
 

Glasgow Theses Service 

http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 

 

 
 

 

Roy, Scott Allen (1994) Simulation tools for the analysis of single 

electronic systems. PhD thesis. 

 

 

http://theses.gla.ac.uk/7655/    

 

 

 

Copyright and moral rights for this thesis are retained by the author 

 

A copy can be downloaded for personal non-commercial research or 

study, without prior permission or charge 

 

This thesis cannot be reproduced or quoted extensively from without 

first obtaining permission in writing from the Author 

 

The content must not be changed in any way or sold commercially in 

any format or medium without the formal permission of the Author 

 

When referring to this work, full bibliographic details including the 

author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/7655/


SIMULATION TOOLS FOR THE ANALYSIS OF
SINGLE ELECTRONIC SYSTEMS

by

Scott Alan Roy

June 1994

A Thesis presented to the University of Glasgow
Department of Electronics and Electrical Engineering

in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

© Scott Alan Roy, 1994



hoc adiutoribus dono

Dixeris egregie notum si callida verbum

Reddiderit iunctura novum.

Horace, Ars Poetica 1.47



ABSTRACT

Developments in theory and experiment have raised the prospect of an electronic

technology based on the discrete nature of electron tunnelling through a potential

barrier. This thesis deals with novel design and analysis tools developed to study such

systems.

Possible devices include those constructed from ultrasmall normal tunnelling

junctions. These exhibit charging effects including the Coulomb blockade and corre-

lated electron tunnelling. They allow transistor-like control of the transfer of single

carriers, and present the prospect of digital systems operating at the information theo-

retic limit. As such, they are often referred to as single electronic devices.

Single electronic devices exhibit self quantising logic and good structural toler-

ance. Their speed, immunity to thermal noise, and operating voltage all scale benefi-

cially with junction capacitance. For ultrasmall junctions the possibility of room tem-

perature operation at sub picosecond timescales seems feasible. However, they are

sensitive to external charge; whether from trapping-detrapping events, externally

gated potentials, or system cross-talk. Quantum effects such as charge macroscopic

quantum tunnelling may degrade performance. Finally, any practical system will be

complex and spatially extended (amplifying the above problems), and prone to fabri-

cation imperfection. This summarises why new design and analysis tools are required.

Simulation tools are developed, concentrating on the basic building blocks of sin-

gle electronic systems; the tunnelling junction array and gated turnstile device. Three

main points are considered: the best method of estimating capacitance values from

physical system geometry; the mathematical model which should represent electron

tunnelling based on this data; application of this model to the investigation of single

electronic systems.

At present, most capacitance estimates ignore fringing fields and systematically

underestimate capacitance values. Formulae based on bispherical co-ordinates are

developed, which provide better estimates without the computational expense of finite

element calculations. These prove especially appropriate for the new generation of

granular metal-insulator-metal systems. Calculations show that these systems will be

required for reliable device operation above 77K.

A number of descriptions of electron tunnelling in ultrasmall junctions are re-

viewed. A semi-classical approach is chosen, which treats the system as a capacitive

equivalent circuit under the action of discrete tunnelling events. This allows simple

investigation of complex systems using Monte Carlo techniques, while accounting for
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thermal fluctuations - the most important source of noise in present devices. A heuris-

tic Lengevin equation model and more detailed phase correlation model are described.

These include further physics of the tunnelling process, but require increased compu-

tational effort.

Two core modelling tools are designed to investigate single electronic systems.

The General Network Solver is a suite of Monte Carlo modelling routines which can

be applied to any system equivalent circuit. A linear programming technique is also

developed. This efficiently calculates areas of legal operation in control parameter

space for any system.

It is found that: array threshold voltage at zero offset bias is a good figure of merit

in tunnelling junction arrays. For steady charge flow, these systems show remarkable

resilience to component variation. Stability is optimised when array capacitance to

ground is small in relation to junction capacitance. Similarly, coupling strays less than

junction and grounding capacitance have little effect on device performance. How-

ever, from these detailed stability studies, it is found that transmission of more realis-

tic bitstream patterns results in information loss - for array electrons tend to stable,

equidistant configurations.

The frequency response of single and three phase gated turnstiles is investigated.

Under realistic operating conditions the three phase turnstile has no advantage. Its

extra complexity reduces unacceptably its operating area in control parameter space.

The operation of coupled turnstiles is perturbed both by coupling capacitance directly,

and by cross-talk from non-static charge. Both effects reduce the operating areas in

control parameter space. These effects are intrinsically complex in nature; however

some practical insight is gained by using our tools. Bit error rates in coupled turnstiles

are also investigated.
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CHAPTER 1	 INTRODUCTION

Since the invention of the transistor in 1947 and its subsequent service in integrated

circuits, the history of digital electronics has been a relentless quest for device minia-

turisation. Three facts drive this search. Firstly, miniaturisation reduces the volumes

across which electric fields act, allowing lower power dissipation. Secondly, lower

capacitance and shorter interconnects lead to faster systems. Finally, miniaturisation

(in tandem with increased chip size) allows more devices on a chip and thus reduces

relative costs [1].

It is obvious that the feature size of modern devices cannot be reduced without limit.

Eventually it will rival the electron wavelength. In this regime many classical con-

cepts become invalid. A more detailed quantum mechanical approach is needed to

fully understand electron transport, and develop the new concepts necessary to de-

scribe device operation.

There is also the opportunity to exploit quantum mechanics and develop novel de-

vices. Apart from any intrinsic benefits gained from quantum mechanical operation,

such devices will retain the power, speed, and cost benefits which miniaturisation

brings.

In recent years, new developments in both theory and experiment [2] have allowed

the serious consideration of an electronics technology based on one basic quantum

mechanical phenomena - the discrete nature of electron tunnelling through a potential

barrier. Such granular electronic devices include those constructed from ultrasmall

normal tunnelling junctions. They exhibit charging effects including the Coulomb

blockade and correlated electron tunnelling. These devices allow operation at the

limit of one transferred carrier per bit, the information theoretic limit. As such, they

are often referred to as single electronic devices.

1.1 Properties of Single Electronic Systems

Two properties of tunnelling junction systems are vital to the operation of single

electronic devices. Firstly, ultrasmall junctions allow ultrasmall junction capacitance.

The electrostatic charging energy of a single tunnelling event across such a junction

is,



Fig 1.1 Equivalent circuit of a
double junction system. Charge
on central electrode is ne-F8Q.

R 1 ,C 1	 R2,C2

11/\ ne-i-o5Q

t il t	 t	 t

e2

= 2C

Junctions with capacitance as low as C = 10- 18 F have been reported [3], which give

80 meV. If C can be made small enough, the energy associated with tunnelling

may be far greater than the average energy of thermal or quantum fluctuations. For

thermal fluctuations the condition on temperature T is,

e2 
kBTEc	 T	 2kBC	 T	 Te is critical temperature (1.2)c

For quantum fluctuations in a junction of tunnelling resistance R t , the condition is,

« E
RC

2h nn
Rt >>	 2e = RQ

RQ is quantum resistance (1.3)

Under these conditions, charging effects are no longer masked by quantum noise and

normal quasi-continuous current flow no longer occurs. Unless the external applied

potential V makes tunnelling energetically advantageous, charge is not transferred.

There is a Coulomb blockade of current at V < e/2C. The importance of this phen-

omenon in device terms is obvious. There is direct control of a microscopic process

via an easily measurable and controllable macroscopic parameter, independent of the

precise nature of the tunnelling barrier.

The second property of junction systems results

from the discrete nature of charge on an electrode

itself. For instance, in a double junction system

such as that of figure 1.1 the central electrode is

detached from a source of continuous charge. It has

relative charge ne+SQ. OQ is an initial fractional

charge dependant on junction Fermi levels, and

external potentials gated to the electrode by strays. ne  is an integral charge due to

tunnelling events. In such a system, tunnelling events in the two junctions are no

longer independent, but are correlated by the need for ne to remain integral. The

correlation can be tuned by external gating of the fractional charge 6Q.

Correlated tunnelling has been observed in a number of systems, most strikingly in

ultrasmall metal-oxide-semiconductor field-effect transistors (MOSFETs) Pl. In such

transistors, conduction occurs through a narrow source-drain channel of two-dimen-

sional electron gas. When the channel is narrow enough (typically 20nm) fluctuations

in semiconductor doping potential can form potential barriers, cutting the channel into

electron pools separated by tunnelling junctions. As MOSFET gate potential is varied
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(changing OQ values) electron correlation is exhibited as periodic fluctuations in

source-drain conductance. The MOSFET is acting as a single-electron transistor.

Although there are other examples of potentially useful single electron switching

processes - for example electron waveguide interferometer switches [5] - such phe-

nomena are limited by coherence problems. They have little integrability, and are

critically dependant on accurate fabrication [6]. On the contrary - because of the

Coulomb blockade and correlated tunnelling effects - single electronic devices have

the benefits of good structural tolerance and self quantising logic.

The speed of single electronic systems is limited by circuit relaxation. This requires

switching timescales greater than Tc = RC, the nominal time between tunnelling

events through a junction. (Note that Tc is the characteristic time of junction relax-

ation, not the duration of the actual tunnelling event itself [7].) The operating voltage

of such a system is proportional to junction threshold voltage V.

Thus immunity to thermal noise, speed and nominal operating voltage all scale

beneficially with junction capacitance. For ultrasmall junctions the possibility of room

temperature operation at sub picosecond timescales seems feasible [8]. Practical

devices have been reported, operating at liquid Helium temperatures at gigahertz

frequencies [9, 10].

Resistance OA

----A---- resistance quantum RQ

Fig 1.2 Comparison of the critical parameters of ultrasmall tun-
nelling junctions in relation to their junction capacitance and tun-
nelling resistance. The critical frequency fe = 1/Te.
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1.2 The Need for Novel Analysis Tools

Single electronic devices do, however, pose novel modelling and analysis problems.

By their very nature, they can only be fully described quantum mechanically, or by

quantum mechanically based semi-classical models. Because of their reliance on cor-

related electron tunnelling, they are extremely sensitive to external charge [11]. Such

charge may be the result of material trapping-detrapping events, external potentials

gated via strays, or cross-talk from other parts of a single electronic system. Other

possible effects that must be considered include charge macroscopic quantum tun-

nelling and electron cotunnelling. These processes are the result of thermal or quan-

tum fluctuations acting upon a system of junctions, allowing simultaneous multiple

tunnelling events. They are discussed in detail in Chapter 4. In practical systems the

effect of fabrication variation in junction parameters on system performance must

also be considered.

To act as an integrable digital technology, single electronics must perform well in

spacially extended systems of many junctions. When the Coulomb blockade was first

observed, it was found impossible to produce the necessary high impedance measure-

ment conditions for a single junction. Instead, tunnelling junction arrays were

required to decouple the junction of interest from its environment (see for instance

[11]). It can also be shown that sets of junction arrays are required to buffer against

some of the cotunnelling effects mentioned above [12, 13]. Thus even simple logic

functions will require the operation of extended systems.

Figure 2.6 shows an electron micrograph of one simple system under fabrication at

Glasgow. It, and all other extended systems, will by nature be complex to model.

Because of all these reasons, new tools are required for design and analysis of single

electronic systems. Chapter 2 reviews the background of single electronics technol-

ogy and follows in detail the argument for the development of such tools.

1.3 Breakdown of Work to be Accomplished

The aim, therefore, is to develop practical aids for the analysis of single electronic

systems. This aim can be separated into three subgoals; requiring answers to three

sets of questions. Firstly, what data must be extracted from the physical devices

themselves? It will be seen that accurate estimation of tunnelling junction and elec-

trode grounding capacitance is paramount in predicting device operation. How can

such estimates be achieved? Secondly, what mathematical model should be chosen to

represent the tunnelling process? Finally, and most importantly, how can the model

be best applied to the investigation of single electronic systems? In order to develop

—4--



general analysis tools, the basic building blocks of any system should first be consid-

ered. Characterising these will hone skills and evolve tools which can then be applied

to more complex systems. What are the basic building blocks of single electronics?

How is their characterisation to be carried out?

Capacitance Estimates

At present, the only proven fabrication approach appropriate for integrated systems is

the metal-insulator-metal technique pioneered by Fulton & Dolan [14]. Almost with-

out exception, geometrical capacitance calculations for these systems are based on the

parallel plate approximation. This ignores edge effects which dominate in small junc-

tions. Therefore the parallel plate approximation gives systematically lower values of

device T, than are possible in practice. Finite element analysis will give more

accurate results, but at the cost of calculation time and complexity.

We develop analytic capacitance results based on the two spheres approximation.

This geometrical idealisation contains more of the intrinsic physics of the problem,

while remaining simple to calculate. It should prove especially useful for the granular

metal-insulator-metal fabrication approaches under development. Chapter 3 com-

prises a full discussion of capacitance estimates.

Choice of Mathematical Model

Any mathematical model of a physical system must strike a balance between simplic-

ity and the inclusion of physics relevant to the system. The model must be simple

enough to produce results in a reasonable timescale. It must include the physics nec-

essary to make those results useful. One basic description of a system of tunnelling

junctions is its capacitive equivalent circuit. The action of this circuit under the

influence of discrete tunnelling events can be considered - with tunnelling rates

modelled as a function of system parameters. This description exhibits all the non-

trivial nature of real life systems while remaining simple to investigate using Monte

Carlo techniques. Its accuracy (and speed) are dependant on the physics included in

the tunnelling rate calculations.

Chapter 4 considers a number of mathematical models of junction tunnelling rates,

based on the quantum nature of electron tunnelling. The physical effects considered

include; thermal and charge fluctuations, the general electromagnetic environment of

each junction, and other systems effects such as charge macroscopic quantum tun-

nelling. The conditions under which each model holds valid are also investigated.



Development of Analysis Tools :

As noted above, the development of analysis tools for single electronic systems is

inextricably linked to the choice of basic system building blocks. Two of the most

primitive building blocks are the tunnelling junction array and gated turnstile.

A tunnelling junction array is the simplest single electron device to model, and to

construct physically. It can be represented as a line of junctions along which charge

moves. The line is capacitively linked to a common ground, and this coupling allows

soliton states to form in the system [12]. The importance of these soliton states for

this work is that they allow some analytic description of the system. Thus modelling

tools in development can be compared with simple analytic results.

The gated turnstile is a device proposed by tsteve, and constructed by Geerligs et al.

[9]. It clocks electrons across a short junction array by way of an oscillating control

voltage on the array's central electrode. It is the first device to show detailed control

of single electrons, and the precursor of switching devices and shift registers.

For each device, we wish to develop tools which will give quantitative results for;

• device operating parameters, and component values which optimise operation.

• device stability with respect to component deviation, external charge and quantum

fluctuations.

• the effect of interdevice coupling or cross-talk.

The starting point for development of such system tools is a Monte Carlo modelling

routine based on the work of Bakhavlov et al. [12]. As junction arrays and turnstiles

are investigated with this routine it is modified and extended to form a far more useful

set of modelling tools.

A detailed description of system building blocks, and the tools developed to study

them, is given in chapter 5. Results from the application of these tools are noted in

chapter 6.



T << Tc,	 where
e2

Tc — 2kBC
(2.2)

CHAPTER 2	 BACKGROUND

A historical overview of both theoretical and experimental work on granular

electronics is given. Specific emphasis is placed on the methods by which Coulomb

blockade effects are used to correlate and control electron tunnelling. The physical

systems in which tunnelling occurs are discussed, and the possibility of using each as

an integrable fabrication technology noted. Methods of constructing practical granular

electronic systems are considered. Novel design and analysis tools will be needed to

investigate such systems.

2.1 Historical Background

2.1.1 Coulomb Blockade

The origins of work on single electronic systems were experiments into the conduc-

tion of thin, granular metallic films; first in 1951 [15] and then again in 1962.

Neugebauer and Webb [16] measured a suppression in the dc conductance of films at

low temperature, and suggested the electric charging of film grains by discrete elec-

trons as its source.

Grains can be considered as small electrodes linked by tunnelling junctions. If elec-

trode intercapacitance is large, then conduction occurs, with the discreteness of tun-

nelling manifest as system shot noise [8]. For small electrode intercapacitance, the

electrostatic energy of tunnelling,

e2
Ec = 2C

may be much greater than the thermal fluctuations of the system, which are of scale

kBT. This occurs at temperatures,

(2.1)

(Te is referred to as the critical temperature.) If in addition the tunnelling resistance

of the potential barrier Rt, and any associated shunting resistances, are greater than

the resistance quantum RQ = h/4e2 ,---. 6.45 kfl, then quantum fluctuations of the sys-

tem will also be less than the energy scale Ec and a Coulomb blockade of tunnelling

will occur. This blockade is only lifted if the electrostatic energy of tunnelling is

-- 7 —



supplied by the potential drop across the junction, i.e for junction voltages above a

threshold,
e

Vthresh = 2C	 (2.3)

(Table 2.1 gives estimates of the voltage, current and time scales associated with

various values of junction capacitance, based on equations 2.1 - 2.3.)

Junction Junction Critical Junction Voltage Scale Current Scale Time Scale
Source Arca S Capacitance C Temp. Tc Resistance R V = e/2C I = V/R t = RC

(nm2) (aF) (K) (1d2) (mV) (nA) (ps)

(a) 100x100 300 3 100 0.25 2.5 30
(b) 30x30 30 30 100 2.5 25 3
(c) 10x10 3 300 100 25 250 0.3
(d) 100x100 20 46 1000 4 4 20
(e) ? 1000 0.9 340 0.08 0.2 340

Table 2.1 Estimates of tunnelling junction main parameters. Estimates (a-c) reproduced from [8] with C = CoS
where Co = 3x10-6 F/cm2, and R = 1001d1, typical values for metal oxide barriers. (a) represents state-of-the-
art junctions [17], (b) represents a record junction [14], and (c) represents the nanolithographic limit [18].
Estimate (d) calculated from L.S.Kuzmin, eta!. [11] as typical of metal-insulator-metal junctions in 1-dimen-
sional tunnelling junction arrays. Estimate (e) calculated from L.J.Geerligs, eta!. [10] for metal-insulator-metal
junctions in their gated turnstile device.

Despite extensive experimental work on such films [19], a detailed quantitative theory

of the suppression based on multiple tunnelling events was not then derived, due to

the random structure of the conducting grains. Recently there has been renewed

interest in this field [20-22].

Further progress came with simpler systems that allowed more direct measurement of

junction threshold voltage V thresh. These structures, first studied by Zeller and

Giaever [23] and then by Lambe and Jaklevic [24], consist of 'granular films' sand-

wiched between metallic electrodes. Each grain in the metallic film forms a two junc-

tion system between the macroscopic electrodes, the whole system acting as a two-

dimensional parallel array of double junctions. A full theoretical analysis of such

systems has been achieved [25].

2.1.2 Coulomb Staircase

Although these results gave direct experimental evidence of Coulomb blockade, it

was not until 18 years later, in 1987, that techniques were refined enough to allow

measurement of another predicted effect - that of the Coulomb staircase [14, 26].

Coulomb Staircase Theory :

This phenomenon is exhibited in double junction systems under voltage bias (for ex-

ample, by one of the grains in the system of Zeller & Giaever mentioned above). The

—8-



R I,C i	 R2,C2
ne+E•Q

Fig 2.1 Equivalent circuit parameters
of a double junction system under
voltage bias. Modified capacitor sym-
bols represent tunnelling junctions of
capacitance C, resistance R. Charge
on central electrode is ne+SQ.

e	 C2 „ AVAV i — c 1 +C2 — Ci+L2
(2.5)

e
AV =

parameters of such a system are shown schematically in figure 2.1. Its analysis

requires consideration both of the discrete nature of electron

discrete charge within the central electrode of the device.

Assume initially that C 1 << C2, R1 << R2 so

that the tunnelling rate through the first junction

is far greater than that through the second. Set the

external bias conditions so that charge flow from

left to right is preferred, and increase the bias

voltage above the initial Coulomb blockade gap.

The governing circuit equations are ;

C2	 ne+SQ 
—V I 	V —C i +C2 	Ci+C2

C 1 v + ne-F8Q
V2 —

Ci+C2	 Ci+C2
(2.4)

tunnelling, and of the

where ne+SQ is the charge on the central electrode. This is the result of n electrons

on the electrode due to tunnelling events, and an initial charge SQ due to external

voltages coupled to the electrode via stray or gating capacitance.

For given external voltage V, electrons will tunnel onto the central electrode until

V 1 becomes smaller than e/(C 1 +C2), at which point the junction becomes Coulomb

blockaded. Because of the tunnelling rate assumptions above, we may assume that

this blockade condition is always reached before we need consider charge tunnelling

out through C2. Since the tunnelling rate through C2 limits and governs the current

through the device, and since V2 is pinned by the blockade condition on junction 1,

current through the device remains constant over a range of external V.

In order to raise the number of electrons contained in the central electrode by one, V1

must be raised by AV 1 = e/(C 1 +C2), i.e,

which in turn allows a current increase of,

AV2	e 
AI — R2 — R2(C1+C2)

Thus the IV curve of such a device shows distinct steps of width AV and height M.

As the junction parameters are brought nearer to C 1 = C2, R1 A.-- R2 and tunnelling

rates through each junction become comparable, blockade conditions are less likely to

build up, and the IV curve approaches linearity (although of course offset by the

(2.6)
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Fig 2.2 Cross section schematic of an
array of double junctions formed by
sandwiching a thin conducting film be-
tween two bulk electrodes [26]. In this
case devices (25p.m)2 were used, with
total resistance in the range 1-100Ma

Coulomb blockade voltage of e/2(Ci+C2)). Detailed theory describing the double

junction system is given in [27], with application of the theory to typical experimental

conditions noted in [28].

Coulomb Staircase Observed :

Two methods were used to obtain measurement

of the Coulomb staircase. The later experiment,

performed by Barner and Ruggiero [26], studied

Ag particles of mean diameter 7.5nm sand-

wiched between Cu or Ag films and separated

from them by Al203 barriers. This was a

refinement of the methods discussed above, and

a schematic of the experimental device is shown

in figure 2.2.

The other method, due to Fulton and Dolan [14]

used the techniques of electron-beam lithogra-

phy to pattern sets of A1-Al 203-Al junctions

onto a silicon substrate. These structures exhibited single electron charging effects

just as expected. Figure 2.4 shows the process by which the junctions were formed

and notes the scales involved. These were the first artificially fabricated junction sets

that allowed control over the position and capacitance of individual junctions.

2.1.3 Single Electronic Transistor

Theory of Operation :

At the same time as Coulomb staircase effects were being measured in the IV curves

of double junction systems, the importance of the fractional charge SQ on device op-

eration was being realised [29, 30]. Consider again the schematic of figure 2.1, with

negligible external bias V=0. The capacitive energy of the central electrode is,

(ne+SQ)2 
E— 2(C 1+C2)

with n the net number of electronic charges which have tunnelled onto the central

electrode above equilibrium, and SQ a fractional charge due to potentials coupled to

the central electrode via stray capacitance. (Of course SQ may have any charge

value, but SQ e will induce tunnelling events bringing the system to a new

equilibrium condition, so only SQ of the order of e need be considered in practice.)

(2.7)
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Fig 2.3 Energy diagram illustrating the effect of fractional charge on the central
electrode of a double junction. Charge on the junction can only change by an
integral amount, into the states marked by solid dots. For OQ = 0,1,... an energy
barrier of at least e 2/2(C 1 +C2) is encountered. For 5Q = 'half integral' tun-
nelling can occur without experiencing a blockade effect.

Figure 2.3 shows the electrostatic energy of this central electrode as a function of n,

for two limiting values of SQ. Note that because of the discrete nature of tunnelling

only those energy states marked with solid dots are allowable. When •5(2 = 0 there is

a tunnelling activation energy of e 2/2(C 1 +C2). This is the normal Coulomb blockade

effect. However, when SQ = — e, the activation energy is reduced to zero, and

charge transfer can occur without penalty. If it were possible to closely control the

fractional charge on the central electrode of this double junction, then a switch or

single electronic transistor could be formed. Coupling a gating voltage Vg to the

electrode by way of a small non tunnelling capacitance C < C 1 ,C2 is the simplest

way of doing this, q = CVg. It has also been suggested that 'trickling' charge onto

the electrode by way of a high impedance resistor (forming a resistive single elec-

tronic transistor) may be an alternative [30]. Both capacitive and resistive single

electronic transistors have now been fabricated and their transfer characteristics

measured [31, 32]. The results of these studies are discussed below in §2.3.1.

Importance of Staircase and Transistor Effects :

These phenomena, the Coulomb staircase and single electronic transistor, are basic to

the whole field of single electronics. Each relies both on the integral nature of tun-

nelling charge, and on the integral nature of charge on an isolated electrode. Firstly,

the Coulomb staircase shows mutual correlation of junction tunnelling events. Such

correlation effects are vital in governing and stabilising electron flow in extended

systems. Conversely, the single electronic transistor shows the effect of externally

controlled fractional electrode charge on the IV curve of a system. It is the basis of

single electronic turnstile devices [9, 10], where a varying gate voltage provides de-

tailed control of electron flow in a system of junctions.



This sensitivity to external charge is also the source of many of the problems encoun-

tered in systems of single electronic devices. For example the presence of random

static charge trapped next to a single electronic transistor will introduce an indetermi-

nate shift in its transfer characteristic along the Vg axis. This makes practical biasing

of groups of such devices extremely difficult. Such problems are returned to in §2.3.1.

Validity of Theoretical Model :

A semiclassical model, describing not only the Coulomb staircase and single electron

transistor, but general systems of tunnelling junctions, was derived from the basic

quantum mechanics [8, 29, 30, 33, 34]. This theory is reviewed in [35] along with

experimental results confirming its validity. It holds under two main assumptions.

Firstly that thermal and quantum fluctuations are less than the characteristic energy

scales of the junctions (i.e Rt, Rshunt >> RQ and Ec << kBT ). Secondly, that the

relaxation time of the electromagnetic environment of any junction is much smaller

than the time between subsequent tunnelling events. These conditions will be exam-

ined, and the theory described in detail, in chapter 4. They are found to apply in many

metal-insulator-metal structures. This model is used as the basis for the simulation

tools we shall develop.

2.1.4 Further Areas of Research

Since these foundational discoveries, progress in the field has been rapid and has

taken a number of directions.

Extensions of the Theoretical Model :

Theoretically, several extensions to the semiclassical model have been made. Firstly,

the effect of fluctuations in the external electromagnetic environment of junctions has

been included [36-38]. Higher order tunnelling processes - macroscopic quantum

tunnelling (MQT) or electron cotunnelling - have also been considered [13] and

experimentally measured [39, 40]. In the literature, MQT often refers to tunnelling

events occurring in a number of junctions simultaneously, bringing the system from

an initial to final charge state by way of one or more virtual intermediate states which

would not normally be energetically possible. This is an important 'killer' process in

single electronic systems. Invariably, the virtual states through which macroscopic

quantum tunnelling occurs are those states designed to be illegal in order for the sys-

tem to operate properly. Extensions to the simple theory including quantum

fluctuations and cotunnelling will be discussed in detail in chapter 4.



Possible Device Technologies :

Experimentally, following a suggestion by Mullen et al. [34], the Coulomb staircase

was observed using a scanning tunnelling microscope (STM) imaging an In droplet

above an A1-Al203 plane, with junctions formed across the oxide barrier and by the

vacuum between the dot and STM tip [41]. The highest T, values have consistently

been measured by scanning tunnelling microscopy, with reports [42, 43] and later

confirmation [3, 44, 45] of single electron tunnelling effects at room temperature.

Junctions have been formed with Tc 1150 K [3]. STM work is of particular use

where it is possible to measure the Coulomb staircase and image the structures from

which they derive [27, 46], thus comparing geometrical and measured capacitance.

Of greater interest for this work are fabrication approaches where integration is pos-

sible - i.e where it is possible to make some choice over both the value of junction

parameters and how those junctions interconnect.

Initially, the fabrication of integrable systems relied upon the 'suspended resist'

technique used by Fulton and Dolan [47]. As well as single and double junctions,

systems comprising four gated junctions (electron pumps or 'turnstiles') [9, 10] and

longer linear junction arrays [ 1 1, 48-50] have been fabricated. Studies in regular 2D

arrays have also been reported [51, 52]. Indeed the field has progressed to the extent

that design and construction of a single electronic current standard is already under

way [53]. This work will concentrate on the modelling of metal-insulator systems.

However single electron charging phenomena are not confined to metal-insulator

systems. Much present research is aimed at exploring charging effects in squeezed

geometry, two-dimensional electron gas (2DEG) systems.

The periodic conductance oscillations characteristic of double junction single elec-

tronic transistors were first recognised in quasi-one-dimensional quantum wires by

Scott-Thomas et al. [54]. Later, the same lithographic techniques were used to create

devices which allowed the formation of small 'pools' of 2DEG (quantum dots) into

which electrons could tunnel from larger 2DEG reservoirs [55]. These quantum dots

are the analogue of the central electrode in metal-insulator-metal systems. Thus many

devices fabricated using metal-insulator-metal technology can also be constructed as

semiconductor devices.

Semiconductor systems are particularly convenient for research into single electronics

because device parameters can easily be changed by variation of bias conditions.

However this versatility is offset by complications due to the nature of electron trans-

port in semiconductors. These complications are discussed in more detail in §2.2.2.

At present both single electronic transistors [56] and gated turnstile devices [57] have

been demonstrated in 2DEG systems.

— 13 —
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2.2 Fabrication Technologies

2.2.1 Metal-Insulator Technologies

Figures 2.4 to 2.8 describe schematically four fabrication approaches which allow the

possibility of integrating systems of tunnelling junctions onto a single substrate.

Figure 2.6 is an electron micrograph of an actual system, whose fabrication approach

is shown schematically in figure 2.7.

First Metallisation
	

Second Metallisation

Fig 2.4 Processing steps involved in creating metal-oxide-metal tunnelling junctions. The
technique was developed by Dolan [47] using photolithography, and extended for fabrication of
Josephson junctions [58] and tunnelling junctions [14, 59] using e-beam lithography. The
suspended mask is formed from a germanium layer deposited on top of a polymeric resist and then
itself patterned. Some of the underlying polymer is removed with the germanium resist coating,
forming the overhang. Oxidation between successive metal depositions forms the insulating
tunnelling layer. Typical recorded junctions have side 30nm (i.e area 900nm 2) [14].

Fig 2.5 Laterally patterned two-dimensional electron gas in a semiconductor heterostructure,
and schematic of the potential landscape along the narrow 2DEG (quasi-1DEG) channel in that
heterostructure. The gate fingers induce an island or 'dot' of 2DEG separated from the end
reservoirs by tunnelling barriers. The energy levels of this dot are discrete, unlike metallic
electrodes where levels can be assumed to be continuous. II I and 112 are the electrochemical
potentials of wide two-dimensional electron gas reservoirs at each end of the structure. on is the
electrostatic potential of the dot containing n electrons, and E n is the energy level of the nth
electron in that dot. Potential landscape diagram based on [57].



Fig 2.6 Electron micrograph of lateral metal-semiconductor-metal, Schottky dot device developed at
Glasgow by Weaver et al. [60] (see figure 2.7 and text for description of junction operation). The
device consists of six linear junction arrays arranged in parallel. Each linear junction array consists of 7
junctions. Results of the modelling of such a system are given in chapter 6.
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Metallic hemispheres form Schottky
barriers with semiconductor substrate.
Electrons tunnel through Schottkys to
next electrode.

Fig 2.7 Lateral metal-semiconductor-metal, Schottky dot system developed at Glasgow (figure 2.6
shows an actual device viewed by electron microscope) by Weaver eta!. [60]. Al dots are deposited
on a p-type silicon substrate, forming Schottky contacts with it. Overlapping 'Schottky tunnelling
tails' should permit electron tunnelling from dot to dot via the semiconductor. The high resolution
lithography involves fewer processing steps than traditional 'suspended resist' methods and dots of
20nm radius and 12nm spacing have been demonstrated. Geometrical calculations including
fringing fields estimate critical temperatures of up to T c = 75 K [61]. Dots of < 5nm radius should
eventually be possible.

Fig 2.8 Schematic of controlled position, granular structure under development at Glasgow by Nicol
[62]. Resolution limit electron-beam lithography is used to control the size and positioning of Al
grains deposited on a silicon substrate. Charge transfer will take place by electrons tunnelling through
grain oxide layers. The ideal situation is shown, a single grain-grain connection. Grain diameters of 10
- 30nm, each with a 3nm oxide layer, are possible. Geometrical calculations, including fringing fields,
estimate critical temperatures for 30nm grains of T, = 130K.

Hanging Resist Systems :

Figure 2.4 describes the 'hanging resist' technique devised by Fulton and Dolan [47].

The technique is well proven, and has been successfully used to fabricate a number of

devices [9, 48, 49, 63]. At present it is the only proven method of producing metal-

insulator-metal tunnelling junctions that are small enough to exhibit strong blockade

effects and are integrable into multi-junction systems.

The disadvantages of the hanging resist process stem from its complexity. A number

of exacting patterning, etching and evaporation steps are required. The initial design

of the slotted mask (see figure 2.4) through which metalfisations take place is intri-

cate, and care must be taken with the placing of both junctions and unused metal.

Finally, polymer thicknesses and evaporation angles place limits on the scale of pos-

sible structures. At present, typical junctions have capacitance from 2x10- 16 F to

7x10- 16 F, with grounding strays Co . 2x10- 17 F and gating capacitances
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Cg 5x10- 18 F [11]. Tunnelling resistances in the range 100k12 to 1MS1 are com-

mon [49].

Such junction capacitances are equivalent to at best Tc 4.6 K, which requires mil-

likelvin temperatures for practical device operation (it will be shown in chapter 6 that

practical operating temperatures need to be some 30 times lower than the Tc value).

Obviously metal-insulator-metal junctions with capacitances closer to those of STM

and granular systems would be more desirable.

Controlled Granular Systems :

Figures 2.7 - 2.8 describe fabrication approaches due to J. Weaver et al. [60] and

J. Nicol [62]. These structures attempt to create the high Tc values of granular

structures in a controlled and integrable fashion. They make use of ultra high resolu-

tion lithography techniques developed at Glasgow, and have the added advantage of

requiring fewer processing steps than the hanging resist technology.

Figure 2.7 shows a metal-on-semiconductor, Schottky dot system. An essential fea-

ture of this system is that the 'tunnelling tails' of the Schottky islands overlap - thus

permitting correlated tunnelling from dot to dot via the semiconductor. A full analysis

of tunnelling capacitance requires knowledge of dot geometry, semiconductor doping

levels, and the nature of both the metal-semiconductor interface and semiconductor

surface. However simplified modelling of 20nm radius Al dots spaced 12nm apart

on a silicon substrate suggest critical temperatures up to Tc = 75 K [61]. Dots of

< 5nm radii and spacing should eventually be achievable [60].

Figure 2.8 shows a controlled granular structure under investigation by J. Nicol. Here

a combination of resolution limit, electron-beam lithography and carefully controlled

metal deposition is used to form a constriction in an Al wire. The ideal situation is

shown in figure 2.8, where the apex of the constriction is made up of two Al grains,

separated only by oxide layers. Charge transfer will then occur with electrons tun-

nelling across these oxide layers. Geometrical calculations estimate critical tempera-

tures up to Tc = 130 K for grains of 30nm diameter (see chapter 3). It is estimated

that grain diameters of 10-30nm are possible using present lithographic equipment

[62]. Effective oxide thicknesses of 3nm are assumed.

Examples of both metal-on-semiconductor and controlled granular structures have

been fabricated. An electron micrograph of the Schottky dot system (Al wires on a

p-silicon substrate) is shown in figure 2.6. The IV curve of this set of 6 parallel

junction arrays, each 7 junctions long, is modelled in chapter 6. If such structures are

found to be experimentally viable, then it will be possible to construct practical metal-

insulator-metal devices operating at liquid nitrogen temperatures.



2.2.2 Semiconductor Technologies

Reasons for Studying Charging Effects in Semiconductors :

As noted above, a great deal of present work concentrates on charging effects in

semiconductor systems, particularly those in which a confined 'pool' of conduction

electrons is produced. This is for three main reasons. Firstly, there is already a wide

body of experience in the fabrication of such systems. Secondly the active region of

such a device can usually be modified drastically by differing bias conditions, making

it an ideal research platform. Thirdly, and most importantly, differences in electron

transport between these and metal-insulator-metal devices give rise to novel device

properties which require study.

A great deal of experimental work has been accomplished in the field [56, 64-67] and

theories of varying detail developed [68-70]. However a modified semiclassical the-

ory (developed for metal-insulator-metal systems, but including the discrete energy

states of confined electrons) seems to fit well, even in small semiconductor devices

where more detailed quantum mechanics suggests that its results will be invalid [4].

Experimental results such as these mean that semiconductor systems are still under

active research.

Properties of Lateral Semiconductor Devices :

Two main classes of semiconductor system are important. Most common are laterally

patterned devices, where a GaAslAlGalks heterojunction allows the accumulation of

a thin, quasi two-dimensional layer of electrons (a 2-D electron gas or 2DEG).

Metallised gates on the surface of the structure are then biased to deplete some re-

gions of this 2DEG, leaving confined pools and reservoirs of electrons. Such a struc-

ture is shown in figure 2.5. Here electrons are effectively confined to a narrow chan-

nel down the centre of the device. The channel is itself pinched off by two sets of

'fingers', forming a pool or quantum dot of electrons between two reservoirs. This

device is a first approximation to the double junction system of figure 2.1 with the

quantum dot taking the place of the central metallic electrode. Variation of gate bias

will change the size of the dot, and the width of the potential barriers between it and

the 2DEG reservoirs. Different gate geometries should allow more complex inte-

grated systems of junctions and electrodes.

The right hand diagram of figure 2.5 shows the potential landscape through the chan-

nel of the double junction device and indicates two main reasons why single electron

charging phenomena in semiconductors and metals should differ.

We have so far assumed a semiclassical model of tunnelling, where only the discrete

quantum nature of the electron was needed to explain experiment. However in semi-



conductor systems the Bohr radius aB is large (aB .-- lOnm for GaAs), and as such

the energy level spectrum in a confined dot can no longer be considered as continu-

ous. For small dots, this energy spacing AEn may even be comparable to the charg-

ing energy scale e2/2C. Figure 2.5 shows dot energy levels with 'half integral' 4)„

(i.e the potential of the dot is such that Coulomb blockade is suppressed, as shown in

figure 2.3 above). Even under these conditions strong conduction can only occur

when a charge state En is appropriately aligned with the electrochemical potentials

of the reservoirs. The change in dot potential needed to move from one conduction

maximum to the next therefore becomes a combination of Coulomb and energy state

spacings AV = e2/C + AEn.

A second complication arises because the Fermi energy in semiconductors may itself

be comparable to the charging energy scale and the dot may not contain more than a

few conduction electrons [70]. For a dot containing a few thousand free electrons

AEn can be assumed to be approximately constant over n, and the device will oper-

ate in a linear regime. However with few free electrons in the dot the differences be-

tween energy levels are more marked. Electron-electron interaction energies will vary

strongly with the number of filled states, as will the distribution of confined charge for

each state [71]. Indeed under these conditions the semiclassical model of an electron

'pool' with capacitive tunnelling junctions becomes increasingly invalid. It becomes

more appropriate to think of a double barrier resonant tunnelling device with wide,

low barriers and a central region containing trapped charge and scattering centres. A

full quantum mechanical treatment, including the effect of the device fluctuation

potential [72], becomes necessary to accurately predict experimental results.

A number of laterally patterned quantum devices have been fabricated with physical

dimensions in the 0.5 - 1.0 gm range being common. Because of depletion, the

quantum dots produced have diameters approximately 350 nm smaller [71], with

dots as small as 100 nm in diameter being reported [67]. These smallest dots may

contain fewer then 25 electrons. Dot capacitance is usually estimated by using the

formula for the self-capacitance of a circular disc, C = 4E,Erd [73], which gives good

results for larger dots. Capacitance values are obtained experimentally by graphing

the period of conductance oscillations versus gate voltage, using AV = e 2/C + AE.

In general, single electron charging dominates the separation of energy levels in these

systems, and so AEn can be ignored when approximating C. Capacitance values in

the region 2x10- 16 F to 3x10- 17 F have been observed [65, 71]. Recently sub

100 nm dots have been reported with C = 5x10- 18 F (which implies a critical

temperature Tc = 370 K) [74]. However this 'dot' was the result of an uncontrolled
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Fig 2.9 Schematic of a double barrier
resonant tunnelling device. A thin po-
tential well is formed between two
AlGaAs tunnel barriers. Well extent is
determined by the GaAs cap layer.
Conduction is vertical. `+' represents
delta doping in the top blocking barrier.

artefact in the fabrication process of a device with nominally greater C, and would

not be reproducible in integrated systems.

Properties of Vertical Semiconductor Devices :

The second class of semiconductor system in

which Coulomb charging effects have been

studied are the double barrier resonant tun-

nelling devices (DBRTDs). A generic DBRTD

is shown in figure 2.9. The main difference be-

tween these and laterally patterned devices is of

course the vertical conduction path, with tun-

nelling barriers being formed at fabrication by

semiconductor heterostructures. A number of

important properties then follow:

Firstly, device parameters cannot be varied after

fabrication. This leads to less flexibility of op-

eration, but it does allow those parameters to be

measured and known far more accurately than with lateral devices. Secondly, device

gating is difficult (although this has been done [75]) and this adds to the difficulties of

integrating DBRTD systems.

Electrically, DBRTDs have all the complications of small, few electron, laterally pat-

terned devices. It is relatively easy to produce size quantisation between tunnelling

barriers so that AEn e2/2C. This complicates the measured charging effects on

device conductance. With no applied voltage, there is no free charge in the 'dot' be-

tween tunnelling barriers. For small n each AEn and charging energy will then vary

markedly. Finally, DBRTDs by their very nature are designed to avoid scattering be-

tween the tunnelling barriers. They retain phase information in the tunnelling electron

wavefunction and require conservation of both energy and momentum [71].

All of these factors suggest that charging effects in DBRTDs should vary markedly

from the predictions of simple Coulomb blockade theory.

The experimental evidence [71, 75-77] does show blockade effects, with estimated

dot capacitances of C = 3x10- 17 F. However, further work is required before system-

atic agreement between experiment and present theory is obtained.

Advantages / Disadvantages of Semiconductors for Single-electronic Systems :

To summarise, semiconductor systems seem to have two main advantages over metal-

insulator-metal devices. Smaller capacitance values can presently be produced, and

lateral devices have a flexibility that makes them ideal for research.

—20 —



They also have a number of complications, due to quantum effects (size quantisation

and finite number of free carriers) which can be ignored in present metallic systems.

These perturb device operation to a greater or lesser extent, and further research is

needed to fully characterise them. However, experimental results show that even

when these effects are present, devices still approximately obey simple Coulomb

blockade theories - there is no catastrophic breakdown of charging effects. It is rea-

sonable to assume that practical single electronic systems could be fabricated even

allowing for these further quantum complications.

Finally, there are a number of major problems which have to be overcome in order to

produce practical single electronic systems in semiconductor materials. These mainly

concern unwanted charge and its effects on the system. The effect of external charge

states has already been mentioned above. Single electronic systems are extremely

sensitive to stray external charge (this is precisely the reason that they have been

suggested as the basis for high sensitivity electrometers [53]). Any unwanted fixed

charge will perturb the biasing of semiconductor systems, and varying charge (from

trapping-detrapping events for instance) can produce unwanted gating effects destruc-

tive to system operation. Much of the work of single electronic systems is in fact

aimed at designing systems resistant to stray charge. As noted in this section, impuri-

ties in tunnelling electrodes themselves also cause problems, perturbing conduction.

These impurities frequently occur in experimental systems C.75,711. Single elecuonics

system design must assume that such impurities win occur in any practical systetra

and design circuits which minimise their effect.

It should be noted that, notwithstanding these problems, several results first obtained

in metallic systems have been demonstrated in semiconductor devices - including a

functioning gated turnstile device [57], and the observation of electron cotunnelling

[78].
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Fig 2.10 Circuit schematic of a
capacitive single electronic tran-
sistor (C-SET). The resistive sin-
gle electronic transistor (R-SET)
is identical apart from a resistance
Ro in place of C..

2.3 System Properties

2.3.1 Analogue Systems

Capacitive and Resistive Single Electronic Transistors :

The idea of using single electronic devices as

components in more complex systems was raised

in early theoretical work describing Coulomb

blockade effects [29]. Initially it was envisaged

that single electronic transistors could be used for

the processing and amplification of both analogue

and digital signals.

Figure 2.10 shows a single electronic transistor

formed from a double junction system and gated

through a small non-tunnelling capacitance Co.

The voltage gain, given by,

_ aVoutKv	 n,
v gate = const

(2.8)

can be analysed using standard semiclassical theory, and is found to be close to Co/C

[30]. However, in order to avoid undue sensitivity to noise at the gate electrode, Co/C

cannot be raised much higher than unity. In practice, therefore, voltage gains of

Kv = 0.35 are typical [79]. Another problem with this capacitive single electronic

transistor (C-SET) is that of the initial charge on the gated electrode. The transfer

characteristic of the device is periodic in Vgate, with period e/Co. Any fractional

charge on the gated electrode (due to random impurities or external potentials coupled

by strays to the electrode) effectively biases the C-SET at a random point within this

transfer characteristic. In highly integrated circuits it would be impossible to trim

each C-SET individually. Because of the low K v, using feedback to provide stability

is also impracticable.

To overcome the difficulties in using the C-SET we consider the resistive single elec-

tronic transistor (R-SET). Here a high impedance resistance Ro is used in place of

the gating capacitance Co to trickle charge into the central electrode. The rate of

charge flow to the electrode is given by,

_ V_gate Velectrode

Ro
(2.9)



where Velectrode is itself a function of 8Q, determined by standard semiclassical the-

ory. Analysis [30] shows a well defined transfer characteristic, independent of any ini-

tial electrode charge and with high K. Electrically, the only advantage of the C-SET

is its almost infinite input impedance at low frequencies.

There is, however, a major practical problem with the R-SET. To be effective, its gate

resistance must be larger than the resistances of the tunnelling junctions, and must oc-

cupy a small enough area of substrate to avoid large stray capacitance. Resistances of

the order of MCI in pm2 areas are required. Present thin film resistances do not yet

achieve this goal [37]. One suggested work-around is to use an array of tunnelling

junctions as a high impedance gate resistance [32]. An R-SET can be formed by this

technique, but the threshold voltage of the junction array interferes with the operation

of the device and at present the highest voltage gain obtained is Kv = 0.85. There is

as yet no clear solution to the physical problem of creating R-SET gating resistances.

Summary of C/R-SET Properties :

Thus the fabrication difficulties of R-SET devices, and the gain and biasing dif-

ficulties of C-SET devices, mean that neither is a likely candidate for large scale

integrated systems processing analogue data. The processing of digital data, if

attempted using the 'transistor-like' action of R & C-SET devices, will also be

possible only for low scale integration.

2.3.2 'Digital' Systems

Another way to use tunnelling junctions in digital systems is to make use of the inte-

gral nature of electron tunnelling directly. Here the presence or absence of excess

charge on a metallic electrode (due to tunnelling events from or to it) may be used to

represent digital bits. We refer to this 'digital' use of Coulomb blockade effects as

single electronic logic. This is opposed to the term granular electronics which covers

all devices whose operation relies on the integral nature of charge.

Benefits of Single Electronic Logic :

Such a use of double junction devices turns out to be directly analogous to an effect in

Josephson Junctions - that of the movement of magnetic flux quanta in double junc-

tion superconducting quantum interferometers [30]. These systems have been widely

studied, and considered as the basis for logic elements in digital systems [80]. The

mathematics governing both types of system is very similar, indeed a simple set of

transforms (given in Table 2.2) relate the equations governing both effects.



	

Single Electronic
	

Superconducting Quantum

	

Tunnelling Devices
	

Interferometer Devices

charge Q	 4—>	 flux 41
electronic charge e	 4—>	 flux quantum O.

voltage V	 4—>	 current I
capacitance C	 4—>	 inductance L
resistance R	 4—>	 conductance G

series connections	 44	 parallel connections

Table 2.2 Electromagnetic duality transformations relating the operation
of single electronic devices with those of Josephson Junction based
superconducting quantum interferometer devices [30]. The same form of
equations governs both systems, so that results derived for one set of
devices will, on transformation, apply to the other.

In particular, circuits developed for the resistive single flux quantum logic (RSQL)

family using Josephson Junctions [5] transform directly into single electronic logic

circuits (Some examples are given in [8]). These include both combinatorial logic and

memory elements. Some of the benefits obtained by using this approach to the pro-

cessing of digital signals are outlined below [81];

• Performance : device speed is ultimately governed by system RC time constants,

and immunity to thermal noise by how far the operating temperature is below

Tc = e2/2kBC. Both these qualities improve as device size reduces. Table 2.1 gives

some 'handhold' figures for RC & T.

• Logic regeneration : because device operation is governed by the tunnellingof dis-

crete charges, there is no degradation of the digital signal and logic 'regeneration' is

automatic.

• Fabrication tolerances : unlike waveguide interferometer switches, the separation

and height of tunnelling barriers need not be carefully controlled. Thus devices are

thus relatively insensitive to poorly controlled aspects of fabrication such as barrier

thickness.

• Energy dissipation : the speed-power product of single electronic logic is substan-

tially better than any of the present logic families. The single electronic transistor

power-delay product is of the order of kdfc. Record metal-insulator-metal junc-

tions may have Tc = 30 K (see table 2.1), or 2.5 meV. If stable, room temperature

single electronic logic requires Tc = 9000 K, this still gives --,-= 0.75 eV. This com-

pares with complementary metal-oxide silicon (CMOS) technology, = 10 10 eV,

and single flux quantum logic, :--, 104 eV. Single electronic transistors thus easily

break the 1 fJ barrier of 6x10 3 eV.

From these benefits, it appears that single electronic logic may allow the fabrication

of extended digital systems operating under low power, at room temperature, with

fine stability to thermal fluctuations and fabrication imperfections. In order to produce



such systems, the fabrication technology must deliver integrable, ultra small junction

capacitances (<< 1 aF for room temperature operation). The technology must also al-

low the careful control and elimination of unwanted stray charge. As shown in §2.2,

both metal-insulator-metal and semiconductor fabrication technologies are at present

an order of magnitude outside the 1 aF barrier. Both technologies offer the possibil-

ity of good integrability. Semiconductor systems seem to present the greater problems

when trying to control unwanted charge.

2.3.3 Unanswered Questions

Independent of whatever fabrication technology is used to construct single electronic

devices, there are a number of important questions still to be researched. Most link to

the problems of uncontrolled stray charge, but it is also necessary to consider system

stability, signal input/output, and the effect of higher order tunnelling processes on

system performance. We summarize some of these questions below;

• What effects on system operation are caused by the presence of stray external

charge? How does such charge effect the bias of electrodes? Can systems be de-

signed which are resistant to such charge? Answers to these questions will indicate

what level of shielding is required between and around single electronic systems

and devices.

• What are the particular effects of non-static charge on system operation? This could

be caused by; external noise coupled through strays, charge trapping-detrapping in

the devices themselves, or the movement of charge in other parts of an extended

system (cross-talk). What shielding methods or reduction in device density might be

required to counteract these problems? Again, can systems resistant to these effects

be constructed.

• What are the effects on system operation of variation in system components? No

fabrication process is ideal, and there will always be a spread of component parame-

ters around their nominal values. How critical are these values to correct system op-

eration?

• Under what external biasing does ideal system operation occur? How can systems

be designed which operate correctly under a wide range of biasing conditions?

• What levels of thermal and quantum fluctuations cause system breakdown?

• When digital signals are processed by single electronic systems what level of pro-

cessing errors is likely? How do these error rates relate to the magnitude of thermal

and quantum fluctuations, component variation and the presence of static and non-

static stray charge?

• How can input/output (I10) operations be performed on single electronic systems?
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• How will higher order tunnelling processes (i.e macroscopic quantum tunnelling or

electron cotunnelling) effect single electronic systems? What effect will such pro-

cesses have on the tit error rates' of a system?

2.3.4 The Need for Modelling Tools

The purpose of this work is to develop new tools for the design and analysis of single

electronic systems - tools which will allow some of the above questions to be an-

swered for specific systems, and which will aid in the design of systems resistant to

the stray charge based problems mentioned above.

It would be convenient if it were possible to answer some of the above questions by

simple analytic results, even if such results only approximated device properties. This

is sometimes possible (for instance in Chapter 3 various analytic approximations to

the capacitance of a tunnelling junction are offered and compared).

However, in the majority of cases no simple analytic results can be obtained. This is

due in part to the complexity of single electronic systems, but also because the equa-

tions describing their operation must describe both continuous (charging) and discrete

(tunnelling) processes.

As an example of this, Appendix A describes an elementary stability analysis of tun-

nelling junction arrays. The stability of such an array to perturbations in its capaci-

tance values is discussed (an important question given the impossibility of perfect

fabrication methods). The theory can adequately describe such arrays when no tun-

nelling takes place. However, when discrete tunnelling events are included, the gov-

erning equations become non-autonomous and the problem highly non-trivial.

Thus, our tools emphasise computer modelling for the investigation of general single

electronic systems. Equivalent circuits of each physical system may be constructed,

and modelling used to discover how each physical parameter effects its operation. In

this way we expect to answer some of the questions noted above.

The remainder of this work concentrates on system equivalent circuits; how their

component values are obtained, how charge tunnelling rates within them are calcu-

lated, and the computer programs used to model their action. Initially, these tools are

applied to the simplest systems of single electronic logic, tunnelling junction arrays.

They are then improved and extended to deal with more complex systems including

electron turnstiles and coupled devices.



CHAPTER 3	 ANALYSIS OF DEVICE GEOMETRY

& CAPACITANCE

This chapter considers in detail the calculation of junction and grounding capacitance

for tunnelling junctions and electrodes based on their physical geometry. Such results

are necessary if accurate equivalent circuits of single electronic systems are to be

constructed. The value of analytic capacitance estimates based on simplified geome-

tries is discussed, and some of the formulae in common use considered. The interca-

pacitance of two metallic spheres surrounded by dielectric shells is derived. Compar-

isons are made between this result and parallel plate or spherical capacitor estimates.

3.1 The Need for Analytic Capacitance Calculations

3.1.1 Analytic Solution Versus Finite Element Methods

There are two main reasons for performing geometrical calculations of the capaci-

tances involved in a single electronic system.

Firstly, to allow effective comparison between experimental results and theoretical

predictions. Obviously, the more accurate the geometrical estimate of junction and

stray capacitances in a system, the better chance of making useful comparison with

experimental results.

Secondly, to be able to obtain 'working estimates' of capacitance quickly and easily.

These give experimentalists a simple indication of probable device operating parame-

ters and help in deciding whether a device would be feasible given limitations in ma-

terial properties and fabrication techniques. They may also help in choosing which

devices to model more precisely if more accurate models are not available, or are

computationally expensive.

Advantages of Finite Element Calculation :

In order to make accurate predictions of junction capacitance, the geometry of the

system must be well defined, and some form of finite element solution of the electro-

static field equations (i.e Laplace's equation) used. The materials and geometry of any

real system make direct analytic derivation of these equations impossible in practice.

Such finite element calculations are being performed for the metal-semiconductor-

metal Schottky dot system under development at Glasgow. The work has been under-



E.

4	 3	 • /

14 E • 1
c	 1	 E. .

16 E.

18

x

taken by Asen Asenov using a computer model originally developed for work on

MESFETs and HEMTs [82]. A sample of the results obtained is shown in figure 3.1.

The model is of particular use in metal-semiconductor-metal systems as it includes

the presence of donor and acceptor states in the semiconductor substrate and surface

pinning states. Both of these can modify junction and grounding capacitances,

increasing them by up to 25% [61].

Fig 3.1 The electric potential surrounding two aluminium wires on a silicon substrate - modelling
work done by A. Asenov using the model of [821 The wires are 40nm wide and spaced 12nm
apart on a p-silicon substrate 250nm deep. Calculations based on these modelled potentials yield
an intercapacitance of 8.0x10 -13 Fcm- I with a capacitance to ground of 15.0x10 13 Fcm-I.

Figure 3.1 shows the solution of a two-dimensional problem. The majority of real-life

problems also have small size (and therefore large fringing fields) in the third dimen-

sion. Work is presently under way developing full three-dimensional solvers.

Advantages of Analytic Solution :

One method of obtaining a working estimate of the junction or grounding capacitance

of a device is to analytically solve for the capacitance of a simpler approximate ge-

ometry. Although not requiring the accuracy of a finite element calculation, an ana-

lytic approximate solution must have two main qualities in order to be useful. It must

firstly be easy to calculate - ideally a relatively simple formula that requires only a

hand calculator. Secondly, it must represent all the important physics of the problem.

For instance, small tunnelling junctions are often approximated by the common

'parallel plate' capacitance formula C = eo ErA/d, where A is the area and d the

distance between capacitor plates, Co the permittivity of free space and Cr the

relative permittivity of the dielectric medium between the plates. This formula does
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not take account of fringing fields at the edges of capacitor plates. For small junctions

these fringing fields will make a major contribution to the final capacitance value. A

solution which ignores these fields is ignoring an important part of the problem.

This chapter will be mainly concerned with deriving analytic results which allow easy

capacitance calculation for simple geometries - results that can be used as tools in

approximating the capacitance of more complex systems.

3.1.2 Geometrical Idealisations

Common Geometrical Idealisations :

As noted in Chapter 2, single electron tunnelling effects have been shown to occur in

many fabrication systems, including; thin granular films [20, 26], scanning tunnelling

microscopy on small metallic grains [41, 46] and hanging resist fabricated metal-in-

sulator-metal structures [11, 14, 49, 83]. Blockade effects have even been measured in

thin crossed wires held touching by magnetic fields [84]. A range of approximation

techniques for the calculation of junction capacitance in these devices has been used.

The geometry of the system is idealised so that a simple analytical result applies. The

major geometrical idealisations are shown in table 3.1.

Capacitance of Common Geometric Idealisations

Table 3.1 Formulae for the common geometric idealisations used to estimate junction and
electrode capacitances in the literature. All formulae assume the conductors are in vacuo,
with the permittivity of free space represented by c o. Note the diagram for the sphere/plane
formulae is not to scale, as the formula holds only for a >> d.

In granular film or scanning tunnelling microscope approaches it is usual to make

idealisations based on spherical geometries [26, 46]. However in the 'lithographic'

approaches (e.g hanging resist structures) it is more common to find parallel plate
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calculations [11, 49]. Although the junctions are plate-like in nature, the inaccuracy

caused by neglecting fringing fields becomes proportionally larger as plate area

reduces. This gives values for junction capacitance far smaller than are possible in

practice. In turn, estimates of Tc for ultra small junctions (such as those given for the

smallest junctions of table 2.1) are exaggerated. Even when the geometry of a small

device is a good approximation to parallel plates we consider it more useful to apply a

spherically based formula, if by that method fringing fields are accounted for.

Idealisations Used in Lateral Semiconductor Systems :

Note that in the above discussion semiconductor systems have been ignored. This is

because of the added complications of such systems mentioned in §2.2.2. In practice,

quantum dots in 2DEG containing a large number of free electrons are usually mod-

elled by using the formulae for the self-capacitance of a thin conducting disc. In some

cases even parallel plate approximations have been used [85]. However, it is more

difficult to define a capacitor 'geometry' for systems with few free electrons. As the

number of electron states changes in such a device, both the effective size of the dot

and charge distribution will vary. Therefore the results of this chapter will apply

mainly to metal-insulator-metal devices.

Idealisations for Controlled Granular Systems :

As has been noted above, two novel fabrication approaches for single electronic

devices have been developed at Glasgow. These make use of ultra high resolution

nanolithography, in an attempt to create controllable junctions with capacitances as

small as those in granular systems. They are shown in figures 2.6 - 2.8.

Consideration of these structures leads to the geometric idealisation of figure 3.2.

Fig 3.2 Geometrical idealisation of experimental tunnelling devices built at
Glasgow, including that of figures 2.7 and 2.8. The diagram shows two aluminium
spheres with dielectric (aluminium oxide) shells atop an insulating substrate
backed by a ground plane. The two capacitance values of interest are indicated.



If analytical solutions to the capacitance values of this idealisation could be found,

they would allow simple characterisation of the Glasgow devices. Solutions would

also provide capacitance estimates for other metal-insulator-metal devices where

junction size is small enough for fringing effects to dominate.

Unfortunately there is no coordinate system which will allow full solution of the

capacitances of figure 3.2, but use of bispherical coordinates does allow partial solu-

tions. Ciunction can be found if the ground plane is moved far from the spheres (the

problem simplifies to that of two lone spheres). C ground can be found if one sphere is

moved to 00, and the insulating substrate is assumed to pervade all space (the prob-

lem simplifies to that of two lone spheres, with the radius of one --> .).

The rest of this chapter deals with solutions to the geometry of figure 3.2, and com-

parison between them and the formulae of table 3.1.



Fig 3.3 Schematic of a metal
sphere surrounded by a dielectric
shell, and sitting in a medium of
dielectric constant Eo.

with D = E0E,

4)=V at r=a1

(1)=0 at r=b

(3.2)

ab	 1 
Ctotai = 4it E4)Er	 = Lla co Er a

b-a(1-Er)	 1 - (1-Er)
(3.3)

3.2 Analytic Solutions

3.2.1 Spherical Conductor with Dielectric Shell [86, p. 109,316]

In a spherical coordinate system the solution to

Laplace's equation is of form, 4) = R(r) 0(0) T(ji)

where = A singly + B coscpv

R = A rP + B HP+1)

0 = A OW + B

Symmetry considerations give 4) independent of 0,

Therefore q = p =0

This gives a general solution,	 = A + B/r

For a sphere with no dielectric shell, applying the boundary conditions 4)=V at r=a1
4)=0 at 1=03

gives solution
Va

(1)= 7 •

Va
Obtain	 E = —grad4) = —er — = er

ar
(r > a)

and the charge on the sphere
	

Q = D.dS = 47c aV

(considering a Gaussian surface just outside the sphere)

Therefore the capacitance of the sphere is Csphere = = 4n Eo a
	

(3.1)

The capacitance of the shell is found similarly, using conditions

ab
to obtain	 Cshen = 41E Eo Er b_a

To get the total capacitance, we note that E is always perpendicular to the dielectric

surface through symmetry, so that C701 ,t tai = C-sphere Chien
Therefore,



= const

This somewhat trivial example indicates clearly each stage in the capacitance calcu-

lation. First Laplace's equation is separated in the coordinate system of choice. Then

symmetry considerations are used to find the simplest possible general solution.

Finally boundary conditions are invoked to solve for the potential.

Once this potential function is obtained, it can be used to find a form for the E field

at any point, and then this is used to find the charge on the conductor as a function of

conductor voltage. Hence C = QN.

The method can now be applied to more complex problems.

3.2.2 Two Conducting Spheres Surrounded by Dielectric Shells

Bispherical Coordinates :

In order to deal with the potential field created between two spheres, a bispherical

coordinate system is required. Figure 2.4 shows the relation between bispherical

coordinates (1,0,1JJ) and Cartesian coordinates (x,y,z).

= const

(11>0)

0

rro

= const
(1l<O)

Fig 3.4 Bispherical Coordinates. Orthogonal surfaces are spheres (q=const), 'apple or 'spindle'
shaped (8=const), and half planes (wonst). As ri —> D. the spheres approach the plane z=0.

= 7t/2 is a sphere centred on the origin, and w = 0 is the half plane y=0, x>0. From [87]

The coordinate system defines as n = const a set of spheres above and below the

z = 0 plane. Each sphere has radius r and centre at (0,0,b) in (x,y,z) coordinates,

where,

r = a cschn,	 b = a cothn	 (3.4)



(3.6b)

(3.6c)

Fig 3.5 Schematic representation of two
metal spheres surrounded by dielectric
shells and sitting in a dielectric medium.

where Qt°P is an integral function of Vo, V3

with 'a' a constant of the coordinate system. Unfortunately it is impossible to fully

separate Laplace's equation in bispherical coordinates, but it can be R-separated [88].

This procedure is given in Appendix B, and results in a potential,

4) = (coshi - cos0) 1/2 H(1) 0(0) Ili(v)	 (3.5)

with general solutions of the form,

'I' = A sinmtv + B COSIMIJ
	

(3.6a)

H = A e(p+1/2)11 + B e-(p+112)ri

0= A Pm(cos0) + B Qm(cos0)
P	 P

Solution of Charge on Two Conducting Spheres with Dielectric Shells :

Figure 3.5 shows how the problem of two

conducting spheres - surrounded by di-

electrics of arbitrary thickness and dielec-

tric constant - is set up. A solution is ob-

tained by finding the potential functions •:I);

in the three regions of differing dielectric

constant Ei , each region requiring a super-

position of two fields 4:•1 and 01 1 (one to

deal with each boundary condition). These

functions are then matched by equations

governing continuity of E and D across

dielectric boundaries.

Note that because of the nature of bispheri-

cal coordinates, if the boundaries of the di-

electric shells and metal spheres are taken at constant i values, they will only be con-

centric as i --> 0. This concern is dealt with in §3.3.2.

The involved algebraic manipulations required to solve this problem are set out in

detail in Appendix C. The final solution is complex and unwieldy. In essence we

obtain a value for the charge on the top conductor,
co

Qtop = E Qtnop

n=0

and likewise for the bottom conductor. The equation Qtop = Qbot .L.--  Q must then be

used to solve for the voltages, from which the capacitance C = Q/(V0+V3) follows
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Fig 3.6 Schematic representation
of two equivalent metal spheres.

immediately. In practice this is algebraically difficult. In order to get a more useful

outcome it is necessary to simplify the problem, introducing more symmetries into the

mathematics in order to allow algebraic cancellation.

3.2.3 Two Equal Conducting Spheres

Firstly, the intercapacitance of two metallic spheres

is derived, as a simplification of the formulae of

Appendix C. (See figure 3.6.)

The geometry of this problem is defined by Ti3=Tio

and 11 2=11 1 . From the symmetry of this configuration

it can be seen that Qbot = Qtop = Q and that

V3 = Vo = V. Finally E3 = £2, = Eli and without loss

of generality all these relative permeabilities can be

set to unity, taking into account the dielectric media

solely through Eo

Substituting these simplifications into equations C.32 and C.33, Q can be obtained as

a summation of terms (substituting C = n+112),

Qn = 27cEoa Pn(11) A (coshrlo-11)-.3)2 sinhrio dI +
	

t3:1)
-1

1

27rEoa pn( l) Pq1' (coshrlo-11)-1/2 coth[V10-110] dt +

csch2g010-111)] X da _27.E.oa Pn(11) A111 (coshio-g)-1/2
_1	 —x2 -I- csch2[C2r1]

	

27rEoa f	 (cosh10-11)112  csch2[( 110-11)] csch[2iii]

	

-1	 —X2 + CSCh2[C2Th]

where, X = cOth [ 2111] + coth[(110-111)]
1

(3.8)

and, Anil	 = V(n+112) Pri(11) (coshrioll)- 1/2 (14 (3.9)
-1
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this simplifies to,
i

5 Pn01) Anli (coshno-11)-3/2 { sQ. = 27ccoa	 inhio + (cos/I10-1-0 C coth[ 110] I
-1

(3.10)

From Appendix D we have equations D. 14a,b ( for 110> 0),
1

5 Pt) (cosh110-1-0-3/2 dli = lr-2- (cosh(n+1/2)110 - sinh(n+1/2)11o)
-1	 043

1

-a
Gill n+1/2= ------- (COSh(n+1/2)10 - Sinh(n1- 1/2)110)-15 Pt) (cosh110-1-04/2

where €43 = sinh(11d2) cosh(11d2) = 1 sinhio. Substituting these into equation 3.7 it is

found that after trivial cancellation;

Qn	= 27rEoa A;.,' 42 I sinh(n+1/2)110

Furthermore, from equation 3.9 and D. 14b we have,
1

Ann	 = V(n-1-1/2) I Pn(li) (cosh110-1.0- 1/2 (III
-1

= 42V { cosh(n+1/2)fio - sinh(n+1/2)11oI

(3.11)

(3.12)

The two results immediately above solve the problem of finding the charge Q on ei-

ther one of two congruent metallic spheres knowing the potential ±V on each of the

spheres. Q is merely the summation over of all n contributions Q.

To find the intercapaeitance of such spheres, note that the potential difference be-

tween them is 2V, and employ C = Q/(2V)

242 	 427rcoa	 V(cosh(n+1/2)10–sinh(n+1/2)110)
C = I -12L,m'i = /

n —	 n sinh(n+1/2)710

C = E 27rE0a { coth(n+1/2)110 —1 }	 (3.13)
n

2V



4) = Vbot

Fig 3.7 Schematic representation of
a metal sphere and metal surface.

3.2.4 Conducting Sphere and Plane

We next solve the problem of the intercapacitance

of a metal sphere placed above an (infinite) metal

plate, as shown in figure 3.7.

Geometry is now defined by ri 3-4.0 and as previ-

ously, it is assumed that E3 = £2 = El = 1, an as-

sumption which will again lead to the cancellation

of i l and 112 from the equations. However, Qbot

and Q t°P must be calculated separately, as the

symmetry assumed earlier has been broken.

By substituting these simplifications into equations C.32, C.33 and C.36, and then

using equations C.19, C.21 and D. 14b precisely as in the above problem;

Qtop = 47cc0a (Vtop + Vbot) ( coth(n+1/2)rw— 11
	

(3.14)

— Qnbc't = 47,E0a Vtop { COth(n+1/2)10 — 1} + 4TCEoa Vbot { COth(n+1/2)110+ 1)

(3.15)

The condition Qtop = _ Q
nb°t is satisfied if Vbot = 0 which gives,

Qn = 47tE0a V { coth(n+1/2)110-- 1 }	 (3.16)

where V is the potential difference between the sphere and the plate. The resulting

capacitance is found by employing C = QN,

C = 1 4nE0a { coth(n+1/2)110-1 }	 (3.17)
n

Note that this result can alternately be found by realising that the TI--.0 plane of the

above problem is at zero potential and has E field with zero 0 component. Charge and

potential values are then obtained from the above problem by the method of images

[86, p. 101].



C centre = n r2Eo
2d

Cedge = n r2E0
2(d-r)

3.3 Comparison of Solutions

3.3.1 Spheres without Dielectric Shells

Comparison with Parallel Plate Approximations :

In order to compare the various capacitance estimates that might be made for systems

like that of figure 2.7 or 2.8, the graphs of figures 3.9 and 3.10 were calculated.

Figure 3.9 shows the intersphere capacitance versus separation for two lOnm radius

metallic dots, calculated using four estimation formulae. The solid line uses the 'two

spheres' formula derived above. We assume this to be the most accurate estimate,

since it most closely fits the geometry of the system (i.e it only assumes perfectly

spherical spheres with no oxide layers and ignores the substrate). The straight dashed

line is half the self capacitance of a lOnm metallic sphere, to which the 'two spheres'

curve approaches as d --+ .. The other curves are given by the two parallel plate

estimates shown in figure 3.8.

Fig 3.8 Schematic representation of two methods of approximating the
capacitance between two spheres. Method one imagines two parallel discs
of identical radius to the spheres at the centre of each sphere and uses the
'parallel plate' formula. Method two is similar, but imagines the discs to be
as close as possible while still touching the spheres.

Figure 3.10 shows the results of figure 3.9 in different form, graphing the ratio of the

parallel plate to 'two spheres' estimate as a function of dot separation.

Note also that the actual separation of electrodes in a tunnelling junction is governed

by the need for a finite tunnelling resistance. A balance needs to be made between low

junction capacitance and finite tunnelling currents. The form of Ctwospheres helps to

show this relation. Scaling the geometries of devices produced at Glasgow would

place them approximately in the area 12nm < d < 14nm on this graph (although ob-

viously the absolute capacitance values would be different).
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Results of Comparison with Parallel Plate Approximations :

It is obvious that the parallel plate formulae give capacitance values which are, in

general, at least an order of magnitude lower than the 'two spheres' result. This is due

to omission of fringing fields in such calculations. Even when the value for Cedge does

approach that of CtwoSpheres the ratio of the two is changing so rapidly with separa-

tion that it can not be considered a reliable approximation.

We conclude that the parallel plate approximation is not a good method for obtaining

realistic estimates of junction capacitance for proposed ultra small tunnelling junc-

tions. Indeed half the capacitance of a lone sphere in space turns out to be the best

simple approximation for d> 2r, while none of the approximations considered here

closely mirror CtwoSpheres for r < d < 2r.

edgeCConsidering again the CtwoSpheres and	 curves of figure 3.9 at low values of d,

it can be seen that the curves cross at d....--- 11nm. This is the point at which (in paral-

lel plate type junctions) the parallel plate component of capacitance outweighs that of

fringing fields. This suggests that when the ratio of plate radius to plate separation

distance in a parallel plate capacitor exceeds --. 5, fringing effects can no longer be

ignored. Of course this is a broad rule-of-thumb. To give a detailed analysis of the

effect of fringing fields on capacitance values would require more detailed finite ele-

ment modelling

Comparison with other Spherically Based Approximations :

In the literature there are three spherically based geometrical idealisations explicitly

mentioned. Two [26, 46] are based on the sphere/plane formula noted in table 3.1.

This requires d/r > 100 for accuracy, being derived for calculations on large, closely

spaced grains, and is not applicable to any of the lithographically fabricated devices

being investigated at present. The other [20] is based on a treatise on granular systems

by Abeles et al. [19]. This result is actually equivalent to equation 3.13, with the

disadvantage of a far slower convergence rate. More than twice the number the

expansion terms are needed for a given accuracy, which makes it of less use for

simple hand calculations. Table 3.2 indicates the convergence rate of equation 3.13.

Half distance between
sphere's centres, d (nm)

Number of terms for accu-
racy better than 1%

>50 1

17- 50 2

13 - 17 3

12 - 13 4

Table 3.2 Rate of convergence of equation 3.13 for two
metal spheres of lOnm radius.
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Comparison with 2-Dimensional Finite Element Calculations :

Finally we consider how these results compare with the finite element calculations

carried out by Asen Asenov (see §3.1). These were based on 20nm radius metal hemi-

spheres fabricated on a silicon substrate, approximated by the geometry of figure 3.1.

Table 3.3 lists Ciuncdon, Cground and C ground/Cjunction for this model, and other ap-

proximation methods. The ratio Cground/Cjunction is found to be a critical value in the

operation of actual devices, see section §5.1.3. The 'coaxial cable' approximation

uses the formula for the capacitance per unit length of coaxial cable,

2,7cE0 
C— ln(b/a) per unit length (3.18)

(with 'a' and 'b' the radii of the inner and outer conductors respectively) to estimate

the capacitance to ground of one of the conductors. Both this and the finite element

models are two-dimensional in nature.

Approximation Method Ciunction (aF) Cground (aF) CgroundiCjunction

Parallel Plate/Coaxial Cable (40nm length) 0.88 9.6 10.8

Finite Element Simulation (40nm length) 3.2 6.0 1.9

Two Metal Spheres (ignoring Substrate) 1.9 2.3 1.2

Spheres with Substrate 12.3 27.6 2.2

Table 3.3 Summary of capacitance approximations for 20nm radius aluminium hemispheres
12nm apart on a 250nm silicon substrate. The 2-D simulation is that of figure 3.1, choosing a
wire length of 40nm (and ignoring fringing in the third dimension). The spheres calculation as-
sumes 20nm radius spheres buried half deep in the substrate. Calculations for Cground assume
that the substrate pervades all space.

From this table the importance of fringing fields can again be seen. As the number of

dimensions considered is raised ('parallel plate' is a 1-D solution, 'finite element' 2-D

and 'spheres with substrate' 3-D), further fringing is included. The estimations of

Cjunction and Cground in turn are raised by a factor of x3 to x4. Much of this in-

crease is due to the high permittivity of the silicon substrate. Forming metallic elec-

trodes on top of etched pillars of silicon may allow the junction capacitances to be

reduced further. A junction capacitance of 12.3 aF is equivalent to Tc = 75 K.

The wide discrepancy between the estimated Cground/Cjunction ratios should also be

noted. The importance of this ratio, and the need for an accurate indication of its

value is one compelling reason for the use of more sophisticated approximation

techniques.



3.3.2 Spheres with Dielectric Shells

Calculation of Capacitance for Spheres with Dielectric Shells :

The geometry of the problem of two identical metal spheres surrounded by equal di-

electric shells is defined by; 11 3 =110 and 112 =11 1 with e3 = e l . Unlike the analysis

of 'bare metal' spheres, it proves impossible to produce a concise simplification of

equations C.32, C.33 and C.36 under these conditions. The equations are, however,

amenable to numeric solution - and a commercial symbolic or numeric mathematics

computer package such as [89] can easily produce solutions to any required degree of

accuracy, each data point taking only a few seconds.

An example of such numerical results is show in figure 3.11. This figure graphs the

capacitance between two metallic spheres of radius lOnm, enclosed in dielectric shells

mm thick at their thinnest point and of relative permittivity Cr = 10. Two other re-

sults are noted for comparison. The first is the capacitance of the spheres without the

dielectric shells (using the result of equation 3.13). The other is a hybrid result, calcu-

lating the capacitance of two metallic spheres whose radius is such that at large inter-

sphere distances their capacitance equals that of lOnm spheres with mm dielectric

shells. The reason for such a hybrid result is discussed below.

Complications Due to the Nature of Bispherical Coordinates :

As mentioned in §3.2.2, one problem with the nature of bispherical coordinates is that

spheres of constant n are only concentric as Ti-0. If a dielectric shell is chosen to

have thickness of mm at it's closest point to the sphere and is described by

`11 = const' then its thickness will get steadily greater as we move away from this

point. Both the thickest and thinnest points on the shell are found on the z-axis in

figure 3.4.

The variation of these thicknesses as a function of sphere separation is shown in

figure 3.12. Here the limiting boundary points of both sphere and shell are graphed as

we keep the thinnest part of the shell at mm. It can be seen that the problem becomes

extreme as the distance from sphere to origin becomes comparable to the radius of the

sphere itself. Under these conditions the calculations give an overestimate of the real

capacitance. Unfortunately this is the region of most interest for practical devices.

Validity of the Results :

Note that for regions where the shell is thickest the electric flux density is also the

lowest (i.e the area farthest from the second sphere). These regions will have the

smallest contribution to the final capacitance value. This suggests that the 'sphere plus

shell' calculations should give a close upper limit to the true capacitance, and as such
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a useful limit to the operating parameters of fabricated tunnelling devices. A lower

limit to junction capacitance is given by the simple metal spheres solution.

The hybrid result was chosen as an alternative estimate for very thin shells. It holds

when the dielectric shell is thin enough (or of low enough relative permittivity) that

the flux lines passing through it remain almost normal to its surface. Both the hybrid

result and 'spheres plus shells' calculations agree as 11-40. If greater accuracy at

larger 11 is needed, only finite element numerical results will suffice.

3.4 Summary of Results

Various geometric idealisations of single electronic systems have been considered.

These were used to develop simple analytic formulae for the capacitance of ultra

small tunnelling junctions. For ultra small devices, spherically based formulae have

an advantage over the more usual parallel plate approximations. This is because they

include the important contribution of fringing fields. Simple formulae (3.13, 3.17)

have been derived as excellent approximations for particular granular devices under

study at Glasgow. They are more complex than parallel plate approximations, and

require four or five terms of summation to give useful accuracy for spheres close to-

gether. However, they have the advantage of being accurate over all intersphere dis-

tances. They provide a first order estimate of physical capacitance without the need

for computationally intensive numerical work.

Extensions of these analytic formulae, of particular applicability to spheres enclosed

in dielectric shells (i.e. oxide layers), have been investigated. Intrinsic problems in the

model (due to the nature of bispherical coordinates) have been noted. However, as a

first order estimate of capacitance the results are still of value - particularly for

spheres with relatively thin shells.

Further work in this area requires the development of three-dimensional finite element

models of real systems. This will allow comparison of our analytic approximations

with more precise results, and give a better indication of their usefulness.
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CHAPTER 4	 THEORETICAL MODELS OF

TUNNELLING JUNCTION OPERATION

Before considering the tunnelling of single electrons through systems of junctions it is

necessary to gain a sound understanding of the models used to describe the tunnelling

of electrons through single junctions. One successful approach to modelling the ac-

tion of discrete tunnelling through capacitive junctions is due to Averin & Likharev

[29], elaborated and discussed in [8, 30, 33]. We give a brief summary of this micro-

scopic model and its resultant governing equations. We also consider extensions to

these results that look at tunnelling in an attendant electromagnetic environment -

models due to Cleland et al. [37, 90] and Nazarov [38, 91-93]. In each case we need

to know;

• a form for ri- the tunnelling rate through a junction,

• the limits of applicability of the model,

• how the single junction model extends to systems of junctions.

This will give a firm theoretical basis to the modelling tools that we shall develop to

analyse systems of such junctions.

Finally macroscopic quantum tunnelling is considered, and its implications for system

operation are discussed.

4.1 Tunnelling Junctions - Microscopic model [29]

4.1.1 Derivation of Governing Equations

The equivalent circuit of figure 4.1 is

studied, consisting of a current source I(t)

with associated shunt resistance Rs, in
I(t)

series with a junction of tunnelling resis-

tance Rt, and capacitance C.

(As Rs --> co or 0 the junction can be

considered either as perfectly current or

voltage biased.)

One way of writing the Hamiltonian of this system is;

Fig 4.1 Single tunnel junction of capacitance C,
and tunnelling resistance R t with its associated
driving circuit.



Q2
H=111-FH2+Hs+HT+—2C+{/s- I(t)}(1)

where H1, H2 & Hs describe the energy of internal degrees of freedom in the junc-

tion electrodes and shunt resistance of the source. HT is the tunnelling Hamiltonian

and Q2/2C describes the charging energy of the junction. The final term is the inter-

action of the junction with charging current, with;

4) -4 V dt = i Q/C dt	 (4.2)

The tunnelling Hamiltonian can be expressed in a microscopic approach, by;

HT =1-1,H_ ,	 H.. H I.	 (4.3) +

where H+ is represented by a summation of creation and annihilation operators

acting over all states within the two electrodes of the junction.

t
H= / Tkik2 Ck i Ck2

kl,k2

Since these creation and annihilation operators describe the electrons in the junction

electrodes, it is possible and useful to describe the charge operator Q (used in the

final two terms of 4.1) by summations of them;

, el
Y = - 2.

Ni	 t,,
Z-a I kik2 Cit c 	 I Tk,k2 Ck2 Ck2
ki	 k2

+ const (4.5)

Having specified the operators, commutation relations between them are sought.

From [94, p. 113] we obtain,

[0,Q] = ih (4.6)

and from consideration of the microscopic results in equations 4.4 and 4.5 it is found

that, for any function f(Q),

H+ f(Q) = f(Q±e) H±	 (4.7)

this result automatically implies that H I , H2 do not commute with Q. If, however, it

is assumed that each electrode has a large number of states, so that expected charges

have negligible effect on the internal properties of the electrode, then,

[111,2,Q] = 0	 (4.8)

(4.1)

(4.4)



Da „ , aa
at = — Ikt) 	 + FT + FS (4.10a)

Gs a	 aa
Fs = 	 (CkBT + c5Q) (4.10c)

is a reasonable approximation, and with equations 4.6 and 4.7 allows analysis of the

density matrix, without recourse to microscopic calculation. The condition of a large
number of available states close together is characteristic of metal electrodes, for

which this model would be expected to perform well (and indeed does, e.g [14, 27,

49]), and the tools developed below are primarily designed for such systems.

However, as mentioned in §2.2.2, the simple semi-classical theory of Coulomb block-

ade is surprisingly useful in explaining effects in conducting islands with as few as
100 electrons [4].

Further simplification of this microscopic model is possible if the quantum fluctua-

tions in junction and shunt circuit are smaller than the order of the charging energy,
i .e,

Gs, Gt « R61, ,	 h
I`Q 4e22-1 6.45 id2 (4.9)

These conditions are met in the metal-insulator-metal fabrication approach by careful

control of metal oxide layer growth in the fabrication process, and careful design of

the physical circuit used to drive the junction (for instance by driving through high

impedance thin film leads [36, 37]).

This simplification leads to the description of the model as 'semi-classical'. Under

these conditions the density matrix diagonalises, and the time evolution of charge in
figure 4.1 can be described by a classical probability density CY(Q,t), governed by;

FT(Q) = P-(Q-e)cr(Q-e) + T-(Q+e)cy(Q+e) — [F-F(Q) + I--(Q)]a(Q)	 (4.10b)

an extension of the Fokker-Plank equation of the system [95] including a tunnelling
term.

The tunnelling rate of electrons changing the initial junction charge Q (assuming in
this instance a voltage biased junction), is given by,

AEI	
,azi_ i

rth(Q) = jrzt [1 — exp(- u,)
i

(4.11)

where AEI is the change of free energy of the circuit due to the tunnelling event. In

this case,



(4.12)

Figure 4.2 shows graphically how

equations 4.10 and 4.11 apply to a 	 at
A

single tunnelling junction. First,

assume that no current flows in the 	 1	 1 i	 1 • n
—en	 o	 Qo e/2 v

external circuit, and there exists a

nominal charge, Q., on the junction

electrodes. The probability distribu-
tion in a is then centred on Q.,
with spread dependant on the thermal fluctuations of the circuit at T � 0. As current

flows, the nominal charge increases and the distribution drifts towards Q = e/2. In

absence of tunnelling the charge would increase until capacitor breakdown, and the

probability distribution would move with constant velocity in the +Q direction.

However, when tunnelling becomes energetically advantageous at e/2 the distribu-
tion collapses, reforming at —e/2 as a tunnelling event shifts the charge distribution

by e. The process then continues as the probability distribution again drifts towards

Q = e/2. Likharev [8] has coined the term 'dripping tap' as an analogy of this pro-

cess. It allows a clear understanding of the production of SET oscillations in current
biased devices. It also shows how Coulomb blockade occurs. An applied voltage of

less than e/2C cannot shift the charge distribution far enough to allow tunnelling (i.e

no part of the distribution is in the regime Q > e/2), unless thermal broadening of the
distribution occurs.

Note the further simplification to equation 4.11 which occurs as T —> 0;

Fig 4.2 Graphical representation of probability
density a in charge space, and its relation to actual
charge on the electrodes of a tunnelling junction.

AEI
r±(Q) — e2Rt	 AE > 0 }

r±-(Q) = 0	 AE � 0
(4.13)

Although of limited use in predicting the action of real physical circuits at finite tem-

perature, the formula does predict the 'best possible operating conditions' of a system.

It is the foundation of the critical charge concept discussed below in connection with

the linear programming method. At finite T, equations 4.11 and 4.12 show the effect

on electron transport through a junction decreasing exponentially as the temperature

falls below a critical value k B-Fc < e2/2C. In practical systems temperatures some
thirty times lower than the critical temperature were found to give results obeying

equation 4.13 to good approximation (see §6.1.1)



4.1.2 Systems of Tunnelling Junctions

All the above results apply to a single biased junction. Extension to a system of N

junctions is accomplished by considering the change in the free energy of a system,

rather than that of a single junction. The free energy of a general system of N junc-

tions can be written as E(ni,...,nk,...,nN), where nk is the net number of electrons

which have tunnelled through the kth junction. From the quantum golden rule, the the

rate of event nk —> nk±1 can be written as,

r-= 	 I 'fin 12; f(E1) [ 1 -,f(E0]9k 	 ti
1,f

x 8 { [E(ni,...,nk,• • • , nN)+Ei] - [E(ni,•••,nk±1,•••,11N)+Ef]	 (4.14)

where Ei,f are the energies of the internal degrees of freedom of the initial and final

states of the system and f(E) is the Fermi function. A similar form of equation de-

scribes the current I in this kth junction biased with voltage V, as given by standard

tunnelling theory [96].

I(V) = I4-(V) - I-(V),	 (4.15)

2rc
I±(V) = e — 2 I Hal?' f(E1) [1-f(Ef)] 81E; + [±eV-Ef]i f	 1,f 

and combining these gives the required result,

A E ±k = E(n i ,• • • ,nk,• • • ,nN) - E (T1 1 • • ,nk±1 ,• • •,nN)

(4.16)

(4.17)

This is an important result for systems of junctions, and agrees with the directly anal-

ysed single junction formulae of equation 4.11 under the limits of equation 4.9 [8]. It

means that in multi-junction systems obeying equation 4.9 a good approximation to

any tunnelling rate can be obtained by calculating the free energy for the system be-

fore and after that event occurs. This free energy is easy to calculate as only the junc-

tion capacitances need be considered. Equation 4.17 will be used in all the systems

modelling discussed below.



4.2 Tunnelling Junctions - Quantum Lengevin Equation [37, 90]

The two first order effects that 'smear' the Coulomb blockade in tunnel junctions are

quantum fluctuations due to temperature (thermal fluctuations) and the dissipative

effect of an imperfectly biased environment. (In the remainder of this chapter, such

dissipative fluctuations will be implied when quantum fluctuations are referred to.)

Temperature is taken into account in equation 4.11, but the dissipative environment is

specifically ignored through application of the limits of equation 4.9. There has been

extensive experimental study of dissipation [48, 59, 92]. Two general approaches to

including these effects within tunnelling probability theory will be considered. The

first of these is a heuristic approach making use of the quantum Lengevin equation.

4.2.1 Derivation of Governing Equations

Consider the external equivalent

circuit of figure 4.3, with inductance

Lc, resistance Rc, capacitance Cc

and a source of noise Vn to repre-

sent the quantum fluctuations. The

spectral distribution of this voltage

noise is given by the Johnson-

Nyquist formula [97, 98].

S(w) . 
hwRc 

coth(haV2kBT)
IC

(4.18)

Fig 4.3 Single tunnel junction of capacitance C, and
tunnelling resistance RE with lumped description of
electromagnetic environment (Lc,Rc,Cc) and source
of quantum fluctuations Vr,.

We wish to calculate the spread of the fluctuation q(t) of the junction charge Q

caused by Vn so that the equation 4.11 can be modified to take quantum fluctuations

into account. For the equivalent circuit of 4.3, the charge fluctuations are linked to the

voltage noise fluctuations by the circuit equation,

a2n	 an	 1
Lc —2, + Rc -1 + ,-,	 q – Vn(t)

ath 	at	 ‘-total
(4.19)

Fourier transforming this equation will give N(0)), the spectral density of the charge

fluctuations in terms of Sv(w). Then a measure of the spread of q(t), the mean square

<q2(t)>, is given by

<q2(t)> . f sq ((0) &a
	

(4.20)
o
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Finally a new effective tunnelling rate <r±(Q)> can be approximated by convolving

equation 4.11, the tunnelling rate without fluctuations, with the probability P(q) of a

given magnitude of fluctuation. P(q) can be simply taken as a Gaussian distribution

centred on q with a spread of <q2>.

This procedure can be performed analytically to give (at T=0 for simplicity)

AE± C AE±2 C21
<r±,..._ AE± erfc [

e 	
i + 	 1 11<q2>/27t exp [

2e2Rt	-V2< 2>q	
eRtC	 2e2<q2> j

e e
with AE± — ( —± Q) for a single junction as before.— --C 2

(4.21)

4.2.2 Comparison of Thermal and 'Quantum' Fluctuation Effects

Figures 4.4 and 4.5 graph the rate of electron tunnelling through a single junction

against the average applied charge (graphs proportional to the IV characteristics of the

junctions for voltage bias). They compare smearing produced by thermal fluctuations

as calculated from the Averin model, with that of quantum fluctuations as described

by the Lengevin equation extension. They indicate that temperatures T <T/10 and

charge fluctuations <q 2> < e2/100 are required if such fluctuations are to be consid-

ered negligible. As expected, the graphs also show that the effect of quantum fluctua-

tions is to produce an overall result similar to that of temperature fluctuations. This is

useful in practice for system analysis, as it implies that both types of fluctuation could

be included as a crude 'effective temperature' under the simple Averin model once

circuit parameters are known, instead of using the Lengevin equation in its more com-

plex, T � 0, form.

In order to fully characterise this model the link between <q2> and the circuit pa-

rameters Lc, C and Rc must be specified. Setting a = Rc -V /1—_,c and considering

the transform of equation 4.19 and the integration of equation 4.20 under the simp-

lifying assumptions that Cc >> C (i.e neglecting stray capacitances) and lico << kBT

(i.e the low temperature limit), we obtain for a < 2,

7c a2-2  )]
2 

- Arctan	 i	
(aA/4-a2

(4.22)

and for a > 2,
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Fig 4.4 Normalised tunnelling rate r of electrons through a junction versus
charge Q/e, for the 'standard' simple microscopic model. The solid line is the
tunnelling rate at zero temperature. The dashed lines are modelled for temperatures
T/Tcritical = 0.1, 0.2, 0.5. Tcritical = e2 / 2kBC
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Fig 4.5 Normalised tunnelling rate r of electrons through a junction versus charge
Q/e, as predicted by the quantum Langevin model for zero temperature. The solid
line is the tunnelling rate in absence of fluctuations. The dashed lines are modelled
for values of <q2> = 0.01, 0.1, 0.5. <q2> is the spread of the distribution
describing the probability of a charge fluctuation q on the junction, which in the
'standard' theory is assumed to be a 8 function.
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In general <q2> is kept to a minimum in the limit of large R. (Under these condi-

tions <q2> is logarithmically dependant on Lc which therefore has relatively little

effect on the smearing of the Coulomb blockade.) This agrees with the general results

of other theoretical calculations [38, 92, 931 and experimental work [48, 59]. Indeed

although the difficulty in calculating the circuit parameters Lc, Cc and Re in nano-

electronic experimental circuits makes it difficult to make detailed checks on the ac-

curacy of this heuristic model, it agrees in form to experimental results even in the

low temperature limit [90].

4.3 Tunnelling Junctions - Phase-Correlation Theory [91-93, 99]

The second approach to including the effect of fluctuations of the external environ-

ment on the action of a tunnelling junction is that of the phase-correlation theory. As

opposed to the Lengevin equation approach, which takes the results of the basic mi-

croscopic model and adds a source of noise to account for the quantum fluctuations of

junction and environment, this method attempts to consider both the junction capaci-

tance and external environment as a quantum system, perturbed by the tunnelling

events through the junction.

4.3.1 Derivation of Governing Equations

Initially consider the equivalent circuit of figure

4.6. Instead of the charging terms of the

Hamiltonian in equation 4.1 of the simple micro-

scopic model (the Q2/2C and {Is -1(t)}0 terms)

we now have,

(4.24)
Q2	 112 2

lic = 2C + 2e2L I) – QV

Fig 4.6 Equivalent circuit for a
voltage biased tunnel junction in
series with an inductor, L.

taking into account the effect of changes of energy in the whole system. Using the

same conditions for Rt as in equation 4.9, Devoret et al. [92] obtain a total tunnelling

rate for the system by the same approach as above,



F(V) –	 IdE S dE' t f(E)p-f(E1)1P(E+eV-E')
_co

– [1-f (E)]f (E') P(E'-E-eV) } 	 (4.25)

where f(E) is the Fermi function as before. The function P(E) is the probability that

the tunnelling electron can create an excitation of energy E in the external circuit.

This is important as the ability of an electron to induce such an excitation is critical to

the formation of the Coulomb blockade effect. For instance, as the impedance of the

environment increases, P(E) approaches a 8(E) function in form, and the probabil-

ity that the electron can exchange energy with its environment approaches zero. (Or at

least only very low frequency modes of the system will be excited and tunnelling will

thus be highly inelastic.) The junction becomes isolated from the environment and

strong blockade effects occur.

In general,

+0.

P(E) =	 j dt exp[ J(t) + iEt/h1	 (4.26)
27th

with,	 J(t) = < [cp(t)-4)(0)] (0)> 	 (4.27)

where OW is given by equation 4.2 with definite integral from [-D.A. J(t) is the

equilibrium phase correlation function.

For the circuit of figure 4.4,

J(t) = e2
hcoLC 

coth("
BT

" )[cos((oLt)-1] – i sisin(wt)t)2k (4.28)

where (DL = ii [L is the frequency of the resonant mode created by the L,C

components of the circuit.

This result for J(t) also indicates how the theory for an 'LC' equivalent circuit can

be extended to account for any general environment Z(co) say. Z(co) can be treated

as an infinite number of LC oscillators DM, and the Hamiltonian of equation 4.24

replaced by an infinite number of terms each applying to one of these oscillators, to

give a general form of J(t),

J(t) = j
f dco 91(Ztot( co)) 
—	 D

( hal
is-

coth	 –,f)[cos(cot)-1] – i sin(cot)
LB

(4.29)
0



where the total impedance Zt0t( 0)) combines the external impedance with the capaci-

tance of the tunnelling junction,

1 
Z 0 (w) — icoC + Z-1(c)) (4.30)

A final simplification to the problem, now completely characterised via equations

4.25, 4.26, 4.29 and 4.30, can be made by eliminating the Fermi functions and

combining the P(E) functions of equation 4.25 to give,

,	 1

+.0
1 -

.1 dEE
e-eV/143T

(4.31)ro'' - e2Rt _. 1
P( eV—E)

— e-FABT

Comparison with Experiment and Quantum Lengevin Theory :

This set of equations is found to give good agreement with experimental results [90],

particularly at high currents. However as with the Lengevin equation approach it is

difficult to physically estimate the experimental impedance accurately enough for

detailed comparison. As expected from equations attempting to describe quantum

fluctuations due to the electromagnetic environment, a smearing of the blockade is

predicted for low external impedances.This is in approximate agreement with the re-

sults calculated from the heuristic Lengevin approach shown in figure 4.5.

4.3.2 Systems of Tunnelling Junctions

Modification of the Governing Equations for Multiple Junctions :

Due to the more fundamental nature of this approach, it is possible to confidently ex-

tend the theory from single junctions in an electromagnetic environment to systems of

junctions and impedances [38, 101]. In such a system the potential map is completely

described by the applied voltages and number of excess charges on internal electrodes

which will only change (by units of ne, n = integer) through tunnelling. Thus ex-

pressions for the tunnelling rates of each of the junctions of the system can be ob-

tained by using the same approach as outlined immediately above. The only change

that need be made to equations 4.26, 4.29, 4.30 and 4.31 is that instead of Zt0t(0)) be-

ing the summation of the junction capacitance and external impedance Z(m), it is

now the summation of the junction capacitance and the Thevenin equivalent imped-

ance of the rest of the circuit. I.e the formulae are modified by the capacitance values

of the other junctions.

This is similar to the result for systems in the simple microscopic model (equation

4.17) obtained from the quantum Golden Rule. Here the tunnelling rate for any junc-
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tion is obtained from a calculation of the free energy of the system before and after

tunnelling. The change in free energy is then applied to equation 4.11 to find the tun-

nelling rate. Such a free energy can be calculated in a capacitive system by calculat-

ing a Thevenin equivalent capacitance from the other junctions and capacitances, and

indeed this is the method we use in our general network solver below.

Limits of the Theory :

Indeed, in the limit where the relaxation time of the electromagnetic environment is

much smaller than the time between subsequent tunnelling events, i.e,

R1 >> 91(Z1 (o)))	 for	 ha) < eVi	(4.32)

there will exist no quantum mechanical correlations between events. The procedure

noted immediately above can then be extended to networks with an associated elec-

tromagnetic environment. Note that in the above equation, Ri is the tunnelling resis-

tance for junction i, Zi is the Thevenin impedance of the circuit excluding junction i

(treating other tunnelling junctions simply as capacitances), and Vi is the potential

difference across junction i before tunnelling. Also note that this treatment still

assumes Ri >> RQ (see equation 4.9).

Practical Application of the Theory :

Although consideration of the phase correlation theory leads to this useful result for

systems, the equations that allow calculation of tunnelling rates are impractical for

use in Monte Carlo modelling. At least two integrations must needs be performed

[38]. For an N junction system, 2N such calculations must be completed to obtain

the probabilities required to make a decision on which tunnelling event should be

allowed to occur next in the Monte Carlo process. Although the algorithm that is used

to calculate the potential map of a system is essentially an N2 process, the overhead

of double integration would be enough to make calculation of tunnelling rates from

this potential map the critical time constraint in all but the largest modelled systems.

4.4 Summary of Tunnelling Junction Theories

All the Monte Carlo modelling described in this report is calculated using the simple

microscopic model of equation 4.11 of §4.1, i.e,

AE±AE± jt
F±(Q) — - z.te	 [1 — exp(- u) (4.11)



The linear programming models are based on the T -- 0 equivalent of this equation,

equation 4.13. These governing equations were used on grounds of calculation speed

and simplicity, while still accounting for thermal fluctuations at the junction. The

model holds true under conditions that assume no quantum fluctuations due to an

electromagnetic environment (i.e systems can be assumed to consist only of capaci-

tances and voltage sources), and where the tunnelling resistances are far greater than

the quantum resistance (equation 4.9). The theory extends in simple fashion to sys-

tems of junctions.

For more accurate and detailed modelling of systems that obey the limits of equation

4.32, the phase correlation theory of §4.3 was developed. Here equation 4.31 is used

as the tunnelling rate equation, with values of P(E) obtained by performing the inte-

grations of equations 4.26 and 4.29. Experimentally this theory is found to account

well for the effects of a tunnelling junction in an electromagnetic environment. Under

the condition that the relaxation time for such an environment (consisting of the

Thevenin equivalent circuit of the junction - other junctions being considered only as

capacitances) is much smaller than the time between tunnelling events, it allows the

simple extension of the theory of one junction to systems of junctions.

Unfortunately, performing the two integrations for each tunnelling probability in a

Monte Carlo loop is computationally expensive. This could be eased by pre-calculat-

ing tunnelling rates, based on an appropriate spread of impedance and energy, into a

look-up table. From this, tunnelling rates could be interpolated during the Monte

Carlo loop. Although such a method is feasible, it would require extensive recoding

of present computer algorithms based on the elementary microscopic model.

Two approximations to the phase correlation theory are available, involving less

computational expense.

The first is to use an approach based on the quantum Lengevin equation theory of

§4.2. Here quantum fluctuations are introduced to the system heuristically. Equation

4.21 is used as the tunnelling rate equation, with values for <q 2> obtained from

equations 4.22 and 4.23. Under the limits of equation 4.32 this method is extended to

systems of junctions in similar fashion to the full phase-correlation theory. The ap-

proach agrees well with experiment and could be easily substituted into computer

algorithms based on the microscopic model.

Finally, for crude estimation, the quantum fluctuations of the system may be assumed

to raise its effective temperature. The simple microscopic model is used, with some

phenomenological increase in the thermal effects.
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4.5 Higher Order Processes / Macroscopic Quantum Tunnelling [1 3, 1 02]

There are a number of processes that may modify the operation of a system of tun-

nelling junctions from the action governed by the simple theory laid out in §4.1.1.

Some may be associated with particular fabrication approaches. These include the

trapping/detrapping of charge in semiconductor systems that can upset the electro-

static profile of a device by spuriously gating junction electrodes. Other processes

may be general to all fabrication systems, such as the effects of thermal or quantum

fluctuations discussed above. Macroscopic quantum tunnelling (MQT) is the result of

quantum fluctuations in the junction and its environment, and an effect of peculiar

relevance to systems of tunnelling junctions.

4.5.1 Macroscopic Quantum Tunnelling in a Single Junction

Figure 4.7 shows schematically the three major forms of tunnelling event which may

occur in a single tunnelling junction. Each shows the energy diagram for such a junc-

tion, with E = q2/2C. Diagram a) describes the Coulomb blockade. At zero tem-

perature, and without the presence of other quantum fluctuations, tunnelling only

becomes energetically advantageous at E > e 2/2C. Diagram b) describes tunnelling

in the presence of fluctuations. Thermal fluctuations may allow the electron to gain

enough energy to overcome the barrier in charge space. However it is also possible

for the junction charge variable to 'tunnel' through the barrier, due to quantum

fluctuations of the junction. Such tunnelling of the charge variable, simultaneous to

the tunnelling of the electron position variable through the junction potential barrier,

is referred to as Charge Macroscopic Quantum Tunnelling (q-MQT or MQT).

a) tunnelling in absence of fluctuations
	

b) tunnelling processes involving fluctuations

Fig 4.7 Energy diagrams of possible tunnelling processes in a single junction. Potential is graphed ag-
ainst junction charge. (a) shows that without the presence of fluctuations, tunnelling only occurs when
V > e/2C, each event reducing junction charge by e. (b) shows the two additional tunnelling processes
which are the result of fluctuations in the system. The graph is extended to show potential minima for
the n-1, n, n+1... events. Energy (thermal) fluctuations can give an electron V > e/2C, raising it over
the potential barrier in charge space. Quantum fluctuations in the charge variable (q-MQT) can allow an
electron to tunnel through both the physical potential barrier and the potential barrier in charge space.
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The result of such tunnelling events is to allow a small current to flow through a tun-

nelling junction below the Coulomb blockade, even as T --> 0. Calculation of this

current has been made by Babikir [1031 He analyses leakage of the charge variable

from the first energy level in the metastable state of fig 4.7b, in the absence of

dissipation.

Macroscopic Quantum Tunnelling and Cotunnelling :

Of greater importance for this work are the effects that may arise as MQT processes

occur in systems of tunnelling junctions.

In one tunnelling junction it is unlikely that most charge fluctuations will lead to an

energetically advantageous state, and so its effects are minimal. In a system of junc-

tions, several fluctuation events may occur simultaneously. This can take the system

to an otherwise unavailable energetically advantageous state, via a set of intermediate

virtual states. The simplest example of this occurs in the double junction. Often the

requirement of integer charge on the central electrode of such a system, disbars tun-

nelling events. Through MQT events, an electron can effectively tunnel through both

junctions at once via an intermediate virtual state (the double junction will be dis-

cussed in detail in §4.5.1). This leakage can occur even as T --> 0, within the classi-

cal Coulomb blockade regime. It is dependant only on the initial and final states of the

system, and on the number of possible virtual states available.

Often q-MQT in a single junction, and the effect of multiple tunnelling events de-

scribed above, are both termed Macroscopic Quantum Tunnelling. We shall follow

this convention. However, multiple tunnelling through virtual states is really a sepa-

rate process based on q-MQT. The term cotunnelling has been coined in the literature

to differentiate the two.

4.5.2 Macroscopic Quantum Tunnelling in Double Junctions

Figure 4.8 shows schematically the process of macroscopic quantum tunnelling in a

two junction device. It can be seen that there are two types of processes that can oc-

cur, termed elastic and inelastic MQT, both of which involve an electron tunnelling

through two junctions via an intermediate virtual state in the centre electrode.

Elastic and Inelastic Macroscopic Quantum Tunnelling :

Consider first the inelastic case. Here it is assumed that coherence between the wave

functions of the electrons in the two junction barriers can be neglected - i.e electrons

are assumed to tunnel independently. The combined result is an electron-hole excita-

tion formed in the electrode (the term inelastic is coined because of this excitation,
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and has nothing to do with scattering processes in the barriers). Energy conservation

requires that the absolute energies of the initial and final electron states are equal.

a) inelastic tunnelling	 b) elastic tunnelling

Fig 4.8 Schematic of the potential structure of a double junction array connected by a small electrode,
illustrating the simplest cases of both inelastic and elastic macroscopic quantum tunnelling (MQT). In
the inelastic case the 'composite electron' is made up of separate tunnelling events leaving an
electron-hole excitation at the electrode. In the elastic case the same electron may take part in both
events, no excitation being formed. In both cases, the energies of each state, relative to the chemical
potential of its electrode, must sum to eV to allow energy conservation. Adapted from [40].

This is equivalent to requiring that the energy levels of initial, final and intermediate

states (w.r.t electrode Fermi levels) sum to eV [40]. The magnitude of the tunnelling

current due to MQT is obtained by summing over all of the possible conduction paths

- i.e the possible initial, final and intermediate energy levels.

In elastic MQT, the assumption is that the electron wavefunctions are coherent. This

implies that one electron tunnels through both barriers, passing through a virtual state

in the central electrode (represented in figure 4.8b). Transition paths must be chosen

by the stricter rule, that the two intermediate states must be at the same energy level.

This argument implies that inelastic processes should dominate over elastic MQT,

whose conditions are more strict. Domination will be especially pronounced where

there is a high density of states in the central electrode - i.e where the state separation

A << Ec, with Ec the characteristic charging energy of the system. If however the

states in the central electrode are well spaced in energy (for instance in a semicon-

ductor fabrication approach, or with ultra small metallic electrodes) both elastic and

inelastic MQT may become comparable, or elastic MQT may dominate.

Calculation of Tunnelling Currents due to Elastic and Inelastic MQT :

Specific analysis of tunnelling currents due to both types of MQT has been performed

by Averin et al. [13, 102] on the double junction. This extends the simple microscopic

formalism of §4.1.1, considering terms until fourth order in the tunnelling

Hamiltonian (each MQT event in such a system consists of two correlated tunnelling

events, and fourth order in HT is the second non-vanishing order). For low voltage

and temperature - the only conditions under which MQT is liable to be an important

contribution to the tunnelling current - they obtain,
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The specific voltage and temperature conditions are; eV « E i, kBT << Ei , with Ei

the lowest of the charging energies of the two junctions,
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Qo again representing the fractional gating charge on the central electrode.

In general, elastic MQT is dependant on the precise geometry of the electrode in

which tunnelling takes place. However, there are two limits in which geometry can be

ignored. Firstly, when the dimensions of the electrode are greater than the bulk mean

free path of an electron in the electrode material, and the characteristic tunnelling time

h/Ec is greater than the classical diffusion time through the electrode L2/D, (L is

the length scale of the electrode and D the electron diffusion coefficient). Under

these conditions,

hA 	 ( 1

EI 
1

E2'elastic — +
4ne2RIR2

(4.35)

(Ri the tunnelling resistance of junction i, and A the state separation in the central

electrode.)

The second limit is where the dimension of the electrode is less than the bulk mean

free path of an electron in the electrode material, but where the surface scattering is

considered diffusive and Ec « hv FJL. This condition on the Fermi velocity VF

again asks that the allowed tunnelling time b/Ec is greater than the expected time for

the electron to cross the electrode, L/v F ). Under these conditions 'elastic is again

given by equation 4.35.

Note that equations 4.33 and 4.35 show a linear dependence of 'e las tic on V, while

'inelas tic oc V3 . Under most circumstances where MQT is not swamped by thermal

fluctuations in the classical blockade region, 'inelastic will dominate. However when,

1 ( 1	 1
3	 + -E0 ((eV)2 + (27tkBT)2 ) < A (4.36)

'elastic may be larger. This occurs for small electrodes (giving larger A) at very low

voltages. Both inelastic and elastic MQT have been observed [39, 40], with good

agreement between experimental measurement and theory.



Application to Devices Fabricated at Glasgow :

The conditions implying equation 4.35 are the ones most likely to apply to structures

fabricated at Glasgow. As an indication of the orders of magnitude involved, consider

20nm Aluminium spheres spaced 12nm apart on a Silicon substrate. A capacitance of

12.3 aF is obtained, giving Ec = 13 meV. A Fermi velocity of the order of 1016 ms- 1

[40] gives livF/L = 0.3 GeV at 4.2K, a temperature at which the mean free electron

path in bulk Aluminium is 17.5 iim [104]. This mean free path is much larger than

the device size. Therefore equation 4.35 is appropriate, if diffusive surface scattering

in the electrode can be assumed.

4.5.3 Macroscopic Quantum Tunnelling in Extended Systems

MQT in Tunnelling Junction Arrays :

The most important extended system in single electronic logic is the tunnelling

junction array. Ungated, such arrays act as single electron transmission lines. Gated

electrodes in arrays allow control of the movement of electrons. Tunnelling junction

arrays will be considered in detail in §5.1.

Specific analyses of MQT in such systems have been made [13]. However, equations

4.33 and 4.35 make clear the most important point - that the rate of tunnelling for

both elastic and inelastic MQT is inversely proportional to the product of the junction

impedances. For nominal junction impedance R t, the MQT rate in an array with i

junctions decreases as (R)1.

This result clearly has very important consequences for the design of tunnelling junc-

tion arrays, and has been verified by experiment [39, 50]. To fulfil the conditions of

Rt >> RQ tunnelling resistances greater than Rt :----• 1 MO are common in practice. For

such resistances in tunnelling junctions of C ',-- 100 aF the double junction effectively

presents a resistance to the circuit of < 10 13 O. A quadruple junction array gives an

effective resistance of > 10 17 a Obviously increasing the number of junctions in an

array has a marked effect on the magnitude of the MQT current in any system.

Implications for General Systems :

Macroscopic quantum tunnelling, therefore, although acting as a serious perturbation

to the operation of tunnelling junction systems, can be counteracted by the use of

multiple junction arrays as buffers to block its effects. This means that in practical

systems a trade off between operational speed and system accuracy must be made.

The necessity of such buffer arrays again implies systems that will be extended and
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complex in nature, relying for operation on cooperative effects between sets of junc-

tions. This adds weight to the need for tools to investigate such extended systems.

As an aside, we note that detailed analysis of macroscopic quantum tunnelling in a

dissipative environment shows a strong suppression of MQT due to electromagnetic

fluctuations in the external system.

Specifically, Odintsov et al. [105] predict inelastic MQT in a double junction system

at zero temperature, that obeys,

where R is the total resistance of the high impedance leads feeding the double junc-

tion. Equation 4.37 holds for voltages inside the Coulomb blockade region, and where

V « tifIde (az is the characteristic frequency of the environment). The constant of

proportionality is 3/( 8I-(2z+4) ) times that of equation 4.33.

It is suggested that driving a single-electron turnstile through high impedance leads

will provide greater device reliability at the cost of a larger RC time constant. This

would allow the formation of more accurate single-electron electrometers. However,

as already noted in §1.3.1, the physical size of such high impedance leads makes this

method of reducing MQT unattractive for more highly integrated systems.



CHAPTER 5	 DEVELOPMENT OF SIMULATION

TOOLS FOR SINGLE

ELECTRONIC SYSTEMS

There have been two important initial developments in the technology of single elec-

tronic systems. First is the demonstration and analysis of tunnelling junction arrays as

single electron transmission lines [11, 12, 49, 106-108]. Second is the fabrication of

gated turnstiling devices through which electrons may be pumped in a synchronous

and controlled fashion [9, 10, 57, 63, 109]. Such small scale systems are of intrinsic

interest, but in §2.3.2 it is noted that they may also act as sub-units of complex single

electronic systems with attractive operating characteristics [81]. However under all

present fabrication approaches, the required ultra-small tunnelling junctions are

obtained at the cost of strong capacitive coupling between circuit components. Even

excluding other possible killer effects (such as thermal and quantum fluctuations,

macroscopic quantum tunnelling and charge trapping/de-trapping), the effects of

capacitive coupling on extended systems will require the development of new tools

for design and analysis [61].

In this chapter we consider the simplest small systems (the tunnelling junction array

and gated turnstiling device mentioned above), and using the experience gained in

their analysis, develop and generalise important modelling tools.

We describe a model of a tunnelling junction array system developed by Bakhavlov

[12, 106] and based on the microscopic model laid out in §4.1.1. Both an analytic ap-

proach and Monte Carlo modelling routine are used to characterise the operation of

the array. Concepts of use in characterising general tunnelling junction systems are

emphasised. The models are extended to consider arrays whose component values

vary along their length.

Gated turnstile devices are modelled with a Monte Carlo routine using a bespoke

analysis of the turnstile equivalent circuit. In considering analytical methods of

describing turnstile operation, a linear programming model is introduced, which is

used to calculate device stability in control parameter space.

Finally, these basic tools are further extended to deal with general capacitive net-

works. The relative advantages & disadvantages of each tool are discussed.



5.1 Development through Analysis of Tunnelling Junction Arrays

The use of tunnelling junction arrays as a first step in building models and tools for

complex single electronic systems is discussed. Equivalent circuit equations which

govern such arrays are developed, and an analytic approach to their operation de-

scribed. This approach is due to Balchvalov et al. [12]. It is based on conditions allow-

ing the formation in the arrays of charge solitons. Bakhvalov's simple Monte Carlo

modelling approach is extended to systems in which component values (junction and

grounding capacitances) vary throughout the array. From this analysis, we consider

principles which will be of use in developing a general solver of single electronic

systems.

Specific modelling results from the tools developed here are considered in Chapter 6.

5.1.1 Reasons For Studying Tunnelling Junction Arrays

The motivation for initially studying tunnelling junction arrays is broadly threefold.

First, such arrays are the simplest structures to construct for a wide range of fabrica-

tion techniques. They are particularly simple for those lithographic techniques that

seem to hold the most promise for the controlled fabrication of large systems of such

junctions. Arrays have been specifically constructed using for instance the hanging

resist vertical MIM method [11, 48, 49] and with ultra-small Schottky dots on semi-

conductor substrates [60]. Results of theoretical array analysis can therefore be easily

compared with experimental data. Such arrays may also act as first order approxima-

tions of granular systems [20-22] and the 'squeezed wire' systems of laterally pat-

terned 2-dimensional electron gases in semiconductor heterostructures [55, 68, 110,

111]. Simple methods of array characterisation would then aid in the modelling of

such systems.

Secondly, multiple junction arrays are the first step up in complexity from single

junctions. They should therefore be the simplest systems to analyse, both in them-

selves and as a route to gaining the experience and techniques necessary to success-

fully analyse more complex systems. Simple models would also be invaluable in

testing general tools for more complex systems.

Finally, cooperative effects in multiple junction arrays suggest [106] that they act

analogously to controlled transmission lines (or shift registers) for single electrons.

As such they would be important components in any extended single electronic

system.
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5.1.2 Equivalent Circuit Model

Fig 5.1 Equivalent circuit diagram of an array of tunnelling junctions,
including strays to ground and biasing voltage sources.

Consider the equivalent circuit of a tunnelling junction array, figure 5.1. It consists of

a series of tunnelling junctions 1,...i,...N each of capacitance C i . These are con-

nected by electrodes 1,...i,...N-1 at potential (1) i , and coupled to the ground plane

via capacitances Co i . The array is voltage biased by an offset from ground U, and a

differential voltage across the array V, so that V_ = U - V12 and V + = U + V/2.

This means 00 = V_ and (1)N = V.

By the theory summarised in equation 4.17, the electron tunnelling rate through any

junction of the array is a function (equation 4.11) of the change in the free energy of

the system caused by such tunnelling events. The full expression for the free energy

of the circuit of figure 5.1 is;

where,

Q+ = CN (0N4-0 + em+ ,	 Q_ = C((1)0-01) — em_	 (5.2)

m and In_ being the number of electrons passing through the left and right hand+
junctions of the array respectively. This formula is needed in its entirety to model

arrays whose capacitance parameters vary. However if all the junction and grounding

capacitances are taken as equal, i.e Co; = Co & Ci = C then equation 5.1 simplifies

to;

AE
-i- = e	 ,
i	 2 (4)i + 4)i- 4)i+1-

(and similarly for AET) where AE i+ is the change in free energy of the system due to

a tunnelling event across the ith junction and 4); and o'i are the potentials of the ith

electrode before and after the tunnelling event occurs.

(5.3)



In order to characterise the system so that equations 5.1 and 5.3 can be used, it is

necessary to obtain the values for all cp i . For an array of junctions with identical

capacitances, as noted above, the formula;

+ (ci+c,+,+co)o, - c i+14);41 . eni	 (5.4)

( ni being the number of excess electrons at electrode i, giving en; as the excess

charge on this electrode) can be used to form a system of N-1 linear equations in

N+1 unknown potentials. To this system of equations is added 43so = V_ and

(PN = V+, allowing exact solution of the problem for all 41) i . (It should be noted that a

more accurate form of equation 5.4 would replace en; with en i+Qi, where Qi is a

fractional charge caused by the presence of trapped charge in the dielectric medium of

the junction or differences in the electrode materials [25].) In many practical systems

it may be assumed that Qi is negligible [112] and we shall follow this assumption.

However this will not always the case; consider for instance the fluctuations due to

the random positioning of dopants in 2-dimensional electron gas structures in semi-

conductor heterostructure systems [72], systems which are currently under active

study [64-67, 78, 113, 114]).

Tunnelling Junction Arrays with Non-Uniform Component Parameters :

Experimentally, the most likely reason for considering TJAs where junction capaci-

tance and grounding capacitance are not all identical is to model the effect of imper-

fections in the fabrication process. The stability of such systems with respect to junc-

tion parameter variation can then be studied. Therefore the substitutions j =

= Coi/C and 0 = e/C are made, where C is the nominal average value of junction

capacitance, to obtain,

-	 = Oni
	 (5.5)

Knowing the values ni, V_, V., and how the parameters of this array differ from their

nominal values through Cj and Il i ; the potentials of each electrode can again be

calculated as before.

Limitations of Equivalent Circuit Model :

As an aside, it should be noted that this model only includes within its scope the

intercapacitance of 'nearest neighbour' electrode; stray capacitance from electrode i

to i±2 is for example ignored. This approximation may be assumed to hold in fabri-

cation systems where the distance between junctions is, or can easily be made, large.

However in the case of Schottky dots on semiconductor substrates, the assumption



C/Co = 10 junction number i

electrode	 4).
potential e/C

•
insulator-

metal metal

will most probably be invalid. Here fringing fields must be accounted for in interca-

pacitance calculations. As an example, we note that for 20 nm radius metallic

spheres 12 nm apart the intercapacitance is approximately 1.90 aF. For equivalent

spheres 64 nm apart (the 'next nearest neighbour' distance) intercapacitance is

calculated at 1.38 aF. Clearly the effect of fringing fields makes the problem more

complex than the simple equivalent circuit of figure 5.1 implies, and adds weight to

the desire expressed in §3.1.1 that we obtain the full capacitance matrix for such a

physical system. However, within these limitations, the model is still found to be the

source of useful results.

5.1.3 Device Operation, Theoretical Analysis [12, los]

The form of equations governing a tunnelling junction array immediately leads to a

simple analytical approach describing its operation. Note that with no excess elec-

trons, nie = 0, equations 5.4, (those governing an array of similar junctions) are a

discretised form of,

d2
CE2 —4) = Co 4)(x)

dx2

where E is an arbitrarily small distance. This equation has solutions of exponential

form, implying a potential, on application of a single excess charge into a previously

neutral junction array, of the form shown in figure 5.2 - assuming a long array and

considering a junction far from its ends.

Fig 5.2 Schematic of the polarisation effect caused by placing an excess electrode on an initially
neutral array of metal-insulator-metal tunnelling junctions. Shown above the array is the resultant
potential of each electrode - based on a junction to ground capacitance ratio of C/Co = 10.

The exponential potential 'decay' occurs symmetrically to both right and left of the

electrode that contains the excess electron, forming a charge soliton [115] in the array

(5.6)
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produced by the polarization field around the junction. Explicit analysis of the

constants in the exponential solution to equation 5.6, based on equation 5.4 give,

(toi = 	
e 

 , 	 exp(—X I i I ) , 	 X = cosh- I (1 + -, -cc) )	 (5.7)
y C8 + 4CCo

where the coefficient X (actually its inverse) gives an indication of the extent of the

polarization, with cfq C,i +4cco its magnitude in units of e/C.

For C >> Co such polarisation fields can indeed be considered as solitons, for their

dimension covers a number of junctions, and their energy,

is much greater than the characteristic tunnelling energy of a single junction, e2/2C.

Calculating the energy of two such solitons (found from equation 5.1 by applying

equation 5.7) in the same array shows that those with similar charge sign will repel,

while those with dissimilar charge sign will attract and possibly annihilate each other.

Array IV Characteristics - Interaction of Solitons with Array Ends :

Of most interest, however, is the way in which these solitons interact with the ends of

a tunnelling junction array, for this gives important information on the IV character-

istic of the array itself. It can be found (again by applying equation 5.7 to the energy

equation 5.1) that,

Epassive end = —Esofiton exP (-24)
	

(5.9)

Eactive end = ± eV exP (--X.i)
	

(5.10)

Here, E--Fassive end is the energy of interaction of the soliton with the end of an array to

which no external voltage is applied (it mimics the energy of the soliton and a virtual

antisoliton mirrored in the passive end of the array forming an 'image charge'). j is

the distance in junctions from the end of the array. It can be seen that attraction takes

place, ensuring that an array with no applied voltages will have solitons 'fall out of

the ends' thus bringing the system to charge neutrality.

Eacfive end is the energy of interaction of the soliton with the end of an array when a

potential of magnitude V is applied. The energy will ensure repulsion of the soliton

into the array when the voltage sign is the same as that of the charge creating the

soliton. We note that for such an array, this effect produced by the action of the exter-

nal voltage upon a group of junctions of extent 2t,- 1 into the array, rather than on a



e
Vthreshold = —2C ( exP(X) — 1 )-1 (5.11)

itonAV — 2 Es°1	 coth (A/2)e (5.12)

single end tunnelling junction, means that injection of electrons into the array does

not occur until a threshold voltage greater than e/2C is achieved,

Thus, in a tunnelling junction array with C>> Co, the region of coulomb blockade is

widened from that of a single junction. This is still appreciably less than the ne/2C

coulomb gap predicted from a simple assumption of n similar tunnelling junctions

with no grounding strays. It should be noted that equation 5.11 does not return this

ne/2C value in the limit as C0—>0. This is because it only considers the injection of

electrons into a long array (length >> X- 1 ), and does not take into account the effect of

the opposite end.

At the threshold voltage, the effective resistance of the array is also lowered in com-

parison with the high voltage limit, again because the injection voltage is somewhat

higher than e/2C. This gives an IV curve which 'jumps' quickly from the coulomb

gap before settling to the ratio governed by the array conductance. Such a jump is

characteristic of an array structure. The form of this jump can be clearly seen in the

results shown in figure 6.2.

Zero Differential Bias Characteristic of Array - Soliton Density :

The threshold voltage also has importance when considering the process by which

solitons enter finite arrays. If, for instance both ends of such an array are brought to a

potential V. then the array will fill with an integer number of such solitons until a

stable state is obtained where the soliton's mutual repulsion counteracts the effect of

the external potential attempting further injections into the array. Again no soliton

will be injected until V > Vaireshold, after which a complex 'devil's staircase' pattern

is produced, further solitons being allowed into the system at threshold voltages

dependant on the precise values of C and C.. Analysis of particular values of these

voltages is summarised in [12], however for our purposes a result of particular impor-

tance is that an integer change in soliton density (i.e a change from an average of

soliton per site to two solitons per site in an array) is marked by a change in applied

bias voltage of,



Application to Physical Systems of Interest :

Unfortunately, the initial capacitance calculations of Chapter 3 give C o/C ratios from

1 to 10. The theory discussed above is applicable to extended solitons, which are

formed when C0/C<<1. Observation of effects based on solitons within the array

may not be possible with the particular Schottky dot devices under construction at

Glasgow. However the results are of use in other systems, and are of particular aid in

verifying the results of a computer program specifically designed to model the

operation of tunnelling junction arrays by use of an iterative Monte Carlo modelling

technique.

5.1.4 Device Operation, Monte Carlo Modelling

Reasons for Concentrating on Monte Carlo Techniques :

In addition to the soliton based approach described above, further analysis of tun-

nelling junction array operation was attempted. One major area of interest is the

stability of such devices with respect to perturbation of their component parameters.

In practice such perturbations might be caused by imperfections in physical device

fabrication processes. Analytical attempts to deal with this problem are described in

Appendix A - Elementary Stability Analysis of Tunnelling Junction Arrays. However,

the discrete nature of charge introduced into a junction array elicits governing equa-

tions which are non-autonomous - and whose solution is highly non-trivial. Such

difficulties are characteristic of many problems associated with systems of tunnelling

junctions.

An appropriate non-analytic approach to studying problems such as that of tunnelling

array stability is to use Monte Carlo modelling. A large number of single electrons are

tracked through the junction system. Following each electron gives insight into the

processes taking place within the system. Its macroscopic properties can be calculated

by measuring the flow of large ensembles of single electrons.

Monte Carlo Modelling Method - Calculation of Tunnelling Rates :

The approach used in the Monte Carlo modelling of tunnelling junction systems is

straightforward. Essentially answers are required to the two questions;

a) when does the next tunnelling event occur ? i.e the probability P(t) of a

tunnelling event at time t.

b) which tunnelling event will occur next ?



(5.13)

Each of these questions can be answered once the tunnelling probability Il for each

possible event is known. (The ± distinguishes forwards and backwards tunnelling

events at junction i.) In the simple microscopic model 11 is calculated from the

change in free energy of the system AE ± due to tunnelling, via equation 4.11. There

are, in turn, two routes to obtaining AE±. The first is to calculate the potential profile

of the system from a matrix equation such as 5.13.

[

1	 o	 o o 0 ...

- 1 (i-F2.+711) -2 o o ...

(which describes the tunnelling junction array with governing equation 5.5). Solutions

for •1:, are obtained for both initial, and all possible final, states of the system. For

each event, the free energy difference AE± is calculated using equations 5.1 and 5.2.

Then equation 4.11 is used to obtain the appropriate tunnelling probabilities. This

algorithm will calculate the potential profile as a 1 N2 process for a system of N

junctions. (I.e computation time is proportional to the square of the number of junc-

tions.) The calculation of all tunnelling probabilities based on this potential profile is

a 2N2 process.

The second method of obtaining II values is detailed below in §5.2.4. In brief, a

charge profile of the system is calculated by way of a matrix equation such as 5.18.

Then the critical charge equation 5.25 is used to obtain AEI values and equation 4.11

again used to find the appropriate tunnelling probabilities. This method is analytically

identical to the potential profile route. Computationally, however, it is preferable. The

calculation of all tunnelling probabilities based on the system charge profile is only a

2N process.

Obviously some considerable computational effort is required to process large arrays.

For the chosen junction/grounding capacitance ratio C/Co = 10 at which our test re-

sults were obtained, a value of X- 1 --, 3 means that arrays of 20 or so junctions can be

considered 'long' for analytic predictions. As will be noted below, a typical Monte

Carlo experiment tracking 2x10 5 electrons through a 20 junction array required of

the order of 10 cpu seconds of processing time on an IBM 3090 mainframe computer.

Monte Carlo Modelling Method - Tunnelling Events :

Having obtained the system tunnelling rates, weightings can be calculated for the

choice of next event and time to next event. For an event that occurs rto, times per

second, the probability of such an event occurring at time t after the system has been

placed in an initial state is,
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P(t) = 1 — exp ( —T 0 t)	 (5.14)

By the principle of indifference [116] in this case we find that,

N

rtot = E ( rt + ri )
	

(5.15)
i=1

Trot is calculated from the sum of tunnelling rates of all possible events that lead from

a given state. From a random Monte Carlo variable, equations 5.14 and 5.15 are used

to determine the time t till the next event.

To discover which of the tunnelling events occurs, a similar random variable is used.

The probability of an event occurring is directly proportional to its tunnelling rate.

Event i± is therefore chosen by the random variable, weighted by the II values.

Summary :

A Monte Carlo solver has been developed to model the operation of arrays of tun-

nelling junctions. It will give results which can be compared with the purely analyti-

cal work of § 5.2.3. In constructing such an aid we first require an appropriate equiva-

lent circuit model for the junction arrays. Having this, an iterative method is used to

model the circuit;

1) Characterise the system by either its potential or charge profile.

2) Calculate the tunnelling rate for each possible system state change.

3) Choose which event will occur, and the time at which it will occur, based on

weightings given by these tunnelling rates.

4) Recharacterise the system, based on the new distribution of excess charge and

bias conditions.

This iterative loop is the basis of all the Monte Carlo modelling we use to investigate

tunnelling systems. Although extended to deal with more complex systems of junc-

tions, its basic principles will remain unchanged.

The Monte Carlo solver will prove to be a useful and versatile tool in the analysis of

single electronic systems. Its only major disadvantage is the need for sizable process-

ing power to perform the simulations in a reasonable time.



5.2 Development through Analysis of Turnstiling Devices

The motivation for studying gated junction array systems is discussed. Some of the

applications of devices where the flow of electrons may be controlled are considered.

Experimental work in the fabrication and measurement of such systems is noted.

The equivalent circuit equations of a simple gated junction array system - the four

junction gated turnstile device - are developed and solutions found for both electrode

potentials and junction charges. The detailed operation of such a device is explained.

Techniques are developed to extend the modelling tools of §5.1. The concept of

critical charge is introduced as a method of speeding calculation in Monte Carlo

modelling. A new linear programming technique is described. This technique allows

calculation of the stability of a gated turnstile in control parameter space.

5.2.1 Reasons For Studying Tumstiling Devices

The next stage in system complexity, above that of the tunnelling junction array, is

the gated turnstiling device or electron pump [10, 63, 109] first suggested by Esteve

[9]. At their simplest, such devices consist of a junction array with one or more elec-

trodes linked by small gating capacitances to a set of control voltages. Variation of

the control voltages effects the fractional charge on the gated electrodes, which in turn

controls tunnelling of electrons through the array. Given appropriate biasing condi-

tions it is possible to drastically alter array impedance by small variations of the

control voltages. This gives the system transistor like switching properties.

(In some sections of the literature [63, 109] a distinction is made between gated ar-

rays, depending on the number of control voltages used. In this work the term 'gated

turnstile' will be used to describe devices with one gated control voltage. More com-

plex systems will be specified as '2-phase', '3-phase',... devices.)

The ability to control electron flow has obvious applications. Suggestions include;

• Highly sensitive electrometers [11], where the charge to be measured is capacitively

coupled to a controlling electrode of a gated junction array,

• Quantum metrology [8], where a turnstile is used as the basis for a dc current stan-

dard,

• digital systems [81], where excess electrons are used as information bit carriers and

gated turnstiles act as the basis of switching circuits such as those noted in §2.3.2.

There has also been recent interest in the fabrication of gated turnstile devices using a

variety of approaches. Metal-insulator-metal systems have been fabricated using the

hanging resist technique of [14] and junctions of area as small as (30nm) 2 have been
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produced. Both gated turnstiles [10] and 2-phase devices [63] have been constructed

and measured using this technique. Turnstiling systems have also been constructed

around a quantum dot (lateral dots with capacitance in the order of 240 aF defined

by metal gates producing a two-dimensional electron gas in a GaAs/AlGaAs hetero-

structure [57]). In Glasgow, work is in progress for the construction of turnstiles using

a metal-semiconductor-metal approach at ultra-fine ( < 5nm radii ) resolution [60].

The experimental progress on gated junction arrays, and their obvious importance in

single electronic systems, are the prime reasons for developing tools for the analysis

of turnstile operation.

5.2.2 Equivalent Circuit Model

c i	 c2	 C3	 C4

lt'i\ll'
	

4'2	 4)3

Fig 5.3 Equivalent circuit diagram of a gated tumstiling device, whose purpose is to clock
electrons from the electrode at potential VA to that at VB as a result of an oscillating
voltage applied to VG. As well as the biasing potentials, junction and gating capacitances
being show, characterising information required for the general network solver of §5.3 is
noted - the components and circuit loops are numbered, and nominal current flows noted.

Consider the circuit diagram of a simple gated turnstiling device shown in figure 5.3.

It consists of four tunnelling junctions C 1 ,.. .C4 and a non-tunnelling gate capaci-

tance CG, with bias produced by voltage sources VA, VB, and VG . Excess elec-

trons may be found on the three electrodes of the device, at potential 4)1, 4)2 and 03,

respectively. The charge carried by excess electrons at these three points is Qi, Q2

and Q.

In operation, VG cycles between two voltage levels. At one level the bias of the

system allows electrons to tunnel from VA onto the central electrode, but no further.

Tunnelling from the central electrode, through electrode 3 to VB, is disallowed under

this bias. At the other level of VG, electrons can tunnel out from the device, but no

further electrons can enter. Thus charge is clocked through the system by an oscillat-

ing gate voltage. We wish to analyse the area in bias-parameter space under which

this turnstiling action occurs.

— 75 —



[ill [ Q
12 1=

q4	 VG-VA
qc	 vB--vc

]

(5.18)

( , 	C1 C2  ), r, . r,	 c2
r (Ci(vG-NIA)-Q1 )qa = q G v+ cdci+c2) + kz2 -r Y3 - Ci+-2

and,

q l - q4 + qG = (.21+ Q2 + Q3

q2 - q4 + qG = Q 1 +Q2 	 q3 - q4 = Q3

(5.20)

(5.21)

Which in the special case of C1= C and CG = 02, cancel to give,

Circuit Analysis :

The circuit of figure 5.3 can be characterised by the following equations;

(VA - 4)1) C 1 = - q l	 (4)1 - 4)2) C2 = - q2
(4)3 - VB) C4 = - q4	 (4)2 - 4)3) C3 = - q3

(4)2 - VG) CG = qG

Qi = q 1 - q2	 Q3 = q3 - q4

Q2 = q2 - q3 + qG

(5.16)

(5.17)

where the equations 5.16 are from the definition of capacitance and the equations 5.17

from charge conservation. With eight equations and eight unknowns the system is

exactly soluble.

These equations can be manipulated into matrix form, solving for the charge across

each capacitance in terms of the known constants; Q's, V's and C's. This elimination

of the ii)i anticipates the critical charge approach described below.

	

[ 1	 -1	 0	 0	 0

	

0	 1	 -1	 0	 1

	

0	 0	 1	 -1	 0

	

1	 1	 1
0	 0

	

C	1 C2	 CG
1	 1	 1

	

0	 0	 ,-..	 0	 0
k.,3	 k-4	 •--G

-

(Here, the first three rows of the matrix again come from charge conservation and the

last two from the application of Kirchoff s Laws.)

Expansion of 5.18 gives;

qc -

,r, ,_‘-‘ 	 C2  fr. fl, x, , r, ,]c3(vB-VG)- k.13 + 
C3+C4
r [k•Zrr k13-	 l%--ll v G- v Al-Y1)%-4	 Ci+C2 

(1+  C1C2  )C4+C3 + C3
CG(C1+C2)) C4	 CG

(5.19)



C1G = -1 { c(vB+vA-2vG) + Qi + 2Q2 + Q}

1 ,r,(1‘, „ „ , „ ,„ nr, 1
c14 = -6- 1 %--lz, v 13 - v A- v G) - k./1 - zA.12 - "tY31

q3 = -. { C(2VB-VA-VG) - Qi - 2Q2 + 2Q3}

1
C12 = —6 {c(vB-2vA+vG) - 2(21 + 2Q2 + Q}

q 1 = (c(vB-2vA+vG) + 4Q1 + 2Q2 + Q31	 (5.22)

The four junction turnstile device can be fully characterised by either equations

5.16-17, matrix equation 5.18 or equations 5.19-21. The simplified set of equations

5.22 will be used below to further explain the operation of the turnstile.

5.2.3 Turnstile Operation

Equations 5.16-21, although fully characterising the four junction gated turnstile, do

not give an immediately transparent view of its operation. To visualise these pro-

cesses more clearly, a device with equal junction capacitances C and gate capaci-

tance C/2 (obeying equations 5.22) is considered as an example. It is biased by

VA = —VB = 0.35 V/(e/C) and VG = 0.0 or -2.0 V/(e/C). The results of potential

calculations for this device are shown in figure 5.4. This indicates the potential

landscape of the device for various combinations of applied gate voltage and excess

electron position.

Consider first the numbered schematics of figure 5.4a, where a gate potential of

—2.0 V/(e/C) is used to drag an electron into the array. The electron is inclined to

tunnel to an electrode with a lower potential, but because of the Coulomb blockade

effect it can only do so if the potential drop is greater than 0.5 V/(e/C). This drop is

indicated by the 'I' bar in each diagram. As can be seen, the combined effect of both

bias and gate potential is sufficient to allow tunnelling of a single electron into the

central electrode. However once this point is reached, the drops in potential through

the system are not great enough to allow further tunnelling. Further electrons from

VA are also effectively blocked. If the higher order processes of §4.5 can be ignored,

then a stable configuration is the result.

Now consider an applied gate voltage of 0.0 V/(e/C), as shown in figure 5.4b. The

effect of the applied bias potentials (perturbed by the presence of the excess electron

itself) is sufficient to allow the electron's exit from the system, while also disallowing

further tunnelling into the array. Thus, assuming the interplay of no higher order pro-

cesses and sufficient time for each tunnelling event ( t >> RC, where Rt is the nom-
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Fig 5.4a Schematic of the potentials found in a gated turnstile during injection
of an excess electron. The turnstile has junctions with capacitance C and a
gating (non-tunnelling) capacitance of C/2. A voltage of -2 V/(e/C) is applied
at the gate for electron injection.
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Fig 5.4b Schematic of the potentials found in a gated turnstile during ejection
of an excess electron. The turnstile has junctions with capacitance C and a
gating (non-tunnelling) capacitance of C12. A voltage of 0 V/(e/C) is applied
at the gate for electron ejection.



Fig 5.5 Thevenin equivalent
circuit of a tunnel junction in
series with the lumped remainder
of the circuit, capacitance Ceff

inal tunnelling resistance of each junction), the turnstile will clock one electron from

VA to VB with each cycle of the gate voltage. The current is then governed by the

frequency of the oscillating signal at VG.

Although giving detailed explanation of the operation of the gated turnstile, such an

analysis is of little use in providing information on the range of bias conditions under

which turnstiling may occur. There is a simple technique that will allow easy access

to such information; the method of linear programming developed below. However,

in order to make use of this technique, the idea of critical charges, a concept

suggested by Esteve [117] to reduce the complexity of modelling calculations, must

be developed.

5.2.4 Concept of 'Critical Charges'

The technique of critical charges is most useful

when considering systems consisting only of

voltage sources and capacitive elements. By

Thevenin's theorem the system is reduced to that

of figure 5.5 consisting of the junction of interest

(capacitance C, tunnelling resistance R t) and

the lumped effective capacitance of the rest of the

equivalent circuit, Ceff.

The free energy of such a system is readily obtained in terms of the charges on these

capacitances and a charge through the voltage source, Qv, as

Qe2ff Q2E — 
nreff

, + ---nr. + QvV
z...—..._.

so that the energy change due to a tunnelling event in C is given by,

AE _ e_Q + e2  1 
— C	 2 Ceff+C

which formula can be rewritten as,

AE = _ e(Q-Quitical)	 e 
C	 ,	 Qcritical = 2(1+Ceff/C)

(5.23)

(5.24)

(5.25)

This implies that the change in free energy of the system caused by a tunnelling event

through any particular junction can be calculated in simple fashion from the initial

charge across that junction, and it's relation to a critical charge for that junction. The

critical charge is a parameter solely dependant on the system components, and not on
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its particular bias conditions at any one time. It can be seen to be the charge above

which, at T --> 0, conduction starts to take place through the junction, i.e the

Coulomb blockade charge for the junction.

The idea of using critical charges originated in a desire to speed the calculation of the

Monte Carlo model described in §5.1.4. Qcritical values can be precalculated before

entering the iterative loop, and junction charge values calculated in the loop instead of

electrode potentials. Obtaining charge values requires the solution of a matrix equa-

tion such as 5.18, and in practice this process is less computationally expensive than

the calculation of full potentials (although it is still an N 2 process).

Practical Application of Critical Charge Approach :

The structure of the code used to model the gated turnstile is described in Appendix E

- Code Structures. A bespoke Monte Carlo routine was written, based on equations

5.19 - 5.21. This produced the initial modelling results of Chapter 6. Evolving from

this bespoke code, a General Network Solver was developed, and is described in

§5.3.2. This solver was used to obtain the bulk of the results of Chapter 6. It also

relies upon the critical charge approach described above.

5.2.5 Device Operation, Linear Programming Approach

One consequence of using this critical charge approach is the development of the idea

of linear programming as a simple way to discover the area of operation in control

parameter/bias voltage space of the gated turnstile. The approach can also be

extended to other more complex single electronic systems.

As an example of the use - and a description - of this linear programming technique,

consider again the simple gated turnstile of figure 5.3 described by equations 5.22 (i.e

with CG = C/2). Further simplify the problem by requiring that VB = -VA. Then it

can easily be seen that the formulae of 5.22 all have the form,

qi = oti VA + I3i VG + yi
	

a,13,y constants	 (5.26)

where the ith junction, at T —> 0, will commence conduction at q i = qi critical.

Equations 5.26 degenerate into straight lines in V A,VG space. Each of these divides

control parameter space into regions in which a particular tunnelling event is or is not

allowed. For more complex problems control parameter space is divided into regions

by linear surfaces of higher dimension. The position of these demarcation lines for a



particular tunnelling event is solely dependant on fixed parameters (C 1 and q i critical

values) and the position of excess electrons in the system before tunnelling occurs.

This gives rise to a simple process for describing the stable area of operation of a

system - a process which may be thought of as the inverse of the Monte Carlo tech-

nique. There, knowing bias voltages and excess charge positions, the charge across

each junction can be calculated. These are then compared with (2u-weal values to find

the next likely tunnelling event. In the linear programming approach decisions are

first made as to which events are allowed and disallowed for the device to operate.

The parameters of the system define Quitical values. These in turn uniquely define

stable areas of device operation in voltage bias space

Figures 5.6 and 5.7 show the results of this process for the simplified gated turnstile.

Figure 5.6 shows schematically the most important tunnelling events defining opera-

tion of the device, both for electron injection and ejection. Figure 5.7 shows the areas

of legal operation for electron injection and ejection based on these tunnelling events.

Critical lines in figure 5.7 are cross-referenced to their defining events in figure 5.6.

It should be noted that in this example, particularly simple results are obtained. The

defining equations give lines of equal gradient because of the equal capacitances of

each tunnelling junction. There are a number of degeneracies (for instance, two types

of tunnelling event give the same electron injection line, A). More realistic problems

will give far more complex operating area diagrams. Also, we have assumed T —> 0.

At finite temperature perfect turnstiling action will only occur well within the legal

turnstiling area defined in figure 5.7.

Note that because this approach is based on linear programming, and is simplified by

the T --* 0 condition, computation times are linear with respect to the number of

junctions in the system under analysis.

Summary :

The Monte Carlo modelling approach introduced in §5.1.4 has been improved by

characterising systems on the basis of junction charges instead of electrode potentials.

As noted in §5.1.4. this method is more efficient computationally, and allows greater

preparatory calculation outside the main iterative loop of the algorithm. The charge

profile of a system is obtained by solution of a simple governing matrix equation

based on Kirchoff s Laws and charge continuity.

Another useful modelling tool has been developed from this critical charge approach

to Monte Carlo modelling - the linear programming technique. This tool was intro-

duced to specify the area of turnstiling action of a gated turnstile device in control
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Fig 5.6 The following schematics describe the important tunnelling events which
govern the operation of a gated turnstile.
The important allowed or disallowed events are split into those that concern injection
of an electron into the device, and those which concern the ejection of the electron from
the device. The reference letters A.. .D correlate with similarly lettered lines on the
graph of legal turnstiling area in VA,VG space of figure 5.7. Each event corresponds to
an associated bounding line of the legal turnstiling area.
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Fig 5.7 Schematic plots of Legal Turnstiling Area in VG, VA space for a gated

turnstile. Heavy shading shows region of safe operation. Light shading shows
region where reverse electron drift can occur at low bias voltages.



parameter space. It can be extended to consider operational modes of more general

systems and the areas of control parameter space in which those modes legally oper-

ate. Compared with Monte Carlo calculation of stability in control parameter space,

the linear programming technique is overwhelmingly more efficient in its use of

computing time.

5.3 General Network Solver & Linear Programming Technique

The bespoke modelling techniques developed in sections 5.2 and 5.3 are extended to

algorithms of general applicability. A general Monte Carlo simulator is described.

Some of the devices and systems whose analysis might benefit from the use of such

tools are noted.

The advantages and disadvantages of both the general network solver and the linear

programming technique are discussed. The benefits of applying both methods in

complementary fashion are noted.

Specific modelling results from the tools here developed are considered in Chapter 6.

5.3.1 The Need For General Simulation Tools

Having developed bespoke algorithms to model tunnelling junction arrays and gated

turnstiling devices, we now wish to develop these routines to allow the modelling of

general networks of components. Initially equivalent circuits consisting only of tun-

nelling junctions, pure capacitances and voltage sources will be considered. These

tools are required for the following reasons;

Firstly, a set of general tools allow calculations to be performed on a wide range of

differing systems without the need for extensive recoding and hand analysis of each

system in turn. Even considering only the turnstiling devices, there are a wide variety

of different designs. These employ many different sets of gated control voltages and

buffer junctions. 3-phase devices have already been proposed and constructed [63,

109]. Other devices and systems have also been proposed, including the other basic

requirement of a digital system - memory cells [61, 118]. Even systems based on the

macroscopic quantum tunnelling effects generally considered undesirable have been

suggested for correlated electron transport [119]. Rapid modelling of general systems

would of course be useful; in leading experiment by testing the validity of new device

proposals, in verifying the experimental results, and in optimising the component val-

ues and bias conditions of devices.



Secondly, as mentioned in §5.1.2, the physical geometry of many single electronic

devices means that tunnelling junctions can no longer be assumed to obey 'parallel-

plate' capacitance approximations. Fringing fields become non-negligible. As a result

the system capacitance matrix is non-diagonal and 'next-nearest-neighbour' effects

may play a significant role. Modelling tools, which can easily include such effects,

would allow greater understanding of the constraints intercapacitance coupling might

have on device operation.

Finally, it should be noted that any practical single electronic devices will be complex

and extended systems subject to charging effects far less subtle than macroscopic

quantum tunnelling or quantum fluctuations. The extreme sensitivity to external

charge that makes tunnelling junction systems so suitable for use as electrometers

( in <2x10 4 eHz- 112 [11]) makes shielding and isolation of such devices critical.

Vital questions which may be explored with general modelling tools, even those

which only consider capacitive circuits, include;

• How well shielded do typical systems have to be before external charge seriously

perturbs their operation ?

• Can systems be constructed which by their nature are tolerant to such external

charge ?

• What range of system packing densities can be achieved where sections of a

system will not adversely effect others ?

• Can systems be constructed which make use of correlated effects produced by this

lack of charge isolation (analogous to the beneficial soliton effects in tunnelling

junction arrays) ?

5.3.2 General Network Solver - Charge Profile Calculation

The principles which define the Monte Carlo modelling algorithm are laid out in

§5.1.4. In brief, two main areas of calculation must be performed. Firstly, critical

charge values must be obtained for each tunnelling junction in the system. Then an

iterative loop is entered, which repeatedly calculates the system charge profile. This is

compared with the critical charge profile, and equations 5.25 and 4.11 used to choose

the next tunnelling event to occur. Associated with this core algorithm are routines

that extract desired 'experimental' information; IV curves, number of electrons

through turnstile, etc.

In this section, the algorithm to calculate the charge profile of a general circuit

network is considered in detail.
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Predefined matrices are used to input circuit information to the general solver. As an

illustrative example, consider the matrices that describe the turnstile of figure 5.3.

Volts

Elas

Conn

Qcon

Zcon

= [o 0 0 0 0 VA VB VG ]

_r 1	 1	 1	 1	 1
- [c1 c2 C3 C4 CG

= L0011 1 0-1 -11 J
r 1 1 o o -1 1 0	 1

= [	 1 -1 0 1
1 -1 0 0 0
0	

]

Lo o 1 -1 o

= [ 0 0 0 0 0 ]	 (5.27)

Here the elements of volts and Elas are the initial bias voltages and elastances of

each component of the gated turnstile, numbered 1-8 in figure 5.3. (As can be seen, a

general rule is made to number the circuit components in the sequence; tunnelling

junctions, other non-tunnelling capacitances, voltage sources. This ensures easier

coding of the algorithm.) Each row of the connection matrix corm describes a loop

in the device equivalent circuit, each column the presence of a particular component

in that loop. The sign of an element of Conn signifies the direction of nominal cur-

rent flow through each component.

The information contained in these matrices is enough to form equations based on

Kirchoff s Laws, but to include charge continuity and form a soluble set of circuit

equations two other pieces of information must be available. Firstly, information on

the possible sites of excess electrons is contained in Qcon. It has as many rows as

there are electrodes in the equivalent circuit that can support excess electrons. Its

columns note which capacitive components effect the charge on this electrode.

Also cases like that shown in figure 5.8

must be taken into consideration, where the . I 0V lr 
charges on junctions C 1 and C2 must be

	
Cl	 C2 

•

equal by symmetry. Such situations are	 Fig 5.8 Equivalent circuit components
found to be rare in practice, but must be 	 requiring the matrix zcon.

included to ensure that the matrix equation

governing circuit operation is always soluble. The matrix Zcon is used to store the

information which defines such situations.

Having defined these matrices, solution of the system charge profile becomes simple.

Two matrices, Econ and Vcon, are obtained from the elastance and bias voltage

portions of Conn by multiplying by the component values in Elan and volts. If q
represents the vector of capacitance charge values in the circuit, and Q the vector of

excess charge value on circuit electrodes, then
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(((.121 i

VG—VA

VB—VG

(5.18)

Qcon . q = Q

Econ . q = —Vcon . 1

Zcon . q = 0
	

(5.28)

completely define the charge profile of the system. For the example described by

matrices 5.27, these give;

[ 

o
0

--i-

01	

-1
1 -1	 0
0
1

o-C2

0 0

1	

0

-1

l

0

C3 C4 C

000111: i

Having obtained such a matrix equation, solution for q can be performed by stan-

dard linear algebra toolbox routines, such as those provided in FORTRAN by the

Numerical Algorithms Group [120].

Code structures that perform the operations of forming and solving such matrix

equations are presented in detail in Appendix E - Code Structures.

5.3.3 General Network Solver - Critical Charge Calculation

Of more complexity is the problem of calculating a vector of quit values from the

circuit information matrices. As described in §5.2.4, the procedure is to form a

Thevenin equivalent circuit around the junction of interest, with Ceff signifying the

Thevenin lumped capacitance (see figure 5.5). Then equation 5.25 can be used to

calculate one qcrit . This in itself is trivial. The complexities arise in automating the

calculation of a series of Ceff values.

Solution of this problem comes through using the circuit impedance matrix. A net-

work of components can always be split into meshes or loops ringed by circuit ele-

ments. The square impedance matrix has rank equal to the number of such loops. Its

diagonal elements equal the total impedance of a loop and off diagonal elements the

total shared impedance of loops (i.e element (1,2) is the sum of impedance common

to loops 1 and 2). As such, the matrix is symmetric and positive definite.

Such a matrix can be partitioned into four submatrices. An example of such a parti-

tioning for an arbitrary 3x3 matrix is given below in equation 5.29

Z1 1 -Z12 
-Z13 ] F A B 1Z = [ --Z12 Z22-Z23 

j = Lc-Z23 Z33	 LC DJ with,



r.
—eff

D
A = [ Z11 -Z121	 B = [113 1 	 C = [-Z13 -Z23]	 (5.29)= Z33-Z12 Z22	 23

One property of this impedance matrix is that the effect of loops in which we have no

interest can be merged into the rest of the loops mathematically - an effective

impedance matrix resulting. For instance, if Z is partitioned into A, B, C, D then a

matrix,

Zeff = A — BD- 1 C	 (5.30)

is equivalent to Z in a reduced network.

In our solver, all loops other than those containing the junctions of interest are

merged. For a two dimensional network this gives a reduced Zeff matrix with one or

two loops. Figure 5.9 below shows the two possible results (no further simplification

is made for code performance reasons). Calculation of the Thevenin impedance is

now simple and immediately leads to the critical charge for the junction of interest.

lianLIMatrix
	

Rank 2 Matrix.

-1	 -1	 - 1
Ceff = Co + (Ca+ Cy)

Fig 5.9 Equivalent circuit diagrams for possible reduced Zeff matrix results.

This automates the processes of finding critical charge values for each junction in a

general system, and for calculating the potential profile of that system. It allows

construction of a fully automated general Monte Carlo modeller (referred to as the

General Network Solver) for capacitive single electronic systems. Detailed coding

structures of the modelling algorithm are shown in Appendix E - Code Structures.

Tracking single electrons through a single electronic system by Monte Carlo mod-

elling is a computationally expensive and thus often slow process. For example,

calculation of the IV curve of figure 6.2 took a little over 1.5 hours of CPU time on an

IBM 3090 mainframe (with associated vector processor) using optimised VMS

FORTRAN code. The curve was produced by tracking 7x10 4 electrons through a

8 junction array for 200 data points.

However, the general network solver has the advantage of being extremely flexible in

the data which it can collect from the system under test. IV curves, average electron

event times through particular components, areas of device operation, and many other



results are all as simple to produce. The process can also give results for both T ---> 0

and finite temperatures with only minor modification. It should also be easily extensi-

ble to deal with quantum fluctuations in the system based on the quantum Langevin •

approach discussed in §4.2.1.

5.3.4 Linear Programming

Extension of Linear Programming Techniques to General Systems :

The principles of the linear programming technique are presented in §5.2.5, using the

example of a simple gated turnstile device. It would be beneficial if this algorithm

could be automated and extended to more general single electronic systems.

From §5.2.5 it can be seen that this is a twofold process. Firstly a method of obtaining

qc,-it values must be found. Secondly, a procedure must be devised for deciding which

events are critical to device operation. The problem of obtaining qcrit values has al-

ready been solved above - and thus the main section of any linear programming code

simply uses the same routines developed for the general network solver. However the

procedure for choosing critical state transitions is far from trivial and work on its au-

tomation is still in progress.

The number of possible state transitions is one source of problems. If equation 5.26 is

used as a basis, then the number of linear programming lines in control parameter

space is the product of N (the number of tunnelling junctions) and the number of

possible states of the system.

Also the state transitions that might be assumed to be critical are often discovered not

to be, when plotted by linear programming code. An example of this may be found in

the injection of electrons into the four junction turnstile discussed above. It is a re-

quirement for device operation that electrons must be able to tunnel from the first to

middle electrode of the system. Such an event is in fact irrelevant to the area of stable

device operation - it turns out to be an automatic consequence of biasing conditions

allowing an electron to tunnel to the first electrode itself. Another example concerns

the reverse tunnelling of electrons at low bias voltages in the same four junction turn-

stile. Superficial consideration assumed that with forward bias of the system, reverse

current could be ignored (events C and D of figure 5.7). More detailed modelling

with the general network solver shows this not to be the case - there is significant

reverse leakage current.



Combined Use of Linear Programming and Monte Carlo Techniques :

For more complex systems it becomes progressively more difficult to make initial

guesses of the tunnelling events that will be found to be important, and so a combi-

nation attack with the general network solver and linear programming model is em-

ployed. Initial guesses of critical events are fed to the linear programming model.

Then based on its results, a coarse grid of tests in control parameter space is made

with the general network solver for verification. If errors have been found in the

initial choice of allowed and disallowed events, adjustments are made. The general

network solver is used to probe those areas of control parameter space in which the

operation of the device is unclear. Often it is found that in some areas of control

parameter space a different sequence of state transitions than that anticipated is the

major route for electron flow. There may be more than one set of state transitions

leading to identical final outcomes. Examples of such processes may be found in

figures 6.12 and 6.13 of §6.2.2 below.

The main advantage of the linear programming method is its ability to produce results

in 'real time' (usually the computation time involved is of the same order as the time

required to display the results). Its disadvantages include the need for experience and

insight on the operator's part in choosing which allowed and disallowed events to

plot. Also the limitation of working most effectively as T —> 0. Thus, when analysing

the area of operation of a system in control parameter space by this method, the ad-

vantages of linear programming can be fully applied, while its disadvantages are

largely counteracted by the limited use of the far slower general network solver.



5.4 Summary

Tunnelling junction arrays and gated turnstiles have been considered in detail. Their

possible role as sub-units of integrable single electronic systems has been noted.

Simple equivalent circuits have been constructed to model their operation, and in the

process Monte Carlo based routines and a linear programming technique have been

developed. These techniques have greatly aided the analysis of arrays and turnstiles.

The modelling techniques were then extended to deal with general systems of junc-

tions, capacitances and voltage sources. The Monte Carlo routines were optimised by

using the concept of critical charges, and a General Network Solver developed. This

gives tools that are more effective in analysing extended single electronic systems.

The effects of system component variation, interdevice coupling and external noise

can now be studied more easily. More complex device equivalent circuits (such as

those including 'next-nearest-neighbour' coupling) can also be easily analysed. For

the specific calculation of regions of system operation in control parameter space it is

found that a combination of both tools, combining the speed of the linear program-

ming process with the flexibility and immunity to operator error of the general net-

work solver, are a great aid in fully characterising systems.

There are three obvious extensions that could be made to our present tools;

• Consideration of system quantum fluctuations, as well as the thermal fluctuations

already accounted for in the simple microscopic model. This might be done by

the heuristic approach of the quantum Lengevin equation as noted in Chapter 4.

It would involve a change in the tunnelling rate calculation of the general net-

work solver. Instead of using equation 4.11, equation 4.21 would be applied. This

would involve more complex calculations, but would require little recoding of

existing computer programs.

• Inclusion of resistive and inductive elements in the allowed equivalent circuit

models. This would involve extensive recoding of existing programs, but no

change to the structure of the algorithms themselves. However, theory assumes

complete relaxation of the system between tunnelling events. Care must be taken

to avoid violating this condition. The modelling tools would therefore be of most

use for devices operating only at low frequencies.

• Full automation of the linear programming technique. This requires study of the

rules governing which sets of state transitions allow a system to move from its

initial state to a desired final state. Knowledge of the allowed sets of intermediate

states immediately leads to critical allowed and disallowed events which the lin-

ear programming method maps to a stable area in control parameter space.
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CHAPTER 6	 APPLICATION OF SIMULATION TOOLS

TO SINGLE ELECTRONIC SYSTEMS

A set of simulation tools for single electronic devices have been developed. They are

now applied in the investigation of;

• idealised single electronic sub-systems (gated and ungated junction arrays ),

• more realistic models of such sub-systems (subject to component deviation and

static stray charge),

• groups of capacitively coupled devices - i.e small idealised systems.

The basic single electronic sub-systems considered in the literature are the tunnelling

junction array and the gated turnstile device. These fulfil the roles of transmission line

and control device for single electronic signals. They were the devices used to aid the

development of our simulation tools, and are described in detail in Chapter 4. In this

chapter the results of modelling such systems are presented.

Results are also presented for the modelling of a number of systems based on the

junction array and gated turnstile. Arrays are considered, where junction and ground-

ing capacitances may vary randomly about a norm (representing the natural variation

in component values resulting from a fabrication process). We also consider a multi-

phase system, where more than one control voltage is applied to the turnstile in an

attempt to improve device performance.

Finally, the natural effect of device integration - stray coupling capacitance and the

subsequent device cross-talk produced - is investigated. Pairs of tunnelling junction

arrays and four phase gated turnstiles are linked by a simple coupling model, and the

effect of varying coupling capacitance considered.

Choice of Grounding Capacitance Values :

Much of this work was carried out before the results of Chapter 3, which indicates a

Co/C value of the order 2 to 10 for typical fabrication techniques. An assumption of

Co/C = 0.1 is made in the literature analysing tunnelling junction arrays [12, 106],

and for gated turnstiling devices a common assumption is C G/C = 0.5 [9]. Thus,

many of the results presented below follow these assumptions. The effect of raising

Co/C by an order of magnitude will be discussed separately for each system.



6.1 Tunnelling Junction Arrays

6.1.1 Junction Arrays Under Idealised Conditions

Initial modelling considered homogeneous arrays, with both junction and grounding

capacitances constant (as in the work of Baldivalov et al. [12]). The theoretical work

of §5.1.3 indicates that such arrays will show correlated electron flow most clearly.

Steady State Soliton Densities :

The first results, those of figure 6.1, show the concentration of solitons in a 22 junc-

tion array. Such a result would be extremely difficult to measure in any physical sys-

tem. However, it does allow a number of comparisons between junction array theory

and Monte Carlo modelled results. It also demonstrates most obviously the correla-

tion of system charge.

A negative bias is applied to both ends of the array, injecting electrons and forming a

set of soliton states. Co/C = 0.1 produces solitons A.- 1 .-- 3.2 junctions long. From

equation 4.11 the first injection is expected to occur at Vthresh ' 1.3 V/(e/C), there-

after a 'devil's staircase' being formed. The period of this staircase (the point when

all junction sites are filled and double solitons begin to form) is twice AV = 5 V/(e/C)

The low temperature graph of figure 6.1 (f3 = 100, where 0 = Tc/T) clearly shows

this space correlation of charge, and the entry of each excess electron into the array

can be seen as bias voltage U is raised. Random fluctuations are suppressed by

Coulomb blockade and mutual repulsion of solitons. The period of the staircase is

indeed twice 5 V/(e/C), and the first full 1-electron jump in <n> does occur at

Vthresh ' 1.3 V/(e/C).

Figure 6.1 also shows the effect of raising the modelled temperature closer to T.

These results essentially follow the work of Baldwalov et al. However, in that work

the smooth average of soliton density is plotted for an assumed infinite number of

tunnelling events. The results of figure 6.1 are based on 500 tunnelling events, and

clearly show the transition from strong correlation to a 'shot noise' governed density.

This noise is caused by constant thermal production, and subsequent annihilation, of

soliton-antisoliton pairs.

Finally, note two small half-electron jumps in the graphs at U = 0 and just below

U = Vthresh• These are caused by errors in the coding of the modelling routines which

erroneously include an average of electrons passing through the voltage sources. The

simple array model was also found to be very susceptible to round off error in the cal-
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Fig 6.1 Average concentration of solitons in a tunnelling junction array
versus bias voltage U. (see figure 5.1)
Calculation by Monte-Carlo technique averaging over a 'snapshot' of 500
tunnelling events. Array has 22 junctions with all tunnelling capacitances
similar and all grounding capacitances similar. Co/C = 0.1

Each trace is offset by 0.25 for clarity and has 13 = Tcriticair, Tcritical = e2/2C



culation of potentials. The algorithm (equations E.2 of Appendix E) calculates poten-

tials iteratively based on potential differences that may be vanishingly small at the

ends of a sparsely populated array. Such errors increase exponentially with array

length. In the worst case, 10% errors in potential were noted in a 35 junction array.

Such coding errors were resolved in further modelling programs.

Current / Voltage Response :

The second set of results, array IV curves, are more conducive to experimental mea-

surement. Figure 6.2 shows the classic Coulomb blockade curve for an array at low

temperature (in this case 13 = 100). Again Vthresh = 1.3 V/(e/C) for Co/C = 0.1. As

predicted in §5.1.3, the current rises sharply at this threshold voltage before approach-

ing the expected gradient defined by the tunnelling resistances of the system. Such an

IV curve is characteristic of extended solitons in systems with C>> Co.

Figure 6.3 shows the equivalent results for systems with smaller X- 1 = 1.8 with data

points calculated from only 1000 tunnelling events again at 0 . 100. The threshold

voltage is now closer to V = e/2C, and less of a 'knee' is noted in the curve above

threshold (although the variation of data points makes this a little more difficult to

see). Comparing traces for 10 and 25 junction arrays with equivalent tunnelling

resistances we verify that current is in the ratio 25:10 as expected.

Computation of these basic results is vital in preparing the techniques required to deal

with more complex systems.

6.1.2 Non-Homogeneous Array Systems

In any physical system, it is impractical to expect tunnelling junctions and grounding

capacitances to have uniform value. For hanging resist fabrication, estimates of

variation in components of x2 Rjunction and x 1.25 Cjuncfion have been reported [50].

We investigate junction arrays with differing levels of component variation and the

operational stability of such systems.

The model used is that of equation 5.5 of §5.1.2. Here j and Ti i represent the frac-

tional variation in junction and grounding capacitances Ci ,Coi from some nominal

C. In these results, C i and i i are formed from a Gaussian distribution,

1	 [4i-1)2 ]
P(i;cr) 41 — , exp 

.N127c a	 -	 2a2
(6.1)
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This method most effectively models the variation due to linear misalignment errors

in fabrication processes, giving a preponderance of very small capacitance values. It

is preferred over the more obvious method, forming lirli from the logarithm of a

Gaussian about zero.

Steady State Soliton Density :

Figure 6.4 is a recalculation of the steady state soliton array density in a 22 junction

array. It shows the average soliton concentration in a negatively biased array as a

function of bias voltage U. Here each trace has T —> 0 and both C and Co values

are varied. The 'average fractional deviation' is a of equation 6.1. The i,TIi are

uncorrelated; i.e the variation on junction i is totally independent of the rest of the

system. There is also no correlation between traces, a new array is calculated for each

modelling run. a = 0.43 was chosen as a maximum in this system, as it was the point

where breakdown regularly occurred and spatial charge correlation was destroyed.

Note that the system does still exhibit spatial charge correlation under relatively high

values of component variation. This implies that tunnelling junction arrays may be

resistant to large fabrication variations in their parameters. However, even below

breakdown, increasing junction deviation can greatly modify the soliton distribution.

Specifically, the regularity of threshold voltages is destroyed. At some threshold

points multiple solitons may enter the array.

To see more clearly the basis of this effect, consider an array where only the ith

grounding capacitance is varied,

-0_ 1 + (2C+TIC0)01:0; — C0i4-1 = Qi	 (6.2)

This can be trivially recast as,

+ (2C + C0)4); — 01)i+1 = Qi ( .1- 1 )C0i	 (6.3)

where (11-1)C001 acts as an additional effective fractional charge. The variation of

grounding capacitance can be viewed as the introduction of a new soliton into the

array. This `soliton' is spatially fixed and potential dependant. An 1 < 1 variation

will induce a positive charge that will repel any other positive solitons in the array.

Figures 6.5 and 6.6 show the potential barrier induced by variation of a single junc-

tion or grounding capacitance. They graph the energy of an array system as a real

soliton is brought steadily closer to the component anomaly. The energy scale is

compared with the energy of a lone soliton in an infinite homogeneous array,
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Fig 6.4 Average concentration of solitons in a tunnelling junction array
versus bias voltage U. (see figure 5.1)
Calculation by Monte-Carlo technique averaging over a 'snapshot' of 500
tunnelling events. Array has 22 junctions with a nominal Co/C = 0.1

Both Co & C values have a random (gaussian) fractional deviation applied
to each individual capacitance. Deviations are calculated anew for each trace,
which are offset by 0.25 for clarity.
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Fig 6.6 Graph of system energy versus soliton position for a junction array with a single
perturbed junction capacitance. The junction capacitance of electrode 20 in an otherwise
homogeneous 30 junction array is reduced to 20-100% of its original C value. The array has
Co/C = 0.1. System energy is calculated as a soliton is moved from electrode 10 —> 20.
Energy is scaled to that of a lone soliton in an infinite junction array.

Comparing these results to the interaction of two real array solitons is instructive.

There, the system energy is also maximum when both solitons are simultaneously at

the same electrode. At this point a system energy of 4E is obtained. The decay of the

barrier with position is exponential with decay constant X (the inverse of soliton

length). In the above graphs the decay constant is 2X. This is a result of the potential

dependence of the effective charge (1-1)C0411.



Thus component variation imposes additional potential structure in a tunnelling

junction array. This structure modifies the value of threshold voltages. However the

potential landscape can induce the movement of solitons until stability occurs.

Potential wells 'plugged' by excess electrons mean that a number of solitons can exist

even without external bias voltage. This self stabilising further suggests that tunnel-

ling junction arrays may be resistant to large fabrication variations in their param-

eters. However to test this fully we must consider results that are more applicable to

experiment than steady state soliton density.

Threshold Voltage as a Figure of Merit :

As noted in the previous section, the IV curve of a tunnelling junction array is simple

to model, as well as being applicable to experiment. However, although IV curves are

easily modelled for a specific array, they are unwieldy as a source of information

about comparative array quality. A single array can yield many widely differing IV

curves depending on bias conditions. A simple figure of merit would be useful in

considering such devices.

Experience comparing many sets of IV curves led to the choice of threshold voltage

at zero offset bias (i.e applied potentials at the ends of the array are equal and oppo-

site) as such a figure of merit. High Vthresh is generally favourable for practical

device operation. Even though component values in an array may be perturbed quite

radically, the threshold voltage will remain approximately constant if breakdown does

not occur. However, as larger component deviations induce the onset of breakdown,

the value of modelled threshold voltage is found to increase radically. Such an in-

crease would not be found in a physical system. Instead of developing an increased

Coulomb blockade voltage, the physical tunnelling junction array would become un-

stable with respect to component deviation. In the models such instability is charac-

terised by large jumps in threshold voltage (caused mathematically by exceptionally

small capacitance values in the array model).

Results of Threshold Voltage Calculations :

Figures 6.7 - 6.9 show the variation of threshold voltage versus component deviation

for various Co/C values of a 21 junction array. Arrays are studied where either

junction capacitance, grounding capacitance, or both components are varied.

From these graphs it can be seen that ;

• the highest stable Vthresh values occur when grounding capacitances, Co, are small

compared with junction capacitances, C.

• At deviations of less then 30%, in the range 0.1 < Co/C < 10, tunnelling junction

arrays are found to be stable. When the deviations exceed 30%, either if both C

— 100 —



c-1

II

In to,

•
CI) CD

1.) • •-0
,474

- c

	

e	
.ci 3

	

evi	 -5•1 --ri,
a.)

A cf/=

a)

	

e	 Ca0
U

	

— o 	 •El cl;	 Cl

	

•-••n 	
4.) C.)	

.....

C:3 g	

CA
CD

1) .'5 7..) 
II

... cz ;—,	 -A
CI) C:4 4')	

c..)

	

C	 = ctt .73.,	 ::::
ir.v) C.) c6

61 ,., ,, E24
0 ,...0 0
> . = c..)

	  b-s!	 a) -o ›,,, ad
i 0	 ba = 03 .5

I.	 A	g 	 6,.!	 0 6 cz
II	

a..)

I;	 > 11° =
I•	 4-1 0 0
1! _ g)	 -c) 0 ..z

cnIi	 7) c4 C.)	 1.)s •,	 .= = = p,-.
I.	 (A o z a

• I. 0n1
I,	

0
II	

• CI v.4 C

I.
I;

	6. )	
E_, ct (-1 en

•! — 0	 >,-0 cA 0n-.
11	 cv	 al	 4.)	 =

e!
I.

'11-644c6	 t

I;

I I	ts-• 4..• .4-4	 pa, ,
Ii	 e
I •	 ECD

r)I!	 C	 ..=	 Fr +••••

a "54.) Cal) 

II	 (as I-, u	 4.,
I ;	 MS (13	 CC)

I.	 inI

CAD	 0 40 ,,_,II
ii	 _ g.	 .4 •4. =

i	 .I.	
S cA C.) cn

Vr; c4 0 eti
. ekoz ••—, •n••n

1'	
•—.	 t4—I
ILI •.- 0

WAL 0
In

(DM/A A 02MI0A PIotisz,na



111

o q q

	

cn	 •

C•1

	

I	 11
	

II

k)

U

6).

s	 I

VI

o
c.)

I g

CD

• n• ^C)

I.	 I —

-er r.)

,
cz —

cr)

0
,

-C
en

A a2 1I0A Plcalsalla



(3/3)/A A a2t1I0A PP:Marta

"Ct
	 en

-4

	

•cr	 >t..	 r.) 7:2
&	 = • tA. ------	 t,\

—Q
c c" 04'41?!... 4..

	

0 Fn.	 Cs1 z,..;.• •

	

en	 ..=Ilk
• 0 cta,	 4-I RI

E	 r.....
10	 0  A r.)
..r. e. O 

al ci.)

	

S siSI esiC	 059 1.

U'	 Z	
CA .174

i s	2	 v6 8al e.
i	 .....	 il)	 etEl 04a	 ,-.,	 ....i Cddi	 i—i	

•n C-)

=
* 0*.=Ct	 cd	 cn•ze	 ..-.	 ....

	

>.	 ....I

	

CS	
ti-o
o
=

	

* 4.4 	 co
0 a)
an	 =	 'Ci• cA

	

84	
• vnI SU
> C.)

EO 6) J,_.

	

..„.. u	 0 U,-.
0	 OA) ala)Cs7	 CZ ca.,0.0	 ;-.. cl

	

CZ	 cL) u
>

	

Z	 ezt =0
*	

c..)
c) 0	 .5 oa	 cn cc .=cn1.4 win

g
6;n 	 0 0.A0	 0.0 =

co	 as • —,--, no
-6 =
> 8
7:3 t-,.0
0
..= -
CA 0
4.) .0

0	 1...
..=

E-s =0tr)	 >.• 2czt .,..,

c	 i0,Q	 = >ta	 '40
.0	 =I	 0 t.-i• ...I	 • .1	 (1.)

d	 a)

I 
ii

 
d

(0.	 q	 0.	 (0.	 q
ON	 s	 in	 en	 ,--1

H	 "	 II	 II	 "
U U u r...) U
o .0	 o 0.	 0
U U u u u

1



and Co are varied, or if the variation occurs in the dominant capacitor type, the

threshold voltage values rise dramatically. This indicates the presence of very small

(< an order of magnitude smaller) capacitance values than average in the array,

which cause instability and breakdown of the correlated effect both in physical set-

ups, and in the modelled IV curves.

• At C0 > C, the threshold curves become noticeably more noisy. At these values,

Vthresh (Proportional to the geometric mean of C,C 0) becomes small, soliton ef-

fects in the array become weak, and the knee of the associated IV curves becomes

less pronounced. Small changes in the number of electrons moving through the

device due to the stochastic nature of the Monte Carlo modelling therefore have a

more noticeable effect on the position of Vthresh.

Other results not noted in these graphs include ;

• Further lowering of the temperature has little effect on the Vthresh curves. Any

effects occurring at higher temperatures are swamped by the breakdown of correla-

tion caused by that temperature rise itself.

• Correlation of capacitance values seems to have little effect on the point at which

deviation instability occurs. Initially the effect of alternating high and low C val-

ues was investigated, as might occur if misalignment occurred during device fabri-

cation. This failed to produce noticeable results - as did many other methods of in-

ducing component value correlation on the system, involving C's, Co's, or combi-

nations of the two.

• Perturbing otherwise stable arrays by lowering or raising one particular capacitance

value in the array had little effect. This was the case whether that capacitance was in

the centre or at the edges of the array, or whether it was a grounding or junction ca-

pacitance. To have a noticeable effect, the capacitor value had to be raised or

lowered by an order of magnitude.

• The same stability conditions were found both in the 21 junction arrays considered

in figures 6.7 - 6.9, and in arrays with as few as 7 junctions. The nature of the mod-

elling program precluded smaller arrays from being tested.

Extensions of the Work :

There are a number of obvious extensions that could be made to the work on

tunnelling junction arrays.

Firstly, it would be interesting to consider the full capacitance matrix of such a

system. The present model includes only tunnelling and grounding capacitance.

Certainly the effect of non-tunnelling stray capacitance between next nearest neigh-

bour junctions should be considered. However, this could only be accomplished after
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accurate geometrical modelling of proposed experimental devices. Initial work in this

area by Asen Asenov is noted in §2.1.1.

Secondly, modelling of additional common experimental techniques might be per-

formed. The measurement of array frequency response under a.c. bias is an experi-

mental technique applied [491[121, Chapter 2], and theoretically considered [122,

123]. Some modelling work computing array spectra is under way. However present

algorithms are computationally exorbitant, and prone to round off errors.

Finally, the effect of stray charge in the vicinity of single electronic systems is

thought to be critical to their operation [81]. Such charge will be gated by strays to

array electrodes to give,

+ (2C+C0)01 -	 = Qi	 (6.5)

where Qi may now take on fractional values. The effect of such fractional charge

sets should be qualitatively similar to that of component variation. There are two

important differences between the two, however. Firstly, the Q i are independent of

electrode potential. The 'virtual solitons' produced will therefore have differing mag-

nitude and an exponential decay constant of X. rather than 2X. Secondly, a single

external charge gated to a number of junction electrodes will produce a set of Q i far

more correlated in nature than considered in the work on component variations. These

differences mean that the detailed and quantitative effects of external charge may be

far different from that of component deviation. An analysis of system stability under

the influence of static external charge would be important. (Note that non-static

external charge is considered in §6.3.1, associated with system cross-talk.)

To summarise, we have extended the treatment of Bakhvalov et al. to include compo-

nent variation in tunnelling junction arrays. This better models real life devices. It was

found that such arrays are remarkably resistant to component variation, up to a stan-

dard deviation of approximately 30%. This is independent of whether component de-

viation is random or correlated. We repeat that for the hanging resist fabrication tech-

nique, estimates of variation in components of x1.25 Cjonc tion have been reported

[50]. The system is also resistant to extreme variation of a single component, no no-

ticeable effect being produced until that component is perturbed by over an order of

magnitude. Finally, it was noted that the best performance of such systems is obtained

with grounding capacitances Co << C. However, even for Co >> C, and with the

reduced Vthresh that results, array stability remains for component values that vary

with deviation less then 30%.



6.2 Gated Turnstile Devices

Results obtained from the study of gated turnstiling devices are recorded and dis-

cussed. We are especially interested in the frequency response of such devices, and

the area of control parameter space within which they operate. Two particular types of

turnstile are considered. The four junction gated turnstile was originally suggested by

Esteve and fabricated by Geerligs et	 [9, 10]. It is a simple system with the direc-

tion of electron flow solely governed by differential bias of the junction array.

A three phase device has been suggested by experimentalists at Glasgow [124] and

independently considered by Urbina and others [63, 109].

The equivalent circuit schematic of the modelled three phase device is shown in

figure 6.12. Its operation is described in detail in §6.2.2. The flow of electrons is

controlled by three gate voltages and as such, the device is expected to have advan-

tages over a single phase system. Three gate signals will give greater control of junc-

tion bias conditions, allowing flexibility in optimisation. Thus, better stability and

frequency response might be available. However such a system has greater complex-

ity and this may effect its area of operation in control parameter space. Calculation of

this area is considered in some detail. As with tunnelling junction arrays the effect of

component variation on device stability is also considered for the three phase

turnstile.

6.2.1 Simple Turnstile Devices

Figures 6.10 - 6.11 summarise the main results obtained from investigation of a sim-

ple four junction turnstile with tunnelling junctions of capacitance C, and tunnelling

resistance R. In figure 6.10 a gating capacitance of CG = C/2 is assumed, and the

turnstile is biased close to the centre of its area of operation in VA ,VG space (values

of VA = -VB = -0.35 V/(e/C), and VG = 0,-2.0 V/(e/C) were used). Ideal conditions

were assumed, ignoring thermal fluctuations and macroscopic quantum tunnelling.

Frequency Response :

Figure 6.10 shows that at low frequencies the device does act as an electron turnstile.

However as frequency is raised towards the critical value fait = 1/CRt, typical tun-

nelling times become comparable with the period of the driving signal t = 1/f.

Imperfect device operation results. From figure 6.10 it can be seen that a 1% error

rate corresponds to f fcri t/5. This places limits on the speed of proposed logic cir-

cuits based on single electron effects, and on the use of such a system as an <i> = ef

current standard.
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Fig 6.10 Graph of number of clocked electrons versus clocking frequency
for a gated turnstile device running over 1000 characteristic time periods CRt
(where the turnstile's junctions have tunnelling resistance Rt and capacitance C)
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Fig 6.11 Graph of Area of Tumstiling Operation versus Gate Capacitance
for a simple gated turnstile.

Area of operation is in control parameter (Vgate X Vbias) space.
'Detailed Model' calculations are from the Monte Carlo model, while the
'Simplified Model' is based on a linear programming approach.
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The modelled data of figure 6.10 is only accurate to 0.1%. However at approximately

these levels of accuracy macroscopic quantum tunnelling and other dissipative effects

come into play for the double junctions of many real systems [48, 50].

Due to the symmetry of this system, it is also possible to easily derive the T —> 0,

non-MQT accuracy of the turnstile analytically. For electron injection there are two

possible sets of tunnelling processes. In the first, an electron tunnels from the source,

via electrode 1 of figure 5.3, to the central electrode - the obvious route. In the second,

tunnelling across C2 occurs first, producing an 'electron-hole' pair. Then a tunnell-

ing event across C 1 annihilates the hole. Both of these routes are equally likely, and

have the same set of tunnelling probabilities 1- 1 ,r2 for first and second events. For

the above bias conditions,

1	 r
ti,
	 1

rl = C/35 CRt	 I-2= „.j 1 CRt

(Electron ejection has identical r 1 ,r2 .) Using P(t) = 1 — exp (-Ft) as the probability

of the next tunnelling event occurring at time t, the probable total time of electron

injection can be calculated. This integrates to give the probability of electron injection

occurring before the gate voltage changes,

-;P(t<i) = 1-2 [exp(41 ; ) — 1] + ri  [exp(r2 ) — 1]	 (6.7)
(11-1-2) 	(1-2-1-1)

which gives the error rate for arbitrary driving frequency f = lit. Although not

shown graphically, this analytical result agrees with the Monte Carlo simulation result

shown in figure 6.10.

Operating Area in Control Parameter Space :

Figure 6.11 shows the legal area of T -4 0 operation of the turnstile in control

parameter space (VA, VG space). This is shown as a function of the ratio C G/C. The

broken curve is calculated using the linear programming technique, while the solid

curve is obtained from a purely Monte Carlo model. Each data point on the Monte

Carlo curve required calculation of several hundred points in VA,VG space - testing

repeatedly for perfect turnstiling action.

As expected, the area of turnstiling is in inverse proportion to the value of gate

capacitance. The system is governed by the fractional control charge qc on the

central electrode, produced in the main by the gate voltage VG acting through CG.

As CG is reduced, the magnitude of qc becomes less sensitive to VG and so

(6.6)



turnstiling will occur over a greater range of VG values. This is clearly shown in

figure 6.11.

Note the difference between the results of the linear programming and Monte Carlo

models at low CG. Although originally thought to be a computational artifact caused

by pixellation errors in the Monte Carlo plots, this discrepancy was actually due to

oversimplification of the linear programming model. The model assumed that perfect

turnstiling was governed only by the events described in figures 5.6-7. However at

low CG it was found that alternate events may become critical, and these make per-

fect turnstiling is less likely to occur. This is a problem of great importance when

dealing with complex systems. Under certain bias conditions a number of different

event sets can lead to the same overall system state. This problem will be more clearly

appreciated as the three phase turnstiling device is considered.

6.2.2 3-Phase Turnstile Devices

To aid in the analysis of such systems, some simplifying assumptions are made. Only

symmetrical devices are dealt with; with the outer junction capacitances Coo

identical, outer gate capacitances Coots identical, and so on. The equivalent circuit

schematic of such a 3-phase turnstile is shown in figure 6.14. Secondly, we assume

unless otherwise noted, that gate voltages swing from V L = 0 to their VH values.

Finally turnstile CG values are only allowed to vary from C/10 ---) 10C. It is

assumed that gating capacitances smaller than C/10 are physically impracticable,

while very large CG values give negligibly small areas of legal turnstiling.

Calculation of Legal Turnstiling Area :

Figures 6.12 show the important tunnelling events that govern the operation of the

three phase tunnelling device of figure 6.14. These are the only events that need be

considered as long as any component value varies by less than an order of magnitude

from nominal capacitance C.

The seven critical allowed and disallowed state transitions were distilled from a large

number of possible state transitions by iterative application of the Monte Carlo and

linear programming techniques. Initial guesses, based on experience of other systems,

were plotted by the linear programming method. Then the Monte Carlo modelling of

particular points in parameter space was used to refine these guesses.

Figure 6.13 shows some of the plots produced. A large number of Monte Carlo points

are used to show the close correlation between the two methods. In practice, fewer

test points are needed to predict which state transitions prove critical to correct device
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Fig 6.12 The following schematics describe the important tunnelling events which
govern the operation of a three-phase gated turnstile.
The reference numbers 1...7 correlate with similarly numbered lines on the graph of
legal turnstiling area in VA,VH space of figure 6.13. Each event corresponds to an
associated bounding line of the legal turnstiling area.
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Fig 6.13 Plots of legal operating area in control parameter space for a
three-phase gated turnstile device, The device modelled is that of figure 6.12.

In all the figures, parameters Coutj = C, Cinnj = C/10, Cinns = C have been used,
with Couts varied for each plot.

The 'circles' were produced by successive runs of the Monte Carlo modelling
program at differing VA, Vii, testing in turn whether perfect tumstiling action
occurred.
The lines are formed by the linear programming model. Labelling numbers
beside each line refer to the critical events of figure 6.12 which define their
position.



operation. Linear programming assumes T -- 0, while the Monte Carlo points were

calculated at 13 = Tc/T = 30. Turnstiling accuracy is determined over 1000 time

periods, each some 100 times longer than the characteristic time period CRC.

The degradation of turnstiling for small (VA) bias voltages can easily be seen as a

discrepancy between the Monte Carlo and linear programming results. At small bias

voltages, junctions are operating with applied charge close to their critical charge.

This means that thermal fluctuations are more likely to cause errors in operation.

Also, tunnelling rates are reduced. Thus correct operation will only occur at low

frequencies. In practical circuits a trade off between such errors and the greater self

heating of devices operated at higher bias voltages [109] must be made.

At very high (VA) bias conditions, errors in turnstiling are generally associated with

system breakdown. Such bias conditions (aided by thermal fluctuations) raise the

Coulomb blockade of junctions allowing electron avalanche and dramatic degradation

in system performance.

Degeneracy of State Transition Sets :

This high bias region of Figure 6.13d is of particular interest. Here turnstiling occurs

in two distinct regions of VH. A more detailed look at the way electrons are trans-

ported through the turnstile shows that different sets of state transitions can lead to

identical final results. The state transition sets are degenerate. For instance if

[ X X X 1 represents the number of excess electrons in the three central electrodes of

a three phase turnstile, then the following state transitions are all effectively identical.

Each represents the transfer of an electronic charge from source V A to sink VB.

[ 0 0 0 ] --> [ 1 0 0 ] --> [010] -4 [001] -4 [ 0 0 0 ]

[ 0 0 0 ] -4 [00-1] --> [0-10] --> [-100] -4 [ 0 0 0 ]

[ 0 0 0 ] -4 [ 0-1 1 ] —+ [ 0-1 0 ] —* [-1 0 0 ] —> [ 0 0 0 ]

[ 0 0 0 ] [-1 101 -4 [010] -÷ [001] -4 [ 0 0 0 ]

electron transfer

hole transfer

e-h creation

e-h creation

In the plots of figure 6.13 the major transport process is found to be direct electron

transfer. However current is also carried by a minority e-h creation process. In the

plot of figure 6.13d, particular component values and high bias produce regions of

legal turnstiling where the two types of process are separated. The lower region of the

'V' conducts through electron transfer, the upper through e-h creation.

Note that for device component values <C/10 or > 10C other allowed and

disallowed state transitions may be found to be critical.



Comparison of Simple and 3-Phase Turnstile :

Figure 6.15 shows the frequency response of a three phase turnstile and compares it to

that of a simple four junction device. The curves are taken at T --> 0. Both turnstiles

have junction capacitances C and gating capacitances C/2. It is impossible to com-

pare devices with equal junction capacitances and voltage biases, for each acts as a

turnstile at differing bias points. Therefore each plot is representative of a class of

device; we compare two turnstiles with equivalent component values operating in the

middle of their respective ranges. Note that the critical time periods are t = 1/2f,

AT = 1/3f for the simple and 3-phase turnstiles respectively. Thus in a given time

only 2/3 of the electrons transferred by the two phase device will be transferred by the

three phase device - even though both systems have the same number of tunnelling

junctions.

Ignoring this handicap of 2/3, the three phase device does have a high frequency ad-

vantage because of its ability to bias the tunnelling junctions more effectively. This,

however, is only a factor of some 20%. Including the 2/3 handicap puts the three

phase turnstile at a disadvantage. The 3-phase turnstile does bias its tunnelling junc-

tions closer to their critical values for its unhandicapped 20% improvement in fre-

quency response, however. Thus it may be of use in applications for which ultra low

device self heating is crucial.

Another disadvantage of the 3-phase turnstile is its smaller operating area in control

parameter space (compare figure 6.11 with figures 6.16-17). This is a result of its ex-

tra complexity. One reason for investigating this system was the possibility of greater

control over bias voltages. It was thought that large gate voltages could increase elec-

tron tunnelling rates and therefore operating speed. However because of the smaller

operating area, the practical effect of large gating voltages is to produce electron

avalanche, destroying any turnstiling action.

Area of Operation Under Component Deviation :

Figures 6.16 - 6.17 graph the calculated area of turnstiling action of a 3-phase device

for a large range of component capacitance values. Figure 6.16 gives these areas for

VL = 0.0 V/(e/C), the low voltage gate bias used in previous turnstiling results.

Figure 6.17 gives the same results with V L = 0.2 V/(e/C), at which the largest areas

of turnstiling action can be obtained for a given C. Small improvements in turnstiling

area can be made by varying this V L value.

The other main conclusions drawn from these graphs are threefold. Firstly, as with the

simple turnstile, large areas of operating area require small gating capacitances.
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Fig 6.14 Schematic of three phase turnstile device, showing the time dependance
and magnitude of gating potentials.
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Fig 6.15 Graph of transferred electrons through simple and three phase turnstiles
versus fraction of junction critical frequency.
For these calculations devices have junction capacitances C, gating capacitances C/2.
Bias voltages on the simple device are ±0.2 V/(e/C), with gate cycling between 0.0,
-2.0 V/(e/C). Bias voltages on the three phase device are ±0.225 V/(e/C), with gate
cycling between 0.0,-1.2 V/(e/C).
'Three Phase Modified' plot is 3/2 times that of the unmodified graph (accounting for
differing overall throughput times) to ease comparison.
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Secondly, unless the condition Couts > Cinns is met, no turnstiling will occur. Without

this condition, an electron tunnelling from the voltage source into the first electrode

will not be able to tunnel further unless the forward bias is so large that system break-

down happens. Finally, given Cows > quits, the system is most sensitive to changes

in Cows . Variation in outer gating capacitance will effect device performance to a

somewhat greater extent than similar changes in inner gating capacitances or junction

capacitances themselves. Thus in fabrication, particular attention should be paid to

ensuring close control over outer gating capacitances.

Summary :

We have compared the operation of both simple and 3-phase, four junction turnstiles.

Although initially it was thought that the 3-phase device would be preferable, our

models show this not to be the case. Under typical operating conditions the 3-phase

device does not exhibit a frequency response advantage. Also, in real multi-junction

systems deviation in component values due to fabrication errors is unavoidable. Such

component deviation will perturb the area of turnstiling. Therefore a large nominal

area of operation for any device is important in the construction of multi-device sys-

tems - to allow a tolerance to component deviation. For given component values, the

simple four junction turnstile allows the largest area of stable operation.

Some preliminary work on the effect of component variation on a 3-phase turnstile

has been completed, considering a symmetrical system. Investigations are underway

into general component deviations in a simple turnstile, as was done for tunnelling

junction arrays in §6.1.2. Both systems with two buffer junctions to source (i.e the

device above) and multiple junctions buffering to source require study. As noted

above, such multiple junction buffers should act as a barrier to macroscopic quantum

tunnelling effects.



6.3 Coupled Junction Arrays

6.3.1 Reasons For Studying Coupled Systems

As noted above, a critical concern in the design of more complex single electronic

systems is their sensitivity to external charge. This sensitivity is the reason such

systems are suggested as accurate electrometers [8, 11]. The effect of static external

charge was discussed in §6.1.2. The similarity between such effects and those of

component variation in a tunnelling junction array were noted. The work of §6.1.2

suggests that arrays of junctions may have characteristic structural immunity to static

charge.

The effect of non-static charge (e.g trapping/detrapping of electrons in semiconductor

systems) is liable to be much more serious as a 'killer effect' in single electronic sys-

tems. The important turnstiling action discussed in §6.2 relies on a gate voltage vary-

ing the fractional charge on one or more electrodes of a tunnelling junction array.

This is similar to the modification of electrode charge that would occur as the result of

a trapping/detrapping electron coupled to it by system strays. The success of gated

turnstile devices as controllers of electron flow underlines the problem of external

non-static charge. Such problems can only be eliminated by careful system shielding

and fabrication technologies which reduce to a minimum the presence of charge traps.

Another final source of non-static charge - impossible to counteract externally - is the

effect of charge flow in one part of an extended system coupled to other parts by stray

capacitance. Cross-talk is a serious potential obstacle for the development of practical

capacitive circuits, and merits considerable study. Results on the sensitivity of sys-

tems to cross-talk immediately define maximum device densities for practical fabri-

cation approaches, and give indications of whether further isolation than simple de-

vice distance is needed. Such isolation may be difficult to construct for ultra small

devices, and its need should be avoided if possible.

As a start to the study of cross-talk in single electronic systems, two types of capaci-

tively linked device are considered. Firstly, coupled tunnelling junction arrays are

modelled. Then simple coupling of four junction turnstiles is studied.



6.3.2 Coupled Tunnelling Junction Arrays

Model Under Study :

In studying coupled junction arrays, a specific system is modelled - a set of parallel

6-junction arrays fabricated using a Schottky dot on silicon, lateral metal-semicon-

ductor-metal approach [60]. Although the fabricated device has six parallel arrays,

only the results for two arrays linked by capacitive strays are presented. No new

results are seen on scaling up the model. As the original purpose behind this area of

work was to provide predictions of device operation for the experimental group fabri-

cating this device, we concentrate on its IV characteristics.

A schematic of the modelled system is shown in figure 6.18, and consists of two,

6-junction tunnelling arrays and the addition of 'nearest electrode' coupling strays.

This gives a first order approximation to the full capacitance matrix of such a system.

Estimations of junction capacitances and grounding strays were made using the best

approximation available at the time - the 2D simulation originally designed for use on

MESFETs and HEMTs [82]. These results are discussed in Chapter 3 and give

C = 3.2 aF and Cground 7-1 6.0 aF. This gives a critical temperature of device opera-

tion of Tc = 290 K. The results of applying modelling tools to this system are shown

in figures 6.19 - 6.21.

Results of Temperature Variation - Minimal Cross-talk :

An initial result of use to the experimentalists working on this device was the predic-

tion of IV characteristics as a function of temperature. These show whether a critical

temperature of 290 K would allow useful experimental measurements at liquid

nitrogen temperatures. Figure 6.19 shows the predicted IV curve for the system with

small stray capacitance (i.e minimal cross-talk) at approximately liquid nitrogen, liq-

uid helium and ultra low temperatures. From array theory above, a threshold voltage

of Vthresh = 0.19 V/(e/C) and soliton length of X- 1 = 0.78 junctions are calculated.

With such short soliton length the arrays are not expected to perfectly follow a theory

built around the concept of extended solitons.

It can immediately be seen that at temperatures around that of liquid helium and be-

low, the system exhibits clear Coulomb blockade characteristics. However thermal

fluctuations at 77K effectively destroy the blockade. The modelled threshold voltage

agrees well with the theory presented above. Experimentally therefore, temperatures

of approximately 4 K should be adequate to investigate the linked array system.

Effects of Finite Cross-talk :

Figures 6.20 and 6.21 show the asymptotic and blockade region views of the linked

arrays at low (i.e below 4 K) temperatures, but with a variation of stray coupling
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Fig 6.19 IV Curves for two linked arrays of six junctions showing temperature variation.
Device has grounding capacitances 2C, and strays linking the arrays of 104 C. Junction
capacitance C is estimated by geometrical modelling (see §3.3.1) and corresponds to a
critical temperature of 290K.
Curves are calculated over 3x104 events, approximately 2500 electrons transferred.
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capacitance. Strays from 10-4 C (which should give minimal cross-talk and indepen-

dent array action) to 10+4 C were considered.

First, and most obviously, large array coupling capacitance does have a marked effect

on IV characteristics - both asymptotically and in the blockade region. Asymptotic-

ally the blockade offset voltage is reduced from approximately 0.5 V/(e/C) with

minimal strays, to approximately 0.25 V/(e/C) at Cstray = 10+4 C. At such high

coupling capacitances, the two arrays are highly correlated, and to all intents act as

one. In the blockade region, Vthresh is also reduced by the effect of large coupling

strays, from approximately 0.15 V/(e/C) to 0.10 V/(e/C).

The second important result from these graphs is the magnitude of Cstray required to

produce such effects. Over the range 10- 4 < Cstray < 100 there is only a small varia-

tion in offset voltage, and very little change in threshold voltage. The larger changes

in device operation occur only when Cs tray > Cjunction . This result is borne out by

similarly collected data for other Cstray/C values. In practice, this means that if stray

capacitances can be kept smaller than junction capacitances, the strays should have

little effect on average current flow in a tunnelling junction array. In particular, they

should have minimal effect on the threshold voltage of the array.

The detailed, discrete nature of current flow in these coupled arrays makes analysis

difficult. This was the main reason for choosing to model their operation. However at

high voltage and average current flows it is possible to make simplifying assumptions

that allow some direct analysis - particularly of the asymptotic offset voltage, Voff.

For a single junction array, with Co .— 0, the offset voltage can be obtained by com-

paring junction critical charges with the average charge across each junction. For an

N junction array,

and
C

Ceff = R:f
e (N-11

Qc = -2- OTC)
CV

Qave = N (6.8)

Setting Qc = Qave gives,	 Voff = i (N- 1)	 (6.9)

For a single junction array with finite Co, a similar process can be followed. The

effective capacitances (and therefore critical charges) of junctions will however vary

throughout the array. If the effective capacitance of a C/Co 'ladder' of n rungs is

known to be fo then these can easily be obtained (see Appendix F, Effective Capaci-

tance of Ladder Circuits). The maximum and minimum effective impedances of an N

junction array will then be,
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	 fast-iv2
2

41/21 1 f(N-2)12
frsi-1 	and (6.10)

N odd

N even

Junction 3

Junction 2

Junction 1
(end junctions)

An average of these allows a good estimate of Vaf which applies for all N, X,. This

is in contrast to the limited (and incorrect) estimation formula stated in [11].

Results for the asymptotic response of linked arrays can be obtained similarly. Ap-

pendix F gives formulae for linked N junction arrays where Co ---> 0. However for

more complex systems it was found simplest to use the Th6venin calculation routines

of the General Network Solver. Figure 6.22 graphs critical charges for junctions of

the above modelled array, where N = 6, Co/C =2. From this graph the limiting off-

set voltages of the system are calculated at Vinin = 0.26 V/(e/C) and

Vmax = 0.52 V/(e/C), in agreement with the modelled results.
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1E-02 1E-01 1E+00 1E+01 1E-F02 1E+03

Stray Capacitance Value Cstray / C

Fig 6.22 Graph of junction critical charge versus stray linking capacitance
for a pair of six junction arrays with Co/C = 2. Symmetry means that only
three junctions need be considered when calculating such charges.

These results of course only apply to the IV characteristics of tunnelling junction

arrays. Such systems operate without the need for accurate control of single electrons,

dealing only with average electron flow. However these results do imply that junction

arrays are remarkably resistant to the effects of capacitive strays, as well as those of

component variation.
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6.4 Coupled Gated Turnstiles

Attention is now turned to devices which do require the accurate control of single

electrons, and may therefore be less resistant to coupling strays. We consider turn-

stiling devices, and in particular the four junction gated turnstile of §6.3. The results

of §6.3 imply that such a turnstile will be an important component of practical single

electronic systems. The conditions of coupling under which ideal turnstiling is al-

lowed are considered. The accuracy of such coupled systems in transferring more

realistic streams of electrons is also considered. The accurate transmission of such

bitstreams is vital if real data processing is to be achieved.

6.4.1 Coupled Four-Junction Turnstiles

Modelled System :

A schematic of the system investigated is shown in figure 6.23. It consists of two

four-junction turnstiles linked by a simple set of 'nearest electrode' stray capaci-

tances. (Note that in figure 6.23 both top and bottom stray capacitances are super-

fluous due to the ground line.) To aid comparison, the turnstiles themselves use the

same components as those of §6.3. These have constant junction capacitance C, and

gate capacitance C/2. The choice of gate capacitance is a trade off between operating

area in control parameter space and the difficulties of practical fabrication. Each

turnstile of the system is biased by the same VA and range of VG. By changing the

sign of the bias potentials on the second turnstile it is possible to consider electron

flow both parallel and anti-parallel to flow in the first turnstile.

Figure 6.25 shows initial results of modelling the system of figure 6.23. The fre-

quency response of each turnstile is calculated over 104 periods of VG. Both turn-

stiles are biased at VA = 0.2 V/(e/C), VG = 0.0,-2.0 V/(e/C). This is well within the

legal area of turnstiling operation for an uncoupled turnstile. Superimposed on these

traces is the response of such an uncoupled turnstile, which indeed shows ideal

response at low frequency. Large coupling capacitances of 104 C are used for the

plotted results. Results were also obtained for smaller values of Cs, and these tend to

the uncoupled response as Cs is reduced.

Two general conclusions can be drawn from these results. Firstly, as expected, the

inclusion of strays modifies the legal operating area of each turnstile. In this case, the

area is modified so much that our experimental bias points now fall outside, and im-

perfect turnstiling occurs. Secondly, the system symmetry is broken. This cannot be

explained only by a change in turnstiling area. Such a change effects both turnstiles

equally, for both parallel or antiparallel electron flow. Here there is a 5% difference
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Fig 6.23 Schematic of 2-phase, four junction gated turnstiles linked by stray
capacitance and driven by separate bias voltages. Second turnstile can be driven
so that electron flow is parallel or anti-parallel to electron flow in the first.
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Fig 6.24 Graph of Critical charge (the charge magnitude across a
junction which allows tunnelling) versus Stray capacitance, for two
identical four junction gated turnstiles.
Junction capacitances C, gate capacitances C/2.
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Fig 6.26 Plots of legal operating area in control parameter space for capacitively
linked 2-phase gated turnstile devices. The devices are those of figure 6.23.

Both figures have junction capacitances C, gating capacitances C/2, and strays
linking the two devices of C/10.

The 'circles' were produced by successive runs of the Monte Carlo modelling
program at differing VA, VG, testing in turn whether perfect turnstiling action
occurred. Filled circles represent perfect turnstiling action, open circles represent
perfect turnstiling action minus one electron. Only the electrons driven through
one of the two devices are recorded.
The heavy lines are formed by the linear programming model. Labelling letters
beside each line refer to the defining events of figure 5.6. Hairlines take into
account the possibility of single electrons present in the opposing turnstile.



e ,
quit ' -S (1 - '8-7) (6.12)

in the flow through two identical devices. Under parallel flow both turnstiles show

less than perfect action, while for antiparallel flow the devices are pushed past break-

down.

Analysis of Results :

To further analyse the modification of operating area with respect to system strays,

the concept of critical charge is used. As noted above, the charge needed across a

junction to cause tunnelling is dependant on both the junction capacitance and the

effective impedance of the rest of the circuit. As the external circuit of a junction is

varied (by introducing strays) its critical charges will also vary. We expect changes in

the action of a system to be proportionate to changes in these critical charges.

For the system of figure 6.23, the change in critical charge can be trivially obtained

from circuit parameters; for outer junctions,

e (16 + 64s + 75s2 + 24s3)
cicnt - 24 L 4+ 13s+ 12s2 + 3s3 )

(6.11)

where s is a parameter defined by Cs = C/s. This formula is more enlightening at

limiting values of s. For Cs < 10- 1 C, for instance, it approximates to,

Thus at low coupling capacitance the change in critical charge is proportional to the

magnitude of the coupling. (For this system the constant of proportionality is a func-

tion of gating capacitance.)

However, the simplest way to investigate quit is use the critical charge calculation

module of the general network solver to graph their value against Cs. This is done

in figure 6.24. For low Cs all critical charges are qui t = e/3, but as Cs is increased

licrit -4 e/6, reducing the legal area of turnstile operation, by allowing more oppor-

tunity for turnstile breakdown for a given set of bias voltages.

Linear programming results based on these critical charge values are shown in

figure 6.26 (for strays Cs = C/10, the point where major change in critical charges is

starting to occur). Overlaid on these graphs are Monte Carlo plots of legal turnstiling

area. Comparison of figures 6.26 and 5.7 shows the reduction of legal turnstiling area

caused by the modification of system critical charge values.

Greater insight into system symmetry breaking can also be gleaned from figure 6.26.

Firstly note that the Monte Carlo data contains points where perfect turnstiling action

occurs, and where one electron is lost. Further modelling shows that for these points,
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one electron is lost independent of the number of electrons finally transferred. The

immediate implication is of an electron being 'lodged' at a particular device elec-

trode. Such an electron may perturb the potential map of the system, 'locking' itself

in position, and effecting the remaining electron flow through both turnstiles. This is

one clear possible source of symmetry breaking with random chance determining

which turnstile first has an electron lodge in its structure.

Secondly, note the discrepancy between the Monte Carlo modelled area of turnstiling

action and that indicated by the linear programming technique. The Monte Carlo

areas follow the critical boundaries of the linear programming technique, but are

offset from them. This suggests normal turnstiling - perturbed by a fractional charge

caused by the charge configuration of the other operating turnstile.

Modification of the linear programming boundaries of one turnstile due to an electron

trapped on an opposing turnstile can be calculated by the modelling program. This

was done and the best fit results are shown as hairlines overlaid on figure 6.26. It is

found that no one opposing electron configuration reproduces the Monte Carlo data.

For instance, in parallel electron flow, line C of figure 6.26 is modified to fit the

Monte Carlo data when a single excess electron occupies electrode 1. Line D fits

when the electron occupies electrode 2 (the central electrode). However all the fitting

configurations represent situations of normal electron flow in the opposing device.

This indicates another possible source of system symmetry breaking. Instead of a

single electron lodged at one device electrode, one turnstile may be lodged into a

particular set of state transitions for electron transfer. The charge configurations of

these state transitions would then directly effect the probability of electron transfers in

the opposing turnstile - thus altering the current through that device.

From the results of figures 6.24 and 6.26 then, a more detailed explanation of the re-

sponses of figure 6.25 can be given. At Cs = 104 C the 'iris' of linear programming

lines formed by the area of turnstiling action has been reduced until the bias points of

the two turnstiles are in areas of imperfect turnstiling. The first random tunnelling

events in the system may induce an electron to lodge in one of the turnstiles. More

likely, they will give events in one turnstile a self perpetuating priority. Since the

system is in breakdown (i.e electron flow is a combination of blockaded and non-

blockaded effects) this will change the transmission coefficient of each device. The

result will be differing numbers of transmitted electrons through each side of the sys-

tem in a given time. Finally, the differing charge configurations experienced by each

turnstile as the other is biased for parallel or antiparallel electron flow will modify

both non-ideal transmission coefficients and the parameters under which ideal turn-

stiling action is seen.



For practical systems we are less interested in coupling effects than in the conditions

under which they can be avoided. A simple approach would modify each of the event

lines bounding the area of ideal operation of a system according to all possible cou-

pled charge configurations. The minimum resultant area is sure to give stable opera-

tion. However this would unnecessarily restrict the area of ideal operation. Work is in

progress to develop a scheme for choosing appropriate boundary events automati-

cally.

6.4.2 Bit Error Rates in Coupled Turnstiles

The above results deal with single electron devices that clock a controlled number of

excess electrons from source to drain via applied gate frequency. Such systems are of

interest as electrometers. However for use in digital systems, the ability to cope accu-

rately with more realistic bit patterns (presence and absence of excess electrons) is

necessary.

Description of Results :

As a first step in investigating such information flow, the circuit of figure 6.23 is again

considered. A '1' can be injected into the turnstile by biasing VA at some level over

the period of turnstiling (controlled by the frequency of square wave applied to VG).

A '0' can be injected by biasing VA =0 over the same period. If an appropriate '1'

or '0' is ejected from the turnstile at the end of this period then we may consider the

bit to have been transferred successfully. In these experiments a pseudo-random bit-

stream with an equal proportion of '1's & 'O's was used.

Results of investigating bit error rates are shown in figures 6.27 - 6.29. Bias condi-

tions both at the centre of the device turnstiling area, and in the areas of imperfect

turnstiling, are considered. Unless noted otherwise, both turnstiles are active when the

measurements are taken. However data is only collected from one turnstile.

Figure 6.27 show the number of successfully transferred bits through a coupled turn-

stile with bias conditions around the boundary line 'C' of figure 6.26. The solid trace

[0.21,-2.3] is well within the perfect turnstiling area of a device only transmitting

'l's. Successive traces are closer to the boundary, with the final one [0.15,-2.6] out-

side it. The hairline trace [0.23,-2.1] is biased in the centre of the legal tumstiling

area (again for a device only transmitting 'l's). It is immediately obvious that it is

more difficult to perfectly transmit a random bitstream. This is because additional

possible device states must now be considered, some of which lead to imperfect
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transmission. Thus even at coupling capacitance values of < 10- 4 C perfect turnstil-

ing action has already broken down, unless the device is biased centrally.

Two other structures are also evident in the traces. Firstly, below Cs .--..- C, the drop in

correctly transferred bits is smooth and overlaid with regular peaks. The position of

these peaks varies with bias. They are most clearly seen on the traces of parallel elec-

tron motion. Secondly, between C <C < 10C, a large peak is seen, both in the

graphs of parallel and antiparallel electron motion.

Analysis :

For an explanation of the large peak between C <C < 10C, again consider figure

6.26. Here the area marked out by lines 'A' to `D' represent perfect turnstiling, with

one electron clocked through in a single time period. There are geometrically similar

areas mapped out for larger values of VG. In these regions VG is large enough to

avalanche a number of electrons into the central electrode of the device during the

electron input phase. On average the current through the device remains the same,

controlled by VA. However detailed control of electrons is lost. Once such control is

lost, the boundaries of successive regions (increasing VG) define a modulation of the

transmission coefficient of real bitstreams. In each successive region a greater number

of sets of state transitions are possible, and the magnitude of modulation is less

pronounced.

In figure 6.27, the increased stray capacitance produces a drop in qcri t values from

1/3 to 1/6. To first order, this is equivalent to halving the scale of the V G axis. This

moves the device bias point out of an area of detailed control into the next similar

area of higher VG. As the bias point moves through this area, the modulation peak

between C & 10C is produced.

The smaller modulations of the fall-off traces of figure 6.27 are the result of different

phenomena. As noted above, various sets of state transitions may produce the same

effect - one bit moving through the turnstile. Which of these conduction routes pre-

dominates depends on bias and coupling conditions.

As an example, for the system of figure 6.23 with turnstiles biased at [0.23,-2.1] and

[0,0] respectively ( i.e [VA,VG] scaled to 1/(e/C) ) there are two main electron con-

duction paths. Which path is taken depends on the first state transition. The nor-

malised probability of the transition [0,0,0] --> [1,0,0] can be calculated as,

12 + 27s + 17s 2 + 6s3 
r10
	 4 (4 + 1 ls + 9s2 + 3s3)

while the contribution of the transition [0,0,0] —> [4,1,0] is,

(6.13)



(1 + s)(4 + 13s + 6s2) 
r_11 - 4 (4 + lls + 9s2 + 3s3)

(6.14)

( s is given by by Cs = C/s ). These results assume no excess electrons in the oppo-

site turnstile. At very low coupling capacitance there is a 50% probability of either

event occurring, and both lead to perfect electron transfer. At the point where s is

low enough to negate this simple analysis, the [0,0,0] -- [1,0,0] transition will occur

57% of the time.

If effects from the second turnstile are ignored, and only transmission of 'Vs is as-

sumed, then both the above conduction paths are equally valid. In more realistic

circumstances, one of the paths will be more likely to lead to perfect transmission.

Thus as coupling capacitance is varied, both the probability of a given conduction

path occurring and its chance of leading to perfect bit transmission varies. The

structure associated with the fall-off traces of figure 6.27 is caused by the interplay of

a number of such differing conduction paths.

Accuracy for Small Cs:

A problem of practical importance is turnstiling at low coupling capacitance, where

real devices must operate. Figures 6.28 and 6.29 show results of experiments on turn-

stile accuracy under such conditions. Figure 6.28 gives the number of accurately

transferred bits for a turnstile biased in the centre of its area of turnstiling operation.

Two traces are shown, one where the opposing turnstile is active, and the other with a

zero biased or passive turnstile. (Excess electrons induced in this passive turnstile are

included in the model.) Note that in each case only the accuracy of the initial turnstile

is considered. Figure 6.29 expands the active trace of figure 6.28. The fractional

bitstream error is plotted, with up to 10 6 bits modelled to obtain accuracy.

The modelling indicates that for a fractional error in the bitstream y, and stray

capacitance value x=1/s, then x obeys a power law for low coupling. Specifically,

with the second turnstile active,

y = (0.32±0.04) x(1.09±0•05)
	

(6.15)

And with the second turnstile passive,

y = (71.0±9.0) X(1.75±0•05)
	

(6.16)

The results of §6.4.1 suggest that at low coupling, turnstile accuracy should be

proportional to the magnitude of coupling. Work is ongoing to further develop the

detailed analytical link between coupling capacitance and bitstream accuracy.
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Fig 6.28 Graph of bitstream accuracy of a four junction gated turnstile
linked to another through a simple model of stray capacitance (see figure 6.23).
A random (50% Ts and 'O's) pattern of 10000 bits is presented to the input of the
turnstile, and the number of correctly transferred bits measured. Calculations making
up the 'active' plot have a seperate random bitstream in the second device, whereas for
the 'passive' plot the second device has bias potentials held at 0 V/(e/C). Antiparallel
bitstream flow is assumed.
Turnstile junction capacitances C, gate capacitances C/2, bias potentials of ±0.23
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Fig 6.29 Graph of bitstream accuracy of a four junction gated turnstile
linked to another active turnstile by a simple model of stray capacitance.
Plot shows the response for small stray capacitances.
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6.5 Summary

Simulation tools have been applied in the investigation of a number of single elec-

tronic systems. Efforts were concentrated on tunnelling junction arrays and gated

turnstiles as the basic building blocks of such systems. Two practical sources of op-

erating imperfection were considered - component deviation and interdevice coupling.

It was found that tunnelling junction arrays are remarkably resilient to component

variation. Whether random or correlated, such variation has little effect on practical

arrays unless a deviation of greater than 30% is applied. As a result of this structural

resilience, junction arrays are also expected to be far more resistant to the presence of

external static charge than single junctions. Performance of an array is at its best

when the relationship between junction and grounding strays is CG << Cj.

Cross-talk in tunnelling junction arrays was investigated through modelling of a sys-

tem presently under fabrication. It was found that when coupling strays were smaller

than the other components of the array (C 5 << CG ,Cj ) then there was little change

in system characteristics from the uncoupled state.

Gated turnstile devices - which exert control over transmitted bitstreams - are more

sensitive to both component variation and interdevice coupling. This sensitivity is

exhibited as a reduction in the legal turnstiling area in control parameter space. The

turnstiling area is reduced by the effect of coupling capacitance on system critical

charges, and by charge tunnelling in other parts of the system. These effects are

complex - intrinsically as complex as the number of possible system states. However

some insight into their nature was achieved by use of the Monte Carlo and linear pro-

gramming tools developed in Chapter 4.

Small gating capacitances are crucial to optimising turnstile operation. They allow the

greatest are of operation in control parameter space. Resilience to component varia-

tion is then achieved by biasing devices in the centre of this area. It has been pre-

dicted that three phase tunnelling devices (often referred to as electron pumps) would

allow the turnstiling process to be further optimised. In practical systems, however,

their extra complexity reduces their effectiveness compared with single-phase

devices.

Error rates in bitstreams transmitted through coupled gated turnstiles were investi-

gated. For the four junction gated turnstile, bit transmission errors are approximately

proportional to interdevice coupling capacitance at low coupling, Cs < Cj/10.



CHAPTER 7	 CONCLUSIONS AND FURTHER WORK

This work has considered single electronic devices - devices based on ultrasmall

tunnelling junctions, and which rely for their operation on the discrete nature of an

electron. They have great potential as the building blocks of integrable, digital switch-

ing systems, due to their good fabrication tolerances and self quantising logic. Energy

dissipation, nominal voltage and operating speed all scale beneficially as junction

capacitance is reduced.

Single electronic devices do, however, have drawbacks. These include extreme sensi-

tivity to external charge and therefore to system wide cross-talk. Thus new tools for

modelling and analysis are required if systems of practical use are to be developed.

A set of such tools has been constructed; including a general Monte Carlo modelling

program, and a linear programming technique. These tools have been used to study

some of the basic building blocks of single electronic systems; the tunnelling junction

array and gated turnstile.

The conclusions of this investigation are presented below, and fall naturally into three

sections;

• Fabrication and Geometry deals with the information required to construct a useful

equivalent circuit for any given single electronic device.

• Mathematical Models considers the equations used to describe tunnelling in sets of

junctions.

• Application to Specific Systems describes the results obtained when our tools are

used to investigate tunnelling junction arrays or gated turnstiles.

Further work which might be accomplished in each of these three areas is also
presented.



7.1 Conclusions

7.1.1 Fabrication and Geometry

At present, most geometrical capacitance estimates ignore the effect of fringing fields

and thus systematically underestimate capacitance values. This is especially true

when considering metal-insulator-metal junctions formed by hanging resist lithogra-

phy. Accurate capacitance calculation is vital to estimate Tc and the important ratio

Cjunction/Cground. Formulae have been developed which include fringing and therefore

better estimate junction capacitance. These formulae will be of most use applied to

the metal-semiconductor-metal granular systems presently under development.

Capacitance calculations show that practical single-electronic devices operating reli-

ably at liquid Nitrogen temperatures will need to be granular in nature. Present inte-

grable fabrication techniques do not give low enough junction capacitance.

Semiconductor systems report extremely low capacitance values [74]. This is due to

their increasingly quantum nature and the reduced confinement of electrons in quan-

tum dots compared with those in metal-insulator-metal electrodes. However low ca-

pacitance is offset by stray charge problems associated with semiconductor traps. A

detailed assessment of semiconductor systems requires a fuller quantum mechanical

treatment outside the scope of this work.

7.1.2 Mathematical Models

Three models of electron transfer in tunnelling junctions were considered ;

• The microscopic model gives speed and simplicity of calculation, while accounting

for thermal fluctuations. These are the most important source of noise effecting

practical systems at present Tc values. The model assumes purely capacitive

circuits.

• The phase correlation model can describe tunnelling in an electromagnetic environ-

ment, including quantum fluctuations. It assumes only that the relaxation time of the

system is much shorter than the time between tunnelling events. However it is com-

putationally expensive.

• The Lengevin equation model introduces quantum fluctuations heuristically. It

leaves out much of the physics of the phase correlation theory, but allows faster

computation and is compatible with the coding routines of the simple microscopic

model.



Macroscopic quantum tunnelling in systems of junctions is an important 'killer'

process for reliable electron transfer. Multiple junction arrays can act as buffers,

minimising the effect of MQT. This will however decrease the operational speed of

practical systems. The systems will themselves become more complex; requiring the

use of tools such as those we have developed. Note that present computer algorithms

do not account for MQT or cotunnelling processes.

7.1.3 Application to Specific Systems

Tunnelling Junction Arrays :

The properties of ideal, homogeneous tunnelling junction arrays are well described by

the analytical work of Bakhvalov et al. [12]. They are optimised when grounding ca-

pacitance is as low as possible in relation to junction capacitance. This increases the

device operating area in bias space. It increases the size of solitons within the array

and thus their spacial correlation.

To investigate more realistic tunnelling junction arrays with a variation of component

values, additional tools are required. On modelling a wide range of tunnelling arrays

with the General Network Solver, it was found that;

• The array threshold voltage at zero offset bias is a good figure of merit. Variation of

threshold voltage with component deviation is a good indication of array stability.

• Junction arrays are found to be very resilient to component variation. For practical

capacitance values (junction and grounding capacitance within an order of magni-

tude of each other) the devices are stable for deviations of standard deviation

<30%.

• Correlation of component deviation has no noticeable effect over that of random

deviation. Deviation of single capacitance values by an order of magnitude likewise

has no noticeable effect.

This resilience to component variation suggests that tunnelling junction arrays will

have a resilience to static external charge.

Gated Turnstile Systems :

The frequency response of an idealised, single phase, 4-junction turnstile was investi-

gated analytically and by Monte Carlo modelling (microscopic model, T ---> 0). The

error rate of electron transmission increases exponentially with frequency. When

gating capacitance CG = C/2, a 1% error rate corresponds to a frequency 5 times

lower than the critical frequency fcri t = 1/CRt.



Single phase and three phase 4-junction turnstiles were compared. Under typical

operating conditions there is no advantage in using a three phase turnstile. Its extra

complexity reduces the area in operating parameter space in which perfect turnstiling

occurs. Therefore, under normal fabrication deviations, three phase devices are more

likely to fail in integrated systems. Using equivalent tunnelling junctions, no advan-

tage in operating speed was seen for the three phase devices.

Coupled Systems :

When coupling strays are lower than grounding capacitance and junction capacitance

in coupled tunnelling junction arrays, there is little effect on the IV characteristic of

the system. These arrays show a structural resilience to cross talk when charge flow is

steady.

In coupled gated turnstiles two types of deviation must be considered. Firstly, the

effect of coupling on critical charge values. Secondly, the effect of non-static charge

from one part of the system on the remainder. Both reduce the area of legal turnstiling

in control parameter space. The effects are intrinsically complex in nature; however

some practical insight can be gained using our tools. The General Network Solver

provides information on the preferred sets of state transitions allowing current flow

(which sets are allowed, and the probability of each occurring under given bias con-

ditions). The linear programming technique can supply a worst case area of legal

operation for the system. Bit error rates in coupled turnstiles were also investigated,

and work is ongoing in developing general results.

7.2 Further Work

7.2.1 Fabrication and Geometry

The most pressing need is to perform accurate finite element calculations on the

geometry of granular systems presently under fabrication. Comparison of the two

spheres formula with some specific finite element results will indicate just how accu-

rate its geometrical approximations are in practice. Such data will help tune the model

as a good first order estimate of capacitance.

In the longer term, a detailed understanding of charge anomalies in semiconductor

systems must be gained - both considering static and non-static stray charge. The

simulation tools that have been developed are only as good as the equivalent circuit

model describing the system. This must accurately account for such strays. The effec-



tive capacitance of semiconductor systems is very good, but such qualities are of little

use if stray charge problems are insurmountable.

7.2.2 Mathematical Models

The theoretical descriptions of electron tunnelling in ultrasmall, ultra-low capacitance

junctions are mature. They need only be encoded into the present simulation tool rou-

tines. Use of the heuristic quantum Langevin equation to include quantum fluctuat-

ions in the model requires little recoding, at the cost of a moderate increase in com-

putational effort.

More accurate, however, is the full phase correlation theory. This would require ex-

tensive recoding and be computationally expensive, but would not involve change in

the basic algorithms of the general network solver. To speed the simulation, a three

stage approach is required. First, preliminary modelling with one of the simpler sets

of tunnelling equations. Second, calculation of tunnelling probability look up tables -

based on the range of potentials and effective impedances derived in the preliminary

modelling. Finally, a more accurate modelling pass, interpolating from the calculated

look up tables.

Further work is also required to fully automate the linear programming method. This

involves further research into the nature of state transition sets; to discover general

rules governing which transition lines are critical to the operation of any general

system.

7.2.3 Application to Specific Systems

A number of avenues of investigation immediately present themselves. These include;

• A more detailed analysis of symmetry breaking in coupled systems (i.e the phenom-

ena of self perpetuating sets of state transitions, and of excess electrons lodging on

device electrodes). A complete understanding of symmetry breaking will allow us

to avoid over restrictive system bias conditions. These are calculated by the linear

programming technique, but without guiding rules the calculations can only easily

be performed for 'worst case' coupling - avoiding all possible sets of interfering

state transitions. A deeper understanding would limit calculations to only those in-

terfering state transitions that degrade system performance. It might also allow

development of information coding to avoid such interfering state transitions. This

would allow increased tolerance to interdevice coupling.



These principles may also allow the design of systems where the trapping of excess

electrons is desirable (for example the memory cell design of [118]).

• Consideration of coupled, gated turnstiles away from idealised T ---> 0. It would be

useful to compare the magnitude of thermally induced transmission errors with

those due to coupling - and the effect of thermal fluctuations on coupling induced

errors.

• While tunnelling junction arrays are remarkably stable for situations where charge

flow is continuous, they are not as appropriate for the transmission of realistic bit-

stream patterns. In long arrays, soliton energies tend to push excess electrons into

stable, equidistant configurations, with resultant information loss. This can be

counteracted by gating the array (forming a shift register) or slowing transmission

speed (making the interbit spacing in the array greater). Tunnelling junction arrays

are used as buffers to resist Macroscopic Quantum Tunnelling. However unless

gated, the speed of the buffered system will automatically be reduced. The trade off

between buffer blockade resistance and operation speed in practical systems

requires investigation.

Of equal importance are more detailed analyses of basic tunnelling junction arrays

and gated turnstiles. It is important that additional terms in the capacitance matrix are

considered; including next nearest neighbour coupling, coupling to external potentials

and coupling to external strays. However, to do this requires a detailed knowledge of

the system capacitance matrix. This requires information on the geometry of real

systems (including the position of ground planes and voltage sources). It also requires

a more accurate estimation of equivalent circuit values derived from system geome-

try. Such data can only be obtained by finite element analysis of practical systems.



APPENDIX A	 ELEMENTARY STABILITY ANALYSIS OF

TUNNELLING JUNCTION ARRAYS

Motivation :

The modelling of tunnelling junction arrays is discussed in Chapters 5 & 6, with

particular emphasis on the stability of the correlated electron movement through the

array with respect to deviation of component values (the grounding and junction

capacitances making up the array). This was done to model the effect of the natural

deviations that would occur in the fabrication of such systems.

An analytical adjunct to that numerical work is desired.

Theory : [125]

We consider autonomous systems of the form k = — f(x,i) with equivalent equations;

5( = y, Sr = — f(x ,Y)	 (A.1)sly
	 ( y)

dxso that	 = f3( '- -
Y

(A.2)

Equation A.1 describes the system with respect to time, while equation A.2 describes

a trajectory in phase space (i.e in the x,y or x,i plane) which represents the system,

and along which the system progresses as it changes state.

Singular points of the system equations occur when x = 0, y =0 (always on the

x-axis of the phase plane) and correspond to points of stable or unstable system

equilibrium

We can re-write equation A.1 as A = ax + by + P(x,y), y = cx + dy + Q(x,y)

where P,Q are power series with terms of degree >2 (in our specific case a=0, b=1)

and close to a singular point we can assume that they have negligible value. Hence

the system can be approximately characterised (through linear analysis) by the

equation,

S2 - (a+d)S + (ad-bc) =0	 (A.3)

the roots of which indicate how trajectories approach the singular points - and thus

which points show stable or unstable equilibrium.



Application of Theory to Tunnelling Junction Arrays :

The governing equation for a tunnelling junction array with junction capacitances, C,

and grounding capacitances Co, is;

-01);_1 + (2C+C0)Oi - COi_i = eni	 (A.4)

for potential Oi and number of excess charges ni at the ith electrode.

We note that this is a discretisation of;

d24)
— Ce2 

dx2 -
- en(x,t) — C00(x) (A.5)

Where n(x,t) is a discrete variable, only taking on integer values.

Our problem then becomes the investigation of the stability of a set of equations of

the form A.4, or the differential equation A.5 as we perturb capacitance values, i.e

vary each about C or Co by a value AC or ACo

There are (at least) two forms of approach to the problem. Either through equation

A.4 by methods of discrete mathematics, or through equation A.5 which is close to

the form discussed in 'Theory' above. The continuous version of the problem seems

more promising.

It should be noted that 'n' can only take on integer values, and varies with time as

tunnelling events occur. This makes equation A.5 non-autonomous and the problem

becomes highly non-trivial. (The time varying, discrete excess charges on each

electrode of tunneling devices are also the main source of problems in modelling

these systems as electrical networks).

Solutions can be found for non-autonomous systems of a periodic nature, and other

systems may be broken down into periodic components (somewhat akin to finding

Fourier components) to form a solution.

However the step function n(x,t) is, in general, not periodic. It is therefore unlikely

that solutions will be found using this method.
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APPENDIX B BISPHERICAL COORDINATE SYSTEMS [126]

The defining equations of a bispherical coordinate system are;

a sin0 cosw 
x—

coshn - cos0

a sin0 siniv 
y—

coshi - cos0

a sinhi 
z—

coshri - cos°
(B.1)

A natural way to use this coordinate system is in problems where a sphere of radius r

is considered, its centre being a distance b above the z=0, 11=0 plane (see fig. 3.4).

In such problems the following are useful;

r = a cschi, b = a cothri which give 	 11 = arccosh(b/r)	 (B.2)

The metric coefficients of this system, with rotational symmetry about the z axis, are;

a2
g l 1 = g22= 	

(COShil - COSO)2

a3 sin°

(cosim - sin0)3

a2 sin20
g33 - 	

(COShl - COSO)2

(B.3)

It can be shown that the Laplacian V 2(1) =0 cannot be separated into the simple form

(1) = 1-1(i) 0(0) TN) in bispherical coordinates, but can be R-separated [88], i.e cast

into a form 4) = U 1 (u 1 ) U2(u2) U3 (u3) / R(u 1 ,u2,u3) where we attempt to keep R as

simple a factor as possible.

R-separation is accomplished in a rotationally derived coordinate system by

considering a Stakel determinant,

and choosing Q(u 1 ,u2,u3) and R(u 1 ,u2 ,u3) so that the following hold true;

where Mii are the cofactors of S, and fi are any functions of Ili.

B-1



Then separability will occur if;

3
Q''1flR

CCi = —k	 au;	 aui
a l constant,	 (B.6)

and the solutions of 4) will be U 1 (u 1) given by;

1 d	
3

fi du i e'clu i 	 Ui	 ajOii = 0
j=1

For bispherical coordinates, using B.4 and B.5, we choose;

a2 
to give	 – 1	 - 1 	 - sin20Q = 

(coshi - cos0)2	 ivi11	 iv12,1	 M1

SO,

s= 0

1-1

00
1

0
-csc20

1

=1

to finally obtain	 f 1 = 1, f2 a sin0, f3 = 1, R = (coshn - cos0)-1

and after some manipulation, substituting into B.6, al =

Laplace's equation is R-separable in bispherical coordinates with solutions of form

= (coshn - cos0) 2

where, using B.7, on substitution

d2H	 1

H(i) 0(0) T(w)

of a3 = m2,

H = 0

de
— [	

m2

a2 = p(p+1), 4 = coo ;

(B.8)

(B.9a)– p +
chi2	

(

d20
= 0 (B.9b)(1-n	 -	 + p(p+1) - —

d2 	d	 12i

-
d2T 

+ m2 =0

d2W

(B.9c)

The general solutions of these equations are of the form

= A sinmv + B cosmw (B.10a)

H = A e(P4- 1/2A + B e-(P+1/2)1 (B.10b)

= A Pin() + B Qm() (B.10c)

(B.7)



Fig C.1 Schematic representation of two
metal spheres surrounded by dielectric
shells and sitting in a dielectric medium.

APPENDIX C	 RESULTS NECESSARY TO OBTAIN

THE CAPACITANCE OF

TWO SPHERICAL CONDUCTORS.

(Conductors are of arbitrary diameter and surrounded by dielectric shells. The method

approximately follows a solution laid out in [87, P. 3801)

The problem is solved in a bispherical

coordinate system by finding the potential

functions 4); i n the three regions of

differing dielectric constant ci , each region

requiring a superposition of two fields

and 4)11 . These solutions are then matched

through equations governing continuity of

E and D across dielectric boundaries.

Note that because of the nature of

bispherical coordinates, if boundaries of the

dielectric shells and metal spheres are taken

at constant Ti values, they will only be

concentric as ti -4 0.

Assuming a rotational symmetry about the w axis, and the necessity of finite

potential solutions at the dielectric and dielectric/metal boundaries, the general form

of the potential function in bispherical coordinates is ;

sl) = (coshTl- cos8) 1 /2 Pp(cos0) [Ape(13+1/2)11+ Be-(P4-1/2)rij
	

(C.1)

Region 1 

= (1) 11 + 0111 where Oi is the potential function with; (1)=V0 at ti=r10,4:1)=0 at TI=rti

and 0 111 is the potential function with; 0=0 at n=rio, 4)=V(0) at tr=th



assume solution,
00

01 = (coshri - cos0)1/2 I Pn (cos0) [Ane(n+1/2) 71 + Bne-(n+1/2)-ni

n=0

at ii = 71 1, boundary conditions give,

00

0= (coshrh - 0:760)1/2 1 Pn(COSO) [Anen+ 1/2)111 + Bne-(n+1/2)1111

n=0

( Le	 Bn = -Ane2(n+1/2)T1I )

00
„_1

so	 yi = (cosrni - cos0) 1/2 I P (cos8) An[e(n+in)i _ e2(n+1/2)1 1 e-(n+1/2)1]
n=0 n

1
or	 (1201 = (coshri - cos8) I /2 I P (cos()) All e(n+1/2)ri 

_ e2(n+1/2)Th e-(n+112)-n

	

n en+1/2)110 - e2(n+1/2) T1 1 e-(1+1/2)110	
(C.2)

n=0 n

where each An has been redefined by a multiplicative constant.

at 1 = rth, the other boundary condition gives (after cancellation),

00

Vo = (coshio - coso ) 112 I Pn (cos0) Anli
n=0

this shows `Vo (coshrio - cos8)- 112 ' expanded as a series of Legendre functions. By

the theory of such orthogonal functions [127],

1
(2n2+1 \ f

n(p) (CoShlo - 1.)_1/2 dp.	 where pt = cos() (C.3)
Anh = vo	

1 J P
-1

similarly, considering the boundary conditions for 07 we obtain,

00

11
01 = (coshri - cos0) 112 1 P

n=0

,	 e(n+1/2)1 _ e2(n+112)noe-(n+112)71
- (C.4)(cose) A ill

n	
n	 e(n+112)Th _ e2(n+112)no e-(n+1/2).ni

with	 Ap = (2n+1 \
2 1

i

J Pn(1-0 WO (coshm - 1. )-1/2 dii
(C.5)

-1



A 211 en+1)
"11 —	 2 SPri(g) V(t) (cosh12 1-)-1/2 di-I

-1
with (C.9)

Region 2

= 0 12 +04 where 0 12 is the potential function with; 4=V(0) at 1 =111, 4)=0 at 1.412

and 02 is the potential function with; (1)=0 at ri=r1i, 4) = V(0) at 1=412

by the same techniques outlined above, we obtain,

00
Ai	 e(n+112)n _ e-2(n+1/2)112 e-(n+1/2)n
y2 = kcosmi - cos0) 1/2 	P (cos0) A21

n=0 n	
n e(n+1/2)11 i _ e-2(n+1/2)T1 2 e-(n+1/2)111

(C..6)

with

and,

11

1

A.1/ (2n2+1) 
J 

f
Pn(11) V(1) (coshrlt _	 CIP,)-1/2

-1

oo

11 e(n+1/2)11 _ e2(n+1/2/11 e-(n+1/2)11
4)2 = (coshri - cos0) 112 E P (cos()) A2I1 	

n=0 n	 e(n+1/2)12 - e2(n+1/2)11 1 e(n-F1/2)r12

(C.7)

(C.8)

Region 3

= 4)3 + CO where 4;3 is the potential function with; 4)=0 at 1=-112, 4) ---=-V3 at n=413

and 0 131 is the potential function with; (1)=V(0) at 1 =-12, 4)=0 at T)=-T13

again we obtain,

e(n+1/2)11 _ e-2.(n+1/2) 112 e-(n+1/2)11
4)3 = (coshrl - cos0) 2 E P (cos0) A'

n=0 n	
e-(n+1/2)13 _ e-2(n+1/2)112 e(n+112)13

A3,11 = _v3
(2n+1)

+1 
with f P(4) (coshri3 - 1. )-112 dp,

-1 

and,

(C.10)

(C.1 1)

oo
e(n+1/2)ri _ e-2(n+1/2))1 3 e-(n+1/2)n

4)3 = (coshri - cos0) 1/2 E P (cos0) A3" 	  (C12)
n=0 n	

e-(n+1/2)12 - e2( 11+ 112)13 e(n-F1/2)n2	
.

with

1

rt
A 311 — (2n+1)

Pn(Pi) V( 11) (coshr12 - 4)-1/2 dp,n 	 2
-1

1

(C.13)



e(n+1/2)1 _ e2(n+1/2)% e-(n+1/2)n	 sinh[(n+1/2)(11-11x)] 
e(n+1/2)11), _ e2(n+112)% e-("2)iy	 sinh[(n+1/2)(11

= A1 ,	 A till = A1"

and that,

To aid in simplifying these equations we note that,

which produce the following simplification,

00

= (coshri - 11) 112	 pn(1.t) AI,Isinh[(n+1/2)(11-1-11)]
n=0

(C.16)

- APsinh[(n+1/2)(11-110)] ) / sinh[(n+1/2)(110-111)]

00

_ 1. )1/2	 p.0.0 ( Aqillsinh[(n+1/2)(11+112)]4)2 = (COShl
n=0

(C.17)

- APsinh[(n+1/2)(11-111)1) / sinh[(n+1/2)(111+112)1

4)3 = (coshi _ 11)1/2	 Pn(11) ( Alsinh[(n+1/2)(11+112)]	 (C.18)
n=0

- APsinh[(n+1/2)(11 +113)] ) / sinh[(n+1/2)(112-13)]

= vo (2n+1)	 0-112	 (C.19)k 2	 / JP(11) (CoSh110 	 d11
-1

(2n2+1 f
Pn(11) V(1-0 (coshrli -11)- 1/2 rig	 (C.20)J

-1
1

= _v3 (2n2+1)
) J

f
P (iI) (coshm -141/2	 (C.21)

-1
1

A3n
n

(2n2+1)
J Pn(g) V(11) (coshr12 - 4)-112	 (C.22)

We wish to eliminate the VO-0, V(1-0 terms which are unknown functions of

= cos0. This is done by finding formulae for E and (assuming homogeneous

media) D = cocrE in each region and matching boundary conditions [86, p. 316].

+
+

0 = (costal - cos()){	 agi
(C.23)

-a
E = -gradO =	 —a4) + - 

e0

afi 
—
aea0 



= E2
al

111

ao2
82 an = 83

-112

(C.27a,b)

-112111

andao2Cl aoi

.1

ao3

arl

Continuity of E; across dielectric boundaries tangential E field values are equal,

at metal/dielectric boundaries the tangential E field values are = 0.

(These conditions are fulfilled automatically and performing these

calculations simply verifies algebraic manipulation).

Continuity of D; across dielectric boundaries normal D field values are equal, i.e

DTI is constant across fl 1,-T.

at metal/dielectric boundaries the normal D field values integrate

to p, the charge density.

obtain, using C = n+1/2 for clarity,

DOI (
cosh 	

i Pi)	 1
= kCosan - 11)-1/2	 	  {, sinhi (16q,Isinh[(11-111)] -	 (C.24)

an	 n.osinh[(h-10-11)] 4

A"sinh [C(11-1.10)]) + C (coshi -II) (Alcosh [C(11-111)1 - A cosh[C(11-TIo)]) 1

ao2 ,	 ,_	 De	 Pno-0
= kcosni _ R)-1/2 I, 	  1,1, sinhi (Pq, llsinh[(11+712)1 -	 (C.25)

aTI 	 n.osinh[(111+112)]

APsinb [ (T1-111)]) + (coshil -1.t) (A ,Hcosh [C(1+112)] - A,3,11cosh[C('1-111)]))

ao3 ,	 ,_	 cc'	
Pt)

= kcosni - g)-1/2 1 	 { I,, sinbri (A lsinh[(11+112)] -	 (C.26)
all 	 n.-osinh[C(112-13)] 4

A "sinh [C(11 +113)]) + C (coshil - [1) Vq,Icosh [C(11+112)] - iq"cosh[C(11+113)])}

Matching of boundary conditions occurs when,

If we assume that the above equations hold true for the summations if and only if they

hold for each n then we obtain,



El (coshib - cos0) El •sinnr• h Al +	 cosh[(110111)l} 	 (C.28)

sinh[(110-111)]	
- 

62 •	 ln 	 (COShill - COS()) 
= sinhi i	 +

sin/IP-11+112)i {AP cos/AC(
111 +11D] - A"}

and,

E2 •	 3	 E2 (COSh112 - COSO)  „ 1
-1- sinhn 2 An

// 
+	 t Nil - A3A"COSh[g(111+112)11	 (C.29)

Sillh[(r1+112)]

.

	

	
)]}1 - kiln COShK012-113

3" E3 (COSh112 - COM))  {A131

Silth[012-13)]
= £3--2 sinfrn2 An +

These two equations are enough to specify the potential functions in terms of A nil and

A3n1 only, and so obtain 44 for a given V0,V3.

A3n' itself can be eliminated by using the requirement that the charge on the top and

bottom spheres should be equal and opposite, this fixes the voltage on one sphere,

V3, if the voltage on the other is known, Vo. To make this further simplification,

formulae are required for the charge on each of the conductors.

The charge on the 'top' conductor (that bounded by Ti=i0) is calculated by taking a

Gaussian surface close to 11=110, recalling that classically, only the En term is non-

zero close to a perfect metal.

Qtop

where,

,
= 271E0E1a	 (coshrlo-Ii)

-1

00

= (cosh1 0-R)- 1/2	 Pn(.1)
n=0110

110

t T
 sinhio

with of course 0=0 1

+

(C.30)

(C.31)

(coshrto - (kicoth[C0110-11 - All"o_ocsch[(110-111)])

after some manipulation, Q is obtained as a summation of terms,



1

-3/2 El sirthIlo	 +
Qtn°P	 f P(t) Anii (costa-1040

-1

(C.32)

21te.oa f Pn01) Anil (coshrio-PL) 1/2 el coth[(10-11)] dji +

-1

csch2[C(T10-rl IA X

2iteoa JP(t) A (coshriO40-1/2 	 —

-1	 XV+ Ecsch2[C(1i+T12)]

27teoa f pnoi) A3.1 0_ 1/2 Eie2E3 csch[C(rlo-111)] csch[012-113)] csch[C(11+112)] 

-1	 XIV + Ericsch2K(111+112)]

where X = £2 COth[(11 1412)1 E3 COth[C012-113)] (c2-63) sinhi2 / 2(cosh112 -

= e l coth[(i11-11o)1 -	 COth[(11 1-112)] (61-E2) sinhT 1 / 2(coshil -

(C.33a,b)

Likewise for the 'bottom' conductor,

_ Qbot = 27cE0E3a f (coshr 3-1.)- 1 —
-1

where,

with of course 4)=03	(C.34)

-113

00

_ 1. )-1/2	 pn/.. r__	 (C.35)(COSIM3

-13	

n=0 klx) I 21 sinhrb

(coshrb -	 (Ailicoth[(12-113)] - Ailii(p)csch[(112-113)1)}

again after manipulation,

ao



Qbot = 27E4- a
-1

1

f P(t) A3,11 (cosh113-R)-3/2 ,	 1 ,,. 1.,,	 ,i „....3 — alibi ' ( 3 up.4.
2

,
1- (C.36)

t

2itc0a j Pn (P.) A3n1 (cosh13-11)- 1/2 E3 5. coth[C(112-113)] oll.t +
-1

1 6 CSCh2[(T12-113)1 V
27te0a f Pn(ii) A3n' (cosb113-1.0-1/2 	  dii —

-1	 XIV + Eicsch2[Mi+112)1

I
-111:0] csch [C(112-113)] csch[C011+112)]

-1

27tEoa j Pn (R) Ali! 0-1/2 6 1 62E3 C csch[Cob 

2
XV + E2CSCh2[(1-(11-112)1

where X and 111 are defined as above.

In principle Qtop = Qbot can be solved to obtain a relation between pi,t, An31 and
therefore (via equations C.19, C.21) between Vo, V3. These results can then be

substituted into the formulae C = Q/(Vo+V 3) to obtain the intercapacitance of the two

spheres.

In practice solving the above integrals (equations C.19, C.21, C.32 and C.36) in

general results in formulae which do not lend themselves to simple manipulation.

However in some problems additional symmetries are present which do allow a

simple formula for C to be found.



APPENDIX D
	

INTEGRAL RESULTS NECESSARY

FOR THE SOLUTION OF LAPLACE'S EQUATION

IN BISPHERICAL COORDINATES.

	

1	 I

Wish to solve f Pn(11) (coshT10-1# 112 dil and fPn(1.) (coshi 0-p.)-312 di_t in general.

	

-1	 -1

Put cosh% = b, (b-1) 1/2 = 42sinh(110/2) = -‘f2a (defining a)
(b+1) 1 /2 = 42cosh(i./2) = 410 (defining p)

First need to find an expansion for the number of terms ilk in P (li) and the coefficients of these

terms. Use the hypergeometric expansion [128] ;

Pn0-0 = q-n, n+1;1;-111-)

F(1)	  °° F(p-n) r(p+1+n)
= 	 E 	

r(-n)r(n+i) p=0	 r(i+p)

1	 _00 F(p-n) (p+n)! 
=	 2,	 2 -)	 (1-lirn! F(-n) p.=0	 (P !) '-P

(1-g)) 12	 p!

(D.1)

i.e the coefficient of Rk in Pn(1.1.) is ;

=	
(-)k .I (P) r(P-n) (p+n)! 

n! 1-(-n) p,_.0 \k/	 (p02 2p

n
=	 (-1)k I, (p)  (1)-1-n)1(-1)P	 k

p=0 K (I:02 (11.-p)! 2P = gn
(D.2)

Now consider the integral P(1) (cosh110-11)- 1 12 and solve, considering only 'b> 0 initially;

1

5 ilk 0311)412 dp
, ,_ l ilk T2 (b_11)1/1 1 [s...k, -, _..",/ 23 (b1.)3/2 id It _[ lik_2 2 g g 031.05,2 koc_ 0 ] 1

_1	 _i	 -1	
1 3 5

-1
r 0222 	 2	 1

• • • - Lli 1 3 5 ' • • 2k+1 (b-gy2k+1)/2 
k(c_ i)... 11

-1
by repeated integration by parts.

D-1



=	
(b-Di 22i+i k!

j=0 (2j+1)!	 +	 E (_1)k_j (b+1)i 22i+1 k! j! 

i=0	
(2j+1)! (k-j)! (D.3)

Two routes of simplification follow. The first is to consider the coefficients of powers b m in

the two terms above, defining Yrcn as the coefficient in the "a" sum and 5-fk as the coefficient

in the "0" sum. We then obtain for the full integral,

1
n	 k „

.1* pn(i) (b-W -112 dp. =	 1 4a y g'n lbm + -42P Iybm
k gkn -

-1	 k=0	 m=0	 m=0
(D.4)

where we can condense the sum containing g n and 1)1(n into one with a single factor Anm

Am = 2n+1	 (-1)k-in 
(k )  2k4-1 (k+n)! 

m (2k+1)! (n-k)!k=m

kand the sum containing gn and it into Amn = (-1)m+n Anin

(D.5)

(D.6)

This is the approach used in [87]. However a second route of simplification follows from

noting that (b-1)i = 2ia2:1 and (b+1)i = 2.132i• Substituting these into equation D.3 and using

equation D.2 gives,

1

I (k-D I Lr.

n k k 23.1 +1 k! j!
 ((k -i - a2i+1 1=	 gn ./_42j+1).k=0

_ .11 P A-0 (b-1-0- (D.7)

Consider the coefficient, X say, of 132i+ 1 in D.7, and expand out the factor gkn , (ignoring the r2)

n n	 (p+n)! op 1 2J 1 j! x= E E 	
k=ip=k p! (n-p)! (p-k)! 	 (2j+1)! (k-j)!

n n	 1 	 1	 n	 2P-i Use the fact that	 I cp (k_j)!	 (p-j)!
k=j p=k	 P=J

to obtain in binomial form,

22j41 
X = 	 (2j+1)! (j!)2 (n)(1?)(P+np=j p j	 n ) (-1)P

22i+1
(-1)j (2i+j)! n02	 (n-1)(p+n

j	 n	 ("4 (trinomial revision [129, p1741 )
P=i

22i+1  RI\ (n\ (n+j	 \= (
(2j+1)! \P '2 kj I k j ) `-"n (Tables 169,174 of [129] )
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22i+1 (1-__I-j-k
= (-Di' (2j+1)! (n-j)!

Equivalent working for the a2i+1 terni in D.7 gives the simplification,

I
nf	 22j+1 (n+j)!  1132j+1(_0j+n _ a2j+11Pn(4) (CoShip- 11)-1/2 41, -0 .i0(2j-F1)! (n-j)! L-1

(D.8)

(D.9)

I

Now consider 5 P(1.0 (COSh110-11)-3/2 dg, first decomposing P(p) and then integrating by
-I

parts once to give,

1 1
n k { 42.\5

-	2k 5	 1	 (D.10)5 Pn(1) (b-II)-3/2 dp, = E g — - (- 1) k -ii
-1	 k=0 n	 a	 -1	

(b-p,)-1/2 dp,

Applying the result of equation D.3, expanding out the factor gkn , and considering the

coefficient, Y say, of [32i/oc, (ignoring the r2)

v vn (k+n)! 22k-2 (k-i)! 2 (-1)k-.12k _ 	 (n\ 	 (n-j\ (k+n\ (-1/2 \-1
	k! (n-k) , •I (k-') , (2k-1) , 	- k-ir kj) zd kk-j/k n ) k k )Ic=j	 • J •	 i •	 •	 k=j

Simplifying, by the application of upper negation and trinomial revision [129, p.174] to the

second and fourth terms of the sum,

Y=
. r-1/2 -1 -n-1	 -	 -j-1\

(- 1 )J n ) ( j ) P-nn (
n1/2
n-k ) (

n-

k-j )

(-1/2\ -I (-n-	
n-j

1\ /114-1/2\
=

kn) kj)k)

22:1 +1 (n+j)! 
= (-1\ir -vn (n+1/2) (2j+1)! (n-j)!

(Vandermonde convolution [129, p.174-] )

(D.11)

Equivalent working for the 01/13 term in equation D.10 gives a simplification,

I

"  220-1f	 (ri+.1)!  [ 1324- 

a	

_0i+n a2i 1

-1 

P(t) (coshio-1-0 -312 d	 V-2,ii = -	 (n+1/2) •E (2j+1)! (n-j)!
J=0	 R J

(D.12)

Note that using similar algebraic techniques on the 'multiple angle' hyperbolic functions

leads to,



,
Pn(g) (cosh110-11)-312	 = --c-- kcosh(n+1/2)10 - sinh(n+1/2)110)

-1
(D. 14a)

, „
Pn(11) (Cosh110-11)-1/2 	= n+1/2- (COSt101+1/2)110 - sinh(n+ 1/2)11o)	 (D. 14b)

-1

Pn(II) (coshP.) -3/2 	 (cosh(n+1/2)110 + sinh(n+1/2)110) (D.15a)
-1

Pt) (CoSh10-1-0 -1/2 dr-t" _	 (cosh(n+1/2)110 + sinh(n+1/2)10) (D. 15b)n+1/2
-1

ai3

22-i+1 (n+j)!  [n2 . +1 , 1+dip J(n+1/2) L (2j+1)! (n-j)!j=0
cosh(n+1/2)T10 =

22i+1 (n-E.D !  [cc21+11(	
(240! (n-j)!sinh(n+1/2)Ylo =n+1/2)

J=0 j

(D.13a)

(D. 13b)

This result simplifies equations D.9 and D.12 greatly, to obtain for io > 0 ,

Although unnecessary for present consideration, the equivalent results for 11 0 <0 are,

reminding ourselves that in equations D.14a and D.15a, a = sinh(110/2), 13 = cosh(110/2).



APPENDIX E	 CODE STRUCTURES

The following sections list the essential computational structures used in our

computer programs. Full programs are not included due to space considerations;

neither are sections of code that provide limit checking and error trapping In each

section a brief outline is given of the translation of theory and formulae to code, the

essential parameters and variables used, and flow charts of the important code

segments themselves.

The programming language used was a superset of FORTRAN 77 allowing the use of

further control statements common in many structured languages (for example

DO...ENDDO loops mimicking the use of FOR loops in ANSI PASCAL) [130]. The

programs were compiled on an IBM 3090 mainframe computer, with associated

vector processor. Compilation was performed with full automatic optimisation.

The random number generator used in the Monte Carlo routines is a standard NAG

routine, G05CAF [120]. It is based on a multiplicative congruence method where a

term N is iteratively updated by,

N := 13 13 x N mod 259	 (E.1)

and a pseudo-random number N/2 59 returned. Analysis of data correlations within

this pseudo-random set has been performed by Knuth [131]. The set repeats after 257

iterations.

E.1 Monte Carlo Modelling of Tunnelling Junction Arrays

A tunnelling junction array with N junctions is considered. We are given the circuit

parameters of the device, the biasing potentials, and the initial distribution of excess

electrons on its electrodes. The core of the modelling process calculates the probabil-

ity of any particular tunnelling event occurring in the device. Then the Monte Carlo

portion of the process chooses one event based on these probabilities, and the time at

which that event occurs. A controlling program iterates events, changing bias and

collecting data as required to obtain macroscopic results. Each macroscopic

'experiment' requires a tailored controlling program.



Most computational effort is concentrated on obtaining the potential landscape of the

system. From this, tunnelling probabilities are calculated from equation 4.11. In the

general case, where each system capacitance is independent, the potential landscape is

governed by equations 5.5,

(1);-1	 (i-I-Ci+1+101) li -	 $i+1 = f3 Si
	

(5.5)

where i = C1/C, i = Coi/C and p e/C, with C the nominal average value of

junction capacitance, C i and Coi the actual values of junction and grounding

capacitance of junction i. s i is the number of excess electrons at electrode i. It

stores the soliton positions in the device.

As in any other system, the set of equations 5.5 must be solved for 410 i . We make use

of a set of coefficients vi, which can be precalculated to save computation time in the

main calculation loops. Vi can be recursively defined by (where oc i =

.. SET UP VECTORS OF USEFUL COEFFS FOR CALCULATION OF POTENTIALS .

DO j = 0,(N-2)
Nu(j)	 = 0.0
Nu(j+1) = 1.0
DO I = j+2,N
Nu(i) = Alpha(i-1)*Nu(i-1) - Zeta(i-1)**2*Nu(i-2)

ENDDO
Nu(j) = Nu(N)

ENDDO
Nu(N) = 0.0

Then all (1); values can be obtained from the following;

(Po = VL	 = VR	 VNSN = ON10

1 As	 y	 0V,
= — [tPoV 11 +vo

1=1

— CA-1 — Psi 
4i+1 —	 i > 0	 (E.2)

The code for the main iterative loop is shown in flow chart form in figure E.1. It di-

vides into four main sections. Firstly, the potential profile is calculated from the bias-

ing potentials, the excess electron data, and the various coefficient arrays. Next, the

work of testing every possible tunnelling event is carried out. s i is updated as if the

event had occurred, a partial potential profile is obtained, and the energy difference

between initial and final states used to calculate r j . This is repeated for both for-

wards and backwards tunnelling processes. Thirdly, the accumulated probability of

tunnelling events is used to calculate the time for tunnelling, and finally the choice is

made as to which event occurs.
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calculate the time till next tunnelling event
using equation for t;

t = -1n( 1-random)ari

temporarily assume that the event has taken
place, and adjust si accordingly;

calculate a new set of Oi values;

use following equations to calculate
probability of event taking place, and store
this probability in array of ri values;

AE =	 (4);+ 4); - 0;4.1- 4)1+1)

±	 -1AE;
T'. •/-(Q) e—rRi-t [1 — exp(-

initialise all parameters;
set initial position of excess electrons in si;
calculate coefficients of vi;

perform initial calculation of ch values;

FOR each possible tunnelling event, j;

choose which event actually occurs from
events j, weighted by rate, I];

Fig E.1 Flow chart of the algorithm used to calculate one iteration of tunnelling events
in a tunnelling junction array. Further sections of a modelling program extract necessary
data from the array state and then cycle back to the initial 4); calculation. 'random' is a
random number [0,1) with constant distribution.



has system stabilised ?
i.e

choose which event actually occurs from
events j, weighted by probability, ri;
update excess electron positions in system;

4	

calculate the time till next tunnelling event;

will next event occur
before further change in

bias conditions ?

E.2 Monte Carlo Modelling of Turnstile Device

The ideas that govern the code structure for modelling the turnstile device are the

same as for tunnelling junction arrays. The state of the device is characterised, and

this data used to choose which tunnelling event will occur next. However, the form of

code shows two extensions to these principles; both noted in the flow chart of fig. E.2.

initialise all parameters;
set initial position of excess electrons;
calculate critical charge values;

WHILE experiment continues DO

update bias conditions of system if necessary;
update time till next change in bias conditions;

calculate charges across each junction;

calculate ri and XII probabilities from
critical charge equation;

Fig E.2 Flow chart of the algorithm used to calculate multiple iterations of events
and bias condition changes in a four-junction turnstile device. This code structure
is only applicable for large discrete changes in bias conditions.
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The first modification is a rudimentary consideration of non-static bias conditions.

The method by which this is handled is easily seen from the flow chart diagram of

modelling code structure.

The second modification is the introduction of critical charges as a systematic way of

reducing computation in the main program loop. In the original algorithm, tunnelling

junction array formulae were hand tuned so that as many coefficients as possible

could be precalculated. This process is now automated by the critical charge concept

of §5.2.4. Instead of calculating a potential landscape, the device is characterised by a

charge landscape. These junction charges are compared with critical charges to obtain

the tunnelling probabilities for each junction. Equations 5.25 and 4.11 are used. For

the five junction turnstile, computation is also eased by manual expansion of the

governing circuit equations. The equations used are 5.19- 5.21.

E3 General Network Solver

The algorithms which govern the operation of the general network solver are identical

to those used to investigate the gated turnstile device. The work on the gated turnstile

can be thought of as a specific example of such a solver, with governing formulae

obtained by hand. To create a general solver therefore, we automate the two types of

hand calculations required.

First is a routine that takes a network of junctions, capacitors and voltage sources, and

calculates a Thevenin equivalent circuit for any junction i. The effective capacitance

of this circuit is used to compute the critical charge for junction i. The method by

which this charge is calculated, and the prerequisite Thèvenin circuit obtained, are

detailed in §5.2.4.

Secondly, instead of a bespoke analysis of the equations governing the charge profile

of a device, a general solution is performed. This is based on solution of the matrix

equation 5.28 which condenses the rules of charge continuity and Kirchoff s laws.

The matrix equation is then solved by using toolbox routines provided by NAG [120].

We first note the data structures which define an equivalent circuit, then the routines

that calculate critical charge values from this data, and finally the main modelling

routine itself.



Data Structures :

The form of the equivalent circuit itself is defined by five arrays;

Volts (elem)	 specifies the magnitude of the voltage sources.

Elas (elem) initially contains the capacitance of both tunnelling and non-

tunnelling junctions. Its components are then inverted so that

elastances are stored.

Conn (elem, loops) specifies which components are connected to which.

Qcon (juns, qs) 	 information on the electrodes which support excess electrons,

and which junctions connect to them.

Zcon (juns, zeros) junctions which directly connect to each other via only a

voltage source (required to fully analyse charge conservation).

The size of these matrices are defined by the following (not necessarily independent)

parameters of the system;

elem 
	 the total number of circuit elements

nodes	 the total number of circuit nodes

loops	 the number of loops in the circuit net

caps	 the number of capacitances (both tunnelling and non-
tunnelling)

pots	 the number of voltage sources

juns	 the number of tunnelling junctions

qs	 the number of nodes which may support excess electrons

zeros	 the number of linear junction / voltage source /junction
component strings

Section 5.4.2 shows an example of the definition of these data structures for a four-

junction gated turnstile device. They contain all the required information needed to

obtain the critical charges or charge profile of the system. Often Qcon is divided into

its elastance and voltage segments (multiplied through by their respective parameter

values) to form matrices Econ and Vcon. These simplify the formulation of

governing equations.

Calculation of Critical Charges :

Figure E.3 shows the structure of code needed to obtain a critical charge value for one

of the junctions in a purely capacitive equivalent circuit.

Firstly an impedance matrix, z ( loops , loops), is derived from the connection

matrix and component elastance values. Elementary row operations ensure that the

rows containing the junction of interest are moved to the top. For small impedance

matrices, further simplification may not be needed and an effective impedance may be

calculated directly. For larger matrices an automated simplification process based on
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partition Z into A,B,C,D matrices, with
rank(A) = r;

-
Z := A - BD

1
 C ;

1	

obtain critical charge for junction i from,

1
Qcrit := (1+ ci crit )1

the formula Zeff = A — BD- 1 C is used. The impedance matrix is partitioned into two

diagonal submatrices, A & D, and two off-diagonal submatrices B & C. Submatrix

A is chosen to contain those rows and columns of z that deal with the junction of

interest. Having obtained Zeff, the value of Qcriticai for this junction is calculated

from equation 5.25. The procedure shown in figure E.3 is then repeated for each

junction in the circuit.

Again it should be noted that all error and limit checking (including that on the

operation of NAG routines) is omitted from this discussion. In practice such checks

are vital as errors in coding large circuit matrices are common.

perform elementary row operations on Econ
so that rows containing junction i are at top;
r := number of rows containing junction i ;

obtain impedance matrix Z := Econ.EconT;

CASE OF rank(Z) ;

4 1	42
1 det(z) 1

Zcrit := Ci:=Lcrit -Zij

Fig E.3 Flow chart of the algorithm used to calculate critical charge values of a general
network. Z,A,B,C,D and Econ are matrices, all other variables represent reals. The 'T'
superscript indicates matrix transposition.



General Network Solver Modelling Routine :

The code for the general network solver is precisely that of figure E.2. The only

changes from §2 are in the methods by which qcrit (the vector of critical charge

values) and q (the vector of circuit charge values) are obtained. Critical charge

values are computed above. In order to obtain the system charge profile equations

5.28 must be solved.

On considering equations 5.28 it can be seen that they can be merged into one matrix

equation,

Mfixed X q = Vvariable
	

(E.3)

where Mfixed is an array of parameters dependent only on the structure of the device,

and Vvariable a vector of state values (excess electron numbers and bias voltages).

Solution for q can be performed by toolbox routines.

The general procedure of the general network solver is therefore to initialise Mfixed

as part of the initial parameters of figure E.2, along with the vector of critical charges.

Then whenever the charge profile of the system need be calculated, Vvariable is

updated and equation E.3 solved to find q. These extensions to the code structures of

the gated turnstile modeller completely describe the general network solver.



APPENDIX F	 EFFECTIVE CAPACITANCE OF

LADDER CIRCUITS

F.1 Effective Capacitance of a C/Co 'Ladder'

Wish to calculate the effective Thevenin

capacitance Ceff of the circuit of

figure F.1 for arbitrary n segments,

with y = Co/C and fn = Ceff/C.

Simple circuit theory gives,

Co	 Co

Fig F.1 Circuit schematic of a C/C o ladder.

fi =y+ 1, fn-1 
fn=Y+

1+ in-1

as a recursive solution of fn . The recursion can be eliminated to give fn as the ratio

of n and n-1 polynomials in

n +m\
2m ) r

— n-1 r n+m
E 21.11+1) rrn.0

F.1 Effective Capacitance of a C/Cs/C 'Ladder'

fn (F.2)

Fig F.2 Circuit schematic of a C/C s/C ladder. Such a circuit might act as a first order
approximation to 2 capacitively linked tunnelling junction arrays.

Wish to calculate the capacitances fn and gn of figure F.2b. These can then be used

to calculate the effective capacitance cn of the circuit from,

c=	 fn	 gn + n	 gn	 (F.3)



(F.4)

(F.5)

(F.6)

n-1	 n-1
p+m+1 \

7 E )'m E 2m(P+1)(
 2m+1)

m=o p=m

n

E 2m(n2T) yn
m.0

fn —

7m

where I I represents capacitors in parallel. As above, all capacitance is normalised to

C. I.e y = Cs/C. It is simple to obtain,

g i = 2y+ 1, gn = 27+ i±gng-ni_i

2y+ 1	 fn-1 gn-i (gn-i + 27(1+ gn-1)) 
fi = 	 f n —

7	 (i+ gn_02 7 fn-i +g 1 + 2Y gn-i( 1 + g)

and recursion can be eliminated to give,

n

E 2m(n2 ) ri
m=0

— n-1

y 2m( n+In ) 'yfil2m+1, •
m=0

gn

(F.7)
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