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Abstract: 

Background: Body composition is affected by diseases, and affects responses to 

medical treatments, dosage of medicines, etc., while an abnormal body 

composition contributes to the causation of many chronic diseases. While we have 

reliable biochemical tests for certain nutritional parameters of body composition, 

such as iron or iodine status, and we have harnessed nuclear physics to estimate 

the body’s content of trace elements, the very basic quantification of body fat 

content and muscle mass remains highly problematic.  Both body fat and muscle 

mass are vitally important, as they have opposing influences on chronic disease, 

but they have seldom been estimated as part of population health surveillance.  

Instead, most national surveys have merely reported BMI and waist, or sometimes 

the waist/hip ratio; these indices are convenient but do not have any specific 

biological meaning. 

Anthropometry offers a practical and inexpensive method for muscle and fat 

estimation in clinical and epidemiological settings; however, its use is imperfect 

due to many limitations, such as a shortage of reference data, misuse of 

terminology, unclear assumptions, and the absence of properly validated 

anthropometric equations. To date, anthropometric methods are not sensitive 

enough to detect muscle and fat loss. 

Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health 

disease and during weight loss through; 1. evaluating and critiquing the literature, 

to identify the best-published prediction equations for adipose/fat and muscle 

mass estimation; 2. to derive and validate adipose tissue and muscle mass 

prediction equations; and 3.to evaluate the prediction equations along with  

anthropometric indices and the best equations retrieved from the literature in 

health, metabolic illness and during weight loss. 

Methods: a Systematic review using Cochrane Review method was used for 

reviewing muscle mass estimation papers that used MRI as the reference method. 

Fat mass estimation papers were critically reviewed.   



3 

 

Mixed ethnic, age and body mass data that underwent whole body magnetic 

resonance imaging to quantify adipose tissue and muscle mass (dependent 

variable) and anthropometry (independent variable) were used in the 

derivation/validation analysis. Multiple regression and Bland-Altman plot were 

applied to evaluate the prediction equations.   To determine how well the 

equations identify metabolic illness, English and Scottish health surveys were 

studied. Statistical analysis using multiple regression and binary logistic regression 

were applied to assess model fit and associations. Also, populations were divided 

into quintiles and relative risk was analysed. 

Finally, the prediction equations were evaluated by applying them to a pilot study 

of 10 subjects who underwent whole-body MRI, anthropometric measurements and 

muscle strength before and after weight loss to determine how well the equations 

identify adipose/fat mass and muscle mass change. 

Results: The estimation of fat mass has serious problems. Despite advances in 

technology and science, prediction equations for the estimation of fat mass 

depend on limited historical reference data and remain dependent upon 

assumptions that have not yet been properly validated for different population 

groups.  Muscle mass does not have the same conceptual problems; however, its 

measurement is still problematic and reference data are scarce. The derivation 

and validation analysis in this thesis was satisfactory, compared to prediction 

equations in the literature they were similar or even better. Applying the 

prediction equations in metabolic illness and during weight loss presented an 

understanding on how well the equations identify metabolic illness showing 

significant associations with diabetes, hypertension, HbA1c and blood pressure. 

And moderate to high correlations with MRI-measured adipose tissue and muscle 

mass before and after weight loss. 

Conclusion: Adipose tissue mass and to an extent muscle mass can now be 

estimated for many purposes as population or groups means. However, these 

equations must not be used for assessing fatness and categorising individuals. 

Further exploration in different populations and health surveys would be valuable.  
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1.1 Introduction 

The study of body composition is a branch of human biology focusing on in vivo 

quantification of body components, their relationships, and change due to many 

factors, such as growth and disease (Wang et al., 1992). 

The history of human body composition can be tracked back to roughly 440 BC, 

when Hippocrates suggested that the human body composition was blood, yellow 

bile, black bile and phlegm. The development of human body composition science 

was enriched by the development of other sciences, such as anatomy, histology, 

chemistry, physics, biochemistry and physiology (Wang et al., 1999). 

Early stages of human body composition science focused on body components. Due 

to the absence of in vivo measurements, they used cadaver autopsy to acquire 

quantitative body composition data. In 1909 the first in vivo method for the 

estimation of body components by urinary creatinine excretion for the estimation 

of total body skeletal muscle mass was developed by Shaffer and Coleman (1909), 

while total body water was first estimated by Heveys and Hofer in 1934 using 

deuterium a stable isotope of hydrogen with a mass approximately twice that of the 

usual isotope (Wang et al., 1999). The largest referenced study to date is the 

Brussels cadaver analysis study (Clarys et al., 1984), which included 25 cadavers 

(12 men and 13 women).  These were dissected, and a considerable amount of 

anthropometric date was collected (upper and lower limb: skin-fold thickness, 

circumferences), in addition to tissue masses (Clarys et al., 1984).  

The first indirect method for human body composition estimation started in the 

laboratories of A.R. Behnke (Behnke and Welham, 1942), was the basics of 

hydrostatic weighing began. Keys and Brozek continued Behnke’s research and 

suggested a more detailed densitometric method (Keys and Brozek, 1953).  

In 1951 Sievert proposed that a radioactive isotope of the element potassium, 40K, 

could be detected and quantified using radioactivity measurement and isotope 
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identification techniques. This was based on the knowledge that 40K was present in 

all body tissues but at differing concentrations in muscle and adipose tissues (Wang 

et al., 1999). In 1961 Forbes estimated the fat and fat free mass from 40K (Lukaski, 

1987, Wang, 1999). As years went by, the discovery of the structure and physical 

properties of an atom and the law of thermodynamics developed non-invasive body 

composition methods, such as magnetic resonance imaging (MRI) (Siervo and Jebb, 

2010). 

Over the years’ reference data has accumulated, although almost always these are 

based on a small number of subjects. The limited data is the basis of the 

assumptions that are used for the assessment of body composition in adults. In 

December 1963, the ICRP (international commission on radiological protection) 

committee requested the establishment of a task group to revise and develop the 

standard man concept, which was named the ‘Reference Man’. The reference man 

is defined as a 20-30-year-old Caucasian, weighing 70 kg and 170 cm height, living 

(clothed) at an average ambient temperature of 10-20◦c (Snyder et al., 1975) 

(Figure 1-2). 

The simplicity of the body mass index (BMI) in a body composition assessment does 

not take account of any differences in fat and muscle mass. New and old research 

revealed the connection between muscle/fat mass and chronic illness (Lang et al., 

2015, Krotkiewski et al., 1983). The ratio of the waist to hip circumference (WHR) 

was investigated in the early 1980s, indicating that regional body composition 

estimated by the WHR showed strong associations with metabolic and 

cardiovascular complications (Kissebah et al., 1982). The estimation of muscle and 

fat mass are important to assess health, ageing and obesity. 

This introductory chapter will briefly explain models and methods in the science of 

human body composition. Detailed methodologies for muscle and fat estimation 

are explained in subsequent chapters.  
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1.2 Body Composition Models 

Constructing a model is related to the number of components used. Body weight is 

the key body measurement; representing in a single figure the sum of the weights 

of each body component. In a 2-compartment body composition model, it is 

assumed that there are only two components, usually body fat and the remainder, 

‘fat-free mass’, thereby reducing body weight to two components.  A 3-

compartment model assumes that the body has only three compartments, usually 

fat, muscle and the remainder, which includes bone, skin, brain, blood, inner 

organs, etc., and is based on measurements of two separate components, usually 

fat and muscle, in addition to weight.  More complicated multi-compartment 

models may include measurements or estimates of bone mass, blood volume, skin 

mass, organ sizes etc. (Heymsfield et al., 1990).   

The classic 2-compartment model has been widely used (Behnke and Welham, 

1942).  It depends on separating the body weight components by the density of fat 

and fat free mass; fat mass density = 0.9007g/cc, and fat free mass density = 

1.1000g/cc, assuming a constant proportion of fat free mass (water 73.8%, mineral 

6.8% and protein 19.4%) (Behnke and Welham, 1942, Brozek et al., 1963). 

However, bone mineral mass, protein and water, are influenced by many factors, 

including age, gender, diet, level of exercise, and genetic factors, leading to 

systematic prediction errors in calculating both the fat and fat free mass when 

applied to populations with different constant values (Withers et al., 1998). The 

main methods segmenting body composition into fat mass and fat free mass are: 

underwater weighing; 40K; and the evaluation of total body water.  The distribution 

of fat-soluble dyes has been used in the past. 

The emerging of ‘black-box’ methods, such as Dual-Energy X-ray Absorptiometry 

(DEXA) and bioelectrical impedance analysis (BIA), have facilitated the estimation 

of different body compartments leading to the development of three and four 

compartment models, which examine fat and muscle tissue, bone, etc. These 

methods are harnessing technology, and are probably less dependent upon 

technician expertise. Instead of making assumptions using the ‘reference man’, as 
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in the two compartment model, these more technological but indirect methods 

both depend on validation against measurements of body density, mineral and/or 

aqueous compartments (Siri, 1961, Lohman, 1986, Heymsfield et al., 1990, Shen et 

al., 2003a). 

There have been efforts to compare two, three and/or four compartment models 

(Clasey et al., 1999, Withers et al., 1998). These studies are not conclusive, and 

the amount of error between the two, three and four compartment models are still 

under debate. One important consideration is that the ‘black-box’ methodologies 

are also based on assumptions and need validation with reference methods. 

However, there are no ‘gold standards’ or ‘correct’ methods for body composition. 

The first attempt to organise more than 30 main body components into five 

different levels was by Wang et al. (1992). The five levels (atomic, molecular, 

cellular tissue system and whole body) have clearly defined components, providing 

a structural background for studying human body composition. Each level and its 

components are distinct and interact with each other at the same time (Figure 1-

1). 

The atomic level of organisation is based on elements that are the building blocks 

of the human body. Close to 98% of body weight comes from oxygen, carbon, 

hydrogen, nitrogen, calcium, and phosphorous (Wang et al., 1992). In a reference 

man, oxygen alone is >60% of the total body weight (Snyder et al., 1975).  Sulphur, 

potassium, sodium, chlorine, magnesium and residual atoms make up <2 % (Wang 

et al., 1992). For the last two decades, elements have been measured by neutron-

activation techniques (Wang et al., 1992). 

The most widely used body composition level is the molecular level, which is 

composed of water, lipid, protein, mineral, and carbohydrate, in the form of 

glycogen (Wang et al., 1992). Water is the most abundant compound, accounting 

for 60% of human body weight (Snyder et al., 1975) (Figure 1-2). Water is bound to 

a variety of chemical compounds, such as proteins, glycogen, and mixed with 
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electrolytes, and can be divided to intracellular and extracellular compartments 

(Heymsfield et al., 1997).   

Proteins are made of amino acids and can be in the form of cytoskeletal proteins, 

plasma proteins, and complex nucleoproteins. There are different types of 

proteins, and as far as body composition is concerned, there are methods available 

to estimate total protein, muscle proteins and non-muscle proteins (Heymsfield et 

al., 1997). It is estimated that 15% of reference man’s body weight comes from 

protein (Snyder et al., 1975).  

Glycogen is the main storage form of carbohydrates, and is found in the cytoplasm. 

It is mainly found in the liver and muscle, which contain 2.2% and 1% wet-weight, 

respectively (Wang et al., 1992). Minerals (calcium, sodium, potassium, oxygen, 

phosphorous and chlorine) account for approximately 5% of body weight, and are 

divided into bone minerals and soft tissue minerals.                                     

The most confusing element at the molecular level is lipid, leading to possible 

errors in miscalculations in constructing body composition models.  This is mostly 

due to lipids being present within tissues and organs, as well as deposits (Wang et 

al., 1992). Confusions and assumptions related to lipid estimations will be 

discussed later in this chapter. In a healthy reference-man it is estimated that 18% 

of body weight comes from lipids. 

According to the available variables, it is common to combine different 

components from the molecular level to come up with an equation for the 

development of body composition methods. The goal is to measure one 

compartment assuming a constant relationship to estimate another compartment 

(Heymsfield et al., 1997). 

There are several methods for estimating molecular level components, such as 

underwater weighing, bioelectrical impedance, and DEXA. 
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The cellular level is composed of three main compartments; extracellular solids, 

extracellular fluids, and cell mass. These compartments can be measured by 

isotopic dilution methods and neutron activation analysis (Wang et al., 1992). 

Body weight at the tissue level is organised into skeletal muscle mass, adipose 

tissue, bone, blood, and the remainder. Most of the information from the tissue 

level comes from cadaver studies, and there are only a few methods that can 

detect the major compartments at the tissue level, such as computerised 

tomography (CT) and MRI (Wang et al., 1992). 

Finally, the whole body level concerning body shape, size, physical and exterior 

features, can be measured by stature, breadth and circumferences, skinfold 

thickness, body volume, weight, BMI, density, segment length, and body surface 

area. Variables at the whole body level are simpler to use, thus are better suited 

for use in large scale field work (Wang et al., 1992). 

1.3 Body Composition Methods 

Measurement of human body composition allows the estimation of excess and 

shortfalls of body components for the assessment of nutritional status. Various 

body composition methods and techniques exist, ranging from simple to complex, 

and cheap to expensive, and each have their strengths and limitations. It is 

important to identify the body compartment under review, the purpose of the 

assessment, and the availability of a measurement technique in order to select the 

best methodology.  

There have been some attempts to classify or organise human body methodologies 

to five widely used levels (Figure 1-1) (Wang et al., 1992, Wang et al., 1995, 

Mitsiopoulos et al., 1998b), which adds a further degree of complexity. To keep it 

simple, classification will be according to purpose, reference methods, and field 

(prediction) methods. 

There are important considerations in selecting a reference method for body 

composition research. Mainly, the body compartment to be measured, sample size, 
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study design and availability. Cadaver data provided the first reference data for 

human body composition (Clarys et al., 1984) and it is the basis of many 

assumptions and reference man data (Clarys et al., 1984).   

Cadaver analyses provide a direct measurement of body compartments and were 

used for the validation of equations derived from indirect methods (Janssens et 

al., 1994, Mitsiopoulos et al., 1998b). There are two methods used in cadaver 

analysis; chemical to obtain fat, mineral and water content; and anatomical, a 

process involving the quick dissection of body compartments following death (Singh 

and Mehta, 2009). Despite the limited number and size of cadaver studies, they 

are the basis of most of the assumptions used in indirect methods and reference 

man. The Brussels study is the largest and most referenced, based on the analysis 

of 25 cadavers over five years (1978–1983) (Clarys et al., 1999).   Due to the many 

limitations, including the small number of cadavers, ethical barriers, loss of body 

fluids and desiccation of tissues during dissection, challenging and time consuming 

methods, and a limited range of body sizes and gender, high cost and exposer to 

embalming chemicals which might cause health problems researchers have 

searched for other reference methods (Ackland et al., 2012). However, there is no 

perfect error-free reference method, as all depend on assumptions that are 

without robust validations. 

Hydro-densitometry or underwater weighing (UWW), was established by (Behnke 

and Welham, 1942) using the famous principle of Archimedes: ‘the volume of an 

object in water equals the volume of water displaced by the object’. Behnke 

proposed an inverse relation between body density and adiposity and developed 

the concept of a reference body consisting of fat mass and fat free mass assuming 

the fat free mass to be constant (Behnke and Welham, 1942). 

The accuracy of hydrodensitometry is affected by many factors: 1. volume of air 

present in the lungs and gastrointestinal tract; 2. technician skills; 3. accuracy of 

the equipment and calibration; and 4. model and assumptions used (Vivian and 

Dale, 2004). UWW is currently not a preferred method due to its impracticality and 

advancements in imaging techniques.  
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Air displacement plethysmography uses pressure instead of water to estimate body 

volume and density. Early attempts in air displacement were unsuccessful, until 

Dempster and Aitkens (1995) developed the ‘BOD Pod’. They used the relationship 

between pressure and volume to derive the body volume, including the 

measurement of body mass. This enabled them to calculate body density and thus 

body fat and fat free mass. The most important sources of error found were: 1. 

test conditions (resting condition, clothing, gas volume); 2. measured subject 

(excess body hair, body size); and 3. conversion formula percentage body fat 

(Wagner, 2004). 

Water is the most abundant constituent of the human body, accounting for >60% of 

body weight (Malina, 1969). Most of the body water (73%) is present in fat free 

mass (Pace et al., 1947). Hydrometry is the measurement of body water using a 

dose of labelled water (deuterium, isotopes of hydrogen and tritium) (Lukaski, 

1987), and it depends on many assumptions: 1. the even distribution of tracer only 

in body water; 2. the time of the tracer equilibrium; 3. distribution of tracer is 

equal throughout all water compartments; 4. no metabolism of the tracer during 

the equilibrium time; and 5. for the estimation of %BF, 73% of fat free mass is 

water. 

Imaging techniques present a major advance in the science of body composition, as 

they are able to provide a direct visualisation and estimation of body 

compartments. CT and MRI measure body composition at the tissue level, and have 

been used for the validation of other body composition methods (Borkan et al., 

1983, Sjostrom and Kvist, 1988, Salinari et al., 2002, Varady et al., 2007, Bridge et 

al., 2011, Al-Gindan et al., 2014b). Because of radiation exposure and cost, CT 

scanning is limited in body composition research. Ultrasonography, another 

imagining method, however is not widely used because of poor image quality 

(Fuller et al., 1994b, Gradmark et al., 2010). Finally, DEXA is considered as a 

reference method in many research studies (Ejlerskov et al., 2014, Rom et al., 

2015). 
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Dual-Energy X-ray Absorptiometry (DEXA) is based on the measurement of the 

attenuation of the X-ray source with photon energies specific to bone, fat, and fat 

free mass (Andreoli et al., 2009). Despite it being a preferred method because of 

its relatively low cost and minimal need for training, there are major sources of 

error. DEXA is based on the assumptions that the attenuation of the X-ray is due to 

differences in densities and chemical composition that are constant for all 

individuals. In addition, it is susceptible to fat estimation error, due to variation in 

soft tissue hydration (Pietrobelli et al., 1998). It is difficult to validate DEXA 

because there is a lack of standardisation in the use of estimation models between 

different manufacturer’s models and software versions (Wagner, 2004). Reviewing 

the literature, there are two main issues that need to be considered; 1. DEXA is 

not a reference method, although it has been used widely as a reference method 

for body composition field methods especially for the validation of BIA (Hofsteenge 

et al., 2015, Faria et al., 2014, Rech et al., 2008). DEXA is a method that is based 

on assumptions which themselves need to be validated. The second issue that 

should be noted when validating DEXA is that it measures appendicular lean soft 

tissue and fat mass, while MRI and CT measure muscle and adipose tissue volume. 

The difference between fat mass and adipose tissue mass will be discussed later in 

this chapter. There are published studies in the literature that compare adipose 

tissue to fat mass and skeletal muscle to lean tissue without converting one to the 

other, (Fields et al., 2015). The quantity of literature in validating DEXA with a 

gold standard reference method is limited, this is understandable due to the high 

cost of MRI and CT scans. UWW is a valid reference method to validate DEXA as 

both measures the same thing.  DEXA accuracy in fat estimation in obese adults 

was validated against 4-compartment model using UWW for body density, 

deuterium dilution for total body water and DEXA for bone mineral mass. Data for 

Eight men and six women (22-54 years, 28.7-39.9kg/m2) were investigated. While 

values for both methods had high correlations R2 = 0.89, there was high intra-

individual difference (-3.04%-4.01%BF).  These differences suggested that the error 

was associated with tissue thickness, suggesting that the DEXA device was unable 

to accurately account for beam hardening (artefact) in obese subjects (LaForgia et 

al., 2009). There is an obvious gap in the literature when it comes to DEXA 

validation, and more studies are needed to clarify the area. 
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MRI uses a combination of pulses of radio wave energy and a strong magnetic field 

to produce a comprehensive image of the body and internal organs, relying on the 

interaction between the nuclei of the hydrogen (Lukaski, 1987). Hydrogen is used 

because of its abundance in the human body (fat, carbohydrates, and water), 

normally hydrogen protons spin randomly creating a magnetic field. An MRI system 

is composed of a primary magnetic field, gradient coils, radiofrequency coils (RF)- 

which are enclosed in a copper-lined examination room to avoid noise and 

interference- and the computer system. When a magnetic field is introduced, the 

protons will align either parallel or antiparallel to the external field. The parallel 

is the preferred alignment because it requires less energy, thus more align 

parallel, the excess of protons aligned parallel to the external magnetic field is 

called the magnetisation and it is orientated along the axis of the scanner (Abi 

Berger, 2002). The field strength of MRI scanners is generated by main magnet 

coils, most magnet fields range between 1.5 and 3.0 tesla. 1 tesla is approximately 

20 000 times the earth magnetic field. The strength of the magnetic field can be 

changed electronically using electric coils. The gradient coil generates secondary 

magnetic fields over the primary fields producing a linearly varying magnetic field 

gradient, the arrangement of the gradient coil gives MRI the capacity to image 

directionally (x, y and z).  

The RF coil transmits radiofrequency energy to and from the tissue of interest, 

disturbing the proton realignment with the static of magnetic field. Since the RF 

pulse pushes the protons against their nature, once the pulse is turned off the 

proton will realign with magnetic field releasing magnetic energy. The output 

signal is sent to the computer processor for complex mathematical manipulations 

to yield the image. Different tissues relax at different rates when the 

radiofrequency pulse is switched off. The time needed for protons to completely 

relax is measured in T1: time needed for the magnetisation longitudinal 

component to return to its resting state, and T2: is the time needed for the 

transversal component of the magnetisation to return to its equilibrium state. 

Different tissues have different relaxation times making it easier to distinguish 

between them (Currie et al., 2013).  
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Different transmitted radio-frequency pulses could be used to emphasise specific 

tissues. Different molecules have different relaxation time, hydrogen bound to 

large molecules like lipids tumble very slow demonstrating low efficacy at T1 

relaxation. On the other hand, free water has a small molecular size thus tumble 

too quick to be effective at T1 relaxation. Accordingly, both free water and lipid 

have relatively long T1 relaxation time. On the contrary, when water is partially 

bound to protein, tumbling rate is slowed, resulting in a much less T1 relaxation 

time than free water. Fat has a short T1 relaxation value because of the carbon 

bonds at the end of the fatty acid having frequencies closer to the Larmor 

frequency “how many times the proton presses per second”.  These differences 

can be highlighted by how quickly we put the RF pulses “repetition time TR “and 

how quickly we listen to the return signal “echo time TE “this process is referred 

to as the pulse sequence.  T2 relaxation controls the decay of the magnetization in 

the transversal plane. In general, fluids have the longest T2 while water based 

tissues tend to have longer T2 values than fat-based tissue. Notice that T2 values 

are always shorter than T1 values in tissue and also that T1 and T2 relaxation 

processes are independent of each other. Due to the difference in the local 

environment of the protons, they have different T1 and T2 relaxation this is used 

in MRI as an advantage to generated images with different contrast. This is used to 

analyse various tissues components, such as the brain, spinal cord, breasts, joint 

and soft tissue pathology, and to find tumours, bleeding injuries, or even 

infections. Beyond different organs and tissue types, MRI allows the measurement 

of muscle mass and adipose tissue. In addition, it can be used to further 

investigate problems seen in other imaging techniques, like ultrasound, CT scans, 

and X-rays.  Images from MRI can serve as reference values for the development of 

anthropometric reference values in all age groups (Lee et al., 2001). In order to do 

that, it is important to discriminate the tissue compartments and quantify their 

amount by segmentation techniques. The Gold standard for segmentation 

techniques is histology. Segmentation of images can be done manually, automated 

or both. Manual segmentation is time-consuming especially for larger scale studies 

and needs an expert operator identifying structure of interest. (Brunner et al., 

2011, Karlsson et al., 2015, Positano et al., 2009). There are several popular image 

analysis software packages for segmenting MRI images such as; Slice-O-Matic 
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(Tomovision,Montreal, Canada), Analyze TM(Mayo clinic, Rochester, MN) and the 

public domain programs such as  image J(National institute of health , Bethesda, 

MD). Each has its differences, the algorithm to identify and measure the 

anatomical structure, time efficiency, flexibility, ease of use and cost (Positano et 

al., 2009, Demerath et al., 2007). 

MRI machines can only be operated by well-trained technologists, with the images 

produced requiring evaluation by radiologists and physicians of other specialties, 

together with a minimum duration of 30 minutes ranging to 120 min.  In the UK the 

average cost/scan for an MRI ranges between £84 – £472, as estimated by the 

National Audit Office (NHS, 2010). Safety concerns result from risks due to   

hypothermia from the cold environment, burns resulting in wounds from contact 

with equipment cables, anaphylaxis from intravenous agents, and high noise levels 

from the machine resulting in hearing damage (Mary et al., 2002). In contrast to 

CT scans, MRIs do not use ionised radiation, making it a safe procedure for 

vulnerable groups, such children, and pregnant women, with low risks associated 

with repeated measurements made on the same subject. Its images show high 

levels of contrast between muscle, connective and adipose tissues, allowing whole 

limb and muscle visualisation (Heymsfield et al., 1995). 

1.3.1 Field Methods 

Brozek and Keys (1956) highlighted the importance of accurate body composition 

measurements for the assessment of nutritional status. Subsequently, 

measurements, recommendations and reference data have emerged in the 

literature. Today, anthropometry is widely used to simply measure size, and for 

categorical descriptions of individuals at a population level. 

Body weight (BW), body mass index (BMI), height, waist, hips, waist hip ratio WHR, 

waist height ratio (WHtR), limb circumferences and skin-fold thickness (SFT) are all 

quick, non-invasive, inexpensive anthropometric methods that do not require a 

high level of training. Therefore, they are collected extensively in clinical and 

epidemiological settings.  There have been many attempts in the literature to 

combine simple anthropometric measurements into prediction equations for the 
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estimation of body density, % body fat, fat free mass, and muscle mass. This is a 

developing area that needs guidelines to standardise and optimise practice, and it 

forms the focus of the work reported in this thesis. 

BIA is based on the difference in electrical conductivity of fat mass and fat-free 

mass (which contains water). The impedance of an electrical current (800µA; 50 

KHz) passing between two electrodes is measured. Fat-free mass is a good 

conductor of an electric current due to its water content, whereas fat is a poor 

conductor. Hence, equations have been developed for the estimation of fat mass, 

total body water, and fat free mass (Vivian and Dale, 2004, Norgan, 2005). A key 

limitation is that BIA is dependent upon many assumptions, and some of have not 

been investigated (Heymsfield et al., 1997). Dehydration, eating, exercise, 

sweating, skin temperature, and stage of the menstrual cycle, BMI may affect 

measures. As with DEXA, there is no standardisation between BIA analysers 

produced by different manufacturers, with different models giving different 

results.  No studies have convincingly shown BIA to be superior to anthropometry 

to estimate body fat. Many validation studies mistakenly use DEXA as the reference 

method(Yi-Chun et al., 2013, Verney, 2015  , Solomon, 2016) in validating BIA. On 

the other hand, few studies used CT and MRI for their validation (Lee, 2015, 

Varady et al., 2007) with small sample size, regional body measurement and the 

comparison was between total adipose tissue measured by MRI and fat mass 

measured by BIA. Despite reference methods for the validation of BIA have not 

been critically chosen, studies tend to show over or underestimation. BIA is a 

practical tool for clinical and epidemiological body composition assessment, 

however more validation studies are needed with the proper reference methods, 

correct conversion factors and population suitable prediction equations. 

1.4 Assumptions and Rules in the Estimation of 
Fat/Adipose Tissue Mass 

There is no ‘gold-standard’, i.e. true reference method, to quantify body fat or 

muscle mass. Modern high-resolution imaging, such as MRI and CT, has been 

accepted as the current reference method (Cornier et al., 2011), but confusion 
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and errors can arise because the word ‘fat’ is often poorly defined and may be 

used to refer to the organ (adipose tissue), as well as to the body’s lipid content 

present within other tissues (Shen et al., 2003a).  Fat mass is of direct relevance 

to health and medical practice (Despres, 2012). Many methods, whose results can 

vary, are available for its estimation, and assumptions about terminology can lead 

to serious consequences for the anthropometric assessments of body composition 

used in clinical practice and epidemiology (Wang et al., 1992).  Some of these 

‘field methods’ are based on a form of imaging which quantifies adipose tissue 

volume, either CT (Tokunaga et al., 1983, Kvist et al., 1988b, Sjostrom and Kvist, 

1988) or MRI (Barnard et al., 1996, Thomas et al., 1998, Muller et al., 2011).  

Others come from estimates of whole body lipid content, based on UWW or 

hydrometry as reference methods, and assume a two-compartment model.  More 

complicated 4-compartment models include the quantification of bone mass, fat 

mass, total body water, minerals and protein (Withers et al., 1998). 

Many technical methods, such as whole-body DEXA and BIA, have been promoted 

commercially, mainly for clinical use, but all need to be validated against one of 

the reference methods.  Among these, whole-body DEXA is the most widely used in 

research, although it is expensive and time-consuming, and validation against CT-

scan and MRI shows systemic bias (Glickman et al., 2004, Norgan, 2005, LaForgia et 

al., 2009, Lee and Kuk, 2013). Bioimpedance methods are cheap but may not 

perform better than simpler anthropometry in validations against reference 

methods (Coppini et al., 2005, Varady et al., 2007, Dehghan and Merchant, 2008, 

Hemmingsson et al., 2009, Caicedo-Eraso et al., 2013). 

A common confusion in the English-language literature arises between the terms 

‘fat’, ‘lipid’ and ‘adipose tissue’. Adipose tissue is a specialised loose connective 

tissue or organ that contains fat.  Fat itself is triglyceride, the main subcategory of 

body lipid, (Wang et al., 1992, Shen et al., 2003a) and is present in variable 

amounts in several organs, as well as in adipose tissue.   

There are three views of ‘body fat’ which need to be clearly distinguished during 

any scientific discussion: total adipose tissue, total body fat, and total adipose 
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tissue fat mass (Figure 1-4). These terms have different values but can become 

confused if all methods were assumed to measure the same thing (Staten et al., 

1989, Ludescher et al., 2009, Thomas et al., 2013) (Table 1-1). For instance, the 

results of adipose tissue imaging by MRI or CT have been compared directly with 

those of reference methods which actually estimate total body fat, such as UWW 

and D2O (McNeill et al., 1991, Sohlstrom et al., 1993, Tothill et al., 1996a, 

Ludescher et al., 2009), and both have been used to ‘validate’ different field 

methods (e.g. DEXA, BIA, and anthropometry) (Scherzer et al., 2008, Kullberg et 

al., 2009, Lee and Kuk, 2013, Pietilainen et al., 2013).   

1.4.1 Proportion of Fat within Adipose Tissue 

Adipose tissue contains vascular and connective tissue, as well as fat.  Garrow 

(1975) reviewed 10 studies on the physical composition of adipose tissue published 

from 1958 to 1963.  He concluded that the fat content of adipose tissue was on 

average 78.7% by weight in lean subjects, rising to 83.2% in the obese (Figure 1-4). 

These figures have been used in the literature (Fuller et al., 1994b, McNeill et al., 

1991), and some papers have applied a rounded figure of 80% to both lean and 

obese subjects (Tothill et al., 1996a, Thomas et al., 1998, Shen et al., 2003b).  A 

higher figure of 85% was used by Leroy-Willig et al. (1997) when referencing Brozek 

et al. (1963), whose rather theoretical work assumed a non-obese body 

composition (the ‘reference body’), to which ‘obesity tissue’, of different fixed 

composition was added through weight gain and shed during weight loss. 

The density of fat is 0.9007gm/ml (Brozek et al., 1963, Siri, 1993, Fidanza et al., 

1953) (Figure 1-4).  However, adipose tissue, through its content of vascular and 

connective tissue, is denser, and is usually assumed to be 0.92kg/L (Garrow, 1975). 

This figure has been widely used to convert adipose tissue volume from MRI and CT 

measurements to adipose tissue mass (Sohlstrom et al., 1993, Tothill et al., 

1996a).  However, some studies have used this figure inappropriately to convert 

adipose tissue volume to ‘kg fat mass’, assuming this to be the same as total body 

fat (Scherzer et al., 2008, Kullberg et al., 2009).   
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After the dissection of six cadavers, Martin et al. (1994) reported that adipose 

tissue density varied between 0.970g/ml in the leanest subject and 0.925g/ml in 

the fattest, with a mean of 0.95g/ml. They concluded that individuals can have a 

large range in the lipid fractions within adipose tissue (0.54 – 0.85) and reported a 

strong correlation (r = 0.95, P<0.005) between the calculated lipid fraction of 

adipose tissue and the ‘percentage adiposity’, calculated as 100 x the total 

adipose mass/body mass.  

The precision and accuracy of MRI in the estimation of total adipose tissue was 

compared with estimates from cadaver dissections in two males and one female, 

aged 54 – 69 years, BMI 27, 31, 23 kg/m2, whose death was due to cancers (Abate 

et al., 1994).  The results of the two methods were closely matched for all 

measured adipose tissue compartments (intraperitoneal, retroperitoneal, and 

subcutaneous), with a mean difference in adipose tissue measurements between 

MRI and cadaver of 0.076kg (95%CI: +0.005 to +0.147 kg).  Despite the small sample 

size, authors concluded that the limits of agreement evaluated from the mean and 

standard deviation (SD) of the difference between the two methods were -0.066 to 

+0.218 kg (Abate et al., 1994).   

1.4.2 Studies of Multiple Methods  

Some studies have compared a number of methods in one study. McNeill et al. 

(1991) conducted whole-body MRI in seven lean and seven obese women, together 

with several other body composition assessments; UWW, body water dilution, 

whole body 40K, bioelectrical impedance, and skin-fold thicknesses.  They reported 

that UWW had the lowest variability in terms of differences, and the greatest level 

of agreement with MRI, reporting a MRI/UWW ratio of 1.04 in obese and 1.11 in 

lean subjects. 

The same research group using the same subjects studied the distributions of total 

and subcutaneous adipose tissue and their correlations (McNeill et al., 1991), while 

Fowler et al. (1991) used a truncated cone model to estimate total body adipose 

tissue from MRI. In both studies they converted adipose tissue to ‘body fat’ by 
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assuming that adipose tissue contains 78.3% lipid in lean and 83.2% in obese 

subjects by referencing Garrow (1975) (Table 1-1).    

Similarly, Sohlstrom et al. (1993) measured adipose tissue by MRI and estimated 

total body fat using MRI, UWW and body water dilution (BWD), in 20 healthy 

women. When assessed by MRI (converting adipose tissue volume to weight x 

0.9225 then multiplying by 0.8 to convert to weight of fat) the participants were 

found to contain 1.4 ± 2.9% less than UWW measured total body fat, while BWD 

yielded 4.7 ± 4.0%, so more TBF compared to UWW.  

In a third study comparing MRI with UWW, Tothill et al. (1996a) compared 

measurements of regional and total fat using MRI, DEXA and UWW in 13 healthy 

women (BMI: 21-33kg/m2), using the truncated cone model to calculate adipose 

tissue volume from MRI. They used the assumption that adipose tissue contains 80% 

fat, 2% protein, 18% water (Figure 1-4), with densities as described in (Table 1-1). 

They highlighted the fact that the head, feet, forearm and hands were not 

included in MRI measurements, thus some differences between MRI and DEXA arise. 

To estimate the amount of missing fat, regional analysis of DEXA scans was used. 

The mean proportion of the fat mass was 8%, corresponding to a difference of 3% 

for the total body mass.  Different terms were used throughout the paper ‘total 

body fat mass’, ‘total fat masses’ or ‘fat’ in addition to ‘adipose tissue’. The 

authors reported a poor agreement between the methods but high correlations. 

The mean value of fat as a percentage of the total body mass were noticeably 

different: MRI=23%, UWW = 28.6%, DEXA = 40.0%.  

Kullberg et al. (2009) ‘validated’ whole body MRI measurements of adipose tissue 

using an established CT protocol (Chowdhury et al., 1994) as a reference method 

in ten Swedish obese sibling-pairs.  In addition, whole body DEXA scanning was 

performed. The three methods were compared on a whole body and at the slice 

level. The term ‘fat weights’ as stated in the paper, were compared between the 

three models. They found strong correlations between MRI and CT whole body and 

adipose tissue volumes but DEXA underestimated ‘fat weights’ by 5.23±1.71kg 

compared to CT. In the method section the authors explained that total subject 
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weight and ‘fat weight’ were estimated using the density 0.923kg/dm3, although it 

is not clear how this number was used. While CT and MRI scans measure adipose 

tissue, DEXA was assumed to represent the sum of all fat in the soft tissues, not 

exclusively adipose tissue, but DEXA probably only identifies adipose tissue 

(Goodpaster, 2002).  

These examples have identified several discrepancies in reporting terms and in the 

assumptions made when attempting to quantify body fat content.  Imaging 

methods measure total adipose tissue, while UWW, D2O and DEXA estimate the 

lipid content, i.e. ‘total body fat’ (Goodpaster, 2002).  They exclude fat in the 

hands, feet, head, etc., which Tothill et al. (1996a) estimated to comprise 8% of 

the total body fat.  Imaging methods also ignore the fat within organs, such as 

liver, muscle and heart, ‘ectopic fat’ of particular relevance to metabolic diseases 

(Gaggini et al., 2015)  

Method descriptions are sometimes insufficiently detailed and can be difficult to 

follow.  It may be difficult to establish whether a conversion factor, e.g. 0.80, 

should be applied to the measured adipose tissue volume by multiplication or 

division. If we are estimating total adipose tissue fat mass then obviously we would 

divide, since total adipose tissue is larger than the lipid contained in adipose 

tissue. However, it may be assumed that the 80% conversion factor was applied to 

take account of fat in other parts of the body not included in imaging, which could 

in theory make the fat mass larger.  Sohlstrom et al. (1993) reported the 

mathematics behind the conversions they used. They first multiplied the measured 

adipose tissue volume by 0.92 to estimate the adipose tissue mass, then they 

multiplied the total by 0.80 to convert adipose tissue mass to ‘fat mass’. A reader 

might easily interpret this description as estimating the total body fat mass, while 

in fact it would result in an estimate of total adipose tissue fat mass (i.e. the lipid 

content of adipose tissue), excluding that in the forearms, feet and head.   

The way the word ‘fat’ is used in English, to refer both to triglyceride and to 

adipose tissue, probably underpins the confusion in the scientific literature on 

body composition measurements.  Greater clarity is needed in the reporting of 
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measurements, using imaging or body-compartment methods, and to distinguish 

between estimates of adipose tissue volume, mass and lipid content, and whole 

body fat/lipid content. 

1.5 Anthropometric Estimation of Muscle Mass 

Muscle mass estimation does not present the same conceptual or language 

problems as adipose tissue/fat mass. Until CT and MRI scans became available 

there was no way to estimate muscle mass, except through studies on cadavers. It 

was estimated very crudely, and perhaps changes could be detected, from limb 

circumference and skin-fold thickness.  However, muscle mass can now be 

measured by MRI, although the results are dependent upon the limited cadaver 

data.  Muscle mass has been assessed as part of the fat free mass or lean body 

mass. Attempts to estimate muscle mass as a single variable have been limited.  

Although they are not the same thing, the terms ‘lean body mass’ and ‘fat free 

mass’ have been used interchangeably (Hume, 1966).  Fat free mass (FFM) includes 

muscle, bone, extracellular fluid and organs, while lean body mass (LBM), also 

called lean body weight, has the same constituents of FFM in addition to essential 

lipids in the central nervous system (CNS), cellular membranes and bone marrow 

(Janmahasatian et al., 2005). Due to the small fraction of essential lipid in the LBM 

(3% in men and 5% in women), FFM and LBM have been sometimes considered as 

synonyms. Since measuring LBM and FFM gives an estimate of muscle and bone 

together, there is no way to know if a deficiency occurs from a muscle deficiency 

(sarcopenia) or a bone deficiency (osteoporosis), or both. Anthropometric 

estimations of muscle mass will be discussed in detail in the next chapter. 

1.6 Use of Prediction Equations in Body Composition 

A combination of skin-fold thickness, limb, waist, hip circumferences, BMI, height, 

and/or BW can be used in multiple regression equations, in addition to age, gender 

and ethnicity, to predict body composition (body density, fat free mass and % body 

fat). There are two types of prediction equations: general and population specific. 

Population specific prediction equations are valid only for individuals with the 
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same physical characteristics (ethnicity, age, gender, BMI, clinical condition, 

physical activity) (Wilmore and Behnke, 1969, Wilmore and Behnke, 1970, Sinning, 

1978), while generalised prediction equations have been developed for a 

heterogeneous population (Lee et al., 2000c) and these inevitably make even more 

assumptions. Giving the numerous published prediction equations, it is difficult to 

choose the best prediction equation that accurately estimates the body 

compartment of interest, as all incorporate various limitations.  

1.7 Statistical Concepts in Developing Prediction 
Equations 

To properly evaluate and/or derive and validate prediction equations, it is 

important to assess the validity and accuracy of the statistical methods used. 

Body composition research uses regression analysis for the development of 

prediction equations. The aim of a regression is to predict a dependent variable (Y) 

from a non-dependent variable or predictor (x). Pearson’s correlation coefficient 

quantifies a linear relationship between Y and X, Rxy = between -1.00 and 1.00, and 

a value of 0 indicates no correlation. A correlation measures the strength of the 

relationship between a dependent and independent variable (Wagner, 2004).  

Multiple regression analysis uses two or more variables to predict the dependent 

variable. The goodness of fit (R2), is the percentage of variation in Y that is 

explained by X1, X2, X3……, the higher the R2 value, the more variation is explained, 

in other words how close the fitted model is to the observed points. To identify 

the best combination of variables, we can use hierarchical regression or stepwise 

regression. Stepwise regression is based on statistical criteria, mainly the variable 

that increases the R2 value more. In contrast, hierarchical regression is based on 

theoretical and logical considerations (Leigh, 1988). 

To define the accuracy of a prediction equation, the standard error of the 

estimate (SEE) is used. The lower the SEE, the more accurate the equation 

(Lohman, 1992) (Table 1-2). For comparing models, the coefficient of variation 
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(CoV) is calculated, using the ratio of the SEE to the mean of the dependent 

variable.  

Most body composition research uses Bland and Altman (1999a) analysis to evaluate 

the limits of agreement and confidence intervals between predicted and measured 

methods. Bland Altman plots the difference of the measured and predicted values 

against the mean.  When data is normally distributed, we expect values to lie 

between ±2 SD from the mean difference, which defines the 95% confidence 

intervals (95% CI); the smaller the limits of agreement the better. 

In clinical epidemiological studies researchers are concerned about the extent to 

which body compartments affect the occurrence of metabolic disease, i.e. the risk 

of diabetes with increased and decreased muscle mass, risk of hypertension with 

increased or decreased body fat. One of the most common statistical analyses is 

the odds ratio (OR), which is the ratio of the odds. This is calculated using the 

number of cases, with the outcome as the numerator and the number of cases 

without the outcome as the denominator (P/P-1). Overall, the OR can measure the 

effect of certain body compartments on the risk of having a disease. An OR of 1 

indicates no difference between groups, an OR >1 indicates the rate of an event is 

increased, and the opposite for <1. The OR is given with 95% confidence intervals, 

which should not include 1, to be statistically significant, and P value should be 

≤0.05 (Harris and Taylor, 2011).  
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1.8 Objectives and Research Questions  

Objective A: To identify and evaluate simple methods to estimate adipose tissue 

mass/volume and muscle mass/volume in adults using MRI as the reference 

method. 

Key research questions: 

1. What are the published anthropometric prediction equations that use whole 

body MRI as a reference method in adults? 

2. What is the quality of these prediction equations and the published paper? 

3. What are the limitations that can be identified? 

4. What is the best muscle mass/volume adipose tissue mass/volume and body fat 

prediction equation that can be used in adult epidemiological studies? 

Objective B: To derive and validate anthropometric prediction equations to 

quantify whole-body skeletal muscle mass, whole body adipose tissue, and whole 

body adipose tissue fat mass in adults using MRI as the reference method. 

Key research questions: 

1. What is the best anthropometric variable as a predictor of adipose tissue mass 

and muscle mass in adults? 

2. What is the best combination of anthropometric measurements to predict 

adipose tissue mass and muscle mass in adults? 

3. Can the widely used variable race be substituted with simple anthropometric 

measurements? 

4. How does the performance of the validated prediction equations compare to 

BMI? 
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Objective C: To explore how the new prediction equations, and other published 

prediction equations, may be applied in large national health surveys. 

Key research questions: 

1. What is the strength of the association between the prediction equations and 

diabetes and hypertension? 

2. What is the correlation between the prediction equations and metabolic and 

health measures (HbA1c, systolic and diastolic blood pressure)? 

3. How well do the prediction equations predict HbA1c, systolic/diastolic blood 

pressure, compared to existing prediction equations and anthropometric 

measurements? 

4. How well do the prediction equations associate with diabetes and hypertension, 

compared to existing prediction equations and anthropometric measurements? 

Objective D: To test our developed prediction equations, with reference to 

measured values from whole body MRI scans, in obese women during weight loss.  

Also, in the same clinical study, to investigate the relationship between estimated 

muscle/fat mass and functional muscle strength. 

Key research questions: 

1. How do existing adipose tissue mass estimation equations perform in estimating 

whole-body adipose tissue mass in overweight and obese subjects before and 

after weight loss? 

2. How do existing muscle mass estimation equations perform in estimating whole-

body skeletal muscle mass in overweight and obese subjects before and after 

weight loss? 
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3. How does the ability of the equations to estimate changes in adipose tissue 

mass and muscle mass vary across a wide range of weight changes? 

4. What are the associations of adipose tissue mass and muscle mass with 

measures of functional strength pre and post intervention? 
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Figure 1-1: The five level model; atomic, molecular, cellular, tissue and whole body 

levels, and their components  

 

 

 

 

 

 

 

 

 

Adapted from Wang et al. (1992)  

ECS: extracellular solids, ECF: extracellular fluids, SM: skeletal muscle, AT: adipose tissue. 
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Figure 1-2: Body composition at the molecular level in a 70kg reference man 

 

Based on Snyder et al. (1975)  

CHO: carbohydrate, Reference Man: 20 -30 years, 70kg, 170 cm height 
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Figure 1-3: Commonly used human body composition reference and field methods 

 

MRI: magnetic resonance imaging, CT: Computerised tomography, UWW: underwater weighing, 
DEXA: Dual-Energy X-ray Absorptiometry, BIA: bioelectrical impedance. In this thesis we will 
validate anthropometry using field method MRI. In the literature DEXA is used as a reference 
method and a field method. 
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Figure 1-4: Adipose tissue and fat mass densities across body compartments  
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Table 1-1: Summary of the different terms used in the literature and assumptions made in their use  

Reference Title Assumption ‘quoted’  

(McNeill et al., 

1991) 

Body fat in lean and overweight women estimated by six 

methods 

‘Estimates of total body adipose tissue volume were made using a 

truncated cone model (Sjostrom and Kvist 1988)and body fat was 

calculated assuming that adipose tissue contains 78.3 % lipid in lean 

subjects and 83.2 % in obese subjects (Garrow, 1975)’ 

(Fowler et al., 

1991) 

Total and subcutaneous adipose tissue in women: the 

measurement of distribution and accurate prediction of 

quantity by using MRI  

‘Volumes of adipose tissue were corrected to 78.3 percent lipid in lean 

women and 83.2 percent lipid in obese women. Tissue volumes based on 

the truncated cone model were used to calculate percent of tissue’ 

(Sohlstrom et al., 

1993) 

Adipose tissue distribution as assessed by MRI and total body 

fat by MRI, underwater weighing, and body-water dilution in 

healthy women 

‘MRI. Adipose tissue was assumed to contain 80% fat, 2% protein and 18% 

water (Garrow, 1975) with densities of 0.900, 1.34, and 0.999kg/l 

respectively (Siri, 1961), giving a density for adipose tissue of 0.9225kg/L. 

Thus volume of adipose tissue was converted to weight of fat by 

multiplying the volume by 0.9225x0.8’ 

(Abate et al., 

1994) 

Estimation of adipose tissue by MRI: validation against 

dissection in human cadavers 

‘Assuming that adipose tissue composed of 84.67% fat, 12.67% water and 

2.66% proteins (Thomas, 1962). The density of adipose tissue was 

calculated to be 0.919 kg/l. Therefore, adipose tissue mass was calculated 

in kilograms for each 10-mm slice. The masses obtained for each slice were 

summed to calculate the total adipose tissue mass for each identified 

compartment (subcutaneous, interperitoneal, retroperitoneal)’ 

(Tothill et al., 

1996b) 

Comparison between fat measurements by dual-energy x-ray 

absorptiometry, underwater weighing and MRI in healthy 

women 

‘The MRI measurements did not include the head, feet forearm and hands, 

so this disparity has to be considered in making comparisons with the other 

techniques. Adipose tissue volumes were calculated using a truncated cone 

model. Adipose tissue was assumed to contain 80% fat, 2 % protein, 18 % 

water, with corresponding densities of 0.900, 1.34, 0.993kg/l, giving an 

adipose tissue density of 0.9225kg/l (Garrow, 1975)’  
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Reference Title Assumption ‘quoted’  

(Leroy-Willig et 

al., 1997) 

Body composition determined with MR in patients with 

Duchenne Muscular Dystrophy, Spinal Muscular Atrophy, and 

Normal subjects 

‘Total adipose tissue and lean tissue volumes having been determined, the 

volumes were converted into masses according to literature values for 

composition and density of tissues. Fat mass was determined from adipose 

tissue volume, assuming the fraction of fat in adipose tissue to be 0.85 

(Brozec, 1963). And a density of fat of 0.9007 (Fidanza, 1953). Then the 

whole body fat percentage was obtained from the fat mass and body mass’ 

(Scherzer et al., 

2008) 

Comparison of dual-energy x-ray absorptiometry and MRI 

measured adipose tissue depots in HIV-infected and control 

subjects. 

‘for comparison with DEXA, adipose tissue volume from MRI were multiplied 

by 0.9 kg/ L to convert to KG fat mass, because adipose tissue has a density 

of 0.9kg/L.’ 

(Kullberg et al., 

2009) 

Whole- body adipose tissue analysis: comparison of MRI, CT 

and dual-energy x-ray absorptiometry 

‘Subject weight and fat weight were estimated by the use of density values 

reported in the literature (AT, 0.923 kg dm-3)’ 

(Pietilainen et al., 

2013) 

Agreement of bioelectrical impedance with dual-energy X-

ray absorptiometry and MRI to estimate changes in body 

fat, skeletal muscle and visceral fat during a 12-

month weight loss intervention 

‘Viseral fat volumes were assessed with Sliceomatic and converted to fat 

weight using an adipose tissue density of 0.9196mg/ml’ 

(Lee and Kuk, 

2013) 

Changes in fat and skeletal 

muscle with exercise training in obese adolescents: 

comparison of whole-body MRI and dual energy X-ray 

absorptiometry 

‘Fat and skeletal muscle volume was converted to mass units (kg) by 

multiplying the volumes by the assumed constant density for adipose tissue 

(0.92 kg/l) and SM(1.04 kg/l)’ 

Published studies that used the terms, fat mass, adipose tissue, fat weight, lipid, fat. The conversion factors used and assumptions are included.
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Table 1-2: Evaluation of standard error of the estimate 

SEE %BF SEE Db (g/cc) SEE FFM (kg) SEE FFM (kg) Subjective  
Rating 

Male and Female Male and Female Male Female  

2 0.0045 2.0-2.5 1.5-1.8 ideal 

2.5 0.0055 2.5 1.8 excellent 

3 0.007 3 2.3 very good 

3.5 0.008 3.5 2.8 good 

Adapted from (Lohman, 1992) 
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2.1 Abstract    

Background: Muscle is important for physical and metabolic health, but 

identification and management of low muscle mass, or sarcopenia is limited by 

lack of reliable simple approaches to assess muscle mass.  

Aim: To identify and evaluate simple methods to quantify muscle mass/volume of 

adults. 

Search methods:  Systematic review, using Cochrane Review methods, of Medline 

(1946–2012), Embase (1974–2012), Web of Science (1898–2012), Pubmed (to 

08/2012) and Cochrane Library (to 08/2012),  

Selection criteria: Publications which included prediction equations (from 

anthropometric measurements) to estimate muscle mass (by MRI) in adults.  

Data collection and analysis: Studies were checked for relevance by two 

reviewers independently. Methodological and critical quality assessment was 

completed using a critical review form and QUADAS.  

Results:  out of 257 papers identified from the primary search terms, 12 studies 

met the inclusion criteria.  Most (10 studies) assessed only regional/limb muscle 

mass/volume: evidence relating regional/limb to whole-body muscle mass is weak, 

with just one MRI study showing strong relationships, R2 =0.84-0.77 for men and 

women respectively. Only Lee et al, (2000) n=324, included over 70 subjects.  

Many (9 studies) used limb circumference adjusted for skinfold thickness, limiting 

their practical applications.  Only two studies included validation in separate 

subject-samples. Bland-Altman plots showed reasonable agreement in one (Lee et 

al, 2000), and over-estimation in the other (Mathur et al, 2008). 

Conclusion:  Factors which predict muscle mass include sex, age, weight, height, 

waist/hips/thigh/calf/arm circumferences, and skinfold thicknesses.  A simple 

equation including body weight, height, age, sex and race (Lee et al, 2000), 
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validated among obese subjects, had R2 = 0.86–0.79 and reasonable agreements 

with MRI-measured whole-body muscle mass. This equation has yet to be validated 

in a separate population with different investigators, and it did not incorporate 

widely-available trunk/limb girths which offered valuable prediction in other 

studies. 

  



 

 

52 

 

2.2 Introduction:  

Muscle is important for physical activity, thus social functioning, and also 

metabolic health.  Measuring muscle mass is of interest for various reasons, such as 

evaluating the effects of weight loss or gain, the effect of disease on body 

composition, the training effect of physical activity, and to predict frailty and 

falls.  The term ‘sarcopenia’ has been used for over two decades to describe loss 

of muscle mass, strength and/or quality (Morley et al., 2010).  Low muscle mass or 

loss of muscle function have major effects on quality of life, contributes to frailty, 

and relates to chronic illnesses like diabetes and heart disease (Janssen et al., 

2002, Nair, 2005).  Low muscle mass may thus affect physical, mental and social 

aspects of health through a range of functional, nutritional, endocrine, metabolic 

consequences (Khamseh et al., 2013) of particular importance to ageing (Bauer 

and Sieber, 2008). Recognition of these clinical and public health consequences of 

sarcopenia (Lukasaki, 2005b, Rosenberg, 2011) has attracted some research 

interest in evaluating approaches to assess muscle mass, and its quality and 

functional capacity.  However, progress is hampered by lack of agreed simple 

approaches to estimate muscle mass (Cooper et al., 2012, Lukasaki, 2005b) to 

provide unified criteria for diagnosis, clinical application and epidemiological 

practice (Janssen, 2011).  

Sarcopenia can result from a primary disease of muscle, such as myasthenia, or 

secondary to a variety of primary causes, including metabolic diseases, 

inflammation, neurological diseases, and physical inactivity (as a result of any 

condition) as disuse atrophy (Visser and Schaap, 2011, Morley, 2008).  Overweight 

and obesity, which now affect well over half of all adults in post-industrialized 

societies, are generally associated with increased muscle mass to support greater 

weights; however, the extent of muscle hypertrophy may be insufficient to 

maintain metabolic and physical capacities. A relatively low muscle mass in obese 

people “sarcopenic obesity” is difficult to identify clinically but appears to be 

increasing (Lean et al., 2013b) and presents limitations to mobility and function, 

promoting diabetes and cardiovascular disease (Stenholm et al., 2008).  
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2.2.1 Approaches to assess Sarcopenia 

Before sophisticated technological methods were available, skeletal muscle was 

most commonly estimated from upper-arm (Jelliffe and Jelliffe, 1969) and/or 

lower-leg circumferences (Heymsfield et al., 1979), and from simple tests of 

strength or endurance, such as hand-grip, stair-climbing and chair-rise (Young et 

al., 1990, Newman et al., 1984).  Measurement now includes imaging methods such 

as magnetic resonance imaging (MRI), dual energy absorptiometry (DEXA), 

computerized tomography (CT), bioelectrical impedance (BIA) (Heymsfield et al., 

1997) and muscle metabolites; 3-methylehistidine and creatinine (Lukaski, 1997). 

Both DEXA and BIA have been used in some epidemiological settings (Fielding et 

al., 2011) but their accuracies for predicting MRI or CT-measured muscle mass vary 

(Lee et al., 2001), and they are not practical for routine clinical use. Whilst widely 

promoted, DEXA has many limitations: (1) muscle is not quantified directly and 

several crude assumptions are made to calculate muscle mass, (2) patients are still 

exposed to radiation, (3) there is potential interference from fluid, dehydration or 

oedema, (4) it is relatively costly, and (5) it needs skilled technicians (Lee et al., 

2001, Lukasaki, 2005b). 

While different criteria for sarcopenia have been proposed, no definition has been 

widely used, nor have diagnostic criteria been tested thoroughly to reach a 

consensus (Cooper et al., 2012). In a randomly selected sample of 199 subjects 

from the 1993-1995 New Mexico Elderly Health Survey (Baumgartner et al., 1998), 

skeletal muscle mass (SM) was determined as the total lean soft tissue of the arm 

and leg, estimated from DEXA.  The best predictive equation, developed by step-

wise regression, included weight, height, hip circumference, grip strength, gender 

(R2 =0.91, SEE =1.58).  Sarcopenia, defined as SM/(height)2 below two standard 

deviations from mean in a young reference group, increased with age to 13-24% in 

>70-year-olds, and >50 % in 80-year-old subjects. 

Bioelectrical impedance (BIA) has been used in many large-scale health surveys, 

for example in 4,504 adults aged over 60 years from NAHNES III, where sarcopenia, 

defined arbitrarily as a low muscle mass index (SM (from BIA)/body mass x 100 ≤ 1 
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or 2 standard deviation of young adult value), was associated with disability and 

functional impairment (Janssen et al., 2002). However, many factors introduce 

error and limit the value of BIA: (1) the size and type of electrodes and equipment 

calibration (2) need for multi-frequency signal, (3) effect of hydration, oedema, 

temperature variations and sweating on electrical impedance (Lukaski, 1997).  BIA 

has not been shown superior to anthropometry for estimating body composition. 

Moving towards consensus, the European Working Group on Sarcopenia in Older 

People (EWGSOP) suggests three measurable variables: mass, strength and/or 

physical performance (Cruz-Jentoft et al., 2010). Muscle strength can be measured 

by grip-strength and performance by the short physical performance battery, gait-

speed, 6-minutes walking test and stair-climb test (Cruz-Jentoft et al., 2010). The 

International Sarcopenia Consensus Conference Working Group (ISCCWG) proposed 

including both muscle mass and physical function (Fielding et al., 2011).  

Approximating to muscle mass, they used the index (whole-body fat-free mass to 

height-squared), with cut points used in other epidemiological studies: ≤7.23 

kg/m2 for men and ≤5.67 kg/m2 for women. They proposed functional capacity 

should be indicated by gait-speed. Janssen in (Janssen et al., 2004) recommended 

a quantitative definition based on the muscle mass index or ratio, derived by 

dividing appendicular SM by height2. Individuals with ratios between -1 and -2 

standard deviations of young controls of the same gender would be considered to 

have class І sarcopenia (men: 8.51–10.75 kg/m2, women 5.76-6.75 kg/m2). 

Individuals with ratios below -2 would be categorized as class 2 sarcopenia (men 

≤8.51kg/m2, women ≤5.75 kg/m2). 

MRI and CT-scanning are generally considered valid and reliable for quantification 

of muscle mass, based on validations against cadaver dissections (Mitsiopoulos et 

al., 1998b), firstly to derive simpler field measurements using techniques such as 

anthropometry, and secondly to validate the prediction equations in the variety of 

clinical and epidemiological settings where such measurements are needed (Chen 

et al., 2007, Mitsiopoulos et al., 1998b, Wang et al., 2000a, Elia et al., 2000).  

Even with modern imaging, problems remain; (1) limb muscle groups are separated 
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by non-muscular components and covered by variable amounts of fat (Housh et al., 

1995b),  (2) Obesity, aging and some illnesses lead to fat infiltration of muscle, 

complicating its identification and quantification (Goodpaster et al., 2004),  (3) 

Sophisticated scanning instruments, and trained staff, are costly (Lee et al., 2001), 

(4) High quality reference data have not been defined for individuals of different 

sex, age, race and body fat content (Cruz-Jentoft and Morley, 2012), (5) There 

may still be confounding effects from smoking, nutrition, occupation, alcohol and 

physical activity (Doupe et al., 1997).  

Efforts to economise by using a single cross-sectional MRI slice, or a limited 

number of slices, raises questions about three steps in the prediction of muscle 

mass:  

- Does limited cross-sectional muscle area of limbs, represent the whole muscle 

mass of the region (limb) examined? if so how many slices are needed? 

- Does regional muscle mass, eg of limbs, quantitatively reflect whole-body 

muscle mass?  

- Which single or contiguous imaging (thigh, arm, or calf) best represents whole-

body muscle mass or volume?  No study appears to have drawn comparisons 

between the three limb areas, although thigh was most frequently used.   

The validity of estimating thigh muscle volume (quadriceps) using a single MRI 

image was examined by (Morse et al., 2007) using upper leg volume in eighteen 

active young men.  A single MRI scan taken at 60% of the femur length from the 

distal end of the femur estimated muscle volume with R2 =0.90, SEE10%.  Similarly, 

(Tothill and Stewart, 2002) showed strong correlation between a single mid-thigh 

MRI muscle area and thigh muscle volume from contiguous scans (R2 =0.96, SEE 

=207cm3) (Table 2-1) 

Lee et al, (2004) related MRI measurement of thigh SM muscle to whole body SM 

and reported the correlation coefficients between a single MRI measurement or 
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multiple MRI images in 387 white men and women (Lee et al., 2004). The findings, 

perhaps unsurprisingly, indicated that a 7-slice estimate of thigh muscle mass had 

a higher correlation with whole body SM (R2 = 0.84, SEE = 5.4% in men, R2= 0.90, 

SEE = 5.1% in women) than muscle area on a single thigh image (R2 = 0.77, SEE = 

6.5% in men; R2 = 0.79, SEE = 7.4% in women). However, both measurements 

showed sufficient correlation to provide useful prediction for many purposes 

(Table 2-1).  

Accepting these limitations, we have used a systematic review approach to explore 

the published literature for simple equations based on anthropometry to predict 

the muscle mass of adults, as measured by MRI.  

2.3 Methods: 

2.3.1 Selection of studies: 

A search strategy was conducted according to Cochrane Review criteria (Smidt et 

al., 2007) using the key words in (Table 2-2).  Mesh terms were used in Medline 

(1946–2012), Embase (1974–2012), Web of Science (1898–2012), Pubmed and the 

Cochrane Register of Clinical Trials (to 08/2012).  Limits were human and adults.  

In the primary search, irrelevant articles were eliminated first using title and 

abstract.  The remaining articles were read and eliminated if they did not meet 

the inclusion criteria. Reference lists of relevant papers were checked.  Reference 

manager version 12 was used to manage articles. 

Inclusion criteria: Articles reporting human studies of adults (>18 years) that (1) 

used MRI as a reference method to measure lean or muscle mass/ volume, and (2) 

used anthropometric measurements with prediction equations of lower or upper 

limb circumferences and/or skin-fold thickness. 

Exclusion criteria: Studies that: 1) did not use prediction equations, 2) used 

reference methods other than MRI, 3) used comparator methods other than simple 
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anthropometric measurements commonly available in health surveys, eg DEXA, 

bioelectrical impedance (Figure 2-1). 

2.3.2 Quality assessment: 

Studies were checked for relevance by two reviewers Yasmin Algindan and Wilma 

Leslie independently using the same search strategy in (Table 1-1), both reviewers 

agreed on included studies. Technical and critical quality assessment was 

completed using a critical review form (Law et al., 2007) and QUADAS a tool for 

the quality assessment of studies of diagnostic accuracy included in systematic 

reviews (Whiting et al., 2004) (Table 2-3, Table 2-4) 

2.4 Results:  

257 studies were identified by the primary search terms (Table 2-2).  After 

eliminating the duplicates (179), 78 studies were identified by title and abstract as 

potentially relevant. Of these, 12 studies met all inclusion criteria and were 

included in the review (Figure 2-1). 

2.4.1 Quality Assessment: 

Critical quality assessment:  The purpose of the study was stated clearly in all 

papers (Table 2-3 and Table 2-5).  All studies with the exception of one were 

cross-sectional.  Nakamura et al, (2006) was a longitudinal study that lasted 3 

years, with measurements made once annually (Nakamura et al., 2006). However, 

the time points used to compare reference and index methods were not specified. 

Sample size justification was not reported in all studies.  Sample size was below 69 

subjects in all studies except one (Lee et al., 2000b) with 324 subjects (Table 2-6).  

Reliability and validity were assessed in most studies (Table 2-3).  Studies that 

used corrected for skin-fold thickness limb circumference, using the method of 

(Jelliffe and Jelliffe, 1969) for their prediction equation, were considered 

validation studies, given that this equation has been already validated (Heymsfield 

et al., 1982, Heymsfield et al., 1979). Limitations and biases were reported only in 
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3 studies (Chen et al., 2011b, Nakamura et al., 2006, Ross et al., 1994b).  The 

Bland-Altman method to assess agreement and distributions of errors was used by 

(Lee et al., 2000b) and (Mathur et al., 2008).  Overall there were no major 

concerns over the quality of papers included in this study, although all could be 

criticised (Table 2-3). 

Technical quality assessment: (Table 2-4) several points of criticism emerged from 

the technical assessment of the included studies; (1) the period between 

performing the reference and index tests was not reported in most studies (9 

studies).  Since they were cross-sectional studies, it was assumed that 

measurements were made close together, but this information would increase 

confidence in the conclusions (question 4, Table 2-4), (2) None of the studies 

mentioned if the test results were analysed or interpreted with or without (ie 

blinded) knowledge of the other test (questions 10, 11, Table 2-4), (3) Nakamura 

et al, (2006) was the only study that mentioned withdrawals, as that study was 

longitudinal. All male subjects withdrew for varying reasons; so they focused their 

study on female subjects. (Baumgartner et al., 1992) used data from New Mexico 

Aging Process Study, and mentioned a drop-out rate of 5.8/year and death rate 

4.9/year (question 14, Table 2-4), (4) Response rate was not mentioned in any of 

the studies, however selection criteria were clearly explained in all cases. Each 

study represented a specific age group of interest (question 1, 2 Table 2-4).  

2.4.2 Magnetic resonance imaging (MRI): 

All studies except two (Lee et al., 2000b, Ross et al., 1994b) attempted to use 

regional muscle mass as a marker of whole body muscle mass (Table 2-7).  Ten 

studies used T1-weighed spine echo sequences (Table 2-8), which are optimal for 

representing anatomy (Goodpaster et al., 2004).  

MRI machines ranged from 0.5 to 1.5 tesla: seven of the 12 studies used 1.5 tesla.  

One study (Bamman et al., 2000) used whole body imaging and 4.1 tesla 

spectroscopy. MRI scanning methodologies varied (Table 2-8): (1) The strength of 

the magnetic field varied between 0.5–1.5 tesla, affecting scanning time and thus 
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image quality: not all studies reported scanning times; reported scans were 

between 2 min and 90 minutes, the main difference being between whole body 

and single cross-sectional measurement (2) Considerable variation in repetition 

time and echo time, (3) Variation in number and thickness of images (5mm or 10 

mm), (4) Gap thickness varied from 2.5-50 mm, (5) In most studies cross sectional 

areas were summed, converted to volumes and then muscle mass/volume 

calculated.  Different software programmes were used for these calculations.  

2.4.3 Anthropometry and subject characteristics 

All studies, with the exception of 4 (Chen (Chen et al., 2011a, Nakamura et al., 

2006, Ross et al., 1994b, Lee et al., 2000a) combined regional skinfold thicknesses 

and circumferences in their anthropometric explanatory variables (Table 2-7). Ten 

used thigh circumference, three used arm circumference (Tonson et al., 2008b, 

Lee et al., 2000b, Baumgartner et al., 1992) and three used calf circumference 

(Bamman et al., 2000, Lee et al., 2000a, Fuller et al., 1994a) (Table 2-7). 

All studies included in this review recruited healthy adults except (Mathur et al., 

2008), which included adults with chronic coronary obstructive pulmonary disease. 

That study validated the prediction equations developed by (Housh et al., 1995b), 

and results showed very low correlations R2= 0.01–0.2 (Table 2-6), (Table 2-9).  

It was difficult to assess variations in anthropometric prediction by age, because 

age varied widely between studies (range 18-92 years) and within samples, e.g. 

(Tothill and Stewart, 2002) had an age range between 23-49 years. Tonson et al 

(2008) validated Jones and Pearson equation in children and adolescents, as well 

as adults (Table 2-6), and reported that compared to MRI, anthropometry tends to 

overestimate muscle; the overestimation was higher in children and adolescents 

than adults (43.1%, 38.5% and 20.5% respectively). 

Nakamura et al (2006), assessing thigh muscle mass, included underweight elderly 

subjects (BMI = 21.0 ± 3.7).   The remaining studies did not use BMI as an inclusion 

criterion, hence BMI ranges were wide, from 18-39 kg/m2 (Table 2-6), with the 
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exception of (Lee et al., 2000a), who cross-validated equations derived in non-

obese subjects separately in obese (BMI>30kg/m2) and non-obese groups.  In 

general, more bias was seen in the obese subjects than non-obese, using the skin-

fold-corrected model (-0.36 ± 2.99, -0.27 ± 2.50 respectively) and the body weight 

and height model (-2.33 ± 3.31, -0.34 ± 2.73 respectively).  This study concluded 

that the equation with limb skinfold circumference was more robust for use in 

obese subjects than the simple equation which included body-weight, height, sex, 

age, and race (Table 2-9).     

2.4.4 Method reproducibility  

Whether single or multiple observers were used was mentioned in most studies.   A 

detailed method reproducibility explanation was given by (Fuller et al., 1999, 

Tothill and Stewart, 2002) (Table 2-10).  In general, limb circumference had the 

least variability, and skinfold thickness involved the greatest variability (Table 

2-10). 

2.4.5 Prediction equations: 

Prediction equations listed in (Table 2-9). There were 4 studies that used simple 

anthropometric approach, and nine studies which involved local skinfold thickness 

measurements and employed existing equations for the adjusted skin-fold 

thickness approach.  The measurements found to offer useful prediction of whole-

body muscle mass were: body weight, height, hip circumference, waist 

circumference, thigh circumference, age, sex and race. 

2.4.6 Reporting results 

Not all studies reported standard error of the estimate and/or % error. There was a 

wide range in the strength of correlations from very low (R2 = 0.01) to very high 

(R2= 0.95) (Table 2-9).  Agreement between methods, and distribution of errors, 

using the Bland-Altman method (Bland and Altman, 1999a),  were presented only 

by Mathur et al, (2008) (showing overestimation) and by Lee et al, (2000) showing 
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reasonably good agreements for measurements in very similar non-obese subject 

samples of the same population made by the same investigators, and somewhat 

less good agreement for a validation in obese subjects also in the same population 

and made by the same investigators (Table 2-9).   

 

2.4.7 Validation studies 

Validation is an important step in developing prediction equations for general use. 

The equations of Ross et al, (1994) and Chen et al, (2011) were practical and gave 

moderate to high correlations, however they were not validated, nor has 

agreement between methods been investigated. Ross et al, (1994) were assessing 

lean body mass and Chen et al assessed thigh muscle mass, not whole-body 

muscle. 

Lee had divided their subjects into 3 subject samples.  Non-obese subjects were 

randomised into Groups A and B.  Group A (n = 122, non-obese) was used to 

develop the equation: (0.226 x body weight + 13.0 x height – 0.089 x age + 6.3 x 

sex + race – 11.0) R2 = 0.85, SEE = 3.0 kg.  This equation was cross-validated in 

group B (n = 122 non-obese): R2 = 0.86 SEE = 2.6 kg.  The final equation was 

developed with subjects from both A and B groups: (SM (kg) = 0.244 x body weight 

+ 7.80 x height – 0.098 x age + 6.6 x sex + race – 3.3 R2 = 0.86, p< 0.0001, SEE = 2.8 

kg) this equation was then evaluated in the third group of obese subjects (n=80, 39 

men). R2 = 0.79, p< 0.0001, SEE = 3.0.  However, the mean muscle mass of the 

obese group was significantly overestimated (~ 10%) and significant skewing was 

seen, with correlation between the difference of measured and predicted, and 

measured muscle mass (R2 = 0.18, p<0.001). The significant correlation means that 

for lower values of SM the equation over-estimates SM but for larger values it 

underestimates. The same method was used for their skin-fold circumference 

model which gave higher correlations especially for the obese subjects (Table 

2-9).  
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2.5 Discussion: 

Total body mass and its major constituents (total body fat, muscle mass, etc) vary 

with age, sex, race and lifestyle, but can in principle be correlated with height, 

weight, and with circumferences, from which prediction equations can be derived 

that will to some extent account for variations by factors such as race and lifestyle 

which can be hard to define. There are many advantages of using anthropometric 

measurements (simple, quick, safe, non-invasive, cheap, needs only low skill 

levels, give immediate results), however it is essential to make anthropometry 

practical, sensitive and specific for the quantification of muscle mass (Lee et al., 

2001). Anthropometry is susceptible to errors, depending on the assumptions and 

specific characteristics of derivation and validation population (which mainly 

introduce bias) and on observer error in measurements (Knapik et al., 1996, Forbes 

et al., 1988) which may be random or systematic. 

As long ago as 1921, Mateiga measured circumferences of forearm, upper-arm, calf 

and thigh corrected for skinfold thickness, in order to estimate whole-body muscle 

mass anthropometrically and derived a value muscle limb radius. The value was 

squared, multiplied by height and a constant of 6.5.  This equation was not 

validated by Mateiga or later investigators. However this work was expanded by 

(Doupe et al., 1997) and (Martin et al., 1990) and whole body anthropometric SM 

prediction models were developed in the Brussels Cadaver Study of 12 elderly men 

(Lukaski, 1997, Lee et al., 2000a):  equation (1) SM (g) = height x (0.0553 x 

(corrected for skin-fold thickness thigh girth)2 + 0.0987 x (uncorrected for skin-fold 

thickness forearm girth(cm))2 +0.0331 x (corrected for skin-fold thickness calf 

girth)2 – 2445) R2 = 0.97, SEE = 1.53kg. Equation (2) SM = height x (0.031 x 

(modified upper thigh girth) 2 + 0.064 x (corrected for skin-fold thickness calf girth) 

2 + 0.089 x (corrected for skin-fold thickness arm girth) 2)-3006.  These equations 

were either never validated or based on small sample size and proved too 

complicated for wide application. 
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In adults most skeletal muscle is found in the lower limb (30%), with lesser 

amounts in the upper limb, head and trunk (Lukasaki, 2005b).  In an honours thesis 

published in UniSA Research Archives, (Hellmanns, 2011) measured whole body 

muscle mass using contiguous MRI scans in healthy adults, and estimated the torso 

muscle mass to be 11.43±3.39 kg, upper appendicular muscle mass 3.27±1.23 kg, 

lower appendicular muscle mass 10.45±3.27 kg, with summed whole-body muscle 

mass 25.14±7.11kg.  Recently the thigh has received most interest as a predictor of 

whole-body muscle mass (Chen et al., 2011b, Mathur et al., 2008). Thigh muscles 

are major determinants of total muscular physical activity, and quadriceps and 

hamstrings are the most powerful muscles of humans (Tothill and Stewart, 2002).  

In addition to their volume/mass, they can be assessed by measuring maximal 

power production in anaerobic capacity tests, and related to functional capacity 

and independence at older age (Winter and Brookes, 1991, Tothill and Stewart, 

2002). 

Calf circumference has also been considered, but it showed only moderate 

correlation (R2=0.48) with regional MRI-muscle mass (Bamman et al., 2000).  Lee et 

al, (2000) found skinfold-corrected arm circumference to have a higher correlation 

(R2=0.77) than skinfold-corrected thigh and calf circumferences (R2 =0.61 and 0.67 

respectively). Rolland et al (2003) reported R2 = 0.40 for the correlation between 

calf circumference and appendicular muscle mass, using DEXA, in elderly women.  

Hip circumference, which is closely related to gluteal muscle mass, has received 

relatively little interest for whole-body muscle mass estimation, despite 

suggestions that it may be relevant based on associations with chronic diseases 

(Han et al., 1998, Lissner et al., 2001b). 

The present review sought all previous studies that used MRI, as the most accurate 

method for measurement of muscle mass, and which derived and/or validated 

predictive equations from anthropometry. Two anthropometric approaches were 

identified in the literature: (1) simple anthropometric measurements that included 

limb circumferences, weight, height, age, sex and/or race, (2) circumferences and 

corresponding skinfold thickness to correct for subcutaneous fat, ie. mid-arm 
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circumference and triceps skinfold, mid-thigh circumference and thigh skinfold, 

mid-calf circumference and calf skinfold thickness (Lee et al., 2000a).  The 

equation adopted (limb muscle mass = limb circumference – π x skinfold 

thickness), and employed extensively in chronic disease and protein energy 

malnutrition studies (Martin et al., 1990), depends on several simplifying 

assumptions.  First, that skinfold measurement by callipers gives an estimation of 

the thickness of superficial adipose tissue.  Second, for estimation of muscle mass, 

fat and bone are a negligible or a constant proportion of the non-superficial 

adipose tissue. Third, the limb is cylindrical and the superficial adipose tissue 

structures form an annulus.  Finally, limited measurement sites can be used to 

predict muscle volume (Tothill and Stewart, 2002).  These assumptions are 

relatively crude and introduce error.  Knapik et al, (1996) suggested that errors in 

predicting MRI measurements from thigh muscle area reflect underestimation of 

fat and skin by excessive skinfold calliper tension, and over-estimation of total 

thigh area due to the assumption that the thigh is cylindrical. Taking skinfold 

thickness measurements is time-consuming, requires undressing which 

compromises practicality for large-scale survey work, and can increase 

measurement errors (Table 2-10).  Another approach in regional muscle mass 

estimation was introduced by Jones and Pearson in 1969, who proposed dividing 

leg volume into six segments of a truncated cone.  Their equation was applied in 

32 young men and 15 women, with validation against a water displacement 

method. and showed correlation coefficients for the total leg muscle mass 0.98 in 

men and 0.99 in women. Tonson et al, (2008) used the same method for estimate 

forearm lean (muscle + bone) volume.  Compared with MRI, correlations were as 

high as 0.90. 

Amongst the studies which used simpler measurements without skinfolds, body 

weight was included in all except for (Nakamura et al., 2006), with different 

combinations of age, height, sex, race, hip circumference, waist circumference 

and/or thigh circumference, and correlations remained relatively high, ranging 

between R2 =0.86–0.62 (Ross et al., 1994b, Chen et al., 2011b, Lee et al., 2000b) 

(Table 2-7).  Only one study explored hip circumference (Ross et al., 1994b) 
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however that study predicted lean tissue mass including bone, SM and organs, 

rather than muscle mass.  The relationship of hip circumference to body 

composition is complicated by the dominating effect of obesity on all 

circumferential measurements, but outside the context of obesity, hip 

circumference does have a close relationship to the gluteal muscles.  It has been 

hypothesized that the strong association of chronic illnesses with high waist/hip 

ratio may reflect small hip circumference (indicating reduced muscle mass), rather 

than greater waist (indicating increased body fat) (Han et al., 1998, Seidell et al., 

2001b, Lissner et al., 2001b, Snijder et al., 2003). 

The limitations of the studies in the present review constrain the use of 

anthropometric prediction equations to estimate muscle mass.  It was surprising to 

find only two studies that used whole-body MRI scans for the development of 

prediction equations (Lee et al., 2000b, Ross et al., 1994b). All other studies used 

regional muscle mass as a marker of whole body muscle mass.  Many studies did 

not consider gender differences and used the same equation for both genders.  

Previous research has reported that women have 25% less muscle mass than men 

(Ross et al., 1994b). 

Another approach found by this review was to distinguish between the muscle 

groups of the thigh, to avoid including non-muscle tissue like adipose, nerves, 

vessels and fascia in the cross sectional area measurement (Housh et al., 1995b). 

However, validation of this equation in patients with COPD and healthy elderly 

subjects (Mathur et al., 2008) found very low correlations with MRI measurements 

(Table 2-9).   

It is clear that whole body muscle mass can in principle be predicted from simple 

anthropometric measures, but the existing literature does not provide a method 

which can be applied generally with confidence, and variable methodological 

approaches present problems. The small sample sizes in studies included in the 

present review, which limit study power, are understandable, as MRI is considered 

the best reference method, its high cost restricts its use.  Heterogeneity between 
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relatively small studies (measurement of different limbs, whole body versus 

regional, total thigh versus components of thigh, circumferences versus skin-fold 

thickness, different age groups, different ethnicities, made it difficult to directly 

make comparisons between equations or to form a unified conclusion. Bland-

Altman analysis is considered the best method to assess agreement and distribution 

of errors between two methods (Bland and Altman, 1999a) but was used in only 2 

studies in the present review (Mathur et al., 2008, Lee et al., 2000b).   All other 

studies depended on linear correlations alone to assess the accuracy of prediction 

equations.  Using prediction equations to monitor change in muscle mass across 

time, or with interventions, has not been explored: although one study was 

longitudinal (Nakamura et al., 2006), its main purpose was not muscle mass 

estimation, but longitudinal assessment of nutritional status of elderly women 

(n=16) in a nursing home over a period of three years. They used only simple linear 

regression from thigh circumference (MRI thigh muscle volume (cm3) = 21xthigh 

circumference (cm) + 979).  Thigh circumferences decreased significantly during 

the three years’ observation period p<0.05. However, correlation between the two 

measurements, thigh circumference and MRI thigh muscle volume using the 

previously mentioned equation was very low (R2 =0.12).   

Measuring skeletal muscle mass is of growing importance both clinically and 

epidemiologically. There are many published papers on deriving and validating 

anthropometric prediction equations to estimate whole body or regional skeletal 

muscle mass. It is important to critically evaluate the quality of the research 

already completed. The choice of a reference method is the main obstacle, looking 

at the studies that derived and validated anthropometric prediction equations 

which were not included in this systematic review.  There are  studies that used 

DEXA as the reference method (Pereira et al., 2013) (Sanada et al., 2006). As 

described earlier some MRI studies used regional MRI measurements to count for 

whole body MRI as the reference method. On the other hand, many studies in the 

literature used BIA as the field method (Pietilainen et al., 2013, Bosaeus et al., 

2014).  These studies were not included in the systematic review, due to the 

limitations of BIA already discussed in chapter 1. Not much research has been 
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published since the publication of this systematic review.  Encouraging signs that 

there is research interest in this area is reflected by the citation of this paper 

seven times. 

2.6 Conclusion: 

This systematic review identified only two studies that developed prediction 

equations for whole-body muscle mass or lean body mass, as measured by MRI, 

from simple anthropometric measures.  Several studies have generated 

anthropometric prediction equations for regional/limb muscle mass, which mostly 

include limb circumferences and local skin-fold thickness, but evidence is 

insufficient that limb muscle mass can be used to estimate whole-body muscle 

mass. 

Studies differed in participant characteristics, BMI, age, gender, and measurement 

methodology, and do not provide firm enough evidence to propose an 

anthropometric method which could be applied routinely as a reliable indicator to 

estimate muscle mass or to diagnose sarcopenia.  However, some of the regression 

equations show promise and demand further investigation, particularly through 

validation in separate populations and assessment of changes across time and 

during illness. The variables included in the simpler anthropometric approaches 

(body weight, height, age, sex, race and limb circumferences) are readily available 

widely in population health surveys, with R2 of the best published equations 

ranging from 0.62-0.86. Though the practical equations retrieved from this 

systematic review were encouraging, especially that of (Lee et al., 2000b), the 

validations conducted have not involved separate populations using measurements 

by independent investigators, and the equations do not take advantage of trunk or 

limb girths which are widely available in health surveys and which other studies 

have shown to offer valuable prediction of muscle mass. 

Developing a simple, clinically-friendly definition of sarcopenia with unified 

criteria for its diagnosis would help its detection and management (Janssen, 2011). 

Early identification of muscle loss, to target management, could be of great 
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clinical benefit to combat frailty and falls, to improve quality of life with chronic 

illnesses and with aging. 

Authors responsibilities: 

Yasmin Algindan: designed the systematic review, systematically searched for 

relevance of papers and contributed to the manuscript with the guidance of her 

supervisors Michael Lean, Catherine Hankey and Lindsay Govan; Wilma Leslie: was 

the second independent reviewer searching papers for relevance and also reviewed 

the manuscript prior to submission.  

 

 

 



 

 

69 

 

 

Table 2-1: MRI images 

Study  Sample 
size 

Sex  Age BMI MRI Scan 
time 

Area/comparison Regional 

Single image Multiple images 

Regional versus whole body:      

Lee, 2004 190 
197 

M 
W 

18-84 
18-88 

29.1±4.3 
28.7±5.5 

1.5 T 30 
min 

Thigh: single images + 
multiple images 
versus whole body 

1-cm thick 
M: R2 = 0.77, SEE = 6.5% 
W: R2 = 0.79, SEE = 7.4% 

31-cm thick, 7 images 
M: R2 = 0.84, SEE = 5.4% 
W: R2 = 0.90, SEE = 5.1% 

Continuous versus discontinuous images: 

Morse, 2007 18 M 23.9±3.4 65-81kg 0.2 T  Thigh: 3 site single 
images versus 11 
contiguous transverse 
MRI scans 

40% of femur length 
R2 = 0.84, SEE = 26.8±5.2% 
50% of femur length 
R2 = 0.93, SEE = 12.5±5.4% 
60% of femur length 
R2 = 0.90, SEE = 9.9±5.7% 

Mathur, 
2008 

18 
22 

M 
W 

56 -78 24.3±2.2 1.5T  Muscle CSA versus 
muscle volume 

†30 % quadriceps: R2 = 0.85 
  80% hamstring:   R2 = 0.56 
  50 % adductor: R2 = 0.59 

Tothill, 2002 8 
2 

M 
W 

23 -49 
24 - 39 

24.3±1.4 
19.6±0.4 

1 T  Torso to feet: single 
and 5 images 
compared to all 
images 

Single mid-thigh 
 
R2 = 0.96, SEE = 207 cm3 

5 slice:R2 = 1.00, SEE = 
42cm3 

 Regional versus whole body and Continuous versus discontinuous images, † highest correlation in each muscle group reported in this table. 
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Table 2-2: Key words used to search the published literature  

Search term Medline  Pub med  Embase  Web of Science Cochrane Library 

Sarcopenia & Anthrop* & MRI 1 1 5 5 0 

“muscle mass” & Anthrop*& MRI 14 22 31 15 1 

“muscle volume” & Anthrop* &MRI 14 18 14 13 0 

“mid-arm circumference” & MRI 1 1 1 0 0 

“arm circumference” & MRI  7 9 14 8 2 

“mid-thigh circumference” & MRI 0 0 0 0 0 

“thigh circumference” & MRI 8 11 8 9 4 

“mid-calf circumference” & MRI 0 0 0 0 0 

“calf circumference” & MRI 4 5 5 3 3 

Total  49 67 78 53 10 

MRI: magnetic resonance imaging 
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Figure 2-1: flow chart of selection of studies, 

 

 

 

 

 

 

 

 

 

 

 

257 results  

(Limits: human studies, adults)  

179 duplicates 

eliminated 

78 full articles         

reviewed 

Reasons for exclusion: 

 No comparison (32) 

 Same study included in 

review (1) Elia et al 

 Reference not MRI(2) 

 Not upper or lower limb 

circumference (23) 

 No prediction equation(1) 

 Case studies (3) 

 Review papers (4) 

Total = 66 

 

12 Meet inclusion 

criteria and included 

in systemic review 
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Table 2-3: Quality Assessment (1. Critical Review) 
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Study purpose √ √ √ *√ √ √ *√ √ √ *√ √ √ 

Literature reviewed  √ √ √ √ √ √ √ √ √ √ √ √ 

Design  (cross-sectional) √ √ √  √ √ √ √ √ √ √ √ 

 Longitudinal     √         

Sample  

 

 Described             √ √ √ √ √ √ √ √ √ √ √ √ 

Justified              

Outcomes Reliability √ √   √ √ √ √ √ √ √  

Validated  √ √ √ √ √ √ √ √  √ √ 

Prediction equation described √ √ √ √ √ √ √ √ √ √ √ √ 

Results reported in statistical significance √ √ √ √ √ √ √ √ √ √ √ √ 

Limitations and bias reported √   √      √   

Appropriate conclusion √ √ √ √ √ √ √ √ √ √ √ √ 

*, developing or validating prediction equation not main purpose of study (check table 2-5 for aim of each study) 
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Table 2-4: Quality assessment (2. Technical assessment, QUADAS) 
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1.Was the spectrum of participant’s representative of the 

patients who will receive the test in practice?  

√ √ √ √ √ √ √ √ √ √ √ √ 

2.Were selection criteria clearly described? √ √ √ √ √ √ √ √ √ √ √ √ 

3.Was the reference standard likely to classify the target 

condition correctly? 

√ √ √ √ √ √ √ √ √ √ √ √ 

4.Was the period between performance of the reference 

standard and the index test short enough to be reasonably 

sure that the target condition did not change between the 

two tests? 

~ ~ ~ ~ √ ~ ~ √ √ ~ ~ ~ 

5.Did the whole selection of the sample receive verification 

using the reference standard? 

√ √ √ √ √ √ √ √ √ √ √ √ 

6.Did participants receive the same reference standard 

regardless of the index test result? 

√ √ √ √ √ √ √ √ √ √ √ √ 

7.Was the reference standard independent of the index test? 

(that is, the index test did not form part of the reference 

standard) 

√ √ √ √ √ √ √ √ √ √ √ √ 
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8.Was the execution of the index test described in sufficient 

detail to permit its replication? 

√ √ √ √ √ √ √ √ √ √ √ √ 

9.Was the execution of the reference standard described in 

sufficient  

detail to permit its replication? 

√ √ √ √ √ √ √ √ √ √ √ √ 

10.Were the index test results interpreted without 

knowledge of the results of the reference standard? 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

11.Were the reference standard results interpreted without 

knowledge of the results of the index test? 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

12.Were the same clinical data available when the test 

results were interpreted as would be available when the test 

is used in practice? 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

13.Were un-interpretable, indeterminate or intermediate 

test results reported? 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

14.Were withdrawals from the study explained? 

 

N/A N/A N/A √ N/A N/A N/A N/A N/A N/A N/A N/A 

** not all participants underwent anthropometric measurements; N/A: not applicable; ~: not reported; √: reported. 
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Table 2-5: Purpose of included studies 

 Author ,year Aim  

1 Chen, 2011 To correlate MRI measured thigh muscle volume with anthropometric measurements and physical functions in Taiwanese elderly 
subjects 

2 Mathur,2008 To examine the relation between volume and muscle cross-sectional area Using MRI and to compare anthropometric  estimations 
and MRI measured  mid-thigh cross-sectional area 

3 Tonson,2008 To determine the relationship between muscle size and maximum isometric strength during maturation. They quantified the 
potential measurement bias produced by anthropometric measurement of local muscle volume compared to MRI. Also they 
determined the difference between muscle size estimated from volume and muscle cross-sectional area measurements in a 
paediatric population  

4 Nakamura,2006 To analyse the nutritional status of Japanese elderly living in a nursing home longitudinally over 3 years by serum albumin, 
anthropometry, and muscle and fat volumes estimated by MRI. 

5 Tothill, 2002  To predict thigh adipose tissue and muscle volumes from anthropometry, to assess the validity of the method by examining the 
various components of the measurements and the assumptions involved using MRI as reference method. 

6 Fuller, 2000 To assess the reproducibility and validity of muscle and adipose tissue volume in thigh and calf predicted using BIA, compared 
with anthropometry against estimates of MRI.  

7 Lee, 2000 To develop and cross-validate anthropometric SM prediction models in healthy adults using MRI as reference method. 

8 Bamman, 2000 To verify whether anthropometry or DEXA estimates of muscle size are valid predictors of plantar flexor maximum voluntary 
contraction strength and could be used in lieu of more sophisticated methods (MRI). Also they compared the association 
between maximum voluntary contraction an three MRI measured muscle size: anatomical, physiological and cross-sectional and 
muscle volume 

9 Knapik, 1996 To develop and validate an anthropometric estimation of thigh muscle cross-sectional area for men and women. 

10 Ross, 1994 To compare regional and total lean tissue, adipose tissue distribution measured by MRI in obese android men and women  

11 Housh, 1995 To derive skin-fold and circumference equations for estimating anatomical CSA of hamstring, quadriceps and total thigh 
muscles;  and to use cross-validation procedures to examine the accuracy of the predicted equations by comparing the CSA 
values to values from MRI. 

12 Baumgartner, 1992 To determine the correlation between anthropometric measurements of subcutaneous adipose tissue and muscle + bone of the 
mid-upper arm and mid-thigh and actual areas estimated by MRI in a sample of elderly women and men . also to estimate the 
amount of over-estimation, if any, of the anthropometric method and the relationship of these errors with indicators of level of 
adiposity 
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Table 2-6: Subject characteristics of included studies 

 Author ,year Gender Age (years)  subjects   BMI or weight 

1 Chen et al, 2011 W 
M 

76 ± 6.0 36  
33 

24.5 ± 3.0 kg/m2 

2 Mathur et al ,2008 W/M healthy 
W/M COPD 

56 - 78 11/9 
11/9 

24.3 ± 2.2 kg/m2  
26.6 ± 4.7 kg/m2 

3 Tonson et al ,2008 M (boys, 
 adolescent, 
 men) 

11.3 ± 0.8 
13.3 ± 1.4 
35.4 ± 6.4 

14   
16 
16 

16.4 ± 1.0 kg/m2 
18.3 ± 3.7 kg/m2 
22.7 ± 2.5 kg/m2 

4 Nakamura et al ,2006 W <60 
>60 

9 
7 

20.5 ± 4.3 kg/m2 
21.0 ± 3.7 kg/m2 

5 Tothill et al, 2002  W 
M 

23 – 49* 10  
9 

19.6 ± 0.4 – 29.5 ± 4.8 kg/m2 
24.3 ± 1.4 – 34.0 ± 1.5 kg/m2 

6  Fuller et al, 1999 W 
M 

41 – 60 
43  - 62 

8  
8 

25.1 ± 5.4 kg/m2 
28.6 ± 5.4 kg/m2 

7 Lee et al , 2000 W 
M 
W  
M 

41 ± 15 
38 ± 12 
43 ± 10 
42 ± 13 

109 
135 
41 
39 

23.8±3.4 kg/m2 
25.2±3.1 kg/m2 
34.8±3.5 kg/m2 
33.8±2.7 kg/m2 

8 Bamman et al, 2000 W (trained) 
W (untrained) 

34 ± 5 
36 ± 8 

7  
32  

55.6 ± 5.0 kg 
67.6 ± 8.8 kg 

9 Knapik et al, 1996 W (trained) 
M (trained) 

21 ± 2.3 
25.2 ± 5.5 

9 
9 

59.6 ± 7.0 kg 
81.6 ± 7.0 kg 

10 Ross et al, 1994 W 
M 

35.9 ± 7.8 
39.1 ± 10.5 

40 
17 

33.4 ± 5.5 kg/m2  
32.0 ± 3.6 kg/m2 

11 Housh et al, 1995 M 25 ± 5 43  81.1  12.8 kg 

12 Baumgartner et al, 1992 W 
M 

80.5 ± 6.2 
77.0 ± 3.8 

17  
8 

23.3 ± 3.8 kg/m2 
26.8 ± 3.6 kg/m2 

BMI: body mass index; COPD: chronic obstructive pulmonary disease; M: men; W: women. 



 

 

77 

 

Table 2-7: anthropometric and MRI measurements  

Author, Year 

D
e
riv

a
tio

n
 

V
a
lid

a
tio

n
 

Circumferences S
F
T 

W
t 

H
t 

A
g
e 

S
e
x 

R
a
c
e 

MRI 

Arm Thigh calf hip Wais
t  

Region  Image  Muscle/lean 

Chen,    2011 √   √   √  √  √ √ * Thigh 
 

Continuous slices muscle(cm3) 

Mathur,    2008  √  √    √      Thigh Mid-thigh CSA muscle(cm3) 

Tonson,   2008  √ √     √      Arm Continuous (5mm thickness, 10mm gap)and 
cross-sectional of the highest area measured. 

muscle(cm3) 

Nakamura,  
2006 

√   √         * Thigh Continuous cross sectional scans at intervals 
of 1 cm 

muscle(cm3) 

Tothill,     2002  √  √    √      Torso to 
feet 

Institution 1: Continuous (10 mm thick, gap 
of 2mm), 
 Institution 2(10 mm thick, gap of 50mm) 

muscle(cm3) 

Lee,          
2000 

√ √ √ √ √   √ √ √ √ √ √ WB Continuous (10mm thick, 40mm gap) muscle(kg) 

Bamman, 2000  ‡   √   √      calf Continuous (5mm thick, 10mm gap) Image 
with anatomical largest cross-section was 
used  

muscle(cm2) 

Fuller,      1999  √  √ √   √      leg Continuous (1cm slices at 5cm intervals)  muscle (cm3) 

Knapik,    1996 √ √  √    √      Thigh  Cross- sectional image Lean(cm3) 

Ross,        1994 √   √  √ √  √     WB Continuous (10 mm thick every 50 mm) Lean (L) 

Housh,    1995 √ √  √    √      Thigh  Cross-sectional image Muscle(cm2) 

Baumgartner, 
1992 

 √ √ √    √      Arm, 
thigh 

Cross-sectional images Lean(cm2) 

*all subjects Asian; ‡muscle; +bone; CSA: cross-sectional area; lean: muscle + bone; WB: whole body; Ht: height; WT: weight; SFT: skin fold thickness. 
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Table 2-8: MRI characteristics of included studies 

*Scans were done in two different centres; † MRI was upgraded; ‡ spectroscopy; ms; millisecond; mm; millimetre; cm: centimetre; -------: not reported; 

TE/TI: echo time/inversion time; TE/TR: echo time/repetition time. 

 

 

 

 

Author ,year MRI 

tesla 

Axial images Matrix 

(pixel) 

Repetition –

time(ms) 

Echo- 

time(ms) 

Scan time Field of view Gap 

thickness 

Slice 

thickness(mm) 

1 Chen et al, 2011 1.5 T1-Weighed 512x384x1 136  4.8  20min 380x285 2.5mm 5 

2 Mathur et al,2008 1.5 T1-Weighed  512x384 650  8  ------- 40cm² 2 – 2.5 cm 5 

3 Tonson et al,2008 1.5 T1-Weighed 512x512 490  12  122 s 200 mm 10mm 5 

4 Nakamura et al,2006 0.5 T1-Weighed ------- 530  15  ------- ------- ------- ------- 

5 Tothill et al , 2002*  1 T1-Weighed 128x256 570  15  ------- 500x500mm 2mm 10 

 0.95 T1-Weighed ------- 1150 12 ------- ------- 50mm 10 

6 Fuller et al, 1999 0.5 T1-Weighed 256x192x2  TE/TR = 17 ------- ------- 48x36cm ------- 10 

7 Lee et al, 2000* 1.5 T1-Weighed ------- 210 17 25 min ------- 40 10 

8 Bamman et al, 2000 ‡ 4.1 ------- ------- 1000  14.5 ------- 256 10mm 5 

9 Knapik et al, 1996 1.4 T1-Weighed ------- 200 22 5 min ------- ------- ------- 

10 Ross et al, 1994†  1.5 T1-Weighed ------- 500/210 20/15 1hr/30m ------- 50mm 10 

11 Housh et al, 1995 1.5 ------- ------- 600 20ms ------- ------- ------- ------- 

12 Baumgartner et al, 

1992 

1.5 T1-Weighed 256x256 1500 Te/ti=20 ------- 20 – 60cm ------- 10 
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Table 2-9: prediction equations included in the systematic review 

 Author ,year Prediction equation R2 SEE % error 

Simple anthropometric prediction equations: 

10 Ross et al, 1994  M: Lean tissue (L) = 0.990 x BW(kg) – 0.542 X waist (cm) – 0.881 x thigh (cm) + 73.12 

W: Lean tissue (L) = 0.501 x BW(kg) – 0.379 x hip (cm) + 43.01 

 D:0.89 

 D:0.62 

2.1L 

2.8L 

3.6% 

6.5% 

7 Lee et al, 2000 SM (kg) = 0.244 x BW (kg) + 7.80 x Ht (m) – 0.098 x age (years) + 6.6 x sex + race – 3.3                                

                                                                                                                                                                             

D:0.86 

V:0.79 

2.8kg 

3.0kg 

------- 

------- 

4 Nakamura et 

al,2006 

Thigh muscle volume (cm3) = 21 x thigh (cm) + 979 D:0.12 ------- ------- 

1 Chen et al, 2011 M: SM (cm3) = 7168.8 – 52.1 x age(years) + 96.5 x BW(kg) – 67.4 x waist(cm) + 47.3 thigh(cm)                 

W: SM(cm3) = 1719.3 – 29.9 x age(years) + 53.5 x BW(kg) + 39.8 x thigh(cm)                                        

C: SM(cm3) = 4226.3 – 42.5 x age(years) – 955.7 x gender(1men, 2women) +45.9 x BW(kg)  + 60.0 

x thigh (cm) 

D:0.68 

D:0.62 

D:0.74 

608.1cm3 

496.0cm3 

581.6cm3 

------- 

-------       

------- 

Corrected for skin-fold thickness  limb circumference prediction equations: 

2 Mathur et al, 2008 Quadriceps muscle CSA = (2.52 x mid-thigh(cm)) – (1.25 x anterior thigh skin-fold(mm)) – 45.13                     

Hamstring muscle CSA   = (1.08 x mid-thigh(cm)) – (0.64 x anterior thigh skin-fold(mm)) – 22.69                       

V:0.057 

V:0.078 

------- 

------- 

------- 

------- 

3 Tonson et al, 2008* Volume 1 = 1/3h (area of wrist +(area of wrist x area of mid-forearm)0.5 + area of mid-forearm 

Volume 2 = 1/3h(area of mid-forearm + (area of mid-forearm x area of elbow)0.5 +area of elbow,      

Volume    = volume 1 + volume2                                            

V:0.90 ------- †20.5% 

 Author ,year Prediction equation R2 SEE % error 

7 Lee et al, 2000 SM (L) = Ht x ( 0.00744 x CAG2 + 0.00088 x CTG2 + 0.00441 x CCG2) + 2.4 x sex -0.048 x age + race 

+7.8                                                                                                                                                           

D:0.91 

V:0.83 

2.2kg 

2.9kg 

------- 

------- 
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5 Tothill et al, 2002  Area of the lean tissue: AL = (circumference of inner tissue  - 2 𝜋 * thickness of superficial 

adipose )2 /4 𝜋 

Lean volume = (A1 + A2 + (A1 x A2)
0.5) x Ht/3 

V:0.95 288cm3 30% 

6 Fuller et al, 1999 Muscle CSA (cm2) = (girth2/4 x 3.14) – (girth x SFT/2) - 6∞ VT:0.35 

VC:0.69 

------- 

------- 

40% 

22% 

8 Bamman et al, 

2000ǂ 

Right calf skin-fold thickness and maximum circumference  V:0.45 ------- ------- 

9 Knapik et al, 1996 Thigh muscle CSA=0.649 x ((thigh circumference/π – fat plus skin thickness)2 – (0.3. bone)2 ) 0.92 10.1 cm2 22%CSA 

11 Housh et al, 1995 Quadriceps muscle CSA = (2.52 x mid-thigh(cm)) – (1.25 x anterior thigh skin-fold(mm)) – 45.13                     

Hamstring muscle   CSA = (1.08 x mid-thigh(cm)) – (0.64 x anterior thigh skin-fold(mm)) – 22.69                       

Total thigh muscle  CSA = (4.68 X mid-thigh(cm)) – (2.09 x anterior thigh skin fold (mm)) – 80.99 

D,V:0.72, 

0.64 

D,V:0.52, 

0.29 

D,V:0.74, 

0.77 

5.4, 7.3 

3.2, 3.7 

9.6, 12.5 

------- 

------- 

------- 

12 Baumgartner et al, 

1992 

Muscle plus bone area = (limb circumference– 𝜋skin-fold thickness/2)24𝜋 VT:0.43 

VC:0.69 

------- 

------- 

41.5% 

46.8% 

* Jones and Pearson method; ∞for thigh and calf bone with its constituents’ marrow assumed 6cm2; ǂ this method was developed by Gurney et al in 16 
men 1973; M: men; W: women; C: men and women; CSA: cross sectional area; CAG: corrected arm girth; CTG: corrected thigh girth; SFT skin fold 
thickness; Ht: height; SM: skeletal muscle; D: derivation, V: validation, VT: validation thigh, VC: validation calf, A1 and A2: area at the top and bottom of 
section, -------: not reported  
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Table 2-10: Reliability and observers error 

Author ,year Anthropometry MRI 

# 
subjects  

# of 
measurement 

# of 
observers  

Intra-
observer* 

Inter-
observer 

# 
subjects 

# of 
measurement 

# of 
observers 

Intra-
observer* 

Inter-
observer 

1 Chen, 2011  averaged  ---------- ---------- ----------  ---------- 1 <1.0% ---------- 

2 Mathur,2008  3   3.2% at 
5cm, 4.2% 
at 10cm† 

    2  0.4% 

3 Tonson,2008  ---------- ---------- ---------- ----------  ---------- ---------- ---------- ---------- 

4 Nakamura,2006  ---------- 2 ---------- ----------  ---------- ---------- ---------- ---------- 

5 Tothill, 2002   2 1 0.9% thigh 
girth, 3.5% 
thigh 
skinfold 

0.6-0.8% thigh 
girth, 4% thigh 
skinfold‡ 

 1 2  2.2% 

muscle∝ 

6  Fuller, 1999   4 
(different 
range of 
experienc
e) 

Thigh: girth 
0.6, SFT 
2.5, CSA 1.7  
Calf: girth 
0.5,SFT 8.2, 
CSA 3.2 

Thigh: girth 
1.2, SFT 27.5, 
CSA3.5.  
Calf: girth 
1.2,SFT 19.6, 
CSA8.2 

  2 (one 
experienc
ed one 
not) 

0.08% 
experienc
ed, 0.63% 
less 
experienc
ed  

0.11% 

7 Lee, 2000  3 >1 **  3 men, 3 
women 

1 series of 7 
images 

2 0.34±1.1% 1.8±0.6% 
2.0±1.2%

ǂ 

8 Bamman, 2000  2 2        

9 Knapik, 1996 18 3 2  Thigh girth: 
1.2 men, 4.2 
women. SFT: 
29.7men, 25.4 
women¶ 

18  3   

10 Ross, 1994           

11 Housh, 1994 43  1 Reliability 
r>0.90 

 15   r>0.96  
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12 Baumgartner, 
1992 

25 ↑     2 2 >0.98  
 

*coefficient of variation of repeat assessment of the same image,† average % error between thigh circumference measured by MRI and tape,‡ comparable 

measurements from (Carter and Ackland,1994),∝Coefficient variation, ǂ inter-laboratory difference since measurements were taken in two different labs, 

**matched (Lohman,1988) Anthropometric standardization manual, ¶ in this table between ratters variation on day two reported only, more details in 

article.³ Knapik study for MRI measurements only between day and subject was calculated, no between observer reported, ↑Technical error for 

anthropometric measurements <0.6cm for upper arm and mid-thigh girths, <1.2 mm for triceps and mid-thigh skinfolds. 



 

 

83 

 

 

 

 

 

Chapter 3 

3 Derivation and validation “muscle mass” 

 

 

 

 

 

 

 

 

 

 

 



 

 

84 

 

 

 

Derivation and validation of simple equations to 

predict total muscle mass from simple 

anthropometric and demographic data 

 

Yasmin Y Al-Gindan, Catherine Hankey, Lindsay Govan, Dympna Gallagher, Steven B 

Heymsfield, Michael EJ Lean 

 

This chapter has been published in the American Journal of Clinical Nutrition.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

85 

 

3.1 Abstract 

Background: Muscle mass reflects and influences health status.  Its reliable 

estimation would be of value for epidemiology. 

Objectives:  To derive and validate anthropometric prediction equations to 

quantify whole-body skeletal muscle mass (SM) in adults. 

Design: Derivation-sample: 423 subjects (227 women) aged 18–81 years; BMI I5.9–

40.8 (kg/m2). Validation-sample: 197 subjects (105 women), aged 19–83 years; BMI 

15.7–36.4 (kg/m2). Both samples were of mixed ethnic/racial groups.  All 

underwent whole-body magnetic resonance imaging to quantify SM (dependent 

variable for multiple regressions) and anthropometry (independent variables). 

Results:  Two prediction equations with high practicality and optimal derivation-

correlations with SM were further investigated to assess agreement and bias using 

Bland-Altman plots, and validated in separate datasets: Including race as a 

variable increased R2 by only 0.1% in men and 8% in women 

Men: SM(kg) = 39.5 + 0.665 body-weight(kg) - 0.185 waist(cm) - 0.418 hips(cm) - 

0.08 age(years) (derivation: R2= 0.76, SEE=2.7kg; validation: R2= 0.79, SEE=2.7kg).  

Bland-Altman plots demonstrate moderate agreement in both derivation and 

validation analyses.  

Women: SM(kg) = 2.89 + 0.255 body-weight(kg) - 0.175 hips(cm) - 0.038 age(years) 

+ 0.118 height(cm) (derivation: R2= 0.58, SEE=2.2kg; validation: R2= 0.59, 

SEE=2.1kg).  Bland-Altman plot showed negative slope, indicating a tendency to 

overestimate SM among women with smaller, and underestimate among those with 

larger, muscle masses.   

Conclusion: Anthropometry predicts SM better in men than women.  Equations 

including hip-circumference showed agreement between methods, with predictive 

power similar to that of BMI to predict fat-mass, with potential for applications in 

groups, epidemiology and survey settings. 
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3.2 Introduction 

As well as its obvious roles in posture control and capacity for movement, skeletal 

muscle has important metabolic functions, all influence health and wellbeing. 

Variations in muscle mass and its functional capacity thus affect physical security 

and metabolic factors related to cardiovascular risk (Atlantis et al., 2009).  

Skeletal muscle mass (SM) can vary for several reasons.  It usually reaches a peak 

in early adult life, with differences between individuals of presumed genetic origin 

as well as training effects, and declines with advancing age (Visser, 2013).  

Reductions in SM, with loss of physical and metabolic functions, occur through 

local injury, denervation, systemic disease and chronic inflammation, and as a 

result of aging combined with a sedentary lifestyle.    

Despite widespread recognition that low SM mass and strength, or ‘sarcopenia’, 

has major clinical and epidemiological importance, its diagnosis, and thus research 

into its clinical and public health consequences, is hampered by the lack of any 

agreed simple method to assess SM (Buffa et al., 2011, Lukasaki, 2005a). Both 

muscle mass and strength are two important aspects of sarcopenia (Cruz-Jentoft et 

al., 2010, Fielding et al., 2011), but these components need to be measured or 

estimated reliably and unified in agreed criteria, maintaining both sensitivity and 

practicality.  

Total body mass and its major constituents (total body fat, SM, etc) can be 

measured accurately by modern imaging methods and then correlated with height, 

weight, and circumferences for field use.  Anthropometric measurements have 

many advantages, (simple, quick, safe, non-invasive, cheap, need only low skill 

levels, give immediate results), provided they are shown to be sensitive and 

specific predictors (Lee et al., 2001).  We have previously developed 

anthropometric prediction equations for total body fat content, which were found 

to depend strongly on waist circumference (Lean et al., 1995): this work gave rise 

to key diagnostic criteria for metabolic syndrome (Han et al., 1995).  An 

agreement on a method to quantify muscle mass, in addition to muscle strength, 

would be a step towards better identification of sarcopenia, at least at a 
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population level.  Our systematic review (Al-Gindan et al., 2014b) identified only 

one published anthropometric method to estimate whole-body muscle mass as 

measured by MRI (Lee et al., 2000a), they developed two equations that were both 

cross-validated by the same investigators in a separate subject-group from the 

same population.  One used height, gender, race, limb circumferences (arm, thigh 

and calf) and skin-fold thicknesses.  The need for skin-fold measurement limits 

practical application.  The second equation used more widely available simpler 

anthropometric variables: SM (kg) = 0.244 × BW(kg) + 7.80 × Ht(m) - 0.098 × 

age(years) + 6.6 × sex + race - 3.3.  High correlations (R2 = 0.86, P< 0.0001, and 

SEE = 2.8kg) were seen in the derivation study in non-obese subjects, and in their 

validation among obese subjects (R2 = 0.79, P < 0.0001, SEE = 3.0kg) (Lee et al., 

2000a).  However, the term for race is specific to US categories and these strong 

correlations may have exaggerated the predictive value for individuals as the 

equations included the wide ranges afforded by combining the sexes. 

The aim of the present study was to derive, and to evaluate for possible use in 

clinical and/or epidemiological settings, prediction equations for SM estimation, 

using simple anthropometric variables and whole body MRI as the reference 

method.  We validated the derived prediction equations, and also the previously 

published SM prediction equation of (Lee et al., 2000a) in an independently 

measured sample.  

3.3 Materials and Methods  

Data included in the derivation and validation studies were collected from adult 

subjects in whom the same measurements had been made by different 

investigators, in studies conducted at New York Obesity Nutrition Research 

Center’s Body Composition Unit, St. Luke-Roosevelt Hospital, New York.   For both 

anthropometric and MRI measurements, readers were blinded.  Race/ethnicity was 

determined by self-report and included declaration of race/ethnicity for parents 

and grandparents. Variables were created for four race/ethnicity categories: 

Caucasian (C), African American (AA), Hispanic (H), and Asian (A).  All studies 

obtained written informed consent and were approved by the Institutional Review 
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Board of St. Luke’s-Roosevelt Hospital (Heymsfield et al., 2007a, He et al., 2009a, 

Bosy-Westphal et al., 2013b).   

3.3.1 Subjects 

Derivation study sample: Subjects 423 (227 women), aged18–81 years, BMI I5.9–

40.8 (kg/m2) participated in several related studies between 2000 and 2004 

(Heymsfield et al., 2007a). Subjects were classified as having no known or 

diagnosed diabetes, cancer, heart disease, or any health conditions that would 

affect body composition or fat distribution; they were ambulatory, weight-stable 

(less than 2 kg weight change in previous 6 months) adults who underwent testing 

that included a whole-body MRI scan.  Four subjects were excluded from this 

sample because of technically poor or incomplete MRI scans. 

Validation study sample: Data sets from two previous studies (He et al., 2009a, 

Bosy-Westphal et al., 2013b) were combined, giving a total of 197 subjects (105 

women, 92 men).  Subjects were recruited (Study 1: 2001 to 2004 (He et al., 

2009a), Study 2: 2011 (Bosy-Westphal et al., 2013b) through advertisements in 

local newspapers, internet, and on flyers posted in the local community.  A body 

mass index (BMI) (in kg/m2) upper limit of 37 was set to accommodate the MRI 

scanner capacity limitations.  Participants were required to be ambulatory non-

smokers, free of medical conditions or metabolic characteristics (abnormal thyroid 

or cortisol concentrations) that could affect the variables under investigation, 

weight stable (<2 kg change within past 6 months), and not regularly engaging in 

vigorous exercise.  The subjects varied in age (18–83 years) and BMI (15.7–

36.4kg/m2) (Table 3-1).  This final sample, carefully checked to ensure that there 

was no duplication of subjects between the derivation and validation samples, or 

between the two validation samples, was used in validating our derived equations 

and those of (Lee et al., 2000a). 
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3.3.2 Methods 

Magnetic resonance imaging (MRI):  All data were collected in the same laboratory 

by an analysis team (n = 3) for derivation and validation samples, for the 2011 

study a single MRI analyst performed the measurements, therefore the MRI 

methods used are identical for both studies.  Total-body skeletal muscle volume 

was measured using whole-body multi-slice MRI.  Subjects were placed on a 1.5-T 

scanner (6X Horizon; General Electric, Milwaukee, WI) platform with their arms 

extended above their heads.  Images were created using a T1-weighted spin-echo 

sequence with a 210-ms repetition time and an echo time of 17 ms.  The 

intervertebral space between the fourth and fifth lumbar vertebrae (L4—L5) was 

set as the point of origin for all scans.  Transverse images (10 mm slice thickness) 

were then obtained across the entire body, with between-slice gaps of 40 mm.  

Each whole-body scan thus included ≈30–40 cross-sectional images.  Images were 

analyzed by using SLICEOMATIC software (TomoVision Inc, Montreal, Canada) for 

segmentation and calculation of cross-sectional tissue areas. Total-body skeletal 

muscle volume estimates were converted to mass using an assumed density of 1.04 

kg/L for skeletal muscle.  The technical error for repeated readings of the same 

adult whole-body scans by the same analyst of MRI-derived skeletal muscle volume 

is small with coefficient of variation considered similar to that of CT- scanning at 

1.4% (Mitsiopoulos et al., 1998a). The intra-class correlation coefficient between 

analyses for total-body MRI-derived skeletal muscle from the same adult subjects 

was 0.99.  For the validation samples, the technical error for 3 repeated readings 

of the same scan by the same observer for the MRI-derived SM was 1.9% (Song et 

al., 2004a). 

Anthropometric measurements: Three technicians were trained in body 

composition laboratory, they obtained all anthropometric data. Body weight was 

measured to the nearest 0.1 kg using a balance beam scale (Weight Tronix, New 

York, NY) with the subject wearing a hospital gown. A wall-mounted stadiometer 

(Holtain, Crosswell, Wales) was used to measure standing height to the nearest 

0.1cm.  Anthropometric circumferences were obtained using a heavy-duty inelastic 

plastic fiber tape measure (Gulick II Tape Measure, Fischer Scientific): waist was 
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measured midpoint between the lowest rib and the upper border of the iliac crest 

(Wang et al., 2003b); hips at the level of the pubic symphysis and the greatest 

gluteal protuberance; mid-arm at the mid-point between the lateral tip of the 

acromion and the most distal point on the olecranon; mid-thigh at the mid-point 

between the inguinal crease and the proximal border of the patella; and the 

maximum girth of the calf. 

3.3.3 Statistical analyses 

All statistical analyses were carried out using Minitab ® 15.1.30.0.  Datasets had 

all previously been checked and cleaned for errors of data entry, but were 

explored to confirm that all data-ranges were plausible.  Multiple linear 

regressions generated equations, separately for males and females, to predict 

whole body SM mass measured by MRI.  Eight anthropometric variables were 

considered of interest, on grounds of practicality for routine clinical and 

epidemiological work: age, weight, height, and circumferences (hip, waist, thigh, 

arm and calf).  Forward and backward stepwise regression analysis was 

accomplished (alpha to enter 0.15, alpha to remove 0.15) using the eight 

variables.  Analyses were carried out using four sets of variables (age, body-

weight, height, hip and waist), (age, body-weight, height, hip, waist and mid-

thigh), (age, body-weight, height, hip, waist, mid-thigh and mid-arm) and (age, 

body-weight, height, hip, waist, mid-thigh, mid-arm and mid-calf) the highest R2 

value of each set of stepwise regression was used for further investigation.  Bland-

Altman plots were used to explore distributions of errors (Bland and Altman, 

1999b).  The best of the equations obtained from the derivation sample were then 

applied in a separate validation sample, for external validation. Bland-Altman 

plots were also created in the validation sample, using the predicted SM values and 

observed values of SM from MRI, to determine levels of agreement between 

predicted and true MRI estimates of SM. To investigate the effect of adding the 

variable ‘Race’ (as applied in mixed US populations) to the equation, we used the 

derivation study sample, with the addition of the variable (Race) to our best 

derived equations for both men and women. Given that we have a categorical 

value (Race), ANCOVA general linear model was used. To compare between 
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models, we used coefficient of variation (CV). CV was calculated as the ratio of 

the standard error of the estimate (SEE) to the mean of the dependent variable 

(%). 

3.4 Results  

Subject characteristics, including the MRI, anthropometric data and % of each 

racial group, are shown on (Table 3-1). 

Derivation Study:  Linear regressions of each variable against MRI whole body SM 

are shown in (Table 3-2).  The correlations of single variables with MRI SM were 

stronger for men than for women against almost all variables, except for height 

and waist.  Body weight was the variable with the highest correlation with MRI SM 

(R2 = 0.54 and 0.39) for men and women, respectively.  

Stepwise regressions of all variable combinations showed greater correlations for 

men than for women (R2=0.76, 0.58 respectively).  The single best equation for 

both men and women was used for further analysis on the basis of correlation 

strengths (Table 3-3, Table 3-4), for further evaluation.  In men, mid-arm 

circumference was a stronger predictor than in women and the opposite was true 

for mid-thigh circumference.  Height was a stronger predictor for women than 

men.  All the most powerful prediction equations included hips circumference as a 

significant independent variable. 

Male equation: In the derivation analysis (Figure 3-1A) agreement between 

methods was assessed in relation to MRI-measured vs predicted estimates, with a 

strong correlation R2 = 0.76, SEE 2.7kg, CV = 8% and significant slope (p-value < 

0.001) (for values of 25kg and 35kg, CVs = 11% and 8% respectively). The addition 

of the race (Figure 4-1C) variable using ANCOVA general linear model did not 

advantage agreement or correlation: R2 increased by only 1.2%, both SEE and CV 

remained the same and there was a significant slope. 

Distributions of errors were evaluated from Bland-Altman plots (Figure 3-1B and 

Figure 3-1D), a significant negative relation exists (P = 0.001). Width of the 95% 
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prediction intervals (Figure 1B), was 10.3kg (95% PI: -4.2, 6.1) for a fitted value of 

25kg, and 10.3kg (95% PI: -5.6, 4.7) for a fitted value of 35kg.   

Validation of our derived men equation (Figure 3-1E) showed higher correlation R2 

= 0.79, SEE = 2.7kg, CV = 9% and significant slopes (P < 0.001) than the derivation 

analysis, also adding race (Figure 3-1G) did not increase value of the equation. 

Bland-Altman plots (Figure 3-1F and H) were better compared to the derivation 

analysis with no relation between mean and difference (P = 0.285 and 0.289). 

Significant constant bias was observed for equations without and with race (limits: 

7.1, -3.7 and 6.7, -4.1 respectively), the 1-sample t-test was significant (P = 

0.000), with limits of agreement calculated using SD.  Using the same data to 

validate (Lee et al., 2000a) equation (Figure 3-1I and Figure 3-1J), correlations 

were lower R2 = 0.75 and SEE was higher at 2.9kg, CV remained the same, with 

significant slope (P<0.001). Bland-Altman plot showed clear negative relation (P < 

0.001), indicating an overestimation for those in the lower range of muscle mass 

and underestimation for those with larger values of muscle mass. 

Female equation: In general, women (Figure 3-2A and Figure 3-2C) had lower 

correlations and SEE than men. In the derivation analysis R2 was 0.58, SEE =2.2kg, 

CV = 11%, and significant slope (p < 0.001) (for values of 15kg and 25kg, CVs = 15% 

and 9% respectively).  Adding race to the equation increased R2 to 0.61 and SEE 

and CV decreased by 0.1kg and 1% respectively, and with significant slopes 

(p<0.001). Bland-Altman plots (Figure 3-2B and Figure 3-2D) showed negative 

relationships (P < 0.001) for the equation with and without race. For women with 

SM in the lower range, the prediction equations tended to overestimate SM, while 

they underestimated SM for women in the higher range.  For example, the 

prediction equation overestimates by 8kg (95% PI: -2.5, 5.5), for an average 

woman whose total muscle mass is 15kg, while it underestimates by 8kg (95% PI: -

5.5, 2.5), for an average woman whose total muscle mass is 25kg. 

As in men, higher R2 values for both equations with and without race (Figure 3-2E 

and Figure 3-2G) were seen after validation (R 2= 0.67 and 0.59 respectively) while 

SEE decreased to 2.1kg and CV remained the same (11, 10%) in both equations 



 

 

93 

 

(significant slopes were still observed p-value<0.01) in Bland Altman plots (Figure 

3-2F and Figure 3-2H).  In women validation analysis showed  

a clear negative relationship (P = 0.000) (for values of 15kg and 25kg, CVs = 15% 

and 9% respectively). Validation with Lee et al equation (Foster et al., 1984) 

(Figure 3-2I), using the same validation sample we used on our equations, showed 

lower correlations than our equation with race and higher than our equation 

without race (R2 = 0.63). Nevertheless, our validations of the Lee equations’ SEE 

and CV were almost the same (SEE = 2.1kg, 1.9kg, 2.2kg) and (CV = 10%, 10% 

and11%) for validation of Lee et al (significant slopes p-value<0.001), as our 

equations with and without race, respectively. However, there was no negative 

relation in the Bland-Altman plot (Figure 3-2J) (P = 0.236) and mean difference 

was 2.6 kg in the validation of Lee et al equation (95% limits of agreement: 7.2, -

2). The 1-sample t-test was significant, with limits of agreement calculated using 

SD. 

In order to improve the agreement between our predictions and the MRI 

measurements for women we performed 2 forms of calibration.  Firstly, as 

suggested by Bland-Altman (Bland and Altman, 1999b), logarithmic transformations 

of both the predicted measure and MRI measure were plotted in the Bland-Altman 

plot (figure not included).  However, this did not account for the negative relation 

between mean and difference in the Bland-Altman plot.  Secondly, we performed a 

calibration of our equations.  This involved regressing the predicted values against 

the MRI values and adjusting the new equation to remove the negative relation 

seen in the Bland-Altman plots for the derivation analysis.  The calibration was 

successful in the Bland-Altman plot for the derivation analysis, where the negative 

relation between mean and difference of the measures no longer existed.  

However, using the calibrated equation did not account for the negative 

relationship in the Bland-Altman plot for the validation dataset.  Therefore, for 

women with SM in the lower part of the range, the prediction equations tend to 

overestimate SM by 8kg on average, while they underestimate SM for women at the 

higher end of the range by 8kg on average. 
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Combining men and women, Lee et al equation (Lee et al., 2000a) (Figure 3-2K) 

increased R2 to 0.85, SEE = 2.6kg. Bland-Altman plots (Figure 3-2L) did not have a 

significant slope (P = 0.229), although there was evidence of slight bias: mean 

difference 2.77 and 95% limits of agreement (8, -2.4). 

3.5 Discussion  

The aim of this study was to develop and validate simple equations for estimation 

of SM, sufficiently practical for use in epidemiological settings.  Although CT 

scanning was used in the past (Kvist et al., 1988a), MRI is now established as the 

preferred reference method to measure SM (Heymsfield et al., 1997).  DXA (Dual-

energy X-ray Absorptiometry) scanning has been used as a screening tool for low 

muscle mass (Goodman et al., 2013). However, it is a relatively expensive method, 

only an indirect estimate of MRI measurement, and impractical for whole-body 

muscle-mass estimation for large-scale health surveys or routine clinical work. 

As whole-body MRI is time-consuming and expensive, a number of studies have 

focussed on single limbs and produced anthropometric prediction equations for 

regional muscle volumes based on single slices of MRI for limb-muscle areas 

(Knapik et al., 1996, Baumgartner et al., 1992, Housh et al., 1995a).  Although 

single-slice based estimates may relate to physical function and possibly identify 

malnutrition, regional muscle masses have not been established to relate in a 

direct way to whole-body muscle mass.  Lee et al, compared MRI-measured 

regional and whole-body muscle mass and found that skeletal muscle values 

obtained from a single scan of the thigh region was a reasonably good indicator of 

whole body muscle mass (R2 = 0.77, 0.79; SEE = 7.4,5.4%) in men and women, 

respectively.  Using seven consecutive images of the thigh region was only 

marginally better (R2 = 84%, 90%; SEE = 5.4, 5.1). No existing study provides a 

method to convert limb SM to whole-body SM, although one study has 

demonstrated correlations between regional and whole body SM using MRI 

measurements (Lee et al., 2004). In attempts to improve the prediction of regional 

muscle mass, several studies have adjusted limb circumferences with the overlying 

skinfold thickness (Fuller et al., 1999, Tonson et al., 2008a, Knapik et al., 1996, 
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Lee et al., 2000a).  Incorporating skinfold thickness appears to improve estimation 

of regional muscle mass, for example in the context of malnutrition, and thus 

potentially the prediction of whole-body muscle mass.  However, skinfold 

measurement takes time, requires training and may introduce high individual 

variability (Martin et al., 1992, Tothill and Stewart, 2002).  Skinfold thickness 

measurements are not made routinely in most population health surveys. 

We have explored the potential to use the type of anthropometric measurements 

made routinely in large-scale health surveys, to predict SM as measured by MRI.  

There appears to have been only one published study where this was attempted, 

by Lee et al (Lee et al., 2000a). Our validation of Lee et al’s equations concur with 

the original publication, which showed R2 = 0.75, SEE = 2.3 in men and 0.63, 2.2 in 

women (R2 = 0.86 and SEE = 2.8kg for both men and women). Combining men and 

women, as (Lee et al, 2000) did, will increase the number of adults studied and 

also the range in body composition.  This increased R2 to 0.85 but without 

improving the prediction of individual SM, as shown by the errors on Bland-Altman 

plots (Figure 3-2K and L).  The standard deviation of 3.4 kg indicates the spread of 

measurements SM for females, which is less than that for males at 5.5kg (Table 

3-1).  The combined group (Figure 3-1I and Figure 3-2I and Figure 3-2K) standard 

deviation was 8.9kg.  The relative proportion of variation (i.e. the R2 value) 

explained by the prediction equation is greater in males (0.75) and the combined 

group (0.85) than that for females (0.63).  This does not necessarily mean the 

prediction equation was less accurate for females than for males, it may simply 

reflect that the relative amount of variation that could be explained in females 

was less. 

The validations of our new equation gave higher R2 and SEE values for men 

compared to our validation of the Lee et al equation. On the other hand, in 

women, our validation of Lee et al equation (Table 3.4) gave higher R2 and SEE 

than our new equation.  Our new equations included only anthropometry, whereas 

Lee et al used race as a variable. Incorporating a term for race increased R2 of our 

validations by only 0.1% in men and 7.9% in women, indicating that most of the 

variance associated with race was accounted for by simple anthropometric 
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measurements especially in men.  Attributing race to individuals in mixed 

populations can be potentially difficult and misleading, so there is a practical 

advantage for equations that do not require this term. 

Our equations all used simple measurements, which can be made quickly with 

modest training in epidemiological settings.  Indeed, these measurements are 

already being made routinely in most national population health surveys.  A 

consistent finding in the equations (Table 3.4) we examined is that the prediction 

of SM was substantially less accurate for women than for men. This was also the 

case for the published equations to predict lean body mass (Ross et al., 1994a) and 

SM (Lee et al., 2000a).  This gender difference probably reflects the much smaller 

muscle mass of women, and a greater range in variability in other tissues, 

particularly fat mass.  Ross et al, 1994 found body weight and hip circumferences 

contributed strongly to predictions of MRI whole body measured lean tissue in 

obese android women.  In men a combination of thigh and waist circumferences 

and body weight gave the strongest prediction.  Among our derived equations from 

stepwise regression, those with the highest correlations with SM (R2 = 0.73- 0.76 

for men and R2 = 0.54-0.58 for women) all included hip circumference as a 

variable.  This finding supports previous reports suggesting that variance in hip 

circumference may reflect differences in muscle mass (Han et al., 1998, Lissner et 

al., 2001a) thereby explaining some of the health associations of ‘waist/hip ratio’.  

Waist/hip ratio is not a useful indicator of total body fat or fat distribution (Tothill 

et al., 1996b, Burton and Lean, 2013) but it does predict type 2 diabetes, insulin 

resistance and coronary heart disease in cross-sectional studies (Seidell et al., 

2001a). The explanation may, therefore, be that reduced SM through illness or 

inactivity (e.g. in people developing type-2 diabetes) results in a lower hip 

circumference and thus a greater waist/hip ratio, rather than a greater body fat 

content with increased waist. 

The present study allows a degree of confidence, greater for men than for women, 

for estimation of total body muscle mass from simple measures that can be 

collected in analysis surveys (Table 3.4).  Our equations showed moderate to high 

correlations with MRI-measured whole body SM, and moderate SEE and CV. 
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However, there are limitations to the study. From our published systematic review 

(Al-Gindan et al., 2014b), SEE was within the ranges seen in other SM 

anthropometric prediction studies, but we found few studies that used simple 

anthropometric measurements to estimate total body muscle mass using whole 

body MRI as the reference method, which limited our capacity to compare 

equations.  

In general, our equation seemed to be more sensitive in men, and the (Lee et al., 

2000a) equation was more sensitive for women. There is a significant negative 

relationship between the mean difference and the average value in the Bland-

Altman plots in women.  The negative relationship crosses over the zero line, 

meaning the mean difference will be pulled more towards zero (i.e. lower values 

are positive while upper values are negative) suggesting a better agreement than 

actually exists. The samples for derivation and validation studies were drawn in 

different years 2000-2004 for the derivation study subjects and (2001-2011) for the 

validation study subjects, which give some confidence for the validity of the 

equations when applied in other groups.  However, wider application must be 

made with caution, as subject numbers are always restricted in studies using 

whole-body MRI, and our population samples were also of mixed racial types in 

North America. Confirmation is needed that our prediction equations do not give 

rise to systematic errors if applied to groups of subjects with restricted ranges of 

ages, or BMI, or of a single racial type.  In particular, it is possible that the 

different body compositions of some Asian and pacific groups will demand specific 

prediction equations for muscle mass, as they do for body fat (Wen et al., 2011, 

Chen et al., 2011a).  The difference in R2 from adding ethnicity to our prediction 

equations was minimal, so for general use in mixed populations, where an 

individual’s ethnicity is often mixed and hard to verify, we favour using a simpler 

equation without ethnicity.   

Our samples included few subjects who were obese or severely obese, in particular 

elderly-obese, among whom relative paucity of muscle (sarcopenic obesity) is an 

emerging health concern (Han et al., 2011).  Data to confirm anthropometric 

estimation of muscle mass in obese and elderly groups are therefore needed. A 
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limitation that could not be avoided was age and BMI distribution of the population 

analysed. The derivation data had 12% women with age >65 years and 22% BMI ≥30, 

in men 5% were above >65 years and 10% ≥ 30 BMI. In the validation analysis 9.5% 

women were >65 years of age and 6.6% men. BMI 14% men and 13% women had BMI 

above 30. Thus, we are unable to come to a confident conclusion on how the 

equations work on older people and for sarcopenia obesity. 

It will also be valuable to establish the effects of factors such as illness and weight 

change on the reliability of anthropometric SM estimation in future longitudinal 

studies.  Finally, while our equations have been validated and appear to offer 

value for epidemiology and in groups, their predictive power is insufficient for 

clinical use or among individuals. The R2 values for predicting muscle mass in this 

study are similar to those models that use BMI to predict fat mass (Lean et al., 

1996).  

3.6 Conclusions 

Anthropometric prediction equations for whole-body muscle mass were derived 

and externally validated using separate populations.  Predictions have greater 

predictive power and less error for men than for women.  Predictive equations 

with the greatest R2 included hip circumference which emerged as a consistent 

predictor of SM.  Two equations (including for men: body weight, waist, hip and 

age; women: body weight, hip, age and height) have been identified as offering 

high practicality.  They lack predictive power for use in individuals or for clinical 

purposes, but have sufficient accuracy for use to estimate skeletal muscle mass in 

groups and for research and survey purposes within mixed populations, without 

need to adjust for race.   
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Figure 3-1: derivation and validation of men equation 
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Figure 3-1(men): Column 1 (A, C, E, G, I) are scatterplots of MRI measured SM (y-axis) against 

estimated SM from prediction equations, while column 2 (B, D, F, H, J) are Bland-Altman plots of 

difference between predicted and MRI-measured SM (y axis) against their mean (x axis).  Plots (A, 

B) and (C, D) represent results from the derivation of our equation without race (PE1m) and with 

race (PE1Rm), respectively.  Plots (E, F) and (G, H) represent results from the validation of our 

equation without race (VPE1m) and with race (VPE1Rm).  Plots (I, J) represent validation of Lee at 

al equation (VPELm).  For the plots with no significant slope, Bland-Altman plots show the mean 

difference with limits of agreement around the mean difference a test for bias (mean difference 

significantly different from 0) using the one-sample t-test. For the plots with significant slope, 

Bland-Altman plots show the PI around the regression line.  P-values represent a test of significance 

of the slope. 
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Figure 3-2: derivation and validation of women equations 
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Figure 3-2(women): Column 1 (A, C, E, G, I, K) are scatterplots of MRI measured SM (y-axis) against 

estimated SM from prediction equations, while column 2 (B, D, F, H, J, L) are Bland-Altman plots of 

difference between predicted and MRI-measured SM (y axis) against their mean (x axis). Plots (A, B) 

and (C, D) represent results from the derivation of our equation without race (PE1w) and with race 

(PE1Rw), respectively.  Plots (E, F) and (G, H) represent results from the validation of our equation 

without race (VPE1w) and with race (VPE1Rw).  Plots (I, J) represent validation of Lee at al 

equation for women (VPELw) and plots (K, L) represent validation of Lee at al equation for men and 

women combined. For the plots with no significant slope, Bland-Altman plots show the mean 

difference with limits of agreement around the mean difference a test for bias (mean difference 

significantly different from 0) using the one-sample t-test. For the plots with significant slope, 

Bland-Altman plots show the PI around the regression line.    P-values represent a test of 

significance of the slope. 
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Table 3-1: Subject characteristics and variables used in this study,  

 Derivation Sample Validation Sample  

 Men (n = 196) Women (n = 227)  Men (n = 92) Women (n =105) 

Age(y) 39.2 ± 13.9 44.4 ± 16.2 43.3 ± 15.9 44.1 ± 16.4 

Body weight(kg) 79.8 ± 12.7 67.1 ± 15.1 77.4 ± 14.1 66.3 ± 10.7 
Height (cm) 176.0 ± 6.8 162.0 ± 7.2 174.5 ± 7.3 162.2 ± 5.9 

BMI (kg/m2) 25.4 ± 3.7 25.6 ± 5.5 25.4 ± 4.0 25.2 ± 4.1 

MRI SM (kg) 31.8 ± 5.5 19.7 ± 3.4 28.8 ± 5.8 20.0 ± 3.4 

MRI fat(kg) 18.4± 7.9 25.6±12.4 ------------- --------------- 

Hip circumference(cm) 99.7 ± 7.5 101.2 ± 11.9 97.5 ± 7.9 99.6 ± 8.5 

Waist circumference(cm) 87.6 ± 10.7 80.1 ± 13.4 88.3 ± 12.1 82.0 ± 11.1 
Caucasian (%) 41.4 42.9 36.6 33.6 

African American (%) 29 31.9 26.9 36.4 

Hispanic (%) 15 14.5 16.1 14.5 
Asian (%) 14.5 11.1 20.4 15.5 

Measurements reported as mean ± standard deviation, ---- MRI fat mass not measured in validation studies, BMI: body mass index (kg/m2), MRI: magnetic   

resonance imaging, SM: skeletal muscle mass 
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Table 3-2: Explained variance (R2) from linear regressions  

Variable Men (R2)% Women (R2)% 

 
Age  

 
5.2 

 
1.9 

Body weight  53.9 38.8 

Height  22.3 30.4 

BMI  31.4 18.8 

Race 1 15.7 15.3 

Waist circumference 11.6 16.7 

Hip circumference 27.9 22.6 

Mid-arm circumference 51.6 25.1 

Mid-thigh circumference 36.9 27.7 

Mid-calf circumference   44.5 13.2 

   Explained variance (R2) in MRI whole body skeletal muscle mass, from linear regressions in the derivation study.                                                                                   
 1Race included four categories as defined among the US population, Caucasians, African-American, Asian, and Hispanic  
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Table 3-3:  Prediction equations derived from stepwise regression  

 Prediction Equations: Men R2 (%)  

no race 

R2(%) 

including 

race 

PE1m1 MRI (SM) = 39.5 + 0.665 body weight (kg) - 0.185 waist (cm) - 0.418 hip (cm) - 

0.0805 age (yrs)                 

76 77.12 

PE2m MRI (SM) = 38.4 + 0.581 body weight (kg) - 0.194 waist (cm) - 0.387 hip (cm) - 

0.0738 age (yrs) - 0.0222 height (cm) + 0.279 mid-arm (cm) 

75.8 76.2 

PE3m MRI (SM) = 5.4 + 0.355 body weight (kg) - 0.406 hip (cm) - 0.108 age (yrs) + 0.0998 

height (cm)+ 0.410 mid-arm (cm)+ 0.299 mid-calf  (cm)      

75.6 76.0 

PE4m MRI (SM) = 40.0 + 0.710 body weight (kg) - 0.394 hip (cm) - 0.294 waist (cm) 73.0 74.1 

 Prediction Equations: Women R2 (%) no race R2(%) race 

PE1w3 MRI (SM) = 2.89 + 0.255 body weight (kg) - 0.175 hip (cm) - 0.0384 age (yrs) + 

0.118 height (cm)       

58 61.54 

PE2w MRI (SM) = - 1.51 + 0.219 body weight (kg) - 0.217 hip (cm) - 0.0252 age (yrs) + 

0.136 height (cm) + 0.133 mid-thigh (cm)                 

57.5 60.0 

PE3w MRI (SM) = - 4.33 + 0.214 body weight (kg) - 0.231 hip (cm) + 0.153 height (cm) + 

0.148 mid-thigh (cm)                               

56.3 58.0 

1: prediction equation chosen for further analysis, 2: Prediction equation: MRI = 38.809 + 0.62855 body weight (kg) - 0.17843 waist (cm) - 0.38782 hip(cm) 

- 0.08351 age(yrs) -1.13176 (Asian) + 0.56004 (African American) + 0.21902 (Hispanic) - 0.3527 (Caucasian).  PE1m: prediction equation 1 for men. PE2m: 

prediction equation 2 for men. PE3m: prediction equation 3 for men. PE4m: prediction equation 4 for men. 

3: prediction equation chosen for further analysis, 4: Prediction equation: MRI = 3.995 +0.22249 body weight (kg) -0.15890 hip(cm) -0.045317 age(yrs)+ 

0.11523 height (cm)-0.79309 (Asian) + 1.34820 (African American) -0.50311 (Hispanic) + 0.052003(Caucasian). PE1w: prediction equation 1 for women. 

PE2w: prediction equation 2 for women. PE3w: prediction equation 3 for women.   
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Table 3-4: Derivation and validation analysis summary  

  Men Women 

 Equation R2 SEE(kg) CV for 
mean 
(%) 

Mean 
difference  
(kg)±SD* 

 R2 SEE(kg) CV for 
mean 
(%) 

Mean 
difference  
(kg)±SD* 

D
e
riv

a
tio

n
 

Prediction equation 1  0.76 2.7 8 NA  0.58 2.2 11 NA 

Prediction equation 1 with race 0.77 2.6 8 NA  0.61 2.1 10 NA 

V
a
lid

a
tio

n
 

Prediction equation 1 
 

0.79 2.7 9 1.7 (2.7)  0.59 2.2 11 NA 

Prediction equation 1 with race 
 

0.79 2.7 9 1.3 (2.7)  0.67 2.0 10 NA 

Prediction equation Lee (11) 0.75 2.9 9 NA  0.63 2.1 10 2.6 (2.3) 

 
Men and women combined 
 
Prediction equation Lee (11)  
men + women 

0.85 2.6 10 2.8 (2.6)  

Derivation and validation analysis summary of present prediction equations and summary of validation of Lee et al (11) prediction equations for men and 
women separate and combined; R2: correlation evaluating the variability explained by the model; SEE: Standard error of the estimate measuring how 
different the raw data from the prediction line; sum of square error; CV: coefficient of variation the ratio of the standard error of the estimate (SEE) to 
the mean of the dependant variable and measures the relative closeness of the prediction to the actual value; Mean difference ± SD*: mean difference 
between SM values as predicted using the equation and observed MRI values for SM ± standard deviation; equations with slope (significant relation 

between mean and difference) are (NA) not applicable 
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4.1 Abstract    

Background:  The reference body composition measurement method at an organ 

level is now MRI.  Practical estimations of total adipose tissue mass (TATM), total 

adipose tissue fat mass (TATFM) and of total body fat (TBF) are valuable for 

epidemiology, but validated prediction equations based on whole body MRI are not 

currently available. 

Objectives:   Derivation and validation of new anthropometric equations to 

estimate MRI-measured TATM /TATFM/TBF, and comparison with existing 

prediction equations based on older methods. 

 Design:  Derivation-sample: n=416 (222 women), aged 18–88 years; BMI 15.9-40.8 

(kg/m2). Validation-sample: n=204 (110 women), aged 18–86 years; BMI 15.7-36.4 

(kg/m2). Both samples included mixed ethnic/racial groups.  All underwent whole-

body MRI to quantify TATM (dependent variable) and anthropometry (independent 

variables). Prediction equations developed using stepwise multiple regression were 

further investigated for agreement and bias, before validation in separate 

datasets. 

Results:   Simplest equations with optimal R2 and Bland-Altman plots 

demonstrating good agreement without bias in validation analyses;  

Men: TATM (kg) = 0.198 weight (kg) + 0.478 waist (cm) - 0.147 height (cm) - 12.8 

(Validation: R2 =0.79, CV=20%, SEE=3.8 kg).  

Women: TATM (kg) = 0.789 weight (kg) + 0.0786 age (y) - 0.342 height (cm) + 24.5 

(Validation: R2 =0.84, CV=13%, SEE=3.0 kg).  

Adding a ‘race’ variable did not add predictive power.  
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Published anthropometric prediction equations, based on MRI and CT-scans, 

correlated strongly with MRI-measured TATM: (R2=0.70 – 0.82). Estimated TATFM, 

assuming TATFM = TATM x 0.8, correlated well with published prediction equations 

for TBF based on UWW (R2= 0.70 – 0.80), with a mean bias of (2.5-4.89) which was 

corrected with log transformation in most equations. 

Conclusion:  New equations, using simple anthropometric measurements, 

estimated MRI-measured TATM with high correlation and good agreement across a 

wide range of fatness, and provide predictions of TATFM comparable with TBF 

equations based on underwater weighing. 
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4.2 Introduction  

In clinical and epidemiological settings, where practicality and low cost are 

dominant issues and using a reference measurement method is not possible, 

reliable practical methods are needed to estimate body composition.  

Anthropometry has been used widely for many years as a simple method to assess 

body composition, and specifically total body fat content, which relates 

importantly to metabolic disease risks.  Body mass index (BMI), skin-fold 

thicknesses, limb and trunk circumference, dual-energy X-ray absorptiometry 

(DEXA) and bio-impedance methods have all been used in clinical settings and 

epidemiological surveys. Each of these methods has strengths and limitations, but 

all need to be calibrated against a reference method. In the past this was most 

commonly densitometry, using underwater weighing (UWW), or CT imaging, but 

magnetic resonance imaging (MRI) is now the preferred reference method for body 

composition measurements at organ level (Heymsfield et al., 1997). 

It is important to recognise that MRI can only quantify body fat from measurement 

of adipose tissue not including head, feet, hand and forearm, in addition total 

body fat includes fat within other organs such as muscle and liver.  It is 

conventionally assumed that adipose tissue comprises 78.3% total body fat in lean 

subjects and 83.2% in obese (Garrow, 1975) (Figure 1-4). 

Estimates of total adipose tissue from MRI and CT scans have been compared with 

methods designed to estimate total body fat such as UWW and DEXA (McNeill et 

al., 1991, Sohlstrom et al., 1993, Kullberg et al., 2009). These studies used the 

well-established assumptions that adipose tissue has a density of 0.92kg/L and 

contains 80% fat (Shen et al., 2003a, Garrow, 1975) (Figure 1-4). 

Using densitometry measurements to estimate total body fat as % body weight, 

Deurenberg et al (Deurenberg et al., 1991b) used BMI, age and sex as variables to 

predict fat mass among 1229 men and women with wide range of age (7 – 83 years) 

and BMI (13.9 – 49 kg/m2). Anthropometric estimates of % body fat in adults had 

high correlations with UWW measured total body fat (R2 = 0.80) that were 

supported by cross-validations (Deurenberg et al., 1991b).  However, this study 
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combined men and women, possibly therefore giving misleadingly high 

correlations, and it assessed bias by showing the relation among difference 

between observed and predicted against observed total body fat measurement.  

This assessment method could show an association when there is none (Bland and 

Altman, 1995). A better analysis method, as described by Bland and Altman, is to 

plot the difference against the average of observed and predicted (Bland and 

Altman, 1995). 

In 1996, Lean et al developed regression equations from simple anthropometric 

measurements to predict total body fat calculated from body density measured by 

underwater weighing in 84 women and 63 men. The best simple prediction 

equations, with least bias, and validated in a separate population sample were 

from waist circumference adjusted for age (R2 0.69 for men, 0.75 for women).  

This study also validated (for the first time) the widely-used skin-fold 

measurement predictions of total body fat published by Durnin and Womersley in 

1974, and found that waist circumference provided almost identical predictive 

power (Lean et al., 1996).  

As well as predicting total body fat, waist circumference performed well in 

predicting total adipose volume in men, Ross et al, (1992) investigated the 

relationship between anthropometric variables and MRI measured total adipose 

tissue volume in 27 healthy men. The combination of waist circumference and 

waist: hip ratio explained 91% of variation in total adipose tissue volume. 

Nevertheless, this equation was not cross validated nor was agreement between 

methods investigated. 

Kvist et al, (1988) developed whole-body adipose tissue predictive equations from 

whole body computed tomography (CT) in 17 men and 10 women. After cross-

validation in 7 men and 9 women, total adipose tissue volume was best predicted 

by weight and height with standard error of difference ≤ 11%.  The very small 

sample size is a serious limitation in this study; also women with ulcerative colitis 

were pooled with healthy women, then allocated to derivation and cross-validation 
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group. There was no assessment of agreement or biases (Bland and Altman, 

1999a). 

The present study was therefore designed to derive new prediction equations, 

using simple anthropometric variables to estimate TATM from MRI measurements, 

and to validate them in an independent sample. We also compared the most 

widely used existing prediction equations for total body fat, estimated from 

underwater weighing with estimates based on our MRI measurements of adipose 

tissue. 

4.3 Materials and Methods 

Data included in the derivation and validation studies were collected from adult 

subjects in whom the same measurements had been made by different 

investigators, in studies conducted at New York Obesity Nutrition Research 

Center’s Body Composition Unit, St. Luke-Roosevelt Hospital, New York.   For both 

anthropometric and MRI measurements, readers were blinded (subject’s names 

and anthropometric data were anonymized).  Race/ethnicity was determined by 

self-report and included declaration of race/ethnicity for parents and 

grandparents. Variables were created for four race/ethnicity categories: Caucasian 

(C), African American (AA), Hispanic (H), and Asian (A). 

All studies obtained written informed consent and were approved by the 

Institutional Review Board of St. Luke’s-Roosevelt Hospital (Heymsfield et al., 

2007b, He et al., 2009b, Bosy-Westphal et al., 2013a).   

4.3.1 Subjects 

Derivation study sample: A total of 416 (222 women) subjects aged 18–88 years; 

BMI 15.9–40.8 (kg/m2) participated in several related studies between 2000 and 

2004 (Heymsfield et al., 2007b). Subjects were classified as having no known or 

diagnosed diabetes, cancer, heart disease, or any health conditions that would 

affect body composition or fat distribution. All were ambulatory, weight-stable 

(less than 2 kg weight change in previous 6 months) adults, who underwent 
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investigations that included anthropometry and whole-body MRI scanning.  Four 

subjects were excluded from this sample because of technically poor or 

incomplete MRI scans. 

Validation study sample: Data sets from two previous studies (He et al., 2009b, 

Bosy-Westphal et al., 2013a) were combined, giving a total of 204 subjects (110 

women, 94 men).  Subjects were recruited (Study 1: 2001 to 2004(He et al., 

2009b), Study 2: 2011(Bosy-Westphal et al., 2013a)) through advertisements in 

local newspapers, internet, and on flyers posted in the local community.  A body 

mass index (kg/m2) upper limit of 37 was set to accommodate the MRI scanner 

limitations.  Participants were required to be ambulatory non-smokers, free of 

medical conditions or metabolic characteristics (abnormal thyroid or cortisol 

concentrations) that could affect the variables under investigation, weight stable 

(<2 kg change within past 6 months), and not regularly engaging in vigorous 

exercise.  The subjects varied in age (18–86 years) and BMI (15.7–36.4kg/m2) 

(Table 4-1).  This final sample was carefully checked to ensure that there was no 

duplication of subjects between the derivation and validation samples. The 

validation sample was used to validate the new derived equations and the existing 

equations of Lean et al (Lean et al., 1996), Deurenberg et al (Deurenberg et al., 

1991b), Kvist et al (Kvist et al., 1988a) and Ross et al (Ross et al., 1992). 

4.3.2 Methods 

Magnetic resonance imaging (MRI):  All data were collected in the same laboratory 

by an analysis team (n = 3) for derivation and validation samples. For the 2011 

study a single MRI analyst performed the measurements. A 1.5 tesla MRI scanner 

(6x HORIZON; General Electric, Milwaukee) was used for both studies (Song et al., 

2004b).  Whole-body MRI was carried out to identify and quantify total body and 

regional adipose tissue (Shen et al., 2003b). The procedure involved acquisition of 

approximately 40axial images, of 10mm thickness at 40mm intervals throughout 

the whole body (Song et al., 2004b). Cross-sectional images were analysed for 

subcutaneous adipose tissue, visceral adipose tissue, inter-muscular adipose tissue, 

total adipose tissue by three trained observers with the use of VECT image analysis 

software (Slice-O-Matic, Montreal, Canada), and total volumes were calculated as 
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reported by Shen (Shen et al., 2003a). Intra-class correlation coefficients (CIs) for 

agreement among multiple readers were subcutaneous adipose tissue 0.99 (0.81–

1.0), and visceral adipose tissue 0.95 (0.58–0.99) (Song et al., 2004b) 

Anthropometric measurements: Three technicians, who were trained in the body 

composition laboratory, reported all anthropometric data. Body weight was 

measured to the nearest 0.1 kg using a balance beam scale (Weight Tronix, New 

York, NY) with the subject wearing a hospital gown. A wall-mounted stadiometer 

(Holtain, Crosswell, Wales) was used to measure standing height to the nearest 

0.1cm.  Anthropometric circumferences were obtained using a heavy-duty inelastic 

plastic fiber tape measure (Gulick II Tape Measure): waist was measured as the 

midpoint between the lowest rib and the upper border of the iliac crest(Wang et 

al., 2003a); hips at the level of the pubic symphysis and the greatest gluteal 

protuberance; mid-arm at the mid-point between the lateral tip of the acromion 

and the most distal point on the olecranon; mid-thigh at the mid-point between 

the inguinal crease and the proximal border of the patella; and the maximum girth 

of the calf). The procedures outlined for anthropometric measurement sites and 

training were as outline in the “Anthropometric Standardization Reference 

Manual” (Martorell, 1988) 

4.3.3 Statistical analysis 

Datasets had all previously been checked and cleaned for errors of data entry, but 

were initially explored to confirm that all data ranges were plausible.   

4.3.3.1 Assumptions for computations 

Total Adipose Tissue Mass: Measured whole-body adipose tissue volume, reported 

in litres, was converted to kilograms by multiplying volume of tissue by the 

reference density of adipose tissue: (0.92 g/L) (Garrow, 1975).   

Total adipose tissue fat mass: Determined assuming the proportion by weight of 

the lipid fraction in adipose tissue to be 0.80 (Sohlstrom et al., 1993, Wang et al., 

2003a, Snyder et al.).   
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4.3.3.2 Prediction equation development 

Multiple linear regressions generated equations, separately for males and females, 

to predict TATM measured by MRI.  Eight anthropometric variables were considered 

of interest, on grounds of practicality for routine clinical and epidemiological 

work: age, weight, height, and circumferences (hip, waist, thigh, arm and calf).  

Forward and backward stepwise regression analysis was performed (alpha to enter 

0.15, alpha to remove 0.15) using the eight variables.  The highest R2 value of each 

set of step wise regression was investigated further. Bland-Altman plots were used 

to explore distributions of errors (Bland and Altman, 1999a). Log transformation 

was used to resolve skewness of the sample and investigate any relation in the 

Bland Altman plot,  by plotting the difference between the natural logarithm of 

MRI-measured TATM and the natural logarithm of predicted TATM, against natural 

logarithm of the mean of the MRI-measured and predicted TATM (Bland and 

Altman, 1999a). To investigate the effect of adding the variable ‘Race’ (as applied 

in mixed US populations) to the equation, we used the derivation study sample, 

with the addition of the variable (Race) to our best derived equations for both men 

and women. Given that we have a categorical value (Race), ANCOVA general linear 

model was used. 

The best derived prediction equations were validated using linear regression 

against whole body MRI measurements in a separate validation sample. Bland 

Altman plots were also created in the validation sample to determine levels of 

agreement between predicted and true MRI adipose tissue mass. 

Standard error of the estimate (SEE) was used to define the accuracy of prediction 

equations. Judgement is based on comparison with similar published equations 

(Deurenberg et al., 1991b, Lean et al., 1996, Ross et al., 1992, Kvist et al., 1988a). 

To compare models, coefficient of variation (CV) was calculated as the ratio of the 

standard error of the estimate to the mean of the dependant variable. To 

investigate limits of agreements between MRI-estimated TATM and prediction 

equations, 95% confidence interval (95% CI) was used. 
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4.3.3.3 Association with other adipose tissue & body fat equations: 

Two total adipose tissue prediction equations one was developed using CT scan 

(Kvist et al., 1988a) and the other used MRI (Ross et al., 1992), these equations 

were compared with our TATM derived prediction equation. 

Two total body fat UWW derived prediction equations (Deurenberg et al., 1991b, 

Lean et al., 1996) were compared with our derived TATM after converting it to 

TATFM using the following equation: [TATFM = TATM x 0.80]. 

All statistical analyses were carried out using Minitab ® 16.2.0.0. 

4.4 Results 

Subject characteristics are shown in (Table 4-1). Linear regression of single 

variables against MRI-measured TATM (Table 4-2) showed generally stronger 

correlations for women than for men, except mid-calf circumference and waist/hip 

ratio. 

4.4.1 Equations for TATM: 

4.4.1.1 Derivation of prediction equations for TATM 

Best equation for men (P1TATM): The best variables after step-wise regression in 

men were body weight, waist and hip. Multiple regression gave high correlations R2 

= 0.82, SEE 3.4kg and CV 18% with narrow95% CI (17.5, 18.5) for an 18 kg adipose 

tissue measurement, yet 95% PI was high (11.2, 24.8) (Figure 4-1A). Bland Altman 

plots showed negative relation P = 0.004 (Figure 4-1B), however after log 

transformation this relationship was no longer present P = 0.728, and the negative 

slope no longer exists (Figure 4-5A). Limits of agreement based on 1-sample t test 

were (95%CI=-0.03, 0.04). Adding race as a variable to the new equation did not 

affect the results for men (data not included). 

Simplest prediction equation in men (P2TATM): The simplest prediction equation 

for TATM, providing a high predictive power in men included body weight, waist 
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and height. In Bland Altman skewness was resolved after log transformation 

(Figure 4-5B). There was no statistical difference between the best and simplest 

equation in men. (Figure 4-1C, Figure 4-1D), (Table 4-3). 

Best equation for women (P1TATM): From step-wise regression, age, body weight, 

height and hip circumference gave best correlations with TATM. As in men, 

multiple regression gave high correlation R2 = 0.89, with moderate SEE 4.2kg and 

CV 16%, 95% CI did not vary much with fatness, from (95% CI:19.3, 20.6) at the 

lower end 20kg TATM, however 95% PI was high (11.6, 28.4). At the upper end of 

adipose tissue mass 35kg TATM (95% CI: 34.2, 35.7 and 95%PI: 26.6, 43.4) (Figure 

4-2A). Bland Altman plots showed a mean difference between predicted and 

measured close to zero (-0.002), (Figure 4-2B). There was a slight negative 

correlation P = 0.013, no longer present after log transformation P = 0.804 (Figure 

4-5C). Limits of agreement based on 1-sample t test were (95%CI = -0.021, 0.029). 

Adding the race variable did not change results (data not included). 

Simplest prediction equation in women (P2TATM): The simplest equation in women 

included body-weight, age and height.  Predictive power was almost identical to 

the best equation: R20.88, SEE 4.2kg and CV 16% (Figure 4-2C) (Table 4-4) 

skewness was resolved after log transformation and 95% CI was the same as 

P1TATM in women (Figure 4-2D, Figure 4-5D). 

4.4.1.2 Validation of derived equations to predict TATM 

Validation of our best equations gave high correlations for both men and women 

(0.80 and 0.84 respectively). SEE for men was slightly higher than women (3.0kg 

versus 3.7kg) (Figure 4-3A and Figure 4-4A). CV decreased by 4% in women and 

increased by 2% in men. Limits of agreement in men was (95%CI: 24.7, 26.7 and 

95%PI: 18.3, 33.1) for women (95%CI: 24.1, 25.3and 95%PI: 18.6, 30.7). Bland 

Altman plot for women showed a slight positive relation P = 0.04, which was 

resolved after log transformation P = 0.08 (Figure 4-4B, Figure 4-5E). No skewness 

was seen in Bland Altman plots for men, so there was no need for transformation 

(P = 0.67). There was a slight mean underestimation (-1.3kg) compared to MRI 

measured TATM in men.95% CI of the log transformed equations in women based 
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on 1-sample t test were (95%CI = -0.023, 0.032), in men limits of agreement based 

on 1-sample t test without log transformation were (95%CI:-2.4, -0.5) (Figure 4-3B 

and Figure 4-4B). 

Validation of the simplest equations, without the variable hip, equations also 

showed very similar results to the best equation for both men and women (Figure 

4-3C, 4-3D, 4-4C, 4-4D). In men mean underestimated by -0.57kg. In women 

sample was skewed, after log transformation bias was no longer present (Figure 

4-5 F). 

Validation of published equations to predict TATM of (Kvist et al., 1988a) (P-

Kvist) 

The prediction equations originally derived and validated by Kvist et al, 1988 using 

CT scan and based on a mixed group of healthy adults and patients with ulcerative 

colitis were: 

Men: total adipose tissue (L) = 1.36 weight/height - 42.0 (R2= 0.93) 

Women: total adipose tissue (L) = 1.61 weight/height – 38.3 (R2= 0.96) 

Correlations with our estimates based on the MRI measurements were greater in 

women than men (R2 = 0.82, 0.70 respectively, however SEE was high (4.6 and 3.2 

in men and women respectively) limits of agreement (95%CI: 24.5, 27.1 and 95%PI: 

16.6, 34.9). The CV was higher in men than women (27% versus 12%) (Figure 4-3M 

& Figure 4-4M). Bland Altman plots revealed significant biases, with significant 

positive relationships between differences and the average of observed and 

predicted in women, which could not be corrected by log transformations. From 

the Bland Altman plot limits of agreement in 18kg fat men (95%CI: -3.9, -1.8 and 

95%PI: -12.9, 7.1), in 30kg fat men limits of agreement were (95%CI: -3.3, 0.3 and 

95%PI: -11.6, 8.7). 

These results indicate substantial bias and error (Figure 4-3N and Figure 4-4N). 
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Validation of published equation (TATM) of (Ross et al., 1992) (P-Ross, men) 

Ross et al derived a prediction equation from 27 healthy men, using MRI-measured 

adipose tissue total adipose tissue (L) = 1.003 x waist circumference – 56.475 x 

waist hip ratio – 21.364 (d: R2 = 0.91). Our validation of this equation showed good 

correlations and reasonable agreement R2 = 0.81, SEE = 3.6 and CV =24%. There 

was no relationship in Bland Altman plots to indicate bias, but there was a 

consistent underestimation:  mean difference -5. Limits of agreement using 1-

sample t test (95%CI: -5.5, -4.0) 95%PI from Bland Altman plots (-12.02, 2.57) 

(Figure 4-3O, Figure 4-3P). 

4.4.2 Equations to estimate TATFM 

To estimate TATFM, total adipose tissue mass (TATM) was converted to total 

adipose tissue fat mass using the factor 0.8(Sohlstrom et al., 1993, Wang et al., 

2003a, Snyder et al.)  TATFM = TATM × 0.8.   

Men (P1TATFM, P2TATFM): correlations were high in both equations with and 

without hip circumference (R2 = 0.82 and 0.79) for P1TATFM and P2TATFM 

respectively, SEE and CV (2.8, 3.0) and (18%, 20%) (Figure 4-1E and Figure 4-1G). 

The width of 95% CI was 1.4 in both P1TATFM and P2TATFMand the width of 95%PI 

was 11.9 and 12.2 respectively, for an 18kg measurement of TATFM. In Bland 

Altman plots mean difference was close to zero (-0.12 and 0.00) with slight bias (P 

= 0.003, 0.001) that was corrected by log transformation (P = 0.603, 0.137) 

respectively (Figure 4-1F and Figure 4-1H and Figure 4-5G, Figure 4-5H). 

Validation of men TATFM equations showed high correlations for both equations 

with and without hip circumference (R2 = 0.80, 0.79 respectively) and SEE (3.0) 

and CV (20%) for both equations. Limits of agreement of 18kg measured TATFM 

(95%CI: 18.1, 19.5 and 95%PI: 12.9, 24.8) in P1TATFM and (95%CI: 17.5, 18.9 and 

95%PI: 12.1, 24.3) in P2TATFM. No bias seen in Bland Altman plots, limits of 

agreement based on 1-sample t test are (95%CI= -1.75, -0.51) and (95%CI = -1.10, 

0.17) respectively (Figure 4-3E, F, G, H). 
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Women (P1TATFM, P2TATFM): No difference in correlation, SEE and CV between 

best and simplest TATFM prediction equation (Figure 4-2E and G). Bland Altman 

plots showed slight bias (P = 0.013, 0.008) resolved by log transformation (Figure 

4-2F and H and Figure 4-5 I and J). Our validation of women’s adipose tissue fat 

mass equations showed high correlations (R2 = 0.84) and good SEE (2.4, 2.5) and CV 

(12%, 13%) no bias in Bland Altman plots (95%CI: -0.5, 0.6 and 95%PI: -5.1, 5.2). 

Limits of agreement based on 1-sample t test were (95%CI = -0.30, 0.70) and 

(95%CI = -0.13, 0.89) in P1TATFM and P2TATFM respectively. 

Association with published equations to predict total body fat of (Lean et al., 

1996) (P-Lean)) 

Estimates of TATFM from MRI were compared with the simplest prediction 

equations for total body fat, derived and validated using underwater weighing by 

(Lean et al., 1996). 

Men total body fat (%) = 0.567 waist (cm) + 0.101 age (y) – 31.8 (d: R2=0.78, v: 

R2=0.69). 

Women total body fat (%) = 0.439 waist (cm) + 0.221 age (y) -9.4 (d: R2= 0.70, v: 

R2=0.75). 

Correlations were higher in men (R2 = 0.80) than women (R2= 0.76), and SEE was 

3.0 kg for both men and women (Figure 4-3 I, Figure 4-4 I).   

Assuming that TATM comprises 80%fat we estimated TATFM by multiplying TATM by 

0.80, and related them with Lean et al, estimates of total body fat, which showed 

mean overestimation of TATFM by 2.53kg in men and 4.89kg in women (Figure 

4-3J, Figure 4-4J). There was some skewing (P= 0.000), Bland Altman plots 

showed relationships between mean and difference, which persisted after log 

transformation (P <0.001) in men, but not in women (P = 0.188 after log 

transformation) (Figure 4-5K) 95%PI: -0.09, 0.56.  Limits of agreement based on 1-

sample t test in women was (95%CI = 0.197, 0.259). In men with lower values of 
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TATFM (18kg) 95%CI = (1.12, 3.56), and men in higher values of TATM (35kg) 95%CI 

= (5.68, 9.45). 

Association with published equations to predict total body fat of (Deurenberg 

et al., 1991b) (P-Deurenberg) 

Published equations from (Deurenberg et al., 1991b) were 

total body fat (%) = 1.20 x BMI + 0.23 x age(y) – 10.8 x gender– 5.4. (1 for men, 0 

for women) 

The Deurenberg equation was more reliable in women than men in terms of R2 

(0.78 versus 0.70), SEE (2.9 kg versus 3.6 kg) and CV (12% versus 19%) (Figure 4-3K 

and Figure 4-4K) limits of agreement based on 95%PI: 7.6, 22.0 and 9.7, 21.2 for 

men and women respectively. Our derived estimates of TATFM showed mean 

overestimation of TATFM as predicted by Deurenberg et al, by 3.52 in men and 

4.13 in women.  There was some skewing in the Bland Altman plots revealing a 

minor negative relation in both men and women (P=0.04), (P <0.01) (Figure 4-3L, 

Figure 4-4L), which was removed by log transformation (Figure 4-5 L & M). Limits 

of agreement based on one sample t test were (95%CI = 0.15, 0.27 and 0.16, 0.22) 

in men and women, respectively. 

4.5 Discussion  

BMI is still the most popular method for classifying fatness and thinness, despite its 

rather weak correlation with body fat content (especially in men), and its failure 

to distinguish fat mass from muscle mass; which have opposite implications for 

health and well-being.  Body fat is better estimated using the sum of four skin-fold 

thickness measurements (Durnin and Womersley, 1974), but this method requires 

training and has a poor record for inter-observer variability (Wang et al., 2000b, 

Al-Gindan et al., 2014b).  As a single-measure, waist circumference alone is 

simpler, and the most reliable circumference measurement, which gives similar 

prediction of total body fat to skin-fold measurements (Lean et al., 1995, Han et 

al., 1995).  These methods were all based on estimation of total body fat from 
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underwater weighing using the two-compartment model. Adipose tissue, which is 

conventionally assumed to contain 80% of total body fat (Shen et al., 2003a), can 

be directly and accurately measured using modern imaging methods.  Equations 

have been published using anthropometry based on CT scanning in a very small 

study (Kvist et al., 1988a) but MRI has been considered the reference for adipose 

tissue measurement for many years now, and anthropometric prediction equations 

have not previously been validated against whole body MRI.   

We have explored the use of simple anthropometric measurements that are made 

routinely in health surveys to predict TATM as estimated by MRI as the reference 

method. We assessed new equations against four previously published methods 

based on different reference methods, (Lean et al., 1996) and (Deurenberg et al., 

1991b) for total body fat based on underwater weighing (Kvist et al., 1988a) for 

TATM based on CT and (Ross et al., 1992) for TATM based on MRI but never 

validated (Table 4-3, Table 4-4). The different reference methods have never 

been directly compared in the same subjects, but the published anthropometric 

equations derived and validated using these different methods all gave broadly 

similar results when applied to MRI measurements in the present study. The new 

MRI-derived equations had similar R2 but showed less errors and biases than the 

existing published methods. For published TATM equations in men, both Kvist and 

Ross equations underestimated TATM by -2.86 and -4.72 respectively. In women 

Kvist et al equation overestimated TATM by 3.08. As for total body fat equations 

for both Lean et al and Deurenberg et al, equations overestimated TATFM in men 

showing better results after log transformation in women. 

The equations provide sufficient prediction of TATM in both sexes for many 

epidemiological purposes, with R2 better than BMI, but there are inevitably 

limitations. Women showed consistently stronger correlations between 

anthropometry and TATM than men (Table 4-2). This may be expected as women 

have greater fat masses than men, and greater variation between individuals which 

allow higher R2 values.  The converse applies for prediction equations to estimate 

whole body muscle mass, where men have consistently higher correlations with 
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anthropometry (Al-Gindan et al., 2014a). For women, the main predictor of TATM 

was body weight while for men it was waist circumference (Table 4-2). 

Comparisons of the new equations with those of (Lean et al., 1996) and (Ross et 

al., 1992), which both included waist circumference, showed higher correlations 

for men (Table 5.3). On the other hand, the Deurenberg et al (1990) and Kvist et 

al(1988) equations, which used BMI and weight/height respectively as variables, 

both showed higher correlations in women than men (Table 4-4). 

The relationship between BMI and body fat has been studied extensively (Gallagher 

et al., 1996, Forbes, 1987). In our samples, BMI showed reasonable correlation in 

linear regression with measured TATM in women (R2 = 0.82) but only moderate 

correlation in men (R2 =0.66).  When BMI was added into step-wise regression it did 

not appear as significant within the best equations (Table 4-3).  Similarly, using 

equations based on BMI, (Deurenberg et al., 1991b), found only moderate 

correlations with estimated TATFM (0.70 – 0.78).  

Waist: hip ratio has shown conflicting results in its relations to metabolic illness 

and to measured adipose tissue (Burton et al., 2012). Ross et al, (1992) reported 

that waist: hip ratio correlated strongly with MRI-measured total adipose tissue, 

but R2 was only 72%. Adding waist circumference increased correlation 

substantially, to explain 91% of variance. The same was seen in our data set. After 

stepwise regression the best variables for men included waist, waist: hip ratio and 

body weight R2 = 0.82, SEE = 3.4 (figures not included), compared to our equations 

no significant difference was seen, in terms of practicality we decided to use 

equations without waist: hip ratio, In the present study, waist: hip ratio was not a 

significant predictor of TATM in women (linear regression R2= 0.025). 

The best equations for both men and women included hip circumference.   The 

additional predictive power from including hips was relatively small, probably 

because hip circumference is more strongly related to gluteal muscle mass outside 

extreme obesity. 
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Since measurement of hip circumferences requires removal of some clothing, and 

is less often performed in large health surveys, we evaluated prediction of MRI-

TATM and TATFM from simpler, more practical, measures: age, height, weight and 

waist. From these variables, the best prediction of TATM in men was from body-

weight, waist and height, and in women, body-weight, height and age. These 

equations performed well in validation analyses, with very similar predictive power 

to our ‘best’ derived equations (Table 4-3). 

Log transformations of the data were needed in most of our Bland Altman plots to 

account for significant relationships between mean difference and average, due to 

a combination of non-constant variation and skewness in the predicted and MRI 

measurements.  This would be expected since there were fewer subjects in the 

samples who had large fat masses than with low or average fat mass 

measurements. 

It was perhaps surprising that age did not appear as a significant variable in the 

best prediction equations for men. This could be due to the relatively small 

number of adults aged over 60 years (12 subjects) in our derivation sample, but in 

general the use of physical measures with high prediction accounted for 

differences related to aging. The same applied to the race variable, which is 

valuable as defining race but problematic in mixed populations. 

4.6 Strength and limitations of the present study 

Our study included a larger number of subjects than previous studies to develop 

anthropometric prediction equations, which allowed a more robust analysis of 

agreements and biases.  Our data were from diverse samples in terms of age and 

of racial groups.  It was reassuring that adding a term for racial group into our 

model did not add predictive value, indicating that simple anthropometric 

measures accounted for inter-racial differences in body composition. Other 

predictive equations which do not include body circumferences needed a term for 

race to be included, which presents practical difficulties for ascertainment, 

particularly in mixed-race populations.  Ethnicity, usually self-attributed, is even 

trickier, (Gallagher et al., 1996) studied a cohort of 706 adults using a 4-
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compartment body composition model to estimate total body fat as a percentage 

of body weight.  They concluded that BMI is sex and age dependent when used as 

an indicator of body fat, but that BMI is independent of ethnicity in Caucasian and 

African American adults. It is important for our validation studies that the 

measurements were all made following an identical protocol to the derivation 

studies.  Ideally these measures would have been made by completely independent 

investigators, and perhaps using different equipment, in order to confirm 

transferability of the method. However, the similarities in predictions of MRI-

measured TATM and TATFM with the previously published equations using different 

methods allow confidence that our methods are likely to be reliable when applied 

in different settings.  

The relatively low number of aging adults in our derivation sample may have 

introduced bias; ideally number of subjects over 60 would be higher. 

It is important to recognize that adipose tissue fat mass measured by MRI 

correlates with “fat” as estimated by two-component methods like DEXA or UWW, 

but they estimate different targets. In our analysis we used two assumptions that 

have been used extensively in literature (Garrow, 1975).  To convert total adipose 

tissue in volume to mass in kg we multiplied by 0.92 and to convert TATM to 

TATFM we multiplied TATM by 0.8 (Figure 1-4).  These assumptions incur 

limitations, particularly using a single factor for all subjects for the fat content of 

adipose tissue: this is likely to vary with degree of fatness.   MRI does not capture 

small fat depots, below the level of resolution, within muscles, liver etc, hands, 

feet and head are commonly excluded from whole body MRI. Thus in our analyses, 

total body fat derived from UWW correlated strongly with total adipose tissue fat 

mass measured by MRI (R2 = 0.70 - 0.80), but there were differences between 

them, rising with fatness.  Bland Altman plots (Figure 4-3 J, L and Figure 4-4 J, 

L) show considerable variability, but the difference between these estimates was 

about 1kg for men, 2 kg for women for an average thin individual with 15kg 

TATFM, and 5-7kg for an average obese individual with 37 kg TATFM.    
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We could not interpret the effects of illness, physical disability or extremes of age 

within our dataset.  Further validation would be advisable for the equations to be 

used in these conditions. 

4.7 Conclusion 

New equations, using simple anthropometric measurements and without need for a 

race variable, estimated MRI-measured TATM with higher correlations and better 

agreements than existing equations. The new equations for TATM, with standard 

conversions to estimate total body fat, generated broadly similar figures to 

published anthropometric equations for total body fat. The degree of individual 

variation, as with previous prediction equations, implies that they should not be 

used for clinical or diagnostic purposes, but they have value for use among groups 

and populations, and estimate body fat substantially better (modestly greater R2) 

than BMI alone. 
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Figure 4-1: Derivation men 

 

 

 

 

Figure 4-1 (derivation analysis men): Column 1 (A, C) are scatter-plots of MRI measured TATM (x-

axis) against estimated TATM from prediction equations, while column 2 (B, D) are Bland Altman 

plots of difference between predicted and MRI-measured TATM (y axis) against their mean (x axis).  

403020100

50

40

30

20

10

0

P1TATM

M
R

I 
(T

A
T
M

 k
g

)

SEE 3.44654

R-Sq(adj) 82.0%

Regression

95% CI

95% PI

Fitted Line Plot(derivation best equation, men)
MRI (TATM kg) =  0.0389 + 1.000 P1TATM

n                  194

CV                18%

P                   0.000

A

403530252015105

20

15

10

5

0

-5

-10

-15

-20

(P1TATM+TATM)/2

P
1

T
A

T
M

-T
A

T
M

-0.04

Regression

95% CI

95% PI

Bland Altman Plot(derivation best equation, men)
P1TATM-TATM =  1.921 - 0.1034 (P1TATM+TATM)/2

LogP                0.728

p                     0.004

B

403020100

50

40

30

20

10

0

P2TATM

M
R

I 
(T

A
T
M

 k
g

)

SEE 3.73456

R-Sq(adj) 78.9%

Regression

95% CI

95% PI

Fitted Line Plot(derivation simplest equation, men)
MRI (TATM kg) =  - 0.0281 + 1.001 P2TATM

n                  194

CV                20%

P                   0.000

C

403530252015105

20

15

10

5

0

-5

-10

-15

-20

(P2TATM+TATM)/2

P
2

T
A

T
M

-T
A

T
M

0.01

Regression

95% CI

95% PI

Bland Altman Plot (derivation simplest equation, men)
P2TATM-TATM =  2.397 - 0.1255 (P2TATM+TATM)/2

LogP       0.131

P             0.001

D

302520151050

40

30

20

10

0

P1TATFM

M
R

I 
(T

A
T
FM

 k
g

)

SEE 2.75723

R-Sq(adj) 82.0%

Regression

95% CI

95% PI

Fitted Line Plot(derivation best equation, men)
MRI (TATFM kg) =  0.0987 + 1.002 P1TATFM

E

n                 194

CV               18%

P                  0.000

3530252015105

20

15

10

5

0

-5

-10

-15

-20

(P1TATFM+TATFM)/2

P
1

T
A

T
FM

-T
A

T
FM

-0.12

Regression

95% CI

95% PI

Bland Altman Plot(derivation best equation, men)
P1TATFM-TATFM =  1.466 - 0.1050 (P1TATFM+TATFM)/2

LogP         0.603

P               0.003

F

35302520151050

40

30

20

10

0

P2TATFM

M
R

I 
(T

A
T
FM

 k
g

)

SEE 2.98765

R-Sq(adj) 78.9%

Regression

95% CI

95% PI

Fitted Line Plot(derivation simplest equation, men)
MRI (TATFM kg) =  - 0.0085 + 1.001 P2TATFM

n                    194

CV                  20%

P                    0.000

G

3530252015105

20

15

10

5

0

-5

-10

-15

-20

(P2TATFM+TATFM)/2

P
2

T
A

T
FM

-T
A

T
FM

0.00

Regression

95% CI

95% PI

Bland Altman Plot( derivation simplest equation men)
P2TATFM-TATFM =  1.903 - 0.1253 (P2TATFM+TATFM)/2

LogP        0.137

P        0.001

H



 

 

129 

 

Column 1 (E, G) are scatter-plots of MRI measured TATFM (x-axis) against estimated TATFM from 

prediction equations, while column 2 (F, H) are Bland Altman plots of difference between predicted 

and MRI-measured TATFM (y axis) against their mean (x axis). Lines represent mean difference of 0, 

regression and 95% confidence and prediction intervals.   

Figure 4-2: derivation women 
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Figure 4-2 (derivation analysis women): Column 1 (A, C) are scatter-plots of MRI measured TATM 

(x-axis) against estimated TATM from prediction equations, while column 2 (B, D) are Bland Altman 

plots of difference between predicted and MRI-measured TATM (y axis) against their mean (x axis).  

Column 1 (E, G) are scatter-plots of MRI measured TATFM (x-axis) against estimated TATFM from 

prediction equations, while column 2 (F, H) are Bland Altman plots of difference between predicted 

and MRI-measured TATFM (y axis) against their mean (x axis). Lines represent mean difference of 0, 

regression and 95% confidence and prediction intervals. 
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Figure 4-3: (validation men): Column 1 (A, C) TATM and (E, G) TATFM are scatter-plots of MRI 

measured (y-axis) against estimated TATM and TATFM from prediction equations, while column 2 

(B, D) TATM and (F, H) TATFM are Bland Altman plots of difference between predicted and MRI-

measured (y axis) against their mean (x axis).  Plots (A, B) represent results from the validation of 

our best equation in men (P1TATM).  (C, D) represent our validation of our simplest equation 

(P2TATM).  Plots (E, F) are our validation of our best total adipose tissue fat mass equation 

(P1TATFM), and (G, H) our validation of our simplest total adipose tissue fat mass equation 

(P2TATFM). Plots (M, N) represent our validation of Kvist TATM equation (P-Kvist), Plots (O, P) 

represent our validation of Ross TATM equation (P-Ross). Plots (I, J, K, L) represent our comparison 

with Lean et al, 1996 and Deurenberg et al, 1991 total body fat equations. For the plots with no 

significant slope, Bland-Altman plots show the mean difference with limits of agreement around the 

mean difference a test for bias (mean difference significantly different from 0) using the one-

sample t-test. For the plots with significant slope, Bland-Altman plots show the CI and PI around 

the regression line.  P-values represent a test of significance of the slope. 
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Figure 4-4: validation women 
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Figure 4-4 (validation women): Column 1 (A, C) TATM and (E, G) TATFM are scatter-plots of MRI 

measured (y-axis) against estimated TATM and TATFM from prediction equations, while column 2 

(B, D) TATM and (F, H) TATFM are Bland Altman plots of difference between predicted and MRI-

measured (y axis) against their mean (x axis).    Plots (A, B) represent results from the validation of 

our best equation in women (P1TATM).  (C, D) represent our validation of our simplest equation 

(P2TATM).  Plots (E, F) is our validation of our best total adipose tissue fat mass equation 

(P1TATFM), and (G, H) our validation of our simplest total adipose tissue fat mass equation 

(P2TATFM). Plots (I, J) represent our comparison with (Lean et al, 1996) total body fat equation (P-

Lean), Plots (K, L) represent our comparison with (Deurenberg et al 1991) total body fat equation 

(P-Deurenberg).  Plots (M, N) represent our validation of (Kvist et al, 1998) equation (P-Kvist). For 

the plots with no significant slope, Bland-Altman plots show the mean difference with limits of 

agreement around the mean difference a test for bias (mean difference significantly different from 

0) using the one-sample t-test. For the plots with significant slope, Bland-Altman plots show the CI 

and PI around the regression line.  P-values represent a test of significance of the slope. 
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Figure 4-5: Log transformation 
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Table 4-1: Subject characteristics and variables  

 Derivation Sample (n = 416) Validation Sample (n = 204) 

 Men (n=194) Women (n=222) Men (n=94) Women(n=110) 

Age (yrs) 39.2  (13.9) 44.4  (16.2) 43.3 (15.9) 44.1  (16.4) 

Body weight (kg) 79.8  (12.7) 67.1  (15.1) 77.4  (14.1) 66.3  (10.7) 

Height (cm) 176.0  (6.8) 162.0  (7.2) 174.5  (7.3) 162.2  (5.9) 

BMI (kg/m2) 25.4  (3.7) 25.6  (5.5) 25.4  (4.0) 25.2  (4.1) 

Hip circumference (cm) 99.7  (7.5) 101.2  (11.9) 97.5  (7.9) 99.6  (8.5) 

Waist circumference (cm) 87.6  (10.7) 80.1  (13.4) 88.3  (12.1) 82.0  (11.1) 

MRI SM (kg) 31.8  (5.5) 19.7  (3.4) 28.8  (5.8) 20.0  (3.4) 

MRI TATM (kg) 18.4 (7.9) 25.6 (12.4) 18.4 (7.9) 25.8 (12.4) 

Race: 

Caucasian (%) 

 

41.4 

 

42.9 

 

36.6 

 

33.6 

African American (%) 29.0 31.9 26.9 36.4 

Hispanic (%) 15 14.5 16.1 14.5 

Asian (%) 14.5 11.1 20.4 15.5 

Measurements reported as mean ± standard deviation, ---- BMI: body mass index (kg/m2), MRI: magnetic   resonance imaging, SM: skeletal muscle mass, 

TATM: total adipose tissue mass 
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Table 4-2: Explained variance (R2) from linear regressions  

Variable Women (R2) % Men (R2) % 

 TATM mass Muscle mass TATM mass Muscle mass 

Age (yrs) 10.9 2.5 10.4 5.2 

Body weight (kg) 82.8 38.4 58.6 54 

Height (cm) 1.2 30.7 0.0 22.6 

BMI (kg/m2) 82.4 18.3 65.8 31.4 

Waist circumference (cm) 77.5 16.5 76.8 11.6 

Hip circumference (cm) 81.1 22.6 72.2 27.9 

Waist/hip ratio 2.5 0.2 35.5 0.0 

Mid-arm circumference (cm) 74.0 24.4 39.6 51.8 

Mid-Thigh circumference (cm) 63.9 27.8 37.1 36.9 

Mid-calf Circumference  (cm) 21.0 12.4 29.9 44.5 

Race* 9.4 16.36 6.02 15.89 

Explained variance (R2) in MRI total adipose tissue mass and whole body skeletal muscle mass, from simple linear regressions in the derivation study 
*Race included four categories, Caucasians, African-American, Asian, and Hispanic. Race was analysed using general linear ANCOVA, TBAT: total body 
adipose tissue
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Table 4-3: Prediction equations for total adipose tissue and total adipose tissue fat mass (men) 

 Reference of PE Reference 
method 

Subjects Prediction Equation R2 (%)  
derivation 

R2 (%)  
validation 

SEE(kg) CV (%) 

To
ta

l  
ad

ip
o

se
  t

is
su

e
 

m
as

s 

Present (P1TATM)                     MRI d (P): 194 
v (P): 94 

= - 0.128BW + 0.431waist + 0.607hip- 
69.0 

0.82 0.80 d (P): 3.4 
v (P): 3.7 

18 
20 

Present (P2TATM) MRI d (P): 194 
v (P): 94 

=  0.198BW + 0.478waist - 0.147height- 
12.8 

0.79 0.79 d (P): 3.7 
v (P): 3.8 

20 
20 

Ross[12] MRI D(R): 27 
V(P): 94 

= (1.003xwaist – 56.475x waist hip ratio – 
21.364) x 0.92 

0.91 R:NR 
P:0.81 

d (R):3.7 
v (P):3.6 

NR 
24 

Kvist[13]  CT d (K): 17 

v (K):  7 

v (P):  94 

 = (1.36BW / height a - 42.0) x 0.92 0.93 K: NR 
P: 0.70 

d (K): 9.0% 
v (K): 11.4% 
v (P):  4.6 

NR 
NR 
27 

To
ta

l a
d

ip
o

se
 t

is
su

e
 f

at
 

m
as

s 

Present(P1TATFM) MRI d (P): 194 
v (P): 94 

=– 0.103BW + 0.345waist +0.485hip-55.2 0.82 0.80 d (P): 2.8 
v (P): 3.0 

18 
20 

Present(P2TATFM) MRI d (P): 194 
v (P): 94 

=  0.158BW + 0.383waist -0.118height-
10.2 

0.79 0.79 d (P): 3.0 
v (P): 3.0 

20 
20 

Lean[11]  UWW d (L):  63 
v (L):  146 
v (P):  94 

= (0.567waist + 0.101age – 31.8) x 
BW/100 

0.78 L: 0.69 
P: 0.80 

d (L): 4.1 
v (L): NR 
v (P): 3.0 

NR 
NR 
16 

Deurenberg[9] 
 

UWW d(D): 140 
v(D): 148 
v (P): 94 

= (1.20BMI + 0.23age – 10.8 x 1 – 5.4) x 
BW/100 

0.80 D:0.80 
P:0.70 

d (D): 4.2 
v (D): 4.0 
v (P): 3.6 

17 
16 
19 

 

Prediction equations for total adipose tissue mass and total adipose tissue fat (in kg) derived and validated in the present study, and comparison with 

existing equations published by Lean et al [11], Deurenberg et al [9] and, Kvist et al [13], Ross et al, [12]in men 

PE: prediction equation, TATFM: total adipose tissue fat mass, TATM: total adipose tissue mass, UWW: under-water weighing, MRI: whole body magnetic 

resonance imaging, CT : whole body Ct-scan,  P: present study, L: Lean et al, 1996 study, D: Deurenberg et al, 1991 study, R: Ross et al, 1992 study,  BW: 

body weight, K: Kvist et al, study, NR: not reported, TATFM, TATM and BW in kg, , (waist, hip, height) in cm, BMI ( kg/m 2 ) and age in years, a: height 

measurement in meter, d:derivation analysis, v: validation analysis. 
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Table 4-4: Prediction equations for total adipose tissue and total adipose tissue fat mass (women)  

 Reference of PE Reference 
method 

Subjects Prediction Equation R2 (%)  
derivation 

R2 (%)  
validation 

SEE(kg) CV (%) 

To
ta

l a
d

ip
o

se
 

ti
ss

u
e

 m
as

s 

Present (P1TATM) MRI d (P): 222 
v (P): 110 

= 0.0726age + 0.634BW - 0.320height + 
0.206hip +10.9 

0.89 0.84 d (P): 4.2 
v (P): 3.0 

16 
12 

Present (P2TATM) MRI d (P): 222 
v (P): 110 

=  0.789BW + 0.0786age - 0.342height 
+ 24.5 

0.88 0.84 d (P): 4.2 
v (P): 3.0 

16 
13 

Kvist[13] CT-scan d (K):  10b 

v (K):  9b 
v (P):  110 

= (1.61BW /height a – 38.3) x 0.92 0.96 K: NR 
P: 0.82 

d (K): 6.8% 
v (K): 8.5% 
v (P):  3.2 

NR 
NR 
12 

To
ta

l a
d

ip
o

se
 t

is
su

e
 f

at
 

 m
as

s 

Present (P1TOTAL 
BODY FAT ) 

MRI d (P): 222 
v (P): 110 

= 0.0581age + 0.507BW – 0.256height 
+ 0.165hip + 8.68 

0.89 0.84 d (P): 3.4 
v (P): 2.4 

16 
12 

Present (P2TOTAL 
BODY FAT ) 

MRI d (P): 222 
v (P): 110 

= 0.631BW + 0.0629age  – 0.273height 
+ 19.6 

0.88 0.84 d (P): 3.4 
v (P): 2.5 

16 
13 

Lean[11]  UWW d (L):  84 
v (L):  238 
v (P): 110 

= (0.439waist  + 0.221age -9.4) x 
BW/100 

0.70 L: 0.75 
P: 0.76 

d (L): 4.7 
v (L): NR 
v (P):  3.0 

NR 
NR 
12 

Deurenberg[9] UWW d(D): 216 
v(D): 245 
v (P): 110 

= (1.20BMI + 0.23age – 10.8 x 0 – 5.4) x 
BW/100 

0.80 D:0.80 
P:0.78 

d (D): 4.2 
v (D): 4.0 
v (P): 2.9 

17 
16 
12 

 

Prediction equations for total adipose tissue mass and total adipose tissue fat (in kg) derived and validated in the present study, and comparison with 

existing equations published by Lean et al [11], Deurenberg et al  [9] and, Kvist et al [13], Ross et al, [12]in women; PE: prediction equation, TATFM: total 

adipose tissue fat, TATM: total adipose tissue mass, UWW: under-water weighing, MRI: whole body magnetic resonance imaging, CT : whole body Ct-scan,  

P: present study, L: Lean et al, 1996 study, D: Deurenberg et al, 1991 study,  BW: body weight, K: Kvist et al, study. b: 9 women with ulcerative colitis 

were pooled with 10 healthy women, 19 women were ranked according to weight then allocated to derivation and cross-validation group, NR: not 

reported, TATFM, TATM and BW in kg, (waist, hip, height) in cm, BMI (kg/m 2 ) and age in years, a: height measurement in meter, d:derivation analysis, v: 

validation analysis.  
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Chapter 5 

5 Application in health surveys 
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Application of anthropometric prediction equations 

to data from Scottish and English National Health 

Surveys: associations of adipose tissue and skeletal 

muscle mass with diabetes/HbA1c and 

hypertension/blood pressure.   
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5.1 Abstract 

Background: Associations between adipose tissue (AT) and skeletal muscle (SM) 

with metabolic illness and risk factors have only been poorly explored. The focus 

of the research literature has been on the relationships between metabolic risk 

factors and the anthropometric measurement of BMI, waist, WHR, waist height 

ratio (WHtR). 

Aim: To explore the associations between the derived and validated AT and SM 

prediction equations with HbA1c, and blood pressure and with metabolic diseases.  

These prediction models will be compared to the older published prediction 

equations and anthropometric measurements.   

Method: A cross-sectional analysis using data from the Scottish Health Survey 

(2003, 2008-2011) and Health Survey for England (2003-2006 – 2008-2013). A total 

of 32,657 men and 38,861 women were included in this analysis. Exclusion 

criteria:  age under 18 years, pregnant women and diabetic men and women on 

insulin. Anthropometrics and covariates: weight (kg), height (cm), BMI, waist 

and hip circumference (cm), age (years). Continuous outcomes: HbA1c (%), 

systolic and diastolic blood pressure.  Categorical outcomes: Type-2 diabetes 

mellitus, hypertension and both conditions are described as the combined 

‘metabolic illness’.  

Prediction equations: the following equations were used to estimate AT and SM, 

expressed as % body weight (AT or SM / body weight x100): (Lee et al., 2000b) 

skeletal muscle prediction equation (SMLR), (Lean et al., 1996) body fat prediction 

equation (BFML), waist hip ratio (WHR), Waist/height ratio (WHtR) and body mass 

index (BMI).  

Statistical analysis multiple regression was used to establish the best model fit 

for HbA1c and systolic and diastolic blood pressure measures. Binary logistic 

regression analysis was used to determine the associations between predicted AT, 

SM /anthropometry and categorical values diabetes, hypertension and metabolic 

illness.  
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Results: the new equations showed significant correlations with type-2 diabetes, 

hypertension and metabolic disease, HbA1c, systolic and diastolic blood pressure 

(P<0.0001). A high coefficient of determination with existing prediction equations 

and with anthropometric measurements was found: The correlations between BMI 

and %AT were; R2 = men 87.4%, women 95.2%; and with %SM, R2 = men 81.5%, 

women 81.1%.  

In general, the coefficient of determination in this analyses were close, WHtR was 

the best predictor for HbA1c (R2 = men 17.3%, women 21.2%). Whereas, %SM was 

the strongest for systolic blood pressure (R2= men 9.8 and women 28.4).  BMI had 

the highest coefficient of determination with diastolic blood pressure (R2= men 6.3 

and women 8.8).  For the associations with ‘metabolic disease’, WHtR was again 

the best predictor (R2 = men 16.8%, and women 24.4%).  

When the population was divided by quintiles of %AT and of %SM, there were 

striking increases in Relative Risks (RR) of type-2 diabetes and of hypertension 

from Q2 to Q5 of %AT (men: T2DM RR=15, hypertension RR=3.9; women T2DM 

RR=23.6, hypertension RR=5.5).  There were similar progressive increases in RR as 

%SM fell from Q1 to Q5 (men: T2DM RR=4.9, hypertension RR=3.2; women T2DM 

RR=9.9, hypertension RR=4.9).  The prediction equations for %AT and %SM did not 

identify the same individuals with T2DM or hypertension in the quintile groups at 

highest risk. 

Relative risk of BMI and WHtR increased with increase quintile. However, 

compared to the highest %AT quintile, BMI showed lower relative risk specially in 

diabetes, BMI RR=5.4, %AT RR=15 in men and BMI RR= 9.2 compared to %AT 

RR=23.6 in women. WHtR was close to %AT RR=22.4 and 23.6, yet, %AT was slightly 

higher than WHtR. 

Conclusion: There are many predictors of metabolic ill-health in addition to BMI, 

which is still used almost exclusively in national health surveys.  Both adipose 

tissue and skeletal muscle mass are significantly associated with metabolic 

disease, HbA1c, systolic and diastolic blood pressure and can be determined from 
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data routinely collected from health surveys.  The inverse relationship between 

the prevalences of type-2 diabetes, hypertension and metabolic disease and the 

quintiles of %SM, and vice versa for %AT in both men and women suggest a 

protective role from skeletal muscle mass, independent of the risks from greater 

adipose tissue mass. However, %AT appears a more useful indicator for disease 

than %SM, BMI and to an extent WHtR.   
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5.2 Introduction 

Epidemiological and health survey studies have advanced our understanding of risk 

factors for metabolic illnesses.  Understanding the associations of body 

compartments and fat distribution with metabolic disease helps in determining 

causes of disease.   

BMI has been used extensively to define the relationship between metabolic 

disease and body composition (Lim et al., 2011, Glogner et al., 2014, Logue et al., 

2013, Sone et al., 2007). However, BMI has led to many uncertainties. In a 

systematic review (Romero-Corral et al., 2006), studied the association between 

mortality, obesity and cardiovascular disease events in patients with coronary 

artery disease. A total of 40 studies which included, 250,152 patients were used in 

the systematic review, with a mean follow-up 3.8 years. Overweight patients (BMI 

25 – 29.9 kg/m2) had the lowest risk of total mortality (RR = 0.87 [95%CI: 0.81-

0.94]). Obese patients (30 – 35kg/m2) and severe obese (>35kg/m2) had no 

elevated risk for total mortality (RR=0.93 [95%CI: 0.85-1.03]) (RR=1.10 [95%CI: 

0.87-1.41]) respectively. The highest risk for cardiovascular mortality was in the 

severely obese group (RR=1.88 [95%CI: 1.05-3.34]). The authors concluded that the 

inability of BMI to distinguish between lean and body fat could be a reason for 

these unexplained results. On the other hand, a large prospective collaborative 

study (Whitlock et al., 2009) investigated the association between BMI and overall 

and cause-specific mortality (vascular, diabetic, renal, hepatic, respiratory and 

neoplastic). A total of 894,567 men and women from 57 prospective studies who 

were followed for mean 8 ±6 years. For overweight men (BMI >25kg/m2) there was 

a positive association, for each 5 kg/m2 increase there was 30 % increase in total 

mortality (hazard ratio:1.29(1.27-1.32) and 60 – 120% for diabetic mortality 

(HR:2.16(1.89-2.46)). For BMI below 22.5kg/m2 had inverse association with overall 

mortality. The study concluded that BMI on its own is inversely associated to and a 

strong predictor of overall mortality in adults with existing chronic disease.  

Despite the common use of BMI, it is a poor measure of fatness because it is unable 

to differentiate between body compartments (Frankenfield et al., 2001, 
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Burkhauser and Cawley, 2008). As an alternative, waist circumference has been 

used to study associations with chronic health conditions (Han et al., 1995, Lean et 

al., 1995). Studies conclude that there is a significant relationship between waist 

circumference and metabolic illness, in general, the relationship is a little stronger 

than BMI. An Australian cohort study (to study the effect of waist circumference in 

predicting type-2 diabetes), included 803 diabetes-free adults (18 – 76 years), 

baseline data was collected between 1992 – 1998 and adults were followed up for 

20 years. Waist circumference was strongly associated with the presence of type-2 

diabetes (P<0.001), 1-unit increase in waist circumference had a type-2 diabetes 

hazard ratio of 1.7, (95%CI:1.3 – 2.2) in men and 2.1, (95%CI:1.7 – 2.6) in women 

(Adegbija et al., 2015). Using the same population, Wang et al found waist 

circumference to be a better predictor of cardiovascular disease than BMI, hip 

circumference and WHR using a Cox regression model. The rate ratio was 1.31 (95% 

CI: 1.11, 1.54), 1.29 (95% CI: 1.09, 1.53), 1.28 (95% CI: 1.08, 1.52) and 1.10 (95% 

CI: 0.93, 1.30) respectively, per one standard deviation increase in waist, BMI, hip 

and WHR (Wang and Hoy, 2004). 

The following studies included a range of different (cross-sectional study) in 

Iranian population comprising 1000 adults aged between 20 – 80 years, BMI 21.3 – 

47.5kg/m2, included anthropometric measurements and fasting blood sugar 

concentrations. Overall, the prevalence of diabetes was 14%. Receiver operating 

characteristic curves (ROC) were used to estimate area under the ROC curve [AUC] 

to allow comparison of the strength of associations between parameters.  For men 

the values were: Waist circumference =0.64, WHtR (AUC = 0.63), BMI (AUC = 0.62) 

and WHR (AUC = 0.60). Women: WHtR (AUC = 0.69) and WC (AUC = 0.68) were 

better than BMI (AUC = 0.67). In general, waist circumference was a better 

predictor of diabetes than BMI alone (Hajian-Tilaki and Heidari, 2015). Likewise, in 

a Cameroonian population (Mbanya et al., 2015) waist circumference was a better 

predictor for type-2 diabetes, (OR: 1.30 95%CI: 1.16-1.46) than BMI (OR: 1.05, 

95%CI: 0.98 – 1.13). 

Feng et al, analysed a north Chinese population (n = 8940) and found BMI to be a 

better predictor of hypertension (RR: 2.35, 95% CI: 2.18-2.50), and waist 
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circumference was a better predictor for risk of developing type-2 diabetes (RR: 

2.05, 95%CI: 1.63-2.55) (Feng et al., 2012). 

In the Framingham study (n = 4195, 53% women) logistic regression was used to 

evaluate the predictive power of waist circumference in the BMI categories of 

normal, overweight and obese to predict cardiovascular disease. Waist 

circumference was able to identify risk of first cardiovascular event in overweight 

women (OR: 1.86, 95%CI: 1.03-3.36) p = 0.04 only, not men (OR: 0.91, 95% CI 0.60-

1.38), p = 0.66. Waist circumference did not appear to add to the strength of 

prediction of risk in all other BMI categories for men and women (Freiberg et al., 

2008). 

A few studies have included hip circumference as a predictor for metabolic illness. 

A Swedish cohort (Lissner et al., 2001b) studied the health risks associated with hip 

circumference, stressing the importance of hip circumference as an independent 

inverse risk estimator. In a systematic review (Cameron et al., 2013) examined 

evidence from studies which reported the associations between hip and/or waist 

circumference and the risk of developing diabetes, cardiovascular disease and 

mortality. The review indicated that hip circumference was as important as waist 

circumference in the assessment of obesity related health risk. 

A random sample of 12,905 men and women between the ages 20-95 years, from 

the civil registries of Amsterdam were analysed to examine relationships between 

smaller hip circumference and health and lifestyle (Han et al., 1998). They found 

that smaller hip circumference was significantly associated with smoking, 

sedentary life style, increased age, high parity and lower education/achievement. 

They propose a smaller hip circumference may indicate gluteo-femoral muscle 

atrophy, thus acting as an additional predictor for the development of diabetes. 

The use of BMI, waist, WHR and WHtR have all been as proxies for body 

composition.  There have been other more specific prediction equations for body 

fat and for skeletal muscle mass.  There has been no previous attempt to predict 

metabolic diseases, or risk factors, using more specific measurements of body 
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composition by estimating adipose tissue and muscle mass from simple 

anthropometric measures and determining their association(s) with metabolic 

disease. 

The aim of this chapter was to explore in a number of representative health adult 

survey carried out in the UK database the relationships of the newly derived and 

validated prediction equations for SM and AT, and SM:AT, AT:SM ratio, with risk 

factors (HbA1c, systolic and diastolic blood pressure), and with diabetes and or 

hypertension.  In addition, we aimed to compare coefficient of determination for 

the prediction equations devised as part of the thesis work (chapters 3,4) with 

those existing prediction equations and anthropometric indices. The strength of 

association between anthropometric measures and risk of disease is fair, however, 

it may be that using these anthropometric data to determine AT and SM may elicit 

stronger relationships, given the increasing evidence that estimates using 

prediction equations are valid. According to the published literature, this is the 

first analysis to determine these relationships.   

5.3 Methods   

5.3.1 Data collection 

Study population: This cross-sectional analysis utilized data from two surveys of 

adults: 1) the Scottish Health Survey (SHS) (2003, 2008 till 2011) n=92,216, and 2) 

Health Survey for England (HSE) 2003-2006 and 2008-2013 n=140,627, total sample 

size was 232,841 adults.  After data cleaning and the removal of data from 

subjects who failed to meet the inclusion criteria, final sample size of 125,256 (n= 

55,878 men and 69,378 for women). As this study is a ‘complete case analysis’, any 

subjects with missing anthropometric measurements (weight, height, waist, and 

hip) were removed, and therefore the final sample size was 32,657 men and 

38,861 women (Table 5-1), (Figure 5-1). 

Inclusion criteria: non-pregnant female, age ≥18 years, those with type-2 diabetes 

not on insulin therapy, adults without type-2 diabetes, and hypertensive/non-

hypertensive.     
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Outliers Excluded: Adults with these unlikely characters were excluded: weight < 

45 kg in men and < 35 kg in women, height <146 cm in men and <135 cm in women, 

HbA1c <4% and >15%, diastolic blood pressure <40 mmHg and >120 mmHg, systolic 

blood pressure <85 mmHg and >199 mmHg, waist <64 cm and >155 cm, hip <65 cm, 

>180 cm, (Table 5-1). 

Anthropometry and covariates: Participants were interviewed by a trained 

individual, either a nurse or trained interviewer, who measured weight (kg), height 

(cm), waist and hip circumference (cm) and recorded medication use. Age (years) 

was self-reported according to the participants last birthday. 

Waist and hip circumference: Participants were asked to wear light clothing and 

stand straight and in a relaxed position, breathe normally and balance their weight 

evenly on both feet (25 – 30 cm apart).  Arms were relaxed loosely by the subject’s 

side. For waist measurements, the tape was positioned horizontally midway 

between the iliac crest and costal margin or lower rib.  Measurement was recorded 

on exhalation. Nearest millimetre measurement was recorded, for accuracy 

measurements were taken in duplicate; a third measurement was taken only if the 

first two measurements were more than 3 cm apart. Hip circumference was 

defined as the widest circumference around the buttock and below the iliac crest, 

with tape positioned horizontally. Measurement to the nearest millimetre was 

recorded and repeated twice. 

Continuous outcome variables: HbA1c (%) was measured using non-fasting blood 

samples taken by the nurse. The right arm blood pressure (systolic and diastolic 

blood pressure) was measured using Omron HEM 907 blood pressure monitor. Three 

readings were recorded at one-minute interval for the upper right arm, left arm 

only used when right arm not possible. Participants were seated leg uncrossed, 

their feet flat and they remained quiet for 5 min before the measurements were 

made. 

Categorical outcome variables: Diabetes mellitus was recorded in three ways, 

doctor/nurse diagnosed, patient reported receiving treatment with oral anti-
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diabetes medication and/or newly diagnosed on the basis of HbA1c>6.5%.  

Hypertension was reported by the subject as having been diagnosed by 

doctor/nurse, systolic blood pressure ≥140mmHg, Diastolic blood pressure 

≥90mmHg Use of antihypertensive drugs was not included because these drugs are 

also prescribed for other conditions.  

Treatments: If subjects responded yes for hypertension or diabetes; the nurse 

asked whether they were taking any medication for diabetes and/or hypertension.  

Treatments were recorded for diabetes as (Insulin injection, diabetes medicine, 

treatment for diabetes mellitus.  Blood pressure treatment was recorded as 

medicine for blood pressure, other treatments for blood pressure) for diabetics 

and (medicine for blood pressure, other treatment for blood pressure) for 

hypertensive. Among insulin-treated adults, it was unclear who had type one and 

who had type-2 diabetes. Since most patients with type-2 diabetes do not take 

insulin injections, to avoid confusion in our analysis we removed participants 

taking insulin injections.  

Metabolic disease:  for the purpose of this chapter subjects that had diabetes 

and/or hypertension were combined as having ‘metabolic disease’. 

5.3.2 Data Cleaning and Statistical Analysis 

Data were analysed using Minitab® 17.2.1. To start, sample was cleaned by 

removing extreme Outliers considered implausible (Table 5-1). Data was cleaned 

to exclude these implausible values (1 implausible combination of anthropometric 

indices which resulted in negative %SM was removed). The analysis was a complete 

case analysis, therefore all subjects with missing anthropometric data (weight, 

height, waist and hip) were removed (Figure 5-1). 

Characteristics of included subjects are presented as mean (sd) (Table 5-2).  

Binary logistic regression was used to calculate odds ratio (OR) and 95%CI in order 

to assess risk of diabetes and hypertension in relation to estimated muscle and 

adipose.  
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To compare the coefficient of determination (R2) with outcome measures between 

prediction equations and anthropometric measurements, multiple regression 

analyses was used, adjusted for age and hypertension for the HbA1c analysis, and 

adjusted for age and diabetes for the blood pressure analyses. 

Hosmer- Lemeshow is the statistical test used to assess goodness of fit for the 

logistic regression models. The test is used to assess how well the model fits the 

data across the full range, if the p value is less than 0.05, the null hypothesis is 

rejected, meaning the predicted value deviate from the expected value. Hosmer-

Lemeshow groups the data by their estimated probabilities from lowest to highest, 

then it performs a Chi-square to conclude if the observed and expected values are 

significantly different. A large p-value indicates that there is consistency between 

the observed and expected values (Hosmer and Lemeshow, 2013).   

Analyses were performed separately according to gender. Analysed data were 

naturally log transformed to sustain a normal distribution, with the exception for 

the binary logistic regression analysis, where data were not log transformed. A p- 

value <0.05 was considered significant.  

5.3.3 Prediction Equations:  

For the estimation of adipose tissue, muscle and body fat, the following prediction 

equations were used:  

Adipose tissue prediction equation: 

1. (Al-Gindan et al., 2014a); (men) Total adipose tissue (kg) = 0.198 body weight 

(kg) +0.478 waist circumference (cm) - 0.147 height (cm) - 12.8, women: 

TATM(kg) = 0.789 body weight (kg) + 0.0786 age(y) - 0.342 height (cm) + 24.5. 

To estimate percentage muscle mass and percentage adipose tissue the following 

equations were used: (muscle or adipose (Kg) /total body weight) x 100. The ratio 

%muscle mass/%adipose tissue was used to quantify SM:AT ratio. 



 

153 

 

Muscle mass prediction equations: 

1. (Al-Gindan et al., 2014a); (men) SM (kg) = 39.5 + 0.665 body weight (kg) − 

0.185 waist circumference (cm) − 0.418 hip circumference (cm) − 0.08 age (y). 

For (women): SM (kg) = 2.89 + 0.255 body weight (kg) − 0.175 hip 

circumference (cm) − 0.038 age (y) + 0.118 height (cm)  

2. (Lee et al., 2000b) SM(kg) = 0.244Weight + 7.80 Height(m) + 6.6 sex (1 men, 0 

women) - 0.098 age + (race) - 3.3 

Percentage body fat prediction equation: 

1. (Lean et al., 1996) Body fat (%) = 0.567 waist (cm) +0.101 age (years) – 31.8, 

for women: BF (%) = 0.439 waist (cm) +0.221 age (years)-9.4 

BMI: body mass index = weight(kg)/(height(m))2, WHtR: waist height ratio = waist 

(cm)/height (cm), WHR: waist hip ratio was computed as waist (cm)/hip(cm), to 

examine correlations and associations with HbA1C, systolic pressure, diastolic 

blood pressure, hypertension and diabetes. 

5.4 Results  

5.4.1 Subject Characteristics 

The numbers of men and women with data for ‘complete case analyses’ are shown 

in (Figure 5-1). Subject characteristics are presented in (Table 5-2). Subject age 

ranged from 18-104 years, mean(sd): 51.1(17.2) and 50.5(17.2) for men and 

women respectively, weight ranged between 45.3-188kg in men, mean 84.3kg and 

in women weight ranged from 35.9-172kg, mean 71.3 kg (Table 5-2), (Table 5-3).  

A total of 6.6% of men were recorded as diabetic and 38.7% as hypertensive, 4.5% 

women were recorded as diabetic and 32.9% hypertensive. Using the new %AT and 

%SM prediction equations, mean estimated muscle mass was 35.1% in men and in 
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women 28.2% body weight. Mean total adipose tissue was estimated as 29.4% in 

men and 40.2% in women. 

5.4.2 Correlation and association of the new prediction equations 

with published prediction equations and anthropometric 

measurements 

 

Al-gindan %AT and %SM prediction equations had a strong correlation and therefore 

association with already available prediction equations and anthropometric 

indices. SM prediction equations had high association (Lee et al,2000), R2 = 81.5% 

and 81.1% for men and women respectively. Adipose tissue and % body fat had high 

correlations in both men and women R2 = 86.9%, 71.4% respectively. BMI was highly 

correlated with the new equations R2 = 87.4% and 95.2% for men and women 

(Table 5-4).  The poorest association was between the %ATYY and the WHR, 

whereas the other R2 values were close, in the 80-90% region. 

5.4.3 Ranking model fit of the new prediction equations/published 

prediction equations/ anthropometric measurements with 

HbA1c, systolic and diastolic blood pressure 

To test how well the new prediction equations, and other published prediction 

equations, fit the analysed data, multiple regression analyses were used, 

separately for men and women, and adjusted for age, presence of type-2 diabetes 

and/or hypertension, to avoid confounding. It was possible that those participants 

with diabetes might have hypertension and vice versa.  

Adjustment for smoking was explored, but the analyses suggested a non-significant 

effect on HbA1c, systolic and diastolic blood pressure and metabolic disease (data 

not shown). 

All the anthropometric measures and equations were predictive, generally 

explaining almost 10-29% of the variance in outcomes.  Overall, there was little to 
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choose between the different measures and equations, and no clear ranking 

emerged. The exception was that hip was consistently poor. 

For HbA1c, all relationships showed a significant R2, accounting for up to 23% of 

the variance. WHtR had the highest R2 = 17.3%, 23.0% for both men and women 

respectively. 

For systolic blood pressure, there were general rather higher R2 values for women 

than for men. SMLR (%) had the highest coefficient of determination for both men 

R2= 9.8% and women R2=28.4%, but others and notably BMI were close to this.   

For diastolic blood pressure BMI had the highest correlation for both men and 

women: R2= 6.3 and 8.8% (Table 5-5). 

5.4.4 Association between the equations in adults with diabetes  

For the categorical responses, diabetes and hypertension, binary logistic regression 

was used to assess association between outcome and prediction equations. 

Diabetes was defined in both surveys in three different ways; when doctor/nurse 

reported, receiving oral anti-diabetes medication and those participants found to 

have HbA1c measurements of at least 6.5% and therefore were included as 

undiagnosed cases.  

Out of the 32,327 men, 2144 had diabetes. Highest coefficient of determination 

was seen with WHtR (R2 = 15.9). Yet, coefficient of determination for all 

prediction equations and anthropometric measures were statistically not different 

to each other. For every 1-unit increase of predicted %SM, the OR of diabetes 

decreased by 26% using (Lee et al, 2000), on the other hand, the (Al-gindan et al, 

2014) prediction equation 95%CI crossed 1(1.0, 1.02) and the coefficient did not 

show the inverse relation (Table 5-6). Adipose tissue in percentage (ATYY) gave 

high odds ratio OR:1.14, as adipose tissue increased, odds of diabetes increased by 

≈ 14%. WHtR had the highest R2 with diabetes in men (R2 = 15.9%) (Table 5-6). 



 

156 

 

Unlike men, women BFML% showed higher R2 = 18.4%, in addition to WHtR R2 = 

18.8%.  Like BFML (%), waist had good associations (odds ratio 1.06, R2= 18.4%). SM 

showed high R2 values with SMLR (%) equation R2= 15.5%, for every unit increase in 

SM (%) the odds of developing diabetes decreased by 44% (Table 5-7). 

 

5.4.5 Association between the new and published prediction 

equations with hypertension 

Hypertension was defined by being reported by the subject to have been diagnosed 

by a doctor or nurse, systolic blood pressure ≥140 and diastolic blood pressure ≥90 

mmHg. A total of 12,624 men and 12,804 women were included as hypertensive. 

For men, WHtR had the highest R2 = 15.4% OR: 1.07. BMI and ATYY (%) were higher 

in women R2 = 23.2% and odds ratio = 1.08 for ATYY (%) and 1.10 for BMI.  

The inverse relationship between muscle and hypertension was evident in all SM 

equations (coefficient –ve). In general, SMLR (%) had slightly higher correlation and 

odds ratio values than SMYY (%), for every 1-unit increase in muscle mass 

percentage there was an 18% odds of decreased hypertension in men and 33% 

lower odds of developing hypertension in women (Table 5-8), (Table 5-9). 

5.4.6 Prediction of metabolic disease: diabetes and/or 

hypertension. 

The anthropometric variables used within all four prediction equations were all 

able to predict metabolic disease. All equations and anthropometric indices 

provided were significant p<0.001.  Again WHtR provided the highest R2 = 16.8% for 

men and 24.4% for women, minimally better than waist circumference alone or the 

anthropometric equations (Table 5-10, Table 5-11). 

In men SMYY (%) had lower correlations compared to SMLR (%). The highest odds 

ratio for SM was that derived by the Lee et al equation (2000).  The SM equation 

showed a 20% greater likelihood of developing metabolic disease for every unit 

decrease in %SM for men.  
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For women, every unit increase in %SM, odds of metabolic disease decrease by 36% 

using (Lee et al, 2000) prediction equation.   BMI had slightly higher odds ratio and 

R2 than ATYY (%) (OR = 1.12, 1.10) and (R2= 16.7%, 16.5%) for men, coefficient of 

determination was the same as BMI in women R2= 23.8%.  

5.4.7 Prevalence of diabetes, hypertension and metabolic disease 

and mean HbA1c and blood pressure by quintiles of %AT and 

%SM   

There were consistent gradients of risk for both diabetes and hypertension across 

the quintiles of %AT and %SM.  Prevalence of diabetes was maximal in the fifth 

quintile of %AT and first quintile of %SM (16.5%, 13.4% in men and 11.8%, 10.9% in 

women, respectively). Hypertension was at its peak in the fifth quintile of %AT and 

first quintile of %SM (60.9% and 60.6 in men and 56.8%, 58.1% in women, 

respectively).   

The highest mean HbA1c was seen in the fifth quintile of %AT (6.0% and 5.9% for 

men and women respectively). The lowest mean HbA1c for %SM was seen in the 

fifth quintile (5.3% for both men and women). 

Likewise, mean systolic and diastolic blood pressure were lower with higher %SM 

and higher with lower %AT. The lowest %AT quintile had the lowest mean systolic 

and diastolic blood pressure compared to Q2, Q3, Q4 and Q5. The highest %SM 

quintile had the lowest mean systolic and diastolic blood pressure (Table 5-12), 

(Table 5-13). In general, results indicate that relationships are reversed, so %AT 

and %SM have opposite influences on metabolic risks and diseases. 

Relative Risk of diabetes, hypertension and metabolic illness in men and women 

are shown in (Table 5-14, Table 5-15). Compared to Q1, relative risk of diabetes 

increased with increase %AT quintiles: Q2 = 2.5%, Q3 = 3.9%, Q4 = 7.9% and Q5 = 

15% for diabetes in men. The same pattern was seen for hypertension and 

metabolic illness, however with the higher prevalence in Q1, RR in Q4 and Q5 were 

much lower than seen with type 2 diabetes (3.2% and 4.1% respectively).  



 

158 

 

In women RR for diabetes increased with %AT (2.8%, 6%, 11.8%, 23.6% for Q2-Q5, 

using Q1 as the baseline).  RR of diabetes rose with reduced %SM quintile (9.9%, 

5%, 2.9% and 1.7% in Q1, Q2, Q3, and Q4 of %SM, using Q5 as baseline) (Table 

5-14, Table 5-15). The same pattern was seen for hypertension and metabolic 

illness with Q1 of diabetes much higher than Q1 of hypertension and metabolic 

disease 9.9% compared to 4.9% and 4.8% and in %AT 23.6% compared to 5.5% and 

5.6%.  

Across the five BMI quintile groups, prevalence of diabetes, hypertension and 

metabolic illness all increased with increasing BMI.  Relative Risks were maximal 

the fifth quintile for type 2 diabetes (RR= 6.6% in men and 7.9% in women) and for 

both hypertension and metabolic disease (RR=2.5% in men and 2.6% in women) 

(Table 5-16, Table 5-17). Compared to relative risk of Q5%AT, BMI showed lower 

relative risk for diabetes: 5.4% compared to 15% in men and 9.2% compared to 

23.6% in women. BMI relative risk for hypertension and metabolic disease were 

lower than %AT, however not as drastic as diabetes: RR (hypertension)= 2.5% for 

Q5 BMI and 3.9% for Q5 %AT, RR (metabolic disease) = 2.5% for Q5 BMI and 4.1 for 

Q5 %AT in men. Same pattern was seen in women. WHtR was close to %AT, both 

indicate higher RR for their fifth quintile compared to hypertension and metabolic 

disease (Table 5-14, Table 5-15). 

Tables 5.18 and 5.19 show that, among the people with type 2 diabetes, using Q5 

of %AT or Q1 of %SM will identify those with diabetes who have BMI below 

30kg/m2. To highlight the importance of the assessment of %SM, tables 5.20 and 

5.21 report the number of subjects in the quintiles of %SM who are in different 

quintiles of BMI and waist. In men the first %SM quintile have 21.4% people with 

normal BMI from them 7.9 are diabetic. On the other hand, in the same %SM 

quintile 13.8% have waist circumference (Q2:88.29-94.9cm) 7.9% of them are 

diabetic. In women the numbers were lower, 0.78% of Normal BMI were present in 

the first %SM quintile, 10% of them are diabetic. There were 2.2% of women with 

waist circumference (Q2:76.51-83.3cm) in the first %SM quintile 5.3% of them were 

diabetic. 
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5.5 Discussion 

The prediction equations for adipose tissue and muscle mass, developed and 

validated in chapters 3 and 4 were applied to a large UK population of adults, to 

determine their associations with indicators of ‘obesity-related’ metabolic 

diseases.  Many significant relationships were found, but differences between the 

strength of associations for different equations were small.  Because the overall 

prevalence of hypertension was much greater than type 2 diabetes, the 

associations with ‘metabolic illnesses’ with the combination of the two conditions, 

were essentially the same as for hypertension alone. 

In this study, the significant inverse associations between SM (%) and SM:AT with 

diabetes, hypertension, HbA1c and blood pressure were dominant in all analyses. 

An inverse relationship between SM and diabetes has been reported previously in 

the literature. A cross-sectional study, carried out in Korean Asian adults, showed 

muscle mass was 2- to 4-fold lower in participants with type-2 diabetes (Kim et al., 

2014) than those without. Another cross-sectional study (Srikanthan and 

Karlamangla, 2011), studied whether muscle mass was protective in improving 

glucose regulation among 13,644 subjects in the US National Health and Nutrition 

Examination Survey. An inverse association was evident from the lowest quartile to 

the highest quartile of ‘skeletal muscle index’ as measured by bioelectrical 

impedance. After adjusting for sex, age, race and obesity, a 10% increase in 

skeletal muscle index was associated with 11% reduction in insulin resistance 

HOMA-IR (95%CI: 6–15%) and a 12% decrease in prediabetes as defined by 

glycated haemoglobin (95% CI:1–21). These present analyses concur with existing 

relationships, suggesting that increasing muscle mass could be protective against 

the development of insulin resistance.  

Secondly, SM in kg showed little association, with poor correlations and an absence 

of inverse relationships, however SM as percentage body weight showed strong 

associations with disease outcomes. This may reflect the fact that skeletal muscle 

mass can be elevated in obesity.  Thus analyses in this chapter focused on SM and 

AT calculated as percentages of body weight.   As in our analysis, (Srikanthan and 
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Karlamangla, 2011) found that calculated skeletal muscle mass, relative to body 

weight, (by dividing muscle mass and body weight and converting it to percentage) 

showed higher inverse correlation with insulin resistance and prediabetes.  

Association of the outcomes of prediction equations with HbA1c and blood 

pressure  

In general, women had stronger associations than men. Their coefficient of 

determination with systolic blood pressure and HbA1c were higher than diastolic 

blood pressure, while men had higher associations with HbA1c compared to systolic 

and diastolic blood pressure, diastolic blood pressure had the weakest associations.  

In testing how good the prediction equations were in fitting with the data, WHtR 

showed highest coefficient of determination for HbA1c R2= 17.3% in men and 23.0% 

for women, and SMLR was best for systolic blood pressure. BMI had the strongest 

associations with diastolic blood pressure in men and women although all were 

considerably weak R2= 6.3% and 8.8 % respectively.  Unexpectedly, as it may 

indicate muscle mass, hip circumference (alone) showed the lowest correlations in 

all the analysis. BMI, ATYY and BFML equations had almost the same correlations. 

Association of the prediction equations with diabetes, hypertension and metabolic 

illness 

WHtR has been explored lately in the literature showing promising associations. In 

a prospective cohort study, data from 10,258 men and women were pooled to 

assess associations between weight, BMI, waist circumference, WHR, WHtR and 

type-2 diabetes. They found stronger associations of diabetes with waist 

circumference and WHtR compared to BMI (Hartwig et al., 2016).  

A meta-analysis and systematic review aimed to study the WHtR potential by 

comparing it to waist circumference and BMI in terms of strength of association to 

cardio-metabolic risk factors.  The analysis was considerable, comprising data for 

300,000 adults reported in the 31 included papers.  WHtR to be superior over BMI, 

WHtR enhanced discrimination by 4-5% over BMI (Ashwell et al., 2012). Ashwell 
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warned that continuing to use BMI as the only indicator of health risk would mean 

that 10% of the UK population and more than 25% who are misclassified to be 

normal by BMI may not be alerted of health risks (Ashwell and Gibson, 2014) 

Likewise, our analysis showed the superiority of WHtR in its relation with diabetes, 

hypertension and metabolic illness. In addition, WHtR has shown better 

associations than BMI in recognizing cardio-metabolic disorders p<0.01 (Kahn and 

Bullard, 2016) in 3071 non-diabetic men and women.  

By investigating the prevalence of diabetes, hypertension and metabolic illness 

across the quintiles of %AT and %SM, we can see that increased %AT will increase 

prevalence of diabetes, hypertension and metabolic disease in men and women. 

On the other hand, the protective role of %SM is evident across the full range of 

quintiles for men and women. 

The top quintiles of BMI, WHtR and of %AT all have the same number of people, 

that means that (by quintiles) the greatest number of people with diabetes are in 

the top quintile of %AT, indicating that %AT is a more useful predictor of disease. 

While the top quintile of BMI does identify a lot of people with diabetes, the top 

quintile of %AT identifies more.  So there are people who have diabetes without a 

very high BMI who can be identified by their high %AT.  

 

Whole body skeletal muscle and adipose tissue ratios 

In this analysis we explored SM:AT and AT:SM ratio, computed using the new SM 

and AT prediction equations. The findings suggest that the higher SM:AT ratio is 

more protective against the development of diabetes and hypertension, and the 

lower AT:SM ratio is the more protective against diabetes and hypertension. SM:AT 

and AT:SM ratio may have value in determining risk of metabolic disease.  

To date the limited literature on this element has been poorly investigated. One 

related attempt perhaps related attempt was to explore muscle mass visceral fat 

ratio (Kim et al., 2011). In the Korean Sarcopenic Obesity Study, 526 healthy adults 
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20 – 80 years old were enrolled, 68% women, using dual energy x-ray 

absorptiometry and computed tomography they measured muscle mass and 

visceral fat respectively then computed muscle-fat ratio.  Their results show an 

independent negative association between arterial stiffness and metabolic 

syndrome. The same research group computed the opposite, visceral fat to muscle 

ratio and found it positively associated with insulin resistance, (Kim et al., 2004) in 

114, nondiabetic, overweight and obese middle aged women. Higher visceral fat 

muscle ratio, was evident in older women, with higher triglyceride and insulin-

AUC, and lower glucose insulin ratio, than women with low visceral fat muscle 

ratio. This chapter also showed an inverse relationship between SM:AT ratio and 

HbA1c/ blood pressure.  

Study Limitations. 

There are some important limitations to this present analysis.  The new prediction 

equations were derived and validated in relatively small numbers of mixed-race 

North American adults.  They have not yet been validated in other populations.  

The HSE and SHS databases include very large numbers of subjects who were 

mostly Caucasian, so they may have been more uniform in terms of body 

composition and anthropometry, which would weaken the estimations from the 

new equations.  A database with a wider range of variables might tend to show 

stronger correlations, and the inter-relationships between prediction equations 

would probably vary.  It would be unwise to declare from the present analysis that 

the ranking of predictions should lead to adopting one or other of those with the 

best predictions.  This type of analysis needs to be conducted on other datasets 

with different racial and ethnic profiles.  It is possible that larger studies in the 

future might define better prediction equations.  

The Health survey of England and Scottish Health Survey were typical nationally 

representative health surveys, but the design of these rolling cross-sectional 

surveys changed, such that not all the measures were made for every subject in 

every year.  Thus, there were more missing data than expected, this was 

especially true for hip and waist circumferences.  In addition, it was not possible 
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to distinguish between type-1 and type-2 diabetes, and use of reported medication 

to identify hypertension could be misleading, given many drugs have multiple 

medical indications.  An analyses of data after excluding patients on insulin 

treatment, explored who may have had type-1 diabetes, correlations and odds 

ratio increased.  It can be speculated that this reduction in numbers may have 

weakened the relationships. 

The present analyses examined the data only for linear relationships.  It is possible 

that stronger non-linear relationships exist.   

The present study is on a cross-sectional database.  It has been shown previously 

that ‘prediction’ of current disease status is likely to be different to prediction of 

future disease incidence.   For example, WHR was found to relate more strongly 

than waist circumference alone to type-2 diabetes in cross-sectional surveys, but 

not in longitudinal studies where waist had the stronger relationship.  The 

explanation could be the recent fall in hips circumference (through loss of gluteal 

muscle mass) that often occurs with the onset of type-2 diabetes with the impact 

to elevate the WHR.  However, a greater body fat content, indicated by high waist 

circumference but not by WHR, remains an important predictor of type-2 diabetes 

incidence (Lissner et al., 2001b, Han et al., 1995). Surprisingly, in this chapter hip 

circumference gave the lowest associations and odds ratios with metabolic disease. 

The SM equation (Algindan et al, 2014) includes hip circumference but had lower 

correlations of SM than the (Lee et al, 2000) SM equation, which is based mainly on 

demographic variables. 

After reviewing the literature relative risk and R2 were the choice for the 

statistical analyses in this section. Whilst there are other effective techniques to 

compare methods such as ROC curves, which look at cut offs for specific 

measurements, they measure sensitivity and specificity of predicting an outcome 

and plot them together.  In these analyses we do not have specific cut-offs to 

determine, but considered the opportunities offered by relative risk to adjust for 

other key variables. ROC analysis might be useful for future investigations. Other 
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methods that have been used in the literature include hazard ratio and Cox which 

need a measure of time and odds ratio that has been used in our analyses. 

Variables such as BMI, waist and WHtR are useful in public health surveys (to 

predict population levels of disease or risks, not to identify individuals), but not 

because those measures are simple predictors of adipose tissue or fat mass. BMI 

and WHtR contain other information and health-predictive components (height-

related).   

To gain information about disease development it is valuable to determine the 

influences of different compartments of body composition.  These equations are 

better estimates of adipose tissue or fat mass, and of skeletal muscle mass, both 

of which may prove additional information for public health.  It is clear from the 

results in this chapter that high %AT and low %SM are predictive of ill-health, for 

both men and women. In addition, mean HbA1c, systolic and diastolic blood 

pressure were higher in the highest %AT quintile and lower in highest %SM quintile 

for both men and women.  Importantly, the highest risk quintiles of %AT and of 

%SM identified different people with diabetes and with hypertension, so both 

estimates are valuable, and they may in practice reflect different aspects of 

disease development.  The highest risk quintiles of prediction equations also 

identified people with diabetes and/or hypertension who were not in the top 

quintile of BMI.   

5.5 Conclusion  

Prediction equations for both skeletal muscle mass and body fat are significantly 

associated with metabolic disease (diabetes and/or hypertension), HbA1c, systolic 

and diastolic blood pressure, identifying different people at risk.  The prediction 

equations for %AT and %SM identify some people with diabetes and hypertension 

who would not be identified if only BMI>30 is used.   The prediction equations show 

more people with metabolic illness are in the top quintile of %AT and in the lowest 

quintile of %SM, with steep gradients. This analysis highlights the importance of 

using %SM as an indicator for diabetes when some categories such as people with 
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low %SM but don’t have large waist and high BMI, this group cannot be identified 

by using BMI and waist circumference.  

The prediction equations offer potential for use in the analysis of future health 

surveys.  The established body-composition indicators, BMI, waist, performed 

similarly, and waist/height ratio showed particularly strong correlations, yet %SM 

and %AT offer different information. 

Further exploration would be valuable, especially in longitudinal follow-up studies. 

 

 

 

 

 

 

 

 

 

 

 

 



 

166 

 

Figure 5-1: process of data cleaning for the Scottish Health Survey and Health Survey of 

England.   
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Table 5-1: Process of cleaning data from the Scottish Health Survey and Health Survey of 

England. Extreme outliers’ removal from analysed data. 

 

variable Outliers men n Outliers women n 

Weight  <45 kg 46 <35 kg 61 

Height <146 cm 14 <135 cm 15 

Waist  <64,  >155 (cm) 24 <64,  >155 (cm) 28 

Hip <65, >180 (cm) 430 <65, >180 (cm) 424 

HbA1c <4, >15% 31 <4, >15% 34 

Systolic BP <85, >199 mmHg 62 <85, >199 mmHg 61 

Diastolic BP <40, >120 mmHg 35 <40, >120 mmHg 37 

Sample cleaning, n: number of removed extreme Outliers which are considered implausible. 

Anthropometric outliers were chosen by using CDC reference data as a general guide (Fryar CD, 

2012), Blood pressure cut-offs were arbitrary, based on clinical experience.  
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Table 5-2: Subject characteristics 

                       Analysed data 

 Men Women 

Sample size (n) 32,657 38,861 

Age (years) 51.1(17.2) 50.5(17.2) 

Body height (cm) 174.6(7.2) 161.2  (6.8) 

Body weight (kg) 84.3(14.7) 71.3  (14.8) 

Hip circumference (cm) 104.5(9.2) 105.3  (11.8) 

Waist circumference (cm) 98.5(12.1) 88.3  (13.1) 

BMI* (kg/m2) 27.7(4.4) 27.4  (5.5) 

WHR 0.94(0.1) 0.84(0.1) 

WHtR 0.56(0.1) 0.55(0.1) 

Adipose tissue (%) 29.4(5.9) 40.2  (7.8) 

Muscle mass (%) 35.1(4.7) 28.2(3.5) 

Body fat (%) 29.2(7.6) 40.5(7.6) 

HbA1c (%)* 5.6  (0.8) 5.6  (0.7) 

SBP (mmHg) 131.5  (15.6) 125.4  (18.5) 

DBP (mmHg) 74.7  (11) 73.3  (10.7) 

Diabetes %* 2144 (6.6%) 1747 (4.5%) 

Hypertension % 12,624 (38.7%) 12,804 (32.9) 

Insulin 330 (1.01%) 315 (0.81%) 

Value is presented as mean(sd); BMI: body mass index; adipose tissue (%): predicted by (Al-Gindan 

et al, 2015) then converted to (%) AT/body weight x100); Muscle mass (%): predicted by (Al-Gindan 

et al 2014) then converted to (%) SM/body weight x100; HbA1c: Glycated haemoglobin; DBP: 

diastolic blood pressure; SBP: systolic blood pressure. Diabetes mellitus was recorded when 

doctor/nurse reported, patient reported receiving treatment with oral medicine and HbA1c ≥6.5. 

Hypertension was recorded when doctor/nurse reported, systolic blood pressure ≥140 and diastolic 

blood pressure ≥90 mmHg. *: calculated after removing participants taking insulin.  
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Table 5-3: range of subject characteristics  

 Men 
n = 32,657 

Women 
n = 38,861 

 Minimum  Maximum  Minimum  Maximum  

Age (years) 18 104 18 100 

Height (cm) 146 210.3 135.6 188.4 

Weight (kg) 45.3 188 35.9 172 

Hip (cm) 65 166.5 65 179.9 

Waist (cm) 64.5 154.3 64 152.1 

BMI (kg/m2) 13.3 56 14.3 63.1 

WHR 0.6 1.7 0.8 1.6 

WHtR 0.4 0.9 0.4 0.97 

ATYY (%) 3.7 58.1 5.4 63 

SMYY (%) 4.0 61.5 13.1 42.8 

BFML(%) 6.9 62.3 22.7 73.4 

HbA1c (%) 4 14.5 4 14 

SBP (mmHg) 86 199 85 199 

DBP (mmHg) 40 120 40 120 

BMI: body mass index; WHR: waist hip ratio, WHtR: waist height ratio, AT (%): predicted by (Al-

Gindan et al, 2015) then converted to (%) AT/body weight x100); SM (%): predicted by (Al-Gindan et 

al 2014) then converted to (%) SM/body weight x100; BF (%): predicted by (Lean et al, 1996); 

HbA1c: Glycated haemoglobin; DBP: diastolic blood pressure; SBP: systolic blood pressure. 
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Table 5-4: Association (R2) of adipose tissue mass and muscle mass with already published 

prediction equations and anthropometric indices 

Equations                  R2 

 men women 

SMYY (kg) & SMLR (kg) 81.5 81.1 

ATYY (%) & BFML (%) 86.9 71.4 

ATYY (kg) & BMI 87.4 95.2 

ATYY (kg) & WHR 34.8 11.9 

ATYY (kg) & WHtR 87.2 69.3 

BMI: body mass index; WHR: waist hip ratio, WHtR: waist height ratio, ATYY: predicted by (Al-

Gindan et al, 2015); SMYY: predicted by (Al-Gindan et al 2014); SMLR: predicted by (Lee et al, 

2000); BFML: predicted by (Lean et al, 1996); 
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Table 5-5: Multiple regression analysis (R2) of HbA1c, systolic and diastolic blood pressure with 

published prediction equations and anthropometric measurements adjusted for age and 

hypertension (for HbA1c), age and type-2 diabetes (for systolic and diastolic blood pressure) 

 HbA1c Systolic Diastolic 

Variable men women men women men women 

Sample size 32,327 38,546 32,657 38,861 32,657 38,861 

SMYY(%) 14.3 20.3 7.3 26.7 1.4 5.2 

SMLR(%) 16.2 21.2 9.8 28.4 3.8 2.8 

ATYY(%) 16.0 20.4 9.0 27.2 5.3 7.7 

BF(%) 16.1 22.6 9.1 27.4 5.7 7.2 

SM:AT(%) 15.6 20.5 8.6 27.1 2.7 7.2 

AT:SM(%) 15.6 20.5 8.6 27.1 2.7 7.2 

BMI (kg/m2) 16.4 21.3 9.3 27.0 6.3 8.8 

WHR 15.9 20.9 7.9 25.4 3.9 3.4 

WHtR 17.3 23.0 9.1 27.0 5.5 8.0 

Waist (cm) 16.6 22.5 9.0 26.8 5.6 7.8 

Hip (cm) 14.7 19.5 8.0 25.6 2.3 4.8 

SMYY: skeletal muscle predicted by (Al-Gindan et al, 2014); ATYY: adipose tissue predicted by (AL-

Gindan et al, 2015): SMLR: skeletal muscle predicted by (Lee et al, 2000); BFML:  body fat 

predicted by (Lean et al, 1996); SM:AT: SMYY/AYYY: AT:SM: ATYY/SMYY; BMI: body mass index; 

WHR: waist hip ratio, WHtR: waist height ratio. All data log transformed to insure normal 

distribution. All P-value significant (≤0.05). Subjects taking insulin were removed from HbA1c 

analysis only. 

 

  



 

172 

 

Table 5-6: Association between categorical variable diabetes and continuous variables muscle, 

fat, adipose and anthropometric measurements in men, adjusted for age and hypertension 

using binary logistic regression 

 
 Odds Ratio R2 Coefficient of variation  

Sample size 32,327   

SMYY(%) 1.01 (1.0,1.02) 11.16 0.01 

SMLR(%) 0.74(0.72, 0.76) 14.7 -0.3 

ATYY(%) 1.14(1.13, 1.15) 15.5 0.1 

BFML(%) 1.09(1.08, 1.10) 15.2 0.09 

SM:AT* 0.98(0.98, 0.98) 13.1 -0.02 

AT:SM* 1.02(1.01, 1.02) 12.7 0.02 

BMI (kg/m2) 1.14(1.12, 1.15) 15.1 0.13 

WHR* 1.06(1.06,1.07) 14.6 0.06 

WHtR* 1.10(1.09, 1.11) 15.9 0.10 

Waist (cm) 1.05(1.05, 1.06) 15.2 0.05 

Hip (cm) 1.03(1.02, 1.03) 11.8 0.03 

SMYY: skeletal muscle predicted by (Al-Gindan et al, 2014); ATYY: adipose tissue predicted by (AL-

Gindan et al, 2015): SMLR: skeletal muscle predicted by (Lee et al, 2000); BFML:  body fat 

predicted by (Lean et al, 1996); SM:AT: SMYY/AYYY: AT:SM: ATYY/SMYY; BMI: body mass index; 

WHR: waist hip ratio, WHtR: waist height ratio. *: scale of the original observation changed by 

multiplying by 100 before entering it into the analysis. For this analysis data is not log transformed. 

All P-value significant (≤0.05). Subjects taking insulin were removed (n= 330 men). Diabetes 

variable included (doctor/nurse report, taking medication for diabetes and HbA1c>6.5), out of the 

32,327 subjects, 2144 were diabetic.  

 

  



 

173 

 

Table 5-7: Association between categorical variable diabetes and continuous variables muscle, 

fat, adipose and anthropometric measurements in women, adjusted for age and hypertension 

using binary logistic regression.   

 Odds Ratio R2 Coefficient of variation 

Sample size 38,546   

SMYY(%) 1.03(1.03, 1.03) 13.6 -0.16 

SMLR(%) 0.56(0.53, 0.59) 15.5 -0.58 

ATYY(%) 1.12(1.11,1.13) 16.6 0.11 

BFML(%) 1.15(1.14, 1.16) 18.4 0.13 

SM:AT* 0.96(0.96,0.96) 15.3 -0.04 

AT:SM* 1.01(1.01,1.01) 15.2 0.03 

BMI (kg/m2) 1.12(1.11, 1.13) 16.3 0.11 

WHR* 1.05(1.05, 1.06) 14.1 0.05 

WHtR* 1.10(1.09, 1.11) 18.8 0.10 

Waist (cm) 1.06(1.06, 1.07) 18.4 0.06 

Hip (cm) 1.03(1.04, 1.04) 13.1 0.03 

SMYY: skeletal muscle predicted by (Al-Gindan et al, 2014); ATYY: adipose tissue predicted by (AL-

Gindan et al, 2015): SMLR: skeletal muscle predicted by (Lee et al, 2000); BFML:  body fat 

predicted by (Lean et al, 1996); SM:AT: SMYY/AYYY: AT:SM: ATYY/SMYY; BMI: body mass index; 

WHR: waist hip ratio, WHtR: waist height ratio. *: scale of the original observation changed by 

multiplying by 100 before entering it into the analysis. For this analysis data is not log transformed. 

All P-value significant (≤0.05). Subjects taking insulin were removed (n=315 women). Diabetes 

variable included (doctor/nurse report, taking medication for diabetes and HbA1c>6.5) out of the 

38,546 subjects, 1747 are diabetic.  
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Table 5-8: Associations between categorical variable hypertension and continuous variables 

muscle, fat, adipose and anthropometric measurements in men, adjusted for age and diabetes 

using binary logistic regression. 

 Odds Ratio R2 Coefficient of variation  

Sample size 32,657   

SMYY(%) 0.98(0.98, 0.99) 12.8 -0.02 

SMLR(%) 0.82(0.81,0.83) 15.2 -0.2 

ATYY(%) 1.09(1.08, 1.09) 15.1 0.08 

BFML(%) 1.07(1.06, 1.07) 15.2 0.06 

SM:AT* 1.0(1.0, 1.0) 14.2 -0.01 

AT:SM* 1.01(1.01, 1.02) 14.0 0.01 

BMI (kg/m2) 1.11(1.10, 1.11) 15.4 0.10 

WHR* 1.04(1.03, 1.04) 13.9 0.03 

WHtR* 1.07(1.06, 1.07) 15.4 0.07 

Waist (cm) 1.04(1.04, 1.04) 15.2 0.04 

Hip (cm) 1.03(1.03, 1.03) 13.8 0.03 

SMYY: skeletal muscle predicted by (Al-Gindan et al, 2014); ATYY: adipose tissue predicted by (AL-

Gindan et al, 2015): SMLR: skeletal muscle predicted by (Lee et al, 2000); BFML:  body fat 

predicted by (Lean et al, 1996); SM:AT: SMYY/AYYY: AT:SM: ATYY/SMYY; BMI: body mass index; 

WHR: waist hip ratio, WHtR: waist height ratio. *: scale of the original observation changed by 

multiplying by 100 before entering it into the analysis. For this analysis data is not log transformed. 

All P-value significant (≤0.05). Hypertension variable included doctor/nurse reported, systolic blood 

pressure≥140 mmHg, diastolic blood pressure ≥90mmHg.  Out of the 32,657 subjects, 12,624 are 

hypertensive. 
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Table 5-9: Associations between categorical variable hypertension and continuous variables 

muscle, fat, adipose and anthropometric measurements in men, adjusted for age and diabetes 

using binary logistic regression. 

 Odds Ratio R2 Coefficient of variation 

Sample size 38,861   

SMYY(%) 0.87(0.86, 0.88) 21.9 -0.13 

SMLR(%) 0.67(0.66, 0.69) 22.5 -0.40 

ATYY(%) 1.08(1.08, 1.09) 23.2 0.08 

BFML(%) 1.09(1.09, 1.10) 22.9 0.09 

SM:AT* 0.98(0.97, 0.98) 22.3 -0.02 

AT:SM* 1.01(1.01, 1.01) 22.6 0.01 

BMI (kg/m2) 1.10(1.10, 1.10) 23.2 0.10 

WHR* 1.03(1.03, 1.04) 20.8 0.03 

WHtR* 1.07(1.06, 1.07) 23.1 0.06 

Waist (cm) 1.04(1.04, 1.04) 22.9 0.04 

Hip (cm) 1.03(1.03, 1.03) 21.4 0.03 

SMYY: skeletal muscle predicted by (Al-Gindan et al, 2014); ATYY: adipose tissue predicted by (AL-

Gindan et al, 2015): SMLR: skeletal muscle predicted by (Lee et al, 2000); BFML:  body fat 

predicted by (Lean et al, 1996); SM:AT: SMYY/AYYY: AT:SM: ATYY/SMYY; BMI: body mass index; 

WHR: waist hip ratio, WHtR: waist height ratio. *: scale of the original observation changed by 

multiplying by 100 before entering it into the analysis. For this analysis data is not log transformed. 

All P-value significant (≤0.05). Hypertension variable included doctor/nurse reported, systolic blood 

pressure≥140 mmHg, diastolic blood pressure ≥90mmHg.  Out of the 38,861 subjects, 12,804 are 

hypertensive. 
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Table 5-10: Associations of outcomes of SM and AT mass derived from the prediction equations 

and anthropometric measurements with metabolic disease’ in men, using binary logistic 

regression adjusted for age. 

 Odds Ratio R2 Coefficient of variation 

Sample size 32,327   

SMYY(%) 0.99 (0.98,0.99) 13.4     -0.01 

SMLR(%) 0.80 (0.79, 0.81) 16.4     -0.2 

ATYY(%) 1.10 (1.09, 1.11) 16.5      0.1 

BFML(%) 1.08 (1.07, 1.08) 16.6      0.1 

SM:AT* 0.99(0.99, 0.99) 15.1     -0.01 

AT:SM* 1.02(1.02, 1.02) 15.1      0.02 

BMI (kg/m2) 1.12 (1.11, 1.12) 16.7      0.1 

WHR* 1.05(1.04, 1.05) 15.2      0.04 

WHtR* 1.08(1.07, 1.08) 16.8      0.08 

Waist (cm) 1.04(1.04,1.04) 16.6      0.04 

Hip (cm) 1.03( 1.03, 1.03) 14.5      0.03 

SMYY: skeletal muscle predicted by (Al-Gindan et al, 2014); ATYY: adipose tissue predicted by (AL-

Gindan et al, 2015): SMLR: skeletal muscle predicted by (Lee et al, 2000); BFML:  body fat 

predicted by (Lean et al, 1996); SM:AT: SMYY/AYYY: AT:SM: ATYY/SMYY; BMI: body mass index; 

WHR: waist hip ratio, WHtR: waist height ratio. *: scale of the original observation changed by 

multiplying by 100 before entering it into the analysis Data not log transformed. All P-value 

significant (≤0.05). Subjects taking insulin were removed from analysis (n=330). Subjects with 

hypertension and or diabetes = 13055. 
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Table 5-11: Association of prediction equations and anthropometric measurements with 

‘metabolic disease’ in women, using binary logistic regression adjusted for age. 

 Odds Ratio R2 Coefficient of variation 

Sample size 38,546   

SMYY(%) 0.86 (0.85, 0.87) 22.0  -0.2 

SMLR(%) 0.64 (0.62,0.65) 23.0  -0.4 

ATYY(%) 1.09(1.09, 1.10) 23.8   0.1 

BFML(%) 1.11(1.10, 1.11) 23.7   0.1 

SM:AT* 0.97(0.97, 0.97) 22.8  -0.03 

AT:SM* 1.01(1.01, 1.01) 23.3   0.01 

BMI (kg/m2) 1.11(1.11, 1.12) 23.8   0.1 

WHR* 1.04(1.04, 1.05) 21.2   0.04 

WHtR* 1.08(1.07, 1.08) 24.4   0.07 

Waist (cm) 1.05 (1.04, 1.05) 23.7   0.05 

Hip (cm) 1.03(1.03, 1.04) 21.4   0.03 

SMYY: skeletal muscle predicted by (Al-Gindan et al, 2014); ATYY: adipose tissue predicted by (AL-

Gindan et al, 2015): SMLR: skeletal muscle predicted by (Lee et al, 2000); BFML:  body fat 

predicted by (Lean et al, 1996); SM:AT: SMYY/AYYY: AT:SM: ATYY/SMYY; BMI: body mass index; 

WHR: waist hip ratio, WHtR: waist height ratio. *: scale of the original observation changed by 

multiplying by 100 before entering it into the analysis. Data not log transformed. All P-value 

significant (≤0.05). Subjects taking insulin were removed from analysis (n=315). Subjects with 

hypertension and or diabetes = 13135. 
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Table 5-12: Prevalence of diabetes, hypertension and metabolic disease and mean of HbA1c 

and blood pressure in 20%, 40%, 60% 80% quintile of %AT and %SM estimated by (Al-gindan et 

al, 2014,2015) prediction equations in men 

 
 
Adipose tissue(AT%) 

 Q1 
3.7-24.7 

Q2 
24.8-28.3 

Q3 
28.4-31.2 

Q4 
31.3-34.3 

Q5 
34.4-58.1 

N 6465 6466 6465 6465 6464 

Diabetes(%) 70(1.1%) 172(2.7%) 275(4.3%) 560(8.7%) 1066(16.5%) 

Hypertension(%) 1004(15.5%) 1794(27.7%) 2487(38.5%) 3169(49.0%) 3936(60.9%) 

Metabolic illness(%) 1037(16.0%) 1877(29.0%) 2577(39.9%) 3352(51.8) 4210(65.1%) 

HbA1c (mean(sd)) 5.3(0.4) 5.4(0.5) 5.5(0.6) 5.7(0.8) 6.0(0.9) 

Systolic BP (mean(sd)) 125.2(13.1) 129.4(14.2) 132.2(15.1) 134.2(15.8) 136.2(17.1) 

Diastolic BP (mean(sd)) 70.2(9.9) 74.1(10.1) 75.9(10.7) 76.7(11.0) 76.4(11.9) 

 
 
Muscle mass (SM%) 

 Q1 
4.0-31.7 

Q2 
31.8-34.1 

Q3 
34.2-36.0 

Q4 
36.1-38.3 

Q5 
38.4-61.5 

N 6465 6466 6466 6465 6465 

Diabetes (%) 869(13.4%) 557(8.6%) 347(5.4%) 195(3.0%) 176(2.7%) 

Hypertension (%) 3917(60.6%) 3148(48.7%) 2360(36.5%) 1748(27.0%) 1219(18.9%) 

Metabolic illness (%) 4143(64.1%) 3313(51.2%) 2501(38.7%) 1814(28.1%) 1284(19.9%) 

HbA1c (mean(sd)) 5.9(0.8) 5.7(0.7) 5.6(0.7) 5.5(0.7) 5.3(0.6) 

Systolic BP (mean(sd)) 136.5(18.0) 133.9(16.5) 130.9(15.0) 129.1(13.0) 126.8(12.8) 

Diastolic BP (mean(sd)) 73.0(11.5) 76.3(10.8) 76.9(10.8) 75.5(10.5) 71.9(10.6) 

Results reported as percentage of all people with type-two diabetes, hypertension and metabolic 

disease for each quintile; mean(sd) of HbA1c, systolic and diastolic blood pressure for each 

quintile; N: number of subjects;  Q1:first quintile (minimum – 20%), Q2:second quintile (20%), Q3: 

third quintile (40%), Q4: fourth quintile (60%), Q5: fifth quintile (80% - maximum); Prediction 

equation for %AT developed by (Algindan et al, 2015); Prediction equation for %SM developed by 

(Algindan et al, 2014); Subjects taking insulin were removed (n= 330 men, n=315 women) . Diabetes 

variable included (doctor/nurse report, taking medication for diabetes and HbA1c>6.5); out of the 

32,325 men, 2144 are diabetic; Hypertension variable included doctor/nurse reported, systolic 

blood pressure≥140 mmHg, diastolic blood pressure ≥90mmHg, out of the 32,325 men, 12,391 are 

hypertensive; metabolic illness: Subjects with hypertension and or diabetes = 13054 men. 
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Table 5-13: Prevalence of diabetes, hypertension and metabolic disease and mean of HbA1c 

and blood pressure in 20%, 40%, 60% 80% quintile of %AT and %SM estimated by (Al-gindan et 

al, 2014,2015) prediction equations in women. 

 
Adipose tissue (ATYY%) 
 Q1 

5.4-33.5 
Q2 
33.6-38.4 

Q3 
38.5-42.5 

Q4 
42.6-47.0 

Q5 
47.1-63.0 

N 7708 7708 7710 7709 7709 
Diabetes (%) 36(0.5%) 112(1.4%) 229(3.0%) 456(5.9%) 914(11.8%) 
Hypertension (%) 786(10.2%) 1561(20.3%) 2463(31.9%) 3424(44.4%) 4377(56.8%) 

Metabolic illness (%) 809(10.5%) 1612(20.9%) 2554(33.1%) 3565(46.2%) 4595(59.6%) 

HbA1c (mean(sd)) 5.3(0.4) 5.4(0.5) 5.5(0.5) 5.7(0.7) 5.9(0.8) 
Systolic BP (mean(sd) 114.9(14.3) 121.1(16.3) 126.2(17.9) 130.7(18.7) 133.4(18.7) 

Diastolic BP (mean(sd)) 68.9(9.5) 71.3(9.7) 73.5(10.1) 75.4(10.7) 77.2(11.1) 

 
 
Muscle mass (SMYY%) 
 Q1 

13.1-25.2 
Q2 
25.3-27.2 

Q3 
27.3-28.9 

Q4 
29.0-31.1 

Q5 
31.2-42.8 

N 7708 7710 7709 7709 7709 
Diabetes (%) 846(10.9%) 427(5.5%) 244(3.2%) 145(1.9%) 85(1.1%) 
Hypertension (%) 4477(58.1%) 3350(43.5%) 2380(30.9%) 1489(19.3%) 914(11.8%) 

Metabolic illness (%) 4674(60.6%) 3488(45.2%) 2474(32.1%) 1542(20.0%) 956(12.4%) 

HbA1c (mean(sd))  5.8(0.8) 5.7(0.7) 5.5(0.5) 5.4(0.5) 5.3(0.5) 

Systolic BP (mean(sd)) 134.3(18.9) 130.4(18.8) 125.4(17.4) 120.7(16.2) 115.6(14.5) 

Diastolic BP (mean(sd)) 76.5(11.2) 75.3(10.7) 73.5(10.2) 71.6(9.9) 69.5(9.7) 

Results reported as percentage of all people with type-two diabetes, hypertension and metabolic 

disease for each quintile; mean(sd) of HbA1c, systolic and diastolic blood pressure for each 

quintile; N:number of subjects; Q1: first quintile (minimum), Q2: second quintile (20%), Q3: third 

quintile (40%), Q4: fourth quintile (60%), Q5: fifth quintile (maximum); Prediction equation for %AT 

developed by (Algindan et al, 2015); Prediction equation for %SM developed by (Algindan et al, 

2014);Subjects taking insulin were removed (n= 330 men, n=315 women). Diabetes variable 

included (doctor/nurse report, taking medication for diabetes and HbA1c>6.5); out of the 38,546 

women, 1747 are diabetic; Hypertension variable included doctor/nurse reported, systolic blood 

pressure≥140 mmHg, diastolic blood pressure ≥90, out of the 38,546 women, 12,610 are 

hypertensive; metabolic illness: Subjects with hypertension and or diabetes = 13134women. 
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Table 5-14: Relative risk of having diabetes, hypertension and metabolic disease in %AT, %SM, 

BMI and WHtR quintiles relative to reference population (Q1 for %AT, BMI, WHtR) and Q5 for 

%SM) in men. 

 
 
Adipose tissue (AT%) 

 Q1 
3.7-24.7 

Q2 
24.8-28.3 

Q3 
28.4-31.2 

Q4 
31.3-34.3 

Q5 
34.4-58.1 

RR diabetes (%) ---- 2.5   3.9   7.9  15 

RR hypertension (%) ---- 1.9   2.5   3.2  3.9 

RR metabolic illness 
(%) 

---- 1.8   2.4   3.2  4.1 

 
 
Muscle mass (SM %) 

 Q1 
3.7-24.7 

Q2 
24.8-28.3 

Q3 
28.4-31.2 

Q4 
31.3-34.3 

Q5 
34.4-58.1 

RR diabetes (%) 4.9 3.2 2 1.1 ---- 

RR hypertension (%) 3.2 2.6 1.9 1.4 ---- 

RR metabolic illness 
(%) 

3.2 2.6 1.9 1.4 ---- 

 
 
BMI kg/m2 

     

 Q1 
13.3-24.0 

Q2 
24.1-26.3 

Q3 
26.4-28.2 

Q4 
28.3-30.9 

Q5 
31.0-56.0 

RR diabetes (%) ---- 1.6 2.3 3.0 5.4 

RR hypertension (%) ---- 1.5 1.8 2.1 2.5 

RR metabolic illness 
(%) 

---- 1.5 1.8 2.1 2.5 

 
 
WHtR 

     

 Q1 
0.35-0.50 

Q2 
0.51-0.54 

Q3 
0.55-0.57 

Q4 
0.58-0.62 

Q5 
0.630.94 

RR diabetes (%) ---- 2.5 4.3 7.9 14.5 

RR hypertension (%) ---- 1.8 2.5 3.2 3.8 

RR metabolic illness 
(%) 

---- 1.8 2.5 3.2 4.0 

Results reported as relative risk of having type-two diabetes, hypertension and metabolic disease in  

each quintile using Q1 as baseline for %AT, Q5 as baseline for %SM, Q1 as baseline for BMI and 

WHtR;  Q1:first quintile (minimum – 20%), Q2:second quintile (20%), Q3: third quintile (40%), Q4: 

fourth quintile (60%), Q5: fifth quintile (80% - maximum); Prediction equation for %AT developed by 

(Algindan et al, 2015); Prediction equation for %SM developed by (Algindan et al, 2014); Subjects 

taking insulin were removed (n= 330 men, n=315 women) . Diabetes variable included (doctor/nurse 

report, taking medication for diabetes and HbA1c>6.5); out of the 32,325 men, 2144 are diabetic; 

Hypertension variable included doctor/nurse reported, systolic blood pressure≥140 mmHg, diastolic 

blood pressure ≥90, Out of the 32,325 men, 12,391 are hypertensive; metabolic illness: Subjects 

with hypertension and or diabetes = 13054 men. 
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Table 5-15: Relative risk of diabetes, hypertension and metabolic disease in %AT,%SM, BMI and 

WHtR quintiles in women. 

 
 
Adipose tissue (AT%) 

 Q1 
5.4-33.5 

Q2 
33.6-38.4 

Q3 
38.5-42.5 

Q4 
42.6-47.0 

Q5 
47.1-63.0 

RR diabetes (%) ---   2.8   6   11.8   23.6 

RR hypertension (%) ---   2.0   3.1   4.3   5.5 

RR metabolic illness (%) ---   2.0   3.1   4.4   5.6 

 
 
Muscle mass (SM %) 

 Q1 
13.1-25.2 

Q2 
25.3-27.2 

Q3 
27.3-28.9 

Q4 
29.0-31.1 

Q5 
31.2-42.8 

RR diabetes (%) 9.9 5 2.9 1.7 --- 

RR hypertension (%) 4.9 3.7 2.6 1.6 --- 

RR metabolic illness (%) 4.8 3.6 2.6 1.6 --- 

 
 
BMI kg/m2 

     

 Q1 
13.3-24.0 

Q2 
24.1-26.3 

Q3 
26.4-28.2 

Q4 
28.3-30.9 

Q5 
31.0-56.0 

RR diabetes (%) ---- 1.8 3.2 5.2 9.2 

RR hypertension (%) ---- 1.5 2.0 2.5 3.0 

RR metabolic illness (%) ---- 1.5 2.0 2.5 3.1 

 
 
WHtR 

     

 Q1 
0.35-0.50 

Q2 
0.51-0.54 

Q3 
0.55-0.57 

Q4 
0.58-0.62 

Q5 
0.630.94 

RR diabetes (%) ---- 1.9 4.6 9.8 22.4 

RR hypertension (%) ---- 1.9 2.8 3.9 4.9 

RR metabolic illness (%) ---- 1.9 2.8 3.9 5.0 

Results reported as relative risk of having type-two diabetes, hypertension and metabolic disease in  

each quintile using Q1 as baseline for %AT and Q5 as baseline for %SM; Q1 as baseline for BMI and 

WHtR; Q1: first quintile (minimum), Q2: second quintile (20%), Q3: third quintile (40%), Q4: fourth 

quintile (60%), Q5: fifth quintile (maximum); Prediction equation for %AT developed by (Algindan et 

al, 2015); Prediction equation for %SM developed by (Algindan et al, 2014);Subjects taking insulin 

were removed (n= 330 men, n=315 women). Diabetes variable included (doctor/nurse report, taking 

medication for diabetes and HbA1c>6.5); out of the 38,546 women, 1747 are diabetic; Hypertension 

variable included doctor/nurse reported, systolic blood pressure≥140 mmHg, diastolic blood 

pressure ≥90, out of the 38,546 women, 12,610 are hypertensive; metabolic illness: Subjects with 

hypertension and or diabetes = 13134 women. 
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Table 5-16: Prevalence of diabetes, hypertension and metabolic illness in different BMI categories and distribution of %AT and %SM across the BMI 

categories in men. 

BMI (n) 16 – 18.4 kg/m2 (185) 18.5-24.9 kg/m2 (14,022) 25.0-29.5 kg/m2 (12,406) 30.0-34.9 kg/m2 (6,556) ≥35.0 kg/m2 (3,736) 

Diabetes (%) 0.5 2.8 5.6 10.6 18.5 

RR diabetes 0.2 ----- 2 3.7 6.6 

Hypertension 
(%) 

14.6 23.8 38.0 51.8 58.8 

RR 
hypertension  

0.6 ----- 1.6 2.2 2.5 

Metabolic 
illness (%) 

15.1 25.0 39.9 54.8 62.6 

RR metabolic 
illness 

0.6 ----- 1.6 2.2 2.5 

AT quintile Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

% 98.4 1.6 0 0 0 58.7 26.5 10.3 4.0 1.3 8.7 27.3 30.5 22.4 11.1 0.3 3.1 15.4 35.8 45.4 0.1 0.2 1.6 14.0 84.2 

SM quintile Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

% 8.6 4.3 8.6 8.6 69.7 15.6 14.1 15.2 19.5 35.6 20.6 21.0 21.0 20.9 16.6 22.3 24.8 23.2 19.7 10.0 28.9 23.7 24.0 17.6 5.7 

n: number of subjects; Diabetes variable included (doctor/nurse report, taking medication for diabetes and HbA1c>6.5); Hypertension variable included 

doctor/nurse reported, systolic blood pressure≥140 mmHg, diastolic blood pressure ≥90; metabolic illness: Subjects with hypertension and/or diabetes;  

Q: quintile; %AT(whole body adipose tissue predicted by (Algindan et al, 2015))  Q1 = 3.8-24.7, Q2 = 24.8 – 28.3, Q3 = 28.4 – 31.2, Q4 = 31.3 – 34.3, Q5 = 

34.4 – 58.1; %SM (whole body skeletal muscle predicted by (Algindan et al, 2014)  Q1 = 4.0 – 31.7, Q2 = 31.8 – 34.1, Q3 = 34.2 – 36.0, Q4 = 36.1 – 38.3, Q5 

= 38.4 – 61.5. 
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Table 5-17: Prevalence of diabetes, hypertension and metabolic illness in different BMI categories and distribution of %AT and %SM across the BMI 

categories in women. 

BMI (n) 16 – 18.4 kg/m2 (328) 18.5-24.9 kg/m2 (14,022) 25.0-29.5 kg/m2 (12,406) 30.0-34.9 kg/m2 (6,556) ≥35.0 kg/m2 (3,736) 

Diabetes (%) 0.9 1.5 4.0 7.7 11.9 

RR diabetes 0.6  2.7 5.1 7.9 

Hypertension 
(%) 

17.1 20.1 33.5 47.0 51.4 

RR 
hypertension 

0.8  1.7 2.3 2.6 

Metabolic 
illness (%) 

17.4 20.7 34.8 48.9 54.6 

RR metabolic 
illness 

0.8  1.7 2.4 2.6 

AT quintile Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

% 100 0 0 0 0 52.2 39.2 8.3 2.9 0 0 16.4 50.5 31.9 1.3 0 0 0.8 44.6 54.6 0 0 0 0.05 99.9 

SM quintile Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

% 0 0 0.30 2.4 97.3 0.4 3.5 13.2 35.9 47.0 8.8 29.0 39.2 19.2 3.7 45.5 41.6 8.6 1.2 3.0 86.4 10.3 1.7 1.1 0.4 

n: number of subjects; Diabetes variable included (doctor/nurse report, taking medication for diabetes and HbA1c>6.5); Hypertension variable included 

doctor/nurse reported, systolic blood pressure≥140 mmHg, diastolic blood pressure ≥90; metabolic illness: Subjects with hypertension and/or diabetes; Q: 

quintile; %AT (whole body adipose tissue predicted by (Algindan et al, 2015)) Q1: 5.4 – 33.5, Q2:33.6 – 38.4, Q3: 38.5 – 42.5, Q4:42.6 – 47.0, Q5:47.1 – 

63.0; %SM (whole body skeletal muscle predicted by (Algindan et al, 2014) Q1: 13.1 – 25.2, Q2:25.3 – 27.2, Q3:27.3 – 28.9, Q4: 29.0 – 31.1, Q5:31.2 – 42.8  
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Table 5-18: Distribution of %AT and %SM for subjects with diabetes in different BMI categories in men. 

BMI (n) 16 – 18.4 kg/m2 (1) 18.5-24.9 kg/m2 (240) 25.0-29.5 kg/m2 (764) 30.0-34.9 kg/m2 (678) ≥35.0 kg/m2 (354) 

AT 
quintile 

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

% 100 0 0 0 0 20.4 30.8 23.7 17.9 7.1 2.2 12.0 22.0 36.2 27.3 0.1 0.4 5.5 27.9 66.1 0.3 0 0.3 3.7 95.8 

SM 
quintile 

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

% 0 0 0 0 100 43.3 22.5 14.2 7.1 12.9 41.9 25.7 15.2 8.1 9.2 36.0 29.1 17.3 10.8 6.9 43.8 24.3 18.9 9.3 0.8 

n: number of subjects; total number of men with diabetes 2144; Diabetes variable included (doctor/nurse report, taking medication for diabetes and 

HbA1c>6.5; Q: quintile; %AT (whole body adipose tissue predicted by (Algindan et al, 2015)) Q1 = 3.8-24.7, Q2 = 24.8 – 28.3, Q3 = 28.4 – 31.2, Q4 = 31.3 – 

34.3, Q5 = 34.4 – 58.1; %SM (whole body skeletal muscle predicted by (Algindan et al, 2014) Q1 = 4.0 – 31.7, Q2 = 31.8 – 34.1, Q3 = 34.2 – 36.0, Q4 = 36.1 – 

38.3, Q5 = 38.4 – 61.5. 

 

Table 5-19: Distribution of %AT and %SM for subjects with diabetes in different BMI categories in women. 

BMI (n) 16 – 18.4 kg/m2 (3) 18.5-24.9 kg/m2 (213) 25.0-29.5 kg/m2 (501) 30.0-34.9 kg/m2 (504) ≥35.0 kg/m2 (443) 

AT 
quintile 

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

% 100 0 0 0 0 15.5 46.0 36.6 1.9 0 0 2.8 28.9 64.5 3.8 0 0 0 15.9 84.1 0 0 0 0 100 

SM 
quintile 

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

% 0 0 0 0 100 2.8 13.1 30.5 38.5 15.0 19.5 42.7 25.1 8.2 4.4 62.3 24.6 6.5 2.0 4.6 89.2 6.3 2.7 2.3 0 

n: number of subjects; total number of women with diabetes 1747; Diabetes variable included (doctor/nurse report, taking medication for diabetes and 

HbA1c>6.5; Q: quintile; %AT (whole body adipose tissue predicted by (Algindan et al, 2015)) Q1: 5.4 – 33.5, Q2:33.6 – 38.4, Q3: 38.5 – 42.5, Q4:42.6 – 

47.0, Q5:47.1 – 63.0; %SM (whole body skeletal muscle predicted by (Algindan et al, 2014) Q1: 13.1 – 25.2, Q2:25.3 – 27.2, Q3:27.3 – 28.9, Q4: 29.0 – 31.1, 

Q5:31.2 – 42.8 
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Table 5-20: numbers and percentage of people in quintiles of %SM who are in different quintiles of Waist and of BMI, and the number and 

percentage of type-2 diabetes in each BMI and waist quintile in men. 

SM% Q1(4.0-31.7) Q2(31.8-34.1) Q3(34.2-36.0) Q4(36.1-38.3) Q5(38.4-61.5) 

N 6465 6466 6466 6465 6465 

T2DM 869 557 347 195 176 

%* 13.4 8.1 5.4 3.01 2.7 

BMI Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

N* 20 1386 3070 1436 552 14 1249 3150 1600 453 18 1356 2879 1754 459 17 1672 2929 1497 350 132 3066 2337 817 113 

%** 0.31 21.4 47.4 22.2 8.5 0.22 19.3 48.7 24.7 7.0 0.28 21 44.5 27.1 7.1 0.26 25.9 45.3 23.2 5.4 2.04 47.4 36.1 12.6 1.7 

T2DM (n) 0 110 356 248 155 0 57 214 200 86 0 35 116 129 67 0 17 63 82 33 1 31 73 58 13 

%*** 0 7.9 11.6 17.3 28.1 0 4.6 6.8 12.5 19 0 2.5 4.03 7.4 14.6 0 1.1 2.1 5.5 9.4 0.8 1.01 3.1 7.1 11.5 

Waist Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

N* 382 894 1293 1730 2166 509 1087 1514 1628 1728 760 1369 1490 1482 1365 1354 1706 1413 1111 881 3460 1418 776 499 312 

%** 5.9 13.8 20 26.8 33.5 7.9 16.8 23.4 25.2 26.7 11.7 21.2 23 22.9 21.1 20.9 26.4 21.9 17.2 13.6 53.5 21.9 12.0 7.7 4.8 

T2DM (n) 17 71 137 211 433 24 52 93 127 261 16 44 61 72 154 16 31 37 30 81 30 25 42 41 38 

%*** 4.4 7.9 10.6 12.2 20 4.7 4.8 6.1 7.8 15.1 2.1 3.2 4.1 4.9 11.2 1.2 1.9 2.6 2.7 9.2 0.9 1.8 5.4 8.2 12.2 

Results reported as “number of subjects (N) and percentage (%)”; T2DM: type-2 diabetes; Q1: first quintile (minimum), Q2: second quintile (20%), Q3: 

third quintile (40%), Q4: fourth quintile (60%), Q5: fifth quintile (maximum); Prediction equation for %SM developed by (Algindan et al, 2014); Subjects 

taking insulin were removed (n= 330 men, n=315 women). Diabetes variable included (doctor/nurse report, taking medication for diabetes and 

HbA1c>6.5); out of the 38,546 women, 1747 are diabetic; BMI quintiles: Q1 (13 – 18.4 kg/m2),  Q2 (18.5-24.9 kg/m2 ), Q3 (25-29.9 kg/m2 ), Q4 (30 – 34.9 

kg/m2 ), Q5 (35 – 64 kg/m2 ); waist quintiles: Q1( 64.5-88.28cm), Q2(88.29-94.9cm), Q3( 94.91-100.7cm), Q4(100.71-108.05cm), Q5(108.06-154.35cm); N*:  

numbers of people in quintiles of %SM who are in different quintiles of Waist and of BMI; %**: percentage of people in quintiles of %SM who are in different 

quintiles of Waist and of BMI; %***: percentage of diabetics in each BMI and waist quintiles. 
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Table 5-21: numbers and percentage of people in quintiles of %SM who are in different quintiles of Waist and of BMI, and the number and 

percentage of type-2 diabetes in each BMI and waist quintile in women. 

SM% Q1(13.1-25.2) Q2(25.3-27.2) Q3(27.3-28.9) Q4(29—31.1) Q5(31.2-42.8) 

N 7708 7710 7705 7709 7709 

T2DM 846 427 244 145 85 

%* 11 5.5 3.1 1.9 1.1 

BMI Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

N* 0 60 1101 3258 3289 0 487 3636 3183 404 1 1856 4967 813 68 8 5031 2528 98 44 339 6628 485 241 16 

%** 0 0.78 14.3 42.3 42.7 0 6.3 47.2 41.3 5.2 0.01 24.1 64.5 10.6 0.9 0.1 65.3 32.8 1.3 0.6 4.4 86 6.3 3.1 0.2 

T2DM (n) 0 6 99 337 404 0 28 216 153 30 0 65 128 39 12 0 82 145 14 8 3 32 22 27 1 

%*** 0 10 9 10.3 12.3 0 5.7 5.9 4.8 7.4 0 3.5 2.6 4.8 17.6 0 1.6 5.7 14.3 18.2 0.9 0.5 4.5 11.2 6.2 

Waist Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

N* 25 171 643 1894 4975 154 811 1923 2913 1909 626 1946 2640 1951 546 1909 3083 1943 633 141 4999 1729 569 283 129 

%** 0.32 2.2 8.3 24.6 64.5 2 10.5 24.9 37.8 24.8 8.1 25.3 34.3 25.3 7.1 24.8 40 25.2 8.2 1.8 64.8 22.4 7.4 3.7 1.7 

T2DM (n) 0 9 35 140 662 3 25 97 135 167 14 28 60 86 56 21 35 40 27 22 19 14 13 15 24 

%*** 0 5.3 5.4 7.4 13.3 1.9 3.1 5.0 4.6 8.7 2.2 1.4 2.3 4.4 10.3 1.1 1.1 2.1 4.3 1.6 0.4 0.1 2.3 5.3 18.6 

Results reported as “number of subjects (N) and percentage (%)”; T2DM: type-2 diabetes; Q1: first quintile (minimum), Q2: second quintile (20%), Q3: 

third quintile (40%), Q4: fourth quintile (60%), Q5: fifth quintile (maximum); Prediction equation for %SM developed by (Algindan et al, 2014); Subjects 

taking insulin were removed (n= 330 men, n=315 women). Diabetes variable included (doctor/nurse report, taking medication for diabetes and 

HbA1c>6.5); out of the 38,546 women, 1747 are diabetic; BMI quintiles: Q1 (13 – 18.4 kg/m2),  Q2 (18.5-24.9 kg/m2 ), Q3 (25-29.9 kg/m2 ), Q4 (30 – 34.9 

kg/m2 ), Q5 (35 – 64 kg/m2 ); waist quintiles: Q1( 64.0-76.5cm), Q2(76.51-83.3cm), Q3( 83.31-90.1cm), Q4(90.11-98.95cm), Q5(98.96-116.35cm); N*:  

numbers of people in quintiles of %SM who are in different quintiles of Waist and of BMI; %**: percentage of people in quintiles of %SM who are in different 

quintiles of Waist and of BMI; %***: percentage of diabetics in each BMI and waist quintiles. 
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6.1 Abstract 

Background: Prediction equations for adipose and muscle mass, based on simple 

anthropometric measurements, may have particular value in weight management 

interventions, provided they remain predictive after weight loss.   

Aims: 1) To examine changes in body composition using magnetic resonance imaging 

(MRI) and 2) to assess the validity of the previously developed adipose and muscle 

mass prediction equations, before and after substantial (target >15kg) non-surgical 

weight loss. 

Subjects and Methods: 10 obese, non-diabetic women (BMI>30, 18-65 years), 

recruited from GP practices and through distribution of posters around the 

University of Glasgow campus. At baseline, all participants underwent whole-body 

MRI, anthropometric measurements (weight; height; waist and hip circumference) 

and muscle strength measurements. These measurements were repeated after 

weight loss from total diet replacement (820kcal/day, Counterweight-Plus) for 12-

20 weeks. 

Results: Subjects showed a mean weight loss of 15.3(standard deviation:8.6) kg, 

from 99.6(14.6) kg to 84.3(12.3) kg, and a reduction in waist circumference of 

16.5(7.2) cm, from 112.3(12.4) cm to 95.4(13.0) cm. High correlation and good 

agreement was seen between MRI-measured and predicted adipose tissue mass, 

both before (R2=86.2; p=0.001) and after (R2=91.6; p=0.001) weight loss. Muscle 

mass prediction equations revealed a weaker correlation with MRI measurements 

before (R2=78.0; p=0.001) and, in particular, after (R2=51.7; p=0.017) weight loss. 

There were no significant associations between MRI-measured muscle mass and 

muscle strength, either before or after weight loss. 

Conclusion: Estimated adipose tissue mass, calculated using an anthropometric 

equation, agrees well with MRI measurement, both before and after substantial 

weight loss. Muscle mass was estimated less reliably, particularly after weight loss.   
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6.2 Introduction 

One of the major reasons for body composition assessment is to track weight 

change over time. There are many factors that contribute to changes in body 

composition, such as pregnancy, growth, ageing and disease, in addition to 

changing eating habits and physical activity. Altered body composition is routinely 

tracked in clinical practice using the body mass index (BMI) and weight; however, 

these variables do not indicate muscle, fat and adipose tissue masses, which are 

more related to body changes. 

Assessment of body composition changes arising from weight loss is important. 

High fat mass and low muscle mass are both associated with numerous co-

morbidities (Atlantis et al., 2009, Sayer et al., 2013) and, when presenting 

together, are known as sarcopenic obesity (SO) (Kohara, 2014). The prevalence of 

SO is unclear, primarily due to weakness in the methodologies available to 

determine fat and muscle mass, and a lack of any recognised definitions (Batsis et 

al., 2013). There are additional negative health impacts in sarcopenia with obesity 

(Heber et al., 1996). Clinically useful approaches to determine muscle and fat 

mass, and in turn SO, are therefore justified, and may have particular value in 

weight management interventions.   

Typically, outcomes of weight management programmes are reported in terms of 

kilograms (kg) or as percentage (%) change in body weight. However, whilst muscle 

mass usually decreases during intentional weight loss, these changes are rarely 

measured directly (Benton et al., 2011). 

A systematic review (Weinheimer et al., 2010) assessed the effect of exercise and 

energy restriction (ER) – separately or combined – on fat-free mass (FFM) from 52 

studies. The findings indicated that energy restriction alone leads to moderate 

weight loss <10 and ≥ 5 kg in 61 % of energy restricted group, fat free mass (FFM) 

loss <3 and ≥1.5 in 56% of the ER group.  However, half the ER groups lost 

approximately a quarter of their body weight as FFM, using a number of different 

assessment approaches. Adding exercise to ER reduced FFM loss by 11%. In the 
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studies included in this review, FFM was measured using four different techniques 

and limited to an experimental setting; dual energy X-ray absorptiometry (DEXA), 

hydrostatic weighing, air displacement plethymography, body potassium. Studies 

using skin-fold and bioelectrical impedance were excluded.  

 

Prediction equations for fat mass from simple anthropometric measurements (age; 

body weight; height; waist circumference, hip circumference) are reasonably well 

established (Lean et al., 1996). Our recent study (Al-Gindan et al., 2014a) 

validated prediction equations for muscle mass (separately for men and women), 

using simple anthropometric measurements (age, body weight, height, waist 

circumference, and hip circumference). In this study, prediction equations showed 

a stronger correlation with measurements in men than in women (R2=0.79 and 

0.60, respectively), Our validation study findings are in agreement with others 

based on different measures, with women showing weaker correlations than men 

(Chen et al., 2011a, Lee et al., 2000a, Ross et al., 1994a).   

As part of this thesis, anthropometric equations were also developed and 

validated, for both men and women, to estimate adipose tissue, using whole-body 

MRI measurements as reference. In contrast to our muscle mass prediction 

equations, the adipose tissue mass prediction equations explained more variance in 

women than in men (Al-Gindan et al., 2015).  

The relationships between muscle mass estimated from these equations and 

functional outcomes, such as muscle strength, have yet to be investigated and 

evaluated in severe obesity or after weight loss.     

The present study compares estimated adipose tissue and muscle mass, using these 

prediction equations, with measured values from whole-body MRI scans in obese 

women.  We will then test their ability to quantify MRI-measured changes in body 

composition following a well-established weight loss programme aimed at causing 

major weight loss (>15kg).  Also, we will investigate the relationships between 

estimated muscle mass and functional muscle strength.  
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6.3 Methods  

13 obese, non-diabetic women (BMI >30, 18-65 years), were recruited directly from 

General Practice and through poster advertisement around Glasgow Royal 

Infirmary. Ethical approval (appendix 3) 

At baseline, all participants underwent whole-body MRI scans, anthropometric 

measurements (weight; height; waist and hip circumferences) and muscle strength 

measurements (hand grip; quadriceps and hamstring strength).   

 

Measurements were repeated after 12-20 weeks of subjects following the weight 

management programme Counterweight-Plus, which is based on a 820kcal/day 

nutritionally complete formula diet, aiming to achieve a weight loss of >15kg, as 

previously described (Lean et al., 2013a).  

 

Inclusion criteria: Written informed consent was sought from females aged 

18-65, with BMI≥30kg/m2 (<45kg/m2), weight <200kg and waist circumference <60 

cm (upper limits for MRI scanning). These subjects were non-diabetic, without 

other known illnesses or disabilities which would affect body weight or prevent 

completion of the program.  

Exclusion criteria: Adults with known illnesses, such as cancer, myocardial 

infarction in the previous six months, heart failure, diabetes (known to alter body 

composition), as well as disability that would affect weight loss, MRI-incompatible 

implanted electronic devices or ferromagnetic foreign bodies, learning difficulties, 

poor understanding of English, pregnant/ considering pregnancy, substance abuse, 

history of hospitalisation for depression, use of antipsychotic drugs, current 

participation in another clinical research trial, weight loss >5kg within the last six 

months, parallel anti-obesity therapy or a diagnosed eating disorder. 

Dietary plan: The Counterweight-Plus Programme is a structured weight 

management programme, comprising three phases. First, a nutritionally replete 

Total Diet Replacement Plan (TDR) of 820 calories/day is supplied to the subjects 
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as formula soups and shakes to be prepared with water. The TDR, if completed 

they could generate a weight loss of 15-20kg over 12-16 weeks. Second, in a 

structured Food Reintroduction phase, meals made from normal foods are 

reintroduced one at a time. Some further weight loss is expected during this 

phase. Third is a structured, long-term Weight Loss Maintenance (WLM) phase, 

during which the formula soups and shakes are used, usually once a day as meal 

replacement, in conjunction with planned food-based meals. Throughout the 

Counterweight-Plus programme, elements of theory-based behavioural change 

methods (e.g. Cognitive Behavioural Therapy; CBT) are employed, and physical 

activity is encouraged, and supported using step-counters. A formal exercise 

programme is, however, not routinely incorporated, recognising that severely 

obese people find exercise difficult and many are already exercising maximally 

because of their weight. 

This chapter covers the Total Diet Replacement (TDR) phase only. 

6.3.1 Anthropometric measurements 

Body weight was measured to the nearest 0.1kg using a Tanita scale. To allow for 

clothing, 1.0 kg was added to all participants’ weights. A wall-mounted 

stadiometer was used to measure standing height to the nearest 0.1cm. 

Anthropometric circumferences were obtained using a heavy-duty inelastic plastic 

fibre tape measure: waist was measured as the midpoint between the lowest rib 

and the hip bone; hips at the level of the pubic symphysis and the greatest gluteal 

protuberance (WHO, 2011). Yasmin Algindan and Naomi Brosnahan took the 

anthropometric measurements.   

6.3.2 MRI measurements  

MRI data was collected in the same MRI department, with a single MRI analyst 

performing all measurements (Rosario Lopez Gonzalez). MR imaging was carried 

out using a Philips Ingenia 1.5T scanner. Standard T1-weighted imaging technique 

was used: transversal T1-w (TR/TE = 416/6ms, matrix size = 424x397, FoV = 

558x558mm2) with a slice thickness of 5 mm. For segmentation, image J (NIH, open 

access) and the extended MR workspace Philips were tested. A threshold method 
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was used to segment fat, muscle was measured using both threshold and manual 

segmentation. After evaluation of packages; image J (NIH, open access), and the 

segmentation tool available in the MRI Philips workstation, other non-free 

software, the radiology team found that MRI Philips was the best free software 

available at the time of testing.   Adipose tissue and muscle content were 

quantified using a combination of threshold and manual segmentation techniques. 

Scanning time was 45–60 min. In order to acquire a whole-body scan, participants 

were first scanned with one arm up, then the second arm was scanned by itself. To 

quantify whole-body adipose tissue and muscle mass, the whole-body excluding 

the arms and the arm scanned individually multiply by 2 were added together, 

measurements were obtained in cm3. MRI measured waist and hip circumferences 

(in mm) were taken: the waist was measured at the midpoint between the lowest 

rib and the hip bone; hips were measured at the level of the pubic symphysis and 

the greatest gluteal protuberance. Waist and hip measurements were converted 

from millimetres to centimetres. MRI-measured muscle and adipose volumes were 

converted from cm3 to litre. Whole-body muscle and adipose tissue volume 

estimates were converted to mass using the assumed densities of 1.04kg/l and 

0.92kg/l, to convert total adipose tissue volume to mass (Garrow, 1975). To 

account for inter-observer variability, Rosario Lopez Gonzalez and Yasmin Algindan 

measured fat and muscle volume three times for a participant’s abdominal section 

(by varying threshold values and manual segmentation).  

6.3.3 Functional assessment  

Subjects’ muscle strength was assessed before and after the weight loss 

intervention. Muscle strength was measured for both the upper (grip strength) and 

lower (quadriceps and hamstrings) limbs.  

grip strength was measured by a standard Jamar® Hand Dynamometer (Lafayette 

Instruments, Lafayette, IN), each subject completed three isometric maximal 

strength tests with both hands. Subjects were asked to sit with their shoulder 

adducted and neutrally rotated, forearm in neutral position, elbow flexed at 90° 

and wrist between 0° and 30° extensions and between 0° and 15° ulnar deviations 

(Mathiowetz et al., 1985). Results were documented in Newton.  
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Magnitude of isometric contractions of the quadriceps and hamstring muscle was 

measured using digital myometer from MIE Medical Research Limited.  Participant 

sat on an examination bed and the strap for the myometer was wrapped around 

the participant’s ankle, lower limb was set to 90°. The perpendicular distance 

from the knee to the ankle was logged to calculate the moment of force. For 

quadriceps, participant pulled against the myometer strap to extend knee joint. 

For the hamstring test the participant pulled against the myometer strap to flex 

the knee joint more than the 90 degrees. 

6.3.4 Statistical analysis  

In a single sample weight-loss intervention study, there is no value in studying 

control subjects who do not lose weight; furthermore, the intervention sample was 

expected to include a relatively wide range of weight lost, reflecting variable 

compliance with the diet plan. Paired t tests were used to statistically assess 

weight differences between two groups (Figure 6-1).  

To assess the relationship between MRI-measured adipose tissue and muscle mass 

and predicted adipose tissue/muscle mass and muscle strength, Pearson 

correlation coefficient and linear regression analysis were used. Mean differences 

and 95% limit of agreement between methods were estimated using Bland Altman 

analysis. 

 

6.4 Results 

6.4.1 Subject characteristics 

Of the 13 women who agreed to participate and satisfied the inclusion criteria, 

one subject did not start the diet (after taking all baseline measurements) due to 

family circumstances. Two subjects dropped out because they could not stick to 

the diet plan. As a result, data was collected from 10 women who successfully 

completed the TDR phase of the Counterweight-Plus programme.  
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Characteristics of the 10 participants who completed the diet programme are 

shown in Table 6.2. The mean age was 51.1(6.8) years; mean weight loss was 

15.3(8.6) kg, from baseline 99.6(14.6) kg to final weight 84.3(12.3) kg. The 

greatest individual weight loss was 32.1kg, while the lowest was 8.4kg.  

Mean waist circumference decreased by 16.5(7.2) cm, from 112.3(12.4) cm to 

95.4(13.0) cm, significant by paired t-test (p=0.001), while mean hip 

circumference also significantly decreased by 10.8(7.0) cm, from 123.7(11.6) cm to 

112.6(9.4) cm (p=0.002).  

Comparing means of MRI-measured and tape-measured waist and hip 

circumferences, a considerable difference was seen between tape measured 

112.3(12.4) cm, and MRI-measured 121.8(11.0) cm waist circumferences, before 

weight loss. Before weight loss, there was less difference between tape-measured 

hip circumference, 123.7(11.6) cm, and MRI-measured hip circumference, 

125.6(7.6) cm. After weight loss, tape-measured and MRI-measured hip 

circumference were 112.6(9.4) cm and 116.9(6.8) cm, respectively. 

MRI-measured whole-body skeletal muscle mass ranged from 24.6-37.3 kg, while 

whole-body adipose tissue ranged from 32.6-68.5 kg. After 12–20 weeks of total 

diet replacement, there was a small decrease, Mean difference 0.71(1.3) kg in 

whole-body skeletal muscle mass; mean 29.5(4.4) kg, 28.8 (4.1) kg before and 

after weight loss. Adipose tissue mean difference was 10.6(5.7), mean 50.3(12.7) 

kg, before and 39.7(13.0) kg after weight loss (Table 6-2).  

Due to time constraints, muscle strength measurements were completed for only 

seven participants; one participant left the study before providing her final 

strength measurements, while four participants are waiting to be booked for their 

second strength measurements. 
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6.4.2 Associations between MRI- and tape-measured waist and hip 

circumferences 

Significant correlations were seen between MRI- and tape-measured waist and hip 

circumferences, waist: R2= 89% and 54.2%, and hip: R2 = 47.7% and 55.5% both 

before and after weight loss P<0.05 (Table 6-3). Correlations between tape and 

MRI measured waist circumferences was highest and SEE was lowest for the waist 

circumference before weight loss: R2=89%, SEE=2.8cm. Mean waist and hip 

circumferences as measured by tape-measurement were lower than the MRI-

generated figure, both before and after weight loss.   

Bland Altman analysis of the above data (Figure 6-2) shows a positive relationship 

between MRI-measured and tape-measured waist circumferences before weight 

loss: lower values of tape-measured waist were underestimated and higher values 

were overestimated. No relationship was seen between tape- and MRI-measured 

waist after weight loss. 

6.4.3 The relationship between MRI-measurements of muscle mass 

and adipose tissue, prediction equations and anthropometric 

measurements  

Prior to weight loss, estimated muscle mass, using the previously described 

prediction equations (Algindan et al., 2014), significantly correlated with MRI-

measured muscle mass (R2=78%, SEE=2kg; see Table 6.4). After weight loss, a lower 

but still statistically significant correlation was seen (R2=51.7, SEE=3.7kg). These 

predicted equations had better correlations than the muscle equation of Lee et al. 

(2000), who reported a correlation of R2=66.1% (SEE=2.5kg) before weight loss and 

R2=23.8% (SEE= 3.5kg) after weight loss. Adipose tissue mass (AT-PR; Table 6-4) 

showed significantly high correlations before and after weight loss R2=86.2%, 

91.6%, SEE =4.7kg, 3.7kg respectively. Compared to measures of fatness (BF%, 

waist hip ratio (WHR), waist height ratio (WHtR), waist and BMI) the validated 

prediction equations had better correlations, except for BMI, and showed the 

highest correlations with MRI-measured body fat (R2=97.6%; Table 6-4).  



 

198 

 

6.4.4 Agreement between MRI-measured and predicted muscle and 

adipose tissue mass 

All data, except for adipose tissue before weight, loss show a negative 

relationship; lower values are overestimated and higher values are 

underestimated. Bland Altman analysis of data (Figure 6-3) revealed that there 

was no bias between measured and predicted adipose tissue before weight loss. 

However, a slight overestimation of adipose tissue mass was evident before weight 

loss (mean difference = 1.73; Figure 6-3).  

6.4.5 Association of MRI-measured muscle mass and adipose tissue 

with muscle strength 

Muscle strength had no correlations with MRI-measured muscle mass, nor with 

adipose tissue mass: all p values were not significant (p>0.05; Table 6.5). Although 

individual subject characteristics (Table 6-5) indicated that hand grip, hamstring 

and quadriceps strength all decreased after weight loss, p-values using paired-t 

test for strengths before and after weight loss were not significant.  Difference 

between hand grip strengths before and after weight loss was 1.33(3.8) Nm, p 

value from paired-t test = 0.433, difference between quadriceps strengths (knee 

extension) before and after weight loss was 13.2(36) Nm, p-value from paired-t 

test = 0.41. Difference between hamstring strengths (Knee flexion) before and 

after weight loss was 9.7(41.9) Nm, paired-t test p-value = 0.597. 

6.5 Discussion 

The Counterweight-Plus programme was effective in achieving substantial weight 

loss in all 10 participants, with a mean 15.3(8.6) kg loss in weight after 12-20 

weeks of TDR. The maximum recorded individual weight lost was 32.1kg, while the 

minimum weight lost was 8.4kg.   

There were wide variations in the changes in muscle mass during weight loss, and 

hence compliance with the regime.  Six participants lost between 0.6-3.1kg of MRI-

measured muscle mass, while four participants gained 0.09–1.1 kg. Using the 

anthropometry-based equations of (Al-Gindan et al., 2015), nine participants were 
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found to lose 0.9-4.9kg muscle mass, while one participant gained 0.02kg. There is 

sparse comparable data currently in the literature, as muscle mass is not routinely 

measured in weight loss studies. Many studies have estimated FFM using DEXA 

and/or BIA (Minderico et al., 2008, Thomson et al., 2007, Grossman and Payne, 

2016), where FFM includes mass of bone, internal organs and muscle. A 

measurement of solely muscle mass, strength and function is crucial to 

understanding the physical and metabolic consequences of weight loss, as muscle 

plays key roles in whole-body protein metabolism, and in insulin sensitivity and 

carbohydrate tolerance (Wolfe, 2006). Muscle mass contributes to approximately 

50% of total body weight which decrease with age. This decrease in muscle mass is 

parallel to mobility and muscle function (Goodpaster et al., 2006). Many factors 

relate to loss in muscle and strength most importantly physical inactivity, almost 

inevitable with aging. On the other hand, basal metabolic rate decreases as a 

result of skeletal muscle loss, and leads to a lower energy expenditure.  The 

decreased metabolic rate, physical inactivity and lower postprandial energy 

expenditure due to lower fat oxidation is positively associated with increased 

aging. Muscle quality is also affected on aging due to fat infiltration of the muscle, 

which compounds  poor physical performance (Kalyani et al., 2014)  

The present study found no association between muscle mass and muscle strength 

in three different muscle groups. This could be due to many factors, but is likely 

here to be a result of the small sample size. Some participants complained of 

discomfort during strength measurements, so may not have truly tried their 

maximum. It is possible, or even likely, that there is no simple relationship 

between muscle bulk and its functional capacity, as many other factors affect 

muscle quality. A meta-analysis was conducted by Schaap et al. (2013) to 

determine the relationship between different body composition measures (BMI; 

waist and mid-arm circumference; WHR; fat mass; muscle mass; muscle fat 

infiltration) and muscle strength in men and women, with measures of functional 

decline as the outcome. Fifty papers met the inclusion criteria (prospective, 

longitudinal design, in English, age ≥65 years). The findings showed that low 

muscle strength and BMI≥30 were associated with functional decline (pooled odds 

ratio: 1.86, 95%CI: 1.32, 2.64, and OR: 1.60, 95%CI: 1.43, 1.80) for muscle strength 
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and BMI respectively. Muscle mass was not associated with functional decline 

pooled odds ratio: 1.19, 95% CI: 0.98, 1.45) (Schaap et al., 2013).  

An important finding in this study is the agreement between MRI-measured adipose 

tissue and estimates made using the simple anthropometric equation introduced by 

(Al-Gindan et al., 2015).  

Although measured and estimated muscle mass showed a high correlation, Bland 

Atman analysis of the data suggested bias. The sample size was very small. A Bland 

Altman plot will be more usefully done on a bigger number when more participants 

are recruited in this study.  

This study examined the correlations with MRI-measured adipose tissue of various 

commonly measured anthropometric variables, as well as with estimates from the 

equation of (Al-Gindan et al., 2015) (Table 6-4). Again, the sample size here is too 

small to judge the true value of these methods, or to differentiate between them 

with any confidence, but nevertheless, BMI had the highest correlations and lowest 

SEE. Waist and hip measurements had moderate correlations, while WHtR showed 

somewhat weaker correlations. WHtR had no significant association with MRI-

measured body fat. This analysis is shown only to illustrate the method that will be 

used for a larger number of subjects. 

There is a debate in the literature about the different value and appropriate use of 

anthropometric measurements for body composition analysis and to predict health 

or disease, between the value of BMI, WHR, WHtR, waist and hip circumferences. 

In general, waist circumference measurement appears to have at least as much 

value as more complex variables. Using these measurements in an obese 

population is a different matter, especially when it comes to waist circumference. 

It is difficult to measure waist circumference in obese subjects, as finding the 

lowest rib and hip bone is sometimes a challenge. In addition, a large pendulous 

belly when standing affects, the measurement. There was a big difference, in the 

obese women studied here, between mean waist circumference measured by MRI 

and tape, while there was much less difference for hip circumference. This is 
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probably because waist circumference was measured with participants standing, 

while MRI scanning was carried out while participants were lying down.  

There were two main limitations in this study: firstly, the small sample size 

available for analysis in this thesis. Nevertheless, this chapter is a pilot study, the 

group that has been investigated is definitely not intended for classification or 

diagnosis, this work simply suggest a correlation analysis using the results within a 

group. Secondly the difficulty in arranging appointments to allow the MRI, strength 

and anthropometric measurements to be simultaneous. The interval between these 

measurements varied up to 2 weeks. 

Measuring whole-body MRI scans of obese subjects is not straightforward.  There 

are absolute limits of BMI, weight and waist circumference, imposed by the 

apparatus, which are reflected in the exclusion criteria for this study. Several 

subjects were close to those limits, which made it impossible to include both arms 

beside the trunk. This problem was solved by making the measurements with one 

arm held above the head (thereby excluding it from the image) and then 

measuring that arm separately, and adding it to the total. It appears that this is 

the first time this pragmatic technique has been applied for the measurement of 

whole-body MRI in obese subjects. 

 

6.6 Conclusions 

Total adipose tissue, estimated using anthropometric equations, showed high 

correlations before and after weight loss, and good agreement with MRI measured 

adipose tissue before weight loss. More studies are needed to establish a ranking of 

anthropometric estimates; however, in obese women, waist circumference is 

probably not the best anthropometric predictor of adipose tissue mass, and BMI 

may be the best simple measure.  

Muscle mass estimates from anthropometric equations also had reasonably high 

correlations; however, limits of agreement were less good than for adipose tissue, 
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and fell further after weight loss. Further work is needed to confirm this finding 

and to establish a relationship between changes in muscle mass and strength 

during weight loss.  
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Figure 6-1: Power calculation using 1-sample t-test in Minitab 

 

1-Sample t Test, α = 0.05, Assumed standard deviation = 2.7, power 0.8, difference 2.28 

 

  



 

204 

 

Figure 6-2: Bland Altman plots of MRI-measured waist and hip circumferences and tape-

measured waist and hip circumferences, before and after weight loss. 

 

 

Waist1(a):tape measured waist circumference in (cm) before weight loss, MRIwaist1(a): MRI 
measured waist circumference in (cm) before weight loss, Waist2(b):tape measured waist 
circumference in (cm) after weight loss, MRIwaist2(b): MRI measured waist circumference in (cm) 
after weight loss, hip1(c):tape measured hip circumference in (cm) before weight loss, MRIhip1(c): 
MRI measured hip circumference in (cm) before weight loss hip2(a):tape measured hip circumference 
in (cm) after weight loss, MRIhip2(d): MRI measured hip circumference in (cm) after weight loss,  red 
dotted line: mean difference, red line: mean±2SD, green line: regression line, SEE standard error of 
the estimate, R2: linear regression of mean and average, p<0.05 significant 
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Figure 6-3: Bland Altman plot of MRI- measured muscle mass and adipose tissue and 

predicted muscle mass and adipose tissue estimates  

 

 

 

Dotted line (---): mean of difference; upper and lower red lines: mean±1.96SD; green line: line of 

regression, SMPR.1, SPMR.2: muscle mass predicted by (Algindan et al 2014) before and after 

weight loss; ATPR.1, ATPR.2: adipose tissue predicted by (Algindan et al, 2015) before and after 

weight loss; SMMRI.1, SMMRI.2: MRI measured skeletal muscle before and after weight loss; 

ATMRI.1, ATMRI.2:  MRI measured adipose tissue before and after weight loss; BMI: body mass 

index. Data shows a negative correlation between the MRI-measured values and predicted estimates. 

  



 

206 

 

 

Table 6-1: MRI inter-observer variability for two observers making three measurements each 

on one participant’s abdominal section. 

 Observer 1 Observer 2 Observer1  ObserveR2 

                                                                    Muscle mass 
volume 

              Adipose tissue volume 

Mean (cm3) 15977.7 16927.5 6715.7 6391.3 

StDev (cm3) 223.9 214.1 43.0 113.8 

CoV(%) 1.4 1.2 0.64 1.78 

StDev: standard deviation, CoV: Coefficient of variation,  
% difference between observers for mean muscle area was 4.95%,  
% difference between observers for mean fat area was 5.77%.  
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Table 6-2: Characteristics of participants who completed the total diet replacement phase: 

 Before weight loss After weight loss 

 Mean(sd) Min/max Mean(sd) Min/max 

Age (years) 51.1(6.8) 38-57 ----- ----- 

Height(cm) 161.1(6.2) 154- 175 ----- ----- 

Weight (kg) 99.6(14.6) 81.3- 118.6 84.3(12.3) 65.7- 105.1 

Weight change ----- ----- -15.3(8.6) -8.4 - -32.1 

BMI(kg/m2) 38.3(4.6) 32.5- 44.6 32.5(4.9) 26.6- 39.5 

Waist circumference(cm) 112.3(12.4) 93.0- 130.0 95.4(13.0)* 77.0- 115.0 

Waist-MRI (cm) 121.8(11.0) 105.8- 141.9 109.7(12.0) 95.5- 132.2 

Hip circumference (cm) 123.7(11.6) 107.5- 140.0 112.6(9.4)* 102.0- 133.0 

Hip-MRI(cm) 125.6(7.6) 112.0- 141 116.9(6.8) 108.4- 129.7 

SM-MRI (kg) 29.5(4.4) 24.6- 37.3 28.8(4.1) 24.9- 35.9 

AT-MRI (kg) 50.3(12.7) 32.6- 68.5 39.7(13.0) 22.4- 57.3 

SM-PR (kg) 23.7(2.7) 19.8- 28.0 21.4(2.7) 17.9- 23.5 

AT-PR (kg) 52.0(10.5) 37.9- 66.7 39.9(9.8) 25.6- 56.2 

Hand grip strength (Nm)** 29(3.4) 24 - 33 27.2(3.1) 23 - 30 

Knee extension (Nm)**  352.3(87.1) 192 - 473 336(86.3) 194 - 462 

Knee flexion (Nm)** 155(39.5) 90 - 205 145.8(37.6) 90 - 205 

Results reported as mean (SD); BMI: body mass index; Waist-MRI: waist measured by MRI in 
centimetres the area between lower rib and upper hip bone; hip-MRI: hip measured by MRI in 
centimetres, the largest area of hip. SM-MRI: Skeletal muscle measured by MRI in kg; AT-MRI: 
adipose tissue measured by MRI in kg: SM-PR: skeletal muscle mass predicted by (Algindan et al, 
2014) Skeletal muscle mass(kg) = 2.89 + 0.255 body weight (kg) − 0.175 hip circumference (cm) − 
0.038 age (y) + 0.118 height (cm); AT-PR: adipose tissue predicted by (Algindan et al, 2015) Total 
adipose tissue(kg) = 0.789 body weight (kg) + 0.0786 age(y) - 0.342 height (cm) + 24.5. Nm: Newton 
meters. The highest reading of three for each hand and leg was used in the analysis; *9 participants; 
**7 participants. 
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Table 6-3: Linear regression between MRI-measured waist and tape-measured waist and hip 

circumferences 

 Before weight loss After weight loss 

 R2 P SEE R2 P SEE 

MRI-waist, waist circumference 89.0 0.001 2.8 54.2 0.014 8.4 

MRI-hip, hip circumference 47.7 0.016 5.5 55.5 0.013 4.5 

R2: linear regression, SEE: standard error of the estimate; MRI-waist: MRI measured waist 
circumference in (cm), MRI-hip: MRI measured hip circumference in (cm), waist circumference and 
hip circumference both were measured using an inelastic plastic fiber tape. Measurements: waist 
measured as the midpoint between the lowest rib and the hip bone; hips at the level of the pubic 
symphysis and the greatest gluteal protuberance for both MRI and tape measures. 

 

 

Table 6-4:Linear regression of MRI-measured muscle mass, adipose tissue and body fat with 

prediction equations and anthropometric measurements. 

 Before weight loss After weight loss 

 R2 P SEE R2 P SEE 

SM-MRI (kg) and SM-PR(kg) 78.0 0.001 2.0 51.7 0.017 2.9 

AT-MRI (kg) and AT-PR(kg) 86.2 0.001 4.7 91.6 0.001 3.7 

SM-MRI(kg) and SM-LR(kg) 66.1 0.003 2.5 23.8 0.087 3.5 

BF-MRI (%) and BF-ML (%) 36.5 0.038 4.5 52.6 0.016 4.9 

BF-MRI (kg) and BMI 97.6 0.001 1.6 93.9 0.001 2.5 

BF-MRI(kg) and WHR 0.2 0.688 10.7 2.9 0.302 9.6 

BF-MRI(kg) and WHtR 48.6 0.051 7.3 55.4 0.013 6.5 

BF-MRI(kg) and waist 62.6 0.004 6.2 63.2 0.006 5.9 

BF-MRI(kg) and hip 68.6 0.002 5.6 50.3 0.019 6.9 

R2: regression analysis; p<0.05 significant; SEE: standard error of the estimate; SM-MRI: skeletal 
muscle measured by MRI in kg; AT-MRI: adipose tissue measured by MRI in kg: SM-PR: skeletal 
muscle mass predicted by (Algindan et al, 2014) Skeletal muscle mass(kg) = 2.89 + 0.255 body 
weight (kg) − 0.175 hip circumference (cm) − 0.038 age (y) + 0.118 height (cm); AT-PR: adipose 
tissue predicted by (Algindan et al, 2015) Total adipose tissue(kg) = 0.789 body weight (kg) + 0.0786 
age(y) - 0.342 height (cm) + 24.5; SM-LR: whole-body skeletal muscle calculated using (Lee et al, 
2000) equation =0.244Weight + 7.80 Height(m) + 6.6 sex(1 men, 0 women - 0.098 age + (0 for 

Caucasians) - 3.3; BF-MRI (kg): calculated using assumption (AT-MRI (kg) x 0.80); BF-ML: % body 

fat predicted using the Lean et al. (1996) equation = 0.439 waist (cm) +0.221 age (years)-9.4;  
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Table 6-5: Correlations of MRI-measured muscle and adipose tissue mass with muscle 

strengths. 

                                                     Before weight loss          After weight loss 

   R2   p SEE   R2    p SEE 

SM-MRI(kg), Grip strength (Nm) 0.001 0.616 5.4 9.2 0.287 4.7 

AT-MRI(kg), Grip strength (Nm) 0.4 0.359 12.6 0.001 0.947 14.2 

SM-MRI(kg), Knee extension (Nm) 0.001 0.847 5.5 0.001 0.968 5.6 

AT-MRI(kg), Knee extension (Nm) 27.7 0.129 10.7 0.001 0.393 12.8 

SM-MRI(kg), Knee flexion (Nm 35 0.095 4.1 0.001 0.895 5.5 

AT-MRI(kg), Knee flexion (Nm) 0.001 0.977 13.8 0.001 0.728 14.0 

R2: regression analysis; p<0.05 significant; SEE: standard error of the estimate; SM-MRI: Skeletal 
muscle measured by MRI in kg; AT-MRI: adipose tissue measured by MRI in kg: Nm: right hand grip, 
knee extensions measured in Newton meters (Nm). Knee extension measured quadriceps strength; 
knee flexion measured hamstring strength. The highest of three readings of for both hands and legs 
was used in the analysis 
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Chapter 7 

 

7 General conclusion 
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The purpose of all research is to establish important questions which are 

unanswered (‘Research Questions’), and then to design appropriate, valid, 

scientific methods to try to answer them.  Finally, conclusions must be drawn, to 

declare to what extent, or with what confidence, the Research Questions have 

been answered.  Almost inevitably, in the course of research, limitations are 

recognized, and new research questions emerge for the future. 

This thesis set out to investigate the use of simple anthropometric measurements 

to estimate muscle mass and adipose tissue mass in health and during weight loss, 

using MRI as the reference method.  It also explored the use of the equations for 

identifying individuals with metabolic diseases in population surveys, to assess 

whether they might be more informative that the current usual use of BMI.   

This final Conclusions chapter brings together the answers to the Research 

Questions posed in each chapter, summaries general findings and identifies some 

new Research Questions for future research.  Detailed findings and conclusions are 

provided in detail in each chapter. 

To answer the research questions, this study went through four parts; 1. Literature 

review, 2. Derivation and validation analyses, 3. Application in metabolic disease, 

4. Application during weight loss.  

7.1 Literature review 

The literature for body fat and adipose tissue estimation was found to be 

confused, while the literature for muscle mass was scarce. It is critical that studies 

are using incorrect reference methods and assumptions based on small sample size 

and bad choice of reference methods. Saying that, human body composition 

literature is already based on theories that were established from studies with 

sample size and method limitations. The most accurate reference method  in 

human body composition is the direct chemical analysis of cadaver (Heymsfield et 

al., 2015). Nevertheless, the famous Brussels cadaver study was based on a small 

sample size; 25 cadavers which were selected from 75 subjects on the basis of 

least emaciation and most normal appearance (Clarys et al., 2005). Another highly 
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cited cadaver study that was based on a 35 year old man that died from a 

myocardial infarction (Mitchell et al., 1945, Heymsfield et al., 2015). To date 

there is no gold standard reference method without limitations. Although MRI is 

considered the best available reference method. Due to the high cost of MRI, not 

many studies used it as reference method, others mistakenly used other less 

accurate methods such as DEXA. To account for MRI high cost, some studies used 

regional MRI as marker of whole body MRI and others coped with small sample size. 

There is a definite need for higher standard reference values and normative ranges 

to base our new body composition research on. 

A consensus in applied reference methods will simplify the search for a simple field 

method that can be accurately used both clinically and epidemiologically. 

Currently the two studied field methods are anthropometry and bioelectrical 

impedance with none of them showing superiority over the other. With the use of 

an accurate reference method, the development of prediction equations to 

estimate body composition will be simplified. In the literature review, many 

prediction equations were retrieved, however Giving the numerous published 

prediction equations, it is difficult to choose the best prediction equation that 

accurately estimates the body compartment of interest, as all incorporate various 

limitations which were: 1. Most studies had small sample sizes, mainly because of 

the high cost of MRI, 2. Some studies did not validate their prediction equation in a 

separate population, 3. Agreement between methods was not assessed beyond 

simple regression analysis, 4. Studies in the literature that investigated regional 

muscle, adipose and fat mass/volume, rather than whole-body muscle, fat or 

adipose tissue mass/volume, were sometimes assumed to be representative of the 

whole-body data. 

If prediction equations are the choice for body composition assessment, it is 

crucial to select the best prediction equation, there are certain criteria to look 

for:  

1. Use of best or gold standard reference method, prediction error could come 

from reference method error,  
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2. Large sample size (i.e. n>100),  

3. Small standard error of the estimate  

4. High correlation (r>80%) between reference measurement and prediction  

5. Validation of the prediction equation in a separate population.  

In addition, it is important that the prediction equations were tested for 

agreement between methods using Bland Altman Plots.   

In the first two chapters We managed to retrieve four body fat and adipose tissue 

prediction equations; (Deurenberg et al, 1991), (Lean et al, 1996), (Ross et al, 

1992) and (Kvist et al, 1998).  And for muscle mass, a systematic review was 

conducted. Out of 12 papers that used MRI as reference method for the derivation 

of muscle equations, only one published paper based on the above criteria was 

satisfactory (Lee et al, 2000). Thus, only the above five prediction equation were 

used as a comparator to the adipose/fat and muscle mass equations developed in 

the present thesis. 

7.2 Derivation and validation of prediction equations to 

estimate muscle and adipose tissue mass  

Sample size is a major limitation in the literature.  The derivation and validation 

analysis in this thesis were based on existing databases, made available through a 

collaborative link within studies, sample sizes, = 423 for the derivation study and 

197 for the validation analyses, the adults studied represented a range of different 

races, age and body masses. The reference method of choice was whole body MRI 

and the field method was simply anthropometric measurements. 

Waist circumference was the best predictor for adipose tissue in men and body 

weight in women.  Moreover, muscle mass was best predicted by body weight in 

both men and women. 
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Starting with stepwise regression analysis, then choosing the highest R2 from 

multiple regression analysis for further investigation, prediction equations to 

estimate adipose tissue mass and muscle mass were developed for men and 

women. The combination of body weight, waist and hip was the best predictor for 

adipose tissue in men. In women, age, body weight, height and hip circumference 

best predicted adipose tissue. Combination of body weight, waist, hip and age 

were the best predictors in men muscle mass and body weight, hip, age and height 

were the best predictors for women’s muscle mass.  

Few published studies have explored hip circumference as a simple predictor of 

muscle mass. In this thesis adding hip circumference into multiple regression was 

identified as a consistently powerful indicator of muscle mass and also of adipose 

tissue.  It is likely that muscle mass is importantly affected by gluteal muscle bulk, 

and in obese people also by fat. 

Adding ‘race’ as a variable did not advantage the prediction equations.  Instead, 

adding anthropometric measurements gave better outcomes.   Thus the 

anthropometric measures were able to capture any differences in body 

composition from race. 

The validation analysis of the prediction equations was satisfactory. Comparing 

them with prediction equations in the literature, they were similar or even better. 

The validated prediction equations gave higher correlations with MRI adipose tissue 

mass compared to BMI. Correlations against whole body adipose tissue mass R2 = 

79%, 84% for men and women adipose tissue prediction equations, 65.8 and 82.4 

for men and women BMI. BMI when proposed by the Belgian mathematician 

Adolphe Quetelet, was not intended to assess obesity. It was mainly to measure 

growth of normal man. It wasn’t until 1972 that Ancel Keys confirmed the validity 

of Quetelet index and named it body mass index. Since then BMI has been used to 

link access weight to mortality and morbidity (Eknoyan, 2008). It is well 

understood and appreciated the importance of BMI in the field of human body 

composition, in addition to its importance is in many other fields, such as 

medicine, economics and day to day practices. It is used in every hospital, clinic 

and even when applying for some jobs. It is a simple important tool.  
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However, if we are looking to investigate body composition in more detail for 

medical purposes, we need to identify body compartments where BMI is not the 

best tool for that. Muscle mass and adipose tissue have been linked to Disease and 

effective treatments. Thus, we need to find other measures to link body 

composition with disease.   

7.3   Application: in metabolic illness  

Testing the prediction equations in large health surveys (chapter 5), presented an 

understanding on how good the prediction equations predict chronic illness; 

diabetes and/or hypertension. Using the prediction equations, both muscle mass 

and adipose tissue mass were significantly associated with diabetes, hypertension, 

HbA1c and blood pressure.  

After adjusting for age, the adipose tissue prediction equations correlations with 

diabetes were higher in men compared to women R2= 17.6% and 10.8%. On the 

other hand, the muscle mass prediction equation associations with diabetes were 

the same for men and women. Adipose tissue prediction equations association with 

hypertension were higher in men compared to women R2= 13.9% and 10.9% 

respectively, and vice versa for the muscle mass prediction equations R2= 11.2% for 

men and 13.8% for women. 

Muscle mass and adipose tissue mass prediction equations were significantly 

associated with HbA1c, systolic and diastolic blood pressure. Although correlations 

were not the highest, they were comparable with existing prediction equations and 

anthropometric indices. In general, women skeletal muscle prediction equations 

showed higher correlations than men, for those with type-2 diabetes and elevated 

blood pressure. The adipose tissue prediction equations presented higher 

association in men compared to women when analysed against HbA1c and systolic 

blood pressure. Diastolic blood pressure and adipose tissue mass were slightly 

higher in men. All the analysis was carried out adjusting for age, associations were 

much lower when not adjusted for age. 



 

216 

 

Prediction equations did not show superiority in associations, WHtR presented the 

highest correlation with HbA1c, diabetes and hypertension. Muscle mass predicted 

by (Lee et al, 2000), showed strongest association with systolic blood pressure. 

Diastolic blood pressure was best predicted by the new adipose tissue mass 

prediction equation in men and by BMI in women. 

Although the prediction equations did not show the highest correlations compared 

to WHtR and muscle mass predicted by (Lee et al,200) equation, they were not far 

from WHtR strength of association; diabetes: R2 = 18.6 and 17.6, hypertension: R2 = 

14.3 and 13.9 for WHtR and adipose tissue mass respectively in men. Differences 

were larger in women; diabetes: R2 = 20.8 and 10.8, hypertension: R2 = 15.3 and 

10.9 for WHtR and adipose tissue mass respectively.  

The results of chapter 5 indicate that the prediction equations are not superior to 

WHtR, (Lee et al,2000) the Lee equation and BMI, this only confirms that there is 

further investigation needed to reach to a consensus when it comes to the relation 

between body compartments (adipose tissue and muscle mass) and chronic illness. 

WHtR and BMI alone will not explain the complex association of muscle and 

adipose tissue. The (Lee et al, 2000) whole body skeletal muscle equation is 

definitely a well-developed and evaluated equation.  It has shown impressive 

associations throughout the analyses in this thesis (chapters 2, 4, 5), however the 

equation uses race as a variable which is set for an American population, this could 

show bias if used in other populations for which there are little racial differences 

between a population.  

This chapter adds to our understanding of the patho-physiology of type-2 diabetes 

in body composition. Although we can identify people with type-2 diabetes in 

health survey using HbA1c, it is less expensive and more practical using prediction 

equations. On the other hand, people at “risk” of future type-2 diabetes in health 

surveys are currently identified by high waist and BMI. The data in chapter 5 

suggest that it may be possible to identify another category, ie people with low 

muscle mass (sarcopenic) but without a large waist or high body fat. This 

suggestion will need confirmation in longitudinal studies, to illustrate the possible 

value of estimating %SM. 
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This work is not trying to compete with age, height and family history as the 

strongest predictors of type 2 diabetes or hypertension, in risk prediction models 

such as Framingham.  Body composition does add some predictive power, but BMI 

is a poor indicator of body composition, and this thesis has generated some 

evidence that with better characterisation of body composition, the prediction of 

these metabolic diseases might be improved in epidemiology.  Body composition is 

also a potentially alterable element in the aetiology of these diseases, another 

reason to seek better estimates than BMI. 

7.4  Application: during weight loss  

The final study in this thesis exploring the equations during weight loss. Adipose 

tissue mass and muscle mass and prediction equations gave moderate to high 

correlations with MRI measured adipose tissue mass and muscle mass. Adipose 

tissue mass was superior in correlation and agreement with MRI measured adipose 

tissue mass. The relation between muscle strength and MRI measured muscle mass 

was explored, no significant correlation was detected.   

Compared to all measures of fatness, adipose tissue mass prediction equation 

presented superiority in the level of association and agreement with MRI measured 

whole body adipose tissue, the values were; R2= 86.2% AND 91.6% before and after 

weight loss. 

The muscle mass prediction equations showed significantly high correlations with 

whole body MRI measured muscle mass before weight loss R2= 78%. After weight 

loss significantly moderate associations were observed R2= 51.7%. The new muscle 

prediction equations showed higher correlations than the existing muscle mass 

prediction equation.  

The prediction equations were able to estimate change across wide range of 

weight change. Associations between adipose tissue mass change was significant 

and highly correlated with MRI-adipose tissue change R2= 85.4%. However, there is 

no association between change in predicted muscle mass and change in MRI 

measured muscle mass p>0.05.  
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Assessing inter-observer variability in whole body muscle volume measurements by 

different researchers indicated that although MRI is considered a ‘gold standard’ 

reference method, it is still dependent on individual observation of muscle and 

adipose tissue areas on scans. Thus, human error is expected.   This could be 

automated, but still the allocation of MRI characteristics to identify tissues 

remains operator-dependent and therefore can also introduce errors. As 

highlighted in the previous chapters, the prediction equations are intended to use 

for epidemiological research only. In chapter 6, the pilot study has only 10 

subjects. Using a larger sample size could give better associations. It is important 

to highlight that the analysis in chapter 6 is a start for a larger sample size 

analysis, thus this chapter was not intended to categorize individuals, instead we 

suggest a correlation analysis using the results within a group. 

A final conclusion, we can now estimate adipose tissue mass adequately for many 

purposes, as population or group means, and those measurements remain after 

drastic weight loss.  However, we must be very careful not to assume greater 

accuracy than the data show, and use these methods for assessing fatness and 

categorising individuals.  The R2 value for estimates is about 86.2 – 91.6%, which 

leaves unexplained variability for individuals.  This caveat applies equally or more 

so to BMI, but BMI has unfortunately been used inappropriately very widely to 

make judgements about the fatness of individuals. 

For estimating muscle mass, with R2= 78 – 51.7%, the equations developed are 

weaker than for adipose tissue so the warning should be even stronger, not to use 

them to categorise individuals. 

This thesis has not yet established any criteria from which to identify ‘sarcopenia’, 

because the quality of muscle varies widely.  Loss of muscle mass (as estimated by 

the equations) within individuals observed over time might now be more easily 

detectable.  This deserves future research.  However, estimating muscle mass 

alone is insufficient.  Measurement of muscle quality, as reflected by strength, is 

one aspect.  That did not form a major part of the present thesis, but there was 

some evidence for a small decline in strength during weight loss, among obese 

people who were not able to increase physical activity greatly. 
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7.5 Future directions:  

Human body composition is a rich area of research that is still thirsty for more 

research. From this thesis some future directions are required: 

1. Validation of the adipose tissue mass and muscle mass prediction equations in a 

large dataset from different populations, as predictors of health and disease 

conditions. 

Research Question: How well do the adipose tissue mass and muscle mass 

prediction equations perform in healthy children, populations of different 

ethnic groups (other than the American identified race: Caucasian, African 

American, Asian and Hispanic)? 

2. Investigating the value of prediction equations over time in progressive 

diseases.  

Research Question: how well do the adipose tissue mass and muscle mass 

prediction equations perform during chronic illness such as cancer and heart 

disease?  

3. Exploring the quality of the prediction equations (against MRI measurements) 

before and after major weight loss with bariatric surgery. 

Research Question: How well do the prediction equations detect adipose tissue 

mass and muscle mass before and after major weight loss with bariatric 

surgery?  

4. Testing the ability of the prediction equations to accurately detect adipose 

tissue mass and muscle mass change during non-surgical weight loss in a larger 

sample size. The study described in Chapter 6 is ongoing (n = 20) with expected 

results after one year. 
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Research Question: How well do the prediction equations detect substantial 

non-surgical weight loss? 

5. Bioelectrical impedance is widely used in clinics and research settings, the 

weight loss study (Chapter 6) has data from bioelectrical impedance. It will be 

enlightening to compare estimates from bioelectrical impedance and the 

prediction equations against MRI-measured adipose tissue and muscle mass.  

Research Question: Can the prediction equations replace bioelectrical 

impedance? 

6. Muscle strength analysis with a larger sample size is needed to establish 

whether there are associations, and to search for criteria for sarcopaenia. 

Research Question: How well do the prediction equations correlate with muscle 

strength? And can muscle strength be added as part of a prediction equation to 

diagnose sarcopenia? 

7. Measuring the association between quality of life and the adipose tissue mass 

and muscle mass prediction equations 

Research Question: How well do the prediction equations associate with 

measures of quality of life? 
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Appendix 1: Predicting muscle mass from anthropometry, using magnetic resonance imaging 

(MRI) as reference: a systematic review 
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Appendix 2: Derivation and validation of simple anthropometric equations to predict adipose 

tissue fat mass, using MRI as reference method. 
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Appendix 3: Ethical approval for the BEYOND weight loss study 
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West of Scotland REC 5  
Ground  Floor - Tennent Building  
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6NT  
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 Direct line  0141 211 2102  
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Dear Prof Lean   

  

Study title:  Body composition and Energy Expenditure with Total  
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maintenance  
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10 IRAS project ID:  152818  

  

Thank you for your letter received on 13 January 2015, responding to the 

Committee’s request for further information on the above research and submitting 

revised documentation.  

  

The further information was considered in correspondence by a Sub-Committee of 

the REC.  A list of the Sub-Committee members is attached.    

  

We plan to publish your research summary wording for the above study on the 

HRA website, together with your contact details. Publication will be no earlier 

than three months from the date of this favourable opinion letter.  The 

expectation is that this information will be published for all studies that receive 

an ethical opinion but should you wish to provide a substitute contact point, wish 
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REC Manager, Mrs Sharon Macgregor, WoSREC5@ggc.scot.nhs.uk. Under very 
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Where a NHS organisation’s role in the study is limited to identifying and referring 
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For non-NHS sites, site management permission should be obtained in accordance 
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Sponsors are not required to notify the Committee of approvals from host 
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Registration of Clinical Trials  
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All clinical trials (defined as the first four categories on the IRAS filter page) must 

be registered on a publically accessible database. This should be before the first 
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There is no requirement to separately notify the REC but you should do so at the 
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registration details as part of the annual progress reporting process.  
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Other [Cover letter (response letter)]   2   08 January 2015   
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15 . Statement of compliance  

  

The Committee is constituted in accordance with the Governance Arrangements 

for Research Ethics Committees and complies fully with the Standard Operating 

Procedures for Research Ethics Committees in the UK.  

  

16 . After ethical review  

  

Reporting requirements  

  

The attached document “After ethical review – guidance for researchers” gives 

detailed guidance on reporting requirements for studies with a favourable opinion, 

including:  

  

• Notifying substantial amendments  

• Adding new sites and investigators  

• Notification of serious breaches of the protocol  

• Progress and safety reports  
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light of changes in reporting requirements or procedures.  
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service to all applicants and sponsors. You are invited to give your view of the 
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18 .HRA Training  

  

We are pleased to welcome researchers and R&D staff at our training days – see 

details at http://www.hra.nhs.uk/hra-training/    

  

14/WS/1164                          Please quote this number on all correspondence  

  

With the Committee’s best wishes for the success of this project.  

  

Yours sincerely  

  

  
  

  

Dr Gregory Ofili  

19 .Chair  

  

Enclosures:  List of names and professions of members who were present at 

the meeting and those who submitted written comments   

              “After ethical review – guidance for researchers”   
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Attendance at Sub-Committee of the REC meeting   

   

Committee Members:   

  

Name    Profession    Present     Notes    

Dr Ahmed Khan   Consultant Psychiatrist   Yes       

Mrs Liz Tregonning (Alternate 

ViceChair)  
Retired (Special Needs Teacher)   Yes       

   

Also in attendance:   

  

Name    Position (or reason for attending)    

Mrs Sharon Macgregor   Co-ordinator   
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Appendix 4: Quantification of whole body fat and muscle using Magnetic Resonance Imaging 
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Appendix 5: Body Composition and Energy Expenditure with Total Diet Replacement during 

weight loss and maintenance (BEYOND): study protocol 
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Appendix 6: BEYOND participant information sheet, consent form and schedule of 

assessment: 

 

 

 

School of Medicine 

 

                                       

Body composition and Energy Expenditure with Total diet 

replacement during weight loss and maintenance 

BEYOND Weight Loss Study – Participant Information Sheet 

You are being invited to take part in a research study. Before you decide to take part it is 

important for you to understand why the research is being done and what it will involve. 

Please take time to read the following information carefully and discuss it with others if you 

wish. Contact us if there is anything that is not clear or if you would like more information. 

Take time to decide whether or not you wish to take part.  This study will be conducted at the 

Royal Infirmary hospital, supervised by Professor Michael EJ Lean and will contribute to a 

PhD qualification. 

What is the purpose of the study? 

The purpose of this study is to understand more about the changes to our bodies during and 

after weight loss. We aim to do this in a number of ways.  

We will measure the total amount of muscle and fat in your body before a weight loss 

programme using magnetic resonance scan (MRI), and then again after you have completed 

the weight loss programme. This will provide important information on how much of your 

weight loss is from fat, and how much is from muscle. Scan results will be compared with 

measurements of weight and height, and hip and waist circumferences.  
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Along with this your handgrip and lower limb strength will be measured through special 

equipment similar to what you might find in a gym. An assessment of your range of motion 

and muscle force will also be recorded during repeated flat walking for about 5m. You will 

be required to have reflective markers stuck to your skin or tight clothing that will be tracked 

by a camera system in a specially designed laboratory. We will look at whether there are any 

relationships between all these measurements, estimates of muscle strength and your walking 

assessment.  

You will also have your metabolic rate measured at every appointment whilst you are losing 

weight. This will provide important information about how many calories your body is using. 

This will reduce with weight loss, but we do not know by how much, and will differ between 

individuals. The results of this will help us to advise you on how best to maintain your weight 

loss. A fasting blood sample will also be taken at each visit during the weight loss phase of 

the programme; this will give us information on important hormonal changes that occur 

whilst you are losing weight. 

We are also keen to understand how your views and experiences change whilst you are losing 

and maintaining weight loss. We will ask you to complete a short questionnaire at each visit, 

and will also ask you to attend interviews about key topics such as motivation, self-belief, 

overall satisfaction and the support you have at key intervals during your weight loss journey. 

These will take no longer than 30 minutes, and will be at your study appointments, about 

seven times over a two-year period. Interviews will be audio recorded with a voice-recorder, 

transcribed verbatim and analysed.  Following transcription audio files will be destroyed.  All 

files will be kept on password protected computers at all times and will only be accessible to 

members of the research team.   

How will I lose weight? 

We will provide you with a structured weight management programme (Counterweight Plus). 

The programme aims to achieve at least 15-20 kg (2 ½ - 3 stones) weight loss. During the 

programme you will be given full support/advice from the research dietitian/nutritionist for 

two years. 
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This will include following a Total Diet Replacement (TDR) for 12 weeks. If you are doing 

well and wish to continue losing weight, you can stay on the TDR for up to 20 weeks. You will 

stop all of your usual food intake on the TDR. The diet is a combination of nutritionally 

balanced soups and shakes. You will be able to have four soups/shakes per day, totalling 825–

853 calories. This will be provided to you free of charge. The TDR is followed by food re-

introduction over a period of 6 – 8 weeks, which means reducing the soups/shakes and adding 

back in normal food and increasing your calorie intake gradually to minimise the risk of you 

regaining weight. This is followed by a weight loss maintenance programme to enable you to 

manage your weight in the long term. There will be a total of 34 visits during the two-year 

study period. 

Why have I been chosen? 

You volunteered as you could benefit from substantial weight loss. 

Do I have to take part? 

It is up to you to decide whether or not to take part. If you do decide to take part, you will be 

given this information sheet to keep and be asked to sign a consent form. If you decide to 

take part, you are still free to withdraw at any time and without giving a reason. You can opt 

out of some of the assessments, if you choose. 

What will happen to me if I take part? 

After confirming with your GP your suitability to participate in our study (your GP will be 

asked to provide details of your medical history and medications (if any)), you will be asked 

to follow an intensive weight loss programme and have some additional measurements of 

your body taken every two weeks. There are MRI scans, weight, height and waist and hip 

circumferences and muscle strength measurements (hand grip lower and upper limb strength), 

resting and non-resting metabolic rate, blood, urine and faecal samples; in addition, you will 

be given short questionnaires covering eating behaviours, quality of life, activity performance 

and key psychological measures.  In total appointments will take 1 hour per week, except for 

the baseline appointment and the end of the total diet replacement phase.  During the 

maintenance phase appointments are 23 minutes per week (for more details please refer to the 

schedule of assessment)  

What do I have to do? 
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Before you start the Counterweight Plus weight management programme you will be invited 

to attend the Royal Infirmary hospital for an assessment appointment. You will be met by the 

researcher and taken to radiology to have your MRI scan. You will be asked to lie down and 

be put into a scanning tunnel, and asked to remain still for 45 minutes.  If you are uncomfortable 

you can push a buzzer and ask staff to release you from the scanner. Your muscle strength will 

be estimated using hand grip strength lower limb strength and muscle performance from flat 

walking; this will take around 30-45 minutes.  These measures will be repeated after 12 weeks.  

 

You will have your resting metabolic rate (RMR) measured and a 20 ml fasting blood sample 

taken every two weeks at the clinical research facility (CRF) in the Royal Infirmary until your 

weight stabilises and then at 6, 9, 12, 18 and 24 months. RMR is the amount of calories your 

body uses at rest to maintain vital bodily functions such as breathing, keeping your heart 

beating and pumping blood around the body. This will take about 30 

minutes, using a special machine called an indirect calorimeter and 

involves lying flat on a bed breathing into a ventilated hood (see picture). 

We ask you just to breathe normally inside the hood. At the end of the 

test we will be able to tell you how many calories your body is burning. 

We will also ask you to complete an almost identical test whilst you are 

doing some low intensity exercise (walking on a treadmill). You will breathe through a 

specially designed mask which will measure how much oxygen you are consuming. This will 

tell us how many calories your body is using whilst you are doing usual lifestyle-related 

physical activity, and whether this changes much after you have lost weight. In addition to 

this, we are interested to monitor whether there are any changes in your physical activity level 

as you lose weight. To this end, we will ask you to wear an accelerometer on up to 4 occasions 

during the 2-year study to track your physical activity level over a 7-day period. An 

accelerometer is a lightweight wrist worn device (like a watch) which objectively measures all 

of your movement, resting and sleeping patterns. It is water-proof and doesn’t need to be 

removed during the 7-day period. 

What are the possible disadvantages and risks of taking part? 

The effects of magnetic fields in an MRI scanner have been widely investigated; there are no 

known significant risks. You will lie down and may be bothered by the noise made by the 
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magnet during the procedure, for that you will be asked to wear earplugs while in the magnet. 

You may not participate in this study if you have implanted electronic or metallic devices.  

There are very few health risks from following this weight management programme.  Some 

people may experience symptoms during weight loss.  These are usually temporary and go 

away once body weight is stable at a lower level. 

 Constipation, we advise taking Fybogel (a fibre supplement) to overcome this. 

 Dizziness is possible when standing up suddenly.  This is due to the body adjusting to 

a healthier lower blood pressure and happens mainly in those who were taking 

medication to control their blood pressure. If this occurs, take more time when standing 

up, and don’t become dehydrated, drink plenty of water. 

 Gall-stones, may cause abdominal pain, most often a consequence of existing gall-

stones.  The diet we are using contains some fat, which further minimises the risk of 

gall-stone problems 

Taking part will involve change in lifestyle and substantial time commitment.  The weight 

management programme is challenging, but you will be given full support throughout the 

study.   

What are the possible benefits of taking part? 

If you follow the protocol, you will lose a substantial amount of weight. The information that 

is collected during this study will give us a better understanding of the effect of weight loss 

on the quantities and quality of fat and muscle mass in your body and how this is affected 

with weight loss. 

Will my taking part in this study be kept confidential? 

Your GP will be notified of your participation.  All information which is collected about you 

during the course of the research will be kept strictly confidential, identified by an ID 

number. Any information about you will have your name and address removed so that you 

cannot be recognised from it. Information will be stored in University of Glasgow computers 

at the Royal Infirmary with password that only the research team has access to. Any data 

shared with other researchers will be completely anonymised. Information will be stored for 

at least 10 years Information may be accessed by representatives of the study sponsor (NHS 

GG&C) to make sure the study is conducted correctly. 
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What will happen to the results of the research study? 

 

 After the project is finished, we will post out information about the findings of this research 

project to everyone who takes part.  The research findings will be written into reports which 

will be published.  It will not be possible to identify any of the individuals who take part in 

the project from the reports, as all the information will be anonymised. The information will 

also be used as part of a PhD student project. 

Who is organising and funding the research? 

This project has been planned by a PhD student and two research associates at the University 

of Glasgow, department of human nutrition. Funding’s are from student PhD fees and 

department of Human Nutrition research account.  

One of the research associates (Naomi Brosnahan) who plans to register for a PhD at the 

University of Glasgow is currently an employee and shareholder in Counterweight Ltd (the 

company which is supplying the formula diet for the present study). 

Who has reviewed the study? 

This project has been reviewed and approved by West of Scotland Research Ethics 

Committee 5 and NHS Greater Glasgow & Clyde Research and Development Department. 

How can I find out more about this project? 

If you would like to find out more about this project, please contact Yasmin Algindan, Naomi 

Brosnahan or George Thom the research dietitian/nutritionist. 

Thank you for taking the time to read this information sheet. 

Researcher (PhD student): 

Yasmin Algindan 

Department of Human Nutrition, College of Medical, Veterinary and Life Sciences 

University of Glasgow, Room 2.20, Level 2, New Lister Building Glasgow Royal Infirmary 

10-16 Alexandra Parade, Glasgow G31 2ER. 

Telephone: +44(0)141 201 8606 

Email: med-sch-beyond@glasgow.ac.uk  
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Research associates 

Naomi Brosnahan  

Department of Human Nutrition, College of Medical, Veterinary and Life Sciences 

University of Glasgow. Room 2.20, Level 2, New Lister Building Glasgow Royal Infirmary  

10-16 Alexandra Parade,  

Glasgow G31 2ER. 

Telephone: +44(0)7 810570650 

Email: med-sch-beyond@glasgow.ac.uk  

 

George Thom  

Department of Human Nutrition, College of Medical, Veterinary and Life Sciences 

University of Glasgow. Room 2.20, Level 2, New Lister Building Glasgow Royal Infirmary  

10-16 Alexandra Parade,  

Glasgow G31 2ER. 

Telephone: +44(0)7515552173 or 01382 581140 

Email: med-sch-beyond@glasgow.ac.uk 

 

Supervisors: 

Prof.Michael Lean, Chief investigator  

Professor in Department of Human Nutrition, University of Glasgow  

Telephone: +44(0)141 201 8606 

 

Dr.Catherine Hankey,  

Senior Lecturer in Department of Human Nutrition, University of Glasgow.  

Telephone: +44(0)141 201 8606 

 

Dr. Lindsay Govan,  

Research associate, Institute of Health and Well Being, College of Medical, Veterinary & 

Life Sciences, University of Glasgow,  

Telephone: +44 (0) 1413305294 
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Body composition and Energy Expenditure with Total diet 

replacement during weight loss and maintenance 

Consent form 

                    

Please initial each           box 

      

 

 

 

1) I agree that my GP can be notified of my participation in the study 

 

2) I agree that my GP will be contacted to provide research team with details of 

my medical history and medications (if any) 

 

 

3) I understand that my information may be looked at by representatives of the 

study sponsor (NHS GG&C) for audit purposes 

 
 

4) I agree that my anonymised data may be shared with other researchers 

 

 

5) I confirm that I have read and understood the information sheet V8.3 for the 

study dated 07/07/2015 and have had the opportunity to ask questions 

 

 

6)  I understand that taking part is voluntary and that I am free to withdraw at any 

time, without giving reasons, without my medical care or legal rights being 

affected 

 

 

7) I agree to undertake whole body MRI scans twice; at the beginning and end of 

the total diet replacement stage. 

 

 

 

 

 

 

 

 

 

School of Medicine 
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One copy of the consent form will go to the participant and the second copy will go to the 

researcher. 

 

 

Name of participant (please print name)........................................................ 

 

Date................... Signature............................................................ 

 

 

Researcher (please print name)....................................................................... 

 

Date................. Signature.............................................................. 

 

 

 

8) I agree to undertake muscle strength and performance measurements at the 

beginning and end of the study 

 

9) I agree to undertake weight, height, waist, hip measurements and questionnaires 

during the study  

 

 

10) I agree to undertake indirect calorimetry testing for measurement of resting and 

non-resting metabolic rate at the start and end of the study, and periodically 

throughout the intervention period 
 

 

11) I agree to provide blood, stool and urine samples 

 

 

12) I agree to measurements of my physical activity level at key study intervals 

 

 
13) I agree that my samples blood and stool samples could be retained anonymised 

for use in future studies 

 

14) I agree to take part in interviews to discuss my views and experiences whilst I 
am losing and maintaining weight loss and grant permission for the interview 
session to be recorded and saved for purpose of review by the researcher 

 

 

15) I agree to take part in this study 
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BEYOND WEIGHT LOSS STUDY SCHEDULE OF ASSESSMENTS 

  Total Diet Replacement Phase Food Reintroduction Phase 

Appointment 

T
im

e 

(m
in

) 

0 1 2 3 4 5 6 7 8 9 10 11 

Week 0  

Baseline 
0+1 0+2 0+4 0+6 0+8 0+10 0+12 0+13 0+15 0+17 0+19 

Study Procedure              

Review Inclusion/Exclusion Criteria  5 √            

Review & discuss study participation 

(readiness to change) 

10 √            

Obtain Informed Consent 10 √            

Height 1 √            

Weight 1 √ √ √ √ √ √ √ √ √ √ √ √ 

Waist Circumference 2 √       √    √ 

Hip Circumference 2 √       √    √ 

Blood Pressure 2 √ √ √ √ √ √ √ √ √ √ √ √ 

Blood samples 5  √ √ √ √ √ √ √ √ √ √ √ 

EQ-5D questionnaire 2 √        √    

Binge Eating Questionnaire 2 √        √   √ 

Psychology quantitative 

questionnaire 

2   √ √ √ √ √ √ √ √ √ √ 

Psychology qualitative interview 20  √*    √*     √*  

Indirect Calorimetry  30 √ √ √ √ √ √ √ √ √ √ √ √ 

Gut Microflora  0  √  √     √  √  

*MRI Scanning 45 √       √     

WOMAX Index Questionnaire 2 √       √     

Gait and Muscle Strength  30 √       √     

Counterweight Plus (CWP) 60-20  60* 20 20 20 20 20* 20 20 20 20 20* 

Total time (min) NA 114 98 60 60 60 60 60 141 64 60 60 66 

*=incorporated within CWP appointment 

 


