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SUMMARY

The problem considered in this thesis is the prediction of the
quality of survival after severe head injury. A model of the
recovery trend of the patient through time is derived and this
model is used to predict ultimate outcome.

Chapter 1 introduces the problem of prognosis in clinical
decision making, and in particular, its importance in the context
of severe head injuries. It identifies the need for a new
statistical approach to this problem.

Chapter 2 describes the development of the Head Injury Study
data bank from the initial stages when terminology needed to be
carefully defined to the present day. It gives a detailed
description of the Glasgow Coma and Outcome Scales. The data
collection methods are described along with the problems
encountered in establishing a reliable data bank. Suggestions are
given to minimise these problems.

In Chapter 3 discriminant analysis is introduced and its
terminology defined. The factors involved in variable selection,
the problem of missing data and the assessment of the performance
of a discriminant rule are discussed in general terms. Two major
studies are described where the prediction of outcome after severe
head injury is made using information from the Head Injury Study
data bank: first the early work using an independence model, and
then a comparative study which was carried out to assess the
relative merits of different discrimination techniques. Chapter 3
finishes by illustrating that, while these methods are successful
in the prediction of death or survival, a new approach is required
to predict the quality of survival.

Chapter 4 contains the work involved in modelling the recovery

xxii




trend of the survivors. This is done by modelling the coma score
through time. The first order autoregressive model which was
initially adopted is described along with the modifications
required to give an adequate decription of the data. Ways of
reducing the number of parameters which need to be estimated are
considered, as well as the effect of using a pseudo maximum
likelihood approach to reduce the computation involved in obtaining
the parameter estimates. Three methods which adequately model the
recovery trend are obtained.

Chapter 5 examines the performance of these methods by
assessing their ability to predict the quality of survival. This
assessment is based on the classification matrices and three
separation measures (the error rate, average logarithmic score and
average quadratic scores). How performance is affected by
different priors and the 'jack-knife' technique is examined. The
performance of the models incorporating trend is compared with that
of other available models. Age is shown to have a substantial
effect on the prediction of prognosis.

In Chapter 6, age is incorporated into the models considered in
Chapter 5 and the performance is re-assessed.

Chapter 7 discusses the possible clinical reasons for the
general lack of success of the methods considered in Chapter 5 and
Chapter 6. The use of the verbal component of the coma scale is
considered, and alternative data which may be useful to predict the
quality of survival are discussed. Recommendations are made for
future work, the importance of the quality of the information
collected is stressed, and the vital role which simple statistical

techniques have to play is emphasised.

xxiii




CHAPTER 1

INTRODUCTION

1.1 The Importance of Prognosis in {linical Decision Making

The ability to predict the course or consequence of disease is
fundamental to most clinical decisions. Before an investigation is
ordered, a drug prescribed or even an operation advised the
clinician needs to know the likely benefit, the associated risk and
the result of withholding any such measures. These decisions
demand an estimate of prognosis, however crude. The extent of the
problem is illustrated by Wagner et al. (1978), who, in a review of
the problems in diagnosis, cite 827 references.

In a formal approach to such difficult decisions the problem
can be split into four steps

(i) the strict definition of relevant terminology

(ii) careful record keeping
(iii) the identification of factors affecting prognosis
(iv) the construction of a model to estimate prognosis.

In adopting such a strategy, the clinician uses his accumulated
experience and judgement to go through these steps and make an

estimate of prognosis.

1.2 The Importance of Prognosis in Severe Head Injury

Predictive thinking is particularly important in the management
head injured patients. In those with a minor head injury the
doctor needs to decide if admission for observation or transfer to
a specialist unit is justified, and this depends on the likelihood

of certain complications developing. In patients with a severe




head injury who remain in coma after effective treatment has been
given, prognosis about the wultimate outcome is of particular
concern. Many of those patients will die or be permanently
disabled no matter what treatment is given. Resources are always
limited and the deployment of facilities to one patient limits
their availability to others, whether this is in the Intensive
Therapy Unit in the early stages after injury or later, in the
rehabilitation of survivors. Even if this were not the case,
needlessly prolonged intensive care can be demoralising for the
patient and relatives, as well as being sometimes unnecessary or
even hazardous. Similarly over optimism-about recoveryncan lead to
fruitless efforts at rehabilitation rather than realistic
adjustments to cope with handicaps and minimise consequent
limitations.

It is therefore important to identify as early as possible the
patients who will benefit from the facilities of a specialist unit
in order that their management can be appropriate and humane,

rather than intuitive or defensive.

1.3 Prognosis of Severe Head Injury

The reasons that even experienced clinicians have difficulty in
making firm predictions about outcome after severe head injury are
not hard to discover. It would take the average consultant until
he retired to look after 1000 patients with severe head injury.
Even if he could remember the clinical details and ultimate outcome
of all his patients, his capacity to analyse accurately how these
inter-relate, and how they can be used in a new case, would be
imperfect. In practice clinicians tend to remember the 'remarkable

recovery' or the 'disappointing failure to respond', and their




estimations of prognosis are affected by their most recent
memories.

In the late sixties the advances in computer technology and
their increased availability made the storage and analysis of data
on head injured patients a realistic possibility. The Head Injury
Study was initiated in Glasgow in 1968 by Professor Bryan Jennett
and was joined by centres in the Netherlands and the U.S.A., in
1972 and 1974 respectively.

As already mentioned, before clinical information can be stored
on computer in a form suitable for analysis it is vital to develop
accurate record keeping metﬁ;)ds, and this in turn requires clear
definitions of the features to be recorded. The work involved in
setting up the data bank is described in detail in Chapter 2. The
problems encountered were similar to those encountered later by
de Dombal (1978) in his study of the computer diagnosis of acute
abdominal pain and by Marshall et al. (1983) in setting up a
National Traumatic Coma Data Bank in the U.S.A..

Once the data bank was established it was possible to identify
features which affected prognosis. There are many reports
identifying such features, both by those involved in the Head
Injury Study (Avezaat et al., 1979; Braakman et al., 1980; Jennett
et al., 1977b; Jennett et al., .1979; Teasdale et al., 1982b) and
others (Becker et al., 1977; Marshall et al., 1979; Miller et al.,
1977; Overgaard et al., 1973; Pagni, 1973; Pazzaglia et al., 1975).

The natural progression from identifying single features which
affect prognosis is to use combinations of features in the hope
that a more accurate prediction of prognosis can be made. Thus the
aim was to use the data bank of stored information to construct a
model of the recovery pattern after severe head injury which would

allow a prediction of prognosis for a new case. There are many




different methods of model building, but the simple approach used
initially in the Head Injury Study gave promising results (Jennett
et al., 1976). Stablein et al. (1980) used a logistic regression
approach and this was the basis of a criticism of the Head Injury
Study methods by Becker (1979). This criticism was a factor in
instigating a comparative study (Titterington et al., 1981) of the
different methods available, and so the various approaches were
applied to the cases in the Head Injury Study. Chapter 3 describes
the evolution of the study from the identification of single

features affecting prognosis through to the comparative study.

1.4 The Need for a New Approach in Modelling Prognosis

While the models studied had been largely successful in
predicting which patients would make a good recovery and which
would die, no method was successful in identifying which patients
would remain disabled after their head injury. The identification
of this group of patients is important for several reasons. First,
they impose a burden, both finanéial and social, on the community
in which they live. Secondly, it is this group who are most likely
to benefit from a new or intensified treatment since most other
patients will clearly die regardless of treatment or will recover
with conventional intensive care.

I was disappointed by the fact that no method used in the
comparative study had been successful in identifying this group of
patients and therefore it seemed to be worthwhile to try to find a
new approach to this problem. It is this exercise which forms the
main part of this thesis.

During the course of the study, which I joined in 1975, I dealt

with data from many head injured patients, and after some time I




was struck by the fact that many cases who remained disabled had
shown little change over time (either improvement or deterioration)
in the early stages after injury. By contrast, those with good or
very poor outcomes seemed to separate out more quickly. The
existing methods of prediction had used the state of the patient at
a particular time point, so that an attempt to model the time
trends in the data offered ar new approach. In Chapter 4 the
various possible models that can incorporate time trends are
reviewed and a model derived which described the data adequately
while using as few parameters as possible.

The logical sequel to the derivati;n of a modei is to assess
its discriminatory power. The performance of the derived model was
assessed by comparison with that of other more standard models.,
This exercise is described in Chapter 5. The comparison of the
results obtained from the derived model with those from a model
incorporating the age of the patient showed that a worthwhile
improvement in performance could be achieved by incorporating age
into the derived model. Two different methods of incorporating age
were considered and the performance of all models is re-assessed,
with age included, in Chapter 6. Chapter 7 reviews the results of
Chapters 5 and 6 and considers their further implications. These
are relevant both te the statistical approach, and in particular,

to the clinical data that seem likely to be relevant in future work.




CHAPTER 2

HISTORICAL DEVELOPMENT OF THE HEAD INJURY STUDY DATA BANK

2.1 Epidemiology of Head Injury

In Britain almost one million patients attend Accident and
Emergency Departments each year with a head injury (Jennett et al.,
1977a). Fortunately most are only mildly injured; only one in
five of these patients is admitted to hospital and of these two
thirds are discharged within 48 hours (McMillan et al., 1979;
Strang et al., 1978).

In Scotland, about 15,000 head injuries each year are admitted
to hospital. The majority of minor head injuries are wholly
treated in primary surgical wards which are in general surgical,
accident, orthopaedic and .paediatric departments, while the more
severe head injuries are treated in the four regional neurosurgical
units in Glasgow, Aberdeen, Dundee and Edinburgh.

In Glasgow the regional unit is the Institute of Neurological
Sciences, located within the Southern General Hospital, and it
serves a population of 2.7 million in the West of Scotland.
Patients are taken only as transfers from other hospital units,
never directly from the scene of the accident; even in the
Southern General Hospital all head injuries are dealt with first by
primary surgeons. Jennett et al. (1977a) showed that Glasgow was
similar to Dundee and Aberdeen in its head injury practice with
4-57 of admitted cases being transferred to the regional unit.
However, their survey did not include hospitals in the Lothian
Health Board. These are served by the Edinburgh Neutrosurgical Unit
which has a policy of admitting a large proportion of head injured

patients, including the mildly injured, directly to a ward




supervised by neurosurgeons, although still mnot in the main
neurosurgical department.

In 1977 guidelines (Teasdale et al., 1982a) were adopted and
later formalised (Briggs et al., 1984) for the transfer of head
injured patients to the Institute. The current guidelines for the
management of head injured patients are shown in Figure 2.1. This
change in transfer policy led to an increase in the numbe?
transferred per year, from just over 220 to around 500. Essential
details of the features of the head injured patients admitted to
the Institute of Neurological Sciences in 1986 are given in

Table 2.1.

2.2 Definition of Terminology

2.2.1 Assessment of Conscious Level

Impairment of consciousness is an indication of dysfunction in
the brain as a whole and is one of the most consistent features of
head injury. In the acute stages, changes in conscious level
provide the best indication of the development of complications
such as an intracranial haematoma, while the depth and duration of
coma indicate the degree of ultimate recovery which can be
expected. Reliable assessment of the extent of impaired
consciousness is therefore of prime, practical importance in the
management of head injured patients.

The wvarious levels of impaired consciousness have been
described and recorded by an abundance of alternative terms.
Expressions such as comatose, semi-comatose, stuporous and
semi-conscious have often been used, and a range of inconsistent

systems described (Frowein, 1976). This problem led Teasdale and

Jennett (1974) to examine the existing systems and to develop the
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Table 2.1 Details of the cases admitted to the Institute of

Neurological Sciences in 1986

Number of cases 562
Under 20 years old 317
Road traffic accident victim 387
Admitted within 6 hours of injury 457
| In coma or intubated on admission 237%
!
In coma > 6 hours 197%
Skull fracture 587 -
Operated haematoma 177%
} Extracranial complications 577
Non-reacting pupils an admission 77




Glasgow Coma Scale. They found that existing systems suffered from
one or more of three defects. Some depended on specific
anatomical-clinical correlations, whereas studies of the brain
after severe blunt injury (Mitchell and Adams, 1973) had shown that
most cases had lesions widespread throughout the brain. Some
described coma by a series of arbitrary steps, assuming groups of
clinical features unique to each level, whereas Teasdale and
Jennett observed that the reality is a continuous spectrum of
responsiveness between deep coma and full consciousness. Finally,
few scales had been tested for the consistency with which the signs
and symptoms upon which they depended could be elicted by different
observers. To find wide practical application, a system must be
simple and based upon clearly defined criteria, which can be
elicited reliably by a wide range of medical and nursing staff.
The Glasgow Coma Scale took account of all these considerations and
provided an effective method of describing the various states of

impaired consciousness encountered in clinical practice.

2.2,2 The Glasgow Coma Scale (GCS) and Score

Three separate aspects of the patient's behaviour are evaluated
independently of each other:-
(i) the stimulus required to induce eye opening (E)

(ii) the verbal response (V)

(iii) the best motor response (M).

Each aspect of behaviour is assessed in terms of a well defined
series of responses which indicate the degree of dysfunction. Each
step in each component has to be allocated a notation, with a score
of 1 indicating maximum dysfunction, and Figure 2.2 illustrates the
scores possible for each aspect of behaviour. Summation of the

scores of the three components yields the overall Glasgow Coma

10




Figure 2.2 The Glasgow Coma Scale
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Score (Teasdale et al., 1979a).

When eliciting the eye opening score, spontaneous opening

indicates that the arousal mechanisms in the brain stem are active.
It does not necessarily imply awareness. If spontaneous opening is
not present then a spoken command is given, usually the patient's
name is called and he is requested to open his eyes. If this is
unsuccessful then a painful stimulus is applied by exerting
pressure on the finger-nail bed with a pen or pencil. No eye
opening in response to a painful stimulus implies a marked degree
of depression of the arousal system.

After the patient has been roused as fully as possible, verbal

and motor performance are assessed.

With the verbal response, orientation requires the patient to

know who he is, where he is, and the month and year. If he is
unable to answer these questions but capable of producing phrases,
gsentences and even conversational exchange, then the patient is
termed confused. Inappropriate words refer to intelligible
articulation used in an exclamatory, random way while moaning and
groaning constitute incomprehensible sounds. While the presence of
speech indicates a high degree of integration in the nervous
system, no verbal response may, of course, be the result of causes
other than impaired consciousness, such as dysphasia.

When scoring the best motor response, to reflect the functional

state of the brain as a whole, the best or highest response from
any limb is recorded. Obeying commands is judged from the response
to instructions such as 'lift your arms' or 'put out your tongue'.
Reflex grasp responses occur in unconscious patients, and asking a
patient to squeeze the examiner's fingers is not a reliable test.
If the patient does not obey commands then a painful stimulus is

applied. This is applied first at the finger-nail bed, but

12




subsequently it may be necessary to apply pressure over the
supra-orbital notch. Localising is recorded if the patient moves a
limb in such a way as to locate the painful stimulus on the head in
an attempt to remove it. If the arm bends at the elbow but does
not achieve a localising response then a flexion response is
recorded. This can vary from normal rapid withdrawal to abnormal
slow dystonic movements in which the limbs assume stereotyped
postures. Extension responses of the limbs when the elbows or
knees straighten are clearly abnormal. The limbs may even adopt
this position without stimulation. No response to pain is scored
when repeated and varied stimulation elicits no detectéble movement
or change in tone of the limbs. The GCS has been universally
adopted as a bedside test, and the introduction of the scale has
greatly enhanced the value of routine observations (Teasdale,
1975). A chart on which the responses are recorded provides a
visual profile of the patient's progress which can be rapidly
assessed (Teasdale et al., 1975). A typical chart of a patient who
suddenly deteriorates but after operation gradually improves is
shown in Figure 2.3.‘

With the help of the GCS, Teasdale and Jennett (1976) defined
coma as the inability

(i) to open the eyes to any stimulus
(ii) to utter any recognisable words

and (iii) to obey commands.

In terms of the GCS, this implies an eye score (E) of 1, a
verbal score (V) of 2 or less and a best motor score (M) of 5 or
less. If any of (i)-(iii) above could be achieved then the patient

was regarded as not in coma.
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2.2.3 The Glasgow Qutcome Scale

Much of the difficulty which doctors experience when making
decisions about head injured patients, both in the acute stage and
during recovery, results from the uncertainty about the outcome,
Barlow and Teasdale (1986) found that, in a mﬁlti-national group of
59 neurosurgeons, 567 chose 'estimated prognosis' as the most
important factor in determining a difficult clinical decision.
Jennett and Bond (1975) saw the definition of outcome as the first
step towards making possible the prediction of outcome. They
reviewed recent papers on outcome after head injury and found that
a wide range of terms were used., As persisting disability after
head injury wusually comprises both mental and physical handicap
they devised a simple scale, the Glasgow Outcome Scale, for
describing overall social outcome. This scale has five
categories :-

(i) death
(ii) vegetative state
(iii) severe disability
(iv) moderate disability
(v) good recovery.

Death might seem to require no further definition. However,
advanced technology can now keep other major organs functioning
when irreversible brain damage has occurred and strict criteria now
exist to determine brain death. It is now agreed that in such
cases the time of death is when brain death is confirmed and not
some later time when the heart stops.

The vegetative state was defined by Jennett and Plum (1972) in
rigorous terms which limited it to patients who showed no evidence
of meaningful responsiveness. Patients who obey even simple

commands or utter any words are assigned to a better category.
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Vegetative patients breathe spontaneously, have periods of
spontaneous eye opening, when they may follow moving objects with
their eyes, show reflex responses in their 1limbs (to postural or
painful stimuli), and they may swallow food placed in their mouths.
This non-sentient state must be distinguished from other conditions
of wakeful, reduced responsiveness — such as the locked-in
syndrome, akinetic mutism and severe aphasia.

Severe disability indicates that a patient is conscious but
dependent and needs the assistance of another individual every day
for some activities of daily 1living. This may range from
continuous total dependency to the nez‘ad for assistance with or;ly
one activity such as dressing, getting out of bed, moving about the
house or going outside to shop. Most often, dependency is due to a
combination of physical and mental disability, but many patients
who have little or no physical deficit are unable to organise their
day to day 1lives effectively and must be classed as severely
disabled. Some require the care and protection which only a mental
hospital can provide: others cope at home with the support of
attentive relatives but could not be left alone for a whole day
because the& would be unable to organise their meals, or to deal
with callers, or any domestic crisis which might arise.

Moderate disability means that patients are independent but
disabled. Such a patient is able to look after himself at home, to
go out to shop and to travel by public transport. However, some
previous activities, either at work or in their social life, are
now no longer possible because of physical or mental deficit. Some
patients in this category are able to return to certain kinds of
work, even to their own job if this happens not to involve a high
level of performance in the area of their major deficit.

Good recovery indicates the capacity to resume normal

16




occupational and social activities although there may be minor
physical or mental deficits. The patient need not have resumed all
his previous activities, and may not be working because
unemployment may be due to many factors other than the degree of
recovery.

The time after injury at which outcome is assessed is

important. During the first year an increasing number of those

initially vegetative or severely disabled die: on the other hand,
some severely or moderately disabled reach a better outcome.
Jennett and Bond (1975) state that a third of those still
moderately disabled at 3 months after injury had made a good
recovery by 12 months, and over 807Z of those who improved their 3
month outcome by 12 months had already achieved the higher grade

within 6 months of injury.

2.3 The Establishment of an International Data Bank

2.3.1 Introduction

Head injury 1is a common cause of death and disability,
particularly in the young, and patients with a severe head injury
put a considerable burden on acute hospital services in the early
stages after injury. If they survive, the burden then falls on
many aspects of the health services in the community and can last
for many years (Jennett, 1975).

The value of a data bank of clinical cases collected in a
standardised way as a basis for the management of new cases and for
relating therapeutic efforts to outcome was pointed out by Fries
(1976). The collection of such a data bank of patients with severe
head injury was initiated at the Institute of Neurological Sciences

in 1968. Extension of the data collection to two Dutch centres
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(Rotterdam and Groningen) in 1972 and to an American centre (Los
Angeles) in 1974 (Jennett et al., 1977b) made it possible to test
the feasibility of standardising methods of c¢linical recording
among several teams of clinicians. Another American centre (San
Francisco) joined the study in 1980.

\

2.3.2 Definition of Criteria for Admission to the Data Bank

It was essential to establish at an early stage if a case was
sufficiently severe to be admitted to the data bank. The most
widely accepted indicator of brain damage was the extent and
duration of impairment of conscious level. Because of the lack of
generally agreed scales of assessment, it was during this time that
the Glasgow Coma Scale and the Glasgow OQOutcome Scale were devised
and developed. For inclusion in the data bank, the patient had to
be in coma, as defined in Section 2.2.2, for at least six hours.
Patients who were lucid after injury and then deteriorated so that
they were in coma for six hours or more were included. Patients
who died within six hours of injury were excluded.

The choice of the duration of coma as six hours was to some
extent arbitrary. However, the period was chosen to allow time for
the diagnosis and management of other injuries and their associated
complications, such as shock and respiratory insufficiency. It is
well known that these may affect several parameters of neurological
function, in particular the pupil reaction and the level of
responsiveness. The extent of brain damage may therefore be
over-estimated on the basis of the patient's state in the first few
hours after injury.

All cases who were admitted to each of the participating
centres during their period of study and who were eligible were

accepted into the data bank.
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2.3.3. Data Collection

Data were recorded by one of a series of specified clinical
trainees who had been made aware of the purposes of the study and
the categorisation of the various features agreed between
participating centres. The evolution of these naturally began in
Glasgow, but when other centres joined the study considerable care
was taken to ensure uniformity of eliciting, Ainterpreting and
recording clinical data.

Several different types of data were collected. Personal
details such as the age and sex of the patient were recorded, as
well as the history of the patient from injury until adm"ission to
neurosurgery. The investigations carried out, such as X-rays and
intra-cranial pressure monitoring, and treatment given were also
noted, as well as aspects of coma. Data from the bedside day
sheets on the coma scale, pupil reaction, eye signs and several
autonomic activities (respiration, heart rate, blood pressure and
temperature) were collected. Some of these observations are so
labile that at any one time they alone may be unreliable as a guide
to the degree of brain damage, while others change less rapidly.
All are dynamic, however, and an essential feature of the study was
that data on the patient were noted repeatedly at the bedside.
This gave rise to a massive amount of data, so it was decided to
summarise them by the best and the worst state within a series of
time periods after the onset of coma. The time periods chosen
were: -

(i) the first twenty-four hours (24H)
(ii) two to three days (2-3D)
(iii) four to seven days (4-7D)

(iv) eight to fourteen days (8-14D)

(v) fifteen to twenty-eight days (15-28D).

19




It was also noted whether the best coma score came before or after
the worst, by coding whether the patient was improving, not
changing, deteriorating or fluctuating within the time period.

The data collected also included an assessment of the six month
outcome using the Glasgow Outcome Scale and, once this was
available, the data were transferred into the computer data bank.
Great efforts weré made to follow up every case — an extremely
time-consuming occupation. However, a few cases had to be classed

as out of hospital and lost to follow-up.

2.4 Problems Associated with Data Collection

2.4.1 Observer Variability

An important feature of any practical measurement scale is that
it should give consistent results when used by different observers.
Teasdale et al. (1978) performed a detailed study of the observer
variability associated with the GCS and with some alternative terms
often used to describe patients with acute brain injury. The
observers used ranged from nurses to consultant neurosurgeons.
Patients in a specially prepared film were observed and scored by
groups in Britain, Europe and North America. Nurses and general
surgeons were found to be as consistent as neurosurgeons when using
the GCS and it was relatively resistant to language or cultural
differences between observers. The practical reliability of the
scale enhanced its wvalue both in monitoring individual cases and
for making meaningful comparisons between series of patients with
acute brain injury. Indeed, such has been the success of the scale
that within a few years it was used in more than half the
neurosurgical units in Britain (Gentleman & Teasdale, 1981) and is

now widely wused in North America and throughout the world,
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including countries such as Russia and Japan (Schein, 1988).

As with the GCS, there was good agreement between different
observers when the Glasgow Outcome Scale was used (Maas et al.,
1983). Indeed Langfitt (1978) suggested that both Glasgow scales
should be adopted worldwide, at least for a period of five years,

to facilitate the comparison of different studies.

2.4.2 Form Design

Even with strict definition of the terminology, substantial
problems can still be encountered in data collection. The physical
meaﬁs by which this is achieved can vary. Nowadays it 1is
relatively simple to collect data directly on to a microcomputer
using a database program. However when the Head Injury Study was
initiated such programs were not available and the data collected
were transcribed onto a form by the clinicians involved.

Good design of such a form (or database program) plays an
important role in careful record keeping. The larger the study
the more important it becomes to have a well designed form, and
effort at this stage can be rewarded when the subsequent data
collection and analysis are made as simple as possible. Useful
general guidelines have been produced by Gore and Altman (1982) and
comments specific to head injury on this problem have been made by
Miller and Teasdale (1985).

Numerous versions of the data collection form have been used
throughout the duration of the study. In 1978 a great deal of
effort, in which I had a leading part, was put into refining
existing approaches to create a final well designed method of data
collection. The form which is included in Appendix 1 was used to

collect most of the data used in this thesis.
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2.4.3 Data Checking

After the data were stored on computer they were checked before
any analysis was carried out. At a simple level all values
recorded were confirmed to be within their permitted range and
important features which had not been coded were identified. More
sophisticated checks were also incorporated to detect unusual or
unlikely combinations. For example it is unlikely that a head
injured patient whose best motor response is nil will be opening

his eyes spontaneously.

2.5 Reduction of Dimensionality

2.5.1 Introduction

As many as 300 items of information can be collected on some
head injured patients and not all of this information is relevant
to prognosis. A reduction in the dimensionality of the data
normally takes place at the modelling stage, but a rational
clinical approach to this problem can also be incorporated at an
earlier stage. The Glasgow Coma45core and created eye indicant are
examples where the dimensionality of the data has been reduced
after discussing the results of exploratory data analyses with the

clinical staff involved in the study.

2.5.2 The Glasgow Coma Score

In spite of summarising aspects of coma by the best and worst
in the period, the dimensionality of the data is still large. In
particular, the coma scale is composed of three separate responses.
These responses tend to be related to each other, particularly when
responsiveness is severely depressed in the first few days after

injury. For example, a patient whose best motor response is
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extension will not be speaking and is unlikely to be opening his
eyes at this stage. There is, therefore, some redundancy in
recording all three items in this circumstance, indicating that
combination of all three results into an overall measure of
responsiveness might be accomplished without wundue loss of
information.

The simplest measure is the sum of the three component scores
and indeed this total is now widely known as the Glasgow Coma
Score. It ranges from three to fifteen, with scores of less than
eight usually indicating coma; scores of nine or more are out of
coma (Teasdale_et al., 1983). However, at least in theory, the
same total score could be made up in a number of different ways.
Teasdale et al., (197%9a) showed that, in practice, the overall score
proves to result, in the majority of cases, from one characteristic
combination of responses. This was particularly the case with
scores in the lower half of the range (3 - 8) during the first week
after injury. Even when the same overall score encompasses groups
of patients with different component scores, the outcomes of the
different groups prove to be similar. However, information is lost
when using the sum or some subset of the components instead of the
three individual results. This loss of information may be partly
compensated for by the conceptual simplicity of one number versus
three.

If any of its component scores is missing then the Glasgow Coma
Score 1is also missing. This happens most frequently with
ventilated patients, who have an endotracheal tube in position or a

tracheostomy, in which case the verbal response cannot be elicited.

2.5.3 Created Eye Indicant

Plum and Posner (1972) pointed out the value of studying eye
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movements as an indication of brain stem function. The data bank
records spontaneous eye movements and reflex eye movements from the
oculocephalic and oculovesticular reflex response. Patients
frequently had one or more of these three observations missing
because the test was not carried out. For example, it would be
unlikely that the reflex tests would be carried out if the patient
had orientating (normal) spontaneous eye movements. To reduce the
problems of missing data, dimensionality and dependency between
features, a method was devised to take account of one or other
feature being absent, impaired or normal and a ‘'created eye
indicant' was devised to combine the information contained in the

three features, whether tested or not.

2,6 The Current State of the Data Bank

In spite of the effort and cost involved, data collection in
Glasgow has been continuous and all head injuries up to the end of
1986, a total of 2005 cases, are now available for analysis. This
brings the total in the data bank to 3078, with 305 cases from
Rotterdam, 113 cases from Groningen, 225 from Los Angeles and 430
from San Francisco in addition to those from Glasgow.

Since 1985, Edinburgh, Liverpocol and Southampton have joined
Glasgow in a multi-centre study of the effect of providing
predictions of prognosis to clinicians. By the end of this study
in December 1988 it is anticipated that the data bank will have
around 4000 cases of severe head injury.

This extensive carefully documented data bank provides a unique

resource which is invaluable in the study of severe head injury.
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CHAPTER 3

THE USE OF DISCRIMINANT ANALYSIS TO PREDICT THE SIX MONTH OUTCOME

OF PATIENTS IN THE HEAD INJURY STUDY

3.1 Introduction

After scales for the assessment of conscious level and outcome
had been developed and a database of the features of patients with
a severe head injury set up, an attempt could be made to predict,
using data collected shortly after injury, the degree of recovery
which patients will attain. The first step in the procedure was to
examine the relationship between the individual features and
outcome. As mentioned in Chapter 1, there are numerous reports
identifying such features, and the data bank of 1356 Glasgow cases
was used to illustrate examples of the relationships of coma score,
pupil reaction and eye indicant to the six month outcome, based on
the patient's best state in the first twenty-four hours (Tables 3.1
- 3.3). Similar relationships can be shown using the patient's
worst state or data from different time periods. These findings
confirmed that depth and duration of coma are reliable markers of
severity of brain damage and hence indicators of likely outcome.
The natural way forward from this was to use combinations of
features to predict outcome. This brings the problem into the
framework of discriminant analysis, where the aim is to assign an
observation to one of two or more distinct classes or groups, on
the basis of a training set of observations whose classes of origin
are known. However, here the analysis is used for prognosis rather
than the more common medical application of discriminant analysis

for diagnosis.
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Table 3.1 Relationship between 24 hour best coma score and six

month outcome from the data bank of 1356 Glasgow

cases
Six Coma Score
Month
Qutcome 3-5 6-7 8-10 11-15
Death 226 236 88 24
78% 547 277 167
Vegetative 9 8 3 1
State 3% 27 17 1z
Severe 21 66 44 17
Disability 177% 157 147 11%
Moderate 16 58 70 44
Disability 67 137 227 297
Good 16 70 117 66
Recovery 67 167 36% 437
Total 288 438 322 152

100% 1007 100% 100Z




Table 3.2 Relationship between 24 hour best pupil reaction and

six month outcome from the data bank of 1356 Glasgow

cases
Six ' Pupil Reaction
Month
Outcome Reacting Not Reacting
| Death - 409 222
* 397 837
i
Vegetative 13 10
State 17 47
Severe 146 21
Disability 147 8%
Moderate 196 9
Disability 197% 37
Good 276 7
Recovery 277% 37%
Total 1040 269
1007 1007
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Table 3.3 Relationship between 24 hour best eye indicant and

six month outcome from the data bank of 1356 Glasgow

cases
Six Eye Indicant
Month
Outcome Absent/Bad Impaired Good
Death 196 102 168
907 597 297
Vegetative 2 6 10
State 17 37 27
Severe 9 36 85
Disability 47 197 157
Moderate 8 22 124
Disability 47 12% 227
i Good 3 25 185
Recovery 1% 137 327
Total 218 191 572

1007 1007 1007




3.2 Terminology of Discriminant Analysis

Before proceeding, it is useful to introduce the notation and
terminology of discriminant analysis (Duda and Hart, 1973;
Aitchison and Dunsmore, 1975; Lachenbruch, 1975) in relation to

prognosis.

(i) Individuals in the study are assumed to belong to one of a

finite set of k outcome categories, My, ..., Nk.

(ii) Associated with these outcome categories there may be a

set of prior probabilities, arrival rates or relative

incidences, p(M;), ..., p(llx) which sum to unity and which
summarise our knowledge of the frequency of occurrence of
the different categories.

(iii) Each individual has information available in the form of a
finite set of feature variables or indicants. These

measurements will form a feature vector for the patient.

(iv) A training data set, D, is available of n individuals

whose outcome categories and feature vectors are known and
represented as -

D= {(oy, x4), i=1, ..., n}.
The outcome category of individual i is denoted by o; and
the feature vector by xi.

(v) A discriminant rule is set up for assigning an individual

to one of the outcome categories or for specifying the
probability of each of the different outcome categories,
given the feature vector of the individual. The
discriminant rule is developed from the training set of
data, D.

(vi) A test data set is provided of individuals whose outcome

categories and feature vectors are also known, so that the
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performance of the discriminant rule can be evaluated.
Often the training and test data sets are the same, and
less Dbiased evaluation can be achieved provided
cross-validatory assessment 1is wused (Lachenbruch and
Mickey, 1968).

For a new individual with feature vector y,.the discriminant
rule gives a means of obtaining estimates for the conditional
probabilities {p(nily,D), i=1, ..., k}. These estimates may then
be wused to assign that individual to the outcome category
associated with the largest probability.

There are two approaches to this problem, which Dawid (1976)
calls the diagnostic and the sampling paradigms. With the
diagnostic paradigm p(Hin,D), the distribution of the outcome
category for a given feature vector, is modelled directly. With

the sampling paradigm, Bayes' theorem is used to give

p(1j |y,D) = p(y|ny,D) p(my), i=1, ..., k
and both p(lij), the prior probability, and p(y|Ni,D), the
distribution of the feature vector within a given disease category,
are modelled.

The diagnostic paradigm is restricted mainly to the use of
generalised 1logistic models, whereas by adopting the sampling
paradigm the main effort is in modelling p(y|I;,D) and so density
estimation, either parametric or non-parametric, is of prime
concern. This approach gives wide scope for the many methods of
density estimation available, but certain decisions have to be
made, such as which variables to include, before proceeding with

the density estimation problem.
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3.3 TYactors Important in Comparative Discriminant Analysis Studies

3.3.1 Introduction

In a comparative study of different discriminant rules, some
important choices have to be made in addition to that of the model
to be used, These include;~ \

(i) the variables to be selected for inclusion in the rule,

(ii) the criteria to be used for the evaluation of the

performance of the rule
(iii) the method to be adopted to deal with missing data, if it

exists.

3.3.2 Variable Selection

In many practical discriminant analysis problems, data on a
very large number of variables are collected. Indeed, in the Head
Injury Study over 300 separate items can be available for some
patients. In such cases a subset of the variables has to be
selected which it is hoped will be almost as informative as the
entire set.

There are many factors which might influence the choice of
variables and this makes the problem a difficult one. If the aim
was to produce a simple nomogram for diagnostic screening then
perhaps only three or four variables could be chosen. However, if
computing facilities were available, more variables could be
incorporated in a more complex screening rule. Missing data can be
important in variable selection. A variable might be a powerful
discriminator but be recorded so rarely that it cannot be
incorporated into the model. Similarly, the cost or time involved
in measuring certain variables has to be considered, in view of the

fact that the result of an expensive and time-consuming bioassay
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may be no more informative than an easily obtained item of clinical
information.

These  factors are all concerned with the practical
applicability of the final discriminant rule, but its statistical
properties are also important. Lachenbruch (1975), Hand (1981) and
Habbema and Gelpke {(1981) discuss various methods of variable
selection which are widely used, and the problem of variable
selection is in itself a separate research area. The problem of
variable selection for head injury prognosis was dimportant in the
early development of a prognostic model and will be discussed

further in Section 3.4.3.

3.3.3 Criteria for the Evaluation of the Performance of a

Discriminant Rule

To compare the performance of different discriminant rules on a
particular sets of variables or of a single discriminant rule on
different sets of variables, appropriate criteria must be employed.
Two quite separate aspects of performanpe must be considered.
Historically, the more important aspect is how well the groups
corresponding to the various outcome categories are separated.
However, more recently it has become increasingly important to know
whether or not the probabilities assigned to each group are
realistic. For example, if there are two outcome categories, a
rule which invarilably assigns a probability of 0.51 to the correct
category gives perfect separation but unrealistic probabilities.
At the other extreme a rule which for every case just assigns the
prior probabilities does in some sense give accurate probabilities
but is of no use for separation. Habbema et al. (1978, 1981),
Habbema and Hilden (1981) and Hilden et al. (1978a, 1978b) give an

extensive discussion of these points and present a large number of
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measures of efficiency for a discrimination procedure.
The measures of separation considered here will be
(i) the error rate,

(i1) the average logarithmic score,

(1ii) the average quadratic or Brier score.
(1) The error rate (the proportion of cases allocated to an
incorrect category) is the most commonly used measure of separation
and was the one used in the early work on variable selection for
the Head Injury Study. It is, however, very insensitive as it
takes no account of the relativF seriousness of different errors,
or of near misses, although it does have respectable decision
theoretic foundations.

(ii) The logarithmic score for a patient whose true category is,

for example, Il is
- loge p(N1]|y,D) = - log py, say.

This measure is sensitive to changes in the “diagnostic
probabilities. It has, however, one serious drawback from an
~ applied point of view, namely, that if a probability of zero is
attached to the actual category, then the penalty associated with
this is infinite. 1In practice, there are methods of dealing with
this if it poses a problem (Hilden et al., 1978b).

(iii) The quadratic or Brier score -for the above patient is

k
(1 -pp)2+ ) pi2.
i=2

This measure takes account of the distribution of probability to
all outcome categories and not simply that assigned to the actual
outcome.

Both the quadratic and logarithmic scores can be interpreted as
the distance of the predicted outcome from the actual outcome. If

the predicted outcome {p(Ojly,D) i=1, ..., k} is denoted by
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p=(py, +.., pg)¥ and the actual outcome by q = (g1, «..» qg)T
where q4 =1 if i is the actual outcome and 0 otherwise, then the

Euclidean measure, A Q(p,q), where

b = p-al2=0G- 0% -

and the Kullback-Leibler measure, A KL(p,q), where

qi

k
A KL(p,q) = I qy log
i=1 P
1
give the gquadratic and logarithmic scores respectively.

For good performance from the point of view of separation, all
the above measures should be close to zero. A useful benchmark for
comparison is to assign the prior probabilities to each individual
and to evaluate the performance obtained using the measures

described.

3.3.4 Missing Data

The problem of missing data often arises in practical
applications of discriminant analysis. These missing values can
arise for many different reasons. Studies extending over time are
particularly vulnerable to missing observations. For example, a
new test might be developed which is thought to provide
discriminatory information, but if it is included in the study then
its value would be missing in the early cases, Information can be
lost through truncation. If a measuring device is only calibrated
to give accurate results within a given range of values then any
values outside that range would be missing. Other physical factors
may also prevent information being recoided. For example, in head
injured cases it is not possible to record the eye opening response

in a patient with severely swollen eyes or the verbal response of



an intubated patient. These three examples differ in one important
aspect. In the first example the data can be said to be missing at
random in that, although they are missing in a systematic pattern,
the fact that an ditem of information is missing gives no
information about the value it might have taken. This is not the
case in.the second example, where if an item of information is not
recorded, then it lies outside a possible range of values. 1In the
third example it is much more difficult to ascertain whether the
data are missing at random or not. Little (1979) gives the
following definition of missing at random which 1s equivalent to
that given by Rubin (1976). If n d-variate observations are
denoted by the (n x d) data matrix X = [xij], and the (n x d)
random matrix R = [rij] is defined so that rj5 = 0 or 1 according
to whether Xjj is missing or observed, then any missing values are
missing at random if the conditional distribution of R given X is
independent of the missing values. In particular, the probability
that a value Xi3 is observed must not depend on the value Xij (thus
excluding truncation from the definition), although it may depend
on the value of an observed variable xjx. Rubin (1976) gives this
as the weakest definition of missing at random which allows the
mechanism generating the missing values to be ignored.

One method of dealing with missing data is to use only cases
where the data are complete to obtain the parameter estimates for
the specified model. This however is not always acceptable and
other means have to be found to deal with the problem of parameter
estimation with incomplete data. Assuming that the data are
missing at random as defined previously, Murray (1979) compares
different methods of dealing with missing data in the Head Injury
Study. With many of the sophisticated statistical modelling

techniques now being developed in discriminant analysis, a limiting
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factor in their use is how well they can be adapted to cope with
missing values.

In the Head Injury Study the mechanism by which a measurement
became missing was ignored. In fact, the data were implicitly
assumed to be missing at random within each prognostic category.
It 'is fair to say that this is unrealistic. However, it is
difficult to avoid this assumption by convenient realistic
modelling and the incorporation of the incomplete data does add

useful information (Murray, 1979).

3.4 Application of an Independence Model to the Head Injury Data

Bank of 600 Cases

3.4.1 Introduction

By 1976 the data bank contained 428 cases from Glasgow and 172
cases from the Netherlands. Jennett et al. (1976) confirmed that
the clinical features of the Dutch and Glasgow cases on entry to
the study were very similar (Table 3.4). The main difference was
that 307 of the Glasgow cases were admitted to the neurosurgical
unit more than 24 hours after injury while‘almost all the Dutch
cases were admitted to a neurosurgical or neurological unit within
24 hours. All patients were treated with the techniques and vigour
which is normal in a fully equipped unit. In the two countries
there were differences in the proportions of patients receiving
various therapies, such as mannitol, steroids, and ventilation, and
investigations such as angiography. Despite these differences the
distributions of six month outcomes in the two centres were similar
(Table 3.5). This suggested that, given the standard of care
available in a specialised unit, the variations in details of

management were not crucial in determining outcome.

36




Table 3.4

Initial features (24 hour best)

of patients

from

Glasgow and Netherlands from the data bank of 600

patients

Feature Gla;gow Netherlands

(n=428) (n=172)

Mean age (years) 34 33
Lucid interval 317 257
Coma score 3~7 707% 73%
Eye movements impaired 467 427

or absent

Non-reacting pupils 197 297%
Hemiparesis 197 217
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Table 3.5

Outcome of patients from Glasgow and Netherlands six

months after injury in the data bank of 600 patients

Glasgow Netherlands

(n=428) (n=172)
Death 527% 527
Vegetative State 2% 17
Severe Disability 8% 5%
Moderate Disability 17% 157
Good Recovery 227 27%
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For the purpose of predicting prognosis the five categories in
the Glasgow Outcome Scale were reduced to three:—
(i) death or vegetative state (D/V)
(ii) severe disability (SD)
(iii) moderate disability or good recovery (M/G)

: The 600 cases from the two countries were divided at random
into three groups of 200. Two of the groups were combined to
produce a training data set of 400 cases. The remaining 200 cases
acted as a test data set. Predictions were made at the end of the

first three time periods i.e. at 24 hours, 3 days and 7 days after

injury.

3.4.2 Independence Model

This model for unordered categorical data was chosen initially

for its simplicity. For a given feature vector, y, Bayes' Theorem

was used to give

p(My]|y,D) = p(y|my,D) p(my), i=1, ..., k.

The prior probabilities or relative incidences
{p(ny), i=1, ..., k} were estimated using the proportions among the

training cases. TFor y complete, the density estimate for p(ylni,D)

took the form

d
p(y|s,D) = T plyp{H,D)

= & iy + 1 (3.1)

r=]
ni(r) + c,
where

d is the no. of variables,

yr denotes the rth component of y,
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ni(y,) is the no. of cases in the training set in outcome

category Iy with score y, on variable r,

¢y is the number of categories in variable r,
and ni(r) is the number of patients in the training set in

outcome category Il with variable r not missing.
Thus it was assumed that, within each outcome  category, 14,
variables were independent and ﬁ(y]l‘[i,D) was given by the product
of the estimates of the marginal probabilities. The addition of 1
to the numerator and c, to the denominator provided a small amount
of smoothing to prevent a probability of zero resulting from an
empty cell count. One of the most appea]:ing featuresr of this model
was that it was trivial to deal with missing dafa. When y, was
missing, the appropriate factor on the right-hand side of

Equation 3.1 was replaced by unity.

3.4.3 Variable Selection

Although many items of information about the patient had been
recorded in the data bank, it was decided, after lengthy
discussions with the clinicians, to restrict the number available
for possible inclusion in the discriminant rule to around 25.
Chosen for possible inclusion were those indicants which had
already been shown to be related to outcome, such as coma score,
pupil reaction, eye signs, motor response patterns, age, ete. If
the indicant had a best and worst score available then both were
included. The program used at this time to predict the outcome of
the patients was provided by Dr Robin Knill-Jones who had used it
in the diagnogis of jaundice (Knill-Jones, 1975). It had the
following method of variable selection. From the list of indicants
available, one was chosen at random, y;, say. The prior

probabilities were updated using Bayes' theorem to obtain the
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posterior probabilities of each of the outcome categories

p(l§|y1,D) = p(1y) p(yy1|mny,D).

If any of the posterior probabilities, p(lilys), i=1, ..., k,
exceeded a pre-determined level then no more information was added
for that patient; if not, then anot\her indicant was chosen at
random and the probabilities updated again. This continued until
either the pre-determined level was reached or all the indicants
had been included. In much of the early work the pre-determined
level was set arbitrarily at 0.97, and p(Ij) > 0.97 for some
i=1, ..., k was termed a confident prediction.

The increase in the probability of the actual outcome given by

the inclusion of a particular indicant was termed the reduction in

uncertainty. After all cases had been predicted, the average
reduction in uncertainty for each indicant was given. During the
development of the prognostic system I carried out many runs of the
program using different training sets and data from different time
periods. It became apparent that a relatively small number of
indicants (about 4) were consistently wuseful in reducing
uncertainty.

As well as comparing the performance of different variable sets
using the error rate, I examined optimistic and pessimistic errors.
An optimistic error is defined as a confident prediction of an
outcome of M/G in a patient whose actual outcome is D/V, while a
pessimistic error is a confident prediction of an outcome of D/V in
a patient whose actual outcome is M/G. While optimistic errors as
a result of the statistical methodology were acceptable to the
clinicians, pessimistic errors were not. A closer examination of
the pessimistic errors revealed that they were occurring in cases

where the worst data were included rather than the best data. A
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case with poor worst data and good best data would be predicted to
have a poor prognosis if the worst data alone were chosen. As a
result of the clinical unacceptability of pessimistic errors, it
was decided at an early stage in the development to use only the
best scores in the time periods.

. By the end of the second time period almost twice the number of
indicants were available for inclusion, with most c¢linical
information being available as the 24 hour best score and the 2-3
day best score. When both the 24 hour and 2-3 day score were
available for selection I invariably found that the reduction in
uncertainty from the 2-3 day score was greater than that from the
24 hour score. Similarly, at 4-7 days the reduction in uncertainty
was greater with the 4-7 day data than with that for the previous
time periods. This reinforced the clinicians' conviction that the
current state of the patient was more important than their past
state. As fewer than eight variables were customarily all that was
used to predict outcome, it was decided, for the time dependent
variables, to use only the data for the current time period when
predicting outcome. Thus, if a prediction was made at the end of 7
days, only the 4-7 day best data were used along with other
variables such as age or time elapsed between injury and coma.

As a result of this developmental work, six variables (age,
coma score, motor response pattern, pupil reaction, eye indicant
and change in neurological function) were found to be consistently
useful and were adopted in practice. If the indicant had more than
three or four response levels, as for example with coma score, then
these were prouped together in such a way as to retain as much of
the prognostic information as possible. This was done using an
entropy measure based on the conditional outcome given the

(grouped) coma score (Teasdale et al., 1979a). As a result of
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recovery and selection processes the marginal distribution changes
through time so that the grouping used at 24 hours was 3-5, 6-7,

8-15 whereas at 28 days it was 3-10, 11-13, 14-15,

3.4.4 Results of the Predictions using the Independence Model

The six month outcomes of the test and training groups are
given in Table 3.6, The classification matrices arising from the
predictions using 24 hour, 2-3 day and 4-7 day data are given in
Tables 3.7(a), 3.8(a) and 3.9(a) respectively. When predicting the
outcome at 3 days after injury all cases who died in the first 24
hours were excluded from the test“and training sets. Similarly,
all cases who died within the first 3 days were excluded from the 7
day predictions. The error rates corresponding to these
classification matrices and the error rates obtained by allocating
the prior probabilities to each case are given in Table 3.10(a).

While it might be expected that more accurate predictions could
be made at later time periods, the error rate increased from 24
hours to 3 days to 7 days. This was because the early deaths were
excluded; these cases usually have correct predictions and so the
problem of predicting prognosis becomes more difficult.

These error rates were unacceptable to the clinicians and so it
was decided not tc classify a patient unless he had a confident
prediction of outcome as previously defined (p(Ijly) > 0.97 for
some i). This reduced the number of cases being classified to 38%,
527 and 45% at 24 hours, 3 days and 7 days respectively. It also
substantially reduced the error rate. The classification matrices
for the first three time periods and their error rates for the
confident cases are given in Tables 3.7(b) - 3.10(b).

By classifying only cases with confident predictions there was

no pessimistic error and the few optimistic errors were acceptable




Table 3.6 Six month outcome of test and training data sets in

the data bank of 600 patients

Frequencies
Qutcome
Training Set Test Set
Death or 213 106
Vegetative State
Severe Disability 31 12
Moderate Disability or 156 82

Good Recovery

Total 400 200
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Table 3.7

Classification matrices

for the independence model

using the 24 hours best data with the data bank of

600 patients

a) for all cases predicted and

b) for cases with a confident prediction

Predicted Actual Outcome
Outcome
D/V SD M/G Total
D/V 90 4 14 108
SDh 2 1 0 3
M/G 14 7 68 89
Total 106 12 82 200
(a)
Predicted Actual Outcome
Outcome
D/V SD M/G Total
1AY 45 1 0 46
SD 0 0 0 0
M/G 2 1 27 30
Total 47 2 27 76

(b)
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Table 3.8

46

Classification matrices for the independence model

using the 2-3 day best data with the data bank of 600

patients

a) for all cases predicted and

b) for cases with a confident prediction

Predicted Actual Outcome
Outcome
D/V SD M/G Total
D/V 59 3 12 74
SD 2 0 0 2
M/G 10 9 70 89
Total 71 12 82 165
(a)
Predicted Actual Outcome
Outcome
BIAY SD M/G Total
D/V 37 0 0 37
Sh 0 0 0 0
M/G 2 1 46 49
Total 39 1 46 86

(b)



Table 3.9 Classification matrices for the independence model
using the 4-7 day best data with the data bank of 600
patients

a) for all cases predicted and

b) for cases with a confident prediction

Predicted Actual Outcome
Outcome

D/V  SD M/G Total

D/V 35 3 9 47
SD 3 0 3 6
M/G 7 9 70 86
Total 45 12 82 139
(a)
Predicted Actual Outcome
Outcome

D/vV  SD M/G Total

D/V 21 1 0 22
SD 0 0 0 0
M/G 1 3 36 40
Total 22 4 36 62

(b)




Table 3.10

a) for all cases predicted

Error rates from classification matrices

b) for cases with a confident prediction

Time Classification Prior
Period Frror Error
Rate Rate
24 hours .205 L470
\
‘ 2-3 days .218 .570
4-7 days 245 410
(a)
Time Classification Proportion
Period Error Confident
Rate
24 hours .053 .380
2-3 days .035 .521
4-7 days .081 446

(b)
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on the grounds that complications can develop in patients who, soon
after injury, appear to have the potential for recovery.

It should also be noted that few cases were predicted to have
an outcome of severe disability. This can be largely explained by
the low prior probability attached to this outcome and the fact

that this group overlaps both of the other outcome categories.

3.4.5 Discussion

This early work produced encouraging results and was one of the
first examples of such methodology to be published in the medical
press. In spite of this success o;r use of the independence model
was seen by some commentators (Becker, 1979; Stablein et al., 1980)
to be simplistic, In particular they suggested that a logistic
regression technique would obviate the problems of dependence and
interaction amongst the variables. A comparative study of
different discrimination techniques using a large data set is in
itself an interesting statistical exercise. Partly for this reason
and partly to answer the critics such a comparative study was

carried out and this is described in Section 3.5.

3.5 Comparative Study of Discrimination Techniques

3.5.1 Introduction

As the comparative study was a major undertaking, all the
statisticians who were involved in the Head Injury Study
collaborated to make the report possible (Titterington et al.,
1981). My main contribution was to the design of the study, and in
particular to the selection of the variable subsets to be
considered.

The purpose of this study was to compare statistical
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methodology, and therefore certain standardisation in the data is
needed so that the results of different methods would be based on
equivalent information. Thus the five categories of the Glasgow
Outcome Scale were reduced to three as in Section 3.4.

The various indicants considered are shown in Table 3.11.
These factors have already been shown to be indicators of the
degree of brain damage. For the purpose of this study, the
indicants were based on the patient's best state during the first
24 hours after onset of coma, and the work was limited to
estimating the probability of attaining one or other of the three

.outcome categories six months after injury. It can be seen that
the variables are all categorical and are either binary or ordered.
This means that methods based on continuous data might be
considered as possible, albeit unsatisfactory, alternatives to
categorical data techniques. Different suﬁsets of these variables
were chosen to compare how well the various methods were able to
exploit the information in subsets of different sizes, and to see
how the methods reacted to the degree of dependence among the
variables as well as to the proportion of missing data. The four
subsets used are given in Table 3.12. Set I consisted of four
weakly dependent variables with appreciable missing data while set
IT _consisted of four highly dependent variables with little missing
data. Set III was an extension of I and set IV was obtained from
set III by expanding the coma score and created eye indicant into
their components. There was therefore high dependence and
appreciable missing data within this set. The data bank had risen
to 1000 cases by this time and these were split randomly into two
groups of 500 to give separate test and training sets. The

distribution of outcome in the two groups is given in Table 3.13.
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Coma score

MRP

Change

Pupils

SEM

0cs
0ovs

Eye indicant

Table 3.11 Feature variables used in the comparative study

Variable Description

Age Age, grouped into decades 0-9, 10-19, ..., 60-69, 70+

E score Eve opening in response to simulation, graded 1 (nil)
to 4 (normal), but grouped as 1 and 2 - 4 for these
comparisons

M score Motor response of best 1limb in response to
stimulation, graded 1 (nil) to 6 (normal)

V score Verbal response to stimulation, graded 1 (nil) to

5 (normal), but grouped as 1 and 2 - 5 for these

comparisons

The sum of the raw E, M and V scores, in the range
3 to 15, but grouped as 3, 4, 5, 6, 7, 8, 9 - 15 for

these comparisons

Motor response pattern, an overall summary of the
motor responses in all four limbs, graded 1 (nil)

to 7 (normal)

Change in neurological function over the first 24
hours, graded 1 (deteriorating), 2 (static) or 3
(improving)

Pupil reaction to light, graded 1 (non-reacting) or
2 (reacting)

Spontaneous eye movements, graded 1 (nil) to 4

(normal)
Oculocephalics, graded 1 (nil) to 4 (normal)
Oculovestibulars, graded 1 (nil) to 4 (normal)

A summary of SEM, OCS and OVS, graded 1 (bad),
2 (impaired) or 3 (good)




the

SEM,

Table 3.12 Subsets of the feature variables wused in
comparative study
Set Variables
I Age, Coma score, Change, Eye indicant
I1 Age, E score, M score, V score
IIT Age, Coma score, MRP, Change, Pupils, Eye indicant
IV Age, E score, M score, V score, MRP, Change, Pupils,

0Ccs, 0VSs
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Table 3.13 Six month outcome of test and training data sets in

the comparative study

Frequencies
Training set Test set
Death or 259 250
Vegetative State
Severe Disability 52 48
Moderate Disability or 189 202

Good Recovery

Total

500 500
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3.5.2 Statistical Techniques

The statistical methods used can be brought together under the
following general headings.
(i) Independence-based models for unordered categorical data,
allowing for a single overall association factor.
(ii) Lancaster first-order interaction models for unordered
categorical data.
(iii) Latent class models.
(iv) KXernel-based procedures for categorical data.
(v) Linear and quadratic discrimination based on normality
assumptions.
(vi) Linear logistic discrimination.
All but (vi) involve density estimation in one form or another.
Details of the different models and references are given in the
paper.
(i) Independence based models

In these the density estimates took the form, for y complete,

d ny(ye) + 1/cr B

p(y|ny,D) « n
r=

1 nij{(r) +1

where d, yy, nj(yy), cp and nij(r) are as defined in Section 3.4.2
and B is an overall assosciation factor. Three independence-based
models, INDEP1, INDEP2, and INDEP3 were used corresponding to the
choices of 1.0, 0.8 and 0.5 respectively for the wvalue of B. This
factor B imposes some smoothing 3nd represents the proportion of
non-redundant information in the variables (Hilden and Bjerregaard,
1976). An association factor of 1.0 corresponds essentially to the
model described in Section 3.4.2 and missing data were dealt with

as described in that section.
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(ii) Lancaster models

The structure of these models is such that a full range from
basic independence to full multinomial models is permitted.
Missing data treatment was the same as for the independence Podel,
and when the independence model had to be used to avoid negative
probabilities, the same three choices of association factor gave
rise to the methods LANC1, LANG2 and LANC3 respectively.
(iii) Latent class models

In latent class analysis, mixture models are assumed for the
density functions being estimated. Thus, for each Ij, it is

assumed that

L
plylny) = jzlwij Pj(y),

where
L is the number of terms (latent classes) in the mixture,
pj(.), j=1, ..., L are the densities involved in the
mixture

and wij are, for each i, a set of mixing weights (Fielding,
1977).

For each of the variable sets the two best consecutive numbers of
latent classes gave rise to methods LATCLl and LATCL2.
(iv) Kernel-based procedures

With this procedure

o(y|ns, ) =1 B k(ylxi,n)
1°» ni j-_-l 1j» »

where
ny; = number of patients in the training set in category Iy,
X3j» 3 =1, ..., ny denote their feature vectors,
K(.|x,X) is a probability density over the sample space of y,
and A describes the degree of smoothing of the relative

frequencies.




The kernel methods used were:-
KERUN1: The kernel method of Murray & Titterington (1978) -
unordered categories with the smoothing parameters chosen
marginally.
KERUN2: As KERUN1 but with the smoothing parameters chosen by a
multivariate pseudo-Bayesian techniqug.
KERORD1 and KERORD2: As KERUN1 and KERUN2 but assuming ordered
categories,
KEREX? and KEREX2: Marginal and multivariate choices of the
smoothing parameters, treating 'missing' as an extra category.
KEREX3: 'Missing' treaéed as an extra category and a single
smoothing parameter chosen for all dimensions.
(v) Normal Methods

These methods assume multivariate normality and estimate the
mean vectors and covariance matrices by maximum likelihood. The
methods used were:-
NORLINl: Covariance matrices were assumed equal and sample means
from available data were substituted for missing data.
NORLIN2: As for NORLIN1 but with proper maximum likelihood
treatment for missing data via the EM algorithm (Dempster et al.,
1977).
NORQUAD: As for NORLIN2Z but without the assumption of equal
covariance matrices.

With all three methods, incomplete test cases were classified
on the basis of the relevant marginal distributioms.
(vi) Linear Logistic Method

This is the only method in which {p(n4ly), i=1, ..., k} is

modelled directly. The models take the parametric form

p(Iy|y) / p(Igly) = exp(ay + B4Ty) i=1l, ..., k-1
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where {a;} and {R4} are to be estimated. The technicalities are
described by Anderson (1972). Missing data were replaced by group
means in the training cases and grand means in the test cases,

giving the method LINLOG.

3.5.2 Results of the Comparative Study

To provide a benchmark for the performance of the different
methods the prior probabilities were assigned to each case and the
error rate, average logarithmic score and average quadratic score
were calculated for the test data set. This discriminant rule
would score 0.500, 0.939 and 0.579 respectively on the three
measures. The results for the four variable sets are given in
Tables 3.14 - 3.17.

Many comparisons can be made. These were considered as
follows:

(i) within groups of similar methods
(ii) among groups of similar methods
(iii) among the sets of variables.
(i) The discrete parametric models were considered first, namely
the independence, Lancaster and latent class models. For variable
set T INDEP1 and INDEP2 performed well, giving similar results;
INDEP3 had poorer results, as had the latent class models. The
Lancaster models all gave similar results which were also inferior
to those of the independence model. The independence model still
performed well with variable set II even though the variables were
highly dependent. The Lancaster models again gave similar results

which were superior to those of the independence model in terms of

error rate but inferior in terms of the logarithmic score, The

latent class results were poorer than the others with respect to

the quadratic and logarithmic scores. For variable set III the
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Table 3.14 Results of the comparative study for variable set I:

Age, Coma score, Change, Eye indicant

Measure of Separation ‘

Method
Error Average Average \
Rate Logarithmic Quadratic
Score Score ‘
INDEP1 .278 .685 .377
INDEP2 .268 .681 .379 ‘
INDEPR3 .268 .708 .400
LANC1 .292 . 737 .397 ‘
LANC2 .294 .735 .398 )
LANC3 .296 742 404
LATCLL 264 .719 .390
LATCL2 .290 752 .409 ‘
KERUN1 .316 .934 A67
KERUN2 .308 .925 449 \
KERORD1 .292 ’ 874 443
KERORD2 .302 .900 430 )
KEREX1 .320 .889 .453
KEREX2 .328 1.037 477
KEREX3 .282 .800 .420
NORLIN1 .286 .707 .306
NORLIN2 .284 .702 .396
NORQUAD .294 .779 404

LINLOG .290 721 .400 ‘




Table 3.15 Results of the comparative study for variable set II:

Age, E score, M score, V score

Measure of Separation

Method
Error Average Average
Rate Logarithmic Quadratic
Score Score

INDEP1 .338 775 .438
INDEP2 .340 . 762 436
INDEP3 .338 771 .445
LANC1 .298 .808 435
LANC2 .298 .809 +437
LANC3 .296 .818 . 445
LATCL1 .328 .819 447
LATCL2 .310 .822 L 446
KERUN1 .346 924 .481
KERUNZ2 .328 .872 .463
KERORD1 .352 .905 WA71
KFERORD2 .332 .856 454
KEREX1 334 .953 .491
KEREX2 .326 .903 475
KEREX3J .340 .852 .466
NORLIN1 .316 .760 433
NORLIN2 .306 .757 431
NORQUAD .304 .884 .450

LINLOG .314 .764 .436




Eye

Table 3.16 Results of the comparative study for wvariable
set III: Age, Coma score, MRP, Change, Pupils,
indicant

Measure of Separation
Method
Error Average Average
Rate Logarithmic Quadratic
Score Score
INDEPL .248 .686 .364
INDEP2 .246 .656 .358
INDEP3 .232 652 .362
LANG1 .254 .738 .382
LANC2 .256 .728 .378
LANC3 244 727 .376
LATCL1 .298 .726 412
LATCL2 .262 .718 372
KERUN1 .332 1.103 .500
KERUN2 .338 1.267 .537
KERORD1 .328 1.030 .482
KERORD2 .316 1.270 514
KEREX1 .310 1.013 467
KEREX?2 344 1.412 .548
KEREX3 .278 .769 .395
NORLIN1 .256 .665 .368
NORLIN2 .258 .661 .367
NORQUAD L2786 .907 411
LINLOG 272 .676 .370
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Table 3.17 Results of the comparative study for variable set IV:
Age, E score, M score, V score, MRP, Change, Pupils,
SEM, 0CS, OVS
Measure of Separation
Method
Error Average Average
Rate Logarithmic Quadratic
Score Score
INDEP1 .272 .839 .389
INDEP2 . 264 . 757 .385
INDEP3 .264 .673 .368
LANC1 .286 .829 .410
LANC2 .286 .800 .403
LANC3 .280 .768 .395
LATCL1 .282 .726 .396
LATCL2 244 .709 .381
KFRUN1 .350 _ 1,417 .566
KERUN2Z .390 1.932 645
KERORD1 .340 1.414 .543
KERORD2 374 1.923 .628
KEREX1 .388 1.645 634
KEREX2 .398 2,143 .652
KEREX3 .298 .806 412
NORLIN1 .270 .804 404
NORLIN2 .250 .663 .361
NORQUAD 274 .947 424
LINLOG .286 172 412
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independence models were better than the Lancaster models which in
turn were better than the latent class results. With variable set
IV the differences in results were most marked. INDEP3 clearly
bettered INDEPZ which in turn bettered INDEPl. There was a similar
pattern for the Lancaster models. INDEP3 was better than LANC3 and
for this variable set alone the lategt class models performed well.

The comparison among the discrete kernel methods was clear cut
with KEREX3 being the best for all variable sets.

The continuous parametric models NORLIN1, NORLIN2, NORQUAD and
LINLOG (strictly speaking this method is not restricted in
application to continuéus data) also gave a clear pattern of
results over the four variable sets, with the quadratic method
performing poorly. With the linear method it was always preferable
to use the EM algorithm. The difference with the EM algorithm was
small for sets I-III but marked for set IV. The results for the
linear logistic method were slightly poorer than those of the
linear methods, but better than NORQUAD. The results of LINLOG
were particularly encouraging when the crude treatment of missing
data is also considered.

(ii) Table 3.18 gives the results for the best method from each of
the 3 groups of similar methods for each variable set. When it was
not obvious which method was best they were ordered by the average
quadratic score. Comparisons among groups of similar methods
showed that the kernel methods had the most disappeinting results,
especially for the logarithmic and quadratic scores, and it was
only for variable set II that they even approached the other
methods. This was perhaps because a discrete kernel approach in
this problem was too ambitious. The results for the linear methods
were remarkably similar to those achieved with the discrete models,

For sets I and III the discrete models had the edge while for sets
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Table 3.18 Overall summary of the results of the comparative
study
Measure of Separation

Method

¥rror Average Average

Rate Logarithmic Quadratic

Score Score

INDEP1 .278 .685 377
KEREX3 .282 .800 420
NORLIN2 .284 702 .396
LANC1 .208 .808 .435
KERORD2 .332 .856 454
NORLIN2 .306 .157 431
INDEP2 .246 .656 .358
KEREX3 .278 .769 .395
NORLINZ2 .258 .661 .367
INDEP3 . 264 .673 .368
KEREX3 .298 .806 412
NORILIN2 .250 .663 .361
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IT and IV this was true of the linear models., The differences were
so small as to be of little importance in practice. However, with
the linear method there was a single model which performed well for
each variable set, whereas with the discrete methods the choice of
model could be critical.

(iii) In the assessment of the overall performance of the
different variable sets, it can be seen from Table 3.18 that the
variation in performance among methods tended to be smaller than
among the variable sets. The best overall set of results was
obtained with method INDEP2 on variable set III and it was
interesting that, although- set IV contained strictly more
information, the discrete model could not exploit this. In
contrast, with the linear method, the performance improved going
from set I to set III to set IV although the results for III and IV
were very similar. This emphasised the robustness of the linear
approach, which appeared to make sensible use of the available
information, whereas the discrete parametric models had to be
matched carefully to the variables being used.

This suggested that, whiie the linear approach with the EM
algorithm was preferable for a quick, uninformed analysis, it was
possible to achieve similar, if not better, performance with the
much simpler independence model if prior, background information
was used to combine groups of highly dependent variables into

single created indicants.

3.5.4 Discussion and Conclusions of the Comparative Study

The results of this comparative study went some way towards
defending the wuse of the independence model. Its robustness,
together with the ease with which incomplete data are dealt, make

it appealing even though the assumptions it makes are often
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violated. This was partly explained by Hilden (1984), who
describes weaker conditions than conditional independence under
which the model dis still wvalid. These findings highlight a
fundamental feature of discriminant analysis, namely that any
modelling involved is only an intermediate step and that methods
should be assessed in terms of performance rather than in terms of
goodness-~-of-fit.

The results of the more complex Kernel methods were
disappointing and emphasise the need for more work on the choice of
smoothing parameters.

No method was particuiarly successful in identifying patients
who will be severely disabled. As these cases are in need of
continuing medical and social care, this is an important practical
aim. The lack of success is due, as stated previously, partly to
the relatively low prior probability of this outcome and partly
because, geometrically, the severe group is overlapped by those in
both the other two outcome categories. A simple univariate example
to illustrate how large these misclassification probabilities can
be is given in Appendix 2. 1In view of the ordering of the outcome
categories it is possible that, with further development, the
methods of McCullagh (1980) and Anderson (1984a) might be useful.
The class of McCullagh models is based on an underlying continuous
latent variable, which may not be observable. The ordered outcomes
correspond to adjacent grouped intervals on the latent scale. The
'stereotype regression' models of Anderson are more general in that
they they do not assume an ordered structure, but they do allow one

to test whether an ordered structure is appropriate.
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3.6 Clinical Implications for Prognosis

One of the main features of the methods described in Sections
3.4 and 3.5 was the lack of success in predicting the outcome of
severely disabled patients. Initially it was thought that making
the prediction at a later time period might help solve the problem,
but when the independence model was used with the data available at
28 days, as in Section 3.4, poor results were obtained (Tables 3.19
(a) and (b)). One of the reasons for this was that almost all
survivors had by this time achieved the best score possible in the
features used for the discriminant rule so the discriminatory power
of these features had diminished. Table 3.20 illustrates this
point.

The cases who are severely disabled are physically dependent to
varying but significant extents on other individuals. This is
particularly relevant in severe head injuries whose mean age is 34

years so that many still have the greater part of their life to

live. 1It is thus of great clinical interest to be able to identify

those cases who will be severely disabled soon after injury. On
the one hand, intensified treatment at an early stage might reduce
their dependence, on the other, the fruitlessness of long continued
rehabilitation might be recognised and thus more emphasis put on
the readjustments necessary to cope with handicap.

It was therefore thought to be important to pursue a new

approach to try to identify these cases.
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Table 3.19 Classification matrices for the independence model
using the 15-28 day best data with the data bank of
600 patients
a) for all cases predicted and

b) for cases with a confident prediction

Predicted Actual Outcome
Outcome

D/V SD M/G Total

D/v 18 1 4 23
SD 1 0 1 2
M/G 7 17 70 94
Total 26 18 75 119
(a)
Predicted Actual Outcome
Outcome

D/V Sb M/G Total

D/V 1 0 1 2
SD 0 0 0 0
M/G 0 1 25 26
Total 1 1 26 28

(b)
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Table 3.20 Distribution of some features of the data set of 600

cases at 24 hours and 15 -28 days

Time Proportion of
Feature Period those alive
with feature
Coma score 13-15 24H 27
15-28D 717
Normal eye movements 241 557
15-28D 937
Normal motor response 24H 567
pattern
15-28D 777




CHAPTER 4

MODELS USING TIME TRENDS

4.1 Introduction

A major criticism of all the methods used in the comparative
study is that they dignore the dynamic nature of the recovery
process. Over a long pericd of working with the data I gained the
impression that the individuals who were wultimately severely
disabled were characterised by a lack of detectable change in
neurological function in the first few weeks after injury. They
often did not have low coma scores on admission: indeed some cases
with lower coma scores improved to make a good recovery while
others with higher scores deteriorated and died. From this came
the idea of trying to model the recovery trend through time in an
attempt to use the different trends to identify those who would be

severely disabled.

4,2 Exploratory Analysis of Recovery Trends

As the coma score had been shown previously to be consistently
useful in predicting outcome, it was intuitively sensible and
clinically acceptable to use this as the feature with which to try
to develop the model. Up to ten scores can be available for each
case from the best and worst coma scores at each of the five time
periods within which the patient is monitored. Since much of the
previous work was based on the best coma score within each time
period this was chosen again for the analysis of trends. Thus each
patient has up to five scores with which to model the trend in

recovery.
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The head injury data bank now had 1356 Glasgow cases and it was
decided to use only those Glasgow cases to develop the model.
Their outcomes are given in Table 4.1.

To obtain an overall impression of the recovery trends within
each outcome category, each patient within that group had their
coma score plotted at each of the 5 times with coma scores at
successive times joined to give an impression of trend. To avoid
the problem of missing data, only cases with complete data were
used. The +time scale used to plot the trends was chosen
arbitrarily. As the time periods used in data collection were all
unequal and the best coma score could occur at any time within the
period there seemed no advantage or disadvantage in using an
equally spaced time scale to try to model the trend. This scale
was adopted throughout the study, but it must be emphasised that
its choice was entirely arbitrary.

The results for each of the five outcome categories are shown
in Figures 4.1(a) - 4.1(e) with each line representing a patient.
A small random shift has been introduced to separate coincident
lines. While the picture is somewhat confusing, the overall
subjective impression from the figures seemed to reinforce the
hypothesis that the coma scores of the severe disability group did
indeed change more slowly than those of other survivors.

To summarise the data, the mean and standard deviation of the
coma score at each time period for each outcome category are given
in Table 4.2 and the mean trend is plotted in Figure 4.2.

From Figure 4.2 it appears that the severe disability, moderate
disability and good recovery groups have similar recovery patterns
while the vegetative survivors and deaths appear to follow a quite
different pattern. Efforts were therefore concentrated on

modelling the recovery trend in the severe disability, moderate
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Table 4.1 Outcome of the 1356 Glasgow cases in the head injury

data bank

Outcome N

Death 650 (48%7)
Vegetative State 23 (27)

b

Severe Disability 174 (13%)
Moderate Disability 211 (16%)
Good Recovery 201 (217)

Lost to Follow-up 7 (17)




Figure 4.1 (a)
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Figure 4.1(b)
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Figure 4.1 (c) Trend in coma score for patients in the severe

disability group
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Figure 4.1 (d) Trend in coma score for patients in the vegetative

group
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FiRure A.1l (e)
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Table 4.2

Mean and standard deviation of the best coma score at

each time period for each outcome category

Mean Coma Score
Standard Deviation

Qutcome
24 2-3 4-7 8-14 15-28
hours days days days days
Death 6.13 5.98 6.46 7.68 8.52
2.11 2.50 2.91 3.21 3.26
Vegetative 6.00 6.00 5.87 6.28 7.12
State 2.57  2.43  2.03 2.40 2.23
Severe 7.75 8.42 9,94 10.97 12.01
Disability 2.19 2.67 2.91 2.67 2.33
Moderate 8.39 9.73 11.30 12.42 13.36
Disability 2.49 2.92  2.97 2.34  1.78
Good 8.85 10.94 12.46 13.41 14.01
Recovery 2.51 2.84 2,61 1.95  1.50
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disability and good recovery groups.

4.3 Approaches to the Analysis of Repeated Measures Data

4.3.1 Introduction

The data displayed in Figures 4.1(a) - (e) have a typical
repeated measures structure where the same variable is measured C
times on each of the N individuals in the study. Thus the
extensive literature on the analysis of repeated measures data can
be exploited. Before proceeding with the analysis of the Head
Injury Study data this literature is briefly reviewed.

There are two broad approaches to the analysis of repeated
measures data, univariate and multivariate. These are
distinguished by the basic unit for analysis. In the univariate
approach each measurement of the variable forms the basic unit and
is analysed individually whereas in the multivariate approach the
vector of C measurements from each of the cases is the basic unit
analysed. Overviews of the analysis of repeated measures data are

given by Frane (1980), Davidson (1983) and Fleiss (1986, Chapter 8).

4.3.2 Univariate Approach

The univariate approach to repeated measures data essentially
consists of performing a mixed model analysis of variance. The
effect due to the individual is modelled as a random effect and
usually any grouping variables and trial factors are modelled as
fixed effects. This model imposes a strong circularity condition
on the covariance structure of the vector of measurements from each
individual, namely that all possible pairwise differences of
measurements must have the same variance. When, as in the Head

Injury Study, the repeated measurements are taken through time,




this assumption is almost certain to be untrue as the difference
between two well separated measurements would be expected to be
more variable than that between two successive ones.

A number of techniques have been developed which allow
conservative hypothesis tests to be performed when the circularity
conditions do not hold (Greenhouse and Geisser, 1959; Huynh and
Feldt, 1976). However, these are not relevant to the Head Injury
Study as these techniques adjust the degrees of freedom to
compensate for the lack of fit of the underlying models, whereas in
the Head Injury Study, the models themselves are of interest and

not simply the derived test statistic.

4,3.3 Multivariate Approach

As mentioned in Section 4.3.1, the main feature of this
approach is that the basic unit for analysis is the wvector of
measurements through time. This approach consists not of a single
technique but of a spectrum of methods ranging from the restrictive
univariate mixed model analysis of wvariance to the completely
general multivariate model which imposes no structure on the mean
vector or covariance matrix. Often the full multivariate model is
too general, in that it involves a large number of parameters, and
does not explicitly take account of the fact that the data are
recorded through time. Therefore it is appealing to consider the
models which 1lie between the extremes of the over restrictive
univariate model and the full multivariate model.

One such approach is to summarise the data vector by a single
number, for example, 'the area under the curve', or at least by a
vector with fewer components than the original measurements. This
includes the various growth curve models, where parametric models

are fitted to each individual's data vector and the parameter
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estimates from such an analysis are used in place of the original
data. For example, a large number of measurements through time may
be replaced by the gradient and intercept of the regression line
through these points.

Another way to reduce the generality of the full multivariate
model is to regard the data for each individual as a time series.
There are many examples of such an approach in the medical
literature, but in general they require a much longer series of
observations (Smith and West, 1983). However a paper by Ulm (1984)
described a way of parameterising the mean vector and covariance
matrix in the multivariate approach by using a standard time series
model on a data set with a short time series. This approach seemed
to be particularly relevant and its application to the Head Injury
Study data, and the modifications which were later found to be

necessary, are described in Sections 4.4 - 4.6.

4.4 TFirst Order Autoregressive Stochastic Model

4.4,1 TIntroduction

Ulm (1984) described a model for the classification of an
individual into one of two disease categories on the basis of an
enzyme level which was monitored at intervals over a period of
time. The feature vector x = {xl, cees XN} thus consists of the
enzyme level at times 1, ..., N. In our application the feature
vector consists of the best coma score at each of the five time
periods.

Ulm then models the feature vector using an autoregressive
approach relating the component at time t to the component at time

t-1 where t = 2, ..., N.
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4.4.2 Derivation of the Model

Suppose that the distribution of feature vectors
X = {X1, ..., Xt} of patients in category Il is N(pi,Z;j) and that
the coma score at time t, where t = 2, ..., 5, depends on the coma
score at time t-1 in the following way
a - Xg = oo ~ Xe-1) + e 4.1
where E(et) = 0
and 0 < ¢ < 1.
Thus
E(a - X¢) = E¢(a - X¢-1).

Applying this recursively gives

E(a - X¢) = B¢t 1(a - Xq).

If

E(Xl) =a - B,
then

E(X.) = o - ¢t-1p,
Thus

Wp=E[X ] = [a-8

X2 a - ¢

X3 a - ¢2p

X4 a - ¢3p

L X5 | L o - ¢AB 1.

This is illustrated in Figure 4.3.
The usual assumptions made about the error term ey with this
type of model are:-
(1) E(ep) =0
(i1) var(er) = o2 (constant)

(iii) cov(eg, e€¢t) = 0, t = t'.

Wegman (1974) shows that the variance
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covariance structure of ¢ can still be derived if assumption (ii)
is modified to:-
(ii) var(egy) = ot (depending on t).
This means {ey} is an uncorrelated sequence of random variables
with expectation 0 and variance depending on t.
To derive the variance covariance structure, let

Yy = o - Xt
Thus from Equation 4.1

Ye = ¥t + €. (4.2)
Multiplying both sides by Yi.g gives

Ye Yp-g = ¢¥p-1 Y- + op Yi-g-

Thus

E(Y¢ Yi-g) = 0E(Yi-1 Yi-g)- (4.3)

From Equation 4.2

]

E(Y¢) = ¢E(Yg-3) (4.4)

50

[l

E(Yt Yt"S) - E(Yt)E(Yt-S) (I)(E(Yt_l Yt—S) - E(Yt"l)E(Yt-S))‘

Thus

]

cov(Y¢, Yiog) = dcov(Yi-1, Yi-g). (4.5)
Applying Equation 4.5 recursively gives
cov(Ye, Yi-g) = ¢Svar(Yi-g).
For the variances, from Equations 4.2 and 4.4,
Ye - B(Yy) = ¢Yeoq + g - 9E(Ye-1).

Thus

Yt - E(Yt) ¢(Yt..1 - E(Yt_l)) + Et. (4.6)

Applying Equation 4.6 recursively gives
= % olt-3)
Y - E(Yy) _'§1¢ €5+
J_
Thus

E(Yy - E(Y))2 = E[j§1¢(t-j) ej]Z.
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Since, from the assumptions,

var €y =

and
cov(et, e¢1) =
E(Yy - E(Yp))?2 =
J

Thus
var Yi =
J

Since

Xe - E(Xp) =

and similarly

Xp-s - E(Xe-s)

I

var Y¢

and

cov (Y¢, Yi-g)

Thus
var Xy =

and

cov (X¢, Xg-g)
Thus

I

var X1

var X

var X3

var Xy

var Xg

E(Et - E(Et))z = E(Etz)

E(er - E(ep))(epr - E(egr)) =0,

o] 2(t_j)\\)'ar €5

et

1

t _s
§1¢ 2(t J)sz.

X - @) - (B(Xg) - @)

- (Y - E(Yp)),

- (Yt-s - E(Yt—s))’

var X¢
cov(Xe, Xg-g)-

t s
i ¢Z(t J)sz
j=1

¢S var (Xp-g).

0'12
84012 + §2092 + o2

46012 + ¢ho92 + ¢2042 + 042
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and

Ly = [ varXy ¢varXy ¢2varX1 ¢3varX1 ¢4varX1 ]
¢varXy varXsp ¢varXy ¢2varX2 ¢3varX2
¢2varX1 pvarXy varX3y  ¢varXjy ¢zvarX3

¢3varX1 ¢2varX2 pvarXs varXy dvarXy

L ¢4varX1 ¢3varX2 ¢2varX3 pvarXy varXs 1.

Thus for the estimation of ui and % it is sufficient to estimate
a, B and ¢ and the variances of the Xy where t =1, ..., 5, a
reduction from 20 parameters to 8 for the case where all 5 time

periods are considered.

4.4,3 Parameter Estimation

A maximum likelihood approach was used to estimate the
parameters for the mean and covariance matrix of each of the three
outcome categories severe disability, moderate disability and good
recovery.

Let xj4t be the best coma score of the jth patient in the ith
outcome group at the tth time, so that Xijs where j = 1, ..., ni,
are the feature vectors of the patients from category Ij then,
since the distribution of these feature vectors is N(ui,Zi) with py

and I; constrained as specified in Section 4.4.2, the 1likelihood

function is

i

1

! 1
(Zn)zcnllzilznl 2 j

e 2

-1
(xi3 - w7t 51 (xa5- wd|s

where C is the no. of time periods considered and ny > C.

Since the exponent 1is written in terms of Zi'l, the maximum
likelihood estimates of py and Ei'l = {4 say, were found. In the
likelihood function the vectors Xijs j=1, ..., ngy are fixed at the

sample values and Lj is a function of yu; and vj. Then the
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logarithm of the likelihood function is

1

log Li = - % Cnilog(ZH) + 5 niloglwil

(xij - DL TR CIR RO

Since log Lj is an increasing function of Lj, its maximum
occurs at the same point in the space of py, ¥; as the maximum of
Li.

If X; is the sample mean vector then

R TR | S S B 3
i — ij ny 321 ijl i.l
ny j=1
nj
ol Xi3C Xi.c
ni 3=17H0) |

and the matrix of sums of squares and cross products about the mean

is

ni, _ 3

Ay = 2 (xij - xi)(xij - xi)T

j=1
so that

nn

(Aidpn = I (Xijm - Xi.m)(Xijn - Xi.n)
j=1
where myn = 1, ..., C.

Now

nj
T (x35 - mpdlxgy - nyg
=1

)T
J
can be written as

ng
2 (xi - X)(x33 - ®OT ¥ ng(xy - nd(Ey -pg)dT

j=1
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= A; +n3(X; - u)Eg- ug)dT
and so

nj
T (xq5 - w)dT vi(xig - n)
=1

.

nj
= tr b (K" - ]J')T \p (x.. - ]J‘)
J=1 1] 1 1 1] 1

ng
=tr Ty (xg5 - wpdxiy - wg)?
3=1

= tr Y3 Ay + tr Ping (Ei - ui)(ii - ui)T
= tr 93 Ay + ny(X; - pdT v ng ).
Thus log L4 can be written as

1 1
log Lj = - 5 Cny log(2m) + 5 ni loglwi l - % tr Y3 Aq

-2 - wT vy G- owg). (4.7)

This function was maximised numerically with respect to o, B, ¢ and
the five variances, using the NAG routine EQ4JBF. Starting values
were 15,0, 12.0, 0.8 and 5.0 for o, R, ¢ and the five variances
respectively.

To avoid the problem of missing data, the model was initially
fitted with cases who had a best coma score recorded at all 5 time
periods. As the coma score has a maximum of 15, this was taken as
the upper bound of o in each case. The parameter estimates for
each of the three outcome categories are given in Table 4.3.

From these, estimates of ﬁi and ii were calculated and these
are given in Table 4.4, For comparison, the sample means and
covariance matrices for the same data used to fit the model are
given in Table 4.5 and the means from the fitted model and the data
are plotted together in Figure 4.4.

As the estimate for o took the value of the upper bound set, it
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Table 4.3 Parameter estimates for the first order

autoregressive stochastic model

Parameter Severe Moderate Good
Disability Disability Recovery

a 15.00 15.00 15.00
B 7.76 7.06 6.80

14

[ ¢ 0.81 0.71 0.64
012 4.18 6.35 5.85
ap? 4.13 6.01 5.82
032 3.74 3.94 3.62
042 3.01 3.95 2.21

a52 3.14 2.46 2.13




Table 4.4 Estimates for the mean vector and covariance matrix
for each outcome for the first order autoregressive

stochastic model

Outcome Mean Covariance Matrix
Vector
Iy Wi Iy
7.24 4.18 3.39 2.75 2.23 1.81
8.71 3.39 6.87 5.57 4.52 3.66
Severe
9.90 2.75 5.57 8.26 6.69 5.43
Disability
10.86 2.23 4,52 6.69 8.43 6.83
11.65 1.81 3.66 5.43 6.83 8.61
7.94 6.63 4,51 3.20 2.27 1.61
9.99 4,51 9,21 6.54 4,64 3.30
Moderate
11.44 3.20 6.54 8.59 6.10 4,33
Disability
12.47 2.27 4,64 6.10 8.28 5.88
13.20 1.61 3.30 4.33 5.88 6.63
8.20 5.85 3.75 2.41 1.54 0.99
10.64 3.75 8.23 5.28 3.38 2.17
Good
12.20 2.41 5.28 7.01 4,50 2.88
Recovery
13,21 1.54 3.38 4.50 5.09 3.26

13.85 0.9¢ 2.17 2.88 3.26 4.23




Table 4.5 Sample mean vector and covariance matrix for each
outcome from the data used to fit the first order

autoregressive stochastic model

Sample Sample
Outcome Mean Covariance Matrix
Vector
I3 Hi DR
7.24 4.18 3.57 2.92 2.19 1.97
7.97 3.57 6.63 5.07 4.27 3.46
Severe
9.11 2.92 5.07 7.56 5.92 4.20
Disability
10.41 2.19 4,27 5.92 7.61 5.17
11.94 1.97 3.46 4,20 5.17 6.09
7.94 6.35 4.28 3.12 1.36 0.41
8.84 4,28 7.58 6.06 3.38 1.44
Moderate
10.39 3.12 6.06 8.67 5.18 2.10
Disability
11.81 1.36 3.38 5.18 6.93 3.28
13.39 0.41 1.44 2.10 3.28 3.20
8.20 5.85 3.96 3.76 2.46 0.82
9.93 3.96 8.00 6.25 3.92 0.98
Good
11.34 3.76 6.25 8.18 4.81 1.39
Recovery
12.78 2.46 3.92 4,81 5.00 1.52

14.10 0.82 0.98 1.39 1.52 1.76
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was decided to increase the upper bound on the grounds that the
cases were tending in the long run to some value over 15. The
parameter estimates in this case are given in Table 4.6 and u; and

i from these estimates in Table 4.7, the means from the fitted

model and the data are plotted in Figure 4.5.

4.4.4 Tit of Model to Data

The results in Figures 4.4 and 4.5 suggest that the model is a
poor fit to the data. However, this was tested formally using an
asymptotic likelihood ratio test.

Suppose under a more general model the distribution of the
feature vectors of category N3 is N(pj,Ii) with no constraints on
My and Zj4. The maximised likelihood for outcome Iy, Ly, is
obtained from

1
Log Ly = % C ny log(2m) + 5 ny log '¢i|

5 tr ¥y Ag

1 — —
-5y K- T w3y - g

Since Py is positive semi-definite,

If
o

ni(x; - u)dT vy Xy - py) 2
and is 0 if
Ui = Xi.
Anderson (1984b, pp 62-63) shows that
% ni{ log lwil - % tr Py Aq
is a maximum when

vy = ngas7t

and takes the value

% ni log |niAiI - 5 nj C.

The maximised logarithm of the likelihood for outcome IIj under
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Table 4.6 Parameter estimates for the first order
autoregressive stochastic model with the upper bound

of 15 for o removed

Parameter Severe Moderate Good
Disability Disability Recovery

a 16.27 15.40 15.39
B 9.03 7.46 7.19
¢ 0.84 0.73 0.66
g12 4.18 6.35 5.85
ap? 4.11 6.01 5.80
032 3.77 3.93 3.60
a2 3.01 3.97 2.22

052 3.10 2.44 2.13




Table 4.7 Estimates of the mean vector and covariance matrix
for each outcome for the first order autoregressive

stochastic model with the upper bound of 15 for «

removed
Outcome Mean Covariance Matrix
Vector
M3 Hi I
7.24 4.18 3.50 2.94 2.46 2.06
8.71 3.50 7.05 5.90 4,95 4,14
Severe
9.93 2.94 5.90 8.71 7.30 6.12
Disability
10.96 2.46 4,95 7.30 9.13 7.65
11.82 2.06 4,14 6.12 7.65 9.51
7.94 6.63 4.61 3.35 2.43 1.76
9.98 4,61 9.36 6.79 4,93 3.58
Moderate
11.47 3.35 6.79 8.86 6.43 4.67
Disability
12.55 2.43 4,93 6.43 8.65 6.28
13.33 1.76 3.58 4,67 6.28 7.00
8.20 5.85 3.88 2.57 1.70 1.13
10.62 3.88 8.37 5.55 3.68 2.44
Good
12.23 2.57 5.55 7.27 4.82 3.20
Recovery
13.30 1.70 3.68 4,82 5.41 3.59

14.00 1.13  2.44  3.20 3.59 4.51
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the general model with no constraints on pj and I; is thus

log Ly = - i Cny log(2m) + % ny loglniAiI n4C.

-1

2 2
The results for the approximate likelihood ratio test for each
outcome are given in Table 4.8 for both o bounded and unbounded.
Constraining the mean and variance reduces the number of parameters
to be estimated in this case from 20 to 8 so that under the null
hypotheses the test statistic will be distributed approximately as
x2(12). The rejection region at a significance level of 5% for the
constrained model corresponds to values of the test statistic

greater than 21.03 so the model was rejected in each case, thus

endorsing the subjective impression of Figures 4.4 and 4.5.

4.4.5 Discussion

The fit of this model to the data was disappointing as the
model was chosen initially from the pattern of recovery in
Figure 4.2. On a re-examination of the approach it was found that,
to avoid the problem of missing data, only cases with complete data
at all five times had been used in fitting the model, while
Figure 4.2 was based on all data available at each time. The main
source of missing data is due to the fact that patients are
discharged from the unit before the end of the monitoring period.
One therefore might expect these cases to have, on average, higher
coma scores than those who remain in hospital. This is indeed the
case and Table 4.9 illustrates this fact.

It therefore seemed appropriate to use a different approach to

constrain the general model.
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Table 4.8 Test statistics for the approximate likelihood ratio

test for each outcome for both o bounded and

unbounded
Outcome Test Statistic
a bounded a unbounded

Severe 26.07 25.53
Disability

Moderate 62.13 61.81
Disability

Good 68.64 67.83

Recovery




Table 4.9 Mean best coma score at 8

- 14 days for cases with

complete data at all times and for cases with only

the 15 - 28 day score missing

Mean Coma Score

Outcome
Data Data Missing
Complete at 15-28 days
Severe 10.41 11.95
Disability
Moderate 11.81 13.31
Disability
Good 12.78 13.99

Recovery
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4.5 Constrained Linear Model

4,5,1 Introduction

After the poor fit of the model described in Section 4.4 it was
clearly necessary to employ a more appropriate data set when
fitting a model. It was decided that if the model was being fitted
at the end of the 15-28 day period then only cases with complete
data at all times should be used, while if the model was being
fitted at the end of the 4-7 day period then all cases with
complete data at that time should be used, and so on. This was
clinically and statistically acceptable in that it was not possible
to have future information regarding the patient when making a
prediction about prognosis. To simplify this description let D¢
represent the data set of cases with a 6 month outcome of severe
disability or better, who have best coma score available for all
time periods up to and including time C (C = 1, ..., 5). Thus Djg
is the set of patients with complete data at all five times whose
six month outcome is at least severe disability.

The mean best coma score at each time for each of the data sets

D3, +.., D5 is given in Table 4.10 and plotted in Figure 4.6.

4.5.2 Derivation of the Model

Figure 4.6 suggested that a suitable model might take into

account the following features:-

(1) The mean best coma scores for a given outcome category I,
i=1,2,3, at a particular time period t, t =1, ..., C,
are not all equal for all data sets Dg, C =1, ..., 5, for
which they exist.

(ii) Within each data set D¢, C = 3,4,5, for any particular

outcome category, the mean best scores at the different
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Table 4.10 Mean best coma score at each time period for the
outcome categories severe disability, moderate
disability and good recovery and the data sets Dg, Dy
and D3

Data Set
Time Number of Cases
Period Dy Dy D3
236 406 528
SD MD GR SD MD GR SD MD GR
63 83 90 103 138 165 124 168 236

24 7.24 7.94 8.20 7.44 8,20 8.55 7.54 8.46 8.84

hours

2-3 7.97 8.84 9.93 8.26 9.54 10.39 8.46 9.76 10.87

days

4-7 9.11 10.39 11.34 9.82 11.02 12.06 10.04 11.24 12.52

days

8-14 10.41 11.81 12.78 11.01 12.41 13.28

days

15-28 11.94 13.39 14.10

101




Figure 4.6 Mean best coma score at each time period for each

outcome with data sets D5, D4 and D3

Mean Coma Score
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103
times, apart from that at 24 hours, are related in a
simple linear manner.
(ii1) Within each data set Dg, € = 3,4,5, the lines defined in
(ii) for each outcome category are parallel.

From this the following model was proposed for data sets, D¢,
C = 3,4,5.

Let Xjjt represent, as before, the best coma score of the jth
patient in the ith category at time t, so that Xij» i=1, .c.y ny,
are the feature vectors of the patients from category II;j. Then if
Wit is mean score for category II; at time t, t =3, ..., C

Hit = Mijt-1 T 6 where § = constant.

Thus, for each data set Dg, C = 3,4,5, the means can be

specified using only 7 parameters
Mils H21s M31s H12s Y12» Y13 and §
where Y12 = w22 - M2 and Y13 = H32 - H12.

This is illustrated in Figure 4.7.

4,5.3 Parameter Estimation

If the xyj (=1, ..., ny; i=1,2,3) are assumed to be
normally distributed with mean p3 = (ui4, .., piC)T, vhere
G = 3,4,5, and with uy structured as specified in section 4.5.2 and
common covariance matrix, I, then a maximum likelihood approach can

again be used to estimate the parameters. The likelihood functionm,

L, is

3 '
1 1 1 -1
L= exp - — & I (Xij‘ui)T X (Xij'ui) »
L s 2 i=1 j=1
(2m)zN |z|2N

where N = n1 + np + n3

and so the logarithm of the likelihood function, log L, is
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IIMUJ

nj
log L = - %E log(2m) - g log!E' b (xij - u)T 271 (xij-pi).

1
2,01 o1

If

= (u11» B21> 31> H125 Y125 Y13, 8T
then the constraint on yj is such that
My = My8, i=1, 2, 3

where M} = 1 0 0 0 0 O

Thus

3
£ IY (xqq - upT 3L (xgq - ug)
i21  j=1 ij i ij i
3 ni

= T % (x45 - M30)T 571 (k45 - M30)
i=1 o1 i i ij i
3 ni

= X T (le z° lxle - XijT2'1M18 - GTMiTZ"lxij + GTMiTX'lMie)
i=1 j=1
3 [ ny

= B[ 2lwgyTrlxgy - ng®;Teolmge - ngeT;Tem1R; + ngeThyTe Iy e]
i=144=1

— ny
vwhere X3 = jilxij
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3 ny

= ¥ % xy:Te71lx;: - BTe - oTB + oTae
i=l j=1 +

3

where A = 3 niMiTZ'IMi
i=1
3 -

and B = _ZlniMiTE'lxi
1=

3 n;
= (6 - A1B)TA( - A"1B) + % 3 xy327lxgy - BTA1B.

i=l j=1
Thus
log L = - 9% log(2m) - g log |z| - % (6 - A1B)T A(p - A™1B)
. ( : 3 27lxsy - BTATIR )
2 L2y jog THT TS :
Since

- (8 - A1B)T A(e-A-1B)
is a maximum (zero) when
8 = A"lg,
to find the maximum of the logarithm of the likelihood, it remains

to find the value of I such that

_ N SLled o B ro Tp-1
5 103‘21 5 {iil jgl Xij L Xij B+*AT1B ]
is maximised. That is
-3 logIZI -4 tr[ z-1 % gi xi-xi-T - A~1pgT ]
2 2 i=1 §=1 7

is maximised.
This was again done numerically using the NAG routine EQ4JBF.
The starting values, I,, taken in this routine were
I, = [Sij]s where sij = 8.0 x 0.8‘1‘j|.
The maximum likelihood estimates 2, 8 and fy of ¥, 8 and py are

given, for data set Dy, in Table 4.11, together with the




——

correlation matrix corresponding to % and the maximum of the
logarithm of the likelihood, log L. The results for data sets D,

and D3 are given in Tables 4.12 and 4.13 respectively.

4.5.4 Fit of the Model

A comparison of ﬁi in Tables 4.11, 4.12 and 4.13 with the
appropriate values in Table 4.10 suggests that the model is a good
fit. This was tested formally again using an asymptotic likelihood
ratio test. Suppose under a more general model, the distribution
of the feature vectors in category N, i =1, 2, 3 is N(p4,I) with
no constraints on 4. Under this model the maximum likelihood

estimates ﬁi and ¥ are given by

- 0 —
Mi = I Xij = Xj
j=1
nj
- 1 3 nj _ _
and I == 3 I (33 - X)) (%35 - )T
N o1 j=1 ij i ij i

The maximum likelihood estimates for i (under this more general
model) and the maximum of the logarithm of the likelihood are given
in Table 4.14 for data sets D5, D, and Dj.

From these the likelihood ratio test statistics were calculated
and these are given in Table 4.15 for the three data sets
considered.

Thus there was no evidence that the more general model with
Xij ~ N(pi,X) was a significantly better fit than that with
structured means where Xij ~ N(MiB,Z) for any of the three data

sets considered.
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Table 4.11 Maximum likelihood estimates of I and ©, the
corresponding correlation matrix and 1y, and the
maximimum  log-likelihood for the model where
Xij ” N(M;6,Z) using data set Dg

Parameter Estimate
by 5.59 3.99 3.24 2.00 0.98
3,99 7.52 5.87 3.82 1.79
3.24 5,87 8.19 5,25 2.39
2,00 3.82 5.25 6.39 3.12
0.98 1.79 2.39 3,12 3.42
Correlation 1.00 0.67 0.48 0.33 0.22
Matrix 0.67 1.00 0.75 0.55 0.35
corresponding 0.48 0.75 1.00 0.73 0.45
to % 0.33 0.55 0.73 1.00 0.67
0.22 0.35 0.45 0.67 1.00
] 7.13
8.06
8.17
7.76
1.31
2,10
1.42
SD MD GR
Hi 7.13 8.06 8.17
7.76 9.08 9.87
9.18 10.49 11.28
10.60 11.91 12.70
12.01 13.33 14,11
log Lpax -247.87
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Table 4.12

109

Maximum likelihood estimates of X and 6, the
corresponding correlation matrix and w3, and the
maximimum log-likelihood for the model where

xq3 ~ N(Mi8,%) using data set Dy

Parameter Estimate
% 5.42 3,71 2.93 1.64
3.71 7.57 5.60 3.48
2.93 5.60 7.96 4.83
1.64 3.48 4.83 5.30
Correlation 1.00 0.58 0.45 0.31
Matrix 0.58 1.00 0.72 0.55
corresponding 0.45 0.72 1.00 0.74
to X 0.31 0.55 0.74 1.00
] 7.37
8.20
8.55
8.17
1.38
2.26
1.42
SD MD GR
Hi 7.37 8.20 8.55
8.17 9,55 10.43

9.59 10.97 11.85
11.02 12.39 13.27

log Lpax -435.,97




Table 4.13 Maximum likelihood

estimates

of =¥

and 6, the

corresponding correlation matrix and uj;, and the

maximimum log-likelihood  for the model where
X4 j ~ N(MiB,Z) using data set D3
Parameter Estimate
I 5.98 4.05 3.09
4.05 8.04 5.84
3.09 5.84 7.83
Correlation 1.00 0.38 0.45
Matrix 0.58 1.00 0.74
corresponding 0.45 0.74 1.00
to %
8 7.54
8.44
8.86
8.46
1.25
2.44
1.58
SD MD GR
Ui 7.54 8.44 8.86
8.46 9.71 10.91
10.04 11.29  12.48
log Lpax -585.74
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Table 4.14 Maximum likelihood estimates for ¥ under the more
general model where xyj ~ N(u3,%) and the maximum
log-likelihood using data sets Dg, Dj and Dj

Data Set P log L«

Ds 5.58 .97 3.23 .00 0.98 -246,25
3.97 .49 5.87 .82 1.80
3.23 .87 8.19 .24 2.39
2.00 .82 5.24 37 3.11
0.98 .80 2.39 A1 3,42

Dy 5.42 71 2.92 .64 -433.65
3.71 .57 5.60 .48
2.92 .60 7.93 .82
1.64 .48 4.82 .30

D3 5.98 .05 3.09 -585.40
4,05 .09 5.87
3.09 .87 7.87
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Table 4.15 Test statistics for the likelihood ratio test of the

constrained model where X

more general model where xy5 ~ N(ni,Z)

N(M;6,Z) within the

| 2 log L General

; L Constrained

X2(ng - ne) at 57
significance level

Data Set
Dg Dy D3

3.250 4.636 0.649
number of parameters 30 22 15
in the general model
(ng)
number of parameters 22 17 13
in the constrained
model (n¢)
critical value of 15.51 11.07 5.99
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4.6 TFurther Developments of the Constrained Linear Model

4.6.1 Model Fitting by Pseudo Maximum Likelihood

The computation invelved in obtaining the maximum likelihood
estimate of T in the constrained linear model was substantial. It
was therefore decided to investigate, in this constrained model,
the effect of the substitution of the maximum likelihood estimate
of ¥ by an alternative estimate which could be calculated more
easily. In this case the maximum likehood estimate under the more
general model xjj ~ N(u4,%) was used, as it was easily calculated.

In Appendix 3 it is shown that, in general with this approach,
testing Thypotheses that imposed linear constraints on the
parameters not assosciated with I leads to conservative goodness -
of - fit tests. Thus a constrained model which was not rejected by
this approach would not be rejected by the true likelihood ratio
test. Indeed for the special case of the models under
consideration in this chapter it can be shown that the approximate
likelihood ratio test is asymptotically equivalent to the exact
likelihood ratio test.

The estimates for pi and the logarithm of the likelihood are
given in Table 4.16., Comparison of the results in Table 4.16 with
those in Tables 4.11, 4.12 and 4.13 did not show that it was
beneficial to use the full maximum likelihcod estimate of Z. The
estimates for p; and I, using full and pseudo maximum likelihood
estimation, differed only after the fifth and first decimal places
respectively. It would therefore have been worthwhile to use this
pseudo maximum likelihood approach in the first instance to test

the fit of the model.
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Table 4.16 Pseudo maximum likelihood estimates for the mean
vector under the model where xjj ~ N(M;{6,2) and the
maximum log-likelihood using data sets D5, D4 and Dj

Mean Vector

Data Set log Lmax
SD MD GR

Ds 7.13 8.06 8.17 -247.88
7.76 9.08 9.87
g9.18 10.49 11.28
10.60 11.91 12.70
12.01 13.33 14.11

Dy 7.37 8.20 8.55 -435.98
8.17 9.55 10.43
9.59 10.97 11.85
11.02 12.39 13.27

Dy 7.54 8.44 8.86 -585.74

8.46 9.71 10.91

10.04 11.29 12.48




4.6.2 Increasing the Structure on 2

In an attempt to reduce further the number of parameters to be
estimated, the effect of imposing some structure on the covariance
matrix under the constrained linear model was investigated. Since
the correlation between best coma scores at different time periods
decreases as the time difference increases (see Tables 4.11

4.13), the following structures on the covariance matrix were

proposed: -

(1) Z = SRS

where S = diag(s”*, sc)>
c =3, 4, 5,
and R = r 1 ]
p i x-1i
pC pC-1
(ii) As (i) but with = 8S2 = ... = sq = s
so that
Z * s”R.

The maximum likelihood estimates from fitting the model
xij ~ N(MiO, SRS) described in (i) and the 1likelihood ratio test
results for the fit of this model in comparison to the more general
model with xjj ~ N(p”,Z) are given in Table 4.17. Thus although
there was no evidence that the structure imposed upon the
covariance matrix gave a significantly worse fit than the general
model for data set D5, this was not the case with data sets D4 and
D3.

When the number of parameters involved in the estimation of 2
was further reduced as described in (ii) the maximum value of the

logarithm of the likelihood for data set D5 was -283.91. This gave
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a test statistic of 75.33 for the likelihood ratio test. Since
this was a significantly worse fit than the general model, no

further constraints on the covariance matrix were considered.

4,6.3 Different Covariance Matrices for Each Group

Up to this point a common covariance structure for the three
groups had been assumed. However, the model xjj ~ N(Mj6,Z;) with
different covariance matrices for each outcome category was then
considered. A maximum likelihood approach was adopted as before

and this gave the logarithm of the likelihood to be

3 nq
log L = - & log(21) - & — log|zi| - 5 (8 - A"1B)T A (e - A7lB)
i=1 2 2
i3 om 1 T
5 [121 lele 257lxgy - BTAT |
3
where A = I nj MiT Ei'l My
i=1
3
and B = 'zlni MiT Ei—l ii.
1=

Thus the maximum likelihood is attained when © = A~lB and is

given by

3n 1 3 ny
= - — - Ty.-1ly.. - gT
log L 2 log(2m) El loglzli 5 [i§l JlelJ Ii7'xyj - BAB ]

To evaluate this numerically El: iz and §3 have to be estimated so
that log L is a maximum. Computationally this involves estimating
45 parameters.

Since the wvalue of the likelihood function decreased only
slightly when the maximum likelihood estimates of ¥ from the model
Xi3 ~ N(pi,2) were used as estimates for ¥ in the model
X4 4 ~ N(M;0,%), this approach was adopted again.

Instead of evaluating the maximum likelihood estimates of I

from the model x3; ~ N(M;j8,Zj) in the calculation of the logarithm
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of the likelihood, the maximum likelihood estimates of I{ from the
more general model xyy ~ N(pi,Zi) were used.
Within the general model xjj ~ (1i,Z1) the maximum likelihood

estimates for uj and Ij are (Anderson, 1984b, pp 63-64):-

-~

My o= Xy

and

H
1]
Sl
™
Py
"
e
"
"l
H-
p—
~
]
H
[Ew?
w|
[
N’
—

The maximum likelihood estimates of Ij, i=1, 2, 3 within this
model are given in Table 4.18.

With substitution of these values as estimates of £; in both
the general model X35 N(ui,Zi) and the constrained model
Xjj ~ N(M;8,%;) the logarithm of the likelihood was calculated.
The mean values jy = M-lé were also calculated for the constrained
model and the fit of the constrained model compared with that of
the more pgeneral model using a likelihood ratio test. These
results are given in Table 4.19. Thus there was no evidence that
the constrained model Xjj ~ N(Mi6,Z;) was a significantly worse fit
than the more general model Xij ~ N(pi»2zi).

A summary of all the models fitted, the number of parameters
estimated and the logarithm of the likelihood of the fitted model
are given in Table 4.20. From this table it can be seen that, in
each case, the model with different covariance matrices for each
group does give a significantly better fit than that with a common
covariance matrix, but that, for a specified covariance structure

the structure on the mean provides a good description of the data.
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Table 4.20 Summary of the log-likelihoods and degrees of freedom
of the models discussed
Maximum Log L
Model Likelihood Degrees of Freedom
Method
Dy Dy Djy
Xij ~ N(uisZ4) Exact -218.02 -416.49 -572.60
60 42 27
X33~ N(Mi6,25) Pseudo -219.71 -418.92 -572.98
52 37 25
Xq§ ~ N(pi,2) Exact -246.25 -433.65 -585.,40
30 22 15
Xi3 ~ N(M;6,2) Exact ~-247.87 -435.97 -585.74
22 17 13
xyj ~ N(Mi8,%) Pseudo -247.88 -435.98 -585.74
22 17 13
Xij "~ N(M;6,SRS) Exact 254 .47 -449.26 -598.70
13 12 11
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4,7 Assumptions of Multivariate Normality

4,7.1 Introduction

All the models fitted so far assumed that the data had a
multivariate normal distribution. This assumption was examined in
two ways.

(i) by looking at the univariate marginal distribution of the
scores at the different times.

(ii) by considering the Andrews curves of the data.

4,7.2 Marginal Distribution of Scores

If the feature vector has a multivariate normal distribution
then each of the components of the feature vector should also be
normally distributed. To look at this assumption, box and whisker
plots of the scores at each time period were drawn for each outcome
category for the three data sets D3, D4 and Dy considered. All
data sets showed a similar pattern. In the early stages after
injury the plots looked symmetrical about the median value; this
suggested that, at least marginally, the components were normally
distributed. However, the data became increasingly skewed as time
progressed and the patients improved towards the top of the coma
scale. The box and whisker plots for the data set Dg are given in
Figure 4.8 and illustrate these points. The same features were
seen in normal probability plots of the data, in which deviations
from linearity occurred most markedly with the 15-28 day scores of
those who made a good recovery.

"In an attempt to improve the marginal normality, various
transformations of the data were considered but none was
particularly successful, so the multivariate normality assumption

was adopted for the original variables.




Figure 4.8 Box and whisker plots of the coma scores at the five

time periods with data set Dg
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4,7.3 Assessment of Multivariate Normality using Andrews Curves

A better means of assessing multivariate normality is the
Andrews curve (Andrews, 1972). Each feature vector is denoted by a

curve, fx(f), which, for the feature vector x = {x1, ..., xc} is

£ (t) =/~;— X1 + x7sint + xjcost + x4sin2t + Xscos2t +... to C terms,
where - < t < .

One interpretation of a set of Andrews curves from a data set
is as an infinity (as t varies) of sets of univariate projections
of the data, and an informal test of multivariate normality is to
assess univariate normality simu;taneously for all t. With a large
set of data the plots of all the Andrews curves are difficult to
interpret but Gnanadesikan (1977) used a quantile contour plot
approach to simplify the procedure. The values of a few sample
percentiles are evaluated for a large number of t wvalues giving
contour curves for the percentiles chosen. If for each t chosen,
the univariate data are standardised, then, if the original data
were multivariate normal, the resulting standardised quantile
contours should be roughly horizontal straight l1line plots at the
levels indicated by the standard normal quantiles. The contour
plots corresponding to the 5, 25, 50, 75 and 95 percentiles for
each outcome category were produced for data sets Dy, Dj and Dj.
These contours should then be roughly horizontal lines at -1.645,
-0.675, 0.000, 0.675 and 1.645. The plots for data sets D5, D; and
D3 are shown in Figures 4.9, 4.10 and 4.11 respectively. These
plots are still difficult to interpret and therefore a comparison
was made with corresponding plots of simulated mnormal data. These
had means and covariance matrices equal to the maximum 1liklihood
estimates of the mean and covariance matrix from the data set with

which they were to be compared. Also the number of simulations was
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equal to the number of cases in that data set. The quantile
contour plots of the Andrews curves of the simulated normal data
are given in Figures 4.12, 4.13 and 4.14 and can be compared with
Figures 4.9, 4.10 and 4.11 respectively. Subjectively the plots in
Figures 4.12, 4.13 and 4.14 appeared no more 'horizontal' than
those in Figures 4.9, 4.10 and 4.11.

Finally, a hundred simulations were produced of the quantile
contour plots of 63 data simulations from a normal distribution
with mean and covariance matrix from the severe disability group in
data set D5 were produced. These are shown in Figure 4.15(a).
Figure 4.15(b) shows the bands produced by the plots in
Figure 4.15(a) together with the quantile contour plots of the
Andrews curves of the severe disability group in data set Ds.
While these cannot be interpreted as confidence bands it is
encouraging to see that the quantile contour plots for the actual
data lie within the band produced from the 100 simulations of the

corresponding normal data.
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Figure A.15 Quantile contour plots of Andrews curves

a) 100 simulations of normal data (from SD group, D3)

b) bands produced by a) and plot of SD group from D3



CHAPTER 5

ASSESSMENT OF PERFORMANCE

5.1 Introduction

The original purpose of this work was to discover if data
collected over time could be used to improve prediction of the six
month outcome. This chapter describes the use of some of the
models developed in Chapter 4 to make such predictions, and
compares the results of these predictions with those from other
available models.

The data sets used were the same as those used to develop the
models in Sections 4.5 and 4.6, namely Dg, where C = 5, 4 and 3.
The main emphasis was on the assessment of the performance of the
predictions made at 28 days; but the results of predictions at 14
days and 7 days were also considered.

The same test and training data sets were used. To overcome
the bias thereby introduced, the cross-validatory technique
suggested by Lachenbruch and Mickey (1968) was used. With their
'jack-knife' technique each case is omitted from the training data
set in turn and the coefficients of the classification rule are
recalculated. The omitted patient is then classified on the basis
of the remaining patients. Unless excessive computation is
required for the jack-knife procedure, the results are given with
and without the jack-knife procedure.

Two different sets of prior probabilities were used in each
case. The relative incidence or arrival rate associated with each
of the three outcome categories gave one set of prior probabilities
which for the three data sets were:-

Ds:  p(SD) = .267 p(MD) = .352 p(GR) = .381
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Dy p(SD) = .254 p(MD) .340 p(GR)

.406

Dj: p(SD) = .235 p(MD) .318 p(GR) JA4T

If one outcome group has an incidence substantially less than the
others this can lead to that outcome seldom having the highest
probability attached to it. The separation achieved solely on the
basis of the patients' feature vectors was therefore assessed by
the results obtained using equal prior probabilities.

To evaluate the various models, the three scores described in
Section 3.3.3 were used, namely, the error rate, the average
logarithmic score and the average quadratic score. However, to
give a further indication of the problems associated with ordered

outcome categories, the classification matrices have also been

given.

5.2 Constrained Linear Model

5.2.1 Practical Aspects

Predictions of outcome were made using three of the models
described in Sections 4.5 and 4.6. The data, x, were assumed to
have the following distributions

(i) x ~ N(M;6,X) where M; is as stated in Section 4.5 and

estimates of 6 and I were obtained using maximum
likelihood estimation as described in Section 4.5.

(1i) x ~ N(My6,%) where M; is as stated in Section 4.5, and the
estimates of 8 and I were obtained wusing the pseudo
maximum likelihood methods described in Section 4.6.1.

(iii) =x ~ N(M30,%;) where M; is as stated in Section 4.5 and the
pseudo maximum likelihood approach described in
Section 4.6.3 was again used to obtain estimates of 6 and

T4
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For convenience these methods were called CONOR1, CONOR2 and
CONOR3 respectively. With the models of CONOR1 and CONOR2 the
probability that a new patient with feature vector y belongs to

category [y is estimated by

p(Ily) exp[- (y-Mié)T é'l(y—Mié)]
P(Hi pr) = 3 s

|

L oM ®)T 3-1(y-Mao
jilp(ﬂj) exp[ 5 (y Mj0)* 2Ti(y MJB)]
where p(lly) is the prior probability of outcome IIj
‘ and 8 and T are the appropriate estimates of 6 and Z.

With the model CONOR3 the above probability for the new

patient, y, is estimated by

Np—

MO

p(Hi)|§i|n exp[- (y-M30)T i1'1(Y"Mié)]
p(mily,D) = ,

3 ~ =3 1 -~ -~ -
. . - 2 (v-M:8)T 5. 1(y-M.
jglp(HJ)IZJI exp[ 7 (y-M38)% 257 (y MJG)]
where ii is the appropriate estimate of %j.

To use the jack-knife technique for the predictions with CONOR1
would involve a complete recalculation of the maximum likelihood
estimates 8 and ¢ for every case. However with CONOR2Z and CONOR3 a
recursive approach can be adopted.

For CONOR2 let iN and éN be the estimates for £ and 6 involving
all N patients and EN—l and éN-l be the estimates with 1 patient
removed. If the last patient in the first category say, is removed
(that is, the patient with feature vector xjj, where j=ni), then

iN-l can be obtained from EN as follows:-

- ni-1 " = \T 3 nj _ — \T
(N-1)IN-1 = jzl(xlj" x1)(x15- %) +i£2 jil(xij- x3)(x35- x9)%,
_ 1 ni-1
where X| = EI—:_T jzl Xij
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"} Gy Tt Bi- SDGa g Sk Fe 50T+ 5 Bagy- ROy 7T
= x14- X1+ X1~ x1)(x14- X1+ X1~ X xi9- x)(x{4- X3
5=1 1j 1 1 1 1j 1 1 1 i=2 j=1 ij i ij i
ni-1l ni-1 ni-1

='El(xlj_ fl)(xlj— )T jzl(il- x1)(x15- T fZl(xlj- x1)(x1- 1T
J= = J=

np-l 3 ny _ o \T
+ X (xl- xl)(xl- xl)T + I X (Xij' xi)(xij“ Xi)
j=1 i=2 j=1

= N2y - (x1nq- X1 (xing- ®OT - (&1 - &) (xpng- x0T

- (x1ny- FDEL - ZDT + (g - DE - 7DGE - 72)T

ni-1
since _El(xlj - X)) = - (xlnl— X1),
J=
-~ 1 — —
= Niy - [1 + nl-__l](xlnl" x1)(x1n,- ¥1)T
since (xlnl - X1) = (n1- 1)(x1 - x1).

Thus omitting the qtP patient from the ptP group with feature

vector xpq where p=1, 2, 3and g=1, ..., np gives

%

. =N -z - =T
IN-1 = jo7 IN (N—l)(np—l)(qu Xp)(xpq - Xp)
So

IN-1 = €Iy - v T N

where c = — and xp),

N nE
N-1 v =//(N-1)(np_1) (*pq -

~=1 . el iN'l v vl -1 iN"l
and Ip.p = c'lzN'l +

1 -c 1T iN"l v
(Draper and Smith, 1981, pl27).
From this estimate for I a new estimate éN-l for 6 can be
obtained as follows.

Since
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ON-1 =
where Ay-1

and

Similarly for CONOR3, if the qth patient from the pth group is
omitted and gi,N and ii’N-l represent the estimates of Ii, and éN

and éN-l the estimates of 6, with N patients and N-1 patients

respectively then
Li,N
EPyN'l

where

and

~-1
Zp,N-1 =

Since

and

As the results for the estimates of 8

were almost identical,

- p_ =/ 2 -z
= np-l and v (E;%Ijg(qu xp),
~=1 ~=1 ~=1
el Ip,N t ¢ 1 Zp,N V vl ¢l Lp,N )
~=1
1-c~1 T Zp,N v
AN"IBN
3 ~=1
where AN -'Elni MlT Zi,N M;
1=
3 -1
and By = Elni MlT Zi,N X4,
-1
= AN-1 Byn-1
3 T ~-1 T ~-1
AN-1 = iﬁlni Mit Zi,N-1 My - Mp® Zp N-1 Mp
3 ol r ot
BN-1 = iﬁlni Mj* Z3,N-1 X3 - Mp™ Ip,N-1 Xpq:
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3
where Ay = I ng

and By = Znyq MiT ZN_lii,

-1
AN-1 BN-1
3

-1 -1
izlni MiT IN-1 My - MPT IN-1 Mp

I

3 -1 - a-1
By-1 izlni MiT IN-1 X4 - MPT IN-1 Xpq-

£i,N-1 if i # p,

cip,N - v v,

and I in CONOR1 and CONOR2

it was not felt that it was computationally




worthwhile to use the jack-knife technique with CONOR1l. However,

the jack-knife technique was used with CONOR2 and CONOR3.

5.2.2 Results for the Constrained Linear Model

In the comparison of the results for the different constrained
linear models there were three main considerations: the effect of
the jack-knife technique; the results obtained from the two
different priors; and, most important, the comparison of the three
models. In particular, it was important to see if the better fit
associated with the model CONOR3, where x ~ N(M;j6,%;) was
translated into improved performance. These considerations will be
discussed with regard to first the classification matrices and then
the measures of separation.

The classification matrices for the data sets D5, D4y and D3 are
given in Tables 5.1, 5.2 and 5.3 respectively. The separation
measures for these data sets are given in Tables 5.4, 5.5 and 5.6
respectively.

The classification matrices in Tables 5.1, 5.2 and 5.3 show
that the jack-knife procedure had 1little effect in changing the
allocation of a patient to a particular category. However, any
effect was more noticeable with CONOR3, where there are more
parameters to estimate, than with CONOR2. The magnitude of the
effect of the jack-knife technique gives an indication of the
variability of the parameter estimates, so these results are not
surprising, reflecting the greater variability in the parameter
estimates of CONOR3.

The result of the comparison of the effect of the different
priors on the classification matrices reflected +the higher
probability of pood recovery and the lower probability of severe

disability, relative to the probability of moderate disability, in
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Table 5.1 Classification matrices for the constrained normal
methods and data set Dg
No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Qutcome Outcome Outcome
SO MD GR SO ™MD GR
SD 30 17 10
CONOR1 MD 15 23 17
GR 18 43 63
Arrival SD 30 17 10 30 17 10
CONOR2 MD 15 23 17 15 23 17
Rate GR 18 43 63 18 43 63
SD 27 14 7 27 14 9
CONOR3 MD 12 24 17 11 25 16
GR 24 45 66 25 44 65
SD 31 21 16
CONOR1 MD 17 25 15
GR 15 37 59
SD 31 21 16 31 21 16
Equal CONOR2 MD 17 25 15 16 23 15
GR 15 37 59 16 39 59
SDh 32 17 12 32 19 14
CONOR3 MD 10 23 15 11 23 15
GR 21 43 63 20 41 61
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Table 5.2 Classification matrices for the constrained normal

methods and data set Dy

No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Outcome Outcome Outcome
SO MD GR SO Mb GR
SD 42 31 17
! CONOR1 MD 19 16 21

GR 42 91 127

Arrival SD 42 31 17 41 31 17

CONOR2 MD 19 16 21 20 16 22

' Rate GR 42 19 127 42 91 126
SD 42 23 18 38 24 18

CONOR3 MD 18 29 24 21 29 23

GR 43 86 123 44 85 124

SD 59 45 34
CONOR1 MD 20 20 25
GR 26 73 106

SD 59 45 34 59 46 34

Equal CONOR2 MD 20 20 25 200 19 27
GR 24 73 106 24 73 104

SD 60 35 43 51 32 41

CONCR3 MD 16 31 18 22 34 17

GR 27 72 104 30 72 107
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Table 5.3 Classification matrices for the constrained normal

methods and data set Dj

No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Outcome Outcome Outcome
S MD GR SD MD GR
SD 47 41 28
' CONOR1 MD 16 12 16

GR 61 115 192

Arrival SD 47 41 28 47 42 29

CONOR2 MD 16 12 16 16 11 15

Rate GR 61 115 192 61 115 192

SD 53 43 36 52 40 37

CONOR3 MD 12 16 13 15 22 14

GR 59 109 187 57 106 185
. SD 69 65 60
i CONOR1 MD 23 24 33
( GR 32 79 143

SD 69 65 60 69 65 61

Equal CONOR2 MD 23 24 33 23 24 32

GR 32 79 143 32 79 143

sSD 77 68 80 70 68 81

CONOR3 MD 10 14. 13 19 14 11

GR 37 86 143 35 86 144
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Table 5.4 Measures of separation for the constrained normal
methods and data set Dg
Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
CONOR1 .508 - .513 -
Error
Rate CONOR2 .508 .508 .513 .521
CONOR3 .504 .504 .500 .509
CONOR1 .989 - .995 -
Average
Logarithmic  CONOR2 .989 1.010 .995 1.016
Score
CONOR3 1.026 1.118 .030 1,122
CONOR1 .599 - .603 -
Average
Quadratic CONOR2 .599 .611 .603 .615
Score
CONOR3 .612 .643 .612 644
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Table 5.5 Measures of separation for the constrained normal

methods and data set Dy

Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
CONOR1 544 - . 544 -
Error
Rate CONOR2 544 .549 544 .552
CONOR3 .522 .530 .520 .527
CONOR1 1.007 - 1.020 -
Average
Logarithmic CONOR2 1.007 1.018 1.020 1.032
Score
CONOR3 1.030 1.072 1.042 1.085
CONOR1 .611 - .619 -
Average
Quadratic CONOR2 .611 .618 .619 .626
Score

CONOR3 .619 .635 .623 .637




Table 5.6 Measures of separation for the constrained normal
methods and data set D
Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
CONOCR1 .524 - .553 -
Error
Rate CONOR2 .524 .526 .553 .553
CONOR3 .515 .510 .557 568
CONOR1 1.001 - 1.030 -
Average
Logarithmic  CONOR2 1.001 1.009 1.030 1.038
Score
CONOR3 1.012 1.032 1.044 1.065
GONOR1 .605 - .623 -
Average ‘
Quadratic CONOR2 .605 .610 .623 .628
Score
CONOR3 .610 .619 .629 .639
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the arrival rate priors. Thus more patients were predicted to make
a good recovery and fewer to have a severe disability when the
arrival rate priors were used as opposed to equal priors.

The comparison between the results of the three methods was
interesting and showed that CONOR1 and CONOR2Z gave identical
results. The reason for this was that the estimates of 8 and I
differed only after the fifth and first decimal places respectively
CONOR3 was not obviously superior to CONOR1 or CONOR2. 1In no case
did it allocate more or fewer cases correctly in all three outcome
categories. Indeed, there did not even seem to be a pattern over
the three data sets Dg, Dy and D3. TFor example, when comparing the
results based on arrival rate priors, more cases were predicted
correctly to have a good recovery with CONOR3 than with CONOR1l or
CONOR2 for data set Dy, while the reverse was true for data sets Dy
and D3. The classification matrices did, however, show the large
overlaps between the groups, and that the ordered nature of the
outcomes resulted in very few of the moderate disability group
being allocated to the correct category.

To look more quantitatively at the results, the separation
measures in Tables 5.4, 5.5 and 5.6 were examined. A benchmark for
comparison of the measures was obtained by assigning the prior
probabilities to each case and these are given in Table 5.7.

The jack-knife technique has already been shown to have little
effect on the classification matrix and thus had little effect on
the error rate. The same was also true for the average logarithmic
and quadratic scores. The jack-knife again had most effect with
CONOR3, where the largest number of parameters had to be estimated:
this was most marked with data set Dg, which had the smallest
number of cases of the three data sets and also the largest number

of parameters to be fitted. However, in all cases the jack-knife
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Table 5.7 Measures of separation obtained by assigning the prior
probabilities
Arrival Equal
Data Set Measure Rate Priors
Priors
Error Rate .619 .667
Ds Average lLogarithmic Score 1.088 1.110
' Average Quadratic Score .660 674
Error Rate .594 .667
Dy, Average Logarithmic Score 1.081 1,117
Average Quadratic Score .655 .678
Error Rate «553 .667
f Dq Average Logarithmic Score 1.064 1.133
|
ﬂ Average Quadratic Score 644 .690
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method gave slightly worse average logarithmic and quadratic scores
than the same methods without jack-knife. The jack-knife procedure
with CONOR3 and data set D3 gave an error rate which was lower than
that without this procedure. This was because six more moderate
disability cases were correctly classified while only three fewer
severe disability and good recovery cases were correctly
classified. All other error rates were either the same or slightly
worse with the jack-knife technique.

The arrival rate priors gave slightly better average
logarithmic and quadratic scores than the corresponding equal prior
results. The extra information contained in the arrival rate
priors contributed to this improvement. Also the error rates using
the arrival rate priors were generally better than those using
equal priors. However, with CONOR3 there were again examples where
the reverse was true.

In a comparison of the three methods, GCONORl and CONORZ again
gave identical scores. With the average logarithmic and quadratic
scores, CONOR3 always had a higher score than CONOR1 and CONOR2Z.
Even though the fit of CONOR3 to the data was shown to be better
than CONOR1 or CONOR2, this was not reflected in the results of the
predictions. This result is in accord with the findings of the
comparative study described in Section 3.5. In terms of the error
rate, CONOR3 did better than CONOR1 and CONOR2 except with equal
priors and data set D3. The error rates with CONOR3 did not follow
the same pattern as that of the other separation measures. This
was because, with this particular model, small changes in the
probabilities were giving a different classification of outcome.
When this occurs, the practical implications of the use of the
error rate as a measure of assessment have to be considered. The

usual criticism of the error rate is that of insensitivity to small
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changes in probabilities, but here the opposite seemed to be the
case.

Comparison of Tables 5.4, 5.5 and 5.6 with Table 5.7 shows
that, while these methods did not solve all the problems of
predicting the outcome in survivors, they did give a worthwhile
improvement over simply allocating the prior probabilities to each

case.

5.3 Normal Linear Model

5.3.1 TFisher's Linear Discriminant Function

The classical linear discriminant function is a natural
comparator for the models in Section 5.2. The linear discriminant
function was originally obtained by Fisher (1936) as that linear
function which maximises the ratio of 'between' to 'within' sums of
squares. However exactly the same discriminant function results
from the normal linear model assuming no structure other than the
equality of the covariance matrices. Relaxation of the equality of
the covariance matrices leads to the standard quadratic
discriminant model. However, in view of the poor performance of
the quadratic methods in the comparative study and in the results
described in Section 5.2, this method was not included for further
comparison. With the normal linear model the probability of
outcome II; for a new individual with feature vector y is estimated

by

p(11y) exp[- & (y-ui)T E-L(y-iy)
p(13)y,D) = i A )]

3 1 . -~ -
jzlp(ﬂj) exp[- 5 (y-ipT 27 1(y-iip)]

148




where p(Il3) is the prior probability of outcome I and ;i and T are
the maximum likelihood estimates of pi and I. This method was
called NORLIN and corresponds to the methods NORLIN1 and NORLIN2
described in Section 3.5. The biomedical computer program BMDP P7M

by Dixon et al. (1985) was used to calculate the probalilities.

5.3.2 Results for the Normal Linear Model

The effects of the jack-knife technique and of wusing the
different priors were studied, first in terms of the classification
matrices and then by the measures of separation. The
classification matrices and the separation measures for the various
predictions made using this model are given in Tables 5.8 and 5.9
respectively.

The classification matrices in Table 5.8 show that the
jack-knife technique led to fewer cases being correctly classified.
This occurred with all the data sets and with either arrival rate
ot equal priors.

The use of arrival rate priors again led to more cases being
predicted to make a good recovery and fewer to be severely disabled
than with equal priors. The moderate disability group still proved
difficult to predict.

The separation measures in Table 5.9 show that not only was the
error rate worse with the jack-knife technique, but that the other
separation measures also gave poorer results for all data sets and
both prior probabilities. The use of arrival rate priors improved
all scores for the measures of separation with one exception. The
error rate for data set D, with no jack-knife was slightly less

with equal priors than arrival rate priors.
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Table 5.8 Classification matrices for method NORLIN
No Jack-knife Jack-knife
Data Priors
Set
Predicted Actual Actual
Outcome Outcome Outcome

Ssb MD GR Sh MD GR
Arrival SD 29 16 13 29 17 14
Rate MD 18 29 16 18 26 21
, GR 16 38 61 16 40 55

Ds
; SD 31 18 14 31 18 14
Equal MD 17 32 23 17 29 27
GR 15 33 53 15 36 49

]
Arrival SD 39 30 17 38 30 18
Rate MD 23 21 22 23 19 21
GR 41 87 126 42 89 126
Dy

SD 59 45 35 57 47 35
Equal MD 16 21 20 18 17 24
GR 28 72 110 28 74 106
‘ Arrival SD 48 39 24 46 39 24
Rate MD 13 16 22 14 14 23
GR 63 113 190 64 115 189

D3
SD 70 65 57 68 66 58
Equal MD 18 20 26 20 18 28
GR 36 83 153 36 84 150
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Table 5.9 Measures of separation for method NORLIN
Arrival Rate Priors Equal Priors
Data Measure
Set Jack-knife Jack-knife
No Yes No Yes

Error
Rate .496 .534 .508 .538
Average

D5 Logarithmic .987 1.031 .992 1.036
Score
Average
Quadratic .600 .628 .602 .630
Score
Error
Rate .542 . 549 .532 .557
Average

Dy Logarithmic 1.006 1.027 1.019 1.040
Score
Average
Quadratic .611 .624 .618 .631
Score
Error
Rate .519 .528 . 540 .553
Average

D3 Logarithmic 1.000 1.011 1.029 1.040
Score
Average
Quadratic .604 .611 .622 .629

Score

151




5.4 Independence Model

5.4.1 Practical Aspects

In the Head Injury Study it was the independence model,
described in Section 3.4, which was first wused to make the
predictions of outcome. The comparative study described in Section
3.5 showed it performed well when compared with other methods. It
was also well understood by the clinicians and is the method
currently being used to provide the medical staff with on-line
predictions of prognosis in the early stages after head injury
(Barlow et al., 1984; Barlow et al., 1987). It was therefore
important to compare its performance with that of the normal models
described in Sections 5.2 and 5.3. A feature of the independence
model is that unlike, for example, the linear discriminant model
the ordered mnature of the coma score is not explicitly
incorporated.

Four sets of variables were considered and data sets Dg, D, and
D3 were used as the test and training data for the predictions at
the end of 28 days, 14 days and 7 days respectively. The model
used was that described in Section 3.5.2 with B=1, and the
predicted probability of each outcome IIy was obtained using the
program INDEP-SELECT by Habbema and Gelpke (1981).

The four variable sets used were as follows:

INDEP1 - The best coma score at 24 hours

INDEP2 - The best coma score within the latest available time
period. For example, the best coma score within the 8-14 day
period was used with data set Dy. It was anticipated that the
results from INDEP2 would be better than those of INDEP1 thereby
showing that the current state of the patient is more important

than the initial state.
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INDEP3 - All best coma scores available for the particular data
set. Here it was anticipated that utilising all information would
provide better results than those purely using the current state of
the patient.

INDEP4 - For the latest time period available the best coma score,
motor response pattern, pupil reaction, created eye indicant along
with the change in neurological function and the patient's age.
This is the variable set III described in Section 3.5 and is the
one currently in use for the on-line predictions of prognosis in
the early stages after dinjury. It therefore gave a standard
against which to judge all other methods.

With INDEP1, INDEP2 and INDEP3 the raw coma scores were used,
whereas with INDEP4 the data were suitably collapsed to reduce the
number of categories. For example, age was collapsed into decades
(0-9, 10-19, ....) and the coma score into 3 groups (3-10, 11-13
and 14-15) for data set D, and D5, and 4 groups (3-4, 5-7, 8-11 and
12-15) for data sets D3. The splits were those currently used in
practice and were chosen using an entropy measure as described in
Section 3.4.3.

There was no missing data with INDEP1, INDEPZ and INDEP3, but
there was considerable missing data in the additional variables

included in INDEP4. This was dealt with as in Section 3.4.2.

5.4.2 Results for the Independence Models

In the discussion of the results of the four independence
models the approach taken in Section 5.2.2 with the constrained
normal models will be used again. Thus, the effect of employing
the jack-knife technique and of the use of two different sets of
prior probabilities is considered before the comparing the models.

The classification matrices are given in Tables 5.10, 5.11 and
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5.12, for the data sets Dy, D, and D3 respectively and the
corresponding separation measures are given in Tables 5.13, 5.14
and 5.15.

The jack-knife technique again gave fewer correct
classifications in all but two comparisons in which the same number
were correctly classified. In many cases this technique had a
marked effect on classification. The number of parameters
estimated and the number of cases in the data set should both
influence the magnitude of the effect of the jack-knife technique.
With data set Dg it was difficult to see a pattern in the results,
but with data sets D,y and D3, INDEP1 and INDEP2 were indeed less
affected by the technique than INDEP3 and INDEP4, each of which had
more parameters to estimate.

The different priors also had a marked effect on the
classification and this was most noticeable with data set D3. The
probabilities were obviously such that the changes induced by the
arrival rate priors led to a different classification in many
cases.

The instability ‘of the classification matrices meant that a
comparison of the different independence models was not easy.
Subjectively INDEP2 did appear better than INDEP1. INDEP3 was not
obviously better than INDEP2 and the results of INDEP4 seemed
comparable to those of INDEP3 and INDEPZ.

When the separation measures were considered, the jack-knife
technique gave poorer average quadratic and logarithmic scores in
every case. With these scores, the number of parameters to be
estimated and the number of cases in the data set had a noticeable
effect. The jack-knife technique had more effect with INDEP3 and
INDEP4 which needed more parameters to be estimated. Data set Ds,

with fewest cases, showed more effect than data set D4, which in
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Table 5.10 Classification matrices for the independence methods
and data set Dj
No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Outcome Outcome Outcome
SO ™D GR SO MD GR
SD 19 11 16 19 17 16
INDEP1 MD 27 3% 27 27 33 37
GR 17 33 47 17 33 37
SD 19 8 4 19 13 4
INDEP2 MD 34 48 28 34 43 28
GR 10 27 58 10 27 58
Arrival
Rate
Sh 42 19 12 34 26 14
INDEP3 MD 14 37 9 19 28 16
GR 7 27 69 10 29 60
Sb 32 18 8 27 19 9
INDEP4 MD 22 29 17 25 26 17
GR 9 36 65 11 38 64
SDh 34 28 28 25 28 29
INDEP1 MD 26 51 45 35 27 45
GR 3 4 17 3 28 16
SD 31 22 7 24 23 17
INDEP2 MD 22 34 25 29 33 25
GR 10 27 58 10 27 48
Equal
SD 46 24 16 37 30 19
INDEP3 MD 10 33 8 18 25 15
GR 7 26 66 8 28 56
SD 36 20 9 32 21 11
INDEP4 MD 19 28 17 22 27 18
GR 8 35 64 9 35 61
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Table 5.11 Classification matrices for the independence methods
and data set Dy
No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Outcome Outcome Qutcome
S MD GR SD MD GR
SD 45 35 36 45 35 36
' INDEP1 MD 5 14 11 5 14 11
GR 53 89 118 53 89 118
1 SD 50 33 31 50 33 34
INDEP2 MD 17 23 9 17 23 9
GR 36 82 125 36 82 122
Arrival
Rate
SD 61 39 26 54 44 28
INDEP3 MD 25 49 30 30 31 37
GR 17 50 109 19 63 100
SD 54 30 16 43 34 17
INDEP4 MD 21 35 15 32 25 24
GR 28 73 134 28 70 124
SD 60 55 57 45 55 59
INDEP1 MD 31 64 65 46 51 65
GR 12 19 43 12 32 41
SD 66 49 43 61 49 43
INDEP2 MD 34 73 68 39 73 68
GR 3 16 54 3 16 54
Equal
SD 71 53 38 61 57 41
INDEP3 MD 22 46 31 28 36 43
GR 10 39 96 14 45 81
SD 66 41 25 60 43 26
INDEP4 MD 20 44 29 24 38 42
GR 17 - 53 111 19 57 97
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Table 5.12 Classification matrices for the independence methods
and data set Dj
No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Qutcome Outcome Outcome
SD MD GR SD MD GR
SD 20 15 13 20 15 13
INDEP1 MD 7 19 18 7 19 18
GR 97 134 205 97 134 205
SD 30 22 13 30 22 13
INDEP2 MD 22 37 26 22 37 42
GR 72 109 197 72 109 181
Arrival
Rate
SD 64 46 38 58 50 40
INDEP3 MD 24 42 33 29 26 44
GR 36 80 165 37 92 152
SD 49 29 10 41 32 10
INDEP4 MD 32 51 33 38 44 47
GR 43 88 193 45 92 179
SD 52 40 50 52 40 51
INDEP1 MD 54 95 107 54 95 107
GR 18 33 79 18 33 78
SD 74 65 53 74 68 71
INDEP2 MD 19 39 36 19 36 36
GR 31 64 147 31 64 129
Equal
SD 78 59 48 65 61 52
INDEP3 MD 27 64 57 39 53 61
GR 19 45 131 20 54 123
SD 66 42 22 59 52 24
INDEP4 MD 32 68 58 39 52 58
GR 26 58 156 26 64 154
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Table 5.13 Measures of separation for the independence methods

and data set Dg

Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
INDEP1 .555 .623 .568 712
Error INDEP2 .470 L492 479 .555
Rate )
INDEP3 .373 .483 .386 .500
INDEP4 466 504 458 .492
!
I
INDEP1 1.026 1.142 1.036 1.153
Average INDEP2 924 .992 .931 .998
Logarithmic
Score INDEP3 .916 1.339 .931 1.356
INDEP4 .922 1.021 .928 1.027
! INDEP1 .620 .679 .627 .687
| Average INDEP2 .565 .605 .570 .609
Quadratic
Score INDEP3 .527 704 .540 713

INDEP4 .561 .625 .565 .626




Table 5.14 Measures of separation for the independence methods
and data set Dy
Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
INDEP1 .564 .564 .589 .663
Error INDEP2 .512 .520 .525 .537
Rate
INDEP3 461 544 475 .561
INDEP4 .451 .527 456 .520
INDEP1 1.040 .106 .057 1.124
Average INDEP2 .969 1.019 .983 1.033
Logarithmic
Score INDEP3 .988 1.212 .010 1.234
INDEP4 .899 .978 .911 .989
INDEF1 .629 .664 .640 .676
Average INDEP2 .587 .618 .590 .626
Quadratic
Score INDEP3 .591 .692 .606 704
INDEP4 547 .599 .555 .605
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Table 5.15 Measures of separation for the independence methods
and data set Dj
Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
INDEP1 .538 .538 .572 574
Error INDEP2 .500 .530 .508 .547
Rate
INDEP3 . 487 .553 .483 544
INDEP4 ) .500 .451 .498
INDEP1 1.026 1.077 1.058 1.110
Average INDEP2 .962 1.017 .990 1.045
Logarithmic
Score INDEP3 .970 1,114 1.003 1.147
INDEP4 .912 .981 <934 1.003
! INDEP1 .620 .647 .641 .670
)
{ Average INDEP2 .581 .608 .599 625
Quadratic
Score INDEP3 .584 .650 .603 .669
INDEP4 .549 .591 .560 .602
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turn showed more effect than data set D3.

The arrival rate priors gave better average logarithmic and
quadratic scores in every case. With the error rate there were
cases where the reverse was true, particularly with INDEP4.

Comparison of the models on the basis of the separation
measures showed that INDEP2 always performed better than INDEP1.
When the average quadratic and logarithmic scores were used as a
basis for comparison, INDEP3 performed less well than INDEP2 with
data sets D4 and D3. With data set Dg INDEP3 performed less well
than INDEP2 with the jack-knife technique but better without it.
However, for data sets D4 and D3, INDEP4 had the best overall
performance. It had the lowest score in every case, with the
exception of data set D4, in which, using arrival rate priors and
jack-knife, it performed slightly worse than INDEP2. With data set
D5, the performance of INDEP4 was between that of INDEP2 and
INDEP3, again with one exception, when assessed on the basis of the
average logarithmic and quadratic scores.

Thus the general conclusions of the results of the independence
model were that

(i) INDEP2 was better than INDEP1

(ii) INDEP3 performed less well than expected and was in
general not better than INDEP2
(iii) TINDEP4 performed surprisingly well and for data set D and

D3 gave the best results.

5.5 Comparison of Models

5.5.1 Comparison of Models Assuming Normality

The relative performance of those' models in Sections 5.2, 5.3

and 5.4 based on normality assumptions will be discussed first.




The classification matrices of the constrained methods CONOR1,
CONOR2 and CONOR3 in Tables 5.1, 5.2 and 5.3 were compared with
those of the standard method NORLIN in Table 5.8 and the overall
impression was that NORLIN seemed to give very similar results to
the other methods; certainly no striking difference was apparent.

When the separation measures for CONOR1, CONOR2 and CONOR3 in
Tables 5.4, 5.5 and 5.6 were compared with those for NORLIN in
Table 5.9, the differences with the different models were very
small indeed. In almost all comparisons in which no jack-knife
technique was used, NORLIN gave a lower average logarithmic and
quadratic score than the constrained methods. The exception was
the average quadratic score with data set Dg and arrival rate
priors, for which NORLIN gave a score between CONORZ and CONOR3.
With the jack-knife technique, the average logarithmic and
quadratic scores for NORLIN were between those for CONOR2Z and
CONOR3. A particular pattern did not emerge for the error rates

and the results of the four methods were very similar.

5.5.2 Comparison of Independence and Normal Based Models

To simplify the comparison of the independence based methods
with those based on normality assumptions, only the separation
measures will be discussed. The results in Tables 5.13 and 5.4 and
for data set Dg in Table 5.9 are compared. Similar comparisons are
made for data sets D; (Tables 5.14, 5.5 and 5.9) and D3 (Tables
5.15, 5.6 and 5.9). Since INDEP1 was consistently worse than
INDEP2Z for all data sets it was excluded.

When no jack-knife technique was used, all the independence
methods were better than any of of the normal based methods except
with data set Dj and equal priors. Here the error rate for CONOR3

was better than that of INDEP2. When the jack-knife technique was
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used, one of the independence methods always gave the best
performance but no one method was consistently better than the
normal methods. With data sets D4 and D3, INDEP4 performed better
than any of the normal methods, but with data set Dg, CONOR2
performed better than INDEP4 in terms of the average logarithmic

and quadratic scores.

5.6 Discussion

The results obtained were disappointing on several accounts.
First, attempts to use the constrained normal models to model the
trend in the coma score througﬁ time did not appear to improve
performance when compared with the model NORLIN. In the latter the
coma scores at the different time periods were simply assumed to
have a multivariate normal distribution. The constrained models
CONOR1 and CONOR2Z were slightly better when the jack-knife
technique was used and the converse was true with no jack-knife.
This may be because NORLIN requires the estimation of more
parameters so that the effect of the jack-knife was more marked.
The results using the jack-knife approach are likely to give a more
reliable measure of performance and should be given more weight
than those without this approach.

Secondly, when the normal based methods were compared with the
independence model INDEP4, it was found that INDEP4 for the most
part performed bhetter. As 1INDEP4 provided the standard for
comparison, this too was disappointing and led to further scrutiny
of the independence models.

The finding that INDEP3, which used the coma scores for all
time periods, did not perform better than INDEP2, which used only
the latest available coma score seemed unrealistic. However, an

explanation for the poor performance of INDEP3 can be found in the
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number of parameters that needed to be estimated. Each of
variables included had 13 categories; these were not reduced so
that a direct comparison could be made with the methods based on
normality assumptions. The small numbers of cases in the data sets
(especially Dg) meant that the estimates of the parameters had
large variability and this resulted in inaccurate estimates. This
view is supported by the marked change in performance seen when the
jack-knife technique was used with INDEP3.

To examine the performance of the independence models more
closely, the number of cases with each coma score and each outcome
was tabulated, and the conditional probability of outcome, given
the coma score, was calculated. Many of the cells in these tables
contained small numbers of cases. This obscured the pattern in
the conditional probability of the outcome, given the coma score,
that had been expected in view of the ordering in the coma score.
This is clearly shown in Table 5.16 which gives the numbers
involved and the conditional probabilities of the outcomes, given
the 4-7 day best coma score, for data set D3. The problem was even
more marked with data sets D4 and D5 which contained fewer cases.
This problem was compounded in INDEP3 because more variables were
included.

When the indicants used in INDEP4 were tabulated as above it
was seen that pupil reaction, motor response pattern and created
eye indicant did not contribute much to discrimination: this was
because the data were mostly either missing or in the highest
category. Discrimination was therefore made on the basis of the
coma score, change in neurological condition and age. The
conditional probabilities of the outcomes, given age, and the
numbers involved are given in Table 5.17. The conditional

probabilities here reflect the relationship between age and
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outcome, older cases having a higher probability of poor outcome.
Thus, the inclusion of age had made a significant contribution to
the results of INDEP4.

The results of this chapter suggested ways in which performance
might be further improved. Age had a major effect on the results
of INDEP4 and incorporation of age into the models based on trends
would hopefully improve their performance. In conjunction with
this, it seemed appropriate to attempt to improve the performance
of INDEP3 in relation to INDEP2Z by reducing the number of

parameters to be estimated. This is carried out in Chapter 6.
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CHAPTER 6

THE INTRODUCTION OF AGE INTO THE MODELS

6.1 Introduction

The effect of age on outcome after severe head injury is well
recognised (Carlson et al., 1968; Teasdale et al., 1979b). It was
included as an indicant to predict outcome both in the early
research described in Section 3.4 and the comparative study
described in Section 3.5. While my main interest was to use the
trend in the patient's state thfough time to try to identify the
individuals who wultimately would be severely disabled, the

L contribution which age made in the model INDEP4 could not be
ignored. It was therefore decided to incorporate age into the
formal structure of the other models in order to examine if

performance could be improved further.

6.2 Constrained Normal Model with Ape

i Age was incorporated into the constrained normal models in two
different ways. In the first it was assumed that, within outcome
categories, age and the coma scores were independent, while in the

second age was incorporated using linear regression on the coma

score.

6.2.1 Model Assuming Independence of Age and Coma Score

One of the simplest ways of introducing age into the
constrained normal model was to assume that age and the coma scores

were independent within outcome categories. Thus if x is the

feature vector of coma scores and x, is age, then the joint




distribution of the new feature vector (x,x,) is given by the
product of the two marginal distributions
p(x,x5) = p(x) p(xy).

The average quadratic and logarithmic scores of the model
CONOR3, where the distribution of the feature vector was assumed to
be N(Mie,zi), gave consistently poorer results than the models
CONOR1 and CONOR2, where a single covariance matrix was assumed.
CONOR3 was therefore not considered here. The density p(x) was
thus assumed to be that of a N(M;8,%) random vector, as initially
described in Section 4.5, Age was assumed to be normally
distributed with mean A4 and variance T3 for outcome category I3,
where i=1, 2, 3. DBoxplots of the distribution of age within each
outcome for the three data sets (Figure 6.1) suggest that this
assumption is not unreasonable. The maximum likelihood estimates
ii and ;i of the parameters Aj and t; were calculated. Thus, as in
Section 5.2, the probability that a new patient with feature vector

(y,ya) belongs to category II; is estimated by

p(1)7s"hexp{- Z[(y-4;8)TE1(y-M38)+(ya-rp) 23 1]}

P(Hi YsYa:D) =
T.-% 1 9)T5-1 0 2:)20.-1
Elp(Hj)Tj Zexp{- i[(Y‘Mje) b (y-Mje)+(ya-Aj) 4 ]}

J

where p(Il;j) is the prior probability of outcome 1,
6 and i are the appropriate estimates of 6 and I,

and ii and ;i are the maximum likelihood estimates of A; and tj.
The models corresponding to CONOR1 and CONOR2 are referred to as
CONOR1Al and CONOR2A1 and have six more parameters to estimate as a
result of the introduction of age. When the jack-knife technique
was used with CONOR2A1 a recursive technique was again used to
re-estimate Ay and vy as in Section 5.2.

This method of incorporating age into the model assumed

169




170

Figure 6.1 Boxplots of the distribution of age within each

outcome category for data set Ds, Dy and Dj
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independence between age and coma score within outcome categories.
However, when these relationships were examined this assumption was
clearly violated. This does not necessarily imply that such a
model will not lead to good discrimination, as is discussed in
Section 3.5.4. The relationship between age and coma score was such
that for a given degree of recovery the lower coma scores were
associated with younger patients. Table 6.1 shows the relationship
between age and coma score at 28 days in the severe disability
group. A similar pattern was obtained with the other outcome
categories and other time periods.

To exploit the dependence between age and coma score, age was

then incorporated into the model wusing linear regression on the

coma score.

6.2.2 Model Using Linear Regression on the Coma Score

In this model age was related to coma score in the following
way. The joint distribution of the feature vector (x,xa) could be
expressed as follows

p(x,x5) = p(xa|x) p(x)

The distribution of x was as described in the constrained
normal models of Section 5.2 and p(xz|x) obtained by regressing age
as a linear function of coma score. Initially, for each data set
Dg, € =5, 4, 3 and outcome category i, i = 1, 2, 3, a stepwise
procedure, using the BMDP program P2R (Dixon et al., 1985), was
carried out to regress age on all coma scores available up to the
time period considered. With the stepwise procedure at most two,
and "more often only one, coma scores were included in the
regression equation before the stopping criterion was met. The
particular score included in the equation varied according to the

data set and outcome category considered. However, the best coma
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Relationship between age and the best coma score in

the 15-28 day period for the severe disability group

Age in years

Frequency ¢ - 29 30 - 49 2 50
3-10 10 2 3
Coma
11-13 11 7 5
Score

14-15 4 10 11




score at 4-7 days was seen to be consistently and significantly
related to age in all cases. As a result, the conditional
distribution, p(x,]x), was modelled as N(a; + Rjx3, 042) where x3
is the 4-7 day best coma score. A likelihood ratio test for each
data set showed that modelling p(x4|x3) as N(aj + Bjx3, o2) did not
give a significantly poorer fit so this assumption of common
variance was adopted for incorporation into the model. As age was
now being introduced into the model in a far more structured
fashion, the more general model CONOR3 was again included in order
to confirm that, as before, it performed poorly relative to the
models with a common covariance ﬁatrix. The models corresponding
to CONOR1, CONOR2Z and CONOR3 are referred to as CONOR1A2, CONOR2A2
and CONOR3A2 and had seven more parameters as a result of the
introduction of age. When the jack-knife technique was used with
CONOR2A2 and CONOR3A2 a recursive technique was again used to

re-estimate oj and Bj.

6.2.3 Results for the Constrained Linear Model with Age

Three aspects of the results for the constrained linear models
with age will be presented. First, the results obtained with
CONOR1A2, CONOR2A2Z and CONOR3A2 are discussed; these would Dbe
expected to be similar to the pattern of results with CONORI1,
CONOR2Z and CONOR3 in Section 5.2. Next, the relative performance
of the two different methods of introducing age, Al and A2, will be
considered, and finally, the effect of the introduction of age on
performance examined by comparing the results including age to the
corresponding results obtained without the inclusion of age.

The results of the five constrained normal models including age
i.e. CONOR1Al, CONOR2Al, CONOR1A2, CONOR2A2, CONOR3A2 are given in

Tables 6.2 - 6.7. The classification matrices for data sets Dg, Dy
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and D3 are given in Tables 6.2, 6.3 and 6.4 respectively and the
separation measures in Tables 6.5, 6.6 and 6.7 respectively.

These results confirmed that the general pattern of results
within the constrained models including age was similar to that for
the results without age. The results with the jack-knife technique
were worse than those obtained without it. The use of the arrival
rate priors once more gave slightly better results than did equal
priors. The performance of CONOR1A2Z and CONOR2A2 were identical.
With the jack-knife technique, both were better than CONOR3AZ in
terms of the average logarithmic and quadratic scores. Without the
jack-knife, the three were similar.

When the method Al of incorporating age into the model was
compared with A2, where age was introduced as a function of the 4-7
day best coma score, the classification matrices were similar.
However when the separation measures were considered the average
logarithmic and quadratic scores for A2 were consistently slightly
better than those for the corresponding Al model. In most cases
the error rate for AZ was also lower than that for Al.

The effect on pe'rformance of the introduction of age into the
model was first studied using the classification matrices. The
results in Tables 6.2 - 6.4 were compared with those in Tables 5.1
- 5.3 respectively and showed that the addition of age considerably
improved the classification matrices, with more cases being
classified correctly, particularly in the middle, moderate
disability group. Also, fewer good recoveries were classified as
severe disability and vice versa.

The separation measures also confirmed the dimprovement in
performance. A comparison of Tables 6.5 - 6.7 with Tables 5.4 -
5.6 respectively, showed that either method of incorporating age

gave markedly better results, no matter which measure was
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Table 6.2 Classification matrices for the constrained normal
methods including age and data set Dy
No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Qutcome Outcome Outcome
SO MD GR SO MD GR
SD 35 13 7
CONOR1A1l MD 18 32 17
GR 10 38 66
SD 35 13 7 31 15 7
CONORZA1 MD 18 32 17 22 29 17
GR 10 38 66 10 39 66
Arrival SDh 36 14 5
CONOR1A2 MD 19 33 18
Rate GR 8 36 67
SD 36 14 5 36 14 5
CONOR2A2 MD 19 33 18 19 33 21
GR 8 36 67 8 36 64
SD 41 15 5 39 19 5
CONOR3A2 MD 13 33 17 16 25 21
GR 9 35 68 9 39 64
SD 43 22 8
CONOR1A1l MD 11 27 17
GR 9 34 65
SD 43 22 8 42 23 9
CONQOR2A1 MD 11 27 17 12 25 19
GR 9 34 65 ¢ 35 62
Sh 47 24 9
Equal CONOR1A2 MD 9 28 19
GR 7 31 62
SD 47 24 9 44 25 10
CONOR2A2 MD 9 28 19 12 24 18
GR 7 31 62 7 34 62
SD 43 18 8 43 21 8
CONOR3A2 MD 11 32 16 11 26 21
GR 9 33 66 9 36 61
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Table 6.3 Classification matrices for the constrained normal
methods including age and data set Dy
No Jack-knife Jack~knife
Priors Method
Predicted Actual Actual
Outcome Outcome Outcome
SD MD GR SD MD GR
SD 54 19 12
CONOR1A1l MD 32 51 24
GR 17 68 129
SD 54 19 12 53 21 13
CONORZA1 MD 32 51 24 33 46 26
GR 17 68 129 17 71 126
Arrival SD 58 25 12
CONOR1A2 MD 33 55 36
Rate GR 12 58 117
SD 58 25 12 56 25 14
CONOR2A2 MD 33 55 36 35 55 37
GR 12 58 117 12 58 114
SD 60 21 12 57 21 12
CONOR3A2 MD 26 56 38 28 55 43
GR 17 61 115 18 62 110
S 68 38 24
CONOR1A1 MD 29 50 29
GR 6 50 112
SD 68 38 24 67 40 24
CONOR2ZA1 MD 29 50 29 30 48 31
GR 6 50 112 6 50 110
SD 70 39 21
Equal CONOR1A2 MD 25 49 38
GR 8 50 106
sSD 70 39 21 67 44 21
CONOR2A2 MD 25 49 38 28 43 38
GR 8 50 106 8 51 106
SD 72 36 21 70 36 17
CONOR3A2 MD 18 48 40 20 57 44
GR 13 54 105 13 45 104
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Table 6.4 GClassification matrices for the constrained normal
methods including age and data set Dj
No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Qutcome Outcome Outcome
SD MD GR Sh MD GR
SD 53 31 12
CONOR1A1l MD 30 29 20
GR 41 108 204
SD 53 31 12 51 32 12
CONOR2A1 MD 30 29 20 32 25 21
GR 41 108 204 41 111 203
Arrival SD 61 36 14
CONOR1A2 MD 31 44 40
| Rate GR 32 88 182
|
| SD 61 36 14 60 36 14
CONOR2A2 MD 31 44 40 32 42 42
GR 32 88 182 32 90 180
SD 64 31 17 62 33 18
CONOR3A2 MD 27 52 43 28 51 47
GR 33 85 176 34 84 171
sSD 78 54 37
CONOR1A1l MD 29 51 48
; GR 17 36 151
SD 78 54 37 77 57 38
CONORZ2A1 MD 29 51 48 30 45 54
GR 17 63 151 17 66 144
SD 77 51 31
Equal CONOR1A2 MD 30 57 57
GR 17 60 148
SD 77 51 31 75 54 31
CONOR2A2 MD 30 57 57 32 53 57
GR 17 60 148 17 61 148
SD 79 52 31 78 57 29
CONOR3A2 MD 25 55 57 26 52 62
GR 20 61 148 20 59 145
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Table 6.5 Measures of separation for the constrained normal

methods including age and data set Dg

Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
CONOR1A1 436 - 428 -
CONORZA1 436 466 428 .453
Error
Rate CONOR1A2 424 - 420 -
CONOR2A2 424 436 420 449
CONOR3A2 .398 462 o W402 449
CONOR1A1l 917 - .923 -
CONOR2A1 .917 .952 .923 .958
Average
Logarithmic CONOR1A2 .897 - .901 -
Score
CONOR2A2 .867 .936 .901 941
CONOR3A2 .911 1.023 914 1.025
CONOR1A1l .554 - .556 -
CONORZ2A1 554 574 . 556 .575
Average
Quadratic CONOR1A2 .537 - . 540 -
Score
CONOR2A2 .537 .558 .540 .559

CONOR3A2 .538 .582 .537 .580
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Table 6.6 Measures of separation for the constrained normal

methods including age and data set Dy

Arrival Rate Priors Equal Priors
Measure Method
Jack-knife © Jack-knife
No Yes No Yes
CONOR1A1l 424 - 434 -
CONORZA1l LA24 446 434 A48
Error
Rate CONOR1A2 434 - 446 -
CONOQOR2A2 434 446 446 468
' CONOR3A2 .431 .453 446 .431
CONOR1A1l .918 - .930 -
CONORZA1 .918 .937 .930 .949
Average
Logarithmic CONOR1A2 .902 - .912 -
Score
CONOR2A2 .902 .922 .912 .932
; CONOR3A2 .908 .955 .916 .963
CONOR1A1 .554 - .560 -
CONOR2A1 .554 .566 .560 .572
Average
Quadratic CONOR1A2 .543 - 547 -
Score
CONOR2A2 .543 .555 547 .558

CONOR3A2 .542 .565 .542 .564




Table 6.7 Measures of separation for the constrained normal
methods including age and data set D3
Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
_ CONOR1A1l 458 - 470 -
CONOR2A1 458 472 470 496
' Error '
| Rate CONOR1A2 456 - 466 -
CONOR2A2 456 466 466 477
| CONOR3A2 V44T 462 466 .479
CONOR1AL .922 - .947 -
CONOR2A1 .922 .936 .947 .962
Average
Logarithmic  CONOR1A2 .911 - .935 -
Score
CONOR2AZ2 .011 .926 .935 .950
CONOR3A2 .912 .940 .936 .964
CONOR1A1l .552 - .568 -
CONOR2A1 .552 .562 .568 .577
Average
Quadratic CONOR1A2 547 - .558 -
Score
CONOR2A2 547 .555 .558 .567
CONOR3A2 .546 .558 572

.560
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considered. The improvement was so marked that, with one
exception, all the constrained models which included age were
better than the best model without age. With data set Dg CONOR2 is
slightly better than CONOR3A2 when the jack-knife technique is
used. It is thus clearly impertant to incorporate age in some form

into the model.

6.3 Normal Linear Model with Age

6.3.1 Practical Aspects

The incorporation of age into the classical linear discriminant
model gave the model NORLINA. This involved the estimation of
three more parameters for the mean age and four, five or six more
parameters in the common covariance matrix, depending on whether
data set D3, Dj or D5 was being used, than with the corresponding
model without age. In the constrained normal models, six extra
parameters were required with method Al and seven with A2. Thus
with one exception, more additional parameters had to be estimated
than with the inclusion of age into the constrained model. Again
the biomedical computer program BMDP P7M was used to calculate the

probabilities.

6.3.2 Results for the Normal Linear Model with Age

The classification matrices of the three data sets for the
model NORLINA are given in Table 6.8 and the separation measures in
Table 6.9. The effect of the jack~knife technique and the use of
different priors was considered first, then the models NORLIN and
NORLINA were compared.

The results of Tables 6.8 and 6.9 confirm that, as with NORLIN,

the jack-knife technique gave poorer results for all the separation
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Table 6.8 Classification matrices for method NORLINA
No Jack-knife Jack-knife
Data Priors
Set
Predicted Actual Actual
Outcome Outcome Outcome
SO MD GR SD MD GR
Arrival Sh 36 14 5 33 17 5
Rate MD 18 38 20 21 32 22
GR 9 31 65 9 34 63
D5
SD 45 19 8 42 21 8
Equal MD 12 37 19 13 33 21
GR 6 27 63 8 29 61
Arrival SD 60 25 13 57 28 13
Rate MD 33 53 28 35 47 30
GR 10 60 124 11 63 122
Dy
SD 71 43 22 70 43 22
Equal MD 24 43 35 25 43 35
GR 8 52 108 8 52 108
Arrival SD 59 37 15 59 38 17
Rate MD 32 37 31 32 35 33
GR 33 94 190 33 95 186
D3
SD 83 56 40 81 57 40
Equal MD 27 50 42 28 46 44
GR 14 62 154 15 65 152
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Table 6.0 Measures of separation for method NORLINA
Arrival Rate Priors Equal Priors
Data Measure
Set Jack-knife Jack-knife
No Yes No Yes
Error
Rate 411 .458 .386 424
Average
D5 Logarithmic .884 .942 .888 .947
Score
Average
Quadratic .532 .566 .533 .567
Score
Error
| Rate 416 443 .453 .458
;
i Average
i Dy Logarithmic .896 .923 .907 .934
Score
Average
Quadratic .538 .554 .542 .558
Score
Error
Rate .458 470 456 472
Average
D3 Logarithmic .907 .924 .932 .948
Score
Average
Quadratic 544 554 .556 .565

Score
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measures and each data set. The arrival rate priors also gave
better average quadratic and logarithmic scores than were obtained
with equal priors.

Comparison of the results with those of the normal linear
model without age in Tables 5.8 and 5.9 again showed that the
inclusion of age produced a substantial improvement in all
measures. As with the constrained models, more of the moderate
disability group were correctly classified and fewer good
recoveries were classified as severe disability and vice versa.
Thus, the extra information that age provided in addition to that
provided by the coma scores once more made a significant

contribution to performance.

6.4 The Independence Model with Age

6.4.1 Practical Aspects

Because the incorporation of age substantially improved the
results of the other methods, it should have had a similar
beneficial effect on the independence model. However, an
additional problem with the independence model that was highlighted
in Chapter 5 was the large effect of the jack-knife technique.

The effeect of the jack-knife was because the probability
estimates are based on individual cell counts rather than on all
the cases within the outcome category. Thus, the removal of one
case was having a marked effect on the results. In an attempt to
minimise this problem the cell counts were increased by grouping
categories together. The aim was to bfing the results obtained
with the jack-knife technique closer to those in which it was not,
without substantially worsening the latter. By grouping

categories, a method that made use of the coma scores at all time
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periods and age might also prove an improvement on the use of only
the latest coma score available and age. Five sets of results with

age incorporated into the independence model were thus obtained

(1) INDEP2A: As INDEP2 in Section 5.4 but with age included.
The coma score was incorporated in exactly the same way as in that
section and the age cells were taken from successive decades,

0-9 years, 10-19 years, etc.

(ii) INDEP3A: As INDEP3 in Section 5.4 but with age included

as in INDEP2A.

(iii) INDEP5A: As INDEP3A but with only four age cells used,

namely 0-19 years, 20-39 years, 40-59 years and 2 60 years.

(iv) INDEPG6A: The number of coma score cells was reduced from
thirteen to three at each time point and three cells were used for
age. The category splits were chosen as follows so that there were

approximately equal numbers in each of the splits:-

24 hour best coma score 3-6, 7-8, 9~-15

2-3 day best coma score 3-7, 8-10, 11-15
4-7 day best coma score 3-89, 10-13, 14-15
8-14 day best coma score 3-10, 11-13, 14-15
15-28 day best coma score 3-13, 14, 15

Age 0-19, 20-39, z 40

(v) INDEP7A: An intermediate between INDEP3A and INDEP6A
where six cells for the coma score and seven for age were used as

follows:—

24 hour hest coma score 3-5, 6, 7, 8, 9-10, 11-15
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2-3 day best coma score 3-6, 7, 8, 9-10, 11-12, 13-15
4-7 day best coma score 3-6, 7-8, 9-10, 11-13, 14, 15
8-14 day best coma score 3-8, 9-10, 11, 12-13, 14, 15
15-28 day best coma score 3-8, 9-10, 11, 12-13, 14, 15
Age 0-9, 10-19, ... , 50-59, 2 60

6.4.2. Results of the Independence Model with Age

The classification matrices for the above models corresponding
to data sets Dy, Dy and D3 are given in Tables 6.10, 6.11 and 6.12
respectively and the separation measures in Tables 6.13, 6.14 and
6.15 respectively.

Two aspects were considered in results for the independence
models with age: first, the pattern of results within the five
models specified; and second, the comparison of these results with
those of the independence models in Section 5.4.

When the classification matrices were studied the same general
pattern seen with previous independence models was noted. Thus,
the jack-knife technique gave fewer cases correctly classified and
the arrival rate pribrs gave more cases predicted to make a good
recovery and fewer to be severely disabled. A comparison of the
different models on the basis of the classification matrices was
difficult to make as these were very similar. However INDEP6A and
INDEP7A, where there were fewer parameters to estimate, were less
affected by the jack-knife technique. With INDEP2A more of the
moderate disability group were classified correctly than with other
methods while with INDEP6A fewer of this group were classified
correctly than with other methods.

The measures of separation confirmed that the pattern of
results in the models with age was similar to those without. Thus

the results using the jack-knife technique were consistently worse
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Table 6.10 Classification matrices for the independence methods
including age and data set Djg
No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Outcome Outcome Outcome

SO MD GR Sh MD GR
SD 32 14 7 21 18 7
INDEP2A MD 26 44 24 35 33 27
GR 5 25 59 7 32 56
SD 43 19 12 37 27 12
INDEP3A MD 16 39 7 22 25 15
GR 4 25 71 4 31 63
| Arrival SD 42 18 13 38 26 13
INDEP5A MD 16 39 7 19 27 14
Rate GR 5 26 79 7 30 63
SD 45 29 17 44 29 17
INDEP6A MD 12 23 17 13 21 17
GR 6 31 45 6 33 56
SD 43 20 12 41 27 13
INDEP7A MD 15 38 7 17 24 14
GR 5 25 71 5 32 63

|
l SD 45 28 12 39 31 12
INDEP2A MD 13 30 19 i8 26 22
‘ GR 5 25 59 6 26 56
SD 45 23 13 41 30 14
INDEP3A MD 15 37 8 19 24 14
GR 3 23 69 3 29 62
! sD 46 22 13 40 28 15
! Equal INDEP5A MD 13 37 8 18 27 17
GR 4 24 69 5 28 58
SD 46 30 20 46 30 20
INDEP6A MD 12 26 14 12 21 14
GR 5 27 56 5 32 56
SD 47 26 15 43 30 16
INDEP7A MD 11 33 7 15 23 16
GR 5 24 68 5 30 58
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Table 6.11 Classification matrices for the independence methods
including age and data set D,
No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Qutcome Outcome Outcome
SD MD GR SD MD GR
SD 45 16 9 33 23 9
INDEP2A MD 38 60 34 45 50 43
GR 20 62 122 25 65 113
SD 67 40 20 52 44 23
INDEP3A MD 27 51 28 38 33 37
GR 9 47 117 13 61 105
Arrival SD 66 39 23 56 45 26
INDEPSA MD 27 48 29 35 39 42
Rate GR 10 51 113 12 54 97
SD 67 41 26 66 44 26
INDEP6A MD 21 27 16 22 19 19
GR 15 70 123 15 75 120
i SD 69 43 21 65 44 24
INDEP7A MD 24 42 22 27 38 29
GR 10 53 122 11 56 112
SD 64 32 18 56 34 20
INDEP2A MD 28 65 52 34 59 56
’ GR 11 41 95 13 45 89
SD 73 48 27 64 49 31
INDEP3A MD 23 51 32 32 42 41
GR 7 39 106 7 47 93
SD 75 46 30 62 50 33
Equal INDEP5SA MD 22 53 37 35 39 40
GR 6 39 98 6 49 92
SD 72 49 32 72 49 32
INDEP6A MD 20 30 22 20 29 22
GR 11 50 111 11 60 111
Sh 74 48 30 71 48 30
INDEP7A MD 22 43 29 25 39 39
GR 7 47 106 7 51 96
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Table 6.12 Classification matrices for the independence methods

including age and data set Dj

No Jack-knife Jack-knife
Priors Method
Predicted Actual Actual
Outcome Qutcome Outcome
SD MD GR SD MD GR
SD 47 25 12 40 30 13
INDEP2ZA MD 46 65 36 50 57 35
GR 31 78 188 34 81 184
SD 65 40 27 55 46 29
INDEP3A MD 37 57 28 44 47 38
GR 22 71 181 25 75 169
| Arrival sD 65 43 29 58 48 32
! INDEPSA MD 36 62 31 42 50 41
‘ Rate GR 23 63 176 24 70 163
\ SD 73 48 36 73 49 36
INDEP6A MD 22 31 16 22 20 16
' GR 29 80 184 29 99 184
SD 69 42 29 57 50 32
[ INDEP7A MD 30 53 22 41 40 27
| GR 25 73 185 26 78 177
SDh 68 39 29 64 47 30
INDEP2A MD 38 70 44 42 63 48
: GR 18 59 163 18 59 158
SD 90 59 42 72 63 44
INDEP3A MD 21 67 48 37 54 57
GR 13 42 146 15 51 135
SD 90 56 46 74 62 49
Equal INDEPSA MD 23 67 46 37 57 60
GR 11 45 144 13 49 127
SD 80 60 43 80 60 43
INDEP6A MD 27 36 48 27 35 29
GR 17 72 165 17 73 164
SD 83 62 38 77 64 39
INDEP7A MD 26 51 42 31 45 46
GR 15 55 156 16 59 151
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Table 6.13 Measures of separation for the independence methods

including age and data set Dy

Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
INDEP2A 428 .534 .432 487
INDEP3A .352 470 .360 462
Error ‘
Rate INDEP5A .360 .458 .356 470
INDEP6A 470 487 .458 479
INDEP7A .356 458 .373 475
INDEP2A .878 .992 . 386 .999
INDEP3A .829 1.279 .843 1.294
Average
Logarithmic INDEPSA .838 1.267 .852 1.283
Score
INDEP6A 1.011 1.105 1.031 1.124
INDEP7A .930 1.161 .946 1.177
INDEP2A .536 .605 .539 .607
INDEP3A .480 .679 492 .689
Average
Quadratic INDEP5SA .485 671 .498 .681
Score
INDEP6A .582 .629 .505 .641

INDEP7A 527 .636 .537 644
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Table 6.14 Measures of separation for the independence methods

including age and data set Dy

Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
INDEP2A A4l .517 448 .498
INDEP3A 421 .532 434 .510
Error
Rate INDEPSA 441 .527 443 .525
INDEP6A . 466 .495 475 478
INDEP7A .426 .479 .451 .493
INDEP2A .881 .962 .893 974
INDEP3A .864 1,108 .884 1.127
Average
Logarithmic  INDEPSA .878 1.105 .898 1.125
Score
INDEPGA .970 1.016 .990 1.036
INDEP7A .916 1.030 .936 1.050
INDEP2A 534 .585 .539 .589
INDEP3A .521 .641 .534 .652
Average
Quadratic INDEP5A .528 .639 542 .651
Score
INDEP6A .579 .605 .501 .617

INDEP7A .543 .606 .556 .617
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Table 6.15 Measures of separation for the independence methods

including age and data set Dj

Arrival Rate Priors Equal Priors
Measure Method
Jack-knife Jack-knife
No Yes No Yes
INDEP2A 432 .468 .430 462
INDEP3A 426 487 .426 .506
Error
Rate INDEPSA 426 487 430 511
INDEP6A 455 475 468 472
INDEP7A 419 .481 451 .483
INDEP2A .883 .961 .908 .986
INDEP3A .864 1.026 .895 1.056
Average
Logarithmic INDEPSA .884 1.030 .915 1.061
Score
INDEP6A . 940 .969 .967 .996
INDEP7A .894 .970 .922 .997
INDEP2A 531 574 . 545 .588
INDEP3A .520 .599 .538 617
Average
Quadratic INDEP5A .531 .603 .550 .621
Score
TINDEP6A .563 .580 .579 .596

INDEP7A .334 577 .551 .593




than those without, with the difference in results being larger
when there were more parameters to estimate or fewer cases in the
data set. Arrival rate priors gave better results than equal
priors.

In the comparison of the different models with age INDEP2A and
INDEP3A were first compared. INDEP3A performed better than INDEP2A
without the jack-knife technique but was worse than INDEP2A with
it. However when these results were compared to the corresponding
models without age, INDEP2Z and INDEP3, the results with age were,
in general, better. Surprisingly, with INDEP2A and data set Dg the
results with the jack-knife technique gave almost identical average

logarithmic and quadratic scores with and without age, even though

the actual probabilities and classification matrices were quite.

different. This was the one instance in which the results with age
were not markedly better than those without.

The original motivation for the inclusion of age into the model
was the performance of INDEP4. With no jack-knife technique the
results of INDEP2A and INDEP3A were always better than INDEP4.
With the jack-knife technique INDEP2A always performed better than
INDEP4 but INDEP4 was usually better than INDEP3A.

As INDEP3 did not perform better than INDEP2, the models
INDEP5A, INDEP6A and INDEP7A were considered. In these models the
variables were grouped to reduce the number of parameters to be
estimated in the hope that the performance of INDEP3A would be
improved when the jack-knife technique was used. A pattern emerged
when this was carried out. With no jack-knife technique the
pattern in the average logarithmic and quadratic scores was such
that, as the number of parameters was reduced the performance
dateriorated. Thus the order of performance from best to worst was

— INDEP3A, INDEPSA, INDEP7A then INDEPSA. However, as mentioned
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previously, more weight should be placed on the results based on
the jack-knife technique. When these results were considered the
pattern was, in general, reversed with the order of performance
from best to worst being — INDEP6A, INDEP7A, INDEP5A then INDEP3A.
Thus grouping the variables had improved the performance when the
jack-knife technique was used. The results of INDEP6A and INDEP7A
were similar. The same was true for INDEP3A and INDEP5A.

With the jack-knife technique, INDEP2A, as well as being better
than INDEP3A, was also better than INDEP5A, INDEP6A and INDEP7A.
Without the jack-knife technique, INDEP2A gave a performance which
was comparable to that of INDEP5A.

In summary, these results showed that the inclusion of age into
the independence model was successful in improving performance, but
attempts at bettering the performance of INDEP2A by a model
including the coma scores at all time periods was unsuccessful. If
only one independence model had to be chosen then INDEP2A, which
used the latest available coma score and age, would be the model of

choice.

6.5 Comparison of Models Including Age

6.5.1 Comparison of Models Assuming Normality

As in the previous chapter, when assessing the relative
performance of the models in Sections 6.2, 6.3 and 6.4, the models
based on normality assumptions were compared first.

The results of the classification matrices for the model
NORLINA in Table 6.8 can be seen to be very similar to the
corresponding matrices for the constrained models in Tables 6.2,
6.3 and 6.4. As CONOR2AZ had the best performance of the

constrained models in terms of the average logarithmic and
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quadratic scores, this constrained model was compared with the
model NORLINA. The results of both methods proved to be very close
indeed. NORLINA performed better than CONOR2AZ when no jack-knife
technique was used. With the jack-knife technique and data set Dg
CONOR2A2 performed slightly better than NORLINA, with data set Dy
the results were very similar, while with data set D3 NORLINA
performed slightly better than CONORZA2.

If only one normal based model were to be used NORLINA would be
the clear choice. It was consistently better than CONOR2A2 when no
jack-knife technique was used and although the results with the
jack-knife technique should be given more weight, here it did

perform slightly better than CONOR2A2 with data set Dj.

6.5.2 Comparison of Independence and Normal Based Models

Here, as before, only the separation measures are used for this
comparison. As in the previous section the normal models
considered are CONOR2A2 and NORLINA.

The jack-knife technique produced clear results in terms of the
average quadratic and logarithmic scores: both normal based methods
performed better than any of the independence based methods. This
was also true for the error rates with the exception of the result
for data set D3 and equal priors where INDEP2A had a lower error
rate than CONOR2A2 but not NORLINA. With no jack-knife technique
the performance of the normal based models was similar to that of
INDEP7A.

If an overall choice of model had to be made then again NORLINA
would be the choice. The fact that it performed consistently
better than the independence methods when the jack-knife technique
was used outweighs its poorer performance without this technique.

Some idea of the size of the bias introduced by using the same test
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and training set is obtained by comparing the results with and
without the jack-knife technique. It is obvious from the results
that with independence models, where there are more parameters to
estimate, this bias is sufficiently large to make it essential to

use a jack-knife or split~sample approach to assess performance.

6.6 Discussion

The main aim in this chapter was to expand the models in
Chapter 5 to add age to the trend in coma score in order to see if
performance was dimproved. This was very successful in that the
performance of all mcdels was substantially improved when age was
included. It is difficult to find a reason for the one anomalous
set of results with data set D5 and the jack-knife technique, where
the performance of INDEPZA was almost identical to that of INDEPZ.
Neither the small size of the data set nor the number of parameters
provides the explanation; INDEP3A, for example, has many more
parameters and does improve on the performance of INDEP3 with the
same data set.

Thus these results showed that age was associated with quality
of survival even after conrolling for trend in coma score. This
association was in the expected direction with younger patients
having a better prognosis and agrees with the conclusions of
Teasdale et al. (1982b) who looked at the effect of age on survival
after severe head injury and also found that, even controlling for
the best 24 hour coma score, age affected survival with younger
patients more likely to have a good outcome than older ones.

The grouping of categories to reduce the number of parameters
in the independence model was less successful in improving

performance. INDEP2A still performed better than the other
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independence models which included all coma scores available. With
the independence models the bias introduced by using the same test
and training sets was larger than with the normal based models.
This was to be expected as the independence models, even with
categories merged, had more parameters to estimate.

Overall the results were such that the normal based methods
were preferable. When it came to the choice of normal based model,
the normal linear model NORLINA had similar but slightly better
performance than the constrained model CONOR2A2. Moreover the
fitting of such a specific model as CONOR2A2 involves considerable
programming whereas a range of statistical packages are widely
available to perform the analysis of NORLINA. This is clearly a

factor in favour NORLINA.
Although the best models in this chapter which include all coma
scores and age do give considerable improvemant in predicting the

quality of survival over the method currently used, they have not

given a clinically practical improvement. The probabilities
produced are frequently in the range 0.3 - 0.6 with no outcome
being predicted ‘confidently'. This results in poor separation of

the outcome categories. The different approaches which might be
adopted to solve this problem along with some wider practical

aspects are considered in the final chapter.
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CHAPTER 7

PRACTICAL IMPLICATIONS AND FURTHER WORK

7.1 Introduction

The aim at the outset of this work was to use data collected
through time to predict the quality of survival in individuals
after severe head injury and in particular to identify cases who
would be severely disabled. The results obtained have fallen short
of this target and before proceeding further it is important to
consider carefully any modifications that might lead to
improvements.

There are basically two factors that determine performance,
namely the statistical model and the patient data included. The
ways in which these factors could be altered to improve performance

will now be considered.

7.2 Review of Statistical Models

The range of statistical models considered here was less
comprehensive than that of the comparative study (Titterington et
al., 1981) described in Section 3.5. However the performance of
the highly specific model developed to take account of the trend in
coma score through time was compared with that of the models which
gave good performance in the comparative study.

In Chapter 5 the differences in the results obtained with these
various models were considered. In practice, these differences
were small relative to the effect of the introduction of age. This
agrees with the finding of the comparative study that the choice of

model is less important than the choice of data included, provided
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that account is taken of the assumptions on which the model is
based. Thus in any new work it would be worthwhile to look at the
results available from standard discriminant methods before
embarking on fitting complex models which require extensive
programming. The fact that pseudo maximum likelihood methods gave
almost identical results to the full maximum likelihood method

further emphasises this point.

7.3 Review of Data

7.3.1 The Data Bank at Present

The coma score had proved over the years to be the item of
clinical data which provided the most information about prognosis.
It therefore seemed appropriate to choose the coma score to model
trend in recovery. 1Its lack of success in predicting quality of
survival prompts a scrutiny of the components of the coma score and
how these relate to neurological function.

Figure 7.1 shows the major parts of the brain and an overview
of these provides one possible reason for the relative lack of
success of the coma score in predicting quality of survival. The
brain consists mainly of two large convoluted masses or cerebral
hemispheres, which together form the cerebrum, the structures in
the ‘'posterior fossa' or brain stem (which is formed by the
midbrain, pons and medulla oblongata), and the cerebellum. Each
hemisphere is composed of an outer layer of grey matter called the
cortex and an inner core of white matter with embedded grey matter
constituting the corpus striatum. The cortex is essential for
"higher functions" such as volitional movement, sensory perception,
speech and especially aspects of mental performance and

personality, for example, memory, intelligence, emotion and
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behaviour. Nervous transmission from the central hemispheres to
the rest of the body occurs via the brain stem which also plays a
more basic role in maintaining consciousness. Thus, the indices of
brain stem responsiveness refiect the degree of impairment of
consciousness, and whether or not a patient is in coma, while the
cortical responses indicate the 'content of consciousness'. The
latter is reflected only by the upper levels of the coma scale: a
mototr score of 6 and verbal scores of 3, 4 or 5. Lower scores and
impaired eye opening, that is, overall coma scores between 3 and
11, mainly indicate brain stem dysfunction. The coma score may
thus be successful in the prediction of death or survival, but less
able to predict the quality of survival if consciousness is
regained.

However, there are clinical and physiological reasons to expect
that the depth and duration of coma, and the rate of improvement
over the range of responsiveness reflected by the GCS, provide
valid indices of the degree of diffuse brain damage. Studies in
Glasgow using the new sensitive techniques of magnetic resonance
imaging (MRI) confirm that such diffuse damage underlies both the
depth of coma in the earlier stages (Jenkins et al., 1986) and the
severity of disability in survivors (Wilson et al., 1988). However
the balance between such diffuse damage and lesions in specific
areas of the cortex in causing disability is still a topic of
controversy. Furthermore, studies using electrophysiological
methods showed that the brain stem response was not as good as the
cortical response in predicting outcome (Cant et al., 1986; Lindsay
et al., 1988).

Can other features recorded in the Head Injury Study data bank
give a better performance than the coma score in the prediction of

the quality of survival? The pupil reaction and eye signs are even
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more closely related to brain stem dysfunction and are unlikely to
help. As mentioned above, the feature that most obviously reflects
cortical activity is the verbal component of the coma scale. To
discover if the other components were masking information in the
verbal score, predictions of outcome were made using a normal
linear model and a feature vector restricted to verbal scores and
age. This model was called NORLINVA. The classification matrices
and separation measures for the three data sets are given in Tables
7.1 and 7.2 respectively. However, when these are compared with
the results for the corresponding model NORLINA in Tables 6.8 and
6.9 respectively it is clear that the results are similar, with
NORLINVA being in general slightly worse than NORLINA. This result
may mean that even more sensitive and specific measures of cortical
function than provided by the verbal response are needed. Such
approaches include the more detailed prospective testing of
orientation and amnesia as described by Levin et al. (1979) and
more complex analysis of mild impairment of consciousness (Sano et
al., 1983).

An alternative view is that the biological process of recovery
is inevitably so variable that any measure of brain damage and
dysfunction over the first month will be unable to provide an
accurate guide to outcome six months or one year later in
individual cases. The influence of rehabilitation may also need to

be taken into account.

7.3.2 The Data Bank of the Future

At this point it is relevant to remember that two decades have
elapsed since the Head Injury Study data bank was initiated., It
was designed in such a way that it was based on readily available

clinical data. Other investigations are now available (Figure
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Table 7.1 Classification matrices for method NORLINVA
No Jack-knife Jack-knife
Data Priors
Set
Predicted Actual Actual
Outcome Outcome Outcome

Sh MD GR SO MD GR
Arrival SDh 35 17 6 34 21 6
Rate MD 22 32 22 21 28 25
GR 6 34 62 8 34 59

Ds
SD 44 28 9 42 30 9
Equal MD 14 25 21 15 21 22
GR 5 30 60 6 32 59
Arrival SD 56 25 14 52 26 14
Rate MD 36 57 32 40 56 34
GR 11 56 119 11 56 117

Dy
SD 71 49 24 71 50 24
Equal MD 22 39 31 22 38 33
GR 10 50 110 10 50 108
Arrival SD 53 28 13 52 31 15
Rate MD 40 46 40 41 40 40
GR 31 94 183 31 97 181

D3
SD 85 58 34 82 62 34
Equal MD 26 52 47 29 47 47
GR 13 58 155 13 59 155
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Score

Table 7.2 Measures of separation for method NORLINVA
Arrival Rate Priors Equal Priors
Data Measure
Set Jack-knife Jack-knife
No Yes No Yes
|
! Error
‘ Rate .453 . 487 453 .483
Average
Ds Logarithmic .881 .938 .887 .944
Score
' Average
Quadratic .535 .570 .537 572
Score
Error
Rate .429 446 458 . 466
Average
Dy Logarithmic .905 .931 .918 .944
Score
. Average
; Quadratic .543 .558 .548 564
Score
Error
Rate 466 . 483 A47 462
Average
D3 Logarithmic .913 .928 .939 .955
Score
Average
Quadratic .546 .555 .558 .568
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7.2). Biochemical tests can reflect the extent of tissue damage
and many different enzymes have been claimed to be associated with
outcome. Rabow and Hedman (1985) and Hans et al. (1983) related
the enzyme 'creatine kinase pp to outcome in head injury while Rao
et al. (1978) used serum lactate dehydrogenase and Thomas et al.
(1978) serum myelin basic protein. 1In general these studies were
based on small numbers of patients and showed a correlation with
outcome. Thomas et al. (1979) concluded abnormal test results are
associated with a decrease in the coma score, but that more
extensive studies were needed to discover the value of biochemical
results in prognosis if clinical- details such as the GCS of the
patient were known.

Lindsay et al. (1988) found that, while electrophysiological
results were useful as a prognostic guide in paralysed or sedated
patients, they were of little value over the c¢linical information
and the small benefit did not justify the effort involved in data
collection.

At the time the Head Injury Study was initiated, computerised
tomography (CT) was in its infancy. Since then CT scanning has
become widely available; this has improved the detection of
secondary intracranial haematomas but it has been relatively
insensitive to primary brain damage. New scanning techniques which
further enhance the images of the brain have since been developed
and Jenkins et al. (1986) and Hadley et al. (1988) concluded that
MRI can provide a striking picture of the effects of a head injury
on the brain. While MRI 1looks at the structure of the brain,
positron emission tomography (PET) looks. at function by measuring
glucose metabolism. Langfitt et al. (1986) have begun to evaluate
the extra advantages of PET and MRI over CT but point out the

problems associated with the large amount of data produced by one
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image. Development of these and other scanning techniques is still
progressing and if the results obtained can be summarised to give
accurate measures of cerebral function then these measures may

provide more accurate predictions of the quality of survival.

7.3.3 Choice of Qutcome Categories

None of the models was outstandingly successful in identifying
those individuals who would remain disabled after their injury.
However the task set was itself a difficult one because of the
ordered nature of the outcome categories. The problems of
classification with three ordered outcomes, discussed in
Section 3.5.4, were apparent in the results of Chapter 5 and
Chapter 6, with the moderate disability group always having a large
number of cases misclassified as severe disability or good
recovery. While at the outset of this research it seemed
appropriate to try to separate all three categories, I now feel
that, when the ordered nature of the outcome is considered, this
was too ambitious a goal, and with hindsight it might have been
better to have used only two outcome categories, This could have
been achieved by merging the moderate disability and good recovery
groups to form an independent survivors group, with the severe
disability patients making up the dependent survivors. The burden
imposed on society by the dependent survivors was discussed in
Sections 1.4 and 2.3.1 and makes the dependent-independent split of
the survivors the clinically and socially relevant one to make.
Indeed in all the initial work on discriminant analysis in the Head
Injury Study the moderate disability and good recovery patients
were considered as one category so I would suggest this approach in
preference to trying to incorporate the ordered structure of the

outcome into the model.
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The vegetative patients and those who died after 28 days have
not been considered in this work, although, if trying to make a
prospective prediction of outcome these are indeed possibilities.
One reason for excluding them was that the number of these cases
was too small to estimate reliably any parameters involved in model
fitting. Figures 4.1(a) - 4.1(e) however showed that these cases
had a quite different coma score profile from the other outcomes.
If these cases were of concern then a two stage approach could be
adopted. The first step would be to discriminate between those
likely to be dead or vegetative versus some better outcome, and
only then to predict the quality of survival of those who had

higher than a predetermined probability of this better outcome.

7.3.4 Missing Data

This work was based only on cases with complete data up to a
particular time point but this is clinically unrealistic. With
this data set, for example, patients increasingly are being
ventilated for short periods during their stay and such patients
often have their best verbal score missing. Indeed in some units

it is hospital policy to ventilate certain head injured patients

routinely. No matter what data are used, always, some will be
found missing. Thus blood may not be sampled, charts and
biochemical results go astray and machines malfunction. Some

method to cope with missing data must be developed if a model is to
be practicable.

With data collected through time it is clearly dangerous to
extrapolate beyond the last observed value. Nevertheless it should
be possible to accommodate data missing at earlier time periods.
This might be done simply by wusing group means to substitute

missing values; a more sophisticated approach is to use the EM
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algorithm to fit the model, using maximum likelihood based on tha
available (incomplete) data. An appealing method of dealing with
missing values, if the same variable is measured repeatedly, is to
use a growth curve approach to fit an appropriate curve to the data
present for each individual; the missing values for that individual

could then be interpolated from the curve.

7.3.5 Timing of Predictions

In Chapters 5 and 6 no comment was made on the time of
prediction beyond saying that the data from the latest time period
(INDEP2) gave a better performance than that from the first 24
hours (INDEP1). This was because the predictions made at the end
of the different time periods were hased on different cases. To
examine whether there is any gain in waiting till 14 days or 28
days to obtain extra data, predictions were made at 7 days, 14 days
amd 28 days with data set Dg. The normal linear model with the
feature vector consisting af all verbal scores up to the time of
prediction and age was used. The average logarithmic and quadratic
scores are given in Table 7.3. These results showed that there was
a consistent benefit in making the predictions at 28 days rather
than 14 or 7 days. The only exception was that the average
quadratic scores using the jack-knife technique and arrival rate
priors differed only slightly at the three times. It is doubtful
whether this particular benefit is clinically useful but it offers
hope that when new data are collected through time, the additional
data will provide additional information. This will be worthwhile
so long as the cost of obtaining the extra information is less than

its benefit.
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Table 7.3 Average quadratic and logarithmic scores for data set
Dg when predictions are made at 4-7 days, 8-14 days

and 15-28 days using the normal linear model NORLINVA

Arrival Rate Priors Equal Priors
Measure Time of
Prediction Jack-knife Jack-knife
No Yes No Yes
15-28D .881 .938 .887 944
Average
Logarithmic 8-14D .919 .945 .936 .962
Score
4-7D .937 .951 .958 .972
15-28D .535 .570 .537 572
Average
Quadratic 8-14D .555 .570 .565 .581
Score

4-7D .361 .570 .376 .585




7.4 Predictions in Practice

All the work on statistical modelling would be of little more
than academic interest if the predictions were not acceptable to
the clinicians involved. Currently a study examining the
reliablity and acceptability of such predictions, and their impact
on clinical practice, is underway in four British centres (Glasgow,
Edinburgh, Liverpool and Southampton). This study has three
distinct phases.

In the first phase the «current practice and resource
utilisation are monitored so that a baseline is established. 1In
the second phase, the computer prediction of outcome at wvarious
stages after injury is brought to the attention of those caring for
the patient. The proggam was modified to make it 'user friendly'
and run on a microcomputer in the intensive care ward by any of the
medical staff involved in the care of the patients. 1In the last
phase the predictions are withdrawn.

During all three phases, the treatment given and use of
resources are monitofed to see if the provision of the predictions
influences management practices. The withdrawal period is an
attempt to determine if any change in practice is sustained. At
present the study is nearing the end of phase three. A formal
analysis of the results has still to be carried out but many of the
clinicians have asked for the computer predictions of certain
patients during the withdrawal phase. Thus, whether or not there
has been any measurable effect on management, clinicians are
interested in predictive information about a particular patient.
Their interest might be solely to attach a figure +to the
probability of the various outcomes on a discharge summary or to

inform relatives about the likely outcome, and these are considered
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useful applications. Whether there are further reaching
consequences, leading to an effect on outcome, or at least more
effi;:ient or appropriate, consistent use of resources, remains to
be seen.

It could be argued that in the short term prognosis is not
important as all patients should have the same high standard of
care offered. Long term care and rehabilitation are perhaps in
even shorter supply than acute intensive care and hence have a high
premium. With resources limited, the predictions after the first
week become increasingly important as these are the ones which may
identify possible groups of patients who might benefit from
treatment. Alternatively it would be useful to know that prolonged
rehabilitation will be fruitless, so that efforts can be directed
to coping with and adjusting to limitationms.

The work in this thesis was the first attempt to use the
recovery trend over the first month to predict a patient's
ultimate degree of recovery. The results demonstrate how difficult
the problem is. The coma score has been successful in predicting
death or survival after a severe head injury, but modelling trend
through time did not successfully predict the quality of survival.
Such an ability would have considerable value in planning the
management of individual patients and in the rigorous, efficient
comparison of different methods of rehabilitation and late care.

Perhaps the most important implication of the present study,
for those who will undoubtedly work towards this goal in future, is
that the quality of dinformation contained in the data and an
adequate number of cases are of primary importance. Severe head
injuries fortunately are relatively rare events and a data bank of
this type will be essential if the original aim is to be achieved.

Shortcomings in information can not be compensated for by
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sophisticated statistical techniques; moreover there is a clear
implication from this work that simple methods are to be preferred.
Whatever new features are analysed, the practical principles
described in this thesis and embodied in the methods wused to
collect data about early severity and outcome from coma will still

be relevant.
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APPENDIX 1

HEAD INJURY STUDY DATA COLLECTION FORM

Coma Study No. | LT T LI

SEVERE HEAD INJURY STUDY

University Department of Neurosurgery,
Institute of Neurological Sciences,
Southern General Hospital,
Glasgow, G51 4TF.
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University Department of Neurosurgery,
Institute of Neurological Sciences,
Southern General Hospital,
Glasgow, G51 4TF.

SEVERE HEAD INJURY STUDY

Identifying Characteristics

Coma Study Number

a) First box = card number (printed).

b) Second and third boxes = centre code (issued by Glasgow),

¢} Remaining boxes = consecutive study number allocated by centre to each patient (first will be 0001).
The coma study number ocgurs again at the beginning of each card, and must be filled in for identification.

Name - fill last name from [eft till boxes or name complete; leave blank if confidentiality rules require this.

Unit Number - additional identification - usually is hospital record number (Each centre should keep careful
cross-tabulation of study number, unit number and name).

Date of injury - note order ......cooeeeiviiiininnannn, i ) |7 |0| ) ] 9 | SJ
Day Month Year

Study type - original data bank was limited 10 patients in coma for 6 hours; to allow inclusion of other cases, fill
in Box 31 as follows:—

Coma )6 hours =

1
Comac< 6 hours =2
Died (or brain death) ¢ 6 hours = 3
Never in coma

4

Note definition of coma = EMV 1/5/2 or worse, i.e. no eye opening, not obeying commands and not uttering
words. ’

Time Related Data -
Time Epochs (24H , 2-3D etc.) refer to time from onset of coma; if coma is delaved, indicant 17 records this; if
no coma, take epochs as time from injury.

Best/Worst within epochs - if no change then B = W,

Coma Score
The coma score in No. 55 is obtained by adding the three components of the coma scale (No. 138-173).



HEAD INJURY CODING FOR COMA PROGNOSIS

Coma Study No. ({including Centre Code)

Name
Unit No.

Date of Injury

Study Type (see opposite)

DLITIII] v

(T T l] ™

HEREEE .
HEEE RN
D 31
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10.

PERSONAL DATA

Age (years)

Handedness
Right = 1
Left =2

Pre-existing Medical Conditions causing Continuing Disability

Cardiovascular

Respiratory

Renal

Gastrointestinal

Nervous System

Skeletal

Multiple

Other (including psychiatric)
None

L= R - R A N N

[ T TR IR TR |

Previous Head Injury
No = |
Mild (PTA< 24 hrs) = 2
Severe (PTA24 hrs) = 3
Indefinite PTA =4

Previous Epilepsy
No

<1 year

21 year

Frequency not known

onowon

B -

Specify

D 32
[:]:l 33-34
D 35
D 36

D 37

D 38
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Type of Injury

Domestic (+ fall from window)
Fall under influence of alcohol
Other (includes gunshot)

Motor vehicle occupant =1 D 39
Pedestrian =2
RTA other (or unknown) =3 :
Sport =4
Work =5
Assault =6

=7

=8

=9

Recent alcohol

No =1 D 40
Suspected = 2 -
Definite = 3

Alcohol level

Actual value l:[:]:] 41-43
(not done = 999)

Influence of other drugs on initial assessment

No =1 D 44
Suspected = 2

Definite =3 Specify

Lucid interval ( = talked)
None

Partial - words/confused

Total - sensible/orientated

I ' D 45

oo
[

Coding for 16, 17, 19, 20,

<6 hours = |

6-12 hours = 2

13-24 hours =3

0-24 hourss (unspecified) =4

2-3 days =5

4.7 days =6

21 week =17

Gradual (undelined time) =8

Not known =9
Time to onset of deterioration (since injury) D 46
Time from injury to onset of coma ( = EMV 1/5/2 or worse) l } 41
If coded 1, 2 or 3 give exact hours, if possible l I 48-49
Time from injury to first admission to any hospital ! S0
51

Time from injury until admitted to neuroservice

[




21,

22.

23.

24,

25.

26.
27.
28.
29.

30-32.

33-36.

37-41.

CRANIAL INJURY

Linear Fracture of Skull (X-ray or operation)
None =1

Vault =2

Base =1

Both =4

Depressed Fracture

None

Closed (no retated scalp wound)
Compound (dura intact)
Compound (dura torn)

Not known

[ I | S
[ R

Vault Fracture Site (linear or depressed)

None =]
Fronal =2
Temporal =13
Parieto-occipital = 4
>1 site =5
Not known =6

Side of Linear or Depressed Fracture

Right 1
Left
Bilateral

Not known

moaowon

2
3
4

Signs of Basal Fracture

Mastoid haematoma
CSF or blood otorthoea
I +2

Orbital haematoma
CSF rhinorrhoca

4+5

(lor2) + (dor8)

[ VI O [ I
RS - SV O G R

EXTRACRANIAL COMPLICATIONS

Chest injury
Other trunk injury No

; . Minor
Limb injury Majr
Facial injury

w N —-

G.l. Bleeds

No =1
Minor = 2
Major = 3 (blood transfusion needed)

Shock (B.P.<%0/60)

No =1
Yes = 2

Chest Complication

No =]
Minor = 2 (limited respiratory infection)
Major = 3

0-3

v
£y
[ &

({requiring hospital admission itself}

D

[
s
Q

T

r:J
[
-0

D 52

D 53

D 54

D 55

D 56

57

58

60
8.28
61-63
8-28D
i 1 64-67
L
8-14D 15-28D
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Coma Study No. [ 2| i ! l l |J 1-7

INTRACRANIAL COMPLICATIONS

Supratentorial haematoma Known P.M.
Operated Unoperated Quly

42-44. ' Subdural D D D 8-10

No =]
45-47.  Intracerebral Right =2 11-13
~eracercoral Left =13 D D D
Both =4

48-50, Extradural ' D D D 14-16

51-53. Infratentorial haematoma

T O o oo
Subdural =2
Intracerebellar/stem = 3
Extradural =4

54.  Pre-Operative Course (before haematoma operation)

1 D 20
2
3

Static
Deteriorating
Unknown

55. Effect of Haematoma Operation (first 24 hours after surgery)

Improvement in coma score
Improvement in pupils only
No improvement in coma score or pupils
Deterioration in coma score

D 2]

#ouonu
bW —

56.  Post-traumatic Epilepsy (one fit counts)
None
Early (<7 days)
Late
Both

D 22

W o

!
2
3
4

57 Intracranial Infection (during current hospital admission)

No =] D 23
Meningitis = 2
Abscess =3
2+3 =4
Other =5
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INVESTIGATIONS

58-61. Angiogram 24H

D - 24-27

o
A
[
v}
&
~3
o
o0
?
o
o
o)

Normal
Displacement
Spasm

2+3

Other

[ A TR
LT T

62-65. Mean Intraventricular Pressure 24H

<20 mm.Hg 1
2 B D
3 - .

8-28D

i
&
]
~
O
v}

28-31

]

20-40 mm.Hg
40 mm.Hg

o ou

66-69. Electroencephalogram

Normal

Focal abnormality
Diffuse

Both

r
&
=
i
«
o
N
Q
Q
»
o
@
lw}

32.35

[ I T

£ Wl B e

70-73.  Ventriculogram or Air Encephalogram
Normal
Hydrocephalus
Shift
Other

[
&
T
Y]
w
o
e
¥
~J
lw}
I
[+ -]

[ I

R

74-77. EMI scan

Normal

Contusion (high + low density)
Haematoma

Ventricular displacement

243

2+4

I+4

Other

"o
&

=X

o~
[
e
&~
2
Qo
e
r
oo
lw)

LI TN | S [ O | B | I}
00 ~1 Oh A Dl B e

Specify
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Coma Study No. [ 3 ] 1

—
—

TREATMENT

78-81.  Burr hole/craniotomy/craniectomy

No

Burr hole only
Craniectomy (<5 ¢cm)
Craniotomy

(2or3) + 4

)
Y
T
¥
o
o
F-N
M
o
oo
&
&
o]

#
—_
oo
3
—
—_

LI

wawN

82-85.  Ventricular tap
' No
Ventricular tap
Drain
' Both

24H

e
[N
o
IS
4
w)

o nu

40 W N

86-89.  Surgical Decompression 24H
No =
External (bony)
Internal (lobectomy)
Both

L]
<
>
+
~
vl
r
20
<o

1
2
3
4

o no

90-93.  Tracheostomy/tube/ventilation (excluding temporary or terminal)

No =1 24H 23D 47D 828D
Intubated =2 [ 20-23
Tracheostomy =3 L !
2 + controlled ventilation = 4
2 + patient triggered =5
3 + controlled ventilation = 6
3 + patient triggered =7
!

94.97.  Steroids : 24H  2:3D° 47D 8.28D
None =1 | D {—‘] 24-27
{20 mg. Dexamethazone or equivalent daily = 2 -
220 mg. Dexamethazone or equivalent daily = 3
Unknown or shock dose =4

98-101.  Osmotics 24H 23D 47D 8-28D
None =1 ‘! 28-31
One dose =12 | I—
Repeaied dosage = 3
Unspevified =4

102-105.  Drugs possibly affecting observations sMH 23D

No = |
Yes = 2 Specifly

F
e
v}
00
L5
%
Q

w

e

&

wn




106-109.

110-113.

114-117.

118-121.

122-125.

126-129.

130-133.

134-137.

LOCALISATION

Coding for 106-117
No =1
Suspect =2
Definite = 3

Right Hemisphere

suspect

definite

Left Hemisphere

suspect

Localisation Post Fossa}
definite

24H
= hemiparesis,
vault fracture
= dysphasia
or epilepsy

or radiological/

operation evidence D

= basal fracture signs,
ataxia,
dysarthria

= bilateral motor abnormalities,
dysconjugate eye movements,
autonomic abnormalities

CRANIAL NERVES — (RECOGNISED PALSIES)

Coding for 118-137
No =
Right =
Left
Both

1
2
3
4

Vil

]

[N
-
Q

=
~J
o

i

-

8-28D

D 36-39
D 40-43

D 44-47

o
re
&
O

48.51

52.58

[]

56-59

[

™ 60-63
L

T 6467
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138-149.

150-181.

162-173.

174-178.

Coma Study No.

LA LT T[T

COMA SCALE

best response during epoch

. B =
For coma observations - °
W = worst response during epoch

Coding for 138-173.

-7

Eye Opening (138-149) Best Motor Response (150-161) Verbal Response (162-173)
Spontaneous = 4 Obey =6 Orientated = §
To Sound =3 Localise =5 Confused =4
To Pain =2 Normal flexion =4 Words =3
Nil =] Abnormal flexion * = 3 Sounds =2
Extension =2 Nil =1
Nil = |
* Score abnormat flexion (3) if either:
1) preceding extension movement in arms
or 2)extension in a leg
or 3) two of these: i) stereotyped flexion posture
ii) extreme wrist flexion
iii) adduction of arm
iv) fingers flexed over thumb
If in doubt, score 4
best
adm. after
to injur
Ist bcjfori 24H 23D 4.7D 8-14D 15-28D
hosp. coma B W B W B W B W B w
o N A O e O A O B
Opening ' i

R e OO0 g IO
Reeponse 00O

Temporal Order of B/W Observations after Onset of Coma

24H 23D 47D
Improving =1 D D
Deteriorating = 2 L
No Change =3
Fluctuating = 4

8-14D
[]

o
>4

20-31

44-48

223




179-190.
191-202.

203-213.

Coma Study No.

MOTOR RESPONSE PATTERNS

Adm,
to
Ist
hosp.
Right side

Left side

Coding for 179-202.

No response
Extension

best

after

injury

before  24H 2-3D 4-7D 8-14D 15-28D

comd B W B wawsygawsw
20-31

Abnormal flexion (spastic, decorticate)
Better type of response, but weaker than other side
Better type of response and normal strength

w8 n
[ T

Code response in arms; if arm flexes and leg extends code 3. If doubt whether 3 or 4/5, then code latter. If two
types of response are found in a limb at one examination, code both using best and worst boxes.

Tonic Spasms {(spontaneous and generalised)

Adm. 24H 2-3D 4-7D 8-14D

Ab ! B W
sent =
Present = 2 D [ j l

15-28D
B w B W B W B W

Lot e g
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214-224,

225-230,

231-236.

237-247.

248-258.

259-269.

|6| ] I l ] 1-7

Coma Study No.

EYE SIGNS

Adm. 24H 2-3D 4-7D 8-14D 15-28D
B v B W B W B W B W

L) OO O oy Ly o »»

Pupils

Both reacting - equal

Both reacting - unequal
One reacting
Non-reacting equal <2mm
Non-reacting equal 2-<4mm
Non-reacting equal >dmm
Non-reacling unequal

o onononon
N R W —

Pupil side/size (for cases coded 2, 3 or 7 above)

Adm. 24H 2-3D 4-7D 8-14D 15-28D
if2or7:R>L

L>R ;U - L L] ®*

If3: R non-reacting<4 = 3
R non-reacting>4 = 4
L non-reacting<4 = §
L non-reacting>4 = 6

o

Local Factors Affecting Pupils
£ TUPYS s dm. 24H 23D 47D 8-14D  15-28D

=1 0 0 N miks
Left =3
Both =4

Adm. 24H 2-3D 4.7D 8-14D 15-28D

BWBWB\XBWBW)MA,

Spontaneous Eye Movements
Orientating

=]
Roving conjugate =2
Roving dysconjugate = 3
Laterat deviation =4
None =35
Other =6

Ocul nali Adm. MH 2-3D 41D 8-14D 15-28D
N(]::l ocepl alfs B W~ B w B w B -W B W] 252
il (normal) = .
fatl 2 O O3 ) O L 1
Minimal =3
Absent =4

Adm. 24H 2-3D 4.7D 8-14D 15-28D

Oculovestibulars

N ] B W B W B W B W B ‘v\1 5363
ystagmus (normal) = 1 [ [:D v " f ] l ] ) -

Conjugate tonic =2 L {__l_J l__l__z j

Dysconjugate =13

No OV* =4

* No response scored only after 100 ml. iced water delivered into clear canal.
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270-274.

275-279.

280-284.

285-289.

290-294.

295-299.

226

CLILITE] "

AUTONOMIC ABNORMALITIES (Predominant or persistant abnormalities)

Coma Study No.

Respiratory patterns

Regular
Periodic
Ataxic
1+2
1+3
2+3
F+2+3
Ventilation

24H 23D 4-7D 8-14D 15-28D

oo

EL T | B
[ IR NV TR,

Episode of Apnoea (long enough to require at least temporary ventilation and
not induced by relaxant drugs).
24H 23D 4-7D 8-14D 15-28D

:‘;:21 - ‘ D D D 13-17

Respiratory Frequency

<20
20-30
230
1 +2
1+3
2+3
1+2+3

24H 2-3D 47D 8-14D 15-28D

1
2
3
4
5
6
7

Hn o wnn

Puls
Tulse 4.7D0  8-14D 15-28D

~ 21
U

[N
[
o

24H
Normal
High (>120)
High + Low
Low (<60)

[]
Lk
[]

[ 1 B 1}
L S

8-14D 15-28D

D 28-32

Systolic Blood Pressure- 24H
Normal
High (>160)
High + Low
Low (K90}

*a
s
o
FN
4
lw]

]
D t

D B -

Temperature 241

sfalsfnhuis

¥
s
o}
s
u
o
P
s
o
-
o~
1=
Q

Normal

High (>39° C)
High + Swealing
High + Low
Low (<35° ©)

LI | I L 1

B B —
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RECOVERY PROCESS

300-302.  Speech 17D 814D 15-28D

Normal =1 38-40
Mild dysphasia =2
Severe dysphasia = 3
Untestable =4
. Actual week
303. Time tospeak (V = 3 or more) Dj 41-42
304. Time to obey (M = §) ' D—_—J 43-44
305. Time to spontaneous eye opening (E = 4) l:[:l 4546
Time to Disappearance of Extension Responses
306. Supraorbital stimulus Dj 47-48
Right arm
307. Finger stimulus HE 49-50
308. Supraorbital stimulus T s
) | S W——
Left arm
309. Finger Stimulus ro 33-54
Finger stimulus i
. Periods Period Avctual week
310-311. Post-traumatic amnesia 55-57
— 24 hrs. =1
2-3days =2
4-7days =13
. . 3 8-l14days =4 ,
312-313.  Leave intensive care unit 1528 days = § [ ] EI:J 58-60
>28days =6 L

]
|

L
-

314-315. Return home




316-317,

318-319.

320-321.

322-323.

324-325,

326.

327.

328.

326.

330.

QUTCOME
Outcome Categories

Death

Vegetative state
Severe disability
Moderate disability
3 month outcome Good recovery

) Out of hospital, lost
to follow-up =6
If 2/3 indistinguishable
at 1 month =7

1 month outcome

[ (I )
A P N

6 month outcome

12 month outcome

N.B. Severe - conscious but dependent i.e. requiring help of another person during every 24 hrs.

Moderate - independent but disabled.

DEATH

Time to death

<24 hours
2-3 days
4-7 days
8-14 days
15-28 days
>28 days

(i) after injury

(ii) after coma

wn i uwnn

[ BV R R PV s

Post-Mortem

Yes 1
No 2

CAUSEOF DEATH

(Allocate a total of 5 points between the four causes)
Primarty brain damage

Expanding intracranial lesion

Other intracranial complication

Extracranial complications

>
iz
]
i=
[

T

[

o2}
"
A
=

I T I

1]

64-65

66-67

68-69

70-71

72

73

74

75

76

77

78
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APPENDIX 2

NUMERICAL EXAMPLE OF THE, MISCLASSIFICATION PROBABILITIES

ASSOCTATED WITH ORDERED QUTCOME CATEGORIES

Suppose that IIj, 0N and 03 are ordered categories with equal
prior probabilities and the model is such that, for an individual
with feature vector vy,

p(y|ny) ~ N(e,1)
p(y|mp) ~ N(0,1)
and p(y|m3) ~ N(§,1) where € < 0 and § > 0.

Since the distributions all havé a common variance, it can be
seen from Figure A2.1 that the individual will be allocated to Ty
if y < &/ and to My if y > 8/9; 4if &9 < y < 8/, then they will
be allocated to NIy, the middle category. Thus the probabilities of
correctly classifying an individual are:-

£l

(1) p(classify as Mp}iy) J?%ﬁ)exp{-é(y-s)z}dy where <0,

(ii) p(classify as I|ly)

and (iii) p(classify as N3|l3) J(%ﬁ)exP{—%(y—a)z}dy where &>0.

.46/2 ~

The probability of correctly classifying an individual from
group Il is given in Table A2.1 for a range of values of € and §.
The probabilities of correctly classifying an individual from
groups II] and II3 are given in Table A2.2.

For example, with € = -3 and § = 3 then the probabilities of
correctly classifying an individual from groups 1 and 3 are both

0.933 while for group 2 it is 0.866. However, if € = -1 and § = 1,

229
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so that the overlap between the groups is much greater, the
probabilities of correctly classifying an individual from groups 1
and 3 are both 0.691 while for group 2 it drops to 0.383,

So it can be seen, that unless there is a large difference
between the means of the categories or a small variance in each, it
will be difficult to allocate a me@ber of the middle group to the

correct category.
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APPENDIX 3

MODEL FITTING BY PSEUDO MAXTMUM LIKELTHOOD

In Section 4.6.1 models imposing linear constraints upon the
means of multivariate normal populations were fitted by pseudo
maximum likelihood (PML) estimation to avoid the computational
difficulties associated with full maximum likelihood (ML)
estimation of the covariance matrices. In practice this meant that
the covariance matrices were estimated simply by the sample
covariance matrices rather than by full ML under the constrained
model.

The following results, based upon Parke (1986), justify this
approach by showing that ‘'pseudo 1likelihood ratio tests" are
conservative in that any model rejected by the full ML approach
would also be rejected by PML.

Let 2(0,m) denote the log-likelihood function and (8,,m,) the
true values of the parameters. The following argument holds under
very general conditions, but in this application the vector ©
denotes the parameters associéted with the mean vectors and the
vector T denotes the parameters associated with the covariance
matrices,

Let ;Tn denote a consistent sequence of estimators of w.

Let én('n) denote the MLE of 8, for fixed w.

let Bf{(v) denote the MLE of 8, for fixed w, and subject to the

constraints h(8) = 0.

Section 3 of Parke establishes that

Yo (8p(mg) = 8,) = - vn (19,)71 Dg 2(8,,m,) + op(1). (A3.1)
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Here Dg ﬁ(eo,wo) denotes the vector of partial derivatives of 2
with respect to 6, evaluated at (8, m,) and I¢, denotes the §-block
of the Fisher information matrix for (6,m), evaluated at (8,,w,).

Differentiating with respect to @ and evaluating at w, then
gives

/n 86n(m,) = vn (19,071 18, + 0p(1), : (A3.2)

Tem '
where If, denotes the off-diagonal block of the matrix, evaluated
at (08,,1,).
Finally expanding vn (én(%n) - 8,) gives

/o (8y(Tn) = 8) = vn (8y(m,) - 8,) + vn 88,(m,) (7 - 7)) + op(1)
8w

= vn (19,)71Dg 2(8,,m,) + vn (19,)711¢, (- m,) + op(1).  (A3.3)

In the constrained case, provided that the null hypothesis is true

(i.e. provided that h(6,) = 0), there are three corresponding
results:
(1) Vn (en(m,) - 8,) = - vn P, Dy 2(8,,m,) + op(1), (A3.4)
where P, I P, = P (Silvey, 1975, §4.7).

Note that if 6 is of length k and if h(8) = 0 represents s

constraints, then P, is of rank k - s.

(11) Vn 86x(m,) = v/n P, I, + op(1) (A3.5)

St

(i11) vn (8%(my) - 8,) = vn P, Dy &(6,,7,) + vn P, I°, (my - m,)

+ op(l). (A3.6)




Thus from equations A3.3 and A3.6

vn (85(Ty) - 8,) = vn (12071 Y + op(1)

and
vn (eg(ﬁn) - 8,) =+vn P, Y + op(l)
where Y = Dg 2(8,,7,) + I9, (;n- To)s
so that |
Vo (8p(my) - 85(1y)) = v { (I2,)71 = B} Y + op(1) (A3.7)

and, asymptotically,
Y~ NCO, I9, + 10, I9, I0,T ).

Now considering the log-likelihood ratio statistic

2{ 2(8(Ty) s Ty) - 2(6%(wy),my) }

2{ 2(8n(Ty) s ) - 2(6n(Ty),Ty) - (8 - 8T Dg 2(8p,1y)

N

(8n - 8T D§ (6,,m) (8, - 85) + ... 1}

= - (8 - 05T D (8,,7,) (8, - 0F) + ...

H

(8 - 83T 10, (én - 8%) + ... ,under the appropriate

regularity conditions.

Thus it can be seen for equation A3.7 that, provided h(8,) = 0,
the test statistic takes the form of a X2(s) random variable plus
an asymptotically independent positive random variable. Thus with
the critical region 2logA > x2(s,1-a), any model which would be
rejected by the correct ML approach would also be rejected by PML,

i.e. the PML apprcach is conservative.
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