ±li <xi j Ts_lxi j T ' xi j T2”1̂ 10 - eTMiTs-lxij

2̂  - n-^x^2“^Mi0 - n^^M-j^^x^ +

where x-s =

2 " 1 (Xij-yi).

1 , 2 , 3

C = 3, 4, 5.

+  0^Mi ^2"-*-Mi 0 )  

n i 0TMi T 2 “ 1Mi 0 j
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= 1 S1 xi.Ts-ixi, - bT9 - 0TB + ©tab
i=i j=i 1J 1J

3
where A = Z n-jM-j^E"!^

1=1

3 _
and B = Zi=l

= (0 - A"1B)tA(0 - A-1B) + Z Z1 xai'L-1xia - BTA'I-B.i=l j=l J J
Thus

log L = - —  log(2n) - | log |Z| - | (0 - k"1̂  A(0 - A_1B)

“ i f £ Z1 xi4TZ'’1xii - BTA _;LB 12 Li=i j=i XJ J.

Since

- (0 - A_1B)t A(0-A_1B) 

is a maximum (zero) when

0 = A-1B,

to find the maximum of the logarithm of the likelihood, it remains 

to find the value of Z such that

-!iog M -1 ( Ji jii x ijTs_lxij - bTa_1b )
is maximised. That is

- | l°g|£ | - | tr( S-l J 1 J J  XijXijT - A'lBB? ] 

is maximised.

This was again done numerically using the NAG routine E04JBF.

The starting values, ZQ, taken in this routine were

ZQ = [s^j], where s-jj = 8.0 x 0.8 

The maximum likelihood estimates Z, 0 and \î  of Z, 0 and are

given, for data set D5 , in Table 4.11, together with the
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correlation matrix corresponding to E and the maximum of the 

logarithm of the likelihood, log L. The results for data sets D4 

and D3 are given in Tables 4.12 and 4.13 respectively.

4.5.4 Fit of the Model

A comparison of p-̂  in Tables 4.11, 4.12 and 4.13 with the

appropriate values in Table 4.10 suggests that the model is a good 

fit. This was tested formally again using an asymptotic likelihood 

ratio test. Suppose under a more general model, the distribution 

of the feature vectors in category 11̂ , i = l ,  2, 3 is N(p^,E) with 

no constraints on p-̂ . Under this model the maximum likelihood 

estimates p^ and E are given by

niPi = E Xij - Xi
J-l

ni

and Z = — ^  s ’ ^xij ~ xi^ ^xij " xi ^

The maximum likelihood estimates for Z (under this more general 

model) and the maximum of the logarithm of the likelihood are given 

in Table 4.14 for data sets D 5 , D4 and D 3 .

From these the likelihood ratio test statistics were calculated 

and these are given in Table 4.15 for the three data sets

considered.

Thus there was no evidence that the more general model with

xij ~ N(pj_,Z) was a significantly better fit than that with

structured means where x.jj ~ N(M^8 ,S) for any of the three data

sets considered.
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Table 4.11 Maximum likelihood estimates of E and 9, the 

corresponding correlation matrix and p^» and the 

maximimum log-likelihood for the model where 

xij ~ N(M^9,E) using data set D5

Parameter Estimate

s 5.59 3.99 3.24 2 . 0 0 0.98
3.99 7.52 5.87 3.82 1.79
3.24 5.87 8.19 5.25 2.39
2 . 0 0 3.82 5.25 6.39 3.12
0.98 1.79 2.39 3.12 3.42

Correlation 1. 0 0 0.67 0.48 0.33 0 . 2 2
Matrix 0.67 1.00 0.75 0.55 0.35
corresponding 0.48 0.75 1 . 0 0 0.73 0.45
to E 0.33 0.55 0.73 1. 0 0 0.67

0 . 2 2 0.35 0.45 0.67 1. 0 0

7.13
8.06
8.17
7.76
1.31
2.10
1.42

Pi
SD
7.13
7.76
9.18
10.60
12.01

MD
8.06
9.08

10.49
11.91
13.33

GR
8.17
9.87
11.28
12.70
14.11

1°S Lmax -247.87
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I Maximum likelihood estimates of £ and 9, the

corresponding correlation matrix and Pi, and the 

maximimum log-likelihood for the model where 

Xfj ~ N(Mi9,S) using data set D4

Parameter Estimate

s 5.42 3.71 2.93 1.64
3.71 7.57 5.60 3.48
2.93 5.60 7.96 4.83
1.64 3.48 4.83 5.30

Correlation 1 .00 0 ,.58 0.45 0.31
Matrix 0 .58 1 ,.00 0.72 0.55
corresponding 0 .45 0 ..72 1 . 0 0 0.74
to E 0 .31 0 ,.55 0.74 1. 0 0

7.37 
8.20 
8.55
8.17
1.38 
2.26
1.42

SD MD GR
7.37 8 . 2 0 8.55
8.17 9.55 10.43
9.59 10.97 11.85

1 1 . 0 2 12.39 13.27

-*-°8 ^max -435.97



Table 4.
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I Maximum likelihood estimates of Z and 9, the

corresponding correlation matrix and p^, and the

maximimum log-likelihood for the model where

xij ~ N(M-i_9,E) using data set D 3

Parameter Estimate

5.98 4.05 3.09
4.05 8.04 5.84
3.09 5.84 7.83

Correlation 1.00 0.58 0.45
Matrix 0.58 1.00 0.74
corresponding 0.45 0.74 1.00
to E

7.54
8.44 
8.86 
8.46 
1.25
2.44 
1.58

SD MD GR
7.54 8.44 8 . 8 6
8.46 9.71 10.91
10.04 11.29 12.48

1°S Lmax -585.74
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Table 4.14 Maximum likelihood estimates for £ under the more 

general model where x.y ~ N(vl^,£) and the maximum 

log-likelihood using data sets D5 , D4 and D 3

Data Set £ ^max

D 5 5.58 3.97 3.23 2 . 0 0 0.98 -246.25

3.97 7.49 5.87 3.82 1.80

3.23 5.87 8.19 5.24 2.39

2 . 0 0 3.82 5.24 6.37 3.11

0.98 1.80 2.39 3,11 3.42

d 4 5.42 3.71 2.92 1.64 -433.65

3.71 7.57 5.60 3.48

2.92 5.60 7.93 4.82

1.64 3.48 4.82 5.30

d 3 5.98 4.05 3.09 -585.40

4.05 8.09 5.87

3.09 5.87 7.87
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Table 4.15 Test statistics for the likelihood ratio test of the 

constrained model where x^j ~ N(M^0,Z) within the 

more general model where x-jj ~ N()i^,Z)

Data Set 
D 5 D4 D3

2 log L General
=-------------  3.250 4.636 0.649^ Constrained

number of parameters 30 22 15
in the general model
(ng)

number of parameters 22 17 13
in the constrained 
model (nc)

critical value of 
X2(n§ - nc) at 5% 
significance level

15.51 11.07 5.99
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4.6 Further Developments of the Constrained. Linear Model

4.6.1 Model Fitting by Pseudo Maximum Likelihood

The computation involved in obtaining the maximum likelihood 

estimate of E in the constrained linear model was substantial. It 

was therefore decided to investigate, in this constrained model, 

the effect of the substitution of the maximum likelihood estimate 

of E by an alternative estimate which could be calculated more 

easily. In this case the maximum likehood estimate under the more 

general model x^j ~ N(p-^,E) was used, as it was easily calculated.

In Appendix 3 it is shown that, in general with this approach, 

testing hypotheses that imposed linear constraints on the 

parameters not assosciated with E leads to conservative goodness - 

of - fit tests. Thus a constrained model which was not rejected by 

this approach would not be rejected by the true likelihood ratio 

test. Indeed for the special case of the models under 

consideration in this chapter it can be shown that the approximate 

likelihood ratio test is asymptotically equivalent to the exact 

likelihood ratio test.

The estimates for pi an(i the logarithm of the likelihood are 

given in Table 4.16. Comparison of the results in Table 4.16 with 

those in Tables 4.11, 4.12 and 4.13 did not show that it was

beneficial to use the full maximum likelihood estimate of E. The 

estimates for p^ and E, using full and pseudo maximum likelihood 

estimation, differed only after the fifth and first decimal places 

respectively. It would therefore have been worthwhile to use this 

pseudo maximum likelihood approach in the first instance to test 

the fit of the model.
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Table 4.16 Pseudo maximum likelihood estimates for the mean 

vector under the model where x^j ~ NCM^QjE) and the 

maximum log-likelihood using data sets D5 , D4 and D 3

Data Set
SD

Mean Vector 

MD GR
log Lmax

D5 7.13 8.06 8.17 -247.88

7.76 9.08 9.87

9.18 10.49 11.28

10.60 11.91 12.70

1 2 .01 13.33 14.11

d4 7.37 8 . 2 0 8.55 -435.98

8.17 9.55 10.43

9.59 10.97 11.85

1 1 . 0 2 12.39 13.27

d 3 7.54 8.44 8 . 8 6 -585.74

8.46 9.71 10.91

10.04 11.29 12.48
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4.6.2 Increasing the Structure on Z

In an attempt to reduce further the number of parameters to be 

estimated, the effect of imposing some structure on the covariance 

matrix under the constrained linear model was investigated. Since 

the correlation between best coma scores at different time periods 

decreases as the time difference increases (see Tables 4.11 

4.13), the following structures on the covariance matrix were 

proposed:-

(i) Z = SRS

where S = diag(s^, ..

C = 3, 4, 5,
sc)>

and R = r 1 p
p i x-i

pC pC-1.

(ii) As (i) but with = S2 = ... = sq = s 

so that 

Z * s^R.

The maximum likelihood estimates from fitting the model 

xij ~ N(Mi0,SRS) described in (i) and the likelihood ratio test 

results for the fit of this model in comparison to the more general 

model with xjj ~ N(p^,Z) are given in Table 4.17. Thus although 

there was no evidence that the structure imposed upon the 

covariance matrix gave a significantly worse fit than the general 

model for data set D5 , this was not the case with data sets D4 and 

D3.

When the number of parameters involved in the estimation of Z 

was further reduced as described in (ii) the maximum value of the 

logarithm of the likelihood for data set D5 was -283.91. This gave
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a test statistic of 75.33 for the likelihood ratio test. Since 

this was a significantly worse fit than the general model, no 

further constraints on the covariance matrix were considered.

4.6.3 Different Covariance Matrices for Each Group

Up to this point a common covariance structure for the three

groups had been assumed. However, the model ~ N(Mi0,Ei) with

different covariance matrices for each outcome category was then

considered. A maximum likelihood approach was adopted as before

and this gave the logarithm of the likelihood to be
3 n *

log L » - S  log(2n) - 2 - 4  logllil - i (8 - A“1B)t A (0 - A-1B) z i=l z l l z

“ i f 2 S1xiiTZi_:Lxii - BtAT ]
2 li=l j=l 1 >

3
where A = E n-̂  

i=l

and B = E n^ 2 ^“  ̂ x^,i=l

Thus the maximum likelihood is attained when 0 — A"^B and is 

given by

log L = - log(2n) - log|Si| - j [ E^ - BtAB ]

To evaluate this numerically E;l, E2 and S3 have to be estimated so 

that log L is a maximum. Computationally this involves estimating 

45 parameters.

Since the value of the likelihood function decreased only 

slightly when the maximum likelihood estimates of E from the model 

xij ~ were used as estimates for E in the model

Xij ~ N(M^0,E), this approach was adopted again.

Instead of evaluating the maximum likelihood estimates of E^ 

from the model x^j ~ N(M^0 ,E^) in the calculation of the logarithm
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of the likelihood, the maximum likelihood estimates of from the 

more general model Xjj ~ N(pi,Z^) were used.

Within the general model x -jj ~ (Pi>Ei) t l̂e maximum likelihood 

estimates for p^ and Z-̂  are (Anderson, 1984b, pp 63-64):-

Pi = m

and

^i " xi)(xij ~ xi ^ ‘

The maximum likelihood estimates of Z^, i=l, 2, 3 within this 

model are given in Table 4.18.

With substitution of these values as estimates of Z-ĵ in both 

the general model x^j ~ N(pi,Z^) and the constrained model 

xij ~ N(MiB,Z^) the logarithm of the likelihood was calculated. 

The mean values p-̂  = M ^8 were also calculated for the constrained 

model and the fit of the constrained model compared with that of 

the more general model using a likelihood ratio test. These 

results are given in Table 4.19. Thus there was no evidence that 

the constrained model X^j ~ N(M^9,Z^) was a significantly worse fit 

than the more general model x^j “ N(p^,Z^).

A summary of all the models fitted, the number of parameters 

estimated and the logarithm of the likelihood of the fitted model 

are given in Table 4.20. From this table it can be seen that, in 

each case, the model with different covariance matrices for each 

group does give a significantly better fit than that with a common 

covariance matrix, but that, for a specified covariance structure 

the structure on the mean provides a good description of the data.
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Table A.20 Summary of the log-likelihoods and degrees of freedom 

of the models discussed

Model

~ NCiij,

Xij ~ N(Mi

x ^  “ N(ui

x ^  “ N(Mi

x ^  “ N(Mi'

x ^  - N(Mi

Maximum Log L
Likelihood Degrees of Freedom
Method

D5 d4

Si) Exact -218.02 -416.49
60 42

,Zi) Pseudo -219.71 -418.92
52 37

£) Exact -246.25 -433.65
30 22

|,Z) Exact -247.87 -435.97
22 17

i,S) Pseudo -247.88 -435.98
22 17

i,SRS) Exact -254.47 -449.26
13 12

572.60
27

572.98
25

585.40
15

585.74
13

585.74
13

598.70
11
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4.7 Assumptions of Multivariate Normality

4.7.1 Introduction

All the models fitted so far assumed that the data had a 

multivariate normal distribution. This assumption was examined in 

two ways.

(i) by looking at the univariate marginal distribution of the 

scores at the different times.

(ii) by considering the Andrews curves of the data.

4.7.2 Marginal Distribution of Scores

If the feature vector has a multivariate normal distribution 

then each of the components of the feature vector should also be 

normally distributed. To look at this assumption, box and whisker 

plots of the scores at each time period were drawn for each outcome 

category for the three data sets D3 , D4 and D5 considered. All 

data sets showed a similar pattern. In the early stages after 

injury the plots looked symmetrical about the median value; this 

suggested that, at least marginally, the components were normally 

distributed. However, the data became increasingly skewed as time 

progressed and the patients improved towards the top of the coma 

scale. The box and whisker plots for the data set D5 are given in 

Figure 4.8 and illustrate these points. The same features were 

seen in normal probability plots of the data, in which deviations 

from linearity occurred most markedly with the 15-28 day scores of 

those who made a good recovery.

In an attempt to improve the marginal normality, various 

transformations of the data were considered but none was 

particularly successful, so the multivariate normality assumption 

was adopted for the original variables.
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Figure 4.8 Box and whisker plots of the coma scores at the five 

time periods with data set D 5

1 ♦ 1 ■ * * SD

24H HD

■I + I * * GR
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4.7.3 Assessment of Multivariate Normality using Andrews Curves

A better means of assessing multivariate normality is the 

Andrews curve (Andrews, 1972). Each feature vector is denoted by a 

curve, fx(t), which, for the feature vector x « (x^, ..., x q ) is

fx(t) = — x;l + X2 sint + X3Cost + X4 sin2t + X5 Cos2t + . . . to C terms, 
v 2

where -it < t < it.

One interpretation of a set of Andrews curves from a data set 

is as an infinity (as t varies) of sets of univariate projections 

of the data, and an informal test of multivariate normality is to 

assess univariate normality simultaneously for all t. With a large 

set of data the plots of all the Andrews curves are difficult to 

interpret but Gnanadesikan (1977) used a quantile contour plot 

approach to simplify the procedure. The values of a few sample 

percentiles are evaluated for a large number of t values giving 

contour curves for the percentiles chosen. If for each t chosen, 

the univariate data are standardised, then, if the original data 

were multivariate normal, the resulting standardised quantile 

contours should be roughly horizontal straight line plots at the 

levels indicated by the standard normal quantiles. The contour 

plots corresponding to the 5, 25, 50, 75 and 95 percentiles for 

each outcome category were produced for data sets D5 , D4 and D 3 . 

These contours should then be roughly horizontal lines at -1.645, 

-0.675, 0.000, 0,675 and 1.645. The plots for data sets D5 , D4 and 

D 3 are shown in Figures 4.9, 4.10 and 4.11 respectively. These 

plots are still difficult to interpret and therefore a comparison 

was made with corresponding plots of simulated normal data. These 

had means and covariance matrices equal to the maximum liklihood 

estimates of the mean and covariance matrix from the data set with 

which they were to be compared. Also the number of simulations was
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equal to the number of cases in that data set. The quantile 

contour plots of the Andrews curves of the simulated normal data 

are given in Figures 4.12, 4.13 and 4,14 and can be compared with 

Figures 4.9, 4.10 and 4.11 respectively. Subjectively the plots in 

Figures 4.12, 4.13 and 4.14 appeared no more ’horizontal’ than

those in Figures 4.9, 4.10 and 4.11.

Finally, a hundred simulations were produced of the quantile 

contour plots of 63 ' data simulations from a normal distribution 

with mean and covariance matrix from the severe disability group in 

data set D5 were produced. These are shown in Figure 4.15(a). 

Figure 4.15(b) shows the bands produced by the plots in 

Figure 4.15(a) together with the quantile contour plots of the 

Andrews curves of the severe disability group in data set D5 . 

While these cannot be interpreted as confidence bands it is 

encouraging to see that the quantile contour plots for the actual 

data lie within the band produced from the 100 simulations of the 

corresponding normal data.
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Figure A.15 Quantile contour plots of Andrews curves

a) 100 simulations of normal data (from SD group, D3 )

b) bands produced by a) and plot of SD group from D3
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CHAPTER 5

ASSESSMENT OE PERFORMANCE

5.1 Introduction

The original purpose of this work was to discover if data 

collected over time could be used to improve prediction of the six 

month outcome. This chapter describes the use of some of the 

models developed in Chapter 4 to make such predictions, and 

compares the results of these predictions with those from other 

available models.

The data sets used were the same as those used to develop the 

models in Sections 4.5 and 4.6, namely Dq , where C = 5, 4 and 3. 

The main emphasis was on the assessment of the performance of the 

predictions made at 28 days; but the results of predictions at 14 

days and 7 days were also considered.

The same test and training data sets were used. To overcome 

the bias thereby introduced, the cross-validatory technique 

suggested by Lachenbruch and Mickey (1968) was used. With their 

'jack-knife' technique each case is omitted from the training data 

set in turn and the coefficients of the classification rule are 

recalculated. The omitted patient is then classified on the basis 

of the remaining patients. Unless excessive computation is 

required for the jack-knife procedure, the results are given with 

and without the jack-knife procedure.

Two different sets of prior probabilities were used in each 

case. The relative incidence or arrival rate associated with each 

of the three outcome categories gave one set of prior probabilities 

which for the three data sets were:-

D5 : p(SD) - .267 p(MD) = .352 p(GR) = .381



D4 : p(SD) = .254 p(MD) = .340 p(GR) = .406

D3 : p(SD) = .235 p(MD) = .318 p(GR) = .447.

If one outcome group has an incidence substantially less than the 

others this can lead to that outcome seldom having the highest 

probability attached to it. The separation achieved solely on the 

basis of the patients' feature vectors was therefore assessed by 

the results obtained using equal prior probabilities.

To evaluate the various models, the three scores described in 

Section 3.3.3 were used, namely, the error rate, the average

logarithmic score and the average quadratic score. However, to 

give a further indication of the problems associated with ordered 

outcome categories, the classification matrices have also been 

given.

5.2 Constrained Linear Model

5.2.1 Practical Aspects

Predictions of outcome were made using three of the models 

described in Sections 4.5 and 4.6. The data, x, were assumed to 

have the following distributions

(i) x ~ N(Mi9,E) where M-j_ is as stated in Section 4.5 and

estimates of 0 and 2 were obtained using maximum 

likelihood estimation as described in Section 4.5.

(ii) x ~ N(M^0,S) where is as stated in Section 4.5, and the

estimates of 0 and S were obtained using the pseudo 

maximum likelihood methods described in Section 4.6.1.

(iii) x “ N(M^0,Z^) where is as stated in Section 4.5 and the 

pseudo maximum likelihood approach described in 

Section 4.6.3 was again used to obtain estimates of 0 and 

Si-
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For convenience these methods were called C0N0R1, C0N0R2 and 

CQN0R3 respectively. With the models of CONOR! and C0N0R2 the 

probability that a new patient with feature vector y belongs to 

category 11̂  is estimated by

With the model C0N0R3 the above probability for the new 

patient, y, is estimated by

To use the jack-knife technique for the predictions with C0N0R1 

would involve a complete recalculation of the maximum likelihood 

estimates 0 and E for every case. However with C0N0R2 and C0N0R3 a 

recursive approach can be adopted.

For C0N0R2 let Ê j and be the estimates for E and 0 involving

all N patients and E^_^ and 0^-1 be the estimates with 1 patient 

removed. If the last patient in the first category say, is removed 

(that is, the patient with feature vector x^j, where j=n^), then 

Ê j-i can be obtained from E^ as follows:-

p(lIi|y,D) =

where p(n^) is the prior probability of outcome 11̂

and 0 and E are the appropriate estimates of 0 and E.

where E^ is the appropriate estimate of E-̂ .

n l“l
where
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n l“l 3 n*
= _Z^(x1j- xj+ X]_- x i X x j j - x:+ xj_- Xi)T + S^(x^j- xi)(xij- xt)T

n^-l n ^-1 ^ 1 “ 1
= S Cxi4- xiXx^j- X!)t +E (x]_- x1 )(xli- xx)T +2 (xi-j- x 1 )(x1~ jq)T j_l J j=l J j=l J

nl"i 3 n- _
+ £ (x!- xi)(x^" xl)T + 2 ZX(xî j- XiXx-H- xi)Tj=l i=2 j=l J

* N£N - (xlni- X i X x ^ -  x ^ T  - (xX - X!)(xlni- xi)T

“ ^xlni" xl)(xl “ xl)T + (n! - l)(xi - iqXxi - xi)T

nl-1
since £^(x]j - X]_) « - (xlni~ xl)>

= N£N - (l + J Uir^- xi)(xlni- xl)T

since (xln  ̂ “ xl) = (n l~ D ( xl “ xl)

Thus omitting the qth patient from the group with feature 

vector Xpq where p = 1, 2, 3 and q = 1, ,.., np gives

ZN-l = iTi SN - (N-I)(np-I)(xpq - V (xpq ' XP>T'
So

SN-1 = cSN ~ V vT ,

Where c = ^  and v = / ( N - l ) ( n  ,) (xpq ‘ *p).N
N-l v / (N-DCnp-i)

~-l  ̂ c_1 S{v}“ v vT C-1
and £m -i = c ^£w  ̂+ ------------------------

1 - c-1 vT £n -1 v

(Draper and Smith, 1981, pl27).

from this estimate for £ a new estimate 9 ^ - 1 for 0 can be

obtained as follows.

Since

0N = Apq1 Bn



137

3
where M-ĵ  2^"1m^

i-1
3 m Aand Bjq = £ n^ M ^ 1 £^ ■Lx^,

i=l
-1

eN-l = aN-1 bN-1

where Aj _̂̂  = £ n-̂  £ ^ - 1 - Mp^ £ ^ - 1 Mpi=l *
^ 1 1 and Bn_! = S ni £N _X x± - MpT £N_! xpq.

Similarly for C0N0R3, if the qth patient from the group is

omitted and anc  ̂ ^i»N-l represent the estimates of £^, and 8^

and 9^-1 the estimates of 0, with N patients and N-l patients 

respectively then

si,N = ^i,N-l if i ̂ p,

^p,N-l = c^p,N v v"̂ »

where c = ^  and v = / ( ^ y 2(xpq ' Xp>>
and

— 1 -1 - 1 -1 •'"1 T -1 •'-1^p,N-l c % , N  + c ^p,N v v c ^p»N
t t

Since

1-c" 1 vT £p#N v

0N = An"1Bn

-1where A^ = £ n^ £i N 
i=l ’
3 T — 1 _ and Bn =_£ nt Mi1 £t N x*

i=l
-1

0N-1 = An _! Bn_!

3 - -1 - -1
where AN-1 = ^i»N-l ^i ” Mp^ ^p,N-l ^p

3 ~-l _ *-1
and % - l  = si,N“l xi “ ^p^ ^p,N-l xpq*

As the results for the estimates of 0 and £ in C0N0R1 and C0N0R2 

were almost identical, it was not felt that it was computationally
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worthwhile to use the jack-knife technique with C0N0R1. However,

the jack-knife technique was used with C0N0R2 and C0N0R3.

5.2.2 Results for the Constrained Linear Model

In the comparison of the results for the different constrained 

linear models there were three main considerations: the effect of

the jack-knife technique; the results obtained from the two 

different priors; and, most important, the comparison of the three 

models. In particular, it was important to see if the better fit 

associated with the model C0N0R3, where x ~ N(Mi9,Z^) was 

translated into improved performance. These considerations will be 

discussed with regard to first the classification matrices and then 

the measures of separation.

The classification matrices for the data sets D5 , D4 and D3 are 

given in Tables 5.1, 5.2 and 5.3 respectively. The separation

measures for these data sets are given in Tables 5.A, 5.5 and 5.6 

respectively.

The classification matrices in Tables 5.1, 5.2 and 5.3 show

that the jack-knife procedure had little effect in changing the 

allocation of a patient to a particular category. However, any 

effect was more noticeable with C0N0R3, where there are more

parameters to estimate, than with C0N0R2. The magnitude of the 

effect of the jack-knife technique gives an indication of the

variability of the parameter estimates, so these results are not

surprising, reflecting the greater variability in the parameter 

estimates of C0N0R3.

The result of the comparison of the effect of the different 

priors on the classification matrices reflected the higher

probability of good recovery and the lower probability of severe 

disability, relative to the probability of moderate disability, in



Table 5.1 Classification matrices for the constrained normal

methods and data set D5

No Jack-knife Jack-knife
Priors Method

Predicted Actual Actual
Outcome Outcome Outcome

SD MD GR SD MD GR

SD 30 17 10
C0N0R1 MD 15 23 17

GR 18 43 63

Arrival SD 30 17 10 30 17 10
CONOR2 MD 15 23 17 15 23 17

Rate GR 18 43 63 18 43 63

SD 27 14 7 27 14 9
C0N0R3 MD 12 24 17 11 25 16

GR 24 45 66 25 44 65

SD 31 21 16
CONOR1 MD 17 25 15

GR 15 37 59

SD 31 21 16 31 21 16
Equal C0N0R2 MD 17 25 15 16 23 15

GR 15 37 59 16 39 59

SD 32 17 12 32 19 14
C0N0R3 MD 10 23 15 11 23 15

GR 21 43 63 20 41 61



Table 5.2 Classification matrices for the constrained normal

methods and data set D 4

Priors Method
No Jack-knife Jack-knife

Predicted
Outcome

Actual
Outcome

Actual
Outcome

SD MD GR SD MD GR

SD 42 31 17
CONOR1 MD 19 16 21

GR 42 91 127

Arrival SD 42 31 17 41 31 17
C0N0R2 MD 19 16 21 20 16 22

Rate GR 42 19 127 42 91 126

SD 42 23 18 38 24 18
C0N0R3 MD 18 29 24 21 29 23

GR 43 86 123 44 85 124

SD 59 45 34
CONOR1 MD 20 20 25

GR 24 73 106

SD 59 45 34 59 46 34
Equal C0N0R2 MD 20 20 25 20 19 27

GR 24 73 106 24 73 104

SD 60 35 43 51 32 41
C0N0R3 MD 16 31 18 22 34 17

GR 27 72 104 30 72 107



Table 5.3 Classification matrices for the constrained normal

methods and data set D 3

No Jack-knife Jack-knife
Priors Method

Predicted Actual Actual
Outcome Outcome Outcome

SD MD GR SD MD GR

SD 47 41 28
CONOR1 MD 16 12 16

GR 61 115 192

Arrival SD 47 41 28 47 42 29
C0N0R2 MD 16 12 16 16 11 15

Rate GR 61 115 192 61 115 192

SD 53 43 36 52 40 37
C0N0R3 MD 12 16 13 15 22 14

GR 59 109 187 57 106 185

-
SD 69 65 60

C0N0R1 MD 23 24 33
GR 32 79 143

SD 69 65 60 69 65 61
Equal C0N0R2 MD 23 24 33 23 24 32

GR 32 79 143 32 79 143

SD 77 68 80 70 68 81
CONOR3 MD 10 14 13 19 14 11

GR 37 86 143 35 86 144
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Table 5,4 Measures of separation for the constrained normal

methods and data set D5

Arrival Rate Priors Equal Priors

Measure Method
Jack-knife Jack-knife

No Yes No Yes

Error
CONOR1 .508 — .513

Rate C0N0R2 .508 .508 .513 .521

C0N0R3 .504 .504 .500 .509

Average
Logarithmic
Score

CONOR1 

C0N0R2 

C0N0R3

.989

.989

1.026

1 . 0 1 0

1.118

.995

.995

1.030

1.016

1 . 1 2 2

C0N0R1 .599 .603
Average
Quadratic C0N0R2 .599 .611 .603 .615
Score

C0N0R3 .612 .643 .612 .644
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Table 5.5 Measures of separation for the constrained normal

methods and data set D4

Arrival Rate Priors Equal Priors

Measure Method
Jack-knife Jack-knife

No Yes No Yes

Error
CONOR1 .544 .544

Rate C0N0R2 .544 .549 .544 .552

C0N0R3 .522 .530 .520 .527

CONOR1 1.007 - 1 . 0 2 0 -
Average
Logarithmic C0N0R2 1.007 1.018 1 . 0 2 0 1.032
Score

C0N0R3 1.030 1.072 1.042 1.085

C0N0R1 .611 - .619 -
Average
Quadratic C0N0R2 .611 .618 .619 .626
Score

C0N0R3 .619 .635 .623 .637
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Table 5 .6 Measures of separation for the constrained normal

methods and data set D 3

Arrival Rate Priors Equal Priors

Measure Method
Jack-knife Jack-knife

No Yes No Yes

Error
CONOR1 .524 ” .553

Rate C0N0R2 .524 .526 .553 .553

C0N0R3 .515 .510 .557 .568

Average
Logarithmic
Score

CONOR1 

C0N0R2 

C0N0R3

1 . 0 0 1

1 . 0 0 1

1 . 0 1 2

1.009

1.032

1.030

1.030 

1.044

1.038

1.065

C0N0R1 .605 .623
Average
Quadratic C0N0R2 .605 .610 .623 .628
Score

C0N0R3 .610 .619 .629 .639
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the arrival rate priors. Thus more patients were predicted to make 

a good recovery and fewer to have a severe disability when the 

arrival rate priors were used as opposed to equal priors.

The comparison between the results of the three methods was 

interesting and showed that C0N0R1 and C0N0R2 gave identical 

results. The reason for this was that the estimates of 9 and E 

differed only after the fifth and first decimal places respectively. 

C0N0R3 was not obviously superior to C0N0R1 or C0N0R2. In no case 

did it allocate more or fewer cases correctly in all three outcome 

categories. Indeed, there did not even seem to be a pattern over 

the three data sets D5 , D4 and D 3 . for example, when comparing the 

results based on arrival rate priors, more cases were predicted 

correctly to have a good recovery with C0N0R3 than with C0N0R1 or 

C0N0R2 for data set D5 , while the reverse was true for data sets D4 

and D 3 . The classification matrices did, however, show the large 

overlaps between the groups, and that the ordered nature of the 

outcomes resulted in very few of the moderate disability group 

being allocated to the correct category.

To look more quantitatively at the results, the separation 

measures in Tables 5.4, 5.5 and 5.6 were examined. A benchmark for 

comparison of the measures was obtained by assigning the prior 

probabilities to each case and these are given in Table 5.7.

The jack-knife technique has already been shown to have little 

effect on the classification matrix and thus had little effect on

the error rate. The same was also true for the average logarithmic

and quadratic scores. The jack-knife again had most effect with 

G0N0R3, where the largest number of parameters had to be estimated: 

this was most marked with data set D5 , which had the smallest

number of cases of the three data sets and also the largest number

of parameters to be fitted. However, in all cases the jack-knife
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Table 5,7 Measures of separation obtained by assigning the prior 

probabilities

Data Set Measure
Arrival
Rate
Priors

Equal
Priors

Error Rate .619 .667

^5 Average Logarithmic Score 1.088 1 . 1 1 0

Average Quadratic Score .660 .674

Error Rate .594 .667

d4 Average Logarithmic Score 1.081 1.117

Average Quadratic Score .655 .678

Error Rate .553 .667

d3 Average Logarithmic Score 1.064 1.133

Average Quadratic Score .644 .690
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method gave slightly worse average logarithmic and quadratic scores 

than the same methods without jack-knife. The jack-knife procedure 

with C0N0R3 and data set D 3 gave an error rate which was lower than 

that without this procedure. This was because six more moderate 

disability cases were correctly classified while only three fewer

severe disability and good recovery cases were correctly

classified. All other error rates were either the same or slightly 

worse with the jack-knife technique.

The arrival rate priors gave slightly better average

logarithmic and quadratic scores than the corresponding equal prior 

results. The extra information contained in the arrival rate 

priors contributed to this improvement. Also the error rates using 

the arrival rate priors were generally better than those using 

equal priors. However, with C0N0R3 there were again examples where 

the reverse was true.

In a comparison of the three methods, G0N0R1 and G0N0R2 again 

gave identical scores. With the average logarithmic and quadratic 

scores, G0N0R3 always had a higher score than C0N0R1 and C0N0R2.

Even though the fit of C0N0R3 to the data was shown to be better 

than C0N0R1 or C0N0R2, this was not reflected in the results of the 

predictions. This result is in accord with the findings of the 

comparative study described in Section 3.5. In terms of the error 

rate, C0N0R3 did better than C0N0R1 and C0N0R2 except with equal 

priors and data set D 3 . The error rates with C0N0R3 did not follow 

the same pattern as that of the other separation measures. This 

was because, with this particular model, small changes in the 

probabilities were giving a different classification of outcome.

When this occurs, the practical implications of the use of the 

error rate as a measure of assessment have to be considered. The 

usual criticism of the error rate is that of insensitivity to small



changes in probabilities, but here the opposite seemed to be the

case.

Comparison of Tables 5.4, 5.5 and 5.6 with Table 5.7 shows 

that, while these methods did not solve all the problems of 

predicting the outcome in survivors, they did give a worthwhile 

improvement over simply allocating the prior probabilities to each 

case.

5.3 Normal Linear Model

5.3.1 Fisher's Linear Discriminant Function

The classical linear discriminant function is a natural 

comparator for the models in Section 5.2. The linear discriminant 

function was originally obtained by Fisher (1936) as that linear 

function which maximises the ratio of 'between' to 'within' sums of 

squares. However exactly the same discriminant function results 

from the normal linear model assuming no structure other than the 

equality of the covariance matrices. Relaxation of the equality of 

the covariance matrices leads to the standard quadratic 

discriminant model. However, in view of the poor performance of 

the quadratic methods in the comparative study and in the results 

described in Section 5.2, this method was not included for further 

comparison. With the normal linear model the probability of 

outcome 11̂  for a new individual with feature vector y is estimated 

by

pCn*) expf- ~  (y-ui)T irky-pi)] 
pCnijy.D) = __________ _ __________________

EjPCHj) exp[" \ (y-hj)T S_1 (y-]ij)]



where pCn^) is the prior probability of outcome and and Z are 

the maximum likelihood estimates of p^ and Z. This method was 

called NORLIN and corresponds to the methods N0RLIN1 and N0RLIN2 

described in Section 3.5. The biomedical computer program BMDP P7M 

by Dixon et al. (1985) was used to calculate the probalilities.

5.3.2 Results for the Normal Linear Model

The effects of the jack-knife technique and of using the 

different priors were studied, first in terms of the classification 

matrices and then by the measures of separation. The

classification matrices and the separation measures for the various 

predictions made using this model are given in Tables 5.8 and 5.9 

respectively.

The classification matrices in Table 5.8 show that the 

jack-knife technique led to fewer cases being correctly classified. 

This occurred with all the data sets and with either arrival rate 

or equal priors.

The use of arrival rate priors again led to more cases being 

predicted to make a good recovery and fewer to be severely disabled 

than with equal priors. The moderate disability group still proved 

difficult to predict.

The separation measures in Table 5.9 show that not only was the 

error rate worse with the jack-knife technique, but that the other 

separation measures also gave poorer results for all data sets and 

both prior probabilities. The use of arrival rate priors improved 

all scores for the measures of separation with one exception. The 

error rate for data set D4 with no jack-knife was slightly less 

with equal priors than arrival rate priors.



Table 5.8 Classification matrices for method NORLIN

No Jack-knife Jack-knife
Data Priors
Set

Predicted Actual Actual
Outcome Outcome Outcome

SD MD GR SD MD GR

Arrival SD 29 16 13 29 17 14
Rate MD 18 29 16 18 26 21

GR 16 38 61 16 40 55

SD 31 18 14 31 18 14
Equal MD 17 32 23 17 29 27

GR 15 33 53 15 36 49

Arrival SD 39 30 17 38 30 18
Rate MD 23 21 22 23 19 21

GR 41 87 126 42 89 126
d4

SD 59 45 35 57 47 35
Equal MD 16 21 20 18 17 24

GR 28 72 110 28 74 106

Arrival SD 48 39 24 46 39 24
Rate MD 13 16 22 14 14 23

GR 63 113 190 64 115 189
d3

SD 70 65 57 68 66 58
Equal MD 18 20 26 20 18 28

GR 36 83 153 36 84 150
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Table 5.9 Measures of separation for method NQRLIN

Arrival Rate Priors Equal Priors

Data
Set

Measure
Jack-knife Jack--knife

No Yes No Yes

Error
Rate .496 .534 .508 .538

*5
Average
Logarithmic
Score

.987 1.031 .992 1.036

Average
Quadratic
Score

.600 .628 .602 .630

Error
Rate .542 .549 .532 .557

d4
Average
Logarithmic
Score

1.006 1.027 1.019 1.040

Average
Quadratic
Score

.611 .624 .618 .631

Error
Rate .519 .528 .540 .553

d3
Average
Logarithmic
Score

1 . 0 0 0 1 . 011 1.029 1.040

Average
Quadratic .604 .611 .622 .629
Score
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5.4 Independence Model

5.4.1 Practical Aspects

In the Head Injury Study it was the independence model, 

described in Section 3.4, which was first used to make the 

predictions of outcome. The comparative study described in Section

3.5 showed it performed well when compared with other methods. It 

was also well understood by the clinicians and is the method 

currently being used to provide the medical staff with on-line 

predictions of prognosis in the early stages after head injury 

(Barlow et al., 1984; Barlow et al., 1987). It was therefore 

important to compare its performance with that of the normal models 

described in Sections 5.2 and 5.3. A feature of the independence 

model is that unlike, for example, the linear discriminant model 

the ordered nature of the coma score is not explicitly 

incorporated.

Four sets of variables were considered and data sets D 5 , D4 and 

D3 were used as the test and training data for the predictions at

the end of 28 days, 14 days and 7 days respectively. The model

used was that described in Section 3.5.2 with B=l, and the 

predicted probability of each outcome 11̂  was obtained using the 

program INDEP-SELECT by Habbema and Gelpke (1981).

The four variable sets used were as follows:

INDEP1 - The best coma score at 24 hours

INDEP2 - The best coma score within the latest available time 

period. For example, the best coma score within the 8-14 day 

period was used with data set D4 . It was anticipated that the 

results from INDEP2 would be better than those of INDEP1 thereby

showing that the current state of the patient is more important

than the initial state.



INDEP3 - All best coma scores available for the particular data 

set. Here it was anticipated that utilising all information would 

provide better results than those purely using the current state of 

the patient.

INDEP4 - For the latest time period available the best coma score, 

motor response pattern, pupil reaction, created eye indicant along 

with the change in neurological function and the patient’s age. 

This is the variable set III described in Section 3.5 and is the 

one currently in use for the on-line predictions of prognosis in 

the early stages after injury. It therefore gave a standard 

against which to judge all other methods.

With INDEP1, INDEP2 and INDEP3 the raw coma scores were used, 

whereas with INDEP4 the data were suitably collapsed to reduce the 

number of categories. For example, age was collapsed into decades

(0-9, 10-19, ....) and the coma score into 3 groups (3-10, 11-13

and 14-15) for data set D4 and D5 , and 4 groups (3-4, 5-7, 8-11 and 

12-15) for data sets D3 . The splits were those currently used in 

practice and were chosen using an entropy measure as described in 

Section 3.4.3.

There was no missing data with INDEP1, INDEP2 and INDEP3, but 

there was considerable missing data in the additional variables 

included in INDEP4. This was dealt with as in Section 3.4.2.

5.4.2 Results for the Independence Models

In the discussion of the results of the four independence

models the approach taken in Section 5.2.2 with the constrained

normal models will be used again. Thus, the effect of employing 

the jack-knife technique and of the use of two different sets of 

prior probabilities is considered before the comparing the models.

The classification matrices are given in Tables 5.10, 5.11 and



5.12, for the data sets D5 , D4 and D 3 respectively and the

corresponding separation measures are given in Tables 5.13, 5.14

and 5.15.

The jack-knife technique again gave fewer correct

classifications in all but two comparisons in which the same number 

were correctly classified. In many cases this technique had a 

marked effect on classification. The number of parameters 

estimated and the number of cases in the data set should both 

influence the magnitude of the effect of the jack-knife technique.

With data set D5 it was difficult to see a pattern in the results,

but with data sets D4 and D3 , INDEP1 and INDEP2 were indeed less 

affected by the technique than INDEP3 and INDEP4, each of which had 

more parameters to estimate.

The different priors also had a marked effect on the

classification and this was most noticeable with data set D 3 . The 

probabilities were obviously such that the changes induced by the 

arrival rate priors led to a different classification in many 

cases.

The instability of the classification matrices meant that a 

comparison of the different independence models was not easy. 

Subjectively INDEP2 did appear better than INDEP1. INDEP3 was not 

obviously better than INDEP2 and the results of INDEP4 seemed 

comparable to those of INDEP3 and INDEP2.

When the separation measures were considered, the jack-knife 

technique gave poorer average quadratic and logarithmic scores in 

every case. With these scores, the number of parameters to be 

estimated and the number of cases in the data set had a noticeable 

effect. The jack-knife technique had more effect with INDEP3 and 

INDEP4 which needed more parameters to be estimated. Data set D5 , 

with fewest cases, showed more effect than data set D 4 , which in



Table 5.10 Classification matrices for the independence methods

and data set D 5

Priors Method
No Jack-knife Jack-knife

Predicted
Outcome

Actual
Outcome

Actual
Outcome

SD MD GR SD MD GR

SD 19 11 16 19 17 16
INDEP1 MD 27 39 27 27 33 37

GR 17 33 47 17 33 37

SD 19 8 4 19 13 4
INDEP2 MD 34 48 28 34 43 28

GR 10 27 58 10 27 58
Arrival
Rate

SD 42 19 12 34 26 14
INDEP3 MD 14 37 9 19 28 16

GR 7 27 69 10 29 60

SD 32 18 8 27 19 9
INDEP4 MD 22 29 17 25 26 17

GR 9 36 65 11 38 64

SD 34 28 28 25 28 29
INDEP1 MD 26 51 45 35 27 45

GR 3 4 17 3 28 16

SD 31 22 7 24 23 17
INDEP2 MD 22 34 25 29 33 25

GR 10 27 58 10 27 48
Equal

SD 46 24 16 37 30 19
INDEP3 MD 10 33 8 18 25 15

GR 7 26 66 8 28 56

SD 36 20 9 32 21 11
INDEP4 MD 19 28 17 22 27 18

GR 8 35 64 9 35 61



Table 5.11 Classification matrices for the independence methods

and data set D4

Priors Method
No Jack-knife Jack-knife

Predicted
Outcome

Actual
Outcome

Actual
Outcome

SD MD GR SD MD GR

SD 45 35 36 45 35 36
INDEP1 MD 5 14 11 5 14 11

GR 53 89 118 53 89 118

SD 50 33 31 50 33 34
INDEP2 MD 17 23 9 17 23 9

GR 36 82 125 36 82 122
Arrival
Rate

SD 61 39 26 54 44 28
INDEP3 MD 25 49 30 30 31 37

GR 17 50 109 19 63 100

SD 54 30 16 43 34 17
INDEP4 MD 21 35 15 32 25 24

GR 28 73 134 28 79 124

SD 60 55 57 45 55 59
INDEP1 MD 31 64 65 46 51 65

GR 12 19 43 12 32 41

SD 66 49 43 61 49 43
INDEP2 MD 34 73 68 39 73 68

GR 3 16 54 3 16 54
Equal

SD 71 53 38 61 57 41
INDEP3 MD 22 46 31 28 36 43

GR 10 39 96 14 45 81

SD 66 41 25 60 43 26
INDEP4 MD 20 44 29 24 38 42

GR 17 * 53 111 19 57 97



Table 5.12 Classification matrices for the independence methods

and data set D 3

Priors Method
No Jack-knife Jack-knife

Predicted Actual Actual
Outcome Outcome Outcome

SD MD GR SD MD GR

SD 20 15 13 20 15 13
INDEP1 MD 7 19 18 7 19 18

GR 97 134 205 97 134 205

SD 30 22 13 30 22 13
INDEP2 MD 22 37 26 22 37 42

GR 72 109 197 72 109 181
Arrival
Rate

SD 64 46 38 58 50 40
INDEP3 MD 24 42 33 29 26 44

GR 36 80 165 37 92 152

SD 49 29 10 41 32 10
INDEP4 MD 32 51 33 38 44 47

GR 43 88 193 45 92 179

SD 52 40 50 52 40 51
INDEP1 MD 54 95 107 54 95 107

GR 18 33 79 18 33 78

SD 74 65 53 74 68 71
INDEP2 MD 19 39 36 19 36 36

GR 31 64 147 31 64 129
Equal

SD 78 59 48 65 61 52
INDEP3 MD 27 64 57 39 53 61

GR 19 45 131 20 54 123

SD 66 42 2 2 59 52 24
INDEP4 MD 32 68 58 39 52 58

GR 26 58 156 26 64 154



Table 5.13 Measures of separation for the independence methods

and data set D5

Arrival Rate Priors Equal Priors

Measure Method
Jack-knife 

No Yes
Jack-

No
■knife

Yes

INDEF1 .555 .623 .568 .712

Error INDEP2 .470 .492 .479 .555
Rate

INDEP3 .373 .483 .386 .500

INDEP4 .466 .504 .458 .492

INDEP1 1.026 1.142 1.036 1.153

Average INDEP2 .924 .992 .931 .998
Logarithmic
Score INDEP3 .916 1.339 .931 1.356

INDEP4 .922 1 . 0 2 1 .928 1.027

INDEP1 .620 .679 .627 .687

Average INDEP2 .565 .605 .570 .609
Quadratic
Score INDEP3 .527 .704 .540 .713

INDEP4 .561 .625 .565 .626
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Table 5.14 Measures of separation for the independence methods

and data set D4

Arrival Rate Priors Equal Priors

Measure Method
Jack

No
:-knife

Yes
Jack-

No
-knife

Yes

INDEP1 .564 .564 .589 .663

Error INDEP2 .512 .520 .525 .537
Rate

INDEP3 .461 .544 .475 .561

INDEP4 .451 .527 .456 .520

INDEP1 1.040 1.106 1.057 1.124

Average INDEP2 .969 1.019 .983 1.033
Logarithmic
Score INDEP3 .988 1 . 2 1 2 1 . 0 1 0 1.234

INDEP4 .899 .978 .911 .989

INDEP1 .629 .664 .640 .676

Average INDEP2 .587 .618 .590 .626
Quadratic
Score INDEP3 .591 .692 .606 .704

INDEP4 .547 .599 .555 .605
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Table 5.15 Measures of separation for the independence methods

and data set D 3

Measure Method

Arrival Rate Priors Equal Priors

Jack-knife 
No Yes

Jack-
No

-knife
Yes

INDEP1 .538 .538 .572 .574

Error INDEP2 .500 .530 .508 .547
Rate

INDEP3 .487 .553 .483 .544

INDEP4 .445 .500 .451 .498

INDEP1 1.026 1.077 1.058 1 . 1 1 0

Average INDEP2 .962 1.017 .990 1.045
Logarithmic
Score INDEP3 .970 1.114 1.003 1.147

INDEP4 .912 .981 .934 1.003

INDEP1 .620 .647 .641 .670

Average INDEP2 .581 .608 .599 .625
Quadratic
Score INDEP3 .584 .650 .603 .669

INDEP4 .549 .591 .560 .602



turn showed more effect than data set D3 .

The arrival rate priors gave better average logarithmic and 

quadratic scores in every case. With the error rate there were 

cases where the reverse was true, particularly with INDEP4,

Comparison of the models on the basis of the separation 

measures showed that INDEP2 always performed better than INDEP1, 

When the average quadratic and logarithmic scores were used as a 

basis for comparison, INDEP3 performed less well than INDEP2 with 

data sets D4 and D 3 . With data set D 5 INDEP3 performed less well 

than INDEP2 with the jack-knife technique but better without it. 

However, for data sets D 4 and D 3 , INDEP4 had the best overall 

performance. It had the lowest score in every case, with the 

exception of data set D4 , in which, using arrival rate priors and 

jack-knife, it performed slightly worse than INDEP2. With data set 

D5 , the performance of INDEP4 was between that of INDEP2 and 

INDEP3, again with one exception, when assessed on the basis of the 

average logarithmic and quadratic scores.

Thus the general conclusions of the results of the independence 

model were that

(i) INDEP2 was better than INDEP1 

(ii) INDEP3 performed less well than expected and was in 

general not better than INDEP2 

(iii) INDEP4 performed surprisingly well and for data set D4 and 

D3 gave the best results.

5.5 Comparison of Models

5.5.1 Comparison of Models Assuming Normality

The relative performance of those- models in Sections 5.2, 5.3 

and 5.4 based on normality assumptions will be discussed first.



The classification matrices of the constrained methods C0N0R1, 

C0N0R2 and CQN0R3 in Tables 5.1, 5.2 and 5.3 were compared with 

those of the standard method NORLIN in Table 5.8 and the overall 

impression was that NORLIN seemed to give very similar results to 

the other methods; certainly no striking difference was apparent.

When the separation measures for G0N0R1, C0N0R2 and C0N0R3 in 

Tables 5.4, 5.5 and 5.6 were compared with those for NORLIN in 

Table 5.9, the differences with the different models were very 

small indeed. In almost all comparisons in which no jack-knife 

technique was used, NORLIN gave a lower average logarithmic and 

quadratic score than the constrained methods. The exception was 

the average quadratic score with data set D 5 and arrival rate 

priors, for which NORLIN gave a score between C0N0R2 and G0N0R3. 

With the jack-knife technique, the average logarithmic and 

quadratic scores for NORLIN were between those for C0N0R2 and 

G0N0R3. A particular pattern did not emerge for the error rates 

and the results of the four methods were very similar.

5.5.2 Comparison of Independence and Normal Based Models

To simplify the comparison of the independence based methods 

with those based on normality assumptions, only the separation 

measures will be discussed. The results in Tables 5.13 and 5.4 and 

for data set D5 in Table 5.9 are compared. Similar comparisons are 

made for data sets D4 (Tables 5.14, 5.5 and 5.9) and D3 (Tables 

5.15, 5.6 and 5.9). Since INDEP1 was consistently worse than 

INDEP2 for all data sets it was excluded.

When no jack-knife technique was used, all the independence 

methods were better than any of of the normal based methods except 

with data set D4 and equal priors. Here the error rate for C0N0R3 

was better than that of INDEP2. When the jack-knife technique was



used, one of the independence methods always gave the best 

performance but no one method was consistently better than the 

normal methods. With data sets D4 and D 3 , INDEP4 performed better 

than any of the normal methods, but with data set D5 , G0N0R2 

performed better than INDEP4 in terms of the average logarithmic 

and quadratic scores.

5 .6 Discussion

The results obtained were disappointing on several accounts. 

First, attempts to use the constrained normal models to model the 

trend in the coma score through time did not appear to improve 

performance when compared with the model NORLIN. In the latter the 

coma scores at the different time periods were simply assumed to 

have a multivariate normal distribution. The constrained models 

C0N0R1 and G0N0R2 were slightly better when the jack-knife 

technique was used and the converse was true with no jack-knife. 

This may be because NORLIN requires the estimation of more 

parameters so that the effect of the jack-knife was more marked. 

The results using the jack-knife approach are likely to give a more 

reliable measure of performance and should be given more weight 

than those without this approach.

Secondly, when the normal based methods were compared with the 

independence model INDEP4, it was found that INDEP4 for the most 

part performed better. As INDEP4 provided the standard for 

comparison, this too was disappointing and led to further scrutiny 

of the independence models.

The finding that INDEP3, which used the coma scores for all 

time periods, did not perform better than INDEF2, which used only 

the latest available coma score seemed unrealistic. However, an 

explanation for the poor performance of INDEP3 can be found in the



number of parameters that needed to be estimated. Each of 

variables included had 13 categories; these were not reduced so 

that a direct comparison could be made with the methods based on 

normality assumptions. The small numbers of cases in the data sets 

(especially D5 ) meant that the estimates of the parameters had 

large variability and this resulted in inaccurate estimates. This 

view is supported by the marked change in performance seen when the 

jack-knife technique was used with INDEP3.

To examine the performance of the independence models more 

closely, the number of cases with each coma score and each outcome 

was tabulated, and the conditional probability of outcome, given

the coma score, was calculated. Many of the cells in these tables

contained small numbers of cases. This obscured the pattern in 

the conditional probability of the outcome, given the coma score,

that had been expected in view of the ordering in the coma score.

This is clearly shown in Table 5.16 which gives the numbers 

involved and the conditional probabilities of the outcomes, given 

the 4-7 day best coma score, for data set D3 . The problem was even 

more marked with data sets D4 and D5 which contained fewer cases. 

This problem was compounded in INDEP3 because more variables were 

included.

When the indicants used in INDEP4 were tabulated as above it 

was seen that pupil reaction, motor response pattern and created 

eye indicant did not contribute much to discrimination: this was

because the data were mostly either missing or in the highest 

category. Discrimination was therefore made on the basis of the 

coma score, change in neurological condition and age. The 

conditional probabilities of the outcomes, given age, and the 

numbers involved are given in Table 5.17. The conditional 

probabilities here reflect the relationship between age and
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outcome, older cases having a higher probability of poor outcome. 

Thus, the inclusion of age had made a significant contribution to 

the results of INDEP4.

The results of this chapter suggested ways in which performance 

might be further improved. Age had a major effect on the results 

of INDEP4 and incorporation of age into the models based on trends 

would hopefully improve their performance. In conjunction with 

this, it seemed appropriate to attempt to improve the performance 

of INDEP3 in relation to INDEP2 by reducing the number of 

parameters to be estimated. This is carried out in Chapter 6 .
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CHAPTER 6

THE INTRODUCTION OE AGE INTO THE MODELS

6 .1 Introduction

The effect of age on outcome after severe head injury is well 

recognised (Carlson et al., 1968; Teasdale et al., 1979b). It was 

included as an indicant to predict outcome both in the early

research described in Section 3.4 and the comparative study 

described in Section 3.5. While my main interest was to use the 

trend in the patient's state through time to try to identify the

individuals who ultimately would be severely disabled, the

contribution which age made in the model INDEP4 could not be

ignored. It was therefore decided to incorporate age into the 

formal structure of the other models in order to examine if 

performance could be improved further.

6.2 Constrained Normal Model with Age

Age was incorporated into the constrained normal models in two 

different ways. In the first it was assumed that, within outcome 

categories, age and the coma scores were independent, while in the 

second age was incorporated using linear regression on the coma 

score.

6.2.1 Model Assuming Independence of Age and Coma Score

One of the simplest ways of introducing age into the 

constrained normal model was to assume that age and the coma scores 

were independent within outcome categories. Thus if x is the 

feature vector of coma scores and xa is age, then the joint



distribution of the new feature vector (x,xa ) is given by the 

product of the two marginal distributions 

p(x,xa) = p (x ) p(xa).

The average quadratic and logarithmic scores of the model 

C0N0R3, where the distribution of the feature vector was assumed to 

be N(M^0 ,2 i), gave consistently poorer results than the models 

C0N0R1 and C0N0R2, where a single covariance matrix was assumed. 

C0N0R3 was therefore not considered here. The density p(x) was 

thus assumed to be that of a N(M^0,Z) random vector, as initially 

described in Section 4.5. Age was assumed to be normally 

distributed with mean and variance x-j_ for outcome category n^, 

where i=l, 2, 3. Boxplots of the distribution of age within each 

outcome for the three data sets (figure 6 .1 ) suggest that this 

assumption is not unreasonable. The maximum likelihood estimates 

A^ and x-̂  of the parameters A^ and x^ were calculated. Thus, as in 

Section 5.2, the probability that a new patient with feature vector 

(y,ya) belongs to category is estimated by

p(ni)Ti"^exp|- ■^[(y“Mi8)TZ'1 (y-Mi0)+(ya-Ai)2 Ti"1]}
p(ni|y,ya ,D) =  ------------------------------------------------------

^ ip(nj)ij-2exp(- ^[(y-Mj0)TZ-*1 (y-Mj0)+(ya-Aj)2^ - 1]}

where p(n^) is the prior probability of outcome 11̂ ,

9 and Z are the appropriate estimates of 0 and Z, 

and A^ and are the maximum likelihood estimates of A^ and x^. 

The models corresponding to C0N0R1 and C0N0R2 are referred to as 

C0N0R1A1 and C0N0R2A1 and have six more parameters to estimate as a 

result of the introduction of age. When the jack-knife technique 

was used with C0N0R2A1 a recursive technique was again used to 

re-estimate A^ and x^ as in Section 5.2.

This method of incorporating age into the model assumed
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Figure 6.1 Boxplots of the distribution of age within each 

outcome category for data set D5 , D4 and D3
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independence between age and coma score within outcome categories. 

However, when these relationships were examined this assumption was 

clearly violated. This does not necessarily imply that such a 

model will not lead to good discrimination, as is discussed in 

Section 3.5.4. The relationship between age and coma score was such 

that for a given degree of recovery the lower coma scores were 

associated with younger patients. Table 6.1 shows the relationship 

between age and coma score at 28 days in the severe disability

group. A similar pattern was obtained with the other outcome

categories and other time periods.

To exploit the dependence between age and coma score, age was 

then incorporated into the model using linear regression on the

coma score.

6.2.2 Model Using Linear Regression on the Coma Score

In this model age was related to coma score in the following 

way. The joint distribution of the feature vector (x,xa) could be 

expressed as follows

p(x,xa) ■ p(xa |x) p(x)

The distribution of x was as described in the constrained

normal models of Section 5.2 and p(xa jx) obtained by regressing age 

as a linear function of coma score. Initially, for each data set 

Dc, C = 5, 4, 3 and outcome category n^, i = 1, 2, 3, a stepwise 

procedure, using the BMDP program P2R (Dixon et al., 1985), was 

carried out to regress age on all coma scores available up to the 

time period considered. With the stepwise procedure at most two, 

and ‘ more often only one, coma scores were included in the 

regression equation before the stopping criterion was met. The 

particular score included in the equation varied according to the 

data set and outcome category considered. However, the best coma
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Table 6.1 Relationship between age and the best coma score in 

the 15-28 day period for the severe disability group

Age in years 

Frequency 0 - 2 9  3 0 - 4 9  H 50

3-10 10 2 3

Coma
11-13 11 7 5

Score

14-15 4 10 11



score at 4-7 days was seen to be consistently and significantly 

related to age in all cases. As a result, the conditional 

distribution, p(xa |x), was modelled as N(aj[ + £1x3 , o^^) where X3 

is the 4-7 day best coma score. A likelihood ratio test for each 

data set showed that modelling p(xa |x3 ) as N(a^ + £1X3 , a^) did not 

give a significantly poorer fit so this assumption of common 

variance was adopted for incorporation into the model. As age was 

now being introduced into the model in a far more structured 

fashion, the more general model C0N0R3 was again included in order 

to confirm that, as before, it performed poorly relative to the 

models with a common covariance matrix. The models corresponding 

to C0N0R1, C0N0R2 and C0N0R3 are referred to as C0N0R1A2, C0N0R2A2 

and CONOR3A2 and had seven more parameters as a result of the 

introduction of age. When the jack-knife technique was used with 

C0N0R2A2 and C0N0R3A2 a recursive technique was again used to 

re-estimate and

6.2.3 Results for the Constrained Linear Model with Age

Three aspects of the results for the constrained linear models 

with age will be presented. First, the results obtained with 

C0N0R1A2, CONOR2A2 and CONOR3A2 are discussed; these would be 

expected to be similar to the pattern of results with C0N0R1, 

G0N0R2 and C0N0R3 in Section 5.2. Next, the relative performance 

of the two different methods of introducing age, Al and A2, will be 

considered, and finally, the effect of the introduction of age on 

performance examined by comparing the results including age to the 

corresponding results obtained without the inclusion of age.

The results of the five constrained normal models including age 

i.e. C0N0R1A1, C0N0R2A1, C0N0R1A2, CONOR2A2, C0N0R3A2 are given in 

Tables 6.2 - 6.7. The classification matrices for data sets D5 , D4



and D 3 are given in Tables 6.2, 6.3 and 6.4 respectively and the

separation measures in Tables 6.5, 6 . 6  and 6.7 respectively.

These results confirmed that the general pattern of results 

within the constrained models including age was similar to that for 

the results without age. The results with the jack-knife technique 

were worse than those obtained without it. The use of the arrival 

rate priors once more gave slightly better results than did equal 

priors. The performance of C0N0R1A2 and CONOR2A2 were identical. 

With the jack-knife technique, both were better than C0N0R3A2 in 

terms of the average logarithmic and quadratic scores. Without the 

jack-knife, the three were similar.

When the method Al of incorporating age into the model was 

compared with A2, where age was introduced as a function of the 4-7 

day best coma score, the classification matrices were similar. 

However when the separation measures were considered the average 

logarithmic and quadratic scores for A2 were consistently slightly 

better than those for the corresponding Al model. In most cases 

the error rate for A2 was also lower than that for A l .

The effect on performance of the introduction of age into the 

model was first studied using the classification matrices. The 

results in Tables 6.2 - 6.4 were compared with those in Tables 5.1 

- 5.3 respectively and showed that the addition of age considerably 

improved the classification matrices, with more cases being 

classified correctly, particularly in the middle, moderate 

disability group. Also, fewer good recoveries were classified as 

severe disability and vice versa.

The separation measures also confirmed the improvement in 

performance. A comparison of Tables 6.5 - 6.7 with Tables 5.4 -

5.6 respectively, showed that either method of incorporating age 

gave markedly better results, no matter which measure was
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Table 6.2 Classification matrices for the constrained normal

methods including age and data set D 5

No Jack-knife Jack-knife
Priors Method

Predicted
Outcome

Actual
Outcome

Actual
Outcome

SD MD GR SD MD GR

SD 35 13 7
C0N0R1A1 MD 18 32 17

GR 10 38 66

SD 35 13 7 31 15 7
C0N0R2A1 MD 18 32 17 22 29 17

GR 10 38 66 10 39 66

Arrival SD 36 14 5
CONOR 1A2 MD 19 33 18

Rate GR 8 36 67

SD 36 14 5 36 14 5
C0N0R2A2 MD 19 33 18 19 33 21

GR 8 36 67 8 36 64

SD 41 15 5 39 19 5
C0N0R3A2 MD 13 33 17 16 25 21

GR 9 35 68 9 39 64

SD 43 22 8
C0N0R1A1 MD 11 27 17

GR 9 34 65

SD 43 22 8 42 23 9
C0N0R2A1 MD 11 27 17 12 25 19

GR 9 34 65 9 35 62

SD 47 24 9
Equal C0N0R1A2 MD 9 28 19

GR 7 31 62

SD 47 24 9 44 25 10
C0N0R2A2 MD 9 28 19 12 24 18

GR 7 31 62 7 34 62

SD 43 18 8 43 21 8
C0N0R3A2 MD 11 32 16 11 26 21

GR 9 33 66 9 36 61
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Table 6.3 Classification matrices for the constrained normal

methods including age and data set D 4

No Jack-knife Jack-knife
Priors Method

Predicted
Outcome

Actual
Outcome

Actual
Outcome

SD MD GR SD MD GR

SD 54 19 12
C0N0R1A1 MD 32 51 24

GR 17 68 129

SD 54 19 12 53 21 13
C0N0R2A1 MD 32 51 24 33 46 26

GR 17 68 129 17 71 126

Arrival SD 58 25 12
C0N0R1A2 MD 33 55 36

Rate GR 12 58 117

SD 58 25 12 56 25 14
C0N0R2A2 MD 33 55 36 35 55 37

GR 12 58 117 12 58 114

SD 60 21 12 57 21 12
CONOR3A2 MD 26 56 38 28 55 43

GR 17 61 115 18 62 110

SD 68 38 24
C0N0R1A1 MD 29 50 29

GR 6 50 112

SD 68 38 24 67 40 24
C0N0R2A1 MD 29 50 29 30 48 31

GR 6 50 112 6 50 110

SD 70 39 21
Equal C0N0R1A2 MD 25 49 38

GR 8 50 106

SD 70 39 21 67 44 21
C0N0R2A2 MD 25 49 38 28 43 38

GR 8 50 106 8 51 106

SD 72 36 21 70 36 17
CONOR3A2 MD 18 48 40 20 57 44

GR 13 54 105 13 45 104
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Table 6.4 Classification matrices for the constrained normal

methods including age and data set D 3

No Jack-knife Jack-knife
Priors Method

Predicted
Outcome

Actual
Outcome

Actual
Outcome

SD MD GR SD MD GR

SD 53 31 12
C0N0R1A1 MD 30 29 20

GR 41 108 204

SD 53 31 12 51 32 12
C0N0R2A1 MD 30 29 20 32 25 21

GR 41 108 204 41 111 203

Arrival SD 61 36 14
C0N0R1A2 MD 31 44 40

Rate GR 32 88 182

SD 61 36 14 60 36 14
C0N0R2A2 MD 31 44 40 32 42 42

GR 32 88 182 32 90 180

SD 64 31 17 62 33 18
C0N0R3A2 MD 27 52 43 28 51 47

GR 33 85 176 34 84 171

SD 78 54 37
C0N0R1A1 MD 29 51 48

GR 17 36 151

SD 78 54 37 77 57 38
C0N0R2A1 MD 29 51 48 30 45 54

GR 17 63 151 17 66 144

SD 77 51 31
Equal C0N0R1A2 MD 30 57 57

GR 17 60 148

SD 77 51 31 75 54 31
C0N0R2A2 MD 30 57 57 32 53 57

GR 17 60 148 17 61 148

SD 79 52 31 78 57 29
CONOR3A2 MD 25 55 57 26 52 62

GR 20 61 148 20 59 145
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Table 6.5 Measures of separation for the constrained normal

methods including age and data set D5

Arrival Rate Priors Equal Priors

Measure Method
Jack-knife 

No Yes
Jack-knife 

No Yes

C0N0R1A1 .436 - .428

Error
C0N0R2A1 .436 .466 .428 .453

Rate CONOR1A2 .424 - .420

CONOR2A2 .424 .436 .420 .449

CONOR3A2 .398 .462 .402 .449 .

CONOR1A1 .917 - .923 -

C0N0R2A1 .917 .952 .923 .958
Average
Logarithmic C0N0R1A2 .897 - .901 -

Score
CONOR2A2 .897 .936 .901 ,941

CONOR3A2 .911 1.023 .914 1.025

C0N0R1A1 .554 - .556 -

C0N0R2A1 .554 .574 .556 .575
Average
Quadratic C0N0R1A2 .537 - .540 -

Score
C0N0R2A2 .537 .558 .540 .559

CONOR3A2 .538 .582 .537 .580
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Table 6 . 6  Measures of separation for the constrained normal

methods including age and data set D4

Arrival Rate Priors Equal Priors

Measure Method
Jack

No
-knife

Yes
Jack-knife 

No Yes

C0N0R1A1 .424 .434

Error
C0N0R2A1 .424 .446 .434 .446

Rate C0N0R1A2 .434 - .446

C0N0R2A2 .434 .446 .446 .468

CONOR3A2 .431 .453 .446 .431

C0N0R1A1 .918 - .930 -

C0N0R2A1 .918 .937 .930 .949
Average
Logarithmic C0N0R1A2 .902 - .912 -
Score

C0N0R2A2 .902 .922 .912 .932

C0N0R3A2 .908 .955 .916 .963

CONOR1A1 .554 - .560 -

C0N0R2A1 .554 .566 .560 .572
Average
Quadratic C0N0R1A2 .543 - .547 -

Score
C0N0R2A2 .543 .555 .547 .558

C0N0R3A2 .542 .565 .542 .564
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Table 6.7 Measures of separation for the constrained normal

methods including age and data set D 3

Arrival Rate Priors Equal Priors

Measure Method
Jack-knife 

No Yes
Jack-

No
-knife

Yes

CONOR1A1 .458 - .470 -

Error
C0N0R2A1 .458 .472 .470 .496

Rate CONOR1A2 .456 - .466 -

CONOR2A2 .456 .466 .466 .477

CONOR3A2 .447 .462 .466 .479

C0N0R1A1 .922 - .947 -

C0N0R2A1 .922 .936 .947 .962
Average
Logarithmic C0N0R1A2 .911 - .935 -

Score
CONOR2A2 .911 .926 .935 .950

CONOR3A2 .912 .940 .936 .964

C0N0R1A1 .552 - .568 -

C0N0R2A1 .552 .562 .568 .577
Average
Quadratic C0N0R1A2 .547 - .558 -
Score

CONOR2A2 .547 .555 .558 .567

C0N0R3A2 .546 .560 .558 .572



considered. The improvement was so marked that, with one 

exception, all the constrained models which included age were 

better than the best model without age. With data set D5 C0N0R2 is 

slightly better than CONOR3A2 when the jack-knife technique is 

used. It is thus clearly important to incorporate age in some form 

into the model.

6.3 Normal Linear Model with Age

6.3.1 Practical Aspects

The incorporation of age into the classical linear discriminant 

model gave the model NORLINA.. This involved the estimation of 

three more parameters for the mean age and four, five or six more 

parameters in the common covariance matrix, depending on whether 

data set D 3 , D 4 or D5 was being used, than with the corresponding 

model without age. In the constrained normal models, six extra 

parameters were required with method A1 and seven with A2. Thus 

with one exception, more additional parameters had to be estimated 

than with the inclusion of age into the constrained model. Again 

the biomedical computer program BMDP P7M was used to calculate the 

probabilities.

6.3.2 Results for the Normal Linear Model with Age

The classification matrices of the three data sets for the 

model NORLINA are given in Table 6 . 8 and the separation measures in 

Table 6.9. The effect of the jack-knife technique and the use of 

different priors was considered first, then the models NORLIN and 

NORLINA were compared.

The results of Tables 6 . 8 and 6.9 confirm that, as with NORLIN, 

the jack-knife technique gave poorer results for all the separation



Table 6 . 8 Classification matrices for method NORLINA

No Jack-knife Jack-knife
Data Priors
Set

Predicted Actual Actual
Outcome Outcome Outcome

SD MD GR SD MD GR

Arrival SD 36 14 5 33 17 5
Rate MD 18 38 20 21 32 22

GR 9 31 65 9 34 63

SD 45 19 8 42 21 8
Equal MD 12 37 19 13 33 21

GR 6 27 63 8 29 61

Arrival SD 60 25 13 57 28 13
Rate MD 33 53 28 35 47 30

GR 10 60 124 11 63 122
d4

SD 71 43 22 70 43 22
Equal MD 24 43 35 25 43 35

GR 8 52 108 8 52 108

Arrival SD 59 37 15 59 38 17
Rate MD 32 37 31 32 35 33

GR 33 94 190 33 95 186
d3

SD 83 56 40 81 57 40
Equal MD 27 50 42 28 46 44

GR 14 62 154 15 65 152
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Table 6.9 Measures of separation for method NORLINA

Arrival Rate Priors Equal Priors

Data
Set

Measure
Jack-knife Jack--knife

No Yes No Yes

Error
Rate .411 .458 .386 .424

Average
Logarithmic
Score

.884 .942 .888 .947

Average
Quadratic
Score

.532 .566 .533 .567 .

Error
Rate .416 .443 .453 .458

d a
Average
Logarithmic
Score

.896 .923 .907 .934

Average
Quadratic
Score

.538 .554 .542 .558

Error
Rate .458 .470 .456 .472

d 3
Average
Logarithmic
Score

.907 .924 .932 .948

Average
Quadratic .544 .554 .556 .565
Score



measures and each data set. The arrival rate priors also gave 

better average quadratic and logarithmic scores than were obtained 

with equal priors.

Comparison of the results with those of the normal linear 

model without age in Tables 5 .8 and 5.9 again showed that the 

inclusion of age produced a substantial improvement in all 

measures. As with the constrained models, more of the moderate 

disability group were correctly classified and fewer good 

recoveries were classified as severe disability and vice versa. 

Thus, the extra information that age provided in addition to that 

provided by the coma scores once more made a significant 

contribution to performance.

6.4 The Independence Model with Age

6.4.1 Practical Aspects

Because the incorporation of age substantially improved the 

results of the other methods, it should have had a similar 

beneficial effect on the independence model. However, an

additional problem with the independence model that was highlighted 

in Chapter 5 was the large effect of the jack-knife technique.

The effect of the jack-knife was because the probability 

estimates are based on individual cell counts rather than on all 

the cases within the outcome category. Thus, the removal of one 

case was having a marked effect on the results. In an attempt to 

minimise this problem the cell counts were increased by grouping 

categories together. The aim was to bring the results obtained 

with the jack-knife technique closer to those in which it was not, 

without substantially worsening the latter. By grouping

categories, a method that made use of the coma scores at all time
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periods and age might also prove an improvement on the use of only 

the latest coma score available and age. Five sets of results with 

age incorporated into the independence model were thus obtained

(i) INDEP2A: As INDEP2 in Section 5.4 but with age included.

The coma score was incorporated in exactly the same way as in that 

section and the age cells were taken from successive decades,

0-9 years, 10-19 years, etc.

(ii) XNDEP3A: As INDEP3 in Section 5.4 but with age included

as in INDEP2A.

(iii) INDEP5A: As INDEP3A but with only four age cells used,

namely 0-19 years, 20-39 years, 40-59 years and ^ 60 years.

Civ) 1NDEP6A: The number of coma score cells was reduced from

thirteen to three at each time point and three cells were used for 

age. The category splits were chosen as follows so that there were 

approximately equal numbers in each of the splits:- 

24 hour best coma score 3-6, 7-8, 9-15

2-3 day best coma score 3-7, 8-10, 11-15

4-7 day best coma score 3-9, 10-13, 14-15

8-14 day best coma score 3-10, 11-13, 14-15

15-28 day best coma score 3-13, 14, 15

Age 0-19, 20-39, > 40

(v) INDEP7A: An intermediate between INDEP3A and INDEP6A

where six cells for the coma score and seven for age were used as 

follows:—

24 hour best coma score 3-5, 6 , 7, 8 , 9-10, 11-15
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2-3 day best coma score 3-6, 7, 8 , 9-10, 11-12, 13-15

4-7 day best coma score 3-6, 7-8, 9-10, 11-13, 14, 15

8-14 day best coma score 3-8, 9-10, 11, 12-13, 14, 15

15-28 day best coma score 3-8, 9-10, 11, 12-13, 14, 15

Age 0-9, 10-19, ... , 50-59, £ 60

6.4.2. Results of the Independence Model with Age

The classification matrices for the above models corresponding 

to data sets D 5 , D4 and D 3 are given in Tables 6.10, 6.11 and 6.12 

respectively and the separation measures in Tables 6.13, 6.14 and 

6.15 respectively.

Two aspects were considered in results for the independence 

models with age: first, the pattern of results within the five

models specified; and second, the comparison of these results with 

those of the independence models in Section 5.4.

When the classification matrices were studied the same general 

pattern seen with previous independence models was noted. Thus, 

the jack-knife technique gave fewer cases correctly classified and 

the arrival rate priors gave more cases predicted to make a good 

recovery and fewer to be severely disabled. A comparison of the 

different models on the basis of the classification matrices was 

difficult to make as these were very similar. However INDEP6A and 

INDEP7A, where there were fewer parameters to estimate, were less 

affected by the jack-knife technique. With INDEP2A more of the 

moderate disability group were classified correctly than with other 

methods while with INDEP6A fewer of this group were classified 

correctly than with other methods.

The measures of separation confirmed that the pattern of 

results in the models with age was similar to those without. Thus 

the results using the jack-knife technique were consistently worse



Table 6.10 Classification matrices for the independence methods

including age and data set D5

No Jack-knife Jack-knife
Priors Method __________________________________________________

Predicted Actual Actual
Outcome Outcome Outcome

SD MD GR SD MD GR

SD 32 14 7 21 18 7
INDEP2A MD 26 44 24 35 33 27

GR 5 25 59 7 32 56

SD 43 19 12 37 27 12
INDEP3A MD 16 39 7 22 25 15

GR 4 25 71 4 31 63

SD 42 18 13 38 26 13
INDEP5A MD 16 39 7 19 27 14

GR 5 26 79 7 30 63

SD 45 29 17 44 29 17
INDEP6A MD 12 23 17 13 21 17

GR 6 31 45 6 33 56

SD 43 20 12 41 27 13
INDEP7A MD 15 38 7 17 24 14

GR 5 25 71 5 32 63

SD 45 28 12 39 31 12
INDEP2A MD 13 30 19 18 26 22

GR 5 25 59 6 26 56

SD 45 23 13 41 30 14
INDEP3A MD 15 37 8 19 24 14

GR 3 23 69 3 29 62

SD 46 2 2 13 40 28 15
INDEP5A MD 13 37 8 18 27 17

GR 4 24 69 5 28 58

SD 46 30 20 46 30 20
INDEP6A MD 12 26 14 12 21 14

GR 5 27 56 5 32 56

SD 47 26 15 43 30 16
INDEP7A MD 11 33 7 15 23 16

GR 5 24 68 5 30 58



Table 6.11 Classification matrices for the independence methods

including age and data set D4

No Jack-knife Jack-knife
Priors Method __________________________________________________

Predicted Actual Actual
Outcome Outcome Outcome

SD MD GR SD MD GR

SD 45 16 9 33 23 9
INDEP2A MD 38 60 34 45 50 43

GR 20 62 122 25 65 113

SD 67 40 20 52 44 23
INDEP3A MD 27 51 28 38 33 37

GR 9 47 117 13 61 105

SD 66 39 23 56 45 26
INDEP5A MD 27 48 29 35 39 42

GR 10 51 113 12 54 97

SD 67 41 26 66 44 26
INDEP6A MD 21 27 16 2 2 19 19

GR 15 70 123 15 75 120

SD 69 43 21 65 44 24
INDEP7A MD 24 42 22 27 38 29

GR 10 53 122 11 56 112

SD 64 32 18 56 34 20
INDEP2A MD 28 65 52 34 59 56

GR 11 41 95 13 45 89

SD 73 48 27 64 49 31
INDEP3A MD 23 51 32 32 42 41

GR 7 39 106 7 47 93

SD 75 46 30 62 50 33
INDEP5A MD 22 53 37 35 39 40

GR 6 39 98 6 49 92

SD 72 49 32 72 49 32
INDEP6A MD 20 30 22 20 29 22

GR 11 59 111 11 60 111

SD 74 48 30 71 48 30
INDEP7A MD 22 43 29 25 39 39

GR 7 ' 47 106 7 51 96



Table 6.12 Classification matrices for the independence methods

including age and data set D 3

No Jack-knife Jack-knife
Priors Method __________________________________________________

Predicted Actual Actual
Outcome Outcome Outcome

SD MD GR SD MD GR

SD 47 25 12 40 30 13
INDEP2A MD 46 65 36 50 57 39

GR 31 78 188 34 81 184

SD 65 40 27 55 46 29
INDEP3A MD 37 57 28 44 47 38

GR 22 71 181 25 75 169

SD 65 43 29 58 48 32
INDEP5A MD 36 62 31 42 50 41

GR 23 63 176 24 70 163

SD 73 48 36 73 49 36
INDEP6A MD 22 31 16 22 20 16

GR 29 89 184 29 99 184

SD 69 42 29 57 50 32
INDEP7A MD 30 53 2 2 41 40 27

GR 25 73 185 26 78 177

SD 68 39 29 64 47 30
INDEP2A MD 38 70 44 42 63 48

GR 18 59 163 18 59 158

SD 90 59 42 72 63 44
INDEP3A MD 21 67 48 37 54 57

GR 13 42 146 15 51 135

SD 90 56 46 74 62 49
INDEP5A MD 23 67 46 37 57 60

GR 11 45 144 13 49 127

SD 80 60 43 80 60 43
INDEP6A MD 27 36 48 27 35 29

GR 17 72 165 17 73 164

SD 83 62 38 77 64 39
INDEP7A MD 26 51 42 31 45 46

GR 15 55 156 16 59 151
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Table 6.13 Measures of separation for the independence methods

including age and data set D5

Arrival Rate Priors Equal Priors

Measure Method
Jack-knife 

No Yes
Jack-

No
-knife

Yes

INDEP2A .428 .534 .432 .487

Error
INDEP3A .352 .470 .360 .462

Rate INDEP5A .360 .458 .356 .470

INDEP6A .470 .487 .458 .479

INDEP7A .356 .458 .373 .475

INDEP2A .878 .992 .886 .999

INDEP3A .829 1.279 .843 1.294
Average
Logarithmic INDEP5A .838 1.267 .852 1.283
Score

INDEP6A 1.011 1.105 1.031 1.124

INDEP7A .930 1.161 .946 1.177

INDEP2A .536 .605 .539 .607

INDEP3A .480 .679 .492 .689
Average
Quadratic INDEP5A .485 .671 .498 .681
Score

INDEP6A .582 .629 .595 .641

INDEP7A .527 .636 .537 .644
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Table 6.14 Measures of separation for the independence methods

including age and data set D4

Arrival Rate Priors Equal Priors

Measure Method
Jack

No
-knife

Yes
Jack-

No
-knife

Yes

INDEP2A .441 .517 .448 .498

INDEP3A .421 .532 .434 .510
Error
Rate INDEP5A .441 .527 .443 .525

INDEP6A . 466 .495 .475 .478

INDEP7A .426 .479 .451 .493

INDEP2A ,881 .962 .893 .974

INDEP3A . 864 1.108 .884 1.127
Average
Logarithmic INDEP5A .878 1.105 .898 1.125
Score

INDEP6A .970 1.016 .990 1.036

INDEP7A .916 1.030 .936 1.050

INDEP2A .534 .585 .539 .589

INDEP3A .521 .641 .534 .652
Average
Quadratic INDEP5A .528 .639 .542 .651
Score

INDEP6A .579 .605 .591 .617

INDEP7A .543 .606 .556 .617
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Table 6.15 Measures of separation for the independence methods

including age and data set D 3

Arrival Rate Priors Equal Priors

Measure Method
Jack-knife 

No Yes
Jack-

No
-knife

Yes

INDEP2A .432 .468 .430 .462

Error
INDEP3A .426 .487 .426 .506

Rate INDEP5A .426 .487 .430 .511

INDEP6A .455 .475 .468 .472

INDEP7A .419 .481 .451 .483

INDEP2A .883 .961 .908 .986

INDEP3A .864 1.026 .895 1.056
Average
Logarithmic INDEP5A .884 1.030 .915 1.061
Score

INDEP6A .940 .969 .967 .996

INDEP7A .894 .970 .922 .997

INDEP2A .531 .574 .545 .588

INDEP3A .520 .599 .538 .617
Average
Quadratic INDEP5A .531 .603 .550 .621
Score

INDEP6A .563 .580 .579 .596

INDEP7A .534 .577 .551 .593



than those without, with the difference in results being larger 

when there were more parameters to estimate or fewer cases in the 

data set. Arrival rate priors gave better results than equal

priors.

In the comparison of the different models with age INDEP2A and 

INDEP3A were first compared. INDEP3A performed better than INDEP2A 

without the jack-knife technique but was worse than INDEP2A with 

it. However when these results were compared to the corresponding 

models without age, INDEP2 and INDEP3, the results with age were, 

in general, better. Surprisingly, with INDEP2A and data set D 5 the 

results with the jack-knife technique gave almost identical average 

logarithmic and quadratic scores with and without age, even though

the actual probabilities and classification matrices were quite,

different. This was the one instance in which the results with age

were not markedly better than those without.

The original motivation for the inclusion of age into the model 

was the performance of INDEP4. With no jack-knife technique the 

results of INDEP2A and INDEP3A were always better than INDEP4. 

With the jack-knife technique INDEP2A always performed better than 

INDEP4 but INDEP4 was usually better than INDEP3A.

As INDEP3 did not perform better than INDEP2, the models 

INDEP5A, INDEP6A and INDEP7A were considered. In these models the 

variables were grouped to reduce the number of parameters to be 

estimated in the hope that the performance of INDEP3A would be 

improved when the jack-knife technique was used. A pattern emerged 

when this was carried out. With no jack-knife technique the 

pattern in the average logarithmic and quadratic scores was such 

that, as the number of parameters was reduced the performance 

deteriorated. Thus the order of performance from best to worst was 

— INDEP3A, INDEP5A, INDEP7A then INDEP6A. However, as mentioned



previously, more weight should be placed on the results based on 

the jack-knife technique. When these results were considered the 

pattern was, in general, reversed with the order of performance 

from best to worst being — INDEP6A, INDEP7A, INDEP5A then INDEP3A. 

Thus grouping the variables had improved the performance when the 

jack-knife technique was used. The results of INDEP6A and INDEP7A 

were similar. The same was true for INDEP3A and INDEP5A.

With the jack-knife technique, INDEP2A, as well as being better 

than INDEP3A, was also better than INDEP5A, INDEP6A and INDEP7A. 

Without the jack-knife technique, INDEP2A gave a performance which 

was comparable to that of INDEP5A.

In summary, these results showed that the inclusion of age into 

the independence model was successful in improving performance, but 

attempts at bettering the performance of INDEP2A by a model 

including the coma scores at all time periods was unsuccessful. If 

only one independence model had to be chosen then INDEP2A, which 

used the latest available coma score and age, would be the model of 

choice.

6 .5 Comparison of Models Including Age

6.5.1 Comparison of Models Assuming Normality

As in the previous chapter, when assessing the relative 

performance of the models in Sections 6.2, 6.3 and 6.4, the models 

based on normality assumptions were compared first.

The results of the classification matrices for the model 

NORLINA in Table 6 . 8 can be seen to be very similar to the 

corresponding matrices for the constrained models in Tables 6.2, 

6.3 and 6.4. As C0N0R2A2 had the best performance of the 

constrained models in terms of the average logarithmic and
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quadratic scores, this constrained model was compared with the 

model NORLINA. The results of both methods proved to be very close 

indeed. NORLINA performed better than C0N0R2A2 when no jack-knife 

technique was used. With the jack-knife technique and data set D5 

C0N0R2A2 performed slightly better than NORLINA, with data set D4 

the results were very similar, while with data set D3 NORLINA 

performed slightly better than C0N0R2A2.

If only one normal based model were to be used NORLINA would be 

the clear choice. It was consistently better than CONOR2A2 when no 

jack-knife technique was used and although the results with the 

jack-knife technique should be given more weight, here it did 

perform slightly better than C0N0R2A2 with data set D 3 .

6,5.2 Comparison of Independence and Normal Based Models

Here, as before, only the separation measures are used for this 

comparison. As in the previous section the normal models 

considered are C0N0R2A2 and NORLINA.

The jack-knife technique produced clear results in terms of the 

average quadratic and logarithmic scores: both normal based methods 

performed better than any of the independence based methods. This 

was also true for the error rates with the exception of the result 

for data set D 3 and equal priors where INDEP2A had a lower error 

rate than CONOR2A2 but not NORLINA. With no jack-knife technique 

the performance of the normal based models was similar to that of 

INHEP7A.

If an overall choice of model had to be made then again NORLINA 

would be the choice. The fact that it performed consistently 

better than the independence methods when the jack-knife technique 

was used outweighs its poorer performance without this technique.

Some idea of the size of the bias introduced by using the same test



and training set is obtained by comparing the results with and 

without the jack-knife technique. It is obvious from the results 

that with independence models, where there are more parameters to 

estimate, this bias is sufficiently large to make it essential to 

use a jack-knife or split-sample approach to assess performance.

6.6 Discussion

The main aim in this chapter was to expand the models in 

Chapter 5 to add age to the trend in coma score in order to see if 

performance was improved. This was very successful in that the 

performance of all models was substantially improved when age was

included. It is difficult to find a reason for the one anomalous

set of results with data set D5 and the jack-knife technique, where 

the performance of INDEP2A was almost identical to that of INDEP2.

Neither the small size of the data set nor the number of parameters

provides the explanation; INDEP3A, for example, has many more 

parameters and does improve on the performance of INDEP3 with the 

same data set.

Thus these results showed that age was associated with quality 

of survival even after conrolling for trend in coma score. This 

association was in the expected direction with younger patients 

having a better prognosis and agrees with the conclusions of 

Teasdale et al. (1982b) who looked at the effect of age on survival 

after severe head injury and also found that, even controlling for 

the best 24 hour coma score, age affected survival with younger

patients more likely to have a good outcome than older ones.

The grouping of categories to reduce the number of parameters

in the independence model was less successful in improving

performance. INDEP2A still performed better than the other



independence models which included all coma scores available. With 

the independence models the bias introduced by using the same test 

and training sets was larger than with the normal based models. 

This was to be expected as the independence models, even with 

categories merged, had more parameters to estimate.

Overall the results were such that the normal based methods 

were preferable. When it came to the choice of normal based model, 

the normal linear model NORLINA had similar but slightly better 

performance than the constrained model C0N0R2A2. Moreover the 

fitting of such a specific model as C0N0R2A2 involves considerable 

programming whereas a range of statistical packages are widely 

available to perform the analysis of NORLINA. This is clearly a 

factor in favour NORLINA.

Although the best models in this chapter which include all coma 

scores and age do give considerable improvemant in predicting the 

quality of survival over the method currently used, they have not 

given a clinically practical improvement. The probabilities 

produced are frequently in the range 0.3 - 0.6 with no outcome 

being predicted ’confidently'. This results in poor separation of 

the outcome categories. The different approaches which might be 

adopted to solve this problem along with some wider practical 

aspects are considered in the final chapter.
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CHAPTER 7

PRACTICAL IMPLICATIONS AND FURTHER WORK

7.1 Introduction

The aim at the outset of this work was to use data collected 

through time to predict the quality of survival in individuals 

after severe head injury and in particular to identify cases who 

would be severely disabled. The results obtained have fallen short 

of this target and before proceeding further it is important to 

consider carefully any modifications that might lead to 

improvements.

There are basically two factors that determine performance, 

namely the statistical model and the patient data included. The 

ways in which these factors could be altered to improve performance 

will now be considered.

7.2 Review of Statistical Models

The range of statistical models considered here was less 

comprehensive than that of the comparative study (Titterington et 

al., 1981) described in Section 3.5. However the performance of 

the highly specific model developed to take account of the trend in 

coma score through time was compared with that of the models which 

gave good performance in the comparative study.

In Chapter 5 the differences in the results obtained with these 

various models were considered. In practice, these differences 

were small relative to the effect of the introduction of age. This 

agrees with the finding of the comparative study that the choice of 

model is less important than the choice of data included, provided



that account is taken of the assumptions on which the model is 

based. Thus in any new work it would be worthwhile to look at the 

results available from standard discriminant methods before 

embarking on fitting complex models which require extensive 

programming. The fact that pseudo maximum likelihood methods gave 

almost identical results to the full maximum likelihood method 

further emphasises this point.

7.3 Review of Data

7.3.1 The Data Bank at Present

The coma score had proved over the years to be the item of 

clinical data which provided the most information about prognosis. 

It therefore seemed appropriate to choose the coma score to model 

trend in recovery. Its lack of success in predicting quality of 

survival prompts a scrutiny of the components of the coma score and 

how these relate to neurological function.

Figure 7.1 shows the major parts of the brain and an overview 

of these provides one possible reason for the relative lack of 

success of the coma score in predicting quality of survival. The 

brain consists mainly of two large convoluted masses or cerebral 

hemispheres, which together form the cerebrum, the structures in 

the 'posterior fossa1 or brain stem (which is formed by the 

midbrain, pons and medulla oblongata), and the cerebellum. Each 

hemisphere is composed of an outer layer of grey matter called the 

cortex and an inner core of white matter with embedded grey matter 

constituting the corpus striatum. The cortex is essential for 

"higher functions" such as volitional movement, sensory perception, 

speech and especially aspects of mental performance and 

personality, for example, memory, intelligence, emotion and
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behaviour. Nervous transmission from the central hemispheres to 

the rest of the body occurs via the brain stem which also plays a 

more basic role in maintaining consciousness. Thus, the indices of 

brain stem responsiveness reflect the degree of impairment of 

consciousness, and whether or not a patient is in coma, while the 

cortical responses indicate the 1 content of consciousness1. The 

latter is reflected only by the upper levels of the coma scale: a

motor score of 6 and verbal scores of 3, 4 or 5. Lower scores and 

impaired eye opening, that is, overall coma scores between 3 and 

11, mainly indicate brain stem dysfunction. The coma score may 

thus be successful in the prediction of death or survival, but less

able to predict the quality of survival if consciousness is

regained.

However, there are clinical and physiological reasons to expect 

that the depth and duration of coma, and the rate of improvement 

over the range of responsiveness reflected by the GCS, provide

valid indices of the degree of diffuse brain damage. Studies in 

Glasgow using the new sensitive techniques of magnetic resonance 

imaging (MRI) confirm that such diffuse damage underlies both the 

depth of coma in the earlier stages (Jenkins et al., 1986) and the 

severity of disability in survivors (Wilson et al., 1988). However 

the balance between such diffuse damage and lesions in specific 

areas of the cortex in causing disability is still a topic of

controversy. Furthermore, studies using electrophysiological 

methods showed that the brain stem response was not as good as the 

cortical response in predicting outcome (Cant et al., 1986; Lindsay 

et al., 1988).

Can other features recorded in the Head Injury Study data bank 

give a better performance than the coma score in the prediction of 

the quality of survival? The pupil reaction and eye signs are even



more closely related to brain stem dysfunction and are unlikely to 

help. As mentioned above, the feature that most obviously reflects 

cortical activity is the verbal component of the coma scale. To 

discover if the other components were masking information in the 

verbal score, predictions of outcome were made using a normal 

linear model and a feature vector restricted to verbal scores and 

age. This model was called NOKLINVA. The classification matrices 

and separation measures for the three data sets are given in Tables 

7.1 and 7.2 respectively. However, when these are compared with 

the results for the corresponding model NORLINA in Tables 6 . 8 and 

6.9 respectively it is clear that the results are similar, with 

NORLINVA being in general slightly worse than NORLINA. This result 

may mean that even more sensitive and specific measures of cortical 

function than provided by the verbal response are needed. Such 

approaches include the more detailed prospective testing of 

orientation and amnesia as described by Levin et al. (1979) and 

more complex analysis of mild impairment of consciousness (Sano et 

al., 1983).

An alternative view is that the biological process of recovery 

is inevitably so variable that any measure of brain damage and 

dysfunction over the first month will be unable to provide an 

accurate guide to outcome six months or one year later in 

individual cases. The influence of rehabilitation may also need to 

be taken into account.

7.3.2 The Data Bank of the Future

At this point it is relevant to remember that two decades have 

elapsed since the Head Injury Study data bank was initiated. It 

was designed in such a way that it was based on readily available 

clinical data. Other investigations are now available (Figure



Table 7.1 Classification matrices for method NORLINVA

Data Priors
No Jack-knife Jack-knife

Set
Predicted

Outcome
Actual
Outcome

Actual
Outcome

SD MD GR SD MD GR

Arrival SD 35 17 6 34 21 6
Rate MD 22 32 22 21 28 25

GR 6 34 62 8 34 59
d5

SD 44 28 9 42 30 9
Equal MD 14 25 21 15 21 22

GR 5 30 60 6 32 59

Arrival SD 56 25 14 52 26 14
Rate MD 36 57 32 40 56 34

GR 11 56 119 11 56 117
d4

SD 71 49 24 71 50 24
Equal MD 22 39 31 22 38 33

GR 10 50 110 10 50 108

Arrival SD 53 28 13 52 31 15
Rate MD 40 46 40 41 40 40

GR 31 94 183 31 97 181
d3

SD 85 58 34 82 62 34
Equal MD 26 52 47 29 47 47

GR 13 58 155 13 59 155
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Table 7.2 Measures of separation for method NORLINVA

Arrival Rate Priors Equal Priors

Data
Set

Measure
Jack-knife Jack-■knife

No Yes No Yes

Error
Rate .453 .487 .453 .483

d 5
Average
Logarithmic
Score

.881 .938 .887 .944

Average
Quadratic
Score

.535 .570 .537 .572

Error
Rate .429 .446 .458 .466

d4
Average
Logarithmic
Score

.905 .931 .918 .944

Average
Quadratic
Score

.543 .558 .548 .564

Error
Rate .466 .483 .447 .462

d 3
Average
Logarithmic
Score

.913 .928 .939 .955

Average
Quadratic .546 .555 .558 .568
Score
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7.2). Biochemical tests can reflect the extent of tissue damage 

and many different enzymes have been claimed to be associated with 

outcome. Rabow and Hedman (1985) and Hans et al. (1983) related 

the enzyme creatine kinase gg to outcome in head injury while Rao 

et al. (1978) used serum lactate dehydrogenase and Thomas et al.

(1978) serum myelin basic protein. In general these studies were 

based on small numbers of patients and showed a correlation with 

outcome. Thomas et al. (1979) concluded abnormal test results are 

associated with a decrease in the coma score, but that more 

extensive studies were needed to discover the value of biochemical 

results in prognosis if clinical details such as the GCS of the 

patient were known.

Lindsay et al. (1988) found that, while electrophysiological 

results were useful as a prognostic guide in paralysed or sedated 

patients, they were of little value over the clinical information 

and the small benefit did not justify the effort involved in data 

collection.

At the time the Head Injury Study was initiated, computerised 

tomography (CT) was in its infancy. Since then CT scanning has 

become widely available; this has improved the detection of 

secondary intracranial haematomas but it has been relatively 

insensitive to primary brain damage. New scanning techniques which 

further enhance the images of the brain have since been developed 

and Jenkins et al, (1986) and Hadley et al. (1988) concluded that 

MRI can provide a striking picture of the effects of a head injury 

on the brain. While MRI looks at the structure of the brain, 

positron emission tomography (PET) looks at function by measuring 

glucose metabolism. Langfitt et al. (1986) have begun to evaluate 

the extra advantages of PET and MRI over CT but point out the 

problems associated with the large amount of data produced by one
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image. Development of these and other scanning techniques is still 

progressing and if the results obtained can be summarised to give 

accurate measures of cerebral function then these measures may 

provide more accurate predictions of the quality of survival.

7.3.3 Choice of Outcome Categories

None of the models was outstandingly successful in identifying 

those individuals who would remain disabled after their injury. 

However the task set was itself a difficult one because of the 

ordered nature of the outcome categories. The problems of 

classification with three ordered outcomes, discussed in

Section 3.5.A, were apparent in the results of Chapter 5 and

Chapter 6 , with the moderate disability group always having a large 

number of cases misclassified as severe disability or good 

recovery. While at the outset of this research it seemed 

appropriate to try to separate all three categories, I now feel 

that, when the ordered nature of the outcome is considered, this

was too ambitious a goal, and with hindsight it might have been

better to have used only two outcome categories. This could have 

been achieved by merging the moderate disability and good recovery 

groups to form an independent survivors group, with the severe 

disability patients making up the dependent survivors. The burden 

imposed on society by the dependent survivors was discussed in 

Sections 1.4 and 2.3.1 and makes the dependent-independent split of 

the survivors the clinically and socially relevant one to make. 

Indeed in all the initial work on discriminant analysis in the Head 

Injury Study the moderate disability and good recovery patients 

were considered as one category so I would suggest this approach in 

preference to trying to incorporate the ordered structure of the 

outcome into the model.
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The vegetative patients and those who died after 28 days have 

not been considered in this work, although, if trying to make a 

prospective prediction of outcome these are indeed possibilities.

One reason for excluding them was that the number of these cases 

was too small to estimate reliably any parameters involved in model 

fitting. Figures 4.1(a) - 4.1(e) however showed that these cases 

had a quite different coma score profile from the other outcomes.

If these cases were of concern then a two stage approach could be 

adopted. The first step would be to discriminate between those 

likely to be dead or vegetative versus some better outcome, and 

only then to predict the quality of survival of those who had 

higher than a predetermined probability of this better outcome.

7.3.4 Missing Data

This work was based only on cases with complete data up to a 

particular time point but this is clinically unrealistic. With 

this data set, for example, patients increasingly are being 

ventilated for short periods during their stay and such patients 

often have their best verbal score missing. Indeed in some units 

it is hospital policy to ventilate certain head injured patients

routinely. No matter what data are used, always, some will be

found missing. Thus blood may not be sampled, charts and 

biochemical results go astray and machines malfunction. Some 

method to cope with missing data must be developed if a model is to 

be practicable.

With data collected through time it is clearly dangerous to 

extrapolate beyond the last observed value. Nevertheless it should 

be possible to accommodate data missing at earlier time periods.

This might be done simply by using group means to substitute

missing values; a more sophisticated approach is to use the EM



algorithm to fit the model, using maximum likelihood based on tha 

available (incomplete) data. An appealing method of dealing with 

missing values, if the same variable is measured repeatedly, is to 

use a growth curve approach to fit an appropriate curve to the data 

present for each individual; the missing values for that individual 

could then be interpolated from the curve.

7.3.5 Timing of Predictions

In Chapters 5 and 6 no comment was made on the time of 

prediction beyond saying that the data from the latest time period 

(INDEP2) gave a better performance than that from the first 24 

hours (INDEP1). This was because the predictions made at the end

of the different time periods were based on different cases. To

examine whether there is any gain in waiting till 14 days or 28

days to obtain extra data, predictions were made at 7 days, 14 days 

amd 28 days with data set D5 . The normal linear model with the 

feature vector consisting af all verbal scores up to the time of 

prediction and age was used. The average logarithmic and quadratic 

scores are given in Table 7.3. These results showed that there was 

a consistent benefit in making the predictions at 28 days rather 

than 14 or 7 days. The only exception was that the average

quadratic scores using the jack-knife technique and arrival rate 

priors differed only slightly at the three times. It is doubtful

whether this particular benefit is clinically useful but it offers 

hope that when new data are collected through time, the additional 

data will provide additional information. This will be worthwhile 

so long as the cost of obtaining the extra information is less than 

its benefit.
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Table 7.3 Average quadratic and logarithmic scores for data set 

D5 when predictions are made at 4-7 days, 8-14 days 

and 15-28 days using the normal linear model NORLINVA

Arrival Rate Priors Equal Priors

Measure Time of 
Prediction Jack-knife Jack-■knife

No Yes No Yes

15-28D .881 .938 .887 .944

Average
Logarithmic
Score

8-14D .919 .945 .936 .962

4-7D .937 .951 .958 .972

15-28D .535 .570 .537 .572

Average
Quadratic
Score

8-14D .555 .570 .565 .581

4-7D .561 .570 .576 .585
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7.A Predictions in Practice

All the work on statistical modelling would be of little more 

than academic interest if the predictions were not acceptable to 

the clinicians involved. Currently a study examining the 

reliablity and acceptability of such predictions, and their impact 

on clinical practice, is underway in four British centres (Glasgow, 

Edinburgh, Liverpool and Southampton). This study has three 

distinct phases.

In the first phase the current practice and resource 

utilisation are monitored so that a baseline is established. In 

the second phase, the computer prediction of outcome at various 

stages after injury is brought to the attention of those caring for 

the patient. The program was modified to make it 'user friendly1 

and run on a microcomputer in the intensive care ward by any of the 

medical staff involved in the care of the patients. In the last 

phase the predictions are withdrawn.

During all three phases, the treatment given and use of 

resources are monitored to see if the provision of the predictions 

influences management practices. The withdrawal period is an 

attempt to determine if any change in practice is sustained. At 

present the study is nearing the end of phase three. A formal 

analysis of the results has still to be carried out but many of the 

clinicians have asked for the computer predictions of certain 

patients during the withdrawal phase. Thus, whether or not there 

has been any measurable effect on management, clinicians are 

interested in predictive information about a particular patient. 

Their interest might be solely to attach a figure to the 

probability of the various outcomes on a discharge summary or to 

inform relatives about the likely outcome, and these are considered
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useful applications. Whether there are further reaching

consequences, leading to an effect on outcome, or at least more 

efficient or appropriate, consistent use of resources, remains to 

be seen.

It could be argued that in the short term prognosis is not 

important as all patients should have the same high standard of 

care offered. Long term care and rehabilitation are perhaps in 

even shorter supply than acute intensive care and hence have a high 

premium. With resources limited, the predictions after the first 

week become increasingly important as these are the ones which may 

identify possible groups of patients who might benefit from 

treatment. Alternatively it would be useful to know that prolonged 

rehabilitation will be fruitless, so that efforts can be directed 

to coping with and adjusting to limitations.

The work in this thesis was the first attempt to use the 

recovery trend over the first month to predict a patient's 

ultimate degree of recovery. The results demonstrate how difficult 

the problem is. The coma score has been successful in predicting 

death or survival after a severe head injury, but modelling trend 

through time did not successfully predict the quality of survival.

Such an ability would have considerable value in planning the 

management of individual patients and in the rigorous, efficient 

comparison of different methods of rehabilitation and late care.

Perhaps the most important implication of the present study, 

for those who will undoubtedly work towards this goal in future, is 

that the quality of information contained in the data and an 

adequate number of cases are of primary importance. Severe head 

injuries fortunately are relatively rare events and a data bank of 

this type will be essential if the original aim is to be achieved. 

Shortcomings in information can not be compensated for by



sophisticated statistical techniques; moreover there is a clear 

implication from this work that simple methods are to be preferred. 

Whatever new features are analysed, the practical principles 

described in this thesis and embodied in the methods used to 

collect data about early severity and outcome from coma will still 

be relevant.



APPENDIX 1 

HEAD INJURY STUDY DATA COLLECTION FORM

Coma Study No. m

SEVERE HEAD INJURY STUDY

University Department o f Neurosurgery, 
Institute of Neurological Sciences, 

Southern General Hospital, 
Glasgow, G51 4TF.



University Department o f Neurosurgery, 
Institute of Neurological Sciences, 

Southern General Hospital, 
Glasgow, G51 4TF.

SEVERE H E A D  IN J U R Y  S TU D Y

Identifying Characteristics

Coma Study Number

a) First box = card number (printed).
b) Second and third boxes = centre code (issued by Glasgow),
c) Remaining boxes = consecutive study number allocated by centre to each patient (first will be 0001).
The coma study number occurs again at the beginning of each card, and must be filled in for identification.

Name * fill last name from left till boxes or name complete; leave blank if  confidentiality rules require this.

Unit Number - additional identification - usually is hospital record number (Each centre should keep careful 
cross-tabulation of study number, unit number and name).

Date of injury - note order. 1 7 0 1 7 8
Day Month Year

Study type - original data bank was limited to patients in coma for 6 hours; to allow inclusion of other cases, fill 
in Box 31 as follows:—

Coma >6 hours = 1

Coma <6 hours = 2
Died (or brain death) < 6 hours = 3

Never in coma = 4

Note definition of coma = EMV 1/5/2 or worse, i.e. no eye opening, not obeying commands and not uttering 
words.

Time Related Data
Time Epochs ( 24H , 2-3D etc.) refer to time from onset of coma; if coma is delayed, indicant 17 records this; if 
no coma, take epochs as time from injury.

Best/V/orst within epochs - if no change then B = W.

C oma Score
The coma score in No. 55 is obtained by adding the three components of the coma scale (No. 138-173).
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H E A D  IN JU R Y  C O D IN G  FOR C O M A  PRO GNOSIS

1. Coma Study No. (including Centre Code)

2. Name 

U nit No.

3. Date of Injury

4- Study Type (see opposite)

'
i

___i___

i
i

1

1-7

8-18

19-24

25-30

| j 31

PE R S O N A L D A T A

5. Sex

Male «  1 
Female = 2 □ 32

6. Age (years)

7. Handedness 
Right = I
Left = 2

8. Pre-existing Medical Conditions causing Continuing Disability 
Cardiovascular = 1
Respiratory = 2
Renal = 3
Gastrointestinal = 4
Nervous System = 5
Skeletal = 6
Multiple = 7
Other (including psychiatric) = 8 Specify ____________________________
None = 9

9. Previous Head Injury  
No « I
Mild (PTA < 24 hrs) « 2 
Severe (PT A ) 24 hrs) = 3 
Indefinite PTA = 4

□

□

33-34

35

36

37

10. Previous Epilepsy 
No = 1
<1 year = 2
>1 year = 3
Frequency not known = 4

□ 38
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11. Type of Injury
Motor vehicle occupant = 1
Pedestrian = 2
JRTA other (or unknown) = 3
Sport = 4
Work = 5
Assault = 6
Domestic ( + fall from window) = 7
Fall under influence of alcohol = 8
Other (includes gunshot) = 9

12. Recent alcohol
No = 1
Suspected = 2  
Definite = 3

13. Alcohol level 
Actual value

(not done = 999)

Influence of other drugs on initial assessment 
No = I
Suspected = 2
Definite = 3 Specify __________________________

14.

15. Lucid interval ( =  talked)
None = 1
Partial - words/confused = 2
Total - sensible/orientated = 3

Coding for 16, 17, 19, 20.

<6 hours = 1
6-12 hours = 2
13-24 hours = 3
0-24 hours (unspecified) = 4
2-3 days « 5
4-7 days = 6
>1 week = 7
Gradual (undefined lime) = 8
Not known = 9

16. Time to onset of deterioration (since injury)

17. Time from injury to onset o f coma ( = E M V  1 /5 /2  or worse)

18. I f  coded 1, 2 or 3 give exact hours, if  possible

19. Time from injury to first admission to any hospital

20. Time from injury until admitted to neuroservice

□

□

□

□
□
□

39

40

41-43

44

□  45

46

47

48-49

50□
□  51
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C R A N IA L  IN J U R Y

21. Linear Fracture o f Skull (X -ray or operation)
l̂ pnc
Vault
Base
Both

* i 
= 2 
= 3 
« 4

□ 52

22. Depressed Fracture
None = 1
Closed (no related scalp wound) = 2
Compound (dura intact) = 3
Compound (dura torn) = 4
Not known = 5

□ 53

23. Vault Fracture Site (linear or depressed)
None = 1
Frontal = 2
Temporal = 3
Parieto-occipital = 4
>1 site = 5
Not known = 6

□ 54

24. Side o f Linear or Depressed Fracture 
Right = 1
Left = 2
Bilateral = 3
Not known -  4

□ 55

25. Signs of Basal Fracture
Mastoid haematoma = 1 
CSF or blood otorrhoea = 2
1 + 2
Orbital haematoma 
CSF rhinorrhoca 
4 + 5
(i or 2) + (4 or 5)

= 3 
= 4 
= 5 
= 6 
= 7

□ 56

E X T R A C R A N IA L  C O M P L IC A T IO N S
26. Chest injury

27. Other trunk injury

28. Limb injury
29. Facial injury

30-32. G .I. Bleeds
No = I 
Minor = 2
Major = 3 (blood transfusion needed)

No = 1 
Minor = 2
Maj^r = 3 (requiring hospital admission itself)

0-3D□

□

4-7D 8-28D□ □

57

58
L_J 
□  59 □ 60

61-63

33-36. Shock (B .P. <90/60)
No = 1 
Yes = 2

24 H

□
2-3 D 4-7D 8-28D

I j ! ~1 64-67

37-41. Chest Complication 

No = 1
Minor = 2 (limited respiratory infection) 
Major -  3

24 H □ 2-3D□ 4-7D 8-14D 15-28D □ □ □ 68-72



42-44.

45-47.

48-50.

51-53.

54.

55.

56.

Coma Study No.

IN T R A C R A N IA L  C O M P L IC A T IO N S  

Supratentoria! haematoma

Subdural

Intracerebral

Extradural

No = i 
Right = 2 
Left = 3 
Both = 4

Operated
Known

Unoperated

□ □ 
□ □ 
□  □

P.M.
Only

□
□

Infratentorial haematoma 
No = i
Subdural = 2
Intracerebellar/stem = 3
Extradural = 4

□  □  □

Pre-Operative Course (before haematoma operation) 
Static = 1
Deteriorating = 2 
Unknown = 3

□

Effect of Haematoma Operation (first 24 hours after surgery)
Improvement in coma score = I
Improvement in pupils only = 2
No improvement in coma score or pupils = 3
Deterioration in coma score -  4

□

Post-traumatic Epilepsy (one fit counts)
None = I
Early (< 7 days) = 2
Late = 3
Both = 4

Intracranial Infection (during current hospital admission) 
No *  I
Meningitis = 2
Abscess - 3
2 + 3 = 4
Other = 5

□
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IN V E S T IG A T IO N S

58-61. Angiogram 24H W(J 4 , D 8 2gD

2 S 2 L » , : i  □  □  □  □
Spasm = 3
2 + 3 = 4
Other = 5

62-65. Mean Intraventricular Pressure 24H 2 JD 4 , D ,  28D
<20 mm.Hg = 1  p n  [------1 p H  I
20-40 mm.Hg = 2 1___ 1 1 ___ 1 1 ___1 1 ___1
>40 mm.Hg = 3

66-69. Electroencephalogram
Normal = 1 r  i i 1 p —i i— i
Focal abnormality = 2 i | 1 ) [_ J |_ )
Diffuse = 3
Both -  4

24 H 2-3 D 4-7 D 8-28 D

70-73. Ventriculogram or A ir Encephalogram ?4H ,  ?n d s , Rn
Normal = 1  I------- [ n  r i  h
Hydrocephalus = 2 L__J I I I------ 1 !------1
Shift = 3
Other = 4

74-77. E M I scan
24H 2-3D 4-7 D 8-28D

Normal = 1  I I I  ! f l  I I
Contusion (high + low density) - 2  ~ I----- 1 I----- 1 L—J  I-----1
Haematoma = 3
Ventricular displacement = 4
2 + 3 = 5
2 + 4 = 6
3 + 4  = 7
Other = 8 Specify  __________________________________________ _______

24-27

28-31

32-35

36-39

40-43
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78-81.

82-85.

86-89.

90-93.

94-97.

98-101.

102-105.

Coma Study No.

T R E A T M E N T

1-7

Burr hole/craniotomy/craniectomy 
No = l
Burr hole only = 2
Craniectomy «  5 cm) = 3'
Craniotomy = 4
(2 or 3) + 4 = 5

24 H 2-3 D 4-7 D 8-28D

□  □  □  □ 8-11

Ventricular tap 
No Z |
Ventricular tap = 2 
Drain = 3
Both = 4

24H 2-3 D 4-7 D 8-28 D

□  □  □  □  ,2'

15

Surgical Decompression 
No = 1
External (bony) = 2
Internal (lobectomy) = 3
Both = 4

24 H

□
2-3D

□
4-7D 8-28 D

□  □ 16-19

Tracheostom y/tube/ventilation (excluding temporary or terminal)
24H
m

No = 1
Intubated =* 2
Tracheostomy = 3
2 + controlled ventilation = 4
2 + patient triggered = 5
3 + controlled ventilation = 6 
3 + patient triggered = 7

2-3D 4-7D 8-28D

□  □  □ 20-23

Steroids
None 
<20 mg 
>20 mg

Dexamethazonc or equivalent daily 
Dexamethazone or equivalent daily

Unknown or shock dose

= 1 
= 2 
= 3 
= 4

24H 2-3D ‘ 4-7D 8-28D□ □ □ D 24-27

Osmotics 
None = 1
One dose = 2
Repeated dosage = 3
Unspecified = 4

24H 2-3D 4-7D 8-28DZ □ □ □ 28-31

Drugs possibly affecting observations
No = I
Yes = 2 Specify

24 H 2-3D 4-7D 8-28D□ □ □ □ 32-35
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L O C A L IS A T IO N

Coding for 106-117.
No = 1 
Suspect = 2 
Definite = 3

24 H 2-3 D 4-7D 8-28D
106-109. Right Hemisphere A

110-113. Left Hemisphere J

114-117. Localisation Post Fossa I  ataxia, f  I ( | f '1 ( I
------------------------ ~ --------------  [  dysarthria I____I I____| |____j |___j

J  definite = bilateral motor abnormalities, 
dysconjugate eye movements, 
autonomic abnormalities

C R A N IA L  N ERVES — (R E C O G N IS ED  PALSIES)

Coding for 118-137.
No = 1 
Right = 2 
Left = 3 
Both = 4

24 H 2-3D 4-7D 8-28D
.>8, 2.. I. □  □  □  □

suspect = hemiparcsis,
vault fracture 

definite = dysphasia
or epilepsy 
or radiological/ 
operation evidence

suspect = basal fracture signs,

□ □ □ □

□ □ □ □

.2 2 ,2 5 . U . □ □ □ C
126-129. V I

130-133. V II

134-137. V III

□ □

□  □

□ □

36-39

40-43

44-47

48-51

52-55

56-59

60-63

64-67
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138-149.

150-161.

162-173.

174-178.

Coma Study No. 

C O M A  SCALE

1-7

For coma observations-® = * * *  resPonse during epoch 
w  = worst response during epoch

Coding for 138-173. 
Eye Opening (138-149)

Spontaneous = 4
To Sound = 3
To Pain = 2
Nil = 1

Best M otor Response (150-161) Verbal Response (162-173)

Obey
Localise
Normal flexion
Abnormal flexion
Extension
Nil

=  6 
= 5 
= 4 
= 3 
= 2 
= I

Orientated
Confused
Words
Sounds
Nit

= 5 
= 4 
= 3
= 2 
= 1

* Score abnormal flexion (3) if either:

1) preceding extension movement in arms 

or 2) extension in a leg 

or 3} two of these:

If  in doubt, score 4

i) stereotyped flexion posture
ii) extreme wrist flexion

iii) adduction of arm
iv) fingers flexed over thumb

Eye
Opening

M otor
Response

best
adm. after

to injury
1st before

hosp. coma

□ □

□ □

2-3D 4-7D 8-14D 15-28D 

B W
8-19

20-31

Verbal
Response □  □  [ 32-43

Temporal Order of B /W  Observations after Onset of Coma

Improving = 1
Deteriorating = 2
No Change 
Fluctuating

= 3 
= 4

24H□ 2-3D□ 4 -'D 15-28D8-I4D  □ □ 44-48
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179-190.

191-202.

Coma Study No,

M O T O R  RESPONSE PATTER N S

Right side 

Left side

Adm.
to
1st

hosp.

best
after

injury
before
coma

1-7

24H 2-3 D 4-7D 8-I4D 15-28D

8-19

20-31

Coding for 179-202.
No response = 1
Extension = 2
Abnormal flexion (spastic, decorticate) = 3
Better type of response, but weaker than other side = 4
Belter type of response and normal strength = 5

Code response in arms; if arm flexes and teg extends code 3. I f  doubt whether 3 or 4/5, then code latter. If  two 
types of response are found in a limb at one examination, code both using best and worst boxes.

203-213. Tonic Spasms (spontaneous and generalised)

Absent = 1 

Present = 2

Adm.

□
24 H 

B W
2-3D 

B W
4-7D 

B W
8-14D 

B W
15-28D

B W
32-42
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214-224.

225-230.

231-236.

237-247.

248-258.

259-269.

Coma Study No. 

EYE SIGNS

1-7

Pupils
Both reacting-equal = 1 
Both reacting - unequal = 2 
One reacting = 3
Non-reacting equal <2mm = 4 
Non-reacting equal 2-4mm = 5 
Non-reacting equal>4mm = 6  
Non-reacting unequal = 7

Adm.

□  [

24H 

B W
2-3D 

B W

4-7 D 

B W
8-14D 

B W

15-28D 

B W
8-18

Pupil side/size (for cases coded 2, 3 or 7 above)

Adm. 24H
If  2 or 7: R> L = 1

L> R -  2
I f  3: R non-reacting<4 = 3

R non-reacting>4 = 4 
L non-reacttng<4 = 5 
L non-reacting>4 = 6

2-3 D 4-7D

□  □  □  □
8-14D

□
15-28D

19-24

Local Factors Affecting Pupils A ,
---------------------------------------- 5------—  Adm. 24H 2-3D 4-7D 8-14D 15-28D

SST-I □ □ □ □ □ □  2530
Left = 3 
Both = 4

Spontaneous Eye Movements
Orientating = 1
Roving conjugate = 2
Roving dysconjugate = 3 
Lateral deviation = 4
None = 5
Other = 6

Adm.

□  c
24H 

B W
2-3D 

B W
4-7D 

B W
T H

8-14D 

B W
15-28D 

B W
31-41

Oculocephalics 
Nil (normal) = 1
Full = 2
Minimal = 3
Absent » 4

Adm. 8-14D 

B -W
15-28D 

B W
1 42-52

Adm. 24H 

B W

2-3D
V.Qculovestibulars

Nystagmus (normal) = I ( ;
Conjugate tonic = 2 I___i
Dysconjugate = 3
No O V* = 4
* No response scored only after 100 ml. iced water delivered into clear canal.

4-7D 

B W

14D

W
15-28D 

B W

Q 53-63
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270-274.

275-279.

280-284.

285-289.

290-294.

295-299.

Coma Study No.
1-7

A U T O N O M IC  A B N O R M A L IT IE S  ( Predominant or persistant abnormalities)

Respiratory patterns
Regular 
Periodic 
Ataxic 
1 + 2
1 + 3
2 + 3 
1 + 2  + 3 
Ventilation

= I 
« 2
= 3 
= 4
= 5 
=  6
= 7 
- 8

24H 2-3D 4-7D

□  □  □  □  I I
8-14D 15-28 D

8-12

E pisode of Apnoea ( long enough to require at least temporary ventilation and 
not induced by relaxant drugs ).

24H 2-3D 4-7D 8-14D I5-28D□ □ □ □ □ ,3-'7

Respiratory Frequency
  --------------   M--- 24 H 2-3D 4-7D 8-14D 15-28D: i  □  □  □  □  □  ,!'22

>30 = 3
1 + 2  = 4
1 + 3  = 5
2 + 3 = 6
1 + 2 + 3  = 7

Pulse
— ™  24H 2-3D 4-7D 8-14D I5-28D
Normal = I I ! [ 1 I '"""] J ! i I 23
High (>120) = 2 L J  ! i I I 1 I I I
High + Low = 3 
Low (< 60) = 4

Systolic Blood Pressure 
Normal = 1
High (>160) = 2
High + Low = 3  
Low (<90) = 4

24 H 2-3D 4-7D 8-14D I5-28D□ □ □ □ □ :8'3:

Tem perature 24H ,  , D 4 , D g |JD |5 ;8D

Normal = l M  M  M  3337
High (>39® C) = 2  I___ I I___ i I___ I L— J I----- 1
High + Sweating = 3
High + Low = 4
Low (<35® C) = 5
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300-302.

303.

304.

305.

306.

307.

308.

309. 

310-311. 

312-313. 

314-315.

R EC O V E R Y  PROCESS

Speech
Normal = 1
Mild dysphasia = 2
Severe dysphasia = 3
Untestable = 4

1-7D 8-14D 15-28 D□ □ □ 38-40

Time to speak (V = 3 or more)
Actual week

41-42

Time to obey (M = 6) 43-44

Time to spontaneous eye opening (E = 4) 45-46

Time to Disappearance of Extension Responses 

f Supraorbital stimulus

Right arm ‘

v Finger stimulus

Supraorbital stimulus

Left arm

~ ]  47-48

1 i 49-50

l 1----- ! 51-52

Finger Stimulus I 1--1 53-54

Post-traum atic amnesia

Leave intensive care unit

Periods
24 hrs. = I 
2-3 days = 2 
4-7 days = 3 
8-14 days = 4 
15-28 days = 5 
>28 davs = 6

Period Actual week
55-57

58-60

Return home 7 61-63
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O U T C O M E

316*317. 1 m onth outcome

318*319. 3 month outcome

320-321. 6 month outcome

Outcome C ategories
Death = 1
Vegetative state = 2
Severe disability = 3
Moderate disability = 4
Good recovery = 5
Out of hospital, lost 
to follow-up = 6
If  2/3 indistinguishable 
at 1 month = 7

Actual Best□ □
□ □ 
□ □

322-323. 12 month outcome □ □
N.B. Severe - conscious but dependent i.e. requiring help of another person during every 24 hrs. 

Moderate - independent but disabled.

D E A T H  

324-325. T im e to death
< 24 hours = I 
2-3 days = 2
4-7 days = 3 
8-14 days = 4 
15-28 days = 5 
>28 days = 6

(i) after injury

(ii) after coma

□
□

326. Post-M ortem
Yes = 1  
No = 2

C A U S E  O F  D E A T H

(Allocate a total of 5 points between the four causes) 

327. Primacy brain damage

328. Expanding intracranial lesion

329. Other intracranial complication

64-65

66-67

68-69

70-71

72

73

74

75

76

330. Extracranial complications n 78
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APPENDIX 2

NUMERICAL EXAMPLE OF THE MISCLASSIFICATION PROBABILITIES 

ASSOCIATED WITH ORDERED OUTCOME CATEGORIES

Suppose that n^, II2 and II3 are ordered categories with equal 

prior probabilities and the model is such that, for an individual 

with feature vector y,

p(yI Hi) ~ N(e,l) 

p(y|n2 > “ n(o,i)

and p(y|n3) ~ N(6 ,l) where e < 0 and 6 > 0.

Since the distributions all have a common variance, it can be 

seen from Figure A2.1 that the individual will be allocated to II1 

if y < e /2 and to II3 if y > ^12* if e/2 < y < ^ 2  then they will 

be allocated to II2 > the middle category. Thus the probabilities of 

correctly classifying an individual are:-

E / 2
(i) p(classify as | ) =

(ii) p(classify as n2 |n2) =

v/T2 i[,exp{-|(y-e)2}dy where e<0 ,

- e /2

and (iii) p(classify as n3 |n3) - 1 )exp{-i(y-S)2}dy where 6>0 .
-

The probability of correctly classifying an individual from 

group H2 *-s given in Table A2.1 for a range of values of e and 6 . 

The probabilities of correctly classifying an individual from 

groups Iii anc* n3 are given in Table A2.2.

For example, with c - -3 and 6 = 3 then the probabilities of

correctly classifying an individual from groups 1 and 3 are both

0.933 while for group 2 it is 0.866. However, if e = -1 and 6 = 1,
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so that the overlap between the groups is much greater, the 

probabilities of correctly classifying an individual from groups 1 

and 3 are both 0.691 while for group 2 it drops to 0.383.

So it can be seen, that unless there is a large difference

between the means of the categories or a small variance in each, it

will be difficult to allocate a member of the middle group to the

correct category.
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APPENDIX 3

MODEL PITTING BY PSEUDO MAXIMUM LIKELIHOOD

In Section 4.6.1 models imposing linear constraints upon the 

means of multivariate normal populations were fitted by pseudo 

maximum likelihood (PML) estimation to avoid the computational

difficulties associated with full maximum likelihood (ML) 

estimation of the covariance matrices. In practice this meant that 

the covariance matrices were estimated simply by the sample 

covariance matrices rather than by full ML under the constrained 

model.

The following results, based upon Parke (1986), justify this 

approach by showing that "pseudo likelihood ratio tests" are

conservative in that any model rejected by the full ML approach

would also be rejected by PML.

Let K ,(0 ,tt) denote the log-likelihood function and (©0 ,tt0) the 

true values of the parameters. The following argument holds under 

very general conditions, but in this application the vector 0 

denotes the parameters associated with the mean vectors and the

vector tt denotes the parameters associated with the covariance 

matrices.

Let Trn denote a consistent sequence of estimators of tt.

Let 9n (n) denote the MLE of 0, for fixed it.

let 0^(tt) denote the MLE of 9, for fixed tt, and subject to the

constraints h(9) - 0 .

Section 3 of Parke establishes that

/n (in(it0) - e 0 ) = - /n (I? , ) ' 1 De i(0o,no) + op (l). (A3.1)
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Here Dq £(0o,tto) denotes the vector of partial derivatives of Z

with respect to 0 , evaluated at (0 o>ito) and 1 °, denotes the 0 -block

of the Fisher information matrix for (0,tt), evaluated at (8 3 ,1̂ ).

Differentiating with respect to it and evaluating at ir0 then 

gives

✓n S0n (iro) = /n (I?,)"1 I?, + op(l), (A3.2)
6tt

where 1°2 denotes the off-diagonal block of the matrix, evaluated 

at (0o,tto).

Finally expanding /n (On^n) “ 9 o) gives

/n (en (irn ) - 0O) “ /n (0n (iro) - 0O) + /n 60n (iTo) (-rrn - irQ) + op(l)
Sit

= /n (I?,)-1d 8 i(B0 ,tro) + /n (1°, )_ll°2(iin - ir0) + op (l). (A3.3)

In the constrained case, provided that the null hypothesis is true 

(i.e. provided that h(0 o) = 0 ), there are three corresponding

results:

(i) /n (QnC'O “ 0 o) = “ Po D0 + Qp(l)» (A3.4)

where P0 1°, P0 = P0 (Silvey, 1975, §4.7).

Note that if 0 is of length k and if h(0) = 0 represents s

constraints, then P0 is of rank k - s.

(ii) /n 60*(tto) = y/n PQ I° 2 + op(l) (A3.5)

Sir

( i i i )  ’/n ( en ( 1Tn )  ‘ s o) = F o D0 ^(Bo.'O + Po *?2 (ltn ~ O

+ op (l). (A3.6)



Thus from equations A3.3 and A3.6

/n (SnCiTn) - 0O) = /n (I® , ) ' 1 Y + Op(l)

and

/n (0n(%) - 8 0) = /n P0 Y + op (l)

where Y = D 0 fc(0o,Tro) + If2 (nn- ir0),

so that

/ n  ( i n ( i tn )  - e * ( V )  = / n  { ( I ? , ) ' 1 -  P0 } Y + op(l) ( A 3 . 7 )

and, asymptotically,

Y  ~ N( 0 , If, + If2 If, If2T ).

Now considering the log-likelihood ratio statistic

2{ ^(8n(iTn ),TTn ) - 2.(en(tTn ),irn ) }

— 2 { £(Q^i^n^*^n) - ^(^n^n^ *^n^ ~ (®n - ^ 0 ^(®n»^n)

- i (0n - e£)T (Sn^n) (en - eS) + • • • >

=  - (Qn  - Oe (en .in ) (®n - e*) +  ...

= (0n - 0^)^ ^?i (^n " ®n) + j^nder the appropriate

regularity conditions.

Thus it can be seen for equation A3.7 that, provided h(0o) = 0, 

the test statistic takes the form of a x2 (s) random variable plus 

an asymptotically independent positive random variable. Thus with 

the critical region 21ogA > x2 (s,l-a), any model which would be 

rejected by the correct ML approach would also be rejected by PML,

i.e. the PML approach is conservative.
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