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ABSTRACT

As a generalization of the divisibility of an abelian group, injectivity
was defined for modules by Baer in 1940, Since then this concept has
attracted much interest.

The starting point of this thesis is that for any torsion-free abelian
group A (Z-module) let B = A such that A/B is torsion-free, can any
homomorphism ¢ : B > A be lifted to A (i.e. does there exist a8 homomorphism
@ : A > A such that MB = ¢)? Since the answer is no, it is decided to
investigate lifting homomorphisms from submodules to M and relationships with
one (or two) of the following properties :

(Cl) Every submodule of M is essential in a direct summand of M.
Equivalently, every complement submodule of M is a direct summand of M.

(C:z) Every submodule isomorphic to a direct summand of M is itself a
direct summand of M.

(Ca) If M1 and M2 are direct summands of M with M1 N M2 = 0 then MIGM2
is a direct summand of M.
A module with the property (Cl) is called a CS-module and a CS-module with the
property (Cz) ((CS)) is called continuous (quasi-continuous) module.

In particular Kamal and Muller's result "MR satisfies (CI) if and only
if M= ZZ(M)QN and Zz(M) is N-imjective”, allows us to consider nonsingular
modules.

Special rings are then considered and it is investigated when they are
CS-rings for nonsingular cases. In particular, let

R = [s M]
0T
where S, T are rings and M., bimodule such that SM is faithful. Then the

ST

necessary and sufficient conditions for R to be a right nonsingular right

» it




CS-ring are given.

In general, the full matrix ring over a CS-ring needs not be a
CS-ring. This thesis contains the equivalent conditions for a full matrix
ring being CS over a domain,

Kamal and Muller proved that over a commutative integral domain, any
torsion-free reduced CS-module is a finite direct sum of uniform modules.
This result is generalized to nonsingular modules over a commutative ring with
finitely many minimal prime ideals.

This thesis also deals with the characterization of continuous and
quasi-continuous modules in terms of lifting homomorphisms.

Since the direct sum of two CS-modules need not be a CS-module (Cl) is
weakened to (C ) 1) as follows:

(Cu) Every submodule of M has a complement which is a direct summand of

M.
In contrast to CS-modules it is observed that any direct sum of modules with
(Cll) satisfies (Cl l). However, it is not possible to determine whether any
direct summand of a module with (C“) satisfies (C“) or not. A module.
M satisfies (C11+) if any direct summand of M satisfies (Cu)' Moreover the
weaker condition than (C“) is given as follows :

(C 12) For every submodule N of M there exists a direct summand K of M and

a monomorphism o« : N > K such that a(N) is essential in XK.
It is worth knowing whether any direct summand of M is a direct sum of uniform
modules whenever M is itself a direct sum uniform modules. It was shown that
this is true for modules over Z.

The work was completed by considering conditions onm a module M which

imply that M is a direct sum of uniform modules and chain conditions with

+

©y 2

iv




Chapter 1

PRELIMINARIES

In this chapter we will give basic definitions and some well-known
results which will be needed in the following chapters, In particular, we
will define CS-modules, continuous modules and quasi-continuous modules and we
will give fundamental properties of these modules as well as recent

developments,

1.1. Basic definitions and ideas.

Let R be a ring (with identity) and M a right R-module, usually just
called a “module”. We shall write "N s M” to indicate that N is a submodule

of M. The right R-module R is denoted R Thus "B =< R, " means that E is a

R’ R

right ideal of R, Let m € M, N = M. Define
m_iN={rER : mr € N}.

It is easy to check that m™'N = Rp.

Definition 1.1.1. A submodule N of M is called an essential submodule, or

is essential in M, provided NN K % 0 for all 0 # K =< M.

We first give some properties of essential submodules in the following

Proposition, For proofs and more information about this section refer to

(1], [6], [81, [34], [41].

Proposition 1.1,2, Let M be a module. Then

@) N is essential in M if and only if N N mR 3= 0 for all 0 = m &€ M,




(ii) Given K <N <M, K is essential in M if and only if K is essential
in N and N is essential in M.

(iii) Let N be essential in M and K = M. Then N N X is essential in K.

(iv) For any t=1, let Ni be essential in Ki d=i=st). Then
N1 N N2 N...N Nt is essential in Kl N K2 N..nN Kt.

(v), Given K=sN=M, let N/K be essential in M/K, Then N is
essential in M,

(vi) Let N be essential in M and m € M, Then m_lN is essential in RR.
(vil) For any non-empty index set A, let N, be essential in M;. A € A).

A

Then $ANA is essential in EBAMA‘

Let N be a submodule of M. By Zorn's Lemma, the collection of submodules

L of M such that N N L = 0 has a maximal member,

Definition 1.1.3, Given L = M, by a complement (submodule) of L in M, we mean

a submodule K of M, maximal with respect to the property K N L = 0. Thus, K
is a complement of L in M if and only if (i) KNL =0, and (ii) NNL = 0 for

all Kc N = M.

Proposition 1.1.4, Tet LN=M with NNL =0, Then there exists a

complement K of L in M such that N € K.

Proposition 1.1.5, Let L € M and let X be any complement of L. in M, Then KoL

is essential in M.

For any module M, the socle, Soc M of M is defined to be the sum of all

simple submodules of M, or zero if M has no simple submodules.




Corollary 1.1.6. For any module M,

Soc M = N {N : N is essential in M},

Definition 1.1.7. A submodule K of a module M will be called a complement

(submodule) (in M), provided there exists L = M such that K is a complement of
L in M. Clearly 0, M are complements in M. Moreover, any direct summand of M

is a complement in M.

Proposition 1.1.8. Let N <M, Then there exists K = M, containing N such

that N is essential in K and K is a complement in M.

Proposition 1.1.9. Let K =M, Then K is a complement in M if and oaly

if whenever K is essential in L, for any L. < M, thena K = L,

Proposition 1.1.10. Let K be a complement in N, and N a complement in M.

Then K is a complement in M.

Proof. Let K be a complement of K’ in N and let N be a complement of N’ in M.
It is ecasy to show that KN (K’ + N’) =0. By Proposition 1.1.4, there exists
a complement C of K’ + N’ in M with K £ C. Set D=NN(C + N’). We have
KcDENand DNK' =0, so that X=D. It is now straightforward to show

that (C+N)N N’ =0, giving C+ N =N, i.e. C €N, so that C = K.

Definition 1.1.11. Let M, X be unital right R-modules. Then X is called

M-injective provided for each submodule N of M, every R-homomorphism ¢ : N > X
can be lifted to an R-homomorphism 8 : M » X (.e. 8(n) = ¢(n) for all n € N).
A module X is called gquasi-injective (or self-injective) provided X is

X-injective. A module which contains no non-zero injective submodule will be




called reduced.

Note. Any injective module is M-injective, for any module M, and any

(RR)-injective module is injective.

Notation. For any module A, E(A) will denote the injective hull of A.

Definition 1.1.12. A submodule U of M is called uniform, provided U = 0 and

XNY 0 for all 0X, Y=xU. In other words, U is uniform if and only if
every non-zero submodule X of U is essential in U,

The module M has finite uniform (Goldie) dimension if M does not contain
an infinite direct sum of non-zero submodules. It is well known that a module
M has finite uniform dimension if and only if there exists a positive integer
n and uniform submodules Ui (1 si<n) of M such that UleUzm...eUn is an
essential submodule of M, and 'in this case n is an invariant of the module

called the uniform dimension of M (see, for example, [1, p.294, ¢x.2]).

Definition 1.1.13. The singular submodule Z(M) of a module M is defined by

ZM) = {m € M : mE = 0 for some essential right ideal E of R}.
The Goldie torsion submodule (or second singular submodule) ZZ(M) of M is that
submodule of M, containing Z(M), such that Zz(M)/Z(M) is the singular
submodule of M/Z(M). The module M is called singular if M = Z(M) and
nonsingular if Z{M) = 0. Further, for amy module M, MlZz(M) is a

nonsingular module and ZZ(M) is a complement in M (see [34]).

Definition 1.1.14. A right ideal A of R is a right annihilator for M provided

there exists a non-empty subset X of M such that

A={reR:zxr=0forallxeX}={reR : Xr=0}.




Note that for X = {m} for any m € M, we will use £(m) to indicate the right

annihilator of m in M, i.e, r(m) = {r €R : mr = 0}.

Definition 1.1,15. A ring R is semiprime right Goldie provided it satisfies

the following,
() ISR, P =0 implies I = 0.
(ii) RR has finite uniform dimension, and

(i) RR has ACC (ascending chain condition) on right annihilators.

Definition 1.1.16. An element ¢ of a ring R is regular (a non-zero divisor)

provided cr % 0 and 1c % 0 for all non-zero r € R, Then a module M is called

divisible provided M = Mc = {mc : m & M}, for every regular element ¢ of R.

Definition 1.1.17. Let R be a ring. Then R is called a pp-ring if every

[

principal right ideal of R 1is projective. Note that for any x € R, xR is

projective if and only if I(x) =¢R for some idempotent e. Thus R is right
pp-ring if and only if for each x € R there is an idempotent ¢ such that

I (x) = eR.

Definition 1.1.18. A torsion theory for Mod-R is a pair (T,E) of classes of

right R-modules such that
(i) Hom(T,F) =0 for all T € T, FeF.

(@) T and F are maximal classes having property (i).

The modules in T are called rorsion modules and the modules in E are
torsion-free.

Any given non-empty class G of modules generates a torsion theory in the
following way,

F = {F : Hom(G,F) =0 for all G € G}




b

T = {T : Hom(T,F) = 0 for all F € F}.
In particular, the torsion theory which is generated by the class
G = {M/L : L is essential in M}

is called the Goldie torsion theory.

Definition 1.1.19. An integral domain R is said to be a right Ore domain if

aR N bR = 0, for all nonzero a,b € R, For example, every commutative

integral domain is a right Ore domain.

Definition 1.1.20, [21, Definition 2.15] Let X =2}' e AXA be a direct sum of
submodules X;i. (A € A) of a module M. Then X is called a local summand of M if

}:2 e A"X). is & direct summand of M for each finite subset A’ of A.

Definition 1.1.21, A module M is called locally Noetherian provided every

finitely generated submodule N of M is Noetherian, Note that M is locally
Noetheriaﬁwimplies that N and M/N are both locally Noctherian. Also if N is
Noctherian and M /N is locally Noetherian then M is locally Noetherian. But
N and M/N are both locally Noetherian (even "if M /N is Noetherian) does not

imply M is locally Noetherian,

Example 1.1.22. Let K be a field and V an infinite dimensional vector space

K V k v
- . 10 Vv
over K. LetRw[O\ }~—{[0 k:| .ke’K,vEV}. Letl—[o 0].

Then I and R /I are locally Noetherian, But R is not locally Noetherian.

Proof, Clearly I 1is semisimple (in fact I = SocR). Thus 1 is locally

Noetherian, Define ¢ : R » K by

w([g ]Z:l)=k k€K, vev).




Then ¢ is an epimorphism with kernel I, Therefore R/I =K so R/I is a
simple R-module., Hence R/I is Noetherian. Now R =Rl so R is finitely
generated.  Since V is infinite dimensional then I is not finitely generated.

It follows that R is not Noetherian and hence not locally Noetherian.

1.2, Historical background and recent developments of CS-modules.

Definition 1.2.1. Let M be a right R-module. Then M is called a CS-module

(module with (Cl)’ extending module, etc.) if every complement I in M is a
direct summand of M. Equivalently, any submodule N of M is essential in a
direct summand K of M (see Proposition 5,1.2),

We shall say that R is a right CS-ring whenever R, is a CS-module, i.¢ if

R

1 is any right ideal of R which is a complement submodule of RR’ then I =¢R
for some idempotent e,

Among examples of CS-modules, we could point out semisimple modules,
uniform modules and injective modules. On the other hand, any free abelian
group of finite rank is a CS-module (see Exgmple 2.1.17 or 4.2.2).

To illustrate a usage of Definition 1.2.1, any injective module M is a
CS-module. Let K be a complement in M. Then K is essential in its injective
hull BE(X). Therefore K = E(K) and hence K is injective. Thus K is a direct
summand of M.

CS is an abbreviation for “complements are summands”. CS-modules were
originated by von Neumann [38], [39], [40] in 1930. They were developed by
Utumi [35], [36], [37] for rings in the 1960’s, were extended to modules by
Jeremy [13], [14] in the 1970’s and have been investigated by Oshiro [24],
[25] and others. The following set-up summarises the origin of CS-modules and

the concepts related to it,
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Proposition 1.2.2. [21, Proposition 2.7}, Any direct summand of a CS-module

is a CS-module.

Proof. By Proposition 1.1.10,

Clearly, any complement submodule of a CS-module is a _CS—module, but
arbitrary submodules of a CS-module need not be a CS-module. For example, let
M be a module which is not CS and let M’ =EM). Then M <M’ and M’ is a
CS-module. A direct sum of CS-modules need not be a CS-module either, We

shall give an example to illustrate this. More e¢xamples can be found in [4]

and [5].

Example 1.2.3. [33] Let p be any prime and M the Z-module

(@ iZp)e@/ZpY). Let M, = @/Zp)®0 and M, = 0@(Z /Zp’). Then
(i) K is a complement in M if and ounly if K = 0, M, Ml’ M:Z or
Z(1 + Zp,b + Zpa) for some b € Z such that p3 does not divide b,

(i) M is not a CS-module,




Proof. (i) First we show K = Z(1 +Zp,b +72p3) b e Zps) is a complement in M,
Since K is cyclic and paK =0, K is uniform, Suppose K 1is essential in a
submodule L of M, Then L is uniform and hence cyclic, because M is finitely
generated.  Therefore L =Z(¢c + Zp,d +Zp3) for som¢ ¢, d € Z. Thus there
exists n € Z such that
(1 + Zp,b +Zp) = n(c + Zp,d + Zp>), i.e.
1 = ne(med p), b = nd(mod ps).
Now if p divides n then 1 = O(mod p), which is a contradiction,
Hence p does not divide n. It follows that 1 = nc + sp for some s € Z., Thus
(1- nc)3 = s3p3. Then 1- nt = s3p3 for some¢ t € Z. Therefore
t(1 + Zp,b + Zp) = nt(c + Zp,d + Zp) = (1 - p)(c + Zp,d + Zp)
= (c + Zp,d + ZpY).
Thus K = L. It follows that K is a complement in M,

Let N be a complement in M such that N = 0, M, M . M2. Note that N is a
maximal uniform submodule of M. Then (a + Zp,b + Zpa) & N for some a € Zp,
b ¢& Zps. Without loss of generality, we can suppose a = 1.

Thus Z(1 + ip,b + Zps) € N and then Z(1 + Zp,b + Zps) is essential in N. Thus
N =72Z(1 + Zp,b + le3), because Z(1 + Zp,b + Zp3) is a complement in M,

(ii) Let N =Z(1 + Zp,p + Zpa). Then N is a complement in M of order p2.
If N were a direct summand of M, then M = NoN' for some N’ = M, and l;cnce N’
has order p2 also, giving pzM =0, a contradiction, Thus M is not =&

CS-module.

Theorem 1.2.4. [4, Theorem 2.4 and Corollary] Consider the following

conditions.
€)) R is a right CS-ring.
(ii)  Every pon-zero complement right idesl of R is non-nil,

(itiy Every maximal uniform right ideal of R is gencrated by an




idempotent element,

@) The implications (i) = (ii) and (i) = (iii) always hold.

(®) If R has no infinite sets of orthogonal idempotents and every
non-zero complement right ideal of R contains a uniform right ideal then (i)
and (if) are equivalent.

(c) If R is left perfect (i.e. R satisfies DCC (descending chain

condition) for principal right ideals) then (i), (i), (iii) are equivalent.

Note that conditions (i) and (iii) of Theorem 1.2.4 are equivalent for a
ring with finite uniform dimension, but the following example shows that a

Noetherian ring satisfying (ii) of Theorem 1.2.4 need not be a right CS-ring.

Example 1.2.5. [4, Example 6.2] Let

7 2
R‘[o z].

Then R is a Noectherian ring which satisfies (ii) of Theorem 1.2.4., But R is

not a right CS-ring.

: 0 A
Proof. The only nilpotent right ideals of R are those of the form |:0 O:I

0 A
whete A is an ideal of Z. If A # 0, then [0 0:] is essential as a proper

0z 0 A ¢ Z
right R-submodule of [ O 0 § if AsZ; and, if A=Z, | 0 0 |=]C 0 | is

Z Z
essential as a proper right R-submodule of [0 0:|. Thus every non-zero nil

right ideal of R is not a complement, i.e. R satisfies (ii) of Theorem 1.2.4.

0 1
To show that R is not a right CS-ring, let u = [0 2], then uR is a uniform
right ideal of R. It is easy to see that the identity eclement of R is the
only idempotent element e of R such that euw =u, i.e. such that uR & eR.

Therefore R is not a right CS-ring.
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Proposition 1.2.6. [21, Proposition 2.5] Let M be an indecomposable module

which is CS. Then M is uvniform.

Proof. Clear.

Lemma 1.2.7. [23, Lemma 3] Let M be a CS-module and suppose that R has ACC

on right annihilators for M. Then M is a direct sum of uniforin modules.

Theorem 1.2.8. [15, Theorem 1] Let R be a ring and M a right R-module., Then

M is a CS-module if and only if M = Zz(M)eaN where Zz(M) and N are CS-modules

and Zz(M) is N-injective.

Proof., Suppose first that M is a CS-module, Since Zz(M) is a complement in
M, we have M = Zz(M)eaN, where N is nonsingular, By Proposition 1.2.2, ZZ(M)
and N are CS-modules. Let p:X-o ZZ(M) be a homomorphism where X < N,
Consider X’ =‘{x— ex) : x €&X}. By hypothesis, there exists a direct
summand L of M such that X’ is essential in L, Writt M=LeY. Since
X’ N Zz(M) =0 and X’ is essential in L, it follows that L is nonsingular and
that Zz(M) = Zz(Y)' Hence Zz(M) is & direct summand of Y, say Y=Y’ eZz(M).
Let n: L@Y’@ZZ(M)-aZZ(M) be the canonical projection. It is casy to see
that =« | =9

Conversely, let M = Zz(M)aN, where ZZ(M) and N are CS-modules and Zz(M)
is N-injective. Let A be a complement in M. Since Zz(A) is a complement in A
then Zz(A) is a complement in M. But Zz(A) = ZZ(M)’ 50 that ZZ(A) is a
complement in Zz(M)' Thus ZZ(A) is a direct summand of Z2(M), therefore also
of A. Write A= Zz(A)eB, where B is a nopsingular submodule of A, Since
BN ZZ(M) =0 and Zz(M) is  N-injective, there exists a homomorphism

8: NeZz(M) such that 67[2 | B ztl | B’ where 7n, m, are the projections of M

1

1




onto Zz(M) and N respectively. Consider N’ = {n + 6(n): n & N}. It follows
that B is contained in N’., Since N’ = N is a CS-module, we have B is a direct
summand of N’. It is clear that M = ZZ(M)GN ‘. Therefore A is a direct

summand of M.

Theorem 1.2.9, [15, Theorem 5] Let M be a torsion-free reduced CS-module over

a commutative integral domain R. Then M is a finite direct sum of uniform

modules.

Lemma 1.2.10, [3, Lemma 3] Let M be a CS-module such that M/soc M has
finite wniform dimension. Then M = MleM2 for some semisimple submodule M | of

M and submodule M2 with finite uniform dimension.

Proposition 1.2.11. [3, Proposition 5] Let M be a CS-module. Then M has ACC

(respectively, DCC) on essential submeodules if and only if M = MIQM2 for some

semisimple submodule Mx and Noetherian (respectively, Artinian) submodule Mz'
1.3, Continuous and quasi-continuous modules.

Consider the following conditions on a module M :

(Cz) Every submodule isomorphic to a direct summand of M is itself a

direct summand of M,

(C3) If Ml and Mz are direct summands of M with M1 N 1\42 = 0, Then MleM2

is a direct summand of M.,

Definition 1.3.1. A module M is called continuous if it satisfies (Cl) (i.e

CS) and (Cz)’ quasi-continuous if it satisfies (Cl) and (CS).

12




Semisimple modules and injective modules are continuous modules. Uniform
modules are quasi-continuous. Any continuous module is quasi-continuous as we

shall see next.

Proposition 1.3.2. [21, Proposition 2.2] If a module M satisfies (Cz)’ then

it satisfies (C 3).

Proof. Let K, L be direct summands of M with KN L =0, Then M= K&K’ for
some K’ = M. Let m:M->K’ denote the canonical projection. Since
KNL =4, then z(.) = L and n(L) = K‘. But n(L) is a direct summand of M by
(Cz) and hence M = a(L)eL’ for some L’ = M. Thus

K'=nlL)e®’ NL'
and M=KenL)s(X’' NL"D. Hence Koa(l) is a direct summand of M. But

S
KelL= Ken(l). Thus, KeL is a direct summand of M, Thus M satisfies (Cs).

Proposition 1.3.3. [21, Proposition 2.7] The conditions (Cz) and (Cs) are

inherited by direct summands.

The following Proposition gives a necessary condition for Mmez to be

quasi-continuous.

Proposition 1.3.4, [21, Proposition 2.10}] If MI@M2 is quasi-continuous, then

M1 and M2 are relatively injective,

Let § denote the endomorphism ring of a module M, J the Jacobson radical

of Sand 4 = {f €S : ker f is essential in M}.

13




Proposition 1.3.5. [21, Proposition 3.5] If M is a continvous module, then

S/A is a (von Neumann) regular ring and A equals J.

Note that at chapter 5 the condition (C l) will b¢ weakened and similar resolt

to Proposition 1.3.5 will be shown.

14




Chapter 2

RELATIVE INJECTIVITY AND CLS-MODULES

2.1. Lifting submodules

Let R be a ring with identity. Let M, X be unital right R-modules, We
define lifting submodules for X in M and obtain basic properties of this class
of submodules of M. In particular, we investigate relationships between the
class and (C 1), (Cz) and (Cs)' Finally, we define CLS-modules as being closed

submodules which are direct summands,
Notation,

LM) = {N : N is a submodule of M}.

EM) = {N : N is an essential submodule of M}.

DM) = {N : N is a direct summand of M}.

CM) = {N : N is a complement submodule of M}.

Definition 2.1.1. A submodule N of M is called a lifting submodule for X in M

provided for any @ € HamR(N,X) there exists § & HomR(M,X) such that ¢ = @ | N
We set
LiftX(M) ={N : N=<Mand N is a lifting submodule for X in M}.

Clearly 0 & LiftX(M) and M € LiftX(M). More generally, we have:

Lemma 2.1.2. D(M) < LiftX(M).

Proof. Let N € D(M). Then M = NeN’ for some submodule N’ of M. Suppose
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@ E HomR(N,X). Define 8§ : M » X by
fc+n)=¢m (@€EN, n’ € N,

It is easy to check G &€ HomR(M,X) and ¢ = 8 | N’

Lemma 2.1.3. The following statements are equivalent,
(1) X is M-injective.
(ii) LiftX(M) = L(M).

gii) EM) < LifLX(M).

Proof. The implications (i) = (i) and (ii) = (iii) are clear.

(iif) = (i). Let N be a submodule of M. Let N’ be a complement of N in
M. Then NoeN' € E(M). Let ¢ € HomR(N,X), By Lemma 2.1.2, there exists
6 e Homp (N N”,X) such that 8 | N=9 By (iii), there exists ¥ € HomR(M,X) such

that x | NoN' = 8. Thus x | N It follows that X is M-injective.

Lemma 2.1.4, Let K < N < M. Then
) K €Lifty(N), N € Lift (M) implies that K € Lift,(M).
i) XKe Lifty (M) implies that K &€ Liftx(N).
(i) N € Lift, (M) implies that N/K € Lift, (M/K),

ivy K e LiftX(M), N/K & LiftX(Ml K) implies that N € Liftx(M).

Proof. (i) and (ii) are clear.

(iii). Let ¢ & HomR(N 1 K, X), Let #:N->N/K denote the canonical
projection.  Then @m:N->X is a homomorphism. Since N € Liftx(M), there
exists 8 & HomR(M,X) such that 8(n) = ¢n() = @¢(n + K) for all n € N.

Define §:M/K-X by 6(m + K) = 6(m) (m € M).
Suppose m + K =m’ + K where m,m’ € M., Then m-m’ € K and hence

pr(m-m’)=0. Thus #m-m’) =0 so that 6(n) = §m’). MHence § is well
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defined. Clearly 8@ & Hom (M /K,X). For any n €N,
8n + K) = 8(n) = p(n + K). It follows that N/K € Lift, (M / X).
iv) Let ¢ & Hom (N,X).  Then ¢ | g € Homp (K,X),  There exists

6 & Homp(M,X) such that @ | K= el Define x : N/K - X by

K
x(n + K) = ¢(n)- 6(n) (o &€N).
Note that x is well defined and a homomorphism. There  exists

v E HomR(M/K,X) such that w | Let n:M->M/K denote the

N/K ™ *
canonical projection, Let a =y + 0 & HomR(M,X). For any n € N,
a(n) = ya() + 6(n) = w( + K) + 0(n) = x(n + K) + 8(n) = p(n).

Thusa|N=gy.

Corollary 2.1.5. For any N € LiftX(M), LiftX(N) ={K=N:Ke LiftX(M)}.
Proof. Suppose K &€ LiftX(N). Then K < N and by Lemma 2.1.4(i), K &€ LiftX(M).
Therefore, LiftX(N) c{K=N:Ke LiftX(M)}. Conversely, suppose K =< N and

Ke LiftX(M). By Lemma 2.1.4(ii), K € LiftX(N).

Let K < N <M. Then X & Lift, (M) does not imply N € Lift, (M), as the

following example illustrates.

Example 2.1.6. Let X be a non-injective module, There exists E & E(RR) such

that E & LiftX(RR). Iet M=ReR, K=Ro0, N=ReE, Then K & Li[tx(M) by

Lemma 2.1.2 but N ¢ LiftX(M) by Lemma 2.1.4,

Lemma 2.1.7. Let N, K = M such that N + K and N N K both belong to LiftX(M).

Then N and K both belong to LiftX(M).

Proof. Let p € HomR(N,X). Then ¢ | € Homp (N N K,X). There exists

NNK
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§, & Homp (M,X) such that §, | Define x : N + K> X by

Nk = @ bnnke
x@ + k) = p(n) + Bi(k) (n €N, ke€X)
Suppose n,n’ €N; k,k’€K and n+k=n'+k’. Then n-n’=k’-%k, so
that k' -k € N N K. Hence,
6,k - 6,(0) = 6,(k-k') = p(k’ - 1) = p(n - n') = p(n) - P(n"),
which implies @) -+ 8 l(k) =g@mn’)+ 8 1(k’). Thus x is well defined. Clearly
X & HomR(N + K,X), so, by hypothesis, there exists 8 € HomR(M,X) such that

8] = . For any n € N,

N+K
f(n) = x(n) = p(n).

Thus 6 | N =@ It follows that N € Lift (M). Similarly K &€ Lift (M),

Corollary 2.1.8. Let K, N = M.

) If NNK=0 and NeK & LiftX(M) then N, K € Liftx(M).

@ IKN+K=Mand NNKE€¢ LiftX(M) then N, K € LiftX(M).

Proof. Clear by Lemma 2.1.7.

Lemma 2.1.9. Let X & Liftx(M), N=sM "Suppose NNKeg LiftX(K) and

N+K)/Ke LiftX(M /K). Then N € LiftX(M).

Proof. By Lemma 2.1.4 (i) and (iv), we deduce N N K and N 4 X both belong to

LiftX(M). Apply Lemma 2.1.7,

Corollary 2.1.10. Let KX = M. Then X is M-injective if and only if (i) X is

K-injective, (i) X is (M /K)-injective, and (iii) K & Liftx(M).

Proof. By Lemmas 2.1.4, 2.1.9.
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Lemma 2.1.11. Let X = HAEAX).' Then L1ftX(M) =N AEALiﬁXA(M)’ for any

module M.

Proof, LetA€A. Let Y= XJ.‘ Let N & LiftX(M). let ¢ € HomR(N,Y). Let

1:Y»>X
0 > N > M
¢l %
Ve
V)
Y /
ilT %,
e
X
depote the inclusion mapping and #n:X->Y the canonical projection, Then

ip € HomR(N,X). By hypothesis there exists § € Homp (M,X) such that A N= ip.
Now 76 € HomR(M,Y) and, for any n € N,

nf(n) = nig(n) = @(n).
Thus, ¢ = 78 | N+ It follows that N & Lift (M). Hence Lift, (M) £ Lift,(M).

Therefore, LiftX(M) cn i€ ALi&XA(M)'

Conversely, let K € N le ALiftx}.(M). Leta € HomR(K,X). For each 4 € 4, .

let = I XX 1 denote the canonical projection. Then = &€ HomR(K,X ﬁ.)’
A € A. By hypothesis, for each 2 € A, there exists ﬁ). € HomR(M,XA) such that
,BA(k) = Jrla(k), k € K, Define §: M->X by

Ay = (f,m)}, ., (mEM),

For each k € X, k) = a(k). Thus K & LiftX(M).

Corollary 2.1.12, Let X = HAGAXA’ Thern X is M-injective if and only if X.l

is M-injective for all A € A.
Proof. By Lemmas 2,1.3 and 2.1.11,
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Lemma 2.1.13. Let A be a non-empty collection of submodules of M. Then the

following statements are equivalent.

@® A SDM.

(i) Acg LiftX(M) for all right R-modules X.

(i) A € Lift, (M) for all X € A.

%
Proof. (i) = (ii), By Lemma 2.1.2.

(i) = (iii), Obvious,

(i) = (). Let A€ A. Consider the identity mapping 1: A > A,
Because A € Lift A(M) by (iii), there exists 8 & HomR(M,A) such that 6(a) =a
(a € A). It can easily be checked that M = Ae(ker8). Thus A &€ D(M). Hence
A € DM).

Corollary 2.1.14. The following statements are equivalent for a module M,

(i) M is semisimple.
(ii)  Every right R-mocdule X is M-injective.

(iii) Every submodule of M is M-injective,

Proof. Apply Lemma 2.1.13 to A = L(M), and use Lemma 2.1.3. (see [1, Theorem

9.6]).

Corollary 2.1.15. The following statements are equivalent for a module M.
€)) M is a CS-module (i.e. cM) € DM ).
¢19) CM) c LiftX(M) for all right R-modules X,

) CM) € Lift (M) for all X &€ C(M).

Proof. Apply Lemma 2.1.13 to A = C(M).
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Example 2.1,16. Let p be any prime integer and let R denote the local ring

Z{p. Let M denote the Z-module (Z /Zp)®Q. Then

@) M is an R-module.

@ K& M) if and only if K€ D(M) or K =R(l +2Zp,q) for some
non-zero element q in @.

i) CM) < LiftM(M), but M is not a CS-module,

Proof. (i) Let MI = /Zp Y®0 and M2 = 0aQ, so that M is the direct sum
MlaaM2 of its submodules Ml, MZ. The ring R is the subring of @ consisting of
all rational npumbers s/t such that s,t&€Z, ts 0 and t is coprime to p.
Note first that for any element m in M and any s,t € Z such that p does not
divide t, there exists a unique element m’ € M such that tm’ = sm, and we
shall denote m’ by (s/t)m, In this way M is an R-module.

(ii) Let q €0 and K =R( + Zp,q). We show first that K & g(ZM)' Note
that K is a uniform submodule of M, Suppose that N is a submodule of M such
that K € E(N). Let x € N. Then U=1Zx + Z(l1 +Zp,q) is a finitely generated .
uniform Z-module, and hence U is cyclic (see [7, volume I, Theorem 15.5]). '
Suppose that U = Z{a + Zp,b), where a € Z, b’ € Q. There exists n €Z such
that (1 + Zp,q) = n(a + Zp,b). Note that 1~ na € Zp, and hence n is coprime

to p, and (@ +Zp,b) € R(1 + Zp,q) =K. Thus x € K, It follows that K = N.

Hence K € C(M). " '
Let L € C(M) and suppose L = M, Note that M has uniform dimension 2 and
bence L is uniform (see [6, Lemma 1.9]), We shall show first that L is an
R-submodule of M, Let
L'={m&M: tme&l for some t €Z, t coprime to p}.
Then L' is a submodule of M containing L, in fact L’ = RL. ¥ 0 m &L’ then

tm € L for some t &7, coprime to p, and hence tm % 0, It follows that

L€ EQL'). Thus L =L’ and L is an R-submodule of M.
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Next we show that L =0, M, Ml, M2 or R(1 +Zp,q) for some q € Q,
Suppose that L %= 0, M, Ml or Mz' Note that Ml and Mz are both uniform, so
that L is not contained in either M1 or Mz' Thus (¢ + Zp,d) € L for some
¢ €Z, coprime to p and 0 ¢ d € Q. Without loss of generality we can suppose
that ¢ = 1. Because L is an R-submodule of M, R( +Zp,d) & L. But
R(1 + Zp,d) € C(M), and so L = R(1 + Zp,d). This completes the proof of (ii).

(iii) Note that K = R(1 + Zp,1) is a complement in M. Suppose K € DM).
Then M=KeL for some L= M., Let (a+Zpb)EL @€Z, b=m/n ),
Thus p(a + Zp,b) = (0 + Zp,pm / n) € L. Therefore

n{0 + Zp,pm / n) = (0 + Zp,pm) = (0 + Zp,0),
because KN L =0, Hence npb=pm =10 gives b=0, so that if x € L then
X =(y+Zp,0) (y € 2). Thus L < Ml which is simple, so L = Ml' Now
M= K@Ml. Hence
X E}ﬁ”M; aMZEO = pll.

Then  there exists an’ ¢lement (c +Zp,d) e K such that
(1 +Zp,1y=p(c +Zp,d) = O +Zp,pd) (ce€Z, de&a. Thus 1 €Zp, =&
contradiction. Hence K & D(M). Thus M is not a CS-module. To show that ‘
CM) LiftM(M), it is sufficient to prove that for any non-zero ¢ € @ and any
homomorphism @ : R(1 + Zp,q) > M, @ can be lifted to an endomorpbism 8§ of M.
Let X =R(l + Zp,q). Suppose that ¢(1 +Zp,q) = (a + Zp,b), for some a € Z,
b & Q. Define a mapping §: M~>M by

6(c +Zp,d) = (ca + Zp,db/q) (c€Z,d )
It is clear that & is well defined. It cam be checked that §: M->M is a

homomorphism: and that ¢ is the restriction of § to K, Thus K € Lifthd(M).

Hence, if M is a CS-module, then cM < LiftM(M), but not conversely.
Even if M is a finitely generated module which satisfies C(M) & LiftM(M), M

need not be a CS-module. As we see in the next example.
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Example 2.1.17. Let R =1Z. Any finitely generated torsion-free R-module is

2 CS-module, but there exists a finitely generated R-medule M such that C(M)

is not contained in LiftM(M).

Proof. Let M’ be any finitely generated torsion-free R-module. Let N be a
submodule of M’. Let N =< K = M’ such that K/N is the torsion submodule of
M’ /N. Then M’/K is finitely gencrated torsion-free, hence free, so
Ke DM, Also N€ E(K) because K is torsion-free and K/N torsion. Thus
M’ is a CS-module.

Now, let p be any prime, M1 =17 |Zp, M2 =7 and M = MleBMz. Let 1. denote
the cyclic submodule Z({1 4+ Zp,p) of M. Since, as an abelian group, L is
infinite cyclic, it follows that L is a uniform Z-module. | Suppose that K is a
submodule of M and L € E(K). Then K is uniform, and hence cyclic, because K
is a finitely generated abelian group. There exist elements a,b &€ Z such
that K = Z(a + Zp,b). Now there exists n € Z such that

(1 + Zp,p) = n(a -+ Zp,b)

and hence 1-na€Zp and p=nb. It follows that n =1 or -1, and hence
L =K. Thus L € C(M).

We claim L ¢ LiftM(M). Suppose not. Define ¢ € HomR(L,M) by

p(1 + Zp,p) = (O,1).
There exists § € Hom, (M,M) such that & ] =9
Suppose 6(1 + Zp,0) = (axl + Zp’b1>’ 800,1) = (82 4+ Zp,bz), for some
a,a, bl, b2 e Z. Then p(a1 + Zp,bl) = { implies b1 = (. Hence
(0,1) = (1 + Zp,p) = 6(1 + Zp,p) = (ax + Zp,0) + p(a2 + Zp,bz),

and this implies 1 = pbz, a contradiction. Thus L € LiftM(M).

Proposition 2,1.18, Let ?ZM = MlaaM2 where Ml is torsion and M?. is infinite

cyclic., If M satisfiess C(M) & LiftM(M) then M1 = pM1 for each prime p.

23




Proof, Let M2 = Zmz = 0 for some m, & Mz' Suppose M1 3 le for some prime p.
Let m, € Ml, m & le. Tet K = Z(ml,pmz). Suppose K € E(L) for some L < M.
Then for any o € Z,

o(m l,171112) = (nm 1,npmﬁ) =(0,0) & nm L= 0, npm, = 0 & n=0 (M2 is infinite
cyclic).  Therefore K is infinite cyclic, and hence K is a uniform Z-module.
Thus L is a wuniform Z-module. et x€L and a= (ml,pmz). Then
K +Zx = Za -+ Zx is finitely generated, so that KX +Zx s L, and is a direct
sum of cyclic modules. But K + Zx is upiform, hence K + Zx is cyclic. Then

Za & K + Zx = Zy for some y € M. Suppose y = (ml',kmz) for some m ‘' & Ml and

1
k€ Z. Then a = sy for some s € Z, Hence
(m,pm ) = s(m, *km ),

which gives m L= sml’, pm, = skmz. Since M2 is infinite cyclic, s = 1 or
k=41, If k=41 then s = 4p so that m = ipml' e le, a contradiction,
Thus s = £1. Therefore y € Za and hence x € Zy € Za, i.e. L € Za =K. Hence
K=Lso K& CM).

Now define a homomorphism ¢ : K> M by

g(m ,pm ) = (0,m,).

Suppose that ¢ can be lifted to &: M->M. - Then G(ml,O) = (u,0) for some
u e M1 and 6(0,1112) = (v,tmz) for some v € Ml’ t € Z. Hence

(0,in 2) = :p(ml,pmz) = B(ml,pmz) = 0(m],0) + pH(O,mZ) = (1,0) + p(v,tmz).
Then we obtain, 0 =u + pv, m, = ptmz, so that 1 =pt, a contradiction.

Therefore @ cannot be lifted. It follows that M L= le for each prime p.

2.2. Lifting submodules with (Cz) or (C3)

Let M be a module and A(M) a non-empty collection of submodules of M.

Let n be a positive integer,
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Notation.

A'(M) = {N =< M : there exists K € A(M) such that K = N}, and

APM) =L + L+ .. +L L €AM for Isisnand L +L +..+L
is a direct sum}.

Note that, the condition (Cz) (respectively (Ca)), becomes D'(M) € D(M)

e

(respectively 2(2)(1&4) S D(M)) with the above notation.

Proposition 2.2.1. The following statements are equivalent for a module M.

@) M has (Cz)‘
(i) D'M) € LiftX(M) for all right R-modules X.
(i) D'M) < LiftX(M) for all X € D'(M).

(ivy, D'M)c LiftM(M).

Proof. (i) « (i) « (). By Lemma 2.1.13.

(iii) = (iv). OQbvious.

@iv) = (). Let N’ &€ D'(M). Then there exist N &€ D(M) and an
isomorphism ¢ : N’ >N. By Lemma 2.1.11, LiftM(M) c LiftN(M). Thus, by (iv),
N’ e LiftN(M), and there exists § & HomR(M,N) such that 8 | N =P For any
m €M, 6(m) €N and hence 8(m) = ¢(n’) for some n’ € N’, Thus 6(m) = 6(n’)
and so m-n’ € kerh. It follows that M = N’ + (ker@). But
N’ N (kerf) = kerp = 0. Thus M = N’@(kerf).  Therefore, N’ € D(M). It

follows that D’(M) € D(M).

Proposition 2.2.2, The following statements arc equivalent for a module M.

't)) M has (CS)'
@ DY) € Lift (M) for all right R-modules X,
i) DY) € Lifey M) for all X & DD,

@ bpPm < Lifty (M)
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Proof, (i) « (ii) <« (iii). By Lemma 2.1.13.
(iii) = (iv). QObvious.
(iv)y=(@{). Let X, L & DM) with KNL =0, Let n:KeL->X denote the
canonical projection. By (iv) and Lemma 2.1.11,
KeL € fotM(M) e fotK(M)

and hence there cxists 8 € HomR(M,K) such that & | n. It follows that

KoL ~
M = Ko(kerd). Now (L) = n(L) = 0 implies L & kerf. But M =LeL’ for some
submodule L. of M, Thus kerf = L@ (kerf N L*), and hence M = K@eL @ (kerd N L’).

It follows that KeL & D(M). Hence M has (Cs)'

Note. Suppose M has (C), i.c DPM) € DM). Then D®M) € DM for all
positive integer n. For, suppose n =3 and Li € DM) (1 =i=n) with
Ll + ...+ Ln a direct sum. By induction Ll + ...+ Ln—l € D(M) and hence

L +..+L & DM < pow.

Lemma 2.2.3. Let X be any right R-module, Then the following statements are
equivalent for a module M.
® P < Life o).

@ £ € Lift (M) for all n = 2.

Proof. (ii) = (i). Obvious.

(i) = (i). Suppose (i) holds. Let k=3 and Ni €CM (I=is<k
such that N1 + ...+ Nk is & direct sum., Let N= N1 + ...+ Nk and let
p e HomR(N,X). There exists N’ € C(M) such that N2 + ...+ Nk € E(N’). By
induction, N2 + ...+ Nk € LiftX(M) and hence there exists o & HomR(M,X) such
that

a(m) = p(m) (m & N2 + ...+ Nk).

Now N1 N N’ =0, because Nl N (Nz + ..+ Nk) =0, so we can define
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B e HomR(NleaN’,X) by
Bm+n’)=phn) +al’) @& Nx’ n & N').
Then, by (i), there exists J € HomR(M:X) such that & | N1 oN’ = B.
For any niEN(lsisk),
¢5(nl + .0+ nk) = ﬂ(nl + ...+ nk) = q)(nl) + af(n2 + ...+ nk)

== qD(nl) + qz(n2 + ...+ nk) = ;p(nl + ...+ nk).

Thus & | ¢ = 9. It follows that N & Lift, (M). Hence €M) & Lift (M),

Lemma 2.2.4. Let K = MR‘ Then M /K is nonsingular if and only if m € M,

Ee E(RR) and mE < K impliesm € K.

Proof. Suppose M/K is nonsingular, Let m € M and mE < K where E € l;Z(RR).
Thus (m + K)E=0 in M/K, Hence m+ K =0 It follows that m € K.
Conversely, suppose that mE = K implies m € K. Let x € ZM/K). Then
x =y + K for some y € M and xF = 0 for some F € _I_E(RR). Thus ¢y + K)F = 0 and
hence YFE+ K =0 in M/K. It follows that yF < K so that y &€ K. Therefore

x=y+K=0in M/K.

Lemma 2.2.5, [28, Lemma 2.3] Let M be a nonsingular module and K = M. Then

K& g(M) if and only if M /X is nonsingular.

Proof. Suppose M /K is nonsingular., Let N be a submodule of M such that
K& EN). Then N/K < Z(M/K) so that N/K =0, and hence K =N. Thus
K € C(M). (This part is true for any module). Conversely, suppose M/K is
not nonsingular, There exists m &€ M, m & K such that mE s N for some
Eg E(RR)‘ let r €R, k € K and consider mr + k. Let

F={seR : rs €E}.
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Then F € E(RR) and (mr + K)F < K. If mr + k = 0 then (mr + k)F 5t 0 and hence

KN @r+ kR 0. Thus K € EmR + K). Thus K & C(M).

Note that C(M) € LiftM(M) does not imply g(z)(M) c LiftM(M) (see Example
2.1.16).

Lemma 2.2.6. Consider the following conditions for any submodule N of a
module M :
@  60M) =X for any § € Homp (M,E(X)) with 6(N) = X,
G Ne LiftX(M).
(iilf)y 6M) =X for any 8 € HomR(M,E(X)) with 6(N) = X and
67'(X) € Lift (M),

Then, () = (i) = (iii).

- Proof. (i) = (). Let p & HomR(N,X). Then there exists 8 € HomR(M,E(X))
such that & | N = i®, where i:X-E(X) is the inclusion mapping. Thus
6(N) = X. By hypothesis, 8(M) <= X and hence § € HomR(M,X). It follows that
N & Liftx(M).

(i) = (). Suppose (ii) holds. Let 8 & HomR(M,E(X)) such that
N = B—I(X) € LiftX(M). There exists 8’ € HomR(M,X) such that &'(k) = &%)
ke 6’ x). Consider 6 -8 : M= E(X). If (8- 6')M) 0 then
@G-8 NX =0, and hence there exists 0% x &€ X, m&M such that
X = (8- §")(n) = 6(m) - 6'(m). Thus 6Hfm)=x+ 6'(m) € X and hence
m e Gwl(X). In this case, #'(m) = 6(m), so that x = 0, a contradiction. Thus

(8- 6'XM) = 0 and hence (M) = ‘M) s X,
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2.3. CLS-modules.

Even though it is not the first aim of this work it will be interesting
to work on CLS-modules as a class of modules which contain the class of

CS-modules.

Definition 2.3.1, Let M be a right R-module and N be a submodule of M, Then

N is a closed submodule of M provided M/N is nonsingular, Note that the
concept “closed submodule” has been used by some other authors, For example,
according to [21], complement and closed submodule are the same. However, in
{8], closed submodule is in the sense of complement submodule as in this

thesis.

Let CL(M) = {N : N is a closed submodule of M}. Then the following

provides the link between CM) and CL(M) for a module M.
Lemma 2.3.2. Let M be a module. Then

@ CLM) € CQM).

(i) For M nonsingular, g_'I:(M) = C(M).

Proof. Qbvious by Lemma 2.2.5.

Observe that for a module M, C(M) € CL(M) is not true in general as shown

in the following example.

Example 2.3.3. Let K be a field and V be a vector space over K such that

dimKV = 2. Let

29




-l o {5 1] reren)

Hence clearly R is a commutative ring with respect to the usual matrix

operations, Then =C—-(RR) is not contained in _(_I__L(RR).

o Vv 0 Kv
Proof, Let E = o o |’ Then EE!!._;(RR). Let Fv= 0 0 vev),

Suppose that G =< R such that Fv € E(G). Then Fv € E(GNE) and hence

k w |

Fv=GﬂE. Let [:0 K

€EGforsomeweV,0xke& K, Letx &V such that

k w ][0 (1/K)x 0 x
o k|0 o |T|oo |E€GNE

Therefore x € Kv, a contradiction. Thus k=0. Hence G < E so F“r =G, It

x & Kv. Thus

follows that F_ € CRp) for all ve V. But E* =0 so E* < F . However E is

R

not contained in Fv‘ Thus Fv & %(RR)'

Definition 2.3.4. A module M is called a CLS-module if every closed submodule

of M is a direct summand of M.

Clearly, over a commutative integral domain R, any torsion module M is a

CLS-module. Moreover,

Corollary 2.3.5. (i) Every CS-module is a CLS-module. In particular, any

injective module is a CLS-module.

(it) Every nonsingular CLS-module is a CS-module.

Proof. By Lemma 2.3.2.
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Lemma 2.3.6, Any direct summand of a CLS-module is a CLS-module.

Proof. Suppose M = KoK’ LetL € CL(K). Then LeK’ € CL(M), because
M/(J.eK’) =(KeK")/(LeK')=K/L.
Thus, LeXK‘’ & DM), so that L € DM) and hence L & D). Thus K is a

CLS-module.

Proposition 2.3.7. A module M is a CLS-module if and only if there exists a

submodule M’ of M such that M = Zz(M)eM’ and M’ is a CS-module.

Proof. Suppose M is a CLS-module. Then Zz(M) € D(M), so that M = Zz(M)eM’
for some submodule M’ of M. Note that M’ is nonsingular and, by Lemma 2.3,6,
a CLS-module. Thus M’ is 8 CS-module by Corollary 2.3.5.

Conversely, suppose M = Zz(M)@M' for some CS-module M'. Let K € CL(M).
Then ZM) < K and hence Zz(M) s K, Thus K = ZZ(M)eB(K N M. Now
M/K=M'/XNM’), so that KNM' & CLM').  Thus by Corollary 2.3.5,
M' =X NM")DaK' for some submodule K’, Hence M = Ko K’, It follows that M is

a CLS-module.

Note. In Proposition 2.3.7, M’ is Zz(M)—injective. For suppose N is a
submodule of ZZ(M) and @ : N> M’ a homomorphism. If x € N N Z(M) then xE =0
for some E € E(RR), so that @X)E = 0 and hence @) = 0, because M’ is
nonsingular. Thus ¢(IN N ZM)) =0. If y€N then yF &€ N N ZM) for some
Fe E(RR), so that @(y)F =0 and hence o(y) =20, Thus @(y) =0 for all

y €N, Thus ¢ =0, and @ can be lifted to ZZ(M).

Theorem 2,3.8, Suppose a right R-module M is a direct sum M!&)M:Z of

CLS-modules M ) and Mz’ such that M1 is Mz-injective. Then M is a CLS-module.
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Proof. Let N € CL(M). Then M/N is nonsingular. Now,

Ml/(N N Ml) = (Mi + N) /Nimplies N N Ml € CmL(M;)' Thus N N Ml e E(Ml) and
hence N N Ml € D(M). It follows that N N Ml € D(N). Hence N =N N Ml)eK for
some submodule K of N. Let z M- Mi (i=1, 2) denote the canonical

projections, Consider the diagram

«Q

0 > K
ﬂl
Ml

llK'

> M2 exact

where « = z, | K and B == Note that « is a8 monomorphism and M1 is
Mz-injectivc. Thus there exists a homomorphism ¢ : M2~> Ml such that ga = £,

Let L={x+ox : x €& Mz}' Then it can easily be checked that L is a
submodule of Mand L = Mz‘ Moreover, M = Ml oL, Ifk € Kthen k = m + m, for
some mi & Mi (i=1, 2), Then

m = f) = gak) = ¢(m,)

and this implics k = Q)(mz) + m, € L. Thus K< L. Since M/N is nonsingular
it follows that L /K is nonsingular., Hence K &€ C____L(L). But L = Mz’ so that L

is a CLS-module and K € D(L), and hence N € DM). It follows that M is a

CLS-module,

Corollary 2.3.9. Suppose a nonsingular right R-module M is a direct sum MleMz

of CS-modules M v Mz’ such that M . is Mz-injective. Then M is a CS-module.

Proof. By Theorem 2.3.8 and Corollary 2.3.5. (see [15, Theorem 11).

Cosollary 2.3.10. Suppose a right R-module M is a direct sum Mlesz of
CS-modules Ml’ M2 such that M | is Mz-injectivc and M2 is nonsingular. Then M

is a CS-module,
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Proof, It is clear that Zz(M) =Z:2(Ml) € E(MI). Thus Ml =Zz(M)<BMl' for
some nonsingular submodule M l’. Now

M=ZMeM oM,
Note that Ml’ is Mz-injcctive, Ml’ is a CS-module and Ml'eaM2 is nonsingular,
By Corollary 2.3.9, Ml'eaM2 is a CS-module. But, by [15, Theorem 1], Z2M) is
Ml‘-injective. Thus Zz(M) is (Ml'eMz)-iujcctive. Again, by [15, Theorem 1],

M is a CS-module,

Remark, Suppose M =M leMz, where M . and M2 are CS-modules such that M . is

Mz-injcctivc. Then M is a CS-module if and only if Zz(M) is a CS-module.

Proof. The necessity is clear by [15, Theorem 1]. Conversely, suppose that
Zz(M) = Z2(M 1)@Z2(M2) is a8 CS-module. There exist submodules Ml' of Ml and
Mz’ of M2 such that

M = Zz(Ml)lel and M2 = Zz(Mz)mle'
Then M = [Zz(Ml)eaZz(Mz)}@[Ml’ eMl’}. By [15, Theorem 1] and the fact that M}
is Mz-injcctive, we know that Zz(M l)eZz(Mz) is (Ml' $Mz’)~injective. Also
Ml‘ eMz’, being nonsingular, is a CS-module. by Corollary 2.3.9. By [15,

Theorem 1] again, M = MliaM2 is a CS-module,

Example 2.3.11. Let M be the Z-module (Z /Zp)®Q. Then M is a CLS-module

(but not a CS-module). Also M satisfies (Cz)'

Proof. Recall that M is not a CS-module (Example 2.1.16). Clearly
Z/Zp)e0, M € CL(M) and 000 & CL(M). Let N =R(l +Zp,q) (0 3* q € Q) and R
be as in Example 2.1.16. Suppose that N & CL(M). Let m =(1+Zp,0). Then
m & N. Therefore 0 #m + N &€ M/N. Now

p(m + N) = p(1 + Zp,0) + N = (0 + Zp,0) + N = N.
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Thus p(m + N)=0 in M/N ie, pe€ £(m + N). Since ,{,(m +N) e E(ZZ),
m+NeEZM/N) =0, & contradiction. It follows that N ¢ CLM). Thus, the
only closed submodules of M are (Z/Zp)®0 and M. Thus M is a CLS-module,

Let 0L e Q(M). Suppose L # M. Then L is uniform because M has
uniform dimension 2, By Example 2.1,16, L =(Z/Zp)®0, 0eQ, M or
L=R(1+12Zp,q) for some 0+q&€Q, where R is the local ring Zp. Now
M=LeL’ for some submodule L’ of M. Suppose L =R + Zp,q) for some
0#qe€aq. Then pLNL’'=0, so that R@O,pq) NL’=0 and hence
L'N@OeQ)=0. Thus L’ embeds in Z/Zp which is simple. It follows that
L' =@ /Zpye0. Therefore, M =LeL’ = /Zp)eRq, a coniradiction becauvse
Q@ #Rq. Thus L=M, (Z/Zp)e0, or 00, Let ¢:L >M be a monomorphism, If
L ={/Zp)®0 then @(L) is simple so that o(Ly=L. If L =0eQ then @) is
torsion-free injective. Let (a + Zp,b) € p(L) aeZ, be, Then
(a +Zp,b) = p(x + Zp,y) for some XxXeZ, y € Q. Thus
(a +Zp,b) = (0 + Zp,py). It follows that a =0 so that ¢(L) s L. However, L
is uniform and @(L) is injective, so @(L) =L. If L=M then
(L) = g{(Z / Zp)®0) + p(00Q) = @Z /Zp)eQ =L, Thus ¢@L)=L for every

L € D(M) and monomorphism ¢ : L M. Thus M satisfies (Cz)'

Lemma 2.3.12. The following statements are equivalent for a module M.

@) M is a CLS-module.
(i CLM) & LiftX(M) for all right R-modules X,

(i) CLM) < LiftX(M) for all X € CL(M).

Proof. Apply Lemma 2.1.13 to A = CL(M).
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Chapter 3
CERTAIN RIGHT CS-RINGS

This chapter consists of some results on right CS-rings. Some results,
related to Kamal-Muller’s Theorem (see [15, Theorem 1]), will be given for

the nonsingular case.
3.1, Right CS-rings.

Let R be a ring and M a unital right R-module. Recall that, the ring R

is a right CS-ring provided RR is a CS-module.

Notation. Let S, T be rings, M a left S-, right T-bimodule such that SM

is faithful. We can think of S as a subring of EndM because the mapping

T)’
@8> End(MT) given by
p(s)(m) =sm (s € §, m € M)

is a ring monomorphism. Let

S M 5 m
R = 0 T ={ 0t :sGES,tGT,m(‘—_‘M}.

Then R is a ring with respect to the usual addition and multiplication of

matrices.
Lemma 3.1.1. I€& E(RR) if and only if there exist N € :.E-(MT) and

0 N
Ee E(TT) such that 0 E <L
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0 N s m
Proof. ( <« ) Suppose 0 E <I LetQO#r= 0 t ERGBES, teT,

m € M), Suppose s # 0. Therefore sM s 0 and hence sm* ¢ 0 for some m’ € M.

s m 0 m' 0 sm’
o ¢lloo|=|o o |ER

But there exists 0 # t' € T such that 0 £ (sm‘)t’ € N, Thus

0 sm’ 0 0 0 (sm’)’ 0 N
0 0 o ¢/ = 1o 0 < o 0 < I. It follows that

tRNI =0,

0 m
Suppose s =0, Then r = 0 t |’

Consider

Case 1. m % 0. Therefore 0 3= mt” € N for some t* € T. Thus

0 m 00 0 mt*
0 t 0t | {0 ttr |
0 mt*

0 OJEIsorRﬂI-‘#O.

Now, if tt* = 0, then I:
If tt 5= 0 then 0 # tt*t*’ € E for some t*’ &€ T. Thus

0 mt* 00 0 mt*t*’
0 tt' 0 ta: = 0 tt,t,, EI. Agam arI?'-‘Q.

0 0
0 t

_ _ 0 0 0 0 0 ©
t €T such that 0 #tt €E so that 0 t o t1 1o T €l

Hence R NI 0. It follows that 1 € ER

Case 2. m =0, Therefore r= |: J, whére 0 #t &€ T. Thus there exists

R)'

( = ) Suppose I € ]=5(RR). Define
0 m

00
N={me&M: |:0 O}GI} and E= {te&T: I:o t]el}‘

Then clearly N = MT and E = TT‘ Let 0% A< MT' Let 0 a & A, Then

0 a 0 a
[O O]R s R. Since 1 € E(RR), |:0 OZlR NIs0. Therefore there exists
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0 a 0 at
Oa&ael:o O:anI' Nowa=[0 O}forsomeO;EteT. Then at € A

and hence 0 # at € A NN, It follows that N € E(MT).

0 0
Now let 0B =<T... Let 0%be&B, Then[ }RsR. Thus

T 0 b

00 0 0 00
0 b RNIx#0 LetOxpB e 0 b RNI. Then g = 0 bt for some

O0#£t&eT, SincebteB, 0#bteTNE, ThusEEE(TT).

Lemma 3.1.2. Suppose MT is nonsingular and sN =0 for some s € § where
N = MT' Then N € E(MT) implies that s = 0.
Proof. Let 0 # m € M. Then mE < N for some E € E®R). Therefore smE = 0.

Hence sm = 0, i.e. sM =0, Thus s = 0.

Corollary 3.1.3. R is right nonsingular if and only if MT and TT are

nonsingular.

5 m

Proof. ( < ) Let [:0 J & Z(RR). By Lemma 3.1.1, there exist N &€ E(MT), .

t
E ¢ E(TT) such that sN =0, mE =0, tE =0, Thus m =t =0, and, by Lemma
3.1.2,s=0,

( = ) Let meZ(MT).

0 m S M S M
Then E € E(’I‘T). Note that o 0 0 R = (, Hence 0 E is contained

0 m 0 m
in the right annihilator of , so that S Z(RR) =0 (Lemma

Let E denote the right annihilator of m in T.

0 o 0 0

3.1.1), It follows that m = 0, i.e M., is nonsingular.

T
Again let x € Z(TT) and E denote the right annibilator of x in T.

0 0 S M S M
Hence E € E(TT). Note that 0 x 0 E = (0, Hence 0 R is




0 0 0 0
contained in the right annihilator of |:0 x}’ so that [0 x:‘ € Z(RR) = (),

It follows that x = 0. Thus TT is nonsingular.

Lemma 3.1.4. Suppose R is a right nonsingular right CS-ring. Then

(i) For every K € g(MT) there exists an idempotent e in S such that
K = eM,

(i) T is a right CS-ring.

Proof. (i) Let K € C(M Let

T)'
X={s€S:sMsK}sSS.

X K
LetA=[0 O:ISRR' LetaER,IE_E__(RR) such that ol s A. Then

s m
o= |:0 ¢ jl for some s €8, m €M, t € T. Moreover, by Lemma 3.1.1, there

0 E

0 sN+mE ON
0 tE =« 0E = al s A,

It follows that sN + mE < K, tE = 0. By Corollary 3.1.3, t =0, Also mE <K

0 N
exist N € E(MT), Ee E(TT) such that l; tl < I. Thus

implies m € K (Lemma 2.2.4 and Corollary 3.1.3). Let m € M. Since N € E(MT)
it follows that mF = N for some F € E(TT). Thus smF < sN s X, so sm €K

(Lemma 2.2.4). It follows that sM < K. Hence a € A and A € CR,) (Lemma

Y

2.2.4). By hypothesis, A € DR Thus there exists e € X, k € K such that

R
¢ k )
€8 =1 4 o | then #=5" and A = fR. Now

/S'=,6’2 z='e>2=e,k=el:.

Also, for every x € X, vy € X,
Xy e k X Yy
00| oo 00
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implies x =ex, y =ey. In particular, K = ¢eK. Also, ¢ € X implies eM =< K.

It follows that K = eM.

0 0
(ii) LetGeg(TT). LetB=|:0 G]sRR‘ Let « € R and ol < B for

s m

0 t:l for some s€8, meM, t€T and

some I € 1‘:‘.__(RR). Now a = |:

0 N ¢ N
[0 E:' <1 for someNEE(MT),EG“E;(TT). Thus al:O E}SaIsBimplies

sN + mE =0, tE = G,
It follows that m=0, te&G@G, Also, if m&M then mF=N for

some F € E(TT) and smF < sN =0; thus sm =0, Hence sM =0 and so s =0.

Thus « € B and Be CR

R 0 f

0 0
There exists f € G such that y = I: ' :I is
idempotent and B = yR, Then f =f and G = fT. It follows that T is a right

CS-ring.

Lemma 3.1.5. Let R be a right nonsingular right CS-ring. Then M is an

injective right T-module.

Proof. Let A be a right ideal of T and ¢ : A »-M a homomorphism. Let

el

Then F is a right ideal of R. There exists an idempotent ¢ € R such that
) m

0 t } for some s €S, m &M, t &T. There exists

F & E(eR). Now ¢ = l:

0 N
0B

o e

0 sN
Thus [0 0 J =< F and hence sN =0, By Lemma 3.1.2, s =0,

E € E(R) such that ¢E < F. Now [ } = E for some N EE(MT), B e E(TT).

In particular,
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Now for each a € A,

0 @(a) 0 m 0 ea) 0 ma
0 a “lo ot 6 a |~ |lo0o tal

so that @(a) = ma., It follows that MT is injective.

Lemma 3,1.6. Suppose T is a right nonsingular right CS-ring and M‘I‘ is

nonsingular such that for every K & _(__I(MT) there exists e =e¢> €S such that

K=eM. Let A& _(__J(RR), then there exists a = a2 € A such that A =aReB,

OM 0M
B =< 0T and B N 00 = Owhere B = (1-aR N A.

Proof. Let A € C(R Define

0 m
K={meM: {:0 O]EA}.

Then K < MT. Also define

R)'

X={se8: M=K}

Then X =< S,. We prove first :

S
X K X M
00 |ZA=| o T .
Let s € X, Then

oolloxl-Lo B0 5] =

s O X K
implies 0 0 € A (Lemmas 3.1.1 and 2.2.4). Thus 0 o = A. Next
$ m
let a = 0 t € A. Then
0 sM O0M
0 o |% o0 | =4
implies sM = K, so § € X. This proves (1).
Next we prove :
K e CMp) @)
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Let m € M such that mE < K for some E € E(TT). Then

R

0 m
implies |:0 O} € A (Lemmas 3.1.1 and 2.2.4), so m € K. By Lemma 2.2.5,

Ke g(MT)
Next we prove :

There exists e = e2 € S such that X = ¢8, K = eM 3
By hypothesis there exists ¢ = e?es such that K =eM. Thus e € X,
Let s € X. Then sM s K. Let m € M, Then sm = em’ for some m’ € M and hence

!’ 2 1] ’
sm=¢m’ =e¢em' =¢lem’) = esm,

so that (s-es)m =0, Thus (s—es)M =0, and hence s =es. It follows that

X =eX = ¢eS =X, s0 that X = ¢S. This proves (3).
e 0 2
Let a= o 0 €A, by (1). Note a=a. Thus R=aRe(l-2)R and
hence A = aReB where B=AN(1-a)R =< RR' Let § € B. Then

1-¢ 0 5 m (1-e¢)s (1-e)m
B=1 9 1|lo ¢ |=] o t

for some s€8, meM, teT. Since f€A, (1) gives (1-e)s€X

0 M
so that (1-¢)s=e(l-¢)s=0, by (3). Thus g € I:o T } . Suppose

0 M
/S'Gl:o 0]. Then t=0, and B & A implies (1-em €K, so

0 M
(l-em=e¢(l-em =20, by (3. Thus §=0. It follows that B = \:0 T:‘

0 M
and B N 1:0 0 :l = 0. This completes the proof of Lemma 3.1.6.

Theorem 3.1.7.  Suppose that M is faithful. Them R is a right nonsingular

S
right CS-ring if and only if,

(i) the right T-module M is nonsingular, injective,

(ii) T is a right nonsingular right CS-ring, and
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(iii) for every K € g(MT) there exists an idempotent ¢ in S such that

K = eM.

Proof. The necessity follows by Corollary 3.1.3 and Lemmas 3.1.4, 3.1.5,

For the converse suppose (i), (if), (iii) hold. In view of Lemma 3.1.6,

it is sufficient to prove that if B is a right ideal of R such that

0OM 0O M
B= 0 T and BN 0 o = (0 then B is essential in a direct summand of

RR' Let

0 m
X={mneMeT: | | €B}

Then X is a8 T-submodule of MO T with X N M = 0. Let LA MeT > M, m, ¢ MeT>T

denote the canomical projections. Note that U | B’ B - T is a monomorphism.

Consider
7l g
0 > B > T
j /
n | Ve
1'B v
vd
M
Because M., is injective, there exists a mapping ¢ : T -> M such that

T
WtleleIB' Let

(7] e

Then E is a right ideal of R. Also, for any b € B,
0 =x (b) 0 pn_(b)
b = 1 = 2 e E
0 nz(b) 0 :,rml(b) )

Because T is a right CS-ring, there exists an idempotent ¢ in T such that

0 @)
f=1, . )

Then f is an idempotent in R. For any a € A, a = ea and heance

A = nz(B) e E({'.T). Let
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0 o) 0 ¢Ce) || O o(a)
0 =a Tlo e 0 a )
Thus B = fB. There exists C € E(T) such that eC =< A, Let ¢c € C. Then
0 g@(e) 0 M 0 gec)
0 e 0 ¢ “lo0 ec € B.
It follows that B € E(fR). Thus R is a right CS-ring.
Corollary 3.1.8. Let K be a field and V a non-zero vector space over K. Let

SV
0 K

S = EndK(V), the ring of K-endomorphisms of V. Let R = [ :I Then R is &

right nonsingular right CS-ring with right uniform dimension 1 + dimKV.

Proof. Let U € C(V Then V = Ue U’ for some U’ =< VK‘ Let p : V > U denote

X"
the canonical projection. Then p = p2 €S and U =pV. The other hypotheses
of Theorem 3.1.7 are obviously satisfied. Thus R is a right nonsingular

right CS-ring.

o0v oV 00
Letl = 0K .Thcnle‘_g:(RR),I= 00 |® o0k and

u-diml = dimKV +1, If A1$A2$A3$ ..., i5 a direct sum of non-zero right ‘
ideals of R then A‘l NI=+#0@{=1) and bence -

(Al N I)qa(Az N I)e(A3 NDe...
is a direct sum of non-zero submodules of IR' It follows that

u-dimR = u-diml = 1 + dimKV.

S Vv
Note, Take K, V, S as in Corollary 3,1.8 and R = [io K‘J'
G If dimKV =n<o then R is a right nonsingular right CS-ring with
right uniform dimension n + 1,

(i) If dimKV = o then R is a right nomsingular right CS-ring which

does not have finite right wniform dimension.
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Example 3.1.9. Let K be a field., Set

|

co R
oR’A

RARR
L 1

Then R is a right CS-ring.

K K
Proof. Take T = [ 0 K} , M=[K K] and S =K, Then T is a right nonsingular

right CS-ring, M is a right nonsingular, injective, uniformn T-module, Thus by

}. Then

Theorem 3.1.7, R is a right CS-ring.

oo R
oo
RRER

Example 3.1.10. [4, Example 5.5]. Let X be a ficld and R = [

R does not satisfy (Cz)’ but it is a right CS-ring.

K K
Proof. Take S=K, T= {0 K:| and M=1[0 K}]. Then T is a right

. "* e

O

nonsingular right CS-ring and MT is a simple, injective module.” Thus again

by Theorem 3.1.7, R is a right CS-ring,

R). Then the mapping which is '

0 000
k |, is an isomorphism i.e E = 00K |.
0 000

000
Let E = 000 |R. Then clearly E € D(R

g

(el R

defined by l:

However [

KKK
Example 3.1.11, Let R = 0 K 0 {. Then R is not & right CS-ring.
0 0K

0
0
0
0
0
0

OO

K 0

0 K:l Then T is semisimple ring and

Proof. Take S =X, M=[K K] and T = [

MT is a nonsingular, injective module. Suppose R is a right CS-ring. Now
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g(MT) = {[K 0], [0 K], [00], [KK]}. Let L=Ka&0, Then L = e(K@K) for some
e = ez € K (Theorem 3.1.7). But e =0 or 1, 8 K is a field. Hence L =0 or

KoK, a contradiction.

In the remainder of this section unless otherwise stated R is a general
ring and S & subring of R such that S = ¢Re for some idempotent e of R with
R = ReR, For example R = Mn(S) for any 1 = n, Let M be a right R-module.
Then Me is a right S-module.

Lemma 3.1.12. Let K, K’ = MR and N, N’ < Me Then

S
(i) X = KeR and N = NRe,
(iij) KN K’ =0 if and only if Ke N K’e = 0, and

(iii) N NV N’ =0 if and only if NR N N'R =0,

Proof. (i) K = KR = KReR = Ke¢R and N = NS = NeRe = NRe.
) If KNK’"=0 then KeNK’e s KNK’ gives Ke N K’¢ = 0. Conversely,
suppose Ke N K’e =0, Let x €K NK’, Then xRe = Ke N K’ =0, and hence .

xReR = 0. Thus xR = 0 and hence x = 0. It follows that K N K’ = 0.

(iii) By (i), (D).

Corollary 3.1.13, Let L = MR' Then L & E(MR) if and only if Le € E(Me

S)'

Proof. Suppose L & E(MR}. Let 0 N=<Me. Then L N NR % 0 apd hence
Le AT N %0, by Lemma 3.1.12. Thus Le € E(Mes).

Conversely, suppose Le &€ E(Mes). Let 0 K = MR' By Lemma 3.1.12,
K = Ke¢R, so that 0 # Ke < Mes. Hence Ke N Le 5= 0, But Ke NLe = K N L. Thus

KNL %0, It follows that L. & g(MR).
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Lemma 3.1.14, LetL, N =< Mcs. Then L is &2 complement of N in the S-module Me

if and only if LR is a complement of NR in the R-module M.

Proof. ( = ) Suppose L is a complement of N in Me. Then L N N = 0 and hence

LR N NR = 0 (Lemma 3.1.12), Suppose LR < K s M_ and K N NR = 0. Therefore

R
Lemma 3.1.12 gives:

L=LRe=<Ke sMecand KcNNsKNNR =0,
It follows that L = Ke and hence LR = KeR = K (Lemma 3.1.12). It follows that
LR is a complement of NR in M
( <= ) Suppose that LR is a complement of NR in M. Then L N N = 0. Suppose
LSHsMeS and HN N =0, Now
LR < HR < M and HR N NR = Q,
by Lemma 3.1.12. Thus LR = HR and hence L = LRe = HRe = H, by Lemma 3.1.12,

again, Thus L is a complement of N in Me,

Corollary 3.1.15, L & g(MR) if and only if Le € g(MeS).

Proof. By Lemma 3.1.14.

Lemma 3.1.16. Let K < MR. Then XK € E(MR) if and only if Ke € Q(Mcs).

R). Then M =KeoK’ for some K’ =< MR' Thus

Me = Ke + K’¢e. ButKe N K’¢e < K N K’ = 0, Therefore Me = Ke®K‘e. Conversely

Proof.  Suppose K € DM

suppose that Me = Ke oL for some L < Me By Lemma 3.1.12, KX N LR = 0, and

S
M= MeR = (Ke + L)R = KeR + LR =K + LR.

Thus MR = KeLR,

Theorem 3.1.17. MR is a CS-module if and only if Mcs is 8 CS-module.
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Proof. (=) By Lemma 3.1.12, Corollary 3.1.15, and Lemma 3.1.16.

(¢+=) By Lemmas 3.1.12 and 3.1.16.

Corollary 3.1,18, The ring R is a right CS-ring if and only if the right

eRe-module Re is a CS-module,

Proof, Immediate by Theorem 3.1.17,

Corollary 3.1.19, Let R = Mn(’I‘) where T is a ring and e = L Then R is a

right CS-ring if and only if the right T-module T is a CS-module,

Proof. It is clear that R=ReuR and e“Re“ = T, where cij is the matrix

where (i,j)tb entry is 1, and all other entries are zero. Moreover,

Re = Te“ + Te:21 + ...+ Tcn[ =T" (as right T-modules). Hence by Corollary

3.1.18, the result follows.

Lemma 3.1.20. M_ satisfies (Cs) if and only if Me

R satisfies (C 3).

S
Proof. Let A, B & Q(Mes) with AN B = 0. Therefore A = ARe, B = BRe, by

Lemma 3.1.12. Hence AR, BR € DM (Lemma 3.1.16). Since

R
ARe NBRe= ANB =0 then by Lemma 3.1.12, ARNBR =0 in MR' Thus
ARe@BR &€ Q(MR). By Lemma 3.1.16, AeB = (AR®BR)e € Q(Mes). Conversely let K,
Le E(MR) with K ML = 0. Therefore Ke, Le € I=)(Mes) (Lemma 3.1,16), Then
KeNLe < KNL =0 gives that (KeaLe)R = KeRoLeR =KoL & Q(MR).

Corollary 3.1.21, MR is  quasi-continuwous if and only if Mes is

quasi-continuous.

47




Proof. By Theorem 3.1.17 and Lemma 3.1.20.

Let T be a ring such that Mz('I‘) is right quasi-continuous. By Corollary
3.1.19 and Lemma 3.1.20 the right T-module T2 is quasi-continuous and hence,
by [21, Proposition 2.10], T is right self-injective. Thus we have the

following result.

Corollary 3.1.22. The following statements are equivalent for & ring T.

(i) T is right self-injective,
(ii) MZ(T) is right quasi-continuous.
(iii) Mn(T) is right quasi-continuous for every positive integer n.

(iv) Mn(T) is right self-injective for every positive integer n.

Lemma 3.1.23. MR satisfies (C 2) if and only if Mes satisfies (Cz)'

Proof, Let K, L=M such that K =L € DM Iet f : K > L be an

R R
R-homomorphism. Since L € Q(MR) then Le € Q(Mes) (Lemma 3.1.16). Now
p="f] Ke Ke > Le is an isomorphism. Therefore Ke € D(Me) and hence

XK e Q(MR). For the converse, let A, B < Me such that A = B € D(Me Thus

s
BR € Q(MR). Suppose that ¢ : A » B is an isomorphism, Define § : AR > BR
and 6’ : BR > AR by
n _ i ' o mya -1
OL o) = by 9@, 0 (L _br) = Y@ (O,
for all n= 1, a, € A, bi € B, I €R (1=i=<mn). Now suppose Zi:lai\ri =0,
Then Ein arse =0 for all s &R, Therefore Ein acrse =0 and hence
=11 =11 i
n oz n ==
Zizlep(ai)erise . Thus Zi= lq:o(ai)ris,e 0. It follows that
n - n = . n =
(Zji=lg7(ai)ri Re =0, so that (Zi= 1qo(ai)ri ReR =0 i, Ei= 1t,'p(ai)ri 0.
Therefore 6 is a well-defined mapping, It is easy to check that § is

an R-homomorphism, Similarly, #’ is an R-homomorphism. Clearly, 86 = 1] AR
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and 08° =1 IBR' Hence @ is an isomorphism. By hypothesis, AR € D(Mp) and

then by Lemmas 3.1,12, 3.1.16, A € Q(MR).

Corollary 3.1.24, MR is continuous if and only if Mes is continuous,

Proof. By Theorem 3.1,17 and Lemma 3.1,23,

Proposition 3.1.25. M, is nonsingular if and only if Me

R is nonsingular,

S

Proof. ( <= ) Letm &€ Z(MR). Let 1 € R. Therefore mre € Z(MR). There exists
Fe E(RR) such that mreF = 0. Now by Corollary 3.1.13, eRNF € E(eR) and
hence (¢R N Fle € g(eReS) = E(SS). But mre € Me and (eR N F)e¢ < Fe s F, Thus
(mre)[(eR N Fe] = 0. Then mre =0 because Me, is nonsingular, Hence

S
mRe = 0. Therefore mReR =0, so that mR =0 i.e m =0,

(=) Letme € Z(Mcs). Then meG = 0 for some G € E(Ss)' By Corollary 3.1.13,

GR € E(eR Thus GRe(l-¢)R € ER Since me[GRe®(1-¢)R] =0 then

R)' R>'

me € Z(MR) and hence me = 0,
Note that if R is a right nonsingular right CS-ring then R is a right
pp-ring. However, the following example shows that there exists a ring which

is Artinian CS but not pp.

Example 3.1.26. Let K be a field of characieristic p > 0. Let G = <x :

X =1>, the cyclic group of order p. Let R denote the group algebra K[G].

Then R is an Artinian CS-ring which is not pp.

Proof. Let S = K[X] polynomial ring, Define ¢ : S > R by

2 k k
go(ao-!-alx-!-azx +...+akX)mao+alx+a2+...~t ax.
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Then ¢ is a epimorphism and R = S/S(XP-1). Note that R is commutative,
Artinian and dimKR =p. Let ¢ : R » K be the augmentation mapping defined by

a(a0+alx+...+a xp—l)2a0+al+...+a

p~1 p-1

Therefore  kers =R(x-1)=P is the augmentation  ideal. Hence
R/R(x~1) =K and R(x - 1) is maximal in R. Now

(x- l)p =xP- (f)xp_-l + (‘2’)):""'2 + ...+ (——1)p

=1~0+0+ ..+ =0
Therefore [R(x~ 1P =R(x-1) =0. Let A <R. Suppose 0 < A <P. Then
there exists k=1 such that A < R(x- 1)k, A= R(x- l)k“. Thus there
exists a € A such that a & R(x - l)kH. Therefore a =r(x-1) for some r &R
and r &P (f rEP then a € R(x- l)k'H). Now P is the unique maximal
ideal. Hence r is a unit in R. It follows that (x- l)k = r_la €A ie,
A =R~ l)k. Then the only ideals of R are, R>P > P2 >..>PP=0.
Therefore RR is uniform and hence R is a CS-ring, Since Ple ER) then
P=Z{R). NowletI=r(x-1=(+x+..+x )R Then
C=@+x+. +xYR=pl+x+... +x"HR =0.

Therefore r(x -~ 1) % Re for any ¢ = e? & R. That is, R is not a pp-ring.
Recall that over a CS-ring a full matrix ring does not need to be CS
(see for example [4, Example 6.9]). On the other hand, we know Mn('R) is a

right CS-ring if and omly if (Rn)R is a CS-module (Corollary 3.1.19).

Proposition 3.1.27. ILet S be a domain. If MZ(S) is a right CS-ring then S

is left and right Ore and right CS,
Proof. Let R = MZ(S)' Let 0 #=x, y €S and suppose 3x N Sy = 0, Set
x 0
u = y 0|
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x 0 r s Xr XS r s
Then y 0 w vl yroys|® | w v & R. Then uR € E(eR) for some

a b
ez=c€R. Let saye—-—lic d} (a, b, ¢, d € §). Thus

-]

x 0 ax + by 0
and hence y 0 = cx +dy 0| Then x = ax + by and y = cx + dy. Now

(1 -a)x = by. Therefore (1-a)x =0 and hence a=1 b=20, Also

1 0
(1 -d)y = cx implies that d =1, ¢ =0, Thus ¢ = [0 l:l. Hence uR € E(R).

On the other hand, .

10 a’ b’ XI XS
0=+ 00 cldI= yr ys @@’, b’',c’,d" €R),

. a’" b’ Xr XS
gives that = . Hence r =s =0. Therefore a’ =0, b’ =0

0 0 yr ys
a contradiction. It follows that S is left Ore,

Since R is a right CS-ring then (S@S)S is a CS-module (Corollary
3.1.19). Therefore S is a CS-ring by Proposition 1.2.2,

Let 0#z€S. Then z5 € E(fSy for some £ =f&S. Thus f=1, so.

that zS8 € E(S Hence S is right Ore.

"

By adapting the proof of [4, Proposition 6.8] we can prove the following

generalization.

Proposition 3,1,28. Suppose R is a semiprime right and left Goldie ring.

Then the following statements are equivalent,
() R is a right CS-ring.
(i) R is a right and left pp-ring.

(iii) R is a left CS-ring,.

51




Proof. (i) == (i) Because R is a right (left) nonsingular, every right (left)
annihilator is a complement in R, so a direct summand.  Therefore R is a
right (left) pp-ring.

(if) =» (i) Let Q denote the semiprime Artinian classical ring of quotients of
R. Note that a right ideal of Q is minimal if and only if it is uniform.
Let u € R. Suppose uR is uniform, then uQ is a minimal right ideal of Q.
We have Qu = Qe for some idempotent e, so that I Q(u) =(1-¢)Q. Thus

Q=Q/(1-¢)Q=Q/ ) =uQ,

so that ¢Q is a minimal right ideal of the semiprime Artinian ring Q. Hence
Q¢ is a minimal left ideal of Q. Therefore Qu is minimal, i.e, Ru is vniform,

Now let U be a maximal uniform right ideal of R and let 0  u € U. Then
the left annibilator of u, I(u) =Rf for some £ =f&€R. We have uR = U, so
that uR and Ru are uniform. Also, Ru=R(l1-1f), so that R(1-f) is a
uniform left idesl, Hence (1-fHIR is a uniform right ideal. But
R = (1-HR, so that UN{1-HR 0. Hence U + (1-0HR is also uniform
(R is nonsingular), Since (1-H)R € DU+ -f)R) we must have
U+ A-DR = (1-0DR, Thus U=<({-f)R, and the maximality of U
gives U = (1 - f)R. By the Corollary of Theorem 1.2.4, R is a right CS-ring.

(i) « (iii) By symmetry.

Theorem 3.1.29. Let R be a domain. Then the following statements are

equivalent,

(i) MZ(R} is a right CS-ring,.

(i) R is a right and left Ore and every 2-generator right or left ideal
is projective.

(iil) My(R) is left CS-ring.

Proof, (i) = (ii)). By Proposition 3.1.27, R is a right and left Qre¢ domain,
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Also M2(R) is right nonsingular so right and left pp-ring. Hence by Small’s
Theorem {6, Theorem 8.17], every 2-gemerator right or left ideal s
projective.

(i) = . Now MZ(R) is right and left pp-ring by [6, Theorem 8.17].
Since MZ(R) is a prime Goldie ring then by Proposition 3.1,28, M2(R) is a
right CS-ring. |

(i) « (iii), By symmetry.
Note. In the above Theorem, 2 can be replaced by n.
3.2. Nonsingular CS-modules

Let R be a ring and (T,F) a torsion theory for Mod-R (see [34]). For any
R-module M let ©(M) denote the torsion submodule of M. Recall that a right
R-module M is said to be reduced provided it contains no non-zero injective

submodule.

Lemma 3.2.1., Let R be a ring and (l,g) a torsion theory for Mod-R. Let M be
a torsion-free reduced right R-module. Let T be an ideal of R such that

I= R Then MI =0 and M is a reduced right (R / I)-module,

R
Proof. Let
I'={E : E is a right ideal of R and R/E € T}.

Thus 7(X) = {x € X : xE = 0 for some E € I'}, for any right R-module X.

Jet meM, ac€l There exists G &' such that a3 =0 and hence
(ma)G = m(aG) = 0. Thus ma = 0. I follows that MI = 0, Decfine

m(r+D=mr (m €M, r €R).

With this definition, the abelian group M becomes a right (R /I)-module.
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Let N be an injective submodule of the right (R/I)-module M. Let A be
8 right ideal of R and & : A » N an R-homomorphism. Define
¢ : A+D/I » N by

pla+I) = 68(a) (& € A).
First we show that ¢ is well-defined. Suppose a, b€ A and a+1I=b+1.
Then a-bel= T(RR). Thus there exists F & I” such that (a-b)F=0, We
have :
[6¢a) - 6(D)IF = [6(a - H)IF = 8{(a - BF} = 6(0) = 0.

But M is torsion-free. Thus &)~ 68) =0, i.e. @) = 6(). It follows
that ¢ is well-defined.

Leta, bE A, r € R, Then

p@+D+OG+ID)=9p{a+b)+I)= 6@+ b)=0@a) + 6(b)
=g@g(a + I) + ¢(), and
o((a + D + I)) = p((ar) + I) = B(ar) = 8(a) = @)x + I)
=@ + I)r + I).
Thus ¢ is an (R/ID-homomorphism. Since N is (R/I)-injective it follows
that there exists n € N such that pa + ) =n(@ +I) (8 € A). Hence, for all
a €A,
6(a) =@ + I) = n(a + I) = na.

It follows that N is an injective submodule of the reduced R-module M. Thus

N =0. Hence M is a reduced (R / I)-module.

Lemma 3.2.2. Let R be a ring, I an ideal of R and M a right R-module such
that MI = 0. Then M is a right (R/I)-module. Moreover, the R-module M is

a CS-module if and only if the (R /I)-module M is a CS-module.

Proof. Define

m(r+ ) =mr (m €M, r € R).
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Then the abelian group M is a right (R/D-module. Let N be & subgroup of
M. Let n&€N, r&€R. Clearly nr = a(r + I) implies nr € N if and only if
n{r +I) €N, Thus

N is an R-submodule of M if and only if N is an (R /I)-submodule of M. 4)
Suppose that the R-module M is a CS-module. Let N & g(MRH). Let K be an
R-submodule of M such that N € E(K). Let L be an (R/I)-submodule of K such
that NN L =0. vBy (4), L. is an R-submodule of K and bhence L =0, Thus

N & E(KR/I) and hence N =K. Thus N € C(M Since M is a CS-module, there

R)'
exists an R-submodule N’ of M such that M =NeN’. By 4), N’ is an
(R / D-submodule of M., It follows that g(MR/I) c Q_(MR/I). Hence the
(R /I)-module M is a CS-module.

Similarly, if the (R/I)-module M is a CS-module then the R-module M is

a CS-module.

Lemma 3.2.3. Let I be an ideal of a ring R and E a right ideal of R such that

I<Eand E/I € g((RII)R/I). Then E € E(RR).

Proof, Let 0 #1 &R, If r€l then r&E and hence 0 #rR = R NE.

Ifr@lthen b + DR/DN(E/D = 0, Thus
IGROE)+H/I=[R+D/PFNE/D=c+DR/DNE/D+#0

and hence tR N E % 0. It follows that E € E(RR).

Corollary 3.2.4. Let I be an ideal of a ring R and M a nonsingular right

R-module such that MI = 0. Then M is a nonsingular right (R /I)-module.

Proof. Again make M into a right (R /I)-module by defining
m( 4+ I) = mr (m €M, r € R).

Suppose m € M and mE = 0 for some E € E(RR) where R = R/I. There exists a
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right ideal B of R containing I such that E=E/I By Lemma 3.2.3,
E e E__(RR). Moreover, mE = 0. Hence m = 0, because M is nonsingular. It

follows that M is a nonsingular right (R /I)-module,

For the QGoldie torsion theory (T,F), E consists precisely of the

nonsingular right R-modules.

Proposition 3.2.5. Let R be a ring and M a right R-module such that M is a

nonsingular reduced CS-module. Let 1= Zz(R Then MI =0 and the

R

right (R /T)-module M is a noasingular reduced CS-module.

Proof. By Lemmas 3.2.1 and 3.2.2 and Corollary 3.2.4.

Lemma 3.2.6. [29, Proposition 2.6] Let R be a semiprime right Goldie ring and
M a nomsingular right R-module. Then M is injective if and only if M is

divisible.

Proof. Suppose M is injective., Let ¢ €R, ¢ regular, Let y € M. Define
8 :cR > M by
f(cr) = yr (r € R),
Then & is well-defined (because ¢ is regular) and an R-homomorphism. It
follows that there exists x € M such that @cr) = xcr (r € R). In particular,
y=8()=xc € Mc. It follows that M =Mc, Hence M is divisible. (This
part is true for any ring R).
Conversely, suppose M is divisible., Let E € E(RR) and ¢ : E > M be

an  R-homomorphism, Since R is semiprime right Goldie, E contains a
regular ¢lement d. Now @(d) € M = Md and hence @(d) = md for some m € M, Let

¢ € E. Then ed’ =dr for some r, d’ €R, d’ regular (see [6, Theorem 1.27]).
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Thus
p(e)d’ = ped’) = p(dr) = e(d)r = mdr = med’
and so {g@(e)-me)d’ =0, But d'R & E(RR) and M is nonsingular.  Thus

@(e) - me = 0, That is, @(e) = me (¢ € E). It follows that M is injective,

Lemma 3.2.7. [20, Proposition p.70] Let R be a commutative ring with a finite

collection of prime ideals Px’ Pz’ ceey Pn such that PlﬁPzﬂ we P =0,

n

Then R is semiprime Goldie.

Proof, Without loss of generality Pi does not contained in Pj

(1 =isj=n) Thus

PNOP N...OP NP, N..NP does not contained in P (1 <i=<n).
1 2 i-1 i+l n i

Let ¢ € R, ¢ regular. Suppose cR NI =0 for some ideal I of R. Then

cl=scRNI, socl=0and I1=0. Thus cR & E-(RR)'

Conversely, let E &€ E(RR). Then E is not contained in 1"i (1 =i=n),

Thus ENP N ... NP NP NN ... NP is not contained in P
1 i-1 i+1 n i
(1 =i=<n),
Lete € ENP N ..., NP, NP, N ... NP,e &P (1 =1i=n)
i 1 i-1 i+1 n i i
Let e = ¢ + e, + ...+ e € E. Let r &R and suppose er =0, Let

1=si<n If e Pi then e = P,‘, a contradiction. Thus ¢ & Pi‘ Therefore,
er=0¢g& Pi implies r & Pi' Hence
réeP NP N...NP =0.
1 2 1

It follows that e is regular, Thus R is semiprime Goldie.

The next result extends [15, Theorem 5].

Corollary 3.2.8. Let R be a commutative ring with finitely many minimal

prime ideals P P Pn. Let MR be a nonsingular reduced CS-module. Then M
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has finite uniform dimension.

Proof. Let N={r &R : =0 for some kz1}, Then N = P NP N.. NP.
Let re@N. Let E={s&R : rs=0}. Let 0sae&R. Then there exists k=1
such that r 'a # 0 but r*a =0 (convention : P2 = 1). Thus

0+ laeRaNE. It follows that E € ER Hence r € Z(R).  Thus

R
N=<ZR) = Zz(R)' By Proposition 3.2.5, MN = 0 and the (R/N)-module M is a
nonsingular  CS-module, Thus, without loss of generality, N =0, i.e.
PlﬂPZF\ ﬂPn=O.

Then PP ... P =0, so that MPP_ .., P =0, Let K={meM :

2 n 12 n

mPl =0}. Then K =M. Let L =M such that K€ E(L). Let x €L. There
exists I & E(RR) such that xI < K and hence xIPl = 0. Thus (xPl)I =0, so
that xP1 =0, It follows that x € K. Hence L=X, and X & cM). By
hypothesis, M = K@K’ for some K' <M. Note that X’ = M/K and (1:‘2 N
N Pn)P1 < P1 n P2 n ... N Pn = (0 gives M(P2 n ... N Pn)Pl = (, so that
M(P2 n ... N Pn) =< K. Hence K’(P2 n .. N Pn) =0, By Lemma 3.2.2 and
Corollary 3.2.4, the (R/Pl)—module K is a nonsingular CS-module and the
(R/(P2 n ... N Pn))-module K’ is a nonsingular CS-module. Let X be an
injective submodule of the (R/Pl)~module K.  Let ¢ be a regular element of
R. Then ¢ g P1 and hence X = Xc¢ (Lemma 3.2.6). Thus XR is divisible. By
Lemmas 3.2.6 and 3.2.7, X is an injective R-module. But M is reduced, so
that X == 0. Hence the (RIPI)-module K is reduced. But RIPl is a domain,
so that by Kamal-Muller’s Theorem (see [15, Theorem 5]), K has finite uniform
dimension, By the same argument, the R/(P2 n ... N Pn)—module K’ is

reduced and K’ has finite uniform dimension by induction on n, Thus M = KoK’

has finite uniform dimension.
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Chapter 4.
A CHARACTERIZATION OF CONTINUOUS AND QUASI-CONTINUQUS MODULES

In this chapter we shall characterize continuous and quasi-continuous
modules in terms of lifting homomorphisms from certain submodules of M to M
itself. Note that in [19, Theorem 1.3] a different lifting condition is given

to characterize continuocus modules.
4.1. Modules with €M) < Lift, (M) or (Q).

Recall that the module M is called continwous if it satisfies (Cl) (i.e,
CS) and (Cz)' Consequently, the module M is called quasi-continuous if it
satisfies (Cl) and (C3). For basic results refer to Chapter 1, section 3,

Moreover, for a good general account, see the comprehensive study of

Mohamed-Muller [21].
Let R be a ring with identity and M a unital right R-module.

Lemma 4.1.1. Let K€ C(M). Then K € D(M) if and only if there exists a

complement L of K in M such that KeL & LiftM(M).

Proof. Suppose first that K € D). Then M = KoK’ for some submodule K of
M. Clearly, L. = K’ will do.
Conversely, suppose that there exists a complement L of X in M with the
stated property. Let @ : KoL > M be the homomorphism defined by
px+y=x(xek, yel)

By hypothesis, there exists a homomorphism ¢ : M > M such that
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fx+y)=x x ek, ygL)
Note that K € im8§ and L & kerd.

Let 0 v € im@. Then there exists u € M such that v = f(u)., Note that
u@&L., Thus KN +uR) 0, There ¢xist x €K, y&€ L and r €R such that
0% x=y+ur. Then x = 8(x) = 8(y + ur) = vr, It follows that VRN K # 0
for all non-zero v € imf. Thus K € E(imf). But K € C(M). Hence K = im#f.

Now it is easy to check that M = K @ (ker6). Thus K € D(M).

Corollary 4.1.2, A module M satisfies (Cl) if and only if for every

K & C(M) there exists a complement L of K in M such that KeL € Liﬁ_M(M).
Proof. Immediate by Lemma 4.1.1.

Let n be a positive integer. It is clear that if M satisfies
c®) < Lifty (M) then M satisfies ¢®7V(M)  Life, (M), for all n= 2. Note
that modules satisfying C(M) € LiftM(M) have been considered in [27].

Next we establish the connection between C (n)(M) c LiftM(M) and the
quasi-continuity of a module M, as was pointed out at the beginning of this

chapter.

Theorem 4.1.3. The following statements are equivalent for a module M.

(i) M is quasi-continuous
(ii) M satisties V(M) € Lift, (M) for every positive integer n,
(iii) M satisfies C®(M) € Lifty,(M) for some integer n 2 2.

(iv) M satisfies Py © Life, (M),

Proof. (i) = (il) = (iii) = (iv). Obvious.
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(iv) = (i) By Proposition 2.2.2 and Corollary 4.1.2.

We now consider continuous modules, Let us consider the following

condition for any positive integer n and a module M,

(Qn) For ¢very submodule K of M such that K is a direct sum
Kl@Kze eaKn of submodules Ki (1 si=<n)of M, each isomorphic

to a complement in M, K € LiftM(M).

It is clear that if M satisfies (Qn) then M satisfies (Qn—l) for ali
n =2 Moreover, if M satisfies (Q) then M satisfics c®ad) € Life, (M), for

alln = 1.

| (i) M is continuous.
£ 4
|
l (ii) M satisfies (Qn) for every positive integer n.
(iti) M satisfies (Qn) for some integer n = 2.

@iv) M satisfies (Q2).

(v) M satisfies (Qi) and (CI).

Proof, (i) = (ii) = (iii) = (@v). Clear.
(iv) = (i). By Corollary 4.1.2 and Proposition 2.2.1.
() = (v). Clear.

(v) = (i). By Proposition 2.2.1.

4,2, An outline and counter examples,

Theorems 4.1.3 and 4.1.4, allow us to construct the following outline.
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quasi-injective = continuous = quasi-continuous

(AN

@ Ve e @Q = cPm et on e cP < Lify, 0 Va.

oo

Q) = CMcLify, M) <= (C),

for any integer n = 2. No other implications can be added to this table, in
general., To see why this is the case we shall give a number of examples.
First of all, note that Utumi [36, Example 3] has given an example of a

continuous module which is not quasi-injective. The ncxt example is easy.

Example 4.2.1. Let Z denote the ring of rational integers and M be the

Z-module Z. Then M satisfies C (M) & Lifty (M) but does not satisfy (Q)).

Proof. It is clear that M satisfies (Cl) and (C3), so that M satisfies
g(z) c LiftM(M), by Theorem 4.1.3. Let N denote the submodule 2Z of Z. Then
N = M, but the homomorphism ¢ : N > M given by
e2n) =n (n € Z)
does not lift to M. Suppose that there exists a homomorphism 6 : M > M such
that 6 | N= O Then there exists x € M such that 9(m) = xm (m € M). Therefore
2xm = §(2m) = ¢(2m) = m,

so that 2x = 1, a contradiction. Thus M does not satisfy (Ql).
Example 4.2.1 shows that, for a module M, none of the implications
guasi-continuous = continuous, ga)(M) < LiftM(M) = (Qz)’ cMd) < Lifm(M) =

(Ql), is true in general.

Now we shall show that, for n = 2, (C 1) = g(n)(M) < LiftM(M) is not true
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in general. Note that C™(M) € Lift, (M) = (C,) (see, Proposition 2.2.2).

Bxample 4.2.2, Let M be any free Z-module of non-zero finite rank k. Then

(i) M satisfies (Cl)’ and

(ii) M satisfies (C3) if and only if k=1,

Proof, (i) Let N & CM), N= M. Then M/N is torsion-free, and hence free.
Thus N &€ I=)(M).

) If k=1 then M is uniform and hence satisfies (Ca)‘ Conversely,

suppose that kX = 2. Let fl, veey fk be a basis of M. Let Klmlfl and
K2=?Z(fl+2f2). Clearly, M=K1$L:K2$L, where L=Zf2+ +7ka.

Also Kl ﬁK2=0, but KleK2=ZflsBZZf2, which is not a direct summand of

Zf l@ZfZ, and hence not a direct summand of M. Thus M does not satisfy (C3).

Note that neither of the implications
CM) € Lifty, (M) = c®m Lifty (M), C(M) € Lifey (M) = (C)),
is true for a module M, in general (see Example 2.1.16). Moreover, the
module M in Example 2.1.16, does not satisfy (Q1)' To see why this is so,
let KX = Z(1 + Zp,1). Then K & g(M) and K N M1 =0, Letwt: M= M2 denote the
canomnical projection. Let L = n(X). Then L = K, Note that L =Z(0 + Zp,1).
Define ¢ : L - M by
e + Zp,1)) =t + Zp,1) (¢ € Z).
Then ¢ is a homomorphism which does not lift to M. For, suppose that ¢ could
be lifted to a homomosrphism 6 : M > M. Then
1+ Zp,1) = @0 + Zp,1) = 6(0 + Zp,1) = pb(0 + Zp,1 ! p),

a contradiction. It follows that M does not satisfy (Ql).

Finally, we turn to the conditions (Ql) and (Qz)' The next example,
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which is due to B. L. Osofsky, shows that (Ql) does not imply (Qz)‘

Example 4.2.3. There exists a commutative local ring R such that the R-module

R satisfies (Q 1) but does not satisfy (Cl)'

Proof. By [18, Remark (i)], there exists a commutative vgluation domain §
such that every homomorphic image of 5 is a self-injective ring, but S is not
Noetherian,  Suppose that every proper image of § has non-zero socle. Then
every proper homomorphic image of S is finitely cogenerated (S is a valuation
ring!), and hence is Artinian by [29, Theorem 3.21]. Thus every proper
homomorphic image of S is Noetherian. By [29, Theorem 3,25 Corollary], § is
Noetherian, a contradiction. Thus there exists a non-zero ideal A of S such
that the ring S/A bas zero socle. Let T=S/A and note that T is a local
self-injective ring.
Let J denote the unique maximal ideal of T. Let R denote the subring of
the commutative ring T® T defined by
R={{tt):t-t' €J}.
Then R is the pullback of
T
ln
T—2L > T/J
where w : T > T/J is the canonical epimorphism. The sing R is a commutative
local ring with unique maximal ideal J@J. Let M denote the R-module R. Then,
being local, M does not have (Cl) and hence M does not have (Qz) (Theorem
4,1.4).
It remains to show that M satisfies (QI). Let t and t/ be any non-zero
elements of T, If t has zero annihilator in T then T =Tt, because T is

self-injective  (see, Lemma 3.2.6 or [29, Proposition 2.6]), and hence
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M =R(,t"). Similarly, M = R(t,t’) if t’ has zero annihilator, Now suppose
that t and t’ both have non-zero annmihilator. Then R(t,t') N Jo0) %0 and
RLY) N (@) 5 0. Thus R(t,t') € EM). It follows that C(M) = {0, M, J&0,
0aJ}.

Let N be a submodule and K & C(M) such that there exists an isomorphism
a:K->N. Letp:N->M be a homomorphism, If K =0 then N = 0 and ¢ can be
lifted to M. Now suppose that K =M. In this case, N = R(,t’) for some
elements t, t' in T such that both t and t‘ have zero ammihilator. As we have
just seen, this gives N = R(t,t’) = M, Again, ¢ lifts to M trivially.

Now suppose that K =J®0, For any a €J, «a(a,0) = (b,c) for some b,
¢c &T. Now (a,00(0&J) =0 implies (b,c)(0®J) =0, and hence ¢J = 0. Because T
has zero socle, we have ¢ =0, Thus N =aX) £ Je0, It follows that N=L &0
for some proper ideal L of T. Now consider ¢ : N > M. Because NOel) =0,
the same argument gives @(N) € J@0, Thus ¢ induces a8 homomorphism ¢’ : L » T.
But T is self-injective, and hence @’ can be lifted to T and this allows us to
lift ¢ to M. A similar proof shows that if K = 0a®J then ¢ can be lifted to M.

It follows that M satisfies (Ql)'
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Chapter 3.
GENERALIZATIONS OF CS-MODULES
In this chapter two generalizations of CS-modules and the conditions on a

module which imply that it is a direct sum of uniform modules will be

investigated. Finally we shall consider chain conditions.

5.1. Modules with (Cl I).

Let R be a ring. In this section we shall establish some properties of
R-modules which satisfy (C . l). Note that modules which satisfy (Cl I) are

mentioned by Mohamed and Mpfler in [21, p.106].

Definition 5.1.1. A module M sarisfies (Cu) if every submodule of M has a
complement which is a direct summand of M, i.e. for each N € L(M) there exists
a K € D(M) such that XK is a complement of N in M.

For purposes of comparision we first prove

Proposition 5.1.2. A module M satisfies (Cl) if and only if for all

submodules N and L such that N N L=0 there exists a K € D(M) such that L <K

and N N K=0. Moreover, in this case NeX & EQV).

Proof, Suppose first that M satisfies (C1>' Suppose that N and L are
submodules of M such that N N L=0. There exists a complement X of N in M such

that L =< K. By hypothesis, K € D(M).
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Conversely, suppose that M satisfies the stated condition. Let
L € C(M). There exists a submodule N of M such that L is a complement of N in
M. By hypothesis, there exists a8 K € Q(M) such that L = K and K N N = 0.
Thus L =K. It follows that every complement in M is a direct summand,
Therefore M satisfies (C 1).

For the last part, use Proposition 1.1.5.

Lemma 5.1.3. Let N be a submodule of a module M and let K € D(M). Then K is

a complement of N in M if and only if K N N =0 and KeN € EM).

Proof.  The necessity follows by Proposition 1.1.5.  Conversely, suppose that
K and N have the stated properties. There exists 