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SUMMARY

This thesis discusses some of the problems which arise in the 
statistical analysis of neuroimages. In particular, we develop 
and evaluate statistical methods which, we hope, will provide 
greater and more reliable insight into the biological processes 
which are illustrated in images generated by positron emission 
tomography (PET), single photon emission computerized tomography 
(SPECT) and quantitative autoradiography.

In chapter one, a mathematical model is developed to characterise 
the kinetics of the drug MK - 801 in normal and ischaemic tissue 
and to explore the use of radiolabelled MK - 801 as an in vivo 
ligand for studying glutamenergic mechanisms. Using a three 
compartment model and assuming negligible dissociation from the 
specific receptor site, kinetic constants are found to be 
numerically identifiable in four of the nine brain regions in 
ishaemic tissue (frontal parietal cortex, frontal cortex, 
occipital cortex and striatum). Convergence to a unique set of 
parameters is not obtained for normal central nervous system 
tissue using this model. However, in all ischaemic and normal 
tissue a two compartment model can be fitted to the data. Thus, 
in pathological states in which extracellular concentrations of 
glutamate are elevated and levels of cerebral blood flow are 
reduced (e.g. ishaemia) during the period of measurement, it 
would appear that MK-801 has some potential as an in vivo ligand 
for imaging glutamate release.

In chapter two, we address the problems of ranking the response 
to a drug over a set of brain regions and comparing the patterns
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of response between drugs or treatments. In the first instance 
a theoretical approach is taken for the case of ranking three 
brain regions. We aim to identify the covariance structure for 
maximising and minimising the probability of a correct ranking, 
assuming multivariate normality. For higher dimensions, the 
probability of correctly ranking the observation vector is 
investigated using the Bonferroni inequality. Due to the complex 
nature of the response vector, these theoretical approaches are 
seen to have severe limitations.

As an alternative approach, we have investigated, empirically, 
the performance of a simple measure to characterise the response 
to drug treatment over a large number of brain regions. In a 
simulation study, we establish that, within the set of covariance 
matrices studied, fairly reliable measures of association can be 
computed. Moreover, doubling the between animal variance 
component or increasing the within animal variability appeared 
to have little effect on the reliability of the derived rankings.

In chapter three, four univariate repeated measures ANOVA 
techniques (the traditional F-test, the Huynh-Feldt and 
Greenhouse-Geisser adjusted tests, and a conservative test based 
on the lower bound of Box's correction factor) are studied. This 
form of analysis is important in studying, for instance, the 
relationship between local cerebral blood flow and local cerebral 
glucose utilisation. A common feature of the data from these 
experiments is the high dimensionality of the observation vector 
on a, relatively speaking, small number of experimental units. 
Ten multiple comparison procedures are also studied within the



same framework. Four of these methods (the Tukey, Scheffe, 
Bonferroni and Sidak procedures) are constructed under the 
assumption that the covariance matrix displayed sphericity. Of 
the remaining procedures, two Scheffe-type pairwise intervals, 
based on the Greenhouse-Geisser and Huynh-Feldt correction 
factors, take account of departures from sphericity by adjusting 
the degrees of freedom of the ANOVA F distribution. Four other 
methods (Bonferroni, Sidak, Greenhouse-Geisser and Hunyh-Feldt 
adjusted intervals) are based on the specific estimated variance 
for each contrast rather than on a pooled estimate based on the 
assumption of sphericity.

In the hypothesis testing situation, the test based on the Huynh- 
Feldt correction factor has a significance level close to the 
nominal 5% level over a wide range of covariance matrices. 
However, if a conservative test is necessary, the Greenhouse- 
Geisser approach is preferable. Of the multiple comparison 
procedures, the Bonferroni and Sidak approaches, based on a 
specific error term for each contrast perform consistently well, 
giving joint confidence levels close to the nominal 95% level.

In chapter four, we examine the spatial patterns in 'control - 
minus - control' subtractions in the case of six phantom images 
using a NOVOSPECT scanner. The results indicate that the 
clusters of 'high noise' which are present in the differenced 
images may lead to difficulties in the interpretation of any 
apparent effects observed in images obtained in activation type 
studies.

In chapter five further work in the area of neuroimaging is
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discussed. In particular, we emphasise the need for interval 
estimation in non-linear regression and the determination of the 
signal to noise ratio, in activation-type studies, which is 
required to have some assurance that any apparent effects in the 
difference image are not artefacts of the measurement process.



INTRODUCTION

Quantitative autoradiography has found widespread use in 
neuroscience research most notably for localising 
radioisotopically labelled tracers in histological sections of 
the central nervous system. The sections are opposed to X-ray 
film for days to months, depending on the tracer employed, to 
yield images of a variety of neurobiological processes. 
Densitometric analysis of the images with reference to 
precalibrated standards can then be used to generate rigorous 
measurements of the dynamic biochemical parameter of interest 
within specified brain regions via an appropriate mathematical 
model.

There are two broad strategies for isotopic labelling of cerebral 
tissue for autoradiography; in vitro labelling (where the brain 
is removed after death and histological sections of the central 
nervous system incubated with the radioisotopic material) and in 
vivo labelling (where the tracer is introduced intravenously in 
life and taken up by the central nervous system in life; the 
animal is then sacrificed and histological sections prepared). 
Autoradiography with in vitro labelling has been widely employed 
to characterise the sites of chemical transmission between brain 
cells in normal and disease states in man and animals 
(Whitehouse, 1985), whilst autoradiography with in vivo labelling 
has been used for mapping dynamic events such as glucose 
utilisation (Sokoloff et al., 1977), cerebral blood flow 
(Sakurada et al., 1978), protein synthesis (Smith et al., 1984), 
blood brain barrier permeability (Blasberg et al., 1983) and
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tissue pH (Kobatake et al., 1984).

The counterparts in man of in vivo autoradiography are positron 
emission tomography (PET) and single photon emission computerised 
tomography (SPECT). Briefly, with these technologies, subjects 
are injected with positron or photon emitting substances and 
placed in a scanner. The number of emissions, recorded by a ring 
of detectors surrounding the head, are then converted to yield 
an image of the dynamic process of interest, in a planar section 
of the brain, via a reconstruction algorithm.

One consequence of the development of PET, SPECT and quantitative 
autoradiography is that it has become increasingly easy for 
experimenters to observe complex data structures on each 
experimental unit. Due to the basic cost of experiments, a 
common feature of all these data structures is the high 
dimensionality of the observation vector measured on a relatively 
speaking, small number of experimental units. In these 
circumstances, the sample correlation matrix will be singular. 
This special nature of the data presents challenging problems in 
many aspects of multivariate analyses, particularly in the areas 
of selecting and ordering populations. The principle aim of this 
thesis is to develop and evaluate statistical methods which will 
provide greater and more reliable insight into the biological 
process which are illustrated in neuroimages.



CHAPTER 1 TRACER KINETIC MODELLING OF MK-801

1.0 BACKGROUND

MK-801 is a noncompetitive glutamate N-methyl-D-aspartate (NMDA) 
receptor antagonist (Wong et al, 1986) with potent anti-ischaemic 
effects (Oyzurt et al, 1989). Prior to its development, a 
reduction in ischaemic damage had only been achieved with 
intracerebral administration of NMDA antagonists, due to the low 
blood-brain barrier (BBB) penetration of these agents. However, 
MK-801 is highly lipophilic and unlike competitive antagonists 
of the NMDA receptors, which act at the transmitter recognition 
site, MK-801 is a use dependent blockader which acts at a site 
solely related to the ion channel (at higher concentrations of 
MK-801 the ion channels will be open for a longer period of 
time). Furthermore, the onset of NMDA receptor blockade is more 
rapid in the presence of glutamate (a major excitatory 
neurotransmitter whose extracelluar concentrations are markedly 
elevated in cerebral ischaemia).

In this chapter we aim to develop a mathematical model describing 
the uptake and retention of MK-801 in the rat brain to:
1) characterise the kinetics of the drug in normal and ischaemic 
tissue and to gain insight into the anti-ischaemic effect of the 
compound and
2) to explore the use of radiolabelled MK-801 as an in vivo 
ligand for studying glutamenergic mechanisms.
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However before developing a kinetic model to describe the uptake 
and retention of MK-801 in the central nervous system certain 
biochemical properties of the drug should be known. In
particular, knowledge of the metabolic degradation of the 
compound in blood plasma and brain tissue is essential. At 2 
hours after the administration of [3H]MK-801 in the rat, Hucker 
et al (1983) reported that relatively high concentrations of 
labelled metabolites are present in the blood; however it would 
appear that these metabolites do not cross the BBB, and moreover 
that there is minimal metabolism of [3H]MK-801 by the brain 
itself, implying that virtually all radioactivity in the brain 
can be attributed to MK-801. Other concerns are that the tracer 
should act specifically with the receptor of interest and must 
either be structurally related to the natural substance or have 
similar transport properties.

1.1 INTRODUCTION

Recently many radiolabelled ligands have been synthesised which 
allow for in vivo studies of neurotransmitter systems using 
Positron Emission Tomography (PET), Single Photon Emission 
Computerised Tomography (SPECT) and Autoradiography. These 
studies involve imaging living human or baboon brains, as well 
as tissue dissection of animal brains at specific times after a 
bolus injection of radioligand.

To obtain a quantitative interpretation of the radioligand- 
neurotransmitter interactions, a variety of models have been 
proposed, including models for the dopaminergic (Mintun et al 
1984; Wong et al, 1986a,b; Perlmutter et al, 1986; Farde et al,
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1986; Logan et al, 1987), muscarinic cholinergic (Gibson et al, 
1984; Frey et al, 1985) and opiate (Frost and Wagner, 1984) 
systems. The purpose of all these models is to determine the 
first order rate constants which are expected to reflect the 
binding characteristics of the radioligand. In addition, 
several techniques also estimate neuroreceptor densities and 
binding affinities which are more indicative of the regional 
amount of specific neuroreceptors and the rate of association of 
free ligand with the receptor.

All models fall into one of two categories (dynamic and 
equilibrium) and are based on an appropriate mathematical model 
(Figure 1.1) similar to the four rate constant model (Phelps et 
al, 1 979; Huang et al, 1980) developed as an extension to the 
[14C]-2-deoxyglucose model for the measurement of local cerebral 
glucose utilisation (Sokoloff et al, 1977).



Figure 1.1. Compartmental model used in kinetic analysis or* 
ligand distribution in brain.

fca bbb

In the model, CA represents the systematic arterial 
concentration of radioligand, Cv the capillary plasma
concentration of ligand, LE, SE and NSE are tissue
concentrations of tracer in the free, specifically bound and 
nonspecifically bound compartments, F represents the rate of
local cerebral blood flow and k1# k2, k3, k4, ks and k6 are
transfer coefficients between compartments.
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In this basic comprehensive model for analysing kinetic data for 
in vivo receptor ligand studies, the free ligand is delivered via 
the arterial blood and transported into an extravascular 
compartment by passive diffusion. Once extracted, the ligand 
can either be nonspecifically bound in the extracelluar 
compartment or specifically bound to the receptor of interest or 
back-diffuse into the blood. In most models the nonspecific 
binding sites and the free ligand in tissue are considered to be 
in a common compartment, if it is assumed that nonspecific 
binding is rapidly reversible. Furthermore, the transfer 
coefficients between compartments are assumed to be first-order 
constants; first order input and elimination implies that the 
input and elimination rates are proportional respectively, to the 
amount of drug at the absorption site and the amount of drug in 
the compartment through which the drug is eliminated. Notice 
that k3, the transfer coefficient describing the movement of free 
ligand into the specifically bound compartment (defined as the 
product of the rate constant for association of free ligand with 
the receptor, ka, and the concentration of free receptors, R) 
will only become a pseudo first-order rate constant under 
conditions where the tracer only occupies a negligible fraction 
of the available receptors.

The advantages of both the dynamic and equilibrium approaches 
have been discussed by Huang, Barrio and Phelps (1986). 
Briefly, the dynamic approach requires measurement of the time 
course of the radioactivity in both brain tissue and blood. 
Using an appropriate model these measurements can then be used 
to derive estimates of the rate constants for transport, binding 
and release of ligand using the normalised graphical method
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(Patlak et al, 1983; Gjedde et al, 1985) or nonlinear regression 
techniques. The former method involves a transformation of the 
tissue-activity curve to estimate a number of the model 
parameters in Figure 1.1. With the dynamic approach, it is 
assumed that the radioligand is injected in tracer amounts and 
that the ligand occupies only a negligible fraction of the 
available receptors for k3 to approximate a first order rate 
constant. One drawback from this approach is that k̂  and R 
cannot be estimated separately.

With the equilibrium approach, multiple determinations of the 
radioactivity present in the tissue at different specific 
activities of the ligand are obtained to measure the fraction 
of bound ligand under various levels of unbound ligand 
concentrations. A main assumption for this particular method 
is that the binding and release of ligand at specific binding 
sites are in equilibrium during the time of measurement and the 
concentration of unbound ligand can be estimated. Consequently, 
this approach is suitable for ligands with fast release rates 
from the receptor of interest. Its main advantage over the 
dynamic approach is that estimates of the individual values of 
the association and dissociation constants of the receptor and 
receptor density can be established using such techniques as 
Scatchard and Hills plots. In this chapter we will only 
consider dynamic approaches.

Any model taking into account all the compartments in Figure 1 .1 
will certainly result in parameters which are not numerically 
identifiable from the analysis of typical "receptor binding" 
data. Therefore, to extract useful physiological information
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from such data a number of simplifying assumptions must be made 
to arrive at a workable model. Consequently, a variety of 
models of differing complexity have been proposed for tomographic 
and dissection type studies. However, no matter how simple the 
model, it is worth noting that any estimated physiological 
parameters should not be interpreted without careful 
consideration to the many as sumptions/approximations which have 
been made.

Mintun et al (1984) developed a three compartment model for use 
with PET that results in the quantification of physiological 
parameters using [10F] spiperone. The model involves a total of 
nine parameters; reduced to eight by assuming that the specific 
activity of the radioligand is sufficiently high that the 
injected ligand is present only in tracer quantities. Of the 
eight or nine model parameters, four are assigned values prior 
to data analysis. The remaining parameters are estimated in a 
two step analysis: two parameters being estimated from cerebellum 
tissue data, using the assumption that the cerebellum is an area 
of the brain devoid of specific spiperone binding sites; the 
others being estimated from the tissue data in the area of 
interest.

Wong, Gjedde and Wagner (1986a) presented an alternative dynamic 
model to describe the binding of nC-labelled N-methylspiperone 
(NMSP) to the D2 dopamine receptor in the caudate nucleus. 
Based on a four compartment model a system of differential 
equations were derived employing the simplifying assumption that 
nonspecific binding is rapidly reversible in comparison with the 
rates of other processes in the model. Further requirements for
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derivations of the operational equation were that the 
unimolecular dissociation rate was negligibly small and that the 
tracer was only present in tracer quantities throughout the 
period of study. Except for specific binding, an additional 
assumption was that the kinetic behaviour in the caudate nucleus 
and cerebellum were identical. After correcting the plasma for 
metabolites the parameters of interest were estimated using 
Patlak plots.

Logan et al (1987) derived a further set of ordinary differential 
equations to describe a kinetic model for neuroleptic tracers for 
applications with PET, assuming the quantity of radioligand is 
only present in trace amounts, nonspecific binding is rapidly 
reversible and the ratio of free ligand to nonspecifically bound 
ligand remains constant for the duration of the experiment. 
Estimates of the model parameters were obtained using nonlinear 
regression with the plasma tracer activities being described by 
a sum of four exponentials.

Frey et al (1985), to our knowledge, have provided the only 
kinetic model which has been successfully applied to data from 
the dissection of rat brains at different times after the 
injection of a radiotracer. Assuming nonspecific binding to 
brain is nonsaturable and occurs instantaneously compared to the 
rates of BBB transport and receptor binding, kinetic rate 
constants were obtained from six brain regions using a nonlinear 
least squares curve fitting procedure; estimates of the 
parameters were obtained after the rate of dissociation of the 
tracer from the specific binding site was assumed negligible.
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Other authors have investigated a number of the simplifying 
assumptions which have been made to derive kinetic models of 
receptor-ligand binding. In a simulation study, based on exact
analytical solutions of the relevant system of differential 
equations, Zeeberg and Wagner (1987) indicate that numerical 
errors can arise if the assumption of rapidly reversible binding 
to nonspecific receptors is invalid. Bahn et al (1989) have 
considered the suitability of different model configurations to 
describe the kinetics in caudate and cerebellum using linear and 
nonlinear models. These authors also assessed the effect of 
assuming a negligible dissociation rate from the specific binding 
sites: the parameters from the linear and nonlinear models were 
in better agreement if reversible binding is assumed.

1.2 THEORY

A general compartmental model defining tracer movement among 
compartments of the central nervous system is described in Figure 
1.1. Tracer is considered to be present in three compartments 
in brain tissue corresponding to free, nonspecifically bound and 
specifically bound ligand. Denoting the concentrations of 
tracer in these compartments by LE, NSE and SE respectively, the 
total tissue concentration of tracer, CT, is related to its 
constituents by the equation

CT - LE + NSE + SE 1.1

Before defining the system of differential equations relating 
MK-801 movement between compartments in Figure 1.1 it is first 
necessary to derive an equation relating the capillary blood
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concentration or venous outflow, CV, to the systematic arterial 
concentration, CA. According to the Pick principle (Fick, 1870) 
the rate of accumulation of an inert diffusible tracer in tissue 
over a defined time interval of length T can be expressed 
mathematically as

where Ci is the concentration of the diffusible tracer in tissue 
and F represents blood flow.

Furthermore, Kety (1951) defined the relationship between the 
concentration of tracer in a homogeneous tissue and its venous 
outflow by the equation

where X is the tissue:blood partition coefficient for the tracer 

and m is a constant between 0 and 1 and represents the extent to 
which diffusion equilibrium between blood and tissue is achieved 
during passage from the arterial to the venous end of the 
capillary.

By combining equations 1.2 and 1.3, the rate of accumulation of 
tracer can be rewritten as

dCi = F(CA-CV) 
dt

1 . 2

CA - CV = m(CA-CiA) 1 .3

dCi - K (XCA - Ci) 1 .4
dt

where K = mF/X.
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Since MK-801 is highly lipophilic it seems reasonable that the 
ratio of permeability-surface area product to flow is high enough 
to assume m approaches 1. Equation 1.3 therefore implies that 
the concentration of tracer in venous outflow is proportional to 
the tracer in the tissue in the absence of any binding to 
receptors.

If tracer binds to receptors in the tissue and it is subsequently 
trapped, at any instant in time the concentration of tracer in 
the tissue free to partition is equal to LE. Equation 1.4 can 
thus be rewritten for unmetabolised freely diffusible tracers in 
the presence of binding to be

dCi = K(XCA - LE) 1.5
dt

Assuming that passive diffusion across the blood-brain barrier 
is bidirectionally symmetrical (i.e. k, = k2 = K), the kinetics 
describing tracer movement between the compartments can be 
defined by the following system of differential equations:

dLE » KkCA + k4SE + k6NSE - (K + k3 + k5)LE 1.6
dt

dSE = k3LE - k4SE 1 .7
dt

dNSE « k5LE - kgNSE 1 .8
dt

where K, k3, k4, k5 and are transfer coefficients between
compartments in the model.

Assuming rapid equilibrium between the concentration of 
nonspecifically bound and free tracer, equation 1.8 can be



14.

approximated by

dNSE = ksLE - k*NSE x adLE 1 .9
dt dt

where a *=

Substitution of the above relationship into equation 1.6 implies 
that

(1 +a)dLE ~ KXCA - KLE - k3LE + k<SE 1.10
dt

and

CT - (1+a)LE + SE 1.11

The resulting system of equations 1.7, 1.10 and 1.11 can be
solved for CT using Laplace transform techniques (Godfrey,1983). 
Assuming there is no initial concentration of tracer in the 
brain, the Laplace transforms of these equations after a unit 
impulse function are given by:

SE (s) - k3LE (s) / (s + k4) 1.12

LE (s) * [KX + k4SE (s)]/((1 + a) s + k3 + K) 1.13

and CT(s) * (1 + a)LE(s) + SE(s) 1.14

After a little algebra, the elimination of LE(s) and SE(s) in 
equation 1.14 yields

CT (s) = [ (s+k<) +k3/ (1 +a))KX/ [sJ+s ((K+k3) / (1 +a) +k4) +Kk4/ (1 +a) ] 1.15

Taking the inverse Laplace transform of equation 1.15 and 
expanding by partial fractions, the time course of tracer after
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a unit impulse in arterial plasma is given by

CT - KX [ (k4+k3/ (1 +a) -x,) e Xlt+ (x2-k4-k3/(1+a) )e ] / (x2-x,) 1.16

where t represents time and

x, - {[(K+k3)/(1+a)+kJ + [((K+k3)/(1+a)+k4)2-4Kk4/(1+a)]V2}/2 

x2 - { [ (K+k3) / (1 +a) +k4] - [ ((K+k3) / (1 +a) +k4)2-4Kk4/ (1 +a) ] 1/a}/2

Now under a general input function the tissue response at time 
T is defined by

CT - —  A  (k4 + &  - x,)e "Xlt + (x2 - k4 - , ^  )e“Xat 3 *CA 1.17(x2-x,) (1+a) (1 +a)

where * denotes the operation of convolution.

Finally, approximating the time course of plasma after a bolus 
injection of MK-801 by a sum of n decaying exponentials, the 
parameters of interest are identifiable from the fitted response 
curve of the form:

- (b 2J t

- (&2*(t-u) + B2nu)
du

2 (A**.,) (B2n_1) - (B2n) t - (A*.) t
> Z, ---------------  [e1 n ((Aj*) “ (B2n)) [e e 3 1 .18m=1 n
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where A, - KX <k4 + k3/(1 + a) - x,) / (x2 - x,) ,

Aj - x, ,

A3 - KX (x2 - k4 - k3/(1 + a))/(x2 - x,) ,
A4 = x2

and A,, A2, A3 and A4 are constrained to be greater than or equal 
to 0.

1.3 EXPERIMENTAL METHODS AND CONSIDERATIONS

1.3.1 BLOOD:BRAIN PARTITION COEFFICIENT

To permit the deterministic identifiability of the kinetic constants 
in the above model knowledge of the blood:brain partition 

coefficient (X) of MK-801 in the rat is essential. For the purpose 

of this investigation, X was estimated experimentally in the rat 

using in vitro techniques and was considered to be constant over all 
brain regions.

In the experiments to determine the blood:brain partition 
coefficient for MK-801, 4ml of blood was withdrawn from a Sprague- 

Dawley rat and mixed with heparin, 10 j4Ci of [3H]MK-801 and 0.2ml 

of unlabelled MK-801 (nonradioactive MK-801). After vortexing the 
sample every 15 minutes for 1 hour, samples of whole blood and 
plasma (removed after centrifugation) were counted in a liquid 
scintillation counter to assess the amount of radioactivity present. 
To assess radioactivity in the tissue, sections of the cerebellum 
(a brain region assumed to contain no NMDA receptors) were incubated 
with plasma at 4°C for 24 hours. After washing in distilled water
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and drying in a stream of cold air, the sections were opposed to 
Amersham 3H Hyperfilm and left for 14 days. The developed film was 
then analyzed on a Quantimet 970 image analyser:optical densities 
being converted to nCi/g using a reference set of prepared 
standards.

An estimate of the partition coefficient of 4.0 was then derived by 
dividing the quantified concentration of radioactivity in the 
cerebellum by the concentration of radioactivity in the whole blood.

1.3.2 FREELY DIFFUSIBLE PROPERTY OF MK-801

To derive equation 1.5 in section 1 .2 we have assumed that [3H]MK- 
801 is a freely diffusible tracer. To investigate this property, 
"local cerebral blood flow (LCBF) values" were assessed for t3H]MK- 
801 and compared to these elicited in the same rat by [14C3 
iodoantipyrine (a known freely diffusible compound). For each 
tracer, LCBF values were determined using a previously published 
blood flow model (Sakurada et al, 1978) based on the uptake of a 
freely diffusible tracer and relating the concentration of the 
radiotracer in tissue to the time course history of the tracer in 
plasma (blood:brain partition coefficients of 0.79 and 4.0 were used 
in the operational equations for [14C] iodoantipyrine and [3H] MK-801 
respectively).

In this particular study, each of 6 anaesthetised Sprague-Dawley 

rats was infused intravenously with 40pCi of (3H)MK-801 and 20pCi 

of [HC] iodoantipyrine and over the succeeding 30 seconds 14 timed 
samples of arterial blood were collected in preweighed filter discs.



On collection of the last sample, the discs were immediately 
reweighed and the concentration of both [3H] MK-801 and [,4C] 
iodoantipyrine determined by liquid scintillation counting.

At 30 seconds after the start of the infusion, the animal was 
decapitated and the brain rapidly removed. Samples of tissue 
corresponding to the cerebellum (left and right) , medulla, pons, 
cortex (left and right) and spinal cord were then ‘dissected from the 
brain, weighed and then left to dissolve overnight in ecosint. 
Tissue concentrations of both [3H] MK-801 and [14C] iodoantipyrine 
were determined the following day by liquid scintillation counting.

The results of the investigation are displayed in Table 1.1. Logged 
LCBF values have been used since the variance of the LCBF value 
tends to increase with its expectation (McCulloch et al, 1982). 
Although mean values of LCBF generated using the MK-801 data tended 
to be lower than those of iodoantipyrine (IAP), in all regions 
investigated the difference was not statistically significant using 
a one sample t-test with a nominal significance level of 0.05, 
implying that MK-801 enters the central nervous system with no or 
negligible diffusion limitations.

To determine whether the blood flow model was robust with respect 

to the blood:brain partition coefficient (X), several values of X 

were selected for use with the MK-801 data. With values of X 

greater than 1, in no circumstance were there any appreciable 
increases in the observed rate of LCBF.
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Table 1.1 Comparison of blood flow values

raw data logged data
Region n MK-801

mean
IAP
mean

difference (s.e.) p val

cerebellum left 6 79.2 86.0 -0.126 (0.093) 0.23

cerebellum right 6 79.5 86.3 -0.133 (0.095) 0.22

medulla 6 81 .0 91 .3 -0.144 (0.102) 0.22

pons 6 86.5 96.3 -0.139 (0.092) 0.19

cortex left 6 129.7 136.7 -0.075 (0.088) 0.43

cortex right 6 127.7 140.2 -0.088 (0.068) 0.25

spinal cord 6 76.3 68.8 0.040 (0.132) 0.78

1-3.3 DETERMINATION OF [3H1 MK-801 IN TISSUE AND PLASMA

To assess the uptake and retention of MK-801 in the normal and 
ischaemic rat brain Sprague-Dawley rats were anaesthetised with 
halothane/nitrousoxide anaesthesia and mechanically ventilated via 
a tracheostomy. All animals were monitored for temperature, 
arterial blood gases and mean arterial pressure. Fifteen animals 
further underwent left middle arterial artery occlusion to induce 
ischaemia. Following an intravenous bolus injection of [3H]MK-801 

(20^Ci per rat) timed arterial blood samples were obtained 0.25, 

0.5,0.75,1,2,3,5,7,5,10,15,30,45,60,75,90,105 and 1 20 minutes after 
injection, centrifuged immediately and samples of plasma removed. 
The ligand concentration in each of the plasma samples was then 
assessed by liquid scintillation counting.

To generate time-activity curves for individual brain regions, 3 
normal and ischaemic rats were decpaitated at 5,15,30,60 and 120
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minutes after [3H] MK-801 injection. Brains were removed rapidly 
and dissected into subdivisions corresponding to the frontal 
parietal cortex, frontal cortex, hippocampus, naccumbens, occipital 
cortex, olfactory bulb, parietal cortex, striatum and cerebellum. 
With the exception of the cerebellum, duplicate samples of tissue 
were removed from normal animals. Only tissue in the left hand 
side of the brain was removed from ischaemic animals. After 
dissection, the tissue samples were weighed and then left to 
solubilise overnight. Samples were analysed the following day for 
3H content by liquid scintillation counting.

1.3.4 CORRECTION OF PLASMA SAMPLES FOR METABOLITES

As mentioned previously, Hucker et al (1983) reported that 
relatively high concentrations of labelled metabolites of [3H]MK- 
801 will be present in the blood after 2 hours. Arnett et al 
(1985) have suggested that the percentage of activity due to 
unmetabolised drug can be adequately explained by a sum of two 
exponentials. Although Hucker et al (1983) do not provide enough 
data to apply this procedure for [3H] MK-801, in the first six hours 
after administration of the tracer the authors estimated that the 
half-life of unmetabolised drug in plasma was approximately 86 
minutes.

To correct the plasma samples in the experiments at the Wellcome 
Surgical Institute, we have assumed that the percentage of activity 
due to the unmetabolised drug at time t (%Ca(t)) can be represented 

by a function of the form %Ca(t)-=0l where 0 is a parameter which has 

to be estimated from the data.



21.
By plotting the logged mean plasma activity against time and 
assuming that the half-life of unmetabolised tracer was 86 minutes, 
it was estimated, using only the time points after 10 minutes, that 
50% of the radioactivity detected in plasma was due to metabolites 

at 90 minutes, implying a value of 0 of 0.9923. All plasma samples 

were then corrected by taking the product of the plasma tracer 
activity and the percentage of this activity due to unmetabolised 
drug.

1.3.5 NORMALISATION OF PLASMA SAMPLES

Although great care is taken to administer the same dose of 
radiotracer to each animal, inevitably slight differences in dosage 
will occur. Depending on the specific activity of the radiotracer, 
these differences could have a great effect on the noise in the data 
and subsequently on the number of exponentials which can 
realistically be fitted to the data. To reduce the amount of noise 
in the system, due to slight differences in dosage, the activity in 
the tissue and plasma - measured in degenerations per minute 
(dpm)/mg and dpm/ml respectively - were normalised by dividing the 
number of counts in each tissue/plasma sample by the area under the 
first two minutes of the time-plasma activity curve (two minute 
integral) . The two minute integral was chosen since data was 
available for all animals up to this time point.

1.3.6 FITTING EXPONENTIALS

Fitting multiexponential models to experimental data has been used 
often enough in biomedical research that a number of practical
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problems are well recognised. One such problem which often arises 
is the determination of the number of exponentials which can 
realistically be fitted to the experimental data. Consider the 
case where the arterial input function at time tif CftJ, can be 
represented by the relationship

where Â  (j~1,... ,n) are positive, X, > X,„ > 0 and £i ** N (0, a2) and 

denotes the noise in the system. Godfrey (1983) suggests that some 
guidance on the order of the model can be obtained by using a 
statistical test based on the F-ratio, which is given by

where SSQn and SSQ„_, are the residual sum of squares of the models 
of order n and n**1 ; and dfn and df̂ ., are the corresponding numbers 
of degrees of freedom. If the error variance is not constant for 

all tt, ie var (et) ■ a* « then weights proportional to 1/ut are

calculated and the weighted sum of squared differences between the 
observed Ca(tA) and the model predictions is used to replace SSQ in 
(1.19) above. If multiple observations are available at each tif 
then typically data points will be weighted according to the 
reciprocal of the variance at that time point.

However, there are statistical problems with the use of the F-ratio, 
a special case of the likelihood ratio test, in such situations. 
Suppose, for example, we want to test H0:A3-0 against H, :A3̂ G. The 
difficulty of using the F-ratio arises since the regularity

Ca(tJ

F * (SSQn_, - SSQn) / (dfn - df ) (1.19)
SSQn/df„
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conditions used to obtain the asymptotic properties of the least 
squares estimator and test statistic are violated (Gallant, 1987). 
An additional problem arises, at least in this application, since 
the A's will be constrained to be positive.

Glass and Garreta (1967, 1971) have used simulation techniques to 
assess the ability of the Marquart (1964) and the Newton-Raphson 
(Jennrich and Sampson, 1968) techniques to fit exponentials to 
biological data. Factors which were found to affect the accuracy 
with which amplitudes and exponents could be estimated included the 
measurement accuracy, the magnitude of the noise in the system, the 
sampling frequency and the time range over which samples are taken 
(measurement should begin early enough and at short intervals for 
a fast transient and should continue long enough to identify a slow 
transient).

Other methods for fitting data to multiexponentials include the 
Prony and modified Prony algorithms (Osborne, 1975). However, 
these methods are appropriate only for data equally spaced in time 
and are thus seldom used for physiological data.

1.4 RESULTS

1-4.1 PLASMA CLEARANCE CURVE

The estimated plasma decay curve obtained after a bolus intravenous 
injection of [*H]MK-801 is given by the equation

Ca (t) - 5410e'4'04t + 1 090e"°*670t + 1 76e“°-ooam (1.20)
Data were corrected for metabolites and normalised using the two
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minute integral. The six parameters were identified using a 
standard BMDP (1987) nonlinear, weighted least squares, curve 
fitting algorithm (weights were set to the reciprocal of the 
estimated variance at each time point) . A plot of the data with 
the 'best fit' curve is given in Figure 1.2.

The inclusion of a fourth component in the plasma decay curve did 
not produce a significant improvement in the fit to the data (the 
parameter estimate of the fourth exponential was very small and 
would require experimental data over a longer time period to be 
determined accurately). Also the slowest component in (1.20) 
represents a half-life of approximately 86 minutes. This is in 
good agreement with the estimate of 85 minutes from the analysis of 
data by Hucker et al (1983).

To determine the effect of weighting and normalisation on the 
limitations and the quality of the fit to the data, plasma clearance 
curves were estimated using unnormalised data and/or equal, 
weighting in the least squares curve-fitting procedure. The 
estimates of the parameters B,, B2, ...,Be in equation (1.18) and the 
corresponding coefficients of variation are given in Table 1.2a for 
the unnormalised data and Table 1.2b for the normalised data. In 
Table 1 .2b the estimates of the parameters B,, Bj and Bs are far less 
than those in Table 1 .2a since the data have been normalised. 
However, it would be expected that they will be rougly proportional 
to the corresponding parameter estimates using the unnormalised 
data.
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Table 1.2a Estimates of the arterial plasma curve (unnormalised 

data)
unweighted LS weighted LS

Parameter Estimate Coefficient Estimate Coefficient
of variation of variation

B, 333000 0.074 347000 0.176
b 2 2.96 0.200 3.78 0.210
b 3 49600 0.611 77900 0.249
B< 0.450 0.684 0.642 0.150
b 5 11000 0.443 12000 0.038
B* 0.00651 1 .913 0.00826 0.106

Table 1.2b Estimates of the arterial plasma curve (normalised dat 
unweighted LS weighted LS

Parameter Estimate Coefficient 
of variation

Estimate Coefficient 
of variation

B, 5060 0.036 5410 0.095
B2 3.20 0.092 4.04 0.099
B, 709 0.285 1090 0.118
B« 0.484 0.326 0.670 0.087
b 5 164 0.193 176 0.036
b6 0.00608 0.896 0.00818 0.108

Tables 1.2a,b suggest that normalising the data by dividing through 
by the two minute integral tends to produce more reliable estimates 
of the parameters of interest. Secondly, although there is a 
slight increase in the magnitude of the coefficient of variation of 
B, when using weighted least squares estimation, this is more than 
compensated for by the increase in precision of B3, B<, B5 and B6. 
Furthermore, it is also worth noting that the decay constants B2,
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B* and B6 are increased by weighting the data, whilst the amplitudes 
B,, Bj and Bs decrease. This may be expected since more weight is 
being given to the later time points. It must be stressed, however, 
that these results have been based on only one data set. Estimates 
of the standard errors of the parameters can really only be assessed 
in a simulation study.

1.4.2 REGIONAL ESTIMATION OF MODEL PARAMETERS

Although, by using a dynamic approach to the quantification of 
neuroreceptors, the receptor density, R, in tissue, cannot be 
separated from the associated constant of receptor binding, k,, 
relative receptor densities can be assessed in different parts of 
the brain as the ratio of total binding (specific and nonspecific) 
to nonspecific binding. In the case of NMDA receptors, the
radioactivity in the region of interest can be compared with the
activity in the cerebellum, a region assumed to have no NMDA
receptors. Figures 1.3(i)-1.10(ii) show the ratio of
radioactivities in each of the regions with respect to the 
cerebellum as a function of time. Data from normal and ischaemic 
animals have been plotted separately. The solid line in each plot 
is the estimated tissue: cerebellum ratio one would expect if the 
dynamic process can be explained by a two compartment blood flow 
model.

Within the time course of the experiments, the results indicate 
that in the normal central nervous system, isotope distribution can 
be adequately explained by a two compartment model. In all
regions, the tissue:cerebellum ratio remained constant throughout
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Figure 1.4 Ratio of frontal cortexicerebellum
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Figure 1.6 Ratio of naccumbens:cerebellum
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F igure 1.7 Ratio of occipital cortex:cerebellum
(i) normal tissue
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Figure 1.10 Ratio of striatumrcerebellum
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the duration of the experiment. In contrast with normal tissue, 
the ratio of tissue: cerebellum activity in ischaemic animals
increased progressively over the first 30-60 minutes after isotope 
administration and then levelled out for the remainder of the 
experiment. Although the two compartment model predicts an 
increase in the tissue: cerebellum activity ratio in ischaemic 
animals similar to that observed over the first 30-60 minutes, in 
six of the regions of interest (frontal parietal cortex, frontal 
cortex, hippocampus, occipital cortex, parietal cortex, striatum), 
the ratio for the later time points is underestimated.

Thus by directly comparing the relative receptor densities it would 
appear that the uptake of MKr801 into a number of ischaemic areas 
cannot be attributed solely to the reduced level of cerebral blood 
flow.

Using the arterial input function in equation (1.20), regional 
estimates of the model parameters describing the kinetics of MK- 
801 distribution in normal and ischaemic tissue were derived by 
analysing the time course of tracer in each brain region. The 
adequacy of a two and three compartment model was examined after 
fitting the kinetic data to the convolution of the input with the 
sum of one or two exponential functions, using a BMDP (1987) 
nonlinear least-sguare curve fitting procedure. A model was 
defined as being adequate if the parameters converged to a 
nonnegative set of parameters. Figures 1.11(i)-1.19(ii) show the 
time-activity curves for the regions of interest with the 
corresponding 'best fit' curve.
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Figure 1.12 Time-activity curve for the frontal parietal cortex
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Figure 1.13 Time-activity curve for the frontal cortex
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40.Figure 1.14 Time-activity curve for the hippocampus
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Figure 1.15 Time-activity curve for the naccumbens
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42Figure 1.16 Time-activity curve for the occipital cortex
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Figure 1.18 Time-activity curve for the parietal cortex 4 4 .
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Figure 1.19 Time-activity curve for the striatum 45
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On no occasion did a fit of the full model in equation (1.18) 
converge using regional data. However, recalculation of the 
parameters with A4 in equation (1 .18) set to zero (equivalent to the 
condition where dissociation from the receptor is negligible) 
resulted in the identification of a unique set of estimates in four 
of the nine regions in ischaemic tissue. No convergence to a 
unique nonnegative set of parameters was obtained using this model 
for the normal central nervous system tissue data, implying that the 
model was overparameterised. In all ischaemic and normal tissue 
data, the fitting converged with both A3 and A4 set to zero. The 
regional model parameter values derived from the two and three 
compartment fits are given in Table 1.3. Based on the F-test, the 
fit of the three compartment model in the frontal parietal cortex, 
frontal cortex, occipital cortex and striatum was not significantly 
better than the two compartment model.

The parameter estimates of a and the capillary permeability-surface 

area product, k, in normal central nervous system tissue are rather 
heterogeneous. Both parameters are markedly higher in cortical 
regions; areas corresponding to high levels of cerebral blood flow.

In general, the regional parameter estimates of k and a using the 

two compartment model tended to be lower in ischaemic tissue (only 
the naccumbens showed an increase in both parameters). 
Furthermore, with the exception of the cerebellum and the frontal 
parietal cortex, regional estimates of k appear to be homogenous; 
the estimate of k in the cerebellum exceeded all others whilst the 
estimated k in the frontal parietal cortex appeared to be lower. 

Indeed, with respect to the cerebellum, the estimates of k and a



are only slightly reduced in ischaemic tissue suggesting that thi3 
region is largely unaffected after left middle artery occlusion. 
The estimates of the parameter k3 using the three compartment fit 
were all small, emphasising that specific binding represents only 
a small contribution to the total activity in these regions. 
However, by including an extra parameter in the model estimates of

k increased whilst those of a decreased.

Table 1. 3a Estimates of kinetic constants from the two compartment
model normal tissue

Region k a

Cerebellum 0.483 3.57
Frontal parietal cortex 0.628 5.76
Frontal cortex 0.762 5.54
Hippocampus 0.536 4.81
Naccumbens 0.237 2.04
Occipital cortex 0.652 5.11
Olfactory bulb 0.389 2.63
Parietal cortex 0.776 5.42
Striatum 0.521 3.66

Table 1.3b Estimates at kinetic constants from the two and three
compartment model (ischaemic tissue)

2 compartments 3 compartments

Region k a k k3 a

Cerebellum 0.454 2.88 - - -

Frontal parietal cortex 0.190 2.63 0.207 0.0079 2.18
Frontal cortex 0.324 3.62 0.324 0.0001 3.65
Hippocampus 0.385 3.68 - - -
Naccumbens 0.261 2.28 - - -

Occipital cortex 0.279 3.11 0.283 0.0021 3.01
Olfactory bulb 0.321 2.47 - - -
Parietal cortex 0.371 3.48 - - -
Striatum 0.308 1 .65 0.343 0.0072 1 . 37
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1.5 Discussion

In this section we have introduced a mathematical model to describe 
the uptake and retention of MK-801 in the rat brain. In addition, 
we have focused our investigation on the model configurations that 
are identifiable from modelling MK-801 in normal and ischaemic 
central nervous tissue. In the nine regions of interest studied, 
our results indicate that the kinetic data, pooled in a series of 
rats from dissection experiments, support only two distinguishable 
compartments in the model for normal and ischaemic tissue. In four 
of the nine regions in ischaemic tissue (frontal parietal cortex, 
frontal cortex, occipital cortex and striatum) a three compartment 
model could be fitted to the data although the F-test, which is 
possibly unreliable, indicated that the fit, with the inclusion of 
the extra parameter, was not significantly better. However, the 
modelling of the tissue: cerebellum ratio indicated that the
kinetics of MK-801 uptake into these ischaemic areas at the later 
time points could not be attributed solely to the rate of cerebral 
blood flow.

The inability to fit a three compartment model to the data in 
circumstances under which the release of glutamate is not enhanced 
can be explained by the diffusibility and lipophilic properties of 
MK-801 coupled with the high level of cerebral blood flow. These 
properties dominate the kinetic model and greatly outweigh any 
binding of the drug to specific binding sites. However, in 
conditions with low cerebral blood flow and enhanced glutamate 
release (e.g. ischaemia) the possibility of fitting a three 
compartment model assuming no dissociation from the specific binding
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site is increased. Possible explanations as to why the three 
compartment model does not improve significantly the fit or cannot 
be fitted at all could be measurement noise in the blood 
radioactivity concentration, difficulty in estimating accurately the 
variance of data values (leading to suboptimal weighting in the 
nonlinear least squares curve fitting algorithm), the limited time 
range of data (especially the lack of data at very early 
experimental times) and small sample size.

A further explanation for the apparent lack of fit could be the 
result of tissue dissection errors. Speculation regarding this 
cause could be removed by conducting an autoradiographic study. 
Moreover, greater anatomical resolution would be obtainable allowing 
the investigator to study in vivo MK-801 binding in more brain 
structures. Although such studies would reduce the tissue
dissection variability in the kinetic data, this source of variation 
is likely to be small compared with the variation in the data caused 
by pooling data from different animals. Bearing in mind that PET 
and SPECT studies would permit the investigator to observe data in 
the form of time versus regional activities for each individual, the 
results of the present study are of significance with respect to the 
eventual feasibility of studying MK-801 receptor binding in 
experiments with enhanced glutamate release, employing these 
technologies. Not only would the signal have reduced noise over 
a wide range of time, in addition the investigator has the advantage 
of obtaining a pictorial display of regional parameter values.

The validity of the simplifying assumptions which were necessary to 
derive the working model is another important issue which has to be
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raised. Although tracer kinetic studies have shown consistency 
between the specified model and the data, biochemical measurements 
are required to verify the approximating assumptions and to confirm 
model predictions of compartmental concentrations of tracer at 
several time points. Moreover, the approximating assumptions 
should always be examined under a wide range of physiological 
conditions (e.g. receptor densities, rate of blood flows, specific 
activities, partition coefficients) . To illustrate this point, due 
to the similarities of the experimental procedure we attempted to 
fit the data in this study to the model by Frey et al (1985) . The 
parameters A,, A2 and A3 in equation (1.18) can be derived from the 
data in a similar fashion. However these did not satisfy the 
constraints necessary for the transformation of these parameters 

into the kinetic parameters of interest (Kt, K3 and a) . The 

inability to identify the set of parameters can be explained by the 
freely diffusibility property and the high brain:blood partition 
coefficient of MK-801 . Thus, the selection of a particular 
approach should depend very much on the characteristics of the 
radiolabelled ligand and the appropriateness of the simplifying 
assumptions.

In conclusion, by introducing a mathematical model which 
incorporates the freely dif fusibility property of MK-801 we have 
been able to derive parameters which characterise the kinetics 
behaviour of MK-801 . Furthermore, in conditions with low cerebral 
blood flow and enhanced glutamate release, there is enough evidence 
to suggest that in vivo MK-801 binding can be employed to examine 
glutamenergic mechanisms which cannot be assessed in vitro, if the 
variability in the experimental data can be controlled.



CHAPTER 2 RANKING REGIONAL RESPONSES

2.0 INTRODUCTION

Neuropharmacologists are often interested in investigating the 
hierarchy or the pattern of response of some dynamic biochemical 
process of interest in a large number of brain regions after drug 
administration or other treatment, and possibly in comparing and 
contrasting the observed response with different treatments or 
drugs. Consider, as an illustration, the investigation of the 
level of local cerebral glucose utilisation (LCGU) in discrete 
regions of interest (ROI's), as measured by the [,4C]-2- 
deoxyglucose quantitative autoradiographic technique. Typical 
applications in this area would involve measuring LCGU in up to 
100 ROI's at each of 3 to 5 doses of a drug (including a control 
group), with experimental animals nested within individual doses 
of the drug.

In the literature, a variety of methods to deal with the 
quantification of the regional response to drug treatment have 
evolved. For example, in situations where a treatment or a 
single dose group is to be compared with a control group, 
regional mean differences or percentage changes relative to the 
control group, are calculated and interpreted (Eckardt et al, 
1986; Sokoloff et al, 1977), whereas in multidose situations a 
one-way analysis of variance between treatment groups may be 
carried out within regions and either the resulting F statistics 
or p values used to rank responses (Dunn et al, 1980).



The main feature of all these methods is that no attempt is made 
to assess the reliability of the rankings derived. Furthermore 
the use of F statistics to measure the response is potentially 
misleading since the F statistic just measures a general 
variability in the group means and does not necessarily rank the 
response to drug treatment sensibly. For instance, a region 
affected only at the highest dose, at which maximal response is 
reached, would be equally ranked with a region in which the 
maximal response is reached at the lowest dose. Another problem 
with the F statistic is that division by the regional residual 
mean square error may introduce spurious variability to the 
ranking problem.

In this chapter we investigate the reliability of methods of 
ranking regions with respect to the strength of response. In 
section 2.1 we address, mathematically, some of the problems 
associated with ranking the components of a multivariate normal 
mean vector and identify extreme forms of the covariance 
structure which lead to the least and most favourable forms of 
analysis. In section 2.2 we investigate, empirically, the 
performance of methods to characterise the response to drug 
treatment over the whole brain, or at least the set of regions 
selected for study. The perfomance of these methods are assessed 
over a variety of covariance structures using simulation and we 
identify extreme forms of the covariance structure which should 
lead to conservative forms of analysis.
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2.1 RANKING THE COMPONENTS OF A MULTIVARIATE MEAN VECTOR

In this section we are concerned with the multiple-decision 
problem of evaluating the probability associated with the 
complete ranking of the components of a multivariate mean vector.
The results, of course, can be extended in an obvious manner to 
the case where we are interested in the differences between two 
multivariate normal vectors.

The indifference-zone philosophy of multiple decision procedures 
was first formulated by Bechhofer in a pioneering paper in 1954, 
in which the author addressed several possible ranking and 
selection goals as alternatives to conventional tests of 
homogeneity. Gupta (1956) introduced the related subset
selection approach. The mathematical problems associated with 
both these approaches are equivalent in the present case of 
interest, and so as a matter of convenience only the 
indifference-zone philosophy will be considered. Although many 
authors have investigated various goals using these approaches 
(see Gibbons, Olkin and Sobel (1977) and Gupta and Panchapakesan 
(1979) for a review of the general statistical problems) very 
little work in this area has focused on selection and ranking 
procedures relating to a single k-variate normal distribution. 
Frischtak (1973), in a doctoral dissertation, considered the 
problems of selecting the sample size which, for a guaranteed 
probability will (a) select the component with the largest 
population mean (b) select the component with the smallest 
variance and (c) select a subclass of components with the 
smallest population generalised variance.



2.1.1 FORMULATION OF THE PROBLEM

Suppose the random vector X? = (X,,...^) has a multivariate
normal distribution with mean vector ji and covariance matrix £. 

Assume [iT = (n, , ..., nJ is unknown and £ = ĉ R, where o2 is known 

and R={q1;)} denotes the correlation matrix.

Let H<D<H(2) < ..... < Moo be the ranked values of the vector i±. It
is assumed that it is not known beforehand which population is 
paired with [A(i) (i=1 , .. . ,k) . Our goal, in this problem, will be 

to find the correct (but unknown) ordering

Mm ^  Mm £ ..................£  Moo.

To formulate the probability associated with this goal, when 
using the indifference zone approach, we introduce a "distance" 

measure between each successive pair of ordered values,

= M<2) “ M<1)

“  Mo) ~  M®

$ls-i — ~ M(k-1)

The problem, as defined by Bechhofer(1954), is then to construct 
a decision rule such that the probability of a complete ordering 
of the vector ^ is at least some probability P* whenever each of 

the 6, is greater than a specified real constant 6*, that is, 

whenever
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£ ®2#t * * * • * &K-1 > &H-I*-

To simplify matters# we will only consider the special case where
6j* s = ..= 8̂ ,* ss 6*. That is, we want the probability of a correct

ordering to be at least * whenever

8l> 8*#8i> 6* 6*., > 6’. 2.1

The region of the parameter space satisfying (2.1) is referred 
to as the preference zone, and all points not in this parameter 
space are said to lie in the indifference zone. In other words# 
for all points lying inside the indifference zone, we are 
indifferent as to which decision is made. Furthermore# a 
configuration in the preference zone for which the probability 
of a correct ordering is at an infimum# is called the least 
favourable condition.

The best procedure (Eaton# 1966; Savage, 1957), based on a random 
sample of n observations from the population, is to rank the 
components of the multivariate mean vector and to assert that 
the population with the i'th largest sample mean is the one with 

the i'th largest \i value. The probability of a correct ranking 
(PCR) can then be defined as

-̂(2)̂ , liX(k-i)0 (̂ic)} ™ Pr{X,2,-X(1)>0# X(3)-x(2,>0 # . . . # X( W j>,0}

where X(t) is the sample mean associated with the i'th largest 

mean (i.e. ntl!).

Before considering the solution to this problem we first consider 
some preliminary results which will be used throughout this 
chapter.



LEMMA 2.1 _  _
X, - X, - (|i, - nJ

Let Y,» -   (i * j)
o(2/n),/J (1

Then, for i' - i+1, the {Y*1', i * 1,...,k-1> have a multivariate 
normal distribution with

corr {Y^fYt̂ } ~ yit - Qit * Ql,t' ~~ Qi,t ~ Qlt' 2 .1.1
2 ( 1 - ^ . ) 1/2 (1 ” Qtt')1/2

Further, if i' * t then 2.1.1 reduces to

corr {Y/'fY*,*10'} - yu. Qu' + Gi'd')' ~ Old)' “  ̂
2(1 “(hi*)1/2 (1-ClMi.)>),/2

PROOF Using the above definition, the result follows since

corr (Y/' .Y^') - cov £Xt, - Xt , X^ - X*)
a2(2/n) (1-cu0 ,/a(1-ctt» ),/8

*  Qit "*■ Qi't' ” Qit' ” Qi't
2 (1-cu, ),/3 <1-Qtt'),/2

For simplicity let Yt at Y*1' and corr {Y/',Yj,*1'’*} = Yu,

LEMMA 2.2

Let the {Yt , i - 1, ..., k~1} be as in Lemma 2.1. Then

PCR > Pr (Y, > - a(n) (l-^,)”1'2 , i-1 , ____  k-1)

where a(n) =» (6*/cr) (n/2),/2
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PROOF Using Lemma 2.1 we notice that

PCR - Pr(X(itl) - X(1) > 0 ,  i-1 k-1)

k-1)

> Pr (Yt > - 5* (n/2)1/2 i k-1) . 2. 1 . 2
<* n-eu*)1"

Our task is to determine the least favourable and most favourable 
configuration for the right hand side of (2 .1.2).

2.1.2 CASE OF EQUAL CORRELATIONS

When the off diagonal elements of the correlation matrix, R, are 

known to be equal to a common unknown g (-1/(k-1) < g <1) ,

and the minimisation and maximisation of (2.1.2) occurs when q

- -1/(k-1) and 1 respectively. Notice that in both these cases 
the multivariate distribution of X is degenerate. Explicitly 
we may write

inf PCR - Pr (Y± > - a(n) ((k-1) /k)U2, i-1, ..., k-1) 
and sup PCR - Pr (Yt > - «, t ± - 1 ____, k-1) - 1

1 < i < t < k-1
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2.1.3 CASE k»2

Although a particular case of the preceding section, since X has a 
bivariate normal distribution, 2 .1.2 reduces to a univariate normal 
integral, the minimum and maximum of which clearly occurs when 

g--1 and 1 respectively. Therefore

inf PCR - Pr(Y, > -a<n) 2~'n ) and 2.1.3

sup PCR - Pr (Y, > ~ °°) * 1 . 
where Y, is a standard univariate normal random variable.

2.1.4 CASE k-3

In this particular instance, for all permissible values of gt2, g13, 

and g23, we are interested in identifying the forms of the covariance 

matrix for which the probability of a correct ranking will be
maximised and minimised. Thus, for k=3, we would like to identify
the covariance matrix associated with the maximisation and 
minimisation of

PCR - Pr (Y, > -a(n) d-ft,)’1", Y2 > -a(n) (1-q23)',/2) 2.1.4

where {Y,,Y2} have a standard bivariate normal distribution with

+ ~ Qu “ 1corr {Y,, YJ - y * ,_______  - . _
2 ( 1  -  f t / 1 (1 -

Since R is positive semi-definite, the region in 3 dimensional 
Euclidean space where R is defined is given by the ellipsoid 

det R>0. That is, ĝ , g13, g^ are constrained by the equation

1 + 2g12 gu ga — g^ - g13 ~ gjj > 0  2.1.6
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subject to Qt* < 1 (i*j).

LEMMA 2.3

dPCR < 0 for * 1 and * 1.
dQu

PROOF Let/T(y,, y2) be the probability density function of {Y, ,Y2>, 

i.e.

JT(y 1/ y2) " (2jt)‘I{1-Y2)"172 exp {-1/2(1 -Y2)"1 (y,2 +y22 - 2yy,y2) } .
Then using the result given by Plackett (1954) that

d d*
"5j /T (yw ya) - a£5ytM y'' Ya) ' we have

dgCR - f f 3* fT (yt, y2) dy, dy2 3*

= /, (-a,, - (*-1/2) (1-qJ'V2 (1 -q^  < 0

where a, = a(n) (1 - q12)_w and %  = a(n) (1 - q23)“1/2 QED

For the case of equal correlation it was noted in section 2.1.2 that 

PCR is maximised when = Q& = gu = 1. To solve 2.1.3 for the more

general case, it will be assumed, in the remaining part of this

section, that neither g^ nor ga equals unity.

Now suppose Qia and g0 are fixed, then by the previous Lemma, PCR is 

at a maximum when gl3 takes its minimal possible value and at a

minimum when gu takes its maximal possible value, these being the

smaller and larger roots respectively of the quadratic equation 
det R - 0.
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As an example, consider the special case where p,2 = = x. The

region in which det R > 0 is illustrated in Figure 2.1 .
FIGURE 2.1

Notice that as t -»1 the smaller root of the quadratic equation, det 
R=0, tends to 1 . In such regions of the parameter space, the 
configuration of the covariance matrix will be very close to the 
most favourable condition.

In the case for given Q& and not equal to 1 

inf PCR occurs when

sup PCR occurs when = q,2 - (l-Q^2)112 (l-p2̂ 172

To proceed with the minimisation and maximisation of PCR we define 
the Lagrangean function 

F - PCR + X det R.

Now the correlation matrix R, subject to the constraint det R *■ 0, 
must satisfy the following four equations:
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3^  = S, ( -a ,. -a,) (-  1/2) (l -  Q J ' a (l -  eo)-‘“ + 2 X <0l2 Ca -  Cu) = 0 2.1.7

£pl f / « _q \ (1 + Qa ~ Qu “Qu) . C t / o v ) dv
a r ^ j - J L  f'( ' ’yi) dv*

+ 2X(qjj pjj Qia) — 0 2.1 >8

~ fr “̂ai * -a a) (1 + qu - Qa - <?») + a(n) f f y(yt, -  a j  dy3
4(1 - <?l2)w (1 - qJ*3 2(1 - qJ ™  J.*,

4* 2 X (Qu Q23 ~ Qjj) = 0 2.1.9

where a* = a(n) (1 - Qn)~1/2 and â  = a(n) (1 - ̂ 23)1/2

dF
_  = det R - 0 2.1.10
dX

By the symmetry of equations (2.1.8) and (2.1.9) with respect to q12 

and Q231 one identifies a solution of the form 

Q12 = O23 = *

Using (2.1.10) in conjunction with Lemma 2.3, implies that for such 

solutions and fixed t

(a) PCR is minimised when qu - 1 and

(b) PCR is maximised when pl3 * 2t3*-1

Furthermore, by substituting these values into (2.1.5) we can obtain 

the corresponding value of y for the cases above

(a) y - -1 and
(b) y “ t
Consider case (a) first. In this instance PCR is given by
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where a - a(n) (1 - x)"'n , will be minimised when x m -1 . Thus the 

least favourable configuration of R occurs when

Qiz - Qa = “1 and Qu = 1

(2.1.9) become identical and therefore to identify the correlation 
structure which will maximise the probability of a correct ranking 
we must eliminate the Lagrange multiplier between equation (2.1.7) 
and (2 .1.8).

After a little algebra we arrive at the equation

for the density inside the integral. The LHS of equation can then 
be rewritten as

Now consider case (b) . Since qu = Qa equations (2.1.8) and

/ ,  (-a , y) dy = (l -  U  (-a  . -a ) 
a(n)

where a -  a(n) (l -  t)~w ,

(2.1.12)

To proceed to the solution, we use the factorisation

/(x, y) - /(y I x) J(x)

/(-a) / (y i -a) dy

(2x)~ul exp {-1/2 z2} dz

where z - v + ta____
( 1 - t ) w ( 1 + t ) w

, a - a(n) (1-t)"w and b « a(n) (1 +x)_la ,



After further simplification (2.1.12) reduces to 63.

( (2jtYm exp{-z2/2} dz = (1 - t) exp{-b2/2} 2.1.13
^ b (1 + t)

where b = a(n) (1 + x)~m

Therefore, for a given a(n) we can identify from (2.1.13) the 
correlation structure which will attain the maximum probability of 
a correct ranking.

Numerical evaluations oft and PCR are illustrated in Table 2.1, for 

given values of a(n). Notice that the evaluation of t from

(2.1.13) is greatly simplified if we actually fix values of b rather 
than a(n). The value of a(n) can then be obtained after solving

(2.1.13) for t.

As expected, as a(n) increases, the probability of a correct ranking 
increases: a(n) will increase if the sample size increases or the 
variance of the components decreases. Furthermore, if we allow 

a(n) — then equations (2.1.7), (2.1.8), (2.1.9) and (2.1.10)

become

2  A. ( q12 Qa — g13 ) = 0  ,

2  X ( q13 Q.J3 -  q12 ) “  0  f

2  X ( Q12 Q13 — O2 3 ) ~ 0 , and 

det R = 0

which has solutions

(a) 612 = 0a = Qo = 1

( W  G12 023 “  — 013 “  ^ t

which correspond to the most and least favourable configurations 
respectively.
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Also notice that if we were simply to randomly rank the three 
components the associated probability of attaining a correct ranking 
would be 1/6. However, as a(n) tends to zero, PCR* can become less 
than 1/6 and so in such instances we would be better off just 
selecting any ranking.

TABLE 2.1 Values of the probability of a correct ranking for given 
a(n) when k = 3.

a(n) T 013 PCR

6.00 0.997 0.998 -  1.00

2.03 0.83 0.38 0.81

1.24 0.55 -0.40 0.67

0.77 0.33 -0.89 0.55

0.51 0.05 -0.997 0.42

0.28 -0.29 -0.92 0.29

0.14 -0.54 -0.71 0.20

0.05 -0.76 -0.42 0.13

0.02 -0.88 0.55 0.01

2.1.5 CASE k>3
In the previous section, we were able to derive results through 
numerical computations about the configurations of the correlation 
matrix, maximising and minimising the PCR. While tables of general 
multivariate normal integrals of dimension greater than 2 are not 
readily available, a lower bound on the PCR may be obtained using 
Bonferroni's inequality. Moreover, Bonferroni's inequality can be 
used to derive a lower bound for the PCR in the less restrictive 
case where not all the components of the multivariate mean vector 
have the same variance.



65.For p events, E,,..., Ep, Bonferroni's inequality may be written 
explicitly as

P P
Pr in E,) > X Pr (EJ -  (p-1) 

h i 1=1

Let i' " i + 1, as before, and defining

X,, -  Xi -  (Hi. -  Hi) = X4. -  Xi -  (Hi, - Hi)

(Var (Xi. -Xi)]- [(o'ii +  o’i-i.- Oii.)/n]M

we may use the Bonferrori inequality to derive a conservative 
estimate of the

PCR = Pr {(Y, > -  a j, i = U k - l }

k-1
> X Pr (Yt > -  a j -  (k -  2) 2.1.14

h i

where a,, = 6*,. / C ( - 2o±l, ) /n

The probability statement (2 .1 .1 4 )  can be evaluated for known X

A

and X , a sample estimate of the true covariance structure. If we

assume that X = c* T, where T denotes the correlation of X, then

PCR = Pr (Y, > -  a , , i = U Jc-l)

k-1
> X Pr (Yt > -  a4 ) -  (k-2) 

i=l

k-1
> X Pr (Y, > -a(n)2'1/1) -  (k-2) by 2.1.3 

h i

and of course, the maximum will occur when all correlations between
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the components are equal to 1. Thus for any general multivariate 
normal vector we may obtain a lower bound for the probability of a 
correct ranking. In autoradiographic studies, where the dimension 
of the observation vector will often exceed 60, the lower bound of 
PCR, based on the Bonferrori inequality, is likely to be extremely 
small. Indeed for k » 60, Pr (Yi > - a(n)2",/2, i«1,..,59) would 
have to be at least 58/59 (or equivalently for a(n) to be greater 
than 3) for the lower bound to be positive. If on the other hand, 
a constant correlation model is a good working approximation then 

PCR = Pr (Y, > -  a , , i « 1....... k-1)

> Pr (Y, > -  a(n) ( (k -l)/k  )w ; i = 1  k - 1 ) 

k-1 
> I  Pr (Y, > -  a(n) ( (k-l) /k)w ) -  (k -  2) 

i=l

for which a (n) would have to be greater than 2.14 for the lower 
bound to be positive, assuming k-60, or a(n) to be greater than 2.22 
for a guaranteed probability of at least 1/6.

If we confine ourselves to studies within particular neurological 
circuits or investigations, where the dimensionality of the problem 
is greatly reduced, and we are willing to assume the correlations 
between regions are positive, then there may be some possibility of 
obtaining a ranking with a certain degree of reliability. However, 
for general investigations a perfect ranking would appear to be an 
unrealistic aim. One possibility would be to focus on identifying 
extreme regions corresponding to drug side effects.

In the following section we address and study factors which affect 
the reliability of alternative approaches for quantifying the 
hierarchy of drug response.



2.2 INVESTIGATING THE PATTERN OF RESPONSE
67.

In this section we consider the problem of investigating the
hierarchy of regional responses, of the variable of interest, to 
treatment with a drug and possibly in comparing these hierarchies 
between drugs, using data from autoradiographic studies. For 
illustration, in the remainder of this chapter, the variable of 
interest will be assumed to be local cerebral glucose utilisation, 

measured in units of pmol/1OOg/min. As mentioned previously, a 

variety of methods, some of which may be potentially misleading, 
have evolved in the literature to quantify the regional responses. 
In this section we have a slight change in notation whereby we let 
Yijk denote the measurement of interest in the j111 brain region 

on the ith animal (i-1,..,nk) in the k** treatment group 
(k-l,..,)^; k-1 representing the control group). Since, in
autoradiographic studies, the variance of Y1Jk will tend to increase 
as its expected value increases, we will work with logged data to 
stabilise the variance, that is

— loge (Yljk).

Let E(X1Jk) - then for each of the j regions we investigate two

measures of response, namely

K
ft» - 2 (Ujk-Hji)2 and

k-1

K

k-1

which we estimate by
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f„ = 2 (X.jk - X .31)2 and
k = 1

K _
f23 = 2 |x.Jk - X.31| respectively

k=1

Notice that both these approaches measure the response relative to 
the control group and allow for bidirectional changes in metabolic 
activity, hence providing a more sensible ordering of the regions. 
The divisor which is present in the F-statistic is also omitted 
since it may introduce spurious variability to the ranking problem.

One drawback with this type of approach is that there would not 
appear to be any exact procedure to assess the ordering of the f13's 
or f2;J's. Note that in the case of the f^'s with k=2, the problem 
at hand is concerned with ranking the elements of a multivariate 
noncentral chi-squared vector. However, although there are no 
exact procedures available, we may assess the reliability of the 
derived rankings using simulation techniques.

2.2.1 EXAMPLE DATA SETS

To investigate the applicability of f,3 and f2j as measures of 
response in general experimental situations, we consider two data 
sets.

ELECTRICAL STIMULATION OF THE RAPHE NUCLEUS

In an experiment to investigate the repercussions of activating the 
ascending serotonergic pathways, local cerebral glucose utilisation 
was measured in conscious rats after electrical stimulation of the
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rostral (dorsal or median) raphe nuclei. Glucose use in 91 
discrete brain regions was studied in three groups of rats, dorsal 
raphe stimulated (n=8) ; median raphe stimulated (n=5) ; and a control 
group of animals in which the electrode was placed in either the 
dorsal or median raphe nucleus but in which no current was applied 
(n-7).

Furthermore, to investigate the specificity of the raphe-induced 
changes in integrated functional activity to the activation of 
serotonergic neurones, a group of rats that had underwent 
pretreatment with 5,7-dihydroxytryptamine (5,7 DHT), a serotonergic 
neurotoxin, was later subjected to stimulation of the dorsal raphe 
(n=6) and compared to (1) animals that received 5,7 DHT alone (n=5) 
- for illustration purposes label this comparison 5,7 DHT(1) - and 
(2) the control group of animals in which no 5,7 DHT was 
administered (labelled 5,7 DHT(2)). In Figures 2.2.1 (i) - (viii) 
we plot the estimated f13's and fzj's for each of the 91 brain 
regions studied, for the pairs of treatment (dorsal raphe 
stimulation, median raphe stimulation), (dorsal raphe stimulation,
5.7 DHT(1)), (median raphe stimulation, 5,7 DHT(1)) and (5,7 DHT(1),
5.7 DHT(2)). Brain regions in which a two sample t-test identified 
significant differences from the control group, using a significance 
level of 0.01, are coded D,M, D  and A  for the dorsal raphe, median 
raphe, 5,7 DHT(1) and 5,7 DHT(2) comparisons respectively. Regions 
in which both comparisons were significant are coded B in the 
figures.

Figures 2.2.1 (i)-(viii) indicate electrical stimulation of the raphe 
nucleus increased local cerebral glucose utilisation in a number of 
brain regions, with dorsal raphe stimulation being systematically



70.
Figure 2.2.1 Relationship between the responsiveness of regional 
glucose use after stimulation of the dorsal median, raphe and 
dorsal raphe after treatment with 5,7 - DHT.
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(iii)
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(vii)
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more effective than median raphe stimulation. No brain regions 
showed a significant decrease in glucose use and with only a few 
exceptions, increases in local cerebral glucose utilisation were 
not observed by administering 5,7 DHT prior to stimulation of the 
dorsal raphe.

Although, there were fewer significant differences observed with
certain comparisons, generally speaking the hierarchy or ordering
of the response for all four comparisons were similar for both the
f1;) and f2j procedures (Pearson's product moment correlation

A Acoefficient, calculated on the fu's and are provided in
Table 2.2.1 as a useful distance measure between the rankings, for 
each pair of treatments). However, brain regions indicating an 
altered position in the hierarchy are easily identifiable. For 
instance, dorsal raphe stimulation increased local cerebral glucose 
use in both the dorsal raphe itself and in the median raphe, whilst 
in contrast median raphe stimulation or dorsal raphe stimulation 
after administration of 5,7 DHT failed to elicit significant changes 
in glucose use in the dorsal raphe.

Table 2.2.1 Pearson product moment correlation coefficients in
raphe stimulation study.

fi fa
A

P (dorsal raphe, median raphe) 0.76 0.81
A

P (dorsal raphe, 5,7 DHT(1)) 0.78 0.78
A

P (median raphe, 5,7 DHT(1)) 0.70 0.67
A

P (5,7 DHT{1), 5,7 DHT(2)) 0.83 0.78
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In this situation we consider the investigation of 3 agents, namely 
Alpidem, Zolpidem and Diazepam, acting on benzodiazepam receptors. 
The effects of all three agents upon local cerebral glucose 
utilisation were analysed in 46 discrete brain regions at each of 
three doses (10-100 mg/kg i.v.), (0.1-1 .0 mg/kg i.v) and (0.1-1 .0 
mg/kg i.v) respectively. Sample sizes in the (control, dose 1, dose 
2 and dose 3) groups for each drug were respectively (2,5,5,5), 
(10,6,7,6) and (9,5,5,5,).

Experiments involving the agents Alpidem and Zolpidem were conducted 
at Lers Synthelabo, Bagneux with autoradiograms analysed on a 
Quantimet 720 image analyser. The corresponding investigations of 
Diazepam were conducted at the Wellcome Surgical Institute, Glasgow, 
with autoradiagrams analysed on a Quantimet 970 image analyser. 
In both centres, levels of local cerebral glucose utilisation were 
calculated using identical software, utilising the operational 
equation and kinetic constants derived by Sokoloff et al (1977).

The estimated f^'s and f2J'S/ for each of the 46 regions studied, 
are displayed in Figures 2.2.2 (i) - (vi) , for the pairs of drugs 
(Alpidem, Zolpidem), (Alpidem, Diazepam) and (Zolpidem, Diazepam). 
Regions involved in the "Sleep" and "Anxiolytic/Angiogenic" 
circuits, where there were strong prior expectations about the 
relationships which should be observed are coded 0 in the figures. 
Pearson's product moment correlation coefficients are given in Table 
2 .2 .2 .



76.Figure 2.2.2 Relationship between the responsiveness of regional 
cerebral glucose use to Alpidem, Zolpidem and Diazepam.
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Figures 2.2,2(i)- (vi) indicate that the pattern or hierarchy of 
response for the three drugs are similar, although the association 
between the f1}'s and f23's is not especially strong, particularly 
for Alpidem and Zolpidem (Figures 2.2.2(i) and (ii)). The regions 
involved in the "Sleep" and "Anxiolytic/Anxiogenic" circuits, 
denoted by 0, exhibit a tendency to possess higher f,/s and fj/s 
for all three drugs, although functional activity in these circuits 
would appear to have been affected less after the administration of 
Alpidem. Regions affected by Alpidem but largely unaffected by the 
other drugs could also be detected.

Table 2.2.2 Pearson's product moment correlation coefficients in 
Alpidem/Zolpidem/Diazepam Study.

f, f2
A

p (Alpidem, Zolpidem) 0.65 0.70
Ap (Alpidem, Diazepam) 0.40 0.44
Ap (Zolpidem, Diazepam) 0.65 0.56

RELIABILITY OF THE DERIVED RANKINGS

A simulation study was carried out to investigate the factors 
influencing the reliability of the estimated rankings of the f^'s 
and f2j's within a treatment, and the estimated correlation between 
rankings for different treatments or drugs. Our preliminary 
results are based on a constant correlation model which we believe 
will provide a useful approximation in the analysis of data of this 
type.
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Explicitly, our model is

îjk = Mjk "*■ aik "i Îjk (2.2.2.1)
where Xijk denotes the logged measure of response on individual i, 
aik denotes a random animal effect assumed constant over regions in 

the same animal and eijk denotes independent random effects in each 

animal and region. In our simulations we will further assume that 

a^-NtO/U2) and eljk-N(0,t2) . Notice that within this structure the 

variance covariance matrix for the observations on the vector of 
regional observations is 

S = a2i l T + Q

where 1 is a vector of ones, and Q represents the within animal 

covariance matrix.

Unbiased estimates of the variance components were obtained for each 
treatment in the rostral raphe stimulation study and each agent in 
the Alpidem/Zolpidem/Diazepam study using the observed data, and are 
given in Tables 2.2.3(i) and 2.2.3(ii) respectively. Tables 2.2.3 

(i) and (ii) show that in many cases the estimates of cr and x are 

roughly of the same magnitude and are also similar for different 

drugs. Noticeable exceptions are the estimates of a for the 5,7 DHT 

controls and alpidem, and the estimate of t from animals receiving 

both 5,7 DHT and dorsal raphe stimulation.
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Table 2.2.3(i) Unbiased estimates of the variance components in the 

raphe stimulation study.
A A

a x

dorsal and median raphe controls 0.103 0.078
dorsal raphe 0.104 0.133
median raphe 0.102 0.103
5,7 DHT controls 0.042 0.110
5,7 DHT and dorsal raphe stimulation 0.072 0.1 86

Table 2.2.3(ii) Unbiased estimates of the variance components in 
the Alpidem/Zolpidem/Diazepam study

Alpidem
Zolpidem
Diazepam

0.113
0.067
0.077

0.072
0.071
0.089

2.2.3 SIMULATION ALGORITHM

To investigate the reliability of the estimated rankings of the 
fij7s and f2J's, based on their appropriate estimates, a simulation 
study, as detailed below, was carried out for each experimental 
paradigm.

(i) The and f^'s are estimated by substituting X.JJt for [ajJt in

the formulas for fls and f2j respectively, and are used to 
derive the observed ranking in the data set. Correlations 
between the sets of f,j's and f2J's are calculated for each 
relevant pair of drugs or physiological treatment.



For each drug or treatment 02

(ii) a data set is simulated based on the model (2 .2 .2.1) with
parameters estimated from the observed data.

(iii) a simulated set of estimated f^'s and f2j's are calculated.
A  ADenote these estimates by F1;) and F2J respectively.

(iv) Pearson's product moment correlation coefficient is calculated
A  A  A  Abetween the f^'s and F^'s and between the f2j's and F2j's, as

a measure of the distance between the original ranking and the 
simulated ranking.

For each pair of drugs or treatment
A  A(v) the correlation between the two sets of F13's and F^'s is 

calculated as a measure of the association between the two 
sets of rankings.

(vi) steps (ii), (iii)t (iv) are repeated 2000 times and the 
correlations stored.

To investigate the effect of increasing the magnitude of the
variance components on the reliability of the ranking of the
regions, a further simulation study was conducted similar to the one 
above with the exception that the general structure of the variance 
covariance matrix for the vector of regional observations was given 
by

E = a a * 1 1 T + b£2

where £2 is defined as above and a and b are scalars varying from 

study to study. As before, the X.^'s have been taken as estimates 

of the H}H's.

In Figures 2.2.3 (i)- (iv) the median correlation from the 2000 
simulations is plotted against the combination of values used for 
a and b for the investigation of the within and between treatment



83.

Figure 2.2.3(i) Median correlations for the within treatment
rankings, using f1 (rostral raphe study).
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Figure 2.2.3(ii) Median correlations for the within treatment 
rankings, using f2 (rostral raphe study).
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Figure 2.2.3 (iii) Median correlations for the between treatment
rankings, using f1 (rostral raphe study).
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Figure 2.2.3(iv) Median correlations for the between treatment 
rankings, using fZ (rostral raphe study).
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Figure 2.2.3(v) Median correlations for the within treatment
rankings, using f1 (Alpidem/Zolpidem/Diazepam study).
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Figure 2.2.3(vi) Median correlations for the within treatment 
rankings, using f2 (Alpidem/Zolpidem/Diazepam study).
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Figure 2.2.3(vii) Median correlations for the between treatment
rankings, using f1 (Alpidem/Zolpidem/Diazepam study).
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Figure 2.2.3(viii) Median correlations for the between treatment 
rankings, using f2 (Alpidem/Zolpidem/Diazepam study).
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rankings for the rostral raphe stimulation study. The
corresponding plots for the Alpidem/Zolpidem/Diazepam study are 
given in Figures 2.2.3(v)- (viii) . The median and lower (Q1) and 
upper (Q3) quartiles of the estimated correlations for the 
simulation study for each approach are tabulated in Appendix A.I.

2.2.4 RESULTS

Figures 2.2.3(i) - (viii) suggest that the interpretation of the point 
estimates given in Section 2.2.3 is fairly reliable. In general, 
it would seem that the correlations derived using the ftj approach 
are, if any thing, slightly more reliable when employing the 
estimated components of variability from the observed data. As 
expected, Figures 2.2.3 (i) - (viii) show that increasing the magnitude 
of the variance components will result in a deterioration of the 
observed rankings. However, in particular cases (dorsal and median 
raphe stimulation, Alpidem and Zolpidem) the results suggest that 

doubling o3 will have only a small effect on the reliability of the 

derived ranking of both the f^'s and f2j's. By increasing the 

variability to 4a3 the deterioration in the reliability becomes more 

evident in Figures 2.2.3(i)-(viii), and beyond that, a marked 
decrease in reliability is apparent. In all situations, the 
results would also suggest that there is little additional effect 

caused by increasing t2.

An interesting feature from the between drug or treatment pairings 
is that the point estimate of the correlation coefficient derived 
from the observed data, in most cases exceeds the upper quartile of 
the simulated correlations. This conforms with our intuition that 
high correlations are likely to be underestimated, and hence, if
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anything our point estimates will themselves be biased by 
underestimating the true association between the relevant pair of 
treatments or drugs.

2.2.5 THE RELIABILITY OF THE MODEL

In section 2.2.2 it was suggested that a constant correlation model 
might provide a useful approximation in the analysis of data of this 
type. In a final simulation study we investigate the effect of 
departures from this model by introducing variance-covariance 
structures corresponding to situations where the brain is considered 
to be made up of clusters of regions where the response is 
independent between clusters and correlated within clusters (Ford, 
1986). Horwitz et al (1984, 1987) have shown that such patterns of 
the variance-covariance structure may be reasonable working 
approximations to the true functional interrelationships in the 
brain.

Consider the general covariance structure £ = a2 ll1 + Q, where Q = {ty} 

represents the within animal covariance matrix. To illustrate the 
effect of regions clustering together it is useful to investigate 

different forms of the matrix Q corresponding to different models 

of the functional interrelationships in the brain.

For the purpose of this investigation we have selected a subset of 
40 regions of interest (ROI's) from the dorsal and median raphe 
stimulated group of animals and 40 R0I/s from the Zolpidem treated 
animals, together with their associated controls. In the
simulation studies we have considered regions clustering into c 
clusters each of size r (r = 1,2,5,10,20,40) with functional
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independence between clusters. We further assume that the within 

animal correlation Qtj (i^j), where

**3
Qij "   •

V  *11

is equal (to Q say) for all i and j within the same cluster.

The median correlations from the simulation studies for both the f1} 
and f2) approaches are plotted in Figures 2.2.4 (i) - (vi) for the 
rostral raphe study and in Figures 2.2.4(vii), (viii) for the 
Zolpidem study. (The upper and lower quartiles, together with the 
median correlation from the simulation studies are tabulated in 
Appendix A.2). Pearson's product moment correlation coefficient 
between local cerebral glucose utilisation values, after dorsal 
raphe and median raphe stimulation, was estimated to be 0.88 from 

the observed data on the 40 ROI's selected. In all studies o2 and 

Ti:l were kept constant, both taking the value of 0.01 to reflect the 

typical experimental variance experienced in our autoradiographic 
example. Notice that when r-1 all regions are functionally

independent and hence p*0 in this instance.

Figures 2.2.4 (i)-(viii) indicate that, at least within the 
limitations of this study, the structure of the correlation matrix, 
on the whole, does not greatly affect the variability of the 
rankings of the ROI's and that a fairly reliable measure of 
association between drug actions or treatments can be achieved. 
As would perhaps be expected, Figures 2.2.4(i)- (viii) show that 
there is some reduction in the reliability of the rankings as the 
number of clusters increases and the dependence between brain



Figure 2.2.4(1) Median correlations for the dorsal raphe rankings
using f1 (40 ROIs)
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Figure 2.2.4(ii) median correlations for the dorsal raphe rankings 
using f2 (40 ROIs).
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Figure 2.2.4(iii)
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Figure 2.2.4(iv) Median correlations for the median raphe rankings 
using f2 (40 ROIs).
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Figure 2.2.4(v) Median correlations for the association beween 
the dorsal and median raphe stimulation rankings, using f1 (40 ROIs)
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Figure 2.2.4(vi) median correlations for the association between 
the dorsal and raphe stimulation rankings, using f2 (40 ROIs)
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Figure 2.2.4(vii) Median correlations for the within treatment
ranking of Zolpidem, using f1 (40 ROIs)
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Figure 2.2.4(viii) Median correlations for the within treatment
ranking of Zolpidem, using f2 (40 ROIs)
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regions in the same cluster decreases. The performance of both 
approaches is also reduced by decreasing the sample size, although 
the effect of small sample size, on the reliability, is less a cause 
for concern in the extreme case when all regions have a strong 
functional dependence on all other regions (r=40). In contrast, 
the strength of the dependence between regions in the same cluster 
becomes less of an issue if the brain is considered to be made up 
of a large number of regions, each containing a small number of 
functionally related clusters. Furthermore, the effect of
clustering is negligible if only weak interrelationships between 
ROI's exist.

Figures 2.2.4 (v),(vi) show that the reliability of the correlation 
coefficient, as a measure of the association between drugs, has 
similar trends to those concerning the individual rankings. 
However, the effect, on the median correlation from the 2000 
simulations, of strong regional interrelationships between all 
ROI's is not as great. In all instances, the point estimate 
derived from the observed data is greater than or equal to the upper 
quartile from the simulation studies, with equality being reached 

in the case where r=40 and p=0.9.

2.3 SUMMARY OF RESULTS

In this chapter we have set ourselves the rather difficult task of 
ranking a large number of brain regions with respect to their 
response to a drug or treatment. We remarked, in the introduction, 
that our ability to deal with such complex problems will depend on 
the strength of response being measured and the level of variability 
in the data being observed. In section 2.1 we addressed some of the
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problems from a mathematical viewpoint and identified the form of 
the covariance structure for maximising and minimising the 
probability of correctly ranking a 3-dimensional observation vector, 
assuming multivariate normality. A lower bound for the probability 
of correctly ranking observation vectors with higher dimensions was 
investigated using the Bonferroni inequality. However, for 
realistic situations, these mathematical approaches will have severe 
limitations, due to the complex nature of the vector of responses.

In setion 2.2, using a simple measure of response, we have seen that 
we can obsereve associations between brain regions which would be 
expected biologically, for two experimental data sets from 
quantitative autoradiography. Using simulation techniques we have 
established that, at least within the correlation matrices studied, 
that fairly reliable rankings of the regions can be obtained and 
fairly reliable measures of association between drugs can be 

computed. Increasing a2 by a factor of two, in these studies, 

appeared to have no effect on the relaibility of the derived 
rankings. However, a marked decrease was observed by increasing the 

variability to 802. The results also suggested that the rankings 

will be robust with respect to the within animal variability and the 
structure of the correlation matrix, if we are willing to assume 
that all the correlations are greater than or equal to zero.



CHAPTER 3 THE BLOOD FLOW-METABOLISM COUPLING PROBLEM

3.1 INTRODUCTION
In cerebrovascular research it is generally accepted that, in a 
large number of experimental conditions, the level of blood flow 
is adjusted to meet the energetic demands of tissue. With the 
advent of tomographic and autoradiographic techniques for 
measuring local cerebral blood flow (Sakurada et al, 1978) and 
the rate of local cerebral glucose utilisation (Sokoloff et al, 
1977; Phelps et al, 1979) neuroscientists have gained insight 
into the control of the coupling of local cerebral blood flow 
(LCBF) and local cerebral glucose utilisation (LCGU) and its 
breakdown in disease situations or after treatment with drugs 
(McCulloch et al, 1982; Kuchinsky et al, 1985). As the energetic 
demands of cerebral tissue are derived almost exclusively from 
the oxidation of glucose, alterations in the energetic demands 
of tissue are reflected by changes in LCGU.

Due to the basic cost of experimentation in both these areas, a 
common feature of the data from associated experiments, 
particularly in the higher resolution autoradiographic studies, 
is the high dimensionality of the observation vector 
corresponding to the set of measures of the response variable 
of interest in the brain regions studied. Consequently, if 
complex conclusions are to be drawn, the experimenter has the 
difficult task of analysing high dimensional data with a, 
relatively speaking, small number of experimental units. For 
example, McCulloch et al (1982), in an autoradiographic study,
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analysed data on 36 regions of interest (ROIs) , with a maximum 
of 6 animals in each group.

To answer questions of practical biological interest in ROI 
pattern analysis univariate repeated measures analysis of 
variance techniques are often suitable (McCulloch et al, 1982; 
Haxby et al, 1985). Experimental designs in which a random 
effect factor (e.g. subject) and a fixed effect factor (e.g. 
brain region or time) are crossed, with a single observed value 
for each cell, have become popular in medical and psychological 
research. However one major problem with this type of analysis, 
with ROI data, is that the correlation structure will display a 
certain degree of clustering (Horwitz et al, 1984, 1987) which
inevitably results in a violation of the sphericity assumption 
of the repeated measures F-test causing inaccuracies in the 
calculated significance level (SL). Over the years, in the 
biostatistical and psychometrical literature, attention has 
focused on the proper method of analysis of such designs when 
this assumption is not met. Box (1954 a,b) , Greenhouse and 
Geisser (1959) and Huynh and Feldt (1976) suggest referral of the 
test statistic to an F distribution with reduced degrees of 
freedom when the variance-covariance condition is violated. 
Greenhouse and Geisser (1959) suggest incorrectly, that these 
methods cannot be applied when the number of ROI's exceeds the 
number of experimental units. Maxwell and Avery (1982), in a 
limited study, investigated the applicability of these methods 
in such situations.

In the present study, the effect on the performance of these 
tests, induced by increasing the number of ROIs, has been
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investigated in the case of a correlation structure with 
independence between ROI's (equivalent to no violation of the 
variance-covariance assumption). Departures from the constant 
covariance assumption, corresponding to situations where the 
brain is considered to be made up of clusters of regions where 
the response is independent between clusters and correlated 
within clusters (Ford, 1986), have also been considered.

3.2 NOTATION AND THE GENERAL STRUCTURE OF THE PROBLEM

Let Y1Jk denote the measurement of interest made in the jth brain 

region (j=1,...,J) on the ith animal (i=1,...,nk) in the kth treatment 

group (k=1 ,...,K) . Since all of the measurements made on each 

animal will be of the same basic quantity (for example LCGU or 
LCBF), we have, for each animal, a repeated measures vector of 
observations. As mentioned previously, the number of brain 
regions being investigated, J, will be large compared with the
number of experimental units studied. For instance,

K
J=60 and Snk=20 would not be unusual in blood flow-metabolism 

k=1
coupling investigations. The success of any analysis of data 
of this type must depend critically on a combination of the 
strength of response which is present in the data and the 
structure and magnitude of the underlying variability in the 
data.

For investigating the relationship between LCBF and LCGU, the 
biological theory suggests that LCBF should be proportional to 
LCGU. That is, ignoring sources of variation

LCBF = (3 x LCGU
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where (3 is the constant of proportionality. In terms of the 

notation above, let and Ylj2 denote the measurements of LCBF 
and LCGU respectively. Until recently the standard approach 
to the problem was to regress the Yi;J1s on the Y.j2s and then to 
compare regression coefficients and correlation coefficients 
between experimental subgroups (Des Hosiers et al, 1974; 
Sokoloff, 1977; Kuchinsky et al, 1981). These approaches are 
open to criticism for several reasons. Firstly, since the 
measurement of both LCBF and LCGU are subject to error, the 
problem is really of the linear functional relationalship type 
and secondly, observations on different ROI's of the brain will 
not be independent. Furthermore, averaging over animals to 
obtain a mean response for each brain region conceals the between 

animal variability in the analysis. For these reasons (3 will 

be estimated with bias and with an estimated precision which 
grossly overstates the true precision. McCulloch, Kelly and 
Ford (1982) proposed an alternative approach to this problem. 
The proposal is that the underlying structure is written in the 
form

log (LCBF) - y + log (LCGU) , y = log ((3)

and that the log-transformed data Xljk = log (Yi}k) are analysed. 
This transformation is not only convenient mathematically but 
it also acts as a variance stabiliser since the variance of the 
Yljk's tends to increase with their expectation.

Considered in this form, the data may be analysed by repeated 
measures analysis of variance techniques with 'type of variable'
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regarded as a grouping factor and 'brain region' regarded as a 
repeated measures trial factor. Although, in these particular 
types of experiments, there will not be sufficient data to 
conduct a full multivariate Profile Analysis (Seber, 1984), a 
univariate approach is possible. McCulloch, Kelly and Ford 
(1982) suggest that it is plausible that a large proportion of 
the correlation structure can be explained by an additive animal 
effect implying a constant correlation assumption may be a 
reasonable working approximation. Horwitz et al (1984, 1987) 
have indicated that there exists a certain degree of clustering 
in ROI correlation matrices.

Thus, to reduce potential inaccuracies in the assumed 
significance levels for tests involving within animal factors, 
it may be reasonable to proceed with an analysis based on a 
modified approach which can take into account estimated 
departures from the constant correlation structure.

3.3. REPEATED MEASURES ANALYSIS OF VARIANCE
3.3.1 THE MIXED TWO-WAY MODEL

Repeated measures designs are essentially characterised by the 
presence of both fixed-effect factors (e.g. brain regions) and 
random-effect factors (e.g. subjects), with the fixed-effect 
factors usually of main interest. Consider the simplest case 
of a mixed two-way layout applied to ROI data, where subjects and 
brain regions are crossed, with a single replication in each 
cell, and we are interested in comparing the mean response of the 
measurement of interest between ROIs. In this instance the 
mixed two-way model reduces to that of a one-way repeated
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measures analysis of variance. In terms of the earlier notation 
let Xi3 denote the measurement of interest on the ith patient in 

region j, i=1,...,n; j=1,„.,J. Ford (1986) considered analysing 

data of this type using a linear model of the form 

^ •3  3=5 H-j P i  t  S i j  

where ^  is the average activity in region j , p± is the additive 

patient effect for patient i, and eti is the random component 

representing the remaining variability within a patient.

Within this structure the variance-covariance matrix, S={dij}, 

for the observational vector Xi = (X^,..., Xii?)T can be written 

in the form 2 = d2 11T + T where o2 is the between patient variance 

and T = represents the intrapatient variance-covariance
matrix.

Within this design, the hypothesis of homogeneity among the ^'s 

is usually tested using the F-ratio, F, where
F « SS,T/(J-1) « (n-1) SS,T

SSXJ/ (J“1) (n-1) SSu
and SSj and SS^ are the sums of squares associated with the brain
regions (fixed effect) and interaction effect between individuals
and brain regions respectively, and are given explicitly by the
formulae

J
SSj = 2 (x.j-x. .)2 , and

j=1

J n
SS„= 2 2 (X^-X^-X^+X. .)2

j-1 i-1
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_ J n J n
where X,. = 1  £ X^ , X.3 ~ 1 £ Xi3 and X.. = 1  £ £ X13 .

J j=1 n i=1 nj j=1 i=1

The F-ratio, under the null hypothesis, has an exact F 
distribution with (J-1) and (J-1)(n-1) degrees of freedom, only 

for restricted forms of £. Huynh and Feldt (1970) and Rouanet 

and Lepine (1970) established the least restrictive form of £ 

required for valid F-tests, for the one-way repeated measures

design. This model assumes that £ = {cri3} is given by

cr13 = j 2t3 +  X if i =  j 

j ti + t3 if i * j

for some t3 (j =1 ,.. ., J) and where all of the eigenvalues of £ are 

equal to some positive k. This pattern, referred to as

sphericity, is equivalent to the condition that all pairwise 
differences of the mean regional responses, X.3, have the same

variance, given by Var (X.t - X.3) = 2A, (1 < i,j < J) .
n

A special case of sphericity is obtained when there is equality 
of the population variances of all brain regions and equality of 
the population covariances between all pairs of brain regions. 
Such covariance structures are often referred to as displaying 
'compound symmetry' or satisfying the 'symmetry assumption'. 
Although it is easier to imagine contexts in which the compound 
symmetry condition would be satisfied, rather than the more 
general sphericity conditions, realistically a constant 
correlation structure will not be exactly representative of ROI 
data. However, it might be hoped that in some circumstances 
such a structure will be a good working approximation.
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3.3.2 HIGHER ORDER MIXED MODELS
Now, consider the slightly more general mixed model corresponding 
to the the blood flow-metabolism coupling data structure 
described in Section 3.2 where patients are subdivided into K 
groups (e.g. 2 groups representing LCGU and LCBF).

Assume a model of the form

“  M'Jk +  P i(k ) e ijk

where jijIt is the average activity in region j of group k, p10t) is 

the additive patient effect of patient i in group k, and eiJk 

represents the remaining variability.
Within this framework, the mean square ratios in the analysis 
of variance table normally used to test the hypotheses of 
equality of response among ROI's, F1# and no brain region x group 
interaction effects, F2, are given by

Ft = (N-JJSSj/SSh and F2 = (N-J)SS„/(J-1)SE 
K

where N - I  nk and SSa, SS„ and SSE are the sums of squares 
k=1

associated with the brain regions, brain region x group 
interaction and the pooled "split-plot" error and are defined 
as

J ^
SSj = E N (XM . - X...)2

j-1

J K _
SSia = 1 1  nk(X^k - X.J. - X..k + X...)2 

j=1 k=1

K Jand SSB = 1 [ I S  (X1Jk - X1>k - X.Jk + X..J2 ] .
k=1 j-1 i=1
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Huynh and Feldt (1970) extended their work to show that F, and 
F2 have exact F distributions with degrees of freedom {(J-1),(J- 
1)(N-K)} and { (J-1)(K-1), (J-1) (N-K)} respectively if and only
if

a) the variance-covariance matrices SK associated with
each level of the grouping factor satisfy the condition

C^Cf = CS2Ct = ... = CSkCt = A 

where C is any matrix defining (J-1) orthonormal contrasts 
among the J ROI's and

b) the common matrix A is of the form llj.,, where I^  is the 

identity matrix of rank J-1 and the eigenvalues of I are 

equal to some positive value X.

An extension of this model, in a similar fashion, to incorporate 
a second grouping factor, results in the model proposed by 
McCulloch, Kelly and Ford (1982) to investigate differences 
between the blood flow-glucose use ratio between treatment 
groups. Mendoza et al (1976) describe a factorial design with 
two repeated factors and the subsequent necessary and sufficient 
conditions for F-ratios to have exact F distributions.

3.3.3. TESTING VALIDITY CONDITIONS

For repeated measures designs involving one or more grouping 
factors, Huynh and Feldt (1970) and Huynh and Mandeville (1979) 
suggest testing the validity conditions for traditional F-tests 
in two stages. Firstly, the authors suggest testing equality 
of covariance matrices, for the associated set of orthogonal 
contrasts across all levels of the groups, using a modified form
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of Box's (1949) multivariate generalisation of Bartlett's (1937) 
homogeneity of variance tests. If Box's (1949) test does not 
reject equality of the covariance matrices over all levels of the 
grouping factor, Mauchly's (1940) W criterion can then be used 
to test sphericity in the pooled variance covariance matrix.
If the test is nonsignificant one should proceed as if the 
validity conditions are satisfied.

Alternatively, if the equality conditions of the covariance 
matrices or sphericity are rejected, implying that the mean 
square ratios, F, and F2, do not have exact F distributions, the 
traditional F tests will have inflated Type I error rates (Box, 
1954). That is, the actual probability of a Type I error will 
be more than the nominal level.

Several authors have investigated the appropriateness of either 
or both of these tests using simulation techniques. Davidson 
(1972) suggests that the modified Box's M test will not detect 
moderate departures from the null hypothesis when the sample size 
only just exceeds the number of repeated levels. Hopkins & Clay 
(1963), Korin (1972) and Olsen (1974) have shown that the test 
is not robust to departures from multivariate normality. Huynh 
and Mandeville (1979), on the other hand, examined the behaviour 
of Mauchly's W criterion under conditions of nonnormality. 
Empirical rates of Type I error from their simulation studies 
indicated that the test was conservative for light-tailed 
distribution and liberal for heavy-tailed distributions.

In instances where the number of repeated levels exceeds the 
sample size, both tests are inappropriate since calculations will
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be based on the determinant of a singular sample covariance 
matrix.

Due to the sensitivity of both the Modified Box's M test and 
Mauchly's W criterion to all but very minor departures from their 
respective hypotheses, Rogan et al (1979) and Kesselman et al 
(1980) suggest that it is pointless to test the validity 
conditions of the traditional F-tests in repeated measures design 
using the aforementioned tests and recommend a modified 
univariate approach to repeated measures F-tests.

3.3.4 MODIFIED UNIVARIATE APPROACHES

When the conditions on the variance-covariance matrix are 
violated, Box (1954b) showed that, under the null hypothesis, 
the true distribution of the traditional F-statistic, for the 
mixed two-way design with a single replication per cell, can be 

approximated by an F-distribution with degrees of freedom v, = 

(J-1)e and v2 = (J-1) (n-1 )e, where J and n are the number of 

levels of the fixed and random factor respectively and e denotes 

a correction factor reflecting the degree of departure of the 
population variance-covariance matrix from the sphericity 
assumption.

For variance-covariance matrix £ = £ is defined explicitly

by the formula
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J2(a„ - aj 2
e - _________________________________________________

J J J
(J-1) (E Scr^2 - 2J Za,.2 + J2a 2 ) 

j-1 i-1 j-1

where is the mean of the elements on the main diagonal of E»

a., is the mean of all the elements of E»
CTj. is the mean of all the elements in row j of E» 

and adj is the element in the itt row and j** column of E*

If C is any matrix defining (J-1) orthonormal contrasts then 
Box's correction factor can be expressed alternatively as

trace (CECT) trace (CEC*) (EX3)2
e =   -   3.1

(J-1) {trace ( C E O 2) (J-1 )IX2

where (j-1,...#J-1) are the non-negative eigenvalues of the

matrix CECT.

Now consider the case where E displays sphericity. In such 

instances CEcT=Xlj_t and subsequently all J-1 eigenvalues will be 

equal. Moreover e will equal its upper limit of 1 and as a

result Box's approximation will yield exact results.

Geisser and Greenhouse (1958) extended the work of Box (1954b) 
to the two-way mixed model with a grouping factor. If the 
standard assumptions do not hold, the authors showed that all 
within subject mean square ratios have approximate F 
distributions, with degrees of freedom reduced from the
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traditional ones by the multiplicative factor e. Geisser and 

Greenhouse (1958) also demonstrated that for a general variance- 

covariance matrix the lower bound for e was equal to (J-1)“1 since

J-1 J-1
E X ,2 < (EX,)2
j-1 j-1

with equality holding when CSCT has only one positive 

eigenvalue, all others being zero. Wallenstein and Fleiss 

(1979) derived the lower bound for s when the variance-covariance 

matrix has a serial correlation pattern.

Since the true population covariance matrix is seldom known/ 
Greenhouse and Geisser(1959) proposed using the sample 

estimator, ̂ / to adjust the degrees of freedom of the F-test, if 

the variance-covariance matrix is estimated with a large number 
of degrees of freedom. Otherwise the use of the most

conservative test, with e taking its lower bound, was suggested. 

In general, the authors proposed the following three step 
approach for conducting traditional F-tests:
(i) Compare the computed F statistic with the critical point 

from the F distribution with unadjusted degrees of 
freedom. Stop if the result is not significant since 
reducing the degrees of freedom will not alter the 
outcome.

(ii) Compare the computed F statistic with the critical point 
from the F distribution with degrees of freedom reduced 

by the most conservative estimate of e. Stop if the 

result is significant.
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(iii) Conduct the approximate F-test with e estimated from the 

sample variance-covariance structure.

Collier et al (1967), Stoloff (1970), Huynh and Feldt (1976) and 
Huynh (1978) have investigated, using Monte Carlo studies, the 

use of e to adjust the degrees of freedom. Empirical results 

suggest that e underestimates the true value of e producing a

more conservative estimate of the significance level than the 
nominal level being used, particularly when there is minimal 
departure from sphericity or the sample size is small. Indeed 
when the number of repeated levels, J, exceeds the sample size, 

n, it can be shown that the upper bound for e is (n-1)/(J-1) 

since the sample variance-covariance matrix will be singular.

ATo prove that e has an upper bound of (n-1)/(J-1) in such 

instances, first consider any positive semi-definite 

(J-1)X(J-1) matrix £2 of rank n-1 with n-1 < J-1. Without loss 

of generality, assume the eigenvalues X3, (j = 1, .. ., J-1 ) , of £2 sum 
to 1 . Since £2 has rank n-1, £2 will have n-1 positive

eigenvalues (X,, ,  say) and J-n eigenvalues (Xn, .. ., X3_,) , with 
the value zero. Then

J-1 n-1
S X32 = E X,2 

j= 1  j- 1

is minimised when all the X, are equal to the value (n-1)'1. The 

result then follows since



where the (j=1 ,..., J-1) are the eigenvalues of the matrix 

CSCT, S is a JxJ singular matrix of rank n-1 and C is a (J-1)xJ 
matrix of orthonormal contrasts of rank J-1 .

To compensate for the conservativeness of tests using the sample
A

estimate e, Huynh and Feldt (1976) proposed adjusting the degrees 

of freedom of the traditional F-tests using an alternative 
estimator

e, where
A

e =  n(J-l) e - 2  for a one factor design and

e -  n(J~l)e-2 for a two way mixed model with
<J~l)(n-K-(J~l)e)

individuals split into K groups. According to the authors' 

Monte Carlo simulations, e is less biased and less dependent on 

large sample sizes when the variance-covariance matrix deviates 

only moderately from uniformity (e >0.75) . Furthermore, it can 

be verified that e ^ e for any values of n and J, with equality 

holding when %  = e =(J-1 )‘1. However, it is feasible that for 

certain sample correlation matrices *e will exceed unity. In such 

instances the authors suggest equating e with 1 , since it would 

not be reasonable to actually increase the degrees of freedom for 
the F distribution.
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Huynh (1978), based on a theorem due to Box (1954b), proposed 
two additional test procedures (the General Approximate (GA) and 
the Improved General Approximate (IGA) for assessing the 
significance of within-subject effects when the variance- 
covariance matrices between groups are heterogeneous. Although 
computationally more complex, Huynh (1978) demonstrated in a 
limited simulation investigation that the IGA procedure showed 
good control over Type I error, but did not necessarily out- 

perform the simpler eapproximation.

3.4 AN EXAMPLE

At this stage it is useful to introduce a data set. Consider 
the simple case of an investigation of the relationship between 
local cerebral blood flow (LCBF) and local cerebral glucose 
utilisation (LCGU) in control conscious rats, LCBF and LCGU being 
measured in separate groups of five animals. The relationship 
between the mean logged LCBF and the mean logged LCGU is plotted 
in Figure 3.1 for 20 brain regions of interest.

Generally speaking the levels of LCBF and LCGU display the same 
regional hierarchies, with the level of LCBF (measured in units 

of pmol/100g) approximately 1 .5 times the level of LCGU (measured 

in units of |4mol/1 OOg/min) . Although in most regions the ratio 

of LCBF to LCGU is close to 1.5 the repeated measures ANOVA 
(Table 3.1), based on the equal correlation model (unadjusted p- 
value) identifies the presence of a significant region x variable 
interaction, signifying regional inconsistencies in the LCBF to 
LCGU ratio. Correcting the degrees of freedom, to take account
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Table 3.1 Repeated Measures Anova Table for Flow-Metabolism 

Coupling data.
p value

Source F unadjusted GG HF

Variable 35.38 0.0003

Region
Region x Variable

24 .03 
2.33

0.0000 0.0000 0.0000
0.0025 0.0720 0.0146

most conservative test F (1,19;0.9)=2.99 
GG = Greenhouse-Geisser adjusted test 
HF = Huynh-Feldt adjusted test

Figure 3.1 Comparison of the relatioship between LCGU and LCBF 
in control animals.
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of the departure from the constant correlation model, using the 

Huynh and Feldt (e-adjustment) correction factor also rejects 

the hypothesis of equality among LCBF to LCGU ratios. However, 
using the more conservative approach of Greenhouse and Geisser 

(e-adjustment), the test fails to reject the hypothesis at the 

5% significance level. Moreover, the most conservative lower 
bound approach fails to reject the hypothesis at the 10% level. 
This example displays the not too uncommon feature of analyses 
of this type, whereby the three point approach suggested by 
Greenhouse and Geisser coupled with the inability to identify 
which correction factor is most appropriate, results in regional 
alterations in the LCBF/LCGU ratios not being established 
conclusively.

However, by conducting suitable follow-up tests employing the 
Bonferroni correction, a number of significant regional 
differences in the LCBF to LCGU ratio could be identified. The 
appropriateness of conducting pairwise comparisons in such 
circumstances will be dealt with in a later section.

3.5 SIMULATION STUDY

In order to assess how the Greenhouse-Geisser (e), the Huynh- 

Feldt (e) and the Greenhouse-Geisser lower bound correction 

factors effect the nominal significance level of the F-test when 
the number of repeated levels exceed the number of experimental 
animals, a simulation study was conducted varying sample sizes, 
numbers of ROI's and correlation matrices. Since the
mathematical properties of all within animal tests are similar
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(Collier et al,1967), we have concentrated on the simpler problem 
of testing for equality of mean response between regions in a 
study involving only a single group of animals, on whom a single 
variable (say LCBF) is measured. The mixed two-way model is 
specified in section 3.3.1.

The true significance level of a test of equality of mean 
response among ROI's was estimated as detailed below:

(i) data are generated for specific sample sizes (n=5,10) and 
number of ROI's (J=10,20), using pseudo random number 
generators, for multivariate normal distributions, with 
zero mean vectors and specified covariance matrices.

(ii) the F statistic for testing equality of means across 
regions is calculated from the data.

(iii) significance of the test of equality of mean regional
response (with nominal significance levels of 0.05, 0.025, 
and 0.01) is determined for the unadjusted approach 

together with the e-adjusted, e-adjusted and lower bound 

procedures.
(iv) steps (i) , (ii) and (iii) are repeated 10,000 times and 

the relative frequency of significance is taken as an 
estimate of the true significance level of the test.

The effect on the performance of the test of the number of ROI's 
was investigated in the case of a correlation structure with 
independence between ROI's (equivalent to no violation of the 
constant variance-covariance assumption) for sample sizes of 5 
and 10. Departure from the constant correlation assumption was 
investigated by varying the correlation in hypothetical



situations where the brain is considered to be composed of
clusters of regions. Details of these correlation patterns are
summarised in Table 3.2.

3.6 RESULTS

Empirical results of the estimated significance levels for the
/V Aunadjusted, e-adjusted, e-adjusted and the most conservative 

lower bound approach are presented in Figures 3.2-3.7 for a 
nominal significance level of 0.05. Results with nominal 
significance levels of 0.025 and 0.01, together with those for 
0.05, are tabulated in Appendices B.1 to B.7. The standard errors 
associated with the estimated significance levels are all less 
than 0.005 since each estimate is based on 10000 simulations. Of 
course, since most of the estimated significance levels are less 
than 0.1, the standard error of these estimates will undoubtedly 
be much smaller. It is also worth noting that the results from 
this study will not be truly independent since within each 
simulation the test statistic for all four procedures is the 
same. Thus if the most conservative approach is significant, the 
remaining three procedures must also be significant.

3.6.1 INCREASING THE NUMBER OF ROI*S

Figure 3.2 contains the results of increasing the number of 
repeated levels within the independence context. The unadjusted 
approach serves as a check, on the pseudo random number generator 
used in the study. As would be expected, the results display 
a close agreement between the estimated significance level and 
the nominated significance level, with any discrepancies being



116.

Table 3.2 Summary of the correlation structures in the
simulation study

No. clusters No. ROI's Description

a) 2 20 Equal correlation within clusters;
independence between regions in 
different clusters.

b) 4 20 Equal correlation within clusters;
independence between regions in 
different clusters.

c) 10 20 Equal correlation within clusters;
independence between regions in 
different clusters.

d) 2 10 Equal correlation within clusters;
independence between regions in 
different clusters.

e) 2 20 Correlation in the first cluster
equal to 2/3; equal correlation 
within second cluster; independence 
between regions in different 
clusters.

f) 2 20 Correlation in both clusters equal 
to 2/3; equal correlation between 
regions in different clusters.
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Figure 3.2 Empirical results of the effect of increasing the 
number of ROI's within an independence covariance structure.
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Figure 3.3 Empirical results of the estimated significance level
corresponding to situation (a) in Table 3.2.
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Figure 3.4 Empirical results of the estimated significance level

corresponding to situation (b) in Table 3.2.
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Figure 3.5 Empirical results of the estimated significance level
corresponding to situation (c) in Table 3.2.
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Figure 3.6 Empirical results of the estimated significance level
corresponding to situation (d) in Table 3.2.
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Figure 3.7 Empirical results of the estimated significance level
corresponding to situation (e) in Table 3.2.
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accounted for by sampling variation. Moreover, if a correction 

were to be unnecessarily applied, then the e-adjusted test would 

reliably reflect the nominal SL regardless of the number of ROI's 
being studied, particularly in the case of the larger sample 

size. On the other hand the e-adjusted test deteriorates 

rapidly as the number of ROI's increases. Again the departure 
from the nominal SL is greater for the smaller sample sizes. 
Finally, the most conservative test performs poorly for any 
number of ROI's studied at both chosen sample sizes, rejecting 
the null hypothesis on almost no occasions.

3.6.2 VARYING THE CORRELATION STRUCTURE

Figures 3.3-3.5 display the results for the four different 
approaches using two, four and ten cluster correlation structures 
with 20 ROI's. Figure 3.6 contains estimates of the SL of the 
test using a two cluster correlation structure and 10 ROI's, 
whilst Figure 3.7 contains the estimated SL for the two cluster 
correlation matrix with 20 ROI's, all correlations in the first 
cluster equal to 2/3, varying correlation in the second cluster 
and independence between clusters. Figures 3.3-3.7 indicate 
that,as expected, the estimated SL from the unadjusted test was 

equal to, or larger than, the nominal a-level for both sample 

sizes, (n=5 and n=10) with the difference from the nominal a- 

level increasing as the value of e decreases, or alternatively, 

as the correlation within clusters increases. This contrasts 
with the estimate of the SL obtained by the most conservative 
approach which in all hypothetical situations investigated, was 

less than the nominal a-level for both sample sizes with
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performance increasing as the true value of e decreased (or 

correlation within cluster increased). In general, the results
Afor the e-adjustment procedure suggest that the true SL will be 

considerably lower than the nominal level for low within cluster
correlation, increasing to the nominal level with increasing

*/correlation. The results of the e adjusted test, with regard 

to increasing the within cluster correlation, are more complex. 
Agreement is good, with the nominal SL, when the within cluster 

correlation is low (high values of e) . As the correlation 

increases, the estimated SL increases initially and then 
decreases towards the nominal 5% level.

In all cases, the nominal 5% significance level lay between the 
estimated significance levels of the Greenhouse-Geisser and 
Huynh-Feldt tests: the test based on the Huynh-Feldt estimator 
giving an inflated significance level whilst the Greenhouse- 
Geisser test was unduly conservative.

Figures 3.3-3.5 also indicate that as the number of clusters in 
the variance-covariance matrix increases the estimated SL for all 
four procedures decreases. Thus, the unadjusted and Huynh-Feldt 
tests will become less liberal, whilst the Greenhouse-Geisser and 
the most conservative test will become more conservative. 
Furthermore, Figure 3.3 and 3.6 show that the estimated SL for 
the unadjusted and Huynh-Feldt approaches will be further 
reduced, albeit only slightly for the Huynh-Feldt procedure, if 
the number of ROI's decreases. The Greenhouse-Geisser and the 
most conservative approach, on the other hand, show a slight 
increase in the estimated SL when the number of ROI's is reduced.
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Thus, if the number of ROIs in the study is reduced, the 
performance of all four approaches will increase.

Examination of Figures 3.3-3.7 reveals that as the sample size 
decreases the performance of all four procedures deteriorates: 
the Greenhouse-Geisser and the most conversative approach become 
more conservative; the unadjusted and Huynh-Feldt procedures, in 
general, becoming more liberal.

The results for the two cluster correlation structure with 20 
ROIs, all within cluster correlations equal to 2/3 and increasing 
correlation between ROIs not in the same cluster are given in 
Table B.7 . As expected, Table B.7 indicates that as the 
correlation between ROIs not in the same cluster increases up 
to a 1/2 the variance-covariance matrix departs less from 
sphericity and the corresponding estimated SL for all four 
approaches is reduced.

Generally speaking, Tables B.1 to B.7 reveal that the pattern 
of the results for nominal levels of 0.025 and 0.01 are very 
similar.

Finally, although the test based on the Huynh-Feldt correction 

factor comes closer to the nominal a level over a wide range of 

e values, the performance of such a test can never be guaranteed 

to be closer to the nominal value than the GG approach for all 
of the variance-covariance matrices considered in this study.
For example, while Figures 3.4 and 3.5 show that the Huynh-Feldt 
approach has a SL closer to the nominal value for all values of
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the correlation between ROIs in the same cluster, Figures 3.3,
3.6 and 3.7 (those based on the two cluster correlation pattern) 
demonstrate that the Greenhouse-Geisser approach has a SL closer 
to the nominal value for high values of the within cluster 
correlation. Moreover, if a conservative test is required the 
researcher has no choice but to select the test based on the 
Greenhouse-Geisser correction factor.

Relating the results of the simulation study to the data set 
described in Section 3.4 does not establish conclusively the 
existence of a difference between the ratios of LCBF to LCGU. 
The more complex nature of the sample correlation structure, 
coupled with the small sample sizes, does not overwhelmingly 
suggest using the Huynh-Feldt estimator. However, considering 
the highly significant nature of the Huynh-Feldt test for this 
particular data set together with the Greenhouse-Geisser adjusted 
test almost reaching significance (Table 3.1), it may be 
reasonable to suggest that there is evidence of uncoupling.

3.6.3 THE DISTRIBUTION OF e AND 'e
A  ^Table 3.3.1 displays the mean and variances of e and e for the 

independence covariance structure with 5,10,20 and 50 ROI's. As
Awould be expected from Figure 3.2, e grossly underestimates the 

true value of e, particularly for a large number of ROIs and

small sample sizes. These results can be explained, at least
Ain part, by the dependence of the maximum possible value of e on 

the number of repeated levels and sample size.
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The mean value of e also appears to be affected by sample size 

but is much closer to the true value of e than the corresponding 

Greenhouse-Geisser estimate. Increasing the number of ROIs 

appears to have little to no effect on the mean of *e.

ATables 3.3.2-3.3.4 contain the mean and variances of e and e for 

the two, four and ten cluster correlation pattern, with 
independence between clusters. Briefly, as expected from 
Figures 3.3-3.5, an examination of the results in Tables 3.3.2-

A3.3.4 show that e tends to underestimate the true value of e, 

particularly when the sample size is small. Bias is reduced 
when the number of clusters in the population covariance matrix 
is small and the correlation between ROI's in the same cluster

A/is high. In contrast, Tables 3.3.2-3.3.4 indicate that e tends 

to overestimate e when the variance-covariance structure departs 

from sphericity with the bias being reduced if the number of 
clusters present in the variance-covariance matrix is increased 
and the correlation between ROI's in the same cluster decreased.

In general, when the number of ROI's equals 20, the true value
A  vof e lies between the mean values of e and e, with the mean value 

of *s being closer to the population value of e whenever the 

population variance-covariance matrix exhibits a minor to 
moderate departure from sphericity. However, the reduction in

A/bias by using the e estimator is offset by a larger variance.
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able 3.3

J

5

10

!
20 

| 50

1_ Means and variances (} of £ and e using an independence covariance 
matrix ( e = 1.0 in all situations)

Ae

0.520 (0.0086) 

0.307 (0.0016) 

0.172 (0.0002) 

0.075 «0.OOOl)

5

ve

0.894 (0.0263) 

0.888 (0.0274) 

0.889 (0.0270) 

0.888 (0.0276)

n

Ae

0.691 (0.0079) 

0.490 (0.0026) 

0.316 (0.0005) 

0.153 (<£>-0001)

ve

0.937 (0.0010) 

0.934 (0.0099) 

0.934 (0.0097) 

0.935 (0.0092)



Table 3.3,2 Means and variances () of e and e using the two cluster 
correlation matrix (20 ROI's, equal correlation within 
cluster, Independence between clusters)

Q e

0 1.000

1/12 0.964

1/6 0.860

1/3 0.561

1/2 0.318

2/3 0.174

5/6 0.096

11/12 0.071

23/24 0.061

49/50 0.057

A£

0.172 (0.0002) 

0.171 (0.0002) 

0.169 (0.0002) 

0.159 (0.0004) 

0.143 (0.0007) 

0.121 (0.0009) 

0.092 (0.0007) 

0.074 (0.0004) 

0.064 (0.0001) 

0.058 (<o-egg}

0.889 (0.0270) 

0.878 (0.0295) 

0.846 (0.0378) 

0.722 (0.0646) 

0.549 (0.0803) 

0.364 (0.0655) 

0.189 (0.0274) 

0.113 (0.0091) 

0.080 (0.0025) 

0.065 (0.0005)

0.316 (0.0005) 

0.312 (0.0005) 

0.302 (0.0007) 

0.265 (0.0017) 

0.212 (0.0025) 

0.153 (0.0020) 

0.097 (0.0006) 

0.073 (0.0002) 

0.062

0.057 (<oooob

rJ£

0.934 (0.0097) 

0.919 (0.0121) 

0.867 (0.0209) 

0.669 (0.0440) 

0.441 (0.0406) 

0.253 (0.0186) 

0.125 (0.0032) 

0.083 (0.0005) 

0.066 (0.0001) 

0.059 «o ojoi)
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Means and variances of e and e using the four cluster 
correlation structure (20 ROI's, equal correlation 
within cluster, independence between clusters)

Table 3.3.3

Q e

0 1.000

1/12 0.977

1/6 0.910

1/3 0.701

1/2 0.491

2/3 0.333

5/6 0.228

11/12 0.189

23/24 0.173

4°/50 0.165

n = 5

A
E

0.172 (0.0002) 

0.172 (0.0002) 

0.170 (0.0002) 

0.163 (0.0003) 

0.151 (0.0004) 

0.135 (0.0004) 

0.117 (0.0004) 

0.106 (0.0004) 

0.101 (0.0003) 

0.098 (0.0003)

f/
E

0.889 (0.0270) 

0.882 (0.0286) 

0.860 (0.0336) 

0.770 (0.0502) 

0.624 (0.0596) 

0.451 (0.0453) 

0.295 (0.0192) 

0.233 (0.0104) 

0.206 (0,0077) 

0.193 (0.0068)

n = 10

Ae

0.316 (0.0005) 

0.313 (0.0005) 

0.307 (0.0006) 

0.281 (0.0008) 

0.243 (0.0010) 

0.200 (0.0008) 

0.157 (0.0005) 

0.138 (0.0003) 

0.128 (0.0003) 

0.124 (0.0003)

0.934(0.0097) 

0.925 (0.0111) 

0.893 (0.0156) 

0.749 (0.0270) 

0.550 (0.0230) 

0.374 (0.0098) 

0.248 (0.0029) 

0.201 (0.0015) 

0.181 (0.0012) 

0.172 (0.0010)



A a/Means and variances of e and e using the ten cluster 
correlation structure (20 ROI's, equal correlation 
within cluster, independence between clusters)

n - 5 n - 10
xv/ Ae e

Table 3.3.4

Q e

0 1.000

1/12 0.993

1/6 0.973

1/3 0.897

1/2 0.792

2/3 0.677

5/6 0.569

11/12 0.519

23/24 0.496

49/50 0.484

Ae

0.172 (0.0002) 

0.172 (0.0002) 

0.172 (0.0002) 

0.169 (0.0002) 

0.165 (0.0002) 

0.160 (0.0003) 

0.153 (0.0003) 

0.150 (0,0003) 

0.148 (0.0003) 

0.146 (0.0003)

0.889 (0.0270) 

0.886 (0.0275) 

0.880 (0.0289) 

0.854 (0.0345) 

0.807 (0.0425) 

0.739 (0.0503) 

0.651 (0.0535) 

0.603 (0.0526) 

0.578 (0.0518) 

0.565 (0.0513)

0.316 (0.0005) 

0.314 (0.0005) 

0.313 (0.0005) 

0.305 (0.0005) 

0.292 (0.0006) 

0.275 (0.0006) 

0.254 (0.0006) 

0.244 (0.0006) 

0.238 (0.0006) 

0.235 (0.0006)

0.934 (0.0097) 

0.932 (0.0100) 

0.923 (0.0111) 

0.885 (0.0156) 

0.814 (0.0204) 

0.711 (0.0207) 

0.599 (0.0157) 

0.545 (0.0128) 

0.519 (0.0115) 

0.506 (0.0110)



132.

3.7 THE RELATIVE POWER OF THE PROCEDURES

Rogan et al (1979) have investigated the relative power of the 
four univariate test procedures and the Hotellings T2 test using 
a range of covariance structures reflecting differing degrees of 
departure from sphericity. In the simulation studies, the 
unadjusted univariate test was more powerful than the 
multivariate test on all occasions, whilst the Huynh-Feldt and 
Greenhouse-Geisser adjusted tests were more powerful than the 
multivariate test when the covariance structure exhibited a minor 

violation of sphericity (e > 0.75). In all simulated conditions 

the most conservative univariate test was less powerful than the 
multivariate test.

Davidson (1972) has also compared the power of the multivariate 
test with the unadjusted and the Greenhouse Geisser univariate 
tests in a simulation study. For an example variance-covariance 

matrix with e = 0.52, Davidson concluded that the multivariate 

test will be more powerful than the Greenhouse-Geisser test if 
the sample size exceeds the number of repeated levels. However, 
the power of the multivariate test will drop rapidly as the 
sample size approaches the number of repeated levels.

In a limited simulation study, we investigate the power of the 
four univariate tests when the number of ROIs exceeds the sample 
size. In such circumstances the multivariate test cannot be 
computed.

Data were generated for specific sample sizes (n=5,10) and 20
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ROIs using pseudo random number generators for multivariate 
normal distributions, with a two cluster correlation structure 
and specified mean vector. Two values of the within cluster 

correlation, q , were selected (p=1/3 and p=2/3). Mean vectors 

were chosen such that 5 of the 10 ROI's in each cluster took the 
value A, the remaining 5 taking the value of 0. For each value 
of A, either 0.5,1.0,1.5 or 2.0, the estimated power was derived 
in a similar fashion to the simulation study in section 3.5, with 
the relative frequency of significance taken as an estimate of 
the true power. The results are given in Table 3.4 for nominal 
significant levels of 0.05, 0.025 and 0.01.

For the test of equality of mean ROI values, the four univariate 
tests all have the same test statistic and only differ in that 
the degrees of freedom for the critical values are different. 
Hence, under all circumstances, if the test statistic is compared 
to the same quantile of the respective F distributions, the 
unadjusted test would be deemed the most powerful approach and 
the most conservative approach the least powerful. However, 
since the Type I error rate of the unadjusted test is greatly 
inflated when the sphericity assumption is violated, the power 
of this test will also be inflated. Thus, although it would 
appear that some tests have much greater power than others, we 
are not really comparing like with like and therefore any 
increase in power must be contrasted with the instability of the 
significance levels.

As expected, the data from this investigation indicate that as 
A and n increase there will be a substantial increase in power. 
For example, when A=2.0 and n=10 the power of all four tests,
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Table 3.4 Power for the test of equality of mean response

n Q e A Unadjusted 
0.05 0.025 0.01

e-adjusted 
0.05 0.025 0.01 0.05

e-adjusted 
0.025 0.01

Lower bound 
0.05 0,025 0.01

5 1/3 0.561 0.5 0.21 0.16 0.12 0.17 0.13 0.09 0.02 0.01 0.00 0.00 0.00 0.00

1.0 0.53 0.47 0.39 0.46 0.38 0.31 0.13 0.06 0.02 0.00 0.00 0.00

1.5 0.85 0.81 0.74 0.78 0.72 0.62 0.42 0.25 0.11 0.03 0.00 0.00

2.0 0.98 0.96 0.95 0.95 0.92 0.87 0.75 0.57 0.36 0.16 0,01 0.00

5 2/3 0.174 0.5 0.27 0.23 0.20 0.17 0.13 0.10 0.07' 0.04 0.01 0.01 0.00 0.00

1.0 0.52 0.48 0.43 0.36 0.29 0.24 0.19 0.12 0.06 0.04 0.01 0.00

1.5 0.78 0.75 0.70 0.59 0.51 0.43 0.41 0.29 0.17 0.14 0.03 0.00

2.0 0.93 0.92 0.89 0.79 0.72 0.63 0.65 0.51 0.36 0.34 0.12 0.01

10 1/3 0.561 0.5 0.35 0.29 0.23 0.28 0.22 0.16 0.14 0.09 0.05 0,01 0.00 0.00

1.0 0.83 0.79 0.73 0.77 0.70 0.63 0.61 0.49 0.36 0.11 0.02 0.00

1.5 0.99 0.99 0.98 0.98 0.97 0.95 0.95 0.91 0.82 0.56 0.24 0.04

2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.74 0.33

10 2/3 0.174 0.5 0.37 0.33 028 021 0.16 0.12 0.16 0.11 0.07 0.04 0.01 0.00

1.0 0.76 0.72 0.68 0.40 0.48 0.57 0.50 0.39 0.28 0.24 0,11 0.03

1.5 0.96 0.95 0.94 0.87 0.81 0.73 0.83 0.75 0.64 0.63 0.42 0.18

2.0 1.00 1.00 1.00 0.98 0.97 0.93 0.98 0.95 0.89 0.91 0.78 0.53
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using a significance level of 0.05, exceeds 0.90, whilst in the 
corresponding situation with n reduced to 5 only the power of the 
unadjusted test remains above 0.90.

In general, as the correlation within clusters increases the 
unadjusted and Huynh-Feldt tests become less powerful. In 
contrast, the most conservative test becomes more powerful as the 
correlation within clusters increases.

The results for the Greenhouse-Geisser test are more complex. 
Table 3.4 indicates that the test becomes less powerful as the 
within cluster correlation increases, especially for large values 
of A with n=10. On the other hand, for n=5 an increase in power 
is observed for the 0.025 and 0.01 significance levels at values 
of A not exceeding 1.5. Employing a significance level of 0.05 
an increase in power is only observed for values of A equal to 
0.5 and 1.0.

3.8 MULTIPLE COMPARISON PROCEDURES IN REPEATED MEASURES DESIGNS

To distinguish whether there has been any significant uncoupling 
between LCBF and LCGU across regions, an alternative approach to 
the repeated measures F-test could be built up by considering all 
possible pairwise comparisons between the ROI's. Maxwell (1980) 
investigated the performance of Type I and Type II error rates 
using five different multiple comparisons procedures, for 
repeated measures designs with 3,4 and 5 repeated levels and 
covariance structures exhibiting various degrees of departure 
from sphericity. Mitzel and Games (1981), in a more limited 
study, investigated the effect of employing a separate error
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term for each comparison, as opposed to a constant estimate of 
the variance for all contrasts based on the interaction mean 
square from the analysis of variance table. For J ROIs, the 
latter approach is equivalent to assuming that the J(J-1)/2 
variances of the estimated differences of the pairwise ROI means 
are equal. This is precisely the sphericity assumption.

In both these studies, the authors advocate that Bonferroni 
pairwise multiple comparisons are preferable to maintain the Type 
I error rate. However, the performance of multiple comparison 
procedures, when the number of repeated levels is large and 
exceeds the sample size is unknown. To assess the
appropriateness of pairwise comparisons in such circumstances, 
we investigate, empirically, the properties of several post hoc 
pairwise comparison techniques in a number of hypothetical 
situations similar to those described in section 3.5, where the 
brain is considered to be made up of clusters of regions. But 
first, we consider a number of approaches for conducting 
simultaneous pairwise comparisons, four of which require the 
sphericity assumption (Methods 1-4), two based on the interaction 
mean square but which attempt to adjust for departures from 
sphericity (Methods 5 and 6) and four based on separate estimates 
of the variance for each contrast (Methods 7-10).

3.8.1 MULTIPLE COMPARISON PROCEDURES

We will consider only the mixed-two way model, with a single 
replication in each cell, where we are interested in comparing 
the mean response of the measurement of interest between ROIs.
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Let X±J denote the measurement of interest on the ith patient in 
region j (i=1...,n;j=1,...,J) as before. We further assume that 
the vector of responses, Xi " (xn rXi2,. . . ,XU )T, has a J- 

dimensional normal distribution with mean vector ~ (l̂  f |j12/ * • • #Mj)t 

and covariance matrix £  = {crrs>. Now, let T|>rs=|Ar-|43 (1<r<s<J,r^s)

denote the contrast between the rth and sth elements of the mean
A  -  -vector jj,. An unbiased estimate of ajjrs is given by ij)rs = X.r- X.s.

Consequently, if V(ij>rs) is an unbiased estimate of the variance 
Aof "ipj-s then we can construct confidence intervals for all 

J(J-1)/2 pairwise contrasts of the form

where CV denotes the critical value matching the type of multiple 
comparison required.

METHOD 1 : TUKEY T-PROCEDURE (TUKEY,1953)

If £ displays sphericity then a Tukey-type multiple comparison 

procedure exists which gives exact (1-a) level joint confidence 

intervals for the set of differences of the form -̂(-1, . These 

intervals are given explicitly by

A  A

+ CV x [V ($„)]'" (1<r<s<J, r*s) (3.7.1)

6 [X.r-X.B + QaJ(J,(J-1)(n-l) (MS/n)1/J] ; 1 <r<s<J

and satisfy the probability statement:

[X.r-X., + Q,a (MS/n),/2] ; 1 <r<s<J, r*s}=1-a (3.7.2)

where
Xt. - X.J - X. . )
(j-1)(n-1)
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denotes the mean square for the interaction between individuals

and brain regions and Qa,w  is the upper a-point of the

Studentised range distribution with J and (J-1) (n-1) degrees of
A  Afreedom. In terms of the notation in (3,7.1) V(ij)rs) = (2MS/n) n 

and CV = Qj(a)i(J-t)(n-i) /J2 . Thus if £ exhibits sphericity, this 

procedure, often referred to in the literature as the honestly 
significant difference or the wholly significant difference test, 
must provide the shortest possible intervals which guarantee a 

joint confidence level of at least 1 -a. However, if £ departs 

from sphericity the probability statement (3.7.2) will not 
necessarily be preserved.

METHOD 2 : SCHEFFE S-METHOD (SCHEFF&)

As an alternative approach, the Scheffe (1953) S-procedure will, 

under the sphericity assumption, provide exact (1-a)-level joint 

confidence intervals for all possible contrasts. Thus if 
sphericity holds, the joint confidence level for all pairwise 
contrasts of the form

[X.r-X., + {(J-1 )FW U_ , , } ,/2(2MS/n)’/2]; 1<r<s<J 

will be conservative, i.e.

[X.r-X., + {(J-1 )F,aV , ,},/2(2MS/n)''2] ;

1<r<s<J} > 1-a

where MS is defined above and F<a)(J_5)( (J_n (n_,, is the upper a point 

from the F distribution with J-1 and (J-1) (n-1) degrees of 
freedom.
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METHOD 3 : BONFERRONI PROCEDURE (BONF (1 ) )

When the number of ROI's is large, a Bonferroni type procedure 
may well provide shorter intervals than the Scheffe S-procedure, 
as well as preserving a joint confidence level of at least (1- 

a) .
Let Tra m (X.r - X.,) (2MS/n)’1rt then the Bonferroni procedure is 
based on the inequality:

Pr { max I T„ I < g } > 1 - S Pr { I T„ l< £ } (2.7.3.)
1<r<s<J 1<r<s<J

Conservative Bonferroni (1-a) level joint confidence intervals 

for all pairwise comparisons can then be given by

m-V. s [X..-X.. + (2MS/n),/J] ; 1<r<s<J
* *where T(a/2jn{J_1)<n.,, denotes the upper (a/2J*) percentage point from

the Studentised t distribution with (J-1) (n-1) degrees of 
freedom, and J'^J (J-1)/2. Note that these intervals have been 
computed with the assumption that all pairwise differences in the 
means have a common variance.

METHOD 4: DUNN SIDAK PROCEDURE (SIDAK (1))

Using the sharper inequality (Sidak, 1967):

Pr { max I T„ I < g ) > II Pr { I T„ I < 5) (2.7.4),
1<r<s<J 1<r<s<J

a less conservative upper bound on the upper a point of the

distribution of max |Tra lean be obtained, namely 
1<r<s<J

where a 7- 1 - (1 - a)1/J*and J* - j(J-1)/2. Thus, 

shorter intervals of the form
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m-H, e [X.r - X.s ± T(0'/z,w.i><n-i> (2MS/n)1/z] ; 1<r<s<J 

can be computed which maintain a nominal joint confidence level 

of at least 1-a under the sphericity assumption. When the number 

of comparisons is large T(a,/2,(ff_1 will be very close to 
T(a/2j*)̂  ^ ̂ Therefore we would expect the Sidak procedure to
yield intervals of roughly the same length as the Bonferroni 
procedure.

As mentioned earlier in this chapter, the sphericity assumption 
will almost certainly be violated in ROI studies, and hence the 
joint confidence level associated with methods 1-4 may not 

necessarily be greater than 1-a. In Section 3.3.4 we discussed 

the use of adjustment factors to correct the degrees of freedom 
of the F disribution when conducting F tests in repeated measures 
ANOVA. If the covariance matrix deviates from the sphericity 
assumption, we propose that Scheffe type pairwise intervals, 
based on the Greenhouse-Geisser (1959) and Huynh-Feldt (1976) 
correction factors may exert better control on the joint 
confidence level than the Scheffe S-procedure.However, 
alternative post hoc pairwise comparisons in repeated measures 
designs can be derived, based on the estimated variance of each 
contrast. These preserve the nominal coverage probability of 
the simultaneous confidence intervals.

METHOD 5 GREENHOUSE-GEISSER ADJUSTED INTERVALS (GGADJ)

Let e denote the Greenhouse-Geisser adjustment factor, estimated 

from the sample covariance matrix. Then we propose pairwise 
intervals of the form
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IVH* € [X.r-X.B + {(J-1)F(a)(J.1lA (J_1)(n_1)A}i^(2MS/n)1/2] (1<r<s<J)

as an alternative to the Scheffe S-procedure.

METHOD 6 HUYNH-FELDT ADJUSTED INTERVALS (HFADJ)

Let e denote the estimated Huynf-Feldt adjustment factor from the 

sample covariance matrix. We have shown earlier that for any 

given variance-covariance matrix. Thus intervals of the form 

HrH, 6 [X.r-X.s + { (J-1 ) F(a> (j-uf, {j-d (n_1}̂ }1/2 (2MS/n)1/z] (1<r<s<J)

will be shorter than those based on the Greenhouse-Geisser 
adjustment factor and hence the joint confidence level for this 
procedure will be less. However, there is no guarantee that the 
actual simultaneous confidence level for these approaches will 

be equal to or greater than the stated confidence level of 1-a.

METHOD 7 BONFERRONI PROCEDURE (BONF (2))

Let dj.a = (arr + ass - 2ars)/n (1<r<s<J) denote the variance of the 

contrast between the rth and sth ROIs. This can be estimated from
the sample covariance matrix, S={srs}, giving 

A
dxS = <s„ + sss - 2srs)/n .

Then, using the inequality (2.7.3), conservative pairwise 
confidence intervals of the form

[X.r-X.. + 1<r<s<J

can be computed which satisfy the joint confidence level, i.e. 

[X.r-X., + 1 <r<s<J > > 1-a .
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METHOD 8 DUNN SIDAK PROCEDURE (SIDAK (2))

Similarly, a less conservative approach can be obtained using the 
inequality (2.7.4,). The resulting pairwise intervals are of 
the form

[X.r - X.s + T(aV2,{n_n (drs)1/23 ; 1<r<s<J 

where a is as before.

Notice that for methods 7 and 8 the degrees of freedom from the 
Studentised t distribution has been reduced to n-1 since each 
element of the covariance structure has been estimated with n-1 
degrees of freedom.

METHOD 9 GREENHOUSE-GEISSER SCHEFFE TYPE INTERVALS (SCHGG)

Let £ denote the Greenhouse-Geisser adjustment factor, estimated 

from the sample covariance structure. Although we give no 
justification, we have investigated the control on the nominal 
coverage probability exerted by pairwise intervals of the form

^-n.e [X.r-X.„ + {(J-1 )F“V„{, (1<r<s<J) .

METHOD 10 HUYNH-FELDT SCHEFFE TYPE INTERVALS (SCHHF)

Similarly, we can construct intervals of the form

n,-^e [X.r-X.„ ± { (j-1 J . , , ( d „ )  ”2] ; (1<r<s<J)

which will be shorter in length than the corresponding intervals 
based on the Greenhouse-Geisser adjustment factor. Again, we 
provide no justification for this approach.
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3.8.2 SIMULATION STUDY

In the present study, we compare these various approaches to 
pairwise comparisons, with respect to the estimated joint 
confidence level, in the mixed model with a single replication 
per cell. For the purpose of this investigation, we have 
considered correlation patterns where the brain is considered 
to be composed of either two or four clusters of regions with a 
total of 20 ROI's, and the two cluster correlation pattern with 
10 HOI's. Six levels were selected for the within cluster 

correlation (q=0,1/6,1/3,1/2,2/3,5/6) with independence between 

regions in different clusters. Notice that when q=0 we have a 

correlation pattern with independence between all ROI's, 
corresponding to the situation where there is no violation of the 
sphericity assumption.

Estimation of the true joint confidence is detailed below:
(i) data are generated with zero mean vector and specified 

covariance structure for specific sample sizes (n=10,30) 
and number of ROI's using a pseudo random number 
generator for multivariate normal distributions.

(ii) the sample covariance matrix, the average sample variance 
(s*2) and the average sample covariance (c) are calculated 
from the data.

(iii) MS = s2 - c (Winer, 1971) is then calculated.
(iv) For each of the J(J-1)/2 comparisons the following 

statistics are calculated:
t, = (X.r - X.„)/ (2MS/n)1/2 and 
t2 = (X.r - X.a)/(drs)1/2
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(v) The maximum t, and t2 value, t,* and t2* say, from the
J(J-1)/2 statistics is determined and stored in an array, 

(vi) t,* is compared to each of the critical values from methods 
1-6 and t2* to each of the critical values from methods 7- 

10 and significance determined (a = 0.05)

(vii) Steps (i)-(vi) are repeated 10000 times and the relative 
frequency of significance, for each approach, is taken as 
an estimate of the joint significance level for that 
particular method.

In all the studies, we also determine, from the stored values of 
t,* and t2*, the critical values for which a joint confidence 
level of 0.95 would be attained. Finally, for the two cluster 
correlation pattern, we also investigate the frequency of 
occurrence of a significant t,* or t2* statistic coming from a 
between cluster comparison.

3.8.3. RESULTS

Empirical joint confidence levels from the 10000 simulations are 
plotted in Figures 3.8(i)-(vi) for each combination of covariance 
structure, sample size and number of ROIs studied. Since the 
critical value of the Bonferroni procedure will be very similar 
to the corresponding Sidak procedure when the number of pairwise 
comparisons is large, only the estimated joint confidence level 
of Sidak procedure has been plotted. The estimated joint 
confidence level from both procedures were equal (to two decimal 
places) for all combinations of factors. For presentation 
purposes the GGADJ and HFADJ procedures have also been omitted 
from the figures. Tabulated results for all approaches are given
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Figure 3.8(i). Estimated joint confidence levels for the four

cluster correlation matrix with J=20 and n=10.
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Figure 3.8(ii) Estimated joint confidence levels for the four 
cluster correlation matrix with J=20 and n=30.

t.oo

0,98

co
«  0 .96
UC
o
T3
® 0.94

0.92 ■

o Tukey
e Scne ffe
0 S l dak (1)
A SCHGG
V SCHHF
□ Sidak (2)

0.0 0.2 0, 4 0.6 o. 8
C o r r e l a t i o n  w i t h i n  c l u s t e r

— t 
1.0



146
Figure 3.8 (iii) Estimated joint confidence levels for the two

cluster correlation matrix with J=20 and n=10.
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in Appendix B.8.

Several conclusions can be drawn from these results. Firstly, 
the SCHEFFE, HFADJ and GGADJ procedures are always extremely 
conservative, if only pairwise comparisons are of interest and 
the number of ROIs is large (Figures 3. 8 (i)- (iv) ) . A slight 
decrease in the estimated joint confidence level of the SCHEFFE 
procedure was observed with 10 ROIs and a high correlation 
between regions in the same cluster (Figures 3.8(v) and 3.8(vi)). 
Secondly, the use of Tukey's procedure will not guarantee an 
overall joint confidence level of at least 0.95, when the 
covariance structure departs from the sphericity condition. The 
Bonferroni and Sidak procedures, assuming a constant correlation 

model, are at their most conservative when q=0 (when the 

sphericity assumption is valid) and become less conservative as 

g increases. However, Figures 3.8(iii) and 3.8(v) indicate 

that for the two cluster correlation structure with a sample size 
of ten (10 and 20 ROI's), the estimated simultaneous confidence 
level will dip below the stated confidence level of 0.95.

By comparison, as must be the case, the Bonferroni and Sidak 
procedures, using a separate term for each comparison, remain 
conservative throughout the range of values for the correlation 
between ROIs, in all paradigms studied. In contrast to the 
associated procedures assuming a constant correlation structure, 
the BONF (2) and SIDAK (2) procedures are at their most 
conservative when there is a strong interrelation between regions 
in the same cluster, although in general, the estimated 
simultaneous confidence level remains more stable across the
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range of conditions investigated.

Of the two remaining procedures only the SCHGG procedure 
maintained an actual simultaneous confidence level greater than 
or equal to the stated confidence level. Although this
procedure is comparable with the BONF (2) and SIDAK (2) 
procedures when n=10, J=10 and for low interregional correlation, 
the conservativeness becomes greater as n increases, J increases 
and the number of clusters decreases.

The SCHHF procedure, although less conservative than the SCHGG 
procedure fails to maintain the stated confidence level 
throughout all combinations of the factors studied and therefore 
may be unacceptable for use in conducting post hoc pairwise 
comparisons.

The critical values for which a joint confidence level of 0.95 
would be attained, estimated from the set of 10000 simulated 
values of t,* and t2*, are given in Tables 3.5 (i) and (ii) 
respectively.

Table 3.5(i) indicates that the critical values, obtained from 
the set of maximum t statistics utilising the sphericity 
assumption, increases as the sample size decreases and the number 
of pairwise comparisons increases. In most instances, the 
critical values also increase as the within cluster correlation 
increases. However, for n=30 and J=20, Table 3.5 (i) shows that 
the critical value initially increases as the covariance 
structure departs more from sphericity and then decreases in the 
more extreme cases where there is a high within cluster
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Table 3.5 (i) Critical values for which a joint confidence level 
of 0.95 would be obtained using t,*.

within cluster correlation
n J c 0 1/6 1/3 1/2 2/3 5/6

10 20 2 3.58 3.61 3.68 3.73 3.83 3.87
30 20 2 3.53 3.58 3.60 3.67 3.68 3.61
10 10 2 3.25 3.26 3.31 3.38 3.47 3.56
30 10 2 3.20 3.19 3.25 3.31 3.32 3.33
10 20 4 3.58 3.61 3.63 3.66 3.72 3.62
30 20 4 3.53 3.57 3.59 3.60 3.59 3.52

Table 3.5(ii) Critical values for which a joint confidence level 
of 0.95 would be obtained using ta*.

within cluster correlation
n J c 0 1/6 1/3 1/2 2/3 5/6

10 20 2 5.61 5.69 5.58 5.54 5.50 5.30
30 20 2 4.03 4.06 4.00 3.99 3.94 3.88
10 10 2 4.59 4.64 4.53 4.55 4.44 4.37
30 10 2 3.52 3.51 3.49 3.51 3.41 3.40
10 20 4 5.61 5.69 5.61 5.62 5.52 5.19
30 20 4 4.03 4.04 4.07 4.00 3.93 3.82
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covariance structure, the critical value when g-5/6 is 3.52 

compared with the critical value of 3.53 for the independence 
covariance structure. Note that in the independence case, the 
Tukey procedure with a corresponding value of 3.55 will give an 
exact coverage probability of 0.95. Furthermore, for high 
values of within cluster correlation, the number of clusters 
present in the variance-covariance matrix would also appear to 
influence the critical value.

In contrast, given the dimensionality of the measurement vector, 
the critical values of the t2* statistics in Table 3.5(ii) would 
not appear, on the basis of this limited study, to be as 
dependent upon the number of clusters present in the variance- 
covariance structure. Furthermore, Table 3.5 (ii) indicates that 
the critical value required to achieve a joint confidence level 
of 0.95 decreases as the within cluster correlation increases. 
Once again, as expected, the critical value decreases as n 
increases and the number of pairwise comparisons decreases.
It is also worth noting that the estimated critical values, from 
the approaches which assume sphericity, are smaller in magnitude 
than the estimated critical values based on separate error terms. 
This is completely in accordance with our intuition since the 
variance in the former method has been estimated with greater 
degrees of freedom.

The average width of the pairwise intervals for all ten 
approaches are given in Tables 3.6(i), (ii), for the two cluster 
correlation structure based on 20 and 10 ROI's, with sample sizes 
of 10 and 30. For methods based on a separate error term for
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Table 3.6(1) Average width of pairwise intervals for the two 
cluster correlation matrix with 20 R0I/s.

Method
TUKEY SCHEFFE B0NF1 SIDAK1 GGADJ HFADJ B0NF2 SIDAK2 SCHGG SCHHF

0 3.93 6.12 4.08 4.07 7.19 “6.17 6.17 6.15 7.00 6.01
6.17 6.14 7.00 6.01

1/6 3.77 5.88 3.92 3.90 6.96 5.99 5.63 5.61 6.45 5.55
6.17 6.15 7.06 6.08

1/3 3.60 5.61 3.74 3.73 6.83 5.97 5.03 5.02 5.91 5.16
6.17 6.15 7.27 6.35

1/2 3.42 5.34 3.56 3.55 6.82 6.12 4.36 4.35 5.37 4.80
6.18 6.16 7.65 6.87

2/3 3.23 5.04 3.36 3.35 6.93 6.40 3.56 3.55 4.70 4.33
6.18 6.15 8.23 7.61

5/6 3.01 4.69 3.13 3.12 7.15 6.83 2.52 2.51 3.67 3.50
6.15 6.13 9.09 8.68

0 2.24 3.49 2.32 2.32 3.70 3.50 2.60 2.60 3.67 3.47
2.60 2.60 3.67 3.47

1/6 2.15 3.35 2.23 3.23 3.60 3.40 2.38 2.37 3.39 3.21
2.60 2.60 3.72 3.52

1/3 2.06 3.20 2.13 2.13 3.57 3.41 2.12 2.12 3.15 3.01
2.60 2.60 3.86 3.69

1/2 1 .96 3.05 2.03 2.03 3.62 3.50 1 .82 1 .82 2.90 2.80
2.60 2.60 4.12 3.98

2/3 1 .85 2.88 1 .92 1 .92 3.72 3.64 1 .50 1 .50 2.58 2.52
2.60 2.60 4.48 4.38

5/6 1 .74 2.71 1 .80 1 .80 3.88 3.84 1 .06 1 .06 2.02 2.00
2.60 2.60 4.97 4.91

Note: the upper and lower entries in the table for the B0NF2, SIDAK2, 
SCHGG and SCHHF methods correspond to average within and between 
cluster width respectively.
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Table 3.6(ii) Average width of pairwise intervals for the two cluster 
correlation matrix with 10 ROI/s.

Method
Q TUKEY SCHEFFE BONF1 SIDAK1 GGADJ HFADJ B0NF2 SIDAK2 SCHGG SCHHF

0 3.56 4.63 3.75 3.75 5.22 3.75 5.16 5.14 5.09 4.56
- 5.16 5.14 5.09 4.56

1/6 3.43 4.46 3.62 3.62 5.06 4.54 4.72 4.70 4.68 4.20
5.17 5.15 5.14 4.60

1/3 3.28 4.27 3.46 3.46 4.96 4.47 4.22 3.64 4.27 3.85
5.17 5.15 5.25 4.74

1/2 3.13 4.07 3.31 3.31 4.93 4.50 3.65 3.64 3.84 3.50
5.17 5.15 5.48 5.01

2/3 2.97 3.86 3.13 3.13 4.97 4.63 2.98 2.97 3.33 3.10
5.17 5.15 5.82 5.44

5/6 2.79 3.62 2.94 2.94 5.11 4.90 2.12 2.10 2.57 2.46
5.16 5.14 6.37 6.11

0 2.00 2.62 2.12 2.12 2.73 2.63 2.32 2.31 2.71 2.61
2.32 2. 31 2.71 2.61

1/6 1 .92 2.52 2.04 2.04 2.65 2.55 2.12 2.11 2.49 2.40
2.32 2.32 2.73 2.63

1/3 1 .84 2.42 1 .96 1 .95 2.61 2.52 1 .89 1 .89 2.29 2.21
2.32 2.31 2.80 2.71

1/2 1 .76 2.31 1 .87 1 .87 2.62 2.55 1 .64 1 .64 2.08 2.03
2.32 2.32 2.96 2.88

2/3 1 .67 2.19 1 .77 1 .77 2.67 2.62 1 .34 1 .34 1 .82 1 .79
2.31 2.31 3.16 3.10

5/6 1 .58 2.19 1 .68 1 .67 2.76 2.73 0.95 0.94 1 .41 1 .40
2.32 2.32 3.47 3.43

Note: the upper and lower entries in the table for the B0NF2, SIDAK2, 
SCHGG and SCHHF methods correspond to average within and between 
cluster widths respectively.
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each contrast, we have tabulated the average width of both the 
within and between clusters comparisons. For example, with 20 
ROIs, in each of the 10000 simulations, the average width of a 
between cluster interval is estimated utilising all 100 between 
cluster comparisons. In the case of the independence covariance 
structure, the average of all 190 comparisons are tabulated. 
For methods 1-6, in each simulation the average width of all 190 
comparisons is calculated for all covariance structures.

As would be expected, Tables 3.6(i),(ii), indicate that for 
methods 1-4 the average width of the pairwise comparisons 
decreases as the correlation within each cluster increases and 
the sample size increases. Note, however, that although the 
average width decreases as the correlation within each cluster 
increases, this is no guarantee that the critical value required 
to obtain the stated confidence level will necessarily increase - 
we need only reconsider the case n=30 and J=20 discussed earlier 
in this section. For the GGADJ and HFADJ methods, as the within 
cluster correlation increases from 0 to 5/6 the average width of 
the pairwise comparisons first decrease then increases. Note 

that as Q increases the variance of the within cluster contrasts 

decreases, while the critical value increases. The trade off 
between these two factors may explain, at least in part, the 
results of these procedures. The results, for the BONF (2) and 
SIDAK (2) methods, in Tables 3.6(i),(ii), indicate that the 
average width of within cluster comparisons decreases as the 
within cluster correlation decreases, while the average width of 
the between cluster comparisons remains constant. Both widths 
decrease as n increases and the number of ROIs decrease.
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Although the average width of the within cluster comparisons 
decreases for the SCHGG and SCHHF procedures, the average width 
of the between cluster intervals increases as the correlation 
within clusters increases. The later result is expected since 
the critical values of the SCHGG and SCHHF methods both take 

account of the departure from sphericity. Thus as e decreases, 

the critical value will increase and hence we observe an increase 
in the width of between cluster intervals. Howewver, although 

the critical values of these methods increase as q increases, 

the variance of the within cluster contrasts will decrease. The 
results in Tables 3.6 (i) and 3.6(ii) suggest that the decrease 
in variance is having a larger effect than the increase in the 
critical value.

Finally, in this section we have investigated the frequency of 
occurrence of a significant t,* and t2* from a comparison based 
on 2 ROI's not within the same cluster. Again, we have only 
considered the two cluster correlation structure. Table
3.7(i),(ii) give the percentage from the 10000 simulations for 
20 and 10 ROI's and sample sizes of 10 and 30. Note that if 
each of the J(J-1)/2 pairwise comparisons has an equal chance 
of attaining the maximum t statistic we would expect 
approximately 53% of the significant t,* and t2* values coming 
from between cluster comparisons when J=20 and approximately 56% 
when J=1 0.

For methods 1-6, Tables 3.7(i),(ii) indicate that as the 
correlation between ROI's in the same cluster increases the 
proportion of significant between clusters comparisons increases.
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Table 3.7(i) Proportion of significant t,* and t2* statistics from 
between cluster comparisons (20 ROI's).

Method
Q TUKEY SCHEFFE BONF1 SIDAK1 GGADJ HFADJ BONF2 SIDAK2 SCHGG SCHHF

0 49-7 ★ 48.2 48.1 * * 52.9 52.5 54.5 51 .9
1/6 80.7 * 78.9 78.7 * k 49.2 49.2 50.3 51 .6
1/3 91 .4 100.0 94.5 94.4 * 100.0 50.5 50.5 63.0 55.0
1/2 97.4 100.0 97.8 97.8 * 100.0 42.8 43.3 54.7 54.1
2/3 99.9 100.0 100.0 100.0 k 100.0 37.2 37.1 59.4 59.9
5/6 100.0 100.0 100.0 100.0 * 100.0 26.3 25.6 53.8 52.3

0 50.2 * 47.7 47.7 ★ k 51 .7 51 .4 66.7 55.6
1/6 80.7 * 80.4 80.4 * k 51 .8 51 .5 100.0 66.7
1/3 93.7 100.0 94.6 94.6 * 100.0 48.0 48.0 80.0 75.0
1/2 98.2 k 98.8 98.8 ★ * 39.4 39.6 0.0 0.0
2/3 100.0 100.0 100.0 100.0 * * 28.8 29.0 * *
5/6 100.0 100.0 100.0 100.0 k * 17.2 17.8 * *

Table 3.7 (ii) Proportion of significant t,* and t,* statistics from 
between cluster comparisons (10 ROI's).

Method
Q TUKEY SCHEFFE BONF1 SIDAK1 GGADJ HFADJ BONF2 SIDAK2 SCHGG SCHHF

0 54.9 51 .9 61 .9 61 .9 75.0 40.0 54.2 54 .1 54.5 55.2
1/6 75.0 84.4 73.5 73.5 71 .4 84.6 54.5 54.4 54.6 52.7
1/3 90.9 100.0 92.2 92.2 100.0 100.0 48.8 48.4 52.0 53.6
1/2 97.3 100.0 97.5 97.5 100.0 100.0 51 .0 51 .1 56.8 56.1
2/3 99.5 100.0 99.6 99.6 100.0 100.0 39.4 40.1 49.7 52.8
5/6 99.9 100.0 99.8 99.8 100.0 100.0 32.6 33.2 50.0 50.7

0 00in 6 52. 6 58. 5 58. 3 54. 5 50. 0 58.,0 58.,0 55..6 57..4
1/6 75,.5 87,.5 76,.4 76..0 83..3 85..0 55..8 56,.1 61 ..2 59..0
1/3 90..0 97..5 93..2 93..3 100..0 96.,6 55,.9 55..2 55..3 55..6
1 /2 98,. 1 100,.0 98.,0 98..0 100..0 100,.0 43 .8 44,.2 42,.9 48..6
2/3 99..6 100,.0 99..6 99..6 100,.0 100,.0 34 .7 34,.8 36..4 63..2
5/6 100 .0 100,.0 100,.0 100,.0 100,.0 100 .0 27..0 27., 1 100.,0 100..0
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As expected, as the correlation between ROI's in the same cluster 
increases the proportion of significant between cluster 
comparisons using the B0NF(2) and SIDAK(2) methods decreases. 
However the proportion of significant between cluster comparisons 
using the SCHGG and SCHHF methods, which are also based on a 
separate estimate of the variance for each comparison, remains 
fairly constant over the range of within cluster correlations 
investigated. As mentioned previously, the SCHEFFE, HFADJ and 
GGADJ procedures are very conservative. In instances where 
there were no intervals identified which contained zero, a * has 
been placed in the table. It is also worth noting that for 
methods which are particularly conservative, the proportions in 
the tables will not be accurately determined.

3.9 CONCLUSIONS FROM THE SIMULATION STUDIES

Empirical results of the performance of four test procedures - 
the traditional F-test, the Huynh-Feldt and Greenhouse-Geisser 
adjusted tests and a conservative test based on the lower bound 

of Box's correction factor, e, to the degrees of freedom - were 

obtained in a repeated measures framework to investigate the 
effect of the departure from sphericity on the Type I error rate, 
in hypothetical situations representing the blood flow 
metabolism coupling problem. In general, the results of these 
investigations suggest that the use of the Huynh-Feldt adjusted 
test is more robust than the Greenhouse-Geisser adjusted test 
when the sample size is small and the number of ROIs is large.
The Huynh-Feldt correction factor also reflected the nominal 
alpha level with less bias in all conditions for the four and ten 
cluster correlation pattern or in situations where the within
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cluster correlation was low. With the exception of the
independence variance-covariance structure, the Huynh-Feldt 

correction factor overestimated the true value of e, giving 

somewhat liberal results. In contrast, the Greenhouse-Geisser 
adjustment factor was unduly conservative in most of the
hypothetical situations covered in this investigation. 
Moreover, the Huynh-Feldt test often has a substantial power 
advantage over the corresponding Greenhouse-Geisser test.

Although the results from these investigations do not suggest a 
clear cut rule for choosing between the Huynh-Feldt and
Greenhouse-Geisser modified approaches over the whole range of 
simulated conditions, the Greenhouse-Geisser approach is
preferable if a conservative approach is necessary.

In terms of post hoc multiple pairwise comparisons, the B0NF(2) 
and SIDAK(2) approaches perform consistently well, giving joint 
confidence levels close to the nominal 95% level. In all but 
a few cases the B0NF(1) and SIDAK(1) methods have an actual 
simultaneous confidence level greater than or equal to the
nominal confidence level. Of the other procedures, the SCHEFFE, 
HFADJ, GGADJ, SCHHF and SCHGG tend to be too conservative, 
particularly for large sample sizes, whilst the Tukey procedure 
generally produces intervals with an actual joint confidence 
level less than 95%.

Often, in practice, multiple comparisons between the ROI's would 
only be pursued when the F-test for the equality in mean response 
is significant. However, if the inferences of interest are 
pursued using the B0NF(2) or SIDAK(2) approaches, regardless of
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the outcome of the preliminary F-test, the familywise error rate 
(the probability of making any error in the given family of 

inferences) will be less than the nominal a level.

Moreover, in such cases, not only will the test be conservative, 
but compared with the Huynh-Feldt and Greenhouse-Geisser adjusted 

tests, the nominal a level will be achieved more reliably in all 

but a few extreme cases.



CHAPTER 4 STATISTICAL ANALYSIS OF IMAGE DIFFERENCES

4.0 INTRODUCTION

Recently there has been considerable interest (Fox et al, 1986; 
Fox et al, 1987; Fox et al, 1988) in the analysis and 
interpretation of subtracted positron emission tomography (PET) 
and single photon emission computerised tomography (SPECT) 
images, particularly in activation studies where the tomographic 
image of the patient at rest (control state) is subtracted from
the image obtained when the patient is performing a specific
task. Often these types of analyses will be concerned with 
detecting subtle differences in metabolic activity or blood flow 
on an individual subject basis or in a group of subjects. 
However, when images are subtracted on a pixel by pixel basis 
there are statistical difficulties in the assessment of any 
apparent effects observed in the difference image due to the 
large number of comparisons and the spatial correlation of the 
pixels.

One proposal, to determine whether any pixels within the 
difference image are significant distributional outliers, has 
been based on the kurtosis of the grey values of the image (Fox 
et al, 1988). Although this procedure assesses whether
significant changes in grey level value from control to
activation exist, it does not however identify which or how many
are significant. Moreover, this approach also assumes that the 
pixels in the difference image are independent which is probably



invalid. An alternative model of change distribution analysis 
to identify where the significant changes have occurred would be 
to assume that the distribution of the grey values or change 
parameter in the difference image is normal. Areas of 'high 
change' could then be identified by highlighting pixels in the 
difference image which were greater than 1 .96 standard deviations 
from the mean difference in the whole image. This would 
constitute approximately 5% of the total pixels if the data were 
normal.

Although these proposals have much to recommend them as an 
exploratory step in image analysis, both assume that image noise 
is spatially random and free of any artefacts from the 
measurement process. As a baseline for the assessment of 
apparent differences seen in activation type studies, we examine, 
in this pilot study, the spatial patterns which are observed in 
'control-minus-control' subtractions in the case of a NOVO SPECT 
tomograph situated at the Southern General Hospital, Glasgow.

4.1 DATA AND METHODS

To assess whether the noise in a subtracted image is spatially 
random, we have confined our investigation to a data set 
consisting of a series of six 128 x 128 pixel reconstructions of 
an artificial image or phantom. The phantom was designed 
specifically as a simple imitation of a human brain using perspex 
sheets. The images are of the same standard slice and were 
obtained sequentially with no movement between scans. An 
appealing property of the phantom is that each area in the model
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will have constant intensity with fairly large differences in 
intensities between regions. One of the six reconstructed 
images of the phantom is shown in Figure 4.1 using 256 grey 
levels to reflect the emission intensity. Lighter pixels 
represent areas of high emission intensities while darker areas 
represent areas of low intensity.

The use of the phantom represents a 'best case' scenario. For 
assessing noise in a subtracted image, it has several advantages 
over patient data. Firstly, and perhaps most importantly, for 
image subtraction, by eliminating the possibility of head 
movement, pairs of images can be placed in exact spatial register 
with little difficulty. Even slight head movements of a few 
millimetres can cause movement artefacts in the difference image. 
These are seen as rings of apparent functional change at brain 
and regional boundaries. Secondly, differences in the level of 
anxiety or stress during the period of scanning could hinder the 
investigation by producing patterns of functional change in brain 
regions associated with the respective neuroanatomical pathways.
These and other factors, such as head repositioning and time of 

day, which affect the reproductability of functional activity in 
resting human patients have been investigated by Bartlett et al 
(1988) .

To reduce the variability in global metabolic activity (if any) 
in the six images due to any slight decay of the radioactive 
substance in the phantom over the scanning period or any 
reconstruction artefact, all images were normalised by dividing 
the grey level in each pixel by the average grey level in that



Figure 4.1 Reconstructed image of the phantom 163.
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image. Figures 4.2a and 4.2b show the average normalised image 
and the variance in grey levels across the series of normalised 
scans respectively. Figure 4.2b illustrates that a number of 
clusters of pixels vary over the series of scans to a greater 
extent than other pixels.

To determine whether the noise, as measured by the subtraction 
of one image from another, is spatially random we have limited 
our investigation to the central 64 x 64 pixel submatrix in order 
to avoid problems with the shape of the phantom. The
corresponding 64 x 64 submatrices of Figures 4.2a and 4.2b are 
given in Figures 4.3a and 4.3b respectively. These Figures show 
that the variance across the series of images is not related to 
the mean activity (correlation = -0.033).

In this pilot study, we have also investigated the noise after 
reducing the resolution of the image by one half. The reduction 
in resolution to a 64 x 64 pixel image was achieved by averaging 
the grey levels in four pixels of the 128 x 128 pixel image. 
The average normalised 64 x 64 image and variance of the 64 x 64 
pixel images are given in Figures 4.4a and 4.4b. The
corresponding central 32 x 32 submatrices for these figures are 
given in Figures 4.5a and 4.5b. For the 32 x 32 pixel images 
no association between the variance and mean value of the 
normalised images was detected (correlation =» -0.036).

In order to investigate whether the difference images using the 
phantom data are totally random with no spatial structure, three 

images were obtained by subtracting the second image of the
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Figure 4.2a Average normalised image

Figure 4.2b Variance in normalised images



Figure 4.3a 64 x 64 central submatrix of figure 4.2a
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Figure 4.3b 64 x 64 central submatrix of figure 4.2b



167.
Figure 4.4a Average normalised image after a reduction in resolution
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Figure 4.4b Variance in normalised images after a reduction in resolution
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Figure 4.5a 32 x 32 central submatrix of Figure 4.4a 168
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series of six from the first image, the fourth from the third and 
the sixth from the fifth. For the purpose of this
investigation, areas in the 64 x 64 pixel and 32 x 32 pixel 
submatrices corresponding to high change in metabolic activity 
were identified by highlighting all pixels with an absolute 
change in grey value of greater than 1 .96 standard deviations 
from the mean.

4.2 RESULTS

The difference image obtained by subtracting the second 128 x 128 
pixel image in the series of six from the first is given in 
Figure 4.6a. The central 64 x 64 pixel submatrix corresponding 
to this image is given in Figure 4.6b. Lighter pixels in these 
images represent areas where the first image had higher metabolic 
activity whilst darker areas represent areas where the second 
image had higher metabolic activity. Mid-grey levels similar 
to those in the four corners of Figure 4.6a correspond to pixels 
in which no change has occurred.

It is apparent from Figures 4.6a and 4.6b that particular areas 
of the difference image indicate higher change than others. For 
the purpose of identifying pixels reflecting large differences 
in metabolic activity, irrespective of sign, it seems more 
appropriate to consider only absolute change. The corresponding 
figures to 4.6a and 4.6b showing absolute change are given in 
Figures 4.7a and 4.7b respectively. The advantage of
contrasting no change with high change is immediately obvious: 
areas of no change (represented by dark grey pixels) in Figures
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Figure 4.6a Difference between Image 1 and Image 2

Figure 4.6b 64 x 64 central submatrix of Figure 4.6a
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Figure 4.7a Absolute difference between Image 1 and Image 2

Figure 4.7b 64 x 64 central submatrix of Figure 4.7a
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4.7a and 4.7b are more easily identifiable.

Figure 4.8a gives the image corresponding to the absolute 
difference between the third and fourth reconstructed images of 
the phantom. The central 64 x 64 submatrix is given in Figure 
4.8b. Corresponding figures for the absolute difference between 
the fifth and sixth images are given in Figures 4.9a and 4.9b 
respectively.

The structure of the difference images in Figures 4.6a to 4.9b 
reveal several striking patterns. Firstly, all images are 
highly fragmented: discrete areas, often roughly similar in
shape, are separated by pixels registering no change in metabolic 
activity. Secondly, pixels corresponding to a high change in 
metabolic activity group into a number of clusters which are 
predominantly circular in shape.

Figures 4.10a and 4.10b give the 64 x 64 pixel image and the 32 
x 32 pixel central submatrix of the absolute difference in 
emission intensities of the first and second images, after 
reducing the resolution of the images. Absolute difference 
images for the subtraction of the fourth image from the third 
image (Figure 4.11a) in the series of reconstructions of the 
phantom and the sixth image from the fifth image (Figure 4.12a) 
are given with their central 32 x 32 pixel submatrices (Figures 
4.11b and 4.12b respectively).

As would be expected, the 64 x 64 pixel difference images are 
more 'hazy' than their 128 x 128 pixel counterparts. Moreover,
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Figure 4.8a Absolute difference between Image 3 and Image 4
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Figure 4.8b 64 x 64 central submatrix of Figure 4.8a
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Figure 4.9a Absolute difference between Image 5 and Image 6

Figure 4.9b 64 x 64 central submatrix of Figure 4.9a
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Figure 4.10b 32 x 32 central submatrix of Figure 4.10a
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Figure 4.11a Absolute difference between Image 3 and Image 4 aftera reduction in resolution

Figure 4.11b 32 x 32 central submatrix of Figure 4.11a
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Figure 4.12a Absolute difference between Image 5 and Image 6 aftera reduction in resolution
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Ŝ eppS

1 MriH ■1^81$p f i

flS IS il



Figures 4.10a-4.12b appear to have less fragmentation. This is 
particularly noticeable for the central 32 x 32 pixel 
submatrices. However, areas of high change remain grouped in 
several clusters.

Using a threshold of 1.96 standard deviations from the mean grey 
value in each central submatrix, areas of high change have been 
highlighted. Figure 4.13a displays the pixels representing 
'significant' change for the central 64 x 64 submatrix 
subtraction of the second image from the first. Figure 4.13b 
gives the corresponding central 32 x 32 submatrix subtraction 
under poorer resolution. Similar difference images are given 
in Figures 4.14a,b for the subtraction of the fourth from the 
third image and Figures 4.15a,b for the subtraction of the sixth 
from the fifth image.

It can be seen from Figures 4.13a to 4.15b that the pixels 
highlighted in the image do not occur totally at random with no 
spatial structure but in general appear in clusters. In the 
64 x 64 pixel images, clusters vary in size from 7 to roughly 70 
pixels and from 7 to 16 pixels in the 32 x 32 images. However, 
with the exception of a few extreme cases, most clusters are 
roughly similar in size. Moreover, the resolution of the image 
appears to have very little influence on the location of areas 
of predominantly high change. Although decreasing the
resolution tends to average out isolated pixels of high change 
in the 128 x 128 pixel, as would be expected, clusters of pixels 
indicating high change remain. Furthermore the number of
clusters in all the 64 x 64 pixel and 32 x 32 pixel images
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Figure 4.13a 'Significant' change between Image 1 and Image 2
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Figure 4.13b 'Significant' change between Image 1 and Image 2 after a reduction in resolution
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Figure 4.14a 'Significant' change between Image 3 and Image 4
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Figure 4.14b 'Significant' change between Image 3 and Image 4 after a reduction in resolution



181.
Figure 4.15a 'Significant' change between Image 5 and Image 6

Figure 4.15b 'Significant' change between Image 5 and Image 6 after a reduction in resolution3Pf
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appears to be roughly similar, with 7 to 10 clusters being 
present.

4.3 DISCUSSION

The findings from this pilot study, using SPECT reconstructed 
phantom images, indicated that noise in differenced images 
obtained by subtraction on a pixel by pixel basis was not 
completely spatially random. Regardless of the spatial
resolution of the reconstructed images, clusters of pixels 
reflecting high noise were clearly visible and often appeared to 
be circular in shape. Factors which may contribute to the 
presence of clusters of 'high noise' include the filtering and 
smoothing process used in the image reconstruction, the 
reconstruction algorithm and perhaps the initial position of the 
detectors of the imaging equipment. These features are likely 
to be machine and software dependent. Hence the same machine 
with different software or other machines may not display these 
features.

The consequences of image noise having a spatial structure are 
far reaching, particularly in activation studies if the response 
is within the range of image noise. Fox et al (1988) suggest 
that averaging difference images over a group of patients will 
enhance the detection of activation dependent changes in brain 
activity, since focal changes will sum whilst measurement noise 
will cancel. However, such an approach to functional brain 
mapping introduces a further technical problem. Highly accurate 
anatomical standardisation is required which is capable of
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correcting for individual differences in slice orientation, brain 
size and shape. Moreover, it remains to be seen what ratio of 
signal to noise is required to have at least some assurance that 
the differences observed reflect areas of high activation.

Although the relatively simplistic approach employed in this 
analysis revealed that it may be erroneous to make biological 
interpretations of reconstructed SPECT images for the NOVO system 
and current software, the procedure used for detecting change in 
activation is by no means perfect itself. One disadvantage is 
that inferences about specific changes in activation can only be 
made with respect to the whole brain. For example, rather than 
saying that functional activity has changed in the hippocampus, 
we can only say that functional activity has changed in the 
hippocampus relative to the rest of the brain. Furthermore, in 
circumstances where metabolic activity has increased uniformly 
over the whole brain, highlighting approximately five per cent 
of the pixels would be very misleading.

A further approach for imaging change would be to construct a 
probability map using t-statistics. For example in activation 
type studies, a t-statistic could be calculated by comparing the 
grey level information contained in the same pixel in 
anatomically standardised task minus control images of different 
subjects. However, the use of significant probability maps in 
this way introduces the problem of multiple comparisons. If each 
of the t-tests are applied separately with a significance level 
of 0.05 then the probability of concluding that at least one 
significant difference exists, when in fact there is no



difference, will be very close to 1 for a sufficiently large 
number of comparisons. Thus, to control for the multiplicity 
effect and remove the possibility of erroneous conclusions the 
significance level of each comparison must be carefully chosen 
to preserve the familywise error rate.



185.

CHAPTER 5 CONCLUSIONS AND FURTHER WORK

The principal aim of this thesis was to develop and evaluate 
statistical methods which would provide greater and more reliable 
insight into the biological processes which are illustrated in 
functional maps of the brain. These maps are generated by 
positron emission tomography (PET), single photon emisssion 
computerised tomography (SPECT) and quantitative autoradiography.

In chapter one we derived an exploratory mathematical model to 
describe the use of MK-801 as an in vivo ligand for studying 
glutamenergic mechanisms and to gain insight into the anti- 
ischaemic effect of this compound. A nonlinear regression 
analysis of data from normal and ischaemic rat brain tissue 
revealed that a two compartment was adequate to describe the 
kinetic properties of MK-801 in normal tissue while a three 
compartment model could be fitted to four of the nine regions in 
the ischaemic brain, where there is low cerebral blood flow and 
enhanced glutamate release.

A severe limitation of any data that arises from compartmental 
modelling of receptor binding, or any other biochemical process 
in the brain, is that a point estimate of the parameter of 
interest is derived, using a nonlinear function of a number of 
underlying constants. These constants in turn are usually 
estimated from experimental data using nonlinear regression, and 
are used as if they are measured without error. No work has been 
done to determine how the error in the estimation of these 
constants propogates through the nonlinear function to effect the 
parameter of interest. Ideally, for each of the models used,
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interval estimates of the parameters of interest shold be derived 
and the relaiability of the quoted values assessed, using 
simulation.

In chapter two we introduced the problem of ranking brain regions 
with respect to the strength of response, in a set of brain 
regions selected for study. In section 2.1 we identified the 
forms of the covariance structure for maximising and minimising 
the probability of correctly ranking a 3-dimensional observation 
vector, assuming multivariate normality. The Bonferroni 
inequality was used to derive a lower bound for the probability 
of ranking the components of vectors with higher dimensions. We 
have seen that these mathematical approaches to the problem will 
have severe limitations in more realistic situations, due to the 
complex nature of the observational vector. One difficulty is 
that the variances of the regional measurements may not be 
necessarily equal. To solve problems of practical interest, in 
section 2.2 we have considered an alternative approach for 
characterising response to a drug which might have some potential 
for identifying regions having extreme or atypical responses and 
for comparing the pattern of response with respect to different 
drugs. Using a simple measure of response, we investigated, for 
specific data sets, rankings of the regions and measures of 
association between drugs. These reflect patterns which would 
be expected biologically. Moreover, these rankings should be 
fairly robust for moderate sample sizes, if we are willing to 
assume that all the correlations between regions are greater than 
or equal to zero. This should give us some confidence in 
interpreting these measures when studying new drugs of unknown 
action.
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In chapter three we compared, in a simulation study, four 
univariate repeated measures analysis of variance 
techniques. Particular attention was paid to the performance of 
these techniques in hypothetical situations representing the 
blood flow-metabolism coupling problem, where the number of brain 
regions was greater than the number of experimental animals. 
Under these conditions we have seen that the F-test or any of the 
adjusted tests will not be robust, with respect to the Type I 
error rate, when the covariance matrix departs from sphericity. 
However, the Greenhouse-Geisser test is recommended if a 
conservative approach is necessary. In section 3.8, the 
performance of pairwise comparisons, based on the Bonferroni or 
Sidak inequality and using a separate estimate of the variance 
for each contrast, was very encouraging. If inferences of 
interest are pursued using either of these approaches, regardless 
of the outcome of the F-test, then the probability of making any 
error in the given family of inferences will be less than the 
nominal value and will be achieved more reliably than the Huynh- 
Feldt and Greenhouse-Geisser tests in all but a few extreme 
cases.

In chapter four we examined the spatial patterns which were 

observed when image reconstructions of a phantom using SPECT, 

were subtracted on a pixel by pixel basis. The presence of 

spatially distributed noise will impose severe limitations on the 

assessment of any apparent effects observed in the difference 

image. There is much scope for further work here. For instance, 

it remains to be seen what ratio of signal to noise would be 
required to have at least some assurance, that any differences 

in the images of patients are not merely artefacts of the
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measurement process. We should also investigate further whether 
or not the noise from other imaging modalities, or similar 
machines with different software display the same features.
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Appendix A.1 (i) Correlations between the estimated and simulated
within treatment rankings for the rostral raphe study, using f1 .

DORSAL MEDIAN 5,7-DHT(l) 5,7-DHT(2)

a b median Q1 Q3 median Q l Q3 median Q l Q3 median Q l Q3

1 1 0.951 0.942 0.958 0.933 0.917 0.945 0.820 0.781 0.850 0.878 0.839 0.900

2 1 0.908 0.892 0.921 0.876 0.847 0.898 0.704 0.644 0.751 0.788 0.731 0.825

4 1 0.837 0.810 0.859 0.782 0.733 0.819 0.550 0.473 0.616 0.657 0.578 0.716

8 1 0.724 0.682 0.761 0.644 0.572 0.703 0.392 0.303 0.468 0.492 0.391 0.569

16 1 0.576 0.511 0.634 0.480 0.400 0.558 0.242 0.150 0.334 0.328 0.233 0.419

1 1 0.951 0.942 0.958 0.933 0.917 0.945 0.820 0.781 0.850 0.878 0.839 0.900

2 2 0.907 0.888 0.922 0.873 0.834 0.898 0.696 0.620 0.749 0.783 0.697 0.826

4 4 0.830 0.789 0.857 0.777 0.691 0.820 0.534 0.426 0.614 0.647 0.491 0.718

8 8 0.711 0.629 0.761 0.622 0.437 0.700 0.362 0.221 0.470 0.465 0.246 0.579

16 16 0.561 0.404 0.635 0.433 0.161 0.557 0.224 0.078 0.343 0.313 0.090 0.437

Appendix A. 1 (ii) Correlations between the estimated and simulated 
within treatment rankings for the rostral raphe study, using f2.

DORSAL MEDIAN 5(7-DHT(l) 5,7-DHT(2)

a b median Q l Q3 median Q l Q3 median Q l Q3 median Q l Q3

1 1 0.955 0.947 0.960 0.924 0.894 0.936 0.815 0.778 0.840 0.861 0.818 0.883

2 1 0.916 0.901 0.925 0.867 0.825 0.886 0.696 0.644 0.737 0.776 0.720 0,807

4 1 0.847 0.823 0.866 0.767 0.703 0.805 0.541 0.473 0.596 0.641 0.563 0.695

8 1 0.730 0.690 0.764 0.622 0.542 0.679 0.374 0.302 0.448 0.472 0.381 0.538

16 1 0.582 0.524 0.629 0.457 0.376 0.525 0.235 0.150 0,307 0.315 0.230 0.389

1 1 0.955 0.947 0.960 0.924 0.894 0.936 0.815 0.778 0.840 0.861 0.818 0.883

2 2 0.914 0.890 0.926 0.864 0.779 0.886 0.690 0.614 0.734 0.764 0.672 0.802

4 4 0.841 0.783 0.864 0.767 0.616 0.807 0.534 0.409 0.604 0.637 0.467 0.695

8 8 0.725 0.608 0.770 0.614 0.349 0.691 0.358 0.211 0.454 0.458 0.238 0.558

16 16 0.566 0.350 0.643 0.436 0.108 0.554 0.226 0.073 0.333 0.302 0.086 0.418
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Appendix A.1(iii) Correlations between the simulated between
treatment rankings for the rostral raphe study, using f1 ♦

a b

DORS.,MED. 

median Q l Q3

DORS.,5,7-DHT (1) 

median Q l Q3

MED.,5,7-DHT (1) 

median Q l Q3

5,7-DHT(l),(2) 

median Q l Q3

1 1 0.707 0.664 0.738 0.610 0.545 0.661 0.524 0.463 0.579 0.763 0.703 0.804

2 1 0.657 0.608 0.702 0.496 0.421 0.562 0.415 0.342 0.488 0.726 0.663 0.775

4 1 0.587 0.518 0.644 0.355 0.275 0.435 0.287 0.205 0.375 0.690 0.617 0.749

8 1 0.486 0.402 0.560 0.216 0.128 0.300 0.164 0.072 0.255 0.639 0.560 0.703

16 1 0.376 0.285 0.466 0.101 0.017 0.190 0.069 -0.009 0.145 0.604 0.519 0.676

1 1 0.707 0.664 0.738 0.610 0.545 0.661 0.524 0.463 0.579 0.763 0.703 0.804

2 2 0.654 0.589 0.702 0.485 0.390 0.560 0.401 0.297 0.483 0.712 0.624 0.776

4 4 0.573 0.473 0.643 0.327 0.215 0.422 0.253 0.134 0.354 0.660 0.545 0.731

8 8 0.452 0.276 0.559 0.172 0.050 0.278 0.114 0.002 0.218 0.599 0.470 0.695

16 16 0.328 0.138 0.451 0.066 -0.039 0.173 0.033 -0.050 0.135 0.557 0.414 0.661

Appendix A.l(iv) Correlations between the simulated between 
treatment rankings for the rostral raphe study, using f2.

a b

DORS.,MED. 

median Q l Q3

DORS., 5,7-DHT(l) 

median Q l Q3

MED., 5,7-DHT(l) 

median Q l Q3

5,7-DHT(l),(2) 

median Q l Q3

1 1 0.739 0.682 0.772 0.621 0.536 0.676 0.494 0.423 0.547 0.717 0.652 0.765

2 1 0.683 0.621 0.725 0.503 0.426 0.571 0.394 0.324 0.459 0.683 0.618 0.733

4 1 0.597 0.517 0.652 0.364 0.286 0.434 0.279 0.198 0.350 0.650 0.584 0.701

8 1 0.485 0.403 0.552 0.218 0.142 0.300 0.160 0.084 0.237 0.600 0.540 0.658

16 1 0.367 0,288 0.442 0.107 0.028 0.182 0.073 ■-0.003 0.147 0.567 0.504 0.625

1 1 0.739 0.682 0.772 0.621 0.536 0.676 0.494 0.423 0.547 0.765 0.652 0.765

2 2 0.677 0.576 0.726 0.492 0.382 0.577 0.376 0.266 0.455 0.666 0.575 0.738

4 4 0.586 0.438 0.658 0.332 0.212 0.436 0.238 0.114 0.340 0.614 0.502 0.692

8 8 0.448 0.245 0.559 0.177 0.044 0.279 0.111 0.005 0.215 0.559 0.433 0.651

16 16 0.318 0.122 0.444 0.075 -0.030 0.176 0.043 -0.048 0.134 0.514 0.378 0.617
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A t1,(v) Correlations between the estimated and simulated 

within treatment rankings for the Alpidem/Zolpidem/Diazepam 
study, using f1.

ALPIDEM ZOLPIDEM BENZODIAZEPAM

a b median Ql Q3 median Ql Q3 median Ql Q3

1 1 0.850 0.818 0.876 0.925 0.912 0.937 0.898 0.882 0.911

2 1 0.762 0.705 0.803 0.883 0.859 0.902 0.839 0.812 0.862

4 1 0.638 0.563 0.700 0.808 0.770 0.842 0.746 0.704 0,786

8 1 0.501 0.403 0.582 0.697 0.640 0.753 0.629 0.565 0.684

16 1 0.344 0.235 0.495 0.558 0.479 0.631 0.486 0.399 0.564

1 1 0.850 0.818 0, 876 0.925 0.912 0.937 0.898 0.882 0.911

2 2 0.755 0.686 0.801 0.880 0.857 0.901 0.838 0.811 0.861

4 4 0. 621 0.493 0.695 0.803 0.765 0.838 0.747 0.704 0.786

8 8 0. 462 0.267 0.570 0.689 0.622 0.740 0.614 0.552 0.676

16 16 0.289 -0.003 0.432 0.546 2 0.442 0.626 0.471 0.379 0.555

Appendix A. 1 (vi) Correlations between the estimated and simulated 
within treatment rankings for the Alpidem/Zolpidem/Diazepam 
study, using f2.

ALPIDEM ZOLPIDEM DIAZEPAM

a b median Ql Q3 median Ql Q3 median Ql Q3

1 1 0.841 0.806 0.867 0. 836 0.821 0.852 0.866 0.849 0.883
2 1 0.761 0.706 0.799 0.805 0. 779 0.826 0.809 0.782 0.834
4 1 0.641 0.575 0.699 0.746 0.709 0.777 0.721 0.678 0.757
8 1 0 . 507 0. 413 0.581 0.655 0.600 0.699 0.610 0.547 0.663
16 1 0.347 0.244 0.436 0. 530 0.457 0.591 0.479 0.401 0.544

1 1 0.841 0. 806 0.867 0.836 0.821 0. 852 0. 866 0.84 9 0. 883
2 2 0.754 0. 677 0. 795 0.802 0.779 0. 824 0.808 0.782 0 . 834
4 4 0. 624 0. 482 0 . 692 0.738 0.702 0.773 0.725 0. 679 0.759
8 6 0 .469 0 .253 0.576 0. 638 0.576 0 . 689 0.592 0,540 0. 656

16 16 0.303 -0,025 0.431 0. 510 0.413 0.586 0.465 0.376 0. 534
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Appendix— A. 1 (vii) Correlations between the simulated between 
treatment rankings for the Alpidem/Zolpidem/Diazepam study, using 
f 1 .

ALPIDEM, ZOLPIDEM ALPIDEM, DIAZEPAM ZOLPIDEM, DIAZEPAM

a b median Ql Q3 median Ql Q3 median Ql Q3

1 1 0.537 0.467 0.595 0.302 0.232 0.368 0.603 0.558 0.646

2 1 0.457 0.376 0.531 0.248 0.162 0.332 0.533 0.469 0.591

4 1 0.340 0.249 0.430 0.184 0.083 0.275 0.434 0.363 0. 510

8 1 0.236 0.13S 0.337 0.116 0.019 0.226 0.314 0.227 0.402

16 1 0.119 0.008 0.233 0.050 -■0.052 0.169 0.188 0.083 0.294

1 1 0.537 0.467 0.59S 0.302 0.232 0 . 368 0.603 0.558 0.646

2 2 0.443 0.343 0.523 0.230 0.130 0.316 0.535 0.477 0.591

4 4 0.319 0.191 0.426 0.159 0.047 0.267 0.431 0.348 0. SOS
8 8 0.191 0.031 0.307 0.086 --0.046 0.204 0.298 0.201 0.399

16 16 0.067 --0.058 0.203 0.022 ■-0.089 0.137 0.170 0.062 0.280

Appendix; A.1(viii) Correlations between the simulated between
treatment rankings for the Alpidem/Zolpidem/Diazepam study, using 
f 2.

ALPIDEM, ZOLPIDEM ALPIDEM, DIAZEPAM ZOLPIDEM, DIAZEPAM

a b median Ql Q3 median Ql Q3 median Ql Q3

1 1 0.590 0.521 0.643 0.344 0.27S 0.403 0.609 0.571 0. 644

2 1 0.507 0.428 0.572 0.282 0.203 0.354 0.540 0.491 0.592

4 1 0.384 0.303 0.464 0.203 0.118 0. 291 0.446 0. 381 0.S13

8 i 0.271 0.170 0.362 0.135 0.039 0.228 0. 336 0.256 0 .410

16 1 0.143 0.038 0.247 0.072 -0.036 0.174 0.207 0 .109 0. 303

1 i 0 .  5 9 0 0 . 5 2 1 0 . 6 4 3 0 . 3 4 4 0 . 2 7 5 0 . 4 0 3 0 .  6 0 9 0 .  5 7 1 0 . 6 4 4

2 2 0 . 4 9 3 C. 391 0 . 5 6 5 0 . 2 6 7 0 . 1 6 6 0 . 3 5 0 0 .  5 4 6 0 . 4 9 5 0.590

4 4 0 .  3 6 3 0.  2 2 0 0 . 4  59 0 .  1 8 3 0 .  06 9 0 . 2 8 3 0 . 4 4 7 0 . 3 7 2 0 . 5 1 2

a e 0 . 2 2 1 0 . 0 4 6 0 .  331 0 , 1 0 8 - 0 . 0 2 6 0 . 2 1 8 0 . 3 1 3 0 . 2 2 5 0 . 4 C 0

16 1 £ 0 . CSS - C . 051 0 . 2 1 0 0 .  0 3 7 - 0 . 0 7 8 0 . 1 4 4 G.  1 8 6 0 .  081 0 . 2 S 3
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Appendix A .2(i) Correlations for the dorsal raphe rankings using 

f1 (40 ROIs).

Q

0.1 0.5 0.9

r median Ql Q3 median Ql Q3 median Q l Q3

40 0.939 0.921 0.953 0.964 0.953 0.972 0.990 0.985 0.993

20 0.938 0.919 0.951 0.954 0.934 0.966 0.975 0.948 0.987

10 0.935 0.915 0.950 0.945 0.923 0.959 0.955 0.925 0.974

5 0.935 0.916 0.949 0.938 0.917 0.953 0.941 0.918 0.961

2 0.934 0.917 0.954 0.935 0.916 0.950 0.936 0.916 0.953

1 (independence) median=0.935 Q1=0.917 Q3=0.949

40 0.969 0.961 0.976 0.982 0.976 0.986 0.995 0.992 0.996

20 0.968 0.960 0.975 0.977 0.969 0.983 0.989 0.977 0.994

10 0.967 0,958 0.974 0.972 0.961 0.979 0.977 0.963 0.987

5 0.967 0.958 0.974 0.969 0.958 0.977 0.971 0.958 0.980

2 0.967 0.958 0.974 0.967 0.958 0.974 0.968 0.957 0.975

1 (independence) median=0.967 Ql=0.958 Q3=0.974

Appendix A.2(ii) Correlations for the dorsal raphe rankings using 
f2 (40 ROIs).

Q
0.1 . 0.5 0.9

r medain Ql Q3 median Ql Q3 median Ql Q3

40 0.932 0.914 0.945 0.961 0.945 0.968 0.991 0.979 0.993

20 0.930 0.911 0.943 0.946 0.918 0.961 0.966 0.923 0.985

10 0.930 0.909 0.942 0.937 0.910 0.954 0.945 0.910 0.969

5 0.928 0.911 0.941 0.931 0.910 0.946 0.934 0.904 0.954

2 0.928 0.910 0.940 0.928 0.907 0.943 0.929 0.907 0.945

1 (independence) median=0.928 Q 1=0.909 Q3=0.940

40 0.966 0.959 0.972 0.980 0.974 0.984 0.995 0.989 0.996

20 0.964 0.955 0.971 0.975 0.962 0.980 0.985 0.967 0.993

10 0.964 0.956 0.970 0.968 0.957 0.976 0.972 0.954 0.984

5 0.963 0.955 0.970 0.965 0,955 0.972 0.967 0.954 0.977

2 0.963 0.954 0.970 0.955 0.955 0.970 0.964 0.953 0.971

1 (independence) median=0.963 Q 1=0.955 Q3=0.969
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Appendix A.2(iii) Correlations for the median raphe rankings 

using f1 (40 ROIs).

Q

0.1 . 0.5 0.9

r median Ql Q3 median Ql Q3 median Ql Q3

40 0.943 0.921 0.958 0.965 0.949 0.974 0.988 0.978 0.993

20 0.939 0.915 0.956 0.954 0.926 0.968 0.969 0.939 0.984

10 0.939 0.914 0.955 0.946 0.919 0.962 0.955 0.922 0.975

5 0.937 0.915 0.955 0.939 0.915 0.957 0.943 0.914 0.962

2 0.938 0.913 0.954 0.937 0.913 0.954 0.940 0.914 0.957

1 (independence) median=0.9381 Ql=0.914 Q3=0.954

40 0.972 0.962 0.979 0.982 0.974 0.987 0.994 0.989 0.996

20 0.970 0.960 0.978 0.977 0.967 0.984 0.986 0.971 0.993

10 0.970 0.958 0.978 0.973 0.961 0.981 0.978 0.962 0.987

5 0.970 0.958 0.977 0.970 0.958 0.978 0.972 0.958 0.981

2 0.968 0.957 0.977 0.969 0.957 0.977 0.969 0.957 0.977

1 (independence) median=0.969 Q 1=0.959 Q3=0.977

Appendix A.2(iv) Correlations for the median raphe rankings using

10

f  2 (40 ROIs).

0.1

Q
0.5 0.9

r median Ql Q3 median Ql Q3 median Q l Q3

40 0.922 0.888 0.940 0.946 0.913 0.960 0.969 0.935 0.984

20 0.918 0.879 0.936 0.933 0.885 0.952 0.945 0.885 0.969

10 0.918 0.880 0.934 0.924 0.884 0.944 0.932 0.876 0.958

5 0.917 0.881 0.935 0.919 0.882 0.939 0.920 0.878 0.944

2 0.916 0.881 0.934 0.917 0.877 0.936 0.918 0.883 0.938

1 (independence) median=0.919 Ql=0.886 Q3=0.935

40 0.957 0.942 0.966 0.969 0.953 0.978 0.979 0.965 0.991

20 0.955 0.939 0.965 0.962 0.944 0.973 0.969 0.941 0.982

10 0.955 0.939 0.965 0.959 0.938 0.969 0.961 0.936 0.975

5 0.955 0.940 0.964 0.956 0.939 0.966 0.957 0.937 0.969

2 0.955 0.939 0.964 0.954 0.937 0.965 0.954 0,936 0.971

1 (independence) median=0.955i Ql=0.940 Q3=0.963
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Appendix A.2(v) Correlations for the association between the 
dorsal and median raphe stimulation rankings, using f 1 (40 ROIs).

0.1

Q

0.5 0.9

r median Ql Q3 median Ql Q3 median Q l Q3

40 0.833 0.795 0.862 0.850 0.815 0.873 0.872 0.851 0.885

20 0.828 0.785 0.862 0.840 0.798 0.870 0.856 0.814 0.882

10 0.827 0.785 0.860 0.834 0.791 0.869 0.843 0.788 0.881

5 0.828 0.784 0.861 0.829 0.787 0.864 0.833 0.791 0.866

2 0.827 0.782 0.859 0.825 0.784 0.859 0.827 0.784 0.860

1 (independence) median=0.826 Ql=0.786 Q3=0.858

40 0.857 0.834 0.878 0.867 0.848 0.882 0.879 0.866 0.888

20 0.856 0.833 0.877 0.863 0.838 0.883 0.871 0.846 0.888

10 0.856 0.830 0.879 0.858 0.829 0.883 0.864 0.829 0.888

5 0.857 0.831 0.877 0.856 0.829 0.879 0.857 0.830 0.881

2 0.855 0.829 0.877 0.854 0.828 0.876 0.856 0.828 0.878

1 (independence) median=0.856 Ql=0.832 Q3=0.878

Appendix A.2(vi) Correlations for the association between the 
dorsal and median raphe stimulation rankings, using f2 (40 ROIs).

0.1

Q
0.5 0.9

r median Ql Q3 median Ql Q3 median Ql Q3

40 0.775 0.717 0.812 0.793 0.729 0.830 0.821 0.740 0.850

20 0.766 0.705 0.809 0.780 0.713 0.824 0,789 0.711 0.841

10 0.769 0.710 0.809 0.774 0.712 0.818 0.781 0.704 0.832

5 0.772 0.708 0.810 0.771 0.712 0.812 0.773 0.709 0.816

2 0.769 0.712 0.810 0.768 0.705 0.808 0.769 0.712 0.811

1 (independence) median=0.770 Q 1=0.712 Q 3=0.808

40 0.803 0.763 0.831 0.816 0.770 0.840 0.828 0.780 0.852

20 0.803 0.763 0.830 0.806 0.766 0.837 0.813 0.762 0.847

10 0.803 0.764 0.832 0.804 0.758 0.834 0.804 0.757 0.839

5 0.801 0.764 0.829 0,802 0.760 0.831 0.801 0.761 0.831

2 0.800 0.765 0.829 0.800 0.760 0.829 0.798 0.758 0.827

1 (independence) medtan=0.80l Ql=0 .761 Q3==0.827
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Arroendix &.2(vii) Correlations for the within treatment ranking

o f

0.1

Zolpidem, using 
Q

0.5

f1 (40 ROIs).

0.9

r median Ql Q3 median Ql Q3 median Ql Q3

40 0.817 0.775 0.853 0.881 0.851 0.904 0.964 0.948 0.973

20 0.808 0.765 0.848 0.850 0,803 0.886 0.910 0.837 0.951

10 0.807 0.763 0.842 0.825 0.774 0.862 0.848 0.781 0.901

5 0.805 0.759 0.843 0.815 0.764 0.850 0.826 0.767 0.873

2

1

0.805 0.760 

(independence)

0.843 0.807 

median=0.804

0.757 0.846 0.814 

Ql=0.760 Q3=0.838

0.762 0.852

40 0.899 0.875 0.918 0.938 0.923 0,949 0.981 0.973 0.986

20 0.895 0.871 0.914 0.920 0.894 0.939 0.905 0.951 0.974

10 0.894 0.871 0.914 0.905 0.876 0.927 0.919 0.878 0.948

5 0.892 0.869 0.912 0.898 0.871 0.921 0.903 0.866 0.931

2

1

0.891 0.867 

(independence)

0.911 0.893 

median=0.891

0.867 0.911 0.896 

Q1=0.868 Q3=0.911

0.866 0.917

Appendix A.2(viii) Correlations for the within treatment ranking
of Zolpidem, using f2 (40 ROIs).

Q

0.1 0.5 0.9

r median Ql Q3 median Ql Q3 median Ql Q3

40 0.761 0.706 0.806 0,833 0.784 0.865 0.930 0.885 0.952

20 0.753 0.696 0.801 0.799 0.728 0.839 0.854 0.741 0.913

10 0.752 0.692 0.794 0.770 0.704 0.819 0.790 0.699 0.858

5 0.745 0.686 0.793 0.756 0.697 0.804 0.768 0.691 0.822

2 0.750 0.694 0.796 0.750 0.690 0.796 0.752 0.688 0.801

1 (independence) median=0.747 Ql=0.688 Q3=0.791

40 0.857 0.828 0.882 0.904 0.877 0.922 0.957 0.926 0.973

20 0.854 0.820 0.879 0.880 0.839 0.907 0,911 0.842 0.949

10 0.852 0.818 0.877 0.862 0.822 0.894 0.878 0.824 0.917

5 0.845 0.820 0.876 0.856 0.817 0.885 0.860 0.814 0.895

2 0.848 0.814 0.876 0.850 0.814 0.876 0.853 0.816 0.880

1 (independence) median=0.849 Ql=-0.819 03=0.874



197.

Appendix B.1 Empirical results of the effect of increasing the 
number of ROIs within an independence covariance structure.

n 7 U n a d j u s t e d  
0 . 0 5 0  0 . 0 2 5 0 . 0 1

e - a d j u s t e d  
0 . 0 5  0 , 0 2 5 0 . 0 1

A
e - a d j u s t e d  

0 - 0 5  0 . 0 2 5 0 . 0 1 0
Lower
0 . 0 5

bound  
• 0 . 0 2 5 0 . 0 1

5 5 0 . 0 5 6 0 . 0 3 1 0 . 0 1 1 0 . 0 4 8  0 . 0 2 4 0 . 0 0 8 0 . 0 1 8  0 , 0 0 5 0 . 0 0 1 0 . 0 0 2 0 . 0 0 . 0

10 0 . 0 5 3 0 . 0 2 7 0 . 0 1 2 0 . 0 4 4  0 . 0 2 1 0 . 0 0 9 0 . 0 0 3  0 . 0 0.  0 0 . 0 0 . 0 0 . 0

20 0 . 0 4 9 0 . 0 2 4 0 . 0 1 0 0 . 0 4 1  0 . 0 2 0 0 . 0 0 7 0 . 0  0 , 0 0 . 0 0 . 0 0 . 0 0 . 0

50 0 . 0 5 0 0 . 0 2 7 0 . 0 1 0 0 . 0 4 2  0 . 0 2 0 0 . 0 0 7 0 . 0  0 . 0 0 . 0 0 . 0 C. O 0 . 0

10  5 0 . 0 5 1  0 . 0 2 5  0 . 0 1 1  0 . 0 4 7  0 . 0 2 1  0 . 0 0 9  0 . 0 2 8  0 . 0 1 1  0 . 0 0 4  0 . 0 0 3  0 . 0  C.C

10 0 . 0 5 2 0 . 0 2 7 0 . 0 1 1 0 . 0 4 7 0 . 0 2 4 0 . 0 0 9 0 . 0 1 4 0 . 0 0 4 0 . 0 0 1 0 . 0 C.O C.C

20 0 . 0 5 1 0 . 0 2 5 0 . 0 0 8 0 . 0 4 6 0 . 0 2 0 0 . 0 0 7 0 . 0 0 2 0 . 0 0 . 0 0 . 0 0 . 0 C.C

50 0 . 0 5 2 0 . 0 2 7 0 . 0 1 1 0 . 0 4 7 0 . 0 2 3 0 . 0 1 0 0 , 0 0 . 0 0 . 0 0 , 0 C.O c . C
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Appendix B.2 Empirical results of the estimated significance level
corresponding to situation (a) in Table 3,2.

n p £ U n a d j u s t e d  

0 . 0 5  0 . 0 2 5 0 . 0 1

£ - a d j u s t e d  

0 . 0 5  0 . 0 2 5 0 . 0 1

£ —a d j u  

0 . 0 5

s t e d

0 . 0 2 5 0 . 0 1

Lower
0 . 0 5

bound
0 . 0 2 5 0 . 0 1

5 0 1 . 0 0 0 0 . 0 4 9 0 . 0 2 4 0 . 0 1 0 0 . 0 4 1 0 . 0 2 0 0 . 0 0 7 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 O.C

1
12 0 . 9 6 4 0 . 0 5 0 0 . 0 2 6 0 . 0 1 1 0 . 0 4 2 0 . 0 2 1 0 . 0 0 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

1
6 0 . 8 6 0 0 . 0 5 7 0 . 0 3 2 0 . 0 1 5 0 . 0 4 7 0 . 0 2 6 0 . 0 1 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 O.C

1
3 0 . 5 6 1 0 , 0 8 7 0 . 0 5 8 0 . 0 3 4 0 . 0 6 5 0 . 0 4 2 0 . 0 2 4 0 . 0 0 4 0 . 0 0 1 0 . 0 0 . 0 0 . 0 O.C

1
2 0 . 3 1 8 0 . 1 3 1 0 . 0 9 8 0 . 0 7 0 0 . 0 8 8 0 . 0 6 4 0 . 0 4 1 0 . 0 1 2 0 . 0 0 5 0 . 0 0 1 0 . 0 0 . 0 O.C

2
3 0 . 1 7 4 0 . 1 7 3 0 . 1 4 2 0 . 1 1 2 0 . 1 0 1 0. C75 0 . 0 5 3 0 . 0 2 8 0 . 0 1 2 0 . 0 0 6 0 . 0 0 2 0 . 0 0 . 0

5
6 0 . 0 9 6 0 . 2 1 5 0 . 1 8 9 0 . 1 6 2 0 . 0 9 6 0 . 0 7 2 0 . 0 5 1 0 . 0 4 6 0 . 0 2 5 0 . 0 1 2 0 . 0 1 1 0 . 0 0 3 0 . 0

11
12 0 . 0 7 1 0 . 2 3 9 0 . 2 1 3 0 . 1 8 7 0 . 0 8 3 C. C59 0 . 0 4 1 0 . 0 5 4 0 . 0 3 0 0 . 0 1 5 0 . 0 2 3 0 . 0 0 9 C.CC2

23
24 0 . 0 6 1 0 . 2 5 1 0 . 2 2 7 0 . 2 0 3 0 . 0 7 1 C. C47 0 . 0 3 0 0 . 0 5 5 0 . 0 3 0 0 . 0 1 4 0 . 0 3 2 0 . 0 1 3 0. CC4

49
50 0 . 0 5 7 0 . 2 5 7 0 . 2 3 5 0 . 2 1 0 0 . 0 6 3 0 . 0 3 8 0 . 0 2 2 0 . 0 5 3 0 . 0 2 8 0 . 0 1 3 0 . 0 3 9 0 . 0 1 7 C. CC6

10 0 1 . 0 0 0  0 . 0 5 1

1
12 0 . 9 6 4  0 . 0 5 4

1
6 0 . 8 6 0  0 . 0 6 4

1
3 0 . 5 6 1  0 . 0 9 2

1
2 0 . 3 1 6  0 . 1 2 5

2
3 0 . 1 7 4  0 . 1 6 1

5
6 0 . 0 9 6  0 . 1 9 9

1T_
12 0 . 0 7 1  0 . 2 1 6

23
24 0 . 0 6 1  0 . 2 2 3

49
50 0 . 0 5 7  0 . 2 2 7

0 . 0 2 5  0 . 0 0 8  0 . 0 4 6  0 . 0 2 0  0 . 0 0 7  0 . 0 0 2  0 . 0  0 . 0  0 . 0  0 . 0  O.C

0 . 0 2 7  0 . 0 1 0  0 . 0 4 7  0 . 0 2 3  0 . 0 0 8  0 . 0 0 3  0 . 0  0 . 0  0 . 0  0 . 0  O.C

0 , 0 3 3  0 . 0 1 6  0 . 0 5 4  0 . 0 2 8  0 . 0 1 3  0 . 0 0 6  0 . 0 0 1  0 . 0  0 . 0  0 . 0

0 . 0 6 5  0 . 0 4 1  0 . 0 7 0  0 . 0 4 4  0 . 0 2 5  0 . 0 1 8  0 . 0 0 7  0 . 0 0 2  0 . 0  0 . 0  C. D

0 . 0 9 6  0 . 0 7 3  0 . 0 7 6  0 , 0 5 4  0 . 0 3 6  0 . 0 3 6  0 . 0 2 0  0 . 0 0 7  0 . 0 0 1  0 . 0  0 . 0

0 . 1 3 3  0 . 1 0 9  0 . 0 7 6  0 . 0 5 4  0 . 0 3 7  0 . 0 5 0  0 , 0 3 0  0 . 0 1 5  0 . 0 0 6  C. I

0 . 1 7 4  0 . 1 4 9  0 . 0 6 9  0 . 0 4 8  0 . 0 2 8  0 . 0 5 6  0 . 0 3 3  0 . 0 1 7  0 . 0 2 2  O.C:

0 . 1 9 4  0 . 1 7 1  0 . 0 6 3  0 . 0 3 9  0 . 0 2 0  0 . 0 5 6  0 . 0 3 1  0 . 0 1 5  0 . 0 3 5  0 . 0 1 4

0 . 2 0 3  0 . 1 8 2  0 . 0 5 9  0 . 0 3 3  0 . 0 1 5  0 . 0 5 4  0 . 0 2 8  0 . 0 1 3  0 . 0 4 4  O . C l r

; . 20B 0 . 1 8 8  0 . 0 5 6  0 . 0 2 8  0 . 0 1 3  0 . 0 5 3  0 . 0 2 7  C . 0 1 2  0 . 0 4 8  Q. C2:
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Appendix B.3 Empirical results of the estimated significance level

corresponding to situation (b) in Table 3.2.

n p e U n a d j u s t e d  
0 . 0 5  0 . 0 0 5 0 . 0 1

e - a d j u s t e d  
0 . 0 5  0 . 0 2 5 0 . 0 1

A

£ - a d j u s t e d  
0 . 0 5  0 . 0 2 5  0 . 0 1

Lower
0 . 0 5

bound
0 . 0 2 5 0 . 0 1

5 0 1 . 0 0 0 0 . 0 4 9 0 . 0 2 4 0 . 0 1 0 0 . 0 4 1 0 . 0 2 0 o- do7 0 . 0  0 . 0  0 . .0 0 . 0 0 . 0 0 . 0

1
12 0 . 9 7 7 0 . 0 5 0 0 . 0 2 4 0 . 0 1 0 0 . 0 4 2 0 . 0 2 0 0 . 0 0 7 0 . 0  0 , 0  0. ,0 0 . 0 0 . 0 0 . 0

1
6 0 . 9 1 0 0 , 0 5 7 0 . 0 2 9 0 . 0 1 1 0 . 0 4 7 0 . 0 2 2 0 . 0 0 9 0 . 0  0 . 0  0 .,0 0 . 0 0 . 0 0 . 0

1
"3 0 . 7 0 1 0 . 0 7 7 0 . 0 4 7 0 . 0 2 5 0 . 0 5 7 0 . 0 3 5 0 . 0 1 7 0 . 0 0 1  0 . 0  0, .0 0 . 0 0 - 0 0 . 0

1
2 0 . 4 9 1 0 . 1 0 8 0 . 0 7 4 0 , 0 4 3 0 . 0 7 0 0 . 0 4 4 0 . 0 2 6 0 . 0 0 5  0 . 0 0 1  0. .0 0 . 0 0 . 0 0 . 0

2
3 0 . 3 3 3 0 . 1 4 4 0 . 1 0 7 0 . 0 7 3 0 . 0 7 7 0 . 0 4 9 0 . 0 2 9 0 . 0 1 0  0 . 0 0 3  0. . 001 0 , 0 0 . 0 0 . 0

5
6 0 . 2 2 8 0 . 1 8 1 0 . 1 4 3 0 , 1 0 7 0 . 0 7 1 0 . 0 4 6 0 . 0 2 7 0 . 0 1 6  0 . 0 0 6  0, . 002 0 . 0 0 1 0 . 0 0 . 0

11
12 0 . 1 8 9 0 . 1 9 9 0 . 1 6 2 0 . 1 2 5 0 . 0 6 7 0 . 0 4 0 0 . 0 2 2 0 . 0 1 8  0 . 0 0 6  0, . 0 0 3 0 . 0 0 2 0 , 0 0 . 0

23
24 0 . 1 7 3 0 . 2 0 8 0 . 1 7 1 0 . 1 3 4 0 . 0 6 3 0 . 0 3 7 0 . 0 2 0 0 . 0 2 0  0 . 0 0 8  0,. 00 3 0 . 0 0 3 0 . 0 0 1 0 . 0

49
50 0 . 1 6 5 0 . 2 1 2 0 . 1 7 8 0 . 1 3 9 0 . 0 6 0 0 . 0 3 4 0 . 0 1 8 0 , 0 2 0  0 . 0 0 8  0.. 00 3 0 . 0 0 4 0 . 0 0 1 O.C

10 0 1 - 0 0 0 0 . 0 5 1 0 . 0 2 5 0 . 0 0 8 0 . 0 4 6 0 . 02C 0 . 0 0 7 0 . 0 0 2  0 . 0 0 . 0 0 . 0 0 . 0 0.
1

12 0 . 9 7 7 0 . 0 5 5 0 . 0 2 4 0 . 0 0 9 0 . 0 4 9 0 . 0 2 0 0 . 0 0 7 0 . 0 0 3  0 . 0 0 . 0 0 . 0 0 . 0 0.
1
6 0 . 9 1 0 0 . 0 6 1 0 . 0 3 1 0 . 0 1 2 0 . 0 5 2 0 . 0 2 6 0 . 0 1 0 0 . 0 0 4  0 . 0 0 . 0 0 . 0 0 . 0 0.

1
3 0 . 7 0 1 0 . 0 8 1 0 . 0 5 1 0 . 0 2 7 0 . 0 6 0 0 . 0 3 3 0 . 0 1 6 0 . 0 0 9  0 . 0 0 2 0 . 0 0 . 0 0 . 0 c.

1
2 0 . 4 9 1 0 . 1 1 2 0 . 0 7 7 0 . 0 4 8 0 . 0 6 5 0 . 0 3 9 0 . 0 2 1 0 . 0 1 8  0 . 0 0 7 0 . 0 0 2 0 . 0 0 . 0 c.

2
3 0 . 3 3 3 0 . 1 4 1 0 . 1 1 0 0 . 0 7 8 0 . 0 6 4 0 . 0 3 9 0 . 0 2 0 0 . 0 2 6  0 . 0 1 2 0 . 0 0 4 0 . 0 0 . 0 z.

5
6 0 . 2 2 8 0 . 1 7 3 0 . 1 4 1 0 . 1 0 9 0 . 0 5 9 0 . 0 3 4 0 . 0 1 7 0 . 0 3 2  0 . 0 1 4 0 . 0 0 5 0 . 0 0 2  0 . 0 c.

11
12 0 . 1 8 9 0 . 1 9 0 0 . 1 5 5 0 . 1 2 5 0 . 0 5 6 0 . 0 2 1 0 . 0 1 5 0 . 0 3 3  0 . 0 1 5 0 . 0 0 5 0 . 0 0 4  0 . 0

23
24 0 . 1 7 3 0 . 1 9 9 0 . 1 6 3 0 . 1 3 1 0 . 0 5 3 0 . 0 2 9 0 . 0 1 4 0 . 0 3 4  0 . 0 1 5 0 . 0 0 5 0 . 0 0 5  0 . 0 0 1  C.

49
50 0 . 1 6 5 0 . 2 0 3 0 . 1 6 8 0 . 1 3 6 0 . 0 5 2 0 . C 2 ; 0 . 0 1 3 0 . 0 3 4  0 . 0 1 5 0 .  005 o . o o s  o . o o :
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Appendix B.4 Empirical results of the estimated significance level

corresponding to situation (c) in Table 3.2.

_ A

n P e U n a d j u s t e d e - a d j u s t e d E - a d j u s t e d Lower bound
0 . 0 5 0 . 0 2 5 0 . 0 1 0 . 0 5 0 . 0 2 5 0 . 0 1 0 . 0 5  0 . 025  0. ,01 0 . 0 5 0 . 0 2 5 0 . 0 1

5 0 1 . 0 0 0 0 . 0 4 9 0 . 0 2 4 0 . 0 1 0 0 . 0 4 1 0 . 0 2 0 0 . 0 0 7 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

1
12 0 . 9 9 3 0 . 0 4 9 0 . 0 2 4 0 , 0 0 9 0 . 0 4 2 0 . 0 2 0 0 . 0 0 7 0 . 0 0 . 0 0 . 0 0 . 0 0 , 0 0 . 0

1
6 0 . 9 7 3 0 . 0 5 0 0 . 0 2 5 0 . 0 1 0 0 . 0 4 2 0 . 0 2 0 0 . 0 0 8 0 . 0 0 . 0 0 . 0 0 , 0 0 . 0 0 . 0

1
3 0 . 8 9 7 0 . 0 5 8 0 . 0 3 0 0 . 0 1 3 0 . 0 4 7 0 . 0 2 3 0 . 0 0 9 0 . 0 0 . 0 0 . 0 0 , 0 0 . 0 0 . 0

1
2 0 . 7 9 2 0 . 0 6 9 0 . 0 3 8 0 . 0 1 8 0 . 0 5 4 0 . 0 2 9 0 . 0 1 3 0 .  001 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

2
3 0 . 6 7 7 0 . 0 8 4 0 . 0 5 0 0 . 0 2 7 0 . 0 5 9 0 . 03 4 0 . 0 1 6 0 . 0 0 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

5
6 0 . 5 6 9 0 , 1 0 2 0 . 0 6 5 0 . 0 3 6 0 . 0 6 3 0 . 0 3 7 0 . 0 1 8 0 . 0 0 2 0 . 0 0 . 0 0 . 0 0 . 0 O.C

11
12 0 . 5 1 9 0 . 1 1 1 0 . 0 7 4 0 . 0 4 4 0 . 0 6 4 0 . 03 7 0 . 0 1 8 0 . 0 0 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

23  
2 4 0 . 4 9 6 0 . 1 1 S 0 . 0 7 8 0 . 0 4 7 0 . 0 6 4 0 . 0 3 6 0 . 0 1 7 0 . 0 0 2 0 . 0 0 1 0 . 0 0 . 0 0 . 0 O.C

49
50 0 . 4 8 4 0 . 1 1 7 0 . 0 8 0 0 . 0 4 8 0 . 0 6 3 0 . 0 3 6 0 . 0 1 7 0 . 0 0 3 0 . 0 0 1 0 . 0 0 . 0 0 . 0 0 . 0

10 0 1 .  000 0 . 0 5 1 0 . 0 2 5 0 . 0 0 8 0 . 0 4 6 0 . 0 2 0 0 . 0 0 7 0 . 0 0 2 0 . 0 0 . 0 0 . 0 0 . 0 V . V

1
12 0 . 9 9 3 0 . 0 5 2 0 . 0 2 5 0 . 0 0 9 0 . 0 4 7 0 . 0 2 0 0 . 0 0 7 0 . 0 0 2 0 . 0 0 . 0 0 . 0 0 . 0 C.O

1
6 0 . 9 7 3 0 . 0 5 3 0 . 0 2 5 0 . 0 1 0 0 . 0 4 8 0 . 0 2 1 0 . 0 0 8 0 . 0 0 3 0 . 0 0 . 0 0 . 0 0 . 0 C.O

1
3 0 . 8 9 7 0 . 0 6 1 0 . 0 3 0 0 . 0 1 3 0 . 0 5 2 0 . 0 2 4 0 . 0 1 0 0 . 0 0 4 0 . 0 0 1 0 . 0 0 . 0 0 . 0 C.O

1
2 0 . 7 9 2 0 . 0 7 1 0 . 0 9 0 0 . 0 1 9 0 . 0 5 4 0 . 0 2 8 0 . 0 1 2 0 . 0 0 5 0 . 0 0 1 0 . 0 0 . 0 0 . 0 O.C

2
3 0 . 6 7 7 0 , 0 8 4 0 . 0 5 4 0 . 0 2 7 0 . 0 5 7 0 . 0 3 1 0 . 0 1 3 0 . 0 0 8 0 . 0 0 2 0 . 0 0 . 0 0.0 C.O

5
6 0 . 5 6 9 0 . 1 0 0 0 . 0 6 6 0 . 0 3 7 0 . 0 5 8 0 . 0 2 9 0 . 0 1 3 0 . 0 1 0 0 . 0 0 3 0 . 0 0 1 0 . 0 0 . 0 O.C

11
12 0 . 5 1 9 0 . 1 0 8 0 . 0 7 3 0 . 0 4 3 0 . 0 5 6 0 . 0 2 8 0 . 0 1 2 0 . 0 1 1 0 . 0 0 3 0 . 0 0 1 0 . 0 0 . 0 O.C

23
24 0 . 4 9 6 0 . 1 1 3 0 . 0 7 7 0 . 0 4 7 0 . 0 5 5 0 . 0 2 7 0 . 0 1 2 0 . 0 1 2 0 . 0 0 3 0 . 0 0 1 0 . 0 O.C c . c

49
50 0 .  4B4 0 . 1 1 5 0 . 0 7 9 0 . 0 4 8 0 . 0 5 6 0 . 0 2 6 0 . 0 1 2 0 . 0 1 2 0 . 0 0 3 o . o o : 0 . 0 O.C - -
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Appendix B.5 Empirical results of the estimated significance level
corresponding to situation (d) in Table 3.2.

n p £ U n a d j u s t e d  

0 . 0 5  0 . 0 2 5 0 . 0 1

£ ~ a d j u s t e d

0 . 0 5  0 . 0 2 5  0 . 0 1

A
€ - a d j u s t e d  

0 . 0 5  0 . 0 2 5 0 . 0 1

Lower

0 . 0 5

bound

0 . 0 2 5 0.01

5 0 1 . 0 0 0 0 . 0 5 3 0 . 0 2 7 0 . 0 1 2 0 . 0 4 4 0 . 0 2 1 0 . 0 0 9 0 . 0 0 3 0 . 0 0 . 0 0 . 0 0 . 0 C.C

1
12 0 . 9 8 2 0 . 0 5 3 0 . 0 2 7 0 . 0 1 2 0 . 0 4 4 0 . 0 2 2 0 . 0 0 8 0 . 0 0 4 0 . 0 0 1 0 . 0 0 . 0 0 . 0 0 . 0

1
6 0 . 9 2 6 0 . 0 5 7 0 . 0 3 1 0 . 0 1 4 0 . 0 4 7 0 . 0 2 4 0 . 0 1 0 0 . 0 0 4 0 . 0 0 1 0 . 0 0 . 0 0 . 0 C.C

1
3 0 . 7 2 6 0 . 0 7 1 0 . 0 4 3 0 . 0 2 2 0 . 0 5 8 0 . 0 3 3 0 . 0 1 6 0 . 0 0 8 0 . 0 0 3 0 . 0 0 1 0 . 0 0 . 0 0 .0

1
2 0 .  4 95 0 . 0 9 8 0 . 0 6 4 0 . 0 4 0 0 . 0 7 4 0 . 0 4 6 0 . 0 2 7 0 . 0 1 7 0 . 0 0 6 0 . 0 0 2 0 - 0 0 1 0 . 0 c . c

2
3 0 . 3 1 1 0 . 1 2 8 0 . 0 9 7 0 . 0 6 9 0 . 0 8 7 0 . 0 6 1 0 . 0 3 8 0 . 0 3 2 0 . 0 1 5 0 . 0 0 5 0 . 0 0 4 0 . 0 0 1 c . c

5
6 0 . 1 8 8 0 . 1 6 8 0 . 1 3 6 0 . 1 0 8 0 . 0 9 0 0 . 0 6 5 0 . 0 4 5 0 . 0 4 9 0 . 0 2 6 0 . 0 1 2 0 . 0 1 4 0 . 0 0 4 c . c c :

11
12 0 . 1 4 5 0 . 1 8 9 0 . 1 6 1 0 . 1 3 1 0 . 0 8 1 0 . 0 5 7 0 . 0 3 6 0 . 0 5 7 0 . 0 3 1 0 , 0 1 4 0 . 0 2 8 0 . 0 0 8 c. c zz

23
24 0 . 1 2 7 0 . 2 0 2 0 . 1 7 6 0 . 1 4 3 0 . 0 7 1 0 . 0 4 7 0 . 0 2 9 0 . 0 5 7 0 .031 0 . 0 1 5 0 . 0 3 9 0 . 0 1 3 w. i.. r
49
50 0 . 1 1 8 0 . 2 0 9 0 . 1 8 4 0 . 1 5 1 0 . 0 6 6 0 . 0 3 8 0 . 0 1 9 0 . 0 5 6 0 . 0 2 9 0 . 0 1 3 0 . 0 4 5 0 . 0 1 8 C.CCe

10 0 1 . 0 0 0 0 . 0 5 2 0 . 0 2 7 0 . 0 1 1 0 . 0 4 7 0 . 0 2 4 0 . 0 0 9 0 . 0 1 4 0 . 0 0 4 0 . 0 0 . 0 0 . 0 O.C

1
12 0 . 5 8 2 0 . 0 5 3 0 . 0 2 9 0 . 0 1 2 0 . 0 4 9 0 . 0 2 5 0 . 0 0 9 0 . 0 1 5 0 . 0 0 4 0 . 0 0 2 0 . 0 0 . 0 O.C

1
6 0 . 9 2 6 0 . 0 5 7 0 . 0 3 2 0 . 0 1 5 0 . 0 5 1 0 . 0 2 8 0 . 0 1 2 0 . 0 1 8 0 . 0 0 5 0 . 0 0 2 0 . 0 0 . 0 O.C

1
3 0 . 7 2 6 0 . 0 7 1 0 . 0 4 5 0 . 0 2 5 0 . 0 5 6 0 . 0 3 3 0 . 0 1 8 0 . 0 2 5 0 . 0 1 2 0 . 0 0 5 0 . 0 0 1 0 . 0 O.C

1
2 0 . 4 9 5 0 . 0 9 4 0 . 0 6 5 0 . 0 4 3 0 . 0 6 5 0 . 0 4 0 0 . 0 2 6 0 . 0 3 6 0 . 0 2 0 0 . 0 0 . 0 . 0 0 4 0 . 0 0 1 O.C

2
3 0 . 3 1 1 0 . 1 2 2 Q. 094 0 . 0 6 8 0 . 0 6 9 0 . 0 4 5 0 . 0 2 8 0 . 0 4 6 0 . 0 2 8 0 . 0 1 3 0 . 0 1 1 0 . 0 0 3 O.C

5
6 0 . 1 8 8 0 . 1 5 4 0 . 1 2 6 0 . 0 9 9 0 . 0 6 4 0 . 0 4 1 0 . 0 2 3 0 . 0 5 1 0 . 0 3 2 0 . 0 1 6 0 . 0 2 5 0 . 0 0 5 o.: :

11
12 0 . 1 4 5 0 . 1 7 2 0 , 1 4 4 0 . 1 1 7 0 . 0 5 9 0 . 0 3 5 0 . 0 1 9 0 . 0 5 2 0 . 0 3 0 0 . 0 1 5 0 . 0 3 6 0 . 0 1 5 C.CCt

23
24 0 . 1 2 7 0 . 1 7 9 0 . 1 5 3 0 . 1 2 7 0 . 0 5 5 0 . 0 3 1 0 . 0 1 6 0 . 0 5 1 0 . 0 2 8 0 . 0 1 3 0 . 0 4 1 0 . 0 2 C c . c :

49
50 o . r . s 0 . 1 8 4 0 . 1 5 9 0 . 1 3 3 0 . 0 5 1 C. 028 0 . 0 1 3 0 . 0 5 0 0 . 0 2 6 0 . 0 1 2 0 . 0 4 5 0 . 0 2 2 c .: :  f-
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Appendix B.6 Empirical results of the estimated significance level

corresponding to situation (e) in Table 3.3.

n P £ U n a d j u s t e d  

0 . 0 5  0 . 0 2 5 0 . 0 1

C - a d j u s t e d  

0 . 0 5  0 . 0 2 5 0 . 0 1

A

£ - a d j u s t e d  

0 . 0 5  0 . 0 2 5 0 . 0 1

Lower

0 . 0 5

bound

0 . 0 2 5 0 . 0 1

5 0 0 . 5 1 8 0 . 0 9 7 0 . 0 6 5 0 . 0 4 1 0 . 0 7 1 0 . 0 4 6 0 . 0 2 5 0 . 0 0 4 0 . 0 0 1 0 . 0 0 . 0 0 , 0 0 . 0

1
12 0 . 4 6 4 0 . 1 0 3 0 . 0 7 2 0 . 0 4 6 0 . 0 7 3 0 . 0 5 0 0 . 0 2 9 0 . 0 0 5 0 . 0 0 2 0 . 0 0 . 0 0 . 0 O.C

1
6 0 . 4 1 1 0 . 1 1 2 0 . 0 8 0 0 . 0 5 2 0 . 0 7 7 0 . 0 5 4 0 . 0 3 3 0 . 0 0 7 0 . 0 0 2 0 . 0 0 1 0 . 0 0 . 0 0 . 0

1
3 0 . 3 1 4 0 . 1 3 1 0 . 0 9 8 0 . 0 6 9 0 . 0 8 7 0 . 0 6 3 0 . 0 4 2 0 . 0 1 2 0 . 0 0 4 0 . 0 0 1 0 . 0 0 . 0 C.O

1
2 0 . 2 3 5 0 . 1 5 1 0 . 1 2 0 0 . 0 8 9 0 . 0 9 5 0 . 0 7 0 0 . 0 4 9 0 . 0 1 9 0 . 0 0 8 0 . 0 0 3 0 . 0 0 1 0 . 0 0 . 0

2
3 0 . 1 7 4 0 . 1 7 3 0 . 1 4 2 0 . 1 1 2 0 . 1 0 1 0 . 0 7 5 0 . 0 5 3 0 . 0 2 8 0 . 0 1 2 0 . 0 0 6 0 , 0 0 2 0 . 0 c . c

5
6 0 . 1 2 9 0 . 1 9 5 0 . 1 6 7 0 . 1 3 8 0 . 1 0 1 0 . 0 7 6 0 . 0 5 2 0 . 0 3 6 0 . 0 1 9 0 . 0 0 9 0 . 0 0 6 0 . 0 0 . 0

11
12 0 . 1 1 1 0 . 2 0 7 0 . 1 7 9 0 . 1 5 0 0 . 0 9 8 0 . 0 7 3 0 . 0 5 0 0 . 0 4 1 0 . 0 2 1 0 . 0 1 0 0 . 0 0 8 0 . 0 0 2 O.C

23
24 0 . 1 0 3 0 . 2 1 2 0 . 1 8 6 0 . 1 5 7 0 . 0 9 6 0 . 0 7 1 0 . 0 4 7 0 . 0 4 3 0 . 0 2 2 0 . 0 1 1 0 , 0 0 9 0 . 0 0 2 O.C

49
50 0 . 0 9 9 0 . 2 1 5 0 . 1 9 0 0 . 1 6 1 0 . 0 9 4 0 . 0 7 0 0 . 0 4 6 0 . 0 4 4 0 . 0 2 2 0 . 0 1 1 0 . 0 1 0 0 . 0 0 2 O.C

10 0 0 . 5 1 8 0 . 0 9 9 0 . 0 7 0 0 . 0 4 5 0 . 0 6 5 0 . 0 4 2 0 . 0 2 4 0 . 0 1 9 0 . 0 0 8 0 . 0 0 2 0 . 0 0 . 0 0 . 0

1
IZ 0 . 4 6 4 0 . 1 0 7 0 . 0 7 7 0 . 0 5 1 0 . 0 6 8 0 . 0 4 3 0 . 0 2 7 0 . 0 2 2 0 . 0 0 1 0 . 0 0 4 0 . 0 0 . 0 0 . 0

1
6 0 . 4 1 1 0 , 1 1 3 0 . 0 8 3 0 . 0 6 0 0 . 0 7 0 0 . 0 4 8 0 . 0 2 9 0 . 0 2 6 0 . 0 1 3 0 . 0 0 5 0 . 0 0 . 0 0 . 0

1
3 0 . 3 1 4 0 . 1 2 6 0 . 1 0 0 0 . 0 7 3 0 . 0 7 3 0 . 0 5 2 0 . 0 3 4 0 . 0 3 6 0 . 0 1 9 0 . 0 0 8 0 . 0 0 1 b . o 0 . 0

1
2 0 . 2 3 S 0 . 1 4 3 0 . 1 1 6 0 . 0 9 1 0 . 0 7 6 0 . 0 5 4 0 . 0 3 7 0 . 0 4 5 0 . 0 2 5 0 . 0 1 2 0 . 0 0 3 0 . 0 0 . 0

2
3 0 . 1 7 4 0 . 1 6 1 0 . 1 3 3 0 . 1 0 9 0 . 0 7 6 0 . 0 5 4 0 . 0 3 7 0 . 0 5 0 0 . 0 3 0 0 . 0 1 5 0 . 0 0 6 0 . 0 0 . 0

5
6 0 . 1 2 9 0 . 1 7 9 0 . 1 5 3 0 . 1 2 6 0 . 0 7 4 0 . 0 5 1 0 . 0 3 3 0 . 0 5 4 0 . 0 3 1 0 . 0 1 6 0 . 0 1 3 0 . 0 0 3 O.C

11
12 0 . 1 1 1 0 . 1 8 9 0 . 1 6 2 0 . 1 3 8 0 . 0 7 2 0 . 0 4 9 0 . 0 3 0 o . o s s 0 . 0 3 2 0 . 0 1 6 0 . 0 1 8 0 . 0 0 5 c . c

23
24 0 . 1 0 3 0 . 1 9 4 0 . 1 6 8 0 . 1 4 2 0 . 0 7 0 0 . 0 4 7 0 . 0 2 8 0 . 0 5 5 0 . 0 3 2 0 . 0 1 5 0 . 0 1 9 0 . 0 0 6 O.C

49
50 0 . 0 9 9 0 . 1 9 6 0 . 1 7 1 0 . 1 4 5 0 . 0 7 0 0 . 0 4 6 0 . 0 2 7 0 . 0 5 5 0 . 0 3 2 0 . 0 1 5 0 . 0 2 1 0 . 0 0 6 O.C



203.

Appendix B.7 Empirical results of the estimated significance level
corresponding to situation (f) in Table *.2.

n p e U n a d j u s t e d  e - a d j u s t e d  C - a d j u s t e d  Lower  bound

0 . 0 5  0 . 0 2 5  0 . 0 1  0 . 0 5  0 . 0 2 5  0 . 0 1  0 . 0 5  0 . 0 2 5  0 . 0 1  0 . 0 5  0 . 0 2 5  C. O1.

0  fl-179- 0-17J 0-IV2 0*i|7. q,ic>I 0-07$ O-OSJ 0 * 0 2 8  o* ofi o*oofc c-ooZ O.o o*a
5 1

6 0 . 2 2 2  0 . 1 S 6  0 . 1 2 6  0 . 0 9 4  0 . 0 9 7  0 . 0 7 2  0 . 0 4 9  0 . 0 2 0  0 . 0 0 9  0 . 0 0 4  0 . 0 0 1  0 . 0  0 . 0

1
3 0 . 3 1 8  0 . 1 3 1  0 . 0 9 8  0 . 0 7 0  0 . 0 8 8  0 . 0 6 4  0 . 0 4 1  0 . 0 1 2  0 . 0 0 5  0 . 0 0 1  0 . 0  O.C C. C

1
2 0 . 5 6 1  0 . 0 8 7  0 . 0 5 8  0 . 0 3 4  0 . 0 6 5  0 . 0 4 2  0 . 0 2 4  0 . 0 0 4  0 . 0 0 1  0 . 0  0 . 0  0 . 0  0 . 0

° 0*113 0*109 O'OKo d-OStf- 0*037 0*o£o 0*649 0-004. 0.0 0*0
10 1

6 0 . 2 2 2  0 . 1 4 6  0 . 0 1 8  0 . 0 9 4  0 . 0 7 7  0 . 0 5 5  0 . 0 3 7  0 . 0 4 6  0 . 0 2 5  0 . 0 1 3  0 . 0 0 3  0 . 0  3 . 0

I
3 0 . 3 1 8  0 . 1 2 5  0 . 0 9 6  0 . 0 7 3  0 . 0 7 6  0 . 0 5 4  0 . 0 3 6  0 . 0 3 6  0 . 0 2 0  0 . 0 0 7  0 . 0 0 1  0 . 0  C.C

1
2 0 . 5 6 1  0 . 0 9 2  0 . 0 6 5  0 . 0 4 1  0 . 0 7 0  0 . 0 4 4  0 . 0 2 5  0 . 0 1 8  0 . 0 0 7  0 . 0 0 2  0 . 0  0 . 0  C.O
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B.8.(i) Estimated Joint Confidence Levels for the Four Cluster
Correlation Matrix with J - 20 and n = 10

iQ

0 1/6 1/3 1/2 2/3 5/6

SCHEFFE 1 .0 1 .0 1 .0 1 .0 1 .0 1.0
TUKEY 0.951 0.947 0.944 0.938 0.949 0.946
BONF(1) 0.970 0.964 0.962 0.958 0.962 0.961
SXDAK(1) 0.968 0.963 0.961 0.957 0.961 0.960
GGADJ 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0
HFADJ 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0

BONF(2) 0.960 0.955 0.959 0.958 0,964 0.975
SIDAK(2) 0.959 0.954 0.958 0.957 0.963 0.975
SCHGG 0.982 0.982 0.983 0.986 0.991 0.996
SCHHF 0.952 0.949 0.959 0.970 0.982 0.993

B.8.(ii) Estimated Joint Confidence Levels for the Four Clustei
Correlation Matrix with J == 20 and n =* 30

Q

0 1/6 1/3 1/2 2/3 5/6

SCHEFFE 1.0 1 .0 1 .0 1 .0 1 .0 1 .0
TUKEY 0.953 0.947 0.943 0.942 0.946 0.955
BONF(1) 0.967 0.963 0.959 0.959 0.960 0.967
SIDAK(1) 0.967 0.963 0.959 0.959 0.960 0.967
GGADJ 1 .0 • 1 .0 1 .0 1 .0 1 .0 1 ,0
HFADJ 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0

BONF(2) 0.962 0.963 0.959 0.964 0.969 0.978
SIDAK(2) 0.961 0.962 0.958 0.963 0.968 0.977
SCHGG 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0
SCHHF 0.999 0.999 1 .0 1 .0 1 .0 1 .0
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B.8.(iii) Estimated Joint Confidence Levels for the Two Cluster
Correlation Matrix with J = 20 and n = 10

0 1/6 1/3 1/2 2/3 5/6
SCHEFFE 1 .0 1 .0 1 .0 1 .0 0.999 0.997
TUKEY 0.951 0.948 0.946 0.934 0.923 0.925
BONF (1 ) 0.970 0.966 0.957 0.951 0.940 0.938
SIDAK (1) 0.968 0.965 0.955 0.950 0.939 0.937
GGADJ 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0
HFADJ 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0

BONF(2) 0.960 0.955 0.962 0.962 0.965 0.973
SIDAK(2) 0.959 0.945 0.961 0.961 0.965 0.973
SCHGG 0.982 0.983 0.988 0.990 0.994 0.997
SCHHF 0.952 0.950 0.967 0.975 0.986 0.996

B.8.(iv) Estimated Joint Confidence : 
Correlation Matrix with J =

e

Levels for 
20 and n :

the Two 
= 30

Clustei

0 1/6 1/3 1/2 2/3 5/6

SCHEFFE 1 .0 1 .0 1 .0 1.0 0.999 0.999
TUKEY 0.953 0.945 0.943 0.933 0.934 0.944
BONF(1 ) 0.967 0.961 0.958 0.950 0.949 0.954
SIDAK(1) 0.967 0.961 0.958 0.950 0.949 0.954
GGADJ 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0
HFADJ 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0

BONF(2) 0.962 0.961 0.967 0.967 0.971 0.974
SIDAK(2) 0.961 0.960 0.966 0.966 0.970 0,973
SCHGG 1 .0 1 .0 0.999 1 .0 1 .0 1 .0
SCHHF 0.999 0.999 0.999 1 .0 1 .0 1 .0
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B.8.(v) Estimated Joint Confidence Levels for the Two Cluster
Correlation Matrix with J = 10 and n = 10

Q
0 1/6 1/3 1/2 2/3 5/6

SCHEFFE 0.997 0.997 0.997 0.994 0.989 0.982
TUKEY 0.950 0.950 0.944 0.937 0.927 0.922
BONF (1 ) 0.972 0.969 0.965 0.956 0.948 0.941
SIDAK(1) 0.972 0.969 0.965 0.956 0.948 0.941
GGADJ 1 .0 0.999 1 .0 0.999 0.998 0.997
HFADJ 0.998 0.997 0.998 0.996 0.995 0.995

BONF(2) 0.964 0.961 0.966 0.966 0.970 0.974
SIDAK(2) 0.962 0.960 0.965 0.965 0.969 0.973
SCHGG 0.962 0.960 0.967 0.973 0.982 0.989
SCHHF 0.928 0.926 0.939 0.953 0.970 0.986

B.8.(vi) Estimated Joint Confidence Levels for the Two Cluster 
Correlation Matrix with J = 1 0 and n = 30

0 1/6 1/3 1/2 2/3 5/6

SCHEFFE 0.998 0.998 0.996 0.995 0.993 0.989
TUKEY 0.946 0.944 0.937 0.932 0.933 0.934
BONF(1) 0.969 0.967 0.963 0.955 0.954 0.952
SIDAK(1) 0.967 0.966 0.962 0.954 0.953 0.951
GGADJ 0.999 0.999 0.998 0.999 0.999 0.999
HFADJ 0.998 0.998 0.997 0.998 0.998 0.999

BONF(2) 
SIDAK(2) 
SCHGG 
SCHHF

0.966
0.965
0.994
0.990

0.969
0.968
0.992
0.990

0.971
0.970
0.995
0.993

0.969
0.968
0.997
0.997

0.976
0.976
0.999
0.998

0.977 
0.976 
1 .0 

1 . 0
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