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Summary

This thesis is concerned with nonparametric kernel density
estimation and regression, In particular, techniques for obtaining
better estimates than those produced by the standard fixed kernel
approach are examined as well as the use of nonparametric estimates in

certain other statistical procedures.

Allowing the degree of smoothing to adapt to the "local" density
of the data has been suggested as a means of reducing bias and mean
integrated squared error (MISE) in comparison with the levels for
fixed kernel density estimators. In chapter two the finite sample
properties of two particular adaptive estimators are investigated
and compared with those of the fixed kernel method. This is carried
out for both univariate and multivariate data from a number of
different underlying distributions which are assumed to be of a known
form. Numerical integration techniques are used to calculate exact
values for the bias, variance and MISE. A simple smoothing strategy

based on Normality is also derived,

In the first part of chapter three techniques for obtaining fixed
kernel density estimators with smaller bias than that of the standard
fixed approach are described and their asymptotic properties studied.
These fall into three classes which are using "higher order" kernels,
subtracting a bias reducing correction factor and using a multi-
plicative correction factor. Those with the best asymptotic properties
in each class are compared with the standard fixed and the adaptive
approaches via a simulation study. In the second part of this chapter
methods for reducing the bias inherent in the Priestley-Chao fixed

kernel regression estimator are similarly explored. These techniques




are generally analogous to those studied for density estimators
except for a two-stage procedure called "twicing" which is also

considered.

In chapter four the problem of obtaining pointwise confidence
intervals for the unknown density function is examined. The sampling
distributions of the estimators are unknown but can be approximated
in two ways. These are firstly by assuming Normality and secondly
by the use of the bootstrap method. Competing approaches are again

compared via a simulation study.

In chapter five two density based tests of multivariate Normality
are described. The first is based on a measure of integrated squared
error and the second utilises the entropy property of the multi-
variate Normal (MVN) distribution. Critical values for the test
statistics are obtained and a power study carried out. These powers
are also compared with those for an omnibus procedutre due to Koziol

based on the "radii and angle" properties of the MVN distribution.

In chapter six a procedure for graphically exploring a multi-
variate set based on finding directions of high multivariate density
is proposed. The three main aims are to explore the main features
of a p-dimensional (p > 2) density function, seek non-linear
features in the data and use pairs of directions in the construction
of two-dimensional representations. This approach is illustrated by

application to real data sets,

In chapter seven the goodness-of-fit of a logistic regression
model based on multiple covariates is assessed by comparing the
parametric probabilities with estimates obtained by nonparametric

regression. The global discrepancy is assessed using a pseudo-




likelihood ratio test statistic and significance determined through
a simulation procedure. The degree of smoothing plays an important
role so methods for choosing the value of the smoothing parameter
are disucssed. Also, the use of partial residual plots to determine
if the functional form of a covariate effect has been specified
correctly are explored and a test of linearity to aid in this is

proposed and investigated.




Chapter 1. Introduction

Density estimation is an important topic in applied statistics
because in general the underlying density f(x) 1is unknown so that
its characteristics need to be inferred from a random sample
X1,...,Xn before any analysis is carried out. A long standing
approach to this, particularly for univariate data, is to construct
a histogram. While this provides a useful description of the actual
sample it is not appropriate for describing features of the
population such as skewness, truncation or bimodality. This is not
only due to the stepwise nature of the final figure but also to the
essentially arbitrary decisions which have to be made prior to the
actual counting and drawing, i.e. the number and size of intervals
(or cells) together with their location must be decided. Silverman
(1986, Section 3.2) illustrates how different decisions can reshape

the final histogram.

Using histograms to present bivariate or trivariate data
introduces a number of further problems. It is difficult, because
of the block nature, to assess the structure of the data and a
contour diagram representation cannot easily be obtained. Also, the
final form of a multivariate histogram will be dependent on the co-

ordinate direction of the cells.

Two modifications to this process greatly improve it. Firstly,
instead of placing the 'boxes' for each observation over the centre
of the appropriate histogram cell they can be centred on the actual
observed value. Secondly, the 'boxes' can be replaced by a general
'kernel function' K which is usually chosen to be a symmetric

probability density function such as a normal density. The kernel




estimator is then defined by
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where h is the smoothing parameter or bandwidth. The resulting
density estimate will integrate to one and inherit the smoothness
properties of the particular kernel function used. It is widely
regarded that the precise choice of K is not crucial to the
performance of such estimators. On the other hand, choice of the
value of h plays a critical role both in the performance of the
estimator and the form of the final estimate. As h tends to zero
the estimate takes on a spikey appearance while as h becomes large

all detail is obscured.

A problem associated with such kernel estimates arises from using
the same smoothing parameter across the whole sample. This is that
spurious noise tends to aﬁpear in the tails of long-tailed
distributions but increasing h to overcome this masks detail in the
main body of the distribution. In order to deal with this problem
various authors such as Breiman et al (1977) and Abramson (1982)
have proposed adaptive methods which try to adapt the degree of
smoothing to the 'local' density of the data. These approaches
are discussed in chapter 2 and in particular those which scale h by
an estimate of f(x{)®, 0 < @ < 1. There has been much emphasis in
the literature on the asymptotic properties of estimators which, in
the fixed case, have also proved useful for understanding its small
sample behaviour. This is investigated for two particular adaptive
estimators by assuming f to be of a known form and then using
numerical integration to obtain exact vaiues for bias, variance and

mean integrated squared error. A smoothing strategy based on




normality is derived and the results are extended to multivariate

data.

Results in Rosenblatt (1956) imply that any unbiased estimate of
a continuous density function is either not continuous or not a
density function. Hence, in practice a certain degree of bias has to
be accepted. In chapter 3 a number of methods for finding estimators
with smaller bias, and hopefully MISE as well, are described. These
fall into three general classes of approach which are subtracting a
bias reducing correction factor, using a 'higher order' kernel which
can take negative values (Bartlett (1963)) and using a multiplicative
correction factor. The properties of each technique are firstly
evaluated asymptotically and then the small sample performances of
those with the best asymptotic properties in each class are compared
with the simplé fixed and the adaptive approaches via a simulation

study.

In the second part of chapter 3 the univariate regression problem
is discussed. It is assumed that we have observations

(Y¥1,%1)....(Yn,xn) which satisfy the relationship

Yi= g(x3) +e5, i=1,...,n

where the errors ej are uncorrelated with zero mean and constant
variance ¢2, the xj are equally spaced at intervals of length 3
and g(x) is an unknown function for which an estimate is required.
Rather than Assuming if is of a particular form, e.g. linear, it will
be estimated nonparametrically using the Priestley and Chao (1972)

fixed kernel estimator




where K 1is the kernel function and b the smoothing parameter.

This is a weighted average of the Yj's with the value of b
determining the amount of local averaging carried out. Such
estimators are, however, inherently biased so in addition to bias
reduction for density estimators the problem of reducing the bias of
%(x) is also considered. The techniques which are studied are in
fact analogous to those studied for density estimation with the
exception of an additional two stage procedure called 'twicing', first

suggested by Tukey (1977), which is also investigated.

In chapters 2 and 3 the main emphasis is on obtaining better
estimates than those provided by the fixed kernel approach. The rest
of the thesis though is concerned with using estimates, including
some of those studied earlier, as part of certain other statistical
procedures. This kind of approach dates back to Fix and Hodges
(1951) who proposed a form of density estimation to be used as part
of a nonparametric discrimination procedure. Since then the number
of applications has grown extensively with density or regression
estimates being used in a wide variety of areas such as survival
analysis, cluster analysis, projection pursuit and parametric model

checking.

In chapter 4 the problem of obtaining pointwise confidence
intervals for the unknown density f is considered. To try and
obtain accurate coverage probabilities it is important the estimate is
centered correctly and hence certain of the more effective bias
reducing estimators studied in chapter 3 are employed. The exact
sampling distributions of the estimators are unknown but can be

approximated in two different ways which are either by assuming




normality or by using the bootstrap resampling procedure. A

simulation study is again carried out to compare competing methods.

Many 'classical' multivariate statistical procedures assume the
data arise from a multivariate normal (MVN) distribution so it is
important to check this assumption before an anaylsis is carried out.
Many existing techniques tend to concentrate on the 'radii and
angles' properties of the MVN distribution which are examined
graphically, as by Healy (1968), or alternatively, for example, by
comparing the empirical distribution function of the squared radii
with the appropriate X2 distribution function. An omnibus approach
is due to Koziol (1983) who combines a test of the uniformity of
the angles with a test based on the radii. In chapter 5 two new
density based tests are described which are extensions of univariate
tests proposed by Bowman (1988). The first is based on an integrated
squared error measure of the discrepancy between an estimate of the
density and the expected density under the null hypothesis. The
second utilises the property of the MVN distribution that its entropy
exceeds that for any other distribution with the same variance
structure. Critical values for the test statistics are obtained
and a power study carried out. The powers are also compared with
those for Koziol's (1983) approach. The possible benefits of using
an adaptive estimate in the entropy test statistic is also

investigated.

A commonly used technique for investigating the structure in a
multivariate dataset is to project the data points onto a lower
dimensional subspace, usually of dimension two, and examine plots
of the projected data. Principal components analysis (PCA) obtains

a subspace which hopefully explains a large percentage of the




variation in the data. Projection pursuit (PP) methods find lower
dimensional subspaces such that the projected data maximise an index
of 'interestingness' with non-normality being a common choice.
Projections may be difficult to interpret however and also may
obscure either partly or totally actual structure in the full
dimensional data. In chapter 6 a different exploratory approach
based on finding directions of high multivariate density is proposed.
The principal aims in doing this are to explore the main features of
the shape of a p-dimensional (p > 2) density function, to find
non-linear features in the data and to use pairs of directions for
the construction of 2-dimensional representations. These techniques

are illustrated by analyses of real data sets.

For data consisting of a binary response, together with the
values of a number of covariates, which may arise in many areas of
social science and medicine, a commonly used model is the logistic
regression model. In order to avoid incorrect conclusions it is
important to check goodness of fit and the assumptions underlying the
model. In chapter 7 goodness-of-fit is assessed by comparing an
estimate of P('success'/x) based on nonparametric regression with a
parametric estimate of this probability function. A pseudo-likelihood
ratio test which provides a global measure of the discrepancy is
described together with a simulation procedure for assessing
significance. The degree of smoothing has an important influence on
the results so methods for choosing the value of the smoothing
parameter are discussed. Also, the use of partial residual plots to
determine if a regressor variable has been specified correctly in the
model are explored and a test of linearity is proposed and

investigated.




Chapter 2. Adaptive Kernel Density Estimators.

2.1. Introduction.

It is assumed that we have a set of n independent random
variables (X1,X5,...,Xy) each identically distributed and from a
cont inuous univariate distribution with unknown density f. The

problem is to construct an estimate of f based on the sample of

observed values (X71,Xp,...,Xp).

In this chapter the properties of a fixed kernel density estimator
will be compared with those of adaptive kernel estimators. This will
be done on the basis of both asymptotic and exact small sample results.
The aim is to find an estimator with both low bias and variance. This
is important when an estimate is to be used for the exploration and
presentation of data and especially so if it is to be used as part of
another statistical procedure such as a density based test of multi-

variate normality to be described in chapter 5.

The fixed kernel estimator, introduced by Rosenblatt (1956) is

defined by:

~ n
£f(x) = n"1 ¥ h-1 K((x-X;)/h) (2.1.1)
i=1

K 1is the kernel function which satisfies:

«©

(i) J K(t)dt = 1, K(t) 2 0 for every t € (-o,w)
(ii) K(t) = K(-t). i.e. j tK(t)dt = 0.

I t2K(t)dt = By < ®
(iii) sup IK(t)1 < =

—cagt <o

©

J_m IK(t)1dt <




and lim 1tK(t)| = 0. (2.1.2)
t -0
These conditions are satisfied by most symmetric probability
density functions and in practice a function such as the standard

normal density is used.

h is the smoothing parameter or window width and controls the
amount of smoothing applied to the data. If h 1is chosen to be very
small then the estimate will take on a spikey appearance as sputrious
fine structure is highlighted whereas if h 1is large all detail is
obscured. The term "fixed" refers to the fact that the kernel is
scaled by the same amount in all parts of the sample. One problem
with this for example, is that spurious bumps tend to appear in the
tails of long tailed densities. If, however, the value of h is
increased in an attempt to remove this effect, structure in the main

part of the distribution is masked.

Loftsgaarden and Quesenberry (1965) proposed the nearest neighbour

estimator which is given by:

B0 = £ (2.1.3)
where R(x;k) 1is the distance of x from its kth nearest neighbour
among the data. Hence, this estimator does vary the degree of smooth-
ing according to the position of x in the distribution. For example
if x 1is in the tails then R(x;k) will generally be larger than
in the main part of the distribution and so a larger amount of smooth-
ing will be carried out. This should remove the bumps characteristic

of the estimate based on fixed kernels.




Moore and Yackel (1977) suggested a generalised nearest neighbour
estimator by replacing h in (2.1.1) by R(x;k). The main problem
with nearest neighbour estimators is that they are complicated
functions of x, have discontinuous derivatives at points
(X(j)+x(j+k))/2r where X('> are the sample order statistics, and do
not integrate to one because the tails approach zero at too slow a
rate. Hence, the resulting estimates will have sharp peaks, heavy
tails and will therefore not be appropriate if an estimate of the whele

density is required,.
If equation (2.1.3) is rearranged to give

R(x;k) = =/(2n)
Fe(

k/(2n)
f(x)

It

or R(x:k) (2.1.4)

then the smoothing parameter in the generalised nearest neighbour
method can be seen to be proportional to the inverse of another
estimator of the underlying density at x, generally referred to as a
pilot estimator. If instead, we now consider the distance of Xj

from its kth nearest neighbour and use this as a smoothing parameter
as suggested by Breiman et al (1977) we have removed the dependence of
the window width of the kernel on x. The resulting "variable kernel
estimate” will now be a proper p.d.f. (i.e. integrate to one) and
inherit the smoothness properties of the kernel function used. The
kernel placed over data point x; will be scaled by an amount
proportional to 1/%N(xi). In general though it is not necessary to
use a nearest neighbout estimator in the smoothing parameter - any
convenient one such as that based on a fixed kernel (2.1.1) may be

used instead.




The term "adaptive" has been given to such estimators because
the degree of smoothing will adapt to the sparseness of the data, as
measured by F, about either x or Xi depending on the choice of

method. Here, T denotes the particular pilot estimator used.

Abramson (1982) and Silverman (1986) consider more general forms
of adaptive estimators where the local smoothing parameter is
proportional to a power of the inverse of ?(xi). Abramson (1982)

shows that there are theoretical reasons for choosing this power to

be 1/2.

Several simulation studies to examine the performance of adaptive
methods are described in the literature. These include those of
Breiman et al (1977), Habbema, Hermans and Remme (1978), Bean and
Tsokes (1982) and Bowman (1985). Their results show that adaptive
methods are better than the fixed kernel approach when the underlying

density is heavily skewed or long tailed.

When the data are multivariate the fixed kernel estimator is

defined by:

n x-Xj
f(x) =nlhP 3 k |[==] (2.1.5)
j-p P UP

where Kp is a symmetric p-dimensional density function.

There are additional problems in estimating a density function in
a multidimensional setting. Firstly, many observations in a sample
will tend to fall at points where the underlying density is low. This
means that regions of low density are very important parts of the
distribution and thus need to be estimated as accurately as possible.
Secondly, many regions of the sample space may be devoid of obser-

vations, even those where the underlying density is high. This is




referred to as the "empty space phenomenon" by Scott and Thompson
(1983). Silverman (1986) examines the sample sizes required to ensure
that the relative mean squared error, E(%(z)—f(z))z/f(z)z, is less
than 0.1 when estimating a standard multivariate normal density at

X =0 using a fixed kernel estimator with window width chosen to
minimise the mean squared error (MSE). The table of results he
includes shows that it increases very rapidly as the dimension
increases. For less well behaved distributions and for points in the

tails the sizes would probably be much greater still.

In view of this discussion it might be hoped that adaptive methods
may help in trying to overcome these extra difficulties. The constant
h in (2.1.5) will then be scaled by 1/?(5)1/P and 1/?(5i)1/P in

the adaptive approaches.

There are many theoretical papers on the fixed kernel method but
relatively few on adaptive methods. ‘Moore and Yackel (1977) obtain
results on weak and strong consistency, pointwise and uniform, for
nearest neighbour estimators. Mack and Rosenblatt (1979) calculate
asymptotic expressions for the mean and variance of the nearest
neighbour estimators using Taylor series, but it is clear their
expression for the mean will be inappropriate in the tails because it
tends to infinity as f(x) — 0. Hall (1983) considers nearest
neighbour estimators with smoothing parameters chosen as a function of
nearest neighbour distances which he shows overcome some of the
asymptotic problems encountered by Mack and Rosenblatt (1979).
Abramson (1982) also used Taylor series to obtain asymptotic
expressions for mean and variance of the estimator with bandwidth
proportional to f(xi)‘l/2 but again that for the mean is inappropriate

in the tails. Devroye (1985) proves the weak convergence to 0 of




J I%—fl for all f where } is the estimator of Breiman et al (1977).

In Section 2 the means and variances of adaptive estimators are
calculated in simple cases by numerical integration and the adequacy

of Taylor series approximations are explored.

The asymptotic expressions for the means and variances of adaptive
estimators derived in the literature do not permit the construction of
a useful strategy for choosing the degree of overall smoothing to be
applied to the data. In Section 3 numerical integration is again used
for the purpose of comparing the performance of the adaptive methods
to that of the fixed when estimating a variety of known shapes of
underlying density and the results for the normal distribution are

used to construct a specific smoothing strategy.

2.2. Means and Variances of Adaptive Estimators.

The exact mean and variance of the fixed kernel estimator (2.1.1)

are:
’ 1 1
E(F(x) = E[¢ K(xxp/M)] = [ § Ky /mEpdy  (2.2.1)

since the (Xj) are independently and identically distributed.

v(F(x)) = % V[E Kxx)/h |

2
- % [ J %7 K((X~y)/h)2f(y)dy -{ j% K((x-y)/h)f(y)dy} }

(2.2.2)
Rosenblatt and Parzen (1962) made the change of variable t = (x-y)/h
and used Taylor series to obtain the following asymptotic expressions:
E(F(x)) = f(x) + 1/2.h2.f(2)(x).J t2K(t)dt + o(h?), (2.2.3)

where f(z)(x) denotes the second derivative of f evaluated at x and




V(E(x)) = (nh)-l.f(x).j K(t)2dt + o((nh)-1). (2.2.4)

These asymptotic expressions have been found to generally give good
guidance as to the behaviour of the estimator in a finite sample
situation - this will be illustrated with data from a standard normal
distribution later in this section. As a consequence they are also
useful for deriving optimal smoothing parameters by assuming that f
is of a particular form. Silverman (1986) provides a full discussion
of this strategy. Similar expressions for multivariate data were

derived by Cacoullos (1966).

In the study of the simple properties of adaptive estimators

smoothing parameters of the form
o
h/f(Xy) y, O0<axl

will be investigated. In particular the values o = 0,1/2 and 1/p
representing fixed kernels and the adaptive methods §f Abramson and
Breiman et al will be considered. Silverman (1986) discusses choice
of o and shows that when « = 1/p each kernel approximately
"catches" the same number of observations in all parts of the density.
Because of integration and other problems associated with the nearest
neighbour approach only those adaptive methods whose smoothing
parameters involve f(X;), as opposed to f(x), will be considered

further.

The true value of the density f 1is to be used in studying these
smoothing parameters. This is of course unrealistic because in practice
f 1is unknown and a pilot estimate such as a fixed kernel estimate is
used. An analysis based on using f 1is then ignoring the extra
variability which will be incurred when estimating the smoothing

parameter and so comparisons with o = 0 should be favourable to those




=] 4

methods with o« > 0. However, a study of the properties of adaptive
methods using the true f in the smoothing parameter is instructive as

it indicates the heights to which a method which uses a pilot estimate

might aspire.
The notation f,(x) will be used to refer to the estimator

F(xp®

o) = = L KX F(X%h) (2.2.5)

N B

i
The exact mean and variance can be expressed in integral forms as:

E(%Q(X)) = ESZIE.K((x—y).f(y)u/h)f(y)dy (2.2.86)
h

~ 2o ~ 2
V(a0 =1 fﬁ%%—— K((x=y) . ()M 2. £y dy - [EGe] ]

(2.2.7)

If we make a change of variable to t = (x-y)f(x)®/h and use

Taylor series approximations then:

“ f(x)a+1 0 1
V(Eq(x)) = 28— [ K(£)2dt + o((nh)~1) (2.2.8)

ECh o) = £00 + h2 L 20021/2.800 . £ 60y

: [ t2K(t)dt + o(hd)
(%)

(2.2.9)

- 4
E(f1/2(x)) = f(x) + ng%%%% j t4K(t)dt + o(h%) (2.2.10)

where,

A(t) — £ (o) + 8.8 ). s P4y . 6. (£4%) (1))2
e £(t)2 £(t)?

C36. 8P e D)2 aa M ey
£(t)> £eey’

(2.2.11)

That choosing o = 1/2 reduces the asymptotic bias to o(h%) was

first shown by Abramson (1982) who also demonstrated that no other




value of @ will give this result and that the same results hold in
the multivariate case. The term A(t) 1in the coefficient of the h%
term in (2.2.10) given by (2.2.11) was derived by Silverman (1986)

using a computer algebraic manipulation package.

If f 1is assumed to be the standard normal density then these

expressions simplify to :

R o+l

V(Ea0) = BB [ kee)2ae + o((m™) (2.2.12)
T h? 2 2

E(F1(x)) = £ + gy - (x2+1) + o(h?) (2.2.13)
“ A

E(f1/9(x)) = f(x) + ﬁ)- (x%46.x243) + o(h%) (2.2.14)

These expressions for the mean indicate that when f(x) — 0,
for example in the tails of the density, the mean and hence the bias
will tend to infinity. It is of‘course unreasonable to expect
asymptotic expressions to provide good approximations to finite sample
behaviour in regions where the density is low because there will be
a scarcity of data, However, the extreme nature of these results also
raises the question of how good these approximations might be in
regions where the density is high. To further examine this question
numerical integration will be used to obtain exact results to compare
with the asymptotic expressions. The composite trapezoidal rule
(Burden et al (1981)) was used for these and subsequent one dimensional
integrals in this chapter with the number of subintervals chosen to
ensure a relative accuracy of at least 10-3, The following discussion

refers to the estimation of a standard normal density.

Figure 2.1 shows in the case o« = 0 that the exact bias is well

approximated by the asymptotic bias over the whole range of x while




the exact standard deviation is well approximated by the asymptotic
expression for Ix| > 2 but over estimated for x in (-2.2).

For a=1/2 and 1 the asymptotic approximations of standard
deviation are qualitatively similar to when o = 0 except for a
slightly more marked underestimation in the tails (see figures 2.2 and
2.3). However, for the bias, in both cases the asymptotic estimates are
very poor approximations. They are most effective near the mode at

x = 0 but rapidly deteriorate as Ix| becomes larger. In contrast,
the exact bias approaches zero in the tails. The flattest exact bhias
curve is that for o = 1/2 (figure 2.2) followed by o =1 (figure
2.3) while o =1 has the lowest standard deviation curve followed by

that for o= 1/2.

Figures 2.1, 2.2 and 2.3 are based on using an optimal smoothing
parameter which minimises the exact mean integrated squared error
(see Section 3.1 for more details) and thus balances the integrated

squared bias with the integrated variance.

For m = 50, when h is reduced below its optimal value the
exact bias curves for each method become much closer to the x-axis as
expected. For o = 0 the asymptotic bias curves provide good
approximations over all x. However, for o= 1/2 and 1 they
become better approximations over a broader range of x as h
decreases, this being more marked for @ = 1/2 than for o« = 1, but
are still inadequate in the tails. Also, as h decreases the
standard deviation curves, both exact and asymptotic, become more
peaked. If, instead, h 1is increased above its optimal value then
the peaks and troughs in the exact bias curves for each method become
much higher. For o =0 the asymptotic approximations are reasonable

for a large range of h but the quality of those for o = 1/2 and 1




rapidly deteriorate. The exact and asymptotic standard deviation

curves become much flatter as h increases.

When the sample size n increases then plots of bias and standard
deviation at the optimal h wvalues show that for each method the
asymptotic approximations become much better as expected. However, even
for very large n values the asymptotic biases for o = 1/2 and
o =1 are still poor approximations in the tails but those for o= 1/2

tend to deteriorate at larger values of (x| than for o =1.

To illustrate the effect of varying h, figures 2.4, 2.5 and 2.6
show the exact and asymptotic biases and standard deviations at x =0
over a broad range of h wvalues for o =0, 1/2 and 1 respectively.
The decreasing nature of the standard deviation as h 1increases is
imitated by the asymptotic expressions but at a \ﬁ&%érlevel
fer each valre 0% oL When o« =0 the
asymptotic bias follows the exact but tends to decrease at a faster
rate as h increases. In contrast, for ¢ = 1/2 and 1, the
asymptotic expressions only provide reasonable approximations for
small h until near where the exact curve redescends - this turning
point feature of the exact curve is not captured at all by the

asymptoptic expressions,

Similar plots were obtained but are not included for a range of
x-values between 0 and 2. For o = 0 the correspondences between the
exact and asymptotic values of bias and standard deviation were
generally good for each x considered. As h increases the bias
approximation worsens while that for the standard deviation improves
with the opposite effect as h decreases, as might be expected.
However, this was not very marked except when h 1is large for

the bias and very small for the standard deviation. For « = 1/2 and




1 the bias approximations get much worse for all h as x Iincreases.
The asymptotic bias curves for these methods always increase from

zero for each x with the rate of increase becoming higher as x|
gets larger due to the presence of f(x) in the denominators (see
expressions (2.2.13) and (2.2.14)) and therefore they never capture
the turning points characteristic of the exact curves, In contrast,
the standard deviation approximations were found to be quite

reasonable.

To examine the nature of the Taylor Series approximations in the
integrals for the expectation of density estimates with « =0 and
1 plots were obtained of the exact functions together with their

estimates at x = 0,

For o =0 figure 2.7 shows the function f(x-ht) with h = 0.5,

which is an N(0,4) density, along with its guadratic approximation
f(x) - hot. F{I(x) + 1/2.02.¢2.7(2) (x). (2.2.15)

The true function is estimated accurately about zero, In the exact
integrand f(x-h.t) is multiplied by the kernel function K(t), an
N(0,1) density function, and similarly when using the Taylor Series
approximation, (2.2.15) is also multiplied by K(t). Figure 2.8 shows
the estimated integrand to be a very good approximation to the exact
one. For values of h < 0.5 plots of the exact and estimated
integrands show them to be almost indistinguishable. As h increases
from 0.5 the exact integraﬁd is well approximated in the centre but
negative sidelobes start to appear in the tails which become more
pronounced with larger h. Figure 2.9 illustrates this effect for

h = 2. These negative parts occur because the quadratic approximation

to f(x-h.t) becomes narrower and more pointed as h increases and it




is not until 1t| becomes large that multiplying by K(t) can bring
it back to zero. Evaluating the integral using the estimated integrand
then results in a value less than the exact one which eventually
becomes negative as h increases and hence produces the increasing

disparity shown in figure 2.4.

For a=1 at x =0 the funetion f(x-ht/f(x)) 1is a
N(O,(f(O)/h)z) density and is well approximated by the quadratic

expansion

h.t 2 1 h?
(D) + 5 7

2 (2
o0 t2 £(2) (x) (2.2.16)

f(x) -

in the centre. As h — 0 the approximation is good for an
increasingly broad range of t while as h — ® the range becomes

much narrower.

Figures 2.10, 2,11 and 2.12 show the exact integrand and its approx-
imation with the function f and the kernel K expanded as Taylor
Series up to terms in h? but without performing any multi-
plications. When h = 0.1 the two are very close while for h = 0.3
the approximation is good in the centre but a large peak has appeared
in each tail of the estimate. For h = 0.5 this effect is more
pronounced and in fact these peaks in the tails rapidly increase in
height as h gets larger. This then explains why the estimated
value of E[%l(O)] just becomes increasingly large and is only a
good approximation for small h as illustrated in figure 2.6. The
reason for this is that f also occurs in the function X so that

when Taylor Series expansions are substituted into

f(x—ht/f(x)) ¢
—ro—— - K (7o - fOeht/px)) (2.2.17)

the result is a function with large negative troughs in the tails.




This is then multiplied by the quadratic estimate of f(x-ht/f(x>)

which gives rise to the large positive peaks.

2.3, Optimal Smoothing for Adaptive Estimators of Univariate Densities.

The most common measure of the global accuracy of f as an
estimate of f 1{is the mean integrated squared error (MISE). This

was first used by Rosenblatt (1956) and is defined as
E [ (Feo-re)%ax = [ bias®Foxdax + [ vFEGIax  (2.3.1)

For reasons discussed in Section 2.2, when o« = 0, the true MISE can
be estimated well by substituting asymptotic expressions for the

bias and variance instead of the true values. Silverman (1986, Section
3.4) shows that if f is a normal density then the value of h which

minimises the MISE is

-1/5

hopt = (4/3)'/7 ¢ n (2.3.2)

Such a value ensures that, asymptotically, the squared bias and
variance converge to zero at the same rate and that the MISE converges
to zero at rate n-A/S. Fryer (1976) considered the special case when
the true density is normal and the kernel is a standard normal density
so that (2.3.1) can be evaluated exactly and hence minimised over h.
It turns out that the results obtained are very similar to those

given by (2.3.2). However, for the adaptive methods exact calculations
of mean and variance need to be made. Evaluation of (2.3.1) therefore
requires two levels of numerical integration. Once evaluated, the MISE
can be plotted as a function of h and the optimal value for a

specific sample size determined. This can be carried out for different

distributions and sample sizes.

Firstly, optimal smoothing will be carried out for the standard




normal distribution. Bowman (1985) showed in an extensive simulation
study that normal optimal smoothing is effective for recovering the
shapes of a wide range of densities when fixed kernels are used. It
is hoped that this will also carry over to adaptive smoothing. Using
normality as a criteria for smoothing parameter choice is also moti-

vated by the goodness-of-fit problem to be described in chapter 5.

The MISE (2.3.1) was calculated for a number of sample sizes
between 25 and 6400 when the smoothing parameters h/f(xi)a with
o=0, 1/2 and 1 were applied to univariate standard normal data
to find optimal values of h. For o =1 there is a sudden shift in
these values near n = 400. This occurs as a result of the local
minimum in the integrated squared bias (ISB) curve as illustrated in
figure 2.13. For a given value of h Iintegrated variance decreases
as a function of n whereas integrated squared bias does not. As the
sample size increases there comes a point at which the MISE is mini-
mised further by switching from a value of h near the local minimum
of the ISB curve to a value nearer zero. In fact when n = 383 the
MISE takes the same value, 0.00420, for h = 0.2045 and h = 0.0669.

This feature of the ISB curve is not present when a =0 or 1/2.

Approximation formulae for the optimal smoothing parameters,

obtained by regressing log(hopt) on log(n), are given by :

Fixed (a = 0) . 1.198.0"0-21% 95 ¢ n < 6400
Adaptive (o = 1/2) : 0.896.n° 0235 95 ¢ n < 6400
. 0.260.n"0+%%2 95 ¢ 1 < 400
Adaptive (o = 1)
. 0.580.n"0°3%% | 400 < n < 6400 (2.3.3)

The asymptotic expressions for bias and variance can be combined to




give an expression for the MSE which can then be minimised algeb-
raically with respect to h. The results from this suggest rates

-1/5 1/9

proportional to n for =0 and 1 and n

for o =1/2.
Clearly these are only appropriate for the case o« = 0 despite the
large sample sizes considered. The asymptotic suggestion that when

o =1/2 the bias will be lower is supported though by the plot of the

exact bias at hgpe for normal data (figure 2.2) which is flatter than

for a=0 and 1 (figures 2.1 and 2.3).

The minimised MISE's are plotted in figure 2.14 where it is clear
that o = 1/2 does indeed produce the best performance at all sample
sizes considered. The kink in the a = 1 curve occurs at the sample
size n = 383 after which MISE is further minimised by switching

to smaller h ~values,.

This process of finding optimal smoothing parameters was repeated
for two other distributions, namely a Gamma(2, V2) representing skew-
ness and the bimodal mixture 0.5.N(O.866,0.52) + 0.5.N(—0.866,0.52).
The parameters of both distributions have been chosen to give unit
variance so that direct comparisons with the standard normal results

may be made.

The results for the Ga(2,V2) distribution are plotted in
figure 2.15. This shows that « = 1/2 performed best at virtually
all sample sizes considered. o = 0 produced a poor performance for
n < 400 but is virtually indistinguishable from o = 1/2 thereafter.
a =1 1is slightly inferior to o = 1/2 even for large sample sizes.
The minimised MISE's for each method and at each sample size are all
higher than the corresponding results for the standard normal. For

=0 and 1/2 the hopt values are proportional to n_o'29 and

n—0'34 respectively and so again only broadly in line with the




asymptotic suggestion when @ = 0., When o =1 hopt is again
proportional to two different powers of n according to the sample

size due to a local minimum in the integrand squared bias curve.

For the bimodal distribution the results are qualitatively similar
to those from the Gamma (see figure 2.16). However, larger sample
sizes are required for a = 0 to approach the performance of o = 1/2
and for « = 1/2 to be superior to o« =1, The minimum MISE's for
each method and sample size are all greater than those for the
standard normal but less than the corresponding results for the
Gamma. This time, when o = 0, hopt is proportional to n—0.24 and
so once more is in line with the asymptotic results whereas for a = 1/2

-0.20

it is n 7 and for o =1 it has two different values depending

on sample size.

In order to assess the effectiveness of applying normal optimal
smoothing to non-normal data the MISE's were calculated when the
formulae (2.3.3) were applied to data from the Gamma and bimodal
distributions, These results are illustrated in figures 2.17 and
2.18. With data from a Gamma distribution the relative performances
of the three methods are very similar to the Gamma optimal case.
With the bimodal distribution it is difficult to identify a markedly
superior performance by any of the three methods when the normal

optimal formulae are used,

For the three underlying distributions considered, the best
overall performance is achieved by the adaptive method with o = 1/2
as implied by the asymptotic theory. The results also indicate that
the use of normal optimal smoothing provides a simple and reasonably
effective technique. As expected this is least effective with the

bimodal distribution. Also, when the sample size is large, there is




little loss in MISE but much gain in computational simplicity by

using the fixed kernel method.

From a practical point of view the use of o =1 has the great
advantage of producing an estimator whose smoothing parameter h is
scale invariant thus removing the need to provide an estimate of

scale,

Suppose that the unknown density f 1is to be estimated from a
random sample of size n from X  using the adaptive estimator f

with smoothing parameter h. Then the MISE can be calculated from

the integrated squared bias and variance based on (2.2.6) and (2.2.7).

If the Xj's are transformed to Z; =k Xj, i =1,...,n for some

constant Kk > O then
1
8(z) = ¢ £(z/K) (2.3.4)

where g 1is the density function for the random variable Z = kX.

If the same smoothing parameter, h, is used in an adaptive

eStinE(ga(Z)) _ J g(g) K[(z y&g(y) ] g(y)dy

R o _ o
E(gn(2)) = I g(K) K[<Z yl)jg(y) ] g(y)dy (2.3.5)
o (z-TERY FO/
- fQy/k) K[ — dy  (2.3.6)
k“h k%.h
Now let w = Y/ so that dy = kdw and
EG(zm) = [ % [(ZR TR £ ou) du. (2.3.7)
@ kOh k®h
Hence,
j bias?(z) dz =
£Z2/) L2

J {il:& j f(K)a K[(z—k:;lf;(w)a]f(w)dw - — } dz (2.3.8)




But =z = kx which gives dz = kdx and hence

[ bias?(z) dz —

2

Ll [ R [ I ey gy - po) ax

k-1 kQ-1p

% [ bias2(x)dx

if and only if « =1, Similarly,

" 2o o
Egy(z)2) - [ BY) Kz[(z-y&g(y) ]

12 g(y)dy

f<Y/k>2“2 (z-y) E /0% /1)
= J k2a h2 K kOh k dy

Again let w = Y/ which gives:

£ (w) 22 KQ[(z~kw)f(w)“

~ 2 -

] fenaw

Hence,

[V Gatdaz = | [EGa?) - [Eaq(z]?] d=

[ £ (w) 2% k2 [(Ekn f (e

on2 o ] £ aw

£ 1 (z-kw) £ (w)®
- | |

2
o on ] f(w) dw] dz

which on substituting =z = kx, gives

I

[ Viga(z)rdz = ¢ [ v(Ea0)ax
if and only if o =1,

Therefore,

MISE(g1(z)) = ¢ MISE (f1(x))

=l

so that the optimal h for estimating g is the same

(2.3.9)

(2.3.10)
(2.3.11)
(2.3.12)
(2.3.13)
(2.3.14)
(2.3.15)
(2.3.16)
(2.3.17)

as that for




estimating f and is thus independent of the scale of the data

provided o = 1,

The scalings of h for other values of « when estimating a

density with non-unit variance are as follows :

o Scaling

0 a

172 ot/?
general 3(1_a)

~

where o is an estimate of the standard deviation of the data. In
practice it is probably better to use a robust estimate of scale such
as the median of the absclute deviations from the median divided by

0.6745 (MAD/0.6745) (Hogg (1979)) rather than the empirical standard

deviation.

Silverman (1986, 5.3) suggests the practical solution of multi-
plying the h derived for data with unit variance by the geometric
mean of the {?(xi)}, where T(:) is the pilot estimate employed in

the smoothing parameter, to free h from the scale of the data.

2.4, Optimal Smoothing for Adaptive Estimators of Multivariate
Densities.

In order to assess the performance of the three smoothing
techniques (i.e. o =20, 1/2 and 1/p) in higher dimensions a
standard p-variate normal distribution NP(Q,IP) and a long tailed
p-variate normal mixture 0.219.Np(g,41p) + 0.871.Np(Q,G.161p) which
also has a unit covariance matrix, were considered. Ip denotes the
identity matrix of order p. The choice of non-normal distribution

is rather limited because of the considerable computational




advantages of retaining radial symmetry as discussed below,
Also radial symmetry allows the use of the same smoothing parameter
in each co-ordinate direction so that for example when « = 0 the

kernel function over point x; 1is a Np(gi,hlp) density.

As in the univariate case it is necessary to use numerical
integration to evaluate the mean integrated squared errors
I E{}(g)-f(x)}2d§. If the underlying densities are chosen to be
radially symmetric then it will follow that the mean squared error
will also be radially symmetric as a function of x. Therefore, if

a transformation to polar co-ordinates is made i.e.

X] = rj.cosfj.sinfo..... ool sinfp_q

X9 = ri.sinfj.sinfp......... . .o0iu, vev..sinfp g

X3 =1 .cosflg.sinfg. ..., sinfp_7

X4 = I .cosfg.sinfy........... Sinﬂp_l

Xp = ] cosep_1 (2.4.1)
where 11 > 0, 61 ¢ [0,2%] and Bj € [o,7], j=2,...... ,p-1. The

Jacobian of this transformation is :

rq y P = 2
J = 1 (2.4.2)
rlp‘l pH sinJ-16J , P=3,4,5,.....
=2
The MISE can be written as :
- 2 ® p-1 - 2
[ B0 -r01%ax = ¢p. [ riP 70 E(E(ry)-F(r1) ) ary
0

where

Cp =27, n= 2,




27 T T 5 T -9
Cp =I deq . J sinfpddy . I sin 53d33.......J Sinp ep_ldep,l
0 0 0 0
, no=3,4,5, . ....... (2.4.4)
7l'p/2
In fact, Cp = p.volume of a unit sphere = p ————8— where
F(P/o+1)
I'() 1indicates the Gamma function.
The MISE can be written as:
® p-1 ,2
cp | 1T BT (rp)+v(ry))drg (2.4.5)
0

where B(rq) and V(rj) denote the bias and variance terms at
radial distance 1rq. The dimensionality of the integral of the MSE

has therefore been reduced from p to 1.

Now let r denote the vector (0,0,...... ,O,rl)T so that
B(rl) = E(%(;))-f(g). Expression (2.2.6) shows that this p-dimensional

integral may be written as

B(rp) = J b{urn , nyi, nr-ytndy (2.4.6)
for a suitably chosen function b and where |i-|1I denotes the
Euclidean norm.

Another polar coordinate transformation allows us to write

Nyt = ro (2.4.7)
and

u;—xuz = u;u2 + nxnz - 20rI. Nyl .cosd
= r2+ rz - 2rq.r osd (2.4.8)
=r 5 1.r2.c i

where 6 is the angle between vectors r and y.




The p-dimensional integral for the bias has therefore been

reduced to only two i.e.

T

®
B(ry) = Cp—l J rzp_l [ J b(rl,rz,r% + 1‘% —2.1‘1.1‘2.0050).(sinﬂ)p“zdé)]drz
0 0
(2.4.9)

For example, if both f and the kernel K are p-dimensional standard
normal then the integral will depend on 1yt in f(y) and on nx-yli
in K(:). The argument for evaluating the variance term V(ry)

follows that for B(ry) using the appropriate functions.

This shows that when both the underlying density and kernel
function are radially symmetric and are functions of [yIl and lix~yn
respectively the original p2 dimensional integral can be reduced to
two two dimensional integrals for the MSE followed by a one

dimensional integral to calculate the MISE.

This then makes numerical integration a feasible tool for the
calculations involved for multivariate density estimators. As
mentioned earlier it does restrict the choice of underlying density
though. For example, to construct a long tailed alternative, a
p-dimensional density may be formed by the product of p l-dimensional
t-distributions on 3 degrees of freedom scaled to have unit variance.
The dimension reduction technique described above cannot then be used

because
£ P 2 .-2
(X) = (2/m)7 . (1+x1] ) ~ ...... (1+x (2.4.10)

cannot be expressed as a function of nxil as in the normal case.

To overcome this problem, consider a random vector X with

density




2
F(x) = a.Np(x,0% .Tp) + (1-2).Np(x,05 .15), 0 < a < 1. (2.4.11)

In this case E(X) =0 and V(X)) = (ao% + (1—a)0%).lp. To obtain a

unit covariance matrix set

aa% + (1—a)0§ = 1, (2.4.12)
Hence,
_ 1-04°
as=—5—5 (2.4.13)
oy 02

In order to keep 0 < a <1 values of ¢y and o¢p within a

[

region bounded by ¢y =09, 69 =1, 09 =0 and ¢7 > o9 are allow-
able. Choosing ¢ =2 and o¢9 = 0.4 gives a value of a = 0.219

and results in a long tailed alternative for which the dimension

reduction technique can be used.

The first distribution to be considered is the standard p-
dimensional normal distribution. The h~values which minimise MISE
were found for each of the three methods at several sample sizes
(25 ¢ n g 6400) for dimensions two to six and also for dimension ten.
The two-dimensional integrals were evaluated by NAG subroutine DO1FCF
(NAG (1988)) which uses an adaptive subdivision strategy. Plots were
obtained of the minimum MISE vs log(n) for each of these dimensions

and are illustrated in figures 2.19-2. 24,

In dimensjon 2 the two adaptive methods are equivalent and
are consistently better than o =0 for each n. In dimension

3 @ =1/p achieves the smallest MISE at each n followed by o = 1/2.

I

a=1/p 1is also the best in dimension 4 and the difference between

]

¢ =1/2 and o =0 1is greatly reduced especially for large sample

sizes (n > 1600). When the dimension is 5 o~ 1/p again achieves




the smallest MISE's at each n while o =1/9 and « =0 are very
similar in performance. In dimension 6 o = 1/p again performs best
but o =0 is better than o = 1/2 at each n. The relative
positions are the same in dimension 10 but now o« = 1/2 performs very

much worse than the other two.

To illustrate the bias and standard deviation these were plotted
as a function of x; only - any cross section through the origin
will have the same profile because of radial symmetry. Plots were
obtained for each dimension considered previously and for n = S0
only. The optimal values of the smoothing parameter were used in each

case. See figures 2.25-2.28 for dimensions 3 and 6.

In each dimension the maximum bias occurs at x = 0 where the
curvature in the density is greatest for o =0 and 1/p but at
X =% (1,..... DT for o= 1/2 except in dimension 10 when
it is also at x = 0. For each dimension and method the bias
approaches zero in the tails and the positive part of the bias curves
also become much closer to zero as the dimension increases. The
flattest bias curve in each dimension is for o« = 1/2 followed by

o = 1/p. However by dimension 10 the differences are much less marked.

The standard deviation curves for each method have a mode at x = 0
and approach zero in the tails for each dimension. However, in
contrast to the bias curves, o = 0 has the lowest standard deviation
curve in each dimension followed by a = 1/p with that for o = 1/2
being most peaked. As dimension increases the relative differences

increase, especially between « = 1/2 and the other two.

In conclusion, for multivariate standard normal data, by using an

adaptive method a reduction in bias is achieved over the fixed but at




the expense of increasing the variance of the estimated density. For
o =1/p this trade-off still results in an optimal MISE smaller than
for the other two but the increasingly poor performance in terms of
standard deviation for o = 1/2 explains why it does increasingly

worse in MISE than the other two.

For the long tailed multivariate normal mixture the optimal h-
values were determined together with the corresponding MISE's at
several sample sizes for dimensions two to six. The plots of
minimum MISE vs log(n) are shown in figures 2.29-233., The minimum
MISE's are much higher but the overall pattern of results is very
similar to the multivariate standard normal case with the adaptive
@ = 1/p method increasingly achieving smaller MISE's than the other
two methods. Also by dimension 6, o =0 is generally doing a little
better than o« = 1/2 at each n. The increasingly poor performance
of a=1/2 is again due to the large increase in variance, relative

to the other two methods, as dimension increases.

There are strong similarities in the results for these two under-
lying distributions which indicate that in general the adaptive method
with o = 1/p would make a good choice for multivariate data, The
asymptotic argument in favour of o = 1/2 becomes increasingly less

effective as dimensionality increases.

As in the univariate case the normal optimal h-values were used to
calculate the MISE when estimating the long tailed density by the
o =1/p method. Results for sample sizes 100 and 1600 are given

in table 2.1




Table 2.1.

Normal mixture density by the

h-values.

Dimension

The increases are generally only by a few percent thus giving support
to a strategy of using the normal optimal h-values to smooth non-normal

multivariate data. These values can be approximated by the simple

Values of MISE incurred when estimating the long tailed

= 1/p method using Normal optimal

MISE (% increase from minimum value)

n = 100

0.01282 (1%)
0.01849 (2%)
0.02168 (1%)
0.02281 (0.5%)

0.02191 (1%)

n = 1600

0.00240 (2%)
0.00373 (2%)
0.00557 (1%)
0.00724 (2%)

0.00808 (4%)

formulae given in the following table.

Table 2.2.

The scale invariance of property of the
for univariate data also carries over to the multivariate case with

vectors replacing single variables in the proof of Section 2.3,

Approximation formulae for the normal optimal global

smoothing parameters when using the adaptive

method.

Dimension

2

3

Optimal h.

0.393.n 0-183

0.336.n0-143

0.331.n70-131

0.331.n"0-120

0.333.n°0-112

(e = 1/p)

a = 1/p method as discussed
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Figure 2.1. Exact and asymptotic bias and standard deviation incurred by the fixed kernel method

when estimating an N(0,1) density, =n - 50, h —0.52.
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Figure 2.2. Exact and asymptotic bias and standard deviation incurred by the method

with a - 0.5 when estimating an N(0,1) density, n - 50, h - 0.351I.
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Figure 2.3. Exact and asymptotic bias and standard deviation incurred by the adaptive method with

a - 1 when estimating an N(0,1) density, n - 50, h- 0,219.
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Figure 2.4. Exact and asymptotic bias and standard deviation incurred by the Fixed kernel method

as a function of h when estimating an N(0,1) density, x - 0, n - 50.
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o/
Figure 2.5. Exact and asymptotlc bias and standard deviation Incurred by the adaptive method with

et- 0.5 as a function of h when estimating an N(0,1) density, x - 0, n- 0.50.
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Figure 2.6. Exact and asymptotic bias and standard deviation incurred by the adaptive method with

Q- 1 as a function of h when estimating an N(0,1) density, x - 0, n - 50.
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Flgure 2.9. f(x-ht).K(t) and Its approximation when f and K are N(0,1) density functions, x
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N(0,1) density functions, x - 0, h - 0.1.
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Figure 2,11, f(x-ht/f(x))z,K(c.r(x—ht/r(x))/f(x))/f(x) and {ts approximation when f~ and K are

N(0,1) density functlons, x = 0, h = 0.3, '
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Figure 2.12. f(x-ht/f(x))zzk(t.f(x-ht/f(x))/f(x))/f(x) and its approximation when [ and K .are

N(0,1) density functions, x = 0, h = 0.5,
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Flgure 2.13. Exact integrated squared bias incurred by the adaptive method with a - 1 as a function

of the smoothing parameter h when estimating an N(0,1) density.
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Figure 2.14. Minimum MISE as a function of log(n) for the methods @ - o, 1/2 ®nd 1 when the underlying

density is N(0,1).
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Flgure 2.15. Minimum MISE os a function of log(n) for the methods a - 0, I/2 and 1 when the underlying

density Is Camma (2,\/7).
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Figure 2.16. Minimum MISE as a function of log(n) for the methods & - 0, */2 *n<* * when the underlying

density Is 0.5N(-0.866,0.52) + 0.5N(0.866,0.52).
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Flgure 2.17. The MISE when using normal optimal smoothing parameters, as a function of log(n),

for the methods a —0, 1/j and 1 when the underlying density Is Camma (2,n/7).

0.005

3.0 4.5 5.0 5.5 T.O r.J 0.5 t.o

Figure 2.18. The MISE when using normal optimal smoothing parameters, as a function of log(n), for the

methods & - 0, I/2 and 1 when the underlying density is 0.5N(-0.866,0.5") + 0.5N(0.866,0.5"
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Figure 2.19. Minimum MISE as a function of log(n) for the methods a - 0 and */2 <hen the underlying

density is N2(fi,12)*
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Figure 2.20. Minimum MISE as a function of log(n) for the methods a —0, 1/2 ,n<* 7/3  *hen the

underlying density is " (£,13).
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Flgtire 2.21. Minimum MISE as a function of log(n) for the methods a - 0, I/2 and when the

underlying density Is !

a 0020..

0.0018--

00014-. — (et
0.001%

a0012-.

0.0010--

0.0006-.

0.0004..

a 000%..

ao0002..
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Figure 2.23. Minimum HISE as m function of log(n) for the methods a - 0, V2 *nd */6 <hen the

underlying density Is NgCQ.Ig).
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Figure 2.24. Minimum MISE as a function of log(n) for the methods a - 0, 1/2 m<* VIO when the

underlying density is Nig(Aillo)-
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Flgure 2,25, The exact bias at the optimal h-values for metheds « = 0, 1/2 nnd"1/3 as a function

of x3 for a sample of slzé 50 from a N3(0,13) distribution,
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Figure 2,26. The exact standard deviation at the optimal h-values for methods « = 0, 1/y and 1l/4

function of x; for a sample of size 50 from a N3(0,¥3) distribution.
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Figure 2.27.

Figure 2.28.
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The exact bias at the optimal h-values for methods a - 0, 1/2 *nc*

of xj for a sample of size 50 from a NgCQ.Ig) distribution.

Gists.

The exact standard deviation at the optimal h-values for methods a —O0,

function of xj for a sample of size 50 from a Ng(fl,Ig) distribution.
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Figure 2.29, Minimum MIiSE as a function of log(n) for the methods a = 0 and 1/2 when th‘e.underlying

densfty Is 0.219N2(0,4.19) + 0,781Np(Q,0.16 Ig).
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Figure 2.30. Minimum MISE as a function of log{n) for the methods « = 0, 1/2 and "1/3 when the

underlying density is 0.215N3(0,4 I3) + 0,781N3(0,0.16 I3).
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Minimum MISE as a function of log(n) for the methods « = 0,

underlying density (s 0.219N,(0,4 15) + 0.781N,(0,0.16 14).
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Chapter 3. Bias reduction for Nonparametric Estimators,
A. Density Estimators.

3.1. Introduction.
As in chapter 2 we have an independent random sample {X7,...,Xq)
from an unknown univariate probability density function, f, for

which an estimate is required. Let f(x) denote the estimator of f

at the point x.

In chapter 2 the exact properties of adaptive kernel density
estimators were studied and compared with those based on using a fixed
kernel, GClobal comparisons were made by evaluating the exact MISE
for each of the estimators at different sample sizes and for
different underlying distributions which showed that greater accuracy
could often be obtained by using an adaptive method. For standard
normal data it was also shown that the ideal versions of the adaptive
estimators, and in particular o = 1/2, are effective at reducing

bias but at the expense of some increase in variance.

In this chapter particular attention will be paid to the bias of
estimators., Rosenblatt (1956) proves that if %(x) is symmetric and
Jointly Borel measurable in {Xj,...,X,;) then %(x) is not unbiased
for f(x). The proof is valid for estimators which are allowed to
take negative values as well as those restricted to being non-negative.
Yamoto (1972) considers the special case of non-negative kernel
estimators which integrate to one and proves that for finite samples
these are biased. We therefore cannot construct estimators
completely without bias. The aim in this chapter then is to find
kernel estimators which have less bias than a simple fixed kernel

estimator based on using a standard normal kernel. It would also be




desirable if such estimators had reduced MISE. These properties
will be particularly useful when the estimate based on actual
observed sample data is to be used in another statistical procedure
such as the construction of a confidence interval for f(x) when

correct centring is very important. This will be considered further

in Chapter 4.

When f(x) 1is a fixed kernel density estimator its exact

expectation is given by

E[F(x)] = jm Sk [XY] vy .ay (3.1.1)

where the kernel K is a symmetric function satisfying the conditions

(2.1.2) but with the more general moment condition

1 , J=0
@ .
mj = I t‘].K(t).dt = 0 ) j = ¥ "k_l
- B # 0, j =k

(3.1.2)

If K is a symmetric non-negative density function with finite
variance then (2.1.2) and (3.1.2) will hold for k = 2 - for example

when using a standard normal density.

This expected value is a convolution of the underlying density
with the kernel scaled by the smoothing parameter h and is a
smoothed version of f. The bias, E[%(x)]—f(x), depends explicitly
on both K and h but not on the sample size n. Hdwever, if h
is chosen as a function of n then the bias will depend implicitly
on n. Indeed, it is usually assumed that h 1is a positive function

of n such that

1im h(n) = 0 and lim n.h(n) = « (3.1.3)
n- n=o




which ensures that the bias (and variance) tend to zero as n gets
larger so that the estimator is consistent. The dependence of the
value of h on n will be assumed but suppressed in the subsequent

notation.

As discussed in chapter 2, Rosenblatt (1956) and Parzen (1962) used
Taylor series expansions to obtain asymptotic expressions for the
bias and variance of a fixed kernel estimator with k = 2 which
provide a good approximation to the exact small sample bias and

variance at the point x. These are given by

bias(T(x)) = (1/2). h2.£(2)(x).By + o(h2) (3.1.4)

var(F(x)) = f(x).(n.h)-ljk(c)2dc + o((nh)~1) (3.1.5)

The optimal h for minimising the MSE (MISE) based on these

-1/5

results is proportional to n This means that the bias and

variance reduce at the same rate and results in an optimal rate of

convergence for the MSE (MISE) of nu&/S.

In fact, if h 1is chosen to
be proportional to n_a, where a > 0, then provided a < 1, the
estimator is consistent in MSE (MISE). Choosing a > % will result
in an estimator with smaller bias than for a = % but at the

expense of increased variance and MSE (MISE). Rather than simply
adjusting the value of the smoothing parameter to reduce bias we
require methods that will not only reduce bias but also MSE (MISE).

In this chapter three main approaches will be described and

discussed.

The first is to use 'higher order' kernels which will eliminate

terms up to O(hY) in the asymptotic expansion




2 N LG
bias(f(x)) = 5 2= £ 9/(x).mj.hJ + o(h™)  (3.1.6)
=
which was first proposed by Bartlett (1963). The resulting estimators
will have lower order bias, faster optimal rates of convergence in
MSE (MISE) but require the relaxation of the non-negativity constraint
for the kernel. In particular, the developments of Gasser et al (1985)

and Shucany and Sommers (1977) are discussed in Sections 3.2 and 3.3

respectively.

Secondly, it is proposed to construct an estimator for the bias
and subtract it from the original density estimator. In Section 3.4
the principal asymptotic bias term when k =2 (i.e. (1/2) h2£(2) (x))
is estimated using the second derivative of the density estimator,
This approach is shown to be equivalent to using the 'higher order'
weight function W(t) = K(t) - (1/2) K(z)(t). In Section 3.6 the
second derivative is estimated separately from the density while in
Section 3.5 an estimator of the exact bias based on (3.1.1) is

considered.

Finally, the approach of Terrell and Scott (1980) who use a
multiplicative correction factor and relax the integral constraint

is discussed.

Their effectiveness in a finite sample situation is assessed
through a simulation study for different shapes of underlying density.
This study also involves comparisons with adaptive methods which have
been shown in chapter 2 to be effective in reducing bias. In the
initial discussion of each of the methods the emphasis will be on their

asymptotic properties.




3.2, Minimum Variance and Optimal Kernels.
The MISE is an appropriate loss function when the shape of the
underlying density is of principal interest. For a kernel with

k = 2 the asymptotic value of the MISE when h 1is chosen optimally

is

(5/4) .87 277 ([k()2a0)*? ([£2D) )20 0™ (3.2.1)

which can in turn be made as small as possible, provided h is chosen

optimally, by minimising

[x(ey2ae (3.2.2)
with respect to the function K subject to the constraints that

JK(t)dt =1
(3.2.3)

and [e2.x(tyde = 1.
The solution to this problem in this context was given by
Epanechnikov (1969) and the so called "Epanechnikov kernel® is the

quadratic function

(3/(4.V5)).(1-t2/5), -V5 gt g V5

K(t) = {
0

, o.wW.

(3.2.4)
This kernel among those with k =2 1is optimal then in the
sense that it minimises the asymptotic MISE. However, Table 3.1 of
Silverman (1986) shows that there is little asymptotic loss in using

some other suboptimal kernel with k = 2,

Gasser et al (1985) further generalise this problem by considering
two classes of kernel which satisfy moment conditions of various

orders for estimating a density and its derivatives. These are




"minimum variance" and "optimal” kernels which minimise the asymptotic

variance and MISE respectively.

A kernel X, of order k for estimating the »th derivative

(» =0,1,2....,) is defined as
T 0 y J=0,...,r-1,p41,.., k-1
J t‘]Kv(t)dt = (—l)v.l’! , j= v
N B # 0 , j=k.

(3.2.5)

It is assumed that 0 ¢ » ¢ k-2 and that » and k are either
both even or both odd. As discussed earlier use of a kernel satisfying

(3.2.5) will result in an asymptotic bias of O(hk).

The minimum variance kernels of order (r,k) are solutions to

the variational problem:
T
Minimise | K, (t)2dt (3.2.6)

-7

subject to the moment conditions (3.2.5).

The support is taken to be [-1,1] so that 7+ = 1. They show that
the minimum variance kernels are symmetric whem v is even and
antisymmetric when » 1is odd and that those of order (»,k) on
[-1,1] are uniquely defined polynomials of degree k-2 with k-2

real roots in (-1,1).

Optimal kernels of order (r,k) are again symmetric for » even

and antisymmetric for » odd and minimise the functional

(2r+1)

| jl tk.K, (t)de | N jl K, ()2a0) ] E7) 327
-1 -1

subject to conditions (3.2.5),




To avoid degeneracy, the kernel order (»,k) defined on [-1,1]

must have at least k-2 changes of sign on (-1,1).

Table 1 below gives the functional form of the minimum variance
and optimal kernels of various orders while Table 2 gives values of
B, Vand T which are defined by

1
B = J tk K, (t)dt
-1
1 (3.2.8)
V= J K, (t)2dt
-1

and 1= v 2D ¥ (g

and are the components of the expressions for the asymptotic bias,
variance and MISE which depend on the kernel. V and T are the

functionals minimised above., These tables are reproduced from Gasser

et al (1985).

Table 3.1, Examples of minimum variance and optimal kernels.

Order Minimum variance Optimal

(0,2) /9 (3/4) . (-x2+1)

(0,4) (3/8) (-5x2+3) (15/39) . (7x2-10x2+3)

(0,6) (13/128) . (63x4-70x2+15) (35/956) . (-99x6+189x*-105x2+15)
(1,3) (-3/9).x (1374 . (x3-x)

(1,5) (15/8) (7x3-5x) (105/55) . (~9x3+14x3-5x)

(2,4) (105/39) . (-65x4+42%2-5) (1051 6) (-5x4+6x2-1)

(2,6) (105/35) . (~45x4+42x2-5) (315/64) (77x6-135%4+63x2-5)




Table 3.2. Asymptotic bias, variance and MISE for optimal and minimum

variance kernels, standard and one order higher (k=y+2 and k=»r+4),

r k kernel B \Y T
0 2 opt. 0.2000 0.6000 0.3491
min, V. 0.3333 0.5000 0.3701
4 opt. -0.0476 1.250 0.6199
min. V. -0.0857 1.125 0.6432
1 3 opt. -0.4286 2.143 0.7477
min. V. -0.6000 1.500 0.8137
5 opt. 0.1515 11.93 2.168
min. V. 0.2381 9.375 2.328
2 4 opt. 1.333 35.00 6.685
min., V., 1.714 22.50 7.262
6 opt. -0.6293 381.6 27.16
min, V. -0.90091 275.6 29.50

The values of T in Table 3.2 show that the minimum variance kernels

are all suboptimal by less than 10% with respect to asymptotic MISE.

One of the anomalies with the kernels when k-ve4 is that the
theory requires that the underlying density should have at least k-v
continuous derivatives but the kernels themselves are discontinuous
at + and - 1 which leads to estimates which are also discontinuous.

To partially circumvent this problem Muller (1984) constructs kernels
with support [~1,1] of order (v»,k) which are u times differentiable
(u > 0) and minimise the variance of the uth derivative of the
estimate. These kernels are polynomials of degree (k 4+ 2u -2) and are
tabulated in Table 1 of that paper for u =2 and 3 and for important

values of » and k.

When using the optimal kernel of order (0,4) to estimate the

density i.e.




K(t) = (15/39).(7t% - 10t2 +3) (3.2.9)
a practical formula for choosing the value of the smoothing para-
meter can be obtained by assuming that f is a particular distri-
bution such as N(0,1). The asymptotic MISE (Silverman (1986, p.67))

can then be minimised with respect to h to give:

...1/9 —1/9

hope = 3.243 [ [ £ 0)2ax] . n (3.2.10)

and using the result that J f(h)(x)2 dx = 1.85125 for a standard
normal distribution gives

hopt = 3.020.n" /9 (3.2.11)
for N(0,1) data. 1If the variance is not one then (3.2.11) should

be multiplied by a (robust) measure of scale.

Alternatively, the exact procedure described in Section 3.1 of
Chapter 2 can be used by again assuming the underlying distribution
is N(0,1). This was carried out for nine sample sizes between
n =25 and n = 6400 and resulted in the formula

hopt = 3.904.n70 134 (3.2.12)

which is not too dissimilar from (3.2.11). Use of (3.2.12) in fact
gives slightly larger values of h than does (3.2.11) but these
differences lessen as n increases.

A problem when estimating the density function (» = 0) wusing a
kernel with k = & is that negative estimates of the density can be
obtained especially in the tails where there is little data, Such
negative values should therefore be reset to zero but the resulting
estimate will then not be a bona fide density in that it will not
integrate to one.

A simple way to overcome this is by then rescaling the estimate

by [ J %‘(x)d:-(]_1 . The result of this however, is that anomalies in




parts of the distribution with little data affect the estimate in the
more important main body of the distribution. An alternative iterative
correction procedure which converges to a bona fide estimate was
suggested by Gajek (1986) which has an optimality property over any
other correction procedure with respect to weighted MISE i.e.

EI(%(X) - f(x))z.W(x)dx. A necessary condition on the weight function
w in the MISE though is that J w(x) dt is finite which means that
the weight w should increase for "large" arguments which thereby
increases the importance of the tails. No guidance is given in the
paper as to a more specific choice of weight function and the effect
different choices have on the resulting estimate nor to the speed of

convergence of the algorithm.

In the derivation of formula (3.2.12), which involved numerical
integration, no rescaling was carried out which removed the influence
of the tails as discussed above. This is justified by the average
areas based on 25 simulations of data from four different distributions

given in the following table.

Table 3.3, The mean and standard deviation of the areas of density
estimators using the kernel K(t) = (15/32).(7t4—10t2+3) with no

rescaling based on 25 simulations.

Distribution n=230 N =100

Mean St. deviation Mean St. deviation
N¢0,1) 1.015 0.000066 1.008 0.000025
Gamma (2, V?2) 1.003 0.000007 1.001 0.000001
0.5[N(x-0.866,0.5)
+ N(x+0.866,0.5)] 1.033 0.000044 1.032 0.000035

t(3) 1.006 0.000020 1.002 0.000012




The largest mean errors occur for the bimodal normal mixture but these
are only 3.3% and 3.2% for n = 50 and 100 respectively. All the
others are 1.5% or less, There is also little variability in the
results for each of the sets of 25 samples. For larger sample sizes
the errors will be even less. Hence, resetting negative estimates to
zero but not rescaling results in a density estimate which is very

close to being bona fide.

On the other hand, these results could be used to argue that
if rescaling is carried out the influence of the tails on the main
part of the distribution will be quite small. Therefore, the decision
on whether to rescale or not really depends on what the estimate is
required for. If only a simple pictorial representation of the
density estimate is required then doing no rescaling simplifies the
computations and should be quite adequate. However, if the estimate
is to be used in another statistical procedure then it may be better

to carry out some form of rescaling to obtain a true density.

3.3 Jacknifing.

This is based on the generalised jacknife method of Schucany,
Gray and Own (1971). 1In this context let ({X;,...,X;} be n
independent and identically distributed observations from the
distribution F(0) where 6§ 1is an unknown parameter and also let

t1 and tg be two estimators of 0 which are biased.
i.e, E[tpr(Xg,...,Xp)] - 8 = bp(n,0) =0, r =1,2,

Let R = by(n,0)/by(n,6). If & is now defined to be

(t1-Rt9)/(1-R) then E[@} = § assuming that R is known.

For density estimation Schucany and Sommers (1977) define the

"jacknife estimator" (, pe




g(x) = [F(x;K,h)) - R.F(xK,hp)1/(1-R)

(3.3.1)
where R ®# 1 1is a constant, K 1is the kernel function and hy and
hy are smoothing parameters. The estimators %(-;K,hl) and }(-;K,hz)
are both assumed to satisfy (3.1.6) for k = 2. They show that if
R is set to be the ratio of the principal terms in the asymptotic
expansion for the bias which, because the kernel functions are the
same for both estimators, is simply h%/hg, then the term in the bias,

E[g(x)] - f(x), containing f(2)(x) is removed.

They also show that

-1 B -3 -2
(m.hp™h S K@ - . K((Zy/a)1/(-aTdy (3.3.2)

i=1

g(x)

where a = hy/hy and Zj = (x-Xj)/hy; so that the same estimator

could have been produced by using the single kernel

K*(t) =[K(t) - a™>. K(t/a)]/(l-a"2) . (3.3.3)
K* satisfies the condition (3.1.2) for k =4 and is therefore
in the class of kernels suggested by Bartlett with k = 4,

Note that the jacknife estimator can be expressed as

g(x) = T(x;K,hy) + [1/¢a2-1)].[F(x;K,hy) - F(x;K,ahy)]

(3.3.4)

which suggests that [1/(a2-1)].[f(x;K,h1) - F(x;K,ahj)] is an

additive bias reducing corrector factor for %(X;K,hl).

Now let

n
g(x) = (n.hp) 7 . T K¥(x-Xq)/hy) (3.3.5)
i=1

so that




Elgo] = £60 + (1/26).07. 8% 6o [ * k¥ (0)de + o(n))
(3.3.6)
and
Vig(*)] = f(x)/(nhl)).JK*(t)zdt + o(mhl)’1 (3.3.7)

The quantities j tz*.K*(t)dt and [ K¥(t)2dt can be simplified as

follows:
J t4 K¥(t)dt = a2 ) I t4 K(t)dt - =2 X ] t4K(t/a)dt
(aZ-1) , (a2-1)
(aZ-1y h T @iy T
~ -a2.m, (3.3.8)

where my is defined by (3.1.2) and equals 3 if K 1is the standard

normal density.

[ K*(t)2de = j [-(;2—5_‘-;}—)7 {K(t)2 + a8 k(a2

- 2.a“3.1<(t).1<(t/a)}] dt

I
a 2 -6 2 -3
-7 [ [ x(e)%ae +a™ [ k(t/a)®ar - 227>, [ k(e)K(e/a)de]
(3.3.9)
When K 1is a standard normal density
2 a% 1 a-d 2 a—2
K¥(t)“dt = . + - (3.3.10)
2 132
@D lave 2 VE Voo (1+ad)

Schucany and Sommers suggest without justification using a value of
a close to 1. This suggestion can be investigated by considering
expressions (3.3.8) and (3.3.10). If a standard normal density
function is used as the kernel then when 9a% (i.e. the square of

(3.3.8)) is plotted against a it can be seen from figure 3.1 that




for a > 1 the integrated squared bias would increase very rapidly.
The plot of (3.3.10) against a (figure 3.2) shows that the integrated
variance would decrease fairly rapidly for 0 < a < 1 while for

a > 1 the decrease is quite slow. Combining these in the expression

T = (V8 . 82)1/9 which is proportional to the asymptotic MISE
evaluated at the asymptotically optimal smoothing parameter and again
plotting against a (figure 3.3) shows that the MISE would decrease
fairly rapidly for 0 < a ¢ 0.6, more gently for 0.6 < a < 1, attain
a minimum as a — 1 and increase fairly slowly for a > 1. This
gives credence then to a choice of a near 1 but for a large range of

values of a the increased loss in MISE would not be great.

It is of interest to see what form K*(t) takes in the limit as
a — 1. This is also not considered by Schucany and Sommers but using

L'Hopital's rule gives

lim K¥(t) = 0.5.¢.K(1) () + 1.5.K(¢t)
a=-1

= KL(t), say. (3.3.11)
If KL(t) 1is a standard normal density then

KL(t) = -0.5t2.N(t;0,1) + 1.5.N(t;0,1)
= N(t;0,1) - 0.5.(t2-1).N(t:0,1).

= N(t:0,1) - 0.5.N(2)(¢;0,1) (3.3.12)

where N(t;0,1) denotes the standard normal density evaluated at t.
This is equivalent to estimating the density using a normal kernel
and then subtracting an estimate of the principal bias term,
O.S.hz.f(z)(x), based on the second derivative of the estimate. This

approach will be discussed further in Section 3.4,

The value of B = j t4.kL(t)dt = -3 and V = j KL(t)2dt = 0.476




so that T = 0.660 which compares with 0.620 for the optimal kernel
and 0.643 for the minimum variance kernel of Gasser et al {(1985).

(See table 3.1).

Jacknifing can also be implemented by using a different kernel
for each of the two estimators in (3.3.1) (i.e K7 and Kjp) and
Schucany and Sommers give algebraic details based on such an approach.
The bias term h4.f(4)(x) can be eliminated if Kj and Ko are
chosen such that they differ in the second or fourth moments and

hy and hp are chosen in the ratio

J t4 Ko(t)de . J t2.Kq (t)dt

(3.3.13)

BN N N

[ t2 kp(rar . | thxq(orar

Bias terms containing higher powers of h can be eliminated if

more than two estimators are combined.

In a small simulation study they demonstrate the effectiveness of

the jacknife estimator in reducing MSE.

3,4, Using a kernel function W(t) = K(t) - (1/2).K(2)(t).

Consider estimating a density f wusing a fixed kernel density
estimator with k = 2 in (3.1.6) and then subtracting an estimate of
the principal bias term (1/2)h2.f(2)(x) based on the second
derivative of the estimator.

i.e. £(x) = n1 § (hIK(x-X;)/h)-(1/9)n2. %‘E h=1K((x-X;)/h))
i=1 X

(3.4.1)

The term in brackets, after carrying out the differentiation, is

h=1.K((x-X{)/h) - (1/9).h2/(h=3 K(2) ((x-X;)/h))

= h™L [K((x-X{)/h)=(1/9) .K(2) ((x-X{) /h) ] (3.4.2)




Hence,

n
F(x) = nl.h-1 % w((x-X{)/h) (3.4.3)
i=1

where
wit) = k(e) - (1/2).k(2)(e) (3.4.4)
Assume that the kernel K iIntegrates to one and satisfies the

moment condition (3.1.2) with k = 2. Then

[ weeyae = | ety = (1/2) k(2)dt = 1 provided [ ¥ (eyae =0

(3.4.5)
jt.W(t) dt = 0 provided jtk(Z)(t)dt =0 (3.4.6)
jt2.W(t) dt = 0 provided jt2.x<2)(t)dt - 2.my  (3.4.7)
jt3.W(t) dt = 0 provided jt3.x(2)(t)dt =0 (3.4.8)
jt“.W(t) at = m, -(1/2) jt“.K(2)(t)dt % 0. (3.4.9)

Clearly W(t) 1is a kernel function satisfying the moment
conditions (3.1.2) with k = 4 sgo that the asymptotic bias will be

0(h%).

If K 1is chosen to be the standard normal density then the
above conditions ((3.4.5-(3.4.9)) on the kernel and it's second

derivative are satisfied.

i.e. W(t) = N(t:0,1) - 0.5.N(2)(¢:0,1)

N(t;0,1) - 0.5(t2-1).N(t;0,1)

0.5(3-t2) ,N(t:0,1) (3.4.10)

|

This is the same weight function that was found by jacknifing using

N(0,1) kernels and letting a — 1.




It is of interest to find other functions K which satisfy
(3.4.5)-(3.4.8). Suppose then that K 1is a polynomial of degree m
defined on [-1,1] and zero otherwise. K needs to be a symmetric
function so it is only necessary to consider terms involving even

powers of t,
i.e. K(t) = apt® + ap ot™ 2+, +ag, m even (3.4.11)
where the {aj)} are constants. Therefore,

K2t = m. (m-1)apt™2 +(m-2) (m-3) .ap_ot™4 +. . .+ 2.1.a9

(3.4.12)
Now,
1 m
[ x@yac = 2.5 aj/(i+1) =1, i, m even (3.4.13)
-1 i=0
1 m
[ x@(ae =23 a;.1 =0, 1, meven (3.4.14)
-1 =0
1 m
[ e2x(erae =25 ag/(isd) i, m even (3.4.15)
-1 i=0
and

1 m
j t2 k(2) (t)ydt = 2. i.(i-1).aj/(i+1) i, m even (3.4.16)
-1 1=0

so that to satisfy (3.4.7) it is required that

m
1.(i-1).aj(i+1) = 2 ¥ a;/(i+3) (3.4.17)
0 i=0

1

I8

m
i.e. Soag((i3+42.12-5.1-2)/((i+1).(i+3))) = O (3.4.18)

For m =0 condition (3.4.18) implies that -(2/3)ag = 0 so that
ag = 0. For m=2 condition (3.4.14) implies that O.ag + 2ap =0
so that ag = 0. Therefore, no polynomials of degree 2 or less satisfy

the required conditions. However, when m = 4 we have:




O.ap + 2.a9 + 4,24 = 0 from (3.4.14)
ag + (1/3).a9 + (1/5).ay = 1/2 from (3.4.13)

-(2/3).ag + (4/15).a9 + (74/35).a4 = 0 from (3.4.18)

Solving this system of linear equations produces the kernel

function
(21/80) .t4 - (21/40).t2 + 2497400, -1 ¢t g 1
K(t) = [
0 . o.w (3.4.19)
so that
(252/80).t2 -42/40, -1 ¢t ¢ 1
K(2) (¢) = [
0 , O.W. (3.4.20)
Hence,

W(t) = K(t) - (1/2).k(2) (1)

(21/80)t4 - (21/10).t2 + 4597400, -1 gt g1
{ 0 . o.W,
(3.4.21)

Plots of W(t) based on the standard normal kernel and on (3.4.21)
together with the optimal kernel of order (0,4), are shown in figure
3.4. Each of these functions take negative values. The one based on
the standard normal has a broader shape than the other two, is negative
for 1t1 » V3 and asymptotically approaches zero. The optimal
polynomial is more peaked than (3.4.21), crosses the t-axis at * 0.65
and has minima of -0.27 at t = * 0.85. (3.4.21) crosses the t-axis at
t =t 0.77 and has minima of -0.6% at * 1. Both the polynomials are

discontinuous at = 1.

The quantities B, V and T (3.2.8) are given in the following table.




Table 3.4, Asymptotic blas, varlance and MISE for kernels of the form

W(t) = K(t) -0.5.K2(t).

W(e) B v I
0.5(3-t2)N(t;0,1) -3.000 0.4760 0.6600
21 4 21 9 459
5t - 15 t2 * 755 -0.0826 1.1258 0.6384

In terms of asymptotic MISE there is little loss in using one of
these two weight functions instead of the asymptotically optimal kernel
of order (0,4) which has T = 0.6199, The polynomial version
performs slightly better than the minimum variance kernel of order
(0,4) which has T = 0.6432. The normal version has the advantage
that the resulting density estimate, before adjustment for any

negative values, has continuous derivatives of all orders.

3.5. Estimating the exact bias.

The exact expected value of a fixed kernel estimator, %(x), is
given by (3.1.1) and involves the true f which in practice is
unknown. It can be replaced by a fixed kernel estimate to provide

in turn an estimate of the expectation i.e.

0
-1 ~
| nTRCen/my . Fay = AG), say. (3.5.1)
-0
An estimate of the bias is then

A(x) - T(x) (3.5.2)

so that a bias corrected estimate of f(x) is

fi

P = T - [Ax) - T ]

[

2.7(x) - A(x) (3.5.3)

To show that this has asymptotically reduced bias consider:




E[T¥(x)] = 2.E[T(x) ] - E[A(x) ] (3.5.4)

Now,

E[F(x)] = £(x) +(1/2).h2.F(2)(x) + O(h%) (3.5.5)

from (3.1.6) if %(‘) is based on using a kernel with k = 2. Also,

(=]

E[AG)] = | h l.k((x-y)/h). E[T(y) Jdy

= J h=1.K((x-y)/h) f(y)dy

+ j h=1.K((x-y)/h).(1/2) .82 £(2)(y)dy + o(h%) (3.5.6)

By making the change of variable t = (x-y)/h and using the
assumptions that K is symmetric and integrates to one
E[A(x)] = F(x) + h2.£(2)(x) + o(h%) (3.5.7)
Therefore,

E[f¥(x)] = £(x) + o(h%). (3.5.8)

If K is assumed to be a standard normal density then A(x)

can be evaluated analytically as follows:
e -~
AG) = [ (LK ((x-y)/h) . T(y))dy
=00

5] n
] (1. K((x-y)/h).n"1.h=1 § K((y-xi)/h}dy
—o i=1

I

M

n e«
nl 5 [ (e lK(xey) /h) b IK((y-xp) /) Yy
i=1

[

n ©
nl S [ NGy, h2) N(y;x,h2) Yy

i=1 -

n
nl ¥ N(x;xi,2h?) (3.5.9)
i=1

T(x; VZh) based on an N(0,1) kernel.




Therefore, the bias corrected estimator based on a standard normal

kernel is
2.TGesh) - T(x: VZh) (3.5.10)

which is just a jacknife estimator with a = V2. When a = V2
B=26.000, V=20.,4065 and T = 0.6690 and so it is slightly
inferior in terms of asymptotic MISE to those kernels with k = &

considered in Section 3.2 -~ 3.4 - see tables 3.2 and 3.4,

3.6. Subtracting an estimate of (1/2).h2.f(2>(x).

In the asymptotic expression for the bias of a fixed kernel
estimator the principal term when k = 2 is (1/2).h2.f(2)(x). (3.1.8)
In this section it is proposed to construct a kernel estimator for

this quantity and subtract it from the original estimator.

In order to implement this method a choice of kernel and
appropriate smoothing parameter needs to be made for estimating the
second derivative. A fixed kernel estimator for f(z)(x) is defined

to be

~ n
P -1y 1 k| (3.6.1)
i=1 b

where Ky 1is derived from a twice diffentiable function and satisfies

the conditions

0 . §=0,1,3,...,k-1
[ td. Ky (t)de = | 21 L j=2
By *0 .=k

(3.6.2)

so that the order of the kernel is (2,k) and hy is the smoothing

parameter (Muller and Gasser (1979)).

If it is assumed that f 1is four times differentiable then




B 001 =5 ] k(o). Flx-ngnyar (3.6.3)

hy

and
var (8 0) = Lo [ k()2 £(x-ngt)de
n.h
2
L 2
- = { | xa(e). £(x-hp)ae] (3.6.4)
nh2

Muller and Gasser (1979).

The asymptotic MISE is then

o [ ko)2ar ¢ 2o WD [ e (2,

n.h2 21 2

[] tkKQ(t)dt]z + o[nhgs + hg(k_z)] (3.6.5)

The estimator is therefore consistent in MISE if

linhy =0 and lim n.h) = = (3.6.6)
n->c n-0

and f(z)(-) is continuous in x. (Muller and Gasser (1979)).

Therefore, if hp 1is proportional to n"2, provided
0 <ac< 1/5, %(2)(x) will be consistent for f(z)(x). Hence,
differentiating %(x) twice will not provide a consistent estimator
if the asymptotically optimal value of h, which is proportional to

-1/5

n , 1s used.

The value of hy which minimises the asymptotic MISE (3.6.5) is

1
oy - [ s Y,k L 1 ](2k+1)
7.(k-2) © 3 .2 n
Bj 1 j £ ey %ae
(3.6.7)

where

V2,k = J K2(t)2dt




-..73—-.

and

-1 k
By 1 &T [ tkkp(t)at
_1/
so that if k =4 hy should be chosen proportional to n 9.

That the method of this section will asymptotically reduce the

bias to 0(h4) can be seen as follows: -

oo = Teo - (L) .02 T x) (3.6.8)

where h and hy are the smoothing parameters used in the kernel
estimators, based on the kernel functions K and Kj, of the

density and second derivative respectively. Now

B[ ] = 5T ] - dzon? L g% 001

£ + (/) h2 £ (x) + ont

- Az 02 1P 6o+ mian [ trprac s 6o + o))

£(x) + 0(h%), provided T2 (x) is consistent

i

(3.6.9)
Also,

VE @] = Ee ]+ dzont . v P 01

h2 cov|[F(x), "f(z)(x)]

Now,

Cov[%(x), %(2)(x)]

n — n Y.
covlzg 3 K[XhXi]' 5 3 K2[xh:J]

i=1 n h2 j=1
n -X n =-X3
el 3 R R Y el
2
n %=X n X
o 3 R 3l
2




n x=-Xj n X=X
%—2- E[izz=1 "rli [ h 1] le ‘é‘- Kz[ th]]
n -X -X4 -X -X
= %ﬁ E[1§1 § K[5-) h% KZ[Xh21] * EJ & X[] h% KZ[XhQJ]]
-Y -Y - -
- el ) Sel)] - R R KRR ke LT v
2
Therefore,

cov(Exy, T2 ()

S5O - b - R el B 2l e b)

| (e .Ko(ht/hp)de + o(n-1)

4
2 h
[0 + 2= £ P 0 + 0] [£P 0 + o2 [ thka(erar £ 00

i
=3

<o)

using the separate changes of variable t = (x-y)/h and t = (x-y')/h9

- fﬁgl [ k(t) Kp(ht/hg)de + o(n1)

nh2

provided h = 0(n‘1/5) and hg = O(n‘l/g). Hence,

~ 4
v[f*(x)] = fflﬁ) J K(t)2dt + 2—- ) flig) J Ko (t)2dt
n
2

-2 9O [ ki) Ky (he/ng)at + o(n) (3.6.10)
nh
2

- ocn~ /s -1/9 -
If h = 0(n ) and hpy = O(n ) then asymptotically

VIE o] = B8 [kee)2ar (3.6.11)




which is the same as for }(x) when using a kernel of order (0,2).

The ratio of the asymptotically optimal smoothing parameters

for estimating the density and it's second derivative is

. s
1 Vo,2 1
R B
B f2(t)2dt
ho 0.2 | : s (3.6.12)
hp ) 1 1/
v 9
5 2,4 1
N YYRY
B, 4 [ £4ee)2ar |
n*a/45 , say
Therefore,
hy = c=1.n*/* 1 (3.6.13)
but ¢ depends on the unknown quantity
1/
9
[ [ £ @r?ac) °7 R
= r, say. (3.6.13)

1
[ j f(z)(t)2dt] /5

If it is assumed that both f and K are standard normal

densities then

1
, — (1.85125) /9

— = 1.46092.
(0.21157) /5
Also,
Vo, = | NG 1)Par = 2
' 2vVr
1 9 1
By 5 = o7 .j ¢2N(t,1)de =
2 2 3
V24=IN(t’1) dt =
! 8V«
1 4y(2) _1
By 4 = 3T .j t4N(2) (¢,1) 4t 5 -




Hence, for standard normal data choose

4/45 |

hy = 0.887.n (3.6.15)

so that more smoothing will be appropriate for estimating N(z)(x;O,l)

provided n > 4. The asymptotically optimal h wvalue for estimating
21

the standard normal density itself is 1.059.n /5 and substituting

this into (3.6.15) gives
~1/
hg = 0.940.n" /9 (3.6.16)

If, however an optimal polynomial kernel of order (2,4) is used

for estimating the second derivative such as

[ (105/16) .(-5t4+6t2-1), 1t1 ¢ 1

Kyp(t) = (3.6.17)
, O.W.
(see table 3.1) then the optimal hy value is
1y
5 35 1 17 /9
hg = i+ . . .= (3.6.18)
{4 324—1 J f(a)(x)2dx n}

Also, if a standard normal kernel is used in the estimator of

the density then

1/9

=2

4 2
— = 0.26841 . [ J f e dx]

2 1
[ fz(x)gdx] &

Y

(3.6.19)

If we again assume that f 1is an N(0,l) density then

hy = 2.550 . n" /%

(3.6.20)
A
-~ 2.701 . n /9 (3.6.21)

1
if h=1.05 .n /5




Three other underlying distributions each with unit variance
but of different shape were considered for calculating r. These

are as follows:

(i) Normal mixture ; f(x) = 0.5N(x;-0.866,0.5)

+ 0.5N(x;0.866,0.5) - bimodal

(ii) t(3) scaled to have unit variance:

f(x) = % . ———JL—ji - long tailed.
(1+x2)
(iii) Gamma (2, V2) : f(x) = 2.x.e_\f§ X . skewed.

The values of J f(z)(x)zdx, J f(4)(x)2dx and r are given in

table 3.5.

Table 3.5 The values of J f(z)(x)zdx, J fca)(x)zdx and

@y, 2, 179 2),..2. /5

r o= [ J £ (%) dx] [ I Ao (%) dx] for various underlying

distributions.

Distribution I f(z)(x)zdx l f(a)(x)zdx r
N(0,1) 0.2116 1.8513 1.4609
Bimodal 3.5536 562.2524 1.5682
Long tailed 3.2229 814.6744 1.6665
Skewed 16.0208 11.3969 10.7525

Despite the integral quantities varying considerably the ratios r
are fairly similar, except in the case of the highly skewed Gamma, with
the average value being 1.3620. Substituting this value for r into

the ratio of smoothing parameters when N(2)(t;0,1) is used as a




kernel for estimating f(z)(x), (3.6.12), gives

4/45.h

hy = 0.95.n (3.6.22)

When the optimal polynomial (3.6.17) is used for Kj and
r = 1.3620 is substituted into the ratio of optimal smoothing

parameters (3.6.12) it is found that

hy = 2.74.0°7/% n (3.6.23)

The slightly simpler
hy = 2.74.n%/11 p (3.6.24)

will be used in practice. This result is very similar to the result

when the data is assumed to have come from an N(0,1) distribution

(3.6.21).

These formulae based on an average value of r should provide a
simple but reasonably effective guide to the amount of smoothing
required for estimating f(z)(x) for a variety of underlying

distributions.

As regards the best choice of kernel for estimating f(z)(x) the
asymptotic MISE's evaluated at the asymptotically optimal hy values
i.e. T = (VL‘.Bth’)l/9 can be calculated for the kernel function
N(z)(t;o,l) and the optimal polynomial of order (2,4). The ratio of

these values gives the asymptotic efficiency. The values of T are

N(z)(t;O,l) : T'=7.930 (V= 3/(8\/;), B = 12)
Optimal polynomial : T = 6.685 (Table 3.2)

so that T(optimal)/T(Normal) = 0.843, i.e. the normal kernel is only
84.3% as efficient as the optimal one. This is in contrast to the

very high efficiencies of suboptimal kernels for estimating the density




itself.

Consider now the situation when the variance is not equal to one,
Let the random variable X have unit variance and pdf f(x) and let

Y = a,X where o is a scalar.
Then, the pdf of Y, g say, is
gly) = a‘l.f(a“l.y)
with derivatives:
g(l)(y) = a‘z.f(l)(a'l.y)
2y = a3 5P a1y
£ = a4 1P a1y
g () = 058 oLy,
Hence,
[ 6Py = | o6 £ P (a1.y)ay
- o5 | 72 (¢ 24¢
and

J o-10 .f(A)(a‘l.y)dy

ey
Q9
~
=~
~
~~
4
~
[yl
(=9
<
it

- o | £ () 24¢

where t = a‘l.y.

Therefore,

17 -1
[ I g(a)(y>2dy] %, [ I g(z)(y)zdy]
1 _1
e [ f@02a] 7 a5 [ 1D Fay]

1 1
=[] £ 0 %a] /9. [ [ £%(t)2at] s




Therefore when the variance is not one the smoothing parameter
for the density, which will itself involve an estimate of the standard
deviation, can be multiplied by the same factor as in the unit variance

case,

Muller et al (1987) describe a number of methods of smoothing
parameter choice for derivatives in a nonparametric regression
context., Their "factor method" is the one that might best also be
applied to derivatives of density functions. If we choose kernels
K and K, for estimating the density and its »th derivative,
respectively with both having the same Kk wvalue in (3.2.5) then the

ratio of optimal smoothing parameters is

1
2k+1
A" B2
h_ | @Dk vk ok
h, Kr 2
Vo.k. ' Bv,k
= d,,k (3.6.25)

So, by using the same value of k the terms in the ratio dependent
on derivatives of the unknown density cancel out leaving a constant

which depends only on the kernels K and K,.

For the case » =2 it is necessary to use

K(t)

15/35.(7t% - 10t2 + 3), 1t1 < 1 (3.6.26)

and

Ko(t) = (105/16)(-5t% - 6t2 + 1), 1t1 < 1 (3.6.27)

I

which both have k

4 and result in the factor dy 4 = 0.8919. Table
1 of their paper lists the factors d, y for various values of »

and k.




Hence, if using this method to find a value for hyp a choice of h
for estimating the density using a kernel with k = 4 needs to be
made. As discussed in Section 3.2. an estimator of the density based
on a kernel with k = 4 will have bias = 0(h4) which is the same
order as when an estimator of (1/2)h2f(2)(x) is subtracted from

a kernel estimator with k = 2. Also, because (3.6.26) has dis-
continuities at % 1 the resulting estimate will itself be dis-
continuous. Therefore, as we are trying to bias correct an estimator
with bias of order h2 it is perhaps better to base the choice of
smoothing parameter for use with Kj (3.6.27) on the degree of
smoothing employed with a kernel having k = 2 and continuous
derivatives such as a standard normal kernel. The small sample
behaviour of subtracting bias and using a kernel with k =4 will be

investigated further in the simulation study of Section 3.8.

Using the factor method also requires more computation as smoothing
parameters have to be chosen for kernels with k =2 and k = 4,
Muller et al (1987) suggest using cross-validation. On the other hand
use of a formula such as (3.6.24) requires only one smoothing para-
meter choice for estimation of the density. However, similar values
of hp are in fact obtained if instead of cross-validation the normal
optimal formulae derived by finding those h-values which minimise the

exact MISE for a variety of sample sizes are used i.e.

N(0,1) kernel : h = 1.2.n°0-21% & (3.6.28)

Optimal polynomial (k = &) : h = 3.904.n 0"13% 5 (3.6.29)

When the optimal polynomial (3.6.27) is used for Ko the factor

method gives




hy = (0.8919) (3.904.n 0134 5
= 3.382.n°013% & (3.6.30)
whereas using (3.6.24) results in
1 _ .
hy = (2.7.n 711 y (1.2.070- %%y 5
- 3.24.070123 5 (3.6.31)

Using the factor method in the form (3.6.30) results in smaller
hp values than found using (3.6.31) for all n > 45, The differences
however, are not large. For example if n = 100 hg = 1.825 when
the factor method (3.6.30) is used and 1.839 if (3.6.31) is used.
When the sample size is much larger the differences are still small -
at n = 1000 hy = 1.340 using (3.6.30) and 1.385 when using (3.6.31).

These small differences should have little effect in practice.

A problem with subtracting an estimate of the bias from a non-
negative estimate is that it may result in a negative estimate of
density as is the case with the optimal kernels, which have negative
sidelobes, of Section 3.2, Such an estimate must be reset to zero
but the results of the simulation study given in table 3.6 indicate
that if no rescaling takes place this will make little difference.
The details of the study are as described in Section 3.2 and the same
seed was used for the random number generator so that results can
be directly compared. The simulated data sets were smoothed using
smoothing parameters calculated from the exact optimal formula for

standard normal data.




Table 3.6. The mean and standard deviation of the areas of density
estimates based on subtracting an estimate of the asymptotic bias
from a fixed normal kernel estimate with no rescaling and for 25

simulations.

Distribution N =50 N =100

Mean St. dev. Mean St. dev.
N(0,1) 1.009 0.000024 1.004 0.000007
Gamma {2, V2) 1.002 0.000003 1.001 0.000000
0.5N(x;-0.866,0.5)
+0.5N(x;0.866.0.5] 1.020 0.000032 1.018 0.000021
t(3) 1.003 0.000014 1.001 0.000009

These means and standard deviations are all less than the corre-
sponding results when using the optimal kernel of order (0,4). (Table
3.3). The largest mean errors occur again when estimating the
bimodal normal mixture but at only 2% for n = 50 and 1.8% for

n = 100 these are still very small.

3.7. Relaxing the integral constraint.
In order to improve the rate of convergence in MISE of the kernel

4/5) to rates like O(n_8/9) Terrell and Scott

mmethod from O(n
(1980) consider relaxing the constraint that the density estimate
should integrate to one rather than allowing the kernel function to
take negative values. They limit the choice of kernel to be symmetric
and non-negative so that the odd moments in the Taylor series expansion

of E[%(x)] are all zero. Equation(3.1.6) may then be written in

the form:

aj
f(x

E[f(x)] = £ [1 +

(3.7.1)

pZ
)

N
%

<
[E—1




where aj = (-1)1.f D[ ¢lk(erar]sin.

Taking logarithms, applying the series expansion for natural

logarithms and ignoring higher order terms in h then h% gives:

2, [as£ G0 -(1/gda2 0"
oy - b2 (3.7.2)

log(E[ F(x) ]} = log(f(x)). + ,
f(x)

The term in h2 can be eliminated by considering the linear

combination:

(“/3) 1og(E[TCx;h) Ty = (1/3) . log(E[T(x;2h) ]}

(42480 - 2a2]n"

- logf(x) - — (3.7.3)
(%)
Taking exponentials and using a series expansion for the
exponential function then gives:
A 4 N -1
E[T(x;h)]73 . E[T(x;2n) 73
[2a§ - bagf(x)]
= f(x) + 463) . h (3.7.4)

The estimator they propose is then the ratio of two non-negative

kernel estimators i.e.

~ ~ 4 ~ -1
P00 = Toxshy /3. F(xzan)” B
2/
~ ~ ~ 3
~ F(x3h) L {E(xsh) /8 (x5 20) ) (3.7.5)
so that the term in brackets is a multiplicative correction factor for

~ ~ R ~
f(x;h). The value of f (x) 1is taken to be zero if f(x;h) is zero.

A fixed kernel estimator based on smoothing parameter h tends

to systematically overestimate in the tails and underestimate in the




main body of the distribution. Increasing the value of h tends to
exaggerate this effect. Therefore, the effect of the correction
factor should be to increase %(x;h) in the main body and decrease

it in the tails and so thereby reducing bias.

~k
Terrell and Scott show that f (x) does indeed have bias of order

h* and variance of order (nh)-1l. In fact,

2a§ - Aahf(x)
f(x)

x

E[T (x)] = £(x) +

. h% + o(h%)  (3.7.6)

and
VT - v[% Fochy - 3 Fa2m] + o)

- VEeam ]+ 5 v[Eesam ] - & covfreany, Fexizm] + ok

Now, for any non-zero constant K,

V[EGxikh) ] = 2952 [ kee)2de + o(D) (377

cov[F(x;h) ST O k) | -~-r11 [ ] 1;,_2 - K[EY) k[Y] fnay

PR roray. | B k) re]

Making the change of variable t = (x-y)/h and expanding as

Taylor series gives:

Cov[%(x;h),}(x;Zh]

-3 [ | & k@ xem {reo-ne £ oo+ 2 2 2

+otd}ae] - 2 [(CFG) + o(h2)) (£ + o(h2))]
- ﬁ CEGO L[ K Kt A + 0(11—]) (3.7.8)

Hence,




._86._

1 2 t
+ 0(d) (3.7.9)
- 7.
These results can be used to derive an asymptotically optimal

smoothing strategy when using a standard normal kernel and also

assuming that the underlying distribution is standard normal.

For K(t) = N(t;0,1) we have ap = (1/9).£2)(x) and a =

(1/8).f(a)(x) so that
iy A/ (8P 0,17 - M 50,1y N0, 1)) B
bias f (x) = N(x:0.1)
= N(x;0,1).(2x2-1) .h% (3.7.10)
Therefore,
bias2(x) = N(x:0,0.5).—. (4x?-4x2+1)h8 (3.7.11)
2V
so that
8 8
[ bias2(xydx = z2.h” _  h (3.7.12)
2VT vz
Also,
V0] =t [aos . [ N0, 10%ar + s [ N(t;0,1)2a
-8 | N(t50,1).2.8(¢;0,4)at] (3.7.13)
o - £0,1).2.N(t 0, 7.

[Nb. K(t) = N(t;0,1) = K(t/9) = 2.N(t;0,4)].
Hence,

0.3586]

~k
VIE]=- 0. [232

(3.7.14)

and




—— 8"’/ —

0.3586
nh

[ Vit o 1ax = (3.7.15)

Combining the expressions for the integrated squared bias (3.7.12)
and integrated variance (3.7.15) we have:

8
MISE — . 4 9.3586 (3.7.16)

V7 nh

Differentiating (3.7.16) with respect to h, setting the result
equal to zero and then solving for h gives:
-1
h = 0.7547.n" /9 (3.7.17)

Substituting this optimal h-value into the MISE (3.7.16) gives

_8/
the minimum MISE of 0.418.n 9,

In their paper Terrell and Scott consider devising a smooth

strategy for standard normal data but using a uniform kernel i.e.

po| =

1, 1t <
K(t) = [ (3.7.18)
0, o.w.
However, there are some errors in their calculations. For the

bias we have ap = £$2)(x)/94 and ag = £ (x)/1990. Using (3.7.4)

then gives:

bias T (x) = 7%_ (x4 + 4x2 - 2). N(x;0,1)h% (3.7.19)

By (3.7.9) the variance is:

var{F*(x)} = 25.N(x;0,1)/(18nh) (3.7.20)

A straightforward calculation then shows that the MISE is given
by

MISE = —22_ 4 17 h8 (3.7.21)

18nh 663552 V=




which is minimised by

1
h = 2.840.n" /9

(3.7.22)

_8
with a resulting minimum MISE = 0.,611.n /9 which is 46% larger then

the value obtained when a standard normal kernel

drop in performance.

is used - a marked

Because of the multiplicative correction factor, use of the

~%
estimator f (x) (3.7.5) will result in an estimate which does not

integrate to one. In fact Terrell and Scott remark that the area

will always converge to one from above for any sampling density. To

check on the size of error the simulation study carried out in

Sections 3.2 and 3.6 was again undertaken using the estimator (3.7.5)

with the smoothing parameter chosen by (3.7.17) multiplied by a

robust measure of scale. The results are given in table 3.7.

Table 3.7. The mean and standard deviation of the areas of density

~k
estimates found using the estimator f (x) with a standard normal

kernel, 25 simulations were carried out,

Distribution

Mean
N(0,1) 1.026
Gamma (2, V2) 1.010
0.5N(x;-0.866,0.5)
+ 0.5N(x;0.866,0.5) 1.039
t(3) 1.021

N = 50

St. dev.

0.000049

0.000015

0.000023

0.000016

N =100

1.017

1.008

1.034

1.015

St. dev.

0.000014

0.000006

0.000017

0.000012

The mean errors are all at least 0.8% with the largest at over

3% again for the bimodal normal mixtures. These means and standard




deviations are consistently higher than those found in Section 3.2

and 3.6,

The approach of this section may be generalised by considering a
sequence of non-negative and symmetric kernel density estimates
{%(x;ih); i=l,...,s} and taking a multiplicative combination of
these with ith exponent

(-1)(i'1) 2.5.(s-1)....(s-i+1)
(s+1) (s+2)....(st+i)

(3.7.23)

The resulting non-negative estimator will have asymptotic

MISE = O(n o/ (4s=1)y |

3.8, Simulation study.
In Sections 3.2-3.7 six methods for constucting density
estimators which reduce asymptotic bias and MISE have been discussed.
These each fall into at least one of three approaches to this
problem which are:
(i) Subtracting a bias reducing correction factor.
(ii) Using a kernel which can take negative values so that certain
higher order moments than the second are zero. (i.e.
k>2 in (3.2.5)).

(iii) Using a multiplicative correction factor.

A number of the six methods clearly only fall into one of these
three categories, The first is when subtracting an estimate of the
principal asymptotic bias term (1/2)h2f(22x) where the estimate of
f(z)(x) utilises a different degree of smoothing to that used for
estimating the density itself (Section 3.6). Secondly, there are the
minimum variance and optimal kernels of Gasser et al (1985) and thirdly

the method of Terrell and Scott (1980) which falls into category (iii).




However, each of the other three methods (Jacknifing, using the
weight function W(t) = K(t) - (1/2) K(z)(t) and estimating the
exact bias) can be placed into either categories (i) or (ii). Also,
each of these three methods were shown to be equivalent to another
of these three methods for certain choices of kernel and/or relevant
parameters. Subtracting an estimate of the exact bias is equivalent
to Jacknifing using normal kernels and the suboptimal value of the
parameter a = \/2. Jacknifing was shown to be equivalent to using a
kernel of order 4 but when again using normal kernmels and optimally
letting a — 1 it is also equivalent to using the weight function
W(t) = K(t) - 1/2K(2)(t) with K(+) taken to be the standard normal
density. W(t) constructed in this way performs slightly worse
asymptotically than the minimum variance and optimal kernels of
order 4. However, the polynomial version of W(t) (3.4.21) does
perform asymptotically better than the minimum variance kernel but

is still slightly inferior to the optimal kernel,

In the simulation study then, which is intended to examine small
sample performance, three of the methods discussed in this chapter are
included. These are either the only method or those which have the
best asymptotic properties in each of the above three categories and

are:

1. Subtracting an estimate of (1/2)h2f(2)(x) from an estimate

based on an N(0,1) kernel., The estimate of the second derivative
will use the optimal kernel of order (2,4) i.e.

(105/6) (~5t4+6t2-1) , 1t1 < 1

K(t) = [

0 ', otherwise .

2, Using the optimal kernel of order 4, i.e.




..__91 -—

(13/99) (7¢4-10t2-3) , 111 < 1
K(t) =
0 , otherwise

3. The method of Terrell and Scott (1980) with the two estimates

both using an N(0,1) kernel i.e.

e N N N 2/4
F(x) = T(x,h) . [f(x,h)/f(x,zh)]

In addition, the following three methods are also included.:
4, Using a simple fixed N(0,1) kernel estimate.

5. The adaptive method with o = % based on an N(0,1) kernel

and a pilot estimate constructed using method 4.
6. The adaptive method with o« =1 which is again based on an

N(O,l)‘kernel and a method 4 pilot estimate.

The fixed kernel method 4 is included so that the perfqrmances of
the other asymptotically superior methods can be directly compared.
The two adaptive methods are also included because it was demonstrated
in chapter 2 that their ideal versions can reduce both bias and MISE,
In this study the performances of their feasible versions will be
assessed.

Data were simulated from &4 distributions each having a different

density shape. These are:

1. Standard normal.
2. Gamma (2, V2) - skewed.
3. 0.5.N(~-0.866,0.5) + 0.5N(0.866,0.5) - bimodal normal mixture.

4. Student's t(3) - long tailed.

In chapter 2, method performance was assessed via exact calculations of

MISE using numerical integration. The aim of the simulation study




techniques in this chapter are to try and reflect the performances

as maybe realised in actual real applications of the methods. To
this end empirical loss functions and an easily implemented practical
smoothing parameter choice based on normality are used. Such an
approach also enables feasible versions of the adaptive methods to be

easily included.

Samples of size 50 and 100 were used. For a particular random
sample the underlying density is estimated at x-values equally
spaced at intervals of 0.2. For the distributions 1-4 the densities
were estimated in (-4,4), (0,10), (-5,5) and (-6,6) respectively and
therefore resulted in estimates at 40, 50, 50 and 60 points
respectively. This was repeated for 1000 random samples in each case
thus producing 1000 estimates of the density at each x-value. These
were used to construct empirical estimates of E[%(xk)] and E[%(xk)z],
k=1,...,M where M denotes the number of distinct x-values at which
the density is estimated for a given distribution. The next step
was to use these in estimates of the loss functions average squared
bias (ASB) and average variance (AVAR) which can be combined to

estimate the average mean squared error (AMSE), i.e.

1 M , 1000 2
ASB “§ 2 [100‘0 2 fiGa) - f(xk)] (3.8.1)
M 1000 1000 2
1 1 A 2 1 ~
AR =5 3 [gop 5 Fjo0” - [roee 3 Fitwo] |
(3.8.2)
ASME = ASB + AVAR (3.8.3)

Here f(-) denotes the true density and }j(-) the estimate based

on the jth random sample.




This procedure was then in turn repeated 10 times when n = 50
and 5 times when n = 100, The averages of the resulting 10 (or 5)
ASB's, AVAR's and AMSE's, to be denoted AASB, AAVAR and AAMSE
respectively, were used to compare performances with the standard
errors providing a measure of stability. The main computational
effort in this whole procedure has gone iﬁté obtaining good estimates

of E[T(x)] and E[f(x)2].

The smoothing strategy employed for each method is based on the
appropriate optimal formula for smoothing data from a standard normal

distribution. These are as follows:

Method.
-0.214 ~ . _
1, hNopt = 1.2n o with hy = 2.7hNopt
-0.134 ~
2. hNopt = 3.904 n o
3. h ~0.75 /9 5
) Nopt )
~0.214 ~
4, hNopt =1.2 n i
-0.235
5. hNOpt = 0.9 n \f;
~0.042
6. hNopt = (0.26 n

For methods 1-5 o represents a robust measure of scale. An
estimate based on the median of the absolute deviation (MAD) was

used. (Hogg (1979)), i.e.

o = median | xi - median (xj) |/0.6745 (3.8.4)

Method 6 is scale invariant as discussed in chapter 2.

As remarked in chapter 2, the simulation study of Bowman (1985)

shows that normal optimal smoothing provides a simple but effective




guide. It is most effective for unimodal densities but also has some
success in the presence of bimodality as long as the modes are not too
highly separated. In addition though, results were also obtained when

using the above formulae scaled by the factors 2/3 and 4/3.

Data samples from the Gamma (2, V2) distribution only take
positive values so that the density function is zero for negative x.
Hence, we also require }(x) to be zero for all negative x. The
density should therefore only be estimated at positive x-values but,
for example, if a fixed normal kernel is used an estimate which
integrates to one can only be obtained by constructing the estimate for
x-values greater than about -4h. Solutions to this problem are
discussed by Silverman (1986, p.29-32). The one chosen to be used here
is to reflect the data in the origin and then estimate the density for
X > 0 wusing the data set of size 2n but still with the value 1/n
in the estimator. The effect of this is to add the size of the invalid
positive estimate for certain negative x-values to the estimate at the
corresponding positive x's. This then results in an estimate which does

integrate to one over positive X and satisfies }(1)(0+) =0,

The seeds for the random number generator were chosen so that for
a particular sample size n, and distribution the seed is the same,
This results in the same data sets being sampled and enables direct
comparisons to be made both between the methods as well as within
methods when using different amounts of smoothing. The full results
are contained in tables 3.8-3.15. Also, for sample size 50 they are

illustrated in figures 3.5-3.16.

The AASB results for each distribution, except the highly skewed

Gamma (2, V2), indicate the effectiveness of subtracting an estimate




Table 3.8. Values of AASB, AAVAR and AAMSE for samples of size
50 from an N(0,1) distribution.
Scaling
gis“’r Method AASB (s.e.) AAVAR (s.e.) AAMSE
hNopt
1 .52x10-6 (6.4%10-7) .13x10-3 (1.9x10-3) .13x10-3
2 .15x1075 (1.0x10-6) .52x10-3 (1.5x10-3) .53%x10-3
3 .76x10-6 (6.7x10-7) .26X1073 (2.0x10-9) .26x10-3
2/3

4 .35X107° (2.4x10-6) .58x10-3 (1.5x10-3) .64x10-3
5 .86x10-3 (1.8x10-6) .33x10-3 (1.4x10-3) .41x10-3
6 .11x10-% (5.8x10-6) .51x10-3 (1.5x10-3) .82x10-3
1 .34x1072 (1.5x10-6) .30x1073 (1.4x10-5) .33x10-3
2 .27x104 (3,5%x1076) .54x10-% (1.1x10-3) .08x10-3
3 . 32x10-5 (1.5%x10-6) .39x10-3 (1.4x10-3) 43x1073
' 4 .86x10~4 (4.8x10-6) L74x1074 (1.1x1073) .26x10-3
5 .89x104 (3.4x10-6) .99%10~4 (1.0x10-3) .19x10-3
6 .65X10% (3.2x10-6) .39%10-4 (1.0x1073) .40x10-3
1 L45x10-% (3,8x1076) L45x1074 (1.1x10-3) .09x10-3
2 .85x10-% (8.1x10-6) L46x10-4 (1.0x1073) .43x10-3
3 .42x10~4 (3.4x10-6) .00x10-3 (1.1x1079) .15x10-3
/3 4 .66X10~% (7.6x10-6) .06x10-4 (8.8x10-6) 47x1073
5 .70x10~%4 (7.8x10-6) .53x10-%4 (8.2x10-6) .62x10-3
6 .47x10-3 (8.2x10-6) .05x10-4 (6.8x10-6) .08x10-3




Table 3,9, Values of AASB, AAVAR and AAMSE for samples of size
50 from a Gamma (2, V?2) distribution.
Scaling
?:?t°r Me thod AASB (s.e.) AAVAR (s.e.) AAMSE
hNopt
1 .20x10-2 (3,5%10-3) .04x10-3 (6.9x10-6) .31x10-2
2 .23%1072 (3.5x1073) .95%10~4 (6.5x10-6) .31x10-2
3 .19x1072 (3.5%10"9) .09x10=3 (6.9x10-6) .30x10-2
2/ 4 .20x10-2 (3,2x1079) .78x10~% (5.7x10-6) .27x10-2
5 .19x10-2 (3.3x10-9) .82x10~% (6.0x10-6) .26x10-2
6 .11x10-2 (3.5x10=3) .73x10-4 (7.3x10-6) .19x10-2
1 .21x10-2 (3.3x10-9) .85x10-4 (6.0x10-6) .28x10-2
2 .20x10-2 (2.8x1073) .04x10-4 (5.2x106) .25%10-2
3 .20%x1072 (3.3x1079) .03x10~4 (6.0x10-6) .27x10-2
' 4 .21x1072 (2.9x1073) .90X10~%4 (4.5%10-6) .26x10-2
5 16x1072 (2,9%x10-3) .54X107% (4.4x1076) .20x10-2
6 .02x10-2 (3.0x10-3) .10x10~% (5.2x10-6) .07x10-2
1 .20%10-2 (2.9x1079) .85x10~4 (5.0x10-6) .24x10-2
2 .17x10-2 (2.4%10-5) .29x10~4 (3.6x10-6) .20x1072
3 .20x10-2 (3.0x10-3) .02x10-% (4.9x10-6) .25x1072
3 4 .22x10-2 (2.5x10-3) .41x10-%4 (3.6%x10-6) .26X10-2
5 .12x10-2 (2.5%1079) .15x10-4 (3.2x10-6) .15x10~2
6 .01x10-2 (2,5x10-2) .35x10-4 (3,7x10-6) .04x10-2




Table 3.10. Values of AASB, AAVAR and AAMSE for samples of size

50 from a [0.5N(-0.866,0.52) + 0.5N(0.866,0.52)] distribution.

Scaling
;2?“’" Method AASB (s.e.) AAVAR (s.e.) AAMSE
hNbpt 7
1 .18X10~%4 (4.3x10-6) .30x10-3 (7.9x10-6) .92x10-3
2 .94x10-3 (6.5x10-6) L52%10-% (6.4x1076) .89x10-3
3 .96X10~% (3.9x10-6) .40x10-3 (8.2x1076) .90x10-3
22 4 .13x10-3 (4.5%x10-9) .42x10-3 (5.6x10-6) .07x10-3
5 .75%10™3 (5.2x10-6) .17x10-4 (5.7x10-6) ,67x10-3
6 .21x10-3 (6.3%x10-6) .14X10-3 (7.3x10-6) .35%10-3
1 ,24x10-3 (5.5x10-6) .87x10-4 (5.5%10-6) ,03x10-3
2 .78x10-3 (4.2x10-6) L43X107% (4.3x10-6) .33x1073
3 .73x1073 (5.0x10-6) .61x10~-%4 (5.7x10-6) .59%x10-3
' 4 .56x103 (5.1x10-6) .59x10-4 (3.8x10-6) .12x10-3
5 42x10-3 (4.3x10-6) L04x10~% (4.3x10-6) .03x10-3
6 .77x10-3 (3.7x10-6) .84X104 (5.6x10-6) .56x10-3
1 .23x10-3 (3.7x10-6) L26X10™4 (4.1x10-3) .75%10~3
2 .16x1073 (5.0x10-6) .74x10~4 (3.1x10-6) .53x10-3
3 .86x10~3 (4.5x10-6) .93x10-% (4.4x10-6) L 45x10-3
o2 4 .74x1073 (5,9x10-6) .81x10-%4 (2.9x10-6) .12x10-3
5 .56x10-3 (5.5%x10-6) .18x10-4 (3.1x10-6) .98x10-3
6 .91x10-3 (5.1x10-6) .15x10-%4 (3.8x10-5) .42x10-3




Table 3.11. Values of AASB, AAVAR and AAMSE for samples of size
50 from a t{3) distribution.
Scaling
giit°r Method AASB (s.e.) AAVAR (s.e.) AAMSE
1"Nopt
1 .51%1076 (9.9x10-7) .28x10-3 (7.5x10-6) .29x10-3
2 .88x10"3 (2.0x10-6) L49x10~4 (5,7x1076) 67104
3 .19x10-6 (1.0x10-6) .36x10-3 (7.8x10-6) .36x10-3
23 4 .93x10-3 (3.7x10-6) .72x10-%4 (5.5%x10-6) .03x10-3
5 .72x1073 (1.8x10-6) .84x10-% (4.6x10-6) .01x10-4
6 .61x10=2 (1.8x10-6) .39x10-%4 (5.2x10-6) .85x10~%
1 L43x10-0 (3.0x10-6) .27x10~% (5.0x10-6) L71x10-4
2 .99x10-%4 (5.6x10-) .37x10~4 (4.2x10-6) .35x10~%
3 .95%10"3 (2.8x10-6) .67X10-%4 (5.2x10-6) .07x10"%
' 4 .42x10-% (6.6x10-6) .25x10% (3.8x10-6) .68x10-4
5 .63x1074 (5.,2x10-6) .37x10~%4 (3.4x10-6) .00x10-%
6 .15x10-%4 (5.1x1076) L21X10~% (3.4x1076) .37x10-%
1 .04x10~4 (5,8x10-6) .25%10~% (4.1x10-6) .29x10-4 -
2 .09x10~4 (9.6x10-6) .12x10-% (3.8x10-6) .22x1073
3 .55x10"4 (5.2%1076) 45X10™4 (4.1x10-6) .00x10-4
/2 4 .91x10-4 (9.4x10-6) .66X10~4 (3.1x10-6) .06x10~3
5 .33x10-4 (9.5x10-6) .97x10-4 (2.7x10-6) .03x10-3
6 .59%10~4 (1.1x10-3) LLTX1074 (2.4%x10-6) .31x10~-3




Table 3.12. Values of AASB, AAVAR and AAMSE for samples of size
100 from an N(0,1) distribution.
Scaling
g:itor Method AASB (s.e.) AAVAR (s.e.) AAMSE
hNopt

1 .53x10-6 (3.,9x10-7) .19x10-3 (1.5x10-3) .19x10-3
2 .60x10-6 (8.0x10-7) .33x10-4 (9.3x10-6) 41104
3 .58x10-6 (5.6x10-7) .21x10-3 (1.6x10-2) .21x10-3
23 4 .48x1073 (2.5x10-6) .19x10-%4 (1.0x10-2) L64X1074
5 .53x10-3 (1.3x10-6) .12x10-4 (9.7x10-6) 4T7X1074%
6 L46X10-4 (5.5x10-6) L54x10~4 (1.1x10-3) .20x10-3
1 .66x10-3 (1.3x10-6) .29Xx10-% (7.,7x10-6) L46X10™4
2 .32x10-3 (3.3x10-6) .17x107% (5.9x10-6) J11x10-4
3 L64%1073 (1.6x10-6) L46x10-4 (3.3x1076) L71x10-4
' 4 .95x10-4 (5.1x10-6) .65x10~4 (5.7%x10-6) .60x10-4
5 .49%10~4 (2.9x10-6) .52x10-4 (6.2x1076) .01x10-%4
6 .27x107%4 (3.6x10-6) .33x10-4 (6.9x10-6) .60x10-4
1 .83x10-3 (3.4x10-6) .23x10-%4 (5.8x1076) L21x10~4
2 .02x10-4 (7.4x10-6) .97x10-% (4.0x10-6) .98x10-%
3 .17x10-%4 (3.6x10-6) .34x10"4 (5.8x10-6) .51x10-%
4/ 4 .26X10~4 (7.9x10-6) .05x10% (4.1x10-6) .31x10-2
5 .88x10-4 (6.4x10-6) .07x10~% (4.6x1076) .96X10-4
6 .29%1073 (1.0x10-9) L40x10-4 (4.4x10-6) .63x10-3
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Table 3.13. Values of AASB, AAVAR and AAMSE for samples of size
100 from a Camma (2, V2Z) distribution.
Scaling
gz:tor Method AASB (s.e.) AAVAR (s.e.) AAMSE
hNopt
1 .19x10-2 (3.5%1077) .73x10-4 (5.8x10-6) .25x10-2
2 .23x10-2 (2.9%10-9) .27x10-4 (5.1x10-6) .27x10-2
3 .18x10"2 (3.6x10"2) .75x10~% (5.6x10-6) .24x1072
23 4 .19x10-2 (3.2x10-3) J45X10~4 (4,3x10-6) .23x10-2
5* .20X1072 (4.0x1072) .01x10-%4 (4.3x10-6) .24x10-2
6 .12x1072 (3,7x1079) .25X10~4 (5.9x10-6) .16x10-2
1 .21X10-2 (2.8x10-3) L 76x10-4 (4.3x10-6) .25x10-2
2 .22x10-2 (2,5x1072) .77x10-%4 (2.6x10-6) .24x1072
3 .20x10-2 (2.9x10-3) 72104 (4.1x10-6) .24x1072
' 4 .21x10-2 (2.5x1073) .82x10~% (2.8x10-6) .24x1072
5% .18x10-2 (3.3x10-2) L74X10™% (2.8%1079) .20x10-2
6 .02x10-2 (3.0x10-3) .83x10~4 (4.0x1076) .05x10-2
1 .20x10"2 (2.5x10"2) .71x10-% (2.6x10-9) .25x10-2
2 .18x10-2 (2.2x10-9) . 82x10~4 (1.7x10-6) .20x10-2
3 .20x10-2 (2.5x1072) 67x10-4 (2.7x10-6) .23x10-2
3 4 .22x10-2 (2.1x10-9) .99x10-4 (1.8x10-6) .24x10-2
5% .14x10-2 (2.9%10-9) .97x10-4 (1.8x10-6) .16x10-2
6 .00x10-2 (2.4x10-3) .85x10~% (2.6x10-6) .02x10-2

* Results based on only 4 runs.
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Table 3.14. Values of AASB, AAVAR and AAMSE for samples of size
100 from a [0.5N(~0.866,0.52) + 0.5N(0.866,0.52)] distribution.
Scaling
§2$t°r Method AASB (s.e.) AAVAR (s.e.) AAMSE
hNopt

1 .25x10~4 (5.8x10-6) .91x10~% (3.5x10-6) .12x10-3
2 .60x10"3 (6.0x10-6) .80x10~4 (2.6%x10-6) .08x10-3
3 .12x10-% (6.0x10-6) .14x10-4 (3,0x10-6) .13x10-3

23 4 .39x10~4 (6.8x10-6) L21X10~4 (2.1x1076) .36x10-3
5 .13x10-3 (7.6x10-6) .31x10-% (3.0x10-6) .66x10-3
6 .89x10-3 (1.03x10-6)| 6.09x10-4 (4.5%x10-6) .50x10-3
1 .86x10-3 (5.7x10-6) L07x10~%4 (3.0x10-6) .27x1073
2 .75x10-3 (6.8x10-6) .75x10-4 (2.6x10-6) .02x10-3
3 .57x10-3 (5.9%10-6) .27X10~4 (3.0x10-6) .00x10-3

' 4 .13x10-3 (6.4x10-6) .04x10~%4 (2.1x10-6) .43%10-3
5 751073 (5.6x10-6) .54x10-%4 (3.0x10-6) .11x10-3
6 .56x10-3 (5,4x10-6) .27x10-4 (4 .5x106) .99x10-3
1 .96X10=3 (4.9x10-6) .72X10% (2.5%10-6) L 24x10-3
2 .06x10-3 (5.8x10-6) .84x10-4 (1.6%10-6) .24x10-3
3 .72x1073 (5.4x10-6) .91x10~% (2.7x10-6) .01x10-3

4/3
4 .30x10"3 (7.9x10-6) .05x10-4 (1.7x10-6) .50x10-3
5 .94x10-3 (6.8x10-6) .52x10-4 (2.5%10-6) .19x10-3
6 .70x10-3 (7.7x10-6) .84x10~4 (3.3x10-6) .99x10-3
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Table 3.15. Values of AASB, AAVAR and AAMSE for samples of size
100 from a t(3) distribution.

Scaling
gz.:tor Method AASB (s.e.) AAVAR (s.e.) AAMSE
hNopt
1 3.25x1076 (3.1x10-7) | 7.07x10~% (9.2x10-6) | 7.10x10-%
2 1.56x103 (7.5x10-7) | 5.07x10-% (7.2x10-6) | 5.23x10-%
3 4.41x10-6 (3.3x10-7) | 7.13x10-% (9.2x10-6) | 7.17x10-%
2 4 4.17x10~3 (1.1x10-8) | 5.52x10~% (7.2x10-6) | 5.94x10-%
5 5.24x10-6 (2.8x10-7) | 4.57x10-%4 (6.8x1076) | 4.62x10-4
6 7.51x10-5 (1.3x10-6) | 4.52x10-% (6.9x10-6) | 5.27x10-%4
1 3.27x107 (1.1x10-6) | 4.49x10-% (6.5x10-6) | 4.82x10-%
2 1.57x10% (2.6x10-6) | 3.35x10-% (5.2x10-6) | 4.92x10-%
3 3.39x1073 (1.0x10-6) | 4.51x10-% (6.6x10-6) | 4.85x10-%
' 4 1.70x10% (2.1x10-6) | 3.51x10-4 (5.0x10-6) | 5.21x10-%
5 5.68x1073 (1.1x10-6) | 3.14x10-%4 (4.9x10-6) | 3.70x10-4
6 1.72x10°% (1.8x10-6) | 2.77x10=4 (4.3x1076) | 4.49x10-%
1 1.48x10"% (2.4x10-6) | 3.35x10-% (5.2x10-6) | 4.83x10-%
2 5.71x10-% (4.6x10-6) | 2.65x10-% (4.3x10-6) | 8.36x10-%
3 1.33x107% (2.1x10-6) | 3.33x10% (5.1x1076) | 4.66x10-%
3 4 4.23x10~% (3.3x10-6) | 2.59x10-%4 (3.9x10-6) | 6.81x10"%
5 2.97x10-%4 (2.6x10-6) | 2.34x10-4 (3.8x10-6) | 5.31x10-%
6 8.37x10"4 (4.2x10-6) | 1.82x10~% (2.9x10-6) | 1.02x10-3
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of (h?%/2) £(2)(x) (method 1) and the multiplicative correction
factor (method 3) in achieving low bias. For data from distributions
1, 3 and 4 these two methods generally have by far the lowest AASB
with the performance of Method 3 perhaps slightly superior overall

to that of 1. For the two unimodal distributions their AASB at

1.33 hyopt 1is still less than that based on the fixed normal kernel
(method 4) at hNopt- When the underlying density is highly skewed

their performance is similar to that of the other non-adaptive methods.

The two adaptive methods, o = 1/2 (method 5) and o = 1 (method
6) attain lower bias than the other methods for the Gamma (2, V?2)
data. In particular o =1 1is markedly superior to the others in
this case. For the other distributions o« = 1/2 generally has lower
AASB than o =1 1in line with both the asymptotic and exact results
for their ideal versions described in chapter 2. Also, for the
unimodal distributions 1, 2 and 4 o = 1/2 generally has similar or
lower AASB than method 4 (o = 0) when n = 50 but when n = 100
the differences are more marked in favour of a = 1/5. Both « = 1/
and o =1 are least effective in terms of bias when the distribution

is bimodal when their AASB's are much higher than those for method 4.

The estimator based on the optimal kernel of order 4 (method 2)
is on the whole superior to method 4 in terms of AASB for data from
the two symmetric unimodal distributions. For the highly skewed
Gamma (2, V2) it has lower AASB than method 4 for larger smoothing
parameters but for data from the bimodal normal mixture it consistently
has much higher AASB. In comparison with the two adaptive methods
it achieves lower bias for N(0,1) data but its performance for
distributions 3 and 4 generally lies between the two except for

larger amounts of smoothing when it is particularly superior to o = 1,
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In contrast, the AAVAR results show methods 1 and 3 to have
much higher variance than each of the other methods for each
distribution and amount of smoothing. The only exception is for
distribution 3 wﬁen o =1 also has high AAVAR. The values for
method 3 are consistently at a slightly higher level than those of
1. On the other hand the two adaptive methods achieve between them
many of the lowest AAVAR values and generally outperform method &4
for all but the bimodal distribution, Method 2 is fairly similar
overall to 4 when n = 50 but is almost consistently a little

superior when n = 100.

When the bias and variance results are combined to give the AAMSE
the values for methods 1 and 3 decrease as h 1increases except for
the bimodal distribution 3 when they increase. For this particular
distribution they have much the lowest AAMSE of all the methods for

both sample sizes and each value of hN For the symmetric,

opt’
unimodal distributions their performance are poor at 0.667 hNopt due
to high variance but clearly the best at 1.333 hynopt when they have
lower values than method 4 at hNopt- The two adaptive methods are
overall most successful in terms of AAMSE for unimodal densities and
in particular for the highly skewed distribution 2 when ¢ = 1 is
superior to a«a = 1/2. For the symmetric 1 and 4 though, o = 1/2

is generally better than both o =1 and method 4. o =1 Iis
markedly inferior to method 4 for N(0,l1) data in contrast to the
exact MISE results of chapter 2. Finally, method 2 generally has
similar or lower AAMSE than method 4 except again for the bimodal

distribution 3 when it is far inferior.

The results of this study indicate that the choice of a method
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in practice depends to some extent on the properties required. If
particularly low bias is desirable then either method 1 or 3 should be
used. When using a Normal optimal smoothing parameter the bias
should be much lower but the resulting MISE is likely to be similar

of slightly higher than that based on the unadjusted fixed normal
kernel due to the increased variance. However, if the amount of
smoothing is increased the bias will still be low but the MISE should
fall below that based on the fixed kernel. The exception in the
study was for the bimodal density when methods 1 and 3 were both
better than 4 in terms of both AASB and AAMSE at each level of
smoothing considered. If the underlying density is unimodal, and in
particular long tailed or skewed, then o = 1/2 would make a good

all round choice with Normal optimal smoothing again providing a

good guide. For such distributions and choice of h-value it should be

superior to the fixed normal kernel estimator on all counts.

3.9 Examples.

The data considered in this Section consist of the survival
times for two groups of rats in an investigation of the toxicity
of cytoxan, a chemical agent used for chemotherapy. The first group
of 40 rats was given half the dosage twice weekly while the second

group of 44 was given the full dosage once weekly.

These two data sets were investigated by McLachlan et al (1982).
They assumed that death was aftributable either to the regrowth of
the tumour or to the toxicity of the cytoxan with toxic death
usually preceding the former. Hence, they considered the failure
time density for each group to be a mixture of two densities
corresponding to each of the causes. Toxicity at the two dosage

levels was then compared via a likelihood ratio test of the homo-
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geneity of the mixing proportions. In constructing the test they
assumed the mixing densities to be normal with different means and

variances,

For group 1 density estimates were obtained using methods 1, 4
and 5 with the normal optimal formulae given in Section 3.8 being
used to choose h. These estimates are illustrated in figures 3.17-
3.19. They are each unimodal with mode at about 12 weeks but differ
in their tail behaviour. That based on method 1, which subtracts an
estimate of the asymptotic bias of method 4, has tails which go to
zero quite abruptly. For method 4 the upper tail still goes to zero
quite quickly but in a smoother manner than for method 1 while the
lower tail is positive at zero. For the adaptive method 5 with
o = 1/2 the upper tail approaches zero at a slower rate than for
4 while its lower tail takes a slightly higher positive value.
These plots then are not inconsistent with the mixture assumption of
McLachlan et al. However, if the normal optimal h-values are scaled
by 0.5 than when using methods 1 and 4 the resulting density
estimates are trimodal (see figures 3.20, 3.21) with modes at about
8, 12.5 and 17.5 weeks and suggests a mixture of three densities in
the approximate ratio 3:2:1. Scaling hNOpt for method 5 by 0.5
still results in a unimodal density (figure 3.22) but the change in
gradient of the density at about 8 weeks suggests that if h |is

further reduced the density will be at least bimodal.

For the second group of rats who were given the full dosage once
weekly density estimates were again obtained by methods 1, 4 and 5
using Normal optimal smoothing and are illustrated in figures 3.23-
3.25. Each estimate is markedly skewed with a large mode at about

7.5 weeks. Those based on methods 1 and 4 are noisy in the right
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hand tall which arises from small clusters of a few higher valued
observations. These two estimates are very similar with perhaps

the bias corrected method 1 appearing slightly more data responsive.
The estimate based on the adaptive method 5, on the other hand, has
a right hand tail which goes smoothly to zero and also a left hand
tail which goes to zero at a slower rate than in the case of methods
1 and 4. Again, each of these estimates is not incompatible with
the hypothesis of a mixture of two densities but with a quite

different mixing proportion to the first group.
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Figure 3.5. AASB Incurred by the six estimators for samples of size 50 from an N(0,1) distribution.
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Figure 3.6. AASB incurred by the six estimators for samples of size 50 from a Camma (2, \/J) distribution.
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Flgure 3.7. AASB Incurred by the six estimators for samples of size 50 from a 0.5N(-0.866, 0.52) + 0.5N(0.866, 0.52)
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Figure 3.8. AASB Incurred by the six estimators for samples of size 50 from a t(3) distribution.
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Flgure 3.9. AAVAR Incurred by the six estimators
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Figure 3.10. AAVAR incurred by the six estimators for samples of size 50 from a Camma (2, s/l) distribution.
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Figure 3.11. AAVAR Incurred by the six estimators for samples of size 50 from a 0.5N(-0.86S, 0.5%) + 0.5N(0.866, 0.5")
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Figure 3.12. AAVAR incurred by the six estimators for samples of size 50 from a t(3) distribution,

0.0016

0.0015

0.0013
0.0012
0.0011

0.0010

0.0009

0.0007

0.0006

0.0003

0.5 04 0.7 0.9 1.0 13 1.4 1.5



Figure 3.13.

a (o

0.0022

0.0020

00018

0016

0.001*

0.0012

0.5

Figure 3.14.

0.0155
0.0150
0.01*5
0. 01*0
0.0155

0.0150

0013

M 002

™

0.0115
0.0110
0.0105
00100
0.0095
0.0090

0.0085

-114-

AAMSE incurred by (he six estimators for samples of size SO from an N(0,1) distribution.
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AAMSE incurred by the six estimators for samples of size 50 from a Gamma (2, \ZI) distribution.

*5



-115-

Flgure 3.15. AAMSE Incurred by the six estimators for samples of size 50 from a 0.5N(-0.86S, 0.5%) + 0.5N(0.866, 0.5°)
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Figure 3.16. AAMSE incurred by the six estimators for samples of size 50 from a t(3) distribution.
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Figure 3.17. Bias corrected fixed kernel estimate (method 1) for the first group of rats given half
the full dose of cytoxan twice weekly, h - 2.424.
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Figure 3.18. Fixed kernel estimate (method 4) for the first group of rats given half the full dose of
cytoxan twice weekly, h - 2.424.
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Figure 2.19. Adaptive kermel estimats with o = 1/2 (method 5) for the first group of rats given helf
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Flgure 3.21. Fixed kernel estimate ¢(method &) for the first group of rats given hall the full dose

of cytoxan twlce weekly, h = 1,212,
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Flgure 3,22, Adaptive kernel estimate with of = 1/2 (method 5) for the first group of rats given half
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Bias corrected fixed kernel estimate (method 1) for the second group of rats given the

full dose of cytoxan once weekly, h - 0.594,
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Flgure 3.25. Adaptive kernel estimate with -

full dose of cytoxan once weekly,
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B. Nonparametric Kernel Regression,
3.10. Introduction,

In the following section of this chapter we will consider the
univariate regression problem. It is assumed that we have observations

(Yij,xy), i =1,...,n which are described by the model
Yi = g(xy) + ej (3.10.1)

where g(-) 1is an unknown function having k : 2 continuous
derivatives on [a,b] and the errors ({ej,...,e,} are uncorrelated

with zero mean and constant variance, 062, 1t will also be assumed

that the design variables {xj,...,xX,} are equally spaced in [a,b]
so that
xj =a+ (i-0.5).6, 1 =1,...,n (3.10.2)
where
8 = (b-a)/n. (3.10.3)

It is required to estimate g on the basis of these
observations without making any a priori assumptions as to its
particular form, for example linear or quadratic. A number of
nonparametric fixed kernel estimators have been proposed in the
literature (Watson (1964), Gasser and Muller (1979)) but the one
which will be studied here is that proposed by Priestley and Chao

(1972), namely

jox F=4

~ n X"Xi
g(x) = .21 K[] ¥ (3.10.4)
1!:

K(-) is the kernel function of order (0,k) satisfying conditions
{2.1.2) and (3.1.2) and h 1is the smoothing parameter assumed to be a

function of n with

limh —0 and limnh — « (3.10.5)
-0 %0
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If f{a,b] represents a finite interval than a particular problem
in estimating g wusing a kernel with compact support [-7,7] is
increased bias at x-values in the boundary region [a,a+hr) v (b-hr,b].
When estimating g at x the xj's 1in the interval [x-hr,x+hr]
will be used. If x 1lies near the boundary then this interval is not
completely inside [a,b] so that for equally spaced xj's the
estimate will be based on more data to one side of x than the
other. If a kernel with infinite support such as the standard normal
is used then it is effectively truncated in practice and so these
effects will still be present in a boundary region rather than the
whole of [a,b]. The only circumstances under which boundary effects
will not occur is when g 1is a periodic function. Gasser and
Muller (1979) and Rice (1984) discuss this problem in detail for
particular estimators and describe modifications to the kernel function
which reduce the boundary bias. To avoid having to consider the
boundary in the following discussion in the rest of this Section and
Sections 3.11-3.13 it will be assumed that g and its first k
derivatives can be continuously periodically extended outside [a,b].

It will also be assumed, without loss of generality, that a =0 and

b =1,

The exact mean and variance of g(x) are:

I

ey PV (3.10.6)

1
n h

E[g(x)]

oo
=

1

and

5202 D [x-xi]z

Vigx)] =
& w2h ;2 Uh

(3.10.7)

Calculations involving a Taylor series expansion follow in an

analogous way to those for fixed kernel density estimators and yield
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the following asymptotic expressions when K 1Is of order 2:

R 2
E[3eo) = g6 + 5o g2 00 + o) (3.10.8)
and
R o2 7
Vig()] = K(t)2dt + o((nh)-1) (3.10.9)
-7

(Priestley and Chao (1972)).

Integrating the squared bias and variance then results in the
following expression for the asymptotic MISE:
N R P T 2
MISE(g) = 7~ | &7 0%ax + & [ k(r)%ae (3.10.10)

4 0 nh -

This is a function of the kernel K and the unknown quantities
02 and the second derivative of g. Benedetti (1977) shows that the
Epanechnikov kernel is locally optimal for MSE when using the Priestley
and Chao estimator. Expression (3.10.10) can be minimised with
respect to h and results in an optimal h wvalue proportional to

-1/5 ; /s
and a consequent convergence rate for the estimator of n .

n
If h satisfies conditions (3.10.5) then the estimator will be

consistent in MISE.

Expression (3.10.8) indicates that the bias will be large when
|g(2)(x)| is large which will occur at the peaks and troughs of g.
In fact, when using hopt the peaks of g are underestimated and
the location of an asymmetric peak is biased towards the less steeply
rising side of the peak, (Muller (1985)). A similar result will also
hold for the troughs of g. As for density estimation, reducing h
to overcome this problem simply increases the variance and hence MISE.

We therefore seek methods which will reduce the bias of the estimator
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(3.10.4) and also the MISE. Three approaches are considered which

are:

a) By using one of the higher order kernels of Gasser et al (1985),

b) Subtracting an estimator of (1/2) h2 g(2)(x) from the original
estimator based on a kernel of order 2.

¢) Twicing as described by Stuetzle and Mittal (1979).

A simulation study carried out to examine finite sample performance

for a variety of known functions g will also be described.

3,11, Minimum Variance and Optimal Kernels.
The discussion follows that for density estimators (Section 3.,2)
because the functionals to be minimised and hence the resulting kernels

are the same.

3.12. Subtracting an estimate of 1/2 h2g(2)(x).

The regression function, g, will firstly be estimated using a

fixed standard normal kernel which is of order 2 and then bias
corrected by subtracting an estimate of the principal asymptotic
bias term. This requires estimating g(2)(x) which will be carried

out in two ways using a different kernel in each.

The first is by using the optimal kernel of order (2,4) of

Gasser et al (1985). i.e.

(105/16) (-5t%+6t2-1) , 1ty < 1

Ko(t) = [

0 , otherwise.

(3.12.1)

The optimal smoothing parameter, h,gpt, for estimating the

»th  derivative of a regression function with a kernel of order




(v,k), in the sense that it minimises the expression for the

asymptotic MISE, is

1
h _ 2v+1 V,,,k o2 1 2k+1 3.12.2)
vopt = 17(k-vy © 2 [ (&), .2, ' n 2.
Bv,k J & (t)"dt
where
Vo k m | Kp(9)2ar (3.12.3)
and
-13k
B,k = < kz [tk (oyae (3.12.4)

The smoothing parameter choice for K, will be obtained using the
factor method of Muller et al (1987) and described in the density
estimation context in Section 3.6. This involves considering the
ratio of optimal smoothing parameters for estimating the function and
its second derivative using kernels of the same order k. The
quantities depending on the unknown o2 and g(k)(t) then cancel out

leaving the ratio as a known constant depending on the kernel

functions. In general this constant, d, i, 1is given by:
I v B2 Y/2ksl
d _ v,kopt |(2»+1)k = "»,k’ "0,k
v,k ho,k opt (k-r) v , B2 (3.12.5)
o,k v,k
More specifically, when » = 2 choose
(15/32) (7t4-10t2+3) , 1ty < 1
w - |
0 , otherwise.
(3.12.6)

which is of order (0,4) so that when using Kp(t) given by (3.12.1)

the factor dp 4 = 0.8919 and
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ho = 0.8919 h (3.12.7)
where h 1is based on using (3.12.6).

g{2)(x) can also be estimated by using the second derivative of
a standard normal density as a kernel function as carried out by

Hardle and Bowman (1988), i.e.
Ko(t) = N(2)(t;0,1) = (£2-1)N(t;0,1) (3.12.8)

When the regression function is estimated using a standard normal

kernel then the ratio of optimal smoothing parameters gives:

-4/45 n4/45

hy = 1.3rc . h (3.12.9)

This expression depends on the unknown error variance. The unbiased
estimator used by Rice (1986), based on taking first differences, will

be used in practice, i.e.

~ 2 1 n"]. 2
ICSN) jzl (Yje1 - Yj) (3.12.10)

Also, the constant r 1is given by:

_1/9
(4),.\2
r = [ J g dt] (3.12.11)

1
[f sPwta]

The discussion in Hardle and Bowman (1988) for estimators on

f0,1] implies a choice of r = 1.15 which gives

1 1
hy = 1.5 ¢~ 711 o /11 (3.12.12)

where the fraction 4/45 has been simplified to 1/11.




3,13, Twicing.

This procedure, originally suggested by Tukey (1977), involves

obtaining an estimate of g by the following steps:

(i)
(ii)
(iii)

(iv)

Calculate %(Xi), i

1,...,n,
Obtain residuals rj = y; - %(xi), i=1,..,n.

Smooth (rj,x;) using the same procedure as in (i) to

obtain corrections ¢, 1 =1,...,n.

. ~ c - . .
Define g(xj) = g(xy) +cy, i =1,...,n as the final
estimate

Stuetzle and Mittal (1979) discuss the asymptotic effect of

twicing for kernel regression estimators when the {x;) are equi-

spaced and show that it is equivalent to using the kernel

W=2K-K=*K (3.13.1)

instead of K where K % K 1is the convolution of K with itself.

If K is a standard normal density then K * K = N(t;0,2) so that

W(t) = 2.N(t;0,1) - N(t;0,2). (3.13.2)

For (3.13.2) we have:

] t2w(t)de = 2 j t2N(t:0,1)dt - j t2N(t;0,2) = 0  (3.13.3)

so that the bias term in h? is zero. This makes the bias O(ha)

since the term in h% is non-zero, i.e.

j tdw(t)de = 2 ] t4N(:0,1)dt - ] t4N(t:0,2) = -6 (3.13.4)

Also,

[ weer2ae = 2 [ (2.N(t;0,1)-N(t;0,2))%at

-4 [ N(t;0,1)2dt -4 j N(t,1)N(t,2)dt + j N(t;0,2)2dt = 0.41

(3.13.5)
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whereas,
j K(t)2dt = J N(t;0,1)2dt J - 0.28 (3.13.6)

Hence, asymptotically, when K(t) = N(t;0,1), twicing reduces the
bias to O(h%) but increases the variance by nearly 50% for the same

choice of smoothing parameter as when using K(t) only.

3.14. Simulation Study.
In this section the finite sample performance of the estimators

described in Sections 3.10 - 3.13 will be assessed. These are:

1. Using K(t) = N(t;0,1)
(15/32) (7t4-10t2+3) , 1t1 < 1

2. Using K(t) =
0 , otherwise.

3. Estimating the curve using method 1 and then subtracting a
an estimate of (h2/2).g(2)(x). The estimate of the second

derivative is based on the kernel

(105/16) (-5t4—6t2-1) , 1t1 < 1
K(t) = {
¢ , otherwise,

with smoothing parameter computed by the factor method of

Muller et al (1987) (i.e. by (3.12.7)).

4, The same as method 3 except that the kernel used in the
estimation of the second derivative is the second derivative of

the standard normal with hy calculated by (3.12.12).

5. Twicing based on a standard normal kernel estimate.

Methods 3, 4 and 5 therefore make adjustments to the estimate

based on method 1 alone.
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The simulations were based on the following five curves of

different type:

It

1. g1 (x) N(x;0.5,0,1) + 16x(1-x)

I

2. g2 (%) N(x;0.25,0.05) + N(x;0.5,0,1)

3. g3(x) = go(x) + 1-2x-log(x+0.6))

8x+4 , =0.50 ¢ x < 0.25
4. g (x) = -20x+11 , 0.25 ¢ x < 0.50

12x-5 , 0.50 ¢ x < 0.75

-24%+22 , 0.75 ¢ x ¢ 1.50
5. g5(x) = 4sin(27x).

These curves were used in the simulation study of Muller and
Stadtmuller (1987) in their assessment of an estimator based on a

variable smoothing parameter,

Observations, yj, were generated by considering equispaced
points on a particular curve and adding noise sampled from a normal

distribution with zero mean and

o = 0.1 [ max {g(x{)} - min {g(xp)} ] (3.14.1)

where the xj € (-0.5,1.5). Results were calculated for both 50

and 100 observations in this interval so that & = 2/n. This

resulted in the following error variances being used:

Curve g2 when n_= 50 0? when n = 100
1 3,713 3.861
2 0.633 0.665
3 1,287 1.330
4 3.779 3.905
5 0.637 0.640

The curves were only estimated on the interior region
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(0,1) though to avoid problems in estimating near the houndary where
the bias increases sharply. 26 observations are contained in (0,1)

when n = 50 and 50 when n = 100.

Optimal smoothing parameters for the Priestly and Chao estimator
based on the standard normal and the optimal of order 4 kernels were
calculated for each curve using the finite evaluation technique
described in Gasser et al (1984). This involves finding the value of

h which satisfies:

Min § {(bias (x;N2 + var(xi)} (3.14.2)
h 1

where the bias and variance are both based on the known curve i.e.

. 2 n X._x-
bias(xj) = == 5 K[—3] g(xj) - g(xp) (3.14.3)
j=1
and
2
. 2 3 X% :
var(xp) = iy . o2 . 3 {k[==1]} (3.14.4)

for x5 € (0,1).

The resulting smoothing parameters are given in the following

table:

Table 3.16 Optimal smoothing parameters calculated by the finite

evaluation technigue.

N = 50 N = 100

Curve

Blo) = K(t) =
K(t)=N(t:0,1) (15/39)(7t%-10t2+3) K(t)=N(t:0.1) (13/35(7t%-10t243)

1 0.090 0.350 0.075 0.305
2 0.030 0.130 0.025 0.110
3 0.035 0.140 0.030 0.113
4 0.085 0.335 0.070 0.305
5 0.060 0.315 0.050 0.310
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When & = 2/n E[é(x)] is the same as (3.10.8) but the
expression (3.10.9) for V[%(x)} should be multiplied by the factor
2. Hence, while choosing the value of hy by (3.12.12) h should
also be scaled by 2_1/11 = 0.94. There is no effect on the factor
method though because when using kernels of the same order k (i.e. &)

1/
9
the terms of 2 for both 1'10’4 opt and h2'4 opt cancel.

The simulation size was a run of 1000 samples repeated 10 times
for both n =50 and n = 100. For each run the average squared bias,
average variance and average mean squared error were calculated as in
the simulations for the density estimators (3.8.1 - 3.8.3). These
were then in turn averaged over the 10 runs to give the AASB, AAVAR
and the AAMSE with the standard errors of these means measuring

stability.

In practice the optimal values of h will clearly be unknown.
Hence, a certain degree of either under or over smoothing will be
carried out. To reflect this when n = 50 simulation results were
evaluated for the optimal h-values scaled by the factors 2/3 and
4/73.

Seeds for the random number generator were again chosen so that
the results for each estimator are directly comparable for a given
curve and sample size. They are also such that direct comparisons
can be made between the results for a given method when using different

amounts of smoothing to estimate a particular curve.

The full results of the simulation study are contained in tables
3.17-3.22. Also, when n = 50 and for the three scalings of hopt

theory are presented graphically in figures 3.26-3.40,
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When using the optimal h wvalues twicing is clearly the most
effective method for reducing the bias. It has the lowest AASB
values for each curve when n = 50 and the lowest for each except
curve 3 at n = 100 when it has the second lowest. The method with
the worst performance in terms of bias is just using the unadjusted
standard normal kernel. This has the highest AASB values for each
curve at both n = 50 and 100. Out of the two methods which subtract
estimates of 1/2h2g(2)(X), method 3, which uses the optimal kernel
of order (2,4) and selects hy using the factor method, reduces
bias considerably more than does method 4. They also both achieve
much lower AASB's than method 1 for curve 4 which is not different-
iable, The AASB results for the optimal kernel of order (0,4)

generally rank at about 3rd or 4th but are much higher than for

methods 1 and 3.

For the curves and associated error variances based on (3.14.1)
used in this study the AAVAR's for each method are much higher than
the AASB's. They are in contrast however to the bias results with
the rankings of the methods in terms of AAVAR generally the opposite
to those for AASB. Using an N(0,1) kernel is therefore the most
effective for reducing variance whilst the AAVAR's for twicing are

about 50% higher as predicted by the asymptotic theory.

When the results for bias and variance are combined the best
performance is by method 2, the optimal kernel of order (0,4).
It has the lowest AAMSE results for each curve except 1 at both
n = 50 and 100. The poorest overall performance is for twicing with
its AAMSE results more markedly dominated than for the others by

its poor variance. The AAMSE's of the other three methods are
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fairly similar but method 4 is generally slightly superior to both

methods 1 and 3.

When the data are undersmoothed using 2/3. hopt the bias of each
method decreases while the variances increase as expected. Twicing
(method 5) still has the lowest AASB for curves 2, 3 and 4 but the
results for method 3 are slightly superior for curves 1 and 5. The
orderings in terms of AAVAR are almost the same as when using hopt -
All the AAMSE's are higher than at hopt and the best overall is now
method 1 with the lowest AAMSE values for curves 1, 3 and 4 and second
lowest for 2 and 5. Method 2 now has the second best overall
performance.

In contrast, oversmoothing using 4/3 hopt increase bias and
reduces variance. The most marked changes in AASB are for methods
1, 2 and 4 while twicing (method 5) achieves the lowest AASB for each
curve. The AASB values for methods 3 and 5 are in fact fairly
similar to those for method 2 at hopt' The orderings in terms of the
AAVAR's are again very similar to when using hopt. The AAMSE's
for methods 1, 2 and 4 generally increase above their hgpy values
but those for methods 3 and 5 decrease for each curve. This results
in method 5 having the best performance for each curve except 5 when
method 3 is slightly superior. Their AAMSE values are fairly similar
to those for method 2 at hgype but the fact that they are still
decreasing indicates that they may have become superior if a scaling

factor larger than 4/3 had been used.

In conclusion then, this simulation study indicates that the bhest
method for reducing bias is twicing (method 5). It is very effective
in this at each of the h-values and sample sizes considered but at the

expense of increased variance. It can also achieve low mean squared
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error when scaling hopt for the N(0,1) kernel alone by 4/3. For
this value of h its level of bias was fairly similar to those for
methods 2 and 4 and smaller than for method 1 at hgpe. However,
method 3 based on subtracting an estimate of (h2/2) g(z)(x) is only
slightly inferior to twicing both in terms of reducing bias and low

MSE at %/3 hgpe.

For a real data set a practical approach would be to obtain a
data based choice of h for an estimate based on an N(0,1) kernel,
such as by least squares cross-validation. Using twicing or method 3
with this h will generally provide an estimate with much lower
bias than the estimate based on just using the N(0,1) kernel. If
this h 1is then scaled by 4/3 the resulting estimate should still
have lower bias than the estimate which uses only the N(0,1) kernel
and original h. In addition though, it should now have a lower mean

squared error.
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Table 3.17. Values of AASB, AAVAR and AAMSE incurred in estimating
g1(x) from samples of size 50. (¢2 = 3.713).
Scaling
fiit°r Method AASB (s.e.) AAVAR (s.e.) AAMSE
hopt
1 .70x10"2 (8.9x10-%) .07x10-1 (2.5%10-3) .51x10-1
2 L69x102 (7.6X10"%) .05x10-1 (3.0x10-3) .22x10-1
3 .12x10-3 (5.5x10-%) .83x10-1 (3.2x10-3) .88x10-1
23 4 .87x1072 (7.6x10-4) .12x10-1 (2.9x10-3) .31x10-1
5 .32x10-3 (5.6x10~4) .01x109  (3.1x10-3) .02x100
1 .68x10-1 (1.2x1073) .71x10-1 (2.0x10-3) .39x10-1
2 .24x10-1 (5.4x10-%) .38x10-1 (2.5%x10-3) .62x10-1
3 L57x1072 (7.3x10-%) .59x10-1 (2.8x10-3) .04x10-1
' 4 .03x10-1 (8.3x10-4) 43x10-1 (2.4x1073) .46x10-1
5 L07x1072 (7.,9x10-4) .78x10-1 (2.8x10-3) .19x10-1
1 .65x101 (1.9x10-3) .53x10-1 (1.6x10-3) .19x10-1
2 L46x10-1 (1.3x10-3) .03x10-1 (1.8x10-3) 47x10-1
3 .57x10-1 (7.0x10-4) .95x10-1 (2.3x10-3) .56x10-1
3 4 .55x10-1 (9.8x10-%4) .08x10-1 (1.9x10-3) .62x10-1
5 .31x10-1 (7.7x10-%) .10x10-1 (2.3x10-3) L41x10-1
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Table 3.18. Values of AASB, AAVAR and AAMSE incurred in estimating
g9(x) from samples of size 50. (o2 = 0.633),
Scaling
gsit°r Method AASB (s.e.) AAVAR (s.e.) AAMSE
hopt
1 .32x10-2 (3,2x10-%) .18x10-1 (1.1x10-3) .31x10-1
2 96103 (1.8x10-%) .61x10-1 (1.0x10-3) .70x10-1
3 L69X1072 (4.4x10-%) .33x10-1 (1.4x10~3) .69x10-1
2/3
4 .07x10-3 (1.2x10-%4) .62x10-1 (1,3%x10-3) .66x10-1
5 .58X10~4 (6.0x1073) .56x10-1 (1.6x1073) .57x10-1
1 .06x10-2 (7.6x10-%) .41x10-1 (6.3x107%4) .31x10-1
2 .26X1072 (5.7x10-4) .43x10-1 (6.6x107%) .06x10-1
3 .19x10-2 (3.5x10-%4) .13x10-1 (8.2x10-%) .35x10~1
! 4 .02x10-2 (5.7x10-%) .68x10-1 (7.0x10-%) .18x10-1
5 .07x10-2 (2.8x10-4) .48x10-1 (9,5x10-%) .59%10-1
1 .21x10-1 (9.5x10-4) .79x10-1 (5.1x107%) .00x10-1
2 .52x10-1 (7.6x10-%4) .84x10-1 (6.0x10%) .36x10-1
3 .82x10-2 (6.3x107%4) .34x1071 (6.3x10-4) .12x10-1
43 4 .65x10-1 (8.5x10-%4) .00x10-1 (5.7x10-%) .65x10-1
5 .01x10-2 (5.4x10~%4) .58x10-1 (6.9x10-%4) .08x10-1
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Table 3.19. Values of AASB, AAVAR and AAMSE incurred in estimating
g3(x) from samples of size 50. (02 -~ 1.287).
Scaling
ii?tor Method AASB (s.e.) AAVAR (s.e.) AAMSE
hopt

1 .25x10-2 (7.3x10~%) .80x10-1 (1.7x10-3) .13x10-1

2 .57x1072 (6.0x10-%) .06x10-1 (2.0x10-3) 42x10-1

3 .22x1072 (3.8x10~4) .07x10-1 (2.5x10-3) .19x10-1

23 4 .02x10-2 (3.8x10~%4) .63x10-1 (2.1x10-3) .73x10-1

5 .38x1073 (1.7x10-%) .73x10-1 (2.7x10-3) .75x10-1

1 .49x10-1 (1.3%10-3) .17x10-1 (1.1x10-3) .66x10-1

2 .05x10=2 (9.2x10-%) .64x10-1 (1.3x10-3) .55x10~1

3 .19x10-2 (6.0x10-%4) .68x10-1 (1.5x10-3) .00x10-1

. 4 .29x10-2- (1.0x10-3) .70x10-1 (1.3x10-3) .62x10-1

5 561072 (6.0x10~%) .00x10-1 (1.6x10-3) .26x10-1

1 45x10-1 (1.5x10-3) .11x10-1 (9.5x10-%) .56x10-1

2 .43x10-1 (1.0x10-3) .47x1071 (1.1x10-3) .90x10-1

3 .31x10-1 (1.0x10-3) .26x10-1 (1.2x10-3) .57x10-1

4/3

4 .76x10-1 (1.3x10-3) .50x10-1 (1.0x10-3) .27x10-1

5 .07x10-1 (1.0x10-3) 47x1071 (1,2x10-3) . 54x10-1
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Table 3.20. Values of AASB, AAVAR and AAMSE incurred in estimating
g4(x) from samples of size 50. (62 =~ 3.713).
Scaling
gzl‘f“’r Method AASB (s.e.) AAVAR (s.e.) AAMSE
1"opt
1 .06x1072 (5.4x10-%) .56x1071 (2.6x10-3) .15x10-1
2 L64X10-2 (4,0%x10-3) .56x10~1 (3.1x10-3) .82x10-1
3 .65x10-2 (1.6X10~4) .05x100  (3.3x10-3) .06x100
23 4 .62x1072 (3.2x104) .69x10-1 (3.0x10-3) .95x10-1
5 .27x1072 (2.2x107%4) .08x100  (3.3x10-3) .10x10-1
1 .95x10-1 (1.0x10-3) .07x10-1 (2.2x10-3) .03x10-1
2 .25x10-1 (6.6x1074) .71x10-1 (2.7x10-3) .97x10-1
3 .85%10-2 (5,1x10-%4) .03x10-1 (2.9x10-3) .51x10~1
' 4 .18x10-1 (7.0x10-%) .85x10-1 (2.5x10-3) .03x10-1
5 .62x10-2 (4.7x10-%) .30x10-1 (2.9x10-3) .76x10-1
1 .21x10-1 (1.4x10-3) .82x10-1 (1.7x10-3) .03x10-1
2 .24x10-1 (1.4x10-3) .28x10-1 (1.9x10-3) .52x10-1
3 .70x10-1 (7.9x10-%) .29x10-1 (2.5x10-3) .99x10-1
4/3
4 .10x10-1 (1.3%10-3) 41x1071 (2.0x10-3) .51x10-1
5 43x1071 (7.5%10-%) .51x10-1 (2.5x10-3) .94x10-1
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Table 3.21. Values of AASB, AAVAR and AAMSE incurred in estimating
g5(x) from samples of size 50. (02 = 0.637).
Scaling
§2$t°r Me t hod AASB (s.e.) AAVAR (s.e.) AAMSE
hopt

1 .22x10-3 (1.9x10-4) .81x10-1 (5.1x10-%4) .88x10-1

2 .30x10-% (4.0x10-3) .53x10-1 (5.4x10-%) .53x10-1

3 .01x10-% (3.3x10-9) .14x10-1 (6.0x10-%) .1ax10-1

23 4 . 24X107% (3.3x10-3) .00x10-1 (5.7x10-%) .00x10-1

5 .12x10-% (3.4x10-3) .60x10-1 (7.0x10-%) .60x10-1

1 .55%1072 (4.1x10%) .21x10-1 (4. 4x10-%) .56x10-1

2 .23x10-3 (1.8x10-4) .03x10-1 (4.7x10-%4) .09x10-1

3 .88x10-4 (5.9x10-5) .43x10-1 (5.1x1074) L44x10-1

: 4 .30x10-3 (1.1x10-%) .34x10-1 (4.7x107%) .36x10-1

5 .40x10~4 (3.5x1079) 74x10-1 (5.4x10-%4) .74x10-1

1 .07x10-1 (7.0x10-4) .09x10-2 (3.8x10-%) .98x10-1

2 .30x10-2 (4.,7x10~%) .69x10-2 (3.5x10-%4) .20x10~1

3 .95x10-3 (1.6%x10~%4) .08x10-1 (4.7x10-%) .13x10-1

o3 A .79x10~2 (2.8x10-4) .01x10-1 (4. 1x10-%) .19x10-1

5 .45%10-3 (8.6x10-3) .31x10-1 (5.0x10-%) .33x10-1
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Table 3.22, Values of AASB, AAVAR and AAMSE incurred in estimating
21(x), g2(x), 83(x), g4(x) and g5(x) from samples of size
100 and using optimal smoothing parameters.
Curve Method AASB (s.e.) AAVAR (s.e.) AAMSE
1 1.03x10-1 (8.2x10-%) | 2.89x10-1 (1.6x10-3) | 3.92x10-1
2 7.16x1072 (4.7x10-%) | 3.15x10-1 (1.8x10-3) | 3.87x10-1
2 3 2.23x1072 (4.4x107%) | 3.92x10-1 (1.9x10-3) | 4.15x10-1
4 5.99x10-2 (6.0x10-%) | 3.27x10-1 (1.8x10-3) | 3.87x10-1
5 1.85x10-2 (4.4x10~%) | 4.16x10-1 (2.0x10-3) | 4.35x10-1
1 5.07x102 (4.1x10~%) | 1.49x10-1 (4.4x10-%) | 2.00x10-1
2 2.43x10"2 (2.5x107%4) | 1.50x10-1 (4.4x10-%4) | 1.74x10-1
) 3 6.70x1073 (1.3x10-%) | 1.93x10-1 (5.4x10-%) | 1.99x10-1
4 2.56x10"2 (2.8x10~%4) | 1.62x10-1 (4.7x10-%4) | 1.88x10-1
5 3.70x1073 (1.3x10-%) | 2.15x10-1 (6.0x10~%4) | 2.19x10-1
1 9.39x1072 (7.3x10-%4) | 2.48x10-1 (8.2x10-%) | 3.42x10-1
2 3.32x1072 (3,5x107%4) | 2.87x10-1 (8.9x10-4) | 3.21x10-1
3 3 1.05%1072 (2.2x10-%4) | 3.51x10-1 (9.8x10"%4) | 3.61x10-1
4 5.50x10-2 (5.1x10-%4) | 2.74x10-1 (8.9x10-%) | 3.29x10-1
5 1.11x102 (2.5x10-%4) | 3.58x10-1 (1.0x10-3) | 3,69x10-1
1 1.18x10-1 (9.8x107%4) | 3.13x10-1 (1.6x10-3) | 4.32x10-1
2 8.79x10-2 (6.3x10-%4) | 3.19x10-1 (1.8x10-3) | 4.07x10-1
4 3 3.35x10°2 (3.5x107%4) | 4.07x10-1 (2.0x10-3) | 4.96x10-1
4 6.61x10-2 (6.0x10-4) | 3.54x10-1 (1.8x10-3) | 4.20x10-1
5 2.59x10~2 (3.2x104) | 4.51x10"1 (2.1x10-3) | 4.77x10-1
1 1.87x10-2 (3.5x10~4) | 7.18x10-2 (3.2x10"%) | 9.05x10-2
2 5.10x10-3 (1.9x10-%) | 5.14x10-2 (2.8x107%) | 5.65x1072
5 3 4.20x10"4 (5.1x1073) | 8.03x10-2 (3,5x10~%4) | 8.07x10-2
4 9.87x10~4 (8.0x10-3) | 7.80x10-2 (3.5x10-4) | 7.90x10-2
5 1.30x10~% (2.2x10-3) { 1.03x10-1 (3.8x10-4) | 1.03x10-1
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Flgure 3.27. AASB Incurred by the 5 estimators In estimating g2(x) on (0,1), n - 50, a” —0.633.
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Figure 3.28. AASB Incurred by the 5 estimators in estimating g3(x) on (0,1), n- 50, a2 - 1.287.
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Flgure 3.29. AASB Incurred by the 5 estimators In estimating g”(x) on (0,1), n - 50, - 3.779

Figure 3.30. AASB incurred by the 5 estimators In estimating g5<x) on (0,1), n - 50, - 0.637
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Flgure 3.31.
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Flgure 3.33. AAVAR incurred by the 5 estimators In estimating g3(x) on (0,1), n - 50, a~ — 1.287".
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Figure 3.34. AAVAR incurred by the 5 estimators in estimating g”(x) on (0,1), n - 50, - 3.779.
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Flgure 3.35. AAVAR Incurred by the 5 estimators In estimating gs(x) on (0,1), n - 50, a2 - 0.637.
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Figure 3.36. AAMSE incurred by the 5 estimators In estimating gj(x) on (0,1), n - 50, a2 - 3.713.
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Flgure 3.37. AAMSE Incurred by the 5 estimators in estimating R2(x) on (0,1), n - 50, - 0.633.
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Figure 3.38. AAMSE incurred by the 5 estimators In estimating g3<x) on (0,1), n - 50, a* - 1.287.
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Flgure 3.39. AAMSE Incurred by the 5 estimators In estimating g~(x) on (0,1), n - 50, a" - 3.779.
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Figure 3.40. AAMSE incurred by the 5 estimators in estimating gs5(x) on (0,1), n - 50, - 0.637.
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Chapter 4, Pointwise confidence intervals for density functions
4.1, Introduction.

Most of the literature on nonparametric density estimation is
concerned with the construction of a point estimate of the under-
lying density function. However, the estimator, being a function of
the sample d,, = {X7,Xp,...,X,}, 1is a random variable with its own
distribution. Therefore, some form of interval estimation is
desirable in order to assess its precision and stability as well as

to obtain a range of plausible values for the true density function.

In this chapter pointwise confidence intervals for the unknown
density f(x), for some fixed x, based on a fixed kernel density
estimator will be constructed using two different approaches.
Firstly, the central limit theorem will be used to obtain a normal
approximation to the distribution of %(x). Conditions under which
this approximation will hold were first described by Parzen (1962),
Secondly, the sampling distribution of %(x) will be estimated

using bootstrap techniques.

In both cases it is important that the distribution is centred
correctly in order to try and obtain the correct coverage probability.
The bias inherent in the fixed kernel estimator was discussed in
chapter 3 where it was demonstrated that an effective way of reducing
it is to subtract an estimate of the principal asymptotic bias term,
namely % hZ2 %(2)(x). Such bias corrected estimators will be used in
this chapter, Also, comparison will be made with the use of the
optimal kernel of order 4, K(t) = 15/32 (7ta - 10t2 + 3), which has
some success in reducing bias, particularly for unimodal underlying
densities, but also often results in an estimate with lower variance

than when subtracting bias or using a fixed Normal kernel.
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The effectiveness of the different methods will be assessed
through a simulation study using known underlying densities having

a variety of different shapes.

Finally, they will also be illustrated in practice through the
construction of a pointwise confidence interval for the unknown density

of a real data set.

4.2, Using asymptotic normality.
The fixed kernel estimator }n(x), where the subscript n denotes
that it is constructed from a sample of size n, can be written as the

average

~

n
fr(x) == 5 Wy (4.2.1)

[
Sl

(4.2.2)

where Wk = %

The W, are independent random variables each identically
distributed as the random variable
Wy = + K (2 (4.2.3)
n=%§ h .2,
since the X, are i.i.d. with common distribution F.

Parzen (1962) states conditions under which the sequence of %n(x)

is asymptotically normal in the sense that for every real number a

Tn(x) = E(Fp(x))
lim g a| = d(a) (4.2.4)

e | /var (F,(x))

where &(+) 1is the c¢.d.f. of a standard normal distribution.

He also discusses a necessary and sufficient condition for (4.2.4)

to hold as well as the Berry-Esseen theorem which provides a bound
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for the error in the approximation.

If h 1is chosen so that 1lim h =0 then the estimator %n(x) is
N
asymptotically unbiased. However, in a finite sample situation the
bias is well approximated by %.hz.f(z)(x) as discussed in chapter 3,
and a good estimator of variance is given by (nh)“l.f(x).J K(t)zdt.

Replacing the unknown f(x) and f(z)(x) by the appropriate kernel

estimators results in the root

[%n(x) - %.h2 “flg?‘)(x)] - £(x)

B0 [ kee)2ae]

(4.2.5)

whose distribution is approximately N(0,1). The term root has

been used here, as in Beran (1987), to make the distinction from a
pivot defined in the classical sense. If %n(x) and }ﬁz)(x) are
consistent estimators of f(x) and f(2)(x) respectively then
(4.2.5) is asymptotically pivotal, The introduction of the bias
correction in the numerator should make the finite sample distribution

of (4.2.5) less dependent on F than if no correction was made.

The root (4.2.5) is appropriate when a kernel such as a standard
normal density with k = 2 (see equation 3.2.5) is used. If,
however, the optimal polynomial K(t) = %% (7t4—10t2+3) is used which
has k = 4 then the resulting estimator has bias O(h4) and there is

therefore no need to include a bias correction term.

Instead of subtracting an estimate of bias an alternative way of
taking it into account is to use the method suggested by Clark (1980)
in the related context of kernel regression estimators. This involves
basing the confidence intervals on the distribution N(O,g) where %

is a consistent estimator of the local mean squared error, S, of the




estimator f,(x). When using a kernel of order 2 a consistent

estimator of the mean squared error is given by

1

1 g w(2), 02
S= zh 0% + =

'%n(x) j K(t)2dt (4.2.6)

and the 100(l-a)% confidence interval becomes

~

(0 1 (1-ay2) 5 Y%y, 4.2.7)

If the bias and variance of the estimator are denoted by £ and
v then intervals based on (4.2.7), as opposed to (4.2.5), are

conservative if
c2(B2+r) s eV + B)?

where e = 3 1 (1-0/2)

i.e. c282 + c2p » c2p + 2¢8 V¥ + B2.

Dividing through by Vv and solving for ¢ results in the

condition

\./1+b2 +1 - VI+b2 +1
—_— > or ¢ g ———a———

c > 5 < 5 (4.2.8)
where b = €<[; .
4,3. Using the bootstrap,
In this section let d, = (X1,...,X,) again denote a random sample

from an unknown distribution F. The characteristic of F for which a
confidence interval is required is f(x), the unknown density

which will be denoted by T(F). It is therefore necessary to consider
a root Rp(d,,T(F)) which is a functional depending on both the data
and the unknown density. The distribution of RL(d,,T(F)) under F

will be denoted by J,(F). In order to construct a confidence interval
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for T(F) = f(x) it is necessary to either know the sampling
distribution or estimate the appropriate quantiles of J,(F). In
Section 2 it was assumed that the sampling distribution of the root
(4.2.5) was N(0,1). However, in this section J,(F) will be
estimated by Jn(%n) where ?; is the empirical distribution function,
an unbiased estimator of F. The appropriate quantiles of J,(F) are
then estimated by those of Jn(%n). This is achieved by randomly
sampling from %n and then for each sample of size n calculating the
root R,(-, T(%n)). The quantiles of J,(F) are then estimated by the
appropriate order statistics of these roots. In this simulation
procedure, drawing a random sample from %n means sampling n values
from d, randomly with replacement. The resulting bootstrap 100(1-o)%

one-sided confidence interval for T(F) = f(x) then takes the form

B(@,dn) = {t € T : Ry (dn,t) < I (1-a, Fp)) (4.3.1)
or

Bnle,dp) = {t ¢ T : J, (R (dj,t)) < 1-o} (4.3.2)

where T 1is the range space of T(F), Jh(x,F) 1is the c.d.f.
corresponding to J,(F) evaluated at x and J;l(a,F) =

inf{x : Jo(x,F) » @) 1is an «o quantile of J,(F). The discussion of
the bootstrap approaches will refer to one-sided confidence intervals

for simplicity of presentation,

* * & .
Let dn = {Xl,...,Xn} denote a bootstrap sample of size n drawn
~ % *
from F,. Then xl,...,xn are conditionally independent given the
original sample d, = {X1,...,X,} . The estimator of the underlying

*
density f based on the bootstrap sample dn is given by

x-X?
[ ] (4.3.3)

n
~% 1
fn(x) " 1h iél Kils
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~%k
Hence, the expected value of fn(x) with respect to the bootstrap

sampling is

e[Feo] -5 3 k()

- Fo00 (4.3.4)

Hence, the distribution of the estimator constructed from the
bootstrap samples is centred about %n(x) which is a biased estimator
of f(x).

Also, we have

2
Vo] = & [Fe0’] - (e[ m]]

Now,

nZh2 i=1
n _X* 2 n —X% —X*
- n;hz e[ 3 k[ + 3 k[ E)]
i=1 i,]
i=]j

Taking the expectation of each term in the square bracket
separately we have firstly that:
*
n x_X; 2

o 3 P2 - o))

Y R S s Y

n = 2
= 2 K[xhXi]
i=1
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and secondly

n x_X? x-X; x_X?- x-X
SR e ] - s el e )
1 i=]

R R
- n.(n-1) 1 [E K[X—Xi]]Z
n2 42y Uh
Therefore,
~ X3 2 _ n -X 2
o] - L3 5 [ w02
n X
- néhz [ EIK[ih_‘l]]

which is an empirical estimator of

L )] - it

It can be shown that (4.3.5) is an asymptotically unbiased

estimator of V(%n(x)) as follows:

E[V(%:tx>)] -
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Consider the expectation in the second term:

n2p2 L 2 CUR jZ; UN h
. -y, 2 x-Yy,2
= 5 [n.E K{—E—] + n(n-1) [EK[‘E‘]] ]

it

1 1 x-Y.
a V[H K[—E—] ] for large n
= V(f(x)).
Therefore, if we consider (}n(x) - f(x)) as a root where }n(x)
is constructed using a kernel of order 2 the distribution of the
=% ~
bootstrap quantities fn(x) about fn(x) will not mimic the

distribution of f (x) about f(x). This is due to the bias of

fn(x) as an estimator for f(x) as discussed above.

However, if we consider
~ 2r\(2)
{[£,00 - 12 0" E% 0] - £0] (4.3.6)
then this has an expectation of 0(h*) while the bootstrap version
X 2 ~(2)* 2~:.(2)
[[Fleo - 1/ n* & o) - [F0 -1 n r$2w]} s

has zero expectation using an analogous argument which leads to

(4.3.4).
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The variance of [%n(x) - 1/2 h2 }éz)(x)] which depends on f(x)
(and hence F) converges to zero at the rate n-1p-1 (see 3.6.11)

so as a root we will use

vih {[E o - 175 0”72 0] - £eo) (4.3.8)

and estimate the quantiles of its distribution by those of the

empirical distribution of
vim {[F60 - 1 02 5% 60 - [r o - 1/ 0252 60))
(4.3.9)

Using (4.3.8) as a root with (4.3.9) for the bootstrap approximation
should give more accurate coverage probabilities than using a root
with no bias correction term because the distribution of (4.3.8) with

lower bias will then be less dependent on F,

If a kernel of order 4 1is used then there is no need for the
bias correction terms in (4.3.8) and (4.3.9) because an estimator

based on such a kernel already has asymptotic bias which is 0(h%).

IT we now let

.y

Rn1(dp, T(F)) = Jo{Rn(dn, T(F)), Fp) (4.3.10)

then the confidence region given by (4.3.2) can be written as
Bp(e,dy) = {t ¢ T : Ryj(dp,t) ¢ 1 - a}. (4,3.11)

In this construction it is-assumed that the distribution Jn1(-,F)
of Rp1(dy,T(F)) 1is uniform (0,1) which will only be true when the
root used is truly a pivotal quantity with a continuous distri-
bution, When this is not the case as with the present problem,

Beran (1987) suggests that the coverage probability can be improved
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by estimating the distribution Ja1 (¢, F) by Jnl(':%n) to obtain

the confidence region
-1 ~
Bhi{a,dp) = {t € T : Ry1(dy,t) g Ip] (1-o,Fp) ). (4.3.12)

The mapping of R, into R, using the estimated c.d.f. Jn(-,%n)
of R, 1is called prepivoting. Beran argues that R,; 1is closer to
being pivotal than R, is and indeed shows that when beginning with
an asymptotically normal root prepivoting is asymptotically

equivalent to studentising.
In practice the confidence region B,] is calculated from

-1

Bni(a,dy) = {t € T : Ry(d,,t) I

(7] e Fy), F)
(4.3.13)

by firstly finding the largest (1-)th quantile of Jnl ("%n)
which we will call C,1 and then finding the largest C;? quantile

of Jn (-,Fy) to give the required critical value in (4.3.13).

Beran also describes how the prepivoting method can be iterated
so that the error in coverage probability decreases as the number of

iterations increases.

In general an analytic expression will also not exist for the
estimated c.d.f. Jn1(-,Fy) so it is necessary to use a nested
sequence of bootstrap sampling. Beran describes such an approach

which leads to the following practical algorithm:

* "~
(i) Let d:,...,dm be M bootstrap samples of size n from F.
* ~ ~
(ii) Compute Rn(dJ,T(Fn)), j=1,...,M, where T(Fn) denotes the

bias corrected density estimate. The e.d.f. of the

* ~ .
Rn(dj, T(Fn)) approximates J,(-,F).
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*% =
d

(iii) For every j=1,...,M let djl,..., N be N further boot-

strap samples of size n each drawn from Fnj‘

1

ng- ’ C Ty
the bias corrected density estimate calculated using the

2 Sk -~ ~
(iv) Compute Rn(djk‘ T(Fn.)), k=1,...,N, where T(Fnj) denotes

*
bootstrap sample dj'

Fk ~
(V) Let Zj be the fraction of the values R“(djk’ T(Fnj)),

1 ¢ k ¢ N, computed at step (iv), which are less than

* ~
Ra(dy, T(F), J=1,.... .M.

~

The e.d.f. of the (Zj: 1 ¢ j ¢ M) approximates Jnl(-,Fn)

for sufficiently large M and N.

(vi) For a two-sided 100(l-a)% confidence interval obtain the
100(1-c/2)th and 100c/2th percentiles of the Zj's and denote

these by Cp14 and Cpjp respectively.

(vii) Find the 100C,1,tP and 100C1pth percentiles of the

P ~
Rn(dj, T(F ))'s and denote these by bp, and by respectively.

(viii) An approximate 10(1-a)% confidence interval for T(F) = f(x)

is then given by:

{rE ) - \;‘f_ . T - \[ﬂ}
nh nh

4.4, Simulation study.

In order to study and compare the performance of the various
approaches discussed in Sections 4.2 and 4.3 a simulation study was
carried out. Firstly, seven methods (four based on asymptotic
normality and three on the bootstrap) were used to construct 90%
confidence intervals at nine x-values based on a sample size 50

from a standard normal distribution. The empirical confidence levels




were calculated from the results for 100 random samples. As an aid
to assessing the performances a 95% prediction interval for the

observed coverage probability when the true coverage probability is

0.90 is (0.84, 0.96).

The four methods based on asymptotic normality are as follows:

1

A [%n(x) £ 1,645 \/(nh)" %n(x) jx(t)zd: ]

where fn(x) is constructed using a fixed standard normal kernel

so that J K(t)zdt - 1/(2\/;>_

B : [%n(x) £ 1.645 \/(nh)‘l '"fn(x) j K(t)2de ]

where }n(x) is constructed using the optimal kernel of order 4, i.e.

j K(t)2dt = 1.25.

c: [F oo -1 BP0« 1605 \/(nh)’1 T oo [ ke |

where }n(x) is constructed using a fixed standard normal kernel and
%ﬁz)(x) is constructed using the optimal kernel of order (2,4) i.e.

K(t) = 105,71, (-5t44612-1),

D : [?fn(x) £ 1.645 \VEstimated MSE ]

where }n(x) is constructed using a fixed standard normal kernel
and the estimated MSE, g, is given by (4.2.6). The optimal kernel

of order (2,4) is used to construct an estimate of }gz)(x) in %.

Three bootstrap methods were used:

E : Using the root V/nh [%n(x) - f(x)] and the bootstrap

~ ok ~
approximation Vnh {fn(x) - fn(x)] where the density estimates
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are constructed using the optimal kernel of order 4. 200 boot-

strap samples were taken.

F : Using the root Vnh [%n(x)— 1/2 h2 }iz)(x) - f(x)] and the

bootstrap approximation
ViR (£ G0- 1/, n2 }éz)*(x) - [£.60 - 1/ w2 f;(zzx)]].

A fixed standard normal kernel is used in the estimation of the
density and the optimal kernel of order (2,4) in the estimation

of the second derivative. 200 bootstrap samples were taken.

G : Using the same root and bootstrap approximation as for method
F but prepivoting was also used. 100 first level and 100 second

level bootstrap samples were taken.

The amount of smoothing used in estimating the density was
controlled by the formulae for global optimal smoothing when the
underlying distribution is N(0,1) but scaled by a robust estimate

~

of scale, o.

These are

h=1.2.n"0-21% 5 (4.4.1)
for the N(0,1) kernel and
h = 3.904.n"0-13%4 5 (4.4.2)

for the optimal kernel of order 4., the median of the absolute
deviations from the median divided by 0.6745, Hogg (1979), was used

for o.

When estimating the second derivative the smoothing parameter given

by (4.4.1) was scaled by the factor 2.7. as discussed in chapter 3.6.




han

Table 4.1, Empirical confidence levels and average lengths of

confidence intervals for the N(0,1) density based on methods using

asymptotic normality and

samples of size 50,

X-value Method
A B C D
-2.00 ECL .83 0.79 0.84 0.87
Avge. length .0913 0.0886 0.0886 0.100
-1.00 ECL .98 0.99 0.98 0.98
Avge. length .169 0.172 0.169 0.173
-0.50 ECL .87 0.93 0.90 0.87
Avge. length .197 0.200 0.197 6.212
~0.25 ECL .84 0,91 0.88 0.86
Avge. length .204 0.208 0.204 0.224
0.00 ECL .79 0.90 0.91 0.84
Avge. length .206 0.209 0.206 0.228
0.25 ECL .84 0.90 0.93 0.84
Avge. length .202 0.206 0.202 0.221
0.50 ECL .84 0.94 0.90 0.87
Avge. length .193 0.197 0.193 0.207
1.00 ECL .93 0.94 0.92 0.94
Avge. length .165 0.167 0.165 0.170
2,00 ECL .80 0.80 0.83 0.86
Avge. length .0915 0.0886 0.0892 0.0999
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Table 4.2, Empirical confidence levels and average lengths of

confidence intervals for the N(0.1) density based on bootstrap methods

and samples of size 50.

X-value Method
E F G
-2.00 ECL 0.75 6.78 0.77
Avge. length 0.083 0.086 0.0902
-1.00 ECL 0.87 0.91 0.94
Avge. length 0.123 0.159 0.179
-0.50 ECL 0.77 0.84 0.89
Avge. length 0.119 0.166 0.193
-0.25 ECL 0.69 0.82 0.84
Avge. length 0.114 0.167 0.194
0.00 ECL 0.68 0.80 0.86
Avge. length 0.112 0.165 0.191
0.25 ECL 0.68 0.84 0.89
Avge. length 0.113 0.165 0.192
0.81 0.89
0.167 0.190
0.86 0.89
0.156 0.183
0.81 0.80
0.086 0.0962
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Any negative density estimates or confidence bounds obtained were
reset to zero. Clearly this will shorten the length of such a
confidence interval but the monitoring of the effects of this indicated

very little impact on the simulation results,

The results of the simulations are contained in tables 4.1 and
4,2. The same seed for the random number generator was used in the
simulations for A-D. Also, the same seed, but different to that
used for A-D, was used in the simulations for E and F. Another
different seed was used for G. This was done so that a more direct
comparison of the methods could be made as they will then be
calculating confidence intervals for the same samples. For the
bootstrap methods extra levels of simulation are involved in the

bootstrap sampling thus necessitating different seeds.

To give an indication of the ovérall performance of a method
the empirical confidence levels (e.c.1's) at each of the x-values
can be averaged. For those based on asymptotic normality these
averages are 0.86, 0.90, 0.90 and 0.88 for A, B, C, and D
respectively. A does not correct for bias and the e.c.1's tend to
fall short of the nominal value of 0.90. On the other hand B which
is based on the optimal kernel, tends to overestimate this value, most
notably when x = £ 0.50 and * 1.0. C performs well with several
e.c.1's close to 0.90 while D again tends to underestimate the
nominal level. The lengths of the intervals for A, B and C are all
fairly similar with D tending to produce the longest intervals of these
four. Also, for these four, the CI's increase in length as x
aproaches zero from both sides with the maximum length at the origin -
this is because the asymptotic variance is proportional to f(x) which

is a maximum at x = 0. This is in contrast to E, F and G which each




—~164-

tend to produce intervals of similar length at each x-value except

x =% 2.0,

For the three bootstrap methods, E, F and G, the average e.c.l's
are 0.75, 0.83 and 0.86 respectively. E, which is based on the
optimal kernel, consistently underestimates the nominal level and by
a large margin for several x-values. The average interval lengths for
each x-value are much shorter than for F and G due to its low
finite sample variance which was indicated in the simulation results
of Chapter 3. There is some improvement in the performance of F
over E but it still has a tendency to underestimate the nominal
level. The best bootstrap method, in line with the theory, is G
which involves prepivoting. Apart from at x = % 2.0 the e.c.l's
for G are all within (0.84, 0.96). It also produces the widest

intervals but they are shorter than those produced by A-D.

For each of the seven methods, except perhaps D, there tends
to be a drop in the e.c.1's at x =% 2,0 which is probably due
to problems with bias. Indeed, the asymptotic bias at x =% 2.0
is over 50% larger than the asymptotic standard error for a fixed
N(0,1) kernel estimator based on'a sample of size 50 and using

(4.4.1) to choose h.

For the second stage of the simulation study methods B, C and F
were used to construct 90% confidence intervals for pseudo-random
samples of size 50 taken from five differently shaped distribution.
B and C were chosen because out of the four methods based on
asymptotic normality (A-D) these two performed the best in the first
stage. This is in terms of accuracy of coverage probability and
also the shortness of the average lengths of the intervals. Out

of the three bootstrap methods (E-G) the performance of G was far
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superior to those of E and F. However, in the more extensive
study described below, the long computational time which is required
for G meant that it could not be studied further in this way.

Method F, which performed better than E, was therefore included.
The five underlying distributions which were used are as follows:

(i) N(O,1).

(ii) Gamma (2, V2) - highly skewed.

(iii) 0.5N(-0.866,0.5) + 0.5N(0.866,0.5) - bimodal.

(iv) t(3) - long tailed.

(V) x2(5) - moderately skewed,

The CI's were constructed at 20 equally spaced x-values in the
interval (-3,3) for both (iii) and (iv), (0,8) for both (ii) and (v)
(~2,2) for (i). The e.c.l.'s at each x-value were based on the
results for 100 samples and these were then averaged over the 20
x~-values. This was repeated for six different scalings of the
appropriate N(0,1) optimal smoothing parameter given by either (4.4.1)
or (4.4.2). The data from distributions (ii) and (v) only take
positive values and so were reflected in the origin as discussed in
chapter 3. For each distribution the same seed was used to obtain the
samples for each of the smoothing parameter scalings so that the
average e.c.l's for each scaling are directly comparable. The results

are given in tables 4.3-4.5.
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Average empirical confidence levels when using the bias

corrected normal kernel estimator and asymptotic normality.

Scaling of the N(0,1) optimal h.

Distribution 0.4 0.6 0.8 1.0 1.2 1.4
(i) 0.913 0.926 0.931 0.913 0.869 0.808
(ii) 0.520 0,349 0.241 0.170 0.132 0.104
(iii) 0.886 0.886 0.719 0.535 0.383 0.287
(iv) 0.869 0.893 0.898 0.883 0.832 0.773
(v) 0.908 0.866 0.831 0.791 0.748 0.691
Table &4.4. Average empirical confidence levels when using the

estimator based on the optimal kernel of order 4 and asymptotic

normality.

Scaling of the N(O.1) optimal h.
Distribution 0.4 0.6 0.8 1.0 1.2 1.4
(i) 0.907 0.920 0.936 0.921 0.881 0.783
(ii) 0.485 0.347 0.248 0.206 0.183 0.146
(iif) 0.737 0.669 0.473 0.355 0.297 0.250
(iv) 0.868 0.889 0.886 0.861 0.801 0.682
(v) 0.884 0.860 » 0.818 0.756 0.688 0.608
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Table 4.5, Average empirical confidence levels when using the bias

corrected normal kernel estimator and the hootstrap.

Scaling of the N(0.1) optimal h.
Distribution 0.4 0.6 0.8 1.0 1.2 1.4
(i) 0.841  0.868 0.871 0.859 0.825 0.762
(ii) 0.553 0.448 0.346 0.277 0.234  0.191
(iii) 0.653 0.674 0.562 0.415 0.307 0.223
(iv) 0.757 0.785 0.806 0.800 0.761 0.696
(V) 0.859 0.864 0.830 0.777 0.693 0.615

The main overall feature of the results is that the average
e.c.1's generally fall as h gets larger. This is perhaps to be
expected because the bias is smaller but the variance larger for
small h wvalues with the consequence of more accurately centred
but wider CI's. None of the methods have any success for the highly
skewed showed Gamma (2, V2) distribution. Method F based on the boot-
strap also performs poorly for the bimodal normal mixture and the
long tailed t-distribution at each h wvalue but has a similar level
of success to B and C for the N(0,1) and x2(5) distributions.
The two methods based on asympfotic normality have similar levels of
success for the N(0,1), t(3) and x2(5) distributions but C

performs better for the bimodal normal mixture.

The results of these simulation studies indicate then in practice
the best method to use is that based on the bias corrected normal
kernel estimator using asymptotic normality. This will be most

successful when there is evidence that the underlying distribution
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is fairly symmetric and unimodal, If the normal optimal smoothing
formula (4.4.1) is being used then this should be scaled by a

factor less than one. However, the second part of the simulation
study did not include a comparison with the bias corrected normal
kernel estimator using the bootstrap with prepivoting which performed
very well in the first part. Such a detailed comparison awaits a
suitable computational algorithm designed to considerably reduce the

number of calculations involved.

4.5. Example,

The data used consists of the annual snowfall (in inches) at
Buffalo, New York, for the 63 years from 1910-1972. Silverman (1986,
p.44-45) considers these data and shows that by varying the value of
the smoothing parameter either a unimodal or a trimodal density

estimate is obtained.

Figures 4.1 and 4.2 illustrate a bias corrected estimate with
nomiﬁal 90% pointwise confidence intervals evaluated at 30 equispaced
points. The value 6.378 of the smoothing parameter h is based on
formula (4.4.1) scaled by 0.5. (For these data the robust 3 = 25.797).
The CI's based on asymptotic normality (method C of Section 4.4) in
figure 4.1 follow the shape of and are equally spaced about the
density estimate. However, in contrast, those based on the bootstrap
with prepivoting (method G of Section 4.4) in figure 4.2 contains some
small additional structure, in particular for the upper bounds of the
two smaller modes. They are also not generally symmetric with the
upper bounds in the centre and right of the plot notably much further

from the density estimate than the corresponding lower bounds.
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Although the two sets of CI's are not simultaneous they do indicate
that the true underlying density could be unimeodal. (It is likely
that simultaneous intervals would be much wider). This is in line
with the goodness-of-fit tests carried out by Parzen (1979) who

concludes that these data are normally distributed.
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Flgure 4.1. 3Ins corrected kernel estimate (h - 6.378) for the Buffalo snowfall data with nominal

90S polntwine confidence Intervals based on normality.
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Figure 4.2. Bias corrected kernel estimate (h - 6.378) for the Buffalo snowfall data with nominal

90S pointwise confidence intervals based on the bootstrap with prepivoting.
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Chapter 5. Deasity based Goodness—of—fit tests of Multivariate Normality.

5.1. iIntroduction.
Given a univariate random sample {X;,Xp,...,X,} there are many
procedures available for testing whether the observed data have come

from a normally distributed population.

One class of goodness-of-fit statistics are empirical distribution
(EDF) statistics which are based on a comparison between the EDF,
Fh(x), and the normal distribution function, F(x). The class
includes the Kolmogorov-Smirnov, Cramer von-Mises and Anderson-
Darling statistics. Stephens (1974) describes and discusses these
in detail and a power study illustrates the effectiveness of the
Cramer von-Mises and Anderson-Darling statistics in particular.
Another approach is to base a statistic on the distance between
empirical and hypothesised characteristic functions as in Koutrouvelis
and Kellermeier (1981). More informal methods include quantile-

quantile and probability-probability plots.

Bickel and Rosenblatt (1973) derive theoretical results for the
maximum of the normalised deviation of a density estimate from its
expected value and for quadratic norms of the same quantity. These
are used to study the behaviour of goodness-of-fit tests based on
these statistics. Penalising departures from normality in this way
has strong intuitive appeal but has received little development until
recent work by Bowman (1988) who develops two density based tests of
normality - one based on integrated squared error and the other on
entropy. A power study shows them to be competitive with a number

of alternative tests for a wide range of underlying distributions.
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If we now have available a random sample ({Xi,Xs,...,X,} from
a p-varjate distribution then the assumption of multivariate
normality is much more difficult to check. Available procedures
concentrate either on combinations of univariate tests of normality
or on the geometrical properties in RP  of two or more variates
taken together such as the plotting of Mahalanobis distances as in
Healy (1968). Cox and Small provide a review of these and also
consider departures based on curvature in the variate-variate plots.
Paulson, Roohanand and Sullo (1987) consider EDF tests of multivariate
normality. The two main ones they consider are those of Anderson-
Parling and Cramer von-Mises expressed as functions of Mahalonobis
distances. Rosenblatt (1975) examines the asymptotic behaviour of
quadratic functions of multivariate density estimates which he
suggests will be useful in setting up a goodness-of-fit test of a
density function. Koziol (1983) described an omnibus test of multi-
variate normality based on the "radii and angles" properties of the
multivariate normal distribution. He uses the method of Fisher (1958)
to combine Rayleigh's test for uniformity of the angles on the p-1
hypersphere with a Cramer von-Mises test for departures of the
Mahalanobis distances from a x2(p) distribution. This will be

described in more detail in Section 5.2.

There are very few global tests of multivariate normality
and these cannot be expected to have the same power as approaches
designed to detect specific non-normal features. However, they are
particularly useful in that they are able to sweep over the entire
distribution for any features which may be missed by a more specific

approach.

Much of the standard "classical™ multivariate statistical method-
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ology depends on the assumption of normality and the effects of
departures from this on the methods are generally not clearly or
easily understood. It would therefore be useful to have a single
effective test for examining this assumption in order to guide the
subsequent analysis. Such a test would also be useful prior to
carrying out an analysis such as projection pursuit which looks for
non-normal features in lower dimensional projections of the data.
Such an initial test should help prevent over interpretation of
features which may be present even when the data have arisen from a
multivariate normal distribution,

If the null hypothesis is rejected then it would be appropriate
to carry out other more specific tests and also use graphical methods

to determine the causes of the non-normality.

In this chapter it is proposed to extend the univariate density
based test statistics of Bowman (1988) to the multivariate case.
Critical values will be obtained and their performances assessed via
a power study., Comparisons will also be made with the combined

approach of Koziol (1983).

In most practical situations the mean vector and covariance
matrix are unknown so that the null hypothesis is a composite one.
Following usual practice it will be assumed in this chapter that the

data have been centred and standardised by the sample mean vector,

n n
n-1 .lei' and covariance matrix, S = (n-1)-1 121 (xi—Z).(xi—Z)T
i= -

so that the null distribution is taken to be Np(g,lp). This
standardisation will be reflected in simulation of percentage points

and power,

5.2. The omnibus test of Koziol (1983).

It is assumed that we have a random sample from X which has a
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Np(g,z) distribution. If we make the transformation

-1
=3 /2 c (X (5.2.1)

=

then Y ~ Np(Q,I). If Y is transformed to polar co-ordinates,

I —_— (R)ﬂ); then
R = XTY - x%(p) (5.2.2)
and 0 is uniformly distributed on Sp—l» the unit hypersphere in RrY.

To derive a test based on the "radii", R, Koziol (1982) uses the

empirical process

v (t) = n'/2 {Fn(t) - Gp(t)} (5.2.3)
where Fp(:) is the EDF of Ry,...,R, and Gp(') is the CDF of
the Xz(p) distribution. In practice g and Y are generally
unknown and are replaced by their unbiased estimates. We then

consider the empirical process

1/2 ~
Wh(t) = n {Fp(t) - Gp(t)} (5.2.4)
where %n(t) is the proportion of (ill,...,’iln less than or equal to
t and
- S\ T o~1 = :
Ri = (X;-®' s x;-®), 1=1,...,n. (5.2.5)

The Cramer von-Mises statistic

[o]
2
I, = Jo W (t)dGp(t) (5.2.6)
then measures departures from asymptotic normality and has a limiting

distribution which is that of
® 2
3= wi().a6p (5.2.7)
0 .

where W(:) 1is a centred Gaussian process whose covariance kernel is

given in the paper.
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Koziol (1982) determines critical values for J using Pearson
curve approximations and suggests that such asymptotic critical

values of J,; are reasonable if p 1is small or n 1is large.

To implement the statistic J, practically we put Z; = Gp(ﬁi),
(i =1,...,N), order the values of Z; to give Z(l)"--»z(n) and

then use the alternative form

n
. 2 -
In= {Z(i) - (i-1/2)/n}" + (12n) 1, (5.2.8)
i=1
To obtain critical values for finite sample sizes it is necessary
to use simulation. Koziol (1982) provides a limited table of such

values. The biased estimator of 2 with divisor n~! was used in

the calculations.

For the angles it is first necessary to scale the Y;'s to have

unit length i.e.

-1
> /Z(Xi-&)
2; = i=1,...,n (5.2.9)

- 1.,
(-0 T3 xg-) 72

so that the elements of £; are the direction cosines of the vector
Y-

If we let
1
T=n72 3 & (5.2.10)

then Rayleigh's test statistic, p.TIT, (Mardia (1972)), which is
proportional to the squared length of the resultant of the 23, 1is

asymptotically x2(p) when the data are Normally distributed.

If g and Y are unknown the unbiased estimates are used and

we have
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2 = , i=1,...,n  (5.2.11)

so that
n

~ _1 ~
T=n72 5% . (5.2.12)
i=1

Koziol (1983) uses stochastic integration to show that Rayleigh's

statistic should now be expressed as v‘li.T i where
v=p b1 - (/) (P20 /M P/032] . (5.2.13)

For finite samples a limited simulation study shows that the

asymptotic distribution is quite a good approximation for small p or

large n.

A test based either on R or on ¢ will not be consistent
because there is a loss of information as R and §# are not minimal
sufficient by themselves. However, R and § are independent and
jointly sufficient so Koziol (1983) forms an omnibus test by using

Fisher's method.

The p-value of a test statistic is distributed as U(0,1) under
the null hypothesis so that minus twice its natural logarithm is
easily shown to have a x2(2) distribution., Therefore, if pj Iis
the p-value for the Cramer von-Mises test statistic and pjp the

p~value for the independent Rayleigh test statistic

~2[log p1 + log pp] = -2 log (p1.p) ~ X2(4). (5.2.14)

Littel and Folks (1971) show that Fisher's method is an optimal

procedure for combining independent tests of hypotheses in terms of

Bahadur relative efficiency.
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5.3, The density based test statistiecs.

The univariate integrated squared error statistic is derived by
analogy with the Cramer von-Mises family for distribution functions
which have the form

©

[ (Feo - Freorow(x) .aF (x) (5.3.1)

-

where F and Fp are  (F(x) - Fn(x))2.w(x).dF(x)] distribution
functions and w is a weight function. An effective choice for w is
the reciprocal of the variance of Fp(x) as in the Anderson-Darling
statistic so that more weight is given to departures at points where
F, 1is estimated accurately. Using an analogous approach with

fixed kernel density estimates leads to the statistic

j (F(x) - F(x))2dx (5.3.2)

since dF(x) may be written as f(x).dx and the asymptotic variance

of the fixed kernel estimator %(x) is proportional to f(x).

However, as discussed in chapter 3, the smoothing used in the
construction of the density estimate leads to a bias and it is
therefore appropriate to modify the test statistics so that the density
estimate is compared with the slightly flatter shape of density we
would expect if the null hypothesis is true. The appropriate test

statistic is then:

o

[ (N(x;0,1+h%) - F(x)}12% dx (5.3.3)

-0

where N(x;0,1+h2) denotes the normal density in x with zero mean

and variance 1+h2 and is the expected value of %(x) under H,.




—~178~

Only the fixed kernel density estimate will be used in this test
statistic because of the difficulties in writing an explicit
expression for the expected value of an adaptive estimator and also,
as discussed in chapter 2, the asymptotic results do not provide a

good approximation.

For multivariate data, statistic (5.3.3) easily generalises to

[ 00, 4nD 1) - Fo) Zax (5.3.4)

~

If f 1is constructed using standard normal kernels (5.3.4) can be
evaluated analytically to give the following simpler computational

form:

Np(0:0,2(1+h%) 1) - (2/p) 3 No (%150, (1+2h%) 1)

+ A/NG(@:0,20%10) + (2/p2) T Nplxiixj,2h’Ip)  (5.3.5)
i<j

where n 1is the sample size, A good choice of smoothing parameter
is provided by the value which minimises the asymptotic MISE when
estimating a multivariate normal distribution which for a given

dimension p and sample size n, is

(1/(p+4))

h - [(2pil)n] (3.3.6)

Bowman (1985) shows that using such an h produces density estimates
that recover the shapes of a variety of unimodal densities in the

univariate case.

Vasicek (1976) based a test of univariate normality on the
property of the normal distribution that its entropy exceeds that
of any other distribution that has the same variance. The entropy

of a distribution F with a density f 1is defined as
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0

H(f) = - J f{x)log(f(x))dx = -E[log(f(x)] (5.3.7)

-0

Vasicek's statistic, which estimates H(f), was not derived
explicitly in terms of density estimates but is in fact equivalent

to - % Y log (?(xi)) where ?(xi) is a type of nearest neighbour
estimate. Bowman (1988) suggests using a fixed kernel approach which

leads to the test statistic

1 1 A
- = .leog(f(xi)) (5.3.8)
1=

with H, being rejected for small values.

The entropy property of the univariate normal distribution also

holds in the multivariate case and so sample entropy

log(T(x:)) (5.3.9)
1

t
Sl

[

i
provides a goodness-of-fit test statistic for the multivariate
normal distribution. In this case adaptive estimators may also
be used in constructing f. As a choice of smoothing parameter
formula (5.3.6) may be used for a fixed kernel estimator whereas the
normal optimal formulae derived in chapter 2 can be used for the
adaptive method. As a result of the comparisons made in chapter 2
when it was found that the adaptive method with o« = 1/p was the most
effective for multivariate data only this method will be used here.
The required pilot estimate will be constructed using fixed kernels

smoothed by (5.3.6).

A number of authors, including Huber (1985) and Jones and Sibson
(1987), have also used entropy as an index of normality when
seeking non-normal one and two dimensional projections in a

projection pursuit algorithm.
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5.4, A Power Study.

Because of the intractability of the finite sample distributions
of each of the threedensity based statistics, namely integrated
squared error, sample entropy using fixed kernels and sample
entropy using the adaptive method with « = 1/p, simulation was
used to calculate 5% critical values. For a given dimension
(1,2,...,5 or 6) and sample size (25,50 or 100) a random sample
was generated from a standard normal distribution. The data were
then centred and standardised and the test statistic evaluated.
This was repeated 1000 times. The values of the simulated test
statistics were then ordered with the critical value corresponding

to the appropriate order statistic,

Simulation was also required to obtain a more extensive set of
critical values than those calculated by Koziol (1982, 1983) for the
Cramer-von Mises and Rayleigh test statistics described in Section
5.2, This time 5000 simulations were carried out for the three
sample sizes (25, 50 and 100) and five dimensions (2,....,6). Nine
percentage points of the empirical distributions were evaluated for

each dimension and sample size combination and are given in tables

5.1 and 5.2,

Similarly, empirical powers of the tests were calculated by

simulating from the following multivariate distributions:

(i) Cauchy (0,1} in each margin - long tailed.
(ii) Lognormal (0,1) in each margin - highly skewed.
(iii) Normal mixture,
0.5 Np(1.5,...,1.5T,1,)) + 0.5 N((-1.5,...,-2.5T,1p)
- bimodal.

(iv) Gamma (2,1) in each margin - moderately skewed.
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Sample sizes 25, 50 and 100 were considered for each of
dimensions one to six for the density based statistics and dimensions
two to six for the others. Results.are based on 1000 replications in
each case. To evaluate the test statistic for Fisher's method linear
interpolation was used in tables 5.1 and 5,2 to obtain the p-values
for the Cramer-von Mises and Rayleigh tests, Observed test statistic
values greater than the 99.5% point were assigned a p-value of

0.0025 while those less than the 10% point were assigned a p-value

of 0.95.

For distributions (i) and (ii), which have densities very unlike
the shape of a Normal, all the powers of each test are very close
to one which is what one would expect if the tests are at all

effective. See tables 5.3 and 5.4.

The powers of the density based tests for distributions (iii)
and (iv) are given in table 5.5. These are poor at n = 25 which
reflects that this is a small sample size at which to estimate a
multivariate density. When n = 100 all the powers are again close
to one with the exception of the entropy statistics for the bimodal
normal mixture where there is a decline in power for dimensions 5

and 6.

A more informative comparison can be made when n = 50. For
distribution (iii) (the bimodal normal mixture) the ISE statistic has
the largest power in each dimension except for dimension 1 when
the entropy statistic based on the adaptive estimator is marginally
superior. There is a marked decrease in power as dimensionality
increases which is most marked for the entropy statistics. Of the

two entropy statistics the adaptive method has a better power in
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each dimension.

For distribution (iv) based on Gamma margins the ISE statistic
again has the best power in each dimension except the first when
the entropy statistic based on fixed kernels performs slightly
better. For this distribution though the adaptive method has no

clear advantages over the fixed method in the entropy statistic,

The powers of the non-density based tests for distribution (iii)
and (iv) are given in tables 5.5 and_5.6. The results for the bimodal
normal mixture show at each sample size a marked decrease in power for
each of the tests as the dimension increases. These decreases are most
pronounced for the Cramer-von Mises and Fisher test statistics while
the Rayleigh statistic has very poor power at each sample size and
dimension. The Cramer-von Mises test statistic performs best overall
here with Fisher's test being let down by the poor performance of

Rayleigh's statistic.

When the underlying distribution is Gamma (2.1) in each margin
the powers of the three tests increase as the sample size gets
larger but this time there is not the marked decline in performance
for increasing dimension. The best now overall is Rayleigh's test
with Fisher's method doing slightly worse, again due to the poorer
performance of the other test, which this time is based on the

Cramer-von Mises statistic.

Comparisons between the density based omnibus tests and Fisher's
combined method for distribution (iii) show thast Fisher's method
performs worse than the other three at all sample sizes and
dimensions considered. The differences are most marked when n = 25

and n = 50 - the results at n = 50 are plotted in figure 5.1.
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For distribution (iv) at n = 25 Fisher's method has lower power
than for each of the density based statistics but the differences
are generally not great. The results for n = 50 are plotted in
figure 5.2. and show the performance of the ISE statistic to be
again the best for dimensions 2-6. They also show a marked increase
in power for Fisher's method with increasing dimension so that for
dimensions 5 and 6 it is performing better than the two entropy
statistics. When n = 100 these four omnibus tests each have

similar high powers for each dimension.

Taken overall, the simulation results indicate that the ISE test
statistic would generally be a good choice for testing multivariate
normality. The 5% critical values for the ISE statistic for
dimensions 1 to 6 and for sample sizes up to 500 are listed in table
5.7. These results also show that Fisher's method would generally
make a better choice than just using the Cramer von-Mises or
Rayleigh tests on their own., This is because its performance was
close to the better of the other two, and which of the two is better

depends upon the underlying distribution.




Table 5.1.

Observed % points for the Cramer-von Mises statistic simulated
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from 5000 samples in each case.

Sample size

10.0 | 2

5.0

50.0

% point

75.0

90.0

95.0

97.5

99.0

99.5

p=2 25
50

100

0.034 |O.
0.033 |0.

0.034 |0.

048

047

048

0.072
0.071

0.074

0.113
0.113

0.115

0.166
0.167

0.175

0.211
0.217

0.222

0.251
0.263

0.265

0.321
0.326

0.327

0.368
0.384

0.361

50

100

0.033 |o.

0.033 |0.

0.033 (0.

046

046

047

0.069

0.070

0.072

0.107
0.107

0.109

0.158
0.160

0.159

0.196
0.202

0.200

0.229

0.247

0.242

0.279
0.315

0.295

0.339
0.348

0.340

p=24 25
50

100

0.034 |0.

0.034 |0.

0.033 |0.

047

046

046

0.069
0.069

0.069

0.107
0.105

0.106

0.152

0.158

0.154

0.190
0.194

0.195

0.229

0.226

0.236

0.279
0.278

0.299

0.315

0.316

0.350

p=35 25
50

100

0.035 j0.

0.034 |0.

0.032 |o0.

048

046

045

0.071
0.068

0.067

0.109
0.103

0.103

0.162

0.153

0.152

0.196

0.186

0.188

0.235

0.222

0.224

0.283

0.281

0.273

0.314

0.317

6.317

p=6 25
50

100

0.035 |0.
0.033 [O.

0.032 0.

049

046

045

0,072
0.069

0.067

0.111

0.105

0.103

0.164

0.153

0.150

0.203

0.192

0.190

0.244

0.230

0.224

0.296

0.282

0.277

0.353

0.325

0.296




Table 5.2.
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Observed % points for the Ravleigh statistic simulated

from 5000 samples in each case.

Sample size % point

n 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0 99.5

p =2 25 10.186 [0.540 [1.364 |2.698 |4.457 5.637| 6.838] 8.198| 9.439
50 10.208 [0.556 |1.397 |2.773 |4.694 6.062| 7.3951 9.142110.659

100 10,217 |0.576 |1.426 |2.858 (4.713 6.066] 7.653} 9.105|10.739

p=23 25 |0.519 |1.072 [2.153 |3.802 |5.745 7.184| 8.624]10.515(11.778
50 {0.552 {1.191 |2.323 |4.008 |6.159 7.713] 9.696111.58213.580
100 [0.576 [1.170 [2.351 [4.038 ]6.053 7.6291 9.299(11.411(13.310

p=24a 25 10.697 |1.738 [3.099 |4.948 |7.087 8.688| 9.988]11.957113.,497
50 }1.018 |1.852 ]3.233 |[5.229 |7.470 9,070(10.902112.886|14.580
100 {1.013 |1.843 |3.260 [5.362 |7.771 9.467(10.892112.960|14.490

p=25 25 |1.338 |2.343 |3.792 |5.742 |8.044 9.600(11.153{13.355114.327
50 11.534 |2.493 |4.133 |6.306 {8.837 ]10.647(12.195]14.288(16.120

100 y1.568 |2.591 4.291 |6.390 |9.052 }10.799{12.360|14.686{16.225
p=26 25 11.779 12.762 |4.415 |6.472 |8.904 |10.725(12.320(|14.241|16.018
50 11.988 |3.089 |4.831 |7.198 |9.908 |11.557]13,237(15.368(|16.906

100 |2.215 |3.418 |5.155 |7.369 |9.774 (11.724113.659(16.511|16.867
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Table 5.3

Powers of the density based, Cramer—von Mises, Ravleigh and Fisher'scombined tests

estimated from 1000 simulated samples in each case, when the underlying distribution is

Cauchy (0,1) in each margin.

Dimension

1 2 3 4 5 6
Sample size 25 ‘
ISE fixed 0.948 0.997 0.995 1.000 0.999 1.000
Entropy (fixed) 0.950 0.997 1.000 1.000 0.999 1.000
Entropy (a = 1/p) 0.926 0.986 1.000 1.000 0.999 1.000
CVM - 0.986 0.995 1.000 0.999 0.991
RAY - 0.897 0.965 0.981 0.995 0.997
FISHER - 0.990 0.997 1.000 1.000 0.999
Sample size 50
ISE fixed 0.998 1.000 1.000 1.000 1.000 1.000
Entropy (fixed) 0.998 1.000 1.000 1.000 1.000 1.000
Entropy (a = 1/p) 0.998 1.000 1.000 1.000 1.000 1.000
CVM - 1.000 1.000 1.000 1.000 1.000
RAY - 0.969 0.992 0.996 0.999 1.000
FISHER - 1.000 1.000 1.000 1.000 1.000
Sample size 100
ISE fixed 1.000 1.000 1.000 1.000 1.000 1.000
Entropy (fixed) 1.000 1.000 1.000 1.000 1.000 1.000
Entropy (o = 1/p) 1.000 1.000 1.000 1.000 1.000 1.000
CVM - 1.000 1.000 1.000 1.000 1.000
RAY - 0.983 1.000 1.000 1.000 1.000
FISHER - 1.000 1.000 1.000 1.000 1.000
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Table 5.4

Powers_of the density based, Cramer—von Mises, Rayleigh and Fisher's combined

tests, estimated from 1000 simulated samples in each case, when the underlying
distribution is Cauchy (0.1) in each margin.

Dimension
1 2 3 4 5 6

Sample size 25

ISE fixed 0.966 0.996 0.999 1.000 0.999 0.998
Entropy (fixed) 0.959 0.992 0.995 0.999 0.996 0.997
Entropy (o = 1/p) 0.964 0.990 0.995 0.991 0.993 0.998
CVM - 0.816 0.875 0.910 0.901 0.879
RAY - 0.955 0.975 0.980 0.990 0.992
FISHER - 0.960 0.984 0.985 0.989 0.986
Sample size 50

ISE fixed 1.000 1.000 1.000 1.000 1.000 1.000
Entropy (fixed) 1.000 1.000 1,000 1.000 1.000 1.000
Entropy (o = 1/p) 1.000 1.000 1.000 1.000 1.000 1.000
CVM - 0.991 0.997 0.999 0.998 0.999
RAY - 1.000 1.000 1.000 1.000 1.000
FISHER - 1.000 1.000 1.000 1.000 1.000
Sample size 100

ISE fixed 1.000 1.000 1.000 1.000 1.000 1.000
Entropy (fixed) 1.000 1.000 1.000 1.000 1.000 1.000
Entropy (o = 1/p) 1.000 1.000 1.000 1.000 1.000 1.000
CVM - 1.000 1.000 1.000 1.000 1.000
RAY - 1.000 1.000 1.000 1.000 1.000
FISHER - 1.000 1.000 1,000 1.000  1.000
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Table 5.5

Powers of the density based, Cramer—von Mises, Ravyleigh and Fisher's combined

tests, estimated from 1000 simulated samples in each case when the underlying

distribution is a bimodal normal mixture

Dimension
1 2 3 4 5 6

Sample size 25

ISE fixed 0.621 0.671 0.440 0.336 0.176 0.151
Entropy (fixed) 0.488 0.420 0.192 0.185 0.095 0.072
Entropy (o = 1/p) 0.715 0.661 0.349 0.181 0.098 0.092
CVM - 0.452 0.221 0.128 0.107 0.074
RAY - 0.117 0.077 0.064 0.033 0.049
FISHER - 0.370 0.126 0.065 0.049 0.046
Sample size 50

ISE fixed 0.962 0.998 0.996 0.847 0.619 0.488
Entropy (fixed) 0.918 0.934 0.708 0.392 0.213 0.158
Entropy (o = 1/p> 0.966 0.988 0.863 0.480 0.295 0.164
CVM - 0.845 0.489 0.243 0.173 0.123
RAY - 0.117 0.090 0.063 0.043 0.037
FISHER - 0.787 0.343 0.170 0.093 0.063
Sample size 100

ISE fixed 0.999 1.000 1.000 1.000 0.999 0.980
Entropy (fixed) 0.999 1.000 1.000 0.953 0.692 0.423
Entropy (o = 1/p) 0.999 1.000 1.000 0.967 0.697 0.387
CVM - 0.997 0.880 0.527 0.298 0.187
RAY - 0.125 0.086 0.061 0.037 0.040
FISHER - 0.997 0.812 0.368 0.183 0.118
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Table 5.6

Powers of the density based, Cramer—von Mises, Rayleigh and Fisher's combined

tests, estimated from 1000 simulated samples in each case when the underlying
distribution is Gamma (2.1) in each margin

Sample size 25
ISE fixed

Entropy (fixed)
Entropy (o = 1/p>
CVM

RAY

FISHER

Sample size 50
ISE fixed

Entropy (fixed)
Entropy (o = 1/p)
CVM

RAY

FISHER

Sample size 100
ISE fixed

Entropy (fixed)
Entropy (a = 1/p)
CVM

RAY

FISHER

0.588
0.551
0.586

0.880
0.908
0,900

0.995
0.998
0.998

o O o O O ©O @ O O O O C

o O © - O

.688
.629
.574
.199
AT4
449

.951
.939
.930
424
.812
.810

.000
.999
.000
727
.990
.886

O O O o o ©

o O o O O O

O O O O =

Dimension

3

.680
.633
.572
.247
.589
.545

.964
.937
.908
.546
. 904
.889

.000
.000
.997
.875
.996
.998

o C O O O O

o O O © O O

o O O H = B

.697
.650
.590
.234
.536
. 507

.961
.933
.910
.595
.928
.916

.000
.000
.000
.917
.999
.999

o O O O O O o O O O ©

= = O O

.603
.526
.483
.164
.553
473

.960
.901
.910
.612
.929
.921

.000
.000
.997
.933
.000
.000

o O O o O o o O O o O O

o = O O o -

.599
.492
.485
.128
.524
432

.958
.900
904
.563
.943
.934

.000
.999
.994
.926
.000
.999
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5.5 Examples,

Example 1., Some haematology data.

These data, given in full Royston (1983), consist of six
measurements made on each of 103 black (West Indian or African) paint

sprayers in a car assembly plant. The six variables considered are:

1. Haemoglobin concentration,
2. Packed cell volume.

3. White blood cell count.

4, Lymphocyte count.

5. Neutrophil count.

6. Serum lead concentration,

Variables 3, 4, 5 and 6 have skewed empirical distributions

and were therefore logarithmically transformed before analysis.

This dataset was tested for consistency with multivariate
normality by Royston (1983) who extended Shapiro and Wilks' (1965)
univariate W test to a multivariate setting (the 'H test') and also
to a normal probability plot of the (square-root transformed) squared
radii, ﬁi (the ™{) test"). He reports that the normal probability
plots for each of the six variables are reasconably linear with the H
test of combined W ranks having a p-value of 0.08. However, the Q
test indicates a strong departure from 6-normality with a p-value of
0.0004. To further investigate this the ) test was carried out on
all pairs and triples of the variables. The only significant result
is for 3, 4 and 5 with p = 6 X 1076, Three outliers are identified
in the space of these three variables (cases 21, 47 and 52) and

on their removal the {) test on variables 3-5 has a p-value of 0.52.

The values of the test statistics discussed in detail in this




—-192~
chapter are presented in the following table.

Table 5.6. Results of tests of normality for the haematologyv data.

|
|
Test Data Set
Vars 1-6 ex. Vars 3,4,5 ex.
Vars 1-6 cases 21,47,52 Vars 3,4,3 cases 21,47,52

5 0.118 0.406 0.0894

0.253
cvM = 0.017) | (p =0.20) | (p < 0.005) | (p = 0.39)

(p

33,323 22.450 35.329 23.265
(p < 0.005) (p < 0.005) | (p < 0.005) (p < 0.005)

20.13 15.20 23.97 13.92

FISHER 4 (p < 0.005) | (p < 0.005) | (p < 0.005) | (p =0.00%)

0.000168 0.000164 0.00396 0.00317

ISE (p < 0.05) (p < 0.053) p << 0.05 p << 0.05

For the full dataset each test results in a significant result.
The x2 probability plot (figure 5.3) shows most of the points near
the straight line but identifies cases 10, 21, 47, 52 and 80 as
possible outliers - in particular 21 and 52 are very extreme, Removing
21, 47 and 52 in accordance with Royston and then repeating the tests
results in a fairly marked decrease in the value of each test statistic
except for ISE. The CVM test is now non-significant but for the others
the results are qualitatively the same. This is in contrast to
Royston's results which provide no evidence of departure from 6-
normality on removal of these three individuals. If, in addition,
cases 10 and 80 are also removed the values of the four test statistics
(not included) are fairly similar to when only 21, 47 and 52 are

removed thus leading to the same conclusions,

The results for variables 3, 4 and 5 are highly significant for

each test thus confirming Royston's conclusions. The x2 probability



plot (figure 5.4) again shows 21, 47 and 52 to be extreme. On their
removal the values of each statistic decrease markedly but again only
CVM is non-significant - the others are still all highly significant

thereby indicating strong departures from 3-normality.

Example 2. Plasma lipid data
A group of 371 males were selected from patients with chest pain,

referred to a hospital cardiology unit, to be part of a study into

the relationship between plasma cholestrol and plasma triglyceride
concentrations (mg/100ml) and coronary artery disease., These patients
were then divided into two groups according to the criteria "diseased"
or "normal". 320 patients were included in the "diseased" group with
the remaining 51 being classed as "normal". Details of the experi-

mental methods are described by Scott et al (1978).

To analyse the risk of coronary artery disease associated with
higher levels of plasma triglyceride Scott et al use the "odds
form" of Baye's rule which depends on the likelihood ratio of the
joint bivariate density for diseased patients to that for normal
patients., By using Kolmogorov-Smirnov two-tailed tests on the
marginal distributions they reject the hypothesis that the underlying
density functions are normal. The bivariate densities are therefore
estimated nonparametrically using a kernel approach which is

described in the paper.

For the diseased patients a scatter plot and contour plot based
on a kernel density estimate are illustrated in Silverman (1986,
p.81-82). These show the distribution to be both bimodal and highly
skewed. Indeed, omnibus tests of normality using Fisher's combined

test and the ISE statistic are both highly significant (see table




5.7). The data were therefore

function. A scatter plot with
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transformed using the natural log

the contours of a kernel density

estimate superimposed is illustrated in figure 5.5 The density

estimate is based on standard normal fixed kernels using a smoothing

parameter, h,

(Hogg (1979))

in each co-ordinate direction.

given by (5.3.6) scaled by a robust estimate of scale

The distribution is now

unimodal with much of the skewness removed but both omnibus tests are

still highly significant (see table 5.7).

Table 5.8 Results of tests of

Normality for the plasma lipid data.

Data

CVM
Diseased patients
Original data 1.937
(n = 320 (p << 0.005)
Log, transformed 0.154
(n = 320) (p = 0.14)
Normal patients
Original data 0.450
(n =~ 51) (p < 0.005)
Original data 0.206

(n = 50)

(p = 0.0617)

For the 51 normal patients

superimposed is shown in figure 5.6.

on using fixed standard normal
by robust estimates of scale.
does not have the same spread,

concentration, as for the data

Tests

RAY FISHER IS

81.320 23,97 0.0158
(p << 0.005) (p << 0.005) (p << 0.05)

9.545 15.92 0.00292

(p < 0.005) (p < 0.005) (p < 0.05)
6.727 18.550 0.00853

(p = 0.0375) (p < 0.005) {(p < 0.05)
3.822 9.139 0.00385

(p = 0.168) (p = 0.0602) (p > 0.05)

a scatter plot with contours

The contours are again based
kernels with h given by (5.3.6) scaled
The distribution is unimodal and
especially for the plasma triglyceride

from the diseased patients. The

tests of normality are all significant though (see table 5.7). The
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scatter plot enables a clear outlier to be identified who has a high
plasma cholestrol concentration and a very high plasma triglyceride
concentration relative to the other normal patients. When this
patient is omitted none of the tests are significant at the 5% level
(see table 5.7) but the low p-value for the Cramer-von Mises and
Fisher's combined test indicates some caution is required in

accepting that the underlying distribution is bivariate normal.

The results of the more extensive testing of bivariate normality
detailed above therefore vindicates the use of kernel density

estimates in the likelihood ratio in the analysis of Scott et al,.
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Flgure 5.1. Powers of the goodness-of-fIt tests based on 1000 samples of size 50 from the
0.5Np((-1.5..cc..c. -1.5)T,Ip) + 0.5Np((1.5..ccc.ee 1.5)T,Ip) distribution.
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Figure 5.2. Powers of the goodness-of-fit tests based on samples of size 50 from a distribution

which is Camma(2.1) in each margin.
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for the haematology data (variables 1-6)

Flgure 5.3. - probability plot of the Mahalanobls squared distances
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Figure 5.4. probability plot of the Mahalanobls squared distances for the haematology data (variables 3,4,5)
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estimate for the

Diseased patients only).
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Chapter 6. Finding Directions of High Multivariate Density

6.1. Introduction.

Given a multivariate data set (x1,X9,...,Xp), the initial
analysis is oftenvexploratory with the hope that any important features
such as clusters, skewness or long "arms" will be revealed. This
is generally approached by looking at a variety of graphical displays
which therefore necessitates a presentation of the data in one or two
dimensions. The most common technique used to achieve this is the
application of linear projections. While these are straightforward to
implement and are certainly useful their interpretation may not be so
easy as discussed by Gower in the discussion of Jones and Sibson
(1987). Also, projections obscure either partly or totally actual
structure of the full dimensional data. Two methods for finding
"interesting" projections are principal components analysis and

projection pursuit.

Principal components analysis (PCA) is a rigid rotation of the

original axes Xl,Xz,...,Xp to new positions Y¥q,Y9,...,Y

p such that

the orthogonal projections of the data onto them have decreasing
spread. The first q (< p) components define the best fitting -
dimensional subspace to the data in terms of minimising the sum of
squared orthogonal distances from the sample points to this subspace,
In particular Y; and Y, define the best fitting plane. To be
successful, PCA requires that large variation corresponds to interest-

ing structure which may easily fail to be true in practice.

Projection pursuit (PP) methods seek projections of the data which

maximise some index of "interestingness". PCA is therefore a PP
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procedure where the index corresponds to the proportion of the total
variation explained by the projected data. Friedman and Tukey (1974)
constructed a PP index based on the product of a measure of spread and
the local density of the projected data which has to be optomised
numerically. Recent authors such as Huber (1985), Jones and Sibson
(1987) and Friedman (1987) have approached the problem by considering
the converse idea of uninteresting projections and present heuristic
arguments that normally distributed projected data is least interest-
ing. Their projection indexes are then based on indices of normality
such as entropy with the numerical optimisation procedure then seeking
maximum divergence from this criteria. The two main problems with

PP methods are firstly the difficulty in successfully implementing

the numerical optimisation procedure which may take considerable
computing effort and also be trapped by local maxima and secondly

that the structure apparently revealed is just the result of random

variation.

In this Chapter a different exploratory approach based on finding
directions of high multivariate density will be described. There are
three main aims in doing this. Firstly, to explore the shape of a
multivariate density function when it cannot be readily plotted for
p > 2. Secondly, to find non-linear features such as clustering
in the data and thirdly, to use pairs of directions for the
construction of 2-dimensional representations. The technique will
also be useful in determining the reasons for the rejection of the
hypothesis of normality following one of the density based tests

described in Chapter 5.

As is normally the case before carrying out a PCA or PP analysis

the data will be recentred using the sample mean vector and the scale
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effects removed by standardising each variable to have unit wvariance.
In the following discussion it will be assumed that the data have

already been transformed in this way.

6.2, Finding the directions.

Features such as clusters, skewness and long "arms" in the data
will clearly be indicated by modes and long tails in the underlying
density function. A cross-section of the density in a direction through
such a feature will therefore have large cross-sectional area. Hence
a criteria for identifying these effects is to find directions Yy

from the centre which maximise

o
[ fe.wyde (6.2.1)
0

where f 1is the underlying density function, v = (vl,vz,...,vp)T

is a unit vector and ¢ » 0 1is a scalar.

For bivariate data a line a little longer than the distance from
the centre to the furthest data point can be swept round in a circle

in small angular steps. For any such line the quantity

Z%(zi) (6.2.2)
1

is calculated where the 2zj's form an equally spaced grid of points
along this line and %(-) is a nonparametric estimate of the true
density. The values of (6.2.2) are then plotted against 6 ¢ [0,27]
with the modes in the plot corresponding to interesting directions in
the data. In Section 6.4 it is proved that if the underlying distri-
bution is bivariate normal then the two directions of highest density

are equivalent to the positive and negative directions of the first PC.
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This method could also be applied to multivariate data in general
but for p » 3 is computationally rather infeasible and a different

approach is therefore needed.

As we are interested only in directions, an alternative strategy

is first to scale all vectors ({xj} to have unit length, i.e.

vi = (llzinz)_l. Xi (6.2.3)
/B 2
where nxillp = S xij
j=1

The elements of yj; correspond to the direction cosines of the
vector xj. Interesting directions of high density now correspond to
modes of the distribution which has been induced on the p-dimensional
unit hypersphere because the mass g at a point y on this hyper-

=]
sphere equals J f(c.yv)dc.
0

Given a random sample of data on the real line a number of authors
have considered methods of estimating the mode 6 of the underlying
density f based on this data. The direct method of Chernoff (1964)
is to choose the centre of the interval of length 2a, for some
constant a, that contains the largest number of observations. Venter
(1967) also based his estimates on that point around which the greatest
"clustering"” of observations occurs but uses instead a function of the
order statistics. Grenander's (1965) estimate is also based on the
spacings between the data but uses a different function of the order
statistics. Alternatively, an indirect estimate of ¢ can be based
on a kernel density estimate f of f, The mode, assumed unique, is

then defined to be max }(x). The properties of such an estimate
X

have been studied by Parzen (1962) and Eddy (1980). Both the direct
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and indirect approaches are reviewed by Rao (1983).

Direct and indirect methods for estimating the mode in the multi-
variate case are also described by Rao (1983). In the discussion of
a direct estimate it is assumed that the density f is right quadrant

continuous, i.e.

1im f(y) = f(x) (6.2.4)
¥2X, ¥ = X

and there is a @8 such that f(8) » f(x) for all x # 8. Let

ap — 0 as n — ® and let [1,,1, + ap.1] be an interval of
"length" a, containing the largest number of data points {xj}

among all intervals of "length" a_,. Here, 1, denotes a p-vector
and 1 a p-vector of 1's. The direct estimate of 6§ 1is then given by
1, + (ap/2).1. The consistency of this estimator is shown but in
practice it would be very difficult to use because of the considerable
computat ional problem of searching for a "best" interval. Sager (1979)
discusses a related estimate based on finding a sequence of nested

convex sets containing given numbers of observations but points to the

practical difficulties of finding such sets.

The properties of an indirect estimate of the unique mode of a
unimodal density f based, as in the univariate case, on finding

max f(x), where f 1is a kernel estimate of f, are also discussed.
X

In the context of direction finding we will generally need to be
able to locate several modes of the distribution on the p-dimensional
hypersphere. The multivariate methods discussed above are not really
practical or applicable so we develop the following algorithm which
partitions the data into groups around directions of high density and

then calculates the mean direction of each group as an estimate of the

local mode.
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i) Estimate g(vj), 1 =1,...,n where g(:) 1is the underlying

induced density on the hypersphere,.

ii) Rank the observations from largest to smallest according to the

size of the estimates %('), i.e.
&(n)r---8(1)

iii) Characterise a first group Gy by the direction of the

observation corresponding to %(n)- Call this direction d;

iv) Assign the observation corresponding to %(n-l) to Gl if the
angle between this observation and dj 1is less than « radians
(e.g. a = w/2). Otherwise, form a new group, Gy, whose
characteristic direction, dj, is defined by the direction

cosines of the observation corresponding to g(j.1)-

v) In descending order of density height, successively assign
observations to the closest existing group if the angle of
separation is less than «. If the angle between the current
observation and all existing groups is greater than or equal
to a form a new group.

The end result is k groups Gq,Gp,...,Gy containing

nj,ny,...,ng observations such that Y nj = n.
i

iv) Find the mean direction, using the %(-) as weights, for each

of the groups, i.e. for Gp the mean direction is

ng . -1 ng
5 (2) - (2) (2)
(S &) - 58 -y
i=1 i=1
where ¥§Q) denotes the ith vector of direction cosines with weight

%(Q)

;  in the eth group.
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The lengths of the mean vectors provide a measure of concentration
of the directions in a group about the mean direction. A value
close to one will indicate tight clustering about the mean.

(Mardia (1972)).

vii) Scale the mean directions to have unit length.

It has been found in practice that by choosing o = 7/2 the
procedure is often able to find the main features of the data,
However, results could be compared for different values of o
especially if it is believed that a number of distinct features are
fairly close together. As o« is reduced the number of groups tends to
increase, particularly for high dimensional data, and hence the numbers

of observations forming the groups decreases. Conversely, as o i

increased the number of groups tends to decrease.

If required, only a specified proportion (e.g. 0.75) of the
observations with highest density could be used to find the modes thus

using the ideas of sharpening by Tukey and Tukey (1981).

Before trying to find the modes of a density on the hypersphere, a
preliminary test that this density is uniform, which corresponds to a
radially symmetric scatter of the data in Euclidean space, could be

carried out to try and avoid finding spurious directions.

At each step, when an observation is éssigned to a group, the
characteristic direction of that group could then be updated by
calculating the mean direction of all the current members of the group.
The final number of groups and their characteristic directions will
not necessarily be the same as when no updating takes place. In

practice though, no advantages of doing this as opposed to averaging
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at the end have generally been found.

Kittler (1976) estimates the density of each data point and then
uses this information in the construction of a path through the data
which passes through as many of the data points as possible about one
mode before passing onto those near another. The aim is not to
specifically identify where the modes are but to classify the data

into clusters based on these modes.

The algorithm described above depends on being able to estimate a
hyperspherical density so in the next Section the construction of an

appropriate kernel estimate will be described.

6.3. Estimation of the density on a hypersphere.

Given a random sample of unit vectors (vi,v9,...,vL} where

T
vi = (vi1, Vi2:---’Vip) (6.3.1)
it is required to estimate the density as the point v.

It is proposed to use as a kernel function with an appropriate
density defined on a hypersphere, to avoid any problems with choice

of origin, i.e.

0 >
S

1
o
[ =]

K(vy ; ¥i, ¢) (6.3.2)

where K(.,vj,c) 1is the kernel function centered at y; and c s
a smoothing parameter. As a choice of kernel consider the rotation-

ally symmetric unimodal function

T
(P/o-1) k.1'm
(2m)P/2

K(1;m,k) =

(6.3.3)
Lp/p-1) R
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where 1 1is a vector of direction cosines, m 1is the vector of
direction cosines corresponding to the mean direction, k 1is a scale
parameter such that the larger its value the more concentrated

K(.;m,k) is about the mean/modal direction and Ip(k) is the modified
Bessel function of order p evaluated at k. The quantity

do(k) = k(p/z—l)/[(2w)p/2 1(p/2_1)(k)} can be regarded as the

. k1T
normalising constant for the function e .

If a change of variable
to polar co-ordinates is made then the p.d.f. for p =2 1is the

Von-Mises distribution and for p =3 is the Fisher distribution.

When using (6.3.3) as a kernel in (6.3.2) large values of ¢ will
mean each density in the summation is concentrated and around its
mode at v; and hence only a small amount of smoothing is carried
out, The opposite is true for small values of ¢ until when ¢ =20

it becomes the uniform distribution on the hypersphere.

For the purposes of the mode seeking algorithm it is not necessary
to include the normalising constant in the evaluation of é because
when using fixed kernels it will be the same for each g(xi) and it
is only the relative size of the density weights which are important.

This avoids having to calculate the function Ip(c).

To calculate the estimate it is necessary to choose a value for
the smoothing parameter c¢. One approach would be to carry out an
analysis separately for several subjectively chosen values of ¢ and
compare the results. It has been found that results can be fairly
similar for a broad range of smoothing parameters. However, it is
probably more useful to have a more accurate assessment of the degree
of smoothing required based on a suitable loss function.

One approach described in the discussion of optimal smoothing

in Bowman (1988) for circular data and Diggle and Fisher (1984) for
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spherical data approximates the Von Mises and Fisher distributions

by wrapped normal distributions. The results for optimal smoothing,
in terms of minimising the MISE when the data is from a normal
distribution, are then adapted to the angular case. While this
analogy is reported to work well for unimodal, approximately symmetric
distributions, in the present context we are generally expecting the
underlying density to be multimodal and so using this approach may

result in considerable oversmoothing.

~

The integrated squared error (ISE) of the estimator g is
~ 2 ~2 ~ 2
[ G- =% -2[gs+ |8 (6.3.4)

The last term does not depend on g so choosing ¢ to minimise
ISE corresponds to that choice which minimises the function R(g)

defined by

R('é) -8 -2%s. (6.3.5)

The idea of least squares cross-validation is to construct an estimate
of R(%) using the data and then minimise the value of this estimate
over ¢ to give the choice of smoothing parameter. Using arguments
analogous to those of Rudemo (1982) and Bowman (1984) for data on the

real line the quantity to be minimised for angular data is

M(c) =

SM| =

3K (viyy, 0 -3 I KO i vje)  (6.3.6)
ij #]

i

where K2(-) 1is the convolution of K with itself. When using
(6.3.3) as a kernel function this convolution does not result in
another function of the same type as is the case with normal densities,.

When p = 2 Mardia (1972) used wrapped normal approximations to the Von
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Mises distributions to obtaining an approximation to K2. The
result is another Von Mises density but with concentration parameter

k3 which is the solution to

A(k3) = A(ky).A(kp) (6.3.7)

where A(k) = I1(k)/Ig(k). This is a complex relationship to have
to invert and the possibility of having to do this many times in the
minimisation of M(c), 1in addition to calculating the normalising
constant which depends on the concentration parameter, makes least
squares cross-validation computationally impractical for p = 2.

Similarly, it will also be impractical for p > 2.

The most practical approach is to use log-likelihood cross-

validation which chooses ¢ to maximise

~

n
L) == 5 in g wpl (6.3.8)
i-1

=2 R

where é—i(!i) is the kernel estimator (6.3.2) evaluated at yj; using
all the data points except vi. The normalising constant dg also
depends on ¢ and so needs to be calculated but, because fixed kernels
are being used, it is the same for each term in the summation and it is
therefore only necessary to evaluate it once. Using the results in

Mardia (1972, Sect. 8.8) it can be expressed as:

- T c.cosf
doed ™t = 2.] e Ldoy, p -2
o

do(c)_1 = [j; sinp~20‘ ec'COSBldel].[I:Sinp-sﬁz d92] .......
ki T
[]o sindp_p dbp o] [jo 1.dop_1], p = 3,4...  (6.3.9)

The integral

¢ cosfy

df; = Jp, say (6.3.10)
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needs to be evaluated using numerical integration but the others in
the product can be evaluated analytically. The resulting constants

for dimensions 2 to 13 are given in table 6.1.

Table 6.1. Normalising constants of integration for the function

exp(c.17.m)
-1
P dgo(e)
2 2.J2
3 27.J3
4 bz Iy
5 242,35
6 8x2/3.J¢
7 7r3.J7
8 16x3/15.Jg
9 7r4/3.J9
10 327%4/105.J1¢
11 7/12.J11
12 7472 /945,319
13 76/60.J13
On the real line the performance of likelihood cross~validation
has been noted to be sensitive to outliers. (Scott and Factor (1981)).
This will carry over to angular data because an outlier will contribute
a large negative value to L(c) wunless ¢ is small. Hence, data sets
which contain at least one outlier will tend to be oversmoothed.
Schuster and Gregory (1981) show that if the density f of data

on the real line has a tail which is monotonic and dies off either
exponentially or slower then using likelihood cross-validation will
not result in a consistent estimate of f. This is because as n
tends to infinity extreme observations will be recorded in the tails
and the sensitivity of the method to outliers ensures that the value

of the smoothing parameter does not tend to zero. However, for
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angular data the domain of the observations is bounded and so the
gaps between observations should shrink towards zero as n goes to
infinity and hence the argument of Schuster and Gregory will not

apply.

6.4, Results for normal data.

Consider the bivariate normal distribution with mean vector 0 and

correlation matrix J = [i g] so that the p.d.f. for x = (1, x2)'r
is
-~ 1 —% 1 T -1
£(x) = 5= 131 " exp (- 5 x'3 ")
1 -3 1 1 2 2
- 5= 1> exp {— 5 [Ijgi] (x1 - 2px1 Xy + xz)} (6.4.1)

If a transformation to polar co-ordinates is made then xj = r.cos#

and x2 = r.sinf and
f(r,0) = L lzfi’ exp [--I-‘l—-— (1~psin20)] (6.4.2)
2w 2(1_92)
Therefore,
@ © 21T w
j [ £(x) dx = J j r.f(r,0).dr.d6. (6.4.3)
—o -0 0°0

(The Jacobian of the transformation is r).

Because of the correlation p between the variables, f is not
radially symmetric, and so the integral is not constant over ¢.
The values of @ for which the cross-sectional integral along the

corresponding radius from the origin is maximised is when the function

2
exp{- ——— (1-psin20)} (6.4.4)
2(1-p2)

is a maximum. This occurs at the values of 6 which minimise

(l-psin28) which are easily found to be 6 = /4 and 6 = 57/4.
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Therefore, the unit vectors defining the directions along which the

cross-sectional integral of the density is a maximum are

X1 1/V2
[ ] =t [ } . (6.4.5)
X9 1/V2

Chatfield and Collins (1980) show that this vector is the first

principal component for the above correlation matrix.

Hence, for bivariate normal data the method for finding directions
of highest density is equivalent to finding the first principal
component which in turn corresponds to the principal axis any

elliptical contour of the density,

6.5. Implementation of the method and presentation of the results.
With multivariate data the linear structure between variables
can be removed by performing an eigenvalue-eigenvector decomposition

of the sample covariance matrix § and then defining new variables

Z by
Z= s‘i’.x - _QD—%HTX. (6.6.1)

The diagonal matrix D contains the nonnegative eigenvalues of
§ arranged in descending order of magnitude and the columns of U

are the corresponding normalised eigenvectors.

We now have E[Z] = 0, (X was preliminary recentred to have zero
mean) and Cov(Z) = Ip. Data transformed in this way are called
"sphered" data. For data from a distribution which is completely
specified by the linear relationships between the variables, such as
the Normal, the underlying density of Z will be spherically symmetric

and hence integrals of cross-sections in all directions will be the

same.,
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The main aim is to find non-linear effects so in practice, as a
first step, the linear structure should be removed from a set of data
using (6.6.1). Directions of high multivariate density for the Z data
will then correspond to directions containing non-linear effects in the
original X data. The transformation (6.6.1) is 1-1 so these solutions
in Z co-ordinates can be transformed back to reference the X-
co-ordinates by using

X = upiuTz (6.6.2)
Sphering is a commonly used technique in PP analysis but the

motivation is usually computational efficiency during the numerical

optimisation.

The method finds k directions (in X space) defined by k unit
vectors, They are generally non-orthogonal so it is useful to
calculate the angles between all possible pairs where the angle

between pair dj and dj is defined to be:
055 = cos~1(d;T.d;) . (6.6.3)

It is also useful to see how the directions compare with the principal
components based on the X data by again calculating the angular

separation between each of the directions and principal components.

Cross-sectional profiles of the density can be estimated using
nonparametric density estimation with features such as modes
indicating clusters and a fairly high density slowly tailing-off
indicating long arms in the data. The density heights along a radius
can then be used to evaluate the cross-sectional area by using
numerical integration. If the data are, or can be, divided into
groups then a cross-sectional plot calculated separately for each

group indicates which data are contributing to a feature in a
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particular direction.

It is also useful to have cross-sectional density estimates in
the planes defined by pairs of directions. This can take the form
of a contour plot. The directions are generally non-orthogonal so it
is necessary to find two orthogonal axes with which to define the
plane. Consider then two unit vectors dj and gj defining two
directions. It is required to find a third unit vector, a, which
is orthogonal to d; and in the same plane as both d; and dj. The

vector a must therefore satisfy the following conditions:

al.d; =0

a=uoa.4d + f.dp where o and [ are consants

tatig = 1 . (6.6.4)
Using these conditions it is found that o = and £ = = where

tany siny
v 1is the angle between dj and Qj i.e.
-1 1
= tany ° d1 + siny ° do (6.6.5)

Therefore, by using both linear and plénar cross-sections a picture
of the main features of the data and its density can be built up.
Inspection of the variable loadings for a particular solution will

indicate the relative strength of each of the corresponding variables

to the observed effect.

Further, in order to reduce the dimensionality of the data to
two it can be projected onto the plane defined by two of the
directions. This should indicate the relationship between the actual
data points and directions and may also result in "interesting" views
as a consequence of viewing the data orthogonal to "interesting"
high density regions - we will be looking at a configuration of the

data giving rise to these regions. Also, using directions of high
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density should mean that the resulting plane provides a reasonably
good fit to the data because for directions to have high density a
large number of data points must have a small Euclidean distance from
the defining line. The fit of a projection plane can be compared
with that defined by the first two princifd components by calculating
the sum of squared orthogonal distances from the data points to the
plane and comparing it with the minimising value of the principal

component solution,

In the next Section this approach to exploring a multivariate
dataset will be illustrated through three examples. The first
involves simulated bivariate data and will illustrate the relationship
between non-linear features in the data and the resulting modes of
the induced density on the circle. The second examines a set of data
on flea-beetles (Lubischew (1962)) for which principal component and
projection pursuit analyses have been carried out and published in the
literature. Finally, a dataset concerned with several measurements of
deprivation in each of the 56 Scottish local government districts is

analysed.

6.6. Examples,
Example 1, Simulated bivariate data.

In order to illustrate the relationship between structure in a
dataset and the induced density, which in this bivariate case will
be on the unit circle, 200 observations were simulated according to

the following scheme:

Number of simulated Distribution from which observations
observations are simulated

60 Np[c0,2)T,

0’15 o710l
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60 8[2.-DT [550  0730)]
0 N2 [3,-DT, (9750 To730)]
20 Np[0, 0T, %% %]

The observations were firstly centred and standardised using
the overall mean vector and standard deviations and then sphered as
described in Section 6.5. A scatterplot of the transformed data is
shown in figure 6.1 which clearly indicates the three main groupings.
The observations were then projected onto the unit circle and weights
proportional to an estimate of the induced density evaluated using
the smoothing parameter ¢ = 65 found by log-likelihood cross-
validation. Figure 6.2 shows the weights plotted against the
corresponding observation's polar co-ordinate. The three large modes
indicate three directions which correspond to non-linear features in
the standardised data. Using thé algorithm described in Section 6.2
three directions dj, dop and da are in fact found with polar
co-ordinates 331.8°, 93.8° and 212.7° respectively. These correspond
to the modes of figure 6.2. The dashed lines on figure 6.1 indicate
that these three directions do indeed pass through each of the main

features.

Figures 6.3, 6.4 and 6.5 show density cross-sections along
these directions based on a fixed-kernel estimate with a subjectively
chosen smoothing parameter of 0.3 Bi (i =1,2) where the 31'5 are
estimates of scale in the two co-ordinate directions. The robust

estimate

o; = median[|(xij—median(xij)I]/O.6745

was used (Hogg (1979)).
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In each of these cross-sections the directions found correspond
to the positive part of the x-axis. The modes indicate clustering
of observations while the broader base of the peak for d3 points to
a spreading out of data in this direction. The smaller modes near the
origin for dy and dp indicate the presence of a smaller less well

defined cluster.

The standard bivariate normal cross-sections in figures 6.3-6.5
clearly show that these 200 observations are not from a single
bivariate normal population, The cross-sectional integrals from the
origin for dj, dp» and d3 calculated by numerical integration are
0.384, 0.281 and 0.321 respectively whereas for a standard bivariate

normal the equivalent area is 0.216,

Example 2. Flea-beetles,

The genus of flea-beetles, Chaetocnema, includes species which
are very difficult to distiguish by visual examination. An
entimologist has collected and taken certain physical measurements
from male specimens of the three species, concinna Marsh,
heikertinger Lubisch and heptapotamica Lubisch, coded 1, 2 and 3
respectively. Tables 4, 5 and 6 of Lubischew (1962) give six
particular measurements for 21 beetles from species 1, 31 from species
2 and 22 from species 3. (i.e. 74 cases in total). The six variables
are:
Xy : width in microns on the first joint of the first tarsus.
X9 : the same for the second joint.
X3 : the maximal width in microns of the aedeagus in the forepart.
X4 : the front angle of the aedeagus (1 unit = 7.5 degrees).

X5 : the maximal width in 0,.0lmm of the head between the external
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edges of the eyes.

Xg : the aedeagus width from the side in microns.

The data were first mean-corrected and standardised before
sphering. They were then projected onto the unit hypersphere and
individual weights determined using a log-likelihood cross-
validatory smoothing parameter of 1. The mode finding algorithm
split the data into five groups containing 25, 18, 20, 7 and &
observations. The co-ordinates of the modal directions of these
five groups were then transformed back to reference the centered,

standardised data and are as follows :

Direction : 1 2 3 4 5
-0.506 0.132  -0.644 0.306 -0.064
-0.003 0.311 0.023 -0.649 0.218
~0.308 0.179 0.154  -0.177 0.792
~0,484 0.750 -0.149 -0.475 0.018
0.455 0.346 -0.621 0.111 -0.391
-0.456 0.413 0.392 -0.464 -0.409
Cross-
sectional 0.018 0.019 0.017 0.010 0.008
integral

(Note that the cross-sectional integrals are calculated in the

positive direction from the origin only).

The angles in degrees between the directions are:

Direction : 1 2 3 4
2 112.6
3 155.0 89.5
4 45.3 134.7 124.1
5 106.1 95.1 75.4 99.4
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The closest are d; and -d3 with an angle of only 25.0 between
them. dj, do and d3j are also not widely separated from d; but
all other pairs are within about 20.0 of being orthogonal to each

other.

Linear cross-sections of the multivariate density for di, ds
and dj, the three with the highest cross-sectional integrals,
are illustrated in figures 6.6-6.8. A fixed kernel density estimator
was employed with a subjectively chosen smoothing parameter of 0.5.31
(i=1,...,6) where the Gi's are as described in Example 1., The
distinct mode in each of the positive halves of these plots clearly
indicates that these three directions pass through three clusters in
the data. The smaller modes in the negative halves of the plots for
d; and d3 are due to those data contributing to the larger modes in
d3 and dj respectively evidenced by the small angle of 25.0 between
d1 and -di. The density cross-sections for dy, and ds also

contain modes but their heights are much lower than for the first

three.

Planar cross-sections of the six-dimensional density were also
constructed using pairs of directions to define a plane. That based on
do and dj, using the same smoothing parameters as above is
illustrated in figure 6.9 and clearly shows the six-dimensional density
to have three modes in this plane. This trimodal feature was also

evident in other planar cross-sections such as when using d; and dj.

To see which species are contributing to the modes in figure 6.9
the data were projected onto this plane and the points labelled 1, 2
and 3 according to species ~ see figure 6.10. The data divides up
into three distinct groups according to species with do and di

corresponding to species 1 and 3 respectively. Projection onto the
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plane containing dy and dy (not illustrated) indicates that dj
corresponds to species 2. The sum of squared perpendicular distances
from the data to the plane containing (dj,d3) 1is 123.0 which
compares with the optimal value for the plane defined by the first

two principal components of 87.8 and indicates a reasonable fit.

The data projected onto the plane defined by the first two
principal components and labelled by species is shown in figure 6.11.
Again the division into three groupings according to species is evident
but the distinction between species is perhaps not as strong as in

figure 6.10.

The following table gives the angles between the first three

directions and first two principal components:

PC
1 2
1 155.3 110.9
Direction: 2 54,9 125.8
3 39.8 51.1

The strongest similarity is between dj; and -PCl. On the other hand

d1 and dy are well separated from PC2.

This data has also been analysed using projection pursuit by Jones
and Sibson (1987). They also provide a planar solution which divides
the data into the three species but at the expense of considerably
more computing effort than that involved in finding the above

directions.

6.6.3. Scottish deprivation data,

There are 56 local government districts in Scotland. For each of
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these districts the values of the following seven variables have

been recorded:
X1 Standardised Mortality Ratio. (SMR)

Xy & Persons in private households with economically active (i.e.
in work, seeking work or temporarily sick) head in social
class 1 (higher managerial and professional) as a proportion
of all persons in private households with economically active

heads. (S1)

X3 : Same as in social class I but for social class V (unskilled

manual). (S5)

Xy Proportion of persons in private households living in

overcrowded accommodation (i.e. > 1.5 persons per room). (OV)
X5 : Proportion of persons in private households with no car. (NC)

Xg : Proportion of children (under 16) in private households with

only one adult. (PC)

X7 Proportion of economically active males seeking work. (UN)

The SMR for a district is defined as the ratio of observed to
expected deaths in the district. The expected number of deaths is
obtained by applying the national age-sex-specific mortality rates

to the population structure of the district.

The data used are given in Amfoh (1988). He obtained the SMR data
from the 1981 annual report of the Registrar-General of Scotland while
that for the other six variables was extracted from the 1981 Scottish
census small area statistics. All the variables are indicators of
deprivation in a district but, in contrast to the others, small values

of S1 denote deprivation and large values affluence.
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Amfoh (1988) provides boxplots and histograms for each of the
variables., Those for SMR are fairly symmetric but for the other six

they show varying degrees of skewness to the right.

The data were first mean-corrected before sphering. Application
of the algorithm of Section 6.2 to the sphered data using c¢ = 7, found
by log-likelihood cross-validation, determined five directions based on
12, 12, 17, 8 and 7 observations. The density profiles for these
directions (not illustrated) indicate clustering about the origin
as well as two smaller but marked clusters away from the origin in
directions 2 and 5. These profiles also clearly indicate the non-

normality of the data.

These directions were then transformed to back reference the mean-
corrected standardised data. The unit vectors defining each of them

are as follows :

Direction : 1 2 3 4 5

0.625 0.405 -0.350 -0.474 -0.361
-0.220 -0.051 -0.401 0.062 0.529

-0.197 0.377 -0.289 -0.074 -0.461
-0.347 0.592 -0.420 -0.318 ~0.135
0.303 0.460 -0.425 0.381 -0.295
0.087 0.133 0.293 -0.455 -0.475
0.550 0.334 -0.441 -0.559 -0.217
Cross-
sectional 0.038 0.029 0.060 0.024 0,039
integral.

The following table gives all the pairwise angles in degrees

between the directions:
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Direction : 1 2 3 4
2 71.4
3 106.0 141.3
4 130.3 146.5 55.2
5 117.0 134.2 79.4 43,1

They are all reasonably well separated. The closest pairs are

(g2,~g3) and (dp,-dy) with angles of 38.7 and 33.5 between the

pairs respectively.

Each of the one-dimensional profiles is quite similar in shape
to the corresponding one for the sphered data. Those for ds, d3 and
ds are illustrated in figures 6.12-6.14. Each of these shows a large
mode near the origin indicating clustering there while dy and dj
both have smaller modes away from the origin as well. The profiles for
dy and d,, not included, are both unimodal with modal points to the

right of the origin.

Examination of the variable loadings enables menaingful inter-
pretations to be given to some of the directions. For example, dj
can be interpreted as an index of SMR, S5, OV, NC and UN (positive
coefficients) while d5 is a contrast between S1 (positive) and
SMR, S5, NC and PC (negative). Also d; is an index of a group of
the deprivation variables with negative coefficients while dj is
a contrast between SMR and UN (positive) and OV (negative). In
arriving at these interpretations coefficients with absolute values

less than half the largest absolute coefficient have been ignored.

The planar cross-section containing (dp, ds), figure 6.15, shows
the full seven-dimensional density to be trimodal in this plane with

the largest mode near the origin and the smallest in direction 5.
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That containing (d4,ds), figure 6.16, again shows modes in ds and
around the centre but also indicate two "arms" in the density.
Positive dy and ds are both directions of increasing affluence.
For the plane containing (dj,dp), figure 6.17, there is a separate
mode in ds and a region of high density near the centre containing

one large peak and two smaller ones.

The data were then projected onto each of these three planes.
That for the plane containing (dp,dsg), figure 6.18, shows most of
the points to be around the origin but with some spread along
positive ds and d5. The point with the largest value along dy
and smallest along ds corresponds to Glasgow whereas at the other
extreme Bearsden and Eastwood have the largest values on ds and
smallest on ds. In fact, examination of the original data reveals
that Glasgow has the highest values for SMR, S§5, OV, NC, PC and UN
out of all the districts together with a small, well below average,
value for S§1. In contrast Bearsden and Eastwood have between them
the lowest values for SMR, S5, OV and PC, very small values for NC
and UN and by far the largest values for S1. These outliers are
again clearly shown in the projection onto the plane containing

(d4,ds), figure 6.19, and also that containing (dj,dp), figure 6.20.

All these plots indicate that the data can be divided up into
three groupings. The largest is around the origin which also contains
some finer additional structure, The other two in directions 2 and

5 are due to more deprived and affluent districts respectively.

A principal component analysis was also carried out on this

dataset. The first two principal components together explain 75.1% of

the total variation and are as follows
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pPCl PC2
-0.370 0.220
0.261 0.697
-0.383 -0.084
-0.415 0.364
~0.445 0.126
-0.295 -0.526
-0.437 0.184
% of total
variation 61.70 13.41

explained.

PCl can be interpreted as a contrast between positive S1 (i.e.
affluence) and all the other variables (i.e. deprivation). It is
difficult to give PC2 a meaningful interpretation which is also

the case for the other principal components.

The angles in degrees between the five directions and first two

principal components are as follows:

PCl PC2
1 118.0 91.8
Direction: 2 160.6 73.3
3 52.9 140.7
4 25.8 94.7

5 29.5 63.1

do has an angle of only 19.4° with -PCl while d, and ds5 are
both less than 30.0° from +PCl. Otherwise, each of the directions is
well separated from PCl and PC2, This is also the case for the

other principal components with many of the pairwise comparisons

indicating near orthogonality.
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A plot of the 7-dimensional density in the plane of (PCl,PC2),
figure 6.21, again shows the contours to be concentrated about the
origin with a much lower separate contour in the -PCl direction due

to the more deprived areas.

Projecting the data onto the plane defined by PCl and PC2, figure
6.22, again shows Bearsden and Eastwood to be extreme values for +PCl
and Glasgow to be extreme for -PCl. However, the relative scores
amongst the data in terms of PC2 are not helpful. Taking other pairs
of principal components to define a plane reveals only a single mode
near the origin in the planar cross-sections and little of the

relationships between the districts in the projections.

The sum of squared perpendicular distances from the data to the
(PC1,PC2) plane is 95.8. For the planes containing (dj, dp),(dp,ds)
and (ds,ds) the sum of squares are 138.1, 104.1 and 126.0
respectively. The differences in the fits as compared with the
optimal principal component solution are not great but more of the

structure in the data is revealed.
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Flgure 6.1. Scatterplot of the sphered simulated data with the three-dlrectlons of high bivariate
density (d|, | - 1,2,3) Indicated.
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Figure 6.3. Fixed kernel estimate, hj - 0.3 ffj (I - 1,2), Tor a cross-section along dlI

and an N2(Q,l2) density profile for the sphered simulated data.
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Figure 6.4. Fixed kernel estimate, hj - 0.3 ffj (I - 1,2), for a cross-sect Ion along "2

and an N2 (H,I2) density profile for the sphered simulated data.
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Flgure 6.5. Fixed kernel estimate, hj - 0.3 < (I - 1,2), for e cross-section along sX%
and an N2 (fl,12) density profile for the sphered simulated data.
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Figure 6.6. Fixed kernel estimate, hj - 0.5 < (I —1,...,6), for a cross-section along

for the standardised flea-beetle data.
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Flgure 6.7, Fixed kernel estimate, hy ~ 0.5 ;‘ (Il =1,,..,6), for a cross-section along dp

for the standardised [lea-beetle data,
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Figure 6.8, Fixed kernel estimate, hj = 0.5 ;l ({ =1,...,6), for a cross-section along dj .

for the standardised flea-beetle data.

b«ns'\\-ﬂ 0.01t -
eshimate




-231-

Flgur* 6.9. Fixed kernel estimate, h|[ - 0.5 <j (I - 1,,..,6), for a cross-section In the plane

containing *n” d3 flor *hestandardised flea-beetle data.

Figure 6.10. The standardised flea-beetle data, with data points labelled by species, projected

onto the plane containing ¢£2 arK* ds3-
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Figure 6.11. The standardised flea-beetle data, with data points labelled by species, projected onto

the plane defined by the first two principal components.
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Figure 6.12. Fixed kernel estimate, hj - 0.5 fff (1 - 1,...,7), for a cross-section along ¢2

for the standardised Scottish deprivation data.
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Flgure 6.13. Fixed kernel estimate, hj —0.5 aj (I - 1

for the standardised Scottish deprivation data.
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Figure 6.14. Fixed kernel estimate, hj - 0.5 aj (I -

for the standardised Scottish deprivation data.
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Flgure 6.15. Fixed kernel estimate, h| —0.5 ffj (I “ 1..... 7), Tor m cross-section In the plane

containing & an<* ds for the standardised Scottish deprivation data.

Figure 6.16. Fixed kernel estimate, hj - 0.5 < (1 - 1,...,7), for a cross-section In the plane

containing ¢4 and ¢s5 for the standardised Scottish deprivation data'.
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Flgure 6.17. Fixed kernel estimate, hj - 0.5 ffj (I - for a cross-section In the plane

containing- ~1  *nd "2 f°r standardised Scottish deprivation data.

Figure 6.18. The standardised Scottish deprivation data projected onto the plane containing 2 and &5
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deprlvation data projected onto the plane contalning d4 and ds.
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Figure 6.21. Flxed kernel estimate, h{ = 0.5 3‘[ (1 =1,,..,7), for a cross-sectlon in the plane

defined by PCL and PC2 for the standardised Scottlsh deprivation data.
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Figure 6.22. The standardised Scottish deprivation data projected onto the plane defined by the first

two principal components.
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Chapter 7. Assessing Logistic Regression Models.

7.1. Introduction.

Suppose that we have N sets of observations in the form
(Y1,n1,%1),...,(YN.nyN,%xy). For each individual or object in the
study we have observed the outcome of a binary response variable
which is coded 1 for "success" and (¢ otherwise. Y; denotes the
number of individuals having positive response (i.e. equal to one)
in the ith get which comprises nj individuals each with a common
covariate value xj and probability p(x;) (also to be denoted by
p;j) of a positive response., If the outcomés for each of the
individuals in set i are independent then Y; ~ Bj(nj,pj) with
E[Y;] = nj.pj = #ij. Ungrouped data comprises a special case and

have ny =1 for 1 =1,...,N.

The aim is to investigate the dependence of a positive reponse
on the measured covariate which may be either categorical or on a
continuous scale. Such analyses have many areas of application such
as in medical, economic and educational studies. For example, we may
be interested in the probability that a patient with a particular
disease will survive for at least five years foilowing surgery when

he or she is x years old at the time of the operation.

A common method of modelling such dependencies is to fit linear
functions of parameters to some transformation of the probabilities.
One of the most widely used techniques in this respect is logistic

regression. The logistic model postulates that

log(pi/(1-pi)) = o + Bxy (7.1.1)
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ecH-ﬁ'xi

or Pi = p(xi) = (7.1.2)

+ .
1+e“ Bxi

where o and f# are unknown parameters to be estimated from the

data and p(xj) denotes the dependence of p; on xj. In general-
ised linear model terminology the right hand side of (7.1.1) is called
the "linear predictor" and the left hand side the "link function"

as it links the expected response for an individual in the ith set

to the linear predictor for that individual.

Under the above conditions the likelihood function for the

observed data is

= -4

niy ¥i nj-¥yi
T (] i e (7.1.3)

so that the log likelihood is

N
log(L) = € = const. + Y [yi . log(pj) + (nj-y{).log(l-pp) ]

i=1
(7.1.4)
N N at+fxj
= const. + Y yi . (o#fx3) - Y njlog(l+e )
i=1 i=]
(7.1.5)

by using (7.1.2).

To obtain estimates of o and f the method of maximum likeli-
hood is used so that £ is partially differentiated with respect to
a and f and the results set equal to zero. This gives a system
of non-linear equations in o and [ which need to be solved
iteratively. Second derivatives can easily be computed so the Newton-
Raphson method can be employed. McCullagh and Nelder (1983) show that

this can be expressed as iteratively reweighted least squares i.e.
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8Ct) = (xTwx) -1, (xTwz) (7.1.6)

where,

6 = (a,8)7T,

T 1,..... .1

[Xl, .,XN] !

W = diag (njpj(1-p;)),

Z=X0+ Wl
and s has elements sj = yj-nj.pj, {=1,....,N.

The right hand side of (7.1.6) is evaluated at #(t-1) (i.e,
using the estimates of o and f calculated at the (t—l)th
iteration). At convergence the elements of 4 correspond to the

maximum likelihood estimates.

The theory readily extends to the values of p covariates being

available for each individual so that the model becomes

log(pi/(l-pi)) = o + B1xX1 +...+ Bpxp (7.1.7)
or P(x) = exp(8Tx)/(1+exp(8Tx)) (7.1.8)
where 6 1is now (a,ﬁl,....,ﬁp)T. The xj's can be a mixture of

both categorical and continuous variables.
The usual asymptotic results associated with maximum likelihood
estimators apply so that
8~ Npyy (2, (xXTwo)~1y. (7.1.9)
In this context (XTWX)-1 is equivalent to the inverse of the Fisher
information matrix evaluated at .

Once a logistic model has been fitted it is then useful to then
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assess how well it actually does fit the data. Such checks can be
difficult to do visually, either by examining the fitted values or by
using certain graphical techniques, and therefore some measure of
goodness-of-fit is desirable. Goodness-of-fit tests may be effective
in detecting problems but they will not necessarily indicate their
nature. They do, however, help to prevent inappropriate conclusions
being made as a consequence of a poorly fitting model. In Section 2
some commonly used goodness-of-fit measures are reviewed. A number of
authors have suggested estimating some ot all of the covariate effects
non-parametrically and incorporating these into the logistic model.
Some of these approaches are reviewed in Section 3 while in Section &
the psuedo-likelihood ratio test, which aims to compare the logistic
model with a nonparametric alternative, is described in detail. Lack
of fit may result from omitting important covariates or by incorrectly
specifying the functional form of a covariate effect. In Section 5,
the use of partial residuals for establishing the correct functional

form is investigated.

7.2. Some measures of goodness-of-fit.

In generalised linear models a common measure of discrepancy
between the data y and fitted values L is the scaled deviance
which is defined to be

D(XS; L _ _ o, (2-00) (7.2.1)

where € 1is the log-likelihood evaluated at the MLE's E, gg is
the maximum achievable log-likelihood for a saturated model with the
number of parameters equal to the number of observations and the

scaling factor ¢ 1is the dispersion parameter which equals 1 for
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binomial models.
For binomial data (7.2.1) takes the form

n
~ Yi njy - ¥i
D(y,u) =2 3 {yi log [n—] + (nj-y;) log [m—r]}
i=1 B nj - H
(7.2.2)
If the nj's are large then the distribution of (7.2.2) is
approximately X2(n~p). The asymptotics require that the model
remains fixed as the number of observations increases so that the
iy — . While this is the case for binomial data, for binary
observations the u; will remain small and the chi-squared approxi-

mation will be invalid. Williams (1983) shows that for logistic

models of binary data the deviance can be written as

N

D(y,n) = - 2 21 (ki tog (i) + (1-pp)log(l-ap)} (7.2.3)
j=

which is a function of the fitted values only and is therefore
uniformative about the goodness-of-fit. A model for binary data
can still be tested against a non-saturated alternative by comparing
the differences in deviances with a X2 in the usual way but the

X 2 ; : ;
actual accuracy of this X" approximation is unknown.
. . 2 s s .
Another widely used measure is Pearsons X~ statistic defined by

N t..n-ﬁ- 2
X2 (yi-nipi) (7.2.4)

i=1 "ipi (1-pi}
For large nj's this also has anf Xz(n-p) distribution.

McCullagh (1986) argues that for the deviance and Pearson's X2

the appropriate reference distribution is conditional on the

sufficient statistic, S, for the unknown ¢ rather than considering
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the marginal distributions. For binomial and binary data § = XTY
of which ¢ 1is a 1-1 function. For binary data this conditional
distribution of the deviance is a function of S and so contains no
information regarding lack of fit whereas for binomial data it is
asymptotically normal with the moments given in the paper. The un-
conditional mean and variance of X2 are deriyed and it is also shown

that X2 and S are independent to first order in n.

Hosmer and Lemeshow (1980, 1982) describe and discuss a number of
statistics for assessing goodness-of-fit. To calculate their
recommended statistic the estimated probabilities {B(Ki)» i=1,...,N}
are firstly ranked and then grouped into deciles so that the first
decile contains the smallest N/10 wvalues of B(Xi): etc. If N is
not a multiple of 10 then an extra observation is assigned to an
appropriate number, (N-[n/10]), of the deciles containing the largest
B(xi)'s. Either fewer or more than 10 groups can be used provided the
number is greater than p+l but most applications do use 10. Their
test statistic compares the observed and estimated frequencies in each

decile and is given by

1 10 (opp- 2
ke-ekQ)
C = z Z —— (7.2.5)
k=0 0=1 ke

where,

og0 = 2 (nj-yi),
ieDp

0,0 = D Vi
ieDp

egp = 3 ni(l-p(xp)),
ieDQ

€0 = z nip(xi)v
ieDp
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and Dp denotes the set of individuals in the Qth decile. They show
in their 1980 paper via computer simulations that provided g > p+l
then under the null hypothesis C is approximately distributed as

a X2(g-2) where g 1is the number of groups used.

7.3. Incorporating smooth functions of the covariates Into the model.
Hastie and Tibshirani (1987) generalise the linear model (7.1.1)
to one which models logit(p) as the sum of smooth functions of the

covariates which they call a generalised additive model i.e.

logit(p(x)) = o + § fj(Xj) (7.3.1)
j=1
where the fj(-)'s are unspecified smooth one-dimensional functions.
The log-odds are thus modelled in an additive but nonparametric manner.
The model (7.3.1) is fitted using a 'local scoring algorithm' which is
a generalisation of iteratively reweighted least squares and the
fj(~)‘s are estimated using a scatterplot smoother in another iterative
procedure. Full details are contained in the paper. Here all the non-
linearities are estimated simultaneously and may suggest suitable
parametric transformations of the covariates, Pairwise interactions
can be included by allowing bivariate functions into the model. They
also describe a number of inferential tools to assist in assessing the
relevance and significance of the estimated functions. These include
asymptotic confidence intervals, degrees of freedom and hypothesis
tests but there is an absence of appropriate distribution theory to

accompany these,
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While these models are certainly useful there are also some
problems and unanswered questions. Firstly, the effect of the
dependence between two or more covariates on the fitting algorithm,
standard deviations and degrees of freedom is not clear. Secondly,
no account is taken of the inherent bias in the function estimates
and the effect this has when constructing confidence intervals and
comparing fits. Thirdly, categorical variables have not been modelled
in this framework and finally the model only exists on the computer
so that estimating p(x) for a new individual with covariate vector

x may involve a large amount of computation,

0'Sullivan et al (1986) consider modelling the covariates non-
parametrically by spline functions using a penalised likelihood
with a Laplacian penalty function. They do not use an additive model
but estimate logit(p(x)) directly using multi-dimensional splines.
These are however difficult to display and interpret for more than

two covariates. They do not consider any inference based on their

estimates.

Green and Yandell (1985) consider the case when all but one of the
covariates are linear, They also use spline functions in a penalised
likelihood approach and solve the normal equations explicitly,
Goodness-of~-fit is assessed by the deviance with the asymptotic
expectation providing an estimate of it's degrees of freedom. They
use further approximate asymptotics to derive an estimated covariance
matrix for ﬁ from which standard errors can be calculated. However,
they recommend that these results should only be used informally due

to a lack of appropriate distribution theory.
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7.4. The Pseudo-Likelihood Ratio Test.
7.4.1, Introduction.

The methods described in the following sections are most
appropriate for binary data or data for which all the nj's are

small but are also applicable to binomial data with large group sizes.

The aim is to construct a nonparametric estimate of the logistic
regression function and then quantify and assess the significance of
its global discrepancy from the logistic model estimate given by
(7.1.8) evaluated at ﬁ and now to be denoted either by p(z,ﬁ) or

;L. This can be expressed by the following hypotheses:

Hy : p(x) = p(x,8) for some §

Hy : p(x) is a smooth function.

Azzalini et al (1989) tested these hypotheses using a likelihood
ratio approach for the case of a single continuous covariate x, The
likelihood under Hpy 1is evaluated using the logistic model maximum
likelihood estimate of 6§ while the likelihood under the alternative
is evaluated at ;(-), a nonparameteric kernel regression estimate of
the logistic curve. The pseudo-likelihood ratio test statistic is

then given by:

T = g [Yi log [i—-—(—&i%—] + (ni—yi) log [._1_;_8_(2]] (7.4.1)
i-1 p(xi,0) 1 - p(xy,6)

Hy and H; are nested hypotheses but because the model under H; is
not fitted by maximum likelihood T could take a negative value.
The statistic estimates the Kulback-Leibler distance between the two

models and so the test will be consistent because as the number of
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groups increases the normalised test statistic will converge to zero
when HO 1is true and to some non-zero value when Hg 1is false. In an
as yet unpublished paper W. Hardle and E. Mammen show that the
asymptotic distribution of T 1is normal but for finite sample sizes
the significance of an observed value needs to be determined by simu-

lation which will be described in more detail later in this section,

When a p-dimensional (p > 1) vector x of covariates are
available for each individual then the pseudo-likelihood ratio test
statistics (7.4.1) can still be used but the nonparametric estimates
of p(x) need to be constructed using a multivariate kernel. As the
number of covariates increases the quality of such an estimate is
likely to deteriorate and the following approach based on an analogy
with the Hosmer-Lemeshow test maf?e used instead.

~

In the Hosmer-Lemeshow test the pL‘s are ranked and grouped into
deciles. Under Hp there is a 1-1 relationship between BL and
% = ETX. Therefore, the Hosmer-Lemeshow test is equivalent to
ranking the z's and grouping into deciles. The relationship between
the ;L's and z's is given by (7.1.8) and is essentially represented
by a step function in the Hosmer-Lemeshow test statistic. An estimate
of p under Hj can therefore be constructed by regarding z as a
single covariate and smoothing the data in the form (yj,nj,zj) to
give a nonparametric smooth estimate of the relationship in (7.1.8).
This estimate, unlike a multivariate one, can always be plotted and
can also be used in the test statistic to assess the goodness-of-fit

of multivariate data. Because the data are no longer being grouped

this test may have greater power than the Hosmer-Lemeshow test,
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7.4.2. Smooth nonparametric regression for estimating p(x).

In the following discussion x 1is a single covariate which can
be replaced by =z for the construction of the test statistic., If
each of the nj's are large then a useful estimate of p(x;) Iis
given by the maximum likelihood estimate y;/nj. However, if the
nij's are small or equal to one then meaningful proportions are not
available and it is necessary to average over neighbouring values of
x, This approach was first suggested by Copas (1983) with his
proposed estimate being essentially a nonparametric regression
function. Under the assumption of smoothness we have the follow-

ing kernel estimator of p(x):

N X"X'

i

20 W+
-~ =

p(x) = N (7.4.2)

xX-Xj

5 ni W[5~
i=1

where w(-) is a symmetric non-negative kernel function with a mode

at zero and h is a smoothing parameter controlling the degree of
local averaging. -If h 1is very small then (7.4.2) will just
interpolate the data while when it is very large the resulting
estimate approaches the sample mean N-1 g ¥i/nj. In the examples

i=1
to follow a standard normal kernel has been used.

Copas suggests plotting B for a range of differently chosen h
values. While this is satisfactory for a simple graphical inspection
of the data a more precise choice, satisfying some optimality

criterion, is needed if p 1is to be used for inferential purposes.

Azzalini et al (1989) suggest choosing h to maximise the

likelihood function
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Nomiy yi A ni-yi
n [y) posG™ @ =B ) (7.4.3)

which is equivalent to minimising

N ~ ”~
_21 {" vi log P_i(xi) - (nj-yi) log (1 - p_i(xi>)}
i=
(7.4.4)

Here ;_i(-) denotes the nonparametric estimate constructed from

all the data points except (yj, nj,%Xij). In general nonparametric
regression with continuous response data asymptotic optimality
properties have been derived for a least squares cross-validatory
choice of h which, under the assumption of normally distributed
errors, can be regarded as a likelihood criterion. (Hardle and Marron
(1985)). The properties of a likelihood based choice of h in the
binomial context have not been investigated but it is expected that
some of the justification in the continuous case will carryvover. This
selection rule may also be regarded as choosing h to make each “i-Bi
an effective predictor of y; and so the resulting curve will be quite

sensitive to variatigon in the data.

For binary data the density function of y; is:

glyi) = p?i (1-pi)Lyi »  ¥i = 0,1 (7.4.5)
and its expected value is:
E{g(yi)] = p§+ (1-pp)? (7.4.6)
Kapperman (1987) proposes choosing h as the solution to the non-
linear equation obtained by equating an estimate of 'gl glyj) to its
i=

expectation again using a cross-validatory approach to ensure the

existence of a solution. This approach generalises to grouped data.
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An iterative procedure is required to find a solution and it is
reported that more than one may exist in which case it is argued
that the smaller one should be chosen. Again it seems likely that
this method will be quite data sensitive. He does remark that it

works well but does not illustrate or describe in what sense this

is so,

A further possibility is to choose an h which is suited more
to the model rather than to the observed data. This is particularly
appropriate if the estimate is to be used in the pseudo-likelihood
ratio test statistic and also in view of the simulations required to

assess significance. The model optimal criterion is:

L

N E[(Yi—ni;?)zl
Min .Z VD (7.4.7)
h i=1
I\S _J\
where pj = p(xg).
This is equivalent to

N E[[(Yi-nipj)-(nipi-nip;]12]

Min Y - . (7.4.8)

hoi=1 v(Yy)

It can be seen that the value of (7.4.8) will approach zero as h
~s X

approaches zero because nj.pj will become closer to yj. It is

therefore necessary to use a cross-validatory choice to obtain a

feasible solution, Expression (7.4.8) is therefore redefined to be:

N E[[(Yi-nipi)-(nipSi-nipi 2]
M;n i§1 76 7)) (7.4.9)

where again pfi is the nonparametric estimate evaluated at xj, but

calculated without the ith data point. Consider the numerator:




E[[(Y;-nip;)-(nipSi-nipi)1°]

2 -~
= E[(Y{-nip{) ] - 2E[(Y;j-n;p;) (nipoi-njpi)]
~g 2
E [(njp_i-njpi) " ].

Now, E[(Yiwnipi)2] = V(¥i{) and does not depend on h.
Also, E{(Yi-‘nipi)(nipfi—nipi)]

~8 2 ~8 2 2

= nj E[Yip_i] - njp; E[Yj] - njp; E[p_i] + nj pj

~g 2 ~8
= nj E[Yjp.i] - nip; E[p_jl

S E[Y§ YjlWij 2 E[YjIWj
\ j#i 2 J=
| = nj T M OPi Ty
2 njWij 2 miVij
j=i J=1
X._X.
where Wij = W[—lﬁ—i]
S njpjWij Z njp¥i
ERTUT t ET—_TFET__
Jj#i
- 0.
~s 2
Finally, E[(njp_j-nijpi)7]

- n7 [E[(GSH2) - 2p; E[pS4] + p3]

= n? [IVGED + EGSD?] - 2y E(p%4] + p2]

= 0
where
2
e 2y TIPARPVE
v(psy) =4
[ > le]
.]#1

Therefore, the cross-validatory model optimal method is to choose h

such that
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N n-E(&f—'
Minz {EL(PZi-Pi

h i=1 pi(1-pi)

)2

] . (7.4.10)

In practice the unknown logistic model probabilities are replaced by
their maximum likelihood estimates. It has generally been found that
using (7.4.10) results in a larger value of h and hence a smoother
curve than that arising from the likelihood based choice. However,
the positive benefits of using a model optimal choice in the goodness-

of-fit statistic will be discussed later in this section.

If we now have a p-vector (p > 1) of covariates and are using
the linear predictor, %, as a single covariate (Section 7.4.1) then
the model optimal criterion (7.4.10) will not be strictly correct.
This is because now Wij = W((Zi—Zj)/h) which is a function of the
Yi's through Z; and Zj so that the expected value of the
numerator will not be as given above. However, if we assume that the
fitted model is correct (i.e. Pi = B%, i=1,...,N) then the Wij's
are non~random and (7.4.10) is again obtained as the criterion.

This assumption about the fitted method will also be made in the

simulation procedure to determine the significance of the pseudo-

likelihood ratio test statistic for a set of data.

As discussed in chapter 3, nonparametric curve estimates are
biased. In the present context the estimates are to be used to test
the goodness-of-fit of a parametric logistic model. Therefore, the
bias can be evaluated under Hp and subtracted from the original
estimate to give an unbiased estimate if Hp is true. The practical
version of the bias corrected estimate is then:

3 nj B Wi

~5 j=1

~L
p] - o + P (7.4.11)
: Zj nj Wij

I V322
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where Wij is based on the xj's or %i's as appropriate. The
value of (7.4.11) may not necessarily lie between 0 and 1 in which

case it should be reset to zero or one as appropriate.

An alternative bias corrected estimate is given by

g

N (7.4.12)
LnypjVij
i

~s
Pi

but again this does not necessarily lie between 0 and 1.

A bias corrected estimate of the form (7.4.11) will be used in all

subsequent analyses.

To illustrate the regression estimates 40 random binary

observations were simulated from the model

2

5 (7.4.13)

log(pi/(1-pj)) = =1 + X1 + Xp + 3X

where X; and Xo are independently uniformly distributed on the

interval (-1,1). The simulation procedure used is as follows:

i) Sample x; and x9 independently from the U(-1,1)

distribution.

ii) Calculate the value of the linear predictor =z using these

values of x7; and x9.
iii) Compute p = exp(z)/(l+exp(z)).

iv) Sample a U(0,1) random number, u. If u is less than or

equal to p set the response y to 1, otherwise set to zero.

v) Repeat N times to obtain a random sample of (yj,nj,xj)'s

where xj = (x1i,%x2i)T and n; is 1 for each i.
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If binomial data had been required then step iv) would have been

repeated n; times.

A model just involving linear terms was then fitted to these data
using the maximum likelihood procedure described in Section 7.1. The

estimated logistic model is:

log(p7/(1-p1)) =% = 0.489 + 0.335.x7 + 1.118.xp.  (7.4.14)

The data in the form (yi,ni,;i) were then smoothed using both
likelihood and model optimal choices of h which are 0.11 and 0.54
respectively. The resulting bias corrected curves are shown,
together with the logistic regression estimate in figures 7.1 and
7.2. Both nonparametric estimates indicate a lack of Fit throughout
the whole range of =z but this is far more marked when using the

more data sensitive likelihood based h.

To take into account the heterogeneity in the variances of the
¥i's a weighted nonparametric regression estimate was also considered.
The variance of Yj under Hp is njp%(l—pg) so an appropriate set

of weights summing to one are:

o7t
— ., i=1,...,N (7.4.15)
5 5]
J
~ AL AL %
where oy = {“j pj(l‘Pj)} .

These are then used to scale the kernel in the regression estimate

resulting in the following weighted estimate:

All
DERALICE
Pl (7.4.16)

ZHj Wj G'j
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where Wj represents the kernel function evaluated at (x—xi)/hn
Greater weight is therefore applied to data with low variance

reflecting that more emphasis should be given to stable data and
thereby hopefully constructing a better estimate. The scaling of

the Wi's 1s by an estimate of

-
1+e J

P
(1+ezJ)2] _
nj ezj \fﬁj o 372

{njpj(l-Pj)}—% = [

[e—Zj/z . 623/2]
2

5 [~
Gt

. .cosh(zj/2)

The minimum weight of 2 /\/nj is therefore when zj = 0 with

increasing weight applied in a symmetric manner as Zj increases and

decreases away from zero.

The effect of weighting will however be downplayed by the kernel
weights Wj, especially when h 1is small as then the local averaging
is carried out only over a short interval with data in that interval
tending to have similar variance and hence weights. Similarly, for
an unweighted estimate the smoothing parameter, especially when
small, should minimise the effect of the unequal variances. This is
illustrated when using the data simulated from (7.4.13) where, for
a weighted estimate, both the optimal likelihood and model based choice
of h were found to be almost unchanged. The resulting weighted
estimates differ very little?NMthe weighted ones shown in figures
7.1 and 7.2, Such similarities were also found for a number of
other data sets. As a result weighted estimates will not be used in

any subsequent analyses,
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7.4.3. Assessing the significance of the pseudo-likelihood ratio test
statistic.

The significance of an observed test statistic needs to be
determined by simulation because of the unknown finite sample
distribution. To achieve this a simulated sample (yi,....,y;] is
firstly obtained from the fitted model such that each y? has a
Bi(ni,E%) distribution. For the ith group this is achieved by
sampling nj independent U(0,1) random numbers and counting the
number which are less than or equal to ;E to give y?. A new set
of nonparametric estimates ;?* are then calculated and hence a
a simulated value of the test statistic can be obtained. This process
can then be repeated a large number of times to give B, say,
simulated test statistic values. These B wvalues can then be ordered
and the significance of the original value determined by its position

among these ordered values.

There are two important considerations in this simulation process
which concern the fit of a simulated data set to the models under
the null and alternative hypotheses. The first is whether to choose
a new smoothing parameter for each simulated sample and the second is

whether to refit the logistic model to each new sample.

The value of h <clearly does affect how the nonparametric estimate
fits the data but very large samples are needed before any optimal
properties the choice of h may have come strongly into play. This
imprecision means that in most practical situations choosing a new
h for each sample will add another source to, and hence increase, the
total variability in the simulated distribution of the test statistic.
The calculation of a new smoothing parameter by one of the cross-

validatory methods for each new sample also involves a great deal of
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extra computational effort, especially for large data sets. Therefore,
it is appropriate to use the original h wvalue for smoothing each
set of simulated data and hence using a model optimal choice should
provide a set of more stable estimates than the more data sensitive

likelihood choice.

The test statistic T (7.4.1) for the original data is the
difference between the log likelihoods calculated under the alter-
native non-parametric smooth and null parametric logistic hypotheses
(i.e. Q7-2p). The parameter estimates, E, for the parametric
model are based on maximum likelihood. However, in the subsequent
simulated samples ﬁ will clearly not maximise the likelihood of the
new data and hence an extra source of variability is intrecduced into
the simulations if ﬁ is always kept the same. To remove this, @
should be re-estimated for each new sample. This results in the ¢g
component of the test statistic being maximised and hence the value of
€1-Qg is minimised. The result is that the observed test statistic
becomes more extreme with respect to the simulated values. The
calculation of E is iterative as described in Section 7.1. However,
a good estimate is available after the first iteration, especially if

8 from the original data is used as a starting value. Therefore,

to reduce the computation level only one iteration need be carried out.

To illustrate this discussion the pseudo likelihood ratio test was
carried out on the data simulated from model (7.4.13). 500 simulations
were performed to assess significance. Each nonparametric estimate
was based on the original h wvalue and bias corrected as in (7.4.11)
while the parametric model was refitted using only one iteration. The

results are given in the following table:
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Table 7.1

Smoothing parameter Test statistic Significance level
Likelihood, h = 0,11, T = 21.39 0.020

Model optimal, h = 0.54 T = 6.58 0.012

The value of T is much smaller for h = 0.54 ©because the
resulting estimate is much closer to the logistic curve as can be
seen in figures 7.1 and 7.2. The significance levels are comparable
for the two tests because the same seed for the random number
generator was used for both sets of simulations. A more significant
result is obtained when using the model optimal h, probably because
the likelihood choice produced much more variagle estimates from the
simulated data sets for reasons discussed earlier and thus made the

observed value less extreme,

The Hosmer-Lemeshow test statistic for these data has the value
20.75 on 8 degrees of freedom and is also highly significant when

compared with x2(8,0.95) = 15,51.

7.5. Assessing the functional form of covariates.
7.5.1, Introduction.

If a logistic model is found to have a poot fit, for example
after using the pseudo-likelihood ratio test, it is natural to then
investigate the possible reasons for this. As mentioned in Section
7.1 it may be the result of incorrectly specifying the functional
form of one or more of the covariates. For example a quadratic
contribution may also be required from a variable which is currently

only included linearly.
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If, through knowledge of the data, the non-linear functional form
of a variable is known or can be hypothesised then a term with the
appropriately transformed variable should be included in the parametric
model. However, if this approach cannot be adequately justified but
a non-linear form is still suspected then the semi-parametric approach
of Green and Yandell (1985) or a generalised additive model with all
but the variable of interest included linearly (Hastie and Tibshirani

(1987)) could be used.

It is often not clear a priori that non-linear contributions are
required and a useful first step is to fit a model containing only
linear effects. It is therefore useful to have available methodology
for checking whether the effects are linear and to identify forms which

may improve the fit.

For assessing departurcg from linearity associated with a variable

Xy the approach of Minkin (1989) is to choose k-1 wvalues

V1:V2, e V(k-1) and define Kk new variables as follows:
Xim » Xim < V1.
Zj1 =
\') , otherwise.
0 v Xim < Vj-1,
Zij = Xim~Vj-1 » Vij < Xim < Vj
Vj—Vj_]_ ) Xim > Vj'

i

X¥im~*k-1: ¥im * Vk-1»
Zik

0 , otherwise. (7.5.1)
The term @, Xjp in the linear predictor is then replaced by
b
S vj Zij and the model fitted using maximum likelihood in the
=]

usual way. The effect of x is therefore approximated by segments

joined at the points V1:V2, . eea, V(k=1) and a graphical representation
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is provided by plotting the .§1;j Zjj against the xjp. If the wv;'s
are selected independently f£:$ the response then the likelihood

ratio test statistic for testing if the segments all have the same
slope has an asymptotic xz(k—l) distribution. An automatic
procedure for selecting the join points based on goodness-of-fit is
also proposed and a simulation study shows the validity of the xz(k—l)

distribution as a reference for the test when the sample size is

large. However, for moderately sized samples it is not reliable.

Another, older procedure, which will be concentrated on for the
rest of this section, is the use of partial residual plots. For
multiple linear regression the plot was first proposed by Ezekiel
(1924) and then much later advocated by Larsen and McCleary (1972).

In this context when we have data from the model
EQY) = X8 + £(2) cov(Y) = 0% I,  (7.5.2)

where f is a smooth, but unknown, function of the covariate Z and

the vector f(Z) = f(Zl),...,f(Zn))T the partial residual vector rP

for Z 1is defined by:

£P = (y - XB - Zy) + zy
=r +zy

=X - Xﬁ (7.5.3)

where the vector r contains the ordinary residuals. It can be
regarded as the dependent variable vector corrected for all the
independent variables except Z. The coefficient estimates é and ;
are obtained by fitting the complete model. The plot is then obtained

by plotting y - xB against z.
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There are two orthogonal components which make up the partial
residual. The first, r, represents scatter while z; is the
systematic part. In a least squares regression of rP on z the
intercept is O and the slope is ;. If f(z) 1is linear then the
expected configuration of the plotted points will be linear with
slope + but when it is non-linear the shape of the plotted points
should suggest the form of f. In the partial residual plot the
variance of ; may underestimate the estimated variance of ; from
the full regression because any effect due to fitting the other
variables is ignored. Thus the plot may give a spurious impression
of the accuracy of the slope of the fitted line and will be most marked

when the correlation between Z and the other regressor variables is

high. (Cook and Weisberg (1982)).

The expected error for the partial residual plot is defined as

I}

e = f(Z) - E[rP]

I

£(Z) - [XB + £(Z) - X(8 + bias(B))]

i

X. (bias(8)) (7.5.4)
where the bias(é) is given in Mansfield and Conerly (1987) as
bias(B) = (XT)-IxT[1 - z(uTw) -1uT1f (7.5.5)

where u = [I - X(XTX)‘le]Z and the value of (ETE)_IHTﬁ is the slope
that occurs if f 1is regressed on Z adjusted for X (i.e. on u).
When f 1is linear then (ng)“lgTﬁ = 4 and hence the bias(é) and
error are zero. If there is no linear association between u and £
then (uTu)-1luTf = 0. This occurs when ulf = 0 or more specifically
when zIf =0 and XIf = 0 and implies that neither Z nor X

contain information about f, The bias(8) and hence the error are
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again zero. When the bias(%) is non-zero its size depends on the
correlation between Z and the variables in X and on how well Z

and X represent f across the range of relevant data.

The use of partial residual plots in logistic regression was first
suggested by Landwehr et al (1984). To construct the partial residuals
they exploited the relationship between logistic and weighted linear

regression - see equation (7.1.6). They regard

¥* = x8 + zy + wl(y-np" (7.5.6)

where W = diag(ni.ag.(lgﬁg)) as "logistic observations" and a
straightforward application of the normal linear model results

gives the logistic partial residuals as

rPLo= wl(y - np") + 2y (7.5.7)

and the plot is obtained by plotting rpL against z. Here, y and
Q;L are vectors of length N containing the yi's and ni}%‘s

respectively. For binary data the points will fall into two separate
clouds depending on whether y{ = 1 or 0 thus obscuring the functional

form of f. It is therefore useful to smooth the plot using a kernel

regression estimate of the form

1 b i

; K[zuzi] . rPL
i=

Plizy = (7.5.8)

where K(-) is a symmetric p.d.f. such as the standard normal
density and b is the bandwidth or smoothing parameter (Watson,
(1964)). A choice of b can be made by using least squares cross-

validation, i.e.
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N
Min 3 (rBh 72 (7.5.9)

b i=1

An alternative model based approach to selecting b can also be
derived and will be discussed further later in this Section in the

context of testing for linearity.

To remove the structure resulting from the binary nature of the
observations Fowlkes (1987) uses partial residuals with y;
replaced by ;? in the definition where }? is calculated using a

multivariate kernel function.

7.5.2. Testing the linearity of the partial residuals.

If the variable =z in the logistic regression model has been
specified correctly as being linear then the partial residuals should
lie about a straight line with slope approximately equal to ;.
Smoothing the plot allows a subjective impression to be made of the

degree of linearity but it is desirable to be able to quantify the

strength of linearity, i.e. to test the null hypothesis
Hp : E[r?L} - VZi, i=1,...,N
against the alternative
Hy E[r?L] = f(zy), i=1,....,N for some smooth function f.

To do this consider the residual sum of squares of the partial
residuals about the line ;z and curve }pL(z) which are estimates
of the line vz and the curve f(z). The residual sum of squares
provides a measure of the discrepancy between the data and fitted line
or curve. In general RSS; > RSSc where the subscripts L and C

refer to the line and curve respectively, as the curve has more freedom
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to explain the data. A test statistic can then be defined by
considering the difference in residual sums of squares relative to

RSSc, i.e.

S = (RSSy - RSS¢)/RSSc (7.5.10)
and rejecting Hy for large values of S.

This is analogous to testing nested hypotheses in a normal linear
model framework where the numerator and denominator are divided
by appropriate degrees of freedom sé that the test statistic, under
Hp, has an F distribution. It is not necessary to divide by
estimates of degrees of freedom here, but as the distribution of §
is unknown and difficult to evaluate it is therefore necessary to use
simulation to assess the signficance of an observed value. The
simulation procedure is the same as that described in Section 7.4 but
with the additional step of calculating the partial residuals either
from the new yj;'s or B?'s based on using the linear predictors in
(7.4.2) rather than Foulkes's multivariate kernel approach. The test
statistics calculated from each simulated data set are then ordered
and significance assessed by evaluating the proportion of simulated

values greater than that observed,

In order to be able to correct for bias and add bands to the
plot at *2 standard deviations of the smooth estimate, the mean and
variance of the smooth curve can be calculated under Hp. As in
Section 7.4.2 it will be assumed that the fitted model is correct.
The following results are exact if the data did indeed arise from
such a model but if not they should still provide a good approximation
provided the 5%'s are good estimates of the pj's. When the

discrete response is used we have:
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so that
pL N
E[r] = y z; (7.5.12)
J
and

Var (r?L) - [nj§§(1—}?)]'1. (7.5.13)

Using (7.5.8) to obtain smooth estimates {;?L‘ i=1,...,N} gives

1J

E[rPL] - 7.5.14
[1'1 1 ———Z“E;;—~— ( )

> ; z. K. .
§ J

where Kij denotes the value of the weight function K at (zi—zj)/b

and

~L AL, -1
SK2,.. [n.p (1-p))]
k J J

N ij
var Py - [ E (7.5.15)
Y K. .
i
j J
When the smoothed response is usedlthen:
pS- o~
S A S BRI (7.5.16)
I pash J
J J
so that,
~8 ~L
[p'] - p ~
E[rF%)] = —d—_d .45 2, (7.5.17)
] (=155 J
J J
where
~L
2y Py Wy
, without bias correction,
E n W .
& k "kj
E[pjl =
p? , with bias correction
(7.5.18)

where ij = W(ZL - zj)/h) where zﬁ denotes the linear predictor

for the kth observation. Also,
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. v(p)
V(r? s (7.5.19)
.(l-p.
[PJ( pJ)]
where

AL ,, ~L, .2

o 1 P AR W
V(Pj) = 5 (7.5.20)

(% n ij)

Var(p?) is the same whether ;3 has been bias corrected or not.

Using these results gives

S E(rgs).Ki. Svyz. K. .
N iP5t
E[ri ] = = (7.5.21)
K, . K, .
LTRRY

if Bj is bias corrected whereas if it has not been then expression
(7.5.17) should be substituted for E[r?s]. Also,
2 pPs
K. . V(r,
3 Ky Ve

vk - —
i 2

(7.5.22)

where expression (7.5.19) should be substituted for Var(r?s).

A bias corrected smooth estimate is then:
rs- E(}?S) +'y 2, (7.5.23)

and approximate confidence bands can be added at % 2V V(??s).

In subsequent examples bias corrected estimates will be used.

As mentioned earlier the smoothing parameter may be chosen by
least squares cross-validation or by using a model based choice
similar in nature to that used for constructing ps. In particular,

when using the discrete response, we can choose b to
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(7.5.24)

As before it is necessary to use a cross-validatory approach because

R ; : RN ~pL
otherwise the expression is minimised as b — 0 so that the r?

interpolate the data. It will again be assumed that the fitted

model is correct so that expression 7.5.24 can be rewritten as:

Lo, 2 L~ (ApL~ o pL~ ~ pL» 2
: EL(r] =vZ;)“1-2B (] =y2)) (2 iz ) (P oz ) HEL (D vz %)
Min
b 1=1 v(rPhy

(7.5.25)

where ;p% denotes the estimate calculated using all but the ith

observation.

The first term does not depend on b and the second term is zero

which can be shown as follows:
pL . yPL L%
E[(ri v2;) (r2y 721)]

B[R] e, o] e B[] 2 A

Now,
> Kij r?L r?L
E[rPL ;pL] - E j#i

i T S

jEi M

K.. E(r
K, .
jei
K,. v Z
N TR
-~ Z
Y 44 LT

j=i 1

R

E (r?L)

where the = sign is due to the fact that the ith obgervation
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contributes to the fitting of the logistic model and hence to

r?L . Therefore, r?L

this dependence should be small in practice.

pL

and rj are not strictly independent but

Also,

and

Therefore,

2 Kz vz dovZ
= v Zi J=1 - JZ1 - 72 22 + 722§ 0.
D Ky 2 Ky
J#i J#i
The criterion therefore simplifies to:
~pL -~ 2
N E(PY -z )7
Min T (7.5.26)
b =1 v(rto)

or,

~ L ~pL 2 ~ ~ ~
N OVGPD + ELGPDY - dvz BN+ Gz
Min T (7.5.27)
b i=1 {nipi(1~pi)}

Choosing b by using (7.5.27) tends to result in a larger value
of b and hence a smoother curve estimate than when using least

squares cross-validation.

To illustrate the use of partial residual plots data simulated

from the model

logit(pj) = -1 + X7 + X + 3x§
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will be used again. As before, a model involving linear terms only
was fitted to this data and partial residual plots then constructed

for Xy and Xj.

Figures 7.3 and 7.4 show the plots based on using the discrete
response for variables Xj; and Xj. Both plots show how the
points fall into the two separate clouds corresponding to values of
y=1 and 0. However, smoothing, with b chosen by least squares
cross-validation, clearly shows that X; has been specified correctly
whereas the quadratic shaped curve for X; indicates the need for an
additional quadratic term. The reference line 1.118Xp lies outside
the pointwise confidence bands near the origin. When the partial
residuals are smoothed using a model optimal b-value the results are

qualitatively similar to those in figures 7.3 and 7.4.

When the smoothed response (h = 0.11) is used the points no

longer divide into two groups. The plot for Xj, figure 7.5, again
shows a clear linear trend while that for Xp, figure 7.6, shows marked
curvature made clearer by the smooth regression curve superimposed.
This time the linear reference line lies above the upper confidence
band in the centre and below the lower confidence band on both sides of
the plot., The need for a quadratic contribution from Xy is clear.
The confidence bands when using the-smooth response are much narrower

than when using the discrete response.

The plots obtained when using the model optimal h = 0.54 to
smooth the response are not included but are very similar to those
illustrated using h = 0.11 except the curvature is perhaps not as

marked for Xs.
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The partial residuals do not all have the same variance and so
a weighting scheme similar to that used for smoothing y was
considered with weights equal to the inverse of the variance of a
partial residual. However, the resulting plots show little difference
to those constructed without weighting and so subsequent examples will
not use weighting. Again, the smoothing parameter, especially if
small, ensures that local averaging is carried out using observations
with similar variance. Also the range of weights is small. For example
when using the discrete response for binary data the minimum and
maximum possible weights are 0 and 0.25 respectively. This small

range also reduces the effects weighting may have,.

As remarked earlier the significance of an observed value of the
statistic S (7.5.10) for testing linearity needs to be determined
by simulation. The value of the bandwidth b for smoothing the
partial residuals for the original data will be used to smooth each
set of simulated partial results with the argument for this following
that for the pseudo-likelihood ratio test (Section 7.4). When using
discrete responses the model optimal choice makes a better one due
to the greater stability of the resulting estimates over those

resulting from the more data sensitive least squares method.

For each simulated data set the RSS needs to be calculated. If the
logistic model is not refitted for a simulated data set then the RSS
will be larger than when comparing the simulated partial residuals
with the correct linear reference line. The effect of not re-fitting
will therefore be to increase the value of each simulated § wvalue
with the overall result of making the observed S less extreme.
Therefore, the logistic model should be re-fitted to each simulated

data set but to reduce computation one iteration of the fitting
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algorithm will give good estimates if the original parameter estimates

are used as starting values.

The linearity of variables X; and Xj; of the previously
described and analysed data from model (7.4.13) were tested using both
discrete and smooth response partial residuals. All smooth estimates
were bias corrected and the test was based on 500 simulations with
the model re-fitted to each simulated data set using one iteration

only. The results obtained were as follows:

Table 7.2
Response El X2
Discrete b =1.17 (model opt.) b = 0.51 (model opt.)
§ = 0.00371 s = 0.211
sig. level = 0.25 sig. level = 0,000
Discrete b = 7.18 (least sq.'s) b = 0.25 (least sq.'s)
S = 0.00361 S = 0.542
sig. level = 0.166 sig. level = 0,000
Smooth b = 6.97 (least sq.'s) b = 0.20 (least sq.'s)
(h = 0.11) S = 0.00867 §$ = 2.016
sig. level = 0.39 sig. level = 0.046
Smooth b = 0.33 (least sq.'s) b = 0.11 (least sqg.'s)
(h = 0,54) § = 0.0899 S = 5.523
sig. level = 0.748 sig. level = 0.41

When using the discrete response the test is highly significant
for Xp but not for Xj; when using both the model optimal and

least squares smoothing parameters to smooth the partial residuals.

When using a smooth response the results for Xj; are not

significant for both h = 0,11 and 0.54 with that for h = 0.54
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being by far the least significant. However, for Xj, when using the
likelihood based h = 0,11 the test is significant at the 5% level but
a clearly non-significant result is obtained for the model optimal

h = 0.54. The partial residual plot in this case does show much less
curvature that when using h = 0.11, the difference being most marked

on the left of the plot.

Using smooth responses in the partial residuals does make clearer
the functional form of a covariate than when using the discrete
response which results in a discretised plot. However, the
addition of a non-parametric smooth regression curve makes the form
much clearer~and indeed the smooth curves for Xy 1in the above
example when using the discrete responses and smooth responses
(h = 0.11) are very similar. Partial residuals based on the discrete
responses are also much simpler and quicker to compute than those

based on the smooth responses,.

7.6, Examples.

In the following two examples the significance of the observed
values of the pseudo-likelihood ratio test statistic and the statistic
for testing linearity are assessed through 500 simulations. Each new
nonparametric estimate is constructed using the original model
optimal smoothing parameter and appropriately bias corrected while

the parametric logistic model is refitted using only one iteration.

Example 1: Finney's data.

These data were originally analysed by Finney (1947) and
subsequently by several other authors. They consist of 39 observations
on the effect of two covariates rate and volume of air inspired, on

the occurrence (Y = 1) or non-occurrence (Y = 0) of a transient
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vasoconstriction response in the skin of the fingers., These
observations were collected from only three individuals but the
experiment was designed to try and ensure that observations on the
same subject were independent. Finney (1947) log transformed each
of the covariates and this has also been done here. An additive

logistic model was fitted by maximum likelihood to give:

logit (p) = ; = -2,924 + 5.330 log(vol) + 4.631 log(rate)

(7.6.1)

The deviance for this model is 29.264 on 36 d.f. but due to the
binary nature of the response this is uninformative about goodness-

of-fit as discussed in Section 7.2.

The data in the form (yj, nj, ;i) were then smoothed using
(7.4.2) with a model optimal h-value of 1.02. The resulting bias

corrected estimate (figure 7.7) has a peak near =z =~ -2.5 due in the

main to observations 4 and 18, These both have Y

1 at points
where the fitted probability of "success" is small i.e. 0.073 for
case 4 and 0.103 for case 18. The plot also indicates that the

logistic model may not be approaching its upper asymptote rapidly

enough to ensure a good fit,

The observed value of the pseudo-likelihood ratio test statistic
T (7.4.1) is 9.029. The associated p-value of 0,004 confirms the

lack of fit of the logistic model indicated in figure 7.7.

Partial residual plots using the binary responses were obtained
for the two covariates and are displayed in figures 7.8 and 7.9,
In both cases the nonparametric estimates of functional form based
on model optimal b-values closely follow the linear reference lines

and are well within the approximate confidence bounds. Also, the
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fact that cases 4 and 18 are outliers is clearly indicated.
Application of the test of linearity (7.5.10) gives § = 0.031

{(p = 0.696) for log (volume) and S = 0.046 (p = 0.380) for log
(rate) thus confirming that they have both been specified correctly.
The poor fit of the logistic model is therefore not due to the

misspecification of the functional form of the covariates,

Example 2:; Cardiff bronchitis data.

The data consist of 212 observations on two covariates and a
binary response obtained in a study of male chronic bronchitis in
Cardiff conducted by Jones (1975). The variables are CIG, the number
of cigarettes smoked per day and POLL, the smoke level near the
respondent's home obtained by interpolating the levels at 13 air
pollution monitoring stations in the city. The response Y takes
the value 1 if the respondent suffered from chronic bronchitis and 0

if he did not.

The fitted logistic model is:

logit(p) = z = -10.085 + 0.212 CIG + 0.132 POLL  (7.6.2)

which has deviance of 174.214 on 209 d.f. The bias corrected non-
parametric estimate based on the model optimal h of 0.54 is
illustrated in figure 7.10. Considerable lack of fit is indicated

by the large trough for values of the linear predictor between about

2 and 4. In fact only nine individuals have values of z greater
than 1.0 and the size of the trough can be attributed in particular

to case 147 who has =z = 2.828, Y = § but CIC = 24.9 and POLL = 58.0.
The logistic model also does not appear to fit particularly well for
values of 2z less than 0.5. It tends to overestimate the probability

of chronic bronchitis for ; < - 1.8 and underestimate it for
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~1.8 ¢ z < 0.5. Indeed, examination of the data show that there are
no individuals who smoke less than 3 cigarettes per day and with
any air pollution level who have chronic bronchitis. On the other
hand though there are sufferers among non-smokers. This apparent
lack of fit is confirmed by the pseudo-likelihood ratio test:

T = 15.881 with an associated p-value of 0.000.

The partial residual plots for CIG and POLL are illustrated in
figures 7.11 and 7.12 respectively. That for CIG indicates that a
quadratic term with a negative coefficient may improve the fit while
the marked trough on the right is due again to case 147. Case 122
is also indicated as an outlier - he is a non-smoker living in an
area with fairly low air pollution but is suffering from chronic
bronchitis. The plot for POLL suggests that this term has been
specified correctly with cases 122 and 147 again being clear
outliers. The test of linearity gives § = 0.298 (p = 0.010) for
CIG and S = 0.134 (p = 0.084) for POLL thus confirming the subjective
impression although the small p-value for POLL suggests it may also

have some curvature.

Aitken et al (1989) consider logistic models for these data.
They extend the simple additive model to a third degree response
surface and eliminate unnecessary terms by comparing differences in
deviance with the appropriate X2 values. The above approach
certainly complements this. However, they conclude that the
complexity indicates a systematic failure in representing the data
and they go on to obtain a more satisfactory analysis by grouping both
CIG and POLL into classes and modelling the number of bronchitis

sufferers in each cell by a binomial distribution.
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Figure 7.1. Logistic regression curve and bias corrected nonparametrlc estimate (h - 0.11) for
~ e
4Q observations simulated from the model ioglt(p) —-1 + ¢ + 3X,,. The Z's are
based on linear terms only.
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Figure 7.2. Logistic regression curve and bias corrected nonparametrlc estimate (h - 0.54) for
40 observations simulated from the model loglt(p) - -1 + Xj + + + 3X*. The Z's are

based on linear terms only.
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Figure 7.3. Partial residual plot based on the discrete responses for X} of the simulated date.
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Figure 7.A. Partial residual plot based on the discrete responses for X2 of the simulated data.
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Flgure 7.5. Partial residual plot based on the smoothed responses (h - 0.11) for X} of the simulated data.
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Figure 7.6. Partial residual plot based on the smoothed responses (h - 0.11) for X2 of the simulated data.
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Flgure 7.7. Logistic regression curve end b'es corrected nonparametrlc estimate (h - 1.C2) for Finney's data.
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Flgure 7.9.

Figure 7.10.
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Partial residual plot based on the discrete responses Tor log(rate) of Finney's data.
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Flgure 7.11. Partial residual plot based on the discrete responses for the variable CIC of the Cardiff

bronchitis data.
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Figure 7.12. Partial residual plot based on the discrete responses for the variable POLL of the Cardiff

bronchitis data.
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