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SUMMARY

We are concerned with the solvability of boundary value problems and

related general properties of solutions of semilinear equations

Au + flx, u Du)=0, in @ ™

and of quasilinear elliptic equations
. p-2 , .
div(|Du|“ " Du) + Afw)=0, in @ (%)

with a variety of domains.

In Chapter 2, we concentrate on the study of existence and uniqueness of
positive radially symmetric sclutions of the equation (*) with a variety of
Dirichlet and Neumann boundary conditions in annular domains, Using
Leray-Schauder degree theory, we establish some new existence results,

In Chapter 3, we shall give a npew description of the generalized degree
theory. Using this new generalized degree, we establish the existence of
solutions to the periodic boundary value problem

Qu’ (P72 00 + £, u, 6=y, u(@)=u(), u'©=u’(1),
under various conditions on the function y : [0,1]—R and the function
£ [0,1]XR* >R,

The aim of Chapters 4, 5 is to consider the existence and multiplicity of

positive solutions of the eigenvalue problem

-div(| Du [P  Duy=if)  in QRN }
(***)

u=0 on 4G

for A>0, N=2 and p>1. The domain 2 is assumed to be bounded, connected and to

have a smooth boundary.

(i)




In Chapter 4, we prove that there is a strong maximum principle for A+8
when 1<p=<2, where A-=-div(|D-|p—1D-), §>0. We show that the positive

solutions of (***) occur in pairs when f satisfies either (Fl} or (Fz):

(Fl) S is strictly increasing on lR+, f0)=0 and sl_ia%ﬂs)bp—lao; there

exist @, a2>0 such that f(s)5a1+ a’2|s|r, O<71<p-1.

(Fz) There is >0 such that
AOy=£()=0, >0 in (0,8) and f<O0 in (8, ) and sl_i%zgf(s)/sp_l=0.
We also give a necessary and sufficient condition for (**%%¥) to possess a
positive solution when f satisfies (Fz)'
In Chapter 5, the existence and uniqueness of positive radial solutions
of the problem (**¥*) on Q"-"-BR with Dirichlet condition are proved for A large

enough and f satisfying a condition

(F;) fGCI(O,OO)ﬂCy([O,OO)) is non-decreasing on IR+, O<y=sl, fI0)=0;

. R — ~1,,
sl_})togﬂs)/.fﬁ=1, O<f<p-1; SI_I)%lf(S)/Sp '~ and (f(s)/sp )’ =<0, for 5>0.

It is also proved that all the positive solutions of (¥¥¥) are radially

symmetric solutions for f satisfying (F;) and A large enough,

(iii)




INTRODUCTION

The principal objective of this work is some new developments of the
general theory of second order elliptic equations and the theory of
quasilinear elliptic equations. We shall be concerned with the solvability of
boundary value problems ( primarily the Dirichlet problem ) and related
general properties of solutions of semilinear equations

du + fix,u, Du)=0, in @ 0.1

and of quasilinear elliptic equations

div(| Du|P7? Duy + A fy=0, in @ (0.2)
with a variety of domains. Here A>0, p>1, Du =(D1u, ey DNH ), where D1= ‘g:l:t

i
We are especially interested in the existence and multiplicity of positive
radial solutions of the above equations in symmetric domains.

Recently, the problem of the existence and multiplicity of the solutions
of equations (0.1) and (0.2) has been studied by many authors. These equations
arise in many branches of mathematics and applied mathematics, see, for
example, [50, 76]. Problem (0.1) has been treated, if not exhaustively, at
least with reasonable completness and the fundamental questions have received
rather simple answers. To do so, the authors always use the nice properties of
the operator 4, for example, maximum principle, strong maximum principle,
comparison principle, Serrin’s sweeping principle and so on. Meanwhile, the
problem of the existence and multiplicity of the positive radial solutions of
(0.1) bas attracted much interenst, see [4, 15, 24-25, 27, 43, 45-46, 50,
54-56]. In 1979, Gidas, Ni and Nirenberg proved some very interesting facts,

for example, they showed that all positive solutions in ¢t (2) of the problem

(iv)




du +fw) =0 in Q
(0.3)

=0 on 99

are radially symmetric solutions provided that £ is a N-ball (see [28]). They
also proved that no such result can automatically apply to the annulus (see
also [46]). On the other hand, when flu) is superlinear ( tl—f)f;g SF(®)it=0) the
existence of positive solutions of problem (0.3) with a general Q has been
proved under various sets of assumptions, always including a restriction on
the growth of f at infinity (see {3, 9, 48]). It is known that such a growth
condition is, in general, necessary for starlike domains (see [63]). In the
case of the annulus, such a growth condition is not necessary (see [4]).
‘Therefore, the problem of existence of solutions of second order elliptic
equations in symmetric domains is of much interest. |

Motivated by the study of equation (0.1), many results have been obtained
for the equation (0.2) (see, for example, [30, 33, 65, 73]). Unfortunately,
there are many differences between these two equations, The major stumbling
block in the case of p#2 is the fact that certain ‘nice’ features inherent to
semilinear problems seem to be lost or at least difficult to verify. In the
case of (0.1), the solutions are classical (that is, smooth), but in the case
of (0.2) they are generally weak solutions, since the pseudo-Laplacian is
degenerate  elliptic, Precisely, it was shown in [73-74] that the bounded

solutions to the problem

~div(|Pu|P* Duy=f @) in Q
©.49

u=0 on 9§23

belong to C' V¥ for some a (O<a<1) but not always to C*(8). For example,
when the domain € is a ball centred at the origin 0, the function u(x)

defined by

W




—— —— e e — =

ux)=a [x|Pl(p—l) + b,

with constants ¢ and & (¢<0, b>0), is a solution to the problem

1 in @
. 0.5)
0 on 382

-div([l)u]p”2 Du)

It

U

Moreover, the solutions of (0.4) on a symmetric domain are not necessarily
radially symmetric, Tolksdorf [73] showed that there exist solutions of the
problem
~div(|Du|P? Dy = 0, in B (0.6)
that are of the form
ux)= r* 9(0), ©.7)
where r=|x|. When Q=Bp(0)={x : |x| <p}, Kichenassary and Smoller [41] proved

the following theorem.

Theorem A Suppose f satisfies:

(%) If f : R-R is a compactly supporied fou function satisfying

1 1
SO)=0=£1); fO)>0>f(1), f fHde>0 for some SOE(O, 1), Iﬂt)dt=0 and

s 0

0

a
j Adt >0 for some a€(0, 1) and fla)=0, then, for p>2, the problem
0

~div(|Du |p~2 Duy= fwy |x|=p
0.8)
4

=0 [x|=p
has, for sufficiently large p (depending on p), a compactly supported
solution.
From Theorem A, they ecasily obtained the consequence that (0.8) has
nog-negative non-radial solutions,

In the same paper, they also proved the following theorem.

(vi)




Theorem B Let p>2 and f be as in Theorem A. For a>0 and every e>0 small

enough, the solution of the problem

-div(|Du|P P Duy= f)  |x}=p
, (0.9)

u=a-e x| =p
satisfies, with some L <pl2, independent of p,
u=a for |x|= (p/2)-L.
Theorem B implies that there is no strong maximum principle for the
equation (0.9) when p>2. We¢ know that Equation (0.9) is solved by looking for

the minimum in WP N {u=a for |x| =p} of

J

where  F(s) :=S“;}‘(z‘)dt and f is strictly decreasing, f=f for s€ [a-¢, a]l. As

{ —;—— |Du]P—F(u)] dx,
|x] =p

the problem is monotone, there is exactly one minimum, #. The maximum
principle shows g-é=< w =<a. Theorem B says max u =a. But there is strong
maximum principle for 1<p<2 (see Proposition 4,14 of Chapter 4). Now, we can
raise the question whether some existence and mulbtiplicity results of
semilinear elliptic equations are true or not for the above quasilinear
elliptic equations.

In Chapter 2, we concentrate on the study of existence and uniqueness of
positive radially symmetric sofutions of the equation (0.1) with a variety of
Dirichlet and Neumann boundary conditions in annular domains. The function f
is assumed to be decreasing in » and u’ and is allowed to be singular when

either ¥=0 and «’=0, To study this problem, we use the transformations

= (N-2)F 27 (0.10)
_ -k ,_ 2N-2
bO=[ (-2, k=22 ©.10)
ti==[(N~—2)Rl:—2 174 i=o0, 1 (0.12)

(vii)




to discuss the two-point boundary value problem of an ordinary differential
equation
w’ (@) + @) g, u@®, W' N=10, (0.13)
where g is decreasing in w and u’, g also has singularities at w=0 and wu’=0.
Using topological transversality theorem (see Theorem 1.3.5 of Chapter 1),
Bobisud, O’Regan and Royalty have obtained many results on this problem ({see,
for example, [5, 57]), but they only treated some special cases, For example,
when g, u, u’)=u ¢, a>0, they only discussed the case O<a=<1. In this
Chapter, we shall construct a new homotopy and use Leray-Schauder degree
theary to show that some techmical restrictions imposed in their papers are
unnecessary. Meanwhile, we also give a sufficient condition for solvability
when «>1. There still exist many interesting problems on the more general
cases, we conjecture that there exists a necessary and sufficient condition
for the solvability with a general function g.
Part of this chapter has been accepted for publication (see {35-36]).
In Chapter 3, we establish the existence of solutions to the Periodic
Boundary Value Problem
Qu ) P20 + £, u)= y©, w@=xr(), u'(©Oy=1'(1) (0.14)
under varjous conditions on the function y : [0,1]1—=R and the function
F 10,1} x R —R. We also consider the problem

Au~f(t, w)=0 in (0,1)

) 0.15)
' (0)=u'(1)=0
where Au=~(a(|u’lzu’)’, a : R-—->R is a continuous mapping such that
2
}z(r2)=f a(t)dt is a strictly convex function on R. (0.14) and (0.15) may be
G
written in the general form
Au - Nu=y, (0.16)

(viii)




When A is a linear operator and is Fredholm of index 0, Eq (0.16) has been
studied by many authors (see [22-23, 40, 51-52, 58, 60-61]) using various
theories of topological degree. When A4 is not a Fredholm map or is not linear,
these ideas are not directly applicable, In a recent paper [62], the problem
Qu [Py + £, 0= 0, wO=r(1)=0, (0.17)
was considered. Under homogencous Dirichlet boundary condition, GP=A_1 is
compact from C‘0 [0, 1] to Co {0, 1] and Eq (0.17) is equivalent to
u- Gp (f@, u)=20, 0.18)
and Leray-Schauder degree theory can be used. But, under the periodic
boundary condition or Neumann boundary condition, 4 is not invertible. In this
Chapter, we shall give a new description of the generalized degree, the main
ideas are similar to those of [58}. Then, we use this new generalized degree
to obtain existence of problem (0.14) and (0.15).
Part of this Chapter has been accepted for publication in Journal of
Differential and Integral Equations.
The aim of Chapter 4 and Chapter 5 is to consider the existence and
multiplicity of positive solutions of the following eigenvalue problem
~div(|Du|P "  Duy =2 fw) in QRN }
, ©0.19)

u= 0 on d§2

for A>0, N22 and p>1. The domain Q is assumed to be bounded, connected and to
have a smooth boundary 84 which is connected.

In Chapter 4, we shall consider the problem when f satisfies either (Fl)
or (Fz):

(Fl) S is strictly increasing on lR+, f0)=0 and sl_i)%lf(s)/sp~1= 0;
there exist o, a, >0 such that foysa ta lsly, O<y<p-1.

(F2> There is >0, such that

JO)=f£)=0, f>0 in (0, £) and f<0 in (B, «) and Ihg)%lf(s)/sp_1=0.

§
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For p=2, the problem has been studied by many authors. Rabinowitz [64]
first established the existence of a subsolution and a supersolution to the

problem

~Au = Afw) in QcRY
_ (0.20)

=70 on 382

Using the strong maximum principle and Leray-Schauder degree theory, he found
that positive solutions of (0.20) occur in pairs when f satisfies RO0)=RB)=0,
Sf>0 in (0, ) and f'(0)=0. Furthermore, Dancer [19] and De Figucirede [20]
extended the results of [64] to allow more general f but they assumed that Q
possesses some special properties, such as, starshapedness. Clement and Sweers
[16] gave a necessary and sufficient condition for problem (0.20) possessing a
positive sclution by using the sweeping principle of Serrin [66, 70], and the
fact that positive solutions of (0.20) in N-ball are radial.

Our problem is that all the good propertics as above are not readily
available for problem (0.19). In Chapter 4, we prove that there is a strong
maximum principle for 4 + 6 when 1<p=2, where 4+ =-div(| D" [p—'zD'), 6>0. We
show that the positive solutions of (0.19) when [ satisfies (Fl) or (Fl) occur
in pairs using the degree of mappings of class (S)+. We also give a necessary
and sufficient condition for problem (0.19) to possess a positive solution
when [ satisfies (Fz).

Part of this chapter has been accepted for publication (see [34]).

In Chapter 5, the existence and uniqueness of positive radial solutions
of the problem (0.19) on Q=BR(O) with Dirichlet condition are proved for A
large enough and [ satisfying a condition

(F;) fECl(O, OO)HCY([O, ¢)) is non-decreasing on IR+, O<y=1, A0)=0;
Lim /P =1, 0<pep-1; Lim f) /£ =00 and (NPT ) 0, for 50,

A Generalized Serrin’s Sweeping Principle in the radially symmetric case is

(x)




given in this Chapter. For the general case, it is still not known whether
there is such a Sweeping Principle or not. It is also proved that all the
positive solutions in Cé (BR) of the problem (0.19) are radially symmetric
solutions for f satisfying (FI) and A large enough. This is interesting
because under some conditions of f, Kichenassary and Smoller [41] showed that
there do exist positive nonradial solutions for problem (0.19).

Part of this chapter has been accepted for publication (see [37D).
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CHAPTER ONE

PRELIMINARIES

1.1 NOTATION AND GENERAL CONCEPTS

We shall write Z for the set of all integers, N for the set of all
positive integers, 1, 2, -+, R for the set of real numbers, RY for the set of

positive real numbers and R for the set of negative real numbers.

R~ denotes N-dimensional Euclidean space; x:(xl, reey, xN) denotes an

. . . . . 2,172 .
arbitrary point in it, with norm |x|=(}|x.|")"". Throughout, N is assumed
1

to be 2 or greater. £ denotes a bounded domain in IRN, that is, an arbitrary
open connected set contained in some sphere of sufficiently great radius;

denotes the closure of £2, 3Q denotes the boundary of 2, so that Q=0UaQ,

Unless otherwise stated X, Y, Z and E will denote Banach spaces with

norms denoted ||| 5 » tc., or simply {{-} when the underlying space is clear.

If G is a subset of a Banach space Z and z&Z an arbitrary point,
dist(z,G): =inf {||z-g|: g€G} denotes the distance of z from the set G. The
closure and boundary of a set G will be denoted, respectively, by G and 0G.

Bp{z):={xEZ.: [x-z|| <p} denotes the open ball in Z, centre z and radius

In what follows, we shall encounter various constants defined by

quantities that are known to us from the conditions. We shall denote these




constants by a upper-case letter C with various subscripts, Where there is no
danger of confusion and where the value of constant in question is of no
significance, we shall drop the subscripts on the C, so that even in a single
proof the letter C with the same subscript or even with no subscript at all
may be used to denote different constants. In other cases, when we need to
emphasize the dependence of a constant on some quantity or other, this

dependence will be shown explicitly,

If L is an operator in a Banach space, we shall demote its closure by L.
We shall denote the domain of definition of L by D(L) and its range of values

by R(L).

All the functions and quantities considered in this thesis will be real,
If wu(x) is some differentiable function of xeiRN, then its derivative is
N 2,172
written Du(x)=u_()=(_ (), **+, u_ )); |Du]=(C @ _)>"".
X X Xy e

n denotes an outwardly directed unit vector (relative to £) normal to 89

at any point on 4f2. o denotes differentiation in the direction n.

We shall use the following notations for the function spaces that we

shall encounter.

24 (§2) denotes the Banach space of all functions on £ that are measurable
and p-summable with respect to 2 with p=1. The norm in this space is defined

by

k= [ lul?e] v




Measurability and summability are always understood in the sense of Lebesgue.

The elements [P (£2) are the classes of equivalent functions on €.

Generalized derivatives are understood in the way that is now customary
in the majority of works on differential equations. Different but equivalent
definitions of them and their fundamental properties can be found, for

example, in [68-69].

WP (£2) denotes the Banach space of all elements of j 24 (§2) that have
generalized derivatives of the first m orders that are p-summable over £. The
porm in WP (£) is defined by

m llp -
= [ [ ClulP+ B £ 19%ulPrae] Ly

where the symbol D®  denotes an arbitrary k-th derivative of wu(x) with

respect to x and ), denotes summation over all possible k-th derivatives of u.
(k)

For p>0 we write Dp=BpﬂQ, Bp denotes an arbitrary sphere of radius p in
RN, We shall say that the function wu(x) satisfies a Holder condition

with exponent «, where a€(0,1], and with Holder constant M in the region Q if
_ - . ol
lell gy, @ =s0P p ~ 0s0{u; 23 =M. (1.1.2)

Where osc {u(x); £2} is the oscillation of u(x) on x, that is, the difference

between essential max w(x) and min u(x); the supremum is over all components
2 ¢
i .
Qp of all ‘Qp such that p:;po, p 0>0 is a constant.

Cﬂ ’a(ﬁ) is the Banach space the elements in which are all functions u(x)

that are continuous in £ having finite norm [u|| where the norm in C° ()

o,




is defined by the equation

HHHQ,Q:max [ue| 4 u (1.1.3)

(@),
O . \ .
" (€2) is a Banach space the elements of which are functions that are
continuous in £ and bave continuous derivatives in £ of the first m orders
endowed with the norm

m
=¥ T max]D(k)u(x)l + 7 ID(k)u]
k=0(k) Q (k)

(1.1.4)

"uum,a,ﬂ (@), °

The Banach space " (Q) and the linear set ol () are defined analogously.

The norm in ¢ () or, what amounts to the same thing in lode ’0(§) is defined by
the equation
m

T Imax |p%ul, (1.1.5)

full o=l =
m, 2 m0,Q k=0 (o Q

In brief, lodi (€2) consists of all functions that are m times continuously

differentiable in Q.

Definition 1.1.1 A continuous mapping f:Z—E, which is one-to-one

(injective), onto (surjective) and whose inverse mapping f*l:E—>Z is also

continuous, is called a homeomerphism.

If DcZ is a linear subspace, then dim D will be written for the dimension
of D, which may be infinite. If AcRN is an open set, then the dimension of A,
denoted by dim A, is defined in the same way as in [39] or as the definition

of a manifold.




Remark 1.1.2 (Hurewicz, Wallman [39]) The dimension is a topolagical
invariant, That is, if f:Z—E i{s a homecomorphism, Zn is a n-dimension

subspace of Z, then
dim (f(Zn))=dim (Zn)——*n. (1.1.6)

Where f(Zu)cE is an open set, dim (f{Zn)) is understood as above.

Definition 1.1.3 A mapping f:Z—->E is said to be compact if it is

continuous and f(D) is compact in E whenever D is a bounded subset in Z.

Definition 1.1.4 A function f:Z —R is said to be Fréchet differentiable at

the point ZOEZ, if there exists a bounded, linear map f’(zo):Zw)IR such that
f @ +h)of @)~ @ h =Rz, h),

where R:ZXZ-—->R is such that |R(z0,k)]l[|h||—->0 as [k > 0. We call f’(zo)

the Fréchet derivative of f at the point Z

Definition 1.1.5 We call z, 8 critical point of f if f’(zo)=0.

1.2 GENERALIZED TOPOLOGICAL DEGREES

Some of the main results in this thesis arec based on the generalized
topological degree. So, we first discuss A-proper maps and the maps of class
(S)+. Throughout the text we shall assume that the reader is familiar with the
definition and properties of the classical Brouwer degree, which we depote by

deg, the classical Leray-Schauder topological degree, denoted by deg s’ for




infinite dimensional map of the form identity minus compact and Mawhin‘s
Coincidence degree, denoted by dch. These concepts may be found in the book
of Lloyd [18], and in [42, 49] and Mawhin [51].

A-proper maps were first named as such by Browder and Petryshyn [12],
although Petryshyn had wsed them earlier in [59], where he referred to them as
mappings satisfying condition (H). To define A-proper mappings, we neced the

following definition.

Definition 1.2.1 (Petryshyn, [60]) P={Xn, Yn, Qn} is said to be an admissible

scheme for maps from X into Y provided that:

@ {Xn}cX and {YD}CY are sequences or oriented finite dimensional
subspaces with dim Xnadim Yn, for each n&N;

@n {Qn} is a sequence of linear, continuous projections, with Qn: Y—>Yu
for each neN, and Quy—ay as n—o, for each yeY;

@iy dist(x, Xn)—)O as B —»o for each xeX.

In definition 1.2.1 by ‘oriented’ finite dimensional spaces Xn, Yn, we
mean that bases have been chosen for Xn and Yn such that the bounded, linear
operator L: Xn —)Yn which maps the basis in Xn onto the basis in Yn, is such

that the determinant of the matrix of L is positive.

Remark 1.2.2 In this thesis, we use the following admissible scheme
F"——{An, Y, Q“} for maps from X into Y provided that

') {XH}CX and {Yn}cY are oriented finite dimensional subspaces with
dim Xn=dim Yn for each n&N, Anan is an open set with dim An=dim Xn for each

neN;

(i) {Qn} is a sequence of linear, continuous projections with QH:Y——:vYll




for each neN, and Qnym)y as n—oo, for each y€Y;

(i) dist(x, An)—>0 as n->e for each x&X,

Let GcX be an open, bounded set, and write G =GNA cX , §n=§m&n and

dG =3aGNA .
n n

Definition 1.2.3 A map T: GcX - Y is said to be A-proper with respect to I’

if and only if
@® Tn=QnT|an: G cA cX —Y_is continvous; and

@i if {J:n:xu EGn} is any bounded sequence such that Tn (xn)-—:vg for
i i i
some g in Y, then there exists a subsequence {.1:n } and x€G such that
it
x ~—xas k >0 and Tx=g.
i)
Thus, in the class of A-proper maps, the problem of finding solutions

to an infinite dimensional problem flx)=y may be reduced to that of solving

the associated finite dimensional problems Qmﬂxm)=me. The required solution
is then the strong limit of some subsequence of {xm}, provided the sequence

{x } is bounded.
m

Definition 1.2.4 Let T: G —>Y be A-proper with respect to I"'={An, Yﬂ, Qn}

and f&7(3G). We define degA(T, G, /) the degree of T on G over f with respect

to I'', to be a subset of Z'=ZU{tew}, given by:

(@) An integer me&deg, (7, G,f) provided there is a sequence {nj} of




positive integers such that de.g(‘l‘n ,Gn ,Qn H=nm, for all j=1,
iod o

() o (or -w)Edeg A(1", G, ) provided there exists a sequence {nj} such

that l}m deg(Tnj,an,anf)=oo (or —o0),

Remark 1.2.5 (1) The degree deg(Tn, Gn, an) used in definition 1.2.4 is the

classical Brouwer degree for continuous maps acting between oriented finite
dimension spaces of the same finite dimension.

(2) Note that if f&T(8G), then it follows from the A-properness
of T : G— Y that there exists an integer nozl such that Q l‘}%EQHT((:FGII) for all
nzn. Consequently, the above definition makes sense and the statement of
Definition 1.2.4 implies that degA(T, G, H+0.

(3) The degree degA(T, G,f) of an A-proper T according to scheme I’

is the same as the degree defined in [60].

Using the properties of Brouwer degree and of A-proper maps, it was shown
in {11, 49] that, although in general dch(T, G,/) is multivalued it has
most of the wuseful properties of the Brouwer degree as the following

indicates.
(Pl) If degA(T, G, /) {0}, then there is x€G such that Tx=f.
(P,) IfGcG NG, “GT=Gi u@‘z, with G and G, open and bounded, G NG, =@ and

fE& (-T(aGl) U 'I(BGz)), then

degA(T, G,f)EdegA(T, Gl,f)-i-dch(T, Gz,f)

with  equality holding if either dch(T, Gl,ﬂ or degA(T, Gz,f) is a




singleton, where we use the convention that oo +4(-w)=Z"’,

®) If H :[0,11XG > Y is an A-proper homotopy (se¢ the definition

below) such that H(r,x) = for t€[0,1] and x€8G, then
deg, (H(O,"), G, H=deg, (H(L,"), G, /).

® 4) If G is symmetric about 0€G, and T : G —Y is A-proper and odd, and
0 1(3G), then degA(T, G,0) is odd, that is 2m§£dch(T, G, 0) for any m, so

that, in particular, OEdegA(T, G, 0).

We recall that, for any set V in X, the map H :[0,1]XV =Y is called an

A-proper (with respect to I'') homotopy provided Hu :[O,l]an-—>Yn is

contimious and if {xn:xn EVn} is bounded and {rn}E[O,I] are such that
i J i

Hn (tn,xn)—>g for some g in Y, then there exist subsequences {xn }
FI BN i)

and {+ } and x €V and ¢ €[0,1] such that x —x_ in X, tr ¢ and
n, 0 0 o, 0 n, 0
i i) i)

H(to, x0)=g.

Let X' be the dual space of X. We write <x',x> for the value of x €X at

x&eX.

Definition 1.2.6 (Browder [10]) A mapping T : G & XX is said to be of

class (S)+ if for any sequence {xn} of X which converges weakly to x and

lim sup<7x ,x -x> =<0, then ver tron .
i@ sup<Ix ,x » then x  converges stro gly to x

Theorem 1.2.7 (Browder [10] Let X be a reflexive Banach space, and consider

the family F of maps f: 6—)){‘, where G Is a bounded open subset of X, [ is a




mapping of class (S)+ with f demicontinuous (i.e. continuous from the strong
topology of X to the weak topology of Xt)‘ Let H be the class of affine
homotopies in F, and let J be the duality mapping from X to x corresponding
to an equivalent norm on X in which both X and X' are locally wuniformly
convex.

Then there exists one and only one degree function on F which is

invariant under H and normalized by the map J.

We denote by degs(T, U, p) the degree of mapping T ¢ X 5 X" of class (S)+

at p relative to U,

Theorem 1.2.8 (Hirano [381) Let Df ‘XX be the gradient of a functional f

such that Df is of class (S)+ and Df maps bounded sets of X to bounded sets of

*

X . Suppose that, for some f, the set V=f_1(—oo, B is bounded. Moreover
suppose the following condition:

There exist numbers «a<f and r>0 and an element X, of X such that
f_'(~oo,a)cBr(xo)cV and Df#0 for all xef '{a,f).

Then degS(Df, V,0)=1.

This extends a result of Amann [2] who worked in Hilbert space and

assumed Df had the form Identity-Compact,
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1.3 EMBEDDINGS, INEQUALITIES AND MAXIMUM PRINCIPLES

Theorem 1,3.1 (Gilbarg, Trudinger [29]) (Sobolev inequality) For QC!RN, p>1,

L0 Pg), pen,
w,Pie

@, p=N.

Furthermore, there exists a constant C=C(N, p) such that for any uEW;’p D,

ful SCIIDu"P, P<N, (1.3.1)

Np/{(N-p)

s;zp|ul =c|a| ”“"”Pupuup, p=N. (1.3.2)

Theorem 1.3.2 (Gilbarg, Trudinger [29]) For p>1,

, NP o g h o N,
M, 0sm <k-N/p.

Definition 1.3.3 (Granas [31-32]) Let U be an open subset of a convex set

KcE. A compact map f:U->K which is fixed point free on U is called
essential if every compact map g : U - K which agrees with f on U has a fixed

point in U,

Definition 1.3.4 (Granas [31-32]) Two compact maps f, g : U —K which are

fixed point free on 48U are called homotopic if there is a compact homotopy
H: Ux[0,1] oK such that Ht(u)=H(u, t) is fixed point free on 9U for each ¢ in

0,11, f=H0, and g=H1.

Theorem 1.3.5 (Granas [32]) (Topological transversality theorem) If f and g

are homotopic, then [ is essential if and only if g is essential.
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We need the following inequalities in the following proofs.

(@) Young’s inequality:
ab:Sap/p+bq/q, p,g>1
this holds for positive real numbers a, b, p, g satisfying
lp+1ig=1.
The case p=¢=2 of the inequality is known as Cauchy’s inequality.
() Hbdlder’s inequality:

j wvdesful o] .
a 'D g,

this bolds for functions weIf(Q), veL¥(Q), lp+1/g=1. When p=g=2, Holder's

inequality reduces to the well-known Schwarz inequality.

In the following we give some important properties of the elliptic

operators.

Definition 1.3.6  (Gilbarg, Trudinger [29]) Let Lu=aij(x)Diju+bi(x)Diu+c(x)u,

a'=d", L is called elliptic at x if for all E=@, .:N)erRN- {0},
O<A(x)|£|ZSaij(x)¢'i¢'jsA(x)[C|2.

Here A(x), A(x) denote respectively the minimum and maximum eigenvalues of

the coefficient matrix [aij(.x)]. L is called elliptic in @ if A>0 in Q; L is

called uniformly elliptic in Q if A/ is bounded in €.

Theorem 1.3.7 (Gilbarg, Trudinger [29]) {(Maximum principle) Let L be

elliptic in the bounded domain Q. Suppose that

Luz0 (<0) in 2, ¢=0 in 0.
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with uEECz (Q){'\CO (D). Then the maximum (minimum) of u in Q is achieved on aq,

that is,

supu=supr (infu=infu).
Q a9 Q aQ

Corollary 1.3.8 (Gilbarg, Trudinger [29]) Ler L be elliptic in £. Suppose

that in Q, Lu=0 (=0), ¢=<0, with uECO(“Q). Then writing u+=max(u, 0),

¥ =min (u, 0),

supussup ut (infuzinfu ).
Q a0 Q an

If Lu=0 in £, then

sup |u|=sup |u].
Q

Definition 1.3.9 @ is said to satisfy the interior sphere condition if for

any xOEGQ there exists a ball BcQ such that xOGBB.

Theorem 1.3.10 (Gilbarg, Trudinger [29]) (Strong maximum principle) Let L

be uniformly elliptic, ¢=0 and Lu=0 (=<0) in a domain $2 which satisfies the
interior sphere condition. Then if u achieves its maximum (minimum) in the
interior of R, u is a constant. If ¢=<0 and c¢/A is bounded, then u cannot
achieve a non-negative maximum (non-positive minimum) in the interior of 2

unless It Is a constant.

Theorem 1.3.11 (Gilbarg, Trudinger [29]) (The comparisen principle) Let L

be elliptic in Q. Suppose u, 4)ECD("§3)DC2 (@) satisfy Luz=Lv in Q, u<v on Q. It

then follows that usv in Q. Furthermore, if Lu>Lv in Q, usv on 3Q, we have the

13




strict inequality u<v in 2.

Definition 1.3.12 We say UGCI(Q) is a subsolution (supersolution) of the

problem

Au+h(@)=0 in Q
, (1.3.3)

u=g on 4N

if vsg (=g) on 3Q and for any $€C(Q), f Dqu{adxs(;:)J- h(oybdx.
0 Q Q

Theorem 1.3.13 (Clement, Sweers [16])) (Serrin‘s sweeping principle) Ler u be

a solution of the problem (1.3.3). Let A={ v T€[0,11} (B:{wr; 7€[0,11}) de

a family of subsolutions (supersolutions) of (1.3.3) satisfying vTSg (wrag) on

9, for all t<{0,1]. If
- v (wl)Ecl(ﬁ) is continuwous with respect to the ||-]|0—norm,
2) uavo (SWO) in Q, and
@) u=z ur (WT), Sfor all v&€[0,1].

Then, u > v, (< wl).

In the following we give some results for quasilinear elliptic equations.

We consider the equation
-*—d(x Ie,u )+a(xuu )-—0 (1.3.4)
a’x_ iy T x ’

i

Let us assume that the functions ai(x,u,y) and a(x,u,y) are defined for x&Q
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and arbitrary u and y, that they are measurable, and the functions satisfy the

conditions

N
Latmey) yzo(|uy|™-ulx)), (1.3.5)
1
N m
L |auy| A+ |y)+ |aun| sa((u DA+ ¥, (1.3.6)
i

N
where ]y12=§_‘, y?; o(t) and p(r) are positive functions, and the constant m>1,
1

We shall refer to a function u(x) in W™ (@) such that llell < and

u,my=| la(x,uu I _-a(x,u,u )ildx=0, (L.3.7)
Q i X xi X

for an arbitrary bounded function 2(x) in W;’m(s?) as a bounded generalized

solution of Eq (1.3.4).

Definition 1.3.14  (Ladyzhenskaya, Ural‘tseva [44], p. 6) We shall say that

the boundary 962 of a region £ satisfies condition (A) if there exist two
positive numbers a 0 and 80 such that, for an arbitrary sphere Bp with center

on ¢ of radius p=a, and for an arbitrary component O of BpﬂQ, the inequality

meas 0 < (1~80) meas Bp

holds.

Theorem 1.3.15 (Ladyzhenskaya, Ural’tseva [44], p. 251) Suppose that

conditions  (1.3.5), (1.3.6) are satisfied. Then, an  arbitrary bounded

generalized solution wu(x) of EBq (1.3.4) belongs to the class C0 ’Q(Q) with
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exponent «>0 depending on M==Hujloo a and the constant m, o(M) and u(M) in

(1.3.5) and (1.3.6). For arbitrary §2'cQ, the norm ljul is bounded above by

a2’
an expression involving M, m, v(M), u(M) and the distance from Q' to 30,

If the boundary 0RQ satisfies condition (A) and if HIBQECO % (09Q), then the
quantity Ilu”a Q (where a<f) is bounded above by an expression determined by M,

(M), u(M), m, the constants @ and 80 in the definition of condition (A), B

and the norm |u| £,0Q°

Suppose that the a and a satisfy the inequalities
m %
a,(emy) y, =0 (|u)y| -1+ [u] DHe ), (1.3.8)
% % m-g '
sign wa(ru,)=(1+ |u| Do +1+u] Doy, (1.3.9)

and a, the , and ¢ satisfy the conditions

¢)) Nziq sg=m, where g= ng’
2) gpiELr ), i=1, 2, 3,
i
N/ ¢ for ¢ =1,
v kM qﬁﬁl_(\l_g__l_) >N/e for 6<1;

N+g¢ g
3 05al<m N "

05a2<m Nig_ -5—{-—1,

N+g g
05al<m N -1.

Then the following theorem holds.
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Theorem 1.3.16  (Ladyzbenskaya, Ural'tseva [44], p. 286) Suppose that u(x) is

a generalized solution in Wl’m(Q)ﬁLq(Q), Nzm>1, qaq'= ng ,

of Eq (1.3.4) and

suppose that ||u|]oo’3g=Mo< o, Suppose that inequalities (1.3.8), (1.3.9) are
satisfied for the ai(x,u,y) and a(x,u,y) and that, in these inequalities, the
parameters & and the a (i=1, 2, 3) and the functions ?, (for i=1, 2, 3)
satisfy conditions (1)~(3). Then, ilu!lw’g is bounded by an expression in terms

of ﬂullq, Mo’ Vs & @ ||<p[|r‘, i=1, 2, 3, u and meas Q.

1

Now we consider the following special equation

~div(a(|Du|*Duwy=f, in QOB __ (0)
(1.3.10)
=0, on BﬂﬂBzR(O)
and we suppose that a satisfies the ellipticity and growth conditions
y e+ P =adhysra+nP 2, (1.3.11)
(y-12)a(ty=sa' s a(t), (1.3.12)

for some y>0, some I'>0, some k€[C,1] and all r>0. Moreover, we need the limit

condition

. a’ (1t p-2
A8 e - 13,19

The following regularity result is known.

Theorem 1.3.17 (Tolksdorf {74}) Let BR(O) be a ball with radius R such that,

either BQOBQR(O) is empty or that BQDBQR(O) is a regular Cm—surface. Suppose




that we Wl’m(Q)ﬂLm(QﬂBZR(O)) is a solution of (1.3.10), where feLm(QnBZR(O))

and where a satisfies the ellipticity and growih conditions (1.3.11),

(1.3.12). Then,

uuul,a,f)ﬁBRSK’ (1.3.14)

Jor some a€(0,1) and some K >0 depending only on N, m, y, T, QﬂBm and a bound

Jor ju] and [f] .
oo,QﬂBlR m,QﬂBm

Remark 1.3.18 It is clear that the function fi(x,u,y)=]y|p »2yi’ p>1,
satisfies the conditions of ai(x,u,y) in the above theorems. Therefore, the
above theorems hold for the equation div(lDulp —zDu)+a(x,u,Du)rzO, where a is

as above.

Theorem 1.3.19 (Sakaguchi [65]) (Hopf’s lemma) Let Q be a bounded domain in

RN (N22) with smooth boundary 3Q. Let u&C (@) satisfy

—div(]Dqu 2Du)=0 in Q (in the weak sense)

u>0 in Q, and u=0 on 98,

Then u <0 on 39,
on
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CHAPTER TWO

SOLVABILITY OF SOME SINGULAR NONLINEAR BOUNDARY VALUE

PROBLEMS AND EXISTENCE OF POSITIVE RADIAL SOLUTIONS

OF SOME NONLINEAR ELLIPTIC PROBLEMS IN ANNULAR DOMAINS

INTRODUCTION

In this chapter we study the existence and vuniqueness of positive
solutions of singular second order differential equations of the form

y'+ 1@y, y)=0, tE(rl, 22) (2.0.1)

satisfying a mixture of Dirichlet conditions and Neumann conditions, where
Ost1<t2<+o°. f is allowed to have suitable singularities at =1, 1=1, and when

y=0 or y'=0.

Equations of this type arise in diffusion and osmotic flow theory, one
particular example being the generalized Emden-Fowler equation (see [50,

76]).

They also arise from the study of the existence of positive radially

symmietric solutions of the equation
Ay + f(r,y, y')=10, in R2-<r-<Rl 2.0.2)
subject to one of the following sets of boundary conditions

y=0 on r=R2 and y=0 on r=Rl, (2.0.3aq)
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y=0  onr=R  and —@{- =0 on r=R, 2.0.3b)

dy _ _ . _
5 =0 on r-—R2 and y=0 onr Rl. (2.0.3¢)

Here r=|x], xEIRN, N=z3; -g——r denotes differentiation in the radial direction;
0<R2<R15 ©; f is continuous on (Rz’ RI)X(O, ®)X (-, ), The equation is

singular because f is allowed to be singular at y=0, y’=0 and r=R2, Rl.

When f is nondecreasing and QcRN (N=3) is a symmetric domain, the problem

of the existence of positive radially symmetric solutions of the problem

Ay+f(y)=0 in Q
(2.0.4)

y=0 on 882
has been treated by many authors (see [17, 24, 27, 55-56]). In this chapter,

we concentrate on the solvability of the problem (2.0.2) with f decreasing.

Putting t=[(N-2)r 7!,
SO=[N-D" 5, k=(2N-2)/(N-2), (2.0.5)
£ =[(N-2) RI;H]“ i=1, 2,

radial solutions of (2.0.2) are solutions of

YO+ ey, ¥ IN=10, 8 <1<t (2.0.1)’

(see [4]). Now the boundary conditions become

y(t2)=0 and y(tl) =0, 2.0.3a)°
y‘(t2)=0 and y(zi)=0, 2.0.3b)’
y(rz)=0 and y'(rl) = (2.0.3¢)"

(when Rl:co, r1=0).
By a solution of (2.0.1) we mean a function yeCl[tl,tz]ﬂCZ(tl, tz) that
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satisfies (2.0.1).

Existence of solutions for Problem (2,0.1) has been considered by
Callegari and Nachman [15], who effectively consider (2.0.1) with
f, 7, y)=6) 80D, $(©)=[min(t, 1-n), g0)=y ' and =0, r,=1; by Luning
and Perry [50], who establish constructive results for g(y)=y"a when O0<a=x1 and
t =0, t2=l; and by Taliaferro [71], who proves, in particular, that a
necessary and  sufficient condition for existence of solutions with  first
derivative continuous on [0,1] is that

1
f % 1-0"% ¢(dr < + 00 (2.0.6)
0

Using topological transversality theorem (see Theorem 1.3.5 of Chapter
1), Bobisud, O’Regan and Royalty extended the above results by allowing a more

general fiz, y, y’) and obtained the following theorms:

Theorem 2.0.1 (Bobisud, Q‘Regan and Royalty [5]) Suppose that:

(a) f is continuous on (0, 1)x (0, o)X (- 0, c0);

(b) 0<f(t,y,2) < ¢(1) g(y) on (0, 1)x (0, )X (-00, ), where
(1) &) is continuous and nonincreasing on (0, o),
(i) ¥ g() is nondecreasing on (0, o),

(iii) ¢ >0 is continwous on (0, 1),

R,y 2)

(iv) ~—————— s continuous on [0, 11X (0, )X (-, ®)

$(1) gkt (1-1))

for each constant k>0,

1
47 J- gkt (1-1)) ¢()dr < @ for any constant k> 0;
0
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(e) for each constant Mo>0 there exists w(f) continuous and positive on

(0,1) such that fit, y, 2)=w() on (0, 1) x(0, MO]X(—oo, o) and

1

f t (1-2) w()dr < oo.
Q

Then problem (2.0.1) possesses a solution.

Theorem 2,0.2 (Bobisud, O‘Regan and Royalty [5]) Suppose f is independent of z

and satisfies

(@) fQt, ) is continuous and positive on (0, 1) X (0, );
) f&t, y) is strictly decreasing in y for y>0 and t€(0, 1);
(c) for some constant k,
A S, AN S kfE, )
Jor 0<i=1, 0<t<] and y>0;
(d) there exists a nonnegative a(l) satisfying
@® a'@+fu, al)>0 on (0, 1), x0)=a(l)=0,
1
G | f, atende<e,
]
@iy e, ) 114, «(t)) is continuous on [0, 11X (0, o).

Then problem (2.0.1) possesses a solution.

Using the same methods as in [5], O'Regan [57] discussed the above

equations with Neumann boundary value conditions. In this case, he assumed

1
that g(y) satisfies f g dy< .
0

1
The above results give no information when jg(y)dy:oo, for example,
0
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g(y)=y_a, azl. In this chapter, we prove some further results which cover this

case.

In section 2.1, we use Leray-Schauder degree to seek positive solutions

of the problem
y' + o) g0N=0 in ) ¥ )=yt )=0. 2.0.7)

We shall extend some of the results of [5, 57, 71, 76] by allowing a more
general g(y) and at the same time generalize the sufficient condition of [71]
to problems with a more general g(y). In section 2.2, we discuss problem
(2.0.1) with nonlinear term S, y,y’) and Neumann conditions. In section
2.3, we apply the results obtained in sections 2.1, 2.2 to the equation
(2.0.2) and obtain the existence of a positive radial solution of (2.0.2).

Part of this chapter has been published (see [35-36]).

2.1 SOLVABILITY OF DIRICHLET PROBLEMS WITH

FIRST ORDER DERIVATIVES ABSENT

In this section we discuss the existence of positive solutions of a

special problem
y" + o) g0)=0 in 1) y(tl)=y(rz)=0. 2.0.7)

We first prove the following theorem.

Theorem 2.1.1 Suppose that ¢MHOHE CO[II, tz]. ¢)>0 in (tl, tz)’ where

0<:tl <L <®; g satisfies:

(a) g is continuous and nonincreasing on (0, o),

D) g»>0 on (0, ),
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iy

) J’ 2 6(s) g(k (51 (=ds<+os, for 0<k<1,
t
1

t
@ (L 50 [ Lo ds= oo

Then Problem (2.0.7) has a positive solution.

To prove this theorem, we consider two cases:
(i) g has singularity at O;
(ii) g has no singularity at 0.
We only prove Theorem 2.1.1 in case (i), the proof of case (ii) is similar to

case ().

In order to avoid the possible singularity of g at 0, we consider, for

¢ach n€N and A€[0,1], the family of problems:
y' o+ (1-2)8 ¢1(f) + A¢(0) g =0, )’(fl)=}’(t2)=1/11. (2-1-1)“1,11

where 0<d<1 is a positive real number which is determined below, ¢1€Co {tl, t2]

and ¢1>0 on (ro,tl).

We shall use Leray-Schauder degree to show that the existence of a
solution for A=0 implies the existence of a solution for A=1; passage to the
limit as n —>c0 will yield the existence for (2.0.7).

We let

s(lyD Iyl =1/n
§ 0= (2.1.2)
¢(1/n) ly] <tn

and consider

PO (SRS G0+ A g =0, Y)=HE)=1m. 213

From gn>0 and ¢l>0, it follows that y=1/n for any solution y of (2..1.3)/1’“,
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and hence any solution of (2'1'3)A | is a solution of (Z.I.I)A - We set
u()=y(")-1/n 2.1.4)
to get that
0" + (1-2)3 ¢ () + Ag (0+1/n)d())=0, v(r)=0(r )=0. @.15), |

Therefore, any solution of (2.1.5))‘n satisfies v=0, Now we establish the a

priori bounds necessary for application of Leray-Schauder degree.

Lemma 2.1.2 There exists a constant M o independent of A&[0, 1}, 0<d <1 and neN

N

such that

[y | =M, (2.1.6)

Jor any solution y of (2.1.5))‘ o

Proof. Similar to the proof of Lemma 1 of [5]. Let Y ax be the maximum of
¥ on [ti’tz] and suppose it occurs at t3. Then y’(t3)=0. Integrate the
inequality

y*'=-(1-2) ¢ ()- Aé() g GO +1/m)yz -(1-4)d ¢, (0-26() O®)

from t3 to 1r>t3 to obtain

t2 i

Y @=-1-00 [ ¢ (- 2 [ ) g0s)ds
4 3
1 3

f i
2-(1-)3 | "¢ (d - A gy(®) | $(s)ds,
¢! t
1 3

since ¢>0, y=0 and g(y) is nonincreasing. Divide by g(y()) and integrate from

to t
2‘3 t2 fo ge

3 ! t

[ s yarz s [ [0, 0a] [ [ tsoon™a
t t I
3 1 3
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t2
-4 [ 2,0 e,
4
3
that is

!
[ g™ s 5 (o) ([ o041 (10,07
0 rl max

t
+(t3-t1)—1 Lz (t-tl)(tz-—t) o(H)dt.
3

A similar argument on [t‘,t?'] yields

3
[ tgoor™ dus 6 (54 U:qblmdr) [1e0,,077")

0 1
-1 t3
+0,t) f (t1,)2,-1) S0t
t

1

From these two inequalities it follows that

t

[ rgor™ s o (5] (7 e001) (150,017
!
1

0

t
T2, 1)_1 max { f; (1=t D, -0 (0t ff (r—tl)(tl—t)cﬁ(t)dt}
1

! -1
<6 [tz—tJ [ jj ¢j(z)dr] [[g(ymu)]"‘] + z[tz—z ] C, 2.1.7)

1

i
Here }5’=(Il +1‘2)/2, C1 = max {Iﬁz (I—rl)(tz—t)qb(t)dt, rj (t—tl)(l‘zwi)d)(f)d }
1

From (d) it follows that there exists a Mo’ such that

y =M. (2.1.8)

max 0




e

Lemma 2.1.3 There exist constants K»>0, K 1>0’ such that
YO (¢t l)“ [(1-)8K +AK] (-1)(¢,-1), (2.1.9)

Jor any solution of (2.1.5)1 D

Proof. From Lemma 2,1.2, we know that y<sM o Therefore,
y*==(1-2)3 ¢ (- 26() gy +1/n)= —(1-2)8 ¢ (N - Ap(1) g(M  +1).
We deduce by integration that

y(r)z(tz—tl)ql [(1-4)8 Hl(t)-i- A g(MO-*-l)Q(r)], (2.1.10)

! t

where 8(t)=(t-tl) _[ 2 (tz—s) d(sHds + (t2~t) J (s—tl)d:(s)ds, Ie[tl,tz};
t t
1

3 {
6,(=(-1) f: (t,-5) & (s + (1) J' : (-1 )8 (5)ds, t€[1,1 ).
1
Then

t H
9 U>:Jr2 (1,-5) $(s)ds - Jt (s-t)) $(s)ds,
1

!

for r&(,r). Let k0=_[2(z2-s) b(s)ds, then 6'G)=k, (In the following
¢
1

theorems, we suppose ¢ has singularities at z‘l or 12, 8'(:1) may become o2, but
in  either case, 8’(t1)2k0). Hence there is an &>0 such  that

1 - I

= 5 kO (r—zl) = LQ (t—tl)(tg-t) on [tl, ‘ +&]. By & similar argument,
1 .

8= vy k \ (r—tl)(tl— ) on [t2-6 , ! 2] for some k1 and J&>0, Since

a@y/ [(t—tl)(tz—t)} is bounded on [t1+8, 12—5], there is a constant C‘1 such

that
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H(I)aCz(t—tl)(tz—t), for re[tl, tz}. (2.1.11)
Similar methods shows that
Bl(t)zca(r—rl)(tz—t), for te[rl, tz]. (2.1.12)

Let K'—-g(Mo-i-l)Cz, K1==C3, then we get (2.1.9).

_I_,_f;mma 2.1.4 There exist positive constants Ml, Mz such that, when
0<d < min {K/Kl, (‘z“P/Kr 1},
Jor any solution y(1) of (2'1'5).1,11 we have
ly' @0l =M, (2.1.13)
[ety @] =M, (2.1.14)

where Ml’ M2 are independent of A and n; C(t)=[g(6Kl(tz~zl)_l(t—t l)(1‘2—1‘))]_1.

Proof. We have from Lemma 2.1.3 and the fact that g is nonincreasing that,
for any sotution y(¢) of (2'1'5),1 o

|77 (] <(1-1)6 ¢, () +26(1) gOK (t,=1)7 " (=1 )t -1).

By conditions gECO(O,co), £>0 and g has singularity at 0, we know that

§0ec’t 1] and
@Oy 0] =(1-8 &) ¢ O+ A6 sM,
where Mz is independent of A and n.

Let y(t3)= max  y(); then

Hl,le

! 1'2
ol =1 vy wds| sa-26 [ ¢ war

! H

3 1
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f
2 [ 009 (0,1 Q-DSK + ARt )~
{
i

s !
<6 jtz $ ()t + j :2 $(1) (-t 1)“‘51(1(:-:1)(:2-:))4:.
1 1

! 3
Let M= L"’ 6, (ot +L2 60) 8K (1) (-1 ),~0)dr. By (o), we
1 1

(2.1.13).

For ueCit )0 c‘{rl, 1], define

el = sp v,
[tl'til

il = max (el 11,

il = max (Jul, Il sop |€@ u @)
[fl,le

Here &(=[8(3K (1) ‘(r-:l)(xz- w1}, Set

K= {xeC(, )NC'Tr, 1) u(e)=u(t)=0 and ful, < oo} ,

with norm ||||2 and

Cz{uEC%GJQ: sup  |u(n] <o},
(tl'tz)
with the norm [Jufl = sup lu(n];
(tl‘tZ)
L: K—ug, Lu(ry=&(0) u" (1)
j: K— Cl[tl, f,1, ju=u;
. ! -
FA,D . C Etl, t2] "‘:’C;
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Fy G0O=10) ¢ g @@®+1/n) + (1-2)8 &) 6 (0.

We claim that K and C are Banach spaces. Only completeness of K requires
effort. Let {un} be Cauchy sequence in K. Then there exists ueCl[to, tl] such
that [lun—ulll—ao since Cl[to, rl] is a Banach space. Because &(f) is bounded
below on [t0+6, tl~6] for any 6>0, u; — %" uniformly on [to+5, tl~§}, and thus
ue‘fC2 (to, tl). Since a Cauchy sequence is bounded, u€K. To conclude that

fu ~ull, =0, observe that |Ju -u || <e¢ for large m, n and let m —o0,
n 2 m n'2

Consider the triangle of maps in Fig.l, We have the following lemma.

Lemma 2.1.5 (i) J is completely continuous;
(ii) F is continuous;

-1, .
(iif) L ~ is continuous.

Fig.1

Proof. (i) Let Q<K be bounded; that is, there is a constant C such that |luuzsC

for all u€Q. Then clearly jQ={ju : u€Q} is bounded in ||-||l; we therefore have
to show only that j@ is equicontinuous in order to apply the Ascoli-Arzela
theorem (see [53]) and conclude that j is completely continuous, For O=xs=<r<1

and €2 we have

1 H d H
lu'@-u(9)| < jslu”m)ldrstz T =u, [ o) gCRer-1 )e,-ndn

s &) s
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and the final integral can be made small by choosing (#-s5) small because

g(k(t—tl)(rzwr)) (1) is integrable. Similarly

|u(O-u(s)| = I: |u'(n|dn= M |t-s].
(i) F/l,u is continuous since
£ 8 (ut1imy= g (u+1/m) / [$(1) U1t )(t,0)]
is uniformly continuous on Itl, t2] X [-C, C], where C>0.

(iii) L is linear, and L is continuous since

sup  |Lu()|=sop [Eu” @] =]u,.
(ll,tl) (tlltz)

L is one-to-one because Lu=0 together with the boundary conditions
u(tl)=u(t2)=0 imply #=0. To see that L is onto, let p&C, then the solution of

the boundary value problem
U =p®), u(t)=u@)=0
is given by

!
w(O=(-1) [ 7 1,-9) 65) g(R(s-1,)t,~5)p(s)ds
t

)
+(t,1) J:(S_I‘) 8(5) g(k(s=1 )t,~5)) p(s)ds, 1€, 1],
1

From this it follows directly that [ju]] <o

Since sup  [Eu(@)|=sup |p@)| <, wueK. Therefore o

(t)st)] st

continvous by the bounded inverse theorem.

FProof of Theorem 2.1.1

Problem (2.1.5) i is equivalent to
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-1 ,
(I+L F, jy=0,

for 4€[0,1]. It follows from above that L_lF}‘ nj: K— K is a compact

homotopy.

LctM=max{M0,Ml, M, (6 max Bx(t))}+2 and Q={uek | ||u|ilsM}, where M,
(e,
1772

Ml, M2 are as in (2.1.6), (2.1.13), (2.1.14). From above we know that

(I+L"1Flnj)y # 0, yeaq.
Therefore, propertics of Leray-Schauder degree give

deg, a+L ' @ew (), 2, 0)=deg (1+L“Gj, Q, 0), (2.1.15)

Here  GOXN= €0 ¢() g 00 + 1/n).  Using the fact that e e ¥O)
=-4 81(r) and & Sl(t)EQ, we have

degLS (I+L~1(c5§(t) ¢L(t)), Q, O):deguS u, 2, JGl(r))——~ 1. (2.1.16)
Therefore,

deg (I + L6y, @, o= 1. 2.1.17
From this, we sece that
¥+ ¢ g 0+ 1/n)=0, e )=y )=0 (2.1.18)

has at least ome solution in €, call it v - As we have noted before, vnzo.

Thus the problem
¥+ ¢ g =0, ¥ )=y(t)=1/n
has a solution yn=un+1/n satisfying ynalln, and therefore Y, is a solution of
yo t+ ¢ gl )=0, y @)=y @,)=1/n.
Moreover, ]]yn||25M+2 for all neN,.

By the Ascoli-Arzela theorem (see [53]), there is a subsequence (still

call it {y }) such that [y -y|| -0 for some yECl[O, 1}. Now, for any fixed
n n 1
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i‘oe(O, 1), Y, satisfies the integral equation

t
y, 0=y G+ (1) 3G + jt (-1 80y (s))ds
(]

and for r&(0, 1) this converges as n — o to

!
Y= 31 + -1y G + [ (-0 gOsNds,
tO
because g is uniformly continuous on [-M-2, M+2]. Thus yEC"Z (tl, tz)ﬂC'l[tl, tz}

and y satisfies (2.0.7).

&sﬁzark a For the proof of Theorem 2.,1.1 it is sufficient to take qbl(t)al.

However, in the proof of Theorem 2.1.10 below we will need a general ¢ l(1‘).
If ¢ has no singularity at 0, we deduce the following theorem.

Theorem 2.1.6 Let ¢ be as in Theorem 2.1.1, 0<r1<:2<o°, g satisfy the

conditions (a), (b), (d) of Theorem 2.1.1 and g(0)= . Then Problem (2.1.1) has

a positive solution.

Proof. Similar to the proof of Theorem 2.1.1. In this case, we can directly

consider the problem

y* 4+ (1-4)0 + A¢(n) g0 =0, y( )=yt )=0,

and condition (¢) of Theorem 2.1.1 automatically holds.

Now we consider the special case g(y)=y .

From [71] we know that when O<wa=<1, Problem
Y+ ey ¥ =0, ¥O)=y(1)=0, 2.1.19)

has a solution in Cl[O, 1] if and only if (2.0.6 holds. When a> 1, we have
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Theorem 2.1.7 Let ¢ >0 be continuous on (0,1) and

1
j A-0"% % g d < oo, (2.1.20)
0

Then problem (2.1.19) has a positive solution.

Proof. By (2.1,20), we know that ¢(f) has no singularities at +=0 and ¢f=1 and
condition (¢} of Theorem 2.1.1 holds. Following the steps of the proof of

Theorem 2.1.1 we prove this theorem,.

Remark b When ¢(r) has no singularities at 1=0 and t=1, then,
() If gly) has a singularity at y=0, then Theorem 2.1.1 holds for

t1=0, t2=1;
(i) If g(» has no singularity at y=0, then Theorem 2.1.6 holds for

t =0 =1,
1 ’tzl

Remark ¢ If ¢(He Co(tl, tz)’ ¢ has singularities at t=rl, t=t, ¢®>0 on

!
(tl, tz) and Jz(t—tl)(tz—t) ¢(dr< o; g  satisfies all the conditions of
t

1

Theorem 2.1.1, g is singular at 0. Then, the result of Theorem 2.1.1 is still
true. In this case, we let qbl(t)El and &) =[e¢Q) g(2"15(t—t1)(t2—t))]_l. Now
K , & in the proof of Theorem 2.1.1 are K=(t2-tl)_lg(M0+1)C.'2 and

0<d= min {K, 1}.

If ¢(1) has a singularity at ¢=0 and g has no singularity at y=0, then

using the remark ¢ above we obtain
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1
Theorem 2.1.8 Let qS(z)C—:CO(O,l], ¢ >0 in (0,11 and ¢(1) satisfy Ir¢(t}dt< o}
0
g satisfy:
(a) g is continuous and nonincreasing on [0, ®),
® g0 =0, on [0,00),
d ~I
@ lim 8@ jo [e()] "ds=co.
Then the problem

y' o+ ) g =0, ¥0)=y(1)=0, (2.1.21)

has a positive solution.

Theorem 2.1.9 Let ¢()ECO, 1), ¢(t)>0 in (0,1) and $(1) satisfy

1
J t (1=1) p()dt < 0 (2.1.22)
[}

g satisfy the conditions of Theorem 2.}.1 with t0=0, tl=1. Then problem

(2.1.21) has a positive solution.

Now, we show that some technical restrictions on g in Theorem 2.0.2

proved by Bobisud, O‘Regan and Royalty [5] are unnecessary.

Theorem 2.1.10 Suppose that

(a) gt y) is continuous and positive on (0, 1) X (0, o),
(b) g, y) is strictly decreasing in y, for y>0 and t€(0, 1),
{c) there exists a nonnegative a(t)EC2 {0, 1] satisfying:

@ a’()+ gl c@®)>0, on (0, 1), a(0)=a(1)=0,

1
if) _f o(t, a()dt < o,
0
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@iy g(t, y) / g(t, a(t)) is continuous on [0, 1% (0, o),

Then the problem

y" +glt,y) =0, y(@=y(1)=0, (2.1.23)
has a positive solution.
Proof. Define
g, |y [y] =1/
8, y)= { ,
g(t, 1/n)+1/n-|y| |¥] <1/n

then g, is strictly decreasing for y=0. As in the preceding argument, we

consider the problem
y* 4+ (1-4) g@t, a(®)+1/n) + A gn(t, y+1/n)=0, y(@)=y(1)=0, (2'1'24).1 n

and prove the following lemmas which replace Lemmas 2.1.2, 2.1.4 in the proof
of Theorem 2.1.1. The remainder of the proof goes through with only minor

alterations of Theorem 2.1.1, and so will be omitted.

Lemma 2.1.11 Let the hypotheses of Theorem 2.1.10 hold, and Y21 n denote a
solution of (2.1.24), . Then

yl(r)aa(t) for 2€{0,1], 1€{0,1]. (2.1.25)

FProof. For n large enough, we claim that «”()+g(, a(®)+1/0)=0, for t€(0,1).
Since a”(t) is bounded on [0,1], g, «(®)) is unbounded at ¢=0 and r=1, then
there exist >0, N, such that () + g, a{)+1/m) =20 for n>N,
10, HU(I-F,1); On [B,1-6], a”()+g(t, a@®) is bounded below by a
positive constant and hence for n large enough, «”@) + g(t, «()+1/n) =2 0. To

see that ylzo:(t), on [0,1], assume the contrary and let oz(t)—yz(r) achieve its
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maximum positive value at ty Then

a”(to) - yi(ro)so. (2.1.26)
But, oc"(to) - yi(ro)z —g(to, a(t0)+1/u)

+(1-2) g(to, oz(to)+1/n) + A g(to, yl(to)-l-l/n)
=4 [g(t o yﬁ.(to)H/“)“g(‘o’ a(ro)+1/n)].

- I —u® : .
By a(t0}>y1(t0), we know « (to) y A(r0)>0. This contradicts (2,1.26).

Lemma 2.1.12 There exist M 3>0, M4>0 independent of A, n, such that

[Eoyiol =M,
where £(t)=[g(a(t)]™", and

Iy ll, =, (2.1.27)

Proof. From Lemma 2.1.11 we know that yl(r)za(t). Hence, |y1(r)| =2 g(t, a(®)

and M3=2. Since each ) has a zero derivative somewhere in (0,1), we have

1 1
ly;0] =(-2) fo gt a()+1/n)dt+A jo 8,01,y +1/n)ds

1 1 1
< J g, a(M)dt+ f g U a®+1/n)dt= 2f gU, a())dt=M ,
0 o " 0 4

where we use condition (/i) and the fact that g is strictly decreasing in y.

From (2.1.27) and y1(0)=0, we also have

Iy, =,

Theorem 2.1.13  For each te(tl,t2) let ft,*) be strictly decreasing on (0,00).

Then the solution of the problem
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yO ok fa, y)=0, on (1, 1) y()=y(t)=0, y>0 on (¢, 1),

is unique.

Proof. Let y and z be two distinct solutions, and suppose there is a
toe(tl’ tl) such that y(to)>z(t0). Then there is a t3E(rl, tz) such that
y@)-z(#) has a positive maximum  at 1 Therefore y'(t3)~z'(t3)50,
y’(t3)=z’(ta), and y(t3)>z(t3). But then

Y ()2 (1) ==Ft, X)) + S, 2t ) >0,

a contradiction,
Remark d The solution of Theorem 2.1.7 and Theorems 2.1.9-10 is unique. Also
uniqueness holds in Theorems 2.1.1, 2.1.6 and 2.1.8, if g(y) is strictly

decreasing.

2.2 SOLVABILITY OF NEUMANN AND DIRICHLET PROBLEMS

WITH FIRST ORDER DERIVATIVES PRESENT

In this section we establish the existence of positive solutions on

[tl, tz] of

{y" + ¢ glt, y, y' (=0,
(2.2.1)

¥ (s =0, Y/t )=b=0,

where t1>0, $(f) is as in (2.0.5).

Theorem 2.2.1 Suppose that:

(9 g is continuous on [tl’ tz]x(O, )X (- 00, 00);
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() O<glt,y, D w® h(y) on (ri, 12)>< {0, c0) X (- 00, ), where

(@) h()>0 is continuous and nonincreasing on (0, o),
by w>0 is continuous on [tl, 22},
) 1/ h(k(r—tl)) is continuous on [t 1,1‘2] for each constant k,

O<k<l,

)
()] JZ hk (t~tl)) w()dt < co for any constant k, 0<k<1,
t
1

!
. -1,
© ,lim A0 f 1 is)] ds = oo.
{in For each constant Mo>0 there exists () continuous on [t ,t]

and positive on (tl, tz) such that g(t, y, 2)= &(1) on [zl, t2] X(O,MO} X (00, 00).,

Then problem (2.0.1) has a positive solution.

Before giving the proof we illustrate applications of the theorem.

2

Example 2,2.2 Let glt, v, D)=t y_m {1 +3y”2) 2 +z2) (1 +zz)—l and

En=3% We let h(y)=y_1/2(1+3y1/2), w(t)=2t“2. Easy calculations show that

g, y,2), h(@) and £@) satisfy all the conditions of Theorem 2.2.1.
Therefore, the problem
y 4+ ey P+ eI o) =0
yt)=0, y'(,)=0 }

has at least one positive solution,
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Example 2.2.3 Let  gy,=(-t)y @+ +2H7, (0=t ),

where € is as in (ii). Let }tO’)=)’—5n

, V/(I)=3(!—tl)2, we obtain from Theorem
2.2.1 that the equation

~ -1
201 2(N-1)

Ay+N-2)°1 o' AL+ Dy’ =0

~(N-2)_ R-l (N- 2)]2):"5’2[3 +

for rr:‘[Rz,Rl] with the boundary condition (2.0.3¢) has a positive radially

symmetric solution,

Proof of Theorem 2.2.1

The main ideas of the proof of this theorem are same as that of the proof
of Theorem 2.1.1.

We consider the problem
{y" + o) g, y, y') =0, @2.2.2)
y(tl)=1/n, y'(t2)=b20,
where n€N, to avoid the possible singularity of ¢ at y=0. If y is any solution
to (2.2.2), then y* <0 on (rl,tz). So, y">b=0 on (rl, tz) which implies y is
strictly increasing on (tx’rz)’ Accordingly, we may remove the singularity at
y=0 by defining

g, Iyl o, 1 <i<t, 1yl =1,
8 .y, 0=
g, 1/n,72), f<t<t, Iyl <1/m.

So, every solution v of

0+ $(1) g (1,0, v)=0, (2.2.3)
o ()=, v'G)=b,

is a solution to (2.2.2). We now consider the family of problems
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{ y" A+ (1-)3+A $(Ng (Y, y)=0 @247
)’(1‘1)=1/n, y (t2)=b
where 0<d <1 is a positive real number which is determined below and A&[0,1].

Let y(f) be a solution of (2.2.4)3. Then y(O)zl/n, y'Wzb for 1€[1,1]. We

also have
y' o+ (A=) + Ad() w®) h() = y" + (1-4)d + A1) 8.y, y=0

and this implies -y* =< (1-1)d + A ¢() w() h(y). Integrate from ¢ to  to

2
obtain that
t
Y/(-b = (=) S (1t + 4 [ 7 605) wls) Hy()ds
t
t2
< 6 (1) + HOM) [ 665) wo)ds,
tl
since h is nonincreasing. Thus,
12
YO S 8-1)+ h(y(x))f #(s) w(s)ds + b. 2.2.5)
4

1

Divide by A(y(t)) and integrate from 1 otofto obtain

€] (t.-t) !
Jy h‘(";) = [0t +2] L +(12—tl)f2¢(t) O dt.  (2.2.6)
1/n hy(£)) f

It follows from (e) that there exists C0>0 independently of A, &, n, such that
y(t)sCo rE[tl,tz], 2.2.7
therefore 1/n Sy(t)sCO. On the other hand, from y”(@®)=-(1-1)5-2¢(NE(), we

obtain y(#)=6()+1/n, where

t 1
6(t)=b(r—rl)+2'l(1~l)5(2:2«r1—t)(t—rl)+lj quS(u){(o)duds . 228

tTs

1
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! t

Lot §(¢)=I f%(o) E(w)dvds and kO=J2¢(s) E(s)ds, then {'(t)=k >0. Hence
s t
1 i

there is an e>0 such that {(D=2 'k ~t) on [f,f+el. Since {(WG-t) is
bounded below on [tl-i-e, tz], there is a constant k1>0 such that C(t)::kl(t—tl)
on [t1+8, t2]' Let & = min {koi2, kl}, therefore,
1/n+[b+2”’(1-,1)5(:2-:1)“751(:«:1)Sy(r)sco. (2.2.9)
Let 0<d< min {,-1) ', K¢,-1)™, 1}. We obtain
1/n+[2—1c5(12—tl)](t—ti) SynH=C, (2.2.10)
Using |y"()]| <1 + ¢(0) w(®) h(y(t)), we know

|3 | S 1+ ) v B(127 '8, D16t ), 2.2.11)

and then

3
|y @] sb+,-1)+ j: B W) (2 0t ~11G-1 DAt =C, (2.2.12)
1

where Cl>0 is independent of A4, n. Let x(r)=1/k([2~lé(tz-rl)](t-—tl)), then
|X0) y* O] =2 +9() v = C,, (2.2.13)
1 .
For uec’(:l, t)NC' . 1) define

1 4 —_
K, = {vEC, INCTH, 1] - ut)=a=0, w'()=b=0 and [ul, < e},

where |[-||2, ll"1 are the same as in the proof of Theorem 2.1.1. We also let €

and € are Banach spaces.

be same as in the proof of Theorem 2.1.1. So, Kab
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Define  mappings G;L,n . ¢t [t‘,tz]ﬁm, Jj D(”n,b——-—ecl [rl, 1‘2} and
L [K“n’b_—HD by Gl’n(u)(t)::x(r) I(1-2)8 + A0 gn(z, w, w")}, Jju=wn, and
Lu=x(®) u” (). Clearly G/.t,[1 is continuous by the continuity of x(r) 8, By
the same idea as in the proof of Theorem 2.1.1, we know that j is completely
continuous and L_I exists and is continuous. Now, (2.2.4)2 is equivalent to

a+r G, ,NO=0. (2.2.14)

Let

_ _ 2
C max{co, Cl, Cz’ 1+5b (:2 tl) + 5(r2 t1) ,

Jd max (x(1)), b+5(t2—t§)}. (2.2.15)
[ tz’tzl
and define
U={ uEK“n’ b ||u||2< C+1}, (2.2.16)
then (I+ L—IGI1 lij)(y);a‘--O on dU. Finally, by 1/n+b(t—tl)+2_15(2t2—tl—t)(t~tl)eU

and properties of Leray-Schauder degree, we have
df.zgLS -+ Gl,n], U, 0)=1, 2.2.17)
thus, (2.2.3) has a solution in U. The remainder of the proof is similar to

the proof of Theorem 2.1.1.

&mark ¢ The result of Theorem 2.2.1 extend the results of Theorem 2.0.1 and

c

the results of [57]. In [57], one of the condition on A(y) is j his)ds < o,
0

for all c€[0, ). So, for example, no result of [57] applies to Example 2.2.3

above,
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Theorem 2.2.4 Suppose that

() g is continuous on (tl, t2)><(0, @) X (0, co),

() ¢ = glt,y, 2 = y(@t) h(y) p(z) on (tl, tz) X (0, ) X (0, o),

where
(@) h()>0, p(z)>0 are continuous and nonincreasing on (0, ®),

)] w)>0 and EW>0 are continuous on (tl, tz); {(t2)>0 and

i
Jz Edt < oo,
{
1

3

(o) fz w(t) h(a(z‘—tl)) p(ﬂ(tz—t))dtc: 0, for each pair (o, B), 0<a, f<1,
e
1

(@ 81y, 2) / Tw(®) Walt-1 ) pBU,  [wOh(ale=2 DpBCe -]
are continuous on [t‘,tz]x(o, )X (0, ®) and [tl, t2] respectively for a, B,

O0<a,B<1. Then problem (2.2.1) has a positive solution.

/4 3/4.

Example 2.2.5  Let g, y, 2)=w({) h(y) p(z), here w()=t, h(y)=y-3 (I+y )

and

T O<z=1
P@=1 | —4/5 ‘

~2-(1+z ), z=>1

Let {(®)=t/2. A calculation shows that the functions satisfy the conditions

of Theorem 2.2.4.
Proof of Theorem 2.2.4

We only discuss the case when y’(12)=b=0, for b#0 this theorem follows

easily from the proof of Theorem 2.2.1. We consider the family of problems
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y* 4+ (1-03+ A ¢(t) gn(t, ¥, y")=0 n
(2.2.13);"

y(t!)‘—‘l/n, y'(t2)=1/n >

where

gt |y], |z 1 <e<r, |y|z2Un, |z]=1n
8.ty )=

g@t, 1n, 1), 1t <t<t, [y| <ln, |z| <1l/n

0<d<1 is determined as in the proof of Theorem 2.2.1 and A€[0,1]. Let y be a
solution  of (2.2.18);:, then y@=l/m, y'®=ln, for refr,r]. Tt follows

from (if) that y()=6()+1/n and y' ()= 8'@)+1/n, where

t ot
9(1)=2—1(1—1)5(21‘2-1‘1—0(:—:1)+/1 f f 2 5(v) Ev)duds, (2.2.19)
t° s
1
t2
8'®=1-25(t,-1 + Af 6(s) E(s)ds, (2.2.20)
t
0" (1) =-(1-N)8 -1 $(1,) £(1,). 2.2.21)

!
Then, there exists a C, >0 such that fqu(s) §(s)ds > C, and
!
1

0’(1‘1)2(lwl)é(tz—tl)+lC3. (2.2.22)

Using the same methods as in the proof of Theorem 2.2.1, we have that there
exists kz’ O<k2<1 such that

y()‘)akz(z‘ft‘) for te(tl’rz)' (2.2.23)
Whether ¢’(t2)=<x> or not, there exists C 4>0 such that qS(tz) é(r2)>C4, and
0”(:2)5—(1—1)5—204. (2.2.24)

Using the same idea as above, we have that there exists k3, O<k3<1 such that

')z ka(tz—t), for te(tl’rzz)' (2.2.25)

‘Therefore,
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y’(t)ak3(t2«r)+1/n and ly“] = 1+ ¢ w® h(kz(t—tl)) p(k:;('z"))‘

Hence, by condition (¢),

!
ly@l = @)+ : B W) hk (1= )) plh (1 ~D)d1=C,,
1

and

ly(r)ls(:6 for t€ft,, 1 1. (2.2.26)
where  C =C(t-1). Let x(=[p() hk (1)) p(ks(tz-t))]_l, so that,

[x(hy" ()] =x(t)+¢(r)= C7.

Here C 5 C p and C7 are positive constants which are independent of A, n. The

remainder of the proof is similar to the proofs of Theorem 2.2.1,

If g(t,y,z) has singularities at t-——tl, t=t2 and yl_l)glo g(t, y,2)=0 for

@, z)e(tl,r2)><(—oo,oo), then the condition (i) of Theorem 2.2.4 does not

hold. To cover this case, we have the following theorem.

Theorem 2.2.6 Suppose that

() g is continuous on @, ) X (0, ©) X (-0, ®);
(i) O<g(, y )< w@® Q) on (tl, tz) X (0, ®) X {~c0, o), where
(@) h>0is continuous and nonincreasing on (0, o),
)
b) w>0 is continuous on (rl,tz) and J; (t—-tl) w(Hdt < oo,

1
(¢) g, y, D/ [y h(k(r—tl))] and 1/ [w() hk(t-t l))} are

continuous on [t;' tz] X (0, ®) X (~00, @) and [tl, 1‘2] respectively, for each
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constant k, 0<k<1,

t

(d) jz h(k(t—tl)) w() ¢()dt < o for any constant k, 0<k<]1,
t
1

d -1
© ,Llim h(r)fl [h(s)]” 'ds=co.

(iity  For each constant M0>0 there exists £()>0 continuous on (tl, tz)

!

and Jz(t—tl)f(t)dr< o, such that g, y, 0)=&{) on (tl, tz)x(O, Mo]x(-oc,oo).
t

| 1

: Then problem (2.2.1) has a positive solution.

Proof. Let x(f)-——-{w(t)}1({2_15(1‘2~tx)](z‘—tl))}‘l be as in Theorem 2.2.1, then
the result of this theorem follows from a slight modification of the proof of

Theorem 2.1.1 by changing the order of integration.

If g(t,y,z) has singularities at t=tl, r=t2 and zl_})g 8@, y, =0

for (1, y)(&'(tl, tz) X (0, o), then we have the following theorem.

Theorem 2.2.7 Suppose thai

(i) g Is continuous on (tl, tz) X [0, @) X (0, ),
iy O<oit,y, )< w(®) p@) on (tl, tz) X (0, @) X (0, o), where
(@) p@)>0 is continuous and nonincreasing on (0, ©)

and z p(z) is nondecreasing on (0, ),

t
) w(t)>0 is continuous on (tl, tz) and J‘z w(dt < o,
tl
(¢) glt,y, 2/ [w(® p(k(z‘z—x’))] is  continuous  on
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[tx’ t2] X [0, @) X (0, @) for each constant k>0,
(fiiy For some constants M v M2>0 there exists £(t) continuous, positive on

t

1) and sz(r)dt<w such that g(t,y, D=&() on (t,1)% (O, MIXOM].
4
i

Then problem (2.0.7) has a positive solution.

Progf. 'We only discuss the case when y’(t2)=b=0. We consider the family of

problems

y o+ A (g 1y, ¥y)H=0 n
s (2.2.27)‘1

y(tl)=1/n, y'(t2)=1/n
here gn(t, ¥, ¥), A are as in the proof of Theorem 2.2.4. Let y be a solution

of (2.2.27);‘ , then y(=1/n and y'(V=1/n, for 1€[r,1]. From (i) we know

dz

that A/pO @N y* () + 4 o) w(®) = 0. Let  f(2) =r 72’ f@) is
0

increasing since p(z) is decreasing and (Fy/(O))’ + Ad() w(@)=0. Therefore,

!
@) = [ + [ 2 66w
“
The fact that f(z) is increasing and condition (b) imply that [y’(t)]:;Cs and

Iy(r)lscs(tz—tl). Let C‘9=C8(t2~rl), then, C, and C, are independent of A, n.
By condition (Jii) and the same idea as in the proof of Theorem 2.2,4, we have
that there exists k4>0 such that y’(t)a/lké(tz—t) and

[y <20) w(0) pAK (-0 5 4G wt) ptk (2,-1). (2.2.28)

Let x(H)=1/ [z/f(r)p(k4(tz—t))]. Define K L, j, G as in Theorem 2.2.1

Un, 1/’ A,n

for d=0. The proof is then a consequence of Leray-Schauder degree theory as

in the proof of Theorem 2.2.1.
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Remark f By the same methods we can discuss the following problem

{y" +¢(t)glt,y, y)=0
(2.2.29)

y (1 )=0, y@,)=0 !

and obtain results for this problem similar to the above theorems.

In the following, we use the above methods to show the existence of

positive sclutions on (¢ ¢ tz) (tl>0) to the problem

{ y' o+ (g (e, y y)=0, (2.2.30)

y(r )=y(,)=0.

Theorem 2.2.8 Suppose that

() g is continuous on (t], tq) X (0, ©) X (-00, 00);
iy O<glt, y, D=w@) h(y) on (tl, tz) X (0, ) X (-, w), where
(a) h(y) is continuous and nonincreasing on (0, o),

&) w>0is continuous on (tl, 1‘2) and

3

I 2 0,-1) (1) wn)de < o0,
¢
1

@ 8.y WOk )t~ € C 111X (0,0) X (- 0, 02)),

for each constant k, 0<k<1,

t

@ ,[2 W) hk(=1 )a,~0)d1 < w0 for any constant k, 0<k<1,
t
1

(e

f -1
i he) J.i ()] ds= oo,

(iity For each constant M0>0 there exists £(t) continuous and positive
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!
on (tl’ tz)’ I: (t-tx) (tz-r) E(Ndt < e such that
1

g(tn » }")25(0 on (tl’ t2) X(O, MO] X("‘ &, 00).
Then problem (2.2,30) has a positive solution,

Proof. Using the same methods as in the proof of Theorem 2.1.1.

Theorem 2.2.9 Suppose rthat

) glt,y, ) is continuous on [rl, t2]><(0, ®) X (0, ),

@) Ly=g@ y, D=y h(Q) pi) on [, 1,1X(0, 00)X (0, o), where
(@ h>0, p>0 are continuous and nonincreasing on (0, ), zl—I>I8 p(z)=00,
B & >0, w() >0 are continuous on [tl't:z}' E>0 at r=tl, tz’

t +& t
© [ v neG-1 r < oo; K

! t-¢

&
W) h(k(t~D)dt < oo f p(D)dt < 00,
2 1
I 2

Jor all constants &, k, with O<e, k<1,
(d) l/h(k(tz—t)) and 1/ h(k(t-—tl)) are continuous on [t v 12].

Then the problem

{y' + oM gCty, 1y 1H=0
(2.2.31)

y( )=y@,)=0 ’

has a positive solution in lou (rl, tz)ﬁ(']l [tl’ t2].
Proof., We consider the family of problems

y* o+ (1-A)d+ A¢(r) gn(t,y+l/n,y’)=0
(2.2.32);

y(t,)=y(1,)=0
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Here gn(t, ¥, ¥') is as in the proof of Theorem 2.2.4. Let y be a solution of

(2.2.32)3, then yz0 for f€fr,r]. Let t,€(,1), yt)= max y@. By the

t <t<t
1 2

proof of Theorem 2.2.4, we know that there exist kj, k6 satisfying O<k5, k6<1
such that y(t)zks(t—tl), y'(O=k 6(:3—1‘) for tE[tl, 13]. A similar argument on
i, tzl yields y(t)2k7(12—t), |y | 2k8(t—t3) for te[ta, t2]. Here,

0<k7, k8< 1. Then,

[y" ()] =(1-2)8 + 2 ¢(0) w(® hy) p(}y' )

1+ @) w(® htk (=t N ptk (. -1), tEQ L)
s{ 55 TTens s (2.2.33)

L ¢ W) hk (0, -0) pllG-1,0),  1E(,1)

LUy 1 D Pt =00, FEC1 1)
Let x(f) = . By condition (d),
1/ k(k7(r2—t)) p(kg(t— ta))' te(r3, '2)

XE Co[tl,tz]. Therefore,

[ y" ] =C (2.2.34)

Condition (¢) and (2.2.33) imply

Yy 0| sC |y =C_. (2.2.35)

Here Cl o' C  and C12 are positive constants which are independent of i, n and

il

d. The remainder of the proofs follows from a slight modification of the proof

of Theorem 2.1.1.
Remark g It follows easily that the results of Theorems 2.2.6 and 2.2.9 still

hold for rl=0 if the function m()=¢() w() satisfies the conditions imposed

on (1), n=d¢@) &() satisfies the conditions imposed on &(f). The result
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of Theorem 2.2.4 holds for tl=0, if m(r) satisfies the conditions imposed on

{
w() and J' 2 8(1) £t < oo
0

Remark h Directly consider the problem:

¥y o+ A ¢(r) gn(t,y+1/n,y')=0
{ y(t )=y(1,)=0 @.2.36)
Here gn(r, ¥, ¥') is as in Theorem 2.2.9. Using the same idea as in the proof
of Theorem 2.2.9, we can obtain a existence result for problem (2.2.31) if
gt,y,2), w( and p(z) satisfy all the conditions of Theorem 2.2.7 where also

zl__x)%z p(z)=c0 but with (¢) replaced by

"' glt,y, )/ w( is continuous on {tl, tz} X [0, o)X (0, ).
{

2.3 APPLICATIONS TO EXISTENCE OF RADIAL SOLUTIONS

In this section, we use the results obtained in section 2.1 to obtain the
existence of positive radial solutions of problem (2.0.4) in annular domains.
We only state the results, the proofs are immediate consequences of the

theorems of section 2.1. We use g to replace f in problem (2.0.4).

Theorem 2.3.1 Let g satisfy

(a) g is cominuous and stricily decreasing on {0, o),

®) gO>0 on (0, ») and g(0)# x,

t
. -1,
(@ ,lim 2@ _[0 [g{s)] “ds=co.
Then problem (2.0.4) has a unigue positive radial solution

y(r)éCz(Rz, Rl)ﬂcl[Rz, R 1, where 0<R <R, < oo,
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Theorem 2.3.2 Let a>0; R >0, {(r)ECO[RS, ®); &0)>0 on [R,, ©) and

t
J 3 IR0 [(N-2)” BDE-D gy o,
0

Then, the problem

4y + &y %=0 r>R, Nz3
@2.3.1)

y=0 on r=R3

has a unique positive radial solution y(r)EC2 (RB‘ oo)ﬂCl[R3, ©0) that tends to
0 as r >, where

-1 1H(N-2)

r=IN-2) P s |x| s 1,=[(N-2) RT;_Z]

EENOEH(GEILE )

Theorem 2.3.3 Let Rs' r, &), t3 be as in Theorem 2.3.2; Cl(t) satisfy

1
[ £@ (N2 @D gy ¢ oo, 2.3.2)
0

let g satisfy:
(@) g is continuous and strictly decreasing on (0, o),

(B 80N>0 on (0, ) g(0)+# ¢0,

13
© lim g® Jo [g(s)] ™ 'ds=oo.

Then, the problem

{ 4y + &) g»)=0 r>R3, N=3 233

y =0 on r———R3

has a unique positive radial solution in Cz(Rg, oo)ﬁCl[Rs, o) that tends to 0

as r—o,

Theorem 2.3.4 Let R3, t, {1(4‘), t. be as in Theorem 2.3.2; {(r)ECO(RS, o)

3

~(2ZN-2)}/(N-2)

and £()>0 on (0, ®). La fH= fl(r) [(N-2)1] and R satisfy
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the conditions imposed on ¢(t) in Theorem 2.2.7; g(y) satisfy the conditions
of Theorem 2.2.7. Then, problem (2.3.3) has a unique positive radial solution

in CZ(RB, co)ﬂCI[Ra, w) that tends to 0 as r —oo,
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CHAPTER THREE

BOUNDARY VALUE PROBLEMS FOR A CLASS OF

QUASILINEAR ORDINARY DIFFERENTIAL EQUATIONS

INTRODUCTION

In this chapter, we establish the existence of solutions to the Periodic

Boundary Value Problem (BVP)
Qu 1772w+ fit, w wy= ¥, w@=u(), w'©@=u'd)  (3.0.1)
under various conditions on the function y:{[0,11—R and the function

f:100,1] X R —R.

We also consider the problem of the following form

Au- f(r,u)= 0 in (O,1) (3.0.2)
w'(@y=u’(1)=0 ,

where Au=—(a(|u’{2)u‘)', a:R—->R is a continuous mapping such that

2

2
h(t"‘(r )= W(t)dr is a strictly convex function on R, That is, the equation
pv s
0

(3.0.2) coincides with the equation g'(u)=0, where

1 u@®

1 ¢! 2
gG= 5 | A(u’|de- [ | #x wendra. (3.0.3)
2 [¢] 0" 0

By a Cl—solution of problem (3.0.1) we mean that uECl([O, 1D, u(0)y=u(),
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w'(0)=r’(1) and u satisfies:

e/ @O 2w o- |w @ 1P ur )

-

0

t
[ﬂs, u(s), u'(s)) - y(S)] ds.
By a C‘—scluticu of problem (3.0.2) we mean uECl([O, 1) satisfying

w' (0)y=u'(l)=0 and

~@a(|u |Huty'- fit, )= 0, a.e. in [0, 1. (3.0.4)

In a recent paper [62], the problem

u' 1P2un + /6, w=0,  u@=u1)=0, (3.0.5)

- - - -1
was considered. Under homogeneous Dirichlet boundary condition, GP=A is

compact from C0 [0, 1] to CO [0, 1] and Eq (3.0.5) is equivalent to

u- G (. )= 0, (3.0.6)

so, Leray-Schauder degree theory can be used. But under the periodic boundary
condition or the Neumann boundary condition, A is not invertible, and the
approach of [62] is not applicable. Problems of this kind were also studied in
[6, 10, 38, 58, 75]. In these papers, all the authors considered the problems
in the Sobolev spaces W:)’p or WP and proved tt;e existence of solutions in
these spaces by generalized degree theory (see [10, 38, 58]).

It is clear that these methods do not work with our boundary conditions,
we need solutions belonging to Ci([O, 1]). We note that the special case of
problem (3.0.4) with Dirichlet boundary conditions can be easily dealt with in
H;(O, 1), but we do not know how to deal with the problem with our boundary
conditions. Let Au=-(b(u)u')’, for bECO(IR, IR+), and consider the problem
Au-f(t,u) =0 1in (0, 1) } 3.0.7)

u(0) = u (1)=0 ’
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for fe C0 ([0, 11 x R)., In this case, the equation (3.0.7) does not have a
variational structure, But it can be easily shown that B: H;(O,l) —)(H(l)(o,l))*,
Bu=Au-f(t, u) is of type (S)+, where (H;(O, 1))* is the dual space of H;(O,l).

So, using the degree theory of the mapping of type (S)+, we can obtain some
existence results for (3.0.7) by using the same ideas as in section 3.3 below,
But it is not clear how the existence of solutions of the equation in (3.0.7)

with periodic boundary condition or Neumaan boundary condition can be treated.

In sections 3.1-2, we study the existence of solutions of problem (3.0.1)

and the problem:

-(|u'|‘p"2u’)’ + fi v, u')=y@), uw0)=u(l), ' (@=u’(l). (3.0.8)
Our methods are closely related to [58], but we consider the problems in
C’Per(o, D, where € (0, D={xec’0, 1| uO=u(l), &'©@O=u'D}. In this
case, we do not know whether 4 : Cz er(O, 1)——>C°[0, 1] belongs to a class of
mappings with a degree theory such as A-proper maps because we cannot prove
that A maps Czpﬂ((), 1) onto a linear subspace of C0 [0,1]. In order to
overcome this difficulty, we replace A4 by Ag : C;c r(0, l)———)Co {0, 1] where

A8u=~su"-(|u’]p—2u’)’ and &>0. Our results are related to those of the
recent papers of [60-61]. In section 3.3, we directly use Leray-Schander

degree theory to give an existence result for problem (3.0.2).

(7]

.1 AN ABSTRACT EXISTENCE THEOREM

In this section we give an abstract existence result similar to that of

[60-61] where it was assumed that p=2., To do this, we first show that Ae
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possesses properties similar to those of a Fredholm map of index O.

For convenience, we let ¢p(s)=|s|p -2 s, where p>2 is fixed and let

gs(S)= &s + ¢P(S)-

1
Lemma 3.1.1  For any hECO [0, 1] wirh j h(s)ds=0, there exists a unique
0
uech (0, 1) such that u satisfies
~eut = ([ [P a0y =n,  w(@=u(1)=0, v’ ©)=u’(1). @3.1.1)

Proof. For a given heCO[O, 11 with [(l) h(dt=0, we look for a function

ueC(')([o, 1]), such that ge(u') is absolutely continuous and

—eu” = (|u'|PPu=h, ae on [0, 1], (3.1.2)
First we find a solution uEW(j)’P 0,1) of (3.1.2), It is well-known that

searching for uewg’P (0,1) satisfying (3,1.2) is equivalent to finding critical

1 1 1

points of the functional wh(w)=%j |w’|2+ if ]w‘|p—j hw, We find
0 Py 0

that y, is a continuous functional such that W, —>® as "wlllp-——aoo. Hence (see

[22]) it possesses a critical point ue W;’P (0, 1) at which it reaches its
minimum. So, u satisfies w(0)=u(1)=0 and
1 i ’
f [8u'+ ¢ (u’)] o= ho, (3.1.3)
P J
4] 0
for all ve Wé’p (0, 1), Then, it follows that 8u’+qbp(u’) belongs to Lq(O, 1) and
satisfies (3.1.3) for all ve C?(O, )., Here g=pl/{@-1), so g<p for p>2.
Therefore, eu’ +¢p(u'}€ Wl’q(O, 1). From this and theorem VIII of [7] we can
see that ge(u’) is an absolutely continuous function which satisfies (3.1.2).

Since g is invertible and g;lECI({R), using Remark 6 of [7] we find that zeC’,

(3.1.2) means that w”=-h/[e+ (pwl)}u’lp_:z] a.e. in [0,1] and #'(0)=u'(1). The
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latter equality follows from the fact that the function gg(s) is  strictly
increasing, (3.1.2) and jé h(s)ds=0, Now we can redefine u” on a set of
measure 0 so that u”=—h/[e+(p—1)|u‘]p~2], for all r&[0, 1], then uEC‘i(O, 1))
and ©’(0)=u’'(1).

Now we prove u is unique. Suppose that there is ul&’i-C2 (0, 1) such that
e ¥ _ ¢ P"2 Y- - ~ ] g
eu (|ul| up) A and ul(O) ul(l) 0, ul(O) ul(l), then
" w ’ ~2 s ’ =2 Nt
e =) + [(u [P0y =g [P ety 1=0.
Multiplying by (v -u 1) and integrating from 0 te 1, we obtain
1 2 1
ejo w'-uydr + fo (4, (")~ (1)) (- )de=0.

By the monotonicity of ¢P we get u’=u1 on [0, 1] and hence u=u, on [0, 1],

Remark a If =0, then go(s)=¢p(s). It follows directly that qﬁ; does not

belong to Cl(IR). So, we cannot prove that uECZ(O,I) from (3.1.2).

Let Cszer(o, 1):{uec§er(o,1) | u(0)=u(1)=0}, then

cier(o, D=R e cz,per(o, 1.

) ' o ol
From above we know uOGCg,W(O, 1), For hECo(O, 1), we write h—-h0+hl, ho—jO h,

and [*h =0, then C°=R @ 2, here Z={ heC©, 1) 'h=0b. Let 4 be
0 1 0 &,1

. 2 — —
defined by As, : C'Per(O, 1H—2Z, Aa,L(”)—Ae(u)’ where u=u(0)+u. Then As,

1 0, 1

is invertible.

Lemma 3.1.2 Ae : Cfm(o, 1) — CO[O, 11 is a continuous map.
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Proof. Note that the function T : (0, DXR®—>R, T(,x, y)=(e+|x[P Dy is

continuous, the proof of this lemma is then routine.

-1 1
Lemma 3.1, 1 Z— ! .
emma 3 A‘_:’1 Co’p“ is compact

_.1 _
Proof. For a bounded sequence hnEZ, Ae,l(hn)-—un, then unECz’pa(O, 1) and
e+ 6,611, I = . (3.1.4)

As un(0)=un(l)=0, we have that for any n, there exists a tBE(O, 1) such that

un(tn)==0 and ¢p(un(tn))=0. From this and Ae,luu-——hn, it clearly follows

t
that -—su!’!(t)- ¢p(ul;(t))= L hn(s)ds. Therefore,

o
||€u;+ ¢p(un(t))|los ]]hnﬂos M. 3.1.5)
(3.1.4)-(3.1.5) imply
lew, + DIl =< M.
Using the fact that i : C'({0, 1)) —> C°[0,1] is compact, we obtain that there

exists a convergent subsequence (still denoted by {su"1 + ¢p(u1'1)}) such that

.eux'l + ¢p(u['l)——>u in C0 [0,1]. As 8+¢p : R—>R is strictly increasing and

t -1 :
continuous, we have ul‘l—->(.5:+<;b}:')—l (v) in Co [0, 1]. Let H(r)=j [8+¢p] v(s)ds,
0

then, it follows from u;—a(s-l-q&pfl(v) in c°[0,1] that w(1)=0 and

t -1
s ! - 1
w'(0)=u'(1). Therefore, uECO,per([O, 1D and un(t) tends to Io [8+¢P] v(s)ds

. 1
in CO,Per([O, 1.
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Lemma 3.1.4 A—l

A 02 is continuous.
e ——— 8] 0,per

Proof. Let h @Z and u €C°  be such that k —h in C° and A_ (u )=h . Then
n n 0,per o &1 n o

- ‘e P2
from Lemma 3.1.3 we have u_—u in Coper As ¥ =h 1 (et @-D]u! |77 we also

bave that ¥_—x in cX0, 1) and u” =k /(s + -D]u’ "™ on (0, 1.

In the following, we prove that for some N, AE—AN is A-proper with
respect to some I'', where I’ is as in Definition 1.2.4 of Chapter 1, and give
a existence result for problem (3.1.1).

Let chZ (Z is as in lemma 3.1.3) be sequences of oriented finite

dimensional spaces, Yn=-iR ® Zn and Q11 : Y-~->Yn be a linear projection of Y onto
Y_for cach nz1 such that for any y&C' [0, 1], Qy-y Let E =R o (A;l (@),

Then En are sequences of oriented finite dimensional open sets in C; er(0, 1

and from the properties of Yn, we have that for any uGC:e r(O, D,

dist (u, En) -0 as n—>oe,

Lemma 3.1.5 The Scheme I'’ E{ En, Yn, Qn} is admissible.

Proof. For any n, Ae : A: l(Zn)-—-)Zn is a homeomorphism. By the fact that

1
dimension is a topological invariant (see Remark 1.1,2 of Chapter 1), we know

dim (4, (Z ))=dim (Z),

and so, dim (E)=dim (Y ). Here dim (A;‘l(zn)) is as in Chapter 1.

P S

Lemma 3.1.6 Suppose Ae is as in Lemma 3.1.1, I'' is as in Lemma 3.1.5. Let

Gcc;‘:“(o,i) be an open, bounded set. Then A, :Gcc;r(o, 1) -0, 1) is
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A-proper with respect to I'',

Proof. Let {u |u €G be any sequence, bounded im c? (0, 1), such that
nj “j nj per

8, = Qn.As(un')——-ag for some g in C0 . Since uu‘(t)=un.(0)+un.(t), un.eEl'n,

J i i i i i i i
here E Lnjch por Ae(unj)=Ae'l(unj)Can, then anAg(unj)=A8(unj). We sce

= = - s P ~1
that gnjane(unj)—Aa‘ 1(uuj)——%g in Co By the continvity of Ae’ p Ve know that

En ——>A;llg. As {un (0)} is bounded, we also have u (0) — C and so, v
j ’ i i §

converges to C+A:lg. Let u=C+A;IIg, then uECzer(O, 1) and Au=g. Since G is a

closed set, u €G.

Now, wusing the A-proper property of As and wusing generalized degree
theory as in Chapter 1, we give an existence theorem similar to Corollary 2

of [60], but in [60] the map A is linear and Fredholm of index 0.

Theorem 3.1.7 (Existence Theorem) Let y&7Z, As be as in Lemma 3.1.1, let GCC:“
be an open bounded set with 0&G and N: C:»e r(O, 1)——>C0 [0,1] be a bounded
continuous nonlinear map such that

@ AN G oo, 1] is A-proper w. r. t. I'', for each A€(0,1],

(b) Aau # ANu+Ady for u€dG and A€(0,1],

(c) @Nu %0 for u€RNIG, where @ is a linear projection of C.'0 onto R
with C°=R @ Z,

@) degA(AE—QN, G, 0y {0}.

Then there exist u€G such that A8u~—Nu=y.
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Proof. Let H(l,u)=A8u—(1~A)QNu—ANu—Ay for k€G and A€[0,1]. Since QN is
compact, AS-AN :G-c° [0, 1] is A-proper with respect to I'* for each A€[0, 1]

and the additional condition on N(3G), it follows that H(A,u) is an A-proper
(with respect to I'') homotopy. Moreaver, in virtue of our conditions, we may
assume that H(A,u)#0 for 1€[0,1] and u&dG. Indeed, if this were not the case,
then there would exist AOE[O,I] and uoeaG such that H(Ae,uo)=0. Now if 10=1,
then 0=H(1,u0)=A8uo—Nuo~y with uOEBG, that is, u, is & solution and so we
finish the proof., Hence, we may exclude this case from further considerations.
If .3.0=0, then O=H(O,u0)=Aeu0—QNuo. Since AGHOEZ and QNuoElR, it follows that
A€u0=0 and QNuG=0. This means uoe[RﬂaG such that QNuo-=0. This contradicts (c).
If Aoe(O,l), then Asuo—loNuo—ADyu(l—lo)QNuo¢0 by (»). Hence QNuoa':O and, since
Agu G—A OyEZ, we get from the last equality the contradictory relation
-—AOQNu0=Q[A8u0——AoNuO-lOy]=(1-,10)QNuD, 0<10< 1.
The above discussion shows that H(A,u)#0 for 1&€[0,1] and u€38G. Consequently,

deg,(4,-N, G, 0)=deg, (4, - ON, G, 0)#{0}, by ().

Hence, there exists x €G such that Aeu—Nu——-y.

Corollary 3.1.8 Let y€Z and assume that

(@) AE—AN 1 G- Co[O, 1] is A-proper with respect to I'' for each
A€, 1] with N(8Q) bounded,

&) Asu F£ANu+ldy for u€dG and A€(0, 1),

(©) ONu=0 for ueRNJG,

(&) For u€RNaG, either (el): [ONu, 1]=0 or

(ez): [ONu, u] =0.
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Here [QNu, u]=0QNu X u. Then there exists u&G such that Aeu—Nu=y.

Proof. By Theorem 3.1.7, We prove that (¢) and (e) imply
degA(Ae-QN, @G, 0)={0}.

Indeed, suppose first that (el) holds and consider the homotopy
H : [0,11XT - C°, H(L,w=A4 u-(1-2)Bu-20Nu

for ¥€G and AE[0,1] with B=P, P is a projection of cze (©,1) onto R if ()
holds and B=-~-P if (ez) holds. Since B and QN are compact, it follows that H is
an A-proper homotopy and the fact that (AB—B) u=0, uECi er(0,1) if and only if
1 = 0. Moreover, H(A,u)#0 for u€dG and A€[0,1]. Indeed, if this were not the
case, then there would exist 106{0,1] and uoeaG such that H(A.o,uo)=0. Now, if
10——-0, then O=H(0,u0)=deu0~8uo with uO;&O. From above, we know U, = 0. This is
a contradiction. If A 0=1, then H(l,uo)=Asu O—QNuo=0. Since Aauo=QNu0 with
Asuoez and QNuQE[R, it follows that uoe[R N3dG and QNu0=0, in contradiction to
(¢). Thus AOE(O,I) and A8u0=(1—A0)Buo+).GQNuO. This again implies that Asu0=0,
that is, uOEIR and

;{:(I—J.O)PuO-MOQNanO.
Since Pu0=u0, i(l—lo)uo+).0QNuo=0, Then,
i(lwlo)uz-!-lo QNHOXu0=0.
Thus, in both cases, H(A,u)+0 for all x€dG and all 1&€[0,1]. Consequently,
degA(Aa_ ON, G, O)Edch(Aa-P, G, 0).

Since AG—P is one-to-one and 0& G, we have from the properties of the Brouwer
degree of one-to-one map and the definition of deg A that
dch(A8-P, G, 0x {1, -1}, and,

in particular, O¢deg A(A&—N, G, 0).
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Corollary 3.1.9 Ler yECO[O, 11, As be as in Lemma 3.1.1, let GCC?}er be an

open bounded set with 0€G and N : Cic r(C!, 1) - CO {0, 11 be a bounded
continuous nonlinear map such that

(@) Ae—AN :"G——)CO{O, 11 is A-proper w. r. t. I'', for each A€(0,1] with
N(@@QG) bounded,

(b) Aau # ANu+2dy for u€dG and A€(0,1],
(¢} QNu+Qy + 0 for u€RNA8G, where Q is a linear projection of C0 onto R
. 0
with C"=R & Z,
(d) Either (i) (ONu+Qy) X uz=0 or

() (ONu+Qyy x u= 0

for u€RNIG. Then there exists u€G such that Aeu-Nu=y.

Proof. Replacing N in Corollary 3.1.8 by N+y, this corollary follows from

Corollary 3.1.8.

3.2 EXISTENCE RESULTS FOR PERIODIC BOUNDARY VALUE PROBLEMS

In this section we wuse Corollary 3.1.9 to establish the existence of

solutions to the problems:
su” + (! |P72un) i, uuy= 50, w@=u(), ¥’ @=u'1), (.21,

where p>2, f : [0,1] X R® >R is continuous, yGCo[O, 1]. Then we shall let &
tend to 0 and obtain the existence of a solution to (3.0.1). We assume that:
(Hl) f 1 [0,1] % lR?'—:»!R is a continuous function and there are positive

constants 4, B, C such that B+C< np and

e, ¢, 0| s4+B|q|P | r|P7 (3.2.2)
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for t€[0, 1] and ¢, rER, where zp>0 is the first eigenvalue of the problem
w122y + AP u=0, u(0)=u(1)=0.

H 1)’ F:00,1]1 x !RI—-HR is a continuous function and satisfies

(i)  there exists a continuous function fl i 0,11 XR—R and a

constant C such that |fs, ¢, )| =ft 9+ C]r]p,

(if) there ar¢ constants «, £, y=0 and o, 7<p such that

afu, g, = -a|q|%-|r| -y (3.2.3)

for t€{0,1], ¢,r€R.
Now we prove the following theorem,.

Theorem 3.2.1 Suppose that in addition to (H l) we asswume that

(Hz) To a given yeC’O[O,l] there exists M>0 (depending on y) such that
1

J

{f(r, u,u’)- y(t)} di# 0, for ue C*(0, 1) with |u| >M for 1€[0, 1].
0

(HB) There are MIZM and a, bER such that either (i) or (i) holds, where
() a=b, uek and uaMl=--f(t, u, 0)=a;
us-M=fit, u, 0)sb  for 1€[0, 1] and b=y sa with ylnféyd:,

(N a=x<b, uck and u2M1=¢f(t, u, O)=a;
us-M= ft,u, O)=b for t&[0, 1] and aSylsb.

Then the periodic BVP (3.2.1), has a solution in cko, 1.

Proof. Let Nu =f(t,u, u'), then the map N : C2 (0, 1)———&6’0 [0,1] is compact
since C'(0,1) is compactly embedded in C'([0,1]) and, by Theorem 3.1.6,
Ae—lN is A-proper w.r.t. I'* for each A€(0,1]. Condition (¢) in Corollary

3.1.9 holds. Next we show that if (Hl) holds, then there exists r>0 such that
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if we let G={x&C"(0, 1) : |x|,=r}, then () of Corollary 3.1.9 holds. For that
it suffices to show that if uECZ (0, 1) is a solution of
I I p“z AN f ’ 4
—eu (| [P uy = AR uy u)-Ry, wO)=u(l), ®'@)=u’'(l), (3.2.4)

for some A €(0, 1], then |u| 2SM2 for some M2>0 independent of ¥ and A,
So, let uEC;z (0,1) be a solution of (3.2.4) and integrate from 0 to 1 to

obtain
1

_[ {ﬂh (), u'{)- y(@) pdt =0. (3.2.5)
0

It follows from (3.2.5) and (Hz) that there exists toe [0,1] such that

¢
Iu(to)] =M. We write u(t)=u(ro) +J u'(s)ds, and so
t
0 1 p Up
Ju®| sM+[[u'[|p, where ]|u||p=“o|u| dt] . (3.2.6)

For ue ciego, 1), we write u()=x(0) +h with ke C;W, then u’=h’ and

Hu'ﬂp:‘ﬂh’llp . Therefore, ]]u(t)]!psMﬂlh']]p. From the equality (3.2.4), we obtain

1 1 1
ef w2+ [ n'o)|P i = if {f(:, 4, u')- y(t)}h(z)dr, 3.2.7)
0 0 0
then,
! P
[ 1w P ae= pcl e wun | + (3D 11
0 g 'p
-1 -1
sd+ B lu + C |4’ + all . 3.2.8
A+ B+ e + ol I, (3.2.8)
In view of the fact that A{0)=h(1)=0 and "h"PSnl_?l“h’"P (see [62]), ome easily
derives from (3.2.6) and (H1> that there exist A1>0 independent of A, ¢ such
that "h'[lPsAl and so, |u| sM+4  for 1€[0,1] and ||u[|P5M+Al.

It follows from (3.2.4) that

!
eh'(t) + ]h'(:)[*"‘zh'(r)#f {f(s, u, h')- y(s)} ds, (3.2.9)
tl
where tlE(O, 1) is such that h’(tl)=0. Then, we get from (3.2.9) that
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en' @+ |n'® P2 u' )| s4,, (3.2.10)

where  4,=4,(M, 4, 4, B, C, Ixl o+ Using the facts that ¢p is  strictly
increasing and A2 is independent of e and (3.2.10), we casily obtain that
there exist A,, such that |h"|sA3 for t€(0,1), 4, is also independent of A

and &. Hence, l]uﬂis A3+M. From (3.2.4) we also obtain

-(e+ |u’ |p—2) u'=Aft,u, u")-1y,
therefore,

|u| = &7 e wow) |+ |y s 74, (3.2.11)
where 4,>0 is independent of &, A. Now let r> max {4 + M, e“‘,44} and
G={ue Cier((), D ||u|[2:5r}, then for A €(0, 1] and ¥ €3G,

—eu” ~(|u'}p—2u’)’;ﬁﬂ.ftt, u, u')-2y, (3.2.12)

that is, condition (b) of Corollary 3.1.9 holds. Note that Corollary 3.1.9

1
(¢) holds, for Q@ Nx- Qy= f {f(z, x, 0) - y(t)} dt +#0, x€RN3JG. This follows
4]

from the fact that if x€RNAG, then |x|=r>M and by using (H)), Corollary 3.1.9
(d) follows directly from (Hs) (se¢ [60]). Hence, the conclusion of Theorem

3.2.1 follows from Corollary 3.1.9.

Corollary 3.2.2  Suppose that (Hl)-(Ha) of Theorem 3.2.1 hold, y& CO fo, 11.

Then BVP (3.0.1) has at least one solution in C'([0, 1]).

Proof. From the proof of Theorem 3.2.1, we know that for any &3>0, there

exist at least one ugeczer(o, 1) which satisfies
» ’ P‘z AN A
guy + (| |77 u)’ + fe u, un= y, (3.2.13)

and "ualllsA3+M and A3+M is independent of &. Let u8=u8(0)+ g then
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e satisfies Ae, 1(ug) =ft, u & ue)— y@ and ST, s us)— i OSA5’ here As>0
is independent of ¢&. Lemma 3.1.3 implies that there exists u EC; Per([0, 1D
such that 228——); in clo, 1) as & —>0. The boundedness of ||usﬂ0 implies that

us(O)—>C as >0, here CeR. Hence MU in Cl([O, 1), u=C+u.
Integrating (3.2.13) from O to ¢ and letting &—0, we obtain that

uEC;e (10, 11 is & solution of (3.0.1).

Remark b If the function f in problem (3.0.1) is independent of w’, then
N@w)=f¢t, 1) is also compact as a map from (,‘?'p or(0, 1) to Co {0,1] and so

Corollary 3.2.2 yiclds existence results for the periodic BVP

Qu/ P2 uy + e W=y, w@=u(l), &' ©@=u’C1). (3.2.14)

Combining the facts in [61] and Theorem 3.2.1, we have the following

theorem.

Theorem 3.2.3 Let yl=0 and suppose f : [0, 1] X R R is continuous and
satisfies the conditions

(H4) There is M>0 such that ft,u,u’)u<Q for uECIZx l.(0, 1) with
|ut)| =M for t€]0, 11.
(Hs) There exists a continuous function fl D [0,1]XR—R and a

constant CeR™ with C<zrp such that |fU, q, r)]sfl(t, q) + C[rlp_l Jor t€(0,1]
and g, reR.

Then the periodic BVP (3.0.1) has a solution in Cl([O, ih.

Now we give an existence theorem for a different version of the BVP

(3.2. 1)8 , namely,
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—eu'~(lu’|"’“2u’)’+f(r,u.u')=y(t), w0 =u(l), u'(@)=u’(l). (3.2.1)é

Theorem 3.2.4 Suppose that in addition to (Hl)’ we assume that (Hz) and (HS)

in Theorem 3.2.1 hold. Then the periodic BVP (3.2.1); has a solution in

co, 1).

Proof. Let Nu=-fr,u,u’), then condition (4) of Corollary 3.1.9 holds.

To prove this theorem, it suffices to show that ueC‘2 (0, 1) is a solution of
—eu= (ut PR uny = A, w, w) Ay, k@) =w(l), w @=u'(l), (3.2.15)

for some A€(0,1], then [[ul[st3 for some M3>-0 independent of u and A.

Following the same ideas as in the proof of Theorem 3.2.1, we obtain that

ull sM+|lu’
el = b+ Ju’],

and
i 2 1 1 i
eJ' u d:+f |u'|pdt+AI f(t,u,u')udt=).‘[ yuds.
0 0 0 0

In view of (3.2.3), one easily derives that

! oo ! T a T

f ftu,uHudt = ~aJ |u] -ﬁ_[ |u'|"-y= -afu| - ﬁ"u'l]p-— ¥

0 0 0 P

p o T \ .
Then, |l ]}ﬁs a ﬁu]]p + B Ju "p + “3’||0"“"p+ y. So, there exists M, which may
depend on M, «, B8, v, 0, 7, and ||yl|0, but is independent of 4 and £ such that
lu'l,<M,. Therefore, Jul =M+2M,. Since wP(0,1) is embedded in C°(0,1),
[{ui]osMs, where M, is independent of & and A. Let
M = sup { |Ar, | : 0s1=1, |g| SMS},

then M6 is also independent of A, g From this, (Hl)' and (3.2.15), it easily

follows that

1
lew + (| 1P 2w s J A, w,u) |dr + |yl sMg+ COre2M P+ ]yl (3.2.16)
0
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Let M7=M ot C(M—I-2M4)p + ]|y||0, we know that M, is independent of A4 and .
Therefore, |u’| OSM;/@_I). From (3.2.15) we also get that there exist M >0
. . ~1 -1y -1
independent of A, ¢ such that |u | ¢ Ms' Now let r>max {Ms’ M,, , & Ms}
and G={ uEC;t(O, 1 jlullzsr}, then for A€(0,1] and ¥ €3G,

—eu”- (|u’ Ip—z W) F-Aft u, u’) + Ay, 3.2.17)

Condition (b) of Corollary 3.1.9 holds.

Corollary 3.2.5 Suppose that the conditions of Theorem 3.2.4 hold, yECO [0,11.

Then BVP
Qe PPun 4 fu ) =y, wO=u(D), ' ©=u'(),
| has at least one solution in Cl([O, 1D.

Proof. Similar to the proof of Corollary 3.2.2.

If the function f in (3.0.1);: is independent of u’, then we have the

following corollary,

i Corollary 3.2.6 Suppose that f : [0,11 X R—>R is a continuous function and

there exist constants «, f=0 and o <p such that
aft, = -a|q|%-8, (3.2.18)
Jor t€[0,1] and g€R. We also assume that:
(Hz)’ To a given yECO[O.I] there exist M >0 (depending on y) such that
5; {ft, wy- y(®} dt= 0, for uECZPegO, 1) with |u| =M for t€[0,1].
(HS)’ There are M lE:M and a,b€R such that either (i) or (ii) holds, where

(iy a=b, uck and uaMl = f{t, W)=a;
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w=<-M = fit,)sb for t€l0, 1} and bSyISa with yl==]:) ydt,
() a<bd, ueR and ule = fit, uysa;

v=-M = fit,u)yz=b for 1[0, 1] and asylsb.

Then the periodic BVP
—(w PPy W=y, w©@)=u(l), w'©)=x'(1),

has a solution in C'([0,1]).
Proof. This corollary follows from Theorem 3.2.4 and Corollary 3.2.5.

3.3 EXISTENCE RESULTS FOR NEUMANN BOUNDARY VALUE PROBLEMS

In this section, we directly use Leray-Schauder degree theory [51] to
discuss the problem
Au-f(t ,u)=0 1in (0,1) 3.3.1)
u' (O)=u'(1)=0 }
where Au=- (a(]u’ |2) k'), a : R—>R is a continuous mapping that satisfies
the following conditions:
(al) the mapping h(tz) is strictly convex, where
2

!
i;(:2)=J a()d;
4]

(az) there exist p>1, ¢, c3>0 and ) 0220 such that

0
colt]P“2+cls o= ¢t c3|z.“p“2 3.3.2)

for all 1&R.

Using the same ideas as above, we can obtain some existence results for

problem (3.3.1). But in this section, we use a simpler method.
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The condition (az) holds if a(f) is a polynomial with a(t)zcl. Other
examples are a@®=1+1+5"% and for any p>1, a(tz)=(t2)(p_2)f2. We first

establish the following lemma,

Lemma 3.3.1 Let Au=-(a(|u’ | u’)’, Swy=a(|u|) and ci([o,11)={uec‘([o,1]).-
u' (O)=u’'(1)=0 } For any 6>0, let J ‘5(u)=Au + & S(u) u. Suppose the function a

satisfies conditions (al) and (az). Then, J 5 is invertible and

JJ‘ : 290, 1) > CL(10, 1) is compact.

Here q=p/(p-1), p is as in (3.3.2).

Proof. For a given xeLq(O, 1) with ¢=p/(p-1), we lock for a function

xeCl([0, 17) satistying

Au+8 S(w)u=x a.e. on [0,1] } (3.3.3)

' (MH=u'(1)=0
with a(lu' Iz) u’ an absolutely continuous function on [0,1]. Clearly, if u is
such a solution, then it satisfies

1 1 1
J a(|u’|2)u’ v’ +6I a([u]z)uv=f xv, 3.3.9)
0 0 0

for all veW"P(0,1). Conversely, if weW"P(,1) satisfies (3.3.4) for all
vew P, 1), then by condition (@), a(u’|Hu €L, 1, a(|u|Huerio, 1
and satisfies (3.3.4) for all UEC‘:(O, 1). Hence, a(|u'|2)u’e W;’P(O, 1)
a(|u’|2)u’ is an absolutely continuous functior on [0, 1]. The embedding of
woPO,1) to €0, 11 implies that a((u’ |’ €C’0,1) and a|u’©®)]>u’ ©=0

=a(|u’(1)|2)u’(1). Since the function qS(t)==a(t2)t is strictly increasing, we
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conclude that ueC!([O, 1) and w/(Q)=wu’(1)=0, This means uECL([O, 1.
Now, we prove that there exists ue‘W‘l"D (0, 1) such that (3.3.4) holds.

Consider

1 1 1
1(u)=%f K u' |H +~g—j h(|u|z)-f xu . (3.3.5)
0 1] 1]

By the properties of h(t), we know that
I(u)acnun’l’ p » (with some C>0). (3.3.6)

We also find I is &8 continuous convex functionzl on Wl’P (0, 1). Hence, it
possesses a critical point ué& whP (0, 1) at which it reaches its minimum. We
also know that at u, (3.3.4) holds for all ve W"P(0, 1).

For xELq(O,l), there 1is only one ue’:‘W’I’p(O, 1) satisfying (3.3.4).

Indeed, suppose not, there are u p uzeCi([O, 11, uli%u2 such that

1 1 1
a(lu’|2)u'v’+5 a(|u |2)u v=| xv 3.3.7

Pt s o]
jla(lu’ lz)u‘v’+§ J.la(]u iz)u v=lev (3.3.8)

o 2t o 2t g

for all vEWl’p(O, 1). Then,
! 2 2
0= (T4 ) = T 4(0,), 4 ~4,)= fo g |y ui- aClug | ) ug-u)
1 2 2
+§J. (a(lull Yu - a(|u2| du,) (e -u)
Q
SR N B bl
afﬂ(a(lull Mg 1= aCug |y DX |- s )

1
+<SJ- afu | ] f-ac ) D u, D |- |2, ) >0.
0
This is a contradiction. Therefore, J 5 is invertible.

To end the proof of this lemma, we have to prove that J—l is compact. We

)
first show that J:sl : Lq(O,l)ﬁCi([O, 1) is continuous, Let {xn} be a
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sequence in Lq(O,l) such that X X as n—oo. Suppose that J;I(xn) does not

converge to J;l(x) as 0>, Hence, there exists an £¢>0 and a subsequence of
{xn} which we will call again {xn} such that
~1 -1

Vs & -T5 @l ze (3.3.9)

for all n€N. Based on the definition of the mappings ¢ , J;I and the fact that
for a solution w of problem (3.3.3), ¢(’) is an absolutely continvous

function on [0,1], setting

u =73 ) (3.3.10)
u:J;‘(x) (3.3.11)

we find that
—@u ) +6 Stu=x_ (3.3.12)

for each fixed ngN, unECi([O,l]). Equation (3.3.12) and the boundedness of

{xn} in Lq(O,I) tell us that | is bounded. There exists a subsequence of

e 1l

{u} (still call it {u }) such that there exists weC"[0,1],

. >w in C°[0,1]. (3.3.13)
Here we use the compactness of the embedding of Wl’p (0,1) in Co [0,1}. From
(3.3.12) we also know that the sequence {qb(u;)} meets the requirements of
Ascoli—Arzela’s theorem in C0 [0,1]. Therefore, there exists a subsequence of
{6} (still call it {¢(u)}) which is convergent in C°. This and the fact
that the function ¢ has a2 continuous inverse imply that {un} contains a

convergent subsequence in Cl([O,l]) and u_ W in Ci([O,I]). From the equality
1 1
Jo [6G!) 0/ +8 Sw) unv]=I0xn v, (3.3.14)

for all vEWl’P(O,l) and n&N, and recalling that ¢ is continuous, we can let n

go to infinity in (3.3.14) to obtain
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i 1
f [Ow’) 0’ +3 S(w) o]=_f x0,
0 0

3.3.15)

for all vew"?. This and the argument above imply that w=w, which is a

contradiction in light of (3.3.9). Following the same ideas as above, we can

show that .I;l is compact.

Theorem 3.3.2 Let f : (0,1) X R—>R be a Caratheodory function, i.e. f(*,u)

Mereover, assume that for every R>0, there is a kRELl(O,l) such that
|few] =k ©

for all |u] <R and almost every 1€(0,1). Let a€L'(0,1) be such that

() for any £>0, there exist §,€1(0,1), yeeLl(O, 1) such that

) u s @+ |ulP +,86(t)|u|p_l+y8(t);

1
(8) for any uEWl‘P(O,l), one has j (|u'|p- —3— |u]p)dt>0.
0 0

Then problem (3.3.1) has a seolution in Ci, where € is as in (3.3.2).

is measurable for every u€R and ft,*) is continuous for almost every t€(0,1).

Remark ¢ It is easy to show that assumption (Al) is true if for some

aeLlo,n,

lim sup ( AL/ eP H=aw)
lu| —oo

for almost every f€(0,1).

Remark d The condition (Bl) is equivalent to
(B)) there exists £>0 such that for any wewP (0,1) one has
1

P o P s P
Jo[lu P = 3w, -
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Suppose (Bg) is false, we can find a sequence {un} in whP (0,1) such that
1 o« ’
]]un{]l,p=1 and jo [[un] - »E—o [unl ] -3 0. Taking a subsequence, we can assume

u=>u weakly in whP {0,1). Then {un} converges to u in 14 (0,1) and the wesk

1
semicontinuity of the IP-norm of u! implies f [Iu'[p - —%« |u|p } =<0. By (B),
0 0

u=0 and the above implies that {un} converges to 0 in 24 (0,1). Since

n

1
J- [Iu’ 17 - L |u Ip] -0, it follows that |u || _— 0, which is impossible.
0 Co 3} n'l,p

Lemma 3.3.3 Suppose (Bl) holds. Then for any § >0 and aELl(O,l), the equation

~@au’ |Pu’) +8 Su-a(r)|u|P 2u=0 (3.3.17)

has only the trivial seolution in Ci([O,l]).

Proof. Suppose u€C,([0,1]) is a solution of (3.3.17), then

1
[tadw 1w |*+6 S@n-aw|u|Piar=o. (3.3.18)
0

So,

1
. t
oacojouu |P+a|u|l’_°‘—fcz—|u|1’1dr>o.

This is a contradiction.

Proof of Theorem 3.3.2
From Lemma 3.3.1 we know that for any §>0, problem (3.3.1) is equivalent

to

"~ J;I [5 Swu + f(r,u)] =0 (3.3.19)

and Jsl : Lq(O,l)—aCL([O,I]) is compact. Now we establish the priori bounds

necessary for application of coincidence degree.
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We consider the family of equations
u- J;l [AJ S(u)u + lf(t,u) . (I—A)Q’(I)‘u lp_zu] =0 (3320)

for A€[0,1], Let ueCL([O,l]) be a solution of (3.3.20), then u satisfies
Au+ 38 u- 2 [ SSwu + f(t,u)] - (1—}.)a:r(t)[u|‘p_2 u

=0 a.e. on [0,1], 3.3.21)

1
J' [a(lu' |56’ |2+ & Sy &~ .1[6 Sy u® + fit,u) u]— A-2)at) | |? ]dt=0.
0

Fix e<cOE. Condition (4) and the above Remark d imply that
! 2 2 -1
02[ {a(|u’| ut|”- A[(a(t)+s)|u|” +ﬂ8(t)|u[p + ya(t)]— (1-A)a(t)|u|p}
0 A

1
ZCOI [[lu']p- '%”Iuip]‘5|“]p-358(f)|u|p—l-—y8(t)] dr
Y 0

1
— - _ p—l
2(c,8 s)nuu’l"p JO {ﬁ ROITT ys(t)] dr.
From this we obtain that there exists M9>0 independent of A and x such that
Il =M.
The embedding of W'P©0,1) to C°[0,1] imply that there exists M >0

independent of 1 and u such that

full, =M, .
Directly integrating in (3.3.21), we obtain that there exists Mu>0 such that

[[u[[I =M .
Let

0={reCU0,1D| x|, =M, + 1},

G(t, w)=6 S)u + fi1,1) and R(t, wy=-a() [u|P 2u .

78




Then,
u-Jy' [Aé SGOu + A, - (1-A>a(z)|u1”‘2u] £0, for €90,
Using Lemma 3.3.1 and the properties of Leray-Schauder degree, we have
~1 . 1
dchs(I- JJ G, 0, 0)—-degLS(I ‘IJ R, 0, 0).
From Lemma 3.3.3, we know that

deg, (I - .r;.‘ R, 0, 0)=1,

then Problem (3.3.19) has a solution in O.
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CHAPTER FOUR

SOME EXISTENCE AND MULTIPLICITY RESULTS FOR A CLASS OF

QUASILINEAR ELLIPTIC EIGENVALUE PROBLEMS

INTRODUCTION

In this chapter, we consider the existence of positive solutions of the

following eigenvalue problems:

—div(]Du|P“2Du)=Af( u) in QcRY
, ®)

u=0 on dQ
for A>0, N=2 and p>1. The domain §2 is assumed to be open bounded, connected

and to have a smooth boundary 32 which is connected.

A positive solution of (P) will be a pair (4,8) in [R+xCl(-§) satisfying

(P) in a weak sense with u>0 in Q, That is, u is positive in £ and satisfies

IQ[IDuI*”"Du D |- Ajg[ftu) 3t

for every ¢§@+(Q), where ®+(Q) consists of all nonnegative functions in Cc:(s?).

The function fECl(R+) and we shall suppose that it satisfies either (F‘)
or (Fz):

(F) f is swiotly increasing on R, A0)=0 and lim fs)s¥1=0; there
exist @, cr2>0 such that ﬂs)5a1+a2|s|“, O<u<p-1,
(Fz) There is £>0, such that

FQ=f=0, £>0 in (0,8) and f<0 in (B,00) and lim FHIF =0,
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We shall obtain some existence and multiplicity results for Problem (P).
When p=2, such problems have been considered by many authors (see [16, 19-20,
64, 66, 70]), but when p#2, many of the ‘mice’ properties of 4 are lost and

the methods used for 4 are not applicable,

In section 4.1, we prove that a strong maximum principle is available for
A+¢ when 1<p=2, #>0, where A-=-div(|D'|p-2D-). In section 4.2, we show
that the positive solutions of (P) when [ satisfies (F 1) or (Fz) occur in
pairs, using the theory of degree of mappings of class (S)+. In section 4.3,
we give a necessary and sufficient condition for the cxistence of solutions of

(P) when 1<p=<2 and a necessary condition for p>2.

4.1 SOME PROPERTIES OF THE p-LAPLACIAN

In this section we obtain some results which will be useful in the coming

proofs. We say that u v uzeCl(ﬁ) satisfy
~div(| Du, [P*Du )+ 9u = (=)-div(| Du [P Dy +0u, in 0,
in the weak sense if for every ¢ € ®+({J),

[ K | Du, [P D Dp+ 0 #y= (s )fg( | D, |P"Du Do + 04 4),

+ . . . .
where @ (£)) consists of all nonnegative functions in C?(Q).

Lemma 4.1.1 (Weak comparison principle) Let 2 be a bounded domain in RN N=2)

with smooth boundary 88, and let 8=0. Let " uze Wl‘p (Q) sarisfy

j |Du1|P"QDu1-Dwdx+f Ju lv;dxsf |Du2|P”2u2-Dwdx+f ou v, *.1.1)
Q Q Q [9]
for all non-negative WGWI'P (). Then the inequality

81




u lSuZ on 48}
implies that

U, =u in Q. 4.1.2)

Proof. Let rz=Dul, tz'=l)w2 and y=max {ul-uz, 0}, Since u <u, on 382, v belongs

to W;’p (£2). Inserting this function y into (4.1.1), we have

f AnlP 2~ |’ |70 Ya-n")dx <0. 4.1.3)

{u1 >u2}

We Suppose that .,E!(,_@) == {x . !n(x)ls (>)I’I'(x)|}, then
"};‘|’I"I'lsiﬂ'+f(ﬂ"ﬂ')l51+|i1|+[q'| in o (&),

for all r&[0, 1/4] ([3/4, 11). Therefore, writing ai(r;)= |n|P ”zqi,

| An P 7%n- 1w 1P Y- yax
{ul>u2
IN aai
=f{ I e o ae
u>ujl o1
1 2

i

1/4 N a
f + J' L 5, " Heln-n" N -0 Y —n )dt dx
1 i 7177 )

{“1>uz} 0 314 1,
| ]+ P2 nenax it p<2,
ul>u2}
=7,
I In-n'|% dx if p=2,
{u1>u2}

where y0>0. From this and (4.1.3), we see that (4.1.2) is true.
Lemma 4.1.2 (Hopf type maximum principle) Let B be a ball contained in § and

assume that §>0, 1<p=<2 and ueC'®) satisfies

-div(|Du|P 7’ Du)+8u=0  in B (in the weak sense), (4.1.4)
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u>0in B, and u(xo)=0, Jor some onBB. 4.1.5)
Then
Du(.xo)q‘:O. 4.1.6)

The conclusion is still true for all p>1 when §=0,

Proof. For p=2, it is well-known that the result is true. Now we only
consider the case of 1<p<2. Without loss of generality, we may suppose that

B=Bl is the unit ball, centred at 0. For k>0 and a>0, we set

2
b(x)»—wk(e“"‘M - %,

Then, writing r=|x],

~(N-D

~div(| Db| P Db+ 0b=-r" TN b [P ) t0p

2 2
=Qak) P T N-24p)-2ap- 1)) FPTIT L ore™ " -,
As 1<p<2, we can choose k and « in such a way that

bsu, on a(Bl—Bm) 4.1.7
and
~div(| Db}’ "*Dby+ 9b =0 in B-B . (4.1.8)

The weak comparison principle (Lemma 4.1.1), (4.1.5), 4.1.7) and (4.1.8)

imply that
b=su in Bl—Buz. “4.1.9
From (4.1.7) and (4.1.9) we know that <% | = 92| <0. This implies that
an 3B an 3B
1 1

(4.1.6) is true. Following the same ideas as above, we can obtain the result

for all p>1, when d=0.

Lemma 4.1.3  (Strong Maximum Principle) Assume thar 1<p=2, §>0, 2 is

connected, Morcover, suppose that uECl(Q) satisfies (4.1.4) in Q, w is
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nonnegative and that it does not vanish identically., Then,
u>0, in Q.

The conclusion is still true for all p>1 when ¢=0,

Proof. Suppose there is a xoes’J such that u(x0)=0, then we¢ can find xleﬂ
such that there is a ball B contained in £, xleaB, u(xl)-—'—O, w(x)>0 in B and
Du(x 1):0' This contradicts the conclusion of Lemma 4.1.2.

Now, we prove the following proposition.

Proposition 4.1.4  Let f satisfy (Fz)’ 1<p=2. Suppose ueCl(ﬁ) is a solution of

the problem

~div(|Du|P Duwy=af(x) in QRN
, ®)

=0 on 3R

with k=0, maxuspf. Then max u<p.

Proof. By (Fz)’ we have that there exists M >0 such that fs)+Ms is monotone

increasing in § for s€[0, £]. Since
A+ AMG-w)=A{B)+MB)-(flw) + Mu)] =0, in Q. “4.1.10

This proposition follows from Lemma 4.1.3,

For ¢=0 and a given heCo (£2), we are going to look for a function u&":Cl(ﬁ)

satisfying

—div(lDu|p_2Du)+z9u=h a.e in 0
(4.1.11)

u=0 on a2

To prove that there is a solution, we first prove that there is uEWé’P (4))
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such that x satisfies (4.1.11) in a weak sense, then applying some of the
theorems in Chapter 1, we obtain that uECl(ﬁ).
We observe that searching for uEWé’p (Q) satisfying (4.1.11) is equivalent

to finding critical points of the functional

P, W:)’p(.Q)———aIR defined by

v 0)=p)| |DolP+@| - ho (4.1.12)

We find that ‘Ph is a continuous strictly convex functional such that
Z,(v) —c2, as IIUHIP—aoo. By Proposition 3.1 of [30], ¥, is differentiable. So,
it possesses a unique critical point wEWé’P () at which it reaches its global

minimum. It also follows from [30] that w satisfies:

j !D\v|p+0j w2=I hw. (4.1.1'3:)
Q Q Q
Therefore,

f |Dw|P < ||| (meas@)C |Dw]. 4.1.14)
0 0 =i

Here 1l/g+1/p=1, and Cl is the Sobolev embedding constant, So,

Ibell, pscgiihifép “DIP When 1<p<N, the embedding of w(‘}’P(g) i LNPIO-PY g

implies that we LN/ Pl g

Applying Theorem 1.3.16 of Chapter 1, we obtain
the estimate:

sup{|w|; er}sCa, (4.1.15)
here C3=C3(|]h|lo). If p=N, we get (4.1.15) from the Sobolev embedding theorem.
Using Theorem 1.3.15 of Chapter 1, we see that w belongs to c® () for some

O<a<l, and

wl =C, (4.1.16)
Ca 4

here C4 is determined by C3' By Theorem 1.3.17 of Chapter 1, we also know that

w belongs to Cl’a(?f) and
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IIWIICl,aﬁC,- 4.1.17)

Here 05 is determined by C4.
From the previous arguments we conclude that (4.1.11) has a unique

solution uéCl(ﬁ). Thus we can define a mapping Gp : ¢ - Cl(ﬁ) by Gp(h)““’-

Proposition 4.1.5 For p>1, the mapping Gp : CO(Q) — Cl(ﬁ) is compact.

Proof. Let Gp(h)=u. From the arguments above we see that there exists Cs>0

such that |lu]] | =C. The compact embedding of @ in '@ implies that
C

the mapping GP : C0 ) — Cl(S_D-) is compact.

4.2 EXISTENCE RESULTS

In this section we first give the following existence theorem.

Theorem 4.2.1 Let fECl(IR*) satisfy (Fx)’ p>1. Then there exists A>0 such that

for all 4>, (P) possesses at least 2 distinct positive solutions ul(ﬁ.),

uz().).
To prove this theorem, we first prove the following lemmas.

Lemma 4.2.2 Suppose f satisfies (Fi) or (Fz)’ p>1, Then for any Al>0, there
exists p=p(ll) such that for AG(O,AI], v=0 is the unique nonnegative solution

of (P) in Bp(O)cCé(ﬁ). Here Bp(O) is a ball with centre 0 and radius p.

Proof. Suppose not, then (P) possesses solutions (Am, um) with um:zO and um¥0,

. . 1, .
and ml_x)g M —0 in CO(Q), Am>0 and some AmE(O, Al]. From the equation (P) we
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have
P,y
fﬂ]puml dx=4 Iﬂﬂum)umdx. 4.2.1)
Then, using s1_1)151 ﬁs)/sp— 120 and Holder inequality, we get

JQ |Du_Pax=i € 6(m)J'ﬂ(um)P <A lc7(m)J9 |Du_{|Pds,

where C,,(nz)——) 0 as m—o0, Thus in both cases, we obtain a contradiction,

Remark a By the proof of Lemma 4.2,2, we see that if f satisfies (Fz)’ then
for any }ll>0, there exists p=p(ll)>0 small enough such that for A€(0, Al], u=0

is the unique nonnegative solution of Problem (P) in Bp(O)c Wé’p €.

Lemma 4.2.3 Let f satisfy (Fl)’ p>1 and A be large enough. Then problem (P)

possesses a positive solution (A, u) with uECl(ﬁ).

Proof. First modify the function f by setting fls)=-f(-s) for s<0. Now we want
to minimize

A, u)= llpJg]Du |P-AJ'QF(u), in WiP@), 4.2.2)

u
where F(u)=f fisHds.
0

For >0, by (F) we know that I(4,u) is bounded below in Wé’P(Q). Let u_

be a minimizing sequence of I(A,x) for a fixed A, then

- »
f(,t,|un|)—updfgmlun” *A.[QF(IunD

173
sllpr[Dunlp—AIQI ® s <IGu ).
0

Since I(A,') is sequentially weakly lower semicontinuous and convex in

Wé’p (), I(A,") possesses a nonnegative minimizer, which we denote by . It
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follows from the equation (P) and condition (Fl) that

.[Q IDuA lpSlfQﬂuA)uA S/Ialvl.g(ul)”i‘l‘klazjgul

w+Dip 1p
r p
SATIUQ‘DHII ] +AT2[JQ|DuA[ ] .

From this we get that l]uA" 1p is bounded. Then following the same steps as in
the proof of Proposition 4.1.5 we get uAEC‘(ﬁ).

To prove ui>0 in 2, by Lemma 4.1.3 we only prove ulﬁo. If u, =0, choose

A

oec‘(’:(g), C> 0 such that 05 0= Cin Q={x € @ : dist(r, 92) <8} and v=Cin O\ Q2.
Then,

IG,0-1,u)=Up[ | Do |pdx—lJQF(v)dx
Q

sl/pJ' lelpdwa[J. F(C)dx+f (F(u)—F(C))dx]
Q Q a;

C
= UPIQ | Du |demAJ.Q J. fi)ds+AMC meas(f2 5),
0

where M= sup fis). For meas(Q 5) small enough and A large enough, then
[0,C1

IA,0)-1(A,u ) <0,

This contradicts the fact that I(d,u A)=min I(A,u) for all uEW;’p “n.

From Lemma 4.2.3 we can ecasily obtain a subsolution y, to problem (P). In
fact, let g()=(U2)As), then g(s) satisfies the same hypotheses as f.

Following the ideas of Lemma 4.2.3 we get a positive solution Y3 to the

problem
-div(| Du|P*Duwy=(/2)f (w)  in Q
: (4.2.3)
u=0 on 302
Therefore, Y, satisfies:
—div(]Dyilp-szl)sAjOA) and |}y, I, is bounded by C(4). (4.2.4)
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Moreover, yA>0 in €. This follows from Lemma 4.1.3. For convenience, we denote
C(R) by C.

From Lemma 4.2.3 we also can obtain a supersolution to problem (P). Let
g()=fs+C), then g(0)>0. Writing g(s)=2g(0)~g(-s) when s<0, and following the
same steps as the proof of Lemma 4.2.3, we get a positive solution z 1 to the
problem

4.2.5)
u=0 on 4R

-div(| Du P Duy=Afu+C)  in Q }
in the weak sense, Setting WA=ZA+C’ w, is a supersolution of (P). It is clear
1= ;
that WAEC (2) and wl>yl, w).>zl in Q.
Now, we will show that 2>y, in §2, Since LIRS in £2 and f is strictly
increasing, then
. p-7 . -2
-div(| Dz, | Dzl)>-dw(|DyA|p Dy,). (4.2.6)
It follows from Lemma 4.1.1 that Y357 in Q. From this, we can prove the

following lemma.
Lemma 4.2.4 Let Y, and 2, be as above. Then Y, <2, in .

Proof. By the fact that Q satisfies the interior sphere condition, applying

Lemma 4.1.2 to Y, and zZy , we obtain, for n the normal direction,

gz dy

A
“3“";“ <0 and an

<0 on 82 4.2.7

Since TS and 5, are continuous, then we get from (4.2.7) that

62‘1 ayi .
—a—;‘ <-J and In <-d on G (4.2.8)

where J is a positive constant and G is an open one-side connected
neighbourhood of 42 in £. Suppose there exist a xOEQ such that za(xo)=y1(x 0)’

we show that there exists a x lEG such that z P2 vanishes.
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Choose & bounded subdomain Ql of 2 with smooth boundary 480 . which
satisfies
.QlcQ, agch and xOEQi.
Then we have a point xlefml where 2;-%; vanishes. Indeed, suppose zA—yA>0 on
aQ . By the continuity we have
zA—yAZ't>0 on BQI 4.2.9

for some 7>0, Since the function vy =yl+1 satisfies

. -2 .
»dw(]Dvﬂp Do)sAfly,) in @ (4.2.10)

in the weak sense, we have

~div(| Dz, |P7"Dz,) > -div(| Do, [P Do )

and ZAZUA on BQI. Then it follows from Lemma 4.1.1 that

in Ql (4.2.11)

::’120‘1 in Ql. 4.2.12)

Since xoe.Ql, we have zA(xo)zuk(x0)=yA(xo)+r. This contradicts zA(xO)-yA(xo)=0.

Thus we have a point xIEBQ lCG where 2z 1 vanishes.

We now use the maximum principle to obtain a contradiction. We¢ have
s p-2 S T p-2
0< dw(]DzA| Dz,) { dxv[]Dyll DyA]}

=-i§,3j[aij(x)(z);y A)xj]xi, in G, (4.2.13)

1
N ) _{.1P-2 .
where () J.O[ai(tDzA-f(l t)Dy).)]pjdr, ad  a()=|p[P %0, (=12...N),

for p=(p1, u.,pN)EtRN. Put L-=} [a
iLg

i

3 .
j(x)—a—j ]xi. From (4.2.8) we see that L is

a uniformly elliptic operator on G. Consequently, we have

“L(z;-y)>0  in G } 210
(4.2.

ZA—yAaO on 4G
and xIEG, zx(xl)—yl(x1)=0. Then, by using Hopf’s strong maximum principle for

uniformly elliptic operator (see Theorem 1.3.12 of Chapter 1), we get
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2, =¥, in G.

This contradicts (4.2.14).

Proof of Theorem 4.2.1.
We note from the proof of Lemma 4.2.2 that if uAECl(ﬁ) is a solution of

problem (P), there exists g(4) >0 such that |]uA||l<q().).

Let 01={ q&ECé(?)_): Y, <¢<zft’ in Q, |]¢;||l<q(,1)} where 2 and z, were defined

by (4.2.3) and (4.2.5). Let TAu=Gp(JU‘)(u) (here &=:0), by Proposition 4.1.5
T, is a completely continuous mapping from '@ to C'(@). The result of Lemma

4.2.4 and zA<w shows that if ¢€ 0

A A’

Y < T S T, < TG <z, in O (4.2.15)

Let &(A,u)=u- TA(H)’ By (4.2.15), OﬁEcb(l,aOA). Hence the Leray-Schauder

degree of &(4,:) relative to the set O

1 and the point O is defined and will be

denoted by dLS(¢(2,~), 0).’ 0). Since T). :Ol~—>0)., then dLS(dJ(A,-), Ol’ 0)=1.

To verify this, let a€0 S:("’ u)=tTA(u)+(1—-t)a, and SPt(l,u)=u-—St(l, u) for

AJ
t[0,11. Then St :51—501, 0, OQ‘I’t(A, BOA) for t€[0,1] and therefore by the
homotopy invariance of degree,

dLs(?’r(A,'), O/I’ O)Econstant'—"cul, t€[0,1].

Since ¥ 0(/1, K)=u-a, the definition of degree implies w = 1.
Let By(w)={ PeC'(@): le-wll <p } B, =B,(0) and Q+=={ eeC' (D), p>0in 9}.

By Lemma 4.2.2, if y=p(4) is sufficiently small, #=0 is the unique solution of
(P) in ﬁ)’(ll) and y can be chosen independently of 4 for A in a bounded

interval. Fix 4> 4, choose such a y for {0,A] and let

o={0, 9ERXQ" + 1EWAL, <ol <a).
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Since ¢(A) is continuous, ®A) is 8 bounded open set in [O,A]XCI(Q) with no
zeros of @ on AEA) (relative to [O,A]xCl(ﬁ)). By the homotopy invariance of
degree,
dLs(dj(”’.)’ Qp(l)a 0)‘00n8t.=(02, neio,al,
where 9ﬂ(l)={¢ECl(Q): (u, @)E A)}. Since $(0,') has no zeros in 590(/1), a)2=0.
By the additivity of degree,
dLs(ds(‘ls '), QA(A)’ 0)=d[.s(®(1")’ OA’ 0)
+dLS(¢(A,.)’ QA(A) - 019 0)

=1+d, (¢W4,"), €,(2)- 0,,0).

Hence, dLs(tﬁ(A,-), 591().)~ 1 0)=-1 and therefore, there exists a solution of

(P) belonging to QA(J.)—?)'ACQ'F. This completes the proof,
We now give a result assuming f satisfies (Fz)'

Theorem 4.2.5 Let feC’(R+) satisfy (Fz)' 1<ps2. Then there exists A>0 such

that for all A>2, (P) possesses at least 2 distinct positive solutions.
To prove this theorem, we give the following lemmas.

Lemma 4.2.6 Let f satisfy (Fz)' 1<p=<2. Then problem (P) possesses a positive

solution (&, u) with u€C(@) and max ue (0, B).

Proof. First modify the function f by setting flis)=-f{-5) for s<0 and f(s)=0
for s> f. It follows from Lemma 4.2,3 that there exist a solution uaeCl(ﬁ) such
that #>0. Suppose that max > f, By the continuity we have that there exist a

connected domain 02 lcﬂ such that > £ in Qland u=f on Q2 X Hence, u satisfies




~div(| D= [P *Du-p)) =0 in @ }
, (4.2.16)

u-=0 on 8Ql
Thus, u=g in Ql. This is a contradiction. By Proposition 4.1.4 this proves the

lemma.

Proof of Theorem 4.2.5.
Using the same arguments as after Lemma 4.2.3, we obtain a positive

subsolution 2 of (P) which satisfies

-div(]DyA|P“2Dyl>=(1/2)_f(y ;) in 9 (in the weak sonse)
(4.2.17)
y,=0 on 0@

Therefore, Y4 satisfies

R -2

-d1v([DyA|p Dyl)slftyl)and 1|y’1||0<ﬂ.

So, Y, also satisfies:

—div(]DyA|P"2Dy1)+AMyls).(f(yA)+Myl) in Q, (4.2.18)

where M>0 is a constant such that g(s)=f(s)+Ms is strictly increasing for §>0.

Let zAECl(_ﬁ) be the positive solution of

—div(|DuIp—zDu)+/’lMu=Ag(,B) in 2 (in the weak sense)
4.2.19)

=0 on 3Q

We will show that ﬁ>zl in 2 and z}.>yl in Q. In fact za<ﬁ is a consequence of
Lemma 4.2.6.

Now, we prove that >y, in . The idea of proof is the same¢ as that of
Lemma 4.2.4. Since ¥, < £ in 2 and g is monotone increasing in s> 0, there exists
a>0 such that g(ﬂ)ag(y).)-%a in Q. So, it follows from Lemma 4.1.1, that zlayl
in Q. To prove 2>y, in £, it suffices to prove that if there exists a xoeﬂ
such that zl(xo)=y)‘(xo), then there exists xleG such that -y, vanishes, Here

G is as in the proof of Theorem 4.2,1.
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Choose a bounded subdomain QICQ as in the proof of Lemma 4.2.4. Then we
have a point xleaal where 2;-%; vanishes. Suppose zA~yA>0 on 691. By the
continuity we have

zl-ylzr on anl, (4.2.20)

where 0< 7<a/M, Since the function v 1= + 7 satisfies

—div(leA]p—zDuA)+AMUAs/l(g(yl)kar)sAg(ﬁ) in @ (4.2.21)
in the weak sense, we have
~div(| Dz, [P7*Dz,)+ Mz, = ~div(| Dv, |P"*Do,)+AMb, in 0 (4.2.22)
A A A A Fl A i &

and 2.1'2”}. on af)l. Then it follows from Lemma 4.1.1 that
zlaul in Ql'
This contradicts z).(x 0)_y}.(x0)20' The remainder of the proof is same as the

proof of Lemma 4.2.4,

For p>2, we have the following theorem:

Theorem 4.2.7 Suppose p>2, [ satisfies (Fl) and f*(x)<0, for x€(0,8). Then

there exists A>0 such that for all A>2A, (P) possesses at least 2 distinct

positive solutions,

To prove this theorem, we let

f&) Os=ss=p ,
f1(5)=

0 othe rwise,

and consider the problem

div(| Du |P‘2Du>+1fl(u) =0, on
(4.2.23)

u==0, on 302

By the maximum principle, we know that if uECé(Q) is a nontrival solution of
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(4.2.23), then Osu=p. So, from Lemma 4.1.3 we know that u is a positive

solution of (P). For convenience, we still write f rather than fl.
— l,P * "l,q s
Let W--W0 D, W =W &, Up+1l/g=1, Now we give some lemmas.

*
Lemma 4.2.8 For each t&(0, 1), the mapping AQ)=A-tAf : Wo>W s of pype

(S)+. Here (S)+ is as in Definition 1.2.6 of Chaprer 1.

Proof. Let {uu}cW be a sequence such that u_ converges weakly to a point nEW
and lim sup <Aun~t2f(un), u -u > =<0. Then from the Sobolev compact embedding
theorem, we¢ have that u  converges strongly to u in jig (£2). Therefore,

lim <f(un), u-u > =0.

Thus we find

N i du u -u)
lim sup <Au , u -u> =lim sup J; < |Dun|p = =
1

B > =<0, (4.2.24)

On the other hand, we have that there exists C>0 such that

1|Du |P7*|Du || =C, for all n=1,
n n!llg

We also have that (|t!p—2t—|slp—2s)(t-s)>0 for 5, tER and sst, since the

mapping s—|s|”% is strictly increasing. Then for each xr€Q with
[Dun(x)l # |Du(x)|, we have

du
ax,
1

N
|De (0 |P7%(| Du ()] 2->l: = @) y2 | Die |P7%(|Du_[*-|Du_| | D)
1

ou
dx,
1

N
> ]Du(x)lp—z(ll)uni fDu|-|Du|2)2}: < |Du[p”2 , —g} (unwu)> . (4.2.25)
1 i

Since u_ converges weakly to u in W, we have

2 ou

N
limy < |Du|P” B —g—x(un—u)> =0,
i i i
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Then combining (4.2.24) and (4.2.25) with the equality above, we find that
|Dun| converges to |Du| a. e. on €. Suppose that u does not converge to u
strongly in W. Then we may assume by extracting a subsequence that there
exists £>0 such that

lim | |Du-Du|Pdx=e.

By using Fatou’s lemma, we¢ can see that for each m>0,

lim | Du —Du[pdr
. {x: |Dun(x)| =m} "

. P tP
= tim P 2(e, | Dy ()] <) | Du_-Du|Pax=o0,

Here X, denotes the characteristic function of the set A. Then we have

lxmsuij Dunlpz Bx( u ) 6 (u —uw)dx

{x: | Du (x)| <m}

<lim sup { JQ [I Du_ |P“2IDun[]Q}1/q {I ]Dun—Du Ipdx}lIP

{x: |Du_(x)| =m}

1p
<lim sup C{I | D —Du|P} -0, (4.2.26)
{x: IDun(x)| <m} "

Noting that meas {xEQ: ]Dun(x)l >m} — 0 as m —o, uniformly in n, we find that

J |Du|Pdx —0 as m->co, uniformly in n. Therefore, we obtain
{x: IDun(x)I >m}

that there exists m 0::-0 such that for each mamo,

lim inf | \Du_|Pax=er2 (4.2.27)
{x: |Dun(x)| >m}

and
-2 liq
lim Sup{J-(|Dun|p ]Dunl)qu} {f

Here we obtain from (4.2.26), (4.2.27) and the above equality that

p
[Du]p(ix} <é&/d.
{x: IDun(x)| >m}
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x 23 2
O=limsup ), < [Dun|p— ax b Ty W
1 i i
NI p-1 9 3
=lim sup J, |Du |©7° = u = (u~u)dx
' {x: |Du_|>my " dx;’n dx"n

P29 u - 9 wdrx -~ g/4

N
=hmsuPZI IDuul Bxi n 'ﬁi n

17 {x |Dun| >m}

aj' \Du_|Pdx - ela=en2,
{x: [Du_| >m} .

This is 8 contradiction, and the proof is completed,

Lemma 4.2.9 For any A>0, there exists M1=M1(A)>0 which is independent of

tE[0, 1] such that if u€W is a weak solution of the problem

div(| Du )P *Dwy +1afu) =0 in 0
u=0 on ’

then, "u"ip <M.

FProof. From the equation we have
IRLCE Atf fwu dx < M, j u dx < AM, [meas(@)]"9ju) 2P
2 2 p
Q2 Q Q
1/p
5AM3““"LP .

From this we obtain the result,

Lemma 4.2.10 For any r>M(A),
deg (A-2f, B (O), O)=deg (4-2f, B (0), O),

where p is as in Remark a (p 87) and is independent of t&[0, 1].

Proof. For any A>0, we consider the mapping A()=A-tAf, t€[0,1]. It follows
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from Remark ¢ that w=0 is the unique solution of A() in Bp(O) (p only

depending on A). Therefore, using Lemma 4.2.9, we obtain
dch{AMUD BP(O), 0)=degs(‘{) Bp(o)) 0):
degS(A~U. B (0), 0)=degs(A, B (0), 0).

By the fact that Aus=0 for any uEBr(O)\Bp(O), we obtain

deg (4, B (0), 0)=deg (4, Bp(O), 0.

From this we get the result,
We recall the following result from Chapter 1 (Theorem 1.2.8).

*
Lemma 4.2.11 Let Dg : W—W be the gradient of a functional g such that Dg

is of class (S)+ and Dg maps bounded sets of W to bounded sets of W*. Suppose
that, for some b, the set V=g_l(—oo,b) is bounded. Moreover, suppose the
Sfollowing condition holds:
There exist numbers a<b and r>0 and an element u, of W such that
g_l(—oo,a)CBr(uo)CV

and Dg (x)#0 for all ng_‘[a,b]. Then, degs(Dg, Vv, 0)=1.

Proof of Theorem 4.2.7

Let
1(x)
s@=1p[ |DulPax-2[ [ fprdsds. (4.2.28)
Q Q%0
First, we prove that
inf{g(u): ueW}<0. 4.2.29)

Let ¢ be the cigenfunction corresponding to the first eigenvalue g 1>0 of

div([Dulpszu)-ﬂu[u[p‘2u=0 in
u=0 on Q2
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with |]¢[!P=l. From [65], we know that quC‘(ﬁ) and ¢ >0 in Q. Let y=max {f{n)}
0,51

and ﬁlE(O,ﬂ) be the unique maximum point of f. Then f(s)z(ylﬂl)s for sE(O,,B‘)

as f"(x)<0 on (0, £). Let £>0 be so small that 8¢Sﬂl for x&Q. Then,
8¢ 2 2
g(e¢)=(1/p)epul-zf j f)dsde < (1pyPu - (126 D Af ¢Xix<0,  (4.2.30)
@o Q2

for A>1>0. Here we use the fact that p>2.

Since g(u) - as ||u||p~w>oo, we find that there exists u €W (1 #0) such that
g(uo)ninf {g(uw): ueW}. It is obvious that U is a solution of ()., I g
attains its minimum at a point by o Y is also a solution of (P) and therefore

the assertion of Theorem 4.2.7 holds. Now suppose that R is the unique

minimum point of g. Then, using the inequality
< Au-Af(u), u > zC|lul|‘; , for all LEW,

with i]u[]paro, r0>0 and C>0, we can choose a, 5<0, a<b, such that

V={u€W : gu)<b} is bounded and
8—1(~0°,0)C§r(u0)CV for some r>0,

If the set gnl[a,b} contains a point w with Dgu)=0, then u» is a nontrivial
solution of (P) different from LR

On the other hand, if

Dg(i)#0 for all u€g '[a,b],

then by Lemma 4.2.11, we have degS(A—Af, V,0)=1,

Here we choose positive numbers r=M(1) and s=<p such that

ﬁs(O)ﬁV=E, Vc'ﬁr(O),

where M(A) and p are as in Lemma 4.2.10. Then we have from Lemma 4.2.10 and

Lemma 4.2.11 that

deg (4-2f, B (0)\ (ﬁS(O) uwvy)
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=dog (4-Af, B (0),0) - deg (4-Af, B (0),0) - deg (4-A£,V,0)

=-1%0.
Thus we obtain that there exists ueBr(O)\(ﬁs(O)UV) such that Au-Afu)=0.
This completes the proof,
The proof as above shows that there exist two nontrivial solutions in W.
Using the same ideas as after 4.1.14, we know that the solutions belong to

CI(Q). The Maximum principle implies the solutions are positive,

E-S

.3 A NECESSARY AND SUFFICIENT CONDITION

In this section we give a necessary and sufficient condition for the

existence of a solution of the problem (P) for A > (p-1)/p large enough.

Theorem 4.3.1 Let 1<p<2, fEC'R) satisfy

(F3> f is bounded on R; there are two numbers ﬂl and ’82 such that
0<g <8,
ﬂﬁl)=f(ﬂ2)=0, f>0in (ﬂl, ,82) and f<Q in (ﬂz‘ o),
Then for A>(p-1)/p sufficiently large, problem (P) possesses a solution (A, u)

with uEC(l)(ﬁ), max uE(f v 132) if and only if

J(s)mJﬁzf(t)dr>O for every s€[0, B). (4.3.1)
g

To prove this theorem we first prove the following lemma, a

generalization of Serrin’s Sweeping Principle.

Lemma 4.3.2 Let {vtécl(ﬁ), 1€[0,11} be a family of functions satisfying ut>0

on 8Q for all t&[0, 11, and for some ¢ >0,
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—div(]Dut|P“’Dot)onf(ut)+c) in Q, for all 1[0, 1.
Let uECé(ﬁ) be a solution of (P) with f satisfying (FS), If
N - utECO(ﬁ) is continuous with respect to the || o norm,
@) usv in Q, and
) u= vt, for all r€l0, 1].

Then for all t€[0, 1], u<u, in Q,

Proof. Set E={t€[0,1] : uso, in Q}. By (2) E is not empty and moreover E is

closed, For t€E, v, satisfies
~div(| Do, 17 Do ) +AMo = Ag(0)+Ac > Aglu)=-div(| Du 1P~ Duy + AMu

in £, where g(s)=f(s)+Ms is a strictly increasing function. Since u<ut on g1,
it follows that there exists a one-side neighbourhood G of 8% such that Gcfl

and u<ur in G. Let QICQ be a subdomain of Q with BQch. We show that u<ut in

Ql. In fact, u<ur on 691, so, there exists v, 0<7<c/M such that u+r<ut on 6.01.

Let w=u+7. Then, w satisfies
~div(| Dw |72 Dw) + 1w =280+ Mz 5 Ag(0 )+ Ac s -div(| Dv [P7*Do) +AMo,

in 9. By Lemma 4.1.1, we obtain wsv, in Q. This shows u<v, in Q. The
continuity of u and v, in © and the continuity of t—)ut imply that E is also
open. So, E=[0,1], This proves the lemma.
Proof of Theorem 4.3.1
NECESSITY: Write J(s)= Jﬂ Yande, and define
5
* . * 2
J r=min{J(s) : sE[O,ﬁl]}, J =Jﬂ Jlndt, s*E[O,ﬂl].
s‘

Suppose condition (4.3.1) is not satisfied, that is, J <0. Let (A,4) be a
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solution of (P) satisfying > (p-1)/p large enough, ue(l';(ﬁ) and max ue(f 1,,82),
we will obtain a contradiction,

First, if J =0, modify f to f* in C' such that f>/¢>0 in (max u, B) and
JS=r* elsewhere. Still u is a solution of (P), but now J <0. Hence, we assume
without loss of generality that I <0.

Consider the initial value problem

Qo' P 20"y * =2(f(v)+ k):=Ah(v) for 1>0
, 4.3.2)

0©@)=F , v'(0) =—(~ TP
Here k satisfies 0<k<(*J')(A—(p-1)/p)/(/iﬁz). Since f<0 for s>,82, we have that
there is ,6’3> ,82 such that h(ﬁs)=0, h(s)<0 for s> ﬁ3 and ,83— ﬁz is small enough
when % is small cnough. Let w=|v’ [p_?'v’, then ©v'=¢(w) and ¢eC’(lR\{0}).
MNow,Problem (4.3.2) is equivalent to "
{ @S, 5, 4.3.3)
v =¢(w),
So, Problem (4.3.3) has & unique solution in c' for w0, Therefore, for
a solution of (4.3.2), there are two possibilities:
() v’s0 for all 1>0.
(i) there exists to such that v'(to)=0 and v’'(#)+#0 for 0<t<t0.

For case (i), one has

(1—1/p)]u'(:)|1’ =AJ'82 h(s)ds—(1-1ip)T (4.3.4)
v(®)

for all >0, For case (ii), one has (4.3.4) for 0<t<to. Next, we only give
some properties of v in case (i). Using the same idea, we know that v has

similar properties in case (¥).
Property (1) e)(to)< ﬁl.

Suppose not, v(to)kﬁl. Then v(t)?-_':,?l in (O,to). From (4.3.4) we know
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lo'@®] > -5 for 1€0,1 ). (4.3.5)

This is impossible.
Property (2) v>s* in (0, to).

Suppose not, there exists a (*&(0, to) such that o(@*)=s+ and since
(4.3.4) holds, we obtsin
a-1p) o' |P = (- (p- 1)ip)J"+Akcﬂ2—s*) <0. (4.3.6)
This is impossible.
So, either u(t)lsoe(s*,ﬂl) as t—>¢0, or, v has a first positive minimum

to' In the first case define

ul(tl), for t=< ¢ e
V)= 00, fort =1<0, 4.3.7)

v(t), fort=0,
* * (P plp~1
where v,(0=F,+p,(), p,()=1@-1) (4kp)] {(—J )- [).kt+(~] @ "’P] )}

and 1 =-aki(-THYE VP, 0, ¢ )=B,+[(p-DIAPIT). A direct  calculation

shows that ul>ﬁ2 for t15t<0. The structures of ol(t) and u(?) guarantee that
/() is continvous at 1 and 0, which implies €C'®R). Furthermore, o()
satisfies

~(| 0" |1P720") 2 A(RD)+&) for all 1ER and some k€ (O, (-7 )R- - Dip)AB,D,

since flv)<0 for re(tl,{)) and f0)+k<0 for r=<1 | when % is small enough. In the

second case, let
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r ul(tl) fort = £
vl(:) for 1€ ( ! 0),
(1) for 1€ [0, to),
o= lim ""ov(t) for t=1¢
u(2t0-r) for t€ ( ro, 2tO],
uz(t) for 1€ (2:0, 12),
~02(t2) for 1= tz'

—f 4 —p v p @i
Here v, and ¢, are as above, uzw—ﬂzwpz(x), t 2to-i (U/ARY-T ) and

. o (p-1ip pi@-t . .
pl(t):(p—l)/();kp (-7 )- [(—J ) +2;{kto-kkt] . A direct calculation

shows that t)z(lf)aﬁ2 for :e(ZtO, t2]‘ Furthermore, uz(t) satisfies
~(Joz P o = aRu)+K) in @t , )
2 2 2 o

Therefore, vEC'R), (IE’IPZE')’aA(/{E)-i-k) for all reR and some possibly

different k, as above.

Set y(t, x)=3(xl—t), where x=(x, %, "+, %) Then, {y(r,x)ecl(ﬁ), tcR}

is a family of supersolutions of

-div(| Du|P Dy =Afw)+4k  in 0
(4.3.8)

u=0 on 30

and for all t large emough ¥(7,")> 52 in Q. From Lemma 4.3.2 and the structure

of u(f), we obtain
u(x)<y(t,x) in Q for all 1. “4.3.9
Hence,
u(x) <inf{y@t,x) : t€R}=inf 5<ﬁl. (4.3.10)

This is a contradiction,
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SUFFICIENCY: Note that f is bounded on R. As above we want to minimize

I(u,).)=1/pJ. |Du|p—AI Fw), in Wé’p(ﬂ),
Q Q

u
where F(u) =J Jis)ds.
0

For A>0, I(u,A) is bounded below, Since I(+,4) is sequentially weakly
lower semicontinuous and convex in W(I)’P ($), I(-,A) possesses a minimizer,

which we denote by u,. As in Lemma 4.2.3, we can prove that u AEC;(E).

2
Suppose max i A> ﬁz’ then there is a subdomain QlcQ such that ul>ﬂ ; in 91

and ui=ﬁ'2 on 891. So,

, p-2 = i
"di"(lD(“[ﬁg)' D@u,-p N=af(u,)<0 in O, } @311

u,~B,=0 on 382

From (4.3.11) we obtain ulaﬁz in 91. This contradicts max >/32. Therefore,

A

max u sﬁz. Note that Proposition 4.1.4 is still true for Hys then, max u1<,82.

A

Now we prove that max u 2 >f x
Set

a=min{fﬁ2f{t)dt; O<ss= ﬂl} ’

5

ﬂ=max{Jﬁ2f(t)dt; OSSSﬁz}.
5

Suppose that for A large enough, "ulﬁoosﬁx’ then we will obtain a

contradiction.

We choose & > 0 such that 2;Q6| < Q] a, with Qd as in Lemma 4.2.3 and |£2|
denoting the Lebesgue-measure of €. This is possible since a>0 and
s [95]=0.

Next we choose wEC?(Q), satisfying Oswsﬁ2 in 95 and w=ﬁ2 in Q\Qé;

I00,2)-IGu )
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= (up)fg( |Dw|P- | Du, |Pyax - Afg(}«‘(w)-p'(u D
=(1/p) f | Dw |Pax - A “ F(B ydx + j (Foo-FB ) - | F(ul)dx]
Q Q a, Q

=(p| g|1)w|1’dx + 24|09, - Afg(F(ﬂz)-F(u D)dx

=(1/p)J. |Dw]pdx+21[96|ﬂ—lj Jﬁzf(s)ds
02 9] “y

sap)| |pw[Pax + 2|, 8- 9] @<o,
Q

for A large enough, since 2|Q§| B-12] a<0.
Then I(w,.l)<1(u‘l,/l), contradicting the fact that “y is a minimizer. This

completes the proof of the sufficiency.

Remark b From the proof above, we know that (4.3.1) is a necessary condition
for the existence of a solution uy with max u)‘e(ﬁl,ﬁz) for all p>1 and 4

large enough.
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CHAPTER FIVE

EXISTENCE AND UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR

A CLASS OF DEGENERATE QUASILINEAR ELLIPTIC EQUATIONS

INTRODUCTION

In this chapter we discuss the following problem

div(|Du|P D)+ Afu) =0 x€R
, (5.0.1)

u=0 x€3Q

where flu) >0 foru>0,4>0, p>1and Q=BR={xEIRN; x| <R}.

Problem (5.0.1) has been treated by many authors when p=2, see, for
example, [1, 14, 47-48]., One of the major stumbling blocks in the case that
p+2 is the fact that certain “nice” features inherent to semilinear problems
seem to be lost or at least difficult to verify. For example, when p%2, we do
not know whether Serrin’s sweeping principle is true or not in a general
domain £, but it plays an important role in the proof of the existence of

solutions of problem (5.0.1) when p=2.

When p>1, problem (5.0.1) has been studied in chapter 4. Under the

hypotheses:

(F) f is strictly increasing on RY, £0)=0 and lim fs)s’ '=0; there
s —0

exist @, a2>0 such that j(s)sal-kazsa, 0<o<p-1, we showed that, when A is

large enough, there exist at least two positive solutions for (5.0.1) on an
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arbitrary bounded domain Qc[RN, N=2.

In this chapter, we are interested in the case that f satisfies

(F;) fECl(O,oo)ﬂCy([O,oo)) is non-decreasing on lRf O<y=1, 0)=0;

slj)%ﬂs)/ﬁ=1, 0<g<p-1; sl_glsxf(s)/xp"l——-oo and (fis) / &) =0, for s>0.

We shall study the existence and uniqueness of solutions of (5.0.1) when f
satisfies (F;). By constructing some appropriate super- and sub-solutions and
applying a generalized Serrin’s sweeping principle, we show that for A large
enough, the positive radial solution of (5.0.1) exists and is unique.
Meanwhile, we prove that when f satisfies (FI), nonradial positive solutions
of (5.0.1) do not exist. That is, all the positive solutions of (5.0.1) are
radial solutions. For p=2, this is a well-known result (see {[28]), but when
p>2 and f satisfies some other conditions, there do exist nonradial positive
solutions to problem (5.0.1) (see [41]). We still do not know whether the
above results are true or not for genmeral @, In this case, it seems difficult

to give the generalized Serrin’s sweeping principle.

By a solution u of (5.0.1) we mean ueC(l)(Q) which satisfies
f |Du|p_2Du Dy = AI faow
(9] Q

for any ve C?(Q).

We say that ¥ is a subsolution (supersolution) of problem (5.0.1) if

1€ C(Q), 1@ =<0 (=0) and satisfies

J' [ |Dx|P Dy Dy - Aﬂu)w] <0 (20),
Q

for every WED+(Q), where D+(Q) consists of all nonnegative functions in C‘:(.Q).
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In section 5.1, we give existence and uniqueness results for some special
equations. We also give a generalized Serrin’s sweeping principle to problem
(5.0.1) in the radislly symmetric case. In section 5.2, we constiuct some
super— and sub-solutions to problem (5.0.1). Using degree theory, we show that
positive radial solutions of problem (5.0.1) with f satisfying (F;) exist. In
section 5.3, we establish the asymptotic behaviour of the solutions of problem
(5.0.1) when 4 is large enough, In section 5.4, we prove that the solution is
unique. In section 5.5, we show that all the positive solutions of problem

(5.0.1) are radial solutions when A4 is large enough,

5.1 GENERALIZED SERRIN’S SWEEPING PRINCIPLE

In this section, we obtain some basic results which will be useful in the

coming proofs.

Lemma 5.1.1 For p>1, the problem

—div(]Du|p—2Dv)=1 for x€B_
G.1.1)

v=0 for xESBR

has a unigue solution uo(r)ec‘([o,R]),

0 (=( ";T yie-h _(i’;_l)_ ®P/®-D_ PIP-1y

where r=|x|.

Proof. The uniqueness of the solution of (5.1.1) has been proved in [65]. We

can easily check that v o(r) is a solution of (5.1.1).
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Lemma 5.1.2 Let p>1 and p(x)=p()&€C°(0,R), p=0, p(r}=0. Then the problem

~div(|Du|P*Duy=p(x)  for x€B, } |
(5.1.2)

u=0 Jor xEé‘BR

has a unique solution uECl([O,R]),

ds, (5.1.3)

R Up-1)
u(r) =J. [sl“N JJIN“‘ p(ndt ]
r 0

which is such that there exist constants I>k>0 with
k(R-7) <u(r) <IR-r). (5.1.49
For §>0, define the function p 5 by
1 for R-=r<R
P J(F')ﬁ .
0 for 0<r<R-§¢

Then the solution u a(r) of (5.1.2) with p(ry=p J(s'-) satisfies

ua(r)SCP 51/@—1)(R—r), for 0<r<R, (5.1.5)

where Cp is a positive constant dependent of p and R.

Proof. The uniqueness of solutions of (5.1.2) can be obtained from [65]. But
u(r) is a radial solution of (5.1.2), so, wu(r) is the unique solution of
(5.1.2).

Now we prove that u(r) in (5.1.3) satisfies (5.1.4), (5.1.5).

Since p()=0 and p=0, by (5.1.3), uECé({O,R]), %=0, w20, Using Lemmas
4.1.2 and 4.1.3, we have that u(r)>0 for 0=<r<R and %(R)«). Since aBR is

compact, there exists ' >0 and I’ =k’ >0 such that

e o kico
ar

for any r&[R-4', R]. By writing
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u(r)=-(R-r) Jl 94 rR-P)de
0 gt

for any r&[R-J6',Rl and choosing I=k>0 appropriately for r&[0,R-&’), we can

obtain (5.1.4). It is clear that k and / depend on u and p.

-1
] ds,

R
1-N N-1{
From u (r)= [s rt £ (DHdt
d I ; 0 ]

for 0<r=<R-4, we¢ obtain

iy 1p-n
] ds

R
i-N N-1
u ()= [s t dt
s ‘[R—J IR-a

R
<( mfl{m )1/@~1>I SMPDRN_p_ 5N O-D ¢
R-§

<RVP 0P D5 GgNE DD _p),

For R~-d<r=<R, we can obtain the same estimate.

Lemma 5.1.3 (Generalized Serrin’s sweeping principle) Suppose fECl(O,oo), f>0
for s>0 and f is a nondecreasing function. Let {q‘:r : O<t=1} be a family of

positive radial subsclutions of (5.0.1), ¢T salisfies
. -2
(@) dw([quT}p D¢ ) + 4f¢ )20  for x€B,,
) q‘)t:O Jor xeaBR.

d¢
(¢) -é—r—"— <0 for 1€[0,1] and 0<r=R,

@ for v€[0,1], ¢r is not a solution of the problem

div(|Du\pﬁzDu)+lﬂu)mO for xeB_
) (5.1.6)

u=0 for xE&BR
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() r%érecl([O,R]) is continuous with respect to the |- o-norm.
Suppose that uECl([O,R]) is a positive radial solution of (5.1.6) with
qubl on [O,R]. .17

Then u>¢ c’(r) Jor r&[0,R).

Proof. Set E={r€[0,1] : uz¢_in —ER}' By (5.1.7), E is not empty. Moreover, E

is closed by (e). For t€E, ¢r satisfies

div(|Dg_|"°De )+t )=0 in B;
u satisfies

div(| Du|P*Duy+af)=0 in B_.

Since u is a positive radial sclution, ¥ satisfies

N—-

e [P+ =0, 5.1.9)

and u’(0)=0. Integrating (5.1.8) from O to r, we obtain
' (ry<0, for re(O,R]. (5.1.9)
Therefore,

~div(| Du [P Duy- {-div(| Dé_ |P_2D¢T} = (M)Al ) =0. (5.1.10)

Here we use the fact that f is non-decreasing.

In view of (5.1.9), (¢) and the continuity of the derivatives a7 and
Eil' we get
" Ot 0 ey o T (5.1.11)
ar <7 ar <H ’ -

where x4 is a positive constant and G is an open one-side connected
neighbourhood of BBR in BR (since 6BR is connected, we can choose G to be

connected). Furthermore we have from (5.1.11)

du 3¢

T
t—a-;" +(1—I)—é—;— =-4 on G, (5.1.12)

for all numbers ¢ (0=<¢=<1). Thus we obtain from (5.1.10) and the mean value
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theorem
0=-div(| Du|P *Du)- {- div(| Dé_ |P‘ZD¢ }=- 2 [a"(x) T (u—¢>r)] in G.
i,

i
Where a"(x)—J ——-—[tDu+(l ~0D$ Jdt and d@=1q|" g (=1, 2, N) for
J

Q“_"(q1> q

pttts GOERT, Put L= z a [a"(x)-—- -], from (5.1.12) we see that
J

i,j

L is a uniformly elliptic operator on G. Cousequently, we have

-—L(u—q‘»,‘)aﬂ in G, (58.1.13)
uaq&T in G and uﬂqbt=0 on GBR. (5.1.14)
Now we prove that
u>¢r in BR.

Suppose there exists zZ 1(—:BR such that u(zl)=¢r(zl). Then we will show that
there exists z&€G such that u(z)=¢2_(z). Suppose u>¢1_ in G, then there exists a
ball BR" 8BR,CG such that zleBR' and uz¢r+ﬂ on HBR,, here £>0.
Let w=¢>r+,8, then
-div(| Du|P"*Du)- {~div(| Dw | P Dw} = A (fu)-R D=0 in B,
k(9B ,)=w(IB_,).

The weak comparison principle (see Lemma 4.1.1 of Chapter 4) implies that u=w

in BR,, that is, uqut-i_ﬂ in BR" This contradicts u(z 1)=<;$_‘_(z.l).

Let z€G be such that u(z)=¢ (Z) By (5.1.14), u-¢ . attains its minimum
in G. It follows from (5.1.13) and the maximum principle of uniformly eliptic
operator that umdﬁ_[ in G. Since u'(r)<0, qS"r(r)<O, we can repeat the above steps
and obtain u%:ﬁr in {0,R]. This contradicts the assumption (d).

By Hopf’s boundary point lemma for uniformly elliptic operators, we also
obtain

%(w-qﬁr)<0 on 8BR. (5.1.15)
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As in Lemma 5.1.2, there exists >0 such that u - quzS(R—r), for r&[0,R]. This

and (e) imply that E is open., Therefore, E=[0,1] and u>¢ 0(r) on [O,R).

Remark 5.1.4 The generalized Serrin’s sweeping principle remains true for a

family of positive radial supersolutions of problem (5.0.1).

n
»

EXISTENCE RESULTS

In this section we shall show that when A is large enough, problem

(5.0.1) has at least one positive radial solution.
Consider the eigeavalue problem

div(| D [P > Duy+ 4| u|P =0 for x€B
_ (5.2.1)

u=0 for xE&BR

Thelin  [72] showed that there is a unique positive radial eigenfunction y of
norm ! to (5.2.1) corresponding to the smallest eigenvalue ’11' We also know
wEC'((OR)). :

Let ll(>0) be the least eigenvalue and y=w(r)>0 be the corresponding

eigenfunction with normalization ||y  =1. Then, we easily obtain

dy
I <0, for r&(O,R].

We first prove the following lemma.

Lemma 5.2.1 Suppose f satisfies

(a) fECl((0,00))ﬂCy([O,oo)) Jor some ye&(0,1],

b  fy>0, for u>0,
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() _)‘(w)>cmp_1 in (0,ul, for some o, u>0,
Then the positive radial solution u 1 of (5.0.1) satisfies

u‘l:z,uw in [O,R], iflall/a.

Proof. For t€(0,u] and A=1 l/cr, we have

div(| D) [P 2D + Ay > -7 [w Pl P!

=P do-1)=0.

Therefore, {ry, 71€(0,u]} is a family of subsolutions of (5.0.1). It follows

from Lemma 5.1.3 that ula,uw.

Theorem 5.2.2  Suppose f satisfies (a), (b), (¢) in Lemma 5.2.1 and

@ lim fisysS =1, 0<p<p-1.

§ >0

Then problem (5.0.1) has at least one positive radial solution when ).a).l/a.

Proof. (d) implies that there exists B>1 and a constant A=0 such that

fiysA+BP, for u=o0,

We first prove that {A”(‘p_l_ﬁ )évo(r)} is a family of supersolutions of
(5.0.1) if J is large enough. Here v, is as in (5.1.1). In fact,

aiv(| D@ Psy |Pp Py sy a1 Py
s-@ P PP a0 PP

=) P DI 1—ﬁ>[ sPl_p~Ble-1-B_g aﬁuﬁ} <0,
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if JP"ZM*.BI(P-I—[B’)_*_BJ.BH%“?; . It is easy to see this is true if
922 max {(B{]vo{{iﬂ)”@*“ﬂ), AP0, -Bip-1-Bp-ny

For A=1, we can choose

J=My=2 max{[Buuouiﬂ] Hp-1-F) A”Q’""}-H.

Therefore, AII(P“I-ﬁ)&O is nmot a solution of (5.0.1) when ézMﬂ is large

enough, Hence, by Remark 5.1.4,

(-1~ .
ulsk Mﬂvo in BR,

for A=4  and some A >0. Let 5)_=).“(p"1"'8)Mﬁuo. By Lemma 5.1.2, there exist.cl,

02>0 such that v/scl(R—r) and v oa<:2(R—r). Ther when A4 is large enough,

mcf«f,1 in [O,R).

and
(&)
a(uy) A
57 R > —5—(R).
Let E={$€C'([0,R]); $(R)=0};
1p-1~fy 3 (uy) a9 8(cy

Oa={¢€E, Hy< ¢ < A MBUO in [O,R), WB";WT-(R) > W(R) > "—a—r——{R)}
and

A =-¢" ut [Py

Then 0;{ is a bounded, open, convex set. Using the ideas of the proof of
Proposition 4.1.5 of Chapter 4, we also can prove that for any hECO([O,R]),

there exists only one solution for the problem

A= 1R for 0s=r=R
, (5.2.2)

u (R) =0, u’(0)=0

and let GP be the inverse of A, then Gp o ([O,R])-)Cl([O,R}) is compact.
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Set (Txu)(r)wGP(er_lﬂu)). Since f is increasing, we can use the same

ideas as in Lemma 5.1.3 to obtain that if ¢661’ py< T,ap) = T,@0)s T, < &,

in [0,R) with reversed inequalities for 3/3r on 3B . Hence T, : 51—301. Let
eGOl, St()., K= 1T, )+ (1-De and ?’t().,u)=u—St(A,u) for t&[0, 1]. Then

Sr : 51—:'01, so, 0¢& 'Fr(ﬁ., 60/1) for t€[0, 1] and therefore by the homotopy

invariance of degree,

degLs(Y’t(l.’),OA,O)al, t€[0,11. (5.2.3)
Hence, degLS(‘Pl(A,-),Ol,O)——*l. 5.2.4)
(5.2.4) shows that (5.0.1) has a radial solution LY in OA‘

Corollary 5.2.3 For p>1 and O0<pB<p-1, there exists a positive radial solution

v V: of the problem

-div(|Du|P‘213u)=u‘B xEB_ }
. (5.2.5)

u=0 xe& BBR

Lemma 5.2.4 Suppose that there exist two positive ¢ radial Junctions
uo(r)svl(r) satisfying ué(r}<0, v;<0 in (O,R] such that uo(r) is a subsolution
of (5.0.1) and ul(r) is a supersolution of (5.0.1). Then (5.0.1) has a minimum
positive radial solution u(r) and a maximum positive radial solution u(r) such
that if w is ¢ radial solution of (5.0.1) satisfying uo(r)Su(r)svl(r), then,

y_(r)Su(r‘)ﬁE(r) and E’(r)au'(r}zﬂ’(r) in [O,R].

Proof. Let the operators A and TA be as above. Assume that
. p-2
dlv(lDuol Du0)+2ﬂu0)=#0;

div(| Do, |77"Dv )+ 410 ) 0.
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Define

ul=TAu0 and w1=T}.01'

Let us show that u l>u0 and w1<ul (strict inequalities in BR). We have
. P25 .
div(| Du |7 “Du)=-Af (u) in B,
"1=0 on BBR
s0,
. P2 . 2 .
—dlv(|Dull Du)z-div ( |Du°[P_ Du ) in B,

ul=u0=0 on BBR

By the weak comparison principle (see Lemma 4.1.1 of Chapter 4), we know that
u OSul in BR.

Since u;(r)<0, u(’)(r)<0 in (O,R}, using the same idea as in Lemma 5.1.3, we
obtain that 1y <u, in BR' A similar argument shows that w <Y in BR. Thus the

sequence defined inductively by w1=T v wn--tTAwn is monotone decreasing.

A -1

Similarly, un=TAun_ v ¥ 1=Tﬁ.u o defines a monotone increasing sequence.

Furthermore, we have

# < w for all n:
n n
< -.n( ) w e < N
uﬂ<u1 u2< un< < n< <wl ul

In ; .
fact, uy< U suppose u < w Then,

1

w o= T,w »>T.u =u,
n - n— n

A n-1 A -1
so, the proof follows by induction.

Since the scquences {uk} and {wk} are monotone, the pointwise limits

k= lim« () and w(r)= limw (1)
both exist. The operator TA is a composition of the nonlinear operation

u— Aftu) with the inversion of the nonlinear boundary value problem ¢ — v
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defined by
~div(| Do[P*Doy=¢ in B }

v=0 on BBR

For u bounded and f{z) bounded on the range of u, the first operation takes
bounded pointwise convergent into pointwise comnvergent sequences, The
operation ¢ — v maps c® (BR) compactly into the space Cl(BR) (see Proposition
4.1.5 of Chapter 4). Thus, since u =T,u and since {uk} is a bounded,

pointwise convergent sequence, it converges also in CI(BR). We thus have

a=p i = lim N =h o ime =Ty

and similarly for u, by the continuity of T).' Thus u and u are fixed points of
TA’ and furthermore, they are of class CI(BR). This idea comes from [67].

Since f is increasing and u’(r), u'(r)=0 in (O,R], it is clear that

(rN—llu’ |p—2u’)'s(rN_l|E' |p—2£,), for re(0,R]. (5.2.6)
Integrating (5.2.6) from 0 to r to obtain u'(r)=wu’(r) in [O,R]. Using the same

steps, we obtain u’(r)=u’(r) in [O,R].

In the following we give the following asymptotic theorem for the

solution u 2 of problem (5.0.1) when A is large enough,

Theorem 5.2.5 Suppose f satisfies the conditions (a)—(d) of Theorem 5.2.2.

Then

Al_l_)zono uk(r) / (All(p- -£) Uf),(r)) = 1 uniformly on [0, R], 5.2.7

where uAeCl([O,R]) is a positive radial solution of (5.0.1) and vﬂ is as in

Corollary 5.2.3.
Proof. We prove this theorem by using an idea from Lin [47]. The proof will
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be divided into three steps.

1. There exists ,1.2>0, such that if A:-,lz then

Up-1 .
ulaﬁ. vﬁ in [O,R], 5.2.8)

where By is a positive radial solution of Problem (5.0.1) and Uﬂ is as

in Corollary 5.2.3,

2, For any >0 and 81>0, there exists A3=A(8’81)>0’ if A>A€, then

ulaa”‘p“"ﬂ)(l-e)”(p' 1"8’(141)("“1)’("‘1"’5’)0}3. (5.2.9)

3. For any ¢>0 and 81>0, there exists Aé=A'(e’£1)>0’ if A>Aé, then

<AV 4 )OI B g g \PDIOED, (5.2.10)

1y B

Step 1.  We shall first prove that there exists m>0Q such that ulzﬁ.m‘pql)muo,

if Aail/a. Here 11, o are as in Lemma 5.1.1,
By Lemma 5.1.2, there exists kl>0 such that wzklvo. Hence, From Lemma

5.2.1 we have LN if ).akl/o, where ul=yk1>0.
Let ,u’e(O,ul) and m'=min{f{u); uGLu',oo)}. Then m’>0. Denote by

[6=Ul={re[0,R]; 6()=U}. Since (1-rP/P V<1V in (0,1), then

®R-r)P/OD <RPIPD_PIE-D 4 o Ry,
v (N=ulp implies that RV s(u iy ) NYC o1y, If 224 /o, then
using (5.1.4), (5.1.5), we obtain

] U(p— 1)

R
ul(r)=J. [xs’"N r M Sl ()ds ds
r 0
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_, qle-n
E(Am’)u(p_l)f sx—N f IN ldr] ds

[Julu 02 7381 0
uE-1
r P 1dr] ds}

= (Am )@V { o (0 - f [sx—-N
Ww,su'ly) 0

(15, P D _ 1, \HP
=(@m") {vo(r) Cl'in) vo(r)}-
Choosing 4’ such that I—Cp(,u’/,ul)UP=ll2, we obtain

uy = /1“@_ 1)(m A= z)IZ)UO(r).

Next, we prove that there exists Azaﬁ.l/a such that when 1212,

uﬁ'alll(‘v-l)vﬂ. By (5.1.4) of Lemma 5.1.2, there exists M >0 such that

1(p-1)
M /2)002 Uﬂ.

For this M, there exists U=U(M) >0, such that if u=U, then flu)=M. Therefore,

vE-1
] ds

Uip-1) I-N 7 N-1
u, (=AM [ s r t dt
A ’[[A Lip- 1)muor-;U] 0

=AM P (- iam) P v (=2 PV .
0 po B
For 1212, ,12 is chosen such that Cp(U/Azm)“P =1/2. The proof of step 1 is

completed,

Step 2. By (5.1.4) and (5.1.5) with p=vﬂ(r),

_ 5 -1y
“{5(")=J I:sl N f tN ! Ugdt] ds
R-r=4]

0
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where C 8 depends on v 5 and R. By (d), for any &> 0, there exists U=U(g)>0 such

that u=U implies f(u)z:(l—s)uﬁ . Therefore,

1(@-1)
NOE (A(1-g)lP- ‘)f s r N1 ,8 (p—l)vgdt] ds

@pe-n, ﬁaUl [ 0

2
o A 1P 1+ Bip-1) (l—e)”@'l)[ 1o Cﬁ(U PElabN x)] o8

2
Ell/(p—l)‘i—ﬁf(p— 1)) (l—e)“(P-l)(l—el)vB.
@-1’ -1
Where A =max {Az, 23} and /13=(Cﬁ/sl) .

Repeating this argument, we have that for nz4,

2 n—1 o 2 n—2 n—-1
ulzll/(p—l)+ﬁ!(p—l) + +5 -1 (l_s)ll(p—l)+ﬁ!(p—-1) + +£ -1

3
v

n-3 n-
><(1_&1)1+,t£?/(p-—1)+ +£ Tip-1) 5

and
n—4 n-3
An={(C'§;“lU)le:"l)_1 X {1/ [(1_8),5’/(}7— D+ -1 «

n—3 n—-3
e )I+ﬁi(p-l)+ . '+I3n~4/(P- l)n-4]]}ll{ll(p— DABIP-D++f TIp-1) 7]
1

Since 0<f/(p-1) <1, Au —)loo as n —oo, here

)
A ={(C§“U)}sll" T [1/ [(l—e)‘B/ C-1Byq_q l)‘ﬁ""” Q"“ﬁ’]]} X

Let
Aszmax{).z,ls, cedd mA(s,sl) <,

If A 2./18, then

uA(r)aa"@““ﬁ)a—s)"@"“ﬁ’(l—al)(p")’@"‘ﬁ)o () in [O.R].

This completes the proof of step 2.
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The proof of step 3 is exactly similar to the proof of step 2.

§.3 UNIQUENESS RESULTS

In this section we shall give the following uniqueness result for problem

(5.0.1) when A is large enough.

Theorem 5.3.1 Let p>1, f satisfy all the conditions in Theorem 5.2.2, f'(s)=0

for s>0 and (}‘(s)/sp “1)'50 for 5>0. Then problem (5.0.1) has a unique positive

radial solution in CI{O,R} for A large enough.

Proof. In fact, it follows from the proof of Theorem 5.2.2 that when 4 is
large enough, there exist a positive radial solution of problem (5.0.1).
Suppose there are two positive radial solutions ul(r), uz(r)ECI([O,R]) to
problem (5.0.1). Since u;(r), ué(r)<0 in (O,R], by Lemma 5.1.2, there exist

kl, kz’ 11’ 12>0 such that
ki(R—r)SMI(r)Sll(R—r), kz(R—r)Suz(r)slz(Rwr). 5.3.1H
We define ,81, ,82 by
ﬂl“—*sup {uelR; ux—,uu2>0 in [O,R)}, (5.3.2)
ﬁzmsup {u eR; uz-,uu‘>0 in [O,R)}. 5.3.3)

It follows from (5.3.1) that ,B], ,82>0. We suppose ﬁlsl (otherwise ﬁ'zsl).

Obviously, u1~ﬁlu220 in BR. Furthermore, we can show that there exists & point
zEBR where ul—-,b’lu2 vanishes. Indeed, suppose ul—ﬂlu2>0 in BR. Since f'(s)=0

for 5>0 and (ﬂs)/sp"i)'so for §>0, then
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f(ﬂluz)/(ﬁluz)pﬂlEf(uz)/uzp—l. (5.3.49)
Therefore, fu )=fB u )a:ﬁ‘p—lf(u ). So
1 12 1 2 !

~div(| Du 1|1"‘2Dul);=-div(|Dgfz lu2)|P"ZD(ﬂlu2)) in B_. (5.3.5)

Following the same ideas as in the proof of Lemma 5.1.3, we have
(ul-ﬂluz)'(R)<0. (5.3.6)

Therefore, in view of the continvity, combining this and the assumption
ul-,Bluzz-O in BR, we have

ul—(ﬁl+6)uz>0 in BR’ (5.3.7
for some positive number #. This contradicts the definition of the number ﬁl'
Thus we see that there exists a point zEBR where ul~,8 s vanishes. The proof
of Lemma 5.1.3 gives that there exists z€G where ul—ﬁlu2 vanishes. Here G is
as in the proof of Lemma 5.1.3.

Observing that

{ -L(u~B u)=0 in G , 5.8

ul—ﬂluzzo in G and ul—ﬂ1u2=0 at z€G
where L is as in Lemma 5.1.3, we obtain by the strong maximum principle for
vniformly elliptic operators (se¢e Theorem 1.3.10 of Chapter 1),
ul—ﬁlug'ﬁo in G, 5.3.9

Since u;(r) and u;(r)<0 for re(0,R], following the same ideas as above, we

obtain

ul(r)aﬂluz(r) in [0,R]. (5.3.10)

Since U U, are solutions of problem (5.0.1), (5.3.10) implies

B )=6 fua ). (5.3.11)

By (5.2.7), “, is large when A is large enough. From the condition (d), we
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know from (5.3.11) that ﬂl(A)El when A is large enough. This shows u U,

5.4 THE SHOOTING METHOD

In this section we prove that when f satisfies the conditions of Theorem
5.3.1, all the positive solutions of (5.0.1) are radial solutions. This
implies that when f satisfies the conditions of Theorem $5.3.1, problem (5.0.1)
only has a positive radial solution when A is large enough. We first prove the

following lemmas.

Lemma 5.4.1 Suppose f satisfies (F;). Then there exists A l>0 such that
(5.0.1) has arbitrarily small nontrivial radially symmetric subsolutions for

all 1>A‘.

Proof. Let Al, w(r) be as in (5.2.1). By (F;), for Aall,
T(A)=sup { t€[0,1]; Afw) > A.]up_' for Osu=t}>0.
Suppose /1>.ll and 0<e<7(4). Then

div(] D(ew) |P > Dew)) + Aftew)

a—klsp_l(] v |P"2w)+3ﬂsw)20,

for all r€[0,R] and so the function Ea(r)“8W(’) is a subsolution of (5.0.1).

Lemma 5.4.2 Suppose f satisfies all the conditions in Theorem 5.2.2. Then for
agny nonradial positive solution “ of (5.0.1), there exists A2>0 such that
when A>A2, there exist nontrivial positive radial supersolutions & i of (5.0.1)

satisfying uy= .{i.
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Proof. Let ulmlll(p-d—ﬁ)v' Then v>0 in B and v satisfies

div(| Do [P~2Doy + /3O Py VP Pyf g in B }
(5.4.1)

v=0 on (")BR
As ,lim FAMCEB 000 1B By we obtain
\ p-2 .
~div(| Dv|” "Dv)z0 in B, (5.4.2)
v>0 in BR and v=0 on BBR. (5.4.3)

Using Theorem 1.3.19 of Chapter 1, we know that g—g(R)<0 on BBR. Since BBR is

compact, there exists ‘>0 and MlaMz>0 such that

M= 2% =M <0, (5.4.4)
17 an 2
r(x) .
for any x€Q 6,={xEBR; 0<R-r<d’}, where gn is the directional derivative
rx)
along the direction of r. Then by
! du
v(x)=-(R—r)Jo émr(x)(x+'1'(R—1")71’_()0)41'(, for any x&8 50

and by choosing M3>0 appropriately for xEBR~9 5 We have sts(R—r) in BR.

Therefore, uAS),”(p-l_'B)M“uo(r). Here M4>0 and vo(r) is as in Lemma 5.1.1.

From Theorem 5.2.2, we get the existence of positive radial supersolutions.

Theorem 5.4.3 Suppose [ satisfies all the conditions in Theorem 5§5.2.2,

F1(=0 for s>0 and Rs)/F ) <0 for 5>0; 0=0. Then the boundary value

problem

div(| Du| P “*Duy+2fu) =0 in B,
(5.4.5)

u>¢ in BR,u:t? on BBR

has at most one positive radial solution.
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Proof. Let v=u-¢, then v satisfies

div(| Do]? ™ *Dv) + Af(v+ ) =0 in B
, (5.4.6)

v>0 in BR, v =0 on 8BR

Then (5.4.5) has two positive radial solutions if and only if (5.4.6) has two

positive radial sclutions. Let v v Y% be two positive radial solutions of

(5.4.6). The proof of Theorem 5.3.1 shows that we can choose ,Bl, 0<,8151 such

that vlzﬁ’lvz in [O,R] and if ﬁ1<1,

B 0, + OB v, + PN fo, 8o+ 9P, (5.4.7)

So,

ﬂvl+z3)2ﬂﬂluz+z?)>ﬁ[;—lﬂuz+0). (5.4.8)
Following the same ideas as in the proof of Theorem 5.3.1, we get

leﬁlu2 in [O,R]. (5.4.9)

(5.4.9) implies  that f(ul + )= ﬁlf - 1ﬂ02 +4¢), which contradicts  (5.4.8).

Therefore, B1=1 and v =0, The proof is completed.
Consider the initial value problem

(rN_llu’[p_lu’) ‘ +i{rN"1f(u)=0 for r >0
. (5.4.10)

w' (=0, u(0)={, where {>0
We denote a solution of (5.4.10) by wu(,{,A). It follows from standard
theorems on the continuous dependence of solutions on parameters and on

initial data that ({,A) —u(-,{,A) is a continuous function from [0,00)x{0,x) to

C[O,Rl] for any R1>0.

Let A(l)={CG[R+; there exists R2>0 such that O<u(r,{,A) for OSr<R2 and
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u(Rz,C,l)=0} and B(l)={CE[R+; u(r,{,A)>0 for 0<r=<R}, It is straightforward to
prove from the continuous dependence of solutions on parameters that A(R) and

B(A) are open disjoint subsets of R*. Thus we can prove the following results.

Theorem 5.4.4 (i) If A(A)#0, then there exists {(A), 0<{(Ay< oo, such that

AQ)=(, {@A).

(if) Suppose the problem

e PRy N Ly =0 for #>0
. 5.4.11)
1 (0)=0, u(R)=0
has a solution. Then rthere exists {(A), 0<{(A)<oo such that AQA)=(, (1)),

B()=((A), ) and u(-, {(R), &) is the solution of (5.4.11),

Proof. If {E€A(A), there exists R2>0 such that O<u(r,{,A) for 0<7’<R2 and

u(Rz,C,A)=O. Assume that ¢<{ and ¢#A(4). Then either w(R,q,4)=0 or u(r,q,3)>0

for O<r=<R. In either case, there exists T 0<r1<R such that
u(rl,q,l)=u(r1,(;',l) (=9, say).

By u'(,q,A)<0 and w’(,{,A)<0, u(',q,A) and u(-,{,A) correspond to distinct

radial solutions of (5.4.5), which is impossible. Part (i) follows from the

fact that under our hypotheses on f, (5.0.1) has at most one positive radial

solution.

Theorem 5.4.5  Suppose f satisfies the conditions of Theorem 5.3.1. Then every

positive solution of (5.0.1) is radially symmetric,
Proof. Suppose u is a positive nonradially symmetric solution of (5.0.1). Then
by Lemmas 5.4.1 and 5.4.2, there exist a radially symmetric subsolution u and

a radially symmetric supersolution x such that u(|x|)su(x)=u(|x|), for X€B,.
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Lemma 5.2.4 implies the existence of radially symmetric solutions u, and ",
such that 5(|x|)5u1(|x|)su(x)$u2(|x|)s§(|x|). Since u is nonradially
symmetric, u lséu and u2¢u. So, ul;s':uz. But this is impossible because of Theorem

5.3.1, and so every positive solution of (5.0.1) is radially symmetric when A

is large enough.
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