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Summary

This thesis describes studies of the phosphorylation of proteins 

during the infection of baby hamster kidney fibroblasts (BHK cells) 

with the swine herpes virus, pseudorabies virus, with particular 

emphasis on the protein kinase activités in infected cells.

Protein kinases present in the cytosol of BHK cells infected 

with pseudorabies virus were compared with those present in the 

cytosol of uninfected cells. The cytosol was first subjected to 

chromatography on DEAE-cellulose and fractions analysed for protein 

kinase activities. In the fractions from uninfected cells the 

activities were found to correspond to the following previously 

characterized protein kinases: i) cyclic AMP-dependent protein kinase

type I; ii) cyclic AMP-dependent protein kinase type II; iii) protein 

kinase C; iv) casein kinase I; v) casein kinase II; vi) a less 

clearly defined protamine kinase which is probably the proteolytic 

fragment of protein kinase C. In BHK cells infected with pseudorabies 

virus the protein kinases listed above were present in amounts 

comparable to those in uninfected cells. However, a new protein 

kinase activity was detected in infected cells, appearing about 4 h 

after infection and increasing during the following 6 h, at least.

This protein kinase designated virus-induced protein kinase (ViPK), 

was the subject of subsequent studies.

The new protein kinase was further purified either by Blue A 

dye-ligand chromatography or by high-performance size-exclusion and 

ion- exchange chromatography. The latter procedure resulted in 

100-fold purification of the enzyme. The partially-purified 

preparations were used to characterize the new protein kinase.



It had an apparent molecular weight of 68,000 on the basis of size- 

exclusion chromatography, and had a sedimentation coefficient of 4.3S. 

It catalysed the phosphorylation of serine residues of basic proteins 

in vitro, with protamine a better substrate than mixed histones; 

and used ATP (apparent Km=60yuM), but not GTP, as phosphate donor. 

Molecules that can serve as effectors for other protein kinases 

(cyclic AMP, cyclic GMP, Ca^+ + calmodulin, Ca^* + phospholipid, 

double-stranded RNA, and heparin) did not significantly alter the 

activity of this enzyme. A striking characteristic of the protein 

kinase was a high KCl concentration optimum with the persistence of 

activity up to 800 mM KCl, at least. These characteristics 

distinguish it from other protein kinases found in BHK cells or 

reported to be present in other eukaryotic cells.

Further studies attempted to relate the new protein kinase 

activity to proteinSwhich become phosphorylated during viral infection. 

The results obtained show that the major virion phosphoproteins were 

not phosphorylated by the new protein kinase in vitro, even though 

that activity was also present in the virion. An enzyme activity, 

present in BHK cells and a similar activity from virus particles, both 

with characteristics consistent with those of casein kinase II, 

phosphorylated these proteins in vitro. Thus, it is possible that 

these viral proteins synthesized de novo in infected cells can be 

recognized as substrates by cellular casein kinase II. Analysis of 

viral non-structural proteins showed that one of the proteins tested, 

viral DNase, served as a substrate in vitro for a partially-purified 

preparation of the new protein kinase. Studies of the phosphorylation 

of ribosomal protein S6 in vitro by protein kinase activities from 
infected cells showed that the new protein kinase and also some other 

cellular protein kinases (cyclic AMP-dependent protein kinases and



protein kinase C) can catalyse this reaction. Specific phosphory

lation of S6 by the new protein kinase was only observed in certain 
conditions, e.g. 600 raM KCl or 7-10 mM spermine. Phosphopeptide 

maps of 36 following phosphorylation iji vivo and iji vitro by the new 

kinase were similar. However, the enzyme catalysed the incorporation 

of only two phosphate groups per molecule of 36 while the stoichiometry

of phosphorylation vivo was up to five phosphate groups per 36

molecule. This finding does not support the possibility that the

new protein kinase is responsible for the complete phosphorylation of

ribosomal protein 36 observed in vivo. One of the cellular kinases, 

protein kinase C appears to be a better candidate, on the basis of the 

results of studies of stoichiometry and phosphopeptides.



I N T R O D U C T I O N  

1. PHOSPHORYLATION OF PROTEINS

It is now well recognized that the phosphorylation and dephos

phorylation of proteins is an important regulatory process applicable 

to many different cellular functions. The best documented example is 

the neural and hormonal control of glycogen metabolism (Cohen, 1982), 

and other examples include the regulation of fatty acid synthesis by 

hormones (Denton and Brownsey, 1983), the control of muscle contraction 

(Karam and Stull, 1985), the regulation of protein synthesis (Hunt, 1980), 

etc. The enzymes which catalyse phosphorylation and déphosphorylation 

of proteins have been extensively studied.

1.1. PROTEIN KINASES

Protein kinases (EC 2.7.1.37, ATP: protein phosphotransferases)

represent a multiplicity of enzymes which catalyse the phosphorylation 

step in various phosphorylation - dephosphorylation systems. They are 

regulated by different specific agents, possess either relatively broad 

or limited substrate specificities, use either ATP or both ATP and GTP 

as a phosphate donor and transfer the phosphoryl group of this to one 

or more of serine, threonine or tyrosine residues in characteristic 

recognition sequences.

One system of classification of protein kinases (Krebs, 1983) is 

based on the amino acid residue which serves as the phosphate acceptor. 

Two classes, serine-threonine and tyrosine protein kinases, can further 

be subdivided according to the regulatory agent(s) of protein kinase 

activity (Table 1).



The individual enzymes listed in Table 1 have been described in 

detail in many recent reviews [e.g., Malencik and Fischer (1982),

Karam and Stull (1985), Beavo and Mumby (1982), Hathaway and Traugh 

(1982), Sefton and Hunter (1984), Nishizuka (1983), etc]. In the 

following sections they will be discussed with respect to the general 

characteristics of protein kinase molecules and the characteristics 

of phosphorylation reaction they catalyse.

(1) Structural Properties

The structural properties of some protein kinases purified to

apparent homogeneity are described in Table 2. It is clear that

protein kinases have a wide range of molecular weights and a variety

of different subunit structures. However, as protein kinases play a

transducing role in nature, acting as mediators between effector 

molecules and specific protein substrates, it has been possible to 

identify within the structure of most protein kinases a regulatory 

domain or subunit (to which the effector binds) and a catalytic 

domain or subunit (Flockhart and Corbin, 1982).

The catalytic domain or subunit is involved in transferring the 

terminal phosphate of ATP to specific serine, threonine or tyrosine 

residues. Several groups of investigators have speculated that some 

of the kinases might share an underlying structural basis for this 

common function. In support of this view it has been found that 

there is homology between the primary structures of the catalytic 

subunit of cyclic AMP-dependent protein kinase and i) cyclic GMP- 

dependent protein kinase (Takio et al., 1984), ii) the Y subunit of 

phosphorylase b kinase (Reimann ̂  , 1984), iii) the epidermal

growth factor (Downward et , 1984) and insulin (Ullrich e^ , 1985)



receptors, and iv) certain members of a family of transforming 

retroviral tyrosine protein kinases, typified by ppôQSfc (reviewed 

by Sefton and Hunter, 1984). There is currently only limited 

chemical evidence to identify the residues in the homologous regions 

that comprise the active sites of protein kinases. The affinity 

label, [(fluorosulphonyl)-benzoyl] adenosine, has identified lysyl 

residues that appear to be in the vicinity of the binding sites of 

the Y -phosphate of ATP in the catalytic subunit of cyclic AMP- 

dependent protein kinase (Zoller et , 1981), the catalytic 

domain of cyclic GMP-dependent protein kinase (Hashimoto e^ 1982) 

and ppôosrc (K^mps ̂  , 1984). In other protein kinases there is

a lysine residue at a similar position to those which have been found 

labelled in the protein kinases mentioned above (Kamps ̂  , 1984).

In all these proteins, a cluster of glycines with the sequence 

Gly-X-Gly-X-X-Gly lies 16-28 residues to the amino-terminal side of 

the lysine implicated in binding ATP.

In contrast to the catalytic domain, the structure of the 

domain or subunit involved in binding the effector is highly specific 

and depends on the nature of the particular effector molecule. Thus, 

protein kinases regulated by cyclic nucleotides (type I and type II 

cyclic AMP-dependent protein kinase and cyclic GMP-dependent protein 

kinase) have similar nucleotide binding sites to the unrelated 

cyclic AMP-binding protein (CAP) of E. coli (Titani et ̂ . , 1984;

Takio et_ ̂ . , 1984 and 1984a; Weber et ̂ . , 1982). On the basis of 

the homology between the sequences, and from the known X-ray crystal 

structure of CAP, a possible conformation was proposed for the cyclic 

nucleotide binding sites of the protein kinases (Hoppe, 1985).



Protein kinases which require Ca^^ and calmodulin for their activity 

share this property with other unrelated enzymes (e.g. adenylate 

cyclase and cyclic-AMP phosphodiesterase). A peptide fragment has 

been obtained from skeletal muscle myosin light chain kinase that 

appears to represent the calmodulin-binding domain of this enzyme 

(Blumenthal ̂  , 1985). However, the sequence of the peptide

shows no significant homology to any other known sequences of 

peptides that bind calmodulin.

(2) Regulation

The following types of regulatory effectors have been identified 

for the protein kinases known at present: i) extracellular signals

(EGF, PDGF and insulin), ii)molecules termed "second messengers", 

produced as a result of the action of extracellular signals (cyclic AMP, 

cyclic GMP, Ca2+ and diacylglycerol) and iii) other specific regulatory 

molecules (double-stranded RNA, haemin, polyamines and acetyl CoA, NADH, 

pyruvate and ADP) (Table 1). The tyrosine protein kinases of EGF, PDGF 

and insulin receptors are stimulated following binding of the respective 

agonist. In the class of serine-threonine protein kinases, those 

regulated by calcium are, in addition to the cyclic nucleotide-dependent 

enzymes, especially prominent. The effects of calcium are mediated by a 

protein, calmodulin, to which calcium ions bind tightly. In the case of 

phosphorylase kinase calmodulin is, in fact, one of the subunits (6 ) of 

the enzyme. Another serine-threonine protein kinase, protein kinase C, 

requires the presence of Ca^^ and phospholipids for its activity. It 

has been demonstrated that diacylglycerol^ one of the earliest products 

of the breakdown of inositol phospholipids in response to extracellular 

signals, greatly increases the affinity of protein kinase C for Ca^+, 

thereby activating it.



Another subset of protein kinases consists of those enzymes for 

which no regulatory agents or effectors are known to exist (e.g. casein 

kinase I and some tyrosine protein kinases). This does not exclude the 

possibility that these enzymes may be subject to regulation by mechanisms 

other than the direct interaction of the protein kinase with an effector 

molecule. For example, they could be regulated by covalent modification, 

the enzymes serving as substrates for other protein kinases.

The mechanism by which the binding of the ligand is though to 

activate the protein kinase by inducing a conformational change is best 

documented for cyclic AMP-dependent protein kinases (Hoppe,1985). The 

regulatory (R) and catalytic (C) subunits of this enzyme have an exceptionally 

high affinity for each other in the absence of cyclic AMP, but this affinity 

is decreased lO^-fold by binding of the nucleotide. In the holoenzyme 

(R2C2) one part of the R molecule directly impedes the active site of the 
catalytic subunit, resulting in the inhibition of its catalytic activity 

towards added protein substrates. It has been proposed that cyclic AMP 

binds to the R subunits of the holoenzyme (rather than to free R), forming 

an intermediate ternary complex of the nucleotide and holoenzyme (cyclic 

AMP 8̂ 62)" The next step of interaction between the cyclic AMP-binding 

sites and cyclic AMP leads to a conformational change in the R subunits, 

accompanied by their dissociation from the C subunits [R^fcyclic AMP)^ + 2C].

(3) Determination of Physiological Substrates

The properties of many enzymes can be altered by covalent modification, 

and this in turn can effect changes in cellular metabolism. Historically, 

the evidence that the modulation of the function of a protein led to a 

significant change in metabolism often pre-dated the discovery that the 

protein in question was a phosphoprotein and the isolation of the regulatory



protein kinase. Before it can be regarded as proven that the phosphory

lation of an enzyme by a particular protein kinase leads to a physiological 

change in its activity, a set of established criteria has to be satisfied. 

The criteria (Krebs and Beavo, 1979) include:

i) Demonstration in vitro that the enzyme can be phosphorylated

stoichiometrically at a significant rate in a reaction catalysed by the 

protein kinase.

ii) Demonstration that functional properties of the enzyme undergo

meaningful changes that correlate with the degree of phosphorylation.

iii) Demonstration that the enzyme can be phosphorylated and dephos-

phorylated in vivo.

iv) Correlation of cellular concentrations of protein kinase effectors 

and the extent of phosphorylation of the enzyme.

On the basis of these criteria several enzymes have been accepted 

as physiological substrates for cyclic AMP-dependent protein kinase (e.g. 

phosphorylase kinase, glycogen synthase and pyruvate kinase). Some other 

protein kinases have more limited substrate specificity: examples include

glycogen phosphorylase kinase, myosin light chain kinase, Ca^+Zcalmodulin 

glycogen synthase kinase and pyruvate dehydrogenase kinase.

It is not easy to identify the substrate for a protein kinase when 

there is nothing to suggest that its activation is related to a change 

in the activity of a particular protein involved in regulation of a 

cellular function. Among examples of such protein kinases are some 

relatively recently discovered enzymes, protein kinase C and tyrosine 

kinases. The strategy used to try to identify their physiological 

substrates can be illustrated by one specific example: pp 60^"Src tyrosine

protein kinase and its possible substrate - the cytoskeleton protein, 

vinculin (Cooper and Hunter, 1983). The question first examined was.



under what conditions, and to what extent is the possible substrate

phosphorylated on tyrosine in vivo. The results showed chat vinculin

contained some phosphotyrosine in normal cells, but the extent of

phosphorylation was increased 20-fold in cells transformedby Rous sarcoma

virus containing ppSO^-src^ further experiments it was demonstrated

that purified vinculin can be phosphorylated in vitro by a purified

fragment of pp60'̂ ”®^^. Another question addressed the function of the

possible substrate in cell physiology. It has been found that 20% of

vinculin is concentrated in adhesion plaques. In the adhesion, plaques,

the surface of the membrane is bonded to the extracellular matrix and the

Inner surface provides an anchorage point for stress fibres composed of

actin microfilaments. This location of vinculin suggested that it was

important for maintaining the cell in a particular shape. The shape of

a cell transformed by Rous sarcoma virus is very different from that of a

normal cell, and both the total cellular microfilament system and the

adhesion plaques are reorganized. On the basis of these data, an explan- 
of

ation^how phosphorylation of vinculin contributes towards changes in cell 

physiology was suggested. The greatly increased phosphorylation of 

tyrosine in vinculin, possibly as a result of activity of pp60Y-src^ might 

reduce the tenacity of vinculin as a linker and lead to the release of the 

actin filaments. Some recent findings (Rohrschneider and Rosok, 1983) 

suggest,however, that vinculin phosphorylation alone may not be enough to 

cause such disruption.

(4) Recognition Sequences in Protein Substrates

Analysis of physiological substrates for protein kinases and analysis 

of other proteins and polypeptides which are phosphorylated only in vitro, 

has allowed identification of the characteristics required for recognition 

of the substrates by individual protein kinases. For many protein kinases



(e.g. cyclic AMP-dependenC protein kinase, cyclic GMP-dependent protein 

kinase and casein kinases, Table 3) it has become apparent that the 

selection of serine and threonine residues in substrates is, at least 

in part, dependent on the primary sequence near the target amino acid.

As shown in Table 3, acidic or basic residues with a particular location 

relative to the target residue are important determinants of the recognition. 

Nevertheless, the presence of the appropriate features of primary structure 

is not always sufficient to ensure recognition. For example, cyclic AMP- 

dependent protein kinase does not recognize some serines in the native 

lysozyme molecule that it can phosphorylate if the lysozyme is denatured 

(Bylund and Krebs, 1975).

(5) Amino Acids Phosphorylated

Phosphorylation of proteins at serine, threonine and tyrosine 

residues is now well established. In the proteins of normal cells most 

of the phosphorylated residues are phosphoserine, while phosphotyrosine 

accounts for only about 0,05% of the total acid-stable phosphate in protein. 

There is evidence (Smith et al.. 1974) that some other amino acid residues, 

histidine and lysine, can be phosphorylated. However, work on the protein 

kinases responsible for phosphorylation of such residues has been limited.

(6) Phosphate Donors and Divalent Metal

Ion Requirements

All protein kinases that have been characterized can use ATP as a 

phosphate donor. The Km values for AT? (3-400^) are well below the 

concentration of the nucleotide (2-6mM) thought to exist in most cells.

The only other significant phosphate donor known is GTP, which can be 

utilised by casein kinase II equally as well as ATP. It is not known if 

GTP is a physiologically significant phosphate donor.



As for other phosphoryl transferase enzymes, divalent metal ions 

are necessary for the reaction. Mg^+ is normally the preferred cation, 

but Mn^+ can often substitute for this.



CLASS 1: 

REGULATORY AGENT

TYROSINE PROTEIN KINASES

PROTEIN KINASE
EGF EGF - receptor
PDGF PDGF - receptor
insulin insulin - receptor
unknown pp6QV-src/pp6oc-src

and other viral and homologous
cellular kinases (Table 6)

CLASS 2: SERINE-THREONINE PROTEIN KINASES
REGULATORY AGENT PROTEIN KINASE

cyclic AMP type I, type II (heart) and
type II (brain) cyclic AMP-dependent

cyclic GMP cyclic GMP-dependent

Ca^^ (calmodulin) phosphorylase kinase 
myosin light-chain kinase 
liver glycogen synthase kinase

diacylglycerol 
(Ca^+, phospholipid)

protein kinase C

double-stranded RNA double-stranded RNA-dependent

haemin (inhibition) eIF-2 kinase

acetyl-CoA, NADH, 
pyruvate, ADP

pyruvate dehydrogenase kinase

polyamines polyamine-dependent

unknown casein kinase I and II 
glycogen synthase kinase 3 and 4



Table 2. Structural Properties of Some Purified Protein Kinases

PROTEIN KINASE
MONOMER MOLECULAR SUBUNIT AUTOPHOSPHORYLATED 

WEIGHTS STRUCTURE SUBUNITS
cyclic AMP-dependent 
type I

49,000(R) 
39-42,000(C) R2C2 C

cyclic AMP-dependent 
type II

54-56,OOO(R) 
39-42,000(C) R2C2 C,R

cyclic GMP-dependent 74-81,000(E) E2 E

phosphorylase
kinase

118-145,000(a) 
108-128,000(6) 
41-42,000 (Y) 
17,000 (5)

(agYd)4 «,6

myosin light-chain 
kinase

77-125,000 monomer +

protein kinase C 77-87,000 monomer +

eIF-2 kinase 80-95,000 4-

casein kinase I 37-42,000 monomer +

casein kinase II 42-44,000 (a) 
38-40,000 (a1 
24-26,000 (B)

oo'gg B

EGF-receptor 170-180,000 monomer +

pp60V-src/pp6oc-src 60,000 monomer +

insulin-receptor 120-130,000 (a) 
90,000 (8) °2 ®2 6

References: Flockhart and Corbin (1982), Nishizuka (1983)
and Ullrich et al. (1985)



Table 3. Amino Acid Sequences at the Phosphorylation Sites
of Protein Substrates (Data from EngstrBm et al., 1984)

PROTEIN KINASE SUBSTRATE SEQUENCE

cyclic AMP- 
-dependent

phosphorylase kinase 
(o -subunit)

P
phe-arg-arg-leu-ser-ile

Ty

glycogen synthase 
(site la)

r
gln-trp-pro-arg-arg-ala-ser-cys

r%

phenylalanine
hydroxylase

troponin-I

r
ser-arg-lys-leu-ser-asp

Pval-arg-arg-ser-asp

cyclic GMP- 
-dependent

R subunit of 
cyclic AMP-dependent
protein kinase type I 

H2B

P
arg-gly-ala-ile-ser-ala-glu

P P 
lys-arg-ser-arg-lys-glu-ser-tyr

HMG 14
P

lys-arg-lys-val-ser-ser-ala

casein kinase II casein (B )
P

glu-gln-gln-gln-thr-glu-asp-glu

glycogen synthase 
(site 5)

P
ser-pro-his-gln-ser-glu-asp-glu

troponin-T
P

Ac-ser-asp-glu-glu-val

casein kinase I casein (asgO 

casein ( g )

P
glu-glu-asn-ser-lys-lys-thr
P P Pser-ser-glu-glu-ser-ile-thr



1.2 PROTEIN PHOSPHATASES

Protein phosphatases which catalyse the dephosphorylation of proteins 

containing phosphoserine and phosphothreonine residues (reviewed by 

Ingebritsen and Cohen, 1983) and protein phosphatases which act on 

phosphotyrosyl proteins (reviewed by Foulkes,1983) have been described.

Studies of protein phosphatases acting on proteins phosphorylated 

at serine and threonine residues suggested that four enzymes, termed protein 

phosphatases 1, 2A, 2B and 2C, account for virtually all protein phosphatase 

activity in cellular extracts. The phosphoproteins that are substrates for 

such phosphatases include enzymes involved in regulating many different 

metabolic processes: glycogen metabolism, glycolysis/gluconeogenesis,

fatty acid synthesis,cholesterol synthesis and protein synthesis. In 

addition, these four protein phosphotases appear to explain most of the 

protein phosphatase activities that have been reported.

The four protein phosphatases (Table 4) have different structural 

and catalytic properties. A study of the substrate specificities of the 

enzymes demonstrated that protein phosphatases 1, 2A and 2C each have broad 

but distinct substrate specificities. In contrast, protein phosphatase 2B 

has significant activity towards only three substrates, namely inhibitor-1, 
the a subunit of phosphorylase kinase and the P light chain of myosin.

Like protein kinases, protein phosphatases are important targets for 

cellular regulation. Two mechanisms for regulating protein phosphatase 1 

have been identified. One involves regulation by a protein called 

inhibitor-1. The inhibitor-1 itself can be regulated by phosphorylation: 

the phospho form of the protein is a potent inhibitor of protein phosphatase 1, 

and the dephospho form is inactive. It is likely that phosphorylation of 

the inhibitor is catalysed by cyclic AMP-dependent protein kinase. The 

dephosphorylation could be a result of the activity of Ca^+.dependent protein 

phosphatase 2B. It is therefore possible that the activity of protein



phosphatase 1 is regulated by cyclic AMP and via phosphorylation and

dephosphorylation of inhibitor-1. The second mechanism for regulating 

protein phosphatase 1 is related to the phosphatase molecules present in 

the complex with a protein called inhibitor-2. The activation of protein 

phosphatase 1 is triggered by the phosphorylation of inhibitor-2 by 

glycogen synthase kinase 3.

Protein phosphatase 2B is a Ca^+-dependent enzyme (activation constant, 

Aq 5 = 0.5 to 1.0 /iM) the activity of which is stimulated tenfold by 

calmodulin (Ag g = 6.0 nM). Protein phosphatase 20 is absolutely 

dependent on Mg2+ (Ag.s = 1.0 n^) for activity with all known substrates, 

but protein phosphatase 2A is active in the absence of divalent cations.

It has recently been reported (Tung et al., 1985) that the activity of 

protein phosphatase 1 (oligomeric form) and the activities of four forms of 
protein phosphatase 2A can be stimulated by polyamines _in vitro. Optimal 

effects were obtained with 1-2 mM spermine.
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2. PROTEIN PHOSPHORYLATION IN INFECTION OF CELLS

WITH ANIMAL VIRUSES

2.1 EVIDENCE TO SUPPORT THE ROLE OF PROTEIN PHOSPHORYLATION

DURING VIRAL INFECTION

Most information concerning the role of protein phosphorylation 

in the interaction of animal viruses with host cells has emerged from 

studies of- viral transforming genes and proteins. Transformation of cells 

by some viral oncogenes is due to the ability of the oncogenes to affect 

particular steps of normal cellular growth (Heldin and Westermark, 1984). 

Thus, some of the viral oncogenes are related to polypeptide growth factors 

or to growth factor-receptors with tyrosine kinase activity. Some other 

viral oncogenes are related to cellular serine-threonine protein kinases, 

but their role in transformation (or the role of the homologous cellular 

kinases in growth) is unknown.

Different mechanisms from those operative in transformation operate 

during productive infection of cells by animal viruses. Productive 

infection of cells involves several separable events: i) adsorption and

uncoating of the virus particle; ii) inhibition of cellular functions; 

iii) transcription of the viral genome into mRNA; iv) replication of the 

viral genome; v) morphogenesis of the virion and release of the virus 

from the cell. The characteristics of these events are dependent on the 

specific properties of the virus (Luria e^ , 1978). Although it is 

still uncertain whether protein phosphorylation plays a role in any of 

these various processes, the following findings suggest that this may, 

in fact,be the case:

(1) Protein kinase activity is present in purified virions of many 

completely unrelated viruses.



(2) Some virally-coded proteins have associated protein kinase activity.

(3) Some viral structural and functional proteins are phosphoproteins.

(A) The phosphorylation of cellular proteins can be altered as a result

of viral infection

These different points will be discussed in turn in the following 

sections.

(1) Protein Kinase Activities Present in Virus Particles

Protein kinase activity has been found associated with the virions 

of many different viruses. These include adenoviruses (AkusjSrvi et al., 

1978; Blair et̂  , 1978), herpesviruses (Randall _ê  , 1972; FlUgel

and Darai, 1982; Lemaster and Roizman, 1980; Rubenstein et ̂ . , 1972), 

iridoviruses (Silberstein and August, 1976.-/; Monnier and Devauchelle, 1980), 

poxviruses (Kleiman and Moss, 1975), retroviruses (e.g. Sen and Todaro, 1979; 

Owada et al., 1981; Weis and Faras, 1983), togaviruses (Waite e^ , 1974; 

Tan and Sokol, 1974), picornaviruses (Grubman, 1982), rhabdoviruses 

(Imblum and Wagner, 1974; Clinton e^ , 1982), and mixoviruses (Lamb,

1975; Kamata and Watanabe, 1977). It is therefore clear that the presence 

of protein kinases in virions cannot be related to any particular group of 

viruses (RNA or DNA), to the presence or absence of a viral envelope 

acquired by budding at cellular membranes, or to the ability of a virus to 

cause infection rather than transformation of host cells, or vice versa.

The existence of protein kinases in viral particles allows many 

possibilities for the physiological significance of their presence. These 

possibilities range from the chance incorporation of cellular protein 

kinases into the virions, to the possibility that they represent important 

components of the virion i.e. viral regulatory proteins. It was therefore 

necessary to try to characterize the protein kinases in relation to their



molecular and enzymic properties as well as to their origin from cellular 

or viral genome-

Some properties of protein kinases isolated from various virus 

particles are shown in Table 5. The protein kinases isolated from FV3 

(Silberstein and August, 1976 and 1976a), MSV-MuLV (Blaas ^  , 1979;

Sen and Todaro,1979), AMV (Rosok and Watson, 1979; Houts ̂  , 1978;

Tsiapalis, 1977) and RSV (Weis and Faras,1983) have molecular weights 

between 40,000 and 50,000, they are probably all monomeric in structure, 

preferentially phosphorylate acidic proteins at serine and threonine 

residues, and use ATP more efficiently than GTP as the phosphate donor.

A similar protein kinase is present in animal cells and has been termed 

casein kinase I (Table 2). This enzyme has been isolated from the 

cytoplasm, and some variants of casein kinase I have also been isolated 

from the nucleus (NI) (Baydoun _et_ ̂ . , 1981) and the plasma membrane (M)

(Tao et , 1980 and 1981). So far, there has been no direct experimental 

comparison between this cellular kinase and the similar group of kinases 

from virus particles.

The protein kinases isolated from Ad2 (AkusjMrvi ̂  , 1978),

Mo-Mu SV (Sen and Todaro, 1979; Sen, 1981) and RSV-PrC (Hizi et_ ̂ . , 1979) 

are distinct from other characterized viral and cellular protein kinases 

(Table 2 and 5) in their small size (11-14,000 Da). Mo-Mu SV kinase 

phosphorylates tyrosine in an autocatalytic reaction but is not associated 

with the viral transforming protein, in contrast to tyrosine kinases of 

other retroviruses (Table 6).
The protein kinases isolated from the virions of RSV (a retrovirus) 

and VSV (a rhabdovirus) have been shown to be identical to the tyrosine 

protein kinase, pp60®̂ *̂  (the transforming protein of RSV and its cellular 

homologue) on the basis of specific immunoprécipitation, purification and



peptide analysis (Owada e^^., 1981 ; Clinton ̂  , 1982).

The second important question regarding protein kinases associated 

with the virion, is whether they are coded by the viral or cellular genome.

In the case of enveloped viruses, which obtain their coat by budding from the 

host cell, it is likely that the virions contain host cell membrane protein 

kinase(s). One enveloped virus, vesicular stomatitis virus (VSV), contains, 

among several protein kinases, the tyrosine kinase ppGO^-STC (Clinton et al.,

1982). This protein kinase, as well as ppbO^-src sarcoma virus,

is present in the cellular membrane (Burr et , 1981). To establish 

whether the tyrosine protein kinase is taken up from the membrane during 

the budding of VSV, virus was grown in normal cells, or in cells transformed 

by Rous sarcoma virus containing increased amounts of pp60®^^ tyrosine protein 

kinase activity. VSV particles isolated from the transformed cells were 

found to contain more ppôQsrc activity than particles from normal cells 

(Clinton et aT., 1982). Uptake of cell-membrane components by budding 

viruses is not a random process but involves some specificity. In the 

case of VSV most cell-surface proteins as well as most enzymes assoicated 

with the membrane are excluded from purified virions (Lodish and Porter, 1980). 

Thus, the presence of membrane protein kinases in enveloped viruses must be 

a result of specific rather than nonspecific incorporation.

Analysis of the subviral compartments of enveloped viruses indicated 

that some protein kinases are located in the virus core (Monnier and 

Devauchelle, 1980; Kleiman and Moss, 1975; Blaas et ̂ . , 1979). Further

more some non-enveloped viruses possess protein kinase activity (AkusjSrvi 

^  , 1978; Blair and Russell, 1978; Grubman, 1982). Different

approaches have been used to answer the question of whether these kinases 

(clearly not derived from cell membrane) are coded by the virus or host cell.



Table 5. Protein Kinases Isolated from Virus Particles

VIRUS

(REFERENCE)
APPROX. MOL 
WEIGHT

PHOSPHATE
DONOR

SUBSTRATE 
PREFERENCE 
in vitro

AMINO ACID 
PHOSPHORYLATED

Adenovirus type 2 
Ad-2 (1)

Frog virus 3 
FV3 (2,3)

Vaccinia virus 
(4, 5)

Murine sarcoma 
leukemia virus 
MSV-MuLV (6, 7)
Moloney murine 
sarcoma virus 
Mo-MuSV (7, 8)
Rous sarcoma 
virus 
RSV (9)

Rous sarcoma
virus
RSV (9)

Rous sarcoma
virus
RSV (10)

Avian sarcoma
virus
ASV (11)

Avian mielobla- 
stosis virus 
AMV (12)

Avian mielobla- 
stosis virus 
AMV (12,13,14)

Vesicular 
stomatitis virus 
VSV (15)

14,000

50-53,000

62,000

40,000

14-16,000

43,000

11,000

60,000

63,000

45-50,000

60,000

ATP

ATP>GTP

ATP

ATP

ATP>GTP

120-130,000 ATP>GTP

ATP

ATP>GTP

ATP>GTP

ATP

ATP

ATP>GTP

phosvitin
casein

casein
phosvitin

casein

casein
phosvitin

phosvitin
casein

phosvitin
casein

phosvitin
casein

casein
phosvitin

casein

histone
protamine

phosvitin
casein

casein

N.D.

P-Ser
P-Thr

P-Ser
P-Thr

P-Ser
P-Thr

P-Ser

N.D.

N.D.

P-Ser
P-Thr

P-Tyr

N.D.

N.D.

P-Tyr



Key to references:

1) Akusjarvi ̂  (1978)

2 and 3) Silberstein and August (1976 and 1976a)

4 and 5) Keliman and Moss (1975 and 1975a)

6) Blaas ̂  al. (1979)

7) Sen and Todaro (1979)

8) Sen (1981)

9) Weis and Faras (1983)

10) Hizi et al. (1979)

11) Owada e_C (1981)

12) Rosok and Watson (1979)

13) Tsiapalis (1977)

14) Houts et (1978)

13) Clinton et_ (1982)



The most direct, genetic approach is at present only applicable to relatively 

simple viruses with extensively characterized genomes and gene products.

The available evidence for Rous sarcoma virus clearly shows that kinases 

such as those of 43,000 Da (Weis and Faras,1983) and 120,000 Da (Weis and 

Faras, 1983) are not products of the viral genome. In contrast, the 15,000 

Da protein kinase from Moloney murine sarcoma virus (Mo-Mu-SV) seems to be 

virally-coded. When the 15,000 Da protein kinase is isolated from the 

virions of a mutant of Mo-Mu-SV temperature sensitive for transformation, 

its ability to transfer phosphate is about four times more thermolabile than 

that of the wild-type enzyme (Sen et , 1979). Another example when the 

genetic approach was used is the protein kinase associated with the virions 

of frog virus 3 (FV3) and also present in infected cells (Silberstein and 

August,1976 and 1976a). Temperature-sensitive mutants of this virus have 

been isolated. In normal cells and cells separately infected with two of 

these mutants no protein kinase can be detected using antibodies raised 

against the enzyme isolated from wild-type virus particles. Thus, expression 

of the viral genome is necessary for the synthesis of this protein kinase, 

although this still does not prove that the kinase is itself a virally- 

coded protein.

The evidence presented in this section leads to the conclusion that, 

although protein kinases in the virions may originate from both the viral 

or cellular genome, it is unlikely that their incorporation into the virions 

results from nonspecific interaction with viral components during the 

processes of assembly and budding.

(2) Protein Kinase Activities Associated with Virally-

coded Proteins

Besides the protein kinases associated with components of the virions 

of various animal viruses, protein kinase activities have also been found in



association with certain virally-coded proteins present in infected and 

transformed cells. The main objective of the studies concerning such

viral proteins was to establish whether these proteins possess intrinsic

protein kinase activity, or whether the kinase activity is due to the

association of the viral protein with a cellular kinase(s).

Among the first examples of protein kinase activity found in 

association with virally-coded proteins was a tyrosine protein kinase 

associated with pp60''“®^^ (Collett and Erikson, 1978; Levinson ̂  al.., 1978). 

This finding stimulated a series of investigations to test whether there were 

protein kinase activities associated with the virally-coded proteins of other 

(especially tumour) viruses. The assay most commonly employed has been 

simple incubation of an immunoprecipitate containing the viral protein(s) 

with [ Y -^^P]ATP, and analysis of the ^^P-labelled products. The specific 

presence of phosphorylated proteins in samples containing viral proteins 

was taken as evidence for an associated protein kinase activity. As a 

result it has been demonstrated that the transforming proteins of some of the 

highly oncogenic retroviruses (Table 6) and some early proteins of 

papovaviruses, adenoviruses and herpesviruses (Table 7) contain a protein 

kinase activity in their immunoprecipitates.

Highly oncogenic retroviruses represent a distinct group in the 

retrovirus family as regards the organisation of their genome and their 

ability to cause acute diseases with a short latent period (Cooper and 

Hunter,1983). A common feature of this group of retroviruses is that their 

genomes are chimeric. Both termini are derived from the genome of a non

defective weakly oncogenic retroviruses; However, the central part of 

the genome originates from cellular genes, presumably by a recombinant event. 

This part of the genome (the viral oncogene), which represent a transduced 

cellular gene sequence, is responsible for transformation. The evolutionary



Table 6. Retroviral Transforming Proteins with Protein Kinase Activity

RETROVIRUS GENE
NAME

PROTEIN
KINASE

NORMAL CELLULAR 
HOMOLOGUE

1. tyrosine

Rous sarcoma virus 
(RSV) src PPôQV-src pp60f-src

Y73 avian sarcoma 
virus yes pgOSag-yes 7
Esh sarcoma virus 
CSV) P8ogBg-yGs

Fujinami sarcoma 
virus (FSV) P140gag-fps

PRC II s a r c o m a  
virus fps PlOBgag-fPS pggc-fps

UR-1 sarcoma virus P1508B8-fps

Snyder-Theilen 
feline sarcoma 
virus fes

P858ag-fes
jÇ2C-fes

Gardner-Arnstein 
feline sarcoma

pgggag-fes

virus

UR-2 sarcoma virus ros p^ggag-ros 7
Abelson murine 
leukemia virus 
(AMuLV 1

abl pi2(,gag-abl pl50C-abl

Garder-Rasheed 
feline sarcoma 
virus

fgr P72ë®g-fgr ?

Avian erythroblastosis 
virus

erbB intracellular part 
of EGF receptor

2.
serine-threonine

Moloney murine 
sarcoma virus mos

pSymos
P85ga8-mos 7

Murine sarcoma virus 
3611 (3611-MSV) raf py^gag-raf ?

Avian carcinoma Mill 
Hill No.2 (MH2) mil ?

References: Cooper and Hunter (1983), Bishop (1983),
Heldin and Westermark (1984), Gilmore et (1985), 
Kris _et .al. (1985), Maxwell and Arlinghaus (1985), 
Kloetzer et al. (1984) and Moelling e^ a]̂ . (1984)



Table 7. Viral Proteins with Associated Protein Kinase Activity

VIRUS
PROTEIN WITH ASSOCIATED 
KINASE ACTIVITY REFERENCE

Papovaviruses

SV 40 large T (85,000 Da) 1 - 3

Polyoma middle T (50,000 Da) 4 - 6

Adenoviruses

Ad 5 58,000 Da 7

Herpesviruses

Epstein-Barr 48,000 Da 8

Human cyto 68,000 Da 9
megalovirus

Key to references:

1) Griffin et al. (1979)
2) Bradly et (1982)
3) Tjian and Robbins (1979)
4) Eckhart ̂  (1979)
5) Schaffhausen and Benjamin (1979)
6) Smith et (1979)
7) Yee and Branton (1983)
8) Kamata et (1981)
9) Michelson et al. (1984 and 1985)



progenitors of viral oncogenes are present in normal cells (proto-oncogenes). 

In cells transformed by retroviruses the oncogenic protein is made in large 

amounts because the oncogene is expressed like an active viral gene despite 

not having a function in viral replication. In papovaviruses,.adenoviruses 

and herpesviruses, the proteins with associated protein kinase activity have 

not so far been related to any cellular gene and some of them have functions 

during lytic infection as well as cell transformation.

Because of the possibility that the immunoprecipitates of the proteins 

discussed above and listed in Table 6 and 7, contain an associated or 

contaminating cellular protein kinase, it is important to demonstrate that 

the detected protein kinase activity is an intrinsic property of a specific 

viral protein. Several lines of experimental evidence support the 

identification of the retroviral transforming proteins as protein kinases.

It has been shown that many transforming proteins of conditional mutants, 

temperature-sensitive for transformation, have a more thermolabile protein 

kinase activity than their respective wild type (Hunter and Sefton, 1982). 

Furthermore, highly purified preparations of pp60®^^ display tyrosine kinase 

activity and the v-src and,v-abl gene products expressed in bacteria retain 

their kinase activity (Cooper and Hunter, 1983). Molecular-cloning 

techniques have made it possible to determine the nucleotide sequence of 

almost every viral oncogene, and,by applying the genetic code, to predict 

the amino acid sequence of its product. A comparison of these sequences 

has not only revealed homology between the transforming proteins themselves 

but also homology between the transforming proteins and the catalytic 

subunit of cyclic AMP-dependent protein kinase (Privalsky et ̂ . , 1984;

Kamps et al ., 1984).

The relationship between proteins encoded by other animal viruses 

(Table 7) and the protein kinase activities detected in their immuno

precipitates is less clear. The large transforming (T) antigen of simian



virus 4q (SV 40) becomes phosphorylated at multiple sites in both infected 

and transformed cells. A protein kinase activity present in immuno

precipitates can phosphorylate large T antigen in vitro at serine and 

threonine residues. Some of these residues were also phosphorylated in vivo 

(Van Roy al̂ ., 1984). Several investigators (Griffin et al̂ ., 1979;

Bradly al., 1982; Tjian and Robbins, 1979) have reported that large T 

antigen, highly purified by biochemical means, displays protein kinase activity. 

However, others either were unable to detect this kinase activity of purified 

large T antigen, or managed to separate large T antigen from an associated 

protein kinase activity (Giacherio and Hager,1979; Tjian et ̂ . , 1980), 

suggesting that T antigen is not itself a protein kinase. Another protein, 

middle T antigen of polyoma virus, is associated with a protein kinase activity 

in immunoprecipitates, with the major phosphate-acceptor species being the 

antigen itself (Eckhart et al., 1979; Schaffhausen and Benjamin,1979;

Smith et , 1979). In vitro, the protein kinase activity transfers phosphate 

from -32p]ATp to tyrosine (Eckhart et al.,1979). Currently, there is no 

evidence to demonstrate that the protein kinase activity is an intrinsic 

property of middle T antigen. The antigen synthesized in a translation 

system in vitro, or expressed in E. coli (Schaffhausen e^ ̂ . , 1982), does 

not possess detectable protein kinase activity. Recently, it has been 

demonstrated that middle T antigen is associated with pp60C"src_ Since 

pp6QC"src possesses intrinsic tyrosine protein kinase activity, it would 

appear that the kinase associated with middle T antigen is, at least in part, 

a property of ppôQC'Src (Courtneidge aid Smith,1983; Bolen ̂  1984).

Other viral proteins listed in Table 7 have been studied less extensively.

A serine-threonine protein kinase activity copurified with the early protein 

(58,000 Da) of adenovirus type 5 through several stages of purification 

(Yee and Branton,1983). Similar results were obtained for the nuclear



antigen specified by Epstein-Barr virus (Kamata et , 1981). In the case 

of a serine-threonine protein kinase found associated with a virally-coded 

protein of 68,000 Da in cells infected with human cytomegatovirus, the 

only purification was by immunoprécipitation (Michelson al., 1984 and 1985), 

The data presented in this section do not provide convincing evidence 

that viral genomes other than those of the highly oncogenic retroviruses 

encode protein kinases. However the tyrosine protein kinases of these 

viral oncogenes cannot be regarded as normal viral proteins as the genes 

which code for them originate from host cells. Nevertheless, it has 

been suggested that specific association of a virally-coded protein and 

cellular protein kinase may have a physiological significance. Thus, 

specific association of polyoma virus middle T antigen with ppôO^'src 

increases the specific activity of pp6QC-src tyrosine protein kinase in 

both infected and transformed cells (Bolen et 1984; Courtneidge, 1985).

(3) Phosphorylation of Viral Proteins

Many structural and regulatory proteins of animal viruses undergo 

phosphorylation. In virtually every animal virus, some of the protein 

components of the virion can be phosphorylated by endogenous kinase activity 

(e.g. Blaas et , 1979; Imblum and Wagner,1974; Lamb,1975; AkusjMrvi 

et al., 1978; Lemaster and Roizman,1980). In addition, some viral 

structural-and regulatory proteins are phosphorylated in the host cell during 

the infection cycle (e.g. Jeng ̂  , 1977; Russell and Blair, 1977;

Wilcox ̂  , 1980; Hizi and Joklik,1977; Clinton et , 1979; Moyer

and Summers,1974; Lamb and Choppin,1977). The question to be considered 

here is, regardless of the origin of the kinase responsible, whether the 

phosphorylation of these viral proteins has any physiological function.



The phosphoproteins present in virus particles are frequently 

associated with the viral nucleic acid, and there is evidence that the 

degree of their phosphorylation determines the extent of their binding 

to the viral nucleic acid. This binding in turn may be the regulatory 

mechanism for replication or transcription of the viral genome. A role 

in assembly or uncoating of the virus particle has; also been suggested. 

There are several examples which illustrate some of these possibilities.

The low molecular weight proteins from avian and mammalian type C 

retroviruses are examples of phosphorylated structural proteins. These 

are found in close association with the RNA genome in the virion core, 

and bind specifically to their homologous RN* in vitro (Sen and Todoro, 

1977). The specific RNA-fainding protein of many different type C 

retroviruses is also the major phosphoprotein of the virion (Sen and Todaro, 

1977). This phosphoprotein of avian retroviruses is termed ppl2. When 

the phosphate associated with serine residues of ppl2 was removed, the 

apparent binding constant for viral RNA decreased lOO-fold (Leis and 

Jentoft,1983). The high affinity binding of ppl2 to viral RNA was 

restored by phosphorylation of the protein at the same serine residues 

in vitro (Leis et ̂ .,1984). On the basis of these data a biological 

model has been proposed in which phosphorylation of the protein is 

involved in the packing of the viral RNA, and dephosphorylation is 

involved in its uncoating (Leis ̂  , 1984). The results obtained

from analysis of an adenovirus also suggest a regulatory role of protein 

phosphorylation in the assembly of the virion (Weber and Khittoo, 1983).

One of the core proteins (designed pV) was studied. This was detected 

both as a free protein in infected cells and also as a part of the "young" 

and "mature" virions. The free pV was present in both a phosphorylated 

and an unphosphorylated form, while "young" virions contained only



the phosphorylated form of the protein. Subsequent maturation of the 

virion resulted in the déphosphorylation of this core protein.

One phospho protein of the virions of vesicular stomatitis virus 

is protein NS, which, in association with another protein (L), constitutes 

the RNA-polymerase complex. This protein has a regulatory function 

during viral RNA synthesis and viral morphogenesis. The NS protein 

exists as multiply phosphorylated species, both in the cell and the virus 

particle (Clinton ̂  , 1978 and 1979). The different phosphorylated

species of NS bind to different extents to the ribonucleoprotein cores 

during virus assembly (Clinton e^ , 1978). The individual species, 

isolated and purified, were tested for their ability to reconstitute a 

transcription system in vitro, involving viral cores from which the NS 

protein had been removed. Only the most highly phosphorylated NS 

molecules restored full transcriptional activity (Kingsford and Emerson,

1980). This result was confirmed by the finding that the specific 

dephosphorylation of NS inhibited transcription in the viral core in vitro 

(Hsu e^ , 1982). A similar example of the role of protein phosphorylation 

in the regulation of transcription is provided by influenza virus. The 

major phosphoprotein of this virus is the NP protein which constitutes the 

capsid around highly packed viral RNA. Influenza virus contains protein 

kinase activity as well as viral transcriptase in, or in association with, 

the nucleocapsid structure (Sugiyama et al., 1976). The phosphorylation 

of the NP protein by the endogenous protein kinase in vitro stimulated 

viral transcription in isolated nucleocapsids (Kamata and Watanabe, 1977).

In .another study, performed with vesicular stomatitis virus, an 

uncoating function for phosphorylation of the virion components has been 

suggested. Enveloped viruses generally enter host cells by viropexis 

(a variant of phagocytosis) or by fusion with the cellular plasma membrane.



The predominant mode of entry of vesicular stomatitis virus is viropexis.

This virus, in contrast to viruses uncoating by membrane fusion and 

subsequent release of the genome, requires an additional step of uncoating 

prior to activation of virus replication. It seems chat the function of 

the matrix protein (M) is to mediate the interactions between the envelope 

and internal core structure (Lenard and Compans, 1974). This protein, 

unlike the proteins described previously, is not associated with the viral 

genome. It has been shown that activation of the kinase activity present 

in the virions resulted in phosphorylation of protein M and some other 

proteins in the nucleocapsid (Witt et ̂ . , 1981). The electron microscopic 

analysis showed that following this phosphorylation of vesicular stomatitis 

virus protein in vitro, the virion envelope was disrupted (Witt et , 1981). 

A similar electron microscopic study showed that activation of the kinase 

in the purified nucleocapsid structure of granulosis virus resulted in 

release of DNA from the nucleocapsid (Wilson and Consigli,1985). The main 

substrate for the kinase activity was the basic DNA-binding protein VP-12 

(Wilson and Consigli,1985a). The phosphorylation of VP-12 reduced its 

binding capacity for viral DNA (Wilson and Consigli,1985).

Besides the possible roles for phosphorylation of viral proteins 

described above, the fact that some virally-coded enzymes become phosphory

lated in infected cells (Hizi and Joklik, 1977; Lee et al., 1975; Schiff 

and Grandgenett, 1980; Banks ̂  al., 1985) suggested a role of phosphoryl

ation in the regulation of their enzyme activity. However, the only 

example where clear correlation between the extent of phosphorylation 

and enzyme activity has been found, is that of the RNA-dependent DNA 

polymerase of avian tumour viruses. The enzyme is composed of two subunits, 

one of them ( 6) a phosphoprotein (Hizi and Joklik,1977). The enzyme of 

Rous sarcoma virus (RSV) was phosphorylated in vitro with kinase purified 

from RSV particles (11,000 Da), vith protein kinase from another -retrovirus-



AMV (40,000 Da) or with the catalytic subunit of beef heart cyclic AMP- 

dependent protein kinase. The correlation between the phosphorylation 

state of RNA-dependent DNA polymerase and its enzymic activity was shown 

only when the 11,000 Da protein kinase of RSV was used (Hizi, 1982).

This finding suggests a specific role of the RSV virion kinase in the 

regulation of reverse transcription.

(4) Phosphorylation of Cellular Proteins During Infection

with Animal Viruses: Ribosomal Protein S6

Discussion of phosphorylation in cells infected with animal viruses, 

has so far concentrated on viral proteins. However in some cases there 

are also changes in the phosphorylation of certain cellular proteins, 

and one of these, ribosomal protein S6, has been found phosphorylated 

following infection with several different animal viruses. It has been 

demonstrated that infection with vaccinia virus (Kaerlein and Horak, 1978), 

herpes simplex virus type 1 (Kennedy et_ , 1981) and pseudorabies virus 

(Kennedy et ̂ . , 1981), increases the extent of phosphorylation of S6.

Two other reports that infection with adenovirus type 5 (Blair and Horak, 

1977) and mengovirus (Rosnitschek et ̂ . , 1978) could produce the same 

effect, are less well documented. However, this effect is not specific 

for cells infected with the animal viruses mentioned above, since the 

extent of phosphorylation of S6 can be alter ed by a wide variety of 

physiological and pathological stimuli (Leader, 1980). Some of the 

physiological stimuli (e.g. cyclic AMP) lead to incorporation of 1-2 moles 

of phosphate per 36 molecule. Other stimuli (e.g. some secretagogues) 

can cause the conversion of unphosphorylated 36 to derivatives containing 

3-4 moles of phosphate per 36 molecule. The most dramatic change, 

however, occurs in response to growth stimuli. Viral transformation, 

like growth stimuli, leads to the maximum phosphorylation of 36 to state in



which the protein contains five phosphoryl groups per molecule. The 

precise extent of phosphorylation of S6 in cells infected with animal viruses 

has not always been determined, but at least in some cases, the highest 

phosphorylated derivatives of S6 have been detected (Kennedy et al., 1981).

The phosphorylation of S6 in cells infected with animal viruses has 

been studied less extensively than in other biological systems. Never

theless, it is possible to make certain generalisations about the character

istics of this phosphorylation and also to point out important problems 

which are not yet resolved in any of the biological systems studied.

Identification of some of the sites in S6 which are phosphorylated 
in vivo has come from analysis of the tryptic phosphopeptides generated 

from S6 following various stimuli, and from determination of the primary 
structure of the protein. Analysis of phosphopeptide maps of S6 has 

suggested that there are no subclasses of sites uniquely associated with 

the action of a single growth-promoting agent (Trevillyan e^ ̂ . , 1985; 

Martin-Perez let lAl., 1984; Blenis et ̂ . , 1984). Furthermore, the 

sites phosphorylated in response to cyclic AMP are identical to some of 

the sites affected by growth stimuli (Wettenhall and Morgan, 1984; Martin- 

Perez et ̂ . , 1984). Analysis of the primary structure of the region of 

S6 which is phosphorylated suggests that the phosphorylated sites may be 

clustered within a 15- residue segment at the COOH - terminus of the 

molecule: -Ser-Ser-Leu-Arg-Ala-Ser-Thr-Ser-Lys-Ser-Glu-Glu-Ser-Gln-Lvs-CQOH

(Wettenhall and Morgan,1984). The first three serine residues are 

phosphorylated in vivo, but the identity of the other phosphoserines is 

uncertain. The clustering of several phosphorylation sites appears to be 

a general occurrence in phosphoproteins (Picton et al_., 1982).



The function of the phosphorylation of S6 has not been established, 
but in some circumstances there is a suggestive correlation between the

extent of phosphorylation of S6 and the rate of protein synthesis. Never

theless this correlation between phosphorylation and protein synthesis 

is not always stringent: some stimuli for increased phosphorylation, such

as cyclic AMP, have no obvious influence on protein biosynthesis, and most 

attempts to detect effects of the phosphorylation on the functional activity 

of AOS subunits in more physiological cell-free systems have been unsuccessful 

(Leader, 1980). It has been suggested that a role of S6 phosphorylation, 

at least in some cases, may be related to recruitment of specific mRNAs.

In 3T3 cells, ribosomes containing maximally phosphorylated 86 molecules 
are incorporated preferentially into new polysomes after stimulation of

growth by serum (Thomas et , 1982; Duncan and McConkey, 1982). An

increase in S6 phosphorylation correlates with increased protein synthesis 
in Xenopus oocytes induced to mature with progesterone or insulin, and the 

increased protein synthesis has been reported to occur largely as a result 

of mRNA recruitment (Nielsen et , 1982; Richter et ̂ . , 1982; Stith 

and Mailer,1984). Infection of cells with animal viruses results in 

formation of new polysomes containing viral mRNA (Luria et , 1978).

As mentioned above, in the infected cells where the extent of phosphorylation 

of 86 was analysed, it was found to be increased compared with the extent 

of phosphorylation in uninfected cells.

In general, little is known about the mechanisms that control the 

overall state of phosphorylation of 86. It has been suggested that the 

growth factors and certain viral transforming proteins have a common 

initial signal, related to the increase in tyrosine kinase activity, which 

probably leads to phosphorylation of several cellular proteins (Cooper and 

Hunter,1983) including 86 (Blenis et^., 1984; 8pivack et_ ,1984) . It 

has been recently found that vaccinia virus encodes a polypeptide (expressed



during the early stages of infection) which is related to transforming 

growth factor type 1 (TGF 1) and epidermal growth factor (EGF) (Blomquist 

et , 1984; Brown et al.,1985; Reisner, 1985). This finding opens 

the possibility that the increase in phosphorylation of S6 during the 
infection with vaccinia virus occurs through the action of this growth 

factor-like polypeptide. As the vaccinia virus polypeptide is as 

structurally similar to EGF as it is to TGF, it is believed that, like TGF, 

it might be able to bind to and activate the EGF-receptor (Brown et al.. 1985).

An understanding of the control of the phosphorylation of S6 by 

various stimuli requires that the enzymes responsible for the phosphoryl

ation/dephosphorylation of this protein be identified. The conditions 

for a putative S6 kinase(s) to fulfill are at present limited to evidence 
that the enzyme activity is increased in stimulated cells and that it 

phosphorylates the same sites in vitro as are phosphorylated under 

conditions in which it is active in vivo. For the control of phosphoryl

ation by cyclic AMP the conditions described above have been satisfied by 

the cyclic AMP-dependent protein kinase (Wettenhall et , 1982).

However, as already mentioned, serine residues other than the one or two 

that serve as substrates for the cyclic AMP-dependent protein kinase are 

phosphorylated in vivo, suggesting the existence of other S6 kinase(s).

In cells infected with animal viruses the kinases and phosphatases involved 

in S6 phosphorylation have not yet been studied. As a result of analysis 

in other biological systems, several S6 kinases of uncertain identity have 

been found to respond to treatment of cells with insulin and growth 

factors: i) One protein kinase activity from 3T3 cells stimulated by

insulin was fractionated on DEAE-cellulose and identified as the activated 

form of an enzyme termed protease-activated kinase II (Perisic and Traugh,

1983). It has been shown that this enzyme, extensively purified from 

rabbit reticulocytes, is able to convert unphosphorylated ribosomal S6 to



triphosphorylated forms (Perisic and Traugh, 1983a). The phosphopeptides 

generated from S6 following phosphorylation by this kinase were found in 

cells stimulated with insulin (Perisic and Traugh, 1983) and growth factors 

(Perisic and Traugh, 1985). Many of the characteristics of protease- 

activated kinase II resemble those of protein kinase C. ii) More recently, 

a comparison of extracts from quiscent 3T3 cells and cells stimulated with 

serum has revealed a highly specific S6 kinase activity (Novak-Hofer and 

Thomas, 1984). This activity, which is 25-fold greater in extracts from 

cells stimulated with serum, phosphorylates most of the sites on S6 found 

to be phosphorylated in vivo, as concluded from comparison of phosphopeptide 

maps. To obtain maximum enzymic activity, phosphatase inhibitors were 

required in all extraction buffers. This suggests that this particular 

protein kinase may be modified by phosphorylation, which may be involved 

in regulating its activity. iii) Analysis of S6 kinase activity in extracts

of Xenopus leavis eggs showed another specific S6 kinase with 5- to 10-fold 

greater activity than in extracts of oocytes (Erikson and Mailer, 1985).

The phosphopeptides of S6 phosphorylated by this kinase in vitro and the 

phosphopeptides observed in maximally phosphorylated derivatives of S6 

in vivo, were identical.

Clearly, more data are needed to clarify the possible relationship 

between the S6 kinases described above and to establish how these enzyme(s) 

are regulated by various stimuli.



2.2 PROTEIN PHOSPHORYLATION IN INFECTION OF CELLS

WITH HERPESVIRUSES

This thesis is concerned with the phosphorylation of proteins in 

cells infected with herpesviruses, and it is therefore necessary to present 

briefly the general characteristics of these viruses and previous results 

relevant to protein phosphorylation in the infected cells.

Herpesviruses are among the largest and most complex DNA viruses. 

Members of the herpes family have linear double stranded genomes ranging 

in molecular weight from approximately 80x10^ to 150x10^. This DNA, and 

the proteins surrounding it, constitute a structural unit termed the viral 

core. Other structural units are the icosadeltahedral capsid (composed 

of 162 prismatic capsomers), the tegument (a layer of fibrous material 

asymmetrically surrounding the capsid), and the envelope which encloses 

the capsid-tegument structure. The capsid is assembled in the nucleus, 

with the viral DNA being packed into preformed capsids, and the envelope 

is acquired from the nuclear membrane in a budding process. The viral 

envelope appears to be assembled from cellular phospholipids and virus- 

specific glycoproteins (Roizman, 1982).

Herpes simplex virus type 1 (HSV-1) has long served as the prototype 

of the herpesvirus family. Viruses closely related to HSV-1 are herpes 

simplex virus type 2 (HSV-2), pseudorabies virus (PRV), equid herpes virus 1 

(EHV-1) and varlcella-zoster virus (VZV). Infection of cells with HSV-1 

has been studied more extensively than has infection with others, but it 

seems that the major characteristics, at least, are common to all members 

of this group (Roizman, 1982).

Productive infection of cells with HSV-1 is accompanied by shut-off 

of host DNA, RNA and protein synthesis, and the appearance of virus-specific 

macromolecules. On the basis of the differential transcription patterns 

of the virus genome at various stages if infection, viral mRNA and proteins



may be subdivided into at Least three classes: immediate-early

(a ), early ( 6) and late (Y ) (Spear and Roizman, 1980). It seems that 

proteins synthesized earlier during infection ( a and some B ) have a 

regulatory role in the viral replicative cycle. However, the functions of 

only a few such proteins have been identified to date (Wagner,1985). One of 

the proteins (molecular weight approx. 160,000) has a role in the transition 

from the first to the second phase of transcription of viral mRNA. Other 

proteins have been identified as part of the machinery for DNA replication 

(DNA-poiymerase, thymidine kinase, alkaline exonuclease, DNA-binding proteins, 

ribonucleotide reductase and deoxypyrimidine triphosphatase). Structural 

proteins are synthesized later during infection.

A role of protein phosphorylation of cells by herpesviruses has been 

indicated by several lines of experimental evidence. This evidence, like 

that already described for animal viruses in general (previous section), 

includes i) the presence of protein kinases in purified virions; ii) the 

association of protein kinase activity with virally-coded proteins; iii) the 

phosphorylation of viral and cellular proteins in infected cells.

The virus particles of several members of the herpes family, have, 

associated with them, a protein kinase activity which can phosphorylate some 

of the proteins present in the virion (Randall et al., 1972; Tan,1975; 

Lemaster and Roizman,1980; FlUgel and Darai, 1982). The protein kinase 

activity from HSV-1 particles, located in the capsid-tegument structure, 

phosphorylated several viral proteins (Lemaster and Roizman, 1980). The 

major phosphorylated species were polypeptides of molecular weights of 

90,000, 55,000 and 35,000. The presence of protein kinase activity in 

PRV particles has also been demonstrated (Tan, 1975). When the virus was 

grown in cells labelled with ^^Pi, two of the virion proteins (115,000 and 

120,000 Da) were phosphorylated (Stevely, 1975).

Protein kinase activity was found associated with one protein coded



by Epstein-Barr virus and one protein of human cytomegalovirus [Introduction,

2.1 (2), Table 7]. As discussed previously, identification of these viral 

proteins as molecules with intrinsic protein kinase activity has not been 

established. The function of these proteins in viral infection is not 

known.

When the phosphorylation of viral proteins was analysed in cells 

infected with HSV-1, as many as 11 phosphoproteins were detected (Wilcox 

et , 1980; Marsden et ̂ . , 1978). The major phosphopeptides have 

molecular weights of about 145,000, 64,000 and 68,000. The protein of 

molecular weight 145,000 was identified as viral ribonucleotide reductase. 

Among other proteins phosphorylated to a lesser extent, two were idenitifed 

as the regulatory protein of early transcription (160,000 Da) and viral 

DNase (82,000 Da).

As already mentioned [Introduction, 2.1. (4)] one protein of the 

host cell which is more phosphorylated in cells infected with HSV-1 and PRV, 

has been identified as ribosomal protein S6 (Kennedy et , 1981). In 

addition, in cells infected with HSV-1, another host protein associated 

with polysomes (48,000 Da) becomes phosphorylated early after infection 

(Fenwick and Walker, 1979).

The number of proteins which become phosphorylated in infected cells 

raises the question of the identity of the protein kinase(s) responsible 

for the phosphorylation. In an attempt to answer this question, changes 

in protein kinase activities following infection with HSV-1 were analysed 

(Blue and Stobbes, 1981), and the induction of a new casein kinase activity 

dependent on the expression of the viral genome, was observed. However, 

the relation of this enzyme to known cellular casein kinases or to virally- 

coded proteins has not been examined.



M A T E R I A L S

1, BIOLOGICAL

1.1 CELLS

BHK 21/C13 cells are an established line of Hamster kidney 

fibroblasts (MacPherson and Stocker, 1962).

1.2 VIRUS

Pseudorabies virus (PRV), a member of the Herpesvirus group, was 

originally obtained from Kaplan and Vatter (1959) and subsequently 

passaged in culture.

1.3 RATS

The rats, derived from the Wistar strain, were supplied by the 

departmental Animal House. The weight of the animals was between 

100-150 g.

2. CHEMICAL

2.1 GENERAL

All laboratory chemicals were analytical reagent (ANALAR) grade 

from British Drug House Ltd., England, except those listed below.

2.2 RADIOCHEMICALS

[^^C] amino acid mixture and [^^P] orthophosphate were purchased 

.from/



from Amersham International Ltd., England.

[y ATP and [Y -^^P] GTP were either from Amersham

International or synthesised according to Maxam and Gilbert (1980).

2.3 ENZYMES, OTHER PROTEINS AND AMINO ACIDS

The catalytic subunit of cyclic AMP-dependent protein kinase from 

rabbit muscle : a gift from P.J. Parker (ICRF - London), prepared

according to Beavo et al.(1974).

Protein kinase C, homogenous preparation isolated from bovine 

brain according to Parker et ̂ .(1984) : a gift from P.J. Parker

(ICRF - London).

Haemin-regulated inhibitor (HRI) : a gift from Professor

H.O. Voorma ( University of Utrecht), prepared according to Amesz 

e t ^ .  (1979).

Casein kinase II from pig liver : a gift from O.G. Issinger

(University of Saarland).

Trypsin (for Method 10.1) - Sigma Chemical Co., U.S.A.

Trypsin (for Method 7) (L-l-tosylamido-2-phenylethyl-chloromethyl- 

ketone-treated) : Worthington Biochemical Corporation, U.S.A.).

Viral DNA polymerase (prepared according to Powell and Purifoy, 

1977), major DNA-binding protein (prepared according to Powell et al.,

1981) and DNase (prepared according to Banks et_^-jl985) : 

gifts from K.L. Powell (University of Leeds).

Calmodulin : Boehringer Mannheim, West Germany.

Heparin : Glaxo Pharmaceuticals Ltd., England.

Mixed histones type 11-A, lysine-rich histones type III-S, histone 

type V-S, VI-S, VII-S and VIII-S, protamine sulphate, casein and 

phosvitin/



phosvitin : Sigma Chemical Co., U.S.A.

Soybean trypsin inhibitor : Sigma Chemical Co., U.S.A.

Eukaryotic initiation factor e.IF-2 from rabbit reticulocytes: 

a gift from Professor H.O. Voorma (University of Utrecht), prepared 

according to Voorma et al.(1979).

Heat-stable inhibitor protein of cyclic AMP-dependent protein 

kinase, isolated from rabbit muscle : a gift from H.G. Nimmo

(University of Glasgow), prepared according to Walsh et al. (1971). 

Low molecular weight protein standards : Pharmacia, Sweden,

o-phosphoserine, o-phosphothreonhe and o-phosphotyrosine :

Sigma Chemical Co., U.S.A.

2.4 NUCLEIC ACIDS AND NUCLEOTIDES 

polyl-polyC : Pharmacia, Sweden.

ATP and GTP : P-L Biochemicals Inc., U.S.A.

cyclic AMP and cyclic GMP : Boehringer Mannheim, West Germany.

2.5 OTHER COMPOUNDS

Phosphatidylserine ; Sigma Chemical Co., U.S.A.

Spermine : Sigma Chemical Co., U.S.A.

Puromycin : Boehringer Mannheim, West Germany.

2.6 CHROMATOGRAPHIC MATERIAL

DE-52 : Whatman Biochemicals Ltd., England.

DEAE-Sephacel : Pharmacia, Sweden

Blue A : Amicon Co., U.S.A.

Phosphocellulose/



Phosphocellulose P-11 : Whatman Biochemicals Ltd., England.

High-performance hydroxylapatite (HPHT) column (7*8 mm x 100 mm) :

Bio-Rad Laboratories, U.S.A.

TSK-GEL G3000SW column (7*5 mm x 600 mm) : Toyo Soda

Manufacturing Co., Japan.
TMMono Q HR 5/5 column (5 mm x 50 ram) : Pharmacia, Sweden. 

juBondapak C^g column (3*9 mm x 30 cm) : Waters Associates, U.S.A. 

Vydac. 5 TP CIS column (4*6 mm x 7*5 cm) : HPLC Technology, Ltd.,

England.

Aquacide (type) II ; Calbiochem Behring Corporation, U.S.A. 

Polyethyleneimine (PEI) impregnated cellulose : Macherey-Nagel 

and Co., West Germany.

2.7 REAGENTS FOR ELECTROPHORESIS

Urea [for Method, 6.1 (3)] : Aristar, British Drug House Ltd.,

England.

Ampholines pH5-7 and pH3*5-10 : LKB, Sweden.

Acrylamide, N-methylene-bis-acrylamide and ammonium persulphate : 

Bio-Rad Laboratories, U.S.A.

Agarose (type VI), Coomassie Brilliant Blue R-250 and Coomassie 

Brilliant Blue G-250 : Sigma Chemicals Co., U.S.A.

NNN*N ’ tetraethylmethylethylenediaraine (TEMED) and Bromophenol 

Blue : Eastman Kodak Co., U.S.A.

Pyronine Y ; G.T. Gurr Ltd., England.

2.8/



2.8 .REAGENTS FOR TISSUE CULTURE

Eagle's minimum essential medium MEM, Glasgow modification 

(described by Eagle, 1959, and incorporates the Glasgow modification 

of MacPherson and Stoker, 1962), MEM vitamins, MEM amino acids, MEM 

amino acids minus methionine and bovine calf serum : Gibco Bio-cult,

Scotland.

Trypsin and PPLO agar : Difco Laboratories, U.S.A.

Tryptose phosphate broth, blood agar, brain and heart infusion 

broth, and Sabouraud's medium : Oxoid Ltd., England.

Penicillin and streptomycin : Glaxo Pharmaceuticals Ltd., England. 

Phenol Red and Gierasa Stain : BDH Chemicals, England.

L-Glutamine : Sigma Chemical Co., U.S.A.

2.9 PHOTOGRAPHIC MATERIALS AND REAGENTS

DXIO photographic developer, FX40 photographic fixer. X-ray (no 

screen) film (NS-2T) and X-ray (screen) film (X-omat XAR5) : Eastman

Kodak Co., U.S.A.

Cronex intensifying screens and cassettes : du Pont de Nemours & 

Co. Inc., U.S.A.

2.10 SCINTILLATION REAGENTS

2,5-Diphenyloxazole (PPO), p-bis-[2-(5-phenyloxazole)]-benzene 

(POPOP) and Protosol (gel solubiliser) : New England Nuclear, U.S.A.

3. COMPOSITION OF STANDARD BUFFER SOLUTIONS 

3.1/



3.1 PHOSPHATE BUFFERED SALINE (PBS)

This buffer was.prepared according to Dulbecco and Vogt (1954) 

and contained 0*17 M NaCl, 3*4 mM KCl, 10 mM NaHPO^, 2*4 mM NaH^PO^, 

0*49 mM MgCl2 and 0*68 mM CaClg at a pH of 7*4.

3.2 SCINTILLATION FLUID

(1) For Method 10.1:

66% (v/v) toluene, 33% (v/v) 2-methoxyethanol, 0*4% (w/v) 2,5- 

diphenyloxazole, 0*01% (w/v) p-bis-[2-(5-phenyloxazolyl)]-benzene.

(2) For Method 6.2 (5)

0*4% (w/v) 2,5-diphenyloxazole and 0*02% (w/v) p-bis-[2-(5- 

phenyloxazolyl)]-benzene in toluene.



M E T H O D S

1. METHODS FOR CELL CULTURE

1.1 GROWTH OF BHK CELLS

BHK 21/C13 cells were grown as monolayers in rotating 2*5 1 

roller bottles in 180 ml of Eagle's medium per bottle. This medium 

contained BSS/B, Eagle's minimum essential medium (Glasgow modification), 

2-8 g/1 tryptose phosphate broth, 10̂  units/1 penicillin, 100 mg/1 

streptomycin, 100 ml/1 bovine calf serum and 40 ml/1 5*6% (w/v)

NaHCOg. Cultures were seeded at 2-3 x 10^ cells per bottle and 

"gassed" with 100 ml 5% (v/v) CO2 in oxygen to maintain buffering 

capacity. The bottles were rotated at 37°C for 3 days, by which time 

the cells had just reached confluence.

1.2 INFECTION OF BHK CELLS WITH PSEUDORABIES VIRUS

BHK cells grown to confluence for 3 days at 37*C were infected with 

20 pfu/cell of PRV in 25 ml of the original medium and the virus allowed 

to adsorb to the cells for 1 h at 37°C. After this adsorption period 

the medium was removed and replaced with 50 ml of the original medium 

and the infection allowed to continue at 37°C until harvesting.

1.3 GROWTH OF PSEUDORABIES VIRUS

PRV stocks were produced by infecting confluent BHK cells at a 

multiplicity of 1 pfu/300 cells, and, after the initial adsorption 

period, allowing the infection to continue for a further 3 days.

After this time all the cells had been infected and death of the cells 

and/



and release of virus had occurred. The bottles were shaken gently to 

detach remaining cells from the glass surface, and the cell debris 

removed by centrifugation at 500 g for 10 min. The virus was sedimented 

by centrifugation at 20,000 g for 90 min in an MSE-18 centrifuge. The 

sedimented virus was resuspended, plaque assayed, and stored as 

aliquots at -70°C.

1.4 PLAQUE ASSAY OF PSEUDORABIES VIRUS

Plaque assay was carried out to titre virus stocks and to follow 

release of virus particles into the medium during infection of BHK 

cells.

Serial logarithmic dilutions of PRV were prepared in Eagle's 

medium (lacking serum). 50 mm petri dishes were seeded with 3 x 10^

BHK cells, 4 ml Eagle's medium added and the cells allowed to grow in 

a CO^ incubator at 37°C. Four plates were used per dilution. After 

the cells had grown for 24 h the medium was removed and the cell mono

layer infected with 0*2 ml of the various virus dilutions or 0*2 ml 
of Eagle's medium was added as control. After adsorption of the virus 

to the cells for 1 h, 5 ml of Eagle's medium was added and the incubation 

continued for a further 2 h. After this time 230yug heparin was added 

to each dish to prevent the virus spreading, and the cultures again 

returned to the incubator for a further 28 h. • After this time the 

medium was removed from the cells and the infected monolayer fixed 

with 4% formal saline for 10-20 min. After fixing, the monolayer was 

stained with Giemsa stain for 10-20 min and then washed with distilled 

water. The plaques were viewed with a plate microscope and counted. 

Plates containing between 100-200 plaques were chosen and the average 

number/



number taken over the 4 dishes was used in calculation of the virus 

concentration.

1.5 LABELLING OF BHK CELLS

In those experiments in which the cells were labelled with ^^Pi,

the medium was replaced by 30 ml of one in which the phosphate had

been decreased to 1/10.of its normal concentration and from which

tryptose phosphate broth had been excluded. After 30 minutes 1-3 mCi 
32[ P] orthophosphate was added per roller bottle, and incubation was 

continued for a further 3 h before the cells were harvested.

When cells were labelled with [^^C] amino acid mixture, the 

replacement medium contained 1/10 of the normal concentration of amino 

acids. After 30 min of incubation, 10/iCi of [̂ ^C] amino acids was 

added per roller bottle and cells incubated for another 30 min and 

harvested.

2. PREPARATION OF SOLUBLE EXTRACT FROM PSEUDORABIES VIRIONS

2.1 ISOLATION OF VIRIONS

Pellets of infected cells (obtained as described in Methods, 1.3) 

were suspended in 2 vol 1 mM phosphate buffer (pH7-4) and disrupted 

with four strokes of a Dounce homogenizer. The cytoplasm was then 

separated from the nuclei by centrifugation at 500 g for 10 min. 

Samples (2 ml) of the supernatant were layered on 15-40% (w/v) sucrose 

density gradients (36 ml) made up in 1 mM phosphate buffer. The 

gradients were centrifuged for 1 h at 53,000 g (20,000 rpm) in the 

Beckman/



Beckman SW27 rotor. After centrifugation, the diffuse light- 

scattering band of virions was aspirated with a needle and syringe.

This virus suspension was diluted tenfold with 10 mM Tris-HCl (pH7*2) 

and centrifuged at 53,000 g (20,000 rpm) in the SW27 rotor to sediment 

the particles.

2.2 EXTRACTION OF PROTEINS FROM VIRUS PARTICLES

Virus particles were suspended in 10 mM Tris-HCl (pH7'5).

Aliquots (0*2 ml) containing 2 to 4 mg of protein were adjusted to 10% 

(v/v) Nonidet P-40 and 0*6 M NaCl. The suspension was allowed to stand 

at room temperature for 30 min after which.it was diluted tenfold 

either with 10 mM Tris-HCl (pH7*5) or with the same buffer containing 

0'6 M NaCl. This diluted material was centrifuged at 10,000 g for 2 h. 

The supernatant was dialysed overnight against the appropriate 

equilibration buffer in preparation for either DEAE-cellulose or 

phosphocellulose column chromatography.

3. PREPARATION OF CELLULAR FRACTIONS

3.1 POST-RIBOSOMAL SUPERNATANT FROM BHK CELLS

BHK cells (either uninfected or infected with PRV) were harvested 

by scraping into PBS - Phosphate Buffered Saline. At this stage and 

in all other procedures the temperature was 0-4°C. The cells were 

sedimented by low-speed centrifugation (500 g), washed in PBS and 

suspended in buffer containing 10 mM KCl, 1*5 mM magnesium acetate 

and 10 mM Tris-HCl (pH7-5). The cells were then broken open with a 

teflon-glass homogenizer (20 strokes) and the ionic composition of the 
homogenate/



homogenate was adjusted to 125 mM KCl, 5 mM magnesium acetate, 5 mM 

2-mercaptoethanol, 25 mM Tris-HCl (pH7’5). The homogenate was 

sedimented by centrifugation for 30 min at 30,000 g. The post- 

mitochondrial supernatant was sedimented by ultracentrifugation at

165,000 g (50,000 rpm) for 2-5 h in the Ti50 rotor of a Beckman ultra

centrifuge. The post-ribosomal supernatant (containing approximately 

5 mg of protein per ml) was dialysed overnight against DEAE-equilibration 

buffer [20 mM Tris-HCl (pH7'5), 1 mM EDTA, 10 mM 2-mercaptoethanol, 10% 

(v/v) glycerol] and either subjected to immediate anion-exchange 

chromatography or shock-frozen in liquid nitrogen and stored at -70°C.

3.2 RIBOSOMES FROM BHK CELLS

For preparation of ribosomes from BHK cells a modified version of 

the methods described by Ascione and Arlinghaus (1970) and Thomas et al. 

(1977) was used.

Cell pellets were resuspended in ice-cold Swell Buffer containing 

20 mM Tris-HCl (pH7-5), 50 mM KCl, 5 mM MgClg and 5 mM CaClg, and kept 

on ice for 10 min. An equal volume of Lysis Buffer [0*5 M sucrose,

0-55 M KCl, 10 mM MgClz, 5 mM CaCl^, 1 mM EDTA, 40 mM Tris-HCl (pH7-5),

1% Triton X-100] was then added and cells left on ice for another 5 min. 

The cells were homogenized with 6 strokes of a teflon-glass homogenizer. 

The homogenate was sedimented by centrifugation at 500 g for 10 min. 

Sodium deoxycholate was then added to the supernatant to give a final 

concentration of 0*5% (w/v). The supernatant was layered over a step 

gradient of 8 ml of buffer A [0*7 M sucrose in 20 mM Tris-HCl (pH7*6),
100 mM KCl, 5 mM MgCl2« 1 mM 2-mercaptoethanol] on top of 8 ml of 
buffer B [1*6 M sucrose in 20 mM Tris-HCl (pH7*6), 500 mM KCl, 5 mM 

MgCl2» 1 mM 2-mercaptoethanol]. The gradients were centrifuged at 

96.000/



,96,000 g (27,000 rpm) for 16 h at 4°C in the SW27 rotor. Any light 

material was washed off the pellet and, if required, ribosomes were 

stored at -70°C.

3.3 RIBOSOMES FROM RAT LIVER

Six to ten rats were killed by cervical dislocation, their livers 

were then removed and transferred into buffer containing 50 mM Tris-HCl 

(pH7*6), 25 mM KCl, 5 mM MgClg and 5 mM 2-mercaptoethanol. The final 

volume of the buffer was adjusted to 3,5 x the liver volume. At this 

stage and in all subsequent procedures the temperature was 0-4°C. The 

livers were homogenized with 12 strokes of a teflon-glass homogenizer. 

Unbroken cells and nuclei were sedimented by centrifugation at 500 g

for 10 min and the supernatant futher sedimented by centrifugation at

30.000 g for 30 min. The post-mitochondrial supernatant was then

adjusted to 5% (w/v) sodium deoxycholate and layered over 10 ml of 1 M

sucrose in 50 mM Tris-HCl (pH7*6), 500 mM KCl, 5 mM MgClg and 5 mM 

2-mercaptoethanol. It was then subjected to centrifugation for 5 h at

96.000 g (27,000 rpm) in a SW27 (or SW28) rotor and the pellet was 

washed and, if required, stored at -70°C.

3.4 RIBOSOMAL SUBUNITS

Ribosomal subunits were prepared by dissociation at high ionic 

strength using a modification of the method of Leader and Wool (1972).

Ribosomes were suspended at 4®C in 10 mM Tris-HCl (pH7'5), 80 mM 

KCl and 5 mM MgClg. The concentration of KCl was adjusted to 500 mM 

and the supernatant clarified by centrifugation at 100 g for 5 rain.

To promote separation of the subunits the clarified suspension was 
incubated/



incubated at 37°C for 15 min with 0*1 mM puromycin and 20 mM 

2-mercaptoethanol. Aliquots containing approx. SOAg^Q units of 

ribosomes were then layered directly on to 37 ml of linear 10-30%

(w/v) sucrose gradient containing 10 mM Tris-HCl (pH7*6), 300 mM 

KCl, 5 mM MgCl2 and 20 mM 2-mercaptoethanol. After centrifugation at

96,000 g for 4 h at 28°C in a Beckman SW27 (or SW28) rotor, the gradients

were pumped through a Gilford flow-cell (Gilford model 240) and the

absorbance at 260 nm was monitored. The subunit fractions were 

collected and the total 40S and 60S subunits obtained from 6-12 gradients 

were separately pooled and sedimented at 177,000 g for 16 h at 4°C

in a Beckman Ti60 rotor. The pellets were resuspended in a buffer

containing 20 mM Tris-HCl (pH7*6), 100 mM KCl, 4 mM magnesium acetate,

7 mM 2-mercaptoethanol and 250 mM sucrose, so that the final concentration 

of 40S or 60S subunits was 100A2gQ units per ml. Aliquots (100yul) 

were stored at -70°C.

3.5 EXTRACTION OF PROTEINS FROM RIBOSOMES AND RIBOSOMAL SUBUNITS

Ribosomal proteins were extracted by a modification of the methods 

described by Sherton and Wool (1972) and Barritault et ̂  (1976).

For extraction of proteins, ribosomes or ribosomal subunits were 

suspended in 10 mM Tris-HCl (pH7*6) so that the final concentration was 

50-100 Ag^Q units per ml. Magnesium acetate was added to give a final 

concentration of 200 mM. To this was added 2 volumes of glacial acetic 

acid and the mixture stirred at 0°C for 1 h. Ribosomal RNA was removed 

by centrifugation at 10,000 g for 10 min (in a Eppendorf microcentrifuge). 

The supernatant (containing the protein) was removed and the yield of 

protein increased by re-extraction of the pellet with the 10 mM Tris-HCl 

(pH7'6)/



CpH7‘6)/100 mM magnesium acetate/67% (v/v) acetic acid mixture. The 

supernatants were pooled, diluted with an equal volume of water, and 

the protein precipitated with 5 volumes of cold (-20°C) acetone. 

Proteins were allowed to precipitate overnight at -20°C (or -70*C). 

The precipitate was then collected by centrifugation at 30,000 g for 

30 min.

4. SEPARATION OF PROTEINS BY CHROMATOGRAPHY

4.1 DE-52 AND DEAE-SEPHACEL ANION-EXCHANGE COLUMN CHROMATOGRAPHY

For analytical studies of protein kinases present in the post- 

ribosomal supernatant of BHK cells, chromatography was on DEAE-Sephacel 

packed in a column of 2*5 cm x 1 cm (height x diameter) and equilibrated 

with DEAE-equilibration buffer. Post-ribosomal supernatant containing 

4-15 mg protein was applied, the column washed with 25 ml of DEAE- 

equilibration buffer, and then eluted with 84 ml of a linear gradient 

of 0-0*4 M KCl in the same buffer at a flow rate of 12 ml per h, 1 ml 

fractions being collected. Samples (50yul) of the fractions were 

assayed for protein kinase activity. The conductivity of the fractions 

was measured to allow calculation of the salt concentration.

Protein kinases present in the extracts from pseudorabies virions 

were analysed in the same manner, approx. 4 mg of protein being applied 

to the column.

For the preparation of the viral-induced protein kinase, chromato

graphy was on pre-equilibrated DEAE-cellulose, DE-52, packed in a 

16 X 6 cm column, to which was applied 100-150 mg protein, the yield 
from/



from approx. 10^ cells, 6-9 h after infection with PRV. The column 

was washed with 150 ml buffer and eluted with 500 ml of a linear gradient 

of 0-0*4 M KCl in the same buffer at a flow rate of 70 ml per h, 6 ml 

fractions being collected. The peak fractions of the ViPK (approx. 40 ml) 

were concentrated to 4-5 ml with Aquacide and, if not used immediately, 

stored at -70°C, under which conditions the activity was stable for 

several months at least.

4.2 PHOSPHOCELLULOSE COLUMN CHROMATOGRAPHY

Protein kinases in soluble extracts of pseudorabies virions were 

analysed on a phosphocellulose column under conditions described by 

Hathaway et ̂  (1979).

The phosphocellulose column (3*2 x 1 cm) was equilibrated with buffer 

containing 50 mM Tris-HCl (pH7*5), 1 mM EDTA, 10 mM 2-mercaptoethanol,

10% (v/v) glycerol and 250 mM NaCl. Protein (4 mg), extracted from 

virions, was applied to the column in 1*5 ml of the equilibration buffer. 

The unbound material was removed by 12 ml of the same buffer. This was 

followed by washing with 92 ml of a linear gradient of 0*25-1*25 M 

NaCl in the equilibration buffer. The column was eluted at a flow rate 

of 15 ml per h and fractions of 1*3 ml were collected. Aliquots (40 yul) 

of the fractions were assayed for protein kinase activity. The 

conductivity of the fractions was measured to allow calculation of 

the salt concentration.

4.3 CHROMATOGRAPHY ON IMMOBILIZED BLUE-A DYE-LIGAND

A sample of ViPK from the DE-52 column, concentrated by Aquacide, 

was dialyzed overnight against DEAE-equilibration buffer with 10 mM

MgClg/



MgClg. A 1-2 ml aliquot (2 mg protein) was loaded on to a 3*5 x 1 cm 

column of Blue-A, pre-equilibrated with the above buffer. The sample 

was allowed 30 min to bind to the matrix at zero flow-rate, then 

washed with 15 ml of starting- buffer and eluted with 20 ml of a linear 

gradient of 0*3-1*5 M KCl in the same buffer at a flow rate of 6 ml per 
h. Fractions containing the peak of ViPK activity were combined and 

stored at -70°C.

4.4 SIZE-EXCLUSION CHROMATOGRAPHY ON SEPHADEX G-150

Samples of ViPK obtained after DE-52 chromatography were concentrated 

by Aquacide and dialysed overnight against buffer containing 20 mM 

Tris-HCl (pH7*5), 1 mM EDTA, 10 mM 2-mercaptoethanol, 3% (v/v) glycerol 

and 500 mM KCl. The same buffer was used for equilibration of the 

column and subsequent elution. A sample containing 0*5 mg of protein 

in 0*6 ml was loaded on to a pre-equilibrated column (40 x 1 cm) of 

Sephadex G-150. The elution was performed at a flow rate of 0*5 ml 

per min and fractions of 0*75 ml were collected. The void volume of 

the column was determined using Dextran Blue (1 mg). Bovine serum 

albumin (2 mg), ovalbumin (2 rag) and cytochrome c (2 mg) were used as 
protein size standards.

4.5 HIGH-PERFORMANCE HYDROXYLAPATITE CHROMATOGRAPHY

Fractions containing ViPK activity, obtained after DE-52

chromatography of BHK cytosol, were concentrated by Aquacide and 

dialysed against equilibration buffer containing 10 mM sodium phosphate 

(pH8*0) and 0*03 mM CaQlg. The sample (0*3 mg of protein in 0*5 ml) 

was applied to a pre-equilibrated column for high-performance hydroxy- 

.lapatite/



lapatite chromatography. The column was eluted with 60 ml of a linear 

gradient of sodium phosphate buffer (pH8*0), containing CaCl2. The 

gradient was from 10 mM sodium phosphate with 0*03 mM CaCl^ to 300 mM 

sodium phosphate with 0*001 mM CaClg. The flow rate was 0*5 ml per 

rain and fractions of 1 ml were collected.

4.6 HIGH-PERFORMANCE SIZE-EXCLUSION CHROMATOGRAPHY

Concentrated aliquots (1 ml) of ViPK from DE-52 chromatography were 

applied to a TSK G3000SW column, pre-equilibrated with a buffer containing 

20 mM Bis-Tris (pH7*0), 1 mM EDTA, 10 mM 2-mercaptoethanol and 500 mM 

KCl. The sample was eluted with the same buffer at a flow rate of 

0*5 ml per min and 1 ml fractions were collected.

4.7 HIGH-PERFORMANCE ANION-EXCHANGE CHROMATOGRAPHY

The fractions containing the ViPK from 4-5 size-exclusion columns 

(i.e. the total material originating from a single DE-52 column) were 

combined and dialysed against DEAE-equilibration buffer from which 

glycerol had been excluded. After dialysis the sample (approximately 

10 ml) was loaded on to a Mono Q column, washed with 10 ml of 0*25 M 

NaCl in the above buffer, and eluted with 30 ml of a linear gradient of 

0*25-0*8 M NaCl at a flow rate of 1 ml per min, 0*5 ml fractions being 

collected.

4.8 HIGH-PERFORMANCE REVERSED-PHASE CHROMATOGRAPHY

The method for rapid chromatography of histones by high-performance 

reversed-phase chromatography, described by Gurley e^ (1983), was 

used to separate histones HI and H2B from a lysine-rich histone fraction 

(Type/



.(Type V-S) obtained commercially from Sigma.

The histone, 400 yUg in 140yUl 0*1% (v/v) trifluoroacetic acid, 

was applied to a /iBondapak C^g column. Protein was eluted with a 

linear gradient of 20-60% (v/v) acetonitrile in 0*1% (v/v) trifluoro- 

acetic acid over 2 h at a flow rate of 1 ml per min. The histones 

eluting from the column were detected by uv absorbtion at 206 nm and 

fractions containing histones HI and H2B were lyophilized and stored 

at -70°C.

5. SUCROSE DENSITY GRADIENT ANALYSIS

5.1 DETERMINATION OF SEDIMENTATION COEFFICIENT

The sedimentation coefficient of the ViPK was determined on 

10-30% (w/v) linear gradients of sucrose in a buffer containing 20 mM 

Tris-HCl (pH7'5), 1 mM EDTA, 10 mM 2-mercaptoethanol and either 1 M or 

0*1 M KCl, as indicated in Fig. 2.23. Concentrated ViPK prepared by 

DE-52 chromatography was dialysed against DEAE-equilibration buffer 

minus glycerol and an aliquot (0*2 ml) layered over the 4^6 ml gradient 

and subjected to centrifugation at 4®C for 18 h at 345,000 g (58,000 rpm) 

in the SW60 rotor of a Beckman ultracentrifuge. Aldolase (0*2 mg), 

bovine serum albumin (0*2 mg) and myoglobin (0*4 mg) were subjected 

to concurrent centrifugation on separate gradients. The gradients 

were pumped through the flow cell of a Gilford spectrophotometer and 

the absorbance at 280 nm monitored. Fractions of 0*22 ml were 

collected and aliquots (40yul) assayed for protein kinase activity.

•6./



6. SEPARATION OF PROTEINS BY GEL ELECTROPHORESIS

6.1 SEPARATION METHODS

(1) One-Dimensional Gel Electrophoresis in the Presence of Sodium 

Dodecyl Sulphate:

SDS slab gels were prepared and samples subjected to electrophoresis 

on them by the method of Laemmli (1970).

The dimension of the gel plates was 19 x 16 cm, to fit the BRL-V- 

16-2 slab apparatus, and the thickness of gels was 1*5 mm or 0*75 mm.

The lower separation gels contained 8*5, 12*5 or 15% (w/v) 

acrylamide. The ratio of acrylamide : methylene-bis-acryiamide was 

30 : 0*8. When optimal separation of proteins of about 30kDa was 

required, gels containing 15% (w/v) acrylamide, 0*09% (w/v) methylene- 

bis-acrylamide were used (i.e. the ratio of acrylamide : methylene- 

bis-acrylamide changed to 30 : 0*18). The concentration of the other 

components present in the separation gel was as follows: 0*375 M

Tris-HCl (pH8*8), 0*1% (w/v) SDS, 0*03% ( v / v )  TEMED and 0*1% (w/v) 

ammonium persulphate. The upper stacking gels contained 5% (w/v) 

acrylamide, 0*13% (w/v) methylene-bis-acrylamide, 0*12 M Tris-HCl 

(pH6*8), 0*1% (w/v) SDS, 0*03% (v/v) TEMED and 0*2% (w/v) ammonium 

persulphate.

Samples were mixed with 0*5 volumes of buffer containing 0*05 M 

Tris-HCl (pH6*8), 4*5% (w/v) SDS, 45% (v/v) glycerol, 10% (v/v) 
2-mercaptoethanol and 0*002% (w/v) Bromophenol Blue. The maximum 

amount of protein in samples was 100 /ig and the volume applied was 
never larger than 120 yul. The protein samples were completely reduced 

and denatured by heating at 100°C for 2 min.

The/



The electrophoresis buffer contained 0*05 M Tris, 0*192 M 

glycine and 0*1% (w/v) SDS at a pH of 8-5. The samples were subjected 

to electrophoresis towards the anode at 10 mA per gel for about 16 h, 

until the Bromophenol Blue dye marker was about 1 cm from the bottom 

of the gel. The gels were then processed as described in Methods, 

section 6.2.
Molecular weights of proteins in SDS gels were determined from 

a plot mobility versus log (molecular weight), constructed using 

standards supplied as a low-molecular weight kit from Pharmacia.

This contained: phosphorylase b (94,000), bovine serum albumin

(67,000), ovalbumin (43,000), carbonic anhydrase (30,000), soybean 

trypsin inhibitor (20,100) and alpha-lactalbumin (14,400).

(2) Two-Dimensional Kaltschmidt/Wittmann Gel Electrophoresis:

The original method of Kaltschmidt and Wittmann (1970), for 

separation of ribosomal proteins, was modified as described by Lastick 

and McConkey (1976). The nomenclature for ribosomal proteins was 

according to McConkey et ̂  (1979).

Isolated ribosomal proteins, obtained after precipitation with 

acetone, were dissolved in buffer containing 8 M urea, 20 mM Tris,
26 mM boric acid, 1 mM EDTA and 5% (v/v) 2-mercaptoethanol, at a pH 

of 8*2. Generally, 100-200/ug of protein was analysed in each gel.

The first dimension gels were 10 cm long and prepared in glass 

tubes of 3 mm inside diameter. The gel mixture contained 6 M urea,
4% (w/v) acrylamide, 0*13% (w/v) methylene-bis-acrylamide, 0*2 M 

Tris, 0*26 M boric acid, 0*01 M EDTA, 0*2% (v/v) TEMED and 0*05% (w/v)

ammonium persulphate, at a pH of 8*7. When basic proteins were

analysed, electrophoresis was towards the cathode at 3 mA per gel for

3 h. For analysis of acidic proteins electrophoresis was in the

opposite/



opposite direction, for 1*5 h at 3 mA per gel. The electrophoresis 

buffer (pH8*6) contained 0*06 M Tris, 0*078 M boric acid and 3 mM EDTA. 

At the end of the electrophoresis, gels were removed from the tubes 

and frozen in hexane at -70°C until further processing. Just before 

annealing to the second-dimensional gel, they were equilibrated with 

6 M urea, 0*35 M acetic acid and 5% (v/v) 2-mercaptoethanol at room 
temperature for less than 5 min.

The second-dimensional gel (pH4*0) contained 6 M urea, 15% (w/v) 

acrylamide, 0*47% (w/v) methylene-bis-acrylamide, 0*44 M acetic acid,

25 mM KOH, 0*5% (v/v) TEMED and 0*3% (w/v) ammonium persulphate. Once 

the first-dimensional gel had been equilibrated, it was annealed at 

-20°C in contact with the slab gel (7 x 6*5 x 0*3 cm) with a solution 

containing 6 M urea, 0*35 M acetic acid, 5% (v/v) 2-mercaptoethanol 
and 1% (w/v) agarose. Electrophoresis in the second dimension was 

towards the cathode at 8 mA per gel for 16 h in a buffer (pH4*0) 

containing 93 mM glycine and 13 mM acetic acid.

When resolution of the phosphorylated forms of the basic protein 

S6 was required, several modifications of the method described above 

were introduced. Electrophoresis in the first dimension was in gels 

of 10 cm length and 0*2 cm diameter for 16 h at 100 V, the electro

phoresis buffer for the first dimension present in the upper reservoir 

contained one additional component, 0*04% (w/v) mercaptoethylamine, 

and the second dimension was on slab gels (19 x 16 x 0*15 cm) at 

150 V for 16 h.

(3) Two-Dimensional O'Farrell Gel Electrophoresis:

The procedure for high resolution of basic as well as acidic 

proteins/



.proteins was as described by O'Farrell e_t ̂  (1977). The method 

combines nonequilibrium pH gradient electrophoresis (resolution of 

proteins with pH3*5-10 Arapholines) - NEPHGE, and sodium dodecyl 

sulphate slab gel electrophoresis.

Protein (25 yug) obtained after acetone precipitation, was dissolved 

in 50 yul of buffer containing 9 M urea, 5% (v/v) 2-mercaptoethanol,

2% (v/v) Nonidet P-40 and 0*4% (v/v) Ampholines pH3*5-10 and 1*6% (v/v) 

Ampholines pH5-7.

The first dimension gels were poured to a height of 12 cm in glass 

tubes of 2 mm inside diameter. The gel mixture was composed of 9*2 M 

urea, 2% (v/v) Nonidet P-40, 4% (w/v) acrylamide, 0*1% (w/v) methylene- 

bis-acrylamide, 5% (v/v) Ampholines pH3*5-10, 0*02% (v/v) TEMED. The 

lower reservoir was filled with 0*02 M NaOH, and the tubes were placed 

in the electrophoresis chamber. The samples were loaded and overlayed 

with 20/j1 of the sample buffer diluted with water (1 : 1), and the 

tubes were filled with 0*01 M phosphoric acid. The upper reservoir 

was filled with 0*01 M phosphoric acid. Electrophoresis was towards 

the cathode at 400 V for 4*5 h. At the end of electrophoresis, the 

NEPHGE gels were removed, equilibrated for 2 h in SDS sample buffer 

[10% (w/v) glycerol, 5% (v/v) 2-mercaptoethanol, 2*3% (w/v) SDS,

0*1% (w/v) Bromophenol Blue and 0*0625 M Tris-HCl (pH6*8)] and frozen 

at -70°C until second dimension electrophoresis was performed.

The second dimension was on 10% (w/v) acrylamide/0*26% (w/v) 

methylene-bis-acrylamide SDS slab gels, as described in Methods,

6.1 (1). The first dimensional gel was placed directly over the 

surface of the SDS separation gel (no stacking gel was used) and 

electrophoresis/



electrophoresis carried out at 10 mA per gel for 16 h.

Measurements of the pH gradient in the first dimensional gels. 

(NEPHGE) do not give absolute isoelectric points of proteins (unlike 

isoelectric focusing, where a stable pH gradient is formed). For that 

reason, proteins of known isoelectric points were used as standards. 

The mixture of standard proteins, applied on one gel, consisted of 

8 yug 3-phosphoglycerate kinase (pI6*4), 10yug carbonic anhydrase 

(pI5*85), 5 yUg bovine serum albumin (pl4*8), 10yug actin (pI4*65) 

and 8yig soybean trypsin inhibitor (pI4*55).

6.2 PROCESSING OF GELS

(1) Staining of Gels with Coomassie Brilliant Blue:

Gels were stained for 2-3 h at room temperature in 0*1% (w/v) 

Coomassie Brilliant Blue R-250 in 50% (v/v) methanol and 10% (v/v) 

acetic acid. Gels were destained for about 24 h at 37°C with several 

changes, using a solution containing 10% (v/v) acetic acid and 10% 

(v/v) methanol.

(2) Silver Staining:

When the Coomassie Brilliant Blue staining revealed that 

insufficient protein was present for adequate visualisation in this 

way, the same gels were re-stained using the Bio-Rad silver stain.

This method is 10-50 fold more sensitive than staining with Coomassie 

Brilliant Blue R-250. The Bio-Rad silver stain derived from the 

method of Merril ̂  (1981).

All solutions for silver staining were prepared in deionized 

water (conductivity less than 1yumho) and were warmed to 25°C 

immediately/



immediately prior to use. Staining was performed in a glass vessel 

(placed in a water bath with a shaker platform) at 25°C.

Gels, 1*5 cm thick, were kept in 40% (v/v) methanol/10% (v/v)

acetic acid for at least 60 min and treated with 10% (v/v) ethanol/
5% (v/v) acetic acid for another 60 min. Gels were than incubated 

in the presence of Oxidizer (containing potassium dichromate and nitric 

acid) for 10 min, Silver Reagent (containing silver nitrate) for 

30 min, and Developer (containing sodium carbonate and paraformaldehyde) 

for 3-10 min. Between these steps the gels were washed with deionized 

water. The reaction was stopped by incubation of the gels in 5% (v/v) 

acetic acid for 5 min. The gels were stored in deionized water.

(3) Autoradiography of Gels:
32Destained gels, containing P-labelled proteins, were incubated 

in destain solution with 3% (v/v) glycerol for 1 h and then dried on

to Whatman 3 MM filter paper under suction from an electric vacuum

pump. Autoradiography was at -70°C on Kodak X-omat XAR5 film, using 

an intensifying screen (Cronex).

For some purposes (Methods, section 7) autoradiography was on 

unprocessed gels. At the end of the run, one gel plate was replaced 

by plastic cling film and the gel subjected to autoradiography at 4°C 

for no more than 12 h.
(4) Fluorography of Gels:

Gels containing ^^C-labelled proteins were processed according to 

the method of Bonner and Laskey (1974).

Destained gels were soaked in three changes of dimethyl sulphoxide 

for at least 30 min each change, and then soaked for 3 h in 22% (w/v) 

diphenyl/



diphenyl-oxazole in dimethyl sulphoxide. The diphenyl-oxazole was 

precipitated into the gels by thorough washing under running water for 

at least 1 h. The gels were then dried and fluorographed on Kodak 

X-omat SAR5 film at -70®C.

(5) Quantitative Measurements of Radioactivity in Gels:
32Proteins of interest, labelled with P, were cut out of dried gels 

using the corresponding autoradiograph as a guide. The excised areas 

of the gel were reswollen In 7% (v/v) acetic acid, the paper removed, 

and protein solubilised in 1 ml of 90% (v/v) Protosol (NEN) at 37°C 

for 16 h. The radioactivity was determined in 9 ml of scintillant in 

a scintillation spectrometer.

When the amount of radioactivity in the protein bands was high 

enough, Cherenkov radiation was measured in the areas excised from 

dried gels with an efficiency of approx. 30%.

7. ANALYSIS OF TRYPTIC PHOSPHOPEPTIDES BY HIGH-PERFORMANCE REVERSED- 

PHASE CHROMATOGRAPHY

The tryptic mapping was done according to the method described 

by Mayes and Waterfield (1984).
32Ribosomal proteins after labelling with P either in vitro 

(Methods, 10.3) or in vivo (Fig. 3. 2) were separated by polyacrylamide 

gel electrophoresis and subjected to autoradiography at U ° C  [Methods,

6.2 (3)]. The region of the gel containing phosphorylated ribosomal 

protein S6 was excised with a scalpel and washed in four changes of 

0*5 ml acetone for 15 min each. After evaporation of acetone, the gel 

was equilibrated with 50 mM ammonium bicarbonate using three successive

0-5/



p'5 ml aliquots for 5 min each. To the last aliquot of ammonium 

bicarbonate was added 0*1 mg of trypsin (TPCK - Worthington) and the 

protein digested overnight at room temperature. The sample was then 

re-digested with a further 0*1 mg of trypsin for 4 h at 37°C. The 

supernatant was applied to a Vydak TPCI8 reversed-phase HPLC column 
and peptides eluted with a 0-40% (v/v) linear gradient of acetonitrile 

in 0*1% (v/v) trifluoroacetic acid at a flow rate of 1 ml per min.
The C.erenkov radiation of 0*4 ml fractions was measured in a liquid 

scintillation spectrometer.

8. SEPARATION OF ATP AND Pi BY PEI-CELLULOSE THIN LAYER CHROMATOGRAPHY

This method, described by Cashel ̂  ̂  (1969), was used for

determination of the percentage of ATP and inorganic phosphate (Pi)
32present in [Y - P] ATP preparations made according to Maxam and 

Gilbert(1980). The method was also used for measurements of ATPase 

activity (Fig. 2.8).

Samples, 1 yul aliquots, were applied to PEI-ceilulose plates 

(10 X 5 cm) prerun in water (approx. 1*5 cm from the bottom), allowed 

to dry, and chromatography performed with 0*75 M potassium phosphate 

buffer (pH3*5). In 30 min the buffer travelled about three-quarters 

of the way up the plate and gave good separation of ATP from Pi 

(Pi migrated near the front, ATP had an Rp of approx. 0*3). The 

plates were dried and subjected to autoradiography, and the areas 

containing ATP and Pi cut out. The relative amounts of radioactive 

ATP and Pi were determined from measurements of C.erenkov radiation 

in the excised spots.

9./



9. ANALYSIS OF PHQSPHOAMINO ACIDS BY HIGH-VOLTAGE PAPER 

ELECTROPHORESIS

Protamine, phosphorylated in vitro by ViPK in the presence of 
32[y - P] ATP (Methods, 10.1), was analysed for amino acids containing 

32covalently bound P. At the end of incubation, the phosphorylation

reaction was terminated by adding HCl to a final concentration of 2 M

and the sample dialysed overnight against 2 M HCl at 4°C. Protamine

(0*3 mg in 0-4 ml of 2 M HCl) was partially hydrolysed by heating at

105°C for 16 h in a sealed evacuated glass ampoule. The hydrolysate
C

was evaporated to dryness in a vacuum desi^ator and the residue

resuspended in 100 yUl of electrophoresis buffer [2*5% (v/v) formic

acid and 7*8% (v/v) acetic acid (pHl*85)]. Aliquots of this sample

(50 yul) were applied to Whatman 3 MM paper, separately and in a mixture

with phosphoamino acid standards. Other samples applied on the

chromatography paper were o-phosphoserine (20 ̂ g), o-phosphothreonine
32(20yug), o-phosphotyrosine (20yug) and Pi (5yuCi). The paper was 

wetted with buffer and subjected to electrophoresis towards the anode 

at 2,500 V for approx. 2 h (until the ^^i had migrated across the 

paper) in a high-voltage electrophoresis apparatus. After electro

phoresis, the paper was allowed to dry and then cut up for analysis.

The portion containing phosphoamino acid markers was stained with a 

ninhydrin/cadmium acetate solution (Dreyer and Bynum, 1967). The
32portion containing P-labelled samples was subjected to autoradiography 

using Kodak X-omat XAR5 film and an intensifying screen at -70°C.

10. PHOSPHORYLATION REACTION IN VITRO 

10.1/



10.1 MEASUREMENT OF PROTEIN KINASE ACTIVITY

Protein kinases were assayed by measuring the incorporation of 

^^P from [Y-^^P] ATP into various protein substrates. The 

procedure followed in principle the method of Corbin and Reiman 

(1974).

The standard assay mixture for protein kinase activity contained 

in a total volume of 0*12 or 0*25 ml: 20 mM Tris-HCl (pH7*4), 50 mM 

KCl, 10 mM MgCl2> 10 mM 2-mercaptoethanol, 0*1 mM ATP containing
1-3 yuCi [Y-^^P] ATP, and either protamine sulphate (0*8 mg per ml), 

mixed histones (0*8 mg per ml) or dephosphorylated casein (0*8 mg per 

ml) as a protein substrate. Assays for cyclic AMP-dependent protein 

kinase contained 10 yuM cyclic AMP.

A different assay mixture for protein kinase C was employed and this 

contained in a total volume of 0*12 ml : 1*25 mg/ml lysine-rich 

histone (enriched for histone HI), 6*25 mM Hepes (pH7*5), 12*5 mM 

MgClg, 5 mM 2-mercaptoethanol, 0*5 mM EGTA, 0*25 mM EDTA, 0*125 mg/ml 

bovine serum albumin, 0*05 mM ATP containing 1-3yUCi [Y-^^] ATP,

1 mM CaClg, and 0*5 mg/ml phosphatidyl serine. Phosphatidyl serine 

was prepared by the method of Parker ^  ̂  (1984). Phosphatidyl 

serine [10 mg/ml in chloroform (95%)/methanol (5%)] was concentrated 

by drying 70 yil under a stream of nitrogen followed by redissolving 

the residue in 30 yUl of 10 mg/ml phosphatidyl serine (in chloroform/ 

methanol). This solution was dispersed in 470yul 20 mM Hepes (pH7*5) 

using a Kontex Sonicator.

When kinase C was activated by limited proteolysis, the reaction 

mixture for measuring enzyme activity contained the same components 

present in the assay for native kinase C but CaClg and phospholipid 

were/



were excluded. Proteolytic activation of kinase C was in a reaction 

mixture containing : 10 mM.Tris-HCl (pH8*0), 5 mM 2-mercaptoethanol,

2 mg/ml bovine serum albumin, 2-8 units of kinase C and 4 yug/ml of 

trypsin (Sigma). Incubation was for 3 min at 30°C and the reaction 

was terminated by the addition of 16yug (10 x molar excess) of soybean 

trypsin inhibitor.

Aliquots of samples in which protein kinase activity was measured 

were added to the reaction mixture (40 yul to a 120 /il reaction mixture 

or 50 yul to a 250 yul reaction mixture) and incubation carried out at 

30°C. After 30 min, or 15 min for assay of kinase C, the reaction was 

terminated by removing 100 yil from assay tubes and applying this on to 

Whatman 3 MM paper discs. The discs were then washed in two changes 

of 20% (w/v) trichloroacetic acid and four changes of 10% (w/v) 
trichloroacetic acid for 15 min each, and rinsed in 100% ethanol 

before being dried and their radioactivity measured by liquid 

scintillation spectrometry.

10.2 MEASUREMENT OF DEPHOSPHORYLATION OF PROTAMINE

For some experiments (Results, section 2.2) it was important that 

the preparations of ViPK were free of protein phosphatase activity, at 

least under the conditions employed to assay the kinase activity.

The preparations of ViPK were incubated under the conditions used

to assay enzyme activity (Methods, section 10.1) but with the following
32changes: (1) protamine was replaced with P-phosphoprotamine prepared 

by incubation with ViPK, phosphoprotamine being precipitated from the 

reaction mixture with 5 volumes of acetone and protein collected by 

centrifugation/



centrifugation; (2) [Y-^^P] ATP was omitted.

The radioactivity of protamine (measured as in Methods, section

10.1) incubated with the preparation of ViPK was compared with the
a

value obtained frorajsiniilar reaction mixture but without added ViPK.

10.3 PHOSPHORYLATION OF RIBOSOMAL SUBUNITS IN VITRO

Ribosomal subunits were prepared as described in Methods, section 

3.4. The assay conditions for phosphorylation or ribosomal subunits 

were as described in Methods, section 10.1, but with some modifications.

The standard reaction mixture contained 20 mM Tris-HCl (pH7*4),

100 mM (or higher) KCl, 4 mM MgClg, 10 mM 2-mercaptoethanol and 

O'l mM ATP.

The reaction mixture for native kinase C contained 6*25 mM Hepes 

(pH7*5), 150 mM KCl, 5 mM MgCl2» 5 mM 2-mercaptoethanol, 0*5 mM EGTA, 

0*25 mM EDTA, 0*125 mg per ml bovine serum albumin, 0*15 mM CaCl2,

0*5 mg per ml phosphatidyl serine, and 0.05 mM ATP.

Assay conditions for proteolytically activated kinase C were as 

for the native enzyme but CaCl2 and phosphatidyl serine were excluded. 
Proteolytic activation of kinase C was as described in Methods, section 

10. 1.

For phosphorylation of 40S ribosomal subunits by the catalytic 

subunit of cyclic AMP-dependent protein kinase (Materials, 2.3), the 

reaction mixture was according to Wettenhall and Cohen (1982) and 

contained 15 mM Tris-HCl (pH7*2), 15 mM Mops (pH7*2), 25 mM KCl,

5 mM MgCl2, 0*1 mM EGTA, 1 mM dithiothreitol and 0*1 mM ATP.
Samples for subsequent analysis by one-dimensional sodium dodecyl 

sulphate/



70

32sulphate gel electrophoresis contained 3 ytiCi [Y- P] ATP in a

reaction volume of 40-120 yul; those for analysis by two-dimensional
32gel electrophoresis contained 30/iCi [Y- P] ATP in a reaction 

volume of 800 yUl.

The quantities of enzyme and ribosomal subunits, and the time of 

incubation are indicated in the figure legends of individual 

experiments.

For separation of phosphorylated ribosomal proteins by one

dimensional gel electrophoresis in the presence of SDS, the reaction 

was terminated by addition of an aliquot of the sample buffer [Methods, 

section 6.1 (1)]. When two-dimensional gel electrophoresis, 20 mM 

Tris-HCl (pH7*5) and 0*1 mM ATP were added to the mixture, and the 

ribosomes sedimented in a SW60 Beckman rotor for 3 h at 260,000 g 

(50,000 rpm). They were then processed as described in Methods, 

sections 3.5 and 6.1 (2).

10.4 PHOSPHORYLATION OF VIRAL PROTEINS IN VITRO

Protein was extracted from pseudorabies virions as described in 

Methods, section 2.2. Viral non-structural proteins, the major DNA- 

binding protein, DNA-polymerase and DNase had been partially purified 

from cells infected with herpes simplex virus type 1 (Materials, 

section 2.3).

When proteins in a soluble extract from pseudorabies virions were 

phosphorylated by exogenous kinase, kinases present in the extract 

were inactivated by preincubation at 60°C for 15 min. Quantities of 

viral proteins and enzymes in the assay mixture are indicated in the 

figure/



figure legends of individual experiments. Phosphorylation of viral 

(structural or non-structural) proteins was under standard conditions 

(Methods, section 10.1) in a reaction volume of 120yul. At the end of 

the incubation (30 min at 30°C), the reaction was terminated by applying 

100 yul aliquots on to Whatman 3 MM paper discs or by addition of 

sample buffer for SDS gel electrophoresis.

10.5 PHOSPHORYLATION OF elF-2 IN VITRO

Preparations of eukaryotic initiation factor elF-2, haemin-regulated 

inhibitor (HRI) and the casein kinase II are described in Materials, 

section 2.3.

The reaction mixture for phosphorylation of eIF-2 by HRI contained, 

in a final volume of 25/il, 20 mM Hepes-KOH (pH7*6), 10 mM 2-mercapto

ethanol, O'l mM spermine, 120 mM potassium acetate, 2 mM magnesium 

acetate, 0-025 mM ATP containing 2 yuCi of [y -^^P] ATP, 1 yug of HRI 

and 0*8yUg of eIF-2. When elF-2 was phosphorylated by casein kinase II 

the concentration of MgClg was 10 mM. ViPK was assayed for phosphory

lation of elF-2 under conditions described for HRI and also under 

conditions for casein kinase II.

Incubation was at 37“C for 15 min and the reaction was terminated 

by addition of sample buffer for SDS gel electrophoresis.

10.6 PHOSPHORYLATION OF DIFFERENT HISTONE FRACTIONS IN VITRO

Various commercial (Sigma) histone fractions, 0*8 mg per ml, were

phosphorylated under standard conditions (Methods, section 10.1) 

in a reaction volume of 120yul. At the end of the incubation (30 min 

•at/



at 30®C), a 40 yul aliquot of reaction mixture was mixed with sample 

buffer for SDS gel electrophoresis and analysed as described in 

Methods,section 6.1 (1).

11. DETERMINATION OF THE CONCENTRATION OF PROTEIN

The concentration of protein was measured by the dye binding 

assay of Bradford (1976) modified by Spector (1978).

Coomassie Brilliant Blue G-250 solution (1 ml), at a concentration 

of 0*01% (w/v) in 0'95% (v/v) ethanol and 8*5% (w/v) phosphoric acid, 

was mixed with an aliquot of the protein solution (containing up to 

10 yug of protein) and the absorbance at 595 nra measured in a spectro

photometer. A standard curve was constructed using known amounts of 

bovine serum albumin.



R E S U L T S

1. PROTEIN KINASES IN BHK CELLS INFECTED WITH PSEUDORABIES VIRUS

1.1 CHARACTERIZATION OF PROTEIN KINASES

In order to identify protein kinases that might be involved in 

the phosphorylation of proteins during infection of BHK cells with PRV 

an attempt was made to examine as many as possible of the different 

protein kinase activities present in infected cells. To analyse protein 

kinase activities, the cytosol fraction, where most of the new phosphory

lation was observed, was chosen. The cytosol fraction was first 

fractionated by DEAE-cellulose chromatography and the column fractions 

were then assayed for phosphorylation of several commonly used substrates, 

including histone, protamine, casein and phosvitin. In addition, the 

fractions collected were tested for protein kinase activity under the 

various conditions known to be required for individual protein kinases 

that have been characterized in other cell types.

With casein as a substrate, two peaks of protein'kinase activity 

were partially resolved (Fig. 1.1 A). These two peaks have 

chromatographic properties similar to those previously described for 

casein kinase I and casein kinase II (Hathaway and Traugh, 1982). Both 

peaks also phosphorylated phosvitin, another (acidic) substrate for 

casein kinase I and II. The identification of the second activity as 

casein kinase II was supported by its ability to use GTP as well as 

ATP as a phosphoryl donor, and the inhibition of its activity by 

0‘5yUg/ml heparin (not shown).

With the basic proteins, mixed histone or protamine, as substrate



several protein kinase activities were detected (Fig. I.l B). For 

their identification further characterization was required.

Two of the peaks, eluting at 30 mM and 130-160 mM KCl, 

phosphorylated both histone and, to a lesser extent, protamine. Both 

kinase activities were stimulated by 10 yuM cyclic AMP and inhibited 

by the rabbit muscle heat-stable inhibitor of the catalytic subunit 

of the cyclic AMP-dependent protein kinase (Fig. 1.1 C). These 

properties are consistent with the identification of the two peaks as 

the type I and type II holoenzymes of the cyclic AMP-dependent protein 

kinase (Nimmo and Cohen, 1977).

Other peaks in the column fractions corresponded to protein kinase 

activities that phosphorylated only protamine or protamine in preference 

to histone. The first such peak of protamine kinase activity eluted 

at 50-80 mM KCl (Fig.1.1 B). A protamine kinase with similar 

chromatographic properties to this activity is protein kinase C 

(Inoue ̂  ̂ ,1977), a Ca^^ and phospholipid-dependent enzyme that is 

thought to be activated in vivo by diacylglycerol, which lowers the 

Ka of the enzyme for Câ "*" (Nishizuka, 1983). The column fractions 

were therefore assayed for protein kinase C activity using a lysine- 

rich histone fraction enriched in histone HI (the best histone substrate 

for protein kinase C and, unlike protamine, dependent on Ca^^ and 

phospholipid for phosphorylation) in the presence or absence of 

phosphatidyl serine and Câ '*’, at a concentration of the latter (1 mM) 

which activates protein kinase C in the absence of diacylglycerol.

It can be seen from Fig. 1.1 D that the first peak of protamine 

kinase activity also exhibited Ca^* and phospholipid-dependent protein 

kinase activity with the lysine-rich histone fraction as substrate,

.and it was demonstrated by polyacrylamide gel electrophoresis that the



incorporation was into histone HI (results not shown), thus 

supporting the identification of the kinase as protein kinase C.

The second peak of protamine kinase activity eluted at 150 mM KCl 

and partially copurified with cyclic AMP-dependent protein kinase type 

II (Fig. 1.1 B). Better separation of these two activities was 

achieved on DEAE-Sephacel columns (Fig. 1.2). Many workers who have 

studied the protein kinase activities of the supernatant fraction 

have observed elution of cyclic AMP-dependent protamine or histone 

kinase activity at a similar or slightly higher salt concentration 

than was required to elute cyclic AMP-dependent protein kinase type II. 

One such protein kinase activity was further purified and characterized 

in bovine brain (Takai et al., 1977). It has been shown that this 

protein kinase (kinase M) was generated from kinase C by Ca^*-dependent 

proteolysis. Kinase M is not dependent on Ca^^ and phospholipid for 

activity and has a molecular weight of about 60,000. The apparent 

molecular weight of the activity from BHK cells is approx. 50,000 on 

Sephacryl S-EO (Watson, 1985), consistent with the possibility that 

it represents a proteolytic fragment of protein kinase C. Often 

the yield of this second protamine kinase activity did, in fact, 

appear to be inversely related to that of the first (protein kinase C); 

however, a complicating factor here was the selective loss of protein 

kinase C activity when too dilute a sample was applied to the column 

(see below).

The other clear peak of protamine kinase activity (Fig. 1.1 B, C 

and D) eluted at 200-240 mM KCl, also phosphorylated mixed histone, 

although to a lesser extent. This protein kinase did not immediately 

appear to correspond to any of the well-characterized protein kinases 

of animal cells.



Fig. 1.1 DE-52 Anion-exchange Chromatography of Protein Kinases from

BHK Cells Infected with PRV

BHK cells were infected with PRV, harvested 6 h later, post- 

ribosomal supernatant prepared and subjected to column chromatography 

on DE-52, as described in Methods, sections 3.1 and 4.1. Column 

fractions (50 yul aliquots) were assayed for protein kinase activity 

with various substrates:

(A) Casein as substrate (— O— ) , A (-----);
280

(B) Protamine as substrate (--■— ^, mixed histone as substrate in

the presence of lOyuM cyclic AMP ( ■#— );

(C) Mixed histone as substrate alone or in the presence

of cyclic AMP (— # — ), or cyclic AMP and heat-stable 

inhibitor (..*4 ...);
(D) Protamine as substrate (--■— *̂ , lysine-rich histone as substrate,

alone (••••A*-*), or in the presence of 1 mM CaClg and 500yug/ml 

phosphatidyl serine (— A— ).

The different frames represent different experiments, performed in 

an identical manner. The position of the (alternate) column fractions 

assayed has therefore been plotted in terms of KCl concentration 

(estimated from conductivity measurement# to allow better comparison.
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1.2 EFFECT OF VIRAL INFECTION ON PROTEIN KINASES IN THE CYTOSOL OF

BHK CELLS: INDUCTION OF A NEW KINASE ACTIVITY

The protein kinase activities described in Fig. 1.1 were compared 

in samples from uninfected cells and cells infected with PRV for 

different lengths of time. The results are presented in Fig. 1.2,

1.3 and 1.4.

One clear difference was that the protamine and histone kinase 

activity eluting from DE-52 at 200-240 mM KCl, was only found in 

infected cells (Fig. 1.2 A and B). This activity was therefore 

designated viral-induced protein kinase (ViPK).

The profiles of elution from DEAE-Sephacel of other protein kinase 

activities, including the two isoforms of cyclic AMP-dependent protein 

kinase (Fig. 1.2 A and B), a presumed proteolytic fragment of kinase C 

(Fig. 1.2 A and B), and casein kinase I and II (Fig. 1.3) did not 

change significantly during viral infection. However, in the experiment 

from which these data are taken the total activity of protein kinase C 

was very low, and, because it was important (see Discussion) to monitor

the effect of infection on all the protamine kinases, the 0 and 6 h
time points were repeated on a larger scale so that more protein 

(15 mg rather than 4*5 mg) could be applied to the same size of column,

hence avoiding the loss of protein kinase C referred to above. It

can be seen from Fig. 1.4 that there was no decrease in the total 

assayable protamine kinase identified as protein kinase C on the 

induction by viral infection of quantitatively comparable ViPK 

protamine kinase activity.

The quantitative comparison of protein kinases during viral 

infection was based on the enzyme activity eluted from DEAE-Sephacel 

measured jji vitro in the presence of an excess of the respective



regulatory molecule (if one was required). The values so 

obtained do not necessarily represent a quantitation of active 

enzyme in the intact cell, as this depends on the intracellular 

concentration of regulatory molecules or on other conditions. 

Different methods [such as that described by Litvin et al.(1984) 

for cyclic AMP-dependent protein kinases] are required to determine 

the enzyme activity in the intact cell. The data presented here more 

likely reflect, although they cannot be taken as a measure of, the 

amount of the enzyme present in the cytosol of BHK cells. (The 

determination of the amount of an enzyme requires the quantitation 

of enzyme molecules. )



Fig. 1.2 DEAE-Sephacel Column Chromatography of Protein Kinases

from BHK Cells Infected with PRV for Different Lengths 

of Time

I Phosphorylation of Histone and Protamine

(A) BHK cells were infected with PRV virus and harvested after 0, 2,

4, 6, 8 and 10 h. Post-ribosomal supernatant containing 4*5 mg protein 

from each condition was subjected to chromatography on DEAE-Sephacel, 

as described in Methods, sections 3.1 and 4.1. Protein kinase 

activity in the column fractions was determined using as substrate: 

protamine (— ■— ), or mixed histones in the presence of lOyuM cyclic AMP

— O — —) . The KCl gradient ^ --- ) was estimated from conductivity

measurements.

(B) The central fractions of histone and protamine kinase activities 

from A, were separately pooled and reassayed.

(— - A — —) cyclic AMP-dependent protein kinase type 1 

(... A-**) cyclic AMP-dependent protein kinase type II 

(— — 0-“ “) protamine kinase (eluted from DEAE-cellulose column at 

approx. 150 mM KCl)

(— ■— ) ViPK assayed for phosphorylation of histone 

( #  ) ViPK assayed for phosphorylation of protamine.

This figure is presented on page 82 .
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Fig. 1.3 DEAE-Sephacel Column Chromatography of Protein Kinases from

BHK Cells Infected with PRV for Different Lengths of Time

II Phosphorylation of Casein

The column fractions from the experiment described in the legend 

to Fig. 1.2 A were assayed for protein kinase activity with casein as 

substrate.

(A) DEAE-Sephacel chromatography of the casein kinase activities 

of the post-ribosomal fraction from uninfected cells.

(B) The total activity in the hatched areas was estimated for each 

time point of infection and taken as a measure of casein kinase type I 

(— -O— ) and casein kinase type II (— # — ).
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Fig. 1.4 DEAE-Sephacel Column Chromatography of Protein Kinase C

Before and After Infection of BHK Cells with PRV

BHK cells were infected with pseudorabies virus and harvested 

after (A) 0 h or (B) 6 h. Post-ribosomal supernatant containing 

15 mg protein from each condition was subjected to chromatography 

on DEAE-Sephacel as described in Methods, section 4.1. Protein 

kinase activity in column fractions was determined using as substrate; 

protamine (— ■— ), lysine-rich histone, alone (— Q — ) or in the 

presence of 1 mM CaClg and 500yug/ml phosphatidyl serine (— # — ).
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1.3 APPEARANCE OF ViPK DURING THE VIRAL REPLICATIVE CYCLE

It can be seen from Fig. 1.2 that ViPK was first detectable 

approx. 4 h after infection, and continued to increase throughout 

the remaining 6 h period studied. The time-scale of events which 

characterize the stages of virus infection is rather variable and 

depends on the conditions of infection which are not always easy to 

control. For that reason the time-course of appearance of ViPK was 

compared directly (i.e. in the same experiment) with other processes 

specific for cells infected with herpes viruses. The following were 

studied: (i) appearance of ViPK; (ii) release of progeny virus

from infected cells; (iii) protein synthesis and (iv) induction of 

viral DNA-polymerase activity.

The amount of virus released from the cells at different times 

after infection is shown in Fig. 1.5. The progeny virus first 

appeared in the medium after approx. 4 h (the "lag period" of the 

viral replicative cycle). This was followed by rapid release of 

virus during the next 6 h studied (the period of "exponential 

growth"). Under similar conditions of infection in separate work 

(Kennedy, 1982), the accumulation of viral particles started to 

reach a plateau at about 12 h after infection.
PRV, in common with some other herpes viruses, inhibits synthesis 

of most of the host proteins during the period in which synthesis 

of viral functional and structural proteins takes place. As shown 

in Fig. 1.6, a decline in the synthesis of some polypeptides present 

in uninfected cells could first be detected at approx. 6 h after 

infection (e.g. polypeptides of 15-20,000 Da). Appearance of new



proteins in infected cells could clearly be seen 8 and 10 h after 

infection (e.g. polypeptides of 85-120,000 Da, a polypeptide of 40,000 

and polypeptides of 30-35,000 Da). Some of these polypeptides can 

be identified as viral structural proteins which are known to appear 

in cells at later stages of infection ("late" or "Y" proteins).

Viral DNA-polymerase is a well-characterized enzyme coded by 

the virus genome and belongs to the group of "early" or "g" proteins 

(synthesized after the "immediate early" or "a" proteins). DNA- 

polymerase molecules appear in infected cells after a lag period, 

and their synthesis continues for the next several hours (Ben-Porat 

and Kaplan, 1985). The time-course of induction of DNA-polymerase 

activity observed in this experiment is shown in Fig. 1.5.

Taking all these results into consideration, one can conclude that 

the appearance of ViPK in infected cells occurs after the "lag period" 

of the viral replicative cycle and is roughly comparable with the 

kinetics of induction of one viral early (8) protein - DNA polymerase.



Fig. 1.5 Time-course of Appearance of ViPK; Correlation with

Induction of Viral DNA Polymerase and Release of Virus 

Particles

BHK cells were infected with PRV as described in the legend to 

Fig. 1.2.

ViPK ( ■#'— ) was assayed in the DEAE-Sephacel column fractions, 

shown in Fig. 1.2. Fractions containing the enzyme from different 

time points after virus infection were separately pooled and re

assayed for phosphorylation of protamine.

DNA-polymerase activity (— CH-) was measured in cytosol fractions, 

prepared as described in Methods, section 3.1, according to the 

method of Powell and Purifoy (1977).

The release of virus particles into the medium (••••■••••) was 

measured as follows: Aliquots of medium from BHK cell cultures,

infected for various times with PRV, were removed before harvesting. 

The amount of viable virus in the medium from each time point was 

determined by plaque assay (Methods, section 1.5),
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Fig. 1.6 Proteins Synthesised at Different Times After Infection of 

BHK Cells with PRV

BHK cells were infected with PRV for various lengths of time and 

labelled with [^^C] amino acids as described in Methods, section 1.5. 

One culture of BHK cells (approx. 4 x 10^ cells) was used for each 

time point of infection. The cells were harvested into 10 ml of PBS 

and 0*5 ml of the cell suspension was mixed with 2 volumes of 0*025 M 

NagCOg/O'OS M NaOH solution. To this was added an equal volume of 

cold 10% (w/v) tricholoacetic acid. Precipitated protein was 

collected by centrifugation (30,000 g for 30 min) and washed with 5 

volumes of acetone. The precipitated protein (approx. 100/ig) was 

then subjected to electrophoresis in the presence of SDS on a 15% 

(w/v) acrylamide/0'09% (w/v) methylene-bis-acrilamide gels [Methods, 

section 6.1 (1)].

The figure shows a fluorograph of the dried gel, processed as 

described in Methods, section 6.2 (4).
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,2. PARTIAL PURIFICATION AND CHARACTERIZATION OF ViPK

2.1 PARTIAL PURIFICATION OF ViPK

For a typical purification of ViPK, about 10^ BHK cells in 

monolayer culture were infected with 20 pfu of PRV per cell. Cells 

were harvested at 6-9 h after infection. (It has been reported by 

Weissbach et ̂ . , 1973, that harvesting at later times resulted in

a loss of total cell protein, due to cell death occurring at that 

stage of infection.)

The post-ribosomal supernatant was prepared as described in Methods, 

section 3.1. In this fraction ViPK was present, together with other 

protein kinases (some of them described in Results, section 1.1).

For assaying ViPK activity in the presence of the latter,conditions 

in which the concentration of KCl was 800 mM were used. The activity 

of ViPK at 800 mM KCl was comparable with its activity at 100 mM KCl, 

while the activities of other protein kinases present in the 

preparation were suppressed (see Results, section 2.2). This allowed 

estimation of the total ViPK activity in the post-ribosomal fraction.

The post-ribosomal fraction was applied to a DE-52 column and 

fractions eluting at 200-240 mM KCl were pooled and concentrated 

(Fig. 2.1 A). The use of DE-52 anion-exchange chromatography as a 

first step was important not only because of the 9-fold purification 

achieved, but also- because it allowed rapid separation of ViPK from 

most of the other protein kinase activities,present. Nevertheless,

DE-52 preparations of ViPK contained some casein kinase II activity 

(see Fig. 1.1). To study the characteristics of the ViPK it was 

necessary to remove this contaminating activity and further purify



the enzyme. This was achieved using the chromatographic steps 

described in Fig. 2.1 B.

Initially, for separation of ViPK from casein kinase II and its 

further purification, dye-ligand chromatography on Blue A was used. 

Casein kinase II was eluted from that resin with higher concentrations 

of KCl than were required for elution of ViPK (Fig. 2.2). Although 

ViPK was separated from many contaminating proteins by this method 

(Fig. 2.3), only 20-40% of the activity applied to the column was 

recovered.

An improved partial purification of the ViPK was achieved by 

subjecting the material from the DE-52 step to further chromatography 

(Fig. 2.4) on a high-performance size-exclusion column (TSK G3000SW), 

followed by chromatography (Fig. 2.5) on a high-performance anion- 

exchange resin (Mono Q). Results for the purification of ViPK using 

these chromatographic steps are summarized in Table 2.1. The enzyme 

was purified approx. 100-fold, with a recovery of about 20% of the 
original activity. The most purified preparation of ViPK had a 

specific activity of about 1000 units/mg of protein. Protein present 

in preparations of ViPK after the chromatographic steps described in 

Table 2.1, was analysed by gel electrophoresis in the presence of 

SDS (Fig. 2.6). The sample obtained after chromatography on the 

Mono Q column contained several protein bands in the range of 

molecular weights between 65,000 and 90,000, with the most prominent 

polypeptide being of approx. 90,000 Da. However, it is unlikely 

that this polypeptide is related to ViPK activity. Thus, when DE-52 

preparations of ViPK were further purified using high-performance 

hydroxylapatite chromatography, the polypeptide of molecular weight 

90,000 was not present in detectable amounts (Fig. 2.7). Also, the



molecular properties of the native enzyme (Results, section 2.3) 

do not support the possibility that ViPK activity is associated with 

a protein of 90,000 molecular weight.

The enzyme preparations of ViPK after the purification steps 

described in Table 2.1, or after dye-ligand chromatography (Fig. 2.3), 

were free of other protein kinases detected in BHK cells (Results, 

section 1.1). Furthermore, other enzyme activities which could 

interfere with the phosphorylation reaction, ATP-ases (Fig. 2.8) and 

phosphoprotein phosphatases (Methods, s e c t i o n  10.2) were not present 

in the preparations when assayed under standard conditions in vitro.

For studies of the characteristics of the phosphorylation reaction 

catalysed by ViPK, a dye-ligand preparation of the enzyme was used 

in m a n y  experiments. The more purified preparation obtained by high- 

performance size-exclusion and anion-exchange chromatography (Table 2.1) 

was used to confirm the main points emerging from these results.

In addition to the methods for partial purification of ViPK described 

above, several of other methods were tested in an attempt to purify 

the enzyme. However, these were found unsatisfactory for the 

following reasons:

(i) Chromatography of the DE-52 preparations on phosphocellulose 

separated ViPK from casein kinase II. Under conditions which allow 

binding of casein kinase II (Methods, section 4.2), ViPK was not 

bound to the resin. However, most of the other proteins applied to 

the column also eluted with the ViPK activity.

(ii) Affinity chromatography of ViPK on CNBr-activated Sepharose 4B 

with immobilized histone or protamine was tested as a possible 

.purification step, ViPK was eluted with a concentration gradient



.of KCl, but the degree of purification expected from an affinity 

chromatography method was not achieved.

(iii) Chromatofocusing of ViPK [using Polybuffer exchanger 94 and 

Polybuffer 74 (pH4*0), or Mono P column in the FPLC system under 

similar conditions] resulted in complete loss of the enzyme activity. 

It is possible that ViPK was inactivated at the pH of elution, or 

that inactivation was due to interaction with some component of 

Polybuffer.

(iv) Separation of proteins by non-denaturing polyacrylamide gels 

and assay of protein kinase activity in these gels according to Hirsch 

and Rosen (1974), was successfully applied to DE-52 preparations of 

ViPK. However, the resolution of proteins achieved using this method 

was not better than separation by chromatography on a Mono Q column, 

which also separates on the basis of the charge of the protein.

The latter method allowed analysis of large (as well as small) amounts 

of protein and was much more convenient.

(v) A combination of high-performance size-exclusion chromatography 

performed at 0 mM KCl (where ViPK was eluted with an apparent 

molecular weight of approx. 200,000) with the same method performed 

at 500 mM KCl (where ViPK was eluted with an apparent molecular 

weight of 68,000) did not significantly improve the purification 

over that when only a single step using the buffer of high ionic 

strength was employed (Fig. 2.4).

(vi) The dye-ligand matrix. Red A, was able to bind ViPK under 

similar conditions to those described in Methods, section 4.3.

However, the purification achieved was no better than the 

purification on Blue A, used for partial purification of the enzyme 

(Fig. 2.3).



Fig. 2.1 Scheme for the Partial Purification of ViPK

Q
(A) The post-ribosomal supernatant from BHK cells (approx. 10 cells) 

was subjected to chromatography on a DE-52 column (Methods, section 4.1) 

and column fractions were assayed for phosphorylation of protamine

(— •#— ). The KCl gradient (— ---“) was determined by conductivity

measurements and the absorbance of column fractions was measured at

280 nm .

(B) The fractions from the DE-52 column containing ViPK activity 

were pooled, concentrated by Aquacide II, and subjected to further 

purification by one of alternative schemes shown.
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Fig. 2.2 Chromatography of ViPK and Casein Kinase II on a Blue A 

Dye-ligand Column

ViPK and casein kinase II, obtained by chromatography of post-

ribosomal supernatant on a DE-52 column (Fig. 1.1 A and B) were

concentrated by Aquacide and subjected to Blue A, dye-ligand 

chromatography. The chromatography was performed as described in 

Methods, section 4.3, but the linear elution gradient was replaced 

by a step-gradient employing 0*4 M, 0*8 M and 1*5 M KCl. The volume

of elution buffer used in each step was 3 ml.

(A) Chromatography of casein kinase II on Blue A.

(— # — ) Casein kinase activity.

(— —  — ) Absorbance at 280 nm.

(B) Chromatography of ViPK on Blue A,

(— #■“ ) Histone kinase activity.

(—  — Absorbance at 280 nm.
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Fig. 2.3 Dye-ligand, Blue A Chromatography of ViPK

(A) A preparation of ViPK purified by DE-52 chromatography was 

subjected to chromatography on a column of the dye-ligand, Blue A, 

as described in Methods, section 4.3. Aliquots (40 ̂ 1) of the 

fractions indicated were assayed for protein kinase activity using 

mixed histone ( #  ) as substrate. The A2qq (—  ■ and KCl 

concentration (•.... ) of column fractions is also indicated.

(B) Protein present in the initial DE-52 preparation of ViPK (1), 

in Blue A column fractions 5-8 (2) and Blue A column fractions 39-43 

with ViPK activity (3) was analysed by SDS gel electrophoresis on a 

gel containing 10% (w/v) acrylamide/0-27% (w/v) methylene-bis- 

acrylamide [Methods, section 6.1 (1)]. Samples contained approx.

5 /ig of protein which was visualized by the silver stain method 

[Methods, section 6.2 (2)].
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Fig. 2.4 High performance Size-exclusion Chromatography of VIPK

A preparation of ViPK purified by DE-52, anion-exchange chroma

tography was subjected to chromatography on a TSK G3000SW column as 

described in Methods, section 4.6. Aliquots (40yil) of the column 

fractions were assayed for protein kinase activity (— # — ) using 

protamine as substrate. The absorbance was monitored at 280 nm 

(“  —  — The position of elution of protein standards is indicated.
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Fig. 2.5 High-performance Anion-exchange Chromatography of ViPK

A preparation of ViPK purified by DE-52 anion-exchange and high- 

performance size-exclusion chromatography was subjected to chroma

tography on a Mono Q column as described in Methods, section 4.7. 

Aliquots (40 yul) of the column fractions were assayed for protein 

kinase activity (— #— ) using protamine as substrate. The Aggg 

(— — — ) and NaCl concentration (••••••) of column fractions is also

indicated.
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Table 2.1 Partial Purification of ViPK

BHK cells were infected for 6 h with PRV and ViPK purified from 

the post-ribosomal supernatant as shown in Fig. 2.1., 2.4 and 2.5. 

Protein kinase activity was assayed with protamine as substrate. 

Protein was assayed as described in Methods, section 1.1

Purification
Step

Volume
(ml)

Total
protein
(mg)

Total kinase 
activity 

(Counts/rain 
X 10-6)

Purification
(X)

Recovery
(%)

Post-ribosomal
supernatant 21 119 16«0* 1 100
DE-52 42 10-4 12-2 9 76

TSK-G3000SW 9 3-12 8-4 24-4 52

Mono Q 1 0-28 3-7 102 23

Assayed at 800 mM KCl (see text).



Fig. 2.6 Partial Purification of ViPK

Protein (25 yig) present in samples from each step of purification 

of ViPK, described in Table 1, was analysed on a 10% (w/v) acrylamide/ 

0*27% (w/v) methylene-bis-acrylamide gel in the presence of SDS.

After electrophoresis [Methods, section 6.1 (1)], the gel was stained 

with Coomassie Brilliant Blue [Methods, section 6.2 (1)].

The samples applied were from;
(1) The post-ribosomal supernatant

(2) DE-52, anion-excahnge chromatography

(3) High-performance size-exclusion chromatography on a TSK G3000SW

column

(4) High-performance anion-exchange chromatography on a Mono Q

column.

The position of molecular weight standards is also indicated.
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Fig. 2.7 High-performance Hydroxylapatite Chromatography of ViPK

A preparation of ViPK purified by DE-52 anion-exchange chromato

graphy was subjected to chromatography on a hydroxylapatite column, 

as described in Methods, section 4.5. Aliquots (40yil) of the column 

fractions were assayed for phosphorylation of protamine ( #  ). The

^280  ̂ ) and concentration gradient of sodium phosphate buffer

are also indicated.

Protein present in the fractions containing ViPK after high- 

performance hydroxylapatite chromatography (1) and in the sample of 

ViPK activity applied to the column (2), was analysed by gel electro

phoresis in the presence of SDS as shown in the insert.
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Fig. 2.8 Determination of ATPase Activity in Standard Assay for ViPK

ViPK, partially purified as shown in Table 2.1, was assayed for 

phosphorylation of protamine in standard reaction mixture (Methods, 

section 10.1). An aliquot (1 ;ul) from that reaction mixture (1) and 

from a similar reaction mixture but without added ViPK (2), was taken 

at the end of incubation and subjected to PEI-cellulose thin-layer 

chromatography (Methods, section 8).

The figure shows an autoradiography of the dried plate. The 
32amount of [Y - P] ATP present in samples 1 and 2 was determined from 

measurements of Cerenkov radiation in the excised spots. The values 

obtained were: 25,845 cpm in sample 1 and 27,413 cpm in sample 2.

A similar experiment, which gave essentially the same results, 

was performed with a ViPK preparation obtained after Blue A chroma

tography.
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2,2 CATALYTIC PROPERTIES OF ViPK

(1) Conditions Affecting Catalytic Activity

Effect of ions - The effect of monovalent and divalent cations on 

the phosphorylation reaction catalysed by the ViPK was determined 

with mixed histone or protamine as a substrate. The characteristics 

of phosphorylation of these two substrates were generally similar.

Fig. 2.9 A shows the effect of increasing concentrations of KCl on 

histone phosphorylation. The ViPK was active over a broad range 

of concentration of KCl, and its activity was actually stimulated 

between 300 and 500 mN KCl. In other experiments where concentrations 

higher than 600 mM KCl were tested (0*8 M and 1 M KCl), ViPK had 

as great an activity as at 100 mM KCl. The magnesium ion require

ment of ViPK was examined in the presence of 110 or 500 mM KCl 

(Fig. 2.9B). At the lower concentration of monovalent cation (110 mM 

KCl) a very broad magnesium concentration optimum of 50-80 mM was 

observed. This is far in excess of that required for the formation 

of an ATP-magnesium complex with the 0*1 mM ATP in the assay mixture. 

At the higher concentration of monovalent cation (500 mM KCl) the 

optimum concentration of magnesium decreased to approx. 20 mM, 

suggesting that part of the effect of magnesium was through its 

contribution to the total ionic strength. ViPK also maintained its 

activity in the presence of relatively high concentrations of calcium 

(5 mM CaClg) or spermine (5 mM), as shown in Table 2.2

Effect of pH - The effect of pH on the ViPK activity (Fig. 2.10) 

was determined over a range of pH values from 4*5 to 10. In the



presence of 50 mM Tris-HCl buffer the activity of ViPK was 

inhibited compared with that in the presence of phosphate or glycine 

buffer at the same pH. The curve of the dependence of ViPK activity 

on pH, corrected for this inhibitory effect of Tris-buffer (Fig. 2.10, 

insert), showed a maximum between pH7*5 and 9.

Effect of sulphydryl-blockina reagents - The sulphydryl-blocking 

reagents, N-ethylmaleimide and p-hydroxymercuribenzoate which inhibit 

the activity of enzymes dependent on the structural requirement of 

sulphydryl groups, inhibited ViPK activity (Fig. 10.11).

Effect of temperature of incubation - The effect of temperature 

of incubation on ViPK activity was assayed with protamine and histone 

as a substrate. Maximal activity for histone phosphorylation was 

at approx. 30°C, while phosphorylation of protamine increased up 

to 40°C (Fig. 2.12).

Specificity for ATP as phosphate donor and determination of

apparent Km - When [Y -^^P] GTP was substituted for [y -^^P] ATP

as phosphate donor for the phosphorylation at the same concentration
32of the nucleotide, no incorporation of P was observed into 

protamine, indicating specificity of the enzyme for ATP.

To determine the apparent Km of ViPK for ATP, phosphorylation of 

protamine was examined as described in Fig. 2.13. A double-reciprocal 

plot of the initial velocity versus ATP concentration gave an 

apparent Km of 0*057 mM. This compares with values of 0*003-0*4 mM 

reported for other protein kinases (Roach, 1984).



Fig. 2.9 Effect of KCl and MgCl^ on the Activity of ViPK

A preparation of ViPK purified by chromatography on DEAE- 

cellulose and Blue A was assayed for protein kinase activity using 

mixed histone as substrate as described in Methods, section 10.1, 

except that the concentration of KCl and MgClg were varied as 

indicated.

(A) Effect of altering the concentration of the KCl at 10 mM MgCl
V

(B) Effect of altering the concentration of MgClg at 110 mM KCl 

(— # — ) or 500 mM KCl Q —

In the same experiment cyclic AMP-dependent protein kinase type 

I was used as a control. This enzyme was most active between 5-10 mM 

MgCl2 and 50% inhibition of its activity was achieved with 120 mM KCl, 
consistent with the results of others (Takai et al., 1977).
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Fig. 2.10 Effect of pH on the Activity of ViPK

ViPK was partially purified by chromatography on DE-52 and 

Blue A. Protein kinase assay was carried out under standard 

conditions with mixed histones as a substrate (Methods, section 10.1) 

but the pH value of the reaction mixture varied between 4*5-10. The 

buffers used were: in the pH range 4*5-7, 50 mM sodium phosphate

buffer (— # — ); in the range 7-9, 50 mM Tris-HCl (— in the 

range 9-10, 50 mM Glycine-NaOH buffer (— ■— ).
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Fig. 2.11 Effect of Temperature of Incubation on the Activity of ViPK

ViPK was assayed as described in Methods, section 10.1, except 

that the temperature of incubation was varied as shown. Protamine 

(— # — ) or histone (-—O-*) was used as substrate.
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Fig. 2.12 Effect of Sulphydryl-blocking Reagents on the Activity 

of ViPK

A preparation of ViPK partially purified by DE-52 and Blue A 

chromatography, was assayed for histone kinase activity (Methods, 

section 10.1) in the presence of N-ethylmaleimide (' #' ), or 

p-hydroxymercuribenzoate at the concentrations shown.
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Fig. 2.13 The Apparent Km of ViPK for ATP

A preparation of ViPK purified by chromatography on Blue A, was 

assayed in standard reaction mixtures containing concentrations of 

ATP from 2 to 50 /jM. The initial velocity was measured from the 

values obtained by terminating the reaction after 0, 5, 10 and 20 min 

at each of the ATP concentrations tested.
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(2) Effect of Potential Regulatory Molecules on ViPK

The ability of the ViPK to phosphorylate protamine was examined

in the presence of various molecules that have been found to affect

the activity of other protein kinases. The results of these experiments

together with the results of control experiments performed with other

protein kinases are summarised in Table 2.2. The activity of ViPK

was not affected by either cyclic AMP or the heat-stable protein

inhibitor of the catalytic subunit of the cyclic AMP-dependent protein

kinase. Cyclic GMP was also without effect on ViPK. (The

stimulation of the cyclic AMP-dependent protein kinase by unphysio-

logically high concentration of 0-1 mM cyclic GMP was also observed

by Reimann et , 1971.) Heparin, at a concentration at which it

specifically inhibits casein kinase II did not significantly inhibit

the ViPK, although the ViPK did share with casein kinase II the

property of being stimulated above its basal activity by spermine

(Hathaway and Traugh, 1982). Concentrations of Câ "*” and phosphatidyl-

serine that activate protein kinase C had no effect on the ability

of the ViPK to phosphorylate protamine. It has already been shown

(Fig. 1.1 D) that the ability of the ViPK to phosphorylate a lysine-

rich histone fraction, which was enriched for histone HI, was not

influenced by these molecules. (However, it is in fact histone H2B,

and not histone HI, that ViPK phosphorylates in this histone fraction,
2+Fig. 2.16.) Calmodulin and Ca were also without effect on the 

ViPK, although in this case no calmodulin-dependent protein kinase 

was available to serve as a control. Double-stranded RNA also did 

not affect the ability of the ViPK to phosphorylate protamine.



Table 2.2 The Influence of Different Effectors and Inhibitors on 

the Activity of ViPK 

The activity of ViPK, purified as shown in Table 2.1 or by chroma

tography on a Blue A column, was assayed using protamine as substrate. 

Enzymes used as controls were cyclic AMP-dependent protein kinase type 

I (cAMPdPKI), assayed with mixed histones as substrate, casein kinase II 

(CKII), assayed with casein as substrate, and protein kinase C (PKC) 

assayed with lysine-rich histone fraction as substrate. The results 

are expressed as a percentage of the activity in the absence of any 

addition.

Addition Concentration 
or Amount

Protein Kinase

ViPK cAMPdPKI CKII PKC

None - 100 100 100 100

Cyclic AMP 1-6 X 10"®M 101 201 _
1 X lQ-% 97 294 - -

Cyclic GMP 1‘6 X IO“®M 
1 X IQ-^M

97 87 __ _
95 257 — —

cAMPdPK 1 unit 130 14 130 —

inhibitor 10 units 149 2 121 —

CaCl. 5 X 10"& 
5 X 10 %M

95 148
L 99 46 — -

5 X 10"4i 13 17 - -

CaCl2 +
Calmodulin

5 X 10"\ 
60 yug/ml

107 - - -

CaCln +
Phosphatidyl
Serine

1 X 10~ ^
0‘5 mg/ml

125 1000

Spermine 5 X 10"& 187 — — —

5 X 10",M 101 — — —

5 X 10 TM 5 - - -

Heparin 0‘5 /ig/ml 86 _ 23 —

5 /Jg/ml 96 — 19 —

polyl-polyC 0*1 /ig/ml 111 — — -

1 /ig/ml 99 - - -

10 /ig/ml 89
■



3. Substrate Specificity of ViPK

Protamine and histone - The non-specific phosphate-acceptor 

proteins commonly used to assay protein kinases in vitro are histones, 

protamine, casein and phosvitin. The acidic proteins, casein and 

phosvitin, did not serve as a substrate for the ViPK in the range 

of concentrations 0*4-4 mg/ml, as shown in Fig. 2.14 B. Protamine 

was the best substrate for ViPK and mixed histones were phosphorylated 

to a lesser extent. The curve of activity of ViPK as a function of 

the concentration of protamine, and the corresponding curve for 

histone (Fig. 2.14 A) were similar, reaching maximal activity at a 

concentration of about 0*1 mg/ml for both substrates. The apparent 

Km value for protamine was determined by assaying kinase activity 

at concentrations of protamine from 0*005 to 0*05 mg/ml (Fig. 2.15).

A double reciprocal plot of the initial velocity versus substrate 

concentration gave an apparent Km of 0*042 mg/ml. This compares 

with apparent Km values for histones of 0*14 and 0*4 mg/ml reported 

for the cyclic AMP-dependent and cyclic GMP-dependent protein kinases, 

respectively (Takai et , 1975) and a Km of 0*2-0*3 mg/ml for 

lysine-rich histone reported for the protein kinase C (Ferrari et , 

1985).

Different protein kinases have specificities for different histones, 

and it was therefore of interest to examine the phosphorylation of 

histone subfractions by ViPK (Fig. 2.16). The results of this 

experiment showed that histones H3, H2A and H2B were good substrates, 

whereas histones HI and H4 were very poor substrates (if at all) for 

ViPK. It should be pointed out that the subfractions used were in 

.fact mixtures of different histones, and thus interactions between



individual histones or their interaction with ViPK cannot be 

excluded. For example, it has been reported that histone HI was 

phosphorylated by protein kinase C only if histones H3 and H4 were 

not present in the assay. Histones H3 and H4 were poor substrates 

but potent inhibitors of the enzyme (Sahyoun et al., 1983). However, 

an additional experiment where purified histone HI (Methods, section 

4.8) was tested for phosphorylation by ViPK, confirmed that HI was 

a poor substrate for the enzyme.

Ribosomal proteins - Certain basic proteins of ribosomal subunits 

also served as substrates for the ViPK. Phosphorylation of 40S 

ribosomal subunits was assayed under different ionic conditions 

(Fig. 2.17 and 2.18). At moderate ionic strength (110-350 mM KCl,

350 mM NaCl or 0*5 mM spermine) the major phosphorylated ribosomal 

protein had a molecular weight of 22,000, whereas at higher 
concentration of certain salts (660 mM KCl, 660 mM NaCl or 5 mM 

spermine) a protein of molecular weight 31,000 was a good substrate. 

Analysis of ribosomal proteins by two-dimensional gel electrophoresis 

(Fig. 2.19) showed that these two phosphoproteins correspond to 

ribosomal proteins S7 and S6, respectively. No other protein kinase 

with this substrate specificity for ribosomal proteins has been 

described.

Phosphorylation of eIF-2 - The a subunit of eukaryotic initiation 

factor eIF-2 can be phosphorylated in vivo and in vitro by a double

stranded RNA-dependent kinase found in both nucleated and non

nucleated cells, as well as by haemin-regulated kinase (HRI), found 

in reticulocytes (Ochoa, 1983). The other subunit, 8 , can be 

•phosphorylated in vitro by several protein kinases including casein



kinase II, protease-activated kinase II (Tuazon et , 1980) and 

kinase C (Schatzman et al.. 1983). In the experiment shown in 

Fig. 2.20 eIF-2 was assayed for phosphorylation by ViPK, and HRI and 

casein kinase II were used as controls for phosphorylation of the 

a and 8 subunit, respectively. The ViPK was unable to phosphorylate 

either subunit of eIF-2.

Determination of the amino acid phosphorylated - Protein kinase 

activities can be classified in terms of the amino acids that they 

phosphorylate. Serine/threonine- and tyrosine-specific kinase 

activities are known (Krebs, 1983). Analysis of the phosphoamino 

acids in a protamine hydrolysate (Fig. 2.21) showed that only serine 

residues, and not threonine or tyrosine residues, were phosphorylated 

by ViPK.



Fig. 2.14 Activity of ViPK as a Function of Substrate Concentration

Partially-purified ViPK was assayed under standard conditions 

(Methods, section 10.1), but the concentrations of potential substrates 

were varied as indicated.

(A) (— O — ) histone 

(— # — ) protamine

(B) (- '#— ) casein 

(— 0 —4 phosvitin

In the same experiment cyclic AMP-dependent protein kinase type I 

phosphorylated the histone fraction to a greater extent than protamine, 

consistent with the results of others (Takai e^ ̂ . , 1977).
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Fig. 2.15 The Apparent Km of ViPK for Protamine

A preparation of ViPK purified by chromatography on Blue A, 

was assayed in standard reaction mixtures containing concentrations 

of protamine from 0*0075 to 0*05 mg/ml. The initial velocity was 

measured from the values obtained by terminating the reaction 

after 0, 5, 10 and 20 min at each of the protamine concentrations 
tested.
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Fig. 2.16 Phosphorylation of Different Histones by ViPK

Partially-purified ViPK was assayed for protein kinase activity 

with various commercial (Sigma) histone fractions, and the products 

of the reaction (aliquots containing 32 yug of protein) subjected to 

electrophoresis in the presence of SDS on a gel containing 15% (w/v) 

acrylamide/0'4% (w/v) methylene-bis-acrylamide (Methods, section 10.6).

(A) Stained gel (S) and corresponding autoradiograph (A) with

mixed histone type II-AS as substrate.

(B) Tracks 1-4 show the stained gels, and tracks 5-8 autoradio

graphs of these. The histone subfractions used (manufacturer's 

designations) were: (1, 5) Type V-S; (2, 6) Type VII-S;
(3, 7) Type VI-S; (A, 8) Type VIII-S.
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Fig. 2.17 Phosphorylation of AOS Ribosomal Subunits by ViPK;

Effect of KCl Concentration

ViPK (26/il) partially purified by Blue A chromatography was 

used to phosphorylate rat liver AOS ribosomal subunits (1*260 unit) 

under standard reaction conditions (Methods, section 10.3), but at 

the concentrations of KCl indicated in the figure. After incubation 

for 30 min at 30*C, the AOS subunits were subjected to SDS electro

phoresis [15% (w/v) acrylamide/0'09% (w/v) methylene-bis-acrylamide] 

and the gel subjected to autoradiography.

The figure shows an autoradiograph of the dried gel. The apparent 

molecular weight and the ribosomal protein designation of each of 

these (based on two-dimensional analysis. Fig. 2.19) is indicated.
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Fig. 2.18 Phosphorylation of AOS Ribosomal Subunits by ViPK:

Effect of Various Cations

Conditions were generally as in Fig. 2.17, but the ionic composition 

of the reaction mixture was varied:

(1) 350 mM KCl (10 mM MgClg)

C2) 700 mM KCl (10 mM MgClg)

(3) 350 mM NaCl (10 mM MgClg)

(4) 700 mM NaCl (10 mM MgClg)

(5) 50 mM MgClg (60 mM KCl)

(6) 100 mM MgClg (60 mM KCl)

(7) 0*5 mM spermine (10 mM MgCl^, 60 mM KCl)

(8) 5 mM spermine (10 mM MgCl2» 60 mM KCl)
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Fig. 2.19 Two-Dimensional Gel Analysis of Ribosomal Proteins 

Phosphorylated by ViPK

A mixture of 40S and 60S ribosomal subunits (ISAg^Q units) was 

phosphorylated by ViPK (400yul) partially purified on Blue A. The 

concentration of spermine in the reaction mixture was 0 mM (A, C) 

or 7 mM (B, D). Incubation was for 3*5 h at 30°C. The conditions 

of phosphorylation and preparation of the sample for analysis by 

two-dimensional gel electrophoresis, were as described in Methods, 

section 10.3.

(A, B) stained gel 

(C, D) autoradiograph

The number 1 underneath protein 86 indicates the monophosphory- 
lated derivative.
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Fig. 2.20 Phosphorylation o£ Initiation Factor eIF-2 by ViPK,

Casein Kinase II and HRI

ViPK (partially purified by DE-52 anion-exchange chromatography), 

casein kinase II (Materials, section 2.3), and HRI (Materials, section 

2.3) were used to phosphorylate eIF-2 (Materials, section 2.3) as 

described in Methods, section 10.5, The samples of eIF-2 were 

subjected to gel electrophoresis (15% (w/v) acrylamide/0'09% (w/v) 

methylene-bis-acrylamide] in the presence of SDS, and the phosphory

lated proteins analysed by autoradiography.

Track 1: stained gel of eIF-2. Tracks 2-6: autoradiographs

from reactions containing (2) HRI(lyug); (3) HRI (1yUg) plus eIF-2 

(0'8/ig); (4) ViPK (2 units); (5) ViPK (2 units) plus eIF-2 

(O'SyUg); (6) casein kinase II (2 units) plus eIF-2 (0'8/ug),

The designation of the various subunits of eIF-2, are confirmed 

by tracks 3 and 6 for the a and 3 subunits. An unknown component,

X, of the eIF-2 preparation, phosphorylated by ViPK and casein 

kinase II is also indicated.
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Fig, 2.21 Phosphoamino Acid Analysis of Protamine Phosphorylated 

by ViPK

Protamine, phosphorylated in vitro by ViPK, was hydrolysed and 

subjected to high-voltage paper electrophoresis (Methods, section 9)

Autoradiographs of the paper electrophoretogram are shown:

(A) exposure for 3 h; (B) exposure for 16 h.

The origin, the positions of the phosphoamino acid markers 

(P-Thr, phosphothreonine; P-Tyr, phosphotyrosine; P-Ser, phospho- 

serine) and the position of inorganic phosphate (Pi) are indicated.
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2.3 MOLECULAR PROPERTIES OF ViPK

(1) Apparent Molecular Weight

Chromatography on Sephadex GrlSO,using globular protein standards 

of known molecular weight, was used to estimate the molecular weight 

of native ViPK. From the experiment shown is Fig. 2.22 a value of 

68,000 for the apparent molecular weight was obtained. A similar 

value was found when the estimation was performed by high-performance 

size-exclusion chromatography (see Fig. 2.4). Both these determinations 

were made at 500 mM KCl to prevent non-specific aggregation of 

proteins.

(2) Sedimentation Coefficient

Sedimentation studies of ViPK were performed in sucrose density 

gradients containing 0*1 M KCl or 1 M KCl (Fig. 2.23). As shown 

in Fig. 2.23 A, ViPK sedimented as a single peak with an S-value 

of approx. 4*3. When the salt concentation in the sucrose 

gradient was increased from 0*1 to 1 M the sedimentation profile 

of ViPK did not change significantly, showing the absence of non

specific aggregation.



Fig. 2.22 Size-Exclüsion Chromatography of ViPK on Sephadex G-150

A preparation of ViPK purified by DE-52 anion-exchange chromato

graphy was subjected to chromatography on Sephadex G-150 as described 

in Methods, section 4.4. Aliquots (40yul) of the column fractions 

were assayed for protein kinase activity using protamine as substrate, 

The position of elution of Blue Dextran and protein standards is 

indicated.
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Fig. 2.23 Sucrose Density Gradient Sedimentation of ViPK

A preparation of ViPK purified by DE-52, anion-exchange chromato

graphy was subjected to centrifugation on 10-30% linear sucrose 

gradients made in buffers containing (A) 0.1 M KCl. or (B) 1 M KCl, 

and the gradients fractionated, as described in Methods, section 5.1. 

Aliquots (40 yil) of the gradient fractions were assayed for protein 

kinase activity using mixed histones as substrate in a reaction 

mixture with a final concentration of 500 mM KCl in both cases. The 

position of sedimentation and published sedimentation coefficient of 

the protein standards is shown and presented graphically in the 

insert.
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3, ANALYSIS OF POTENTIAL PHYSIOLOGICAL SUBSTRATES FOR ViPK

3.1 PROTEINS PHOSPHORYLATED DURING VIRAL INFECTION

There are a number of proteins which become phosphorylated during 

infection of cells with herpes viruses and these include viral 

structural and non-structural proteins as well as proteins of the host 

cell. The presence of viral structural phosphoproteins has also been 

described in preparations of virus particles (Introduction, section 2.2). 

Fig. 3.1 illustrates the presence of some new phosphoproteins in the 

post-ribosomal fraction from BHK cells and Fig. 3.2 the increase in 

phosphorylation of ribosomal protein S6, after infection of the cells 
with PRV for 6 h.

As the appearance of a new protein kinase activity in the cytoplasm 

of infected BHK cells had been observed (ViPK, Fig. 1.2), an attempt 

was made to test whether the phosphorylation of certain proteins was 

a result of phosphorylation by this enzyme. Taking into account the 

importance, availability and appearance of specific phosphoproteins 

during the viral replicative cycle, the following were chosen for 

further studies:

(i) Two major structural ( or late) phosphoproteins of the pseudo

rabies virion (molecular weights: 115,000 and 120,000).

(ii) Three non-structural 8 (early) proteins: DNase, DNA-polymerase

and major DNA-binding protein.

(iii) One protein of the host cell, ribosomal protein S6.

These proteins were first tested to see whether they could serve 

as substrates for ViPK iji vitro, and where this was the case the 

properties of the phosphoproteins from studies iji vitro and iji vivo



were compared. The possibility that other protein kinases could be 

involved in phosphorylation of spectific proteins ^  vivo was also 

tested.



Fig. 3.1 The Phosphorylation in vivo of Proteins in the Post-

ribosomal Supernatant of Uninfected BHK Cells and Cells 

Infected with PRV

Uninfected BHK cells and cells infected with PRV were labelled 
32with [ P] orthophosphate for 3 h before harvesting, as described in 

Methods, section 1.5. Post-ribosomal supernatant was prepared (Methods, 

section 3.1) and protein precipitated with 5 volumes of acetone. Protein 

(25 yUg) was subjected to two-dimensional O'Farrell gel electrophoresis 

[Methods, section 6.1 (3)].

The figure shows autoradiographs of the dried gels in which the 

protein was from:

(A) uninfected BHK cells

(B) BHK cells infected with PRV for 6 h.

Molecular weights of the standards used in the second dimension are 

indicated. For the first dimension the following standards were used:

PGK - 3 phosphoglycerate kinase (pi 6*4), CA - carbonic anhydrase 

(pi 4*8), Actin - actin (pi 4-65) and STI - soybean trypsin inhibitor 

(pi 4-55).

The arrows indicate the phosphoproteins specific for post-ribosomal 

supernatant of infected cells.
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Fig. 3.2 The Phosphorylation in vivo of Ribosomal proteins of Uninfected 

BHK Cells and Cells Infected with PRV

Uninfected BHK cells and cells infected with PRV, were labelled with
32[ P] orthophosphate for 3 h before harvesting, as described in Methods, 

section 1.5. Ribosomes were prepared (Methods, section 3.2) and their 

proteins extracted (Methods, section 3.5). The protein labelled with P 

(50 yUg) was combined with 150yug of the ribosomal proteins isolated from 

rapidly-growing cells (see Fig. 3.13) and subjected to two-dimensional gel 

electrophoresis [Methods, section 6.1 (2)].

The figure shows autoradiographs of the dried gels in which the protein 

was from:

(A) BHK cells infected with PRV for 6h.

(B) Uninfected BHK cells.

Different phosphorylated forms of ribosomal protein S6 are numbered 
(see Fig. 3.13).
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3.2 PHOSPHORYLATION OF VIRAL PROTEINS IN VITRO

(I) Structural Proteins

To study the phosphorylation of the two major structural phospho

proteins _in vitro, proteins present in pseudorabies virus particles 

were solubilised in the presence of 10% NP-40 and 0*6 M KCl. The 

resulting protein extract contained endogenous kinase activity which

phosphorylated the same two proteins (115,000 and 120,000 Da) which 
32are labelled with P jji vivo. The endogenous phosphorylation was 

eliminated by heating the extract at 60°C for 15 min (Fig. 3.3). This 

heat-inactivated extract was used as a substrate for ViPK and 

preparations of other protein kinases.

Different fractions of protein kinases obtained from DE-52 

chromatography of the post-ribosomal supernatant from infected BHK 

cells, were tested for phosphorylation of the heat-inactivated virion 

extract (Fig. 3.3). The fractions containing ViPK did not phosphorylate 

the viral proteins. The fractions in the range of 110-150 mM KCl 

strongly phosphorylated the 115,000 and 120,000 Da proteins. These 

fractions contain several protein kinase activities (Fig. 1.1), but 

when individual purified protein kinases were tested separately only 

casein kinase II used the two viral proteins as a substrate (not shown). 

These results therefore indicate that the candidates for the protein 

kinase responsible for phosphorylation _ÿi_ vivo include the endogenous 

activity of the virion and casein kinase II.

To analyse the protein kinase(s) present in pseudorabies virions, 

protein extracts were subjected to DEAE-cellulose or phosphocellulose 

chromatography and the column fractions assayed for phosphorylation of 

various substrates, including heat-inactivated virions (Fig. 3.4 and



3.5). It was clear from these experiments that the extract contains 

several kinase activities. The activity profiles were quite similar 

to those obtained for the protein kinases in the post-ribosomal super

natant of infected cells. Kinase activity similar to ViPK was also 

present (this eluted from DEAE-cellulose at 220 niM KCl and phosphory- 

lated protamine). However, this activity was clearly separated by 

phosphocellulose column chromatography from the kinase which 

phosphorylated heat-inactivated virions (Fig. 3.5). The phosphorylation 

of the 115,000 and 120,000 Da proteins of the virion was by an 

activity which also phosphorylated casein, used GTP as well as ATP as 

phosphate donor and was strongly inhibited by heparin (Fig. 3.6).

These properties are similar to those of host casein kinase II, as are 

the elution characteristics of the activity on DEAE-cellulose and 

phosphocellulose (Hathaway and Traugh, 1982). It is possible that the 

casein kinase II activity in the virion originates from the host cell.

It could be incorporated into the virus particle during its assembly 

or during the budding process, as has been described for some other 

host proteins (Lodish and Porter, 1980).

(2) Non-structural Proteins

It has been demonstrated conclusively that herpes simplex virus 

(HSV) DNase is a phosphoprotein (Banks et , 1985), and there is 

some indication that viral DNA-polymerase (Powell and Purifoy, 1977) 

and the major DNA-binding protein (Wilcox etal., 1980) are 

phosphorylated in infected cells. These three proteins (encoded by the 

HSV or PRV genome) are classified as g proteins (Honess and Roizman, 1974 

and 1975) and appear in cells at the same stage of infection when 

•ViPK activity has been detected. Direct comparison of the time-course



of induction of ViPK and DNA-polymerase activity is shown in Fig. 1.5.

Viral DNase, DNA-polymerase and the major DNA-binding protein 

were tested for phosphorylation by partially purified ViPK iji vitro.

As shown in Fig. 3.7, only viral DNase was phosphorylated. However, 

the studies with this viral enzyme were not extended further because 

insufficient purified protein was available.



Fig. 3.3 Phosphorylation of PRV Structural Proteins with Protein Kinase 

Activities from the Virion and from the Post-ribosomal 

Supernatant of Infected Cells

A protein extract of pseudorabies virions was prepared as described in 

Methods, section 2.2, and 2 yig of protein was assayed for phosphorylation by 

endogenous or added protein kinase activities under standard reaction 

conditions (Methods, section 10.4). The polypeptides of the virion were 

separated by electrophoresis in the presence of SDS on a 10% (w/v) acrylamide/ 

0*26% (w/v) methylene-bis-acrylamide gel.

An autoradiograph of the dried gel, presented in the figure, shows 

endogenous phosphorylation in the extract of pseudorabies virions before 

(track 1) and after (track 2) incubation for 15 min at 60°C, and phosphory

lation of the preincubated extract with DE-52 column fractions of the post- 

ribosomal supernatant from infected cells, combined within the range of 

10-40 mM KCl (track 3), 110-150 mM KCl (track 4) and 200-240 raM KCl (track 5).
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Fig. 3.4 DEAE-cellulose Chromatography of a Soluble Extract of

Pseudorabies Virions

A protein extract of pseudorabies virions was subjected to DEAE- 

cellulose chromatography as described in Methods, section 4.1. Protein was 

eluted at increasing concentrations of KCl Aliquots (40 yul) of the

column fractions were assayed, under standard reaction conditions (Methods, 

section 10.1), for the phosphorylation of various substrates:

(A) protamine ( #  ) and histone

(B) casein (— # — ) and heat-inactivated pseudorabies virion extract

(— ■ “ ).
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Fig. 3.5 Phosphocellulose Chromatography of a Soluble Extract of

Pseudorabies Virions

A protein extract of pseudorabies virions was subjected to chromatography 

on a phosphocellulose column (Methods, section 4.2), and the concentration of 

NaCl in the column fractions was estimated from conductivity measurements 

( '). Aliquots (40 /il) of the column fractions were assayed for protein

kinase activity with various substrates:

(A) Protamine as a substrate (— •— ), mixed histone as a substrate in

the presence of 10 yuM cyclic AMP (— —  —  ) and casein as a 

substrate ( ).

(B) Heat-inactivated protein extract (1yug) from pseudorabies virions as

a substrate. Analysis of phosphorylation of 115,000 and 120,000 Da 

polypeptides was by SDS gel electrophoresis on a 10% (w/v) 

acrylamide/0’26% (w/v) methylene-bis-acrylamide gel, and 

subsequent autoradiography.
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Fig. 3.6 Characterization of Casein Kinase Activities in a Soluble Extract 

of Pseudorabies Virions after Fractionation by Phosphocellulose 

Column Chromatography

Fractions from the phosphocellulose column described in Fig. 3.5 were
32assayed for phosphorylation of casein using 0‘1 mM [Y- P] ATP #  ■),

32phosphorylation of casein using 0*1 mM [y— P] GTP (— “O — -■), and
32phosphorylation of casein using [Y_ P] ATP but in the presence of 1 yug/ml 

heparin
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Fig. 3.7 Phosphorylation of Non-structural Virally-coded Proteins by ViPK

ViPK (10 /il of 10 X concentrated DE-52 preparation) was assayed for 

phosphorylation of: (1) 1 of HSV major DNA-binding protein (140,000 Da);

(2) 1 /Ug of HSV DNA-polymerase (150,000 Da); (3) 1 /ig of HSV DNase (85,000

Da). The conditions for the phosphorylation reaction are described in 

Methods, section 10.4. The viral non-structural proteins were subjected to 

SDS gel electrophoresis on a 10% (w/v) acrylamide/0'26% (w/v) methylene-bis- 

acrylamide gel. The figure shows an autoradiograph of the dried gel.
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3.3 PHOSPHORYLATION OF RIBOSOMAL PROTEIN 86 IN VITRO

(1) Kinases in BHK Cells which Phosphorylate 86

Infection of BHK cells with PRV causes conversion of ribosomal 

protein 86 to a series of highly phosphorylated derivatives which 

contain up to 5 phosphoryl groups per molecule (Kennedy e^ , 1981; 

Fig. 3.2). In an attempt to test the involvement of ViPK or to identify 

another kinase(s) responsible for this phosphorylation, DE-52 fractions 

of post-ribosomal supernatant from infected cells were analysed for 

phosphorylation of 86 in 408 ribosomal subunits ̂  vitro. This 

phosphorylation was assayed under ionic conditions which had been used 

by others to obtain optimal functional activity of 408 subunit vitro 

(Voorma ̂  , 1983). The results presented in Fig. 3.8 and 3.9 show

that distinct peaks of 86 kinase activity could only be detected if 

the regulatory molecules of the previously identified protein kinases 

(Results, section 1.1) or, in the case of ViPK, high ionic strength, 

were present in the reaction assay. In their absence (Fig. 3.8) there 

was still some phosphorylation of 86 by fractions corresponding to the 
same protein kinase activities. Kinase activities which were able to 

phosphorylate 86 in vitro (Fig. 3.9) included the two isoforms of the 
cyclic AMP-dependent protein kinase, protein kinase C and ViPK.

Apart from 86, some other ribosomal proteins were phosphorylated 

in vitro. Two-dimensional gel analysis was used to identify these 

ribosomal phosphoproteins. DE-52 fractions which contained ViPK 

phosphorylated ribosomal protein 87 (Fig. 3.10 A and 2.19) and 

another protein which probably corresponds to 810 (Fig. 3.10 A). One 

basic protein of the 60S ribosomal subunit, L35, was extensively 

phosphorylated (Fig. 3.10 B), but like the phosphorylation of 87 and



SIO, it most probably represents an artefact of the assay in vitro, 

since these proteins are not phosphorylated in uninfected or infected 

BHK cells (Fig, 3.2). Acidic proteins of 60S subunit, which are 

present as phosphoproteins in eukaryotic ribosomes (Leader, 1980), 

were also phosphorylated iji vitro by fractions containing casein 

kinase activities (Fig. 3.10 C).

To further investigate the potential S6 kinases, the character
istics of S6 phosphorylation in vitro by ViPK, cyclic AMP-dependent 
protein kinase, and kinase C, were studied in more detail.

(2) Phosphorylation of S6 by ViPK, the Catalvtic Subunit of Cyclicr,
AMP-dependent Protein Kinase and Protein Kinase C

The enzymes used to phosphorylate S6 in vitro were: a homogenous

preparation of the catalytic subunit of cyclic AMP-dependent protein 

kinase isolated from rabbit muscle, a homogenous preparation of kinase 

C from bovine brain, and partially purified ViPK from BHK cells 

infected with PRV.

Phosphorylation of 36 by the catalytic subunit of the cyclic AMP- 

dependent protein kinase in vitro has been studied in detail by others, 

and the conditions chosen for this study were those described by 

Wettenhall and Cohen (1982). Although phosphorylation of 86 by protein 

kinase C in vitro had been already reported, the conditions for 

maximal phosphorylation had not been investigated (Le Peuch _ê  ,

1983). Fig. 3.11 and 3.12 show the effect of MgClg, KCl, CaClg and 

phosphatidyl serine on the phosphorylation of 86 by kinase C. Good 

phosphorylation of 86 was achieved in the presence of 150 mM KCl, 5 mM 
MgClg, O' 1 mM CaClg and 0*5 mg/ml of phosphatidyl serine. The 

conditions for phosphorylation of 86 by ViPK were chosen according to



experiments already described [Results, 2.2(3)] and the reaction 

mixture contained 7-10 mM spermine, 100-150 mM KCl and 5 mM MgCl2.

The phosphorylation of S6 vitro was characterized and compared 

with the data from studies ̂  vivo by analysis of (i) the stoichiometry 

of phosphorylation and (ii) the phosphopeptides generated from S6 by 

complete digestion with trypsin.

For the determination of the stoichiometry of phosphorylation two 

approaches were used. In both, the aim was to obtain maximum 

phosphorylation. However, the amounts of the enzymes and ribosomal 

subunits used were comparable with the amounts used by others (Martin- 

Perez e^ , 1984; Wettenhall aid Morgan, 1984; Perisic aid Traugh,

1983). One approach, described in Table 3.1, was based on measurements 

of the radioactivity incorporated into a known amount of protein S6 
separated by SDS gel electrophoresis after phosphorylation iji vitro.

In the second approach, different phosphorylated derivatives of S6 

were separated by two-dimensional gel electrophoresis (Fig. 3.13).

Because of the amount of protein needed to visualize individual stained 

forms on two-dimensional gels it was not feasible to use the enzyme: 

substrate ratios used in the first approach. Instead, when it was 

necessary to approach saturation of S6 phosphorylation sites, the 

incubation time was prolonged. It was important in these determinations 

of stoichiometry to use ribosomes in which protein 36 was initially 

completely dephosphorylated (Fig. 3.14 A) and this was achieved by 

isolating ribosomes from BHK cells after 6 days of growth (Leader e^ al., 

1976).

The results of experiments using these two approaches showed that 

ViPK incorporated only 1-2 moles of phosphate per mol of S6 (Fig. 3.15 
and Table 3.1).



The catalytic subunit of the cyclic AMP-dependent protein kinase 

incorporated 2-3 moles of phosphate per mole of S6 (Table 3.1) which is 
in agreement with data reported previously (Wettenhall aid Morgan, 1984). 

Two-dimensional gel analysis (Fig. 3.14) showed that most of S6 was 
present as the diphosphorylated form.

Analysis of the phosphorylated forms of S6 after incubation in
on

the presence of native kinase C showed the presence of multiple P- 

labelled anodic derivatives which manifested themselves as a long "tail" 

on the autoradiograph, extending much further to the anode than the 

most highly phosphorylated form of S6 found in vivo (not shown). It is 

possible that the presence of phospholipid is somehow responsible for 

this artefact since it was eliminated by using protein kinase C 

activated by limited proteolysis. The use of this latter form of the 

enzyme, the activity of which is independent of Ca^* and phospholipid, 

showed that the majority of stain and radioactivity was at the position 

of the triphosphorylated form of S6 (Fig. 3.16). The other approach, 

the results of which are presented in Table 3.1, gave a value of 4-5 

moles of phosphate per mol of S6.

An assessment of the physiological significance of the phosphory

lation vitro, of a protein which can be phosphorylated at multiple 

sites, requires identification of the serine residues which are 

modified. This involves purification and sequencing of phospho

peptides generated from S6. Another although less precise method, 

which allows comparison of phosphorylated sites is analysis of the 

phosphopeptide patterns obtained after separation of peptides generated 

from S6. In the method used here, phosphopeptides were generated by 

complete digestion of 86 with trypsin and separated by reversed-phase 

high performance chromatography. As shown in Fig. 3.17 phosphopeptides



from S6 phosphorylated with ViPK in vitro were also present in the 

tryptic digest of S6 isolated from BHK cells infected with PRV. They 

included most, but not all, of the phosphopeptides found in vivo.

The most prominent peptides phosphorylated by kinase C in vitro 

were unequivocally detected as ■ phosphopeptides vivo. The less 

prominent phosphopeptides were not detected in S6 phosphorylated in vivo. 

This could either be because less radioactivity was present in the 

sample of S6 phosphorylated in vivo, or could indicate that these
phosphopeptides were artefacts of the phosphorylation by kinase C 

in vitro.



Fig. 3.8 Phosphorylation of 4QS Ribosomal Proteins by DE-52 Column Fractions

from BHK Cells Infected with PRV

Post-ribosomal supernatant from BHK cells infected with PRV was subjected 

to chromatography on a DE-52 column and assayed for protein kinase activities 

as described in Fig. 1.1 The column fractions (30 yul) were then assayed for 

phosphorylation of rat liver 40S ribosomal subunits (lAgigQ unit) under 

standard conditions (Methods, section 10.3) in a reaction volume of 120/il. 

Incubation was at 30°C for 30 rain. The ribosomal proteins were separated by 

SDS gel electrophoresis [15% (w/v) acrylamide/0'09% (w/v) methylene-bis- 

acrylamide] and the dried gel subjected to autoradiography [Methods, sections

6.1 (1) and 6.2 (3)]. The autoradiograph was used to locate phosphorylated 

proteins, which were of 31,000 (-•--) and 22,000 (— O — ) molecular weight, 

and these were cut out of the gel and their radioactivity quantitated as 

described in Methods, section 6.2 (5). Identification of phosphorylated 

proteins as S6 and 87, respectively, was based on two-dimensional gel 

analysis (see Fig. 3.10). The concentration of KCl in the column fractions, 

used to phosphorylate 40S ribosomal subunit, is also indicated.
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Fig. 3.9 Ribosomal Protein S6 Kinase Activities in DE-52 Column Fractions

from BHK Cells Infected with PRV

Post-ribosomal supernatant from BHK cells infected with PRV was 

subjected to DE-52 anion-exchange chromatography and column fractions 

analysed for protein kinase activities, as described in Fig. 1.1. The 

column fractions (30 yul) were then assayed for the phosphorylation of 

rat liver 60S ribosomal subunits in a reaction volume of

120 ̂ 1. Incubation was at 30°C for 30 (A, B) or 15 min (C). Conditions 

of phosphorylation are described in Methods, section 10.3. The concen

tration of KCl and presence of regulatory molecules is indicated in the 

figure:

(A) 10yuM cyclic AMP, 100 mM KCl;

(B) 600 mM KCl;

(C) O'15 raM CaClg, 500 ̂ g/ml phosphatidyl serine, 0 mM KCl.

Phosphorylation of ribosomal proteins was analysed as in Fig. 3.8, 

using SDS gel electrophoresis, autoradiography and quantitation of 

radioactivity in protein 86.

(a) Autoradiographs of the dried gels (opposite);
32(b) P-radioactivity in S6 (next page).
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Fig. 3.10 Two-dimensional Gel Analysis of Ribosomal Subunits Phosphory-

lated by DEAE-cellulose Fractions from BHK Cells Infected

with PRV

DE-52 column fractions were combined within ranges of KCl concen

trations of elution: 10-40 mM KCl (peak 1); 110-150 mM KCl (peak 2);

200-240 mM KCl (peak 3) and 120 yul of these used to phosphorylate rat 

liver ribosomal subunits in the standard reaction mixture in the presence 

of 10 yuM cyclic AMP.

Ribosomal proteins were isolated and subjected to two-dimensional 

gel electrophoresis for:

(A) basic proteins from the 40S subunit (SA^^q units);

(B) basic proteins from the 60S subunit (lOAg^Q units);

(C) acidic proteins from the 60S subunit (15A2^Q units).

The details are in Methods, sections 10.3, 6.1 (2) and 6.2 (3).

The figures show stained gels (a) and autoradiographs of ribosomal 

proteins phosphorylated by"peak 1" (b), "peak 2" (c) or "peak 3" (d).

The figures (A, B and C) are presented on the three following pages.
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Fig. 3.11 Ionic Dependency of the Phosphorylation of Ribosomal Protein

S6 by Protein Kinase C

Rat liver 40S ribosomal subunits (O'SAg^Q units) were incubated 

for 5 min with homogenous native bovine brain protein kinase C (0*03 

units) in 40 yiil reaction as described in Methods, section 10.3, but 

at the ionic concentrations indicated, and subjected to gel electrophoresis 

in SDS.

The figure shows an autoradiograph of the dried gel. The designation 

of the position of migration of S6 was from the stained gel, based on 

previous analysis of this protein phosphorylated in vivo and in vitro.
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Fig. 3.12 Calcium Dependency of the Phosphorylation of Ribosomal

Protein S6 by Protein Kinase C

Rat liver AOS ribosomal subunits (0-5A2̂ q units) were incubated 

for 15 min with homogenous native bovine brain protein kinase C (0*03 

units) in a 40yul reaction as described in Methods, section 10.3, but 

with added CaCl2 at the concentration shown, and phosphatidyl serine 
excluded in the one instance indicated. The 405 subunits were subjected 

to gel electrophoresis in the presence of SDS, and the gel dried and 

subjected to autoradiography. The autoradiograph was used to locate 

ribosomal protein S6, which was cut out of the gel and its Cerenkov 

radiation measured in a scintillation spectrometer.
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Table 3.1 Stoichiometry of Phosphorylation of Ribosomal Protein

S6 in vitro

The table summarizes data from several experiments where 40S 

ribosomal subunits from rat liver were incubated with the protein 

kinases listed in the table in a 40yul reaction mixtures under their 

respective optimal conditions described in Methods, section 10.3. The 

incubation time was 2 h.

The calculation of stoichiometry of the phosphorylation of ribosomal 

protein 86 was based on the radioactivity in the protein after excision
■50

from SDS gels, compared with the specific activity of the [Y - P] ATP 

and assuming that lAg^g unit of 40S ribosomal subunits is equivalent 

to 66*3 pmol.



TABLE 3.1

ENZYME
CONCENTRATION 
OF ENZYME 
(units/ml)

CONCENTRATION 
OF 60S 

(pmol/ml)

STOICHIOMETRY 
OF PHOSPHORYLATION 
(mol of phosphate 
per mol of S6)

KINASE C »

activated by limited 
proteolysis otgin the 
presence of Ca and 
phospholipid

10-20 200 4-5

CATALYTIC SUBUNIT OF 
THE CYCLIC AMP- 
DEPENDENT PROTEIN 
KINASE *

10-20 200 2-3

ViPK+
in the presence of 
7 mM spermine

10 200 2

* Purified to homogeneity (Materials, section 2.3) 

+ Partially purified (Fig. 2.1)



Fig, 3,13 Two-dimensional Electrophoretic Resolution of Five Phosphory

lated Forms of Ribosomal Protein S6

Ribosomes were prepared from rapidly growing cells (Methods, section 

3.2), their proteins extracted (Methods, section 3.5) and 200yug of the 

protein subjected to two-dimensional gel electrophoresis, modified to 

resolve five phosphorylated forms of ribosomal protein S6 [Methods, 
section 6.1 (2)].

In this and subsequent figures protein spots are designated at their 

immediate right hand side, and numbers 0, 1, 2 etc. underneath their 
different derivatives indicate the unphosphorylated and increasing 

phosphorylated states of these proteins respectively.
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Fig. 3.14 Two-dimensional Gel Analysis of 40S Ribosomal Subunits

Phosphorylated by the Catalytic Subunit of Cyclic AMP- 

dependent Protein Kinase

BHK cell 40S ribosomal subunits (IZAg^g units) were phosphorylated 

with 5 units of the catalytic subunit of cyclic AMP-dependent protein 

kinase in 800 yil reaction mixture, as described in Methods, section 10.3. 

Incubation was for 4 h. The ribosomal protein was isolated and subjected 

to two-dimensional gel electrophoresis.

The figure shows a stained gel of unphosphorylated 40S ribosomal 

subunits (A), stained gel (B) and corresponding autoradiograph (C) of 

40S subunits phosphorylated by the catalytic subunit of cyclic AMP- 

dependent protein kinase.
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Fig. 3.15 Two-dimensional Gel Analysis of 40S Ribosomal Subunits

Phosphorylated by ViPK

Phosphorylation of AOS BHK ribosomal subunits (IZAg^g units) with 

ViPK (800 units of 10 x concentrated DE-52 preparation) was in the 

800 yil standard reaction mixture (Methods, section 10.3) in the presence 

of 10 mM spermine and 150 mM KCl. Incubation was for 3*5 h.

(A) Stained gel

(B) Autoradiograph
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-Fig. 3.16 Two-dimensional Gel Analysis of 40S Ribosomal Subunits

Phosphorylated by Protein Kinase C

BHK cell AOS ribosomal subunits units) were phosphorylated

with proteolytically-activated kinase C in a 800 ŷ l reaction mixture as 

described in Methods, section 10.3. Incubation was for 6 h, 2*4 units 
of the kinase being added at 0, 2 and A h.

(A) Stained gel

(B) Autoradiograph

The arrow indicates the same position in both frames. The position 

of migration of 36 relative to protein SA in the first dimension shows 

that most of S6 was present as the triphosphorylated derivative.
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Eig. 3.17 Analysis of Tryptic Phosphopeptides from Ribosomal Protein

S6 Phosphorylated in yivo and in vitro

Tryptic phosphopeptides of ribosomal protein S6 were analysed by 

reversed-phase high-performance chromatography as described in Methods, 

section 9. Phosphorylation of S6 for this analysis was performed:

(A) in vivo, during infection with PRV. The aliquot of the same 

sample was analysed by two-dimensional gel electrophoresis shown in 

Fig. 3.2A.

(B) and (C) in vitro in the presence of protein kinase C (1 unit) 

and ViPK (1 unit), respectively. For the phosphorylation in vitro, BHK 

cell AOS ribosomal subunits (0'2A2̂ Q units) were used. Incubation was 

for 2 h in the reaction volume of AOyil.
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DISCUSSION

I. COMPARISON OF ViPK WITH OTHER PROTEIN KINASES

The results presented in section 1 demonstrate that a new

protein kinase activity appears in the cytosol of cells infected

with pseudorabies virus. The activity, termed virus-induced.

protein kinase (ViPK), was partially purified and its molecular

and catalytic properties examined (Results, section 2). The fact

that the enzyme was not purified to homogeneity leaves a possibility

that some of the characteristics described (Results, section 2) may

not be valid for the pure molecule. Nevertheless, these data provide

an adequate basis on which to compare ViPK with other protein kinases

that have been partially or extensively characterized from BHK cells

(Results, Fig. 1.1) and other eukaryotic cells. They also allow

comparison of ViPK with protein kinases reported to be induced in

cells infected with other herpes viruses. To facilitate this
r

comparison, those charact^istics that are generally used to define a 

protein kinase (Introduction, section 1.1) are summarised for ViPK 

in Table ID.

1.1. PROTEIN KINASES IN BHK CELLS

Comparison with protein kinases in the same cells was necessary 

to exclude the possibility that the new activity was, in fact, 

derived from one of these. The protein kinases in BHK cells were 

identified as cyclic AMP-dependent protein kinases (type I and type 

II), casein kinase I, casein kinase II and protein kinase C; and 

it was presumed that one of the protamine kinases corresponded to 

the proteolytic fragment of protein kinase C. The data presented
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Table l.D Summary of Some Characteristics of ViPK

Molecular size - apparent molecular weight 
approx. 68,000

- sedimentation coefficient 
approx. 4.38

Regulatory agent - unknown
(regulatory molecules of many 
other protein kinases excluded)

Substrate

in vitro - protamine
histone H2A, H2B and H3 
ribosomal proteins 87 and 86

physiological - unknown

Phosphate donor - ATP (Km = 57^M)

Amino acid
phosphorylated - serine

Other properties - broad magnesium 
concentration optimum

- active at high 
concentrations of
monovalent and polyvalent cations 
(e.g. 800 mM KCl)



here show clearly that none of the major pre-existing protein 

kinases from the cytosol are altered in infected cells at the time 

when ViPK is induced (Results, Fig, 1.2 - 1.4). In particular, 

although the ratio of total assayable enzyme in the two peaks of 

protamine kinase (protein kinase C and its presumed proteolytic 

derivative) did vary from experiment to experiment, this ratio was 

not altered by viral infection. The other properties of ViPK argue 

against the possibility that it might be derived from one of these 

protein kinases located either in the cytosol or in other cellular 

compartments. ViPK clearly differs from the cyclic AMP-dependent 

protein kinases and kinase C in its response to regulatory molecules 

(Results, Table 2.2). It is true that the dependence of cellular 

protein kinases on their regulatory molecules can be lost in 

certain circumstances. For example, it is known that proteolysis of 

certain kinases can generate new forms of these enzymes, which, in 

the case of the cyclic GMP-dependent protein kinase (Lincoln et al.,

1978), protein kinase C (Inoue et_ ̂ . , 1977), phosphorylase kinase 

(Cohen, 1980) and myosin light chain kinase (Hathaway and Adelstein,

1979), no longer require the normal regulatory molecule for activity. 

Nevertheless, the experiments using inhibitors (in the case of 

cyclic AMP-dependent protein kinase) and different substrates (in 

the case of the casein kinases and protein kinase C, with its 

preference for histone HI) would seem to exclude the ViPK being 

derived from one of them.

1.2 OTHER PROTEIN KINASES FROM EUKARYOTIC CELLS

Among the well characterized protein kinases of eukaryotic cells 

which (as described for ViPK) phosphorylate serine and threonine



residues (Introduction, Table 1) are protein kinases regulated by 

Ca^’̂/calmodulin, cyclic GMP and double-stranded RNA. Since they were 

not assayed in BHK cells, one cannot be quite so certain that they are 

not related to ViPK, despite the lack of stimulation by the latter by

cyclic GMP, Ca^* and calmodulin, or double-stranded RNA (Results,

Table 2.2), However, the results with different substrates (Figs.

2.14, 2.16, 2.19 and 2.20) would argue against a relationship of ViPK

to the cyclic GMP protein kinase [which has different ribosomal 

substrates (Issinger <et jil., 1980)], or the interferon-induced 

double-stranded RNA-dependent protein kinase (which phosphorylates 

the a-subunit of eIF-2). Two protein kinases of unknown mode of 

activation vivo, but activated jui vitro by limited proteolytic 

digestion with trypsin, were denoted as protease-activated kinase I 

(Tahara aid Traugfi, 1981; de la Houssaye et , 1983) and protease- 

activated kinase II (Lubben and Traugh, 1983). The substrate 

specificities of these kinases, which have preferences for histone H4 

and HI, respectively, differs from the substrate specificity of ViPK 

towards different histones (Results, Fig. 2.16). Furthermore, the 

preferences of ViPK for protamine, its activity at 600 mM KCl and 

above, and its molecular properties, make it most unlikely that it 

corresponds to any of the well-characterised cellular protein kinases.

It was also necessary to try to compare ViPK with some less well 

characterised cellular protein kinases which, like ViPK, use protamine 

as a good substrate. One protamine kinase activity from human 

promyelocyte leukemia cells (Durham e.t , 1982) and one similar 

activity from trout testis (Jergil aid Dixon, 1970) were eluted from 

DEAE-cellulose at a lower ionic strength (O’14 M NaCl or 0*15 M KCl 

at pH 7*4, respectively) than required to elute ViPK, and had



apparent molecular weights (about 110,000-150,000) greater than 

estimated for ViPK. The protamine kinase from trout testis 

phosphorylated protamine more efficiently in the presence of 1 M 

NaCl than in its absence, but unlike ViPK, did not phosphorylate 

histone under these conditions.

The presence of protamine kinase activities in some subcellular 

fractions other than the cytosol has also been reported. Analysis 

of protamine kinases in endoplasmic reticulum identified the 

enzymes as cyclic AMP-dependent protein kinases (type I and type II) 

and protein kinase C (Soramarin aid Jergil, 1978 and 1983). In the 

nuclear fraction, apart from the cyclic AMP-dependent protein kinases 

(Jungmann et al., 1981) and protein kinase C (Kikkawa e^ ̂ . , 1982), 

some other protein kinases which can phosphorylate protamine have 

been reported. One protamine kinase purified from rat liver nuclei 

(Sikorskaaid Whitfield, 1982) also phosphorylated histone and, in 

addition, casein and synthetic basic polypeptides [poly (L-arginine) 

and poly (L-lysine)]. The latter two substrates were not phosphory

lated by ViPK (Results, Fig. 2.14 and not shown, respectively). 

Although the activity from rat liver nuclei was eluted from DEAE- 

cellulose at a similar ionic strength to ViPK (0*25 M NaCl), it 

had a higher apparent molecular weight (105,000) and sedimentation 

coefficient (7*5) than ViPK. This enzyme had a broad optimum for 

Mĝ "*", but its activity was completely inhibited by 0*5 M KCl. The 

other nuclear protamine kinase isolated from calf thymus (Kranias and 

Jungmann, 1978) had similar chromatographic properties on DEAE- 

cellulose to the one isolated from rat liver nuclei and was affected 

in a similar way by increasing concentrations of Mg^* and KCl.

However, it differed from this activity in its molecular size



(molecular weight of about 55,000). It would be interesting to 

compare directly a nuclear protein kinase with such characteristics 

(especially if present in BHK cells) with ViPK and also with the 

proteolytic fragment of protein kinase C, since it shares some 

characteristics with both of these two enzymes.

1.3 PROTEIN KINASES INDUCED DURING INFECTION OF CELLS WITH HERPES 

VIRUSES

The appearance of a new protein kinase has been resported in 

cells infected with another member of herpes virus family, herpes 

simplex virus type I (Blue and Stobbs,1981). The ViPK clearly 

differs from that activity as that protein kinase was specific for 

acidic rather than basic substrates. The size (sedimentation 

coefficient of about 2S) and time of induction in the infective cycle 

(maximum activity 4 h after infection), were also different from the 

pseudorabies ViPK. The appearance of the kinase activity in cells 

infected with herpes simplex virus was balanced by the disappearance 

of a pre-existing cellular protein kinase activity, and it is therefore 

possible that this activity is a proteolytic derivative of a pre

existing cellular protein kinase. However, no direct attempt to 

investigate the protein kinase reported by Blue and Stobbs was made 

in the work described here. The fact that in the present study and 

in a comparative study using both herpes simplex virus and pseudorabies 

virus (Leader et , in preparation) no activity similar to the one 

described above was observed, could simply be due to the different 

chromatographic separations used (chromatography on carboxylmethyl 

cellulose) and the different stage of the infectious cycle examined.



It is also necessary to compare the protein kinase described here 

with an activity associated with a protein of molecular weight 68,000 
(p68) precipitated by a monoclonal antibody from cells infected with 

another herpes virus, human cytomegalovirus (Michelson et al., 1984 

and 1985). The latter activity is clearly different from the pseudo

rabies ViPK as it phosphorylates casein. The kinase activity associated 

with p68 has, apart from substrate specificity, some other character
istics in common with cellular casein kinase II. Thus, this activity 

used ATP and GTP as a phosphate donor equally well and was inhibited 

by heparin (although at a higher concentration than reported for 

purified preparations of casein kinase II) and quercetin. In view 

of the large amounts of casein kinase II present in cells, it is 

probably premature to conclude that the p68 protein specified by 

cytomegalovirus has an intrinsic protein kinase activity since the 

cellular kinase could be associated with this protein and present in 

its immunoprecipitate. Thus, the presence of a cellular kinase 

activity in an immune-complex of one virally-coded protein (p37'"°® of 

Moloney murine sarcoma virus) has been demonstrated (Maxwell and 

Arlinghaus, 1985). This cellular protein kinase activity was 

removed by preincubation of the cell extract with preimmune normal 

rabbit serum IgG and its properties were similar to those described 

for casein kinase II.

1.4 THE PROPERTIES OF ViPK IN RELATION TO THE POSSIBILITY THAT IT 

IS A VIRALLY-CODED ENZYME

For enzymes induced by herpes viruses, minor differences in 

properties, compared with those of similar activities of uninfected



cells, have usually been considered as a good indication that the 

induced enzyme is virally coded. For most such activities a genetic 

approach has subsequently proved their viral origin (Wagner, 1985). 

Unfortunately, the heterogeneity of protein kinases from normal 

cells does not allow application of the same logic to this class of 

enzymes. Nevertheless, it should be mentioned that, as for ViPK, 

the KCl optima for the DNA-polymerases coded by pseudorabies virus 

(Halliburton aid Andrew, 1976) and herpes simplex virus (Powell and 

Purifoy, 1977), as well as for the uracil DNA glycolase of herpes 

simplex virus (Caradonna aid Cheng, 1980), are higher than those of the 

corresponding cellular enzymes. For example, cellular DNA-polymerase 

has maximum activity at 0 mM KCl while DNA-polymerase coded by herpes 

simplex virus reaches maximum activity at 120 mM KCl. Furthermore, 

spermine [which is present in the virions of herpes viruses (Gibson 

and Roizman, 1971)] can, at a physiological concentration, stimulate 

the activity of the latter enzyme (Ostrander and Cheng, 1980). 

Nevertheless, it is difficult to say wefcher the stimulatory effect 

of spermine (or KCl) on the ViPK reflects the real properties of the 

enzyme, and hence a possible regulatory mechanism in vivo. Thus, a 

high concentration of these and other cations when ViPK was assayed 

in vitro [Results, section 2.2 (1)], could affect not only the 

conformation of the enzyme but also that of the artificial substrates. 

In addition it could have an influence on possible interactions 

between molecules in the preparation of partially-purified ViPK.

The question of the origin of ViPK has been addressed directly 

in separate work (Leader in preparation). Theoretically, the

appearance of ViPK in the cytosol of infected cells could be the



result of activation of a pre-existing protein, translocation of a 

protein kinase from another cellular compartment, or synthesis de novo. 

Studies of proteins synthesized ̂  novo in cells infected with herpes 

viruses have shown that they originate not only from the viral 

genome (Wagner, 1985) but also, in some cases,from the cellular 

genome (e.g. heat shock proteins, La Thangue et al.. 1984). To 

approach this question in relation to the origin of ViPK, agents 

which interfere with the viral replicative cycle and temperature- 

sensitive mutants of the virus were used. The results of these 

experiments showed that the appearance of ViPK required at least 

partial expression of the viral genome, but it is not yet clear 

whether the enzyme is a viral protein itself. Until this is 

demonstrated the other possibilities for the origin of ViPK cannot 

be ignored.
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2. SUBSTRATES FOR ViPK

In vitro ViPK phosphorylated mainly basic protein substrates, 

e.g. protamine, histone and certain basic ribosomal proteins 

[Results, section 2.2 (3)]. Most of these proteins are good substrates 

for those protein kinases (e.g. cyclic AMP-dependent protein kinases, 

cyclic GMP-dependent protein kinase and protein kinase C) which 

phosphorylate serine and threonine residues in a sequence containing 

basic amino acids [Introduction, section 1.1 (4)]. Proteins such as 

the above, that are highly basic because of a role in interacting 

with nucleic acids, will have a relatively high probability of 

possessing such recognition sequences by chance, without this being 

of any physiological regulatory significance.

The identification of the physiological substrate for ViPK will 

be an important step towards clarifying its function in viral 

infection. In general, the identification of physiological substrates 

for protein kinases and the determination of the functional 

significance of the phosphorylation is no easy task. A recent 

illustration of this is the search for substrates for the tyrosine 

kinases described in the Introduction [section 1.1 (3)]. In spite 

of extensive information resulting from these studies and a large 

amount of work directly addressing the question, the physiological 

substrate(s) and significance of the phosphorylation at tyrosine 

residues are still incompletely understood. In the approach employed 

in the present work, some of the proteins which were found to be 

phosphorylated diring viral infection were considered as candidate 

substrates, and their phosphorylation by ViPK in vitro was examined 

(Results, section 3).



The major virion phosphoproteins were obvious candidates.

However, these were not phosphorylated by ViPK in vitro, even though 

an activity similar to ViPK was also present in the virion [Results, 

section 3.2 (1)]. One of the virally-coded enzymes, DNase, which is 

also phosphorylated in vivo (Banks et , 1985) could be phosphory

lated by preparations of ViPK (Results, Fig. 3.7). However, further 

studies of the phosphorylation are necessary to determine whether the 

viral DNase satisfies the accepted criteria for a physiologically 

relevant substrate (Krebs aid Beavĉ  1979). An important limitation 

in studies of phosphorylation of viral proteins is lack of under

standing of the functional iraplication(s) of the phosphorylation 

in vivo [Introduction, section 2.1 (3)] so that the alteration(s) in 

the function of these specific proteins, due to the phosphorylation 

in vitro, cannot be easily tested. The viral enzymes are only 

synthesized in infected cells and their phosphorylation would not 

necessarily be expected to be involved in regulating their enzymic 

activity. One alternative possible function for the phosphorylation 

of viral non-structural proteins is suggested by the correlation 

(Wagner, 1985) between the phosphorylation of these and their transport 

from cytoplasm to nucleus.

Another phosphoprotein, ribosomal protein S6, has been extensively 

studied in various biological systems [Introduction, section 2.1 (4)]. 

This protein was phosphorylated by ViPK ̂  vitro, but the enzyme 

catalysed the incorporation of only 2 moles of phosphate per S6 

molecule (Results, Table 3.1 and Fig. 3.15), compared with the five 

moles of phosphate per S6 molecule observed in vivo (Kennedy et , 

1981; Results, Fig. 3.2). S6 was not the only ribosomal protein 

phosphorylated by ViPK (in contrast to the selective phosphorylation



of S6 in vivo) and specific phosphorylation of this ribosomal protein 

was only achieved in the presence of high concentrations of certain 

cations, e.g. KCl, NaCl, spermine (Results, Fig. 2.17, 2.18 and 2.19). 

As most of the studies ̂  vitro were carried out under the conditions 

for the specific phosphorylation of S6 by ViPK, it was particularly 

important to check the physiological significance of the sites 

phosphorylated. Analysis of tryptic phosphopeptides generated from 

S6, indicated that the sites phosphorylated by ViPK in vitro are 

among those phosphorylated in vivo (Results, Fig. 3.17). Thus, the 

results regarding the stoichiometry of phosphorylation and analysis 

of tryptic phosphopeptides allow the possibility that ViPK could be 

involved in the phosphorylation of some, but not all, of the observed 

sites on S6 during viral infection.

Other criteria, apart from phosphorylation in vitro, must also be 

satisfied before a protein can be accepted as a substrate for ViPK 

in vivo. If ViPK were responsible for the phosphorylation of a 

specific protein, its phosphorylation should show a similar dependence 

on the expression of certain viral functions as the appearance of ViPK. 

However, experiments employing agents which interfere with the viral 

replicative cycle are not applicable to studies of virally-coded 

proteins since they can also interfere wuth the appearance of the 

proteins themselves. As ribosomal protein S6 is a host protein, 

however, it was suitable for this type of analysis. Thus, to test 

whether the observed phosphorylation of ribosomal protein S6 is a 

(direct or indirect) consequence of the induction of ViPK, the 

physiological requirements for the phosphorylation of S6 have been 

studied and compared with those for the appearance of ViPK. When 

BHK cells were exposed to PRV previously irradiated with uv light,



the phosphorylation of protein S6 was increased (Kennedy et al., 1981) 

but ViPK was not induced (Leader et , in preparation). Thus, 

despite the results from comparison of S6 phosphorylation jji vivo 

and vitro, ViPK is not likely to be involved in the phosphorylation 

of this protein during viral infection.

The studies described above do not answer the question of what 

is the physiological substrate for ViPK. An extension of this type 

of approach to other proteins phosphorylated during viral infection 

is clearly required. In addition, analysis of specific proteins with 

an important function during viral infection may reveal some relevant 

phosphoproteins which escaped previous analysis (e.g. Fig. 3.1 in 

Results), which would only detect relatively abundant proteins. Should 

it transpire that the protein kinase is of viral origin, a genetic 

approach may be available to facilitate the Cask of determining the 

physiological substrate(s) and biological function of the enzyme.



3. INVOLVEMENT OF OTHER PROTEIN KINASES. IDENTIFIED AS CELLULAR 

ENZYMES. IN PHOSPHORYLATION DURING VIRAL INFECTION

Although the analysis of potential substrates for ViPK did not 

give a conclusive answer, the results obtained in those studies showed 

that some other protein kinases from BHK cells may be responsible 

for the phosphorylation of proteins during viral infection.

Viral proteins, which appear as new proteins in cells after 

infection, do not require any change in protein kinase activities to 

become phosphorylated if they can be recognized as suitable substrates 

by pre-existing enzymes. Analysis of the phosphorylation of the two 

major phosphoproteins of pseudorabies virions, illustrates this 

possibility. These proteins were phosphorylated in vitro only by 

casein kinase II isolated either from the cytosol of BHK cells or 

by a very similar activity from pseudorabies virions [Results, section

3.2 (1)]. The latter activity could be cellular casein kinase II 

incorporated into the virion during assembly of the nucleocapsid 

inside the nucleus of the host cell, or during the budding process 

when the virus acquires its envelope from the nuclear membrane 

(Ben-Porat aid Kaplan, 1985). Studies of protein kinases present in 

the virions of other enveloped animal viruses showed that at least 

some of the activities are cellular enzymes (Clinton at ̂ . , 1982; 

Harmon et al.. 1983). Furthermore, the involvement of cellular 

kinases in the phosphorylation of viral structural proteins has been 

demonstrated for one protein (M) of vesicular stomatitis virus 

(Clinton et al.. 1982) and one protein (ppl2) of Rous sarcoma virus 

(Leise_t^., 1984).

It has been shown that the extent of phosphorylation of some



viral structural proteins determines the extent of their binding to 

viral nucleic acid (Leis and Jentoft, 1983; Wilson and Consigli, 1985; 

Kamata and Watanabe,1977). However, it is not clear whether the main 

phosphoproteins of pseudorabies virions interact with viral DNA like 

the proteins mentioned above (Stevely, 1975).

The analysis of the ability of protein kinases of the cytosol of 

infected cells to phorphorylate S6 [Results, section 3.3 (1)] showed 

that apart from ViPK (discussed in the previous section) at least 

two cellular enzymes, the cyclic AMP-dependent protein kinase and 

kinase C, can phosphorylate this protein in vitro. Detailed studies 

of the phosphorylation of S6 mediated by cyclic AMP showed that this 

kinase physiologically phosphorylates one or two serine residues in 

S6 (Wettenhall ̂  al.. 1982; Wettenhall and Morgan, 1984). As the 

phosphorylation of S6 during viral infection occurs at more than two 

sites, cyclic AMP-dependent protein kinase can only be responsible for 

part (at the most) of the effect observed ̂  vivo. The possibility 

that part of the phosphorylation of S6 is catalysed by cyclic AMP- 

dependent protein kinase in infected cells is suggested by the 

observation that infection with some herpes viruses (Bittlingraaier 

et , 1977) can increase the intracellular concentration of cyclic AMP.

Another S6 kinase in BHK cytosol was identified as cellular 

protein kinase C (Results, Fig. 3.9). It has recently been suggested 

that the phosphorylation of S6 chat occurs in the exocrine pancreas 

following secretory stimuli, is mediated by this kinase (Padel and 

SWling, 1985). The studies presented here, involving comparison of 

the stoichiometry and phosphopeptide patterns of S6 phosphorylated 

in infected cells and by protein kinase C in vitro [Results, section



3.3 (2)], indicate that this enzyme could be directly responsible 

for the phosphorylation in vivo. However, two main limitations of 

this sort of analysis should be pointed out. First, because several 

serine residues can be present in the same tryptic peptide (Wettenhall 

æd Morgan,1984; Wettenhallaid Quinn,1984), similarity in phosphopeptide 

pattern does not necessarily mean that identical sites are phosphory

lated. Second, it is possible that protein kinase C under the 

conditions employed ̂ n vitro phosphorylated more sites than it would 

phosphorylate when activated in intact cells, even though the 

additional sites may be physiologically relevant, i.e. can be 

phosphorylated by some other 86 kinase(s). The example which 

illustrates this point is the finding that cyclic AMP-dependent 

protein kianse can phosphorylate in vitro (during prolonged incubation 

or with relatively high amounts of the kinase) some sites, the 

phosphorylation of which are not increased when the enzyme is 

activated in vivo by glucagon (Wettenhallaid Morgan,1984; Wettenhall 

et_ ̂ . , 1982). On the other hand, the phosphorylation of these non- 

physiological sites for cyclic AMP-dependent protein kinase is 

increased by insulin (Wettenhall ̂  al., 1982). In order to show 

that protein kinase C is involved in the phosphorylation of 86 during 

infection of cells with pseudorabies virus, a different kind of 

evidence is required. This is evidence that the activity of protein 

kinase C is actually increased in these circumstances. This question 

has not been examined.

The results presented in section 3.3 (1) leave the possibility 

that a putative 86 kinase remained undetected. Analysis of fraction

ated cytosol from cells infected with PRV using ribosomal subunits 

as substrate in vitro (Results, Fig. 3.8) did not reveal the presence



of a kinase which phosphorylated S6 specifically. Such a kinase 

could have escaped previous characterisation with the more general 

substrates (histone, protamine and casein). However, if the presence 

of components other than those included in the assay mixture were 

required for the activity of a putative 36 kinase, it would not have 

been detected in these experiments. For example, it has been reported 

that some calmodulin-dependent kinases can phosphorylate 36 ia vitro 

(Gorelick et ̂ . , 1983). A further possibility is that a kinase 

responsible for increased phosphorylation of 36 was lost during the 

preparation of the cytosol fraction. Detection of one such 36 kinase 

activity, which increased up to 25-fold in extracts of cells stimulated
as

by serum, required the presence of phosphatje inhibitors in all 

extraction buffers (Novak-Hofer aid Thomas, 1984). In the light of 

these recent observations it would be interesting to re-examine the 

question of the identity of the kinase(s) which mediates the 

phosphorylation of ribosomal protein 36 in cells infected with 

pseudorabies virus.
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