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Summary

The aim of this thesis is to investigate some statistical 

aspects of techniques developed in genetic linkage analysis.

In chapter one we provide the reader with a simplified 

introduction to some of the basic concepts of genetic linkage 

which are essential for the understanding of the work developed 

later, as well as giving a short summary of the relevant work

published in the genetical literature.

In chapter two and three, the problem of unknown orders of

three loci known to be on the same chromosome is studied.

Criteria used by the geneticists to test the different orders are 

mentioned and then studied in various details.

In chapter four and five a comparative study between different 

ways of constructing interval estimates in linkage study are 

investigated. In chapter four ' ■ certain methods of

approximation for the likelihood function approach are compared 

under a three loci set up; on the other hand chapter five

compares the likelihood and the Bayesian approach under a two 

loci set up.

In chapter six we study the Bayesian approach in providing a 

point estimate for the probability of an unborn child being at 

risk of carrying a genetical disease given his family pedigree. 

Application of this method as opposed to the likelihood approach 

is presented using an example from the genetical literature.

In chapter seven a discussion of the work is presented and 

possible extensions are suggested.
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CHAPTER ONE: Genetical background

1.1 Introduction

Although cells within a single plant or animal can vary widely 

in structure, shape and function, they all represent units of 

living material and have some important properties in common. The 

nuclei of any of these cells are essentially alike in term of 

having genes, chromosomes and other factors related to 

inheritance.

The gene is the unit of inheritance as it carries from 

generation to generation the information that specifies the 

characteristics of the plant or animal. Experiments had 

demonstrated that the nucleic acid, DNA, is the chemical of which 

genes are composed(Gardener 1975). The genes which are numerous, 

could be seen as extremely small material particles lying in 

certain linear order along microscopic bodies called chromosomes 

situated within the cell nucleous. More precisely, each gene has 

a certain place called locus on a particular chromosome.

The chromosomes occur in similar, or in homologous,pairs in all 

body cells except in the reproductive cells where they are 

generally single units. The number of pairs of chromosomes are 

usually constant for each species. In a human non reproductive 

cell nucleous, 23 pairs of chromosomes are present, a special 

pair of them controls the inheritance of sex, as well as other 

genetic traits, and are called sex chromosomes; the other 22 
pairs are known as autosomal chromosomes.

Since the chromosomes occur in pairs, the loci and genes 

occupying them do the same. On the mean time many of these genes 

are polymorphic, (i.e) they occur in different forms or alleles. 

For example, in human genetics, the ABO blood group locus is
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under the control of three alleles A*>B* and 0*; therefore six 

different genotypes, shown In column one of table(l.l), are 

possible. If a certain individual carries the same allele at a 

given gene pair he is said to be homozygous ((e.g) A*A*), and is 

called heterozygous if he carries two different alleles 

((e.g)A*0*).

The actual appearance or expression of a particular genotype, 

as determined by some appropriate measurement, is called the 

phenotype, it is related to the genotype in a way that depends on 

the particular behaviour of the genes concerned. The different 

alleles of these genes could be either dominant, recessive or 

codominant. If for a certain diallelic gene locus, (i.e) with two 

different alleles H and h for example, H is completely dominant 

then individuals with genotype HH and Hh are alike 

phenotipically. In the heterozygous genotype Hh, h is completely 

masked and is called a recessive allele. A phenotype h would 

corresponds, therefore, to only one possible genotype hh. On the 

other hand if in a heterozygous individual Hh, H and h are fully 

expressed phenotipically then both alleles are codominant. For 

the ABO blood group locus, alleles A* and B* are codominant 

whereas allele 0* is recessive. Thus only four different 

phenotypes can be achieved for that locus as seen in table(1.1).

Virtually all normal cells can reproduce themselves. However 

sex or germ cells, called gametes, can initiate reproduction of 

an entire organism. When ordinary body cells divide and multiply, 

the cell nucleous undergoes a process of division called mitosis, 

which results in two daughter cells each having a full set of 

paired chromosomes exactly like the parent cell.

In the production of gametes a different mechanism called, 

meiosis, is processed, during which the chromosome number is
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changed from the diploid number or 2n number, characteristic of 

Table (1.1) Genotypes for the ABO blood group locus.

Genotype Type of genotype Phenotype

A*A* Homozygote A

B*B* Homozygote B

0*0* Homozygote 0
A*o* Heterozygote A

B*0* Heterozygote B

A*B* Heterozygote AB

body cells and premature germ cells, to the haploid or n number 

which is characteristic of the gametes. Figure(1.1) shows the 

main simplified steps which occur during meiosis for an imaginary 

premature germ cell which includes only two pairs of chromosomes. 

In the first step we can see all chromosomes appearing singly in 

the nucleous of the cell, where the green chromosomes come from 

one parent whereas the red ones come from the other parent. 

During meiosis homologous chromosomes are brought together and 

lie side by side with corresponding loci aligned. At this stage 

both chromosomes will be held together at a place called the 

centromere and then they will start interchanging genetic 

material. Breaks may then occur at corresponding points on each 

chromosome, after which the chromosomes rejoin with interchange 

of partners, this phenomenon is called the phenomenon of 

crossing-over, which could be seen in step 3 and 4 of figure 

(1.1). The final step involves the division of the cell into two 

resulting gametes each with a single set of disimilar 

chromosomes. In this final step when the two different pairs of 

chromosomes segregate simultanously, they do so independently 

from each other.
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F i g u r e d .  1) A simplified plot of the division of an imaginary 
cell during meiosis
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Premature germ cell with
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When fertilization occurs a sperm carrying a haploid number of 

chromosomes from the male parent is united with an ovum carrying 

a haploid number of chromosomes from the female parent. The 

fertilized egg, zygotet will then develops to produce an organism 

in each body cell of which one gene is derived from one parent 

and one from the other.

1.2 Linkage

Figure(1.2) (Yates, 1986) shows two chromosome pairs, one 

bearing the locus for a disease caused by an abnormal gene D with 

the corresponding normal allele d, and the other bearing a locus, 

called the marker locus, with alleles T and t. Transmission of 

the disease or normal alleles into the gametes at meiosis will be 

independent of the transmission of the marker alleles. All four 

possible types of gametes are therefore equally likely. In 

general we can say that genes whose loci lie on different 

chromosomes will segregate independently. On the other hand, 

genes whose loci lie on the same chromosome will tend to be 

handed on together. This resulting disturbance of independent 

assortment is called the phenomenon of linkage and valuable 

information about the segregation of diseases in some families 

could be provided by the linked markers.

But due to the phenomenon of crossing-over, alleles at 

neighbouring loci will not invariably segregate together. So, if 

both disease and marker loci were on the same chromosome and 

arranged as in figure(1.3), then if there is an even number of 

crossing-over between the two loci, the two resulting gametes 

will be called non recombinant gametes as they are 

indistinguishable from the parental chromosome _step{2). On the 

other hand if the number of crossing-over is odd, then the two 

resulting gametes will be recombinant, (i.e) generating a new
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Figure(1.2) The segregation of two ioci on different chromosome:
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Figure(1.3) The segregation of two loci on the same chromosome
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combination Dt and dT _step(3). The number of recombinant gametes 

expressed as a fraction of the total number of gametes is the 

recombination fraction, denoted usually by 9. Note that, no

information could have been deduced about recombination from

figure(1.3) if the parental chromosomes were not doubly

heterozygote at both disease and marker loci. On the mean time 

the phase of doubly heterozygote loci is essential in

distinguishing a recombinant from a non recombinant gamete. In 

the above example the parental genotype phase was DT/dt which 

means that the arrangement of the alleles on the two chromosomes 

was as follows, D and T on one chromosome and d and t on the

other. The other possible phase would have been Dt/dT, under 

which a Dt gamete would be a non recombinant gamete.

The extent of linkage depends on the closeness of the two loci. 

If they are very close, crossing-over will be rare and the number 

of recombinant gametes very small, hence e near zero. The further 

apart the loci are the greater the recombination fraction. When 

the two loci are a long way apart, odd and even number of

crossing_over will be equally frequent making the four possible

types of gametes DT, Dt, dT and dt equally likely (i.e) e=0.5. 

This case is indistinguishable from the case where the loci are 

on different chromosomes. Actually there is independent 

assortment and linkage can no longer be detected. To some extent, 

therefore, the recombination fraction could be used as a measure 

of distance between any two loci.

Some of the genetical definitions that have been used so far 

are summarised in figure(1.4). Table(1.2) (Yates, 1986) on the

other hand summarises the relation between the recombination 

fraction and the position of the two loci.
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Figure(1.4) A summary of some of the genetical definitions
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(1.3) Marker loci

As seen above, linkage study for a disease locus has to be 

related to a locus of a polymorphic gene called the marker locus. 

Traditionally, examination of the DNA was not available,

therefore the genotype of a person could only be inspected

through his phenotype. Thus a traditional genetic marker had to

be some polymorphic gene which could be observed phenotipically. 

The four types, or phenotypes, of blood group which are 

determined by a special test are a good example of such a 

traditional marker. Figure(1.5) shows the family tree of a 

certain family affected by an autosomal dominant disorder. The

disease locus is determined by two alleles D, which denotes the 

disease allele, and d which denotes the normal one. The blood

group of each individual of the family is as indicated in the

figure, dark symbol on the other hand shows the affected

individuals. The affected man in the second generation has 

received the disease allele together with the blood group A from 

his father and the normal allele and blood group 0 from his 

mother. If these two loci are on the same chromosome, then this 

individual's genotype including phase will be known for certainty 

as AD/Od. By analysing the offspring's genotype of this family we 

can see that the father had produced four non recombinant 

gametes, three with haplotype AD and one with haplotype Od, and 

one recombinant gamete with haplotype Ad. (To help the reader

understanding this example the genotype of each individual which 

could be easily inferred from the phenotypes are written in 

parentheses under his or her symbol in the family tree).

These traditional markers are relatively few in number. In the 

past this limited the clinical usefulness of linkage, since 

markers close to diseases of interest could seldom be found. Now
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Figured.5) A family tree of a family affected with a certain 
autosomal dominant disorder.
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the situation has changed dramatically with the development of 

molecular genetic techniques. At molecular level, different 

alleles of a gene correspond to differences or variations in the 

DNA sequences (Ott 1985 pagel9) . Some of these variations are 

phenotipically expressed as clinical syndromes (diseases), but 

many others are without any classical phenotipic manifestation. A 

recent technique called "recombinant DNA methods" allows 

specialists to detect and reveal such variation in the DNA 

sequence between the two homologous chromosomes at a certain 

site, where a site is just a sequence of neighbouring loci. This 

method relies, firstly on some enzymes which can cut the human 

chromosome into small fragments according to the recognition of a 

specific sequence in the double stranded DNA. So that if this DNA 

sequence on the homologous chromosome is slightly different from 

the previous one, then the resulting fragments will be of 

different lengths. The second step of this method is how to make 

the difference in these fragments' lengths, known as restriction 

fragment length polymorphism or in short RFLP, phenotipically 

visible; which is a technical procedure of no interest to the 

present study (an exact quotation, from Ott 1985, explaining this 

method could be seen in appendix(l)). Nevertheless, a schematic 

representation of the final step after molecular analysis of the 

two homologous chromosomes at a certain site would be of interest 

to us, this is actually shown in figure(l.G). Each lane in the 

figure represents the genotype of a person at this site, (i.e) 

both homologous chromosomes are represented in this lane. If the 

two homologous chromosomes have similar DNA sequences at this 

site, then the resulting fragments will be of equal length and 

therefore will generate the pattern of one single dark band as 

for either person 2 or person 3; whereas if the DNA sequences at
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both homologous chromosomes are different, then the resulting 

fragments will be of different length which will therefore 

generate the pattern of two dark bands as for person 1. Also as 

the site at which RFLPs are detected is short enough to segregate 

like a single locus, person 1 in this figure could then be seen 

as being heterozygote at this site (or locus) whereas person 2 or 

3 could be considered homozygote. The genotypes of the RFLPs are 

thus quite similar to those of traditional markers and in 

practice most of them will appear as codominant genetic markers. 

The advent of this technique had two major consequences; if these 

RFLPs encode a gene of interest (disease) then this gene is 

isolated and its locus is known extremely closely but if they do 

not which is usually the case they can be used as valuable 

markers showing linkage to neighbouring disease loci. Also since 

a potentially large number of this kind of DNA sequence markers 

can be obtained, there is hope that eventually the whole human 

genome may be so densely populated by RFLPs that it will become 

possible to determine the chromosomal location of every human 

gene via linkage to the RFLPs.

1.4 Linkage analysis and 2-loci situation

A-Testing for linkage:

Statistical tests, designed to detect linkage between two loci, 

form a major component of linkage analysis. Throughout history of 

the subject many tests had been invoked. The most influential one 

of them on today's practice was introduced by Morton(1955) . He 

based his method on the theory of sequential analysis as well as 

using the lod score statistics, z(e), introduced by Haldane and 

Smith(1947). If P(r|9) is the probability of obtaining the data r 

when the true recombination fraction is 9 then the lod score, 

z(e), is defined as:
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z (1.1)

Where the name "lod" Is actually an acronym for the "logarithm of 

the odds ratio". If zj(©) for 1=1,2,.. is the lod score for 

several independent families then the sequential test (Wald 1947) 

introduced, in the context of linkage, by Morton will proceed as 

follows. The null hypothesis of a free recombination fraction 

(i.e) HO:9=0.5 is tested against the simple alternative of e 

being equal to a chosen value 9X (i.e) HI:0=0 j iG^O.S. Morton 

suggested using one of the four values 9j= 0.05, 0.1, 0.2 and

0.3. The total lod score

is determined after each new family has been investigated. 

Actually the data r1,r2,.. of these families will accumulate 

until some stopping criterion is met. The test employs two 

positive numbers A>1 and B<1 and continues until either:

ZtGjJ^logA in which case HO is rejected (i.e) 9<0.5, 

or Z(0!)<logB in which case HI is rejected (i.e) 9*9t. 

Otherwise if logEKZ (e x)<logA no conclusion is made and more 

families are sampled. The sample needed until the test terminates 

is thus a random variable which depends on the true unknown e. A 

and B are determined such that type I error^oc and type II 

errors, where a and P are given small positive constants. Under 

the assumption of a negligible excess over the boundaries at the 

solution, (i.e) assuming that Z(91)=logA or Z(9j)alogB at the 

solution, then using As=(l-p)/oc and B=p/(l-«) will ensure the 

above requirement about type I and type II errors. Morton 

recommended the critical values logA^3 and logB=-2 which 

correspond to a=0.001 and p=0.01. Such a stringent significance 

level is chosen in order to be compatible with the low prior 

probability of autosomal linkage which could roughly be seen as

Z(9J= EZifBj (1 .2 )
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being less then 1/22-0.05 (Actually 1/22 Is a rough approximation 

of the prior probability of the two genes being on the same 

autosomal chromosome).

Nowadays, the test of the hypothesis of free recombination is 

carried out against the composite alternative hypothesis of 

linkage Hl:9<0.5 using the general likelihood ratio test but in 

terms of the lod score. This method is known as the lod score 

method and proceeds as follows. The maximum likelihood estimate, 

MLE, G, which is defined as that value of 0 maximizing Z(e), is 

determined. Then the hypothesis of no linkage will be rejected if 

Z(e)>3. The critical point of 3 recommended by Morton is thus 

still being used, although today's test is neither directed

against a simple alternative nor carried out in a strictly 

sequential manner.

Chotai(1984) gave a thorough discussion about the lod score 

method when it is either considered as a sequential or a fixed 

sample size test. He emphasized the fact that by using Z(9) 

instead of ZfGj) in a sequential test, then the above formulas 

for the boundaries A and B are no longer applicable. He also

pointed out that in terms of Morton's sequential test, the

assumption of a negligible excess over the boundaries at the end 

of the test is not justified by the current collection of the 

data which is carried out in terms of groups of pedigrees. Seen 

as a fixed sample size test, he investigated the adequacy of the 

x2 approximation of the generalised likelihood ratio test for 

some genetical data. Actually he studied the approximation of the 

significance level oc= P{Z(0)>logA|0=O,5) by «= P{xf>cz), where 

cz=21nA, for pedigree data consisting of n double backcross

matings (see later section(l,5)-B) which amounts to a binomial 

distribution with sample size n, probability of success <t>=f(0)
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:0<<K0.5 and r number of successes. But since the null hypothesis 

is tested in a one sided manner against Hl:9<0.5, then « should 

be obtained by dividing the significance level of the approximate 

xz by 2 (i.e) as 0.5P{xf>c2} _a fact pointed out by 0tt(1977). 

Chotai calculated the exact significance level when <x=0.001, 

0 .01, 0.05 and n^50 for both the one sided and two sided

approximation. He found out that the two sided test gave an 

adequate approximation even for small n (n>10) and was safer to 

use than the one sided test. Actually at n=50 the exact type I 

error were 0.0013 and 0.0595 for the one sided test and roughly 

(read from a plot) equal to 0.0005 and 0.035 for the two sided 

test when <x=0.001 and 0.05 respectively. Also, in order to remedy 

the fact of the sequential collection of the data in terms of 

groups of pedigrees, Chotai promoted the idea of applying the 

group sequential approach, used recently in clinical trials and 

which is based on the repeated sequential test of Armitage(1975), 

to linkage analysis.

B-Interval estimation:

A number of methods for constructing confidence intervals, 

under different assumptions, have been adopted and used in 

linkage analysis. Morton(1956) based his method on the

approximation of the observed likelihood H|P(r^]9) by a normal

density with mean 9O=0 and a variance o2given that n is large

enough. Given this assumption, Z(9)=Ez^(9) would be approximately

quadratic in 9:

Z(9)= a+bG+cG2 where b-MG/o2 c=-M/2oz M=log10e 
Any three points say (Oj,Zj),(e2,z2) and (03,z3) would be 

sufficient to determine a,b,c and therefore 0 and a2. Then, a

large sample confidence interval for 9 would be given by:

9-to<9<9+to , where t is a standard normal percentile with
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confidence coefficient (1-oc). 0tt(1985) reintroduced this method 

and generalised it for more than one parameter.

Another kind of interval estimate based on the asymptotic 

distribution of 21nP(r|0)/P(ri0o) which is xf when 9=G0 is 

defined as e1<Go<02 where 0t and Q2 are the intersection of the 

horizontal line Z= Z(9)-3 (or sometimes Z=Z(0)-2) with the curve 

of the lod score Z(e) _Ott(1977,1985).

The final kind of interval estimate that is going to be 

mentioned here is adopted from Morton's sequential test. It is 

defined as G1<0<O.5 where G4 is that value of 9 with a lod score 

of (-2) (i.e) Z(91)=-2. In the context of a fixed sample size and 

due to the fact that this interval never allows us to exclude 

values of 9 lying between 9 and 0.5, Ott(1985) suggested to only 

use it when the test of linkage is not significant. He also 

explained that this interval is chosen to be conservative due to 

the low prior probability of linkage.

Some of these intervals plus others will be discussed later in 

details in the fourth and fifth chapter of this thesis.

1.5 Likelihood for pedigree data and some mating types

A-Likelihood for pedigree data

Writing the likelihood as an explicit function of 0 is not an 

easy task when dealing with large family pedigree data. For a 

family of size n, let y^ and gj be the phenotype and genotype of 

the i^h member of the family. The likelihood function is defined 

as the probability with which the given phenotypes of the family 

can occur, it could be written as follows:

L(e)= P(yiY2.-ynIe)

= |;*,gnP(yi-,ynfSl--gn ')P(gi--gn l̂ )( 1-3)

Where the multiple sum in (1.3) is over all possible genotypes

for each individual in the family. In general the phenotypes are
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not mutually Independent but given the genotypes including phase 

they are conditionally independent (i.e)

P(yi•-yn lgi•-gn)=TIip(yil£i)• Also, the genotypes of all 

offsprings will be mutually independent only given their parents' 

genotypes. Therefore P(gi-.gn) could be written as 

nip(gil&m(i)Sf(i)> where p(Si lgjn(i)Sf (i)) represents the 

probability of an individual genotype given his mother's and 

father's genotypes. If the parents of this individual are part of 

the pedigree data then this probability will be function of 0, 

otherwise P(giIgm (i)£f (i)) will be replaced by p(gj) which will 

be calculated from population gene frequencies. L(e) could 

therefore be written as :

L(S)= li'in iP(yi|gi)P(gi|g"'(i)Sf(i)) 0 .4)

P(y±lei) is probability of occurence of the i *̂1 individual's 
phenotype given his genotype, it is mainly taken to be either 0, 

if the phenotype is incompatible with the genotype, or 1 if it 

is. Thus the multiple sum in (1.4) will be reduced to just the 

sum of the probabilities of all genotypes compatible with the 

phenotypes. Nevertheless, the evaluation of the likelihood as it 

is written will be time consuming even when computers are used. 

Elston and Stuart(1971) proposed a highly efficient algorithm 

which will calculate the likelihood in a recursive manner. Later 

computer programs were written, making use of this algorithm, to 

calculate the likelihood. The program LIPED written by Qtt(1974) 

and LINKAGE written by Lathrop and Lalouel(1984), are frequently 

used when dealing with family pedigrees involving two loci only.

An example from the genetical literature is used here to 

illustrate the derivation of the likelihood using formula (1.4). 

Figure(1.7) shows the pedigree data of a family, named family R 

after Morton (1956), suffering from a rare autosomal dominant
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hereditary disease known as Elliptocytosis ,which is suspected to 

be linked to the Rhesus, Rh, blood locus. In this pedigree the 

only Rh genes which appear to be segregating are R x and r, the Rh 

phenotype of each individual is shown in the figure below his or 

her symbol. On the other hand due to the rarity of the disease, 

the affected individuals which are represented by dark symbols 

are assumed to be heterozygote at the disease locus, (i.e) their 

genotype is assumed to be El/el, where El represents the dominant 

disease allele and el its corresponding normal one. In this 

pedigree n=19 and the numbering of each individual is shown in 

the figure below his or her symbol. The phenotype and possible 

genotypes of each individual at both the Rh and disease loci are 

shown in table(1.3). The genotypes are chosen so that they are 

compatible with both the phenotype of the individual, (i.e) such 

that P(yi|gi)=l, and with the genotypes of his parent, (i.e) such 

that P(g} |gm(i)gf (i) )*0. From the table we can see that only 

individuals 1,7,15 and 19 have more than one possible genotype. 

Therefore the summation in (1.4) will be reduced from n=19 to 

just four summations. The likelihood of this pedigree could 

therefore be written as follows:

Let the genotype R^l/rel and R tel/rEl be denoted by genotype 1
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Figure(1.7) Pedigree R. which is affected with the rare autosomal 
dominant disease of El 1iptocytosis

(Rjr)

o

Rxr

3 4 5 6 7
rr rr R^  r j

■o
R1R1 Rlr R1R1 Ri’

9 10 11 12
RiRi RiRi RiRi RiRi

o
16 19
rr R,r

Ji i1]
17 18
R. r rr

(Note that the phenotype of individual 1 is not known but deduced 
from his progeny).
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Table (1.3) The phenotypes and possible genotypes of the

individuals in figure(1.7)

ith
Individual Phenotype Possible genotypes

1 R^-Ele! RxEl/rel or Rxel/rEl

2 R^-elel Rxel/rel

3 rr -elel rel/rel

4 rr “elel rel/rel

5 Rjr-elel R xel/rel

6 RjRi-Elel R XE1/Rxel

7 Rjr-Elel RjEl/rel or R lel/rEl

8 R1R1-elel R x̂ l/Rxel

9 R1R1“Elel RjEl/Rxel

10 R^-Elel R1E1/Rlel
11 RjR^Elel RxEl/Rxel

12 RjR^Elel R1E1/R1el
13 R xr-elel Rxel/rel

14 R XRX-Elel R xEl/rel

15 Rxr-Elel R xEl/rel or Rxel/rEl

16 rr -elel rel/rel

17 Rxr-Elel R xEl/rel

18 rr -elel rel/rel

19 R,r-Elel R,El/rel or R,el/rEl
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and genotype 2 respectively and also denote the 1st* 2nd, 3rd and 

4th parentheses in the above formula by IltI2,I3 and I4 
respectively. Now if g^l, then P(g3|gi.g2) (where from 

table(1.3) g3 is rel/rel) will be equal to the probability that 

individual 3 had received haplotype rel from her mother with 

probability 0.5 and had received haplotype rel from her affected 

father with probability (l-0)/2. By carrying on like that for 

each individualtIj,I2,I3 and I* could be found to be: 

for g,=l Ii= (1-0)4/212 , I2=[05+(l-0)5]/26

Ia* [e3+(l-e)3]/24 f l+=l/4 

for gt=2 Ii= e4/2iZ , i2=e(l-e)[e3+(i-e)3]/26
J3= 0(l-0)/24 , I4=l/4

So that 1.(0) would be:

L(0)=constant x

{(1-0)12+0 3(l-0)9+05(l-0)7+06(l-0)5+©a(l-0)4+09(l-0)2> 
B-Likelihood and mating types:

For some other kind of pedigrees, calculating the likelihood 

will be a straightforward procedure. For a mating to be 

informative for linkage, when two loci are involved, at least one 

of the two parents has to be doubly heterozygote. Depending on 

the genotype of the other parent, different mating types could be 

distinguished. If he (or she) is doubly homozygote, singly 

heterozygote or doubly heterozygote, then the mating type will be 

termed a double backcross t a single backcross or a double 

intercross. But to calculate the likelihood we will still have to 

distinguish between cases where the phase of a doubly 

heterozygote parent is known or not.

The following general scheme could be followed to calculate the 

likelihood for such mating, when the phase is known. (Note that 

the phase will only be known for certainty in some three
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generation family pedigree data, where the phase of the parents 

can be deduced from the grand parents _as in a previous example 

shown in figure(l.5)). Firstly, a list of all possible offsprings 

genotypes, that this mating can produce, with their corresponding 

probability of occurence will be prepared. Secondly, depending on 

the mode of inheritance (dominant,codominant,..etc), the 

different phenotypes and their probabilities will be written. 

Usually different phenotypes will have the same probability of 

occurence, so the final step will be to combine all these 

phenotypes into one class, ending up with different phenotype 

classes with different probabilities, say Pi P2--Pk. such

mating produces n offsprings with offsprings in each

of the k classes, then their likelihood function will be 

proportional to

r. r2 ri,Pi'Pz-.Pk K
(Note that the n offspring's phenotypes are mutually independent 

because the genotypes of their parents are fully known).

Applying the above scheme to a phase known single backcross 

mating AB/abxAb/ab is given here as an example. In table(1.4), 

which is a two way table whose first row and first column show 

the four possible haplotypes produced by the doubly heterozygote 

parent and the two possibe haplotypes of the singly heterozygote 

parent with their corresponding probabilities respectively, a 

list of all possible genotypes are presented. Under codominance 

mode of inheritance, these genotypes will correspond to six 

different phenotypes which are shown in table(l.S) with their 

corresponding probabilities. Out of the six phenotypes, only 

three different classes of phenotypes can be distinguished, they 

are shown in table(1.6). If this mating or any other single 

backcross mating produces r1,rz,r3 offsprings with phenotype
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PHASE KNOWN

Mating AB/ab x Ab/ab, codominant inheritance

Table (1,4) Offsprings1 genotypes

AB Ab aB ab

(l-e)/2 0/2 9/2 (l-e)/2
Ab 0.5 AB/Ab Ab/Ab aB/Ab ab/Ab

ab 0.5 AB/ab Ab/ab aB/ab ab/ab

Table (1.5) Offsprings1 phenotypes
Ath phenotype Probability

1 AA-Bb (l-e)/4

2 AA-bb 9/4

3 Aa-Bb 1/4

4 Aa~bb 1/4

5 aa-Bb 0/4

6 aa-bb (l-9)/4

Table (1 .6) Offsprings’ phenotype classes

Class k i or j Probability py

1 (1 or 6) (l-e)/2
2 (2 or .5) e/2
3 (3 or 4) 1/2

(Note that i or j in table(1.6) refer to the numbering in 

table(1.5) of the phenotypes).
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class 1,2 and 3 respectively then the probability distribution of 

the data could be seen as follows

ri r2 ra * Multinomial(n; (l-©)/2, 9/2, 0.5)

By analogy the probability distribution of the other matings 

can be deduced. Table(1.7) gives the probability distribution of 

n offsprings produced by different mating type when the phase is 

known and codominance mode of inheritance is assumed. For a more 

elaborate discussion of this subject and for other type of mating 

and different mode of inheritance the reader is referred to 

0tt(1985) section (3.6).

When dealing with an unknown phase mating, we have to take all 

possible phases into account. For a double backcross mating, the 

doubly heterozygote parent could have one of the two equally 

likely phases, phase 1= AB/ab or phase 2= Ab/aB. Under this 

mating four possible genotypes, g^ i=l,2,3,4 (where the subscript 

i is used here to index the type of genotype and not the 

individual), will be produced. Table(1.8) shows the conditional 

probabilities of them given each of the two phases. Under either 

codominance or dominance (with A and B denoting the dominant 

alleles) mode of inheritance the four genotypes will correspond 

to four phenotypes. If such mating produces only one offspring, 

then the probability of his (or her) phenotype will be 

uninformative for 9, where

P(xi)= Ej P(x^|phase j)P(phase j)

= 0.25

If two offsprings are produced the situation will change. The 

total number of possible phenotypes for the two offsprings will 

be equal to 4+(4)(3)/2=10. For each possibility we can calculate 

the corresponding probability of occurence. For example if both 

children have phenotype Aa_Bb then the probability of occurence
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PHASE UNKNOWN 

Double backcross mating, codominance inheritance

Table (1.8) Conditional probabilities of the offsprings' 

genotypes given the phase__________________

ith genotype Phase 1 Phase 2

1 AB/ab (1-9)/2 9/2

2 Ab/ab 9/2 (l-e)/2

3 aB/ab 0/2 (l-e)/2

4 ab/ab (l-e)/2 9/2

Table (1.9) Offsprings' phenotype classes for families with

two offsprings____________________________________

class k______ ij___________________ Probability p̂ -

1 11,22,33,44,14,&3 92+(l-0)2
2 12,13,24,34 29(1-0)

(Note that ij in table(1.9) refer to the numbering in table(1.8) 
of the genotypes interpreted here as phenotypes)
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will be ((l-e)/2)2{0.5) + (e/2)2(0.5) = [02 + (1-9)2]/8. By evaluating 

the probability of all 10 possibilities it turns out that only 

two different probabilities occur and thus producing only two 

phenotype classes. Table(1.9) shows these two phenotype 

classes,their corresponding probabilities along with the possible 

combination of the offspring's phenotypes which can produce them. 

If we have n such matings with each one producing two offsprings, 

known as sibpair of offsprings, then if r is the number of 

sibpairs with phenotype class X  then the probability distribution 

of the data could be seen as follows

r * bi(n; <j>) where 0= 26(1-0) (1.5).

1.6 Three loci or more

1.6.1 General background 

A-Introduction:

Traditionally, linkage analysis for a disease locus versus n

marker loci were carried out as a sequence of two point analyses, 

which have been explained in a section(l.4). For each comparison 

between a disease locus and i*-*1 marker locus, likelihood and lod 

score are calculated and treated as being independent of those

for the other comparisons. But with the linkage map growing 

denser, simultaneous analysis of three loci (or more) becomes 

more important.

In genetic linkage with two loci situation a single parameter,

the recombination fraction between them 9, is of interest. With

three loci, (eg) A,B and C, three recombination fractions , 9ab, 

0^c and 0ac are of interest; they are known as the marginal 

recombination fractions and denote the probability of a

recombination occuring in segment AB, segment BC and segment AC

respectively. However, given an informative parental genotype at 

the three loci, (i.e) a triple heterozygote parent, the
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haplotypes which could be produced by this parent (and therefore 

the observed offsprings), can be seen as events of four types of 

multiple recombination, type I which shows a recombination in 

segment AB and segment BC, type II which shows a recombination in 

segment AB and no recombination in segment BC, type III which 

shows no recombination in segment AB and a recombination in 

segment BC and finally type IV which shows no recombination in 

both segments. As an example, if the parent's genotype is 

ABC/abc, with the loci arranged in that order, then a haplotype 

of the form (AbC or aBc) and (aBC or Abe) and (ABc or abC) and 

(ABC or abc) will correspond to the Is*-, 2nc*, 3rc* and type of 

multiple recombination respectively.

In general, let the probability of these four types be denoted 

by a, p, y  and & respectively. Since a+(5+7+6=l, there are three 

independent parameters, say a, p and y, from which the marginal 

recombination fractions could be calculated. As eaj-, is the 

probability of a recombination in AB whatever happens in the 

other segment then 9ab=«+P and by analogy 9j5C=<x+7 . On the other 

hand a recombination in AC which corresponds to an odd number of 

crossing-over between A and C, corresponds to either a 

recombination in AB and no recombination in BC, with probability 

P, or to a recombination in BC and no recombination in AB, with 

probability y, therfore eac=p+y. In summary, the likelihood 

function of a three loci situation can be expressed in term of 

either a, P and y or 9ab> ebc anc* 0ac wliere 

eab“oc+̂  ^<x=eab+ebc“0ac

^ b ^ 0'4'̂  ^ =0ab-0bc+0ac (1*®)
eac=̂ +:x ^>'=eac+ebc“0ab

But since the probability of the multiple recombination events a,

p and y must be non negative, then the marginal recombination
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fractions must satisfy the triangle inequality, (i.e) the sum of 

any two of them must be greater or equal to the third. Also, any 

marginal recombination must be restricted to the range of 

[0.0,0.5], Therefore the likelihood function will be restricted 

to the following range of the parameters

0<«+j3<0.5 0<9ac<Min[0 .5;ea,b+9bC]
0<a+7<0.5 <--» O<0kc<Min[O.5;8ak+eac3 (1.7)

0<P+7<0 .5 0<©ab<Min[0.5;9ac+0bc^
Note that, relation(l.6) and restriction(1.7) are true for any

order of the three loci. But for a given order, (eg) ABC, one

would require at least one additional restriction, namely that 

eac* tecombination fraction between the flanking loci, be at

least as large as either 9 ^  or 0^c (Ott 1985, pagel71). 

Therefore, in terms of the Gs, restrictionfl.7) for the order ABC 

will be:

Max[©ab; eb c ^ eac<Min[0. 5; eab+9^}] (1*8)

B-Interference:

Another phenomenon, that we have to take into account when we 

are considering linkage analysis of three loci (or more), is the 

phenomenon of interference. In genetics it is well established 

that the pattern of crossing-over, and therefore recombination 

fraction, in any segment of a chromosome is not independent of 

the pattern of crossing-over in any other segment. The failure of 

random crossing-over along the chromosome is the phenomenon of

interference. Generally, the occurence of a point of exchange

tends to inhibit the formation of other such points in its 

neighbourhood, so called positive interference. A convenient 

index of the strength of interference is measured by the

coefficient of coincidence, c, which is defined as follows
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a eab+0bc 0ac
c («+p) (<x+y) ~ 2eabebc ' (1<9)

given the gene order ABC. If there is no interference and 

crossing-over occurs at random, then the probability of a 

recombination in AB and in BC, <x, will be equal to the product of 

the marginal recombination eab and ©bc, (i.e) <x=(<x+p)(a+y) and 

c=l. With positive interference, however, the frequency of double 

recombination will be less than the random value, so that 

<x<(a+j3) (a+y) and c<l. From (1,9), eac could be written in terms 

of 9ab» 0bc an<* c as

0ac= 0ab+0bc~2c0ab0bc (1.10)
Therefore, given positive interference, (i.e) c<l, the lower

bound of 0ac in the restriction (1.8) will be sharpen as follows

0ab+0bc-20ab0bc<'0ac<'^*nf9 * ® *0ab+0bc-J (1 • H )
We will still have to restrict, ©ab and ©bc to the range of 

[0.0;0.5]. Also, if we want to write down the likelihood in terms 

of 0ab-0bc anc* c* when the gene order is ABC and positive 

interference is assumed then the multiple recombination 

probabilities could be written as follows 

a= c0ab0bc
£3= eab(l-cebc) (1.12)

Gbc(l-c9ab) 
with restriction 

0<9ab<0.5

0<Obc<0.5 (1.13)

0ab+ebc~°•̂Max 0 ; <c< 120ab0bc 
C-Mating types:

Under three loci situation, two kinds of mating are going to be 

used in this study, the phase known triple backcross mating
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ABC/abcxabc/abc, which we will call here, for convenience, mating

1 and the phase unknown triple backcross mating called here 

mating II. In analogy to the two loci situation, we produced 

table(l.lO) and table(l.ll) to explain the possible outcomes of 

mating I and table(1.12) and table{1.13) to explain mating II. In 

table(l.lO), we can see the eight possible haplotypes which could 

be produced by the triple heterozygote parent and the one 

possible haplotype of the homozygote parent along with their 

corresponding probabilities. Therefore only eight types of 

genotype could be produced by this mating. By assuming either 

codominance or dominance mode of inheritance (with A, B and c 

denoting the dominant alleles) at each of the three loci, the 

eight genotype symbols may be interpreted as symbols of possible 

phenotypes. Combining into one class the different phenotypes 

which have equal probabilities leads to table(l.ll), comprising 

four phenotype classes with different probabilities. As seen 

before, if such mating produces n offsprings with r ^ r ^ T j  and r+ 

denoting the number of offsprings with phenotype class 1,2,3 and 

4 respectively, then the probability distribution of such data 

will have the following multinomial distribution:

ri rz ra r4 " Mult (n; cc.p.y, 6)
For mating II, the triple homozygote parent will be abc/abc, 

the triple heterozygote parent on the other hand will have one of 

the following four equally likely phases: phase 1 ABC/abc, phase

2 ABc/abC, phase 3 AbC/aBc and phase 4 Abc/aBC. As in mating I, 

eight possible genotypes could be produced, which will also 

correspond to eight possible phenotypes under either dominant or 

codominant mode of inheritance. Shown in table(1.12) the 

conditional probabilities of these eight genotypes (phenotypes) 

given each of the four phases of the heterozygote parent. If such
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PHASE KNOWN-3 LOCI SITUATION 

Mating ABC/abc x abc/abc, codominance inheritance

Table (1.10) Offsprings1 genotypes

abc genotype

_____________________ 1 number

ABC 6/2 ABC/abc 1
ABc yf 2 ABc/abc 2
aBC 0/2 aBC/abc 3

AbC oc/2 AbC/abc 4

aBc cc/2 aBc/abc 5

Abc P/2 Abc/abc 6
abC y/2 abC/abc 7

abc 6/2 abc/abc 8

Table (1.11) Offsprings1 phenotype classes
Class k i or j Probability pj,

1 4 or 5 oc

2 3 or 6 0

3 2 or 7 y

4 1 or 8 6

(note that i or j in table (1.11) refer to the numbering in 

table(1.10) of the genotypes interpreted here as phenotypes).
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PHASE UNKNOWN- 3 LOCI SITUATION 

Triple backcross mating, codominance inheritance

Table (1.12) Conditional probabilities of the offsprings' 

genotypes given the phase_______________________________
jth .genotype Phase 1 Phase 2 Phase 3 Phase 4

1 ABC/abc 6/2 7/2 a/2 3/2

2 ABc/abc 7/2 6/2 3/2 a/2
3 aBC/abc 3/2 a/2 7/2 6/2
4 AbC/abc ce/2 3/2 6/2 7/2

5 aBc/abc a/2 3/2 6/2 7/2

6 Abc/abc 3/2 a/2 7/2 6/2
7 abC/abc 7/2 6/2 3/2 a/2
8 abc/abc 6/2 7/2 a/2 3/2

Table (1.13) Offsprings' phenotype classes for families with 

two offsprings_____________________________________________

Class k ..... i. J P V
1 11,22,33,44, 55,66 ,77, 88,45,36,27,18 a2+3z+72+6z
2 12,34,56,78, 17,28 ,35, 46 2(aP+76)
3 13,16,24,25, 38,47 ,57. 68 2 (<x?+f5S)

4 14,15,23,26, 37,48 ,58, 67 2(a6+37)

(Note that i and j in table(1.13) refer to the numbering in 

table(1.12) of the genotypes interpreted here as phenotypes).
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mating produces only one offspring, then the unconditional 

probability of his or her phenotype will be (1/8), (i.e)

uninformative for «,p or y . Instead if two offsprings are 

produced, the total number of their possible phenotypes is equal 

to 8+(8)(7)/2=36, each of which will be informative about the 

parameters. For example if the first child has phenotype Aa-Bb-Cc 

and the second has phenotype aa-Bb-Cc then the corresponding 

probability of occurence of these phenotypes will be 

= (1/4) (6/2) (p/2) + (1/4) (r/2) (oc/2) + (l/4) (?/2) (ct/2) + (1/4) (6/2) (p/2)

= (6p+«x)/8

Disregarding the order of the two offsprings, the probability of 

all possible 36 phenotypes can be evaluated. It then turns out 

that only four different probabilities occur, Table(1.13) shows 

these four phenotype classes, their corresponding probabilities 

along with the possible combination of offspring's phenotypes 

which can produce them. Again if we have n such matings with two 

offsprings each then, if r1(r2,r3 and r4 are the number of 

sibpairs with phenotype class 1, 2, 3 and 4 respectively then the 

probability distibution of such data will be

ri r3 r4 ~ Mult(n; P p P 2.P3.pJ (1.15)

where the ps are as determined in table(1.13).

D-Map distance and map function

So far, the only measure of distance between any two loci was 

based on the recombination fraction between them. Actually this 

measure lacks the important additive property of any measure of 

distance in its stricter sense. Actually, if we have three loci 

A, B and C, arranged in that order then from (1.10) 9ac will only 

be equal to the sum of the other two recombination fractions if 

c=0. This case corresponds to complete interference where a point 

of exchange completely inhibits the formation of other points in
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its neighbourhood, and is only assumed to be true for groups of 

loci that are fairly near each other.

In genetics, a better scale of measurement between any two 

loci, known as the map distance, x, is defined as the average 

number of crossing-over occuring between the two loci.Enjoying 

the same properties of an average, this quantity will be 

automatically additive even if interference occurs, (i.e) 

xac=xab+xbc ^or orc*er ABC whatever the value of c. The main 

disadvantage of this measure is that it can not be directly 

observed and must be deduced from the recombination fraction on 

the basis of suitable assumption. An important part of the study 

of genetic mapping has been dedicated to finding the relation 

between the recombination fraction and the map distance or what 

is usually called the map function f(.) where x=f{9).

Two ways have been established in approaching this problem, The 

first method is to construct a mathematical model of the process 

of crossing-over and then compare its prediction with 

observations, most of which are collected from experimental 

genetics on the Drosophila's chromosome during reproduction. The 

best known formula was given by Haldane(1919) and was based on 

the assumption of crossing-over occuring randomly and 

independently along the chromosome, which actually condradicts 

empirical evidence. Nevertheless, Haldane's formula constitutes 

an important cornerstone in genetic mapping, as it is easy to 

apply to any number of loci studied along a certain chromosome 

(see later, subsection E page 41). Under the above assumption, 

the number of points of exchange occuring between two loci A and 

B at meiosis will have a Poisson distribution with parameter x. 

The probability of exactly r points of exchange occuring is 

accordingly:
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vTp-XP(r|x)= r=0,1,2. . .
The recombination fraction, 8, being the probability of an odd

number of exchanges can easily be derived as follows

e= J  P(2r+1|x)= i \ 2  5 E s 2 -  t J L S H C 5  1 r=o 1 2 lr=° rl r”° J

0= 0.5(l-e~’2X) (1.16)

x= -0.51n(l-29) (1.17)

(Note that under this map function, c=l)

Also, due to Haldane(1919), a basic differential equation

relating the map distance and recombination fraction was derived.

He assumed that any recombination fraction Q can be regarded as a

function e(x) of the map distance x of the segment in question,

independent of the actual siting of the segment. For three loci

A, B and C arranged in that order, and from (1.10), 9ac is

®ac= eab+ebc-^c®abebc 
Now, let

©ab" e<x) 

ebc- de

eac= e(x+dx)

then it follows that

©(x+dx)= e(x)+d9-2cm(e)e(x)de (1.18)

where cm (0) is Haldane's marginal coincidence relating to a

finite interval with a very short adjacent interval. Since for

very short interval 0 and x are approximately equal, then d0 in

(1.18) may be replaced by dx, then it follows that

e i x i M ^ e M  _ 1_2Cm(e)e(x)

proceeding to the limits gives

g = l - 2cm(0)9 «  I  - 1-207(6)9 (1-19>
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therefore, x(©) = f9„ -;;du,— r0J l-2cm(u)u

(Note that this reduces to (1.17) if* cm(u)=l).

The second method for finding x(e) is based on finding a 

formula which fits empirical results. Biological results suggest 

a function that gives complete interference at very short 

distances and no interference at large distances, (i.e) 

cm o when e o 

and cm 1 when e -» 0.5 

The simplest function satisfying these conditions which is given 

by cm=29, was suggested by Kosambi(1944) the founder of this 

second approach. By using the Haldane’s differential equation

(1.19), the Kosambi map function can be easily found to be

1 1+20 1 
X= 4 ln 1^29 0r X= 2 tanh_1(20) (1.20)

Under this map function and by using formula( 1.9) when 9ac is 

replaced by

eac = f"l(xac) = f-MffeabJ+ffGbc)) (1.21),
c can be easily found to be

2(Gab+ebc)
C= 1+40ab0bc (1'22>

Carter and Falconer(1951) suggested the choice of cm=(2©)3 which 
leads to

x= 0.25(tan~1(20)+tanh~1(20)) (1.23)

Rao et al(1977) combined all the map functions mentioned so far 

in a general formula and then used data on meiosis in the human 

male to estimate a mapping parameter p. The suggested general 

formula is

x=(1/6){p(2p-l)(l-4p)ln(l-29)+16p(p-l)(2p-l)tan_i(20)+

2p(1-p)(8p+2)tanh“*(20)+6(l-p)(l-2p)(l-4p)9) (1.24)
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They estimated p by means of non linear least square methods to 

be equal to 0.35; a value intermediate between the Kosambi and 

Carter and Falconer map functions which correspond to p=0.5 and 

p=0.25 respectively, whereas when p=l or p=0 formula (1.20) will 

correspond to no interference (Haldane) or complete interference 

respectively.

In order to compare the performance of the different map 

functions on multipoint data, Pascoe and Morton(1987) fitted all 

the above map functions plus others, not mentioned here, to two 

sets of data on the Drosophila X chromosome, the first set of 

data involved seven loci whereas the second involved nine loci. 

Two map functions fitted the data best, the Rao et al with p=0.33 

and a new map function suggested by the authors themselves and 

called equation (3), it was based on the choice of cm=(2e)2 which 
led to

Also in their paper, Morton and Pascoe generalised and used what 

is called the interval Markov assumption in order to relate the 

various multiple recombination events produced by data from seven 

loci and nine loci to the marginal recombination fractions (see 

next section).

Given a certain map function, the likelihood for three point 

data will be function of two parameters only ,9^ and % c; this 

is due to the fact that given a certain map function, c or 9ac 

will be function of the other two marginal recombination 

fractions. 0tt(1985) questioned the practicality of estimating c 

from human three points data against assuming a plausible map 

function. He calculated the asymptotic standard error of the 

parameter estimates 9 ^  ©kc and c and the correlation among them

-I. (1-29)2 i/3
X 12 11 (l+20+49z)+ 6

(1+49)
S3 -0.15115 (1.25)
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for phase known triple backcross families with one offspring each 

and phase unknown triple backcross with two offsprings each. The 

standard error and correlation are function of the true 

parameters, so under different combination of eafc, ©bc and c at 

the Kosambi level, he found that the standard error of c is much 

higher than that of Ga^ and although it decreases as the

values of ©at», Q^c anc* c increases. For the same combinations of 

eab- ebc anc* c’ he aiso calculated the number of families, n, 

needed to detect a true c<l, when a likelihood ratio test testing 

H0:c=l against HI:c<l is carried out at a significance level 

a=0.05 and when a power (l-p)=0.80 is aimed to be achieved. His 

results indicate that the test can be expected to be most 

powerful for moderate values of eak, ebc and c, for which n 

reaches its minimum. But even so, more than 800 and more than 

2000 phase known and phase unknown triple backcross mating are 

needed respectively. He concluded that assuming a plausible value

of c rather than estimating it would be more practical in the

light of the data available in human linkage.

In a similar manner, Lathrop et al(1985) investigated the bias 

obtained under the assumption of no interference in the estimate 

of the recombination fraction between the flanking loci ((i.e) 

©ac if the order is ABC), as well as the number of offsprings 

needed to obtain a mean square error for 0ac, when c is to be

estimated, equal to its corresponding one if c is assumed to be

1. Given that the true c is at the Kosambi level, they found that 

the bias of 0ac is always less than 10% of the true value. Also 

they found that the estimates obtained under the assumption of no 

interference have smaller mean square error than the unrestricted 

estimates for less than 500 offsprings in phase known and 1800 

offsprings in phase unknown families, when true eab"9bc<'^*1 ant*
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when the mating type is of the form A1B1C1/A2B2C2xA3B3C3/A4B4C4 

if the phase is known (note that under this mating the number of 

alleles at each of the three loci is sufficiently large so that 

parents can be considered to carry four different alleles at a 

locus).

E-More than three loci:

The importance of the map distances and map function becomes 

apparent when we try to deal with more than three loci. For n 

loci, there is a total number of (n)(n-l)/2 marginal 

recombination fractions and the same number of map distances. Of 

these map distances n-1 are between adjacent loci, the remaining 

(n-l)(n-2)/2 are between any two non adjacent loci and may be 

inferred from the previous n-1 distances by using the additive 

property of this measure. When a suitable map function is chosen 

all map distances could be transformed into recombination 

fractions, thus reducing the number of parameters into n-1 

independent ones. However, as seen with the three loci situation, 

the observed data are in terms of the multiple recombination 

events. In each of the n-1 adjacent segments a recombination may 

or may not occur, which makes the total number of these multiple 

events equal to 2n~1, but since the sum of their probabilities is 

equal to one, the probabilities of these events are determined by 

2n_1-l independent parameters. The problem that we have to face 

now, is how to write down the 2n-1-l multiple recombinations in 

terms of the (n)(n-l)/2 marginal recombinations which may then be 

reduced to n-1 map distances. For n=2 and n=3, 2n_1-l=(n) (n-l)/2 

and no problem will arise. For n>3, 2n~1-l>(n)(n-1)/2 and

additional assumptions have to be made. Before outlining some of 

the different approaches suggested so far to deal with this 

problem, let us use the following notation:
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let 0  ̂ and xj[ be the recombination fraction and map distance in 

the i^k segment,

9ij be the recombination in the i *̂1 anc* J*'*1 segments; and 

similarly for 9jjic,...etc

©i+j be the recombination in the i^h or j -̂*1 segment, but not in 
both; and similarly for e^+ ..etc.

As for the multiple recombination probabilities,let:

P-̂ be the recombination in the i^h segment only;

P-jj be the recombination in the i*-*1 and segments only; and 

so on for Pijk*pijkl-■■•etc•

In general:

0i pi+ E pij + E pijk + 
j*i k*i*j

eij= pij + E pijk +••• 
kjtisij

(1 .26)

. . . etc

Over the years, several suggestions have been made to relate 

all the multiple events with the marginal recombinations, only 

some of which are going to be mentioned here:

(i)Assuming no interference ((i.e) using the Haldane map 

function). Under this assumption the probability of multiple 

recombination will be given by the product of the appropriate 

marginal recombination fractions

(eg) P125 = e1e2(l-e3)(l“e4)e5̂ n^(i-8i)

In this manner all the Ps will be automatically specified by the 

n-1 map distances.

(ii) Setting all probabilities of three or more simultaneous 

recombinations equal to zero. By doing so, the number of unknown 

Ps will be automatically reduced to (n)(n-1)/2, which could be 

easily related to the marginal recombinations. Afterwards any map
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function could be used to express the recombination fractions in 

term of the n-1 map distances (Ott 1985).

(iii)Using the interval Markovian assumption. This method was 

introduced by Morton and MacLean(1984) and is based on the 

assumption that a crossover divides the chromosome into two 

segments between which there is no interference. Therefore, 

interference in a region is assumed to depend only on the nearest 

crossover. So that if we have three adjacent regions i,j and k in 

that order on the chromosome then the conditional probability of 

recombination in region k given recombination in region i and j 

is given by

P(k|ij)= P(k|j) (1.27)

The position of the crossover within j is ignored, (i.e) segment 

j is treated as a geometric point. By definition

Gi jk
P(k|ij)= ----

0ij

ejkand P(k[j)=
ej

So that the interval Markovian assumption implies that 

9i jk = 1A , (1.28)

This formula is exact if j is a geometric point (xj=0) or if Xj 

is so great that and 9jK==ej9k and therefore 9ijk=0iejek-
For intermediate values of Xj formula (1.28) will be at best an 

approximate one. By using this formula and further assuming that 

quadruple or more crossovers are negligible, Pascoe and 

Morton(1987) derived the necessary formulas relating the multiple 

recombination probabilities to the marginal ones.

(iv)Using the point Markovian assumption, this method was 

introduced by Bailey(1961 pagel57) and is based on the assumption 

that when a crossover point occurs it effectively divides the
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chromosome into regions which do not interfere with each other 

although there may still be interference within each region. The 

difference between method(iii) and (iv) is that Bailey does not 

treat the segment within which the crossover occurs as a 

geometric point. By further assuming that we deal with several 

relatively short segments, Bailey derived in details the 

necessary formulas relating the multiple recombination 

probabilities with the marginal ones.

To give an idea about the implication of this assumption let us 

consider the four loci situation with order ABCD. By definition 

e123= P(recombination in 1st & in 2nd & in 3rd segment)

Now if we consider a small increment 6x situated at a point P 

interior to BC, then the recombination in BC will be divided into 

recombination in BP denoted by 9 or a recombination in PC denoted 

by (02-e), as a first order approximation. Also, note that 

ei2 3=X&€>I23- wherei
69U 3 = P(recombination in I8"*1 & in fix & in 3rd segment)

If a crossover is established in 6x then according to the point 
Markovian assumption

601Z3= P(recomb. in 1st & 6x)P(recomb.in 3rd|in 6x) 
where both probabilities in the above expression could be written 

in terms of the marginal recombination e1,e2)e3,e and 60 (see 

Bailey page 157,158). Finally the multiple recombination ©1Z3 
could be then found by integrating 60123 over 0 when 0 is varying 
between 0 and 0Z.
1.6.2 Linkage analysis

Linkage analysis for more than two loci consists mainly of two 

major investigations. Before discussing any of them, it is 

important to introduce another common measure used in linkage 

analysis, known as the map location, wj, of locus i. This measure
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determines the site of locus i on the genetic map and is defined 

as the map distance of this locus relative to a certain chosen 

point on the studied chromosome used as an orgin. Therefore if we 

have two loci A and B on the same chromosome then, xab= Iwb-wa j 

and if A is chosen as the origin, then wa=0.0 and wb=:kxab For 

any two loci data, the likelihood function could be written in 

term of this measure given a certain map function 

(i.e) L(eab)= L(wa ,wb) where xab=f(eab)= |wb-wa |

Usually in genetic study the lod score z(Qab) is of interest, 

[z(eab)=log10(L(9ab)/L(0.5))]. The corresponding z(wb), where A 

is chosen as the origin, will be the log of the odds for wb

against a value large enough to imply no linkage. For multipoint 

data, on the other hand, the likelihood function, or the lod

score, could only be written in terms of the map location

parameters, if the overparameterisation problem, discussed in the 

previous section, is tackled by one way or another.

It is also worth mentioning that traditionally family pedigree 

data were collected for investigation about linkage between two 

loci, which along the years produced a big reserve of two loci 

data. If we want to use these data for multipoint analysis, then 

the overall likelihood will be the product of each of the two 

point likelihoods provided that the data on any two loci were 

collected from independent families. Therefore, if we have three 

loci A,B and C with two point likelihood L^(0ab), Lj(ebc) and

Lk(©ac) °n I.J and K independent families respectively, then the 

overall likelihood, L(©ab>0bc»eac) would be equal to 

ni^i (Gab)njkj (ebc)nkkk(0ac) * If we were to consider n loci in 

this way the overall likelihood could be written in term of the 

n-1 map distances, or map locations, given a certain map function 

without facing the overparameterisation problem.
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The first major investigation in multipoint linkage analysis is 

concerned with questioning linkage between a new locus and a 

predetermined linkage group of n~l loci. Given that the n-1 loci 

occupy specific ordered sites w*,w2,...,wn„t, which are assumed 

to be known without error, Morton (1978) introduced the following 

test to test whether an n *̂1 locus is a part of that linkage 

group. His test was based on two loci data (or pairwise data) 

between the i**1 and the n*1*1 locus, expressed in the form of lod 

scores z(wnjw^) for i=l,2,...n-1. The total lod score Z(wn) 

accumulated over the n-1 markers would be equal to E|z(wn,w^) 

provided that all pairwise data comes from independent families. 

To write the lod score in terms of the map locations he suggested 

the choice of Rao et al map function with p=0,35. Locus n is 

asserted to be part of the linkage group if Z(wn)>3, where wn is 

the MLE of wn .

The simplicity of this test depends critically on the 

assumption that all parameters except one ,wn ,are specified with 

negligible error. This situation may arise in practice when the 

n-1 loci are test markers loci with map location estimated with 

accuracy from a large number of panel control families and the 

n1-*1 locus is a disease locus, or any other rare genetic trait. 

Since the data for the disease locus will generally be much more 

limited than the test markers, we may assume that the genetic 

location of the latter are known exactly (Lathrop et al 1984).

If a family pedigree data is informative for more than two 

loci, then the derivation of the likelihood should be carried out 

as explained in section(1.6.1), (i.e) taking into account all

information about multipoint recombination events. In practice, 

however, sometimes the likelihood, or lod scores, for three loci 

data or more is calculated as if derived from independent two
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loci data, (i.e) taking L ( e a b , e b C j e a c ) = L ( 9 a b ) I i ( e b c ) L ( 0 a c ) . 

Lathrop et al (1984,1985) discussed the relative efficiency 

between two point and true three point analysis in terms of the 

precision of the estimated recombination fractions. As they 

rightly stated, the relative efficiency of three loci and two 

loci linkage estimates of recombination fractions, which is 

defined as the inverse of the ratio of the corresponding 

variances, depends on the true recombination fraction, the mode 

of inheritance and the type of the family data. This led them to 

study the efficiency under various combinations of the above 

variables, as well as comparing the efficiency when making 

different assumptions about c in the three point analysis. They 

found that, in general, there is usually some gain in efficiency 

when using three point analysis against two point analysis and 

that this gain is larger if no interference is assumed as opposed 

to estimating c when the true c is equal to 1. Also the gain 

becomes substantial, when estimating 0ab or ©bc. if the sites of 

the flanking loci are known without error and c is assumed equal 

to 1. Actually this last result, had spread some doubt in our 

mind about our understanding of their definition of the log 

likelihood under the pairwise analysis. Given a phase known 

triple backcross with three codominant alleles, for example, the 

multipoint log likelihood will factorize into two independent log 

likelihoods if c=l {(i.e) l(©ab>ebc) “ 1i(eab)i2(0bc^ which is, 

in our understanding equivalent to the log likelihood given a 

pairwise analysis. Nevertheless their results directed them to 

suggest the use of multipoint data and analysis under the Haldane 

map function in deriving a test for detecting linkage between an 

nth tocus and the predetermined n-1 loci, instead of using 

pairwise data. Under the Haldane map function no problem of
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overparameterisation will be faced, if (n-l)>2, and the 

likelihood function will be only function of one unknown

parameter wn Proceeding with the testing problem in a fixed 

sample size context, they suggested the use of the generalised 

likelihood ratio test to detect linkage, (i.e) comparing

21n(10)Z(wn) to a x2 variate with one degree of freedom.
Another study concerning the efficiency of the two point

analysis of three point data has been carried out by Maclean et

al(1985), they rightly pointed out that there is no statistical 

justification of calculating the likelihood of three point data 

as if coming from independent families, the resulting function 

will not be a log likelihood, though it could be used for 

deriving estimates of recombination fractions and map distances. 

Using simulation, they calculated the relative efficiency of the 

two point analysis to the three point one by calculating the 

ratio of the variance of (Wi+Wj) for sample sizes varrying from 

50 to 1000 and over relative true distance, w::w2, varrying from 

1:1 to 50:1; the true map function used in their study has not 

been mentioned. Their result showed that, as an average over the 

mentioned sample sizes and distance ratios, the relative 

efficiency of the two point analysis to the three point one was 

greater than 0.95, for the range of distance of practical 

interest ((i.e) less than 20cMorgan). A recent critical paper, 

which compare both the pairwise and multipoint analysis when the 

Haldane map function is assumed, is given by Morton(1988).

The second major investigation in multipoint linkage analysis 

is the determination of the order of a linked group of loci. With 

n linked loci, the total number of different gene orders is equal 

to n!/2, where any sequence of loci is considered the same as 

that resulting from a reversal of it. Given a certain order the
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likelihood of w llwZi...wn could be derived either from 

independent two points and a certain map fuction (Morton 1978) or 

from multipoint data with the Haldane map function (Lathrop et al 

1984). An exact determination of the right order is clearly very 

difficult to achieve, in practice however, an acceptable strategy 

is to report the most likely gene orders, (i.e) those orders with 

the highest maximised likelihood.

The problem of testing different gene orders against each other 

when three loci data are considered, constitutes a major part of 

the present study. The reader is referred to chapter 2 and 

chapter 3 for a detailed assessment of the problem. On the 

meantime it is worth noticing here that as the dimensionality of 

the likelihood is the same under the different orders, the usual 

large sample theory of generalized likelihood ratio testing will 

not be applicable here.

At the end of this background chapter, I would like to refer 

the interested reader to Ott's (1985) book, which has been 

referenced throughout this chapter, for quite a clear and 

extensive discussion of human linkage problems, as well as 

referring to Smith's (1986) paper for an interesting summary 

about the development of human linkage analysis.
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CHAPTER TWO: Finding the order of three loci - an introduction

(2.1) Introduction

The aim of the following two chapters is to study the problem 

of the unknown orders of different loci known to be on the same 

chromosome. A three loci situation is adopted. Criteria used by 

the geneticists to identify the right order when the three orders 

are tested simultaneously are mentioned and then studied in 

various details.

Given a true order and a certain mating type, data are 

simulated and then used to model the probabilities of right and 

wrong order decision, made in the light of the chosen criteria, 

as functions of the recombination fractions. Results and

assessment of these models, when a certain map function is

assumed, are given in chapter 3. Also, at the end of the present 

chapter, we discuss testing two orders only against each other as 

presented by some other authors who are geneticists.

(2.2)Notation and criteria

For simplicity, a three loci situation with two codominant 

alleles at each locus and a phase known triple backcross mating 

have been assumed. Let (A,a), (B,b) and (C,c) be the three pairs

of codominant alleles. The order of these loci is unknown,

therefore, the following three orders, ABC, BAC and ACB, denoted

by Oi.O;, and 0 3 respectively, are possible. In chapter one, a 

definition of a, p , y and 6 was given for a certain order which 

was 0x; a general definition could be given as follows, let

<x be the probability of a recombination in the first and the 

second segments.

B be the probability of a recombination in the first but 

not the second segment.
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y be the probability of a recombination in the second but 

not the first segment.

6 be the probability of no recombination in any segment.

Also let ©i and 02 be the recombination fraction in the first and 
the second segment respectively and 01 + z be the recombination in 
the first or the second segment but not in both, (i.e) the 

recombination fraction between the first and third loci. Under 

this general notation, formula{1.6) and (1.12) will become

9j= a+p 2<x=01+e2“0t + z

02= 2p=01-0z+01 + z

ei + 2= 2?= 9^2+02-0!
<X= C 0 10 z 

p =  0 1 ( 1 - C 0 2 )

7 =  © z d - C O j  

Also restriction(l.11) and (1.13) will become

0 <0j < 0.5 
0 <0Z < 0.5 

01+02-2010z <0 1+2< Min[0.5;0X+0Z]

0 <QX < 0.5 

0 <e2 < 0.5

(2 .1 )

(2.2)

(2.3)

Max[0; 9’20le°'5 ] < c < 1

(2.4)

Now, let

r, be the number of offsprings recombinant in segment AB and

segment BC.

r2 be the number of offsprings recombinant in segment AB but

not in segment BC.

r3 be the number of offsprings recombinant in segment BC but

not in segment AB.

r4 be the number of offsprings non recombinant in any segment.
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Under the first order, 0lt the first and second segments 

correspond to segment AB and segment BC respectively. Therefore 

the probability corresponding to rlf rz, r3 and r4 will be a, 0, 

y and 6 respectively and it follows from (1.14) that 

rx r2 r3 r4 - Mult(n; « 0 y 6) (2.5,a),

Under the second order, 02, the first and second segment will

correspond to segment BA and segment AC respectively. A 

recombination in AB and BC means that there is an odd number of 

crossover between the 1st and 2n(* loci (A and B) and an odd 

number of crossovers between the 1st and 3r{* loci (B and C) and 

thus an even number of crossovers between the 2nc* and 3r(* loci (A 

and C). It follows then, that the probability corresponding to rv 

will be the probability of a recombination in the first but not 

the second segment. Proceeding in this way, it is easy to see 

that

r i r z r3 r4 - Mult(n; 0 cc y 6) (2,5,b).

By analogy, under the third order, 03

ri rz r3 r4 ” Mult(n; y 0 a 6) (2.5,c),

As a summary, a two by two table showing the number of offsprings

corresponding to the pattern of recombination in the first 

segment by the pattern of recombination in the second segment, 

for each order, is produced. Table(2.1,a) , (2.1,b) and (2.1,c)

correspond to the above table when the assumed order is 0 ^  0Z 

and 03 respectively. Note that the probability corresponding to 

the first, second, third and fourth cell of any of these tables 

are ex, p, y and 6 respectively.

Now, let be the probability that order 0-[ is considered 

correct given the true order, where i=l,2,3. Also let P4 be the 

probability that no conclusion is made with respect to the orders 

given the true order. If 0X is the true order then the following
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Table(2.1) The number of offsprings recombinant and non

recombinant in two segment formed by the three loci A, B and C.

(a) Under order 0, (ABC).

recombination in BC

yes no

In yes ri r2
AB no —  .Vn r.

recombination in AC

yes no

In yes r2 r*

AB no . S.s . rA

(c) Under order 0q (ACB)______

recombination in BC 

______________ yes no

In yes 

AC no

r3
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three probabilities, the probability of right decision, the 

probability of wrong decision and the probability of no 

conclusion, denoted by Pi. Pw—P2^P3 and P4 respectively, will be 

of interest.

Ott(1985 pagel83) mentioned two criteria for determining the 

most likely gene order, both depend on the maximized likelihood 

function under the three rival hypotheses which is denoted by 

for order 0^, (i.e) Me^iO^), where ©j is the MLE of e=(©i

02 0i+z)T under order 0^. He stated that a difference between the 

maximized achieved loge (In) likelihood under the two rival 

hypotheses is sometimes taken to be relevant when it exceeds the 

value of two units in InL.

Under the ls_t criterion 0^ is significantly more likely th«fcn Oj 

if Xj_j >2. Therefore:

where i=l,2,3 and {i,j,s)={1,2,3).

Another approach is to write down the approximate posterior 

probability, Y-̂ , of the i -̂*1 order as

The second criterion has not been mentioned explicitly in 

0tt(1985), but probably, 0  ̂ will be considered the most likely 

order among all rival hypotheses if Yj is greater than a certain 

constant, when 7r1=irz t̂r3= (1/3) , and therefore

Prob{ Y^ >const (true order) (2.9),

where i=l,2,3.

(2.3) Distributional study of the Xjj(s)

As seen in section(2.2) Plf Pw and P4 will depend on either the

Let X-̂. ( 2 . 6 ) ,

Pj= Prob{ Xĵ j >2 and \^s >2 (true order) (2.7),
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bivariate distribution of (x^j X-[s) or on the distribution of . 

This section will be concerned with the investigation of some 

aspects of the bivariate distribution of A = (^ij M s ) T# such as 

the expected value, E(A) and the covariance matrix, Var(A). But 

the ^ij(s) are functions of the maximimized likelihoods under the 

various gene orders, therefore they are functions of the data 

vector R=(r! r2 r3)T- Now, let

F 12~ **l+ r 2 2 r j =  r i 2 + ^ 1 3 _ r 23

ri3= 1't+r3 2rz= r12+r23-r13
^Z3_ ^2+r3 2r3= r13+r23-r12

As r12, r13 and r23 give a nonsingular transformation of r1( r2
and r3 then for convenience let R=(r12 r13 r23)T instead.

Taylor expansion can be used to find an approximate expected 

value and variance of a function of R, h(R) as follows

(i) h(R) can be expanded about E(R) as

h(R) = h(E (R)) + (R - E(R))T g-̂ t.E(R)).oK

+ | (R - E(R))T H(R) (R - E(R)) + ...
( 2 . 10)

where H(R) is a matrix whose (ij)^^ element is -— blRl ~ 8r , 3r .i J R=E(R)

(ii) By using the first three terms in (2.10), E(h(R)) will be 

approximated by

E(h(R)) = h(E(R)) + 0 +

(R - E(R)) H(R) (R - E(R))
(2 .11)

(iii) By using the 1st and 2nc* terms in (2.10), Var(h(R)) is 

approximated by

Var(h(R)) « 0 + Var(bTR) = bTVar(R) b (2 .1 2 )
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where b = 3K

(iv) Similarly we can find an approximate covariance of the two 
functions h(R) and k(R), by using the first two terms in (2.10)

Cov(h(R) k(R)) « bT Var(R) d (2.13)

where d - O l I U U l
oR

Under the general model described in (2.5,a,b,c) the MLE of 9^ 

will either lie within the feasable region of order 0  ̂ or on one 

of the boundaries. Therefore 14 (R) will have various forms 

depending on 9^ , (eg) if the MLE of 9j lies within the feasable 

region as described in (2.3) then UjfR) will have the following 

form:

constant x f t ] ’ fij" [=5]'P’

if F~ r  • Er <  I
and < KlB|l. ar o j ^ j

If one of these restrictions is not satisfied then nj(R) will 

have a different form. On the other hand, if a certain map 

function is assumed, the number of independent parameters will be 

reduced to two instead of three. Also, the third restriction in 

either (2.3) or (2.4) will not be needed because it will always 

be satisfied given any map function (see appendix(2.1)). If this 

map function is any one other than the Haldane then 9^ will have 

to be found numerically. Thus finding and therefore E(A) and 

Var(A) under either the general model or when a map function 

other than the Haldane is used will be troublesome.

Given the Haldane map function, it is easy to see from (2.2) 

that under any order
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a =  9 , 0 2 

0= e^i-e,)
y= 02(1-9,)

(2.14)

therefore under 0, and from (2.5)(a) and (2.14) it is easy to see

that r12 is independent of r,3 where

ri2 - bi(n 0,) 
r!3 ~ bi(n 0Z)

TTherefore, E(R) = (n0, n0z n9,+z) , where 01 + 2 = 0,+02-29,02 
and by using the properties of the multinomial distribution of 

ri r2 ra r4, it is easy to find that

Var(R)= n0,(1-0,) 0
n02 (1—0 2 )

no,(1-0,)(l-202) 
nez(l-02)(1-20,) 

n01+2(l-01+z)

where for example,

Cov(r,2 rZ3) = Var(rz)+Cov(r, r2)+Cov(r, r3)+Cov(r2 r3) 
= n©,(1-0,)(l-2©2)

Hx-3. y 1.
n 2

Similarly, under 02 and 03, u2(R) and u3(R) could be found. Now 
given that r12f r13 and rz3 are small enough,(i.e) that each of 
them is less than (n/2),then:

X12(R)= In
rn  r r, „ 1 3 r13 r  

1 - 3  L z j i _____
r;2 3 ' r

1 4
r  r 2 3  r  r H  
1 2  3  1  1 4

Let b, = ? xi2(e1R H  andart
= 3 X,q(E(R))

3R

If the true order is 0,, then
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k!-[ 0

H1Z(H)

T1--9Z )

91 0(1-0!)

32 ^  
3 R2 E=e (r )=

a2 
3 R R=E(R)=

In U  9i + g_L]
y 1 + 2 J

In ( 1 9 l+2)19i + 2 J

= Diag [° ne,(1-e.

[nQtd-Qj

ne

n©

1+2(1 91 + 2 )] 

1+2(l_ei+2)]
Using formula (2.11)

E(\1Z(R))= X12{E(R))+ g EC(R - E(R))H12(R)(R - E(R))3

- X12(E(R))+ 0 
Similarly, E(X13(R))* \13(E(R))

(2.15)

Also from formula (2.12)

Var(A)= b1l'Var(R) bx bxTVar(R) b2 
b2TVar(R) bz (2.16)

(2.4)Simulated data and preliminary observations

In the previous section we succeeded in finding an 

approximation to E(A) and Var(A) under the Haldane map function. 

Although those two measurements are of importance in the 

exploration of the distribution of A, they do not give us any 

hint about the shape of the distribution. In this section, 

simulated data, (see appendix(2.2)) will be used to overcome this 

problem as well as bringing light on the magnitude of P1( Pw and 

p+ •

Given that order Oi is the true order and under the Haldane map 

function any simulation will depend on the following parameters:

(i)©ab and ©bc, which we decided to vary between 0.05 to 0.25 in 

step of 0.05 for each © respectively.

(ii)n, the total number of offsprings, which we decided to vary
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between 5 and 30 in step of 5 and between 40 and 100 in step of 

10.

For some of those 325 combinations of the parameters the 

following has been done:

(a)Simulate I values of rlf rz, r3 and r4 from the multinomial

distribution described in (2.5,a).

(b)For each of the I simulations, find the maximized likelihood 

function under each order, and therefore calculate Xjj and 

Yi-

Then, using all I simulated data:

(c)Produce a normal probability plot, and a stem and leaf for the 

^ij(s).

(d)Produce a two-dimensional plot of \jj against \^s.

(e)Produce a ternary diagram -see later- for Ylt Yz and Y3.

(f)Find the estimated expected value and variance of A, from the 

simulation, and compare it with the approximate E(A) and Var(A).

Steps (c) and (d) have been done in order to see if there is 

any ground for a normality assumption about the distribution of A 

for the value of n used. If this assumption happen to be true,

then step (c) should show the normality of each Xjj in the form

of a straight line probability plot and a bell shape stem and 

leaf, whereas step (d) should show the bivariate normality of A 

in the form of a simulated data scattered in the shape of an 

ellipse.

From the definition of the Y's in (2.8), it is easy to see 

that, when ir^=(l/3), Yj + Yz+ Y 3=l, therefore a convenient way to 

represent the variability in Y^ Yz and Y3 would be to use what

is called the ternary diagram, as shown in figure (2.1)(a). The

triangle shown on this figure with vertices 1,2,3 has the 

following properties:
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(1)It is equilateral and has a unit altitude.
(2)For any point Y in the triangle the perpendiculars Y^Yj, and 

Y3 to the side opposite 1,2 and 3 satisfy the following
YA> 0 and Y* + Yz + Y3= 1 (2.17)

(3)For any data point Y= (Yt Y2 Y 3) satisfying (2.17), there is a 

unique point in the triangle 123 with perpendiculars Y lt Yz and 

Y 3. Therefore all I simulated data points can be represented in 

this diagram.

(4)For a vector of points Y, if two components say Yz and Y3 are 
in constant ratio, then these points will be represented on a 

straight line passing through vertex 1. Note that, xlz> 2 

exi2 > e2 «•-» (Yj/Y;,) > e2. Therefore, in figure (2.1) (b) , the 

line passing through the vertex 3 and the point a, where

9 = (~!7i2 ’ l+e2“  ’ ° ]

will divide the triangle into two parts such that a point Y 

falling in the right side of the triangle will mean that 0i is 

significantly more likely than 02. Dividing the triangle

according to all pairwise comparisons between the three orders 

will produce four areas; three of them near each vertex i and 

corresponding to considering order 0  ̂ as the correct order, the 

fourth area is the remaining part of the triangle and corresponds 

to having an inconclusive result -figure(2.1)(c).

(5)For a vector of points Y, with one component say Yt , having a 

constant value, then these points will be represented on a 

straight line parallel to the line 23. Therefore, dividing the 

triangle according to the second criterion ((i.e) 0  ̂ is

considered correct if Y^> constant) can be represented by

figure(2 .1)(d) with the same interpretation for the shaded area

as in (4).
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FIGURE (2. 1)
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For convenience, let A(m,l) be the part of the triangle 123 

where the order m is considered correct according to criterion 1 

(where m=l,2,3 and 1=1,2). Then, for 1=2, if 

ezconstants ' ^ m ’2) will be completely included in A(m,l);

whereas if for 1=2 
e2constants 2+e*~ ’ t îen will be completely included in

e zA(m,3.) -figure(2 .1) (e), where a point on ala2 means that Y4 =  --2l+e
e 2and a point on blb2 means that Y, = “ — =— .1 2+e

Results:

(i)From our numerous plots, out of which only few are shown here, 

a bivariate normality assumption for A seems to be inadequate, 

although each Xjj on its own could be seen as normally 

distributed. Figure(2.2)(a,b ,c,d) and (2.3)(a,b,c,d) show the

normal probability plot and stem and leaf of xi2 and x13 for two 

different combination of n and 9, when 1=100. Figure(2.4) 

(a,b,c,d) shows the two dimensional plot of X13 against X12 for 

four different combination of n and 9, when 1=1000, all of them 

and others, seem to suggest a bivariate distribution of A with 

contours in the form of an arrow head but with slightly different 

width according to the combination used. Note that, as an 

example, the six lines x12 = ±2 & X13= ±2 & \23= ±2 have been 

superimposed on figure(2,4)(b) showing the three areas of

interest A(m,l), where m=l,2,3.

(ii)On the other hand, studying the ternary diagram seems to 

suggest, as expected, a different pattern of variability for the 

various combinations of n and 9. For n>30 and 1=100, all I 

observations tend to lie more and more in the righthand corner of

the triangle, which sensibly suggests that as n » , P* 1

irrespective of the value of 9 - look at figure(2.5)(a,b,c,d) for
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FIGURE (2. 2) Probability plot of the X (s) 
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FIGURE (2. 3) Stem and Leaf of the X (s) 
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FIGURE (2. 4) X13 against X12
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FIGURE (2. 5) Ternary, for n»30

(a) n=30 0^=0. 1 0^=0. 1 (b) n=S0 e ,̂=0- 05 0^=0. 15
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11=30, 50,70,100 respectively and when e varies as shown in the 

figures. For n<15 a high percentage of the observations seems to 

lie on either the point c or the segments ccl or cc2 shown in 

figure(2.6), suggesting that either x12=x13=\23 or xi2=1 or xis=1 
respectively, (i.e) meaning that the amount of information held 

by the likelihood becomes insignificant as n becomes smaller 

-look at figure(2.7)(a,b) for n=5,10 respectively. For the 

remaining values of n, (i.e) 15<n<25 the 100 observations were

more scattered inside the triangle with dependency on 9. 

Therefore, we concluded that in this range of n a more detailed 

study of Pj, Pw and P4 as a function of 0 should be carried out 

which is going to be pursued in chapter 3 -look at

figure(2.8)(a,b) for n=15,20 respectively.

(iii)Perhaps, it is worth mentioning, as well, that 90%, out of a 

100 combinations of n and G, of the approximate E(x^j) as 

calculated from (2.15) have fallen within a 95% standard

confidence interval for E(X^j) of the form

~  0 . 5

|E(Xjj) ± 1.96 [Va ] ] ,w^ere E(Xjj) and var(x^j) are the

sample mean and variance calculated using the 1=100 simulated 

observations. The approximate variance Var(x^j) as calculated

from (2.16) did much worse than that, 20% and 65% of the

approximated variances have fallen within a 95% standard

confidence interval for Var(Xjj) of the form

f 99 (Var(Xi-i)) 99 (Var(X^U 1 ,I 1̂ (997o79#) ! **(99,0.'oi!5) J "hen n<4° a"d n>4°
respectively. This is probably partially due to the approximation 

of (2.16) and partially due to the sensitivity of the above

interval to the normality assumption of the x.jj(s) which would

also, perhaps, explain the difference in the performance of the
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interval for n<40 and n>40.

(2.5)Symmetry of the P's about true Qa  ̂Q]?c

A detailed study of the P's as function of the 0is is going to 

be carried out in the next chapter, but in order to simplify 

this forthcoming study, in this section, we are concerned with 

some aspect of these functions. Our aim is to prove that, for the 

true order ABC, a certain map function f(.) and for each

^i^eab'ebc^' t*16 following is true 

Pj.{x,y) = P^(y,x) where i=l,w,4.

The general and full proof is given in appendix(2.3) , here we

are mainly concerned with the main idea and concept of the proof.

Actually, the proof depends heavily on the concept that a certain 

gene order is indistinguishable from its inverse. So that for Plt 

which is the probability of deciding that order 0lt ABC, is the 

right order given it is true, and which therefore depends on the 

true recombination fraction x and y as the first and second 

recombination respectively, we will find that by interchanging 

the values of x and y then this will mean that if a certain 

observation would have led us previously to decide that order 0X 

was the right order then after the interchange it will probably 

lead us to believe that the inverse of this order, (i.e) CBA, is 

the right one.

So that

Pj(y,x) = Pi(x,y) (2.18)

As for Pz which is the probabiliy of deciding that 0Z, BAC, is 

the right order given that Oj is true, we will find that this 

probability will depend on the true values of x and g(x,y) as the 

first and second recombination respectively, where 

g(x,y)=f-1(f(x)+f(y)). Similarly for P3 (concerning order ACB), 

we will find that this probability will depend on the true values
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o f g(x,y) and y as being the first and second recombination 

respectively. Now by just interchanging the values of x and y, we 

will probably find that an observation that would have previously 

led us to decide on order 02 would then lead us to decide on the 

inverse order of 03, (i.e) BCA, so that:

P2(y,x)= P3(x,y) 

similarly, it is easy to see that 

P3(y,x)= P2(x,y) 

so that

Pw (y,x)= P2(y,x) + P3(y,x) = Pw (x,y) (2.19)

Thus from (2.18), (2.19) and from the definition of P*

P4(y.x)= P4(x,y) (2.20)

(2.6) Testing two orders only

With three loci situation, Lathrop et al (1987) derived and 

compared three tests, based on testing the maximum likelihood 

gene order against one of the orders 0lt 02 or 03. The three 

tests were defined as follows:

I (©1r 1 = —  for i=0,1,2
L(©*)

Where 9 is the MLE of © for the ML order and 9* is the MLE of the 

tested order. The difference between R0, Rj and R2 lies in the 

difference made about the assumption concerning the interference. 

For R0, no assumption about interference is made but the 

constraint of the recombination fraction between the flanking 

loci being greater or equal to the maximum recombination fraction 

between the adjacent loci were taken into account, (i.e) in our 

notation, for R0 only assume that ©1 + z>Max(©1 ,©2) . For the

more powerful constraint which assumes positive interference was 

applied, (i.e) c<l ©1 + 2>91+e2-291©2, For Rz, lack of

interference was assumed, (i.e) taking c=l (Haldane map function)
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or 01+z=01+e2-201e2. For any of the three tests the further

constraints which assume that any recombination fraction must lie

within the range of [0.0,0.5] were also taken into account.

A sensible rejection region would be of the form R^>t. In their

paper, they adopted two strategies by which they chose the

critical value ta which would correspond to a certain

significance level a. As they are only testing two orders against

each other, the significance level is defined as usual as the

probability of rejecting the tested order given it is true. As

this probability is a function of the true 9, their first

strategy, which they called the Least favourable strategy, was to

choose ta such that

Prob{Ri>toc|0L> = «

where 0^ is a certain value of the vector 9 which is least

favourable in the sence that:

Prob{R-[>t0C|©} < Prob{Rj!

The second strategy, which was called the adaptive strategy, was

to choose ta such that

Prob{Ri>t<xiG5fc> = ot 
$where 8 is defined as in the previous paragraph.

Using a triple backcross mating and for a sample of size N=10, 

15, 20 and 25 , Lathrop et al produced tables of ta which

correspond to oc=0.05, 0.025, 0.01, 0.005 and 0.001 under both

strategies. But as they stated, under the adaptive method the 

significance level oc will depend on the order constraint
jJ(estimates 9 . This led them to produce two critical values for 

this strategy and suggested that if a data point produced a 

likelihood ratio R^ larger than the first critical value then the 

tested hypothesis should be rejected, but if it is smaller than 

the second critical value then the tested hypothesis should not
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be rejected, otherwise if an intermediate result occurs a 

numerical evaluation of the significance level would be 

required.

Note that, these tests could be compared to the earlier

proposed one in this chapter as follows. The first thing to

notice is that the earlier test was concerned with simultaneous 

testing of the three possible orders whereas Lathrop et al1 s 

tests are concerned with testing one order against the ML order. 

Actually, as the three hypotheses of the three orders 0lt 02 and 

0 3 are not nested within each other, then we think that

simultaneous testing will be more appropriate, because by doing 

so we will be able to conclude that either one of the orders is 

true or that the result was inconclusive, whereas by only testing 

two orders, as Lathrop et al suggest, no conclusive result as far 

as the order is concerned will be reached, one order will either 

be rejected or not. Actually by only testing two orders, the

problem remains trapped within the concept of significant and 

insignificant result which would suit better a null hypothesis 

nested within a general alternative. Nevertheless, if we consider 

n loci situation instead of three then using simultaneous testing 

will certainly lead more and more to an inconclusive result and 

therefore for this situation rejecting as many orders as possible 

will be advantageous. Now for a certain data point r, only one ML 

order is possible, for the sake of the discussion, let this order 

be ABC. Under Lathrop et al1s tests, the other tested order could 

either be ABC, BCA or ACB. Given each of these tested orders 

respectively, the likelihood ratios Rj; would correspond to 1, X12 

or X13, in our earlier notation, when the constraint proposed for

is taken into account when calculating x12 and X13. The second 

point to notice is that, in the earlier test only one critical
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value is proposed and as simulteaneous testing is performed the 

assessment of the test will be based on the performance of the

three probabilities Plt Pw and P4. On the other hand, Lathrop et

al assessed their test by using the usual notion of the size and 

the power of the test. The size was defined as the sum of the 

probabilities of those outcomes in the rejection region given 

that the tested order is the true order, otherwise, if the tested 

order is different th®n the true order then this probability 

defines the power of rejecting the tested order. The definition 

of the power is a bit unclear but our understanding would be as 

follows. Let the true order be, ABC, then both the power and the

size are defined as follows:

Prob{Ri>ta |true order ABC)

This probability is equal the size if the tested order (null 

hypothesis) against the ML order was ABC. Whereas if the tested 

hypothesis was BAC, for example, then this probability is equal 

to the power of rejecting BAC. So that in our notation, firstly

if the null hypothesis is ABC:

size = Prob{all r such that the ML order is 02 and X21>ta o_r

all r such that the ML order is 0 3 and >>^>^1 ABC}

Secondly, if the null hypothesis is BAC then: 

power = Prob{all r such that the ML order is 0 t and x12>ta or

all r such that the ML order is 03 and X32>ta | ABC)

Lathrop et al calculated the size and the power of rejecting BAC, 

for the critical level of 0.05, when the true order was ABC and

for some combination of Qab, Qbc and when the true c was equal X,

the Kosambi level or 0 respectively. When the true c=l, they

found that R0 and R2 gave the lowest and largest power

respectively for most of the cases under both strategies. Also

the actual size of any of the tests, R|, rarely exceeded 0.05,
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actually the maximum size occured for R2 when ©ab^bc^0•1 anc* was 

equal 0.055. When interference was present ,(i.e) true c either 

at the Kosambi level or equal 0, the power of the tests, Rj, 

became greater. In particular, the power using R 2, which assumes 

no interference, was quite near the power using R t , which assumes 

positive interference, and was even, in some cases, more powerful 

than Rj when the true c was at the Kosambi level. The test R0 

performed comparatively better when interference was present but 

was generally the least powerful. The size of the tests on the 

other hand was in general conservative when interference was 

present. Lathrop et al concluded that the testing should be 

performed by assuming either positive or lack of interference and 

they were slightly in favour of the latter assumption as it 

simplifies calculation and was found to be extremely robust.

In the final part of their discussion section, they mentioned 

that appropriate methods for testing gene orders simultaneously 

remain to be developed. In the earlier part of this chapter one 

method has been discussed and remains to be assessed, but 

admittedly this method lacks a general strategy for the choice of 

the critical values.
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CHAPTER THREE: Finding the order of three loci - a simulation

study

(3.1 )Modelling F, PT1, P„ . when N=20

In the previous chapter, a general discussion about the problem 

of unknown order in linkage analysis was made, from which we 

found that a detailed study about the variability of Pt, Pw and 

P4 as functions of and 02 would be recommended for 15<N<25, 

(where capital N denotes the total number of offsprings). In this 

chapter we decided to carry out this study using a simulation

study the main step of which has been as follows:

(i)For N=20, simulate 1000 values of rlf r2, r3 and r4 given 

order 0lf (i.e) using the multinomial distribution described in

(2.5) (a), for each combination of and e2j where 9 ^  and e2j

vary as follows, from 0.01 to 0.05 in step of 0.01 and from 0.05

to 0.5 in step of 0.05, therefore the total number of

steps=I=J=5+9=14 and the total number of combinations^ IxJ= 196.

(ii)For each simulated r=(rt rz r3 r4) find the maximised 

likelihood function under all possible orders, (i.e) i=1.2,3,

and therefore This step is going to depend on the assumed

value of c. If c=l, a simple analytical bounded maximization will 

be performed but if c*l, (i.e) Kosambi, eq(3) map function,.etc, 

numerical bounded maximization has to be used. For the Kosambi 

map function we just made use of the Nag library routine, E04VDF, 

which applies a quasi-Newton algorithm for finding the maximum of 

a certain function subject to bounds on the variables, as for the 

maximisation given Eq(3) some other problems had to be solved 

first, a detailed discussion of the maximisation given Eq(3) is 

given in the next chapter. Unimodality of the likelihood will be 

assumed on the basis of contour plots for some r. Some of these
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plots will be provided later within the relevant section. The 

numerical maximization has been done using a modified Newton

algorithm with the aid of the NAG library routines

(iii)Using all the 1000 simulations for each combination (i,j), 

calculate n^j, nWjj and n4jj where 

njjj denotes the number of times order 0j was considered correct

nwij denotes the number of times order 02 or 0 3 were considered

correct.

n4jj denotes the number of no conclusion decisions.

Therefore, the general model describing nw n4) would be the

following multinomial distribution

niij nwij n*ij ~ Multinomial (1000; P^j Pwjj P^ij) 

where Pi+Pw+P+= 1 for all (i,j).

therefore

niij nwij n4ij 
MPiPwP*) piij pwij p*ij (3*1)

For any combination (i,j) if we reparametrise our two dimensional 

parameter vector n= (Pi P4), as Pw= l-Pj-P*., to (Q l Qz) where

Qi= ; (i-e) Qx is the probability of the right decision

given that a decision has been made, and Qz = P4, then the

distribution of the data vector n= (na n4) could be rewritten as 

follows:

f{n|Q)= f(n4 |Qz) f(njn4 Q J

Therefore, n4 is a sufficient statistic for Qz and an ancillary 

for Qi. Any inference about Qz and Qx should be based on the 

marginal distribution of n4 and the conditional distribution of 

n t given n4 respectively. The former is a bi(1000 Qz) and the 

latter is a bi(l000-n4 Qi). Analogously writing the likelihood 

(3.1) in terms of Q will result in a genuine factorisation as
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follows:

1000-n4ij

J

L (Qzijln*ij)

Thus, Qi and Qz, the probability of success of a certain binomial 

distribution, will be modeled independently using the Generalised 

linear regression technique which is discussed in the next 

section. Note that the above arguments will be followed to model 

Qi and Q2 when:

(a)The Haldane is both the true and the assumed map function.

(b)Eq(3) is the true map function and 

(b-1) Haldane is the assumed one.

(b-2) Kosambi is the assumed one.

(b-3) Eq(3) is the assumed one.

Step (b) will be performed in order to measure the sensitivity of 

the result to the assumed map function. Finally the estimates of 

and Qz will be used to provide estimates of Pw and P+

where

P*= Q2 J

(3.2generalised Linear Model

This section introduces a class of regression models for a 

scalar response data described by McCullagh and Nelder (1983), 

with emphasis on the special case of logistic regression model 

which relates the probability of a binary response variable, Y, 

taking values 0 and 1, to a covariate vector X= (X! X2 ...Xp)T .

In general, a generalised linear model, GLM, for Y could be

P*= Q i(l"Qz)

Pw= 1- Qjd-Q^- Q2 (3.2)
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defined through the following three properties:

(i) The probability density function of Y could come from any of 

the exponential family class of distributions, therefore

fy(yb,o)= exp{ [yy - b(y)]/a(o) + c(y,<J>) > (3.3)

where y is the unknown canonical parameter and o is usually a 

known parameter and in some cases unknown. By choosing the 

appropriate functions a(.), b(. ) and c(.,.), many commonly known 

distributions which come from the exponential family could be 

written in the above form

(eg) if mY - bi(m u) (3.4),then

c(y,<t>)= In

In general, by using the probability density function of Y 

f y ( Y * the mean and variance of Y can be derived easily from 

the following well known relations:

where 1(y,o)= In fytyly.^) .therefore 

E(Y)= b ' (y)

Var(Y)= b' 1 (y) a{<&)

where a prime denotes differentiation with respect to y. Thus, 

the variance of Y is the product of two functions, the first, 

b''(y), is a function of the canonical parameter y and hence the 

mean, b'(y), while the second, a(o>), is independent of y,

(eg) for the binomial distribution described in (3.4)

b(y)= ln(l+e^)

a(<t>)= 1/m , where <!>=1 and

E 0
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B(Y). W - ^2 [lntl+e5') ] - - 2 ^

Var(Y)= »  a(«) -
By m

The above derivation refers to a single observation (or distinct 

covariate combination). When the data consists of a (Kxl) 

response vector Y taking values y, the parameter y and therefore 

a will be replaced by a parameter vector y and u respectively 

with component y^ and corresponding to each y^.

By that, we end our discussion of the first property of the GLM 

which defines the random component of the model through the 

density function of Y.

(ii) The second property is concerned with the systematic 

component of the model. We assume the existence of vectors of 

covariates X^= (X^, X^2 ... X^p)^ of dimension (pxl), which

produce linear predictors given by:

* £kT§ = ^1 xkl * forV k=l, . .K

(note that is linear in the unknown parameters p^fs)).

(iii) The third property defines a link function, g(.), between 

the random and the systematic components of the model such that

^k = g^k)
where g(.) is any monotonic differentiable function. By relating 

each Ufc to the parameter vector p using the above link function 

the number of parameters in the model will be reduced if p<K.

A special class of link functions known as the canonical links 

occur when

yk = nk = xk^P
An advantage of using them is the simplicity in finding 

sufficient statistics for the unknown parameters p, where
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L(r <J>) = L(£ o)

= h(y, <*>) exp j: [ykx£p - b(xjp) ]/ak(<j>)

giving the following sufficient statistics for each p^

| Ykxkl - for 1=1.2, .. ,p

Again for binomial data 0<uk<l and therefore the link function 

g(.) should satisfy the condition that it maps the interval (0,1) 

onto the whole real line (-«,«>). The following three link 

functions are commonly used for that purpose:

1- Logit nw = In — , which is the canonical link.—  K l-f£R

2_ Probit r\k = <& (uk)

3- Compiememtary ln-ln r\k = In (-ln(l-uk))

(3.3) Assessment of GLM 

A- Measures of discrepancy

Fitting a model to a set of data may be regarded as a way of 

replacing the data values y by a set of fitted values n derived 

from a model involving a relatively smaller number of parameters. 

The simplest model, the null model, has one parameter, 

representing a common n for all the yk 's. At the other extreme, 

the full model has K parameters, one per observation or distinct 

covariate combination, producing a perfect fit to the data.

Measures of discrepancy between the full model, used as a 

baseline, and an intermediate model with p parameters, known as 

the current model, may be defined in various ways. Here we are 

going to be concerned with two such measures denoted by D(y;u) 

and APA(y;u). The former is the well established measure known as 

the deviance and defined as the scale parameter <d multiplied by 

twice the difference between the maximum In likelihood achieved
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by the full model and that achieved under the current model. Let 

u* and u be the estimated means under the full and current model 

respectively with u*=y. Also, if we denote by r*=7(y) and r=y(u) 

the estimates of the canonical parameters under the two models 

and by taking ak (<j>)=<i>/wk , then D(y;p) could be written as :

D(y;u) = j: 2wk[yk{yk- rk) - b(/k) + b(?k)3

where the wk(s) are prior weights known in advance.

The second measure which is called the Average Prediction 

Ability, is introduced in this study and is defined as the square 

root of the average squared differences between the estimated 

linear predictors under the full model, r'k*=g(yk), and the 

current model nk=g(uk ). Therefore,

APA(S:i) = [ | (nj- ^k)Z/K I0,5

In the application presented here, (i.e) for binomially 

distributed data and with g(u)=logit(u)

D(y;u) = 2 j: mk[ykln(yk/uk ) + (l-yk )ln(l-yk )/(l-uk )3

APA(y:i) =[ j: [logit(yk) - xke]7l< I"'5

For such data let m= Minimum^ m2...mk), then if m the

distribution of D(y;u) given the current model is asymptotically 

x2k_p. Therefore for very large samples, the following test 

statistics

T s = “Yvar (D) ]0 - 5 * S*10U-^ approximately normal under the

current model.

A more detailed inspection of the second measure for such data 

is needed here. Let (nk - nk ) be denoted by PD(yk), Actually each 

PD(yk ) is equal to the In ratio of the estimated odds under the
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full and current models respectively. Under the full model uk=yk , 

now let Mk=yk+ek , then

This means that the APA measure relates the error made in the 

estimation of each yk to its original value. Thus, if for example 

ei=e2=0.01 but with y^O.02 and y2=0.5, then PDfy^ will be much 

larger than PD(y2) reflecting the seriousness of an error of 

magnitude 0.01 when related to a small observation relative to a 
larger one.

Finally it is worth mentioning that, when hypothesis testing 

between two rival models is not of major importance, a simple 

comparison between the two models on the basis of their APA will 

be of use. Actually, the APA of a certain model could be seen as 

a measure of the average error in the prediction of logit(ak ) 

made by that model, but unadjusted to the number of parameters 

assumed by the model.

B-Residual

The second method of assessing the fit of a model is to examine 

the residuals. The simplest definition of which, in the context 

of binomial data is the Pearson residual, defined as the 

difference between the observed and expected counts scaled by the 

estimated standard deviation of mkyk , (i.e)

for large m^ and nk not very near 0 or 1.
(Note that a plot of these residuals against the fitted values 

for a certain model under consideration is going to be used in

l-yk-ekJ

In fJk_ /i-vn 1 
W k +ek 1-Vk'ekJ

rk = ---------- —  » which are approximately normally distributed
[mkuk (l-ak ) ]°‘ 5



order to assess the various assumptions given by that model).

(3.4)Application

In this section, we are going to apply and discuss in details 

the prescribed method of fitting and assessing a GLM to the 

following set of simulated data:

n*i j w bi(1000 Qzij) (3.5)

for 1=1,2...,14 & j=l,2....14

where n+ij and Qzij are as defined in section (3.1). For 

convenience we are going to drop the subscript 4 and 2 in this 

section. The binomial distribution in (3,5) defines the random 

component of the model with 

E(nij)= IOOOQjj 

Va r(njj)= lOOOQi j (1-Qi } )

The full model, Mf, defines the systematic component, (i.e) the 

linear predictor, as follows

Mf: nij= “ij ^or  14

j=l,2,...,14

But, as seen in chapter two, Qij= Qji* therefore a more 

appropriate model called here the true model, Mt, will define njj 

as

Mt : nij= «ij with Kij- ocjj

for all i*j

Whereas the simplest model, the null model, M0, will have only 

one parameter representing a common Q for all the n^j(s), (i.e)

M0: nij= «

Our aim is to find a simple model between M0 and Mj-. Two such 

models are suggested here and are denoted by Mi and M2 
respectively:
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where Z i;j_= logit(0i:[)

• nij= ai+^iizzj+pzizzj+PaiZ2j 
for i=l,2,...,14 ; J=l,2,...,14

Zzj= logit(02j)

(3.7)

Note that Mx is the special case of Mz when

4-

for i=l,2.... 14
^ii~ Pi+^3Zii

2 3
OCĵ — <X+0 1 Z j 2 + P  2Z li"^^4.Z li

Model M t is a simple polynomial form in and Z2j proposed

firstly by the discrete contour plot of (n-y/1000) against 0 ^  

and ©2j, shown in figure(3.1) and from which we can see the shape 

of the contours forming disturbed ellipses and probably 

suggesting a polynomial form of n(04i,e2j).(Note that in this 

figure, and similar ones that are going to be shown later, the 

vertical scale changes at 0.05). Secondly by the two dimensional 

plot of logit (n-jj/1000) against Z2j, shown in figure(3.2) and 

which suggests either a quadratic or a cubic relation between 

them. (Note that a similar argument could be made for Zi:̂ ). 

Thirdly, Mj is constructed such that njj= thus preserving

the symmetric property of the P^ts), i=l,w,4. Finally, it is 

perhaps worth mentioning that as GLIM package has been used to 

fit a logistic regression to our data, trial and error had played 

an important role in introducing model M lt

Model M2, on the other hand, which fits a different cubic in Z2 
for each Zi;[, has been mainly suggested by the plotting of 

logit (n-jj/1000) against Z2j for each - look at figure(3,3)

for some examples. Note that for some the cubic or the

quadratic or even the linear term will be insignificant and
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Vhen Q Is modeled & Haldane Is 
both the true & assumed map function

FIGURE (3., 1 ) D 1 s c re t c o n to u r p lo t o f th e da ta vs 0 1 &
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When Q Is mode led & Hatdane Is 
both the true & assumed map function

FIGURE (3.3) Logit of the data vs Z2J for some 2 U
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therefore will not be included in the fit, (i.e) only significant 

parameters in (3.7) will be included in the analysis. Another 

model Mj would fit a different cubic in Zt for each Zzj, but as 

we suspect that this fit will be very similar to that of model 

M2, only the analysis given the latter will be executed.

Note that when fitting all the above models,

within, the logit function has been used as our link function, 

(i.e) logit (n-jj )= Qij.

(3.5)Results

(a)-Haldane is the true and assumed map function

(i)When Q? is modeled 

Table(3.1) give the relevant summary statistics of the above 

models, when the Haldane map function is both the true and 

assumed map function; all entries in the table have been 

discussed before except for the last column which is just the 

ratio of the APA of model Mj to that of the other models. From 

the table we can see that, despite the substantial drop in the 

deviance when moving from model M0 to to Mz, models and Mz 

still gave significant result when compared to model Mf. Also, we 

can see that the APA of model Mi, which is equal to 0.31, is 11% 

and 41% higher than that of model Mz and respectively.

It is worth mentioning, as well, that 10 observations out of 

the 196 distinct combinations were equal to "1000". Most of them 

corresponded to either 0! or ez >0.35, an area of no practical 

importance, so to prevent any infinity in the results we decided 

to just omit them from the analysis.

Table(3.2) (a) give us a more detailed account of the APA of

, where "— means nested
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When Q2 is modeled and Haldane is both 
the true and assumed map function.

Table(3.1) A summary of the performance of different models

Model Deviance D.f T.S APA
APA(Mi) 
APA(Mi)

M0 16390.0 185 COt—r-t
Ma 312.0 181 6.8 0.31 1.00
m2 164,7 130 2.2 0.28 1.11

. A - .... 96.8 85 0.9 0.22 1.41

Table(3.2)(a) Individual APA(M,,i)

1 = 1,2,, , .7 0.37 0.27 0.32

x . t. - ru i__

0.22 0.20 0.22 0,14

i=8 ,9,. .14 0.11 0.18 0.31 0.43 0.45 0.50 0.35

(The overall APA is equal 0.31)

Table(3.2)(b) Individual APA(Mj,i) within the restricted

1 = 1,2,. . .7 0.29 0.19 0.18 0.13 0.11 0.12 0.16

i=8,9,10 0.12 0.09 0.26

(The overall APA is equal 0.18)
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model Mi, this is done by calculating this measure for each ©ij, 

(i.e) calcutating:

APA(Mt; i) = [ ij (n| j- nij)Z/J j°‘5 for each i = l,2___ 14

By comparing these individual APA(s) with each others, it seems 

that the model fits worse for i>ll and for i=l. But since large 

values of ©j and ©2 are not of great interest it would be better 
to assess the model’s prediction ability when the APA is

restricted to the area of ©j and ezt£0.3. Table(3.2)(b) gives the 

individual APA(s) for the restricted area, showing some drop from 

their corresponding ones in table(3.2)(a). Actually the overall 

APA drops from 0.31 to 0.18. In order to see how this 0.18 error 

in the logit of Qjj is transmitted to Qjj scale we provided the 

reader with some numerical examples, shown in table(3.3). The 

first column of this table shows some typical data points

njj/1000 which cover the whole range of the data used in the 

calculation of the 0.18 error. The last two columns show the 

lower and upper values of Q^j for such data when the 0.18 error 

is subsequently subtracted and added to logit(Qjj).

Despite the significant deviance of model Mj , it seems to give 

good result when compared to more general models. Actually with 

binomial kind of data and where large samples are involved, it is 

usually expected to have large deviances even for models which 

fit well, as judged by the closeness of the fitted and actual 

values - which could be deduced from table(3.3) for model . 

This happens because with large samples, very small and

unimportant deviation from the model can be detected making a 

significant result more probable. According to the above 

discussion as well as the extreme simplicity of model Mx, we

decided to choose it as our representative of the data, knowing
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When Qz is modeled and Haldane is both 

the true and assumed map function.

* Logit(u*)

.■*---n i=
Logit(n*) 
-0.18

.. * „n u-
Logit(u*)

+0.18

Exp(nf)
Z'.f:.-“ 1...

Exp(r\u)
1000 1+Exp (r\|) 1+Exp(nu)

0.624 0.549 0.369 0.729 0.591 0.675

0.826 1.558 1.378 1.738 0.799 0.850

0.889 2.081 1.901 2.261 0.870 0.906

0.948 2.903 2.723 3.083 0.938 0.956

0.998 6.213 6.033 6.393 0.998 0.998

(The points chosen in the 1st column are the minimum, 1st 

quartile .median, 3rc* quartile & maximum of the data within 

the restricted area of & e2 < 0.3).

Parameters MLE 955s Interval estimates

<x 6.991 6.840 ; 7.142

Pi 3.804 3.684 ; 3.923

P? 1.605 1.550 ; 1.660

P 3 -0.419 -0.438 ; -0.400

.... 0.145 0.138 ; 0.152
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that it is not the best choice as judged by the deviance but an 

approximate one as juged by the APA(s). Maximum likelihood

estimates of its unknown parameter vector p and their 

corresponding 95% confidence intervals are shown in table(3.4). 

By using those estimates a contour plot of Q2 (P4) against 0* and 

e2 is produced and shown in figure(3.5). Actually this figure is 

just the estimated continuous version of figure(3.1). Figure(3.4) 

is just a plot of the Pearson residuals against the fitted values 

of model M 1( no general trend can be deduced from the plot 

although we can see that a big cluster of the fitted values

points are situated near 1, thus making the interpretation of the 

plot more difficult as it is expected that at this end the 

distribution of the residuals will be markedly skewed.

(ii)When Q , is modeled

As seen in section(3.1) the conditional distribution of nt

given n4 is bi(1000“n4 Qt). In this section, for convenience, let

for any combination (i,j) , m^j be the number of conclusive

decisions out of the 1000, n-[j be the number of right decision

and Qjj be the probability of a right decision given that a

decision has been made, then

n^j ~ bi(mjj Qjj) for i=l,2,..,14 and j=l,2,..,14.

But, as the same line of analysis which was described in

section(3.3) will apply throughout this result section, let us 

first summarize the main common steps of the analysis:

(A)Four different models are usually tested against Mf

1- The null model M0
2- Model Mi, suggested by two figures, called in general

figure(3.1,m ,s,1) and figure(3.2,m,s,1) respectively, as well as

trial and error in GLIM. Figure(3.1,m ,s,1) is the discrete

contour plot of the data against & e2j* whereas



- 92 -
Vhen Q Is modeled & Haldane Is 
both tne true & assumed map function

FIGURE (3. A) Pearson residuals vs the fitted values
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figure(3.2,m,s,1) shows the plotting of logit the data against 

Z2j for all where

m=l if Qi is the parameter to be modeled.

=2 if Qz is the parameter to be modeled.

s=l if the true map function is Haldane.

=2 if the true map function is Eq(3).

1=1 if the assumed map function is Haldane.

=2 if the assumed map function is Kosambi.

=3 if the assumed map function is Eq(3).

3- Model M2 , a more general model fitting a different

polynomial in Z2j for each Zjj. This model is mainly suggested by

the plotting of logit(n^j/m-jj) against Z2j for each i. Some of

these fourteen plots will be shown under the name of

figure(3.3,m,s,1).

4- Model M^, the true symmetric model.

(B)The result of the analysis will be presented in two tables and 

one figure, table{3.1,m,s,1) which shows the deviances and APA(s) 

of the different models , table(3.2,m,s,1) which shows the MLE of 

the parameters of the chosen model (always model M,) and their 

corresponding confidence intervals, figure(3.4,m,s,1) which is a 

plot of Pearson residual against the fitted values of model Mt.

(C)But as we are really interested in providing estimates of P lt

Pw , P4, then two possibilities will arise:

1- If we are modelling Q2, which is equal to P4, then three 

other tables and one further figure will be produced, 

table(3.3,P4,s ,1) which gives the individual APA(i) of model Mi, 

table(3.4,P4 , s,1) which is the same as the latter table but when 
restricted to the area of 0j and 0 2̂ O.3, table(3.5,P4,s,1) which 
shows how the overall APA within the restricted area is 

transmitted from the logit scale to the P4 scale and finally
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figure(3.5,P4,s ,1) which shows the estimated contour plot of P4 
against 0, and e2 according to model Mt.

2- If we are modelling Q 1( which is not of great interest on 

its own right but as a mean of estimating Px and Pw , three pairs 

of tables and one pair of figures will be produced with very 

similar notation and explanation as in (C) —1 but for P4 and Pw , 

for example the first pair of tables would be table(3.3,PXfs ,1) 

and table(3.4,Pw ,s,1) showing the individual APA(i) of the 

estimated Pi and pw respectively, and so on for the other tables 

and figures. Note that if n 1(01,02) and n2(eJ(e2) are the 

estimated linear predictors of QA and Q2 under model 

respectively, then by using formula{3.2) P* and Pw , the estimated 

Pt and Pw respectively, would be

exp (t\x (0X ,©z ))
Pi =

pw~

[1 + exp( Hi(0t,02))][1 + exp( n2(01,02))]

[1 + exp( t\ 1 ( 0 1 , o z ) ) ] [ i  + exp(

In that context the overall APA of P* (or Pw ) would be redefined 

as follows

APA(P,) = [ ^  [ l o g i t g ^ ]  - logitfp'a-j)]2/ I*J ]°'S

Also notice, as we suspected that having this large number of 

figures and tables may be a burden on the reader, especially if 

situated within the text, we decided to put all of them at the 

end of the chapter.

Now as far as this sub-result-section is concerned, the two 

trial models Mj and M2 were defined as in (3.6) and (3.7) 

respectively. From Table (3 .1,1,1,1) we can see that model 

produced a significant deviance and model Mz did not. The APA of
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Mi which was equal to 0.54 was just 10% higher than that of M2. 

Note that for this set of simulated data 28 observations were 

either equal to 0 or , they could be recognised from

figure(3.1,1,1,1) as having the symbol A or H respectively. By 

using the chosen model, M t, the overall APA of Pj and Pw were 

equal to 0.36 and 0.45 respectively and would be reduced to 0.17 

and 0.43 if calculated within the restricted area. From 

figures(3.5,Px,1,1),(3.5,PW ,1,1) and (3.5) which are the 

estimated contour plots of Px ,PW and P* against 9t and ez 

respectively, we can see that the most informative area or more 

precisely the most rightly informative area of these two 

parameters is when both are between [0.05,0.20]. Within this 

range, P4 is at its lowest level, which is between [0.65,0.75], 

Pt is at its highest level, which is roughly between [0.25,0.35] 

and finally Pw is mainly at its lowest level which is roughly 

between [0.016,0.019]. Notice that, in all of those figures, and 

also the similar ones provided later, the height at the maximum 

or minimum of the function is not provided, although it could be 

roughly deduced from the contour’s height key provided along side 

the plot. Most of these contour heights, have been chosen in 

regular step, the last contour height is the last one found 

within this stepwise search; this means, for example, that the 

maximum of figure(3.5,PI, 1,1) is larger than 0.3 and less than 

0.35.

(b)"Eq(3) is the true and Haldane is the assumed map function

(i)When Q, is modeled

The two trial models and M2 were defined as in (3.6) and 

(3.7) respectively. Despite the substantial drop in the deviance 

from model M0 to Mi , Mi still gave a significant result, Mz on 

the other hand was insignificant. The significant result of model
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Mi, shows itself as a pattern in the Pearson residual-fitted 

values plot in figure(3.4,2,3,l), which probably suggests that 

there is a missing term in the model. Nevertheless, from 

table(3.5,P4,3,1) it seems that apart from the minimum value, the 

model gives a good fit to the data. Actually the overall APA of 

model was 0.35 which is 46% higher than the 0.24 of model M2, 

but this is reduced to 0.19 if restricted to the interesting area 

of the 0 (s).

(ii)When Q, is modeled

The first thing to notice is that, for this situation, there 

was a substantial number of observations which were equal to ni|j, 

which means that all the conclusive results were right. These 

observations are symbolised in figure(3.1,1,3,1) by the symbol H 

and they mainly correspond to the 8* or ©2 ^0.05. Faced with the 

difficult decision of either substituting them by smaller value, 

(eg) (m-^j-0.5), or, excluding them from the analysis, we decided 

on the later strategy. This decision was made in order to avoid a 

subjective choice of the substituted value, especially for such a 

wide scale of the observations. Actually no real need of a 

substitution is present here, as the data itself summarises the 

situation quite clearly suggesting that for 0j or e2^0.05 if 

there is a conclusive decision then this decision is right. A 95% 

Bayesian interval for Qjj using these observations could be 

provided as follows. If {Q) is the prior distribution of Q which 

for simplicity is assumed to be Uniform{0,l) for any 

combination(i,j), then the posterior density of Qjj would be

P (QiijI^ij•̂ ij) w ^ (Q i (QiijIn^j,m^j)

ni j mij"nij
® Qiij (I Qxij)

which is the beta distribution with parameters (n^j+1) and
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(mjj-njj+1). But for these observations, j=mij , meaning that 

the distribution will reach its maximum at Qij=l and therefore a 

logical 95% Bayesian interval would be defined as follows

from which it is easy to see that the lower bound of the interval 

QLi j > be equal to

(i.e) the actual values of the interval will depend on m^j, which 

in its turn depends on 0! and 02 .Nevertheless fitting model Mj 

and Mz to the remaining observations produced an insignificant 

result for both models, as seen in table(3.1,1,3,1), (but rather 

unexpectedly model was just significant).

From the estimated contour plots of P1(PW and P4, we can see 

that the most rightly informative area is between [0.07,0.2], 

within this range P4 was at its lowest level which was roughly 

between [0.57,0.65], was at its highest level which was

roughly between [0.35,0.42], As for Pw it was not at its lowest 

level but it is still less then 0.003, it is worth noticing as 

well that the shape of the estimated Pw seems to suggest that the 

true Pw is quite a flat function of 0t and ez especially near its 

maximum. By comparing these three plots with their corresponding 

ones when Haldane was both the true and assumed map function, we 

can deduce that when the true map function is Eq(3), the amount 

of information that will be deduced from testing the gene orders 

will be slightly higher and that this information will be very 

unlikely to produce a wrong decision if we assume the Haldane map 

function. Whereas if the true map function was the Haldane the 

probability of wrong decision will be higher than its

QLij = (0.05)(1/(mij+1))
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corresponding one if the true map function was Eq(3).

(c)-Eq(3) is the true and Kosambi is the assumed map function

(i)When Q, is modeled

The trial model was slightly different than before, for

this situation it was defined as follows

Mj ! n^j= i (Z j 2 + Z g j )+P2 (Z j 2 + Z 2 j ) 3 (Z j 2 j )

+P4 ( Z i i+Z 2 j ) +0 5 ( Z j ĵ Z 2 j+Z 1 î Z 2 j )
(i.e) with the extra parameter J35 which represents the quadratic 

interaction between Zt and Z2. Model Mz will still be defined as

in (3.7) and still Mj will be nested within M z. From

table(3.1,2,3,2) both models were significant which is again 

confirmed by the Pearson residual fitted value plot of MA. From 

Table(3.5,P4,3,2) it seems that model Mx gave a reasonable 

approximation to the data.

(ii)When Q, is modeled

Model Mt was slightly different than that of Q2, the quadratic

interaction term was not included although a fourth power term

was, (i.e) the model was defined as follows

• ni j = oc+0 j (Z ̂ +Z 2 j ) +02 (Z * i+Z 2 j ) +P 3 (Z t i*Z 2 j ) +P4 (Z i f+Z 2 j )

+$5(Zii+2zj) (3.8)

and therefore model M2 had to be redefined as follows

Mz • nij" ai+PiiZ2j+P21^2j+P31^2j+P4izzj (3,9)
for i=l,2,...,14

But as mentioned before only the significant terms would be 

included when fitting Mz for each i and actually for this 

situation for all i 04  ̂ was insignificant. From table(3.1,1,3,2) 

Mj was significant whereas Mz was not. The APA of Px was quite
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acceptable as judged from table(3.5,Pi,3,2) although not the same 

could be said about Pw as judged from table(3.5,Pw ,3,2).

From the estimated contour plots, the range of [0.07,0.17] 

still was the most informative range for both parameters 0j and 

02. But if we compare these figures to their corresponding ones 

when Haldane was assumed and Eq(3) was still the true map 

function, it is clear that assuming kosambi will lead to a much 

lower inconclusive result, which is roughly between [0.37,0.45], 

a higher right decision, roughly with probability between 

[0.55,0.60], and also a higher wrong decision roughly with 

probability less then 0.008.

(d)-Eq(3) is the true and assumed map function 

(i)When Q, is modeled 

The trial model Mi was defined as follows:

^ij= j (Z j i"*"Z 2 j ) +P 2 (Z j i+Z g j ) 't'P 3 (Z A 2 ■*'Z 2 j )

+ejzfi*Zzj)+es(zh*z2j+zli*z|j)

In this model no cubic term was included, although a fourth and 

all fourth interaction terms were. Model Mz will be, then, 

defined as in (3.9). From table(3.1,2,3,3) , both models gave 

significant results, although from table(3.5,P4,3,3), it seems 

that model M A gave a reasonable approximation to the data.

(ii)When Q, is modeled

Model Mi was defined as in (3.8), and therefore model Mz will 

be defined as in (3.9). The latter model gave an insignificant 

result, as shown in table(3.1,1,3,3) . The APA of Pi was again

quite acceptable although that of Pw was not quite, as judged

form table(3.5,Pj,3,3) and table(3.5,Pw ,3,3) respectively. From 

the estimated contour plots, the range of [0.07,0.17] was still 

the most informative range for both ©i and e2. A comparison
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between these contours and the corresponding ones when the 

Haldane or the Kosambi map functions were assumed could be 

summarised as follows.

Summary

A contour plot for the estimated P1(e1,e2) and Pw(©i,02) when 

the true map function was Eq(3) and the assumed map function was 

either Haldane, Kosambi or Eq(3) is given in figure(3.6)(a) & (b) 

respectively, where each assumed map function's contours are 

drawn using different colours. From figure(3.6)(a), it seems 

quite clear that any of the first three contour heights; which 

were of height 0.001, 0.15 and 0.40 respectively, when the

assumed map function is the Haldane, black curves, are contained 

within the corresponding contour heights when Kosambi is assumed, 

red curves, which in their turn are contained within the 

corresponding ones when Eq(3) is assumed, green curves. This 

means that as the assumed map function becomes closer and closer 

to the true one, more right decision will be made. The difference 

between the three assumed map functions becomes clearer as we 

approach the maximum of P1( which seems to lie at approximately 

01=©2=O.13 for all map functions. Actually the nearest contours 

to the maximum in the plot —contour(3) for Haldane, contour(4) 

for Kosambi or Eq(3)~ suggest that the square area of both 0t and 

02 roughly in the range of [0.08,0.16] are at least as high as 

0.40, 0.58 and 0.65 for the Haldane, Kosambi or Eq(3)

respectively.

As for figure(3.6)(b) , three different contour heights were 

drawn for each assumed map function. By looking first at the 

lower triangular half of the plot, we can see that the first 

contour, of height 0.001, 0.003 and 0.003 for the three assumed 

map functions, roughly coincided on top of each other; also the
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FIGURE (3. 6) A comparison between the estimated conclusive 
probabilities, for the different assumed map functions

(a) Estimated contour plot of P vs 8 8. 0,
0.5
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same comment could be made about the second contour height 0.003, 

0.008 and 0.014 respectively. This seems to suggest that as we 

approach toward the true map function, more and more wrong 

decisions are been made. This conclusion could be again 

reinforced by comparing the third contour height for each map 

function; where for the Haldane the area of and 02 which is 

surrounded by this contour is at least as high as 0.0055, whereas 

the corresponding area for the Kosambi or Eq(3) are at least as 

high as 0.012 and 0.023 respectively. Another noticable feature 

of this figure, though not an important one because of the 

flatness of the estimated Pws, is the shift of the maximum area 

as we approach the true map function.

These comments could be summarised as follows, as the assumed 

map function becomes closer and closer to the true one, in 

general more and more conclusion will be made (notice the plot of 

P4, shown in figure(3.7)(a), which is a mirror image of the plot 

of Px). But although a big proportion of these conclusive results 

will be right conclusion, more and more wrong conclusion will be 

reached as well. A plot of the estimated probability of a right 

conclusion given a conclusive result, Qa, for the three assumed 

map functions, shown in figure(3.7)(b), reinforce this last 

comment. The disappointment of this comment could perhaps be 

remedied by the quite small Pw for any of the assumed map

functions. It is also worth emphasizing that, as the Haldane map 

function seems to be suggested in some of the recent genetical 

papers in order to be used in mapping multipoint loci data

(Lathrop et al 1984, 85, 87), our result seems to suggest that by 

assuming this map function no real concern should be made about

making a wrong decision, the only concern should be the small

probability of producing any conclusive one.
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FIGURE (3.7) A comparison between the estimated 
8. Q1 for the different assumed map functions

(a) Estimated contour plot of vs 0j & 02
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HALDANE IS THE TRUE & 

THE ASSUMED MAP FUNCTION

(
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When Q. Is modeled & Haldane Is 
both tne true & assumed map function

FIGURE (3. 1,11 1,1) Dlscret contour plot of the data vs 91 & 02
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When Q. Is modeled & Haldane Is 
both the true & assumed map function

FIGURE (3. 3,11 1,1) Logit of the data vs Z^ for some Z1(
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When Qi is modeled and Haldane is both 

the true and assumed map function.

Tablet3.1,1,1,1)A summary of the performance of different models

Model Deviance D.f T .S APA
APA(M4) 
APA (M^

M0 763.5 167 1.16

Mi 202.4 163 2.2 0.54 1.00
Mz 140,2 140 0.01 0.49 1.10
Mt 58.0 75 -1.4 0.33 1.64

Table(3.2, 1,1,1)MLE & 95% I.E for the parameters of Model M,

Parameters MLE 95% Interval estimates

« -1.544 -1.935 ; -1.153

Pj -2.785 -3.124 ; -2.446

0Z -1.228 -1.395 ; -1.061

0. 229 0.174 ; 0.284

0A _ -0.139 -0.164 ; -0.114

Table(3.3,P<,1,1) Individual APA(M,,i)

i=l,2,. . .7 0.32 0.20 0 . 28 0.16 0.27 0.23 0.22

i=8 ,9,. .14 0.16 0.24 0.45 0.50 0.42 0.78 0.57

(The overall APA is equal 0.36).

Table(3.4,Pj,1,1) Individual APA(Mlfi) within the 

restricted area of 8 , & e7 < 0.3.________________
i = l,2, . . .7 0.32 0.20

~ z .v. - ...........
0.18 0.14 0.12 0.13 0.15

i=8 ,9,10 0.14 0.12 0.13

(The overall APA is equal 0.17).
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When Qj is modeled and Haldane is both 

the true and assumed map function.

Table (3 .5, P, . 1.1 )Examj3les showing the errors made by model M,
n 1_ n U_ Exp(n*) Exp(n*)

M =Tonn ) Logit(n*) Logit(n*) -------— ----------
_n 17 +n 17 1+Exp(nf) 1+Exp (r»u)

0.002 -6.213 -6.383 -6.043 0.002 0.002
0.049 -2.966 -3.136 -2.796 0.042 0.058
0.102 -2.175 -2.345 -2.005 0.087 0.119
0.162 -1.643 -1.813 -1.473 0.140 0.186
0.348 -0.628 -0.798 -0.458 0.310 0.387

Table(3.3,PT¥,l,l) Individual APA(M1ti)

H* II )—1 to 0.47 0.50 0.46 0.43 0.28 0.33 0.38

i=8,9,..14 0.39 0.43 0.57 0.52 0.60 0.60 0.36

(The overall APA is equal 0.45).

Table(3.4,Pw ,1,1)

restricted area of

Individual APA(M1( 

©, & © f ^ 0.3.

,i) within the

i = l, 2___7 0.47 0.50 0.46 0.42 0. 25 0,30 0.41

i=8 ,9,10 0.38 0.44 0.62

(The overall APA is equal 0.43),

Table(3.5,Pw ,1,1)Examples showing the errors made by model M,
n ^ u_ Exp(n*) Exp(riu)

^*=Tnnn Logit(n*) Logit(n*)    —
-0.43 +0.43 1+EXp(r'l) l^xptnj)

0.001 -6.907 -7.337 -6.477 0.001 0.002
0.004 -5.517 -5.947 -5.087 0.003 0.006
0.009 -4.701 -5.131 -4.271 0.006 0.014
0.014 -4.255 -4.685 -3.825 0.009 0.021
0.025 -3.664 -4.094 -3.234 0.016 0.038
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When Q. Is modeled & Haldane Is 
both the true & assumed map function 

FIGURE (3. 5, P11 11 1) Estimated contour plot of Pt vs 8, & 8,
i*
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EQ(3) IS THE TRUE &

HALDANE IS THE ASSUMED MAP FUNCTION
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When Q Is modeled & Eq (3) Is the true 8. 
Haldane Is the assumed map function 
FIGURE (3. 1,2,3,1) Dlscret contour plot of the data vs 0 8 0,

(_), 5 1j + + ̂  + A m AM H AH A A A
-  AAAAA A A A A A A
-  AAAAA A A A A A A
-  AAAAA A B B A A A
— hAAAA B B B B A A

0.25+  AAAAB C D D C B A
— AAABB D E D C B B
-  AABBC E E E D B B
-  ABBBC El E D C B A

0.050+  ABBBC C C B B AM A
-  ABBBB C B B A A A

• -  ABBBB B B A A A
t-i A

— AAABB B A A A A
h i A

— AAAAA AM A A A A
r-i A

0 . 0 0 0 +
-F* ■ “

0 . 0 0  0 . 1 LO 0 . 2 0 0 . 30

* — Q2 = 1 . 0 0 0 C =: 0 .700 "- — 7*
A = 0 .9 0 0 ——0 . 999 D = 0.800 ------0

B = 0. 8Ci0——0 .
g o q E = 0.500 ------0

A
AM
A
AAM
A
A
A
A

A
AI—t
A
A

'------- J- -

0. 40

*
A
A
A
A
A
A
A
A

A
A
A
A
A

-  ---‘----f- "

O ■ 5U

FIGURE (3. 2,2, 3,1) Logit of the data vs Z_

+ + r
- j 2 2 2  + + + 232

5. 0+ ■F' * ++3242
- 4 2 2  + 3 323554
- 5 3 3~‘3 2T ■*F» 2444
- 5 775 3 3 3 443
- * 3 5 4 5 42

0 . 0 + 3 +
 -)----------- +--------- +
—4 .0  —2 .0  0 .0

FIGURE (3. 3, 2,3,1) Logit of the data vs for some ZJ(

FOP Z 1 (2 < for Z 1 \7:-

C i + +

—  + : H ' +  + :

* *

-A fl

4- *

0 . 0—
— 4 . Cl

3> 
35 

35 
I> 

3> 
35 

35 
15 

35 
3>



- 112 -

When Qz is modeled and Eq(3) is the true
and Haldane is the assumed map function.

Table(3.1,2,3,1)A summary of the performance of different models
APA(Mt)

Model Deviance D.f T.S APA APA(M^ )
M0 21820,0 187 1.83
Mi 366,7 183 9.6 0.35 1.00
Mz 160.0 134 1.6 0.24 1.46
J*t... 69.1 87 -1.36 0,17 2.06

Table(3.2,2,3,1)MLE & 95% I.E for the parameters of Model M, 
Parameters MLE__________  95% Interval estimates

<x 7.620 7.469 ; 7.771
0 i 4.536 4.417 ; 4.655
02 1.905 1.851 ; 1.959
03 -0.391 -0.409 ; -0.373
.04 ... 0.181 0.174 ; 0.188

Table(3.3,P^,3,1) Individual APA(M,,i)
i-1,2, ....7 0.53 0.33 0.25 0.26 0 .23 0.15 0 .18
i=8,9,.,14 0.15 0.23 0.26 0.17 0 .37 0.74 0 .52
(The overall APA is equal 0.35).

Table(3.4,P4,3,1) Individual APA(Mlti) within the
restricted area of 0, & 0, < 0.3.
i = l,2 , .. .7 0.38 0.20 0.17 0.17 0 .10 0.16 0 . 19
i=8 ,9,10t 0.12 0.15 0.13
(The overall APA is equal 0.19).

Table(3. 5,P*,3,1)Examples showing the errors made by model M,

* n* Logit(n*)
n i= n u= 
Logit(ju*) Logit(n*) 
-0.19 +0.19

Exp(n*) Exp(nJ)
1000 1+Exp(n*) 1+Exp(nu)

0.508 0.032 -0.158 0.222 0.461 0.555
0.805 1 .418 1.228 1.608 0. 773 0.833
0.881 2.002 1.812 2.192 0.860 0.900
0.941 2.769 2.579 2.959 0.930 0.951
0.997 5.806 5.616 5.996 0.996 0.998
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When Q Is modeled & Eq (3) Is the true &
Haldane Is the assumed map function

FIGURE (3. 4,2, 3, 1) Pearson residuals vs the fitted values
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When Q. Is modeled & Eq (3) Is the true &
Haldane Is the assumed map function

FIGURE (3. 1 , 1 ,3 ,1 ) D 1 s c re t co n to u r p lo t  o f th e d a ta  vs 9,
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When Q. Is modeled & Eq (3) Is the true
Haldane Is the assumed map function &

FIGURE (3. 3f 11 3,1) Logit of the data vs for some Z
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When Qt is modeled and Eq(3) is the true 

and Haldane is the assumed map function.

Table(3.1,1,3,1)A summary of the performance of different models

Model Deviance

.

D.f T.S APA
APA(Mj) 
APA (M^ _

M0 957.7 117 2.05

116.1 113 0.2 0.72 1.00
Mz 96.7 93 0.3 0.64 1.10
Mt 60.1 42 1.97 0.53 1.36

Table(3.2.1,3,1)MLE & 95% I .E for the parameters of Model M,

Parameters MLE 95% Interval estimates

a -2.923 -3.530 > 2.316

J3j -4.801 -5.492 t —■4.110

-2.008 -2.421 » ~~1.595

P3 0.425 0.265 ; 0.585

-0.220 -0.296 f ~■0.144

Table(3.3,P,,3,1) Individual APA(M,,i)

i = l,2, . ., .7
> ̂  i / 

0.80 0.16 0,43 0.41 0.08 0. 14 0.16

1=8.9^. 14 0.24 0.22 0.25 0.35 0.64 0.52 0.86

(The overall APA is equal 0.42).

Table(3.4,Pj,3,1) Individual APA(Mlti) within the 

restricted area of Q 1 & 9? 4. 0.3.________________
i=l,2,...7 0.80

.i.,

0.16 0,18 0.15 0.09 0.13 0.16

1=8,9,10 0.14 0.15 0.11

(The overall APA is equal 0.18).
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When QA is modeled and Eq(3) is the true 

and Haldane is the assumed map function.

Table(3.5 1P,,3,1)Examples showing the errors made by model M,

u*~ n* Logit(u*)
n i= n u= 
Logit(u*) Logit(n*) 
-0.18 +0.18

Exp(n*) Exp(nJ)
M 1000 1+Exp (r\*) 1+Exp(nj)

0.002 -6.213 -6.393 -6.033 0.002 0.002
0.058 -2.788 -2.968 -2.608 0.049 0.069
0.119 -2.002 -2.182 -1.822 0.101 0.139
0.194 -1.424 -1.604 -1.244 0.167 0.224
0.490 -0.040 -0.220 0.140 0.445 0.535

Table(3.■ 3 »P w »3 ,1) Individual APA(M,,i)

i=l,2,.,.,7 1.01 0.08 0.42 0.45 0,54 0.81 0.42

i=8 ,9,. .14 0.49 0.69 0.56 0.22 0..60 0.56 0.67

(The overall APA is equal 0,57).

Table(3 .4,PW ,3,1) Individual APA(Mx,i) within the

restricted area of e 1 & e, < 0.3.

i=l.2 ,. ..7 1.01 0.08 0.43 0.42 0.59 0.81 0.48

i=8,9,10 0.49 0.57 0.53

(The overall APA is equal 0.57)

Table(3.5,Pw ,3,1)Examgles showing the errors made by model Mt
Exp(rq) Exp(nu) 

v "Thno Logit(n*) Logit(u*) Logit(n*) — — — — —  -------lvUU Hir*-0.57 +0 .57 1+Exp(n!) l+Exp(nu)

0.001
0.002
0.007

-6.907
-6.213
-4.955

-7.477
-6.783
-5.525

-6.337 
-5.643 
-4.385

0.001
0.001
0.004

0.002
0.004
0.012
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When Q. Is modeled & Eq (3) Is the true 8.
Haldane Is the assumed map function

FIGURE (3. 5f PI,3,1) Estimated contour plot of P, vs & 02

HEIGHT AT
oontour (1)a 0,001 
oontour (2)« 0.05 
oontour (3) ■ 0.15 
oontour (4) ■ 0. 25 
oontour (53 ■ 0.35 
oontour (63 ■ 0.40

FIGURE (3. 5, PW, 3,1) Estimated contour plot of P^ vs 0t & 0,

HEIGHT AT
oontour (13* 0.001 
oontour (23 ■ 0. 002 
oontour (3) ■ 0.003 
oontour (4) ■ 0.004 
oontour (5) • 0.005
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EQ(3) IS THE TRUE &

KOSAMBI IS THE ASSUMED MAP FUNCTION
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When Q Is modeled & Eq (3) Is the true &
Kosambi Is the assumed map function

FIGURE (3. 1,2,3 ,2) D 1scret contour plot of the da ta VS 0 1 * 0a
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When Qz is modeled and Eq(3) is the true
and Kosambi is the assumed map function.

Model Deviance D.f T.S
APA(Mi) 

APA APA(Mi)
M0 37950.0 192 1.77
Mi 403.8 187 11.2 0.25 1.00
m 2 209.4 138 4.3 0.19 1.32
Mt .. 71.0 90 -1.4 0.12 2 .12

Table(3. 2 , 2 , 3 , 2)MLE & 95% I.E for the parameters of Model M,
Parameters MLE 95% Interval estimates

<X 6.726 6.584 ; 6.868
3i 4.257 4.142 ; 4.372
P2 1.771 1.729 ; 1.813
P3 -0.538 -0.599 ; -0.477

0.175 0.169 ; 0.181
P, -0.032 -0.038 ; -0.026

Table(3. 3,P^,3,2) Individual APA(M,,i)
i=l,2 , . ..7 0.16 0.26 0.20 0.17 0.15 0.14 0. 14
i=8 ,9,.. 14 0.14 0.15 0.21 0.22 0.26 0.45 0. 56
(The overall APA is equal 0.25).

Table{3.4,P4,3,2) Individual APA(Mlti) within the
restricted area of 0, & 0, < 0,3.
i = l,2 , . ..7 0.14 0.16 0.09 0.09 0.12 0.12 0 .15
i=8 ,9,10i 0.12 0.12 0.13
(The overall APA is equal 0.11).

Table(3. 5,PA,3,2^Examples showing the errors made by model M t

*_ n4 
M 1000 Logit(a*)

n i= n u= 
Logit(u*) Logit(m*) 
-0.11 +0.11

Exp(nf) Exp(nu)

1+Exp(nf) 1+Exp(ny)

0.307 -0.814 -0.924 -0.704 0.284 0.331
0. 630 0.532 0.422 0.642 0.604 0.655
0. 758 1.142 1.032 1.252 0.737 0.778
0.881 2.002 1.892 2.112 0.869 0.892
0.974 3.623 3.513 3.733 0.971 0.977
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When Q is node led & Ecj (3) Is the true &
Kosambi Is the assumed map function

FIGURE (3. 4,2, 3,2) Pearson res Idua Is vs the fitted values
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IIS HEIGHT AT
contour (1)«« 0.38 
contour (2) » 0. 45 
contour 75) >» 0. 55 
contour (4) * 0. <55 
corrotr (5) j. 75 
contocr* (6) ■ 0. 85 
contour (7) »■ 0. 95 
contour (8)«» 0. 99



- 123 -
When Q, Is modeled & Eq (3) Is the true &
Kosambi Is the assumed map function

FIGURE (3. 1,1/3, 2) D f scret contour plot of the data vs a e.
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When Q, Is modeled a Eq (3) Is the true a
Kosambi Is the assumed map function

FIGURE (3. 3,1, 3# 2) Logit of the data vs Z^ for some Z1(
F O R  Z 1(3) F O R  Zi«5)
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When Qi is modeled and Eq(3) is the true 

and Kosambi is the assumed map function.

Table(3.1,1,3,2)A summary of the performance of different models

Model Deviance D.f T.S APA
APA(Mi) 
APA (Mil

M0 1986.0 160 1 .90

Mi 222.5 155 3.8 0.60 1.00
m2 145.2 130 0.9 0.48 1.25

_M±____ 84.0 72 1.0 0.40 1.50

Table(3.2,1,3,3)MLE & 95% I.E for the parameters of Model M,

Parameters MLE 95% Interval estimates

« - 2 . 4 2 5 - 2 . 8 2 0  ; - 2 . 0 3 0

Pi - 4 . 8 4 2 - 5 . 4 1 7  ; - 4 . 2 6 7

P 2 - 2 . 7 9 3 - 3 . 3 3 4  ; - 2 . 2 5 2

Pa 0 . 3 7 1 0 . 294  ; 0 . 4 4 8

P 4 - 0 . 6 3 7 - 0 . 8 2 6  ; - 0 . 4 4 8

. ...Ps_._. - 0 . 0 5 5 - 0 . 0 7 6  ; - 0 . 0 3 4

Table(3.3,P,,3,2) Individual APA(M1ti)

i = l,2, .

: v ’.. l > jl... 

..7 0.20 0.43 0.43 0.29 0.12 0.13 0.14

1=8,9,. .14 0.13 0.12 0.22 0.32 0.47 0.39 0.86
(The overall APA is equal 0.35).

Table(3.4,Pi,3,2) Individual APA(Mt,i) within the 

restricted area of 9, & 9? < 0.3.________________

i=l,2,...7 0.14
. “_1— "... 
0.15

..—  ........ --- -
0.07 0.07 0.04 0.11 0.16

i=8 ,9,10 0.14 0.12 0.11

(The overall APA is equal 0.12)
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When Qi is modeled and Eq(3) is the true 

and Kosambi is the assumed map function.

Table(3,5,P,,3,2)Exam^les showing the errors made by model M,
* n « " » Exptr^J> Exp(n*)

H Logit(n ) Logit(w ) Logltlu )  —   —
1000______________ _0 ,12 + 0 ,1 2 1+Exp(n*) 1+B»p(n5)

0.021 -3.842 -3.962 -3.722 0.019 0.024
0.117 -2.021 -2.141 -1.901 0.105 0.130
0.239 -1.158 -1.278 -1.038 0.218 0.262
0.363 -0.562 -0.682 -0.442 0.336 0.391
0.686 0.781 0.661 0.901 0.660 0.711

Table(3.3,PW ,3,2) Individual APA(M, ,i)

i=l,2,...7 0.48 0.47 0.30 0.56 0.65 0.60 0.33

i=8,9,..14 0.57 0.46 0.55 0.40 0,34 0.48 0.51

(The overall APA is equal 0.49).

Table(3.4,Pw ,3,2) 

restricted area of

Individual APA(Mj 

9, & 9, < 0.3.

,i) within the

i=l,2,...7 0.50 0.53 0.31 0.62 0.75 0.71 0.35

i=8 ,9,10 0.65 0.46 0.62

(The overall APA is equal 0.57).

Table(3.5,Pw ,3,2)Examples showing the errors made by model M,
n 1~ n u~ Exp(n*) Exp(r\u)

w*=Tnrta Logit(n*) Logit(n*) Logit(n*)
1000 -0.57 +0.57 1+E* ? ^ )

0.001 -6.907 -7.477 -6.337 0.001 0.002
0.004 -5.517 -6.087 -4.947 0.002 0.007
0.007 -4.955 -5.525 -4.385 0.004 0.012
0.014 -4.255 -4.825 -3.685 0.008 0.024
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When Q Is modeled & Eq (3) Is the true 8.
Kosambi Is the assumed map function

FIGURE (3. 5# PI 1 3, 2) Estimated contour plot of Pt vs 8t & 02

HEIGHT AT
oontour (1) ■ 0.001 
oontour (2) • 0.05 
oontour (5) ■ 0.15 
oontour (4) ■ 0.25 
oontour O  ■ 0. 35 
oontour (61 ■ 0,45 
oontour (7) ■ 0.55

FIGURE (3. 5# PW# 3#2) Estimated contour plot of Pw vs 01 & 8.

HEIGHT AT
oontour (1)« 0.002 
oontour (2) ■ 0. 004 
oontour (3) a 0. 006 
oontour (4) a 0. 008 
oontour (5) a 0.010 
oountour (6) a 0. 012
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EQ(3) IS THE TRUE & 

THE ASSUMED MAP FUNCTION
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When GL Is modeled & Eq (3) Is the true &
the assumed map function- -
FIGURE (3. 1 ,2 ,3 , 3) D fs c re t c o n to u r p lo t  o f  th e  da ta vs 8 j & ea
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When Q2 is modeled and Eq(3) is the true
and the assumed map function.

Tablet3.1,2,3,3)A summary of the performance of different models

Model Deviance D.f T.S APA
APA(Mi) 
APA(Mt)

Mo 41420.0 194 1.57
492.1 189 15.6 0.20 1.00

m2 242.1 135 6.5 0.14 1.43
Mt 73.7 91 -1.36 0.09 2.22

Table(3.2, 2,3,2)MLE & 95% I,,E for the parameters of Model M,
Parametersi  MLE 95% Interval estimates

oc 6.820 6.727 i 6.913
Pi 4.192 4.123 t 4.261
P2 1.204 1.181 ; 1.227
Pa -0.018 -0.019 ; -0,017
P4 -0.019 -0.024 ; -0.014

.. P s __ 0.009 0.006 * 0.012

i = l,2,...7 0.32 0.14 0.13 0.10 0.16 0.14 0.17
i-8 .9..,14 0.14 0.17 0.03 0.22 0.20 0.16 0.42
(The overall APA is equal 0.20).

Table(3.4,P4,3,1) Individual APA(M1(i) within the 
restricted area of 8, & 9, < 0.3.
1 = 1,2,...7 0.20
1=8,9,10 0.14

0.16 0.17 0.11 0.09 0.13 0.19
0.12 0.12

(The overall APA is equal 0.14)

Table(3.5,PA,3,3)Exam^les showing the errors made by model M,
^ 1_ n U_ Exp(ni) Exp(nJJ)

Logit(u ) Logit(p ) Logit(u*)
-0.14 +0.14 1+Exp(n!) 1+Exp(nu)

0.235 -1.180 -1.320 -1.040 0.211 0.261
0.560 0.241 0.101 0.381 0.525 0.594
0.722 0.954 0.814 1.094 0.693 0.749
0.842 1.673 1.533 1.813 0.822 0.860
0.970 3.476 3.336 3.616 0.966 0.974
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Vhen Q_ Jq modeled 8 Eq (3) !s the true 8 
the assumed map function

FIGURE (3. 4,2.3.3) Pearson residuals vs the fitted values
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When G. Is modeled 8 Eq (3) [© the true 8L
the assumed map function

FIGURE (3. 3# 1,3,3) Logit of the date vs Z_ for some Z2J 11
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When G. Is modeled & Eq (3) Is the true 8L
the assumed map function

FIGURE (3. 1, 1,3,3) Dfscret contour plot of the data vs 0t & 02
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When Qt is modeled and Eq(3) is the true 

and the assumed map function.

Table(3.1,1,3,3)A summary of the performance of different models

Model Deviance D.f T.S APA
APA(Mi)
APA(Mj)

M 0 3145.0 167 1.70

Mi 248.6 162 4.8 0.55 1.00
M 2 143.0 133 0.6 0.41 1.35

Mi- 90.0 76 1.1 0.37 1.49

Table (3. 2,1,3,3 )MLE & 95% I.E for the parameters of Model M,

Parameters MLE 95% Interval estimates

a -2.209 -2.539 ; -1.879

-4.427 -4.871 f -3.983

P2 -2.579 -2.985 f -2.173

0.368 0.306 9 0.430

e* -0.590 -0.732 » -0.448

p . . -0.050 -0.066 * -0.034

Table(3.3(P,,3,3) Individual APA(M,,i)

i=l,2,...7 0.18 0.30 0.14 0.08 0.20 0.14 0.16

i=8,9,..14 0.13 0.14 0.21 0.30 0.37 0.30 0.65

(The overall APA is equal 0.27).

Table(3.4,P,,3,3) Individual APA(M1(i) within the 
restricted area of e, & 9? < 0.3.________________

i = l ,2,. . .7 0.13

V  1 

0.16
'' ? ^ :. .. ....  ...
0.07 0.12 0.07 0.13 0.21

i=8,9,10 0.14 0.12 0.14

(The overall APA is equal 0.13).
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When Ch is modeled and Eq(3) is the true 

and the assumed map function.

Table(3.5,P<,3,3)Examples showing the errors made by model M f
n i _  " U ~ Exp(n*) Exp(nJ)

“ "Tnkfi Logit(p ) Logit(p ) Logit(p )  — ------------
1000_____________ ___________±0il3 1+Exp(nf) 1+Exp(riy)

0.030 -3.476 -3.606 -3.346 0.026 0.034

0.153 -1.711 -1.841 -1.581 0.137 0.171

0.278 -0.954 -1.084 -0.824 0.253 0.305

0.432 -0.274 -0.404 -0.144 0.400 0.464

0.755 1.125 0.995 1.255 0.730 0.778

Table(3.3,Pw ,3,3) Individual APAtM^.i)

1=1.2..
■ « r.y-1 

..7 0.71 0.44 0.27 0.32 0.63 0.43 0.28

i=8,9,. .14 0.54 0.41 0.38 0.28 0.51 0.59 0.72

(The overall APA is equal 0.48).

Table(3.4,Pw ,3,3) Individual APA(Ml(i) within the 

restricted area of Q, & 9? 4. 0.3.________________

i=l,2,...7 0.69

. ” i «... 

0.47

V. •

0.30 0.39 0.78 0.51 0.32

1=8,9,10 0.61 0.38 0.39

(The overall APA is equal 0.49).

Table(3.5,PhT,3,3)Examples showing the errors made by model M,
n 1_ n u~ Exp(nf) Exp(n^)

a*=Tnnh LogitU*) Logit(n*) Logit(n*)-------—  --- --- -
_____________ -0.49 +0,49 1+Exp(n*) 1+Exp(nS)

0.007 -4.955 -5.445 -4.465 0.004 0.011
0.011 -4.499 -4.989 -4.009 0.007 0.018
0.025 -3.664 -4.154 -3.174 0.015 0.040
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When Q Is modeled & Eq (3) Is the true &
the assumed map function

FIGURE (3. 5f Pt, 3f 3) Estimated contour plot of Pt vs 0t & 02
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oontour (6) ■ 0. 45 
oontour (7) ■ 0.55 
oontour (8) ■ 0.65

FIGURE (3. 5,PW# 3# 3) Est tmated contour plot of Pw vs 0? & 02
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CHAPTER FOUR: Comparing approximate intervals using the

likelihood approach

(4.1) Introduction

The aim of the following two chapters is to carry out a 

comparative study between different ways of constructing interval 

estimates in genetics. The next chapter, chapter 5, will deal 

with a simple comparison between the likelihood and Bayesian 

approaches in constructing interval estimate , for short IE, for 

the most simplistic model in genetics dealing with a two loci 

situation and a phase known or unknown double backcross mating.

This chapter, in contrast, will be concerned with the more 

complicated case of a three loci situation and a phase known or 

unknown triple backcross mating. Interval estimates will be 

constructed and compared using only the likelihood approach but 

in conjunction with certain methods of approximation for the 

likelihood function. Actually constructing IE will demand either 

the knowledge of the original likelihood or an approximation of 

it. Two methods of approximation are compared. The first was 

introduced by Ott and therefore we shall call it Ott 

approximation, whereas the second is introduced in this study and 

uses Least square method to find the approximation and therefore 

is called the LSM approximation.

(4.2) Notation, mating type and map function

As seen in chapter 1, section(1.6.1)-C, under three loci 

situation with two codominant alleles each denoted by (A,a),(B,b) 

and (C.c) respectively arranged in that order and a phase known 

triple backcross mating of the form ABC/abcxabc/abc, the number 

of the different types of offsprings produced by this mating are 

random variables having the multinomial distribution with
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parameter N, as the total number of offsprings and corresponding 

probabilities of success for each category or type of offspring. 

Actually under this situation and by using the same notation of 

chapter one, a data point r=(r1r2r3r4) will have the multinomial 
distribution described in (1.14). Whereas if we had a number of 

phase unknown matings with two offsprings each and such that the 

total number of offsprings is N the multinomial distribution

(1.15) should be used instead. Under both situations cc, p, y and

6 are functions of ©ab» ©be anc* 9ac as si^ed in (1.6) and where 

these later parameters will be subject to the restriction(l.11). 

In this chapter let for simplicity eab, ©be anc* 9ac denoted by 

© 1( ©2 and © 1 + 2 respectively. We have also seen before that by 

using a certain map function the dimensionality of the problem

will be reduced from three to two unknown parameters ©x and ©2,

whereas ©1+2 could be written as function of these two parameters 
using formula (1.21) and therefore (appendix(2.1)) 
restriction^. 11) will be reduced to just 

£)<:©!< 0.5 

0 < ©2 < 0.5

Morton Eq(3) map function, formula(l.25), was one of the most 

recent map functions mentioned in chapter one, which when 

compared to previous ones in fitting real multipoint data, Eq(3) 

gave the best fit (see page 39). According to this result Eq(3) 

has been chosen for this part of the study.

(4.3) Constructing IE

(4.3.1)Introduction

The likelihood approach has been adopted for constructing IE 

for the parameters of interest ©=(©! ©2). If 1(0) is the In 

likelihood function of 0, then a joint IE based on the likelihood 

approach will have the following general form:
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lE(e,h) - {9 such that L(e)>hL(§)>

= {0 such that 1(0)>h'+1(9)} (4.1)

where h' = ln(h) and 9 is the MLE of 9. Also, note that the IE 

depends on the value of the constant h to determine the required 

confidence coefficient c, (i.e) h is chosen such that 

Prob{9^ e 1(h)) = c, where 9^ is the true parameter vector.

The requirement of an exact confidence coefficient, for short 

CC, can only be satisfied in special cases. Therefore, the 

following large sample result will be useful in constructing 

aprroximate CC. Under regularity conditions

where p is the number of unknown parameters, (i.e) here p=2. Now, 

choosing h '=-(0.5)x2(p;c) will provide us with a recipe for 

obtaining an IE for 9 based on the likelihood and with 

approximate CC equal c.

To construct an IE for a subset of the parameter 9, say 0If we 

will use the idea of the profile In likelihood, l(©t Q*(0i))t 
defined by

1(9j 9*(9i)) = max 1(0)

Again, by using large sample results and under regularity 

condition, h could be chosen as equal to -(0 ,5)x2(1,c) to ensure 

an approximate CC equal c.

For large n, it will often be true that 1(9) can be well 

approximated in the neighbourhood of 9 by a quadratic function in 

9. This can be done by expanding 1(9) to two terms in a Taylor 

expansion about 9, (i.e)

M©t> ‘ Hi) * -(0.5)xz (p) (4.2)

Therefore an IE for Gj would be:

I(9j»h) = (0 i such that 1(0A 0*(9j))-l(0)>h> (4.3)

1(9) = 1(0) + (9-9) |±_39 9=9
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{Note that the second term in (4.4) will vanish if 0 does not 

occur at the boundaries). This is equivalent to saying that for 

large n the likelihood of 9 could be approximated by a normal

likelihood. In this part of the study we are going to use three 

methods of constructing IE for 9, or 02. The difference

between them depends on the actual In likelihood used in (4.1) 

and (4.3). The first method is:

(1)Original likelihod: As the name suggests, the original

likelihood of e will be used to find these intervals.

The following two methods are based on the above large sample

approximation:

(2)Ott quadratic approximation: This method is mentioned by Ott 

(1985 page88-95). He argued that in practice the likelihood may 

be taken to approximately represent a bivariate normal 

distribution, so that the likelihood will be quadratic in 0* and 

02. The contour lines of 1(0) would be represented by a number of 

ellipses and therefore 1(0) could be written as follows:

1(9) = aj0f + a20§ + bjOi + b292 + co^j, + d 
Any six points 0| and their corresponding In likelihood, denoted 

by 1^=1(©i) for 1=1,2 ,..6 , can determine the unknown coefficients 

alt az, blt b2, c and d in the above function. Ott suggested the 

lay out produced in table(4.1) for the choice of these six points 

and emphasized that the results will be most accurate if 13 
corresponds to the largest In likelihood, although it is not a 

requirement.

Table(4.1)

9 t ? 9 i 3

e21 li
02 2 1 2 Is u

U _ Is
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He also stated that if we believe that the In likelihood is 

skewed then it is important to use a transformation of the 

parameters. Strict techniques could be used to find the best 

transformation suggested by the data. For example among all power

transformation x= 9X and under a certain mating type, choose x

which will lead to a zero third and higher derivative of the In 

likelihood at x. But in practice, he suggested that it would be 

simpler generally to apply a specific, rather mild transformation 

such as 0=^8 . For convenience, this transformation will be 

adopted by us in this study. The recipe of finding a joint

interval 9 and a marginal IE for 8j under this method will be:

(i)Using the six chosen points, find the coefficient of:

Q10(<1>) = + a202 + + b2<t>2 + c<t>i<l>2 + d (4.5)

where QIO(^) is the quadratic In likelihood given the Ott 

approximation.

(ii)A 95% IE for 0 is:

IE(0 ,h) = {0 such that QlO(0)-QlO(0o)>h) (4,6,a)

where h= -(0.5)xz(2,0.95) and o0 is the MLE of 0 using QlO(o).
(iii)A 95% IE for <t>| where i=l,2 is:

IE(0i,h') = such that Q10(<tn 0j(0i)) ~ (4.7,a)

for j=l or 2 and i*j and when h'= -(0 .5)x2(1,0 .95).

(iv)Since 0 is a 1-1 transformation of 9 when 0<9<0.5, then the

intervals defined by:

IE(8,h) = {0 such that <t>el(0 ,h)} (4.6 ,b)

IE(0j.,h') = { ©i such that o^el^^h')} (4.7,b)

will have an approximate 95% CC.

(3)LSM quadratic approximation: Instead of using six points near 

the maximum to determine the unknown coefficients in (4.5) use 

many points as near as possible to the 95% contour of the 

original likelihood and then fit the quadratic likelihood to
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these points using Least square method, hence the name of this 

method; the resultant quadratic likelihood will be denoted by 

QlL(0). The recipe of finding the required IE will be very 

similar to that when using the Ott approximation apart from (i) 

for obvious reason. Also as we suspect that this method will not 

give a good approximation to the MLE, then when using (4.6 ,a) and 

{4.7,a) use the evaluation of the LSM quadratic likelihood at 0O , 
the MLE of the Ott approximation. This means that an approximate

95% IE for 0 would be redefined as follows:

IE{0 ,h) = {0 such that QlL(0)-QlL(0o)>h} (4.6,c)

And an approximate 95% marginal IE for 0 -̂ would be redefined as 

follows:

IE(0i,h') = <0  ̂ such that Q1L(0| ^j(0±)) “ QlL(0o)>h'} (4.7,c) 

(Note that the choice of the points under Ott and the LSM 

approximations will be discussed in the next section and later on 

in details).

(4.3.2) A prior comparison between Ott and LSM:

The advantage of using Ott approximation is actually to force 

our quadratic to have its maximum near the orignal one, although

the precision of this method away from the maximum is not known.

Therefore, we suspect that it could lead, in some cases, to a 95% 

contour away from the original one.

Using points near the 95% contour of the original likelihood in 

deriving the LSM intervals will probably lead to a nearer 95% IE 

to the original one, altough it could lead to a misleading MLE. 

Figure(4.1) below is a crude picture of our perception of a 95% 

contour for 0 produced by Ott and LSM in comparison to using the 

original likelihood.

In order to use the LSM we have to choose points near the 

original 95% contour which, if known, will cancel out the urge



- 143 -

for an approximation. Instead, we will have to use points near to 

an approximate 95% contour. The LSM can only be used as a 

secondary approximation to a primary one, here our primary 

approximation will be the Ott approximation.

Figure (4.1)

-■ 95% contour using Ott, MLE is O

■ ■ ■ 95% contour using LSM, MLE is

   95% original contour, MLE is *r
(4.4) Assessing the performance of the methods

The assessment of the three methods will be based on 

calculating, for each method in turn, the exact CC and expected 

length, for short EL. These measurements would be calculated as 

follows. For a data vector r arising from either the multinomial 

distribution of (1.14) or (1.15), then the finite sample space R 

of r could be written as:

R = {(0,0,0,N),(0,0,1,N-l) (N,0,0,0)}

For convenience let IE(l,m,r) be a 95% approximate IE produced by 

method 1 for the parameter m and by using the data vector r, 

where

1 = 1 ,  if the Original likelihood method is used.

=2, if the Ott approximation is used.

= 3, if the LSM approximation is used, 

m = 1, if a marginal IE is produced for 0t.
=2, if a marginal IE is produced for e2.

=3, if a joint IE is produced for e.
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Now let

T(l,m,r) = r 1 if 9-f- (m) e IE(l,m,r)

otherwise

Furthermore, let LE(l,m,r) be the length of IE(l,m,r) when m=l,2 

only. Then, the exact CC and EL for method 1 and parameter m 

denoted by CC(l,m) and EL(l,m) respectively will be:

where p(rjN,et) is the probability distribution of r using either 

(1.14) or (1.15).

Our criteria for assessing the three methods would be to give 

more credit to the method with CC greater or equal 0.95. Among 

those methods satisfying the first criterion, the one with a 

shorter EL would be preferred when marginal intervals are 

compared. Furthermore, if we wanted to compare the two methods 

of approximations Ott and LSM in more detail, we can calculate 

the exact distribution of the difference between the intervals' 

lengths denoted by D(m) with m=l,2 only. Let:

D(m) = LE(2,m,r) - LE(3,m,r)

D(.) is a random variable with sample space S(D), which is a 

finite subset of :

S = { d such that -0.5<d<0.5>

A histogram of the distribution of D(.) could be presented by 

categorising the sample space S. Table(4.2) shows our choice of 

the categories.

Knowledge of the true parameters and N is crucial in order 

to calculate CC(.,.), EL(.,.) and the distribution of D(.).

Restricting ourself to the choice of small values of 0-j- and

CC(1,m) = E T(1,m,r)p(r|N,et) (4.8)
reR

EL(l,m) = E LE(l,m,r)p(r[N,et) 
reR

(4.9)
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moderate number of N will give us an idea about the performance 

Tablef4,2)___________________________
Category C^ PfCj)

-0.5<D( . K-0.49 P(C,)

-0 .49<D( . K-0.48 P(C2)

0 . 49<D ( . U0.5 _P.( C i n n )

■where P(Cl) =a U  f|R such p(r|N,et) (4.10)'
that D( . )eC-[

of the different methods for the common and interesting situation 

for the geneticists. Therefore the choice of ©t and N has been, 

N-25 and ©* and 9Z varying as in table{4.3)

Table(4.3)__________________

9, 9< 0.05 0.1 0.15

0.05 x x x

0.1 x x

0.15___________________ x

(Note that only the combinations marked "x" have been considered 

because of the symmetry of the problem about ©j and ©2).

(4.5) Practical consideration 

(4.5.1 Simulation

When N=25, the total number of the data vectors r in R is equal 

to "3276". Considering all of these points will be time consuming 

especially if we understand that some points will be associated 

with very small probability . To overcome this problem, we 

decided to simulate data from the required multinomial 

distribution under the different combination of ©t. Let Rs be the 

set of all data vectors r occuring in this simulation, then:

R = Rs U Rg
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If the number of simulated data, called I, is large enough then: 

P(r|N,Qt) = 0
reRs

(The reader is referred to the last column of table(4.5), 

page 162, which provides numerical examples of the above 

statment. From which we can see that, when "I" was equal 10000 

and for the defined 9t, the above probability was at most equal 

0.005).

Now, using all points occurring in Rs recalculate (4.8), (4.9) 

and (4.10) as:

CC(l,m) = E T(l,m,r)p(r|N,9^) (4.8 ,a)
HeRs

EL(l,m) = E LE( 1 ,m,r )p(r |N ,9*-) (4.9,a)
reRc

P(Ci) = E P(£|Nfet) (4.10,a)
all reRs such 
that D(.)eCi

(4.5.2)Approximation of the inverse map function

To calculate either the original In likelihood of 9, 1(9), or 

the probability distribution of r, P(r|N,9-^), we have to 

determine the exact value of 91 + 2 as a function of and 92, 

where by using (1.21) 0l + z = f_l(f(0*)+f(92)). Actually from 

(1.25) f(9) is equal to:

-1, (1-29)z V3 . (1+49) ......
x= Iiln l i T z o U e t ) *  ~S tan V ^ - 0-15115

By looking carefully at this function, it is easy to see that it 

does not have a direct mathematical inverse, although a numerical 

one could be calculated at any point 0<9<0.5. Let x=f(9), for 

0<9<0.5, then 9=f_1(x) for 0<x<«>. By using a large number of 

points (0r,x^) and fitting a cubic spline function to 0 on x
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(appendix(4.1)), we succeeded in producing a very good 

approximation to f-1(x). Figure(4.2) shows f(e) and its 

approximated inverse f~i(x), which is a straight line curve 

passing throught the origin and with slope 1, also shown in the 

figure, red curve, the inverse of the approximated inverse 

f (f_l (x)), it is very difficult to see this latter curve because 

of it coinciding exactly with the original f(0).

(4.6) Application, given the phase known situation

(4.6.1)Introduction

This section deals with the application of the three methods of 

IE discussed in section (4.3) when using a data vector r arising 

from the multinomial distribution of (1.14).

(4.6.2)0riginal likelihood

(A)Joint interval:

If r comes from the multinomial distribution of (1.14), then by 

using formula (4.1) an approximate 95% joint IE for 9 would be 

defined if h '=-(0.5)xz(2,0,95) and where:

1(9) = constant + ln(e1+©2~©1+2) + r2ln(01-0z+ei+2)
+ r3In(0j+2-0j+92) + r4ln(2-01-02-01+2) (4.11)

for 0 < 0t < 0.5

0 < 9Z < 0.5 and e1+2=f~1(f(^i)+f(02))

(For convenience we will call the area where O<0i<O.5 and 

0<ez<0.5 the feasible region).

Maximising the In likelihood, 1(e) defined in (4.11) can not be 

done analytically, numerical methods have to be used. But if 1(0) 

is multimodal within the feasible region then using numerical 

methods could be misleading. Again, it is difficult to guarantee 

a unique maximum for 1(e) analytically. The only guarantee that 

we can provide is a plot of L(0) under various choices of r,
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FIGURE (4, 2) A p Lot of EQ (3), x=f (0), 
8, Its approxtmat©d invars© vs 0
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shown in figure(4.3)(a,b,c,d). From the plots, and others not 

shown here, we can see that L(e) is probably both a concave and a 

unimodal function of e, within the feasible region. Therefore 

using numerical maximisation will not be dangerous. A 

quasi-Newton method has been used with the aid of the NAG 

computer package.

Also note that some of the points r will have its MLE occuring 

at one or more of the boundaries of the feasible region, which 

means that for these points the regularity conditions that

support the statment (4.2) will not hold. Nevertheless we decided 

to use the same recipe of the IE for these points as before, in 

order to see how the method, in general, is behaving. (The same 

comment will apply for both quadratic approximations).

(B)Marginal interval:

From formula (4.3) an approximate 95% IE for 9t would be

defined if h=-(0.5)x2(1,0.95). Therefore, the set of points of 

that satisfy (4.3), are all the values of e1 between the lower 

and upper roots of the following function:

G(eA) = 1(0, 0*(©,)) - 1(9) + 1.92
provided that the roots are within the region of [0.0,0.5]. 

Numerical methods have to be adopted again to find LL(0i) and 

ULfei), the lower and upper limit of IE(1,1) respectively. The 

profile In likelihood, l(0t ©^(©i)), can not be written as an

explicit function of because 02 can only be found numerically.

But, if 1(0) is both concave and unimodal, then l(©i ©*(©!)) will 

be unimodal too. A full proof of this last statment is not 

supplied here but an intuitive and logical argument is. 

Figure(4.4)(a) is a contour plot of the joint In likelihood 

function: at a fixed point 9?, ©*(9°) could be found from the

plot by drawing a vertical line parallel to the y axis at the
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PHASE KNOWN SITUATION 
FIGURE (4. 3) Contour plot of the likelihood when N=25

(a) For r?=0 r2=1 r3=2 (b) For r } = 1 r2=3 r3=3
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value 9?. But because of the concavity of the contours, this line 

will only be tangent to one special contour, the tangent point 

will be 02(e?), points A, B and C on the plot for example. 

Figure(4.4) (b) is an incomplete plot of the profile In 

likelihood, where A', B' and C  are the corresponding points of 

A, B and C of the joint In likelihood. Our aim is to show that 

neither before nor after the maximum of the profile In likelihood 

which occurs at A' , the imaginary situation which corresponds to 

the lay out of the points B', D 1 and C'can not occur. This could 

easily be seen from figure (4.4)(a) where between the two lines 

bb1 and cc1, and because of the concavity of the likelihood, all 

the contours, which occur between the straight line joining B and 

C, will have a height higher than the height at C and lower than 

the height at B. Thus by using the unimodality of the profile 

likelihood, numerical methods could be used to determine both

LLtej) and UL(92). Figure(4.5) is a flow chart showing the 

essential steps involved in determining LL(e,). A brief 

description of the method is as follows:

(i)If ©=(9! 92) is the MLE of 8, then the maximum of 6(0!) occurs

at Q±; therefore 04.LL(9i)4Ql.

(ii)In general LL(9t) will be between two carefully chosen points 

X and Y, where initially X=0 and Y=0lt

(iii)Using X and Y, find a suitable point Z nearer to the

solution. Usually take Z as the root of the straight line passing 

between X and Y.

(iv)If {G(Z)|<10~3, then LL(e,)=Z; otherwise move to step (ii) 

but with different value for X and Y as described in the flow 

chart.

(Note that to find UL(0j) very similar argument will be adopted). 

But to find G(Z) at any of the above stages we need to evaluate
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FIGURE (4.4) A descriptive plot of the derivation 
of the profile In likelihood when r^l r2=5 r3=6 r4=13
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Figure(4.5) A flow chart for finding L M e j

G(X) > 0.0 
OR

STOP

No

X < LL(0

(X+Y)/2 G(X)

No

XG{Y ) - YG(X) 
G(Y) - G(X)

G (Z)j < 10“3 ■Yes

STOP

-Yes G(Z)

No

(To find UL(Gj) the only change will be in the starting 
point,which will be X=0.5 and Y=81( also at the step marked 
the inequality signs will be the other way round).
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1(Z 9*(Z)) numerically. Figure(4.6,a) is a flow chart showing the 

essential steps needed to find l(a 9*(a)) when Z=a. A brief 

description of it is as follows;

(i)Divide the range of 02 into eleven equally spaced points 

denoted by 9p), for j=0,l,..,10 and with 0^°)=O.O and 9^lo^=0.5. 

At each point calculate lj, where lj- l(a 9p)(a)).

(ii)If at a special point j , lj>lj_1 and lj>lj+1, then ej is in 

the range defined by [ O p -1),e p  + 1) ]. Now let e P ”1)=X ep)=Z and 

9p‘ + 1 )=y,

(iii)9* e [X,Y]. Fit a quadratic to the three points X, Y

and Z and their corresponding In likelihoods. The location of the 

maximum of this quadratic, V, is a nearer approximation to 02.

(iv)If the required accuracy at the maximum is met, then stop. If 

not, a smaller range R(i+1) will be defined as shown in the 

chart. Move to (iii) to continue.

(v)Special care has to be taken at the boundaries, in case 9*=0.0 

or 9Z=0.5, this case is shown in the supplementary flow chart 

shown in figure{4.6,b).

(4.6.3)0tt and LSM approximations

Both methods depend on the quadratic approximation to the In 

likelihood. Let:

1(9) = l(o) = Ql(o) + e 

where Ql(o) is the quadratic In likelihood for either Ott or LSM 

approximations and e= l(<t>) - Ql(o).

The unknown coefficients in (4.5) are determined by fitting 

Ql(o) to some chosen points (o,1(o)), where l(o) is the value of 

the original In likelihood at the point o.

(A)The choice of points under Ott:

As seen before, six points near the maximum are needed. These 

points have been chosen as follows
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Figure(4.6,a) Flow chart for finding l(a ej(a))
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Figure(4.6,b) continuation of figure(4.6,a)
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(i)Evaluate the original In likelihood ,1(9) at (91i,e2j), for 

i-1,2.,6 and j=l,2..6, where 9fci+i= 0^1+0.1 and k=l,2 t 1=2,..5 

and 9jcl=0.0 . From these 36 points, choose the first 

approximation to the maximum, denoted here by (^mp^m)*

(ii)Evaluate the original In likelihood, 1(0) at (9ii»92j). for 

i=l,2..5 and j=l,2.,5 where eKl+i“ ©ki+0.05 and k=l,2 ,

en =9im"'0,1 ant* ezi=ezm~0,1- (Note that some of these points 

would have been evaluated in (i)). From these 25 points, choose 

the second and last approximation to the maximum (©im»02m) Plus 

five other points around it arranged as in table(4.4)(a), (b) or

(c) according to the circumstances mentioned in the tables. Now 

let

L = ■ I t ' A = ofi ofi • . l * b = [at a2 bt b2 c
12 of2 o|z . . l

- 6̂ - . Ofs ois • . l

c dl

where ( o ^ , <t>2j) are the square root transformation of the six 

chosen points (91^,e2|), for 1=1,2..6. Thus, L = Ab + e and a 

unique and perfect solution, (i.e) with e = 0, of the unknown 

vector b would be:

b = A-1L , given that A is nonsingular.

(B)The choice of points under LSM:

The concept of the LSM, is to determine the quadratic 

likelihood, QlL(o), by using points near an approximate 95% 

contour of the likelihood so that the final interval will be near 

the original one; to do so, we decided to choose 4, 8 and 4

points on the 92.5%, 95% and the 97.5% Ott's contours

respectively. This has been done as follows:

(i)Using a suitable reparametization, the 95% ellipse, for 

example, could be transformed to a circle. Using formula (4.6,a),
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Table(4.4) Choice of points under the Ott approximation

(a)If the maximumtOiM does not occur at any of the boundaries

Pa §j__ eiM-j_ QjlM+i ..

©zM-i 1̂
0zM 1z *3 14

ẑM±_i_______________ is______

(b)If the maximum occurs at one of the boundaries

0, 9, 0.0 0.05 0.10

0zM~l i Z i 3

ezM *4 ^5

P zM+ 1------- is__________________

(Similar tables could be produced if (9^ ©2m ) = (0.5 ©2>|) or 

(0lM 0.0) or (elM 0.5)) .

(c)If the maximum occurs at two of the boundaries

e7 e, o.o 0.05 o.io 
0.0 1, 12 13

0.05 1* 15
0.10 1 „  _

(Similar tables could be produced if (9^ ©2m ) = (0.0 0.5) or 

(0.5 0.0) or (0.5 0.5)).
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the equation of this ellipse would be defined as follows: 

QlO(o) - Q10($o) = -(0.5)xz(2;0.95)

(O - <j>u)T K (O - ou) = xz(2;0.95) -2Q1($0) +2Ql(ou)

= constant (4.12)

where Su is the unbounded maximum of Ql(o) and

K = r“2at -c"

„-c ~2a2.

If K is positive definite then,

K = Q A qT , where A = Q “ [Uj u2]

and Xj, xz are the positive eigenvalues of K and Uj, uz are the 

corresponding normalised eigenvectors. It follows then 

K = X1u1u1T + X2u2u2T 

Now let

2 ~ ^ X 2 U 2 T ( 0  — )

Therefore (4.12) will be equivalent to

vf + = constant (4.13)

The ellipse defined in (4.12) has been transformed to a circle 

with centre lying at the origin (0,0) and with radius equal 

^constant, when using the new parameters and *2.

(ii)Using the same reparametrization, transform the feasible 

region in the domain of o to the domain of t, where t = [tt y2]̂ :

0.0 <<»!< V0.5

0.0 <<!>,< VO.5

0.0 <kjyi+kgfz+k3< VO.5 

0.0 <k4tt+k5t2+ks< VO.5

where k1(k2,..,k6 are suitable constants that make the above 

transformation true.

(iii)Choose eight equally spaced points on the circle (4.13), but 

within the feasible region. If the whole circle lies within the
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feasible region, then the eight chosen points will be:

= ^constant * sin( (i-1)rr/4)

= ^constant * cos( (i—1) tr/4) for i=l,2,..8.

(iv)In a similar manner choose the other eight points on the 

92.5% and 97.5% ellipses. Transform back all the sixteen points 

to the <t> domain. Use them to determine the unknown coefficients 

of Ql(o), (i.e) let:

L = ' li ' A = ‘ Oil *ii •*• 1 ’
1 2 *12 *22 1

. i,8. . *1,16 *2,16 •. 1

b = [a* a2 bj b2 c d]'

So that

L = Ab + e 

Now using least square methods: 

b = (AtA)~1AtL

(C)Joint IE for 9 :

To completely determine the joint interval defined in 

(4.6, a) , (4.6, c) for the Ott and the LSM approximation 

respectively, all we need is to find o0 , (i.e) the MLE of

Q10(o). This is just a maximization problem subject to bounds on 

the variables, see appendix(4.2).

(D)Marginal IE for Qj:

The marginal interval for defined in (4.7,b) will be

completely determined when <&*(<!>!) is evaluated. From 

appendix(4.2) , it has been found that <!>*(<!>!) is one of three 

possible linear functions of Oj. Therefore Ql{<t>j $*(<!>!)} is the 

combination of one or at most three different quadratics in Oj 

within the feasible range [0.0 ^0.5]. Therefore the set of points 

of ©! that satisfy (4.7,b) are all the values of © x between the 

squares of the lower and upper roots of the following function:
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G (<j>!) = QUo* ojtoj) - Ql(io) +1.92 

provided that the roots are within the feasible range. Special 

care has to be taken when finding the roots of G(c>t) to account 

for the three possible forms of Ql{0i ) .

(4.7)Results, phase known situation

In table(4.5), the exact CC and EL are given under the 

different combinations of methods and parameters, the following 

are some observations concerning these results:

(a)The last column in the table which gives the total probability 

used in deriving the CC and El, ((i.e) ErPr where reRs), shows a 

satisfying value > 0.995 for all the different values of 9t.

(b)The joint CC under the different methods are very near the 

0.95 threshold apart from the odd situation of 0.91 when using 

the Ott approximation and with ©lt=0.1 and ©2t=0,15. On the other 

hand, when comparing the CC of the approximate methods to the 

original likelihood, no obvious conclusion can be made, although 

we can say that perhaps the LSM is slightly nearer the original 

likelihood method.

(c)When comparing the marginal CC of the three methods,the first 

thing we noticed was that there is nearly no interaction between 

the two recombination fractions and The CC and EL of e-̂ -

seems to be the same whatever value of ©jt is used. This last 

comment had led us to suggest producing the same kind of results 

when N=25, e ^ ^ O . 05, 0 .1 or 0.15 and e2-|- is varying from 0.01 to 

0.25 in step of 0.01, and thus be able to produce figures showing 

the variation of the joint CC, marginal CC and EL against ©2  ̂ for 

each elt; figures (4,7), (4.8) and (4.9) respectively, see next

paragraph. Also, we can see that the Ott approximation gave two 

extreme results, a very high CC of 0.99 associated with a shorter 

EL when 0 ^  or ©z^=0.05, and a low CC of 0.88 when 0 ^  or
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Table(4.5) Confidence coefficient and expected length of the

® 11 Joint Marginal for Gi Marginal for 02 Total

0 ? t Method CC CC EL CC EL __ Pp.
0.05 Org. 0.96 0.97 0.16 0.97 0.16

0.05 Ott 0.96 0.99 0.15 0.99 0.15 0.999

LSM 0.96 0.97 0.16 0.97 0.16

0.05 Org. 0.94 0.97 0.16 0.90 0. 22

0.10 Ott 0.94 0.99 0.15 0.91 0.21 0.999

LSM 0.94 0.97 0.16 0.90 0.22

0.05 Org. 0.94 0.97 0.16 0.95 0.26

0.15 Ott 0.94 0.99 0.15 0.88 0.26 0.998

LSM 0.94 0.97 0.16 0.96 0.26

0.10 Org. 0.93 0.90 0.22 0.90 0.22

0.10 Ott 0.94 0.91 0. 21 0.91 0.21 0.998

LSM 0.94 0.91 0.22 0.91 0.22

0.10 Org. 0.93 0.90 0.22 0.95 0.26

0.15 Ott 0.91 0.93 0.21 0.88 0.26 0.997

LSM 0.93 0.91 0.22 0.96 0.26

0.15 Org. 0.94 0.95 0.26 0.95 0.26

0.15 Ott 0.92 0.88 0.26 0.88 0.26 0.995

LSM 0.94 0.96 0.26 0.96 0.26
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02t=O.15. On the other hand, althought the LSM's CC is sometimes 

less then the Ott' s CC, it seems to be more stable along the

different values of 0t varying from 0.90 to 0.97, as well as 

being nearer the original CC.

From figure(4.7) where (a), (b) and (c) correspond to 0l1:=O.O5, 

0.1 and 0.15 respectively, we can safely say that, firstly, the 

LSM curve is nearer the original one, and secondly, for Oj-^O.l 

or 0.15, all the three methods seem to be somewhat short of the 

0,95 threshold, although both the original and LSM seem to give a 

better result as compared to the Ott approximation. From 

f igure{4 .8) (a, c , e) , which are the marginal CC of 91 against Qz  ̂

for 9lt=0.05, 0.1 and 0.15 respectively, we can still see that 

there is no or a very slight interaction between the two

recombination fractions, this is shown in somewhat straight line 

curves for all the three methods, apart from the LSM for 

0 1t=O.O5. Also the three plots seem to suggest that the result of 

the LSM is usually between that of Ott and the original 

likelihood but nearer the latter method. As for 

figure(4.8)(b,d,f) which are the marginal CC of ©2 against e2t 

for each 9^, we can see again, and because of the lack of

interaction between the e's, that the three plots are nearly the 

same. Nevertheless, we can see that, although the LSM is usually 

nearer the original likelihood method, it seems to give the most 

stable and highest CC's results, apart from 9Z<0.07 where the Ott 

approximation has the highest CC for this range of 02, but where 

also all the three methods give a result way above the 0.95

threshold. The slightly higher CC of LSM is reflecting itself, as 

would be expected, in a slightly longer EL of the three methods, 

as shown in figure(4.9) for both and 02 and under the various 

values of 0^. What is somehow unexpected is the high CC of the
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FIGURE (4. 7) The Joint confidence coefficient against 8„,
for the original likelihood, Ott E, LSM
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FIGURE (4. 8) The marginal confidence coefficient against 0_,
for the original likelihood, Ott 8. LSM
(a) CC of 0,# when 0,= 0. 05 (b) CC of Q 2, when 0t= 0.05
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FIGURE (4. 9) The expected Length against 02# for Ott & LSM

when 0,= 0. 05
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Ott method for 0zt<O.O7 although it has, in general the shortest 

EL. One explanation would be that the majority of the data 

points, r, would lead to a shorter marginal interval when using 

Ott except for some odd ones which would lead to a longer one. 

Actually, a high proportion of the data points will lead to a 

fairly nearly quadratic l(o), and therefore will lead to very 

close 95% ellipses when using all the three methods; other points 

which will lead to an unquadratic 1 (o), will bring out to the 

light the difference between the three methods, some of these 

later points are used to plot the three 95% joint regions for 0 , 
they are shown in figure(4.10).

The shortness of the marginal interval when using Ott, is again 

reflected very clearly in the histogram plots of the distribution 

of the difference in the marginal interval length between Ott and 

the LSM methods, denoted previously by D(m). But, because of the 

lack of interaction between the two e's, we decided to show only 

the histogram plots of D(l), (i.e) for a marginal interval for

01 > when ©it=0Ht=O • 05, 0.1 or 0.15, which are shown in

figure(4.11) (a), (b) and (c) respectively. These figures,

suggest strongly that the probability of having a shorter 

marginal interval for 0 , when the Ott approximation is used, is 

always greater than 0.5, and that this probability becomes 

smaller as 0 becomes larger.

(4.7) Application, given the phase unknown situation

This section discusses the application of the three methods of 

IE discussed previously, when using a data vector r arising from 

the multinomial distribution of (1.15).

In figure(4.12)(a,b,c,d), the contour plots of 1(0) for some 

data vector r are shown, from which we can see that 1(9) is 

neither unimodal nor concave. Although the recipe of both the
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FIGURE (A. 10) Some 95% Joint region for (0 0)
using the original likelihood, Ott Z LSM
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FIGURE (4. 11) Histogram plota of the difference Ii 
between Ott 8, LSM' a Interval for 01
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joint and marginal intervals will still be applicable, we will 

find that using any of the prescribed numerical techniques to 

calculate the intervals would be dangerous. But in order to help 

ourself in understanding the behaviour of the likelihood function 

for this situation, we decided to compare the likelihood to its 

corresponding one if the Haldane map function is assumed instead. 

In figure(4.13), the contour plot of the likelihoods given either 

map function are shown for the same data point r as before, which 

seem to suggest that both likelihoods are fairly alike. An 

analytic maximisation of 1(9) given the Haldane map function is a 

straight forward procedure (see appendix (4.3)), from which we 

can see that the likelihood will have one maximum within the 

feasible region if r3+r4<(n/2) and rz+r4<(n/2). If either or both 

conditions are not satisfied then the likelihood will have a 

unique maximum occuring at at least one of the following 

boundaries, G^O.5 or 92=0.5,

Applying either Ott of the LSM to this kind of likelihood, even 

when the Haldane map function is assumed will not be realistic, 

as it seems quite clear from the In likelihood contour plots that 

the In likelihood is far away from being quadratic. Nevertheless 

if we can find a one-to-one transformation to G, (eg) n=g(§) , 

such that 1 (r\) is approximately quadratic or just concave and 

unimodal, then applying either Ott or the LSM methods for finding 

the required intervals for n will be a straight forward 

procedure. A 95% IE for G or will be just the induced interval 

of n or rip We suspect that the transformation n^=2G^ (1-9^) for 

i=l,2, which is a one-to-one transformation of G within the 

feasable region, will satisfy the above requirement.
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PHASE UNKNOWN SITUATION 
FIGURE (4, 12) Contour plot of the In likelihood when N-25

(a) For ^=18 r2=1 r3=3 (b) For rt=19 r2=3 r3-1
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PHASE UNKNOWN SITUATION
FIGURE (4. 13) Contour plot of the In Likelihood when N=25 
8. given either Eq (3) or the Haldane map function

(a) For ^=18 r2=1 r3=3 (b) For rt=19 r2=3 r3=1
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CHAPTER FIVE: Comparing intervals using the likelihood and the

(5.1) Introduction

The aim of this chapter is to compare the performance of 

interval estimates constructed using the likelihood approach as 

described in chapter 4, when the original likelihood was used, 

and the Bayesian approach.

Methods and results are produced for the simplest model in 

genetics of two loci situation and either a phase known or 

unknown double backcross mating, whereas only method is mentioned 

for the three loci situation.

(5.2) Bayesian approach

(5.2,1)Introduction

In general, if 0 is the parameter vector of interest with 

sample space ©, then using the Bayesian approach means that 0 is 

essentially regarded as a random variable. Therefore any 

knowledge we have about the true value of 0, at any stage, can be 

expressed by a probability distribution over ©.

Let tt(©) be the prior probability distribution of 0 and p(r|9) 

be the density function of the sample data vector r specified by 

the probability model, then the posterior probability function of 

0, 7r(0|r) will be:

= const 7r(e) p(r|0)

(5,2.2) Interval estimate

Although ff(0|r) constitutes the complete inferential statement 

about 0, a 100(l-a)& Bayesian confidence region, IE(l-ct), can be 

defined as follows:

Bayesian approaches

(const) =
(5.1)

where
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IlE(l-oc) ’'(5l£'d® = <!-«' (5.2,a)

Several regions, IE(l-a), can satisfy the above definition. A 

unique interval can be defined, if ir(0|r) is not uniform, by 

ensuring that the region IE(l-oc) defined in (5.2,a) should be 

such that the probability density of every point inside it is at 

least as large as that of any point outside it.

(5.2,b)

(5.3)

(i.e) For e lE(l-oc) and 02 4 IE(l-<x)

^(§11L) > l£)

Therefore, IE(l-cc) = {© such that ^(Q|r)>c)

where c is chosen such that:

I /«i w  7r(0|r)d0 = 1-cc Jtr(0|r)>c -

Such interval will be the ttie shortest among all Bayesian 

confidence region of (1-oc) confidence coefficient and is known as 

the highest probability density, HPD, interval.

Other criteria can be set to determine a unique (l-<x) 

confidence region. A central confidence interval, CCI, (ie) 

cutting off equal tail area probabilities defines a unique (1-a) 

confidence region in one dimensional problems as follows:

IE(1 "oc) = {0 such that 0 e[9lt0z]}

where 04 and 02 are chosen such that |(5.4)

J01 tt (0 1 r ) do = J“ it (© | r ) do = ^
-CO 0 2

Both intervals are going to be used in this chapter.

(5.2.3) Prior distribution

Two prior distributions from the genetic literature can be

used. The first one, introduced by Haldane and Smith(1947) is

based on the assumption of a uniform distribution for the



recombination fraction between the two loci, (i.e):

jt (0) - 2 o<e<o.5 (5.5)

The second one, introduced by Renwick(1971) to find the prior 

probability of x, w(x), where x is the map distance between two 

autosomal loci, could be adjusted to find n(G), the prior 

distribution of the recombination fraction between two loci known 

to be on the same chromosome.

The following arguments were introduced by Renwick to find 

t t { x ) ,  where x is defined as above:

Let A^, i=l,2,..22, be the length in Morgan, the unit which

measures the map distance x, of chromosome i and T=EjAi be the 

total autosomal length. Further assume that:

(a)The locus on the chromosome is treated as a point on a line.

(b)A chosen autosomal locus is equally likely to occur at any 

point on the autosomal complement of length T; (i.e) the 

distribution of its position is uniform[0,T].

(c)The two loci under consideration are selected at random from 

the total.

Under these assumptions, the probability that a locus is on 

chromosome i is (A^/T) and the probability of synteny, (i.e) that 

both loci are on the same chromosome, is E^(A|/TZ). Therefore the 

probability density of the map length x between two syntenic loci 

on the chromosome A-̂ will be:

n(x fl both on Aj[) = 2
T Z

0<x<Aj[

Now, let A^>A^+1 for i=l,2,...,21, then:

Pr{synteny) = Pr{0<x<A!) = E



- 176 -

If the two loci are asyntenic, (i.e) are not on the same 

chromosome, this means that the map distance is infinite. For 

convenience assume that x=1000 if the two loci are asyntenic, 

then:

Pr(asyntenic) = Pr{x=1000) = 1 - Ej

Adjusting this argument in order to suit our assumption of the 

two loci being on the same chromosome of length A, for example, 

will lead to the following ir(x):

As an example take A to represent the map length of the longest 

human chromosome, chromosome number 1, which is estimated to be 

slightly over 3 Morgans (according to Renwick 1971), actually 

this number refer to the male-female average map length which is 

known as the neuterized map length. Now given a suitable map 

function x=f(9), *r(0) could be derived as follows:

Similarly notice that, if the parameter of interest was x 

instead of 0 then any of the above two priors could be used in 

term of x. A plot of the Haldane & Smith prior and the Renwick 

prior in term of both 0 and x when the map function Eq(3) is used 

is provided in figure(5.1)(a ,b) and (5.2)(a,b) respectively.

(5.3) Assessment and notation

The assessment of any method, as in the previous chapter, will 

be based on calculating the exact confidence coefficient, CC, and 

expected length, EL.

From table(1.7) and statement(1.5), the density function p(r|0) 

for a data point r, if the mating type was either a phase known

0<x<A (5.6)

"■(e) = (0)) (5.7)
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FIGURE (5.1) Prior distributions of 0

(a) Haldane & Smith (b) Renwick

2

0
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FIGURE (5.2) PrI or distributions of x

(a) Haldane & Smith (b) Renwick
2.5
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or unknown double backcross respectively, would be the usual 

binomial distribution but with 9 as the probability of success 

under the phase known situation and a function of 0, <t>, under the 

phase unknown situation. For either density the sample space R 

would be R={0,1,2,...,n), where n is the total number of 

offsprings.

Now if we let IE(l,r) be a 95% IE, produced by method 1 and 

data r, where:

1=1, when the likelihood approach as described in chapter 4, 

statement(4.1) and when the large sample approximation of (4.2) 

is used; (i.e) with p=l, h '=-(0.5)xz(1,0.95)=-l.92.

1=2, when constructing a CCI Bayesian interval for 0 with 

Haldane and Smith prior.

1=3, a HPD Bayesian interval with Haldane and Smith prior.

1=4, a CCI Bayesian interval with Renwick prior.

1=5, a HPD Bayesian interval with Renwick prior.

Also let:

T(1,r) = f 1 if GteIE(l,r)

0 otherwise

LL(l,r) = 02(l,r) - e^l.r)

where O^l.r), ©2(l,r) are the lower and upper limit respectively 

of IE(1,r), then:

CC(1) = Z T(l,r)p(r|0) (5.9)reK

EL(1) = r|R LL(l,r)p(r|e) (5.10)

The method(s) with the CC>0.95 will be given more credit, and 

among them the one with the shortest EL will be preferred. Note 

that by using this method of assessment, we will be providing a 

frequentist assessment for a Bayesian interval which has been
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derived from a completely different philosophy.

(5.4) Application 

As in the previous chapter and for similar reason, we are going 

to apply the above methods when n=25, the map function, f(0) ,is 

Eq(3) and when varies from 0.01 to 0.25 in step of 0.01, thus

covering the area of practical interest.

(5.4.1) Phase known situation

(1)1=1

IE(l,r) = (9 such that l(e)-l(e)>-1.92}

where 1(e) = const + rln© + (n-r)ln(l-e) for 0<e<0.5

9 = [ “ 0< - CO.5n n

.0.5 £ >0.5
n

©iU.r) and e2(l,r), 9 t and e2 for convenience, are just the

roots of the following function, if within the feasable region 

[0.0,0.5],

H(0) = 1(9) - 1(e) + 1.92 

Numerical methods supplied by the Nag library routines have to be 

used to find eA and e2.

(11)1-2
IE(2,r) = {© such that ee[e1,e2]} 

where ex and e2 are as defined in (5.4) and

ir(ejr) = const 9r (i-e)n“r 0<o<0.5

By choosing the suitable constant Tr(e|r) will be a truncated Beta 

distribution. Therefore finding 0! and 02 has been done by using 

the inverse of the incomplete beta function supplied by the Nag 

library routines.

(iii)l=3 (or 5)

IE(l,r) = {9 such that ir(0|r)>c} 

where c is chosen to satisfy (5.3). Therefore 0j and 0Z will be 

the roots of the following function, G(0), if within the feasable
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region:

G(0) = tt(G |r) - c 

c, ©j and ez have to be found numerically. Figure(5.3) is a flow 

chart showing the essential steps involved, given that 7r(e|r) is 

unimodal. The following is a brief description of it:

(1)Find the mode of ir(e[r), ê , either analytically or 

numerically if not possible.

(2)If e^= 0.0 (or 0.5) the problem has to be redefined in the 

following way, 9j=0.0 whereas 02 would be found such that

OJ0Z it (0 J r) d© = 0.95

(3)©! is in general between two carefully chosen points and 

Initially z(°)=0.0 and y (0)=9jjj.

{4)The average of and Y ^  will be used as our iterative

procedure which aims at finding 0t. This procedure will certainly 

converge to the solution as long as the posterior density is 

unimodal,(i.e) ©(i)=(z(i)+Y^i))/2. Also let fi=w(e[i)|r).

(5)Now find 02(i) which is the root of the following function 

G (©) = 7T(01r) - fi where ©^<©2^)<0.5

(6)Find CC, where

(7)If the accuracy required in finding CC is met, then stop,

From graphical inspection of ir(e|r) when 1=5, the posterior 

density has been found to be bimodal for many values of r. A 

possible half-way solution to this problem would be to find a one 

to one transformation, y=y(0), such that the posterior density of 

the transformed variable y is unimodal. Note that, an exact 95%

(i)CC

otherwise move to step (3) but with different values for and

y (*) as described in the figure.
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Figure(5.3) Flow chart for finding the upper and lower limit of 
a 95% HPD Bayesian interval

A

Find 9^ the mode 
of 7r(0|r)

Yes~$

z (0) = 0.0
y(°) = ©M

i = 0

e^i) = (Z^^+Y^) )/2
fd) = 7r(0 j (i ) | r)

Find which is
the root of 
G (©) = 77 (9 j r) - f(i) 
when eM< G <0.5

Redefine 
the problem

i - i + 1---

STOP

- 0.95| < 0.005 -Yes *̂
e2=e2(i)

Mo

z(ifi {No-— < - 0-95 > 0.005 Y e s-> Z(i+O=0i(i)
Y { i *1)=ei(i) Y ( i-'-1 ) = y ̂  ̂
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HPD for y will lead to an exact 95% IE for 0 although not 

necessarily a HPD one. This is so, because although any 100(l“<x)% 

IE for 0 as defined in (5.2,a) is invariant under any one to one 

transformation, the second requirement of a HPD interval for e as 

defined in (5.2,b) will only be invariant if the transformation 

is linear. Both requirements of linearity and a resulting 

unimodal posterior density are contradictory. Fortunately, the 

requirement of unimodality could be achieved by using the map 

distance x=f(0), which is a parameter of interest as much as © 

is. Therefore a slight change in our previous plan which will 

produce a HPD for x instead of © when the Renwick prior is used 

will also be of interest, (i.e) let;

1=5, be the method leading to a 95% HPD Bayesian interval for x 

when the Renwick prior is used. Also for consistency let:

1=4, be the method leading to a 95% CCI Bayesian interval for x 

when the Renwick prior is used. And for the sake of the 

comparison let:

1=6, be the method leading to a 95% IE for x when the

likelihood approach is used. Actually the interval IE(6,r) will 

be exactly equal to the induced interval f (IE(1,r)) .

(iv)1=4

IE(4,r) = (x such that xefx^xj) 

where and x2 are defined analogously to ©t and ©z in (5.4) and

Tr(x|r) = const (3-x) [f-1 (x)]r [l-f~1 (x) ]n-r 

where 0<x<«> and f"1(x) has to be found numerically as described 

in the previous chapter. Again numerical method had to be adopted 

in order to find x* and x2. The method used in this section is 

very similar to the prescribed one in section (iii).

(5.4.2) Phase unknown situation

Our aim is again to compare the IE for 9 as produced by methods
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1=1,2,3 and the IE for x as produced by methods 1=4,5,6. The same 

steps of the technical calculation as in the phase known 

situation is going to be followed for this case, the following 

are only some points of difference;

(i)1=1 (or 6)

As 1(e) will be describing the usual binomial distribution but 

with probability of success equal o, where <p=2e(l-e), then:

1(e) = const + rln(2e(i-e)) + (n~r)ln(e2+(i-e)2)

So that by applying the usual analytical techniques for finding 

the MLE of the above In likelihood, we found that (see 

app,endix(5 .1)) within the feasible region:

Figure(5.4)(a,b) is a plot of the In likelihood under both of the 

above situations.

The posterior density w(e[r) will obviously not be the 

incomplete beta distribution, so that finding ^  and e2 will be 

done by using our own numerical techniques which is very similar 

to the one described in figure(5.3) and which essentially depends 

on the unimodality of the density.

(iii ) 1=3,4,5

There is no technical difference between the phase known 

situation and this case for that matter. We are just providing 

the reader with a plot of the posterior density given Renwick 

prior, ir(x|r), for two different data points r, in 

figure(5.5)(a,b) which again shows the unimodality of these 

functions.

e 12
1 - _1 (n(n-2r))0* 5
2 2n otherwise

(11)1-2
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PHASE UNKNOWN SITUATION 

FIGURE (5, 4) Examples of the In I Ike It hood functton 

(a) r « 5 (b) r = 20
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FIGURE (5. 5) Examples of the posterior density of x 
when the second prior Is used

(b) r = 20(a) r =s 5
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(5.5) Results

The results of the above methods are shown in four different 

plots. A plot of the CC and the EL against the true parameter of 

interest 0 for the three methods 1=1,2,3 and two similar plots 

but against the parameter of interest x for the remaining three 

methods 1=4,5,6. Figure(5.6) and (5.7) (a,b,c,d) shows the above 

four plots for the phase known and unknown situation 

respectively. In all of these plots, the black curve, the red 

curve and the green one represent the likelihood the CCI and the 

HPD intervals respectively.

For the phase known situation and as far as the parameter e is 

concerned, no method can be seen as a clear winner. All CC varies 

above and below the 0.95 threshold. Perhaps the CCI (with the 

first prior) could be seen as the most stable method with a 

minimum CC=0,90 and a maximum CC=0.98 and probably an average 

CC=0.95 for the studied range of 0t, but as would be expected, it 

has the highest EL for almost all of this range. On the other 

hand both the HPD (with the first prior) and the likelihood 

methods are not as stable with a minimum CC=0.89 & CC=0.86 and a 

maximum CC=0.99 & CC=0.99 respectively, also notice that the 

difference between their EL is almost negligible for the studied 

range of 0^. As for the parameter x and as far as the CC is 

concerned the HPD seems to be the best method for almost all the 

studied range of xt its minimum CC=0,94, maximum CC=1.0 and 

average CC=0.97 for the corresponding range of x̂ -. The likelihood 

method on the other hand has clearly the least expected length.

For the phase unknown situation very similar comments could be 

made, again the CCI interval when the parameter of interest is 9 

seems to be the most stable method as far as the CC is concerned 

but which also gives the highest EL for this case. On the other
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PHASE KNOWN SITUATION

FIGURE (5.6) A comparison between the likelihood & Bayesian 
approaches In construction IE

(a) 0 18 the parameter of Interest & first prior Is used
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PHASE UNKNOWN SITUATION

FIGURE (5. 7) A comparison between the likelihood Z  Bayesian 
approaches In construction IE

(a) 9 18 the parameter of tnterest Z  first prior ts used

(1) CC (2) EL
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hand this same method is clearly the least favourable method if 

the parameter of interest was x, notice also that for this 

situation the HPD seems again to be the best method as far as the 

CC is concerned whereas the likelihood method has clearly the 

least EL for almost all the studied range of xt.

Actually the reasonable behaviour of the HPD interval for the 

parameter x could be understood by looking back at the plot of 

the second prior distribution, figure(5.2) (b), which is clearly 

favouring smaller values of x and which therefore probably will 

lead to a HPD Bayesian intervals with a high CC for small values 

of x-(- as well as a large EL for large values of x̂ -. This same 

prior could partially explain the drastic behaviour of the CCI 

Bayesian intervals for the phase unknown situation and the not so 

drastic one for the phase known situation, but still the least 

favourable behaviour as far as both CC and EL are concerned. 

Actually the form of the prior as well as the likelihood function 

would lead to a highly skewed posterior density, especially for 

the phase unknown situation, making a central Bayesian interval 

not a very sensible choice; and as the skewness is very much 

toward the large values of xt ((eg) x^>0.7 for figure(5.5)(b)) 

this could probably lead to a wide interval capturing most of the 

large values of x̂- and not so much of the smaller values. This 

last comment would suggest that the red curve in both 

f igure (5 . 6) (b, 1) and (5.7) (b,l) would be much higher for large x̂- 

(this is actually true, plot not shown here). Also notice that 

although the difference between the two Bayesian intervals seems 

quite large for any of the two parameters of interest and as far 

as the studied range is concerned, it is a theorem that for the 

whole range of 8 or x any Bayesian interval will have an average 

CC equal 0.95 exactly, (i.e) if CC is seen as a random variable
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of 9 for example then:

Ee ( c c ( e ) )  =oJ ° * 5c c ( e ) i r ( e ) d 0  » 0 . 9 5

The proof of this theorem is quite an easy and short one which is 

given here for 0 as follows:

From (5.9) CC(9) could be rewritten as follows:

where using a Bayesian philosophy the indicator variable T(9,r) 

in (5.9) would be seen as a random variable, as it depends on the 

random variable 0 , and which also depends on the given data point 

r, hence the notation T(0,r). So that from (5.9)(a), CC(0) could 

be seen as the conditional expectation of T(o,r) given 0, (i.e):

CC(0) = Er(T(9,r)|0)
So that:

E0(CC(9)) = Ee (Er(T(0,r)|©))

= Er (Ee(T(e,r)|r))

But for any given r:

Ee (T(9,r) |r) =J° ’ 5T(9 , r )ir (0 | r )d9

But from the definition of any Bayesian interval, equation (5.11) 

should be equal to 0.95 so that:

Eq (CC(9)) = Er(Ee (T(e,r)|r)) = Er(0.95) = 0.95.

(5.6) Three loci situation & the Bayesian approach

(5.6.1) Introduction

A more interesting comparison between the Bayesian and

likelihood approach could be achieved by applying both approaches 

to the more complicated case of the three loci situation. As seen

in the previous chapter, by choosing a certain map function and

given a certain mating type, we will be tackling a two

CC(er) = T(0,r) p(r|9) (5.9)(a)

(5.11)
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dimensional problem with the unknown parameter vector 9=(9i ©2)̂ .
\

The likelihood interval for 0 will be completely specified 

through the density function of the data vector r, the HPD 

Bayesian interval, as defined in (5.3), on the other hand, will 

still need a sensible choice of the prior distribution of 6.

(5.6.2) Prior distribution of 9

A generalisation of the previously introduced prior 

distributions are presented in this section. A generalisation of 

the Haldane and Smith prior will be based on the assumption of 

two independent uniform distributons for each of the 

recombination fraction 9t and 9Z, (i.e) 

ff(©) = 4 for 0<9j<0.5

0<92<0.5

Renwick et al(1971) introduced a generalisation to his previous 

prior to suit the situation of three autosomal loci, the 

generalised prior was based on similar assumptions to the one 

introduced in section(5.2.3). Again, the key assumption (b) has 

to be adjusted here to suit our case of three loci known to be on 

the same chromosome. Therefore (b) will be as follows; assume 

that any of the three loci A, B or C are equally likely to occur 

at any point on the whole chromosome of length L, (i.e) the 

distribution of any of their position is uniform[0,L]:

ir(A,B,C) = (1/L3) for 0<A<L

o<b<:l

0<C<L

Now let:

xab = B-A 

xbc = C-B 
u = A
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By using the jacobian transformation and then integrating over 

the whole range of u we can arrive at the prior distribution of 

xab and xbc. Firstly:

ff(xab,xbc,u) = {1/L3) where 0<u<L

0<xab+u<L 

0<xab+xbc+u<L 

and -L<xab<L 

-L<xbQ<L 

-L<xab+xbc<L

Secondly by integrating carefully over the whole range of u, the 

prior distribution of xab and xbc will have six different 

possibilities corresponding to six different possible orders:

7r(xab,xbc^ " (L-xab"xbc)/L3

(L-xab)/L3

(L+xbc)/L3

(L+xab+xbc)/L3

(L+xab)/L3

(L-xbc)/L3

where 0<xab<L ; 0<xbc<L'-xab 
corresponding to order ABC

where 0<xab<L ; ~xab<xbc<0 
corresponding to order ACB

where 0<xab<L ; -L<xbc<-xab 
corresponding to order CAB

where -L<xab<0 ; -L-xab<xbc<0 
corresponding to order CBA

where -L<xab<0 ; 0<xbc<-xab 
corresponding to order BCA

where -L<xab<0 ; ~xab<xbc<L 
corresponding to order BAG

As a check to the derivation of the above joint prior, we 

calculated the marginal prior of xab which will be as follows:

*-(xab) = r (L-xab)/L2 

. (L+xab)/L2

0<'xab<'L

-IXxab<0
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where the first arm, for example, of *r(xab) is calculated by 

adding and integrating the first three arms of ”■{%];,,xbc) over 

the corresponding range of xbc. But because the order of the two 

loci A and B are irrelevant to the investigation concerning 

linkage then let |xab|, so that

= 2(L-x1)/Lz 0<Xj<L

which is equivalent to the prior distribution of the map distance 

between two loci on the same chromosome as defined in (5.6) and 

derived in section(5.2.3).

Now let |xab| and x2 = |xbc|, where Xj and x2 are the map

distance between the loci A & B and B & C respectively. Then:

TrfXi.Xz) = f 2(L-x1-xz )/L3 ( K X j+ X jjCL

2(L-Xj)/L3 0<Xx<L

. 2(L~XZ)/L 3 0<x 2<L

Actually this prior distribution is the joint prior of the two 

map distances and a certain gene order. Therefore if we were to 

assume a known gene order, for example order ABC, then: 

ir(Xj ,x2 |ABC) = 6(L-x1-x2 )/L3 0<x1+xz<L

Finally using the appropriate map function, 7r(0florder) or 

ir(0|order) could be easily derived using the above prior for 

jrfXi ,x2florder) and ir(xj,x2 1 order) respectively.

To compare the Bayesian approach with the different likelihood 

intervals produced in the previous chapter, we have to calculate 

the exact CC for the joint and marginal Bayesian intervals as 

well as the EL for the marginal ones.

(5.6.3) Marginal HPD Bayesian interval

The marginal distribution of (or e2) could be easily derived 

by integrating, usually numerically, ^(©jr) over the whole range
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of ©2 (or ©x). Therefore a 95% marginal HPD Bayesian interval for 

©x would be defined as follows:

L0^JU91 0J0*5^(e|£)d0z d©x = 0.95

fO 5 CO 5such that: 0J ‘ 7r(L0lt©2lr) d©2 ’ W U 0 i>0z!r) d©2

Numerical methods, very similar to the previously introduced 

one in figure(5.3), will have to be used in order to find LQj and 

U©t .

(5.6.4) Joint HPD Bayesian interval 

From the definition of this interval in (5.3), we can see that, 

given that *r(0|r) has been derived, the interval will then depend 

entirely on the value of the constant c. With multidimensional 

problems the evaluation of c is not an easy task. An approximate 

evaluation of c could be achieved by simulating (large) number I 

of points ©s arising from the posterior density tr(0|r). For each 

of these simulated points we can calculate the random variable 

^ I n ) -  The distribution function of ^(0s |r), F(tr), would be 

then used in order to find the lower 5% quantile of «'(0s |r), thus 

providing an approximate evaluation of c.



- 194 -

CHAPTER SIX: Predective estimate of the probability of risk - an 

example

6.1 Introduction

An important application of linkage studies is the use of 

linkage information in genetic counselling. For some families 

which are affected by a certain hereditary disease, calculating 

the probability that an unborn child (fetus) is carrying the 

disease gene is of major importance.

Genetic linkage studies which have been carried out throughout 

history of the subject, have established linkage between many 

disease genes and marker genes. For linked diseases and given the 

family history and mode of inheritance at the disease and marker 

loci, the above probability will be function of the recombination 

fraction(s) 0. If we are considering a family of (m-1) members 

with X| and gj denoting the phenotype and genotype of the i*-*1 

individual respectively, then the probability of the m*-*1 unborn 

individual being at risk is equal to the conditional probability 

of him having a genotype gm , where gm incorporates the disease, 

given all phenotipic information in the pedigree, (i.e) this 

probability will be equal to P(gm jxj..xm“). Note that xm_ denotes 

the incomplete phenotype of the m*-11 individual, inspected by 

analysing the amniotic fluid of the pregnant mother, White(1984), 

which will lead to phenotipic information only about his marker 

gene(s). Seen as a function of 9 this probability could be 

written as R(0). If, from previous linkage studies the MLE of 0 

has been established to be 9, then by using the likelihood 

approach a point estimate of R(9) will be given by the MLE R(e) . 

The aim of this chapter was to introduce the Bayesian approach 

for providing a point estimate of this function. Later on we
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found out that this approach was previously introduced by Renwick 

et al(1971). Neverthless a short discussion plus application, 

using an example from the genetic literature, of this approach is 

given here.

6.2 Bayesian approach and probability of risk

Aitchson and Dunsmore(1975) discussed in detail the nature of 

statistical prediction analysis and its various applications. In 

their description of the problem they stated that "an essential 

feature of statistical prediction analysis is that it involves 

two experiments e and f. From the information which we gain from 

the performance of e, the informative experiment, we wish to make 

some reasoned statement concerning the performance of f, the

future experiment". Here both experiments e and f are linked
\

through a common unknown parameter 9. In other words, the problem 

could be described as follows. If the future experiment f has 

outcome y with sample space Y and a class of possible density 

functions {p(yj9) :9e©} on Y, where the parameter space © is

assumed known but the true parameter is unknown, then the 

nature of the predictive problem is the uncertainty about and 

the final objective is to assess the plausibility of the unknown 

outcome y through the study of the plausibility of e.

Two steps would therefore be involved. The first step is to 

assess the plausibility of 9 using two sources of information, a 

prior information expressed in term of a known prior density ?r(e) 

on © and the informative experiment e. If X is the sample space 

of e than the class of density functions for e can be denoted by 

{p (xj0) :9e©} on X. Using Bayes theorem the posterior density

function of 9 is given by:

p (9|x ). (s.i)p{x)



- 196 -

The second step Involves the calculation of the predictive 

density function p(y|x) for y given n(0) and x which is equal to:

p (y lx )= Je P(y ie)p(e|x)de (6.2)

The above approach in determining a predictive distribution for

Y could be adapted to provide a predictive estimate of the 

probability of risk. The counselling problem would therefore be 

described as follows. The previous family trees which provided 

information about 9 through the different phenotypes of their 

members at the disease and marker loci could be seen as being the 

informative experiment e with sample space Z -all possible 

phenotypes-, parameter space © and a class of density functions 

{p(z|9) :9e©} on Z. By choosing a suitable prior ^(9), the

posterior density 7t (9| z ) could be calculated using formula(6.1). 

Another family tree is observed with outcome x=(x1x2..Xm"), 

sample space X and with the same parameter space ©. Our main 

concern now is not the predictive density of a future outcome but 

rather the predictive probability of a certain event, merely that 

individual m carries the disease gene given his family tree x, 

7t(9) and the previous data z.

If we are dealing with a dominant hereditary disease with two

possible alleles, D denoting the abnormal dominant allele and N

the normal recessive one, then the event of interest R will be 

that the genotype of individual m at the disease locus is either 

D/D or D/N, (i.e) R={D/D,D/N}. As seen in section(6.1) , the

probability of this event given the family tree x will depend on 

the parameter 9. Therefore the predictive probability could be 

calculated in a manner analogous to (6.2) as follows:

P(R|x,z)= JeP(R|x,G)p(9|z)d9 (6.3)

Formula(6.3) is only true if x does not provide any information
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about 9. If it does then the posterior density of 9 should be 

calculated using the information provided from ir(9), p(z(9) and 

p(x|9) which will lead to p(0|z,x), The predictive probability 

will then be:

P(R|x,z)= J@P(R|x,0)p(0|ztx)d9 (6.4)

As P(R|x,9) could be seen as a function of 9, R(9),then 
p(R|x>z)= JeR(9)p(0|z,x)de

= E(R(9)|z,x) (6.5)

6.3 Application

Morton(1956) studied linkage between the Rh blood group gene 

and Elliptocytosisr a dominant disease gene. The marker gene Rh 

is determined mainly by 3 codominant alleles R 1P R2 and r. The 

disease gene is determined by the rare dominant disease allele El 

and the common normal recessive allele el. Fourteen independent 

family trees were studied, in his paper Morton called them 

pedigree 1,2,..,7, R, B, A.E, S.S, M.K, J.P.N and J.M.L 

respectively. He derived the likelihood function of each family 

using the technique described previously in section(1.5-A). Using 

all pedigrees and a generalised likelihood ratio test, linkage 

was clearly found to be significant ((21nlO)Z(0)=34.2). 
Nevertheless by separately analysing each family pedigree, some 

families showed clear linkage while others offered no evidence on 

linkage. Using what Morton called a heterogeneity test, which is 

just a generalised likelihood ratio test for testing 

HO:9i=92= . . . =0i4.=0 against 

HI: HO not true

where 0j[ is the recombination fraction of the i*-*1 family, HO was 

clearly rejected. Most of the variation between families was 

found out to be mainly between two groups of pedigrees, group 1



- 198 -

which consists of pedigree 3, 4, 5 and R and group 2 which

consists of pedigree 2, A.E and J.P.N. Also homogeneity within 

each group was not significant. One explanation of the above 

result, which was given by Morton(1956), was that elliptocytosis 

depends on two loci, the first of which is closely linked to the 

Rh locus (as in pedigree 3, 4, 5 & R) while the second is in a 

different linkage group (as in pedigree 2, A& & J.P.N).

Given that the above explanation is true, let us assume that 

one of the two simple families which are shown in figure(6.1) 

came for counselling about the risk that their unborn child is 

carrying the disease gene El. To answer their inquiry we can 

either adopt a likelihood or a predictive approach, but in either 

case we will be faced with the extra problem of heterogeneity. We 

can either assume that the new family belongs to the linked group 

of families and analyse the data accordingly or more 

appropriately include the uncertainty about the type of family 

(being in the linked group or not) when analysing the data. The 

former procedure will probably lead to a biased estimate of the 

probability of risk. But as our main interest is to compare the

likelihood and the predictive approach we are going to use both

methods.

First method:

Let xltx2 be the phenotypes outcome of the 1st and 2n{* family

tree described in figure(6.1) respectively. The 1st family is a

phase known mating of the form RiEl/RgelxR^1/rel. Their unborn 

child must have received the Rj gene from the unaffected father 

and the Rz gene from his affected mother. The probability that he 

also received the disease allele El from his mother is equal to 

the recombination fraction 9, (i.e)

P(R|Xj,9)= 9.
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FIGURE(6.1)
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As for the 2nc* family the phase of the affected mother is unknown 

we have one of the possible two equally likely mating 

RjEl/RgelxRjel/rel or R1el/RzElxR1el/rel. Taking both matings 

into account P(R|x2,e) could easily be seen to be equal to: 

P(R|xv e)= ez+(i-e)2 •

To apply the predictive approach we chose to use Haldane and 

Smith's prior (i.e)

?r(e)=2 0<e<0.5

Also note that both family trees xltx2 do not add any further 

information about the plausibility of 0 and theref :ore will not 

be used in deriving the posterior density of 0 ,

Second method:

Smith(1963) provided a model which account for the 

heterogeneity problem. He assumed that a proportion X of families 

show linkage between the two gene loci under question while in 

the remaining proportion, (1-X) of families, the two loci are 

unlinked. Therefore the likelihood of a certain family i with 

phenotype outcome Xj_ could be expressed in terms of 0 and X as 

follows:

L1(0 ,X)= XP(xi|0)+(l-x)P(xi|O.5)
Under this model, the risk probability for the fetus in the 1st 

and 2n  ̂family will be equal to:

P(R|xlt©)= X0+O.5(1~X)

P(R|x2,0)= X(0Z+(1-0)Z)+O.5(1-X)

To apply the predictive approach under this model we may assume 

that all values of 0 and X within their range are equally likely, 

as has also been suggested by Smith, therefore 

7T (0, X) = 2 0<8<0.5

0<X<1
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6.4 Results

Aitchison and Dunsmore(1975) pointed out that the likelihood 

and the predictive approach will be in good agreement if p(e|z) 

is highly concentrated on 0. By the usual large sample arguments 

this will be the case when there is a substantial past 

experience. Therefore we suspect that by using all the available 

family pedigrees, the predictive and likelihood approach will 

give close results. This led us to present the analysis of the 

data as if being done sequentially or step by step as follows. 

For the first method, we have all in all four previous family 

pedigrees, pedigree 3, 4, 5 and R. Table(6.1)(a) presents the

likelihood and predictive probability of risk for our two family 

trees when the previous data used, first of all, is only pedigree 

3 and then pedigree 3 and 4 and so on until we use all previous 

data. As suspected the disagreement at the beginning of the table 

is much higher than at its end. Also the predictive approach 

shows a more stable estimate. Actually the least estimated value 

of the risk probability using the likelihood approach and given 

the 1st family tree is 0.0 whereas the largest is 0.039. By using 

the predictive method these values are 0.046 and 0.059 

respectively. This stability is probably due to the fact that at 

any stage of the analysis, the predictive approach weights the 

possible probabilities P(R|x!,©) according to the plausibilities 

of the various 0 in contrast to the likelihood approach which 

takes no acount of the sampling variability of the estimator 

0{z). Similar comments could be said about the result of the 2nc* 

method. These results are shown in table(6.3)(b), in which we 

have fourteen steps as we have all fourteen pedigrees to use as 

previous data. Also notice that, at step 1 in the table, the MLE 

of 0 and X were equal 0.00 and 1.0 respectively and had changed
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Table(6.1) The likelihood and predictive probability of risk

(a)When the families are assumed to be in the linked group

Previous data 

Pedigree

LIKELIHOOD 

e=P(Rix,0) P(R|x,,9)

PREDICTIVE 

P(R1x,,z) P(R|x,,z)

3 0.000 1.000 0.048 0.913

3+4 0.031 0.940 0.059 0.892

3+4+5 0.039 0.925 0.056 0.896

3+4+5+R 0.032 0.939 0.046 0.914

(b)When the families' group are not known

Previous data LIKELIHOOD PREDICTIVE

Pedigree P(R|x,,0,X) P(R|x,,e,x) P(Rlx,,z) P(R|x?,z)

1 0.000 1.000 0. 357 0,600

1+2 0.371 0.533 0.403 0.557

1+2+3 0. 211 0.789 0. 268 0. 703

1+2+3+4 0..169 0.811 0. 226 0.742

1+. . .+5 0. 143 0.,830 0. 196 0.,770

1+. . .+6 0.,134 0.,839 0,, 190 0..755

1+. . .+7 0,,116 0.,857 0,, 171 0,, 797

1+. . .+R 0,,099 0,,879 0,.149 0,.822

1+. . .+B 0 .101 0,.878 0,.152 0 .820

1+. . .+A.E 0,.156 0 .825 0 .190 0 .786

1+. . .+S.,S 0 . 188 0 .792 0 .229 0.780

1+. . .+M ..K 0 . 194 0.785 0.216 0 .757

1 + . . .+J.. P . N 0.230 0.752 0.245 0 .733

ALL 0 .248 0 .734 0.256 0 .720
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to become 0.036 and 0.542, at the final step of the analysis.
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CHAPTER SEVEN: Discussion

Once linkage has been established between a group of n loci, 

where n>3, then another major problem would confront the 

investigator(s), that of establishing the order of this group of 

loci. With n=3, only three orders can be tested against each 

other; with n>3, the problem becomes extensively complicated as 

the number of the tested orders, (nl/2), increases tremendously.

In chapter two and three of this study, we have been mainly 

interested in studying the statistical performance of a certain 

criterion, mentioned by 0tt(1985) to distinguish between two gene 

orders. This criterion has been applied to test the three 

different orders obtained when dealing with a three loci 

situation. But because of the special set up of the problem, for 

which we are testing three hypotheses simultaneously and where 

all of which are of the same dimensionality, the usual assessment 

which is based on the concept of a significance level and power, 

was in our view not suited. Actually our assessment of this

criterion, was based on the probability of it leading to a right,

a wrong or to an inconclusive decision, denoted by P 1( Pw and P*

respectively.

By using simulated data from phase known triple backcross 

families with three codominant alleles, and when the Haldane map 

function was assumed, we found out that the interesting range of 

N, the sample size, to be studied was [15,30]. A lower value of N 

will lead to a high probability of inconclusive decision, whereas 

a higher value will lead to a high probability of a right one. 

Using this result, we started out a more elaborate simulation , 

for N=20, upon which we estimated the three interesting

probabilities, P,, Pw and P4,as a function of ©=(0! 02)T when the
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true map function was Eq(3) (Morton( 1987)) and when the assumed 

one was either the Haldane, Kosambi or Eq(3). We noticed that, 

for any assumed map function, P+ was very large when either of 

the Q-[ was near 0.5 and then began to decrease as either of them 

decreases to reach a minimum value roughly at e1=ez=0.12, this 

comment would exactly be reversed to suit Pj. On the other hand 

the smallness of Pw for all of the range of 9, was the noticeable 

feature of this estimated probability; the maximum estimated 

value was roughly equal 0.0055, 0.012 and 0.023 under the three 

assumed map functions respectively. This result seems to suggest 

that using the prescribed criterion, section(2.2) page 54, to 

choose one of the tested orders is quite a safe one to use. Also, 

as far as the assumed map functions are concerned, we noticed 

that both PA and Pw increased with the correctness of this 

function. Actually at the maximum value of Px, the ratio between 

the Haldane and Eq(3) was about 2:3.

f9lMorton et al(1986) used all l3J trios of loci from a nine point 

data on the X chromosome of the D .melanogaster published by 

Morgan et al (1935), to calculate the ratio of the support, S, 

for the maximum order provided by using the Haldane map function 

against a more realistic one, the Rao et al(1979) with p=0.35; 

where the support, S, was defined as the maximised In likelihood 

ratio between the maximum order and the next maximum one. The 

value of this ratio was found to be equal 0.66. This loss of 

support for the correct order, which seems to correspond to the 

maximum one in that example, led them to believe that a more 

realistic map function than the Haldane would be then required 

for testing orders. Lathrop et al(1985) calculated the relative 

odds of the maximised likelihood functions between the three



- 206 -

different orders for a certain three point human data, when

either the Haldane, the Kosambi or even complete interference was 

assumed. From that example and others, they noticed that by 

assuming an interference level other than the Haldane, it had the 

effect of increasing the relative odds in favour of the maximum 

order, consequently they concluded that the assumption of no 

interference was a conservative one. They also commented in a

later paper(1987), that larger odds should not be interpreted as 

an increased evidence for the maximum likelihood order without 

calculation of significance levels.

Actually most of the above comments, seem to agree with our 

result. The conservatism of the Haldane map function had 

certainly been revealed in our result as having a smaller Pw

compared to the other assumed functions. Also, it seems that the 

loss of support for the correct order, measured by Morton, had 

revealed itself in a 2:3 ratio between P, when assuming Haldane 

rather than Eq{3), But, it is worth mentioning here that the loss 

of support calculated by Morton and our 2:3 ratio are not 

directly comparable; Morton's calculation was based on real but 

dependent data points and was estimated by testing the maximum 

likelihood order against the next maximum one. In our view, it

seems that by assuming the Haldane map function when testing gene 

orders, no real concern should be made about making a wrong

decision, the only concern should be the small probability of

producing any conclusive one. So that, a useful strategy would be 

to use this map function as a first step, as it simplifies

calculations greatly, and only if an inconclusive result is

reached than a second analysis based on a more realistic map 

function would be needed.

Directing our attention back to our results one can easily see
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some obvious limitations that the study suffers from _ N=20,

phase known triple backcross, codominant alleles— but another 

different limitation is the dependence of the study on the

criterion mentioned by Ott. In other words, we studied the 

performance of a certain criterion given a fixed critical level, 

whereas another interesting extension would be to think about the 

problem in its reverse order, (i.e) to try to find the critical 

level which corresponds to a certain required performance, 

Lathrop et al(1987) started on this road, when testing two 

orders, by using either of their prescribed - section(2.6)- least 

favourable or adaptive strategy. Another criticism to our study, 

that can easily be dealt with, would be that, in some other 

views, our probability of no conclusion could be further

subdivided into probabilities of rejecting one wrong order but 

not the other, and of no decision at all. This subdivision could 

perhaps be useful if dealing with more than three loci.

In chapter four and five of the study, we directed our 

attention to the construction of interval estimates for the

unknown recombination fraction(s) 9. Various methods based on the 

large sample properties of the likelihood function were 

investigated. When the original likelihood is used the empirical

joint confidence coefficient for 9, for a phase known triple

backcross data with sample size N=25, was slighty less than the 

nominal level of 95% for most of the studied range of 9. As for 

the marginal empirical one, it was quite satisfactory for most of 

the studied range of 0, although some combinations of and 0Z 

gave quite an unsatisfactory result (0j or 02 between

[0.07,0.13]). When only few points of the likelihood are supplied

the Ott approximation, Morton{1956) or 0tt(1985), can be used,

the empirical joint and marginal confidence coefficient for this
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method were slightly less than that of the original likelihood. 

To improve on this method we suggested our LSM approximation 

which gave result very near the original one. The draw back of 

this last approximation is that, in order to use it in practice, 

the publication of the pedigree likelihood which is normally 

supplied in terms of a table of points on a certain grid of 9 or 

0 (usually in step of 0,05 or 0.1) has to be much refined ((i.e) 

in step of 0.02). It might be worth doing this, especially if we 

bear in mind that the Ott approximation gave quite an unreliable 

result as compared to the LSM for some, though not all, 

combinations of 04 and 02. In chapter five, we further 

investigate the performance of either using a high posterior 

density (HPD) or a central confidence (CCI) Bayesian interval for 

0 or x as opposed to using the likelihood approach for a double 

backcross mating with N=25. No clear winner has been found for 

the studied range of 0 or x, nevertheless it was quite clear that 

the CCI Bayesian interval was unfavourable if either the 

likelihood or the prior distribution is very much skewed. A 

natural extension to the work done in those two chapters can be 

provided by extending the investigation of chapter four to 

include the phase unknown case and to extend that of chapter five 

to include the three loci situation.

In chapter six, we have applied the interesting work introduced 

by Aitchson and Dunsmore(1975) concerning the nature of 

statistical prediction analysis, to the calculation of the 

probability of an unborn child being at risk of carrying a 

genetical disease given his family pedigree, using an example 

from the genetical literature. This example had, we think, 

pointed out towards the importance of providing the counselled 

person with a simple though reliable probability which is
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weighted with the whole posterior density function as opposed to 

a probability which is just the mode of the likelihood one.
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Appendix(l)

The following quotation, from Ott 1985 page 19,20, is given in 

this appendix to provide the reader with a reference to the DNA 

recombinant technique which can detect and reveal differences in 

the DNA sequence between the two homologous chromosomes:

" Differences in DNA sequence can be exhibited as restriction 

fragment length polymorphisms (RFLPs) in the following way 

(Botstein et al. 1980; a lucid introduction can also be found in 

Lange and Boehnke 1983). First, DNA from human lymphocytes is cut 

into small fragments by DNA restriction enzymes (endonucleases). 

Such an enzyme recognises a specific sequence in double stranded 

DNA and cleaves both strands wherever that sequence occurs. The 

resulting DNA fragments are then separated electrophoretically 

according to their molecular size. Consider now a particular 

recognition site on a chromosome of an individual and assume, for 

example, that the corresponding DNA sequence on the homologous 

chromosome differs from the recognition site by a base-pair 

substitution. The altered sequence will then not be cleaved by 

the restriction enzyme. This and other genotypic differences 

result in fragments of different lengths. Such RFLPs can be made 

phenotipically visible as follows. After electrophoresis, the DNA 

fragments are split into single strands by denaturation, 

transferred to a solid support, and incubated with radioactive 

DNA probes (Southern 1975). These probes hybridize only with 

those fragments that share a homologous DNA sequence with them. 

Assume now that a probe hybridizes with DNA fragments of differnt 

lengths that originated from a base-pair substitution at an 

enzyme recognition site, as postulated above. The resulting RFLP 

will then show up in autoradiography as two bands (see Botstein
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1980, figure 1). The phenotypes 

to those of traditional 

electrophoretically."

of RFLPs are thus quite similar 

genetic markers detected
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Appendix(2.1)

AIM: To show that the third restriction in (2.3) will be

satisfied given a certain map function, f(0), (i.e) that: 

0i+02-2e102< 01 + 2< MintO.S.O^eJ 
will be satisfied when taking 0i+2= f-1( f )+f(0Z)), where in 

this appendix we are going to be interested in f(0) being equal 

to either the Haldane, Kosambi or Eq(3). With Haldane we shall 

have equality at the lower bound for 01+2.

METHOD; The method is going to depend on the following concept. 

For a certain function g(x), if the following two conditions are 

true :

(i) g(0)>0

(ii) g'(x)>0 for 0<x<X

then g(x) is positive for xe[0.0,X].

But first in order to achieve our aim, we have to divide the

above restriction into the following two inequalities:

0 l+2> 01+e2-20102 (A.2.1.1,a)

01+2< Min[O.5,01+02] (A.2.1.2,a)

Given f(©), (A.2.1.1,a) and (A.2.1.2,a) will be equivalent to: 

f(01)+f(02) > f(01+e2-20102) (A.2.1.1,b)

f (0i )+f (02) < Min[f (0.5) (A.2.1.2,b)

Now let us assume that 9X is fixed at a certain value a, where 

ae[0.0,0.5], then (A.2.1.1,b) will be satisfied if the following 

function, g(02), is positive for 92e[0.0,0.5], where: 

g(e2) = f(a)+f(02)-f(a+(l-2a)92)

Actually this will be easily shown if conditions (i) and (ii) 

are satisfied; so that for (i):

g(0) = f(a)+f(0)—f(a) = 0 , where f(0)=0 for any f(.).

As for (ii), recall from chapter one, the basic differential
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equation between the map distance, x=f(e), and 0 which was equal 
to (formula 1.19):

3f(9) 1
—0Q—  - i_2c" (9)§ ’ w^ere cm(0 ) is Haldane's marginal

coincidence which is equal to 1, 20 and (20)2 given the Haldane, 

Kosambi or Eq(3) map function respectively. Now to show that (ii) 

is satisfied, calculate;

“ 0 + x ^ 7  ' where ♦-a+(l-2a)eJ

=• 1 - U-2a> ,a 2 1 3)l-2cm (0, )e2 l-2cm (<t>)<t>

Under Haldane, (A.2.1.3) will lead to g'(02)=O as would be 

expected. (Recall that o1 + 2 = 91+02-2e102, given Haldane).
As for Kosambi and from (A.2.1.3), g'(02)>O if;

1 - 4<t>2 - (l-2a) (1-402 ) > 0  (202-l) 2 > 0
(i.e) for any 02 or a.

As for Eq(3) and from (A.2.1.3), g'(02)>O if:

1 - 8<d3 - (l-2a) (l-8©2 ) > 0  (l-202 ) z[4(l-a)©z+(l+2a) 3 > 0

(i.e) if; 02 > (A.2.1.4)

So for ae[0.0,0.5], the R.H.S of (A.2.1.4) will always be 

negative,(i.e) g'(02)>O for e2 and 9j within the feasable region.
Also the second inequality (A.2.1.2,b) will be satisfied, if 

for 01+02>O.5:

f(ej+f(02) < f(0.5) (A.2.1.5,a)
or for ©1+92<0.5:

f(01)+f(02) < f(0i+02) (A.2.1.5,b)

But as f(0.5)=<x>, for any map function, (A.2.1.5,a) will always be

satisfied.

Now let
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h ( © 2) = f(a+02) -f(a) -f(02) for ae[0.0,0.5]

9ze [0,0,0.5-a]

Note that for any map function h(0)=0 and:

h 1 ( ft ) = j. 12' i-2cm(02)e2 i-2cm(a+e2)(a+e2)
So that, given Haldane:

h ’(e2 ) > 0  if e2 < (a+o2).

And given Kosambi:

h 1(©2) > 0  if e2z< (a+02)2.

And given Eq{3) :
h 1(e2 ) > o  if e z3< (a+e2)3 .

Which is always true for 0j and 02 within the feasable region,

and
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Appendix(2.2)

AIM: Generating a data vector r=(rj r2 r3 r4)T where: 

rt r2 r3 r4 - Mult(N: Pt P2 P3 P4)

METHOD: Generating r is equivalent to generating the following 

three random variables:

R* - bi(N; P4)

R 3|r4 - bi(N-r4; P3/(l-P4))

R2jr3r4 * bi(N-r3-r4; P2/{l-P3-P4))

Generating any bi(N;P) would be then done by making use of the 

available Nag library routines, which are routine G05EDF and 

G05EYF.

In general Plt P2, P3 and P4 would be functions of 0lf ez and 

01+2 as mentioned in the text. But if any map function is assumed 

then, e1+2=f'1(f (Qj+f (e2)).
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Appendix(2.3)

AIM: To give the full and general proof that for each Pj.(eab’ebc) 

and under a certain map function f(.) then 

F*i(x,y) = Pi(y.x) where i= l,w,4

PROOF: For convenience, let a certain data point (rt r2 r3 r4)

be denoted by the vector r and let the corresponding point 

(Ti r3 r2 r4) be denoted by r 1 . Where under the true order 0 ^

both r and r' comes from the multinomial distribution of (2.5,a).

So that

p(r|x,y)= p(r'|y,x) (A.2.3.1)

where p(r|x,y) is calculated from the distribution of (2.5,a) 

when 0j =x and 02=y.

Also let

Sj = (all r such that xlz>2 and X13>2)

S2 = {all r such that Xlz<<-2 and xz3>2)

S3= {all r such that x13<-2 and X23<“2)

Then from the definition of the P^(s) in (2.7), the following is 

true

Pi(x,y)= E p(r|x,y) for i=l,2,3
reSj

The question that we want to answer now is whether a point 

r'eS-[ if r eSj 

Under 0,

Li(x,y;r) = <x(x,y)rlp(x,y)rzy(x,y)r36(x,y)r4 (A.2.3.2)

Li(x,y;r') = «(x,y)r'1p(x,y)r’37(x,y)r26(x,y)r‘i

where L^(x,y;r) is the likelihood function of x and y given the 

data point r, order 0-̂ and where cc, p, y and 6 are function of x 

and y as stated in (2.1) and when Si + 2 is equal to
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f-1 (f (x)+f (y)) . Also notice that as functions of x and y and from 

(2.1), a, B and y satisfy in general ((i.e)under any order) the 

following equalities

oc(x.y) = «(y,x)

P(x,y) = y(y,x) 

r(x,y) = 3(y,x)

so that

6(x,y) = 5(y,x)

Therefore

L^x.y.r1) = <x(y,x)riy(y,x)r3f3(y,x)r26(y,x)r4 (A.2.3.3)

By comparing (A.2.3.2) and (A.2.3.3) it is easy to see that

Xi(r) = y! (r1) and y t(r) = x^r'),

where Xj(r) and y^(r) are the MLE of x and y under order Oj and 

given the data point r. Therefore

**i(£) = Mi(l' ) (A.2.3.4)

Whereas under 0, and from (2.5,b)

Lz(x,y;r) = a(x,y)rzi3(x,y)riy(x,y)r35(x,y)r4 (A.2.3.5)

And under 0„ and from (2.5,c)

L3(x,y;r’) = oc(x,y)rzp(x,y)r3y(x,y)ri6(x,y)r4

= «(y.x)1'z>'(y,x)r3e(y,x)ri6(y,x)r4 (A.2.3.6)

By comparing (A.2.3.5) and (A.2.3.6) it is easy to see that

x2(r) = y3(r') and 52(£) = x 3(r'), therefore

Vz(r) = } (A.2.3.7)

Similarly, it is easy to see that

u 3(r) = uz (r') (A.2.3.8)



- 219 -

Also it follows from (A.2.3.7) and (A.2.3.8) that if r2=r3 and

therefore r = r' then X23(r) = x23(r') = 1. Therefore for

r=(r1r2r3r4) and r2_r3 , r 4 S2 anc* r 4 S3- Also from

(A.2.3.4), (A.2.3.7) and (A.2.3.8) it follows that xtz(r)=X*3(r') 

and x2 3 (r )=x3z (r' ) which means that if a data point reS,̂  then

r’eSj whereas if reS2 then r'eS3, so that Slt S2 and S3 could be 

redefined as follows

(all pair r and r' such that x12(r)>2 and x13(r)>2}

S2 = {all r only such that XIZ(r)<-2 and x23(r)>2, where r2*r3>

S3= {all r ’ only such that X13(r)<-2 and X23(r)<-2, where r2*r3> 

Then from (A.2.3.1) it follows that 

Pttx.y) = P4{y,x)

P2{x,y) = P3(y,x)

P3(x,y) - P2(y,x) 

and therefore 

Pw (x,y) = Pw (y,x )

P*(x,y) = P4(y,x)
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Appendix(4.1)

AIM: Approximate © = f"1(x)

by © = g(x)

where g{x) is a cubic spline function of x.

METHOD:

(i) Data (©j xj) j-1,2..... 169

(ii) Regress © on x using least square method where*.

©j = CjN^x-j) + C2N2 (Xj) + ... + CpNp(Xj) + ej

where:

ej = ej - g(xj),

Nĵ (x) is a normalised cubic B-spline,

C| are the unknown coefficients to be estimated.

Fitting the function g(x) to 0 has been done using the 

following two NAG routines:

(1)E02BAF: which computes a weighted least square approximation 

to an arbitrary set of data points by a cubic spline with knots 

prescribed by the user.

(2)E02BBF: which evaluates the approximating spline at a certain 

point x supplied by the user.
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Appendix(4.2)

AIM: Find the MLE, J of:

Ql(o) = a^f + a2o| + b1d>1 + b2<t>2 + 00^2 + d

subject to

Bj < o x< B 2

Bj <02< B2 where B ^ O  and 82=1/0.5
METHOD:

Firstly let us find the unconstrained maximum 0U . Actually 4>u can 
be found if:

001(0) 0 0Q1(0) 
00, = 0

and H, the hessian matrix is negative definite, where

H = 02Q1<£)
""30I

0?Q1(O) 
8<i> x 3<l> 2

a2Ql(*)
00L00 2 

3ZQ1(0)
00? 0 = 0U

Under these conditions

2a2b1 - cb2
Q 1U ~7TZ-cz - 4axa2 and ~ _ 2a!b2 cbj

°2U “ - c2 -"4^37

Secondly, if the unconstrained maximum occurs within the feasible 

region, then 0 = ou , otherwise a unique MLE will occur at one of 
the boundaries because of the unimodality and concavity of Ql(<}>).

Actually, because of the concavity of this function (see text,

figure (4.3) page 152) any of the boundaries would be tangent to

only one contour of Ql(o) and also at a single point of it. 

Therefore the boundary which will include the overall maximum, 

would be the one which is tangent to the nearest contour to the 

unrestricted maximum provided that the tangent point is within 

the feasible region. To find the overall maximum, then, the
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maximum at each of the possible boundaries will have to be 

compared. Actually one of the following situation can occur:

then 0 = <t>u

(ii) If

then 0! =

and

and

and

B1<o 2U<B2

zu

0? =

> Bz 
or 
< Bt

B
o

L B,
2

or

(and similarly for B1<SZU<B2 and 0iU>B2 or <Bi).

(iii) If 01U > b 2
or 

L < B,

and 'zu > B2 
or
< B t

then we will have to compare the following values of the 

quadratic likelihood to determine the MLE

Q1(B2,02(B2)) 

or Q1(B,,0*(B,))

and

and

Q1(01(B2),BZ)

Ql(ot(Bj),BX) , or etc...

where 0t(k2) is the MLE of Ql(olfkz) subject to B1<01<B2, (i.e)

<t>i (k2) = B* if k<Bj

_ -(bt+ckz) _ u 
2at if B j <k<B

= b 2 if k>B2
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Appendix(4,3)

AIM: Given the Haldane map function, find the MLE of:

1(0) tx rjlnPj + rzlnP2 + r3lnP3 + r4lnP4 

where Plf P2 , P3 and P4 are as described in table(l.lS).

METHOD: In general, r34=r3+r4 and rZ4=r2+r4 could be seen as

having the following binomial distributions:

r34 ~ bi(n P 3+P4) and r24 - bi(n Pz+P4)

where P3+P4= 201(l-e1) 

and P2+P4= 2ez(l-ez)

But given the Haldane map function, r34 and r24 are mutually 

independent, which means that 1( e )  could be rewritten as follows:

Therefore, the MLE, 0, could be arrived at by differentiating 

independently each lj_(9|). From appendix(5.1) , we found that the 

MLE, 0-̂ , of li(©i) could have one of the two values:

1 (®) " (e i) + J-2 (®z) 
where 1 J 0 J  a r 34ln(20i (1-©!)) + (n-r 34) lnte^ + tl-©!)2)

12(02) a r24ln(202(l-e2)) + (n-r24)ln(e|+(l-02)z)

otherwise

(where r=r34 or r24 for i=l or 2 respectively).

Therefore 9 will be one of the following four possibilities:

( 1 ) [ !  ~ l i i<n<n“ 2 r3A))0, 5 ; £ -  ^ ( n ( n - 2 r  24)) ° ' 5 j2

if 2r34<n and 2r24<n

(4)[0.5 ; 0.5] otherwise
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Appendix(5.1)

AIM: Find the MLE of:

1{0) = rln(<t>) + (n-r)ln(l-o)

where <d = 2e(l-e) and 0<©<0.5 

METHOD: Notice that for:

0 < 9 ^ 0 . 5  0 is an increasing function of 0 and

0 < 0 < 0.5.

This means that we have to maximise the familiar binomial log 

likelihood as a function of 0 first, but over the restricted 

range of 0e[0.0,0.5]. Thus

r r
n
1
2

if - < - n 2

otherwise

So that:

" 5 "  5n(n(n" 2 r ) )
O . 5

otherwise
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