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SUMMARY

The objective of this thesis is to estimate the functions

F(x,y,z) = |[{(n,m); O<n<x, n=L,modk,, O<m<y, m=¢,modk,,
((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=l}

for n and m integers, and

P(x,y,z) = [{(q,x); O<g<x, q=2,modk,, O<r<y, r=Q,modk,,
((ag®+bgte)r2+(dq?+eqtf)r+(gq®+hq+i), If p)=1)

for q and r primes.

In Chapter One we give a series of lemmas relating to the
ensuing chapters, In Chaper Two we deal with the function
F(x,y,z) for a=b=c=0, and in Chapter Three with P(x,y,z) for

a=b=c=0,

In Chapters Four and Five the major theorems of the thesis are

presented,
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INTRODUCTION

Nair and Perelli in their paper "Sieve Methods and class-
number problems I" derived an asymptotic formula for the

function
S$(x,y,2) = |{(n,m); O<n<kx, O0<m<y, (n2+m,pgzp)=1}

where the product I1 ranges over all primes less than z, and
where z<max(x,y). Their approach was based on the observation

that S(x,y,z) can be written in two different ways ie.

E I{m; O<mgy, (n?+m, gzp)nlll = S(x,y,2)
O<ngx P

= Z {n; 0<n<x, (m24m, [ p)=1)
O<m<yl P<Z

A simple and explicit estimate of the function within the first
summation sign may be given whenever zKy. This immediately
gives an initial estimate of the second version of S(x,y,z).
But to complete the theorem it is required that we extend the
estimate to z within the range y<z<x. The best available
estimate of |{n; O0<ngx, (n2+m,pgzp)=l) for z<x, given by

Halberstam and Richert [2] involves the product I (1-pp(p))

p<z P
where pp(p)=i1{n:n2=-m modp}|.

The aim of this thesis is to try and extend these arguments

to the most general quadratic case

F(x,y,2z) = |((n,m); a<n<a+x, n=Q modk,, B<m<B+y, m=Q,modk,,

((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=1}

and then the same involving primes.

Rather than launch into the complexities of the most
general case which is quadratic in both n and m, it was decided
that a simpler approach would be taken whereby we begin with

the most general case with the qualification, as in the case
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dealt with by Nair and Perelli, that m 1s linear only.

We examine the function

S(x,y,z) = [{(n,m); o<nfot+x, n=Q modk,, O<m<y, m=¢,modk,,

((an?+bnve)m+ (dn?+en+f), [ p)=1)|

This way many of the arguments that will subsequently be used
in an evaluation of F(x,y,z) can be developed with a minimum of
complication. Other benefits to this approach include the fact
that although subsequently we are only able to find an upper
bound on F(x,y,z), an asymptotic formula for S(x,y,z) may be
found. Furthermore the associated error terms are effectively
computable. The resulting theorem is Theorem One of the thesis.

The approach to finding an asymptotic formula for S(x,y,z)
is in essence that of Nair and Perelli's. In the following I aim
both to clarify the general direction and at the same time to
highlight points of departure from the original paper.

As explained above we write S(x,y,z) in two different ways,

namely

Z I{m; 0<mgy, m=Q,modk,, ((an2+bn+c)m+(dn?+entf), Ezp)wll
a<n{o+x P
n=¢ modk,

= §(X,y,z) =

X l(n; a<ngeetx, n=¢ modk,, ((anZ+bnt+c)m+(dn?+en+f), gzp)=l}
O<m<y P
m=¢ ,modk ,

In Step One of the proof of Theorem One we find an
asymptotic formula for S(x,y,z) whenever z<¥/k, using the first

of these formulations. We firstly remove from the sum any cases

trivially equal to zero. An asymptotic formula for
{m; O<mgy, m=Q,modk,, ((an2+bn+c)m+(dn2+en+f),pgzp)=1)

in all other cases may then be given explicitely. Summation

over n gives a formula for S(x,y,z) whenever z<Y/k,.




Were ¥Y/k,»X/k,. then the theorem would be complete. If
however X/k,»Y/k, then in Step Two we turn to the second
formulation of S(x,y,z) and attempt to find an asymptotic

formula for
(n; a<nko+x, n=Q¢,modk,, (an2+bn+c)m+(dn2+en+f),pgzp)=l}|

whenever z<¥/k,.

This attempt leaves us with the sum

Y R 14:20) (1)
0<u<y p<1z< P
mEQ:‘,mokoyr 1
(m,z) app

to evaluate if we are to complete the theorem where

pm(p)=1{s modp: s2=g; modp)|i
for a quadratic function gy, and where "(m,z) app" is some set
of conditions given explicitely in the text. We do however have
gome information on (1).

If we assume that z<Y¥/k,<¥/k, then a comparison with the
formulation of S(x,y,z) given in Step One gives an asymptotic
formula for (1). This is the springboard from which we develop
the rest of the theorem.

Now poh(p) is closely related to the Legendre symbol, a
relationship made explicit in Step Three. Excluding the cases
where gy, is a square (Step Four), the observation is made that

g (1_£m£E)) may be written as
BTk, 1
M (L-x(p)) M (1-1)

p<Z p p<Z p
ptk,

c(gny.2)

for some function c(gy,z), and where x(p) is the Kronecker
Symbol. (Step Five)
In this way we reduce the problem to one whereby we must

find an asymptotic formula for
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yooomxe)
O<m<y p<z P
m=£ ,modk,

(m,z) app

c(gm»2)

whenever z»Y/k,.

We now see that if we were able to write this sum in terms

of the sum

Z I (1-x(p))
O<mgy P<%o P
mEszodk2

(m,z,) app

C(gm;zo)

for some z,<Y¥/k, (in the proof taken to be exp(27(InY/k,)%))
then we would have our asymptotic formula as required.

Straightforward arguments alone are required to show that
the dependence of c(gy,z) on z may be removed (Step Six), and
it is easily demonstrated that the dependence of the conditions
"(m,z) app" on z may be removed. This leaves only the

dependence on z of the product

T (1-x(p))
p<z P

as a problem.
Fortunately, for z relatively large, this product may be

written in terms of the "smaller" product

T (1-x(p))
P<z, P

in the majority of cases. (Step Seven). These cases we denote
"good". The minority that resist such rewriting we denote
"bad". The remainder of the theorem is essentially concerned

with trying to find an upper bound on

) m (1_X%2))C(gm,2)

<<y p<z
n= modk,
(m,z) app
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for these "bad" cases.

We can find an upper bound sufficient for our purposes if
we place an upper bound on z, namely z(exp(y1/17). (Step Eight)
However to make the theorem as broad as possible we really
require a bound covering a wider range.

In Step Nine we make use of the fact that

M (1-x(p)) ¢ N (1-x(p))
p<z P P<z, P

with at most one exceptional modulus to reduce the problem yet
further. It leaves us with the relatively narrow problem of

finding an upper bound on

yom@x®e)
0<m<y pP<z P
m=0 ,modk,
(m,z) app

c(gp,2z)

for z>exp(y1/’7) for this one possible exceptional modulus.
Unfortunately this is the most stubborn case of all. To tackle

it we firstly find an upper bound on

m (1-
A,

involving the product

ma- 1
Ng<z NB

where the Nf represent the norms of prime ideals in Q(/gy).
(Step Ten). But

m(1- 1) 1

N@<z N@ \ L(1,xp)1nz
whenever z»DS. So to find an upper bound on

M (1-x(p))
p<z P

C(gm:z)
for this final case we must find an upper bound on L(l,xD)"l'

Such a bound is given by the class number formula together with

the Gross-Zagier theorem [11] which gives an upper bound on
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h(d), the class number, for d<0.
This effectively completes the theorem. The final piecing
together of all the various strands is completed in Step

Twelve.

It is convenient in Theorem One to assume that the
polynomials in n of 5(x,y,z) ie anZ+bntc and dn2?+en+f, have no
common factors. Chapter Two concludes with an examination of
the alternative cases. The results are summarised in Theorem

Two.

Having concluded the integer case involving a linear
variable it is natural that we should consider whether the same

arguments may be applied to the function involving primes,
P(x,y,z) = |{(q,r); o<qka+x, q=0,modk,, O<rgy, r=f£,modk,,

((aq2+bq+c)r+(dq2+eq+f),pgzp)=l)
where both the gs and rs are prime.

Following the route of Theorem One and writing P(x,y,z) in

two different forms namely

X |(r; O<r<y, r=g,modk,, ((ag?tbgtc)r+(dq?+eq+f), Tl p)=1)
a<glo+x P
q=2,modk,

= P(x,y,2) =

Z |{q; a<qfa+x, q=Q,modk,, ((aq?+bgt+c)r+(dq2+eqf), g p)=1}
O<x<y p=z
r=¢ ,modk,

quickly leads to difficulties, as a study of the right hand
side of this equation requires that we take o to be 0 and
furthermore the subsequent error terms turn out to be non-

computable. As an alternative approach we study the function
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T(x,y,2) = |{(n,q); o<niat+x, n=¢ modk,, O<q<y, g=¢,modk,,
(((an2+bn+c)q+(dn2+en+f))n,pgzp)=1}|.
We may derive an upper bound on T(x,y,z) following the method

of proof of Theorem Cne. Then an application of the observation

that

y 2
P(xy,2) < T(x,y,2) + O[w(kz)lny'w(k1)1nz/k,]

completes our estimate of P(X,y,z). This is stated in Theorem

Four.

In Chapter Four we turn to the most general integer case.

Here the function we desire an upper bound on is
F(x,y,z) = |{(n,m); O<n<x, n=0 modk,, O<n<y, m=Q,modk,,
((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=l)

for z<max(¥/k,,%*/k,).

Writing, as previously, F(x,y,z) in two different ways, ie

) l{m; O<m<y, m=0,modk,, ((an2+bn+c)m2+(dn2+en+f)m+
0<ngx
n=¢ modk, (gn2+hn+i),pgzp)=1}
= F(x,y,z) =
Z I{n; 0<n<x, n=¢ modk,, ((an?+bnt+c)m2+(dn2+en+f)m+
O<m<y
m=0 ,modk, (gn2+hn+l),pgzp)=1]

we would, if we were to follow the argument of Theorem One,
require an asymptotic formula for one of the functions within
the summation sign for z<min(¥/k,,*/k,). However either
function gives an asymptotic formula involving the product

I (1-p(p))
p<z P




where p(p) is a function of the form

p(p)=1{s(modp): s2=A modp)|
for A some quartic function in either m or n. Previously we
had, for z<Y/k,, an asymptotic formula involving the uncomplic-—
ated product

m(1-1)
p<z P

from which to begin the proof and we should have liked the same
in this instance.
However if we assume that z<Y/k,KX/k, for instance, then we

may find an upper bound on the function

y T (1-pp(p))
O<n<x p<z P
nﬁﬂtmodklp*kz
(n,z) app

(2)

appearing in the estimation of the first formulation of
F(x,y,z). We may use this upper bound as a starting point for
a general theorem. The construction of the upper bound uses
many of the arguments developed in Theorem One.

Firstly we write (2) in terms of

y I (1-py(p))
0<n<y p<z P
nEthodk,p*k?

(n,z) app

which is permissable so long as we assume that z<y. We then

write this latter sum in terms of

i (1-pp(p))
O<n<exp(1nfy) p<£51ny)50 P

n=¢ modk, P,

(n,z) app

and this in terms of
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n (1-pp(p))
25
0<n<exp(1niy) p<£51ny) |3
n={ , modk, PX,
(n,z) app

etc, gradually reducing the range over which we extend both the
sum and the product, In this way the sum is eventually brought
to a manageable form, so that we may find a reasonable upper
bound on the sum (2) as we require. From this starting point we
are able to construct an upper bound on F(x,y,z) using the
methods developed in Theorem One. (Theorem Five) Unfortunately
the proof introduces non-computable error terms into the upper

bound,

The final few pages of the chapter are concerned with
demonstrating how the ideas outlined above may be adapted to
cover the case where n and m within F(x,y,z) are not restricted

to 0<ngx and O<mgy. Here we examine the function

F(x,y,z) = }{(n,m); a<not+x, n=¢ modk,, f<m<B+y, m=L,modk,,

((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=l}

Chapter Five covers the same ground as Chapter Four but for
primes rather than integers. The function we are concerned with

here is

P(x,y,z) = |((q,r); O<q<x, q=Q,modk,, O<r<y, r=Q,modk,,

((aq?+bgre)r+(dqreqrf) r+(gq?+hari), I p)-=1)

for q and r both primes.

Here, for reasons that are given within the text, to find

our starting point we examine instead the function
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T(x,y,2) = |{(n,q); 0<n<kx, n=Cmodk, 0<q<y, g=amodf,

((an2+bn+c)q2+(dn2+en+f)q+(gn2+hn+i),pgzp)=l}

which clearly has much in common with P(x,y,z). Then by
adapting the methods of Chapters Three and Four an upper bound

on P(x,y,z) may be constructed.

In Chapter Six we make the observation that the methods
employed throughout the previous five chapters may be applied

to functions of the type

¢ (x,y) = {{(n,m); n<x, my, ((anZ+bn+e)m?+(dn2+en+f)m+

(gn2+hn+i), k)=1)

A general theorem is not given but a short outline of the

direction a proof might take is included.

Finally a note on the layout of the thesis. Chapter Two
and onwards covers topics as considered in this introduction.
Chapter One however is of a different format. It consists of a
somewhat disparate collection of lemmas, each of which (apart
from Lemma 5.2) is referred to at some point in the rest of the
thesis, Although to an extent these lemmas are ordered as they
appear in the ensuing chapters, whenever lemmas are considered
to follow similar themes they are grouped together. Since
Chapter One follows no apparent rational progression the reader
may prefer to begin with Chapter Two and refer back to the
lemmas és they arise in the proof. (The penalty paid for this
is that the continuity of the proofs of the theorems will be
broken.) Should this approach be taken attention is drawn to
Lemma 5.2 of page 61. Although Lemma 5.2 makes no further

appearance in the thesis it is included as a natural successor
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to Lemma 5.1. It is also considered to be of interest in its
own right. We show that, whenever 2<D<x,

; -1
L(L,xp) = p:llnmf(l XED)_(I’)) {1 + OCexp(~c(lnlnx)4)))

holds with at most 0[[ X ]i} exceptions. The proof is an

Inlinx

optimisation of the methods of proof of Elliott in Lemma 22.8.

[8].
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NOTATION

theorems it may be helpful to have a page reference denoting

where that symbol is introduced. A word of caution; the same

symbols are often used within different theorems but their

definitions may not be completely consistent across theorems.

Consequently we subdivide into theorems.
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CHAPTER ONE

INTRODUCTION

As explained in the Introduction, Chapter One consists
almost entirely of lemmas each of which (apart from Lemma 5.2)
is referred to in the theorems of the following chapters. The
lemmas are grouped where common themes exist but otherwise are
roughly ordered as they appear in the ensuing theorems. The
major exception to the above is Lemma 5.2. Lemma 5.2 is a
consequence and generalisation of Lemma 5.1. It is independent
of the rest of the thesis and it's arguments may be understood
without a knowledge of lemmas and theorems other than Lemma
5.1.

It is again suggested that the reader may go straight to
Chapter Two and refer back to the lemmas of Chapter One as they
occur in the theorems. However "grouped lemmas" may refer to
each other so it is also suggested that should the first member
of a group be read the simplest approach would be to read the

other members of the same group at the same time.




LEMMA 1.1
Let F(n) be a polynomial of degree g with integer

coefficients. Let p(p) denote the number of solutions of the
congruence

F(n) = 0 mod p
and assume that

p(p) < p for all primes p. (1)
Let X/ >z

and set u = lnx/k

In =z

Then,

| {n: asncortx, n=e( mod k ), ( F(n), I p )1 } |

[ X/ [IC L-p(p) ){ 1+0(exp(—u(ln u-lnln 3u-1ln g-2)))
p<z  p_ )

ptk +0(exp(~(1nx/k)* ))}

= ;o (FR), O p)=1

i

i (F(2), O p)>1
4

The O-constants are effectively computable and depend on, at
most, g.
PROOF

The proof consists of an application of Theorem 2.5 of
Halberstam -Richert's "Sieve Methods"[2]. We begin with an
explanation of some of the notation used in their book, which
we will consequently adopt here. Our proof will be an estimate

of the sifting function,

S(A,B,z) = [{ a: aeA; (a, I p) = 1)
PR |




where A = { a:.... } denotes a sequence of integers; where
B is a set of primes; B the complement of B.
We define
Ag = { a: aeA, a=0 mod d )
for d a squarefree integer,
and the number of elements in Ay to be |Ag].
We choose a convenient function X which approximates to |Al,
the number of elements in A, and for each prime p we choose a

function w,(p) such that (wu(p))X approximates to 1A
P

pl-

The remainder we write as

rpi= [A 1-w ( X
P

Consequently we define, for each squarefree d,

Wo(l):=1a wo(d) p]d o(p)

and rgi= 1Aql-w (d)X
d

Finally we define

wo(p) ; peB
w(p)= { -
0 ; peB
and extend this to
w(l):= 1, w(d):= H W(P) ¢ u(d)=0 )

With the function w(p) we form the product

I (1-w(p))
V&= e 5
Similarly
Rq:= |Ad|—w_(£1)x ( p(d)#0 )
d

Theorem 2.5 of [2] states that under conditions (Q,), (,(k)),

and (R) ( which will be explained during the proof below ),

assuming that X > z and setting u = 1ln X
In z




S(A,B,z) = X W(z){ 1+0(exp(-u(ln u-1n 1n 3u-ln k-2))
+0(exp(~(1n X)) )

With regards to the sifting function
{ n: o<ne+x, n=¢ mod k, (F(n),pgzp) =11}

we firstly observe, writing F(n)=agng+ag_1ng_l+...+aUl that for

n=0 mod k, recalling that k':=_1I p,

BrE
(F(n),k")>1 & 4 pik' such that F(n)=0 mod p
& 3 pik' such that

g g=1
agh +ag_,n +...+a,=0 mod p

& 3 pik' such that
g g _
agQ +ag_1Q +...+a,=0 mod p
& (F@), k' )=l

So for (F(R),k')>1l
{ n: a<n<o+x, n=0¢ mod k, (F(n),pgzp)=l 1l =0

Assume henceforth that (F(2),k')=1. The above now implies

that (F(n),k')=1 so that
|( nio<ndetx, n=g mod k, (F(n), [I p)-1 )I

= I{ n: a<n<oetx, n=L@ mod k, (F(n), II p)=1 ]I

Bit
and it is this final sifting function which we will apply
Theorem 2.5 to. Using the notation described above we take

A = { F(n): a<ngat+x, n=¢ mod k )}
and B=( p: ptk }.

Then if (d,k)=1,

1Agl = |( n: a<n<ot+x, n=¢ mod k, F(n)=0 mod d )l
d
= Z I { n: a<ngp+x, n=Q mod k, n=m mod d } I
m=1

F(m)=0 mod d

o G+o} (101<1)




Accordingly we choose
=X/, W, (d)=p(d) for (d,k)=1
and it follows that

1Tg1< wo(d). (2)

We have now, for these choices of X and w,(d), to show that the
conditions (Q,), (2,(k)), and (R) are satisfied.
We take them in order:

(f2,) states O(W(p)<l~l for some suitable constant A,>1.

P A,

But here
plp) ; (p.k)=1
wip) = {

0 5 (K>l
and if (p,k)=1 then w(p)=p(p)<g by Lagranges Theorem together

with (1). Certainly w£21>0, and it is easily seen that
P

w(p)<1l- 1 wusing w(p)<g whenever ppg+l and w(p)<p-1 otherwise,
P g+l

So taking A, =g+l ensures that (2,) is satisfied for all p.

(©,(x)) states Z w(p)ln p < kln z + A, if 2<wgz
P w

Wp<Z
for suitable constants x(>0) and A,(3L).
However Lemma 2.2 of [2] implies that, if condition (2;) holds
then (2,(x)) holds also with k=A,=A, where ({},) is the

condition w(p)<A,.

But w(p)<p(p)<g so (2,(x)) holds with x=A,=g.

(R) is the condition |RqI<w(d) if u(d)#0 and (d,B)-1
But, by the definition of IRyt this is simply (2).

We are now in a position to apply Theorem 2.6 stated above to

give




| { n: o<n<atx, n=0( mod k ), ( F(n), 0 p )=1 } i

Bk
_ X/x ¢ 1-p(p) ){ 1+0(exp(-u(ln u-1nln 3u-1ln g-2)))
pP<z P ;
ptk +0(exp(-(1nx/k)* ))}

as required.

LEMMA 1.2
Let F(n) be a polynomial of degree g with integer
coefficients. Let p(p) denote the number of solutions of the
congruence
F(n)=0 mod p
and assume that
(i) p(p)<p for all primes p
(11) p(p)<p-1 if p4F(0).

Let p(p)+1l ; ptF(0)

p'(p) ={
p(P) ; PIF(O)

and set u = 1n X/, with ¥/p3z.
In =z

Then, for (2,k)=1,

| { n: o<ndertx, n=¢( mod k ), (nF(n), W p )-1 } |

[ X/x ¢ 1-0' (p) ){ 1+0(exp(—u(lnu-lnln3u-1n(g+l)-2)))
p<z  p
prk +0(exp(-(Inx/k) ¥ )))
= 3 ;o ( F(R), I py=1
Bik
0 s ( F(2), Ipy>l
BiE

The O-constants are effectively computable and depend on, at

most, g.




PROOF

From Lemma 1.1 we have

I { n: oa<nga+x, n=2( mod k ), (nF(n),pgzp =1 } l

[ X/x [IC 1-p' (p) ){ 1+0(exp(-u(lnu-Inln3u-In(g+1)-2)))
p<z P
ptk +0(exp(—(1nx/k)% M}
= 1 i ( F()e, 1 p)=1
Bit
0 p (F(2, 1 p)>l
Bit
with p'(p) = |( nmod p : F(n)n=0 mod p }l.

Certainly p'{p) = |{ n mod p : F(n)=0 mod p )I

+ l{ n mod p : n=0 mod p }I ; if p+F(0)

and p'(p) = l{ n mod p : F(n)=0 mod p }!

; 1f pIF(0)
and so p(p)+l ; p4+F(0)
p'(p) ={

p(p) i PIF(O).

Further, for (2,k)=1, (F(Q)Q,Bgﬁp)=l & (F(2), gﬁp)=l
I i

which completes the lemma.

LEMMA 1.3

Let F(n) be a polynomial of degree g with integer
coefficients. Let p(p) denote the number of solutions of the
congruence

F(n)=0 mod p
and assume that

(i) p(p)<p for all primes p




(11) p(p)<p-1 if p4F(0).

Let , - [ PP+l ; p+F(0)
@ = {00 1 PR

and set u = ln X/ with %/y>z.
in z
Write k'=1I p.
<
Pik
Then, for (2,k)=1, and q prime,

l { q: oa<q<o+x, q=2( mod k ), ( F(q),pgzp y=1 } I

[ */k HC 1-p' (p) ){ 1+0(exp(-u(lnu-lnln3u-1ln(g+l)-2)))
p<z P
prk +0(exp(~(lnx/k)E 1))+ 0(A)
< L ( F(R), 11 p)=l
Bik
0 v CF@), I p)>1
| e
where
— . 7ok
A p(k)1n=/y
1 ; z<k

The O-constants are effectively computable, and depend on, at

most,§g.
PROOF
Certainly if (F(2),k')>1 then (F(q),k')>1 and
[ q: o<qo+x, q=€ mod k, (F(q),pgzp)=l )I = 0.
Assume iInstead that (F(2),k')=1.
Clearly the function
{ q: o<q<ot+x, gq=0 mod k, (F(q),pgzp)=l )

counts the integers, n, satisfying a<n<otx, n=¢ mod k for which

n is a prime and (F(n),pgzp)=1. If, however, in addition npz,

then n is counted in

{ n: o<ngo+x, n=0Q mod Kk, (F(n)n,pgzp)=1 o




. z .
Otherwise n&z and as there are O[ AR 0%/ ] Primes <z

which are congruent to £ mod k (by the Brun-Titchmarsh

inequality) if z>k,and 0(1) primes if zck,it follows that

Il q: a<glotx, =g mod k, (F(q), Il p)=1 }l

< |( n: a<netx, n=f mod k, (F(m)m, I p)=l }| + 0(A)

if (F(2),k')=1.

The lemma follows immediately by an application of Lemma 1.2.

a

LEMMA 1.4
Let F(n) be a polynomial of degree g with integer
coefficients. Let p(p) denote the number of solutions of the
congruence
F(n) = 0 mod p.
Let
p(P) if p+F(0)
p,(p) = { :

p(p)-1 if pIF(0)
and assume that p,(p)<p-l for all primes p. (L)

i 1i %
Let 11 X5z and set u=13£————1@ikl). Write k'=11 p.
p(k) In z BTE

Then, for q prime, and k<lnx,

(q: O<q<x1 qEQmOdk: (F(Q).pgzp)ﬁl}

(_x I -p,(p)) _1
o0 Inx  p<z  p-L (1T 00nT)
prk

+ 0{exp(-Y/3(Inu-1nln3u-1In6g-2))))

; (F(2), 11 p)-1

pit

0 ; (F(2), 1 p)>1
Bik
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The O-constants depend on, at most, g.

REMARK: Lemma 1.4 stands in contrast to Lemma 1.3. Though

with fundamentally the same function, namely

{q: O<g<x, gq=Cmodk, (F(q),pgzp)=1) ’

in Lemma 1.4 we are able to give an asymptotic formula rather
than an upper bound on this function. The price we pay for
this apparently stronger lemma is, fistly that we no longer
have effectively computable O-constants, and secondly that the
range of values over which q varies is restricted to O<q<x,
whereas in Lemma 1.3 we were able to take the more flexible

range, a<qQatx.
PROOF
As in Lemma 1.3, if (F(2),k')>1 then (F(g),k')>1 and

|ta: 0<qx, q=tmour, <F<q>,pr<rzp>=1}| = 0.

Assume instead that (F(q),k')=1 so that the function becomes

I{q: 0<q<x, q=Cmodk, (F(q), QP)=1}|
btk ’

The proof is an application of Theorem 2.5' of Halberstam-
Richert [2] which reads
(), (Q,(x)), (Ry), (R,(x,a)): Let X»>z and write

" = In X
In z,

Then
S(A;B,z) = X W(z){Ll + O(exp(-ou(lnu-lnln3u-1nk/,-2)))

+ 0g(L.1n7Ux))

where the O-constants may depend on U as well as on the usual

constants A,', A,, A,, Kk and o."

1 27

However the details of the proof follow to a large extent
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the proof of Theorem 4.2 of the same.
Take A = {F(q): q<x q=fmodk) and B = (p: ptk}.
Following the analysis of Example 6 of Chapter 1 of [2] we take

1i x 4
X =2y and wold) = py¥ (@) p([k,d]) .oy

where

py*(P) = p, (Y (a,k))
and where p,(d) is the number of solutions of
F(m) = O mod 4 for (m,d)=1,

For E(x,q) defined as

E(x,q) = max max M{y;q,2) ~ l% g
2<y<x  1<0<q pid
(-Q sq)=1
it is demonstrated that
irgt < p(d){ E(x,kd) + 1 ) if p(d)=0, (4,k)=1 (2)
and wo(p) = L. (P).P if ptk. (3

p-1

Furth .
UEERSY o) if paF(0)

p.(p) = (&)
p(p)-1 if pIF(0)

and p(p)<g if p(p)<p. (3)
Finally p,(d)<p(d)<g¥(d) for p(d)#0 (6)

where y(d) denotes the number of prime factors of d.

Given all this information we must show that the conditions

@, @,&)), (Ry), (R, (k,a)) are satisfied. We take them in

turn:
(Q,) states 0 < w(p) < 1-1 for some suitable constant A,31.
P Ay
But here
L1 PP 5 (p k)=l
p-1
w(p) =

0 if (p,k)>1 .
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It is easily seen, from (5), that w(p) < 1- 1 if pag+2,
P g+l

and, from (1) that Esg) < l—l if p<g+l.
P g

So taking A,=g+l ensures that (Q,) is satisfied for all
primes p.
@,(x)) states ) YR o gnzs A iF 2quce.
wlp<z P
However it is enough to show that w(p)<A, in which case (£,(x))

holds with A, =k=2g.

(R,) is the condition that

Rat < L[ B2 4 1]a 7@ gor p(aywo,

for L a real number »1 and A,' a constant »1.

From (2) and (§),

IRl € ( E(x,kd) + 1 )g¥(d)  if u(d)=0. (7)
But
E(x,kd) = max max M(y;kd,R) - ltkﬁ)
2<y<x  1<0<kd ¢
(0,kd)=1
X
< 4 + 1
trivially.
So
X (d) s
iRat < { 3 + 2}eY if p(d)=0.
However, as Xm%%ﬁ§ , and assuming that x is large, we have
X X x
_ du Inu-1 _Ju 2 %
P“‘)x‘g In u >£Tm-d“‘[m]2 >3 Tox .
So
4 X 2 X e X
2XInX > 3 iy Tnx In(3 w(k)lnx] Pom Tk

and
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Rgt < (B 4 o)gr(@ s payo
implying that (R,) holds with L=2 and A, '=g.
Finally we look at (R,(x,a)) which reads

"For some constant o (0<aKl) there exists corresponding to any

given constant Uzl a positive constant c such that

x "
2(d)IRgl = Oy
d<X;1n_CUX# d U[1DK+Ux] .

(4,B)=1

In our case, as B = (p: pik),

X _. HZ(d)IRgq1 = X o rA(d) R4 .
d<x®1n Cox d<x®1n Cox
(d,B)=1 (d,k)=1

Taking a=1/3 and U=1, k=2g we need only show

X i
2(d) iR = Q
d<§1/31n ~&0§ ) IRgl [1n2g+fx] .
(d,k)=1

By (7) above

Ly o w@Ra < L pa@mekagr@
d<X /3in "9X d<X 31n "X
(d,k)-1 (d,k)=1
s L, e @@ (8)
d<X ‘31ln "OX
(d,k)-1

To find upper bounds on the sums on the right of (8) we use
respectively Lemmas 3.5 and 3.4 of [2] which read:

"LEMMA 3.4 For any natural number h and for x>1 we have

Y p2(d)hY(d) < x(lnx+1)h, v
d<x

"LEMMA 3.5 Let h and k be positive integers and suppose that

k<ln®x. Then, given any positive constant U, there exists a
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positive constant c=~c(U,h,A) such that

2()RY Prex kd) = 0 _x 1"
in k@R D0k =0y g (]
c‘Kklncx

Unfortunately the O-constant of Lemma 3.5 is not computable

with current knowledge.

For —;ik§ , and for k<lnx say,
d d
1/3, —c ﬂz(d)gy( )E(x,kd) < Z% e u2(d)g7( )E(x,kd).
d<X / "1In "X d<X“ln 0%
(d,k)=1 k

Taking h=g, A=1, and U=2g+l in Lemma 3.5 we thus have

d) X
) 2¢d)g? ‘YE(x,ka) = 0, [— X
a<x'/ 21 Cox T g[sa<k>1n2g+1x]
(d,k)=1
X
- og[ln2g+lx].
Further Lemma 3.4 gives
1/3
Vs o #2@EY < XL (nxe1)®
d<X In "0X 1n oX
(d,k)=1
¢ x'/%(1nx)8
X
—_— for g¢lniX say.
¢ Tox) 2871 8¢ y
Substitution inte (8) gives
X

2(d)IRql = O |—s5——

d<X§1n_c Oxu d g [1n2 g+lx]
(d,k)=1

so that (R,(x,x)) is satisfied with o=1/3 and k=2g.
We are now in a position to apply Theorem 2.5' stated above

to give
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(q: O<q<x, qmmodk, (F(a), [J,p)=11]

1i x T (1~-p,(p))
"B pez | AR {1 + Og(exp(-Y/3(1nu-1nln3u-1n(6g)-2)))
prk

+ Og(ln‘lx)}-

Since 1i x = T§_§ {1 + O[Iﬁli]} this beccmes

(a: 0<q<x, q=pmodk, (F(q), O p)=1)|

x e o)y,
p(k)Inx p<z p-1
ptk

0g (exp (~4/3(1nu-1nln3u-In(6g)~2))) + og(ln-lx)}

which completes the lemma.

LEMMA 2.1

Let an? + bn +¢ and dn? + en + f be polynomials with
integer coefficients, and having no common factors. Then there
exists an integer F(#0) defined by F=|ce-fby if a=d=0, and
F=}{(cd-af) 2-(bd-ea) (ce—-fb) | otherwise, for which, for all n,

(an? + bn + ¢, dn? + en + f)=w

& (a(ntF)?2 + b(n+F) + ¢, d(ntF)2 + e(n+F) + f)=w.

Furthermore, if there exists an integer n for which

(an? + bn + ¢, dn? + en + f)=w,
then w|F.
PROOF

By definition (an2? + bn + ¢, dn? + en + f)>1 if and only if

there exists an integer m such that
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an2 + bn+ c =0 modm and dn? + en + £ = 0 mod m.
We will show that for any such m it follows that m|F where
lce—fbi ; a=0, d=0
F-{
| (cd-af)? - (bd-ea)(ce-fb)]| ; otherwise
with F=0.

(i) If a=d = 0 and be = 0 then it is clear that

an? + bn+ ¢c =0 modm and dn? + en + £ = 0 mod m
implies m|F with Fz0.
(ii) If a=d = 0 and be # 0 then

an? + bn + ¢ = 0 modm and dn?2 + en + £ = 0 mod m

if and only if
bn+ ¢ =0modm and en + £ = 0 mod m.

This implies _
(bn + c)e — (en + £)b = 0 mod m

i.e. ce — fb = 0 mod n.

Certainly ce - fb # 0 for otherwise b/e C/f contradicting our
assumption that an? + bn + ¢, and dn? + en + £ have no common

factors.

(iii) If at least one of a and d is not zero then

an? + bn+ ¢c=0modm and dn? + en + £ = 0 mod m
implies

(an? + bn+ ¢)d - (dn? + en + f)a =0 mod m
i.e. (bd - ea)n + (cd - fa) = 0 mod m. (L)

(iv) If bd - ea = 0 then eced - fa = 0 mod m and in this
instance c¢d - fa # 0, for otherwise we would have
3 =P = /g or a2 =/

Clearly, miF and F#0 as required.
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(v) Assuming that bd - ea # 0, from which it follows that e

and b are not both zero,

an? + bn + c 2= 0modm and dn? + en + f = 0 mod m
implies

(an? + bn + ¢)e — (dn? + en + £)b = 0 mod m
i,e, (ae — db)n? + (ce — fb) = 0 mod m. (2)
But (1) gives

(bd —~ ea)n? + (cd - fa)n = 0 mod m,
This, in conjunction with (2), gives

(cd - fa)n + (ce — £fb) = 0 mod m, (3)

If ¢d - fa =0 then ce - fb

0 mod m and certainly

ce - fb # 0. Again miF and F#0.

(vi) Assuming finally that bd —ea # 0 and cd - af # 0, (1)
gives
(cd — fa)(bd - ea)n + (cd - fa)?2 = 0 mod m (4)

and (3) gives

il

(cd - fa)(bd — ea)n + (ce ~ fb)(bd ~ ea) 0 mod m. (5)
Together these imply
(cd — fa)?2 - (ce - fb)(bd - ea) = 0 mod m
or F=0modm
as required,
This, however, gives no information if F=0, that is, if
(ced - fa)? = (ce - fb)(bd - ea).
If it were the case that
(cd -~ fa)?2 = (ce — fb)(bd - ea)
then writing an2 + bn + ¢ = g(n) and dn? + en + £ = h(n),
and arguing as above, we see that the equations
g(n)e - h(n)b = (ae — bd)n? + (ce —~ fb) (6)

and

[ O
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(g(n)d - h(n)a)n = (bd - ae)n?2 + (ed - fa)n . (7)
hold, for all n.
These imply
g(n)e — h(n)» + g(n)nd ~ h(n)na = (cd - fa)n + (ce - fb)
and consequently that
[g(n)e — h(n)b + g(n)nd - h(n)na)](bd - ae)
= (¢d — fa)(bd - ae)n + (ce — fb)(bd - ae). (8)
But, from (7),
{g(n)d ~ h(n)a](cd - fa)
= (bd - ae)(cd - fa)n + (cd - fa)?
and, as (cd - fa)? = (bd - ae)(ce - fb)
we have
[g(n)e — h(n)b + g(n)nd - h(n)na)(bd - ea)
= [g(n)d - h(n)a](cd - fa)
i.e., h(n){(bd - ea)(an + b) - a(cd - fa)}
= g(n){(bd - ea)(dn + e) — d{(ecd - fa)}. (9)
Hence, there exist integers o,f,vy,5 such that
h(n)(on + B) = g(n)(yn + &) for all n. (10)
There does not exist a constant, k, such that
(on + B) = k(yn + &)
for this would imply that g(n) and h(n) have a common factor.
The alternative is that
g(n) = (an +@)(sn + t)
say, with - (sn + t)|h(n). But again this would imply that g(n)
and h(n) have a common factor.

Hence, as required, Fz0.

It is clear,then, that
(an? + bn + ¢, dn?2 + en + f) = w

& (a(ntF)? + b(ntF) +c, d(ntF)2 + e(ntF) +f) = w




|
|
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and, furthermore, that wiF,

This completes the lemma. O

The arguments used in Lemmas 2.2-2.7 below are specific
examples of lemmas from W.Schwarz's paper.[3]. As he
frequently gives only partial proofs we give them here in
their full form for completeness.

Lemmas 2.9-2.12 are extensions of his argument for finding

an asymptotic formula for

¥ p(f(n)
n<x £(n)

LEMMA 2.2

Z r(m)2 = O(M (1ln M)M)
1<meM

where X\ = 22 — 1 and where 7(n) denotes the number of
divisors of n.

PROOF

Hua{4] pg.111.

LEMMA 2.3

If a» 1 and c = [ %%—% ] + 1

then

Z o@(m) = o( M 1nMM )
1<mM

where \=2C¢-1 and where w(m) denotes the number of prime

divisors of m.

s s s b

O e,
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PROOF

Clearly 20(mM) < r(m), for if m = p} ... R8P  then
T(m) = (v, + 1) (rggqm) + 1)

S
° a(m) = [ 2w(m) ]1“&/1“2 < (r(m))© .

An application of Lemma 2.2 completes the lemma.
LEMMA 2.4

Let f(n) be a polynomial of degree k, with discriminant
D=0, Let g denote the highest common factor of the
coefficients of f(n). Then, whenever r»l, and (pY,g)=1, the
congruence

f(n)=0 mod pt
has at most k.D? solutions.
Furthermore if p(d) denotes the number of solutions of

f(n)=0 mod d
then, for (d,g)=1,

p(d)<(k.D2yw(d)

PROOF

Nagell,T [5].

LEMMA 2.5

i”—"mim) - 0((1n M%%)
1<m<M

In o

where c¢ = [ no

J 1,
PROOF

By Abel's identity,
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pooem 1y e 71 E Q@ (m) ge
1<m<M m M 1<m<M 1 7 1chice
- o¢in 125 Ly & og ? (n 6521 4 )
t
1
- 0¢(ln W25y 4 o¢ (an 02T ? ac )
t
1

0((ln M2y

i

LEMMA 2.6

Using the notation of Lemma 2.4, if 2°<M2,

2C
p(d) 1n In M (1n M)
S>Z p(@d 0{ = M - }
( g)=1

In (k.D2)

where ¢ = 75

PROOF

yoe® 7 (k.02)@(d) 1n In d

¢(d)d dz2
(g>g)-l d>M

) (k.p2)@(d) 1n 1n M
o d M

é X (k.0p2)@(d) | 1n Int - 1/9, tac.

Z
act d t

of 13~§3_§. (1n m)2° )

+0of z 51235)20 (In 1n t - Ly ) ae }

But d { -1n In t (ln t)A
dc

(1n t)A } > >~ (Inlnt - i ©

whenever ALt2,

So O{ & (1n t) (In 1In t - 1/9, t)}
of It (n My 2° } i 2eq

c .
and X p(d) _ 0{ In ln M (1n M)2 } as required.
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LEMMA 2.7
Using the notation of Lemma 2.4,

In(k.D?)

c
Z p(d) _ 0(ln ln M. (ln M)2 }  where ¢ = [ In 2

p(d)
@$H-1

PROOF

] +1

(d)
p(d) p(d) 1lnlnd (x.02)¥'%1nind
L g ¢« ) e imede ) 3

&H-1 " (&= o<t

=

y . 02)¥ D 1n1nm

a<M d 0 d<t

y k.p2)¥() 1
3 © tInt

—

dt

(x.p2)¥ ()

€ 1InlnM Z 3

d<M

2C
¢ InlnM. (1nM)° .

(]
LEMMA 2.8
For any constants a,b, a»b»0, we have
1 a? b?
p([a,b]) p(a) * o(b)
PROQF
Firstly we show that L p((a,b)) (1)

o([a,b])  “pla)p(d) -

This follows from the observation that
p(ab) = p([a,b](a,b)) = w‘[a’b])*"“a’b”w%d)
where d = ([a,b],(a,b))., Since d=(a,b) it follows that

1 _ (a,b)
p(la,b]) p(ab)

But _ p(a)p(b)(a,b)
plab) = == a5y

so that (a,b) _  ¢((a,b)) which completes (1).
p(ab) p(a)p(b)

Since ¢((a,b)) < (a,b) < atb? the lemma follows.




23

LEMMA 2.9

Let an?+bnt+c and dn2+en+f be two polynomials with integer
coefficients and having no common factors. Let D denote the

discriminant of the polynomial an? + bn + ¢,

Then
z m(-1)"
p<z P
pi(an2+bnt+c)k,
o<nQotx
n=¢, mod k,

(an24+bn+c, dn?+entf)=w

[ [anzlbn+c]gz+[dn2+$n+f], g i ]=1

Bi

_ X Fz(w)
K., FK,] z { L+

a,[k,,Fk.]2 1n 1In G(x,a) 1InMG(x,a)
o[ B ]

+0[ a,[ki,F:2]3 A ] }

where
(i) { ice—fbi ; if a=0, d=0
F:
| (cd-fa)2-(bd—ea) (ce-fb) | ; otherwise
ii
(it ) m 1+ o )
Mz (¥) p<z  p(p-1)
of modFk,
ai=¢, mod(k,,Fk,)
where ®y,.. ., denote the integers n, In the interval 1<n<Fk,

for which both

(an2+bn+c, dn2+en+f)=w

and [ [anngn+c]92+[dn2;en+f], Bgﬁz ]=l

hold.
(iii) the unique solution, mod [k1,Fk2], of the congruences
n=¢ modk, and n=wjmodFk,
is denoted, if it exists, by fi=Fi(2,,xj). Letting
h=(a, b, ¢); a=a,h, b=b,h, c=c,h,

then,

[ EOY PN
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{ n:n mod p; a,([k,,Fk,]t+81)2+b, ([k,,Fk,]t+81)
+c, = 0 mod p)
elp) = . prk,h
| P i pikyh
(ivé( : { o<l §+§a1n2+b1n+c1| ; D=0
X,0)= . D
o<l §+*a1n2+b1n+01|5 ; D=0

Do [ (B s o
0 ; D=0.

and finally,
(vi) A = max(1nlnG(x,a)lnPG(x,a), 1ln2z)

The term N (l+p(p)) is convergent.
p<z p(p-1)

PROOF

Denote the sum under consideration §S.

i.e
g - z m(-1)t
p<z P
2
Q<n<atK pl(an?+bntc)k,
n=¢, mod k,

(an2+bn+c, dn?2+ent+f)=w
[ [anzzbn+c]gz+[dn2+$n+f]’B%ﬁp ]=1

2

and assume, for now,that D#0.

By Lemma 2.1, the integers, n, in the interval a<not+x for

which (an?+bntc, dn?+en+f)=w lie in an arithmetic progression
( n: n=yq{ mod F :i=1,...r)

where y{<F and where w|F, for F a constant dependent only on

the constants a, b, ¢, d, e and £. (If there are no n for which

(an?+bntc, dn2+en+f)=w then we write F=0.)

Similarly, every integer n for which

[ e [P gl ] -

lies in an arithmetic progression

{ n: nEBj mod k,F ; j=1,...,s8 }
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where 6j<k2F.

This follows from the observation that, if mlk,, then

[anzzbn+c]22+[dn2;en+f] 2 0 mod m

o [a(n+k2F)2+b(n+k2F)+c]Q +[d(n+k2F)2+e(n+k2F)+f

e 2 = ] = 0 mod m

Let Qpyee sy denote the integers n in the interval
1<ngk,F for which both

(an2+bntc, dn2+ent+f)=w

and an?+bn+c dn?+en+f 0p 1
{ [ w ]Q2+[ W ]’ Bfﬁz }-1
hold.
Then S becomes
m(i-1)-1
. 1 (1)
osmodFk o<n<a+x p=z P
1 2 2
=0, modk, pl(anZ+bnt+c)k,

n=qymodFk,
A necessary and sufficient condition that the two congruences
n=¢, mod k, and n=a; mod Fk, have a common solution is that
2,=cxy mod (k,,Fk,).
The solution, if it exists, is unique mod [k,,Fk,] and we
denote it B3=F;(2,,01).
Hence

) ) na-n

p<z P
ajmodFk, a<n oty 2
a3=¢,mod(k, Fk,) n=gimod[k,,Fk,]P! (@ +brre)k,

It is clear that the internal product

nm(-1)-1 = m-1n-! ma-n-l

p<z B p<z »  p<z B

pl(an2+bntc)k, plk,h pi(a,nZ+b n+c,)
ptk,h

where h=(a, b, ¢) ; a=ha,; b=hb,; c=hec,,

SO

o it 4
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s= 1 (-7l «x

p<z P
plk,h
) ¥ m(1-1)-1 (2)
p<z P
aymodFk, a<nat+x 5
aiEQ1mod(k1’Fk2) nEBimOd[k1,Fk2]pl(a1n +b ntc )

ptk,h
To estimate S, therefore, it is sufficient that we estimate

the inner sum

Z m(1-1)-% =S, say. (3)
pP<z P
o<nKo+R
. pl(a1n2+b1n+01)
n=@imod [k, ,Fk,] pl,h

The product

ma-untl =1+ y 1
pea P B, =D (D)
pl{a.n2+b . nt+c,) P1---P.Yia‘n2+bln+c1 1 %

h ! ! p LA :P 'fk h
p1<...<p7<z
- ) p2(m)
a1n2+b‘n+c1=omodm¢(m)
(k,h,m)=1
P(m)<z

where P(m) denotes the largest prime factor of m.

Consequently,
5, - L ) w2 (m)
a<ngo+x a,n?+b,n+c,=0modm p(m)
n=@, mod [k,,Fk,] (k,h,m)=1

P(m)<z

which on changing the order of summation gives

2 1
(- L mm
1<n<G (%, a) ® a<nso+x
(k,h,m)=1 n=gimodfk,,Fk,]
P(m)<z a;n?+b n+c,=O0modm
where G(x,x) denotes a{g2§+xla1n2+b1n+c1[.
Further
2
517 L #3023 Z '
1<mCG (x, @) -y <t< atx—B4
(k,h,m)=1 [k,,Fk,] [k,,Fk,]
P(m)<z g(t)=0 mod m

where
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g(t)=a,([k,,Fk,]t+B1)2 + b, ([k,,Fk,]t+B1) + c,
=a,[k,,Fk,]2t? + [k,,Fk,](2a,Bi+b,)t + (a,B$+b,Bit+c ).
Denoting v, (m), 72(m)-""7p(m) as the p(m) solutions of

g(t)=0 mod m, we have

p(m)
s, = ) p2(m) ) ¥ 1
lnce(x,ay P =1 ofy oo By
(k,h,m)=1 [k,,Fk,] [k,,Fk,}
P(m)<z tsyj(m) mod m
D LI CYRIC) . 0(Ly
1<m<G (x, Dz)(p(m) { [k, Fk ,]m }
(k,h,m)=1
P(m)<z
- X Z prmpe(m)y ) p2 (m)p (m)
k1 FRo ] 1emce(x, ) P ! 1<n<G(x,a) P
(k,h,m)=1 (k,h,m)=1
P(m)<z P(m)<z
Further,
S x p2(m)p(m) + 0 p(m)
1 {k‘,Fk ] (k, h? y=1 p(m)m {[k1,Fk ] >§( o g(m)m }
P(m)<z
+ 0 Z p,"’(m)p(m) (4)
{ 1<m<G (%, @) p(m) } .
(k,h,m)=1

P(m)<z

Our first step from here is to simplify the O-terms. Recall

p(m)= {t:tmod m; a,[k,,Fk,]?c?2 + [k,,Fk,](2a,8i+b )t +
(a,B$t+b,Bi+c,)=0 mod m }

Writing
v(Bi)=( a,[k,,Fk,]12, [k,,Fk,](2a,B;+b,), (a,B2+b Bi+c,) )

and denoting the divisors of v(fj) to be

l=e,, e,,...,ep ; e <e,<...<ey gives
r
z pm) _ ¥ X p(m)
m>G(x,a?(m)m j=0 m>G(x,o) p(m)m .

(m,v(B1))=ej

Now, by Lemma 2.6, for j=0,
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v p(m) _ 0{ 1n 1ln G(x,@) 1nkc(x,a)}
m>G(x,a)¢(m5m G(x,n)

(m,v(Bi))=1

where 1n A= { [ln (2.D2 )]+1}1n 2.

On the other hand, if j®0, then m=mjej say, and (m,v(Bi))=ej

implies (mj,v(ﬁj))=l.

€j
In this case
p(m) = |(titmod m; a,(k,,Fk,]7c2 + [k,,Fk,]1(2a,1+b,)t +
(a,B#+b,Bi+c,)=0 mod m )
= I[t:tmod mje;j ; (At?+Bt+C) =0 mod mj e }l
say, where Aej=a1[k,,Fk2]2,... and (A,B,C)=Xé§i).
So p(m)=l[t:tmod my; (At2+4Bt+C)=0 mod mj }I j
=p(mj)ej.
Consequently
Z _p(m) ) ejp(my)
m>G(x, a)p(m)m mie >G(x,a)w(mjej)mjej
(m,v(B1))=e; (m3,¥(B;))-1
. e
< st ) oy
L85 my>G e, a)™iP M
(m3,¥163))-1
P
]
< 1n 1n G(x,a) InMG(x,a) ej
pley) G(x,a)
Summing over j gives
r
z p(m)  _ 0{ ln In G(x,a) 1nrG(x,q) j }
m>G(x,a€(m)m G(x,a) j=0¢(ej)
Cr

0{ In 1n G(x,0) 1lnMG(x,qa) n }
G(X,a) a=1P ()

e, 1ln 1n G(x,a) 1lnMG(x,q)
- of == HEW) }
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_ 0{ a,[k,,Fk,]2 1n 1n G(x,a) 1nkc(x,a)} (5)

G(x,q)

Similarly, the second error term,

Z p?(m)p(m)
1<m<G (x, o) P <™
(k,h,m)=1

P(m)<=z

i

and

pi(m)p(m)y _

1<m<G (x, 0) P ™
(m,v(Bi))=ej

<

<

So

p2(m)p(m)

1<m<G (x, o) ? ™)
(k,h,m)=1
P(m)<z

However we may also

X p2(m)p(m)

1<m<G(x,a)¢(m)
(k,h,m)=1
P(m)<z

and

(e

#2(m) p(m)
0
! 1<m<G(x P )

0{ Z 12 (m)p(m)
=0 l<m<G(x a) ¢
(m,v(By))=ej

2(1111 1) €3 P(mj)
<G(x, a)¢<m3 e5)
i))=1

1<m s@s

(my,v %

ej Z p(my)
pley) 1< <G (x, @ ay?(mj)

(m3,v(B 3y
J

1nlnG(x,a) 1n*G(x,q) by Lemma 2.7.

0( a,[k,,Fk,]2 1nlnG(x,a) 1lnMG(x,a) )
(6)

write the second error term as

p2(m)p(m)
p(m)

of Y

P(m)<z

Z p2(m)p(m)
0 P(m)=<z p(m)
(m,v(Bi))=ej

of

N

N Snar' R
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Z p2(m)p(m) _ Z p2(mjes) ey p(my)
P(m)<z p(m; P(mje )<z ¢(mjejj
(m:v(ﬁi))nej (mj,V 61))’1
e
J

< -8 Z p2(my)p(mj)
¢(ej) P(mj)<z p(m )
(my,v(B1))=1
e-
J
¢ ej nn (1+ ( ))

P(e]) p<g
3oy (6,?

€J

nQa+2)

< =i ﬁ:I £ —Eij InZ2z.

p(ej) p<z
So in comparison with (6) we also have

p2(m)p(m)

1<m<G(x,a)P(m)
(k,h,m)=1
P(m)<z

= 0( a,[k,,Fk,]2In%z ) (7)

This concludes the simplification of the O-terms.
Now, turning to the leading term of (4), we have,
Yooowme@m) | M ( 1+ p(p) )

(kthm)=1¢(m)m P<i N p(p-1) .
P(m)<z LAk

We note that by an argument similar to that used in deriving

(5), (6) and (7) we have

r

p2(mp(m) 0 Z z p(m)
(k,h,my=1 PT/M { j=0  P(m)<z? (MW
P(m)<z (m,v(B5))=e;

ey
- 1 - 1
- O{ jéo ¢(ej) } { Z p(n) }
= 0( 1In ey ) = 0(ln (a,[k,,Fk,])) (8)
So the leading term of §, is certainly convergent.
Hence, via (5), (6), (7) and (8),
S, = ot m( 1+ p<p) ) { 1+

{k1rFk2] p<z Y P”l)
ptk,h
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a,[k,,Fk.]21nlnG(x,a)1n G (x,a)
t 0[ B z G(x,q) }

vo[tlkuFE]2 A gy ®

where A = max(lnlnG(x,a)lnMe(x,a), 1n?z). A arises from
equations (6) and (7).

This, on substitution back into (2) gives

g -_x m(11)tl ) M1+ p(p) ) {1+
[k,,Fk,] p<z P os mod Fk p<z p(p-1)
pik,h L 2 ptk,h

oi=R, mod(k,,Fk,)

a. [k,,Fk,]2lnlnG(x,a) lnrG(x, o)
+ 0[ E— 2 G(x,o) ]

ofalitata g}

This completes the lemma for D=z0.

If D=0, which may occur only if an2+bn+c has a repeated factor,

so that we may write an?+bntc=6(yn+6)? say, then S becomes

Z ma-1)"t
p<z P
pio(yn+té)k,
o<NQO+X
naQ1 mod k,

(8 (ynt+d)?,dn?+en+f)=w

[ [ame, entenry fhe )
Bik,

The proof of the lemma in this instance is very similar to that

for D#0. ]

LEMMA 2.10
Let an2+bntc and dn2+en+f be two polynomials with integer

coefficients having no common factors. Then, for q a prime,
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Z n (-1t
a<qlatx p<§ P
q=£ modk, pT,

(aq?+bgtc,dq2+eqt+f)=w pI(ag*+bgte) (dq?+eq+t)

( [aqzzbq+c]ez+[dq2+§q+f]' B%ﬁ2p y=1

L2 -7 [k, Fk,]f In(k,,Fk,] M (1+_4p2/2)

Inx p<z P e(lk,,Fk,]) p<z  (p-1)?
ptk, ptk,h
plh

X Ty (w) { 1+ 0[ E%%%%ﬁ%%%%) . % .lnx] }

where

(1) tce—fb| ; a=d=0
Fz[
| (cd-fa)2—(bd-ea) (ce—fb)1 ; otherwise
(ii) h = (ad,ae+bd,af+be+cd,bf+ce,cf)
and A=ad/h ,B=(ae+bd)/h, C=(af+b3+Cd)/h, D=(bf+ce)/h
E=°f/h.

(iii) M = max(lnlnG(x,a)lnMe(x,a), 1n2z)

where G(x,a) = a<32§+x'Aq4+Bq3+Cq2+Dq+El
2
= ([ ) e

where A denotes the discriminant of (aq?+bqg+c)(dq?+eq+f)
if neither ag?+bgtc nor dq?+eq+f have repeated factors.
If aq2?+bqt+c has a repeated factor, say aq2?+bq+c=0(yq+s)?2
and dq?+eq+f does not have a repeated factor then A is
the discriminant of 6(yq+8)(dq2+eq+f)., Similarly if
dq2+eq+f has a repeated factor. Clearly with this
definition A#®0.

and where

(iv) T,{(w) denotes the number of integers m in the Interval
1<n<Fk, for which both

(anZ+bnt+c,dn?+ent+f)=w
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and ( [an?+bn+c]gz+[dn?+en+f] ’ I

Py
W w BT ) )=1

PROOF
Assume firstly that neither an2+bn+c nor dn?+en+f have

repeated factors. Denote the sum under consideration S.

i.e
s - ) mo(-1-l
p<z P
a<gqlatx
=0 ,modk, pTk,

(ag?+tbg+tc,dq?+eq+f)=w pi(ag*+bgte) (dg?reqif)

( [aq2;bq+c]92+[dq2+§q+f]’ B%ﬁzp y=1

The proof is essentially the same as that of Lemma 2.9,
Certainly the argument follows almost identically until

statement (2) of Lemma 2.9 so that we may write

- moa-nty y mo(1-1)-1
g:ﬁ P aymodFk, o<qRotX g;i . P
oh og=0,mod(k, Fk,)  q=Bymod[k,,Fk,) PUZ 0 oo
+Dg+E)

(1)

where given that

(aq?+bg+c) (dq2+eq+f)=adq+(ae+bd) g3+ (af+be+cd) q2+(bf+ce) g+t
we write h=(ad,ae+bd,af+be+cd,bftce,cf) and

A=ad/h, B=(ae+bd)/h, etc. so that (A,B,C,D,E)=1:

where Qyyee 0ty denote the integers n in the interval 1l<n<Fk,

for which both (an?+bn+c,dn?+en+f)=w and

(e, (E5t) ¥

ER,
and where #i=f1(£,,ai) is the unique solution, if it exists, of

the pair of congruences g=¢ ,modk, and q=ojmodFk,.

Writing the inner sum of (1) as §,,

fe. y moQ-p-l

p<z P

ptk,h
P1Aq9+Bq3+Cq2+Dq+E

a<qRotx
q=@imod[k,,Fk,]
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we have

s, = L ) prim)

a<q<ortx Aq4+Bq3+Cq2+Dq+E=Omodn ¥ {™
q=@imod(k,,Fk,] (k,h,m)=1
P(m)<z

where P(m) denotes the largest prime factor of m.

Changing the order of summation gives

- p? (m) 1
N
SmLG (X, a) a<qRot+x
(k,h,m)=1 q=gimod[k, ,Fk,]
P(m)<z

Aq4+Bq3+Cq2+Dq+E=0Omodm

- 4 3 2
where G(x,w) a<€%§+x'Aq +Bq3+Cq2+Dq+E] .

Writing y,(m), y,(m),...,yr(m) as the p(m) solutions of

An4+Bn3+Cn?2+Dn+E=Omodm, gives

- I ow@ooy oy
1
1<n<G (%, o) p(m) yj(m)modm
(k,h,m)=1
P(m)<z

a<geotx

q=pimod(k, ,Fk,]

quj(m)modm
Denoting 5ij = éij(Bi,yj(m)) as the unique solution

mod[k, ,Fk,,m], if it exists, of the pair of congruences

n=gjmod[k,,Fk,]) and n=y;(m)modm we have

- p2(m) 1

<G (x, o) v 3 (m)modm

(k,h,m)=1
P(m)<z

a<q{o+x
yj(m)EBimod([k1,Fk2],m) anijmod[k1,Fk2,m]

Splitting S, into two sums we have

2
- 1 m@ o) I
l<m<G(x,a)p v (m)modm
[k,,Fk,,m]<x
(k,h,m)=1
P(m)<z

o<gRotx
7j(m)Eﬁimod({k1,Fk2],m) qEﬁijmod[k1,Fké,m]
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I =

1<m<G(x,a)¢(m) yj(m)modm a<gqRoat+x
£§1ﬁF§§;?]>x yj(m)EBimod([kl,sz],m) qEBijmod[kl,sz,m]
P(m) <z

Using the estimate of Montgomery-Vaughan [6], namely

MGk, Myik,0) < By, 5 Lckey<x

in the first of these sums and noting that

X 1 <1 in the second gives
a<qo+x
anijmod[k1,Fk2,m]

s < 2x z p2(m) p(m) 1ln [k,,Fk,,m]

oI X ke, P etk FRmD

[k,,Fk,,m]<x
(k,h,m)=1
P(m)<z

+ Z p2(m) p(m)
1<mEG (X, o) p(m)
[k,,Fk,,m}>x
(k,h,m)=1
P(m)<z

By Lemma 2.8 we have 1 < [k1=sz]% m?  so that
p(lk,,Fk,,m]) e([k,,Fk,]) "p(m)

s < 2% [k ,Fk]¥ In[k Fk,] ¥ p2(m) p(m) lnm m?
T T 1Inx e((k,,Fk,]) 1<m<C (x, @) p(m) 2
[k,,Fk,,m]<x
j (k,h,m)=1
P(m)<z
A A OWICY

1n<G(x,0) P

[k,,Fk,,m]>x

(k,h,m)=1

P(m)<z

Arguing as in Lemma 2.9, we have
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¥ £2(m) p(m) lnm m? p(m) m2/3
(m) 2 < (m)?2

km<G(x,@) ¥ (k,h,m)=1 ¥

[k,,Fk,,m]<x P(m)<z

(k,h,m)=1

P(m)<z

m ( l+p(p)p?/3 )

" p<z (p-1)7
ptk,h
and E p2(m) p(m) < Z p2(m) p(m) _ 0(M)
1I<mkG (%, o) p(m) 1<mLG (%, o) p(m)
[k,,Fk,,m]»x P(m)<z
(k,h,m)=1
P(m)<z

where M=max(lnlnG(x,o)1nMG(x,a), ln%z) and where

In A = { [13§%;%fl +1 Jin 2.

So as p(p)<4a

o 2x [k, ,Fk, 14 In[k,,Fk,] M ( 1+ 4p2/3)

S TR p([k, FE, ) PO =) LI
ptk,h
_ 2x [k,,Fk,]? ln[k, ,Fk,] TT ( 1+ 4p2/3 ){1+0[¢([k1,Fk2]) M 1nx]}
Inx ¢(lk,,FK,]) p<z  (p-1)2 Tk, , Tk, '~ x
ptk,h

Substitution back into (1) gives

n (1—l>"1 2x [k,,Fk,]% In[k,,Fk,] T ( 1+ 4p2/3 )

S <

p<z P Inx SD([k| lez] ) p<z (P‘1)2
ptk, ptk,h
pih

D S R e
ojmodFk, T2
=2 ,modFk,

This completes the lemma.
If aq?+bq+c has a repeated factor, say aq2+bg+c=0(yq+s)?

then S becomes
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S = z i (1_1)—1
a<qloa+x p:i P
q=¢ ,modk, pT%,

2
(aq2ibgic,dqrteqif)=y  P10(Ya+0)2(dq?+eqrt)
aq2+bg+c dg2+eq+f P\

S P A

W

The proof of the lemma in this instance is very similar. The
same reasoning applies if both aq2+bq+c and dq2+eq+f have

repeated factors,

LEMMA 2.11
Let an?+bntc and dn2+ent+f be two polynomials with integer
coefficients, having no common factors. Then, for

z<exp( (In x/k1)1"f), for ¢ some constant i>e>0,

Z m (1-1)-1
a<n ot+x g:i P
= 2
?nQ‘;Od§;1 pl(an2+bn+c) (dn2+en+f)
' plP

(an2+bnte, dn?+ent+f)=w
an?+bn+e dn?+en+f I
e

’
w | 2

m@a-1 o -1 [k ,Fk,)? 1 (1+ 4p?/2 )

S Xpz popz P p(lkFK,]) p<z  (p-D)?
park2 ptk,h
pih

¢([k1,Fk2])lnlnx1nX+1X ]}

X Ty (W) {1+0(exp(-(1nx)f)) +0[ =

where
(1) 1ce—fb| s a=d=0
o { | (cd-fa)2-(bd-ea) (ce~fb) | ; otherwise
(ii) h = (ad,ae+bd,af+be+cd,bf+ce,ct)
and A=ad/h ’B=(ae+bd)/h’ C=(af+be+cd)/h’ D=(bf+ce)/h

E=Cf/h.
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. . - 4 3 2
(1i1) G(x,a) a<%2§+x'An +Bn®+Cn2+Dn+E|
an - { [1“(2 )]+1 } 1n2

where A denotes the discriminant of (an?+bn+e) (dn?+en+f)
if neither an?+bnt+c nor dn?+ent+f have repeated factors.
If an?+bn+c has a repeated factor, say an2+bnt+c=6(yn+s)?
and dn?+en+f does not have a repeated factor then A is
the discriminant of 6(yn+d)(dn2+en+f). Similarly if
dn2+en+f has a repeated factor.

and where

(iv) T,(w) denotes the number of integers n in the interval
1&n<Fk, for which both

(an2+bn+c,dn2+en+f)=w

and ( [an2;bn+c]92+[dn2+zn+f]

Op . _
i, 7
PROOF

Assume firstly that neither anZ+bntc nor dn?+en+f have

repeated factors. Denote the sum under consideration S.

l.e.
s = z no(-1)-t
a<n<artx g:ﬁ P
= 2
I(’nQ 1?103221 p1(an2+bn+c) (dn2+en+f)

(an?+bn+c,dn?2+en+f)=w
an?+bn+c dn2+en+f I p
¢ ) gt

-1

2

We argue exactly as in Lemma 2.10. A very rough sketch of the

proof is given here. Certainly

-1y=1
AT ] s, (1)
P P ajmodFk,

STEZ ai=Q ,mod(k,,Fk,)

where
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s - 7 moa-n-1

! p<z P
o<ngo+x prk.h
n=fjmodik, , Fk,] p|A§4+Bn3+0n2+Dn+E
(n,pgzp)=l

and where Qypeeer Oy denote the integers n in the interval

1<n<Fk, for which both (an2?+bn+c,dn2+en+f)=w and

([an2+bn+c]gz+[dn3;en+f]’ B?Ez y=1 ;

w

where h=(ad,ae+bd,af+be+ed,bf+ce,cf) and A=ad/h,

B=(ae+bd)/h, etc. such that (A,B,C,D,E)=1;

and where @;=@8;(2,,a;) is the unique solution, if it exists, of
the pair of congruences n=Q modk, and n=xjmodFk,. We further

have

- 1 mwoy ]

1<m<G(x,a)p(m) 7j(m)modm o<ngo+x
(k,h,m)=1 yj(m)EBimod([k],sz],m) nEGijmod[k‘,sz,m]
P(m)<z (n, O p)=1
p<z
where v, (m),...,yr(m) are the p(m) solutions of

An4+Bn3+Cn2+Dn+E=0 mod m
and 5ij = 5ij(61v7j(m)) is the unique solution mod(k,,Fk,,m],
if it exists, of the pair of congruences n=@jmod[k,,Fk,] and
nEyj(m)modm; and where

- 4 3 2
G(x,o) a<g §+X|An +Bn3+Cn2+Dn+E] .

We divide the sum S, into two to read

s, = L wmoy Lt

1kmg x? p(m) ¥4 (m)modm o<ngetx
[k1 lez] "Yj (m)EﬁimOd([k1 rsz] 1m) nEéiijd[kl ’sz ’m]
(k,h,m)=1 (n, sz):l
P(m)<z P
oL pwoy p
x} <m<G(x,a)w(m) 3 (m)modm a<ngotx
(k,,Fk,] Y3 m)=gimod({k,,Fk,],m) nEGijmod[k1,Fk2,m}
(k;h,m)-1 (w, 11 p)=1
P(m)<z P

(2)
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i x? X l-e
Now if m<[E__FE2] and z< exp((ln ®/k,) ) then zg

14 [k szrm]
X 1 .
and we may apply Lemma 1.1 to the sum to give
a<n<a+x
élﬁmod[k 2,M]
p<zp)—
P S R ¢ VR N
[k, ,Fk,,m] p<z  p
arenocx v [k,,Fk,,m]
n—61 mod [k, ,Fk,,m] PHLEy K
ﬁ p)—l

O(exP(—(ln[TE:T?E;TﬁT])%)) + 0(exp(~u(lnu-1nlnu-2))) )

W [rema)

where u =
In z

We have by our assumptions above that upi(ln x)¢, and that

ln[ x ]] > 12 X and so

[k,,Fk,,m
Yot x T oD
S o(TKFK,,m] { 1+ 0Cexp(~(1n x)¢)) )
a<n<a+x p([k,,Fk,,m]) p<z
5lﬁmod[k ,Fk,,m]
p<zp)—

< $<E§ ’gizif 'E%é)' pEz (1—%) { 1+ 0Cexp(-(Inx)€))].
“ H

(3)
If on the other hand m> x! then we use the comparatively
(k,,Fk,]

weak upper bound

) o< D < e @
a<n<a+x o<nKo+xX e ey .

61 smodf{k, ,Fk,,m] nEBijmod[k1,Fk2,m]

) p)=1
P<Z

Substitution of (3) and (4) into (2) gives
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m(1-1) (k,,Fk,]? p2(m) p(m) m?
5, <x p<z P Wi[k1,Fk2]) 1<m§ < @2 (m) {1+
IEl,FEZI
(k,h,m)=1
P(m)<z

O(exp(—(1n x)€)) )

p?(m) p(m)
* 0[ * ) o(m) [k, ,Fk,,m] ]
[k, FK,] <)
(k,h,my=1
P(m)<z
p2(m) p(m)
+ o[ . ) @ ],
[Ehw?E;] <m<G (%, o)

" (koh,my=1

P(m)<z

As previously we have

) p2m)_p(m) md M (L+ 4pd ) .
o xb  #°W p<z  (p-1)? ’
Tk,  Fk, | prk,h
(k,h,m)=1
P(m)<z
p2(m) p(m) 1 o (m)
<3 <m<G(X,a)w(m) [k1,Fk2'm] < [k1,Fk2]i E " ETETH?
v, ez " 7 P,
(k,h,m)=~1
P(m)<z

- 0[ l1nlnx 1nMx [k1,Fk2]f ]
X2

1In(2A2)
In 2

where 1In N\ = { [ ]+1 }1n 2 ; and

p2(m) p(m) _ O(ln4z) = 0((ln X/ 4(1-¢e)y — 4
= = k) ) 0(1n%*x)
%3 <m<G(x,a)W(m) .
[k,,Fk,]
(k,h,m)=1
P(m)<z

So
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m (1-1) [k,,Fk,]¥ M. (1+ 4p? )
S SR g p RTELTED e oD (LTOCeRR(-(ln 09))

ptk,h

v o ok, By MR MM 5 ) o ek, P ]) ek )

X2 [k,,Fk,]2 ° x
(5
The third error term is absorbed into the second.
Substituting (5) into (1) completes the lemma. As in the
previous lemmas if an2+bn+c or dn?+ent+f have any common
factors then the proof is similar. -

Finally we have Lemma 2.12., The proof is not included as
it is almost identical to that of Lemma 2.11.

Although Lemma 2.12 is applied at an earlier stage in the
following chapters than either Lemma 2.1l or Lemma 2.10 it is
included here as the proof is slightly less complicated than

that of Lemma 2.10.

LEMMA 2.12
Let antb, cn+d and en+f be polynomials with integer
coefficients. Assume that antb and cn+d have no common

factors. Then for z<exp(l0(in x) %)

z n (-1)-1
p<z  p

a<ngo+x plantb

n=g modk, ptk,

(antb,cn+d)=w

([anib]22+[cn+d]’ Bgﬁzp)=1

w
(en+f,szp)=l
< xS mT AL om a7 [k, Pkl
‘p(e) p<z P P<z P p(lk,,Fk,])
ptk,

pth
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I (l+(§%)2) Tz("’){l + 0(exp(—(1ln x)ﬁ')) +

p<z
ptk,h
OEP([k,,sz]).lnlnx.lnS/?x} }
x4
where
(i) F=bc-ad

(ii) h=(a,b) and a,=3/p, b =P/
(iii) yz(w) denotes the number of integers n in the
interval 1<n<Fk, for which both

(an+b,cntd)=w

and

(e (557 pig,” 01

1K,

LEMMA 3

Let S, T, U be positive real numbers, and suppose

s = {1 + oY}, ana s = uft « of}]

Then
W 1= sf+ o] )
-
@ - oft s of) +ofY )

(i) Given S = T({ 1+0(1l/y) ) we have |S-T| < KT/, for some
positive constant k. If T € S then {T-Sy < kS/x giving
T-S = 0(S/4) or T =8 + 0(S/5) = s{1+0(1/5)).

On the other hand, if T > S then 1S-T| = T-S < KT/, and

T(1-K/y) < S i.e. T < S{1+K/x y). Hence
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1IT-S1 < Sk/y 1o = 0(5/y) and T = s{1+0(1/y)) as required.

(11) As S = T(1+0(l/4)) we have by (i)
T = S(1+0(1/)) = UL+ (/) H1+0(L /) ) = U(L+0(L/)+0(1/5))

as required,

O
LEMMA 4
Suppose a, b, ¢, d ¢ Z with b2-ac#0 and b2-ac=0 mod 4.
Then
{(x,y): 0<x<A, ax2+2bx+c=dy? }I
b2-ac A . tadi<4, ad>0 & ad not a
T[ 4 ]1n[|ad|]’ perfect square
< .
2.
T[b 4ac] ; otherwise
where 7(n) denotes the number of divisors of n.
PROOF
Solving the quadratic
ax2+2bx+c=dy? (L)

for x gives

R= -2b¥ /(4b2-4a(c-dy?))
2a

So for (1) to have integer solutions we require that
b2-a(c-dy?) be a square, say z?, and that either -b+z or b+z be
divisible by a. (We may assume that z is positive.)
Now

b2-a(c-dy2)=z2
if and only if

z2-ady2=b2-ac. (2)
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The proof of the lemma is divided into four steps, Step 1
dealing with the case where ad is negative, Obviously if both
ad and b2-ac are negative, then (2), and consequently (1), has

no solutions.

STEP_1: Number of positive integer solutions of Ax?+By?=g with
A,B>0,

(For convenience we denote the number of positive integer
solutions of Ax2+By2=g as N(g, A, B)).

Clearly we may assume that (A,B,g)=1. We may further
assume that (AB,g)=l, for if there exists a prime p such that
A=0 mod p and g=0 mod p say, then y=0 mod p and the number
of positive integer solutions of Ax2+By2?=g equals the number of
positive integer solutions of (A/p)x2+pr2=(g/P). Similarly if
there exists a prime p such that B=0 mod p and g=0 mod p.
Continuing in this way an equation A'x2+B'y?=g' is reached for
which (A'B',g')=1l, having the same number of solutions as our

original equation.

The solutions of Ax2+By?=g may be derived from the

solutions of the equations

[ AxZ+By?=g p (x,y-1
Ax2+By?=g ; (x,y)=1
81
(3)
Ax?+ByZ=g P (=)=l
L gr
where g,,...,g, denote the square integers dividing g. For

completeness we write g, =1 and the equation Ax?+By?=g as

Ax2+By?=g
Eo-

From section 11.3 of Hua[4], Theorems (4.1), (4.2) and (4.3) it
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follows that the number of solutions of

Ax2+By?=§ ; (x,y)=1
81
is 0{ |{ 0<Q<2§ 1 2 = -4AB mod 4§ )i }
Bi Bi
and we have
N(g,A,B)¢ Z I(0<Q<2§ : 22 = ~4AB mod 4g } (4)
i=0 B1 gi

Otz.

Writing g = p1a1p2 ..pSD'!s i Py<P,<...<pg Wwe will show, by

induction on s, that

N(g,A,B) € 7(g). (5

Assuming initially that g has just one prime factor and

writing g=p1a‘, we have

o,

N(grA:B) < '{O<Q<2p‘ ; 02=—4AB mod 4p1a1 ]I

+ |l0<Q<2p1a‘—2

. 02=-4AB mod 4p, %172 |
Lt |{0<Q<2 . 02=—4AB mod 4 }|

if o, is even;

oy

N(S;A,B) ( |{0<Q<2p1 | QzE"AAB mod 4p1&1 }1

+...+ |{0<Q<2p1 ; 22=-4AB mod 4p, }l
if a, odd.
Taking into account the possibility of p, being 2,
{O<Q<2p16 ; 2=—4AB mod 4p‘6 ) is at most 4.

So N(g,A,B) < 4(a,/2 +1)£37(p1a‘) giving us our starting case.
Assuming now that whenever g has k primes or fewer in its

factorization

N(g,A,B) < 3(a,+1)(a,*+1)...(a+l) = 37(g)

we turn our attention to the case

o o
& =P, 'P,; 2'-~Pkakpk+1ak+1'
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Writing h,,...,ht as the squares dividing p1a1_,,pkak=g' say
r
N(g,A,B) € L. |¢ o<e<2g ; 02=-4aB mod 4g )
i-1 gi &i
t
= z I( O<Q<2g'pk+,ak+‘ ; €2=-4AB mod 4g'pk+]ak+1}|
j=1 hy hj
t
+ Z |{ 0<Q<2g'p];+1°‘1<+1"2 i 22s-4AB mod l}g'pkhak""—z }|
j=1 h; hs
J J
t
+o+ Z ’( 0<R<2g"' ; 02=-4AB mod 4g' )
SR 3

for oqy, even;

N(g,A,B) <
t
Z l{ 0K0<2g'p +‘ak+‘ ; 22=—4AB mod Ag'pk+]ak+‘ )l
31 Ty B3
t
ot X ( 0<0<2g'py4, ; 22=—4AB mod 4g'pyy, !
3= | LN B3 |
for opy, odd.
Now
t
Z I{ O<Q<2g‘pk+16 ; £2=-4AB mod 4g‘pk+16 }I
j=1 By hj
t
= Z I{ 0L0<2g" ; 22=-4AB mod 4g' }I x
SR 3
6 . 2=_ 6
{ 0KQ<py4,  ; L2=—4AB mod Py,, |}
t
) |t 0<e<2g' ; 02=-4AB mod 4g' )
j=1 j hj

< 3(e,+1)...{ox+1l) by the inductive hypothesis.

Applying this oy, times whenever oy, , is even; and gpy,+1
2

times when oy, , is odd gives
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N(g)A:B) < 3(a1+1)---(ak+1)(ak+1+1) = 3T(g)

as required.

STEP 2: Number of positive integer solutions of
x2-Dy 2=4N (6)

for oa<x<£f, with D>0, N>0.

Denote the number of positive integer solutions of
x2-Dy2=4N with a<x£f, as M(N,D,w,f).

If D is a perfect square then, since the number of ways in
which 4N can be decomposed into two factors is at most 37 (4N),
in this instance

M(N,D,0,) < T (7)

Assuming that D is not a perfect square, suppose that
%2-Dy2?=4N is solvable and let (u,v) be a solution. If (x,y)
is a solution of the Pellian equation

x2-Dy2=4 (8)
then (u,,v,) defined by

(u+v, D ) = (u + vD )(x + y/D )
2

so that u, = ux +vyD , v, = XV + uy
2 2

is also a solution of (6). Certainly u, and v, are integers
as, for u?-Dv? even and x2-Dy? even, both ux+vyD and xv+uy are
even. Following the notation used by B. Stolt [7] we say that
the solution (u,,v,) is associated with the solution (u,v).

Now, if (u + v/ )(x + y/mD ) = u,+v, /D,
2

then (u + vy/D )(x + y/D )(x — y/D )=(u,+v, /D )(x — y/D )
2 2 2

giving (u + v/ ) = (u;+v, /D )(x - y/D )
2

So we see that if (u,,v,) is associated with the solution (u,v)
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then conversely (u,v) 1is associated with the solution (u,,v,),
and we say that (u,,v,) and (u,v) are associated with each
other. The set of all solutions associated with each other we
term a class of solutions,

Let € denote a class of solutions of (6), consisting of the
solutions

(uj,vy) ; i=0,1,2,...

If (xn,yo) denotes the fundamental solution of (8) such that
x,>0, y,>0 it is well known that all the positive solutions of

(8) are given by

[XJ—‘“T%"—D ]nz . n=1,2,.

Let (u,,v,) denote the fundamental solution of the class C
defined as the smallest non-negative u belonging to the class
C. Then the members of C (if we regard positive and negative

solutions of equal modulus as being the same), are given by

2

Uptvp/D = (ugt+v /D ){x +y ., /D ]n n=1,2,... (9
It is generally the case that (u,,v,) and (u,,-v,) generate

different classes so we cannot at this point assume anything

about the sign of v,.

Our first step towards an upper bound for M(N,D,u,B) is to

show that
u, >0 . (10)
From (9), u, = UeX+v,y D
2

If v0>0 then it is obvious that u,>0. If however v,<0 then

VWX —1V,1y,D
= —00 0. J0
u, >

f

EO{X - ..I.Y_Q_I..)LQB
2 0 u,

= 5{xgYoD + youp[1- l_vt'il?zg I}

>0




50

as u,>0, x,~y,/D >0 and {1~ lfﬁlﬁg } >0 for N positive.
0

We are now in a position to prove, by induction, that

Unt, > Uy > 0 for all n. (1)
From the definition of u,, and as u,>0, it follows that

u, >u; >0

and we have our starting case.

Suppose Ug > Ug.; > 0.
As WtV /D = (ug+v,/D ) [ Xo+y, /D }k
2

= (Ug— Vg, /D ) [ Xty /D }
2

we see that

w = Ue—1%g Z Vi ¥oD

and as up > up_, > 0,

Up—1Xg + Vi1 ¥oD

> Ug—
so that
= D

Wy > =Ly (12)
Now

Uty * Vi p = (Ug—y + VWD ) Xy + yo /D }2

2

gives

x§ + yiD Xp Yo Vk=1 D
1{ 4 } + 2

Ukeq = Uk

and in order to show upy, > up > 0 we require the inequality

X2 + yéD Xq ¥y Vk—; D U, Xg * V—; ¥ D
“k-1{ A } * 2 ” 2

to hold., This occurs whenever

uk—1{ x2 + yéD - 2%, } > Vk-; ynzD (1-x,) . (13)

(13) holds trivially if vy ,»0. If vi_.,<0, (13) becomes
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5 21VE_ 1y D(x,-1)
k=1 x2 + y2D - 2x,

(14)
But as, by (12),

1V, 1Y D

(1l4) is satisfied if

Vi 1¥4D > 21V 17 D(%-1)
X2 x¢ + y2D - 2%,

an inequality easily seen to be satisfied whemever x,>2, which,
by our definition of x,, we may assume to be the case.
So (11) follows as required.
Further relations, similar to (10) and (11) hold for wvy.
Namely
(1) If v >0 for some k, then v >0 for all nzk. (16)
(ii) If vyi_,<0 and vi<0 for some k then v,<0 for
all npk. ' (17)

The proof of (16) follows immediately from the relation

Ut /D = (up+vi /D ){ X +y /D }n —k

The proof of (17) is similar to that of (1ll1). Suppose
vg<0 and vy ,<0.
It is clear that in this case vy<vy_,<0 for since u, increases
as n increases it follows that IVl must increase accordingly.
For (17) it is enough to show that
Vk+1 < Vk
for then the result will follow by induction.

Now

Vk—1¥p * Uk
2

Vi = 1Yo < Vik—1

implies that

Vi Xy — Up_,¥
k L,uz k=150 » Vi

implying in turn that
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Vg, > EK:LZE (18)

Xg —
On the other hand

2 2
Vi, = FoJo Mo Vi (X3 7 yoD )

so that for

Vk+1 < Vk

to hold it is sufficient to show that

XQY5UKH1 ¥ Vi ( %3 Z y2D )< Vk—1%g ; Ug—1Yg

or

"Vk—1xuz" Ye—1Yo _Xuyguk—1 _ Vik— (X3 Z yab )

This is the case whenever

2up_ ¥, (x,-1)

X2 + y2D - 2x, < Vke, a9

From (18) it follows that we have 6n1y to show

2uy,_ x -1 k=1
X3 + Yzé - i < i —Yg
o v Yo 0 )

an inequality which is satisfied whenever x >2. This completes

the proof of (17).

Suppose the solutions u, belonging to the class C, 