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Abstract

In this thesis we introduce nuclear dimension and compare it with a stronger form of the

completely positive approximation property. We show that the approximations forming

this stronger characterisation of the completely positive approximation property witness

finite nuclear dimension if and only if the underlying C∗-algebra is approximately finite

dimensional. We also extend this result to nuclear dimension at most omega.

We review interactions between separably acting injective von Neumann algebras and

separable nuclear C∗-algebras. In particular, we discuss aspects of Connes’ work and how

some of his strategies have been used by C∗-algebraist to estimate the nuclear dimension

of certain classes of C∗-algebras.

We introduce a notion of coloured isomorphisms between separable unital C∗-algebras.

Under these coloured isomorphisms ideal lattices, trace spaces, commutativity, nuclearity,

finite nuclear dimension and weakly pure infiniteness are preserved. We show that these

coloured isomorphisms induce isomorphisms on the classes of finite dimensional and com-

mutative C∗-algebras. We prove that any pair of Kirchberg algebras are 2-coloured iso-

morphic and any pair of separable, simple, unital, finite, nuclear and Z-stable C∗-algebras

with unique trace which satisfy the UCT are also 2-coloured isomorphic.
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Introduction

Operator algebras arise as ∗-subalgebras of the algebra of bounded operators on a Hilbert

space which are closed with respect to certain topologies. If they are closed with respect

to the norm, they are called C∗-algebras, and if they are closed with respect to the weak

operator topology, they are called von Neumann algebras.

A C∗-algebra A is nuclear if there is a unique way to complete its algebraic tensor

product with any other C∗-algebra. Kirchberg and Choi-Effros obtained a useful charac-

terisation of nuclearity in terms of completely positive finite rank approximations [21, 53].

In this context, an approximation is a triple (F,ψ, ϕ) consisting of a finite dimensional

algebra F and completely positive contractions ψ : A −→ F, ϕ : F −→ A such that ϕ ◦ ψ

is equal to idA on a finite set up to some positive ε. This characterisation is known as

the completely positive approximation property. It turns out that nuclear C∗-algebras have

strong connections with injective von Neumann algebras: A is nuclear if and only if A∗∗

is injective (Theorem 4.6.5). In particular, the weak closure of every GNS representation

of A is injective and it has a separable predual if A is separable. Since injective von Neu-

mann algebras with separable predual were classified by Connes and Haagerup [22, 46], it

seems reasonable to ask if we can also classify nuclear and separable C∗ -algebras. Many

endeavours towards this classification have been made in the last 30 years.

This classification programme initiated by Elliott seeks to classify nuclear separable and

infinite dimensional C∗-algebras by means of K-theoretical invariants. Glimm provided

a starting point. He gave a complete classification of UHF-algebras using supernatural

numbers [42, Theorem 1.12]. During the 70’s, Elliott classified all AF-algebras by their

ordered K0-group [31, Theorem 4.3] and in the 90’s he extended this classification to simple

AT-algebras of real rank zero using their graded K-theory [33, Theorem 7.3]. Based on

this, Elliott conjectured that an invariant constructed from K-theory and traces might

be useful to classify a larger class of nuclear C∗-algebras [32]. This invariant has been

4
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called the Elliott invariant, denoted by Ell(A), and it has undergone some modifications

over time. This programme has been particularly focused on the classification of simple

separable nuclear C∗ algebras (see [84] for a more comprehensive overview).

The Elliott conjecture asserts that isomorphisms between the Elliott invariants can be

lifted to actual isomorphisms between the corresponding C∗-algebras. This programme

has had a lot of success: Elliot, Gong and Li showed the conjecture is true for simple AH-

algebras with very slow dimension growth [35, Theorem 4.9], Lin proved that C∗-algebras

of tracial rank zero in the UCT class satisfy the Elliott conjecture [61, Theorem 5.2], and

Kirchberg and Phillips proved that the conjecture is valid for Kirchberg algebras in the

UCT class [75, Theorem 4.2.1].

Unfortunately the conjecture, as it stands, is not true. At the end of the last century,

Jiang and Su introduced a C∗-algebra, denoted by Z, which is simple, separable, nuclear,

infinite dimensional, and projectionless with the same Elliott invariant as C [51, Theorem

1]. This algebra has become highly important in the classification programme. Gong, Jiang

and Su proved that for simple unital C∗-algebras with weakly unperforated K0-groups, the

Elliott invariant remains the same after tensoring with Z; precisely, Ell(A) ∼= Ell(A⊗ Z)

[43, Theorem 1]. This immediately shows that a success in the Elliott conjecture for this

particular class of C∗-algebras would imply Z-stability. However, remarkable examples of

C∗-algebras with weakly unperforated K0-groups which are not Z-stable were constructed

by Rørdam and Toms ([82, Theorem 6.10], [97, Theorem 1.1] and [98, Theorem 1.1]).

In order to fix the Elliott conjecture, we must reduce the scope of it. Some regularity

conditions have materialised as the solution for this problem. These conditions, now

known as the regularity properties, are of very different flavours: topological, analytical

and algebraic (c.f. [38]). Naturally, one of them, the analytical one originates from our

previous discussion: Z-stability. The algebraic one corresponds to strict comparison [74,

Definition 2.3]. Roughly speaking, strict comparison allows us to determine the order of

positive elements using traces. Finally, the topological property is nuclear dimension which

is a non commutative analogue of covering dimension for topological spaces. Toms and

Winter conjectured that all these three conditions are equivalent for simple, separable,

unital, infinite dimensional nuclear C∗-algebras [111, Conjecture 9.3]. There has been

many progress in the resolution of the Toms-Winter conjecture in the recent years. In

particular, it has been proved that finite nuclear dimension implies Z-stability and that

Z-stability implies strict comparison for separable and simple C∗-algebras [83, 107, 109].
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The reverse implications have been verified only under certain hypotheses [8, 57, 63, 89,

90, 99]. In particular, the conjecture holds if the trace simplex T (A) is Bauer and its

extreme boundary ∂eT (A) has finite covering dimension. Very recently, after the work

of many people during many years, the classification of simple, separable, unital, infinite

dimensional nuclear C∗-algebras with finite nuclear dimension which satisfy the UCT has

been completed [36, 44, 96].

Nuclear dimension theory has been a very active area of research and it is an important

topic for this thesis. Originally, precursor concepts were introduced by Winter in [104,

106] and years later, Winter and Kirchberg introduced a refinement called decomposition

rank [58]. It turns out that algebras with finite decomposition rank are stably finite

and quasidiagonal. Since finite decomposition rank imposes such strong restrictions on

the algebras enjoying this property, a further refinement known as nuclear dimension

was introduced by Winter and Zacharias in [111] which circumvents these obstructions.

Roughly speaking, a C∗-algebra A has nuclear dimension at most n if there exist completely

positive finite rank approximations (F,ψ, σ), where ϕ is the sum of n + 1 maps which

preserve orthogonality (these maps are known as order zero maps). Observe that we only

know that the norm of ϕ is bounded by n+ 1. If the norm of ϕ is at most one, then the

algebra has decomposition rank at most n.

In [49], a refined form of the completely positive approximation property was proved.

The algebra A is nuclear if and only if there exist completely positive finite rank approx-

imations (F,ψ, ϕ) such that ϕ is a finite convex combination of order zero maps. Notice

that the number of summands is not assumed to be uniformly bounded (in contrast with

the definition of nuclear dimension). The similarities between this strengthened version

of the completely positive approximation property and the definition of nuclear dimension

immediately trigger questions about their relations (if there is any). In this thesis, we will

show that in general the approximations coming from this form of the completely posi-

tive approximation property are not useful to determine nuclear dimension of the algebra

unless it is approximately finite dimensional (Theorem 3.1.5).

A breakthrough in the classification programme was achieved by Matui and Sato in

[64]. They showed that separable, simple, unital, quasidiagonal, Z-stable and nuclear C∗-

algebras with unique trace have decomposition rank at most three. The importance of

their work lies in the way they used Connes’ and Haagerup’s proof of injectivity implies

hyperfiniteness for II1-factors with separable predual [22, 45]. Connes showed that an
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injective II1-factor M with separable predual absorbs tensorially the hyperfinite II1-factor

R (factors satisfying this condition are known as McDuff), M embeds into Rω (the von

Neumann ultrapower of R), and the flip of M is strongly approximately inner. These

three deep facts are the main ingredients in Connes’ proof. Matui and Sato observed that

Connes’ proof provides a natural framework to prove, under certain conditions, that Z-

stable C∗-algebras have finite decomposition rank. Indeed, the Jiang-Su algebra Z arises

as the C∗-analogue of the hyperfinite II1-factor R and so following this analogy we might

think of simple Z-stable algebras as the C∗-analogue of McDuff factors. In the same

way, we can view finite nuclear dimension and finite decomposition rank as C∗-forms of

hyperfiniteness. Therefore, Connes’s proof supplies a strategy to show that Z-stability

implies finite nuclear dimension or decomposition rank.

In the work of Matui and Sato, the embedding of M into Rω is replaced with qua-

sidiagonality of A since this provides an embedding of A into the C∗-ultrapower of the

universal UHF algebra Q. Sato, White and Winter were able to remove quasidiagonality

of A by instead constructing a c.p.c. order zero map A −→ Qω [90].

The other ingredient is of high relevance for this work. The flip of A is an automorphism

on A⊗A given by a⊗b 7→ b⊗a (since we are working with nuclear C∗-algebras there is no

need to specify which tensor product we are using). As mentioned before, Connes proved

that the flip of injective II1-factors with separable predual are strongly approximately

inner. Effros and Rosenberg, motivated by the work of Connes, investigated approximately

inner flips for C∗-algebras [30]. It turns out that having an approximately inner flip is a

strong condition for a C∗-algebra, since it forces the algebra to be simple, nuclear and with

at most one trace. Even more, there are some topological obstructions. They observed

this by proving, using K-theory, that approximately finite dimensional algebras with an

approximately inner flip are forced to be UHF. Matui and Sato circumvented the use of

approximately inner flips by using techniques developed by Haagerup in [45]. Instead they

used what now is called an “approximately 2-coloured flip”.

These coloured flips avoid topological obstructions since we are breaking the flip in a

sum of two order zero maps and this type of maps do not carry topological data. However,

these type flips still force the underlying C∗-algebra to be simple, nuclear and with at most

one trace. Thus, in order to extend this result outside from the realm of the unique trace,

a replacement for the flip needs to be found. This was carried out in [8] by Bosa, Brown,

Sato, Tikuisis, White and Winter. The authors of [8] were able to show that separable,
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simple, unital, Z-stable and nuclear C∗-algebras whose trace simplices are Bauer (i.e.

the extreme boundary of T (A) is closed) have nuclear dimension at most 1. They also

introduced a notion that they called “coloured equivalent maps”.

Based on these notions of coloured flips and coloured maps, we develop a notion of

coloured isomorphism between separable unital C∗-algebras in this thesis. This is a joint

work with A. Tikuisis and S. White that will be published in [17]. Loosely speaking, two

algebras A and B are n-coloured isomorphic if there are c.p.c. order zero maps between

these two algebras in such a way that using both compositions we can express idA and

idB as sum of n order zero maps. This notion allows us to transfer some information

between equivalent algebras such as ideal lattices and tracial information, while at the same

time, circumvents topological obstructions. We show that for the case n = 1, coloured

isomorphic algebras are in fact isomorphic. The main theorems are the following: any two

Kirchberg algebras are 2-coloured isomorphic and any two separable, simple, unital, finite,

Z-stable and nuclear C∗-algebras with unique trace that satisfy the UCT are 2-coloured

isomorphic. The proofs of these theorems are in spirit the same but the technicalities are

rather different; in the finite case we rely in the tracial behaviour of the maps inducing

the coloured isomorphisms yet in the Kirchberg case there are no traces. The key idea is

to split the identity map of A as the sum of two order zero maps using Z-stability and a

positive element h ∈ Z with spectrum [0, 1]. Precisely, idA⊗1Z = idA⊗h+idA⊗(1Z − h).

Let us finish this introduction with an outline of this thesis. In Chapter 1 we will

review some preliminaries that will be needed throughout this thesis. We review important

properties of completely positive order zero maps and nuclearity, and introduce the Jiang-

Su algebra Z. The last section presents basic facts about Cuntz comparison and Cuntz

semigroups. We also compute important examples needed in the last chapter of this thesis.

In Chapter 2, we review the covering dimension of topological spaces and present the

definitions of decomposition rank and nuclear dimension. We explain the main differences

between these two notions and provide some examples. We also present a detailed analysis

of the commutative case and the zero dimensional objects for these dimension theories.

Chapter 3 is based on [16] which was published by the author. This chapter is devoted

to the study of decomposable approximations and nuclear dimension. It is shown that

approximations coming from the refined form of the completely positive approximation

property proved in [49] witness nuclear dimension if and only if A is approximately finite

dimensional. In the last two sections of this chapter, we discuss the notion of nuclear
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dimension at most omega and we extend the previous result to this case.

In Chapter 4, we present some important interactions between von Neumann algebras

and C∗-algebras. In the first section we state some basic facts about von Neumann alge-

bras and we review the relations between nuclearity, semidiscreteness and injectivity. We

discuss aspects of Connes’ proof of his celebrated theorem stating that injectivity implies

hyperfiniteness and we also explain how these ideas were implemented by Matui and Sato,

and Sato, White and Winter. We study the analogies between the Jiang-Su algebra Z and

the hyperfinite II1-factor R and, after introducing the idea of “colourings”, we explained

why we view nuclear dimension as a “coloured” form of hyperfiniteness. We finish this

chapter by reviewing part of the work carried out in [8]. We study the notion of coloured

equivalent maps and we state some important theorems that will be used in the final

chapter.

Finally in Chapter 5, we discuss the ideas that lead to the definition of a coloured

isomorphism of separable unital C∗-algebras. After this, we present the definition and its

basic properties. It is showed that any two Kirchberg algebras are 2-coloured isomorphic

and the last section is devoted to proving that any two separable, simple, unital, Z-stable

and nuclear C∗-algebras with unique trace that satisfies the UCT are 2-coloured isomor-

phic. An appendix dedicated to the basic properties of ultraproducts is also included.
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Chapter 1

Preliminaries

In this chapter we will introduce some of the basic concepts we will use throughout this

thesis. We also present some technical statements that will be used later. This introduction

is not self-contained and some knowledge of operator algebras is assumed. This chapter is

mostly based on [13, 84].

1.1 Notation

We will denote the unitisation of a C∗-algebra A by Ã. The unit ball of A will be denoted

by A1 and the set of positive elements of A will be denoted by A+. Similarly, the set of

unitaries will be denoted by U(A).

In this thesis, a functional τ : A −→ C is tracial if τ(ab) = τ(ba) for all a, b ∈ A and

a trace on A is a tracial state τ : A −→ C. The set of traces will be denoted by T (A).

Actually, the space of traces T (A) is a Choquet simplex [88, Theorem 3.1.18].

For a ∈ A and X ⊂ A, we will denote inf
x∈X
‖a− x‖ by dist(a,X). In this thesis, zero is

not considered to be a natural number. We will write N0 to denote the set N ∪ {0}.

Normally, H will denote a Hilbert space and B(H) denotes the algebra of bounded

operators on H. We will write K to denote the compact operators on a separable Hilbert

space. The symbol A⊗n will denote the tensor product of A with itself n times.

1.2 Multipliers

The multiplier algebra is the C∗-analogue of the Stone-Čech compactification. This anal-

ogy is justified by the fact that the multiplier algebra of C0(X) is C(βX), where βX is

12
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the Stone-Čech compactification of X. For our purposes, we use the original construction

using multipliers, due to Busby.

Definition 1.2.1 ([14, Definition 2.1]). Let A be a C∗-algebra. A multiplier is a pair

(L,R) of maps L,R : A −→ A such that aL(b) = R(a)b for all a, b ∈ A. M(A) will denote

the set of multipliers of A.

Multipliers are also called double centralisers. Observe that continuity of the maps is

not assumed since the definition already implies that the maps L and R are bounded. In

fact, ‖L‖ = ‖R‖ [14, Proposition 2.5, Lemma 2.6]. We can define operations and a norm

onM(A) in order to equip it with the structure of a unital C∗-algebra [14, Definition 2.10,

Theorem 2.11]. Precisely, for a bounded map L : A −→ A, let L∗ be the map given by

L∗(a) = (L (a∗))∗ .

Since

aR∗(b) = a (R(b∗))∗ = (R(b∗)a∗)∗ = (b∗L(a∗)) = (L(a∗))∗ b = L∗(a)b (1.1)

for all a, b ∈ A, we have that (R∗, L∗) is a multiplier if (L,R) is a multiplier. Then, the

operations and norm on M(A) are given by

• (L1, R1) + (L2, R2) = (L1 + L2, R1 +R2) ,

•λ (L,R) = (λL, λR) , λ ∈ C,

• (L1, R1) (L2, R2) = (L1L2, R2R1) ,

• (L,R)∗ = (R∗, L∗) ,

• ‖(L,R)‖ = ‖L‖ = ‖R‖. (1.2)

With these operations and norm, M(A) is a unital C∗-algebra where the unit is the

multiplier (idA, idA) [14, Theorem 2.11]. The algebraM(A) is called the multiplier algebra

of A. Observe there is a canonical embedding M : A −→M(A) given by

Ma = (La, Ra), (1.3)

where La and Ra are defined as left and right multiplication by a respectively,

La(b) = ab, Ra(b) = ba, a, b ∈ A.

Via this canonical embedding, A is an ideal of M(A). Indeed, let a, b, c ∈ A. Thus

cL(ab) = R(c)ab = (R(c)a) b = c (L(a)b) . (1.4)
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After doing the same computation for R, we obtain

L(ab) = L(a)b, R(ab) = aR(b), a, b ∈ A. (1.5)

With these identities in hand, it is easy to verify that A is an ideal of M(A). Consider

(L′, R′) ∈ M(A) and a ∈ A, then by definition (L′, R′) (La, Ra) = (L′La, RaR
′). After

observing the following identities,

L′La(b) = L′(ab) = L′(a)b, RaR
′(b) = R′(b)a = bL′(a), b ∈ A, (1.6)

we obtain

(
L′, R′

)
(La, Ra) =

(
LL′(a), RL′(a)

)
. (1.7)

Similarly, we have

(La, Ra)
(
L′, R′

)
=
(
LR′(a), RR′(a)

)
. (1.8)

This shows A is an ideal of M(A).

We have mentioned before that M (C0(X)) ∼= C(βX), where βX is the Stone-Čech

compactification of the locally compact space X. Another important example is the fol-

lowing: M(K) ∼= B(H) where H is a Hilbert space with countable basis.

Before stating a technical lemma, let us recall a basic fact about extreme points of the

unit ball of a C∗-algebra.

Theorem 1.2.2 ([4, Theorem II.3.2.17]). Let A be a C∗-algebra. If A is non unital, then

there are no extreme points in the closed unit ball of A. If A is unital, then the extreme

points of the closed unit ball of A are precisely the elements x such that

(1A − xx∗)A (1A − x∗x) = 0.

In particular, every unitary is an extreme point of the unit ball of A.

The reason why we introduced multipliers is the following lemma which will be used

in Chapter 3.

Lemma 1.2.3 ([16, Lemma 4]). Let A be a C∗-algebra and a1, a2 ∈ A1
+. Let B be a C∗-

subalgebra of A and let λ1 and λ2 be strictly positive real numbers satisfying λ1 + λ2 = 1.

If a1b ∈ B and (λ1a1 + λ2a2) b = b for all b ∈ B, then a1b = a2b = b for all b ∈ B.
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Proof. By hypothesis, we have that La1(b) = a1b ∈ B and Ra1(b) = ba1 ∈ B for all b ∈ B.

Then the maps La1
∣∣
B

and Ra1
∣∣
B

are maps from B to B and they satisfy

bLa1
∣∣
B

(b′) = Ra1
∣∣
B

(b)b′, b, b′ ∈ B. (1.9)

Thus Ma1 =
(
La1
∣∣
B
, Ra1

∣∣
B

)
∈M(B).

Similarly if a = λ1a1 +λ2a2 then Ma ∈M(B). In fact, Ma = 1M(B) since a is positive

and ab = b for all b ∈ B. We have

λ2a2b = b− λ1a1b, b ∈ B. (1.10)

By the hypothesis, the right side of the previous equation is in B, therefore a2b ∈ B for

all b ∈ B and this yields Ma2 ∈M(B). It is also straightforward to see that

1M(B) = Ma = λ1Ma1 + λ2Ma2 . (1.11)

By Theorem 1.2.2, 1M(B) is an extreme point of the unit ball of M(B). Since Ma1 and

Ma2 also lie in the unit ball, we have

1M(B) = Ma1 = Ma2 . (1.12)

This finishes the proof.

1.3 Approximately finite dimensional algebras

It is well known that finite dimensional C∗-algebras are nothing more than finite direct

sums of matrix algebras. One can build more complicated C∗-algebras from these finite

dimensional blocks. This was done by Bratteli, who introduced the approximately finite

dimensional C∗-algebras ([9, Definition 1.1]).

A separable C∗-algebra A is approximately finite dimensional (AF) if it contains an

increasing sequence of finite dimensional C∗-algebras {An}n∈N such that
⋃
n∈N

An is dense

in A. It is also well known that, alternatively, we can define AF-algebras as the inductive

limit of finite dimensional C∗-algebras. One important class of AF-algebras are the UHF

algebras, which are inductive limits of matrix algebras with unital connecting maps [42,

Theorem 1.13]. Bratteli proved the following theorem, known as the local characterisation

of AF-algebras.
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Theorem 1.3.1 ([9, Theorem 2.2]). A separable C∗-algebra A is AF if and only if for

every finite subset F ⊂ A and ε > 0 there exists a finite dimensional C∗-algebra B ⊂ A

such that

dist (a,B) < ε

for all a ∈ F.

There are two possible definitions of non separable AF-algebras, either as algebras

containing a directed family of finite dimensional C∗-subalgebras with dense union (equiv-

alently as the direct limit of finite dimensional C∗-algebras over general directed sets) or

via the local characterisation. These are not the same ([40, Theorem 1.5]) and in this

thesis we choose to work with the local characterisation as the definition of AF since it is

better suited to our purposes.

Definition 1.3.2. A C∗-algebra is AF if for every finite subset F ⊂ A and ε > 0 there

exists a finite dimensional C∗-algebra B ⊂ A such that

dist (a,B) < ε

for all a ∈ F.

1.4 Completely positive maps

One important class of maps for C∗-algebras are the so-called completely positive maps.

These maps are fundamental for the approximation theory of C∗-algebras. Remember

that a positive map between C∗-algebras is a bounded linear map which sends positive

elements to positive elements.

Let A and B be C∗-algebras. A map ϕ : A −→ B is completely positive if for every

n ∈ N the map ϕn : Mn(A) −→Mn(B), given by

ϕn([ai,j ]) = [ϕ(ai,j)],

is positive. For brevity, we will refer to completely positive maps as c.p. maps and, in

the same way, u.c.p. and c.p.c. map will stand for unital and completely positive map and

completely positive and contractive map respectively.

As examples of c.p. maps we have ∗-homomorphisms and compression of ∗-homomorphisms,

i.e. maps of the form ϕ(a) = V ∗π(a)V where π is a ∗-homomorphism and V is an opera-

tor. It turns out that any c.p. map looks like this. We present this result only for unital

C∗-algebras.
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Theorem 1.4.1 (Stinespring). Let A be a unital C∗-algebra and let ϕ : A −→ B(H)

be a c.p.c. map where H is a Hilbert space. Then there exists a Hilbert space H̃, a ∗-

representation π : A −→ B(H̃) and an operator V : H −→ H̃ such that

ϕ(a) = V ∗π(a)V

for all a ∈ A. In particular ‖ϕ‖ = ‖V ∗V ‖ = ‖ϕ(1A)‖.

The following proposition summarises some basic facts about c.p. maps which are

straightforward consequences of Stinespring’s theorem.

Proposition 1.4.2 ([13, Proposition 1.5.6]). Let A and B be C∗-algebras and ϕ : A −→ B

a c.p. map.

(i) The inequality ϕ(a∗)ϕ(a) ≤ ϕ(a∗a) holds for every a ∈ A.

(ii) If a ∈ A satisfies ϕ(a∗a) = ϕ(a)∗ϕ(a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗, then

ϕ(ba) = ϕ(b)ϕ(a) and ϕ(ab) = ϕ(a)ϕ(b) for every b ∈ A.

(iii) The subspace

Aϕ = {a ∈ A | ϕ(a∗a) = ϕ(a)∗ϕ(a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗}

is a C∗-subalgebra of A.

Let us introduce an important class of c.p.c. maps.

Definition 1.4.3. Consider two C∗-algebras A and B with B ⊂ A. A conditional expec-

tation is a c.p.c. map E : A −→ B such that E
∣∣
B

= idB and

E
(
bab′

)
= bE(a)b′

for all a ∈ A and b, b′ ∈ B.

We finish our collection of results about c.p.c. maps by stating the following useful

inequality. Its proof is a consequence of Stinespring’s theorem and the C∗-identity.

Lemma 1.4.4 ([104, Lemma 3.1]). Let ϕ : A −→ B be a c.p.c. map between C∗-algebras

and let a, b ∈ A. Then

‖ϕ(ab)− ϕ(a)ϕ(b)‖ ≤ ‖ϕ(aa∗)− ϕ(a)ϕ(a∗)‖1/2‖b‖. (1.13)
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1.4.1 Order zero maps

An important class of c.p.c. maps are the ones which preserve orthogonality. Originally

these maps were introduced by Winter when the domain is a finite dimensional algebra

[104, Definition 2.1] and they were examined in full generality by Winter and Zacharias in

[110].

Definition 1.4.5 ([110, Definition 2.3]). Let A and B be C∗-algebras. A c.p. map ϕ :

A −→ B is of order zero if it preserves orthogonality, i.e. if a, b ∈ A+ satisfy ab = 0 then

ϕ(a)ϕ(b) = 0.

Easy examples of c.p. order zero maps are ∗-homomorphisms. Let us provide another

example. Let π : A −→ B be a ∗-homomorphisms between C∗-algebras and consider h ∈ B

which commutes with π(a) for all a ∈ A. Then the map given by ϕ(a) := hπ(a) is c.p. of

order zero. Like in the c.p. case, order zero maps essentially look like this. The following

theorem is an order zero version of Stinespring’s theorem and it was proved by Winter

and Zacharias ([110, Theorem 3.3]) based on previous work by Wolff [112, Theorem 2.3].

Theorem 1.4.6. Let ϕ : A −→ B be a c.p. map of order zero between C∗-algebras and

set C := C∗ (ϕ (A)). Then there exist a positive h ∈ M (C) ∩ C ′ with ‖h‖ = ‖ϕ‖ and a

∗-homomorphism

πϕ : A −→M (C) ∩ {h}′

such that

ϕ(a) = hπϕ(a) (1.14)

for all a ∈ A. If A is unital, then one may take h = ϕ(1A).

The ∗-homomorphism πϕ is called the support ∗-homomorphism of the order zero map

ϕ. Let us give an explicit description of πϕ. Consider H as the universal Hilbert space

of C∗ (ϕ(A)) and we can assume that C∗ (ϕ(A)) acts nondegenerately on H. The support

∗-homomorphism πϕ of ϕ is given by

πϕ(a) = s.o. lim
n→∞

(
ϕ(1A) +

1

n
1H

)−1

ϕ(a), a ∈ A, (1.15)

where s.o. lim stands for the limit in the strong operator topology. Throughout this thesis,

we will denote the support ∗-homomorphism of ϕ by πϕ, unless otherwise stated. As a

straightforward consequence of the previous theorem we have that if A is unital and ϕ(1A)

is a projection, the order zero map ϕ is in fact a ∗-homomorphism.
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Let ϕ : A −→ B be a c.p.c. order zero map. Then it induces a ∗-homomorphism

ρϕ : C0(0, 1]⊗A −→ B by

ρϕ
(
id(0,1] ⊗ a

)
= ϕ(a).

This indeed defines a ∗-homomorphism because C(0, 1] is isomorphic to the universal C∗-

algebra generated by a positive contraction, identifying this generator with idC(0,1] [62].

Similarly, every ∗-homomorphism ρ : C0(0, 1] ⊗ A −→ B induces a c.p.c. order zero map

ϕρ : A −→ B by

ϕρ(a) = ρ
(
id(0,1] ⊗ a

)
.

These two assignations are in fact the inverse of each other. These facts lead to the

following corollary.

Corollary 1.4.7 ([110, Corollary 4.1]). Let A and B be C∗-algebras. There is a canonical

bijection between the space of c.p.c. order zero maps A −→ B and ∗-homomorphisms

C0(0, 1]⊗A −→ B.

Another useful application of the structure of order zero maps is the positive functional

calculus for c.p.c. order zero maps.

Corollary 1.4.8 ([110, Corollary 4.2]). Let ϕ : A −→ B be a c.p.c. order zero map between

C∗-algebras and let f ∈ C0(0, 1] be a positive function. Let h and πϕ be as in Theorem

1.4.6, then the map f(ϕ) : A −→ B given by

f(ϕ)(a) = f(h)πϕ(a), a ∈ A,

is a well defined order zero map. If the norm of f is at most one, then f(ϕ) is also

contractive.

Another form of writing functional calculus is using the corresponding map C0(0, 1]⊗

A −→ B. Precisely, if ϕ : A −→ B is a c.p.c. order zero map and ρϕ : C0(0, 1]⊗ A −→ B

is the ∗-homomorphism induced by ϕ, we have

f(ϕ)(a) = ρϕ(f ⊗ a)

for every positive f ∈ C0(0, 1].

Order zero maps are well behaved with respect to the minimal and maximal tensor

product (see Section 1.5).
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Corollary 1.4.9 ([110, Corollary 4.3]). Let A,B,C and D be C∗-algebras and let ϕ :

A −→ B and ψ : C −→ D be c.p.c. order zero maps. Then the induced map

ϕ⊗ ψ : A⊗α C −→ B ⊗α D

has order zero, where ⊗α denotes the minimal or maximal tensor product.

An important feature of order zero maps is that the composition of an order zero map

with a positive tracial functional is also tracial.

Corollary 1.4.10 ([110, Corollary 4.4]). Let A and B be C∗-algebras, ϕ : A −→ B a

c.p.c. order zero map and τ a positive tracial functional. Then the composition τ ◦ ϕ is a

positive tracial functional.

Support ∗-homomorphisms of order zero maps are useful tools while working with order

zero maps. The downside of this map is that its image is contained in some multiplier

algebra and sometimes this might be inconvenient. Let us introduce now another useful

tool for order zero maps. This is another map which has the feature that its image is

contained in the ultraproduct of the codomain C∗-algebra but the price to pay is that this

map is no longer a ∗-homomorphism. The proper definition of ultrapowers can be found

in the Appendix A.

Proposition 1.4.11 ([90, Lemma 2.2], [8, Lemma 1.14]). Let A and B be unital C∗-

algebras such that A is separable. Suppose S ⊂ Bω is separable and self-adjoint and let

ϕ : A −→ Bω ∩ S′ be a c.p.c. order zero map. Then there exists a c.p.c. order zero map

ϕ̂ : A −→ Bω ∩ S′ such that

ϕ(ab) = ϕ̂(a)ϕ(b) = ϕ(a)ϕ̂(b), a, b ∈ A.

The c.p.c. order zero map ϕ̂ is called a support order zero map of ϕ.

A proof of this proposition can be found in A.1.8. The map ϕ̂ is not unique, however

in many applications this downside will not be relevant. We can recover the positive

functional calculus for order zero maps using these support order zero maps. Precisely

f (ϕ) (a) = f (ϕ(1A)) ϕ̂(a)

for every positive f ∈ C(0, 1] [8, Lemma 1.14].

Now let us present some basic results which are part of the folklore. We include their

proofs since we were unable to find a reference.
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Lemma 1.4.12. Let A and B be unital C∗-algebras and let ϕ : A −→ B be a c.p.c. order

zero map. If I is a closed two sided ideal of B, then ϕ−1(I) is a closed two sided ideal of

A.

Proof. It is immediate that ϕ−1(I) is closed in A. Let a, x ∈ A with a ∈ ϕ−1(I). Then

ϕ(ax) = hπϕ(ax) = hπϕ(a)πϕ(x) = ϕ(a)πϕ(x). Since I∩C∗(ϕ(A)) is an ideal of C∗(ϕ(A))

which is an ideal ofM (C∗(ϕ(A))), we have that I∩C∗(ϕ(A)) is an ideal ofM (C∗(ϕ(A))).

We consider a ∈ ϕ−1(I), thus ϕ(a) ∈ I ∩ C∗(ϕ(A)) and therefore we have ϕ(ax) =

ϕ(a)πϕ(x) ∈ I. Similarly xa ∈ ϕ−1(I). This shows ϕ−1(I) is an ideal of A.

Lemma 1.4.13. There are no non zero order zero maps from Mk (C) to any commutative

C∗-algebra for k ≥ 2.

Proof. Let A be a commutative C∗-algebra and let ϕ : Mk (C) −→ A be a non zero c.p.

order zero map for some k ∈ N. By Lemma 1.4.12, the kernel of ϕ is an ideal of Mk (C).

Since Mk (C) is simple, ϕ is injective. For any x, y ∈Mk (C), we have

ϕ(xy) = ϕ
1
2 (x)ϕ

1
2 (y)

(∗)
= ϕ

1
2 (y)ϕ

1
2 (x) = ϕ(yx) (1.16)

where the equality (∗) is given by the commutativity of A. Since ϕ is injective, we obtain

xy = yx for any x, y ∈Mk (C). As a consequence, Mk (C) is commutative and this forces

k to be equal to 1.

An alternative proof for the previous lemma can be obtained in the following way. The

existence of a non zero c.p.c. order zero map ϕ : Mk (C) −→ A yields the existence of an in-

jective ∗-homomorphism πϕ : Mk (C) −→M (C∗(ϕ(A))). Since C∗(ϕ(A)) is commutative,

its multiplier algebra is also commutative. This immediately implies Mk(C) is commuta-

tive (so k = 1) since it is isomorphic to a commutative subalgebra of M (C∗(ϕ(A))).

Corollary 1.4.14. Let A,B and C be unital C∗-algebras and let ϕ : A −→ B and ψ :

B −→ C be c.p. order zero maps. Then the following identity holds

πψϕ(a)x = πψπϕ(a)x.

for all x ∈ C∗(ψϕ(A)).

Proof. By Theorem 1.4.6, we have

ϕ(a) = ϕ(1A)πϕ(a), ψ(b) = ψ(1B)πψ(b)
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for all a ∈ A and b ∈ B. In particular, we have

ψϕ(a) = ψ(1B)πψ(ϕ(a)) = ψ(1B)πψ(ϕ(1A))πψπϕ(a)

for all a ∈ A. Let D = C∗ (ψϕ(A)) and consider H as the universal Hilbert space of D

and, in fact, D acts nondegenerately on H. The support order zero map πψϕ of ψϕ is

given by

πψϕ(a) = s.o. lim
n→∞

(
ψϕ(1A) +

1

n
1H

)−1

ψϕ(a).

This leads to the following

πψϕ(a)x = s.o. lim
n→∞

(
ψϕ(1A) +

1

n
1H

)−1

ψϕ(a)x

= s.o. lim
n→∞

(
ψ(1B)πψ(ϕ(1A)) +

1

n
1H

)−1

ψ(1B)πψ(ϕ(1A))πψπϕ(a)x

= πψπϕ(a)x. (1.17)

The last identity holds since

s.o. lim
n→∞

(
ψ(1B)πψ(ϕ(1A)) +

1

n
1H

)−1

ψ(1B)πψ(ϕ(1A)) = 1H .

This finishes the proof.

1.5 Nuclearity

We will denote the algebraic tensor product of the C∗-algebras A and B as A � B. A

C∗-norm ‖ · ‖α on A�B is a norm which satisfies

‖xy‖α ≤ ‖x‖α‖y‖α, ‖x∗‖α = ‖x‖α, ‖x∗x‖α = ‖x‖2α, x, y ∈ A�B.

The completion of A�B with respect to this norm will be denoted as A⊗α B. There are

two important C∗-norms: the maximal C∗-norm ‖ · ‖max and the spatial C∗-norm ‖ · ‖min

(which is also called the minimal C∗-norm). As the names are indicating, these two norms

are the largest and the smallest C∗-norms on A�B, i.e.

‖x‖min ≤ ‖x‖α ≤ ‖x‖max, x ∈ A⊗B,

for every C∗-norm ‖ · ‖α on A�B [13, Corollary 3.8, Theorem 4.8].

Another important fact is that every C∗-norm ‖ · ‖α on A � B is a cross norm, i.e.

‖a⊗ b‖α = ‖a‖A‖b‖B for all elementary tensors a⊗ b ∈ A�B [13, Lemma 3.4.10].



CHAPTER 1. PRELIMINARIES 23

Definition 1.5.1. A C∗-algebra A is nuclear if for every other C∗-algebra B, there is a

unique C∗-norm on A�B.

The tensor product of a nuclear C∗-algebra A with any other C∗-algebra B will be

simply denoted as A ⊗ B. Examples of nuclear C∗-algebras are matrix algebras, AF-

algebras, commutative algebras and group C∗-algebras of amenable groups [13, Proposition

4.1, Proposition 4.2, Theorem 6.8]. The majority of the C∗-algebras in this thesis are

nuclear.

We will now provide a characterisation of nuclearity through finite rank completely

positive approximations.

Definition 1.5.2. A C∗-algebra A has the completely positive approximation property

(CPAP) if for all finite subsets F ⊂ A and ε > 0 there exist a finite dimensional algebra F

and c.p.c. maps ψ : A −→ F,ϕ : F −→ A such that

‖a− ϕψ(a)‖ < ε (1.18)

for all a ∈ A,

A

ψ

��

idA // A.

F

ϕ

>>

The triple (F,ψ, ϕ) is called a c.p.c. approximation for F within ε. A system of c.p.c.

approximations for A will be a net of c.p.c. approximations
{(
F (r), ψ(r), ϕ(r)

)}
r∈I con-

verging to idA in the point-norm topology, i.e. ϕ(r)ψ(r)(a) −→ a for all a ∈ A. If A is

separable, it is enough to consider a sequence of c.p.c. approximations. It follows from the

definition that A has the completely positive approximation property if and only if there

exists a system of c.p.c. approximations for A.

An striking theorem due to Choi and Effros [21], and Kirchberg [53] states that the

completely positive approximation property and nuclearity are (surprisingly!) equivalent

conditions.

Theorem 1.5.3 ([21, Theorem 3.1], [53, Corollary 1]). A C∗-algebra A is nuclear if and

only if A has the completely positive approximation property.

The proof of the following folklore proposition is very similar to the proof of [13,

Proposition 2.2.6]. We include it for completeness.



CHAPTER 1. PRELIMINARIES 24

Proposition 1.5.4. Let A be a unital nuclear C∗-algebra and let M ∈ R be a positive con-

stant. Suppose that for every finite subset F ⊂ A and ε > 0 there exist a finite dimensional

algebra F and c.p. maps ψ : A −→ F,ϕ : F −→ A such that

‖a− ϕψ(a)‖ < ε

for all a ∈ A and ‖ψ‖, ‖ϕ‖ < M . Then A is nuclear.

Proof. We will show A has the completely positive approximation property. In particular,

if M ≤ 1, the algebra already has it. So let us assume M > 1. Let F be a finite subset of A

and ε > 0. Without loss of generality we can suppose ε < 1, the elements of F are postitive

contractions and 1A ∈ F. Observe that the approximations given by the hypothesis do not

entail the nuclearity because such maps are not necessarily contractions.

The idea of the proof is the following. We will replace the c.p. maps given by the

hypothesis with different u.c.p. maps which also approximate idA. The replacement of

the map ψ is immediately given by [13, Lemma 2.2.5] and the replacement of the other

map needs more technical details but essentially it boils down to finding approximations

(F,ψ, ϕ) such that ϕψ(1A) is almost 1A.

Using the continuity of the real valued function t 7→ t−
1
2 at 1, we can find δ > 0 such

that if |1− t| < δ then ∣∣∣1− t− 1
2

∣∣∣ < ε

4M
. (1.19)

By hypothesis, there exist a matrix algebra F and c.p. maps ψ : A −→ F,ϕ : F −→ A

such that

‖a− ψϕ(a)‖ < min
{
δ,
ε

4

}
(1.20)

for all a ∈ F. In particular, ‖1A − ψϕ(1A)‖ < δ. We can assume δ is sufficiently small in

such a way that ψϕ(1A) is a positive invertible element. By continuous functional calculus

we have ∥∥∥1A − ψϕ(1A)−
1
2

∥∥∥ < ε

4M
. (1.21)

By [13, Lemma 2.2.5], there exists a u.c.p. map ϑ : A −→ F such that

ψ(a) = ψ(1A)
1
2ϑ(a)ψ(1A)

1
2 , a ∈ A. (1.22)
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Let us define a u.c.p. ζ : F −→ A that will replace the c.p. map ϕ : F −→ A. Set

b = ψϕ(1A)−
1
2 and define

ζ(x) = bϕ
(
ψ(1A)

1
2xψ(1A)

1
2

)
b, x ∈ F. (1.23)

Observe that this map is unital. Indeed,

ζ(1F ) = bϕ
(
ψ(1A)

1
2 1Fψ(1A)

1
2

)
b

= ψϕ(1A)−
1
2ϕψ(1A)ψϕ(1A)−

1
2

= 1A. (1.24)

In order to finish, let us prove these u.c.p. maps approximate the finite subset F. By

construction we have

ζϑ(a) = bϕ
(
ψ(1A)

1
2ϑ(a)ψ(1A)

1
2

)
b

(1.22)
= bϕψ(a)b. (1.25)

Observe

‖ϕψ(a)− ζϑ(a)‖ (1.25)
= ‖ϕψ(a)− bϕψ(a)b‖

≤ ‖ϕψ(a)− bϕψ(a)‖+ ‖ϕψ(a)b− bϕψ(a)b‖

≤ ‖1A − b‖ ‖ϕψ(a)‖+ ‖1A − b‖ ‖ϕψ(a)‖ ‖b‖
(1.21)
<

ε

4M
M +

ε

4M
M
(

1 +
ε

4M

)
<

ε

4
+
ε

4
(1 + ε)

<
3ε

4
. (1.26)

Finally we have

‖a− ζϑ(a)‖ ≤ ‖a− ϕψ(a)‖+ ‖ϕψ(a)− ζϑ(a)‖
(1.20)(1.26)

<
ε

4
+

3ε

4

= ε (1.27)

for all a ∈ F. Since ϑ and ζ are unital, these maps are contractive. Then, by Theorem

1.5.3, A is nuclear.

A refinement of the completely positive approximation was proved in [49]. The ap-

proximations can be taken to be convex combinations of order zero maps. Very recently,
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it was proved in [12] that the first map ψ can be taken to be approximately order zero.

This theorem is one of the key motivations for this thesis. We will discuss its connections

with nuclear dimension in Chapter 3 and we will sketch its proof in Section 4.3.

Theorem 1.5.5 ([49, Theorem 1.4], [12, Theorem 3.1]). Let A be a nuclear C∗-algebra.

Then for any finite subset F ⊂ A and ε > 0 there exist a finite dimensional C∗-algebra F

and c.p.c. maps ψ : A −→ F,ϕ : F −→ A such that

(i) ‖a− ϕψ(a)‖ < ε for all a ∈ F,

(ii) the c.p.c. map ϕ is a convex combination of finitely many order zero maps,

(iii) ‖ψ(a)ψ(b)‖ < ε if a, b ∈ F are orthogonal positive elements.

1.6 Finite algebras

In this section we will recall some basic facts about finite algebras. A more detailed study

can be found in [84, Section 1.1].

Two projections p and q in a C∗-algebra A are Murray-von Neumann equivalent if

there exists v ∈ A such that

p = v∗v, q = vv∗.

Definition 1.6.1. Let A be a C∗-algebra and let p ∈ A be a projection.

(i) If p is Murray-von Neumann equivalent to a proper sub-projection of itself, p ∈ A is

called infinite. A C∗-algebra is infinite if it contains an infinite projection.

(ii) The projection p is finite if it is not infinite. A C∗-algebra is finite if it admits an

approximate unit of projections and all projections are finite.

A unital C∗-algebra A is stably finite if its stabilisation A⊗K is finite and a non unital

C∗-algebra is stably finite if its unitisation is. Similarly, A is stably projectionless if A⊗K

is projectionless.

A quasitrace is a continuous function τ : A+ −→ R+ that satisfies τ(x∗x) = τ(xx∗) for

all x ∈ A, τ(λa) = λτ(a) for all λ ≥ 0 and a ∈ A+, and τ(a+ b) = τ(a) + τ(b) if a, b ∈ A+

commute, and such that τ extends to a map M2(A)+ −→ R+ with the same properties.

It was proved by Blackadar and Handelman that every unital stably finite C∗-algebra

admits a quasitrace [5]. Morever, Haagerup proved that in exact C∗-algebras quasitraces

are actually traces [47, Theorem 5.11]. These two results add up to the following theorem.
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Theorem 1.6.2 (Blackadar-Handelman-Haagerup, [84, Theorem 1.1.10]). Every unital,

stably finite, exact C∗-algebra admits a trace, and every unital stably finite C∗-algebra

admits a quasitrace.

Quasitraces and traces might be unbounded if the C∗-algebra is not unital. Instead,

they are defined only on a dense subset of A+ or A. However, densely defined traces are

not important for this thesis since we will be working with unital C∗-algebras most of the

time.

1.7 Purely infiniteness and Kirchberg algebras

In this section we will introduce an important class of C∗-algebras. Historically, pure

infiniteness was introduced as a property for simple C∗-algebras by Cuntz [25]. This

definition has been extended by Kirchberg and Rørdam to non simple algebras [55].

Definition 1.7.1 ([55, Definition 4.1]). A C∗-algebra A is purely infinite if it has no non

zero abelian quotients and for every pair of non zero positive elements a, b ∈ A, where b

belongs to the closed two sided ideal generated by a, there exists a sequence (xn)n∈N of

elements of A such that x∗naxn −→ b.

Purely infinite and simple C∗-algebras have been studied extensively in the past. We

present some properties of this particular class.

Proposition 1.7.2 ([84, Proposition 4.1]). Let A be a simple C∗-algebra. Then the fol-

lowing conditions are equivalent:

(i) A is purely infinite,

(ii) for every pair of non zero positive elements a, b ∈ A there exists x ∈ A such that

a = x∗bx,

(iii) for every pair of non zero positive elements a, b ∈ A there exist x, y ∈ A such that

a = xby,

(iv) the real rank of A is zero and every non zero projection in A is properly infinite,

(v) every non zero hereditary subalgebra of A contains an infinite projection.

The Cuntz algebras are examples of simple and purely infinite algebras. We have the

following dichotomy result for purely infinite and simple C∗-algebras.
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Proposition 1.7.3 ([113, Theorem 1.2]). Every separable, purely infinite, simple C∗-

algebra is either unital or stable.

Kirchberg obtained spectacular results concerning simple and purely infinite C∗-algebras.

Let us recall some of them. A C∗-algebra is elementary if it is isomorphic either to Mn(C)

for some n ∈ N or K. A simple C∗-algebra A is called tensorially non-prime if it is not

isomorphic to the minimal tensor product of two non-elementary algebras, otherwise A is

called tensorially prime.

Theorem 1.7.4 (Kirchberg, [84, Theorem 4.1.10]). Let A and B be simple C∗-algebras.

(i) Suppose that A is not stably finite and that B is not elementary. Then the minimal

tensor product A⊗B is simple and purely infinite.

(ii) Suppose that D is a simple, exact C∗-algebra that is tensorially non-prime. Then D

is either stably finite or purely infinite.

Theorem 1.7.5 (Kirchberg’s Absorption Theorems). The following statements are true.

(i) [84, Theorem 7.1.2] A is a simple, separable, unital, and nuclear C∗-algebra if and

only if O2
∼= A⊗O2.

(ii) [84, Theorem 7.2.2] Let A be a simple, separable, and nuclear C∗-algebra. Then

A ∼= A⊗O∞ if and only if A is purely infinite.

The class of C∗-algebras described in part (ii) of the previous theorem have been named

after Kirchberg.

Definition 1.7.6. A Kirchberg algebra is a purely infinite, simple, nuclear and separable

C∗-algebra.

Now let us focus on a weaker form of pure infiniteness that was introduced in [56].

Definition 1.7.7 ([7, Definition 1.2]). Let n be a natural number. A C∗-algebra A is

n-purely infinite if the following conditions hold.

(i) For every pair of non zero positive elements a, b ∈ A such that b lies in the closed

two-sided ideal of A generated by a, and for every ε > 0, there exist d1, . . . , dn ∈ A

such that ∥∥∥∥∥b−
n∑
k=1

d∗kadk

∥∥∥∥∥ < ε.
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(ii) There is no non zero quotient algebra of `∞(A) of dimension less or equal to n2.

The algebra A is called weakly purely infinite if A is n-purely infinite for some n ∈ N.

Remark 1.7.8. Another definition of n-pure infiniteness was introduced by Kirchberg and

Rørdam in [56, Definition 4.1]. It was proved in [7, Proposition 4.12] by Blanchard and

Kirchberg that the definition introduced here is weaker than the former definition from [56].

However, both definitions induce the same notion of weakly purely infinite C∗-algebras [7,

Proposition 4.12].

It immediately follows from the definition that 1-pure infiniteness is just pure infinite-

ness. It turns out that if a C∗-algebra is weakly purely infinite then its ultrapower is

traceless.

Definition 1.7.9. A C∗-algebra A is traceless if no algebraic ideal of A admits a non-zero

quasitrace.

Theorem 1.7.10 ([56, Theorem 4.8]). Let A be a C∗-algebra.

(i) For each free filter ω on N the following three conditions are equivalent.

(a) Aω is traceless.

(b) Aω is weakly purely infinite.

(c) A is weakly purely infinite.

(ii) If A is weakly purely infinite, then A is traceless.

In the simple case, the notion of weakly pure infiniteness is equivalent to pure infinite-

ness.

Theorem 1.7.11 ([56, Corollary 4.6]). Any weakly purely infinite C∗-algebra which is

simple is purely infinite.

1.8 Quasidiagonality

In this section we will review the notion of quasidiagonality. For a more complete discussion

see [13, Chapter 7].
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Definition 1.8.1. Let H be a Hilbert space and let Ω ⊂ B(H) be an arbitrary collection

of operators. Then Ω is called a quasidiagonal set if for each finite set F ⊂ Ω, each finite

set χ ⊂ H and each ε > 0 there exists a finite-rank projection P ∈ B(H) such that

‖PT − TP‖ < ε, T ∈ F,

and

‖Pv − v‖ < ε, v ∈ χ.

A separable C∗-algebra A is quasidiagonal if it has a faithful representation as a set

of quasidiagonal operators on some Hilbert space. The C∗-algebra A is called strongly

quasidiagonal if π(A) is a quasidiagonal set of operators for every representation π of A.

It is immediate from the definition that matrix algebras are quasidiagonal. Other

more interesting examples are AF-algebras. Like with nuclearity, we can characterise

quasidiagonality using c.p.c. maps.

Theorem 1.8.2 (Voiculescu [103]). A C∗-algebra A is quasidiagonal if and only if there

exists a net of c.p.c maps ϕi : A −→Mki(C) such that

(i) ‖ϕi(ab)− ϕi(a)ϕi(b)‖ −→ 0

(ii) ‖ϕi(a)‖ −→ ‖a‖

for all a, b ∈ A.

If the C∗-algebra is unital, we can assume the c.p.c. maps ϕn are unital. As a straight-

forward application of this theorem, we obtain that commutative C∗-algebras are quasidi-

agonal. In this case it is rather simple to construct ∗-homomorphisms from a commutative

C∗-algebra to finitely many copies of C just by evaluating at some points of its spec-

trum. If we select the appropriate points, we obtain a net of ∗-homomorphisms satisfying

conditions (i) and (ii) of Theorem 1.8.2.

Another consequence of this theorem is that a separable C∗-algebra A is quasidiagonal

if and only if it embeds in the ultrapower of the universal UHF algebra, Qω, and this

embedding has a c.p. lift A −→ `∞(Q),

`∞ (Q)

����
A �
� //

::

Qω.
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If the algebra is nuclear we do not need to ask for a c.p. lift since the Choi-Effros lifting

theorem automatically provides it [90, Proposition 1.4.(i)].

Definition 1.8.3. A C∗-algebra A homotopically dominates another C∗-algebra B if there

are ∗-homomorphisms π : A −→ B, σ : B −→ A such that π ◦ σ is homotopic to idB. The

algebras A and B are homotopy equivalent if there are ∗-homomorphisms π : A −→ B, σ :

B −→ A such that σ ◦ π is homotopic to idB and π ◦ σ is homotopic to idA.

Voiculescu proved that quasidiagonality is a homotopy invariant. This fact will produce

many examples of quasidiagonal C∗-algebras.

Theorem 1.8.4 (Voiculescu [103]). Let A and B be C∗-algebras. If A homotopically

dominates B and A is quasidiagonal, then B is also quasidiagonal.

It is immediate that the 0 algebra is quasidiagonal. Let σt : C0(0, 1] −→ C0(0, 1] be

given by σt(f)(s) = f(ts). This defines a homotopy between the zero map and idC0(0,1].

After tensoring this homotopy with idA, we obtain that C0(0, 1] is homotopic to zero.

By Voiculescu’s theorem, the cone over A, C0(0, 1] ⊗ A is quasidiagonal. Finally, since

quasidiagonality passes to subalgebras, the suspension C(0, 1)⊗A is also quasidiagonal.

Corollary 1.8.5. For any C∗-algebra, both the cone over A, C0(0, 1] ⊗ A, and the sus-

pension of A, C(0, 1)⊗A, are quasidiagonal.

There exist two known obstructions to quasidiagonality. One is stable finiteness, which

was introduced in Section 1.6. The other obstruction relates to the existence of an amenable

trace.

Definition 1.8.6. Let A be a C∗-algebra represented in B(H). A state τ is called an

amenable trace if there exists a state ϕ on B(H) such that

1. ϕ|A = τ ,

2. ϕ(uTu∗) = ϕ(T ) for every unitary u ∈ A and T ∈ B(H).

The definition of amenable trace does not depend on the representation [13, Proposition

6.2.2].

Proposition 1.8.7 ([13, Proposition 7.1.15, Proposition 7.1.16]). Let A be a quasidiagonal

C∗-algebra. Then A is stably finite. If additionally A is unital, then A has an amenable

trace.
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This immediately implies that C∗-algebras which are not stably finite cannot be qua-

sidiagonal, for example the Toeplitz algebra, B(H) and Cuntz algebras. An important

example is the reduced group C∗-algebra C∗λ(F2), it is stably finite but it does not have

an amenable trace and hence it is not quasidiagonal.

In the appendix of [48], Rosenberg showed that if the reduced group C∗-algebra of a

discrete group Γ is quasidiagonal then Γ is amenable and he conjectured the converse was

true. This question remained unsolved for many year. A partial solution was found by

Ozawa, Rørdam and Sato who verified this conjecture for elementary amenable groups

[72, Theorem 3.8]. Very recently, Tikuisis, White and Winter proved that this conjecture

is true for any amenable group [96, Corollary C].

Corollary 1.8.8 (Rosenberg [48, Appendix], [90, Corollary C]). Let Γ be a discrete group.

Then the reduced group C∗-algebra is quasidiagonal if and only if Γ is amenable.

We finish this section by giving one last family of examples of quasidiagonal algebras.

Theorem 1.8.9 ([19, Theorem 7]). For n =∞, 1, 2, . . . the full group C∗-algebra C∗ (Fn)

is quasidiagonal.

In fact, Choi proved this theorem for n = 2. But the result is true for n =∞, 1, 3, . . .

since C∗ (Fn) sits as a subalgebra of C∗ (F2) and quasidiagonality passes to subalgebras.

1.9 The Jiang-Su algebra Z

In this section we will recall an important C∗-algebra that was introduced by Jiang and Su

in [51]. As explained in the introduction, this algebras has become extremely important

for the classification program. The Jiang-Su algebra Z is highly relevant for this thesis

and more properties of this algebra will be discussed in the forthcoming chapters. This

section is mostly based on Sections 2 and 3 of [85].

Let p, q ∈ N. The dimension drop algebra Zp,q is given by

Zp,q =
{
f ∈ C ([0, 1],Mp(C)⊗Mq(C)) | f(0) ∈Mq(C)⊗ 1Mq(C), f(1) ∈ 1Mp(C) ⊗Mq(C)

}
.

If q and q are relatively prime numbers, the dimension drop algebra Zp,q is called prime.

It turns out that in this case, Zp,q has no non trivial projections [51, Lemma 2.2], and

K0 (Zp,q) ∼= Z and K1 (Zp,q) ∼= 0 [51, Lemma 2.3].
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Theorem 1.9.1 ([51, Theorem 1]). There exists a separable, simple, nuclear, infinite

dimensional C∗-algebra Z with unique trace and with no non trivial projections such that

K0(Z) ∼= K0(C) ∼= Z and K1(Z) ∼= K1(C) ∼= 0.

The algebra Z is called the Jiang-Su algebra. It was constructed by Jiang and Su as

an inductive limit of prime dimension drop algebras. However this construction is not

canonical and infinitely many choices are made when choosing the connecting maps. Let

us recall some important properties of the Jiang-Su algebra.

Theorem 1.9.2 ([51, Theorem 3, Theorem 4]). Let Z be the Jiang-Su algebra.

(i) Any unital endomorphism on Z is approximately inner.

(ii) For any n ∈ N, Z ∼= Z⊗n.

We will finish this section by providing an intrinsic description of the Jiang-Su algebra

Z. Let p be a supernatural number and let us denote by Mp the UHF algebra associated

to p. If p∞ = p, Mp and p are called of infinite type.

Consider supernatural numbers p and q. The generalised dimension drop algebra Zp,q

is given by

Zp,q =
{
f ∈ C ([0, 1],Mp ⊗Mq) | f(0) ∈Mp ⊗ 1Mq , f(1) ∈ 1Mp ⊗Mq

}
. (1.28)

Like in the case of the dimension drop algebras, if p and q are relatively prime supernatural

numbers, the generalised dimension drop algebra Zp,q is called prime. It was proved by

Rørdam and Winter that we can also characterise the Jiang-Su algebra Z using generalised

dimension drop algebras which are prime.

Theorem 1.9.3 ([85, Corollary 3.2, Proposition 3.3]). Let p and q be infinite supernatural

numbers of infinite type.

(i) The generalised dimension drop algebra Zp,q tensorially absorbs the Jiang-Su algebra

Z, i.e. Zp,q ⊗Z ∼= Zp,q.

(ii) If p and q are relatively prime, then Zp,q embeds unitally into Z.

Remark 1.9.4. Let p, q be natural numbers and consider the dimension drop algebra Zp,q.

A unital ∗-homomorphism ψ : Zp,q −→ Z is called standard if

τZ (ψ(f)) =

∫ 1

0
tr (f(t)) dt, f ∈ Zp,q,
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where τZ is the unique trace on the Jiang-Su algebra Z and tr is the normalized trace on

Mpq. Observe that standard homomorphisms induce the Lebesgue trace on its image; i.e.

τZ
(
ψ
(
f ⊗ 1Mp ⊗ 1Mq

))
=

∫ 1

0
f(t)dt, f ∈ C[0, 1].

By the previous theorem, the generalised dimension drop algebra Zp∞,q∞ embeds unitally

in the Jiang-Su algebra Z if p and q are relatively prime. Furthermore, this embedding

can be taken to be an inductive limit of standard unital embeddings. This shows that this

embedding can be taken in such a way that the trace on Z induces the Lebesgue trace on

Zp∞,q∞ [83, Proposition 2.2].

A unital endomorphism ϕ on a unital C∗-algebra is trace collapsing if τ ◦ ϕ = τ ′ ◦ ϕ

for every pair of traces τ and τ ′ on A.

Theorem 1.9.5 ([85, Theorem 3.4]). Let p and q be infinite supernatural numbers that

are relatively prime.

(i) There exists a trace collapsing unital endomorphism on Zp,q.

(ii) Let ϕ be any trace collapsing unital endomorphism on Zp,q. Then Z is isomorphic

to the indictive limit of the sequence

Zp,q
ϕ // Zp,q

ϕ // Zp,q
ϕ // · · · .

The (canonical) trace collapsing endomorphism on Zp,q is given by Theorem 1.9.3;

precisely, since p and q are relatively prime there exist an embedding Zp,q ↪→ Z and we

also have an embedding Z ↪→ Zp,q given by the second factor embedding 1Zp,q ⊗ idZ

followed by an isomorphism between Zp,q⊗Z and Zp,q. A trace collapsing endomorphism

on Zp,q is obtained by the composition

Zp,q �
� // Z �

� // Zp,q.

It turns out that the Jiang-Su algebra Z can be characterised as the unique C∗-algebra

satisfying Theorem 1.9.2 such that there exist relatively prime infinite supernatural num-

bers p and q and embeddings Zp,q ↪→ Z ↪→ Zp,q [85, Proposition 3.5].

1.10 Cuntz comparison

We will present a quick overview of Cuntz comparison and the Cuntz semigroup. We

will also compute the Cuntz semigroup of some examples we will use later. A more

comprehensive review of this topic can be found in [2].
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Consider a C∗-algebra A. Let M∞(A) denote the algebraic limit of the sequence

A
ϕ1 //M2(A)

ϕ2 //M3(A)
ϕ3 // . . .

ϕn−1//Mn(A)
ϕn // . . .

where ϕn : Mn(A) −→Mn+1(A) is given by

ϕn(a) =

 a 0

0 0

 .

For positive elements a, b ∈M∞(A), let us denote

a⊕ b :=

 a 0

0 b

 .

It is immediate that a⊕ b is also positive.

Definition 1.10.1 ([24]). Let A be a C∗-algebra and let x, y ∈ M∞(A) be positive el-

ements. The element x is Cuntz subequivalent to y, denoted by x � y, if there exists

a sequence (zn)n in M∞(A) such that x = lim
n→∞

z∗nyzn. The element x is called Cuntz

equivalent to y, denoted by x ∼ y, if x � y and y � x.

For a ∈ A+ and ε > 0, the element (a− ε)+ will denote gε(a) ∈ A given by functional

calculus where gε : R −→ R is given by gε(t) = max {0, t− ε}. The next proposition is a

useful statement whilst working with �.

Proposition 1.10.2 ([81, Proposition 2.4]). Let A be a C∗-algebra and x, y ∈ M∞(A)+.

The following conditions are equivalent.

(i) x � y.

(ii) For every ε > 0 there exists δ > 0 such that (x− ε)+ � (y − δ)+.

(iii) For every ε > 0 there exists δ > 0 and r ∈ A such that (x− ε)+ = r(y − δ)+r
∗.

The Cuntz equivalence is in fact an equivalence relation ([4, Definition II.3.4.3]) and

we will denote the class of a by 〈a〉.

Definition 1.10.3 ([24, Section 4],[23, Appendix]). Let A be a C∗-algebra. The Cuntz

semigroup of A, denoted as W (A), is the quotient

W (A) := M∞(A)/ ∼ .

The completed Cuntz semigroup of A is defined as

Cu(A) = W (A⊗K).
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We can equip the Cuntz semigroup W (A) with the structure of a positively ordered

abelian monoid; i.e. 〈0〉 ≤ x for any x ∈W (A). The sum is given by

〈a〉 ⊕ 〈b〉 = 〈a⊕ b〉

and the partial order is defined by

〈a〉 ≤ 〈b〉 if a � b.

The Murray-von Neumann semigroup V (A) is defined as the set of Murray-von Neumann

equivalence classes of projections of M∞(A). There is a natural map V (A) −→ W (A),

given by sending the Murray-von Neumann equivalence class of each projection to its

Cuntz-equivalence class. This map is in fact injective if the C∗-algebra is stably finite [2,

Lemma 2.20].

Example 1.10.4. (i) [2, Proposition 2.38] W (Mn(C)) = N0 and Cu(Mn(C)) = N0 ∪

{∞}. The class of each positive element is determined by its rank.

(ii) [2, Proposition 2.41] If A is a Kirchberg algebra, then W (A) = Cu(A) = {0,∞}.

This follows from the fact that any two non zero elements in a Kirchberg algebra are

Cuntz-equivalent (Proposition 1.7.2) and because A ⊗ K is a Kirchberg algebra by

Proposition 1.7.3.

(iii) [2, Theorem 2.45] W (K) = Cu(K) = N0 ∪{∞}. The class of each positive element is

determined by its rank.

From these examples, we can observe thatW is not continuous with respect to inductive

limits. In [23], Cu was introduced in order to amend this inconvenience.

Let π : A −→ B be a ∗-homomorphism between two C∗-algebras, π induces a map

Cu(π) : Cu(A) −→ Cu(B) in the following way:

Cu(π)(〈a〉) = 〈π(a)〉.

In this way, Cu is a functor from the category of C∗-algebras to a category which is

called Cu. Very roughly speaking, the objects of Cu are ordered abelian semigroups which

satisfy that the order is compatible with the sum, every countable upward directed set

has a supremum and some other technical axioms (see [2, Definition 4.2] for a proper

description of the category Cu). The maps in Cu are semigroup homomorphisms which

preserve the zero element, order, suprema of countable upward directed sets and the “way
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below” order relation �. This relation is defined in the following way: Let (S,≤) be an

ordered abelian semigroup and x, y ∈ S. The element x is way below y, denoted as x� y

if whenever (yn)n∈N is an increasing sequence with sup yn ≥ y, then there exists n such

that x ≤ yn.

Let A be a unital C∗-algebra. An state on Cu(A) is an order preserving morphism

s : Cu(A) −→ R such that s (〈1A〉) = 1.

Definition 1.10.5. Every quasi trace τ on A determines a dimension function dτ : A+ −→

[0,∞] in the following way,

dτ (a) = lim
n→∞

τ
(
a

1
n

)
, a ∈ A+.

Similarly, a quasitrace τ on A⊗K determines a dimension function dτ : Cu(A) −→ [0,∞]

dτ (〈a〉) = lim
n→∞

τ
(
a

1
n

)
, 〈a〉 ∈ Cu(A).

It turns out that every state on Cu(A) arises in this way [37, Theorem 4.4]. Let (W,≤)

be an ordered semigroup. An element x ∈ W is compact if x� x and an element y ∈ W

is soft if y′ � y then there exists k ∈ N such that (k + 1)y′ ≤ ky. With these definitions

in hand, let us present the following theorem which will allow us to compute Cu of some

C∗-algebras. The symbol t denotes disjoint union.

Theorem 1.10.6 ([37, Corollary 6.8, Remark 6.9]). Let A be separable, unital, simple,

stably finite, Z-stable and exact C∗-algebra with unique trace τA. Then

Cu(A) ∼= V (A) t (0,∞]. (1.29)

The order ≤ of V (A) t (0,∞] restricted to V (A) or (0,∞] agrees with their usual

orders. Let [p] ∈ V (A) and t ∈ (0,∞], then [p] ≤ t if τA(p) < t. In the same way, t ≤ [p]

if t ≤ τA(p).

Remark 1.10.7. The elements in V (A) correspond to the compact elements of Cu(A) and

the elements in (0,∞] correspond to the soft elements. Let us describe this identification

in more detail. We will describe the compact part of Cu(A) first. Since A is stably finite,

there is a canonical map from V (A) to Cu(A) which is injective, this map just takes the

Murray-von Neumann class of a projection p and sends it to its Cuntz-equivalence class

[p]. If 〈a〉 ∈ Cu(A) is compact, then there exists a projection p ∈M∞(A) such that a ∼ p

and 〈a〉 is identified with the Murray-von Neumann class of p. On the other hand, if

〈a〉 ∈ Cu(A) is soft, it is identified with dτA(〈a〉).
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Let us present an important example.

Example 1.10.8. By Theorem 1.9.1, the Jiang-Su algebra Z has the same K-theoretical

data of C. This yields V (A) ∼= N0. Then

Cu(Z) ∼= N0 t (0,∞]. (1.30)

Let X be a topological space and S an object of Cu. A function f : X −→ S is lower

semicontinuous if for all s ∈ S the set f−1 (s�) = {x ∈ X | s� f(x)} is open in X. The

set of lower semicontinuous functions from X to S will be denoted as Lsc(X,S). The

following theorem gives us a precise description of Cu for cones of AF-algebras.

Theorem 1.10.9 ([1, Theorem 3.4]). Let X be a locally compact Hausdorff space which

is second countable and one dimensional. Let A be a simple AF-algebra. Then

Cu (C0(X)⊗A) ∼= Lsc (X,Cu(A)) . (1.31)

It is important to note that Theorem 1.10.6 and 1.10.9 apply to a broader class of

C∗-algebras. They are presented here only in the form we will need them in Chapter 5.

Let us briefly recall the constructions of pullbacks of C∗-algebras and pullbacks of

semigroups in Cu. A more complete description can be found in [1, Section 3]. Let A,B

and C be C∗-algebras. Let π : A −→ C and ϕ : B −→ C be ∗-homomorphisms. The

pullback A⊕C B is the C∗-algebra given by

A⊕C B = {(a, b) ∈ A⊕B | π(a) = ϕ(b)} . (1.32)

Normally pullbacks are represented with the following diagram,

A⊕C B //

��

B

ϕ

��
A π

// C.

We can also construct pullbacks in the category of Cu. Let R,S and T be elements of

Cu and consider Cu-morphisms ρ : R −→ T and σ : S −→ T . The pullback R⊕T S is the

semigroup given by

R⊕T S = {(r, s) ∈ R⊕ S | ρ(r) = σ(s)} , (1.33)
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R⊕T S //

��

S

σ

��
R ρ

// T.

Theorem 1.10.10 ([1, Corollary 3.5]). Let X be a compact Hausdorff space that is second

countable and one dimensional. Let A be a separable C∗-algebra with stable rank one such

that K1(I) = 0 for every closed two sided ideal I of A. Let B be any C∗-algebra and

suppose ϕ : B −→ C(Y,A) is a ∗-homomorphism, where Y ⊂ X is a closed subset of X.

Then

Cu
(
C (X,A)⊕C(Y,A) B

) ∼= Lsc ([0, 1],Cu(A))⊕Lsc(Y,Cu(A)) Cu(B) (1.34)

in the category of Cu, where

Lsc ([0, 1],Cu(A))⊕Lsc(Y,Cu(A)) Cu(B) //

��

Cu(B)

Cu(ϕ)

��
Lsc ([0, 1],Cu(A))

f 7→f |Y
// Lsc (Y,Cu(A)) .

With this theorem in hand, let us compute an important example.

Example 1.10.11. Let A be a separable, simple, unital AF-algebra with unique trace.

The unitisation of C0(0, 1]⊗A is given by

(C0(0, 1]⊗A)∼ ∼= {f ∈ C([0, 1], A) | f(0) ∈ C1A} . (1.35)

We can write (C0(0, 1]⊗A)∼ as a pullback given by the diagram

C([0, 1], A)⊕C({0},A) C //

��

C

ϕ

��
C([0, 1], A) π

// C({0}, A),

where π : C([0, 1], A) −→ C({0}, A) is given by π(f) = f |{0} and ϕ : C −→ C({0}, A) is

given by ϕ(λ)(0) = λ1A. It is immediate that

(C0(0, 1]⊗A)∼ ∼= C([0, 1], A)⊕C({0},A) C. (1.36)

Then, by Theorem 1.10.10, we have

Cu ((C0(0, 1]⊗A)∼) ∼= Cu (C[0, 1]⊗A)⊕Cu(A) Cu(C). (1.37)
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By Theorem 1.10.9, we obtain

Cu (C([0, 1], A)) ∼= Lsc ([0, 1],Cu(A)) , Cu (C ({0}, A)) ∼= Cu(A). (1.38)

We have the following diagram

Lsc ([0, 1],Cu(A))⊕Cu(A) Cu(C) //

��

N0 ∪ {∞}

Cu(ϕ)

��
Lsc ([0, 1],Cu(A))

Cu(π)
// Cu(A),

which shows that

Lsc ([0, 1],Cu(A))⊕Cu(A) N0 ∪ {∞} ∼= {f ∈ Lsc ([0, 1],Cu(A)) | f(0) ∈ n〈1A〉, n ∈ N0 ∪ {∞}} .

Before moving forward, let us prove the following lemma that will be needed in Chapter

5. Remember that the support of a Borel measure υ on R is given by

supp υ = {x ∈ R | υ((x− ε, x+ ε)) > 0 for all ε > 0}.

In particular, if U is an open set such that U ∩ supp υ 6= ∅, then υ(U) > 0.

Proposition 1.10.12. Let A be a separable, simple AF-algebra with unique trace τ and let

υ be a Borel measure on [0, 1] with support [0, 1]. Then the map σ : Lsc ([0, 1],Cu(A)) −→

N0 t (0,∞] ∼= Cu(Z) given by

σ(f) =

∫ 1

0
dτ (f(t)) dυ(t) ∈ (0,∞], f ∈ Lsc ([0, 1],Cu(A)) , (1.39)

is a Cu-map (i.e. a morphism in the category Cu).

We remark that the element σ(f) is regarded as an element of the soft part of Cu(Z),

i.e. (0,∞].

Proof. We have that dτ is additive, order preserving and preserve suprema of increasing

sequences [37, Section 4.1]. Then it is immediate that σ preserves the order and the

semigroup structure. Indeed, let f, g ∈ Lsc ([0, 1],Cu(A)). Since dτ is additive we have

σ(f + g) =

∫ 1

0
dτ ((f + g)(t)) dυ(t)

=

∫ 1

0
dτ (f(t)) dυ(t) +

∫ 1

0
dτ (g(t)) dυ(t)

= σ(f) + σ(g). (1.40)
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Similarly, if f ≤ g then f(t) ≤ g(t) for all t ∈ (0, 1]. Thus dτ (f(t)) ≤ dτ (g(t)) and we

obtain

σ(f) =

∫ 1

0
dτ (f(t)) dυ(t) ≤

∫ 1

0
dτ (f(t)) dυ(t) = σ(g). (1.41)

In order to finish we have to show σ preserves suprema of increasing sequences and the

way below order relation.

Let fn ∈ Lsc ([0, 1],Cu(A)) be an increasing sequence with supremum f . This means

f(t) = sup
n∈N

fn(t), t ∈ [0, 1]. (1.42)

Then, since dτ preserves suprema of increasing sequences, we have

dτ (f(t)) = sup
n∈N

dτ (fn(t)) = lim
n∈N

dτ (fn(t)) , t ∈ [0, 1]. (1.43)

By the monotone convergence theorem we have∫ 1

0
dτ (f(t)) dυ(t) = lim

n→∞

∫ 1

0
dτ (fn(t)) dυ(t) = sup

n∈N

∫ 1

0
dτ (fn(t)) dυ(t). (1.44)

This proves σ preserves suprema of increasing sequences.

Now let us show σ preserves the way below order relation �. Let us note that

the relation � is just the strict order < in (0,∞]. It is enough to check that if f ∈

Lsc ([0, 1],Cu(A)) is non zero then σ(f) > 0. Indeed, if g � h then 0 � h − g and if

σ(h− g) > 0, we will obtain that σ(g) < σ(h).

Let us suppose f ∈ Lsc ([0, 1],Cu(A)) is non zero. Then there exists t0 ∈ [0, 1] such

that f(t0) 6= 0 and hence dτ (f(t0)) > 0. In particular, f(t0) = 〈a〉 for some a ∈ A ⊗ K

and for every ε > 0 we have 〈(a − ε)+〉 � 〈a〉. We can choose a sufficiently small ε > 0

such that dτ ((a− ε)+) > 0.

Since the function f is lower semicontinuous, we have that

U = f−1
(
〈(a− ε)+〉�

)
= {t ∈ [0, 1] | 〈(a− ε)+〉 � f(t)}

is a non empty open set in [0, 1]. Notice that for every t ∈ U we have

dτ ((a− ε)+) < dτ (f(t)).
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Using that the measure has support [0, 1] we have υ(U) > 0. Hence we obtain the following,

0 < dτ ((a− ε)+) υ(U)

=

∫
U
dτ ((a− ε)+) dυ(t)

≤
∫
U
dτ (f(t))dυ(t)

≤
∫ 1

0
dτ (f(t))dυ(t)

= σ(f). (1.45)

This finishes the proof.

We will finish this section by presenting an important classification result due to

Robert. This theorem uses another construction which is related to Cu and its construction

is very similar to the definiton of K0.

Let A be a unital C∗-algebra. We will denote by Cu∼ the ordered semigroup of formal

differences 〈a〉 − n〈1A〉, with 〈a〉 ∈ Cu(A) and n ∈ N0. Precisely, (〈a〉, n) ∼ (〈b〉,m) if

〈a〉+m〈1A〉+ k〈1A〉 = 〈b〉+ n〈1A〉+ k〈1A〉 for some k ∈ N0 and

Cu∼(A) = (Cu(A)× N0)
/
∼ . (1.46)

The class of (〈a〉, n) will be denoted as 〈a〉 − n〈1A〉. The order is given in the following

way: 〈a〉 − n〈1A〉 ≤ 〈b〉 −m〈1A〉 if for some k ∈ N0 the inequality 〈a〉+m〈1A〉+ k〈1A〉 ≤

〈a〉+m〈1A〉+ k〈1A〉 holds in Cu(A).

Let us define Cu(A)∼ for a non unital C∗-algebra A. Let π : Ã −→ C be the quotient

map from the unitization of A to C. This map produces morphisms

Cu(π) : Cu
(
Ã
)
−→ Cu(C) ∼= N0 ∪ {∞},

Cu∼(π) : Cu∼
(
Ã
)
−→ Cu∼(C) ∼= Z ∪ {∞}. (1.47)

Then Cu∼(A) is defined as the subsemigroup of Cu∼
(
Ã
)

consisting of the elements 〈a〉−

n〈1A〉, with 〈a〉 ∈ Cu
(
Ã
)

such that Cu(π)(〈a〉) = n <∞.

We will explicitly state the Cu∼ semigroups of some C∗-algebras we will need later.

Example 1.10.13. (i) We will compute Cu∼ of the Jiang-Su algebra Z. Since it is

unital, it is enough to know Cu(Z) ∼= N0 t (0,∞]. Hence

Cu∼(Z) = {x− n · 1N | x ∈ N0 t (0,∞], n ∈ N}

∼= Z t (∞,∞]. (1.48)
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(ii) Let us compute Cu∼ of the cone of a simple, separable, unital AF-algebra A with

unique trace. Since C0(0, 1]⊗A is not unital, we need to compute Cu of the unitisation

of the cone, (C(0, 1]⊗A)∼. By Example 1.10.11, we have

Cu ((C(0, 1]⊗A)∼) ∼= {f ∈ Lsc ([0, 1],Cu(A)) | f(0) ∈ n〈1A〉, n ∈ N0 ∪ {∞}} .

Moreover, by Theorem 1.10.6, we have

Cu(A) = V (A) t (0,∞]. (1.49)

Consider 1 ∈ Lsc ([0, 1],V(A) t (0,∞]) as the constant function 〈1A〉. In this case,

the quotient map π : (C(0, 1]⊗A)∼ −→ C is given by the evaluation at 0. Hence,

Cu(π)(f) = f(0) for f ∈ Lsc ([0, 1],V(A) t (0,∞]). Putting all together yields

Cu∼(C0(0, 1]⊗A) = {f − n · 1 | f ∈ Lsc ([0, 1],V(A) t (0,∞]) , f(0) = n〈1A〉, n ∈ N0}

∼= {f ∈ Lsc ([0, 1],K0(A) t (−∞,∞]) | f(0) = n〈1A〉, n ∈ Z} .

We have introduced all the previous machinery in order to state the following remark-

able theorem. Using the same approach as before, we will state this theorem in some

particular case. In general, this theorem classifies maps from C∗-algebras which are induc-

tive limits of 1-dimensional non commutative CW complexes with trivial K1 to C∗-algebras

with stable rank one. As you can imagine, we will enunciate this theorem in the particular

case when the domain is a cone of a simple AF-algebra and the codomain is the Jiang-Su

algebra Z.

Theorem 1.10.14 ([80, Theorem 1.0.1]). Let A be a unital AF-algebra. Then for every

morphism α : Cu∼ (C0(0, 1]⊗A) −→ Cu∼(Z) in the category Cu such that α (〈sA〉) ≤ 〈sB〉,

where sA ∈ (C0(0, 1]⊗A)+ and sB ∈ B+ are strictly positive elements, there exists a ∗-

homomorphism π : A −→ Z such that Cu∼(π) = α. Moreover, this map is unique up to

approximate unitary equivalence.



Chapter 2

Nuclear dimension

The purpose of this chapter is to review nuclear dimension and decomposition rank. The

first section is devoted to the covering dimension of topological spaces. In the second

one, we will present the definition of nuclear dimension and decomposition rank. We will

also explain the differences between these two notions. After this, we will focus on the

commutative case and we will finish this chapter with the study of the zero dimensional

objects.

2.1 Covering dimension

In this section we will present a brief introduction to the covering dimension of topological

spaces. A more comprehensive explanation can be found in [73].

It is natural to ask how we can define dimension for general topological spaces, and

during time, there have been several notions of dimension. Historically, probably the

first notions were the small inductive dimension, the large inductive dimension and the

covering dimension. It is well known that all these dimension theories agree on separable

metrizable spaces [73, Proposition 4.5.9].1 However, in general, we cannot say much about

the relation between these dimensions. For our purposes, we will focus on the covering

dimension.

Lebesgue observed that the n-dimensional cube can be covered with finitely many

arbitrarily small closed sets such that the intersection of any n + 2 sets of this cover

is always empty. Lebesgue’s discovery suggested one way to define the dimension for

euclidean spaces. Following this idea, Čech introduced the notion of covering dimension

1This can be strengthened to strongly pseudo-metrizable spaces.

44
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(also called Lebesgue covering dimension) for normal spaces in [18].

Definition 2.1.1 ([18, Definition 3]). Let X be a set. The order of a family U = {Ui}i∈I
of subsets of X is defined to be the largest integer n for which there exist elements

Ui0 , Ui1 , . . . , Uin ∈ U such that
n⋂
k=0

Uik 6= ∅. If this integer does not exist, the order of

U is infinite.

Observe that if the order of U is n, then the intersection of any n+ 2 elements of U is

empty. In other words, if the order of U is n, then every point is in at most n+ 1 elements

of U .

Definition 2.1.2 ([73, Definition 3.1.1]). The covering dimension of a topological space

X, denoted as dimX, is the least integer n such that every finite open cover of X has an

open refinement of order at most n.

Example 2.1.3. The covering dimension of [0, 1] is 1.

Proof. Let U be a finite open cover of [0, 1]. Let t ∈ [0, 1], so there is U ∈ U containing

t. In particular, there exists an open interval It such that t ∈ It ⊂ U . Then, the family

{It | t ∈ [0, 1]} is an open cover of [0, 1] refining U . By compactness, there exists a finite

subcover {It1 , . . . , Itn}. Consider the set {s1, . . . , s2n} of the end points of the intervals

It1 , . . . , Itn . We can assume 0 = s1 ≤ s2 ≤ . . . ≤ s2n = 1.

Observe that the family of intervals

W1 = {(si, si+1) | i = 1, . . . , 2n− 1}

are pairwise disjoint. Consider now the family of intervals

W2 =
{[

0,
s1

2

)
,
(s2n−1

2
, 1
]}
∪
{(

si + si−1

2
,
si + si+1

2

)
| i = 2, . . . , 2n− 1

}
.

Like before, the elements in W2 are pairwise disjoint. Hence, the set W = W1 ∪W2 has

order 1. By construction, W is a finite open cover of [0, 1] with order 1 which refines U .

This shows that dim[0, 1] ≤ 1. Since [0, 1] is not totally disconnected then dim[0, 1] ≥ 1

by Proposition 2.1.5. Therefore dim[0, 1] = 1.

A family of sets is discrete if each point in X has a neighbourhood which meets at

most one member of the family. The following proposition gives a useful characterisation

of the covering dimension in terms of discrete families of open sets.
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Proposition 2.1.4 ([70, Theorem 2]). A metrizable topological space X has covering

dimension at most n if and only if for each open cover U of X and each integer k ≥ n+ 1,

there exist k discrete families of open sets V1, . . . ,Vk such that the union of any n + 1 of

these families is a cover of X which refines U .

Observe that the previous proposition is very strong. It caracterises covering dimension

using any open cover rather than only finite ones. However, if we start with a finite open

cover U , the families Vi given by Proposition 2.1.4 are also finite (this is not immediate

from Proposition 2.1.4, however it follows from its proof).

Hence Proposition 2.1.4 allows us to think in covering dimension as colouring open

covers if X is metrizable. Precisely, the covering dimension of X is at most n if for any

finite open cover there exists a finite refinement such that we can colour this refinement

using n+ 1 colours, assigning one colour to each element of this refinement, in such a way

that any two open sets with the same colour do not intersect each other. Now, we briefly

summarize some of the most important properties about covering dimension.

Proposition 2.1.5. Let X and Y be normal topological spaces.

(a) [73, Proposition 3.1.3] If dimX = 0 then X is totally disconnected.2 If X is compact

and Hausdorff, then the converse is also true.

(b) If A is a closed subset of X then

i) [73, Proposition 3.1.5] dimA ≤ dimX;

ii) [73, Corollary 3.5.8] dimX ≤ max{dimA, dim(X \A)}. In particular, dimαX =

dimX where αX denotes the one point compactification of X.

(c) [73, Theorem 3.2.5] If X is normal and X =
⋃
i∈N

Ai, where each Ai is closed and

dimAi ≤ n for all i ∈ N, then dimX ≤ n.

(d) [73, Proposition 3.2.6] dimX × Y ≤ dimX + dimY .

(e) [73, Proposition 3.5.11] If X = A ∪B then dimX ≤ dimA+ dimB + 1.

(f) [73, Proposition 6.4.3] If additionally X is Hausdorff, dimβX = dimX where βX

denotes the Stone-Čech compactification of X.

2This implication does not need normality of the space.
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In practice, computing the covering dimension can be a very challenging task mostly

because of the combinatorial flavour of the definition. For example, we can guess (and

expect) that the covering dimension of Rn is n. Even though this seems completely natural,

the proof of this fact is far from trivial when n > 1. Showing that the covering dimension

of Rn is bounded above by n is straightforward using Proposition 2.1.5 (d). The difficulties

arise in trying to show that the covering dimension of Rn is exactly n.

Theorem 2.1.6 ([73, Theorem 3.2.7]). The covering dimension of Rn is equal to n.

Now we recall a remarkable theorem proved independently by Lefschetz, Nöbeling, and

Pontrjagyn and Tolstowa.

Theorem 2.1.7 ([60, Theorem 14], [68, Theorem 1] and [76, Theorem 11]). Let X be a

second countable normal Hausdorf space with dimX = n. Then X can be embedded in the

cube [0, 1]2n+1.

We have seen that covering dimension passes to closed subsets and, since covering

dimension is preserved under countable unions, it also passes to Fσ subsets. However if

the subset is not of this kind, this is not true in general.

Example 2.1.8. [73, Example 3.6.1] Consider X = [0, 1]∪{2} equipped with the following

topology: A subset U of X is open if U = X or if U is a usual open set of [0, 1]. This

topology is not the relative topology induced by the usual topology of R. Observe that, by

construction, any open cover of X must contain X itself. Thus {X} is always a refinement

of any open cover and we can conclude that dimX = 0. Therefore X contains a subset,

namely [0, 1], of covering dimension equal to 1.

The previous example is not very interesting because it is not even Hausdorff nor

normal. However, there are examples of normal spaces containing subsets of higher di-

mension. In fact, totally disconnected compact Hausdorff spaces may contain subspaces

of arbitrarily large covering dimension (c.f. [73, Remark 5.4.6]).

2.2 Nuclear dimension and decomposition rank

Wilhelm Winter initiated the study of a notion of covering dimension for C∗-algebras in

[104]. This notion has been refined in the last fifteen years in several papers ([58, 106, 111]),

leading to the concepts of nuclear dimension and decomposition rank. This theory was a
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breakthrough in the classification programme for C∗-algebras and has been a driving force

for the research in this area during the last years.

Definition 2.2.1. ([58, Definition 3.1], [111, Definition 2.1]) Let A be C∗-algebra and let n

be a natural number. The nuclear dimension of A is at most n, denoted as dimnucA ≤ n,

if for any finite subset F ⊂ A and ε > 0, there exist finite dimensional C∗-algebras

F (0), . . . , F (n), and maps ψ : A −→
n⊕
k=0

F (k) and ϕ :
n⊕
k=0

F (k) −→ A such that:

(a) The map ψ is a c.p.c. map.

(b) The restriction ϕk := ϕ|F (k) is a c.p.c. order zero map for k = 0, . . . , n.

(c) ‖a− ψ ◦ ϕ(a)‖ < ε for all a ∈ F.

The decomposition rank of A is at most n, denoted as drA ≤ n, if additionally the map ϕ

is contractive.

Remark 2.2.2. We can rephrase nuclear dimension and decomposition rank in terms of

decomposable approximations. An approximation (F,ψ, ϕ) is n-decomposable if ϕ is the

sum of n+ 1 order zero maps.

(i) A C∗-algebra A has nuclear dimension at most n if for every finite subset F ⊂ A and

ε > 0 there exists an n-decomposable approximation (F,ψ, ϕ) for F within ε.

(ii) A C∗-algebra A has decomposition rank at most n if for every finite subset F ⊂ A

and ε > 0 there exists an n-decomposable approximation (F,ψ, ϕ) for F within ε

such that ϕ is contractive.

Hence, the difference between nuclear dimension and decomposition rank appears in the

size of the norm of the second map ϕ. Decomposition rank always asks for ‖ϕ‖ ≤ 1

meanwhile nuclear dimension at most n requires ‖ϕ‖ ≤ n+ 1.

Remark 2.2.3 ([111, Remark 2.2 (iv)]). In general we can not choose the second map

ϕ to be contractive in the definition of nuclear dimension; however, we can arrange the

composition ϕψ to be contractive.

Let A be a C∗-algebra. Consider a finite subset F and ε > 0. By the continuity of

t 7→ t−1 around 1, there exists δ > 0 such that if |t− 1| < δ then
∣∣t−1 − 1

∣∣ < ε
3 . Using an

approximate unit, find a positive contraction h such that

|‖h‖ − 1| < δ/2 (2.1)
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F (0)

ϕ0

��

⊕
F (1)

ϕ1

##

⊕
...

⊕
A ψk //

ψ0

AA

ψn

��

ψ1

;;

ψn−1

##

F (k) ϕk // A
⊕
...

⊕
F (n−1)

ϕn−1

;;

⊕
F (n)

ϕn

AA

Figure 2.1: The nuclear dimension of a C∗-algebra.

and ∥∥∥h 1
2ah

1
2 − a

∥∥∥ < ε

3
(2.2)

for all a ∈ F. Then find an n-decomposable approximation
(
F, ψ̂, ϕ̂

)
for F ∩ {h} within

min {ε/3, δ/2}. In particular, this entails |‖ϕψ(h)‖ − 1| < δ, and hence∣∣∣∣∥∥∥ϕ̂ψ̂(h)
∥∥∥−1
− 1

∣∣∣∣ < ε

3
.

Set

ϕ(x) =
∥∥∥ϕ̂ψ̂(h)

∥∥∥−1
ϕ̂(x) (2.3)

and

ψ(a) = ψ̂
(
h

1
2ah

1
2

)
(2.4)

for x ∈ F and a ∈ A. Then, for any positive contraction a ∈ A, we have

‖ϕψ(a)‖ =
∥∥∥ϕψ̂ (h 1

2ah
1
2

)∥∥∥
≤
∥∥∥ϕψ̂(h)

∥∥∥
(2.3)
=
∥∥∥ϕ̂ψ̂(h)

∥∥∥−1 ∥∥∥ϕ̂ψ̂(h)
∥∥∥ = 1. (2.5)

This shows the composition ϕψ is a c.p.c. map. Finally, notice that (F,ψ, ϕ) is a good
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approximation since

‖a− ϕψ(a)‖ =

∥∥∥∥a− ∥∥∥ϕ̂ψ̂(h)
∥∥∥−1

ϕ̂ψ̂
(
h

1
2ah

1
2

)∥∥∥∥
≤
∥∥∥a− ϕ̂ψ̂(a)

∥∥∥+
∥∥∥ϕ̂ψ̂(a)− ϕ̂ψ̂

(
h

1
2ah

1
2

)∥∥∥
+

∥∥∥∥ϕ̂ψ̂ (h 1
2ah

1
2

)
−
∥∥∥ϕ̂ψ̂(h)

∥∥∥−1
ϕ̂ψ̂
(
h

1
2ah

1
2

)∥∥∥∥
<
ε

3
+
ε

3
+
ε

3
= ε (2.6)

for all a ∈ F.

It is clear from Theorem 1.5.4 that a C∗-algebra is nuclear if its nuclear dimension is

finite. However the converse is not true; there are nuclear C∗-algebras with infinite nuclear

dimension, for example C0

(
RN
)
. It also follows from the definition that dimnucA ≤ drA.

We would like to point out, even though decomposition rank and nuclear dimension might

look quite similar, they in general do not coincide. This will be explained in more detail

in Subsection 2.2.1.

The following theorem is helpful in the non separable case as it allows us to reduce

many proofs to the separable case.

Theorem 2.2.4 ([111, Proposition 2.6]). Let A be a C∗-algebra. For any countable subset

S there exists a separable C∗-subalgebra B of A containing S such that

dimnucB ≤ dimnucA.

Now, we briefly summarize some of the main properties of nuclear dimension and

decomposition rank. In order to simplify the notation, we will write dim+1
nucA instead of

dimnucA+ 1.

Proposition 2.2.5. Let A,B and C be C∗-algebras. Then

(i) [111, Remark 2.2] A is an AF-algebra if and only if dimnucA = 0.

(ii) [111, Proposition 2.3 (i)] dimnucA⊕B ≤ max{dimnucA, dimnucB}.

(iii) [111, Proposition 2.3 (ii)] dim+1
nucA⊗B ≤ dim+1

nucA · dim+1
nucB.3

(iv) [111, Proposition 2.3 (iii)] If A = lim−→An then dimnucA ≤ lim inf (dimnucAn).

3Since this expression can only be finite only for nuclear C∗-algebras, there is no need to specify the

tensor product.
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(v) [111, Proposition 2.3 (iiii)]If B is a quotient of A then dimnucB ≤ dimnucA.

(vi) [111, Proposition 2.4] dimnucC0(X) = dimX for every locally compact Hausdorff

space X.

(vii) [111, Proposition 2.5] If B is a hereditary subalgebra of A then dimnucB ≤ dimnucA.

Moreover, if B is a full hereditary subalgebra then dimnucB = dimnucA.

(viii) [111, Remark 2.11] dimnucA = dimnuc Ã, where Ã is the unitization of A.

(ix) [111, Proposition 2.9] Let 0→ A→ B → C → 0 be a exact sequence. Then

max {dimnucA, dimnucC} ≤ dimnucB ≤ dimnucA+ dimnucC + 1.

Properties (i)-(xiii) are also true for decomposition rank [58, Before Proposition 3.3, Corol-

lary 3.10, Proposition 3.11, Example 4.1].

Observe that these properties of nuclear dimension correspond to analogous properties

of covering dimension. In particular, the countable union theorem corresponds to induc-

tive limits, product of spaces corresponds to tensor products and Proposition 2.1.5 (b)

corresponds to short exact sequences. In subsequent sections, we will explore the commu-

tative and zero dimensional case in more detail. In the same way, in the next subsection

we will explain why Property 2.2.5 (ix) is not true for decomposition rank in general.

2.2.1 Nuclear dimension vs Decomposition rank

As we mentioned before, nuclear dimension and decomposition rank look quite similar

but there are deep differences between them. Probably, the most dramatic difference

between these two notions is quasidiagonality. The approximations (F,ψ, ϕ) witnessing

decomposition rank and finite nuclear dimension can be chosen with different behaviours

in the limit: the map ψ is approximately multiplicative for finite decomposition rank

and approximately order zero for finite nuclear dimension. This shows that algebras with

finite decomposition rank have to be quasidiagonal (plus the well known obstructions to

quasidiagonality) meanwhile there are algebras with finite nuclear dimension which are

not quasidiagonal. Finally, we will see that decomposition rank does not behave well with

respect to extensions in contrast with nuclear dimension.

Proposition 2.2.6. Let A be a C∗-algebra.
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(i) [58, Proposition 5.1]Suppose drA ≤ n. Then for all finite subsets F and ε > 0 there

exists an n-decomposable approximation (F,ψ, ϕ) for F within ε, with ϕ contractive,

such that

‖ψ(ab)− ψ(a)ψ(b)‖ < ε (2.7)

for all a, b ∈ F.

(ii) [111, Proposition 3.2]Suppose dimnucA ≤ n. Then for all finite subsets F and ε > 0

there exists an n-decomposable approximation (F,ψ, ϕ) for F within ε such that

‖ψ(a)ψ(b)‖ < ε (2.8)

whenever a, b ∈ F satisfy ‖ab‖ < ε.

Remark 2.2.7. We can restate the previous proposition in the language of ultraproducts:

(i) If drA ≤ n then there exists a system of n-decomposable approximations {(Fi, ψi, ϕi)}i∈I ,

with each ϕi contractive for all i ∈ I, such that the induced map Ψ : A −→
∏
U Fi is

multiplicative, where U is a free ultrafilter on I.

(ii) If dimnucA ≤ n then there exists a system of n-decomposable approximations {(Fi, ψi, ϕi)}i∈I
such that the induced map Ψ : A −→

∏
U Fi is order zero, where U is a free ultrafilter

on I.

If A is separable, using the previous proposition and [6, Theorem 5.2.2], we can see

that if drA < ∞ then A is quasidiagonal (see Definition 1.8.1). Thus in particular, A is

stably finite and has an amenable trace. Moreover, since decomposition rank passes to

quotients, we can obtain a stronger obstruction for finite decomposition rank.

Theorem 2.2.8 ([58, Theorem 5.3]). Let A be a separable C∗-algebra with drA < ∞.

Then A is strongly quasidiagonal.

As we will see in Section 2.4, there are C∗-algebras with finite nuclear dimension which

are not quasidiagonal. Furthermore, there are examples of group C∗-algebras with finite

nuclear dimension which are quasidiagonal but not strongly quasidiagonal [15, Corollary

3.5]. This immediately shows that decomposition rank and nuclear dimension do not

coincide in general.

In Proposition 2.2.5, properties (i)-(xiii) are true for nuclear dimension and decom-

position rank. However this is not true for extensions. Precisely, Proposition 2.2.5 (ix)
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states nuclear dimension is well behaved under extensions but this is not the case for de-

composition rank. Of course, the first inequality is true for decomposition rank, since it is

preserved for ideals and quotients. The problem arises in the second inequality. We will

illustrate this with one example.

The Toeplitz algebra T is defined as the C∗-algebra generated by the (simple) unilateral

shift. It is well known that T is an extension of the continuous functions on the circle by

the compact operators [4, Example II.8.3.2 (v)].

0 // K // T // C(T) // 0.

Of course, drC(T) = 1 and, by Theorem 2.5.4, drK = 0. However, since T is not

quasidiagonal, dr T = ∞. Thus the decomposition rank of the Toeplitz algebra T is not

bounded in terms of decomposition rank of C(T) and K.

Once we have spent some time talking about the Toeplitz algebra, we can also compute

its nuclear dimension. Using Proposition 2.2.5 (ix):

dimnuc T ≤ dimnucC(T) + dimnucK+ 1 = 2.

The question about the exact value of the nuclear dimension of the Toeplitz algebra has

been open for several years. Recently, Wilhelm Winter has announced that dimnuc T = 1.

Nevertheless, there are some particular kind of extensions which are well behaved under

decomposition rank. These extensions are called quasidiagonal extensions.

Proposition 2.2.9 ([58, Proposition 6.1]). Let A be a C∗-algebra and let J be an ideal of

A containing a quasicentral approximate unit consisting of projections. Then

drA = max{drA, drA/J}.

2.3 The commutative case

The following proposition establishes that in the commutative case nuclear dimension and

decomposition rank agree with the covering dimension of the spectrum. Because of this,

we regard nuclear dimension as a non commutative version of the covering dimension.

This is not a surprise since, from the beginning, the definition of nuclear dimension was

constructed having the covering dimension as a model in the commutative case.

Theorem 2.3.1 ([111, Proposition 2.4]). Let X be a locally compact Hausdorff space.

Then

dimnucC0(X) = drC0(X) = dimX.
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Originally, Winter proved that the covering dimension of a locally compact Hausdorff

space X agrees with the completely positive rank of C0(X), a precursor concept of de-

composition rank and nuclear dimension. Later on, when decomposition rank and nuclear

dimension were introduced, a direct proof of Proposition 2.3.1 was not given; instead,

its proof was based on the original proof concerning completely positive rank and some

connections between the new concepts and the previous ones. It is important to notice

that the inequality dimnucC0(X) ≤ drC0(X) ≤ dimX is relatively straightforward and its

proof is essentially Winter’s original proof. The reverse inequality is the one which while

known to experts has not precisely appeared in the literature, at least to the author’s

knowledge. Because of this, we include a proof here. We will split the proof of Theorem

2.3.1 in two parts, one for each inequality.

Proposition 2.3.2. Let X be a locally compact Hausdorff space. Then

drC0(X) ≤ dimX.

Proof. We will prove it for the metrizable compact case only. Suppose dimX = n and let

X be compact and metrizable. Let F ⊂ C(X) be a finite subset and ε > 0. Then we can

find

i) A finite open cover U = {U1, . . . , Um} of order at most n and disjoint subsets U0, . . . ,Un ⊂

U such that U =
n⋃
k=0

Uk and Ui ∩ Uj = ∅ if Ui, Uj ∈ Uk for some k and i 6= j.

ii) Elements xi ∈ Ui such that |f(xi)− f(x)| < ε for all x ∈ Ui and f ∈ F.

Let (hi)
m
i=1 be a partition of unity subordinated to the open cover U , i.e. hi ∈ C(X)

such that
m∑
i=1

hi = 1C(X) and the support of hi is contained in Ui.

Set ψ : C(X) −→ Cm by

ψ(f) = (f(x1), . . . , f(xm)).

Similarly, set ϕ : Cm −→ C(X) by

ϕ(t1, . . . , tm) =

m∑
i=1

tihi.

Let x ∈ X. By construction, we have

|ϕψ(f)(x)− f(x)| =

∣∣∣∣∣
m∑
i=1

f(xi)hi(x)− f(x)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

(f(xi)− f(x))hi(x)

∣∣∣∣∣ < ε
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for all f ∈ F. This yields

‖ϕψ(f)− f‖ < ε

for all f ∈ F. It immediately follows from the definitions that ψ is c.p.c. and ϕ is a c.p.

map. Let us check that ϕ is in fact contractive. Consider (t1, . . . , tm) ∈ Cm and observe

|ϕ ((t1, . . . , tm)) (x)| =

∣∣∣∣∣
m∑
i=1

tihi(x)

∣∣∣∣∣ ≤ ‖(t1, . . . , tm)‖∞ .

Now, using the colouring of the open cover U , we can express ϕ as the sum of n + 1

order zero maps. We will define an order zero map using the subset Uk of U . Precisely, let

ϕk : Cm −→ C(X) be given by

ϕk(t1, . . . , tm) =
∑

i |Ui∈Uk

tihi.

It is immediate that ϕ =
n∑
k=0

ϕk, so it only remains to check that ϕk is order zero for

k = 0, 1, . . . , n. Consider (t1, . . . , tm), (s1, . . . , sm) ∈ Cm such that

(t1, . . . , tm)(s1, . . . , sm) = (t1s1, . . . , tmsm) = (0, . . . , 0). (2.9)

By construction, the support of hi is contained in Ui. Thus, if Ui and Uj are in Uk, the

intersection Ui ∩ Uj is empty. Hence the supports of hi and hj are disjoint, so

hi(x)hj(x) = 0 (2.10)

for all x ∈ X. After this observation, we obtain

ϕk ((t1, . . . , tm))ϕk ((s1, . . . , sm)) =

 ∑
i |Ui∈Uk

tihi(x)

 ∑
i |Uj∈Uk

sjhj(x)


=

∑
i |Ui∈Uk

tisihi(x)2 +
∑
i 6=j

tisjhi(x)hj(x)

(2.9,2.10)
= 0. (2.11)

This shows ϕk is order zero and ultimately, drC(X) ≤ dimX.

Proposition 2.3.3. Let X be a locally compact Hausdorff space. Then

dimX ≤ dimnucC0(X)

Proof. Let us sketch the proof first. We consider any finite open cover U of X and a

partition of unity (hr)
m
r=1 subordinated to U . For a sufficiently small ε, we find an n-

decomposable approximation (F,ψ, ϕ) for {h1, . . . , hm} within ε. Let us write ϕ =
n∑
k=0

ϕk
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where each ϕk is order zero. We will show that in fact F ∼= Cr for some r ∈ N. Consider

fi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Cr where 1 is in the ith position. Then the family W0 ={
ϕk (fi)

−1
((

1
m(n+1) − ε,∞

))
| i = 1, . . . , r; k = 0, . . . , n

}
is a cover of X of order at most

n. We will finish by showing that a subcover of W0 will refine the cover U .

Suppose dimnucC(X) = n. Let U = {U1, . . . , Um} be a finite open cover of X and let

(hr)
m
r=1 be a partition of unity subordinated to U . Consider ε > 0 such that

ε <
1

3m(n+ 1)
(2.12)

and let F =
{

1C(X), h1, . . . , hm
}

. Find an n-decomposable approximation

(
n⊕
k=0

F (k), ψ, ϕ

)
for F within ε

m(n+1) . The choice of ε yields the following inequality:

2ε <
1

m(n+ 1)
− ε. (2.13)

So, we have

5ε

3
< 2ε <

1

m(n+ 1)
− ε ≤ 1

m(n+ 1)
− ε

m(n+ 1)2
. (2.14)

The first observation is that F (k) ∼= Cmk for some mk ∈ N. This follows from the

commutativity of C(X) and Lemma 1.4.13. Since F (k) is finite dimensional, it is a finite

direct sum of matrix algebras. Thus we may restrict ϕk to each summand, say Md (C),

and, by Lemma 1.4.13, we obtain d = 1. This implies F (k) is in fact a finite direct sum of

copies of C, i.e. F (k) ∼= Cmk for some mk ∈ N.

Let us denote 1(k) as the unit of Cmk and e
(k)
i = (0, . . . , 0, 1, 0, . . . , 0) ∈ Cmk where the

1 is in the ith position. Hence 1(k) =
mk∑
i=1

e
(k)
i . In particular, for each r ≤ m,

ψ(hr) =
(
λ(0)
r , . . . , λ(n)

r

)
∈

n⊕
k=0

Cmk

where

λ(k)
r =

(
λ

(0)
1,r , . . . , λ

(n)
mk,r

)
∈ Cmk .

This allows us to express the image of hr under ϕψ in the following form:

ϕψ(hr) =

n∑
k=0

mk∑
i=1

λ
(k)
i,r ϕk

(
e

(k)
i

)
.

Similarly, since 1C(X) =
m∑
r=1

hr,

ϕψ
(
1C(X)

)
=

m∑
r=1

n∑
k=0

mk∑
i=1

λ
(k)
i,r ϕk

(
e

(k)
i

)
. (2.15)
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It is important to notice, that due to ϕk being order zero, the functions ϕk

(
e

(k)
i

)
have

disjoint supports. In other words, if ϕk

(
e

(k)
i

)
(x) > 0 then ϕ

(
e

(k)
j

)
(x) = 0 for j 6= i.

Hence, pointwise, the sum in (2.15) is, in fact, at most the sum of m(n + 1) strictly

positive summands. For each e
(k)
i , define

W
(k)
i = ϕk

(
e

(k)
i

)−1
((

1

m(n+ 1)
− ε,∞

))
=

{
x ∈ X | ϕk

(
e

(k)
i

)
(x) >

1

m(n+ 1)
− ε
}
. (2.16)

Set W0 =
{
W

(k)
i | 0 ≤ k ≤ n; 1 ≤ i ≤ mk

}
. Observe that the order of W0 is at most n

because ϕ is the sum of n + 1 order zero maps. Precisely, for each k = 0, 1, . . . , n let

W(k)
0 =

{
W

(k)
i | i = 1, . . . ,mk

}
and since the functions ϕk

(
e

(k)
i

)
have disjoint supports,

we have that W
(k)
i ∩W (k)

j = ∅ for i 6= j. It is immediate that W0 =
n⋃
k=0

W(k)
0 .

Consider some open set W
(s)
j for some j and s. We will show that if it is not contained

in some element Ur of the original cover U , then the coefficient λ
(s)
j,r is “small”. More

precisely, suppose there exists Ur ∈ U such that W
(s)
j ∩ (X \ Ur) 6= ∅, we will show that

λ
(s)
j,r < 5ε/3. Consider x ∈W (s)

j ∩ (X \ Ur). Since the support of hr is contained in Ur, we

have hr(x) = 0. Since

‖hr − ϕψ(hr)‖ <
ε

m(n+ 1)
, (2.17)

we obtain

n∑
k=0

mk∑
i=1

λ
(k)
i,r ϕk

(
e

(k)
i

)
(x) = ϕψ(hr)(x) <

ε

m(n+ 1)
. (2.18)

Since all summands are positive, we obtain

λ
(s)
j,rϕs

(
e

(s)
j

)
(x) <

ε

m(n+ 1)
. (2.19)

Now using x ∈W (s)
j , (2.19) and

ε
(2.12)
<

1

3m(n+ 1)
<

2

5m(n+ 1)
, (2.20)

we find

ε

m(n+ 1)
> λ

(s)
j,rϕs

(
e

(s)
j

)
(x) ≥ λ(s)

j,r

(
1

m(n+ 1)
− ε
)

> λ
(s)
j,r

(
1

m(n+ 1)
− 2

5m(n+ 1)

)
=

3λ
(s)
j,r

5m(n+ 1)
. (2.21)
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Thus

λ
(s)
j,r <

5ε

3
. (2.22)

The last key point is the following: Since for any x ∈ X there exists some function of

the partition of unity hr such that hr(x) ≥ 1
m , then there are coefficients λ

(s)
j,r which are

“large enough”, i.e. λ
(s)
j,r ≥ 5ε/3. Let x ∈ X and hr such that hr(x) ≥ 1

m . Then, by (2.17),

we have

n∑
k=0

mk∑
i=1

λ
(k)
i,r ϕk

(
e

(k)
i

)
(x) = ϕψ(hr)(x) ≥ 1

m
− ε

m(n+ 1)
. (2.23)

Then, there exists s such that

ms∑
i=1

λ
(s)
i,rϕs

(
e

(s)
i

)
(x) = ϕsψ(hr)(x) ≥ 1

m(n+ 1)
− ε

m(n+ 1)2
. (2.24)

Since the functions ϕs

(
e

(s)
i

)
have disjoint supports, there exists j such that

λ
(s)
j,rϕs

(
e

(s)
j

)
(x) =

ms∑
i=1

λ
(s)
i,rϕs

(
e

(s)
i

)
(x) ≥ 1

m(n+ 1)
− ε

m(n+ 1)2
. (2.25)

Since λ
(s)
j,r and ϕs

(
e

(s)
j

)
(x) are positive numbers less than 1, we obtain

λ
(s)
j,r ≥

1

m(n+ 1)
− ε

m(n+ 1)2
(2.26)

and

ϕs

(
e

(s)
j

)
(x) ≥ 1

m(n+ 1)
− ε

m(n+ 1)2
≥ 1

m(n+ 1)
− ε. (2.27)

This immediately shows x ∈W (s)
j . By (2.14), (2.22) and (2.26), we have W

(s)
j ∩(X \ Ur) =

∅. Thus W
(s)
j ⊂ Ur.

Summarising, we have shown that for any x ∈ X, there exists some Ur and W
(s)
j such

that x ∈W (s)
j ⊂ Ur. Set

W =
{
W

(k)
i ∈ W0

∣∣∣W (k)
i ⊂ Ur for some r = 1, . . . ,m

}
. (2.28)

Our previous arguments show that W is a cover of X. Since it is contained in W0, its

order is at most n and, by construction, W refines U . Therefore

dimX ≤ dimnucA.
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Proof of Theorem 2.3.1. By Propositions 2.3.2 and 2.3.3, we have

drC(X) ≤ dimX ≤ dimnucC(X).

Since dimnucC(X) ≤ drC(X), we obtain

drC(X) = dimX = dimnucC(X).

This finishes the proof.

2.4 Examples

So far, we know that the nuclear dimension and decomposition rank of commutative C∗-

algebras agree with the covering dimension of the spectrum. In this section we collect

other examples.

Example 2.4.1 ([58, Example 4.2]). A C∗-algebra A is homogeneous if there is N ∈ N

such that every irreducible representation of A is of dimension N . It is a well known fact

that homogeneous algebras are continuous trace [4, Proposition IV.1.4.14]. Hence, by [111,

Corollary 2.10]

dimnucA = drA = dim Â

for every homogeneous algebra A.

A C∗-algebra A is approximately homogeneous (AH) if it is isomorphic to a inductive

limit of homogeneous algebras Ai with sup dim Âi < ∞. Therefore, by Proposition 2.2.5

(iv),

dimnucA ≤ drA ≤ lim inf (dimnucAi) = lim inf
(

dim Âi

)
.

Example 2.4.2. Consider θ in [0, 1]. The rotation algebra Aθ is the universal C∗-algebra

generated by two unitaries u and v satisfying

vu = e2πθuv.

The rotation algebra Aθ is called rational or irrational depending if θ is rational or irra-

tional respectively.

The rational rotational algebra Aθ is a homogeneous C∗-algebra over the two-torus T2

with constant fibre a matrix algebra (c.f. [10]). Hence

dimnucAθ = drAθ = 2
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if θ is rational.

On the other hand, it was shown in [34, Theorem 4] that irrational rotation algebras

are AH-algebras where each base space Âi is equal to T (these algebras are usually called

AT-algebras). Therefore

dimnucAθ = drAθ = 1

if θ is irrational.

Example 2.4.3. Let X be the Cantor set and let ϕ be a homeomorphism of X. The

homeomorphism ϕ naturally induces an action of Z on C(X). The homeomorphism ϕ is

called minimal if ∅ and X are the only closed invariants sets under ϕ. It was shown in

[78, Corollary 2.2] that if ϕ is minimal, then the crossed product C(X) oϕ Z is a simple

AT-algebra. As before, we obtain

dimnucC(X)oϕ Z = drC(X)oϕ Z = 1.

Alternatively, Example 2.4.7 provides a different approach to compute the nuclear dimen-

sion of this crossed product.

Example 2.4.4 ([105, Theorem 1.6]). A C∗-algebra A is subhomogeneous if there is

N ∈ N such that every irreducible representation of A is of dimension at most N . Then

dimnucA = drA = max
k∈N

dim (PrimkA)

where PrimkA is the space of kernels of k-dimensional irreducible representations.

Example 2.4.5 ([58, Example 4.5]). Consider natural numbers p and q. The dimension

drop algebra Zp,q is defined as

Zp,q = {f ∈ C ([0, 1],Mp(C)⊗Mq(C)) | f(0) ∈Mp(C)⊗ C, f(1) ∈ C⊗Mq(C)} .

If p and q are relative prime, Zp,q is called prime. It is immediate that dimension drop

algebras are subhomogeneous and

dimnuc Zp,q = drZp,q = 1.

The Jiang-Su algebra Z can be defined as an inductive limit of prime dimension drop

algebras (Theorem 1.9.1). Therefore

dimnucZ = drZ = 1.
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Of course, Proposition 2.2.5 (iv) only shows that nuclear dimension is bounded by 1.

However, the nuclear dimension of Z is exactly equal to 1 since the Jiang-Su algebra Z is

projectionless and, hence, it is not AF (c.f. Theorem 2.5.4).

Example 2.4.6. Remember that a C∗-algebra A is Kirchberg if it is nuclear, purely

infinite, simple and separable. Research concerning the nuclear dimension of Kirchberg

algebras has been very active in the last years.

Winter and Zacharias showed that the nuclear dimension of Kircherg algebras satisfying

the Universal Coefficient theorem (UCT) is at most 5 ([111, Therem 7.5]). After this,

Enders proved that the nuclear dimension is exactly 1 for Kirchberg algebras in the UCT

class with torsion free K1-groups ([39, Theorem 4.1]). Ruiz, Sims and Sørensen settled the

question in the UCT case: Any Kirchberg algebra in the UCT class has nuclear dimension

equal to 1 ([86, Theorem 6.7]).

Matui and Sato proved that nuclear dimension of Kirchberg algebras is at most 3

without the UCT hypothesis ([64, Theorem 4.1]). Another proof of this was given in

[3, Corollary 3.4] using O∞-absorption. Finally, Bosa, Brown, Sato, Tikuisis, White and

Winter obtained the exact value in the general case using a 2-coloured technique: Any

Kirchberg algebra has nuclear dimension 1 [8, Corollary 9.9].

On the other hand, since Kirchberg algebras are not quasidiagonal, their decomposition

rank is infinite.

Example 2.4.7 ([50, Theorem 5.1]). Let X be a locally compact metrizable space with

finite covering dimension and let α be an automorphism of C0(X). Then

dimnucC0(X)oα Z ≤ 2 (dimX)2 + 6 dimX + 4. (2.29)

If the homeomorphism is minimal or free, we can improve the upper bound ([102, Theorem

C] and [92, Corollary 5.2]). Precisely,

dimnucC0(X)oα Z ≤ 2 (dimX) + 1

if α is minimal or free.

In particular, the inequality (2.29) shows that the nuclear dimension of the group C∗-

algebra generated by the lamplighter group (Z/2Z) oZ is finite. This follows from the fact

that this group C∗-algebra can be viewed as a crossed product of the form C(X)oZ with

X as the Cantor set. Therefore

dimnucC
∗ ((Z/2Z) o Z) ≤ 4.
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However, it is known that the lamplighter group (Z/2Z) o Z is not strongly quasidiagonal

([15, Corollary 3.5]) and hence

drC∗ ((Z/2Z) o Z) =∞.

This last example also shows that a general estimate of the form (2.29) is false for decom-

position rank.

Example 2.4.8 ([28, Theorem 4.4]). Let Γ be a discrete finitely generated nilpotent group.

Then

dimnucC
∗(Γ) ≤ 10h(Γ)−1h(Γ)!

where h(Γ) is the Hirsch number of Γ (see [91, Section 1.C]).

2.5 The zero dimensional case

It follows immediately from the definition that finite dimensional C∗-algebras have nu-

clear dimension zero. Thus, by Proposition 2.2.5 (iv), separable AF-algebras have nuclear

dimension zero as these algebras can be expressed as inductive limit of finite dimensional

algebras. The natural question to ask is if there are other type of C∗-algebras with nuclear

dimension zero. This was done by Winter in [104] using the concept of completely positive

rank. In this section, we will rewrite Winter’s proof using the structure of order zero maps

which was proved by himself and Zacharias several years later.

The idea of the proof is simple. We would like to use the local characterisation of

AF-algebras and, to this end, we will produce finite dimensional subalgebras using the

approximations given by nuclear dimension. This basically boils down to replacing the

corresponding order zero maps in the approximations with ∗-homomorphisms. We would

like to point out that the proof in the unital case is rather simple.

Let A be a unital C∗-algebra with dimnucA = 0. Let F ⊂ A be a finite subset and

ε > 0. Then there exists a 0-decomposable approximation (F,ψ, ϕ) for F ∪ {1A} within

ε/4, i.e. the map ϕ : F −→ A is c.p.c. order zero and ‖a−ϕψ(a)‖ < ε/4 for all a ∈ F. We

can assume ε < 1/2 and since ϕψ(1A) ≤ ϕ(1F ) ≤ 1A, we obtain ‖ϕ(1F )− 1A‖ < ε/2 < 1

so ϕ(1F ) is invertible. We can consider now the map π : F −→ A given by

π(x) = ϕ(1F )−1ϕ(x). (2.30)

From the structure of order zero maps, we obtain that π is in fact the support ∗-homomorphism

of ϕ and its image is contained in A. In this way, we obtain a finite dimensional subalgebra
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of A, namely π(F ). In order to finish we have to show it is “close” to F. But this follows

from the following inequality

‖a− πψ(a)‖ ≤ ‖a− ϕψ(a)‖+ ‖ϕψ(a)− πψ(a)‖

<
ε

4
+ ‖ϕ(1F )− 1A‖‖πψ(a)‖

<
ε

4
+
ε

2

< ε. (2.31)

Hence A is an AF-algebra.

In the non-unital case, we need to do some extra work in order to find a good replace-

ment for the order zero map ϕ.

Proposition 2.5.1 ([104, Proposition 2.17]). Let A be a C∗-algebra and let a ∈ A+ be a

contraction satisfying ∥∥a− a2
∥∥ < ε <

1

4
.

Then there exists a projection p ∈ C∗(a) ⊂ A such that

‖p− a‖ < 2ε.

The proof of the following lemma is essentially the proof of [104, Proposition 3.2 (c)].

Lemma 2.5.2. For every δ > 0 there exists γ > 0 such that for any c.p.c. order zero map

ϕ : A −→ B between C∗-algebras, with A unital, satisfying∥∥∥ϕ (1A)− ϕ (1A)2
∥∥∥ < γ

there exists a ∗-homomorphism π : A −→ B such that

‖ϕ− π‖ < δ.

Proof. Consider γ < min{δ/2, 1/4}. Then by Proposition 2.5.1 there exists a projec-

tion p ∈ C∗ (ϕ (1A)) such that ‖p − ϕ (1A) ‖ < δ. By Theorem 1.4.6, there exists a

∗-homomorphism ρ : A −→ M (C∗ (ϕ (A))) ∩ {ϕ (1A)}′ such that ϕ (a) = ϕ (1A) ρ (a) for

all a ∈ A. Set π : A −→ B as π (a) = ρ (a) p. As p ∈ C∗ (ϕ (1A)) ⊂ ρ (A)′, this defines an

order zero map with π (1A) = p and

‖ϕ− π‖ ≤ ‖ϕ (1A)− p‖ < δ. (2.32)

Finally, by Corollary 1.4.14, π is a ∗-homomorphism.
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A more general version of the following lemma was proved in the case of finite decompo-

sition rank in [58, Lemma 3.7]. That lemma, for the particular case of drA = dimnucA = 0,

will be a key step in the proof of the main theorem of this section, and for completeness,

we include its proof in this particular case.

Lemma 2.5.3. Let A be a separable nuclear C∗-algebra with dimnucA = 0 and let ε > 0.

Let F ⊂ A+ be a finite subset of contractions and suppose there is a positive contraction

h ∈ A such that ha = a for all a ∈ F. Then there exist a 0-decomposable approximation

(F,ψ, ϕ) for F ∩ {h} within ε and a projection p ∈ F such that

‖ϕ (pψ(a)p)− a‖ < ε (2.33)

for all a ∈ F ∩ {h}, and

‖ϕ(p)2 − ϕ(p)‖ < ε. (2.34)

Proof. By hypothesis, there exists a sequence of approximations
(
F (n), ψ(n), ϕ(n)

)
, with

ϕ(n) order zero, such that limϕ(n)ψ(n)(a) = a for all a ∈ A. Consider a free ultrafilter ω

on N. Let ψ(ω) : Aω −→
∏
ω F

(n) and ϕ(ω) :
∏
ω F

(n) −→ Aω be the c.p.c. maps induced

by
(
ψ(n)

)
and

(
ϕ(n)

)
, respectively. In particular, we obtain

ϕ(ω)ψ(ω)(a) = a (2.35)

for all a ∈ A. Hence, Proposition 1.4.2 yields the following

a∗a = ϕ(ω)ψ(ω)(a∗)ϕ(ω)ψ(ω)(a)

≤ ϕ(ω)
(
ψ(ω)(a∗)ψ(ω)(a)

)
≤ ϕ(ω)ψ(ω)(a∗a)

= a∗a (2.36)

for a ∈ A. This implies that ϕ(ω) is multiplicative on C∗
(
ψ(ω)(A)

)
by Proposition 1.4.2.

Similarly, by Lemma 1.4.4

ϕ(ω)
(
xψ(ω)(a)

)
= ϕ(ω)(x)ϕ(ω)ψ(ω)(a) = ϕ(ω)(x)a (2.37)

for all a ∈ A and x ∈
∏
ω F

(n). In particular,

ϕ(ω)
(

1∏
ω F

(n)

)
a = ϕ(ω)ψ(ω)(a) = a. (2.38)
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Let χ be the characteristic function of [1− ε
4 ,∞). Set

q(n) = χ
(
ψ(n)(h)

)
∈ F (n) (2.39)

and, by construction,

q(n)f1− ε
4
,1

(
ψ(n)(h)

)
= f1− ε

4
,1

(
ψ(n)(h)

)
(2.40)

where f1− ε
4
,1 is identical 0 in (−∞, 1− ε

4 ], identically 1 in [1,∞) and linear elsewhere.

Let q ∈
∏
ω F

(n) be the projection induced by the sequence
(
q(n)

)
. Since f1− ε

4
,1(1) = 1

and ha = a for all a ∈ F, by functional calculus we have

f1− ε
4
,1(h)a = a (2.41)

for each a ∈ F. Moreover, by (2.40), we have

qf1− ε
4
,1

(
ψ(ω)(h)

)
= f1− ε

4
,1

(
ψ(ω)(h)

)
. (2.42)

Notice that, since ϕ(ω) is multiplicative on C∗
(
ψ(ω) (A)

)
, we have

g
(
ϕ(ω)ψ(ω)(a)

)
= ϕ(ω)

(
g
(
ψ(ω)(a)

))
(2.43)

for all a ∈ A and g ∈ C(σ(a)). Now, we are ready to show that ϕ(ω)(q) behaves like a unit

on F,

ϕ(ω)(q)a
(2.41)

= ϕ(ω)(q)f1− ε
4
,1(h)a

(2.35)
= ϕ(ω)(q)f1− ε

4
,1(ϕ(ω)ψ(ω)(h))a

(2.43)
= ϕ(ω) (q)ϕ(ω)

(
f1− ε

4
,1

(
ψ(ω)(h)

))
a

(2.37)
= ϕ(ω)

(
qf1− ε

4
,1

(
ψ(ω)(h)

))
a

(2.42)
= ϕ(ω)

(
f1− ε

4
,1

(
ψ(ω)(h)

))
a

(2.43)
= f1− ε

4
,1

(
ϕ(ω)ψ(ω)(h)

)
a

(2.35)
= f1− ε

4
,1(h)a

(2.41)
= a (2.44)

for all a ∈ F.
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Combining the last identity with (2.37) we obtain

a
(2.44)

= ϕ(ω)(q)aϕ(ω)(q)

=
(
a

1
2ϕ(ω)(q)

)∗ (
a

1
2ϕ(ω)(q)

)
(2.37)

= ϕ(ω)
(
ψ(ω)

(
a

1
2

)
q
)∗

ϕ(ω)
(
ψ(ω)

(
a

1
2

)
q
)

(1.4.2)

≤ ϕ(ω)
((
ψ(ω)

(
a

1
2

)
q
)∗

ψ(ω)
(
a

1
2

)
q
)

= ϕ(ω)
(
qψ(ω)

(
a

1
2

)
ψ(ω)

(
a

1
2

)
q
)

(1.4.2)

≤ ϕ(ω)
(
qψ(ω)(a)q

)
≤ ϕ(ω)ψ(ω)(a) = a. (2.45)

This yields

a = ϕ(ω)
(
qψ(ω)(a)q

)
(2.46)

for all a ∈ F.

Now we are going to show that h is almost a unit for ϕ(ω)(q). By construction,∥∥∥qψ(ω)(h)− q
∥∥∥ ≤ ε

4
.

Thus ∥∥∥ϕ(ω)(q)h− ϕ(ω)(q)
∥∥∥ (2.37)

= ‖ϕ(ω)
(
qψ(ω)(h)

)
− ϕ(ω)(q)‖ ≤ ε

4
. (2.47)

By Proposition A.1.7, ϕ(ω) is order zero, and hence,

ϕ(ω)(x)ϕ(ω)(y) = ϕ(ω)(1F )ϕ(ω)(xy) x, y ∈
∏
ω

F (n). (2.48)

In particular, ϕ(ω)(q)2 = ϕ(ω)
(

1∏
ω F

(n)

)
ϕ(ω)(q). Then

‖ϕ(ω)(q)2 − ϕ(ω)(q)‖ ≤
∥∥∥ϕ(ω)(1F )ϕ(ω)(q)− ϕ(ω)(q)h

∥∥∥+ ‖ϕ(ω)(q)h− ϕ(ω)(q)‖
(2.38)

= ‖ϕ(ω)(1F )ϕ(ω)(q)− ϕ(ω)(q)ϕ(ω)(1F )h‖

+ ‖ϕ(ω)(q)h− ϕ(ω)(q)‖
(2.47)

≤ ε

4
+
ε

4
=
ε

2
. (2.49)

By equations (2.35), (2.46) and (2.49), there exists n ∈ N such that

(i) ‖a− ϕ(n)ψ(n)(a)‖ < ε,
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(ii) ‖a− ϕ(n)
(
q(n)ψ(n)(a)q(n)

)
‖ < ε,

(iii) ‖ϕ(n)(q(n))2 − ϕ(n)(q(n))‖ < ε,

for all a ∈ F ∩ {h}. Therefore the approximation
(
F (n), ψ(n), ϕ(n)

)
and the projection

q(n) ∈ F (n) satisfy the required properties.

Now we have all the tools we need to prove the main theorem of this section. Observe

this theorem does not assume separability.

Theorem 2.5.4 ([58, Example 4.1],[111, Remark 2.2 (iii)]). Let A be a C∗-algebra. Then

dimnucA = 0 if and only if A is an AF-algebra.

Proof. Let us suppose A is an AF-algebra. We will show the nuclear dimension of A is

bounded by zero and hence it has to be equal to zero. Consider a finite set F ⊂ A and

ε > 0. By hypothesis there is a finite dimensional C∗-subalgebra F of A such that

dist(a, F ) < ε/2

for all a ∈ F. By Arveson’s Extension theorem, we can extend the identity of F , idF , to

a c.p.c. map ψ : A −→ F such that ϕ|F = idF . Set ϕ : F −→ A as the inclusion map.

Hence ϕ is a ∗-homomorphism and, in particular, it is an order zero map.

For each a ∈ F let ba ∈ F be such that ‖a− ba‖ < ε
2 . Then

‖a− ϕψ(a)‖ ≤ ‖a− ba‖+ ‖ϕψ (ba)− ϕψ(a)‖ < ε

2
+
ε

2
= ε

for all a ∈ F. Therefore dimnucA = 0.

Conversely, suppose dimnucA = 0. Let F = {a1, . . . , ar} be a finite subset of A+ and

ε > 0. We can assume there exists a separable subalgebra of A containing F with nuclear

dimension zero (Proposition 2.2.4). Hence we can assume A is separable. Then, using a

strictly positive element of B, we can construct an approximate unit (hn)n∈N such that

hnhm = hm if m ≤ n. Find k sufficiently large such that

‖hkai − ai‖ ≤
ε

4
(2.50)

for all i = 1, . . . , r. Set bi = hkai for i = 1, . . . , r and h = hk+1. By construction hbi = bi

and consider F′ = {h, b1, . . . , br}.

Let γ be given by Lemma 2.5.2 using δ = ε
4 . Set η = min{ ε4 , γ}. By Lemma 2.5.3, there

exist a 0-decomposable approximation (F,ψ, ϕ) for F′ within η and a projection p ∈ F
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such that

‖ϕ (pψ(bi)p)− bi‖ < η ≤ ε

4
(2.51)

for all bi ∈ F′ and

‖ϕ(p)2 − ϕ(p)‖ < η ≤ γ. (2.52)

By Lemma 2.5.2 there exists a ∗-homomorphism π : pFp −→ A such that

‖π − ϕ|pFp‖ <
ε

4
. (2.53)

We finish the proof by showing that the distance between the finite dimensional C∗-

subalgebra π(pFp) and F is at most ε. Let ai ∈ F, then

‖ai − π(pψ(ai)p)‖ ≤ ‖ai − bi‖+ ‖bi − ϕ(pψ(bi)p)‖+ ‖ϕ(pψ(bi)p)− ϕ(pψ(ai)p)‖

+ ‖ϕ(pψ(ai)p)− π(pψ(ai)p)‖
(2.51, 2.53)

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε. (2.54)

Therefore A is an AF-algebra.



Chapter 3

Nuclear dimension and

decomposable approximations

As shown by Kirchberg [53] and Choi-Effros [21], nuclearity can be defined using the

completely positive approximation property (CPAP). A C∗-algebra has the CPAP if there

is a system of completely positive approximations (F,ψ, ϕ) (Theorem 1.5.3). In particular,

for commutative C∗-algebras the CPAP is established from partitions of unity subordinate

to suitable open covers of the spectrum of the algebra. A stronger version of the CPAP

was established in 2012 in [49, Theorem 1.4]. This shows that the maps ϕ can always

be taken to be decomposable, though the size of the decomposition may vary with the

tolerances in the approximation. Moreover, this theorem shows that the map ϕ can be

taken as a convex combination of contractive order zero maps, which is a crucial ingredient

in obtaining a near inclusion type perturbation result for separable nuclear C∗-algebras

[49, Section 2].

Very recently, Carrion, Brown and White proved that the map ψ can be taken to be

asymptotically order zero [12, Theorem 3.1]. Precisely, every nuclear C∗-algebra has a

system of completely positive approximations (F,ψ, ϕ) where ψ is approximately order

zero and ϕ is a convex combination of order zero maps, i.e. ϕ =
∑
λkϕk for some finite

number of positive scalars λk adding up to 1 and each ϕk being order zero.

At first glance, these approximations for nuclear C∗-algebras look very similar to the

approximations witnessing finite nuclear dimension introduced in Chapter 2. Remember

that the approximations witnessing nuclear dimension at most n are of the form (F,ψ, ϕ)

where F =
n⊕
k=0

Fk and ϕ =
n∑
k=0

ϕk with the restrictions ϕk = ϕ|Fk being order zero.

69
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It is important to notice that decomposition rank was introduced before Theorem 1.5.5

was published. As explained in Chapter 2, the approximations witnessing finite nuclear

dimension were constructed as a non-commutative analogue of covering dimension rather

than from this stronger form of CPAP.

Despite these approximations having different origins, one might expect that approxi-

mations coming from the CPAP are useful to witness finite nuclear dimension if we impose

an upper bound in the number of summands appearing in the convex combinations. We

could think that nuclear dimension, ultimately, is only asking for the existence of an upper

bound in the number of summands appearing in the convex combinations.

Thus, as suggested by Winter in the NSF/CBMS conference in Louisiana 2012, it is

natural to investigate the situation when the completely positive and contractive approx-

imations are decomposable as a convex combination with a uniformly bounded number

of summands. In this chapter, we show that such approximations force the underlying

C∗-algebra to be approximately finite dimensional (Theorem 3.1.5), and hence, the ap-

proximations coming from the stronger CPAP are not useful to witness nuclear dimension

in general. The results from Section 3.1 were published by the author in [16].

In the last part of this chapter, we review the notion of nuclear dimension at most

omega introduced by Robert [79, Definition 3.1]. Roughly speaking, nuclear dimension

at most omega asks for approximations (F,ψ, ϕ) where ψ is approximately order zero

and ϕ is the sum of countable many approximately order zero maps. Like in the finite

nuclear dimension case, we can ask if the approximations coming from the CPAP can be

useful to witness nuclear dimension at most omega (with no upper bound in the number

of summands of the convex combinations). As an application of the techniques developed

in this chapter, we obtain a similar result concerning nuclear dimension at most omega:

the approximations coming from the CPAP witness nuclear dimension at most omega if

and only if the C∗-algebra is approximately finite dimensional. The main result in Section

3.3 is original.

3.1 Decomposable approximations vs Nuclear dimension

This section is an extended version of the results in published in [16]. As explained before,

we want to study the approximations for nuclear C∗-algebras given by Theorem 1.5.5.



CHAPTER 3. NUCLEAR DIM. AND DECOMPOSABLE APPROXIMATIONS 71

These approximations are of the form displayed in the following diagram:

A
id //

ψ ��

A

F
ϕ=

∑
λkϕk

??

where ϕ is a convex combination of contractive order zero maps ϕk, ψ is c.p.c. and the

diagram commutes on a finite subset F ⊂ A up to ε > 0. It is important to note that

the number of summands in the convex combinations depends on F and ε, and in general

this number is unbounded. Precisely, we want to study these approximations when the

number of summands in the convex combination is uniformly bounded, i.e. there exists

n ∈ N such that ϕ =
n∑
k=1

λkϕk for all F and ε > 0.

If a C∗-algebra A has the approximations described above, it is almost immediate

that its decomposition rank is at most n − 1. However, we would like to determine the

dimension of this algebra exactly. The reason why we want to do this is because we want

to compare the nuclear dimension of the algebra with the upper bound of the number of

summands in the convex combinations.

First of all, let us show that the approximations described above can be slightly mod-

ified in order to witness decomposition rank at most n − 1. The reason why the original

approximations (F,ψ, ϕ) are not necessarily witnessing decomposition rank is because we

do not have a decomposition
n⊕
k=1

Fk of F such that each restriction ϕ|Fk is order zero. Re-

member that a c.p.c. approximation (F,ψ, ϕ) for F within ε means that ‖a− ϕψ(a)‖ < ε

for all a ∈ F.

Proposition 3.1.1. Let A be a C∗-algebra and let n be a natural number. Suppose that

for every finite subset F ⊂ A and ε > 0 there exists a c.p.c. approximation (F,ψ, ϕ) for F

within ε such that ϕ is a convex combination of at most n order zero maps, i.e.

ϕ =
n∑
k=1

λkϕk

where each ϕk : F −→ A is an order zero map and the coefficients (λk)
n
k=1 are positive

scalars adding up to 1. Then

drA ≤ n− 1.

Proof. Using the approximations provided by the hypothesis, we will construct new ap-

proximations

(
n⊕
k=1

Fk, ψ̂, ϕ̂

)
such that the restrictions ϕ̂

∣∣
Fk

are order zero maps.
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Let F ⊂ A be a finite subset and ε > 0. Suppose there exists a c.p.c. approximation

(F,ψ, ϕ) for F within ε as described in the proposition. Set Fk = F for k = 1, · · · , n and

define c.p.c. maps ψ̂ : A −→
n⊕
k=1

Fk, ϕ̂ :
n⊕
k=1

Fk −→ A as

ψ̂(a) = ψ(a)⊕ · · · ⊕ ψ(a)

and

ϕ̂(x1 ⊕ · · · ⊕ xn) =
n∑
k=1

λkϕk (xk) .

Since ϕψ(a) = ϕ̂ψ̂(a) for all a ∈ A,

(
n⊕
k=1

Fk, ψ̂, ϕ̂

)
is a c.p.c. approximation for F within

ε, and for each k, the restriction ϕ̂|Fk is ϕk so is order zero. Therefore

drA ≤ n− 1.

Our aim is to reduce this estimate and show that in fact the decomposition rank of

algebras with this type of approximation is zero, so they have to be AF.

The next technical lemma will be used in the proof of the main theorem and it will

allow us to work with one map instead of a convex combination.

Lemma 3.1.2. Let A be a C∗-algebra, ε > 0, n ∈ N and consider λ1, . . . , λn ∈ (0, 1) such

that
n∑
k=1

λk = 1. If p ∈ A is a projection and contractions ak ∈ A+1, k = 1, . . . , n, satisfy

∥∥∥∥∥p−
n∑
k=1

λkak

∥∥∥∥∥ ≤ ε. (3.1)

Then

‖p− ak‖ ≤
√
λ−1
k ε

(√
λ−1
k ε+ 1

)
(3.2)

for k = 1, . . . , n.

Proof. We may suppose A ⊂ B(H) for some Hilbert space H. For fixed k consider

b =
1

1− λk

∑
i 6=k

λiai ∈ A1
+. (3.3)

With this construction we can treat the sum as the convex combination of only two sum-

mands, precisely
n∑
i=1

λiai = λkak + (1− λk) b. (3.4)

By (3.1), we get

p− (λkak + (1− λk) b) ≤ ε1B(H). (3.5)
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Thus

λk (p− pakp) + (1− λk) (p− pbp) ≤ εp. (3.6)

Since p− pakp and p− pbp are positive, the previous inequality leads to

0 ≤ p− pakp ≤ λ−1
k εp−

(
λ−1
k − 1

)
(p− pbp) ≤ λ−1

k εp. (3.7)

Thus

‖p− pakp‖ ≤ λ−1
k ε (3.8)

and similarly we obtain

‖(1B(H) − p)ak(1B(H) − p)‖ ≤ λ−1
k ε. (3.9)

We can write any h ∈ H as h1 + h2 where h1 = p(h) and h2 = (1B(H) − p)(h). Since

ak is positive, we have

0 ≤〈akh, h〉

= 〈pakp(h1), h1〉+ 2Re〈pak(1B(H) − p) (h2) , h1〉

+ 〈(1B(H) − p)ak(1B(H) − p)(h2), h2〉. (3.10)

Let us suppose that ‖pak(1B(H)−p)‖ >
√
λ−1
k ε. Then there exists h2 ∈ (1B(H)−p) (H)

with ‖h2‖ = 1 such that ‖pak(1B(H)−p)(h2)‖ >
√
λ−1
k ε. Set h1 = pak(1B(H)−p)(h2) and

considering h = −h1 + h2 in (3.10) we obtain

0 ≤ 〈pakp(−h1),−h1〉+ 2Re〈pak(1B(H) − p)(h2),−h1〉

+ 〈(1B(H) − p)ak(1B(H) − p)(h2), h2〉
(3.9)

≤ 〈p(h1), h1〉 − 2〈h1, h1〉+ λ−1
k ε

= −‖h1‖2 + λ−1
k ε

< −λ−1
k ε+ λ−1

k ε = 0 (3.11)

which is clearly a contradiction. Therefore

‖(1B(H) − p)akp‖ = ‖pak(1B(H) − p)‖ ≤
√
λ−1
k ε. (3.12)

Finally we obtain

‖p− ak‖ ≤max
{
‖p− pakp‖, ‖(1B(H) − p)ak(1B(H) − p)‖

}
+ max

{
‖pak(1B(H) − p)‖, ‖(1B(H) − p)akp‖

}
(3.13)

≤λ−1
k ε+

√
λ−1
k ε =

√
λ−1
k ε

(√
λ−1
k ε+ 1

)
.
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We will need a lemma from [58]. We will rewrite it here in the form in which we need

it. This lemma was enunciated in Lemma 2.5.3 in the particular case of n = 0. With

it, we will be able slightly perturb the approximations by cutting down with projections.

This will allow us to show that the image of some of these projections under the order

zero maps are almost projections.

Lemma 3.1.3 ([58, Lemma 3.7]). Let A be a separable nuclear C∗-algebra and suppose

drA ≤ n and let 0 < ε < 1. Let F ⊂ A+ be a finite subset of contractions and suppose

there is a positive contraction h ∈ A such that ha = a for all a ∈ F. Then there exists an

n-decomposable approximation (F,ψ, ϕ), with ϕ a contraction, for F ∪ {h} within ε and a

projection p ∈ F such that

(i) ‖ϕ (pψ(a)p)− a‖ < ε for all a ∈ F ∪ {h},

(ii) if F =
n⊕
k=1

Fk is a decomposition of F such that ϕ|Fk is order zero, then

‖ϕ (pk)− ϕ (pk)ϕ (1F )‖ < ε (3.14)

for k = 1, . . . , n where pk = p1Fk .

A slightly more general version of this lemma will be proved in Section 3.3. Because

of this, we delay the proof of this lemma until the proof of Lemma 3.3.2.

We will now proceed to prove the main theorem. We will split the proof in two steps.

Firstly, we show that the order zero maps appearing in the convex combinations can be

replaced by ∗-homomorphisms. Secondly, by approximating twice in a suitable way, we

will be able to produce finite dimensional subalgebras contained in the original C∗-algebra.

Lemma 3.1.4. Let A be a separable C∗-algebra and n ∈ N. Consider λ1, . . . , λn ∈ (0, 1)

such that
n∑
k=1

λk = 1 and let {ai}i∈N be a dense countable subset of A. Suppose A has a

system of c.p.c. approximations
{(
F (r), ψ(r), ϕ(r)

)}
r∈N satisfying the following conditions:

(a) For every r ∈ N there exist a decomposition F (r) =
n⊕
k=1

F
(r)
k , as an internal direct sum,

and order zero maps ϕ
(r)
k : F (r) −→ A, with k = 1, . . . , n, satisfying

ϕ(r) =

n∑
k=1

λkϕ
(r)
k . (3.15)

Moreover,
⊕
i 6=k

F
(r)
i ⊂ kerϕk.



CHAPTER 3. NUCLEAR DIM. AND DECOMPOSABLE APPROXIMATIONS 75

(b)
∥∥ϕ(r)ψ(r)(ai)− ai

∥∥ < r−1 for every r ∈ N and i ≤ r.

(c) For every r ∈ N there exist projections p
(r)
k ∈ F

(r)
k satisfying

(I)
∥∥ϕ(r)

(
p(r)ψ(r) (ai) p

(r)
)
− ai

∥∥ < r−1 for i ≤ r with p(r) =
n∑
k=1

p
(r)
k .

(II)
∥∥∥ϕ(r)

(
p

(r)
k

)
− ϕ(r)

(
p

(r)
k

)
ϕ(r) (1F (r))

∥∥∥ < r−1 where 1F (r) denotes the unit of

F (r).

Then for every finite subset F ⊂ A and every ε > 0 there exists a c.p.c. approximation(
n⊕
k=1

F̃k, ψ, π

)
for F within ε such that π =

n∑
k=1

λkπk with each πk :
n⊕
k=1

F̃k −→ A a

∗-homomorphism satisfying
⊕
i 6=k

F̃i ⊂ kerπk.

Proof. Let F ⊂ A and ε > 0. Without loss of generality we can assume the elements of F

are in the dense subset {an} and are positive contractions. Consider γ given by Lemma

2.5.2 using δ = ε/2.

Let ω be a free ultrafilter on N. We will show below that ϕ
(ω)
k (pk) is a projection for

k = 1, . . . , n, where pk ∈
∏
ω
F (r) is represented by

(
p

(r)
k

)
r∈N

and ϕ
(ω)
k is the induced map

at the level of ultrapowers (see Appendix A for the proper definitions). Once this is done,

for k = 1, . . . , n, there exists Uk ∈ ω such that∥∥∥∥ϕ(r)
k

(
p

(r)
k

)
− ϕ(r)

k

(
p

(r)
k

)2
∥∥∥∥ < γ (3.16)

for all r ∈ Uk. Similarly, since lim
r→ω

ϕ(r)ψ(r)
(
p(r)aip

(r)
)

= ai for all i ∈ N, there exists

V ∈ ω such that ∥∥∥a− ϕ(r)
(
p(r)ψ(r) (a) p(r)

)∥∥∥ < ε

2
(3.17)

for all r ∈ V and for all a ∈ F.

Fix r ∈ U1∩· · ·∩Un∩V and set F̃k = p
(r)
k F (r)p

(r)
k . Hence, by the choice of the constant

γ and (3.16), there exist ∗-homomorphisms πk : F̃k −→ A such that∥∥∥ϕ(r)
k |F̃k − πk

∥∥∥ < ε

2
(3.18)

for k = 1, . . . , n. Extend πk to F̃ :=
n⊕
i=1

F̃k = p(r)F (r)p(r) linearly by defining πk(x1⊕· · ·⊕

xk−1 ⊕ 0⊕ xk+1 ⊕ · · · ⊕ xn) = 0 for xi ∈ F̃i with i 6= k.

Define ψ : A −→ F̃ as ψ(a) = p(r)ψ(r)(a)p(r) and set π : F̃ −→ A as π =
n∑
k=1

λkπk.

Then
(
F̃ , ψ, π

)
is a completely positive and contractive approximation with the required
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properties since, using (3.17) and (3.18), we obtain

‖a− πψ(x)‖ ≤
∥∥∥a− ϕ(r)

(
p(r)ψ(r)(a)p(r)

)∥∥∥+

∥∥∥∥∥
n∑
k=1

λk

(
ϕ

(r)
k − πk

)(
p(r)ψ(r)(a)p(r)

)∥∥∥∥∥
<
ε

2
+

n∑
k=1

λk

(ε
2

)
= ε (3.19)

for all a ∈ F.

To finish the proof, we will show ϕ
(ω)
k (pk) is a projection for k = 1, . . . , n. Due to

the hypotheses, we have ϕ(ω) =
n∑
k=1

λkϕ
(ω)
k and ϕ(ω)ψ(ω)(a) = a for all a ∈ A. Recall

pk ∈
∏
ω
F (r) is represented by

(
p

(r)
k

)
r

and consider p ∈
∏
ω
F (r) represented by

(
p(r)
)
r

with

p(r) =
n∑
k=1

p
(r)
k . Then by hypothesis (cI) we have

ϕ(ω)(pψ(ω)(a)p) = a (3.20)

for all a ∈ A and by hypothesis (cII),

ϕ(ω)(pk) = ϕ(ω)(pk)ϕ
(ω)(1∏

ω
F (r)) (3.21)

where 1∏
ω
F (r) denotes the unit of

∏
ω
F (r). Taking adjoints in (3.21) we get

ϕ
(ω)
k (pk) = ϕ

(ω)
k (pk)ϕ

(ω)(1∏
ω
F (r)) = ϕ(ω)(1∏

ω
F (r))ϕ

(ω)
k (pk). (3.22)

Fix k and consider B := ϕ
(ω)
k (pk)Aωϕ

(ω)
k (pk). Then we have

ϕ(ω)(1∏
ω
F (r))b = b (3.23)

for all b ∈ B. By Proposition A.1.7, the map ϕ
(ω)
k :

∏
ω
F (r) −→ Aω is order zero and, by

the structure of order zero maps given in Theorem 1.4.6, we can write

ϕ
(ω)
k (x) = ϕ

(ω)
k (1∏

ω
F (r))ρ(x) = ρ(x)ϕ

(ω)
k (1∏

ω
F (r)), x ∈

∏
ω

F (r), (3.24)

for a ∗-homomorphism

ρ :
∏
ω

F (r) −→M

(
C∗

(
ϕ

(ω)
k

(∏
ω

F (r)

)))⋂{
ϕ

(ω)
k (1∏

ω
F (r))

}′
.

Thus

ϕ
(ω)
k (1∏

ω
F (r))ϕ

(ω)
k (pk) = ϕ

(ω)
k (1∏

ω
F (r))2ρ(pk) = ρ(pk)ϕ

(ω)
k (1∏

ω
F (r))2

= ϕ
(ω)
k (pk)ϕ

(ω)
k (1∏

ω
F (r)). (3.25)
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Using this, we obtain

ϕ
(ω)
k (1∏

ω
F (r))ϕ

(ω)
k (pk)xϕ

(ω)
k (pk) = ϕ

(ω)
k (pk)ϕ

(ω)
k (1∏

ω
F (r))xϕ

(ω)
k (pk) ∈ B (3.26)

for any x ∈ Aω. Thus

ϕ
(ω)
k (1∏

ω
F (r))b ∈ B (3.27)

for all b ∈ B. Set

h =
1

1− λk

∑
j 6=k

λjϕ
(ω)
j (1∏

ω
F (r)). (3.28)

By construction h is a positive contraction and

ϕ(ω)(1∏
ω
F (r)) = λkϕ

(ω)
k (1∏

ω
F (r)) + (1− λk)h. (3.29)

By Lemma 1.2.3, (3.27) and (3.23) we have

ϕ
(ω)
k (1∏

ω
F (r))b = b (3.30)

for all b ∈ B. By [4, Proposition II.3.4.2 (ii)] ϕ
(ω)
k (pk) is in B, so in particular we obtain

ϕ
(ω)
k (1∏

ω
F (r))ϕ

(ω)
k (pk) = ϕ

(ω)
k (pk). (3.31)

Using the last identity and the fact that ϕ
(ω)
k is order zero, we obtain

0 = ϕ
(ω)
k (pk)ϕ

(ω)
k (1∏

ω
F (r) − pk)

= ϕ
(ω)
k (pk)ϕ

(ω)
k (1∏

ω
F (r))− ϕ(ω)

k (pk)
2

= ϕ
(ω)
k (pk)− ϕ

(ω)
k (pk)

2, (3.32)

which means that ϕ
(ω)
k (pk) is a projection as required.

The following theorem is the main result of this section.

Theorem 3.1.5 ([16, Theorem 14]). Let A be a C∗-algebra. Suppose there exists n ∈ N

such that for every finite subset F ⊂ A and every ε > 0 there exist c.p.c. maps ψ : A −→

F, ϕ : F −→ A where F is a finite dimensional C∗-algebra and ϕ is a convex combination

of n contractive order zero maps such that

‖a− ϕψ(a)‖ < ε (3.33)

for all a ∈ F. Then A is AF.
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Proof. If n = 1, the result follows from Theorem 2.5.4. Thus, we can suppose n ≥ 2.

By the proof of Proposition 2.2.4, any countable subset of A is contained in a separable

subalgebra satisfying the hypotheses of the theorem. Therefore, without loss of generality

we may assume A is separable.

From the hypotheses, for any finite subset F and any ε > 0 there exist a c.p.c. approx-

imation
(
F,ψ(F,ε), ϕ(F,ε)

)
for F within ε, order zero maps ϕ

(F,ε)
k : F −→ A and coefficients

λ
(F,ε)
k ≥ 0, for k = 1, · · · , n, such that

n∑
k=1

λ
(F,ε)
k = 1 and ϕ(F,ε) =

n∑
k=1

λ
(F,ε)
k ϕ

(F,ε)
k . By

compactness of [0, 1]n, we may assume there are constants λ1, · · · , λn ∈ [0, 1] satisfying
n∑
k=1

λk = 1 such that λ
(F,ε)
k = λk for any finite subset F and ε > 0. Indeed, consider the net{(

λ
(F,ε)
1 , . . . , λ

(F,ε)
n

)}
F,ε
⊂ [0, 1]n. By compactness of [0, 1]n and after passing to a subnet

if necessary, there exists an element (λ1, . . . , λn) ∈ [0, 1]n such that(
λ

(F,ε)
1 , . . . , λ(F,ε)

n

)
−→ (λ1, . . . , λn) . (3.34)

In particular, λ
(F,ε)
k −→ λk for k = 1, . . . , n. Moreover, by continuity of the sum, we have

n∑
k=1

λk = 1. Observing that

∥∥∥∥∥ϕ(F,ε)ψ(F,ε)(a)−
n∑
k=1

λkϕ
(F,ε)
k ψ(F,ε)(a)

∥∥∥∥∥ =

∥∥∥∥∥
n∑
k=1

λ
(F,ε)
k ϕ(F,ε)ψ(F,ε)(a)−

n∑
k=1

λkϕ
(F,ε)
k ψ(F,ε)(a)

∥∥∥∥∥
≤

n∑
k=1

∣∣∣λ(F,ε)
k − λk

∣∣∣ ∥∥∥ϕ(F,ε)
k ψ(F,ε)(a)

∥∥∥ −→ 0 (3.35)

for all a ∈ A, we obtain that we can replace the coefficients
(
λ

(F,ε)
1 , . . . , λ

(F,ε)
n

)
with

(λ1, . . . , λn) and these new approximations still converge to idA in the point-norm topology.

This entails that we can assume λ
(F,ε)
k = λk for any finite subset F and ε > 0.

Additionally we can suppose (renaming n if necessary) that each λk is strictly positive.

Thus, by Proposition 3.1.1, for any finite subset F ⊂ A and ε > 0 there exists a c.p.c.

approximation

(
n⊕
k=1

Fk, ψ
(F,ε), ϕ(F,ε)

)
for F within ε with ϕ(F,ε) =

n∑
k=1

λkϕ
(F,ε)
k where each

ϕ
(F,ε)
k : F −→ A is an order zero map and

⊕
i 6=k

Fi ⊂ kerϕ
(F,ε)
k .

By Lemma 3.1.3, there exist projections p
(F,ε)
k ∈ Fk for 1 ≤ k ≤ n such that:

(I) ‖ϕ(F,ε)
(
p(F,ε)ψ(F,ε)(a)p(F,ε)

)
− a‖ < ε for all a ∈ F with p(F,ε) =

n∑
k=1

p
(F,ε)
k ,

(II) ‖ϕ(F,ε)
(
p

(F,ε)
k

)
− ϕ(F,ε)

(
p

(F,ε)
k

)
ϕ(F,ε)(1F )‖ < ε where 1F denotes the unit of F .

Then we can produce, using a countable dense subset of A, a sequence of completely
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positive and contractive approximations

A
ψ(r)

// F (r) ϕ(r)
// A

satisfying the hypothesis of Lemma 3.1.4.

We will apply Lemma 3.1.4 to replace the convex combination of order zero maps

with convex combination of ∗-homomorphisms. After this, we will proceed to replace the

convex combination of ∗-homomorphisms with exactly one of them. The choice of such

∗-homomorphism is not important by Lemma 3.1.2 and, in order to simplify the notation,

we will choose the first one.

Fix F and ε > 0 such that
√
λ−1

1 ε < 1. We can assume that any element in F is positive

with norm at most 1. By Lemma 3.1.4, there exists a completely positive and contractive

approximation

(
n⊕
k=1

Fk, ψ, π

)
such that

‖a− πψ(a)‖ < ε

3
(3.36)

for all a ∈ F and π =
∑n

k=1 λkπk, where each πk :
n⊕
k=1

Fk −→ A is a ∗-homomorphism

satisfying
⊕

i 6=k Fi ⊂ kerπk.

Since the set of all minimal projections of Fk, P(Fk), is compact, we can find minimal

projections p1, ..., pr ∈ P(F ) such that for all p ∈ P(Fk) and all k there exists some

j ∈ {1, · · · , r} such that

‖p− pj‖ <
λ1ε

2

3 (6M)2 (3.37)

for some j ∈ {1, ..., r}, where M = dimF . Assume pj ∈ P
(
Fkj
)

and set

F′ = F ∪ {πkj (pj) : 1 ≤ j ≤ r}. (3.38)

By Lemma 3.1.4 again, we find c.p.c. maps ψ′ : A −→
⊕n

k=1 F
′
k and θ :

⊕n
k=1 F

′
k −→ A

with θ =
∑n

k=1 λkθk, F
′
k finite dimensional C∗-algebras and each θk a ∗-homomorphism

satisfying
⊕
i 6=k

F ′i ⊂ ker θk, such that

∥∥a− θψ′(a)
∥∥ < λ1ε

2

3 (6M)2 (3.39)

for all a ∈ F′. In particular for p ∈ P(Fk), let pj satisfy (3.37) so that

‖πk(p)− θψ′(πk(p))‖ ≤ ‖πk(p)− πk(pj)‖+ ‖πk(pj)− θψ′(πk(pj))‖

+ ‖θψ′(πk(pj))− θψ′(πk(p))‖

<
λ1ε

2

(6M)2 . (3.40)
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Using that
√
λ−1

1 ε < 1, we obtain

ε

6M
< 1. (3.41)

Then, by Lemma 3.1.2, we have

‖πk(p)− θ1ψ
′(πk(p))‖ ≤

√
λ1ε2

λ1(6M)2

(√
λ1ε2

λ1(6M)2
+ 1

)
=

ε

6M

( ε

6M
+ 1
)

<
ε

3M
(3.42)

for all k. For any a ∈ F, by the spectral theorem for Hermitian matrices, we can write

ψ(a) =

d∑
i=1

tiqi (3.43)

with 0 ≤ ti ≤ 1, where {qi ∈ F : 1 ≤ i ≤ d} is some set of minimal projections, and

d ≤M . Using the last identity and (3.42) we have

∥∥πψ(a)− θ1ψ
′πψ(a)

∥∥ =

∥∥∥∥∥∥
∑
i,k

tiλkπk(qi)−
∑
i,k

tiλkθ1ψ
′πk(qi)

∥∥∥∥∥∥
≤

n∑
k=1

λk

(
d∑
i=1

‖πk(qi)− θ1ψ
′πk(qi)‖

)

≤
n∑
k=1

λk

(
εd

3M

)
≤ ε

3
(3.44)

for all a ∈ F.

Finally, using the last inequality and (3.36) we obtain

‖a− θ1ψ
′(a)‖ ≤ ‖a− πψ(a)‖+ ‖πψ(a)− θ1ψ

′ (πψ(a)) ‖

+‖θ1ψ
′(πψ(a)− a)‖

<
ε

3
+
ε

3
+
ε

3
= ε. (3.45)

Thus dist(a, θ1(F ′1)) < ε for all a ∈ F. Since θ1 : F ′1 −→ A is a ∗-homomorphism and F ′1 is

a finite dimensional C∗-algebra, θ1 (F ′1) is also a finite dimensional algebra. Therefore A

is an AF-algebra.

By the previous theorem, the decomposable approximations of a nuclear C∗-algebra A

given by Theorem 1.5.5 can witness finite nuclear dimension (in fact, finite decomposition

rank since ϕ is forced to be contractive) if and only if A is an approximately finite dimen-

sional C∗-algebra. Thus, in general, the approximations given by Theorem 1.5.5 are not

useful to compute nuclear dimension.
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3.2 Nuclear dimension at most omega

In [79], Robert generalised the notion of nuclear dimension by allowing arbitrarily almost

decomposable approximations which persist at the level of the sequence algebras. This is

a relatively mild regularity property, but does impose structural requirements: a σ-unital

stable C∗-algebra A with nuclear dimension at most omega has the corona factorisation

property, i.e. every full projection in M(A) is Murray-von Neumann equivalent to 1M(A)

[79, Corollary 3.5]. In this section we extend Theorem 3.1.5 to show that the maps

constructed in [49, Theorem 1.4] can only witness the weaker property of nuclear dimension

at most omega for approximately finite dimensional C∗-algebras. For reasons of simplicity,

in this section we restrict to separable C∗-algebras.

Consider a C∗-algebra with nuclear dimension equal to n. Then there is a system of n-

decomposable approximations
{(
F (r), ψ(r), ϕ(r)

)}
r∈N. By hypothesis, F (r) =

n⊕
k=0

F
(r)
k and

the restrictions ϕ
(r)
k := ϕ(r)

∣∣
F

(r)
k

are order zero for all r ∈ N and k = 0, . . . , n. Let us denote

the kth-component of ψ(r) by ψ
(r)
k : A −→ F

(r)
k ; in other words ψ

(r)
k (a) = 1

F
(r)
k

ψ(r) (a) 1
F

(r)
k

where 1
F

(r)
k

is the unit of F
(r)
k . We have seen in Proposition 2.2.6 that we can choose

these approximations in such a way that the maps ψ(r) are almost order zero; hence, the

induced map at the level of sequence algebras is order zero. By [111, Proposition 3.1], the

components of this last map are also order zero. Robert observed that we have the same

conclusion for the order zero maps ϕ
(r)
k .

Proposition 3.2.1 ([79, Proposition 2.2]). Let A be a C∗-algebra such that dimnucA = n.

Then, for k = 0, . . . , n there exist order zero maps

ψ
(∞)
k : A −→

∞∏
r=1

F
(r)
k

/ ∞⊕
r=1

F
(r)
k and ϕ

(∞)
k :

∞∏
r=1

F
(r)
k

/ ∞⊕
r=1

F
(r)
k −→ A∞,

with F
(r)
k finite dimensional C∗-algebras for all r ∈ N, such that

a =
n∑
k=0

ϕkψk(a) (3.46)

for all a ∈ A.

It was proved that nuclear dimension is connected to some properties of the Cuntz

semigroup (see Section 1.10). Before going further, let us say something about these

properties. Let (W,≤) be an ordered semigroup in the category Cu and consider x, y ∈W .

The element x is stably dominated by y, denoted by x ≤s y, if there exists k ∈ N such
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that (k + 1)x ≤ ky. The ordered semigroup W is almost unperforated if x ≤s y implies

x ≤ y. In particular, if A is a Z-stable C∗-algebra then Cu(A) is almost unperforated [83,

Theorem 4.5].

Weaker forms of almost unperforation were introduced in [69] by Ortega, Perera and

Rørdam. Let (W,≤) be an ordered semigroup in Cu. The ordered semigroup W has

n-comparison if whenever x, y0, . . . , yn ∈ W such that x ≤s yk, for k = 0, . . . , n, then

x ≤
n∑
k=0

yk. Robert showed that if a C∗-algebra A has nuclear dimension equal to n, then

its Cuntz semigroup has n-comparison [79, Theorem 1.3]. Ortega, Perera and Rørdam

also introduced a weaker form of n-comparison called omega comparison [69, Definition

2.11]. The ordered semigroup W in the category Cu has omega comparison if whenever

x, yk ∈W with k ∈ N such that x ≤s yk for every k ∈ N, then x ≤
∑
k∈N

yk.

As mentioned before, these comparison properties are weaker forms of the almost

unperforation of semigroups and the salient feature of these comparison properties for

Cu(A) is that they imply the corona factorisation property of A [69, Proposition 2.17,

Theorem 5.11]. Robert used Proposition 3.2.1 and omega comparison as models for his

definition of nuclear dimension at most omega.

Definition 3.2.2 ([79, Definition 3.3]). A C∗-algebra A has nuclear dimension at most

omega if for k = 0, 1, 2, ... there are sequences of c.p.c. maps ψ
(r)
k : A −→ F

(r)
k and

ϕ
(r)
k : F

(r)
k −→ A, with F

(r)
k finite dimensional C∗-algebras and r ∈ N, such that:

(i) for each k ∈ N the induced maps, at the level of sequence algebras,

ψ
(∞)
k : A −→

∞∏
r=1

F
(r)
k

/ ∞⊕
r=1

F
(r)
k and ϕ

(∞)
k :

∞∏
r=1

F
(r)
k

/ ∞⊕
r=1

F
(r)
k −→ A∞

are c.p.c. of order zero;

(ii) a =
∞∑
k=0

ϕ
(∞)
k ψ

(∞)
k (a) for all a ∈ A, where the series on the right hand side is under-

stood to be convergent in the norm topology.

We will denote a system of approximations witnessing the nuclear dimension at most

omega as
{((

F
(r)
k

)
k∈N

,
(
ψ

(r)
k

)
k∈N

,
(
ϕ

(r)
k

)
k∈N

)}
r∈N

. Let us present some easy examples.

Example 3.2.3. Any C∗-algebra with finite nuclear dimension has nuclear dimension at

most omega by Proposition 3.2.1.

Example 3.2.4. Any countable direct sum of C∗-algebras with finite nuclear dimension

has nuclear dimension at most omega.
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As one could expect, we have the following theorem.

Theorem 3.2.5 ([79, Theorem 3.4]). Let A be a C∗-algebra with nuclear dimension at

most omega. Then Cu(A) has the omega comparison property.

With this theorem in hand, we can obtain examples of C∗-algebras without nuclear

dimension at most omega.

Example 3.2.6. Let X be a countable infinite cartesian product of spheres. It was proved

in [59, Proposition 5.3] that C(X) ⊗ K does not have the omega comparison property.

Therefore, C(X)⊗K does not have nuclear dimension at most omega.

3.3 Decomposable approximations vs Nuclear dimension at

most omega

Previously we have investigated the relation between the c.p.c. approximations (F,ψ, ϕ)

given by the stronger form of CPAP (Theorem 1.5.5) and nuclear dimension if we impose

an upper bound on the number of summands in the convex combinations ϕ =
∑
λkϕk. We

have proved that approximations of this type force the nuclear dimension of the algebra to

be equal to zero (or equivalently force the algebra to be approximately finite dimensional).

In this section we will investigate the relationship between the c.p.c. approximations

provided by Theorem 1.5.5 and nuclear dimension at most omega. Of course, if there is

an upper bound in the number of summands in the convex combinations we already know

that the nuclear dimension is zero; hence, the C∗-algebra has nuclear dimension at most

omega. So instead of asking for an upper bound in the number of summands, we will ask

for these approximations to witness nuclear dimension at most omega.

Similarly to the previous situation, we will obtain that if the approximations coming

from the stronger form of the CPAP witness nuclear dimension at most omega, then the

underlying algebra has to be approximately finite dimensional. The proof is very similar

to the finite case. However, some technical lemmas need certain modifications to handle

this more general situation. We will rewrite and prove these lemmas in the form we will

need them here.

Before proceeding, let us explain this problem in more detail. Let A be a nuclear C∗-

algebra. By Theorem 1.5.5, there exists a system of approximations
{(
F (r), ψ(r), ϕ(r)

)}
such that ϕ(r) is a convex combination of order zero maps, i.e. for each r ∈ N there exists
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n(r) ∈ N such that for k = 1, . . . , n(r) there are c.p.c. order zero maps ϕ
(r)
k : F (r) −→ A,

scalars λ
(r)
k ∈ [0, 1] satisfying

n(r)∑
k=1

λ
(r)
k = 1 and

ϕ(r) =
n(r)∑
k=1

λkϕ
(r)
k . (3.47)

Moreover,

lim
r→∞

ϕ(r)ψ(r)(a) = lim
r→∞

n(r)∑
k=1

λ
(r)
k ϕ

(r)
k ψ

(r)
k (a) = a (3.48)

for all a ∈ A.

For each r ∈ N set λ
(r)
k := 0 if k > n(r). Now define F

(r)
k = F (r), ψ

(r)
k := ψ(r) and

ϕ̂
(r)
k = λ

(r)
k ϕ

(r)
k for k ∈ N. Note that ϕ̂

(r)
k = 0 if k > n(r). One is tempted to think that the

system we have constructed,
{((

F
(r)
k

)
k∈N

,
(
ψ

(r)
k

)
k∈N

,
(
ϕ̂

(r)
k

)
k∈N

)}
r∈N

, witnesses nuclear

dimension at most omega because we have equation (3.48) and the maps ψ
(r)
k and ϕ

(r)
k are

approximately order zero and order zero respectively. However this is false in general. For

example suppose the sequence
(
n(r)

)
r

diverges and suppose λ
(r)
k = 1

n(r) for k ≤ n(r). Then

the induced maps at the level of sequence algebras, ϕ̂
(∞)
k :

∏
r→∞

F
(r)
k −→ A∞, are the zero

map since λ
(r)
k → 0. Hence condition 3.2.2 (ii) is not fulfilled. Observe that individually,

each map ϕ̂
(∞)
k becomes zero while the sum of those maps does persists at the level of the

sequence algebras.

We are going to investigate when the system
{((

F
(r)
k

)
k∈N

,
(
ψ

(r)
k

)
k∈N

,
(
ϕ̂

(r)
k

)
k∈N

)}
r∈N

actually witnesses nuclear dimension at most omega. In particular, this implies that at

least one sequence of coefficients, say
(
λ

(r)
k

)
k∈N

, does not converge to zero. Notice that

this new system is essentially the original one, we are only presenting it in a different form.

As in Section 3.1, the next technical lemma will allow us to work with one order zero

map instead of a convex combination. The proof is essentially the proof of Lemma 3.1.2.

We briefly explain why this is the case.

Lemma 3.3.1. Let A be a C∗-algebra, ε > 0 and let (λk)k∈N be a sequence contained in

(0, 1) such that
∞∑
k=1

λk = 1. If p ∈ A is a projection and ak ∈ A1
+, k ∈ N, satisfy∥∥∥∥∥p−∑

k

λkak

∥∥∥∥∥ ≤ ε. (3.49)

Then

‖p− ak‖ ≤
√
λ−1
k ε

(√
λ−1
k ε+ 1

)
(3.50)

for k such that λk 6= 0.
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Proof. We may suppose A ⊂ B(H) for some Hilbert space H. For fixed k consider

b =
1

1− λk

∑
i 6=k

λiai ∈ A1
+. (3.51)

With this construction we can treat the sum as the convex combination of only two sum-

mands, precisely ∑
i

λiai = λkak + (1− λk) b. (3.52)

From here, the exact same arguments from the proof of Lemma 3.1.2 finish the proof.

The following lemma is one of the key steps. This lemma gives us sufficiently close

approximations that remain close after being cut down with a projection. Its proof is

contained in the proof of Lemma 3.1.3. We now present a proof.

Lemma 3.3.2. Let A be a separable nuclear C∗-algebra. Let
{(
F (r), ψ(r), ϕ(r)

)}
r∈N be

a system of decomposable c.p.c. approximations for A with F (r) finite dimensional. Let

F ⊂ A+ be a finite subset and 0 < ε ≤ 1. Suppose there is a positive contraction h ∈ A

such that ha = a for all a ∈ F. Then there exists r ∈ N and a projection p ∈ F (r) such

that

(i)
∥∥ϕ(r)ψ(r)(a)− a

∥∥ < ε for all a ∈ F ∪ {h},

(ii)
∥∥ϕ(r)

(
pψ(r)(a)p

)
− a
∥∥ < ε for all a ∈ F ∪ {h},

(iii) if F (r) =
n(r)⊕
k=1

F
(r)
k is a decomposition of F (r) such that ϕ|

F
(r)
k

is order zero, then

∥∥∥ϕ(r) (pk)− ϕ(r) (pk)ϕ
(r) (1F (r))

∥∥∥ < ε (3.53)

for k = 1, . . . , n where pk = p1Fk .

Proof. Consider the induced maps at the level of the sequence algebra,

ψ(∞) : A −→
∞∏
r=1

F (r)
/ ∞⊕

k=1

F (r) and ϕ(∞) :
∞∏
r=1

F (r)
/ ∞⊕

k=1

F (r) −→ A∞. (3.54)

From the hypothesis ϕ(∞)ψ(∞) (a) = a for all a ∈ A. Moreover, we have that ϕ(∞) is

multiplicative on C∗ (ψ (A)) as in the proof of Lemma 2.5.3. By Lemma 1.4.4 we obtain

ϕ(∞)
(
xψ(∞) (a)

)
= ϕ(∞) (x)ϕ(∞)ψ(∞) (a) = ϕ(∞) (x) a (3.55)
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for all x ∈
∏
∞
F (r) and a ∈ A. Set p(r) = χ

[1− ε2
4
,∞)

(
ψ(r) (h)

)
. Let p(∞) ∈

∏
∞
F (r) be

represented by
(
p(r)
)
. As in the proof of Lemma 2.5.3, we have

a = ϕ(∞)
(
p(∞)

)
a (3.56)

and

a = ϕ(∞)
(
p(∞)ψ(∞)(a)p(∞)

)
(3.57)

for all a ∈ F. Observe that by construction∥∥∥p(∞)ψ(∞) (h)− p(∞)
∥∥∥ < ε2

4
, (3.58)

and by (3.55),

ϕ(∞)
(
p(∞)ψ(∞) (h)

)
= ϕ(∞)

(
p(∞)

)
h. (3.59)

Hence ∥∥∥ϕ(∞)
(
p(∞)

)
− ϕ(∞)

(
p(∞)

)
h
∥∥∥ < ε2

4
. (3.60)

Therefore we can choose r ∈ N such that

(i)
∥∥ϕ(r)

(
p(r)ψ(r)(a)p(r)

)
− a
∥∥ < ε2

2 for all a ∈ F,

(ii)
∥∥ϕ(r)

(
p(r)
)
− ϕ(r)

(
p(r)
)
h
∥∥ < ε2

2 ,

(iii)
∥∥ϕ(r)ψ(r) (h)− h

∥∥ < ε2

2 .

This proves the first two parts of the lemma if we choose p = p(r).

Suppose now that F (r) =
n(r)⊕
k=1

Fk for some n(r) ∈ N such that ϕ|
F

(r)
k

is order zero. Set

pk = p1Fk , then∥∥∥ϕ(r) (pk)− ϕ(r) (pk)ϕ
(r) (1F (r))

∥∥∥2
=
∥∥∥(1Ã − ϕ

(r) (1F (r))
)
ϕ(r) (pk)

2
(

1Ã − ϕ
(r) (1F (r))

)∥∥∥
≤
∥∥∥(1Ã − ϕ

(r) (1F (r))
)
ϕ(r) (p)2

(
1Ã − ϕ

(r) (1F (r))
)∥∥∥

=

∥∥∥∥ϕ(r) (p)
(

1Ã − ϕ
(r) (1F (r))

)2
ϕ(r) (p)

∥∥∥∥
≤
∥∥∥ϕ(r) (p)

(
1Ã − ϕ

(r) (1F (r))
)
ϕ(r) (p)

∥∥∥
≤
∥∥∥ϕ(r) (p)

(
1Ã − ϕ

(r)ψ(r)(h)
)
ϕ(r) (p)

∥∥∥
≤
∥∥∥ϕ(r) (p)

(
1Ã − h

)∥∥∥+
∥∥∥ϕ(r) (p)

(
h− ϕ(r)ψ(r)(h)

)∥∥∥
<
ε2

2
+
ε2

2
= ε2. (3.61)

Therefore
∥∥ϕ(r) (pk)− ϕ(r) (pk)ϕ

(r) (1F (r))
∥∥ < ε.
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The next lemma is an infinite version of Lemma 3.1.4.

Lemma 3.3.3. Let A be a separable C∗-algebra and let (λk)k∈N be a sequence contained

in (0, 1) such that
∞∑
k=1

λk = 1 and let {an}n∈N be a dense countable subset of A. Suppose

A has a system of c.p.c. approximations
{(
F (r), ψ(r), ϕ(r)

)}
r∈R satisfying the following

conditions:

(a) For every r ∈ N there exist n(r) ∈ N, a decomposition F (r) =
n(r)⊕
k=1

F
(r)
k , as internal

direct sum, and a family
{
ϕ

(r)
k : F (r) −→ A : k ∈ N

}
of contractive order zero maps

such that ϕ
(r)
k = 0 if k > n(r) satisfying

ϕ(r) =

n(r)∑
k=1

λkϕ
(r)
k . (3.62)

Moreover,
⊕
i 6=k

F
(r)
i ⊂ kerϕk.

(b)
∥∥ϕ(r)ψ(r)(an)− an

∥∥ < r−1 for every r ∈ N and n ≤ r.

(c) For every r ∈ N there exist projections p
(r)
k ∈ F

(r)
k satisfying

(I)
∥∥ϕ(r)

(
p(r)ψ(r) (an) p(r)

)
− an

∥∥ < r−1 for n ≤ r with p(r) =
n(r)∑
k=1

p
(r)
k .

(II)
∥∥∥ϕ(r)

(
p

(r)
k

)
− ϕ(r)

(
p

(r)
k

)
ϕ(r) (1F (r))

∥∥∥ < r−1 where 1F (r) denotes the unit of

F (r).

Then for every finite subset F ⊂ A and every ε > 0 there exist N ∈ N and a

c.p.c. approximation

(
N⊕
k=1

F̃k, ψ, π

)
for F within ε such that π =

N∑
k=1

λkπk with each

πk :
N⊕
k=1

F̃k −→ A a ∗-homomorphism satisfying
⊕
i 6=k

F̃i ⊂ kerπk.

Proof. Let F ⊂ A and ε > 0. Without loss of generality we can assume the elements of F

are in the dense subset {an} and are positive contractions. Consider γ given by Lemma

2.5.2 using δ = ε/3. Since
∞∑
k=1

λk = 1 there exists N ∈ N such that

∞∑
k>N

λk <
ε

3
. (3.63)

In the proof of Lemma 3.1.4 we worked with ultrafilters, but since we did not use any

special feature of ultraproducts the same proof is still valid for the cofinite filter, i.e. for

sequence algebras. By the proof of Lemma 3.1.4, ϕ
(∞)
k (pk) is a projection for every k,
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where pk ∈
∞∏
r=1

F (r)
/ ∞⊕
k=1

F (r) is represented by
(
p

(r)
k

)
r∈N

if λk 6= 0. Hence, for all k ∈ N

there exists mk ∈ N such that∥∥∥∥ϕ(r)
k

(
p

(r)
k

)
− ϕ(r)

k

(
p

(r)
k

)2
∥∥∥∥ < γ (3.64)

for all r ≥ mk. Similarly, since lim
r→∞

ϕ(r)ψ(r)
(
p(r)anp

(r)
)

= an for all n ∈ N, there exists

M ∈ N such that ∥∥∥a− ϕ(r)
(
p(r)ψ(r) (a) p(r)

)∥∥∥ < ε/3 (3.65)

for all r ≥M and for all a ∈ F.

Fix r ≥ max{m1,m2, . . . ,mN ,M} and set F̃k = p
(r)
k F (r)p

(r)
k . Hence, by the choice of

the constant γ and (3.64), there exists a ∗-homomorphism πk : F̃k −→ A such that∥∥∥ϕ(r)
k |F̃k − πk

∥∥∥ < ε

3
(3.66)

for k ≤ N . Extend πk to F̃ :=
n(r)⊕
i=1

F̃k = p(r)F (r)p(r) linearly by defining πk(x1 ⊕ · · · ⊕

xk−1 ⊕ 0⊕ xk+1 ⊕ · · · ⊕ xn(r)) = 0 for xi ∈ F̃i with i 6= k.

Define ψ : A −→ F̃ as ψ(a) = p(r)ψ(r)(a)p(r) and set π : F̃ −→ A as π =
N∑
k=1

λkπk,

then
(
F̃ , ψ, π

)
is a completely positive and contractive approximation with the required

properties since, using (3.65), (3.66) and (3.63), we obtain

‖a− πψ(x)‖ ≤
∥∥∥a− ϕ(r)

(
p(r)ψ(r)(a)p(r)

)∥∥∥+

∥∥∥∥∥
N∑
k=1

λk

(
ϕ

(r)
k − πk

)(
p(r)ψ(r)(a)p(r)

)∥∥∥∥∥
+

∥∥∥∥∥∑
k>N

λkϕ
(r)
k

(
p(r)ψ(r)(a)p(r)

)∥∥∥∥∥
<
ε

3
+

N∑
k=1

λk

(ε
3

)
+
ε

3
< ε (3.67)

for all a ∈ F.

We can reformulate Theorem 3.1.5 in terms of finite nuclear dimension as follows: If

a C∗-algebra A has nuclear dimension equal to n such that the system of contractible ap-

proximations witnessing the nuclear dimension are decomposable as convex combinations

of n summands, then the nuclear dimension of the algebra A is in fact 0. We now extend

this to the case of nuclear dimension at most omega.

Theorem 3.3.4. Let A be a separable nuclear C∗-algebra. If A has a system of approxi-

mations
{((

F
(r)
k

)
k∈N

,
(
ψ

(r)
k

)
k∈N

,
(
ϕ̃

(r)
k

)
k∈N

)}
r∈N

witnessing nuclear dimension at most

omega satisfying the following property:
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(i) For all k, r ∈ N there exist λ
(r)
k ≥ 0 such that

∑
k∈N

λ
(r)
k = 1 for all r ∈ N, and a c.p.c.

order zero map ϕ
(r)
k : F

(r)
k −→ A such that

ϕ̃
(r)
k = λ

(r)
k ϕ

(r)
k . (3.68)

Then A is AF.

Proof. By the weak∗-compactness of the unit ball of `1, we can assume (probably after

passing to a subsequence) that
(
λ

(r)
k

)
k
→ (λk)k in the weak∗-topology when r → ∞ for

some (λk)k ∈ `1 in the unit ball. In particular we have that λ
(r)
k → λk when r →∞ for all

k ∈ N (which also implies λk ≥ 0). Consider the induced maps at the level of the sequence

algebra,

ψ
(∞)
k : A −→

∞∏
r=1

F (r)
/ ∞⊕

k=1

F (r) and ϕ
(∞)
k :

∞∏
r=1

F (r)
/ ∞⊕

k=1

F (r) −→ A∞. (3.69)

Since λ
(r)
k → λk when r → ∞ for all k ∈ N, we obtain ϕ̃

(∞)
k = λkϕ

(∞)
k and, by the

hypotheses, we have

a =
∞∑
k=1

ϕ̃
(∞)
k ψ

(∞)
k (a) =

∞∑
k=1

λkϕ
(∞)
k ψ

(∞)
k (a) (3.70)

for all a ∈ A. Then we can slightly modify the system of approximations by replacing each

λ
(r)
k with λk for all r ∈ N. Precisely, replace ϕ̃

(∞)
k with ϕ̂

(∞)
k where ϕ̂

(r)
k := λkϕ

(r)
k and this

new system also witnesses the nuclear dimension at most omega because it induces the

same maps at the level of the sequence algebra, i.e. ϕ̂
(∞)
k = λkϕ

(∞)
k = ϕ̃

(∞)
k .

We know that (λk)k∈N is an element of the unit ball of `1, hence
∞∑
k=1

λk ≤ 1. Let us

show the value of the series is exactly 1. Consider a nonzero a ∈ A, then

‖a‖ =

∥∥∥∥∥
∞∑
k=1

λkϕkψk (a)

∥∥∥∥∥ ≤
∞∑
k=0

λk ‖a‖ . (3.71)

This yields 1 ≤
∞∑
k=1

λk. Hence

∞∑
k=1

λk = 1. (3.72)

If there is only a finite number of coefficients λk different from zero, by Theorem 3.1.5,

A is an AF-algebra. So let us assume there exists an infinite number of coefficients λk

different from 0. Deleting terms if necessary, we can also assume λk > 0 for all k ∈ N.

For each r ∈ N, there exists n(r) ∈ N such that
∞∑

k=n(r)+1

λk < 1
r . Let us perturb

once again the system of approximations. Set ϕ
(r)
k := λkϕ

(r)
k if k ≤ n(r) and ϕ

(r)
k := 0 if
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k > n(r) Since for every k ∈ N there is a sufficiently large R such that ϕ
(r)
k = λkϕ

(r)
k if

r ≥ R, this new system induces the same maps at the level of the sequence algebra, i.e.

ϕ
(∞)
k = λkϕ

(∞)
k = ϕ̂

(∞)
k .

Set ψ(r) =
n(r)∑
k=1

ψ
(r)
k and ϕ(r) =

n(r)∑
k=1

λkϕ
(r)
k . Notice that

(
n(r)⊕
k=1

F
(r)
k , ψ(r), ϕ(r)

)
is n(r)-

decomposable since ψ(r)
∣∣
F

(r)
k

= λkϕ
(r)k and hence order zero for k = 1, . . . , n(r). By Lemma

3.3.2, possible after passing to a subsequence, there exist projections p
(r)
k ∈ F

(r)
k for all

k, r ∈ N such that the system of approximations

{(
n(r)⊕
k=1

F
(r)
k , ψ(r), ϕ(r)

)}
r∈N

satisfies the

hypotheses of Lemma 3.3.3. From this point the proof follows the same steps as the proof

of Theorem 3.1.5. The reason for this is because the number of coefficients different from

zero is not relevant, the key fact is the existence of at least one coefficient different from

zero. We include the details for completeness.

Let F ⊂ A be a finite subset of A and ε > 0 such that
√
λ−1

1 ε < 1. We can assume that

any element in F is positive of norm at most 1. By Lemma 3.3.3, there exists a completely

positive and contractive approximation

(
n⊕
k=1

Fk, ψ, π

)
such that

‖a− πψ(a)‖ < ε

3
(3.73)

for all a ∈ F and π =
∑n

k=1 λkπk where each πk :
n⊕
k=1

Fk −→ A is a ∗-homomorphism

satisfying
⊕

i 6=k Fi ⊂ kerπk.

Since the set of all minimal projections of Fk, P(Fk), is compact, we can find minimal

projections p1, ..., pr ∈ P(F ) such that for all p ∈ P(Fk) and all k there exists some

j ∈ {1, · · · , r} such that

‖p− pj‖ <
λ1ε

2

3 (6M)2 (3.74)

for some j ∈ {1, ..., r} where M = dimF . Assume pj ∈ P
(
Fkj
)

and set

F′ = F ∪ {πkj (pj) : 1 ≤ j ≤ r}. (3.75)

By Lemma 3.3.3 again, we find c.p.c. maps ψ′ : A −→
⊕n

k=1 F
′
k and θ :

⊕n
k=1 F

′
k −→ A

with θ =
∑n

k=1 λkθk, F
′
k finite dimensional C∗-algebras and each θk is a ∗-homomorphism

satisfying
⊕
i 6=k

F ′i ⊂ ker θk, such that

∥∥a− θψ′(a)
∥∥ < λ1ε

2

3 (6M)2 (3.76)
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for all a ∈ F′. In particular for p ∈ P(Fk), let pj satisfy (3.74) so that

‖πk(p)− θψ′(πk(p))‖ ≤ ‖πk(p)− πk(pj)‖+ ‖πk(pj)− θψ′(πk(pj))‖

+ ‖θψ′(πk(pj))− θψ′(πk(p))‖

<
λ1ε

2

(6M)2 . (3.77)

Using that
√
λ−1

1 ε < 1, we obtain

ε

6M
< 1. (3.78)

Then, by Lemma 3.3.1, we have

‖πk(p)− θ1ψ
′(πk(p))‖ ≤

√
λ1ε2

λ1(6M)2

(√
λ1ε2

λ1(6M)2
+ 1

)
=

ε

6M

( ε

6M
+ 1
)

<
ε

3M
(3.79)

for all k. This last step is a key point because it is allowing us to work with exactly one

∗-homomorphisms instead of a convex combination of ∗-homomorphisms. For any a ∈ F,

by the spectral theorem for Hermitian matrices, we can write

ψ(a) =

d∑
i=1

tiqi (3.80)

with 0 ≤ ti ≤ 1 where {qi ∈ F : 1 ≤ i ≤ d} is some set of minimal projections and d ≤M .

Using the last identity and (3.79) we have

∥∥πψ(a)− θ1ψ
′πψ(a)

∥∥ =

∥∥∥∥∥∥
∑
i,k

tiλkπk(qi)−
∑
i,k

tiλkθ1ψ
′πk(qi)

∥∥∥∥∥∥
≤

n∑
k=1

λk

(
d∑
i=1

‖πk(qi)− θ1ψ
′πk(qi)‖

)

≤
n∑
k=1

λk

(
εd

3M

)
≤ ε

3
(3.81)

for all a ∈ F. Finally, using the last inequality and (3.73) we obtain

‖a− θ1ψ
′(a)‖ ≤ ‖a− πψ(a)‖+ ‖πψ(a)− θ1ψ

′ (πψ(a)) ‖

+‖θ1ψ
′(πψ(a)− a)‖

<
ε

3
+
ε

3
+
ε

3
= ε. (3.82)
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Thus dist(a, θ1(F ′1)) < ε for all a ∈ F. Since θ1 : F ′1 −→ A is a ∗-homomorphism and F ′1 is

a finite dimensional C∗-algebra, θ1 (F ′1) is also a finite dimensional algebra. Therefore A

is an AF-algebra.

As a straightforward corollary, we get that the approximations given by [49, Theorem

1.4] can only witness nuclear dimension at most omega for AF-algebras.

Corollary 3.3.5. Let A be a nuclear C∗-algebra with nuclear dimension at most omega

witnessed with a system of approximations
{(
F (r), ψ(r), ϕ(r)

)}
r∈N such that ϕ(r) is a convex

combination of order zero maps. Then A is an AF-algebra.



Chapter 4

Interactions between von

Neumann algebras and nuclear

C∗-algebras

In this chapter we will review some well known relations between von Neumann algebras

and C∗-algebras. These examples are motivation for the coloured theory we will introduce

later in this chapter and Chapter 5. Our goal is to explain some aspects of Connes’ proof

of injectivity implies hyperfiniteness and how these provide a strategy to estimate nuclear

dimension for certain classes of C∗-algebras.

4.1 Von Neumann algebras

We will recall some facts about von Neumann algebras. So far we have been working

with separable C∗-algebras and, in the same spirit, we will be working with von Neumann

algebras acting in a separable Hilbert space, i.e. M can be represented faithfully on a

separable Hilbert space. First of all, we should observe that separability in norm is not a

useful property for von Neumann algebras.

Proposition 4.1.1. Let M be an infinite dimensional von Neumann algebra. Then M is

not separable in norm.

This can be proved by showing that infinite dimensional von Neumann algebras contain

an infinite family of non zero pairwise orthogonal projections. From this family we can

construct an uncountable set of elements such that the distance between any two is at

93
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least 1.

Since we cannot ask for separability in norm, one reasonable condition is to ask for

separability of M in one of the following locally convex topologies: weak, strong, strong*,

ultraweak, ultrastrong or ultrastrong* (we refer to [93, Section II.2] for the definitions).

It turns out that separability in any of these locally convex topologies implies separability

in all of them.

To begin with let us observe these locally convex topologies behave similarly on convex

subsets. Let Br(0) denote the ball of radius r centered at 0.

Theorem 4.1.2 ([93, Theorem 2.6.(iv)]). Let M be a von Neumann algebra. For a convex

subset K of M , the following statements are equivalent.

(i) K is ultraweakly closed.

(ii) K is ultrastrongly closed

(iii) K is closed in the ultrastrong* topology.

(iv) K ∩Br(0) is weakly closed for every r > 0.

(v) K ∩Br(0) is strongly closed for every r > 0.

(vi) K ∩Br(0) is strongly* closed for every r > 0.

It is well known that we can give an axiomatic characterisation of C∗-algebras. This

was done by Gelfand and Naimark in [41]. In a similar fashion, Sakai characterised von

Neumann algebras axiomatically using their predual.

Definition 4.1.3 ([93, Definition III.2.13]). The predual of a von Neumann algebra M

is the space of all ultraweakly continuous linear functionals on M (also called normal

functionals). We will denote it as M∗.

By definition, M∗ is contained in the dual M∗ and, in fact, it is a norm closed subset.

Thus M∗ is a Banach space. In particular, the canonical bilinear map on M×M∗, (a, ϕ) 7→

ϕ(a), induces a bilinear map on M ×M∗. This bilinear map produces an isomorphism

between M and the dual of M∗.

Theorem 4.1.4 ([26, Theorem 1]). Let M be a von Neumann algebra. Then M ∼= (M∗)
∗,

as Banach spaces.
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We can characterise von Neumann algebras as C∗-algebras which are isometrically

isomorphic to the dual of some Banach space. This space is also called a predual and it

turns out that von Neumann algebras have a unique predual [26, 87]. Observe that general

Banach spaces can have more than one predual; for example c∗ ∼= (c0)∗ ∼= `1.

At this point it is important to notice that the ultraweak topology is nothing more than

the weak* topology σ (M,M∗). This immediately shows, with the help of Banach-Alaoglu

theorem, that the closed unit ball of M is ultraweakly compact. This is one of the key

features of von Neumann algebras.

Now let us introduce another relevant concept for this discussion.

Definition 4.1.5 ([52, Definition 5.5.14]). A projection p in a von Neumann algebra

is countably decomposable if every orthogonal family of non zero subprojections of p is

countable. A von Neumann algebra is countably decomposable if the identity is countably

decomposable.

It follows from the definition that any separably acting von Neumann algebra is count-

ably decomposable but the converse is false [4, III.3.1.5]. Now we are ready to state the

following theorem.

Theorem 4.1.6. Let M be a von Neumann algebra. The following statements are equiv-

alent.

(i) M can be represented faithfully as a von Neumann algebra on a separable Hilbert

space.

(ii) M∗ is separable in norm.

(iii) M is countably generated and countably decomposable.

(iv) M is countably decomposable and separable in one of the following locally convex

topologies: weak, strong, strong*, ultraweak, ultrastrong and ultrastrong*.

(v) M is countably decomposable and separable in all of the following locally convex

topologies: weak, strong, strong*, ultraweak, ultrastrong and ultrastrong*.

The proof of this theorem is a combination of [88, Proposition 2.1.9, Proposition 2.1.10],

[27, Proposition 1.6, Proposition 3.1], the double commutant theorem and Theorem 4.1.2.

We finish this part by pointing out a very useful property of finite von Neumann

algebras. Remember that a von Neumann algebra is finite if 1M is finite. Let M be a



CHAPTER 4. INTERACTIONS VON NEUMANN AND C∗-ALGEBRAS 96

finite von Neumann algebra with faithful trace τ . We can introduce a new norm in M ,

‖a‖2 =
√
τ(a∗a), a ∈M.

The following lemma states important equivalences between ‖·‖2-norm and the ultrastrong

topology.

Lemma 4.1.7 ([87, Lemma 7.1]). Let M be a von Neumann algebra with faithful finite

trace τ and let N be a ∗-subalgebra of M containing 1M . For a ∈ M , the following

conditions are equivalent:

(i) a is limit, in ‖ · ‖2-norm, of elements of N ;

(ii) a is limit, in ‖ · ‖2-norm, of a bounded sequence (in ‖ · ‖-norm) of elements of N ;

(iii) a is limit, in the ultrastrong topology, of elements of N .

4.1.1 Type decomposition and factors

Needless to say, projections are very important in the study of von Neumann algebras,

in contrast with C∗-algebras where projections might not exist. In particular, for a von

Neumann algebra M projections form a lattice, P(M), and the Murray-von Neumann

equivalence, -, defines a partial order on P(M). We can give a rough classification into

types based on structural behaviour of (P(M),-) [88, Proposition 1.10.2]. This was

originally done by Murray and von Neumann in their seminal paper [66]. They classified

von Neumann algebras into different types: I, II1, II∞ and III.

Let M be a von Neumann algebra. Remember that two projections p and q in M are

Murray-von Neumann equivalent if there exists v ∈ M such that p = v∗v and q = vv∗.

A projection p ∈ M is finite if it is not Murray-von Neumann equivalent to any of its

subprojections. Otherwise p is called infinite. A projection p ∈M is called purely infinite

if there is no non zero finite projection q ∈ M such that q ≤ p. If qp is infinite for every

central projection q ∈M with qp 6= 0, then p is properly infinite. If pMp is a commutative

von Neumann algebra, then p is called abelian. A von Neumann algebra M is called finite,

infinite, purely infinite or properly infinite accordingly to the property of the identity 1M .

Definition 4.1.8. Let M be a von Neumann algebra.

(i) M is of type I if every non zero central projection majorizes a non zero abelian

projection in M .
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(ii) If M has no non zero abelian projections and if every non central projection in M

majorizes a non zero finite projection of M , then it is said to be of type II.

(iii) If M is finite and of type II, then M is of type II1.

(iv) If M is type II and has no non zero central finite projections, then M is of type II∞.

(v) A von Neumann algebra M is of type III if it is purely infinite.

Theorem 4.1.9 ([93, Theorem V.1.19]). Every von Neumann algebra M has a unique

decomposition

M ∼= MI ⊕MII1 ⊕MII∞ ⊕MIII

as a direct sum of von Neumann algebras of type I, II1, II∞ and III.

Before introducing factors, let us describe ideals in von Neumann algebras. In contrast

with C∗-algebras, strongly closed ideals can be easily be described.

Theorem 4.1.10 ([87, Proposition 1.10.5]). Let M be a von Neumann algebra and let I

be a strongly closed ideal in M . Then there is a unique central projection p in I such that

I = Mp.

In light of the previous theorem, we can describe “simple” von Neumann algebras using

central projections.

Definition 4.1.11. A von Neumann algebra M is a factor if its center is trivial, i.e.

Z(M) = M ′ ∩M = C1M .

It can be proved from Theorem 4.1.9 that each factor is of exactly one type. Von Neu-

mann showed that, to some extent, the study of separably acting von Neumann algebras

can be reduced to the study of factors (any von Neumann algebra on a separable Hilbert

space is a direct integral of factors [93, Theorem IV.8.21]). For the purpose of this thesis,

we will focus on II1-factors. We view simple C∗-algebras as the C∗-analogue of factors.

Following this analogy, we also view stably finite and unital C∗-algebras as C∗-analogues

of von Neumann algebras of type II1. The following theorem provides a very useful way

to detect II1-factors.

Theorem 4.1.12 ([93, Theorem V.2.15]). A factor M is of type II1 if and only if it is

infinite dimensional and admits a faithful normal (i.e. ultraweakly continuous) trace.
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Since any two non zero projections in a separably acting type III factor are Murray-von

Neumann equivalent ([88, Proposition 2.2.14]) similarly to the situation of purely infinite

C∗-algebras where any two non zero positive elements are Cuntz equivalent, we also regard

simple and purely infinite C∗-algebras as analogues of type III factors.

4.1.2 The double dual of a C∗-algebra

The universal representation πU of a C∗-algebraA is the direct sum of all GNS-representations

and the enveloping von Neumann algebra of A is the double commutant πU (A)′′. It is im-

portant to notice that even when A is separable, the double dual A∗∗ is generally not a

separably acting von Neumann algebra.

Theorem 4.1.13 ([93, Proposition III.2.4]). Let A be a C∗-algebra. The enveloping von

Neumann algebra of A is isometrically isomorphic to the double dual A∗∗. In particular,

the ultraweak topology on πU (A)′′ restricts to the weak topology σ (A,A∗) on A.

This theorem is very useful when we are working in the double dual A∗∗ and we want

to go back to A. By the Hahn-Banach theorem we know that the weak closure and the

norm closure of any convex set are the same. Thus, by Theorem 4.1.13 the ultraweak

closure and norm closure of any convex subset of A agree. An example of this application

is given in the proof of Theorem 4.3.2. Another useful tool which allows us to return to A

from A∗∗ is Kaplansky’s density theorem.

4.2 Hyperfiniteness and injectivity

The notion of hyperfiniteness was introduced by Murray and von Neumann in one of their

seminal papers about von Neumann algebras [67, Definition 4.1.1].

Definition 4.2.1. A von Neumann algebra M is hyperfinite if for all finite subsets F ⊂M

and all ultrastrong* open neighborhoods U of 0 there exists a finite dimensional subalgebra

F ⊂M such that F ⊂ F + U .

Remark 4.2.2. If the von Neumann algebra M is finite with faithful trace τ , then M is

hyperfinite if and only if for every finite subset F ⊂ M and ε > 0 there exists a finite

dimensional algebra F ⊂ M such that F ⊂ F + Bε, where Bε denotes the open ball of

radius ε centered at 0 with respect to the ‖ · ‖2-norm. This follows from Theorem 4.1.6

and Lemma 4.1.7.
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Example 4.2.3 (The hyperfinite II1-factor). Let A = M2∞(C) be the CAR-algebra. This

algebra has a unique faithful trace τ . Let πτ be the GNS-representation associated to τ

and define

R := πτ (A)′′.

This algebra is a factor with a faithful trace, thus R is a II1-factor. Furthermore, by

construction, R is hyperfinite.

Murray and von Neumann carried out a detailed study of hyperfinite von Neumann

algebras in [67] and they showed that there is exactly one hyperfinite II1-factor.

Theorem 4.2.4 ([67, Theorem XIV]). Let M be a separably acting hyperfinite II1-factor.

Then M is isomorphic to R.

Approximately finite dimensional C∗-algebras are the C∗-analogue of hyperfinite alge-

bras; however, in contrast with the von Neumann case, there are uncountably many simple

separable unital approximately finite dimensional algebras (this follows from Glimm’s clas-

sification of UHF algebras [42, Theorem 1.12] or Elliott’s classification of AF-algebras [31,

Theorem 4.3]).

We now state a theorem about type III hyperfinite von Neumann algebras.

Theorem 4.2.5 ([94, Theorem XVI.1.4]). Let M be separably acting von Neumann algebra

of type III. The following conditions are equivalent.

(i) M is hyperfinite.

(ii) There exists an increasing sequence {Nn} of finite dimensional ∗-subalgebras of M

such that M =

( ∞⋃
n=1

Nn

)′′
.

(iii) There exists an increasing sequence {N2kn} of subfactors such that M =

( ∞⋃
n=1

N2kn

)′′
.

As a consequence of Theorem 4.2.5 and Theorem 4.2.4, we have that any hyperfinite

separably acting factor contains a dense separable approximately finite dimensional C∗-

algebra.

We proceed now to introduce the notion of injectivity. This concept was introduced

by Effros and Lance in [29].

Definition 4.2.6. A von Neumann algebra M is injective if for some faithful representa-

tion π : M −→ B(H) there is a conditional expectation from B(H) onto M .
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It turns out that this definition does not depend on the representation. The hyperfinite

II1-factor R is an example of an injective von Neumann algebra. In fact, Effros and Lance

showed that any hyperfinite factor is injective [29, Corollary 5.8].

We finish this section by enunciating a celebrated theorem due to Connes. This theorem

states that the hyperfinite II1-factor R is the unique separably acting injective II1-factor.

Theorem 4.2.7 ([22, Theorem 6]). Let M be an injective II1-factor acting on a separable

Hilbert space. Then M is isomorphic to the hyperfinite II1-factor R.

As a consequence of this theorem, we can think of injectivity as an abstract characteri-

sation of hyperfiniteness. Aspects of the proof of this theorem will be discussed throughout

this chapter and in Section 4.6 we will sketch the last part of Connes’ proof.

4.3 Semidiscreteness and nuclearity

We can define nuclearity of a C∗-algebra A using the completely positive approximation

property (Definition 1.5.2). This means there exist a system of c.p.c. maps ψi : A −→

Fi, ϕi : Fi −→ A, where Fi is a finite dimensional algebra, such that ϕiψi converges to

idA in the point-norm topology, i.e. ϕiψi(a) −→ a in norm for all a ∈ A. The completely

positive approximation property is normally represented with the following diagram

A
idA //

ψi ��

A

Fi

ϕi

??

which commutes on a finite subset of A up to some positive ε in norm.

The natural analogue of this definition for von Neumann algebras is called semidiscrete-

ness and is obtained by asking these maps to converge to the identity in the point-ultraweak

topology. This definition is due to Effros and Lance [29].

Definition 4.3.1 ([29, Section 3]). A von Neumann algebra M is semidiscrete if for every

finite subsets F ⊂M and S ⊂M∗, and ε > 0 there exist a finite dimensional von Neumann

algebra F and c.p.c. maps ψ : M −→ F,ϕ : F −→M such that

|η (ϕψ(a))− η(a)| < ε (4.1)
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for all a ∈ F and η ∈ S. We also represent semidiscreteness with diagrams

M
idM //

ψ   

M

F

ϕ

>>

which commutes on a finite subset of M up to some positive ε in the ultraweak topology.

The following theorem is an important connection between nuclearity and semidis-

creteness. The proof of this theorem is very beautiful and it is an excellent example of

how we can pass from the von Neumann world to the C∗-level.

Theorem 4.3.2 ([11, Proposition 1.3.3]). Let A be a C∗-algebra. Then A is nuclear if

and only if A∗∗ is semidiscrete.

We sketch the proof of the “easy” direction in the unital case. Suppose A∗∗ is semidis-

crete. Then there exists a net of c.p.c. maps ψn : M −→ Fn, ϕn : Fn −→ M such that

ϕn ◦ ψn converges to idA∗∗ in the point-ultraweak topology, i.e. ϕnψn(x) → x in the ul-

traweak topology for all x ∈ A∗∗. We can assume that each Fn is in fact a matrix algebra

Mkn(C). Since there is a bijection between c.p. maps Mkn(C) −→ A∗∗ and elements of

Mkn(A∗∗), we have [ϕn (ei,j)]i,j ∈ Mkn(A∗∗)+ where {ei,j} is a system of matrix units

of Mkn(C) [13, Proposition 1.5.12]. Moreover, using that Mkn(A)+ is ultraweakly dense

in Mkn(A∗∗)+, we can replace each map ϕn with a new c.p. map ϕ′n : Mkn(C) −→ A∗∗

such that ϕ′n(Mkn(C)) ⊂ A in such a way that ϕ′n ◦ ψn still converges to idA∗∗ in the

point-ultraweak topology.

Remember that by Theorem 4.1.13, the ultraweak topology restricts to the weak topol-

ogy σ(A,A∗) in A. Consider now a finite subset F = {a1, . . . , ak} of A and ε > 0. In

particular we have that (ϕnψn (a1)⊕ . . .⊕ ϕnψn (ak)) ∈ A⊕n converges ultraweakly to

(a1 ⊕ . . .⊕ ak) ∈ A⊕n. Hence (a1 ⊕ . . .⊕ ak) belongs to the ultraweak closure of the

convex hull of {ϕnψn (a1)⊕ . . .⊕ ϕnψn (ak)}n, and by the Hahn-Banach theorem, it also

belongs to the norm closure of this convex hull.

Therefore for F ⊂ A and ε > 0 there exist c.p. maps σ : A −→ F, ρ : F −→ A such

that ‖ρσ(a) − a‖ < ε for all a ∈ F where σ =
⊕r

k=1 ψnk and ρ =
∑r

k=1 λkϕ
′
nk

for some
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finite set of indices n1, . . . , nr and positives constants λ1, . . . , λr adding up to 1,

A
idA //

σ=
r⊕
k=1

ψnk
��

A.

r⊕
k=1

Mnk(C)

ρ=
r∑
k=1

λkϕ
′
nk

BB

This shows A is nuclear. The other direction uses deep results about von Neumann

algebras. It relies on the fact that injectivity implies hyperfiniteness (Theorem 4.2.7).

As an application of the last theorem, we obtain the next corollary which follows from

the fact that A∗∗ = J∗∗ ⊕ (A/J)∗∗ for any ideal J of A.

Corollary 4.3.3 ([11, Corollary 3.2.3]). Let A be a C∗-algebra and let I be an ideal of A.

Then A is nuclear if and only if I and A/I are nuclear.

We finish this section with the following characterisation of nuclearity. In the proof

of Theorem 4.3.2, we saw that if we assume semidiscreteness of the double dual we can

construct c.p.c. approximations at the C∗-level which are convex combinations of another

c.p.c. maps. The following theorem characterises nuclearity via approximations arising as

convex combinations of order zero maps.

Theorem 4.3.4 ([49, Theorem 1.4]). Let A be a nuclear C∗-algebra. Then for any finite

subset F ⊂ A and ε > 0 there exist a finite dimensional C∗-algebra F and c.p.c. maps

ψ : A −→ F,ϕ : F −→ A such that

‖a− ϕψ(a)‖ < ε

for all a ∈ F and ϕ is a convex combination of finitely many order zero maps.

We also provide an sketch of its proof which shows how it fits in the same framework

of Theorem 4.3.2. Let A be a nuclear C∗-algebra and we can assume A is separable. By

Theorem 4.3.2, A∗∗ is semidiscrete and, as a consequence of Theorem 4.2.7, we obtain that

A∗∗ is hyperfinite as well [94, Chapter XVI]. Using local reflexivity1 of nuclear C∗-algebras

[13, Corollary 9.4.1] and Arveson’s extension theorem one can show that there exists a net

of finite dimensional C∗-subalgebras {Fλ} of A∗∗ and a net of c.p.c. maps ψλ : A∗∗ −→ Fλ

1Definition. A C∗-algebra A is locally reflexive if for any finite dimensional operator system E ⊂ A∗∗

there exists a net of c.p.c. maps ψλ : E −→ A such that ψλ(a)→ a ultraweakly for all a ∈ A.
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such that ψλ(x)→ x ultraweakly for all x ∈ A∗∗ [49, Lemma 1.2]. Let ιλ : Fλ −→ A∗∗ be

the inclusion map. Then the net (ιλψλ) converges to idA∗∗ in the point-ultraweak topology

[49, Lemma 1.3],

A∗∗

ψλ !!

idA∗∗ // A∗∗.

Fλ

ιλ

<<

Using Kaplansky’s density theorem and the fact that cones on finite dimensional C∗-

algebras are projective2 [62, Proposition 10.2.1], it follows that c.p.c. order zero maps

F −→ A∗∗, with F finite dimensional, can be approximated with c.p.c. order zero maps

F −→ A in the strong*-topology [49, Lemma 1.1]. Hence, we can replace each ιλ with a

c.p.c. order zero map ϕλ : Fλ −→ A in such a way that ϕλψλ(a) → a in the ultraweak

topology for all a ∈ A,

A
idA //

ιA

))

ψλ|A

((

A.

ιAuu
A∗∗

ψλ

��

idA∗∗ // A∗∗

Fλ

ιλ

EE

ϕλ

DD

Again, by Theorem 4.1.13, the composition ϕλψλ|A converges to idA in the weak topology

σ(A,A∗). Thus, using Hahn-Banach theorem as in the proof of Theorem 4.3.2, for each

finite subset F ⊂ A and ε > 0 there exists a finite dimensional C∗-algebra F and c.p.c.

maps ψ : A −→ F,ϕ : F −→ A such that

‖a− ϕψ(a)‖ < ε

for all a ∈ F and ϕ is a convex combination of finitely many order zero maps.

4.4 The hyperfinite factor, flips and strongly self-absorbing

algebras

In this section we will review one particular automorphism of C∗-algebras called the flip.

This map plays an important role in Connes’ classification of injective factors. Motivated

2Definition. A C∗-algebra P is projective if for every pair of C∗-algebras B,C such that π : B −→ C

is a surjective ∗-homomorphism, and for each ∗-homomorphism ϕ : P −→ C, there is a ∗-homomorphism

ψ : P −→ B such that π ◦ ψ = ϕ.
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by Connes’ work, Effros and Rosenberg studied flips in C∗-algebras and, many years later,

flips have also become extremely useful in the computation of the nuclear dimension for

an important class of C∗-algebras.

Definition 4.4.1. Let A be a C∗-algebra. The flip on A is the automorphism σA :

A⊗min A −→ A⊗min A given by

σA(a⊗ b) = b⊗ a, a, b ∈ A.

Let M be a von Neumann algebra. The flip on M is the automorphism σM : M ⊗M −→

M ⊗M given by

σM (a⊗ b) = b⊗ a, a, b ∈M.

4.4.1 Flips and II1-factors

One of the main steps in Connes’ proof of Theorem 4.2.7 is that the flip of an injective

II1-factor M is (strongly) approximately inner. This means that there exists a sequence

of unitaries (un) ⊂M ⊗M such that

un (a⊗ b)u∗n −→ b⊗ a, a, b ∈M,

in the strong operator topology when n → ∞. In fact, as a consequence of his work,

Connes obtained that (strongly) approximately inner flips are equivalent to hyperfiniteness

for factors.

Theorem 4.4.2 ([22, Theorem 5.1]). Let M be a separable acting II1-factor. Then M is

isomorphic to the hyperfinite II1-factor R if and only if the flip σM is (strongly) approxi-

mately inner.

4.4.2 Flips and C∗-algebras

Subsequently, Effros and Rosenberg studied C∗-algebras A with an approximately inner

flip. This means there exists a sequence of unitaries (un) ⊂M(A⊗min A) such that

un (a⊗ b)u∗n −→ b⊗ a, a, b ∈ A,

in the norm topology when n → ∞. In the separable setting, one can rephrase ap-

proximately inner flips in the language of ultraproducts by asking for a unitary u ∈

M(A⊗min A)ω such that

b⊗ a = u(a⊗ b)u∗.



CHAPTER 4. INTERACTIONS VON NEUMANN AND C∗-ALGEBRAS 105

Effros and Rosenberg showed that having an approximately inner flip is a strong require-

ment for C∗-algebras.

Proposition 4.4.3 ([30, Propositions 2.7, 2.8, 2.10]). Let A be a C∗-algebra with an

approximately inner flip. Then A is simple, nuclear and admits at most one normalized

trace.

Moreover, Effros and Rosenberg proved that separable AF-algebras with an inner flip

have to be inductive limits of matrix algebras by means of K-theory (if the algebra is

additionally unital then it is UHF). In particular, this shows that approximately inner

flips impose restrictions at the level of K-theory. Recently, Tikuisis determined exactly

which classifiable C∗-algebras have an approximately inner flip in [95] by K-theoretical

means.

Theorem 4.4.4 ([30, Theorem 3.9]). Let A be a separable AF-algebra. Then the flip σA

is approximately inner if and only if A is an inductive limit of matrix algebras.

Following Connes’ strategy in the proof of Theorem 4.2.7, Effros and Rosenberg ob-

tained an analogous result for C∗-algebras. The main ingredients in Connes’ proof are:

(i) M embeds in Rω.

(ii) M tensorially absorbs the hyperfinite II1-factor R, i.e M ∼= M ⊗R.

(iii) M has (strongly) approximately inner flip.

Connes’ theorem will be discussed in detail in Section 4.6. After stating the main ingre-

dients we now state Effros and Rosenberg’s theorem in which they replace the hyperfinite

II1-factor with the most natural candidate: the universal UHF algebra Q.

Theorem 4.4.5 ([30, Theorem 5.1]). Let A be a separable unital C∗-algebra. Then A is

isomorphic to the universal UHF algebra Q if and only if

(i) A embeds in Qω,

(ii) A tensorially absorbs the universal UHF algebra Q, i.e. A ∼= A⊗Q,

(iii) the flip of A is approximately inner.

As a consequence of the previous theorem, Effros and Rosenberg proved that if A is a

separable unital C∗-algebra with approximately inner flip which can be embedded in Qω

then A⊗Q ∼= Q [30, Corollary 5.2].
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4.4.3 Strongly self-absorbing algebras

We have seen that the hyperfinite II1-factor R has some striking properties. These prop-

erties were essential in Connes work. An important task for C∗-algebraist was to find the

right replacement for R in the C∗-context. Probably, the most natural candidate among

the strongly self-absorbing algebras to replace R is the universal UHF algebra Q. This

was explored by Effros and Rosenberg in [30] but this has disadvantages: for example

Q-stability is very difficult to achieve, not even the CAR-algebra is Q-stable.

Before proceeding, let us recall and state some of the most important properties of the

hyperfinite II1-factor.

Theorem 4.4.6 ([22, Corollary 3.2, Theorem 5.1]). Let R be the hyperfinite II1-factor.

Then

(i) R is isomorphic to R⊗R.

(ii) The flip σR is (strongly) approximately inner.

(iii) Any automorphism of R is approximately inner.

It follows, after the work of Murray, von Neumann and Connes, that the hyperfinite

II1-factor is the unique infinite dimensional factor that can be embedded in all infinite

dimensional factors.

Toms and Winter initiated the study of strongly self-absorbing C∗-algebras motivated

by properties of the following examples: UHF algebras of infinite type, the Cuntz algebras

O2 and O∞ and the Jiang-Su algebra Z. These algebras have properties that resemble

those of the hyperfinite II1-factor R.

Definition 4.4.7 ([100, Definition 1.3.(iv)]). Let D be a separable unital C∗-algebra. D

is strongly self-absorbing if D � C and there is an isomorphism ϕ : D −→ D⊗minD which

is approximately unitarily equivalent to idD ⊗ 1D.

By Theorem 1.7.4, it follows that strongly self-absorbing C∗-algebras are stably finite

or purely infinite. In the stably finite case, by Theorem 1.6.2, there exists one trace and

the proof of Theorem 4.4.3 shows this trace is unique.

Theorem 4.4.8 ([100, Theorem 1.7]). A separable unital strongly self-absorbing C∗-

algebra D is either purely infinite or stably finite with a unique trace.
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Let A be a separable unital C∗-algebra and let A⊗∞ denote the inductive limit of the

sequence

A
idA⊗1A // A⊗2

idA⊗2⊗1A // A⊗3
idA⊗3⊗1A // · · · .

Corollary 4.4.9 ([100, Corollary 1.11]). If D is separable, unital and strongly self-absorbing,

then

D ∼= D⊗k ∼= D⊗∞

for any k ∈ N and D has approximately inner flip.

This corollary, in light of Theorem 4.4.3, implies that strongly self-absorbing C∗-

algebras are simple and nuclear.

Corollary 4.4.10 ([100, Corollary 1.12]). Let A and D be separable unital C∗-algebras,

with D strongly self-absorbing. Then, any two unital ∗-homomorphisms α, β : D −→ A⊗D

are approximately unitarily equivalent. In particular, any two unital endomorphisms of D

are approximately unitarily equivalent.

With the insight provided by all the information given abode, we can see that strongly

self-absorbing C∗-algebras are suitable candidates to replace the hyperfinite II1-factor at

the C∗-level. But, before choosing the right option, we should know which C∗-algebras

are strongly self-absorbing. Examples of strongly self-absorbing C∗-algebras are the UHF

algebras of infinite type, the Cuntz algebras O2 and O∞, tensor products products of O∞

with UHF algebras of infinite type and the Jiang-Su algebra Z [100, Examples 1.14]. In

fact, these are the only known examples and among the algebras satisfying the UCT these

are the only ones [96, Corollary 6.7].

Theorem 4.4.11 ([100, Corollary 5.2],[96, Corollary 6.7]). The class of strongly self-

absorbing C∗-algebras in the UCT class consists of O2, O∞, tensor products of O∞ with

UHF-algebras of infinite type, UHF algebras of infinite type and the Jiang-Su algebra Z.

From the previous theorem and Theorem 1.7.5, it follows that in the category of

strongly self-absorbing C∗-algebras (with unital ∗-homomorphisms) the final object is the

Cuntz algebra O2. The following theorem together with [100, Proposition 5.12] establishes

that the initial object in this category is the Jiang-Su algebra Z.

Theorem 4.4.12 ([108, Theorem 3.1]). Any strongly self-absorbing C∗-algebra absorbs

the Jiang-Su algebra Z tensorially.
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The list of known strongly self-absorbing C∗-algebras is represented in the following

diagram (the arrows represent unital embeddings). It is still unknown if this list contains

all the strongly self-absorbing C∗-algebras,

O2

O∞ ⊗Q

OO

Q
33

O∞ ⊗ UHF∞

OO

UHF∞
22

OO

O∞.

OO

Z

22

OO

4.5 McDuff factors and Z-stability

At the beginning of the 70’s, McDuff studied central sequence algebras of II1-factors. She

gave a characterisation of II1-factors which tensorially absorb the hyperfinite II1-factor

R. In Appendix A, we explain the construction of ultraproducts of II1-factors (Definition

A.1.2). We present a modern reformulation of McDuff’s results.

Theorem 4.5.1 ([65]). Let M be a separably acting II1-factor. Then the relative commu-

tant Mω∩M ′ is either of type II1 or an abelian algebra. Moreover, the following statements

are equivalent:

(i) The relative commutant Mω ∩M ′ is not abelian.

(ii) There exists an embedding R ↪→Mω ∩M ′.

(iii) The factor M absorbs R tensorially, i.e. M ∼= M ⊗R.

(iv) For all k ∈ N there exists an embedding Mk(C) ↪→Mω ∩M ′.

Factors satisfying one of these properties (and hence all of them) have been named

after McDuff.

Definition 4.5.2. A separably acting II1-factor M is McDuff if it tensorially absorbs the

hyperfinite II1-factor R, i.e. M ∼= M ⊗R.
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McDuff factors played an important role in Connes’ proof of Theorem 4.2.7. Following

the strategy of [84, Section 7.2], one can prove the following property of McDuff factors.

Proposition 4.5.3. Let M be a separably acting McDuff factor. Then for every free

ultrafilter on N there exist a sequence of ∗-homomorphisms ϕn : M ⊗R −→M such that

lim
n→ω
‖ϕn(x⊗ 1R)− x‖2 = 0

for all x ∈M .

4.5.1 Z-stability

We have seen that strongly self-absorbing C∗-algebras share many similarities with the

hyperfinite II1-factor R, for example any unital endomorphisms and the flip are approxi-

mately inner. McDuff factors give more information about which properties the substitute

of R should have: if it embeds in the central sequence algebra of C∗-algebra A then A

must tensorially absorb it.

Before going further, let us state en equivalent characterisation for strongly self-

absorbing algebras.

Theorem 4.5.4 ([100, Theorem 2.3]). Let A and D be separable C∗-algebras. Suppose

that D is unital and strongly self-absorbing and let ω be a free ultrafilter on N. Then there

is an isomorphism ϕ : A −→ A⊗D if and only if there is a ∗-homomorphism

σ : A⊗D −→ Aω ∩A′

satisfying

σ(a⊗ 1D) = a

for all a ∈ A, and in this case the maps ϕ and idA ⊗ 1D are approximately unitarily

equivalent.

We remark that the original result has the extra hypothesis that the canonical map

U(D)/U0(D) −→ K1(D) is injective. However, by [108, Remark 3.3] this condition turns

to be unnecessary. The alternative use of ultraproducts instead of sequence algebras is

found in [54].

It should now be evident that the right candidate to replace R is in the category

of strongly self-absorbing C∗-algebras and the most reasonable candidate is the minimal

object in this category: the Jiang-Su algebra Z.
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The following theorem adds even more evidence to this choice. Before enunciating this

theorem, we have to introduce a particular class of order zero maps. Let A be a unital

C∗-algebra. A contractive order zero map ϕ : Mk(C) −→ A is large, if for some v ∈ A, the

following conditions are satisfied:

v∗v = 1A − ϕ
(
1Mk(C)

)
, ϕ (e1,1) v = v.

The important feature of this type of maps is that if ϕ : Mk(C) −→ A is large, then

Zk,k+1
∼= C∗ (ϕ (Mk(C))) where Zk,k+1 is a dimension drop algebra ([85, Proposition 5.1]).

Theorem 4.5.5 ([85, Proposition 5.1],[100, Theorem 2.2]). Let A be a unital separable

C∗-algebra. The following statements are equivalent:

(i) The algebra A tensorially absorbs the Jiang-Su algebra Z, i.e. A ∼= A⊗Z.

(ii) The Jiang-Su algebra Z embeds unitally in the relative commutant Aω ∩A′.

(iii) For all k ∈ N, there exists a large order zero map Mk(C)→ Aω ∩A′.

Toms and Winter showed (i) is equivalent to (ii) [100, Theorem 2.2]. As explained

before, Rørdam and Winter showed (iii) is true if and only if for all k ∈ N there is a unital

∗-homomorphisms from the dimension drop algebra Zk,k+1 to Aω ∩ A′ [85, Proposition

5.1]. Hence, (iii) implies (i) (via a result of Toms and Winter [101, Proposition 2.2] and

the uniqueness of Z) and (ii) implies (iii).

Regarding the Jiang-Su algebra Z as the substitute of the hyperfinite II1-factor R

in the C∗-context, we view simple Z-stable C∗-algebras as the C∗-analogue of McDuff

factors.

4.6 Connes’ proof and nuclear dimension

Throughout this chapter, we have been discussing aspects of the proof of Theorem 4.2.7.

In this section we will sketch the last part of Connes’ proof. As mentioned earlier, this

proof relies on three fundamental facts which are deep and difficult to proof. We will omit

their proofs but instead we will explain how using these facts it can be showed that an

injective factor is hyperfinite.
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4.6.1 Injectivity implies hyperfiniteness

In [22], Connes obtained a classification of injective factors except for the type III1.

Haagerup completed this classification in [46]. In particular we are interested in the

following implication, which is probably the main and most challenging part of Connes’

work.

Theorem 4.6.1 ([22, Theorem 6]). Let M be an injective factor acting on a separable

Hilbert space. Then M is hyperfinite.

Alternative proofs were obtained by Haagerup and Popa years later [45, 77], but we

will focus on Connes’ proof in this thesis. Connes reduced the proof of this theorem to the

case when M is a II1-factor. In this situation, he proved the following fundamental and

deep facts:

(i) There exists a unital embedding θ : M ↪→ Rω.

(ii) M is a McDuff factor.

(iii) M has (strongly) approximately inner flip.

We will show how we can use these facts to produce ∗-homomorphisms ϕn : M ⊗R −→

M satisfying that ϕn(a⊗ 1R) is close to a and with these homomorphisms we can “move”

finite dimensional algebras from R to M in order to show the hyperfiniteness of M . We

briefly sketch this last part of Connes’ proof.

Sketch. Let F ⊂M be a finite subset and ε > 0. First of all, since M is finite, by Remark

4.2.2, in order to demonstrate hyperfiniteness we need to exhibit a finite dimensional

subalgebra which is ε-close to F in ‖ · ‖2-norm. By Theorem 4.1.6 and Lemma 4.1.7,

we can work in ‖ · ‖2-norm instead of any other locally convex topology appearing in

Theorem 4.1.6. Since the flip of M is (strongly) approximately inner, there exist a sequence

(un) ⊂ U (M ⊗M) such that

lim
n→w
‖u∗n (a⊗ b)un − b⊗ a‖2 = 0 (4.2)

for all a, b ∈ M . For any a ∈ M , using the diagram below, we can represent 1M ⊗ θ(a) ∈



CHAPTER 4. INTERACTIONS VON NEUMANN AND C∗-ALGEBRAS 112

M ⊗Rω with a sequence
(

1M ⊗ y(a)
n

)
n∈N
⊂ `∞ (M ⊗R),

`∞ (M ⊗R)

����
M ⊗M

44

id⊗θ
//M ⊗Rω �

� // (M ⊗R)ω .

Let wn = (idM ⊗ θ) (un) ∈ (M ⊗R)ω and define Ψn : (M ⊗R)ω −→ (M ⊗R)ω by

Ψn(x) = w∗nxwn, x ∈ (M ⊗R)ω . (4.3)

Notice

Ψn(1M ⊗ a) = w∗n(1M ⊗ θ(a))wn

= (idM ⊗ θ) (un)∗(1M ⊗ θ(a)) (idM ⊗ θ) (un)

= (idM ⊗ θ) (u∗n (1M ⊗ a)un) (4.4)

for all a ∈M . Since lim
n→w
‖u∗n (1M ⊗ a)un − a⊗ 1M‖2 = 0 and θ is unital (and hence trace

preserving), we have

lim
n→w
‖Ψn(1M ⊗ a)− (idM ⊗ θ) (a⊗ 1M )‖2 = lim

n→w
‖Ψn(1M ⊗ a)− a⊗ 1R‖2 = 0 (4.5)

for all a ∈M . In particular there exists U ∈ ω such that

‖Ψn (1M ⊗ x)− x⊗ 1M‖2 <
ε

2
(4.6)

for all n ∈ U and x ∈ F.

Since M is McDuff, by Proposition 4.5.3, there exist ∗-homomorphisms ϕn : M ⊗R −→

M such that

lim
n→ω
‖ϕn(a⊗ 1R)− a‖2 = 0 (4.7)

for all a ∈M . Then, there exists V ∈ ω such that

‖ϕn (x⊗ 1R)− x‖2 <
ε

2
(4.8)

for n ∈ V and all x ∈ F.

For x ∈ F, let
(

1M ⊗ y(x)
n

)
n∈N
⊂ `∞ (M ⊗R) represent 1M ⊗ θ(x). Similarly, suppose

each wn is represented by the sequence
(

1M ⊗ v(n)
k

)
k∈N
⊂ `∞ (M ⊗R) where each v

(n)
k ∈ R

is a unitary element. Define ψ
(n)
k : M ⊗R −→M ⊗R by

ψ
(n)
k (a⊗ b) =

(
1M ⊗ v(n)

k

)∗
(a⊗ b)

(
1M ⊗ v(n)

k

)
, a⊗ b ∈M ⊗R.
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It follows from the definitions that the sequence of maps
(
ψ

(n)
k

)
k∈N

induces the map Ψn.

Hence, for each n ∈ V , there exists Wn ∈ ω such that if k ∈Wn then∥∥∥ψ(n)
k

(
1M ⊗ y(x)

k

)
− x⊗ 1R

∥∥∥
2
<
ε

4
(4.9)

for all x ∈ F.

Let us fix N ∈ U ∩ V and K ∈ WN . Since R is hyperfinite, there exists a finite

dimensional von Neumann algebra F ⊂ R such that dist
(

1M ⊗ y(x)
K , 1M ⊗ F

)
< ε/4 for

all x ∈ F in ‖ · ‖2-norm. In other words, for every x ∈ F, there exists fx ∈ F such that∥∥∥1M ⊗ y(x)
K − 1M ⊗ fx

∥∥∥
2
<
ε

4
. (4.10)

Hence, by (4.9) and (4.10), we have∥∥∥x⊗ 1R − ψ(N)
K (1M ⊗ fx)

∥∥∥
2
≤
∥∥∥x⊗ 1R − ψ(N)

K

(
1M ⊗ y(x)

K

)∥∥∥
2

+
∥∥∥ψ(N)

K

(
1M ⊗ y(x)

K

)
− ψ(N)

K (1M ⊗ fx)
∥∥∥

2

<
ε

4
+
ε

4
=
ε

2
(4.11)

for all x ∈ F.

Then, by (4.8) and (4.11), we obtain∥∥∥x− ϕnψ(n)
N (1M ⊗ fx)

∥∥∥
2
≤ ‖x− ϕn (x⊗ 1R)‖2 +

∥∥∥ϕn (x⊗ 1R)− ϕnψ(n)
k (1M ⊗ fx)

∥∥∥
2

<
ε

2
+
∥∥∥ϕn (x⊗ 1R − ψ(n)

k (1M ⊗ fx)
)∥∥∥

2

<
ε

2
+
ε

2
= ε (4.12)

for all x ∈ F. Since the image of 1M ⊗F under the ∗-homomorphisms ϕnψ
(n)
k is a finite

dimensional von Neumann algebra, we conclude that M is hyperfinite.

As explained before, Murray and von Neumann showed that there is a unique hyper-

finite II1-factor (up to isomorphism). Therefore we have the following theorem.

Theorem 4.6.2 ([22, Theorem 7.1]). The hyperfinite II1-factor R is the unique separably

acting injective II1-factor up to isomorphism.

Let M be a factor. A subfactor of M is a factor which is contained in M . Due to the

uniqueness of R as hyperfinite II1-factor, we obtain that any hyperfinite subfactor of R is

isomorphic to R. The question about the existence of non finite dimensional subfactors of

R which are isomorphic to R remained open until Connes’ work in [22].
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Corollary 4.6.3 ([22, Corollary 2]). All subfactors of the hyperfinite II1-factor R are

isomorphic to R or finite dimensional.

Effros and Lance showed that any semidiscrete von Neumann algebra is injective [29,

Corollary 5.10]. Another consequence of Connes’ work is the following remarkable theorem.

Theorem 4.6.4 ([13, Theorem 9.3.3]). Let M be a separably acting factor. The following

properties are equivalent.

(i) M is hyperfinite.

(ii) M is injective.

(iii) M is semidiscrete.

Now we are ready to state the following important theorem which was originally con-

jectured and partially proved by Effros and Lance in [29, Theorem 6.4]. This theorem

contains the work of many people, particularly Connes, Choi, Effros, Kirchberg and Lance

([20, 21, 22, 29, 53]).

Theorem 4.6.5 ([11, Theorem 3.2.2]). Let A be a nuclear C∗-algebra. The following

statements are equivalent.

(i) A is nuclear.

(ii) A has the completely positive approximation property.

(iii) A∗∗ is semidiscrete.

(iv) A∗∗ is injective.

4.6.2 Z-stability implies finite nuclear dimension

In the introduction, we mentioned the Toms-Winter conjecture and its relationship with

the classification programme. This conjecture predicts that all regularity properties (finite

nuclear dimension, Z-stability and strict comparison) are equivalent for some class of C∗-

algebras. In this section we will explore in more detail the equivalence between finite

nuclear dimension and Z-stability. Winter proved that finite decomposition rank implies

Z-stability in [107], and some years later, he extended his result to finite nuclear dimension

[109].
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The converse has striking connections with Connes’ proof of Theorem 4.2.7 for II1-

factors. Remember nuclearity can be viewed as injectivity of von Neumann algebras and

Z-stable C∗-algebras as the analogue of McDuff factors. Similarly, it follows from the

definiton of nuclear dimension or decomposition rank (see Definition 2.2.1) that we can

view them as C∗-analogues of hyperfiniteness (this will explore in more depth in Section

4.7). Following these analogies, Connes’ proof provides a strategy to show that Z-stable

C∗-algebras have finite nuclear dimension. Roughly speaking, Connes’ proof is explained

in the following diagram,

M //� r

$$

M.

1M ⊗M

“approx. embedding” %%

M ⊗R
∼=

;;

M ⊗R
“flip”

99

A breakthrough was achieved by Matui and Sato in [64]. Using Connes’ approach,

Matui and Sato showed that the decomposition rank of separable unital simple nuclear

quasidiagonal Z-stable C∗-algebras with unique trace is at most three. But of course, not

everything works exactly the same. The approximately inner flip is an essential tool in

Connes’ proof but, as we saw in Section 4.4.2, asking a C∗-algebra to have approximately

inner flip is a very strong requirement. Using Haagerup’s techniques from his proof of

Connes’ theorem [45, Theorem 4.2], Matui and Sato circumvented the use of approximately

inner flips. Instead, they implicitly used what we now call “2-coloured approximately inner

flip” which is essentially the sum of two order zero maps (we will explain these coloured

ideas in the Section 4.7.2).

Let us briefly explain Matui and Sato’s proof. Initially they proved that separable

unital simple nuclear quasidiagonal C∗-algebras with unique trace which are Q-stable

have decomposition rank at most one. Matui and Sato’s proof is based on Connes’ after

replacing R by Q with the very new ingredient of the “2-coloured approximately inner

flip”. Let A be a C∗-algebra satisfying the previous hypothesis. Quasidiagonality of A

yields an embedding A ↪→ Qω and the 2-coloured flip allows to “move” a finite dimensional

C∗-subalgebra of Q to A via a c.p.c. map which is the sum of two order zero maps. The
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following diagram explains how this proof is similar to Connes’ proof,

A //� q

##

A.

1A ⊗A

“approx. embedding” %%

A⊗Q
∼=

;;

A⊗Q
“2-flip”

99

As explained before, from the “2-coloured approximately flip”, they obtained two order

zero maps which entails that decomposition rank of A is at most one.

In order to pass from Q-stability to Z-stability, Matui and Sato also produced two

order zero maps Λ1,Λ2 : Q −→ Z such that Λ1 (1Q) + Λ2 (1Q) is almost 1Z . They

basically finished their proof by composing the coloured flip, idA ⊗ (Λ1 + Λ1) and ϕ. In

the end, with this composition they obtained four order zero maps which entails that

decomposition rank of A is at most three. The following diagram summarizes their proof

in this case,

A� _

��

//

≈

A

1A ⊗A� _

��

A⊗Z

∼=

OO

A⊗Q
“2-flip”

// A⊗Q.

idA⊗Λ1+idA⊗Λ2

OO

Sato, White and Winter extended Matui and Sato’s result in [90] following again

Connes’ proof as a model. They showed that the nuclear dimension of separable unital

simple nuclear Z-stable C∗-algebras with unique trace is at most 3.

They consider two UHF-algebras of infinite type U and V and they proved A ⊗ V

has 2-coloured approximately inner flip. They were able to remove quasidiagonality by

constructing an order zero embedding A −→ Uω and, as in Matui and Sato’s proof, they

produced two order zero maps Λ1,Λ2 : U⊗V −→ Z such that Λ1 (1U ⊗ 1V )+Λ2 (1U ⊗ 1V )

is almost 1Z . The following diagram summarizes their proof,

A //

≈

� _

��

A

1A ⊗A⊗ 1V� _

��

A⊗Z

ϕ

OO

A⊗A⊗ V
“2-flip”

// A⊗A⊗ V
idA⊗ψ⊗idV

// A⊗ U ⊗ V.

idA⊗Λ1+idA⊗Λ2

OO
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4.7 Colouring C∗-algebras

Motivated by the deep connections between von Neumann algebras and C∗-algebras, we

will try to obtain C∗-analogues of von Neumann algebras results by adding “colours”.

Following the analogy introduced in nuclear dimension, we will refer to order zero maps

as “colours”.

We aim to replace von Neumann algebras statements involving projections and ∗-

homomorphisms with statements using finite sums of positive elements and finite sum of

order zero maps whose sum is unital.

The reasons behind this idea are the following: In contrast with von Neumann algebras,

there exist projectionless C∗-algebras. Hence, the natural framework are positive elements

rather than projections. By using ∗-homomorphisms, we have topological obstructions

since these maps carry K-theoretical data. One example of this is Theorem 4.4.4. By

Corollary 1.4.7, order zero maps A −→ B correspond to ∗-homomorphisms C0(0, 1]⊗A −→

B. Since the cone C0(0, 1] ⊗ A is contractive, the K-theory of C0(0, 1] ⊗ A is 0. Hence,

order zero maps A −→ B do not contain K-theoretical data and this justifies our choice.

This strategy is motivated by the work carried out in [8, 90]. Before proceeding, we

provide some examples of this colouring.

4.7.1 Hyperfiniteness and nuclear dimension

Let M be a separable acting hyperfinite von Neumann algebra. Thus, there exists an

increasing family of finite dimensional algebras {Fr}r∈N such that M =
⋃
r∈N

Fr
SOT

. Using

Arveson’s extension theorem, we can obtain c.p.c. maps ψr : M −→ Fr such that ψr|Fr =

idFr . Set ιr : Fr −→ M as the inclusion map. By construction, we have the following

approximately commuting diagram, which is an equivalent formulation of hyperfiniteness,

M
id //

ψr   

M

Fr

ιr

>> .

We are going to “colour” this diagram. We will replace the von Neumann algebra M

with a C∗-algebra A, the ∗-homomorphism ιr with the sum ϕ(r) =
n∑
k=1

ϕ
(r)
k , where each

ϕ
(r)
k : Fr −→ A is an order zero map. The n-coloured form of the previous diagram is the
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following

A
id //

ψr ��

A.

F
ϕ(r)=

n∑
k=1

ϕ
(r)
k

>>

This diagram corresponds to nuclear dimension at most n − 1 (Definition 2.2.1). Hence,

nuclear dimension is a coloured form of hyperfiniteness.

4.7.2 Coloured flips

As mentioned before, the existence of approximately inner flips in C∗-algebras is restrictive

since it implies nuclearity, simplicity and at most one trace. Moreover, they have K-

theoretical obstructions (c.f. Theorem 4.4.4). In order to avoid such obstructions, we

might consider coloured flips. This was done explicitly by Sato, White and Winter in [90].

They extracted this idea from [64, Theorem 4.2].

Definition 4.7.1 ([90]). Let A be a separable unital C∗-algebra. The flip of A is n-coloured

approximately inner if there exist contractions u1, . . . , un ∈ (A⊗A)ω such that

(i) b⊗ a =
n∑
k=1

uk (a⊗ b)u∗k for a, b ∈ A.

(ii)
n∑
k=1

u∗kuk = 1A⊗A.

(iii) the elements u∗kuk ∈ (A⊗A)ω commute with A⊗A for k = 1, . . . , n.

Observe that the flip is expressed as sum of n order zero maps and such maps are

given in a very precise form: a⊗ b 7→ uk(a⊗ b)u∗k. These maps are order zero since u∗kuk

is in the relative commutant of A⊗A (see [8, Remark 6.3]). Although coloured flips avoid

topological obstructions, they also impose strong conditions in algebras with this type of

flips.

Proposition 4.7.2 ([90, Proposition 4.3]). Let A be a separable unital C∗-algebra with

n-coloured approximately inner flip. Then A is simple, nuclear and has at most one trace.

Using the approach used in [64], Sato, White and Winter demonstrated the existence

of 2-coloured approximately inner flips in some particular classes of C∗-algebras.

Lemma 4.7.3 ([90, Lemma 4.2]). Let A be simple, separable, unital and nuclear C∗-

algebra with a unique trace which absorbs a UHF-algebra of infinite type. Then the flip of

A is 2-coloured approximately inner.
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4.8 Coloured maps

In [90], with the help of coloured flips, the authors showed Z-stability implies finite nuclear

dimension in the simple, separable, unital, nuclear setting. This implication forms part of

the Toms-Winter conjecture.

Theorem 4.8.1 ([90, Theorem B]). Let A be a simple, separable, unital, nuclear and

Z-stable C∗-algebra with unique trace. Then

dimnucA ≤ 3.

However, if we want to extend this result outside the monotracial case a replacement

for the coloured flip is needed (since it implies the algebra has at most one trace). The task

of finding a replacement was carried out in [8]. The authors of [8] generalised the previous

theorem to the case where the trace simplex T (A) is Bauer, i.e. the extreme boundary

∂eT (A) is closed.

Theorem 4.8.2 ([8, Theorem 7.5]). Let A be a simple, separable, unital, nuclear and

Z-stable C∗-algebra such that T (A) is a Bauer simplex. Then

dimnucA ≤ 1.

Moreover, if all traces are quasidiagonal then

drA ≤ 1.

While proving this theorem, the authors of [8] generalised coloured flips to coloured

equivalence of unital maps in the following way.

Definition 4.8.3 ([8, Definition 6.1]). Let A and B be unital C∗-algebras, and let ϕ1, ϕ2 :

A −→ B be unital ∗-homomorphisms, and n ∈ N. The maps ϕ1 and ϕ2 are approximately

n-coloured equivalent if there exist u1, . . . , un ∈ Bω such that

ϕ1(a) =
n∑
k=1

ukϕ2(a)u∗k, (4.13)

ϕ2(a) =

n∑
k=1

u∗kϕ1(a)uk, (4.14)

for all a ∈ A and the element u∗kuk ∈ Bω commutes with ϕ2(A) and uku
∗
k ∈ Bω commutes

with ϕ1(A) for all k = 1, . . . , n.
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Remark 4.8.4. As a consequence of the definition, we have

n∑
k=1

uku
∗
k =

n∑
k=1

ukϕ2(1A)u∗k = ϕ1(1A) = 1B = ϕ2(1A) =

n∑
k=1

u∗kuk. (4.15)

It follows from the definition and the previous identity that approximately n-coloured

equivalent unital ∗-homomorphisms agree on traces. Indeed, suppose ϕ1 and ϕ2 are ap-

proximately n-coloured equivalent and let τ be a trace on B. Then

τ ◦ ϕ1(a) = τ

(
n∑
k=1

ukϕ2(a)u∗k

)

= τ

(
ϕ2(a)

(
n∑
k=1

u∗kuk

))

= τ ◦ ϕ2(a). (4.16)

for all a ∈ A+.

Notice that 1-coloured equivalence of maps is nothing more than unitary equivalence

of maps. Thus coloured equivalence is nothing more than a coloured form of unitary

equivalence in the sense of Section 4.7.

In [8], apart from their nuclear dimension estimates, the authors obtained a coloured

classification of certain classes of C∗-algebras. One of the key lemmas is a generalization

of Connes’ 2× 2 trick, which we will need in Section 5.6.

Let A and B be C∗-algebras, an ∗-homomorphisms π : A −→ B is totally full if if for

every non zero element a ∈ A, π(a) is full (i.e. π(a) generates B as a closed two-sided

ideal). Likewise, a positive element b ∈ B+ is totally full if b 6= 0 and the ∗-homomorphism

C0((0, ‖b‖]) −→ B given by id(0,‖b‖] 7→ b is totally full.

Lemma 4.8.5 ([8, Lemma 2.3]). Let A and B be separable C∗-algebras with A unital and

let ϕ1, ϕ2 : A −→ Bω be order zero maps and ϕ̂1, ϕ̂2 : A −→ Bω be a supporting order zero

maps (see Proposition 1.4.11). Suppose that either:

(i) B has stable rank one; or

(ii) B is a Kirchberg algebra, and ϕi(1A) is totally full in Bω for i = 1, 2.

Let π : A −→M2 (Bω) be given by

π(a) =

ϕ̂1(a) 0

0 ϕ̂2(a)

 . (4.17)
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If ϕ1(1A) 0

0 0

 and

0 0

0 ϕ2(1A)

 (4.18)

are unitarily equivalent in the unitisation of C := M2(B) ∩ π(A)′ ∩
{

1M2(Bω) − π (1A)
}⊥

,

then ϕ1 and ϕ2 are unitarily equivalent.

Now we will state some theorems about coloured equivalent maps. We will work

separately two different settings: the finite case and the purely infinite case. The results

are similar but the process of achieving them are different (even though similar in spirit).

In the finite case, traces will play a prominent role while in the purely infinite setting there

are no traces.

4.8.1 Finite case

The following theorem is a key step in the nuclear dimension estimate of Theorem 4.8.2

and the coloured classification of finite algebras by traces (Theorem 4.8.7).

Theorem 4.8.6 ([8, Theorem 5.5]). Let A be a separable, unital and nuclear C∗-algebra,

and let B be a simple, separable, unital, finite and exact C∗-algebra such that B is Z-stable

and T (B) is a Bauer simplex. Let ϕ1 : A −→ Bω be a totally full ∗-homomorphism and

let ϕ2 : A −→ Bω be a c.p.c. order zero map such that

τ ◦ ϕ1 = τ ◦ ϕm2 (4.19)

for all τ ∈ T (Bω) and all m ∈ N, where order zero functional calculus is used to interpret

ϕm2 . Let k ∈ Z+ be a positive contraction with spectrum [0, 1] and set ψi := ϕi(·) ⊗ k :

A −→ (B ⊗Z)ω for i = 1, 2. Then ψ1 is unitarily equivalent to ψ2 in (B ⊗Z)ω.

The following theorem states that two unital ∗-homomorphisms are n-coloured equiv-

alent if and only if these maps carry the same tracial data. Moreover, we can always take

n = 2.

Theorem 4.8.7 ([8, Corollary 6.5]). Let A be a separable, unital and nuclear C∗-algebra,

and let B be a simple, separable, unital, finite and exact C∗-algebra such that B is Z-

stable and T (B) is a Bauer simplex and nonempty. Let ϕ1, ϕ2 : A −→ Bω be unital

∗-homomorphisms such that ϕ1 is injective. The following statements are equivalent.

(i) τ ◦ ϕ1 = τ ◦ ϕ2 for all τ ∈ T (B).
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(ii) ϕ1 and ϕ2 are approximately n-coloured equivalent for some n ∈ N.

(iii) ϕ1 and ϕ2 are approximately 2-coloured equivalent.

We briefly explain the idea of the proof. It is clear that (iii) and (ii) imply (i). Similarly,

(iii) implies (ii). To complete the proof, it is enough to prove (i) implies (iii).

After some reductions, we can identity ϕi with ϕi ⊗ 1Z for i = 1, 2. Using a positive

element k ∈ Z with spectrum [0, 1], we can split ϕ1(a)⊗ 1Z as the sum of two order zero

maps. Precisely

ϕ1(a)⊗ 1Z = ϕ1(a)⊗ k + ϕ1(a)⊗ (1− k) , a ∈ A.

Now, we can use Theorem 4.8.6 to obtain a unitary w1 implementing the unitary equiva-

lence between ϕ1(·)⊗k and ϕ2(·)⊗k. We can repeat the process to obtain another unitary

w2 if we replace k with 1− k. Then we have the following

ϕ1(a)⊗ 1Z = ϕ1(a)⊗ k + ϕ1(a)⊗ (1− k)

= w1 (ϕ2(a)⊗ k)w∗1 + w2 (ϕ2(a)⊗ (1− k))w∗2

= w1

(
1A ⊗ k1/2

)
(ϕ2(a)⊗ 1Z)

(
1A ⊗ k1/2

)
w∗1

+ w2

(
1A ⊗ (1− k)1/2

)
(ϕ2(a)⊗ 1Z)

(
1A ⊗ (1− k)1/2

)
w∗2 (4.20)

for all a ∈ A. Setting u1 := w1

(
1A ⊗ k1/2

)
and w2 := w2

(
1A ⊗ (1− k)1/2

)
, we obtain

ϕ1(a)⊗ 1Z = u1 (ϕ2(a)⊗ 1Z)u∗1 + u2 (ϕ2(a)⊗ 1Z)u∗2,

ϕ2(a)⊗ 1Z = u∗1 (ϕ1(a)⊗ 1Z)u1 + u∗2 (ϕ1(a)⊗ 1Z)u2, (4.21)

for all a ∈ A.

Finally, notice u∗1u1 = u1u
∗
1 = 1A⊗k and u∗2u2 = u2u

∗
2 = 1A⊗ (1−k). This establishes

the approximately 2-coloured equivalence between ϕ1 and ϕ2.

We can also work with one order zero map in the previous theorem. However the

decomposition is not symmetric and more technical conditions are required on the maps.

This will be highly relevant for the coloured isomorphisms that will be introduced in

Chapter 5.

Theorem 4.8.8 ([8, Theorem 6.6]). Let A be a separable, unital and nuclear C∗-algebra,

and let B be a simple, separable, unital, finite, exact Z-stable C∗-algebra such that the

extreme boundary ∂eT (B) is closed and non empty. Let ϕ1 : A −→ Bω be a totally full
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∗-homomorphism and ϕ2 : A −→ Bω a c.p.c. order zero map with τ ◦ ϕ1 = τ ◦ ϕm2 for all

τ ∈ T (Bω) and all m ∈ N. Then, there exist contractions u1, u2, v1, v2 ∈ Bω satisfying

ϕ1(a) = u1ϕ2(a)u∗1 + u2ϕ2(a)u∗2, (4.22)

ϕ2(a) = v1ϕ1(a)v∗1 + v2ϕ1(a)v∗2, (4.23)

for all a ∈ A, with u∗1u1, u
∗
2u2 ∈ Bω commuting with ϕ2(A) and v∗1v1, v

∗
2v2 ∈ Bω commuting

with ϕ1(A), and

u∗1u1 + u∗2u2 = v∗1v1 + v∗2v2 = 1Bω . (4.24)

4.8.2 Kirchberg case

The previous results about finite C∗-algebras remain true for Kirchberg algebras. In this

setting, we do not have traces but the following uniqueness theorem for order zero maps

into the ultraproducts of Kirchberg algebras will play the role of Theorem 4.8.6.

Theorem 4.8.9 ([8, Theorem 9.1]). Let A be a separable, unital, nuclear C∗-algebra, and

let B be a unital Kirchberg algebra. Let ϕ1, ϕ2 : A −→ Bω be c.p.c. order zero maps such

that f (ϕi) is injective for every non zero f ∈ C0(0, 1]+ for i = 1, 2. Then ϕ1 and ϕ2 are

unitarily equivalent.

Similarly, the following theorem is a purely infinite version of Theorem 4.8.7. It is

important to notice that this theorem does not require the use of the UCT and it applies

to any pair of injective ∗-homomorphisms.

Theorem 4.8.10 ([8, Corollary 9.11]). Let A be a separable, unital, nuclear C∗-algebra,

and let B be a Kirchberg algebra. Let ϕ1, ϕ2 : A −→ Bω be a pair of c.p.c. order zero maps

such that (ϕi − t)+ (a) is non zero for all 0 ≤ t < 1, non zero a ∈ A and i = 1, 2. Then

there exist contractions u1, u2 ∈ Bω such that

ϕ1(a) = u1ϕ2(a)u∗1 + u2ϕ2(a)u∗2 (4.25)

for all a ∈ A and

u∗1u1 + u∗2u2 = 1Bω , (4.26)

and u∗1u1, u
∗
2u2 ∈ Bω commute with ϕ2(A).
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If moreover both ϕ1 and ϕ2 are ∗-homomorphisms, then there exist w1, w2 ∈ Bω such

that

ϕ1(a) = w1ϕ2(a)w∗1 + w2ϕ2(a)w∗2, (4.27)

ϕ2(a) = w∗1ϕ1(a)w1 + w∗2ϕ1(a)w2, (4.28)

and such that w∗iwi commutes with ϕ2(A) and wiw
∗
i commutes with ϕ1(A). In the case that

ϕ1 and ϕ2 are unital ∗-homomorphisms, this says that ϕ1 and ϕ2 are 2-coloured equivalent

in the sense of Definition 4.8.3, and in this case, wi can be chosen to be normal.



Chapter 5

Coloured isomorphism between

C∗-algebras

The aim of this chapter is to introduce a notion of coloured isomorphism for separable uni-

tal C∗-algebras. This concept is motivated by the coloured equivalence of maps introduced

in [8]. Our goal is to design a sequence of relations (Rn)n∈N for separable C∗-algebras,

which we will call n-coloured isomorphisms, in such a way that coloured isomorphic al-

gebras must share structural properties but at the same time these relations must be

sufficiently mild so that we can avoid topological obstructions. In particular, 1-coloured

isomorphic algebras must be isomorphic.

We also expect the family of relations (Rn)n∈N to satisfy the following coloured tran-

sitive identity, for at least some class of separable unital C∗-algebras,

xRmy and yRnz =⇒ xRf(n,m)z, x, y, z ∈ X, m, n ∈ N (5.1)

for some transition function f : N×N −→ N. The most natural (and expected) candidate

for such transition function is f(n,m) = nm. All the results from this section are part of

a joint work with A. Tikuisis and S. White that will be published in [17].

5.1 Idea

In this section we will explain the ideas that will lead to the definition of coloured isomor-

phisms. Consider two separable unital C∗-algebras. One way to show that A is isomorphic

to B is by constructing ∗-homomorphisms ϕ : A −→ B and ψ : B −→ A such that ϕ ◦ ψ

is approximately unitarily equivalent to idA and ψ ◦ ϕ is approximately unitarily equiva-

125
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lent to idB. This is essentially one particular case of the so-called Elliott’s approximate

intertwinings [33]. In the following diagram, the triangles approximately commute up to

unitary equivalence

A
idA //

ϕ ��

A
idA //

ϕ ��

A // · · · // A

��
B

idB
//

ψ
??

B
idB

//

ψ
??

B //

ψ
??

· · · // B.

∼=

OO

Theorem 5.1.1 ([84, Corollary 2.3.4]). Let A and B be separable C∗-algebras, and suppose

that there are ∗-homomorphisms ϕ : A −→ B and ψ : B −→ A such that ψϕ is approx-

imately unitarily equivalent to idA and ϕψ is approximately unitarily equivalent to idB.

Then A is isomorphic to B and there are ∗-isomorphisms ρ : A −→ B and σ : B −→ A

with σ = ρ−1 satisfying that ρ and σ are approximately unitarily equivalent to ϕ and ψ

respectively.

We aim to develop a coloured form of this fact in the sense of Section 4.7 by making use

of coloured equivalent maps. This in particular explains why this concept mostly applies

to separable C∗-algebras since Elliott’s intertwinings only apply to this class.

Roughly speaking, the idea is to construct two maps, ϕ : A −→ B and ψ : B −→ A,

such that ψ ◦ ϕ is approximately n-coloured equivalent to idA and ϕ ◦ ψ is approximately

n-coloured equivalent to idB,

A
ϕ // B

ψ // A.

However, this clean approach has some flaws. Let us illustrate them with one example.

Consider the CAR-algebra M2∞ and the Jiang-Su algebra Z. First of all, notice M2∞

has many projections whereas Z is projectionless. Hence, there are no non trivial ∗-

homomorphisms between M2∞ and Z. However, there do exist order zero maps between

M2∞ and Z (see Example 5.6.3). This suggests we might consider order zero maps in-

stead of ∗-homomorphisms in our definition of coloured isomorphisms as we do in other

definitions of coloured properties. In the same way, we could try to use order zero maps

instead of ∗-homomorphisms in Definition 4.8.3 to define coloured equivalent order zero

maps. It is important to observe that, like with ∗-homomorphisms, coloured equivalent

order zero maps (in the sense of Definition 4.8.3) must agree on traces. Another important

reason why we would like to use order zero maps is that, since they are implemented by

∗-homomorphisms from the cone of the domain to the codomain algebra and cones are con-
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tractible, they do not transfer any K-theoretical data. This helps us to avoid topological

obstructions.

Let ϕ : M2∞ −→ Z be a c.p.c. order zero map. Since there is a unique trace τM2∞ in

M2∞ and τZ ◦ ϕ is a positive tracial functional on M2∞ (by Corollary 1.4.10), we have

τZ ◦ ϕ = λ τM2∞ (5.2)

for some scalar 0 < λ ≤ 1. Observe ϕ(1A) 6= 1Z (otherwise ϕ would be a ∗-homomorphism

by Theorem 1.4.6), hence

λ = τZ ◦ ϕ (1A) < 1. (5.3)

This shows any c.p.c. order zero map ϕ : M2∞ −→ Z reduces the trace, i.e.

τZ ◦ ϕ(a) = λτM2∞ (a) < τM2∞ (a) (5.4)

for all a ∈ A. In particular, it is not possible to find c.p.c. order zero maps ψ : Z −→M2∞

and ϕ : M2∞ −→ Z,

Z

ψ ""

idZ // Z

M2∞

ϕ

<<

such that the identity map idZ and ϕ ◦ ψ agree on the trace τZ ; therefore, idZ and ϕ ◦ ψ

cannot be approximately coloured equivalent. Hence, the CAR algebra M2∞ and the

Jiang-Su algebra Z would not be coloured isomorphic if we require coloured equivalent

maps. This suggests we could try to slightly modify the notion of coloured equivalence of

maps in order to avoid trace preserving maps in such a way that we still have some control

on the traces.

Summarising, in order to avoid these flaws, we might define n-coloured isomorphism

between A and B by asking for c.p.c. order zero maps ϕ : A −→ B and ψ : B −→ A which

are close to being n-coloured equivalent but do not necessarily preserve traces. We will

provide precise definitions in Section 5.3 which remove these difficulties.

In particular, since this notion is a coloured form of [84, Corollary 2.3.4], this definition

should satisfy that 1-coloured isomorphic C∗-algebras are isomorphic. In general, we are

trying to design mild relations which allow to transfer some structural properties while

avoiding K-theoretic obstructions.
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5.2 Coloured maps revisited

Suppose we have two coloured approximately equivalent unital ∗-homomorphisms ρ1, ρ2 :

A −→ B. Then there exist w1, . . . wn ∈ Bω such that

ρ1(a) =
n∑
k=1

wkρ2(a)w∗k, ρ2(a) =
n∑
k=1

w∗kρ2(a)wk (5.5)

for all a ∈ A, w∗kwk ∈ Bω ∩ ρ2(A)′ and wkw
∗
k ∈ Bω ∩ ρ1(A)′ for k = 1, . . . , n.

As discussed before, coloured equivalent unital ∗-homomorphisms agree on traces (see

Remark 4.8.4). This is true because we have the following identity

n∑
k=1

w∗kwk =
n∑
k=1

wkw
∗
k = 1B. (5.6)

Observe this identity is obtained from (5.5) and the fact that ρ1 and ρ2 are unital.

This suggests one simple way to extend the definition of coloured equivalence of maps

to non unital ∗-homomorphisms: by asking for wk’s which satisfy equation (5.6). Precisely,

the ∗-homomorphisms ρ1, ρ2 : A −→ B are n-coloured approximately equivalent if there

exist w1, . . . , wn ∈ Bω such that

ρ1(a) =
n∑
k=1

wkρ2(a)w∗k, ρ2(a) =
n∑
k=1

w∗kρ2(a)wk (5.7)

for all a ∈ A,

n∑
k=1

w∗kwk =

n∑
k=1

wkw
∗
k = 1B, (5.8)

and the elements u∗kuk commute with ϕ2(A) and v∗kvk commutes with ϕ1(A) for k = 1, . . . n.

Like in the unital case, coloured equivalent maps agree on traces. We aim to slightly

weaken this condition and we can do this by adding a constant λ in (5.8) such that

n∑
k=1

w∗kwk = λ1B,

n∑
k=1

wkw
∗
k = λ−11B. (5.9)

This condition allows us to have coloured equivalent maps which do not necessarily agree

on traces but we can still control their tracial data. Notice this last condition implies

τ ◦ ρ1(a) = λτ ◦ ρ2(a) (5.10)

for all a ∈ A and τ ∈ T (A).

Our last goal in this section is to extend the definition of coloured equivalence to order

zero maps between unital C∗-algebras. In this situation, Theorems 4.8.8 and 4.8.10 are
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indicating a viable option with the downside that the decomposition is not symmetric any

more. Additionally, if we want to avoid agreement of coloured equivalent maps on traces

we might add some constants λ1 and λ2 in the same way we did in (5.9). Precisely, one

possible definition is the following:

Definition 5.2.1 (Alternative definition of coloured equivalence of maps). Let A and B be

unital separable C∗-algebras. The c.p.c. order zero maps ϕ1, ϕ2 : A −→ B are n-coloured

equivalent if there exist u1, . . . , un, v1, . . . , vn ∈ Bω and a constant λ ≥ 1 such that

ϕ1(a) =

n∑
k=1

ukϕ2(a)u∗k, ϕ2(a) =

n∑
k=1

vkϕ1(a)v∗k, (5.11)

n∑
k=1

u∗kuk = λ1B,

n∑
k=1

v∗kvk = λ−11B, (5.12)

the elements u∗kuk commute with ϕ2(A) and v∗kvk commutes with ϕ1(A) for k = 1, . . . n.

With this definition, Theorems 4.8.8 and 4.8.10 provide conditions to obtain 2-coloured

equivalent maps in the sense of Definition 5.2.1 when the codomain is a Kirchberg algebra

or a finite algebra satisfying the hypotheses of Theorem 4.8.8.

5.3 Coloured isomorphisms

We have discussed some disadvantages of the original form of coloured equivalence of

unital ∗-homomorphisms when used to define coloured isomorphisms of C∗-algebras and

we have also discussed some ways to amend them. Now, the next natural step is to define

coloured isomorphisms between unital separable C∗-algebras. After all of our previous

discussion, we might expect to use the alternative definition of coloured equivalence of

maps (Definition 5.2.1).

As explained before, our original goal was to define coloured isomorphisms between A

and B by asking c.p.c. order zero maps ϕ : A −→ B and ψ : B −→ A such that ψ ◦ ϕ and

ϕ ◦ ψ are close to be approximately n-coloured equivalent to idA and idB. This basically

means we can express idA as the sum of n order zero maps of the form uiψ ◦ ϕ(·)u∗i and

ψ ◦ϕ as the sum of n order zero maps of the form viidA(·)v∗i . After studying this potential

definition, we realised it is enough to express idA as the sum of n order zero maps rather

than idA and ψ ◦ ϕ.
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Definition 5.3.1. Let A and B be unital C∗-algebras. We say A is n-coloured isomorphic

to B, denoted as A ∼=(n) B, if there exist c.p.c. order zero maps ϕ : A −→ B, ψ : B −→ A

and unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω such that

(i) a =
n∑
k=1

ukψϕ(a)u∗k for all a ∈ A,

(ii) b =
n∑
k=1

vkϕψ(b)v∗k for all b ∈ B.

Remark 5.3.2. It immediately follows from the definition that the c.p.c. order zero maps

ϕ and ψ are injective. Indeed, for example suppose ϕ(a) = 0. Then

n∑
k=1

ukψϕ(a)u∗k = 0 (5.13)

and we obtain a = 0.

We have also omitted the condition of the sum of u∗kuk and v∗kvk being scalar multiples

of 1A and 1B, respectively. Instead, we ask the uk’s and vk’s to be unitaries. As a

consequence of this, the commutation relations are automatically satisfied and this is why

they are not included in the definition any more. We point out that the choice of unitaries

in the definition is motivated by our examples and, in particular, it implies

n∑
k=1

u∗kuk = n1A,

n∑
k=1

v∗kvk = n1B.

Hence, in the presence of traces, we have

τ ◦ ψ ◦ ϕ(a) = nτ(a), τ ′ ◦ ϕ ◦ ψ(b) = nτ ′(b)

for all a ∈ A, b ∈ B, τ ∈ T (A) and τ ′ ∈ T (B).

We point out that Definition 5.3.1 was formulated for any unital C∗-algebra but, by

design, we will use it mostly for separable C∗-algebras. However, we will be able to obtain

some simple facts for ultrapowers of separable C∗-algebras.

Alternative definition

Of course, another viable alternative to Definition 5.3.1 is asking for the sums of u∗kuk and

v∗kvk to be scalar multiples of 1A and 1B, respectively.

Definition 5.3.3 (Alternative definition). Let A and B be unital separable C∗-algebras.

We say A is n-coloured equivalent to B if there exist c.p.c. order zero maps ϕ : A −→

B, ψ : B −→ A, constants λA, λB ≥ 1 and unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω such

that
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(i) a =
n∑
k=1

ukψϕ(a)u∗k for all a ∈ A,

(ii) b =
n∑
k=1

vkϕψ(b)v∗k for all b ∈ B,

(iii)
n∑
k=1

u∗kuk = λA1A and
n∑
k=1

v∗kvk = λB1B,

(iv) u∗kuk commutes with ψ(B), and v∗kvk commutes with ϕ(A) for k = 1, . . . , n.

The theory of coloured isomorphisms works essentially the same with this alternative

definition (some proofs have to be slightly modified) but probably the main difference

is the coloured transitivity identity (5.1). We will see that with the Definition 5.3.1 the

coloured transitive identity holds for the class of separable stable rank one unital C∗-

algebras with transition function (n,m) 7→ nm meanwhile for the alternative Definition

5.3.3 the coloured transitive identity holds for the larger class of separable unital C∗-

algebras with transitive function (n,m) 7→ nm+ 1.

5.4 Properties

In this section we will prove some basic properties of coloured isomorphisms. We will show

it satisfies the coloured transitive relation for the class of unital separable C∗-algebras of

stable rank one. Other properties as commutativity, nuclearity and pure infiniteness are

preserved. Probably two of the key features of these type of isomorphisms is that the

trace simplices are homeomorphic and ideal lattices of coloured isomorphic C∗-algebras

are ordered isomorphic.

Proposition 5.4.1. (i) The relation ∼=(n) is reflexive and symmetric for all n ∈ N.

(ii) If A,B and C are unital separable and stable rank one, A ∼=(n) B and B ∼=(m) C then

A ∼=(nm) C.

Proof. It is immediate from the definition that the relations ∼=(n) are reflexive and sym-

metric for all n ∈ N. Let us prove the coloured transitive identity. By hypothesis there

exist c.p.c. order zero maps ϕ1 : A −→ B,ψ1 : B −→ A and unitaries u1, . . . un ∈

Aω, v1, . . . , vn ∈ Bω such that

a =

n∑
i=1

uiψ1ϕ1(a)u∗i , a ∈ A, (5.14)

b =
n∑
i=1

viϕ1ψ1(b)v∗i , b ∈ B. (5.15)



CHAPTER 5. COLOURED ISOMORPHISM BETWEEN C∗-ALGEBRAS 132

Similarly, there exist c.p.c. order zero maps ϕ2 : B −→ C,ψ2 : C −→ B and unitaries

x1, . . . , xm ∈ Bω, y1, . . . , yn ∈ Cω such that

b =
m∑
j=1

xjψ2ϕ2(b)x∗j , b ∈ B, (5.16)

c =

m∑
j=1

yjϕ2ψ2(c)y∗j , c ∈ C. (5.17)

The maps ψi and ϕi induce each a map at the level of the ultrapowers, which we

continue to denote by ψi and ϕi. By Lemma A.1.7, these induced maps

ϕ1 : Aω −→ Bω, ϕ2 : Bω −→ Cω, ψ1 : Bω −→ Aω, ψ2 : Cω −→ Bω

are order zero. Let D ⊂ Bω be the separable unital C∗-subalgebra generated by B and

x1, . . . , xm ∈ Bω. By Corollary A.1.9, applied to the c.p.c. order zero map ψ1

∣∣
D

: D −→

Aω, there exist unitaries r1, . . . , rm ∈ Aω such that

ψ1

(
xjbx

∗
j

)
= rjψ1(b)r∗j (5.18)

for all b ∈ B and j = 1, . . . ,m. Then

a
(5.14)

=
n∑
i=1

uiψ1ϕ1(a)u∗i

(5.16)
=

n∑
i=1

uiψ1

 m∑
j=1

xjψ2ϕ2 (ϕ1(a))x∗j

u∗i

=
∑
i,j

uiψ1

(
xjψ2ϕ2ϕ1(a)x∗j

)
u∗i

(5.18)
=

∑
i,j

uirjψ1ψ2ϕ2ϕ1(a)r∗ju
∗
i (5.19)

for all a ∈ A. In the same way, using Corollary A.1.9, there exist unitaries s1, . . . , sn ∈ Cω

such that

ϕ2(vibv
∗
i ) = siϕ2(b)s∗i (5.20)

for all b ∈ B and i = 1, . . . , n. Then

c
(5.17)

=

m∑
j=1

yjϕ2ψ2(c)y∗j

(5.15)
=

m∑
j=1

yjϕ2

(
n∑
i=1

viϕ1ψ1 (ψ2(c)) v∗i

)
y∗j

=
∑
i,j

yjϕ2 (viϕ1ψ1ψ2(c)v∗i ) y
∗
j

(5.20)
=

∑
i,j

yjsiϕ2ϕ1ψ1ψ2(c)s∗i y
∗
j (5.21)
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for all c ∈ C. This shows the c.p.c. order zero maps ϕ1ϕ2 : A −→ C,ψ1ψ2 : C −→ A

and the unitaries uirj ∈ Aω, yjsi ∈ Bω, with i = 1, . . . , n and j = 1, . . . ,m, implement an

nm-coloured isomorphism between A and B.

Remark 5.4.2. The coloured transitivity identity also holds for the alternative definition of

coloured equivalence of C∗-algebras (Definition 5.3.3). Precisely, if A,B and C are unital

separable C∗-algebras such that A is n-coloured equivalent to B and B is m-coloured

equivalent to C, then A is (nm+ 1)-coloured equivalent to C.

Proof. The proof is essentially the same as the proof of Proposition 5.4.1. By hypothesis

there exist c.p.c. order zero maps ϕ1 : A −→ B,ψ1 : B −→ A, positive constants λA, λB

and elements u1, . . . un ∈ Aω, v1, . . . , vn ∈ Bω satisfying
n∑
i=1

u∗iui = λA1A and
n∑
i=1

v∗i vi =

λB1B such that

a =
n∑
i=1

uiψ1ϕ1(a)u∗i , a ∈ A, (5.22)

b =
n∑
i=1

viϕ1ψ1(b)v∗i b ∈ B, (5.23)

and u∗iui commutes with ψ1(B), and v∗kvk commutes with ϕ1(A) for i = 1, . . . , n.

Similarly, there exist c.p.c. order zero maps ϕ2 : B −→ C,ψ2 : C −→ B, positive

constants µB, µC and elements x1, . . . , xm ∈ Bω, y1, . . . , yn ∈ Cω satisfying
m∑
j=1

x∗jxj =

µB1B and
m∑
j=1

y∗j yj = µC1C such that

b =

m∑
j=1

xjψ2ϕ2(b)x∗j , b ∈ B, (5.24)

c =

m∑
j=1

yjϕ2ψ2(c)y∗j , c ∈ C, (5.25)

and x∗jxk commutes with ψ2(C), and y∗j yj commutes with ϕ2(B) for j = 1, . . . , n.

Let D ⊂ Bω be the separable unital C∗-subalgebra generated by B and x1, . . . , xm ∈

Bω. By Lemma A.1.8 there exists a c.p.c. order zero map ψ̂1 : D −→ Aω such that

ψ1(d1d2) = ψ̂1(d1)ψ1(d2) = ψ1(d1)ψ̂1(d2). (5.26)
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for all d1, d2 ∈ D. Then

a
(5.22)

=

n∑
i=1

uiψ1ϕ1(a)u∗i

(5.24)
=

n∑
i=1

uiψ1

 m∑
j=1

xjψ2ϕ2 (ϕ1(a))x∗j

u∗i

=
∑
i,j

uiψ1

(
xjψ2ϕ2ϕ1(a)x∗j

)
u∗i

(5.26)
=

∑
i,j

uiψ̂1(xj)ψ1ψ2ϕ2ϕ1(a)ψ̂1(xj)
∗u∗i (5.27)

for all a ∈ A.

Let us compute the following sum∑
i,j

(
uiψ̂1(xj)

)∗
uiψ̂1(xj) =

∑
i,j

ψ̂1(xj)
∗u∗iuiψ̂1(xj)

=

m∑
j=1

ψ̂1(xj)
∗

(
n∑
i=1

u∗iui

)
ψ̂1(xj)

= λA

m∑
j=1

ψ̂1 (xj)
∗ ψ̂1 (xj)

(∗)
= λA

m∑
j=1

ψ̂1 (1Bω) ψ̂1

(
x∗jxj

)

= λAψ̂1(1Bω)ψ̂1

 m∑
j=1

x∗jxj


= λAµBψ̂1(1Bω)2, (5.28)

where the equality in (∗) follows from the structure of order zero maps (Theorem 1.4.6).

Since λAµBψ̂1(1B)2 is in general different from λAµB1A, we have to add an extra

colour. Set

h :=
(

1A − ψ̂1(1B)2
) 1

2
(5.29)

and define

r0 = (λAµB)
1
2 h, ri,j := uiψ̂1(xj) (5.30)

for i = 1, . . . , n and j = 1, . . . ,m. First of all, since ψ̂1(1B) acts as a unit for ψ(B), we

have hψ1(b) = 0 for all b ∈ B. In particular

r0ψ1ψ2ϕ2ϕ1(a)r∗0 = 0. (5.31)
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This leads to the following

a
(5.27)

=
∑
i,j

uiψ̂1(xj)ψ1ψ2ϕ2ϕ1(a)ψ̂1(xj)
∗u∗i

(5.31)
= r0ψ1ψ2ϕ2ϕ1(a)r∗0 +

∑
i,j

uiψ̂1(xj)ψ1ψ2ϕ2ϕ1(a)ψ̂1(xj)
∗u∗i

(5.30)
= r0ψ1ψ2ϕ2ϕ1(a)r∗0 +

∑
i,j

ri,jψ1ψ2ϕ2ϕ1(a)r∗i,j (5.32)

for all a ∈ A. Similarly, we obtain

r∗0r0 +
∑
i,j

r∗i,jri,j
(5.30)

= λAµB

(
1A − ψ̂1(1B)2

)
+
∑
i,j

(
uiψ̂1(xj)

)∗
uiψ̂1(xj)

(5.28)
= λAµB

(
1A − ψ̂1(1B)2 + ψ̂1(1B)2

)
= λAµB1A. (5.33)

Let us prove the commutation relations. It is immediate that r∗0r0 commutes with

ψ1ψ2 since h annihilates ψ1. Remember that u∗iui commutes with the image of ψ1 and

x∗jxj commutes with the image ψ2 for i = 1, . . . , n and j = 1, . . . ,m. Hence, for all c ∈ C,

we have

r∗i,jri,jψ1ψ2(c)
(5.30)

=
(
uiψ̂1(xj)

)∗
uiψ̂1 (xj)ψ1ψ2(c)

= ψ̂1

(
x∗j
)
u∗iuiψ̂1 (xj)ψ1ψ2(c)

(5.26)
= ψ̂1

(
x∗j
)
u∗iuiψ1(xjψ2(c))

= ψ̂1

(
x∗j
)
ψ1 (xjψ2(c))u∗iui

(5.26)
= ψ1

(
x∗jxjψ2(c)

)
u∗iui

= ψ1

(
ψ2(c)x∗jxj

)
u∗iui

= u∗iuiψ1

(
ψ2(c)x∗jxj

)
(5.26)

= u∗iuiψ1

(
ψ2(c)x∗j

)
ψ̂1 (xj)

= ψ1

(
ψ2(c)x∗j

)
u∗iuiψ̂1 (xj)

(5.26)
= ψ1 (ψ2(c)) ψ̂1 (xj)

∗ u∗iuiψ̂1 (xj)

(5.30)
= ψ1ψ2(c)r∗i,jri,j . (5.34)

Similarly, let E be the separable C∗-subalgebra of Bω generated by B and v1, . . . , vn ∈

Bω. By Lemma A.1.8 there exists a c.p.c. order zero map ϕ̂2 : E −→ Cω such that

ϕ2(e1e2) = ϕ̂2(e1)ϕ2(e2) (5.35)
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for all e1, e2 ∈ E. Set

s0 := (λBµC)
1
2
(
1A − ϕ̂2(1B)2

) 1
2 , si,j = yj (ϕ̂2(vi)) , (5.36)

for i = 1, . . . , n and j = 1, . . . ,m. Then, as above, we can verify

c = s0ϕ2ϕ1ψ1ψ2(c)s0 +
∑
i,j

s∗i,jϕ2ϕ1ψ1ψ2(c)si,j (5.37)

for all c ∈ C, each s∗i,jsi,j commutes with ϕ2ϕ1 and

s∗0s0 +
∑
i,j

s∗i, jsi,j = λBµC1Cω . (5.38)

Therefore the c.p.c. order zero maps ϕ2ϕ1 : A −→ C,ψ1ψ2 : C −→ A, the positive

constants λAµB, λBµC and the elements r0, ri,j ∈ Aω, s0, si,j ∈ Cω induce a (nm + 1)-

coloured equivalence between A and C (in the alternative sense of Definition 5.3.3).

Observe that in the previous proof, we added a colour because (5.28) is in general

different from a multiple of 1A but, by (5.31), this extra colour is essentially zero and this

is not satisfactory. This is the reason why we prefer Definition 5.3.1.

As explained before, the definition of coloured isomorphism was constructed as a

coloured version of some particular form of the intertwining argument (see Section 5.1),

so that 1-coloured isomorphism induces an isomorphism. We now confirm this here.

Proposition 5.4.3. Let A and B be unital separable C∗-algebras. Suppose A ∼=(1) B, then

A ∼= B.

Proof. By hypothesis there exist c.p.c. order zero maps ϕ : A −→ B,ψ : B −→ A and

unitaries u ∈ Aω, v ∈ Bω such that

ψϕ(a) = uau∗, ϕψ(b) = vbv∗ (5.39)

for all a ∈ A and b ∈ B. In particular

ψϕ(1A) = 1A, ϕψ(1B) = 1B. (5.40)

Since ϕ(1A) ≤ 1B, we obtain

1A = ψϕ(1A) ≤ ψ(1B) ≤ 1A. (5.41)

This shows ψ is unital and, by the structure of order zero maps (Definition 1.4.6), ψ is

a ∗-homomorphism. In the same way we can show ϕ is a unital ∗-homomorphism. By
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(5.39), we have the following diagram where each triangle is approximately commuting up

to unitary equivalence

A
idA //

ϕ ��

A
idA //

ϕ ��

A // · · · // A

��
B

idB
//

ψ
??

B
idB

//

ψ
??

B //

ψ
??

· · · // B.

∼=

OO

Therefore, by Theorem 5.1.1, A is isomorphic to B.

Observe that the key point of the previous proof is the unitality of ϕ and ψ. In fact,

this proposition remains valid for Definition 5.3.3 because we also obtain that the maps

have to be unital in the one colour case. This is the reason why, in Definition 5.3.3, we

have to ask for elements u1, . . . , un such that
n∑
i=1

u∗kuk is a multiple of 1A.

We now proceed to prove the following permanence properties.

Proposition 5.4.4. Let A,B,C and D be separable unital C∗-algebras such that A ∼=(n) B

and C ∼=(m) D. Then

(i) A⊕ C ∼=(k) B ⊕D with k = lcm{n,m},

(ii) `∞(A) ∼=(n) `
∞(B),

(iii) A⊗α C ∼=(nm) B ⊗α D, where ⊗α denotes the minimal or maximal tensor product.

Proof. By hypothesis there exist c.p.c. order zero maps ϕ1 : A −→ B,ψ1 : B −→ A and

unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω such that

a =
n∑
i=1

uiψ1ϕ1(a)u∗i , b =
n∑
i=1

viϕ1ψ1(b)v∗i (5.42)

for all a ∈ A, b ∈ B. Similarly, there exist c.p.c. order zero maps ϕ2 : C −→ D,ψ2 : D −→

C and unitaries x1, . . . , xm ∈ Cω, y1, . . . , ym ∈ Dω such that

c =

m∑
j=1

xjψ2ϕ2(c)x∗j , b =

m∑
j=1

yjϕ2ψ2(b)y∗j (5.43)

for all c ∈ C, d ∈ D.

(i) Consider k = lcm{n,m} and define c.p.c. order zero maps ρ : A⊕ C −→ B ⊕D,

σ : B ⊕D −→ A⊕ C in the following way.

ρ(a⊕ c) =
n

k
ϕ1(a)⊕ m

k
ϕ2(c), a⊕ c ∈ A⊕ C, (5.44)

σ(b⊕ d) =
m

k
ψ1(b)⊕ n

k
ψ2(d), b⊕ d ∈ B ⊕D. (5.45)
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For i = n+ 1, . . . , k set

ui := uj , vi := vj (5.46)

if i ≡ jmodn for some j ∈ {1, . . . , n}. Similarly, for i = m+ 1, . . . , k set

xi := xj , yi := yj (5.47)

if i ≡ jmodm for some j ∈ {1, . . . ,m}. Now, we can define the following unitaries

ri := ui ⊕ xi ∈ (A⊕ C)ω , si := vi ⊕ yi ∈ (B ⊕D)ω , (5.48)

for i = 1, . . . , k. Observe that by construction we have

σρ(a⊕ c) (5.44)
= σ

(n
k
ϕ1(a)⊕ m

k
ϕ2(c)

)
(5.45)

=
(m
k
· n
k
ψ1ϕ1(a)

)
⊕
(n
k
· m
k
ψ2ϕ2(c)

)
=

nm

k2
(ψ1ϕ1(a)⊕ ψ2ϕ2(c)) (5.49)

for all a⊕ c ∈ A⊕ C. By (5.42) and (5.43) we have

k∑
i=1

uiψ1ϕ1(a)u∗i =
k

n
a,

k∑
i=1

xiψ2ϕ2(c)x∗i =
k

m
c (5.50)

for all a ∈ A, c ∈ C. Then we obtain

k∑
i=1

riσρ(a⊕ c)r∗i
(5.49)

=
nm

k2

k∑
i=1

r∗i (ψ1ϕ1(a)⊕ ψ2ϕ2(c)) r∗i

(5.48)
=

nm

k2

k∑
i=1

(ui ⊕ xi) (ψ1ϕ1(a)⊕ ψ2ϕ2(c)) (ui ⊕ xi)∗

=
nm

k2

k∑
i=1

uiψ1ϕ1(a)u∗i ⊕ xiψ2ϕ2(c)x∗i

=
nm

k2

(
k∑
i=1

uiψ1ϕ1(a)u∗i

)
⊕

(
k∑
i=1

xiψ2ϕ2(c)x∗i

)
(5.50)

=
nm

k2

(
k

n
a

)
⊕
(
k

m
c

)
= a⊕ c. (5.51)

Similarly we can prove

b⊕ d =
k∑
i=1

siρσ(b⊕ d)s∗i (5.52)
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for all b⊕ d ∈ B ⊕D.

Therefore the c.p.c. order zero maps ρ : A ⊕ C −→ B ⊕ D,σ : B ⊕ D −→ A ⊕ C

and the unitaries r1, . . . , rk ∈ (A⊕ C)ω , s1, . . . , sk ∈ (B ⊕D)ω induce a k-coloured

isomorphism between A⊕ C and B ⊕D.

(ii) By Proposition A.1.4, we have a canonical inclusion `∞ (Aω) ↪→ `∞ (A)ω. Then it

is immediate that the induced maps ϕ : `∞(A) −→ `∞(B), ψ : `∞(B) −→ `∞(A)

and the constant sequences (u1) , . . . , (un) ∈ `∞ (A)ω , (v1) , . . . , (vn) ∈ `∞ (B)ω im-

plement an n-coloured isomorphism between `∞(A) and `∞(B).

(iii) By Corollary 1.4.9, the tensor product of c.p.c. order zero maps is order zero. Thus

the c.p.c. maps ϕ1 ⊗ϕ2 : A⊗α C −→ B ⊗αD and ψ1 ⊗ψ2 : B ⊗αD −→ A⊗α C are

order zero. Then

a⊗ c =

(
n∑
i=1

uiψ1ϕ1(a)u∗i

)
⊗

 m∑
j=1

xjψ2ϕ2(c)x∗j


=

n∑
i=1

m∑
j=1

uiψ1ϕ1(a)u∗i ⊗ xjψ2ϕ2(c)x∗j

=

n∑
i=1

m∑
j=1

(ui ⊗ xj) ((ψ1 ⊗ ψ2) ◦ (ϕ1 ⊗ ϕ2)(a⊗ c)) (ui ⊗ xj)∗ (5.53)

for any elementary tensor a⊗ c ∈ A⊗α C. Similarly

b⊗ d =
n∑
i=1

m∑
j=1

(vi ⊗ yj) ((ϕ1 ⊗ ϕ2) ◦ (ψ1 ⊗ ψ2)(b⊗ d)) (vi ⊗ yj)∗ (5.54)

for any elementary tensor b⊗d ∈ B⊗αD. Observe (5.53) and (5.54) extend to A⊗C

and B ⊗ C by linearity and density of the span of elementary tensors.

Therefore the c.p.c. order zero maps ϕ1 ⊗ ϕ2 : A ⊗α C −→ B ⊗α D, ψ1 ⊗ ψ2 :

B ⊗α D −→ A ⊗α C and the unitaries ui ⊗ xj ∈ (A⊗α C)ω , vi ⊗ yj ∈ (B ⊗α D)ω,

with i = 1, . . . , n and j = 1, . . . ,m, induce a nm-coloured isomorphism between

A⊗α C and B ⊗α D.

As a straightforward corollary of the coloured transitive identity (Proposition 5.4.1)

and the previous proposition, we obtain the following.

Corollary 5.4.5. Let A,B and D be unital separable C∗-algebras. Suppose A and B are

stable rank one. If A satisifes A ∼= A⊗αD and A ∼=(n) B, then B ∼=(n2) B⊗αD where ⊗α

denotes the minimal or maximal tensor product.
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Proof. By hypothesis A⊗αD ∼= A. Moreover, by Proposition 5.4.4, A⊗αD ∼=(n) B⊗αD.

Hence A ⊗α D ∼=(n) B and A ⊗α D ∼=(n) B ⊗ D. By the coloured transitive identity

(Proposition 5.4.1), B ∼=(n2) B ⊗α D.

We will prove now that nuclearity is also preserved under coloured isomorphisms. The

same proof can be extended without too much effort to show that finite nuclear dimension is

also preserved with multiplicative estimates. Remember dim+1
nucA stands for dimnucA+ 1.

Proposition 5.4.6. Let A and B be separable unital C∗-algebras. Suppose A is nuclear

and A ∼=(n) B, then B is nuclear. Moreover, if dimnucA is finite then

dim+1
nucB ≤ n · dim+1

nucA.

Proof. By hypothesis there exist c.p.c. order zero maps ϕ : A −→ B,ψ : B −→ A and

unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω such that

a =
n∑
i=1

uiψϕ(a)u∗i , b =
n∑
i=1

viϕψ(b)v∗i (5.55)

for all a ∈ A, b ∈ B. The idea proof of this proposition is basically contained in the

following diagram,

B

ψ

��

idB // B

A

ρ

��

idA
// A

ζ

OO

F

σ

??

where ρ and σ are c.p.c. maps coming from the nuclearity of A and ζ : A −→ B is given

by ζ(a) =
∑n

i=1 biϕ(a)b∗i for some unitaries b1, . . . , bn ∈ B.

Let F ⊂ B be a finite subset and ε > 0. By Proposition A.1.3, we can lift each vi to a

sequence
(
v

(k)
i

)
k∈N

where each v
(k)
i is a unitary in B. By (5.55), there exists k ∈ N such

that ∥∥∥∥∥b−
n∑
i=1

v
(k)
i ϕψ(b)v

(k)
i
∗

∥∥∥∥∥ < ε

2
(5.56)

for all b ∈ F. Using the completely positive approximation property for A, applied to

the finite subset ψ (F) = {ψ(b) | b ∈ F} ⊂ A and ε/2, there exist a finite dimensional
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C∗-algebra F and c.p.c. maps ρ : A −→ F, σ : F −→ A such that

‖ψ(b)− σρ(ψ(b))‖ < ε

2n
(5.57)

for all b ∈ F. Then∥∥∥∥∥b−
n∑
i=1

v
(k)
i ϕσρψ(b)v

(k)
i
∗

∥∥∥∥∥ ≤
∥∥∥∥∥b−

n∑
i=1

v
(k)
i ϕψ(b)v

(k)
i
∗

∥∥∥∥∥
+

∥∥∥∥∥
n∑
i=1

v
(k)
i ϕψ(b)v

(k)
i
∗ −

n∑
i=1

v
(k)
i ϕσρψ(b)v

(k)
i
∗

∥∥∥∥∥
(5.56)
<

ε

2
+

∥∥∥∥∥
n∑
i=1

v
(k)
i ϕ (ψ(b)− σρψ(b)) v

(k)
i
∗

∥∥∥∥∥
≤ ε

2
+

n∑
i=1

∥∥∥v(k)
i

∥∥∥ ‖ϕ (ψ(b)− σρψ(b))‖
∥∥∥v(k)

i
∗
∥∥∥

=
ε

2
+ n ‖ψ(b)− σρ(ψ(b))‖

(5.57)
<

ε

2
+
ε

2
= ε (5.58)

for all b ∈ F. Notice that the map a 7→ v
(k)
i ϕ(a)v

(k)
i
∗ is c.p. and, since ϕ is contractive and

v
(k)
i is a unitary, this map is contractive as well. Set ζ : A −→ B as

ζ(a) =
n∑
i=1

v
(k)
i ϕ(a)v

(k)
i
∗. (5.59)

Since ζ is the sum of n c.p.c. maps, ζ is c.p. and ‖ζ‖ < n. Summarising, for F and ε > 0,

the c.p.c. maps ρσ : B −→ F, ζσ : F −→ B satisfy

‖b− ζσρψ(b)‖ < ε (5.60)

for all b ∈ F and ‖ζσ‖ ≤ n,

B
idB //

ρψ   

B

F
ζσ

?? .

Therefore, by Proposition 1.5.4, B is nuclear.

Let us prove the second part of the proposition, so suppose dimnucA = d. The outline

of the proof is the following: By the first part, we can produce an approximation for F

within ε. We will finish the proof if, using the extra properties of the approximations for

A, we show that the map ησ going back to B is the sum of n(d+ 1) order zero maps.

Let F ⊂ B and ε > 0 and let us keep the same notation as before. From the first part

of the proof, we know that there is an approximation (F, ρσ, ησ) for F within ε. Using that
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dimnucA = d, we can further assume that, for the chosen F and ε, there is decomposition

F =
d⊕
j=0

Fj and the c.p.c. map σ : F −→ A satisfies that the restrictions σj := σ|Fj are

order zero for j = 1, . . . , d. Thus σ is the sum of d+1 order zero maps; precisely σ =
d∑
j=0

σj .

Expressing σ in this form, we obtain

ησ(x) =
n∑
i=1

v
(k)
i ϕσ(x)v

(k)
i
∗

=
n∑
i=1

v
(k)
i ϕ

 d∑
j=0

σj(x)

 v
(k)
i
∗

=
n∑
i=1

d∑
j=0

v
(k)
i ϕσj(x)v

(k)
i
∗ (5.61)

for all x ∈ F . This shows ησ is the sum of n(d+1) maps of the form v
(k)
i ϕσj(x)v

(k)
i
∗. Since

ϕ and σj are order zero and Ad
(
v

(k)
i
∗
)

is a ∗-homomorphism, the map v
(k)
i ϕσj(x)v

(k)
i
∗ is

order zero. Therefore ησ is the sum of n(d+ 1) order zero maps. This shows

dim+1
nucB ≤ n · dim+1

nucA.

The ideal lattice of a C∗-algebra A is just the set of ideals of A. We will denote it

by I(A). As the name suggests, this set is in fact an ordered lattice where the order is

given by inclusion. Our next goal is to show that ideal lattices of coloured isomorphic

C∗-algebras are ordered isomorphic. We need some preparation lemmas first. Observe

that in these lemmas we do not need to assume separability.

Lemma 5.4.7. Let A and B be unital C∗-algebras such that the c.p.c. order zero maps

ϕ : A −→ B, ψ : B −→ A and the unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω induce an

n-coloured isomorphism between A and B. Then ϕ−1(ψ−1(I)) = I and ψ−1(ϕ−1(J)) = J

for any ideal I EA and J EB.

Proof. Since this property is symmetric, it is enough to prove it for ideals of A only. By

hypothesis a =
n∑
k=1

ukψϕ(a)u∗k for all a ∈ A. Let I be an ideal of A, if a ∈ ϕ−1(ψ−1(I))

then ψϕ(a) ∈ I. Hence a =
n∑
k=1

ukψϕ(a)u∗k ∈ I. This shows

ϕ−1(ψ−1(I)) ⊂ I.

Conversely, let a ∈ I and without loss of generality we can assume a is a positive contrac-
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tion. Since a =
n∑
k=1

ukψϕ(a)u∗k and each summand ukψϕ(a)u∗k is positive, we have

uiψϕ(a)u∗i ≤
n∑
k=1

ukψϕ(a)u∗k = a (5.62)

for i = 1, . . . , n. Hence

ψϕ(a) ≤ u∗i aui ∈ I. (5.63)

Since u∗i aui ∈ I and I is hereditary, ψϕ(a) ∈ I and therefore a ∈ ϕ−1(ψ−1(I)). This shows

I ⊂ ϕ−1(ψ−1(I)).

This finishes the proof.

Lemma 5.4.8. Let A,B,C and D be unital C∗-algebras. Suppose the c.p.c. order zero

maps ϕ : A −→ B, ψ : B −→ A induce an n-coloured isomorphism between A and

B. If there exist surjective ∗-homomorphisms q : A −→ C and r : B −→ D such that

ϕ (ker q) = ker r and ψ (ker r) = ker q. Then C ∼=(n) D.

Proof. By hypothesis, there exist unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω such that

a =

n∑
k=1

ukψϕ(a)u∗k, b =

n∑
k=1

vkψϕ(a)v∗k (5.64)

for all a ∈ A and b ∈ B. Let us define c.p.c. order zero maps ρ : C −→ D and σ : D −→ C

in the following way:

ρ(c) = r ◦ ϕ(ac), σ(d) = q ◦ ψ(bd) (5.65)

where ac ∈ q−1 ({c}) and bd ∈ r−1({d}),

A

q

����

ϕ // B
ψ

oo

r

����
C

ρ // D.
σ

oo

First of all, let us show these maps are well defined. Consider c ∈ C and let a1, a2 ∈

q−1 ({c}). Hence q (a1 − a2) = 0. Since ϕ (ker q) = ker r, we have ϕ (a1 − a2) ∈ ker r. This

yields r ◦ ϕ(a1) = r ◦ ϕ(a2) and the map ρ is well defined.
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Now let us show ρ is order zero. Suppose c1, c2 ∈ C satisfy c1c2 = 0. Let a1, a2 ∈ A

such that q(a1) = c1 and q(a2) = c2. Then

q(a1a2) = q(a1)q(a2) = c1c2 = 0. (5.66)

Thus a1a2 ∈ ker q. Since ϕ(ker q) = ker r we have that

r ◦ ϕ(a1a2) = 0. (5.67)

Since ϕ is order zero, we have ϕ(a1)ϕ(a2) = ϕ(1A)ϕ(a1a2). This yields

ρ(c1)ρ(c2) = r ◦ ϕ(a1) · r ◦ ϕ(a2)

= r (ϕ(a1)ϕ(a2))

= r (ϕ(1A)ϕ(a1a2))

= r(ϕ(1A)) · r(ϕ(a1a2))

(5.67)
= 0. (5.68)

This shows ρ is order zero. In the same way, we can show σ is a well defined injective

order zero map.

Suppose uk ∈ Aω and vk ∈ Bω are represented by the sequences of unitaries
(
u

(i)
k

)
i∈N
⊂

A and
(
v

(i)
k

)
i∈N
⊂ B respectively. Let xk ∈ Cω and yk ∈ Dω be the elements represented

by the sequences
(
q
(
u

(i)
k

))
i∈N

and
(
r
(
v

(i)
k

))
i∈N

. Observe xk and yk are unitaries as well.

Since

lim
i→ω

(
n∑
k=1

u
(i)
k ψϕ(a)u

(i)
k
∗

)
= a

for every a ∈ A, we have

lim
i→ω

(
n∑
k=1

q
(
u

(i)
k

)
q ◦ ψϕ(a)q

(
u

(i)
k
∗
))

= q(a). (5.69)

This entails

n∑
k=1

xk · q ◦ ψϕ(a) · x∗k = q(a) (5.70)

for every a ∈ A. Observe that, since ϕ(a) ∈ r−1 (r ◦ ϕ(a)), we have

σ (r ◦ ϕ(a))
(5.65)

= q ◦ ψϕ(a) (5.71)
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for any a ∈ A. Then, the following identity holds

n∑
k=1

xkσρ(c)x∗k
(5.65)

=

n∑
k=1

xkσ (r ◦ ϕ(ac))x
∗
k

(5.71)
=

n∑
k=1

xiq ◦ ψϕ(ac)x
∗
k

(5.70)
= q (ac)

= c (5.72)

for every c ∈ C. Similarly we have

d =
n∑
k=1

yiρσ(d)y∗i (5.73)

for all d ∈ D. Therefore C ∼=(n) D.

Now we are ready to prove that the ideal lattices of coloured isomorphic C∗-algebras

are order isomorphic. We will also show that this induces coloured isomorphisms between

quotients of the coloured isomorphic C∗-algebras.

Theorem 5.4.9. Let A and B be unital C∗-algebras and suppose A ∼=(n) B. Then there

exists an order preserving isomorphism Ψ : I(A) −→ I(B) satisfying

A/I ∼=(n) B/Ψ(I) (5.74)

for every I EA.

Proof. Suppose the c.p.c. order zero maps ϕ : A −→ B, ψ : B −→ A and the unitaries

u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω induce an n-coloured isomorphism between A and B. Let

I(A) and I(B) be the ideal lattices of A and B and remember that their orders are given

by inclusion. By Lemma 1.4.12, the maps Ψ : I(A) −→ I(B) and Φ : I(B) −→ I(A)

given by

Ψ(I) = ψ−1(I), Φ(J) = ϕ−1(J)

are well defined, with I ∈ I(A), J ∈ I(B). By Lemma 5.4.7, the maps Ψ and Φ are

mutual inverses. This shows Ψ and Φ are bijections. It is immediate that if I1 ⊂ I2, then

Ψ(I1) ⊂ Ψ(I2). This shows in particular that Ψ is an order isomorphism.

Finally, we would like to finish the proof using Lemma 5.4.8 with C = A/I,D =
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B/ψ−1(I), and q and r as the corresponding quotient maps,

A

q

����

ϕ // B
ψ

oo

r

����
A/I // B/ψ−1(I).oo

In order to do this, we need to show ϕ(I) = ψ−1(I). Observe that the other condi-

tion, ker q = ψ (ker r), is automatically satisfied since I = ψ
(
ψ−1(I)

)
. By Lemma 5.4.7,

ϕ−1(ψ−1(I)) = I. Thus

ϕ(I) = ϕ
(
ϕ−1(ψ−1(I))

)
= ψ−1(I). (5.75)

Therefore, by Lemma 5.4.8, A/I is n-coloured isomorphic to B/ψ−1(I).

In Proposition 5.4.4, we established that `∞(A) and `∞(B) are coloured isomorphic if

A and B are. As a corollary of the previous theorem, we will show that the ultrapowers

are coloured isomorphic as well.

Corollary 5.4.10. Let A and B be separable unital C∗-algebras and let ω be a free ultra-

filter on N. If A ∼=(n) B, then Aω ∼=(n) Bω.

Proof. Suppose the c.p.c. order zero maps ϕ : A −→ B, ψ : B −→ A and the unitaries

u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω induce an n-coloured isomorphism between A and B. By

Proposition 5.4.4, `∞(A) ∼=(n) `
∞(B). Let us denote by ψ and ϕ the induced maps at level

of `∞(A) and `∞(B). Set

I =
{

(an) ∈ `∞(A) | lim
n→ω

an = 0
}
, J =

{
(bn) ∈ `∞(B) | lim

n→ω
bn = 0

}
.

Since Aω = `∞(A)/I and Bω = `∞(A)/J , in order to prove this corollary it is enough to

show that ψ−1(I) = J ,

`∞(A)

q

����

ϕ // `∞(B)
ψ

oo

r

����
Aω = `∞(A)/I // Bω = `∞(B)/J.oo

From (5.75) and the continuity of ϕ, we have

ψ−1(I) = ϕ(I) ⊂ J. (5.76)
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For the same reasons we have

ϕ−1(J) = ψ(J) ⊂ I. (5.77)

Remember that by Lemma 5.4.7 we have

J = ψ−1
(
ϕ−1(J)

)
. (5.78)

Hence

J
(5.78)

= ψ−1
(
ϕ−1(J)

) (5.77)
⊂ ψ−1(I) = ϕ(I)

(5.76)
⊂ J. (5.79)

Therefore ψ−1(I) = J and the result follows from Theorem 5.4.9.

Remark 5.4.11. Essentially the same proofs remain valid for general ultraproducts instead

of ultrapowers (see Appendix A). Precisely, let {Am}m∈N and {Bm}m∈N be families of

separable unital C∗-algebras such that Am ∼=(n) Bm for all m ∈ N. Then

`∞
(
{Bm}m∈N

) ∼=(n) `
∞ ({Am}m∈N)

and ∏
m→ω

Bm ∼=(n)

∏
m→ω

Am.

It is an straightforward consequence of the definition that if two matrix algebras are

coloured isomorphic then they have to be isomorphic (this follows from the fact that order

zero maps inducing the coloured isomorphism are injective). Using that the ideal lattices

of coloured isomorphic algebras are isomorphic, this can be extended to general finite

dimensional algebras.

Proposition 5.4.12. Let A and B be unital separable C∗-algebras. Suppose A ∼=(n) B. If

A is finite dimensional then A ∼= B.

Proof. By hypothesis there exist c.p.c. order zero maps ϕ : A −→ B,ψ : B −→ A and

unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω such that

a =

n∑
i=1

uiψϕ(a)u∗i , b =

n∑
i=1

viϕψ(b)v∗i (5.80)

for all a ∈ A, b ∈ B. This immediately shows that if A is finite dimensional then B is also

finite dimensional. If fact, we have dimB ≤ n dimA. Since ϕ and ψ are injective maps,

we conclude dimA = dimB and that ϕ and ψ are surjective maps.
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This implies A and B are direct sums of matrix algebras, say A ∼=
r⊕
j=1

Mkj (C) and

B ∼=
s⊕
j=1

Mmj (C). By Theorem 5.4.9, the ideal lattices are isomorphic and this proves

r = s. We will prove this proposition by induction over r.

Let r = 1. Then A and B are matrix algebras and we have shown that dimA = dimB.

Hence A ∼= B. Suppose we have proved that this is true if r = p. Let r = p + 1 and set

I1 =
p⊕
j=1

Mkj (C) and I2 = Mkp+1(C). By Lemma 5.4.7 we have ϕ(I2) = ψ−1(I2). Hence,

using that ϕ is surjective and A = I1⊕ I2, we have ϕ(I1)⊕ϕ(I2) = B. Then, by Theorem

5.4.9, we obtain

I1
∼= A/I2

∼=(n) B/ψ
−1(I2) ∼= ϕ(I1). (5.81)

By inductive hypothesis we obtain I1
∼= ϕ(I1). Similarly, I2

∼= ϕ(I2). Therefore A ∼= B.

We will show now that coloured isomorphisms are rigid for the class of commutative C∗-

algebras. This will follow from the fact that commutativity is preserved under coloured

isomorphisms and this will give a colour reduction: n-coloured isomorphisms between

separable unital C∗-algebras induce isomorphisms.

Proposition 5.4.13. Let A and B be unital separable C∗-algebras. Suppose A ∼=(n) B. If

A is commutative, then A ∼= B.

Proof. Let us show B is commutative. After this, the proof will be similar to the proof of

Proposition 5.4.3. By hypothesis there exist c.p.c. order zero maps ϕ : A −→ B,ψ : B −→

A and unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω such that

a =

n∑
i=1

uiψϕ(a)u∗i , b =
n∑
i=1

viϕψ(b)v∗i (5.82)

for all a ∈ A, b ∈ B. From the commutativity of A and positive functional calculus for

order zero maps, (Corollary 1.4.8), we have

ψ(b1b2) = ψ
1
2 (b1)ψ

1
2 (b2)

= ψ
1
2 (b2)ψ

1
2 (b1)

= ψ(b2b1) (5.83)

for all b1, b2 ∈ B. Since ψ is injective (Remark 5.3.2), we obtain b1b2 = b2b1. This shows

B is commutative.
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Notice that from commutativity, we can simplify the previous identities. Precisely

a
(5.82)

=

n∑
i=1

uiψϕ(a)u∗i =

n∑
i=1

uiu
∗
iψϕ(a) = nψϕ(a) (5.84)

for all a ∈ A and, similarly, we obtain

b = nϕψ(b) (5.85)

for all b ∈ B. We will denote the support ∗-homomorphisms of ϕ,ψ, ψϕ and ϕψ as

πϕ, πψ, πψϕ and πϕψ respectively. Remember that the support homomorphism πϕ maps A

to M (C∗ (ϕ(A))). Since nϕψ(1B) = 1B, we have that 1B is an element of the C∗-algebra

generated by ϕ(A). HenceM (C∗ (ϕ(A))) = C∗ (ϕ(A)) ⊂ B. This shows πϕ is a map from

A to B. Similarly πψ is a map from B to A.

By equations (5.84) and (5.85), we have

ψϕ =
1

n
idA, ϕψ =

1

n
idB. (5.86)

Hence the support ∗-homomorphism of ψϕ and ϕψ are the identity maps. Precisely

πψϕ = idA, πϕψ = idB. (5.87)

By Corollary 1.4.14, we have

πψπϕ = πψϕ = idA, πϕπψ = πϕψ = idB. (5.88)

Therefore A ∼= B.

Let us prove now that the trace simplices are homeomorphic. Recall that we endow

the trace simplex T (A) of a C∗-algebra A with the relative weak*-topology σ(A∗, A)|T (A).

Proposition 5.4.14. Let A and B be separable unital C∗-algebras. Suppose A ∼=(n) B.

Then the trace spaces of A and B are homeomorphic.

Proof. By hypothesis there exist c.p.c. order zero maps ϕ : A −→ B,ψ : B −→ A and

unitaries u1, . . . , un ∈ Aω, v1, . . . , vn ∈ Bω such that

a =

n∑
i=1

uiψϕ(a)u∗i , b =

n∑
i=1

viϕψ(b)v∗i (5.89)

for all a ∈ A, b ∈ B. Let us denote the trace simplices of A and B as T (A) and T (B)

respectively.
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Let us define maps Φ : T (B) −→ T (A) and Ψ : T (A) −→ T (B) by

Φ(τ) =
1

τ ◦ ϕ(1A)
τ ◦ ϕ, Ψ(ρ) =

1

ρ ◦ ψ(1B)
ρ ◦ ψ, (5.90)

for all τ ∈ T (B) and ρ ∈ T (A). First of all, let us show these maps are well defined; this

basically will follow from Corollary 1.4.10 but we include these details for completeness.

Let τ ∈ T (B) and a1, a2 ∈ A be positive contractions, then

Φ(τ)(a1a2)
(5.90)

=
1

τ ◦ ϕ(1A)
τ ◦ ϕ(a1a2)

=
1

τ ◦ ϕ(1A)
τ
(
ϕ

1
2 (a1)ϕ

1
2 (a2)

)
=

1

τ ◦ ϕ(1A)
τ
(
ϕ

1
2 (a2)ϕ

1
2 (a1)

)
=

1

τ ◦ ϕ(1A)
τ ◦ ϕ(a2a1)

(5.90)
= Φ(τ)(a2a1). (5.91)

It is immediate that Φ(τ) is a positive linear functional and Φ(τ)(1A) = 1 for all τ ∈ T (B).

Hence, Φ(τ) is a trace on A. Similarly Ψ is well defined.

We will show that Ψ is the right inverse of Φ. Let ρ ∈ T (A) and observe

ΦΨ(ρ)(a)
(5.90)

=
1

Ψ(ρ) (ϕ(1A))
Ψ(ρ) (ϕ(a))

(5.90)
=

 1
ρψϕ(1A)
ρψ(1B)

( 1

ρψ(1B)
ρψϕ(a)

)
=

1

ρψϕ(1A)
ρψϕ(a) (5.92)

for all a ∈ A. By hypothesis we have

ρ(a) = ρ

(
n∑
i=1

uiψϕ(a)u∗i

)
= nρ (ψϕ(a)) (5.93)

for all a ∈ A. In particular

ρ (ψϕ(1A)) =
1

n
ρ(1A) =

1

n
. (5.94)

Then

ΦΨ(ρ)(a)
(5.92)

=
1

ρ (ψϕ(1A))
ρ (ψϕ(a))

(5.94)
= nρ (ψϕ(a))

(5.93)
= ρ(a) (5.95)
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for all a ∈ A. This shows Ψ is the right inverse of Φ. In the same way we can prove

ΨΦ(τ) = τ (5.96)

for all τ ∈ T (B). Therefore Ψ is the inverse of Φ (not only the right inverse).

To finish the proof, we have to show the maps Φ and Ψ are continuous with respect to

the weak*-topologies. Let us prove Φ is continuous. In order to do this we to show that

for every a ∈ A there exists a positive constant M and b ∈ B such that

|Φ(τ)(a)| ≤M |τ(b)| . (5.97)

Since τ (ϕψ(1B)) ≤ τ(ϕ(1A)) and τ (ϕψ(1B)) = 1/n, we obtain

|Φ(τ)(a)| =
∣∣∣∣ 1

τ (ϕ(1A))
τϕ(a)

∣∣∣∣ ≤ n |τϕ(a)| (5.98)

for all a ∈ A and τ ∈ T (B). This entails the continuity of Φ in the weak*-topology and,

similarly, Ψ is weak*-continuous. Therefore T (A) and T (B) are homeomorphic.

Remark 5.4.15. The homeomorphism Φ between T (A) and T (B) is not affine. Of course,

if one of the trace simplices is finite then the homeomorphism Φ induces an affine iso-

morphism between T (A) and T (B). However, it is unknown to the author if the trace

simplices are in general affinely isomorphic.

5.5 Kirchberg algebras and coloured isomorphisms

In this section we will prove that any two Kirchberg algebras are 2-coloured isomorphic.

We will rely on the machinery developed in [8]. In particular, Theorem 4.8.9 will be

fundamental for this Chapter.

Firstly, we will show coloured isomorphisms preserve weak pure infiniteness (see Section

1.7). This, in conjunction with Theorem 5.4.9, will show that pure infiniteness is preserved

if the algebra is simple.

Proposition 5.5.1. Let A and B be separable unital C∗-algebras such that A ∼=(n) B. If

A is weakly purely infinite then B is weakly purely infinite.

Proof. Since A is weakly purely infinite then Aω is traceless by Theorem 1.7.10. By

Corollary 5.4.10, Aω ∼=(n) Bω. Since the trace spaces of Aω and Bω are homeomorphic

by Proposition 5.4.12, Bω is also traceless. Finally, again by Theorem 1.7.10, B is weakly

purely infinite.
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Corollary 5.5.2. Let A and B be separable unital C∗-algebras such that A ∼=(n) B. If

A is simple and purely infinite then B is simple and purely infinite. Moreover, if A is a

Kirchberg algebra then B is a Kirchberg algebra as well.

Proof. IfA is simple thenB is simple as well by Proposition 5.4.9. SinceA is purely infinite,

in particular, A is weakly purely infinite. By Proposition 5.5.1, B is weakly purely infinite.

By Theorem 1.7.11, simplicity and weak pure infiniteness imply pure infiniteness. Hence

B is purely infinite. If additionally A is nuclear (so A is a Kirchberg algebra), then B is

nuclear as well by Proposition 5.4.6. Therefore B is a Kirchberg algebra.

In light of Corollary 5.5.2, we already know that if a Kirchberg algebra A is coloured

isomorphic to some other C∗-algebra B then B has to be a Kirchberg algebra as well. We

will proceed to prove the converse.

As mentioned earlier, Theorem 4.8.9 will be highly important for this section. In order

to have access to this theorem, we must be able to verify when a c.p.c. order zero map φ

satisfies that, for any non zero f ∈ (C0(0, 1])+, f(φ) is injective. The following lemma,

which is an straightforward application of [8, Lemma 9.8], will indicate us when certain

type of c.p.c. order zero maps satisfy this technical condition.

Lemma 5.5.3 ([8, Lemma 9.8]). Let A be a unital Kirchberg algebra and let h ∈ A+ with

spectrum [0, 1]. Suppose ϑ : A −→ A is a c.p.c. order zero map such that ‖ϑ(a)‖ = ‖a‖

for all a ∈ A and define φ : A −→ A⊗Z by

φ(a) = ϑ(a)⊗ h, a ∈ A.

Then φ is a c.p.c. order zero map with the property that, for any non zero f ∈ (C0(0, 1])+,

f(φ) is injective.

Proof. Let t ∈ [0, 1). Since ϑ is isometric, we have

∥∥(ϑ(1A)− t)+

∥∥ = 1− t. (5.99)

This shows that the order zero map (ϑ− t)+ has norm equal to 1− t by Corollary 1.4.8.

Since B is simple, by Lemma 1.4.12, (ϑ− t)+ is injective. Then, by [8, Lemma 9.8], the

map φ̃ : A −→ C0(0, 1]⊗A given by

φ̃(a) = id(0,1] ⊗ ϑ(a), a ∈ A, (5.100)
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is a c.p.c. order zero map with the property that, for any non zero f ∈ (C0(0, 1])+, f(φ̃)

is injective. By [62, Lemma 3.3.2], C0(0, 1] is canonically isomorphic to the universal

C∗-algebra generated by a positive contraction and we identify id(0,1] with the universal

generator. Hence, by functional calculus, we have that the C∗-algebra generated by h is

isomorphic to C0(0, 1]. After identifying id(0,1] with h, we obtain that φ is a c.p.c. order

zero map with the property that, for any non zero f ∈ (C0(0, 1])+, f(φ) is injective.

The proof of the the following theorem is based on the work carried out in [8]. It is

well known that by Kirchberg’s embedding theorems, we can always embed any Kirchberg

algebra into another Kirchberg algebra. Then, using a positive element h of Z with

spectrum [0, 1], we consider the maps given by the tensor product of the composition of the

embeddings with this positive element. By Theorem 4.8.9, these maps are approximately

unitarily equivalent to the corresponding identity map tensorised with h. We will finish

by repeating this process with 1Z − h instead of h. It is important to notice that this

theorem does not require the UCT.

Theorem 5.5.4. Let A be a Kirchberg algebra and let B be a separable unital C∗-algebra.

Then A ∼=(2) B if and only if B is a Kirchberg algebra.

Proof. Firstly, if A is a Kirchberg algebra and A ∼=(2) B, by Proposition 5.5.2, B is a

Kirchberg algebra as well.

Conversely, let A and B be Kirchberg algebras. By Kirchberg’s embedding theorems

(Theorem 1.7.5), there are embeddings A ↪→ O2 and B ↪→ O2. Let p ∈ P(A) and q ∈ P(B)

be properly infinite projections of K0-class 0. By [84, Proposition 4.2.3.(ii)], there exist

embeddings O2 ↪→ pAp ⊂ A and O2 ↪→ qBq ⊂ B. Let ϕ : A −→ B and ψ : B −→ A given

by composing the previous embeddings,

A �
� //

ϕ

77O2
� � // B, B

ψ

77
� � // O2

� � // A.

Notice that A and B are Z-stable because, by Kirchberg embedding theorems (Theorem

1.7.5), Kirchberg algebras are O∞-stable and, by Theorem 4.4.8, O∞ tensorially absorbs

the Jiang-Su algebra Z. Then by Theorem 4.5.4 there exist isomorphisms σ : A⊗Z −→ A

and ρ : B ⊗Z −→ B, and unitaries x ∈ Aω, y ∈ Bω such that

a = x∗σ(a⊗ 1Z)x, (5.101)

b = y∗ρ(b⊗ 1Z)y (5.102)
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for all a ∈ A and b ∈ B. Let h ∈ Z be a positive element with spectrum [0, 1] and let us

define c.p.c. order zero maps θ : A −→ B and ζ : B −→ A by

θ(a) = ρ (ϕ(a)⊗ h) , a ∈ A, (5.103)

ζ(b) = σ(ψ(b)⊗ h), b ∈ B. (5.104)

In particular we have

ζθ(a) = σ(ψ(θ(a))⊗ h), a ∈ A. (5.105)

We would like to show, using Theorem 4.8.9, that ψ(θ(·))⊗h and idA⊗h are approxi-

mately unitarily equivalent. In order to do this, we have to verify that f (ψ(θ(·))⊗ h) and

f (idA ⊗ h) are injective for all f ∈ (C0(0, 1])+.

By Lemma 5.5.3, this boils down to checking that ψθ and idA are isometric. Since it is

obvious that idA is isometric, we only have to show ψθ is isometric but this immediately

follows from the fact that the minimal norm is a cross norm, ‖h‖ = 1 and ψ, ρ and

ϕ are isometric. We include these details for completeness. Since ψ,ϕ and ρ are ∗-

homomorphisms, they are isometric. Hence

‖ψ (θ(a))‖ = ‖θ(a)‖
(5.103)

= ‖ρ (ϕ(a)⊗ h) ‖

= ‖ϕ(a)⊗ h‖

= ‖ϕ(a)‖‖h‖

= ‖ϕ(a)‖

= ‖a‖ (5.106)

for all a ∈ A. This shows we can apply Theorem 4.8.9 to the pair ψ(θ(·))⊗h and idA⊗h.

Therefore there exists a unitary w1 ∈ (A⊗Z)ω such that

a⊗ h = w1 (ψ(θ(a))⊗ h)w∗1, a ∈ A. (5.107)

Observe that 1Z − h also has spectrum [0, 1] and, because of this, we can repeat the

previous arguments after replacing idA ⊗ h with idA ⊗ (1Z − h). Hence, by Theorem

4.8.9 applied now to the maps ψ(θ(·)) ⊗ h and idA ⊗ (1Z − h), there exists a unitary

w2 ∈ (A⊗Z)ω such that

a⊗ (1Z − h) = w2 (ψ(θ(a))⊗ h)w∗2, a ∈ A. (5.108)



CHAPTER 5. COLOURED ISOMORPHISM BETWEEN C∗-ALGEBRAS 155

Then, by identities (5.107) and (5.108), we have

a⊗ 1Z = a⊗ h+ a⊗ (1Z − h)

= w1 (ψ(θ(a))⊗ h)w∗1 + w2 (ψ(θ(a))⊗ h)w∗2 (5.109)

for all a ∈ A. Thus

a
(5.101)

= x∗σ(a⊗ 1Z)x

= x∗σ (a⊗ h+ a⊗ (1Z − h))x

(5.109)
= x∗σ (w1 (ψ(θ(a))⊗ h)w∗1 + w2 (ψ(θ(a))⊗ h)w∗2)x

= x∗σ(w1)σ ((ψ(θ(a))⊗ h))σ(w1)∗x

+ x∗σ(w2)σ (ψ(θ(a))⊗ h)σ(w2)∗x (5.110)

for all a ∈ A. Notice that implicitly we are extending σ to (A⊗Z)ω. After setting

ui = x∗σ (wi), we obtain

a = u1ζθ(a)u∗1 + u2ζθ(a)u∗2 (5.111)

for all a ∈ A. Similarly there exist unitaries v1, v2 ∈ Bω such that

b = v1θζ(b)v∗1 + v2θζ(b)v∗2 (5.112)

for all b ∈ B. Therefore the c.p.c order zero maps θ : A −→ B, ζ : B −→ A and the

unitaries u1, u2 ∈ Aω, v1, v2 ∈ Bω induce a 2-coloured isomorphism between A and B.

5.6 Finite algebras and coloured isomorphisms

In this section we will show an anologue result for separable, simple, unital, finite, nuclear

and Z-stable C∗-algebras with unique trace which satisfy the UCT. In general, the idea of

the proofs of this section is the same idea we used for Kirchberg algebras. Unfortunately,

there are more technical details we have to deal in this case. In this setting, the tracial

behavior of maps will play a prominent role. Firstly, we will establish an analogue to

Theorem 4.8.9 in this setting, which is built from Theorem 4.8.8 but with additional

hypothesis (this will simplify its proof). With this theorem in hand, we will show UHF

algebras are 2-coloured equivalent to the Jiang-Su algebra Z. The proof we provide is

constructive and illustrate in a nutshell the key ideas behind the more general results to

follow.
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In order to prove our first technical lemma, we will make use of the heavy machinery

developed in [8]. Let us recall the definition of totally full ∗-homomorphisms and totally

full elements first.

Definition 5.6.1 ([8, Definition 1.1]). Let A and B be C∗-algebras, a ∗-homomorphism

π : A −→ B is totally full if if for every non zero element a ∈ A, π(a) is full (i.e. π(a)

generates B as a closed two-sided ideal). Likewise, a positive element b ∈ B+ is totally full

if b 6= 0 and the ∗-homomorphism C0((0, ‖b‖]) −→ B given by id(0,‖b‖] 7→ b is totally full.

The following lemma is a slight variation of [8, Theorem 5.2]. Notice that the algebra

B has a unique trace instead of T (B) being a Bauer simplex. This will simplify its proof

but the idea is the same. This lemma will play the role of Theorem 4.8.9 in the previous

section.

Lemma 5.6.2. Let A be a separable, unital, nuclear C∗-algebra and let B be a simple,

separable, unital, finite, Z-stable, exact C∗-algebra with unique trace τB. Let ϕ1, ϕ2 :

A −→ Bω be c.p.c. order zero maps such that ϕ1(a) is full for every non zero a ∈ A, and

τ ◦ ϕn1 (a) = τ ◦ ϕn2 (a) 6= 0 (5.113)

for all a ∈ A and all n ∈ N, where ϕni is understood as order zero functional calculus.

Then there exists a unitary w ∈ Bω such that

ϕ1(a) = wϕ2(a)w∗ (5.114)

for all a ∈ A.

Proof. Let us sketch the proof first. Using support order zero maps of ϕ1 and ϕ2 we will

define a new c.p.c. order zero map π : A −→M2(Bω). We will use the 2× 2 trick (Lemma

4.8.5) with this map to show ϕ1 and ϕ2 are unitarily equivalent. In order to do this, we

have to see  ϕ1(1A) 0

0 0

 and

 0 0

0 ϕ2(1A)


are unitarily equivalent in some relative commutant C and, by the machinery of [8], this

boils down to checking that h1 and h2 are totally full in C and that all powers of these

elements agree on all traces on C.

First of all, by Ozawa’s density theorem [71, Theorem 8], Bω has a unique trace τBω

given by

τBω

(
(xn)

∞
n=1

)
= lim

n→ω
τB(xn), (5.115)
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where (xn)
∞
n=1 denotes the class of (xn)∞n=1 in Bω. Let JBω EBω be the trace kernel ideal

of B, i.e.

JBω =
{

(xn)
∞
n=1 ∈ Bω | lim

n→ω
τB(x∗nxn) = 0

}
.

By [8, Lemma 1.14], there are support order zero maps ϕ̂1, ϕ̂2 : A −→ Bω of ϕ1 and ϕ2

such that the induced maps ϕ̂1, ϕ̂2 : A −→ Bω/JBω are ∗-homomorphisms. Observe that

[8, Lemma 1.14] requires the maps τ 7→ dτ (ϕ1(1A)) and τ 7→ dτ (ϕ2(1A)), from T (Bω)

to [0, 1], to be continuous but since Bω has a unique trace this condition is automatically

satisfied.

Let us define a c.p.c. map π : A −→M2(Bω) by

π(a) =

 ϕ̂1(a) 0

0 ϕ̂2(a)

 , a ∈ A, (5.116)

and set C := M2(Bω) ∩ π(A)′ ∩
{

1M2(Bω) − π(1A)
}⊥

. Let us denote the unique trace of

M2(Bω) as τ (observe that τ = τM2(C)⊗ τBω). By hypothesis, ϕ1(a) is full for all non zero

a ∈ A+, then π(a) is also full since

0 ≤

 ϕ1(a) 0

0 0

 ≤
 ϕ̂1(a) 0

0 0

 ≤
 ϕ̂1(a) 0

0 ϕ̂2(a)

 = π(a). (5.117)

Hence, by [8, Theorem 4.1], C has strict comparison (of positive elements with respect to

traces) and the set of traces

T0 = {τ (π(a)(·)) | a ∈ A+, τ(π(a)) = 1} (5.118)

has weak*-closed convex hull equal to T (C). Recall that strict comparison means that

if dρ(c1) < dρ(c2) for all ρ ∈ T (C), then c1 � c2 for k ∈ N and c1, c2 ∈ Mk(C)+ (see

Definition 1.10.5).

Set

h1 =

 ϕ1(1A) 0

0 0

 , h2 =

 0 0

0 ϕ2(1A)

 . (5.119)
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Let us verify h1 and h2 are elements of C. Observe

h1π(a) =

 ϕ1(1A) 0

0 0

 ·
 ϕ̂1(a) 0

0 ϕ̂2(a)


=

 ϕ1(1A)ϕ̂1(a) 0

0 0


=

 ϕ1(a) 0

0 0

 . (5.120)

Similarly

π(a)h1 =

 ϕ̂1(a) 0

0 ϕ̂2(a)

 ·
 ϕ1(1A) 0

0 0


=

 ϕ̂1(a)ϕ1(1A) 0

0 0


=

 ϕ1(a) 0

0 0

 . (5.121)

This shows h1π(a) = π(a)h1 for all a ∈ A. Now, let us check
(
1M2(Bω) − π(1A)

)
h1 = 0,

(
1M2(Bω) − π(1A)

)
h1 =

 1A − ϕ̂1(1A) 0

0 1A − ϕ̂2(1A)

 ϕ1(1A) 0

0 0


=

 (1A − ϕ̂1(1A))ϕ1(1A) 0

0 0


=

 ϕ1(1A)− ϕ1(1A) 0

0 0


=

 0 0

0 0

 . (5.122)

This proves h1 ∈ C. The same computations with h2 instead of h1 show h2 ∈ C. By

hypothesis, ϕ1(1A) is full in B, so h1 is full in M2(Bω) and hence C is full in M2(Bω). Let

us verify now that ρ (hn1 ) = ρ (hn2 ) for all ρ ∈ T (C) and n ∈ N. Consider ρ = τ(π(a)·) ∈ T0
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where a ∈ A+ is such that τ(π(a)) = 1. Hence

ρ (hn1 ) = τ (π(a)hn1 )

= τ

 ϕ̂1(a) 0

0 ϕ̂2(a)

 ϕ1(1A)n 0

0 0


= τ

 ϕ̂1(a)ϕ1(1A)n 0

0


= τ

 ϕn1 (a) 0

0 0


=
τBω(ϕn1 (a))

2
. (5.123)

Similarly we obtain

ρ (hn2 ) =
τBω (ϕn2 (a))

2
. (5.124)

By hypothesis τBω (ϕn1 (a)) = τBω (ϕn2 (a)) for all a ∈ A. Hence

ρ (hn1 ) = ρ (hn2 ) (5.125)

for all n ∈ N and ρ ∈ T0. Since the convex hull of T0 is weak*-dense in T (C) we have

ρ (hn1 ) = ρ (hn2 ) (5.126)

for all n ∈ N and ρ ∈ T (C). Since τ (ϕn1 (a)) 6= 0 for all non zero a ∈ A and n ∈ N, then

τBω (f(ϕ1(a))) = τBω (f(ϕ2(a))) 6= 0 (5.127)

for all a ∈ A and f ∈ C((0, 1])+. Hence

ρ(f(h1)) = ρ(f(h2)) 6= 0 (5.128)

for all ρ ∈ T (Bω) and f ∈ C0((0, 1])+. Let us prove now that h1 and h2 are totally full

elements in C. In order to do this, by Definition 5.6.1, we need to show that f(h1) and

f(h2) are full in C for f ∈ C0((0, 1])+. Consider a non zero positive contraction c ∈ C.

Since ρ(f(h1)) 6= 0 and T (C) is compact, we have

inf
ρ∈T (C)

ρ(f(h1)) > 0. (5.129)

Thus, there exists n ∈ N such that

ndρ (f(h1)) ≥ nρ(f(h1)) > 1 ≥ dρ(c) (5.130)
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for all ρ ∈ T (C). By strict comparison c is Cuntz below f(h1)⊕n in C. This immediately

shows that for every ε > 0 there exist elements y1, . . . , yn ∈ C such that∥∥∥∥∥c−
n∑
k=1

y∗kf(h1)yk

∥∥∥∥∥ < ε. (5.131)

Therefore c is in the closed two sided ideal generated by f(h1) in C. Since c was arbitrary,

this shows f(h1) is full. This shows h1 is totally full. Analogously, we can show h2 is

totally full.

By [8, Theorem 5.1], h1 and h2 are unitarily equivalent in the unitisation of C. Rørdam

showed that simple, separable, unital, finite Z-stable C∗-algebras have stable rank one [83,

Theorem 6.7]. Then, by Lemma A.1.6, Bω has stable rank one. Finally, by the 2× 2 trick

(Lemma 4.8.5), ϕ1 and ϕ2 are unitarily equivalent.

Now we are ready to establish the following example.

Example 5.6.3. The CAR algebra M2∞ is 2-coloured equivalent to the Jiang-Su algebra

Z.

Proof. Let Z2∞,3∞ be the generalized dimension drop algebra. Recall

Z2∞,3∞ = {f ∈ C ([0, 1],M2∞ ⊗M3∞) | f(0) ∈M2∞ ⊗ C1M3∞ , f(1) ∈ C1M2∞ ⊗M3∞} .

By [85, Proposition 3.3], Z2∞,3∞ embeds unitally into Z. We can regard Z2∞,3∞ as a

C∗-subalgebra of C[0, 1]⊗M2∞⊗M3∞ and consider h : [0, 1] −→ R as h(t) = 1− t. Define

a c.p.c. order zero map ϕ̃ : M2∞ −→ Z2∞,3∞ by

ϕ̃(a) = h⊗ a⊗ 1M3∞ , a ∈M2∞ . (5.132)

Observe that since h(1) = 0, ϕ̃(a) is an element of Z2∞,3∞ . By Remark 1.9.4, there is

a unital standard embedding ι : Z2∞,3∞ −→ Z, i.e. the trace of Z induces the Lebesgue

trace on Z2∞,3∞ .

Let ϕ : M2∞ −→ Z be the order zero map given by the composition of ϕ̃ and the

standard embedding ι of Z2∞,3∞ into Z,

M2∞

ϕ

66
ϕ̃ // Z2∞,3∞

� � ι // Z.
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In particular

τZ ◦ ϕn(a) = τZ(ι (hn ⊗ a⊗ 1M3∞ ))

= τM2∞ (a) · τM3∞ (1M3∞ ) ·
∫ 1

0
hn(t)dt

=
τM2∞ (a)

n+ 1
, (5.133)

where ϕn is understood as order zero functional calculus. Recall that the CAR algebra

M2∞ is Z-stable. Then, by Proposition 4.5.4, there exists an isomorphism σ : M2∞⊗Z −→

M2∞ and a unitary x ∈ (M2∞)ω such that

a = x∗σ(a⊗ 1Z)x (5.134)

for all a ∈ M2∞ . Let ψ : Z −→ M2∞ be the composition of the second factor embedding

of Z into M2∞ ⊗Z and the isomorphism σ. Notice that ψ is a ∗-homomorphism,

Z

ψ

44
� �

1M2∞⊗idZ //M2∞ ⊗Z σ //M2∞ .

Observe that since ψ is a ∗-homomorphism, its support ∗-homomorphisms is ψ itself.

Recall that the support ∗-homomorphism of the composition is the composition of the

support ∗-homomomorphisms (Corollary 1.4.14). Then we have

(ψϕ)n (a) = (ψϕ(1A))n ψπϕ(a)

= ψ (ϕ(1A)n)ψπϕ(a)

= ψ (ϕ(1A)nπϕ(a)) = ψϕn(a) (5.135)

for all a ∈ A.

Now, since ψ is unital, it is trace preserving. Hence

τM2∞ ◦ (ψϕ)n (a)
(5.135)

= τM2∞ ◦ ψϕ
n(a)

= τZ ◦ ϕn(a)

(5.133)
=

τM2∞ (a)

n+ 1
. (5.136)

Set c.p.c. order zero maps ρ1, ρ2 : M2∞ −→M2∞ by

ρ1(a) = σ(a⊗ ι (h⊗ 1M2∞ ⊗ 1M3∞ )), a ∈M2∞ , (5.137)

ρ2(a) = σ(a⊗ ι((1− h)⊗ 1M2∞ ⊗ 1M3∞ )), a ∈M2∞ . (5.138)
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Observe that

ρ1(a) + ρ2(a) = σ
(
a⊗ ι

(
1C[0,1] ⊗ 1M2∞ ⊗ 1M3∞

))
= σ(a⊗ 1Z) (5.139)

for all a ∈M2∞ . We also have

τM2∞ ◦ ρ
n
1 (a) = τM2∞ ◦ σ (a⊗ ι (hn ⊗ 1M2∞ ⊗ 1M3∞ ))

= τM2∞ ⊗ τZ(a⊗ ι (hn ⊗ 1M2∞ ⊗ 1M3∞ ))

= τM2∞ (a) · τZ ◦ ι (hn ⊗ 1M2∞ ⊗ 1M3∞ )

(∗)
= τM2∞ (a) ·

∫ 1

0
hn(t)dt

=
τM2∞ (a)

n+ 1
(5.140)

for all a ∈M2∞ . Notice that (∗) is given because the trace of the Jiang-Su algebra induces

the Lebesgue trace. Similarly

τM2∞ ◦ ρ
n
2 (a) = τM2∞ (a) ·

∫ 1

0
(1− h)n(t)dt

=
τM2∞ (a)

n+ 1
(5.141)

for all a ∈M2∞ . This shows ρ1 and ρ2 tracially agree with ψϕ on each power. Precisely,

τM2∞ ◦ ρ
n
1 (a) = τM2∞ ◦ (ψϕ)n (a), τM2∞ ◦ ρ

n
2 (a) = τM2∞ ◦ (ψϕ)n (a) (5.142)

for all a ∈M2∞ and n ∈ N. By Lemma 5.6.2, there exist unitaries w1, w2 ∈ (M2∞)ω such

that

ρ1(a) = w1ψϕ(a)w∗1, ρ2(a) = w2ψϕ(a)w∗2 (5.143)

for all a ∈M2∞ . Set unitaries u1 = x∗w1 and u2 = x∗w2. Then

u1ψϕ(a)u∗1 + u1ψϕ(a)u∗1 = x∗w1ψϕ(a)w∗1x+ x∗w2ψϕ(a)w∗2x

= x∗ (w1ψϕ(a)w∗1 + w2ψϕ(a)w∗2)x

(5.143)
= x∗ (ρ1(a) + ρ2(a))x

(5.139)
= x∗σ(a⊗ 1Z)x

(5.134)
= a (5.144)

for all a ∈M2∞ .
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Now notice that

τZ ◦ (ϕψ)n (b)
(5.133)

= τM2∞ (ψ(b)) ·
∫ 1

0
hn(t)dt

=
τM2∞ (σ(1M2∞ ⊗ b))

n+ 1

=
τZ(b)

n+ 1
(5.145)

for all b ∈ Z. In order to finish we have to repeat the same constructions for ϕψ. We

include those details for completeness. Since Z is strongly self-absorbing, by Theorem

4.5.4, there exists an ∗-isomorphism θ : Z ⊗ Z −→ Z and a unitary y ∈ Zω such that

b = y∗θ(b⊗ 1Z)y for all b ∈ Z. Define c.p.c. order zero maps ζ1, ζ2 : Z −→ Z by

ζ1(b) = θ(b⊗ ι (h⊗ 1M2∞ ⊗ 1M3∞ )) , b ∈ Z, (5.146)

ζ2(b) = θ(b⊗ ι ((1Z − h)⊗ 1M2∞ ⊗ 1M3∞ )) , b ∈ Z. (5.147)

By construction, we have

τZ ◦ ζn1 (b) = τZ ◦ (ϕψ)n (b), τZ ◦ ζn2 (b) = τZ ◦ (ϕψ)n (b) (5.148)

for all b ∈ Z and n ∈ N. Then, by Lemma 5.6.2, there exist unitaries w̃1, w̃2 ∈ Zω such

that

ζ1(b) = w̃1ϕψ(b)w̃∗1 ζ2(b) = w̃2ϕψ(b)w̃∗2 (5.149)

for all b ∈ Z. After setting unitaries v1 = y∗w̃1 and v2 = y∗w̃2, we obtain

b = v1ϕψ(b)v∗1 + v2ϕψ(b)v∗2 (5.150)

for all b ∈ Z. Therefore, the c.p.c. order zero maps ϕ : M2∞ −→ Z, ψ : Z −→ M2∞ and

unitaries u1, u2 ∈ (M2∞)ω , v1, v2 ∈ Zω implement a 2-coloured isomorphism between M2∞

and Z.

From the previous proof, we can see that one way of obtaining 2-coloured isomorphisms

between separable, simple, unital, finite, nuclear and Z-stable C∗-algebras with unique

trace boils down to finding c.p.c. order zero maps ϕ : A −→ B,ψ : B −→ A such that

τA ◦ (ψϕ)n (a) =
τA(a)

n+ 1
, τB ◦ (ϕψ)n (b) =

τB(b)

n+ 1
,

for all a ∈ A, b ∈ B and n ∈ N. Then Lemma 5.6.2 will give us that ψϕ is approximately

unitarily equivalent to idA ⊗ h and ϕψ is approximately unitarily equivalent to idB ⊗ h
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for any positive element of Z with spectrum [0, 1] and we can finish as in the previous

example. The following lemmas will help us to construct these c.p.c. order zero maps in a

much more generality.

Lemma 5.6.4. There exists a Borel measure µ on [0, 1] with support [0, 1] such that∫ 1

0
tndµ(t) =

1√
n+ 1

(5.151)

for all n ∈ N.

Proof. Let us prove the following well known identity∫ ∞
0

e−nt
2
dt =

√
π

2
√
n
. (5.152)

We have (∫ ∞
0

e−nx
2
dx

)2

=

(∫ ∞
0

e−nx
2
dx

)(∫ ∞
0

e−ny
2
dy

)
=

∫ ∞
0

∫ ∞
0

e−n(x
2+y2)dxdy

(I)
=

∫ ∞
0

∫ π
2

0
re−nr

2
dθdr

(II)
=

π

4n

∫ ∞
0

e−udu

=
π

4n
. (5.153)

Observe that in (I) we changed to polar coordinates and in (II) we made the substitution

u = nr2. Then we have showed ∫ ∞
0

e−nt
2
dt =

√
π

2
√
n

(5.154)

for all n ∈ N.

With this identity in hand, let us define a measure on [0,∞) in the following way,

µ̃(U) =
2√
π

∫
U
e−t

2
dt (5.155)

for every Borel set U ⊂ [0,∞). Hence∫
[0,∞)

f(t)dµ̃(t) =
2√
π

∫
[0,∞)

f(t)e−t
2
dt. (5.156)

Using the homeomorphism h : [0,∞) −→ (0, 1], given by h(t) = e−t, we can define a

measure µ on (0, 1] by

µ(U) = µ̃
(
h−1(U)

)
(5.157)



CHAPTER 5. COLOURED ISOMORPHISM BETWEEN C∗-ALGEBRAS 165

with U a Borel set of [0, 1]. Hence we obtain∫
(0,1]

f(t)dµ(t) =

∫
[0,∞)

(f ◦ h(t)) dµ̃(t). (5.158)

We can extend this measure to [0, 1] by considering µ̂(U) = µ(U ∩ (0, 1]). Let us rename

this extension µ̂ as µ to simplify the notation. By construction, the support of µ is [0, 1]

and we have ∫ 1

0
tndµ(t)

(5.158)
=

∫ ∞
0

e−nt
2
dµ̃(t)

(5.156)
=

2√
π

∫ ∞
0

e−nt
2 · e−t2 d(t)

=
2√
π

∫ ∞
0

e−(n+1)t2dt

(5.152)
=

2√
π

( √
π

2
√
n+ 1

)
=

1√
n+ 1

(5.159)

for all n ∈ N as wanted.

Lemma 5.6.5. Let A be a simple AF-algebra with unique trace τA. Then there exists a

c.p.c. order zero map ϕ : A −→ Z such that

τZ ◦ ϕn(a) =
τA(a)√
n+ 1

, a ∈ A, (5.160)

for all n ∈ N.

Let us sketch the proof first. By Lemma 5.6.4, there exists a Borel measure µ on [0, 1]

with support [0, 1] such that ∫ 1

0
tndµ(t) =

1√
n+ 1

.

With this measure in hand we will define a Cu∼-map σ between Cu∼ (C0(0, 1]⊗A) and

Cu∼ (Z). With the help of Theorem 1.10.14, we will be able to lift this map to a ∗-

homomorphism π : C0(0, 1]⊗A −→ Z such that Cu∼(π) = σ. This ∗-homomorphism will

induce an order zero map ϕ : A −→ B. Using that A has real rank zero, we will be able

to show

τZ ◦ ϕn(a) =
τA(a)√
n+ 1

.

Proof. Recall that, by Theorems 1.10.6 and 1.10.9, we have

Cu(A) ∼= V (A) t (0,∞], (5.161)

Cu(Z) ∼= N0 t (0,∞], (5.162)

Cu(C[0, 1]⊗A) ∼= Lsc ((0, 1],V(A) t (0,∞]) . (5.163)
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By Lemma 5.6.4 there exists a Borel measure µ on [0, 1] with support [0, 1]. Then by

Lemma 1.10.12 the map σ̃ : Cu(C[0, 1]⊗A) −→ Cu(Z) given by

σ̃(f) =

∫ 1

0
dτA (f(t)) dµ(t) (5.164)

is a Cu-map where we regard the image of σ̃ contained in the soft part of Z, i.e. (0,∞].

Consider the unit 1 of Cu(C[0, 1] ⊗ A), precisely 1 ∈ Lsc ([0, 1],V(A) t (0,∞]) is the

constant function 〈1A〉 ∈ V (A). Notice

σ̃(1) =

∫ 1

0
dµ(t) =

2√
π

∫ 1

0
e−t

2
dt =

2√
π

(√
π

2

)
= 1R+ . (5.165)

We will use this Cu-map to define a map at the level of Cu∼. By Example 1.10.13, we

have

Cu∼(C0(0, 1]⊗A) = {f − n · 1 | f ∈ Lsc ([0, 1],V(A) t (0,∞]) , f(0) <∞} ,

∼= {f ∈ Lsc ([0, 1],K0(A) t (−∞,∞]) | f(0) = n〈1A〉, n ∈ Z} (5.166)

and

Cu∼(Z) = {x− n · 1N | x ∈ N0 t (0,∞], n ∈ N}

∼= Z t (∞,∞]. (5.167)

Then the Cu-map σ̃ extends to a Cu-map σ : Cu∼(C0(0, 1]⊗A) −→ Cu∼(Z). Precisely,

σ(f − n · 1) = σ̃(f)− n · 1R+ . (5.168)

By Theorem 1.10.14, there exists a ∗-homomorphism π : C0(0, 1] ⊗ A −→ Z such that

Cu∼(π) = σ. Observe that equation (5.165) guarantees we can apply Theorem 1.10.14.

Via the duality between c.p.c order zero maps and cones over ∗-homomorphisms, we obtain

a c.p.c. order zero map ϕ : A −→ Z by

ϕ(a) = π
(
id(0,1] ⊗ a

)
, a ∈ A. (5.169)

In order to finish the proof, we need to show this map satisfies the trace condition of

equation (5.160). Let us analyse the map π at the level of Cu. To this end, consider

f ⊗a ∈ (C0(0, 1]⊗A)+, by [1, Corollary 2.7] its Cu-class, which will be denoted as [f ⊗a],

is

[f ⊗ a] = [a] · χsuppf ∈ Lsc ((0, 1], V (A) t (0,∞]) , (5.170)
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where [a] · χsuppf : (0, 1] −→ V (A) t (0,∞] is given by

[a] · χsuppf (t) =


[a] t ∈ suppf

0 otherwise

. (5.171)

Recall Cu(Z) ∼= N0 t (0, 1]. In Remark 1.10.7, we explain that if 〈a〉 ∈ Cu(Z) is a soft

element, we identify it with dτZ (〈a〉). Remember the image of σ̃ is contained in the soft

part of Cu(Z) and since Cu(π) = σ, we obtain

dτZ ([π (f ⊗ a)]) = Cu(π)([f ⊗ a])

= σ ([f ⊗ a])

(5.170)
= σ ([a] · χsuppf )

(5.164)
=

∫ 1

0
dτA ([a]) · χsuppf (t)dµ(t)

= dτA (a)

∫ 1

0
χsuppf (t)dµ(t)

= dτA (a) · µ (suppf) . (5.172)

For each a ∈ A, set ηa : C0(0, 1] −→ Z by

ηa(f) = π(f ⊗ a). (5.173)

Since the composition τZ ◦ηa defines a linear functional on C0(0, 1], there exists a measure

υa on (0, 1] such that

τZ ◦ ηa(f) =

∫
(0,1]

f(t)dυa(t) (5.174)

for all f ∈ C0(0, 1]. Moreover, for a contraction f ∈ C0(0, 1]+ we have

dτZ◦ηa(f) = lim
n→∞

τZ ◦ ηa
(
f

1
n

)
= lim

n→∞

∫
(0,1]

f
1
n (t)dυa(t)

= υa(suppf). (5.175)

For a projection p ∈ A, observe dτA(p) = τ(p). Then we have

dτZ◦ηp(f) = lim
n→∞

τZ ◦ ηp
(
f

1
n

)
= lim

n→∞
τZ ◦ π

(
f

1
n ⊗ p

)
= lim

n→∞
τZ

(
π (f ⊗ p)

1
n

)
= dτZ (π(f ⊗ p))

(5.172)
= τA(p) · µ(suppf). (5.176)
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This entails

vp(suppf)
(5.175)

= dτZ◦ηp(f)
(5.176)

= τA(p) · µ(suppf) (5.177)

for each positive f ∈ C0(0, 1]⊗A. This shows

υp = τA(p)µ. (5.178)

Let us now consider the case when a ∈ A+ is spanned by projections, say a =
m∑
i=1

λipi

with {p1, . . . , pm} a family of pairwise orthogonal projections and each λi positive. Then

dτZ◦ηa(f) = lim
n→∞

τZ ◦ ηa
(
f

1
n

)
= lim

n→∞
τZ ◦ π

(
f

1
n ⊗ a

)
= lim

n→∞
τZ ◦ π

(
f

1
n ⊗

(
m∑
i=1

λipi

))

= lim
n→∞

m∑
i=1

τZ ◦ π
(
f

1
n ⊗ λipi

)
=

m∑
i=1

λi lim
n→∞

τZ

(
(π (f ⊗ pi))

1
n

)
=

m∑
i=1

λidτZ (π (f ⊗ pi))

(5.176)
=

m∑
i=1

λiτA(pi) · µ(suppf)

= τA

(
m∑
i=1

λipi

)
· µ(suppf)

= τA(a) · µ(suppf). (5.179)

This shows

va(suppf)
(5.175)

= dτZ◦ηa(f)
(5.176)

= τA(a) · µ(suppf) (5.180)

for any f ∈ C0(0, 1]+. This entails υa = τ(a)µ if a is spanned by projections; i.e.

a =
m∑
i=1

λipi where {p1, . . . , pm} is a family of pairwise orthogonal projections in A. By

continuity, we can extend this to any positive element a ∈ A which can be approximated

by linear combinations of projections. We include those details for completeness.

Let a ∈ A, ε > 0 and suppose it can be approximated by linear combinations of

projections. Then there exists b =
r∑
i=1

λipi, where {p1, . . . , pm} is a family of pairwise

orthogonal projections in A, such that

‖a− b‖ < ε

2
. (5.181)



CHAPTER 5. COLOURED ISOMORPHISM BETWEEN C∗-ALGEBRAS 169

Let f ∈ C0(0, 1] be a function of norm at most 1, then∣∣∣∣∫ 1

0
fdυa −

∫ 1

0
fdυb

∣∣∣∣ (5.174)
= |τZ ◦ π (f ⊗ a)− τZ ◦ π (f ⊗ b)|

= |τZ ◦ π (f ⊗ (a− b))|

<
ε

2
. (5.182)

This yields that for any open interval I we have

|υa(I)− υb(I)| ≤ ε

2
. (5.183)

Since b is a linear combination of projections, we know υb = τ(b)µ. Then

|υa(I)− τ(a)µ(I)| ≤ |υa(I)− υb(I)|+ |τ(b)µ(I)− τ(a)µ(I)|

<
ε

2
+
ε

2
= ε. (5.184)

Since ε was arbitrary, we conclude υa = τ(a)µ.

Finally, A is real rank zero by [84, Proposition 1.2.4]. Thus

υa = τA(a)µ (5.185)

for every a ∈ Asa. Therefore

τZ ◦ ϕn(a) = τZ (π(tn ⊗ a))

(5.173)
= τZ ◦ ηa(tn)

(5.174)
=

∫ 1

0
tndυa(t)

(5.185)
= τA(a)

∫ 1

0
tndµ(t)

(5.159)
=

τA(a)√
n+ 1

(5.186)

for all a ∈ A. This finishes the proof.

As an easy application of the previous lemma let us prove the next example.

Example 5.6.6. Any two UHF-algebras are 2-coloured equivalent.

Proof. Let A and B two UHF algebras. We will denote the unique traces of A and B

by τA and τB. By Theorem 4.5.4, there exist ∗-isomorphisms σ : A ⊗ Z −→ A and

θ : B ⊗Z −→ B, and unitaries x ∈ Aω, y ∈ Bω such that

a = x∗σ(a⊗ 1Z)x, b = y∗θ(b⊗ 1Z)y (5.187)
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for all a ∈ A and b ∈ B. By Lemma 5.6.5, there exist order zero maps ϕ̃ : A −→ Z and

ψ̃ : B −→ Z such that

τZ ◦ (ϕ̃)n(a) =
τA(a)√
n+ 1

, τZ ◦ (ψ̃)n(b) =
τB(b)√
n+ 1

(5.188)

for all a ∈ A and b ∈ B. Define order zero maps ϕ : A −→ B and ψ : B −→ A where ϕ is

given by the following compositions,

A

ϕ

44
ϕ̃ // Z 1B⊗idZ // B ⊗Z θ // B

and ψ is given similarly by the following compositions.

B

ψ

44
ψ̃ // Z 1A⊗idZ // A⊗Z σ // A

Observe that since 1B ⊗ idZ , 1A ⊗ idZ , σ and θ are unital ∗-homomorphisms, the maps ϕ

and ψ satisfy the following trace conditions.

τB ◦ ϕn(a) =
τA(a)√
n+ 1

, τA ◦ ψn(b) =
τB(b)√
n+ 1

(5.189)

for all a ∈ A and b ∈ B. Hence

τA ◦ (ψϕ)n (a) = τA ◦ ψn (ϕn(a))

=
τB ◦ ϕn(a)√

n+ 1

=
τA(a)√

n+ 1
√
n+ 1

=
τA(a)

n+ 1
. (5.190)

Similarly

τB ◦ (ϕψ)n (b) =
τB(n)

n+ 1
. (5.191)

We will finish exactly as in Example 5.6.3. Let h ∈ Z be a positive element of spectrum

[0, 1] such that

τZ(hn) =
1

n+ 1
. (5.192)

Define c.p.c. order zero maps ρ1, ρ2 : A −→ A by

ρ1(a) = σ(a⊗ h), a ∈ A (5.193)

ρ2(a) = σ(a⊗ (1Z − h)), a ∈ A. (5.194)
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Similarly, define c.p.c. order zero maps ζ1, ζ2 : B −→ B by

ζ1(b) = θ(b⊗ h), b ∈ B, (5.195)

ζ2(b) = θ(b⊗ (1Z − h)), b ∈ B. (5.196)

By construction, we have

τA ◦ ρn1 (a) = τA ◦ (ψϕ)n (a) = τA ◦ ρn2 (a) (5.197)

for all a ∈ A and n ∈ N. Similarly

τB ◦ ζn1 (b) = τB ◦ (ϕψ)n (b) = τB ◦ ζn2 (b) (5.198)

for all b ∈ B and n ∈ N. By Lemma 5.6.2, there exist unitaries w1, w2 ∈ Aω and

w̃1, w̃2 ∈ Bω such that

ρ1(a) = w1ψϕ(a)w∗1, ρ2(a) = w2ψϕ(a)w∗2, (5.199)

ζ1(b) = w̃∗1ϕψ(b)w̃∗1, ζ2(b) = w̃2ϕψ(b)w̃∗2. (5.200)

After setting u1 = x∗w1, u2 = x∗w2 ∈ Aω and v1 = y∗w̃1, v2 = y∗w̃2 ∈ Bω we obtain

a = u1ψϕ(a)u∗1 + u2ψϕ(a)u∗2, (5.201)

b = v1ϕψ(b)v∗1 + v2ϕψ(b)v∗2 (5.202)

for all a ∈ A and b ∈ B. Therefore the c.p.c. order zero maps ϕ : A −→ B,ψ : B −→ A

and the unitaries u1, u2 ∈ Aω, v1, v2 ∈ Bω implement a 2-coloured isomorphism between

A and B.

The following result from [96] will allow us to extend the previous proof much more

generally.

Theorem 5.6.7 ([96, Corollary 6.5]). Let A be a separable, simple, unital and nuclear

C∗-algebra with unique trace which satisfy the UCT. Then A embeds unitally into a simple

AF algebra with unique trace.

The following theorem is the main result of this section. It is an equivalent version of

Theorem 5.5.4 for separable, simple, unital, finite, nuclear and Z-stable C∗-algebras with

unique trace which satisfy the UCT algebras.

Theorem 5.6.8. Let A and B be separable, simple, unital, finite, nuclear and Z-stable

C∗-algebras with unique trace which satisfy the UCT. Then A ∼=(2) B.
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Proof. By Corollary 5.6.7, there exist simple monotracial AF algebras C and D, and unital

embeddings A ↪→ C and B ↪→ D. Let us denote the unique traces of C and D by τC and

τD. By Lemma 5.6.5, there exist c.p.c. order zero maps ϕ̃ : C −→ Z and ψ̃ : D −→ Z

such that

τZ ◦ (ϕ̃)n (c) =
τC(c)√
n+ 1

, τZ ◦
(
ψ̃
)n

(d) =
τD(d)√
n+ 1

(5.203)

for all c ∈ C and d ∈ D.

By Theorem 4.5.4, there exist ∗-isomorphisms σ : A⊗ Z −→ A and θ : B ⊗ Z −→ B,

and unitaries x ∈ Aω, y ∈ Bω such that

a = x∗σ(a⊗ 1Z)x, b = y∗θ(b⊗ 1Z)y (5.204)

for all a ∈ A and b ∈ B.

Let us define order zero maps ϕ : A −→ B and ψ : B −→ A where ϕ is given by the

following compositions,

A

ϕ

33� � // C
ϕ̃ // Z 1B⊗idZ // B ⊗Z θ // B

and ψ is given similarly by the following compositions.

B

ψ

33� � // D
ψ̃ // Z 1A⊗idZ // A⊗Z σ // A

From this point the proof is identical to the proof of Example 5.6.6. We include the

proof for completeness. Observe that since A and B embeds unitally in C and D, and

1B ⊗ idZ , 1A ⊗ idZ , σ and θ are unital ∗-homomorphisms, the maps ϕ and ψ satisfy the

following conditions,

τB ◦ ϕn(a) =
τA(a)√
n+ 1

, τA ◦ ψn(b) =
τB(b)√
n+ 1

(5.205)

for all a ∈ A and b ∈ B. Hence

τA ◦ (ψϕ)n (a) = τA ◦ ψn (ϕn(a))

=
τB ◦ ϕn(a)√

n+ 1

=
τA(a)

n+ 1
. (5.206)

In the same way we can show

τB ◦ (ϕψ)n (b) =
τB(n)

n+ 1
. (5.207)



CHAPTER 5. COLOURED ISOMORPHISM BETWEEN C∗-ALGEBRAS 173

for all b ∈ B. Consider a positive contraction h ∈ Z with spectrum [0, 1] such that

τZ(hn) =
1

n+ 1
. (5.208)

Let us define c.p.c. order zero maps ρ1, ρ2 : A −→ A by

ρ1(a) = σ(a⊗ h), a ∈ A, (5.209)

ρ2(a) = σ(a⊗ (1Z − h)), a ∈ A. (5.210)

Similarly, define c.p.c. order zero maps ζ1, ζ2 : B −→ B by

ζ1(b) = θ(b⊗ h), b ∈ B, (5.211)

ζ2(b) = θ(b⊗ (1Z − h)), b ∈ B. (5.212)

By construction, we have

τA ◦ ρn1 (a) = τA ◦ (ψϕ)n (a) = τA ◦ ρn2 (a), (5.213)

τB ◦ ζn1 (b) = τB ◦ (ϕψ)n (b) = τB ◦ ζn2 (b) (5.214)

for all a ∈ A, b ∈ B and n ∈ N. By Lemma 5.6.2, there exist unitaries w1, w2 ∈ Aω and

w̃1, w̃2 ∈ Bω such that

ρ1(a) = w1ψϕ(a)w∗1, ρ2(a) = w2ψϕ(a)w∗2 (5.215)

ζ1(b) = w̃∗1ϕψ(b)w̃∗1, ζ2(b) = w̃2ϕψ(b)w̃∗2. (5.216)

Set u1 = x∗w1, u2 = x∗w2 ∈ Aω and v1 = y∗w̃1, v2 = y∗w̃2 ∈ Bω. This yields

a = u1ψϕ(a)u∗1 + u2ψϕ(a)u∗2 (5.217)

b = v1ϕψ(b)v∗1 + v2ϕψ(b)v∗2 (5.218)

for all a ∈ A and b ∈ B. Therefore the c.p.c. order zero maps ϕ : A −→ B,ψ : B −→ A

and the unitaries u1, u2 ∈ Aω, v1, v2 ∈ Bω implement a 2-coloured isomorphism between

A and B.

5.7 Questions

We will finish this chapter by stating some questions about coloured isomorphisms.

• What is the right notion of coloured isomorphisms for non unital C∗-algebras?
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• Coloured isomorphisms are very rigid for finite dimensional and commutative C∗-

algebras. In a work in progress with D. McConell we have observed that this is also

true for C∗-algebras of the form C0(X) ⊗Mn(C). Is this true for a more general

class of C∗-algebras, for example type I?

• We have seen that if A and B are stable rank one separable unital C∗-algebras such

that A ∼=(n) B and A is D-stable then B ∼=n2 B⊗D. If A and B are simple separable

and nuclear such that A ∼=(2) B and A is Z-stable. Does B tensorially absorb Z as

well?

• Is the UCT preserved under coloured isomorphisms? If this is true, then we will

obtain that any nuclear C∗-algebra satisfy the UCT so we expect this question to be

extremely difficult.

• Can we remove the UCT assumption from the hypothesis of Theorem 5.6.8?

• We explained that the trace simplices of coloured isomorphic C∗-algebras are home-

omorphic (as topological spaces). Are the trace simplices of coloured isomorphic

C∗-algebras affinely isomorphic? If this is true, can we extend Theorem 5.6.8 to the

case where T (A) and T (B) are affinely isomorphic?

• Which properties of Cu are preserved under coloured isomorphisms? For example,

if A ∼=(n) B and Cu(A) has m-comparison, does Cu(B) have nm-comparison?



Appendix A

Ultraproducts

In this appendix we will recall the constructions of ultraproducts and ultrapowers. We

will also state some properties of them.

A filter ω on N is a subset of 2N such that

(i) ∅ /∈ ω,

(ii) if U, V ∈ ω, then U ∩ V ∈ ω,

(iii) if U ∈ ω and U ⊂ V , then V ∈ ω.

A filter is free if the intersection of all of its elements is empty. A maximal filter is called

ultrafilter. Let (xn) be a sequence of real numbers. The sequence (xn)n converges to x

along ω, denoted as limn→ω xn = x, if for every ε > 0 there exists U ∈ ω such that

|xn − x| < ε if n ∈ U .

A.1 Ultraproducts of C∗-algebras

Given a sequence of C∗-algebras (An)n∈N, set

`∞
(
(An)n∈N

)
=

{
(an)n∈N

∣∣∣∣ an ∈ An , sup
n∈N
‖an‖ <∞

}
. (A.1)

Definition A.1.1. Let (An)n∈N be a sequence of C∗-algebras and ω a filter on N. We

define the sequence algebra of (An)n∈N as∏
An

/⊕
An = `∞

(
(An)n∈N

)/{
(an)n∈N ∈ `

∞ ((An)n∈N
) ∣∣∣ lim

n→∞
‖an‖ = 0

}
. (A.2)

We also define
∏
n→ω

An as

∏
n→ω

An = `∞
(
(An)n∈N

)/{
(an)n∈N ∈ `

∞ ((An)n∈N
) ∣∣∣∣ lim

n→U
‖an‖ = 0

}
. (A.3)

175
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We will omit the n when there is no risk of confusion. If A is a C∗-algebra and An = A

for all n ∈ N, we denote them as A∞ and Aω. When ω is an ultrafilter,
∏
ω
An is called an

ultraproduct and Aω an ultrapower.

We will denote the class of the sequence (an)n in
∏
ω
An as (an)n. Precisely,

a 7−→ (a, a, a, . . .) ∈ Aω.

We will focus on ultraproducts of C∗-algebras but let us introduce the ultraproduct of

II1-factors first. Let M be a II1-factor with trace τ . The trace τ induces a norm called

the 2-norm on M in the following way,

‖x‖2 =
√
τ(x∗x), x ∈M.

Definition A.1.2. Let M be a II1-factor with trace τ and let ω be an ultrafilter on N.

The ultrapower Mω is given by

Mω = `∞(M)
/{

(xn)n | lim
n→ω
‖xn‖2 = 0

}
. (A.4)

An important fact of ultrapowers is that projections and unitaries can be lifted to a

sequence formed by projections and unitaries respectively.

Proposition A.1.3 ([84, Lemma 6.2.4]). Let (An)n∈N be a sequence of C∗-algebras and let

p ∈
∏
ω
An be a projection. Then p can be represented by a sequence formed by projections.

Moreover, if each An is unital and u ∈
∏
ω
An is a unitary, then u can be represented by a

sequence formed by unitaries.

Proposition A.1.4. Let A and B be separable C∗-algebras and ω a free ultrafilter on .

Then

(i) (A⊕B)ω
∼= Aω ⊕Bω.

(ii) There is a canonical embedding `∞ (Aω) ↪→ `∞(A)ω.

While working with sequences, one of the most standard tools is the diagonal argument.

The following lemma is the analogue technique for ultraproducts. This lemma is commonly

referred as Kirchberg’s ε-test or the reindexing argument.

Lemma A.1.5 (Kirchberg’s ε-test, [54, Lemma A.1]). Let X1, X2, . . . be a sequence of

nonempty sets, and for each k, n ∈ N, let f
(k)
n : Xn −→ [0,∞) be a function. Define

f
(k)
ω :

∞∏
n=1

Xn −→ [0,∞] by

f (k)
ω ((sn)∞n=1) = lim

n→ω
f (k)
n (sn)
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for (sn) ∈
∞∏
n=1

Xn. Suppose that for all m ∈ N and ε > 0, there exists (sn)∞n=1 ∈
∞∏
n=1

Xn

with f
(k)
ω ((sk)) < ε for k = 1, . . . ,m. Then there exists (tn)∞n=1 ∈

∞∏
n=1

Xn such that

f
(k)
ω ((tn)) = 0 for all k ∈ N.

One important fact about ultrapowers is that they preserved stable rank one.

Lemma A.1.6 ([62, Lemma 1.21]). Let A be unital C∗-algebra with stable rank one. Then

Aω has stable rank one and for any element x ∈ Aω there exists a unitary u ∈ Aω such

that

x = u|a|. (A.5)

Let ϕ : A −→ B be map between C∗-algebras. This map induces a map ϕ(ω) : Aω −→

Bω at the level of ultrapowers in the following way. Let a ∈ Aω be represented by the

sequence (an)n, then

ϕ(ω) (a) = (ϕ(an)). (A.6)

The proof of the following lemma is contained in the proof of [80, Proposition 2.2].

Proposition A.1.7 (Robert). Let (An)n∈N and (Bn)n∈N be a sequence of C∗-algebras and

let ϕn : An −→ Bn be c.p.c. order zero maps. Then the induced c.p.c. map

ϕ :
∏
n→U

An −→
∏
n→U

Bn

is also order zero.

A.1.1 Support order zero maps

In this part we will present some technical lemmas we need in Chapter 5. In order to

simplify the notation, for any map ϕ : A −→ B we will also call ϕ to the induced map at

the level of ultraproducts; i.e. ϕ : Aω −→ Bω. We include its proof for completeness.

Lemma A.1.8 ([8, Lemma 1.14]). Let A and B be separable unital C∗-algebras and let ω

be a free ultrafilter on N. Suppose C is a separable C∗-subalgebra of Aω, S is a separable

and selfadjoint subset of Bω and ϕ : C −→ Bω ∩S′ is a c.p.c. order zero map. Then there

exists a c.p.c. order zero map ϕ̂ : C −→ Bω ∩ S′ such that

ϕ(xy) = ϕ̂(x)ϕ(y) = ϕ(x)ϕ̂(y) (A.7)

for all x, y ∈ C.
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Proof. Fix a countable dense Q[i]-∗-subalgebra C0 of C and let (sn)n∈N be a dense subset

of S. Lift each sn to a bounded sequence
(
s

(n)
i

)
i∈N
⊂ B and set Xn as the set of ∗-linear

maps from C0 to B.

By [8, Lemma 1.12], there exist functions g
(k)
n : Xn −→ [0,∞) indexed by n ∈ N and

k ∈ I, with I a countable index set, such that the sequence (σn) ∈
∞∏
n=1

Xn induces a c.p.c.

order zero map C −→ Bω if and only if

lim
n→ω

g(k)
n (σn) = 0 (A.8)

for all k ∈ I. Hence, we can represent ϕ with a sequence of linear ∗-maps ϕn : C0 −→ B

such that

lim
n→ω

g(k)
n (ϕn) = 0. (A.9)

Let (ai)i∈N be a dense subset of the unit ball of C. For i, j ∈ N set

f (0,i,j)
n (σ) = ‖ϕn (aiaj)− σ (ai)ϕn(aj)‖+ ‖ϕn (aiaj)− ϕn(ai)σ (aj)‖ , (A.10)

f (1,i,j)
n (σ) =

∥∥∥σ(ai)s
(j)
n − s(j)

n σ(ai)
∥∥∥ (A.11)

for σ ∈ Xn.

Fix ε > 0 and, using functional calculus for order zero maps, we define ψ = fε(ϕ) :

C −→ Bω ∩ S′ where fε : (0,∞) −→ R is identically 0 in (0, ε/2], 1 in [ε,∞) and linear

elsewhere. By Corollary 1.4.7, there exists an ∗-homomorphism π : C0(0, 1]⊗C −→ Bω∩S′

such that π(id(0,1] ⊗ a) = ϕ(a) for all a ∈ C. Observe that by construction

ψ(c) = π(fε ⊗ a), a ∈ C. (A.12)

Thus

ψ(a)ϕ(b) = π (fε ⊗ a)π
(
id(0,1] ⊗ b

)
= π

(
fε · id(0,1] ⊗ ab

)
= π

(
id(0,1] · fε ⊗ ab

)
= π

(
id(0,1] ⊗ a

)
π (fε ⊗ a)

= ϕ(a)ψ(b) (A.13)

for all a, b ∈ C. Observing that ‖fε · id(0,1] − id(0,1]‖ < ε, we obtain

∥∥π (fε ⊗ a)− π
(
id(0,1] ⊗ a

)∥∥ ≤ ∥∥fε · id(0,1] − id(0,1]

∥∥ < ε (A.14)
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for any contraction a ∈ A and x ∈ Aω. Putting all these together shows

‖ϕ(ab)− ϕ(a)ψ(b)‖ (A.13)
= ‖ϕ(ab)− ϕ(a)ψ(b)‖

=
∥∥π (id(0,1] ⊗ ab

)
− π

(
id(0,1] ⊗ a

)
π (fε ⊗ b)

∥∥
=

∥∥π (id(0,1] ⊗ ab
)
− π(fε · id(0,1] ⊗ ab)

∥∥
(A.14)
< ε. (A.15)

Hence any sequence (ψn) ∈
∞∏
n=1

Xn representing ψ satisfies

lim
n→ω

f (0,i,j)
n (ψn) ≤ ε (A.16)

for all i, j ∈ N. Moreover, since the image of ψ is contained in S′, we have

lim
n→ω

f (1,i,j)
n (ψn) = 0 (A.17)

for all i, j ∈ N.

Then, for each ε > 0 there exists (ψn) ∈
∞∏
n=1

Xn such that

lim
n→ω

f (0,i,j)
n (ψn) ≤ ε, lim

n→ω
f (1,i,j)
n (ψn) = 0, lim

n→ω
g(k)
n (ψn) = 0, (A.18)

for all i, j ∈ N and k ∈ I. By Kirchberg’s ε-test (Lemma A.1.5), there exists (ϕ̂n) ∈
∞∏
n=1

Xn

such that

lim
n→ω

f (0,i,j)
n (ϕ̂n) = 0, lim

n→ω
f (1,i,j)
n (ϕ̂n) = 0, lim

n→ω
g(k)
n (ϕ̂n) = 0 (A.19)

for all i, j ∈ N and k ∈ I. By Lemma [8, Lemma 1.12], the sequence (ϕ̂n) induces a c.p.c.

order zero map ϕ̂ : C −→ Bω and, by construction, this map satisfies

ϕ(xy) = ϕ̂(x)ϕ(y) = ϕ(x)ϕ̂(y), (A.20)

and ϕ(x) ∈ S′ for all x, y ∈ C.

Corollary A.1.9. Let A and B be separable unital C∗-algebras and let ω be a free ultrafilter

on N. Suppose C is a separable unital C∗-subalgebra of Aω, B is stable rank one and

ϕ : C −→ Bω is a c.p.c. order zero map. Then for any unitary u ∈ C there exists a

unitary w ∈ Bω such that

ϕ(ux) = wϕ(x) (A.21)

for any x ∈ C.
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Proof. By Lemma A.1.8, there exists a c.p.c. order zero map ϕ̂ : C −→ Bω such that

ϕ(ab) = ϕ̂(a)ϕ(b) = ϕ(a)ϕ̂(b) (A.22)

for all a, b ∈ C. In particular, ϕ̂(1C) acts like a unit for ϕ(C). By Lemma A.1.6, Bω is

stable rank one and we have polar decomposition in Bω. In particular, for any unitary

u ∈ Aω there exists a unitary w ∈ Bω such that

ϕ̂(u) = w|ϕ̂(u)|. (A.23)

Since

|ϕ̂(u)| = (ϕ̂(u)∗ϕ̂(u))
1
2

= (ϕ̂(1C)ϕ̂(u∗u))
1
2

=
(
ϕ̂(1C)2

) 1
2

= ϕ̂(1C). (A.24)

This shows

ϕ̂(u) = wϕ̂(1C). (A.25)

Finally, by putting everything together we obtain

ϕ(ux)
(A.22)

= ϕ̂(u)ϕ(x)

(A.25)
= wϕ̂(1C)ϕ(x)

(A.22)
= wϕ(x). (A.26)

This finishes the proof.
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