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Abstract 

Colorectal cancer (CRC) is the third most common cancer in the UK with 41,000 new 

cases diagnosed in 2011. Despite undergoing potentially curative resection, a significant 

amount of patients develop recurrence. Biomarkers that aid prognostication or identify 

patients who are suitable for adjuvant treatments are needed.  The TNM staging system 

does a reasonably good job at offering prognostic information to the treating clinician, but 

it could be better and identifying methods of improving its accuracy are needed.    

Tumour progression is based on a complex relationship between tumour behaviour 

and the hosts’ inflammatory responses. Sustained tumour cell proliferation, evading 

growth suppressors, resisting apoptosis, replicative immortality, sustained angiogenesis, 

invasion & metastasis, avoiding immune destruction, deregulated cellular energetics, 

tumour promoting inflammation and genomic instability & mutation have been identified 

as hallmarks. These hallmarks are malignant behaviors are what makes the cell cancerous 

and the more extreme the behaviour the more aggressive the cancer the more likely the risk 

of a poor outcome.  

There are two primary genomic instability pathways: Microsatellite Instability 

(MSI) and Chromosomal Instability (CI) also referred to as Microsatellite Stability (MSS). 

Tumours arising by these pathways have a predilection for specific anatomical, 

histological and molecular biological features. It is possible that aberrant molecular 

expression of genes/proteins that promote malignant behaviors may also act as prognostic 

and predictive biomarkers, which may offer superior prognostic information to classical 

prognostic features. 

Cancer related inflammation has been described as a 7th hallmark of cancer. 

Despite the systemic inflammatory response (SIR) being associated with more aggressive 

malignant disease, infiltration by immune cells, particularly CD8+ lymphocytes, at the 

advancing edge of the tumour have been associated with improved outcome and tumour 

MSI. It remains unknown if the SIR is associated with tumour MSI and this requires 

further study. 

The mechanisms by which colorectal cancer cells locally invade through the bowel 

remain uncertain, but connective tissue degradation by matrix metalloproteinases (MMPs) 

such as MMP-9 have been implicated. MMP-9 has been found in the cancer cells, stromal 

cells and patient circulation. Although tumoural MMP-9 has been associated with poor 

survival, reports are conflicting and contain relatively small sample sizes. Furthermore, the 

influence of high serum MMP-9 on survival remains unknown.  
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Src family kinases (SFKs) have been implicated in many adverse cancer cell 

behaviors. SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, LYN, 

YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other SFKs 

in cellular behaviors and their prognostic value remains largely unknown. The 

development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential 

therapeutic target for patients at higher risk of poor survival. Unfortunately, clinical trials 

so far have not been promising but this may reflect inadequate patient selection and SFKs 

may act as useful prognostic and predictive biomarkers.  

In chapter 3, the association between cancer related inflammation, tumour MSI, 

clinicopathological factors and survival was tested in two independent cohorts. A training 

cohort consisting of n=182 patients and a validation cohort of n=677 patients. MSI 

tumours were associated with a raised CRP (p=0.003). Hypoalbuminaemia was 

independently associated with poor overall survival in TNM stage II cancer (HR 3.04 

(95% CI 1.44 – 6.43);p=0.004), poor recurrence free survival in TNM stage III cancer (HR 

1.86 (95% 1.03 – 3.36);p=0.040) and poor overall survival in CI colorectal cancer (HR 

1.49 (95% CI 1.06 – 2.10);p=0.022). Interestingly, MSI tumours were associated with poor 

overall survival in TNM stage III cancer (HR 2.20 (95% CI 1.10 – 4.37);p=0.025).  

In chapter 4, the role of MMP-9 in colorectal cancer progression and survival was 

examined. MMP-9 in the tissue was assessed using IHC and serum expression quantified 

using ELISA. Serum MMP-9 was associated with cancer cell expression (Spearman’s 

Correlation Coefficient (SCC) 0.393, p<0.001)) and stromal expression (SCC 0.319, 

p=0.002). Serum MMP-9 was associated with poor recurrence-free (HR 3.37 (95% CI 1.20 

– 9.48);p=0.021) and overall survival (HR 3.16 (95% CI 1.22 – 8.15);p=0.018), but tumour 

MMP-9 was not survival or MSI status. 

In chapter 5, the role of SFK expression and activation in colorectal cancer 

progression and survival was studied. On PCR analysis, although LYN, C-SRC and YES 

were the most highly expressed, FGR and HCK had higher expression profiles as tumours 

progressed. Using IHC, raised cytoplasmic FAK (tyr 861) was independently associated 

with poor recurrence free survival in all cancers (HR 1.48 (95% CI 1.02 – 2.16);p=0.040) 

and CI cancers  (HR 1.50 (95% CI 1.02 – 2.21);p=0.040). However, raised cytoplasmic 

HCK (HR 2.04 (95% CI 1.11 – 3.76);p=0.022) was independently associated with poor 

recurrence-free survival in TNM stage II cancers. T84 and HT29 cell lines were used to 

examine the cellular effects of Dasatinib. Cell viability was assessed using WST-1 assay 

and apoptosis assessed using an ELISA cell death detection assay. Dasatinib increased T84 

tumour cell apoptosis in a dose dependent manner and resulted in reduced expression of 
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nuclear (p=0.008) and cytoplasmic (p=0.016) FAK (tyr 861) expression and increased 

nuclear FGR expression (p=0.004). 

The results of this thesis confirm that colorectal cancer is a complex disease that 

represents several subtypes of cancer based on molecular biological behaviors. This thesis 

concentrated on features of the disease related to inflammation in terms of genetic and 

molecular characterisation. MSI cancers are closely associated with systemic inflammation 

but despite this observation, they retain their relatively improved survival. MMP-9 is a 

feature of tissue remodeling during inflammation and is also associated with degradation 

of connective tissue, advanced T-stage and poor outcome when measured in the serum. 

The lack of stromal quantification due to TMA use rather than full sections makes the 

value of tumoural MMP-9 immunoreactivity in the prognostication and its association with 

MSI unknown and requires further study. Finally, SFK activation was also associated with 

SIR, however, only cytoplasmic HCK was independently associated with poor survival in 

patients with TNM stage II disease, the group of patients where identifying a novel 

biomarker is most needed. There is still some way to go before these biomarkers are 

translated into clinical practice and future work needs to focus on obtaining a reliable and 

robust scientific technique with validation in an adequately powered independent cohort.
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1. Introduction 

1.1 Biomarkers and cancer – the clinical challenge 

To treat any illness appropriately requires some idea of its severity, which guides 

management. Between 1942 and 1956 Professor Pierre Denoix devised the Tumour Nodes 

Metastasis (TNM) staging system for solid tumours, which stratifies patients into discrete 

staging groups (Brierley, 2006). The anatomically based TNM staging system offers a 

useful ordinal parameter of outcome, however its predictive value while valuable needs to 

be improved. The TNM staging system only offers an anatomical snapshot of the disease 

and does not sufficiently take into account an individual’s cancer behaviour. Therefore, 

there is a continuing need to develop new tests that offer better prognostic and predictive 

value in order to help guide overall management.   

Molecular biomarkers in the context of cancer research are molecules occurring in 

body fluids or tissues in association with cancer. Biomarkers can be objectively measured 

and evaluated as an indicator of normal biological processes, pathological processes, or 

pharmacological responses to a therapeutic intervention (Ludwig, 2005). A perfect cancer 

biomarker would be reproducible, cost-effective, sensitive and specific for diagnosis, 

correlate with disease severity and predict response to treatment. Unfortunately, 

developing good biomarkers is difficult and no marker so far identified covers all these 

areas. Even the more limited challenge to develop and validate good biomarkers that help 

identify higher-risk patients requiring adjuvant therapies, and predict responsiveness to 

such therapies, is formidable. 

 

1.2 The hallmarks of cancer 

Cancer is a disease of uncontrolled growth and proliferation of cells. As abnormal cells 

multiply they may spread to distant organs and form secondary tumours. Cancer cells 

invade and break down adjacent tissue, damaging normal function and may ultimately lead 

to death.  

Malignant cells have specific behavioral traits that allow them to be distinguished 

from the normal cell. In summarizing many years of work, Hanahan and Weinberg 

identified sustained proliferation, evading growth suppressors, resisting apoptosis, 

replicative immortality, sustained angiogenesis, invasion & metastasis, avoiding immune 
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destruction, deregulated cellular energetics, tumour promoting inflammation and genomic 

instability & mutation as hallmarks of cancer (Hanahan, 2011).  

These cancer hallmarks are caused by dysregulation of normal molecular processes. 

Tumour aggressiveness varies widely not only between different entities but between the 

same tumour type in different patients, which results in different outcomes: some patients 

have long disease free survival but in others recurrence, local or distant, are ultimately 

fatal. Identifying patients likely to have a poor outcome, who will benefit most from 

assertive adjuvant treatment and surveillance is a clinical priority. Identifying and 

accurately quantifying aberrant expression of molecules involved in regulating the cancer 

'hallmark' behaviours might offer superior prognostic information to classical prognostic 

features such as morphology (independently or together).  

 

1.3 Classes of Cancer Biomarkers  

1.3.1 Diagnostic markers  

Diagnostic biomarkers help a clinician to determine if a disease is present in a 

symptomatic patient. In addition, they may also be useful in screening asymptomatic 

healthy people. An ideal diagnostic biomarker should have high sensitivity and specificity 

(>99.9%) for the disease under question. (Sensitivity is the proportion of people who have 

the disease and who have a positive test, whereas specificity is the proportion of people 

without the disease who have a negative test). For a biomarker to be incorporated into 

routine clinical practice it must also be cost-effective, reproducible and relatively non-

invasive.    

 In colorectal cancer, the gold standard diagnostic process remains a multimodal 

assessment of radiology, endoscopy and histological assessment of biopsy samples with 

immunohistochemistry if needed. The serum concentration of carcinoembryonic antigen is 

sometimes determined, but may be raised in adenocarcinomas arising in any site, may not 

be raised in early colorectal cancer, and may show variation with carcinoma 

differentiation. Its sensitivity and specificity are poor (Duffy, 2001). 

 

1.3.2 Prognostic markers  

A prognostic biomarker provides information about the malignant potential of a tumour 

including who may develop recurrence after surgery or help identify patients who will 

have a short survival time. Prognostic markers in current clinical use include the hormone 
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receptors oestrogen receptor (ER) and progesterone receptor (PR) in breast cancer, the cell 

proliferation marker Ki67 in neuroendocrine tumours and the human epidermal growth 

factor receptor 2 (Her2) in breast cancer (Slamon, 2001) and gastric cancer (Bang, 2010).  

Although there is a vast literature relating to prognostic biomarkers, much of it is of 

poor quality, with technical limitations including poor reproducibility, and many 

underpowered studies. Very few prognostic biomarkers have been established in routine 

clinical practice. Even now, the best available prognostic biomarker in colorectal cancer 

remains TNM stage. Future prognostic markers will need to be equally good or better on 

their own merits, or offer enhanced prognostication within specific TNM stage subgroups.   

 

1.3.3 Predictive markers  

Following identification of genetic aberrations and upregulation of signaling pathways as 

prognostic biomarkers, new treatments aimed to antagonise these biologically active 

processes have been developed. Examples include ER in breast cancer (Harvey, 1999) and 

HER2 in both breast (Slamon, 2001) and gastric cancer (Bang, 2010). However, oestrogen 

deprivation for breast cancer was established long before the identification of ER. 

 In colorectal cancer, the only predictive biomarker currently used is wild-type K-

ras, which identifies patients likely to respond to Cetuximab, a monocloncal antibody 

directed against epidermal growth factor receptor, in patients with metastatic cancer who 

have not responded to chemotherapy (Karapetis, 2008). Currently, there are no predictive 

biomarkers available for patients who have undergone potentially curative resection but are 

considered to require adjuvant therapy, which represents an unmet clinical need. 

 

1.3.4 Identification and validation of diagnostic, prognostic and 

predictive biomarkers  

Many publications examine associations between expression of various proteins and 

survival in nearly every human cancer. Unfortunately, even controlling for any specific 

cancer type and individual protein studied, different studies have such varied methods for 

quantification and reporting outcomes that establishing a robust evidence base for 

translation into clinical practice is difficult. In an attempt to standardise development, 

measurement and validation of biomarkers, The Biomarker Definitions Working Group 

(2001) gave a formal definition of a biomarker, in the hope that this would result in 
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internationally accepted markers, and facilitate their incorporation into routine clinical 

practice.  

The pathways proposed for identifying and validating these different types of biomarker 

follow five conceptual phases described by Pepe et al. 

 

1.3.4.1 Identification and validation of screening biomarkers 

The process of identification and validation has five conceptual phases (Pepe, 2001):  

 

Phase 1: Preclinical exploratory 

Two processes underpin discovery of novel biomarkers; hypothetico-deductive reasoning 

and molecular profiling of normal and cancer tissues. Molecular profiling identifies 

candidate markers by their differential expressions between normal and tumour. The 

hypothetico-deductive (theoretical) approach identifies potential biomarkers via a 

hypothesis based on current knowledge of cancer pathophysiology. High throughput 

genomic or proteomic studies examine differential expression of multiple genes. As a 

candidate biomarker progresses through these developmental phases, the number of 

patients in each phase increases. Although this initial stage utilises relatively few samples, 

significant resource are needed to optimise marker quantifcation and establish robust and 

reproducible methodologies.  

 

Phase 2: Clinical assay development and validation 

Phase 1 only proposes a preferred method for molecular quantification, which requires 

independent validation. Phase 2 aims to confirm the optimum methodology for molecular 

quantification and reporting. A good technique should be relatively simple to perform and 

reproducible. Using a range of statistical tests, various analytical and reporting methods are 

associated with the presence of disease in appropriately characterised patient cohorts. 

 

Phase 3: Retrospective longitudinal study 

Archival material (e.g. stored blood) from cancer patients, prior to their diagnosis of 

cancer, may be examined for biomarker expression and compared with control patients, to 

evaluate a biomarker’s ability to diagnose preclinical disease or increased risk. This phase 

is of particular interest if interval screening is thought to be potentially useful. In some 

instances, it is not possible or appropriate to perform this stage, and validation studies may 

enter at or jump to a different phase.  



 41 

 

Phase 4: Prospective screening studies 

The sensitivity and specificity of the biomarker is determined in a relevant population. The 

frequency of disease stages detected during the screening test period also offers valuable 

information on the potential impact of cancer associated mortality. However, direct 

associations with survival are not studied at this point. To achieve adequate detection of 

cancers, this phase will require a large number of participants, which also acts as a general 

feasibility study in preparation for phase 5. 

 

Phase 5: Cancer control studies 

Phase five assess whether there is an associated reduction of cancer burden on the 

population. This relates to cancer mortality and costs of screening and treatment per life 

saved. An ideal screening biomarker will detect disease at an early stage, reduce mortality 

and be cost effective. Despite appropriately powered prospective studies it can be difficult 

to determine how much ‘if any’ benefit the population derives. 

 

1.3.4.2 Identification and validation of prognostic biomarkers 

Initial phase: Preclinical, exploratory 

Similar to the Pepe phase 1, biomarker identification is either based on hypothetico-

deductive reasoning (i.e. theoretical considerations) or high throughput molecular 

profiling. Molecular quantification is validated across different scientific techniques to 

ensure consistent expression. For example, biomarkers based on mRNA copy numbers 

should undergo immunohistochemistry to confirm proportional aberrant protein 

expression. 

 

Intermediate phase: Clinical assay development and validation 

Further molecular quantification is conducted assessing the technical methodology against 

a series of endpoints and tumour characteristics. The biomarker assay is finalised with 

clearly specified reagents and reducible methodology. Using a training cohort, usually 

retrospective, different molecular quantification thresholds are associated with survival 

data and tumour characteristics such as stage or grade.  

 

Final phase: Independent validation 
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Validation of the biomarker assay is performed in an independent cohort with appropriate 

statistical power. To minimise bias, the best study conditions for biomarker validation is a 

prospective randomised control trial. If statistical power is sufficient, this will offer 

prognostic stratification in the whole cohort, in different tumour stages and in patients 

receiving different treatments. Such an independent validation study usually requires a 

large number of patients, probably recruited in multiple centers.  

 

1.3.4.3 Identification and validation of predictive biomarkers 

Identification and validation of biomarkers predictive of therapy response depends on the 

type of treatment. Treatments can be broadly grouped into cytotoxic therapies and 

biological therapies. Cytotoxic therapies are cytotoxic (more or less) to all living cells 

whereas biological therapies are directed against specific physiological processes and may 

have a more favourable therapeutic profile. 

   

Preclinical exploratory phase 

Predictive biomarker development is synergistic with drug discovery. Once the 

contribution or relevance of a biomarker to the malignant phenotype is confirmed, there is 

a prospect of targeted therapies to counteract the malignant process. Initial laboratory work 

may confirm reduced expression across different quantification techniques including 

polymerase chain reaction (PCR), western blotting or immunohistochemistry, or reduction 

of downstream target activity. Once inhibition of the biomarker is confirmed, mechanistic 

studies aim to confirm biomarker-mediated reversal or amelioration of the malignant 

phenotype. An appropriate biomarker assay is developed which includes clearly specified 

reagents and a reproducible technical methodology. The targeted therapy progresses 

through drug discovery and validation. 

 

Clinical trial stage 

Once a targeted treatment regimen and linked biomarker assay ‘companion diagnostics’ 

have been formalised, an adequately powered prospective randomised control trial is 

required to examine the efficacy of the drug in improving response over current standard-

of-care chemotherapy with stratification of outcomes by biomarker expression. This stage 

usually requires many patients treated in multiple centers. Initial patient selection often 

involves people who have metastatic disease who have not responded well to standard 

oncological therapy.  
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1.4 Colorectal cancer 

1.4.1 Anatomy and physiology of the normal colorectum 

The colorectum (colon and rectum) is the mucosa-lined muscular tube forming the most 

distal part of the digestive tract, distal to the ileocaecal valve and proximal to the anal 

canal. Its chief function is to absorb water as digested food passes through, and store faeces 

until elimination is appropriate. It is ~1.5 meters long and derives from the embryological 

mid- and hindgut. Its embryological origin determines its blood supply and lymphatic 

drainage. Nine anatomical areas are conventionally recognised: caecum, ascending colon, 

hepatic flexure, transverse colon, splenic flexure, descending colon, sigmoid colon, 

rectosigmoid and rectum. The proximal colon (caecum to splenic flexure) is of midgut 

origin and receives blood from the superior mesenteric artery. The distal colon, of hindgut 

origin (splenic flexure to anus) receives blood from the inferior mesenteric artery (figure 

1.1). The extent of surgical resections for colorectal cancer are determined by the blood 

supply of the area of the colorectum where the tumour is located. For simplicity the 

colorectum can also be broken down into only three segments: (Figure 1.1) 

 Right colon – Caecum, ascending colon, hepatic flexure, transverse colon and 

splenic flexure 

 Left colon – Descending and sigmoid colon 

 Rectum – Rectosigmoid junction and rectum 

 

Colorectal cancer can occur anywhere in the colorectum, but most (69%) arise within the 

descending colon, sigmoid colon, rectosigmoid junction and rectum (Figure 1.1, Phillips, 

2014). Two thirds of the remaining cancers occur in the caecum and ascending colon. 
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Figure 1.1: Distribution of colorectal tumours throughout the colorectum (Adapted from 
(Austoker J. BMJ 1994 309:382) 

 

1.4.2 Normal histology of the colorectum 

Histologically the colorectum is continuous, with no obvious boundary or structural 

differences between colon and rectum. It is made up of layers comprising from the lumen 

outwards; mucosa, lamina propria, muscularis mucosa, submucosa, muscularis propria, 

subserosa and serosa. These structures are shown in figure 1.2. 
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Figure 1.2: Normal colorectum demonstrating the histological layers 

On the left a x20 magnification demonstrates an overview of the layers. Top right, at x100 
magnification, demonstrates the relationship between mucosa, muscularis mucosae and 
sub serosa. Note the circular crypt profiles containing epithelial cells within the mucosa. 
Bottom right demonstrates, at x100 magnification, the subserosa and serosa. 
 

The mucosa is made up of crypts comprising columnar epithelium (enterocytes), goblet 

cells and supportive connective tissue. At the bottom of these crypts are crypt stem cells 

that generate new epithelial cells. Cells migrate up the crypt towards the luminal surface 

where they slough off or undergo apoptosis. A typical crypt is demonstrated in figure 1.2 

above.  
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1.4.3 Epidemiology of colorectal cancer 

1.4.3.1 Incidence and survival 

Colorectal cancer is the third most common cancer in the UK, with 41,000 new cases 

diagnosed in 2011, accounting for 12.5% of all new cases of cancer in general. Incidence 

rates are approximately 75 / 100,000 per annum in men and 59 / 100,000 in women. 

Incidence rates have remained on the whole static over the last twenty years. Although 

survival rates have doubled (Cancer Research UK, 2014), overall five-year survival is still 

relatively poor at only 50% in men and women (Cancer Research UK, 2014). In 2006, the 

NHS Bowel Cancer Screening Programme was introduced in England. This has resulted in 

earlier cancer detection and a 16% reduction in deaths related to colon cancer has followed 

(Cancer Research UK, 2014). Despite screening and better colorectal cancer treatment, 

many patients still die of their cancer. 

 

1.4.3.2 Aetiology of colorectal cancer 

Most colorectal cancers are sporadic. Only about 5-10% occur in the setting of a defined 

hereditary cancer syndrome, but about 20% of all colorectal cancers are thought to arise in 

patients with some component of family risk (Lynch, 2003). Unlike some other cancers, no 

specific aetiological factors have been identified, but lifestyle factors do appear to play an 

important role (Parkin, 2011; WCRF/AICR, 2010). The risk of developing colorectal 

cancer is increased in people who are inactive, have an increased body mass index, smoke 

tobacco and drink larger volumes of alcohol. Diets rich in red meat and low in fibre have 

also been associated with higher risk of colorectal cancer development (WCRF/AICR, 

2010). 

 

1.4.3.3 Hereditary colorectal cancer 

The two major forms of hereditary colorectal cancer are familial adenomatous polyposis 

(FAP) and hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome. A 

diagnosis of hereditary colorectal cancer is based on family history, multiple primary 

cancers, age of onset of the cancer and specific phenotypic features (Lynch, 2003). FAP 

usually presents with many colonic polyps and this widespread dysplastic transformation is 

a result of a germ-line mutation in the adenomatous-polyposis-coli (APC) gene on 

chromosome 5. HNPCC, which is the most common cause of hereditary colorectal cancer, 

does not present as a polyposis. It is caused by a germ-line mutation in one or other of the 
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DNA mismatch repair (MMR) genes (hMLH1, hMSH2, hMSH6, PMS1 and PMS2) and is 

also associated with extra-colonic tumours notably of the endometrium, ovary, stomach, 

small bowel, pancreas, hepatobiliary, brain and the upper uroepithelial tract (Vasen, 1999). 

The microsatellite instability pattern of genetic injury associated with HNPCC is also seen 

in some sporadic cancers, which may be either microsatellite unstable (MMR deficient) or 

microsatellite stable (associated with APC mutation). The molecular genetic basis of 

sporadic colorectal cancer will be discussed later. 

 

1.4.4 Colorectal cancer pathology 

1.4.4.1 Histological subtypes of colorectal cancer 

Colorectal cancers are named according to their presumed cell of origin and pattern of 

differentiation. Adenocarcinomas, presumed to arise from glandular tissue, are much the 

most common, accounting for about 95% of all cancers. Other malignant tumours (ie 

cancers) include carcinoids (now called neuroendocrine tumours), sarcomas and 

lymphomas.  

It is now widely accepted most (if not all) colorectal adenocarcinoma result from 

the neoplastic progression of pre-malignant polyps or adenomas. This sequence of events 

has been named the adenoma-carcinoma sequence (Muto, 1975; Day, 1978). Below is a 

figure demonstrating a carcinoma with nearby adenoma (figure 1.3), from which it is 

presumed to have arisen. 

 



 48 

 

Figure 1.3: H+E demonstrating normal colonic mucosa, adenoma and adenocarcarcinoma 

H+E section showing normal (N), adenoma (A) and invasive cancer (C) 

 

Apart from confirmation of the diagnosis of adenocarcinoma, additional histopathological 

features reported during assessment of a colorectal cancer excision specimen include 

differentiation, mucin secretion, necrosis, lymphatic and venous invasion in addition to T 

stage and nodal involvement, all of which may offer prognostic information.    

 

1.4.4.2 Differentiation 

Differentiation describes how closely the malignant glands resemble normal colorectal 

glandular tissue. Given the association with loss of cellular adhesion, poorly differentiated 

adenocarcinomas have been associated with more advanced tumour stage and poorer 

outcome (Halvorsen, 1988). While various grading systems have been suggested, the 

Royal College of Pathologists favour a simple dichotomy into well differentiated versus 

moderate/poor differentiation. Poorly differentiated tumours are defined by ‘irregularly 

folded, distorted and often small tubules or the absence of any tubular formation’ (RCP 

datasets). Figure 1.4 demonstrates carcinomas with moderate and poor differentiation. 
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Figure 1.4: H+E demonstration of moderate and poor differentiation  

A.) H+E slide shown at x100 magnification demonstrating moderate differentiation. 
Definite glandular acini are seen. 
B.) H+E shown at x100 magnification demonstrating poorer differentiation. There are no 
acini. 
 

Categorising differentiation into three categories (well, moderate, poor) aims to achieve an 

ordinal categorical variable describing tumour aggressiveness. While the figure above may 

seem to demonstrate a clear difference in differentiation, in clinical practice such 

distinctions are difficult. Interobserver agreement is generally accepted as poor (Chandler, 

2008) and tumour histology is often heterogenous within the same specimen and thus 

correlation with clinical endpoints may not be robust due to vagaries of specimen 

sampling. These limitations mean that tumour differentiation is not a core dataset item for 

planning adjuvant treatment during MDT discussions. 
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1.4.4.3 Mucin production 

Extracellular mucin accumulates in about 18% of all colorectal cancers (Hogan, 2014). 

The exact mechanism underlying this phenomenon remains unclear. The World Health 

Organisation (WHO) define mucinous carcinoma as one with >50% of its mass composed 

of extracellular mucin pools (Hamilton, 2000). Figure 1.5 shows a focally mucinous 

adenocarcinoma.    

Historically, mucinous adenocarcinoma has been associated with poorer prognosis 

and advanced stage (Purdie, 2000; Verhulst, 2012). Despite consensus reporting 

guidelines, research studies continue to show significant methodological and reporting 

variability. Along with interobserver variability in pathological reporting and potential 

misrepresentation in pathological sections, imprecisely defined association studies makes it 

difficult to translate this pathological variable into a routinely used parameter for treatment 

planning and it does not form a core data item for MDT discussion.    

 

Figure 1.5: Demonstration of different degrees of tumour mucin 

H+E sections shown at x10 magnification demonstrating A.) Focal mucin production in a 
MSI tumour; A 'Crohn's disease like' inflammatory reaction (arrowed) is present. B.) 
Extensive mucin production 
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1.4.4.4 Tumour necrosis 

Tumour necrosis common in solid tumours and classically attributed to ischaemic injury 

due to highly proliferative tumours outstripping their blood supply (Pollheimer, 2010). 

Extensive tumour necrosis has also been associated with advanced tumour stage and 

poorer survival (Gao, 2005; Pollheimer, 2010; Richards, 2012). Figure 1.6 below 

demonstrates different tumours with variable degrees of necrosis. Like some other 

pathological variables, poor interobserver reproducibility and ill-defined thresholds mean it 

has not been established as a core pathological data item for adjuvant treatment planning in 

colorectal cancer. 

 

 

Figure 1.6: Demonstration of different degrees of tumour necrosis 

H+E sections shown at x100 magnification demonstrating A.) No necrosis, B.) Focal 
necrosis and C.) Extensive necrosis. Necrotic areas are arrowed. 
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1.4.4.5 Extramural venous invasion 

Elastin staining for the assessment of vascular invasion increases detection rates from 

about 1 in 5 to 3 in 5 (18% to 58%);(Roxburgh, 2010a). RCPath guidelines describe 

venous invasion as ‘tumour present within an extramural endothelium-lined space that is 

either surrounded by a rim of muscle or contains red blood cells’. Extramural vascular 

invasion, since the introduction of elastin staining, has been shown to be a stage-

independent predictor of poor survival (Roxburgh, 2010). Figure 1.7 demonstrates venous 

invasion in a normal H+E and an elastic H+E staining. 

 

 

Figure 1.7: H+E demonstration of extramural vascular invasion  

A.) H+E section shown at x100 magnification with a cancer gland next to an artery. B.) 
Elastic H+E shown at x100 magnification of the same tumour area as shown in A. Note 
the vascular elastic lamina surrounding the cancer gland (arrowed).  
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1.4.4.6 Histological grading systems 

Optimal cancer treatment maximises survival and minimises morbidity. This is a difficult 

challenge as different patients require different treatments but criteria for making treatment 

choices are imperfect. Unlike breast and prostate cancer, which have well specified 

grading systems, a reliable grading system in colorectal cancer has proven difficult. TNM 

staging and venous invasion remain the best available prognostic biomarkers. Histological 

reporting bias remains a problem but alternatives including automated reporting of 

immunohistochemistry, ELISA and PCR while in theory they might be expected to offer 

greater reliability and objectivity present many challenges of their own and have yet to 

supersede histological data, which turns out to be surprisingly robust. 

 

1.4.5 Molecular pathology of colorectal cancer 

1.4.5.1 Genomic instability and colorectal cancer 

The adenoma-carcinoma hypothesis of colorectal cancer 

This term refers to the pathway from normal epithelium, via adenoma formation and 

eventual malignant transformation to an established cancer. It is supposed that these 

transformations are caused by sequential accumulation of genetic (and epigenetic) injuries. 

This hypothesis is supported by the observation that many patients with colorectal cancer 

also have adenomas present in the resected specimen (either separate, or closely associated 

with the carcinoma and from which the carcinoma may have arisen). Patients with 

carcinoma are on average 5 years older than patients with adenomas, in keeping with a 

model of progression from adenoma to carcinoma (Muto, 1975). In 1990, Fearon and 

Vogelstein proposed their famous genetic model to account for this progression (Fearon, 

1990). Figure 1.8 illustrates progression from normal epithelium to invasive 

adenocarcinoma and with some of the commonly associated genetic changes, including 

activation of oncogenes and inactivation of tumour suppressor genes.  
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Figure 1.8: The adenoma carcinoma sequence and associated genetic events in tumours 
with chromosomal instability (Adapted from Gordon 2007).  

 

It is now widely accepted that distinct molecular pathways including the chromosomal 

instability (CI) pathway (in which microsatellite tandem repeat sequences are usually 

unchanged) and the mutually exclusive microsatellite instability (MSI) pathway are 

associated with different patterns of mutation, pathological features and even survival in 

colorectal cancer.  

 

1.4.5.2 Microsatellite stability and colorectal cancer 

Molecular pathology of chromosomal instability 

Overall the chromosomal instability pathway predominates, being present in about 85% of 

all colorectal cancers. It is characterised by allelic losses, chromosomal translocations and 

gene amplifications. While the exact mechanism that triggers the CI pathway remains 

unclear, certain oncogenes and tumour suppressor genes are commonly mutated in 

colorectal cancers.  

The Adenomatous Polyposis Coli (APC) gene is commonly mutated in invasive 

cancers but mutations also characteristically occur prior to malignant tranformation. 

Powell (1992) reported a frequency of APC mutation nearly equal, at ~ 60%, in both 

adenomas and invasive cancers.  

 Activating K-ras mutations occurs in ~ 40% of adenomas and adenocarcinomas 

(Vogelstein, 1988). K-ras activating mutations are more commonly seen in larger 

adenomas when associated with concomitant APC mutations (Jen, 1994; Rashid, 1999). 

Since K-ras mutation occuring in both adenomatous and hyperplastic polyps (Kim, 2011), 
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it has been suggested that K-ras supports tumour growth while not playing a role in tumour 

initiation; but this is context dependent.  

 TP53 is a tumour suppressor gene located on the short arm of chromosome 17. It is 

commonly mutated in human cancers. It normally prevents cell proliferation in the 

presence of DNA damage, promotes DNA repair and apoptosis (Leslie, 2002). Altered p53 

has been reported in a quarter of adenomas, half of polyp cancers and nearly three quarters 

of more advanced adenocarcinomas (Leslie, 2002) and a role for TP53 in the transition 

from pre-malignant polyps to cancer seems likely.  

 

1.4.5.3 Microsatellite instability in colorectal cancer 

Molecular pathology of microsatellite instability 

Although very strongly associated with cancers in people with HNPCC, MSI also occurs in 

a non-trivial subset of sporadic colorectal cancers. MSI is present in 15% of all cancers and 

is characterised by frameshift mutations and base-pair substitutions. These substitutions are 

commonly found in the short tandem repeat DNA segments called microsatellites. Unlike 

the CI pathway, this destabilisation pathway is caused by mutations (or epigenetic 

silencing) or one or another of the DNA mismatch repair proteins mainly (MLH1, MSH2, 

MSH6 and PMS2). Instability of these 'microsatellite' short tandem repeats refers to the 

tendency of the number of tandem repeats to be altered as a consequence of 'slippage' of 

DNA polymerase and lends itself to detection by PCR techniques (Figure 1.9). 

 

Figure 1.9: PCR demonstration of MSI compared with CIN from two different colorectal 
cancers  

The MSI tumour peaks have a longer tail (arrows) compared with the MSS peaks (stars). 
This longer tail represents the accumulation of microsatellite repeats at these specific loci.  
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In contrast to HNPCC, in which loss of MMR function is due to mutation, sporadic MSI 

tumours are usually caused by hypermethylation of cytosine residues of the cytosine and 

guanine rich promoter sequences of MLH1 (Kane, 1997). This epigentic silencing leads to 

reduction or total loss of gene transcription. Cancers with high levels of CpG island 

methylation are said to have the 'CpG island methylator phenotype (CIMP; Toyota, 1999) 

and represent a clinically and aetiologically distinct group with 'epigenetic instability'. Loss 

of MMR protein expression results in alteration of microsatellites throughout the genome; 

this serves as a marker of ineffective mismatch repair and implies increased mutation of 

important tumour suppressor genes and oncogenes (including some which contain exonic 

microsatellites, like the TGF beta type II receptor, mentioned below). 

 Although it is generally accepted that CI colorectal cancer usually follows an 

adenoma-carcinoma sequence, the pathway to MSI colorectal cancer is less clear cut. 

Transforming growth factor-B (TGF-B) type II receptor is mutated in 90% of MSI 

colorectal cancers (Parsons, 1995). TGF-B RII is a tumour suppressor gene that regulates 

transcription of genes relating to cellular proliferation (Markowitz, 1995). Bcl-2-associated 

X protein (BAX) is inactivated in approximately 50% of all MSI tumours due to frameshift 

mutations and confers a cellular survival benefit through disruption of apoptosis mediated 

by Bcl-2 (Miquel, 2005; Trojan, 2004).   

 BRAF is a component of the RAS-RAF-MAPK signalling pathway, which 

mediates cellular responses to growth signals. BRAF mutation is strongly associated with 

MMR deficient CRC and is mutually exclusive with mutation of the K-ras oncogene 

(Rajagopalan, 2002; Yuen, 2002). Kambara et al (2004) observed that in sporadic MSI 

colorectal cancer, BRAF mutation was associated with the CpG island methylation 

phenotype. The association between BRAF mutation and sporadic MSI tumours was 

further strengthened by the observation that none of the 18 HNPCC tumours exhibited 

BRAF mutations (Kambra, 2004).  

 

Pathological characteristics associated with microsatellite instability in colorectal cancer 

MSI tumours occur more frequently in the proximal colon; in female patients; and are 

more likely to be larger, stage T3, but node negative (Soreide, 2006). Pathologically these 

tumours exhibit poorer differentiation, copious extracellular mucin production and lack the 

so-called 'dirty necrosis' characteristic of many colorectal cancers (Greenson, 2003). There 

is evidence that MSI tumours have a higher apoptosis to proliferation ratio, which may 

compensate for their increased cell proliferation activity (Michael-Robinson, 2001). There 

is also a pronounced peritumoral inflammatory infiltrate, which appears as a 'Crohn’s 
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disease like' inflammatory reaction (figure 1.5, page 50), as well as an increased density of 

CD8+ lymphocytes within cancer cell nests (Dolcetti, 1999).  

 

Prognostic value of microsatellite instability in colorectal cancer 

Despite associations between MSI cancer and usually adverse prognostic factors such as 

more advanced T stage and a mucinous phenotype, these cancers have been associated 

with a better outcome. A systematic review and meta-analysis by Popat et al showed that 

in 32 studies of 7,642 patients, MSI tumours had a significantly better prognosis compared 

with their CI counterparts, with a hazard ratio for overall survival of 0.65 (95% CI, 0.59 to 

0.71 (Popat, 2005). Despite this association with improved survival, MSI tumours do not 

appear to respond well to adjuvant 5-fluorouracil chemotherapy. A large study by Hong et 

al and meta-analysis by Guastadisegni et al (31 studies; 12,782 patients) concluded that 5-

FU chemotherapy improved survival in CI colorectal cancer patients but not MSI patients 

(Guastadisegni, 2010; Hong, 2012). Little is known about clinicopathological factors 

predicting survival in patients with MSI tumours. Identifying such factors and 

pathophysiological processes underpinning their behaviour could suggest novel therapeutic 

targets for adjuvant biological therapies in patients with high risk MSI cancers. 

 

1.5 Diagnosis and staging of colorectal cancer 

1.5.1 Diagnosis 

In the UK and elsewhere, patients with colorectal cancer are diagnosed via three main 

pathways. Unfortunately, almost one-third of patients present as an emergency with 

symptoms relating to advanced disease including obstruction, perforation or significant 

bleeding (Bass, 2009). For many of these patients, curative surgery is not an option and 

they undergo palliative treatment only. Patients with significant but less severe symptoms 

such as altered bowel habit, less significant bleeding and weight loss will be referred by a 

primary care physician as an urgent suspected cancer (USC). About half of these patients 

still have locally advanced disease or lymph node metastasis at presentation, with a higher 

risk of subsequent recurrence. To combat this issue, by 2010 the National Bowel Cancer 

Screening Programme had been established. Based on the faecal occult blood (FOB) test, 

patients in the age range of 50-74 are asked to submit a stool sample every 2 years. 

Patients with a positive FOB test are invited to undergo a screening colonoscopy by a 

certified screening endoscopist. 
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1.5.2 Staging and prognosis 

1.5.2.1 Radiological staging 

Staging allows rational treatment planning adapted to the likely prognosis of an individual 

patient. Unfortunately, because for most patients with metastatic carcinoma, surgery can 

only offer local symptomatic control (although this is very important for quality of life), 

pre-operative radiological staging is fundamental to identifying patients in whom there is a 

chance surgery may be curative. To find distant metastases, if present, patients with colon 

cancer undergo computed X ray tomography (CT) of chest, abdomen and pelvis. In rectal 

cancer, surgical resection presents greater technical challenges and so regional tumour 

staging is augmented by magnetic resonance (MRI) imaging of the pelvis.    

 

1.5.2.2 Pathological staging 

Colorectal cancer spread occurs locally by direct invasion through the bowel wall or 

systemically via lymphatic or venous invasion. Staging by pathological assessment of 

these anatomical / morphological parameters after surgical resection remains essential. 

There are 3 main pathological staging systems in clinical use; Dukes' stage, the modified 

Astler-Coller classification and the AJCC/UICC TNM (Tumour, Node, Metastasis) staging 

system. Each of these staging systems are largely based on a pathological assessment of 

tumour depth of invasion (T), the presence of lymph node metastasis (N) and the presence 

of distant metastases (M) (table 1.1 and figure 1.10).  

Although Dukes’ stage was for a long time the pathological staging system of 

choice, it was poor at risk stratifying patients within the local (Dukes’ B) and lymph node 

metastasis group (Dukes’ C). The Astler-Coller classification, a modification of Dukes’ 

staging system, attempted to address these limitations by subcategorizing these groups into 

B1-3 and C1-3 by local tumour spread. A weakness of this approach is that T staging 

stratifies patients at risk of poor local control, whereas N stage stratifies patients at risk of 

poor systemic control, and the Astler-Coller classification inadequately stratifies patients 

with lymph node metastasis, as the subgrouping is based on degree of tumour penetration 

through bowel wall. TNM staging system aims to control for this by assessing the degree 

of local and lymph node spread’ and offers the best form of pathological prognostication in 

routine clinical use. It is has undergone review many times over recent years and is 
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currently on its 7th edition with modifications based on emerging scientific evidence. In the 

case of colorectal cancer, TNM7 is not much different from TNM 5 and 6. 

 

Table 1.1: The pathological components of the TNM staging system (7th edition) 

 

 

 

 

 

TNM Component Pathological description 

Tx Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ: intraepithelial or invasion of lamina propria 

T1 Tumour invades submucosa 

T2 Tumour invades muscularis propria 

T3 Tumour invades through the muscularis propria and into the 

subserosa or non-peritonealised perirectal/pericolonic tissues 

T4a Tumour penetrates to the surface of the visceral peritoneum  

T4b Tumour directly invades or is adherent to other organs or structures  

Nx Lymph nodes cannot be assessed 

N0 No regional lymph node metastasis 

N1 Metastasis to 1-3 regional lymph nodes 

N1a Metastasis in 1 regional node 

N1b Metastasis in 2-3 regional nodes 

N1c Tumour deposits in the subserosa, mesentery, or nonperitonealized 

pericolic or perirectal tissues without regional nodal metastasis 

N2 Metastasis to 4 or more regional lymph nodes 

N2a Metastasis in 4-6 regional lymph nodes 

N2b Metastasis in 7 or more regional lymph nodes 

Mx Distant metastasis cannot be assessed 

M0 No distant metastasis 

M1 Distant metastasis identified 

M1a Metastasis confined to one organ or site 

M1b Metastasis in more than one organ/site or the peritoneum 
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Figure 1.10: Components of the different pathological staging systems (adapted from 
AJCC TNM 7th edition) 

Dukes’ – Dukes’ staging system  
MAC – modified Astler-Coller classification  
 

As shown above, the pathological parameters are then combined to form the TNM stage. 

There are 4 main stages (I-IV) with I representing local disease, II locally advanced, III 

lymphatic spread to regional lymph nodes and IV the presence of distant metastasis. In 

addition there is an enhanced staging system represented by an alphabetical suffix A, B or 

C. In routine clinical practice and for the purposes of prognostication only the main groups 

are considered. Prognosis varies according to stage with 93% of patients with stage I 
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colorectal cancer living for 5 years compared to 6% of patients with stage IV disease 

(Cancer Research UK, 2014), (Table 1.2). 

 

Table 1.2: Table summarising components of the Dukes’ and TNM staging systems for 

colorectal cancer and 5-year survival (Cancer research UK) 

 

 

 

 

 

 

 

 

 

 

1.5.2.3 Limitations of the AJCC/UICC TNM staging system 

TNM staging offers an anatomical snapshot of a dynamic and biologically active disease 

process, which integrates time and tumour biology. Although it offers an ordinal 

prognostic marker of survival, its predictive value in terms of identifying patients for 

adjuvant treatment or assessing if patients will respond to treatment is poor. A definite gap 

is that unlike breast and prostate cancer in which cancer grading makes a valuable 

contribution to prognostication, this is not the case in the current colorectal cancer TNM 

staging. Other limiting factors are inherent to the pathological processing of the tumour. 

Firstly, sections are simply representative and may under-stage the degree of penetration of 

the tumour through the bowel wall. Secondly, identifying all lymph nodes in a resected 

specimen can be challenging. The number of lymph nodes recovered varies widely 

between specimens. Some of this variation is probably real but pathologist diligence, neo-

adjuvant treatment, scrupulousness in avoiding double counting, use of special fixatives 

(e.g.Carnoy's), and just how many lymphocytes are considered to constitute a lymph node 

all have an influence. Since lymph node staging is dependent on the number of lymph node 

containing carcinoma, non-identification of even one positive node may result in a 

different N staging. The introduction of a positive to total volume lymph node ratio tried to 

address this, but with conflicting results lymph node ratio has not become established in 

routine clinical practice. Despite these limitations highlighting the possibility of stage 

TNM 

Classification T N M 

5-year 

survival 

 

Stage I T1 N0 M0 93% Confined to bowel wall 

 T2 N0 M0   

Stage II T3 N0 M0 77% Locally advanced 

 T4 N0 M0   

Stage III T1, T2 N1-N2 M0 48% Node positive disease 

 T3, T4 N1-N2 M0   

Stage IV Any T Any N M1 6% Metastatic Disease 
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migration or under-staging, TNM staging system is a useful ordinal predictor of outcome. 

Supplementing TNM stage with effective biomarkers seems to offer the best prospect of 

improved prognostication and for predicting response to adjuvant therapies. 

 

1.6 Treatment options for colorectal cancer 

1.6.1 Surgery 

Surgery remains the primary modality for cure in colorectal cancer, but also has an 

important palliative role. The type of surgery performed depends on cancer location, 

pathological characteristics of the tumour and patient factors.  

 

1.6.1.1 Elective surgery 

Historically, surgical resection of colorectral cancer was performed via a large laparotomy 

incision; it is now more common to use laparoscopic techniques. The abdomen is imaged 

to confirm resectibility and to identify occult metastatic spread. Patients undergoing 

potentially curative resection will have an en bloc oncological resection with the intention 

of removing the tumour with adequate margins and also draining lymph nodes. Adequate 

lymphadenectomy requires an anatomical resection based on the arterial supply to the 

region of the colorectum containing the tumour. 

 Tumours of the right colon (caecum, ascending and transverse colon) are removed 

by right hemicolectomy, with ligation of ileocolic, right and middle colic arteries 

depending on tumour site. Tumours of the left colon (descending colon) are removed by 

left hemicolectomy with ligation of the left colic artery. Depending on precise site, 

tumours of the sigmoid colon are removed by sigmoid colectomy or anterior resection with 

ligation of the left colic artery and superior rectal artery. Depending on the level of the 

tumour and its proximity to the anus, rectal tumours are removed by anterior resection or 

abdomino-perineal resection (APR).  

 Over the past 25 years, oncological outcomes following rectal cancer surgery have 

improved with widespread adoption of total mesorectal excision (TME). T3 rectal tumours 

invade the mesorectum; TME requires anatomical dissection in the mesorectal plane. This 

improves the rate of clear margins with a reduction in the risk of local recurrence (Heald, 

1986). The local recurrence rate following TME is reported as 4-5%, a reduction from 25% 

using previously accepted techniques (MacFarlane, 1993). 
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Some colorectal cancers can be excised locally at colonoscopy or transanally. Indications 

for potentially curative local excision include: 

 Mobile tumours 

 T1 tumours (assessed by ultrasonography)  

 Well or moderately differentiated histology (determined by biopsy)  

 Tumour size less than three centimetres.  

 

1.6.1.2 Emergency Surgery 

Despite better patient awareness and referral pathways, unfortunately 30% of patients still 

present as an emergency with obstruction, bleeding or perforation. Emergency presentation 

is a stage-independent adverse prognostic factor for short and long term oncological 

survival. Challenges remain, but improvements in operative technique and peri-operative 

care mean that most can be treated by a two stage (Hartmann’s) procedure or resection and 

primary anastomosis. Following the SCOTIA trial, segmental resection is preferred to 

subtotal colectomy in obstructed distal colon cancers (SCOTIA, 1995). Segmental 

resection was associated with better long term GI function, but in the case of caecal 

perforation or synchronous tumours, subtotal colectomy remains the best option (SCOTIA, 

1995). 

 

1.6.2 Neoadjuvant therapy 

TME is now standard of care in surgery for rectal cancer. Unfortunately, some patients still 

have margin-threatening disease and remain at higher risk of local recurrence. Therefore, 

patients with rectal cancer undergo pelvic MRI and, depending on the findings, may be 

offered short or long course radiotherapy or chemoradiotherapy.  

 

1.6.2.1 Short course radiotherapy 

Short course radiotherapy reduces local recurrence rates in patients undergoing TME 

(Folkesson, 2005; Kapiteijn, 2001). A dose of 25 Gy is given in 5 daily fractions over 1 

week prior to definitive surgery. NICE guidelines suggest that patients with moderate risk 

tumours should receive short course radiotherapy. Moderate risk is defined as: 

 T3 disease which is not margin threatening or 

 Non-margin threatening lymph nodes 

 Radiological evidence of extramural vascular invasion 



 64 

 

1.6.2.2 Long course preoperative chemoradiotherapy 

Patients receive 45 Gy of radiotherapy in 25 fractions over 5 weeks followed by an interval 

of 6-10 weeks to allow a response. Chemotherapy regimens are at the discretion of the 

oncologist. Historically these have largely been 5-FU based with good results (Sauer, 

2004). However, newer regimens with Capecitabine are being studied (Gérard, 2010). 

NICE guidance suggests that patients with moderate or high risk tumours should receive 

long course chemoradiotherapy. High risk is defined as: 

 A threatened (<1mm) or breached resection margin or 

 Low tumours encroaching on the inter-sphincteric plane or with levator muscle 

involvement.  

 

1.6.3 Adjuvant therapy 

Following potentially curative surgery, adjuvant therapy aims to eradicate micrometastases 

thus increasing the rates of cure. Although the use of adjuvant chemotherapy in patients 

with stage II carcinomas is controversial (Benson, 2004), it is now widely accepted that 

stage III patients should be offered adjuvant treatment (Andre, 2009; NICE, 2011).  

Chemotherapeutic agents available for colorectal cancer patients include 5-Flurouracil (5-

FU), Leucovorin (folinic acid), Oxaliplatin, Capecitabine and Irinotecan. These are often 

given as combinations including: 

 FOLFOX - 5-FU, Leocovorin and Oxaliplatin 

 FOLFIRI - 5-FU, Leucovorin and Irinotecan 

 XELOX - Oxaliplatin and Capecitabine 

 

Although historically patients with stage III disease were usually offered 5-FU, recent 

evidence suggests a further reduction in recurrence rates is possible with the addition of 

Oxaliplatin (FOLFOX) (Andre, 2009). Guidelines published by the National Institute for 

Health and Care Excellence (NICE) advocate either Capecitabine monotherapy or 

FOLFOX for patients with stage III disease (NICE, 2011).  

 Approximately 30% of patients with stage II colorectal cancer develop recurrence 

and ultimately die of it. The case for giving all patients with stage II disease adjuvant 

chemotherapy remains controversial, given the associated toxicity (Benson, 2004). 

Guidance by NICE and ASCO suggests that offering adjuvant treatment to these patients is 
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at the discretion of the oncologist, taking into account the wishes of the patient (NICE, 

2011; Benson, 2004).  

 

1.6.4 Biological therapy 

Biological therapies (targeted therapies) aim to modify the biology of the cancer cell. 

Important targets include the EGFR pathway (Cetuximab) or VEGF (Bevacizumab). These 

monocloncal antibodies are currently licenced for use in metastatic colorectal cancer only. 

FOLFIRI and Bevacizumab combination therapy was significantly associated with 

extended progression-free survival when compared with FOLFIRI and placebo (Hurwitz, 

2004). Cetuximab is associated with improved survival when combined with FOLFIRI in 

patients with KRAS wild-type tumours (Van Custem, 2009). These findings have resulted 

in NICE guidelines advocating Cetuximab as a first line treatment in patients with isolated 

hepatic metastatic colorectal cancer and fit enough for surgery (NICE, 2011). 

 

1.7 Inflammation and colorectal cancer 

1.7.1 Introduction 

Inflammation is now presented as a 7th 'hallmark' of cancer (Balkwill, 2001). Cancer-

associated inflammatory responses can be divided into systemic (SIR) and local (LIR; 

within the tumour). Relationships between inflammation and survival depends on whether 

it is systemic or local (Klintrup, 2005; McMillan, 2008).  

 

1.7.2 Local Inflammatory responses 

Systemic inflammation is associated with a worse prognosis in colorectal cancer. In 

contrast, LIR appear generally protective. LIR represent complex multicellular and 

cytokine interaction with potential for tumour cell destruction. Evasion of this 

immunosurveillance is an important step in tumour metastasis (Watson, 2006). The LIR is 

composed of cells responsible for innate and adaptive immunity but mechanisms 

underlying cancer cell destruction by innate and adaptive mechanisms are still poorly 

understood   

The benefit of lymphocytic infiltration has been known for a long time with 

McCarty and colleagues describing it as far back as 1931 (MacCarty, 1931). However, 

interest was renewed and has been sustained since Jass revisited it in 1986. Jass found that 
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in rectal cancer a pronounced inflammatory infiltrate predicted survival independently of 

depth of tumour invasion and lymph node metastasis (Jass, 1986). The LIR is variable in 

density and heterogeneous in terms of participating immune cells, with different patient 

survival outcomes. Delineating tumour and host characteristics that modify these responses 

may offer novel therapeutic targets.  

 

1.7.2.1 The innate immune response 

The immediate, innate immune response is not dependent of specific antibody or T-cell 

receptor recognition of antigens. It is largely implemented by dendritic cells, natural killer 

cells, neutrophils and macrophages, which kill pathogens by phagocytosis. Macrophages 

and dendritic cells process antigenic material derived from pathogens and present it to T-

lymphocytes, establishing an adaptive immune response (Aderem, 2000; de Visser, 2006). 

The role of the innate immune response in colorectal cancer is controversial, with some 

evidence for effects on disease progression and anti-tumour activity. Translational studies 

of intra-tumour neutrophil infiltration have shown an adverse association with survival 

(Rao, 2012), but macrophages at the invasive edge predicted improved outcome (Forssell, 

2007).   

The acute inflammatory response plays an important role in tissue remodeling and 

angiogenesis and may even facilitate tumour escape from immune surveillance (Lin, 2007; 

figure 1.11). 
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Figure 1.11: The role of the innate immune response in colorectal cancer progression and 
survival (Adapted from Lin, 2007) 

 

1.7.2.2 The adaptive immune response 

The adaptive immune response is a sophisticated multi-cellular and humoral response to 

antigen presentation by the innate immune system.  Adaptive immune cells including 

CD4+ helper lymphocytes and CD8+ cytotoxic lymphocytes are antigen specific and result 

from expansion of specific clones recognition of foreign antigens. These clonal CD8+ cells 

are created originally by randomly occurring rearrangements in a antigen specific-receptor 

and thus recognize diverse antigens.  

 Tumour-infiltrating lymphocytes are independently associated with improved 

survival (Naito, 1998). Naito and colleagues were the first to recognize that CD8+ 
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lymphocytes specifically within cancer-cell nests gave the most valuable prognostic 

information. It appears that cancer-cell nest CD8+ infiltration represents a coordinated and 

specific anti-tumour immune response. The exact mechanisms underlying CD8+ 

infiltration remains unclear but mismatch repair (MMR) deficient tumours have been 

associated with the presence of CD8+ lymphocytes within the cancer cell nests (Dolcetti, 

1999; Soreide, 2006).  

 

1.7.3 Systemic inflammatory response 

The systemic inflammatory response (SIR) protects the host against harmful agents by 

increasing vascular permeability, activating and stimulating proliferation of immune cells, 

initiating angiogenesis and promoting tissue remodeling (Coussens, 2002a). The SIR is a 

complex biosystem with multiple cellular and protein components. The cellular 

components include neutrophils, lymphocytes and platelets, with other immune cells 

present in smaller numbers. The protein components, collectively termed the acute phase 

protein response (APPR), are synthesised by the liver and help promote the inflammatory 

response. APPRs are defined as plasma proteins, which increase in concentration by 

greater than 25% in the first seven days following tissue injury (Kushner, 1982). 

Interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor (TNF) have been 

identified as the prime inducers of hepatic APPRs (Thompson, 1992).  

 

1.7.3.1 Quantification of the systemic inflammatory response 

The systemic inflammatory response has no specific endpoint and therefore developing an 

ideal biomarker is challenging. Several biomarkers have been proposed, most of which are 

based on differential serum white cell count ratios and APPR expression levels. Absolute 

values of the total white cell count, neutrophils and lymphocytes have long been used in 

assessing inflammation in patients, however more recently the ratio of circulating 

neutrophils to lymphocytes (Zahorec, 2001) has also been proposed. C-reactive protein 

(CRP), which is secreted by the liver in response to IL-6 (Bataille, 1992), is a reliable 

clinical marker of systemic inflammation and is commonly used to guide response to 

treatment in inflammatory conditions, along with the differential white cell count.  

 

C-reactive protein 

Two phases of response contribute to an elevated CRP; acute and chronic. CRP levels may 

increase acutely in response to trauma, infection, surgery and return to normal with 
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resolution of the causative factor. Secondly, CRP can be chronically raised and this has 

been associated with poorer survival in patients with metabolic syndrome and diabetes 

(Sattar, 2003). 

 In colorectal cancer many studies have looked at the role of CRP in predicting 

survival in patients with inoperable and operable colorectal cancer (Leitch, 2007; 

Roxburgh, 2010b, Roxburgh, 2010c). CRP offers stage independent prognostic 

information, but its effect on tumour cellular behavior remains unclear. Raised serum CRP 

has been associated with more rapidly proliferative tumours, but the pathophysiology 

underlying this remains unknown (Canna, 2008). It is likely that growth factors of the 

humoral systemic inflammatory response promote tumour progression via complex 

interactions with intracellular signaling pathways.   

 

Albumin 

The SIR is dependent upon specific amino acids for the generation of protein mediators 

such as immunoglobulins. This results in progressive loss of the albumin store and the 

development of hypoalbuminaemia (Fearon, 1998; Fearon, 1999; McMillan, 2001). 

In colorectal cancer, hypoalbuminaemia has been strongly associated with CRP 

expression and poorer prognosis (Al-Shaiba, 2004; McMillan, 2001). The exact 

mechanism for this remains unclear as do relationships between hypoalbuminaemia and 

tumour characteristics.  

 

1.7.3.2 The systemic inflammatory response in the context of colorectal cancer 

Associations with poorer survival in both operable and inoperable colorectal cancer 

(Roxburgh, 2010b) implicate the SIR in tumour progression and metastasis. It is not clear 

how the prognostic value of the SIR relates to a model of tumour heterogeneity based on 

genomic instability. There is good evidence that MSI tumours are associated with a 

pronounced inflammatory infiltrate; however, it remains unknown if there is any 

association between systemic inflammation and MSI in colorectal cancer.  

 In non-cancer states, angiogenesis, tissue breakdown and remodeling are 

coordinated by the systemic inflammatory response. For example, in normal colon cell 

lines, IL-6 stimulates proliferation and inhibits apoptosis by increasing STAT3 expression 

via Janus kinase (Grivennikov, 2009). In cancer, studies examining relationships between 

the SIR and intracellular signaling pathways related to tumour behavior including invasion 
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are needed. It is likely that tumour progression and metastasis is based on a complex 

balance between tumour behaviour and the host.  

 

1.8 Matrix Metalloproteinase 9 and cancer 

1.8.1 Introduction 

The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, 

first discovered in the 1960s, responsible for degradation of extracellular matrix (Gross, 

1962). MMP-9, a gelatinase, is secreted as a 92-kDa proenzyme, and degrades type IV 

collagen following activation.  

There are over 20 MMPs. They are classified by their location and early 

assessments of their substrate specificity as gelatinases, collagenases, stromelysins, and 

membrane-type MMPs. The gelatinases MMP-2 and MMP-9 degrade mainly type IV 

collagen. MMP-9’s association with connective tissue degradation has implicated it in 

colorectal cancer progression and metastasis. 

 

1.8.2 Structure of MMP-9 

MMPs all share a common structure, with pro-peptide, catalytic and haemopexin-like C 

terminal domains. The catalytic and C-termnal domains are linked by a flexible hinge 

region. The pro-peptide region contains a conserved cysteine residue that interacts with a 

divalent zinc ion in the active site and prevents binding and cleavage of the substrate, 

keeping the enzyme in an inactive form. Within the catalytic domain a groove contains the 

zinc ion within the active site. Gelatinases such as MMP-9 incorporate fibronectin type II 

modules inserted immediately before the zinc-binding motif in the catalytic domain (figure 

1.12). The haemopexin-like C-terminal domain contains a four-bladed β-propeller 

structure, which provides a large flat surface for protein interactions and determines 

substrate specificity. It is the site for interaction with tissue inhibitors of metalloproteinases 

(TIMP’s).  
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Figure 1.12: Structure of the matrix metalloproteinases (MMPs) (Adapted from Di Carlo 
2012) 

1. Minimal domain of MMPs, 2. Archetypical MMPs with simple hemopexin-domain, 3. 
Gelatin binding MMPs (MMP-9), 4. Furin activated MMPs, 5. Vitronectin insert MMPs. 
SH: thiol group, Zn: zinc binding, Fi:fibronectin, Fu:furin, Vn:vitronectin. 
 

1.8.3 MMP-9 and colorectal cancer 

The source of MMP-9 within colorectal cancers remains unclear. Tutton and colleagues 

found a close relationship between plasma concentrations and tumour expression of MMP-

9 (Tutton, 2003). However, unlike tumour MMP-9, plasma MMP-9 was not associated 

with survival (Tutton, 2006). This finding appears paradoxical and a matched tumour and 

serum study is required. MMP-9 in the tumour is thought to originate from fibroblasts and 

immune cells in the microenvironment, (Roeb, 2001; Collins, 2001), however, MMP-9 

mRNA has also been seen within the cancer cells (Koskensalo, 2012). 

MMP-9 has been implicated in colorectal cancer development and progression 

through degradation of the basement membrane and other connective tissues of the colon 

including possibly in the walls of colonic veins (Zeng, 1995). MMP-9 expression was 

higher in tumours with synchronous liver metastasis (stage IV) compared to those with 

stage I-III disease (Matsuyama, 2002). Although this suggests that MMP-9 may plays a 

role in venous invasion, confirmatory evidence is unavailable. Given these associations 

with disease progression and metastasis, it is unsurprising that MMP-9 expression within 

the tumour has been associated with stage independent poorer survival (Zeng, 1996).  

Colorectal adenocarcinomas are heterogeneous tumours with different molecular 

and biological characteristics based on well-defined genomic instability patterns. It is 
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possible, therefore, that aberrant MMP-9 expression is characteristic of an aggressive 

subgroup of colorectal adenocarcinoma with a specific molecular genetic pattern. Moran et 

al observed that MSI tumours were associated with lower levels of active MMP-9 despite 

higher levels of total MMP-9 (Morán, 2002). As well as moderate sample size (n=101), 

this study used tumour tissue that was not microdissected, and probably incorporated non-

neoplastic tissue in the homogenate. MSI tumours are often heavily infiltrated by immune 

cells, which contain both inactive and active MMP-9, so these results need to be 

interpreted with caution. The association between MMP-9 expression and MSI status 

needs to be examined in a larger cohort using a histological model for quantification so 

that targeted areas of the tumour can be evaluated. 

 

1.8.4 MMP-9 Inhibitors 

Despite evidence implicating MMPs in tumour progression and survival, clinical trials of 

MMP inhibitors have been disappointing (Overall, 2002; Coussens, 2002b). A possible 

explanation is that the MMP-9 inhibitors used in these studies were either broad spectrum 

of only semi-selective, with higher dose-limiting toxicity and insufficient clinical benefit. 

Experimental MMP-9 specific inhibitors modify disease activity of ulcerative colitis and 

colorectal cancer in mouse models, but there are no mature trials in humans (Marshall, 

2015). Another potential method for MMP-9 inhibition is via mechanisms that regulate 

expression of the molecule, such as the EGFR signaling (Westermarck, 1999), but further 

experimental evidence is needed prior to conducting clinical trials.  

 

1.8.5 MMP-9 as a biomarker for treatment stratification 

For MMP-9 to be useful as a biomarker in clinical practice, the techniques used to quantify 

it will probably need to discriminate between its active and inactive forms, while being 

reproducible and cost effective. Available antibodies to MMP-9 bind to an area common to 

the active and inactive forms, and do not allow one to discriminate between the activation 

status of the protein using antibody-mediated protein capture.  

High expression of the protein at a particular cellular location may act as a 

surrogate marker of activation and this requires further study. Molecular weight 

quantification alone does not offer useful information regarding tumour cell specific 

protein expression as the homogenate will also include immune cells and nearby normal 

tissue. Therefore, developing a reliable and easily reproducible histological scoring method 

is needed but is likely be rather challenging. Serum MMP-9 has also been studied using 
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ELISA, however, relationships with tumour expression and whether it offers useful 

prognostic information require further study.   

 MMP-9 appears to offer useful prognostic information, based mainly on its 

relationship with tumour invasion. It is possible, however, that individual poor patient 

survival is attributable to other properties of the tumour. If MMP-9 is to be translated into 

clinical practice then it will need to be proven that it offers prognostic information 

independent of the clinicopathological factors currently used in clinical practice.    

 

1.9  Src kinase family members and cancer 

1.9.1  Introduction 

The Src family kinases (SFKs) are non-receptor tyrosine kinases. They are regulatory 

proteins, with key roles in cell differentiation, motility, cell proliferation and survival 

(Frame, 2002). Src family kinases Blk, Fgr, Fyn, Hck, Lck, Lyn, c-Src, and Yes are all 

expressed in different human tissues.   

 

1.9.2 Structure of Src 

Src family kinases share a common protein structure (figure 1.13). The highly conserved 

Src homology domains, SH2–4, and a regulatory domain R, are common to all SFKs. 

SFKs are down-regulated by phosphorylation of a tyrosine residue at the 527 position, 

causing phosphorylated Tyr527 to interact with SH2 forming a “closed” conformation. In 

contrast, phosphorylation of a tyrosine residue at the 416 position results in the activation 

of SFKs. 

 SFK proteins are 60kDa tyrosine kinases with an N-terminal 14-carbon myristoyl 

sequence, a SH4 domain, SH3 and SH2 domains, a protein-tyrosine kinase domain, a short 

C-terminal regulatory tail and a unique segment (figure 1.12). N-terminal myristolation is 

required for membrane attachment and transforming activity by oncogenic Src mutants 

(Frame, 2002). The amino-terminal SH4 domain is unique to each SFK. The four distinct 

Src-homology domains (SH1-4) regulate SFK activity and interact with substrates to form 

intracellular signalling complexes (Ly, 2007). SFK activation is dependent on the 

interaction of different SH domains with each other and a C-terminal domain (Elsberger, 

2009). 
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Figure 1.13: Structure of a Src family kinase (Adapted from Sicheri, 1997) 

A.) The basic common structure of all SFKs. B.) Demonstrates the postulated change in 

structure between inactive and active forms of a generic SFK. 

 

1.9.3 Activation of Src 

SH domain interactions are highly dependent upon phosphorylation of various tyrosine 

residues within the protein. Inactive SFKs can be phosphorylated at the tyrosine 527 site 

by C-terminal Src kinase (ctSK) and ctSK homology kinase (Chk). Tyr527 is a highly 

conserved site among all SFKs located in the C-terminal tail. Mutations resulting in 

hypophosphorylation or loss of the C-terminal tail produce a constitutively activated 

protein. Phosphorylation of this site results in inactivation of the SFK by promoting 

binding of the C-terminus to the SH2 domain and binding of the SH3 to the SH1 domain 

(Cooper, 1993; Ly, 2007).  

 Physiological activation follows dephosphorylation of the Tyr527 site by tyrosine 

phosphatase and autophosphorylation of the tyrosine 416 active site (Roskoski, 2005). 
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Consequent unfolding of the protein allows substrate access to the protein kinase domain 

(figure 1.13 and Elsberger, 2009). Several substrates bind to the unfolded active areas. 

Growth factors such as EGFR and VEGFR, factors with their own kinase activities, can 

bind to the SH2 and SH3 domains, which can also bind to and activate cytoskeletal 

proteins such as FAK (Yeatman, 2004). It is thought that these interactions cause 

translocation of the SFK to their site of action (Elsberger, 2009).  

 Elsberger and colleagues note that SFKs are found at different cellular locations. 

These include, membrane, cytoplasm, perinuclear and the nucleus (Campbell, 2008; 

Elsberger, 2009). The SFKs are located mostly in the cytoplasm, however upon activation, 

they translocate to the cell membrane (Fincham, 2000).  

 

1.9.4  Src kinases and colorectal cancer 

There is little evidence about the role of Src and other SFKs in colorectal cancer 

progression and survival. c-Src is an independent predictor of poorer prognosis and its 

expression was higher in liver metastases than primary carcinomas (Aligayer, 2002; Han, 

1996; Talamonti, 1993). On the other hand cell line studies have suggested that c-Src alone 

enhances tumour growth but not metastatic potential (Irby, 1997). 

Selective silencing of c-Yes induced apoptosis and inhibited growth of HT29 colon 

carcinoma cell lines whilst inhibiting cell migration and metastatic capabilities in mouse 

models (Sancier, 2011). No translational studies have been done on the clinical 

significance of SFKs expression and activation in predicting survival in colorectal cancer.   

Given the emergence of molecular subclassification of colorectal cancers, it 

remains unknown if SFK expression is associated with or indeed exclusive to a particular 

molecular ‘type’ of colorectal cancer. It is possible that aberrant SFK expression is 

associated with more aggressive subgroups of colorectal adenocarcinoma with a specific 

molecular genetic pattern.  

 

1.9.5  Src kinase inhibitors 

The high degree of homology between all SFKs has made it difficult to develop inhibitors 

to any particular family member. The commonly used Src inhibitors exert their effect on 

all family members. There are two main categories of Src inhibitor, the SH2/SH3 

inhibitors and ATP-competitive kinase inhibitors.  
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1.9.5.1 SH2/SH3 inhibitors 

There are currently three principal SH2/SH3 inhibitors being studied; AP22408, and KX2 

391, UCS15A. They antagonize Src by blocking its activation of downstream signaling 

substrates. AP22408 has osteoclast-targeting properties, with the potential to specifically 

target bone metastases while avoiding unwanted inhibition of Src-dependent activities in 

other cells types (Shakespeare, 2000). UCS15A interacts with the SH3 domain of the SFK 

and inhibits SH3-mediated protein-protein interactions in colorectal cancer cell lines 

(Oneyama, 2002). KX2 391 is an orally available, non-ATP– competitive Src inhibitor, 

which targets the substrate-binding ability of SFK. It appears to inhibit proliferation in 

hepatocellular cancer cell lines (Lau, 2009). Phase I trials have reported good tolerability, 

favouring phase II trials (Naing, 2013). 

 

1.9.5.2 ATP-competitive Src kinase inhibitors 

ATP-competitive SFK inhibitors work by inhibiting the kinase activity of the SH1 domain. 

There are currently three orally active inhibitors undergoing phase I or II clinical trials: 

Bosutinib (SKI-606, Wyeth), Dasatinib ((SPRYCEL, Bristol-Myers Squibb) and 

Saracatinib (AZD0530, AstraZeneca) (Daud, 2011; Kaye, 2012; Sharma, 2012).  

Saracatinib and Bosutinib have anti-proliferative, anti-migratory and anti-invasive 

activity in several cell lines including breast, colon, prostate and lung cancer (Chang, 2008; 

Coluccia, 2006; Green, 2009; Hiscox, 2007). However, in vivo results are less conclusive 

with heterogeneity of results dependent on the underlying primary (Golas, 2005; Green, 

2009; Jallal, 2007; Messersmith, 2009). Of the ATP-competitive inhibitors studied to date, 

Dasatinib has shown promising results both in vitro and in vivo and is in phase II trials. 

However, Dasatinib also targets other kinases, including bcr-abl.  

Dasatininb has been licensed for the treatment of certain types of leukaemia (Brave, 

2008). Multiple dosing regimens for Dasatinib have been proposed ranging from 50mg to 

120mg once daily. This equated to peak blood concentrations of 41 ng/ml (50mg) and 85 

ng/ml (100mg) (European Medicines Agency, 2006). Preclinical studies in colorectal 

cancer cell lines and colon cancer bearing mice have demonstrated reduced expression of 

activated SFKs and downstream markers of Src activation, with reduction in cell 

proliferation and integrin-dependent cell adhesion and migration (Serrels, 2006). In EGFR-

dependent lung cancer cells, Dasatininb was found to selectively induce apoptosis (Song, 

2006).  Figure 1.14 below demonstrates the chemical structure of Dasatinib. 
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Molecular Formula: C22H26ClN702S  

Figure 1.14: The chemical structure of Dasatinib  

 

1.9.6 SFKs as biomarkers for treatment stratification 

Phase II trials of SFK inhibitors have not so far demonstrated clinical effectiveness 

(Sharma, 2012). Why remains unclear, but an important factor may relate to patient 

identification and the need for a predictive biomarker. The eight SFKs have all been 

associated with regulation of different physiological processes. One SFK inhibitor in 

particular, Dasatinib, blocks auto-phosphorylation of tyrosine 416 thus deactivating the 

family member. A predictive biomarker to identify patients who will benefit from 

Dasatinib therapy would be very useful. 

Before SFKs can be used as prognostic or predictive biomarkers in clinical 

practice, reliable and cost effective methodology is needed to quantify their expression. 

Antibodies to individual SFKs bind to a common area on active and inactive forms. 

Antibodies used to identify SFK activation, via phosphorylation of Tyr416, target a 

phenomenon common to all family members and therefore there is currently no method of 
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discriminating between each activated member. A possible solution is that expression of 

the family member at a particular cellular location may act as a surrogate marker of SFK 

activation but confirmation is required. Clarifying these associations may or may not 

support a role for SFK expression in stratifying patients for Src inhibitor therapy. 

 

1.10  Summary  

Colorectal cancer is the third commonest cancer in the world with 31,000 new diagnoses 

each year in the UK alone. Five year survival is about 50% (Cancer Research UK, 2014). 

As in any illness, effective treatment requires accurate prognosis. Assessment of disease 

severity (prognosis) by pathological (TNM) staging is quite good (though capable of 

improvement), but prediction of responses to specific treatments is less successful. Surgery 

remains the mainstay of treatment, with curative or palliative intention. Despite undergoing 

potentially curative resection many patients will relapse. Reduced recurrence and better 

survival following surgery have been achieved by improved surgical technique and 

adjuvant oncological therapies.  

Nevertheless, giving adjuvant chemotherapy to all patients undergoing potentially curative 

resection cannot be justified. Chemotherapy has significant morbidity and mortality and 

not all patients undergoing potentially curative resection need it. Therefore, identifying 

patients who do require and are likely to benefit from adjuvant therapy is clinically 

important. TNM staging is of use in stratifying patient risk. Patients with node positive 

carcinomas are substantially more likely to suffer cancer recurrence and these patients 

receive adjuvant therapy if fit. The clinical dilemma, however, particularly relates to 

people with node-negative cancers. Patients with early local disease (stage 1) have 95% 5 

year survival, but stage II disease is much more unpredictable. The exact reasons for this 

are multifactorial and probably relate to the biology of the cancer as well as limitations of 

staging. 

 Histopathological assessment alone is insufficient in accurately stratifying patients 

for adjuvant treatments. Limitations of sampling can result in stage migration or under 

staging. No really reliable and reproducible grading system is available for colorectal 

cancer (Chandler, 2008). Although pathological features such as differentiation, necrosis, 

mucin production and serrated morphology have been associated with patient outcome, it 

is unlikely they can reliably be introduced into future TNM staging systems due to 

problems of reproducibility. Therefore, there is a prognostic gap which novel biological 

markers (biomarkers) might be able to bridge. In breast cancer, classical morphological 



 79 

approaches are augmented by immunohistochemistry and in situ hybridization for 

assessment of oestrogen and progesterone receptors, and human epidermal growth factor 

receptor (Her2/HER2) expression/amplification. A current clinical challenge is to identify 

a biomarker or biomarkers that are both sufficiently predictive and prognostic to help 

improve treatment stratification for colorectal cancer patients.  

 In biomedical research, a biomarker is a measurable molecule that is a product of a 

normal or aberrant physiological process. Biomarkers are widely used in clinical medicine 

and may be diagnostic, prognostic or predictive. Diagnostic biomarkers tend to follow 

disease activity and have to be specific and sensitive to that condition. Prognostic 

biomarkers offer information on tumour aggressiveness and the likelihood of a poor 

outcome at diagnosis whereas predictive biomarkers are utilised to assess potential 

response to treatments.  

 Biomarkers to be introduced into clinical practice must undergo validation after 

being identified as candidates. The rigour of this process should ensure only genuinely 

useful biomarkers are introduced into clinical practice; many potential biomarkers fall 

short. Reasons for failure include insufficient cost benefit, inadequate reproducibility of the 

assay itself or its reporting. The invasiveness (onerousness) of the diagnostic test may also 

be a factor. With regards to cancer, it is currently unclear what is the best tissue to study. 

Historically tumour tissue itself has been the main focus of biomarker studies, but recently 

patient serum is increasingly studied. The advantage of serum is that obtaining it is less 

invasive and does not disrupt the tumour, which may influence disease progression. 

Despite this, tumour tissue from biopsies and resections remains the mainstay of 

prognostication. 

 Recent advances in the understanding of colorectal cancer suggest it is a 

heterogeneous disease with several genomic instability pathways including chromosomal 

instability, microsatellite instability, and epigenetic silencing of genes by promoter 

hypermethylation (Toyota, 1999). These pathways have associations with specific 

anatomical, histological and molecular biological behaviors, and variable outcomes in 

terms of recurrence. Tumours with MSI may be larger while still node negative, have a 

pronounced lymphocytic response and relatively better outcomes than their microsatellite 

stable counterparts (Soreide, 2006). Despite this, MSI tumours show chemoresistance to 

commonly used agents such as 5-FU (Guastadisegni, 2010; Hong, 2012). Given the 

complexity around survival parameters and predictive response to chemotherapeutic 

agents, its unclear how these might fit into a complex model of stratification based on the 
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TNM staging, but it seems likely that any future molecular biological staging process is 

likely to augment TNM staging, not replace it. 

 Tumour behavior is important and understanding it better may offer novel 

therapeutic options. New therapeutic targets may modify the behaviour of the tumour to 

make it less aggessive or more sensitive to chemotherapy. It is likely that future staging 

systems are going to integrate anatomical and biological aspects of disease. 

 Cancer related inflammation has been described as a 7th hallmark of cancer 

(Balkwill, 2001). Tumours grow through a combination of dysregulation of cellular 

energetics, excess cell proliferation, loss of apoptosis, loss of cell adhesion and cell 

migration with tissue remodeling and dysregulation of angiogenesis (Hanahan, 2011). 

Inflammation plays an important part in all of these.  

 Despite systemic inflammation being associated with more aggressive disease, the 

presence of immune cells, particularly CD8+ lymphocytes, in and around the advancing 

edge of the tumour has been associated with improved outcome (Naito, 1998). A complex 

relationship exists between the tumour and the host, which is both beneficial and 

detrimental. MSI tumours have been associated with a pronounced lymphocytic infiltrate 

within cancer-cell nests (Dolcetti, 1999), however, it remains unknown if there is any 

association between MSI tumours and the presence of systemic inflammation.  

 There is growing evidence that NSAID use reduces the transition from 

adenomatous polyp to cancer and improves outcome in established cancers (Garcia-

Albeniz, 2011). Like other drugs, anti-inflammatories are unlikely to be appropriate for all 

patients and understanding the associations between the molecular biology of colorectal 

cancer and systemic inflammation may offer further useful information in stratifying 

patients for further treatment. 

 Cancer invasion requires breakdown of type IV and other collagens and 

extracellular matrix components, with increased tissue remodeling. Precise mechanisms in 

colorectal cancer are still unclear, but matrix metalloproteinase 9 (MMP-9) is a gelatinase 

that breaks down type IV collagen and may facilitate invasion and metastasis (Zeng, 1995). 

Active MMP-9 is present in colorectal cancers and is secreted by immune cells in the 

bowel wall, but it is unclear where else MMP-9 is produced and where it has most 

biomarker potential. MMP-9 has been reported in the tumour cells, the stroma and the 

serum; however, associations between these sites, general expression and prognosis remain 

unknown. Not all cancers express MMP-9 and it has not been adopted in clinical- 

pathological use. Why only some cancers express cellular MMP-9 remains unknown, 

however, it may relate to the molecular biology of the cancer. It has been suggested that CI 
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tumours are associated with higher expressions of MMP-9; however, this was a 

preliminary study using PCR, and validation using histological techniques is required 

(Morán, 2002).  

 Other cellular behaviours important for cancer progression are proliferation, 

apoptosis and cellular motility. Src kinase family members (SFKs) are non-receptor 

tyrosine kinases implicated in the biological processing of these behaviours. Inhibitors of 

SFKs activity have been studied, but phase III trials have not established a case for their 

clinical use (Sharma, 2012). Why remains unclear, but identification of suitable patients is 

likely to be important and a predictive biomarker might help. The eight SFKs have all been 

associated with regulation of different physiological processes. One SFK inhibitor in 

particular, Dasatinib, blocks auto-phosphorylation of tyrosine 416 thus effectively 

deactivating all family members. Most preliminary work has looked at the expression of c-

Src in relation to adverse biological parameters and prognosis, but it is becoming clearer 

that other family members are also important.  

 Apart from cell line studies, associations between the expressions of the other SFKs 

have not been studied, and the effects of Dasatinib on the growth colorectal cancer cells 

and its effects on the cellular location of SFKs remain unknown. As for MMP-9, 

translational studies of SFKs suggest that their expression is heterogeneous and it remains 

unknown whether there is any association between genomic instability and expression of 

SFKs. Investigating these relationships and associations further may help with patient risk 

stratification and treatment through building a staging system based on anatomical, 

molecular and genetic cancer parameters. 

 

1.11  Hypotheses and statement of aims 

Colorectal cancers include some with MSI and a better prognosis, which has been widely 

investigated and may be due to local inflammation as a host defense mechanism against 

the tumour through cell destruction by the infiltrating immune cells. In contrast, systemic 

inflammation is associated with a poor outcome. MSI tumours are immunogenic, however, 

it is unknown if there is any association between MSI tumour status and systemic 

inflammation.  

The mechanisms that drive the more aggressive phenotype resulting in the poorer 

prognosis associated with CI tumours is largely unknown. MMP-9 degrades the extra-

cellular matrix and basement membrane, enhancing metastatic potential. Src kinase was 

the first identified proto-oncogene and increases tumour cell proliferation, decreases 
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apoptosis and increases the invasive capacity of the tumour. Therefore, an increase in the 

expression of Src family kinases and or MMP-9 could result in a more aggressive 

phenotype associated with CI tumours.  

 

1.11.1  Core hypothesis 

The core hypothesis is that increased expression of Src family kinases and MMP-9 is a 

feature of CI tumours and poorer outcomes. MSI tumours are associated with systemic 

inflammation but will not have a poorer outcome because of the positive effects of the 

local inflammatory response on patient survival. 

 

1.11.2  Secondary hypotheses/aims 

Secondary hypotheses/aims are: 

 

1. The SIR will be associated with poor survival despite the association with MSI tumours.  

 

2. Serum MMP-9 will be associated with stromal and cancer cell expression of MMP-9, 

and also associated with poor survival 

 

3. On multivariable analysis of a cohort of patients with serum and matched tumour 

samples, cancer cell expression of MMP-9 will retain independent significance.  

 

4. Dasatinib will not have a universal measured effect on proliferation and apoptosis across 

different cell lines. 

 

5. Cellular location of the SFK proteins is an important predictor of cancer cell behavior 

and will change following treatment with Dasatinib. 

   

6. When combining MSI, CRI, SFK and MMP-9 status/expressions into a multivariable 

model, cancer related inflammation will retain independent prognostic value in the whole 

cohort and TNM stage II colorectal cancer. 
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2. Materials and Methods 

2.1 Patient Cohort selection 

Patients with histologically proven colorectal cancer who, on the basis of pre-operative 

staging and findings at laparotomy, were considered to have undergone potentially curative 

resection for colorectal cancer were studied. Four cohorts were developed using patients 

treated for colorectal cancer from 1991 to 2012 across four hospital sites; Gartnavel 

General Hospital, Glasgow Royal Infirmary, Stobhill Hospital and Western Infirmary 

Glasgow and are detailed below.  

 

Table 2.1: Details of the 4 cohorts 

 

Development of the training and validation cohorts was undertaken by identifying patients 

either during discussions at the regional MDT or from retrospective review of the 

pathology specimen database, which included elective and emergency patients. Patients for 

cohort 3 ‘matched serum and tissue’ were recruited prior to surgery and serum samples 

collected on the day prior to elective surgery. The frozen tissue cohort was already 

available and formed the basis of the Department of Surgery, Glasgow Royal Infirmary 

Biobank. 

 Based on discussion at the MDT, patients were managed according to best practice 

guidelines available at the time of surgery. This consisted of either surgery alone, surgery 

with neoadjuvant therapy or surgery and adjuvant chemotherapy. Adjuvant therapy was 

given to patients at the discretion of the clinical oncologist, usually after multidisciplinary 

Cohort Description Years 

studied 

Hospitals Tissue type 

1 Training 1997 - 2008 Glasgow Royal Infirmary FFPE 

2 Validation 2000 - 2008 Gartnavel General Hospital 

Stobhill Hospital 

Western Infirmary Glasgow 

FFPE 

3 Matched serum 

and tissue 

2009 - 2012 Glasgow Royal Infirmary 

Gartnavel General Hospital 

FFPE and 

Serum 

4 Frozen tissue 1991 - 1996 Glasgow Royal Infirmary Fresh frozen 

tissue 
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team assessment. Patients’ clinical and pathological information was available to the 

oncologist making these decisions. Ethical approval was obtained from the Glasgow Royal 

infirmary Local research Ethics Committee. 

 

2.1.1 Sample collection 

2.1.1.1 Tumour tissue 

Resected samples were placed in formalin and following pathological dissection, 

representative areas were paraffin embedded as part of the NHS diagnostic pathology 

service.   

 

2.1.1.2 Preparation and storage of blood samples 

Blood samples were collected on the day before surgery and were prepared and analysed 

by the NHS biochemistry laboratory. 

 

2.1.1.3 Preparation and storage of ‘experimental’ blood samples – cohort 3 

Blood samples (n=125) were collected for analysis during diagnostic workup. This 

consisted of 95 patients and 30 controls. 10mls of whole blood was collected in EDTA 

tubes and immediately centrifuged at 2000 rpm for 15 minutes. The resulting cellular 

component and buffy coat was stored at 4oC and the serum was aliquoted into new 1.5 ml 

Eppindorfs and stored at -80oC. 

 

2.1.2 Clinical characteristics 

Laboratory measurements of albumin and C-reactive protein (CRP) concentrations prior to 

surgery were recorded. Preoperative measurements of albumin and CRP were 

dichotomised as described by McMillan et al (McMillan, 2007). Patients were considered 

to have an elevated CRP if measurements were >10 mg/l and a low albumin if 

measurements were <35 g/l. Demographic information including age and gender was also 

recorded. Patients were categorised as either elective or emergency based on the mode of 

presentation.  
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2.1.3 Pathological characteristics 

Tumours were staged according to TNM 7th edition and the components of this staging 

system and tumour differentiation were recorded from pathology reports issued at the time 

of resection.  

Tumour site was obtained from pathology reports; patients with tumours proximal 

to the splenic flexure were classified as right sided, those with tumours distal to and 

including the splenic flexure and proximal to the rectosigmoid junction were considered 

left sided and those distal to and including the rectosigmoid junction were considered 

rectal tumours.  

Klintrup scoring was carried out as described according to a four-point score based 

on the appearances of tumour invasion at the deepest area (Klintrup, 2005). Score 0 

indicated no increase in the inflammatory cells at the deepest point of the tumours invasive 

margin; a score of 1 denoted a mild and patchy increase in the inflammatory cells; a score 

of 2 denoted a prominent inflammatory reaction forming a band at the invasive margin 

with some destruction of cancer cell islands and a score of 3 denoted a florid ‘cup-like’ 

inflammatory infiltrate at the invasive edge with frequent destruction of cancer cell islands. 

These scores were then subsequently aggregated as low grade (scores 0 and 1) or high 

grade (scores 2 and 3).  

 

2.1.4 Limitation of cohort studies 

Cohort studies offer the best form of study conditions to allow us to predict the likely 

outcome of patients being treated for a particular disease over a certain timeframe, but 

reliability of the results is determined by how closely the study cohort represents the 

naturally occurring treatment group that is established during routine clinical practice. 

Furthermore, multiple cohorts from the same geographical area or overlapping of cohorts 

may result in ‘overfitting’ of data. Therefore, confirmatory findings in cohorts from 

diverse geographical areas are needed to control for this bias. 

 The method of recruitment to a cohort also influences the outcomes observed. 

Outcome measures of patients who present symptomatically are different from their 

screening counterparts beyond the stage shift seen at diagnosis. The lead time bias seen in 

screening programmes, whereby patients are diagnosed, staged and treated earlier than 

their symptomatic counterparts also affects outcome measures.   

 For cohort studies to be representative of the general disease specific population, 

adequate numbers of patients need to be recruited so that the sample has sufficient 
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statistical power. This may take several years and over this time routine practice may 

change, which affects survival measures, may result in stage shift and ultimately the results 

of the studied variables. Despite this, ensuring that all patients meet strict inclusion criteria 

and that a wide geographical area is studied reduces the risk of bias being introduced but 

does not eliminate it.  

 

2.2 Immunohistochemistry 

Immunohistochemistry detects of a cellular protein or other antigen within cells and tissues 

using an antibody specific for the desired antigen. The direct immunohistochemical 

method, when a marker is directly attached to the primary antibody, does not have a very 

high sensitivity. An alternative more sensitive method is indirect IHC. This involves using 

a second or “secondary” antibody, labeled with either a visible marker (fluorochrome) or 

an enzyme that binds to the primary antibody bound to the antigen. This indirect approach 

generates an amplified signal. Two methods of indirect IHC were used in this thesis, the 

Envision system (DAKO) and UltraVision Quanto system (Thermo-Scientific).  

Dako Envision detection reagent consists of a dextran backbone to which many 

large number of horseradish peroxidase (HRP) molecules and secondary antibody 

molecules have been coupled. A unique chemistry is used for the coupling reaction, which 

permits the binding of up to 100 HRP molecules and up to 20 antibody molecules per 

backbone. The secondary antibody coupled to the dextran backbone has been raised in 

goats. It reacts equally well with rabbit and mouse immunoglobulins. Following incubation 

with the Envision reagent, the tissue is incubated with a substrate solution that consists of 

diaminobenzidine (DAB) chromagen and hydrogen peroxide. The HRP molecules on the 

Envision interact with the substrate solution to produce an insoluable brown end product at 

the site of the target antigen/protein, which can be viewed using a light microscope.  

The Thermo-Scientific UltraVision Quanto detection reagent consists of a universal 

secondary antibody formulation that is conjugated to an enzyme-labeled polymer. This 

conjugate also reacts equally well with rabbit and mouse immunoglobulins. Following 

incubation with HRP Quanto, the tissue is then incubated with a substrate solution 

consisting of DAB chromagen, exactly as with the DAKO Envision system. 
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2.2.1 Stages of the immunohistochemistry technique 

2.2.1.1 Tissue preparation 

IHC was performed on 4 μm, archival formalin-fixed, paraffin-embedded colorectal 

tumour sections. Sections were dewaxed in xylene (2x5 minutes) and rehydrated through 

graded alcohols (100% (2x3minutes), 90% (1x3minutes) and 70% (1x3minutes)) washes. 

 

2.2.1.2 Antigen Retrieval 

After formalin fixation and paraffin embedding of tissues, many antibodies do not react 

with their antigen. Solvents, heat and especially fixatives can mask the antigen site. During 

routine fixation, methylene bridges form, which cross link proteins and mask the antigenic 

sites. Therefore it is usually necessary to include an antigen retrieval step, to break the 

protein cross-links and expose the antigenic binding site. This reduces non-specific 

background staining by allowing reduced concentrations of antibody to be used in the 

primary incubation.  

Two different heat mediated methods of antigen retrieval were used for the proteins 

studied. The first involved incubating the tissue sections under pressure in 1L of TE buffer 

(1 mM EDTA (Sigma), 10 mM Tris (VWR), pH 9.0) or 1L of Citrate buffer (10 mM of 

citric Acid, 10 mM Sodium Citrate, pH 6.0) for 5 minutes. The alternative method 

incubated tissue sections for twenty minutes at 96°C in a PT module using Thermo-

Scientific HIER antigen retrieval solution (low: pH 6.0 and high pH 9.0). All antigen 

retrieval steps were followed by a twenty-minute cool down period. 

 

2.2.1.3 Reduction of background staining: - Blocking steps 

Peroxidase reacts with DAB and endogenous peroxidase activity in tissues can cause 

background staining. We blocked endogenous peroxidase activity by incubating the slides 

in 3% hydrogen peroxide (H2O2) or H202 Quanto for ten minutes. The formation of 

hydrophobic bonds between immunoglobulins and tissue proteins can lead to the primary 

and secondary antibodies binding non-specifically to the tissue section rather than the 

target antigen. To reduce this non-specific binding, tissue sections were incubated in either 

2.5% normal horse serum (Vector Laboratories) in TBS buffer (0.1M Tris/HCl, 1.5M 

NaCl, pH 7.4) for twenty minutes, Casein (DAKO) for one hour or Ultra V block for 5 

minutes.  
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2.2.1.4 Incubation with Primary Antibody 

Antibody dilutions, incubation times and temperature were established for each protein 

investigated on control section of colorectal cancer. All antibodies were diluted to the 

desired concentration in antibody diluent (DAKO or Thermo-Scientific). For each, a 

dilution series was performed, investigating various antibody titrations, incubation times 

and temperatures, to establish optimal conditions for the highest quality of staining, i.e. 

strongest specific antigen staining with the lowest non-specific background. Positive and 

negative controls were included each time IHC was performed. The positive control 

confirmed that the chosen IHC method was working while the negative control checked 

that the detection system was not generating a spurious signal on its own. Tonsil tissue, 

placenta tissue or colorectal tissues previously shown to have strong expression of the 

desired antigen were incubated with the appropriate antibody and used as positive controls. 

The same tissues were used for negative controls by treating them with a negative isotype 

matched control reagent (DAKO). 

 

2.2.1.5 Incubation with Secondary Antibody 

Following incubation with antibody or negative control, the slides were thoroughly washed 

in TBS buffer twice for five minutes. The Envision detection or UltraVision method was 

used for all antigens. The slides were incubated with Envision for thirty minutes then 

washed twice for five minutes in TBS or HRP Quanto for 5 minutes followed by a TBS 

wash step. 

 

2.2.1.6 Detection & Visualisation 

The chromagen used for staining the tissue sections was 3,3’-diaminobenzidine (DAB) – 

(5ml distilled water (dH2O), 2 drops of buffer solution, 4 drops of DAB stock solution, 

and 2 drops of Hydrogen Peroxidase solution -Vector Laboratories) or DAB Quanto 

(Thermo-Scientific). Slides were incubated with DAB for five to ten minutes to allow 

brown staining to develop and were then washed in running water for ten minutes. 

 

2.2.1.7 Counterstaining 

Tissue sections were counterstained with haematoxylin and Scott’s Tap Water Substitute 

(S.T.W.S). Slides were immersed in the haematoxylin for 2 minutes, until a red colour was 

produced in the tissue section. Following this, slides were then submerged in S.T.W.S for 
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90 seconds, to produce a blue counterstain in contrast to the brown positive staining of the 

antigen. The last steps involved dehydrating the tissues through a series of alcohol washes: 

(70% (1x2min), 90% (1x2min), 100% (2x2min)) and xylene (2x2min), and then mounting 

the slides onto coverslips using DPX mountant (VWR) (Dibutyl Phtalate containing 

Xylene). 

 

2.2.2 Tissue Microarray construction (Cohorts 1 and 2) 

Prior to beginning TMA construction, the author underwent a period of tuition on GI tract 

histology with a consultant pathologist. This included the recognition of normal tissue and 

colorectal neoplasia with particular focus on identifying tumour rich areas and discerning 

between viable and necrotic tissue. Miss Clare Orange and Dr Jonathan Platt constructed 

the TMA for cohort 1. 

 

2.2.2.1 Slide retrieval, identification of tumour areas and slide marking 

Following identification of patients to be included in the study, pathology numbers were 

used as unique patient identifiers. H&E slides of the representative areas of tumour were 

collected for every patient (7-8 slides per patient). Every section was reviewed under the 

microscope, marking areas of cancer. Given that tumours are heterogeneous in cohesion 

and differentiation, multiple areas of the section were marked. A consultant pathologist 

reviewed a proportion of the marked slides agreeing with the selection of normal and 

neoplastic areas. Patients with no H&E sections available were removed from the study.   

 

2.2.2.2 Creation of TMA maps 

Factors such as the size and number of cores needed, minimum distance between cores, 

rows and columns and availability of control tissue were all taken into account when 

planning TMAs. The training cohort TMA was already available and has a different layout 

to the validation cohort TMA.  

 The TMA for cohort 1 contains four 0.6 mm diameter cores lined adjacently into 

three columns: 4 cores in the first column, 8 cores in the second and 8 cores in the third. 

One core of six control tissues (Rectal cancer, Lung, Liver, Cervix, Kidney, Prostate) was 

included on each TMA. 40 cores of representative areas of normal tissue were also 

included. Appendix 1.1 demonstrates the plan for cohort 1 (training cohort) TMA. 
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 To minimize possible bias, which may have been introduced by having all cores 

from one patient adjacent to each other, a different plan was implemented for cohort 2. 

Four 0.6 mm diameter cores of tissue were planned from each patient with only one core 

on each individual TMA block. This process was replicated four times so that tissue from a 

single patient was spaced across four TMA blocks. Single cores of six control tissues 

(rectal cancer, lung, liver, cervix, kidney and prostate) were included on each TMA. A 

1mm distance was placed between each core with regular larger gaps of 2mm between 

columns. A map was then created using a spreadsheet with all the above factors taken into 

account.  Sixteen TMAs were needed to include the 759 patients, however, only 677 

patients were included in the final study. Each core area is given a unique ID to allow 

linkage analysis with TMA database whilst maintaining patient anonymity. Appendix 1.2 

demonstrates the plan for the validation cohort TMA.  

 To facilitate optimization of antibodies and avoid unnecessary use of full TMA 

tissue sections, a practice TMA containing 48 cores of colorectal cancer was also designed. 

 

2.2.2.3 TMA construction 

Following marking of the relevant H&E sections, all the corresponding FFPE blocks were 

retrieved from the tissue archive at Stobhill Hospital. All FFPE tissue blocks were then 

transferred to the pathology department at the Southern General Hospital. The author then 

underwent a dedicated period of training at the SGH into the manufacturing of TMAs 

under the auspices of Ms Clare Orange, TMA Manager, University Department of 

Pathology. A manual tissue arrayer (Beecher Instruments microarray technology) was used 

to create a number of practice lines of tissue cores from different pathological specimens. 

Once the desired standard of TMA construction was met, the author went on to create all 

practice and full TMA’s. Below is a step by step guide for TMA construction: 

1. Four blank wax blocks are fixed into position within the magnetic turntable. 

2. A core of wax from a pre-planned position in the recipient block is removed using 

the red needle. 

3. A core of tissue, from an area pre marked on the matched H&E section, is removed 

using the blue needle.  

4. The donor core of tissue is placed gently into the recipient hole. Using a glass slide, 

the remainder of the tissue is gently introduced into the block. The tissue core is 

slightly larger than the recipient hole, which allows a tight fit.  

5. This process is repeated on all four blank blocks by rotating the magnetic turntable. 
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6. Using the micrometer, the coring mechanism is moved along the block until the next 

desired location is reached. Steps 2-6 are then repeated until the TMA is complete. 

7. Following completion of the TMA, each block is placed in a pre-heated oven at 60oC 

for 5 minutes; this allows the cores to set within the block. Once completed, each 

block is wrapped in a paper towel and stored in a cool dry place. 

  

2.2.3 Immunohistochemistry on the training cohort TMAs 

Immunohistochemistry was performed on 4 μm TMA sections using the DAKO Envision 

methodology described in section 2.2. All sections were baked at 60oC for 30 minutes prior 

to dewaxing to improve adherence of cores to the slides. Dewaxing and rehydration of 

sections was followed by heat induced antigen retrieval. Sections were incubated in 3% 

H2O2 for 30 minutes and then protein binding blocker. Sections were washed in TBS and 

then incubated with antibody followed by further washes and signal amplification by 

DAKO envision for 30 minutes. Sections were then washed, incubated in DAB chromogen 

for 10 minutes followed by further washes and counterstaining in haematoxylin. Finally, 

sections were dehydrated and mounted with DPX and cover slipped. 

Immunohistochemistry conditions for each antibody are given in table 2.2. 
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Table 2.2: Immunohistochemistry antibody details for cohorts 1 and 3. 

 
 

2.2.4 Immunohistochemistry on cohorts 3 full section tissue 

Immunohistochemistry was performed on 4 μm full sections using the DAKO Envision 

methodology described in section 2.2. Dewaxing and rehydration of sections was followed 

by heat induced antigen retrieval. Sections were incubated in 3% H2O2 for 30 minutes and 

then protein binding blocker. Sections were washed in TBS and then incubated with 

antibody followed by further washes and signal amplification by DAKO envision for 30 

minutes. Sections were then washed, incubated in DAB chromogen for 10 minutes 

followed by further washes and counterstaining in haematoxylin. Finally, sections were 

dehydrated and mounted with DPX and cover slipped. Immunohistochemistry conditions 

for each antibody are the same as discussed in section 2.2.3.   

Protein Company Antigen 
Retrieval 

H202 Blocker Dilution Incubation Amplifier 

        

MMP-9 Millipore None 0.3% 1.5% HS 1:75 30 min Envision 

Src416 Cell 

Signaling 

pH 9.0 0.3% 1.5% HS 1:50 ON Envision 

FAK861 Invitrogen pH 6.0 0.3% 1.5 %HS 1:100 ON Envision 

HCK Cell 

Signalling 

pH 6.0 0.3% 5% HS 1:50 ON Envision 

FGR Abgent pH 9.0 0.3% Casein 1:2000 60 min Envision 

FYN Millipore pH 6.0 0.3% 5% HS 1:2000 ON Envision 

LCK Cell 

Signaling 

pH 9.0 0.3% 5% HS 1:100 ON Envision 

MLH1 Thermo 

Fisher 

pH 9.0 Peroxidase 

block 

UV Block 1:100 20 min Quantro 

MSH2 Thermo 

Fisher 

pH 9.0 Peroxidase 

block 

UV Block 1:50 20 min Quantro 

MSH6 Thermo 

Fisher 

pH 9.0 Peroxidase 

block 

UV Block 1:100 20 min Quantro 

PMS2 Thermo 

Fisher 

pH 9.0 Peroxidase 

block 

UV Block 1:50 20 min Quantro 
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2.2.5 Immunohistochemistry on the Validation Cohort TMAs 

Immunohistochemistry was performed on 4 μm TMA sections using the ThermoScientific 

Ultravision methodology using a ThermoFisher autostainer. All sections were baked at 

60oC for 30 minutes prior to use. Sides were placed in a PT module whereby dewaxing, 

rehydration and antigen retrieval was performed automatically. This consisted of warming 

sections to 90oC, incubating at this temperature for 20 minutes and then a further 20 

minute cool down. Sections were then transferred to the autostainer. Sections were 

incubated in UV H2O2 for 30 minutes and then UV protein blocker. Sections were washed 

in TBS and then incubated with antibody followed by further washes and signal 

amplification by UltraVision for 30 minutes. Sections were then washed, incubated in UV 

DAB chromogen for 10 minutes followed by further washes and counterstaining in 

haematoxylin. Finally, sections were dehydrated and mounted with DPX and cover 

slipped. Immunohistochemistry conditions for each antibody are given in table 2.3 
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Table 2.3: Immunohistochemistry antibody details for cohort 2.  

 

2.2.6 Immunohistochemistry quantification 

2.2.6.1 Histoscore method 

The ‘semi quantitative’ histoscore method was used to assess protein expression at the 

nuclear, cytoplasm and membrane locations (MacCarty, 1986). This method of scoring has 

been validated previously and is widely used including by our team and others. The 

intensity of staining was categorized as negative (0), weak (1), moderate (2) and strong (3). 

The percentage of tumour cells with each category was estimated. The histoscore of the 

tumour areas was calculated using the following formula: 

Histoscore = (0 x % negative cells) + (1 x % weakly stained cells) + (2 x % moderately 

stained cells) + (3 x % strong stained cells) 

 

The histoscore ranges from a minimum of 0 to a maximum of 300 and was calculated 

independently for nucleus, cytoplasm and cell membrane. Agreement between two 

Protein Company Antigen 

Retrieval 

Endogenous 

blocker 

Blocker Dilution Incubation Amplifier 

        

MMP-9 Millipore None Peroxidase 

block 

UV 

Block 

1:50 20 min Quantro 

FAK861 Invitrogen pH 6.0 Peroxidase 

block 

UV 

Block 

1:100 20 min Quantro 

HCK Cell 

Signalling 

pH 6.0 Peroxidase 

block 

UV 

Block 

1:50 20 min Quantro 

FGR Abgent pH 9.0 Peroxidase 

block 

UV 

Block 

1:400 20 min Quantro 

MLH1 Thermo 

Fisher 

pH 9.0 Peroxidase 

block 

UV 

Block 

1:100 20 min Quantro 

MSH2 Thermo 

Fisher 

pH 9.0 Peroxidase 

block 

UV 

Block 

1:50 20 min Quantro 

MSH6 Thermo 

Fisher 

pH 9.0 Peroxidase 

block 

UV 

Block 

1:100 20 min Quantro 

PMS2 Thermo 

Fisher 

pH 9.0 Peroxidase 

block 

UV 

Block 

1:50 20 min Quantro 
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observers was considered good if ICCCs were greater than 0.7 and excellent if greater than 

0.8.  

 

2.2.6.2 Assessment of mismatch repair protein expression 

Mismatch repair protein (MLH1, MSH2, PMS2 and MSH6) expression was evaluated 

using UK NEQAS scoring guidelines. Appendix and normal colon were used as positive 

controls. Appropriate control staining determined by (i) strong nuclear expression in 

immune cells, (ii) strong nuclear expression in the base and lower half of the normal crypts 

with fading of intensity near the top of the crypt adjacent to the luminal surface and (iii) 

strong nuclear staining in lymphoid follicles. An observer blinded to genomic MSI data 

and clinical outcome scored 10% of cores.  

 Expression was reported as normal (strong nuclear staining with positive immune 

cells), patchy/weak (staining intensity is either weak or patchy with retention of normal 

immune cell staining) or negative (complete loss of expression with normal immune cell 

expression). Perinuclear immunopositivity alone was not considered diagnostic for protein 

expression. Patchy staining in the cytoplasm with normal immune cell expression was 

considered to be result of MMR protein complex destabilisation with loss of binding to the 

nuclear DNA (Arends, 2008). 

 

2.2.7 Limitations of immunohistochemistry 

2.2.7.1 Immunohistochemistry techniques 

Immunohistochemistry is often used for the detection and quantification of biomarkers 

because it is relatively simple to perform, offers useful information on the cellular location 

of the protein and is less expensive than other techniques. Despite this, it has limitations 

that need to be considered when deciding if it is appropriate for protein identification and 

quantification within a particular study. Although technically not challenging, optimisation 

of immunohistochemistry requires experience to ensure appropriate specificity of the test. 

Broadly, the limitations of immunohistochemistry can be divided into reaction bias and 

interpretation bias.  

  Reaction bias is a result of issues surrounding tissue fixation, processing, antigen 

retrieval and detection. During fixation, formalin causes methylene bridges to form. This 

cross-linking around the antibody binding site on the protein reduces its immunoreactivity. 

Prolonged and especially variable fixation therefore, can result in variable 
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immunoreactivity between and within cases, even using identical antigen retrieval 

conditions. The aim of antigen retrieval is to recover immunoreactivity of the recognition 

site of the protein to increase the sensitivity of the antibody being employed. Using lower 

concentrations of the primary antibody has the added benefit of improving specificity. 

Variations in antigen retrieval methods and secondary detection system result in apparently 

different protein expression within the same tumour sample. The rigor of the 

immunohistochemical techniques employed within diagnostic pathology is assessed by 

international quality programs such as UK NEGAS. In addition, journals commonly request 

authors to report the results of their biomarker studies using guidelines such as the 

REMARK criteria. This measure attempts to control for bias by ensuring that authors use 

previously validated methodology, which also offers the added benefit of wider validity of 

interpretation of the results within the field of study.  

  Interpretation bias includes issues surrounding antibody selection, 

sensitivity/specificity and results interpretation. A poor primary antibody could have a poor 

sensitivity, by not binding to the desired protein, and poor specificity by binding to other 

proteins. In an attempt to identify issues surrounding antibody sensitivity and specificity 

antibody panels undergo a process of validation. Western blot bands will help identify the 

specificity of the antibody, which can also be supported by performing the 

immunohistochemistry reaction with a blocking peptide. Another useful technique is to 

confirm loss of signal in cell lines that have been treated with siRNA to reduce expression. 

It is also necessary to observe the immunoreaction pattern of the antibody panel in negative 

and positive controls as well as internal and external controls. These validation studies 

themselves are also associated with limitations and thus all immunohistochemical reactions 

need to be interpreted with caution.   

 

2.2.7.2 Immunohistochemistry quantification - ‘scoring’ 

Immunohistochemistry is relatively cheap, easy to perform, reproducible and 

methodologically transferable. Despite this, there are very few instances where 

immunohistochemistry as a process for biomarker quantification has translated into routine 

clinical practice. One of the main reasons for this is the limitations surrounding reporting 

and interpretation of immunoreactivity, and especially in genuine signal quantification.   

 Various methods of quantification have been devised, however, these aim to 

generate an ordinal variable for a visual continuum. Scoring methods can range from 

positive and negative, ordinal or semi-quantitative such as the weighted histoscore as 
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discussed above. Despite all these efforts, any scoring method incorporating intensity and 

volume of immunoreactivity will be at best semi-quantitative and open to reporting bias. 

Another problem is that immunohistochemistry involves very high-gain signal 

amplification and small variations in gain can have a large effect on the final signal.   

 Quantifying the intensity of an immunoreaction also relies on the assumption that 

the chromagen follows the Beer-Lambert law that describes the linear relationship between 

the concentration of the molecule and its optical density. In immunohistochemistry, the 

immunoreactivity is not stoichiometric and in particular the chromagen DAB is not a true 

absorber of light and thus dark and light stains have different spectral shapes. Therefore, it 

is not possible to precisely measure how much of the molecule is present using optical 

density alone. 

 

2.3 ELISA 

2.3.1 MMP-9 ELISA 

The Human MMP-9 Quantikine ELISA kit (R&D Systems, UK) was used to assess MMP-

9 expression in the serum of colorectal cancer patients.  This assay is a solid phase 

Sandwich Enzyme Linked-Immuno-Sorbent Assay (ELISA) and begins with a monoclonal 

antibody specific for MMP-9 coated onto the wells of microtitre strips. Samples, including 

a standard containing MMP-9, control and plasma samples, are added to these wells. 

During the first incubation, the protein antigen binds to the immobilized (capture) 

antibody. After washing away unbound substances, an enzyme-linked polyclonal antibody 

specific for MMP-9 is added to the wells. Following a wash to remove unbound antibody-

enzyme reagent, a substrate solution is added to the wells and color develops in proportion 

to the amount of MMP-9 bound in the initial step. The color development is stopped and 

the intensity of the color is measured. The intensity of this coloured product is directly 

proportional to the concentration of total or phosphorylated protein present in the original 

specimen. 

ELISA was performed according to the manufacturer’s instructions. The protein 

standards were prepared by reconstituting the standard 1 (20 ng of lyophilized of 

recombinant human pro-MMP-9) with 1ml of standard diluent buffer. To ensure complete 

reconstitution, the preparation was left at room temperature for ten minutes, on a stirrer. 

The remainder of the standards was then set up as follows: 
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All sample reactions were performed in triplicate with the final value derived from the 

mean. Firstly, 100 μl of the assay diluent was added to each well of the 96 wells plate. 100 

μl of standard was added to the first three columns of the plate with A1-3 having 20 ng/ml 

of MMP-9, G1-3 having 0.312 ng/ml and diluent only in H1-3. Plasma samples were then 

diluted 1:40 as per manufacturers guidelines. Negative controls consisted of wells 

containing 100 μl of diluent only. 100 μl of sample were then added the appropriate wells, 

covered with a plate sealer, wrapped in foil and incubated for 2 hours on a horizontal 

orbital microplate shaker.  

The solution was then carefully removed from the wells and washed four times 

with washing buffer. 200 μl of conjugate solution was added into each well, covered with a 

plate sealer, wrapped in foil and incubated for 1 hour on a horizontal orbital microplate 

shaker. The solution was carefully removed and wells washed four times with washing 

buffer. Following this, 200 μl of substrate solution (combination of colour reagent A and 

B) was added to each well, covered with a plate sealer, wrapped in foil and incubated for 

thirty minutes at room temperature on the benchtop. 50 μl of stop solution was added to 

each well and the side of the plate tapped gently to ensure thorough mixing and even 

distribution of the protein for accurate concentration reading. This solution changes the 

colour form blue to yellow.  

The absorbance was measured using a 96 well microplate reader at 450 nm having 

blanked the reader against a chromagen blank composed of conjugate solution and stop 

solution. Using Excel the absorbance of the standard against the standard concentration 

was plotted. The values obtained for the samples were multiplied by the dilution factor 

(40) to correct for the dilution. 

 

Standard Add Into 

20 ng/ml 1 ml of calibrator diluent buffer 20 ng of lyophilized of 

recombinant human pro-MMP-9 

10 ng/ml 500 μl of 20 ng/ml standard 500 μl of calibrator diluent 

5 ng/ml 500 μl of 10 ng/ml standard 500 μl of calibrator diluent 

2.5 ng/ml 500 μl of 5 ng/ml standard 500 μl of calibrator diluent 

1.25 ng/ml 500 μl of 2.5 ng/ml standard 500 μl of calibrator diluent 

0.625 ng/ml 500 μl of 1.25 ng/ml standard 500 μl of calibrator diluent 

0.312 ng/ml 500 μl of 0.625 ng/ml standard 500 μl of calibrator diluent 
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2.3.1.1 Normalisation procedure for inter-plate variation 

To allow for inter-plate variation, two samples of normal control plasma were included in 

each ELISA experiment. The correction factor was calculated by dividing the value of the 

control sample on each plate by the mean. Each patient sample was then multiplied by the 

correction factor for that plate. Apart from a control sample, each plate consisted of both 

normal controls and test samples chosen at random.  

 

2.3.2 Limitations of ELISA  

For quantifying potential biomarkers, ELISA has the benefit of being able to examine 

numerous samples simultaneously, whilst also being relatively easy to perform and 

identifies antigens at low concentrations. ELISA is therefore commonly used in clinical 

practice to measure serum markers to help diagnose and manage different conditions. 

Despite these positive features, ELISA is also associated with several limitations that mean 

results of biomarker experiments have to be interpreted with caution. One limitation of 

ELISA is the associated inter- and intra-assay variance. Methods to control for this include 

standards, a pre-defined positive control that is included on each plate and calibration. 

Only monoclonal antibodies can be used and therefore assays can only detect a 

single target. Given that antigens may have multiple epitopes, ELISA is unable to 

distinguish between antigenically identical analytes, which increases the risk of false 

positive results. Furthermore, reliable monoclonal antibodies are relatively difficult to 

produce and therefore, ELISA may not be available for all potential biomarkers. 

 Interpretation of the immune reaction that underpins the quantification method for 

ELISA relies on measuring the optical density of the reaction using a spectrophotometric 

microplate reader. The enzyme/substrate immunoreaction is short term so 96 well plates 

must be read as soon as possible after the stop solution is applied. A delay in this process 

may result in ambiguous results.   

 

2.4 In- vitro studies 

2.4.1 Cell line choice 

Matched metastatic T84 (lung metastasis) and non-metastatic HT29 (colon confined) 

colorectal cancer cell lines were purchased from ATCC, (UK). The T84 cell line was 

derived from a lung metastasis of 72 year old man with colon cancer, whereas the HT29 

cell line was from a primary colorectal cancer of 44 year old woman.  
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Clinical trials examining the effect of novel biological therapies on outcome are 

largely based on stage IV colorectal cancer. It remains unclear if the response seen in 

primary disease mirrors that of metastatic disease. Therefore, both metastatic and primary 

cell lines were examined in this thesis. 

 

2.4.2 Culturing of colorectal cancer cell lines 

T84 cells were routinely maintained in DMEM: F-12 Medium (ATCC, UK) supplemented 

with 5% foetal calf serum (Invitrogen, UK), 2mM L-glutamine (Invitrogen, UK), and 

penicillin/streptomycin (50 units/ml, 50 μg/ml (Invitrogen, UK)). HT29 cells were 

routinely cultured in McCoy’s 5A Medium (ATCC, UK) supplemented with 10% foetal 

calf serum (Invitrogen, UK), 2mM L-glutamine (Invitrogen, UK), and 

penicillin/streptomycin (50 units/ml, 50 μg/ml (Invitrogen, UK). Cells were grown in T-75 

flasks (Gibco) and maintained in 5% CO2 at 37oC, with the medium changed twice weekly, 

as it is rapidly acidified. 

 

2.4.3 Trypsinisation of cells 

Sub-confluent cultures (70-80%) were routinely passaged 1:6 using trypsin (Invitrogen, 

UK) to prevent the cells becoming confluent and forming clumps. Used medium was 

removed from the flasks and the cells washed twice with warmed Phospho-Buffered Saline 

(PBS) (Invitrogen) to eliminate traces of serum, which includes trypsin inhibitors. Cells 

were then incubated in 3 mls of trypsin for 5 minutes in 5% CO2, 37°C, in order to detach 

the cells from the flask. Once cells were no longer adherent, 3mls of representative culture 

medium was added to inactivate the trypsin. The cells were disaggregated from their 

clusters by gentle pipetting and seeded into new T-75 flasks containing 10 mls of fresh 

representative culture medium. 

 

2.4.4 Freezing cells 

Once cells are trypsinised, aliquots of the cells can be stored for future use. The cell 

suspension was transferred from the flask to a 15 ml centrifuge tube and cell pellets were 

collected by centrifugation at 1200 rpm for 5 minutes. The medium was removed and the 

pellet resuspended in 1ml of representative culture medium (supplemented 10% foetal calf 

serum (Invitrogen, UK), 2mM L-glutamine (Invitrogen, UK), and penicillin/streptomycin 

(50 units/ml, 50 μg/ml (Invitrogen, UK)) and 10% DMSO which serves as a 
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cyroprotectant. The cells were immediately transferred in an alcohol bath (Mr Frosty, 

Sigma) to -80oC for 24 hours before being transferred to liquid nitrogen (-180oC) for long-

term storage. 

When cell aliquots were required, they were removed from liquid nitrogen and 

warmed for 1 minute in a 37oC water bath before being promptly transferred to a flask 

containing 10 mls of pre-warmed RPMI. It was essential not to leave the cells defrosting 

longer than necessary, as DMSO is toxic. 

 

2.4.5 Drug treatments 

2.4.5.1 Drug preparation 

Dasatinib was stored at -20oC with a stock concentration of 10 mM. T84 and HT29 cell 

lines were treated with control media (standard growth media only), vehicle media 

(standard growth media and DMSO) and drug media (Dasatinib in standard growth media). 

Dasatinib was prepared at 1 nM, 10 nM, 20 nM, 50 nM and 100 nM and 200 nM from the 

stock concentration of 10mM using serial dilutions. Given the results of pharmacokinetic 

studies, a dosing regiment of 50mg to 100mg twice daily would result in blood peak 

concentrations of between 42 ng/ml and 84 ng/ml (European Medicines Agency, 2006). 

Given that the molecular weight of Dasatinib is 488 g/mol a blood concentration of 100 

ng/ml would equate to a drug concentration of 200 nM for in-vitro studies. 

 

2.4.5.2 Cell line treatment in 96 wells plate  

T84 and HT29 cells were seeded in 96 well plates at a density of 5000 cells per well (100 

μl) in standard culture medium and grown until 60% confluent. Cells were then incubated 

in serum free media overnight. Cells were treated with either 100 μl of control, vehicle or 

drug media at the concentrations described in section 2.4.5.1 for a period of 24 hours, 48 

hours and 72 hours. Each time frame experiment was performed in triplicate, on three 

separate occasions (n=9 for 24h, 48h and 72h; total of n=27).  

 

2.4.5.3 Metabolic activity assay 

Metabolic activity (cell viability) was assessed using the WST-1 (Water Soluble 

Tetrazolium Salts) assay (Millipore, UK). The cleavage of the tetrazolium salt WST-1 

(water soluble tetrazolium salt, in the presence of 1-methoxy PMS) to formazan by cellular 

mitochondrial dehydrogenases represents mitochondrial and therefore cellular metabolic 
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activity. Expansion of viable cell numbers results in an increase in the activity of the 

mitochondrial dehydrogenases within the sample. This increase in mitochondrial 

dehydrogenase results in an increase in formazan dye metabolism. The formazan dye 

produced by the viable cells is measured at an absorbance of 440 nm using a standard 

multiwell spectrophotometer. 

Cells were seeded in 96 well plates at a density 5000 cells (100 μl) per well in 

standard culture media. The assay was performed at 24, 48 and 72 hours by adding 10 μl of 

WST-1 reagent prior diluted in Electro Coupling Solution (ECS) to each well. The optical 

absorbance level was measured after 2 hours incubation at 37oC, (this time point was 

determined in previous studies performed within our group) using a 96 well microplate 

reader at 450 nm with reference wavelength 600 nm. Each experiment was repeated three 

times and each condition was done in triplicate, thus the experiment was conducted 9 

times. 

 

2.4.5.4 Apoptosis assay 

The Cell Death Detection ELISA Kit (Roche, USA) was used to detect apoptosis in both 

colorectal cancer cell lines treated with increasing concentrations of Dasatinib, diluted in 

culture media for 24 h, 48 h and 72 h. This is a one step sandwich ELISA for relative 

quantification of histone-complexed DNA fragments (mono- and oligonucleosomes) from 

the cytoplasm of cells after the induction of apoptosis. T84 and HT29 CR cells were 

seeded 5000 cells (100 μl) per well and cultured for 24 hours followed by incubation for 

either 24, 48 or 72 hours with 1 nM, 10 nM, 25 nM, 50 nM, 100 nM and 200 nM of 

Dasatinib, diluted in culture media. After the incubation, the cells were pelleted by 

centrifugation at 200 xg for 10 minutes at room temperature and the supernatant was 

discarded. The cells were then resuspended with 100 μl of lysis buffer and incubated for 

thirty minutes at room temperature. After lysis, the cells were collected by centrifugation at 

200 xg and 20 μl of the supernatant was transferred to a streptavadin coated microtiter 

plate. 100 μl of immunoreagent (two monoclonal antibodies, antihistone (biotin-labeled) 

and anti-DNA (peroxidase- conjugated) was added to the wells and incubated at room 

temperature for two hours. The immunoreagent was carefully removed and wells washed 

three times with washing buffer to remove cell components that were not immunoreactive. 

Following this samples were incubated with peroxidase substrate for fifteen minutes at 

room temperature and absorbance of the samples was measured using a 96 well microplate 

reader at 405 nm. 
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2.4.6 Cell pellet studies 

2.4.6.1 Cell line treatment with Dasatinib 

Cell lines were grown in T-75 flasks until 60% confluent, the medium was removed and 

the cells washed in warmed PBS. Then, cells were incubated in serum free media 

overnight. The following day, medium was removed and the cells washed in warmed PBS 

and incubated with 50 nM of Dasatinib for 48 hours. A control experiment of just media 

was also included. The experiment was performed in triplicate. 

  

2.4.6.2 Cell pellet formation 

After incubation with drug media for 48 hours, the solution was removed and cells were 

carefully washed twice with warm PBS. 3 ml of trypsin was added to the flasks and 

incubated for 5 minutes at 37oC in 5% CO2 atmosphere. Trypsin was neutralised with the 

equivalent amount of media. The 6 ml suspension was pipetted gently up and down to 

dislodge all cells and transferred into a 15 ml centrifuge tube (Fisher) and centrifuged at 

10,000 rpm for 10 minutes. This was followed by the supernatant being discarded and 3 

mls of media being gently placed on top of the pellet. Each centrifuge tube was placed on 

ice until the experiment is completed.   

The supernatant is then carefully discarded leaving a cell button at the bottom of 

the universal container. 2-3 drops of fridge stored human plasma is put on top of the cell 

button, combined with the cell pellet using a plastic pipette (Alpha laboratories) and 

subsequently mixed by moderate shaking of the container. Afterwards 1-2 drops of 

thrombin working solution is applied and gently agitated to allow a clot to form. Formalin 

is added slowly to avoid fragmentation of the clot. Fixation of the clot in formalin occurs 

overnight before being placed into a correctly labeled (drug media (D) and control media 

(C)) paraffin block cassette.  The pellet was then and taken to histopathology for 

imbedding in a paraffin wax block.  

 

2.4.6.3 Immunohistochemistry of cell pellets 

Immunohistochemistry was performed on 4 μm full sections using the DAKO Envision 

methodology described in section 2.2. This consisted of dewaxing and rehydrating sections 

followed by heat induced antigen retrieval for only 2.5 minutes. Sections were incubated in 

3% H2O2 for 30 minutes and then protein binding blocker. Sections were washed in TBS 

and then incubated with antibody followed by further washes and signal amplification by 
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DAKO envision for 30 minutes. Sections were then washed, incubated in DAB chromogen 

for 10 minutes followed by further washes and counterstaining in haematoxylin. Finally, 

sections were dehydrated and mounted with DPX and cover slipped. 

Immunohistochemistry conditions for each antibody is given in table 2.2  

 

2.5 PCR studies  

Quantitative real-time PCR (qRT-PCR) is a sensitive technique that uses oligonucleotide 

primers, dNTPs and Taqman polymerase to amplify DNA. A reverse-transcription step 

prior to qRT-PCR enables quantification of mRNA. Therefore, qRT-PCR is a commonly 

used method for quantifying gene expression.  

The qRT-PCR reaction assumes a quantitative relationship between the amount of 

starting target sample and the amount of PCR product at any given cycle number. The 

reaction relies on a DNA polymerase with 5’ exo-nuclease activity of which there are 

several commercially available systems such as TaqMan® system. The other key 

component to this reaction is a specific oligonucleotide probe, for a DNA sequence 

between the forward and reverse primers. These probes are designed with a high-energy 

dye at the 5’ end termed a reporter and a lower energy dye at the 3’ end termed a quencher. 

When the probe is intact the quencher suppresses the reporter dye emission. When the 

probe is cleaved by the 5’ exo-nuclease, the energy from the reporter molecule is released 

and sensed by a fluorescence sequence detection system. Thus with each cycle of the PCR 

reaction there is an increase in the fluorescence emission detected by the reporter dye. The 

reaction is specific at three levels, the complementary probe cleaved during the 

amplification reaction along with the forward and reverse primers.  

Quantification of gene expression using qRT-PCR requires normalisation of the 

reporter dye emission signal using a passive reference dye, which is incorporated into the 

PCR mastermix. The normalised reporter (Rn) value is quantified as the emission of the 

reporter dye divided by the emission of the normalised reporter. The ΔRn is defined as the 

change in Rn between an untreated or early cycle sample (Rn-, no template control) and a 

sample containing a full complement of reaction components including the target (Rn+). 

The ΔRn reflects the increase in signal, which indicates the amount of hybridised probe 

that has been degraded by the exo-nuclease. The Rn is used by the software of the 

detection system to define a baseline of fluorescence and a threshold, which is set in the 

exponential phase of the reaction. The threshold is calculated as the average standard 

deviation of Rn for the early PCR cycles. Finally, the threshold cycle (Ct) is the cycle 
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number at which fluorescence passes the fixed threshold. The Ct value is used in the final 

calculation of gene expression (Figure 2.2).  

 

 

Figure 2.1: Example diagram of a real time qPCR amplification plot 

 

2.5.1 Src kinase family members  

Reverse-transcriptase qRT-PCR was used to determine mRNA expression of Src family 

kinases in colorectal tumours, which were snap frozen in liquid nitrogen at the time of 

resection.  

 

2.5.1.1 RNA Isolation 

50-75 mg of colorectal tumour tissue was homogenised in 1ml of TRIZOL® in a glass 

tube using an OmniTip plastic homogenizer probe. Once the tissue was completely 

homogenized, the homogenate was transferred to a clean Eppendorf tube and incubated at 

room temperature for 5 minutes to allow complete dissociation of nucleoprotein 

complexes. 200 μl of chloroform was added to the homogenate, which was shaken 

vigorously for 15 seconds and a cloudy red solution developed. Samples were then 

incubated at room temperature for 3 minutes. Following this, samples were centrifuged at 

13,000 rpm for 15 minutes at 4oC. Using a large tip and avoiding dislodging the 

precipitate, the aqueous supernatant was removed and placed in an autoclaved Eppendorf 
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tube. 500 μl of isopropanol is added to the sample to precipitate the RNA and is incubated 

at room temperature for 10 minutes. The sample is the centrifuged at 13,000 rpm for 10 

minutes at 4oC. Following this, the isopropanol is carefully decanted to leave a small white 

pellet at the bottom of the tube. 1 ml of 75% ethanol is added the sample and mixed using 

a vortex. 

 To solubilize the RNA, the sample was centrifuged at 10,000 rpm for 5 minutes at 

4oC. The ethanol was carefully decanted not to dislodge the pellet which was left to dry for 

10 minutes at room temperature. 30 μl of DEPC treated water was added to the sample. 

The sample was then mixed using a vortex, spun down and incubated at 65oC on a heating 

block for 5 minutes. The sample was then quickly mixed, spun down and placed on the 

heating block for an additional 5 minutes. Once heating was complete the Eppendorf 

containing the sample was placed on ice. The RNA within the sample was quantified and 

the 260/280 ratio checked using a Nanodrop. 

 

2.5.1.2 cDNA synthesis by reverse transcription 

Prior to reverse transcription, the RNA sample must be DNase treated to reduce the 

possibility of DNA contamination. This is done by first diluting 5 μg of RNA in water to 

final volume of 21.5 μl. 2.5 μl of 10 x Dnase1 buffer and 1 μl of rDnase1 are then added to 

the dilution and spun down. The sample is then incubated at 37C for 30 minutes. To 

remove the DNase Inactivation Reagent, it is first resuspended by vortexing the tube and 3 

μl of slurry is added to the sample. Mixing is achieved by flicking the tube and the contents 

incubated for 2 minutes at room temperature. Following this, the sample is centrifuged at 

13,000 rpm for 1 minute to produce a pellet of DNase Inactivation Reagent. The 

supernatant solution containing the RNA is then transferred to a fresh tube. 

 Reverse transcription of mRNA to cDNA was achieved using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, UK). 2x RT mastermix was 

prepared per sample as described in Table 2.4. cDNA synthesis was performed by adding 5 

μl of 2x RT mastermix to 5 μl of DNase treated RNA sample. The samples was then spun 

down and incubated at 25oC for 10 minutes, 37oC for 120 minutes and then 85oC for 5 

seconds. The resulting cDNA was stored at -20oC. When calculating cDNA, the equivalent 

RNA was used as cDNA has too many nucleotides to measure using the Nanodrop.   
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Table 2.4: Components of the 2x RT mastermix including a no RT control for a single 
sample 

 

 

 

 

 

 

 

2.5.1.3 Quantification of mRNA 

qRT-PCR was performed using an ABI Prism 7900 Sequence Detection System (Applied 

Biosystems, UK) and TaqMan® Gene Expression Assays (Table 2.5).  The PCR reaction 

mixture consisted of 12.5 μl of 2x Taqman mastermix, 1.25 μl of 20x target assay mix, 

10.25 μl of DDW and 1 μl of cDNA. The manufacturer‘s protocol recommended 40 rounds 

of amplification. Thermal cycler condition were 50°C for 2 min, 95°C for 10 min followed 

by 40x 95°C for 15 sec and 60°C for 1 min. Product melting curve analysis and gel 

electrophoresis experiments were used to ensure that only one product of the expected size 

was amplified. 

Negative controls (RNAse/DNAse free H2O and negative qRT-PCR sample) for 

each primer were included on every 96 well PCR plate (Applied Biosystems, UK). 

Quantitative values were obtained from the threshold cycle value at which the increase 

TaqMan® probe fluorescent signal associated with an exponential increase of each 

individual PCR product reaching a fixed threshold value. Each individual primer had a 

fixed threshold Ct value. These fixed threshold values were used for every cDNA sample. 

To enable comparison of different mRNA expression levels, their relation to the 

average expression level of two housekeeping genes GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase) and HPRT (hypoxanthine-guanine phosphoribosyl-transferase) were 

evaluated. The housekeeping gene with the lowest standard deviation (HPRT) was used for 

evaluation of the different mRNA expression levels. Data were analysed using the 

Sequence Detection Software, which calculates the Ct value. The expression of the target 

assay was normalised by subtracting the Ct value of the housekeeping gene from the Ct 

Component Volume  

 RT No RT control 

10 X RT Buffer 1 μl 1 μl 

25 X dNTPs  0.4 μl 0.4 μl 

10 X random primers 1 μl 1 μl 

Multiscribe reverse transcriptase 0.5 μl 0 μl 

Superasin (1 U/ul) 0.5 μl 0.5 μl 

Nuclease free water 1.6 μl 2.1 μl 
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value of the relevant target assay. The fold increase, relative to the control, was obtained 

by using the formula 2-ΔCt, and then expressed as a percentage (x100). 

Formula: 2 -(Mean Ct target gene- Mean Ct house keeping gene) x100 

All samples were measured in triplicate. Supportive technical assistance was given by 

Fiona Jordan, laboratory technician, however, all experimental work and analysis was 

performed by the author. 

 

Table 2.5: Primers used for SFK qRT-PCR reactions and their fixed threshold Ct values.  

 

2.5.2 Microsatellite Instability 

2.5.2.1 Slide retrieval, block identification and tissue preparation  

H&E slides of the representative areas of tumour were collected for every patient. Every 

section was reviewed under the microscope and an estimate of overall tumour areas 

quantified as a percentage. This estimate of cancer nuclear material calculated against the 

background of normal epithelium, muscle, fat and immune cell infiltrate.  For successful 

identification of microsatellite instability, 2 x 10 μm sections of tumour rich (>30%) FFPE 

tissue was needed for DNA extraction and PCR analysis.   

 To reduce the possibility of false negatives, tumours that had less than 40% tumour 

were macrodissected to an equivalent of 2 x 10 μm sections. This often resulted in 

dissection of 4-8 x 10 μm sections. During tumour quantification, H+E sections were 

assessed for ease of dissection and marked to allow identification of tumour areas at a later 

date. Representative blocks were chosen based on ease of dissection whilst keeping tissue 

wastage to minimum. During the dissection process, 10micron section were cut and placed 

Gene Gene 
expression 
Assay ID 

Reporter Exon boundary 
spanned 
according to 
product insert 

Amplicon 
Length 

Threshold 
value (Ct) 

SRC Hs01082246_m1 FAM 7-8 70 0.25000 
LCK Hs00178427_m1 FAM 9-10 104 0.20000 
LYN Hs00176719_m1 FAM 12-13 70 0.20000 
YES Hs00736972_m1 FAM 2-3 153 0.20000 
FYN Hs00941600_m1 FAM 3-4 99 0.20000 
FGR Hs00178340_m1 FAM 5-6 61 0.20000 
HCK Hs00176654_m1 FAM 6-7 64 0.20000 
BLK Hs01017452_m1 FAM 1-2 85 0.20000 
GAPDH 4310884E VIC 3 118 0.16014 
HPRT 4310890E VIC 6-7 100 0.17000 
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onto a non-adhesive glass slides. Using the pre-marked H+E, tumour areas were identified 

and dissected using an 11 scalpel blade. The dissected tissue was then placed in pre-labeled 

sample tube. Using a printed label with a barcode, each patient was given a unique 

identifier that was placed on the sample tube and accompanying elution tube.  

 

2.5.2.2 DNA extraction 

DNA was extracted from FFPE tissue by digesting the tissue prepared in section 2.5.2.1 in 

Qiagen ATL buffer containing proteinase K for 2 hours followed by extraction on the 

Qiagen Symphony using a QIAsyphony DNA kit (Qiagen, UK). Using a Nanodrop, the 

extracted DNA was quantified and the 260/280 ratios checked to ensure appropriate 

quality. 

 

2.5.2.3 MSI Multiplex PCR analysis 

PCR for MSI was performed using a G-Strom PCR thermocycler and Qiagen MSI primer 

sets (Qiagen, UK) in a multiplex reaction. Multiplex fluorescent PCR analysis was 

performed on 5 loci (BAT-25, BAT-26, NR-21, BR-24 and MONO-27, Table 2.x) that are 

routinely used in the NHS reference laboratory (Ninewells Hospital, Dundee) where this 

study took place. The PCR reaction mixture for a single sample consisted of 12 μl of 2x 

Qiagen Multiplex PCR kit, 3.5 μl of sterile water and the primer volumes described in 

Table 2.6. 24 μl of MSI multiplex reaction mixture and 1 μl of sample DNA was added to 

each well of a 96 wells plate and transferred to the G-Storm thermocycler. Thermo cycler 

conditions consisted of 95oC for 10 minutes followed by 34 cycles of 94oC for 1 minutes, 

58oC for 1 minute and 72oC for a minute with a final step of 10 minutes at 72oC.  
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Table 2.6: Markers, primers and volume used in the MSI multiplex PCR reaction mixture 

 

Prior to setting up the genescan, PCR products were diluted 1:100 by aliquoting 99 μl of 

molecular grade water and 1 μl of PCR product into a new 96-wells plate. Using yet 

another new 96 wells plate, 9 μl of ROX/formamide aliquot (0.5 μl of GS500 ROX and 8.5 

μl of deionized formamide) was placed into each well followed by 1 μl of diluted PCR 

product sample. The plate was then run on an ABI 3130 analyser and the results analysed 

using Genemarker software.   

 

2.5.2.4 MSI analysis 

MSI is defined as any length change due to either insertion or deletion of a repeating unit, 

in a microsatellite amplified from a tumour. Using recognised reporting guidelines by the 

local health board, patients were categorised as MSI-positive or CI based on the degree of 

instability:  

MSI-H = Instability at 2 or more loci 

CI = Evidence of instability at 1 or less loci studied 

 

Technical assistance was given by Ms Christine Black who also taught the author how to 

perform the technique and analyse the results.  

 

Marker Primer sequence Volume in multiplex 

NR21F-Hex gagtcgctggcacagttcta 0.75 μl 

NR21R ctggtcactcgcgtttacaa 0.75 μl 

NR24F-HEX gctgaattttacctccgac 0.75 μl 

NR24R attgtgccattgcattccaa 0.75 μl 

BAT26F-NED tgactacttttgacttcagcc 0.5 μl 

BAT26R aaccattcaacatttttaaccc 0.5 μl 

BAT25F-FAM tcgcctccaagaatgtaagt 1.0 μl 

BAT25R tctgcattttaactatggctc 1.0 μl 

MONO27F-FAM gtggagattgcagtgagctg 1.25 μl 

MONO27R ggyggatcaaatttcacttgg 1.25 μl 
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2.5.3 Limitations of PCR techniques 

As a screening technique for studying many tumour samples, PCR has the limitations of 

being relatively expensive, difficult to perform and time consuming, although 

improvements in technology have alleviated the latter issue to some extent. Given these 

limitations, PCR is commonly used following a preliminary screening process such as 

immunohistochemistry in diagnosing Lynch syndrome, or strict clinical criterion such as 

screening for hypertrophic cardiomyopathy.  

Even at low tumour DNA concentrations, PCR offers a robust method of 

identifying the presence of microsatellite repeats and has therefore been established as the 

gold standard test for diagnosing MSI. Quantitative PCR offers a relatively accurate 

representation of how much of a protein is likely to be present by indirectly measuring this 

through the number of mRNA copies present. Limitations in this process such as 

incomplete conversion of mRNA to cDNA does raise the possibility of erroneous results, 

even when controlling for other variable factors. 

 The quantification process of PCR assumes that the volume of tumour and 

specifically cancer cell DNA is identical in all samples. Colorectal cancer cells often have 

variable growth patterns as described by Jass (Jass, 1986). Thus the ‘pushing’ tumours 

have a higher concentration of cancer cells compared to the their infiltrative group. In 

addition, the presence of other non-cancer cells, such as the local inflammatory infiltrate, 

may ‘dilute’ the representation of the tumour DNA in the sample. Therefore, a specific 

weighted sample of tumour may have variable amount of tumour DNA present, which 

raises the possibility of erroneous results. 

 

2.6 Biomarker identification and quantification - Rationale for 

choice of scientific techniques  

All scientific techniques have strength and weaknesses when attempting to translate the 

quantification of a molecule into useful clinical information. The ideal biomarker 

quantification technique will be accurate, cost effective, easy to perform, non-invasive and 

specific to the tumour. Unfortunately, this hard to achieve and therefore multiple 

techniques and different sample types are commonly needed.   

 Allowing for the limitations of immunohistochemistry, it is relatively easy to 

perform, cost effective and offers useful information beyond simply representing how 

much is present. Because it is performed on FFPE sections, information regarding the 

cellular location of the protein, the characteristics of the immunoreaction as well as its 
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relationship with the local microenvironment is also available. The information obtained 

from full sections allows us to examine the relationships between the protein expression at 

multiple cellular locations and clinical parameters.  

 Quantitative PCR offers a useful and reliable yet indirect method of protein 

quantification as it measures preliminary substrates of an end product. It is relatively 

expensive to perform; time consuming and the final results represent the combined DNA 

of normal and cancer tissues. Although there are measures to control for this such as micro 

dissection, these are also time consuming with elevated costs. Given the need for frozen 

tissue to perform quantitative PCR, we have elected to use immunohistochemistry for 

protein quantification in the training, validation and matched serum cohorts. The false 

negative rate for MSI identification using PCR remains low as long as the cancer DNA 

proportion is at least 20% and therefore we have opted to perform the multiplex PCR 

method described above. 

A relative limitation of immunohistochemistry and quantitative PCR is the need for 

tumour samples, which are obtained through invasive medical procedures. ELISA can be 

performed on patient blood samples, which is obtained through a less invasive method.  

ELISA is routinely used in clinical practice because it is relatively easy to use and large 

numbers of samples can be performed in a single experiment. Although it does not offer 

cancer specific information, it is a relatively good method of quantifying the presence of a 

protein despite its relative limitations. 

 

2.7 Statistical methodology 

Hypothesis testing is a statistical method of choosing between the null hypothesis and an 

alternative hypothesis. The falsification theory of Karl Popper suggests that we can never 

conclusively prove a hypothesis; we can only disprove it and thus we test the null 

hypothesis (Popper, 1959). Therefore, the absence of evidence does not mean the evidence 

of absence. To test the hypotheses proposed in this thesis, the data obtained will undergo a 

range of descriptive and inferential statistical tests. An assumption of inferential statistical 

tests is that the observed data is representative of a larger population and thus a range of 

tests are required to demonstrate the proportionality and adequacy/power of the sample.     
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2.7.1 Sample size calculations in biomarker studies 

The adequacy of the sample size is vitally important in determining the validity of the test 

results. It is important to reduce the chance of incorrect interpretation of statistical tests by 

including a sufficient number of patients. The basis of the sample size calculation relies on 

numerous statistical and clinical factors and these are discussed below.  

 

2.7.1.1 Statistical hypotheses testing errors 

Type 1 error 

Irrespective of the inferential statistical test employed, the probability of this observation 

occurring by chance alone needs to be taken into consideration. It is common practice to 

calculate a p-value which when <0.05 infers that the probability of this observation 

occurring by chance alone is below 5%. A type 1 error occurs when the null hypothesis is 

incorrectly rejected when in fact no association truly exists. The risk of a type 1 error is 

commonly described as α (alpha) and may take any value (0.05, 0.001 or <0.001) 

depending on the risk accepted by the researcher, however, α < 0.05 is commonly used in 

the scientific literature.  

 

Type 2 error 

A type 2 error occurs when the null hypothesis is not rejected despite a true association 

existing. The risk of a type 2 error is described as β (beta) and the probability of not having 

a type 2 error is calculated as 1 – β. Power in terms of statistical hypothesis tests relates to 

the probability of not having a type 2 error and is represented as 1 – β. Adequate power, 

which is commonly set at >0.80, strengthens the interpretation and validity of the results. 

Allowing for weaknesses in scientific methodologies, the main confounding factor for a 

type 2 error is an inadequate sample size.     

 

2.7.1.2 Sample size considerations 

The issue of sample size determination in biomarker cohort studies remains controversial 

with many published studies appearing significantly underpowered on post-hoc evaluation 

(Altman, 2012). The sample size has to be large enough that the probabilities of type 1 and 

type 2 errors are acceptably low. Too large a sample size, however, is associated with 

heightened research costs due to excess tissue assessment. The recruitment of too many 

patients to a study could be considered unethical (mainly because it wastes resources) and 
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therefore a balance must be struck between adequate sample size and participant dropout 

due to compliance issues with tissue and follow-up data.  

 The power of survival tests ultimately relate to the number of endpoint events 

observed during follow-up. Therefore in biomarker studies, the sample size considerations 

relates to two broad areas, the interrelationships between studied variables and the 

relationship between studied variables and survival. Unlike data association tests, time to 

event outcome requires the events to have occurred rather than the sample size. Therefore, 

groups with higher event rates such as those with stage IV colorectal cancer will require 

fewer patients than with stage I colorectal cancer. This is particularly important if the study 

is going to stratify survival results by a particular clinicopathological factor.  

Simulation studies have demonstrated that at least 10 events are required for each 

of the covariates considered (Bradburn, 2003). Multivariable models, which adjust the 

magnitude of the association between the studied variables and time to endpoint outcome 

based on confounding covariates, require more events per studied variable. Too few events 

will lead to unreliable results and loss of validity. About 25 events per variable has been 

proposed as desirable (Altman, 2012). 

   

2.7.1.3 Sample size calculation methods  

Sample size calculations for biomarker studies are generally power based as they relate to 

hypothesis testing. The statistical methodology for sample size calculation differs 

depending on whether the data is quantitative or categorical. Sample size calculations for 

hypothesis tests are heavily affected by the choice of α and β with lower values for both 

resulting in larger numbers for n when compared with the widely accepted values α = 0.05 

and β = 0.2. 

 

Quantitative data 

In order to determine the sample size required to compare the mean between two groups 

information on the α, β, ƒ(α, β), δ (the smallest difference in the means) and s (the 

standard deviation of the measured variable).  

 

n = ƒ(α, β) x (2s2 / δ2) 
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Categorical data 

The sample size calculation for categorical data is based on the expected proportion of 

observed events in a test group, which would be present if there was a clinically significant 

difference between the two groups. This method of calculating sample size ensures that the 

study is adequately powered to observe the clinically relevant minimum effect size. The 

sample size calculation is calculated using the formula below 

 

p1 = proportion of events in group 1 

p2 = proportion of events in group 2 

α = significance level 

β = type 2 error probability 

 

n = (p1 (1 – p1) + p2 (1-p2) / (p1 – p2)
2 ) x  ƒ(α,β) 

 

2.7.1.4 Limitations in the application of power calculation 

The main limitations for sample size calculations in biomarker studies relate to the choice 

of values for α and β by the researcher. These values relate to the probability of observing 

type 1 or type 2 errors respectively. Although the widely accepted type 2 error rate is 20%, 

this still equates to the incorrect non-rejection of the null hypothesis in twenty occasions 

out of one hundred inferential tests. Another limitation is the lack of widely accepted 

sample size calculations for time to event outcomes. Although it has been established that 

10 - 25 events are required for each covariate placed in a survival regression model, this 

imprecision my result in too many patients being recruited, excessive tissue being 

examined and heightened costs. 

 

2.7.1.5 Limitations of post-hoc power calculations 

Failure to reject the null hypothesis will always raise the question of adequacy of power 

and sample size of the study. Although post-hoc power calculations are available, they 

underestimate the biological effect size of the study and overestimate the sample size 

required (Hoenig, 2001). Whenever a test statistic is non-significant, the post-hoc power 

calculation will always be low. Similarly, a significant test statistic will always be 

associated with high power. Post-hoc sample size calculations using the effect size 

observed following the completion of a non-significant study will always suggest a larger 
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sample size even if failure to reject the null hypothesis is appropriate. Therefore, sample 

size calculations should be performed a priori or if required performed retrospectively 

using an a priori approach.   

 

2.7.2 Data types and derivation 

The principal objective of data presentation is demonstrating the features of a study to the 

reader. Data may be described as either quantitative or qualitative. 

 

2.7.2.1 Qualitative data 

Nominal data 

Nominal data consists of unordered observations with no statistical relevance between the 

nominated groups. Examples include alive or dead, male or female or geographical areas 

England, Scotland or Wales. Binary outcome measures such as gender are also data 

categories in their own right and may be considered independent of the nominal data type.  

 

Ordinal data 

Ordinal data consists of more than two categories whereby there is a progressively ordered 

relationship. Examples include T stage 1, 2, 3, 4 or classification of age <60 / 61-69 / >70. 

The values of the groupings may be numerical but they have no quantitative significance 

and are thus considered as nouns.  

 

2.7.2.2 Quantitative data 

Numerically discrete 

Numerically discrete data simply consists of counts between two ranges and are integers. 

An example includes the number of people in a study who have died or those that received 

a specific treatment. 

 

Numerically continuous  

Numerically continuous data are measurements that in theory could take any measurement 

within a range and may also consist of a fractional element. Examples include 

measurements of weight in kilograms or calculations of body mass index. There are 

however, continuous variables that can be represented as discrete variables such as age, 

which may be described as full years (66 years old) or fractional (66.25 years old). An 
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important distinction in continuous data types are interval and ratio variables. Ratio 

variables have a true zero, whereas interval variables have an arbitrary zero. Degrees 

Celsius is an interval scale. Degrees Kelvin is a ratio scale. 

 

2.7.2.3 Derived variables 

For ease of presentation or incorporation into inferential statistical tests, data may be 

derived from those originally captured. There are several ways of deriving data based on 

categorizing recorded variables, threshold values, reference curves of standard population 

data and transformed variables. All of these derivative methods have their own strengths 

and limitations. The two methods utilized in this thesis are categorisation and threshold 

derivation.  

 

Calculated or categorical data 

Calculated or categorical derivatives represent grouped continuous or closely ordered 

discrete data. Examples include age, which can be categorised into decades, or otherwise 

grouped arbitrarily such as <50 / 50-65 / >65. Height which can be dichotomized as above 

and below the median, or represented as equally sized groups such as quintiles.   

 

Variables based on thresholds 

These derived variables are based on accepted thresholds of the measured variable. 

Examples include age, which can be dichotomised as an adult (≥18 years old) or pensioner 

(≥60 years old for a woman and ≥65 years old for a man). Another method of threshold 

derivation is the dichotomisation of CRP as normal (≤ 10 mg/l) or high (> 10 mg/l), based 

on measurements in defined populations. 

 

Assumption of derived variables 

Derivative methods assume that data contained within each group is sufficiently similar to 

allow categorisation together, yet sufficiently different to its immediate ordinal neighbours 

to make the properties of each group different. 

 

2.7.3 Data associations: dependence vs independence 

An association is an inferred relationship between two sets of data. The basis of such a 

relationship and how it is inferred depends on the method of statistical analysis of the 

sample of data. Inferential statistical association tests aim to disprove, within an accepted 



 118 

type I error rate, either an ordinal association across a range of data quantities 

(dependence) or a difference between the two data samples (independence). A statistical 

test for independence between two data samples is a different concept from statistical tests 

for independent samples which occurs when an interval dependent variable of two 

independent groups are compared. 

 Statistical tests for data dependency demonstrate a relationship between two data 

samples. These relationships may be classified graphically as linear or non-linear and 

inferred using tests for correlation and regression.  

 Statistical tests for independence look for significant differences between the data 

samples. These differences can be based on the means of each sample (Student t-test), the 

medians (sign test, one way ANOVA, Kruskal-Wallis test, Wilcoxon signed ranks test and 

the Wilcoxon rank sum test) or the observed distribution of categorical variables against 

their expected distribution (Chi-squared test, Fisher’s exact test or the McNemar test for 

paired samples). 

 All the statistical tests identified above are associated with data assumptions that 

must be met if the test is to produce a reliable result. There is no single test available that 

covers all data types and statistical inferences required for hypothesis testing. The 

rationale, assumptions and limitations for commonly used association tests are discussed 

below. 

 

2.7.3.1 Statistical testing for data dependence 

Continuous data comparisons 

Graphical representation of data relationships 

When looking for relationships between two sets of continuous data, a scatterplot is useful 

to determine the appropriateness for implementing an inferential statistical test. Data sets 

are labeled as independent (hypothesised causative factor) or dependent (the response 

factor) and are placed on the horizontal and vertical axis respectively.  

 Based on the scatterplot, data relationships may be described as no relationship, 

linear, quadratic, monotonic or exponential to name just a few. The decision on which 

inferential statistical method to be employed for assessing data relationships is based on 

the type of relationship observed on the scatterplot. The most common methods of 

assessing data dependency is through correlation or regression.  
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Correlation 

One method is to look at how the data samples relate to each other across their 

distributions. If there is a dependent relationship between the ordinal increase in the 

measured data samples, then a correlation is said to be present. Correlation aims to 

measure the degree of association between two numerical variables. The two numerical 

data are described as the outcome variable and the exposure variable. The resultant 

correlation coefficient ranges from -1 to +1 with 0 demonstrating no relationship, -1 a 

perfect inverse linear association and +1 a perfect positive linear association. There are 

different methods of determining the correlation coefficients depending on the distribution 

of the data. It should alays be remembered that significant correlation does not of itself 

imply or even support causation in any particular direction, or at all. 

 

Pearson correlation coefficient  

Pearson correlation coefficient (PCC) is based on the covariance of the two variables 

divided by the product of their standard deviations (Pearson, 1896). The test may be 

applied to a population or a representative sample of the studied population. It is a 

parametric correlation test as it assumes normal distribution of both the outcome and 

exposure variable. The basis of this test is to address the hypothesis that there is a linear 

relationship between the two variables. 

 

Assumptions 

1. The variables must be continuous data measurements 

2. The variables need to be normally distributed 

3. The variables need to be of similar variance (homoscedasticity) 

4. There needs to be a minimum of outliers in the variable data sample 

5. There needs to be a linear relationship between the variables 

 

Limitations 

In clinical practice, it is not always possible to meet the assumptions of Pearson’s 

correlation coefficient test. Biological measurements such as weight or expression of a 

protein may not be normally distributed. Furthermore, removing outliers may not be 

appropriate as there may to be reasons for such observations which should not be observed. 
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Spearman’s rank correlation coefficient 

The Spearman’s rank correlation coefficient (SRCC) is a nonparametric measure of 

dependence between two data samples (Spearman, 1904). It measures how close the 

association between the two data samples follows the monotonic function. The SRCC is 

based on ranked variables rather than the raw ordinal measurements of the two data 

samples.  

 

Assumptions 

1. Variables must be ordinal, interval or a ratio 

2. There is a monotonic (steadily increasing or steadily decreasing) relationship between 

the two data samples 

 

Limitations 

The SRCC pays no regard to the magnitude of the observations and simply places the 

values in rank order. In smaller sample sizes, outliers may significantly change the ranking 

of the measurements and thus the correlation measurement observed. Despite the SRCC 

test offering a less sophisticated measure of correlation, it does not require numerous 

assumptions and therefore it is suitable for a broader range of biological investigations. 

 

Regression 

Statistical regression analysis is a process of estimating a relationship between dependent 

and independent variables. It aims to quantify how the value of a dependent variable 

changes when the independent variables are varied. The estimation or dependent variable 

is a function of the independent variable, which is often called the regression function. 

Multiple regression techniques that can be used for relationship forecasting, causal effect 

relationship determination and time series modeling. 

 

Linear regression 

Linear regression predicts the value of a dependent variable from an independent variable 

when both are linearly related (Bland, 1994a, Bland 1994b). The linear regression model 

takes the form y = α + βx + ε where α is the y intercept, β is the slope of the regression and 

ε is the error term. Certain assumptions of the data must be met. 

 

Assumptions 

1. A linear relationship between the dependent and independent variables 
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2. Homoscedasticity of the errors 

3. Statistical independence of the errors 

4. Normality of the error distribution 

5. Lack of multicollinearity of the predictors 

6. Minimal outliers 

 

Limitations  

Linear regression is most powerful when performed on continuous data and is less useful 

with ordinal or categorical data. If the data are not linearly related, then a different test is 

required. In addition, outliers have a large effect on the model and their inclusion must be 

limited as they may generate unreliable results. 

 

Logistic regression 

Logistic regression is a form of regression analysis where the dependent variable is 

categorical. Logistical regression is binary when the dependent variable is binary or 

multinominal when the dependent variable has more than two categories. Logistic 

regression models the relationship between a categorical dependent variable and one or 

more independent variables by estimating the probability using a logistic function. 

 

Assumptions 

1. Dependent variable is binary or ordinal 

2. Only meaningful variables should be included 

3. Independence of observations 

4. Adequate sample size 

5. Linearity of the independent variables as well as log odds 

 

Limitations  

Logistic regression requires larger samples sizes for reliable results. One rule of thumb for 

sample size estimation is to include approximately 30 cases for each predictor variable 

studied. The study also needs sufficient numbers in both or all categories of the dependent 

variable.    

 

Multiple/Stepwise regression 

Multiple regression analysis is performed when there are three or more measured variables 

in a regression analysis model. Multiple regression analysis may be performed for 
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prediction of independence of associations. Data variables are introduced into the model in 

a stepwise manner. Forward selection involved starting with no variables and introducing 

and comparing covariates until no further improvement in the predictive power of the 

model is made. Backward elimination involves including all candidate variables in the 

model and removing the covariate that is least significant until the model includes only 

independent variables. This method of examining relationships is associated with a 

reduced type I error rate and therefore no correction of the alpha value is required. Despite 

these advantages, many data assumptions that must be met to ensure reliable results.     

 

Assumptions 

1. Minimal number of outliers 

2. Adequate sample size 

3. Linear relationship 

4. Multivariable normality 

5. No auto-correlation 

6. Homoscedasticity 

7. Minimal multicollinearity 

 

Limitations  

The main limitation of this statistical model is its unreliability in small sample sizes. 

Although it offers information on relationships, it does not offer any information on 

causality and this is a general limitation of all relationship tests.  

 

2.7.3.2 Statistical tests for data independence 

Continuous data comparisons 

The aim of determining statistical independence is to reject the null hypothesis that the two 

samples are statistically similar (ie derive from the same population). In terms of 

continuous data types, the aim is to compare the two data samples across their range of 

ordinal magnitudes. The inferential tests that are employed to assess this are dependent on 

the distribution of the data samples. Data samples that are normally distributed or can be 

normalised by a data transformation can be examined using parametric tests of the mean 

and those that do not approximately conform to data normality can be examined by non-

parametric tests of the median. Each test has certain assumptions and limitations and these 

are discussed below. 
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Differences in the mean 

One-sample t-test 

The one-sample t-test is performed when we want to know if our data sample comes from 

a particular population. The one-sample t-test compares the mean of the sample with the 

known population mean whilst allowing for the expected sampling error. This test may be 

useful when assessing if a test cohort is representative of the disease cohort seen in routine 

clinical practice. 

 

Assumptions 

1. Continuous data type  

2. The study population is normally distributed 

3. The data sample represents random sampling from a defined population 

 

Limitations 

The main limitation of the one-sample t-test is that the population mean of the studied 

variable may not be known, for instance as a consequence of geographical variation, not 

yet fully characterised in the desired location of study. This may result in inappropriate 

rejection of the null hypothesis, when in reality the patient sample is representative of the 

population of interest. In addition, the one-sample t-test does not allow for inferential 

statistical analysis of two data samples.    

 

Paired t-test 

The paired t-test compares the means of two populations where observations in one sample 

can be paired with those in another sample. This test may be used to assess if a significant 

difference exists between before and after observations or two different methods of 

measurement on the same subject. The t statistic is the mean of the difference divided by 

the standard error of the mean difference. This follows a t-distribution with n-1 degrees of 

freedom. For this test to offer reliable results, certain assumptions must be met.  

 

Assumptions 

1. Continuous data type 

2. The difference between the paired samples is normally distributed 

3. The pairing of data occurs prospectively not post-hoc 

4. The paired data samples must be independent 
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Limitations 

When the differences between the two measurements are not approximately normally 

distributed, the inferential statistic is not entirely reliable and another method of 

assessment is required. The basis of the paired t-test is that the paired measurements are 

independent of each other but relate to the same subject. There are occasions when an 

assessment of difference in measurements between two populations is required when all 

subjects are exclusive and therefore a different statistical test is required. 

 

Unpaired t-test 

To compare the means between two populations, the unpaired t-test may be used. The test 

is based on the t-statistic, which is given by the difference between the means of the two 

samples divided by the standard error of the difference of the means of the two samples. 

The statistic follows a t-distribution with the sum of the observations in the two samples 

minus 2 degrees of freedom.  

 

Assumptions 

1. Continuous data type 

2. The data samples are normally distributed 

3. The data samples must be independent 

 

Limitations 

The main limitation of the unpaired t-test is similar to other t-tests in that data needs to be 

normally distributed (or can be normalised by a suitable transformation). In addition, the 

unpaired t-test is limited to the analysis of means between two groups and therefore a 

different test is required if more that two groups are being studied.  

 

One-way analysis of variance (ANOVA) 

One-way ANOVA is used to determine if a significant difference in the mean of three or 

more independent and unrelated groups exists (Fisher, 1918). The benefit of performing an 

ANOVA F-test over multiple t-tests is that the probability of obtaining a type I error is 

equal to α regardless of the number of groups being studied.  

 

Assumptions 

1. Dependent variable is a continuous data type 

2. Independent variable consists of two categorical and independent groups 



 125 

3. Significant data samples should be removed 

4. Data samples must be independent 

5. The dependent variable should be approximately normally distributed for every 

independent categorical variable 

6. There must be equal variance between the proposed data populations 

 

Limitations 

One-way ANOVA does not identify which groups were significantly different and is thus 

called an omnibus test statistic. Although it is relatively robust against the assumptions of 

data normality, there is a risk of unreliable results and an alternative non-parametric test is 

required. 

 

General limitations of statistical tests comparing means 

When data is not normally distributed, the mean may disproportionately lie to the right of 

left of the data midpoint and is thus unreliable when entered into inferential statistical tests 

of the mean. Data transformation can be performed when violations of the normality 

assumptions exist, however, different statistical tests may be required.  The t-tests are 

based on a comparison of the mean between two groups, however, there may be occasions 

when more than two groups are studied and an alternative statistical test is required.  

 

Differences in the median 

Sign test 

The sign test is a non-parametric test that examines the direction (+ or -) of the observation 

against the median. The maximum of r (of the +ve or –ve observations) follows a binomial 

distribution for p=0.5 and n=n’. It can be used when a data sample is not normally 

distributed, transformation of data is not normally distributed or the sample size is too 

small to ascertain the distribution.  

 

Assumptions 

1. The differences between the paired data samples are independent 

2. The difference measurement comes from the same population of samples 

3. The values for the paired measurements are ordered chronologically so that differences 

observed are true meaningful observations  
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Limitations 

The sign test makes few assumptions of the distribution of the data but it may lack 

statistical power when compared to alternative tests. 

 

Wilcoxon signed ranks test 

The Wilcoxon signed ranks test is a non-parametric test of the null hypothesis that the 

median of a distribution is equal to a specified value (Wilcoxon, 1945). It can be used on a 

single data sample as well as paired sample sets. In the paired test, the differences are 

ranked and labeled with their respective sign (as in the sign test). The minimum value for 

W (W-, W+) is chosen and using tables of critical values for the Wilcoxon signed rank sum 

a probability for observing this value of W is obtained. The single sample test is similar to 

the paired sample whereby the observed data is compared to a hypothesized median M. 

 

Assumptions 

1. Paired data are sampled from the same population 

2. The data are ordinal 

3. Paired data samples are chosen randomly and independently 

 

Limitations 

Data values of the same ordinal magnitude occupy the same rank thus diluting the 

inferential ability of the test. The sign test and the Wilcoxon signed ranks test rely on the 

data sample being pared to a hypothesized median or paired independent samples. On 

occasions, inferential tests of the median of two independent data samples are required and 

therefore a different statistical test is required. 

 

Wilcoxon rank sum test / Mann-Whitney U test 

The Wilcoxon rank sum test or Mann-Whitney U test is a non-parametric inferential 

statistical test for the comparison of medians from two independent data samples (Mann, 

1947). The test is based on the ranking of all observations in order of ordinal magnitude, 

with identical values given average rankings. The test is mathematically identical to 

conducting an unpaired t-test except with ranked values.  

 

Assumptions 

1. The dependent variable is a continuous or ordered data type 

2. The independent variable is comprised of two independent categorical groups 
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3. The observations contained within the data sample are independent 

 

Limitations 

Similar to all non-parametric inferential statistical tests, the Mann-Whitney U test lacks 

power when compared to its parametric alternatives. This is due to the methodology of 

analyzing ranks rather than the ordinal magnitude of the observations. 

 

Kruskal Wallis test 

The Kruskal Wallis H test is a rank based non-parametric test to determine if there is a 

difference between three or more groups (Kruskal, 1952). It may be viewed as an 

extension of the Mann-Whitney U or the non-parametric version of the one-way ANOVA.  

 

Assumptions 

1. Dependent variable is a continuous data type 

2. Independent variable consists of two categorical and independent groups 

3. Data samples must be independent 

 

Limitations 

Similar to the one-way ANOVA, the test is an omnibus test and cannot identify which 

group is significantly different from the others. As with all non-parametric inferential tests, 

the use of ranks may reduce the statistical power of the test. 

 

General limitations of statistical tests comparing medians 

The inferential statistical tests of the medians of different groups have the benefit of not 

assuming normality of the test data. They have the added benefit of being more reliable 

when normality of data is uncertain. Given that they are based on the ranks of the data 

rather than their ordinal magnitude, they may offer weaker inferential statistical power than 

their parametric alternatives.  

 

Categorical data comparisons 

There are numerous tests available to analyse categorical data and detailing each one is not 

in the scope of this thesis. The most commonly used categorical statistical hypothesis tests 

are the chi-squared tests. A chi-square test is any hypothesis test where the sampling 

distribution of the test statistic follows the chi-squared distribution when the null 

hypothesis cannot be rejected. Test statistics that follow the chi-squared distribution are 
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assumed to arise from independent normally distributed data. Therefore, the chi-square test 

may be used in two hypothesis testing situations; goodness of fit tests and tests for 

independence. Goodness-of-fit tests estimate how closely observed distributions are related 

to expected distributions, and independence tests estimate if two random variables are 

independent. There are several versions of the chi-square test, however, the Pearson’s chi-

squared test is the most commonly used. 

 

Pearson’s chi squared test 

Pearson’s chi-squared test aims to establish if the difference in observed frequencies 

between two categorical data samples arose by chance (Pearson, 1900). The test for 

independence, commonly expressed in a contingency table, simply determines if a 

significant difference exists between the observations and does not offer any information 

about the direction or magnitude of the difference. The final significance value is an 

approximation of the test statistic to a theoretical chi-squared distribution with certain 

degrees of freedom. 

 

Assumptions 

1. The data sample is random and that the probability of selection is equal to that of the 

population from which the sample has been taken 

2. The observations are independent 

3. Adequate data sample to reduce the chance of type II reporting errors  

4. Expected values of at least 5 in each cell 

 

Limitations 

The main limitation of Pearson’s chi-squared test is that it is sensitive to the size of the 

sample and therefore a weak relationship may be observed as statistically significant. If 

small values are expected within cells, such as individual cell counts of 5 or less for 2x2 

contingency tables or 20% of the fields with counts less than 5 in larger tables, the 

significance statistic is unreliable. This is due to the basis of the test being an 

approximation of a theoretical chi-squared distribution that becomes established as the 

sample size becomes infinite. In these situations, a different inferential test is required. 

 

Fisher’s exact test 

Fisher’s exact test calculates the significance for the deviation from the null hypothesis 

exactly, rather than relying on an approximation to the theoretical chi-squared distribution, 
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which is used in the chi-squared test (Fisher, 1922). The test is based on the observation 

that the probabilities of fixed marginal totals can be estimated using a hypergeometric 

distribution with four classes.  

 

Assumptions 

1. Categorical data type 

2. Data observations are independent 

3. The count values in the cells are fixed or conditioned 

 

Limitations 

The main limitation of the Fisher’s exact test is that it simply reports if the distribution of 

observed events are independent of each other and does not offer any information about 

the direction or magnitude of the difference. 

 

McNemar’s test 

McNemar’s test is an inferential statistical test for significance of change on dichotomous 

dependent variables between two groups of paired nominal data (McNemar, 1947). The 

test is based on the chi-square statistic with the cells of interest representing the change in 

dichotomisation between the primary and secondary observation.  

 

Assumptions 

1. One categorical dependent variable with two categories along with one categorical 

independent variable with two related groups 

2. The two dependent groups are mutually exclusive 

3. The sample data represent a random sample from the studied population 

 

Limitations 

McNemar’s test is not as statistically powerful as other parametric tests. In addition, when 

faced with smaller sample sizes (discordant pairs >10), the McNemar’s test loses statistical 

power and an alternative test is required. 

 

2.7.3.3 Limitations of data association tests 

Association between two variables does not imply causation. The delineation of causation 

using associations alone is difficult given the complex nature of natural science. An 
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association between A and B can be explained by three potential scenarios, firstly A causes 

B, secondly B cause A and thirdly A and B are caused by an external factor C. It is 

possible to develop statistical models that will establish which of the co-factors are 

independently associated with a particular variable, however, this is limited by the 

inclusion or exclusion of important co-factors and the sample derived to develop the 

statistical model. Given the nature of experimental science, not all the co-factors in a 

complex multifactorial relationship can be studied and therefore apart from associations, 

causality cannot be determined without doubt.    

 

2.7.4 Adjustment of multiple comparisons 

Multiple comparisons arise when a number of inferential statistical test are performed on 

paired groups or a single dataset. Using a p-value of 0.05, the chance of incorrectly 

rejecting a true null hypothesis is 5% (type I error). Performing 100 comparison tests on 

the same dataset would on average result in a false rejection of the null hypothesis in 5 

cases. Similarly, one hundred 95% confidence intervals will likely not cover the population 

parameter in 5 cases. To ensure that the chance of a type 1 error is sufficiently diminished, 

a multiple testing correction can be performed. 

 

The Bonferroni correction  

The Bonferroni correction method is used to counteract the problem of multiple 

comparison testing (Bland, 1995). The test is based on a researcher testing n hypotheses at 

a significance level of 1/n of α, thus:  

Bonferroni correction = α / n  

 

A limitation of the Bonferroni correction is that the reduction in type I errors is associated 

with an increased chance of not rejecting the null hypothesis when in fact this is false (type 

II errors). Therefore, each comparison with a modified α < 0.05 needs to be interpreted 

within the context of the study, its strengths, limitations and other significant results.  

 

2.7.5 Univariable survival analysis 

Survival analysis is a process of examining data where the outcome variable is the time 

observed between the start of the study and an event of interest. Within this thesis, the 

events of interest are disease recurrence, death or censorship, which occurs when the 

information about a patient’s survival is incomplete. Censoring is encountered during two 
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instances; firstly when patients have been lost to follow up and secondly, when patients 

have not undergone a defined event at the point of study completion (Altman, 1998).  

 The inferential quality of survival analysis is dependent upon accurate 

ascertainment of the outcome event and appropriate selection of statistical methodology. 

The data required for survival analysis is the time between entry to the study and event 

occurrence or censorship as well as the defined event status. Different survival 

methodologies are associated with inherent mathematical assumptions and thus, 

inaccuracies in the data or inappropriate choice of testing methodology for the type of data 

may lead to erroneous results. 

There are several methods for analysing the survival outcomes for patients in 

observational cohort studies. No single test offers a comprehensive inferential analysis of 

outcome and combinations of tests are often used. Each test has its own pre-defined 

assumptions and limitations which are discussed below. 

 

2.7.5.1 Follow-up, recurrence, death and study endpoints 

Two primary end points that are of particular clinical interest in treating patients with 

cancer; time to disease recurrence and overall survival. There are two main challenges, 

predicting who will develop recurrence or who will die of their disease and the time taken 

to reach these endpoints.  

In practice, precisely defining these endpoints may be difficult. Date of death is a 

precise endpoint, but determining what constitutes a cancer-related death is not always 

clear. The cause of death given on a death certificate may be inaccurate and all-cause 

mortality has been widely used to avoid this difficulty. Similarly, determining the time of 

disease recurrence is difficult as recurrence may be ascertained at different times due to 

surveillance (asymptomatic) or as emergencies (symptomatic). Close follow-up regimens, 

which might include regular surveillance CT scans, reduce the chances of symptomatic 

presentation as patients are identified earlier. Limitations in defining the date of disease 

recurrence are unavoidable and results have to be interpreted with caution. 

 

2.7.5.2 Survival probabilities (Kaplan-Meier methodology) 

The Kaplan-Meier method is a non-parametric statistical method for estimating the 

survival function of 2 or more groups (Kaplan, 1958). The test is constructed by defining a 

survival event such as death or recurrence and patients survive until the occurrence of this 

event, or they are censored. The proportions of patients surviving at each time point is 
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calculated over the survival period. The Kaplan-Meier method aims to estimate the 

probability of survival for a member of the population from which the sample group is 

drawn. The results of this test can be displayed as a Kaplan-Meier survival plot or life 

tables. To achieve reliable information from the Kaplan-Meier survival method, certain 

assumptions have to be met. 

 

Assumption 

1. Patients who are censored have similar survival prospects to those that remain in follow-

up 

2. The survival probabilities are the same for those recruited at any time point  

3. The event occurred at the specified time 

 

Limitations 

Although the Kaplan-Meier graph offers useful information on the probabilities of survival 

events occurring at a particular time point, it does not offer any significance information 

for hypothesis testing and thus additional tests are required such as the logrank test (Bland, 

1998).  

 

2.7.5.3 Logrank test 

The logrank test is a hypothesis test, which compares survival distributions between 

studied groups (Mantel, 1966). It tests the null hypothesis that there is no difference 

between the groups in the probability of death at any point in time. The basis of the test is 

comparing the observed number of deaths to the predicted number of deaths on the basis 

that there is no difference between the groups. At the point of the first event, the risk of 

death is 1/n, where n is the total number of participants in the study. The sum of patients in 

each group is then multiplied by the risk of death for the entire cohort. The same 

calculations are performed each time an event occurs. When a patient is censored, that 

patient is at risk of dying up to the point of censoring but not afterwards. Using the chi-

squared test, the expected and observed deaths in the two groups are analysed and a p-

value calculated (Bland, 2004). In order to perform a logrank test several assumptions need 

to be met.  

 

Assumptions 

1. Sample is chosen randomly 
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2. Definition of survival is consistent between all subjects 

3. Baseline and survival rate are do not change over time 

4. The survival time of the censored subjects are the same as the remaining subjects 

5. The variable designating group membership is independent of other patient covariates 

6. There is no correlation between covariates 

 

Limitations of the logrank test 

The logrank test is merely a measure of significance and does not offer any information on 

the magnitude of difference between the groups. Furthermore, it does not offer any 

information on the confidence interval survival association. A further limitation is that 

statistical significance will only be detected if the risk of the event occurring is consistently 

higher in one group compared to the other. Therefore, survival data where the Kaplan-

Meier curves cross will be unlikely to lead to a significant result and additional statistical 

testing is required. 

 

2.7.6 Multivariable survival analysis 

Whilst the logrank test identifies statistically significant differences between groups, 

without information on the magnitude of the difference, the clinical importance of the 

biomarker on survival is not clear. The previously discussed survival methods are also 

limited by their failure to control for confounding effects of covariates on the observed 

survival function. In clinical practice, it is common for several known or unknown 

confounding factors to influence survival. Therefore, whenever investigating the 

relationship between a particular biomarker expression and survival, it is desirable to 

adjust the survival association for other confounding factors. Several methods have been 

proposed for modeling survival data and are based on the distribution of the survival times 

(Bradburn, 2003). 

 

2.7.6.1 Cox proportional hazards model (Semi-parametric) 

The Cox proportional hazards model estimates a studied variables’ effect on survival after 

adjustment for other confounding factors (Cox, 1972). It therefore simultaneously explores 

the effects of several variables on survival. In addition, it can also offer univariable 

survival information through the calculation of a hazard function. The Cox proportional 

hazard model is a semi-parametric test that offers two main features; a hazard function and 

the multiple regression model.  
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The hazard function is the probability that a participant will experience an event 

within a specified time interval, given that the individual has survived up to the 

commencement of that time period. The hazard function is estimated by dividing the 

number of individuals experiencing the event in that particular time interval by the number 

of participants surviving at that time multiplied by the interval width (Cox, 1972).  

 The Cox regression model differs from ordinary regression as the covariates are 

used to predict the hazard function. It considers the risk sets of subjects still being followed 

up at each time a survival event occurs. At each event point, the values of the covariates 

for the participant undergoing the event is compared to those for all the surviving 

participants remaining in follow up.  

 

Assumptions 

1. That mechanisms giving rise to censoring are independent of the probability of an event 

occurring 

2. The model relies on the relationship between the dependent and explanatory variable 

being proportional over time 

3. The studied variable and other covariates contribute linearly to the natural log of the 

hazard ratio 

 

Limitations 

The Cox proportional hazards model assumes that the relationship between the studied 

covariates and the hazard function remains constant during follow-up. Many 

clinicopathological factors such as tumour stage remain unchanged, however, changes to 

modifiable factors, such as body mass index, may inadvertently violate the assumptions of 

the model and may lead to incorrect conclusions. The reliability of the Cox model is based 

on strict adherence to the underlying assumptions and potential covariates should undergo 

checking to confirm compliance prior to model construction, which takes the form of 

various tabular and graphical outputs, which require a reasonable grounding in statistical 

methodology. 

 

2.7.6.2 Parametric proportional hazards model 

Parametric proportional hazard models resemble the Cox proportional hazard model but 

the hazard is taken to follow a specific distribution. Such models are named after the 

distribution of the hazard function including exponential, Weibull and Gompertz 
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proportional hazard models. Although these models offer improved survival prediction 

when compared with semi-parametric Cox models, their application is are limited by their 

parametric nature and they are not appropriate for all datasets. 

 

2.7.6.3 Accelerated failure time models 

The accelerated failure time model (AFT model) is a parametric survival model that 

assumes the effect of a covariate is to accelerate or decelerate the survival course of a 

disease by a constant relative amount (Bradburn, 2003). AFT models are fully parametric 

and can be performed on multiple distributions for the log of T0, (the unmoderated 

distribution of T(time)). The most common distributions are log-logistic and Weibull, but 

normal, gamma and inverse Gaussian may also be used (Bradburn, 2003). In contrast to 

proportional hazard ratios, AFT models interpret the effect size as a time ratio.  

 

Assumptions 

1. The mechanism resulting in patient censoring is independent of the probability of the 

event occurring 

2.  Survival times follow a predefined distribution  

3. The model relies on the relationship between the dependent and explanatory variable 

being proportional over time 

4. The effect of the covariate on survival is fixed and does not change over time 

 

Limitations 

Although the parametric nature of this modeling method offers superiors prediction, it is 

limited to assessing data with a specified survival time distribution. Non-parametric 

modifications of the AFT model have been proposed, but not widely accepted. 

 

2.7.7 Biomarker quantification: Assessing reproducibility of 

measurements, including subjective assessments 

To reduce reporting bias, data measurements require independent validation. Validity of 

analysis depends on accuracy and precision of the test data, which should be reproducible 

when assessed by an independent observer or another assay. Depending on the data type of 

the measurement, it is unlikely that exact agreement will be observed between two raters. 

Whilst allowing for limitations in scientific techniques, quantification of inter-observer 
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agreement offers some information about relative validity of data. Methods of quantifying 

inter-observer agreement for different data types are discussed below. 

 

2.7.7.1 Cohen’s kappa coefficient 

Cohen’s kappa coefficient measures the inter-observer agreement for categorical data 

(Cohen, 1960). The κ statistic is calculated by dividing the difference between the 

observed agreement and the agreement that would be expected by chance alone by 1 minus 

the hypothetical chance agreement. When there is complete agreement κ = 1, however κ = 

0 if there is no agreement other than that which could occur by chance. κ < 0 implies a 

systematic disagreement. 

 

Limitations 

Cohen’s kappa coefficient is based on agreements between raters in categorising data into 

certain groups; therefore, measurements that are of a continuous data type require a 

different test. 

 

2.7.7.2 Interclass correlation coefficient – unordered pairs 

The interclass correlation coefficient (ICC) assesses the consistency of measurements 

between observers or assays measuring the same quantity. The test is based on dividing the 

variance of the two measurements divided by the sum of the variance between the two 

measurements plus the measurement error variance. The ICC may range from 0 no 

agreement to 1 complete agreement. It requires a data type, which is at least interval if not 

ratio. 

 

Limitations 

This method of ICC assumes that the data are ordered pairs and therefore only applies to a 

set of two measurements. For assessment of reliability between more than two observers, a 

different statistical test is required.  

 

2.7.8 Rationale for choice of descriptive and inferential statistical 

methodology 

2.7.8.1 Statistical software 

All data analysis was performed using SPSS (version 20.0 for Mac).  
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2.7.8.2 Sample size calculations 

Rationale for determining effect size 

The AJCC/UICC TNM staging system remains the standard prognostic marker for 

predicting 5 year survival following surgery for colorectal cancer. Outcomes vary by stage 

with stage I having a 95% 5 year survival compared to 80% in stage 2, 63% in stage III 

and 7% for stage IV. 5-year survival for all patients undergoing potentially curative 

resection is 60%. New candidate biomarkers should at least offer similar effect sizes to 

TNM staging system and therefore for the purpose of sample size calculations, a 15% 

difference from a baseline of 60% 5 year overall and recurrence free survival was sought. 

In addition to survival, 15% difference was sought for comparing proportions across 

categorical data. 

 

Rationale for determining type 1 and type 2 error rates 

The currently accepted rates for type 1 and type 2 errors are α = 0.05 and β = 0.2 

respectively. The adjustment of α for multiple comparisons is given through out the text 

and varies according to number of tests performed.  

 

Sample size calculation – effect size 

Using a study design of two independent groups, a dichotomous primary endpoint with an 

α = 0.05 and β = 0.2 and an anticipated effect size of 15% from a baseline of 60% the 

sample size required is n = 346. Adjusting α = 0.0025 for twenty comparisons results in a 

sample size requirement of n = 658.  

Patients included in the studies reported in this thesis were not screened for 

clinicopathological factor determination prior to analysis. This approach aims to reduce 

bias and improve reliability of the results. To ensure adequate numbers of patients for 

subgroup analysis, the overall volume of patients in the study will need to be significantly 

larger that n=677. Calculations for this will take the form of dividing n  = 658 by the 

proportion of patients in the subgroup.  

 

Sample size calculation – number of events 

As previously discussed, approximately 10 – 25 events are required for every covariate in a 

survival model. Based on the assumption that survival models will include a maximum of 

12, which equates to 120 – 300 required events. Given the 5-year survival rates discussed 

above, a sample size of n = 658 would include 394 events. Examining survival outcomes 

in subgroups is also likely to require a greater number of patients, however, depending on 
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the anticipated rate of events in each subgroup this figure could be substantially smaller or 

larger.  

 

2.7.8.3 Continuous data comparisons 

Data dependence 

All continuous data types were graphically represented using a Q-Q (quantile-quantile) 

plot to test for data normality. To determine if a correlation between continuous data types 

exist, Pearson’s correlation coefficient was employed. For data that are not normally 

distributed, Spearman’s rank correlation coefficient was used.  

 

Data independence 

To assess independence between the distributions of continuous data stratified by a 

categorical biomarker unpaired t-tests were used. For data that is not normally distributed, 

the Mann Whitney U test was employed. Whenever possible, parametric tests were used 

for their superior statistical power. 

 

2.7.8.4 Categorical data comparisons  

For all categorical data types, the Pearson’s chi-squared test was used to assess for 

independence between the proportions observed between the two variables. Given the 

number of patients contained with the cohorts, Fisher’s exact test is not required.  

 

2.7.8.5 Survival data and follow up protocol 

Follow-up 

Follow-up was adapted to the treatment being received by individual patients. Patients who 

did not undergo adjuvant therapy and who were placed into the surveillance program 

underwent the following follow up: 

 Clinical review at 1, 3, 6, 12, 24, 36, 48 and 60 months following surgery 

 CT thorax, abdomen and pelvis at 12, 24, 36, 48 and 60 months 

 Colonoscopy at 12 and 60 months  

 

Patients who underwent adjuvant therapy had additional clinic and radiological follow-up. 

Patients who developed symptoms, which on clinical review were concerning for disease 

recurrence had additional radiological and or endoscopic investigations.  
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Choice of study endpoints 

Given the important limitations associated with disease-specific survival, overall survival 

has been chosen as the primary survival endpoint in these studies. The biomarkers studied 

are specific to the tumour and may not affect overall survival, which is affected by both 

tumour and non-tumour related disease processes. Overall survival may underestimate the 

effect of the biomarker on survival and therefore time to recurrence has been retained as a 

secondary survival endpoint. The methodologies for determining survival endpoints are 

detailed below. 

 

Date of recurrence and death 

On review of clinic letters, CT scan reports and endoscopy results, the date of recurrence 

was defined as the date that one or other diagnostic modality identified disease recurrence. 

Using a combination of case notes review and death certificate reports, the date of death 

was determined by the date that death was certified. Patients who were right censored had 

a date of recurrence and date of death that represented the date they left the study. For 

those that died but did not have proven recurrence, their date of death was their censoring 

point. Thus the endpoint for recurrence was binary: recurrence present no=0, yes=1 and the 

endpoint for survival was also binary, dead no=0, yes=1. The calculation for measurements 

of time to recurrence and survival are shown below. 

 

For those with recurrence:  

Time to recurrence (months) = date of surgery – date of recurrence endpoint (date of 

recurrence or date of death or date of censorship) 

 

For those without recurrence: 

Time to recurrence (months) = date of surgery – date of censorship (date of death or 60 

months follow up) 

 

For those that died: 

Overall survival (months) = date of surgery – date of death 

 

For those still alive: 

Overall survival (months) = date of surgery – date of censorship 
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2.7.8.6 Survival association tests 

Descriptive analysis 

Kaplan-Meier graphs were produced to demonstrate the relationship between studied 

biomarkers and the survival endpoints chosen. Survival tables were included to 

demonstrate the number of patients present at each follow up stage. This combined 

approach offers a visual and tabular representation of proportionality of survival at each 

significant stage across the follow up range. 

 

Univariable analysis 

Cox proportional hazard along with the logrank test will be used to assess the difference in 

survival between the categories of the studied biomarker. The logrank test does not offer 

any information on the magnitude of difference between the two categories and therefore 

the Cox proportional hazard model was also utilized.  

 

Multivariable analysis 

A multivariable Cox regression model will be developed incorporating factors with a 

significance level of <0.1 and which are appear clinically relevant when considering data 

associations. Factors not naturally dichotomous were included in their continuous form to 

reduce the risk of imprecise results that can be seen when factors such as age are 

transformed into categorical data. All covariates will be entered into the model and 

eliminated in backwards-stepwise manner. Covariates demonstrating time dependency will 

be included in the model along with interaction terms between the covariates and (log) 

time as described by Bradburn et al (Bradburn, 2004).  

 

2.7.8.7 Methods for assessing data assumptions 

Data distribution 

For the assessment of data normality histograms and Q-Q plots were graphed to allow 

visual inspection of the data. The Shapiro-Wilk statistic was also be used to support the 

observations seen in the graphed data.  For continuous data comparisons, scatterplots were 

used to visually inspect the data linearity and to ensure that assessment with inferential 

correlation tests are appropriate.  
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Survival data 

Assessing compliance with Cox proportional hazards model assumptions is different for 

continuous and categorical data. Not all statistical tests that assess data assumptions are 

available in SPSS Continuous variables were categorised into groups as supported by 

Bradburn et al (Bradburn, 2004b) and assessed using the following stepwise process. 

 

Proportionality 

1. Kaplan-Meier curves should gradually diverge; lines that cross were considered to have 

violated the proportionality assumption. Variables that interact with time may also 

demonstrate variability in the rate of events occurring over particular points in the follow-

up phase. 

2. Log(-log(survival)) plot – If the hazards are proportional then the stratum specific log(-

log(survival)) plots will exhibit a constant difference and appear parallel.  

3. Time-dependent covariate test – A covariate that has a time-dependent hazard ratio will 

appear as a significant result when the variable as a function of time is included in a Cox 

regression analysis.  

 

2.7.8.8 Biomarker quantification and assessment of reproducibility 

Weighted histoscore 

The semi quantitative histoscore method has been described in section 2.6.6.1. This 

method of scoring has widely used by our team and many others. The histoscore ranges 

from a 0-300 and is calculated independently for nucleus, cytoplasm and membrane. Using 

a combination of Kaplan-Meier curves and Receiver-operator-characteristic (ROC) curves, 

thresholds for grouping biomarkers were chosen. The ICC was used to assesse the 

reproducibility of the biomarker quantification when 10% of the TMA cores were co-

scored by an independent investigator blinded to primary scores and outcome measures. 

For the purpose of reliability, ICC’s > 0.7 are classified as acceptable and > 0.8 are 

considered excellent.  

 

Assessment of mismatch repair protein expression 

Mismatch repair protein (MLH1, MSH2, PMS2 and MSH6) expression was established 

using UK NEQAS scoring guidelines. Expression is categorised as normal, patchy/weak  

or negative. Cohen’s kappa coefficient was used to assess the inter-observer correlation for 

these categorical data. 
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3. The relationship between cancer associated 

inflammation, MSI status and survival  

3.1 Introduction 

Colorectal cancer is a heterogenous disease with variable patterns of genetic injury. 

Differences in the aberrant expression of particular genes have been associated with certain 

histological phenotypes. There are two primary genomic instability pathways: 

Microsatellite Instability (MSI) and Chromosomal Instability (CI) also referred to as 

Microsatellite Stability (MSS). Tumours arising by these pathways have a predilection for 

specific anatomical, histological and molecular biological features. In addition, they differ 

in terms of recurrence and 5 year survival rates. MSI tumours tend to be larger than their 

MSS counterparts but are more likely to be node negative, have a pronounced lymphocytic 

infiltrate at the tumours invasive edge and have a better prognosis (Soreide, 2006).  

 Cancer related inflammation has been described as a 7th hallmark of cancer 

(Balkwill, 2001). The so-called hallmarks of cancer represent biological behaviors that 

have been identified as characteristic or fundamental to of the disease process. Tumours 

grow through a combination of dysregulation of cellular energetics, excessive cell 

proliferation, reduced apoptosis, loss of cell adhesion and invasion through tissue 

remodeling and dysregulation of angiogenesis (Balkwill, 2001). Inflammation plays an 

important part in all these factors. Despite the systemic inflammatory response (SIR) being 

associated with more aggressive malignant disease, infiltration by immune cells, 

particularly CD8+ lymphocytes, at the advancing edge of the tumour has been associated 

with improved outcome (Naito, 1998). This suggests a complex relationship between 

tumour and host, which is both beneficial and detrimental to the patient. MSI tumours have 

been associated with a pronounced lymphocytic infiltrate within the cancer cell nests 

(Dolcetti, 1999), but it remains unknown if there is any association between MSI tumours 

and the presence of a SIR and what effect this has on patient survival. 

 The core hypothesis of this chapter is that the systemic inflammatory response will 

be significantly associated with MSI colorectal cancer. The previously reported poor 

survival associated with the SIR will not be observed in MSI colorectal cancer, due to the 

beneficial effect of the local inflammatory response. Finally, tumour MSI status, serum 

CRP and serum albumin will be significantly associated with survival outcome measures 

in stage II colorectal cancer. 
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3.2 Description of cohorts 

3.2.1 Core clinicopathological factors 

Core characteristics of the training and validation cohort are shown in table 3.1 along with 

the regional frequencies for the data variables studied during the same time period.  

Compared with the validation cohort and regional data, the training cohort had a higher 

proportion of male patients, elective presentations, rectal tumours and a shift towards more 

advances disease (Stage III 46.3% vs 35.8% and stage I 6.6% vs 15.7%). The validation 

cohort has similar frequencies to those in the regional data. 

 

Table 3.1: Frequency of core clinicopathological factors between the training cohort, 
validation cohort and regional data (Nicholson, 2012) 

Clinicopathological 
variables 

Training cohort 
(Cohort 1) n=182 

Validation cohort 
(Cohort 2) n=677 

Regional data 
N=11,166 

Age 
     Median +/- IQR 

 
70 (IQR 54 – 86) 

 
72 (IQR 57 - 87) 

 
72 (IQR 58-86) 

Sex  
     Female 
     Male 

 
42.3% 
57.7% 

 
49.1% 
50.9% 

 
49.9% 
50.1% 

Mode of presentation 
     Elective 
     Emergency 

 
95.6% 
4.4% 

 
70.4% 
29.6% 

 
83.3% 
26.7% 

Tumour Site 
     Colon 
     Rectum 

 
67.6% 
32.4% 

 
78.2% 
21.8% 

 
75.0% 
25.0% 

Tumour site enhanced 
     Right 
     Left 
     Rectum 

 
37.9% 
29.7% 
32.4% 

 
44.6% 
34.4% 
21.0% 

 
 
Not available 

Tumour Stage 
     I 
     II 
     III 
     IV 

 
6.6% 
47.3% 
46.2% 
0.0% 

 
15.7% 
48.6% 
35.8% 
0.0% 

 
13.9% (18.2%*) 
32.9% (43.0%*) 
29.6% (38.8%*) 
23.7% (N/A*) 

* Frequencies of TNM stages when only TNM stage I, II and III included.  

 

3.2.2 Experimental clinicopathological factors 

In addition to the basic patient demographics and tumour characteristics presented in 

section 3.2.1, tumour differentiation, serum CRP, serum albumin, tumour Klintrup score 

and MMR protein status were also evaluated. The statistical features of these biomarkers 

will be described in more detail later in this chapter; however, the distribution between 

categories of these clinicopathological factors are shown in table 3.2. The distribution of 
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tumour differentiation, Klintrup score and tumour MMR status is similar between the two 

cohorts.  

All 182 patients in the training cohort had data available on serum CRP and 

albumin available. In the validation cohort, 533 patients had data on serum CRP expression 

and 563 patients had data on serum albumin expression. In the validation cohort, 26.6% of 

patients were hypoalbuminaemic compared with 13.7% of patients in the training cohort. 

In addition, 49.3% of patients in the validation cohort had a raised serum CRP compared to 

45.1% in the training cohort. 

 

Table 3.2: Comparison of proportions of experimental clinicopathological factors between 
the training cohort and validation cohort 

 
Clinicopathological 
variables 

Training cohort 
(Cohort 1) n=182 

Validation cohort 
(Cohort 2) n=677 

Differentiation  
     Well/Moderate  
     Poor 

 
89.0% 
11.0% 

 
90.3% 
9.7% 

Serum CRP  
     Normal  
     High 

 
54.9% 
45.1% 

 
50.7% 
49.3%              n=533 

Serum albumin  
     Normal  
     Low 

 
86.3% 
13.7% 

 
73.4% 
26.6%              n=563 

Klintrup score 
     High 
     Low 

 
31.5% 
68.5% 

 
30.4% 
69.6% 

MMR status  
     MMR-P  
     MMR-D 

 
84.1% 
15.9% 

 
84.2% 
15.8% 

 

3.3 Training cohort 

3.3.1 Systemic inflammatory response quantification 

3.3.1.1 Serum CRP expression 

Serum CRP was assessed in an accredited diagnostic biochemistry laboratory, using 

ELISA and reported in units of mg/l. Figure 3.1 demonstrates that the expression of serum 

CRP follows an exponential distribution (histogram, figure 3.1) with measurements ≥48 

mg/l considered outliers (boxplot, supplementary figure 3.1, appendix 5.1). The 

measurements ranged from 5 – 200 mg/l with a median of 9 mg/l (IQR 5 - 25 mg/l) 
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(supplementary figure 3.1 appendix 5.1). Using the dichotomisation thresholds described 

by McMillan et al, 45.1% of patients were considered high expressers (>10 mg/l).  

 

Figure 3.1: Distribution of measurements for serum CRP.  

Histogram demonstrating the distribution of serum CRP measurements.  
 

3.3.1.2 Serum albumin 

Serum albumin was assessed in an accredited diagnostic biochemistry laboratory, using 

ELISA and is reported in g/l. Figure 3.2 demonstrates that the expression of serum albumin 

does not precisely follow a normal distribution (histogram and Q-Q plot, figure 3.2) which 

is supported by a Shapiro-Wilk statistic of 0.966, df 182, p<0.001. Measurements ranged 

from 23 – 52 g/l with median 39 g/l (IQR 33 - 45 g/l) (supplementary figure 3.2, appendix 

5.1). Using the dichotomisation thresholds described by McMillan et al, 13.7% of patients 

were considered hypoalbuminaemic (<35 g/l).   
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Figure 3.2: Distribution of measurements of serum albumin in patients with colorectal 
cancer  

Histogram demonstrating the distribution of serum albumin measurements. Q-Q Plot of 
serum albumin measurements. 
 

3.3.2 Mismatch repair (MMR) protein status determination 

MMR protein expression status was determined by immunohistochemistry of mismatch 

repair proteins; MLH1, MSH2, PMS2 and MSH6. NEQUAS reporting guidelines were 

used when assessing expression. Tumours expressed MLH1 in 83% of cases, MSH2 in 

96% of cases, PMS2 in 87% of cases and MSH6 in 94% of cases. Using NEQUS reporting 
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guidelines 15.9% were considered MMR deficient. Examples of MMR proficient (MMR-

P) and deficient (MMR-D) tumours are shown in figure 3.3.  

 

 

 

Figure 3.3: Immunohistochemistry for MLH1 protein in two different colorectal cancer 

A.) TMA core showing a tumour with proficient MLH1 expression. B.) TMA core showing 
tumour with absent MLH1 expression. Note the normal expression in immune cells and 
fibroblasts in core B but no expression in the cancer cells.   
 

3.3.3 The association of MMR protein status and clinicopathological 

factors 

Patients with mismatch repair deficient tumours had lower levels of serum albumin, with a 

median of 37 g/l (IQR 31 – 43 g/l) compared with a median of 40 g/l (IQR 35 – 45 g/l) in 

patients with MMR proficient tumours (p=0.024, Mann-Whitney U, figure 3.4). This 

association, however, was not supported by chi-squared analysis when the variables were 

analysed as categorical data (p=0.076, Bonferroni adjustment p<0.003, table 3.3). On chi-

squared analysis of categorical variables, right-sided tumour location (p<0.001) and poor 

differentiation (p<0.001) were significantly associated with mismatch repair deficient 

tumours following Bonferroni adjustment. When serum CRP was analysed as a continuous 

variable, there was no statistically significant difference between serum measurements 

when stratified by MMR protein expression (p=0.109, Mann-Whitney U, figure 3.4).   
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Figure 3.4: The distribution of serum CRP and albumin measurements stratified by MMR 
protein expression  

Boxplots demonstrating serum CRP and albumin measurements stratified by tumour MMR 
protein expression in patients with colorectal cancer. 
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Table 3.3: The relationship between tumour MMR protein expression and 
clinicopathological factors 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Alpha following Bonferroni adjustment = <0.0032 
* Fishers exact test 
 

 

 

 

Clinicopathological 
factors 

MMR Proficient MMR Deficient p-value 

Sex 
     Female 
     Male 

 
67 (43.8%) 
86 (56.2%) 

 
10 (34.5%) 
19 (65.5%) 

 
0.352 

Presentation 
     Elective 
     Emergency 

 
146 (95.4%) 
7 (4.6%) 

 
28 (96.6%) 
1 (3.4%) 

 
0.627* 

Tumour Site 
     Colon 
     Rectum 

 
99 (64.7%) 
54 (35.3%) 

 
24 (82.8%) 
5 (17.2%) 

 
0.042* 

Tumour Site 
     Right 
     Left 
     Rectum 

 
48 (31.4%) 
51 (33.3%) 
54 (35.3%) 

 
21 (72.4%) 
3 (10.3%) 
5 (17.2%) 

 
<0.001* 

Differentiation 
     Well-Mod 
     Poor 

 
142 (92.8%) 
11 (7.2%) 

 
20 (69.0%) 
9 (30.0%) 

 
<0.001 

T stage 
     1 
     2 
     3 
     4 

 
3 (2.0%) 
11 (7.2%) 
99 (64.7%) 
40 (26.1%) 

 
1 (3.4%) 
2 (6.9%) 
12 (41.4%) 
14 (48.3%) 

 
0.141* 

N stage 
     0 
     1 
     2 

 
81 (52.9%) 
57 (37.3%) 
15 (9.8%) 

 
17 (58.6%) 
10 (34.5%) 
2 (6.9%) 

 
0.521* 

TNM stage 
(simplified) 
     I 
     II 
     III 

 
 
9 (5.9%) 
72 (47.1%) 
72 (47.1%) 

 
 
3 (10.3%) 
14 (48.3%) 
12 (41.4%) 

 
 
0.633* 

Serum CRP 
     Normal 
     High 

 
88 (57.5%) 
65 (42.5%) 

 
12 (41.2%) 
17 (58.6%) 

 
0.109 

Serum albumin 
     Normal 
     Low 

 
135 (88.2%) 
18 (11.8%) 

 
22 (75.9%) 
7 (24.1%) 

 
0.076 

Klintrup score 
     Good 
     Poor 

 
47 (30.9%) 
105 (69.1%) 

 
10 (34.5%) 
19 (65.5%) 

 
0.705 
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3.3.4 The associations between serum CRP, serum albumin, tumour 

MMR protein expression and survival  

Patients were followed up as described in section 2.7.5.1. During follow-up there were 42 

(23.1%) recurrences and 66 (36.3%) deaths. Five year recurrence-free and overall survival 

rates for the clinicopathological factors studied can be found in appendix 3.1. 

 

3.3.4.1 Univariable recurrence-free survival - serum CRP expression 

Serum CRP measurements were significantly higher in patients who went on to develop 

disease recurrence (p=0.012, Mann-Whitney U, figure 3.5). Median CRP for patients with 

recurrence was 15 mg/l (IQR 5 – 44.75 mg/l) compared with 7 mg/l (IQR 5 – 21.75 mg/l) 

in the non-recurrence group.  

 

Figure 3.5: The distribution of serum CRP measurements in patients with and without 
disease recurrence (p=0.017) 

 

The 5 year recurrence-free survival rate for patients with a raised serum CRP was 41.5% 

compared to 68.0% in patients with a normal serum CRP (p<0.001, Pearson’s chi square). 

On logrank analysis raised serum CRP was significantly associated with poorer recurrence-

free survival (p=0.007, figure 3.6). The mean survival for patients with a raised serum CRP 

was 45.8 months (95% CI 41.1 – 50.6) compared with 54.0 months (95% CI 51.1 – 56.9) 

in the normal serum CRP group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 100 93 88 82 78 74 68 

High 82 68 54 50 41 37 34 

Figure 3.6: The relationship between serum CRP expression and recurrence-free survival 
(p=0.007) 

Kaplan-Meier curves demonstrating the proportion of patients recurring stratified by 
serum CRP expression status. Beneath, there is a survival table demonstrating the number 
of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum CRP was significantly associated 

with poor recurrence-free survival (Hazard Ratio (HR) 2.29 (95% CI 1.23 – 4.24), 

p=0.009) when dichotomised as a categorical variable. Its significance level, however, 

reduced when it was included as a continuous variable (HR 1.01 (95% CI 1.00 – 1.02), 

p=0.023). Despite the significant associations observed between serum CRP and 

recurrence-free survival, its predictive value remains relatively poor. When receiver-

operator-characteristic analysis was performed using recurrence as the endpoint, the area 

under the curve (AUC) was 0.63 (95% CI 0.53 – 0.72, p=0.013) for CRP as a continuous 

variable and AUC 0.60 (95% CI 0.50 – 0.69, p=0.065) for CRP as a categorical variable 

(figure 3.7). 
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Figure 3.7: The predictive value of serum CRP in identifying patients who will develop 
recurrence during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum CRP 
in identifying patients who will develop disease recurrence. 
 

3.3.4.2 Univariable recurrence-free survival - serum albumin expression 

There was no statistically significant difference between the serum albumin measurements 

of patients who did and did not develop disease recurrence (p=0.367, Mann-Whitney U, 

supplementary figure 3.3, appendix 5.1). Median serum albumin was 39 g/l (IQR 33 – 45 

g/l) in both the recurrence and non-recurrence groups.  

The 5 year recurrence free survival rate for patients with hypoalbuminaemia was 

40.0% compared to 58.6% in patients with a normal serum albumin (p=0.082, Pearson’s 

chi square). On logrank analysis hypoalbuminaemia was associated with poor recurrence-

free survival (p=0.044, figure 3.8). The mean survival for patients with hypoalbuminaemia 

was 43.3 months (95% CI 34.2 – 52.4) compared with 51.5 months (95% CI 48.8 – 54.3) 

in the normal serum albumin group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 157 142 126 118 106 101 92 

High 25 19 16 14 13 10 10 

Figure 3.8: The relationship between serum albumin expression and recurrence-free 
survival (p=0.044) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
albumin expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis hypoalbuminaemia was significantly associated 

with poor recurrence free survival when dichotomised as a categorical variable (HR 2.10 

(95% CI 1.00 – 4.38), p=0.049). It was also significantly associated with poor recurrence 

free survival when included as a continuous variable (HR 0.93 (95% CI 0.87 – 1.00), 

p=0.037). Despite the significant associations observed between serum albumin and 

disease recurrence, its predictive value is relatively poor. When ROC analysis was 

performed using recurrence as the endpoint, the AUC was 0.45 (95% CI 0.36 – 0.55, 

p=0.369) for albumin as a continuous variable and the AUC was 0.55 (95% CI 0.45 – 0.65, 

p=0.326) for albumin as a categorical variable (figure 3.9).  
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Figure 3.9: Predictive value of serum albumin in identifying patients who will develop 
recurrence during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum 
albumin in identifying patients who will develop disease recurrence.  
 

3.3.4.3 Univariable recurrence-free survival - tumour MMR protein expression 

Of the patients with MMR-D tumours, 3 (10.3%) developed cancer recurrence compared 

with 39 (25.5%) of the patients with MMR-P tumours (p=0.056, Fisher’s exact test). There 

was no significant difference between MMR expression and recurrence-free survival on 

logrank analysis (p=0.085). The mean survival for MMR-P patients was 49.6 months (95% 

CI 46.5 – 52.6) compared with 55.0 months (95% CI 49.6 – 60.4) in the MMR-D group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

MMR-P 153 134 119 109 97 90 82 

MMR-D 29 27 23 23 22 21 20 

 
Figure 3.10: The relationship between MMR protein expression status and recurrence-free 
survival (p=0.085) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by MMR 
protein status. Beneath, there is a survival table demonstrating the number of patients not 
censored at each follow-up point.   
 

On Cox univariable regression analysis MMR-D status was not significantly associated 

with improved recurrence free survival (HR 0.37 (95% CI 0.12 – 1.20), p=0.098). 

Furthermore, MMR-D status did not significantly predict the development of recurrence 

with an AUC of 0.48 (95% CI 0.35 – 0.54, p=0.262) 

 

3.3.4.4 Univariable overall survival - serum CRP expression  

Serum CRP measurements were significantly higher in patients who died during follow-up 

(p=0.001, Mann-Whitney U, figure 3.11). Median CRP for patients who died was 14.00 

mg/l (IQR 5.00 – 41.25 mg/l) compared with 6.00 mg/l (IQR 5.00 – 18.74 mg/l) in the 

alive group.  
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Figure 3.11: The distribution of serum CRP measurements in patients stratified by 
survival status (p=0.001) 

 

The 5 year overall survival rate for patients with a raised serum CRP was 50.0% compared 

to 74.0% in patients with a normal serum CRP (p=0.001, Pearson’s chi square). On 

logrank analysis raised serum CRP was significantly associated with poor overall survival 

(p=0.001, figure 3.12). The mean survival for patients with a raised serum CRP was 43.0 

months (95% CI 38.6 – 47.4) compared with 52.5 months (95% CI 49.5 – 55.5) in the 

normal serum CRP group.  



 157 

 
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 100 96 92 88 82 78 74 

High 82 75 64 57 49 44 41 

 
Figure 3.12: The relationship between serum CRP expression and overall survival 
(p=0.001) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum CRP was significantly associated 

with poorer overall survival when dichotomised as a categorical variable (HR 2.31 (95% 

CI 1.41 – 3.79), p=0.001); however, its significance reduced when it was included as a 

continuous variable (HR 1.01 (95% CI 1.00 – 1.01), p=0.014). Despite the significant 

associations observed between serum CRP and poor overall survival, its predictive value is 

relatively poor. When ROC analysis was performed using death as the endpoint, the AUC 

was 0.65 (95% CI 0.56 – 0.73, p=0.001) for CRP as a categorical variable and AUC 0.62 

(95% CI 0.54 – 0.71, p=0.006) for CRP as a continuous variable (figure 3.13).  
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Figure 3.13: Predictive value of CRP in identifying patients who will die during the follow 
up period 

Receiver-operator-characteristic curve demonstrating the predictive value of CRP in 
identifying patients who will die during follow-up.  
 

3.3.4.5 Univariable overall survival - serum albumin expression 

There was no statistically significant between the serum albumin measurements of patients 

who died and those that survived to 5 years (p=0.162, Mann-Whitney U, supplementary 

figure 3.4, appendix 5.1). Median serum albumin measurements were 40 g/l (IQR 34 – 46 

g/l) in the alive group compared to 39 g/l (IQR 33 – 45 g/l) in patients who died.  

The 5 year overall survival rate for patients with hypoalbuminaemia was 48.0% 

compared to 65.6% in patients with a normal serum albumin (p=0.090, Pearson’s chi 

square). On logrank analysis hypoalbuminaemia was not associated with poor overall 

survival (p=0.110). The mean survival for patients with hypoalbuminaemia was 41.9 

months (95% CI 33.7 – 50.0) compared with 49.2 months (95% CI 46.5 – 52.0) in the 

normal serum albumin group (supplementary figure 3.5, appendix 5.1).  

On Cox univariable regression analysis hypoalbuminaemia was not significantly 

associated with poor overall survival when dichotomised as a categorical variable (HR 

1.66 (95% CI 0.89 – 3.10), p=0.114), however, it was significantly associated with survival 

when included as a continuous variable (HR 0.94 (95% CI 0.90 – 0.99), p=0.027). In terms 

of survival prediction, when ROC analysis was performed using death as the endpoint, the 

AUC was 0.44 (95% CI 0.35 – 0.52, p=0.164) for albumin as a continuous variable and an 
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AUC of 0.54 (95% CI 0.45 – 0.62, p=0.435) for albumin as a categorical variable 

(supplementary figure 3.6, appendix 5.1).  

 

3.3.4.6 Univariable overall survival - Tumour MMR expression 

Of the patients with MMR-D tumours, 6 (20.7%) died during the follow up period 

compared with 60 (39.2%) patients in the MMR-P tumour group (p=0.042, Fisher’s exact 

test). There was no significant difference between tumour MMR expression status and 

overall survival on logrank analysis (p=0.083, figure 3.14). The mean survival for MMR-P 

patients was 47.4 months (95% CI 44.5 – 50.4) compared with 52.2 months (95% CI 46.2 

– 58.3) in the MMR-D group.  

 

 
 
 
 

Figure 3.14: The relationship between MMR protein expression and overall survival 
(p=0.083)  

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by MMR 
protein status. Beneath, there is a survival table demonstrating the number of patients not 
censored at each follow-up point.   
 

On Cox univariable regression analysis MMR-D status was not significantly associated 

with improved overall survival (HR 0.48 (95% CI 0.21 – 1.12), p=0.090).  Furthermore, 

MMR-D status did not significantly predict death during follow-up with an AUC of 0.43 

(95% CI 0.36 – 0.53, p=0.229) 

 

No. at risk 0 months 10 
months 

20 
months 

30 
months 

40 
months 

50 
months 

60 
months 

MMR-P 153 143 131 120 108 99 93 

MMR-D 29 28 25 25 24 23 22 
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3.3.4.7 Multivariable recurrence-free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7.  

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p was >0.05. On univariable analysis, emergency 

presentation (p=0.045), advancing T-stage (p=0.046), advancing N-stage (p=0.003), higher 

TNM stage (p=0.003), raised serum CRP (p=0.009), hypoalbuminaemia (p=0.049) and 

tumour MMR-D status (p=0.098) had a p-value <0.1 and were therefore included in the 

multivariable Cox proportional hazards regression model. 

 Raised serum CRP (HR 2.52 (95% CI 1.21 - 5.25), p=0.014), hypoalbuminaemia 

(HR 2.46 (95% CI 1.07 - 5.68), p=0.034) and MMR-D status (HR 2.52 (95% CI 0.06 – 

0.64), p=0.007) were significantly and independently associated with recurrence-free 

survival (table 3.4). 
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Table 3.4: The relationship between clinicopathological factors, SIR, LIR and MMR 
status and recurrence free survival: multivariable analysis 

 
 

 

 

 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.007 0.605 0.99 (0.97 - 1.02)    
Sex  
     Female 
     Male 

 
 
0.211 0.511 

1 
0.81 (043 – 1.52)    

Presentation 
     Elective 
     Emergency 

 
 
1.052 0.045 

1 
2.86 (1.02 – 8.02)  0.302  

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
-0.089 
0.485 

 
0.454 
 
 

1 
0.92 (0.46 – 1.84) 
0.62 (0.28 – 1.33)    

T stage  
     1  
     2  
     3  
     4 

 
0.000 
9.082 
8.813 
9.712 

0.046 
 
 
 

1 
8792.34 (0.00 – 3.19e80) 
6720.81 (0.00 – 2.43e80) 
16521.90 (0.00 – 5.98e80) 

 
 
 

 
0.072 
 
 
 

 
 

N stage 
     0 
     1 
     2 

 
0.000 
1.124 
1.169 

0.003 
 
 

1 
3.08 (1.57 – 6.05) 
3.22 (1.15 – 9.05) 

 
 

 
0.441 
 
  

TNM stage 
     I 
     II 
     III 

 
0.000 
0.232 
0.932 

0.003 
 
 

1 
0.79 (0.18 – 3.58) 
2.54 (0.61 – 10.65)  

0.060 
 
  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.314 

 
 
0.510 

 
1 
1.37 (0.54 – 3.49)    

Serum CRP  
     Normal  
     High 

 
 
0.826 0.009 

1 
2.29 (1.23 – 4.24) 0.922 0.014 

1 
2.52 (1.21 – 5.25) 

Serum albumin  
     Normal  
     Low 

 
 
0.740 0.049 

1 
2.10 (1.00 – 4.38) 0.901 0.034 

1 
2.46 (1.07 – 5.68) 

Klintrup score 
     High 
     Low 

 
 
0.515 0.155 

1 
1.67 (0.82 – 3.40)    

MMR status  
     MMR-P 
     MMR-D 

 
 
-0.991 0.098 

1 
0.37 (0.12 – 1.20) -1.657 0.007 

1 
0.19 (0.06 – 0.64) 
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3.3.4.8 Multivariable overall survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7. 

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p was >0.05. On univariable analysis, advancing 

age (p=0.025), advancing N-stage (p=0.002), higher TNM stage (p=0.026), raised serum 

CRP (p=0.001), poor Klintrup score (p=0.008) and tumour MMR-D status (p=0.090) had a 

p-value <0.1 and were therefore included in the multivariable Cox proportional hazards 

regression model. 

 On multivariable analysis, raised serum CRP (HR 2.40 (95% CI 1.44 – 53.99), 

p=0.001), advancing age (HR 1.02 (95% CI 1.00 – 1.05), p=0.045), poor Klintrup score 

(HR 2.04 (95% CI 1.08 – 3.85), p=0.027) and MMR-D status (HR 0.41 (95% CI 0.18 – 

0.97), p=0.043) were independently and significantly associated with poor overall survival 

following (table 3.5).  
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Table 3.5: The relationship between clinicopathological factors, SIR, LIR and MMR 
status and survival: multivariable analysis 

 
 

 

 

 

 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age 0.026 0.025 1.03 (1.00 - 1.05) 0.024 0.045 1.02 (1.00 – 1.05) 
Sex  
     Female 
     Male 

 
 
-0.206 0.404 

1 
0.81 (0.50 – 1.32)    

Presentation 
     Elective 
     Emergency 

 
 
0.531 0.304 

1 
1.70 (0.62 – 4.68)    

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
-0.159 
0.053 

 
0.788 
 
 

1 
0.85 (0.47 – 1.56) 
1.05 (0.60 – 1.86)    

T stage  
     1  
     2  
     3  
     4 

 
0.000 
8.573 
8.930 
9.474 

0.134 
 
 
 

1 
5286.13 (0.00 – 6.00e63) 
7554.37 (0.00 – 8.54e63) 
13019.00 (0.00 – 1.47e64)    

N stage 
     0 
     1 
     2 

 
0.000 
0.500 
1.250 

 
0.002 
 
 

 
1 
1.65 (0.65 – 2.80) 
3.51 (1.74 – 7.08) 

 
 

 
0.053 
 
 

 
 
 

TNM stage 
     I 
     II 
     III 

 
0.000 
0.600 
1.203 

0.026 
 
 

1 
1.82 (0.43 – 7.70) 
2.54 (0.80 – 13.79)  

0.903 
 
  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.444 

 
 
0.216 

 
1 
1.56 (0.77 – 3.15)    

Serum CRP  
     Normal  
     High 

 
 
0.838 0.001 

1 
2.31 (1.41 – 3.79) 0.778 0.001 

1 
2.40 (1.44 – 3.99) 

Serum albumin  
     Normal  
     Low 

 
 
0.506 0.114 

1 
1.56 (0.87 – 3.10)   

 
 

Klintrup score 
     High 
     Low 

 
 
-0.853 0.008 

1 
2.35 (1.25 – 4.40) 0.737 0.027 

1 
2.04 (1.08 – 3.85) 

MMR status  
     MMR-P 
     MMR-D 

 
 
-0.727 0.090 

1 
0.48 (0.21 – 1.12) -0.882 0.043 

1 
0.41 (0.18 – 0.97) 
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3.4 Validation cohort 

3.4.1 Systemic inflammation quantification 

3.4.1.1 Serum CRP expression 

Serum CRP was measured using ELISA and reported in mg/l as described in section 

3.3.1.1. Figure 3.15 demonstrates that the expression of serum CRP follows an exponential 

distribution (histogram, figure 3.15) with measurements >75 mg/l considered outliers. 

Serum measurements ranged from 0.90 – 460.00 mg/l with a median of 10.00 mg/l (IQR 

0.90 – 35.00 mg/l) (supplementary figure 3.7, appendix 5.1). Using the dichotomisation 

thresholds described by McMillan et al, 49.3% of patients were considered high expressers 

(>10 mg/l).  

 

Figure 3.15: Histogram demonstrating the distribution of serum CRP in patients with 
colorectal cancer  

 

3.4.1.2 Serum albumin expression 

Serum albumin was measured using ELISA and reported in g/l. Figure 3.16 demonstrates 

that the expression of serum albumin does not precisely follow a normal distribution 

(histogram, figure 3.16), which is supported by a Shapiro-Wilk statistic of 0.955, df 533, 

p<0.001. The measurements ranged from 12 – 51 g/l with a median of 39 g/l (IQR 30 - 48 

g/l) (supplementary figure 3.8, appendix 5.1). Using the dichotomisation thresholds by 

McMillan et al, 26.6% of patients were considered hypoalbuminaemic (<35 g/l).  
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Figure 3.16: Distribution of measurements of serum albumin in patients with colorectal 
cancer  

Histogram demonstrating the distribution of serum albumin measurements. Q-Q Plot of 
Serum albumin measurements.  
 

3.4.2 MMR protein status evaluation and microsatellite instability  

Using immunohistochemistry, MMR protein expression was evaluated by assessing the 

expression of the MMR proteins; MLH1, MSH2, PMS2, MSH6. NEQUAS reporting 

guidelines were used when assessing expression. Tumours expressed MLH1 in 88% of 

cases, MSH2 in 94% of cases, PMS2 in 86% of cases and MSH6 in 93% of cases. Using 

NEQUS reporting guidelines n=107 (15.8%) of the resected colorectal cancers were 

considered MMR deficient. Following MSI analysis, 85 (13%) of the 677 patients within 



 166 

the cohort had microsatellite unstable tumours. Of these 85 patients with MSI tumours, 79 

(92.9%) were MMR deficient. In addition, 28 (4.7%) of the 592 MSS tumours were also 

MMR deficient (p<0.001, chi squared analysis). 

 

3.4.3 The association of MSI status and clinicopathological factors 

Patients with MSI tumours had higher levels of serum CRP with a median of 20.00 mg/l 

(IQR 1.00 – 65.50 mg/l) compared with a median of 9.00 mg/l (IQR 0.90 – 31.00 mg/l) in 

patients with CI tumours (p<0.001, Mann-Whitney U, figure 3.17). This association was 

also supported by chi-squared analysis when the variables were analysed as categorical 

data (p=0.003, Bonferroni adjustment p<0.0032). On chi-squared analysis of categorical 

variables, right-sided tumour location (p<0.001), poor differentiation (p<0.001) and MMR-

D status (p<0.001) were significantly associated with MSI tumours following Bonferroni 

adjustment (table 3.5). When serum albumin was analysed as a continuous variable, there 

was no statistically significant difference between serum measurements and MSI status 

(p=0.156, Mann-Whitney U, supplementary figure 3.9, appendix 5.1).   

 

Figure 3.17: The distribution of serum CRP measurements in patients stratified by MSI 
status (p<0.001) 

Boxplots demonstrating the difference in serum CRP measurements stratified by tumour 
MSI status. 
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Table 3.6: The relationships between tumour MSI status and categorical 
clinicopathological factors 

 
Bonferoni adjustment = <0.0032 
* Fishers exact test 
 

 

 

 

Clinicopathological factors Chromosomal Instability (CI) Microsatellite Instability (MSI) p-value 

Age 73 (IQR 57 – 89) 71 (IQR 55 – 87) 0.908 

Sex 
     Female 
     Male 

 
277 (46.8%) 
315 (53.2%) 

 
55 (64.7%) 
30 (35.3%) 

 
0.002 

Presentation 
     Elective 
     Emergency 

 
413 (69.8%) 
179 (30.2%) 

 
63 (74.1%) 
22 (25.9%) 

 
0.411 

Tumour Site 
     Colon 
     Rectum 

 
456 (77.0%) 
136 (23.0%) 

 
78 (91.8%) 
7 (8.2%) 

 
0.001* 

Tumour Site 
     Right 
     Left 
     Rectum 

 
233 (39.4%) 
223 (37.7%) 
136 (23.0%) 

 
69 (81.2%) 
10 (11.8%) 
6 (7.1%) 

 
<0.001 

Differentiation 
     Well-Mod 
     Poor 

 
544 (91.9%) 
48 (8.1%) 

 
67 (78.8%) 
18 (21.2%) 

 
<0.001 

T stage 
     1 
     2 
     3 
     4 

 
23 (3.9%) 
80 (13.5%) 
321 (54.2%) 
168 (28.4%) 

 
4 (4.7%) 
11 (12.9%) 
40 (47.1%) 
30 (35.3%) 

 
0.557* 

N stage 
     0 
     1 
     2 

 
375 (63.3%) 
150 (25.3%) 
67 (11.3%) 

 
64 (75.3%) 
16 (18.8%) 
5 (5.9%) 

 
 
0.083* 

TNM stage (simplified) 
     I 
     II 
     III 

 
90 (15.2%) 
278 (47.0%) 
224 (37.8%) 

 
14 (16.5%) 
50 (58.8%) 
21 (24.7%) 

 
 
0.056 

Serum CRP 
     Normal 
     High 

 
248 (53.1%) 
219 (46.9%) 

 
22 (33.3%) 
44 (66.7%) 

 
0.003 

Serum albumin 
     Normal 
     Low 

 
369 (74.4%) 
127 (25.6%) 

 
44 (65.7%) 
23 (34.3%) 

 
0.130 

Klintrup score 
     Good  
     Poor 

 
173 (29.2%) 
419 (70.8%) 

 
33 (38.8%) 
52 (61.2%) 

 
0.072 

MMR Status 
     Proficient 
     Deficient 

 
564 (95.3%) 
28 (4.7%) 

 
6 (7.1%) 
79 (92.9%) 

 
<0.001 
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3.4.4 The associations of serum CRP, serum albumin, tumour MSI 

status and survival  

During follow-up there were 150 (22.2%) recurrences and 260 (38.4%) deaths. Five year 

recurrence-free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.2. Based on a 15% difference in 5 year survival with an α=0.05 and 

β=0.2 the number of patient required was n=338. For a multivariable model containing at 

least 13 variables a minimum of 130 events are required.  

 

3.4.4.1 Univariable recurrence-free survival - serum CRP expression  

Serum CRP measurements were not significantly different in patients who went on to 

develop disease recurrence (p=0.112, Mann-Whitney U, supplementary figure 3.10, 

appendix 5.1). Median CRP for patients with recurrence was 16.00 mg/l (IQR 1.00 – 61.75 

mg/l) compared with 7.20 mg/l (IQR 0.90 – 24.20 mg/l) in the non-recurrence group.  

The 5 year recurrence free survival rate for patients with a raised serum CRP was 

43.0% compared to 64.8% in patients with a normal serum CRP (p<0.001, Pearson’s chi 

square). On logrank analysis, raised serum CRP was significantly associated with poor 

recurrence free survival (p=0.013, figure 3.18). The mean survival for patients with a 

raised serum CRP was 46.8 months (95% CI 44.1 – 49.6) compared with 51.1 months 

(95% CI 48.8 – 53.3) in the normal serum CRP group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 270 236 212 200 192 184 175 

High 263 194 161 137 126 122 113 

Figure 3.18: The relationship between serum CRP expression and recurrence-free survival 
in patients with colorectal cancer (p=0.013) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum CRP was significantly associated 

with poor recurrence free survival when dichotomised as a categorical variable (HR 1.58 

(95% CI 1.10 – 2.27), p=0.013). The significance of the hazard ratio reduced when it was 

included as a continuous variable (HR 1.00 (95% CI 1.00 – 1.01), p=0.022). Despite the 

significant associations observed between serum CRP and disease recurrence, its predictive 

value remains poor. When ROC analysis was performed using recurrence as the endpoint, 

the AUC was 0.55 (95% CI 0.49 – 0.61, p=0.151) for CRP as a continuous variable and 

AUC 0.54 (95% CI 0.48 – 0.60, p=0.221) for CRP as a categorical variable (supplementary 

figure 3.11, appendix 5.1). 

 



 170 

3.4.4.2 Univariable recurrence-free survival - serum albumin 

There was no statistically significant difference between the serum albumin measurements 

of patients who did and did not develop disease recurrence during follow-up (p=0.061, 

Mann-Whitney U, figure 3.19). Median serum albumin measurements were 39 g/l (IQR 30 

– 48 g/l) in the non-recurrence group compared to 38 g/l (IQR 29 – 47 g/l) in the 

recurrence group.  

 

Figure 3.19: The distribution of serum albumin measurements in patients with and without 
cancer recurrence (p=0.061) 

 

The 5 year recurrence free survival rate for patients with hypoalbuminaemia was 34.0% 

compared to 61.7% in patients with a normal serum albumin (p<0.001, Pearson’s chi 

square). On logrank analysis hypoalbuminaemia was associated with poor recurrence-free 

survival (p=0.010, figure 3.20). The mean survival for patients with hypoalbuminaemia 

was 45.8 months (95% CI 41.8 – 49.7) compared with 50.3 months (95% CI 48.4 – 52.1) 

in the normal serum albumin group.  



 171 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 413 361 319 288 274 265 255 

Low 150 98 79 72 66 61 51 

Figure 3.20: The relationship between serum albumin expression and recurrence-free 
survival (p<0.001) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
albumin expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis hypoalbuminaemia was significantly associated 

with poor recurrence-free survival when dichotomised as a categorical variable (HR 1.64 

(95% CI 1.12 – 2.40), p=0.011). The significance of the hazard ratio increased when it was 

included as a continuous variable (HR 0.95 (95% CI 0.93 – 0.97), p<0.001). Despite the 

significant associations observed between serum albumin and disease recurrence, its 

predictive value is relatively poor. When ROC analysis was performed using recurrence as 

the endpoint, the AUC was 0.45 (95% CI 0.39 – 0.50, p=0.062) for albumin as a 

continuous variable and AUC 0.52 (95% CI 0.47 – 0.58, p=0.438) for albumin as a 

categorical variable (figure 3.21).  
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Figure 3.21: Predictive value of serum albumin in identifying patients who will develop 
cancer recurrence 

Receiver-operator-characteristic curve demonstrating the predictive value of serum 
albumin in identifying patients who will develop cancer recurrence during follow-up.  
 

3.4.4.3 Univariable recurrence-free survival - tumour MSI status 

Of the patients with MSI tumours, 10 (11.8%) developed cancer recurrence compared with 

140 (23.6%) of the patients with Chromosomal Instability (CI) tumours (p=0.012, Fisher’s 

exact test). Despite this, the 5 year recurrence-free survival rate for patients with MSI 

tumours was 51.8% compared to 53.5% (p=0.758, Pearson’s chi square) compared to 

patients with CI tumours. On logrank analysis, MSI status was associated with improved 

recurrence free survival (p=0.032, figure 3.22). The mean survival for patients with MSI 

tumours was 53.5 months (95% CI 49.8 – 57.3) compared with 48.9 months (95% CI 47.2 

– 50.5) in the CI tumour group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

CI 592 479 415 382 357 341 317 

MSI 85 69 61 50 48 45 44 

Figure 3.22: The relationship between tumour MSI status and recurrence-free survival 
(p=0.032) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
tumour MSI status. Beneath, there is a survival table demonstrating the number of patients 
not censored at each follow-up point.   
 

On Cox univariable regression analysis, MSI tumours were significantly associated with 

improved recurrence free survival (HR 0.71 (95% CI 0.51 – 0.98), p=0.035), however, 

MSI status did not significantly predict the development of recurrence with an AUC of 

0.46 (95% CI 0.41 – 0.51, p=0.157) 

 

3.4.4.4 Univariable overall survival - serum CRP expression  

Serum CRP measurements were significantly higher in patients who died during the follow 

up period (p<0.001, Mann-Whitney U, figure 3.23). The median CRP for patients who 

died was 16.00 mg/l (IQR 1.00 – 61.75 mg/l) compared with 7.20 mg/l (IQR 0.90 – 24.20 

mg/l) in the alive group.  
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Figure 3.23: The distribution of serum CRP measurements in patients stratified by 
survival status (p<0.001) 

 

The 5 year overall survival rate for patients with a raised serum CRP was 45.2% compared 

to 70.7% in patients with a normal serum CRP (p<0.001, Pearson’s chi square). On 

logrank analysis, raised serum CRP was significantly associated with poor overall survival 

(p<0.001, figure 3.24). The mean survival for patients with a raised serum CRP was 39.6 

months (95% CI 36.7 – 42.6) compared with 51.9 months (95% CI 49.9 – 54.0) in the 

normal serum CRP group.  
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No. at risk 0 months 10 
months 

20 
months 

30 
months 

40 
months 

50 
months 

60 
months 

Normal 270 250 237 226 214 201 192 

High 263 205 180 151 138 131 119 

Figure 3.24: The relationship between serum CRP expression and overall survival in 
patients with colorectal cancer (p<0.001) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum CRP was significantly associated 

with poor overall survival when dichotomised as a categorical variable (HR 2.27 (95% CI 

1.70 – 3.02), p<0.001). The hazard ratio maintained statistical significance when it was 

included as a continuous variable (HR 1.01 95% CI 1.00 – 1.01, p<0.001). The results of 

the Kaplan-Meier plot, however, suggest that serum CRP violates the proportionality 

assumption of the Cox proportional hazards model. There appears to be a greater 

proportion of events in the high expression group near the origin of the curve. The 

subsequent gradient associated with these events does not hold throughout the follow up 

phase and suggests that the HR is not constant thus violating proportionality. When 

assessing the log(-log(survival)) plot (figure 3.25), categorical serum CRP demonstrates 

parallel curves, however, there is evidence of time dependency when an interaction term 

between serum CRP and log(time) was placed in a Cox proportional hazard model (HR 

0.98 (95% CI 0.96 – 0.99); p=0.002) with an associated adjustment of the HR for 

categorical CRP (HR 4.22 (95% CI 2.56 – 6.96); p<0.001) (table 3.7). 
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Figure 3.25: Log minus log plot of serum CRP and overall survival  

Log(-log(survival)) plot demonstrating near proportionality of survival between the two 
groups  
 

Despite the significant associations observed between serum CRP and poor survival, its 

predictive value is relatively poor. When ROC analysis was performed using death as the 

endpoint, the AUC was 0.63 (95% CI 0.58 – 0.68, p<0.001) for serum CRP as a 

categorical variable and an AUC of 0.61 (95% CI 0.56 – 0.66, p<0.001) for CRP as a 

continuous variable (figure 3.26).  

 

Figure 3.26: Predictive value of CRP in identifying patients who will die during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum CRP 
in identifying patients who will die during follow-up.  
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3.4.4.5 Univariable overall survival - serum albumin expression 

Serum albumin measurements were significantly lower in patients who died during the 

follow up period (p<0.001, Mann-Whitney U, figure 3.27). Median serum albumin 

measurements were 40 g/l (IQR 33 – 47 g/l) in the alive group compared to 37 g/l (IQR 27 

– 47 g/l) in patients who died during follow-up.  

 

Figure 3.27: The distribution of serum albumin measurements in patients stratified by 
survival status (p<0.001) 

 

The 5 year overall survival rate for patients with hypoalbuminaemia was 38.0% compared 

to 66.1% (p<0.001, Pearson’s chi square) in patients with a normal serum albumin. On 

logrank analysis hypoalbuminaemia was significantly associated with poorer overall 

survival (p<0.001, figure 3.28). The mean survival for patients with hypoalbuminaemia 

was 36.3 months (95% CI 32.2 – 45.5) compared with 49.9 months (95% CI 48.1 – 51.7) 

in the normal serum albumin group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 413 378 357 320 300 283 274 

Low 150 106 89 83 75 69 57 

Figure 3.28: The relationship between serum albumin expression and overall survival in 
patients with colorectal cancer (p<0.001) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
albumin expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis hypoalbuminaemia was significantly associated 

with poor overall survival when dichotomised as a categorical variable (HR 2.50 (95% CI 

1.90 – 3.30), p<0.001). Furthermore, it was also significantly associated with poor overall 

survival when included as a continuous variable (HR 0.94 (95% CI 0.92 – 0.95), p<0.001). 

The results of the Kaplan-Meier plot suggest that serum albumin violates the 

proportionality assumption of the Cox model. There appears to be a greater proportion of 

events in the hypoalbuminaemic group near the origin of the curve. The subsequent 

gradient associated with these events does not hold throughout the follow up period 

suggesting that the hazard ratio is not constant thus violating proportionality. When 

assessing the log(-log(survival)) plot (figure 3.29), categorical serum albumin 

demonstrates parallel curves, however, there is evidence of time dependency when an 

interaction term between serum albumin and log(time) was placed in a Cox proportional 

hazard model (HR 0.98 (95% CI 0.97 – 1.00); p=0.032) with an associated adjustment of 

the HR for categorical serum albumin (HR 3.62 (95% CI 2.35 – 5.58); p<0.001) (table 

3.7). 
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Figure 3.29: Log minus log plot of serum albumin and overall survival  

Log(-log(survival)) plot demonstrating near proportionality of survival between the two 
groups.  
 

In terms of survival prediction, when ROC analysis was performed using death as the 

endpoint, the AUC was 0.35 (95% CI 0.31 – 0.40, p<0.001) for albumin as a continuous 

variable and an AUC of 0.61 (95% CI 0.56 – 0.66, p<0.001) for albumin as a categorical 

variable (figure 3.). 30 

  

Figure 3.30: Predictive value of serum albumin in identifying patients who will die during 
follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum 
albumin in identifying patients who will die during follow-up.  
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3.4.4.6 Univariable overall survival - tumour MSI status 

Of the patients with MSI tumours, 33 (38.8%) died during the follow up period compared 

with 227 (38.3%) of the patients with CI tumours (p=0.932, Fisher’s exact test). The 5 year 

survival rate for patients with MSI tumours was 55.3% compared to 57.8% (p=0.666, 

Pearson’s chi square) of patients with CI tumours. On logrank analysis, MSI status was not 

associated with overall survival (p=0.760, figure 3.31). The mean survival for patients with 

MSI tumours was 43.7 months (95% CI 38.8 – 48.7) compared with 46.2 months (95% CI 

44.4 – 47.9) in the CI group.  

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

CI 592 508 471 427 395 370 343 

MSI 85 69 64 55 52 49 47 

Figure 3.31: The relationship between tumour MSI status and overall survival  

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
tumour MSI status. Beneath, there is a survival table demonstrating the number of patients 
not censored at each follow-up point.   
 

On Cox univariable regression analysis MSI status was not significantly associated with 

improved overall survival (HR 1.03 (95% CI 0.86 – 1.24), p=0.760).  Furthermore, MSI 

status did not significantly predict death during follow-up with an AUC of 0.50 (95% CI 

0.46 – 0.55, p=0.961). 
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3.4.4.7 Multivariable recurrence free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7.  

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-value was >0.05. On univariable analysis, 

emergency presentation (p<0.001), advancing T-stage (p<0.001), advancing N-stage 

(p<0.001), higher TNM stage (p<0.001), poor differentiation (p=0.007), raised serum CRP 

(p=0.013), hypoalbuminaemia (p=0.011), poor Klintrup score (p<0.001) and tumour MSI 

(p=0.035) had a p-value <0.1 and were therefore included in the multivariable Cox 

proportional hazards regression model. 

 On multivariable analysis, only advancing T-stage (when all subcategories were 

compared with T1 (T2 HR 0.59 (95% CI 0.11 – 3.04), (T3 HR 0.97 (95% CI 0.23 – 4.09) 

and (T4 HR 2.69 (95% CI 0.64 – 11.34)), p<0.001), N-stage (when all subcategories were 

compared with N0 (N1 HR 2.40 (95% CI 1.58 – 4.09), (N2 HR 3.45 (95% CI 2.08 – 5.73), 

p<0.001) and Klintrup score (HR 0.34 (95% CI (0.32 – 0.84);p=0.008) were independently 

and significantly associated with poor overall survival (table 3.7).  
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Table 3.7: The relationship between clinicopathological factors and recurrence-free 
survival in patients with colorectal cancer: univariable and multivariable analysis 

 

 

 

 

 

 
Univariable 
analysis   

Multivariabl
e analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.120 0.101 0.99 (0.98 - 1.00)    
Sex  
     Female 
     Male 

 
 
0.121 0.461 

1 
1.13 (0.82 – 1.56)    

Presentation 
     Elective 
     Emergency 

 
 
0.689 <0.001 

1 
1.99 (1.477 – 2.0)  0.224  

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
-0.249 
0.085 

 
0.278 
 
 

1 
0.78 (0.53 – 1.14) 
1.09 (0.73 – 1.62)    

T stage  
     1  
     2  
     3  
     4 

 
0.000 
-0.008 
1.010 
1.944 

<0.001 
 
 
 

1 
0.99 (0.21 – 4.77) 
2.75 (0.67 – 11.20) 
6.99 (1.71 – 28.49) 

0.000 
-0.532 
-0.028 
0.990 

 
<0.001 
 
 
 

1 
0.59 (0.11 – 3.04) 
0.97 (0.23 – 4.09) 
2.69 (0.64 – 11.34) 

N stage 
     0 
     1 
     2 

 
0.000 
1.133 
1.702 

<0.001 
 
 

1 
3.12 (2.16 – 4.47) 
5.49 (3.59 – 8.39) 

0.000 
0.874 
1.239 

 
<0.001 
 
 

1 
2.40 (1.58 – 3.63) 
3.45 (2.08 – 5.73) 

TNM stage 
     I 
     II 
     III 

 
0.000 
0.953 
2.051 

<0.001 
 
 

1 
2.60 (1.18 – 5.70) 
7.78 (3.60 – 16.80)  0.801  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.629 

 
 
0.007 

 
1 
1.88 (1.18 – 2.98)  0.853  

Serum CRP  
     Normal  
     High 

 
 
0.458 0.013 

1 
1.58 (1.10 – 2.27)  0.964  

Serum albumin  
     Normal  
     Low 

 
 
0.495 0.011 

1 
1.64 (1.12 – 2.40)  0.064  

Klintrup score 
     High 
     Low 

 
 
-1.091 <0.001 

1 
0.34 (0.22 – 0.52) -0.664 0.008 

1 
0.52 (0.32 – 0.84) 

MSI status  
     CI  
     MSI 

 
 
-0.689 0.035 

1 
0.50 (0.26 – 0.95)  0.377 
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3.4.4.8 Multivariable overall survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7. Presentation, serum CRP and 

Serum albumin demonstrated time dependency when interaction terms between the 

covariates and log(time) were placed in the model. 

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-value was >0.05. On univariable analysis, 

advancing age (p<0.001), emergency presentation (p<0.001), advancing T-stage (p<0.001), 

advancing N-stage (p=0.001), higher TNM stage (p<0.001), poor differentiation (p=0.001), 

raised serum CRP (p<0.001), hypoalbuminaemia (p<0.001) and good Klintrup score 

(p<0.001) had a p-value <0.1 and were therefore included in the multivariable Cox 

proportional hazards regression model. 

 On multivariable analysis, emergency presentation (HR 2.36 (95% CI 1.49 – 3.72), 

p<0.001), hypoalbuminaemia (HR 1.65 (95% CI 1.20 – 2.26), p=0.002), Klintrup score 

(HR 0.59 (95% CI 0.41 – 0.85), p=0.004), advancing T-stage (when all subcategories were 

compared with T1 (T2 HR 1.09 (95% CI 0.31 – 3.80), (T3 HR 1.25 (95% CI 0.39 – 4.01) 

and (T4 HR 2.00 (95% CI 0.61 – 6.52)), p=0.015) and N-stage (when all subcategories 

were compared with N0 (N1 HR 1.31 (95% CI 0.95 – 1.83), (N2 HR 1.86 (95% CI 1.23 – 

2.79), p=0.010) were independently and significantly associated with poor overall survival 

(table 3.8).  

 

Influence of time dependency on outcome 

Only emergency presentation (p=0.014) retained significant time dependency when placed 

in the multivariable analysis with serum CRP (p=0.567) and serum albumin (p=0.190) 

becoming non-significant. 
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Table 3.8: The relationship between clinicopathological factors and overall survival in 
patients with colorectal cancer: univariable and multivariable analysis    

 

 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age 0.035 <0.001 1.04 (1.02 - 1.05) 0.039 <0.001 1.04 (1.03 – 1.06) 
Sex  
     Female 
     Male 

 
 
-0.036 0.774 

1 
0.97 (0.76 – 1.23)    

Presentation 
     Elective 
     Emergency 
 
Presentation x log(time) 

 
 
1.336 
 
-0.022 

<0.001 
 
0.001 

1 
3.80 (2.58 – 5.62) 
 
0.98 (0.97 – 0.99) 

0.858 
 
-0.187 

<0.001 
 
0.014 

1 
2.36 (1.49 – 3.72) 
 
0.83 (0.72 – 0.96) 

Tumour site 
     Right  
     Left 
     Rectum 

 
(0.000) 
-0.161 
-0.109 

 
0.509 
 
 

1 
0.85 (0.64 – 1.13) 
0.90 (0.65 – 1.23)    

T stage  
     1  
     2  
     3  
     4 

 
(0.000) 
-0.111 
0.355 
0.292 

 
<0.001 
 
 
 

 
1 
0.90 (0.38 – 2.09) 
1.43 (0.67 – 3.05) 
2.64 (1.23 – 5.67) 

(0.000) 
0.089 
0.222 
0.691 

 
0.015 
 
 
 

 
1 
1.09 (0.31 – 3.80) 
1.25 (0.39 – 4.01) 
2.00 (0.61 – 6.52) 

N stage 
     0 
     1 
     2 

 
(0.000) 
0.492 
0.954 

 
<0.001 
 
 

 
1 
1.64 (1.24 – 2.16) 
2.60 (1.84 – 3.66) 

(0.000) 
0.273 
0.618 

 
0.010 
 
 

1 
1.31 (0.95 – 1.83) 
1.86 (1.23 – 2.79) 

TNM stage 
     I 
     II 
     III 

 
(0.000) 
0.437 
0.362 

<0.001 
 
 

1 
1.55 (1.00 – 2.39) 
2.63 (1.71 – 4.05)  

0.901 
 
  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.598 

 
 
0.001 

 
1 
1.82 (1.28 – 2.59)  

0.209 
  

Serum CRP  
     Normal  
     High 
 
CRP x log(time) 

 
 
1.440 
 
-0.025 

<0.001 
 
0.002 

1 
4.22 (2.56 – 6.95) 
 
0.98 (0.96 – 0.99) 

0.305 
 
 

0.076 
 
0.567 

1 
1.36 (0.97 – 1.90) 
 
 

Serum albumin  
     Normal  
     Low 
 
albumin x log(time) 

 
 
1.286 
 
-0.016 

 
<0.001 
 
0.032 

 
1 
3.62 (2.35 – 5.58) 
 
0.98 (0.97 – 1.00) 

 
0.498 
 
 

 
0.002 
 
0.190 

 
1 
1.65 (1.20– 2.26) 
 
 

Klintrup score 
     High 
     Low 

 
 
-0.749 <0.001 

1 
0.47 (0.35 – 0.64) -0.531 0.004 

1 
0.59 (0.41 – 0.85) 

MSI status  
     CI 
     MSI 

 
 
0.057 0.760 

 
1 
1.06 (0.74 – 1.53)    
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3.4.5 The associations of serum CRP and albumin, MSI status, 

clinicopathological factors and survival stratified by TNM stage 

Lymph node metastasis is a key determinant that influences the decision to offer adjuvant 

chemotherapy therapy to patients who have undergone potentially curative surgery. Such 

patients are largely AJCC TNM stage I, II or III. A particular clinical challenge is 

establishing a robust treatment plan for patients with stage II disease, as their outcome is 

heterogeneous. Adjuvant chemotherapy may cause adverse events and therefore offering 

this treatment to all patients with stage II disease is not considered appropriate.  

A statistical model of survival prediction better than the currently used TNM 

staging system, or which offers a useful adjunct to the TNM subgroups is particularly 

needed. Therefore, the associations and survival outcomes of the biomarkers discussed 

within this chapter were analysed according to TNM stage. The relatively few patients 

with stage I colorectal cancer within this cohort have very few events, increasing the risk 

of type I and type II errors. Therefore, survival and association measures were only 

analysed for patients with TNM stage II and III cancers. Of the 677 patients studied in 

cohort 2 (validation cohort) 327 (48.3%) were TNM stage II and 238 (35.2%) were TNM 

stage III.  

 

3.4.5.1 Serum CRP expression stratified by TNM stage II and III 

There was no significant difference in serum CRP between patients with TNM stage II and 

III colorectal cancer (p=0.610, Mann-Whitney U, supplementary figure 3.12, appendix 

5.1). The serum CRP measurements in patients with stage II colorectal cancer ranged from 

0.90 – 269.00 mg/l with median of 12.00 mg/l (IQR 0.90 – 30.25 mg/l) compared with a 

range of 1.00 – 460.00 mg/l and median of 11.00 mg/l (IQR 1.00 – 42.50 mg/l) in patients 

with stage III colorectal cancer. This was also observed by chi-squared analysis when 

serum CRP was analysed as a categorical variable (p=0.558, table 3.9).  
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Table 3.9: The relationship between TNM stage and clinicopathological factors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bonferroni adjustment = <0.005 
* Fishers exact test 
 

3.4.5.2 Serum albumin expression stratified by TNM stage II and III colorectal cancer 

Serum albumin measurements were not significantly lower in the stage III group compared 

with the stage II group (p=0.393, Mann-Whitney U, supplementary figure 3.13, appendix 

5.1). Measurements of serum albumin ranged from 18 – 51 g/l with a median of 39 g/l 

(IQR 30 – 48 g/l) in TNM stage II compared with a range of 12 – 51 g/l and a median of 

38 g/l (IQR 29 – 47 g/l) in patients with TNM stage III. This was also observed by chi-

squared analysis when serum albumin was analysed as a categorical variable (p=0.552, 

table 3.8).  

Clinicopathological 
factors 

TNM stage II TNM stage III  p-value 

Age 72 (IQR 57 – 87) 73 (IQR 56 – 90) 0.388 
Sex 
     Female 
     Male 

 
158 (48.3%) 
169 (51.7%) 

 
124 (50.6%) 
121 (49.4%) 

 
0.587 

Presentation 
     Elective 
     Emergency 

 
221 (67.6%) 
106 (32.4%) 

 
158 (64.5%) 
87 (35.5%) 

 
0.439 

Tumour Site 
     Right 
     Left 
     Rectum 

 
147 (45.0%) 
117 (35.8%) 
63 (19.3%) 

 
121 (49.4%) 
82 (33.5%) 
42 (17.1%) 

 
0.564 

Differentiation 
     Well-Mod 
     Poor 

 
299 (91.4%) 
28 (8.6%) 

 
208 (84.9%) 
37 (15.1%) 

 
0.015 

T stage 
     1 
     2 
     3 
     4 

 
0 (0.0%) 
0 (0.0%) 
225 (68.8%) 
102 (31.2%) 

 
1 (0.4%) 
12 (4.9%) 
136 (55.5%) 
96 (39.2%) 

 
<0.001 

Serum CRP 
     Normal 
     High 

 
122 (46.7%) 
139 (53.3%) 

 
96 (49.7%) 
97 (50.3%) 

 
0.527 

Serum albumin 
     Normal 
     Low 

 
194 (71.3%) 
78 (28.7%) 

 
148 (72.2%) 
57 (27.8%) 

 
0.834 

Klintrup score 
     High  
     Low 

 
233 (71.3%) 
94 (28.7%) 

 
194 (79.2%) 
51 (20.8%) 

 
0.031 

MSI Status 
     CI 
     MSI 

 
277 (84.7%) 
50 (15.3%) 

 
224 (91.4%) 
21 (8.6%) 

 
0.016 
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3.4.5.3 MSI and clinicopathological factor proportionality stratified by TNM stage II 

and III 

Following Bonferroni adjustment of α to 0.005 none of the clinicopathological variables 

studied demonstrated a significant relationship to TNM stage (table 3.9).  

 

3.4.5.4 The association of MSI status and clinicopathological factors stratified in TNM 

stage II colorectal cancer 

Patients with MSI tumours did not have significantly higher levels of serum CRP (median 

of 20.00 mg/l (IQR 1.00 – 70.00 mg/l)) when compared with CI tumours (median of 11.00 

mg/l (IQR 0.90 – 35.75 mg/l)) (p=0.099, Mann-Whitney U, figure 3.32). This trend (but 

not significant association) was also observed by chi-squared analysis when the variables 

were analysed as categorical data (p=0.036, Bonferroni adjustment p≤0.005). On chi-

squared analysis of categorical variables, right-sided tumour location (p<0.001) and poor 

differentiation (p<0.001) were significantly associated with MSI tumours following 

Bonferroni adjustment (table 3.10). When serum albumin was analysed as a continuous 

variable, there was no statistically significant difference between serum measurements and 

MSI status (p=0.295, Mann-Whitney U, figure 3.32).   
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Figure 3.32: The distribution of serum CRP and albumin stratified by MSI status in 
patients with TNM stage II colorectal cancer (p=0.099) 
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Table 3.10: The relationship between tumour MSI status and categorical 
clinicopathological factors in patients with stage II colorectal cancer 

 
Clinicopathological 
factors 

Chromosomal 
Instability (CI) 

Microsatellite 
Instability (MSI) 

 
p-value 

Age 73 (IQR 58 – 88) 71 (IQR 55 – 87) 0.612 

Sex 
     Female 
     Male 

 
125 (45.1%) 
152 (54.9%) 

 
33 (66.0%) 
17 (34.0%) 

 
0.007 

Presentation 
     Elective 
     Emergency 

 
183 (66.1%) 
94 (33.9%) 

 
38 (76.0%) 
12 (24.0%) 

 
0.167 

Tumour Site 
     Right 
     Left 
     Rectum 

 
103 (37.2%) 
114 (41.2%) 
60 (21.7%) 

 
44 (88.0%) 
3 (6.0%) 
3 (6.0%) 

 
<0.001 

Differentiation 
     Well-Mod 
     Poor 

 
261 (94.2%) 
16 (5.8%) 

 
38 (76.0%) 
12 (24.0%) 

 
<0.001 

T stage 
     1 
     2 
     3 
     4 

 
N/A 
N/A 
195 (70.4%) 
82 (29.6%) 

 
N/A 
N/A 
30 (60.0%) 
20 (40.0%) 

 
0.144 

Serum CRP 
     Normal 
     High 

 
109 (49.5%) 
111 (50.5%) 

 
13 (31.7%) 
28 (68.3%) 

 
0.036 

Serum albumin 
     Normal 
     Low 

 
166 (71.9%) 
65 (28.1%) 

 
28 (68.3%) 
13 (31.7%) 

 
0.641 

Klintrup score 
     High 
     Low 

 
199 (71.8%) 
78 (28.2%) 

 
34 (68.0%) 
52 (32.0%) 

 
0.581 

Bonferoni adjustment = ≤0.006 
* Fishers exact test 
 

3.4.5.5 The association of MSI status and clinicopathological factors in patients with 

TNM stage III colorectal cancer 

Patients with MSI tumours had significantly higher levels of serum CRP (median 35.00 

mg/l (IQR 6.00 – 79.50 mg/l)) when compared with CI tumours (median 9.50 mg/l (IQR 

1.00 – 36.75 mg/l)) (p=0.002, Mann-Whitney U, figure 3.33). This association was also 

supported by chi-squared analysis when the variables were analysed as categorical data 

(p=0.006, Bonferroni adjustment p≤0.006, table 3.11). Furthermore, serum albumin 

measurements were lower in patients with MSI tumours (median 34 g/l (IQR 22 – 46 g/l)) 

when compared with CI tumours (median 39 g/l (IQR 31 – 47 g/l)) (p=0.036, Mann-

Whitney U, figure 3.33). This association was also supported by chi-squared analysis when 
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the variables were analysed as categorical data (p=0.003, Bonferroni adjustment p≤0.006, 

table 3.10). On chi-squared analysis of categorical variables, none of the frequencies of the 

clinicopathological factors studied were significantly different between patients with MSI 

or CI colorectal cancer (table 3.10).  

 

 

Figure 3.33: The distribution of serum CRP and albumin stratified by MSI status in 
patients with TNM stage III colorectal cancer 



 191 

Table 3.11: The relationships between tumour MSI status and categorical 
clinicopathological factors in patients with stage III colorectal cancer 

 
Clinicopathological 
factors 

Chromosomal 
Instability (CI) 

Microsatellite 
Instability (MSI) 

 
p-value 

Age 73 (IQR 55 – 91) 75 (IQR 62 – 88) 0.358 

Sex 
     Female 
     Male 

 
111 (49.6%) 
113 (50.4%) 

 
13 (61.9%) 
8 (38.1%) 

 
0.279 

Presentation 
     Elective 
     Emergency 

 
146 (65.2%) 
78 (34.8%) 

 
12 (57.1%) 
9 (42.9%) 

 
0.462 

Tumour Site 
     Right 
     Left 
     Rectum 

 
106 (47.3%) 
78 (34.8%) 
40 (17.9%) 

 
15 (71.4%) 
4 (19.0%) 
2 (9.5%) 

 
0.107 

Differentiation 
     Well-Mod 
     Poor 

 
193 (86.2%) 
31 (13.8%) 

 
15 (71.4%) 
6 (28.6%) 

 
0.071 

T stage 
     1 
     2 
     3 
     4 

 
1 (0.4%) 
11 (4.9%) 
126 (56.2%) 
86 (38.4%) 

 
0 (0%) 
1 (4.8%) 
10 (47.6%) 
10 (47.6%) 

 
0.857 

Serum CRP 
     Normal 
     High 

 
93 (52.8%) 
83 (47.2%) 

 
3 (17.6%) 
14 (82.4%) 

 
0.006 

Serum albumin 
     Normal 
     Low 

 
141 (75.0%) 
47 (25.0%) 

 
7 (41.2%) 
10 (58.8%) 

 
0.003 

Klintrup score 
     High 
     Low 

 
182 (81.2%) 
42 (18.8%) 

 
12 (57.1%) 
9 (42.9%) 

 
0.009 

Bonferoni adjustment = ≤0.006 
* Fishers exact test 
 

3.4.5.6 The association of serum CRP, albumin, MSI status and survival stratified by 

TNM stage II 

During follow-up there were 54 (16.5%) recurrences and 114 (34.9%) deaths. Five year 

recurrence-free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.3. Based on a 15% difference in 5 year survival with an α=0.05 and 

β=0.2 the number of patient required was n=338. For a multivariable model containing at 

least 6 variables a minimum of 60 events are required. Based on a sample size of n=327 at 

least 75% power is available. 
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Univariable recurrence-free survival - serum CRP expression  

Serum CRP measurements were not significantly different in patients who developed 

disease recurrence (p=0.230, Mann-Whitney U, supplementary figure 3.14, appendix 5.1). 

The median for patients with recurrence was 15.00 mg/l (IQR 2.00 – 66.50 mg/l) compared 

with 11.00 mg/l (IQR 0.90 – 36.75 mg/l) in the non-recurrence group.  

The 5 year recurrence-free survival rate for patients with a raised serum CRP was 

49.6% compared to 67.2% in patients with a normal serum CRP (p=0.004, Pearson’s chi 

square). On logrank analysis raised serum CRP was not significantly associated with poor 

recurrence-free survival (p=0.065, figure 3.34). The mean survival for patients with a 

raised serum CRP was 50.9 months (95% CI 47.8 – 64.1) compared with 54.0 months 

(95% CI 51.3 – 56.7) in the normal serum CRP group.  

 
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 122 114 104 99 94 88 82 

High 139 114 100 87 80 76 69 

Figure 3.34: The relationship between serum CRP expression and recurrence-free survival 
in patients with stage II colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

Similar to logrank analysis Cox univariable regression analysis demonstrated that a raised 

serum CRP was not significantly associated with poor recurrence-free survival (HR 1.75 

(95% CI 0.96 – 3.20), p=0.068) when dichotomised as a categorical variable. The hazard 
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ratio became statistically significant when it was included as a continuous variable (HR 

1.01 (95% CI 1.00 – 1.01), p=0.031). Despite the significant associations observed 

between serum CRP and disease recurrence, its predictive value remains poor. When ROC 

analysis was performed using recurrence as the endpoint, the AUC was 0.56 (95% CI 0.46 

– 0.65, p=0.233) for CRP as a continuous variable and the AUC was 0.55 (95% CI 0.46 – 

0.65, p=0.253) for CRP as a categorical variable (supplementary figure 3.15, appendix 

5.1).  

 

Univariable recurrence-free survival - serum albumin 

There was no statistical significance between the serum albumin measurements of patients 

who did and did not develop cancer recurrence during follow-up (p=0.236, Mann-Whitney 

U, supplementary figure 3.16, appendix 5.1). Median serum albumin was 39 g/l (IQR 30 – 

48 g/l) in the non-recurrence group compared to 38 g/l (IQR 31 – 46 g/l) in the recurrence 

group.  

The 5 year recurrence-free survival rate for patients with hypoalbuminaemia was 

49.6% compared to 67.2% in patients with a normal serum albumin (p=0.004, Pearson’s 

chi square). On logrank analysis hypoalbuminaemia was not associated with recurrence-

free survival (p=0.349). The mean survival for patients with hypoalbuminaemia was 52.1 

months (95% CI 48.1 – 56.1) compared with 52.6 months (95% CI 50.2 – 54.9) in the 

normal serum albumin group (supplementary figure 3.17, appendix 5.1).  

On Cox univariable regression analysis hypoalbuminaemia was not significantly 

associated with recurrence-free survival when dichotomised as a categorical variable (HR 

1.35 (95% CI 0.72 – 2.52), p=0.350). The hazard ratio was statistically significant when 

analysed as a continuous variable (HR 0.96 (95% CI 0.92 – 1.00), p=0.038). There was no 

statistically significant predictive association between serum albumin and disease 

recurrence when analysed using ROC analysis. With disease recurrence as the endpoint, 

the AUC was 0.51 (95% CI 0.42 – 0.60, p=0.885) for albumin as a categorical variable and 

an AUC of 0.45 (95% CI 0.36 – 0.53, p=0.237) for albumin as a continuous variable 

(supplementary figure 3.18, appendix 5.1).  

 

Univariable recurrence-free survival - Tumour MSI status 

Of the patients with MSI tumours, 4 (8.0%) developed cancer recurrence compared with 

50 (18.1%) of the patients with CI tumours (p=0.053, Fisher’s exact test). The 5 year 

recurrence-free survival rate for patients with MSI tumours was 60.0% compared to 58.1% 

in patients with CI tumours (p=0.805, Pearson’s chi square). On logrank analysis, MSI 
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status was not significantly associated with improved recurrence-free survival (p=0.082, 

figure 3.35). The mean survival for patients with MSI tumours was 56.0 months (95% CI 

52.2 – 59.8) compared with 52.1 months (95% CI 50.1 – 54.2) in the CI group.  

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

CI 277 243 212 200 185 175 161 

MSI 50 44 44 36 34 31 30 

Figure 3.35: The relationship between MSI status and recurrence-free survival in patients 
with stage II colorectal cancer (p=0.082) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by MMR 
protein status. Beneath, there is a survival table demonstrating the number of patients not 
censored at each follow-up point.   
 
On Cox univariable regression analysis, MSI tumours were not significantly associated 

with improved recurrence free survival (HR 0.42 (95% CI 0.15 – 1.15), p=0.092); 

furthermore, MSI status did not significantly predict the development of recurrence with an 

AUC of 0.45 (95% CI 0.37 – 0.53, p=0.273) (supplementary figure 3.18, appendix 5.1). 

 

Univariable overall survival - serum CRP expression  

Serum CRP measurements were significantly higher in patients who died during follow-up 

(p=0.015, Mann-Whitney U, figure 3.36). The median for patients who died was 16.00 

mg/l (IQR 1.00 – 69.75 mg/l) compared with 9.00 mg/l (IQR 0.90 – 30.00 mg/l) in the 

alive group.  
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Figure 3.36: The distribution of serum CRP measurements in patients stratified by 
survival status (p=0.015) 

 

The 5 year overall survival rate for patients with a raised serum CRP was 51.1% compared 

to 72.1% in patients with a normal serum CRP (p=0.001, Pearson’s chi square). On 

logrank analysis raised serum CRP was significantly associated with poor overall survival 

(p<0.001, figure 3.37). The mean survival for patients with a raised serum CRP was 39.6 

months (95% CI 36.7 – 42.6) compared with 51.9 months (95% CI 49.9 – 54.0) in the 

normal serum CRP group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 122 116 114 106 101 93 88 

High 139 116 108 91 85 80 71 

Figure 3.37: The relationship between serum CRP expression and overall survival in 
patients with stage II colorectal cancer (p<0.001) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum CRP was significantly associated 

with poor overall survival when dichotomised as a categorical variable (HR 2.11 (95% CI 

1.38 – 3.23), p=0.001). The hazard ratio was less significant when it was included as a 

continuous variable (HR 1.00 95% CI 1.00 – 1.01, p=0.020). The results of the Kaplan-

Meier plot, however, suggest that serum CRP violates the proportionality assumption of 

the Cox proportional hazards model. There appears to be a greater proportion of events in 

the high group near the origin of the curve. The subsequent gradient associated with these 

events does not hold throughout the follow up period suggesting that the HR is not 

constant and thus violating proportionality. When assessing the log(-log(survival)) plot 

(figure 3.38), categorical serum CRP demonstrates parallel curves, however, however, 

there is evidence of time dependency when an interaction term between serum CRP and 

log(time) was placed in a Cox proportional hazard model (HR 0.73 (95% CI 0.54 – 1.00); 

p=0.051) with an associated adjustment of the HR for categorical serum CRP (HR 5.04 

(95% CI 1.78 – 14.24); p=0.002). 



 197 

 

Figure 3.38: Log minus log plot of serum CRP and overall survival in patients with stage 
II colorectal cancer 

Log(-log(survival)) plot demonstrating near proportionality of survival between the two 
groups  
 

Despite the significant associations observed between serum CRP and poor survival, its 

predictive value is relatively poor. When ROC analysis was performed using death as the 

endpoint, the AUC was 0.60 (95% CI 0.53 – 0.67, p=0.008) for serum CRP as a 

categorical variable and an AUC of 0.59 (95% CI 0.52 – 0.66, p=0.015) for CRP as a 

continuous variable (figure 3.39).  

 

Figure 3.39: The predictive value of CRP in identifying patients with stage II colorectal 
cancer who will die during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum CRP 
in identifying patients who will die during follow-up.  
 



 198 

Univariable overall survival - serum albumin 

Serum albumin measurements were significantly lower in patients who died during the 

follow up phase (p<0.001, Mann-Whitney U, figure 3.40). Median serum albumin was 40 

g/l (IQR 32 – 48 g/l) in the alive group compared to 37 g/l (IQR 28 – 46 g/l) in patients 

who did not survive 5 years.  

 

Figure 3.40: The distribution of serum albumin measurements in patients stratified by 
survival status (p<0.001) 

 

The 5 year overall survival rate for patients with hypoalbuminaemia was 42.3% compared 

to 69.1% in patients with a normal serum albumin (p<0.001, Pearson’s chi square). On 

logrank analysis hypoalbuminaemia was significantly associated with poor overall survival 

(p<0.001, figure 3.41). The mean survival for patients with hypoalbuminaemia was 40.7 

months (95% CI 35.1 – 46.2) compared with 51.4 months (95% CI 49.1 – 53.7) in the 

normal serum albumin group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 194 184 178 155 148 139 134 

Low 78 59 55 51 48 43 33 

Figure 3.41: The relationship between serum albumin expression and overall survival in 
patients with stage II colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
albumin expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis hypoalbuminaemia was significantly associated 

with poorer overall survival when dichotomised as a categorical variable (HR 2.37 (95% 

CI 1.58 – 3.55), p<0.001). Hypoalbuminaemia was also significantly associated with 

survival when included as a continuous variable (HR 0.94 (95% CI 0.91 – 0.96), p<0.001). 

The results of the Kaplan-Meier plot, however, suggest that serum albumin violates the 

proportionality assumption of the Cox model. There appears to be a greater proportion of 

events in the low group near the origin of the curve. The subsequent gradient associated 

with these events does not hold throughout the follow-up period suggesting that the hazard 

ratio is not constant over time thus violating the proportionality assumption. When 

assessing the log(-log(survival)) plot (figure 3.42), categorical serum albumin 

demonstrates parallel curves, however, there is evidence of time dependency when an 

interaction term between serum Albumin and log(time) was placed in a Cox proportional 

hazard model (HR 0.76 (95% CI 0.60 – 0.96); p=0.023) with an associated adjustment of 

the HR for categorical serum albumin (HR 4.73 (95% CI 2.25 – 9.96); p=<0.001). 
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Figure 3.42: Log minus log plot of serum albumin and overall survival in patients with 
stage II colorectal cancer 

Log(-log(survival)) plot demonstrating near proportionality of survival between the two 
groups.  
 

In terms of survival prediction, when ROC analysis was performed using death as the 

endpoint, the AUC was 0.35 (95% CI 0.28 – 0.42, p<0.001) for albumin as a continuous 

variable and an AUC of 0.61 (95% CI 0.54 – 0.68, p=0.003) for albumin as a categorical 

variable (figure 3.43).  

  

Figure 3.43: Predictive value of serum albumin in identifying patients with stage II 
colorectal cancer who will die during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum 
albumin in identifying patients who will die during follow-up.  
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Univariable overall survival - Tumour MSI status 

Of the patients with MSI tumours, 106 (32.%) died during follow-up compared with 98 

(35.4%) of the patients with CI tumours (p=0.748, Fisher’s exact test). The 5 year survival 

rate for patients with MSI tumours was 60.0% compared to 61.0% compared to patients 

with CI tumours (p=0.877, Pearson’s chi square). On logrank analysis, MSI status was not 

associated with overall survival (p=0.688). The mean survival for patients with MSI 

tumours was 49.2 months (95% CI 43.9 – 54.6) compared with 48.2 months (95% CI 45.8 

– 50.5) in the CI group (supplementary figure 3.19, appendix 5.1).  

On Cox univariable regression analysis MSI status was not significantly associated 

with improved overall survival (HR 0.90 (95% CI 0.53 – 1.52), p=0.688).  Furthermore, 

MSI status did not significantly predict death during the follow up period with an AUC of 

0.49 (95% CI 0.43 – 0.56, p=0.774). 

 

Multivariable recurrence-free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7.  

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-values were >0.05. On univariable analysis, 

advancing age (p=0.096), emergency presentation (p=0.015), advancing T-stage (p<0.001), 

raised serum CRP (p=0.068), and tumour MSI status (p=0.090) had a p-value <0.1 and 

were therefore included in the multivariable Cox proportional hazards regression model. 

 On multivariable analysis, advancing T-stage (HR 2.99 (95% CI 1.65 – 5.40), 

p<0.001) and emergency presentation (HR 1.89 (95% CI 1.65 – 3.43), p=0.035) were 

independently and significantly associated with poor recurrence-free survival (table 3.12).  

 

 

 

 

 



 202 

Table 3.12: The relationships between clinicopathological factors and recurrence-free 
survival in patients with stage II colorectal cancer – univariable and multivariable analysis 

 

Multivariable overall survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7. Presentation, serum CRP and 

Serum albumin demonstrated time dependency when interaction terms between the 

covariates and log(time) were placed in the model. 

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-value was >0.05. On univariable analysis, 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.020 0.096 0.98 (0.96 - 1.00)  0.325  
Sex  
     Female 
     Male 

 
 
0.243 0.376 

1 
1.28 (0.74 – 2.19)    

Presentation 
     Elective 
     Emergency 

 
 
0.671 0.015 

1 
1.96 (1.14 – 3.36) 0.638 0.035 

1 
1.89 (1.05 – 3.43) 

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
0.250 
0.373 

 
0.533 
 
 

1 
1.28 (0.70 – 2.37) 
1.45 (0.73 – 2.90)    

T stage  
     1  
     2  
     3  
     4 

 
N/A 
N/A 
(0.000) 
0.973 <0.001 

N/A 
N/A 
1 
2.65 (1.55 – 4.51) 

 
N/A 
N/A 
(0.000) 
1.094 

 
<0.001 

N/A 
N/A 
1 
2.99 (1.65 – 5.40) 

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.037 

 
 
0.938 

 
1 
1.04 (0.41 – 2.60)    

Serum CRP  
     Normal  
     High 

 
 
0.561 0.068 

1 
1.75 (0.96 – 3.20)  0.422  

Serum albumin  
     Normal  
     Low 

 
 
0.298 0.350 

1 
1.35 (0.72 – 2.52)    

Klintrup score 
     High 
     Low 

 
 
-0.471 0.150 

1 
0.62 (0.33 – 1.19)    

MSI status  
     CI  
     MSI 

 
 
-0.876 0.092 

1 
0.42 (0.15 – 1.15)  0.184 
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advancing age (p=0.001), emergency presentation (p<0.001), advancing T-stage (p=0.003), 

raised serum CRP (p=0.002), hypoalbuminaemia (p<0.001) and good Klintrup score 

(p=0.022) had a p-value <0.1 and were therefore included in the multivariable Cox 

proportional hazards regression model. 

 On multivariable analysis, only emergency presentation (HR 5.74 (95% CI 1.04 – 

14.68), p<0.001), advancing age (HR 1.04 (95% CI 1.01 – 1.06), p=0.002), 

hypoalbuminaemia (HR 3.04 (95% CI 1.44 – 6.43), p=0.004), advancing T-stage (HR 1.70 

(95% CI 1.11 – 2.58), p=0.014) and Klintrup score (HR 0.60 (95% CI 0.37 – 0.97), 

p=0.039) were independently and significantly associated with poor overall survival (table 

3.13).  

 

Influence of time dependency on outcome 

Only emergency presentation (p=0.004) retained significant time dependency when placed 

in the multivariable analysis with serum CRP (p=0.360) and serum albumin (p=0.096) 

becoming non-significant. 
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Table 3.13: The relationships between clinicopathological factors and overall survival in 
patients with stage II colorectal cancer – univariable and multivariable analysis 

 

3.4.5.7 The association of serum CRP, albumin, MSI status and survival stratified by 

TNM stage III 

During follow-up there were 89 (36.3%) recurrences and 121 (49.4%) deaths. Five year 

recurrence-free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.4. Based on a 15% difference in 5 year survival with an α=0.05 and 

β=0.2 the number of patient required was n=338. For a multivariable model containing at 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age 0.033 0.001 1.03 (1.01 - 1.05) 0.035 0.002 1.04 (1.01 – 1.06) 
Sex  
     Female 
     Male 

 
 
0.136 

 
0.468 

1 
1.15 (0.79 – 1.66)    

Presentation 
     Elective 
     Emergency 
 
Presentation x log(time) 

 
 
1.548 
 
-0.320 

<0.001 
 
0.006 

1 
4.70 (2.29 – 9.65) 
 
0.73 (0.58 – 0.91) 

1.747 
 
-0.428 

<0.001 
 
0.004 

1 
5.74 (2.24 – 14.68) 
 
0.65 (0.49 – 0.88) 

Tumour site 
     Right  
     Left 
     Rectum 

 
(0.000) 
0.180 
-0.084 

 
0.539 
 
 

1 
1.20 (0.80 – 1.79) 
0.92 (0.55 – 1.55)    

T stage  
     1  
     2  
     3  
     4 

 
N/A 
N/A 
(0.000) 
0.292 

 
0.003 

 
N/A 
N/A 
1 
1.78 (1.22 – 2.58) 

 
N/A 
N/A 
(0.000) 
0.528 

 
0.014 

 
N/A 
N/A 
1 
1.70 (1.11 – 2.58) 

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.137 

 
 
0.666 

 
1 
1.15 (0.62 – 2.14)  

 
  

Serum CRP  
     Normal  
     High 
 
CRP x log(time) 

 
 
1.617 
 
-0.313 

 
0.002 
 
0.051 

1 
5.04 (1.78 – 14.24) 
 
0.73 (0.54 – 1.00) 

 
 
 

0.137 
 
0.360 

 
 
 

Serum albumin  
     Normal  
     Low 
 
albumin x log(time) 

 
 
1.554 
 
-0.275 

 
<0.001 
 
0.023 

 
1 
4.73 (2.25 – 9.96) 
 
0.76 (0.60 – 0.96) 

 
1.111 
 
-0.202 

 
0.004 
 
0.096 

 
1 
3.04 (1.44– 6.43) 
 
0.82 (0.84 – 1.04) 

Klintrup score 
     High 
     Low 

 
 
-0.525 0.022 

1 
0.59 (0.38 – 0.93) -0.511 0.039 

1 
0.60 (0.37 – 0.97) 

MSI status  
     CI 
     MSI 

 
 
-0.108 0.688 

 
1 
0.90 (0.53 – 1.52)    
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least 10 variables a minimum of 100 events are required. Only 55% power was available 

when TNM stage III disease was studied. 

 

Univariable recurrence-free survival – serum CRP expression  

Serum CRP measurements were not significantly different in patients who went on to 

develop disease recurrence (p=0.557, Mann-Whitney U, supplementary figure 3.20, 

appendix 5.1). The median for patients with recurrence was 12.50 mg/l (IQR 3.00 – 41.75 

mg/l) compared with 10.00 mg/l (IQR 1.00 – 44.50 mg/l) in the non-recurrence group.  

The 5 year recurrence free survival rate for patients with a raised serum CRP was 

28.9% compared to 51.0% in patients with a normal serum CRP (p=0.002, Pearson’s chi 

square). On logrank analysis raised serum CRP was not significantly associated with poor 

recurrence-free survival (p=0.093, figure 3.44). The mean survival for patients with a 

raised serum CRP was 36.8 months (95% CI 31.3 – 42.3) compared with 43.9 months 

(95% CI 39.1 – 48.6) in the normal serum CRP group.  

 

 
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 96 73 62 54 52 51 49 

High 97 57 41 32 29 29 28 

Figure 3.44: The relationship between serum CRP expression and recurrence-free survival 
in patients with stage III colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 



 206 

Similar to logrank analysis, on Cox univariable regression analysis raised serum CRP was 

not significantly associated with poor recurrence-free survival when dichotomised as a 

categorical variable (HR 1.50 (95% CI 0.93 – 2.42), p=0.095). The hazard ratio was less 

significant when included as a continuous variable (HR 1.00 (95% CI 1.00 – 1.01), 

p=0.401).  

In addition to the prognostic observations with Cox proportional hazards test, the 

predictive value of serum CRP in identifying patients who developed recurrence during 

follow-up was also poor. When ROC analysis was performed using recurrence as the 

endpoint, the AUC was 0.53 (95% CI 0.44 – 0.61, p=0.560) for CRP as a continuous 

variable and the AUC was 0.52 (95% CI 0.44 – 0.61, p=0.635) for CRP as a categorical 

variable (supplementary figure 3.21, appendix 5.1). 

 

Univariable recurrence-free survival – serum albumin 

There was no statistically significant difference between the serum albumin measurements 

of patients who did and did not develop disease recurrence (p=0.256, Mann-Whitney U, 

(supplementary figure 3.22, appendix 5.1). The median was 39 g/l (IQR 31 – 47 g/l) in the 

non-recurrence group compared to 37 g/l (IQR 27.25 – 46.75 g/l) in the recurrence group.  

The 5 year recurrence-free survival rate for patients with hypoalbuminaemia was 

19.3% compared to 48.0% in patients with a normal serum albumin (p<0.001, Pearson’s 

chi square). On logrank analysis hypoalbuminaemia was associated with poor recurrence-

free survival (p=0.007, figure 3.45). The mean survival for patients with 

hypoalbuminaemia was 32.7 months (95% CI 25.3 – 40.1) compared with 43.5 months 

(95% CI 39.6 – 47.3) in the normal serum albumin group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 148 112 95 79 75 73 70 

Low 57 30 17 15 13 13 11 

Figure 3.45: The relationship between serum albumin expression and recurrence free 
survival in patients with stage III colorectal cancer (p=0.007) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
albumin expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis hypoalbuminaemia was significantly associated 

with poor recurrence-free survival when dichotomised as a categorical variable (HR 1.95 

(95% CI 1.20 – 3.20), p=0.008). The hazard ratio was also significant when analysed as a 

continuous variable (HR 0.95 (95% CI 0.93 – 0.98), p=0.002). There was no statistically 

significant predictive association between serum albumin and disease recurrence when 

analysed using ROC analysis. With disease recurrence as the endpoint, the AUC was 0.45 

(95% CI 0.37 – 0.54, p=0.257) for albumin as a categorical variable and AUC 0.54 (95% 

CI 0.46 – 0.62, p=0.351) for albumin as a continuous variable (supplementary figure 3.23, 

appendix 5.1).  

 

Univariable recurrence-free survival – tumour MSI status 

Of the patients with MSI tumours, 5 (23.8%) developed cancer recurrence compared with 

84 (37.5%) of the patients with CI tumours (p=0.244, Fisher’s exact test). The 5 year 

recurrence free survival rate for patients with MSI tumours was 19% compared to 40.2% in 

patients with CI tumours (p=0.063, Pearson’s chi square). On logrank analysis, MSI status 

was not significantly associated with improved recurrence-free survival (p=0.836). The 
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mean survival for patients with MSI tumours was 40.6 months (95% CI 27.6 – 53.7) 

compared with 40.9 months (95% CI 37.6 – 44.1) in the CI group (supplementary figure 

3.24, appendix 7.1).  

On Cox univariable regression analysis, MSI tumours were not significantly 

associated with improved recurrence-free survival (HR 0.91 (95% CI 0.37 – 2.25), 

p=0.836), furthermore, MSI status did not significantly predict the development of 

recurrence with an AUC of 0.48 (95% CI 0.40 – 0.55, p=0.546) 

 

Univariable overall survival - serum CRP expression  

Serum CRP measurements were significantly higher in patients who died during follow-up 

(p<0.001, Mann-Whitney U, figure 3.46). The median for patients who died was 16.50 

mg/l (IQR 3.00 – 62.00 mg/l) compared with 7.00 mg/l (IQR 1.00 – 26.00 mg/l) in the 

alive group.  

 

Figure 3.46: The distribution of serum CRP measurements in patients stratified by 
survival status (p<0.001) 

 

The 5 year overall survival rate for patients with a raised serum CRP was 33.0% compared 

to 59.4% in patients with a normal serum CRP (p<0.001, Pearson’s chi square). On 

logrank analysis raised serum CRP was significantly associated with poor overall survival 

(p<0.001, figure 3.47). The mean survival for patients with a raised serum CRP was 32.3 

months (95% CI 27.3 – 37.3) compared with 47.8 months (95% CI 43.6 – 52.0) in the 

normal serum CRP group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 96 85 74 72 66 61 58 

High 97 67 52 42 36 34 32 

Figure 3.47: The relationship between serum CRP expression and overall survival in 
patients with stage III colorectal cancer (p<0.001) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum CRP was significantly associated 

with poor overall survival when dichotomised as a categorical variable (HR 2.21 (95% CI 

1.45 – 3.38), p<0.001). Serum CRP was also associated with poor overall survival when 

analysed as a continuous variable (HR 1.01 95% CI 1.00 – 1.01, p<0.001). The Kaplan-

Meier plot, however, suggests that serum CRP may violate the proportionality assumption 

of the Cox proportional hazards model. There appears to be a greater proportion of events 

in the high expression group near the origin of the curve. The subsequent gradient 

associated with these events does not appear to hold throughout the follow up period 

suggesting that the HR is not constant thus potentially violating the proportionality 

assumption. The log(-log(survival)) plot (figure 3.48), of categorical serum CRP 

demonstrates parallel curves with no evidence of time dependency when an interaction 

term between serum CRP and log(time) was placed in a Cox proportional hazard model 

(HR 0.95 (95% CI 0.76 – 1.19); p=0.636). These findings suggest that serum CRP does in 

fact meet the proportionality assumptions of the Cox proportional hazards regression 

model. 
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Figure 3.48: Log minus log plot of serum CRP and overall survival  

Log(-log(survival)) plot demonstrating near proportionality of survival between the two 
groups  
 

Despite the significant associations observed between serum CRP and survival, its 

predictive value is relatively poor. When ROC analysis was performed using death as the 

endpoint, the AUC was 0.61 (95% CI 0.53 – 0.69, p=0.007) for serum CRP as a 

categorical variable and the AUC was 0.65 (95% CI 0.58 – 0.73, p<0.001) for CRP as a 

continuous variable (figure 3.49).  

 

Figure 3.49: Predictive value of CRP in identifying patients with stage III colorectal 
cancer who will die during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum CRP 
in identifying patients who will die during follo- up.  
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Univariable overall survival - serum albumin 

Serum albumin measurements were significantly lower in patients who died during follow-

up (p=0.002, Mann-Whitney U, figure 3.50). The median was 40 g/l (IQR 33 – 47 g/l) in 

the alive group compared to 37 g/l (IQR 26 – 48 g/l) in deceased group.  

 

Figure 3.50: The distribution of serum albumin measurements in patients stratified by 
survival status (p=0.002) 

 

The 5 year overall survival rate for patients with hypoalbuminaemia was 26.3% compared 

to 54.1% in patients with a normal serum albumin (p<0.001, Pearson’s chi square). On 

logrank analysis hypoalbuminaemia was significantly associated with poor overall survival 

(p<0.001, figure 3.51). The mean survival for patients with hypoalbuminaemia was 29.0 

months (95% CI 22.5 – 35.5) compared with 45.1 months (95% CI 41.6 – 48.7) in the 

normal serum albumin group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 148 126 113 102 91 84 81 

Low 57 37 24 22 18 17 15 

Figure 3.51: The relationship between serum albumin expression and overall survival in 
patients with stage III colorectal cancer (p<0.001) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
albumin expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis hypoalbuminaemia was significantly associated 

with poor overall survival when dichotomised as a categorical variable (HR 2.36 (95% CI 

1.56 – 3.57), p<0.001). The hazard ratio was also significantly associated with survival 

when included as a continuous variable (HR 0.95 (95% CI 0.91 – 0.73), p<0.001). The 

Kaplan-Meier plot, however, suggest that serum albumin may violate the proportionality 

assumption of the Cox model, with a greater proportion of events in the low expression 

group near the origin of the curve. The gradient associated with these events is not 

maintained throughout follow-up which suggests that the hazard ratio is not constant, 

violating the proportionality assumption. However, the log(-log(survival)) plot (figure 

3.52), for categorical serum albumin demonstrates parallel curves with no evidence of time 

dependency when an interaction term between serum albumin and log(time) was placed in 

a Cox proportional hazard model (HR 0.98 (95% CI 0.79 – 1.20); p=0.809). These findings 

suggest that serum albumin does in fact meet the proportionality assumptions of the Cox 

proportional hazards regression model. 
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Figure 3.52: Log minus log plot of serum albumin and overall survival in patients with 
stage III colorectal cancer 

Log(-log(survival)) plot demonstrating near proportionality of survival between the two 
groups.  
 

In terms of survival prediction, when ROC analysis was performed using death as the 

endpoint, the AUC was 0.38 (95% CI 0.30 – 0.45, p=0.002) for albumin as a continuous 

variable and an AUC of 0.60 (95% CI 0.52 – 0.68, p=0.013) for albumin as a categorical 

variable (figure 3.53).  

  

Figure 3.53: Predictive value of serum albumin in identifying patients with stage III 
colorectal cancer who will die during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum 
albumin in identifying patients who will die during follow-up.  



 214 

Univariable overall survival - tumour MSI status 

Of the patients with MSI tumours, 14 (66.7%) died during follow-up compared with 107 

(47.8%) of the patients with CI tumours (p=0.113, Fisher’s exact test). The 5 year survival 

rate for patients with MSI tumours was 28.6% compared to 46.9% compared to patients 

with CI tumours (p=0.107, Pearson’s chi square). On logrank analysis, MSI status was 

associated with poor overall survival (p=0.020, figure 3.54). The mean survival for patients 

with MSI tumours was 27.1 months (95% CI 16.5 – 37.6) compared with 41.3 months 

(95% CI 38.2 – 44.4) in the CI group.  

 
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

CI 224 179 156 141 124 112 106 

MSI 21 13 8 7 6 6 6 

Figure 3.54: The relationship between MSI status and overall survival in patients with 
stage III colorectal cancer (p=0.020) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by MMR 
protein status. Beneath, there is a survival table demonstrating the number of patients not 
censored at each follow-up point.   
 

On Cox univariable regression analysis MSI was significantly associated with poor overall 

survival (HR 1.91 (95% CI 1.10 – 3.35), p=0.023).  However, MSI status did not 

significantly predict death during the follow up period with an AUC of 0.53 (95% CI 0.46 

– 0.60, p=0.423). 

 

 



 215 

Multivariable recurrence-free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7.  

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-values were >0.05. On univariable analysis, 

emergency presentation (p=0.031), advancing T-stage (p=0.001), higher N stage 

(p=0.013), poor differentiation (p=0.026), raised serum CRP (p=0.095), 

hypoalbuminaemia (p=0.008) and a good Klintrup score (p=0.001) had p-values <0.1 and 

were therefore included in the multivariable Cox proportional hazards regression model. 

 On multivariable analysis, advancing T-stage (when all subcategories were 

compared with T1 (T2 HR 280.27 (95% CI 0.00 – 1.18e45), (T3 HR 278.42 (95% CI 0.00 

– 1.16e45) and (T4 HR 683.12 (95% CI 0.00 – 2.85e45)), p=0.010), hypoalbuminaemia 

(HR 1.86 (95% CI 1.03 – 3.36), p=0.040) and a high Klintrup score (HR 0.40 (95% CI 

0.18 – 0.91), p=0.028) were independently associated with recurrence-free survival (table 

3.14). 
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Table 3.14: The relationship between clinicopathological factors and recurrence-free 
survival in patients with stage III colorectal cancer – univariable and multivariable analysis  

 
 

Multivariable overall survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7.  

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-values were >0.05. On univariable analysis, 

advancing age (p<0.001), emergency presentation (p<0.001), tumour location (p=0.067), 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.002 0.834 1.00 (0.98 - 1.02)    
Sex  
     Female 
     Male 

 
 
-0.092 0.665 

1 
1.10 (0.72 – 1.66)    

Presentation 
     Elective 
     Emergency 

 
 
0.472 0.031 

1 
1.60 (1.04 – 2.47)  0.852  

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
-0.496 
0.065 

 
0.102 
 
 

1 
0.61 (0.37 – 1.00) 
1.07 (0.63 – 1.82)    

T stage  
     1  
     2  
     3  
     4 

 
(0.000) 
5.972 
6.852 
7.666 

0.001 
 
 
 

 
1 
392.11 (0.00 – 1.18e42) 
945.66 (0.00 – 2.82e42) 
2134.90 (0.00 – 6.37e42) 

 
(0.000) 
5.746 
5.659 
6.574 

0.010 
 
 
 

 
1 
280.27 (0.00 – 1.18e45) 
278.42 (0.00 – 1.16e45) 
683.12 (0.00 – 2.85e45) 

N stage 
     1 
     2 

 
(0.000) 
0.547 

 
0.013 

 
1 
1.73 (1.12 – 2.69)  

 
0.192  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.617 

 
 
0.026 

 
1 
1.85 (1.08 – 3.19)  0.393  

Serum CRP  
     Normal  
     High 

 
 
0.407 0.095 

1 
1.50 (0.93 – 2.42)  0.321  

Serum albumin  
     Normal  
     Low 

 
 
0.670 0.008 

1 
1.95 (1.20 – 3.20) 0.620 0.040 

1 
1.86 (1.03 – 3.36) 

Klintrup score 
     High 
     Low 

 
 
-1.257 0.001 

1 
0.28 (0.14 – 0.59) -0.914 0.028 

1 
0.40 (0.18 – 0.91) 

MSI status  
     CI  
     MSI 

 
 
-0.096 0.836 

1 
0.91 (0.37 – 2.25)   
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advancing T-stage (p=0.009), advancing N-stage (p=0.019), poor differentiation (p=0.001), 

raised serum CRP (p<0.001), hypoalbuminaemia (p<0.001), good Klintrup score (p=0.002) 

and tumour MSI status (p=0.023) had a p-value <0.1 and were therefore included in the 

multivariable Cox proportional hazards regression model. 

 On multivariable analysis, only advancing age (HR 1.04 (95% CI 1.02 – 1.07), 

p<0.001), emergency presentation (HR 1.81 (95% CI 1.06 – 3.06), p=0.028), tumour site 

(when all subcategories were compared with right sided location (Left sided cancers (HR 

0.71 (95% CI 0.43 – 1.19) and rectal cancer (HR 1.75 (95% CI 0.99 – 3.10), p=0.027), 

good Klintrup score (HR 0.47 (95% CI 0.24 – 0.94), p=0.033) and MSI status (HR 2.20 

(95% CI 1.10 – 4.37), p=0.025) were independently and significantly associated with poor 

overall survival following (table 3.15).  

 

Table 3.15: The relationship between clinicopathological factors and overall survival in 
patients with stage III colorectal cancer: univariable and multivariable analysis 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio 
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age 0.037 <0.001 1.04 (1.02 - 1.06) 0.043 <0.001 1.04 (1.02 – 1.07) 
Sex  
     Female 
     Male 

 
 
-0.159 0.384 

1 
0.85 (0.60 – 1.22)    

Presentation 
     Elective 
     Emergency 

 
 
0.750 <0.001 

1 
2.12 (1.48 – 3.03) 0.591 0.028 

1 
1.81 (1.06 – 3.06) 

Tumour site 
     Right  
     Left 
     Rectum 

 
(0.000) 
-0.499 
-0.068 

 
0.067 
 
 

1 
0.61 (0.40 – 0.93) 
0.93 (0.59 – 1.49) 

 
(0.000) 
-0.342 
-0.562 

 
0.027 
 
 

1 
0.71 (0.43 – 1.19) 
1.75 (0.99 – 3.10) 

T stage  
     1  
     2  
     3  
     4 

 
(0.000) 
6.392 
6.855 
7.421 

0.009 
 
 
 

 
1 
596.78 (0.00 – 6.16e37) 
948.41 (0.00 – 9.73e37) 
1670.40 (0.00 – 1.71e38) 

  
0.248 
 
 
 

 
 

N stage 
     1 
     2 

 
 
0.954 

 
0.019 

 
1 
1.56 (1.08 – 2.28) 

 
 

 
0.389  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.722 

 
 
0.001 

 
1 
2.06 (1.32 – 3.20)  0.066  

Serum CRP  
     Normal  
     High 

 
 
1.617 <0.001 

1 
2.21 (1.45 – 3.38) 

 
 
 0.937 

 
 
 

Serum albumin  
     Normal  
     Low 

 
 
0.859 

 
<0.001 

 
1 
2.36 (1.56 – 3.57) 

 
 

 
0.059 

 
 

Klintrup score 
     High 
     Low 

 
 
-0.881 0.002 

1 
0.41 (0.24 – 0.72) -0.746 0.033 

1 
0.47 (0.24 – 0.94) 

MSI status  
     CI 
     MSI 

 
 
0.649 0.023 

 
1 
1.91 (1.10 – 3.35) 0.786 0.025 

1 
2.20 (1.10 – 4.37) 
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3.4.5.8 The association of systemic inflammation clinicopathological factors and 

survival CI colorectal cancer 

Survival, recurrence and deaths in patients with CI colorectal cancer 

During follow-up there were 140 (23.6%) recurrences and 227 (38.3%) deaths. Five year 

recurrence free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.5. Based on a 15% difference in 5 year survival with an α=0.05 and 

β=0.2 the number of patients required was n=338. For a multivariable model containing at 

least 10 variables a minimum of 100 events are required.  

 

Univariable recurrence-free survival - serum CRP expression  

Serum CRP measurements were not significantly different in patients who went on to 

develop disease recurrence (p=0.067, Mann-Whitney U, figure 3.55). Median 

measurements for patients with recurrence was 12.00 mg/l (IQR 2.00 – 44.50 mg/l) 

compared with 9.00 mg/l (IQR 0.90 – 30.00 mg/l) in the non-recurrence group.  

 

Figure 3.55: The distribution of serum CRP measurements in patients with and without 
cancer recurrence (p=0.067) 

 

The 5 year recurrence-free survival rate for patients with a raised serum CRP was 42.0% 

compared to 64.9% in patients with a normal serum CRP (p<0.001, Pearson’s chi square). 

On logrank analysis raised serum CRP was significantly associated with poor recurrence-
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free survival (p=0.011, figure 3.56). The mean survival for patients with a raised serum 

CRP was 46.1 months (95% CI 43.0 – 49.1) compared with 50.6 months (95% CI 48.3 – 

53.0) in the normal serum CRP group.  

 
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 248 214 193 183 175 170 161 

High 219 160 132 115 104 100 92 

Figure 3.56: The relationship between serum CRP expression and recurrence-free survival 
in patients with CI colorectal cancer (p=0.011) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum CRP was significantly associated 

with poor recurrence-free survival when dichotomised as a categorical variable (HR 1.62 

(95% CI 1.11 – 2.36), p=0.012). The significance of the hazard ratio reduced when it was 

included as a continuous variable (HR 1.00 (95% CI 1.00 – 1.01), p=0.020). Despite the 

significant associations observed between serum CRP and disease recurrence, its predictive 

value remains poor. When ROC analysis was performed using recurrence as the endpoint, 

the AUC was 0.58 (95% CI 0.50 – 0.62, p=0.070) for CRP as a continuous variable with 

an AUC of 0.54 (95% CI 0.48 – 0.60, p=0.193) for CRP as a categorical variable (figure 

3.57).  
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Figure 3.57: The predictive value of CRP in identifying patients with CI colorectal cancer 
who developed recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of CRP in 
identifying patients who will develop disease recurrence.  
 

Univariable recurrence-free survival - serum albumin 

There was no statistically significant difference between the serum albumin measurements 

of patients who did and did not develop cancer recurrence (p=0.060, Mann-Whitney U, 

figure 3.58). The median was 39 g/l (IQR 30 – 48 g/l) in the non-recurrence group 

compared to 38 g/l (IQR 29 – 47 g/l) in the recurrence group.  

 

Figure 3.58: The distribution of serum albumin measurements in patients stratified by 
cancer recurrence (p=0.060) 
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The 5 year recurrence free survival rate for patients with hypoalbuminaemia was 36.2% 

compared to 60.7% in patients with a normal serum albumin (p<0.001, Pearson’s chi 

square). On logrank analysis hypoalbuminaemia was associated with poorer time to 

recurrence (p=0.021, figure 3.59). The mean survival for patients with hypoalbuminaemia 

was 45.5 months (95% CI 41.3 – 49.8) compared with 49.7 months (95% CI 47.7 – 51.7) 

in the normal serum albumin group.  

 
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 369 319 280 256 242 234 224 

Low 127 83 69 64 58 55 46 

Figure 3.59: The relationship between serum albumin expression and recurrence-free 
survival in patients with CI colorectal cancer (p=0.021) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
albumin expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis hypoalbuminaemia was significantly associated 

with poor recurrence-free survival when dichotomised as a categorical variable (HR 1.59 

(95% CI 1.07 – 2.38), p=0.022). The significance of the hazard ratio reduced when it was 

included as a continuous variable (HR 0.95 (95% CI 0.93 – 0.98), p<0.001). Despite the 

significant associations observed between serum albumin and disease recurrence, its 

predictive value is poor. When ROC analysis was performed using recurrence as the 

endpoint, the AUC was 0.44 (95% CI 0.38 – 0.50, p=0.060) for albumin as a continuous 

variable with an AUC of 0.52 (95% CI 0.46 – 0.58, p=0.459) for albumin as a categorical 

variable (figure 3.60).  
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Figure 3.60: Predictive value of serum albumin in identifying patients who developed 
cancer recurrence 

Receiver-operator-characteristic curve demonstrating the predictive value of serum 
albumin in identifying patients who will develop disease recurrence.  
 

Univariable overall survival - serum CRP expression  

Serum CRP measurements were significantly higher in patients who died during the follow 

up period (p<0.001, Mann-Whitney U, figure 3.61). The median for patients who died was 

15.00 mg/l (IQR 1.00 – 56.75 mg/l) compared with 7.00 mg/l (IQR 0.90 – 22.00 mg/l) in 

the alive group.  

 

Figure 3.61: The distribution of serum CRP measurements stratified by survival status in 
patients with CI colorectal cancer (p<0.001) 
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The 5 year overall survival rate for patients with a raised serum CRP was 42.0% compared 

to 64.9% in patients with a normal serum CRP (p<0.001, Pearson’s chi square). On 

logrank analysis raised serum CRP was significantly associated with poorer overall 

survival (p<0.001, figure 3.62). The mean survival for patients with a raised serum CRP 

was 39.7 months (95% CI 36.4 – 42.9) compared with 51.6 months (95% CI 49.4 – 53.8) 

in the normal serum CRP group.  

  
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 248 228 216 207 196 186 177 

High 219 171 150 127 114 107 97 

Figure 3.62: The relationship between serum CRP expression and overall survival in 
patients with CI colorectal cancer (p<0.001) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
CRP expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum CRP was significantly associated 

with poorer overall survival when dichotomised as a categorical variable (HR 2.22 (95% 

CI 1.64 – 3.00), p<0.001). Serum CRP was also significantly associated with poor overall 

survival when included as a continuous variable (HR 1.00 95% CI 1.00 – 1.01, p<0.001). 

The Kaplan-Meier plot suggest that serum CRP may violate the proportionality assumption 

of the Cox proportional hazards model. There appears to be a greater proportion of events 

in the high expression group near the origin of the curve. The gradient associated with 

these events does not appear hold throughout follow-up, suggesting that the HR is not 

constant and violates the proportionality assumption. However, when assessing the log(-

log(survival)) plot (figure 3.63), categorical serum CRP demonstrates parallel curves and 
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there is no evidence of time dependency when an interaction term between serum CRP and 

log(time) was placed in a Cox proportional hazard model (HR 0.88 (95% CI 0.75 – 1.03); 

p=0.121). These findings show that serum CRP meets the proportionality assumptions of 

the Cox proportional hazards regression model. 

 
Figure 3.63: Log minus log plot of serum CRP and overall survival in patients with CI 
colorectal cancer 

 

Despite the significant associations observed between serum CRP and poorer survival, its 

predictive value is relatively poor. When ROC analysis was performed using death as the 

endpoint, the AUC was 0.63 (95% CI 0.58 – 0.68, p<0.001) for serum CRP as a 

categorical variable with an AUC of 0.61 (95% CI 0.55 – 0.66, p<0.001) for CRP as a 

continuous variable (figure 3.64).  

 

Figure 3.64: Predictive value of CRP in identifying patients with CI colorectal cancer who 
died during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum CRP 
in identifying patients who will die during follow-up.  
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Univariable overall survival - serum albumin 

Serum albumin measurements were significantly lower in patients who died during the 

follow up period (p<0.001, Mann-Whitney U, figure 3.65). The median serum albumin 

was 40 g/l (IQR 33 – 47 g/l) in the alive group compared to 37 g/l (IQR 26 – 48 g/l) in 

patients who did not survive 5 years.  

 

Figure 3.65: The distribution of serum albumin measurements stratified by survival status 
in patients with CI colorectal cancer (p<0.001) 

 

The 5 year overall survival rate for patients with hypoalbuminaemia was 40.2% compared 

to 65.3% in patients with a normal serum albumin (p<0.001, Pearson’s chi square). On 

logrank analysis hypoalbuminaemia was significantly associated with poor overall survival 

(p<0.001, figure 3.66). The mean survival for patients with hypoalbuminaemia was 37.4 

months (95% CI 32.9 – 41.9) compared with 49.5 months (95% CI 47.6 – 51.5) in the 

normal serum albumin group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 369 336 316 286 267 251 242 

Low 127 91 78 73 65 61 51 

Figure 3.66: The relationship between serum albumin expression and overall survival in 
patients with CI colorectal cancer (p<0.001) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
albumin expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis hypoalbuminaemia was significantly associated 

with poor overall survival when dichotomised as a categorical variable (HR 2.25 (95% CI 

1.67 – 3.03), p<0.001). Hypoalbuminaemia was also significantly associated with poor 

overall survival when included as a continuous variable (HR 0.94 (95% CI 0.92 – 0.96), 

p<0.001). The Kaplan-Meier plot suggests that serum albumin may violate the 

proportionality assumption of the Cox model. There appears to be a greater proportion of 

events in the low expression group near the origin of the curve. The gradient associated 

with these events is not constant throughout follow-up, suggesting that the hazard ratio 

violates the proportionality assumption. When assessing the log(-log(survival)) plot (figure 

3.67), categorical serum albumin demonstrates parallel curves, however, there is evidence 

of time dependency when an interaction term between serum albumin and log(time) was 

placed in a Cox proportional hazard model (HR 0.83 (95% CI 0.72 – 0.96); p=0.013) with 

an associated adjustment of the HR for categorical serum albumin (HR 3.30 (95% CI 2.13 

– 5.12); p<0.001) (table 3.4). 
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Figure 3.67: Log minus log plot of serum albumin and overall survival in patients with CI 
colorectal cancer 

 

In terms of survival prediction, when ROC analysis was performed using death as the 

endpoint, the AUC was 0.37 (95% CI 0.32 – 0.42, p<0.001) for albumin as a continuous 

variable and with an AUC of 0.59 (95% CI 0.54 – 0.64, p=0.001) for albumin as a 

categorical variable (figure 3.68).  

 

Figure 3.68: Predictive value of serum albumin in identifying patients with CI colorectal 
cancer who died during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum 
albumin in identifying patients who will die during follow-up.  
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Multivariable recurrence-free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7.  

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-values were >0.05. On univariable analysis, 

advancing age (p=0.048), emergency presentation (p<0.001), advancing T-stage (p<0.001), 

advancing N-stage (p<0.001), higher TNM stage (p<0.001), poor differentiation (p0.002), 

raised serum CRP (p=0.012), hypoalbuminaemia (p=0.022) and good Klintrup score 

(p<0.001) had a p-value <0.1 and were therefore included in the multivariable Cox 

proportional hazards regression model. 

 On multivariable analysis, advancing T-stage (when all subcategories were 

compared with T1 (T2 HR 0.56 (95% CI 0.10 – 3.08), (T3 HR 0.97 (95% CI 0.25 – 4.35) 

and (T4 HR 3.06 (95% CI 0.73 – 12.87)), p<0.001), advancing N-stage (when all 

subcategories were compared with N0 (N1 HR 2.15 (95% CI 1.40 – 3.32), (N2 HR 3.02 

(95% CI 1.80 – 5.07), p<0.001) and good Klintrup score (HR 0.52 (95% CI 0.32 – 0.84), 

p=0.008) were independently and significantly associated with poor recurrence-free 

survival (table 3.16).  
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Table 3.16: The relationships between clinicopathological factors and recurrence-free 
survival in patients with CI colorectal cancer: univariable and multivariable analysis  

 

Multivariable overall survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section 2.7.8.7. Age, presentation and serum 

albumin demonstrated time dependency when interaction terms between the covariates and 

log(time) were placed in the model. 

 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.015 0.048 0.99 (0.97 - 1.00)  0.706  
Sex  
     Female 
     Male 

 
 
-0.019 0.910 

1 
0.98 (0.70 – 1.37)    

Presentation 
     Elective 
     Emergency 

 
 
0.645 <0.001 

1 
1.91 (1.36 – 2.68)  0.298  

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
-0.397 
-0.095 

 
0.131 
 
 

1 
0.67 (0.45 – 0.99) 
0.91 (0.60 – 1.37)    

T stage  
     1  
     2  
     3  
     4 

 
0.000 
-0.186 
0.927 
1.893 

<0.001 
 
 
 

1 
0.83 (0.17 – 4.12) 
2.53 (0.62 – 10.32) 
6.64 (1.63 – 27.11) 

0.000 
-0.574 
0.035 
1.120 

 
<0.001 
 
 
 

1 
0.56 (0.10 – 3.08) 
0.97 (0.25 – 4.35) 
3.06 (0.73 – 12.87) 

N stage 
     0 
     1 
     2 

 
0.000 
1.048 
1.663 

<0.001 
 
 

1 
2.85 (1.96 – 4.16) 
5.27 (3.41 – 8.15) 

0.000 
0.766 
1.106 

 
<0.001 
 
 

1 
2.15 (1.40 – 3.32) 
3.02 (1.80 – 5.07) 

TNM stage 
     I 
     II 
     III 

 
0.000 
1.088 
2.090 

<0.001 
 
 

1 
2.97 (1.27 – 6.92) 
8.09 (3.53 – 18.52)  0.544  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.791 

 
 
0.002 

 
1 
2.21 (1.34 – 3.62)  0.668  

Serum CRP  
     Normal  
     High 

 
 
0.484 0.012 

1 
1.62 (1.11 – 2.36)  0.576  

Serum albumin  
     Normal  
     Low 

 
 
0.466 0.022 

1 
1.59 (1.07 – 2.38)  0.114  

Klintrup score 
     High 
     Low 

 
 
-1.325 <0.001 

1 
0.27 (0.16 – 0.44) -0.842 0.008 

1 
0.52 (0.32 – 0.84) 



 230 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-value was >0.05. On univariable analysis, 

advancing age (p<0.001), emergency presentation (p<0.001), advancing T-stage (p<0.001), 

advancing N-stage (p=0.001), higher TNM stage (p<0.001), poor differentiation (p<0.001), 

raised serum CRP (p<0.001), hypoalbuminaemia (p<0.001) and high Klintrup score 

(p<0.001) had a p-value <0.1 and were therefore included in the multivariable Cox 

proportional hazards regression model. 

 On multivariable analysis, advancing age (HR 1.05 (95% CI 1.03 – 1.08), 

p<0.001), emergency presentation (HR 2.09 (95% CI 1.31 – 3.35), p=0.002), T-stage 

(when all subcategories were compared with T1 (T2 HR 1.18 (95% CI 0.34 – 4.13), (T3 

HR 1.34 (95% CI 0.42 – 4.29) and (T4 HR 2.00 (95% CI 0.61 – 6.52)), p=0.004), good 

Klintrup score (HR 0.50 (95% CI 0.33 – 0.75), p=0.001) and hypoalbuminaemia (HR 1.49 

(95% CI 0.33 – 0.75) were independently and significantly associated with poor overall 

survival (table 3.17).  

 

Influence of time dependency on outcome 

Only emergency presentation (p=0.018) retained significant time dependency when placed 

in the multivariable analysis with Age (p=0.051) and serum albumin (p=0.174) becoming 

non-significant. 
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Table 3.17: The relationship between clinicopathological factors and overall survival in 
patients with CI colorectal cancer: univariable and multivariable analysis  

 

3.4.5.9 Survival, recurrence and deaths in patients with MSI colorectal cancer 

During follow-up there were 10 (11.8%) recurrences and 33 (38.3%) deaths. It has been 

suggested that at least 10 - 25 events are required for each variable in a multivariable 

model. Based on the number of events noted above, no meaningful results can be 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age 

Age x log(time) 

0.052 

-0.009 

<0.001 

0.012 

1.05 (1.03 – 1.08) 

0.99 (0.98 - 1.00) 

0.052 

-0.008 

<0.001 

0.051 

1.05 (1.03 – 1.08) 

0.99 (0.98 – 1.00) 

Sex  
     Female 
     Male 

 
 
-0.059 0.657 

1 
0.94 (0.73 – 1.22)    

Presentation 
     Elective 
     Emergency 
 
Presentation x log(time) 

 
 
1.135 
 
-0.175 

<0.001 
 
0.014 

1 
3.11 (2.05 – 4.73) 
 
0.84 (0.73 – 0.97) 

0.737 
 
-0.184 

0.002 
 
0.018 

1 
2.09 (1.31 – 3.35) 
 
0.83 (0.71 – 0.97) 

Tumour site 
     Right  
     Left 
     Rectum 

 
(0.000) 
-0.180 
-0.112 

 
0.490 
 
 

1 
0.84 (0.62 – 1.13) 
0.89 (0.64 – 1.25)    

T stage  
     1  
     2  
     3  
     4 

 
(0.000) 
-0.067 
0.342 
1.003 

 
<0.001 
 
 
 

 
1 
0.94 (0.38 – 2.33) 
1.41 (0.67 – 3.20) 
2.73 (1.23 – 6.23) 

(0.000) 
0.165 
0.291 
0.866 

 
0.004 
 
 
 

 
1 
1.18 (0.34 – 4.13) 
1.34 (0.42 – 4.29) 
2.00 (0.61 – 6.52) 

N stage 
     0 
     1 
     2 

 
(0.000) 
0.413 
0.905 

 
<0.001 
 
 

 
1 
1.51 (1.12 – 2.04) 
2.47 (1.72 – 3.55) 

 
 

 
0.096 
 
  

TNM stage 
     I 
     II 
     III 

 
(0.000) 
0.457 
0.915 

<0.001 
 
 

1 
1.58 (0.99 – 2.51) 
2.47 (1.72 – 3.95)  

0.225 
 
  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.715 

 
 
<0.001 

 
1 
2.05 (1.38 – 3.04)  

0.114 
  

Serum CRP  
     Normal  
     High 

 
 
0.796 <0.001 

1 
2.22 (1.64 – 3.00)  0.080  

Serum albumin  
     Normal  
     Low 
 
albumin x log(time) 

 
 
1.193 
 
-0.188 

 
<0.001 
 
0.013 

 
1 
3.30 (2.13 – 5.12) 
 
0.83 (0.72 – 0.96) 

 
0.399 
 
 

 
0.022 
 
0.174 

 
1 
1.49 (1.06– 2.10) 
 
 

Klintrup score 
     High 
     Low 

 
 
-0.803 <0.001 

1 
0.45 (0.32 – 0.63) -0.694 0.001 

1 
0.50 (0.33 – 0.75) 
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generated by undertaking univariable and multivariable survival analysis exclusively on 

MSI patients. The relatively low number of patients and associated events makes the 

chance of incurring a type 1 or type 2 reporting error highly likely. Therefore, survival 

analysis has not been performed on the subset of patients with MSI colorectal cancer.   

 

3.5 Discussion 

3.5.1 Summary of the novel results 

The main finding of the studies reported in this chapter is that MSI tumours are 

immunogenic and are strongly associated with markers of the systemic and local 

inflammatory responses. Furthermore, MSI tumours were associated with poor disease free 

survival in patients with stage III colorectal cancer.  

 

3.5.2 Strengths and limitations 

3.5.2.1 Strengths 

This study has several strengths. Patient numbers in the validation cohort are relatively 

large by current standards and this offers an associated type II error probability of less than 

0.1 when a 15% difference in 5 year survival rates were sought. In addition, all patients 

received stage-directed treatment by a specialist multidisciplinary team with considerable 

experience in treating colorectal cancer. The patients reside in a well-defined geographical 

area with minimal migration and full follow-up data is available for all patients. 

 In addition to the clinical factors associated with the patient outcome measures, 

measurements of the systemic inflammatory response namely serum CRP and albumin 

were performed by an accredited NHS biochemistry laboratory. The reliability of the 

serum CRP and albumin measurements also extends to the MSI analysis. Tumour MSI 

PCR analysis was performed in a tertiary referral laboratory and was reported under the 

guidance of an expert with a special interest in Lynch syndrome diagnostics. 

 

3.5.2.2 Limitations 

Data sampling and power 

The main limitation of this study is the inevitable loss of statistical power when the cohorts 

are sub-divided eg by TNM stage and MSI status. Survival analysis was not performed in 

TNM stage I and MSI tumours because these groups were small in number with too few 
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events making the results unreliable. Although there were significant associations between 

biomarkers and survival in TNM stage II and stage III colorectal cancer, the multivariable 

model must be interpreted with caution. There was a lack of power associated with these 

groups and therefore, variables that may effect the strength of the covariates in the model, 

may not have been included because of the possibility of type II errors. Despite an 

adequate number of events for the number of covariates included in the model, the 

magnitude of hazards had a modestly significant p-value and increasing the sample size is 

likely to result in smaller p-values and improved power. 

Another limitation of this study is the quality of the patient sample and the sample 

time frame. We present the frequencies of the core clinicopathological factors for the 

patient cohorts as well as the regional data for the study time frame. The 

clinicopathological frequencies in the training cohort were different to those observed in 

the validation cohort and the regional population. This would normally mean interpreting 

the pilot results with caution, however, including a validation cohort with no overlapping 

of patients adds some reliability to the data findings. In addition to the above, the long time 

frame increases the risk of heterogeneity in treatments, staging and survival. 

While death is a relatively robust endpoint, however, the cause of death is 

dependent upon the interpretation of the clinical situation by the clinician writing the death 

certificate. This limitation also applies to the process of determining if cancer recurrence 

has developed or not. Furthermore, patients who die of an apparently unrelated illness may 

harbor cancer recurrence. Although CT scans can detect cancer recurrence at an early 

stage, a normal scan does not rule out small metastasis. Therefore, determining the exact 

timing of cancer recurrence and when it becomes clinically relevant is challenging. 

A further limitation of this study is the non-availability of some previously reported 

prognostic clinicopathological factors for inclusion in the multivariable model. Although 

core factors such as TNM stage and its components were included, there were notable 

omissions such as BMI and vascular invasion. BMI is not included in the core data set for 

MDT discussion because of its associated limitations. Detection of venous invasion can be 

increased from 18% to 56% by using elastica H&E staining (Roxburgh, 2010a). This has 

become routine in Glasgow but only a small proportion of patients in cohorts 1 and 2 had 

undergone elastic H&E assessment. Therefore, with H&E assessment alone being 

associated with a substantial false negative rate, vascular invasion was not included in the 

multivariable model. BMI is a modifiable clinicopathological factor that can be considered 

as time dependent. Changes in living circumstances may alter a patients’ BMI and thus the 

biological effect of this covariate on the pathophysiology of the host and the cancer varies 
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with time. This may explain why the effect of these factors on prognosis remains poorly 

understood. A metanalysis of 58917 patients showed that pre- and post-diagnosis low BMI 

was associated with poor cancer-specific survival. However, post-diagnosis obesity was 

not associated with cancer-specific survival whilst being overweight inferred a significant 

but modest improvement in cancer-specific survival (Lee, 2015). The reliability of these 

observations in cohorts of prospective studies makes translating these variables into firm 

prognostic markers challenging. 

A minor limitation of this study is that tumours were dissected macroscopically 

rather than microscopically to increase the percentage of tumour DNA in the sample. It has 

been estimated that a sample requires at least 40% tumour DNA to detect the microsatellite 

repeats reliably on PCR. Factors that potentially dilute the tumour DNA include lower T 

stage tumours and a pronounced inflammatory infiltrate. These features increase the 

volume of non-cancerous DNA thus increasing the false negative detection rate. MSI 

tumours, which are associated with a pronounced inflammatory infiltrate and lower T-

stage tumours, have a higher proportion of adjacent adenoma and thus require dissection 

(Soreide, 2006). Macroscopic dissection may inadvertently include a proportion of these 

non-cancerous cells in the sample thus diluting the tumour DNA yield. To control for this, 

all tumours underwent MMR protein assessment through immunohistochemistry; however, 

an MMR deficient/MSI negative phenotype was observed in 4.7% of cases and it is unclear 

if this represents a spurious result of immunohistochemistry or PCR. 

 

3.5.3 Discussion of the results 

3.5.3.1 MSI tumours and the systemic inflammatory response 

The results presented in this chapter demonstrate an association between the SIR and MSI 

colorectal cancer. The causation of this relationship is unclear and cannot be explained by 

a purely observational study. Several possible explanations exist for the association of the 

SIR and colorectal cancer. Firstly, the SIR may be a consequence of the tumour related 

complications (eg tumour perforation) or caused by the primary tumour or metastatic 

tumour load. Secondly, a pre-existing SIR may contribute towards the development of 

colorectal cancer in particular, MSI tumours. 

In cardiovascular disease and diabetes, poor diet, obesity and smoking were closely 

related to an elevated CRP and poorer prognosis (Sattar, 2003). Modification of these 

lifestyle factors resulted in the resolution of the SIR. This supports the concept of the 

systemic inflammatory response being a time-dependent modifiable prognostic marker. 
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There is evidence that poor diet, obesity and smoking are associated with the development 

of MSI and MMR-D colorectal cancers (Limsui 2010, Samowitz 2006, Slattery 2006). 

There are at least two mechanisms for the development of MSI tumours, firstly germ-line 

mutations in the MMR genes (as in the hereditary cancer syndrome, HNPCC; Kambara, 

2004) and secondly, silencing of the MLH1 gene by hypermethylation of its promoter 

region in association with the CpG Island Methylator Phenotype (CIMP) results in 

sporadic colorectal cancer (Toyota, 1999). Adverse lifestyle features associated with the 

metabolic syndrome have also been associated with DNA hypermethylation (Barres, 

2011). Two patterns of DNA methylation have been proposed, cancer-specific and whole 

genome non-specific methylation (Toyota, 1999). While there are associations between 

adverse lifestyle factors, metabolic syndrome, the SIR, DNA methylation and MSI 

colorectal cancer, mechanistic studies are still required to uncover causal relationships. 

 

3.5.3.2 MSI and survival 

In the patient cohorts reported in this chapter, MSI was not independently associated with 

improved recurrence free survival. MSI is widely accepted as a biomarker of relatively 

improved outcome when compared with CI (MSS) colorectal cancer. A systematic review 

and meta-analysis of 7,642 patients found that the HR for MSI was 0.65 (95% CI 0.59 – 

0.71) for overall survival when compared to CI (Popat, 2005). This observed hazard ratio, 

however, was not adjusted for confounding factors. Indeed, the hazard ratios observed for 

MSI and recurrence-free survival in the whole validation cohort and TNM stage II were 

0.50 and 0.42 respectively; however, following multivariable survival analysis MSI status 

was not independently associated with survival. This suggests that the prognostic power of 

MSI is based on its associations with lower tumour stage and a pronounced local 

inflammatory response and these retain independence in the constructed models. MSI does 

not appear to be prognostically superior to other factors; however, in terms of treatment 

stratification predictive biomarkers could have greater clinical importance. MSI tumours 

are relatively chemoresistant to 5-FU and do not respond to EGF receptor inhibitors, 

possibly due to BRAF mutations, so MSI may remain an important biomarker for 

treatment stratification.  

3.5.3.3 SIR in predicting survival 

The association of the SIR and survival in colorectal cancer has been widely studied. 

Several methods for quantifying the SIR have been proposed based on absolute 

measurements of the full blood count components (White cell count, Neutrophil count, 
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Lymphocyte count and Platelet count), their derivatives (NLR and PLR) and the protein 

markers CRP, albumin and mGPS (Roxburgh, 2010b). In the studies reported here CRP 

and albumin were used as markers of the SIR. Both NLR (Shibutani, 2015; Chen, 2015) 

and PLR (Zou, 2016) are reported as independent predictors of poor outcome Roxburgh et 

al found that only the CRP and albumin based mGPS was independently associated with 

poor outcome (Roxburgh, 2010b). Although initial evidence suggests that CRP, albumin 

and the mGPS offer superior prognostic information over other methods of SIR 

quantification, independent validation in an appropriately powered cohort is required.  

Low serum albumin was independently associated with poor overall survival in the 

entire cohort as well as in the TNM stage II group. This is similar to the findings of Heys 

et al (Heys, 1998), Sun et al (Sun, 2009) and Ishizuka et al (Ishizuka, 2007). The 

underlying mechanisms are unclear. More aggressive tumours could inherently stimulate 

more inflammation but equally systemic inflammation could promote more aggressive 

behaviours by a tumour. Lai et al observed in 3,849 patients that hypoalbuminaemia was 

associated with larger tumours, T4 disease, poor differentiation as well as cardiovascular 

disease and diabetes (Lai, 2011). In clinical practice, the SIR can be described as acute or 

chronic and both are commonly seen in the emergency and elective settings respectively. It 

is possible therefore that both the acute and chronic SIRs have different causes and effects 

on the pathophysiology of the cancer.  

 It has been discussed previously that the SIR could promote contribute to the 

formation of MSI colorectal cancer, however, there is also evidence that the SIR 

contributes to the malignant potential of the cell through activation of signaling pathways. 

Canna et al observed a correlation between serum CRP levels and tumour cell proliferation 

as measured by Ki67 immunohistochemistry (Canna, 2008). This was an observational 

study, the finding that Il-6 drives cell proliferation via the JAK/STAT3 pathway in colitis-

associated colorectal cancer in mice supports the concept of an interaction between the SIR 

and cancer cell behaviour (Grivennikov, 2009). Grivennikov et al observed lower 

proliferative activity, (measured by nuclear Ki67), in Il-6-/- tumours compared to Il-6 wild 

type. Furthermore, ablation of STAT3 in cultured normal colonic epithelial cells resulted 

in reduced tumour growth. However, it remains unknown if this will translate into in-vivo 

human colorectal cancers.  

Tumour growth is based on a balance between increased cancer cell proliferation, 

loss of apoptosis and loss of the cytotoxic effects of the immune response. In addition to 

colorectal cancer cell proliferation, activation of STAT3 has also been implicated in 

regulating apoptosis (Lin, 2005; Xiong, 2008), which may partly explain why the SIR is 
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associated with larger tumours (Crozier, 2007). Xiong et al observed that inhibition of the 

JAK1, 2/STAT3 pathway induced colorectal cancer cell apoptosis (Xiong, 2008). They 

inhibited the pathway using siRNA for STAT3 inhibition and the JAK inhibitor, AG490. 

Inhibition of Il-6 and its effects on apoptosis has not been studied in colorectal cancer. 

However, neutralising endogenous Il-6 with an anti-Il-6 antibody reduced the survival of 

Doxorubicin-treated hepatocellular cancer cells probably by restoring apoptosis (Liu, 

2010). In vivo, JAK/STAT signalling is likely to come from a number of stimuli and 

further studies of the role of Il-6 inhibition on JAK/STAT3 mediated apoptosis in 

colorectal cancer are required. 

 Personalised cancer medicine aims to improve the efficacy of treatments through 

identifying patients most likely to benefit from particular treatments. Despite the 

identification of many candidate biomarkers, few have made it into clinical practice. 

Prognostic biomarkers add little beyond TNM stage in the management of colorectal 

cancer. The majority of biomarkers that have been successfully introduced into clinical 

practice are predictive in nature as they help guide treatment through patient identification. 

Spontaneous apoptosis has been associated with improved response to neoadjuvant 

chemotherapy in rectal cancer (Rödel, 2002). The results by Liu et al described above 

suggest that the SIR may act as a predictive biomarker for poor response to chemotherapy 

through its suppression of cellular apoptosis. This may explain the findings by Carruthers 

et al that the SIR was associated with poor survival in patients undergoing neoadjuvant 

therapy for rectal cancer (Carruthers, 2012). Furthermore, a raised NLR conferred a poorer 

outcome in patients receiving neoadjuvant gemcitabine +/- nab-paclitaxel in metastatic 

pancreatic cancer (Goldstein, 2015). Factors that influence overall survival are 

multifactorial and these observations may not be tumour-specific. Therefore, confirmatory 

evidence examining the association of the SIR and pathological response to neoadjuvant 

therapy is required to establish the predictive value of these biomarkers and their role in 

clinical practice. 

 

3.5.3.4 Introducing MSI status and the SIR into the prognostication process in 

colorectal cancer 

Following potentially curative resection and histopathological assessment of the specimen, 

patients are offered adjuvant chemotherapy if there are features suggestive of higher risk of 

disease recurrence. These currently include T4 disease, lymph node metastasis and 

vascular invasion. As discussed previously, TNM staging remains the main biomarker for 
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outcome prognostication; but its predictive value could be better. Methods to strengthen 

the predictive value of TNM stage with supplementary biomarkers would improve 

allocation patients to adjuvant treatment on a need/benefit basis. Supplementary options 

could include MSI status and inflammatory markers.   

The distinction between staging, prognosis and predictive biomarkers is important 

given the influence of both on survival and treatment. TNM staging does a reasonable 

prognostic job but has little value in predicting response to different adjuvant therapies. 

Both breast and oesophageal cancer have tumour grade incorporated into the 7th edition of 

TNM staging system, however anecdotally, minimal benefit has been observed by 

including this supplementary information. Grading or differentiation is notoriously 

difficult to accurately establish with poor inter-observer reproducibility and therefore 

different biomarkers are needed (Chandler, 2008). In breast cancer, ER, PR and HER2 

status offer useful information for treatment stratification with biological therapies. It 

appears that the main barrier for implementing biomarkers into clinical practice is reliable 

biomarker identification, quantification and reporting, and availability of a specific therapy 

with a favorable benefit/side effect profile. There is a clear need for treatment stratifying 

biomarkers in colorectal cancer, however, it remains unclear how both the SIR and tumour 

MSI will be of use in this setting.  

 MSI tumours are chemoresistent to 5-FU and MSI is therefore predictive of non-

response to adjuvant chemotherapy regimens containing it or Capecitabine. Given the 

relatively improved survival observed in MSI tumours it is possible that some patients with 

these tumours should not be offered adjuvant chemotherapy at all, but there will be a 

subgroup of MSI tumours, eg stage III, likely to have a poor outcome and delineating the 

pathophysiological cause for non-response offers a novel therapeutic target. The reason for 

the poor response of MSI tumours to chemotherapy is unclear, however, the role of the 

SIR, through Il-6 and STAT3, requires further study. Anti-inflammatory agents may 

sensitise these tumours to chemoradiotherapy; this requires exploration. Although MSI 

tumours are associated with the SIR they have a relatively improved outcome, possibly due 

to the infiltration of cytotoxic CD8+ lymphocytes, and therefore not all patients will 

require adjuvant therapy. Stage I and II MSI tumours could be offered surveillance only, 

thus avoiding adjuvant chemotherapy and its associated side effects.  

 The case for utilising MSI as a predictive biomarker for adjuvant treatment is rather 

compelling, however, the role of the SIR is still in the early stages. The evidence here 

demonstrates that the SIR is strongly associated with poor survival and is independent of 

other commonly used clinicopathological factors. However, until the relationship between 
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the SIR and pathological response to chemoradiotherapy has been established, it is unlikely 

that markers of the SIR will be integrated into the TNM staging system or guide adjuvant 

treatment. Delineating the pathophysiological interaction between the tumour and the host 

may establish the SIR as a novel therapeutic target for high risk patients.   

 

3.5.4 Future direction 

1. Given the lack of power associated with studying survival associations in each TNM 

stage and MSI tumours, future work will need to validate these findings in a large sample 

size, which is adequately powered.   

 

2. How the SIR influences the development of MSI colorectal cancer is unclear, however, 

there is a possible link with DNA methylation. Future work examining the association 

between the SIR, DNA methylation, CIMP and MSI colorectal cancer which is supported 

by mechanistic experiments could identify therapeutic targets for MSI colorectal cancer 

prevention.  

 

3. The biological reasons for the association between the SIR and survival remains 

unknown. Future work examining the relationship between the SIR and cell signaling 

pathways such as JAK/STAT3 may help identify novel therapeutic targets.  

 

3.5.5 Conclusion 

The SIR is significantly associated with poorer outcome in colorectal cancer and 

incorporating this biomarker into staging may help identify patients who require adjuvant 

treatment. Given the association between the SIR with MSI colorectal cancer the causes of 

this relationship needs to be identified, as not all patients will require more aggressive 

treatment. 
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4. The role of Matrix Metalloproteinase 9 (MMP-9) in 

colorectal cancer progression and survival  

4.1 Introduction 

Disease progression and metastasis depend on complex relationships between tumour 

behaviour and the protective influence of the local inflammatory response (Klintrup, 

2005). Tumour cell invasion and metastasis is a cardinal feature of cancer and is what 

ultimately leads to organ dysfunction and patient death.  

The mechanisms by which colorectal cancer cells locally invade through the bowel 

remain uncertain, but connective tissue degradation by matrix metalloproteinases such as 

MMP-9 have been implicated. Lubbe et al (2006) found high levels of MMP-9 mRNA in 

stroma as well as in epithelial cancer cells. Furthermore, MMP-9 in colorectal tissue was 

associated with degradation of extracellular matrix components (Lubbe, 2006) and poor 

survival. Although at one time it was thought that MMP-9 in colorectal cancer was 

secreted by macrophages, MMP-9 mRNA has been identified in both cancer cells and 

stromal cells, with MMP-9 protein also being observed in the circulation. MMP-9 in the 

serum was not diagnostic of colorectal cancer in a screening study and is therefore not 

wholly a result of tumour production. What influence, if any, serum MMP-9 has on the 

tumour remains unknown.  

The hypotheses to be tested in this study were two fold. Firstly, that MMP-9 will be 

associated with CI colorectal cancer and poor outcome, independent of commonly used 

clinicopathological factors. Secondly, that serum MMP-9 will be associated with tumour 

expression and poor outcome.   

4.2 Training cohort (cohort 1) 

4.2.1 Colorectal cancer MMP-9 expression 

Cancer cell MMP-9 expression was evaluated using immunohistochemistry and the 

weighted histoscore as previously described in section 2.6.61. Tumour cell membrane and 

nuclear immunoreactivity were not observed in any tumours while 100.0% of tumours 

demonstrated at least some cytoplasmic immunoreactivity (figure 4.1). 
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Figure 4.1: MMP-9 Immunohistochemistry  

Representative areas of cancer cells showing high and low cytoplasmic MMP-9 expression 
(A and B)  
 

4.2.1.1 Distribution of cancer cell cytoplasmic MMP-9 expression  

Figure 4.2 demonstrates that the expression of tumour cell cytoplasmic MMP-9 does not 

precisely follow a normal distribution (histogram, figure 4.2), which is supported by a 

Shapiro-Wilk statistic of 0.961, df 182, p<0.001. The measurements ranged from 15.00 – 

206.33 with a median of 127.09 (IQR 65.84 – 188.34) (supplementary figure 4.1, appendix 

5.2).  
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Figure 4.2: Distribution of measurements for cancer cell cytoplasmic MMP-9  

Histogram demonstrating the distribution of cancer cell cytoplasmic MMP-9. Q-Q Plot of 
cancer cell cytoplasmic MMP-9 measurements.  
 

4.2.2 Generation of cut offs and association with survival 

Many factors influence overall survival. Tumour related biomarkers are cancer specific 

and therefore recurrence and recurrence-free survival have been used to choose optimal 

cutoffs for dichotomisation.  

 

4.2.2.1 Tumour cancer cell cytoplasmic MMP-9 expression  

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for cytoplasmic MMP-9 as a continuous variable, and then categorised as a 

dichotomy around the median, tertiles and quartiles. The AUCs were 0.71 (95% CI 0.63 – 

0.80, p<0.001) for cytoplasmic MMP-9 as a continuous variable, 0.67 (95% CI 0.58 – 

0.76, p=0.001) for cytoplasmic MMP-9 as a median, 0.70 (95% CI 0.61 – 0.79, p<0.001) 

for cytoplasmic MMP-9 as tertiles and an AUC of 0.71 (95% CI 0.62 – 0.80, p<0.001) for 

cytoplasmic MMP-9 as quartiles (figure 4.3).  
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Figure 4.3: The predictive value of cytoplasmic MMP-9 in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will develop cancer recurrence. 
 

On Kaplan-Meier analysis, there was a significant association between cytoplasm MMP-9 

expression and recurrence free survival when categorised around the median (p<0.001), as 

tertiles (p<0.001) and quartiles (p<0.001) (figure 4.4).  
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Figure 4.4: Kaplan-Meier curves demonstrating the association between cytoplasmic 
MMP-9 expression and recurrence-free survival in patients with colorectal cancer 
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4.2.2.2 Justification for choice of cutoff 

The Kaplan-Meier curves demonstrate that higher expressions of cytoplasmic MMP-9 are 

associated with poor recurrence free survival. ROC analysis demonstrates that 

dichotomisation around the median has the lowest AUC when compared with the other 

categorical derivatives. Identifying and validating a threshold for dichotomising 

cytoplasmic MMP-9 may help with its incorporation into clinical practice. The ideal 

categorical biomarker will have a strong association with good outcome in the low group 

and a strong association with poor outcome in the high group or visa versa. The Kaplan-

Meier of the quartile categorisation of cytoplasmic MMP-9 demonstrates that 

dichotomising around the upper quartile would produce a low expression groupmarkedly 

heterogeneous for recurrence-free survival, and therefore dichotomisation around the 

median has been chosen. 

 

4.3 Validation cohort (cohort 2) 

4.3.1 Colorectal cancer MMP-9 expression 

Tumour MMP-9 was evaluated using immunohistochemistry and the weighted Histoscore 

as described in section 2.6.6.1. No tumours demonstrated MMP-9 expression at the cell 

membrane or nucleus, however, 91.3% of tumours demonstrated MMP-9 expression in the 

cytoplasm.  

 

4.3.1.1 Cytoplasmic MMP-9  

Cytoplasmic MMP-9 measurements did not demonstrate any particular distribution (figure 

4.5). The measurements ranged from 0.00 – 200.00 with median of 37.50 (IQR 0.00 – 

82.50) (supplementary figure 4.2, appendix 4.2). Using the dichotomisation process 

described in section 4.2.2.2, 49.3% of patients were considered high expressers (above the 

median).   
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Figure 4.5: Distribution of measurements of cytoplasmic MMP-9 in patients with 
colorectal cancer  

 

4.3.2 Cytoplasmic MMP-9 association with clinicopathological factors 

4.3.2.1 Assessment of cytoplasmic MMP-9 as a continuous variable across different 

groups of categorical clinicopathological factors 

Only female gender (p=0.018, Mann-Whitney U) and emergency presentation (p=0.035, 

Mann-Whitney U) showed a trend towards an association with higher cytoplasmic MMP-9 

expression, however, these were not significant following Bonferroni adjustment 

(p<0.0045). Tumour site (p=0.423, Kruskal-Wallis), T-stage (p=0.265, Mann-Whitney U), 

N-stage (p=0.585, Kruskal-Wallis), tumour differentiation (p=0.992, Mann-Whitney U), 

categorical serum CRP (p=0.197, Mann-Whitney U), categorical serum albumin (p=0.310, 

Mann-Whitney U) and Klintrup score (p=0.762, Kruskal-Wallis) were not associated with 

continuous cytoplasmic MMP-9 expression.  
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4.3.2.2 Assessment of cytoplasmic MMP-9 as a continuous variable across different 

continuous data types of clinicopathological factors 

On Spearman’s rank test cytoplasmic MMP-9 was not associated with Age (SCC 0.043, 

p=0.268), serum CRP (SCC 0.095, p=0.028) or serum albumin (SCC 0.003, p=0.939). 

 

4.3.2.3 Assessment of cytoplasmic MMP-9 associations with clinicopathological 

factors: categorical data type 

Raised cytoplasmic MMP-9 was not associated with any of the clinicopathological factors 

studied. Gender (p=0.176), presentation (p=0.250), tumour site (colon vs rectum) 

(p=0.392), tumour site (right vs left vs rectum) (p=0.444), tumour differentiation 

(p=0.884), T-stage (p=0.527), N-stage (p=0.615), TNM stage (p=0.357), serum CRP 

(p=0.275), serum albumin (p=0.297), Klintrup score (p=0.287) and MSI status (p=0.653) 

were not associated with categorical cytoplasmic MMP-9 expression (table 4.1). 
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Table 4.1: The relationships between tumour cytoplasmic MMP-9 expression and 
clinicopathological factors 

 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bonferroni adjustment = <0.0032 
* Signifies the use of Fishers exact test 
 

 

 

Clinicopathological 
factors 

Low cytoplasmic 
MMP-9 expression 

High cytoplasmic 
MMP-9 expression 

p-value 

Sex 
     Female 
     Male 

 
177 (51.6%) 
166 (48.4%) 

 
155 (46.4%) 
179 (53.6%) 

 
0.176 

Presentation 
     Elective 
     Emergency 

 
248 (72.3%) 
95 (27.7%) 

 
228 (68.3%) 
106 (31.7%) 

 
0.250 

Tumour Site 
     Colon 
     Rectum 

 
266 (77.6%) 
77 (22.4%) 

 
268 (80.2%) 
66 (19.8%) 

 
0.392 

Tumour Site 
     Right 
     Left 
     Rectum 

 
155 (45.2%) 
111 (32.4%) 
77 (22.4%) 

 
147 (44.0%) 
122 (36.5%) 
65 (19.5%) 

 
0.444 

Differentiation 
     Well-Mod 
     Poor 

 
309 (90.1%) 
34 (9.9%) 

 
302 (90.4%) 
32 (9.6%) 

 
0.884 

T stage 
     1 
     2 
     3 
     4 

 
16 (4.7%) 
51 (14.9%) 
178 (51.9%) 
98 (28.6%) 

 
11 (3.3%) 
40 (12.0%) 
183 (54.8%) 
100 (29.9%) 

 
0.527 

N stage 
     0 
     1 
     2 

 
220 (64.1%) 
89 (25.9%) 
34 (9.9%) 

 
219 (65.6%) 
77 (23.1%) 
11.4%) 

 
0.615 

TNM stage 
(simplified) 
     I 
     II 
     III 

 
 
59 (17.2%) 
158 (46.1%) 
126 (36.7%) 

 
 
46 (13.8%) 
169 (50.6%) 
119 (35.6%) 

 
 
0.357 

Serum CRP 
     Normal 
     High 

 
138 (53.1%) 
122 (46.9%) 

 
132 (48.4%) 
141 (51.6%) 

 
0.275 

Serum albumin 
     Normal 
     Low 

 
205 (75.4%) 
67 (24.6%) 

 
208 (71.5%) 
83 (28.5%) 

 
0.297 

Klintrup score 
     Good 
     Poor 

 
245 (71.4%) 
98 (28.6%) 

 
226 (67.7%) 
108 (32.3%) 

 
0.287 

MSI status 
     CI 
     MSI 

 
298 (86.9%) 
45 (13.1%) 

 
294 (88.0%) 
40 (12.0%) 

 
0.653 
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4.3.3 Association of cytoplasmic MMP-9 expression, clinicopathological 

factors and survival – entire cohort 

During follow-up there were 150 (22.2%) recurrences and 260 (38.4%) deaths. Five year 

recurrence-free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.2. 

 

4.3.3.1 Univariable recurrence-free survival - cytoplasmic MMP-9 expression 

Tumour cytoplasmic MMP-9 measurements were not significantly different in patients 

who went on to develop disease recurrence (p=0.510, Mann-Whitney U, figure 4.6). The 

median measurement for patients with recurrence was 37.50 (IQR 0.00 – 80.63) compared 

with 37.50 (IQR 0.00 – 83.33) in the non-recurrence group.  

 

Figure 4.6: The distribution of Cytoplasmic MMP-9 measurements in patients with and 
without disease recurrence (p=0.510) 

 

The 5 year recurrence free survival rate for patients with a raised cytoplasmic MMP-9 was 

51.8% compared to 53.5% in patients with a low cytoplasmic MMP-9 (p=0.752, Pearson’s 

chi square). On logrank analysis, raised cytoplasmic MMP-9 was not significantly 

associated with poor recurrence free survival (p=0.846, figure 4.7). The mean survival for 

patients with a raised cytoplasmic MMP-9 was 49.6 months (95% CI 47.4 – 51.8) 
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compared with 49.3 months (95% CI 47.1 – 51.4) in the low cytoplasmic MMP-9 group.  

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 343 279 246 222 209 200 189 

High 334 269 230 211 196 186 173 

 
Figure 4.7: The relationship between cytoplasmic MMP-9 expression and recurrence-free 
survival in patients with colorectal cancer (p=0.846) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic MMP-9 was not significantly 

associated with recurrence-free survival when dichotomised as a categorical variable (HR 

0.97 (95% CI 0.70 – 1.33), p=0.846) or as a continuous variable (HR 1.00 (95% CI 0.99 – 

1.00), p=0.281). In addition to the non-significant associations observed between 

cytoplasmic MMP-9 expression and disease recurrence, its predictive value was also non-

significant. When ROC analysis was performed using recurrence as the endpoint, the AUC 

was 0.48 (95% CI 0.43 – 0.53, p=0.510) for cytoplasmic MMP-9 as a continuous variable 

and an AUC of 0.49 (95% CI 0.44 – 0.54, p=0.748) for cytoplasmic MMP-9 as a 

categorical variable (figure 4.8). 
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Figure 4.8: The predictive value of cytoplasmic MMP-9 in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will develop cancer recurrence. 
 

4.3.3.2 Univariable overall survival - cytoplasmic MMP-9 expression 

Cytoplasmic MMP-9 measurements were not statistically higher in patients who died 

during the follow up period (p=0.206, Mann-Whitney U, figure 4.9). The median for 

patients who died was 40.00 (IQR 0.00 – 83.33) compared with 35.00 (IQR 0.00 – 78.33) 

in the alive group.  

 

Figure 4.9: The distribution of cytoplasmic MMP-9 measurements in patients stratified by 
survival status (p=0.206) 
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The 5 year overall survival rate for patients with a raised cytoplasmic MMP-9 expression 

was 55.7% compared to 59.0% in patients with a low cytoplasmic MMP-9 expression 

(p=0.750, Pearson’s chi square). On logrank analysis, raised cytoplasmic MMP-9 

expression was not significantly associated with poor overall survival (p=0.177, figure 

4.10). The mean survival for patients with a raised cytoplasmic MMP-9 expression was 

44.3 months (95% CI 41.9 – 46.7) compared with 47.4 months (95% CI 45.2 – 49.6) in the 

low cytoplasmic MMP-9 expression group.  

  

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Low 343 295 277 249 231 218 203 

High 334 282 258 233 216 201 187 

 
Figure 4.10: The relationship between cytoplasmic MMP-9 expression and overall 
survival in patients with colorectal cancer (p=0.177) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic MMP-9 was not significantly 

associated with poor overall survival when dichotomised as a categorical variable (HR 

1.18 (95% CI 0.93 – 1.51), p=0.178) or when analysed as a continuous variable (HR 1.00 

95% CI 1.00 – 1.00, p=0.634). In addition to the non-significant associations with survival, 

cytoplasmic MMP-9 did not predict death during follow-up as a categorical variable (AUC 
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was 0.53 (95% CI 0.48 – 0.57, p=0.206), ROC analysis) or as a continuous variable (AUC 

was 0.53 (95% CI 0.48 – 0.57, p=0.233), ROC analysis), (figure 4.11).  

 

Figure 4.11: Predictive value of cytoplasmic MMP-9 in identifying patients who will die 
during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will die during follow-up.  
  

4.3.4 Association of cytoplasmic MMP-9 expression, clinicopathological 

factors stratified by TNM stage 

4.3.4.1 The relationship between cytoplasmic MMP-9 expression and TNM stage 

There was no significant difference in the measurements of cytoplasmic MMP-9 between 

patients with TNM stage II and III colorectal cancer (p=0.436, Mann-Whitney U, figure 

4.12). The cytoplasmic MMP-9 measurements in patients with stage II colorectal cancer 

ranged from 0.00 – 185.00 with a median measurement of 40.00 (IQR 0.00 – 85.00) 

compared with a range of 0.00 – 200.00 and a median measurement of 37.50 (IQR 0.00 – 

82.50) in patients with stage III colorectal cancer. This observation was also supported by 

chi-squared analysis when cytoplasmic MMP-9 was analysed as a categorical variable 

(p=0.462, Bonferroni adjustment p<0.0125). One hundred and nineteen (41.3%) high 
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cytoplasmic MMP-9 expressers were TNM stage III compared to 126 (44.4%) of low 

expressers.  

 

Figure 4.12: Distribution of measurements of cytoplasmic MMP-9 expression in patients 
with TNM stage II and III colorectal cancer (p=0.436) 

 

4.3.5 Association of cytoplastmic MMP-9 expression, clinicopathological 

factors and survival – TNM stage II 

During follow-up there were 54 (16.5%) recurrences and 114 (34.9%) deaths. Five year 

recurrence-free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.3. 

 

4.3.5.1 Univariable recurrence-free survival - cytoplasmic MMP-9 expression 

Cytoplasmic MMP-9 measurements were not significantly different in patients who went 

on to develop disease recurrence (p=0.414, Mann-Whitney U, figure 4.13). The median 

measurement for patients with recurrence was 36.25 (IQR 0.00 – 73.75) compared with 

40.00 (IQR 0.00 – 86.25) in the non-recurrence group.  
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Figure 4.13: The distribution of cytoplasmic MMP-9 measurements in patients with and 
without cancer recurrence in patients with stage II colorectal cancer (p=0.414) 

 

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic MMP-9 was 

56.8% compared to 60.0% in patients with a low cytoplasmic MMP-9 (p=0.826, Pearson’s 

chi square). On logrank analysis raised cytoplasmic MMP-9 was not significantly 

associated with poor recurrence free survival (p=0.483, figure, 4.14). The mean survival 

for patients with a raised cytoplasmic MMP-9 was 53.2 months (95% CI 50.6 – 55.7) 

compared with 52.3 months (95% CI 49.6 – 54.9) in the low cytoplasmic MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 158 139 127 116 107 101 95 

High 169 148 129 120 112 105 95 

Figure 4.14: The relationship between cytoplasmic MMP-9 expression and recurrence-
free survival in patients with stage II colorectal cancer (p=0.483) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

Cox univariable regression analysis demonstrated that a raised cytoplasmic MMP-9 

expression was not significantly associated with recurrence-free survival when 

dichotomised as a categorical variable (HR 0.83 (95% CI 0.48 – 1.41), p=0.483) or as a 

continuous variable (HR 1.00 (95% CI 0.99 – 1.00), p=0.291). Furthermore, raised 

cytoplasmic MMP-9 did not predict cancer recurrence as a continuous variable (AUC of 

0.47 (95% CI 0.39 – 0.55, p=0.414)) or as a categorical variable (AUC of 0.47 (95% CI 

0.38 – 0.55, p=0.454) (figure 4.15).  
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Figure 4.15: The predictive value of cytoplasmic MMP-9 in identifying patients with stage 
II colorectal cancer who will develop recurrence during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will survive 5 years without recurrence. 
 

4.3.5.2 Univariable overall survival - cytoplasmic MMP-9 expression 

Cytoplasmic MMP-9 measurements were not significantly higher in patients who died 

during the follow up period (p=0.282, Mann-Whitney U, figure 4.16). The median for 

patients who died was 45.00 (IQR 0.00 – 95.00) compared with 37.50 (IQR 0.00 – 78.75) 

in the alive group.  
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Figure 4.16: The distribution of cytoplasmic MMP-9 measurements in patients stratified 
by survival status (p=0.282) 

 

The 5 year overall survival rate for patients with a raised cytoplasmic MMP-9 was 60.4% 

compared to 61.4% in patients with a normal serum CRP (p=0.992, Pearson’s chi square). 

On logrank analysis raised cytoplasmic MMP-9 expression was not significantly 

associated with poor overall survival (p=0.366, figure 4.17). The mean survival for patients 

with a raised cytoplasmic MMP-9 expression was 47.0 months (95% CI 43.9 – 50.1) 

compared with 49.8 months (95% CI 46.8 – 52.7) in the low cytoplasmic MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 158 142 139 124 115 106 97 

High 169 150 141 124 118 112 102 

Figure 4.17: The relationship between cytoplasmic MMP-9 expression and overall 
survival in patients with stage II colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic MMP-9 was not associated with 

overall survival when dichotomised as a categorical variable (HR 1.19 (95% CI 0.82 – 

1.71), p=0.367) or as a continuous variable (HR 1.00 95% CI 1.00 – 1.01, p=0.619). 

Furthermore, there was no predictive association between cytoplasmic MMP-9 expression 

and survival when ROC analysis was performed using death as the endpoint. The AUC 

was 0.54 (95% CI 0.47 – 0.60, p=0.283) for cytoplasmic MMP-9 as a continuous variable 

and an AUC of 0.53 (95% CI 0.46 – 0.59, p=0.413) for cytoplasmic MMP-9 as a 

categorical variable (figure 4.18).  
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Figure 4.18: The predictive value of cytoplasmic MMP-9 in identifying patients with stage 
II colorectal cancer who will die during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will die during follow-up.  
 

4.3.6 Association of cytoplasmic MMP-9 expression, clinicopathological 

factors and survival – TNM stage III 

During follow-up there were 89 (36.3%) recurrences and 121 (49.4%) deaths. Five year 

recurrence free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.4. 

 

4.3.6.1 Univariable recurrence-free survival - cytoplasmic MMP-9 expression 

Cytoplasmic MMP-9 measurements were not significantly different in patients who went 

on to develop disease recurrence (p=0.897, Mann-Whitney U, figure 4.19). The median 

measurement for patients with recurrence was 37.50 (IQR 0.00 – 130.00) compared with 

37.09 (IQR 0.00 – 82.09) in the non-recurrence group.  
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Figure 4.19: The distribution of cytoplasmic MMP-9 measurements in patients with and 
without cancer recurrence in patients with stage III colorectal cancer (p=0.897) 

 

The 5 year recurrence free survival rate for patients with a raised cytoplasmic MMP-9 was 

35.3% compared to 41.3% in patients with a low cytoplasmic MMP-9 (p=0.473, Pearson’s 

chi square). On logrank analysis raised cytoplasmic MMP-9 was not significantly 

associated with poor recurrence-free survival (p=0.652, figure 4.20). The mean survival for 

patients with a raised cytoplasmic MMP-9 was 40.1 months (95% CI 35.6 – 44.7) 

compared with 41.6 months (95% CI 37.3 – 46.0) in the low cytoplasmic MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 126 88 71 61 58 56 52 

High 119 80 62 51 46 43 42 

Figure 4.20: The relationship between cytoplasmic MMP-9 expression and recurrence-
free survival in patients with stage III colorectal cancer (p=0.652) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

Cox univariable regression analysis demonstrated that a raised cytoplasmic MMP-9 

expression was not significantly associated with poor recurrence-free survival when 

dichotomised as a categorical variable (HR 1.10 (95% CI 0.73 – 1.67), p=0.652) or as a 

continuous variable (HR 1.00 (95% CI 0.99 – 1.01), p=0.875). Furthermore, raised 

cytoplasmic MMP-9 did not predict cancer recurrence as a continuous variable (AUC of 

0.50 (95% CI 0.42 – 0.57, p=0.897)) or as a categorical variable (AUC of 0.51 (95% CI 

0.43 – 0.58, p=0.859) (figure 4.21).  
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Figure 4.21: The predictive value of cytoplasmic MMP-9 in identifying patients with stage 
III colorectal cancer who will develop recurrence during follow-up 

(A) Receiver-operator-characteristic curve demonstrating the predictive value of 
cytoplasmic MMP-9 in identifying patients who will survive 5 years without recurrence. 
 

4.3.6.2 Univariable overall survival - cytoplasmic MMP-9 expression 

Cytoplasmic MMP-9 measurements were not significantly higher in patients who died 

during follow-up (p=0.324, Mann-Whitney U, figure 4.22). The median for patients who 

died was 40.00 (IQR 0.00 – 82.50) compared with 33.54 (IQR 0.00 – 78.12) in the alive 

group.  
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Figure 4.22: The distribution of cytoplasmic MMP-9 measurements in patients stratified 
by survival status (p=0.324) 

 

The 5 year overall survival rate for patients with a raised cytoplasmic MMP-9 was 38.7% 

compared to 51.6% in patients with a low cytoplasmic MMP-9 (p=0.127, Pearson’s chi 

square). On logrank analysis raised cytoplasmic MMP-9 was not significantly associated 

with poor overall survival (p=0.140, figure 4.23). The mean survival for patients with a 

raised cytoplasmic MMP-9 expression was 37.2 months (95% CI 32.8 – 41.6) compared 

with 42.9 months (95% CI 38.8 – 47.0) in the low cytoplasmic MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 126 101 87 79 72 69 65 

High 119 91 77 69 58 49 47 

Figure 4.23: The relationship between cytoplasmic MMP-9 expression and overall 
survival in patients with stage III colorectal cancer (p=0.140) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic MMP-9 was not associated with 

overall survival when dichotomised as a categorical variable (HR 1.31 (95% CI 0.91 – 

1.87), p=0.142) or as a continuous variable (HR 1.00 95% CI 1.00 – 1.01, p=0.407). 

Furthermore, there was no predictive association between cytoplasmic MMP-9 expression 

and survival when ROC analysis was performed using death as the endpoint. The AUC 

was 0.54 (95% CI 0.46 – 0.61, p=0.324) for cytoplasmic MMP-9 as a continuous variable 

and an AUC of 0.54 (95% CI 0.47 – 0.62, p=0.248) for cytoplasmic MMP-9 as a 

categorical variable (figure 4.24).  
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Figure 4.24: The predictive value of cytoplasmic MMP-9 in identifying patients with stage 
III colorectal cancer who will die during follow-up  

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will die during follow up.  
 

4.3.7 Association of cytoplasmic MMP-9 expression and 

clinicopathological factors stratified by MSI status 

There was no significant difference in the measurements of cytoplasmic MMP-9 between 

patients with CI and MSI colorectal cancer (p=0.919, Mann-Whitney U, figure 4.25). The 

cytoplasmic MMP-9 measurements in patients with CI colorectal cancer ranged from 0.00 

– 200.00 with a median of 37.50 (IQR 0.00 – 81.88) compared with a range of 0.00 – 

200.00 and a median of 33.33 (IQR 0.00 – 89.17) in patients with MSI colorectal cancer. 

This non-relationship was also observed by chi-squared analysis when cytoplasmic MMP-

9 was analysed as a categorical variable (p=0.822, table 4.1).  
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Figure 4.25: Distribution of measurements of cytoplasmic MMP-9 expression in patients 
with CI and MSI colorectal cancer (p=0.919) 

 

4.3.8 Association of cytoplasmic MMP-9 expression, clinicopathological 

factors and survival – CI colorectal cancer 

During follow-up there were 140 (23.6%) recurrences and 227 (38.3%) deaths. Five year 

recurrence free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.5. 

 

4.3.8.1 Univariable recurrence-free survival - cytoplasmic MMP-9 expression 

Cytoplasmic MMP-9 measurements were not significantly different in patients who went 

on to develop disease recurrence (p=0.480, Mann-Whitney U, figure 4.26). The median 

measurement for patients with recurrence was 37.50 (IQR 0.00 – 80.00) compared with 

40.00 (IQR 0.00 – 85.00) in the non-recurrence group.  
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Figure 4.26: The distribution of cytoplasmic MMP-9 measurements in patients with and 
without cancer recurrence in patients with CI colorectal cancer (p=0.480) 

 

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic MMP-9 was 

51.7% compared to 55.4% in patients with a low cytoplasmic MMP-9 (p=0.727, Pearson’s 

chi square). On logrank analysis raised cytoplasmic MMP-9 was not significantly 

associated with poor recurrence free survival (p=0.798, figure 4.27). The mean survival for 

patients with a raised cytoplasmic MMP-9 was 49.1 months (95% CI 46.7 – 51.5) 

compared with 48.6 months (95% CI 46.3 – 51.0) in the low cytoplasmic MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 298 243 214 196 184 177 165 

High 294 236 201 186 173 164 152 

Figure 4.27: The relationship between cytoplasmic MMP-9 expression and recurrence-
free survival in patients with CI colorectal cancer (p=0.798) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

Cox univariable regression analysis demonstrated that a raised cytoplasmic MMP-9 

expression was not significantly associated with poor recurrence-free survival when 

dichotomised as a categorical variable (HR 0.96(95% CI 0.69 – 1.33), p=0.798) or as a 

continuous variable (HR 1.00 (95% CI 0.99 – 1.00), p=0.477). Furthermore, raised 

cytoplasmic MMP-9 did not predict cancer recurrence as a continuous variable (AUC of 

0.48 (95% CI 0.43 – 0.54, p=0.480)) or as a categorical variable (AUC of 0.49 (95% CI 

0.43 – 0.54, p=0.672) (figure 4.28).  
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Figure 4.28: The predictive value of cytoplasmic MMP-9 in identifying patients with CI 
colorectal cancer who will develop recurrence during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will survive 5 years without recurrence. 
 

4.3.8.2 Univariable overall survival - cytoplasmic MMP-9 expression 

Cytoplasmic MMP-9 measurements were not significantly higher in patients who died 

during follow-up (p=0.086, Mann-Whitney U, figure 4.29). The median measurement for 

patients who died was 42.50 (IQR 0.00 – 87.50) compared with 35.00 (IQR 0.00 – 78.54) 

in the alive group.  
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Figure 4.29: The distribution of cytoplasmic MMP-9 measurements in patients stratified 
by survival status (p=0.086) 

 

The 5 year overall survival rate for patients with a raised cytoplasmic MMP-9 was 55.1% 

compared to 60.4% in patients with a normal serum MMP-9 (p=0.618, Pearson’s chi 

square). On logrank analysis raised cytoplasmic MMP-9 was not significantly associated 

with poor overall survival (p=0.098, figure 4.30). The mean survival for patients with a 

raised cytoplasmic MMP-9 expression was 44.1 months (95% CI 41.6 – 46.7) compared 

with 48.2 months (95% CI 45.9 – 50.5) in the low cytoplasmic MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 298 259 245 222 206 195 180 

High 294 249 226 204 189 175 163 

Figure 4.30: The relationship between cytoplasmic MMP-9 expression and overall 
survival in patients with CI colorectal cancer (p=0.098) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic MMP-9 was not associated with 

overall survival when dichotomised as a categorical variable (HR 1.25 (95% CI 0.96 – 

1.62), p=0.099) or as a continuous variable (HR 1.00 95% CI 1.00 – 1.01, p=0.100). 

Furthermore, there was no predictive association between cytoplasmic MMP-9 expression 

and survival when ROC analysis was performed using death as the endpoint. The AUC 

was 0.54 (95% CI 0.49 – 0.59, p=0.086) for cytoplasmic MMP-9 as a continuous variable 

and an AUC of 0.53 (95% CI 0.49 – 0.58, p=0.175) for cytoplasmic MMP-9 as a 

categorical variable (figure 4.31).  
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Figure 4.31: The predictive value of cytoplasmic MMP-9 in identifying patients with CI 
colorectal cancer who will die during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will die during follow-up.  
 

4.3.8.3 Multivariable recurrence-free survival 

Cytoplasmic MMP-9 expression was not associated with recurrence-free survival and 

therefore, no new multivariable model including this biomarker has been constructed. 

 

4.3.8.4 Multivariable overall survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described previously. Age, presentation and serum albumin demonstrated time dependency 

when interaction terms between the covariates and log(time) were placed in the model. 

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-value was >0.05. On univariable analysis, 

advancing age (p<0.001), emergency presentation (p<0.001), advancing T-stage (p<0.001), 

advancing N-stage (p=0.001), higher TNM stage (p<0.001), poor differentiation (p<0.001), 

raised serum CRP (p<0.001), hypoalbuminaemia (p<0.001), good Klintrup score (p<0.001) 
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and raised cytoplasmic MMP-9 expression (p=0.099) had a p-value <0.1 and were 

therefore included in the multivariable Cox proportional hazards regression model. 

 On multivariable analysis, advancing age (HR 1.05 (95% CI 1.03 – 1.08), 

p<0.001), emergency presentation (HR 2.09 (95% CI 1.31 – 3.35), p=0.002), T-stage 

(when all subcategories were compared with T1 (T2 HR 1.18 (95% CI 0.34 – 4.13), (T3 

HR 1.34 (95% CI 0.42 – 4.29) and (T4 HR 2.38 (95% CI 0.73 – 7.75)), p=0.004), 

hypoalbuminaemia (HR 1.49 (95% CI 1.06 – 2.10), p=0.022) and good Klintrup score (HR 

0.50 (95% CI 0.33 – 0.75), p=0.001) were independently associated with poor overall 

survival (table 4.2).  

 

Influence of time dependency on outcome 

Only emergency presentation (p=0.018) retained significant time dependency when placed 

in the multivariable analysis with age (p=0.051) and serum albumin (p=0.174) becoming 

non-significant. 
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Table 4.2: The relationships between cytoplasmic MMP-9 expression, clinicopathological 
factors and overall survival in patients with CI colorectal cancer: univariable and 
multivariable analysis  

 

 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age 

Age x log(time) 

0.052 

-0.009 

<0.001 

0.012 

1.05 (1.03 – 1.08) 

0.99 (0.98 - 1.00) 

0.052 

-0.008 

<0.001 

0.051 

1.05 (1.03 – 1.08) 

0.99 (0.98 – 1.00) 
Sex  
     Female 
     Male 

 
 
-0.059 0.657 

1 
0.94 (0.73 – 1.22)    

Presentation 
     Elective 
     Emergency 
 
Presentation x log(time) 

 
 
1.135 
 
-0.175 

<0.001 
 
0.014 

1 
3.11 (2.05 – 4.73) 
 
0.84 (0.73 – 0.97) 

0.737 
 
-0.184 

0.002 
 
0.018 

1 
2.09 (1.31 – 3.35) 
 
0.83 (0.71 – 0.97) 

Tumour site 
     Right  
     Left 
     Rectum 

 
(0.000) 
-0.180 
-0.112 

 
0.490 
 
 

1 
0.84 (0.62 – 1.13) 
0.89 (0.64 – 1.25)    

T stage  
     1  
     2  
     3  
     4 

 
(0.000) 
-0.067 
0.342 
1.003 

 
<0.001 
 
 
 

 
1 
0.94 (0.38 – 2.33) 
1.41 (0.67 – 3.20) 
2.73 (1.23 – 6.23) 

(0.000) 
0.165 
0.291 
0.866 

 
0.004 
 
 
 

 
1 
1.18 (0.34 – 4.13) 
1.34 (0.42 – 4.29) 
2.38 (0.73 – 7.75) 

N stage 
     0 
     1 
     2 

 
(0.000) 
0.413 
0.905 

 
<0.001 
 
 

 
1 
1.51 (1.12 – 2.04) 
2.47 (1.72 – 3.55) 

 
 

 
0.096 
 
  

TNM stage 
     I 
     II 
     III 

 
(0.000) 
0.457 
0.915 

<0.001 
 
 

1 
1.58 (0.99 – 2.51) 
2.47 (1.72 – 3.95)  

0.225 
 
  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.715 

 
 
<0.001 

 
1 
2.05 (1.38 – 3.04)  

0.114 
  

Serum CRP  
     Normal  
     High 

 
 
0.796 <0.001 

1 
2.22 (1.64 – 3.00)  0.080  

Serum albumin  
     Normal  
     Low 
 
albumin x log(time) 

 
 
1.193 
 
-0.188 

 
<0.001 
 
0.013 

 
1 
3.30 (2.13 – 5.12) 
 
0.83 (0.72 – 0.96) 

 
0.399 
 
 

 
0.022 
 
0.174 

 
1 
1.49 (1.06– 2.10) 
 
 

Klintrup score 
     High 
     Low 

 
 
-0.803 <0.001 

1 
0.45 (0.32 – 0.63) -0.694 0.001 

1 
0.50 (0.33 – 0.75) 

Cytoplasmic MMP-9 
     Low 
     High 

 
 
0.220 

 
 
0.099 

1 
1.25 (0.96 – 1.62)  0.259  
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4.3.9 Association of cytoplasmic MMP-9 expression, clinicopathological 

factors and survival – MSI colorectal cancer 

During follow-up there were 10 (11.8%) recurrences and 33 (38.3%) deaths. It has been 

suggested that at least 10 - 25 events are required for each variable in a multivariable 

model. Based on the number of events noted above, no meaningful results can be 

generated by undertaking univariable or multivariable survival analysis exclusively on 

MSI patients. The relatively low number of patients and associated events makes the 

chance of incurring a type I or type II reporting error highly likely. Therefore, survival 

analysis has not been performed on the subset of patients with MSI colorectal cancer.   

 

4.4 The relationship between serum and tumour MMP-9 

expression, clinicopathological factors and survival 

4.4.1 Cohort description 

Core characteristics of the training, validation and serum cohort are shown in table 4.3. 

The serum cohort had a similar proportion of male patients to the training cohort. All 

patients in the serum cohort presented electively. There was a higher proportion of right 

sided and stage I tumours in the serum cohort compared to the training and validation 

cohorts.    
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Table 4.3: Comparison of proportionality of core clinicopathological factors between the 
training cohort, validation cohort and matched serum/tissue cohort (cohort 3) 

 
 
 
 
 
 
 
 
 
 

4.4.2 Experimental clinicopathological factors 

In addition to the basic patient demographics and tumour characteristics presented in 

section 4.4.1, tumour differentiation, serum CRP and serum albumin was also evaluated. 

Data on Klintrup score and MMR protein expression was not available for this cohort. All 

of the 95 patients in the serum cohort (cohort 3) had data on serum CRP and Albumin 

available. In this cohort, 95.8% of patients were considered well/moderately differentiated. 

In addition, 26.3% of patients had a raised serum CRP measurement and 32.6% were 

hypoalbuminaemic (table 4.4).   

 
 
 
 
 
 
 
 
 
 
 
 

Clinicopathological 
variables 

Training cohort 
(Cohort 1) n=182 

Validation cohort 
(Cohort 2) n=677 

Serum cohort 
(Cohort 3) n=95 

Age 
     Median +/- IQR 

 
70 (IQR 54 – 86) 

 
72 (IQR 57 - 87) 

 
69 (IQR 56 – 82) 

Sex  
     Female 
     Male 

 
42.3% 
57.7% 

 
49.1% 
50.9% 

 
44.2% 
55.8% 

Mode of presentation 
     Elective 
     Emergency 

 
95.6% 
4.4% 

 
70.4% 
29.6% 

 
100.0% 
0.0% 

Tumour Site 
     Colon 
     Rectum 

 
67.6% 
32.4% 

 
78.2% 
21.8% 

 
75.8% 
24.2% 

Tumour site enhanced 
     Right 
     Left 
     Rectum 

 
37.9% 
29.7% 
32.4% 

 
44.6% 
34.4% 
21.0% 

 
48.4% 
28.4% 
23.2% 

Tumour Stage 
     I 
     II 
     III 
     IV 

 
6.6% 
47.3% 
46.2% 
0.0% 

 
15.7% 
48.6% 
35.8% 
0.0% 

 
18.8% 
47.4% 
33.7% 
0.0% 



 278 

Table 4.4: Comparison of proportionality of experimental clinicopathological factors 
between the training cohort, validation cohort matched serum/tissue cohort (cohort 3) 

 
 
 
 
 
 
 

 

 

 

4.4.3 Tumoral MMP-9 expression 

Expression of MMP-9 was quantified using the weight histoscore in the nucleus, 

cytoplasm and membrane. Stromal MMP-9 expression was also quantified, as this area is 

available when using full tissue sections for immunohistochemical analysis. None of the 

representative areas from the tumours studied expressed MMP-9 in the nucleus or 

membrane. Nine tumours (9.5%) were negative for cytoplasmic MMP-9 immunoreactivity 

and all stromal areas exhibited MMP-9 expression. Using the categorisation process 

described in section 4.2.2.2 cytoplasmic and stromal MMP-9 measurements were 

dichotomised around the median. Therefore, 46.3% of patients had high cytoplasmic 

MMP-9 and 50.5% of patients had high stromal MMP-9 expression. 

 

4.4.3.1 Cytoplasmic MMP-9 expression 

Figure 4.28 demonstrates that the expression of tumour cell cytoplasm MMP-9 does not 

precisely follow any data distributions (histogram, figure 4.32). The measurements ranged 

from 0.00 – 200.00 and had a median of 110.00 (IQR 0.00 – 230.0).  

Clinicopathological 
variables 

Training cohort 
(Cohort 1) n=182 

Validation cohort 
(Cohort 2) n=677 

Serum cohort 
(Cohort 3) n=95 

Differentiation  
     Well/Moderate  
     Poor 

 
89.0% 
11.0% 

 
90.3% 
9.7% 

 
95.8% 
4.2% 

Serum CRP  
     Normal  
     High 

 
54.9% 
45.1% 

 
50.7% 
49.3%            n=533 

 
73.7% 
26.3% 

Serum albumin  
     Normal  
     Low 

 
86.3% 
13.7% 

 
73.4% 
26.6%            n=563 

 
67.4% 
32.6% 

Klintrup score 
     High 
     Low 

 
31.5% 
68.5% 

 
30.4% 
69.6% 

 
Not measured 

MMR status  
     MMR-P  
     MMR-D 

 
84.1% 
15.9% 

 
84.2% 
15.8% 

 
Not measured 
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Figure 4.32: Distribution of measurements for cancer cell cytoplasmic MMP-9  

Histogram demonstrating the distribution of cancer cell cytoplasmic MMP-9. Boxplot 
demonstrating the median measurement with interquartile range and outliers. 
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4.4.3.2 Stroma MMP-9 expression 

Figure 4.29 demonstrates that the expression of stromal MMP-9 does not precisely follow 

a normal distribution (histogram, figure 4.33), which is supported by a Shapiro-Wilk 

statistic of 0.934, df 95, p<0.001. The measurements ranged from 10.00 – 140.00 and had a 

median of 90.00 (IQR 30.00 – 150.00).  
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Figure 4.33: Distribution of measurements for cancer cell cytoplasmic MMP-9  

Histogram demonstrating the distribution of cancer cell cytoplasmic MMP-9. Q-Q Plot of 
cancer cell cytoplasmic MMP-9 measurements. Boxplot demonstrating the median 
measurement with interquartile range and outliers. 
 

4.4.4 Serum MMP-9 expression 

Serum MMP-9 concentration in the context of health and disease is poorly understood. To 

help establish MMP-9 as a potential biomarker in colorectal cancer we quantified the 

concentrations of MMP-9 in normal healthy controls (n=30) and cancer patients (n=95) 

thus giving an overall sum of n=125.  

 

4.4.4.1 Serum MMP-9 expression across all samples (n=125) 

Figure 4.30 demonstrates that the expression of serum MMP-9 follows an exponential 

distribution (histogram, figure 4.34). The measurements ranged from 0.00 – 367.23 ng/ml 

and had a median of 76.15 ng/ml (IQR 0.00 – 203.49 ng/ml).  
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Figure 4.34: Distribution of measurements of serum MMP-9  

Histogram demonstrating the distribution of serum MMP-9. Boxplot demonstrating the 
median measurement with interquartile range and outliers. 
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4.4.4.2 Serum MMP-9 expression stratified by healthy control or cancer patient status 

There was no significant difference in the measurements of serum MMP-9 between 

patients and healthy controls (p=0.060, Mann-Whitney U, figure 4.35). The serum MMP-9 

measurements in patients with colorectal cancer ranged from 0.00 – 367.23 ng/ml with a 

median of 65.25 ng/ml (IQR 0.00 – 175.00 ng/ml) compared with a range of 0.00 – 254.23 

ng/ml and a median of 137.14 (IQR 0.82 – 273.46 ng/ml) in the healthy control group.  

 

Figure 4.35: Serum MMP-9 concentration in patients and controls (p=0.060) 

 

4.4.4.3 Serum MMP-9 expression in cancer patients 

Figure 4.32 demonstrates that the expression of serum MMP-9 follows an exponential 

distribution (histogram, figure 4.36). The measurements ranged from 0.00 – 367.23 ng/ml 

and had a median of 65.25 ng/ml (IQR 0.00 – 175.10 ng/ml).  
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Figure 4.36: Distribution of measurements of serum MMP-9  

Histogram demonstrating the distribution of serum MMP-9. Boxplot demonstrating the 
median measurement with interquartile range and outliers. 
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4.4.4.4 Serum MMP-9 survival prediction and cutoff choice 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for serum MMP-9 as a continuous variable, and then categorised as a dichotomy 

around the median, tertiles and quartiles. The AUCs were 0.57 (95% CI 0.39 – 0.75, 

p=0.369) for serum MMP-9 as a continuous variable, 0.61 (95% CI 0.46 – 0.76, p=0.185) 

for serum MMP-9 as a median, 0.55 (95% CI 0.38 – 0.72, p=0.547) for serum MMP-9 as 

tertiles and an AUC of 0.57 (95% CI 0.39 – 0.75, p=0.397) for serum MMP-9 as quartiles. 

Furthermore, on review of the ROC curve, serum MMP-9 as a quartile closely follows that 

of continuous serum MMP-9 and therefore serum MMP-9 was dichotomised around the 

upper quartile which gave an AUC of 0.62 (95% CI 0.45 – 0.79, p=0.146) (figure 4.37).  

 

Figure 4.37: The predictive value of serum MMP-9 in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of serum MMP-
9 in identifying patients who will develop cancer recurrence. 
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4.4.5 Cytoplasmic MMP-9 association with clinicopathological factors 

4.4.5.1 Assessment of cytoplasmic MMP-9 as a continuous variable across different 

groups of categorical clinicopathological factors 

None of the clinicopathological factors studied were associated with raised cytoplasmic 

MMP-9 expression. Gender (p=0.533, Mann-Whitney U), tumour site (p=0.121, Kruskal-

Wallis), T-stage (p=0.604, Kruskal-Wallis), N-stage (p=0.869, Kruskal-Wallis), TNM 

stage (p=0.784, Kruskal-Wallis), tumour differentiation (p=0.186, Mann-Whitney U), 

categorical serum CRP (p=0.722, Mann-Whitney U) and categorical serum albumin 

(p=0.334, Mann-Whitney U) were not associated with continuous cytoplasmic MMP-9 

expression. 

 

4.4.5.2 Assessment of cytoplasmic MMP-9 as a continuous variable across different 

continuous data types of clinicopathological factors 

On Spearman’s rank test cytoplasmic MMP-9 was not associated with age (SCC 0.087, 

p=0.401), serum CRP (SCC 0.020, p=847) or serum albumin (SCC -0.182, p=0.078) 

 

4.4.5.3 Assessment of cytoplasmic MMP-9 associations with clinicopathological 

factors: categorical data type 

Raised cytoplasmic MMP-9 was not associated with any of the clinicopathological factors 

studied (table 4.5). Gender (p=0.821), tumour site (colon vs rectum) (p=0.203), tumour site 

(right vs left vs rectum) (p=0.081), tumour differentiation (p=0.621), T-stage (p=0.571), N-

stage (p=0.868), TNM stage (p=0.921), serum CRP (p=0.844) and serum albumin 

(p=0.778) were not associated with categorical cytoplasmic MMP-9 expression (table 4.5). 
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Table 4.5: The relationship between tumour cytoplasmic MMP-9 expression and 
clinicopathological factors 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Bonferroni adjustment = <0.0056 
* Fishers exact test 
 

4.4.6 Stromal MMP-9 association with clinicopathological factors 

4.4.6.1 Assessment of stromal MMP-9 as a continuous variable across different groups 

of categorical clinicopathological factors 

Only female gender (p=0.036, Mann-Whitney U) showed a trend towards an association 

with higher stromal MMP-9 expression, however, this was not significant following 

Bonferroni adjustment (p<0.0056). Tumour site (p=0.353, Kruskal-Wallis), tumour 

differentiation (p=0.865, Mann-Whitney U), T-stage (p=0.383, Kruskal-Wallis), N-stage 

Clinicopathological 
factors 

Low cytoplasmic 
MMP-9 expression 

High cytoplasmic 
MMP-9 expression 

p-value 

Sex 
     Female 
     Male 

 
22 (43.1%) 
29 (56.9%) 

 
20 (45.5%) 
24 (54.5%) 

 
0.821 

Tumour Site 
     Colon 
     Rectum 

 
36 (70.6%) 
15 (29.4%) 

 
36 (81.8%) 
8 (18.2%) 

 
0.203 

Tumour Site 
     Right 
     Left 
     Rectum 

 
26 (51.0%) 
10 (19.6%) 
15 (29.4%) 

 
20 (45.5%) 
17 (38.6%) 
7 (15.9%) 

 
0.081 

Differentiation 
     Well-Mod 
     Poor 

 
48 (94.1%) 
3 (5.9%) 

 
43 (97.7%) 
1 (2.3%) 

 
0.621 

T stage 
     1 
     2 
     3 
     4 

 
5 (9.8%) 
7 (13.7%) 
30 (58.8%) 
9 (17.6%) 

 
2 (4.5%) 
9 (20.5%) 
23 (52.3%) 
10 (22.7%) 

 
0.571 

N stage 
     0 
     1 
     2 

 
34 (66.7%) 
11 (21.6%) 
6 (11.8%) 

 
29 (65.9%) 
11 (25.0%) 
4 (9.1%) 

 
0.868 

TNM stage 
(simplified) 
     I 
     II 
     III 

 
 
9 (17.6%) 
25 (49.0%) 
17 (33.3%) 

 
 
9 (20.0%) 
20 (45.5%) 
15 (34.1%) 

 
 
0.921 

Serum CRP 
     Normal 
     High 

 
38 (74.5%) 
13 (25.5%) 

 
32 (72.7%) 
12 (27.3%) 

 
0.844 

Serum albumin 
     Normal 
     Low 

 
35 (68.6%) 
16 (31.4%) 

 
29 (65.9%) 
15 (34.1%) 

 
0.778 
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(p=0.981, Kruskal-Wallis), TNM stage (p=0.797, Kruskal-Wallis), categorical serum CRP 

(p=0.644, Mann-Whitney U) and categorical serum albumin (p=0.059, Mann-Whitney U) 

were not associated with continuous stromal MMP-9 expression.  

 

4.4.6.2 Assessment of stromal MMP-9 as a continuous variable across different 

continuous data types of clinicopathological factors 

On Spearman’s rank test stromal MMP-9 was not associated with age (SCC -0.098, 

p=0.347), serum CRP (SCC 0.034, p=0.744) or serum albumin (SCC -0.175, p=0.090) 

 

4.4.6.3 Assessment of stromal MMP-9 associations with clinicopathological factors: 

categorical data type 

Raised stromal MMP-9 was not associated with any of the clinicopathological factors 

studied (table 4.6). Gender (p=0.118), tumour site (colon vs rectum) (p=0.209), tumour site 

(right vs left vs rectum) (p=0.464), tumour differentiation (p=0.983), T-stage (p=0.660), N-

stage (p=0.855), TNM stage (p=0.854), serum CRP (p=0.526) and serum albumin 

(p=0.144) were not associated with categorical stromal MMP-9 expression (table 4.6) 
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Table 4.6: The relationship between tumour stromal MMP-9 expression and 
clinicopathological factors 

 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Bonferroni adjustment = <0.0056 
* Fishers exact test 
 

4.4.7 Serum MMP-9 association with clinicopathological factors 

4.4.7.1 Assessment of serum MMP-9 as a continuous variable across different groups 

of categorical clinicopathological factors 

Only poor tumour differentiation (p=0.039, Mann-Whitney U) showed a trend towards an 

association with higher serum MMP-9 expression, however, this was not significant 

following Bonferroni adjustment (p<0.0056). Gender (p=0.633, Mann-Whitney U), tumour 

site (p=0.193, Kruskal-Wallis), tumour differentiation (p=0.039, Mann-Whitney U), T-

stage (p=0.849, Kruskal-Wallis), N-stage (p=0.718, Kruskal-Wallis), TNM stage (p=0.610, 

Clinicopathological 
factors 

Low stromal MMP-9 
expression 

High stromal MMP-9 
expression 

p-value 

Sex 
     Female 
     Male 

 
17 (36.2%) 
30 (63.8%) 

 
25 (52.1%) 
23 (47.9%) 

 
0.118 

Tumour Site 
     Colon 
     Rectum 

 
33 (70.2%) 
14 (29.8%) 

 
39 (81.2%) 
9 (18.8%) 

 
0.209 

Tumour Site 
     Right 
     Left 
     Rectum 

 
20 (42.6%) 
14 (29.8%) 
13 (27.7%) 

 
26 (54.2%) 
13 (27.1%) 
9 (18.8%) 

 
0.464 

Differentiation 
     Well-Mod 
     Poor 

 
45 (95.7%) 
2 (4.3%) 

 
46 (95.8%) 
2 (4.2%) 

 
0.983 

T stage 
     1 
     2 
     3 
     4 

 
5 (10.6%) 
7 (14.9%) 
26 (55.3%) 
9 (19.1%) 

 
2 (4.2%) 
9 (18.8%) 
27 (56.2%) 
10 (20.8%) 

 
0.660 

N stage 
     0 
     1 
     2 

 
30 (63.8%) 
12 (25.5%) 
5 (10.6%) 

 
33 (68.8%) 
10 (20.8%) 
5 (10.4%) 

 
0.855 

TNM stage 
(simplified) 
     I 
     II 
     III 

 
 
9 (19.1%) 
21 (44.7%) 
17 (36.2%) 

 
 
9 (18.8%) 
24 (50.0%) 
15 (31.2%) 

 
 
0.854 

Serum CRP 
     Normal 
     High 

 
36 (76.6%) 
11 (23.4%) 

 
34 (70.8%) 
14 (29.2%) 

 
0.526 

Serum albumin 
     Normal 
     Low 

 
35 (74.5%) 
12 (25.5%) 

 
29 (60.4%) 
19 (39.6%) 

 
0.144 
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Kruskal-Wallis) categorical serum CRP (p=0.548, Mann-Whitney U), categorical serum 

albumin (p=0.162, Mann-Whitney U) were not associated with continuous serum MMP-9 

expression.  

 

4.4.7.2 Assessment of serum MMP-9 as a continuous variable across different 

continuous data types of clinicopathological factors 

On Spearman’s rank test serum MMP-9 was not associated with Age (SCC -0.083, 

p=0.714), serum CRP (SCC -0.001, p=0.996) or serum albumin (SCC -0.095, p=0.360) 

 

4.4.7.3 Assessment of serum MMP-9 associations with clinicopathological factors: 

categorical data type 

Raised serum MMP-9 was not associated with any of the clinicopathological factors 

studied following Bonferroni adjustment (p<0.0056). Gender (p=0.470), tumour site (colon 

vs rectum) (p=0.719), tumour site (right vs left vs rectum) (p=0.695), tumour 

differentiation (p=0.307), T-stage (p=0.025), N-stage (p=0.247), TNM stage (p=0.749), 

serum CRP (p=0.244) and serum albumin (p=0.512) were not associated with categorical 

serum MMP-9 expression (table 4.7). 
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Table 4.7: The relationship between tumour serum MMP-9 expression and 
clinicopathological factors 

 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bonferroni adjustment = <0.0056 
* Fishers exact test 

 

4.4.8 MMP-9 interrelationships 

To adjust for multiple correlations we used the Bonferroni method for adjusting alpha for 

multiple comparisons. For correlations to be significant a p-value must be less than 

p<0.0167 and a Spearman’s correlation coefficient greater than 0.300 or less than -0.300. 

Serum MMP-9 was associated with higher stomal MMP-9 expression (SCC 0.319, 

p=0.002, figure 4.38) and cytoplasmic MMP-9 expression (SCC 0.393, p<0.001, figure 

4.39) (table 4.8). Stromal MMP-9 correlated with higher cytoplasmic MMP-9 expression 

levels of cytoplasmic MMP-9 (SCC 0.699, p<0.001, figure 4.40) (table 4.8).   

 

Clinicopathological 
factors 

Low serum MMP-9 
expression 

High serum MMP-9 
expression 

p-value 

Sex 
     Female 
     Male 

 
35 (46.1%) 
41 (53.9%) 

 
7 (36.8%) 
12 (63.2%) 

 
0.470 

Tumour Site 
     Colon 
     Rectum 

 
57 (75.0%) 
19 (25.0%) 

 
15 (78.9%) 
4 (21.1%) 

 
0.719 

Tumour Site 
     Right 
     Left 
     Rectum 

 
36 (47.4&) 
21 (27.6%) 
19 (25.0%) 

 
10 (52.6%) 
6 (31.6%) 
3 (15.8%) 

 
0.695 

Differentiation 
     Well-Mod 
     Poor 

 
72 (94.7%) 
4 (5.3%) 

 
19 (100.0%) 
0 (0.0%) 

 
0.307 

T stage 
     1 
     2 
     3 
     4 

 
7 (9.2%) 
12 (15.8%) 
46 (60.5%) 
11 (14.5%) 

 
0 (0.0%) 
4 (21.1%) 
7 (36.8%) 
8 (42.1%) 

 
0.025 

N stage 
     0 
     1 
     2 

 
49 (64.5%) 
17 (22.4%) 
10 (13.2%) 

 
14 (73.7%) 
5 (26.3%) 
0 (0.0%) 

 
0.247 

TNM stage 
(simplified) 
     I 
     II 
     III 

 
 
14 (18.4%) 
35 (46.1%) 
27 (35.5%) 

 
 
4 (21.1%) 
10 (52.6%) 
5 (26.3%) 

 
 
0.749 

Serum CRP 
     Normal 
     High 

 
58 (76.3%) 
18 (23.7%) 

 
12 (63.2%) 
7 (36.8%) 

 
0.244 

Serum albumin 
     Normal 
     Low 

 
50 (65.8%) 
26 (34.2%) 

 
14 (73.7%) 
5 (26.3%) 

 
0.512 
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Table 4.8: Spearman correlation coefficients for the assessment of interrelationships 
between serum and tumour MMP-9 expression 

 
 

 

 

 

 

 

 
Figure 4.38: Correlation between serum MMP-9 and stromal MMP-9 expression 
(p=0.002, SCC 0.319)  

 

  Stromal 
MMP-9 

Cytoplasmic 
MMP-9 

Serum MMP-9 SCC 0.319 0.393 

 P-value 0.002 <0.001 

Stromal MMP-9 SCC  0.684 

 P-value  <0.001 



 293 

 
Figure 4.39: Correlation between serum MMP-9 and cytoplasmic MMP-9 expression 
(p<0.001, SCC 0.393)  

 

 
Figure 4.40: Correlation between Cytoplasmic MMP-9 and stromal MMP-9 expression 
(p<0.001, SCC 0.686)  
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4.4.9 Association of MMP-9 expression, clinicopathological factors and 

survival 

During follow-up there were 15 (22.2%) recurrences and 20 (38.4%) deaths.  

 

4.4.9.1 Univariable recurrence-free survival - cytoplasmic MMP-9 expression 

Tumour cytoplasmic MMP-9 measurements were not significantly different in patients 

who went on to develop disease recurrence (p=0.263, Mann-Whitney U, figure 4.41). The 

median for patients with recurrence was 120.00 (IQR 60.00 – 180.00) compared with 

100.00 (IQR 0.00 – 225.00) in the non-recurrence group.  

 

Figure 4.41: The distribution of cytoplasmic MMP-9 measurements in patients with and 
without disease recurrence (p=0.263) 

 

On logrank analysis, raised cytoplasmic MMP-9 was not significantly associated with poor 

recurrence-free survival (p=0.226, figure 4.42). The mean survival for patients with a 

raised cytoplasmic MMP-9 was 49.7 months (95% CI 43.7 – 55.8) compared with 55.1 

months (95% CI 51.5 – 58.8) in the low cytoplasmic MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 51 48 44 41 22 20 8 

High 44 38 34 33 8 6 4 

Figure 4.42: The relationship between cytoplasmic MMP-9 expression and recurrence-
free survival in patients with colorectal cancer (p=0.226) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic MMP-9 was not significantly 

associated with poor recurrence-free survival when dichotomised as a categorical variable 

(HR 1.87 (95% CI 0.67 – 5.27), p=0.233) or as a continuous variable (HR 1.01 (95% CI 

1.00 – 1.01), p=0.191). In addition to the non-significant associations observed between 

cytoplasmic MMP-9 expression and disease recurrence, its predictive value was poor. 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 0.59 

(95% CI 0.44 – 0.74, p=0.264) for cytoplasmic MMP-9 as a continuous variable and an 

AUC of 0.58 (95% CI 0.42 – 0.74, p=0.320) for cytoplasmic MMP-9 as a categorical 

variable (figure 4.43). 
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Figure 4.43: The predictive value of cytoplasmic MMP-9 in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will develop disease recurrence. 
 

4.4.9.2 Univariable recurrence-free survival - stromal MMP-9 expression 

There was no statistically significant difference between stromal MMP-9 measurements of 

patients who did and did not develop cancer recurrence during follow-up (p=0.717, Mann-

Whitney U, figure 4.44). The median stromal MMP-9 measurement was 80.00 (IQR 60.00 

– 100.00) in the recurrence group compared to 80.00 (IQR 20.00 – 140.00) in the non-

recurrence group.  
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Figure 4.44: The distribution of stromal MMP-9 measurements in patients with and 
without cancer recurrence (p=0.717) 

 

On logrank analysis raised stromal MMP-9 was not associated with poor recurrence-free 

survival (p=0.375, figure 4.45). The mean survival for patients with raised stromal MMP-9 

was 50.8 months (95% CI 45.3 – 56.2) compared with 54.5 months (95% CI 50.2 – 58.7) 

in the low stromal MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Low 47 43 42 39 21 19 6 

High 48 43 36 35 9 7 6 

Figure 4.45: The relationship between stromal MMP-9 expression and recurrence-free 
survival (p=0.375) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
stromal MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis stromal MMP-9 was not associated with poor 

recurrence free survival when dichotomised as a categorical variable (HR 1.59 (95% CI 

0.57 – 4.47), p=0.379) or as a continuous variable (HR 1.01 (95% CI 1.00 – 1.02), 

p=0.524). In addition to the non-significant associations observed between stromal MMP-9 

and disease recurrence, its predictive value is relatively poor. When ROC analysis was 

performed using recurrence as the endpoint, the AUC was 0.53 (95% CI 0.40 – 0.66, 

p=0.721) for stromal MMP-9 as a continuous variable and an AUC of 0.56 (95% CI 0.40 – 

0.71, p=0.491) for stromal MMP-9 as a categorical variable (figure 4.46).  
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Figure 4.46: Predictive value of stromal MMP-9 in identifying patients who will develop 
cancer recurrence 

Receiver-operator-characteristic curve demonstrating the predictive value of stromal 
MMP-9 in identifying patients who will develop cancer recurrence during follow-up.  
 

4.4.9.3 Univariable recurrence-free survival - serum MMP-9 expression 

Serum MMP-9 measurements were higher in patients who went on to develop cancer 

recurrence (p=0.369, Mann-Whitney U, figure 4.47). The median for patients with 

recurrence was 106.80 ng/ml (IQR 0.00 – 281.52 ng/ml) compared with 59.23 ng/ml (IQR 

0.00 – 161.99 ng/ml) in the non-recurrence group.  
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Figure 4.47: The distribution of serum MMP-9 measurements in patients with and without 
disease recurrence (p=0.369) 

 

On logrank analysis, raised serum MMP-9 was significantly associated with poor 

recurrence free survival (p=0.014, figure 4.48). The mean survival for patients with a 

raised serum MMP-9 was 40.9 months (95% CI 31.1 – 50.7) compared with 54.7 months 

(95% CI 51.4 – 58.0) in the low serum MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 76 71 66 63 29 24 12 

High 19 15 12 11 1 1 0 

Figure 4.48: The relationship between serum MMP-9 expression and recurrence-free 
survival in patients with colorectal cancer (p=0.014) 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by serum 
MMP-9 expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum MMP-9 was significantly associated 

with poor recurrence free survival when dichotomised as a categorical variable (HR 3.37 

(95% CI 1.20 – 9.48), p=0.021) but not as a continuous variable (HR 1.00 (95% CI 1.00 – 

1.01), p=0.117). Despite the significant associations observed between serum MMP-9 and 

disease recurrence, its predictive value remains poor. When ROC analysis was performed 

using recurrence as the endpoint, the AUC was 0.62 (95% CI 0.45 – 0.79, p=0.146) for 

serum MMP-9 as a categorical variable. 
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4.4.9.4 Univariable Overall survival - cytoplasmic MMP-9 expression 

Cytoplasmic MMP-9 measurements were not statistically higher in patients who died 

during the follow up period (p=0.445, Mann-Whitney U, figure 4.49). The median 

measurement for patients who died was 120.00 (IQR 47.50 – 192.50) compared with 

100.00 (IQR 0.00 – 230.00) in the alive group.  

 

Figure 4.49: The distribution of cytoplasmic MMP-9 measurements in patients stratified 
by survival status (p=0.445) 

 

On logrank analysis, raised cytoplasmic MMP-9 expression was not significantly 

associated with poor overall survival (p=0.209, figure 4.50). The mean survival for patients 

with a raised cytoplasmic MMP-9 expression was 48.7 months (95% CI 42.9 – 54.5) 

compared with 52.8 months (95% CI 48.3 – 57.4) in the low cytoplasmic MMP-9 

expression group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Low 51 49 46 43 23 21 8 

High 44 42 39 38 8 6 4 

 
Figure 4.50: The relationship between cytoplasmic MMP-9 expression and overall 
survival in patients with colorectal cancer (p=0.209) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
cytoplasmic MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic MMP-9 was not significantly 

associated with poor overall survival when dichotomised as a categorical variable (HR 

1.77 (95% CI 0.72 – 4.34), p=0.215) or when analysed as a continuous variable (HR 1.01 

95% CI 1.00 – 1.01, p=0.157). In addition to the non-significant associations with survival, 

cytoplasmic MMP-9 did not predict death during the follow up period as a categorical 

variable (AUC of 0.56 (95% CI 0.43 – 0.68, p=0.446), ROC analysis) or continuous 

variable (AUC of 0.56 (95% CI 0.41 – 0.70, p=0.451), ROC analysis), (figure 4.51).  
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Figure 4.51: Predictive value of cytoplasmic MMP-9 in identifying patients who will die 
during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
MMP-9 in identifying patients who will die during follow-up.  
 

4.4.9.5 Univariable overall survival - stromal MMP-9 expression 

Stromal MMP-9 measurements were not significantly different in patients who died during 

the follow up period (p=0.114, Mann-Whitney U, figure 4.52). The median stromal MMP-

9 was 80.00 (IQR 20.00 – 140.00) in the alive group compared to 95.00 (IQR 55.00 – 

135.00) in patients who died during follow-up.  
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Figure 4.52: The distribution of stromal MMP-9 measurements in patients stratified by 
survival status (p=0.114) 

 

On logrank analysis stromal MMP-9 was not associated with poor overall survival 

(p=0.064, figure 4.53). The mean survival for patients with raised stromal MMP-9 was 

47.5 months (95% CI 41.8 – 53.2) compared with 54.1 months (95% CI 49.9 – 58.4) in the 

low stromal MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 47 45 44 41 22 20 6 

Low 48 46 41 40 9 7 6 

Figure 4.53: The relationship between stromal MMP-9 expression and overall survival in 
patients with colorectal cancer (p=0.064) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
stromal MMP-9 expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis stromal MMP-9 was not significantly associated 

with poor overall survival when dichotomised as a categorical variable (HR 2.35 (95% CI 

0.93 – 5.96), p=0.072) however, the hazard ratio was significant when stromal MMP-9 was 

included as a continuous variable (HR 1.02 (95% CI 1.00 – 1.03), p=0.050). In addition to 

the associations with survival, stromal MMP-9 did not predict death during the follow up 

period as a categorical variable (AUC of 0.59 (95% CI 0.45 – 0.73, p=0.209), ROC 

analysis) or continuous variable (AUC of 0.61 (95% CI 0.49 – 0.74, p=0.119), ROC 

analysis), (figure 4.54). 
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Figure 4.54: Predictive value of stromal MMP-9 in identifying patients who will die 
during follow-up 

(A) Receiver-operator-characteristic curve demonstrating the predictive value of stromal 
MMP-9 in identifying patients who will die during follow-up.  
 

4.4.9.6 Univariable overall survival - serum MMP-9 expression 

Serum MMP-9 measurements were not higher in patients who died during follow-up 

(p=0.108, Mann-Whitney U, figure 4.55). The median for patients who died was 126.34 

ng/ml (IQR 0.00 – 282.62 ng/ml) compared with 58.46 ng/ml (IQR 0.00– 154.32 ng/ml) in 

the alive group.  
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Figure 4.55: The distribution of serum MMP-9 measurements in patients stratified by 
survival status (p=0.108) 

 

On logrank analysis, raised serum MMP-9 expression was not associated with poor overall 

survival (p=0.012, figure 4.56). The mean survival for patients with a raised serum MMP-9 

was 40.2 months (95% CI 30.7 – 49.8) compared with 53.3 months (95% CI 49.9 – 56.8) 

in the low serum MMP-9 group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 76 74 70 67 31 26 12 

High 19 17 15 14 1 1 0 

Figure 4.56: The relationship between serum MMP-9 expression and overall survival in 
patients with colorectal cancer (p=0.012) 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by serum 
MMP-9 expression status. Beneath, there is a survival table demonstrating the number of 
patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised serum MMP-9 expression was associated 

with poor overall survival when dichotomised as a categorical variable (HR 3.16 (95% CI 

1.22 – 8.15), p=0.018) and as a continuous variable (HR 1.01 95% CI 1.00 – 1.01, 

p=0.008). In addition to the associations with survival, serum MMP-9 did not predict death 

during follow-up as a categorical variable (AUC of 0.60 (95% CI 0.45 – 0.74, p=0.193), 

ROC analysis) or continuous variable (AUC of 0.62 (95% CI 0.47 – 0.77, p=0.108), ROC 

analysis), (figure 4.57). 
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Figure 4.57: Predictive value of serum MMP-9 in identifying patients who will die during 
follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of serum MMP-
9 in identifying patients who will die during follow-up 
 

4.4.9.7 Multivariable recurrence-free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described previously.  

 

Univariable survival analysis 

On univariable analysis, only N-stage (when compared with N0, N1 HR 3.52 (95% CI 1.07 

– 11.54) and N2 (HR 5.96 (95% CI 1.60 – 22.24), p=0.020) and raised serum MMP-9 (HR 

1.59 (95% CI 0.57 – 4.47), p=0.021) was associated with poor recurrence-free survival 

(table 4.9).    

 

Multivariable analysis 

It has been suggested that at least 10 - 25 events are required for each variable in a 

multivariable model. Based on the number of events noted above, no meaningful results 

can be generated by undertaking multivariable survival on this cohort of 95 patients. The 

relatively low number of patients and associated recurrence events (n=15) makes the 

chance of incurring a type 1 or type 2 reporting error highly likely. Therefore, 

multivariable survival analysis has not been performed on this cohort of patients.  
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Table 4.9: The relationships between MMP-9 expression, clinicopathological factors and 
recurrence-free survival: univariable analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.9.8 Multivariable overall survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described previously.  

 
Univariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) 

Age -0.002 0.929 1.00 (0.95 - 1.05) 
Sex  
     Female 
     Male 

 
 
0.806 0.168 

1 
2.24 (0.71 – 7.03) 

Tumour site 
     Colon 
     Rectum 

 
 
-0.229 0.722 

1 
0.80 (0.22 – 2.82) 

Tumour site 
     Right  
     Left 
     Rectum 

 
(0.000) 
-0.155 
-0.284 

 
0.908 
 
 

1 
0.86 (0.26 – 2.85) 
0.75 (0.20 – 2.84) 

T stage  
     1  
     2  
     3  
     4 

 
(0.000) 
9.212 
10.196 
10.799 

 
0.473 
 
 
 

 
1 
10017.65 (0.00 – 3.45e137) 
26790.72 (0.00 – 9.18e137) 
48965.89 (0.00 – 1.68e138) 

N stage 
     0 
     1 
     2 

 
(0.000) 
1.258 
1.785 

 
0.020 
 
 

 
1 
3.52 (1.07 – 11.54) 
5.96 (1.60 – 22.24) 

TNM stage 
     I 
     II 
     III 

 
(0.000) 
9.978 
11.078 

0.133 
 
 

1 
21539.76 (0.00 – 6.14e93) 
64761.62 (0.00 – 1.84e94) 

Differentiation  
     Well/Moderate  
     Poor 

 
 
1.300 

 
 
0.087 

 
1 
3.67 (0.83 – 16.27) 

Serum CRP  
     Normal  
     High 

 
 
-0.294 0.648 

1 
0.75 (0.21 – 2.64) 

Serum albumin  
     Normal  
     Low 

 
 
-0.280 

 
0.631 

 
1 
0.76 (0.24 – 2.37) 

Cytoplasmic MMP-9 
     Low 
     High 

 
 
0.628 

 
 
0.233 

1 
1.87 (0.67 – 5.27) 

Stromal MMP-9 
     Low 
     High 

 
 
0.464 

 
 
0.379 

1 
1.59 (0.57 – 4.47) 

Serum MMP-9 
     Low 
     High 

 
 
1.215 

 
 
0.021 

1 
3.37 (1.20 – 9.48) 
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Univariable survival analysis 

On univariable analysis, only serum MMP-9 (HR 3.16 (95% CI 1.22 – 8.15), p=0.018) was 

associated with poor overall survival. Stromal MMP-9 (HR 2.35 (95% CI 0.93 – 5.96), 

p=0.072) showed a trend towards an association with overall survival (p<0.1), however 

this was not statistically significant (table 4.10). 

 

Multivariable analysis 

It has been suggested that at least 10 - 25 events are required for each variable in a 

multivariable model. Based on the number of events noted above, no meaningful results 

can be generated by undertaking multivariable survival on this cohort of 95 patients. The 

relatively low number of patients and associated death events (n=20) makes the chance of 

incurring a type 1 or type 2 reporting error highly likely. Therefore, multivariable survival 

analysis was not been performed on this cohort of patients. 
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Table 4.10: The relationship between MMP-9 expression, clinicopathological factors and 
overall survival: univariable and multivariable analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Univariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) 

Age 0.015 0.503 1.02 (0.97 - 1.06) 
Sex  
     Female 
     Male 

 
 
-0.163 0.722 

1 
1.18 (0.48 – 2.88) 

Tumour site 
     Colon 
     Rectum 

 
 
0.244 0.618 

1 
1.28 (0.49 – 3.33) 

Tumour site 
     Right  
     Left 
     Rectum 

 
(0.000) 
-0.381 
-0.121 

 
0.808 
 
 

1 
0.68 (0.22 – 2.15) 
0.89 (0.31 – 2.55) 

T stage  
     1  
     2  
     3  
     4 

 
(0.000) 
-0.539 
-0.782 
0.088 

 
0.379 
 
 
 

 
1 
0.58 (0.10 – 3.50) 
0.46 (0.10 – 2.13) 
1.09 (0.22 – 5.42) 

N stage 
     0 
     1 
     2 

 
(0.000) 
-0.519 
0.910 

 
0.147 
 
 

 
1 
0.60 (0.17 – 2.09) 
2.48 (0.80 – 7.68) 

TNM stage 
     I 
     II 
     III 

 
(0.000) 
-0.173 
-0.072 

0.954 
 
 

1 
0.84 (0.26 – 2.73) 
0.93 (0.72 – 3.18) 

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.553 

 
 
0.592 

 
1 
1.74 (0.23 – 13.19) 

Serum CRP  
     Normal  
     High 

 
 
0.748 0.102 

1 
2.11 (0.86 – 5.17) 

Serum albumin  
     Normal  
     Low 

 
 
-0.125 

 
0.798 

 
1 
0.88 (0.34 – 2.30) 

Cytoplasmic MMP-9 
     Low 
     High 

 
 
0.569 

 
 
0.215 

1 
1.77 (0.72 – 4.34) 

Stromal MMP-9 
     Low 
     High 

 
 
0.854 

 
 
0.072 

1 
2.35 (0.93 – 5.96) 

Serum MMP-9 
     Low 
     High 

 
 
1.149 

 
 
0.018 

1 
3.16 (1.22 – 8.15) 
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4.5 Discussion 

4.5.1 Summary of the novel results 

The main novel finding within this chapter is the association of serum MMP-9 expression 

with poor survival. Furthermore, serum MMP-9 was associated with stromal and cancer 

cell MMP-9 expression.  

 

4.5.2 Strengths and limitations 

4.5.2.1 Strengths 

This study has several strengths including the sample size of the validation cohort, the 

follow up data and treatment standards, which have been discussed previously. In addition 

to these, blood markers for CRP, albumin and MSI analysis were performed in an 

accredited NHS laboratory.   

 

4.5.2.2 Limitations 

Data sampling, power and survival modeling 

The limitations regarding statistical power during the sub-division of the validation cohort, 

the relative weakness of the survival endpoints and the absence of previously reported 

prognostic clinicopathological factors in the multivariable model have been discussed 

previously. In addition, the sample size of cohort 3 is also associated with a significant risk 

of type II errors. This may explain why factors that are normally associated with poor 

outcome did not reach statistical significance.  

 

Tissue preparation and scientific techniques 

The difficulties and limitations relating to tissue dissection, tumour sampling and the 

accurate evaluation of biomarker expression have been discussed previously. The 

immunohistochemistry technique is associated with inherent limitations. These have been 

discussed previously, however, they relating to non-specific binding of the primary 

antibody and secondary amplification molecules to non-targeted proteins and the nature of 

immunohistochemistry quantifications is open to human error. Immunohistochemistry is 

fundamentally very difficult to quantitate and the most reliable method would be to 

undertake grain counting using a radioactive label, which would only quantify the antibody 

and not the antigen. A further specific immunohistochemistry limitation of the studies 
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presented in this chapter is that the MMP-9 antibody used cannot differentiate between the 

active and inactive forms of the protein. Unfortunately, given the structure of the MMP-9 

protein there are no antibodies available, which can identify the active form of the protein 

and therefore even low expressing tumours, may contain a higher proportion of active 

MMP-9. A possible solution would be to use western blot to identify the presence of active 

(88 kDa) MMP-9 in laser captured cancer cell lysates, however, this method of protein 

identification is not reliably accurate when trying to determine expression levels and a 

robust and validated method is needed.   

 

4.5.3 Discussion of the results 

4.5.3.1 MMP-9 expression and survival 

This is the first study to show that serum MMP-9 expression is associated with poor 

recurrence free survival and therefore there are no confirmatory studies available to 

validate this finding. Previous studies examining prognosis in patients with colorectal 

cancer have concentrated on tumoural expression of MMP-9. Cytoplasmic MMP-9 

expression was not associated with survival in the validation cohort and the associations 

observed in the training cohort may represent a type I error. A metanalysis of 9 studies 

containing a total of 1674 patients showed that tumour MMP-9 overexpression was 

associated with poorer recurrence-free and overall survival (Li, 2013). Although Chun et al 

observed these associations with survival, not all studies were significant. Furthermore, the 

metanalysis was limited by including studies that used either immunohistochemistry or 

PCR methods for quantifying MMP-9 expression. In addition, the antibodies utilised 

varied and included those that are commercially available and those privately 

manufactured as part of a research collaboration. Given the heterogeneity in 

immunohistochemistry methodology and immunoreactivity quantification the reported 

observations between tumour MMP-9 expression and survival, in the medical literature, 

must be interpreted with caution and similar problems may explain, in part, why so few 

biomarkers become routinely used in clinical practice.  

The failure to observe a significant relationship between MMP-9 expression in the 

cytoplasm and survival in the validation cohort could be explained by the MMP-9 antibody 

binding to both active and inactive forms of the protein or the inability to score stroma 

expression given the use of a TMA for tumour tissue quantification. In the serum/tumour 

cohort, stromal immunoreactivity for MMP-9 was trending towards being significantly 
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associated with poor overall survival (HR 2.35 (95% CI (0.93 – 5.96); p=0.072) however 

this may represent a type II error given the relatively small sample number.  

 

4.5.3.2 MMP-9 expression and colorectal cancer 

The results of this study suggest that MMP-9 plays an important role in tumour 

progression with serum MMP-9 being associated with advanced TNM stage. The findings 

by Zeng et al support these observations when they found that MMP-9 was higher in 

metastasis compared to the primary (Zeng, 1995) and higher levels were also expressed in 

more advanced tumours (Zeng, 1995). These studies used mRNA levels for MMP-9 

quantification, which incorporates all tumoural areas and thus all sources of MMP-9 

production. Our method of quantification specifically looked at tumour cell cytoplasm in 

the validation cohort and tumour cell cytoplasm and stroma in the serum/tissue cohort. It is 

possible that MMP-9 exerts its biological effect in the stroma as degradation of the 

connective tissue will help with tumour cell invasion and metastasis and this may be the 

optimum tumoral region for biomarker quantification; this requires further study.   

Serum MMP-9 expression in colorectal cancer has been studied previously, 

however, this was the first study to examine its prognostic value (Tutton, 2003). Despite 

exhibiting powerful prognostic value, we found no significant difference between serum 

MMP-9 in patients and controls. Although this seems paradoxical, similarities can be 

drawn to other biomarkers that are not cancer specific such as the neutrophil-lymphocyte 

ratio, CRP and hypoalbuminaemia. It is therefore possible that MMP-9 expression is not 

cancer specific and may be highly expressed because of other physiological processes as 

seen with other serum biomarkers such as CRP. This may explain why Wilson et al 

observed that MMP-9 had no value as a screening tool for patients who were FOB positive 

on bowel screening (Wilson, 2006) yet there was an associations with poor survival in this 

study. 

We observed that MMP-9 was expressed in the cancer cells, stroma and the serum 

of patients. Physiologically MMP-9 is secreted by immune cells to aid tissue remodelling 

and MMP-9 has been observed in macrophages at the tumour margin in primary and 

metastatic disease (Zeng, 1995; Zeng, 1998). Expression of MMP-9 within the cancer cells 

has been observed previously and our results support these findings (Yang, 2014), 

however, it remains unclear what biological effect cytoplasmic MMP-9 has on the tumour 

cell. It is possible that MMP-9 is secreted by the cancer cell to degrade the connective 

tissue closest to the tumour, however, the hypothesis that cancer cells make their own 
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MMP-9 is controversial. It has been suggested that MMP-9 in the tumour cell originated 

from fibroblasts and immune cells in the stroma. It was thought that MMP-9 in the cancer 

cell was taken up from the microenvironment and therefore purely reflected stromal 

degradation activity (Roeb, 2001; Collins, 2001). Interestingly, recent advances in tissue 

microdissection with laser capture have revealed that cancer cells express mRNA for 

MMP-9 (Lubbe, 2006). This suggests that the tumour cell, stroma and circulation may all 

be sites of MMP-9 production and identifying which expression site exerts the maximal 

biological effect will help translate MMP-9 into clinical practice.  

 

4.5.3.3 The influence of inflammation on MMP-9 expression 

As described above, MMP-9 found in the stroma has been thought to be secreted by 

immune cells to aid tissue remodeling. This makes sense given that the immune cells 

would have to degrade the connective tissue to move through the stoma towards the 

invasive margin of the cancer. Despite this, there was no significant association between 

the Klintrup score and tumour cell cytoplasmic MMP-9 expression. This supports the 

notion that stromal and cancer cell MMP-9 expression is not dependent on the same 

regulatory factors, however, MMP-9 expression in the circulation, cytoplasm and stroma 

were all closely related as evidence by the significant correlations observed in the chapter.  

 In other disease processes, MMP-9 has been implicated in tissue remodeling as part 

of the inflammatory response. It is plausible that there is an association between the SIR 

and MMP-9 expression in the cancer cell. The mechanisms leading to cancer MMP-9 

production remain unknown, however, Il-6 through COX2 and JAK/STAT activation has 

been implicated in regulating MMP-9 production in macrophages (Kothari, 2013). In 

human colorectal cancers, the evidence is not as compelling, however, Liu et al observed 

that Il-6/STAT3 mediated induction of fos-related antigen 1 resulted in higher expression 

of MMP-9 in colorectal cancer cell lines (Liu, 2015). This observation is unlikely to 

represent true causality, as in vivo; there will be multiple stimuli and inhibitors of the 

MMP-9 pathway. Despite this, CRP was associated with cytoplasmic MMP-9 (p=0.028) in 

the validation cohort and the relationship between the SIR and MMP-9 expression requires 

further study.   

 

4.5.3.4 MMP-9 as a prognostic and predictive biomarker 

Cytoplasmic MMP-9 in the tumour cell was not associated with survival in the validation 

cohort. The potential reasons for this have been discussed above, however, this observation 
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has a significant impact on how MMP-9 can be translated into a useful prognostic or 

predictive biomarker. Studies that observed a significant relationship between MMP-9 

expression and survival simply quantified MMP-9 mRNA levels in the homogenate. This 

method of biomarker quantification is rather crude as the homogenate will include both 

cancer and non-cancer tissue. This poses difficulties for the development and validation 

process as there are no easy and reliable methods for controlling the proportions of non-

cancer and cancer tissue in samples from different patients. Ultimately, the origin of the 

MMP-9 within the stroma is an important factor in validating MMP-9 as a potential 

biomarker. Allowing for the possibility that MMP-9 also plays an important role in signal 

transduction within the cancer cell, the stroma is the most likely site of MMP-9 biological 

activity. Unfortunately the results presented in this chapter cannot shed light on the sources 

of stroma MMP-9 and this requires further study.  

 Looking at current practice, the majority of biomarkers are histological in nature 

and utilise IHC or FISH with specific localisation to subcellular areas of the tumour. Since 

the MMP-9 antibody binds to both active and inactive forms of the protein, a process for 

identifying tumours with high expression of active MMP-9 is needed. A possible method 

could be to combine IHC and western blot analysis as the active form of MMP-9 has a 

lower molecular weight of 88 kDa, however this approach has never been tested. Despite 

the rather non-quantitative character of IHC it is interesting to reflect that the assessment 

of oestrogen receptor status became substantially more reliable when the biochemical 

analysis of pieces of possible tumour was replaced by IHC when good antibodies became 

available which worked in paraffin sections. Therefore, the main limiting factor preventing 

the incorporation of MMP-9 into the staging process is the absence of a reliable method of 

quantification. Options for MMP-9 include IHC on full tissue sections with particular 

attention to the stroma or using ELISA on the patients’ serum. The latter requires 

validation of the association between serum and tumour expression, however, it controls 

for proportional representation of MMP-9 in the serum; as one would anticipate venous 

blood samples to have a near uniform concentration of the protein across the whole blood 

volume. Given the associations observed in this chapter between serum MMP-9 expression 

and survival, this may be a useful solution to identifying which of the cancer related tissue 

components (tumour or venous blood) offers the most useful prognostic biomarker 

medium. Further studies tailored to specifically answer this question are needed before 

assessing the predictive value of MMP-9 as a cancer biomarker. 

Despite the growing evidence suggesting that MMPs play an important role in 

cancer progression and metastasis, clinical trials of MMP inhibitors (MPI) have been 
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disappointing (Coussens, 2002a). To date there are no clinical trials looking at MMP 

inhibitors in colorectal cancer, however, there have been phase III trials in other cancers 

such as gastric, pancreatic and lung. Despite compelling preclinical data implicating MMP-

9 in cancer progression, studies suggested no role for MPI in cancer treatment. Similar to 

HER2 positivity and Herceptin, it is possible that high MMP-9 expression in the serum or 

tissue may predict response to MPIs and retrospective sub-analysis may offer evidence for 

their use as novel adjuvant therapies.   

 

4.5.4 Future direction 

1. Serum MMP-9 in a larger cohort with tissue analysis using full tissue sections for cancer 

and stroma expression quantification 

2. Through isolating the cancer cells and stroma by microdissection, performing western 

bloat analysis to identify tumours with high expressions of active MMP-9 and seeing if this 

helps strengthen the prognostic value of cytoplasmic and stromal MMP-9 

3. Looking at the effect of MMP-9 inhibitors on tumour MMP-9 expression and what 

happens to tumour behaviour 

4. Trial of MMP-9 inhibitors in patients with high expression of MMP-9 

 

4.5.5 Conclusion 

MMP-9 in the serum may offer a useful prognostic biomarker with tumoural MMP-9 

expression acting as a predictive biomarker for MMP inhibitors. Given that the IHC 

process uses an antibody for MMP-9 that binds to active and inactive forms of the MMP-9 

protein, an additional method possibly including the identification of active MMP-9 

through western blot analysis may be a possible solution. Studying the association of 

serum and tumoural MMP-9 expression, clinicopathological factors and survival in an 

adequately powered cohort will add further evidence for introducing MMP-9 into the 

prognostication process or not. Furthermore, serum or tumoural MMP-9 may help identify 

patients who will need and benefit from MMP inhibitors and this is worthy of further 

work. 
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5. Src family kinases and colorectal cancer 

5.1 Introduction 

The mechanisms by which colorectal cancer cells locally invade through the bowel and 

establish metastases remain uncertain. Tumour cell proliferation, loss of apoptosis and 

degradation of connective tissue are all important features of cancer cell behaviour. Loss of 

cell-cell adhesion and cell motility are also important and signalling pathways relating to 

adhesion and motility are also likely to play an important role in colorectal cancer 

progression and survival. 

Src family kinases (SFKs) have been implicated in many adverse cancer cell 

behaviors including proliferation, apoptosis, invasion and cellular adhesion (Frame, 2002; 

Summy, 2003). SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, 

LYN, YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other 

SFKs in cellular behaviors and their prognostic value remains largely unknown. The 

development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential 

therapeutic target for patients at higher risk of a poor outcome. Unfortunately, clinical 

trials so far have not been promising but this may reflect inadequate patient selection. 

The aims of this study were threefold. Firstly, to establish which of the Src family 

members were most highly expressed in colorectal cancers, we performed RT-qPCR on a 

historic cohort of frozen tumours and non-cancerous polyps. Secondly, to investigate 

associations between SFK expression and commonly recorded clinicopathological factors 

and survival, we assessed SFK expression in non-metastatic colorectal cancers employing 

a TMA. Finally, the effect Src inhibitor Dasatinib has on colorectal cancer cell 

proliferation, apoptosis and expression of SFKs were investigated.  

 

5.2 Frozen tissue cohort 

5.2.1 SFK expression in colorectal cancer 

Twenty three (85%) patients with colon cancer were studied. With regards to cancer stage, 

12 (44%) were Dukes B, 9 (33%) were Dukes C and 4 (15%) were Dukes D.  Of all the 

specimens studied, 2 (7%) had high-grade dysplasia and were not considered cancers. 
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5.2.1.1 SFK mRNA expression in the whole cohort 

Expression levels of SFK mRNA were quantified in all tissue samples (figure 5.1). BLK 

was the least expressed with LYN (159 fold) and SRC (83 fold) being the highest 

expressed SFKs when compared to the housekeeping gene. The aim of this study was to 

observe which family members were expressed and not to perform statistics to test for 

associations, due to the small number of patients available to study.  

 
Figure 5.1: Distribution of SFK mRNA expression in all patients 

Boxplot detailing the relative expression of all Src kinase family members in the entire 
cohort.  
 

5.2.1.2 SFK mRNA expression stratified by Dukes’ stage 

Even although the cohort was not suitable for testing for statistical associations, we were 

able to look at trends in the data. FGR, HCK and FYN appeared to have an increase in 

expression from localised (stage II and III) to metastatic disease (stage IV) (Figure 6.2). 

Furthermore, LCK became less expressed from HGD to stage IV disease. The expression 

of LYN and Src did not appear to change across disease stages.  
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Figure 5.2: Distribution of SFKs mRNA expression across tumour stage 

Boxplot detailing the relative expression of all SFK members across increasing tumour 
stage. 
 

5.3 Training cohort (cohort 1) 

5.3.1 Colorectal cancer FGR expression 

Cancer cell FGR expression was evaluated using immunohistochemistry and scored using 

the weighted histoscore as previously described. Tumour cell membrane immunoreactivity 

was observed in 72.0% of patients, with 100.0% of tumours demonstrated cytoplasmic 

immunoreactivity and 92.3% of patients demonstrating nuclear immunoreactivity (figure 

5.3). 
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Figure 5.3: FGR Immunohistochemistry  

Representative areas of cancer cells showing high and low FGR expression (A and B)  
 

5.3.1.1 Cancer cell membranous FGR expression  

Figure 3.1 demonstrates that the expression of tumour cell membranous FGR follows an 

exponential distribution (histogram, figure 5.4) with measurements ≥15.00 considered 

outliers (boxplot, figure 3.1b). The measurements ranged from 0.00 – 47.50 and had a 

median of 3.33 (IQR 0.00 - 10.21).  
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Figure 5.4: Distribution of measurements for cancer cell membrane FGR  

Histogram demonstrating the distribution of cancer cell membrane FGR. Boxplot 
demonstrating the median measurement, interquartile range and outliers of tumour cell 
membrane FGR. 
 

5.3.1.2 Cancer cell cytoplasmic FGR expression  

Figure 5.5 demonstrates that the expression of tumour cell cytoplasm FGR does not 

precisely follow a normal distribution (histogram, figure 3.2), which is supported by a 

Shapiro-Wilk statistic of 0.955, df 182, p<0.001. The measurements ranged from 2.50 – 

200.00 and had a median measurement of 75.84 (IQR 41.78 – 109.90).  
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 326 

 

Figure 5.5: Distribution of measurements for cancer cell cytoplasmic FGR  

Histogram demonstrating the distribution of cancer cell cytoplasmic FGR. Q-Q Plot of 
cancer cell cytoplasmic FGR measurements. Boxplot demonstrating the median 
measurement with interquartile range and outliers. 
 

5.3.1.3 Cancer cell nuclear FGR expression  

Figure 5.6 demonstrates that the expression of tumour cell membranous FGR follows an 

exponential distribution (histogram, figure 5.6) with measurements ≥35 considered outliers 

(boxplot, figure 5.6). The measurements ranged from 0.00 – 100.00 with a median of 10.00 

(IQR 0.00 - 21.88).  
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Figure 5.6: Distribution of measurements for cancer cell nuclear FGR  
Histogram demonstrating the distribution of cancer cell nuclear FGR expression. Boxplot 
demonstrating the median measurement, interquartile range and outliers of cancer cell 
nuclear FGR. 
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5.3.2 Colorectal cancer HCK expression 

Tumour cancer cell HCK expression was evaluated using immunohistochemistry and 

scored using the weighted histoscore as previously described. Membranous, cytioplasmic 

and nuclear expression of HCK was observed in all patients (figure 5.7). 

 

 

Figure 5.7: HCK Immunohistochemistry  

Representative areas of cancer cells showing high and low HCK expression (A and B) 

5.3.2.1 Cancer cell membranous HCK expression  

Figure 5.8 demonstrates that the expression of tumour cell membranous HCK follows an 

exponential distribution (histogram, figure 5.8) with measurements ≥96.25 considered 

outliers (boxplot, figure 5.8). The measurements ranged from 5.00 – 96.25 and had a 

median of 28.75 (IQR 5.00 - 60.31).  
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Figure 5.8: Distribution of measurements for cancer cell membrane HCK  

Histogram demonstrating the distribution of cancer cell membrane HCK. Boxplot 
demonstrating the median measurement, interquartile range and outliers of cancer cell 
membrane HCK. 
 

5.3.2.2 Cancer cell cytoplasmic HCK expression  

Figure 5.9 demonstrates that cancer cell cytoplasm HCK expression does not precisely 

follow a normal distribution (histogram, figure 3.5), which is supported by a Shapiro-Wilk 

statistic of 0.953, df 182, p<0.001. The measurements ranged from 10.00 – 91.25 and had a 

median of 60.00 (IQR 36.66 – 83.33).  
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Figure 5.9: Distribution of measurements for cancer cell cytoplasmic HCK  

Histogram demonstrating the distribution of the cancer cell cytoplasmic HCK. Q-Q Plot of 
cancer cell cytoplasmic HCK measurements. Boxplot demonstrating the median 
measurement with interquartile range and outliers. 
 

5.3.2.3 Cancer cell nuclear HCK expression  

Figure 5.10 demonstrates that cancer cell nuclear HCK expression does not precisely 

follow a normal distribution (histogram, figure 5.10), which is supported by a Shapiro-
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Wilk statistic of 0.868, df 182, p<0.001. The measurements ranged from 5.00 – 195.00 and 

had a median of 98.33 (IQR 85.52 – 111.14).  
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Figure 5.10: Distribution of measurements for cancer cell nuclear HCK  

Histogram demonstrating the distribution of cancer cell nuclear HCK expression. Boxplot 
demonstrating the median measurement, interquartile range and outliers of cancer cell 
nuclear HCK. 
 

5.3.3 Src activation – FAK (tyr 861) expression 

The expression of FAK (tyr861) in the cancer cells within the tumour was evaluated using 

immunohistochemistry and scored using the weighted histoscore as previously described. 

Tumour cancer cell membrane immunoreactivity was not observed in any of the tumours, 

however, 15.9% of the tumours demonstrated cytoplasmic immunoreactivity and 99.5% of 

tumours demonstrating nuclear immunoreactivity (figure 5.11). 

 

Figure 5.11: FAK (tyr 861) Immunohistochemistry  

Representative areas of cancer cells showing high and low FAK (tyr 861) expression (A 
and B 
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5.3.3.1 Cytoplasmic FAK (tyr 861) expression 

Figure 5.12 demonstrates that cytoplasmic FAK (tyr 861) expression does not follow any 

particular distribution (histogram, figure 5.12) and all measurements ≥0 are considered 

outliers (boxplot, figure 5.12). The measurements ranged from 0.00 – 60.00 and had a 

median of 0 (IQR +/- 0.00).  

 

 

Figure 5.12: Distribution of measurements for cytoplasmic FAK (tyr 861)  

Histogram demonstrating the distribution of cytoplasmic FAK (tyr 861) measurements. 
Boxplot demonstrating the median measurement and outliers of cytoplasmic FAK (tyr 
861). 
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5.3.3.2 Nuclear FAK (tyr 861) expression 

Figure 5.13 demonstrates that nuclear FAK (tyr 861) expression does not follow a precise 

normal distribution (histogram, figure 5.13), which is supported by a Shapiro-Wilk statistic 

of 0.978, df 182, p=0.006. The measurements ranged from 0.00 – 116.67 and had a median 

of 40.00 (IQR 7.50 – 72.50).  
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Figure 5.13 Distribution of measurements for nuclear FAK (tyr 861)  

Histogram demonstrating the distribution of nuclear FAK (tyr 861). Boxplot demonstrating 
the median measurement, interquartile range and outliers of nuclear FAK (tyr 861). 
 

5.3.4 Generation of cut offs and association with survival 

There are many factors that influence overall survival. Tumour related biomarkers are 

cancer specific and therefore recurrence and recurrence-free survival has been used to 

choose optimal cutoffs for dichotomisation.  

 

5.3.4.1 Tumour cancer cell FGR  

Membrane FGR 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for membranous FGR as a continuous variable, categorised as a dichotomy 

around the median, tertiles and quartiles. The AUCs were 0.52 (95% CI 0.43 – 0.61, 

p=0.636) for membranous FGR as a continuous variable, 0.52 (95% CI 0.43 – 0.61, 

p=0.746) for membranous FGR as a median, 0.52 (95% CI 0.43 – 0.61, p=0.700) for 

membranous FGR as tertiles and an AUC of 0.52 (95% CI 0.43 – 0.61, p=0.663) for 

membranous FGR as quartiles (figure 5.14).  
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Figure 5.14: The predictive value of membranous FGR in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of membrane 
FGR in identifying patients who will develop cancer recurrence. 
 

On Kaplan-Meier analysis, there was no significant trend between membranous FGR 

expression when categorised around the median (p=0.414), as tertiles (p=0.949), as 

quartiles (p=0.804) and then dichotomised above the upper quartile (p=0.990) (figure 5.15) 
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Figure 5.15: Kaplan-Meier curves demonstrating the association between membranous 
FGR expression and recurrence-free survival in patients with colorectal cancer 

 

Cytoplasmic FGR 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for cytoplasmic FGR as a continuous variable, and then categorised as a 
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dichotomy around the median, tertiles and quartiles. The AUCs were 0.43 (95% CI 0.35 – 

0.52, p=0.134) for cytoplasmic FGR as a continuous variable, 0.47 (95% CI 0.38 – 0.56, 

p=0.532) for cytoplasmic FGR as a median, 0.43 (95% CI 0.34 – 0.52, p=0.130) for 

cytoplasmic FGR as tertiles and an AUC of 0.43 (95% CI 0.35 – 0.52, p=0.137) for 

cytoplasmic FGR as quartiles (figure 5.16). Furthermore, on review of the ROC curve, 

cytoplasmic FGR as a quartile closely follows that of continuous cytoplasmic FGR.  

 

Figure 5.16: The predictive value of cytoplasm FGR in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
FGR in identifying patients who will develop cancer recurrence. 
 

On Kaplan-Meier analysis, there was no significant trend between membranous FGR 

expression when categorised around the median (p=0.740), as tertiles (p=0.367) and 

quartiles (p=0.103), however, when dichotomised above the upper quartile cytoplasmic 

FGR was associated with improved survival (p=0.041) (figure 5.17).  
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Figure 5.17: Kaplan-Meier curves demonstrating the association between cytoplasmic 
FGR expression and recurrence-free survival in patients with colorectal cancer 
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Nuclear FGR 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for nuclear FGR as a continuous variable, and then categorised as a dichotomy 

around the median, tertiles and quartiles. The AUCs were 0.51 (95% CI 0.41 – 0.61, 

p=0.807) for nuclear FGR as a continuous variable, 0.52 (95% CI 0.42 – 0.62, p=0.640) for 

nuclear FGR as a median, 0.49 (95% CI 0.39 – 0.59, p=0.857) for nuclear FGR as tertiles 

and an AUC of 0.48 (95% CI 0.38 – 0.58, p=0.674) for nuclear FGR as quartiles (figure 

5.18).  

 

Figure 5.18: The predictive value of nuclear FGR in identifying patients who will develop 
cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of nuclear FGR 
in identifying patients who will develop cancer recurrence. 
 

On Kaplan-Meier analysis, there was no significant trend between membranous FGR 

expression when categorised around the median (p=0.397), as tertiles (p=0.642), as 

quartiles (p=0.232) and then dichotomised above the upper quartile (p=0.521) (figure 5.19) 
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Figure 5.19: Kaplan-Meier curves demonstrating the association between nuclear FGR 
expression and recurrence-free survival in patients with colorectal cancer 
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Justification for cancer cell FGR cutoff choice 

When FGR was categorised into quartiles, the resultant predictive value and ROC curves 

offered similar predictive values to FGR as a continuous variable. Kaplan-Meier curves 

reveal a trend towards significant differences in survival outcomes (p=0.041 for 

cytoplasmic FGR). Dichotomisation of FGR around the upper quartile has been chosen for 

validation in cohort 2.   

 

5.3.4.2 Tumour cancer cell HCK 

Membraneous HCK 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for membranous HCK as a continuous variable, and then categorised as a 

dichotomy around the median, tertiles and quartiles. The AUCs were 0.51 (95% CI 0.42 – 

0.61, p=0.828) for membranous HCK as a continuous variable, 0.54 (95% CI 0.44 – 0.64, 

p=0.483) for membranous HCK as a median, 0.53 (95% CI 0.43 – 0.62, p=0.623) for 

membranous HCK as tertiles and an AUC of 0.50 (95% CI 0.41 – 0.60, p=0.960) for 

membranous HCK as quartiles (figure 5.20).  

 

Figure 5.20: The predictive value of membranous HCK in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of membrane 
HCK in identifying patients who will develop cancer recurrence. 
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On Kaplan-Meier analysis, there was no significant trend between membranous HCK 

expression when categorised around the median (p=0.564), as tertiles (p=0.062), as 

quartiles (p=0.120) and then dichotomised above the upper quartile (p=0.041) (figure 5.21) 
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Figure 5.21: Kaplan-Meier curves demonstrating the association between membranous 
HCK expression and recurrence-free survival in patients with colorectal cancer 
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Cytoplasmic HCK 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for cytoplasmic HCK as a continuous variable, and then categorised as a 

dichotomy around the median, tertiles and quartiles. The AUCs were 0.56 (95% CI 0.47 – 

0.66, p=0.214) for cytoplasmic HCK as a continuous variable, 0.61 (95% CI 0.52 – 0.71, 

p=0.026) for cytoplasmic HCK as a median, 0.58 (95% CI 0.48 – 0.67, p=0.139) for 

cytoplasmic HCK as tertiles and an AUC of 0.58 (95% CI 0.48 – 0.67, p=0.124) for 

cytoplasmic HCK as quartiles (figure 5.22). Furthermore, on review of the ROC curve, 

cytoplasmic HCK as a quartile closely follows that of continuous cytoplasmic HCK.  

 

Figure 5.22: The predictive value of cytoplasm HCK in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
HCK in identifying patients who will develop cancer recurrence. 
 

On Kaplan-Meier analysis, there was no significant trend between membranous FGR 

expression when categorised around the median (p=0.007), as tertiles (p=0.295) and 

quartiles (p=0.001), however, when dichotomised above the upper quartile cytoplasmic 

HCK was not associated with survival (p=0.874) (figure 5.23).  
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Figure 5.23: Kaplan-Meier curves demonstrating the association between cytoplasmic 
HCK expression and recurrence-free survival in patients with colorectal cancer 
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Nuclear HCK 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for nuclear HCK as a continuous variable, and then categorised as a dichotomy 

around the median, tertiles and quartiles. The AUCs were 0.49 (95% CI 0.39 – 0.59, 

p=0.785) for nuclear HCK as a continuous variable, 0.47 (95% CI 0.37 – 0.57, p=0.498) 

for nuclear HCK as a median, 0.48 (95% CI 0.38 – 0.58, p=0.708) for nuclear HCK as 

tertiles and an AUC of 0.47 (95% CI 0.37 – 0.57, p=0.540) for nuclear HCK as quartiles 

(figure 5.24).  

 

Figure 5.24: The predictive value of nuclear HCK in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of nuclear HCK 
in identifying patients who will develop cancer recurrence. 
 

On Kaplan-Meier analysis, there was no significant trend between nuclear HCK expression 

when categorised around the median (p=0.617), as tertiles (p=0.982), as quartiles 

(p=0.954) and then dichotomised above the upper quartile (p=0.932) (figure 5.25) 
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Figure 5.25: Kaplan-Meier curves demonstrating the association between nuclear HCK 
expression and recurrence-free survival in patients with colorectal cancer 
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Justification for cancer cell HCK dichotomisation choice 

Similar to FGR, categorisation of HCK into quartiles results in a predictive value (AUC) 

and ROC curve patterns similar to that of HCK as a continuous variable. Again, when 

reviewing the Kaplan-Meier graphs, the 3rd quartile group appears to have a different 

outcome when compared to other sub groups, however, identifying this group reliably in a 

clinical service would be difficult using non-automated histological scoring methods. 

Theoretically, tumours with the highest expression are likely to exhibit the most adverse 

behaviour and therefore, categorisation of HCK will be performed around the upper 

quartile with validation being undertaken in cohort 2. 

 

5.3.4.3 FAK (tyr 861) expression 

Cytoplasmic FAK (tyr 861)  

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for cytoplasmic FAK (tyr 861) as a continuous variable, and then categorised as 

a dichotomy around the median and upper tertile. The AUCs were 0.50 (95% CI 0.39 – 

0.60, p=0.919) for cytoplasmic FAK (tyr 861) as a continuous variable, 0.49 (95% CI 0.39 

– 0.59, p=0.833) for cytoplasmic FAK (tyr 861) as a median and 0.53 (95% CI 0.42 – 0.63, 

p=0.623) for cytoplasmic FAK (tyr 861) as a dichotomy around the upper tertile (figure 

5.26) 

 
Figure 5.26: The predictive value of cytoplasm FAK (Tyr 861) in identifying patients who 
will develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
FAK (Tyr 861) in identifying patients who will develop cancer recurrence. 
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On Kaplan-Meier analysis, there was no significant trend between cytoplasmic FAK (tyr 

861) expression when categorised around the median (p=0.665) or around the upper tertile 

(p=0.376) (figure 5.27).  

 

 

Figure 5.27: Kaplan-Meier curves demonstrating the association between cytoplasmic 
FAK (tyr 861) expression and recurrence-free survival in patients with colorectal cancer 
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Nuclear FAK (tyr 861) 

When ROC analysis was performed using recurrence as the endpoint, the AUC was 

calculated for nuclear FAK (tyr 861) as a continuous variable, and then categorised as a 

dichotomy around the median, tertiles and quartiles. The AUCs were 0.57 (95% CI 0.47 – 

0.67, p=0.179) for nuclear FAK (tyr 861) as a continuous variable, 0.59 (95% CI 0.49 – 

0.69, p=0.084) for nuclear FAK (tyr 861) as a median and 0.59 (95% CI 0.49 – 0.69, 

p=0.079) for nuclear FAK (tyr 861) as tertiles (figure 5.28).  

 

Figure 5.28: The predictive value of nuclear FAK (tyr 861) in identifying patients who 
will develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of nuclear FAK 
(tyr 861) in identifying patients who will develop cancer recurrence. 
 

On Kaplan-Meier analysis, there was no significant trend between nuclear FAK (tyr 861) 

expression when categorised around the median (p=0.056), as tertiles (p=0.127) and then 

dichotomised above the upper tertile (p=0.042) (figure 5.29) 
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Figure 5.29: Kaplan-Meier curves demonstrating the association between nuclear FAK 
(tyr 861) expression and recurrence free survival in patients with colorectal cancer 

 

Justification for cancer cell FAK (tyr 861) cutoff choice 

Given the low number of tumours expressing cytoplasmic FAK (tyr 861), categorisation 

into quartiles would not yield reliable results and therefore quartiles have been excluded 

from the analysis. Categorising FAK (tyr 861) into tertiles results in an AUC and ROC 

curve patterns similar to that of FAK (tyr 861) as a continuous variable. On reviewing the 

Kaplan-Meier graphs, the upper tertile group appears to have a different outcome when 

compared to other sub groups. Categorisation of FAK (tyr 861) will be performed around 

the upper tertile with validation being undertaken in cohort 2. 
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5.4 Validation cohort (cohort 2) 

5.4.1 Tumour FGR expression 

Tumour FGR was evaluated using immunohistochemistry technology and quantified using 

the weighted Histoscore method as described previously. None of the tumours 

demonstrated FGR expression at the cell membrane, however, 100% of tumours had FGR 

expression in the cytoplasm and nucleus.  

 

5.4.1.1 Cytoplasmic FGR expression 

Figure 5.30 demonstrates that cytoplasmic FGR expression does not precisely follow a 

normal distribution (histogram, figure 5.30), which is supported by a Shapiro-Wilk statistic 

of 0.990, df 677, p<0.001. The measurements ranged from 26.67 – 183.33 with a median 

of 110.00 (IQR 73.33 – 146.67). Using the dichotomisation process described in section 

5.3.4.1, 21.4% of patients were considered high expressers (above the upper quartile).   
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Figure 5.30: Distribution of measurements of cytoplasmic FGR in patients with colorectal 
cancer  

 Histogram demonstrating the distribution of cytoplasmic FGR measurements. Q-Q Plot of 
cytoplasmic FGR measurements. Boxplot demonstrating the median measurement with 
interquartile range and outliers. 
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5.4.1.2 Cytoplasmic FGR association with clinicopathological factors 

Assessment of cytoplasmic FGR as a continuous variable across different groups of 

categorical clinicopathological factors 

Only advancing T-stage (p=0.025, Kruskal-Wallis) and advancing TNM stage (p=0.043, 

Kruskal-Wallis) showed a trend towards an association with higher cytoplasmic FGR 

expression, however, these were not significant following Bonferroni adjustment 

(p<0.0045). Gender (p=0.376, Mann-Whitney U), presentation (p=0.429, Mann-Whitney 

U), tumour site (p=0.669, Kruskal-Wallis), N-stage (p=0.567, Kruskal-Wallis), categorical 

serum CRP (p=0.567, Mann-Whitney U), categorical serum albumin (p=0.824, Mann-

Whitney U) and Klintrup score (p=0.283, Kruskal-Wallis) were not associated with 

continuous cytoplasmic FGR expression.  

 

Assessment of cytoplasmic FGR as a continuous variable across different continuous data 

types of clinicopathological factors 

On Spearman’s rank test cytoplasmic FGR was not associated with age (SCC -0.053, 

p=0.168), serum CRP (SCC -0.009, p=831) or serum albumin (SCC -0.018, p=0.669) 

 

Assessment of cytoplasmic FGR associations with clinicopathological factors: categorical 

data type 

Raised cytoplasmic FGR was not associated with any of the clinicopathological factors 

studied following Bonferroni adjustment (p<0.0032). Gender (p=0.139), presentation 

(p=0.103), tumour site (colon vs rectum) (p=0.288), tumour site (right vs left vs rectum) 

(p=0.597), tumour differentiation (p=0.366), T-stage (p=0.153), N-stage (p=0.579), 

advancing TNM stage (p=0.020), serum CRP (p=0.452), serum albumin (p=0.886), 

Klintrup score (p=0.858) and MSI status (p=0.822) were not associated with categorical 

cytoplasmic FGR expression (table 5.1). 
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Table 5.1: The relationship between tumour cytoplasmic FGR expression and 
clinicopathological factors 

 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bonferroni adjustment = <0.0032 
* Fishers exact test 

 

 

 

 

 

Clinicopathological 
factors 

 Low cytoplasmic 
FGR expression 

High cytoplasmic 
FGR expression 

p-value 

     

Sex 
     Female 
     Male 

  
253 (47.6%) 
279 (52.4%) 

 
79 (54.5%) 
66 (45.5%) 

 
0.139 

Presentation 
     Elective 
     Emergency 

  
382 (71.8%)  
150 (28.2%) 

 
94 (64.8%) 
51 (35.2%) 

 
0.103 

Tumour Site 
     Colon 
     Rectum 

  
415 (78.0%) 
117 (22.0%) 

 
119 (82.1%) 
26 (17.9%) 

 
0.288 

Tumour Site 
     Right 
     Left 
     Rectum 

  
235 (44.2%) 
181 (34.0%) 
116 (21.8%) 

 
67 (46.2%) 
52 (35.9%) 
26 (17.9%) 

 
0.597 

Differentiation 
     Well-Mod 
     Poor 

  
483 (90.8%) 
49 (9.2%) 

 
128 (88.3%) 
17 (11.7%) 

 
0.366 

T stage 
     1 
     2 
     3 
     4 

  
25 (4.7%) 
76 (14.3%) 
277 (52.1%) 
154 (28.9%) 

 
2 (1.4%) 
15 (10.3%) 
84 (57.9%) 
44 (30.3%) 

 
0.153 

N stage 
     0 
     1 
     2 

  
343 (64.5%) 
129 (24.2%) 
60 (11.3%) 

 
96 (66.2%) 
37 (25.5%) 
12 (8.3%) 

 
0.579 

TNM stage 
(simplified) 
     I 
     II 
     III 

  
 
92 (17.3%) 
245(46.1%) 
195 (36.7%) 

 
 
13 (9.0%) 
82 (56.6%) 
50 (34.5%) 

 
 
0.020 

Serum CRP 
     Normal 
     High 

  
203 (49.8%) 
205 (50.2%) 

 
67 (53.6%) 
58 (46.4%) 

 
0.452 

Serum albumin 
     Normal 
     Low 

  
317 (73.2%) 
116 (26.8%) 

 
96 (73.8%) 
34 (26.2%) 

 
0.886 

Klintrup score 
     Good 
     Poor 

  
371 (69.7%) 
161 (30.3%) 

 
100 (69.0%) 
45 (31.0%) 

 
0.858 

MSI status 
     CI 
     MSI 

  
466 (87.6%) 
66 (12.4%) 

 
126 (86.9%) 
19 (13.1%) 

 
0.822 
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5.4.1.3 Nuclear FGR expression 

Figure 5.31 demonstrates that the expression of nuclear FGR does not precisely follow a 

normal distribution (histogram, figure 5.31) which is supported by a Shapiro-Wilk statistic 

of 0.993, df 677, p=0.003. The measurements ranged from 10.0 – 300.0 with a median of 

166.67 (IQR 90.0 – 243.34). Using the dichotomisation process described in section 

5.3.4.2, 23.8% of patients were considered high expressers (above the upper quartile).   

 

 

 

 
 

 

 



 364 

 

 

Figure 5.31: Distribution of measurements of nuclear FGR expression in patients with 
colorectal cancer  

Histogram demonstrating the distribution of nuclear FGR measurements. Q-Q Plot of 
nuclear FGR measurements. Boxplot demonstrating the median measurement with 
interquartile range and outliers. 
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5.4.1.4 Nuclear FGR association with clinicopathological factors 

Assessment of nuclear FGR as a continuous variable across different groups of categorical 

clinicopathological factors 

Only advancing T-stage (p=0.006, Kruskal-Wallis) and advancing TNM stage (p=0.050, 

Kruskal-Wallis) showed a trend towards an association with higher nuclear FGR 

expression, however, these were not significant following Bonferroni adjustment 

p<0.0042. Gender (p=0.703, Mann-Whitney U), presentation (p=0.066, Mann-Whitney U), 

tumour site (p=0.834, Kruskal-Wallis), tumour differentiation (p=0.862), N-stage 

(p=0.779, Kruskal-Wallis), categorical serum CRP (p=0.386, Mann-Whitney U), 

categorical serum albumin (p=0.205, Mann-Whitney U) and Klintrup score (p=0.205, 

Kruskal-Wallis) were not associated with continuous nuclear FGR expression.  

 

Assessment of nuclear FGR as a continuous variable across different continuous data 

types of clinicopathological factors 

On Spearman’s rank test nuclear FGR was not associated with age (SCC 0.010, p=0.797), 

serum CRP (SCC -0.093, p=0.032) or serum albumin (SCC 0.029, p=0.488) when the 

Bonferroni adjustment was p<0.017 

 

Assessment of nuclear FGR associations with clinicopathological factors: categorical data 

type 

Nuclear FGR was not associated with any of the categorical clinicopathological factors 

studied. Gender (p=0.371), presentation (p=0.053), tumour site (colon vs rectum) 

(p=0.377), tumour site (right vs left vs rectum) (p=0.879), tumour differentiation 

(p=0.832), T-stage (p=0.064), N-stage (p=0.842), TNM stage (p=0.163), serum CRP 

(p=0.748), serum albumin (p=0.133), Klintrup score (p=0.240) and MSI status (p=0.627) 

were not associated with categorical cytoplasmic FGR expression (table 5.2). 
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Table 5.2: The relationship between nuclear FGR expression and clinicopathological 
factors 

 
 
 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bonferroni adjustment = <0.0042 
* Fishers exact test 
 
 
 

Clinicopathological 
factors 

 Low cytoplasmic 
FRG expression 

High cytoplasmic 
FGR expression 

p-value 

     

Sex 
     Female 
     Male 

  
258 (50.0%) 
258 (50.0%) 

 
74 (46.0%) 
87 (54.0%) 

 
0.371 

Presentation 
     Elective 
     Emergency 

  
353 (68.4%) 
163 (31.6%) 

 
123 (76.4%) 
38 (23.6%) 

 
0.053 

Tumour Site 
     Colon 
     Rectum 

  
411 (79.7%) 
105 (20.3%) 

 
123 (76.4%) 
38 (23.6%) 

 
0.377 

Tumour Site 
     Right 
     Left 
     Rectum 

  
232 (45.0%) 
178 (34.5%) 
106 (20.5%) 

 
70 (43.5%) 
55 (34.2%) 
36 (22.4%) 

 
0.879 

Differentiation 
     Well-Mod 
     Poor 

  
465 (90.1%) 
51 (9.9%) 

 
146 (90.7%) 
15 (9.3%) 

 
0.832 

T stage 
     1 
     2 
     3 
     4 

  
15 (2.9%) 
68 (13.2%) 
277 (53.7%) 
156 (30.2%) 

 
12 (7.5%) 
23 (14.3%) 
84 (52.2%) 
42 (26.1%) 

 
0.064  

N stage 
     0 
     1 
     2 

  
335 (64.9%) 
128 (24.8%) 
53 (10.3%) 

 
104 (64.6%) 
38 (23.6%) 
19 (11.8%) 

 
0.842 

TNM stage 
(simplified) 
     I 
     II 
     III 

  
 
73 (14.1%) 
257 (49.8%) 
186 (36.0%) 

 
 
32 (19.9%) 
70 (43.5%) 
59 (36.6%) 

 
 
0.163 

Serum CRP 
     Normal 
     High 

  
200 (50.3%) 
198 (49.7%) 

 
70 (51.9%) 
65 (48.1%) 

 
0.748 

Serum albumin 
     Normal 
     Low 

  
299 (71.7%) 
118 (28.3%) 

 
114 (78.1%) 
32 (21.9%) 

 
0.133 

Klintrup score 
     Good 
     Poor 

  
353 (68.4%) 
163 (31.6%) 

 
118 (73.3%) 
43 (26.7%) 

 
0.240 

MSI status 
     CI 
     MSI 

  
453 (87.8%) 
63 (12.2%) 

 
139 (86.3%) 
22 (13.7%) 

 
0.627 
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5.4.2 Tumour HCK expression 

Cancer cell HCK expression was evaluated using immunohistochemistry and scored using 

the weighted histoscore as previously described. HCK was only seen in the cell cytoplasm. 

Figure 5.32 demonstrates that the expression of cytoplasmic HCK does not precisely 

follow a normal distribution (histogram, figure 5.32) which is supported by a Shapiro-Wilk 

statistic of 0.985, df 677, p<0.001. The measurements ranged from 0.0 – 110.0 with a 

median of 40.0 (IQR 10.0 – 30.0 g/l). Using the dichotomisation process described in 

section 5.3.4.3, 24.2% of patients were considered high expressers (above the upper 

quartile).   
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Figure 5.32: Distribution of measurements of cytoplasmic HCK in patients with colorectal 
cancer  

Histogram demonstrating the distribution of cytoplasmic HCK measurements. Q-Q Plot of 
cytoplasmic HCK measurements. Boxplot demonstrating the median measurement with 
interquartile range and outliers. 
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5.4.2.1 Cytoplasmic HCK association with clinicopathological factors 

Assessment of cytoplasmic HCK as a continuous variable across different groups of 

categorical clinicopathological factors 

Advancing T-stage (p=0.022, Kruskal-Wallis) showed a trend towards an association with 

higher cytoplasmic HCK expression, however only advancing TNM stage (p=0.003, 

Kruskal-Wallis, figure 5.33) was significant following Bonferroni adjustment p<0.0042. 

Gender (p=0.879, Mann-Whitney U), presentation (p=0.251, Mann-Whitney U), tumour 

site (p=0.386, Kruskal-Wallis), tumour differentiation (p=0.150), N-stage (p=0.401, 

Kruskal-Wallis), categorical serum CRP (p=0.367, Mann-Whitney U), categorical serum 

albumin (p=0.764, Mann-Whitney U) and Klintrup score (p=0.188, Kruskal-Wallis) were 

not associated with continuous cytoplasmic expression.  

 

Figure 5.33: The distribution of cytoplasmic HCK expression in TNM stage I, II and III 
colorectal cancer 

 

Assessment of cytoplasmic HCK as a continuous variable across different continuous data 

types of clinicopathological factors 

On Spearman’s rank test cytoplasmic HCK was not associated with age (SCC 0.041, 

p=0.285), serum CRP (SCC -0.022, p=0.616) or serum albumin (SCC 0.027, p=0.520). 
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Assessment of cytoplasmic HCK associations with clinicopathological factors: categorical 

data type 

Cytoplasmic HCK was not associated with any of the categorical clinicopathological 

factors studied. Gender (p=0.798), presentation (p=0.103), tumour site (colon vs rectum) 

(p=0.215), tumour site (right vs left vs rectum) (p=0.237), tumour differentiation 

(p=0.130), T-stage (p=0.088), N-stage (p=0.162), TNM stage (p=0.021), serum CRP 

(p=0.939), serum albumin (p=0.901), Klintrup score (p=0.178) and MSI status (p=0.873) 

were not associated with categorical cytoplasmic HCK expression (table 5.3). 
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Table 5.3: The relationship between cytoplasmic HCK expression expression and 
clinicopathological factors 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Bonferroni adjustment = <0.0042 
* Fishers exact test 
 

 

 

 

Clinicopathological 
factors 

 Low cytoplasmic 
FRG expression 

High cytoplasmic 
FGR expression 

p-value 

     

Sex 
     Female 
     Male 

  
253 (49.3%) 
260 (50.7%) 

 
79 (48.2%) 
85 (51.8%) 

 
0.798 

Presentation 
     Elective 
     Emergency 

  
369 (71.9%) 
144 (28.1%) 

 
107 (65.2%) 
57 (34.8%) 

 
0.103 

Tumour Site 
     Colon 
     Rectum 

  
399 (77.8%) 
114 (22.2%) 

 
135 (82.3%) 
29 (17.7%) 

 
0.215 

Tumour Site 
     Right 
     Left 
     Rectum 

  
227 (44.2%) 
171 (33.3%) 
115 (22.4%) 

 
75 (45.7%) 
62 (37.8%) 
27 (16.5%) 

 
0.237 

Differentiation 
     Well-Mod 
     Poor 

  
468 (91.2%) 
45 (8.8%) 

 
143 (87.2%) 
21 (12.8%) 

 
0.130 

T stage 
     1 
     2 
     3 
     4 

  
22 (4.3%) 
78 (15.2%) 
268 (52.2%) 
145 (28.3%) 

 
5 (3.0%) 
13 (7.9%) 
93 (56.7%) 
53 (32.3%) 

 
0.088 

N stage 
     0 
     1 
     2 

  
342 (66.7%) 
117 (22.8%) 
54 (10.5%) 

 
97 (59.1%) 
49 (29.9%) 
18 (11.0%) 

 
0.162 

TNM stage 
(simplified) 
     I 
     II 
     III 

  
 
90 (17.5%) 
247 (48.1%) 
176 (34.3%) 

 
 
15 (9.1%) 
80 (48.8%) 
69 (42.1%) 

 
 
0.021 

Serum CRP 
     Normal 
     High 

  
202 (50.8%) 
196 (49.2%) 

 
68 (50.4%) 
67 (49.6%) 

 
0.939 

Serum albumin 
     Normal 
     Low 

  
309 (73.2%) 
113 (26.8%) 

 
104 (73.8%) 
37 (26.2%) 

 
0.901 

Klintrup score 
     Good 
     Poor 

  
350 (68.2%) 
163 (31.8%) 

 
121 (73.8%) 
43 (26.2%) 

 
0.178 

MSI status 
     CI 
     MSI 

  
448 (87.3%) 
65 (12.7%) 

 
144 (87.8%) 
20 (12.2%) 

 
0.873 
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5.4.3 Tumour FAK (tyr 861) expression 

Cancer cell FAK (tyr 861) expression was evaluated using immunohistochemistry and 

scored using the weighted histoscore as previously described. FAK (tyr 861) was only seen 

in the cell cytoplasm. Figure 5.34 demonstrates that the expression of cytoplasmic FAK 

(tyr 861) does not precisely follow a normal distribution (histogram, figure 5.34), which is 

supported by a Shapiro-Wilk statistic of 0.960, df 677, p<0.001. The measurements ranged 

from 0.0 – 140.0 with a median of 40.0 (IQR 5.0 – 75.0). Using the dichotomisation 

process described in section 5.3.4.3, 31.3% of patients were considered high expressers 

(above the upper tertile).   
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Figure 5.34: Distribution of measurements of cytoplasmic HCK in patients with colorectal 
cancer  

Histogram demonstrating the distribution of cytoplasmic HCK measurements. Q-Q Plot of 
cytoplasmic HCK measurements. Boxplot demonstrating the median measurement with 
interquartile range and outliers. 
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5.4.3.1 Cytoplasmic FAK (tyr 861) association with clinicopathological factors 

Assessment of cytoplasmic FAK (tyr 861) as a continuous variable across different groups 

of categorical clinicopathological factors 

Only hypoalbuminaemia was associated with higher cytoplasmic FAK (tyr 861) expression 

(p=0.001, Bonferroni p<0.0042, figure 5.35). The median cytoplasmic FAK (tyr 861) 

measurement was 50.00 (IQR 10.00 – 90.00) in the hypoalbuminaemia group compared to 

40.00 (IQR 3.33 – 76.67) in patients with a normal serum albumin. Gender (p=0.765, 

Mann-Whitney U), presentation (p=0.272, Mann-Whitney U), tumour site (p=0.099, 

Kruskal-Wallis), tumour differentiation (p=0.260), T-stage (p=0.662, Kruskal-Wallis) N-

stage (p=0.705, Kruskal-Wallis), TNM stage (p=0.623, Kruskal-Wallis), categorical serum 

CRP (p=0.929, Mann-Whitney U), Klintrup score (p=0.743, Kruskal-Wallis) were not 

associated with continuous cytoplasmic FAK (tyr 861) expression.  

 

Figure 5.35: Distribution of cytoplasmic FAK (tyr 861) expression stratified by serum 
albumin measurements. 
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Assessment of cytoplasmic FAK (tyr 861) as a continuous variable across different 

continuous data types of clinicopathological factors 

On Spearman’s rank test cytoplasmic FAK (tyr 861) was not associated with age (SCC -

0.021, p=0.592) or serum CRP (SCC -0.023, p=0.590). There was an association with 

serum albumin (SCC -0.182, p<0.001, figure 5.36) even when the Bonferroni adjustment 

of p<0.017 was enforced, however, the coefficient is below the a priori SCC of 0.300. 

 

 

Figure 5.36: Scatter plot of cytoplasmic FAK (tyr 861) expression and serum albumin in 
patients with colorectal cancer 

 

Assessment of cytoplasmic FAK (tyr 861) associations with clinicopathological factors: 

categorical data type 

Cytoplasmic FAK (tyr 861) was only associated with hypoalbuminaemia (p<0.001). 

Gender (p=0.873), presentation (p=0.208), tumour site (colon vs rectum) (p=0.443), 

tumour site (right vs left vs rectum) (p=0.074), tumour differentiation (p=0.077), T-stage 

(p=0.835), N-stage (p=0.778), TNM stage (p=0.613), serum CRP (p=0.983), Klintrup 

score (p=0.788) and MSI status (p=0.877) were not associated with categorical 

cytoplasmic FAK (tyr 861). 
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Table 5.4: The relationship between cytoplasmic FAK (tyr 861) expression and 
clinicopathological factors 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 

Bonferroni adjustment = <0.0042 
 

5.4.4 SFK interrelationships 

To adjust for multiple correlations we used the Bonferroni method for adjusting alpha for 

multiple comparisons. For correlations to be significant a p-value must be less than 

p<0.0083 and a Spearman’s correlation coefficient greater than 0.300 or less than -0.300. 

Clinicopathological 
factors 

 Low cytoplasmic 
FRG expression 

High cytoplasmic 
FGR expression 

p-value 

     

Sex 
     Female 
     Male 

  
229 (49.2%) 
236 (50.8%) 

 
103 (48.6%) 
109 (51.4%) 

 
0.873 

Presentation 
     Elective 
     Emergency 

  
320 (68.8%) 
145 (31.2%) 

 
156 (73.6%) 
56 (26.4%) 

 
0.208 

Tumour Site 
     Colon 
     Rectum 

  
363 (78.1%) 
102 (21.9%) 

 
171 (80.7%) 
41 (19.3%) 

 
0.443 

Tumour Site 
     Right 
     Left 
     Rectum 

  
217 (46.7%) 
147 (31.6%) 
101 (21.7%) 

 
85 (40.1%) 
86 (40.6%) 
41 (19.3%) 

 
0.074 

Differentiation 
     Well-Mod 
     Poor 

  
426 (91.6%) 
39 (8.4%) 

 
185 (87.3%) 
27 (12.7%) 

 
0.077 

T stage 
     1 
     2 
     3 
     4 

  
19 (4.1%) 
66 (14.2%) 
244 (52.5%) 
136 (29.2%) 

 
8 (3.8%) 
25 (11.8%) 
117 (55.2%) 
62 (29.2%) 

 
0.835 

N stage 
     0 
     1 
     2 

  
302 (64.9%) 
116 (24.9%) 
47 (10.1%) 

 
137 (64.6%) 
50 (23.6%) 
25 (11.8%) 

 
0.778 

TNM stage 
(simplified) 
     I 
     II 
     III 

  
 
76 (16.3%) 
220 (47.3%) 
169 (36.3%) 

 
 
29 (13.7%) 
107 (50.5%) 
76 (35.8%) 

 
 
0.613 

Serum CRP 
     Normal 
     High 

  
184 (50.7%) 
179 (49.3%) 

 
86 (50.6%) 
84 (49.4%) 

 
0.983 

Serum albumin 
     Normal 
     Low 

  
298 (77.8%) 
85 (22.2%) 

 
115 (63.9%) 
65 (36.1%) 

 
<0.001 

Klintrup score 
     Good 
     Poor 

  
325 (69.9%) 
140 (30.1%) 

 
146 (68.9%) 
66 (31.1%) 

 
0.788 

MSI status 
     CI 
     MSI 

  
406 (87.3%) 
59 (12.7%) 

 
186 (87.7%) 
26 (12.3%) 

 
0.877 
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Of all the correlations assessed, only higher cytoplasmic HCK expression correlated with 

higher expression levels of cytoplasmic FAK (tyr 861) (SCC 0.413, p<0.001) (table 5.5, 

figure 5.37). In addition, higher expression levels of cytoplasmic HCK weakly correlated 

with higher expression levels of cytoplasmic FGR (SCC 0.289, p<0.001) (table 5.5).   

 

Table 5.5: Spearman correlation coefficients for the assessment of interrelationships 
between SFK expression and FAK (tyr 861) expression 

 
 

 

 

 

 

 

 

 

 

Figure 5.37: Correlation between Cytoplasmic HCK and cytoplasmic FAK (tyr 861) 
expressions (p<0.001, PCC 0.413)  

 

  nFGR cHCK cFAK (tyr861) 

cFGR SCC -0.094 0.289 0.142 

 P-value 0.015 <0.001 <0.001 

nFGR SCC  0.037 0.096 

 P-value  0.336 0.012 

cHCK SCC   0.413 

 P-value   <0.001 

cFAK861 SCC    
 P-value    
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5.4.5 Association of SFK expression, clinicopathological factors and 

survival 

During follow-up there were 150 (22.2%) recurrences and 260 (38.4%) deaths. Five year 

recurrence-free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.2. 

 

5.4.5.1 Univariable recurrence-free survival - cytoplasmic FGR expression 

Tumour cytoplasmic FGR measurements were not significantly different in patients who 

went on to develop disease recurrence (p=0.817, Mann-Whitney U). The median for 

patients with recurrence was 110.00 (IQR 69.17 – 150.83) compared with 110.00 (IQR 

76.66 – 143.34) in the non-recurrence group (supplementary figure 5.1, appendix 5.3).  

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic FGR 

was 54.5% compared to 53.0% in patients with a normal serum CRP (p=0.752, Pearson’s 

chi square). On logrank analysis, raised cytoplasmic FGR was not significantly associated 

with poor recurrence-free survival (p=0.301, figure 5.38). The mean survival for patients 

with a raised cytoplasmic FGR was 47.5 months (95% CI 44.0 – 51.0) compared with 50.0 

months (95% CI 48.2 – 51.7) in the low cytoplasmic FGR group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 532 429 377 345 322 305 283 

High 145 119 99 87 83 81 79 

Figure 5.38: The relationship between cytoplasmic FGR expression and recurrence-free 
survival in patients with colorectal cancer  

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic FGR expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic FGR was not significantly 

associated with poor recurrence-free survival when dichotomised as a categorical variable 

(HR 1.22 (95% CI 0.84 – 1.76), p=0.302). The hazard ratio remained non-significant when 

it was included as a continuous variable (HR 1.00 (95% CI 0.99 – 1.01), p=0.761). In 

addition to the non-significant associations observed between cytoplasmic FGR expression 

and disease recurrence, its predictive value remains poor. When ROC analysis was 

performed using recurrence as the endpoint, the AUC was 0.49 (95% CI 0.44 – 0.55, 

p=0.817) for cytoplasmic FGR as a continuous variable and an AUC of 0.52 (95% CI 0.47 

– 0.57, p=0.435) for cytoplasmic FGR as a categorical variable (supplementary figure 5.2, 

appendix 5.3). 
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5.4.5.2 Univariable recurrence-free survival - Nuclear FGR expression 

There was no statistically significant difference between nuclear FGR measurements of 

patients who did and did not develop disease recurrence during the follow up period 

(p=0.777, Mann-Whitney U). The median nuclear FGR measurement was 166.67 (IQR 

89.17 – 244.17) in the recurrence group compared to 170.00 (IQR 93.33 – 246.67) in the 

non-recurrence group (supplementary figure 5.3, appendix 5.3).  

The 5 year recurrence-free survival rate for patients with a raised nuclear FGR was 

55.3% compared to 52.7% in patients with a low nuclear FGR expression (p=0.569, 

Pearson’s chi square). On logrank analysis raised nuclear FGR was not associated with 

poor recurrence-free survival (p=0.878). The mean survival for patients with raised nuclear 

FGR was 48.8 months (95% CI 45.5 – 52.0) compared with 49.6 months (95% CI 47.9 – 

51.4) in the low nuclear FGR group (supplementary figure 5.4, appendix 5.3).  

On Cox univariable regression analysis nuclear FGR was not associated with poor 

recurrence free survival when dichotomised as a categorical variable (HR 1.03 (95% CI 

0.71 – 1.49), p=0.878). Furthermore, the hazard ratio remained non-significant when it was 

included as a continuous variable (HR 1.00 (95% CI 1.00 – 1.00), p=0.621). In addition to 

the non-significant associations observed between nuclear FGR and disease recurrence, its 

predictive value is relatively poor. When ROC analysis was performed using recurrence as 

the endpoint, the AUC was 0.51 (95% CI 0.46 – 0.56, p=0.777) for nuclear FGR as a 

continuous variable and an AUC of 0.51 (95% CI 0.45 – 0.56, p=0.832) for nuclear FGR 

as a categorical variable (supplementary figure 5.5, appendix 5.3).  

 

5.4.5.3 Univariable recurrence-free survival - cytoplasmic HCK expression 

Tumour cytoplasmic HCK measurements were higher in patients who went on to develop 

disease recurrence (p=0.021, Mann-Whitney U, figure 5.39). The median for patients with 

recurrence was 45.00 (IQR 14.17 – 75.83) compared with 40.00 (IQR 10.00 – 50.00) in the 

non-recurrence group.  
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Figure 5.39: The distribution of cytoplasmic HCK measurements in patients with and 
without disease recurrence (p=0.021) 

 

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic HCK was 

49.4% compared to 54.6% in patients with a low cytoplasmic HCK expression (p=0.246, 

Pearson’s chi square). On logrank analysis, raised cytoplasmic HCK was significantly 

associated with poor recurrence free survival (p=0.004, figure 5.40). The mean survival for 

patients with a raised cytoplasmic HCK was 45.2 months (95% CI 41.8 – 48.7) compared 

with 50.7 months (95% CI 49.0 – 52.4) in the low cytoplasmic HCK group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 513 419 367 341 321 305 280 

High 164 129 109 91 84 81 81 

Figure 5.40: The relationship between cytoplasmic HCK expression and recurrence-free 
survival in patients with colorectal cancer  

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic HCK expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic HCK was significantly 

associated with poor recurrence free survival when dichotomised as a categorical variable 

(HR 1.64 (95% CI 1.17 – 2.31), p=0.004). The significance of the hazard ration remained 

when it was included as a continuous variable (HR 1.01 (95% CI 1.00 – 1.02), p=0.005). 

Despite the significant associations observed between cytoplasmic HCK and disease 

recurrence, its predictive value remains poor. When ROC analysis was performed using 

recurrence as the endpoint, the AUC was 0.56 (95% CI 0.51 – 0.61, p=0.022) for 

cytoplasmic HCK as a continuous variable and an AUC of 0.55 (95% CI 0.50 – 0.61, 

p=0.043) for cytoplasmic HCK as a categorical variable (figure 5.41). 
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Figure 5.41: The predictive value of cytoplasmic HCK in identifying patients who will 
develop cancer recurrence  

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
HCK in identifying patients who will develop disease recurrence. 
 

5.4.5.4 Univariable overall survival - cytoplasmic FGR expression 

Cytoplasmic FGR measurements were not statistically higher in patients who died during 

the follow up period (p=0.783, Mann-Whitney U). The median for patients who died was 

110.00 (IQR 70.00 – 150.00) compared with 110.00 (IQR 74.99 – 140.01) in the alive 

group (supplementary figure 5.6, appendix 5.3).  

The 5 year overall survival rate for patients with a raised cytoplasmic FGR 

expression was 58.6% compared to 57.1% in patients with a low cytoplasmic FGR 

expression (p=0.750, Pearson’s chi square). On logrank analysis, raised cytoplasmic FGR 

expression was not significantly associated with poor overall survival (p=0.683). The mean 

survival for patients with a raised cytoplasmic FGR expression was 44.6 months (95% CI 

41.0 – 48.2) compared with 46.2 months (95% CI 44.3 – 48.0) in the low cytoplasmic FGR 

expression group (supplementary figure 5.7, appendix 5.3).  

On Cox univariable regression analysis raised cytoplasmic FGR was not 

significantly associated with poor overall survival when dichotomised as a categorical 

variable (HR 1.06 (95% CI 0.79 – 1.42), p=0.683) or when analysed as a continuous 

variable (HR 1.00 95% CI 1.00 – 1.01, p=0.832). In addition to the non-significant 
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associations with survival, cytoplasmic FGR did not predict death during the follow up 

period as a categorical variable (AUC was 0.51 (95% CI 0.46 – 0.55, p=0.783), ROC 

analysis) or continuous variable (AUC was 0.51 (95% CI 0.46 – 0.55, p=0.752), ROC 

analysis), (supplementary figure 5.8, appendix 5.3).  

 

5.4.5.5 Univariable overall survival - nuclear FGR expression 

Nuclear FGR measurements were not significantly different in patients who died during 

the follow up period (p=0.633, Mann-Whitney U). The median nuclear FGR was 166.67 

(IQR 90 - 243.34) in the alive group compared to 170.00 (IQR 90.83 – 249.17) in patients 

who died during follow-up (supplementary figure 5.9, appendix 5.3).  

The 5 year overall survival rate for patients with a low nuclear FGR expression was 

55.9% compared to 57.9% in patients with a low nuclear FGR expression (p=0.647, 

Pearson’s chi square).  On logrank analysis nuclear FGR was not associated with poor 

overall survival (p=0.560). The mean survival for patients with raised nuclear FGR was 

45.5 months (95% CI 42.2 – 48.8) compared with 46.0 months (95% CI 44.1 – 47.8) in the 

low nuclear FGR group (supplementary figure 5.10, appendix 5.3).  

On Cox univariable regression analysis nuclear FGR was not associated with poor 

overall survival when dichotomised as a categorical variable (HR 1.09 (95% CI 0.82 – 

1.44), p=0.560) or when included as a continuous variable (HR 1.00 (95% CI 1.00 – 1.00), 

p=0.609). Furthermore, nuclear FGR did not offer any predictive value when death was 

used as an endpoint. the AUC was 0.51 (95% CI 0.47 – 0.56, p=0.634) for nuclear FGR as 

a continuous variable and an the AUC was 0.51 (95% CI 0.47 – 0.56, p=0.569) for nuclear 

FGR as a categorical variable (supplementary figure 5.11, appendix 5.3).  

  

5.4.5.6 Univariable overall survival - cytoplasmic HCK expression 

Cytoplasmic HCK measurements were not higher in patients who died during the follow 

up period (p=0.240, Mann-Whitney U). The median for patients who died was 43.33 (IQR 

13.33 – 73.33) compared with 40.00 (IQR 10.00– 70.00 mg/l) in the alive group 

(supplementary figure 5.12, appendix 5.3.).  

The 5 year overall survival rate for patients with a raised cytoplasmic HCK 

expression was 54.3% compared to 58.5% in patients with a low cytoplasmic HCK 

expression (p=0.342, Pearson’s chi square). On logrank analysis, raised cytoplasmic HCK 

expression was not associated with poor overall survival (p=0.243, figure 5.42). The mean 

survival for patients with a raised cytoplasmic HCK was 42.9 months (95% CI 39.4 – 46.5) 
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compared with 46.8 months (95% CI 44.9 – 48.6) in the low cytoplasmic HCK group.  

  

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 513 442 411 373 345 327 301 

High 164 134 124 109 102 92 89 

Figure 5.42: The relationship between cytoplasmic HCK expression and overall survival 
in patients with colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
cytoplasmic HCK expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic HCK expression was not 

associated with poor overall survival when dichotomised as a categorical variable (HR 

1.18 (95% CI 0.89 – 1.55), p=0.245) or as a continuous variable (HR 1.01 95% CI 1.00 – 

1.01, p=0.101). Furthermore, cytoplasmic HCK did not offer any predictive value for death 

when studied as a continuous variable (AUC was 0.53 (95% CI 0.48 – 0.57, p=0.240)) or a 

categorical variable (AUC of 0.52 (95% CI 0.47 – 0.56, p=0.493)) (supplementary figure 

5.13, appendix 5.3).  
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5.4.6 The relationship between SRC activation and survival 

5.4.6.1 Univariable recurrence-free survival - cytoplasmic FAK (tyr 861) expression 

There was no statistically significant difference between the cytoplasmic FAK (tyr 861) 

expression of patients who did and did not develop disease recurrence during follow-up 

(p=0.051, Mann-Whitney U, figure 5.43). The median cytoplasmic FAK (tyr 861) 

expression was 40.00 (IQR 4.33 – 76.67) in the non-recurrence group compared to 40.00 

(IQR 0.00 – 80.83 in the recurrence group.  

 

Figure 5.43: The distribution of cytoplasmic FAK (tyr 861) expression in patients with 
and without cancer recurrence (p=0.051) 

 

The 5 year recurrence-free survival rate for patients with a high cytoplasmic FAK (tyr 861) 

expression was 51.4% compared to 54.2% in patients with a low cytoplasmic FAK (tyr 

861) expression (p=0.502, Pearson’s chi square). On logrank analysis raised cytoplasmic 

FAK (tyr 861) was associated with poor recurrence-free survival (p=0.046, figure 5.44). 

The mean survival for patients with a raised cytoplasmic FAK (tyr 861) was 47.3 months 

(95% CI 44.4 – 50.2) compared with 50.4 months (95% CI 48.6 – 52.2) in the low 

cytoplasmic FAK (tyr 861) group.  
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Figure 5.44: The relationship between cytoplasmic FAK (tyr 861) expression and 
recurrence-free survival  

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic FAK (tyr 861) expression status. Beneath, there is a survival table 
demonstrating the number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised FAK (tyr 861) was marginally associated 

with poor recurrence-free survival when dichotomised as a categorical variable (HR 1.39 

(95% CI 1.00 – 1.94), p=0.047). The hazard ratio was also significant when it was included 

as a continuous variable (HR 1.01 (95% CI 1.00 – 1.01), p=0.048). Despite the 

associations observed between cytoplasmic FAK (tyr 861) expression and disease 

recurrence, its predictive value is relatively poor. When ROC analysis was performed 

using recurrence as the endpoint, the AUC was 0.55 (95% CI 0.50 – 0.60, p=0.051) for 

cytoplasmic FAK (tyr 861) as a continuous variable and an AUC of 0.54 (95% CI 0.49 – 

0.60, p=0.108) for cytoplasmic FAK (tyr 861) as a categorical variable (figure 5.45).  

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 465 381 331 303 282 270 253 

Low 212 167 145 129 123 116 109 
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Figure 5.45: Predictive value of cytoplasmic FAK (tyr 861) expression in identifying 
patients who will develop cancer recurrence 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
FAK (tyr 861) in identifying patients who will develop cancer recurrence during follow-up.  
 

5.4.6.2 Univariable overall survival - cytoplasmic FAK (tyr861) expression 

Cytoplasmic FAK (tyr861) expression was not higher in patients who died during the 

follow up period (p=0.246, Mann-Whitney U). The median cytoplasmic FAK (tyr 861) 

was 40.00 (IQR 3.33 – 76.67) in the alive group compared to 40.00 (IQR 3.33 – 76.66) in 

patients who died during follow-up (supplementary figure 5.14, appendix 5.3).  

The 5 year overall survival rate for patients with raised cytoplasmic FAK (tyr 861) 

was 55.2% compared to 58.5% in patients with a low cytoplasmic FAK (tyr 861) 

expression (p=0.420, Pearson’s chi square). On logrank analysis raised cytoplasmic FAK 

(tyr 861) expression was not associated with poor overall survival (p=0.418). The mean 

survival for patients with raised cytoplasmic FAK (tyr 861) expression was 45.0 months 

(95% CI 42.0 – 48.0) compared with 46.2 months (95% CI 44.3 – 48.2) in the low 

cytoplasmic FAK (tyr 861) group (supplementary figure 5.15, appendix 5.3).  

On Cox univariable regression analysis raised cytoplasmic FAK (tyr 861) 

expression was not associated with poor overall survival when dichotomised as a 
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categorical variable (HR 1.11 (95% CI 0.86 – 1.44), p=0.419) or as a continuous variable 

(HR 1.00 (95% CI 1.00 – 1.01), p=0.363). Furthermore, raised FAK (tyr 861) did not 

predict death when analysed as a continuous variable (AUC of 0.53 (95% CI 0.48 – 0.57, 

p=0.246)) or categorical variable (AUC of 0.51 (95% CI 0.47 – 0.56, p=0.531)) 

(supplementary figure 5.16, appendix 5.3).  

  

5.4.6.3 Multivariable recurrence free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described in the statistical methodology section.  

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p was >0.05. On univariable analysis, emergency 

presentation (p<0.001), advancing T-stage (p<0.001), advancing N-stage (p<0.001), higher 

TNM stage (p<0.001), poor differentiation (p=0.007), raised serum CRP (p=0.013), 

hypoalbuminaemia (p=0.011), poor Klintrup score (p<0.001) and tumour MSI (p=0.035), 

raised cytoplasmic HCK (p=0.004) and raised cytoplasmic FAK (tyr 861) (p=0.047) had a 

p-value <0.1 and were therefore included in the multivariable Cox proportional hazards 

regression model. 

 On multivariable analysis, advancing T-stage (when all subcategories were 

compared with T1 (T2 HR 0.61 (95% CI 0.12 – 3.15), (T3 HR 0.99 (95% CI 0.24 – 4.16) 

and (T4 HR 2.71 (95% CI 0.64 – 11.45)), p<0.001), N-stage (when all subcategories were 

compared with N0 (N1 HR 2.42 (95% CI 1.60 – 3.67), (N2 HR 3.24 (95% CI 1.96 – 5.34), 

p<0.001) good Klintrup score (HR 0.52 (95% CI 0.32 – 0.86), p=0.010) and raised 

cytoplasmic FAK (tyr 861) (HR 1.48 (95% CI (1.02 – 2.16), p=0.040) were independently 

and significantly associated with poor overall survival (table 5.6).  
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Table 5.6: The relationship between clinicopathological factors and recurrence free 
survival in patients with colorectal cancer: univariable and multivariable analysis 

 

 
Univariable 
analysis   

Multivariabl
e analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.120 0.101 0.99 (0.98 - 1.00)    
Sex  
     Female 
     Male 

 
 
0.121 0.461 

1 
1.13 (0.82 – 1.56)    

Presentation 
     Elective 
     Emergency 

 
 
0.689 <0.001 

1 
1.99 (1.477 – 2.0)  0.091  

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
-0.249 
0.085 

 
0.278 
 
 

1 
0.78 (0.53 – 1.14) 
1.09 (0.73 – 1.62)    

T stage  
     1  
     2  
     3  
     4 

 
0.000 
-0.008 
1.010 
1.944 

<0.001 
 
 
 

1 
0.99 (0.21 – 4.77) 
2.75 (0.67 – 11.20) 
6.99 (1.71 – 28.49) 

0.000 
-0.494 
-0.008 
0.997 

 
<0.001 
 
 
 

1 
0.61 (0.12 – 3.15) 
0.99 (0.24 – 4.16) 
2.71 (0.64 – 11.45) 

N stage 
     0 
     1 
     2 

 
0.000 
1.133 
1.702 

<0.001 
 
 

1 
3.12 (2.16 – 4.47) 
5.49 (3.59 – 8.39) 

0.000 
0.885 
1.175 

 
<0.001 
 
 

1 
2.42 (1.60 – 3.67) 
3.24 (1.96 – 5.34) 

TNM stage 
     I 
     II 
     III 

 
0.000 
0.953 
2.051 

<0.001 
 
 

1 
2.60 (1.18 – 5.70) 
7.78 (3.60 – 16.80)  0.841  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.629 

 
 
0.007 

 
1 
1.88 (1.18 – 2.98)  0.769  

Serum CRP  
     Normal  
     High 

 
 
0.458 0.013 

1 
1.58 (1.10 – 2.27)  0.924  

Serum albumin  
     Normal  
     Low 

 
 
0.495 0.011 

1 
1.64 (1.12 – 2.40)  0.240  

Klintrup score 
     High 
     Low 

 
 
-1.091 <0.001 

1 
0.34 (0.22 – 0.52) -0.647 0.010 

1 
0.52 (0.32 – 0.86) 

MSI status  
     CI  
     MSI 

 
 
-0.689 0.035 

1 
0.50 (0.26 – 0.95)  0.548 

 
 

Cytoplasmic MMP-9 
Low 
High 

 
 
-0.032 

 
 
0.846 

1 
0.97 (0.70 – 1.33)    

Cytoplasmic FGR 
Low 
High 

 
 
0.196 

 
 
0.302 

1 
1.22 (0.84 – 1.76)    

Nuclear FGR 
Low 
High 

 
 
0.029 

 
 
0.878 

1 
1.03 (0.71 – 1.49)    

Cytoplasmic HCK 
Low 
High 

 
 
0.496 

 
 
0.004 

1 
1.64 (1.17 – 2.31)  0.394  

Cytoplasmic FAK 
(tyr 861) 
Low 
High 

 
 
 
0.334 

 
 
 
0.047 

1 
1.40 (1.00 – 1.94) 0.395 0.040 

1 
1.48 (1.02 – 2.16) 
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5.4.6.4 Multivariable overall survival 

On univariable survival analysis, none of the SFKs or FAK (tyr861) was associated with 

overall survival with all p-values >0.1. Therefore, no multivariable regression model was 

constructed based on these biomarkers. 

 

5.4.7 The relationship between SFK expression, FAK (tyr 861) 

expression and TNM stage 

5.4.7.1 FGR expression stratified by TNM stage II and III 

There was no significant difference in the measurements of cytoplasmic FGR between 

patients with TNM stage II and III colorectal cancer (p=0.728, Mann-Whitney U, 

supplementary figure 5.17, appendix 5.3). The cytoplasmic FGR measurements in patients 

with stage II colorectal cancer ranged from 36.67 – 200.00 with a median of 110.00 (IQR 

0.70 – 150.00) compared with a range of 40.00 – 170.00 and a median of 110.00 (IQR 

76.67 – 143.34) in patients with stage III colorectal cancer. This observation was also 

supported by chi-squared analysis when cytoplasmic FGR was analysed as a categorical 

variable (p=0.190, Bonferroni adjustment p<0.0125, table 5.7).  

 

Table 5.7 The relationship between SFK expression, FAK (tyr 861) expression and TNM 
stage II and III 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bonferoni adjustment = <0.0125 
 

Clinicopathological factors TNM stage II TNM stage III  p-value 

Cytoplasmic FGR 

     Low 

     High 

 

245 (74.9%) 

82 (25.1%) 

 

195 (79.6%) 

50 (20.4%) 

 

0.190 

Nuclear FGR 

     Low 

     High 

 

257 (78.6%) 

70 (21.4%) 

 

186 (75.9%) 

59 (24.1%) 

 

0.449 

Cytoplasmic HCK 

     Low 

     High 

 

247 (75.5%) 

80 (24.5%) 

 

176 (71.8%) 

69 (28.2%) 

 

0.319 

Cytoplasmic FAK (tyr 861) 

     Low 

     High 

 

220 (67.3%) 

107 (32.7%) 

 

169 (69.0%) 

76 (31.0%) 

 

0.666 
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In addition to the observations above, there was no significant difference in the 

measurements of nuclear FGR between patients with TNM stage II and III colorectal 

cancer (p=0.640, Mann-Whitney U, supplementary figure 5.18, appendix 5.3). The nuclear 

FGR measurements in patients with stage II colorectal cancer ranged from 33.33 – 300.00 

with a median of 165.00 (IQR 95.00 – 235.00) compared with a range of 60.00 – 300.00 

and a median of 166.67 (IQR 91.67 – 241.67) in patients with stage III colorectal cancer. 

This observation was also supported by chi-squared analysis when nuclease FGR was 

analysed as a categorical variable (p=0.449, Bonferroni adjustment p<0.0125, table 5.7).  

 

5.4.7.2 HCK expression stratified by TNM stage II and III colorectal cancer 

There was no significant difference in the measurements of cytoplasmic HCK between 

patients with TNM stage II and III colorectal cancer (p=0.722, Mann-Whitney U, 

supplementary figure 5.19, appendix 5.3). Measurements of cytoplasmic HCK ranged from 

0.00 – 110.00 with a median of 43.33 (IQR 16.66 – 70.00) in TNM stage II compared with 

a range of 0.00 – 103.33 and a median of 43.33 (IQR 13.33 – 73.33) in patients with TNM 

stage III. This observation was supported by chi-squared analysis when cytoplasmic HCK 

was analysed as a categorical variable (p=0.319, Bonferroni adjustment p<0.0125, table 

5.7).  

 

5.4.7.3 FAK (tyr 861) expression stratified by TNM stage II and III 

There was no significant difference in the measurements of cytoplasmic FAK (tyr 861) 

between patients with TNM stage II and III colorectal cancer (p=0.435, Mann-Whitney U, 

supplementary figure 5.20, appendix 5.3). The cytoplasmic FAK (tyr 861) measurements 

in patients with stage II colorectal cancer ranged from 0.00 – 130.00 with a median of 

43.33 (IQR 6.00 – 81.66) compared with a range of 0.00 – 120.00 and a median of 40.00 

(IQR 3.33 – 76.67) in patients with stage III colorectal cancer. This observation was also 

supported by chi-squared analysis when cytoplasmic FAK (tyr 861) was analysed as a 

categorical variable (p=0.666, Bonferroni adjustment p<0.0125, table 5.7).  
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5.4.8 SFK expression and survival in patients with stage II colorectal 

cancer 

During follow-up there were 54 (16.5%) recurrences and 114 (34.9%) deaths. Five year 

recurrence-free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.3. 

 

5.4.8.1 Univariable recurrence-free survival - cytoplasmic FGR expression 

Cytoplasmic FGR measurements were not significantly different in patients who went on 

to develop disease recurrence (p=0.232, Mann-Whitney U, supplementary figure 5.21, 

appendix 5.3). The median for patients with recurrence was 103.33 (IQR 60.00 – 146.66) 

compared with 113.33 (IQR 74.99 – 151.67) in the non-recurrence group.  

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic FGR 

was 63.4% compared to 56.7% in patients with a low cytoplasmic FGR (p=0.288, 

Pearson’s chi square). On logrank analysis raised cytoplasmic FGR was not significantly 

associated with poor recurrence-free survival (p=0.958). The mean survival for patients 

with a raised cytoplasmic FGR was 52.3 months (95% CI 48.6 – 56.0) compared with 52.9 

months (95% CI 50.8 – 55.0) in the low cytoplasmic FGR group (supplementary figure 

5.22, appendix 5.3).  

Cox univariable regression analysis demonstrated that a raised cytoplasmic FGR 

expression was not significantly associated with poor recurrence-free survival when 

dichotomised as a categorical variable (HR 1.02 (95% CI 0.55 – 1.87), p=0.958) or as a 

continuous variable (HR 0.99 (95% CI 0.98 – 1.00), p=0.220). Furthermore, raised 

cytoplasmic FGR did not predict cancer recurrence as a continuous variable (AUC of 0.45 

(95% CI 0.36 – 0.54, p=0.232)) or as a categorical variable (AUC of 0.51 (95% CI 0.42 – 

0.59, p=0.906) (figure 5.46).  
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Figure 5.46: The predictive value of cytoplasmic FGR in identifying patients with stage II 
colorectal cancer who will develop recurrence during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
FGR in identifying patients who will survive 5 years without recurrence. 
 

5.4.8.2 Univariable recurrence-free survival - nuclear FGR expression 

There was no difference between the nuclear FGR measurements of patients who did and 

did not develop cancer recurrence during follow-up (p=0.612, Mann-Whitney U). The 

median nuclear FGR was 166.67 (IQR 98.34 – 235.00) in the non-recurrence group 

compared to 160.00 (IQR 87.50 – 232.50) in the recurrence group (supplementary figure 

5.23, appendix 5.3)  

The 5 year recurrence-free survival rate for patients with a raised nuclear FGR was 

54.3% compared to 59.5% in patients with a low nuclear FGR expression (p=0.430, 

Pearson’s chi square). On logrank analysis raised nuclear FGR expression was not 

associated with poor recurrence-free survival (p=0.737). The mean survival for patients 

with raised nuclear FGR was 51.3 months (95% CI 46.8 – 55.8) compared with 53.1 

months (95% CI 51.1 – 55.1) in the low nuclear FGR group (supplementary figure 5.24, 

appendix 5.3).  

On Cox univariable regression analysis raised nuclear FGR was not significantly 

associated with poor recurrence-free survival when dichotomised as a categorical variable 

(HR 1.12 (95% CI 0.59 – 2.12), p=0.737) or as a continuous variable (HR 1.00 (95% CI 

0.99 – 1.01), p=0.888). There was no statistically significant predictive association 

between nuclear FGR expression and disease recurrence when analysed using ROC 

analysis. With disease recurrence as the endpoint, the AUC was 0.48 (95% CI 0.39 – 0.57, 
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p=0.613) for nuclear FGR as a continuous variable and an AUC of 0.51 (95% CI 0.42 – 

0.59, p=0.910) for nuclear FGR as a categorical variable (supplementary figure 5.25, 

appendix 5.3).  

 

5.4.8.3 Univariable recurrence-free survival - cytoplasmic HCK expression 

Cytoplasmic FGR measurements were not significantly different in patients who went on 

to develop disease recurrence (p=0.414, Mann-Whitney U). The median for patients with 

recurrence was 45.84 (IQR 5.84 – 85.84) compared with 43.33 (IQR 16.66 – 70.00) in the 

non-recurrence group (supplementary figure 5.26, appendix 5.3).  

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic HCK 

was 55.0% compared to 59.5% in patients with a low cytoplasmic HCK expression 

(p=0.476, Pearson’s chi square). On logrank analysis raised cytoplasmic HCK was 

associated with poor recurrence-free survival (p=0.037, figure 5.47). The mean survival for 

patients with a raised cytoplasmic HCK was 48.8 months (95% CI 44.2 – 53.4) compared 

with 53.9 months (95% CI 52.0 – 55.8) in the low cytoplasmic HCK group.  

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 247 222 201 188 174 162 148 

High 80 65 55 48 45 44 44 

 
Figure 5.47: The relationship between cytoplasmic HCK expression and recurrence free 
survival in patients with stage II colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic HCK expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
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Cox univariable regression analysis demonstrated that a raised cytoplasmic HCK was 

significantly associated with poor recurrence-free survival when dichotomised as a 

categorical variable (HR 1.81 (95% CI 1.03 – 3.19), p=0.040) but not as a continuous 

variable (HR 1.01 (95% CI 1.00 – 1.02), p=0.132). Furthermore, raised cytoplasmic HCK 

did not predict cancer recurrence as a continuous variable (AUC of 0.54 (95% CI 0.44 – 

0.63, p=0.415)) or as a categorical variable (AUC of 0.55 (95% CI 0.47 – 0.64, p=0.217) 

(figure 5.48). 

 

Figure 5.48: The predictive value of cytoplasmic HCK in identifying patients with stage II 
colorectal cancer who will develop recurrence during the follow up period 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
HCK in identifying patients who will survive 5 years without recurrence. 
 

5.4.8.4 Univariable overall survival - cytoplasmic FGR expression 

Cytoplasmic FGR measurements were not significantly higher in patients who died during 

follow-up (p=0.730, Mann-Whitney U, supplementary figure 5.27, appendix 5.3). The 

median for patients who died was 110.00 (IQR 73.33 – 146.67) compared with 113.33 

(IQR 70.00 – 156.66) in the alive group.  

The 5 year overall survival rate for patients with a raised cytoplasmic FGR was 

67.1% compared to 58.8% in patients with a low cytoplasmic FGR expression (p=0.183, 

Pearson’s chi square). On logrank analysis raised serum CRP was significantly associated 

with poor overall survival (p=0.621). The mean survival for patients with a raised 

cytoplasmic FGR expression was 48.7 months (95% CI 44.6 – 52.9) compared with 48.2 

months (95% CI 45.7 – 50.7) in the low cytoplasmic FGR group (supplementary figure 
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5.28, appendix 5.3).  

  On Cox univariable regression analysis raised cytoplasmic FGR was not associated 

with overall survival when dichotomised as a categorical variable (HR 0.90 (95% CI 0.58 

– 1.38), p=0.621) or as a continuous variable (HR 1.00 95% CI 0.99 – 1.01, p=0.949). 

Furthermore, there was no predictive association between cytoplasmic FGR expression and 

survival when ROC analysis was performed using death as the endpoint. The AUC was 

0.49 (95% CI 0.42 – 0.56, p=0.731) for cytoplasmic FGR as a continuous variable and an 

AUC of 0.49 (95% CI 0.42 – 0.56, p=0.750) for cytoplasmic FGR as a categorical variable 

(supplementary figure 5.29, appendix 5.3).  

 

5.4.8.5 Univariable overall survival - nuclear FGR expression 

Nuclear FGR expression measurements were not significantly different in patients who 

died during follow-up (p=0.460, Mann-Whitney U). The median nuclear FGR was 163.33 

(IQR 96.66 – 230.00) in the alive group compared to 170.00 (IQR 83.34 – 256.66) in 

patients who did not survive 5 years (supplementary figure 5.30, appendix 5.3).  

The 5 year overall survival rate for patients with a raised nuclear FGR expression 

was 54.3% compared to 62.6% in patients with a low nuclear FGR expression (p=0.204, 

Pearson’s chi square). On logrank analysis raised nuclear FGR was not significantly 

associated with poor overall survival (p=0.125). The mean survival for patients with a 

raised nuclear FGR was 46.0 months (95% CI 41.4 – 50.7) compared with 49.0 months 

(95% CI 46.5 – 51.3) in the low nuclear FGR group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 257 229 221 198 187 175 161 

Low 70 63 59 50 46 43 38 

Figure 5.49: The relationship between nuclear FGR expression and overall survival in 
patients with stage II colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
nuclear FGR expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised nuclear FGR was not with poor overall 

survival when dichotomised as a categorical variable (HR 1.38 (95% CI 0.91 – 2.10), 

p=0.126) or as a continuous variable (HR 1.00 (95% CI 1.00 – 1.01), p=0.385). When 

ROC analysis was performed using death as the endpoint, the AUC was 0.53 (95% CI 0.46 

– 0.59, p=0.460) for nuclear FGR as a continuous variable and an AUC of 0.54 (95% CI 

0.47 – 0.60, p=0.261) for nuclear FGR as a categorical variable (supplementary figure 

5.31, appendix 5.3).  

  

5.4.8.6 Univariable overall survival - cytoplasmic HCK expression 

Cytoplasmic HCK measurements were not significantly higher in patients who died during 

follow-up (p=0.532, Mann-Whitney U). The median for patients who died was 40.00 (IQR 

12.50 – 67.50) compared with 43.33 (IQR 16.66 – 70.00) in the alive group 

(supplementary figure 5.32, appendix 5.3).  

The 5 year overall survival rate for patients with a raised cytoplasmic HCK was 

56.2% compared to 62.3% in patients with a low cytoplasmic HCK expression (p=0.331, 
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Pearson’s chi square). On logrank analysis raised cytoplasmic HCK was significantly 

associated with poor overall survival (p=0.260, figure 5.50). The mean survival for patients 

with a raised cytoplasmic HCK was 43.0 months (95% CI 37.9 – 48.1) compared with 50.0 

months (95% CI 47.8 – 52.3) in the low cytoplasmic HCK group.  

 

 

  

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 247 225 219 197 183 171 154 

High 80 67 61 51 50 47 45 

Figure 5.50: The relationship between cytoplasmic HCK expression and overall survival 
in patients with stage II colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
cytoplasmic HCK expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic HCK was not associated with 

poor overall survival when dichotomised as a categorical variable (HR 1.27 (95% CI 0.84 

– 1.93), p=0.261) or as a continuous variable (HR 1.01 95% CI 1.00 – 1.02, p=0.124). 

Furthermore, cytoplasmic HCK was not predictive of death in follow-up. When ROC 

analysis was performed using death as the endpoint, the AUC was 0.52 (95% CI 0.46 – 

0.59, p=0.533) for cytoplasmic HCK as a continuous variable and an AUC of 0.51 (95% 

CI 0.45 – 0.58, p=0.672) for cytoplasmic HCK as a categorical variable (supplementary 

figure 5.33, appendix 5.3).  
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5.4.8.7 Univariable recurrence free survival - cytoplasmic FAK (tyr 861) 

There was no statistically significant difference between cytoplasmic FAK (tyr 861) 

measurements of patients who did and did not develop cancer recurrence during the follow 

up period (p=0.280, Mann-Whitney U). The median cytoplasmic FAK (tyr 861) was 43.33 

(IQR 8.33 – 78.33) in the non-recurrence group compared to 46.67 (IQR 16.67 – 96.67) in 

the recurrence group (supplementary figure 5.34, appendix 5.3).  

The 5 year recurrence free survival rate for patients with a raised cytoplasmic FAK 

(tyr 861) was 56.1% compared to 59.5% in patients with a low cytoplasmic FAK (tyr 861) 

expression (p=0.550, Pearson’s chi square). On logrank analysis raised cytoplasmic FAK 

(tyr 861) was not associated with poor recurrence-free survival (p=0.263). The mean 

survival for patients with a raised cytoplasmic FAK (tyr 861) was 51.6 months (95% CI 

48.2 – 55.0) compared with 53.3 months (95% CI 51.1 – 55.4) in the low cytoplasmic FAK 

(tyr 861) group (supplementary figure 5.35, appendix 5.3).  

On Cox univariable regression analysis raised cytoplasmic FAK (tyr 861) was not 

significantly associated with poor recurrence-free survival when dichotomised as a 

categorical variable (HR 1.37 (95% CI 0.79 – 2.36), p=0.265) or as a continuous variable 

(HR 1.01 (95% CI 1.00 – 1.02), p=0.118). There was no statistically significant predictive 

association between cytoplasmic FAK (tyr 861) and disease recurrence when analysed 

using ROC analysis. With disease recurrence as the endpoint, the AUC was 0.55 (95% CI 

0.46 – 0.64, p=0.280) for cytoplasmic FAK (tyr 861) as a continuous variable and an AUC 

of 0.54 (95% CI 0.45 – 0.62, p=0.391) for cytoplasmic FAK (tyr 861) as a categorical 

variable (supplementary figure 5.36, appendix 5.3).  

 

5.4.8.8 Univariable overall survival - cytoplasmic FAK (tyr 861) 

Cytoplasmic FAK (tyr 861) measurements were not significantly different in patients who 

died during follow-up (p=0.231, Mann-Whitney U). The median cytoplasmic FAK (tyr 

861) was 43.33l (IQR 5.01 – 81.67) in the alive group compared to 44.17 (IQR 4.17 – 

84.17) in patients who did not survive 5 years (supplementary figure 5.37, appendix 5.3).  

The 5 year overall survival rate for patients with a raised cytoplasmic FAK (tyr 

861) was 58.9% compared to 61.8% in patients with a low cytoplasmic FAK (tyr 861) 

expression (p=0.609, Pearson’s chi square). On logrank analysis raised cytoplasmic FAK 

(tyr 861) was not associated with poor overall survival (p=0.475). The mean survival for 

patients with a raised cytoplasmic FAK (tyr 861) was 47.1 months (95% CI 43.1 – 51.1) 

compared with 48.9 months (95% CI 46.4 – 51.5) in the low cytoplasmic FAK (tyr 861) 
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group (supplementary figure 5.38, appendix 5.3).  

On Cox univariable regression analysis raised cytoplasmic FAK (tyr 861) was not 

associated with poor overall survival when dichotomised as a categorical variable (HR 

1.15 (95% CI 0.78 – 1.69), p=0.476) or when included as a continuous variable (HR 1.01 

(95% CI 1.00 – 1.01), p=0.188).  

Cytoplasmic FAK (tyr 861) was not predictive of death during follow-up. When 

ROC analysis was performed using death as the endpoint, the AUC was 0.54 (95% CI 0.48 

– 0.61, p=0.232) for cytoplasmic FAK (tyr 861) as a continuous variable and an AUC of 

0.52 (95% CI 0.45 – 0.58, p=0.588) for cytoplasmic FAK (tyr 861) as a categorical 

variable (Supplementary figure 5.39, appendix 5.3).  

 

5.4.8.9 Multivariable recurrence free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described previously. 

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-values were >0.05. On univariable analysis, 

advancing age (p=0.096), emergency presentation (p=0.015), advancing T-stage (p<0.001), 

raised serum CRP (p=0.068), and tumour MSI status (p=0.092) and raised cytoplasmic 

HCK (p=0.040) had a p-value <0.1 and were therefore included in the multivariable Cox 

proportional hazards regression model. 

 On multivariable analysis, advancing T-stage (HR 2.99 (95% CI 1.65 – 5.40), 

p<0.045), emergency presentation (HR 1.88 (95% CI 1.04 – 3.40), p=0.038) and raised 

cytoplasmic HCK (HR 2.04 (95% CI (1.11 – 3.76), p=0.022) was independently and 

significantly associated with poor recurrence-free survival (table 5.8).  
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Table 5.8: The relationship between clinicopathological factors and recurrence-free 
survival in patients with stage II colorectal cancer – univariable and multivariable analysis 

 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.020 0.096 0.98 (0.96 - 1.00)  0.470  
Sex  
     Female 
     Male 

 
 
0.243 0.376 

1 
1.28 (0.74 – 2.19)    

Presentation 
     Elective 
     Emergency 

 
 
0.671 0.015 

1 
1.96 (1.14 – 3.36) 0.629 0.038 

1 
1.88 (1.04 – 3.40) 

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
0.250 
0.373 

 
0.533 
 
 

1 
1.28 (0.70 – 2.37) 
1.45 (0.73 – 2.90)    

T stage  
     1  
     2  
     3  
     4 

 
N/A 
N/A 
(0.000) 
0.973 <0.001 

N/A 
N/A 
1 
2.65 (1.55 – 4.51) 

 
N/A 
N/A 
(0.000) 
1.086 

 
<0.001 

N/A 
N/A 
1 
2.96 (1.64 – 5.36) 

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.037 

 
 
0.938 

 
1 
1.04 (0.41 – 2.60)    

Serum CRP  
     Normal  
     High 

 
 
0.561 0.068 

1 
1.75 (0.96 – 3.20)  0.357  

Serum albumin  
     Normal  
     Low 

 
 
0.298 0.350 

1 
1.35 (0.72 – 2.52)    

Klintrup score 
     High 
     Low 

 
 
-0.471 0.150 

1 
0.62 (0.33 – 1.19)    

MSI status  
     CI  
     MSI 

 
 
-0.876 0.092 

1 
0.42 (0.15 – 1.15)  0.187 

 
 

Cytoplasmic MMP-9 
Low 
High 

 
 
-0.191 

 
 
0.483 

1 
0.83 (0.48 – 1.41)    

Cytoplasmic FGR 
Low 
High 

 
 
0.016 

 
 
0.958 

1 
1.02 (0.55 – 1.87)    

Nuclear FGR 
Low 
High 

 
 
0.110 

 
 
0.737 

1 
1.12 (0.59 – 2.12)    

Cytoplasmic HCK 
Low 
High 

 
 
0.593 

 
 
0.040 

1 
1.81 (1.03 – 3.19) 0.713 0.022 

1 
2.04 (1.11 – 3.76) 

Cytoplasmic FAK (tyr 
861) 
Low 
High 

 
 
 
0.311 

 
 
 
0.265 

1 
1.37 (0.79 – 2.36)    
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5.4.8.10 Multivariable overall survival 

On univariable survival analysis, none of the SFKs or FAK (tyr861) was associated with 

overall survival with all p-values >0.1. Therefore, no multivariable regression model was 

constructed based on these biomarkers. 

 

5.4.9 SFK expression and survival in patients with stage III colorectal 

cancer 

During follow-up there were 89 (36.3%) recurrences and 121 (49.4%) deaths. Five year 

recurrence free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.4. 

 

5.4.9.1 Univariable recurrence-free survival - cytoplasmic FGR expression 

Cytoplasmic FGR measurements were not significantly different in patients who went on 

to develop disease recurrence (p=0.609, Mann-Whitney U). The median for patients with 

recurrence was 110.00 (IQR 56.67 – 153.33) compared with 108.34 (IQR 75.00 – 142.67) 

in the non-recurrence group (Supplementary figure 5.40, appendix 5.3).  

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic FGR 

was 32.0% compared to 40.0% in patients with a low cytoplasmic FGR expression 

(p=0.299, Pearson’s chi square). On logrank analysis raised cytoplasmic FGR was not 

significantly associated with poor recurrence-free survival (p=0.092, figure 5.51). The 

mean survival for patients with a raised cytoplasmic FGR was 35.5 months (95% CI 28.2 – 

43.3) compared with 42.4 months (95% CI 38.9 – 45.9) in the low cytoplasmic FGR 

group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 195 134 111 94 87 83 78 

High 50 34 22 18 17 16 16 

 
Figure 5.51: The relationship between cytoplasmic FGR expression and recurrence-free 
survival in patients with stage III colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic FGR expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

Cox univariable regression analysis demonstrated that a raised cytoplasmic FGR 

expression was not significantly associated with poor recurrence-free survival when 

dichotomised as a categorical variable (HR 1.50 (95% CI 0.93 – 2.41), p=0.094) or as a 

continuous variable (HR 1.00 (95% CI 0.99 – 1.01), p=0.564). Furthermore, raised 

cytoplasmic FGR did not predict cancer recurrence as a continuous variable (AUC of 0.52 

(95% CI 0.44 – 0.60, p=0.610)) or as a categorical variable (AUC of 0.54 (95% CI 0.47 – 

0.62, p=0.267) (supplementary figure 5.41, appendix 5.3).  
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5.4.9.2 Univariable recurrence-free survival - nuclear FGR expression 

There was no difference between the nuclear FGR measurements of patients who did and 

did not develop cancer recurrence during the follow up period (p=0.351, Mann-Whitney 

U). The median nuclear FGR was 166.67 (IQR 87.50 – 245.84) in the non-recurrence 

group compared to 166.67 (IQR 90.00 – 243.34) in the recurrence group (supplementary 

figure 5.42, appendix 5.3).  

The 5 year recurrence-free survival rate for patients with a raised nuclear FGR was 

45.8% compared to 36.0% in patients with a low nuclear FGR expression (p=0.180, 

Pearson’s chi square). On logrank analysis raised nuclear FGR expression was not 

associated with poor recurrence-free survival (p=0.760). The mean survival for patients 

with raised nuclear FGR was 41.4 months (95% CI 35.4 – 47.5) compared with 40.8 

months (95% CI 37.1 – 44.5) in the low nuclear FGR group (supplementary figure 5.43, 

appendix 5.3).  

On Cox univariable regression analysis raised nuclear FGR was not significantly 

associated with poor recurrence-free survival when dichotomised as a categorical variable 

(HR 0.93 (95% CI 0.58 – 1.49), p=0.760) or as a continuous variable (HR 1.00 (95% CI 

1.00 – 1.00), p=0.769). There was no statistically significant predictive association 

between nuclear FGR expression and disease recurrence when analysed using ROC 

analysis. With disease recurrence as the endpoint, the AUC was 0.54 (95% CI 0.46 – 0.61, 

p=0.351) for nuclear FGR as a continuous variable and an AUC of 0.51 (95% CI 0.44 – 

0.59, p=0.719) for nuclear FGR as a categorical variable (supplementary figure 5.44, 

appendix 5.3).  

 

5.4.9.3 Univariable recurrence-free survival - cytoplasmic HCK expression 

Cytoplasmic HCK measurements were not significantly different in patients who went on 

to develop disease recurrence (p=0.065, Mann-Whitney U, figure 5.52). The median for 

patients with recurrence was 46.67 (IQR 15.00 – 78.34) compared with 41.67 (IQR 11.67 – 

71.67) in the non-recurrence group.  
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Figure 5.52: The distribution of cytoplasmic HCK measurements in patients with and 
without cancer recurrence in patients with stage III colorectal cancer (p=0.065) 

 

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic HCK was 

36.2% compared to 39.2% in patients with a low cytoplasmic HCK expression (p=0.667, 

Pearson’s chi square). On logrank analysis raised cytoplasmic HCK was not significantly 

associated with poor recurrence-free survival (p=0.324, figure 5.53). The mean survival for 

patients with a raised cytoplasmic HCK was 38.4 months (95% CI 32.8 – 44.0) compared 

with 42.2 months (95% CI 38.4 – 46.0) in the low cytoplasmic HCK group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 176 116 91 81 77 74 69 

High 69 52 42 31 27 25 25 

Figure 5.53: The relationship between cytoplasmic HCK expression and recurrence-free 
survival in patients with stage III colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic HCK expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

Cox univariable regression analysis demonstrated that a raised cytoplasmic HCK was not 

significantly associated with poor recurrence-free survival when dichotomised as a 

categorical variable (HR 1.25 (95% CI 0.81 – 1.93), p=0.325) but not as a continuous 

variable (HR 1.01 (95% CI 1.00 – 1.02), p=0.161). Furthermore, raised cytoplasmic HCK 

did not predict cancer recurrence as a continuous variable (AUC of 0.57 (95% CI 0.50 – 

0.65, p=0.065)) or as a categorical variable (AUC of 0.55 (95% CI 0.48 – 0.63, p=0.173) 

(figure 5.54). 
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Figure 5.54: The predictive value of cytoplasmic HCK in identifying patients with stage 
III colorectal cancer who will develop recurrence during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
HCK in identifying patients who will survive 5 years without recurrence. 
 

5.4.9.4 Univariable overall survival - cytoplasmic FGR expression 

Cytoplasmic FGR measurements were not significantly higher in patients who died during 

follow-up (p=0.494, Mann-Whitney U). The median for patients who died was 110.00 

(IQR 70.00 – 150.00) compared with 106.67 (IQR 74.16 – 139.18) in the alive group 

(supplementary figure 5.45, appendix 5.3).  

The 5 year overall survival rate for patients with a raised cytoplasmic FGR was 

38.2% compared to 47.2% in patients with a low cytoplasmic FGR (p=0.245, Pearson’s chi 

square). On logrank analysis raised cytoplasmic FGR was not significantly associated with 

poor overall survival (p=0.183, figure 5.55). The mean survival for patients with a raised 

cytoplasmic FGR expression was 36.0 months (95% CI 29.4 – 42.7) compared with 41.1 

months (95% CI 37.8 – 44.5) in the low cytoplasmic FGR group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 195 152 134 122 107 98 93 

High 50 40 30 26 23 20 19 

 
Figure 5.55: The relationship between cytoplasmic FGR expression and overall survival in 
patients with stage III colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients surviving stratified by 
cytoplasmic FGR expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic FGR was not associated with 

overall survival when dichotomised as a categorical variable (HR 1.33 (95% CI 0.87 – 

2.01), p=0.185) or as a continuous variable (HR 1.00 95% CI 0.99 – 1.01, p=0.651). 

Furthermore, there was no predictive association between cytoplasmic FGR expression and 

survival when ROC analysis was performed using death as the endpoint. The AUC was 

0.53 (95% CI 0.45 – 0.60, p=0.495) for cytoplasmic FGR as a continuous variable and an 
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AUC of 0.54 (95% CI 0.46 – 0.61, p=0.342) for cytoplasmic FGR as a categorical variable 

(supplementary figure 5.46, appendix 5.3).  

 

5.4.9.5 Univariable overall survival - nuclear FGR expression 

Nuclear FGR expression measurements were not significantly different in patients who 

died during follow-up (p=0.655, Mann-Whitney U). The median nuclear FGR was 173.33 

(IQR 91.66 – 255.00) in the alive group compared to 163.33 (IQR 95.00 – 231.66) in 

patients who did not survive 5 years (Supplementary figure 5.47, appendix 5.3).  

The 5 year overall survival rate for patients with a raised nuclear FGR was 47.5% 

compared to 44.6% in patients with a low nuclear FGR expression (p=0.703, Pearson’s chi 

square). On logrank analysis raised nuclear FGR was not significantly associated with poor 

overall survival (p=0.499). The mean survival for patients with a raised nuclear FGR was 

43.1 months (95% CI 37.4 – 48.8) compared with 39.1 months (95% CI 35.6 – 42.7) in the 

low nuclear FGR group (supplementary figure 5.48, appendix 5.3).  

On Cox univariable regression analysis raised nuclear FGR was not associated with 

overall survival when dichotomised as a categorical variable (HR 0.87 (95% CI 0.57 – 

1.32), p=0.500) or as a continuous variable (HR 1.00 (95% CI 1.00 – 1.01), p=0.459). 

When ROC analysis was performed using death as the endpoint, the AUC was 0.48 (95% 

CI 0.41 – 0.56, p=0.655) for nuclear FGR as a continuous variable and an AUC of 0.49 

(95% CI 0.42 – 0.56, p=0.801) for nuclear FGR as a categorical variable (supplementary 

figure 5.49, appendix 5.3).  

 

5.4.9.6 Univariable overall survival - cytoplasmic HCK expression 

Cytoplasmic HCK measurements were not significantly higher in patients who died during 

follow-up (p=0.805, Mann-Whitney U). The median for patients who died was 45.00 (IQR 

13.33 – 76.67) compared with 43.33 (IQR 13.33 – 73.33) in the alive group 

(supplementary figure 5.50, appendix 5.3).  

The 5 year overall survival rate for patients with a raised cytoplasmic HCK was 

46.4% compared to 44.9% in patients with a low cytoplasmic HCK expression (p=0.833, 

Pearson’s chi square). On logrank analysis raised cytoplasmic HCK was not significantly 

associated with poor overall survival (p=0.830). The mean survival for patients with a 

raised cytoplasmic HCK was 41.7 months (95% CI 36.4 – 47.0) compared with 39.5 

months (95% CI 35.8 – 43.1) in the low cytoplasmic HCK group (Supplementary figure 

5.51, appendix 5.3).  
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On Cox univariable regression analysis raised cytoplasmic HCK was not associated 

with overall survival when dichotomised as a categorical variable (HR 0.96 (95% CI 0.65 

– 1.42), p=0.831) or as a continuous variable (HR 1.00 (95% CI 0.99 – 1.01), p=0.966). 

When ROC analysis was performed using death as the endpoint, the AUC was 0.51 (95% 

CI 0.44 – 0.58, p=0.806) for cytoplasmic HCK as a continuous variable and an AUC of 

0.51 (95% CI 0.44 – 0.58, p=0.839) for cytoplasmic HCK as a categorical variable 

(supplementary figure 5.52, appendix 5.3).  

 

5.4.9.7 Univariable recurrence-free survival - cytoplasmic FAK (tyr 861) 

Cytoplasmic FAK (tyr 861) measurements were significantly higher in patients who 

developed cancer recurrence during follow-up (p=0.029, Mann-Whitney U, figure 5.56). 

The median cytoplasmic FAK (tyr 861) measurement was 36.67 (IQR 0.00 – 76.67) in the 

non-recurrence group compared to 40.00 (IQR 1.67 – 78.34) in the recurrence group.  

 

Figure 5.56: The distribution of cytoplasmic FAK (tyr 861) measurements in stage III 
colorectal cancer patients stratified by recurrence status (p=0.029) 

 

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic FAK (tyr 

861) was 38.2% compared to 38.5% in patients with a low cytoplasmic FAK (tyr 861) 
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expression (p=0.964, Pearson’s chi square). On logrank analysis raised cytoplasmic FAK 

(tyr 861) was not associated with poor recurrence-free survival (p=0.162, figure 5.57). The 

mean survival for patients with a raised cytoplasmic FAK (tyr 861) was 37.9 months (95% 

CI 32.3 – 43.4) compared with 42.5 months (95% CI 38.7 – 46.3) in the low cytoplasmic 

FAK (tyr 861) group.  

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 169 116 91 77 72 70 65 

Low 76 52 42 35 32 29 29 

 
Figure 5.57: The relationship between cytoplasmic FAK (tyr 861) expression and 
recurrence-free survival in patients with stage III colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic FAK (tyr 861) expression status. Beneath, there is a survival table 
demonstrating the number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic FAK (tyr 861) was not 

significantly associated with poor recurrence-free survival when dichotomised as a 

categorical variable (HR 1.36 (95% CI 0.88 – 2.08), p=0.164) or as a continuous variable 
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(HR 1.00 (95% CI 1.00 – 1.01), p=0.374). Cytoplasmic FAK (tyr 861) was predictive of 

cancer recurrence when analysed using ROC analysis. With cancer recurrence as the 

endpoint, the AUC was 0.58 (95% CI 0.51 – 0.66, p=0.029) for cytoplasmic FAK (tyr 861) 

as a continuous variable and an AUC of 0.56 (95% CI 0.48 – 0.63, p=0.142) for 

cytoplasmic FAK (tyr 861) as a categorical variable (figure 5.58).  

 

Figure 5.58: Predictive value of cytoplasmic FAK (tyr 861) in identifying patients with 
stage III colorectal cancer who will develop cancer recurrence 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
FAK (tyr 861) in identifying patients who will develop disease recurrence.  
 

5.4.9.8 Univariable overall survival - cytoplasmic FAK (tyr 861) 

Cytoplasmic FAK (tyr 861) measurements were not significantly different in patients who 

died during the follow up period (p=0.953, Mann-Whitney U). The median cytoplasmic 

FAK (tyr 861) was 40.00 (IQR 3.33 – 76.67) in the alive group compared to 36.67 (IQR 

0.00 – 74.17) in patients who did not survive 5 years (supplementary figure 5.53, appendix 

5.3).  

The 5 year overall survival rate for patients with raised cytoplasmic FAK (tyr 861) 

was 44.7% compared to 45.6% in patients with a low cytoplasmic FAK (tyr 861) 

expression (p=0.904, Pearson’s chi square). On logrank analysis raised cytoplasmic FAK 
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(tyr 861) was not associated with poor overall survival (p=0.780). The mean survival for 

patients with a raised cytoplasmic FAK (tyr 861) was 41.6 months (95% CI 36.4 – 46.9) 

compared with 39.4 months (95% CI 35.7 – 43.0) in the low cytoplasmic FAK (tyr 861) 

group (supplementary figure 5.54, appendix 5.3).  

On Cox univariable regression analysis raised cytoplasmic FAK (tyr 861) was not 

associated with poor overall survival when dichotomised as a categorical variable (HR 

0.95 (95% CI 0.54 – 1.39), p=0.780) or when included as a continuous variable (HR 1.00 

(95% CI 0.99 – 1.00), p=0.494). Cytoplasmic FAK (tyr 861) was not predictive of death 

during the follow up period. When ROC analysis was performed using death as the 

endpoint, the AUC was 0.50 (95% CI 0.43 – 0.57, p=0.953) for cytoplasmic FAK (tyr 861) 

as a continuous variable and an AUC of 0.50 (95% CI 0.42 – 0.57, p=0.906) for 

cytoplasmic FAK (tyr 861) as a categorical variable (supplementary figure 5.55, appendix 

5.3).  

  

5.4.9.9 Multivariable recurrence-free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing. 

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-values were >0.05. On univariable analysis, 

emergency presentation (p=0.031), advancing T-stage (p=0.001), higher N stage 

(p=0.013), poor differentiation (p=0.026), raised serum CRP (p=0.095), 

hypoalbuminaemia (p=0.008), good Klintrup score (p=0.001) and cytoplasmic FGR 

(p=0.096) had p-values <0.1 and were therefore included in the model. 

 On multivariable analysis, advancing T-stage (when all subcategories were 

compared with T1 (T2 HR 281.25 (95% CI 0.00 – 8.52e45), (T3 HR 293.05 (95% CI 0.00 

– 8.82e45) and (T4 HR 702.79 (95% CI 0.00 – 2.17e46)), p=0.012) and good Klintrup 

score (HR 0.40 (95% CI 0.18 – 0.91), p=0.029) were independently associated with poor 

recurrence free survival (table 5.9). 
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Table 5.9: The relationship between clinicopathological factors and recurrence-free 
survival in patients with stage III colorectal cancer – univariable and multivariable analysis  

 

 

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.002 0.834 1.00 (0.98 - 1.02)    

Sex  
     Female 
     Male 

 
 
-0.092 0.665 

1 
1.10 (0.72 – 1.66)    

Presentation 
     Elective 
     Emergency 

 
 
0.472 0.031 

1 
1.60 (1.04 – 2.47)  0.983  

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
-0.496 
0.065 

 
0.102 
 
 

1 
0.61 (0.37 – 1.00) 
1.07 (0.63 – 1.82)    

T stage  
     1  
     2  
     3  
     4 

 
(0.000) 
5.972 
6.852 
7.666 

0.001 
 
 
 

 
1 
392.11 (0.00 – 1.18e42) 
945.66 (0.00 – 2.82e42) 
2134.90 (0.00 – 6.37e42) 

 
(0.000) 
5.639 
5.680 
6.555 

0.012 
 
 
 

 
1 
281.25 (0.00 – 8.52e45) 
293.05 (0.00 – 8.82e45) 
702.79 (0.00 – 2.11e46) 

N stage 
     1 
     2 

 
(0.000) 
0.547 

 
0.013 

 
1 
1.73 (1.12 – 2.69)  

 
0.376  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.617 

 
 
0.026 

 
1 
1.85 (1.08 – 3.19)  0.399  

Serum CRP  
     Normal  
     High 

 
 
0.407 0.095 

1 
1.50 (0.93 – 2.42)  0.431  

Serum albumin  
     Normal  
     Low 

 
 
0.670 0.008 

1 
1.95 (1.20 – 3.20)  0.051  

Klintrup score 
     High 
     Low 

 
 
-1.257 0.001 

1 
0.28 (0.14 – 0.59) -0.917 0.029 

1 
0.40 (0.18 – 0.91) 

MSI status  
     CI 
     MSI 

 
 
-0.096 0.836 

1 
0.91 (0.37 – 2.25)   

 
 

Cytoplasmic MMP-9 
     Low 
     High 

 
 
0.096 

 
 
0.652 

1 
1.10 (0.73 – 1.67)    

Cytoplasmic FGR 
     Low 
     High 

 
 
0.406 

 
 
0.094 

1 
1.50 (0.93 – 2.41)  0.134  

Nuclear FGR 
     Low 
     High 

 
 
-0.074 

 
 
0.760 

1 
0.93 (0.58 – 1.49)    

Cytoplasmic HCK 
     Low 
     High 

 
 
0.219 

 
 
0.325 

1 
1.25 (0.81 – 1.93)    

Cytoplasmic FAK (tyr 
861) 
     Low 
     High 

 
 
 
0.304 

 
 
 
0.164 

1 
1.36 (0.88 – 2.08)    
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5.4.9.10 Multivariable overall survival 

On univariable survival analysis, none of the SFKs or FAK (tyr861) was associated with 

overall survival with all p-values >0.1. Therefore, no multivariable regression model was 

constructed based on these biomarkers. 

 

5.4.10  The relationship between SFK expression, FAK (tyr 861) 

expression and MSI status 

5.4.10.1 FGR expression stratified by MSI status 

There was no significant difference in the measurements of cytoplasmic FGR between 

patients with CI and MSI colorectal cancer (p=0.567, Mann-Whitney U, supplementary 

figure 5.56, appendix 5.3). The cytoplasmic FGR measurements in patients with CI 

colorectal cancer ranged from 26.67 – 200.00 with a median of 110.00 (IQR 74.16 – 

145.84) compared with a range of 66.67 – 210.00 and a median of 105.00 (IQR 78.33 – 

141.67) in patients with MSI colorectal cancer. This observation was also supported by 

chi-squared analysis when cytoplasmic FGR was analysed as a categorical variable 

(p=0.822, Bonferroni adjustment p<0.0125, table 5.10).  

 

Table 5.10: The relationship between SFK expression, FAK (tyr 861) expression and MSI 
status 

 

 
 
 
 
 
 
 
 
 
 

Bonferoni adjustment <0.0125 
 
In addition to the observations above, there was no significant difference in the 

measurements of nuclear FGR between patients with CI and MSI colorectal cancer 

(p=0.820, Mann-Whitney U, supplementary figure 5.57, appendix 5.3). The nuclear FGR 

measurements in patients with CI colorectal cancer ranged from 10.00 – 300.00 with a 

Clinicopathological factors CI MSI  p-value 
Cytoplasmic FGR 
     Low 
     High 

 
466 (78.7) 
126 (21.3%) 

 
66 (77.6%) 
19 (22.4%) 

 
0.822 

Nuclear FGR 
     Low 
     High 

 
453 (76.5%) 
139 (23.5%) 

 
63 (74.1%) 
22 (25.9%) 

 
0.627 

Cytoplasmic HCK 
     Low 
     High 

 
448 (75.7%) 
144 (24.3%) 

 
65 (76.5%) 
20 (23.5%) 

 
0.873 

Cytoplasmic FAK (tyr 861) 
     Low 
     High 

 
406 (68.6%) 
186 (31.4%) 

 
59 (69.4%) 
26 (30.6%) 

 
0.877 
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median of 166.67 (IQR 90.00 – 243.34) compared with a range of 45.00 – 290.00 and a 

median of 170.00 (IQR 93.34 – 246.67) in patients with MSI colorectal cancer. This 

observation was also supported by chi-squared analysis when nuclear FGR was analysed 

as a categorical variable (p=0.627, Bonferroni adjustment p<0.0125, table 5.10).  

 

5.4.10.2 HCK expression stratified by MSI status 

There was no significant difference in the measurements of cytoplasmic HCK between 

patients with CI and MSI colorectal cancer (p=0.138, Mann-Whitney U, supplementary 

figure 5.58, appendix 5.3). Measurements of cytoplasmic HCK ranged from 0.00 – 110.00 

with a median of 43.33 (IQR 16.66 – 70.00) in CI colorectal cancer compared with a range 

of 0.00 – 90.00 and a measurement of 40.00 (IQR 9.16 – 73.84) in patients with MSI 

colorectal cancer. This observation was supported by chi-squared analysis when 

cytoplasmic HCK was analysed as a categorical variable (p=0.873, Bonferroni adjustment 

p<0.0125, table 5.10).  

 

5.4.10.3 FAK (tyr 861) expression stratified by MSI status 

There was no significant difference in the measurements of cytoplasmic FAK (tyr 861) 

between patients with CI and MSI colorectal cancer (p=0.860, Mann-Whitney U, 

supplementary figure 5.59, appendix 5.3). The cytoplasmic FAK (tyr 861) measurements 

in patients with CI colorectal cancer ranged from 0.00 – 140.00 with a median of 40.00 

(IQR 3.33 – 76.67) compared with a range of 0.00 – 120.00 and a median of 40.00 (IQR 

3.34 – 76.66) in patients with MSI colorectal cancer. This observation was also supported 

by chi-squared analysis when cytoplasmic FAK (tyr 861) was analysed as a categorical 

variable (p=0.877, Bonferroni adjustment p<0.0125, table 5.10).  

 

5.4.11 SFK expression and survival in patients with CI colorectal cancer 

During follow-up there were 140 (23.6%) recurrences and 227 (38.3%) deaths. Five year 

recurrence free and overall survival rates for the clinicopathological factors studied can be 

found in appendix 3.5. 

 

5.4.11.1 Univariable recurrence-free survival - cytoplasmic FGR expression 

Cytoplasmic FGR measurements were not significantly different in patients who went on 

to develop disease recurrence (p=0.646, Mann-Whitney U, supplementary figure 5.60, 
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appendix 5.3). The median for patients with recurrence was 110.00 (IQR 70.00 – 150.00) 

compared with 110.00 (IQR 76.67 – 143.34) in the non-recurrence group.  

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic FGR 

was 56.3% compared to 52.8% in patients with a low cytoplasmic FGR expression 

(p=0.371, Pearson’s chi square). On logrank analysis raised cytoplasmic FGR was not 

significantly associated with poor recurrence-free survival (p=0.540). The mean survival 

for patients with a raised cytoplasmic FGR was 47.4 months (95% CI 43.7 – 51.1) 

compared with 49.3 months (95% CI 47.4 – 51.2) in the low cytoplasmic FGR group 

(supplementary figure 5.61, appendix 5.3).  

Cox univariable regression analysis demonstrated that a raised cytoplasmic FGR 

expression was not significantly associated with poor recurrence-free survival when 

dichotomised as a categorical variable (HR 1.13 (95% CI 0.77 – 1.67), p=0.540) or as a 

continuous variable (HR 1.00 (95% CI 0.99 – 1.01), p=0.625). Furthermore, raised 

cytoplasmic FGR did not predict cancer recurrence as a continuous variable (AUC of 0.49 

(95% CI 0.43 – 0.54, p=0.647)) or as a categorical variable (AUC of 0.52 (95% CI 0.46 – 

0.57, p=0.592) (supplementary figure 5.62, appendix 5.3).  

 

5.4.11.2 Univariable recurrence free survival - nuclear FGR expression 

There was no difference between the nuclear FGR measurements of patients who did and 

did not develop cancer recurrence during follow-up (p=0.715, Mann-Whitney U, 

supplementary figure 5.63, appendix 5.3). The median nuclear FGR was 170.00 (IQR 

93.33 – 246.67) in the non-recurrence group compared to 166.67 (IQR 90.00 – 243.34) in 

the recurrence group.  

The 5 year recurrence free survival rate for patients with a raised nuclear FGR was 

54.0% compared to 53.4% in patients with a low nuclear FGR expression (p=0.912, 

Pearson’s chi square). On logrank analysis raised nuclear FGR expression was not 

associated with recurrence-free survival (p=0.805). The mean survival for patients with 

raised nuclear FGR was 48.0 months (95% CI 44.5 – 51.6) compared with 49.1 months 

(95% CI 47.2 – 51.0) in the low nuclear FGR group (supplementary figure 5.64, appendix 

5.3).  

On Cox univariable regression analysis raised nuclear FGR was not significantly 

associated with recurrence-free survival when dichotomised as a categorical variable (HR 

1.05 (95% CI 0.71 – 1.55), p=0.805) or as a continuous variable (HR 1.00 (95% CI 1.00 – 

1.00), p=0.535). There was no statistically significant predictive association between 
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nuclear FGR expression and disease recurrence when analysed using ROC analysis. With 

disease recurrence as the endpoint, the AUC was 0.51 (95% CI 0.46 – 0.57, p=0.716) for 

nuclear FGR as a continuous variable and an AUC of 0.51 (95% CI 0.45 – 0.56, p=0.850) 

for nuclear FGR as a categorical variable (supplementary figure 5.65, appendix 5.3).  

 

5.4.11.3 Univariable recurrence-free survival - cytoplasmic HCK expression 

Cytoplasmic FGR measurements were not significantly different in patients who went on 

to develop disease recurrence (p=0.081, Mann-Whitney U, figure 5.59). The median for 

patients with recurrence was 45.00 (IQR 13.33 – 76.67) compared with 41.67 (IQR 11.67 – 

71.67) in the non-recurrence group.  

 

Figure 5.59: The distribution of cytoplasmic HCK measurements in patients with and 
without cancer recurrence in patients with CI colorectal cancer (p=0.081) 

 

The 5 year recurrence-free survival rate for patients with a raised cytoplasmic HCK was 

50.0% compared to 54.7% in patients with a low cytoplasmic HCK expression (p=0.327, 

Pearson’s chi square). On logrank analysis raised cytoplasmic HCK was significantly 

associated with poor recurrence-free survival (p=0.022, figure 5.60). The mean survival for 

patients with a raised cytoplasmic HCK was 45.3 months (95% CI 41.7 – 48.9) compared 

with 50.0 months (95% CI 48.2 – 51.9) in the low cytoplasmic HCK group.  
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 448 363 317 300 282 269 245 

High 144 116 98 82 75 72 72 

 
Figure 5.60: The relationship between cytoplasmic HCK expression and recurrence-free 
survival in patients with CI colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic HCK expression status. Beneath, there is a survival table demonstrating the 
number of patients not censored at each follow-up point.   
 

Cox univariable regression analysis demonstrated that a raised cytoplasmic HCK was 

significantly associated with poor recurrence-free survival when dichotomised as a 

categorical variable (HR 1.51 (95% CI 1.06 – 2.16), p=0.023) and as a continuous variable 

(HR 1.01 (95% CI 1.00 – 1.02), p=0.027). Raised cytoplasmic HCK, however, did not 

predict cancer recurrence as a continuous variable (AUC of 0.55 (95% CI 0.49 – 0.60, 

p=0.081)) or as a categorical variable (AUC of 0.55 (95% CI 0.49 – 0.60, p=0.096) (figure 

5.61). 
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Figure 5.61: The predictive value of cytoplasmic HCK in identifying patients with CI 
colorectal cancer who will develop recurrence during follow-up 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
HCK in identifying patients who will survive 5 years without recurrence. 
 

5.4.11.4 Univariable overall survival - cytoplasmic FGR expression 

Cytoplasmic FGR measurements were not significantly higher in patients who died during 

follow-up (p=0.978, Mann-Whitney U, supplementary figure 5.66, appendix 5.3). The 

median for patients who died was 110.00 (IQR 60.00 – 150.00) compared with 110.00 

(IQR 74.99 – 145.01) in the alive group.  

The 5 year overall survival rate for patients with a raised cytoplasmic FGR was 

60.0% compared to 57.1% in patients with a low cytoplasmic FGR (p=0.514, Pearson’s chi 

square). On logrank analysis raised cytoplasmic FGR was not associated with poor overall 

survival (p=0.946). The mean survival for patients with a raised cytoplasmic FGR 

expression was 45.4 months (95% CI 41.7 – 49.2) compared with 46.4 months (95% CI 

44.4 – 48.3) in the low cytoplasmic FGR group (supplementary figure 5.67, appendix 5.3).  

On Cox univariable regression analysis raised cytoplasmic FGR was not associated 

with overall survival when dichotomised as a categorical variable (HR 1.01 (95% CI 0.74 

– 1.39), p=0.947) or as a continuous variable (HR 1.00 95% CI 1.00 – 1.01, p=0.993). 
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Furthermore, there was no predictive association between cytoplasmic FGR expression and 

survival when ROC analysis was performed using death as the endpoint. The AUC was 

0.50 (95% CI 0.45 – 0.55, p=0.978) for cytoplasmic FGR as a continuous variable and an 

AUC of 0.50 (95% CI 0.46 – 0.55, p=0.920) for cytoplasmic FGR as a categorical variable 

(supplementary figure 5.68, appendix 5.3).  

 

5.4.11.5 Univariable overall survival - nuclear FGR expression 

Nuclear FGR expression measurements were not significantly different in patients who 

died during follow-up (p=0.670, Mann-Whitney U, supplementary figure 5.69, appendix 

5.3). The median nuclear FGR was 166.66 (IQR 100.00 – 233.32) in the alive group 

compared to 170.00 (IQR 90.00 – 250.00) in patients who did not survive 5 years.  

The 5 year overall survival rate for patients with a raised nuclear FGR was 54.7% 

compared to 58.7% in patients with a low nuclear FGR expression (p=0.399, Pearson’s chi 

square). On logrank analysis raised nuclear FGR was not associated with overall survival 

(p=0.312). The mean survival for patients with a raised nuclear FGR was 44.9 months 

(95% CI 41.3 – 48.5) compared with 46.5 months (95% CI 44.6 – 48.5) in the low nuclear 

FGR group (supplementary figure 5.70, appendix 5.3).  

On Cox univariable regression analysis raised nuclear FGR was not associated with 

overall survival when dichotomised as a categorical variable (HR 1.17 (95% CI 0.87 – 

1.57), p=0.126) or as a continuous variable (HR 1.00 (95% CI 1.00 – 1.00), p=0.653). 

When ROC analysis was performed using death as the endpoint, the AUC was 0.51 (95% 

CI 0.46 – 0.56, p=0.670) for nuclear FGR as a continuous variable and an AUC of 0.52 

(95% CI 0.47 – 0.57, p=0.404) for nuclear FGR as a categorical variable (supplementary 

figure 5.71, appendix 5.3).  

  

5.4.11.6 Univariable overall survival - cytoplasmic HCK expression 

Cytoplasmic HCK measurements were not significantly higher in patients who died during 

follow-up (p=0.295, Mann-Whitney U, supplementary figure 5.72, appendix 5.3). The 

median was 43.33 (IQR 13.33 – 73.33) in both the alive and dead groups.  

The 5 year overall survival rate for patients with a raised cytoplasmic HCK was 

54.2% compared to 58.9% in patients with a low cytoplasmic HCK expression (p=0.314, 

Pearson’s chi square). On logrank analysis raised cytoplasmic HCK was not associated 

with overall survival (p=0.254). The mean survival for patients with a raised cytoplasmic 

HCK was 43.3 months (95% CI 39.6 – 47.0) compared with 47.1 months (95% CI 45.1 – 
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49.0) in the low cytoplasmic HCK group (supplementary figure 5.73, appendix 5.3).   

On Cox univariable regression analysis raised cytoplasmic HCK was not associated 

with overall survival when dichotomised as a categorical variable (HR 1.19 (95% CI 0.88 

– 1.59), p=0.255) or as a continuous variable (HR 1.01 95% CI 1.00 – 1.01, p=0.142). 

Furthermore, cytoplasmic HCK was not predictive of death in the follow up period. When 

ROC analysis was performed using death as the endpoint, the AUC was 0.53 (95% CI 0.48 

– 0.57, p=0.296) for cytoplasmic HCK as a continuous variable and an AUC of 0.52 (95% 

CI 0.47 – 0.57, p=0.484) for cytoplasmic HCK as a categorical variable (supplementary 

figure 5.74, appendix 5.3).  

 

5.4.11.7 Univariable recurrence-free survival – cytoplasmic FAK (tyr861) 

Cytoplasmic FAK (tyr 861) measurements were significantly higher in patients who 

developed cancer recurrence during follow-up (p=0.019, Mann-Whitney U, figure 5.62). 

The median cytoplasmic FAK (tyr 861) measurement was 40.00 (IQR 3.33 – 76.67) in the 

non-recurrence group compared to 41.67 (IQR 1.67 – 81.67) in the recurrence group.  

 

Figure 5.62: The distribution of cytoplasmic FAK (tyr 861) measurements in CI colorectal 
cancers stratified by recurrence status (p=0.019) 
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The 5 year recurrence-free survival rate for patients with a raised cytoplasmic FAK (tyr 

861) was 52.2% compared to 54.2% in patients with a low FAK (tyr 861) expression 

(p=0.645, Pearson’s chi square). On logrank analysis raised cytoplasmic FAK (tyr 861) 

was not associated with poor recurrence free survival (p=0.031, figure 5.63). The mean 

survival for patients with a raised cytoplasmic FAK (tyr 861) was 46.4 months (95% CI 

43.3 – 49.5) compared with 53.0 months (95% CI 48.1 – 52.0) in the low cytoplasmic FAK 

(tyr 861) group.  

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 406 330 287 268 248 238 220 

Low 186 149 128 114 109 103 97 

Figure 5.63: The relationship between cytoplasmic FAK (tyr 861) expression and 
recurrence-free survival in patients with CI colorectal cancer 

Kaplan-Meier curve demonstrating the proportion of patients recurring stratified by 
cytoplasmic FAK (tyr 861) expression status. Beneath, there is a survival table 
demonstrating the number of patients not censored at each follow-up point.   
 

On Cox univariable regression analysis raised cytoplasmic FAK (tyr 861) was significantly 

associated with poor recurrence-free survival when dichotomised as a categorical variable 
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(HR 1.45 (95% CI 1.03 – 2.03), p=0.032) and as a continuous variable (HR 1.01 (95% CI 

1.00 – 1.01), p=0.025). Cytoplasmic FAK (tyr 861) predicted cancer recurrence when 

analysed using ROC analysis. With cancer recurrence as the endpoint, the AUC was 0.57 

(95% CI 0.51 – 0.62, p=0.019) for cytoplasmic FAK (tyr 861) as a continuous variable and 

an AUC of 0.55 (95% CI 0.50 – 0.61, p=0.065) for cytoplasmic FAK (tyr 861) as a 

categorical variable (figure 5.64).  

 

Figure 5.64: Predictive value of cytoplasmic FAK (tyr 861) in identifying patients with CI 
colorectal cancer who will develop cancer recurrence 

Receiver-operator-characteristic curve demonstrating the predictive value of cytoplasmic 
FAK (tyr 861) in identifying patients who will develop disease recurrence.  
 

5.4.11.8 Univariable overall survival - cytoplasmic FAK (tyr 861) 

Cytoplasmic FAK (tyr 861) measurements were not significantly different in patients who 

died during follow-up (p=0.573, Mann-Whitney U, supplementary figure 5.75, appendix 

5.3). The median cytoplasmic FAK (tyr 861) was 40.00 (IQR 3.33 – 76.67) in the alive 

group compared to 40.00 (IQR 6.67 – 73.33) in patients who did not survive 5 years.  

The 5 year overall survival rate for patients with a raised cytoplasmic FAK (tyr 

861) was 56.5% compared to 58.4% in patients with a low cytoplasmic FAK (tyr 861) 

expression (p=0.660, Pearson’s chi square). On logrank analysis raised cytoplasmic FAK 
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(tyr 861) was not associated with overall survival (p=0.851). The mean survival for 

patients with a raised cytoplasmic FAK (tyr 861) was 46.0 months (95% CI 42.9 – 49.1) 

compared with 46.2 months (95% CI 44.1 – 48.3) in the low cytoplasmic FAK (tyr 861) 

group (supplementary figure 5.76, appendix 5.3).  

On Cox univariable regression analysis raised cytoplasmic FAK (tyr 861) was not 

associated with overall survival when dichotomised as a categorical variable (HR 1.03 

(95% CI 0.78 – 1.36), p=0.851) or when included as a continuous variable (HR 1.00 (95% 

CI 1.00 – 1.01), p=0.715).  

Cytoplasmic FAK (tyr 861) was not predictive of death during follow-up. When 

ROC analysis was performed using death as the endpoint, the AUC was 0.51 (95% CI 0.47 

– 0.56, p=0.574) for cytoplasmic FAK (tyr 861) as a continuous variable and an AUC of 

0.50 (95% CI 0.46 – 0.55, p=0.921) for cytoplasmic FAK (tyr 861) as a categorical 

variable (supplementary figure 5.77, appendix 5.3).  

  

5.4.11.9 Multivariable recurrence-free survival 

Proportionality assumptions testing 

All the studied variables underwent Cox proportional hazards assumption testing as 

described previously  

 

Cox proportional hazards regression analysis 

All covariates with a significance level of p<0.1 were included in the multivariable model. 

Terms were removed if their respective p-values were >0.05. On univariable analysis, 

advancing age (p=0.048), emergency presentation (p<0.001), advancing T-stage (p<0.001), 

advancing N-stage (p<0.001), higher TNM stage (p<0.001), poor differentiation (p0.002), 

raised serum CRP (p=0.012), hypoalbuminaemia (p=0.022) and good Klintrup score 

(p<0.001), raised cytoplasmic HCK (p=0.023) and raised cytoplasmic FAK (tyr861) 

(p=0.032) had a p-value <0.1 and were therefore included in the multivariable Cox 

proportional hazards regression model. 

 On multivariable analysis, advancing T-stage (when all subcategories were 

compared with T1 (T2 HR 0.57 (95% CI 0.10 – 3.10), (T3 HR 1.04 (95% CI 0.25 – 4.39) 

and (T4 HR 3.14 (95% CI 0.75 – 13.20)), p<0.001), advancing N-stage (when all 

subcategories were compared with N0 (N1 HR 2.15 (95% CI 1.40 – 3.32), (N2 HR 3.02 

(95% CI 1.80 – 5.07), p<0.001), raised Klintrup score (HR 0.43 (95% CI0.25 – 0.75), p= 

0.003)  and raised cytoplasmic FAK (tyr 861) (HR 1.50 (95% CI 1.02 – 2.21), 
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p=0.040)were independently and significantly associated with poor recurrence free 

survival (table 5.11). 

 

Table 5.11: The relationship between clinicopathological factors and recurrence-free 
survival in patients with CI colorectal cancer: univariable and multivariable analysis  

 
Univariable 
analysis   

Multivariable 
analysis   

 Coefficient p-value 
Hazard ratio  
(95% CI) Coefficient p-value 

Hazard ratio  
(95% CI) 

Age -0.015 0.048 0.99 (0.97 - 1.00)  0.838  
Sex  
     Female 
     Male 

 
 
-0.019 0.910 

1 
0.98 (0.70 – 1.37)    

Presentation 
     Elective 
     Emergency 

 
 
0.645 <0.001 

1 
1.91 (1.36 – 2.68)  0.223  

Tumour site 
     Right  
     Left 
     Rectum 

 
0.000 
-0.397 
-0.095 

 
0.131 
 
 

1 
0.67 (0.45 – 0.99) 
0.91 (0.60 – 1.37)    

T stage  
     1  
     2  
     3  
     4 

 
0.000 
-0.186 
0.927 
1.893 

<0.001 
 
 
 

1 
0.83 (0.17 – 4.12) 
2.53 (0.62 – 10.32) 
6.64 (1.63 – 27.11) 

0.000 
-0.568 
0.042 
1.145 

 
<0.001 
 
 
 

1 
0.57 (0.10 – 3.10) 
1.04 (0.25 – 4.39) 
3.14 (0.75 – 13.20) 

N stage 
     0 
     1 
     2 

 
0.000 
1.048 
1.663 

<0.001 
 
 

1 
2.85 (1.96 – 4.16) 
5.27 (3.41 – 8.15) 

0.000 
0.791 
1.145 

 
<0.001 
 
 

1 
2.15 (1.40 – 3.32) 
3.02 (1.80 – 5.07) 

TNM stage 
     I 
     II 
     III 

 
0.000 
1.088 
2.090 

<0.001 
 
 

1 
2.97 (1.27 – 6.92) 
8.09 (3.53 – 18.52)  0.499  

Differentiation  
     Well/Moderate  
     Poor 

 
 
0.791 

 
 
0.002 

 
1 
2.21 (1.34 – 3.62)  0.670  

Serum CRP  
     Normal  
     High 

 
 
0.484 0.012 

1 
1.62 (1.11 – 2.36)  0.606  

Serum albumin  
     Normal  
     Low 

 
 
0.466 0.022 

1 
1.59 (1.07 – 2.38)  0.232  

Klintrup score 
     High 
     Low 

 
 
-1.325 <0.001 

1 
0.27 (0.16 – 0.44) -0.839 0.003 

1 
0.43 (0.25 – 0.75) 

Cytoplasmic MMP-9 
     Low 
     High 

 
 
-0.043 0.798 

1 
0.96 (0.69 – 1.33)    

Cytoplasmic FGR 
     Low 
     High 

 
 
0.122 0.540 

1 
1.13 (0.77 – 1.67)    

Nuclear FGR 
     Low 
     High 

 
 
0.049 0.805 

1 
1.05 (0.71 – 1.46)    

Cytoplasmic HCK 
     Low 
     High 

 
 
0.414 0.023 

1 
1.51 (1.06 – 2.16)  0.599  

Cytoplasmic FAK (tyr 
861) 
     Low 
     High 

 
 
 
0.371 0.032 

1 
1.45 (1.03 – 2.03) -0.407 0.040 

1 
1.50 (1.02 – 2.21) 
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5.4.11.10 Multivariable overall survival 

On univariable survival analysis, none of the SFKs or FAK (tyr861) was associated with 

overall survival with all p-values >0.1. Therefore, no multivariable regression model was 

constructed based on these biomarkers. 

 

5.4.12  Survival, recurrence and deaths in patients with MSI colorectal 

cancer 

During follow-up there were 10 (11.8%) recurrences and 33 (38.3%) deaths. It has been 

suggested that at least 10 - 25 events are required for each variable in a multivariable 

model. Based on the number of events noted above, no meaningful results can be 

generated by undertaking univariable or multivariable survival analysis exclusively on 

MSI patients. The relatively low number of patients and associated events makes the 

chance of incurring a type I or type II reporting error highly likely. Therefore, survival 

analysis has not been performed on the subset of patients with MSI colorectal cancer.   

 

5.5 Cell line work  

5.5.1 The effects of Src inhibitor Dasatinib on colorectal cancer cellular 

proliferation and apoptosis and expression of SFKs, 

phosphorylated Src416 and phosphorylated FAK861.   

5.5.1.1 Effects of Dasatinib on HT29 and T84 proliferation and apoptosis 

Effect of Dasatinib on HT29 and T84 proliferation 

At 24 hours there was no apparent effect on proliferation and at 72 hours there was a 

uniform reduction of proliferation and widespread cell death on microscopic review, which 

could be due to target toxicity. Therefore, we have shown the results at 48 hours. 

Increasing concentrations of Dasatinib did not significantly inhibit proliferation of HT29 

cells. Although there appears to be reduction in proliferation in the T84 cells, this was not 

in a dose dependent manner (figure 5.65).  
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Figure 5.65: Effect of Dasatinib on HT29 and T84 proliferation 

Effect of Dasatinib on cell proliferation was determined by WST-1 assay. This graph 
represents the results of WST-1 assay at 48 hours. There was no dose dependent reduction 
in proliferation. Error bars represent the standard deviation from the means of the three 
experiments. 
 

Effects of Dasatinib on HT29 and T84 apoptosis 

At 24 hours there was no apparent effect on apoptosis and at 72 hours there was evidence 

of widespread cell death on microscopic review. Therefore, as with the WST-1 experiment, 

we have shown the results at 48 hours. Increasing concentrations of Dasatinib did not 

significantly increase apoptosis of HT29 cells. However, there appears to be an increase in 

apoptosis of the T84 cells (figure 5.66).  
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Figure 5.66: Effect of Dasatinib on HT29 and T84 apoptosis 

Effect of Dasatinib on cellular apoptosis was determined by ELISA cell death detection 
assay. This graph represents the results of Cell Death Detection ELISA assay at 48 hours. 
There was an increase in apoptosis in T84 cells but not HT29 cells. Error bars represent 
the standard deviation from the means of the three experiments. 
 

5.5.1.2 The effects of Src inhibitor Dasatinib on expression of SFKs, phosphorylated 

Src416 and phosphorylated FAK861 in colorectal cancer cell lines. 

HT29 and T84 cell lines were used to examine the effect of Src kinase inhibitor Dasatinib 

on protein expression and cellular location of Src416, FAK861 and the SFKs (FGR, FYN, 

HCK and LCK) in cell pellets. The same antibodies employed in the previous IHC results 

were used in these experiments. Following the results of the proliferation and apoptosis 

experiments, cells were treated with 50nM of Dasatinib for 48 hours. For each study there 

was a control (untreated) and drug treated group. Immunoreactivity for all antibodies was 

scored using the weighted histoscore as described in previous sections. 

 

Effect of Dasatinib on Src416 expression 

In the untreated and treated HT29 cells, Src416 was expressed at all cellular locations. 

Following treatment with Dasatinib, there was a significant reduction in membrane 

expression (p=0.002. figure 5.67) but not cytoplasmic (p=0.132) or nuclear (p=0.937) 
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expression (Figure 5.67). In the untreated and treated T84 cells, Src416 was expressed at 

all cellular locations. Interestingly, when examining the expression levels in both treated 

and untreated T84 cells, neither mSrc416 (p=0.082), cSrc416 (p=0.247) or nSrc416 

(p=0.177) expression showed a significant reduction in Dasatinib treated cells.  

 

 

Figure 5.67: Effect of Dasatinib on mSrc416 expression in HT29 cells 

A.) Bar chart demonstrating the reduction in membrane Src416 expression when 
comparing Dasatinib treated and untreated (media only) HT29 cells (p=0.002). B.) 
Demonstrates an Src416 expression in untreated HT29 cell lines. C.) Demonstrated 
Src416 expression in Dasatinib treated HT 29 cell lines 
 

Effect of Dasatinib on FAK (tyr 861) expression 

In the untreated and treated HT29 cells, FAK (tyr 861) was expressed at all cellular 

locations. Following treatment with Dasatinib, there was a significant reduction in 

membrane FAK (tyr 861) (p=0.004) and cytoplasmic FAK (tyr 861) (p=0.002) expression 

but not nuclear FAK (tyr 861) (p=0.180) expression (Figure 5.68).  

In the untreated and treated T84 cells, FAK (tyr 861) was expressed at all cellular 

locations. Following treatment with Dasatinib, there was a significant reduction in 

cytoplasmic FAK (tyr 861) (p=0.016) and nuclear FAK (tyr 861) (p=0.008) expression but 

not membrane FAK (tyr 861) (p=0.421) expression (Figure 5.68). 
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Figure 5.68: Effect of Dasatinib on FAK (tyr 861) expression in HT29 and T84 cells  

A-B.) Bar chart demonstrating the reduction in membrane FAK (tyr 861) (p=0.004) and 
cytoplasmic FAK (tyr 861) (p=0.002) expression in HT29 cells. C-D.) Bar chart 
demonstrating the reduction in cytoplasmic FAK (tyr 861) (p=0.016) and nuclear FAK (tyr 
861) (p=0.008) expression in T84 cells. E.) Demonstrating FAK861 expression in 
untreated (UT) HT29 cells. F.) Demonstrating FAK (tyr 861) expression in Dasatinib 
treated (DT) HT29 cells. F.) Demonstrating FAK (tyr 861) expression in untreated (UT) 
T84 cells. G.) Demonstrating FAK (tyr 861) expression in Dasatinib treated (DT) T84 
cells.    
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Effect of Dasatinib on SFK expression 

FGR expression 

In the untreated and treated HT29 cells, FGR was expressed at all cellular locations. 

Following treatment with Dasatinib, there was no significant difference in membrane 

(p=0.065), cytoplasmic (p=0.394) or nuclear (p=0.240) expression.  

In the untreated and treated T84 cells, FGR was expressed at all cellular locations. 

When examining the expression levels in both treated and untreated T84 cells, only nuclear 

FGR (p=0.004) was significantly associated with change in expression. Nuclear FGR 

showed an increase in expression with Dasatinib treatment. Conversely, membrane FGR 

showed a trend towards lower expression (p=0.065). Cytoplasmic FAK (tyr 861) showed 

no change in expression between controls and treated cells (p=0.310). (Figure 5.69) 

 

Figure 5.69: Effect of Dasatinib on cellular location of FGR expression in HT29 cells  

A.) Bar chart demonstrating the trend for reduced membrane FGR expression (p=0.065) 
and significant increase in nuclear FGR (p=0.004) expression in Dasatinib treated cells 
B.) Demonstrating FGR expression in untreated (UT) HT29 cells. C.) Demonstrating FGR 
expression in Dasatinib treated (DT) HT29 cells.  
 

FYN expression 

In the untreated and treated HT29 cells, FYN was expressed at all cellular locations. 

Following treatment with Dasatinib, there was no significant difference in membrane 

(p=0.400), cytoplasmic (p=1.000) or nuclear (p=0.200) expression.  
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In the untreated and treated T84 cells, FYN was expressed at all cellular locations. 

Following treatment with Dasatinib, there was no significant difference in membrane 

(p=0.100), cytoplasmic (p=1.000) or nuclear (p=0.100) expression.  

 

HCK expression 

In the untreated and treated HT29 cells, FYN was expressed at all cellular locations. 

Following treatment with Dasatinib, there was no significant difference in membrane 

(p=0.400), cytoplasmic (p=1.000) or nuclear (p=0.200) expression.  

In the untreated and treated T84 cells, FYN was expressed at all cellular locations. 

Following treatment with Dasatinib, there was no significant difference in membrane 

(p=0.100), cytoplasmic (p=1.000) or nuclear (p=0.100) expression.  

 

LCK expression 

In the untreated and treated HT29 cells, FYN was expressed at all cellular locations. 

Following treatment with Dasatinib, there was no significant difference in membrane 

(p=1.000), cytoplasmic (p=0.200) or nuclear (p=0.100) expression.  

In the untreated and treated T84 cells, FYN was expressed at all cellular locations. 

Following treatment with Dasatinib, there was no significant difference in membrane 

(p=1.000), cytoplasmic (p=0.700) or nuclear (p=1.000) expression.  

 

5.6 Discussion 

5.6.1 Summary of the novel results 

Allowing for the limitations in the sample size and survival model construction, the main 

novel finding in this chapter is that high cytoplasmic HCK expression is independently 

associated with poor recurrence-free survival in patients undergoing potentially curative 

resection for stage II colorectal cancer. Furthermore, raised cytoplasmic FAK (tyr 861) 

was independently associated with poor recurrence free survival in CI colorectal cancer.  

 

5.6.2 Strengths and limitations 

5.6.2.1 Strengths 

This study has several strengths. Patient numbers in the validation cohort are relatively 

large by current standards and this offers an associated type II error probability of less than 
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0.1 when a 15% difference in 5 year survival rates were sought. In addition, all patients 

received stage-directed treatment by a specialist multidisciplinary team with considerable 

experience in treating colorectal cancer. The patients reside in a well-defined geographical 

area with minimal migration and full follow-up data is available for all patients. 

 In addition to the clinical factors associated with the patient outcome measures, 

measurements of the systemic inflammatory response namely serum CRP and albumin 

were performed by an accredited NHS biochemistry laboratory. The reliability of the 

serum CRP and albumin measurements also extends to the MSI analysis. Tumour MSI 

PCR analysis was performed in a tertiary referral laboratory and the reporting supervised 

by an expert with a special interest in Lynch syndrome diagnostics. 

 

5.6.2.2 Limitations 

The main limitations of this study are as discussed in previous chapters. These include; 

loss of statistical power when the cohorts were sub-divided by TNM stages and MSI status, 

the heterogeneity in clinicopathological factors of the sample compared to the regional 

population and the inability to construct a comprehensive survival model due to the 

absence of important clinicopathological factors such as venous invasion and BMI.  

The difficulties and limitations relating to tissue dissection, tumour sampling and 

the accurate evaluation of biomarker expression have also been discussed previously. The 

non-specific binding of antibodies to non-targeted proteins during immunohistochemistry 

and the human error associated with scoring and is open to inaccuracies. The specific 

immunohistochemistry limitation of this chapter relates to the structure of the primary 

antibodies. The antibodies employed for identification of individual SFKs bind to areas 

distinct from the activation site and therefore represents both active and inactive forms of 

the protein and even low expressers may contain a high proportion of activated SFK. In 

addition, the company which manufactures the antibody which identifies the active form of 

the SFKs, through binding to the phosphorylated tyr416 residue, ceased production and 

therefore a downstream marker of Src activation (FAK (tyr 861)) was used. In reality, 

multiple agonists and antagonists affect the expression of FAK (tyr 861), which may not 

precisely represent Src activation.  

 Another limitation of this study is that not all family members were studied in the 

validation cohort. The identification of family members for evaluation in the validation 

cohort was based on mRNA profiling of SFKs in the frozen tissue cohort. Unfortunately, a 

search of online databases and published material revealed that a simultaneous quantitative 
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comparison of all SFKs expression has not been performed in colorectal cancer. There 

were studies in a renal clear cell cancer  (Qayyum, 2012) and breast cancer (Elsberger, 

2010) that showed C-SRC and LYN were the highest expressed members. Despite this, 

different family members were associated with advancing T-stage and tumour grade. 

Although the data presented in this thesis showed a trend in differences in expression 

across TNM stages, the small sample number of this cohort makes these results relatively 

unreliable and open to both type I and II errors. Therefore, non-studied SFKs may offer 

important prognostic information and a comprehensive evaluation of all SFKs is needed to 

be sure.  

 

5.6.3 Discussion of the results 

5.6.3.1 SFK and FAK (tyr 861) expression and survival 

The influence of SFK expression on cellular behavior is relatively well understood, but, 

translational studies examining the prognostic role of individual SFK members are 

relatively few. This is the first documented report that HCK and FAK (tyr 861) are 

prognostic biomarkers in colorectal cancer using immunohistochemistry and confirmatory 

studies are needed, however, these results appear promising. In renal cancer, Lyn 

(Rosewier, 2016) and FAK (tyr 861) (Qayyum, 2012) were associated with poor survival 

and in breast cancer high c-Src expression (Elsberger, 2010) was also associated with poor 

outcome. These reports are from the same research group where the work for this thesis 

was completed and therefore independent validation of the prognostic value of SFKs in 

colorectal cancer is needed. Similar to the findings in this chapter, the studies referenced 

above have not undertaken a comprehensive evaluation of all family members when 

determining the prognostic value of SFKs. This makes translating a single family member 

into a prognostic biomarker difficult as there may be overlap with other family members 

and establishing real causation in this setting can be difficult.  

 

5.6.3.2 SFK and FAK (tyr 861) expression and colorectal cancer 

Allowing for the limitations in sample size, the results of the SFK mRNA profiling 

suggests that although Src, LYN and YES were the most highly expressed SFKs in 

colorectal cancer, there was no change in expression with advancing tumour stage. This 

observation is supported by Emaduddin et al who reported that SRC, LYN and YES were 

present in all the cell lines studied (Emaduddin, 2008). Furthermore, heterogeneity in the 



 437 

expression of other SFKs were present and this observation supports the results here that 

FGR, FYN, HCK and LCK varied among samples and in particular with TNM stage. 

Given the identification of HCK as a prognostic biomarker, it is also possible that FYN 

and LCK are also determinents of survival.  

Dasatinib activity has been studied in various cancer cell lines including colon, 

breast and prostate (Elsberger, 2009; Serrels, 2006; Tatarov, 2009). Here, Dasatinib was 

not associated with a dose dependent reduction in metabolic activity using the WST-1 

assay. These findings confirm those of Serrel et al who observed that when Dasatinib was 

at a concentration sufficient to suppress SFK activation, proliferation was not inhibited in 

10 out of the 12 cell lines studied (Serrel, 2006). At higher concentrations, Dasatinib was 

associated with a reduction in cell proliferation, which suggests that Dasatinib may inhibit 

proliferation independent of SFK activity, however, the mechanism has not been 

identified. FAK is thought to inhibit apoptosis through the PI3K/AKT pathway and 

caspase-3 cascade (Sonoda, 2000). These results confirm the in vitro evidence that FAK 

plays an important role in inhibiting apoptosis. Dasatinib treatment of cell lines resulted in 

a reduction in phosphorylated FAK (tyr 861) expression and promotion of apoptosis in the 

T84 cell line. These findings are clinically relevant given that loss of spontaneous 

apoptosis was associated with poorer response rates to neoadjuvant chemoradiotherapy in 

rectal cancers (Rödel, 2002). 

 

5.6.3.3 SFK and FAK (tyr 861) as a prognostic and predictive biomarker 

Cytoplasmic HCK and FAK (tyr 861) were associated with poorer recurrence free survival 

in the entire cohort with HCK retaining independence in TNM stage II cancers. It is 

unlikely, based on this evidence alone, that HCK could be used in clinical practice due to 

inherent limitations in the immunohistochemistry methodology. Given the homologus 

structure of the SFK protein, antibodies that identify activation through phosphorylation of 

residues in the peptide, will not discriminate between individual members. Furthermore, 

antibodies that identify individual members cannot discriminate between inactive and 

active forms of the protein and an immunohistological method for identifying an activated 

member has not been proposed or identified. This is likely to be important in a clinical 

context, as one would expect only an activated form of the protein to be biologically 

influential. There are situations where a biomarker requires two techniques for 

pathological reporting such as the use of Her2 in breast cancer. It is possible that reporting 

of an SFK may require IHC for the both individual member and a biomarker for SFK 
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activation such as phosphorylation of tyr416 or quantifying the expression of FAK (tyr 

861). Using FAK (tyr 861) for this purpose is limited given the likely multiple sources for 

agonism and antagonism that influence the expression and activation of the protein. 

Methodologies that use whole tumour homogenate such as PCR or Western blots are 

unlikely to be useful as the subcellular location of the protein is an important determinant 

of cellular behavior. If SFKs and markers of their activation are to be employed as 

prognostic or predictive biomarkers, a robust and reliable methodology for identification 

and quantification is needed, irrespective of how challenging this is likely to be.  

Despite growing evidence that SFKs play an important role in cancer progression and 

metastasis, clinical trials of Src inhibitors have been disappointing (Sharma, 2012). Similar 

to HER2 positivity and Herceptin, it is possible that patients with a particularly high 

expression and activation of one of the family members may have a beneficial response to 

Src inhibitor therapy. Treating all patients with Src inhibitor therapy is unlikely to be 

biologically or financially appropriate. Retrospective analysis of clinical trials by 

correlating response to treatment with expression of SFKs and or markers of their 

activation will possibly add weight for an adequately powered prospective study of Src 

inhibitor therapy and its predictive biomarker in identifying patients likely to benefit from 

Src inhibitor therapies. It appears that a significant barrier to implementing biomarkers into 

clinical practice is reliable methodology for biomarker identification, quantification, 

reporting and availability of a specific therapy with a favorable benefit/side effect profile. 

Until these issues have been addressed, it is unlikely that Src inhibitor therapy can be 

incorporated into the management process of colorectal cancer.  

 

5.6.3.4 Introducing SFK and FAK (tyr 861) expression into the prognostication process 

in colorectal cancer 

Following potentially curative resection, patients are offered adjuvant chemotherapy based 

on their expected risk of recurrence. High risk features currently include T4 disease, lymph 

node metastasis and vascular invasion. As discussed previously, the TNM staging system 

is the main biomarker for outcome prognostication; however, its predictive value could be 

improved. Therefore, methods to strengthen the predictive value of the TNM system with 

supplementary biomarkers may help improve the stratification of patients to adjuvant 

treatment on a need/benefit basis.  

 There is a clear need for treatment stratifying biomarkers in colorectal cancer, 

however, it remains unclear how expression of SFKs and their activation in particular 
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cytoplasmic HCK and FAK (tyr 861) could be integrated with TNM staging. The 

distinction between staging, prognosis and predictive biomarkers is important given the 

influence of both on survival and treatment. The limitations surrounding the predictive 

value of the TNM stage have been discussed previously. The main changes to managment 

strategies in other cancers relate to predicting response to novel therapies such as that seen 

in the management of breast cancer.  Due to the limitations of the study, how cytoplasmic 

HCK or FAK (tyr 861) might fit into a staging system that includes MSI, the inflammatory 

responses and MMP-9 reamains unclear and cannot be answered by the results of this 

study. Despite these limitations, the survival model for TNM stage II colorectal cancer 

revealed that cytoplasmic HCK was independent of T-stage with loss of statistical 

significance for MSI and systemic inflammation and this is a promising avenue for further 

study. 

 

5.6.4 Future direction 

1. A comprehensive study of all SFKs and FAK (tyr 861) needs to be conducted in an 

adequately powered independent cohort with sufficient patient numbers and events so that 

survival modeling can be performed using the sub classification methods in this chapter.  

 

2. Using gene silencing and Src inhibitor therapy to identify the role that each SFK plays in 

colorectal cancer cellular behavior. This could support the use of SFKs as predictive 

biomarkers for Src inhibitor therapy 

 

3. Correlate the expression of SFKs with response to Src inhibitor treatment in patients 

entered in clinical trials for colorectal cancer. If successful in demonstrating that SFKs 

predict response to Src inhibitor therapy, this treatment regimen could be translated into 

high risk patients who have undergone potentially curative resection.  

 

5.6.5 Conclusion 

Src family kinases are a promising therapeutic target for patients at high risk of recurrence. 

Allowing for the limitations in the data sample, cytoplasmic HCK offers additional 

prognostic information beyond that seen with commonly used clinicopathological factors 

in patients with stage II colorectal cancer. Cancer cell responses to Src inhibitor therapy, as 

measured by metabolic activity and apoptosis, varies between individual cell lines and 
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reflects the tumours molecular heterogeneity. SFKs may offer predictive as well as 

prognostic information that will help identify patients for Src inhibitor therapy and this 

requires further study.     
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6. General Discussion 

6.1 Summary of the novel findings in this thesis 

 

The main novel findings of the studies reported in this thesis are threefold: 

1. That MSI tumours are associated with a systemic inflammatory response indicate by the 

measurement of acute phase proteins serum CRP and albumin.  

 

2. Serum MMP-9 is associated with tumoural MMP-9 expression and poor survival in a pilot 

study of 95 patients undergoing potentially curative resection for TNM stage I-III colorectal 

cancer. 

 

3. Cytoplasmic HCK is independently associated with poor recurrence-free survival in 

patients undergoing potentially curative resection for TNM stage II colorectal cancer. 

 

6.2 Strengths and limitations 

6.2.1 Strengths 

This study has several strengths. Patient numbers in the validation cohort are relatively large 

by current standards and this offers an associated type II error probability of less than 0.1 

when a 15% difference in 5 year survival rates were sought. In addition, all patients received 

stage-directed treatment by a specialist multidisciplinary team with considerable experience in 

treating colorectal cancer. The patients reside in a well-defined geographical area with 

minimal migration and full-follow up data is available for all patients. 

 In addition to the clinical factors associated with the patient outcome measures, 

measurements of the systemic inflammatory response namely serum CRP and albumin were 

performed by an accredited NHS biochemistry laboratory. The reliability of the serum CRP 

and albumin measurements also extends to the MSI analysis. Tumour MSI PCR analysis was 

performed in a tertiary referral laboratory and the reporting supervised by an expert with a 

special interest in Lynch syndrome diagnostics. 
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6.2.2 Limitations 

6.2.2.1 Data sampling and power 

The main limitation of this study is the statistical power available when the cohorts were sub-

stratified by TNM stages and MSI status. The MSI and TNM stage I groups had small sample 

sizes, and too few events for reliable survival analysis, which was not performed. The best 

method for determining adequate power in survival analysis is controversial, but, two 

methods have been proposed. Firstly, power the sample for an expected difference in survival 

rates across a fixed time frame and secondly, powering for an anticipated number of survival 

events in a particular group of patients. Both methods have strengths and weaknesses and 

both were employed in this thesis. Although there was a lack of power when patients were 

stratified into TNM sub-groups, there were sufficient events available for multivariable 

modeling.  

Another limitation of this study is the quality of the patient sample. The frequencies of 

the core clinicopathological factors for the patient cohorts as well as the regional data for the 

study time frame have been included in the results chapters. The clinicopathological 

frequencies in the pilot study were different to those observed in the validation cohort and the 

regional population. This would normally mean interpreting the pilot results with caution, 

however, including a validation cohort with no overlapping of patients adds some reliability 

to the data findings. The main difference between the cohorts was the proportion of 

emergency patients in the training cohort (cohort 1). The reason for this difference is not clear 

and may reflect the way patients were identified for inclusion in the study. Patients for the 

validation cohort (cohort 2) were identified by searching a pathology database for all 

colorectal cancer specimens over a particular period, whilst patients for the training cohort 

were identified from a prospectively maintained database of colorectal resections. 

A relative limitation of this study is the strength of the chosen survival endpoints. 

Death is a relatively robust endpoint, however, the cause of death is dependent upon the 

interpretation of the clinical situation by the clinician writing the death certificate. This 

limitation also applies to the process of determining if cancer recurrence has developed or not. 

Furthermore, patients who die of an unrelated illness may harbor cancer recurrence. Although 

CT scans can detect cancer recurrence at a very early stage, the presence of a normal scan 

does not rule out the presence of micro-metastasis. Therefore, determining the exact timing of 

cancer recurrence is challenging. 
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6.2.2.2 Pathological factors 

A relative limitation of this study is the absence of some previously reported 

prognostic clinicopathological factors in the multivariable model. Although core factors such 

as TNM stage and its components were included there were omissions such as BMI and 

vascular invasion. BMI is not included in the core data set for MDT discussion because of the 

associated limitations in its recording and time dependency. It has been reported that detection 

of venous invasion can be increased to 18% from 56% by using elastic H&E staining 

(Roxburgh, 2010). This method of detection is not currently universally employed and only a 

small proportion of patients in cohorts 1 and 2 underwent elastic H&E assessment. Therefore, 

with H&E assessment alone being associated with a 38% false negative rate, vascular 

invasion was not included in the multivariable model. BMI is a modifiable clinicopathological 

factors that can be considered as time dependent. Changes in living circumstances may alter a 

patients’ BMI and thus the biological effect of this covariate on the pathophysiology of the 

host and the cancer varies with time. This may explain why the effect of these factors with 

prognosis remains poorly understood with results of a metanalysis offering conflicting 

patterns of results (Lee, 2015).  

A relative limitation of this study is that tumours were dissected macroscopically 

rather than microscopically to increase the percentage of tumour DNA in the sample. It has 

been estimated that a sample requires at least 40% tumour DNA to detect the microsatellite 

repeats on PCR. Factors that potentially dilute the tumour DNA include lower T stage 

tumours and the presence of a pronounced inflammatory infiltrate. These features increase the 

volume of non-cancerous DNA thus increasing the false negative detection rate. MSI 

tumours, which are associated with a pronounced inflammatory infiltrate and lower T-stage 

tumours, which have a higher proportion of adjacent adenoma, may require dissection. 

Macroscopic dissection may inadvertently include a proportion of these non-cancerous cells 

in the sample thus diluting the tumour DNA yield. To control for this, all tumours underwent 

MMR protein assessment through immunohistochemistry. 

The non-specific binding of antibodies to non-targeted proteins during 

immunohistochemistry and the non-automated quantification method is associated with a risk 

of human error and is not entirely accurate. The specific immunohistochemistry limitations of 

this thesis relates to the structure of the primary antibodies. The antibodies employed for 

identification of proteins bind to an area distinct from the activation site and therefore 

represents both active and inactive forms of the protein and even low expressers may contain 

a high proportion of activated protein. Furthermore, the company that manusfactured the 
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antibody which identifies the active form of SFKs ceased production and therefore a 

downstream markers of Src activation (FAK (tyr 861)) was used.  

 Another limitation of this study is that not all family members were studied in the 

validation cohort. The identification of family members for evaluation in the validation cohort 

was based on mRNA profiling of SFKs in the frozen tissue cohort. Although trends in 

differences in expression were observed across TNM stages, the small sample number of this 

cohort makes these results relatively unreliable and open to type I and II errors. Therefore, 

omitted SFKs may offer important prognostic information and a comprehensive evaluation of 

all SFKs is likely needed.  

 

6.3 Discussion of the results 

Taken into consideration the results of previous chapters and supported by evidence from the 

literature, there appears to be an interaction between the host and the tumour. This is 

particularly important when considering the interaction between systemic inflammation and 

microsatellite instability in colorectal cancer. Evidence from patients with metabolic 

syndrome and increased global methylation suggest a possible cause of MSI colorectal cancer 

through hypermethylation and subsequent silencing of the MLH1 protein. Despite this 

observation patients with MSI cancer have a relatively improved survival. This likely relates 

to the pronounced lymphocytic infiltrate associated with the cancers that possibly negates the 

deleterious effect of the systemic inflammatory response. How the host interacts with 

molecular behaviors of the cancer remains unknown. The cardinal features associated with 

every cancer, cell proliferation, loss of apoptosis, loss of cell adhesion and migration to name 

but a few are ultimately controlled by signaling pathways which receive external stimuli from 

the cell membrane. Cell line studies supported by mouse models show that IL6, an important 

pro-inflammatory cytokine, stimulates proliferation and inhibits apoptosis through activation 

of STAT3. This ultimately results in larger cancers, which is also a feature of the MSI 

pathway. It remains unclear what the exact aetiological factor for systemic inflammation in 

cancer is. Possible causes include patient related factors such as poor health and aggressive 

tumours with resultant complications such as perforation or obstruction. Unfortunately given 

the limitations of the data contained in this thesis the relationship between systemic 

inflammation, MSI, MMP9 and expression and activation of SFK could not be delineated.   

Another feature of this thesis is the heterogeneity of the prognostic value of 

biomarkers relating to the cancer related tissue of origin. Specifically, MMP9 in the serum 

was significantly associated with poorer survival however this was not confirmed in the 
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tumour which may represent a type II reporting error. This raises the possibility that studying 

the tumour alone is not always the best way of undertaking disease prognostication. The 

majority of biomarkers available in clinical practice are related to the expression of the 

molecule within the tumour cell. The results contained within this thesis suggest that 

sampling of blood, especially given the identification of circulating tumour cells, may be a 

better method. The finding that MMP-9 in the serum was also associated with advanced 

tumour stage and tumour expression further supports the notion of an interaction between 

tumour and host. MMP-9 degrades connective tissue, allowing the passage of cells through 

the stroma. This is advantageous for immune cells but is clearly an important factor for 

metastases for colorectal cancer cells. Unfortunately trials of MMP-9 inhibitors have not 

reported promising results and although this is disappointing it does not rule out MMP-9 as a 

predictive biomarker for identifying patients for treatment. In addition to the lack of response 

from the tumour there is no highly selective MMP-9 inhibitor available and therefore 

currently used compounds inhibit all types of MMPs. The influence this has on the tumour 

remains unknown and possibly has both anti-tumour and pro-tumour effects and this requires 

further pre-clinical studies. The identification of MMP-9 in the serum has far reaching effects 

on other biomarkers. The identification of circulating tumour cells or DNA offers a promising 

avenue for interrogating the molecular biology of the tumour without having to undergo 

invasive sampling techniques. Indeed, these cells may reflect the most aggressive behaviors of 

the cancer and may offer superior prognostic information and this remains unknown requiring 

further study. Taking into consideration all these finding s the emergence of newer 

biomarkers is likely to require a robust scientific methodology coupled with the best forms of 

tissue sampling.  This will hopefully result in an improved personalized prediction model that 

will translate into improved survival rates.  

Currently the best available stratification model for planning treatment is the TNM 

staging system. Although this relatively simple model has good prognostic power its 

prediction for treatment stratification needs improved. Particularly in patients with TNM 

stage II disease who have an approximately 30% chance of recurrence. Following curative 

resection patients who have either stage 3 disease, T4 tumours or vascular invasion are 

offered adjuvant chemotherapy. Despite this, a proportion of patients who have undergone 

chemotherapy as well as some patients regarded, as low risk will develop disease recurrence. 

Therefore it is likely that not all patients who receive adjuvant chemotherapy benefit and this 

is supported by the observations of Roedel et al who observed that only 20% of patients have 

a complete pathological response to neoadjuvant chemotherapy for rectal cancer (Roedel, 

2010). Furthermore, patients with MSI colorectal cancer are relatively chemo resistant to 5 
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FU based chemotherapy regimens. There is a clinical need to identify patients who need and 

will benefit from adjuvant treatments. The model of biomarker driven treatments has been 

particularly useful in breast cancer where patients with tumours expressing ER are given ER 

antagonists. It is possible that a similar model would work for colorectal cancer, given a 

suitable target. Unfortunately the limitations of the data within this thesis do not entirely 

support the integration of systemic inflammation, MMP-9 and expression or activation of 

SFK into current treatment planning.  The observation that cytoplasmic HCK was an 

independent factor for prognosis in TNM stage 2 colorectal cancer is promising and it may 

offer a novel therapeutic target. Dasatinib, a SRK inhibitor, promotes cellular apoptosis in 

metastatic colorectal cancer cell lines, which has also been observed by others. Combined 

with a robust methodology for identifying and quantifying SFK related biomarkers may help 

incorporate this into clinical practice.  

Although there are promising results in this thesis it also highlights the substantial 

challenges associated with prognostic studies. The vast majority of biomarker studies in the 

literature are underpowered with methodological variations in which may explain why despite 

apparently compelling pre-clinical evidence, so few biomarkers make it into clinical practice. 

The introduction of the REMARK criteria for biomarker reporting may go some way to 

improving the quality of biomarker reporting. Ultimately the factors that influence patient 

survival are numerous and reflect both host and tumour behavior. This makes accurate 

survival modeling difficult as few studies exhaustively incorporate all relevant prognostic 

variables. The main hurdle for translating biomarker research into clinical application relates 

to the coupling of a scientifically robust methodology for biomarker quantification and a drug 

with a favorable side effect and cost profile. Future work needs to address these issues if 

personalized treatments are to become integrated into clinical practice.  

 

6.4 Future direction 

1. Given the lack of power associated with studying survival associations in each TNM stage 

and MSI tumours, future work will need to validate these findings in a large sample size, 

which is adequately powered.   

 

2. How the SIR influences the development of MSI colorectal cancer is unclear, but there is a 

possible link with DNA methylation. Future work examining the association between the SIR, 

DNA methylation, CIMP and MSI colorectal cancer which is supported by mechanistic 

experiments could help identify therapeutic targets for MSI colorectal cancer prevention.  
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3. The biological reason for the association between the SIR and survival remains unknown. 

Future work examining the relationship between the SIR and cell signaling pathways such as 

JAK/STAT3 may help identify novel therapeutic targets.  

 

4. The results of examining the relationships between serum MMP-9 and survival in a larger 

cohort with tissue analysis using full tissue sections for cancer and stroma MMP-9 expression 

quantification could support the use of MMP-9 in future staging methodologies. 

 

5. Looking at the effect of MMP-9 inhibitors on tumour MMP-9 expression and what happens 

to tumour behavior 

 

6. Trial of MMP-9 inhibitors in patients with high expression of serum and/or tumour MMP-9 

 

7. A comprehensive study of all SFKs and FAK (tyr 861) needs to be conducted in an 

adequately powered independent cohort with sufficient patient numbers and events so that 

survival modeling can be performed using the sub classification methods in this chapter.  

 

8. Using gene silencing and Src inhibitor therapy identify the role that each SFK plays in 

colorectal cancer cellular behavior. This will support the use of a SFK as a predictive 

biomarker for Src inhibitor therapy 

 

9. Correlate the expression of SFKs with response to Src inhibitor treatment in patients 

entered in clinical trials for colorectal cancer. If successful in demonstrating that SFKs predict 

response to Src inhibitor therapy, this treatment regimen could be translated into high risk 

patients who have undergone potentially curative resection.  

 

6.5 Conclusion 

The results of this thesis confirm that colorectal cancer is a complex disease that represents 

several subtypes of cancer based on molecular biological behaviors. This thesis concentrated 

on features of the disease related to inflammation in terms of genetic and molecular 

characterisation. MSI cancers are closely associated with systemic inflammation but despite 

this observation, they retain their relatively improved survival. MMP-9 is a feature of tissue 

remodeling during inflammation and is also associated with degradation of connective tissue, 
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advanced T-stage and poor outcome when measured in the serum. The lack of stromal 

quantification due to TMA use rather than full sections makes the value of tumoural MMP-9 

immunoreactivity in the prognostication and its association with MSI unknown and requires 

further study. Finally, Src family kinase activation was also associated with systemic 

inflammation, however, only cytoplasmic HCK was independently associated with poor 

survival in patients with TNM stage II disease, the group of patients where identifying a novel 

biomarker is most needed. There is still some way to go before these biomarkers are 

translated into clinical practice and future work needs to focus on obtaining a reliable and 

robust scientific technique with validation in an adequately powered independent cohort.  
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Appendix 1.1 Cohort 1 TMA 
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Appendix 1.2 Cohort 2 TMA 
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Appendix 2 – The distribution of continuous clinical data measurements 

Training cohort 

1. Age 

 

Histogram 

 

Normal Q-Q Plot 
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Boxplot 

 

Shapiro-Wilk Test 

Statistic = 0.974 

Degrees of freedom = 182 

Significance = 0.002 
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Validation cohort 

Histogram 

 

Normal Q-Q Plot 
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Boxplot 

 

Shapiro-Wilk Test 

Statistic = 0.967 

Degrees of freedom = 696 

Significance = <0.001 
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Appendix 3.1: Studied variables’ 5 year recurrence-free and overall survival rates (n=182) 
– Training cohort (cohort 1) 
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50.0% 

Tumour Site 
     Colon 
     Rectum 

 
56.1% 
55.9% 

 
64.2% 
61.0% 

Tumour site enhanced 
     Right 
     Left 
     Rectum 
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Appendix 3.2: Studied variables’ 5 year recurrence-free and overall survival rates (n=677) 
– Validation cohort (cohort 2) 
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free survival  
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Appendix 3.3: Studied variables’ 5 year recurrence-free and overall survival rates in 

patients with TNM stage II disease (n=327) – Validation cohort (cohort 2) 
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Appendix 3.4: Studied variables’ 5 year recurrence-free and overall survival rates in 

patients with TNM stage III disease (n=245) – Validation cohort (cohort 2) 
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Appendix 3.5: Studied variables’ 5 year recurrence-free and overall survival rates in 

patients with CI colorectal cancer (n=592) – Validation cohort (cohort 2) 
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Appendix 3.7 Studied variables’ 5 year recurrence-free and overall survival rates in 

patients colorectal cancer (n=95) – Serum and tissue cohort (cohort 3) 
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Appendix 4: Reproducibility of histologically quantified biomarkers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein Nuclear Cytoplasm Membrane 

    

MMP-9 N/A 0.93 N/A 

Src416 0.92 0.86 N/A 

FAK861 0.89 0.84 N/A 

HCK 0.82 0.84 0.76 

FGR 0.76 0.81 0.76 

FYN 0.79 0.89 0.76 

LCK 0.82 0.83 0.79 

MLH1 0.79 N/A N/A 

MSH2 0.80 N/A N/A 

MSH6 0.81 N/A N/A 

PMS2 0.88 N/A N/A 
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Appendix 5. 1 - Supplementary graphs for chapter 3 

 

Supplementary figure 3.1: Distribution of measurements for serum CRP.  
 

 

Supplementary figure 3.2: Distribution of measurements of serum albumin in patients with 
colorectal cancer.  
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Supplementary figure 3.3: The distribution of serum albumin measurements in patients 
with and without disease recurrence (p=0.367) 

 

Supplementary figure 3.4: The distribution of serum albumin measurements in patients 
stratified by survival status (p=0.167) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 157 148 138 128 118 110 103 

High 25 23 18 17 14 12 12 

Supplementary figure 3.5: The relationship between serum albumin expression and overall 
survival (p=0.110) 
 

 

Supplementary figure 3.6 Predictive value of serum albumin in identifying patients who 
will die during the follow-up  
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Supplementary figure 3.7: Distribution of measurements for serum CRP in patients with 
colorectal  

 

Supplementary figure 3.8: Distribution of measurements of serum albumin in patients with 
colorectal cancer  
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Supplementary figure 3.9: The distribution of serum albumin measurements in patients 
stratified by MSI status (p=0.156) 
 

 

Supplementary figure 3.10: The distribution of serum CRP measurements in patients with 
and without disease recurrence (p=0.112) 
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Supplementary figure 3.11: The predictive value of CRP in identifying patients who will 
develop cancer recurrence  

 

Supplementary figure 3.12: Distribution of measurements of serum CRP in patients with 
TNM stage II and III colorectal cancer.  
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Supplementary figure 3.13: Distribution of measurements of serum albumin in patients 
with TNM stage II and III colorectal cancer  
 
 

 

Supplementary figure 3.14: The distribution of serum CRP measurements in patients with 
and without disease recurrence in patients with stage II colorectal cancer (p=0.230) 
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Supplementary figure 3.15: The predictive value of CRP in identifying patients with stage 
II colorectal cancer who will develop recurrence  
 

 

Supplementary figure 3.16: The distribution of serum albumin measurements in stage II 
colorectal cancer patients stratified by recurrence status (p=0.236) 



 473 

 
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 194 181 161 148 140 134 128 

Low 78 58 52 47 43 38 31 

Supplementary figure 3.17: Serum albumin expression and recurrence-free survival in 
patients with stage II colorectal cancer (p=0.349) 
 

 

Supplementary figure 3.18: Predictive value of serum albumin in identifying patients with 
stage II colorectal cancer who will develop cancer recurrence 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

MSS 277 248 236 211 198 186 169 

MSI 50 44 44 37 35 32 30 

Supplementary figure 3.19: The relationship between MSI status and overall survival in 
stage II colorectal cancer (p=0.688) 
 

 

Supplementary figure 3.20: The distribution of serum CRP measurements in patients with 
stage III colorectal cancer stratified by cancer recurrence (p=0.557) 
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Supplementary figure 3.21: The predictive value of CRP in identifying patients with stage 
III colorectal cancer who developed recurrence during the 5 years follow-up 
 

 

Supplementary figure 3.22: The distribution of serum albumin measurements in patients 
with and without cancer recurrence (p=0.256) 



 476 

 

Supplementary figure 3.23: Predictive value of serum albumin in identifying patients with 
stage III colorectal cancer who developed cancer recurrence 
 
 

 
No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

MSS 224 155 127 108 100 95 90 

MSI 21 13 6 4 4 4 4 

Supplementary figure 3.24: The relationship between MSI status and recurrence-free 
survival in patients with stage III colorectal cancer (p=0.836) 
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Appendix 5.2 – Supplementary graphs and tables for results chapter 4 

 

Supplementary figure 4.1: Distribution of measurements for cancer cell cytoplasmic MMP-
9.  

 

Supplementary figure 4.2: Distribution of measurements of cytoplasmic MMP-9 in patients 
with colorectal cancer.  
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Appendix 5.3 – Supplementary graphs/tables for chapter 5 

 

Supplementary Figure 5.1: The distribution of Cytoplasmic FGR measurements in patients 
with and without disease recurrence (p=0.817) 

 

Supplementary Figure 5.2 The predictive value of cytoplasmic FGR in identifying patients 
who will develop cancer recurrence  
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Supplementary figure 5.3: The distribution of nuclear FGR measurements in patients with 
and without cancer recurrence (p=0.777) 
 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 516 415 361 328 307 290 272 

Low 161 133 115 104 96 96 90 

Supplementary figure 5.4: The relationship between nuclear FGR expression and 
recurrence-free survival  
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Supplementary figure 5.5: Predictive value of nuclear FGR in identifying patients who will 
develop cancer recurrence 
 

 

Supplementary figure 5.6: The distribution of cytoplasmic FGR measurements in patients 
stratified by survival status (p=0.783) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Low 532 451 422 383 354 332 305 

High 145 126 113 99 93 87 85 

 
Supplementary figure 5.7: The relationship between cytoplasmic FGR expression and 
overall survival in patients with colorectal cancer 
 

 

Supplementary figure 5.8: Predictive value of cytoplasmic FGR in identifying patients who 
will die during follow-up 
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Supplementary figure 5.9: The distribution of nuclear FGR measurements in patients 
stratified by survival status (p=0.663) 
 
 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 516 437 405 368 341 320 300 

Low 161 140 130 114 106 99 90 

Supplementary figure 5.10: The relationship between nuclear FGR expression and overall 
survival in patients with colorectal cancer 
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Supplementary figure 5.11: Predictive value of nuclear FGR in identifying patients who 
will die during the follow-up 
 

 

Supplementary figure 5.12: The distribution of cytoplasmic HCK measurements in patients 
stratified by survival status (p=0.240) 
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Supplementary figure 5.13: Predictive value of cytoplasmic HCK in identifying patients 
who will die during follow-up  
 

 

Supplementary figure 5.14: The distribution of cytoplasmic FAK (tyr 861) expression in 
patients stratified by survival status (p=0.246) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 465 399 370 335 309 292 273 

Low 212 178 165 147 138 127 117 

Supplementary figure 5.15: The relationship between cytoplasmic FAK (tyr 861) 
expression and overall survival in patients with colorectal cancer 
 

 

Supplementary figure 5.16: Predictive value of cytoplasmic FAK (tyr 861) in identifying 
patients who will die during the follow-up 
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Supplementary figure 5.17: Distribution of measurements of cytoplasmic FGR expression 
in patients with TNM stage II and III colorectal cancer.  
 

 

Supplementary figure 5.18: Distribution of measurements of nuclear FGR in patients with 
TNM stage II and III colorectal cancer.  
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Supplementary figure 5.19: Distribution of measurements of cytoplasmic HCK in patients 
with TNM stage II and III colorectal cancer.  
 

 

Supplementary figure 5.20: Distribution of measurements of cytoplasmic FAK (tyr 861) 
expression in patients with TNM stage II and III colorectal cancer. 
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Supplementary figure 5.21: The distribution of cytoplasmic FGR measurements in patients 
with and without cancer recurrence in patients with stage II colorectal cancer (p=0.232) 
 
 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 245 213 190 178 164 152 139 

High 82 74 66 58 55 54 52 

Supplementary figure 5.22: The relationship between cytoplasmic FGR expression and 
recurrence-free survival in patients with stage II colorectal cancer 
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Supplementary figure 5.23: The distribution of nuclear FGR measurements in stage II 
colorectal cancer patients stratified by recurrence status (p=0.612) 
 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 257 227 205 189 175 164 153 

Low 70 60 51 47 44 42 38 

Supplementary figure 5.24: The relationship between nuclear FGR expression and 
recurrence-free survival in patients with stage II colorectal cancer 
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Supplementary figure 5.25: Predictive value of nuclear FGR in identifying patients with 
stage II colorectal cancer who will develop cancer recurrence 
 

 

Supplementary figure 5.26: The distribution of cytoplasmic HCK measurements in patients 
with and without cancer recurrence in patients with stage II colorectal cancer (p=0.414) 
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Supplementary figure 5.27: The distribution of cytoplasmic FGR measurements in patients 
stratified by survival status (p=0.730) 
 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 245 217 208 187 174 162 144 

High 82 75 72 62 59 56 55 

Supplementary figure 5.28: The relationship between cytoplasmic FGR expression and 
overall survival in patients with stage II colorectal cancer 
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Supplementary figure 5.29: The predictive value of cytoplasmic FGR in identifying 
patients with stage II colorectal cancer who will die during follow-up 
 

 

Supplementary figure 5.30: The distribution of nuclear FGR measurements in patients 
stratified by survival status (p=0.460) 
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Supplementary figure 5.31: Predictive value of nuclear FGR in identifying patients with 
stage II colorectal cancer who will die during the follow-up 
 

 

Supplementary figure 5.32: The distribution of cytoplasmic HCK measurements in patients 
stratified by survival status (p=0.532) 
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Supplementary figure 5.33: The predictive value of cytoplasmic HCK in identifying 
patients with stage II colorectal cancer who will die during follow-up 
 

 

Supplementary figure 5.34: The distribution of cytoplasmic FAK (tyr 861) measurements 
in stage II colorectal cancer patients stratified by recurrence status (p=0.280) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 220 195 175 163 149 140 131 

Low 107 92 81 73 70 66 60 

Supplementary figure 5.35: The relationship between cytoplasmic FAK (tyr 861) expression and 
recurrence-free survival in patients with stage II colorectal cancer 
 

 

Supplementary figure 5.36 Predictive value of cytoplasmic FAK (tyr 861) in identifying 
patients with stage II colorectal cancer who will develop cancer recurrence 
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Supplementary figure 5.37: The distribution of cytoplasmic FAK (tyr 861) measurements 
in patients stratified by survival status (p=0.231) 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 220 198 191 170 159 148 136 

Low 107 94 89 78 74 70 63 

Supplementary figure 5.38: The relationship between cytoplasmic FAK (tyr 861) 
expression and overall survival in patients with stage II colorectal cancer 
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Supplementary figure 5.39: Predictive value of cytoplasmic FAK (tyr 861) in identifying 
patients with stage II colorectal cancer who will die during the follow-up  
 

 

Supplementary figure 5.40: The distribution of cytoplasmic FGR measurements in patients 
with and without cancer recurrence in patients with stage III colorectal cancer (p=0.609) 
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Supplementary figure 5.41 The predictive value of cytoplasmic FGR in identifying patients 
with stage III colorectal cancer who will develop recurrence during the follow-up 
 

 

Supplementary figure 5.42: The distribution of nuclear FGR measurements in stage III 
colorectal cancer patients stratified by recurrence status (p=0.351) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 186 122 95 80 75 70 67 

Low 59 46 38 32 29 29 27 

Supplementary figure 5.43: The relationship between nuclear FGR expression and 
recurrence-free survival in patients with stage III colorectal cancer 
 

 

Supplementary figure 5.44 Predictive value of nuclear FGR in identifying patients with 
stage III colorectal cancer who will develop cancer recurrence  
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Supplementary figure 5.45: The distribution of cytoplasmic FGR measurements in patients 
stratified by survival status (p=0.494) 

 

Supplementary figure 5.46: The predictive value of cytoplasmic FGR in identifying 
patients with stage III colorectal cancer who will die during follow-up 
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Supplementary figure 5.47: The distribution of nuclear FGR measurements in patients 
stratified by survival status (p=0.655) 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 186 142 120 110 96 87 84 

Low 59 51 44 38 35 31 28 

Supplementary figure 5.48: The relationship between nuclear FGR expression and overall 
survival in patients with stage III colorectal cancer 
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Supplementary figure 5.49: Predictive value of nuclear FGR in identifying patients with 
stage III colorectal cancer who will die during the follow-up 
 

 

Supplementary figure 5.50: The distribution of cytoplasmic HCK measurements in patients 
stratified by survival status (p=0.805) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 176 136 113 102 90 85 80 

High 69 56 51 46 40 33 32 

Supplementary figure 5.51: The relationship between cytoplasmic HCK expression and 
overall survival in patients with stage III colorectal cancer 
 

 

Supplementary figure 5.52: The predictive value of cytoplasmic HCK in identifying 
patients with stage III colorectal cancer who will die during follow-up 
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Supplementary figure 5.53: The distribution of cytoplasmic FAK (tyr 861) measurements 
in patients stratified by survival status (p=0.953) 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 169 131 111 101 87 82 78 

Low 76 61 53 47 43 36 34 

Supplementary figure 5.54: The relationship between cytoplasmic FAK (tyr 861) 
expression and overall survival in patients with stage III colorectal cancer 



 505 

 

Supplementary figure 5.55: Predictive value of cytoplasmic FAK (tyr 861) in identifying 
patients with stage III colorectal cancer who will die during the follow-up 
 

 

Supplementary figure 5.56: Distribution of measurements of cytoplasmic FGR expression 
in patients with CI and MSI colorectal cancer.  
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Supplementary figure 5.57: Distribution of measurements of nuclear FGR in patients with 
CI and MSI colorectal cancer.  
 

 

Supplementary figure 5.58: Distribution of measurements of cytoplasmic HCK in patients 
with CI and MSI colorectal cancer.  
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Supplementary figure 5.59: Distribution of measurements of cytoplasmic FAK (tyr 861) 
expression in patients with CI and MSI colorectal cancer  
 

 

Supplementary figure 5.60: The distribution of cytoplasmic FGR measurements in patients 
with and without cancer recurrence in patients with CI colorectal cancer (p=0.646) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 466 374 328 304 283 268 246 

High 126 105 87 78 74 73 71 

Supplementary figure 5.61: The relationship between cytoplasmic FGR expression and 
recurrence free survival in patients with CI colorectal cancer 
 

 

Supplementary figure 5.62: The predictive value of cytoplasmic FGR in identifying 
patients with CI colorectal cancer who will develop recurrence during the follow-up 
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Supplementary figure 5.63: The distribution of nuclear FGR measurements in stage CI 
colorectal cancer patients stratified by recurrence status (p=0.715) 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 453 365 319 293 274 259 242 

Low 139 114 96 82 83 82 75 

Supplementary figure 5.64: The relationship between nuclear FGR expression and 
recurrence-free survival in patients with CI colorectal cancer 
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Supplementary figure 5.65 Predictive value of nuclear FGR in identifying patients with CI 
colorectal cancer who will develop cancer recurrence 
 

 

Supplementary figure 5.66: The distribution of cytoplasmic FGR measurements in patients 
stratified by survival status (p=0.978) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 466 396 371 339 312 292 267 

High 126 112 100 87 83 78 76 

Supplementary figure 5.67: The relationship between cytoplasmic FGR expression and 
overall survival in patients with CI colorectal cancer 
 

 

Supplementary figure 5.68: Predictive value of cytoplasmic FGR in identifying patients 
with CI colorectal cancer who will die during follow-up 
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Supplementary figure 5.69: The distribution of nuclear FGR measurements in patients 
stratified by survival status (p=0.670) 
 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 453 385 360 328 305 286 267 

Low 139 121 111 98 90 84 76 

Supplementary figure 5.70: The relationship between nuclear FGR expression and overall 
survival in patients with CI colorectal cancer 
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Supplementary figure 5.71 Predictive value of nuclear FGR in identifying patients with CI 
colorectal cancer who will die during the follow-up 
 

 

Supplementary figure 5.72: The distribution of cytoplasmic HCK measurements in patients 
stratified by survival status (p=0.295) 
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No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 448 386 360 330 304 289 265 

High 144 122 111 97 91 81 78 

Supplementary figure 5.73: The relationship between cytoplasmic HCK expression and 
overall survival in patients with CI colorectal cancer 

 

Supplementary figure 5.74: Predictive value of cytoplasmic HCK in identifying patients 
with CI colorectal cancer who will die during follow-up 
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Figure 5.75: The distribution of cytoplasmic FAK (tyr 861) measurements in patients 
stratified by survival status (p=0.573) 

 

No. at risk 0 months 10 months 20 months 30 months 40 months 50 months 60 months 

Normal 406 348 324 296 271 256 238 

Low 186 160 147 131 124 114 105 

Supplementary figure 5.76: The relationship between cytoplasmic FAK (tyr 861) 
expression and overall survival in patients with CI colorectal cancer 
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Supplementary figure 5.77: Predictive value of cytoplasmic FAK (tyr 861) in identifying 
patients with CI colorectal cancer who will die during follow-up 
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