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SUMMARY

ILet G be a group and A a ZG-module. If A = AfeAf, where Af is a

ZG-submodule of A such that each irreducible ZG-factor of Af is finite and the
ZG-submodule A? of A has no nonzero finite ZG-factors, then A is said to have
an f—decomposition. If G is a hyperfinite locally soluble group, then it is
known that any artinian ZG-module A has an f-decomposition. In this thesis,
especially by investigating the propesties of the torsion-free noetherian
ZG-moduies, we prove that any noetherian ZG-module A over a ‘hyperfinite
locally soluble group G has an f-decomposition, too. Further, the structure of
the noetherian ZG-submodule Af is well described and the structure of the
noetherian ZG-submodule A? is discussed in detail.

If G is a Cernikov group (not necessarily locally soluble) or, more
generally, if G 1is a finite extension of a periodic abelian group with
|7t(G)| < ¢, where #n(G) = {prime p; G has an element of order p}, then, for

any noetherian ZG-module A, we have that:

(1) A has an f—decomposition;

2) Af is finitely generated as an abelian group and G/CG(Af) is
finite; and

(3) Af is torsion as a group and has a finite ZG-composition series as

well as a finite exponent.

Moreover, we have generalized Zaicev's results about modules over
hyperfinite locally soluble groups to modules over hyper—(cyclic or finite)

groups. In fact, we have got the following results:

Theorem C: Any periodic artinian ZG-module A over a hyper—(cyclic or finite)




locally soluble group G has an f—decomposition,

Theorem D: Let E be an extension of a periodic abelian group A by a
hyper—(cyclic or finite) locally soluble group G. If A is an artinian

ZG-module, then E splits conjugately over A modulo Af, And

Theorem E: Let E be an extension of an abelian group A by a hyper—(cyclic or

finite) locally soluble group G. If A is a noetherian ZG-module with A = Af,

then E splits conjugately aver A.

A number of questions are given at the end of the work,




INTRODUCTION

A group G is a hyperfinite group if G has an ascending normal series

1=G =G =< -+ =G = @ in which each factor G /G, is finite, where
0 1 @ +1 B

B
£ < «a. The class of hyperfinite groups forms a subclass of the class of
locally finite groups. In our work, we mainly consider a hyperfinite group G
acting on an abelian group A and, by the action of G on A, we consider A as u
ZG-module,

In 1986, D. I. Zaicev proved that: if G is a hyperfinite locally soluble
group, then any artinian ZG-module A has an f-decomposition. That is,
A = AfeAf, where Af is a ZG-submodule of A such that the irreducible
ZG-factors of Af are all finite and the ZG-submodule A? of A has no nonzero
finite ZG-factors. Using this result, he proved a splitting theorem that: let
E be an extension of an abelian group A by a hyperfinite locally soluble group
G and assume that A is an artinian ZE-module, then E splits conjugately over A
modulo Af (we will explain this result later). In 1988, he used a strong
condition for proving a splitting theorem dual to the above., That 1is, he

proved the result that: let E be an extension of an abelian group A by a

hyperfinite locally soluble group G and assume that A is a noetherian

ZG-module with A = Af, then E splits conjugately over A. Can we remove the

condition A = Af and get exactly the form that E splits conjugately over A
f, . .

modulo A™? This Ieads us to consider whether any noetherian ZG-module A over a

hyperfinite  locally  soluble group G has an  f-decomposition.  After

investigating the properties of the torsion-free mnoetherian ZG-modules, we

have now successfully proved the required result, That is, we have:

Theorem A:  Any noctherian ZG-module A over a hyperfinite locally soluble




group G has an f-decomposition, too.
In our proof, we proceed in the following steps.
Step 1: The important lemmas.

Lemma 1.2.5: (Wilson, [17]) Let G be a group, H a normal subgroup of finite
index in G, and A a ZG-module. Then A 1is a noectherian (resp. artinian)

ZG-module if and only if A is a noetherian (resp. artinian) ZH-module.

Lemma 1.2.14: (Zaicev, [22]) Let H be a hyperfinitely embedded subgroup of a
group G and A a noctherian ZG-module. If CA(H) = 0, then H contains a
subgroup K and A contains a nonzero ZG-submodule B such that K is normal in G,

C,(K) =0, and [K/C (B)| < oo.

Lemma 2.1.4: Let G be a locally finite group and A a torsion-free noetherian

ZG-module. Then pA < A and 181 piA = 0 for any prime p.

Lemma 2.4.5: Let G be a hyperfinite locally soluble group and A a noetherian
ZG-module with pA = 0 for some prime p. If all irreducible ZG-factors of A

are finite, then A is finite.

Lemma 2.4.7: Let G be a group, A a ZG-module, and M a ZG-submodule of A such
that the factor module A/M is a p-group for some prime p. If H = CG(A/M)
contains a nontrivial finite subgroup K being a g¢-group for some prime ¢ # p,

then A = CA(x)+M for any x € K. Further, A = CA(K)+M.

Step 2: Reducing A to be ecither torsion-free or an elementary abelian p-group

for some prime p.

This step is very important in our proof and it much depends on the
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following result.

Corollary 3.3:  Let G be a hyperfinite locally soluble group, A a noetherian
ZG-module, and B a ZG-submodule of A such that each irreducible ZG-factor of B
is finite (resp. infinite) and A/B contains no finite (resp. infinite)
irreducible ZG-factors. Then B has a complement in A, i.e., A = Be(C for some

ZG-submodule C of A.

Step 3: Reducing A to be torsion-free with all finite irreducible ZG-factors

being p-groups for some fixed prime p.
This has been achieved in Proposition 3.10.

Proposition 3.10: Let G be a hyperfinite locally soluble group and A a

noctherian ZG-module, If A has no f-decomposition, then A has a nonzero
ZG-image A satisfying:

(@) A has no f-decomposition;

(b) for every nonzero ZG-submodule C of A, A/C has an f—decomposition;

(¢) A has no nonzero ZG-submodules with an f—decomposition;

{(d) A is torsion-free; and

(e) the finite irreducible ZG-factors of A are all p-groups for some

fixed prime p.

Step 4: Discussing the properties of the torsion-free noetherian ZG-modules.

Specially, for a fixed prime p, we have got a descending scries of

ZG-submodules

b

Ao > Ao 2 Ay > > QAL = A

in which, for any ZG-submodule Am’ PA < A the irreducible

0i 0,i+1’

ZG-factors of A ,/A . are gll finite, and the ZG-submodule A has no
0i  0,i+1 Qoo
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nonzero finite ZG-factors being p-groups.
Step 5: Completing the proof.
The key result in completing our proof is the following:

Proposition 3.14: Let G be a hyperfinite locally soluble group and A a

noetherian ZG-module. If all finite irreducible ZG-factors of A are p-groups

for some fixed prime p, then A has an f-decompaosition.

Furthermore, in Chapter 4, we have well described the structure of the
noetherian  ZG-submodule Af of A and, under some conditions, that of the

no¢therian ZG-submodule Af of A. More exactly, we have:

Theorem B: Let G be a hyperfinite locally soluble group and A a noectherian
ZG-module. Then Af is finitely generated as an abelian group and G/CG(Af) is

finite.

Proposition 4.4.6: Let G be a periodic abelian group with |n(G)| < oo, where

n(G) = {prime p; G has an element of order p}, and let A be a noectherian

ZG-module. Then Af is torsion and Af has a finite ZG-composition scries as

well as a finite ¢xponent,

In all the above results, G has been assumed to be locally soluble.

However, it is not a necessary condition as we can take G to be a Cernikov

group (not necessarily locally soluble). More generally, we have:

Theorem: If G is a finite extension of a periodic abelian group with #(G)
finite, then

(1) any noetherian ZG-module A has an f-decomposition:
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where Af is a ZG-submodule of A such that each irreducible ZG-factor of Af is
finite and the ZG-submodule Af has no nonzero finite ZG-factors;

2) Af as a group is finitely generated and G/CG(Af) is finite; and

3) A? is torsion and has a finite ZG-composition series as well as a

finite exponent.

In Chapter 5, we have generalized Zaicev's results about modules over
hyperfinite locally soluble groups to modules over hyper—(cyclic or finite)
locally soluble groups. Especially, the obtained splitting theorems are new in
the splitting theory, for which we will give a short review below.

A group E is said to split over its subgroup A modulo C for some subgroup
C of E if there is a subgroup B of E such that E = AB and ANB = C. The
subgroup B is called a supplement to A in E or a complement to A in E modulo
C. If all complements to A in E modulo C are conjugate in E modulo C, then E
is said to split conjugately over A modulo C. If C = 1, then we naturally
have the concepts of a complement to A in E and E splitting conjugately over
A.

It is well-known that if A is a subgroup of a finite group E such that
(J|A], |B/A]) = 1 then E splits conjugately over A (The Schur—Zassenhaus
Theorem, [15]). After this splitting theorem, many splitting results sprang up
in the later years. Among these, we quote a few to stand as a background for

our results,

a (M. L. Newell, 1975, [10]): Let A be an abelian normal subgroup of a
group E such that E/A is locally supersoluble and [E‘, A] = 1. If A is

noetherian as ZE-module and has no nonzero cyclic ZE-images, then E splits




conjugately over A,

b (M. L, Newell, 1975, [10]): Let A be an abelian minimal normal
subgroup of a group E such that E/A is hypercyclic. If A is not cyclic, then E

splits conjugately over A,

¢ (M. J. Tomkinson, 1978, [16]): Let G be a hypercyclic group and A a
finite ZG-module. If A has no nonzero cyclic ZG-images, then any extension E

of A by G splits conjugately over A.

d (D. I Za\i'cev, 1979 and 1980, [19] and [20]): Let A be an abelian
normal subgroup of a group E such that E/A is hypercyclic. If A is artinian
(resp. noetherian) as a ZE-module and has no nonzero cyclic ZE-submodules

(resp. ZE-images), then E splits conjugately over A.

e (D. I. Zaicev, 1986 and 1988, [21] and [22]): Let A be an abelian
normal subgroup of a group E such that E/A is a hyperfinite locally scluble
group. If A is artinian (resp. noetherian) as a ZE-module and has no nonzero

finite ZE-submodules (resp. ZE-images), then E splits conjugately over A.

Now we have proved the following results.

Theorem D: Let A be a periodic abelian normal subgroup of a group E such that
E/A is a hyper—(cyclic or finite) locally soluble group. If A is artinian as a
ZE-module and has no nonzero finite ZE-submodules, then E splits conjugately

over A,

Theorem E: Let A be an abelian normal subgroup of a group E such that E/A is
a hyper—(cyclic or finite) locally soluble group. If A is noetherian as a

ZE-module and has no nonzero finite ZE-images, then E splits conjugately over

vi




There are lots of questions still remaining open. We list out some of

these in Chapter 6.
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1 PRELIMINARIES

In this chapter, as a beginning, we use two sections to recall some
definitions and some well-known results, which will be quoted at least once in
the later work. The indicated source of most of the results does not mean the
original one. Some of the results have been literally rewritten to make them
easily quoted. For the sake of convenience, we have also given a proof for

some evident results. The terminology used in the work is standard as used in

[15].

§1.1 NOTATION AND TERMINOLOGY

Throughout, we let G denote a group, Z the ring of integers, ZP the prime

field of characteristic p, and ZG (resp. ZPG) the group ring with G as a basis

and the coefficients in Z (resp. ?Zp).

Definition 1.1.1:  An ascending series of a group G is a set of subgroups

{Gﬂ; B = a} indexed by ordinals less than or equal to an ordinal « such that

@ Hﬁi s Hy it 8, < B,

) Ho = 1 and Ha = @G,
(c) Hf} is normal in Hﬂ+1’ and
(d) HA = ﬁgl Hﬂ if A is a limit ordinal.

It is convenient to write the ascending series in the form
1=G05Gls = G =G

If each Gﬂ (B = @) is normal in G, then we say the ascending series

{Gﬁ; £ = a} of G is an ascending normal series of G.




Definition 1.1.2: Let & denote a group property. A group is said to be a

hyper—& group if G has an ascending series
1=GosGls--- =G = G,

in which each factor Gﬁ+1/G,8 has & and each Gﬁ is normal in G, where f§ < «.
In particularly, if & is the group property of finiteness, then we call G a
hyperfinite group, If « is finite and Gﬂ need not to be normal in G, f < «,

then we call G a poly—# group. Thus a poly—cyclic group G is that G has an

p+1'Sp

ascending series 1 = G0 < G1 < 0= Go: = @G, in which each factor G

is cyclic, B < «, and a < .

Definition 1.1.3: A pormal subgroup H of G is said to be hyper—& embedded in

G if H itself is a hyper—% group and in the corresponding ascending normal

series 1=H0 =< H1 s o= Ha = H each H,B(ﬁ = @) is normal in G.

For a ZG-module A, being similar with the ascending series of groups, we
define the ascending (resp. descending) ZG-composition series of A as a set of

ZG-submodules {AP; y = J} indexed by ordinals less than or equal to an

ordinal § such that
(a) A = Ay (resp. Ay = Ay) if yl = Yy

yl 2 1 2

®) A0=O and A5=A (resp. A0=A and A, = 0),

J
(c) the ZG-module AyH!Ay (resp. Ay/AyH) is irreducible for y < 4,
(<)) A/1 = ylEJAAy (resp. AA = yQAAy) if A is a limit ordinal.

If ¢ is finite, then we say that A has a finite ZG-composition  series  and

usually write in the form

0=AO<A1<~-~<A§=A. (resp. A=AO>A1>~->A = 0.)




Definition 1.1.4: A ZG-module A is said to be completely reducible if A is a

direct sum of some irreducible ZG-submodules. Furthermore, A is said to be

semisimple if A is a direct sum of finitely many irreducible ZG-submodules.

The important concept is that:

Definition 1.1.5: A ZG-module A is said to have an f—decomposition if

where Af is a ZG-submodule of A such that each irreducible ZG-factor of Af is

finite and the ZG-submodule Af has no nonzero finite ZG-factors. Sometimes,

we call Al the f-component of A and Al the f-component of A.

Definition 1.1.6:  Let G be a group, H a normal subgroup of G, and A a

ZG-module. Then A is said to be H—perfect if A = [A, H].

Some other definitions are:

Definition 1.1.7: Let E, A, and G be groups. If A is normal in E and the

factor group E/A = G, then E is called an extension of A by G.

Definition 1.1.8: A group E is said to split over its subgroup A modulo C for

some subgroup C of E if there is a subgroup B of E such that E = AB and
ANB = C. The subgroup B is called a supplement to A in E or a complement to A
in E modulo C. If all complements to A in E modulo C are conjugate in E
module C, then E is said to split conjugately over A modulo C. If C = 1,

then we naturally have the concepts of a complement to A in E and E splitting

conjugately over A,




A ring R is called (right) semisimple if e¢ach right R-—module is
semisimple or equivalently R is a direct sum of finitely many simple (right)
artinian rings. Also, a ring R is called regular if each finitely generated
right ideal of R is generated by a single element e with 62 = e (such ¢ is

called an idempotent of R).

Other notations are: n(G) = {prime p; G has an element of order p},
AlK denotes the semidirect product of A by K, and A > B means B is properly

contained in A.

§1.2 THE WELL-KNOWN RESULTS

The following two results are the module version of the according results

in [13].

Lemma 1.2.1: (Thm 3.3.11 in [18}) If a ZG-module A is a sum of a set of its

irreducible ZG-submodules, then it is the direct sum of certain of these

ZG-submodules. Thus A is a completely reducible ZG-module.

Lemma 1.2.2: (Remark, Thm 3.3.12 in [15]) Let A = where A/1 is an

Drieaty
irreducible ZG-submodule of A. Suppose that B is a ZG-submodule of A. Then

A=Be DIUEMAU for some M = A. Also, B is completely reducible.

If G is a locally finite group, then the group structure of an
irreducible ZG-module has been well described. That is, we have:

Lemma 1.2.3: (Baer, Lemma 5.26 in [14]) If G is a locally finite group, then

any irreducible ZG-module A (as a group) is an elementary abelian p-group for




some prime p.

Two useful fundamental lemmas are:

Lemma 1,.2.4: (Fitting’s Lemma, Thm 5.2.3 in [3]) Let p be a prime, A an
abelian p-group, and H = Aut(A). If H is a finite p’-group, then
A = CA(H) @ [A, H].

Here A is written additively.

Lemma 1.2.5: (Wilson, [17]) Let G be a group, H a normal subgroup of finite
index in G, and A a ZG-module. Then A is a noetherian (resp. artinian)

ZG-module if and only if A is a noetherian (resp. artinian) ZH-module.

We mention that:

Lemma 1.2.6: Let G be a group, A a ZG-module, and H a normal subgroup of G.

Then both CA(H) and [A, H] are ZG-submodules of A.

For convenience, we prave:

Lemma 1.2.7: Let G be a group, A a ZG-module, and K a finite p-subgroup of G,

where p is a prime. If A (as a group) is also a p-group, then CA(K) #= Q.

Proof: We note firstly that A1 = <a>K is a finite ZK-module for any fixed
0 # a € A. Since A is a p-group, so A1 is a finite p-group and then the
semidirect product L = AI]K is a finite p-group. Thus the normal subgroup A1
of L contains a nontrivial central element of L, say a. Therefore a, * 0

and a, € CA(K). That is, CA(K) # 0. The lemma is true.




Corollary 1.2.8: Under the hypotheses of Lemma 1.2.7, if A is fuorther

irreducible, then A = CA(K).

About hyperfinite groups, it is worth mentioning some results here.

Lemma 1.2.9: If G is a hyperfinite group, then the subgroups and the
homomorphic images of G are all hyperfinite.
Proof: Suppose G has an ascending normal series
I:GosGls---sG =G
in which each Gﬂ is normal in G and G,&'H/Gﬂ is finite, f < a.
For a subgroup H of G, it is clear that
1 = HNG = HNG, = - <= HNG_ = H
0 1 o
is an ascending normal series of H, and also each factor (HﬂGﬁH)/(HﬂGﬁ)
{= (HﬁGﬁH)Gﬁ/Gﬁ < GBH/Gﬁ} is finite, § < a. So H is hyperfinite.
Now, for a homomorphic image G of G, we may assume G = G/N, where N is a
normal subgroup of G. Then
I =NG/N <NG/N =< <NG/N=G

is an ascending normal series of G, and the factor (NG

ﬁ,H/N)/(NGﬁ/N)

{= NGﬂH/NGB = Gﬂ+l/((Gﬁ+lﬂN)Gﬁ)} is finite, § < «. So G is hyperfinite.
Lemma 1.2.10: If G is a hyperfinite group, then any nontrivial normal

subgroup of G contains nontrivial finite subgroups being (minimal) normal

in G.

Proof: Since G is hyperfinite, there is an ascending normal series




1=G0:§st~--sG =G
in which cach factor Gﬁ-\-l/Gﬂ is finite for all £ < a.

Suppose H is a nontrivial normal subgroup of G, then HNG_, is normal in G,

B
Y f < «. Since HﬂGa = H % 1, there exists a, <« such that HﬂGa # 1
0
but HﬂGB =1 forall £ < @ If ceo—l does not exist, then Gao = [J’lfz}aoGﬁ'
By HﬂGa # 1, thereis 1| # g € HﬂGa and then 1 # g € HOG’B for some
0 0

A < @0 contrary to HﬂGﬂ = 1. So 0:0-1 exists. By HﬁG‘:I L= 1 we have

n

1= HNG
a

{c (mne Y6  =a /o
o O.’O-i Q‘O 0’0-1 @ o

-1’
0 0

and then |HNG_ | = |G /G_ | < o, Thatis, HNG_ is a nontrivial finite
CYO C!o Q’O-l Q’O

subgroup of H and is normal in G. Furthermore, by HﬁGa being finite, we can
0

find a nontrivial finite subgroup N of H such that N is minimal with respect

to N being normal in G.

Lemma 1.2.11: A hyperfinite group is locally finite.

Proof:  Suppose G is a hyperfinite group, then G has an ascending normal
seriecs 1 = Go < G1 < o= Ga = @, in which each Gﬁ is normal in G and
GﬂHIGB is finite, £ < «a.

Let y = «, and suppose that G

8

we prove that Gy is also a locally finite group.

is a locally finite group for all £ < yp,

If -1 exists, then Gy is a (locally finite)-by—finite group and then is
a locally finite group [15]; and on the other hand, if y-1 does not exist,

then f - 3
en for any X ,xne Gy ﬁ‘E}yGﬁ there exists '60 such that X ,xne G

by




and then <x1, e X > is a finite subgroup of G

JBO

locally finite group. That is, from G, being locally finite groups for all

B

B < y we have proved that Gy is also a locally finite group. The lemma holds.

(and of G ). So G_ is a
¥ Y

Lemma 1.2.12: A hyperfinite p-group G is a locally uilpotent group.

Therefore, G has a nontrivial centre and then is a hypercentral group.

Before giving the preoof for Lemma 1.2.12, we point out another well-known

result:

Lemma 1.2.13: (Mal'cev, McLain, Thm 12.1.6 in [15}) A principal factor of a

locally nilpoteat group G is central.

Proaof of Lemma 1.2.12: By Lemma 1.2.10, G is locally finite, then since

G is a p-group we have G is a locally nilpotent group. By Lemma 1.2.13 and G
baving a minimal normal subgroup, G has a nontrivial centre. Let h(G) be the
maximal hypercentrally embedded subgroup of G, i.e., h(G) is the hypercentre
of G. If h(G) < G, then G/b(G) as a nontrivial hyperfinite p-group has a
nontrivial centre, say H/h(G). Tt is clear that H is a hypercentrally embedded
subgroup of G and h(G) < H contrary to the maximality of h(G). So h(G) = G

and then G is hypercentral.

In our work, we will quote a lot of results proved by D. I. Zaicev in the

series of papers [19—22}]. Among these, the most important one is:

Lemma 1.2.14: (Zaicév, [22]) Let H be a hyperfinitely embedded subgroup of
G, and A a nonzero noetherian ZG-module. If CA(H) = 0, then H contains a
subgroup K and A contains a nonzero ZG-submodule B such that K is normal in G,

CyK) =0, and |K/C (B)| < o».




The above lemma has a generalization for H being a hyper—(cyclically or
finitely) embedded subgroup of G. That is, it is a special case of our

result—Proposition 5.1.2 (see p.100).

The other results proved by D. I Zaicev or appearing in D. L Zaicev's

papers are:

Lemma 1.2.15: (Zaicev, [19D If G is a hypercentral group, then any artinian
ZG-module A has a Z-decomposition, i.e., A = A“®A% in which A% is a
ZG-submodule of A such that each irreducible ZG-factor of A® has G as its

centralizer in G and the ZG-submodule A® of A has no such irreducible

ZG-factors.

Lemma 1.2.16: (Frattini argument, [19]) Let A be an abelian normal subgroup
of the group G, Let x € G such that A = [A, x] and A<x> is normal in G.

Then G = ANG(<x>).

Lemma 1.2,17: ([19]) If A is a ZG-module and <x> is a normal cyclic subgroup

of G, then A(x-1) and CA(x) are ZG-submodules of A.

Lemma 1.2,18: ([20]}) Let A be a ZG-module and <x> a normal cyclic subgroup
of G. The map ar— a(x—1) induces an isomorphism of the groups A/CA(x) and
A(x—1) under which ZG-submodules of A/CA(X) correspond to ZG-submodules of
Ax—1). (If, further, x is in the centre of G, them the map ar— a(x-1)

induces & ZG-isomorphism between the ZG-modules A/C,(x) and A(x-1).)

Lemma 1.2.19: ([20]) Let A be a noetherian ZG-module and <x> a normal cyclic

subgroup of G. Then there is an integer n such that A(x—1)"NC A0 =0




Lemma 1.2.20: ([21]) Let A be an abelian normal p-subgroup of E and K/A a
finite normal p-subgroup of the factor group E/A such that A = [A, K]. Then
A contains a proper subgroup D such that D is normal in E and (1) A has a
complement in E module D; (2) if A has a complement in E, then any two

complements are conjugate modulo D,

Lemma 1.2.21: ([22]) Let A be an abelian normal subgroup of E and K/A a

k

finite normal subgroup of E/A such that [K/A| = p, C,(K) = 1. Then (1)

13
if A has a complement in E modulo AP then A has a complement in E; (2) if A
k
has a complement in E and the complements are conjugate modulo AP then they

are conjugate in E.

Lemma 1.2.22: (Zaicev, [22) Let G be a hyperfinite group, A a noetherian
ZG-module, and B a ZG-submodule of A such that B (resp. A/B) is finite. If
each irreducible ZG-factor of A/B  (resp. that of B) is infinite, then B has

a complement in A, i.e., A = BeC for some ZG-submodule C of A.

There are some simple results we should mention:

Lemma 1.2.23: Let G be a group, and A a ZG-module. If A has an

f—decomposition, then each ZG-submodule of A and each ZG-image of A has an

f—decomposition, too. Furthermore, if A = Af ] Af, where Af is the

f-component of A and Af is the f-component of A, then (1) for any
ZG-submodule B of A, B = (BNAS) o (BNAD), in which (Bnaf) = Bf and
(B{')A?) = B?; and (2) for any ZG-image A/D of A, A/D = (Af-l-D)/D @ (Af-l—D)/D,
in which (Af+D)/D = (A/D)’ and (A?+D)/D = (A/D)?.

Proof: Let A = Af ® Af, where Af is a ZG-submodule of A such that each
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irreducible ZG-factor of zl’&f is finite and the ZG-submodule Af of A has no

nonzero finite ZG-factors, Let B be a ZG-submodule of A, It is clear that

B = (B ﬂAf) ® (B ﬂAf), ¢ach irreducible ZG-factor of BﬁAf is finite and BﬁAf

contains no nonzero finite ZG-factors. Also, by B/ Bf'lAf =55 (B+Af)/Af and
B/B ﬂAf =G (B+A?)/ Af, we have each nonzero irreducible ZG-factor of B/B ﬂAf
is infinite and all irreducible ZG-factors of B/ BﬁAf are finite. Thus
B/ {(B ﬂAf) ® (BﬁAf)} has no nonzero  irreducible  ZG-factors and then
B = (BﬂAf) @ (BOA?), where (BﬁAf) = Bf and (B nAf) = B?. That is, B has an
f-decomposition,

For the ZG-image, say A/D, it is clear that A/D = (Af+D)/D + (Af+D)/D.
Since (Af +D)/D = Af/(Af ND) and (AF-*-D)/D =G aly (AfﬂD), we have each
irreducible ZG-factor of (Af+D)/D is finite and the ZG-submodule (AE+D)/D
has no nonzero finite irreducible ZG-factors. Thus (Af+D)/D ! (Af+D)/D = 0.
It follows that A/D = (AT+D)/D o (af+D)/D, (Af+D)/D = (A/D)f and

(Af+D)/ D = (A/ D)f. That is, A/D has an f-decomposition. The lemma is proved.

Lemma 1.2.24: Let A = A, where A is a ZG-module and Ai are

ZiEI i

ZG-submodules of A. If each Ai has an f-decomposition: Ai = Afe Af, then A

s . f _ f f _ f
has an f—decomposition with A" = EiEIAi and Ai = ZiEiAi'

. f f f f
Proof: It is clear that A = ZiEIAi = ZieI(Ai@Ai) = (ZieIAi)+(Ei€IAi)'

For ¥ EIAi’ if it contains an infinite irreducible ZG-factor, say
1

B/C, then for x € BAC, we have x = x +-++x for some x &€ A_,
0 Q 0 0 1 r ] lj

o f f o .
j = 1,-+-,r. Thus BonzjleAij > coan;lAij, By B /C, being irreducible and

0 = (Boﬂz;=lAf)/(CoﬁZ;=lAif) =5 [CO-[—(BOﬂZ;:lAf)]/CO,
i j j

11




£ f T, .
we have ¥ 1A, contains infinite irreducible ZG-factors.
j=1 i

3
T

Let r, be minimal such that E:Af contains infinite irreducible
i
ZG-factors. It is clear that f > 1. Let B/C be an infinite irreducible
"o . f
ZG-factor of zj=lAi , then by the minimality of T, we must have
i

r -1 r -1 r -1 r -1
o f _ 0 f o ,f N §
anj=1 Aij = cnzj=l Ai and then B+Zj=1 Ai‘ > C+Zj=l Ai .

J i i

By B/C being irreducible and

ro-l £ rO-l £ ro—l £
0 # (B+Zj=1 Aij)/(c+}:j=l Aij) =5 B/[Br1(c+)jj=l Aij)],

r -1 r -1
we have (13+)jj°1 Af)/(c+z,°l Af) is infinite and irreducible. Also
= . 1= .
J J

r -1 r -1 r r -1 r -1
o' f o' f o f 0 fy\ _ f f 0
(13+§jj=1 Aij)/(C+Zj=1 Aij) = 2j=lAij/(C+zj=l Ai) =64, /[Ai r1(<:+§jj=1

f
ANy,
i r i

o ‘o
which shows that A’ has an infinite irreducible ZG-factor, a contradiction.
1

r
0

Therefore 3, EIA%? contains no infinite irreducible ZG-factors.
1 1
Similarly, ¥ EIA,f contains no nonzero finite irreducible ZG-factors.
1 1

£ f £ n
Thus (ZiEIAi)n(ZiEIAi) = 0 and then A = (EiEIAi)Q(Z‘iEIAa) with

f f f f
A = ZiEIAi and A ZiElAi'

i

Lemma 1.2.25: Let A

If

B + A] with BﬁA1 = Bl’ where A is 3 ZG-module, B,
Al, and Bi are ZG-submodules. If A1 = B1 @ CI for some ZG-submodule Ci, then

A==BeCl.

Proof: Since A=B+A1=B+(Bl+Cl)=(B+BI)+C1=B+C1,
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and BﬁC1 = Bﬂ(AlﬂCl) = (BﬁAl)f‘\Cl = BlﬂC1 =0, so A=B e C,

The following form of Maschke's Theorem will be used in a later proof.

Lemma 1.2.26: (Maschke’s Theorem) Let V be a torsion-free ZG-module with G
being finite, and W a ZG-submodule of V. If V = WGAV1 for some subgroup V1 of

V, then there exists a ZG-submodule U such that |G|V = WeU,

Proof: It is a special case of Theorem 4.1 in [12].

Finally, we end this chapter with three results related to semisimple

rings.

Lemma 1.2.27: (Corollary 2.16, [2, p.21D Any noetherian regular ring is

semisimple,

Lemma 1.2.28: If F is a finite p’-group, then the group ring ZPF is

semisimple.

Proof: Since ZPF is finite, so the result is a consequence of Theorem 4.2 in

{11] and Theorem 0.1.11 in [9].

Lemma 1.2.29: Any right ideal of a semisimple ring is generated by a single

idempotent,

Proof: Using Lemma 1.2.2 in this section and Lemma 6 in [13], we get the

result,
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2 THE BASIC LEMMAS

This chapter consists of basic lemmas, of which most will be necessarily
used in the later proof of our main results. We deal with them in four

sections.

§2.1 ON TORSION-FREE MODULES

Among the ZG-factors of a torsion-free ZG-module A, there are some

factors which have a very nice relation between them. We list some of these as

Lemma 2.1.1: Let G be a group, A a torsion-free ZG-module, and B a

ZG-submodule of A. Then piA/piB = GA/B for any integer p > 0 and any

4

integer i = 0.
Proof: Let p: a pia + piB, where a € A. Since

a @@ + b) = pi(a + b) + piB
= ('a + p'B) + (b + p'B) = p(a) + p(b),  and
b. oag) = p'ag) + pB
= (g + pB = @ + pB)g = [p@)]g,
where a, b € A and g € G. So ¢ is a ZG-homomorphism from A to piA/piB,
e g
thus Afkerp =05 p'Alp'B.
Since B = kerp is clear; and, on the other hand, o €& kerp implies that
pio: € piB. By A being torsion-free, a« € B and so kere < B. Thus kerp = B
and then piA/piB = A/B for any integer p > O and any integer i = 0.

“IG

From Lemma 2.1.1, we have:
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Corollary 2.1.2: Let G be a group, A a torsion-free ZG-module, and B a

ZG-submodule of A. Then piAipiB =56 ij/ij for any integer p > 0 and any

integers i, j = O.

t . :
If we let B = pA, where t is an integer not less than zero, then we

have:

Corollary 2.1.3: Let G be a group and A a torsion-free ZG-module. Then

KA/t =G PAlEY A

for any integer & > 0 and any integers i, j, t = 0.

In the torsion-free case, we often need A contains some noRzZero

ZG-factors being p-groups for some fixed prime p, The following Ilemma

indicates that conditions for the purpose.

Lemma 2.1.4: Let G be a locally finite group and A a torsion-free noctherian
ZG-module. Then pA < A and i?jlpiA = 0 for any integer p > 0.

Proof: Firstly, we prove pA < A for any integer p > O.

Since A is noetherian, there exist a, "=, a8 such that
n

A= <al, > 8

Suppose that pA = A for some integer p > 0, then

aizp(aimigi o +aimigi)
111 tott
for some integer t, where m, € Z, g € G, j= 1,2, -t and
i i,
j j
i=1, 2, , I,
Let F = <g, € G j=1 +-,¢t 1 =1, -, n>. By G being locally
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finite, F is a finite group. Also, a € p<al, LRI 1 >F for all i, Thus
1
F
<a, ***‘,a > =< p<a, ''*,a > and then
{ n 1 n

<a o, a > =p<a, 8>
1 > o p 1 o '

F - . .
But <a, ', a> is a finitely generated torsion-free abelian group

n
and so p<a, o, an>F is a proper subgroup of <a, ', an>F for p > 0,
a contradiction, Thus we have proved that pA < A for any integer p > 0.
Secondly, if B = ifjlpiA # 0, then since B is also a torsion-free
noetherian ZG-module, thus pB < B for the integer p > 0. But by A being

torsion-free we can easily get B = pB, a contradiction. Thus ,‘ﬁlpiA = 0, The
1=

lemma holds.

Related to Lemma 2.1.4, we have:

Lemma 2.1.5: For any noectherian ZG-module A, pA < A if and only if A has a

nonzero ZG-factor being a p-group, where p is a prime.

Proof: The necessity is evident.

We prove the sufficiency. Let U/V be a nonzero ZG-factor of A such that
U/V is a p-group. By the noectherian condition, we may assume that U/V is an
elementary abelian p-group and A/U has no nonzero ZG-factors being p-groups.
If pA = A, then A/V = (pA+V)V = p(A/V). For (V #)u+V € U/V = p(A/V),
there is a &€ A such that u+V = p(a0+V}. Thus a, & U, But p?'(ao+V)
= p(u+V) = V, which implies that (A/U)[p] = {a+U € A/U; p@a+U) = U} isa
nonzero ZG-submodule, contrary to A/U having no nonzero ZG-factors being

p-groups. So pA < A, the result holds.

The following lemmas are useful and interesting.
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Lemma 2.1.6: Let G be a locally finite group, A a torsion-free noetherian

ZG-module, and CG(A) = 1. Then

]

1 H CG(A/pA) =1, if p is an odd prime; and

2) H

]

CG(A/pA) is an elementary abelian 2-group, if p = 2

L

i

Proof: We prove first that H CG(A/pA) is a p-group for the prime p.

Suppose x € H and x is of order ¢ for some¢ prime g other than p. Since

. - i
X & CH(A) = CG(A) = 1, there exists a, € A such that a X #* a. Let Ai DA,
then, by applying Lemma 2.1.4, we have ?Ai = 0. 'Therefore, there exists io

such that a (S AiO\AiOH. By A/A1 =26 Ai/Ai+1 for any integer i, we have

x e H= CG(Ai/AiH) for any integer i. So azx = a0+al, where a # 0 and

A \A for some int i >1 . = th a =ax? =a +qa.
a & il\ i+ or some integer 1 >i/ If ax a,, then a o a,t+qa

That is, qa, = 0 and then a = 0, a contradiction. So ax # a.

T T .
Suppose ax = E;ao(j)aj, where for any j, aj € Aij\Ain, ax * aj,

and a_lxma,1+a., i > i > - > i » i = 0. By arXq&ar and
- - j r

i) 1 r-1 1 0

x € H=C (A /A ), wehave ax = a +a where a & A, \A
G i 1r+1 r roT r+1 lr+l !r+1+]
r

+1’

and i > 1. Also we easily obtain a  x % a . Now we have
r+1i r r+l r+l

r+1 _ r - I‘ _ .
ax = (ax)x [Z;= O(j)aj]x Z;::O(j){ajx)
= 5_ ) = a5 [+ Olra

t+1 . +irr+l
aO+Z‘;=l( ; )aj—f-ar_H = Z;=0( i )aj_.

]

. e d qy. _ q -
Hence a = ax ):?zo(j)aj ao+):‘j1=l(j)aj. That is,

0= Zq (r?’)aj = q[a1+):?;; é(?)aj]—i-aq.

j=1%]
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Since ¢ # p, so g = kp + t for some t with 0 < t < p. Thus we have

= — _ q
ta p(kal) Z?:z(j)aj € (Ail+1 + Aiz) = Ai1+1 and then a € Ailﬂ’ a
contradiction. Hence we have in fact proved that H = C G(A/pA) contains only
p-elements.

Now we begin to prove the required results.

(1) If p > 2 and H # 1, then, as above, we have the equation
-1 igp
0 = + —(")af+a ,
pla v X1 204,
where a, x = a_ +a for some x€H, a. € A, \A_
-1 2 S J i1+

i
. . . . . -1 1¢p -
Since lp 1 = i 1= i, = 11+1, therefore a +Z‘?=2 p(j)aj S Ai 4 S A and

,and i >1 > >i >1 =0,
1 p~ p-l 170

then a € A < A, contrary to a, € A, \A.
i 12 1l+l 1 1] i

H = C_(AlpA) = 1.

o1 So p > 2 implies that

(2) For the 2-group H = CG(A/ZA), if H has an clement, say x, with

order 4, then, since x2 # 1 and x2 & CG(A) = 1, there exists 0 # a, € A

such that aox2 #* 2 Let Ai = ZiA, then, by Lemma 2.1.4, Ai < Ai+1 and

QAi = (. Thus a e Aio\AioH for some 10 = 0. Since x € H = CG(AO/AI)
= CG(Ai/AiH) for any integer i = 0, so ax = ao+a1 for some a, = Aio+1'

. . 4 . . .
Evidently, alx #* al, for otherwise ao = aox = ao+431’ which implies that
431 = 0 and then a = 0, contrary to a0x2 # 4. So we have ax # a. Let

a € A \A |, where i > i
i i +1 1

. then, similarly, we have ax = al-i-a,) for
t1 -

0,

some a_ € A, \A, ,
2 i 17+1

where i2 > 1'1 and a,x +* a,. Generally, we have
2 2
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ax # a, 1 > 1

x = a + it
a, 1 tap with a € Ai‘\Ai.H, ; : : 17

j-1 ] ]
L

4 .
= = + . = .
Therefore a, 3% a, + 4;1l + 6:12 + 4a3 a, That is, 4;31+6212+4a3+a4 0

i=1,2,3.4.

ince i = i_-+1 i +2 > 2 o we hav = 2a*, wher * A .
S 4 3 = 12+ , 8 3 a4 a4, ere a4 ] i_l\Ai

4
= = — — = _ 2
Thus 231 + 3a2 + 233 + as 0 and then 3, flaI (2a2+2a3+a;) ..al+ b2,
2 2 _
where b2 = - (2a2+2a3+a:) € Aizﬂ. By ax #* a, and a % (a0+a1)x

= a, + 2&1 + a, = a, + bz, we have b2 # 0, thus b2 € AJ_z\Ajz | for some

. . 4 2.2 2
= = =i = = 0
i, > i, If b2x b2 , then a 0 ax (aox )X (a0 + bz)x a, +2b 5

which implies that 2b2 = 0 contrary to b2 # 0. So bzx %= bz' As above, we

may have bk_lx = bk-1+bk’ where bk € Ajk\Aij, bkx # bk, I ey and
k = 3, 4. Therefore,
4 2.2 2
a, = ax = (aox > o= (ao+b2)x

= ax +b2x = (a2+b2)+(b2+b3)x

(a0 + bl) + (b2 + 2b3 + bd)

I

5
a,+(2b,+2b +b ).

That is, 2!)2-i»2l)3+b4 = 0 and then b2+b3 [ Aj . < A . Hence we get the

4 33
contradiction that b2 (S Aj = A
j

3 2-!-1

By the above contradiction, we have H contains no elements of order 4 and

then, since H is a 2-group, we must have H is an elementary abelian 2-group.

The result is proved.

A consequence of Lemma 2.1.6 is that:
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Corollary 2.1.7: Let G be a locally finite group and A a torsion-free

noetherian ZG-module. Then CG(A/pA) = CG(A) for any prime p > 2.

The following possibly well-known result follows immediately from

Corollary 2.1.7.

Corollary 2.1.8: If a locally finite group G 1is contained in the group

GLH(Z), then G is isomorphic with some subgroup of GLHOZP) for any prime p>2.

n(n-1)

Further, G is finite with order at most 3 ° IT°_ (3-1),

As an interesting aside, we prove a lemma, even though it has not been
used anywhere in the later discussion, but it has a very close relationship

with Lemma 2.1.6.

Lemma 2.1.9: Let G be a locally finite group, A a torsion-free noetherian

ZG-module, and CG(A) = 1. Then H = CG(A/4A) = 1.
Proof: Since H = CG(AMA) =< CG(AIZA), so, by Lemma 2.1.6, H is an
elementary abelian 2-group. If H s 1, then H contains an element x, say, of

order 2. By CG(A) = 1, there exists a € A such that ax *= a. Let

A, = 4'A, then, by Lemma 2.1.4, A
3

: < A, and OAi = (. Thus there exists
1 1

1

10 = O such that ao & AiO\AiOH. Using Coroliary 2.1.3, AO/Al EZZG Ai/Ai+1’

so H = CG(Ai/AiH) for any 1 = 0. Since x € H = CG(AiO/AiOH) and

a € A, so ax =a+a forsome 0 ¥ a € A
i o] 0 1 1 i

. +r Let a & Ai \Ail+l'

0 0 i

where >, then by x € H = CG(Ail/Ai!H) we have ax = a ta, for
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2
ome A the other hand = = = a ¢ .
S a, S . On the and, 2, aox (ao+al)x a, al+alx That

+1
1
is, ax = -a. So a, = —Zal and then 231 = -3, Similarly, if we let
a A\A w i i X = fo
, € i T here ) > v then a, ;12~}-a3 r some a, € Aqurl and
2a = -a. Thus 4a = -2a = a € A . Since A is torsion-free,
2 3 1 2 3 12+1

a1 (S Ai < Ai +1 a contradiction. Hence we must have H = CG(A/4A) is a
2 1

trivial group. That is, H = 1. The result is proved.

§2.2 RELATED TO THE NORMAL SUBGROUPS OF FINITE INDEX

From Wilson’s lemma (Lemma 1.2.5), we know that some important properties
are inherited by the normal subgroups of finite index. In this section, we

give some more properties of this kind.

Lemma 2.2.1: Let H be a normal subgroup of finite index in a group G, and A

a ZG-module. Then A has a finite ZG-composition series if and only if A has a

finite ZH-composition series.

Proof: Since A has a finite composition series if and only if A is both

artinian and noectherian, thus the lemma follows from Lemma 1.2.5.

Corollary 2.2.2: If H is a normal subgroup of finite index in a group G,

then any finite (resp. infinite) irreducible ZG-module A contains a finite

(resp. infinite) irreducible ZH-submodule.

Proof: By Lemma 2.2.1, A contains an irreducible ZH-submodule, say V. Let T
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be a left transversal to H in G, then ZtETVt is a nonzero ZG-submodule of A
and then A = Zt ETVt by the irreducibility of A. Since T is finite, so A is
finite if and only if V is finite. Thus V is finite (resp. infinite) if A is

finite (resp. infinite).

Corollary 2.2.3: If H is a normal subgroup of finite index in a group G, and

if a ZG-module A contains an irreducible ZG-factor B/C, then A contains an
irreducible ZH-factor U/V such that: if B/C is finite, infinite, or a p-group

for some prime p, then so is U/V.

Proof: Consider the ZG-module B/C, then the result follows from Corollary

2.2.2 and its proof.

Let G be a group, H a normal subgroup of G, and A a RG-module, where R is
a ring with 1. Let X" = {U/V; U/V is a RH-factor of A}, then Ug and Vg are

RH-submodules of A and so G acts naturaily on XM by the action

(U/V)g = Ug/Vg for every g € G.

Lemma 2.2.4: If H is a normal subgroup of finite index in a group G, and if a
ZG-module A contains a nonzero (irreducible) ZH-factor U/V, then
) Ug/Vg is also a nmonzero (irreducible) ZH-factor of A, V g € G;

(2) as groups, u/v Ug/Vg, Vegedaqa;

n

@ €, (Us/ve) = g'c (UV)g, Vg e
4y if V = 0 and U is irreducible, then A contains an irreducible
ZG-submodule B such that B has an irreducible ZH -submodule W with W =G Ug

for some g € G;

(5) for B and W in the above (4), B = DrsesWs, where S is a subset of

22




a transversal T to H in G; and
6) if U/V is irreducible, then A contains an irreducible ZG-factor B/C

such that: if U/V is finite, infinite, or a p-group for some prime p, then so

is B/C.

Proof: (1) For any g € G, we show firstly that: (@) U is a ZH-submodule
of A if and only if Ug is also, and (») for any ZH-submodules U and V of A,
U = V if and only if Ug = Vg,

] .

(a) " For any ag ag € Ug and any h € H,

ag-ag= (a! - az)g € Ug, and

(alg)h = al(gh) = al(h’g) = (alh')g € Ug

since U is a ZH-submodule and H is normal in G. So Ug is a ZH-submodule.
n,

" Since Ug is a ZH-submodule of A, by the arbitrarity of g and the

o=

above proof, we have U = (Ug)g‘l is also a ZH-submodule of A.

n n

) =:Forany ag € Vg, since a €V = U so ag € Ug, thus
g g g

Vg = Ug;

N "

" By the arbitrarity of g and the above proof, we have
-1 -1
V = (Vg)g = (Ugg = U.

We secondly note that: (¢) if W is a ZH-submodule of Ug for some
ZH-submodule U of A, then there exists a ZH-submodule V of U such that W = Vg,
namely V = wg'.

By (a), () and (c¢), it 1is clear that Ug/Vg is also a nonzero
(irreducible) ZH-factor of A for any nonzero (irreducible) ZH-factor U/V of A,
where g € G.

(2) Let o1 ur—— ug + Vg, where u& U. Then it is clear that ¢ is a

group homomorphism from U to Ug/Vg, thus Ulkerp = Ug/Vg. Obviously,
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V = kerg. On the other hand, u &€ kerp implies that ug & Vg, thus there
exists v € V such that uvg = vg and then u = (ug)g-I = (vg)g'l = v, S0
kerg = V and so V = kerp. That is, as groups, ulv sUg/Vg.

(3) Let h €& CH(Ug/Vg); then ghg-1 € H and

@ + Vghg' = (g + Vghg” = (ug + Vgl = u + V,
so ghg! € C(U/V) and then h € g'C (U/V)g.  That is,
c,(Ug/ve) = g'c (U/V)s.

On the other hand, h € gkch(U/V)g implies that h = g-lh*g € H, where
h* € CH(U/V). Since

(ug + Veh = (ug + Veg'h*tg = (u + Vb*g = (w + V)g = ug + Vg,
sc h € CH(Ug/Vg) and thus g-lCH(U/V)g = CH(Ug/Vg).
Therefore CH(Ug/Vg) = g'lCH(U/V)g.

(4) Let T be a left transversal to H in G, then T is a finite set. Let
D = Z‘ETUt, then D is a ZG-submodule of A and, by (1), D is a sum of finitely
many irreducible ZH-submodules thus D is completely reducible (Lemma 1.2.1).
Since D has a finite ZH-composition series, so D has a finite ZG-composition
series (Lemma 2.2.1); thus D (and then A) contains an irreducible
ZG-submodule, say B. By Lemma 1.2.2, D =B o DrSESUs and B =4 DrSeS,Us,
where S is a subset of T and S’ = T\S. Thus, it is clear that B contains an
irreducible ZH-submodule W such that W =4 Ug forsome g € 5' € G.

(5) For the above B and W, ZETWt is a nonzero ZG-submodule of B and
then, by the irreducibility of B, B = Z‘ETWL Thus by Lemma 1.2.1,

B = Dr Ws for some subset S & T.
5ES

(6) Let U/V be an irreducible ZH-factor of A, then by Zorn’s lemma,
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there is a ZH-submodule M of A maximal with respect to UNM = V. This implies
that V = M and so (U+M)/M =, U/V is irreducible. If M < M then U+M
= Ml otherwise (U+M)ﬁMl =M so UﬁM1 = Uf'](U+M)ﬁIN/Il = UNM =V,
contrary to the choice of M. If M is not a ZG-submodule of A, then there is a
ZH-submodule W of A of the form W = il_:\lMgi such that MNW is a ZG-submodule
properly contained in W; thus M is properly contained in the ZH-submodule
M+W and U+M = U+M)NM+W) = M+[(U+M)NW], so
U+M)/M = [(U+M)NWI/(MNOW).  That is  [(U+M)NWI/MOW) s

irreducible and MNW is a ZG-submoadule of A. Also, by

(U+M)NW]/(MNW) =5y (U+MM =___ U/V

ZH
we have that: if U/V s finite, infinite, or a p-group, then so is
[(U+M)OW]/(MOW). Now by (4) and (5) above, we have the required
ZG-factor B/C.

The lemma is proved.

From Lemma 2.2.4, we have the following consequence:

Lemma 2.2.5: Let H be a normal subgroup of finite index in a group G, and let
the ZG-module A have a nonzero ZH-submodule W. Then there is a one-to-one
correspondence between the ZH-factors of W and those of Wg for any g € G, and

this correspondence preserves the finiteness and the irreducibility of these

ZRB-factors,

Proof:  From the proof of (1) in Lemma 2.2.4, it is clear that the mapping
g: UV — Ug/Vg is a one-to-one correspondence between the ZH-factors of W
and those of Wg, and from (1) and (2) in Lemma 2.2.4, @ preserves the

finiteness and the irreducibility of the ZH-factors. So the lemma is true.
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Another consequence of Lemma 2.2.4 is:

Lemma 2.2.6: Let H be a normal subgroup of finite index in a group G and let
A be a ZG-module. Then A contains an irreducible ZG-factor being finite,
infinite, or a p-group for some prime p if and only if A as a ZH-module
contains an irreducible ZH-factor being finite, infinite, or a p-group for the

prime p, respectively.

Proof: Tt follows from Corollary 2.2.3 and (6) in Lemma 2.2.4.

Furthermore, we have:

Lemma 2.2.7: If H is a normal subgroup of finite index in a group G, and if D
is a ZH-submodule of a ZG-module A, then the ZG-submodule p° (=Zg EGDg) of A
has a finite (resp. infinite) irreducible ZG-factor if and only if D has a

finite (resp. infinite) irreducible ZH-factor.

Proof: By (6) in Lemma 2.2.4, the sufficiency is evident. So we prove the
necessity.

Suppose T = {tl=1, 6, "o, tn} is a transversal to H in G. If p° has a

2.’
finite (resp. infinite) irreducible ZG-factor then, by Corollary 2.2.3, D° has

a finite (resp. infinite) irreducible ZH-factor, say B O/ C o Since

G . . L
D = E‘;_IDti, t € T, we may choose an integer n such that R is minimal

n
. 0 - e . .
with respect to Y. lDt, bas a finite (resp. infinite) irreducible ZH-factor
1= 1
n -1

B/C. We show that n,=1. 1If not, we should have (B+Eo

i=l

n_-1
Dt) > (C+I°_ Dt)
i i=1 i
for otherwise by B/C being irreducible we have

n_-1

n_ -1
B/C =, (Bﬂz?mlDti)/(Cﬂ):?=lDti)
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contrary to the minimality of n. So
n,- i no -1
B/C =, (B+L,_ D)/(C+y,_ Dt)
no no- 1
< I, Dt/(c+y_ pt)

n -1{
0
Dtno/ [Dtno n(c +T, =1Dti)] .

=7H

That is, Dtn has a finite (resp. infinite) irreducible ZH-factor. By Lemma
0

2.2.58, D (=Dt1) has a finite (resp. infinite) irreducible ZH-factor, contrary

to the minimality of n, again. So n0=1. That is, B/C is a finite (resp.

infinite) irreducible ZH-factor of D, The lemma is true.

Using Lemma 2.2.7, we have:

Corollary 2.2.8: If H is a normal subgroup of finite index in a group G, then

the ZG-module A contains no nonzero ZG-submodules with an f—(ZG)—decomposition
if and only if A as a ZH-module contains no nonzero ZH-submodules with an

f—(ZH)—decompaosition.

Proof: For a ZG-submodule C of A, if C has an f—(ZG)~decomposition

c = CfeaCf,

then it follows from Lemma 2.2.6 that this is also an f—(ZH)-decomposition.

Suppose A as a ZH-module contains a nonzero ZH-submodule D with an

f—(ZH)—decomposition, i.e.,, D = Df ® Df, where Df is the f—component of D

and D is the f-component of D. Since D° = (Df)G + (Df)G, and by Lemma 2.2.7

(Df)G has only finite irreducible ZG-factors and (Df)G has only infinite

irreducible ZG-factors, it follows that D¢ = (Df)G ® (Df)G is the
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f—(Z G)—decomposition of DG. That is, the nonzero ZG-submodule DY of A has an

f—(ZG)—decomposition, contrary to A having no such ZG-submodules. So the

corollary is true.

From the proof of Corollary 2.2.8, we have the following two corollaries.

Corollary 2.2.9: Let H be a normal subgroup of finite index in a group G and

let D be a ZH-submodule of the ZG-module A. Then D has an f—(ZH)—decomposition

if and only if p° has an f-(ZG)—decomposition.

Corollary 2.2.10: If H is a normal subgroup of finite index in a group G,

then a ZG-module A has an {~(ZG)-decomposition if and only if A has an

f—~(ZH)—decomposition.

§2.3 RELATED TO {~DECOMPOSITION

At the end of the last section, we have noted some results related to the
f—decomposition of the ZG-modules, Here, we prove some more results, which

will play an important role in the proof of our main results.

Lemma 3_3__} Let G be a group, F a nontrivial finite normal subgroup of G, A
a ZG-module, and B a ZG-submodule of A. If A/B has an f—decomposition and
F = CG(B) but F is not contained in CG(A), then A has a nonzero ZG-submodule
D with an f-decomposition, too. Furthermore, D can be chosen such that:

() if (A/B)Y =0 then Df = 0, and

@) it (A/B)Y = 0 then Df = 0.
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Proof: Let H = CG(F), then |G/H| < o. By Corollary 2.2.10, A/B as a
ZH-module has an f-(ZH)-decomposition, and then each ZH-image of A/B has an
f—(ZH)—decomposition (Lemma 1.2.23). For x € F, we have B = CA(X) = A.
Since F is not contained in CG(A), there exists X, € F such that
B = C,(x) < A, Thus the nonzero ZH-submodule C = A(x 1) (EZZH A/CA(XO))
has an {—(ZH)-decomposition. By (6) in Lemma 2.2.4, the ZH-submodule C has the
properties that: () if (A/B)f = 0, then Cf = 0; and @i) if (A/B)f = 0,
then CE =0. Let D=c¢° = deecg’ then D is a nonzero ZG-submodule of A,
and, by Corollary 2.2.9, D has an f~(ZG)—decomposition and, further, satisfies

M it AB) =0, then Df = 0; and @ if aBf = 0, then D = 0.

The lemma is proved.

Corollary 2.3.2: Let G be a hyperfinite group, A a ZG-module, and B a

nonzero ZG-submodule of A such that each irreducible ZG-factor of A/B is
finite (resp. infinite). If A has no nonzero ZG-submodules with all

irreducible ZG-factors being finite (resp. infinite), then C G(B) == CG(A).

E_g:@_g_f: We assume that G acts faithfully on A, i.e., CG(A) = I, If CG(B) # 1,
then since G is hyperfinite, CG(B) contains a nontrivial finite subgroup F
being normal in G. By Lemma 2.3.1, A has a nonzero ZG-submodule with all
irreducible ZG-factors being finite (resp. infinite), a contradiction. So

CG(B) = 1. That is, CG(B) = CG(A) as required.

The following lemma will be important in our proof for the main
decomposition theorem in Chapter 3 as it allows us to assume that G acts

faithfully when we pass to certain submodules.

Lemma 2.3.3: Let G be a hyperfinite group which contains a normal locally
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soluble subgroup H, A a nostherian ZG-module, and B a nonzero ZG-submodule of
A satisfying B = BY and AB = (AIB)? (tesp. B = Bf and (A/B)f = A/B).
If CB(H) = 0, A/C has an f-decomposition for any nonzero ZG-submodule C of B,
and A has no nonzero ZG-submodule D with D = D? (resp. D = Df), then there
isa K = H and a nonzero ZG-submodule B* = B such that K is pormal in G,
A/B* = B/B* @ A*/B* for some ZG-submodule A* of A, CB‘(KCG(A*)/CG(A*)) =0,
and .KCG(A*VCG(A*) is a finite clementary abelian g¢-subgroup of G/CG(A*)

for some prime gq.
Proof: By Lemma 1.2.14, there isa K = H and a nonzero ZG-submedule Bl =B
such that K is normal in G, CB X) = 0, and IK/CK(Bl)] < .
1

Let A be the ZG-submodule of A such that A/B = B/B e A /B, then by
Corollary 2.3.2, C_(B)) = C_(A). Since IK/CK(Bl)| < o and KCG(Al)/CG(AI)
= KCG(BI)/CG(BI) = K/CK(BL), KCG(AI)/C o(A)) is a finite subgroup of G/CG(AI).

Choose K such that KCG(Al)/ C G(Al) is minimal with respect to CB (K) = 0.

t

Let KO be a normal subgroup of G such that KCG(AI) > KO > CG(AI) and

KCG(A1)/K0 is a minimal normal subgroup of G/KO. By the minimality of

KCG(AI)/CG(AI), we have CBI(KO) # 0. Le B = CBI(KO), then

Al/Bz = Bl/B2 ® A2/B2. Since ch(K) < CBI(K) =0 and C(A) = C(A), 50
K is not contained in CG(AZ) and KCG(Al)CG(Az) = KCG(Az)' That is,
KCG(Az)/CG(Ai) is a nontrivial subgroup of G/CG(AG). Also, by Corollary

2.3.2 again, CG(B2> = CG(AQ). Since Ko < CG(Bz)’ 50 KO < CG(Ag), and

then KC (A) = CG(Az)n(KcG(AI)) = K. By
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il

1 % KCG(Az)/CG(Az) = KCG(AI)CG(AZ)/CG(AZ) KCG(AI)/[CG(AZ)ﬂ(KCG(AI))]
and KCG(AI)/K0 being a finite characteristically simple group, we must have
KCG(Az)/CG(Az) is a finite characteristically simple group. Since H is locally
soluble and K = H, KCG(Az)/CG(Az) is a finite characteristically simple

subgroup of the locally soluble group HCG(Az)/CG(Az)' So KCG(AZ)/ CG(AZ) is

a finite elementary abelian g-group for some prime g¢. Since CB K) =0, we

2
have CBq(KCG(Az)/CG(Az)) = 0.

Now, since A = B-l-Al = B+B1+A2 = B+A2 and Br’]A2 = Bﬂ(AtﬂAo)
= = = = ¥ =
(BNA)NA, = BNA =B, so A/B2 B/B2 ® A2/Bz. Let B B,

and A¥* = Az' The required results follow.

§2.4 SOME OTHERS

This section comprises generalizations of one of Zaicev’s results as well

as other important results,

Lemma 2.4.1: Let G be a hyperfinite group, A a noetherian ZG-module, and B a
ZG-submodule of A such that cach irreducible ZG-factor of B is not a finite
p-group for some fixed prime p. If A/B is a finite p-group, then B has a

complement in A, i.e., A = B @ C for some ZG-submodule C of A.

Proof: Suppose B does not have a complement in A, then by the noetherian
condition we may assume that for every nonzero ZG-submodule C of B, B/C has a

complement in A/C, Let D 0 be a ZG-submodule of A maximal subject to BDDO = O,
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Since A # B @ Do, by replacing A by A.’DO we may assume that for each nonzero
ZG-submodule D of A, BND # 0.

We show first that A is not torsion-free. For otherwise, since A/B is a
finite p-group, there is a ZG-submodule A* of A such that A¥/B is a nontrivial
elementary abelian  p-group and, by A  being torsion-free, A¥ is also
torsion-free, thus pA* % 0 and then A¥ =, G PA* = B contrary to B containing
no irreducible ZG-factors being finite p-groups. So A is not torsion-free. Let
T(A) be the torsion part of A, then T(A) is a nonzero ZG-submodule of A. Thus
TB) = T(A) N B # 0. Let Bl be the nonzero ZG-submodule of B generated by all
the elements of order g for some prime g, then A/BI = ]B/Bi o Al/B1 for some
ZG-submodule Al of A, Since A1/B1EZG A/B, A1/B1 is also a finite p-group. If
g # p, then it is clear that AI = Blea A2 for some ZG-submodule A2 of Al (and
hence of A), thus A = B o A2 contrary to B having no complement in A,
Therefore, ¢ = p and then Al is a p-group. Thus B1 is a ZG-submodule of A1
such that A1/ BI is finite while B1 has no nonzero finite irreducible
ZG-factors. By Lemma 1.2.22, Bl has a complement in Al, and then B has a

complement in A, a contradiction.

Lemma 2.4.2: Let G be a hyperfinite group, A a noetherian ZG-module, and B a
ZG-submodule of A such that B is a finite p-group for some prime p. If A/B has
no nonzero finite ZG-factors being p-groups, then B has a complement in A,

i.e., A = B & C for some ZG-submodule C of A.

Proof: Suppose B does not have a complement in A, then by the noetherian
condition we may assume that for every nonzero ZG-submodule C of B, B/C has a
complement in A/C. Let D0 be a ZG-submodule of A maximal with respect to

B0D0=O. Since A = B o Do’ by replacing A by A/D0 we may assume that for
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each nonzero ZG-submodule D of A, BND % 0, i.e., each nonzero ZG-submodule
of A contains nonzero ZG-submodules being finite p-groups.

Let B1 be the nonzero ZG-submodule of B generated by all the elements of
order p, then A/Bl = B/Bl @ AI/BI for some ZG-submodule Al of A, Let
@: Al}——> pA1 defined by ¢:a +—>pa (Va € Al), then ¢ is a ZG-homomorphism
from Al to pAl. It is clear that Bl =< kerp. Since pA = Al/Kcrgp and

1 T ZG
Al/Bl (= A/B) has no nonzero ZG-factors being finite p-groups, pA! has no

TZG
nonzero ZG-factors being finite p-groups. But each nonzero ZG-submodule of A
(and hence of Al) contains nonzero ZG-submodules being finite p-groups,
therefore we must have PA = 0 and then Al is a ZG-module with the
ZG-submodule Bl such that Bl is finite and the factor-module AI/Bl has no

nonzero finite ZG-factors. By Lemma 1.2.22, B1 has a complement in Al and then

B bas a complement in A, a contradiction.

Combining the above two lemmas, we have:

Corollary 2.4.3: Let G be a hyperfinite group, A a noetherian ZG-module, and

B a ZG-submodule of A such that B (resp. A/B) is a finite p-group for some
prime p. If A/B (resp. B) contains no nonzero finite ZG-factors being
p-groups, then B has a complement in A, i.e., A = Be C for some ZG-submodule

C of A.

From Corollary 2.4.3, we have:

Corollary 2.4.4: Let G be a hyperfinite group and A a noetherian ZG-module.

Then some irreducible ZG-image of A is a finite p-group for some prime p if

and only if so is some irreducible ZG-factor of A.

Proof: If A has an irreducible ZG-factor being a finite p-group for the

33




prime p, then by the noetherian condition A has an irreducible ZG-factor, say
B/C, such that the ZG-submodule B/C of A/C is a finite p-group and the
factor-module  A/C/B/C (.—‘:’ZG A/B) contains no irreducible ZG-factors being
finite p-groups. By Corollary 2.4.3, A/C and then A has an irreducible

ZG-image being a finite p-group.

The above are the generalizations of Zaicev’s result (see Lemma 1.2.22).

Now we prove some other important lemmas.

Lemma 2.4.5: Let G be a hyperfinite locally soluble group and A a noctherian

ZG-module with pA = 0 for some prime p. If all irreducible ZG-factors of A

are finite, then A is finite.

Proof: Suppose A is not finite, then by the noetherian condition we may
assume that for every nonzero ZG-submodule C of A, A/C is finite.

We have A = <a;, ', an>G with n being an integer and the order of a,
is p for each i, Also we may assume that G acts faithfully on A and, since A
is infinite, G is infinite.

Let M be a maximal ZG-submodule of A, then A/M is finite and hence for
H = CG(A/M) we have |G/H| < . Since H is nontrivial, so H contains a
nontrivial finite subgroup, say K, being minimal normal in G (Lemma 1.2.10),
By G being a locally soluble group, K is an clementary abelian subgroup of G.
Let G = C,(K), then K < G and |G/G | < . By Lemma 1.2.5 and (6) in
l.emma 2.2.4, A is an infinite noetherian ZGl—module and all irreducible
Zlefactors of A are finite. Since the ZGl—image A/M is finite, using the
noetherian condition , we may have a ZGl—image A* (= A/D) of A such that

D < M and A* is infinite but for every nonzero ZGl—submodule C* of A%, A¥/C*

is finite. By G being faithful on A, we have the ZG-submodule [A, K] # 0 and
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then the ZG-image (and so ZGl-image) A/[A, Kl is finite. Thus [A, K] is not

contained in D and then X is not contained in CG (A/D) = C G (A¥%).
1 1

Replacing Gl by GI/CG (A*) and K by (KCG (A*‘))/CG (A¥*) we may assume
1 1 l

that (.‘-l acts faithfully on A¥*, then K is a nontrivial finite central subgroup
of Gl' Let 1 % x € K such that x is of order ¢ for some prime q. If ¢ # p,

then, by Lemma 1.2.4, A* = CA‘(<x>)®[A*, <x>]. Since CG (A¥) = 1, so the
1

ZG‘—submodule A¥(x—-1) = [A*, x] = [A*, <x>] % 0. Also, since M* = M/D

and A¥/M* EZG AM,s0 <x>» =K =< CG (A*/M¥*), therefore A*¥(x—1) < M* < A¥*,
1 1

Thus C, (x) = C, (<x>) # 0. But C, () (-:-ZZGi A*/A*(x-1)) and AX(x-1)

(EZG A*/CA*(x)) are both finite and then A¥* is finite, a contradiction. So
1

g = p. Consider the finite Z <x > -module AT = <a> "7, where 0 % a € A%,

Since A‘T is a finite p-group, there exists 0 # a, € A’f such that

a € CA‘(x). By CGl(A*) = 1 we have A¥ # CA*(x) and then A*(x-1)

(EZG A*/CA‘(X)) is a nonzero finite ZGl-modulc. Therefore A¥/A*(x—1) is
{

finite and then A* is finite, a contradiction again. The result holds.

For a general hyperfinite group G (that is, G need not to be locally

soluble), we have:

Lemma 2.4.6: Let G be a hyperfinite group and A a noctherian ZG-module with
pA = 0 for some prime p. If G is a p’-group and all irreducible ZG-factors of

A are finite, then A is finite.

Proof: Suppose A is infinite, then using the noetherian condition we may
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assume that for any nonzero ZG-submodule C of A, A/C is finite.

We have A = <a, ‘v, an>G with n being an integer and the order of a,
is p for each i. Also we may assume that G acts faithfully on A and, since A
is infinite, G is infinite.

Let M be a maximal ZG-submodule of A, then A/M is finite and hence for
H = C_(A/M) we have |G/H| < oo. Since H contains nontrivial finite subgroups
being normal in G (Lemma 1.2.10), so we may let K = H and K is a finite
normal subgroup of G. By G being a p’-group, we have K is a finite p’-group,
thus, by Lemma 1.2.4, A = CA(K) ® [A, K]. Since K = H = CG(A/M), 50
[A, K] = M and then CA(K) # 0. By G being faithful on A, we have CA(K) #+ A
and then [A, K] # 0. Thus C,(K) (EZ g AllA, K]) and [A, K] (EZ G A!CA(K))

are both finite and then A is finite, a contradiction. Hence the result holds.

The final result of this chapter has a wvery special but simple proof. We
mention that it will play an important role in our work similar with that of

Fitting’s lemma.

Lemma 2.4.7: Let G be a group, A a ZG-module, and M a ZG-submodule of A such
that A/M is a p-group for some prime p. If H = C G(A/M) contains a nontrivial
subgroup K such that K is a finite g-group for some prime g other than p, then
A = CA(x) + M for any x € X. Further, A = CA(K) + M. (We note that
the subgroups CA(x) and CA(K) may not be ZG-submodules of A.)

n

Proof: Let x € K, then x? = 1 for some integer n. Since
B, n_, n
7 + x? v x+ - =x¥ -1 =0, and
n g1 )
qg = (x + x + -+ x + 1) *
=) "3
ST 2 T 4 (2x + (@D,
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n n
so " = AGT TN+ x¥ TP 4 ik x + 1)+ AR-D = C, (0 + M. That is,

A/(CA(X) + M) isa g-group. But A/M is a p-group and p # ¢, so we must have
A= CA(x) + M,
Let K = {x1=1, X, **°, xt} and let C_ = CA(xl, e xm), where

m= 1,2, +-+, t, Suppose that A = Cm + M, we prove that A = Cm+l + M. By

the equations in (*) above, we have

n
Paex? 24 v x +1) + C (x  —1)
m m+l

n
n q -
7 Cm = Cm(xm-{-l m+1 m+1

= ch(me) + MNC) = €+ (MNC).

Since A = C_+ M so, as groups, A/M = C /(MNC ). Thatis, C /(MNC ) is
m m m mn m

also a  p-group. By an]m = C + (MﬂCm) and g # p, we |Thave

m+1

C =¢ + (MNC ), and then
m m+1 m

A=C +M=2C + (MNC ) +M =2 + M
m m+1 m m+1

as required. So A = Cm + M for all m. In particular, put m = t, then

Cl = CA(K) and A = CA(K) + M. The lemma is proved.
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3 THE f-DECOMPOSITION OF THE NOETHERIAN MODULES

In this chapter, we aim to prove the main result—Theorem A.

If a noetherian ZG-module A over a hyperfinite group G contains a
ZG-submodule B such that B (resp. A/B) is finite and A/B (resp. B) contains no
nonzero  finite  irreducible ZG-factors, then B has a complement in
A (Lemma 1.2.22). In §2.4, we have given a generalization of this result. Now
we will prove a number of other generalizations and corollaries under the

condition that G is hyperfinite and locally soluble.

The following is in fact the beginning of the main proof for Theorem A.

Proposition 3.1: Let G be a hyperfinite locally soluble group, A a noctherian

ZG-module, and B a ZG-submodule of A such that each irreducible ZG-factor of B
is finite while A/B has npo finite irreducible ZG-factors. Then B has a

complement in A, i.e., A = BoC for some ZG-submodule C of A.

Proof:  Suppose that B does not have a complement in A. By considering an
appropriate factor-module of A we may assume that for every nonzero
ZG-submodule B of B, B/B has a complement in A/B. Also, let C be a
ZG-submodule of A maximal with respect to BNC=0. Then A#BoC. By replacing
A by A/C we may assume that for every nonzero ZG-submodule D of A, BND=0.
That is, A contains no nonzero ZG-submodules with all irreducible ZG-factors
being infinite.

If A is not torsion-free, let T(A) be the torsion part of A, then T(A) is
a nonzero ZG-submodule of A and then T(B) = BNT(A) # 0. Let B¥ be the nonzero
ZG-submodule of B generated by all the elements of order p for some prime p,

then A/B* = B/B* ® A¥*/B* for some ZG-submodule A* of A. Let @: A¥ — pA¥
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be defined by ¢: ar— pa for all a€A*, then ¢ is a ZG-homomorphism from A*

to pA* and B* = kerg. If pA* = 0, then since pA* = A*/kerg and A¥/B¥*

yAC]
has no finite irreducible ZG-factors (as A*/B¥ =, G A/B), the irreducible
ZG-factors of pA* are all infinite, a contradiction. So pA*¥* = 0. That is, A*

is an elementary abelian p-group for the prime p. If B* has a complement in
A¥* ie., A* = B*e C* for some ZG-submodule C*, then A = BeC* (Lemma 1.2.25),
a contradiction. So B* has no complement in A*, and A¥* satisfies all the
conditions that are satisfied by A. Hence we may replace A by A* (when A is
not torsion—free)‘ and then we may assume that A is either torsion-free or an
elementary abelian p-group for some prime p.

Let L = CG(A/B), where we have B is a nonzero proper ZG-submodule of A
such that all irreducible ZG-factors of B are finite and A/B has no finite
irreducible ZG-factors. We consider the following two cases: (@ L=1, or
() L=*1.

(@ L = CG(AIB) = 1. In this case, let N1 and N2 be two maximal
ZG-submodules of B such that B/N] is a finite p-group and E/N2 is a finite
g-group, where p and ¢ are primes and, if A is torsion-free, we can assume
p # q (by using Lemma 2.1.4). Let M1 and M2 be two ZG-submodules of A
such that A/M =, . B/N and AM =, . BN (such M, and M exist as we
can take AIN1= B/N1 @ MI/NI and A/N2= BIN2 ® leNz)' Let M = MlﬁM2 and
let H = CG(A/M), then |G/H| <o,

Let W =C(H. If W#0,thenlet0#aeW, wehave U= <a>"isa
nonzero ZG-submodule of B and then A/U = B/U & V/U for some ZG-submodule V
of A. By Corollary 2.3.2, we have CG(U) = CG(V). But H = CG(W) = CG(U)
and CG(V) =< CG(V/U) = CG(A/B) = [ = 1, then it follows from |G/H] < oo that

G is a finite group, contrary to A having infinite irreducible ZG-factors. So
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W = CB(H) = 0. Now, by Lemma 2.3.3, there exists a K =< H and a nonzero

ZG-submodule Bl of B such that K is normal in G, A;’B1 = B/Bl @ Al/B! for
some ZG-submodule Al of A, CBI(KCG(AI)/CG(AI)) = 0, and KCG(Al)/CG(Al) is

a finite elementary abelian r-subgroup of G/CG(AI) for some prime r. Since
CG(AI) = CG(AI/Bl) = CG(A/B) =L =1, so CG(AI) = 1 and then K is a
nontrivial finite ¢lementary abelian r-subgroup of G for some prime r.

If C A(K) # 0, then since BlﬂCA(K) = CB X) = 0, we have

|
= = i 2.2

C,(K) =4 (CA(K)&BBI)/BI < A/B = B/B e A/B. Using Lemma 1.2.23, we
get CA(K) has an f-decomposition and, by the fact that A has no nonzero
ZG-submodules  with all irreducible ZG-factors being infinite, we have

CA(K) < B. Let B3 = CA(K), then A/B3 = B/B3 ® A3/B3 for some ZG-submodule

A3 and K = CG(Ba) = CG(A3) (Corollary 2.3.2). But
CG(AS) = CG(A3/B3) = CG(A/B) = L=1,

thus K = 1, a contradiction. So CA(K) = 0.
If A is an elementary abelian p-group, then by CA(K) = 0 we have r # p;
also, on the other hand, if A is torsion-free, then we have r # p or r # g. By

Lemma 2.4.7 and CA(K) = 0 we have the contradiction that
A=CEKY+M =M < A,
A i i

where i = lor2 if r#p or r # gq.
Case (a) is proved.
b L = CG(A/B) # 1. In this case, let B¥* = CB(L), and we consider the
following two subcases: (i) B* = 0, or (i) B* = 0.
(i) B¥ = CB(L) = 0. By Lemma 2.3.3, there exists a K =< L and a

nonzero ZG-submodule B1 of B such that K is normal in G, A/Bl = B/Bl @ Al/Bl
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for some ZG-submodule A of A, CBI(KCG(AI)/CG(AI)) =0, and KC_(A)/C_(A)
is a finite elementary abelian g-subgroup of G/CG(A1) for some prime gq.
Consider Al as a ZG-module, where G = G/CG(Al). Then it is evident that
T %K=L =C;AB) and C(K) = 0. Also it is clear that all the
1
irreducible ZG-factors of B1 are finite, the factor-module AllBl has no finite
irreducible ZG-factors, and A, has no mnonzero ZG-submodules with all
irreducible ZG-factors being infinite. Thus, since BlﬁCA(f) = CBER_) = 0, we

1

have CAl(K) = 0.

It A1 is an elementary abelian p-group, then by CAl(f{—) = 0 we have g#p.
Alsa, if A1 is torsion-free but Al/Bl is not torsion-free, then we may assume
that Al has a ZG-submodule A2 such that A2/B1 (= AI/BI) is a noatrivial
elementary abelian r-group for some prime r, and then A2 Ela rA2 = B1 (by A2
being torsion-free), contrary to Bl having no infinite irreducible 7 G-factors.
So Al is torsion-free implies that A1/B1 is torsion-free, too. By Lemma 2.1.4,
we have Al/B1 > p(AllBl) for any prime p. Therefore A1 always contains a
proper ZG-submodule M such that Bl < M and AllM is a p-group for some prime
p other than ¢. Since K < L = C5(A/B) = C(A/M), by Lemma 24.7,
A= CAI(K)+M = M < A, a contradiction.

@ B* = CB(L) # 0. We write A as a sum A = B+A¥ with BNA* = B¥,

For any C < B* (C # 0), since A*/C = B¥/C @ A/C for some ZG-submodule A of

A, and since L centralizes both B*/C and A/C (as L = C,(B*) and L = C_(A/B)
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= Cg(A*/B*) = CG(K/C)), then L = CG(A*/C). Let C* = NC, where 0 # C = B*,
then either C¥ = 0 or C* is a finite irreducible ZG-submodule of A. If
C* # 0, then A/C* = B/C* @ A/C* for some ZG-submodule A of A and then, by
Lemma 1.2.22, X =C* @ A for some ZG-submodule A. It is clear that A is a
nonzero ZG-submodule with all irreducible ZG-factors being infinite, contrary
to A having no such ZG-submodules. So we must have C*¥ = 0, As [A¥ L] < C for
all 0 % C < B*¥, so [AY L] = NC = C*¥ = 0; thatis, L = CG(A*). Also since
CG(A*) = CG(A*/B*) =1L, so L = CG(A*). Now consider A* as a ZG-module,
where G = G/CG(A*), and let L = CE(A*/B*), then it is clear that L = 1.
Thus, by the proof of the above for the case (@), we get a contradiction. So

we have in fact finished the proaf,

Dual to Proposition 3.1, we have

Proposition 3.2: Let G be a hyperfinite locally soluble group, A a noctherian

ZG-module, and B a ZG-submodule of A such that each irreducible ZG-factor of
A/B is finite while B has no finite irreducible ZG-factors. Then B has a

complement in A, i.e.,, A = BaC for some ZG-submodule C of A.

Proof: Suppose B does not have a complement in A. By considering an
appropriate factor-module of A we may assume that for every nonzero
ZG-submodule B of B, B/ has a complement in A/B. Also, let C be a
ZG-submodule of A maximal subject to BNC = 0, Then A % BeC. By replacing A
by A/C we may assume that for every nonzeroc ZG-submodule D of A, BND # 0.

That is, A contains no nponzero ZG-submodules with all irreducible ZG-factors
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being finite.

If A is torsion-free but A/B is not, then let A* be a ZG-submodule of A
such that A*/B is a nontrivial elementary abelian p-group for some prime p.
Thus A*.—‘EZG pA¥<B by A* being torsion-free, but this is contrary to B
containing wno finite irreducible ZG-factors. So A Dbeing torsion-free implies
that A/B is also torsion-free.

If A is not torsion-free, let T(A) be the torsion part of A, then T(A) is
a nonzero ZG-submodule of A and then T(B) = T(A)NB # 0. Let Bl be the nonzero
ZG-submodule of B generated by all the elements of order p for some prime p,
then A/B1 = B/Bl o Al;’Bl for some ZG-submodule Al of A. Let ¢: AI —> pA1
be defined by ¢: ar— pa for all a € Al; then ¢ is a ZG-bomomorphism from

Al to pAl and B1 < kerp. If pAl # 0, then since pAl =5 Alfkerqz and

G
AIIBl has no infinite irreducible ZG-factors, pAl is a nonzero ZG-submodule
with all irreducible ZG-factors being finite, contrary to A having no such
ZG-submodules. So pAl = (. That is, A contains a nonzero ZG-submodule Al,
which is an elementary abelian p-group for some prime p, such that A = B+A1.

As before, we can replace A by A | (if necessary), so we may assume that A

is either torsion-free or an elementary abelian p-group for some prime p. For

f and A/B = (A/B)f, since A/B is

the nonzero ZG-submodule B of A with B = B
accordingly either torsion-free or an e¢lementary abelian p-group, we can
assume that A contains two maximal ZG-submodules Ml and Mz’ both containing
B, such that A/Ml is a finite p-group and A/M2 is a finite g-group, where p
and ¢ are primes, and in the case that A/B is torsion-free, by Lemma 2.1.4, we
may assume that p # g. Let M =M M, and let H = C_(A/M), then |G/H| < .

If a € CB(H), then the ZG-submodule <a>G as a group is finitely

. . G . s .
generated and so each irreducible ZG-factor of <a> ~ is finite, Since B has no
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nonzero finite irreducible ZG-factors, we must have <a>G=O and so a = 0
that is, CB(H) = (0, Now, by Lemma 2.3.3, there is a K = H and a nonzero
ZG-submodule B¥ =< B such that K is normal in G, A/B¥* = B/B¥* @ A%/B* for
some ZG-submodule A¥ of A, CB'(KC G(A*)/CG(A*)) = 0, and KC_(A%/C_(A%) is
a fipite elementary abelian r-subgroup of G/CG(A*) for some prime r.

Since A*/B* =16
that M* = MTHM;, A"‘/M’i= =G A/MF A*/M; =,

A/B, there exist ZG-submodules M¥, M’;‘, and M;’ such

*® ¥ =
A/Mz, A¥IM* = GA/NI,

G z
and B* = M* Let G = G/C (A%, then, since C(A%) = C (A¥/M¥) =

C,(A/M) = H, H = H/C (A%). It is clear that H = Co(A*/M*). Also 1+K=<H
and K is a finite e¢lementary abelian r-group for the prime r. Since
CB*(I—(_) = 0, if A* is a p-group, then r # p, and if A*/B* is torsion-free,
then r ¥ p or r # g. By Lemma 2.4.7, we have A* = CA*(E)%-MT, where
M* = M¥orM¥ if r #p or r # g. Since B*ﬂCA‘(K) = CB*(E) = 0 and A¥
has no nonzero ZG-submodules with all irreducible ZG-factors being finite, so

CA*(K) = 0 and then A* = M’;‘ < A*  a contradiction.

The result is proved.

Joining these two propositions, we get the following corollary, which
generalizes Lemma 1.2.22 in the case that G is hyperfinite and locally

soluble.

Corollary 3.3: Let G be a hyperfinite locally scluble group, A a noctherian
ZG-module, and B a ZG-submodule of A such that each irreducible ZG-factor of B
is finite (resp. infinite) and A/B contains no finite (resp. infinite)
irreducible ZG-factors. Then B has a complement in A, i.e., A = BeC for some

ZG-submodule C of A.
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From Corollary 3.3, we have

Corollary 3.4: Let G be a hyperfinite locally soluble group and A a
noctherian  ZG-module. Then A has a finite (resp. infinite) irreducible

ZG-image if and only if A has a finite (resp. infinite) irreducible ZG-factor.

Proof: Suppose A has a finite (resp. infinite) irreducible ZG-factor, then
by the noectherian condition we have A contains an irreducible ZG-factor, say
B/C, such that the irreducible ZG-submodule B/C of A/C is finite (resp.
infinite) and the factor-module A/C/B/C (EZG A/B) contains no finite (resp.
infinite) irreducible ZG-factors. By Corollary 3.3, we have A/C and hence A

has a finite (resp. infinite) irreducible ZG-image. The corollary is true,

Another consequence of Corollary 3.3 is that

Corollary 3.5: Iet G be a hyperfinite locally soluble group and A a
noetherian ZG-module. If A has a ZG-composition series in which the finite
(resp. infinite) irreducible ZG-factors of A are only finitely many, then A

has an f—decomposition.

Proof: It follows from Corollary 3.3 and induction on the finite number of

the finite (resp. infinite) irreducible ZG-factors in a ZG-composition series.

As in the hyperfinite case, we can generalize Corollary 3.3 in the
following forms, and these results will be seen to be wuseful in the Ilater

discussions.

Proposition 3.6: Let G be a hyperfinite locally soluble group, A a noetherian

ZG-module, and B a ZG-submodule of A such that each irreducible ZG-factor of

A/B is a finite (resp. infinite) p-group and B has no irreducible ZG-factors
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being finite (resp. infinite) p-groups, where p is a fixed prime. Then B has a

complement in A, i.e., A = BoC for some ZG-submodule C of A.

Proof: Suppose B does not have a complement in A, then by the noetherian
condition we may assume that for every nonzero ZG-submodule C of B, B/C has a
complement in A/C., Let D0 be a ZG-submodule of A maximal with respect to
BﬁDG| = 0, Since A # B@Do, by replacing A by A/D0 we may assume that for any
nonzero ZG-submodule D of A, BND = 0.

Since ¢ach irreducible ZG-factor of A/B is a finite (resp. infinite)
p-group for the fixed prime p, by Lemma 2.1.4, A/B is not torsion-free, and
further A/B is a p-group, We claim that A s also not torsion-free. For
otherwise, let A* be a ZG-submodule of A such that A*/B is a nontrivial
elementary abelian p-group, then pA* % 0 and then A* =26 pA* < B, contrary
to B having no irreducible ZG-factors being finite (resp. infinite) p-groups.
So A is not torsion-free. Let T(A) be the torsion part of A, then T(A) is a
nonzero ZG-submodule of A and then T(B) = BNT(A) # 0. Let Bl be the nonzero
ZG-submodule of B generated by all the elements of order ¢ for some prime gq,

then A/Bl = B/Bl ® Al!B1 for some ZG-submodule Al of A. By AI/Bl =_ . A/B,

ZG
we have AI/B1 is a p-group. If ¢ # p, then it is clear that Al = quaA2 for
some ZG-submodule A2 and then A = BaaAz, a contradiction. Thus ¢ = p, and
then AI is a p-group. Now each irreducible ZG-factor of Al.’BE is finite (resp.
infinite) and the ZG-submodule Bl has no finite (resp. infinite) irreducible

ZG-factors, by Corollary 3.3, we have Al = Bleb(ll and then A = BeaCl, a

contradiction again.

Corollary 3.7: Let G be a hyperfinite locally soluble group, A a noetherian

ZG-module and p a prime. Then A has an irreducible ZG-image being not a
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finite (resp. infinite) p-group if and only if the same is true for some

irreducible ZG-factor of A,

Proof: If A has an irreducible ZG-factor being not a finite (resp. infinite)

p-group, then by the noetherian condition we have A contains an irreducible
ZG-factor, say B/C, such that the irreducible ZG-submodule B/C of A/C is not a
finite  (resp.  infinite¢) p-group but the irreducible ZG-factors of the
factor-module  A/C/B/C (EZG A/B) are all finite (resp. infinite) p-groups.

By Proposition 3.6, we have A/C and then A has a nonzero irreducible ZG-image

being not a finite (resp. infinite) p-group.

The dual of proposition 3.6 is:

Proposition 3.8: Let G be a hyperfinite locally soluble group, A a noetherian

ZG-module, and B a ZG-submodule of A such that each irreducible ZG-factor of B
is a finite (resp. infinite) p-group and A/B has no irreducible ZG-factors
being finite (resp. infinite) p-groups, where p is a fixed prime. Then B has a

complement in A, i.e., A = BaC for some ZG-submodule C of A,

Proof:  Suppose B does not have a complement in A, then by the noetherian
condition we may assume that for every nonzero ZG-submodule C of B, B/C has a
complement in A/C. Let Do be a ZG-submodule of A maximal subject to BF\D0 = 0.
Since A # B@DO, by replacing A by A/D0 we may assume that for each nonzero
ZG-submodule D of A, BND = 0, i.e., each nonzero ZG-submodule of A contains
irreducible ZG-factors being finite (resp. infinite) p-groups for the fixed
prime p.

By Lemma 2.1.4, B is not torsion-free, and further B is a p-group for the

prime p. Let Bl be the nonzero ZG-submodule of B generated by all the elements
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of order p, then A/Bl = B/Bl @ Al/Bl for some ZG-submodule A1 of A. Let
@: Al——-> pr be defined by ¢: ar— pa for al a € A; then ¢ is a
ZG-homomorphism from A1 to pAl, and it is clear that Bl =< kerp. Since
pA1 =75 Allkerw and AIIBl (EZG A/B) has no irreducible ZG-factors being
finite (resp. infinite) p-groups, so pA1 has no irreducible ZG-factors being
finite (resp. infinite) p-groups. But each nonzero ZG-submodule of A (and
hence of AI) contains irreducible ZG-factors being finite (resp. infinite)
p-groups; therefore we must have pAl = 0 and then Al is a ZG-module with the
ZG-submodule B1 such that each irreducible ZG-factor of }3l is finite (resp.
infinite) and the factor-module Al/Bl has no finite (resp. infinite)
irreducible ZG-factors. Thus, by Corollary 3.3, we have Al = 13169C1 and then

A = BQCE, a contradiction.

Corollary 3.9: Let G be a hyperfinite locally soluble group, A a noetherian
ZG-module and p a prime. Then A has an irreducible ZG-image being a finite
(resp. infinite) p-group if and only if the same is true for some irreducible

ZG-factor of A.

Proof: If A bhas an irreducible ZG-factor being a finite (resp. infinite)
p-group, then by the noetherian condition we have A contains an  irreducible
ZG-factor, say B/C, such that the irreducible ZG-submodule B/C of A/C is a
finite (resp. infinite) p-group and the factor-module A/C/BIC (EZ G A/B) has
no irreducible  ZG-factors  being  finite  (resp.  infinite)  p-groups. By

Proposition 3.8, we have A/C and hence A contains the required ZG-images.

Comparing with Corollary 2.4.3 and Corollary 2.4.4, we see that

Proposition 3.8 and Corollary 3.9 are generalizations of these results in the
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locally soluble case.

An important step in proving Theorem A is the following reduction

result.

Proposition 3.10: Let G be a hyperfinite locally soluble group and A a

noetherian ZG-module. If A has no f-decomposition, then A has a nonzero

ZG-image A satisfying:

(@ A has no f—decomposition;

(b) for every nonzero ZG-submodule C of A, A/C has an f-decomposition;

(¢) A has no nonzero ZG-submodules with an f—decomposition;

(@ A is torsion-free: and

(¢) the finite irreducible ZG-factors of A are all p-groups for some
fixed prime p.

Proof: Since A has no f-decomposition, then by the noetherian condition

there is a nonzero ZG-image A satisfying the conditions (2) and (b).

For A, suppose B < A and B has an f-decomposition, i.e., B = _F}fea ﬁf‘ If

8t # 0, then since 8 is a nonzero ZG-submodule of A, by (), X/_ﬁf has an

f—decomposition. Let K/ﬁf f

= A/B e Kzl“ﬁf, where A is a ZG-submodule of A
such that Kl = B and lenﬁf = (X/‘ﬁf)f and the ZG-submodule Xz (= §f) is
such that —A_Z/'Tif = (K/ﬁf)f. By Proposition 3.1, Xz = BleC for some
ZG-submodule C whose irreducible ZG-factors are all infinite. And then it is
clear that A = A oC, where evidently each irreducible ZG-factor of Kl is

finite. That is, A has an f-decomposition, contrary to (g). So B =0.

Similarly, by applying Proposition 3.2, we can prove B = 0. So B = 0.

Therefore the condition (¢) is satisfied by A.
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If A does not satisfy the condition (d) or the condition (¢), then by
(c), we may assume that A is either an elementary abelian p-group for some
prime p or a torsion-free group which contains at least two nonzero finite
irreducible ZG-factors, ome being a p-group and the other a g-group, where p
and g are two distinct primes.

We may also assume that G acts faithfully on A, i.e., CG(X)=1. By
Corollary 3.9, we may assume that A contains two maximal ZG-submodules ﬁl
and —Iﬁz such that K/M—I is a nontrivial finite p-group and K/Hz is a nontrivial
finite r-group, where r = p or g according to A being torsion or torsion-free.
Let M = M, NM, and let H = C_(A/M), then |G/H| < oo, For C = C ), if C + 0,
let 0 # aeC, then the ZG-submodule <a>% is nenzero and each of its irreducible
ZG-factors is finitely generated as an abelian group and hence is finite,
contrary to the condition (¢). So C = 0. By Lemma 1.2.14, there exists a K <= H
and a nonzero ZG-submodule M* < M such that K is normal in G, CQ*(K) = 0, and
}Kch(“ﬁ*)[ < .

We show that CK(H*) = 1. If not, then Cx(ﬁ*) contains a nontrivial
finite subgroup F being normal in G. Since F is not contained in C G(X) = 1 and
A/M* has an f-decomposition, by Lemma 2.3.1, A has a nonzero ZG-submodule with
an f-decomposition, a contradiction. So CK(ﬁ*) = 1 and then K is finite.

Choose K to be minimal with respect to Cﬁ‘(K) = 0, If K is not a minimal
normal subgroup of G, then K contains a nontrivial proper subgroup Kl being
pormal in G. By the minimality of K, we have C—ﬁ‘(Kl) # 0. Let M** = Cﬂ*(KR‘
then 1 # Kl = CK(H**). As in the last paragraph, we obtain a contradiction. So
K must be a minimal normal subgroup of G. Since G is locally soluble, K is an
elementary abelian k-group for some prime &,

In order to apply Lemma 2.4.7, we should consider that & # p or &k # g
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in the case that A is torsion-free; or we have k¥ * p by using C—ﬁ*(K) = 0 in
the case that A is a p-group (Lemma 1.2.7). Now from Lemma 2.4.7we have
A = CX(K)+—Mi, where K{—i = _I\«—il or Hz according to k # p or k # g. Since Hi < A,
50 CK(K) # 0. But, since ﬁ*ﬂCX(K) = C—ﬁ*(K) = (0, we have
CL(K) =44 (CX(K)eﬁ*)/H* < A/M* and then, since A/M* has an f~decomposition,
each ZG-submodule of A/M* has an f-decomposition (Lemma 1.2.23) and hence so
does CX(K)’ a contradiction. So we have, in fact, proved that A satisfies the
conditions (d) and (e).

The result is proved.

From Proposition 3.10 and its proof, we can get a number of results which
assert that the noctherian ZG-module A has an f—decomposition under certain

conditions. Among these, the simplest and most useful one is:

Corollary 3.11: If G is a hyperfinite locally soluble group, then any

periodic noetherian ZG-module A has an f—decomposition.

By Proposition 3.10, the task for proving Theorem A is now reduced to
considering torsion-free noectherian ZG-modules. For such modules, we need to

prove the following

Proposition 3.12: Let G be a hyperfinite locally soluble group, A a

torsion-free noetherian ZG-module, and A, = plA, where p is a prime and
11

i=0,1,2,-+-+. Then
(1) for any O=j<i, Ajj/Aii has an f-decomposition
AIA =A/JA o A /A,
J] 11 1) 1 i ii

where A is the ZG-submodule of A such that A =A_  and AJA = (A._/A,,)f
1} hi} ij il ij il ij il
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and the ZG-submodule A (= A)) is such that A /A, = (A_/A _)f;
ji i ol i

2) AijsAik and AijsA"_, Vk=<j and Vs=i;

It

3 A, A NA , where kxi, s<i, and i= 0,1,2,
ii ik s

*

i

[C)) Aij Aiknij’ where k=<j, s<i, and i,j=0,1,2, - +;

_ _ f
(5) Aij/Au = Akj/Akk ® Am/An, Akj/Akk = (Aij/An), and
f .
Aik/Akk = (Aij/Aﬁ) , where k=i, j;

_ B f
(6) Aij/A w = Asj/A o © A&/A o Asj/Ask = (Aij/Ask), and

_ 3 L .
A&/Ask = (Aij/Ask), where k2j, sxi, and i, j=0,1,2,--+";

N Aij/Ai,szZG A“/Ak‘ert and Aij/A A/

i+, EZG ks Ak-&-t,s
where i, j, k, s, t=0,1,2,---;

k . .
@8 p A‘j_A1+k,j+k’ i, j, Xx=0,1,2,--+,

1

Proof: (1) By Lemma 2.1.4, A“=pA<A, and then Aii<Ajj for any 0=j<i. Since
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A is noetherian, so Ajj/Aii is noetherian and is also periodic. Thus, by
Corollary 3.11, Ajj/Aii has an f-decomposition, i.e.,
AJA = A /A o A /A,
n n j 1 i
where A is the ZG-submodule of A such that A, >A and A /A = (A,,/A__)f
ij ji ij ii ij i oo

and the ZG-submodule A (= A ) is such that A,,/A__= (A‘,/A,,)f.
n u jioii 3 il

(2) We prove AijSAik for any k=<j and 1,j=0,1,2,:+--.
If j<i, then AiisAjjsAkk for any k=<j. Thus Ajj/Aii = Akk/Aii and then
AJA =< A fA . Thatis, A _<A_.
ij il ik il ij ik

If j>i, then if k=i, we have AikaAiizAij; so we may assume that

i<k=j., Thus A =2A =A =A . Since A /A has an f-decomposition, we have
ii ik kk i) i jj

Aik/Ajj has an f-decomposition (Lemma 1.2.23). Let B be the ZG-submodule of

A such that B= A and B/A, = (A, /A.,)f, then B=<A  and every irreducible

ik 3 ii ik i

ZG-factor of Aii/B is isomorphic either with one of the irreducible ZG-factors

of Aii/Aik or with one of those of Aik/B and so is finite., So we will have

B=A and then A =A . Thus, we have proved that A_<sA_ for any k<j.
ij ik ij ij ik

Similarly, we have AijSAs" V s<i.
j

(3) By (@), Aii = AiknAsi for any k=i and any s<i.
Since (A_NAYA = A /A = (A /A )f and  (A.NA YA =
ik si” il ik il kk' i ik siv i T

AJA. = (A JADY, so (A NA YA s trivial. That is, A. = A NA
si i s il ik si ii ik si

i1
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for any k,s<i, and i=0,1,2,"-",

(4) By (2, Aij = AikﬂAsj for any k<j and any s<i.
On the other hand, we let j=<i, then by
(A NAYA < A /A, N AJA = A JA = A /A,
ik Ji i ik i jj i i ij il
we have A NA =< A . For s=<i, if s<j, then
ki ij
AikﬂAsj = (AikﬂAjk)ﬂASj = Aikﬂ(AjkﬂAsj) = AikﬁAjj < Ai};
and if j<s=<i, then A NA =< A NA = A_. That is, A = A NA.
ik sj ik ji ij ij ik sj
for j=i, k=j, and s=<i. Similarly, we have Aij = AikﬂASj for j>1i, k=j, and

s<i. Thus Aij = AikﬁAsj for any k=<j and any ssi.

(5) Suppose iz=j, then Ajj = Aij = Aii = Akk’ where k=1, Since Ajj/Akk

has an f—decomposition, we have Ai'/Akk has an f-decomposition. Let
j

A /A = B/A e C/A , in which B is the ZG-submodule of A such that
ij  kk kk kk 13

_ f :
BzAkk and B/Akk = (Aij/ Akk) and the ZG-submodule C (= Akk) is such that
f .
C/Akk = (Aij/Akk)' Then, by Lemma 1.2.23, B =< Akj and C = Aik. Since
A__/A = (A,,/A )f and A,,/B has no finite irreducible ZG-factors, so
ij kk i kk 1

- : _ f .
B = A. Meanwhile, by Aij/Akk = A jk/Akk = (Aﬁ/Akk) and Aij/C having

no infinite irreducible ZG-factors, we have C = Aik' Thus

Aij/Akk = Akj/Akk ® Aik/Akk for any k=i=zj.

Similarly, the result is true for k=j>1i,

54




(6) Suppose i=j, then, by (2), .AijaASj and AijZAik for any s=i and any
k=j. Thus A, = A +A_ . By (5), if s=zk, then A, = A +A = A +A , and
if sj ik ij sj is sj ik
if s<k, then Aij = Akj+Aik = Asj+Aik' So Ai.i = Asj+Aik'

By (), Ay, = A NA,, so Aij/ASk = Asj/Ask ® Aik/ASk, where k=j,
s=i, and j=i=0,1,2,----.

For Asj/Ask: @ if s=k(=j), then AsjaAskaAss and, since each
irreducible ZG-factor of Asj/Ass is finite, we have each irreducible ZG-factor
of A /A is finite; (i) if k=s=j, then A =A =A  and, by each

sj sk 8j s§ sk
irreducible ZG-factor of ASj/Ask is isomorphic to one of the irreducible
ZG-factors of A_/A or one of that of A /A , we have A,/A contains only
sj ss ss sk s sk
finite irreducible ZG-factors; and (i) if (k=)j=s, then ASSZAsjzAsk and,
since each irreducible ZG-factor of Ass/Ask is finite, we have any irreducible
ZG-factor of A /A s finite. Thus A JA = (A /A L Similarly,
sj sk sj sk ij sk
f f
we  have Aik/Ask = (Aij/Ask)' Therefore, Asj/Ask = (Aij/Ask) and
f
Aik/Ask = (Aij/ASk).

For i>j, the proof is similar,

(7) We only consider the case in which i=<j, k<s, and k=i (as we can

similarly prove the other cases).
By (5), we have

JA = A, _/A, . ® A . /A o and
iy Lyt JHL) Lyt 1,)+t  JHtj+t

A = A A ® A A .
ks s+t,5+t s+t,s  s+t,54t k,s+t  s+t,s5+t
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Thus Aij/Ai,j+t ZG Aj+t,j Aj+t,j+t

i
IR

and Aks/Ak,s-H ZG As+t,s As+t,s+t'

By jj/Aj+t,j+t =G Ass/As+t,s+t (Corollaty 2.1.3), we have
f_ f_
j‘?'l,j/Aj'H,j'*'l N (Aj}/Aj+t.j+t) TIG (Ass/As+t,s+l) - As+t,s/As+l.s+l'

Thus Aij/Ai,j+t EZG Aks/Ak,s+t'

Similarly, we have AU/AiH’j EZG Aks/AkH’S.

(8) By induction, we only need to prove pAij=Ai+1,j+l for any i, j=0.

Let izj; by (6), Aij/Ai+l,j+l B Ai+l,j Ai+1,j+l ® Ai,j+1 Ai+l,j+1’
and by (7), Ai+1,j/Ai+l,j+1 EZG Aoo’,Am and Ai,j+1/Ai+1,j+l EZG Aoo/Am' So

p(Aij/Ai+1,j+l) = ‘D(Ai+1,j/Ai+l,j+l) ® p(Ai,j+1/Ai+l,j+l)

=16 p(AOO/Am) ® p(AOO/Aw) = 0.

That is A <A .
> P ijs i+1,j+1

. =pb
On the other hand, let aEAi+1,j+1’ then aEAjH,jH\AiH,iH Thus a=p

for some beA_,\A_,. If b&A , then (<b>G+A“)/A,, is not contained in A_,/A“
o ij ii ii ij i

and then (<b>G+Aﬂ)/ Aii contains infinite irreducible ZG-factors. Since

G
Ai+l,j+I/Ai+l,i+l = (<a> AL / AlrLisn
_ G
={<b> +Ai+1,i+1)/Ai+1,i+1
_ G G
=G P<b> / (p<b> NAL )
G G . .
= p<b> /p(<b> ﬂAﬁ) (as A is torsion-free)
= <b>9/ (<p>%nA) (Lemma 2.1.1)
ZG ii

. G
=76 (<b>"+AY / A,
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we have A /A, . contains  infinite  irreducible  ZG-factors, a
i+1,j+1 i+1,i+1

contradiction. So b&A  and then a€pA .. Thus A | =pA . Therefore,
ij ij i+l,j+1 ij
PAij=Ai+l,j+l for ixj.
Similarly, we have pAij=Ai+1,j+1 for i<j, Thus pAijzAi+1,j+1’ for
any i,j=0.
Furthermore, let A = NA_ and A, = NA_  for i=0,1,2,---, then by
i AR 1 ice IRt

' applying Proposition 3.12, we can prove the result which will be very

important in the following critical proof for Theorem A.

Proposition 3.13:  Under the hypothesis of Proposition 3.12 and the notation

above, one has:

k k .
= = = I
(@) pA ; A bk and p Ai AHk, R i,k=0,1,2, ;

= = 1 i= Do
&) Aook AOOjnAik and Akoo AjoeﬂAki, k=j, and i=0,1,2, ;

(©) Amj/Aook =25 (ijkak)/Akk < Akj/Akk and

= H— L
Ajoo/Akoo =55 (AjOO+Akk)/Akk = Ajk/Akk, k=j=0,1,2,-*+-; and

(@) Aioo (resp. Aooi) has no finite (resp. infinite) irreducible

ZG-factors being p-groups, i=0,1,2, -

Proof: (a) We only prove p,‘km,l:/\oo’H_1 for i=0,1,+ -+,

By (8) in Proposition 3.12, PAji = Aj+i.i+1’ S0
pAooi = p(fJ)Aji) = rjw(iji) (as A is torsion-free)
= fPAj-H,iH = ?Aj,i'*-l = Am,i+1'
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() For kzj=0, using (6) in Proposition 3.12, we have

ANy = (QAPNA, = DANAY = Q A, = A .

Similarly, we have A = A NA  kz=j=0, i=0,1,-+--,
koo jeo ki

(¢) By (b), we have Amk = AmjﬂAkk for any k=j=0. Also, it is clear that

Aooj+Akk = Akj’ thus

OOj/Aook = Amj/(ijnAkk) =6 (ij+Akk)/Akk < Akj/Akk, k=j=0.

Similarly, Ajoo/Akoo =16 (Ajoo+Akk)/Akk < Ajk/Akk’ k=j=0.

(d) By (a) and (¢}, we have

Aioo/pAsoo = Aioo/Ai+l,oo EZG (AiOO+Ai+i,i+l)/Ai+l,i+i = Ai,i+l/Ai+l.i+1'
Since Ai,i+1/Ai+1,i+1 has no finite irreducible ZG-factors, we have Aim/pAioo
has mno finite irreducible ZG-factors. Since Aioo is also a noetherian

ZG-module, by Corollary 3.9, Aioo has no finite irreducible ZG-factors being
p-groups (i=0,1,2,++--).

Similarly, we have Aooi bas no infinite irreducible ZG-factors being
p-groups, i=0,1,2,+---

The Proposition 3.13 is proved.

Now the critical proof for Theorem A is coming, It enables us to deal

with those modules which remain after Proposition 3.10.

Proposition 3.14: Let G be a hyperfinite locally soluble group and A a
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noetherian ZG-module. If all finite irreducible ZG-factors of A are p-groups

for some fixed prime p, then A has an f-decomposition.

Proof: Suppose that A does not have an f-decomposition, then by
Proposition 3.10, we may further assume that A satisfies the following
conditions:

(a) for every nonzero ZG-submodule C of A, A/C has an f-decomposition;

() A is torsion-free; and

(¢) A has no nonzero ZG-submodules with an f—decomposition.

Furthermore, we assume that G acts faithfully on A, ie., C G(A)=1‘

For the prime p, by Lemma 2.1.4, pA<A (and then pi+lA<piA for any
integer i) and QpiA =0. Applying Corollary 3.11, we have ij/piA has an
f-decomposition for any integers 0=<j<i. Let Akk=pkA for any integer k=0
and, for any 0s<j<i, let Ajj/Aii = Aij/Aﬁ ® Aji/Aii, where A, s the
ZG-submodule of Ajj such that Aij/Aii = (Ajleii)f and the ZG-submodule
Aji(ZAii) is such that Aji/Aii = (Ajj/Ai]_)f. Since A does not have an
f—decomposition, it does have finite irreducible ZG-—factors. Together with
the hypothesis of the propasition, this shows that A contains finite
irreducible ZG-factors being p-groups for the prime p; then by Corollary 3.9,
A contains irreducible ZG-images being finite p-groups. Thus AOO/A01
(EZG AIO/A“) is nonzero and then, by Lemma 2.4.5, IAOO/A{H[ < o0,

Let H = CG(AO{)/AM)’ then [G/H| < . Consider A as a ZH-module and then,
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by Lemma 1.2.5, A is noetherian and, by Corollary 2.2.10, A has no

f—(ZH)—decomposition. By Proposition 3.10, there is a ZH—image A* (=A/C, where

C is a4 ZH—submodule ) of A such that
(@) A¥* has no f—(ZH)~decompasition;

() for every nonzero ZH-submodule D* of A*  A¥D* has an

f—(ZH)-decomposition;
(¢) A* has no nonzero ZH-—submodules with an f-(ZH)-decomposition; and

(d) A¥ is torsion-free.

Since the finite irreducible ZG-factors of A are all p-groups for the
prime p, applying (6) in Lemma 2.2.4, the finite irreducible ZH—factors of A,
and hence those of A* too, are all p-groups for the prime p.

As above, for A¥*, we have pA* < A* (and then leA* < piA* for any
integer i ) and f])piA*=0. For integers k=0 and O0sj<i, let Azk=pkA*‘ and let
A}‘j/A’;‘i = A’;‘j/A’;‘j @ A’]f‘i/A’;i, where A’i*j is the ZH-submodule of A’J{‘j such that
A’i“j/A’;‘i = (A}‘j/A’;‘i)f and the ZH-submodule A}‘i(zA’;‘i) is such that A;!‘i/A’i*i
= (A}‘j/A’;‘i)f. Then A¥ [A¥ (=, Ax /A% ) is nonzero and |Ax /A% | < oo,

Since A‘(‘;O = A¥ = A/C = AOO/C,

A‘rl = pA¥* = p(A/IC) = PA+C)IC = (A”+C)/C,
(A10+C)/(A“+C) =0y Am/(A“+(AmnC)), and

(A01+C)/(A“+C) =H AOI/(A“+(AOIOC)),

*® o= =
50 ,9;00/,64‘1 =,u AOD/(A“+C) (A10+C)/(A“+C) @ (A01+C)/(A“+C). And also

60




A(“)‘o = AIC = (A+O)/C = (AIO-!-C)/C + (A01+C)/C, and
(A, FONC N (A, +O)/C = ((A s TONA, +c>)/c (A, +O)NC =
Thus A;l = (A01+C)/C, and then
= CG(Aoo/Am) = Cya 00/A01) = CH(Aoo/ A tO) = CH(AEO/Agl)

That is, H = CH(ASO/ASI). Also, by  Proposition  3.12,

A% /A;;1 =4 A*/A fap 0 H = CH(AgO/Agl) C (A*/A*JH} for
any i, j = 0. By Proposition 3.13, the ZH-submodule Azoo has no finite
irreducible ZH-factors being p-groups and then has wpo finite irreducible
ZH-factors. Since A* has no nonzero ZH-submodules with an f-decomposition, we
must have Agoo = 0,

Replacing H by H/CH(A*) we may assume that H acts faithfully on A*, Now

we will obtain a contradiction by proceeding in the following four steps:

. _ e B .
(i H CH(ASO/Am) is a p—group for the prime p.

Suppose x€H and x has order ¢ for some prime g. Since xECH(A30)=1,

. * * = * =
there exists a,€ Aoo such that a X F A, . By Q A Awo 0, we have
*® * H i : * * o=~ *
a,€ A \A _— for some integer 1020. Since A /AO1 ZH /A01 o
o o 0
x € H=C(A* [A* ) foranyi, so ax = a + a = ! (1) a, where
HY0,i 0,4+l ’ 0 0 1 i=0 37 )
* ® ] R -
a # 0 and a € A ,1}A0 Hfor some integer i >i. If ax 2, then

a, = aoxq = a, + ga,. That is, qa, = 0 and then a = 0, a contradiction. So

r T
. 0 = 3 * *
ax # a Suppose a,x ):;=0 (J) aj, where for any j, a € A .1_\A0 L
i

ax # a, and a x = a + a, i>i >+ ->i>i =0, By ax # a and
j j j-1 )1 h] r r-l 10 r T
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= A¥* [A* we hav X = a + a |, where
x € H CH( O,ir/ 0.i+1)’ ave & r 1
I
¥ A¥ n i >i, bove we also hav a X ¥ a .
a1 € A%, +1\ 0, +1 and i >i. As above ave a4 . 1
r I

Now we have:

r+l1

— r = r = T
aox = (aox) = [Z;=0 (j aj ] X = Z;__:o (j)(ajx)

r+1

Z O +a,) =a + 5 () + Ol +a

j=1

r+! _ ot tl ot
ao + Z,:_l (j )aj + aH_l = Z;=0 (j )aj.

)]

It

= q9 _ q = q ;

Hence a, = ax’ = E?:o (J_)aj Ef ()a That s,
q 1 q *

Z‘JI ()a Q[a ):? 2 q )a] Tag ©

If ¢g+p, by ¢g=%kp -+t for some t with 0 <t < p, we have

= _ _ q * * * " :
tal p(kal) Z?=2 (j)aj € (Al,ilH + AO,i2) = AO']_ 4y contrary to the
abelian p-group Agi /Agi 1 being eclementary. So p = ¢ and then H must be
"1 "1
a p-group.
n p = 2.

Now from (*), we have

—t L p * X = A% ¥ - A% *
a1 + Ep ( )a] € pA ﬂA A“ﬁAo,i Al,i pAOl "
P P p
. I S —1 i P * 2
Since A* is torsion-free, a + E?=2 7 (j)aj S Ao,i 4 If p>2, then
- . . . —i 1 p N
lp 1 = i 1 = L= 11+1. Thus a + =2 7 (j)aj S AO’i2 and then
* * * *
a € AO‘ = AO,iIH’ contrary to a €& Ao,i \Ao,i i Thus we must have
p =2

(iii) Z(H) contains only one element with order 2.
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Since H is a hyperfinite 2-group, by Lemma 1.2.12, we have Z(H) is
nontrivial and so contains at least one element X, 83y, with the order of X,
being 2.

For 1 = x € Z(H), if CA‘(x) # 0, then, by A¥ # CA‘(x), we have the

ZH-submodule  A*(x-1) A¥/ CA‘(X)) is nomzero and has  an

(=7x

f-(ZH)-decomposition, contrary to A* having no such ZH-submodules. So
CM(X) = 0 forany x € Z(H) with x = 1. In particular, CA*(XO) = 0,
where X € Z(H) and the order of X, is 2. By A*(x0+1) = CA*(xo), we have
A*(x0+1) = ( and then ax, = -a for any a & A*,

If x € H with the order of x being 2 and CA*(X) = 0, then, since
A¥x+1) = CA*(X) = 0 we have ax = —a for any a € A* and then

a(xxo) = (ax)x0 = (—a)xO = —ax, = a,

for any a € A¥, Thus XX, € CH(A*) = 1 and so XX, = 1, ie, x = Xoe So

it follows that Z(H) contains only one element with order 2.

(iv) H has no clements of order 4.

In fact, from the proof of the above in (iii), we have: if x & H with

x2 =1 and x % X then CA‘(X) #= 0.

Let y € H and the order of v be 4, then (yzxo)2 =1 and yzx0 # X

2 2
Th . i * X = A% =
us CA*(y xo) # 0. Let0#ae CA‘(y xo), since a € A00 and QAOi Aooo 0,

there exists j such that a € At VS
1 O,Jl 0,j +1

By vy € H = CH(Ag/A* )
1

i 0,i+1

for any integer i, we have ay = a + b, where b € A;_ o Let
g
1
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b € A* \Ax, for some imteger j_ > j, then by =b + ¢, where
0,y 0., +1 2 1

c e Az_ o Thus, —a = ax, = a(yzxo)y2 = ay2 = (a+b)y = a+2b+c. Therefore,

9-‘

2

= * * = * * — A% = * ; ® 3
2(a+b) = —¢ € (2A000A0’j2+1) (A“r'\AQ’j +l) Al,j2+1 2A0,32' Since A* is
torsion-free, we have a+b &€ A*  and then a € A¥ <A¥ | contrary to

0.12 0,j 0., +1

a E A* \A*_ . So H has no elements of order 4.

041 041+1

Now by (i), (i) and (iv), H is an elementary abelian 2-group and, by
(i), |H| = 2. But, G is infinite and |G/H| <o, we must have H is infinite,

a contradiction, So the result is true.

Now Theorem A is followed.

Theorem A: If G is a hyperfinite locally soluble group, then any noetherian

ZG-module A has an f-decomposition.

Proof: Suppose A does not have an f-decomposition, then, by applying

Propositions 3.10. and 3.14, we will get a contradiction, So the theorem is

true.

In our proof of Theorem A, the locally soluble condition is necessary.

However, it is not a necessary condition for the result as we can see from the

following results:

Corollary Al: If G is a hyperfinite almost locally soluble group,” then any

noetherian ZG-module A has an f-decomposition. (Here almost locally soluble

means (locally soluble)-by—finite.)
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Proof: Tt follows from Lemma 1.2.5, Corollary 2.2.10 and Theorem A.

A special and very important case of Corollary Al is that:

Corollary A2: If G is a Cernikov group, then any noetherian ZG-module A has

an f-decomposition.

Another special case worthy of mention is:

Corollary A3: If G is a locally finite group satisfying the minimal condition

on subgroups, then any noctherian ZG-madule A has an f—decomposition.

Proof: Since a locally finite group G satisfying the minimal condition on
subgroups is almost abelian [8] and therefore is a Cernikov group, so the

result follows from Corollary A2.
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4 THE STRUCTURE OF THE SUBMODULES

From Theorem A, we know that any noetherian ZG-module A over a

hyperfinite locally soluble group G has an f-decomposition: A = AfeAf. In

this chapter, we are going to discuss the details of the structure of the

submaodules Af and Af.

Because of the complicated structure of Af, we need first in §4.1 to

recall some knowledge of injective hull and this yields, in §4.2, examples of

Af with exponent n for any imteger n>0. §4.3 contains the complete results

f . f ,
about the structure of A, In §4.4, we focus our attention on A again and

have proved some results which look interesting. Especially, in some important

f . -
cases we can prove that A" must be torsion and so have finite exponent. The

. f . .
general question of whether A™ must be torsion remains open.

§4.1 INJECTIVE HULL

We follow the treatment given by B.Hartley and D.McDougall in their paper

[61.

Let R be a ring with 1. An R-module X is called injective if whenever U=W
are R—submodules then every R—homomorphism of U into X can be extended to W,
This is equivalent (but not immediately) to the requirement that X be a direct

summand of every R—module which contains it. A well-known result is that:

Proposition 4.1.1:  (Hartley, [5]) Let K be a field of characteristic p = 0

and H a countable group. Every irreducible KH-module is injective if and only

if H is a periodic almost abelian p’-group.
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If V is an arbitrary R—module then an injective hull of V (in the
category of R—modules) is an R—module V satisfying:

(i) V is injective, and either

(i) no proper R—submodule of V containing V is injective, or

(ii)’ V is an essential extension of V.
Here an R—module W is said to be an essential extension of an R—submodule U if
every nonzero R-submodule of W has a nonzero intersection with U. It was shown
by Eckmann and Schopf [1] that every R-module V has an injective hull V which

is unique in the sense that if V¥ is another injective hull of V then there

is an isomorphism from V to V* extending the identity map on V.

The following simple fact was proved by B.Hartley and D.McDougall.

Proposition 4.1.2: Let R be a ring with 1, let V be an R-module and let V be

an injective hull of V. Suppose V = }.8 AV).’ where each Vit is an R—submodule
of V. If either () A is finite, or (i) R satisfies the maximal condition
on right ideals, then V = }'8/1”\71, where VA is an injective hull of V,.

B .Hartley and D.McDougall had pointed out that evcrylinjective R—module U
is divisible in the sense that Ud = U for every element d of R which is not
a zero-divisor, and they call an R-module V Z-divisible if the additive group

VY of Visa divisible group. Then, immediately, they have

Proposition 4.1.3: Every injective ZG-module is Z-divisible.

For a prime p and an abelian group V, let thk] denote the set of

elements veEV satisfying pkv = 0 (where k=0 is an integer). If V is in
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addition an R—module then evidently V[pk] is an R—submodule of V. B.Hartley

and D.McDougall have proved that:

Proposition 4.1.4: Let G be 2 centre-by—finite p’-group and V a ZG-module

such that, as an additive group, V is a p-group (where p is a prime). Let V be
an injective hull of V. Suppose that either () G 1is finite, or (ii) V is an
artinian ZG-module. Then

(@) V (as an additive group) is a p-group and V{p] = V[pl],

(b) V is injective if and only if V is Z-divisible.

§4.2 EXAMPLES OF Af

First of all, from Carin’s group (cf. [14] p.152), there follows a
construction of an infinite irreducible ZG-module, which as a group is a
p-group, over the group G = quo for any two distinct primes p and g¢. By

applying Proposition 4.1.4, we have that:

Proposition 4.2.1: For any finite integer n>0, there exists a noetherian

ZG-module A over a periodic abelian group G such that Af is of exponent n.

@ . .
Proof: Suppose n = pil'ﬂp(:r, where p, ', p_ are different primes and
o, ottty @ are positive integers. Let ¢ be a prime satisfying g¢tn. Let G

be the quasicyclic group quo and let Vi, which is an infinite elementary
abelian P,-group, be the irreducible ZG-module arising from the Carin group
Vi]G’ where 1 = 1,2,-'+,r. Let Vi be an injective hull of Vi then, since V_l

is not Z—divisible, Vi > V. and Vi[pi] = Vp] = V_ (Proposition 4.1.4).
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= V i 1 = = -
Let Vij = Vi[Pi]' Since Vi,j/Vi,j—l—ZG Vil Vi’ so the ZG-submodule vij

(and then Via) has a finite ZG-composition series with all nonzero
i

ZG-factors being infinite. Put Aa =V, o’ then the noetherian ZG-submodule
s 1’ .
1 1
. a, f
A is of exponent p iand A = A .
a i o o

i i i

Let A = Acz eAa ® mAa , then the noetherian ZG-module A is of exponent
1 2 £

nand A = Af. That is, A is the required ZG-module.

In order to get some more general examples, we investigate the relations
between the RG-modules and the R(G/N)-modules, where N is some normal subgroup

of G and R is a ring with 1,

As B.Hartley and D.McDougall [6] have noted: if G is a periodic abelian
group, then all irreducible ZpG-modules can be obtained (up to isomorphism) by
the following:

Let G be a periodic abelian group and K an algebraic closure of Zp.
Suppose § is a homomorphism of G into the multiplicative group K* of nonzero
elements of K. Then since the elements of J(G) are all roots of unity, it
follows that the additive group L5 generated by J(G) is in fact a field. Let
Ké be the ZpG-modulc whose underlying vector space is L& with the G-action
given by

vg = v-3(g) (v € K g € Q).

5)
Since J(G) generates Lc? additively any G-submodule of K(S is invariant

under multiplication by any element of L 5 consequently K 5 is irreducible.

Lemma 4.2.2: (B.Hartley and D.McDougall) With the above notation

(i) every irreducible ZpG—module is isomorphic to some K P
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)] K8 = K¢ if and only if Lg = qu and 6 = ¢p for some c¢clement p

of the Galois group of L8 over Zp.

For a general (irreducible) RG-module V, using a natural method, we can
always view V as an (irreducible) R(G/N)-module for some normal subgroup
N (s CG(V)) of G and in this case we denote the (irreducible) R(G/N)-module V
by V*, That is, for any (irreducible) RG-module V, there exists N (s CG(V)),
being normal in G, and 4§ € Hom(G, G/N) with Im§ = G/N and Kerf = N such
that on the set V an (irreducible) R(G/N)-module structure (denote this

R(G/N)-module by V?) can be given by
vieg) = Vg,

where v € V, 1 € R, and g € G is such that 6(g) = g € G/N. If

*

N = CG(V), then we denote the faithful (irreducible) R(G/N)-module Vg by V6 .

On the other hand, if W is an (irreducible) R(G/N)-module for some normal
subgroup N of G, then for any 6 € Hom(G, G/N) satisfying Im& = G/N and
ker§ = N we have an (irreducible) RG-module (denoted by Wg) defined by the

following:

(1) the underlying vector space of W?? is W, and
(2) the RG-action © is given by
wo(g) = wirg)  (WEW, r€R, and g € O).

It is clear that the above is well-defined and ther W~ is an (irreducible)

8 )

RG-module with CG(W } = N. Evidently, CG(W ) = N if and only if W is
-ia

faithful on G/N, and in this case we denote W~ by We . Since there exists

8 € Hom(G, G/N) satisfying Imf# = G/N and Xerf§ = N, so for any

(irreducible) R(G/N)-module W there is at least one (irreducible) RG-module V
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satisfying CG(V) = N.

From the above definitions, we immediately have:

Lemma 4.2.3: (@) If V is an (irreducible) RG-module with CG(V) = N, then
for any § € Hom(G, G/N) with Imf = G/N and Kerd = N,
v = (Vé B,
() I W is an (irreducible) R(G/N)-module and 6 € Hom(G, G/N) with

Imf = G/N and Kerf = N, then

W = (Wg)?

Lemma 4.2.4: (q) Let V1 and \J’2 be two RG-modules with N being their
centralizer in G for some normal subgroup N of G, and let & € Hom(G, G/N)
with Imf = G/N and Kerf = N. If V1 is RG-isomorphic with v, ie.,

vE&€ V. thn v? ?

4 ¥ P .
{=RG V2 | SRGN) V_  for some R(G/N)-isomorphism .

b Let Wl and W2 be two R({G/N)-isomorphic R(G/N)-modules, i.e.,

g i = =
1= R(G/N) Wz‘ Let 6§ € Hom(G, G/N) with Imf8 = G/N and Kerf = N. Then
by ] , :

W1 =RG W2 for some RG-isomorphism .

Proof: (@) Let y: ar— @(a) for any a & V?, then w is a

group-isomorphism from V? to V?. Now for any a € Vl’ any tr € R, and any
g € G/N, since g = 8(g) for some g € G, and since

wla-e)] = wlarg)] = olatrg)]

[P g) = [w@lrg)

Il

w(a)-(rg),

) . . 7. B N ;
so y is a R(G/N)-isomorphism from V1 to Vz' That is, Vl = R(G/N) Vz‘
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(b) The proof is almost as same as that of (a).
In fact, let y: a— @(a) for any a & Wl, then yw is a
7

group-isomorphism from Wl to Wzi. Now for any a &€ W‘, any 1 € R, and any

g € G, since

wlao e = ylace)l = plag]
= g’ = lp@lo e
- w@loag),
50 ¥ is an RG-isomorphism from W? to Wf That is, W? ERG W?

Also, from the definition, we immediately have:

Lemma 4.2.5: (a) Let V1 and V2 be two RG-modules with N being their
centralizer in G for some normal subgroup N of G, and let 6 € Hom(G, G/N)

satisfying Imf# = G/N and Kerd = N. Then

3 § . 8
v,nv)" = v/ nv,

(b)) Let W ) and W2 be two R(G/N)-modules and let 6 € Hom(G, G/N) with

Imfé = G/N and Xerd = N. Then

] § . wo

(wlnwz) = Wl n Wz'

Lemma 4.2.6: Let G be a periodic abelian p’-group for some prime p and R a

[N

ring with 1.
(@) Let V be an irreducible RG-module such that pV = 0, V an injective

hull of V, and N = CG(V). Let § € Hom(G, G/N) satisfying Imf = G/N and

Kerf = N. If the R(G/N)-module (vé) is an injective hull of v?, then

(Vg) =R(G/N) .
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(&) Let N be a normal subgroup of G, W an irreducible R(G/N)-module such

that pW = 0, and let 8 € Hom(G, G/N) with Imgd = G/N and Kerf = N. If W

is an injective hull of W and if the RG-module (wg) is an injective hull of

Wﬁ, then

g &

(W) =pq WO

Proof: (a) By Proposition 4.1.4, it is easy to know that (V)g is injective.

8 _ o8

Since V = V,s0 V' =< (V)"; also for any nonzero R(G/N)-submodule U of

B ﬁ)‘é < ;

(V)g, since U™ = ((V) =V, so VNU~ = 0 and then

8 ¢ ?3 NG

v'nu = v n(u”) )

?)~ [

RGNy V-

= (VvNu

That is, (V)? is an injective hull of V? and then (V

(b) By Proposition 4.1.4, we may easily have (W)g is injective,

5

Since W = W, so W' = (W)g; also for any nonzero RG-submodule U of

] 88 _ « 8

(\_V—)g, since U” = (W)')” = W, so WNU® % 0 and then

WgﬁU = w@n(U?)g = (wnug)§ #+ 0.

EA g

That is, (W)g is an injective hull of W"g and then (W) =rG (W)~

A special case is N = 1, thus the homomorphism 6 is actually an

. 8 .
automorphism of G and then we use V' to denote either V° or V. Thus we have:

Lemma 4.2.7: Let V be an RG-module and let ¢ € Au(G). If V and (V¢) are

the injective hull of V and Vq), respectively, then

Py . P
v =g M.
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Now we continue to consider the examples of a noetherian ZG-module A with

A" having a finite ZG-composition series and being of finite exponent n. In

fact, we will get a complete description for the ZG-submodule Af of A in the

case that (1) G

N

quo (gfn); or (2) G is Cernikov such that its finite
residual H satisfies that: if ¢ € n(H), then gfn.

As B.Hartley and D.McDougall pointed out: if G is a nontrivial locally
cyclic p’-group then there 1is, up to automorphism conjugacy, exactly one
faithful irreducible ZpG-moduIe. Here automorphism conjugacy is defined as:
for a ring R with 1, two RG-modules Vl and V2 are automorphism conjugate iff
there is an automorphism ¢ & Aut(G) soch that V IERG Vg). Using the above
discussion, we have: if G is a nontrivial periodic abelian group then there
is, up to gquotient-automorphism conjugacy, exactly one irreducible ZPG-modulc
such that N is its centralizer in G for some normal subgroup N of G. Here
quotient-automorphism conjugacy is defined as: for a ring R with 1, if Wl and
W’2 are two RG-modules with N being their centralizer in G for some normal
subgroup N of @G, then the RG-modules W1 and W2 are said to be

quotient-automorphism conjugate iff there is an automorphism @ € Aut(G/N)

and 2 homomorphism 6 & Hom{G, G/N) with Imf# = G/N and Kerd = N

such that
* F
. 8 \p10
W o=pg [(wi)] .
If G=C o= <x,X,x, 3 x =1, x7 =x, i=0,1,2,-++> and if
q 01’2 0o 7 Ti+l i
f

A is a noetherian ZG-module such that A" has a finite ZG-composition secries
and is of exponent n {=p0;1---p(:r) with  ¢fn, for each i =< r, using
Proposition 4.1.1, we may suppose

. e 6 o'

f i ij "Dij ij
Alp] Dr_, [(Vijkk) k] Yk,

i
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where V., is the
1

"unique” irreducible Z G-module with C (V) = <X >,
Iy P, G* ij
i k k
Q. € Aut(G/<x_ >), 6. € Hom(G, Gl <x. >) satisfying Im@ = G/ <x. > and
Yy e k Y Uy T
Kerf, = <x, >, j=0, k=12, and t= 1,
1_]k "k k i i

We claim that: up to isomorphism, Af is a ZG-submodule of

D' bp [(A )wijk]atik
1 k=1 aijk ’

¥

é. .
is obtained from V,IJ

[k over the group ring Z(G/<xj >)
k

where A
ik

as in

k
the proof of Proposition 4.2.1

In fact, let Af

be an injective hull of Af

and let Af[pi] be an injective hull of Af[pi], i=1,2,---,r. Since
r L f f f o £ . 4

l?i1 A [pil = A = A, so the injective module A is an extension of

; [P]

For any nonzero ZG-submodule B of A", since B('\Af #= 0,

50 it
is clear that Bﬂ(li)ij Af[pi]) # 0, That is, :A.—;; is an essential extension of
11)5 Af[pi] and then, by definition, E is an injective hull of ?Li A?[pi].
Thus E =/ f f

ot Alip) = ot allp .

If B is a ZG-submodule of DL; A [p ]
such that B is of exponent n (=p |

p(:r), then, by using Proposition 4.1.2
Lemma 4.2.6, Lemma 4.2.7 and Lemma 4.2.4, we have

pr} A'p] -

*(-

Dr| {( . [(Vl”k) ”k]

*

’i‘

b 1[<v1”k> 5

s Dr
!’:
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* i
=, Di’ Dy | [(veiik)q’*jk]e“k
=16 751 Yk ijk ’

and then

* +
; L T 8. .
?ii (A [pi])[pc:i] =26 ]?i: {D§=1 [(Vi;ik) %] Uk}[P?i]

* T
et Bij o wij eij
P1, DL, [{(Vijkk)[}’ii]} k] Yk

»r
r ot 'pij eij
?il D§=1 [(Aai;‘k) k] "

it

¥
t, p. 6.
Thus, up to isomorphism, B is a ZG-submodule of l?ii D§=i [(Aaj) ”k] Y,
'k
: t N HT.
So, up to isomorphism, A" is a ZG-submodule of 1;)51 D{:I [(Aaj ) Y] Mk

ik

A similar  result is also true for any periodic abelian group G
(especially, for an abelian Cernikov group). That is, we could give a similar
description of the ZG-submodule AIr of a noetherian ZG-module A satisfying that
A? is of finite exponent and has a finite ZG-composition series, where G is a

periodic abelian group satisfying that the intersection of the sets n(G) and

{p; plexp Af} is empty.

Furthermore, if G is a Cernikov group, then the finite residual H of G is
a direct product of finitely many quasicyclic groups. If A is an irreducible
ZG-module then, as a ZH-module, A is a direct sum of finitely many irreducible
ZH-submodules (Lemma 2.2.4). On the other hand, if V is an (infinite)

irreducible ZH-module (it is clear that such a V always exists), then the
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following method guarantees the existence of the (infinite) irreducible
ZG-modules, And, from the "uniqueness” of the infinite irreducible ZH-module V
(up to quotient-automorphism  conjugacy), it follows that the infinite
irreducible ZG-modules are "almost” unique. Here we mean that: if B is an
infinite irreducible ZG-module over a Cernikov group G, which has H as its

finite residual, then
e
B o= Drl[(v,) ]

where Vi is the "unique” infinite irreducible ZH-module with Ni being its

centralizer in H for some normal subgroup Ni of H, e, € Aut(H/Ni), and

8, € Hom(H, H/Ni) with Imf = H/Ni and Kerf = N.

Let G be a Cernikov group, H the f{inite residual of G, and V an

(infinite) irreducible ZH-module, Let T = {ti, ty s t} be a transversal
n

to H in G. Consider the induced ZG-module V@ZHZG = (V eZHtl)e; ~--®(V®Zth)
defined by
(v @ti)tj = vh etk, where tt = htk with h € H,

1

-1
t

(vet)h = vh' et.

1 1
Here @ is the direct sum of ZH-submodules. It is easy to show that the above

; . e . — ]

ZG-module V@ZHZG is well-defined. Now, since V®ZHti =0 v for the
automorphism @ of H induced by t;l acting on H by conjugation, and since V
is irreducible, so V®ZHZG as a ZH-module has a finite ZH-composition series
and then, by Lemma 2.2.1, VQZHZG has a finite ZG-composition series.
Therefore V@ZHZZG contains an irreducible ZG-submodule, say B. As in the

proof of (4) and (5) in Lemma 2.2.4, B is a direct sum of finitely many
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irreducible ~ ZH-submodules. Using the "uniqueness” of the infinite irreducible
ZH-modules  {up to quotient-automorphism conjugacy), we have the fact that B

is  "almost” uniquely determined.

For a given Cernikov group G, let H be its finite residual and let

A
B o= b [(v,)]

where B is an infinite irreducible ZG-module, Vi is a fixed infinite
irreducible ZH-module with Ni as its centralizer in H for some normal subgroup
N, of H, ¢ € Aut(H/Ni), and ¢ € Hom(H, H/Ni) satisfying Imé = H/Ni and
Ker9i= Ni. It is clear that pB = 0 for some prime p & =(H). Consider B as

a ZH-module and let B be an injective hull of B (here we note that it can be

shown

u

B ZH l?£1 [(Vi ) ] i

I

Ed *

6 a. —
where Vil is an injective hull of Vil). By Proposition 4.1.4, B < B and

Blp] = B[p] = B. Let B, = Blp'l, then Bj/Bj_l =,y B, =B 0B hasa
finite ZH-composition series in which each factor is infinite, Evidently, Bj
is of exponent pj. From Bj, we consider the induced ZG-module Aj = B e__ZG
defined as above, then as Aj is a direct sum of finitely many ZH-submodules,
Aj has a finite ZH-composition series with all factors being infinite, Thus Aj
has a finite ZG-composition series in which each factor is infinite (Lemma

2.2.1 and Corollary 2.2.3) and also A is of exponent pj.
i

We claim that:

* i

6, . .98
Uij’ where Uij = {[({Vz }[PJ]) ] }®ZHZG-

A; G

n
~
[
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In ovder to find a ZG-isomorphism from Aj to 11332 Uij’ we must first
show that (which has been mentioned in the above)
U BLUSE R

8" 8" 0 9 6 8" o 6
Since Vil s V. ', 50 {(Vil) 1] Yos [(Vil) 1] ! and then
* 61‘ * 4

. 9.0 L 9.0
B =< l?ii [(Vil) ] *; also for any nonzero ZH-submodule C of Ii')_r__; [(Vi DI

using Proposition 4.1.4, we can easily get C is also a p-group, so

g
O;EC[p]S{i(V)]}[P]
8* 1‘

= pr, [({v, Y1) ]‘

9* 1‘

pr [({v, }[p]) ]
81‘

6 o 6
{or) [(vi‘)w‘] '}

i

Blp] =
. 6 g 6"
and then BNC # 0. Therefore, ?51 [(Vil) 'l ' is an injective hull of B and

;
B o=, g[(V)]

* 1‘ 5‘* 1‘

8.
Thus B = B £ (e [0V, 0] ' Hph = pe! [, 3D = D Pr, W,

9* @ 8‘5‘
for some¢ ZH-isomorphism «, where Wij = [({Vii}[pj]) i] ' Since

A = Be,IG = (Bj@ZHti) @(B ® it t) and
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O
-

(o
]

?i; (WijQEZHZG) = (g, ij)QZZHZG

1 =1

il

t t
[(I?il Wij) ﬁz’IZHt1] ® ® [(I?ii Wij) QZth]’

so for a € Aj, let a = (bl@tl)+---+Cbn®tn) with bl, ., b € B, and

let f: ar— (b?@tl)+---+(b(:®tn) € lll)r; U,, then it is routine to check that
p is a ZG-isomorphism from A, to Dr: Uij' So we get the required isomorhpism.
i 1=

. a
For any integer n > 0, let n = p?l"'prr, where p hop, o are

l)
distinct primes and @, e, @ are positive integers. Suppose G is a
r

Cernikov group with P, # m(H) for all 1 = i = r, where H is the finite
residual of G. As above, there exists a ZG-module Ai such that Ai has a finite
ZG-composition series in which each factor is infinite and Ai is of exponent
p?i, where i =1, 2, -»+, r. Let A = AleBAz@---@Ar, then A has a finite

. . . , f .
ZG-composition series (and so is noetherian), A = A, and A is of exponent n.

Let the noetherian ZG-module A over a Cernikov group G satisfy the

condition that A" has a finite ZG-composition seriecs and is of exponent n

(:p‘fl---p‘:‘r) with gfn for any ¢ € m(H), where H is the finite residual of

G. Suppose
* ¥
2 t, s, cL 9 0
f . i ] ijkyTijky ijk
Alp) = Dr_ pp (v 0 71
s 9*.&.}: e 81‘“1{
where Dg_’l [(Vi;;) J] H is an infinite irreducible ZG-submodule, Vijk

is the "unique” infinite irreducible '/Zp H-module (viewed as a ZH-module)
i

with Ni,k being its centralizer in H for some normal subgroup Nijk of H,
j

Py € Aut(H/Nijk), 6

g € Hom(H, H/Nijk) satisfying Im6i5k= H/Nijk and
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Keraijk: Nijk’ and t o= 1. Then, up to a ZG-isomorphism, Af is a ZG-submodule

of the ZH-module

* )

1, s, g, 9. 6
1 J Pjkyr @y djky ijk
Dr_, bp_; [V, ey 71

* *

where the ZH-module Vi; ik is an injective hull of the ZH-module V. ” 8

. In
ijk

fact, consider Af as a ZH-module, then, up to a ZH-isomorphism, A? is a
ZH-submodule of M (this claim can be proved by almost just quoting that of
quasicyclic case). Since A? is a ZG-module, let U = u/(Af) =< M, where i is a
ZH-isomorphism from Af to U, then we may define a ZG-module Uw, which as a
ZH-module is contained in M and is ZG-isomorphic with Af.

Let the underlying vector space of Y be U, and let the G-action o on uY
be given by

vog = w(v' Wlg) we U geo.

It is clear that the above is well-defined and, as a ZH-module, uY s
contained in M. Now we prove uY s ZG-isomorphic with Af. For ¢! ar— w(a),

where a € Af, it is evident that @ is a group-isomorphism from Af to Uw;

also since g@(ag) = w(ag) = w[(w'l[w(a)])g] = w(a)og = pa)og, forany g &€ G

and any a € Af, so we¢ have @ is actually a ZG-isomorphism from Af to M.

Thus, up to a ZG-isomorphism, Af is a ZG-submodule of the ZH-module M.

§4.3 THE STRUCTURE QF Af

This section is short, however, the results have completely shown the

f . .
structure of A without further restriction on G.

Proposition 4.3.1: Let G be a hyperfinite locally soluble group and A a
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torsion-free  noetherian  ZG-module with  all  irreducible ZG-factors being
finite. Then A is finitely generated as an abelian group and G/CG(A) is

finite.

Proof: We may assume that G acts faithfully on A, i.e., CG(A) = 1. In order
to apply Corollary 2.1.7, we let H = CG(AipA) for some prime p > 2. By
Lemma 2.4.5, A/pA is finite, and then |G/H| < o. Applying Corollary 2.1.7,
we get H = CG(A) = 1. Thus G is finite. By the noetherian condition, we have
A= <a, ', a > for some c¢lements 2, Tty A Hence, since G is finite, A

1 n

is finitely generated as an abelian group. The result holds.

A generalization of Proposition 4.3.1 is that:

Corollary 4.3.2: Let G be a hyperfinite almost locally soluble group and A a

torsion-free  noetherian  ZG-module with all  irreducible ZG-factors  being
finite. Then A is finitely generated as an abelian group and G/CG(A) is

finite,

Proof: Let H be a normal subgroup of G such that H is locally soluble and G/H
is finite. Consider A as a ZH-module then, by Lemma 1.2.5 and Lemma 2.2.6, the
torsion-free ZH-module A is also noetherian and has all irreducible ZH-factors
being finite. Since H is also hyperfinite thus, by Proposition 4.3.1, A is
finitely generated as an abelian group and H/CH(A) is finite. For G/CG(A),
since |GIC_(A)] = |G| - {HIC (A)] < oo and C(A) = C_(A),s0 |GIC_(A)] < o,

the result is proved.

An important consequence is that:

Corollary 4.3.3: Let G be a Cernikov group and A a torsion-free noctherian

ZG-module with all irreducible ZG-factors being finite. Then A is finitely
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generated as an abelian group and G/CG(A) is finite.

In particular, we have:

Corollary 4.3.4: If G is a locally finite group satisfying the minimal

condition on subgroups, and if A is a torsion-free noetherian ZG-module with
all irreducible ZG-factors being finite. Then A is finitely generated as an

abelian group and G/CG(A) is finite.

For a general ZG-module A over a hyperfinite locally soluble group G, we

have:

Theorem B: Let G be a hyperfinite locally soluble group and A a ncetherian
ZG-module with all irreducible ZG-factors being finite. Then A 1is finitely

generated as an abelian group and G/CG(A) is finite.

Proof: Let T(A) be the torsion part of A, then, by Proposition 4.3.1, A/T(A)
is finitely generated as an abelian group. Since T(A) is also a noetherian-
ZG-module, so T(A) has a finite exponent, say n. Let n = pp, P s where P,
are primes, i = 1, 2, -+, m. By Lemma 2.4.5, pl-'-pj_ET(A)/pln~pjT(A) is

finite for any j € {1, 2, -+-, m}, where p, = 1. Thus
[T = [TW/p T |p, T p p,TA) | |p - p_ TA)] < oo

Therefore the group A is finite-by-(finitely generated) and then 1is finitely
generated as an abelian group. The other conclusion that G/C6(A) is finite

follows immediately from the following two simple results.

Proposition 4.3.5: Let G be a group, A a ZG-module, and B a (finite

ZG-submodule of A such that the ZG-module A/B as a group is (finitely
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generated. If CG(B) =G = CG(A/B), and if Cg(A) = 1, then G is finite.

I

Proof: Let A/B <al+B, a2+B, vy an+B>. Since G = CG(A/B}, so for g € G,
we have aig+B = (ai-l-B)g = ai+B, where 1 < i = n, Thus ag = ai+b,L for
some bi & B. Since B is finite and n is finite, there are only finitely many
maps g*: a, > ai+bi, where bi € B and 1 = i = n. If G is infinite,
then there exist two e¢lements g *8, € G such that ag = ag for all i.
Therefore ai(glg;l) =a, is= 1, 2, +++, n. Also glg;1 € G = CG(B), so it

is clear that glg;i € CG(A) = 1 and then g = 8, a contradiction. So G is

finite,

Proposition 4.3.6: If all irreducible ZG-factors of a noetherian ZG-module A

over a hyperfinite locally soluble group G are finite, and if CG(A) = 1,

then G is a finite group.

252_(_)_;: Let T(A) be the torsion part of A, then from the above proof of
Theorem B we know that the ZG-submodule T(A) is finite, so |G/CG(T(A))| < oo,
Also, using Proposition 4.3.1, we have |G/CG(A/T(A))| < o, Let
H = CG(T(A))OCG(A/T(A)), then |G/H| < . Consider A as a ZH-module, then
T(A) is a finite ZH-submodule of A and the ZH-module A/T(A) as a group is
finitely generated, It is clear that CH(T(A)) = H = CH(A/T(A)). Also, since
CG(A) =1, so CH(A) = 1. Thus, by Proposition 4.3.5, H is finite and then G

is finite. The result holds.

As before, from Theorem B, we have

Corollary B1:  Let G be a hyperfinite almost locally soluble group and A a
noetherian ZG-module with all irreducible ZG-factors being finite. Then A is

finitely generated as an abelian group and G/CG(A) is finite.
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Corollary B2: Let G be a Cernikov group and A a noetherian ZG-module with all
irreducible ZG-factors being finite. Then A is finitely generated as an

abelian group and G/CG(A) is finite.

Corollary B3: Let G be a locally finite group satisfying the minimal
condition on subgroups, and let A be a noetherian ZG-module with all
irreducible ZG-factors being finite. Then A is finitely generated as an

abelian group and G/C G(A) is finite,

§4.4 THE STRUCTURE OF Af

In $4.2, we have saw that for any integer n>0, there exists a noctherian
ZG-module A over a periodic abelian (and hence hyperfinite and locally
soluble) group G such that Af is of exponent n. Must the ZG-submodule AIT of
any noectherian ZG-module A over a hyperfinite locally soluble group G
necessarily be torsion? Further, if pA = 0 for some prime p, does A always
have a finite ZG-composition series? Should these two questions both have a
positive answer, the structure of the ZG-submodule Af of a noetherian

ZG-module A over a hyperfinite locally soluble group G would become much

clearer, and the e¢xamples given in §4.2 would be the typical models for other

modules.
Conjecture A:  If G is a hyperfinite locally soluble group and if A is a
noetherian ZG-module with pA = 0 for some prime p, then A has a finite

ZG-composition series.

Conjecture B: ¥ G is a hyperfinite locally soluble group, then any
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noetherian ZG-module A with all irreducible ZG-factors being infinite is

torsion and so has finite exponent.

We now prove that these two conjectures are positive if G satisfies some
further condition, and then the conjectures are also true even for Cernikov

groups (which need not be locally soluble).

First, we consider Conjecture A,

Proposition 4.4.1: Let G be a periodic abelian group and A a noetherian

ZG-module with pA = 0 for some prime p. If G is a p’-group, then A has a

finite ZG-composition series.

Proof:  Suppose A does not have a finite ZG-composition series, then by the
noetherian condition we may assume that for any nonzero ZG-submodule C of A,
A/C has a finite ZG-composition series. It is clear that every nonzero
ZG-submodule of A does not have a finite ZG-composition series but any proper

ZG-image of the nonzero ZG-submodules of A has one, so we may assume that
A= <a>%. Also we may assume G acts faithfully on A.

Since pA = 0, so we may consider A as a ZPG-module instead of
ZG-module. Let L denote the annihilator ideal Ann, G(a) = {r e ZPG; ar = 0},
then ZPG/L =G <a>% = A. Thus the ring ZPG/L is noetherian by A being a

p
noetherian ZPG—module. If the ring ZPG is regular, i.e., every (finitely
generated (right) ideal is generated by a single idempotent, then so is ZPG/L

a regular ring. And then, by Lemma 1.2.27, ZPG/L is semisimple and so has
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only finitely many (right) ideals. But this is not true as ZPG/L =G A and
P

A has no finite ZpG-composition series.

The remainder is to prove ZpG is regular. In fact, let I be a finitely
generated ideal of ZPG, then T = ):“ (% ZPG Since G is a periodic abelian
group, so G is locally finite, and then there is a finite subgroup F such that
@ € ZPF forall i =1, 2, -»-, n. Since G is a p’-group, so is F, and then
ZPF is semisimple (Lemma 1.2.28). Thus any right ideal of ZPF is generated by

a single idempotent (Lemma 1.2.29). Therefore Z?alainF = VZPF for some

idempotent v € ZPF. Hence
vZ,G = (vzpF)sz = (Z?=lozinF)ZpG = Z?=1 Z,

=I1=7 aZGsZ“ (vZF)ZG

1= 1=

= vZLl(ZZpF)(ZPG) < vaG.

That is, I = VZPG with v = v°. So ZPG is regular, the result is proved.
Proposition 4.4.2: Let G be a periodic abelian group and let A be a
noetherian ZG-module with pA = 0 for some prime p. Then A has a finite

ZG-composition series.

Proof:  Suppose A does not have a finite ZG-composition series, then by the
noectherian condition we may assume that for every nonzero ZG-submodule C of A,
A/C has a finite ZG-composition series. Also we may assume that G acts
faithfully on A, i.e., CG(A) =

Since G is abelian, every subgroup is normal in G, If G contains an
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element, say x, with the order of x being p for the prime p, then since A is a
p-group, we have CA(x) # 0. Also by CG(A) = 1, we have CA(x) # A. So
Ax-1) (EZZG A/CA(x)) is nonzero and has a finite ZG-compaosition series. Also
A/A(x-1) has a finite ZG-composition series and hence so does A. This is
contrary to the choice of A, Therefore G contains no elements with order being
the prime p, i.e., G is a p’-group. Thus, by Proposition 4.4.1, A has a finite

ZG-composition series, a contradiction again. Hence we have proved the result.

From Proposition 4.4.2, using Lemma 1.2.8 and Lemma 2.2.1, we immediately

have:

Corollary 4.4.3: Let G be a periodic almost abelian group and let A be a

noetherian ZG-module with pA = 0 for some prime p. Then A has a finite

ZG-composition series.

As before, we have the following results:

Corollary 4.4.4: If G is a Cernikov group and if A is a noetherian ZG-module

with pA = 0 for some prime p, then A has a finite ZG-composition series.

Carollary 4.4.5: If G is a locally finite group satisfying the minimal

condition on subgroups and if A is a noetherian ZG-module with pA = 0 for

some prime p, then A has a finite ZG-composition series.

Now, for Conjecture B, we have:

Proposition 4.4.6: Let G be a periodic abelian group with |n(G)| < oo, where

n(G) = {prime p; G has an element of order p}, and let A be a noctherian

ZG-module with all irreducible ZG-factors being infinite, Then A is torsion
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and so has a finite ZG-composition series as well as a finite exponent,

Proof: We only need to prove A is torsion. Suppose A is not torsion, then by
the noetherian condition we may assume that for every nonzero ZG-submodule C
of A, A/C is torsion. Certainly, A is a torsion-free ZG-module. Also, we may
assume that G acts faithfully on A, i.e., CG(A) = 1,

For any element 1 # x € G, since G is abelian, so A(x—1) and CA(X) are
both ZG-submodules of A and A(x-1) =56 A/CA(x). If CA(x) # 0, then
A(x—1) # 0 by CG(A) = 1, thus A/A(x-1) and A(x—1) being torsion implies
that A is torsion, a contradiction. So we must have CA(X) = 0 for any

1 # x € G. If G has two elements x and y satisfying <x>N<y> = 1 and both

x and y are of the same order p for some prime p, by
all + &y) + &Y + o+ GPIRY - D
= al[yY - 1] = a0 = 0

for any a € A, we have

all + oY) + @YY+ e+ Y e oY) = o

Thus
pa = a[(l + 1 + 1 + 0+ D
+@y + xy + x2y + o+ 1y
+o¢ + Y+ Y+ e PN

5
s 4 PP DR DBy
=all+ y + ¥ o+t Y
+1 o+ xy o+ @yt o+ o+ )P

+A o+ Xy o+ &y o+ o+ P

(1 + xp'[y + (xp'ly)2 + o+ (xp'ly)P'i)] =0, where 0 % a € A,
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This is contrary to A being torsion-free. Hence, if p € =n(G), then G has
only one subgroup of order p, and then the Sylow p-subgroup of G is locally
cyclic. Thus the Sylow p-subgroup Sp of G is either finite cyclic or is
isomorphic to Cpoo_ By A having infinite irreducible ZG-factors, we have G is
infinite. Since n(G) is a finite set and G is abelian, at least one Sylow
subgroup of G is infinite, so there is at least one p € =n(G) such that the

Sylow p-subgroup Sp is a quasicyclic group. Let

Sp: <x1’ xz, x3, e xf:l’ x€+l=xi, i-_.—l, 2’ cere s

For the prime p, using Lemma 2.1.4, we have A/pA is nonzero and l'iﬁpiA = 0. By

Proposition 4.4.2, A has a descending series of ZG-submodules:

A=M0>M1>M2>~-->OM,=O,

1 1
in which each ZG-factor Mi/MiH is irreducible and, as a group, is an infinite
elementary abelian p-group, i = 0, 1, 2, ++++, For any x &€ Sp, since x is
of order a power of p, by Lemma 1.2.8, we have x € CG(Mi/MiH)’ and then Sp
is contained in CG(Mi/MiH) for any i = 0.

Now for any a &€ M_\M, and any x € S, ax = a+b forsome be M |,
i i+l P i+l

thus a(l+ x ++ x) = pa + bl(p-1) + -2x + - + ¥ 7] € M and
then M(1+ x + -+ ) < M . For 0 #ae&A, by NM =0, tere

exists i such that a € M. \M, . For x € 8, let ax = a-+b, where
4] 10 10+l j P i i

b e M j=1,72, . Since
] 0

a+b, = ax, = ax’ = (a+b, ))f:lf"'1
i ] i+l j+1T g+l

-1
= b
a+ j+l(1+ xj+l+ + XIJ.JH),

then b =b, 1+ x +---+ x?*l)EM
j i+l j

i =1,2, +-+-. We suppose that
+1 j+1 io+2’ ] e PP
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| = - -1 .
beM, i=1,2, . Then by :.1+bj a+bj+1(1+ xj+1+ + Xi_)+l) again,

_ -1 . .
we have bj = bj+1(1+ x5_+1+ + x[;H) € Mo: So, by induction, we have

+1
‘oj € Mi forall i =1,2, -+, Then bj € QM]_ = 0, i.e., bj = 0 for all
jo That is, a = axj for all j. Therefore a € CA(SP) and then, by the
arbitrarity of a, we have 1 # Sp =< CG(A) contrary to G being faithful on A.

By this contradiction, we have proved the result.

Consequently, by using Lemma 1.2.5 and Lemma 2.2.6, we have:

Corollary 4.4.7: Let G be a periodic almost abelian group with 7n(G) being

finite and let A be a noetherian ZG-module with all irreducible ZG-factors

being infinite. Then A is torsion and so has finite exponent.

Corollary 4.4.8: If G is a Cernikov group and if A is a noetherian ZG-module

with all irreducible ZG-factors being infinite, then A is torsion and so has

finite exponent.

Corollary 4.4.9: If G is a locally finite group satisfying the minimal

condition on subgroups, and if A is a noetherian ZG-module with all
irreducible ZG-factors being infinite, then A is torsion and so has finite

eXponent.

For the general case, we have finally proved neither Conjecture A nor

Conjecture B. But the following results are worth mentioning here.

Proposition 4.4.10: Let G be a hyperfinite p-group and A a noctherian
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ZG-module with pA = 0, where p is a prime. Then A is finite.

Proof: Suppose A is not finite, then by the noetherian condition we may
assume that for any nonzero ZG-submodule C of A, A/C is finite. Also, we may

G . . .
assume that A = <al, Tsoa >, where a is of order p for all i. So it

follows that G # CG(A) and then, by replacing G by GICG(A), we may assume

that G acts faithfully on A.

Since G is a hyperfinite p-group, so Z(G) % 1 (Lemma 1.2,12). Let
x € Z(G) with x being of order p, then Al = <al><x> is a finite
Z <x>-module. Thus there exists 0 = a, [ A1 such that a, & CA(x). By G
being faithful on A, we have A # CA(x), and so A(x-1) (EZG A/CA(x)) is a

nonzero finite ZG-module. Also A/A(x—1) is finite, which implies that A is

finite, a contradiction. So the result is true.

Propasition 4.4.,11: Let G be a hyperfinite p-group and A a noetherian

ZG-module with all irreducible ZG-factors being infinite. Then A is a torsion

p’-group of finite exponent.

Proof: Let T(A) be the torsion part of A. If T(A) < A, then A/T(A) is a
torsion-free¢ noctherian ZG-module. By Lemma 2.1.4, p(A/T(A)) < A/T(A), and
by Propesition 4.4.10, (A/T(A))/p(A/T(A)) is finite. But A and hence A/T(A)
has no nonzero finite ZG-factors, a contradiction. Thus T(A) = A. Since A is
noetherian, so is of finite exponent and then, by Proposition 4.4.10 again, we

have A must be a p’-group. So the result holds.

Combining all the main results in the two chapters above, we have:

Theorem: If G is a finite extension of a periodic abelian group with #(G)
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finite, then

(1) any noectherian ZG-module A has an f-decomposition

A = AfeaAf

where Af is a ZG-submodule of A such that each nonzero irreducible ZG-factor
of Af is finite while the ZG-submodule A? has no nonzero finite ZG-factors;

) Af as a group is finitely gencrated and G/CG(Af) is finite; and

3) Af is torsion and has a finite exponent as well as a finite

ZG-composition series,
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5 MODULES OVER HYPER-(CYCLIC OR FINITE) GROQUPS

D.1.Zaicev has proved a number of results about modules over hypercyclic
groups [19, 20] and modules over hyperfinite groups [21, 22]. In this
chapter, we consider modules over hyper—(cyclic or finite) groups and get a
lot of results which generalize all the Zaicev’s results about modules over

hyperfinite groups.

As we shall mention in §6.1, there exist torsion-free irreducible
ZG-modules over hypercyclic abelian groups (such irreducible ZG-modules do not
occur in the previous discussion). Due to the existence of such a module, we
meet some difficulties in the research for the structure of the ZG-modules
over hyper—(cyclic or finite) groups. However, if we restrict ourselves only
to the periodic case for artinian ZG-modules and to the generalization of the
Zaicev’s results for noetherian ZG-modules, we successfully get the required
results. But we have not been able to generalize completely our decomposition

theorem for hyperfinite groups.

§5.1 THE {-DECOMPOSITION

We have seen that: if A is an artinian (or noctherian) ZG-module over a

hyperfinite locally soluble group G, then A always has an f-decomposition

where Af is a ZG-submodule of A such that each irreducible ZG-factor of Af is

- f \ -
finite and the ZG-submodule A~ contains no nonzero finite ZG-factors. Now we

consider G to be hyper—(cyclic or finite) instead of G being just hyperfinite
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and prove the following results (we note that these results are essentially

generalizations of those of Zaicev).

Artinian Case:

Theorem C: If G is a hyper—(cyclic or finite) locally soluble group, then any

periodic artinian ZG-module A has an f—decomposition.

Proof: We may assume that G acts faithfully on A.

Suppose that the ZG-module A does not have an f-decomposition, then one
can find a ZG-submodule not having an f-decomposition but each of its proper
ZG-submodules does have. We may suppose that A satisfies this condition. It
follows that A is not a sum of proper ZG-submodules (Lemma 1.2.24) and so A
has a unique maximal ZG-submodule M, containing every proper ZG-submodule of
A. For each a € A\M, certainly <a>G = A. If G were finite, then A would be
finitely generated as an abelian group and therefore finite, contrary to the
choice of A. So G is infinite,

It is clear that A is a p-group for some prime p (since a periodic
abelian group is the direct sum of its components). Let M = Mf&aMf be the
f—decomposition of M, we consider the following two cases: (1) A/M is finite,

in this case, we may suppose that Mf = 0 by considering A/Mf; 2) A/M is

infinite, similarly we suppose that Mf = (,
(1) A/M is finite and M = Mf.

Now, for H = CG(A/M), since G is infinite, H s 1. Thus H contains a
nontrivial normal subgroup of G being infinite cyclic or finite.

Suppose firstly that 1 # <x> =< H and <x> is normal in G, where x is of

infinite order, then the ZG-submodule A(x—-1) = M. Since
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. a+M — a(x-1) + M@Ex-1)

is clearly a homomorphism from the group A/M to the group A(x—1)/M(x-1), so
the ZG-factor A(x—1)/M(x—-1) is finite. By M (= Mf) having no nonzero finite
ZG-factors, we have A(x—1) = M(x—1). Thus, for a € A, there exists m € M
such that a(x—1) = m(x-1), i.e., (a-m)(x—1) = 0. Then A = M+CA(x). But
this is contrary to G acting faithfully on A and all proper ZG-submodules
being contained in M. So H contains a nontrivial finite minimal normal
subgroup, say N, of G. Since G is locally soluble, N is an eclementary abelian
g-group for some prime ¢. We show that g # p by showing that OP(G) = 1,

In fact, if Op(G) # 1, then G has a finite normal p-subgrovp K, K # 1,
and we put L = C_(K). Since A is an artinian ZG-module and |G/L| < », Alis
also an artinian ZL-module (Lemma 1.2.5), Thus A has a least ZL-submadule A1
such that A is not contained in M. Then A (A NM) (EZL (A1+M);’M) is a
finite irreducible ZL-module. Since A/M is an irreducible ZG-module (and is a
p-group), K acts trivially on A/M. Therefore Al(x—l) = M for each x € K.

Since |G/L| <o, M has no nonzero finite ZL-factors (Lemma 2.2.6) and so

Al(x—l) is a ZL-module with no nonzero finite ZL-factors. Thus A1/ CA (x)
I
EZL Al(x—l) has no nonzero finite ZL-factors. But All(AlﬂM) is finite and so

CA (x) is not contained in M, By the choice of Al we have CA x) = A1 for
1 i

each x € K. Thus A1 =< CA(K) and so CA(K) is not contained in M. Since M
contains all proper ZG-submodules of A, we must have CA(K) = A, contrary to
G being faithful on A. Thus OP(G) = 1 and then g¢q # p.

By Lemma 1.2.4, A = [A, N]GBCA(N). Since N < H = CG(A/M), [A,N] =M
and then CA(N) # 0. Since M contains all proper ZG-submodules of A, so we

have CA(N) = A and so [A, N] = 0 contrary to G acting faithfully on A. We
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have proved case (1).

(2) A/M is infinite and M? = 0.

In this case, we choose a finite ZG-submodule D, say, of M and let
H = C (D), then |G/H| < o and so H contains either a nontrivial finite
normal subgroup of G or an infinite cyclic subgroup being normal in G. If H
contains a nontrivial finite subgroup N being minimal normal in G, then it is
easy to know that N is a p’-group (by almost using the method used in case (1)
to show that OP(G) = 1), Hence, by Lemma 1.2.4, A = [A, N]GBCA(N). The
ZG-submodule M does not contain both factors of this decomposition and so one
of them is A (and the other is zero). But [A, N] % 0 by G being faithful on
A. On the other hand, D = CA(N) and so CA(N) # 0. This contradiction shows
that H does not contain any nontrivial finite subgroups being normal in G. So,
we may suppose that 1 ¥ <x> < H, <x> is normal in G and x is of infinite
order. Let Gl = CG(x), then IG/G1| < 2 and x & 2(G). Since A/M is
infinite and irreducible, A has a least ZGl-submodulc Al such that Al/M is
an infinite irreducible ZGl-module. If A1 has an f—(ZGl)~decomposition, i.¢.,
Al = BeM, where B is an infinite irreducible ZGl—submodu!e of Al, then the
nonzero ZG-submodule BS of A bas no nonzero finite ZG-factors (Lemma 2.2.7).
Thus B°NM = 0 and then A = BGfBM. That is, A has an f—(ZG)—-decomposition
with Af = M and A? = BG, a contradiction, So Al has no
f—(ZGl)——decomposition. By passing from G to G1 and A to Al, we may assume that
1 # x € HNZG).

(@ If A(x-1) = A, then A(x-1) <= M. For ¢ a+Mr— ax—1)+Mx-1)
(a € A), we have A/M gZG A-1)/M(x-1) and Kerg = 0or A/M. If Kerp = 0,

then  A(x-1)/M(x-1) is an infinite irreducible factor of M, a contradiction.

So Kerg = A/M. That is, A®x-1) = M(x-1), and then A = M+CA(x), a
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contradiction again.

() A(-1) = A, Then, for a € A\M, there exists a, € A such that
a = ao(x—l) and A = <a>G. Choose a finitely generated subgroup K of G such
that a, S <a>K, D < <a>K, and x € K. Let A1 = <a>K, then A1 isa
finitely generated ZK-module and K is a finitely generated hyper—(cyclic or
finite) soluble group. If K is a supersoluble-by—finite group, then K is a
polycyclic group (since supersoluble groups and finite soluble groups are both
polycyclic). Thus Al has a ZK-submodule !31 of finite index such that DNB . # D
by the residual finiteness of finitely generated abelian—by-polycyclic groups
[7]. Consider the finite ZK-module ALIBl‘ Since x &€ Z(K), Al.’Bl can be
viewed as a Z <x>-module. Then, by [19], we can get AIIB1 = B/B1 ® C/Bl,
where the Z <x>-submodule B/’Bl has a Z <x>-composition series in which each
Z <x>-factor is <x>-trivial and the Z<x3>-submodule C/B1 has no nonzero
Z <x»-factors which are <x>-trivial. Since (D+B1)/B1 is an <x>-trivial
Z < x> -submodule of AllBl’ 50 B/B1 # 0. Thus A1/C is a nonzero finite

Z<x>-moduleand A /C =, (AllBl)/(C/Bl) = B/B, shows that A /C hasa

YA TIL<x>

finite Z <x>-composition series in which each Z <x > -factor is < x> -trivial. Hence
(Al(x—l)+C)/C = A (-1 < A, where A = AJC. Thatis, A(x-1) < A.

But, on the other hand, since Al(x——l) is a ZK-module and a, e Ai’ 50

A = <axt = <ax-D>F = (<a,> -1 = (A =) = A 1),

a contradiction.
The remainder is to prove that K is a supersoluble—by—finite group.

However, it follows from the following result,

Lemma 5.1.1:  Any finitely generated hyper—(cyclic or finite) soluble group is

a supersoluble—by-finite group.
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Proof: In fact, let
G=Gat> ---bclpc}o:l

be an ascending normal series of subgroups of a finitely generated soluble

group G in which each factor is cyclic or finite, Since G/Ga = 1 is

Gﬁ+ 1/G 8
clearly a supersoluble—by-finite group, we may assume that there exists S =< «
such that G/Gﬁ is supersoluble—by—finite but G/Gy is mot for all y < §B.

We claim that g = 0. Otherwise, if B—1 exists, then, (/) G,/G is cyclic

BB
would imply that G/Gﬁ-1 is supersoluble-by—finite, a contradiction; and
i G ,B/G/S’-l is finite implies that G/Gﬁ_1 is polycyclic and so is residually
finite, therefore there is an N with G/N finite and NﬂGﬁ = GB-L’ thus
N/Gﬂ-l = NGﬂ/Gﬁ is supersoluble—by—finite and so is G/Gﬁ-l’ a contradiction.
Thus, p-1 does not exist, i.e., F is a limit ordinal. Since G/Gﬁ is finitely
generated, by [15, p.403], Gﬁ is finitely generated as a G-—operator group.
= e G i =1 1 PR

Thus, let Gﬁ = <x1, , xn> , Since Gﬁ yL<J,B Gy so there exist Yoy,
such that x € Gy. Let Yy < £ such that Y <Y, for all &+ =1, -+-, n,

i
then x. € G for all i. Since G P> G_, so

! ) %o
G G
G, = <x, ", x> = (G = G .
B~ SN n ) 7,

Thus G/G g = G/Gy , contrary to the hypothesis for #. Hence S = 0 and then
0

the result is proved.

Noectherian Case:

We have not yet got the complete f-decomposition theory for a noetherian

ZG-module over a hyper—(cyclic or finite) group, however, the following
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results look like a good start.

Proposition 5.1.2: Let H be a normal hyper—(cyclically or finitely) embedded

subgroup of a group G, and let A be a nonzero noetherian ZG-module. If
CA(H) = 0, then there is a subgroup K of H and a nonzero ZG-submoduie B of A
such that K is normal in G, CB(K) = 0, and K induces in B a cyclic or finite
group of automorphisms.
Proof: Suppose the lemma is false, Using the noetherian condition we may
assume that the lemma is true in all proper ZG-images of the ZG-module A. We
may also assume that G acts faithfully on A,

There is a cyclic or finite subgroup F =< H with F being normal in G. If
CA(F) = 0 then the lemma is true taking F, A for X,B,

. Consider the second possibility CA(F) # 0. We let Al be the
ZG-submodule CA(F) and let H1 = CH(F). Then H1 is normal in G and *H/Hl| < 0,

(1) Suppose that the centralizer A2/A1 = CA/AI(H1> is nonzero, i.e.,
A2 #* AJ' Consider the ZHl—isomorphism AZICAZ(D EZHlAz(f—i), where f € F.
Since Al = CAz(D and A2/A1 is H1~trivial, we have that Az(f—l) is
Hl-trivial for any f & F. It follows that [Az, Fl =} Az(f—l) is Hl-trivial

fE&F

and so H induces a finite group of automorphisms on [A2, F]. Since A2 * Al
the ZG-submodule [Az’ F] # 0 and C[AQ,F](H) = 0 since CA(H) = 0,

Therefore the lemma is true with K = H, B = [Az’ Fl.
(2) Suppose now that A2 = A, i.e., CA /a (Hl) = 0, Then the ZG-module
i

1

A/A1 and the normal subgroup Hl satisfy the hypotheses of the lemma and so
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there is a subgroup K1 of HI and a nonzero ZG-submodule BllAl of A/A1 such

that K1 is normal in G, C (Kl) = 0, and Kl induces in BllAl a cyclic or

B /A
Jl
finite group of automorphisms.

Put G, = C_(F); clearly H = HNG, IG/Gll < o,

(@) We consider firstly the case that X 1/ CK (Bl/ Al) is cyclic.
1

Let B, = [B, F] and let K = CKI(BI/AI). Since A = C,(F), so
[X, B, Fl = [[K, B, Fl < [A, Fl = 0

also by KO < K1 = H1 = CH(F), we have

I
=

[F. K, B = [[F, K], B] = 1, B]

Thus, by three subgroup lemma,
B, K] =1IB,Fl,Kl=[B,F K] =0
Therefore Bz < CA(KO) and we then can view the noetherian ZG-module B as a

no¢therian Z(G/K0)~m0dule. Applying Lemma 1.2.19 to the cyclic normal subgroup

K 1/Ko of G/KO, there is an integer m such that

m
B,(k-D)" N ch(k) = 0,

where k is an element such that Kl = K0<k>.

It B2(k——1)m = 0, then

0 = B,(-1)" = (L B(—D)&D"
fEF
= L B((-D&-D") = T Bl((k~l)m(f—1))
fEF fEF
= L (B (=11

fEF
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That is, Bl(k—l)m = CA(F) = AI. But this is contrary to

k) =C (Kl) = 0,

C
Bl/A[ BllA1

So we have Bz(k—l)m # 0 and then the lemma is true by taking B = Bz(k--l)m

and K = Kl.

(&) Sccondly, we consider the case that KI/ CK (BI/ A 1) is finite.
1

‘Choose in F a least set of clements {xx, e, xn} satisfying

A1 = CBI(F) = CBl(xl)ﬁ'“ﬂCBl(xn)

and put B2 = CBl(x[)ﬂ-”ﬂCBl(xﬂ_l) if n > 1 and B2 = Bl if n = 1. Then

B, # A ()

and an(xn) = CBl(xi)ﬂ“-ﬂCBl(xn) = Al. Consider the ZGl-xsomorphlsm

BZ'IAI = le CB2(xn) Ezcle(xn—l). (2)

Since K; = Gl, B = Bl, and I(l induces a finite group of automorphisms

on BI/AI’ SO K1 induces a finite group of automorphisms on szAl and hence on

B (x -1). Since CBIIAE(Kl) = 0 we also have C _1)(K1) = 0.

B
2(:{“

Let D = Bz(xu—l). Then D is a ZGl-submodule of Bl’ CD(KI) = 0, and

|K]/CK (D)] < oo, Let D be the ZG-module generated by D, then D = J. Dg is a
1 g ET

finite sum of ZG l-submodulcs Dg, where T is a transversal to Gl in G.

Note that since K1 is normal in G, CDg(Kl) = CD(Kl)g = 0, and CKI(Dg)

-1 . , -
=g CKl(D)g, it follows that ]KI/EQTCKl(Dg)I < oo and so Kl induces a finite

group of automorphisms in D.
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Now consider two cases.
(A) D contzins an clement of finite order.
Then D contains a maximal elementary abelian p-subgroup Dl (# 0) and we
let ]_I)_1 = T Dlg. Let S be the Kl-socle of the ZGl~submodule Dl, i.e., sum of
gEET
all irreducible ZKl-submodules (these irreducible ZKI-submodules are all
finite since K1 induces a finite group of automorphisms in D). Since Dl is a
ZGl-submodule and Kl is normal in G so S is a Zlesubmodule and S = ¥ Sg
is a ZG-submodule, Now Sg is a sum of irreducible ZKl—submodules and so S is a
sum of irreducible ZKI—submodules each being contained in some Sg. Since
CDg(Kl) = 0 it follows that CE(Kl) = 0. Thus we can take Kl and §
satisfying the conclusion of the lemma.
(B) The group D is torsion-free.
Let T(D) be the torsion part of D. Since D is a noetherian ZG-module,
T(D) has a finite exponent. Therefore nDNT(MD) = 0 for some n and nD is

torsion-free.

We put m = IKI/CK )|, ¢ = C5(K) and show that
1

[mnD, KInc =0 3)
In fact, if a € [mnD, K JNC, then a € [(maD, K1 for some finitely
generated Kl—admissible subgroup D of D. Since nDNC = CnB(Ki)’ D <D, and
nD is torsion-free, so nﬁ/(nf') NC) is torsion-free and then nD = (nfj NC eV,

where V is a free abelian subgroup. Using Lemma 1.2.26, there is in n a
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Kl-admissiblc subgroup W such that (@D NC)AW = 0 and the factor group

nﬁ/[(nﬁ NC)® W] has a finite exponent, dividing m. Thus mnD = (nﬁ NC)ewW. It
follows that [mnf3, K] =W and so [mnD, K,JNC = 0. Hence a = 0 and (3)

is proved.

Note now that [mnD, K1] # 0. In fact, if [mnD, K1] = 0, then mnD <
CB(KL) = C. Therefore mnD =< C and since D is torsion-free, D = C. This
shows that D is a Kl-trivial ZG;-moduIe and since D = Bz(xn~1) and is
Gl-isomorphic to B2/A1 ) we have B2/Al is also Kl-trivial. But

CBl"A1(K1) = 0 and so B2 = A1 contrary to (1), Thus [mnD, Kl] = 0.

Since [mnD, K1 is a ZG-submodule and K induces in it (as in D) a finite
group of automorphisms then it follows from (3) that the conditions of the
lemma are satisfied by Ki and [mnD, K1]' This completes the proof of the

proposition.

Proposition §.1.3: Let G be a hyper—(cyclic or finite) group, A a noetherian

ZG-module, and B a ZG-submodule of A such that B is of finite index in A and B
has no nonzero finite ZG-factors, then B has a complement in A, ie., A = BaC

for some finite ZG-submodule C of A.

Proof:  Suppose that B does not have a complement in A. By considering an
appropriate factor—module of A we may assume that for every ZG-submodule D of
B with D # 0, B/D has a complement in A/D.

Put H = CG(A/B), then, since G/H is finite and the irreducible
ZG-factors of B are all infinite, we have CB(H) = 0 50 we can apply
Proposition 5.1.2 to the subgroup H and the ZG-module B. So there is a

subgroup K of H and a nonzero ZG-submodule D of B such that K is normal in G,
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CD(K) = 0 and K induces on D a cyclic or finite group of automorphisms, i.c.,
K/CK(D) is cyclic or finite.

We write A as a sum A = B+Al with BﬁA1 = D and we will consider the
ZG-submodule Al as a faithful ZGO-module, where Go = G/CG(A l). It is clear
that D is a ZGO-submodule of A1 such that D is of finite index in A | and D has
no nonzero finite ZGO-factors, Also D bhas no complements in A1 for otherwise
if A1 = DelaC1 for some ZGo—submodule C1 of Al then Cl can be viewed as a
ZG-submodule of A by Go = G/CG(Al) and then A = B+Al = B@C1 (Lemma 1,2,25),
a contradiction,

Since CD(K) =0 and D = Al’ so K is not contained in CG(AI). Let
K, = (KCG(AI))/C oA, then K # 1. Also, it is clear that C_(K) = 0 and
Ko induces on the ZGo—submodule D of AI a cyclic or finite group of
automorphisms. We prove that CK (D) = 1. For suppose CK D) # 1 and let FO

0 0

be a nontrivial cyclic or finite normal subgroup of G0 contained in CK D). If

0
X € F, then D = CA (x). Since ]A1/D| = |A/B| < ¢« and, as groups,
1
Alch (x) = Al(x-l), we see that Al(x—l) is finite. Thus the ZGO-submodulc
1
[A, FJ is finite. Also F = CKO(D) s K = (KCG(A‘))/CG(AI)
= (HCG(AI))/CG(AI) = (CG(AIB)CG(AI))/CG(AI), tus [A, F] s B,

and then [Ax’ FO] < D. By D having no nonzero finite ZGO—factors, we have

[Al, FO} = 0 contrary to Go acting faithfully on Al. So CK (D) = 1 and

0
hence K0 is cyclic or finite,
Now put G1 = CGO(KO), K0= <x1=l, Xpo T X >, Crl = CAl(<x1, s xn>),
n=1,2, -, m We prove that Al = D+Cn, n=12, -, m,
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It is clear that A1 = D+C1‘ Suppose Al = D+Cu w¢ prove Ai = D+Cn+1'

Consider the isomorphism of ZGl-modules

C(

Cn/Cn+ = Cn/CCn(xu-H) = ZGI n xn+1“1)’

i
where Cn(an‘l) may not be contained in Cn if KO is nonabelian.

Since X € K
n+{ 0

(KCG(AI))/CG(Al) < (HCG(AI))/CG(AI)
= (CG(A/B)CG(AI))/Cg(Al), the ZGl-module Cn(an—l) of A1 is contained in B
and then in D. Since 1G0/G1| < ¢ it follows from Lemma 2.2.6 that the
irreducible ZG1~fact0rs of D are all infinite, hence so are the factors of
c/c . But Cn/(cn+l+(DnCn)) sml(cnw)/(cnﬂw), a factor module of the

finite module A /D. Hence C 4D =C +D andso A = C +D. Thus
1 n n+1 1 n+l

Al = Cn+D forall n = 1,2, '+, m. In particular, put n = m, Cm = CAl(KO)

and Al = D+CA1(K0)' BY Lemma 1.2.6, CAI(KO) is a ZGo-submodule of Al'

Since DﬁCA X) = CD(K) = 0 we have A1 = DefacA (K), contrary to D having no
I 3

complements in Al. The proof is completed.

Using almost the same proof as above, we immediately have:

Proposition 5.1.4: Let G be a hyper—(cyclic or finite) group, A a noetherian

ZG-module, and B a ZG-submodule of A such that, as group, A/B is a finite
p-group for some prime p and the ZG-submodule B contains no nonzero ZG-factors
being finite p-groups. Then B has a complement in A, ie., A = BeC for some

ZG-submodule C of A,
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Dual to Proposition 5.1.3, we have:

Proposition §.1.5: Let G be a hyper—(cyclic or finite) group, A a ZG-module,

and B a finite ZG-submodule of A such that all irreducible ZG-factors of A/B
are infinite. Then B has a complement in A, ie., A = BeC for some

ZG-submodule C of A.

Proof: By Zorn’s Lemma, A has a ZG-submodule D maximal with respect to
BND = 0. We show that A = BeD. Suppose not, then by replacing A by A/D we
may assume that for any nonzero ZG-submodule C of A, BNC % 0. We also assume
that G acts faithfully on A.

Put H = CG(B), ]G/H] < o, so there is a normal subgroup K of G
contained in H such that K is either cyclic or finite. Put Hl = CH(K). Since
H is normal in G and [G/HII < o it follows from Lemma 2.2.6 that the
irreducible ZHl—factors of A/B are infinite. If x € K, then B = CA(x) and
so the irreducible ZHl—factors of A/CA(X) and hence A(x—1) are infinite,

We prove that [A, KINB = 0. If not, then there is a minimal set of

clements x ,-*,x such that B = BNL'_A(x-1) # 0. Then

B, gy (5,00 Ak DE acx )

A

(5 _ AG-D)/ (T A1)

it

7, A(xn_l)/(A(xn—l)ﬂZ?;iA(xi—-l)).

This shows that A(xn-—l) has a nonzero (finite ZHl-factor contrary to the fact
that the  irreducible ZHI-factors of A(x-1) are all infinite.  Thus
[A, KINB = 0 and hence [A, K] = 0, contrary to G acting faithfully on A, So

the result is true.
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From Proposition 5.1.5, we have:

Corollary 5.1.6: Let G be a hyper—(cyclic or finite) group, and A a

noctherian ZG-module. Then A has a nonzero finite ZG-factor if and only if A

has a nonzero finite ZG-image.

Proof: We only need to suppose that A has a finite ZG-factor B/C, then using
the noetherian condition we may assume that every irreducible ZG-factor of A/B
is infinite. ‘Then applying Proposition 5.1.5 to A/C with the finite

ZG-submodule B/C we obtain a finite ZG-image of A.

Also, almost follow the proof of Proposition 5.1.5, we have:

Proposition §.1.7: Let G be a hyper—(cyclic or finite) group, A a ZG-module

and B a ZG-submodule of A. If as a group B is a finite p—group for some prime
p, and if the factor module A/B contains no nonzero finite ZG-factors being
p-groups, then B has a complement in A, i.e., A = BeC for some ZG-submodule

C of A.

By a similar proof to Corollary 5.1.6, we have:

Corollary 5.1.8: Let G be a hyper—(cyclic or finite) group, and A a

noetherian ZG-module. Then A has a nonzero ZG-image being a finite p-group for

some prime p if and only if A has such a nonzero ZG-factor.

§5.2 THE SPLITTING THEORY

Depending on the corresponding decomposition of modules, D. I. Zaicev has
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proved the splitting results for hypercyclic (hypercentral) extensions ([19],
[20]) and hyperfinite extensions ([21], [22]) of an abelian normal subgroup.
Similarly, we will prove splitting results for Thyper—(cyclic or finite)
extensions of abelian groups in this section. We divide the discussion in two
parts: one is for the artinian case, and another for the noetherian case. The
results proved in this section can all be viewed as a generalization of

Zaicev’s results.

Artinian Case:
Before proving the main result of this part, we prove some lemmas.

Lemma 5.2.1: Let A be a nonzero artinian ZG-module and H a normal
hyper—(cyclically or finitely) embedded subgroup of G. If A is an H-perfect
module then H has a subgroup X such that K is normal in G and A has a nonzero
K-perfect ZG-image on which K induces a cyclic or finite group of

automorphisms.

Proof: (It is similar to the corresponding one in [21].)

We assume that G acts faithfully on A and take a nontrivial cyclic or
finite normal subgroup F of G with F = H. If A = [A, F], then we can take
F to be the required subgroup and A the F—perfect ZG-image.

So we may suppose that A1 = [A, F] # A. Put Hl = CH(F), then H1 is

normal in G and ]HlHl| is finite.

(1) Suppose A1 #* [Al, Hl]. Consider the ZG-module A = A/[Al, Hl] and

its ZG-submodule Xl = A]/[Al, H|]. Since A is an H —trivial ZH -module and,
for each x € F, A1) =< [A, F] = Kl, so A(x-1) is an H —trivial

A(x—1) shows that

IR

ZH -module. Therefore the ZH -isomorphism K/Cx{x)
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X/CX(X) is an H —trivial ZH -module. It follows  that X/CX(F) = K/ngcz(x)
(or K/CX(F) = X/CK(XO), where F = <x > if Fis cyclic) is an H ~trivial
ZHl~module.

The factor X/ch:) is nonzero, for if A = C(F), then [A, F] < [A, H|]
and hence Al = [A, F] = [Al, Hl] contrary to assumption. Furthermore, the
ZG-module A/ CX(F) is H—perfect, since A is H—perfect, and H induces in Al CX(F)
a finite group of automorphisms (since it is Hl—trivial and H/H1 is finite).
Thus we can take H to be the required subgroup and X/CX(F) as the H-perfect

ZG-image.

(2) Suppose Al = [Al, HI]' Suppose that the lemma is true for the pair

(Al, Hl)’ i.e., Hl has a subgroup K1 with K1 being normal in G and Al has a
Nnonzero Kl—perfcct ZG-image :\1 on which K1 induces a cyclic or finite group of
automorphisms. We show that this implies the result for the pair (A, H).

Let Bi = A(x;l), where X, (1 =1 =< m) are elements of the group F

with m =1 and F = <x > if F is infinite or m = |F| if F is finite. Then

A

A =[A,Fl=B+-+B and A =B +'''+B , where the B, are ZG -modules,
1 m 1 1 m i 1

G1 = CG(F). Let k be the largest integer such that Xl = Bk+---+B . Then

m

Al/(B +---+Bm) = Bk/(Bkﬂ(Bk+l+“-+Bm)) is a KI-—perfect ZGl-module,

k+1 ZZGl

since Al is Kl—perfect, and is nonzero by the choice of k. Thus Bk, and hence

Bk’ has a nonzero Kl—perfect ZGl-image. By the ZGl-isomorphism

A/CA(xk) = A(xk—l) = B, A has a nonzero Kl—perfect ZGl—image A/D, say.

k,
Since D is a ZGl-module and |G/G 1{ < oo, there are only finitely many
ZGI—modules of the form Dg (g € G). Put C = [A, KI]HD, Cisa ZGl-module

and C0 =y

’ EG([A’ Kl]ﬂDg) is the ZG-submodule of A generated by C.

{(a) Suppose A = CO. Since Co = [A, Kl] we have A = [A, Kl], ie., A
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is a Kl—perfect ZG-module. By hypothesis, Kl induces a cyclic or finite group

of automorphisms on the ZG-image A!, CK (Al) is normal in G and KI/CK (Al)
i 1

is cyclic or finite, Elements of CK (Al) act trivially on A1 and hence on Bk
1

and so on A/D. Therefore [A, CK (Al)] < D and A/ [A, CK (Al)] is a nonzero
1 1
Kl—perfect ZG-image of A on which K1 induces a cyclic or finite group of

automorphisms.

(b) Suppose A # Co' Since A/D is a Kl-perfect ZG‘-image we have

A = [A, Kl] + D and, since C = [A, KI] N D = Co’
A/co = (A, Kic) e ((D+CO)/CO). By  considering  the
ZG-factor-moedule A/CO, we may assume that C0 = 0 and hence A = [A, K1] o D.

Pt D =Y Dg. Since ]G/Gl| < oo this is a sum of finitely many

s EG
ZGl—modules Dg. Also [Dg, Kl] = [A, Kl}ﬂDg = Co = 0 so that
each Dg is Kl—trivial. It follows that D0 has a finite series of
ZGl-submodules in which the factors are Kl—triviai. Therefore, since A/D is
Kl—perfect, we must have D0 # A, Thus A/D0 is a nonzero Klmperfect ZG-image
of A. Also Kl induces on A/D and hence on A/D0 a cyclic or finite group of
automorphisms. Thus we can take Kl to be the required subgroup and A/D0 the

required ZG-image.

In Case (2), we have now shown that if the lemma fails to hold for the
pair (A, H) where A is an H-perfect ZG-module and H is a normal subgroup of G,
then there is an Hrperfect proper ZG-submodule Al with Hl being normal in G

and contained in H such that the lemma is false for the pair (Al, Hx)' Hence
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Al has a proper Hl~perfect ZG-submodule Az such that the lemma is false for
(AZ, Hz)‘ This process leads to an infinite properly descending chain of
ZG-submodules A > A1 > A2 > -«+++, contrary to the artinian condition, and so

the lemma is proved.

Lemma §.2.2: Let G be a hyper—(cyclic or finite) locally soluble group, B a
ZG-module, and A a periodic artinian ZG-submodule of B such that all
irreducible ZG-factors of A are infinite. If B/A as an abelian group is
finitely generated and is G-trivial, then B = AebB1 for some ZG-submodule Bl

of B.

Proof: Since A is an artinian ZG-submodule of B, it is possible to choose a
ZG-submodule B1 such that B = A+Bl and for each U = B1 with B = A+U, the
intersections ANU and AﬂB1 are equal. We prove that AﬁBl = 0.

Suppose Al = A{’]Bl # 0. Since B/A is finitely generated and
B/A =16 Blle’ we have Bl = A1+ <b1’ AN bn> for some bl, ey bn & Bl.
Firstly, if Z(G) = 1, since G is a hyper—(cyclic or finite) locally soluble
group, G has a nontriviai normal subgroup H, which is either cyclic or abelian
and finite. Let Gl= CG(H) and consider B as a ZGl-module. Since [G/Gl| < o,
the conditions of the lemma are clearly satisfied by Gl, B and A. So we may
assume that Z(G) # 1. Secondly, if CG(BI) #+ 1, then CG(BI) < G by the
nonzero ZG-submodule A being contained in B1 and A having no nonzero finite
ZG-factors. Let G = G/CG(Bl)’ then G is a hyper—(cyclic or finite) locally
soluble group. We regard Bl as a ZG-module, and then, as above, we may assume
that Z(G) # 1. Let 1 # g € Z(G), then <g> is a central cyclic subgroup of G
and Bl(§~1) = Al@ul) + <b1(E—l), bn(§—1)>. Since B /A (=, B/A) is

G-trivial and therefore is G-trivial, we have Bl(g—l)/Al(E—l) is G-trivial
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and Bl(g—l) = Al' Also, since A s periodic and has no nonzero {inite
ZG-factors (therefore has no nonzero finite ZG-factors), we have
B (g-1) = Ag-1). Thus, there oxist a € A such that b(g-1) = a(g-1)

forall 1 =i =n, thtis, b-a € C, (®. So B = A+C (g), where
1 1

C, (g) is certainly a proper ZG-submodule of B,. Any ZG-submodule of B is a
1

ZG-submodule and so CB (8 is a proper ZG-submodule of Bl. But, since
1
A+CB @) = A+B1 = B, then AﬁCB @) < AﬂBl, which is contrary to the choice

i 1
of Bx' So AF\Bl = 0, the lemma is proved.

Corollary 5.2.3: Let G, B, and A be as in Lemma 5.2.2 with one exception that

B/A is just cyclic, then the same is true for B, i.e., B has a ZG-submodule B1

such that B = AeBl.

Proof: Let G = C_(B/A), then IG/GI| < 2. Regarding B as a ZG -module,
then, by Lemma §.2.2, B = AexaBl for some ZGl-submodule B1 of B. For g € G,

if Bg # B, then 0 # Blg/(BlﬂBlg) EZGl (Bl+Blg)/Bl < B/B, EZGx A.

That is, A has a cyclic (and hence finite by A being periodic) ZGi-factor. By
Lemma 2.2.6, A has a nonzero finite ZG-factor, a contradiction. So Blg = }3l
for all g € G. That is, Bl is a ZG-submodule of B. Thus the result holds.

Lemma 5.2.4: Let E be an extension of a periodic abelian subgroup A by a
hyper—(cyclic or finite) locally soluble group G such that A is an artinian
ZG-module without any nonzero finite ZG-factors. If N/A is normal in E/A and
N = CE(A), then N = AXM, where M is normal in E and is contained in any

supplement to A in E,

Proof: Let M be a normal subgroup of E contained in N and maximal subject to

113




MNA = 1. By considering the factor group E/M, we may assume that M = 1,
Then E satisfies the following property (*): if S is normal in E, S =< N,
and S # 1, then ANS # 1. We show that in this situation A = N.

Suppose that A # N. Since the factor group E/A is hyper—(cyclic or
finite), there is a nontrivial finite subgroup K/A = N/A such that K is
normal in E or an infinite cyclic subgroup L/A < N/A such that L is normal
in E,

For K, by the hypothesis of the lemma, K = CE(A) and so K is a finite
extension of its central subgroup A. Hence K’ is finite (Schur, Thm 10.1.4 in
[15]). It follows that ANK’ {s finite and by A having no nonzero finite
ZG-factors, ANK’ = 1, and so, by (*), K’ = 1. That is, K is abelian, By
Theorem C, K = Afo, where Kf is a finite normal subgroup of E. By (¥)
again, Kf = 1, that is, K = A, contrary to K/A being nontrivial.

For L, by the hypothesis of the lemma, L = CB(A) and so L is a cyclic
extension of its central subgroup A. Thus L is abelian. By Corollary 5.2.3,
L = AXLI, where Ll is a cyclic normal subgroup of E. By (¥), L1 = 1, that
is, L = A, a contradiction.

Thus, we have got N = AXM with M being normal in E.

If E1 is a supplement to A in E, then AE1 = E and so N = A(NOEI) with
Nf‘IE.l being normal in AEl = E. Since M is hyper—(cyclically or finitely)
embedded in E, and so is M(N(‘lEl)/(NﬁEl) in E/(NﬂEl). But, since A is
periodic and has no npontrivial finite E~factors (otherwise A  would have a

nonzero finite ZG-factor, a contradiction), by
M(NHEI)I(NOEI) < NI(NOEI) = A(NﬂEl)i(NﬂEl),

we have M(NﬁEl) = NﬁEl, ie, M= El. The result is proved.
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Comparing with Lemma 5.2.1, we have the following partial dual result:

Lemma §5.2.5: Let E be an extension of a periodic abelian group A by a
hyper—(cyclic or finite) locally soluble group G and suppose that A is an
artinian ZG-module without any nonzero finite ZG-factors. If also G has no
nontrivial finite normal subgroups and E has no nontrivial cyclic normal
subgroups, then there is a normal subgroup K of E such that [ANK, K] = ANK
and K/(ANK) is a nontrivial cyclic group. If, furthermore, A has a complement

L in E, then K can be chosen so that K = (ANK)L.

Proof: By G being hyper—(cyclic or finite) and having no npontrivial finite
normal subgroups, we¢ have E contains a normal subgroup Ko such that A < Ko
and KO/A is cyclic. By Lemma 5.2.4 and E having no nontrivial normal cyclic
subgroups, we have CE(A) = A, Thus, Ko is nonabelian. Let AO = [A, K 0]. If
A = AO, then K0 is the required subgroup. If A # Ao, consider the ZG-module
K /A, = Eo' By Corollary 5.2.3, we have Ko = K@Ki for some ZG-submodule Kl,
where A = A/AO. Let Kl be the preimage of Kl, then K1 is a normal subgroup
of E, KlﬂA = AO, and K1/A0 = KO/A. Furthermore, if Al = [AO, K1] e Al,
then similarly we can find a subgroup K2 being normal in E such that K:2 = Kl,

KZOA = Al, and Kz/A1 = KO/A. If A2 = [A1’ KZ] # Al, then there exists a

subgroup K3. The chain of submodules A > AO >A1 > +++- must terminate at An,

say, and there is a normal subgroup Kn+ ) such that [An, Kn+1] = Au,

ANK = A, and K /A = K /A Thus K has the required properties.
o+l n n+l n 0 n+l

Now suppose that A has a complement L in E. Then K0 < E = AL = (AﬂKO)L
so that the second part is also proved if K = KO. Since E = A]L, we have
KOIA 0 = Ko = Kx(ﬁoﬂf). By A having no nonzero finite (and hence cyclic )

ZG-factors, we clearly have that the direct factor A of Ko has a unique

complement in Ko' Therefore, it follows that T{—oﬁf = El and then K = AL
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= (KlﬂA)L. Using a similar argument and induction on n, we immediately have

K <= AL = (ANK )L. The result holds.
n+l o n+l

Now we prove the main result of this part.

Theorem D: Let G be a hyper—(cyclic or finite) locally soluble group and A a

periodic artinian ZG-module. If A has no nonzero finite ZG-submodules, then
any extension E of A by G splits conjugately over A and A has no nonzero

finite ZG-factors. Also, every complement to A in E is self-normalizing,
Proof: By Theorem C, A has no nonzero finite ZG-factors.

Existence of self-normalizing complements: Since A is artinian, E has a

subgroup ]:'a1 minimal with respect to E = AEx' We prove that AﬂE1 = 1.

Suppose that Al = AﬁEl # 1. The group El and its subgroup Al,
considered as a ZG-module, satisfy the conditions of the theorem (since
E/A = EI/AI). We may therefore assume that A = Al and E = El, then A has
no proper supplement in E and A # 1.

Since A is periodic, by passing from E to its factor group E/Ap,, we may
assume that A is a p-group for some prime p. By A having no nonzero finite
ZG-factors, we have A = [A, G]. So, by Lemma 5.2.1, there is a nonzero
ZG-image A/B and a npontrivial pormal subgroup K/A of E/A such that
A/B = [A/B, K] and K/CK(A/B) is cyclic or finite. Passing to the factor
group E/B, we can take B = 1 so that A = [A, K] and K/CK(A) is cyclic or
finite.

(1) Suppose K/CK(A) is cyclic. By Lemma 5.2.4, CE(A) = AXM, where M is

a normal subgroup of E. Passing to E/M, we may assume that CE(A) = A. So

Ci(A) = KOC (A) = A, e, K/A is cyclic. Passing from E to E/C, where C is
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the maximal hypercyclically embedded normal subgroup of E, we may assume that
E has no nontrivial cyclic normal subgroups, Since A = [A, K] and K/A is a
nontrivial cyclic normal subgroup of E/A, there is an element x such that
K = A<x>. Then, by Lemma 1.2.16, we have E = ANE(<X>). By A having no
proper supplement in E, we have E = NB(<x>), i.e., <x> is a cyclic normal
subgroup of E, a contradiction.

(2) Suppose K/CK(A) is finite. In this case, we need only consider the

situation in which K/CK(A) is a g-group. For, let
K=KO>K1> >KS=CK(A)

be a series of normal subgroups of E, the factors of which are P -groups. Let

i be the largest such that A = [A, Ki]. Then [A, Ki+1] < A, [A, Ki+1] is
normal in E, and we can pass to the factor group E/[A, K‘+1]' So we may
1

assume that [A, K, ] =1, K < C_(A), and Ki/CK (A) is a g-group

1 i+l ; .
(g = pi). We can replace K by Ki and so assume that K/CK(A) is a g-group.
By Lemma 5.2.4, we may further assume that CE(A) = A, and so CK(A) = A,
Thus K/A is a finite g-group for some prime g.

Consequently, we need only consider the following situation: E is an
extension of the p-group A, where E/A has a nontrivial finite normal
g-subgroup K/A such that A = [A, K].

Let ¢ = p. By Lemma 1.2.20, A has a proper supplement in E, a
contradiction;

Let ¢ # p. If Q is a Sylow g-subgroup of XK, then K = AQ is
abelian—by—finite and so is locally finite, which implies all Sylow
g-subgroups of K are conjugate in K [18]. Therefore, by the Frattini argument,

E = ANE(Q). Also AﬂNE(Q) < A for otherwise [A, K] = [A, Q] = 1. Hence
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NB(Q) is a proper supplement to A in E, a contradiction again.

So, we have proved the existence of the complements.

If, finally, a complement K is properly contained in its normalizer
NE(K), then consider K < K<x> =< NB(K). Since K<x> NA isnormalin AK =E
and K<x>NA = (K<x> NA)K)/K = K<x>/K, weseethat K<x> NA isacyclic
(and hence finite) ZG-submodule of A, contrary to A having no nonzero finite

ZG-factors. So all the complements to A in E are self-normalizing,

Conjugacy of complements: Let Sl and S2 be two complements to A in E and
take an E—invariant subgroup A0 of A such that S1 and 82 are conjugate modulo
AO but are not conjugate modulo any proper E—invariant subgroup of AO. If

AO # 1, we may clearly assume that A = AO. By A being artinian, E has a

g
subgroup El minimal with respect to E = AE1 and Ei is generated by SlI
g
and 822 —— conjugates of Sl and Sz' We prove that AﬁE1 = 1 so that
8 &
E.1 = Sl = S2 , a contradiction.

g,
Suppose that Al = A('\El # 1 and note that E.1 = Al]Si’. Apply Lemma

5.2.1 to El, we obtain a series of normal subgroups
B < Al =< CK(Al/B) = K = EI

with AllB = [Al/B, Kl and KICK(Al!B) is cyclic or finite. Passing to the
factor group El/B, we can take B = 1 so that Al = [Al, K] and K/CK(A1) is
cyclic or finite,

(1) Suppose K/CK(AI) is cyclic. In this case, we pass from Ei to the
factor group El = El/C, where C is the maximal hypercyclically embedded
normal subgroup of El. ACertainIy, by Al having no mnonzero finite ZG-factors,

we bave K is not contained in C and, since a complement to A1 in Ez is a

maximal hyper—(cyclic or finite) subgroup of El, C is contained in any
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complement to A in E . Also, by Lemma 5.2.4, we may assume that CE(KL) = A .

Hence, we have Et = A ]Si1 and K/Xl is cyclic. It is clear that K = A }K,

——— —_— — g. —_— —_— —
where Ki is the cyclic subgroup Ki = KﬂSil. By A1 = [Al’ K1, we have Ki

are conjugate in K, ie,, K = K; for some a € A

| ) By Lemma 1.2.16,

El = AINEI(KI)' By F_.1 = EI/C, we have El > Nﬁi(Kl)‘ Let E2 be the preimage

g g
=\ . o 1 1 = T o TN T
of Ngl(Kl) in El, since C = Sl R Sl < NEI(Kl)’ and E1 AlNEl(KI),
o a gl
wehave E_. <« E and E. = AE. Thus, E=AE = AE. But K =K 08
2 1 1 12 1 2 1 2 1

g a8
and 822 are both contained in E2 and hence the subgroup of El generated by

g g,a

) 11 and 322 should be the group E1 by the minimality of El' That is, E2 = I:",1

contrary to E2 < El.

(2)  Suppose K/CK(AK) is finite. As before, we may assume that
K/CK(AI) is a g-group and, further, we may assume that CK(AI) = Al, i.e.,

KIAl is a finite g-group,
g g
If p = g, then by Lemma 1.2.20, Sll and 822 are conjugate modulo some

proper El—invariant subgroup of A1 and hence S1 and 82 are conjugate modulo

some proper E—invariant subgroup of A, a contradiction;

If p # g, then by Lemma 1.2.4, A1 = CA X) [Al, K], and it follows
1
£
from Ai = [A1’ K] that CA (K) = 1, The intersection K('}SI is a Sylow
1

8 g g 8
g-subgroup of K and KﬁSll is normal in SIl so that Sll = NE (KﬂSll). But
1

gl gl gl gl
NAl(KﬁSI) = cAl(Knsl) = cAl(K) =1 so tha S = NEI(KOSI ).

£y 5y g £ .
Similarly, 82 = NE (KﬁSz) and so S1 and 82 are conjugate in El (since
1
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g g
KNS ' and KNS’ are conjugate in K and so in E). Thus, S and S are

conjugate in E, a contradiction.

Theorem D is proved.

Noetherian Case:

Similar with the artinian case, we have the following lemmas:

Lemma 5.2.6: Let G be a hyper—(cyclic or finite) group, B a ZG-module, and A
a noetherian ZG-submodule of B such that all irreducible ZG-factors of A are
infinite, If B/A 1is torsion-free and G-trivial, then B = A&)B1 for some

ZG-submodule Bl of B.

Proof: Suppose that A has no complements in B. Since A is noetherian , we may
assume that for each nonzero ZG-submodule C of A, A/C has a complement in B/C.

In B, we choose a ZG-submodule M maximal with respect to ANM = 0. We
show that if S is any ZG-submodule such that B = A+S then M =< S.

Since B/A =z (AeM)/A = M, we have M is a G—trivial ZG-module and hence

ZG

all of its irreducible ZG-factors are finite. Also
A/(ANS) =sq {(A+8)/S = B/S = (M+S)/S =G M/(MNS),
by A being noctherian and having no nonzero finite ZG-factors, we must have
M = MNS, ie., M =< S,
Consider the factor-module B/M. Every nonzero ZG-submodule of B/M has
nonzero intersection with (A eM)/M. In particular, (AeaM)M has no

complements in B/M. If V/M is a nonzero ZG-submodule of (AeM)/M then

V =CeM, where C = ANV is nonzero and so B/C = A/C @ SI/C for some
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ZG-submodule S1 of B. As above, M = Sl and so (A&aM)ﬁSl = (AFISI)@M
= CoM = V. Thus Sllv is a complement to (AeM)/V in B/V.

By passing to the factor-module B/M we may assume that M = 1 5o that:
(@) A has no complements in B but for any nonzero ZG-submodule C of A, A/C
has a complement in B/C; (b) if N is a nonzero ZG-submodule of B then
ANN # 0.

We may assume that A is torsion-free. For otherwise, we may let A[p] be
the nonzero ZG-submodule generated by all the elements of order p, where p is
a prime. By (a), B/A[p] = A/Alp] o BIIA[p]. Since Bl/A[p] (EZG B/A) s
torsion-free, pB1 # 0, then, by (b), 0 # AﬁpBl = Afp] ﬁpBl. That is, Bl has
elements of order pz, contrary to Bl/A[p] being torsion-free. So A s
torsion-free and then B is torsion-free. Since A has no nonzero finite

ZG-factors, we have CA(G) = 0. By Propesition 5.1.2, G has a normal subgroup

K and A bas a nonzero ZG-submodule A1 such that CA (K) = 0 and K[CK(Al) is
1

cyclic or finite. By (a), BIA1 = A/Al ® BI/AI. Consider the ZG-module ’B1 and
we prove that Bl = Al ® l?.2 for some ZG-submodule B2 (and hence we get
B = Aea132 as required).

Suppose B { * Al&aB2 for any ZG-submodule B2 and suppose that G acts
faithfully on Bl, ie., CG(BI) = 1. It is clear that we still have that K is

normal in G, CA (K) = 0, and K/CK(AI) is cyclic or finite, If CK(AI) # 1,
i

then, since CK(A 1) = K(’\CG(AI) is a normal subgroup of G, CK(AI) contains a
nontrivial cyclic or finite subgroup F being normal in G. Let F = <f1,--',fn>

and let G1 = CG(F), then }G/Gl| < . By Lemma 2.2.6, the irreducible

ZGl~factors of Al are infinite. Since Blz’A1 is G-trivial, it is also

G ~trivial. By BI/CB](fi) EZGI B(f-1) s A and A = cBl(fiL we must have
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Bl(fi—l) = 0, for all i. That is, 1 # F =< CG(Bi), contrary to G acting

faithfully on Bl' So CK(Al)

1 and so K is a noantrivial cyclic or finite
normal subgroup of G. Let K = <k1, sl kt>. Being similar with the above,

we have BI/CBl(ki) amz B(k-1) s A for all i, where G, = C (K). Thus

BI/(A1+CB (ki)) must be zero for all i. That is, B1 = A1+CB (ki) for any i.
1 1

Let Cm = CBI(<k1, sy km>), m = 1, --+, t. Then we have B! = A1+C1'

Suppose that Bl = A1+Cm; we prove that B1 = A1+Cm+1.

(k —1). Since

Consider the ZG -modules cm/cm+1 = Cm/CCm(km+1) = q, c k.

B1/A1 is G-trivial, Cm(km+1—1) < A1 and so Cm(ka—l) has no nonzero

finite ZG_-factors; hence the irreducible ZG_-factors of c /c are all
2 2 m m+l

infinite. But cm/(cm+ H@A NC ) EZGz (Cm+A1)/(Cm+l+Al) a factor module

of the G —trivial ZG -module B /A . Hence A +C = A +C . That is,
2 2 1 1 1 m 1 m+1

B1 = A1+Cm+1' Therefore B1 = A1+Cm for all m. Put m = n, then Cn = CBl(K)

and Bl = A1+CB (K), which implies that CB (K) # 0. Hence, by (b) and
1 1

B/Al = A/AleaBl/Al, we have CAI(K) = AlﬂCBl(K) = AﬂCBl(K) = 0,

a contradiction. So B1 = AlesB2 for some ZG-submodule B:(1 and hence the lemma

is proved.

Corollary §.2.7: Let G be a hyper—(cyclic or finite) group, B a ZG-module,

and A a noectherian ZG-submodule of B such that all irreducible ZG-factors of A
are infinite. If B/A is an infinite cyclic group, then B = Ae;B1 for some

ZG-submodule B1 of B.

Proof: Let G, = C,(B/A), then |G/G—l{ =< 2 and B/A is torsion-free and
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Gl—trivial. By Lemma 5.2.6, B = AeaB1 for some Grtrivial ZGl-submodule Bl of

B. For g € G, if Blg # Bl’ then Blg is Gl—trivial and

0 = B!g/(BlﬂBlg) EZGI (131+}3lg)/131 < B/Bl me A.

That is, A has a nonzero Gl—trivial ZGl-factor and then a nonzero finite
irreducible ZGI—factor, which will imply that A bhas a nonzero (finite
irreducible ZG-factor, a contradiction. So Bg = B for all g € G. That

is, B . is a ZG-submodule of B. The result is proved.

Lemma §.2.8: Let E be an extension of the abelian group A by a hyper—(cyclic
or finite) group G such that A is a noetherian ZG-module and all irreducible
ZG-factors of A are infinite. Then if C/A is a normal subgroup of E/A and
C = CE(A), then C = AxXN, where N is a normal subgroup of E and is contained

in every supplement to A in E,

Proof: Let N be a nmormal subgroup of E contained in C and maximal subject to
NNA = 1. By considering the factor group E/N we may suppose that N = 1.
Then E satisfies the following condition: if S is normal in E, S =< C, and
S # 1, then SNA # 1. We show that this implies that A = C.

Suppose that A # C. Since E/A is hyper—(cyclic or finite), there is a
nontrivial finite subgroup K/A =< C/A such that K is normal in E or an
infinite cyclic subgroup L/A =< C/A such that L is normal in E.

For K, by the hypothesis of the lemma, X = CE(A) and so K is a finite
extension of its central subgroup A. Hence K’ is finite. It follows that ANK’
is finite and so ANK’ = 1 by A having no nonzero finite ZG-factors. By the
condition above, we have K’ = 1 and so K is abelian. Apply Proposition 5.1.3

to the Z(E/K)-module K and its submodule A, then A = A)(Kl for some normal
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subgroup Kl of E, contrary to the condition above,

For L, by the hypothesis of the lemma, L =< CB(A) and so L is a cyclic
extension of its central subgroup A. Thus L is abelian, By Corollary 5.2.7,
L = AXL1 for some normal subgroup Ll of E, contrary to the condition above.

Thus we have proved that C = AXN, where N is normal in E,

Now let l:“'.l be a supplement to A in E so that E = AEI, C = A(CﬂEl) and

CﬂE! is normal in AE] = E. We have
N(CNE)ICNE) s CACNE) = A(CNEDICNE).

Since N is hyper—(cyclically or finitely) embedded in E and the irreducible
ZG-factors of A are all infinite, we must have N(CﬂEl)/(CﬂEl) = 1, i.e.,
N(CﬂEl) =C = El' Hence N = 1-31 as required.

Now, we prove the last main result of this part.

Theorem E: Let G be a hyper—(cyclic or finite) locally soluble group and A a
noctherian ZG-module. If A has no nonzero finite ZG-images, then the extension

E of A by G splits conjugately over A and A has no nonzero finite ZG-factors.

Proof: By Corollary 5.1.6, A has no nonzero finite ZG-factors.

Suppose the theorem is false, then using the fact that A is a noetherian
ZG-module we may assume that: A has conjugate complements in E modulo any
nontrivial E—invariant subgroup of A.

Since A has no nonzero finite ZG-factors, CA(E) = 1. By Proposition

§.1.2, E/A has a normal subgroup K/A and A has a nontrivial E—invariant

subgroup AO such that CA K) =1 and K/CK(AO) is cyclic or finite,
0

hH If K/CK(AO) is finite, then we may choose K and A0 such that

K/CK(AO) is minimal and so K/CK(AO) is a chief factor of E. (For if L is
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normal in E and CK(A{)) < L < K then if CA (L) =1 we have L, AO contrary
0

to minimality of lK/CK(AO)I and if CA (LY # 1 then K, CA (L) is contrary
0 0

to minimality of |K/CK(AO)| .) Hence KICK(AO) has order pk for some prime p

and integer k = 1, From CA (K) = 1 it follows that Ao[p] = 1 and so
0

pk
A 0o * 1.
k
By the assumption on A, we have E splits conjugately over A modulo AI; .

k k
Let El be a complement to A in E modulo Ag : E = AEI, AﬂEl = A]; ;

put E0 = AOEI’ KD = KﬂEo, and Co = CKO(AO)' By Lemma 5.2.8, C0 = AOXN,

where N is normal in Eo and is contained in Ei. Consider the factor group

Eo = EOIN and the subgroups KO,AO. Since

KOIA0 = Kolco = KOIC0 = K/CK(AO),

— — _ k . _ . — - —
we have |KOIAO| = p . Corresponding to C, (K) =1 wehave C—(K) 1

0 0
k

XI; . It follows, by applying Lemma 1.2.21 to EO and its

I

and also Aor'lEl

subgroups Ko’ Ao’ that E{) splits over AO: Eo =‘A0E2, AODEZ= 1. The

complete preimage E2 of }‘:',2 in EO gives Eo = A0E2 and AODE2 = 1. So

that E2 is a complement to A in E, Let S;’ 52 be any two complements to A in

k
E. Then, since E splits conjugately over A modulo A}; , we¢ have Sl and S2 are

k k

k
conjugate modulo A}; and we may assume that A}; Sl = A‘g S Put E = AS

2 0 01
= Aosz’ KO = K(‘lEO, and C0 = CKO(A(})' By Lemma 5.2.8, C0 = AOXN, where N

is normal in E0 and is contained in every supplement to AO in EO; in

particular, N = SIDSZ. Consider the factor group Eo = E/N and its
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subgroups Ko’ Ao' Since KOIA0 = K/CK(AO), S0 KOIA0 is a group of order

k
k Wy = T = p
p,and also C Ao(K 0) 1 by CA K) 1. From A 0 S

k
= A‘S S_ it follows
0

i 2

k
that §1 and §2 are complements to Ko in Eo which coincide modulo X‘Z . Apply

Lemma 1.2.21 to the group EO and its subgroups EO’ Ko, we have the conjugacy

< g2 = g i 3 == g =
of the complements: S1 Sz’ a € Ao' Since Sl SI/N, 52 Sle, and

N is normal in Eo it follows that St = SZ, i.e., E splits conjugately over

A, a contradiction.
(2) Now we may suppose that K/CK(AO) is cyclic.

In this case, we let A1 = {AO, K] = AO, then, by CA (KY = 1, we have
0

Al # 1. Thus E splits conjugately over A modulo Al, ie., E = AE!’ A(‘\E1 = Al.

Let Kl = KI"\EI and C1 = CKI(AO). It is clear that A1 = Cl < CKI(Al)

= CE (Al). By Lemma 5.2.8, C1 = ALXN for some normal subgroup N of E‘.
1

Since KIIC1 = KICK(AO), we have Kl = C1<x> for some x & Kl, Let

M = N<x>, then Ki = C1<x> = AlM. Since

[AlﬂM, K] = [AlﬂM, CK(AO)<X>]

I

[AlﬂM, <x>] = [AlﬂM, x]
< [AI, x] 00 M, x]
= A1 NN = 1,
w¢ have A1 NM = CA (K) = 1. Thus K] = AlM, i.e., M is a complement to

¢]

Ai in Kl'

Suppose that M0 is also a complement to A1 in Kl with N = MO; we show
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that M and M0 are conjugate by an element of Ao' We can write x = ax, with
A nd x M. Si
a e , @ d 0 € o Since

A, = [A, K] = [A, C (A)<x>]

_ -1
- [AO’ <K>] - [AO’ X ]s

, X ] for some 2, (& Ao’ and therefore

-1
-1 -Ix
x =ax =Ja’,x ]x0 = ao(ao) X,
-1 a
-1.x -1, 0
(ao) a X, = x(x ) X

f

ie, x =X 0. Since N = Mo and N < C1 = CK (AO), we have
1
] & a

M0 = (N<x>)0 N<x°> = N<xo> =< Mo'

]

As C(A) = ACKL(AO) and K = K C (A), so

AM = A(AM) = AK

1 = ACKI(AO)KI = CK(AO)KI

% % %o
=K=K"=@um’=am°

also ANM, = ANM, =1 and ANM = 1 implies that AOMO - 1,
Thus M0 = M
We now prove that A has conjugate complements in E and that the
complements are of the foorm L = NE (M), where EO = AOE1 and M is , as
0
above, a complement to Al in K1 containing N.
If ge El, then since N and Kl are both normal in E1 and the subgroup

:

MEis a complement to Al in K1 containing N, thus ME = M? for some  a, € A0

and so ga(_)l € NE (M) = L, hence E = AE1 = AL. We show that L is a
0
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complement to A in E. That is, we need to prove that ANL = 1.

Since L = E0 = AOE1 and AI'\E1 = Al, 50

ANL = ANE NL) = (ANE)YNL = (ANA E)NL

= Ao(AﬂEl)ﬂL = AoAlﬂL = AOOL;

also A0 is normal in E and L = NE (M), hence [AoﬂL, M] = AoﬁM.
0

Since AoﬁM = Aoﬁ(ElﬂM) = (AoﬂEl)ﬂM = AlﬁM =1, so ANL = CA M).
0

Therefore, by K = AM and CA (X) =1, we have ANL < CA M) = C‘A X) = 1.
0 0 0
That is, ANL = 1 and so L is a complement to A in E.

Now let S be any complement to A in E. Thus S and L are conjugate modulo

A | and we may assume that AIL = AIS. Therefore, we have

]

E = EoﬁE

0 EoﬂAL = (EoﬁA)L = (AOEIF\A)L

= AOL

I

AOAIL = AOAlS = AOS.

Since K1 = AIM = AlL = AIS, s0 Kl = AlMl, AlﬁMl = 1, where Ml = KlﬂS;
thus M and MI are complements to Al in Kl' We show that N = M!. By K1 = AlS
and C1 = CK (Ao) = K1 we have C1 = ClﬂAlS = Al(ClﬂS), thus C1 = A1XN1’

1

where Nl = ClﬂS < Ml and Nl is normal in AOS = EO since Cl = CKI(AO) is

normal in AOE1 = E o In particular, N1 is normal in El < Eo and, since
El/Al is  hyper—(cyclic or finite), Nl is  hyper—(cyclically or finitely)
embedded in El' Consider the product NN!’ if NN] # N1 then, by C1 = AIXN

= A1XN1’ NanAx # 1 and so Al contains a nontrivial cyclic or finite
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subgroup normal in El. By A = A and EIIA1 = BE/A = G, we have A has a
nonzero cyclic or finite ZG-submodule and hence contains a nonzero finite
ZG-factor, a contradiction. Thus NN L= Nl, N = N1 and so N = Ml.

This shows that M and Mj are conjugate by an clement a, € AO, i.e.,

a a a a
M® =M, andbhence L’ =N_°=N_(M") = N_ (M). From K =AM
0 0 0

and M is normal in L it follows that Kl is normal in AIL. Therefore, by

AlL = Als, we have K1 is normal in AIS, and so Ml = KlﬂS is normal in S

a a
and S = N_(M). By L? = N, (M), wehave S =L O and so
0 [¢]

%o % %
L~ = ASNL " = (ANL )S = S,

That is, S and L are conjugate in E, i.e., E splits conjugately over A, a
contradiction again.

Thus, we have finished the proof of the theorem.
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6 SOME REMARKS

After Theorem A is proved, the similar results about the modules over
some special groups are expected. However, these expected results are not
true in most cases, which can be seen from the examples given in the following

§6.1. §6.2 contains questions arising from our work which are still open.

§6.1 EXAMPLES OF SPECIAL MODULES

a There exists a torsion-free irreducible ZG-module A over a hypercyclic
group G.

As P. Hall has shown: there exists a 3—generator torsion-free soluble
group E with derived length 3 and bhaving a minimal normal subgroup A
isomorphic with the direct product of a countable infinity of copies of the
additive group of rational numbers [4]. That is, in the category of
ZG-modules, A is a torsion-free irreducible Z(E/A)-module over the soluble
group E/A. From the example given by him, we can have a torsion-free
irreducible ZG-module A over a hypercyclic group G. In order to get such a
module, we recall firstly P. Hall’s example.

Let V be a vector space of dimension s\‘o over the field of rational
numbers © and let {vi; i =0, 1, 2, ----} be a basis for V. For each
integer i we select a8 prime number P, in such a way that P + pj if i # j,
and every prime occurs among the P,

Let ¢ and n be the linear transformations of V defined by

ve = v and vy = pv, i =0, %1, £2, =)
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j
Let H = <¢, 7>, and writing ”6 = r]j, then

V.7 = V..
i PV

Thus the r]j commute with each other and qH is a normal abelian subgroup of H.
Therefore H is metabelian, and indeed, H is isomorphic with the standard
wreath product of two infinite cyclic groups (H has rrH as its base subgroup).

It was shown that V contains no nonzero proper H-admissible additive
subgroups. Let A be the additive group of V and let E = A]H, the semidirect
product of A by H, then E is a 3-generator torsion-free soluble group with
derived length 3 and has A as its minimal normal subgroup, View A as a
ZH-module, then A is a torsion-free irreducible ZH-module.

Now let G = ﬂH and let A be the additive group of the l-dimensional
vector subspace, say spanned by Vo of V. Then G is a torsion-free hypercyclic
abelian group and A is a torsion-free ZG-module. Let B be a nonzero
ZG-submodule of A and let 0 # w € B, then w = v, for some nonzero rational
number 1 & Q. For any prime p and any integer n, since p = P, for some i

and vorz_i =p = pvy 0

o-tnvo - Pi¥o
rpnv0 = 1'p‘ilv0 = (rvo)tfl_li € B.

Thus, it follows that B contains each rational multiple of Yo and then B = A,

That is, A is irreducible. (If we take A to be the additive group of all

rationals and G the multiplicative group of all positive rationals and assume

that G acts on A by the natural multiplication, then we get the same required

example by taking nj = pj € G, where p, runs over all primes when i runs

over all integers.)

b There is a noetherian ZG-module A over a hypercyclic group G such that
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A has no C-decomposition,

A C—decomposition of a ZG-module A over a group G is that:

where A is a ZG-submodule of A such that each irreducible ZG-factor of A° is

a cyclic group and the ZG-submodule A° has no that kind of irreducible

Z G-factors.

D. I. Zaicev proved that: any artinian ZG-module A over a hypercyclic
group G has a C-decomposition [19]. For noetherian modules, we have the

following counterexample.

Let A =ZoZ (= <a, b; ab = ba>), the free abelian group of rank 2. Let

G (= <x>) be a cyclic group of order 3. Define a G-action on A by

a— b ( —— —(@@+b) — a)

bi—> —(a+b) ( —— a +— b).

Then we can see that A is a noetherian ZG-module over the hypercyclic group G.

Since A/3A is finite and is of order 32, so the 3-group G acts trivially
on the irreducible ZG-factors of A/3A (Corollary 1.2.8) and then the
irreducible ZG-factors of A/3A are cyclic. Thus, the ZG-module A contains
irreducible ZG-factors being cyclic groups. On the other hand, it is clear
that A/2A is an irreducible ZG-factor of A and is an elementary abelian group
of order 4. That is, A contains irreducible ZG-factors being not cyclic
groups.

Suppose A has a C—decomposition, i.e., A = A°@A°, then A® % Oand A® # 0.

Since A is a free abelian group of rank 2, so both A° and A° must be infinite

cyclic groups and then A°/3A° is irreducible and is of order 3, which contrary
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to A° having no irreducible ZG-factors being cyclic groups. So A has no

C—decompoasition.

¢ There is a noetherian ZG-module A over a hypercentral group G such

that A has no Z—decomposition.

A Z-decomposition of a ZG-module A over a group G is that:

where A” is a ZG-submodule of A such that each irreducible ZG-factor of A” is
G-trivial, i.e., the «centralizer in G is the whole group G, and the

ZG-submodule A® has no nonzero G-trivial ZG-factors.

In the same paper [19], D. I. Zaicev pointed out that: any artinian
ZG-module A over a hypercentral group G has a Z—decomposition. But, the result
does not hold again in the noetherian case as we can see from the following

simple example,

let A = <a>, the infinite cyclic group, and let G = <x>, the cyclic

group of order 2. Define the G—action on A by

It is clear that the above is, in fact, the definition of an infinite
dihedral group, thus we have got a noctherian ZG-module A (= <a>) over the
hypercentral group G (= <x>). Since A is indecomposable as a group, so A has
no nontrivial Z-decomposition. But ecach irreducible ZG-factor 2iA/2i+lA is
clearly G-trivial and each irreducible ZG-factor ij/pj“A with p # 2 is

clearly not G-trivial, so A does not have a Z—decomposition.
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§6.2 UNSOLVED QUESTIONS

Through our work, we often assume that G is locally soluble. However,
from the corollaries of our main results in Chapter 3 and Chapter 4, we have
noted that this condition is not necessary. Therefore, the general question

arises (as D. I. Zaicev has mentioned for artinian case).

Question 1: Let G be a hyperfinite group, does any noetherian ZG-module A

have an f-decomposition?

From our proof for the main result —— Theorem A, we see that the above
question may have a positive answer if the following three questions all have

a positive answer,

Question 2: Let G be a hyperfinite group and A a noetherian ZG-module with
pA = 0 for some prime p. If all irreducible ZG-factors of A are finite,

should A be finite? (It is almost true, see Lemma 2.4.6)

Question 3: Let G be a hyperfinite group, A a noetherian ZG-module, and B a
ZG-submodule of A, If all irreducible ZG-factors of B are finite and A/B has

no nonzero finite ZG-factors, does B have a complement in A?

Question 41 Let G be a hyperfinite group, A a noetherian ZG-module, and B a
ZG-submodule of A. If all irreducible ZG-factors of A/B are finite while B has

no nonzero finite ZG-factors, does B have a complement in A?

In §4.4, we have proved that: if A is a noetherian ZG-module over a
periodic abelian group G with #(G) being finite, then Af is torsion and has a

finite ZG-composition series as well as a finite exponent. Now the general
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question is:

Question §5: For any noetherian ZG-module A over a hyperfinite locally soluble

group G, must Af always be torsion?

Specially, we still have:

Question 6: If A is a noetherian ZG-module over a periodic abelian group G,

must Af be torsion?

The other challenges rising from Chapter 5 are the following:

Question 71  Let G be a hyper—(cyclic or finite) locally soluble group, does

any (torsion-free) artinian ZG-module A have an f—decomposition?

Question 8: Let G be a hyper—(cyclic or finite) locally soluble group, does

any noetherian ZG-module have an f-decomposition?

Finally, we have:

Question 9:  Let G be a hyperfinite locally soluble group, A a ZG-module, and
B a ZG-submodule of A. If B is an artinian (resp. noetherian) ZG-module and
A/B is a noetherian (resp. artinian) ZG-module, does A have an

f—decomposition?
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