
STATISTICAL MODELLING AND INFERENCE 

IN IMAGE ANALYSIS

Wei QIAN, B.Sc., M.Sc.

A Dissertation Submitted To The 

UNIVERSITY OF GLASGOW 

For The Degree Of 

Doctor of Philosophy

t

© W ei QIAN, October, 1990



ProQuest Number: 13834282

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13834282

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



'THejij 

Copy z



TO MY PARENTS



ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to his 
supervisor, Professor D. M. Titterington, for introducing him to this 
interesting research area, and for his guidance and encouragement 
during the period from 1988 - 1990, and in particular, for his help in 
writing this thesis. In addition, the author would like to thank Dr. 
Jim Kay for useful discussions and all the members in the Department 
of Statistics for their assistance, as well as friendship.

The author is indebted to many friends in Glasgow, especially he 
would like to express his appreciation to C. Hu, Z.Li, Z. Wang, 
T, Tang, X. Chen, and F. Yang who have made the author's life easier.

This work was supported by a Postgraduate Scholarship from Glasgow 
University and an Overseas Research Students award.

Finally, The author would like to thank his family, his parents 
and his wife for their understanding and support.

The work included in Chapter 2 was published in Statist. Prob.
Letters, 1990, 10, 49-58. A short version of Section 3.3 was published
in Adv. Appl. Prob., 1990, 22, 755-757. Parts of Sections 3.4, 3.5 and
that of Chapter 5 were published in J. Appl. Statist., 1989, 16,

*
267-281, other parts of them have been submitted to J. Statist^ 
Comput. Simul.. The work included in Chapter 4 has been submitted to 
Stochastic Processes & Their Applications, and that included in 
Chapter 6 will appear in Signal Processing. Finally, the work in 
Chapter 7 will appear in J . R . Statist. Soc.. B, 1991.



CONTENTS

SUMMARY------------------------------------------------------------ vi

Chapter 1 
Introduction

1.1 Image analysis and problems ------------------------------  1
1.2 Stochastic constraints and Bayesian inference ------------  1
1.3 Markov random field models and Markov mesh models --------- 3
1.4 Missing data and the EM algorithm------------------------ 6
1.5 Arrangement of the thesis---------------------------------8

Chapter 2
Parameter Estimation For Gibbs Chains And Hidden Gibbs Chains

2.1 Introduction----------------------------------------------- 11
2.2 Inference for Gibbs chains -------------------------------- 12
2.3 Parameter estimation for hidden Gibbs chains -------------  19
2.4 Numerical results -----------------------------------------  21

Chapter 3
Inference For Markov Random Field Models

3.1 Introduction----------------------------------------------- 24
3.2 Partition functions and critical points ------------------  26
3.3 Asymptotic inference for an asymmetric Ising model

around a torus--------------------------------------------- 41
3.4 Simulation of Markov random fields; stochastic

relaxation------------------------------------------------- 51
3.5 Pseudo-likelihood parameter estimation -------------------  58
3.6 Discussions------------------------------------------------ 60

Chapter 4 *
Normal Approximations For Lattice Systems

4.1 Introduction----------------------------------------------- 61
4.2 Limiting results when /3=0 --------------------------------- 62
4.3 Limiting results under close alternatives ---------------- 63
4.4 EZn and VN in particular cases-----------------------------65
4.5 MALE for Markov random fields----------------------------- 68



Chapter 5
Parameter Estimation For Hidden Markov Random Fields

5.1 Introduction----------------------------------------------- 72
5.2 Discussions on the I CM method----------------------------- 74
5.3 Difficulties of the EM algorithm-------------------------- 77
5.4 Simultaneous parameter estimation and restoration -------  80
5.5 Simulation studies and discussion ------------------------ 84

Chapter 6
Three-Dimensional Markov Mesh Models

6.1 Introduction---------------------------------------------- 90
6.2 The hidden Markov mesh random field(MMRF) model ---------- 91
6.3 Generalized F-G-H algorithm ------------------------------  95
6.4 Experimental results--------------------------- ■----------- 107
6.5 Parameter estimation from noisy data---------------------- 115
6.6 Discussion--------------------------------------------------117

Chapter 7
Multi-Dimensional Markov Chain Models For Image Textures

7.1 Introduction----------------------------------------------- 119
7.2 The multi-dimensional Markov chain model -----------------  120
7.3 Parameter estimation -------------------------------------- 127
7.4 Image restoration and parameter estimation based on

noisy data------------------------------------------------- 129
7.5 Numerical results -----------------------------------------  132
7.6 Concluding comments --------------------------------------- 133

Chapter 8
Discussion And Concluding Remarks --------------  138

Appendix 1. C(cc,p) at boundaries------------------------------140
t

Appendix 2. Autocorrelations of Markov chain-------------  —  141

References and Bibliography ----------------------------------- 142



vi

SUMMARY

The aim of the thesis is to investigate classes of model-based 
approaches to statistical image analysis. We explored the properties 
of models and examined the problem of parameter estimation from the 
original image data and, in particular, from noisy versions of the 
the scene. We concentrated on Markov random field (MRF) models, Markov 
mesh random field (MMRF) models and Multi-dimensional Markov chain 
(MDMC) models.

In Chapter 2, for the one-dimensional version of Markov random 
fields, we developed a recursive technique which enables us to achieve 
maximum likelihood estimation for the underlying parameter and to 
carry out the EM algorithm for parameter estimation when only noisy 
data are available. This technique also enables us, in just a single 
pass, to generate a sample from a one-dimensional Markov random field. 
Although, unfortunately, this technique cannot be extended to two- or 
multi-dimensional models, it was applied to many cases in this thesis. 
Since, for two-dimensional Markov random fields, the density of each 
row (column), conditionally on all other rows (columns) is of the form 
of a one-dimensional Markov random field, and since the distribution 
of the original image, conditionally on the noisy version of data, is 
still a Markov random field, the technique can be used on different 
forms of conditional density of one row (column). In Chapter 3, 
therefore, we developed the line-relaxation method for simulating 
MRFs and maximum line pseudo-likelihood estimation of parameter(s), 
and in Chapter 5, we developed a simultaneous procedure of parameter 
estimation and restoration, in which line pseudo-likelihood and a 
modified EM algorithm were used.

The first part of Chapter 3 and Chapter 4 concentrate on inference 
for two-dimensional MRFs. We obtained a matrix expression for 
partition functins for general models, and a more explicit form for a

t
multi-colour Ising model, and thus located the positions of critical 
points of this multi-colour model. We examined the asymptotic 
properties of an asymmetric, two-colour Ising model. For general 
models, in Chapter 4, we explored asymptotic properties under an 
"independence" or a "near independence" condition, and then developed 
the approach of maximum approximate-likelihood estimation.

For three-dimensional MMRF models, in chapter 6, a generalization 
of Devijver's F-G-H algorithm is developed for restoration.
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In Chapter 7, the recursive technique was again used to introduce 
MDMC models, which form a natural extension of a Markov chain. By
suitable choice of model parameters, textures can be generated that 
are similar to those simulated from MRFs, but the simulation
procedure is computationally much more economical. The recursive
technique also enables us to maximize the likelihood function of the 
model.

For all three sorts of prior random field models considered in 
this thesis, we developed a simultaneous procedure for parameter
estimation and image restoration, when only noisy data are available. 
The currently restored image was used, together with noisy data, in 
modified versions of the EM algorithm. In simulation studies, quite 
good results were obtained, in terms of estimation of parameters in 
both the original model and, particularly, in the noise model, and in 
terms of restoration.
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Chapter 1 

Introduction

1.1 Image analysis and problems

A digital image is a multi-dimensional vector with positive 
elements, which represent a pattern of radiant energy emitted by 
objects in space. There is a very wide range of practical problems 
requiring image processing. Examples include: various types of
satellite data; ultra-sound; thermal images; nuclear medicine; 
computer vision; electron micrography and astronomy.

There are usually two kinds of image; grey-level images and 
texture images. In the former each element takes a real value, while 
in the latter each element takes a value, or state, or colour, from a
finite state space, for example {1,2....,S). The present thesis is
mainly concentrated on texture images.

Due to the nature of image blurring and data acquisition, a 
general probldm in image processing is to remove ’the effect of blur 
and noise. For this inverse problem, models play a very important 
role. Models in image analysis are required to serve a dual role, both 
as descriptions of images that are observed in practice and also as 
means to generate synthetic images from image parameter's).

Therefore, there are three main problems in image analysis. The 
first is to find and to investigate the properties of, suitable 
models which may include the original models for the underlying images 
and the 'noise-models1 for observed data; the second is to recover the 
original image from a noisy image(Restoration); the third is to 
estimate the parameter(s) in the models.

1.2 Stochastic constraints and Bayesian inference <

The stochastic model-based approach to image analysis is currently 
very active, involving the use of random fields to provide constraints 
on the original images. Some authors regard the constraints on the 
original images as penalization. In the real scene, the image value or 
colour at one site typically has a relationship with the colours of 
its neighbouring sites. The objective of stochastic constraints is
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mainly to capture mostly these neighbour relationships.
Let x-{xt ; teD) be the original image, where D is usually a 

regular lattice in multi-dimensional space. The lattice 
elements(pixels) correspond to small patches in the scene. Some other 
problem-specific image attributes, such as classification or boundary 
labels, can also be regarded as part of x (Geman and Geman, 1984, 
Silverman, et. al. 1990). Let ft denote the set of all possible x. It 
is assumed in the Bayesian approach to image analysis that X=x is a 
sample realization from a distribution p(x|j3) over ft. p(xjjS) is then 
referred to as the 'Prior distribution'. It is also usually assumed
that for all teD, xt takes values from a specific set, either infinite
or finite, corresponding to grey-level images and texture images
respectively.

Now let y denote the observed process, and Y=y be the observed 
data. (In practice, there may be repeated observations of Y, or 
additional observations obtained through different mechanisms from 
that for Y, or even more complicated situations, but we shall imagine 
that there is only a single observation process.) Denote by f(y|x,0) 
the conditional distribution of Y given X. f(y|x,0) could represent 
non-random transformations from X to Y, such as linear
transformations, or random transformations which involve, for 
instance, optical blurring or obscurations(i.e . missing observations). 
The sample space of Y is often different from that of X. For example, 
X may be a texture image and Y a set of observed intensities.

The two distributions, p(x|p) and f(y|x,0), obviously determine
the joint distribution of X and Y as well as the Posterior
distribution of X given Y, denoted by P(x|y,P,e). The modern methods
of model-based image restoration, such as Maximum A Posteriori(MAP) 
restoration(Geman and Geman, 1984) and the Iterated Conditional 
Modes(ICM) method(Besag, 1986), all depend upon the posterior 
P(x|y,p,0), under the assumption that the parameters, £ and £, arc 
known,

The estimation problem for parameters p and e, which may well not 
be known in practice, from the observed process Y=y, can be regarded 
as an incomplete-data or missing-data problem, or as a mixture- 
distribution problem. It is well known that the EM algorithm
(Dempster, et al., 1977) is often used to treat this kind of problem. 
However, due to the complicated structure of the distributions,
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especially the prior distribution p(x|B), the EM algorithm is 
impossible to implement, except in some very special cases (Geman and 
McClure, 1987, Titterington, et al 1985. Titterington 1989) or by 
Monto Carlo methods (Geman and McClure, 1985, Chalmond, 1988, Younes 
1988b).

1.3 Markov random field models and Markov mesh models

There has been considerable recent interest in Bayesian inference, 
particularly involving prior models based on Markov random fields. It 
has been mentioned that in real scenes, one pixel is typically 
related to its neighbouring pixels. The neighbouring pixels of any 
pixel are determined by a neighbourhood system, and the 'order1 of the 
model reflects the size of the considered neighbourhood. A Markov 
random field model is classified as either causal or noncausal 
depending on the structure of the neighbourhood. In causal models, the 
concept of the 'past1 of a pixel is introduced and only the past 
neighbouring pixels influences the current pixel. Causal Markov random 
fields are generally called Markov mesh random fields or simply Markov 
meshes, while noncausal Markov random fields are called Markov random 
fields. We now review some results for these two sorts of model, 
together with their application in image analysis.

1.3.1 Markov random fields(MRF)

Following Cross and Jain(l983), we give the following definition 
of a Markov random field.
Definition: A Markov random field is a joint probability density p(x) 
on 0 subject to the following conditions:

1). Positivity: p(x) > 0 for any xeQ;
2). Markov property: p(x-Jx\x-[) = p(x-jjx at neighbours of i) .

In practice, we shall define a Markov random field by first
t

choosing a neighbourhood system, by naming the neighbours of each 
pixel, and then selecting p(x) from within the corresponding class of 
probability distributions. Denote by 3i the neighbours of pixel i, so 
that p(xjjx\x->j = PUi 1 xai) . Due to the not-immediately-ohvious 
consistency conditions, identified by the Hammersley-Clifford theorem 
(see for example, Besag(1974, 1986)), it is necessary to preserve
symmetry in neighbourhood system: that is, if j is a neighbour of i 
then i must be a neighbour of j. The general form of MRF distributions
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is given by Besag(1974). It is well known that the MRF model is
equivalent to the Gibbs random field model, and we therefore only give
the form of the Gibbs distribution as follows:

1
p(x|P) =  exp{-U(x,p)} (1.3.1)

C O )

where C O )  is a normalizing constant, called the partition function in 
the discrete-model case, and the energy function U(x,|3) is of the form

U(x,p) = r Vc(x,p) (1.3.2)
c

in which c ranges over cliques associated with the specified
neighbourhood system on D, and the potentials Vc(x,|3) are functions
supported on them. (A clique c is either a single pixel or a set of
pixels such that every pair of distinct pixels in c are neighbours.)

Although they have been studied extensively during the last 50
years in statistical physics, especially the Ising model (Kaufman,
1949, Kramers and Wannier, 1944, Newell and Montroll, 1953), Markov 
random fields are relative newcomers on the mathematical and 
statistical scenes, remarkably little progress on inference 
methodology has been made, especially in the discrete-model case.
Tjostheim(1978, 1983) developed classes of spatial series models which 
are extensions of one dimensional time-series models to 
multi-dimensional space, and the asymptotic properties of estimation 
are investigated. Pickard(1976, 1977, 1982, 1987) developed the
asymptotic inference for the Ising model. Possolo(1986) discussed 
methods of parameter estimation for binary MRFs. For the application 
of MRF to image processing, we refer to two seminal papers by Geman 
and Geman(1984) and Besag(1986). Geman and Geman introduced an 
ingenious technique for maximizing the posterior distribution, through 
simulated annealing and Gibbs samplers. Although the procedure enables 
escape from any local maxima to occur, it is, computationallyf very
demanding. Besag1s(1986) iterated conditional modes(ICM) method 
concentrates on the local dependence structure of the MRFs. and 
produces restored images very cheaply and quickly, but it usually 
only exhibits local convergence. For further work on the use and 
estimation of MRF models with applications in image analysis, see 
Chapter 4 and Chapter 5 of the present thesis.

We shall concentrate on pairwise interaction MRFs(Besag, 1974,
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1986), in which, for any x in the sample space Q,

1
p (xj£) =  exp{ I G1(x1,JB) + EE G.t-ftx-s ,X,-,|3) } (1.3.3)

C(/3) j ij

where, to ensure the Markov property, Gij=° unless i, j are 
neighbours.

Among this class of MRF models, Auto-normal models are often used 
in practice, especially in plant ecology. Following Besag(1974, 1986), 
for the simplest description of a Gaussian MRF with zero mean, X^=x^ 
has conditional density:

p(Xi|x3l) * exp{-M(xi - I PijXj)2/X1} (1.3.4)
j*i

where (1) unless pixels i and j are neighbours, (2) 13̂ jXj=|3j|X^.
There may sometimes be further constraints on parameters. Then it 
follows that

p (x) = (27r)~^n | Q |^exp{ -Mx'Qx) (1.3.5)

where Q=A^1B, a is the nxn diagonal matrix with diagonal entries x^, B4
is an nxn matrix with unit diagonal entries and with as (i,j)-^
element, and n is the dimension of x. We shall use formula (1.3.5) in 
our later discussion about the ICM method and the EM algorithm in 
Chapter 5.

1.3.2 Markov meshes

The Markov mesh model is a sort of multi-dimensional 
generalization of the Markov chain. It was introduced by Abend et 
al(1965), and was further developed by Kanal(1980), Devijver(1988) and 
Lacroix(1987) for the two-dimensional case. In the model, the pixels 
are ordered, for example, in the two-dimensional case, through a 
diagonal direction. To be precise, the past of pixel (i,j) is defined 
as {(m.n): m<i or n<j}. Then, for the second-order model^ the
conditional density of pixel (i,j), given states at all past pixels, 
is given by

p (Xij |xmn, m<i or n<j) = FCx-ij (1.3.6)

All these conditional densities determine the distribution over 
the entire lattice. Although the models exhibit causal dependence in 
that samples from them are generated directionally, they can find
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application in image segmentation, texture analysis and synthesis. For 
the pixel labelling problem, Devijver(1988) and Lacroix(1987) 
develoved the F-G-H algorithm, in which, a "local decomposition 
relationship" and a "lattice recurrence relationship" are used to 
calculate the density of each pixel, conditionally upon all the 
observed data on the past rectangular pixels. In Chapter 6, we shall 
extend this algorithm to the three-dimensional case.

1.4 Missing data and the EM algorithm

It often happens in practice that some data are not observed 
directly, but only indirectly, through other data. More precisely, we 
assume there are two sample spaces X and Y. X from X is not observed; 
only a realization from ¥, namely y, is observed. The EM algorithm is 
then an iterative computational approach for maximizing the marginal 
distribution of y to find maximum likelihood estimates. Since the 
relationship between X and Y can vary widely in nature, the EM 
algorithm is useful for many practical problems, as Dempster et al 
described:

The EM algorithm is remarkable in part because of the simplicity 
and generality of the associated theorys and in part because of the 
wide range of examples which fall under its umbrella.

Suppose that the joint density over Xx¥ is f(x,yi<i>) with unknown 
parameter <t>, and that Y=y is observed, x is then called missing data. 
The EM algorithm is therefore designed to find the maximizer of

g(y!®) = f (x,y |<j>)dx. (1.4.1)
X

We give a brief illustration of the EM algorithm for the following 
exponential family cases. Suppose we know the distributional fprm of 
X. denoted by p(x|P), and the conditional distribution of Y, given X, 
namely, f(y|x,e), and that they take the form

p(x|P) = Bj (x)exp{ju(£) 'Ti (x ) )/Ai (JB) (1,4.2)

f(y|x,e) = B2(x,y)exp{n(e)'t2(x,y)}/a2(©), (1.4.3)

where u(p), r\(9), Tt(x) and T2(x,y) are all vectors with compatible 
dimensions. It is known that Y is a sort of mixture distribution if X
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only takes values from a finite state space. The EM algorithm consists 
of two steps, called E-step and M-step, as follows:

E-step: Assume that p(k ) anc} ©(k) are current values, compute

E(T:(X)|y,p(k ),e<k )) = T ^ k ) (1.4.4)

and
E(T2(X,y) jy,|3(k ) ,e(k )) = T z(k ), (1.4.5)

M-step: Find j3(k+1) to maximize

u(J3) ' t ^ )  - logCAj O ) 2 (1.4.6)

and e(k+l) to maximize

n(e)'T2(k > - log[A2(©)]. (1.4.7)

Both (1.4.6) and (1.4.7) are of the familiar form of the 
log-likelihood for maximum-likelihood estimation given data from a 
regular exponential family, in particular, for this problem, data from 
distribution (1.4.2) and from the conditional distribution (1.4.3) 
respectively. Furthermore, T ^ k ) and T2 k̂ ) are the expected values of 
the sufficient statistics computed from observed data, based on the 
(conditional) distributions. In many cases, (1.4.6) and (1.4.7) can be 
maximized either directly or by an iterative computational approach, 
such as the Newton-Raphson method. In the following chapters of this 
thesis, we will sometimes use the EM algorithm to maximize marginal or 
conditional marginal distributions of some random variables. Those 
random variables together with some other missing variables will 
satisfy the (conditional) distributional forms given in (1.4.2) and
(1.4.3). Therefore, detailed descriptions of the EM algorithm are 
omitted at those corresponding places of the present thesis.

However, in some cases, especially in image analysis, the 
conditional distribution of X given Y=y is very complicated, so that 
the E-step is infeasible. Although the Monte Carlo method may be a 
useful approach to the computation of Tx and T2, it may still hot be 
satisfied because of either the difficulty of generating samples from 
the corresponding conditional distribution or the heavy computational 
burden. Another difficulty involved in the EM algorithm is that it may 
not always be possible to maximize (1.4.6) and (1.4.7) due to the 
complexity of the log-likelihood functions of the corresponding 
processes.

In statistical image processing, x represents the original image,
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while y is the observed process. Little is known about the 
probabilistic or statistical properties of those prior distributions 
which are commonly used in the current literature, while the 
conditional distributions or the posteriors are equally or even more 
complicated. Both E-step and M-step are infeasible, except for some 
special cases. For instance, in chapter 2, we develop a recursive 
technique for a one-dimensional version of Markov random fields in 
order to carry out an iterative procedure for maximizing; the 
log-likelihoood and to compute the corresponding conditional 
expectations. For continuous-valued images, the EM algorithm was used 
in the case of a prior Markov random field model with only one 
parameter by Geman and McClure(1987). Chalmond(1988) used the EM 
algorithm together with a Monte Carlo technique, known as the "Gibbs 
sampler " to maximize a pseudo-likelihood, his iterative approach was 
in fact made up of simultaneous parameter estimation and 
reconstruction. Besag(l986) also proposed an iterative procedure for 
simultaneous parameter estimation and image restoration, by using his 
coding technique{Besag, 1974, 1976) or its modification for parameter 
estimation based on some x obtained by a restoration technique. The EM 
algorithm was not used, however, so the estimated parameters may be 
unreliable when compared with the true values.

The EM algorithm increases the likelihood at each cycle, and the 
well-known concavity property of the log-likelihood for regular 
exponential families guarantees convergence. However, in some cases, 
the maximizing value lies on the boundary of the parameter space, or 
there is more than one maximizing point. Therefore, the EM algorithm 
is usually of local convergence, and the converged value depends upon 
the starting point. For more detail about the EM algorithm and its 
properties, see Dempster et al{1977) and Wu(1983).

1.5 Arrangement of the thesis *

The aim of this project is to investigate classes of model based 
approaches to statistical image analysis, and to examine the three 
problems mentioned in the first section of this chapter. We present 
brief summaries for each chapter as follows.

In Chapter 2, for the one-dimensional version of Markov random 
fields, (we shall refer to them as Gibbs chains), we develop a
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recursive technique which enables us to simulate them directly and to 
carry out maximum likelihood estimation of parameters. Usually, this 
iterative procedure is linearly convergent. The same technique also 
enables us to compute the conditional expectations associated with the 
EM algorithm, when only a partially observed process is available, 
with the result that both the E-step and the M-step can be carried 
out. Some asymptotic properties are also discussed.

In Chapter 3, we first examine a simple example of a Markov 
random field, namely, the natural extension of the Ising model to the 
multi-colour case. A matrix representation of the partition function 
is derived and, from it, the critical points of the model are found. 
For a more special case, the asymmetric two-colour Ising model with 
periodic boundary conditions, limiting distributional results are 
obtained for the sufficient statistics. Applications of these 
asymptotic properties are discussed. Then, for general Markov random 
fields, we develop line stochastic relaxation, using the recursion 
technique for the one-dimensional version of Markov random fields, in 
order to generate samples from the fields. Finally in this Chapter, we 
discuss maximum pseudo-likelihood parameter estimation for general 
Markov random fields. The principal tools are the conditional 
distributions of a block (usually a line) of pixels, given the values 
at their neighbouring pixels.

In Chapter 4, we still consider Markov random fields on 
two-dimensional rectangular lattices. It is shown that if the 
interaction parameter(s) between rows is zero or nearly equal to zero, 
certain statistics are asymptotically normal when the number of rows 
is large and that of columns is fixed. These results can be used to 
obtain an approximate likelihood function, for Markov random fields, 
from which one can estimate the underlying parameter(s). Other 
statistical applications of the results are also discussed.

In Chapter 5, we discuss the problem of parameter estimation for 
Markov random fields from noisy data. Since this is usually done 
together with image restoration, we first discuss existing restoration 
methods. A detailed discussion of Besag1s ICM mothod(1986) in the 
auto-normal model case is provided. Then, we point out the 
difficulties of the EM algorithm. Again in the auto-normal case, we 
examine the difference between the EM algorithm and the iterative 
procedure proposed by Besag(l986) for simultaneous parameter
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estimation and image restoration. Finally, an iterative procedure of 
simultaneous parameter estimation and restoration is proposed. It is 
almost the same as that proposed by Besag(1986), except that a 
modified EM algorithm is used at each cycle of the iteration.

In Chapter 6, we discuss problems associated with Markov mesh 
models. For the three-dimensional case, we consider a third-order 
model, which is a natural generalization from two to three dimensions, 
and a generalization of Devijver's F-G-H algorithm for image 
restoration is developed. We then discuss the parameter estimation 
problem, in particular, for the two-dimensional case, from either the 
original image or a noisy version of the image. A modified EM 
algorithm, similar to that in Chapter 5, is examined.

In Chapter 7, we introduce a causal dependence model, namely, a
multi-dimensional Markov chain model. It is a natural extension of the
Markov chain, in which each row represents one point of a special
Markov chain. By suitable choice of model parameters, textures can be
simulated that are similar to those generated by Markov random fields,
(see Cross and Jain(1983) for various textures simulated from Markov

♦
random fields), but the simulation procedure is computationally much 
more economical. The problem of parameter estimation is examined for 
the cases of non-noisy and noisy data. In the latter case, again using 
an idea similar to that in Chapter 5, procedures are developed for 
simultaneous parameter estimation and image restoration.

Finally, in Chapter 8, we present further general discussion about 
problems in statistical image analysis. Concluding remarks about the 
present thesis are given there.

In each of Chapters 2 to 7, illustrative examples or numerical 
results are provided at appropriate places.
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Chapter 2 

Parameter Estimation For Gibbs Chains And Hidden Gibbs Chains

2.1. Introduction

A stationary Markov chain X=(X1,X2,...,X^>1, X-^e{l, 2 , . . . , S) , is 
generally represented by its probabilistic functions,

PA = Pr(X1=i) i=l,2,...S (2.1.1)

Pij = Pr(Xt+1=j|Xt=i) i,j=l,2,..S. (2.1.2)

Although this gives a very simple description of a Markov chain, 
it is not always convenient as a basis for statistical inference. In 
this chapter, we will discuss Gibbs chains, which follows a more 
general model than the Markov chain model above, but which satisfy 
Markov properties as follows:

Pr(Xt |{Xj: j*t}) = Pr(Xt |Xt±1,Xti:2, . . ,Xt±r) (2.1.3)

P r ( X t \X1 ,X2> ,.Xt„a) = Pr(Xt |Xt_1,Xt_2,..,Kt:_r), (2.1.4)

where r is called the order of the model. We will provide the 
definition of the Gibbs chain, which is in fact the one-dimensional 
version of the Markov random field or Gibbs field. It will also be 
shown that the Markov chain represented by (2.1.1) and (2.1.2) can be 
represented as a first-order Gibbs chain. It will be helpful to refer
to the subscript of Xt as the time-point.

It often happens that the stochastic process itself cannot be 
observed directly. Instead, another process, either with continuous or 
discrete state space, is observed. This is known as a Hidden Markov 
model(HMM) and, in particular, as a partially observed Gibbs 
chain(POGC) model. We also refer to the observed data as the noisy 
process. The model finds application in various areas, including, 
signal processing and medical statistics. Both the original chain 
model and the noise model are parameterized. In this chapter, some 
recurrence techniques are developed for carrying out both steps, 
especially the E-Step, of the EM algorithm.

Let the observed process be Y = (Y^,Y2 ,,...YN)'. We make a simple 
assumption for the conditional distribution Pr(YjX,e), namely, that of 
conditional independence:
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NPr(Y|X,e) = n fi{Yi \xi,e). 
i=l

For the Markov chain represented by (2.1.1) and (2.1.2) with 
observed parallel discrete process Y, Baum and Petrie(1966) proved the 
consistency of maximum likelihood estimation(MLE) based on the 
likelihood function Pr(Y), and an iterative procedure for finding the 
MLE was derived(Baum and Eagon, 1967, Baum et al., 1970). The
procedure is mainly based on forward and backward recursions. The 
algorithm was later generalized to the case with multi-dimensional 
noisy data at each time-point by Liporace(1982) and Rabiner et al 
(1985), and was used for the recognition of isolated word 
vocabularies(Rabiner et al, 1984), Baum's method can be shown to be an 
example of the EM algorithm. In this chapter, we develop corresponding 
forward and backward recursions in the context of Gibbs chains. The 
structure of the Gibbs chain treats the forward and backward 
directions symmetrically and this symmetry is repeated in the 
techniques of this chapter. Baum's technique, on the other hand, 
treated the two directions asymmetrically, in, parallel with the 
familiar way of defining the Markov chain as in (2.1.1) and (2.1.2).

This chapter is arranged as follows. In Section 2.2, we give the 
definition of pairwise interaction Gibbs chains, then discuss the 
problem of parameter estimation and its asymptotic properties, and we 
show that the Markov chain, described by (2.1.1) and (2.1.2), is a 
first-order Gibbs chain. In Section 2.3, we will discuss the procedure 
for carrying out the EM algorithm in the case where only the noisy 
process is observed. In Section 2.4, some simulation results are 
presented. The main results of this chapter appear in Qian and 
Titterington(1990a).

2.2. Inference for Gibbs chains

Definition: A stochastic process X = { X 1 ,X2,...,XN )' is called a 
pairwise interaction Gibbs chain(PIGC) or simply Gibbs chain if its 
probability function can be written

r N-n
p(X=x |B) = exp{ E E Gyi(xi,xi+fJ,(3)}/C(3) (2.2.1)

u=0 1=1

where C(J3) is a normalizing factor, 13 is the parameter, and r is
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called the order of the model. We rewrite G q ^ (Xj, ,x^, P) as g^(x-[,P).

Property: If X is a PIGC, then

PtXiKxj: l<j<Nf jVi } ) = P(xj: |xi±1 txi±2 - * • -xi±r) (2.2.2)
N-l

Example: p(X=x|p) = exp{P E 6(x* ,X}+1) }/C(P) (2.2.3)
i=l

where 6(s,t) = { J (2.2.4)

If P>0, model (2.2.3) implies that neighbouring time-points tend
to have the same value, and that all the states are treated equally.

Assume that X=x is observed. In order to obtain the maximum
likelihood estimator of p from (2.2.1), we are required to deal with
the normalizing constant C(J3). When P is one-dimensional, we can use a
search method to maximize (2.2.1) if we know how to compute C(p). On
the other hand, if we assume that the exponential part of probability
function (2.2.1) is linear in the parameter p, ie. P(X|P)o:exp(P'Z(X)) ,
where Z(X) is a vector with the same dimension as P, maximizing P(X|P)
is usually equivalent to solving the following equation,

*
lp(P) = Z (X) - -i—  — C(P) = 0 (2.2.5)

C(P) dP

where d/dp denotes the gradient vector. This equation is also 
equivalent to

Z(X) - EgZ(X) = 0. (2.2.6)

It is therefore very important to be able to compute C(p) or to 
compute the expectation of the exponential part of P(X|P). The 
following double-theorem solves this problem for the first-order and 
the second-order cases respectively. The results can be naturally 
extended to higher-order cases, although the computational burden 
increases with the order r. For clarity, explicit mention of p isf
largely omitted in the notation of the theorem.

Theorem 2.2.1(a) Let X=(X^,X2 ,...,X^)1 be a first order Gibbs chain 
(r=l), with state space {1,2,...,S}, and probability function (2.2.1). 
Also let a* = [a}(1),...n ± (S)3', and b* = [bi(1),...b 1 (S) ] ' be
S-dimensional vectors, obtained by the following forward and backward 
recursions,

aj(s) = exp(g2(s)) s=l,2,,,,S



Chapter 2 14 Gibbs Chain

S
ai(s) = ai„1(t)exp{Glti_1(t(s)))exp{gjL(s)}

1=2,3,...N, s=l,2, . . . ,S

and
bN (s) = exp{gK (s)} s=l, 2 , . . . , S

S
bi(s) = CtEibi+1{t)exp{Glii(s,t)>>exp{gi(s)>

i=N-l,N-2,...,1, s=l,2,...,S.

Then,

1). Pr<Xi+1=t|Xi=s,Xi_1,..Xj) = Pr(Xi+1=t|Xi=s)

o= bi + 1(t)exp{G1|1(s,t)}.

2>- Pr(Xi=s) = ai(s)bi(s)exp{-gi(s))/C.

3). Pr(Xi=s,Xi+1=t) = ai(s)bi+1(t)exp{G1>^(s.tJJ/C.

4)* C(0) = E a^(s)bi(s)exp(-gi(s)} ^or 4 •s=l n

Theorem 2.2.1(b) For the second-order Gibbs chain, let a^=(a^(s,t)) 
and bi= (b-^s.t)), s,t=l,2,...S , i=l,2,...N, be SxS matrices defined 
by the following forward and backward recursions, respectively:

al = diagCexpig-^l) >.... exp{g1(S)>)

S
a1(s,t)=exp{gi(t)+Glti_1(s,t)> £ ai_1(v,s)exp{G2 i_2(v,t)>,

v=l

s,t-1,2,...S , i=2,3,...N ,
and

bN = diag(exp<gN (l)>,...,exp{gN (S)>)

S
bi(s,t)=exp{(gi(s)+G1 1 (s,t)} E bi+1(t,v)exp{G2 i(s,v)>

v=l

s ,t=l,2  S ,i=N-l,N-2,. . .1 .

Then,
1) Pr (x-ĵ |x-̂ _2 ,x^_2 , . . .x-̂ ) = Pr (x̂  |x^_i,x^_2)

« exp{G2il_2(xi„2 ,xi)}-bi_1(xi_1,xi).
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2) Pr {x ,Xj4-2 ) — ai+l (xi 'xi+i)bi (xi’xi+l)x

exp{- g ± (Xi)-gi+1(xi+1J-Gi(i(xA ,xi+1)}/C.

3) P r  (x-[ , X | + 2 ) = a i + i  (x l »x i + i  ) ^ i + i  (x i + i *x i + 2  ̂ x

exp{G2 i(xi,x1+2) ” &i+l(xi+l)>/C- #

The proofs are straightforward. For instance, for Theorem 2.2,1, 
note that for any i and j with i+l<j,

S
Pr(xi+1,xi+2,...,xj) = E Pr(Xi-s,xi+1,...Xj) (2.2.7)

s-1
we only need to show that

Pr(xi,xi+1 Xj) = ajtXiJbjtXjJx

j-1 j-1
exp{ I g^(x^) + I Glf.u(x.ulx.u+1)} (2.2.8)

v=i-l u=i

Therefore, the detailed proofs are omitted. For numerical 
stability in practical calculation, we normalize* a^ and b^ at each 
time point to prevent overflow. The theorems enable us to compute the 
expectation of gj(X-[),  ̂(Xj .Xj_+1), etc, and thereby, that of Z(X),
so that we may solve equation (2.2.6) with the help of the following 
iteration,

Pn+1 = Pn + M"1[Z(X) - E(Z(X)iPn)3, (2.2.9)

where M is a positive definite matrix. This is not the exact
Newton-Raphson method, but note that the derivative matrix of lp(js) is 
equal to -Var[Z(X)j/3]. Since this is usually a negative definite 
matrix, the iteration is therefore usually linearly convergent to a
local maximum if M is large enough, in the sense of exceeding 
Var[Z(X)|/3] in terms of the Loewner ordering. In some very special 
cases, for the example provided above, Var[Z(X)|j3) can be calculated" 
exactly, (see Chapter 4 for details), and we can then use the 
Newton-Raphson method, which is of second order of convergence.

Note that from 1) of the theorem, Pr (X^ |XnJ=xn), u<i, p) can be
calculated, so that the Gibbs chain can be generated from X^ to X^ 
in one pass, if we first compute all the b-̂ (s). Similarly, if we 
first compute all the a^(s), we can generate the Gibbs chain from XN 
to X|. For multi-dimensional Gibbs fields, the same results are
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unlikely to obtain, but in the following chapters the recursion 
technique is used in several cases associated with multi-dimensional 
lattice systems.

We now concentrate on asymptotic properties. Write Z(X) as Z^(X), 
and logC(P) as Icjj(p). Assume that the domain of p is 0, a connected 
open subset of a finite dimensional space, and that P oe0 is the true 
value of the parameter. Denote by p^ the maximum likelihood estimate 
of p0. For the first-order case, note that the recurrence 
relationships for a-̂ and bj[ in Theorem 2.2.1(a) can be written in the 
matrix form,

ai = AiBi-l ai-l (2.2.10)

bi = AiBibi+l (2.2.11)
where Ai=diag(exp{gi (1) >......expfg^S)}) and Bi=[exp{G1 ( i (s , t) } DSxS .

We thus obtain the following formula for C(p):

C(P) = Lg AlBlA2•*•BN-lANbS * (2.2.12)

where Lg = (1,1,...1)'. «
Corollary: When r=l, if g^eg, i=l,2,...N, and Glfi=G, i=l,2,..N-l,

let a be the maximum eigenvalue of matrix A^BA^. (cc is positive since 
all the elements of matrix A^BA^ are positive(Varga, 1962).) Then

N~1lcN (p) ---- » logoc, as N -----«D.

We will not specify any particular form for the functions g| and
G-[j, nor any particular condition on them, in order to discuss the
properties of lcjj(e) or its asymptotic behaviour. Instead, we provide 
the following lemma about the asymptotic properties of Z^(X), obtained 
under some assumptions about the asymptotic properties of lcN (p).

Lemma 2.2.1: Suppose that, for any Peft, as N---

1 *N 1lcN (p) ---- » ocQ(P) (2.2.13)

N^CN-1— lcN (p) - «i(P)] ----» 0 (2.2.14)
dp

— 1 d2N 1 lcN (p) -----» a2(P) (2.2.15)
dp2

where a0(p), cca(p) and <x2(P) are defined on o. Of these, <Xj(p) is a
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vector with the same dimension as 3 and ct2(3) is a matrix. The
convergence is assumed to be uniform on any compact subset of Ci. Then, 
as N ,

N-!zn (X) (2.2.16)

NkCN-1zn (X) - «,(?„)] — £-* N(0,<x2(Po)). (2.2.17)

Proof: Choose a positive number 6 such that D={3: |3~30l F o r
any vector x with the same dimension as 3, and for any scalar t, 
30+N-1tXeD and 30+N“^tXeD when N is sufficiently large. Consider the 
random variables,

V = N - V Z n U); W = N-*X'[ZN (X) - N«a(30)].

The moment-generating functions of V and W are 

MV(t|30,X) = CN (30+N“1tX)/CN (30)
and

Mw (t|p0,X) = exp<-#tx'cc1(30)>CN (30+N-^tX)/CN (30) .

Thus, 1 ogMy (113 0 , X) = N~1X <— Ic n (30 + N^tjX),
d3

and

logMwttlPo.Xj^x'CN-l^lcNOoJ^iOoJD+tSNJ-itSx'^ICNtPo+N^tXjX
d3 d32

wh^ e  It, | , |t, )<:|t| .

Then the uniform convergence assumed in (2.2.13)— (2.2.15) on the 
compact set D ensures that for any te( — 00 , +00 ) .

Mv (t|30,X) ----» exp{tX'«J (30) }
and

Mw (t|30,X)  exp{t2x'<x2 (30)X/2)

Since exp{t2x'o:2(30)x/2) is the generating function of the normal 
distribution with zero mean and variance x'«2(30)x, and since 
exp{t\ aj(30)} is that of the degenerate distribution at x’aj (j50) , it 
follows that (Moran(1968))
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Theorem 2.2.2. Suppose that the conditions in the Lemma hold, and 
that

Proof: 1). Note that h(p)=p Vj (P0 )-oc0 (p) is a concave function, and
that p0 is the maximum point. For any e>0, define

D: *= {JS; |p-p0 j=e, 3e£i>
©! = inf<h(J30)-h(3) , FeDj).

Then 6  ̂ is positive. Consider another concave function 
hjsT0)=N_1[P' Z^(X)-lcK (p) ]. pN is the maximum point of hjj. The uniform 
convergence of N-1 2c^(P) assumed in the lemma on the compact subset 
of Q therefore ensures that, for N sufficiently large, if

IN-iZutX) - |<6,
then, hN (P) < hN (p0) for any PeD^ .

Since hjj is concave with maximum point PN , PN must lie in the
region {P; |p-p0 |<e). That means that for any e>0, there exists a 6>0
such that, for N sufficiently large,

Pr(|PNH30 |<e) > PrCjN-iZNfXj-a^Po) |<6).

The result then follows from the Lemma.

2). By using the result in 1 ), the proof for 2) is standard.

The assumption in the lemma and the theorem is very natural*. For" 
the particular case in the Corollary to Theorem 2.2.1. we know that 
<x0 (p), ocjfp) and « 2 (p) are usually the logarithm of the maximum 
eigenvalue of the matrix A^BA^, and its first-order and second-order 
derivatives, repectively. For the example represented by (2.2.3) and
(2.2.4),

Then, as N

«,(p) = i~cc0 (P); « 2 (P) =l-oc1 (P); oc2 (p)>0,

Pr
1)  -» P0

2) _ N(0,cc2 (Po) *).

Ai “ 1S> Bi “ (eB-l)Is + LgLg ,
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« = ep + S - 1, and CN (p) - S(ep + S - l ) ^ 1 .

Then

cco(0 )=log(ep+S-l); <x1(|S)=ep/(ep+S-l); cc2 (p )=ep (S-l) / (ep+S-l)2.
For the first-order stationary Markov chain represented by (2.1.1) 

and (2 .1 .2 ) ,
S SPr(X|P,p) = Px(1) IT TT pstV(Xfs,t) 
s=lt=l

where
N

V(X,s ,t) » E ,s)6 (xi(t)
1=2

and 6 (s , t )-ds-j-, the Kronecker delta function.

Its probability function can therefore be written in Gibbs-chain 
form. However, because of the constraints among the probabilistic 
parameters, it is difficult to make the exponential part linear in the 
parameter even if the model is re-parameterized, for example by
y ij^logp^j, etc.

Finally, in this section, we mention two applications of this 
Gibbs chain model and the recursion technique described, that appear 
in the later parts of this thesis. One is in Chapter 5, for the 
two-dimensional Markov random field(MRF) (also see Qian and
Titterington, 1989. 1990a), where the technique is used to obtain the 
relaxation method for simulating MRF and to develop the 'coding1 
method for estimating the parameters of MRF. Another is in Chapter 7, 
which describes a new texture model, based on a multi-dimensional 
Gibbs chain which was introduced and shown to be very useful in Qian 
and Titterington(1990c).

2.3 Parameter estimation for hidden Gibbs chains

In this section we discuss the problem of parameter estimation for 
the partially observed Gibbs chain(POGC). It was mentioned earlier
that the Gibbs chain may itself be unobservable, but that, instead, an
observed parallel noisy process Y=y may be available. Assume that the 
density of X is as in (2.2.1), and that, given the original chain, X, 
the noisy data y^ at different time-points are conditionally 
independent, each noise variable depending only on the original state 
at the same time-point. It is not necessary for each noise variable to
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have the same conditional distribution, but we assume that all such 
distributions can be written in exponential-family form. Thus

where e is an unknown parameter.

Lemma 2.3.1 Given Y=y, the conditional probability function of X is 
still of Gibbs-chain form with the same order as that of X:

where g(Xj[ \ y ±,e,p)=g(x^ ,P)+d-[ (Xj ,yj ,e), and C(Y,e,p) is a normalising 
factor,

Note that, if Gyj=0, for «>1, the y^ are independent mixture
variables, in which case the EM algorithm can be used to obtain
parameter estimates (Titterington et al, 1985, Titterington, 1989). 
Note that the E-step of the EM algorithm can be carried out with the 
help of the above Lemma and the recursion technique in the previous 
section. The EM algorithm for the POGC model can therefore be 
described as follows.

E-step: Assume ©k and Pk are the current values for © and p. Compute

E[logPr(X,y|e,p)!y,©k ,Pk],

which is a function of 0 and p. Since Pr(X,Yj©,P)=P(Xjp)Pr(YjX.e), the 
conditional expectation can be separated into two parts, one of which 
is a function of P, namely, Q1 (p)=E[logP(XiP)|y,©k ,PkL  while the 
other is a function of e, Q2 (e)=E[logP(y |X, ©)|y,©k ,Pk ].

M-step: Maximize the above two functions Q^(P) and 0 3 (6 ) to obtain
the new values, ©k+i and Pk+j , respectively. For the particular case^
where P(X|©)®exp{0'Z(X)}, ®k+l obtained by maximizing
© E[Z(X)jY,©k ,Pk ] - logC(e) or, equivalently, by solving the equation

E[Z(X) |Y,ek ,Pk ] - E[Z(X) |/3] = 0

Therefore, as we mentioned in Chapter 1, the M-step is a procedure 
equivalent to maximizing a likelihood function, it is necessary to 
use the recursion technique described in the last section.

(2.3.1)

r N-y
Pr(X=x| y , ©, P )=exp{ £ g(xA ly* ,e,p) + 1 £ gm1 (xj,xi+1 ,P)}/C(Y,e,p),

i = l y = l  i=l
(2.3.2)
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The ease or otherwise of computation in practice depends on the 
exact forms of P(X|3) and P(Y|X,e). In the M-step, the maximization 
procedure for Qi(3) is similar to the procedure described in Section
2.2 for estimating © from X, which might itself require an iterative 
procedure. At each cycle of the EM algorithm, a reasonable, 
approximate procedure might be constructed for carrying out this 
iteration in the M-step.

Another problem is whether or not Q2(©) can be maximized. For 
regular exponential family, it is usually not difficult to maximize 
Q2 (©). We have assumed conditional independence for P(Y|X,0). For some 
special cases, for example, Y=AX+e, where A is a band matrix, and e 
is a multi-dimensional normal varible, it may be still possible to 
carry out the EM algorithm, except that the order of the conditional 
distribution P(X|Y) is higher than that of the original chain.

2.4. Numerical results

We obtained simulation results for several cases. The original 
model for X was that of the Example in Section 2, involving only one 
parameter, 3 . For all the iterative procedures, we used

u) = (l(e(k ) ,js(k)) '-(©(k+1 ) jj5(k+l)) - ||z2

as the basis for a stopping rule: if w<to0, the iteration stopped. j|*t|2 
denotes the Euclidean Norm, and w 0 was pre-specified.

(1). In the first case, we took S=2 and S=3, and imposed Gaussian 
additive noise with variance oz. We took various values for N and o2, 
and, for each situation, we generated 50 samples. We obtained 
parameter estimates for the complete-data case and for the case where 
X is missing, and the results were summarized by the sample means and 
the sample variances. The results are presented in Table 2.1 for S=2 
and Table 2.2 for S=3. The true 30 is 1.5, and wo=0.000001. Thef
starting values of 3 and o2 were both taken to be 1.0. COM denotes the 
complete data case, INC the case where X is missing, 3y denotes the 
asymptotic variance of the MLE of 3N , namely, az (30 )_1/N, and 3W , ozM , 
3y and o2v denote the sample means and sample variances of 3 and oz, 
respectively.

Our experiment showed that convergence of the EM algorithm in this 
case was quite fast. For most of the situations described above, the 
iteration stopped within 20 cycles. The estimates for the INC cases
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were quite close to those for the COM cases, and the sample variances 
of J3 and o2 decreased as either or o2-»0. Note that a 2{p0)“1, which 
is the asymptotic variance of N̂ (i§N-j30), is now 
(e1 ■ 5+S-l)2/C(S-lJe1*5]. Divided by the sample number N, they, ie, /3V 
in the tables, provide comparisons with the sample variances at the 
COM case. They turn out to be quite similar.
2). Table 2.3 provides simulated results for the same original model 

with S=3, but where the imposed noisy chains were assumed to be
discrete-valued with the same state space {1,2,3} as X, and

P(yi=t|xi=s) = exp{06(s,t)}/(2 + ee ),

involving only a single parameter, e. The larger © is, the higher is 
the probability with which y-̂  takes the same value as x-̂ . Note that 
the trend in the sample variances from Table 2.3 is similar, as ©
increases, to that observed as o2 decreases in Table 2.1 and Table
2 . 2 .

In the iterations for this model, we took w0 to be 0.00005, the 
true values j30 and e 0 were 1.0, and the starting values of 9 and )3 
were both taken to be 0.5. For each situation, we simulated 30
samples. We noticed that, for many situations, the estimates converged 
slowly. It is also possible that, when N is small and 0 large, Y is 
almost the same as X, in which case the estimate of 0 might be very 
large.

N
COM 1 INC

%  Pv fiZM q Zv %  PV °ZM ° ZV
(1) . o2 = 0.36

200 0.0335 1.5172 0.0392 0.3586 0.0015 1.5056 0.1731 0.3483 0.0015
400 0.0168 1.5286 0.0179 0.3604 0.0005 1.5693 0.0749 0.3610 0.0011
600 0.0112 1.5214 0.0081 0.3608 0.0003 1.5229 0.0389 0.3598 0.0006

(2) . o2 = 0.16
/200 0.1594 0.0003 1.5378 0.0750 0.1557 0.0003

400 0.1602 0.0001 1.5590 0.0750 0.1621 0.0002
600 0.1603 0.0001 1.5380 0.0177 0.1607 0.0001

(3). c2 = 0.04 |
200 0.0398 0.0000 1.5212 0.0420 0.0397 0.0000
400 0.0400 0.0000 1.5249 0.0186 0.0401 0.0000
600 0.0401 0.0000 1.5233 0.0095 0.0400 0.0000

Table 2.1. The results for the symmetric binary chain
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N
COM INC

Pv Pm h q2m °2v %  Pv °2m q 2v
(1). o 2 — 0.36

200 0,0234 1.5118 0.0295 0.3586 0.0015 1.5362 0.0835 0.3498 0.0027
400 0.0117 1.5181 0.0083 0.3604 0.0005 1.5235 0.0382 0.3665 0.0014
600*1 0.0077 1.5113 0.0061 0.3608 0.0003^ 1.5276 0.0174 0.3622 0.0009

(2). o 2 = 0.16
200 0.1594 0.0003 1.5362 0.0501 0.1595 0.0005
400 0.1602 0.0001 1.5256 0.0179 0.1638 0.0002
600 0.1603 0.0001 1.5218 0.0101 0.1614 0.0001

i

ooiirj0CO

200 0.0398 0.0000 1.5062 0.0289 0.0395 0.0000
400 0.0400 0.0000 1.5110 0.0088 0.0396 0.0000
600 0.0401 0.0000 ri.5105 0.0062 0.0401 0.0000

Table 2.2. The results for S=3.

N

COM INC

Py Pv ®M ®V Pv ®m  ®v
(1). 9 = 0 . 9

300 0.0137 0.9963 0.0174 0.9021 0.0129 0.7435 0.1679 0.7923 0.1956
600 0.0068 1.0196 0.0052 0.9115 0.0074 0.6610 0.0422 0.7628 0.1147
900 0.0046 0.9859 0.0041 0.9022 0.0023 0.8372 0.1163 0.8824 0.0838

(2). 0 = 1 . 2
300 1.2138 0.0139 0.9004 0,1403 1.1453 0.2041
600 1.2033 0.0078 0.9991 0.0894 1.1512 0.0597
900 1.2024 0.0021 1.0083 0.0265 1.2249 0.0367

(3). 0 = 1 , 5
300 1.5185 0.0170 0.9945 0.1099 1.5091 0.2329
600  ̂ 1.5118 0.0068 [1.1313 0.0566 1.4690 0.0566
900 1.5021 0.0037 1.1453 0.0439 1.4265 0.0367

Table 2.3. The results with discrete noise
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Chapter 3

Inference For Markov Random Field Models

3.1 Introduction

Statistical inference for spatial models was originally motivated 
by geographical and ecological data, but was severely hampered by the 
dearth of realistic parametric alternatives to spatial independence. 
Markov random fields have clearly filled this gap. Markov random 
fields, and the Ising models, in particular, have been studied 
extensively during the last 50 years in statistical physics, where 
they are known as Gibbs ensembles(Pickard, 1987). In the discrete 
case, Gibbs ensembles are known as Ising models, which are important 
in theoretical physics because they exhibit phase transitions, that 
is, as parameter values increase past critical values, abrupt changes 
occur in qualitative behaviour. In particular, pixel variables lose 
their asymptotic long-range-independence, and the simulated samples 
are then very likely to be almost one colour. Another major difficulty 
in statistical inference for Markov random fields is that their 
apparently simple likelihood functions are in fact surprisingly 
intractable, even for very simple cases.

The difficulties involved with discrete Markov random fields are 
due to the intractablity of the partition functions. The properties of 
a MRF are determined by the behaviour of its partition function, which 
is analytic in its parameters. However, it has proved surprisingly 
difficult to determine the partition function asymptotically in order 
to explain the asymptotic properties of the model, even in simple 
cases. Kramers and Wannier(1941) introduced a matrix method for 
determining partition functions (see also Newell and Mantroll, 1953). 
The method is quite similar to what we used for the one-dimeneional. 
case in the last chapter. Onsager(1944) used this method, obtaining a 
matrix representation of the partition function for the classic Ising 
model with only two colours, with a first-order neighbourhood system 
and with periodic boundary conditions. Kaufmann(1949) obtained a 
direct product decomposition for this matrix expression. Kaufmann and 
Onsager(1949) determined, approximately, the correlation structure for 
the same model. Baxter(1972) obtained the partition function for the
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eight-vertex lattice model. Recently, Pickard(1976, 1987) used
Kaufmann(1949)1s decomposition results, obtaining limit theorems for 
the sample correlation between nearest neighbours for the symmetric 
two-colour Ising model with periodic boundary conditions. These 
results provide a basis for asymptotic testing and estimation.

The partition function has also been expressed as a determinant or 
as a Pfaffian; see Pickard(1977), where he used this expression to 
examine the asymptotic properties of a two-colour Ising model in which 
two parameters were involved.

For the two-colour Ising model with only one parameter, Kramers 
and Wannier(1941) deduced an inversion transformation under which the 
partition function is "invariant" when the parameter is transformed 
from a low to a high value. The important property of this 
transformation is that its fixed point determines the transition point 
of the lattice. It was also later found by Kaufmann(1949), by 
examining the exact matrix representation of the partition function, 
that this fixed point is just the critical point. He also located the 
critical points for the two-parameter case. Potts(1952) used a method 
similar to that of Kramers and Wannier(1941) to develop the inversion 
transformation for multi-colour models and obtained the fixed points, 
which should also be the critical points. His work was for the 
symmetric case where only one parameter is involved. In this chapter, 
we shall obtain the critical points for multi-colour model with two 
parameters and first-order neighbourhood system.

For parameter estimation for MRFs, there are four sorts of 
approach. The first is the method of moment estimation. However, the 
behaviours of moments are very difficult to determine, even
asymptotically. This method can only be applied to very special cases 
such as the two-colour Ising model for which some asymptotic 
properties have been derived. The second is maximum asymptotic
likelihood estimation. Similarly to the first method, it depends on,, 
the asymptotic behaviour of the likelihoood function or the partition 
function. For the two-colour Ising model, results in Piclcard(1976, 
1977, 1986) can be used. We shall also examine the two-colour Ising
model with periodic boundary conditions in this chapter. The third 
method is maximum pseudo-likelihood estimation. This was first
introduced by Besag(1974) in the form of the coding technique, using 
the local dependence of the fields and a set of conditional
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distributions for single pixels. Geman and Graffigne(1987) proved the 
consistency of the method. The fourth is maximum approximate- 
likelihood estimation. We shall concentrate on this approach in the 
next chapter.

This chapter is arranged as follows. In section 3.2, we provide
matrix representation of partition function for general pairwise
interaction Markov random fields with a first-order neighbourhood
system, and we then discuss the partition function of a special
multi-colour Ising model which is a generalization of the two-colour
Ising model. Critical points are found. In section 3.3, we consider
the asymmetric two-colour Ising model with periodic boundary
conditions, in otherwords, the field is wrapped around a torus.
Limiting distributions for sample correlations between nearest
neighbours are obtained. Applications of these results to parameter
estimation and the problem of testing for symmetry are discussed. In
section 3.4, we discuss the problem of simulating Markov random
fields. Following on from Geman and Geman1s(1984) stochastic
relaxation method, we examine a line-relaxation method. In section

♦

3.5, we develop pseudo-likelihood parameter estimation, by using the 
distribution of a line of pixels, conditionally upon its neighbour 
lines. Some simulation results are presented in section 3.2, section
3.4 and section 3.5. More discussion is provided in section 3.6.

3.2 Partition functions and critical points

3.2.1 Some matrix notation

We first introduce some notation and provide some related 
properties. Let A=(ajj) be an Mxp complex matrix, and B=(bjj) an Nxq 
complex matrix. Then the Kronecker product of A and B is defined by

A®B = (a-yB) f

which is an MNxpq matrix. The following properties are standard 
results related to this product-operation.

Proposition 3.2.1

(1). (A®B)®C = A®(B®C)

(2). (A + B)®C = A®C + B®C

(3). A®(B + C) = A®B + A®C
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(4). If A, B, C and D are appropriately compatible, then 

(AB)®(CD) = (A®C)(B®D)

(5). eA®I = , I®eA = e*®A , where I is an identity matrix.

(6). (A®B)* = A*®B*, where * means the corresponding conjugate

transpose matrix. n

If A^, i=l,2,..T are T matrices, let 

T
® A-£ = A^®Ag® • . .®A!j> »

t=l

Let I(s,i) denote the identity matrix of dimension S*, 
denote S1 dimensional vector with all elements being unity, Is=I(S,l) 
and Lg=L^ g i^ * Then

i+j
1 (S , i+j ) = I(S,i)®I(SJ) e ® JSt=l

i+J
L (S,i+j) = L (S ,i)®L (S ,j) = ® LS>

t=l

3.2.2. Partition functions in general pairwise-interaction cases

For simplicity of notation, we only consider homogenous MRFs; that 
is, the interaction is assumed invariant over the entire lattice.

Consider a Markov random field X=(Xjj) over an MxN rectangular 
lattice, where each Xj_je{l, 2 , . . . S}, with distribution

! M N
P(X=x|0) = — — -exp{ E E g(X| -f ,B) + Z^x.lB) + Z2 (x,p)} (3.2.1)

C(P) i=lj=l

where
M N-l i

Z^(x,f3) = Z L G-̂ (x̂ -j,X-̂
i=lj-1

and
M-l N

Z2 (x,B) = I E 62 (x-̂  j , Xj +̂2 t j > & ̂ •
i-1j=l

The two terms Zy and Z2 are associated with interactions along row
directions and column directions respectively. The normalizing
constant C(/3) , known as the partition function, is given by
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M N
C(g) = I exp{ r t g(Xij.g) + Z1 (x,p) + Z2 (x,g)}, (3.2.2)

x i=lj=l

where the summation is over all possible x, so that there are 
altogether terms. It is therefore impractical to compute C(j3) by
using (3.2.2) except when both M and N are very small. The following 
matrix method is almost the same as that used earlier for the 
one-dimensional version of MRF, but the detailed procedure was omitted 
in the previous chapter. In fact, if we consider one row as a 
"point", (3.2.1) can be regarded as a first-order stationary Markov 
chain with states in the corresponding state space. Therefore, from 
(2.2.12), C(P) can be written as

C (S) = k (S ,N )'ABA....BAL(s , N ) (3.2.3)

where A and B are S^xS^ matrices and A is diagonal. However, it is not 
easy to find A and B exactly. Before examining this problem, we 
introduce some more notation. Let

X(jj) =<xst, s>i, or s=i,t>j)

av = exp{g(v,j3)}

bvtI (1 > = exp<G1 (v,n)}

= exp { G 2 ( v rv)}

"j+1 "j+2 "N

“ 1 "2 “j *i,j*i *1.J*2 xiN

*1*1.1 *i*i.i *i*i.j *i*i, j-1

XM, 1 XM ,2 XM, j *tc.j*i *MN

Fig 3.1 and notation relevant for inference about C(P)
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is shown in Fig 3.1. It is a vector of variables over all 
pixels coming after pixel (ij), if we order the pixels one by one and 
row by row. Also, reference to Fig 3.1 makes it easy to imagine that, 
when j<N, Pr(X^jj|/3) can be written in the following form:

S S S
Pr(x(ij) |£) = E E ... E d i^(u>1 ,u>z ___ wN)exp{Wij(1)+Wij(2 )}/C(P),

— 1 o)2~l Wĵ =l

where

= g(Xij+1) + + + Gl(xi,j+l-Xi,j+2)

+ G2 (wj+i*xi,j+i) + g2 (xi,j+l>xi+l,j+l)
and

N M N
Wdj(0 - E g(x^) + E E g(x^)

v=j+2 i=i+l v=l

N N-l
+ E ^2 , x-j^) + E Gi > ̂ i #-u+i)

-u=j+2 v=j+2

3 N
+ E Gg , Xj^^ ̂ ̂ ) + E g2 lxi*u > xi + l, -o)

*u=l v=j+2

M N-l M-l N
+ £ E (x L1), x L ) + E E ^2 (X , X L + i ̂ ̂ ) .

t=i+l v=l i = i+l -u=i

Note that Wjj (1) is a function associated with j+j and its four
neighbour states, w j, , Xj^j+2 ai*d while W.y(2) is a
summation of those potential functions, namely, g, and G2 , that are
associated with all and except those associated with Xji j+i-

When j=N, W j ^ 1) is a sum of those potential functions associated 
with so it contains only four terms, while W-jj(2) shows little
change as well. Note that, since

i
S

Pr(x (i.j+l)lp ) = L Pr(x(ij)jp), 
xi,j+l=1

we can then have

di,j + l(W1»••-Mj.t,wj+2 ».■•wN ) =
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S
atbo>it(l) z bst(2^dij(wl' ■ ■ s,i»j+ 2 . * ■ • -wn)j s=l J J J

for Kj<N-l,
and

S
di + l , 1 > w 2 ••••• >wn) = at E bs t (z)diN(s >w 2 >  “N > ■s~l

Denote da j ' by

di j ’ = <dij(l,l 1), d^ j (1,1,---- 2 ) , ...... d i j U . l ...... S),

d i j d ,  . . ,2tl ) fd i:j(l 2 , 2 ) ,  d1:j(l 2,S),

d^ j (S, S , . . , 1 ) , djj (S , S, . . , , 2) dj j (S,S  S))

which is an S^-dimensional vector. We therefore have

di,j+l = I(j-l)®Bl0 I(N-j-l)■I(j)®(AB2)®I(N-j-l)dij
and

di+i,l = (AB2)®I (N-i)diN >

where, for simplicity, I(-ij) denotes A is an SxS diagonal
matrix with as diagonal entries, Ba is an SzxS2 diagonal matrix 
with [(v-l)S+I]-th diagonal element b^,/1), and B2 is an SxS matrix 
with (-u.l) element b^ L ( 2 ). Note that

I(j)®(AB2 )®I(N_j_i)=I(j)®A®I(N_j_a)■I(j)®B2®I(N_j_i).

There are therefore three sorts of matrices, namely,

I(j)0A0I(N-j-l)> 1(j — 1 ) (N-j~l) and I(j)0B2®I(N-j-l)• The first
two are diagonal, and thereby commutative. Furthermore, when j>i,

I{j)®B2®I(n _j_a)’I(i)® A ® I )

= I(i)®A®I(N-i-i)'1 (j)®b20 1 (N~j-1)
and

I(j)®B2®I(N_j_i )* I(i~l)®Ba®I(N-i-1)

= 1( i - i ( N - i - 1 )'1(j)0B201(N-j-1)- 
which means that when j>i, the last sort of matrix is commutative with 
the first two. We thus obtain

diN “ D lD 2D3di-l,N 
where D a , D 2 and D3 are SNxS^ matrices which can be written in
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following forms:

N NN
Dj “ ft I (j_ )  ®A®I ( j j — ® A (3.2.4)

D2 ~ * I(j-l)®Bl0 l(N-j-l) (3.2.5)
j=l

N N
d3 “ n 1 (j-1)0B20 1 (N-j) “ ® B2 (3.2.6)

Since there is no effect associated with B2 in the first row, we 
find that

dl,N = D1D2L (N)* 

where L(N j = L(S ,n)•

3.2.3 Partition function in a special case

We consider now a special multi-colour Ising model, which is a 
direct generalization of the two-colour Ising model. The model 
involves two parameters, and the function g in the model is zero, so 
that D} is an identity matrix. The distribution of the model is given 
by

M N-l
where Z2 (x) = z Z 6 (xjj.x*tj+1)

i=l j=l

M-l N i
and Z2 (x) = z z efx-^x-^ j)-

i=l j=l

For the two-colour Ising model, Onsager(1944) expressed D2 and D3 
in exponential form. The function 6 in his model is slightly different 
from 6 here, in that 6 (s,t)=-l, when s*t. D2 is a diagonal matrix, and 
therefore, not difficult to express in exponential form, while D3 is 
slightly more complicated. Our aim is to express D2 and D3 in a form

Note that since C(3) = L^) dMN> we obtain the following formula
for C(J3) :

C(P) - L(N ) D-j^DgD-^ D1D2D3D1D2L (N) • (3.2.7)

Pr(X=x|«,P) = exp{ccZ-L (x) + 0Z2 (x) }/C (cc, /3 ) (3.2.8)
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which is similar to that for the two-colour case and which is
associated with some basic matrices in S^xS^ matrix space, in such a 
way that Dg and D3 are related in a very specific way. This
relationship can be very important so far as the properties of the 
model are concerned. This more explicit representation could also be 
important for examining the asymptotic behaviour of the model, as has 
been done for the two-colour case. Note that Dg and D3 are only
related to B1 and B2 respectively, of which, B} is diagonal. We then
re-write B} and B2 as follows.

,1 ,1 ,..,l,ea)
S

...,0 ,0 ,...0 ,1)}
7. s

(3.2.9)

B2 = (e^-l)I (-jj + (3.2.10)

Now we introduce some basic matrices in SxS matrix space and
t

present some properties of them. Let t be a non-trivial S-th root of 
unity, where non-trivial means r1*!, when i<S, and -v-s=l. t is a 
complex number. One choice for r is exp{27ri/S}. Define

u = diag{l,Tr,r2, . . . ,yS-l}

r o 0 n . . 0 i ]

l 0 o . . . , o 0

0 i o  . . . 0 0

. 0 0 o . . i 0 .

and Ui = u1 KiCS-1

= v1 lCKS-l.

Proposition 3.2.2: (

(1). For any l<i<S-l, v^8 = u^s = I

(2 ). If V = v 1 + v g  +....+ vs_2 , then

V2 = (S-2)V + (S-l)I.

The proof is trivial. Property (2) also implies that

B 1 - diagCe^.l,....l.i.e®,...,1,...
S S ..77

= exp<oc-diag(l, 0, . . .0,0,1, . . . . 0, 
§ S



Chapter 3 33 MRF Inference

2 S-2 »
C-V - --- 13 ~ I •s s

Therefore, we have

exp{y[2V-(S-2)I]/S> = + e"^)I + M(e7

1 S-l 1= [_eT +  e^Ul + — (e-̂  - e ^)V
s s s

Note that

_ «-ye_~)[2V-(S-2)I]/S

v2 =

VS-1 “

f° 0 0. . ..0 1 °10 0 0. . . 0 0 1
1 0 0. . ..0 0 0

0 .1 0 0 0 0
0 .0 1 0 0 0
lo .0 0 1 0 OJ

ro 1 0 01
0 0 1 0

0 0 0 1
U 0 0 OJ

We therefore have that V=L-l '- I, implying that all the 
non-diagonal elements of V are unity, while all diagonal elements are 
zero. Now define p*. which is a function of p, by the following 
equation:

p /2 + (S-l)e-P /2
P / 2  r r p / 2 = eP,
e,J / ̂  - e

otherwise written as

(3* = logC (S-l + ee )/(eP - 1)]. 

We can then show that 

S

(3.2.11)

(3.2.12)
t

2cosh{J£j3 )
exp{-&(S-2 )/3 /S> 1 *

exp{~ p V> 2cosh(3£|3 ) S

= d(J3)exp{P*V/S}, 

where d(P) = [ep-l31-1/s[S-l+eP]1/s/S.

(3.2.13)
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There is a symmetry with the transformation: JS-*P*, in that
£=(£*)*. We now examine B}. Consider the following S2xS2 matrix:

U = u^su-l* + u2®u2* + ~ ,

where u^* is the conjugate transpose matrix of u-̂ . The [(i-1 )S+j]-th 
diagonal element of U is

S-l . _ . S-l
Z (t^)^  ̂ = E

k=l k=l

‘ S-l i=j

. -1 i*j

We therefore obtain the following formula for B}:

Bj = exp{cc(U + I) /S} = exp{<x/S>exp{ ccU/S) (3.2.14)

We have now obtained a quite explicit expression for B2 and B2, 
and we can then write D2 and D3 as follows:

(N-l)o: ct kT-l S-l
D2 = exp{------}exp{- Z E Uj^Uj+1 v } • (3.2.15)

S s j=l v=l

p* N S-l
D3 = [d(0)]Nexp{ —  E E Vji,}, (3.2.16)

S j = i 1.1=1

where

Uj^ = I(j-l)0u-v0 I(N-j) (3.2.17)

V>  = ^ j - D ^ ^ ^ N - j )  • (3.2.18)

Consider now the case with periodic boundary conditions, which is
equivalent to wrapping the lattice around a torus. To be precise,
consider the following distribution function:

2 M N *
P(X=xJcc,p) = —  -exp{ I Z a6 (X2j ,xj f j+1) + JB6 (Xj_jtXj[+ 2 j)},

C(oc,p) i = l j = l

(3.2.19)

where xi fN+l~xi,l> l^KM and xm+1 , j~xl, j Then there are
interactions between the first row and the last row and between the
first column and the last column. In fact, the interaction matrix 
between rows is still the same as D3 , but the intra-interaction within
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within one row changes slightly, due to the interaction between the 
first pixel and the last pixel. Noting the equivalence of each pixel 
in one row, we have

(N-l)oc a N S" 1 *
D2 = exp{—  }exp{- I t UivUj+11„ } (3.2.20)

S S j=1 V=1

where %+j ,,'Uj Again, because of the interaction between the first 
row and the last row, expression (3.2.7) for the partition function 
changes to the following form:

C(a,£) - traceCD2D3D2 ••..D33 = tracelDgDgl^ (3.2.21)

= I XM , (3.2.22)
X

where X are the eigenvalues of matrix D2D3 . Therefore, when M-*»,
C(cc,J3) approximately depends only on the largest eigenvalues of D2D3 .

3.2.4 Critical points

For the multi-colour Ising model discussed above, we have obtained 
two matrices, D2 and Ds , and the representation (3.2.21) and (3.2.22) 
for the partition function C(<x,£). There is a similarity between D2 
and Ds . For the two-colour case, both Onsager(1944) and Kaufmann(1949) 
found somewhat different transformations which interchange D2 and D3 , 
and therefore enable us to locate the critical points. We now consider 
the similarity relationship between D2 and Ds in the multi-colour 
case.

We have defined two basic matrices, u and v, which satisfy the 
following commutative law:

uv = yvu (3.2.23)

Note that the eigenvalues of u and v consist of 1 , r* r2 ,
. . . ,y,S-l} so u and v are unitary equivalent to each other. 
Potts(1952) considered the 2x® lattice, but in fact he only examined 
the interchange between exp{J3*(v-|. + vg...+ vs_i> and exp{J3(ui + u2 
+ *'-uS-l}’ then located the fixed transtion point defined by &*=&. For 
the MxN lattice, the similarity between D2 and D3 is more complicated.

Since a matrix is equivalent to a linear operator, we consider 
dimensional linear complex space with the operator:
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D = vl,lv2 ,l— -VNfl- (3.2.24)

Similarly to V} v , the eigenvalues of D consist of 1, r, r2 
. each of them repeated s(N-l) times. Therefore there are S
subspaces of SN-dimensional space, denoted by ft} respectively, where 
ft} is an -dimensional linear space, satisfying

D£ = £eft}. (3.2.25)

Note that Vj^} is commutative with D. From the commutative rule in 
(3.2.23), we can also show that Uj t iUj+i ,i* commutes with D. 
Therefore, all V j ^  and Uj,iUj+i,i* can be regarded as linear 
operators in ft}.

Consider a group of linear operators in ft},

vl,l- U1 ,lu2 ,1* r v2,1 » u2,lu3,l*'■*’VN-1,1’ UN-1,1UN,1*
(3.2.26)

re-written in short notation as

W 1 - w2’ w3 >  W2(N-1)’ f (3.2.27)

which satisfies the condition that each element commutes with its 
neighbours by the appropriate rule associated with the commutative 
rule in (3.2.23) and commutes with all other elements in the sequence 
in the ordinary sense. We can show that all of them are linearly 
independent, and furthermore, that all following s^fN-l) operators in 
ft} are linearly independent:

WlllK21 2   *w2(N-l)l2(N“1)- (3.2.28)

where i1( i2 ....1 2 (N-l) = °*

It is known that for any S (N“l)-dimensional space, all linear
operators form an algebra which is equivalent to the matrix algebra of 
3 (N-l) dimensions. So the algebra generated by those basic elements in' 
(3.2.28) is equivalent to the matrix algebra of dimensions,
although those matrices in (3.2.28) are dimensional, we can regard
them as S (N-l 5 xS (hT-l) matrices. The previously independent operator 
VN|1 is now expressible in ft} by others; that is,

vN.l = ’'i‘1V1 ,lS'lv2,lS'1---'VN-l.lS~1 (3.2.29)
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= Ti-lw1s“1W3 S _ 1 ....... ^ 2 N - 3 S~ 1 - (3.2.30)

We can also notice that

UN,1U1,1* = W2S~1W4 S - 1 ...... W2(N-1)S_1- (3.2.31)

Now consider another group of basis elements of the algebra

ul,lu2,l*' v2,l' u2,lu3,l*> v3,1 --- %-l,luN,l*’ VN,1

(3.2.32)

which has the same properties as (3.2.26) or (3.2.27), including the
commutative rule. Therefore the transformation

Vj,l-------- -----* uj,luj+l,l*

uj,luj+l,l* -----* vj+l,l j=l,2, . . .N-l

describes an automorphism of the whole algebra. Consider two matrices

N S-l N S-l
Ai = E E ^jvUj + l,n> A2 = £ £ Vjv

j=l u—1 j = l -u=l

Under the automorphism we have

N S-l S-l
A x — E E Vj^ + E (i“l) VlaJ (3.2.33)

j-2 v=l *u=l

N-l S-l S-l
a  i r EU* U - 1 * + E 1 U-i * (3.2.34)A2 * L L uJ,'uuJ+l,v + L r uN,xiul,-u ’j = l -u=l ^=1

Note that under the automorphism, both transformed matrices are 
only slightly different from A2 and A^, respectively. In particular, 
corresponding to the subspace ,

A 1 ---■* a 2 ’ A 2---- ** A 1 » i

or more compactly,

f(Aj,A2)  f(A2 ,Aj) (3.2.35)

in the algebra associated with space . Application to the operators
D2 and D3 given by (3.2.20) and (3.2.16) shows that the following two
operators
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exp{-N<x/SKd(P) 3“%>2(°0d3(£) “ exp{ccA2/S}exp{P*A2/S>

and

exp{-NJ3*/S}[d(oc*) = expO*A2/S)exp{aA-{ys} ,

can be regarded as the same under the automorphism, so that the set of 
{s(N-l)) eigenvalues of the matrix D2 («)D3 (J5 ), which are associated 
with the space , can be obtained from the corresponding parts of the 
eigenvalues of D2 0 *)D3 («*) by the relation

X(1 )(«,p) = [(e^-l) (eP-l)/S]Nx(1 )(J3*,«*) (3.2.36)

This result applies in particular to the largest eigenvalues of 
the operators. The reason is that the operators are matrices with all 
positive entries, so each of them has one and only one positive 
eigenvector, £, say, which corresponds to the largest eigenvalue 
(Varga, 1962, see also Bushell(1973) and Istratescu(1981)) , then 
because of the commutability between them and D, D£ is also a positive 
eigenvector associated with the largest eigenvalue, and therefore 
D£=£. That means £ must be in * Therefore,

xmax(a >P) = t(ea-1) (e^-1)/S]NXmax (|3* ,<x*)' (3.2.37)

On the other hand, if we disregard the effect of y in (3.2.33) and 
(3.2.34), we know that the eigenvalues of exp-fc^/SJ'exp^^i/S} are 
the same as those of exp{|3*A2/S}exp{<xAi/S}. Therefore, approximately 
or asymptotically (as M— -»«>),

C(a,0) = [(ea-l)(e0-l)/S]MNC((3*,oc*). (3.2.38)

Although we do not have a theoretical guarantee of the existence 
of the critical points of the multi-colour Ising model, a simulation 
study has shown their existence. We know, for each pair of parameters 
(a,js), that there exists a corresponding pair (0 *,o:*), which exchanges 
with («,p). Thus when C(<x,/3) is analytic at (<x,p) , it must also be at 
(P*,<x*)t and if (<x,j3) is a critical point, so is (p*,cc*). Tlfus if 
there are not many critical points, they must occur at the fixed 
points of the transformation: (a,p) (p*,a*). To be precise, the
critical points satisfy the equation

(ea - 1)(ep - 1) = S.

In the case a=j3, the critical point is

(3.2.39)
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log(l + Js) (3.2.40)

which is the same as given by Potts(1952).

Some simulated images with parameter slightly bigger and smaller 
than the critical point, in the case of three-colour model with «H5 
and with free boundary conditions, are shown in Fig.3.2a and Fig.3.2b 
respectively. Note that now «=J3=1.00505 gives the critical point. We 
use the point-relaxation method (Geman and Geman, 1984) to generate 
these images. In Section 3.4, we will discuss further the simulation 
of Markov random fields.



Chapter 3
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3.3 Asymptotic inference for an asymmetric Ising model around a torus

For the two colour Ising model, Pickard(1976) obtained a weak law 
of large numbers and a central limit theorem for the sample 
correlation coefficient between nearest neighbours for the isotropic 
(symmetric) case which involves only one parameter. In his later 
paper(Pickard, 1977), the results were extended to the asymmetric case 
for the sample correlations along rows and columns. His work in 
Pickard(1976) was for a lattice around a torus, ie, with perodic 
boundary counditions, while in Pickard (1977), he did not assume this 
condition. However, as indicated in Pickard(1982, 1986), although the 
maximum likelihood estimator of parameters is consistent and 
asymptotically normal, it cannot be computed. An alternative solution 
is therefore taken, namely, to solve an asymptotic-normal equation.
The resulting asymptotic-MLE is consistent but the central limit 
result cannot be derived, except for the case with periodic boundary 
conditions(Pickard, 1976). In this section, we extend the results of 
Pickard (1976) for the symmetric case to the asymmetric case with 
boundary conditions, so that the asymptotic-MLE is asymptotically 
normal, thereby enabling us to discuss the asymptotic behaviour of the 
asymptotic-likelihood-ratio test for symmetry.

3.3.1 The model

As mentioned in the last section, the imposition of periodic 
boundary conditions is equiva i ent to wrapping the lattice around a 
torus. The model we consider here is for the two-colour case; the 
potential functions are slightly different from those of the 
multi-colour model in the last section. We specify the joint
distribution function, which involves two parameters, « and 13, by

t
1 M N

P (X=x |a, B ) =■—  — exp{ E ECccx̂  jX j ̂ j + ̂ + ^xijxi+l,j3), (3.3.1)
i=lj=l

By the symmetry of all pixels in (3.3.1), the random variables, 
x^j are identically distributed with equal probabilities at -1 and +1 , 
but they are not independent unless oc=p-0 ,

Consider the vector random variable
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Q = (3.3.2)

whose distribution is determined by the parameter values. Clearly, 
Q/MN gives the sample correlations between nearest neighbours along 
rows and columns. Our first aim is to determine the asymptotic 
properties of Q. For the symmetric case, where <x=J3, Pickard (1976) 
obtained a central limit theorem and a weak law of large numbers for 
Ql+Q2 - We will achieve this in the case a*J3 by the same method of 
analysing the partition function.

The matrix method(Kramers and Wannier, 1941, Newell and Montroll, 
1953) was used to obtain a representation of C(<x,e) as follows; see 
also Kaufmann(1949) and Pickard(1976). We use the same notation as in 
these papers.

where all matrices are of dimension 2 ,̂ I is the identity, and 

SN+1~S1* are the eigenvalues of V2Vlr and sr and cr are Kronecker

products of N quaternion matrices, ie,

Note that cr and sr are special cases of Vr  ̂ end Ur  ̂
respectively, but because of the difference of interaction functions, 
Vj and V2 are slightly different from D2 and Ds in the last section, 
respectively.

3.3.2 The eigenvalues of V-iV2

Kaufmann(1949) obtained a product decomposition of V2V^ in terms 
of matrices V+ and V- which are representative of rotations in 
2N-space. Half of the eigenvalues of V+ and half of those of V" are

C(<x,J3) = trace(V2V 2)M = E XM (3.3.3)
X

with

N N
Vi = IT (epI + e_pcr); V2 = exp(<x L srsr+1), 

r=l r=l

cr = I2®I2®. . .®[j J]®. . .®I2 

sr = I2«I2®. . ,®[J _°]®. . .®I2.
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the eigenvalues of V2Vlt Pickard(1976) changed Kaufmann's notation 
slightly, and provided the eigenvalues of VgVj for the case a=j3 . As 
mentioned in the last section, it is well known that, asymptotically, 
the partition function has critical points. For the asymmetric case, a 
careful analysis of the way of choosing eigenvalues from V+ and V“ to 
be those of enables us to obtain a critical curve, CL}, which is
defined (for 0<a, p<») by

cosh2acosh2P = sinh2a + sinh2P, (3 .3 .4 )

a. 4 -

Fig 3.3 The critical lines and the corresponding two areas

Note that the critical points are in fact those which make y§.r 
equal to zero, (r0 is associated with the eigenvalues of V and is 
defined later.) As shown in Fig 3.3, the area {cc>0, p>0} is separated 
by CL2 into two parts, denoted by R+1 and R+2. The eigenvalues of 
^2^1* denoted by x4- and x- corresponding to V+ and V~ respectively, 
are then given (for 0<ce, P<») by
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N
X+ = x+ («,/3) = (2sinh2P)N/2exp{}£ E 62i-l72i-l> (3.3.5)

i=l

6 0 N 
X- = X~(<x,p) = v (2sinh2P)N/2exp{)£ t ^2i - 2 7 2i~2^ (3.3.6)

i=l

where, in each exponent, an even number of 5's are -1 while the other
are +1 , giving a total of 2N eigenvalues of V2Vi, and

72 = 7(a,P , iir/N) ,

1 cosh2<xcosh2P - sinh2acosw
7 (0t,P,w) = cosh ---------------------------),

sinh2j3

rexp(-7 n) if (oc,p)'eR+1
v =

- 1 if (<x,p)'eR+2+CLjL.

Since cosh~lx=log[x + (x-l)^D for x>l, and noting that for 0<<x,
P<> ,

cosh2acosh2p-sinh2<xcostu ^ cosh2acosh2P”Sinh^cc  ̂  ̂
sinh2P > sinh2P ^ ’

we can write

7 (0:,p,io) = r(<x,p,w) - logsinh2P,

where

r{<x.,P,to) = log{cosh2acosh2P - sinh2acosw +

[ (cosh2«cosh2j3-sinh2cccosw)2 - (sinh2p)2]^}.

If we write Vi~t(<x,p, i?r/N) , the eigenvalues of V2V} can be 
re-written as

N
X*=\+(o:,P)=2N//2 (sinh2P) L+exp{}£ E 6 2i-lT2i-l) (3.3.7)

i = l
i

and

N
X~=\” (ct,p)=u<5o2N/2(sinh23) l~exp{J£ Z 62i-2^2i-2). (3.3.8)

i-1

where t+ and l- are the numbers of 6 's which are equal to -1 in the 
corresponding exponents and
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exp{-vr0 }sinh2j3 (oc.P) 'eR+1 

(<x,j3) ’eR+g+CL^,

It is clear that the largest eigenvalues of x+ and x occur when 
all s's are +1 , ie,

The representation of the partition in terms of X+ and x~ is now 
only restricted to 0<<x, g<«>. It is desirable to extend it to R2 . As in 
Pickard(1976) for the symmetric case, we require M and N to be even, 
so that C(oc,J3) satisfies

Note that, when M and N are not both even, the above property 
does not hold, so that the following results have to be regarded as 
proved only for the case of even M and N.

Also note that v(oc,J3) and therefore X+ and x“ are defined for <x=0 
or J3=0 in (3.3.7) and (3.3.8). Appendix 1 shows that (3.3.3) provides 
the representation of the partition for {cc>0 , £>0 }, with the help of
(3.3.7) and (3.3.8). Hence the partition can be extended to IR2 by 
extending X+, x~ and r to R 2 by replacing «, j3 by their absolute 
values. There are then all four critical curves, which partition R2 
into five parts. We still denote the area around the origin by R+1 and 
the others by R+2 * Finally, in this section, we indicate that the 
critical curves (Fig.3.3) are equivalently defined by

sinh2asinh23 = ±1. (3.3.10)

3.3.3 Asymptotic behaviour of C(cc,j3)

It is convenient to deal with

Pickard(1977) provided 2c(oc,p) in terms of a two-dimensional 
Riemann sum plus an error term, with the help of a Pfaffian. Although 
this was done in the context of a free boundary condition, all that is 
known about the error term and its derivatives is that they are no 
larger than 0(M), so the central limit theorem obtained is not 
completely satisfatory.

N N
^ max~2^ ^ exP{^ *2 i~l); ^ max=2^/̂ *iexP{&  ̂^2 1-2 ^’i=l i=l

C (oc, p ) = C(-<x,-JB) = C(~«,{S). (3.3.9)

2c(<x,J3) = logC (<x, j5) = logEXM .
X

(3 . 3 . fl)



Chapter 3 46 MRF Inference

Write Ic(a,p) as

lc(<x,p) = J(«,j3) + K(cc,p) , (3.3.12)

where

and

J(a,P) = log\JaxM = J£MNlog2 + KM E ?2i-l
i=l

N

K(<x,p) = log Z 
X^X (x/xinax^*

max
For the moment, we shall restrict our attention to [0,+°Ox[0,+»). 

Consider the function defined by the Riemann integral

B(oc,£) = (4 w ) 1
r27t
?(oc,j3,ti>)dw
0

(3.3.13)

Then the properties of v ensure that: the first partial
derivatives of B are continuous on CO ,+°°)x[0 ,+<») ; the higher-order 
partial derivatives of B are continuous on [0, +»)x£0, +°°)\CL1 and 
undefined on CL^; and these derivatives , are obtained by 
differentiation under the integral sign. For s=l,2....

converge to

1 N asr2i_i  i -------
2N i=i 3«0ai3s-J 

b s b

N
and as?2 i-2

2N i=i aaJa3s“J 

wherever it exists. Moreover, convergence
a«Jai3s-J

is uniform on any compact subset of the domain of es£
a«Japs”J

Note that, as v(cc,|3 ,w) , x+ , x” and B(<x,j3) can also be extended to 
8?2 to satisfy B(<x,/3)=B(-<x,-/3)=B(-a,|3) ,the extended function B(<x,p) is 
such that, for a fixed a (£), B(<x,*) (B(*,p)) have right-handed
derivatives of all orders at the origin, and the odd-opdered 
derivatives vanish there. These results are clear by noticing the 
following representation of B:

B(cc,P) =

1 “ (2i+2j-1)!—  L Z ------------
2i=lj=l (i!)2(j ! )2

1 03 1 r 2 i i di- z __ {
2i=l 2i -̂i .2

d l l 21’dz" 2j

2 J .2 j t

2i dz
12
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where di=tanh2a/cosh2jB and d2=tanh2j3/cosh2a.

We have therefore proved that, as N---

(MN)-1J(a,jB) ---- » J£log2 + JJ(a,j3) on JR2 ,

and

- asJ( «,jS) 3sB(cc,|3)(MN)-l  ~   >  2 - L - L  (3.3.14)
doc j d & s~3 3ocJ3J3s“J

on R2 for s=l and on R+^+R+ 2 for s^2 , and that the convergence is
uniform in (a,j3) 1 on any compact subset of the appropriate region.

In Pickard(1976) analytic complex functions were used to
determine the approximate speed of convergence of a Riemann sum to its 
Riemann integral. In our case, we take G to be any compact subset of 
R+l+R+2 * Then there is a positive number p such that, for any fixed 
(oc,j3)'eG, the complex function

g(<x,p,z) - log{A(a,i3 ,z) + [A(<x,£,z)2 - sinh223]^},

is analytic in the annulus H={z: e“p<|zKep},* where A(cc,j5,z) -
cosh2acosh2/3 - J£sinh2<x(z + 1/z) . Thus,

(MN)3*! (MN)“1VJ(a,g) - VB(«,0)| « 0( (MN)^e~pN) ,

where v denotes the first-order derivative vector. (We will use v 2 to
denote the second-order derivative matrix.) Therefore, as M, N ---
(with M<Ne for any fixed ©>0),

(MNJ^UMNr^Jtcc.B) - VB(oc,P)] ----- 0 (3.3.15)

uniformly for (a,p)'eG.
In order to deal with K(a,js) , by almost the same procedure as 

that of Pickard(1976) for the case oc=3 , we can prove that, as M, N—  
(provided N0 1^M<N0 for any fixed ©1 and ©  ̂ with
0<ei<©<»),

*

and

f 0 if (OC.P) '6R + 1
K(cc,p)  -» \ (3.3.16)

L log2 if (oc.p) 'eR+2

3SK(«, J5)
  ------ — 0 for S = 1 , 2 , . . , («,P)'eR+1+R+2. (3.3.17)
3<xJaiss~j
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Again, the convergence is uniform on any compact subset of 
R+l+R+2 - Combining (3.3.14) and (3.3.17) we obtain

n 3sJc(cc,p) asB(<x,p)
(MN)"1----------------->-------- 1 , (3.3.18)

aa^aps-j acc3 3Ps-j

(a,P )'eR+1+R+2 * s=l,2....
as M, N— (provided NGl<M<N0 for any fixed 0 i and e with 0<ei<e<»). 
Furthermore, convergence is uniform in (<x,p) 1 on any compact subset 
of R+1+R+2.

3.3.4 The limiting theorems

Let (<X,J3) 'eR+1+R+2 and choose any compact subset 
^^{(x.y) 1 : (x-cc)2+(y-p)2<6 ) such that DscR+1+R+2- For a fixed 
two-dimensional vector n=(ni,r\2)1, consider the random variables

S = (MN) "2n 1 Q and T = (MN)wn'[ (MN)“1Q - vp(oc,p)3.

Denote by Mg(t:<x,p) and M<p(t:a,p) the moment-generating functions4
of S and T. Then

logMg(t :<x,p) = lc(<x+(MN)~^tn^ ,P+(MN)~^tn2) - Ic(oc,J3)

and

logMT (t:or,0 ) =

lc(a+(MN)"Mtn1 ,P+(MN)"^tn2 )-Ic(cc,p}-t(MN)^nlViB(«,P) .

When M and N are large enough, (oc+tMNpHni, P+(MN)_1tr\2 )'eD6 and 

(cx+(MN)”^tn^ ,3+(MN)~^tTn2 )'eD6 . Noting (3.3.11) and applying Taylor's 

theorem to K and J , we obtain

logMs(t:cc,p) * (MN)“1tr\'Vlc(a+(MN)“1t1n1 ,P+(MN)~1t1n2)

and

logMT (t:cc,p) = t2 (MN)_1n'V2J(o:+(MN)“^t2n1 ,P+(MN)"^t2n2)n

+ (MN) 1 C (MN)“1VJ (a ,p )-VB (<x, p ) 3+K(oc+(MN)"^tr\1 ,P+(MN)“^tn2)-K(«(P)

where ItjKjt], jt2 K|t|. The uniform convergence of (3.3.14)), 
(3.3.16) and (3.3.18) in D6 , and the convergence of (3.3.15), imply 
that, as M, N -*» (provided N0 1<M<N0 for any fixed ©i and e with
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0<©i<©<«),

Mg{t :cc, 3 ) --- > exp{tn'VB(ct,B) }

M-p(t:cc,3)--- » exp{t2n ' V2B(<x,3)r\}

Since exp{t2n 1 v2B(<x,jB)n> is the generating function of the normal 
distribution with zero mean and variance n 'v2B(a,3 )r\ , and since 
exp{tn 'v b (o:,3)} is that of the degenerate distribution at n'VB(«,3), 
it follows that

(MN)_1Q
pr

^  VB(«,3)

(MN)~^((MN)“1Q - VB(«,p ) ) ----> N(0,V2B(cc,3) ) .

(3.3.19)

(3.3.20)

Pickard's(1977) numerical results of the asymptotic correlation 
between and Q2 showed that v2B(cc,3 ) could be a positive definite 
matrix when (a,3)' is not a critical point. It is very difficult to 
prove this, because of the complexity of the function B(<x,3). We will 
assume this result in the remainder of present discussion.

The likelihood function (3.3.1) cannot be maximized, since C(oc,3 ) 
and VC(<x,3) are almost impossible to compute. An obvious alternative 
solution is to maximize an asymptotic-likelihood, <xQ}+3Q2-MNB(<x,B)»
or to solve the asymptotic-normal equation

(MN)"1Q = VB(cc,3) . (3.3.21)

Suppose <xq, 30 are the true values of the parameters and (ocq.Pq )' 
is not a critical point. Denote by (<x,3) the solution of (3.3.21). The 
standard method therefore yields that, as M, N— (provided N8l<M<NG 
for any fixed ©1 and © with 0<©i<©<»),

(MN)' oc - «o
L3 - 30J

D N(0,[V2B(<xq,3q)I-1) (3.3.22)

and

a' '“o’ (3.3.23)
.3 . ^0

Note that (3.3.23) holds even if (ocq,3q) 1 eCL. For the symmetric 
case, with <x0 = 3 q ,  suppose the asymptotic-MLE <x maximises
<xl1 Q-MNB(oc,a) , where J=(l,l)'. Then

(MN) 1 (<x - <xq) N(0, [l'V2B(a0 ,30 )J3"1)
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and
prcc -* <*0

3.3.5 Testing against asymaetry

In this sub-section, we are interested in testing the null
hypothesis

Hq: <x - p , ccelR-{±i£sinh’"1l}

against the general alternative hypothesis of 'not Hq ' . We shall
consider the use of the likelihood-ratio test. However, as indicated
in the previous sub-section, it is almost impossible to maximize the 
likelihood function. The asymptotic-likelihood-ratio test is therefore 
used and is defined as follows. Define the test statistic

A(Q) = Suplai (Q |oc,p) - suplai (Q [oc, cc)
<x,J3 oc

= ocQ̂  + PQ2 - MNB(oc,p) - oc(Q̂  + Q2) + MNB(cc,oc),

where (oc.P) ' is the maximizing point of lal(Q |<x,p), while <x is that of 
lal(Qjcx.cc); lal is the log-asymptotic-likelihood, namely, 
<xQ^+PQ2-MNB(a,p). We do not know the distribution of A{Q) , but we may 
use its asymptotic properties. For a size 5 test, we shall define the 
upper 5-point q6 , by

max lim Pr (A(Q)^q6 |oc=p) = 5.
aeR-{sfc^sinh_1l} M,N. »»

If cc=/3=ccQeiR-{±j£sinh~"‘*-l} provides the true value of the parameters, 
clearly, oc, p and <x converge to oc0 in probability. Let 
£ = (MN)^A~^[Q-vb(ocq ,ocq) ], where A=V^B(ocq,ocq) . It can be derived that

4

(A% 1 ) (A% 1 ) 1
A(Q) = ^£'[1- -----------  + o(l)3£,

1 ’ Al

where o(l) means that it converges to zero if a, p and a. converge to 
cc0, so it converges to zero in probability. Let d=A^i/||A^l||= (d-ĵ , d2) ' ,

and £^=U£=(£-^, £1 2 )'* Then U is an orthogonal matrix,u = [dl ~d2' 
d2 dl'



Chapter 3 51 MRF Inference

and Is asymptotically normal with zero mean and covariance matrix
I. Therefore, as M, N— -*>o (provided N0 1<M<Ne for any fixed ©i and © 
with 0<©i<©<“ ),

Lim Pr[A(Q)>q63 = lim P r ( ^ 112>q6 );
M , N } M , N ■

is asymptotically normal with zero mean and variance 1 , and the 
upper 6-point, q6 , is therefore easily obtained.

Now suppose are the true values, (<x0 ,3o)€^+l+^+2* Define <*0

by

l ’VB(a0 ,a0) = J'VjB(«0 ,|50 ) .

Note that the above equation has one and only one solution. 
Clearly, (a,i§)' converges to (ccq^q) 1 in probability and a converges 
to <xq in probability. Therefore

(MN)"‘1A(Q) — B(o:0 ,o:0) - (ct0-<x0 , a0-J30 )V£(cc0, P0) - fi(«0 ,P0)

Since £(<x,jB) is a strictly concave function, the right part of the 
above formula is positive, implying that, when the alternative 
hypothesis holds, the test statistic a(Q) has, in probability, the 
same order as MN. While Hq holds, a(Q) satisfies a x2 (l) distribution.

3.4 Simulation of MRFs; Stochastic relaxation

Methods of Monte Carlo simulation of Markov random fields are now 
not completely satisfatory. The theoretically valid speeds of 
convergence of these iterative methods are slow, and the computational 
demands are very substantial. The stochastic relaxation method of 
Geman and Geman(1984) treats each pixel individually at each stage, as 
far as updating is concerned. As we mentioned before, if we imagine a 
block of pixels, for example, one line, as one point, fields are still 
Markov random fields, or Markov chains, and their distributions are 
still of Gibbs-distribution form. Somewhat in the spirit of Clifford's 
discussion of Besag(1974), we may update Markov random fields a line 
(row or column) of pixels at a time. Thanks to the techniques we 
developed for one-dimensional Gibbs fields in Chapter 2 and because 
the density of one line, conditional upon its neighbour lines, is a 
Gibbs distribution, this sort of updating for one line can be carried 
out.
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The stochastic relaxation method is not the best method for 
simulating Markov random fields(Ripley and Kirkland, 1990). In this 
section, We discuss theoretical convergence properties of line 
relaxation, and rely mainly on a simulation study to compare the
practical convergence rates of point relaxation and block relaxation,
in particular, line relaxation.

3.4.1 Line relaxation

For a Gibbs field with distribution p(X=x), Geman and Geman(1984)
proved the following. Suppose {n^ t>l) is a sequence of pixels such
that it contains each pixel infinitely often. Whatever the starting 
configuration, x(0 ), we visit the pixel nt at time t, and decide a 
new state for it according to the local probability properties and the 
current states of the neighbouring pixels of n-̂ . Then

Lim Pr(X(t)=w(x(0)) - p(X=w). (3.4.1)t-»»
As described, the relaxation only changes the state of one pixel 

at a time, although synchronous updating is also possible. The rate of 
convergence depends on

6 = inf p(Xij*=xij |x3lj-> (3.4.2)
(ij) ,x

If we assume that the pixels are visited cyclicly, and let x(t) 
denote the result after the t-th cycle, then

Sup |Pr(x(t)|x(0)) - p(x(t))[ ^ r1 , (3.4.3)
x(t),x(o)

where r=l-SL6 ,̂ S is the number of possible labels for each pixel and 
L=M*N. For a particular case, say, the first order Markov random field 
discussed in the last two sections, with a single parameter g>0 and 
with only two states, we have 6=i/(i+exp(4£)), so that r might be very 
near unity. Although we can obtain a better rate, it can only be 
improved a very little, as in the case, for example, for the above 
first-order model. There are, therefore, often practical problems in 
using relaxation to simulate Gibbs samples.

Stochastic relaxation is based on the local properties of Gibbs 
random fields. We concentrate on the first- or second-order pairwise 
interaction MRFs with appropriate distribution forms such as (1.3.3). 
Denote by X^ the i-th row. It follows that the density of Xj,
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conditional upon all other rows, depends only on its two nearest rows. 
To be precise,

pfXj^Xi |xai,P) = pUilx^i.x^-pP)
N _ N-l

exp{ £ G^j(x^j) + i j+1 )(x|j,Xj(-j+j)}/C(Xi_ltX|+1) ,
j=l j=l

(3.4.4)

where Gjj(xjj) depends on and x^+^.j (for the first-order case)
together with X|_ltj+1, xi+l,j-l an<̂  xi+l,j+l (for tile
second-order case). All these functions G or G depend on the parameter
£, although in (3.4.4), we omit explicit mention of the parameter.
Note that the above distribution, (3.4.4), is of first-order Gibbs
chain form. Thus, in the same way that we change the state for one
pixel, we can obtain the new states of the i-th row, given x^.-.x-j^},
x^+1,..., x^. This is a relaxation by replacement of one row instead
of one point. We can visit the rows one by one, or carry out
synchronous updating. In this case, the rate of convergence depends on

*

= inf p ( x i \xi_ 1 ,xi+1) (3.4.5)
i ,x

and

Sup |p(x(t )|x(0)) - B(x(t))l < r 1t , (3.4.6)
x(t),x(0 )

where r^ = l-S^s^. Generally, rj<r(equivalently, Since the
nearby pixels of a Gibbs field tend to have the same states, 6  ̂ should 
be p(X^=(l) ' |Xj_i=Xj; + 1 = (0 ) 1 ) for the first-order model with two 
states, for which we have discussed the corresponding 6 above, where
(1)' denotes a vector of 1 1 s and (0)' a vector of O's. This 6 -̂ is
l/R}, where

l+2e^+e4p-(l+e2p)x2 m _ i (l+e2 p )Xi-l-2e^-e4^K-1 —  ±---------- ' AO''
X 1 “ x2 . X 1 “ x 2

and
X1={l+e2^+[(e2P-l)2+4)]i£}/2, X2={l+e2e-[ (e2^-l) 2+4 ]^>/2 .

It is easy to see that R}<[l+e4^]N .

3.4.2. Simulation study

In the next section we will discuss in detail several kinds of
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pseudo-likelihoods. Here we mention only point pseudo-likelihood 
(Besag, 1974, 1986), which is based on the local conditional
distribution of a pixel, and line pseudo-likelihood, which is based on 
the local conditional distribution of a line of pixels. In the 
practical computation involved in stochastic relaxation, pixels or 
lines are visited periodically. We also note that, for line 
relaxation, rows and columns can be visited alternately, in that we 
can first visit all rows, then all columns, then rows again, and so 
on.

Before we describe our simulation results, we specify the 
particular form of Markov random field, which we discussed in the 
previous two sections. However, we only consider the symmetric case, 
so that only one parameter «=p is involved. This is the first-order 
Markov random field which treats all colours equally. The simulations 
are based on this particular case, although the methods can be used 
straightforwardly for general Markov random fields.

2. 5 3-C0L0UR-MRF
2. 0

1.5

1.0

3=LRl-PPL0.5

IT—I0. 0
0 5 10 15 20

2.0

1.5
UPR-LPL

l. 0

3=LR1-LPL0. 5

1T-N
0. 0

0 5 1510 20

Fig 3.4 Results of first 20 cycles of relaxations for 3-colour MRFs

Fig 3.4 provides results from the first 20 cycles of iteration; 
where one cycle means that every pixel is visited once. It is based on 
a three-colour MRF with distribution (3.2.8), on a 128x128 lattice. 
IT-N denotes the iteration number. We initialised the simulation with 
a white noise image. The true value of cc is 1.5 and the results for a 
are in the form of sample means from 10 replicates. PR means point 
relaxation, LR means line(row) relaxation, while LR1 denotes alternate 
row-column relaxation. PPL denotes maximum point pseudo-likelihood
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estimation and LPL denotes maximum (one) line pseudo-likelihood 
estimation. From Fig 3.4, we see that line relaxation or alternate 
row-column relaxation is only a little better than point relaxation, 
and for all three methods, the maximum pseudo-likelihood estimates 
are, on average, almost the same as the true value after 15 cycles of 
iteration.

Although the average maximum pseudo-likelihood estimate is almost 
equal to the true value, we still cannot say that the iteration has 
converged. Fig.3.5 shows results for binary Markov random fields with 
many more cycles of iteration. There is only one sample for each 
relaxation. AL denotes maximum asymptotic-likelihood estimation 
(Pickard, 1976, 1987). Theoretically, because of its asymptotic
normality, AL gives a better idea about whether or not the iteration 
has converged. We still find that LR or LR1 converges faster than PR.

Unfortunately, it is known that, when a is big (bigger, for
example, than the critical point for binary Markov random fields), the
simulated scenes are usually close to being one-colour images. Ripley
and Kirkland(1980) reported this phenomenon. We found that the images

♦
are close to being one-colour once the AL estimates are almost equal 
to the true values, which may be a consequence of the clustering 
property of Markov random fields. We also note from Fig 3.5 that, at a 
certain stage in AL, there is what appears to be almost a jump to the 
true value for each realization. Fig 3.6 and Fig 3.7 provide some 
simulated patterns with small and large values for the parameter, 
respectively, but they are for second-order case, for which the 
distribution is almost the same as that in the last two sections, but 
each pixel has 8 neighbour pixels. In both figures, the upper three 
are those simulated by PR, while the lower three are simulated by RR. 
Monochromatic images are not usually useful in practical contexts 
and, in practice, Markov random fields are usually simulated under the 
condition that there be a prescribed number of pixels of each ^colour 
or that the boundary pixels be of predetermined colours, but the 
resulting patterns may be unrepresentative of the corresponding 
theoretical distributions.

Other block relaxations, such as two-line or more-line relaxation, 
could also be used, but our simulations showed that two-line 
relaxation is almost equivalent in performance to one-line relaxation. 
Even for one-line relaxation, although the maximum pseudo-likelihood
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Fig 3.5 Results of relaxations for binary MRFs
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Fig 3.6 Simulated patterns with cc=0.3 after 500 cycles

' is: *■- ■-I'v1 ■

* ‘“..'‘I H■ "jil' .. • v/VlA' i. v j
^5rtegCT>3ri,

Fig 3.7 Simulated patterns with a=0.7 after 500 cycles
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estimates converge to the true values faster than is the case with 
point relaxation, it is possible that the asymptotic-likelihood 
estimates converge more slowly.

3.5 Pseudo-likelihood parameter estimation

For general Markov random fields, it is difficult to write down 
useful expressions for their partition functions, or to compute them, 
so it is difficult to maximize the likelihood p(x|B) directly(Besag, 
1976, Possolo, 1986). Younes(1988a) used a Monte Carlo technique to 
maximize the log likelihood function. However, as mentioned in the 
last section, the Monte Carlo technique requires heavy computation. 
Alternatively, Besag(1974, 1976) introduced the coding method, in
which we maximize

^ P(XjjIXgij,p ) (3.5,1)
i jeA

where a is a subset of the whole pixel set such that, for any ij, 
mneA.ij^mn, ij and mn are not neighbours of each other. The Markov 
properties of Markov random fields ensure that p'(x̂  j | xgi j , j3) depends 
only on several neighbour pixels of ij, Hp(xjj|x3jj,P) is therefore 
easily maximized. One could extend the definition of (3.5.1) and take 
a to be the whole pixel set, which results in the so-called point 
pseudo-likelihood form. Since the density of one line, conditional 
upon all other lines, is a Gibbs chain, and depends only on several 
neighbouring lines, according to the neighbourhood system, we (Qian 
and Titterington, 1989, 1990e) introduced line(row) pseudo-likelihood 
functions, among which the one-line case is

11 P(xi !xsi’£) * (3.5.2)
i

where ai means the neighbouring rows of the i-th row. Another way of
i _.

writing a pseudo-likelihood function is

IT p(xA lx3A ,/3) , (3.5.3)
AeO

where Q is a class of some subsets of the pixel set, and a denotes 
elements of Q, Geman and Graffigne(1987) proved the consistency of 
pseudo-likelihood parameter estimation. Expression (3.5.3) can then be 
considered as a block pseudo-likelihood function, and (3 .5 .1 ) and
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(3.5.2) are special forms of (3.5.3). Note that each conditional 
density p(x^|xa^tp) in (3.5.2) corresponds to a Gibbs chain, and we 
can therefore compute its normalizing factor, ie, the partition 
function, and thereby to compute p(x^jx^,3). If then the parameter 3 
is one dimensional, we may use the Golden-Section Search method to 
obtain the maximizing point.

The recursive technique developed in Chapter 2 also enables us to 
compute the expectation of the exponential part of a Gibbs chain, and 
therefore, in the case where the exponential part is linear in the 
parameter, we may maximize the likelihood by the iterative procedure 
(2.2.9), which converges linearly. Denote by B(3) the above pseudo
likelihood form. Then the corresponding iterative procedure for 
maximizing B(3 ) is

where P is either a positive constant or a positive definite matrix. 
As in Chapter 2, the difficulty is the choice of P which influences 
the convergence rate. For (3.5.2), we can usually compute the

iteration is the Newton-Raphson method, while, for (3.5.3), it is 
difficult to compute the second-order differential, so that the 
Newton-Raphson method is not available. However, when the exponential 
part of p(x-[ |xa  ̂,3) is linear in 3, the second differential of 
-Logtp(X| (xgĵ ,3) ] is the conditional covariance matrix of the 
exponential part, given the neighbouring lines. Thus the second-order 
differential of Log[B(B)l is usually a negative definite matrix. If it 
has a negative upper bound with respect to 3, choosing P to be 
non-small and positive can ensure convergence.

Note that, if we combine two points such as (Xjj,Xi+1 j) together 
as one point, Zjj, say, then Z-̂ j has S2 states. The conditional 
distribution of can therefore be written as f

It is clear that the above distribution is still a one-dimensional 
Markov random field, but each point has S2 states. We can therefore 
consider another form of block pseudo-likelihood,

^n+l = ^n “ P_1 (a/33)log[B(3n )], (3.5.4)

second-order differential of logtB(3)], so P can be chosen so that the

P(xi »^i+l!^a(i,i+1 )*£) (3.5.6)
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We refer to this as two-line pseudo-likelihood. We can also 
consider three-or-more-line pseudo-likelihoods, but the computational 
burden increases quickly as the number of lines increases.

Some simulation results are provided in Chapter 5, together with 
parameter estimation from noisy data. There, we generate images, 
estimate parameters, then add noise, and estimate parameters again, 
from noisy data.

3.6 Discussions

We have presented some theoretical and simulation results in this 
chapter. The explicit matrix expressions for partition functions are 
only obtained for simple cases, ie, the Ising models. For the 
two-colour case, Kaufmann(1949) obtained an eigenvalue expression, 
which enabled Pickard(1976) to examine the asymptotic properties of 
the model. For the multi-colour case, although we obtained similar 
results, as far as transition or the critical points is concerned, it 
may require theoretical results about finite matrix algebra and the 
representation of finite Lie groups, in order to get further 
properties associated with the partitions. So far as the Monte Carlo 
method for generating Markov random fields are concerned, we emphasize 
that the stochastic relaxation method is not the best method and that 
practical simulation are usually carried out under some restrictions. 
Maximum pseudo-likelihood estimation can be used for general MRFs, 
while some other methods are available only for special cases. 
Pseudo-likelihood functions are based on local conditional properties. 
However, for first-order MRF, for example, one pixel has four 
neighbouring pixels, while one line only has two neighbouring lines, 
therefore line (block) pseudo-likelihood uses fewer pixels as 
"condition" in the corresponding conditional distributions than does 
point pseudo-likelihood. It may therefore be more "close" to th& true- 
likelihood and thereby may provide more efficient estimates. Since 
pseudo-likelihood estimators are consistent, the variance(covariance) 
of block pseudo-likelihood estimators may be "smaller" than that of 
point pseudo-likelihood estimators.
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Chapter 4

Normal Approximations For Lattice Systems

4.1 Introduction

In this chapter, we still consider Markov random fields on a 
rectangular lattice. Let X={X^j: l<i<:M, l<j<N) be an array of random 
variables on the MxN rectangular lattice, where Xjje{l, 2 , . . . S} . 
Throughout this chapter, we shall fix N. For i=l,2,...M, define 
X-^CX^i ,X^2 , . . . Assume that X=(X1 ,X2, ■ . .X^) is distributed as a
particular Markov random field with

1 M M-l
P(X|«,P) = ----- exp{oc1 E f (X± ) + P' E g f X ^ X ^ ) }  (4 .1.1)

C(«.PJ i=1 i=1

where the parameters a, p might be vectors, and f, g are vectors with 
the same dimension as cc and p respectively. Model (4.1.1) is a general 
stationary Markov random field, stationary in the sense that the 
interaction terms are independent of location. Particular forms of f 
and g can represent first-order and second-order interaction MRFs. If 
we consider X^ to be a combination of two rows or more, (M would then 
be even or a multiple of some fixed integer), model (4.1.1) could 
represent a high-order MRF. p is the interaction parameter along the 
column direction (i.e., between rows), while <x, in whole or in part, 
is that along the row direction. Strauss(1975), Saunders et al.(1979) 
and Kryscio et al.(1980) considered the asymptotic properties of the 
sample correlations of neighbouring pixels for binary lattice 
processes under the condition that all interaction parameters are zero 
or almost zero. Asymptotic normality properties were then used to 
obtain an approximate likelihood for parameter estimation (Possolo. 
1986) and to compare the power of some tests for randomness (*i. e . ,'': 
whether or not the pixels are independent)(Kryscio, et al., 1980).

Define

M M-l
^M ~  ̂ f (Xi ) : = T, g(Xj,X| + }).

i=l i=l

In what follows, we use the central limit properties of finite- 
step-dependent stationary processes to show that the random variables
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(Ym ,Zm )' have a normal limiting distribution when M becomes large, 
subject to conditions on the parameter 3 . We first handle the case 
where the rows are independent (3=0 ), and then extend to the case 
where 3 is proportional to the square root of the variance of Z^. As 
in Possolo(1986), limit results are also used in relation to MaxiMum 
approximate- likelihood estimation(MALE) for some particular cases. We 
discuss the problem of testing for the randomness of rows, and provide 
simulation results and comparisons with MALE based on the asymptotic 
normality results obtained under the condition that all interaction 
parameters are zero(Kryscio et al., 1980, Possolo, 1986).

4.2 Limiting result when P=0

Consider an independent chain {yi). i-1,2,..., where
y^e(l, 2, . . . ,T), with pj=Pr(y^=j). Let A(y-[,yj+1) be a finite function 
defined on {1 .2,..T)x{l,2,..T), where A might be a vector. Define

M-l
WM = r A(yifyi+1). 

i=l

We then have the following lemma.
Lemma: Suppose 0<pj<l, j=l,2,..T. Then - EWM ) has a normal
limiting distribution with zero mean and variance (or covariance 
matrix) Vw as M— ><*>, where

V̂ t ~ EA2A^ + E(A}A2 + AgAf ) — StEA^) (EAj) 

where Aj = A(ylty2)* A2 = A(y2 ,y3 ). »

Note that the process {A(y-[ ,yj+-j_}} is a one-step-dependent 
stationary process. Furthermore, since A(*,*) has a finite sample 
space, (A(y-^. ) )  is a first-order strictly stationary Markov chain. 
Standard methods can be used to prove that (M-1)”^(WM - EW^) is 
asymptotically normal, as In fact, it can be shown by some long
and tedious calculations that the moments of WM converge to the 
moments of the limiting normal distribution, thus establishing the 
lemma (Moran. 1968). (Details of the proof of the lemma are omitted.)

When P=0, the rows in model (4.1.1) are independent and 
identically distributed. Each row can be considered as one point with 
SN states. Therefore, two straightforward results for model (4.1.1) 
follow from the lemma and are presented in the following theorem.
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Theorem 1 : When J5=0, then, as M— »°°.
1. - EZm ) has a normal limiting distribution with zero mean 

and variance (or covariance matrix, if g is a vector),

Vz = Egg,+E(g(X1 ,X2)g(X2 ,X3 )'+glX2,X3)g(X1 ,X2),)-3(Eg)(Eg)'

(4.2.1)

J YM - EYM]
2 . M * has a multivariate normal limiting distribution

-ZM “ ezM-
with zero mean and covariance matrix V - (v-jj), 

where v -q  = Eff' - (Ef)(Ef)'; 

v22 = VZ;
v 12 = V 21 = E[f(Xj) + f(X2) - 2Ef][g(X^,X2 )-Eg] . «

4.3 Limiting results under close alternatives

In this section we consider the limiting distribution of ZM under 
another condition, namely that where is a constant. Thus,
under this alternative hypothesis, the interactions along columns are 
sufficiently small that the assumption of independence among rows is 
'nearly1 true.

Let wM (t|«) denote the moment generating function of (Ẑ -EZjyj) 
when J3=0, and let #M (t|cc,J3) denote that in the case where J3*0. Then

1
%(t|o:,/3)=r —  -exp{<xYM + |SZM }exp{tM-fe(ZM-EZM )> (4.3.1)

X C(oc,P)

and

% ( t  jot) = % ( t  |oc,0) . (4.3.2)

It is easy to find that:

% ( t  « HM {t + JSjIccJ/Wj^pJcc). (4.3.S)

If the sequence of moment generating functions tfM (t|«) converges 
to that of a normal distribution for all t, it follows from (4 .3 .3 ) 
that (ZM-EZjy[) has a normal limiting distribution under close 
alternatives, since the ratio of the limiting moment generating 
functions in (4.3.3) is also the generating function of a normal 
distribution. We proved in the previous section that (Z^-EZ^)



Chapter 4________________________64___________________ Normal Approx

converges In distribution to a normal random variable. In general, 
however, convergence in distribution alone does not guarantee that the 
corresponding sequence of moment generating functions will converge to 
the moment generating function of the limiting random variable. 
Although some tedious calculations for the moments of 
could be used to establish convergence of the sequence of moment 
generating functions, we use an argument similar to that of Kryscio et 
al.(l980). Saunders et al.(1979) showed that convergence in 
distribution implies convergence of moment generating functions 
provided the sequence of moment generating functions is uniformly 
bounded in an interval containing zero. Thus, to establish the 
asymptotically normal properties of under close alternatives it is
sufficient to show that, if 13=0, then there is a constant c>0, such
that

Eexp{tM"^(ZM - EZm)} * c (4.3.4)

for -A^t<A with A>0,

Note that t
[M/2] [(M-l)/2]

ZjpEZjf = E [g(X2i_i > X2|) ~Eg] + I Cg,(X2;[ ,X2i+^)“Eg3 
i~l i=l

(4.3.5)

where [a] denotes the integer part of a, and that, for each sum in
(4.3.5), denoted by and S2 respectively, elements are independent 
and identically distributed. Thus,

Eexp{tM“^(ZM-EZM )} < [Eexp{2tM_% 1 }Eexp{2tM~^S2 }]1/2 

= [Eexp{2tM"^(g-Eg)}]M/2.

Consider the joint density of two rows of variables, X^ and X2,
with partition function Co(cx,jB), ie

*

1
P(X1 .X2 |a,P) = -------exp{tsf(X1) + af(X2) + Pg"(X1 ,X2)>.

C2 {k .P)

Clearly, when « is fixed, C2 (cc,*) is an analytic function. Note
that Eexp{2tM“Ĵ g(X1 ,X2) > = C2 (ot, 2tM-  ̂) /C2 (a, 0 ) . Thus
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M
logEexp{tM“M(ZM-EZM )} < -[logC2 (cc,2tM~M)-logC2 («,0)-2tM"^Eg].

2

8 iSince Eg=-gplogC2 (oc,iB) Q, application of simple analysis to the

right-hand side of the above inequality shows that it is uniformly 
bounded, for t in any finite interval containing zero. We have 
therefore proved (4,3.4). Since

tfM (t+p2 |«)--- > exp{J£Vz(t+Pi)2} , as M ■*»

and
 ■* exp{KVzP1 2 } , as M ,

we can summarize the above discussion as follows.

Theorem 2 : When P=M_^Pi, M~^(ZM-EZ^) has a normal limiting
distribution with mean VzPj and variance Vz, as M— *». #
Remark: In this and the previous section, the operator 1E r denotes 

expectation under the condition that p=0. If 13 is a multi-dimensional 
parameter, similar results hold, but with vector-matrix notation as 
appropriate. '

Theorem 1 and Theorem 2 provide a basis for a statistical test of 
the null hypothesis H0: JS=0, against the alternative hypothesis Ha: 
£ = M &i*0. If cc is known, then the appropriate test of Hq versus 
Ha is based on the statistic

T = M - W Z-1(ZM - ezm ).

By Theorem 1, this statistic has, under Hq , a standard normal 
limiting distribution, while, by Theorem 2 , under Ha , it has a normal 
limiting distribution with variance 1 but with non-zero mean.

4.4 EZjj and Vz in particular cases
t

We now consider how to obtain EZ^ and Vz . For convenience, assume 
P be a scalar parameter. When P=0, each row is independent of the 
others. Therefore,

M
P (X | <x, 0 ) = n PjUi i cc) , (4.4.1)

i = l

where



Chapter 4 66 Normal Approx

1 exp{ccf ( }  > (4.4.2)

and C-̂ cc) is the partition function for one row. In Chapter 2, we 
developed a recursive technique for one-dimensional Markov random 
fields; see also Qian and Titterington(I989, 1990a) . This technique
enables us to compute C-ĵ a) and Eg(X^,X^+i) for a variety of forms of 
f and g. In particular, suppose

where 6 is the Kronecker delta function. This particular case 
corresponds to a first-order Markov random field which treats all 
colours equally. From Chapter 2, we know that, when |3=0, each row is 
simply a strictly stationary Markov chain, vfith

N-l
f ( x A ) - r 6 ( x i j f x 1 ( j + 1 ) 

j=i
(4.4.3)

and
N

g(Xi,X1+1) = I 6 (Xij,Xi+ltj),
j = l

(4.4.4)

1 j+t-1

S(e<x+S-l)t
■exp {a I 6 (xiv,xltV+1)>. 

v=j

(4.4.5)

Clearly,

C2 (<x) = S(ea + S - l)N~l 

and E5(xlj-,xi+1 f j ) = 1/S.

Thus, EZm - N(M-1)/S.

From Theorem 1, we know that

(4.4.6)

(4.4.7)

= a + 2b, 

where a = ECg(XltX2) - Eg]2 ;

b= E[g(X1 ,X2) - Eg][g(X2 ,X3) - Eg]. 

Note that, for the particular case,

b - E{E[g(X2 ,X2 )|X2 ]E[g(X2 ,X3 )jX2]} ~ N2/S2
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Thus, although g(XltX2) and g(X2 ,X3) are not independent, the
correlation between them is zero. We therefore only need to know a.

Consider the random chain {6 (x-jj ,x2|)}. It is clearly a strictly 
stationary first-order Markov chain with only two states {0,1} and

N-l
a = Nr0 + 2  E (N-i)r^, (4.4.8)

i=l

where r^= E[6 (x-j^,x2 1 )-E6 ][6 (xjt ,x2 j )-E6 ], the i-th order
autocorrelation of {6 (x2j,x2^)}. In view of the properties of strictly 
stationary binary Markov chains, r^ takes the form (Appendix 2)

ri = r0xi* 1=1,2,... (4.4.9)

Simple calculations from the density functions of (x1 1 (x21) and
(xll’x1 2 -x2 1 ’x2 2 ) Sive

r0 = (S-l)/S2 (4.4.10)

,2a S - 1 1
and r2 = --------------  -  . (4 .4 .1 1 )

S(e<x + S - l)2 S2

S (e2cc+S-l) - ( ea+S-l)2 Thus, X = --------- :-------------, (4.4.12)
(S-l)(e^+S-l)2

We have now obtained EZĵ  and Vz for this particular case. Note 
that (4.4.9) is associated with the first-order strictly stationary 
Markov chain with only two states, and x is the eigenvalue of its 
transition matrix that is different from unity. In general, if g has 
the form

N
g(Xi(Xi+1) = Z d ( x ^ j .j), (4.4.13)

j=l

where d is not now the Kronecker delta function (cf (4.4.4)), both a 
and b have a form similar to (4.4.8) (see Appendix) with

rj_ = ZujXji, (4.4.14)
j

where the {xj} are the eigenvalues of the transition matrix of the 
corresponding first-order strictly stationary Markov chain 
{d(x^j,x2j)}, excluding the eigenvalue unity. The number of these
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eigenvalues is associated with the number of values that can be 
assumed by d. In some cases, the order of the corresponding Markov 
chain may be higher than 1 . However, similar results could be also 
obtained by using formulae similar to (4.4.8) for higher order Markov 
chains. For example, if two points are combined as one, a second- 
order Markov chain with S states can be regarded as a first-order 
Markov chain with S2 states. Thus, we only need to calculate several 
low-order autocorrelations in order to obtain Vz . It should be pointed 
out that (4.4.3) is a special form which renders each row strictly 
stationary. For other forms of f, with the condition that each row is 
a finite-order, strictly stationary Markov chain, similar results for 
EZ^ and, especially, for Vz , might also be obtained. For the 
calculation of EZ^, it is not necessary to let each row be stationary.

4.5 MALE for Markov random fields

In this section, we consider the use of the approximate form of
the partition function C(<x,j3) in parameter estimation. From (4.1.1),

«
M M-l

C(«,p) = lexp{a I f(X}) + p E g(Xj,Xi+1)}
X i=l i=l

M
= [C1 (c:)]MeXp{p(M_1 )Eg)z;eXp{p (ZM_EZM)> n Pl(Xij<x)

X i=l

= [C1 (<x)]Mexp{iS(M-l)Eg}tfM (M^|<x) (4.5.1)

where %(*!«), defined by (4.3.2), is the moment generating function 
of M~^(Z^-EZjj). Since we have proved the asymptotic normality property 
and the convergence of the sequence of the moment generating functions 
for M_1*(Zj^-EZ^) , and although M %  is related to M (not fixed), we may 
still use exp{J£M|32vz} as an approximation to tf̂ (M̂ /3 |<x). We therefore 
obtain the following approximate form of C(«,p): *

C(«,p) = [C^a) ]Mexp{j3(M-l)Eg}exp{J£M32Vz} . (4.5.2)

For the particular case described in (4.4.3) and (4.4.4), suppose 
both M and N are large enough for us to omit the difference between N 
and N-l. M and M-l. By noting that
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s-i N_1 i . (s-i)(i+x)
Vz = N Cl + 2 E (1 - -)X1] = N----------- ,

S2 1=1 N S2 (l-X)

we therefore have the approximate log-likelihood function

1 M N-l M-l N
— {— le^C(oi,P) + oc E E j+1^ "** ^  ̂  ̂ 6 (Xi j ,Xi + j j ̂ ̂
^  i=lj=l ’ i=lj=l

1 M N-l M-l N
~ Z E 6 x̂ i j ,xi ,j+1^ + £ E £ 6 (x ij-x i + l tj ))MN i=lj=l i=lj=l

P (S-l)(l+X) _
- log(e“+S-l)- - - ---------- j5 , (4.5.3)

s 2S2 (1-X) 

where x is defined by (4.4.12).

For the binary case (S=2) when ct=j3, note that

1
P(X|cO * exp{-4aExij + 2oc E'xijXjUV},C (ot)

where E" denotes the sum over nearest neighbour pixels, and Xjje{0,l}f 
for all i,j. This is the first-order form of the density for binary 
MRF considered by Strauss(1975), Saunders et al.(1979), Kryscio et 
al.(1980) and Possolo(1986). Consider another density involving two 
parameters, namely,

P(X|u.v) = C(u, vJ^expCuEx-i j + vy>, (4.5.4)

where y=E'x^jxMV. When v=0, all points are independent with the same 
distribution function. Bloemena(1964) and Kryscio et al.(1980) proved 
the asymptotic normality properties of y when v=0. The technique, 
which uses the moment generating function of the normal distribution 
to approximate the moment generating function of another random 
variable, was also used to obtain an approximate form of 
C(u,v)(Possolo, 1986). Bloemena(1964) gave explicit formulae for Ey 
and Var(y) under v=0. Omitting the lower-order terms, we have that, 
when v=0 .

Ey = 2MN© 2 

and Var(y) = 2mn02(1-e)(1+70),

where 0=eu/(l+eu). We can hence obtain an approximate form of the
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log-likelihood of (4.5.4) as follows(see Possolo, 1986):

u— fxj-s+v— y-log(l+eu)-2v©2-v2©2(l-e) (1+70). (4.5.5)MN MN

The results of a simulation study of parameter estimation based on 
the maximization of both approximate likelihoods, (4.5.3) and (4.5.5), 
for binary MRF involving only one parameter, namely, «=g, is presented 
in Fig 4.1a. There are 128x128 pixels. The generating MRFs are 
simulated by the method of stochastic relaxation(Geman and Geman, 
1984). Although there is no guarantee for convergence of the 
simulation procedure for MRFs, by noting the simulation results in the 
previous chapter, we know that, after 20 sweeps of relaxation, the 
generated patterns are very 'close' to the MRFs, especially in the 
cases where the parameter is less than the critical point. Denote by 
L-P-L the line pseudo-likelihood estimation method which we described 
in the last chapter (see Qian and Titterington(1989, I990e)), while
P-AP-L and L-AP-L denote the maximum approximate likelihood estimates 
from (4.5.5) and (4,5.3) respectively. ((4.5.5) and (4.5,3) are based 
on the assumptions of point-independence and* line-independence, 
respectively.) Fig 4.1b represents some results for three colour MRFs. 
In both Fig 4.1a and Fig 4.1b, the values are means of 10 samples for 
each value of the parameter.

2-COLQUR-MRF.5

. 2
L-AP-I

0. 9

I. 6

i. 3

'.0

0.0 0.3 0.6 0.9 1.2 1.5

3 - C 0 L 0 U R - M R F

1 . 2

0. 6

0.3

0. 0

0.0 0.3 0.6 0.9 1.2 1.5

(a) (b)
Fig 4.1 Simulation results of MALEs for two and three colour MRFs

From the figure, we know that the maximum approximate likelihood 
estimates are near the true values only in a small region. Although we
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find that L-AP—L is better than P-AP—L, the quality of each 
approximation depends upon p and M. Since #M (t|«) does not converge to 
exp{j£t2\72 ) uniformly for -<»<t<», whereas M^P is infinite when M-*», the 
practice of using exp{J£MP2Vz} to approximate %(l#P|oc) could cause 
totally different behaviours.

In conclusion, we may remark that the MALE can only be used for a 
small region of parameters and that similar results might also be 
obtained for the conditional distribution of Z^ given Yjj under the 
condition that Y^=Ef(Xj[) is known. Since (YM ,ZM ) are jointly 
sufficient for (<x,P), the asymptotic results about the conditional 
distribution of Zjj under YM can provide an approach to the statistical 
testing problem in the case where a is unknown. The idea of the "line" 
normal approximation described in this chapter is valid for a large 
range of models; the difficulty is the calculation of limiting means 
and variances or covariances. There is the same difficulty in the 
"point" normal approximation. It is known that the lemma in Section 2 
holds under much weaker conditions, so the results may be obtained for 
a variety of models.
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Chapter 5

Parameter Estimation For Hidden Markov Random Fields

5.1 Introduction

We have examined some problems for Markov random fields in Chapter 
3. In practice, however, a random field itself is usually not 
observed. Instead, a blurred and/or noisy version of it is observed. 
This is the case that we consider in this chapter. We mainly 
concentrate on the problem of parameter estimation.

To use Markov random fields as priors in image analysis is a new 
and active subject in recent years. Cross and Jain(1983) provided 
various patterns of texture images which were simulated from MRF 
models. These simulated images were very realistic. Geman and
Geman(1984) proposed simulated annealing methods to obtain Maximum a 
posteriori(MAP) estimation for image restoration from noisy data, but 
the computational problem is enoumous. Alternatively, Besag(1986) 
proposed the Iterated conditional modes(ICM) method, which
concentrates on the local dependence structure of MRFs, and produces 
restored images very cheaply and quickly; see also Glendinning(1989). 
Jubb and Jennison(1988) suggested a modification of ICM, which extends 
the range of ICM to very noisy images and greatly reduces
computational costs. Another modification, called Iterated Conditional 
expectation(ICE), was proposed by 0wen(1986, 1989). Chellappa(1985)
and Derin and Elliott (1987) also examined the use of Gibbs
distributions for texture images. For parameter estimation, Besag 
(1986) proposed an iterative procedure for simultaneous parameter 
estimation and image restoration, based on his Coding technique. Kay 
and Titterington(1986) pointed out the difficulties involved' in the 
EM algorithm in the context of MRFs. Geman and McClure(1985) presented 
a method of parameter estimation, based on the EM algorithm and the 
Monte Carlo technique of generating MRFs, where only one parameter is 
involved in the prior distribution function. Chalmond (1988) used a 
so-called Gibbsian EM algorithm, computing some posterior mathematical 
expectations by the Monte Carlo technique. Younes(1988b) generalized 
his own iterative technique(Younes, 1989), which also use the Monte
Carlo technique, to the case of imperfectly observed Gibbs fields.



Chapter 5 73 Hidden MRFs

which includes the situation with noisy data. Frigessi and
Piccioni{1988a, 1988b) examined consistent parameter estimation using 
the moment method, but only for the two-colour Ising model corrupted 
by noise. Simulation study was used by Thompson et al(1990) to examine 
methods of choosing smoothing parameter in the two-dimensional
smoothing problem. Further relevant work appears in Geman and 
Graffigne(1988).

For the ICM method, we can carry out both asynchronous updating 
and synchronous updating. For the latter case, practical computing 
environment or special computer languages can be used, so that the 
computation is fast. However, as mentioned in JBesag(1986), updating is 
most conveniently implemented as a raster scan, and in that case, it 
converges faster in term of one cycle. Besag’s(1986) experiments for 
the case with one parameter, £, involved in the MRF model, where £ 
represents the interaction between neighbouring pixels, showed that 
when £ increases, the convergence rate decreases. He therefore took £
increasing during the ICM procedure. In Section 5.2. we consider the
case of continuous intensities, and try to describe these phenomena 
from a mathematical viewpoint. We will also show the different 
behaviours of asynchronous updating and synchronous updating, by 
giving a counter example.

In section 5.3, we discuss the difficulties of the EM algorithm 
for multi-dimensional Markov random fields. We have shown that, for 
one-dimensional version of MRFs, both E-step and M-step can be 
carried out. Due to extremely large computational demands, it is 
infeasible to do the same thing for multi-dimensional cases. We will 
also, for the auto-normal case, show the different bahaviour between 
Besag's(1986) iterative procedure of simultaneous parameter estimation 
and restoration, and the iterative procedure of the EM algorithm.

In section 5.4, we develop Besag1s(1986) iterative procedure for 
simultaneous parameter estimation and restoration. The procedure is 
based on a restoration method, such as ICM. and a modified EM 
algorithm which, in each cycle, uses partially the observed data and 
partially the image restored in the last cycle. In a similar way to 
pseudo-likelihood estimation, the modified EM algorithm is also based 
on local conditional densities: for instance, conditional
distributions of one line or two-lines of pixels. Numerical results 
and some further discussion are presented in section 5.5.
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5.2 Discussions on the ICM method

In this section, we use a single subscript to represent a pixel, 
whether the image is one or multi-dimensional. Suppose there are L 
pixels which are labelled in some manner by the integer i=l,2,...L. 
Thus, the pixels are ordered. Let x^) = (x1f-̂ ), x2^  , . .-xj/k) j 1 
estimate of the true scene, x*, at the k-th cycle of iteration, and 
x(k+i) a-t the (k+l)-th cycle estimation. The ICM is based on the local 
posterior probability pCx^ly, xa^3, where Y-y are observed image.

Using asynchronous updating means choosing x ^(k+1) by maximizing

PCX* |y,xi^k+1), . . ,xi+1 k̂ ), . . .xL (k )] (5.2.1)

for each i at each cycle of iteration. Hence, it can be ensured that 

p(-x (k+l)|y ] > p[x(k )|y]. (5.2.2)

The above inequality ensures convergence to a local maximum 
point. For synchronous updating, x^(k+1) is chosen by maximizing

pOily . x ^ 1*) , . . . x ^ ^ )  , xi+1 .... xL (k )]. (5.2.3)

(5.2.3) can only ensure that

pCxj^) , . . ,Xi^k+1) ,xt + 1 k̂) . . . .xL k̂ ) |y]

> p[x2 k̂ ) , . . .x^tk) ,Xi^k ) ,xi + 1 k̂ ) , xL k̂ ) |y]

for each i, but (5.2.2) cannot necessarily be obtained. That means 
that convergence is not guaranteed.

Now consider the continuous-intensity case, where

p(x) oc exp{-^x’qx> (5.2.4)

where Q={b-[j} is a positive definite matrix. This is slightly 
different from the form given in Chapter 1; see also Besag(1986). 
Re-write Q as *

q  = a  - B a - B 2 ( 5 . 2 . 5 )

where B2 is a lower-triangular matrix, B2 is upper-triangular, and 
both B} and B2 have zero diagonal entries, with

Bf = B2

For simplicity, we assume A= xi and that the observations y={y-[}
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are independent Gaussian records with mean x and variance 1 / k . The 
MAP estimate of x* is

X = k (k I + Q)_1y . (5.2.6)

Synchronous updating can be expressed in matrix form as follows:

X (k+i ) = —   [Ky + (Bn + B2)x^k h  (5.2.7)
K + X

while asynchronous updating can be written as

x (k+1) = — I [k v  + BiX^k+1) + B2x^k )] (5.2.8)
k + X

or, in another form, as

x (k+l) = [(k+x)I - B 1 ]“1[Ky + B2x(k )]. (5.2.9)

For the former case, convergence depends on the norm of matrix 
A1=(k+x)"1[B1+B23, while, for the latter, it depends on that of 
A2=[(k+x)I-B1]-1B2. Note that parameter X represents, in some respect, 
the interaction between neighbour pixels. The 'bigger x, the less 
tendency there is that neighbouring pixels have same or similar 
colours, that is the less is the interaction. We would like to remark 
that the notation here is slightly different from that in Besag(1986), 
where X and k  could be regarded as the inverse values of X and k  here, 
respectively. We can also note that, in both cases, when x increases, 
the convergence speed of the iterations increases as well. This 
phenomenon corresponds to that the parameter has controversy relation 
with converging speed in discrete MRF models(Besag, 1986). We shall 
first show that p(A2 ) = max|o:jL|< 1, where <X| are eigenvalues of A2. 
That means that, for any x and k, asynchronous updating converges. If 
nj, is the eigenvector corresponding to , then,

A2ni = “i^i *
thus,

B2ni ~ aiC(K+x)I ~ Bl^ni- 

Since r\̂  B2ni = = J£r\j_' (Bj + B2)n-[,

Xni'ni “ ^i'Q^i
«i = ---------------------------------  (5.2.10)

(2K+X)n-j_ nj + nj_ Qr\j_
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and since Q is a positive definite matrix, it follows that [<X|j<i. Now 
consider matrix Aj. Note that the eigenvalues of can be written as

where p are eigenvalues of the matrix Q. Although Q is positive 
definite, P>0, for all J3, which can only ensure «<1. It is possible 
that, for some 13, <x<-l. In that case, updating is not convergent for

The eigenvalues of Q are 0.75, (9--/73)/8 and (9+%/73)/8, Q is
therefore positive definite. The smallest eigenvalue of Aj is

When k is small, the above value is smaller than -1. ot
Therefore it cannot be guaranteed that synchronous updating always 

converges. However, (5.2.7) and (5.2.9) are only two iterative methods 
for solving the linear equation (5.2.6). There are certainly some 
other methods, we can consider, for instance, the following iterative 
method:

for each i. *

Note that (5,2.7) is a particular case of (5.2.12) with c=\. The 
convergence of (5.2.12) depends on (c - P ) / ( k + c ) , where J3 are still 
eigenvalues of the matrix Q. Obviously, when c is big enough,
(c-3) /(k + c } lies between ~1 and 1, and the iteration therefore 
converges.

Even if (5.2.6) itself converges, in circumstances when we know 
the eigenvalues of Q we can still choose a number c to get faster

oc={\-£) / ( k + x  ), (5.2.11)

some starting points x^1). 
Example: L=3,\=l,

1 -0.75 0.251
Q - -0.75 1 -0.75

.0.25 -0,75 1  J

-(V73 + 1)/[8(k+1)3.

x(k+D 1
O y  + (cl - Q)x(k) 3, (5.2.12)

K + C

where c is a positive number. Clearly, it is equivalent to
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convergence. The best choice of c is 

c = t^min +

then p {  (cI“Q) / ( k + x ) } =  t£jnax~^min) ^  ^ K+^max+^min^ •

Note that we only use xj^), j*i, in (5.2.6), but use Xj_^ as 
well in (5.2.12). Note that the original image x* is represented by 
its noisy version, ie, the observed data, y. I am quite sure that as 
the iteration proceeds, the restored image contains more and more 
information about the original image x from the observation y. At 
each cycle of iteration, the newly obtained image gets information not 
only from y but also from the image estimated in the last cycle. 
(5.2.12) uses the information contained in xj^), so it may get more 
information than (5.2.6), with the result that it converges faster. 
For asynchronous updating, we can also modify the algorithm in a 
similar way to get faster convergence.

Although the synchronous updating formula (5.2.6) is not very 
practical, we can still conclude that, for the continuous intensity 
case, some modification involving the use of in the replacement
for Xj at the (k+l)-th cycle can increase the converging speed.

For discrete Markov random fields, although it is not certain 
that synchronous updating converges, it is difficult to provide 
similar discussion. We would like to pose a question to finish this 
section.

Can ve choose x ^ ^ ^ ,  by using together vith states at all

other pixels or at its neighbouring pixels, to ensure faster 
convergence or get better restoration?

5.3 Difficulties in the EM algorithm

The recursive techniques in Chapter 2 enable us to carry out the
EM algorithm for general one-dimensional versions of Markov random
fields. Two groups of vectors are used there. If the number of ^states
at each point is not large, it is practical and not difficult to
implement these recursive computations. For two-dimensional Markov 
random fields, we have mentioned in Chapter 3 and Chapter 4 that they 
can be regarded as one-dimensional versions if we regard one row or a 
set of neighbouring rows as one point. However, the number of possible 
states at such a point is now Ŝ T, or even higher, where S is the 
number of possible states or colours at each pixel, and N is the
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number of columns. Even if S is equal to 2, it is impractical to 
compute two S^-dimensional vectors for each row. It is therefore 
infeasible to carry out similar recursive techniques for 
multi-dimensional Markov random fields themselves or such fields 
corrupted by noisy data.

The prior distribution considered in this chapter is of Gibbs
form. It is known that the conditional distribution, given the
observed image, is still a Gibbs distribution, although the
corresponding neighbourhood system may change. It is therefore still
of exponential distribution form. If the exponential part is linear in
the parameters, the conditional mean and variance of the exponent,
given the observed image, depend only on the normalizing factor, ie,
the partition function, which is now related to the observed data.
From Section 1.4. we know that the computation of the conditional mean
of the exponential part is just the E-step of the EM algorithm.
Chapter 3 has pointed out difficulties in this sort of computation.
Although the Monte Carlo technique of generating samples from Gibbs
distributions can be used, the resulting computational demands are

*
also very substantial, so the Monte Carlo technique for the E-step is 
not an completely satisfatory approach.

As mentioned in Chapter 3, there is no explicit method for 
maximizing the likelihood function associated with a realisation of a 
Markov random field. We also know that the M-step of the EM algorithm 
is in fact equivalent to maximizing the joint distribution of the 
original image and the observed image, as if the original image were 
observed. This can usually be regarded as consisting of two parts. The 
first is to maximize the prior distribution, and the second is to 
maximize the noise model. Since the noise models are currently 
supposed to be relatively simple, it is not very difficult to achieve 
the second maximization. Chapter 3 pointed out the difficulties 
involving in parameter estimation for Markov random fields. Although 
Monte Carlo methods can be used here too, they are computationally 
time consuming. Therefore, even we can compute the conditional mean of 
the exponential part, ie, carry out the E-step, it is still not easy 
to do the M-step.

It is therefore impractical and very difficult to implement the EM 
algorithm directly from the original distribution and the noise model. 
Although the Monte Carlo method can be used for both steps, we have



Chapter 5 79 Hidden MRFs

to examine alternative or modified methods, Chalmond(1988) applied the 
EM procedure to a point pseudo-likelihood together with the Monte 
Carlo technique. Note that, if the original image is partially
observed, for instance(see the next section, and also Qian and
Titterington, 1989). if all even rows are known, we can, by using the
recursive technique for Gibbs chains, carry out the EM algorithm for
the conditional distribution of all odd rows, with all image data at 
odd rows replaced by noisy data. We shall therefore examine the 
application of the EM algorithm to pseudo-likelihood functions in the 
next section.

For the case of auto-normal continuous intensities, the situation 
is different. By similar notation to that in the previous section, let 
x^ denote value at a single pixel, and the density of x be

where Q, an LxL matrix, depends on the parameter Suppose the noisy
is additive white noisy with conditional density

where a2 is an unknown parameter. The corresponding E-Step and M-Step 
are then as follows.

E-Step: We must compute,

p(x|js) = | Q | ̂  ■ exp{-x' Qx/2 } / (27r)k/2 (5.3.1)

(5.3.2)
1 =  1

with
f i U7i ixi>°2) = exp[-(y1-xi)2/(2oz) ]/(2tto2) ^ (5.3.3)

x (k) = E(x |y ,J3 (k) i0z (k)> (5.3.4)

and
= E(xx ' |y ,/3 ,a2(k )) (5.3.5)

It is easy to show that

and
(5/3.6)
(5.3.7)vUO = o2<k )(i+o2(k)q(k)j-i.

M-Step: /3(k+l) is obtained by maximizing

- (x(k )’Qx(k) + tr(Q•V^k ))) - log[)Q|] 

and oz(k+l) - [(y-x(k ))’(y-x^k)) + tr(v(k ))]/L

(5.3.8)

(5.3.9)

where tr(*) denotes the trace of the matrix.
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The maximization of (5.3.8) is dictated by the dependence of Q on 
p. For simple models, it is not difficult in theory. Suppose p(^) and 
o2(k) converge to p* and o2*, respectively, they then satisfy

X* = (I + oz*Q*)~ly (5.3.10)

and v* = 02*(I+ oz*Q*)~l (5.3.11)

with the corresponding P* maximizing

-( x * ' q x * + tr(Q-V*)) - log[jQ|35 (5.3.12)

also o2* =[(y-x*)1(y-x*)+Tr(V*)]/L (5.3.13)

The method of estimation within ICM in Besag(1986) goes as 
follows. A single cycle of ICM is performed with the current 
parameters p(^) and oz(^), giving a new x^). This x(^) is treated as 
"known" and provides updated estimates p(^+l) and o2^ +1). However, 
the ICM method just gives (5.3.6). This is equivalent, at every step, 
to taking as zero in (5.3.8) and (5.3.9)) to obtain the new
values of p and o2. We therefore know that, if convergence obtains for 
the values of p and o 2 , the limiting values P** and o2tt satisfy

xtt = (I+o2*Qtt)~ly (5.3.14)

o2# = (y-x*)'(y-x*)/L, (5.3.15)

with P* maximizing

-x * ' q x * - log | Q | . (5.3.16)

It is obvious that the limiting values are different from those
associated with EM algorithm, since generally the conditional
covariance matrix of x, given y, is not zero. Therefore, the 
estimators in the ICM procedure without the EM algorithm may be 
biased. From our simulated results in the next section, we will also 
find that for discrete MRFs, the estimators in the ICM procedure are 
also biased.

5.4 Simultaneous parameter estimation and restoration

5.4.1 Basic idea

It is known that maximum pseudo-likelihood estimation is currently 
a useful method for Markov random fields. Consider the first-order 
case and pixel (ij) with its four neighbours. The conditional density
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of X-jj , given all other pixels, depending only on these neighbours, 
can be written as

P(^ijl^i,j-l»̂ i-i,j »̂ i,j + i> ̂ i+i.j »̂ )• (5.4.1)

The point pseudo-likelihood is just a product of a set of such 
conditional densities. We only consider a single one here. Imagine 
^i,j-lj xi-l,j’ ^i,j+l an(* ^i+l,j are f°ur known constants and that P, 
0 are unknown parameters. Maximum pseudo-likelihood estimation 
involves maximizing (5.4.1), If X^j is missing, but alternatively, y-jj 
is observed with conditional density f(Y^j|X^j,e), our aim is to 
maximize

P r ( Y j j = y  £  j  | X-[ ( , X j ^  ? j  , X j ^  j  +  1  , X j L  +  i  _ j  , P  , © )  ( 5 . 4 . 2 )

The EM algorithm can be used for this purpose and is not difficult 
to carry out. However, it is impractical to assume that 
Xj_1( j, ^i,j+l ans xi+l,j are observed; they are usually missing 
together with Xj_j. One solution to this problem is to use estimated 
values to replace them. It is natural to use restored image data. 
Since restoration depends on the parameters, we propose an iterative 
procedure, ie, restoration, then estimation, then restoration again, 
and so on. In the rest of this section we shall develop this idea in 
detail.

5.4.2 The case of {X2i> known

In this subsection, for simplicity, we concentrate on the 
first-order pairwise interaction model with distribution in (1.3.3). 
We suppose the exponential part is linear in the parameter p.

We consider the case where {Xgj-i.i=l,2,...M/2} are missing, but 
{X2 1 .i=l,2,...M/2) are observed. Although this case is not realistic 
in practice, our aim is to illustrate the application of the EM

i
algorithm to conditional distributions. We assume M is even; if M is 
odd, the results are very similar. We also assume the conditional 
density f (Yjj | Xjj , 9) be of linear-exponential form, proportional to 
exp{0h(Yjj,Xjj)}, say. Consider the following two conditional 
likelihoods

f(Y-y,{X2i_i}-{X2i_i}|{X22}={x2j},p,0)
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M/2 M
= IT P(x2i_i |x2i-2iX2i»P) 11 f(yiixi>G ) (5.4.3)

i=l i=l

and

f(Y=y|{x2i}={x2i},0,e) = r f ( y , | { x 21> ,is.e), (5.4.4)
<x2i-i>

where ptx*\ *i - i>xi+1,p)

1 N _ N-l
TUT- v — exP<P E Sij(xij) + P 1 G [iJ][1,j+1](xij’xi,j+l))»L x̂i-1-xi+ltP) j=i j=i

(5.4.5)

with Sij(xij) = SijUij) + 6 [ij] [i-l, j] (xi j >xi-i , j )

+ G [ij][i+1,j]^xij>xi+l,ji• (5.4.6)
and

N
ftyilxi.e) « exp{© z h(yij.x^j)}.

j=i

If we ignore the conditioning {X2i}, maximisation of (5.4.3) is 
just maximization of two exponential distributions for 13 and © 
respectively, while maximization of (5.4.4) is that with as
incomplete data. We therefore discuss how to use the EM algorithm to 
maximize f(yj(X2i},P ,©) in this subsection. Geman and Geman(1984) 
proved that the conditional distribution of x given y is still of 
Gibbs form. For the case we discuss here, the conditional distribution 
is also still of pairwise interaction form. Note that

M/2
f ({X22-i }K x2i-l)>y »̂ ® ) = n ^(^2i-lIx 2i-2 ’x2 i ’y2i-l '̂ ® ^ 1

i=l

where f for each row corresponds to a first-order Gibbs chain. To be

precise. *

f(Xj=xjIx j.j ,xi + 1 ,e,e) =

1 N N-l
C(x1_1,xi+1.yi,p,s)eXP<Jf1glj(Xlj) + pj/ 1G [lj][l.j+l]lxlj’xi J + l )>

where S'! J j ) = + 0h(yi j .xj j).

Thus, the corresponding E-step and M-step for maximizing
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f(y|{x2i},P ,9) are as follows.
E-step: Assume that ©(k) are the current values. Note that both

f (x2i-l!x2i-2'x2i ̂ 72i-l>P’0) and f (x2i-llx2i-2>x2 i are of Gibbs 
chain form, and that f(Y^j=y^j|Xjj ,9) is exponential, so that we only 
need to compute

E^2i-l, j(x2i-l, j) lx2i-2*x2i »Y2i-l >e ^ )  -

E<G[2i-l, j] [2i-l, j+1] (x2i-l, j >x2i-l, j-l) lx2i-2 * x2i ■ Y2i-1 >e(1̂ ) >
and

E(h{y2i_if j -x2i-l, j) lx2i-2>x2i’Y2i-l>P^ , © ^ )  

for all possible i and j.

M-Step: It is easy to see that the maximization can be regarded in two
parts, namely, for j3 and g respectively. For jS, it is almost the same
as line pseudo-likelihood, as illustrated in Chapter 3. We have to use
the recursive technique developed in Chapter 2, the only difference
being that we deal simultaneously with a number of chains with the
same parameter. For e, it depends on the precise structure of♦
h (Yjj ,Xj_j) . When Y^j is normal with mean Xjj and veriance oz, it is 
easy to obtain new value for o 2.

5.4.3 The case where {x^} are all missing

In practice, {x2j} are missing as well as As pointed out
in Section 5.3, if we try to maximize f(y|e,oz), there will be many 
difficulties. It is natural to replace x2j by their estimates, and we 
therefore propose the following iterative procedure.

(1). Obtain initial estimates of both parameters 3 and 9, and an 
initial estimate {x2i} of {^i)- (The Maximum likelihood 
classification or another better restoration method such as ICM can be 
used to obtain an estimate of X; see Besag, 1986).
(2). Concentrate on f (y | {x2j_} , 9 , o2 ) , and use one or several cycles of 
the E-Step and M-Step described in the last subsection, to obtain new 
values of J5 and 9.
(3). Re-obtain {x2^>. A cheap way is to apply one or several cycles of 
ICM(Besag,1986) to all the pixels, with the parameters estimated in 
step (2).
(4). Return to (2) for a fixed number of cycles or until convergence
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seems to have occurred.

We know little about the theoretical properties of the above 
algorithm, such as whether or not it is convergent. We use the
estimates (X2i) as if they were true, and one problem may arise,
namely, that the parameter estimaters may be biased. In (3), to
re-obtain new estimates for all pixels means to reconstruct the image 
simultaneously with parameter estimation.

5.4.4 Other pseudo-likelihood approaches with the EM algorithm

Besag's(1986) iterative procedure of simultaneous parameter 
estimation and image restoration is as follows: restore the image, x, 
from noisy data, y, then maximize a pseudo-likelihood to obtain new 
estimates, &, from the restored image, x. (f(y|x,@) is maximized to 
obtain a new value ©.) & and 0 are then used for restoration in the 
next cycle. Note the difference between our procedure and Besag's. At 
each cycle of procedure, we use the EM algorithm to maximize a single 
conditional likelihood, say, nf(Y|(X2i).3,e), while in Besag’s, two
(conditional) likelihood functions, namely, *np(x^j|x3^j,|3) and 
f(yjx,e), are maximized. Although the estimated image is used in both 
procedures, our simulation showed that their behaviours are quite 
different.

The EM algorithm in the above iterative procedure is only applied 
to the product of conditional distributions of all odd rows. It is 
easy to note that it can be extended to the product over all rows, if 
all pixels are restored at each cycle. We refer to it as LPL—EM, in 
correspondence with line pseudo-likelihood. Also note that the EM 
algorithm can be used to maximize f (Yi-Yi+i 1^3 (j. t i + i) . £ ? e) . provided 
that + 2 )=xa(i, i + i) is known. Denote by 2LPL-EM the corresponding
iterative procedure in which two-line pseudo-likelihood function is 
used. (See Chapter 3.) Finally, Hp(y-jj ,/3,e) is more easy to
maximize by the EM algorithm, where the product is over all pixels. We 
refer to the associated iterative procedure as PPL-EM. Obviously, the 
procedure can usually be used with all sorts of pseudo-likelihoods. 
Since the restored image is determined by the observed image, the 
noisy image contains more information about the original image and the 
unknown parameters, so using the EM algorithm may result in better 
parameter estimation.
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5.5 Simulation studies and discussion

The results from the procedure outlined in Section 5.4.3 are 
given in Table 5.1 and Table 5.2, but they correspond to second-order 
MRFs with only one parameter B , over a 64x64 lattice. We used 30 
cycles of row-by-row relaxation to generate random fields, and imposed 
normal noise with different variances. The choice of X2^, i=l,...M/2, 
is by ICM updating for all the pixels. The results, with complete 
data, with {X2^} known and with {X-[} all missing are compared in the 
tables. The numbers of simulated random fields are also gven in the 
tables. Of course, the method leads to a restoration of the original 
image. From it and the estimation method for complete data, we obtain 
another set of parameter estimates, given in the tables as the fourth 
set of results.

1 the variance of noise is 0.36, number of fields: 50
B oz

N-Mean | N-Vari. N-Mean | N-vari.
Complete data 0.49766 | 0.00048 0.35938 | 0.00008

| {X21} true 0.50366 | 0.00113 0.35921 j 0.00009
| {X-; } missing 0.49664 ( 0.00210 0.37134 | 0.00012
1 0.75911 j 0.01101 0.37742 | 0.00012

2 The variance of noise is 0.16, number of field: 30
| complete data 0.49933 | 0.00039 0.15971 | 0.00002
| {X2i} true 0.50354 | 0.00088 0.15980 | 0.00002
j {Xi) missing 0.49151 j 0.00091 0.16159 j 0.00005
1 0.57735 i 0.00279 0.16250 j 0.00006

3 The variance of noise is 0.04, number of fields: 30
j complete data 0.49933 | 0.00039 0.03996 | 0.00000
( {Xpi} true 0.49842 | 0.00043 0.03998 | 0.00000
j {Xi} missing 0.49842 | 0.00043 0.03991 I 0.00000
1 0.50131 | 0.00042 0.03985 | 0.00000

Table 5.1 Parameter estimation for two-colour MRFs

Simulation results show that with different parameters, the 
differences between images restored by ICM, are relatively small, so 
Besag1s(1986) iteratve procedure, if it converges, should be very

tsimilar in performance to the fourth set of results. Note that those 
results show positive biases. When the variance of the noise is small, 
the restored image is almost the same as the original one, so all the 
sets of results are almost equally good. The reason for this may be 
that the maximum probability restoration has the tendency to make the 
probability, with which the neighbouring pixels have different 
colours, become smaller than the true probability. In other words, a 
pixel with colour different from that of its neighbouring pixels,
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might be smoothed to the same colour as its neighbours after 
restoration, so that the estimated parameter within the MRF model 
becomes bigger.

1 1- Variance of Yi-,-: 0.36, number of fields: 10
1 1 1 0 o*
1 1 1 N-Mean | N-Vari. | N-Mean | N-Vari. |
1 1 complete data 0.49148 | 0.00044 0.35873 | 0.00001 |
1 1 {X2 4 > true 0.48671 | 0.00054 0.35912 | 0.00005 I
1 1 {X-j } missing 0.46746 | 0.00039 i 0.34840 | 0.00006 |
1 1 0.58595 | 0.00064 0.34345 | 0.00007 |
1 2. variance of Y^: 0.16 Number of fields: 10
1 1 complete data 0.49148 | 0.00044 0.15932 | 0.00000 |
1 1 {X2i} known 0.48840 | 0.00040 j 0.15931 ! o.ooooi |
1 1 {X-}> missing 0.47810 | 0.00032 0.15484 | 0.00002 |
1 1 0.52180 | 0.00037 0.15053 | 0.00002 |
1 3. Variance of y n--f: 0.04, number of fields: 10
1 1 complete data 0.48148 | 0.00044 | 0.03969 | 0.00000 1
1 1 {X2p  true 0.49022 | 0.00039 0.03975 | 0.00000 1
1 1 {Xi} missing 0.48987 | 0.00040 0.03953 | 0.00000 1
1 1 1 0.49287 0.00044 0.03928 | 0.00000 1

Table 5.2 Parameter estimation for three-colour MRFs

sES-V.i
• ' . ^ 4 A

Original i»«t« 
64x64 fraae
Es tlasted value: 
0 - 1.10321

HLE of *. with o* -0.36 
Error • 1060 
Start ltar. value:
0 - 0.2 o!> 0.8

1 cycle of Iteration 
Error • 461

0 - 0.32794 
o'- 0.36672

2 cycles of Iter 
Error • 443 

0 • 0.46171 
o'* 0.30640

6 cycles of Iter 
Error • 380 

0 - 0.72574 
o'— 0.32881

18 cycles of Iter 
Error • 364 
0 • 0.93793 
o'— 0.36225

Fig 5.1 Iterative procedure for an artifical images
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Fig 5.1 provides images at several steps of the procedure for an 
artificial image, together with the estimated parameters and the error 
rates at those steps. We used a second-order model. Note. in 
particular, that, although the last two images are very similar in 
terms of error rate, the estimates of J3 are quite different. The final 
estimates of o2 are very close to the true value.

Fig 5.2 provides results of Besag1s(1986) iterative procedure of 
simultaneous parameter estimation and restoration. The underlying 
binary images were simulated by the point relaxation method, under the 
Ising model with one parameter <x=p. We added white noise with zero 
mean and variance o=0.5. For each value of cc, 40 replicates were 
simulated. The straight lines in the figure indicate the true values. 
We note that the estimated parameters, a, are larger than the true 
values, with the implication that the restored images are 
oversmoothed. The reason for this may be that the restored images 
contain less information than the noisy images. The application of the 
EM algorithm to pseudo-likelihood functions may enable us to get more 
information from the observed images. Fig 5.3 presents results of 
PPL—EM and LPL-EM for the same model as in Fig 5.2. LPL denotes 
estimation from the originally simulated fields, using one-line 
pseudo-likelihood. The average LPL is the almost straight line in the 
figure, which is very close to the true value. In Fig 5.3(a), the 
middle line from <*=0.3 to 1.0 and the bottom one from cc=l.o to 1.5 
display the results of LPL-EM, we then see that LPL-EM is slightly 
better than PPL-EM. However, both of them represent considerable 
improvements on the results presented in Fig 5.2. The top two figures 
of Fig 5.4 give similar results for 2LPL-EM, where 2LPL also denotes 
parameter estimates from the data originally simulated but now by the 
two-line pseudo-likelihood method. Fig 5.4 is based on only 20 samples 
for each a. Note that the behaviours of 2LPL and 2LPL-EM are almost 
the same. The bottom two figures of Fig 5.4 show the sample variance 
of the above estimated parameters. & z shows similar behaviour, while 
the variance of a increases quite quickly as cc increases. However, 
even for <x equal to 1.5, which is much bigger than the critical point 
of about 0.88, the sample variance is still not very large.

For all the above simulations, we used the method of Golden- 
Section-Search to find estimates of the single parameter <x(p).
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Fig 5.2 Parameter estimation without the Modified EM algorithm

We use ICM for restoration in our simulation. It is known that ICM 
only converges to a local maximum point. However, the pseudo- 
likelihood functions together with the EM algorithm, especially based 
on the two-line pseudo-likelihood, result in very good parameter 
estimation. Therefore we conclude in this chapter that, whatever 
method is used for restoration, the modified EM algorithm is very 
useful for the parameter estimation.

'■a S ’ 2 - C 0 L 0 U R - M R F  PoU£M

0.0 0. 3 0.6 0.9 1.2 1.5 1.8

a .

Fig 5.3 Parameter estimation
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the modified EM algorithm
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Fig 5.4 Results by two-line EM algorithm and sample variances
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Chapter 6
Three-Dimensional Markov Mesh Models

6.1. Introduction

Although Markov random fields can be thought of as a 
two-dimensional version of the one-dimensional concept of a Markov 
chain, they, in general, differ from Markov chains in an important 
respect, in that they are not easily simulated. Realizations of Markov 
chains can be simulated by a single pass along the (one-dimensional) 
set of sites (Chapter 2), but this is not true of Markov random 
fields. However, for a Markov Mesh Random Field (MMRF) model, which, 
as mentioned in Chapter 1, is in fact a causally-dependent MRF and 
also a sort of generalization of a Markov chain, single pass 
simulation can be achieved. In the two-dimensional case this can be 
done by a raster scan.

In principle, there is no fundamental need for the set of sites in
the random field models to correspond to a two-dimensional lattice of
pixels. This chapter considers the three dimensional case of MMRF 
models. The model is a natural generalization of the two-dimensional 
version of MMRF. We only consider the case where the only available 
data is a noisy version of the true scene. We shall effectively
present a direct analogue of the "two-dimensional" paper by
Lacroix(1987) . The closeness of the analogy will become clear as this 
chapter develops. Instead of pixels, the sites are a set of volume 
elements or voxels. Such images are also common in practice in the 
study of materials and in medical imaging.

Markov models for two-dimensional scene? are important because of 
the need to represent (spatial) contextual association among 
neighbouring pixels. Their extension to genuinely three-dimensional 
versions is crucial, particularly in the above contexts, in which 
interframe, as well as intraframe associations must be modelled. The 
MMRF models we discuss are comparatively general and are not 
formulated for special three-dimensional phenomena such as short-range 
motion across a sequence of two-dimensional frames.

For Markov random field models, the conditional distribution, 
given the observed noisy image, is still that of a Markov random 
field, with a slightly changed neighbourhood system, but it is not
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true of MMRF models. It is almost always computationally impossible to 
seek Maximum a Posteriori(MAP) restoration for MMRF models. Some sort 
of approximation is required, and a modified criterion is then used
for the estimation of the true scene; see Devijver(1988) and
Lacroix(l987) for two-dimensional cases.

In Section 6.2 the Markov Mesh models and assumptions are 
specified and in Section 6.3 the algorithm is derived. It takes the
generalized form of the F-G-H algorithm of Devijver(1988); see also
Lacroix(1987). It will be emphasised in Section 6.3 that simplifying 
assumptions are necessary, in order to creat a practicable algorithm. 
The treatment of boundary voxels is also specified there. Experimental 
results are presented in Section 6.4. In Section 6.5, we discuss the 
problem of parameter estimation from noisy data. An iterative 
procedure similar to that in Chapter 5, together with the modified EM 
algorithm, can be used. We present some simulation results but only 
for the two-dimensional case. Section 6.6 contains a brief discussion 
of conclusions and possible further research,

It should be mentioned here that notation in this chapter are 
different from those in the rest of this thesis.

6.2. The hidden Markov Mesh random field(MMRF) model

In this section we establish the basic assumptions underlying our 
Markov Mesh models for three-dimensional scenes and for the generation 
of noisy versions thereof. The true scenes are described by a lattice 
of voxel labels, denoted generically by X, and the observed images by 
a corresponding set of feature vectors, for which the letter x is 
used. The development and detailed notations parallel very closely the 
two-dimensional version in Lacroix(1987).

6.2.1 The MMRF model *

In notation very similar to that in Lacroix(1987), let
* VMNL = { (m,n,J?), 0^m<M rows, 0^n<K columns, 0<J?<L layers) be a

finite integer lattice;
* (a,b,c) be a voxel at the intersection of row a, column b and layer

c;
* xabc anc* xabc label and feature vector, respectively, at

voxel (a,b,c), with each Xaj;)C taking a value from a finite set of
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"colours", where xa^c could also be one-dimensional;
* vabc denote the rectangular parallelopiped array of voxels depicted 

in Fig 6.1, with Vab c ^  anc* va b c ^  as the corresponding arrays 
of labels and feature vectors.

We shall also use the superscripts (x) and (x) to denote arrays 
of labels and feature vectors associated with other sets of voxels. 
For the concept of the Past of voxel (a,b,c), we use the 
generalization of the definition introduced in Abend et al(1965) and 
used later in Kanal(1980) and Lacroix(1987) for the two-dimensional 
case. The past of voxel (a,b,c) is the set {(m,n,i): m<a or n<b or 
5<c>.

cb-lc c-th La,
J-/OC

c-t h  La. i90C

,aoc- iab-lc-

.300 .300

Fig 6.1 Definition of Va5C and

The model chosen for Vmni/ ^  ^^at of a homogeneous, third- 
order Markov Mesh, thereby creating the natural analogue of the 
second-order process used by Lacroix(1987) for the two-dimensional 
case.

Third-order Markov Mesh: The Markovian assumption for this model is 
that
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pl>abcl<xmni : m<a or n<b or f<c>3 * pCxabcivabc(X)xxabC3 

= p£xabcIxa-l,be’ xa,b-l,c’ xab,c-l3- (6.2.1)

The term "third-order" reflects the fact that the probabilities 
are conditional on three X's.

Versions of this for the boundaries are obvious and will not be 
written out in detail.

Homogeneous: We now impose further simplifying assumption on (6.2.1). 
Let S denote the finite state space for the labels. Then for 0<a<M, 
0<b<N, 0<c<L and for q, r, s, teS,

pExabc=(3 i xa~l, bc=r * xa,b-l,c=s’ xab, c-l”"^ = pq(rst* 
independent of a, b and c. For the boundary conditions, which are also 
to be considered homogeneous, we make the natural assumptions that

pq|rOD p£xaoo-(2

p q
P q
Pq

Pq

P q

DsO p^xobo ^ 

DDt = ptxooc=<5 

rsD = pt^abo“(5 

Dst = p£xobc~^ 

rDt ~ p^xaoc=<5

Pq = pCxooo=t*3 (initial voxel)

xa-l,oo=r  ̂ (initial Row axis, a>l)

xo,b-l,o=s  ̂ (initial Columft axis, b>l)

xoo,c-l=t  ̂ (initial Layer axis, c>l)

xa-l, bo=r * xa,b-l,o=s3 (initial RC-plane, aM.b^l)

xo,b-l,c=s’ xob,c-l=t  ̂ (initial CL-plane, b^l,c>l)

xa-l,oc=r' xao,c-l=t  ̂ (initial LR-plane, a>l,c>l)

These assumptions lead to the following properties for the
process.

Property 1. For any (a,b ,c)eVMNL, 

a b c
pEvabc^X^  = n n n pCkmn$ lxm-l ,n.C’ xm,n-l,£' xmn,iJ-l^- (6.2.2.)

m=0 n=0 J?=0
t

(Thus, the joint probability function of the labels on Vabc factorises 
into a simple form reminiscent of "independence" models. It is easy to 
handle such a single (conditional) density, which looks like a local 
conditional distribution of a Markov random field. Therefore,
similarly to the case of pseudo-likelihood for MRFs, it is
usually not difficult to get likelihood estimates for the unknown
parameter(s) involved in the model, from observed VMNL<X), directly
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or by an iterative procedure.)

Property 2. For any (a,b,c)eVMNL,

p£xabcl{ (xmnJ?: U,n,£)*(a,b,c)}] = pI>abc 1 {xm n £ : (m.n, i)eri(abc) }D
(6.2.3)

where t)(abc) =

(a-l.b,c) 
(a+1, b, c) 

(a+1,b-l, c) 
(a+l,b,c-l)

(a,b-l,c) 
(a,b+l,c) 

(a-1,b+l,c) 
(a,b+l,c-l)

(a,b,c-l) 
(a,b,c+l) 

(a-l,b,c+1) 
(a,b-1tc+1)

with appropriate modifications at the boundaries.

Property 3. The rows (resp. columns, layers) of a homogeneous MMRF 
form a stationary vector Markov chain of dimension (N+1)(L+1) (resp. 
(L+l)(M+l), (M+l)(N+l}).

6.2.2 The noise model

As in Devijver(1988) and Lacroix(1977) and previous chapters, we 
assume that the noise variables on different voxels are conditionally 
independent, given VMNIj(x), and that each feature vector has the same 
conditional probability function f(xa^c |>̂abc)» dependent only on xafcC. 
Thus

a b c
p E^abc l^abc ̂ *^3 = H n if f (xm n jj | Xm n jj). (6.2.4)

m=0 n=0 £=0

6.2.3 Statement of the problem

We first assume that all the parameters in the MMRF model and in 
the noise model are known. In Section 6.5, we shall discuss the 
problem of parameter esimation from noisy data. Our problem is now to 
identify the original array from x̂  ̂, the latter
representing the available data, so that the original array is fiiddeh 
by the noise. The approach we adopt for the labelling is different 
from that we used for Markov random fields, where MAP is used for the 
entire scene. In fact, we also use the Maximum a Posteriori(MAP) 
estimate, but for each pixel, conditionally on only part of the array 
of feature vectors: to be specific, for (a,b,c)eV^L, we choose 
where q comes from the rule:
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pE^abc-c3 l ^ a b c ^  3 max PC^abc“r l ^ a b c * (6.2.5)
r

This is in contrast with the usual practice with non-causal MRFs, 
where MAP estimation is undertaking conditionally on all feature data 
(Besag, 1986). One would attempt to choose £afcc=q by

pExabc=tI lvMNl/X ^  = max P[Xabc~r j VM N L X̂ )]. (6.2.6)
r

In the contexts of both MRF and MMRF models, implementation of
(6.2.6) is very complicated. With MMRF models, the hope is that one 
can implement (6.2.5), or a plausible approximation thereof, using a
single pass through the data. Clearly, the situation would be much 
simpler if the right-hand side of (6.2.6) were P O abc=r iv abc^X ^ . for 
then one can substitute from (6.2.1), using the labellings already 
established for voxels (a-l,b,c), (a,b-l,c) and (a,b,c-l), thereby
easily finding q. Since, unfortunately, only x is available and since 
the true labels are spatially correlated, the exact expression even 
for P[>abc=r Ivabc > when expanded in terms of voxel labels on 
vabc* turn out to be complicated. *

6.3 Generalized F-G-H algorithm

For the two-dimensional case Devijver(1988) proposed the so-called
F-G-H algorithm, and this procedure was generalized in Lacroix(1987).
The general principle of the algorithm is to begin at one corner of
the frame and to work diagonally downwards, labelling the pixels in
the new "diagonals" as they enter into the pass. As remarked at the
end of Section 6.2.3, the construction of a recursive procedure to
effect a labelling following this type of pass will not feasible,
computationally, without making approximations; these will be
determined in terms of a "hypothesis", to be specified in Sectinf
6.3.2.

In section 6.3.1 we introduce some notation, in Section 6.3.2 we 
derive the basic features of the algorithm itself, and, in Section
6.3.3, we discuss how to deal with the voxels at or close to the 
initial axes or planes, in other words, the boundary voxels.



Chapter 6 96 Hidden Meshes

6.3.1 Some notation

First we introduce the "past of order h", Va£c, and the "diagonal 
of order h". Da|}c, for voxel (a,b,c).

We define

vabc = 0<m<a, 0<n<b, 0<i<c. m+n+i<a+b+c-h) (6.3.1)

and

Dabc = {(a-i,b-j+i,c-h+j), 0<i<j<h} (6.3.2)

where we assume h<min(a,b,c). The boundary cases corresponding to a<h 
and/or b<h and/or c<h, will be treated in Section 6.3.3.

The physical meanings of, and relationships among, these sets are

depicted in Fig 6.2, which shows Va£c, Da£c, VaJc, DaJc, Va^c and
2 h hDabc* Note that vaj3C\Daj3C is a subset of all the past of all voxels of

Dabc in vabc* We a^so have Vabc=vabc’ and Da^° consists only of voxel

(a.b.c). .
Define

1’i ^abc<X)  ̂ * pCDabc(>')lvabc<X)3- (6.3.3)

Our problem is to maximize yr,(Da°^c x̂ b . ie Tp(q). (Fig 6.2 may be 
helpful for us to understand the definition of functions .)

Fig 6.2 Definition of V a|jc (x ) and D a[jc (x )

The cornerstones of the F-G-H algorithm are a "local decomposition 
relationship" and a lattice "recurrence relationship". The latter is

associated with particular partitionings of Va5C and Dabc, and we 
discuss these next.
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Fig 6.3 depicts the required partitioning of Va£c for h>3. The

major element of the partition is va-l,b-1,c-11 while the other six

components can be divided into two kinds, denoted by and

Babc(*)’ where *=R,C,L refers to row, column or layer respectively. 
The A's are face and B's are edges, as Fig 6.3 demonstrates. There are 
various ways of relating and manipulating these components, as 
follows.

L

abc HI

a b c flj

abc (0  y h
abc (C)

abc(R)

i -!c~l

'abc (C!

abc tC)

'abc abc (U

abc (L)

Fig 6.3 The decomposition of Va{}c and Da^c

Decomposition relationships for Va^c (h>3) 1

Equations (6.3.4) and (6,3.5) describe two types of partitioning.

a h D h . h „ h-3
Aabc(R) + Babc(L) + Aabc(C) + va-l,b-l,c-l

A h l 0 h ^ A h h-3
Aabc(C) + Babc(R) Aabc(L) + va-l,b-l,c-l

A h D h ^ , h .. h-3
Aabc(L) + Babc(C) Aabc(R) + va-l,b-l,c-l

v h"1 vab,c-1

h - 1
va-l,bc

h-1 
va,b-1,c

(6.3.4)
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« h __ h-3 . h-2
Aabc(R) + va-l,b-l,c-l ~ Aa,b-l,c-l

* h it h-3 . h-2 „ ,-vAabc(C) + va-l,b-l,c-l ” Aa-l,b,c-l (6.3.5)

. h h-3 . h-2
Aabc(L) + va-l,b-1,c-1 ” Aa-l,b-l,c
In these equations "+" denotes set-union operation.

hNote that similar decomposition relationships hold for Da^c.

These involve subsets of Da£c , to be called Ua£c(*) and Wabc(*),
jl

that are direct analogues of Aabc(*) and Babc(*), respectively. The
hdecomposition relationships for Dafoc (h>3) are identical to those for

vabc* except that we replace V by D, A by U and B by W.
For example (c.f. (6.3.4)),

,, h  ̂M h „ h _ h-3 ^ h-1
uabc(R) + ^abc(L) + uabc(C) + Da-l,b-l,c-l “ Dab,c-1

and (c.f. (6.3.5)),

n h * n h_3 n h ~ 2uabc(R) + Da-l,b-l,c-l = Da,b~l,c-1*
h h

uabc(*) an(* wabc(*) are a^s° shown in Fig 6.3.

6.3,2 The algorithm

The algorithm is founded on two principle features, a local 
decomposition relationship(LDR) and a workable recurrence 
relationship(RR) . In order to construct the (RR) from the (LDR) a 
simplifying hypothesis has to be imposed.

The Local Decomposition Relationship(LDR)

The (LDR) express (Dabc } in terms of corresponding functions

+ i ( D a b c ^ ) » related to Da ,̂a , which is the diagonal of next highest 
order. Precisely, for i<h-l, where, h<min(a,b,c):

(LDR) Vi(Dabc(M) =

^-p[Dabc(x)lDabc(X)3 r ,pi+lCDabc(X)>p[Dabc(X)IDabc(X,3- (6.3.6)
D ^ (X>
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where Nj_ = PCV^bc^x ^ / pCva b c a normalizing number.

Proof of (LDR):

P[Dabc(X). Vaj*c (*>] = E P[Daic^>, D*Z*(*>, V ^ c (x) ■ Cabc(X,3
° ^ < X>

- I PCDibc(X). vibJ(X>]P[Da^ ( M | D ^ ( XhP[Da^c(x)|Dajc(^)] 
° ^ < x >

= P[ D a b J (x)3 X PCD r t c M lv a b c (X)]Pi:Dabc<k>ir>lbc(K)J
Dabc(X)

xPCDabc(x)IDabc(X)3 

- P C D ^ < x h  r »i+i < D ^ ( x))PCDaJc(x)|DiSJ(x)]PCDaJc(x)1D ^ c( M ].
4 S c (X)

Since *i(Dabc(x)) = PCDabc(X)•vabc(X)3/P[Vabc (x)], (LDR) follows.

Note that P[DabC ^ | D abc^ 3  are known, for the neighbouring past 

of any voxel of DabC belongs to Dabc* Also since

pCDa b c ^  lDabc^X^  = n pCxmnJ? j XmnJ?] (6.3.7)
(m,n,l)eDabc

these factors in (6.3.6) are also known. Thus if ^  were known, we 
could recursively compute all of the ^ , 0<i<h, so that, in h steps, 
we can compute *Q(q), which is our basic goal.

The Simplifying Hypothesis

In order to exploit the (LDR), therefore, we require to compute 
,Pj1. It is impractical to do this "exactly" and we impose a hypothesis 
which allows us to create a simplified expression for and thereby 
to determine the whole system. An equivalent procedure was carried out 
in Devijver(1988) and Lacroix(1987).

To motivate the need for simplifying hypotheses, let us try to 
compute *h* By its definition,

*h<:Dabc <M > -  PCDabc( X ) ' vabc<X,3/PCVaSc <x ) l  (6.3.8)
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Next, we introduce some more notation. Define

7 _ /A h tt hA (R) " (Aabc(R)’ uabc(R)'
, - h (x) h (x)

anc* (R) ~ (Babc * ^abc(R))

along with similar definitions for A^cj, A{L ). B (C) and B (L)- 

Also define

v - A7 £-3 (x) n h"3 (XK  V - (Va-itb~i,c-l* Da-1,b-l,c-1'
for h^3.

As a result of our earlier decomposition relationships(6.3.4) and 
(6.3.5), and with reference to Fig 6.3, it is clear that the 
denominator of (6.3.8) is

P[A(R ), A(C), A (l). B(R ), B (c), B(l )i V]. (6.3.9)

The crucial step in the computation of (RR) will be the 
replacement of (6.3.9) by the factorised form

♦

P[B(r ),A(c )jA(l )jV]PCB{c ),A(l ),A(r ),V3P[B(l ),A(R))A (c ),V]P[:V3 

P[A(r) ,V]P[A(c ),V]P[A(l) ,V]

(6.3.10)

Clearly, (6.3.10) follows from (6.3.9) only under special 
independence assumptions involving the arguments of (6.3.9), and these 
assumptions constitute a suitable hypothesis. There are several 
approaches to the establishment of such a hypothesis. The most simple 
sufficient hypothesis is to assume A(*) and B(*) (altogether 6 terms) 
are independent of each other, conditionally on V, ie,

P[A(R),A(C),A(l ),B(R ),B(C),B(l )|v]

- PCA(R) |V]P[A(C) |V:p[A(l)|VDP[B(r) |V3P[B(C) |V]PCB(L) |V], (6 .3'lD ■'

It is easy to use the above assumption to derive (6.3.10) from
(6.3.9). However, note that there is a sort of "neighbour" 
relationship between A(*j and For example, some voxels
corresponding to A(R ) are neighbours of some voxel corresponding to 
B(C)- Therefore, one may think of this hypothesis as not being 
realible. In fact, we shall state minimal assumptions under which
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(6.3.10) follows from (6.3.9), and associated with such minimal
assumptions, we can quote a more generous but symmetric set of 
assumptions.

A suitable minimal hypothesis (M) is represented by the following 
set of assumptions, expressed in four stages, (M1)-(M4).
Hypothesis (M):

Ml (A(l )» b (r )» B(q )) are assumed statistically independent of
B(L ), conditionally on (V, A(R ), A(C)).

M2 (A (C)’ b (R)) are assumed independent of , conditionally
on (V, A (l )i A (r)).

M3 A (R) assumed independent of B(R ) , conditionally on
(V, A(C)rA (L))•

M4 a (r ), A (c) and A(r ) are assumed to be mutually independent,
conditionally on V. ©

For this hypothesis to make sense, in terms of the Markov Mesh 
model, it is important that, in each of the above statements, the
conditioning item separates the items assumed independent, in that it 
blocks any pathway between them that exists in the directed graph
represented by the assumptions of the model. This'was the case in the 
two-dimensional work in Devijver(1988) and Lacroix(1987), and its 
veracity can be easily be checked, (c.f. Fig 6.3), while it is not 
true of the assumption represented by (6.3.11)

Hypothesis (M) is not a unique set of minimal conditions: two 
others can be created by replacing "L" by "R" or "C" in (Ml) and 
relabelling thereafter, as appropriate.

If this lack of uniqueness or the asymmetry among L, C and R is 
displeasing, the following symmetric hypothesis (S) suggested by a 
referee of our paper(Qian and Titterington, 1990b), is undoubtedly
sufficient for our purposes. This hypothesis has two stages.
(51). (i) Assume (A(l ), B^R ), B^q j ) independent of B(L)* given

(V, A (r), A(C)). t

(ii) Assume (A(c)> B (L)* b (r )) independent of B^q j , given 
(V, A {l), A {c}).

(iii) Assume (A^R j, B(C), B(Lj) independent of B{R j , given 
(V, A (c). a (L))*

(52). Same as (M4). o
Note that (SI)(I) is the same as (Ml), that (SI)(ii) implies (M2) 

and that (SI)(iii) implies (M3), thus verifying that, altogether, (S)
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is enough to imply (M) , but not vice versa.-
In practice, it is irrelevant which of (M) or (S) is assumed. They 

are both "respectable" in reflecting the type of "pathway blocking" 
mentioned above, and, as we will see, they both allow the deduction of
(6.3.10) from (6.3.9).

(6.3.9) To (6.3.10) Under Hypothesis (M)

Here we show that (6.3.9) leads to (6.3.10), under the hypothesis 
summarised by (M1)-(M4).

By (Ml),

pCA(R ),A(C),A(L ),B(r ),B(C),B(L),V]

p[A(R ),A(C),A(t).B(r ).B(c ),V3PCB(L )rA(R ),A(C),V] 

PCAlR)tA {C),V3

By (M2), 

p[A(R ) ,A(C).,A(l) ,B(r j ,B(c ),V]

ptA(R ) ,A(C) ,A(L ) ,B(r) ,V3PCB(c) .A(t,.A(R).,V3 

ptA(L ).A(r ),V]

By (M3),

P[A(R ),A(c),A(l),B(r ),V]

P[A(R ).A(c ),A(l),VlPCi[R),A(C),A(l ),V3 

P[A(C).A(L),V]

By (M4),

P^ ( R ) ,A(C) ,A(l) ,V]
P[A(r),A(c),V]P[A(L),A(r ),VDPCA(c),A(l),V]

P[V]
= ____________________________ , i ^

P[A(R ),V]P[A(c ),V]P[A(l ),V]

Multiplication of the above four equations generates the required 
results.

The Recurrence Relationship(RR)

The step from (6.3.9) to (6.3.10) is the first stage in the 
derivation of the following Recurrence Relationship, It is helpful to
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introduce some further notation, representing certain subsets of
„ h 
^abch (x)

We define

Dh (R ] = (uabc(Ii|’Wabc(R|>uabc(c|»^a-l,b-l,c-l)• (6.3.12)

Dh(R] = ûabc(RjfDa-l,b-1,c~l) (6.3.13)

Dh <>0 = <Da-l,b-l,c-l(X)> (6.3.14)

and Dĵ jc), Dh(bj. Dh(c| and Dh(L) fay analogy with (6.3.12) and 

(6.3.13) respectively. Note that all these objects are composed of

those labels of Dapc(x) located in Da_i^bJ. Da(b~irC-l> Da-1,b-1.c-1• 

etc.
With the help of this notation, our recurrence relation (RR) is

(RR) *h(Dabc<x>)

^(R) <Dh(R) )¥h(C) (Dh(cl ),ph(L) <Dh(L) ̂ h ^ h ^ )

*h(R) <D§(R| (C) J^hlL) (Dh[l ] )
= No

where Nr =

(6.3.15)

PCVa-lhbc(x) JPCVa, b-1, c(X) JPCVabTc-l(x) ̂ a - l , b-1. c-1(x> 3 

PCVa,b-f,c-i(x)]P[Va-lhb2c-l<x)]PCVa-i,b-l,c(x)3PCVabc(x13

Note that, similarly to the functions 9^, the functions ^hf*)'
(i=l,2,3, *=R,C,L) are associated directly with voxel (a,b,c). They
are, in fact, directly expressible in terms of our previous notation

1 2  3in that *h(*)- *h(*) and 9*̂  correspond respectively to ¥^-1 , 9^-^ and
^b-3 associated with voxels (a-l,b,c) and (a-l,b-l,c) and 

(a-l,b-1,c-1), etc. For example, *h(R) (Dh(R) > = pCDh(R) IVa-l^bc1* 1 3 •

’,h(R)(Dh^l)=P[:Dh(R)lva.b-l,c-h ^ d  ^  (Dh )-P[Dh<X V a - 1 , b - 1 , S  3 ■ A s
a result, from the ^  associated with voxels belong to the past of 
voxel (a,b,c), (i<h), with the help of "local decomposition
relationship", we can compute 9^ associated with voxel (a,b,c) and, 
thereby attain our goal.
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*Proof of (RR):

*h(Dabc(X)> - p[A(R).A(C).A(L).B(R).B(C).B(L).VVP|:vaEc(x >;i 

_ PCA(C) ,B(L ) ,A(R ) tV]P[A(L) ,B(R ) ,A(C) ,V]PCA(R ) .B(c ).A(l) ,V]P[V]

pCvabcU) ]pCA(R) ,VDPCA(c) ,V3PtA(L) ,V3
(x) 1(X) h-1 (x) 1(X) h-1 (x)

p^Dh(R)lva-l,bc p̂^Dh(C)Iva fb-1,c p̂^Dh(L)Ivab,c-1 3
2(X) h-2 (x) 2(X) h-2 (x)_ r 2(x) h-2 (x)

pCDh(R)lva,b-l,c-l3pCDh(C)|Va_2fbtc_a]P[Dh (L )|Va_lib-i,c3

3(X) . h-3 (x) h-1(x)- h-1 (x). h-l(x) h-3 (x)
p£Dh I Va_i (b-1 , c-1 JPCVa-i s be JpCVa f b-1, c Jp£vab, c-1 3p£va-l, b-1, c-1 Jx------------------------------------------------------------------------------

PCVabc(x) 3PCVa ^lf _ (._! U) ]P[Va_! , U) ]PCVa_!, hi?, c(x) 3
o

The recurrence relationship (6,3,15) holds if h>3. For h=l or 2, 
the decomposition relationships of Vabc and, in particular, of Dabc 
are different. To be precise, DabC is only divided into six parts, 
none of which belongs to Va_jfb-i,c-1• while, for Dabc, the situation 
is even more simple. However, if we formally definfe

v -1 - v “2 - v 0 - vva-l,b-1,c-1 “ va-l,b-1,c-1 ” va-l,b-l,c-l " va-l,b-l,c-1-
-1 -2 

define Da-l,b-l,c-l = Da-l,b-l,c-l to emP'ty sets and define

^abc(*)» with *=R,C,L also to be empty sets, then the decomposition 
relationships for h=l,2 can be written in terms of the same formulae 
as those for h^3. We have the following recurrence relationships for 
h=l and h=2. (c.f. Fig 6.3)

T^tr.s.t) «

pt^a-l, bc=r i^a-1, bc-}pExa ,b-1, c=s 1 va,b-1, c^p^xab, c-l=t !vab, c-1 ̂

(6.3116) ■'

^2 (nl!n2  n6) «

P[ni,n2,n3 1VaixJbc 3PCn2 ,n4 ,ns [Va _J_}x >]P[n3 ,n5 ,n6 |Vab 3

pCn2lVa-l,b-l,clx,3P[n3lva-l.b,c-llx)3pCn6 lva-l,b-l,c(x)3

(6.3.17)
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6.3.3 Boundary conditions

In this subsection, we assume h to denote the highest order 
adopted in both relationships. If voxel (a.b.c) belongs to the first h 
rows (or columns, or layers) ie., min(a,b, c)<h-l, it is not possible 
to consider the h-th diagonal, and only functions such that
0<i<min(a,b ,c) are defined as in the last two subsections. However, 
there is a difference between the three- and two-dimensional cases. In 
the two-dimensional case, if we consider pixel (a,b) and if 
i=min(a,b)-l, j=max(a,b)-l, we can define diagonals with order higher 
than i and lower than j, but where the numbers of pixels in these 
diagonals are the same as that in the i-th diagonal. For voxel (a,b,c) 
in the three-dimensional case, let i=min(a,b,c)-l, and let 
j=i+min{(a-i+1,b-i+1,c-i+1)\(0)}, so that j+1 is the second smallest 
of a, b and c. If j>i, we can also define diagonals with order from 
i+1 to j. However, the numbers of voxels in these diagonals increase 
(see Fig 6.4). On the other hand, note that, for the initial planes, 
we can use the method for the two-dimensional case with high order.
Therefore, if i<j, for a voxel with i and j defipea as above, we may
either use local decomposition relationships only up to functions ,
or we may define functions ¥s (s>i) in such a way that we can use
similar local decomposition relationships and recurrence 
relationships. If we adopt the former strategy we need the recurrence 
relationship for order 1 and order 2. These are presented in the 
preceding subsection, and we therefore do not discuss them here.

Fig 6.4 Va{jc and Da|}c at boundary case

From Figs 6.4 and 6.5, we can see that the functions * with
subscript higher than i have fewer arguments (which represent the
states at those corresponding voxels), and, in terms of the local
decomposition relationships, the numbers of voxels increase along only 
two directions. Thus both relationships, the recurrence relationship 
in particular, become simpler. To illustrate this, we only consider
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the case of i=c-l in detail. For the other two cases, the argument is 
directly analogous.

a-lb-Jc

c(C)

abc (R)

Fig 6.5 The decomposition of Vajjc and DaJ}c at boundary case

Local decomposition relationship

When s>i, the LDR for function *s is almost the same as that in
S S S + l s+1the last subsection, except that Dabc, Vabc , Dabc anci vabc are

slightly different, in that fewer voxels are involved.

Recurrence relationship

When s>i we see that, as shown in Fig 6.5,

s s s-2 s
vabc = Aabc(R) + va-l,b-l,c + Aabc(C)

s s s-2 s
Dabc = uabc(R) + Da-l,b-l,c + uabc(C)

(6.3.18)

(6.3.19)

s (x) S (X)We therefore impose the hypothesis that (Aabc(R)’ uabc(R)) anc*
S (x) s (X.) s_2 (x)

(Aabc(C)* uabc(C)) are independent, conditionally upon (Va_ijb-1,c *
n s"2 Da-1,b-l, c' •

The RR is therefore obtained as follows:
t .

» /r, 3 r™ /T, S (X) _ S-2 (X).
*s(Dabc ) 11 ^vs-l (a-1, be) ^abc(R)’̂ a-1, b-1, ĉ

_ s (X) _ s-2 (X)._. s-2 (X).
x*s-l(a,b-1,c)^uabc(C)*^a-l,b-l,ĉ  3/*s-2(a-1,b-1,c)^Da-1,b-1,ĉ

where ^s-l(a-1,be)’ ,ps-l(a,b-l,c) anc* ^s-2(a-1,b-1,c) are "those 
functions associated with voxels (a-l,b,c), (a,b-l,c) and (a-l,b-l,c) 
respectively. Note that the above recurrence relationship is almost 
the same as that in the two-dimensional case (Lacroix, 1987).
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6.4 Experimental results

In order to analyse data from real, noisy images using Markov Mesh 
models, it is first necessary to guess, or estimate, values for 
unknown parameters from the data. This is usually a difficult problem, 
which we shall discuss in the next section. In our numerical work 
here, we used simulated binary images and an artifical ternary image 
corrupted by white noise, and we implemented our labelling algorithm 
under the assumption that the true parameters in the model were known.

In the following simulations the Markov meshes were defined by a 
single parameter, JB>0, that represents a measure of the Markovian 
information contained in the true scenes. Suppose Sn denotes the 
number of members of the state space S. (In our examples, Sn=2 or 3.) 
Then we took

Pq = PC^qqq = Ql = 1

Pq | roo = PqjOrD = pqjODr = exp{36(q, r) }/ I exp{j36(w, r) }
weS *

PqjrsD = Pq|r0s = Pq|0rs

= exp{P(6(q,r )+6(q, s)) >/ Z exp{p(6(w,r)+6(w,s))}
WeS

pq|rst=exP{^{^(q ,r )+6{q ,s)+6(q ,t))>/r exp{P(6(w ,r)+6(w ,s)+6(w ,t))}
weS

where 6(q,r)-l if q=r; =0 otherwise. The lower p is, the lower is the 
tendency for neighbouring voxels to have the same label, and the lower 
therefore is the Markovian information in the scene.

Since we have generated the images subsequently restored, we can 
easily count the number of voxels incorrectly restored and thereby 
report error rates.

Fig 6.6a shows an artifical ternary image on a 64x64x8 frame* (ie.y 
M-N=63. L=7). The first column displays layers 1-4 and the second
column shows layers 5-8. Note that the picture changes slightly from 
one layer to the next, while there is a big difference between the 
first and last layer. The state space for the true labels was (0,1,2) 
and to each voxel independent white noise, with variance oz=0,36, was 
added.

First, the voxel-wise maximum likelihood(ML) classifier was
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applied. This simply assigned each voxel to the label "nearest" to its 
feature variable. The resulting labelling, shown in Fig 6.6b incurred 
8410 errors(25.6%). Next, the image was labelled using our algorithm
with h=l. The parameter J3 was chosen to be 1.5. For the boundaries we
used the simplest possible approach, using only a one-step 
decomposition and recurrence iteration up to the nearest, past
neighbouring voxels, of which there can be 1 or 2. The corresponding
restored image is shown in Fig 6.6c and contains 1955 errors (6.0%).

We also implemented the "block constraint" method of Kanefsky and 
Strintzis(1978), as was done in Lacroix(1987) as a comparison with the 
two-dimensional algorithm. This method maximizes likelihoods 
corresponding to a small regions. The rule for assigning a state q to 
voxel (a,b,c) is:

Kabc^) = max Kabc(w )WeS

where

^abc (w )=  ̂ P[r, s , t ]fr (xa_]_, bc^s (xa, b-1, ĉ -̂ t (xab, c-1 ̂ w ^ xabc^w jrst
r.s.t

in which fr (xabc) = ^(xabcIxabc=r) an(̂  P[r,s,t] is the probability of 
the occurrence of the event (xa-l,bc=r1xa,b-1,c=s’xab,c-l=t) over "the 
entire image. In practice, P[r,s,t] is unknown. In simulations, 
however, such quantities can be estimated either from the true scene 
or, less satisfactorily, from restorations obtained by some other 
method. Our experience was that, not surprisingly, it was better to 
use the true scene.

We compared the block-constraint method with our own algorithm for 
h=l and h=2 in a study that parallels one reported by Lacroix(1987). 
We generated binary images on 20x20x20 frames with conditional means 
mo=0.1 and m^O.9 for the white noise. For the block-constraint 
method, the P[r,s,t] were estimated from the true scenes. *

First we fixed P=0.8 or 2.0 and varied o, so that the error rate 
was a function of o. Results shown in Fig 6.7 reflect a similar trend 
to that in Lacroix(1987), based on a measure of signal-to-noise ratio 
(SNR): the smaller o is, the larger is SNR. In our example,

SNR = (m1-m0)2/(4o2) « 0.16/oz.

In the second part of the study, we fixed o at 0.4 or 0.7 and
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varied 3. Note that the larger 3 is, the greater is the Markovian 
information, and the smaller therefore is the entropy. The results are 
shown in Fig 6.8. In both Figs 6.7 and 6.8, the error rates are 
averages of three replications.

Note from both Figs 6.7 and 6.8 that, when 3 and o are both large, 
the results for h=l are superior to those for h=2. This situation did 
not occur for the combinations of small 3 with large o {e.g. 3=0.8, 
o=l.2) or large 3 with small o(e.g, 3=5.0, o=0.5). The explanation may 
be that, for a particular voxel (a,b,c), some of the probabilities

<PCD2^j|VBib-iJ?h, PCDglcjlVa-i.bi^]. pCD2 (l j 1 Va_i, b-lfcH} <®ee
(6.3.10)), are very small if 3 and o are both large, and, in the 
recurrence relationship associated with h=2, where D2 (*) is only one 
voxel, (for example, D2 (r ) is voxel (a,b-l,c-1)), the product of these 
three functions is used as a divisor of three other conditional 
probabilities (see (6.3.17)). Repetitions of such operations in 
numerical calculations may lead to the accumulation of round-off 
errors, with the result that unexpectedly many voxels are assigned 
wrong labels. To combat this we made the following' modification: for 
each ^ ^ a b c ^ )  obtained by (6.3.17), a small, positive regularising 
constant (specifically, 0.5) is added to each factor in the divisor. 
The results are presented in Figs 6.9 and 6.10, corresponding to Figs 
6.7 and 6.8, respectively. We can note that the resulting figures were 
virtually identical to Figs 6.7 and 6.8 except that the anomalies in 
the results for h=2 disappeared. The performance of h=2 still shows 
little superiority over that of h=l.
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Fig 6.6a An artifical inage: 64x64x8
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Fig 6.6b MaxiBim likelihood classifier: 25.6% error rate
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Fig 6.6c Restoration with h=l: 6.0* error rate
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6.5 Parameter estimation from noisy data

Our aim in this section is to discuss the problem of estimating 
the model parameters. We concentrate only on the case of 
two-dimensional second-order models. The treatment is directly 
analogous for multi-dimensional cases. Devijver(1988) proposed a 
learning algorithm, which is based on a decision directed (DD) 
approach and is in fact a modification of the iterative procedure of 
the EM algorithm. In his procedure, the restored image was used at 
each cycle of iteration. Note from the last chapter that, in the 
iterative procedure of simultaneous parameter estimation and 
restoration for Markov random field models, a product of a set of 
local conditional distributions is maximized by using the EM 
algorithm. We can adopt the idea to hidden MMRF models as well. To be 
precise, at each cycle of iteration, after restoring the image, say, 
x, we re-estimate the parameters by maximizing the function

M N
n n Pr[x-[ j I ̂ i-i (j > ̂ i, j-i > P * ©) • , (6.5.1)

i=0 j=Q
(6.5.1) calls for some comments. First of all, it comes directly 

from the prior likelihood function

M N
n n PrCkijIx^i j_i,|3). (6.5.2)
i=o j=o

It is easy to deal with both sorts of conditional densities in
(6.5.1) and (6.5.2), respectively, if Pr[x.}j |X^j ,ej is not 
complicated, and the EM algorithm can therefore be used to maximize
(6.5.1). Secondly, for the case of MRF models, all the neighbouring 
pixels of one pixel are used in the corresponding local conditional 
density, while in (6.5.1) we only use the past neighbours. This may be 
a reason for the different behaviours of the procedures for the two 
models. Thirdly, we may, at each cycle, maximize (6.5.2), providing 
X=x, and the other function involving the parameter 8, namely,

M N
n n PrCxj; j IX±j ,8], (6.5.3)

i=0 j=0

to obtain new values of the parameters. This is just the procedure 
described in Besag(1986).
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Our experiments were performed under the additional assumptions 
that only one parameter, 13, is involved in the prior model, (to be 
precise, the (conditional) probabilities are defined in a similar way 
to (6.4.1), (6.4.2) and (6.4.3)), and that the observed images are
created with additive white noise with variance as the only unknown 
parameter.

Original image Closest Classifier 1st cycle 
£ = 2.20526 o = 0.6 

£ = 1.87845 
o2 = 0.18423 
error=25.66*

1.60470 
o‘ = 0.29498 
error=ll.82*

8 =,r
2nd cycle 

£ = 1.65437 
a 2 • 0.33649 
error=9.89*

4th cycle 
£ = 1.77154 

= 0.36763
error=9.13*

Fig 6.11

8th cycle 
£ = 1.90790 
o2 = 0.38656 
error=8.91*

12th cycle 
£ = 1.95748 
o2 = 0.39385 
error=8.96*

18th cycle 
£ = 1.96740 
o2 = 0.39578 
error=8.96*

Iterative procedure with EM algorithm

The illustrations concern an artifical 64x64 three-state image. 
White noise with variance o=0.6 was added. We first restored the image 
by means of closest classification, and then estimated parameters by 
maximizing (6.5.2) and (6.5.3), assumimg that the restored image was 
the true scene. From these estimates, we started our iterative 
procedure which maximizes (6.5.1) at each cycle. Results of parameter 
estimation and restoration are shown in Fig 6.11. The procedure 
converges very quickly. Note that a similar phenomenon to the 
procedure for Markov random fields (see Fig 5.1) occured: the
convergence of restoration is extremely rapid, and the restored image 
changes a little after one cycle, whereas the parameter estimates are 
quite different. Fig 6.12 illustrates the iterative procedure where
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(6.5.2) and (6.5.3) were used in each cycle, where we also started the 
iterative procedure the same way as in Fig 6.11. This procedure 
converges faster, however, and we find that estimation using (6.5.1), 
especially for the variance of the noise, is much better than the 
procedure without the EM algorithm, although the difference between 
restorations is not so great.

Our experiments with different variances for the artifical image 
and for simulated images also showed that the estimated parameter £ is 
usually smaller than the true value, whereas estimation of the 
variance of the noise is quite good. We can note from the last chapter 
a different phenomenon for the MRF model case, in that, for simulated 
images, the estimates of the parameter 8 are almost the same as the 
true values.

Original image Closest classifier 1st cycle 2nd cycle
£ = 1.49143 £ = 1.51826
o2 = 0.25709 o2 = 0.26117

error=25.66% error=11.82% error=11.30%

4th cycle 
£ = 1.53522 
£ 2 = 0.26399 
error=ll.06%

8th cycle 
£ = 1.54563 
o2 = 0.26590 
error=10.89%

12th cycle 
£ = 1.54769 
o2 = 0.26629 
error=10.86%

18th cycle 
£ = 1.54769 
S 2 * 0.26629 
error=10.86%

Fig 6.12 Iterative procedure without EM algorithm

6.6 Discussion

As in the two-dimensional case(Lacroix, 1987), our algorithm
consists of two parts, the second of which relies on a hypothesis 
whose validity cannot be guaranteed. If, in the three-dimensional 
case, the algorithm is applied to order greater than 2, then the
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number of voxels involved in the restoration of a single voxel becomes 
very great, with consequently high computational demands. There is

also another computational problem. The diagonal Da^c contains many 
voxels, so that some of the associated conditional probabilities are 
small and prone to underflow, even after normalization. Finally, we 
are liable to suffer the problem of numerical instability discussed in 
Section 6.4. Introduction of the modification mentioned there 
transforms the procedure into a quite different algorithm.

These factors, along with the likelihood that the results with h>2 
are unlikely to be dramatically superior to those with h=2, stimulate 
us to suggest that the algorithm be used only with h=l or h-2.

Besag's(1986) ICM method is originally proposed for MRF models. 
It is an iterative procedure, while the method we discussed in this 
chapter is a single pass restoration. From Property 2 of our model 
(Section 6.2), we know that the conditional probabilities for one 
voxel, given labels at all other voxels, can easily be computed. For 
MMRF models, therefore, one can also use ICM for restoration.

The model discussed in this chapter is the simplest model for 
three-dimensional problems. One might use a more complex model in 
both two- and three-dimensional cases.

In the iterative procedure for parameter estimation and 
restoration, we can maximize a product of more complex conditional 
densities, such as,

^ ^ xabc’̂ abc^  ̂lDabc^ ̂ ^ ’
and this may lead to estimators with better properties.

Although our methods have produced reasonable results, further 
work can be carried out to improve the methods, particularly with a 
view to enhancing the numerical stability by deriving a better 
recurrence relationship.
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Chapter 7

Multi-Dimensional Markov Chain Models For Image Textures

7.1 Introduction

In this chapter we explore the use of the multi-dimensional Markov 
chain as a model for texture. Consider a rectangular array of M rows 
and N columns, regarding each row as a random vector. Under the model, 
it is assumed that the distribution of the current row, conditionally 
upon all ’'previous rows", depends only on a small number of past, 
neighbouring rows. This conditional distribution will be assumed to 
reflect pairwise interaction between neighbouring pixels, in order 
that the properties of the model might be very similar to those of 
pairwise-interaction MRF models.

The MMRF model exhibits causal dependence in that samples from 
them can be generated directionally. As mentioned before, it can be 
regarded as a direct analogue of the (one-dimensional) Markov chain, 
or as a sort of two-dimensional time series. The asymmetry of its 
local dependence structure leads to the aesthetically unsatisfatory 
directional property. Causal dependence is not present in the MRF 
model, but realisations are usually generated by a iterative 
procedure. Some methods for simulating MRFs, such as that used in 
Cross and Jain(1983), are conditional on prescribed assumptions. The 
resulting patterns may therefore be wholly unrepresentative of the 
distribution of the corresponding MRF(Besag, 1986). Although the 
convergence of Geman and Genian's (1984) stochastic relaxation method 
can be proved, and parallel computational architectures can be 
exploited, the theoretically valid speeds of convergence are very 
slow.

Our model is a stationary multiple Markov chain. Although tit i^. 
difficult to make it strictly stationary, and non-directionality 
cannot be guaranteed, local dependence on the past pixels is 
symmetric. As in the case of MRFs, values chosen for the underlying 
parameters reflect the nature of the interaction between neighbouring 
pixels.

In Chapter 2, (see also Qian and Titterington, 1990a), we
investigated the one-dimensional, pairwise-interaction Gibbs chain,
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and developed a recursive technique for calculating its normalizing 
constant, thereby enabling us to simulate the Gibbs chain and to carry 
out maximum likelihood estimation of parameters. This "line technique" 
also enables us to handle the model which we shall introduce in this 
chapter.

Standard Markov chains have been used for generating textures. 
Connors and Harlow(1980) generated streaky line textures according to 
a simple Markov chain that ignores dependence among rows. Haralick and 
Yokoyama(1979) generated essentially one-dimensional textures. 
Although they injected some correlation between neighbouring rows by 
considering co-occurrence matrices, it is almost impossible to specify 
the spatial, probabilistic structure of the resulting pattern, and 
their simulation results were also limited in scope.

In Section 7.2, we define the multi-dimensional Markov chain model 
and simulate patterns corresponding to a variety of choices of 
neighbourhood systems and parameters. (The selection is made with a 
view to producing patterns similar to those of Cross and Jain(1983).) 
In Section 7.3, we discuss the problem of parameter estimation based

t
on a realization of the model. Maximum likelihood estimation is 
achieved through an iterative algorithm which is similar to the 
procedure we illustrated in Chapter 2, and, since it is not exactly 
the Newton-Raphson procedure, it usually converges linearly. In 
Section 7.4 the ICM method is used to restore images from noisy data, 
and the problem of parameter estimation from noisy data is also 
addressed there. In Section 7.5 simulation results related to Section
7.3 and 7.4 are presented and compared. Concluding remarks are given 
in Section 7.6.

7.2 The multi-dimensional Markov chain (MDMC) model

We now consider an MxN frame. Let X-^(X-q  ,X^2 . • . denote the 
i-th row. where Xj je{l, 2 , . . .S) for each i and j; X= (X̂  ,X2 , • ■ .XM ) 
denotes, the whole image. The model is based on the causal assumption 
that the distribution function of one row, conditionally on all past 
rows, depends only on a few immediately preceding rows. It is known 
that MRFs provide symmetric texture models, allowing us to consider 
neighbouring pixels in all directions. For MMRF models, although only 
a few past pixels are used in the definition of the model, the local
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dependence involves more pixels. (See Property 2 in Chapter 6.) 
Similarly, for this new model, we only consider neighbouring pixels in 
the past rows and in the current row in defining the conditional 
density of the current row.
Definition: X is called a first-order pairwise-interaction
multi-dimensional Markov chain (MDMC) if, for certain functions (gjj ) , 
<Gij),

1 N N“1
P(X1=x1 ) = p(xa )= - exp{ E gijUij) + I G1j(xlj-,x1 j.^)}, (7.2.1)

°1 j=l j=l

and, for i=2,3,...,M,

P(^i=xi)^i-l=xi-l»^i-2~xi-2’* * *’̂ l=xl̂  = p (xilxi-i)

1 N N-l
-  ----   exp< Z gijlXjj) + z j (xi j ’xi, j+i)) >

ui^xi-l' j=l i=l

(7.2.2)

(7.2.3)

where

gij(xij) "

£ij(xij) + Gij ^ xi-i,j-l>xij) + Gi j ^ xi-i,j>xijJ

+ cjj^ (Xj^ j j+1 ,x̂  j) 2<jCN-l

^iN^xiN̂  + giN  ̂(xi-i ,N-1 >xiN) + GaN^xi-l ,N»xiN̂
(7.2.4)

i-lj-l M J i-1,j+l

i, j-1 i»j i, j+l

Fig 7.1 Form of neighbourhood for the first-order case

Note that the exponential parts of these (conditional.) probability 
functions are very similar to those of pairwise-interaction MRF's, and 
that the interaction relationship between neighbouring pixels is 
represented by the functions G* and Fig 7.1 shows pixels ij and
those neighbours which are considered to have an interaction 
relationship with it. It follows easily that, in an obvious notation,

p (x ij lx l >x2 ’ - • >xi-l *x il -xi2 x i , j-1 >x i , j + l  x iN)
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- P(Xjj lxi-i}j-i.xi-i,j.xi-i,j+i>xi,j-1>xi,j+l)

“ exP^&ijtxij) + Gi.j-ilxi ,j-i>X1j) + Glj(xjj>xi,j+i)

Gij (xi-l,j-1*xij) + Gij^(xi-i,j'xij) + Gij^(xi-i,j+i>xij))*
(7.2.5)

Different forms of the functions G* and G*(*) or different 
interaction relationships can be chosen to create different types of 
image.

If instead we use second-order chains, we can naturally extend the 
model to the second-order case with neighbourhoods of the form shown 
in Fig 7.2. For higher-order cases the theroy of high-order Gibbs 
chains is required.

i-2,j-1 i-2, j i-2,j+l

i-1,j~2 i-1,j-1 i-1, j i-1,j+l i-1,j+2

i , j-2 i, j-1 i , j i. j+l i,j+2

Fig 7.2 Form of neighbourhood for the second-order case

Note also that the (conditional) probability functions (7.2.1) and
(7.2.3) have the same form as that of the first-order Gibbs chain 
which we examined in Chapter 2. The model can therefore be simulated, 
from the first row to the last row, in just one scan, whereas existing 
methods for simulating MRF’s have to use iterative procedures (Cross 
and Jain, 1983, Geman and Geman, 1984).

Cross and Jain(1983) generated some examples of MRF's. according 
to various settings of the parameters, in order to imitate a variety 
of real textures. In presenting some images generated from our model, 
we chose parameters with a view to creating patterns similar to those 
in Cross and Jain(1983). We can consider either ordered-colfeur or 
unordered-colour textures in the cases of both MRF1s and MDMC1s. We 
can also adopt different interaction relationships in different 
sections of the whole image in both classes of model. One of the 
differences between these two models, which might be to the 
disadvantage of MDMCs, is that, in MRFs, isotropy can be enforced, so 
that the interaction relationship between one pixel and its 
neighbouring pixels in different directions is the same, while, for
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the MDMCs, we cannot create exactly isotropic cases, since the effects 
of the interaction functions Gij and in the conditional density
of the i-th row, f(xiIxi—l)» are different. In other words, since

Pr[Xij|Xan  others^ a t; rn exP{&ij+Gi , j-i+Gi , j+Gi j +Gij
ui+lvAi)

_  (D U)  . (0) .+r . ( - D  , 9 -v+ Gij +Gi + 1 j _ 1+G1+1 f j+Gi + lj j + i>, (7.2.6)

we see that the density function for one pixel, conditionally upon all 
other pixels, depends not only on its 8 neighbours but also on all 
other pixels in the same row, while that of a second-order MRF depends 
only on its 8 neighbours. However, we might still be able to generate 
virtually isotropic images by choosing different parameters for 
different directions.

The descriptions of the images simulated are as follows. We take

&ij ̂xij ) - G

G ij(x ij-x i ,j+l) = p 5 (x ij»x i ,j + l )

G ij '(x i - l ,j - 1 ’x i j ) = £-l6 (x i-l,j-l»x ij)

G i j ^ x i - l ,j>x i j ) = Po6 (x i - l ,j>x i j )

G ij‘ x̂ i-l,j+l»x ij) = ^l6 U i - l ,j+l<xij) 
f 1 s=t

(7.2.7)

and S , t e {1,2, . . .S) (7.2.8)
0 otherwise

(1) Pseudo-Isotropic Effects: Fig 7.3 shows five simulated 64x64 
binary textures, where the rows generated first are at the top of the 
patterns. Fig 7.3a represents the "noise", ie, with j3=p_1=/3Q=i5-L=0, 
and Fig 7.3b and Fig 7.3c are run-of-the-mill cases. Fig 7.3d is an 
image with equal parameters in the horizontal and vertical directions, 
whereas, in Fig 7.3e, the horizontal parameter JS is bigger than P q . We 
find therefore that there is more similarity among rows than* among 
columns and that the model is vertically directional.
(2) Anisotropic Effects: Fig 7.4 shows extremely anisotropic 64x64 

binary images. The parameters p, p Q , p _ 1 and P-y control horizontal, 
vertical, NW-SE and NE-SW directional interactions respectively. For 
the three images, the parameter for one direction is large relative to 
those for the other three.
(3) Ordered Patterns: By enforcing negative interactions between one
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pixel and its four nearest pixels, we can simulate the chessboard-like 
pattern shown in Fig 7.5. Note that a black pixel is very likely to be 
surrounded by four white pixels,, and vice versa.

i . e - o . o  o - o  b - ® ( - i ) * o . o  c * ®“ ° - 9 s ( _ j j * o . o
0(O)“O.O B(1)-0.0 Bjq)*0.6 Bj2j»0.0 0(O)*O.9 fi(ij*0.0

* * ,  i )

, \

e. fl-0.8 B | }»0.0 
0(O)-1.6 B(1)-0.0

Fig 7.3 Some pseudo-isotropic examples

as
a. fl-?.0 ® ( -i ) *0.0 b- e-0.1 Bf.jj-O.O' C.  B-0.05 B(.:)-2.0

®(0)*°-l • ®(i)*0.0 ® (0)*2.0 ®(1J *0.0 B(0)-0.05 B(1)-0.05

Fig 7.4 Examples of anisotropic effects
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Ordered pattern: (0)*” 1 *®

Fig 7.5 Chessboard-like pattern

(4) Attraction-Repulsion Effects: As in Cross and Jain(1983), an 
attraction-repulsion process involves positive interaction between 
"near" neighbouring pixels, resulting in clustering but negative 
interaction between "far" neighbouring pixels, to inhibit the growth 
of clusters. If the interaction with far pixels is also positive, 
large areas with the same colour would be generated. Fig 7.6 
illustrates inhibition in both diagonal directions: typical patterns 
have many horizontal and vertical lines. Fig 7.7 shows two images 
simulated from the second-order model. The twelve kinds of interaction 
functions associated with twelve neighbouring pixels (Fig 7.2) are 
taken to be of the same form as those of the first order case in
(7.2.6). Twelve parameters are therefore listed there according to the 
positions of the corresponding pixels in the neighbourhood.

(5) Changing-Interaction Effects: For the above four cases, the 
interactions among neighbouring pixels are the same over the entire 
images. The texture model does allow us to consider different 
interaction relationship in different parts of the frame, and also to 
simulate it easily. Fig 7.8a shows an example in which interactions 
change gradually in the horizontal direction, ie

Gij E Gij E 0: Gij(xij*xi, = ie©(xij »xi )

and Gjj^(Xi.!(j ,x^j ) = e06 (xi-l,j >xij)• 7.8b, on the other

hand, which shows vertical change, we have G^j1  ̂ s Gj j ̂ s 0, and
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Gij(xij,xi.j+l)“P6 (xij ,j+i)J Gij ̂ <xi-i,j*xij)=j^o6(xi-l,j*xij ) *
Fig 7.8c shows a pattern with changing parameters in both horizontal 
and vertical directions.

a. 0=0.2 ^ (—1) * ~0.8
0(o)=0.2 0 (1)=-0.8

b. 0=1.0 ® ( - 1 ) ^
0 ( 0  ) *1 * 5 ^(1)b-1-5

Fig 7.6 Examples of attraction-repulsion in 1st order case

a‘ -0.3 -0.3 -0.3
-0.3 0.35 0.35 0.35 -0.3
-0.3 0.45 0.45 -0.3

’• -0.2 -0.2' -0.2
-0.2 0.7 0.7 0.7 -0.2
-0.2 0.9 0.9 -0.2

Fig 7.7 Examples of attraction-repulsion in 2nd order case

(6) Multi-Colour Patterns: Fig 7.9 shows one four-state picture and
one five-state picture. They are simulated from the second-order model
with the same parameters as listed there.

All these images look very realistic. The first four examples are 
very similar to those simulated by Cross and Jain(1983) from MRFs.
This results from similar consideration of the interaction
relationships. We can also note the re-appearance of the effect that 
these images appear out of focus, which is intrinsic to texture models 
based on stochastic assumptions.
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a. Horizontal effect:
P ( - 1 ) “ ® ( 1 ) “ 0 *0  

0 * 1  . 2  C  j q  j « 0 . 5

b. Vertical effect:
*(-1)"e(l)“°-° 
0*0.7 0(q j *1.5

c. Both direction effect:
e(-ir®(l)"0-0
0 • 0(0) *1.5

Fig 7.8 Examples of changing parameter effects

-0.3 -0.2 -0.3
- 0.2 0.8 1.0 0.8 - 0.2
- 0.2 1.8 1.8 - 0.2

Fig 7.9 Some ■ulti-colour patterns

7.3 Parameter estimation

In this section, we express the (conditional) probability 
functions in the last section in terms of parameters, and assuuye that 
the the exponential parts of these densities are linear in the 
parameter, 8. Thus,

1p(x1 |P) = ----- -exp{£ ZitXi)} (7.3.1)
C1(P1)

1p(xi |xi_1,P) = ---- Zd (xi-i ,xd)},
ci ̂ xi-l*p '

(7.3.2)
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where 3 is a multi-dimensional, unknown parameter and the are 
vector functions, which have still the interaction form shown in 
(7.2.1)— (7.2.4). Then

M
P(X=x,3) = p(x,3) = plxjlJS) I p(xi |xi_1,P) (7.3.3)

i=l

and

M M
*p(x,p) = logp(x.P) = jS1 I Z ± - Z logCi( (7.3.4)

i-1 i=l

where Cj_=Ĉ  (Xj__]_ ,3) is the normalizing factor of the i-th row. Thus, 

a  M  M  l  a—  ip(x,p) = E Zj - Z ----- C,- . (7.3.5)
33 i=i i=1 Ci 33

Note that the normalizing factors satisfy

Ci (x 1-2 ,3) = E exp{|3,Zi(xi_1,X1)>. (7.3.6)
Xi

Thus

3 M M
— *p(x,P) = E Zi(xi_1,xi) - ECZ-j.fX-t) |P3 - E EtZiUi.j.XiHxi^pPlI 
ap i-1 i=2

(7.3.7)

2 M
— ip(xtP) = - E VarLZi(xi_1 .Xĵ ) Jxi„1 ,P]. (7.3.8)
032 i-1

3In the above formulae, —  denotes the partial derivative vector
a2 as
  denotes the second-order partial derivative matrix and Var denotes
33 2
a covariance matrix or a conditional covariance matrix. The results in 
Chapter 2 imply that CjU-j^.p) and E[Zj_ (Xj-j .X*)\*i-j ,3] can be 
computed easily. If therefore 3 is one-dimensional, we can use a 
search method to find the maximum point of the log-likelihood function
(7.3.4). When 3 is multi-dimensional, as we pointed in Chapter 2 and 
Chapter 3, it is not easy to compute Var (Zj Ix*-} ,3) exactly. As a 
consequence, we cannot use an exact Newton-Raphson iterative procedure 
to maximize £p(x,3). If, however, we can find a positive-definite

and
3



Chapter 7 129 MPMC Models

matrix A0 such that 

32  J>p(x,j3) C ~A0 < 0 V x, 13, (7.3.9)
3P2

where ^ (<) denote the (strict) Loewner ordering, we can still use the 
following iteration, which is similar to that in Chapter 2, to obtain 
maximum likelihood estimates. This iteration converges linearly.

M M
p(k+l) = g(k) _ A - 1 L £ Zi _ E E(Zi |x1_1,p(k))], k~0,1____  (7.3.10)

i=l i=l

where A > A0 is also a positive definite matrix.
Although it is difficult to check whether or not (7.3.9) holds,

a2 J?p(x,/3) is usually a negative definite matrix. Thus, in practical
3/s2
computation, when A is "large” enough, the iteration will converge to 
the maximum likelihood estimates. Some simulation results together 
with results of reconstruction and parameter estimation in the case 
where only noisy data are available are provided |n Section 7.5.

7.4 Image restoration and parameter estimation based on noisy data

As in previous chapters, we assume that, given the original image 
X=x, the noisy data on different pixels are conditionally independent, 
and that the noisy variable for pixel (i.j) depends only on x-̂ j. It is 
not necessary to have the same conditional distribution for each 
pixel. Thus

M N
P(Y=y|X=x,e) = 1 1  n fij (yi j |xd j ,e). 

i=M j-i

where 0 is an unknown parameter.

7.4.1 Image restoration

For the first-order model defined by (7.2.1)-(7.2.3), the marginal 
probability function for x^j, the colour on pixel (i,j), 
conditionally upon all observed noisy data and on the true colours at

(7.4.1)

i
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all other pixels, satisfes

pCXij=x1j|Y=y,x\{xjij}3 * lx ij)PrCx ij!x \<x ij)3 (7.4.2)

The ICM method of Besag(1986) is a convergent method to maximize 
P[X | Y=y, /3, ©), given the parameter |3 in the original image model and e 
in the noise model. Noting the expression for Pr[x^j|x\{x^j}3 in
(7.2.6), we see that, apart from the term (C-[+i (x-[) )-1, (7.4.2) is the 
same as that of the MRF, However, can be computed by the
recursive technique in Chapter 2, and, as a consequence, we can use 
the ICM technique to obtain the Maximum Probability Reconstruction. 
Although the method incurs a heavier computational burden than in the 
case of MRFs, some techniques for computing the normalizing constant 
of the Gibbs chain can still be used to reduce the computational
demands if we update the colours pixel-by-pixel and row-by-row. The
techniques involve two groups of vectors; one is defined by forward 
recursion, and the i-th vector in the group depends only on the 
previous functions g and G; the other is defined by backward 
recursion, and the i-th one in the group depends only on the
following functions g and G. Thus, in order to update colours from the 
first pixel to the last pixel in the i-th row, we can first compute 
all backward vectors, then compute forward recursion vectors element 
by element as the new colours are being chosen for each pixel at a
time. Therefore compared with the MRF case, it is only the 
computational demands of these two groups of vectors that increase for 
each row: it is not necessary to compute C^+1(x^) for each pixel in
the i-th row. If S, the number of possible colours, is not large, the
additional computational burden is not heavy.

Just as in the case of the MRF model, the ICM method is only of 
local convergence for our model. Instead of using the ICM method, we 
can adopt a rule which is similar to that for the MMRF model. This 
results in a non-iterative procedure, such that the image pan be.
restored through a single pass. To be precise, we still start updating 
from the first row, and for the j-th pixel in the i-th row. we may 
either use

PCXij |x1,x2> • * • >xi-l’Yl>y2* • • ■ »yi3=PCXij IXi^yi]
or

P l X ij\ x 1> . . ,xi„1,xil,xi2, . . .xi> J-_1,y1,y2, . . .yi ] =
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P C X i j 1 * 1 - 1 , X i l ......X i . j - l . y i 3

to decide a colour for pixel (iJ). Note that both the above 
conditional densities can be maximized by the recursive techniques.

7.4.2 Simultaneous parameter estimation and restoration

We now consider estimation of unknown parameters, P and e. Since 
the original data are not available, we examine the use the EM 
algorithm. As in the case of the MRF model and MMRF model, it is 
infeasible to carry out the EM algorithm exactly. For the MRF model 
and MMRF model we have, in Chapter 5 and Chapter 6 respectively, 
developed the iterative procedure proposed by Besag(1986) for carrying 
out restoration and parameter estimation simultaneously. The approach 
used noisy data and the currently restored image to choose new 
parameters by using the EM algorithm to maximize a single 
pseudo-likelihood. For the MDMC model introduced in this chapter, 
based on the same idea as used in the previous chapter, we propose 
the following iterative procedure. t

Suppose that fj. j (yA j |x̂  j ,9) = exp{d| j (xjj ,y^j ,e)} and write y as 
(y^,y2 .•> ■»Ym) where Yj represents the noise or the observed data in 
the i-th row.

1. Obtain initial estimate p and e.
2. Carry out ICM as in the last subsection, based on the current p 

and e, thereby obtaining a new x.
3. Obtain new values for p and e by maximizing the pseudo-likelihood

M
P(ya lP.©) n Prfyilxi-i.p.e). (7.4.3)

i=2

4. Return to 2 and continue for a fixed number of cycles or until 
an appropriate stopping rule is satisfied.

Remarks
(1) Note that both of the conditional densities p(xj[ jx-̂ _i ,P) and 

Pr(Xj_|Xi_i,y-[,Pt0) are of! Gibbs chain forms. The EM algorithm 
can therefore be used to maximize (7.4.3).

(2) Both Step 2 and Step 3 are in fact iterative procedures. At early 
stages in the whole procedure it is however not necessary to 
carry them out until (approximate) convergence. Experimental 
results suggest that a small number of iterations is sufficient,
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for the ICM stage, in particular. As the procedure reaches 
convergence, of course, the component Steps 2 and 3 converge 
quickly in any case.

(3) Instead of the ICM method, we can use other restoration methods, 
such as the rule described at end of the last subsection.

(4) In Step 2, we might have tried, instead, to maximize the 
following two functions in order to obtain new estimates for the 
parameters, J3 and ©, respectively:

Suppose = Xj-i is not missing and consider the single factor
p(Xj 1 *P) • When y-̂ is available, it is preferable to maximize
P(yi lxi-i »Pt©) rather than to maximize p(xj ,J3) and
p(y*lxi.0) respectively, because iq contains less information 
than y-̂ . Therefore, the results obtained by maximizing (7.4.3) 
should be better than those obtained by maximizing (7.4.4) and
(7.4.5). We can observe this phenomenon for the MRF model and the 
MMRF model in Chapter 5 and Chapter 6, respectively.

(5) Similarly to the case with other models, little is known, 
theoretically, of the convergence properties of the above 
procedure. In our numerical experiments, in which we estimated 
four interaction parameters, corresponding to four directions, 
along with the variance of the Gaussian noise, by choosing 
positive initial estimates, the procedure always converged. 
Convergence did not always obtain if, instead, we maximized
(7.4.4) and (7.4.5) in Step 3. *

7.5 Numerical results

Figs 7.10-7.12 show some simulated results of the iterative 
procedure described in the last section, applied to 100x100 frames. 
The images at the upper-left corner were simulated from the model 
with parameters indicated as OP (original parameters). These

M
p (x 1 |p ) n pUiixi-j.p)

i=2
(7.4.4)

fij(yijlxi j •
i j

(7.4.5)
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parameters represent interaction relationships in four directions as 
expressed in (7.2.7). EP denotes the parameters estimated from the 
original image by the method described in Section 7.3. The upper-right 
images display the results of maximum likelihood classification after 
corruption with additive normal noise, with the stated variances. We 
started the iteration from initial estimates P = B ^ i -P q - B i = 0 •5 * and 
o=0.3 in all three cases. The lower-left images correspond to two 
cycles of iteration, while the lower-right indicates the converged 
state. IEP denotes the estimated parameters obtained by the iterative 
procedure in Section 7.4, and REP denotes parameter estimates 
obtained from the restored images, treated as true realizations of the 
model, by the method in Section 7.3.

Note that Fig 7.10 and Fig 7.11 are for the same original image 
but with noise of different variances. In the case of low level noise 
(Fig 7.10), both IEP and REP are quite close to the original 
parameters, while for higher noise variance IEP is better than REP.

Fig 7.12 is an example to show the difference in performance if, 
in Step 3 of the algorithm, one maximizes (7.4.4) and (7.4.5), rather 
than (7.4.3). The iterative procedure based on (7.*4.4) and (7.4.5) did 
not converge for this example since, after several cycles, parameters 
/3_i and Pj became negative and the error rate for the currently 
restored image increased. This had an adverse effect on parameter 
estimation. From the figure we can also identify the effect by 
noticing that, although the reconstruction is quite good, one of REP 
values is negative, very unlike the original parameter and the IEP.

Although it can happen that REP is better than IEP, IEP performed 
better in most of our numerical experiments.

7.6 Concluding comments

In this chapter we have developed a multi-dimensional Gibbs* chain 
model and used it as a model for image textures. We have demonstrated 
that, by choosing the underlying parameters appropriately, textures 
can be created that are very similar to those realised, after 
considerably more computational effort, from Markov random field 
models. The problems of image restoration from noisy data and of 
parameter estimation have been attacked using Besag's(1986) ICM 
algorithm coupled with an approximate version of the EM algorithm.
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Important developments for the future include refinements of the 
algorithmic aspects of the methodology and theoretical investigation 
of the convergence properties of the iterative procedures.

i
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7S-ffv"**’ k

Error rate: 6.74X Error rate: 6.69X
3 -1.141 1.143 1.328
£(-!j-0.409 
3(0) -0.512 
0(1) -0.406

O-0.397 IEP. 

o-O,

0.401
0.527
0.395
.397

REP. 0.367
0.508
0.355

Fig 7.10 Example 1 of the Iterative procedure



Chapter 7 136 MPMC Models

-1.2 EP. 1.209 Closest classifier
-0.4 0.383 •
■0.5 0.547 o - 0.6
-0.4 0.352

Error rate: 26.7*

Error rate: 15.25* Error rate: 14.94*
078 1.073 1.419
430 o-O.585 IEP. 0.401 REP. 0.309
468 0.563 0.710
458 0.407 0.2725-= c.536

Fig 7.11 Example 2 of the iterative procedure
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i&

Closest classifier: 
c « 0.6 
Error rate: 25.22

0.255
0.519
0.226

Error rate: 9.42
3 -1.555

= 0.387 0 = 0.594
? (0) 

3(1)
0.424
0.447

rate: 8.52
1.698 2.1180.247 RE?. 0.0220.731 1.049
0.232 -0.042

0.595

^*2 7.12 Exaaple 3 of the iterative procedure
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Chapter 8 

Discussion And Concluding Remarks

This thesis mainly concentrates on spatial statistical models 
associated with applications to image analysis. Our aim is to explore 
the properties of the models and to examine the problem of parameter 
estimation from the original image data and, in particular, from the 
noisy versions of the scene.

In Chapter 2, we developed a recursion technique which enables us 
to deal with one-dimensional versions of Markov random fields, 
specifically, to achieve maximum likelihood estimation for the 
underlying parameters and to carry out the EM algorithm for parameter 
estimation when only noisy data are available. Although, 
unfortunately, this technique cannot be extended to two- or 
multi-dimensional models, it can still be used in many cases. We 
remark that it is used in Chapter 3, Chapter 4 and Chapter 5 for 
two-dimensional Markov field models, and that it enables us to 
introduce the new model, the MDMC model, in Chapter 7.

Chapter 3 and Chapter 4 concentrate on inference for 
two-dimensional Markov random fields. We obtained a matrix expression 
for partition functions for general models, and a more explicit matrix 
representation for multi-colour Ising models. This expression enables 
us to locate the positions of critical points. We also examined the 
asymptotic properties of asymmetric, two-colour Ising models. For 
general models, in Chapter 4, we explored the asymptotic properties of 
certain statistics under an "independence1 or a "near independence" 
condition.

An important idea in this thesis is to regard a set of pixels as 
one "single point". It preserves the Markovian properties of MRF 
models. This idea was first adopted, in Chapter 3, in introducing the 
block pseudo-likelihood function, which is an extension of point 
pseudo-likelihood. Although the parameter estimates from both point 
pseudo-likelihood functions and line pseudo-likelihood functions are 
almost equally good, we can, from Chapter 5, note that line 
pseudo-likelihood performed better than the other one, when only noisy 
data were available and our modified EM algorithm was used. The idea 
is then used in Chapter 4. By assuming "independence" between rows, 
the limiting results of one-dimensional stochastic processes were used
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in two-dimensional cases, thereby enabling us to establish approximate 
normal results. This idea is then used in Chapter 7 together with the 
recursion technique.

For the Markov random field itself and its application to image 
analysis there are many aspects to be developed. They include 
asymptotic properties, special structures for practical phenomena, 
edge structures in the potential function, identification of the 
model, choice of the neighbourhood system, testing, influence 
analysis, etc.

Another main idea in this thesis is that the currently restored 
image might be used together with noisy data in iterative procedures 
for simultaneous parameter estimation and image reconstruction. The EM 
algorithm is then used at each cycle of the iteration, which is 
developed from Besag's(1986} procedure. For MRF models, Chapter 5 
presented a simulation study of this procedure with different kinds of 
local conditional densities. The same procedure was also adopted in 
Chapter 6 and Chapter 7 for the MMRF model and the MDMC model, 
respectively. Quite good results have been obtained in terms of 
estimation of parameters in both the original model and, particularly, 
in the noise model, and in terms of image restoration, for all three 
sorts of prior random field model considered in this thesis.

In Chapter 6, we extended the MMRF model to the three-dimensional 
case. A generalized F-G-H algorithm for restoration was then proposed.

In Chapter 7, based on the results for Gibbs chains, we introduced 
the MDMC model. Although it is a causal-dependence random field 
model, textures can be simulated, by suitable choice of parameters, 
that are similar to those generated from MRF models, and, very 
importantly, the simulation procedure is computationally much more 
economical,

In this thesis, we have examined the three problems mentioned in 
Section 1.1. The author would like to remark finally that although, 
under a fixed type of model, restoration is not very sensitive to the 
values of parameters, the parameters should lie in a suitable region. 
Therefore, choice of the model and parameter estimation are very 
important for image analysis.



Appendices 140

Appendix 1
 C(cctf3) at boundaries

The following results are used in Section 3.3.

When cc=0 0=0), X consists of N (M) independent Markov chains with 
the same distribution function. The matrix method for defining the 
normalizing constant can be simply used in those one-dimensional 
Markov chains, and yields

^ *—oc N M
C{ct,0) = trace f0 e 1 1 = [(e« + e-<*)N + (ea - e-0̂ 1̂

'-e~a e0̂
and

C(0,P) = [(ep + e“p )M + (ep - e~p )M ]N .

As cc=0, f^slog(cosh2jS+l). From (3.3.7) and (3.3.8)

r xM = r 
x i=l

^ rN' (sinh2P) lM( cosh2P+l) &MN-iM

♦

= (ep+e-p)MN{l + [(ep-e"p )/(ep+e_p)]M }N = C(0,j3).

As p=0, again, from (3.3.7) and (3.3.8), all X are zero except 
XjJax. In order to prove (Xjjjax)M=C(a,0), it is required to show that

N
22N u (cosh2oc - sinhEcccose.-) = [ (ê H-e-*)1* + (ea-e_<K)N ]2, <*)

j=l J

*

where 9 j = (2 j-1 )7r/N. In fact, the left-hand side of (*) is

N 9 e j 2
22^ II (e_<xcos— +ieccsin— ) = 

j=l 2 2

N
I n [ (ecc+e-<x) + (eoc-e_c:)exp(-i9j j j | 2 . 
j=l

Since (e<s+e~a ) + (eo:-e'“<x)exp(-i9:j} , l<j<N, are N roots of the

equation

(x-ea-e-o:)^ + (e^-e^jN = o,

(*} is therefore proved. We have therefore proved that, with the help 
of (3.3.7) and (3.3.8), (3.3.3) provides the representation of the 
partition function for {ct>?0, P^O}.
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Appendix 2
 Autocorrelations of Markov chain

The following results are used in Chapter 4.

Consider a strictly stationary Markov chain with state space 
H i , i2. . . • is)» equilibrium probabilities P*={P1 ,P2, . . .Pg) ' and 
transition matrix Q=(Pij)sxS- Suppose X2<X2 •••<xs_i<xs=l are the 
eigenvalues of Q, with eigenvectors nj, r\2 » •--» > respectively,
where ns=(1,1,,..I)’. Clearly,

p'n^ = P'Qn-[ = X̂ p'nj.

Then p V* = 0. l<i<S-l

Clearly, p'ns = 1

Let £ = U i , i2 , • • is) ' ; n2>...ns); = , . . . £1S) ' ;

and
d(P) = d i a g { P i,P2,..,PS),

Then, *

Ex^ = P € = P r\£i =

and
Exixi+j = £ 'd(P)(p£ = V d t P J Q J n ^

= £i 'n ' d(P)ndiag{X1J ..... Xs^Hl

S S-l
“ E p-̂ X̂ J = E p-̂ xJ + pg, 

i=l i=l

where pg = [£is^2- Therefore, the autocorrelations (AC(i)} of the
Markov chain have the form

5-1
AC(i) = E p iXiJ. <

i=l
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