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SYNOPSIS

An approximate method is presented for the analysis
of the distribution of lateral forces among the components

of a three-dimensional tall building structure that consists

)
/

of assemblies of shear walls, coupled walils, rigidly-
jointed frames and cores, subjected to both bending and

torsion.

The load distribution on each element is assumed to
be represented sufficiently accurately by a concentrated
interactive force at the top together with a polynomial

in the height coordinate.

A set of flexibility influence coefficients, reiating
the deflection at any level to any particular load compoé
nent, is established for each element, the continuum
approach being used to analyse individual cores and
coupled shear walls, and the shear cantilever analogy for

the frame elements.

By making use of the equilibrium and compatibility 
equations at any desired set of reference levels, the load

distribution on each assembly may be determined.

The accuracy of the technique,vand the number of
reference levels, were examined by comparing the results
with those obtained from an 'exact' solution and those
from two:example structures which were analysed previously
by variéus investiéators. Finally, a parameter study has
been carried out also to study the effect on the number of

reference levels used.
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NOTATIONS

The following symbols are used in this thesis.

A1 , A2 cross-sectional areas of walls '1!
and '2!'
A A1 ; A,
b ' Clear distance between walls in
line

b1 ’ b2 bay widths

C Torsional stiffness of wall element

B ' Young's modulus of elasticity

e - clear distance between spandrel beams
£ flexibility coefficient for deflection
! flexibility coeffitient for rotation
G | Shear modulus

H : Total height of building

h Storey height
i .any integer

I% s 12 second moment of areas of wall '1' and '2!
Ic ' second moment of area of connecting beam
Ih second moment of area of column

J suffix denoting the jtb element

1 distance between centroids of wall '1!

‘ and wall''2!

11 s 12 clear distances between columns

M } applied moment at any level

M1 , M2 bending moments in wall '1' and '2!
M(1) Base moment

m largest number of terms in the series



n particular term in the series

n(g) axial force in the connecting medium

PO concentrated load at the top

o polynomial load coefficients

Q(1) | base shear force

q intensity of shear force in connecting
beam

s | integral coefficient

T | axial force in wall

TO concentrated torque at the top

tnv polynomial toréue coefficient

t1 width of column

t, ~depth of spandrel beam

X height coordinate from the tbp of the
building

y, 2 horizontal coordinates

1., r, distance of the jth element from the

J J  datum

x pY¥ structural parameters

7, q' supplementary variable of non-dimensional
height coordinate

e rotation of floor slab in horizontal plane

£ non-dimensional height coordinate

[F] ’ Square mag{ix of flexibility coefficients

: for the j* element
EFQ Sguare matrisx of rotation flexibility
v cnefficients for the jth element
[MT] matrix of applied twisting moments
[S] matrix of coefficients s

Other subsidiary symbols are defined locally where they

occur in the text



CHAPTER 1

INTRODUCTION

1.1 General

The existence of tall buildings usually reflects the
socio-idéological and political trends of the society in
which they occur. The reasons to build tall range from
the natural wurge to build up, to be at the centre of
things, high 1land costs, and dense population up o a
show of wealth and power. The economy, aesthetic effect,
efficiency and above all, the prestige associated with
tall buildings have in recent years, increased their rate

of construction in many regions of the world.

While there is no general agreement as to what
constitutes a tall building, from the structural engineer's
point of view, a tall building is one in which lateral
forces due to wind or earthquake play an important or

dominant role in the structural design.

In general, low-rise buildings are designed to resist
gravitational loads, and thereafter the influence of wind
forces is checked using Building Design Codes, which
generally allow some overstress due to the transient nature
of the wind. However, the structure of high rise buildings
must be designed from the beginning to resist vertical as
well as horizontal forces, and an optimum system sought to

minimise the influence of the former.



‘Therefore, it is essential to ensure adequate lateral
stiffness to resist horizontal loads, The structural units
which may be adopted for providing this stiffness to
buildings are classified as frames, shear walls, cores or

their combinations, in conjunction with the floor systems.

Any of the structural units, singly or in combination,
form a structural system. Each of these systems tends to
be more suitable for a particular range of height from an
economic point of view., For example'in the United States,
for medium height buildings up to twenty storeys or so, the
use of ccnecrete frames could be adequete., Higher than that,
up to about forty storeys, a system of shear walls, which
may be solid or perforated, can be incorporated giving
additional advantages as they can act also as functional
partitions, fire resisting elements and acoustic insulations
between specific dwelling areas. A combination of shear
walls and frames may be used for buildings up to fifty
storeys} Above these heights, tube-in-tube or multiple

frame-tube systems appear to be more economical (1).

Fig. 1.1 and Fig. 1.2 show typical plan layouts of

combinations of the various stquctural units,



1.2 PRINCIFAL METHOD3 FOR ANALYSING THREE-DIMENSICNAL
TALL BUILDINGS '

An important first step in analysing a three-dimensional
tall building is to decide on an appropriate idéalised
model, to include all the sighificant load-resisting elements
and their modes of behaviour. The distribution of load
between the elements is usually determined by an elastic
analysis, regardless of the eventual method.of design.
This is because of the magnitude of the analytical problem
involved. The élab are usually assumed to be rigid in their
own plane, so that each floor is supjected to a rigid-body
movement in plan. JConsequently the vertical elements at any
floor level undergo horizontal and rotational components of

displacement in the horizontal plane.

The analytical problem can be simplified as far as possible

(2)

into the following categories,

(a) Symmetpic overall plan with parallel identical assem-
blies of walls, columns, frames, etc. (an example.
shown in Fig. 1.3(a)) subjected to a symmetrical load
system. Because of the identical behaviour of the
elements, the analysis of one only is sufficient subjec=-

ted to a proportion of the load.

(b) Symmetric overall plan consisting of non-identicsal plane

assemblies (as in Fig. (1.3(b)), subjected to symmetrical



(c)

(d)

loading. 1In this case the structure can be analysed as
a plane system by assembling the elements in series for
eXxample with connecting rigid pin-endea links at each

floor level. ''ne 1inks simulate the behaviour of floor

'glabs in constraining the assemblies to deform iden-

tically, and allow the resulting distribution of load

to be determined,

Symmetric plan as in (a) or (b), but subjected to eccen-
tric loading. The load may then be replaced by a con-
centric lateral load and a twisting moment, whose
effects can be cbnsidered separately and superimposed.
The former can be treated as in (a) or (b), whilst

the torsional moment can be treated as an equivalent
system of pairs of concentrated forces at each floor
level applied at convenient corresponding points on

(3) By trans-

opposite sides of the axis of symﬁetric.
forming the stiffnesses and displacements of the other
elements into the same locations, the entire structure

can be assembled in the same plane, and a plane analysis

performed as described in (b).

Non symmetrical plan as shown in Fig. 1.3c . In this
case the structure will generally undergo simultaneous
bendingaand torsional displacements, and a three-
dimensional analysis is required to determine the. load

distribution among the elements,



After the form of action is established, the
dominant modes of behaviour of the various components
and assemblies are considered in order to choose the

most appropriate method of analysis.

In the past two decades, much research work has
been carried out on tall buildings, some of which have
assisted the designer with the provisions of sufficient
data to produce a safe and economic design. Some of
the methods are applicable to elastic analysis, while
some others are suitable for elasto-plastic analysis
of tall buildings. Since this thesis is concerned with
elastic analysis, the publications considered for

literature review relate only to these analyses.

The two basic methods of three-dimensional analysis
of tall buildings can be classified as the continuous

a{4)

method and the discrete metho

In the continuous methods, the horizontal elements
which connect the vertical elements are substituted by a
continuous'medium of equivalent stiffness continuously
distributed along the height of the building. These
methods leadkto a system of differential equations
which, after being integrated, give displacements and

internal forces in the whole structure.

In the discrete methods the well-known matrix

techniques are used. The majority of the authors



prefers the displacement method. The discrete methods
lead to a system of many linear equations which, after
being solved, give<s displacements and internal forces

in the whole structure.

The discrete methods are more general dealing with
structures of variable form, either in plan or in eleva-
tion. However, they always use a large number of para-
meters and variables, making difficult to perceive the
behaviour of the whole structure and the way in which

(4)

the variation of parameters affects the results .

The continuous methods on the other hand, assume
an essential uniformity of the structure in plan and
elevation, so that the behaviour of the structure can
be represented as functions of a small number of elastic

and geometric properties.

In the preliminary design stages, a number of
iniﬁial plans may have to be considered. To enable the
engineer to reach quick decisions regarding the dimen-
sions and layout of the structural members, sapproximate
methods of analysis are essential, When the final design
is accepted, then it snoula be rigorously analysea for

final checking of the désign.

The continuous method of analysis is adopted
. throughout this wcrk because it fulfils the basic require-

ments of the initial design stage, that is, a good



approximate solution to the problem is required with
minimal computational effort. It has also the adyantage
that the accuracy of the solution increases with the
number of storeys without additional computational

effort.

1.2 Review of previous research

Many investigators have presented simplified
theories for the analysis of three-dimensional
symmetric structures which may be reduced to equivalent
plane systems as described in 1.2(b). Based on the
continucus connection technique, Heidebrecht and
Stafford Smith(S) devised a method for the analysis of
symmetric structures consisting of shear walls and
rigidly jointed frame assemblies. The method is
suitable for the static analysis of uniform and non-
uniform structures, and for dynamic analysis of
uniform structures. Cou11(6) presented a method, also
using the continuum apprnach for the analysis of regular
symmetric structures cohsisting of caupled shear walls
and cores. The shear flow intensity in the connecting
beams of the coupled shear walls is considered as the
unknokn_variable. The solution for the shear flow was
then used to determinevtherdeflections and the internal
forces. Stafford Smith and Abergel(7) analysed coupled
shear walls and cores by transforming them into a single

coupled shear wall with modified parameters. EXpressions



were given for the horizontal deflections and the
internal forces. Base on the continuum approach and
complementary energy theory, Arvidsson(B) devised a
method for structuresiconsisting of coupled shear walls
and frames. The solution was obtained by Euler's

formula.

Despite a large amount of research carried out on
the behaviour of tall building structures, published
studies which deal with the analysis of unsymmetric
three-dimensional systems as descfibed in 1.2(d) are
few-in number.- In an asymmetric structure which
consists of dif'ferent load-bearing units, such as
independent and coupled shear wélls, rigidly jointed
frames, and open box-type cores, lateral forces
resulting from wind or earthquake action produce both
lateral and torsional displacements., Relatively little
work has been done in this particular area. Winokur
and GLuck(g) presented a method which considered the
structure subdivided into main structural units for
which the separate in-plane stiffness matrices were
determined. The translations of the units in twob
arbitrary orthogonal horizontal axes and their rotations-
about an arbitrary vertical axis form matrix equations
with regard to the equilibrium of the floors. Their
solution gave values for translations and rotations of

each floor and hence the in-plane displacements of each



unit, from which the unit actions were determined.

(10) used the continuous approach and

Stamato and Mancini
matrix analysis to derive solutions for deflections,
rotations and internal forces. In the analysis frame
assemblies were replaced by equivalent shear cantilevers.

(11)

Wynhoven and Adams used slope-deflection equations to
‘formulate equations of equilibrium for three-dimensional
wall-frame structureé.i‘The equations were then arranged
in matrix form and solved for the unknown displacements
by using a modified Gauss Elimination technique.

(12) analysed assymmetric wall-

Rutenburg and Heidebrecht
frame structures by an approach which is based on the
decoupling of the coupled torsion-bending differential
equations using an orthogonal transformation. The
deformations and stress resultants in the wall and frame

assemblies were obtained by combining the respective

coefficients, tabulated from-the solved decoupled equations.

An approximate analysis of wall-frame assemblies
was devised by Mortelmans, Roeck and Van Gémert(13). The
method was for the combined bending and twisting of long,
tall buildings, subjected to wind loading. The method
reduced to a solution of a linear system of four equations
with four unknowns, enabling the determination of all

bending and twisting moments in the elements of the

structure, regardless of the number of floors.

No)



Coull and Irwin(1¢) presented an approximate method
for the torsional analysis of three-dimensional structures
consisting of parallel assemblies of coupled shear walls
and core elements. Using the continuum technique, the
flexibility matrix of éqch assembly is determined and by
inversion the stiffness matrix is obtained. After tne
component stiffness matrices are determined, the complete

structure is solved by matrix analysis.

A simplified method of analysis of three-dimensional
buildings whose structure consists of essentially parallel
systems of shear wall assemblies and box—corevelements was
presented by Coull and Adams(15). The bending and twisting
distribution on each element was assumed to be represented
with sufficient accuracy by a polynomial in the height
coordinate., The method was later extended by Coull and
Mohammed(16). The solution was improved by including a
top concentrated interactive force in addition to the
polynomial load distribution. Rigidly jointed frames

were included in the analysis as well by representing

them by shear cantilevers.

Coull and Khachatoorian(17) presented closed form
solutions foq the elastic 'exact! analysis of three-
‘dimensional structures based on the continuous connection
technique., The analysis are for symmetric and assymmetric
structures consisting of cores, coupled shear walls and

rigidly jointed framework assemblies arranged in tgo

10



orthogonal directions, with only one form of coupled wall

unit present.

1.4 Reasons for present study

Most of the methods of analysis for three-dimensional
tall buildings are related to either symmetrical structures
or the torsion-bending analysis of structural systems with
relatively simple structural layouts. Few of the methods
presented are suitable for rapid hand calculations or use
minimal computations for the preliminary proportioning of

components at the initial stagés of the design process.

Therefore a method of analysis which requires as little
computation as possible and also which yields reasonably
accurate results is highlykdesirable. The present research
forms an extension to the work of Mohammed(16), in
attempting to produce such an analysis for non-symmetrical
three-dimensional structures with elements arranged in two

orthogonal directions or with skew orientations.

1.5 Scheme of the Thesis

This thesis is concerned with the investigation of
multi-storey three-dimensional structures which consist of

shear walls and frames under the action of lateral loads.

In Chapter 2 the approximate method of analysis is
presented. The elements are assumed to be loaded in their

own planes by a combination of a concentrated load at the

11



the top and a distributed load described by a polynomial

series in the height coordinate.

Chapter 3 deals with the analysis of two-dimensional
elements or systems. Frames are represented by a shear
cantilever of infinite flexural rigidity and of equivalent
uniform shear rigidity. The continuous connection
technique is used in the analysis of coupled shear walls

and cores,

In Chapter 4, examples of numerical computations of
the analytical method is presented to eXxamine the conver-
gence, accuracy and validity of the solutions, ahd to
study the effects of the various parameters involved in
the analysis. Comparisons of the results with other
published works are also used to assess the accuracy of

‘the technique.

Chapter 5 presents the relevant discussions on the
results and the conclusions., Finally, suggestions are

included for future work.

12



(@) No openings in walls: access from outside

(b) Coupled wolls

Fig. 1.1 —Typical layouts of shear walls

Fig. 1.2 Typical layouts of high-rise buildings with shear wall-frame interaction
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vialr lon
APPROXIMATE ANALYSIS OF
THREE-DIMENSIONAL T'ALL BUILDINGS

2.1 Introduction

Most of the studies and analyses of shear wall
structures have been concentrated on the problem of plané
walls subjected to a known system of loads in their own
plane. In the case of a three-dimensional complete
building, the results are strictly accurate only if the
structure consists of parallel systems of identical wall
assemblies and is loaded symmetrically, so that any

lateral loading is shared equally between them.

However, if the structure is made up of various férms
of load-bearing elements such as independent and coupled
shear walls, rigidly jointed frames, columns and box-type
coré structures surrounding 1lift shafts and stair wells, or
if the elements are themselves arranged obliquely,
considerable redistribution of lateral load may take place,

particularly if torsional deformations of the building occur.

A commonly applied design rule is to assume that
lateral loads are distributed among the elements in
proportion to their stiffnesses, or their top deflection due
to a unit laterally distributed loading. This is true
provided that the lintel beams or floor slabs are effectively

'ball jointed' to the walls, so that no bendihg can be

induced in any plane, but this is obviously)not the case.

13



If coupling occurs between the walls and bending induced
in the lintel beams and floor slabs, the design rule can
give rise to significant errors. This can be seen Dby
comparing the modes of deformation of a shear wall and
frame structure subjected to a uniformly distributed load.
The former bends in an essentially bending mode, while
the latter deflects in a predominantly shear mode as
illustrated in Fig. 2.1(a) and Fig. 2.1(b). 1If the two
are constrained to deflect equally by a system of floor
slabs, tensile linking forces are introduced in the upper
levels and compressive forces in the lower regions,
indicating a redistribution of load between the two

throughout the height (18). This is shown in Fig. 2.1(c).

The present analysis provides a relatively simple
method of evaluating the distribution of lateral loads
within a complete three-dimensional building where load~-
bearing elements consist of assemblies arranged in two

orthogonal directions or with skew orientations.

The method depends basically on the form of load
distribution which is assumed to be carried by each element

in the structure.

In the first instance a method is presented for multi-
storey buildings whose load-bearing elements consist of
parallel systems subjected to bending and torsion. After
that, the method is extended to include elements in two

orthogonal directions and with inclined applied loading.

14



2.2 Assumptions

The following assumptions are made in the analysis.

(1) The floors are assumed to be so stiff in their
own plane that each floor undergoes a rigid body
displacement in its own plane. Out of plane they are

completely flexible and there are no coupling of assemblies.

(2) Any form of wind pressure distribution may be
considered., The effect of the wind load above the level
§;=.§i may be represented by a resultant horizantal

load wi and a twisting moment MTi acting at the datum

position, O as shown in Fig. 2.2.

(3) The resultant force and moment at any level are
resisited by a combination of differential shearing forces

and torsional moments on the assemblies,

2.2.1 Representation of load distribution on each element

The load distribution on each element j, may be

aescribed by a combination of

i) a horizontal point load Poj at the top (2.1 a)
and ii) a distributed load 'pj whose intensity is defined
by a polynomial series of the form
P: =P . + P .&“"p -§2+ esevees + P -E,m
J 0J 1] 2] mj

n i
-;opijg (2.1 b)

(%%

15



where m is some arbitrary integer, for a simplified
analysis m is assumed to be small (say 10 or less)
pij is a constant coefficient
€ is a non-dimensional height coordinate x/H

Similarly, the twisting moment on any element j

may be assumed to consist of a combination of

i) a point torque TOj at the top (2.2 a)
ii) a distributed twisting moment distribution

defined by a power series of the form

m 5 )
t, =5 t..g ' (2.2 b
J i=0 1] .

The height coordinate is chosen to be measured
downwards from the top of the structure. This is due
to the anticipated pattern of load distribution whereby

the load on the elements increases downwards.

The totsal shear force Qj and the twisting moment, Tj

carried by any element at level gi are given by

Q, = P +Hj€p dg = P +H§pgi”
j T o] 0 Tij oj T .S, it
i+1
"oy T, S | (2.2)
& m i+1
and T. =T . + H t..deg =T . + H t..
j . o} L> ij € 0j iéé 1;5
i+t
m
=T . R A
0] +;§6 83 ij (2.4)
where the coefficient s, = Hg?+: (2.5)
i+

16



2.3 Complete three-dimensional analysis of structures
sub jected to bending and torsion

Suppose that a structure consists of a number of wall

and frame assemblies as shown in Fig. 2.2.

For horizontal equilibrium the total applied shear
wi at any level must equal the sum of the shear forces on
the individual elements at that level, or

J

W = Q1 + Q2 + e QJ =j§1 Qj (206)
For rotational equilibrium, the total appliedwmoment

MT must equal the sum of the moments of the shear forces

and the twisting moments on the individual elements at

that level, so that,

My = (Q111 +Ql, 4o+ QJIJ) + (T1 + Ty, + e TJ)
J
= F Q1.+ = T, (2.7)
j=1 JJ j=1 J

For each individual assembly, a unique linear load-
displacement relationship exists, in which the horizontal
deflections at any chosen set of reference levels may be
determined for each load component of equations (2.1).
The set of deflections corresponding to a unit value of
vthe component will yield a set of flexibility\influence

coefficients fij defined as the horizontal deflection at

level gi due to a unitvvalue of componént Poj or pij'

17



Similarly, a corresponding set of flexibility
!
influence coefficients fij , defined as the rotation at
level £ due to a unit value of twisting moment component

T or t. may be derived for each assembly. The load-

0J
deflection and torque-rotation relationships for the

individual elements will be considered in Chapter 3.

The load-deflection relationship for the j° element

may be expressed in matrix form as

[V]j= [F]j(r]j | (2.8)

where [V] is a column vector of deflections at any

J
arbitrary set ef reference levels.
{P}j is a column vector of load coefficients

Poj and pij

[F]j is a square matrix of influence coefficients

f..
1]
The total shear force Qij at each reference level may be

expressed in terms of the load coefficient in matrix form

[Q]j - {s)[Plj (2.9)

where [Q]j is a column vector of shear forces Qij at each

as

reference level on element j, and S is a square matrix of

integraticn coefficient s; given by equation (2.5).

The deflection at any reference level of the jth.
element may then be related to the applied shear forces

through the flexibility matrix of equation (2.8), giving

18



[V]j - [v;] + 1 [e] = [F]j [P]j (2.10)

where {VO] and {e} are column vectors of the deflection
at the datumn position 0 and the rotation of the

structure at each reference level respectively. (Fig 2.2)

The first equilibrium equation (2.6) then becomes

W] - zi [Q] [s] FJ "([v]+ 1. sleh 2

in which [W] is the column vector of the total applied
shear forces wi at the reference levels X4 and the
summation is carried out over the J separate elements in

the structure,

The torque-rotation relationship for the jth element

may be expressed in the form

[e}j - {Fﬂj[t]j | - | (2.12)

where [9}. and [t]. are column vectors of rotations 8..
J J iJ

and torgue ccefficients T 03 and tij at any set of
reference levels, and [F]j is a square matrix of

1
influence coefficients fij'

The total torque \T at each reference level may be

related to the torque coefficients Toj and tij for all

chosen levels by the expression

{Mf}3 - [S]{T]j ’ (2.13)

where [MTr]3 is the column vector of twisting moments at

19



each reference level on element j, and [T]j is the

column vector of torque coefficients on the element.

The condition of rotational eguilibrium (2.7) then

becomes

el = (2] 0370 < 3060, ')

By solving equations (2.11) and (2.14) simultaneously,
the expressions for the deflections at O and the rotation

of the structure may be shown to be

AR CI RGNl N | A R R ]

where
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Having determined the deflections and rotations of
each element at all reference levels, the loads on different

elements follow from equations (2.8) and (2.12) as

[p}j = {F]?[V]j ' (2.17)

The distribution of the twisting moments is obtained from

[tlj = [} 31[6} | (2.18)

Having determihed the applied loading on each assembly, the
internal stress-resultants and deformations can be obtained
from the analysis of the individual.sfructural assembly,
using techqiques such as those presented in Chapter 3.

2.4 Complete three-dimensional analysis of structures
with assemblies in two crthogonal directions.

Consider an assymmetrical building structure which
consists of a number (J) of elements-arranged as shown in

Fig' 2.3(&)0

"Under the action of wind forces, W, which act at a
distance L from the left hand cornér O, the structure will
undergo translational displacements Uj.and Vj in the y and
Zz directions, and the floors will undergo a rotational
displacement 8 in the Oyz plane. Any datum position can
be chosen, for this analysis O is chosen as the datum point,
and all displacements are referred to O. If wind forces W
act at an angle, it can be resolved into the two orthogonal

directions as Wy and W, . (Fig. 2.3(b))
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The displacements of any element at level € in the

two directions may be expressed as

Vj = VO + le (2.19)

where Uo and VO are the deflections of point O in the
Ozy plane and rj and 1j are the perpendicular distances
between the centroids or the shear centres of each element

and the datum axis Oyz respectively. (Fig. 2.3(c))

The total shear force Qij at each reference level
may be expressed in terms of the load coefficient in

matrix form as

[2];y
lo;,

where [Q}jy

in the y and z directions respectively at each reference

[5][13]33;
1s)le] s, (2.20)

and [Q}jz are column vectors of shear forces

level on element j, and S is a square matrix of integra-

tion coefficient 84 given by egquation (2.5).
The deflection at any reference level of the jth

element may then be related to the applied shear forces

through the flexibility matrix of equation (2.8), giving
[.U]j ={.Uo.1 - rj{Q]
[V]j =‘.Vo} * lj[G)

[F}jz{P]jZ (2.21)

[Fljy[P]jy | (2.22)
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where [U;},[Vo] and {G} are column vectors of the |
deflection in the z and ¥y directions at the datum position
0 and the rotation of the structure at each reference level

respectively.

Proceeding as before, the equilibrium eguations

become

[w],

]
M e
—
O
| V|
[ V)
N
[}

[S]JZ:[F]:;; ([u.)- rj[e]) (2.23)

=
—_—
q
1]
O
[
[
<
i

[S]jé [F}S; ([\{O]Jr 15[e] (2.24)

in which [w]z and KWJy are column vectors of the total
applied shear forces in the two directions z and y, and

the summation is carried ocut over the J separate‘elements.

For rotational equilibrium, the total applied moment

MT is given by

J J
(] - 2 [}y -2 Bl + 2 0), (2.25)

J=1

Using a similar derivaticn for eguaticn (2.14) the

condition of rotational egquilibrium then becomes,

[va] - (92, {FT50(00d - =y )32 lve) 2o,

+[F'}31[e)} | (2.26)
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By solving eguations (2.15),(2.16) and (2.19) simultaneously

the expressions for the deflections at 0 and the rotation

W0,) = (o)™ e ) [e5) 7" [eg) (o) [5][G3]-1[G1]'
(ARCHIREER A R O
| [G4]—1[G5}[Gs}-1) W)y +[e,)” 1[‘” - oq )" [T}}

v = (o) " [os] {ee) ~'[os)+ [e517 " [os][00) " o2) -
[03‘5'1 [GA )~ x {[GJ‘“[W -[6.] “'3[1»1T] +

IR AR AR IH RN

&) = e le el ) - Lo e - ) s
x {[§11-1[w]y -[Gs}-1[MT] [ 4}?2 [w }

........ (2.29)
where
J - (2.30)
[cﬂ - {s]ja [F]J; 2.30
{G] - [s]é [F]T’ (2.31)
2 j=1 H e - |
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[¢3) = [s) =, F)yms (2.52)

o] - 812 Bl (253
[o51 - [S]é{‘[ﬂ w5+ [F155 (7] 31J (2.34)

Having determined the deflections and rotations of each
element at all reference levels, the loads on different

elements follow from equations (2.11) as
[#)5y = [0 [V]; (2.35)
{Psz = [F]Sg {.V}j (2.36)

in the y and z directions respectively. The distribution

of the twisting moments is obtained from

lr), = [F]37 (o) (2.37)
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CHAPTER 3

ANALYSIS OF INDIVIDUAL ELEMENTS
OF TALL BUILDING STRUCTURES

3.1 Introduction

The resistance to lateral forces in many tall buil-
dings is provided by coupled shear walls, cores, frames
and.single shear walls. When these assemblies are subjec-
ted to distributed lateral loads, their modes of behaviour
are different. A cantilever core or an independent shear
wall deform in a bending mode, a frame in a shear mode,
"and a coupled shear wall bends with.a réversal of curvature
in the higher levels. When constrained to act together
by floof slabs, a considerable redistribution of load
may occur between these elements throughout the height of

‘the building under the influence of lateral forces.

in general, these elements are loaded with any
lateral force distribution in the plane being considered.
However, the lateral load distribution considered in this
analysis are expressed by a combination of a top concen-
trated load at the top and a polynomial series form of

distribution.

In this Chapter, expressions are derived for the
load-deflection and torque-rotation relationships for the
different individual structural elements considered.

These enable sets of influence coefficients, relating the
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deflection and rotation at any level to a unit value of

applied load or torque component.

To simplify the analysis it is assumed that a frame
assembly may be replaced by an eguivalent shear cantilever
which has the same effective lateral stiffness, Single
shear walls, which are not coupled to any other shear
bearing elements act as simple cantilevers. 1In the case
of coupled walls, the continuous connection technique is
used to derive the differential equations governing its

behaviour,

3.2 Structural Frames

The most fundamental component of a tall building is
the rigid frame, which achieves its lateral stiffness
from the rigidity of the joints between columns and beams

or slabs.

3.2.1 Replacement of tall frames by an equivalent

shear cantilever

When subjected to lateral forces, tall frames deform
in a predqminantly shearing mode, due to the racking action
over each storey height. The frames may therefore be replaced
by an equivalent 'shear cantilever' of effective shearing
rigidity GA, and infinite flexural rigidity. This shearing

rigidity must be chosen such that the horizontal deflection
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of both frame panel and beam are the same under the action

of the same shear force.

Consider the single storey segment of a frame shown
in Fig. 3.1(a). Since the columns may be closely spaded,

and the spandrel beams relatively deep, the finite size of

the joint relative to the free column height and beam span - -

must be taken into account. This can be done by assuming
that short rigid arms exist at each node, of width egual to
the width of the column, and of height equal to the depth

of the beams.

Due to the high in-plane rigidity of the floor slabs,
the coiumns are assumed to be constrained to deflect
equally at each floor level and the beams deflect with a
point of contraflexure at their mid-span position; In
addition to these, the columns are assumed to bend with
points of contraflexure at their mid-height positions.
The forces on. the frame segment, and effective boundary

conditions are shown in Fig. 3.1(c).

If a horizontal force Q is applied at the node D,
the resulting horizontal deformation A can be calculated

from the moment-deformation characteristics of the frame

(19)

segment, The load-displacement relationship is

Qh _ 6EI A
2 h(1+.:°.£)
2 €
© 1
2_h (4, 52
e —
1 + e
I I
d d
——1(1 + t1)2 + ;—2(1 + t1)2
1 e 1 -—
1 11 2 12
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in which

Ih = second moment of area of column

h = storey height, Id and Id are the second moments
1 2
of area of the adjacent beams of total lengths

d1 and d2

and height of the rigid arms, and

respectively, t1 and t2 are the length

e =h - t2
11 = d1 - t1
12 = d2 - t1

For an equivalent shear cantilever element of the same bay
width, subjected to the same shearing force Q, Fig. 3.1(b)

the load-displacement relationship is,

On equating the two relationships, the shearing

rigidity GA becomes

GA = 1 12EI
A 2h ( 1+ 32 )
e e
where ' L \2
7= 1+ 2Ih(1 + t2/e) _

n

i T
e d d
—l1 4 T2, 2(q 4 t2
l — l om—
1 T, 2 T,



This relationship is applicable also to an exterior
‘column if the second moment of area of one of the beams
is taken to be zero. The total stiffness of the equiva-

lent cantilever is then equal to the sum of the individual

GA values of the bay.

If, as is frequently the case with tall buildings,

.- I ,° Igend dg =d, =d, or 1, =1, =1=4d-t,

the shear rigidity becomes

_ 1 12EI
GA = 7 ———gg— (1 + t2/e)
e

¥here
| 21, (1 + ¥2/¢)?

N
|

1+

I I
d t - -d t
e[-—-—11(1 + -1—1)2 + ——12(1 + Tl)z
1 1 2 2
If the spans of the beams and heights are relatively large

in comparison with the joint diménsions, t1 and t2 may be

teken to be zero in the above expression.

3.2.2 Assumed loads on the equivalent shear cantilever

on rigid foundation

The structural behaviour of the shear cantilever is

defined by the relationship

‘g'x:"__g : ‘ (301)
dx GA : ’

where Q = the shearing force at level x.

Using the hon-dimensional height coordinate E =

mix

equation (3.1) becomes
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dy = - HQ (3.2)
ag

1) Concentrated Load at the Top

For a shear cantilever which has a point load, P,
applied at the free end, the shear force at level § is

given by
Q=P , (3.3)

Therefore equation (3.2) becomes

dy = - H _P (3.4)
ag GA :

Integrating equation (3.4) gives

y=-H _Pg +C (3.5)

At the base, there is no horizontal displacement, that is
at § = 1 y=20 (3.6)

Using the boundary conditions (3.6) in equation (3.5)

the deflection becomes,

y =P (1-8) (3.7)
GA ,

2) Polynomial load distribution

Let the applied load be expressed by a polynomial

series of the general form,
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cesecse (3.8)

For simplicity, consider the action of any particular
term ann of the series. The shearing force at level
g of the equivalent shear cantilever is given by

' (€ AR n+1

Q=8 pA" dr - HpE (3.9)

0 BT

where A is an érbitrary non-dimensional height coordinate.
Substituting equation (3.9) into equation (3.2) and |
using the boundary condition (3.6) the deflection at

level § becomes,

_ 2
Y = pyf n!

GA (n + 2)!

(1-g"?) (3.10)

The combination of both the top concentrated force and

the polynomiel load distribution gives

H (1-8)+p, g2 _ n! (1 _‘&n+2)

y =P H
© Gi "GA (n + 2)!

(3.11)

This expression enables the deflection y at any level E;
due to a unit value of load component (Po or pn) to be
determined, thus furnishing a set of flexibility ihfluence

coefficients for the frame.

3.3 Shear Walls

The other basic compoﬂent of a tall buil&ing is the

structural shear wall, which occurs in a variety of cross-
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sectional shapes. Although the term shear wall is used,

its deflection under lateral forces will be a flexural one
and shearing effects will generally be insignificant. -
This is because the wall panel, when viewed in the context »
of the whole building, will appear as a slender cantilever

beam.

2.3.,2 Assumed loads on the shear walls on rigid foundation.

1) Concentrated load Po at the top

The bending moment-curvature relationship is given

by
M= EL d% - P Hs | (3.12)
H® ag?

Integrating twice with the boundary conditions,
at E=1, y=0anddy =0 (3.13)
dg

the deflections can be shown to be

.33 | |
y=FH g g4 (3.14)
E1 6 2 3

2) Polynomial load

Again, considering any term, pngn of the polynomial

series (3.8), the bending moment is given by

g
M=H [pA(€-N) aA=pE° n! g
O

Therefore
M = EI d% = p_#? nt n+2 (3.16)
2 82 n o+ 2)!
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Integrating twice and using the boundary conditions (3.13)

the deflection at level £ becomes

v o= an4 n! ™% - nt g  +nif(n+
EI n+ 4)! (n + 3)! n+ 4)!
RPN (3.17)

The combined deflections due to the top concentrated

load Po and the polynomial load becomes

n! £ + n!(n + |
n + 3)! n+ 4)! (3.18)

2.4 Coupled Shear Walls

Coupled shear walls are walls containing openings.
These openings normally occur in vertical rows to.
accommodate doorways, windows and corridors in the
essentially regular layout of a tall residential building.
The connection between the wall sections is provided by
either connecting beams which form part of the wall, or

floor slabs, or a combination of both.
3.4.1 General Theory"

As the basic continuous medium theory of coupled shear
walls is fully documented (29’21), only the fundamental

assumptions and equations are given here,
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3.4.2 Assumptions

1) Plane sections of both walls and beams which are plane
before pending remain plane after bending.

2) The individual connecting beams of flexural rigidity
EIp are replaced by an equivalent continuous medium or set
of laminas of flexural rigidity EIp/h per unit height.

3) The axial deformation in the coupling beams and hence
kof the continuous medium are negligible.

4) The stiffnesses of the walls are so much greater than
those of the coupling beams that their slopes are not
affected locally by the action from the discrete beams.
Consequently, the slopes and deflections of the two walls
are equal at all levels. Therefore each of the coupling
beams and hénce each lamina will have a point of contra-
flexure at the mid-span position. |

5) The coupled walls have uniform sectional properties
throughout the height and are figidly built in at the

base,
3.4.3 Action of the connecting laminae

The discrete set of connecting beams may be'replaced
by an equivalent continuous medium as in Fig. 3.2. The
discrete set of shear forces and axial forces in the
beams méy then be replaces in the substitute system by a
distributed shear and an axial distribution of intensity

'q!' and 'n' per unit height .respectively.
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Suppose that -the connecting system has been 'cut'
along the vertical axis through the boints of contra-
flexure at the mid-span positions of the connecting
laminas, where only shear and axial forces occur., Under
the actién of the applied lateral loads and the internal
forces, the condition of vertical displacement compati-

bility at the 'cutf is

3 H,.7n'
1dy -qb’h - 11 .1 )
= 12E1 E(A1 * AZ)IJOQ()‘) dAdnp = 0  (3.19)

~ The three terms of equation (3.19) are respectively the
relative displacement due to the bending of the walls,
the relative displacement of the connecting beams and the

vertical displacement due to the axial deformations of the

walls.

Equation (3.19) is in terms of two variables y and g

and may be written in terms of the non-dimensional height

coordinate g as

3 2 T s
dy - b’h Hqg - H_ A =
q(A)dhdn = 0 (3.20)
dg 21EI, EI ‘KA, [E,{O (
where £=x ’2=2' andA=A1+A2
B ’ H

3.4.4 Governing Differential Equation

From the condition of vertical equilibrium for wall 1,

the integral of the laminar shear force distribution above

the section & is equal to the axial force on the wall at
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that level, that is
3
T = H[a(n) dn (3.21)
(o}

The bending momentva1 and M2 in the two walls are
related to the curvature by their respective flexural

rigidities, E1I1 and E212 as follows,

M1 = E1I1 d2 = M- T% - Ma1 (3.22)
g2 gg? -
My = BEply 425 = ‘T% + Moo (3.23)
g2 gg2
where Ma1 and Ma2 are the moments due to the axial forces

in‘the connecting medium. They are equal in magnitude

and are given as

2 (" | A
M, =M, =H ];n(a-h) d (3.24)

‘where A is an’ arbitrary non-dimensional height coordinate.

The summation of equations (3.22) and (3.23) gives the

moment-curvéture relationship for the coupled walls sas,

d?x H2

ag? (B I+ EyIo)

(M - T1) (3.25)

Egquation (3.20), (3.21) and (3.25) give the relationship

between the three variables T,q and y. By selecting any
of the functions as a redundant and eliminating the other
two, a governing differential equation may be set up in

terms of the redundant function,
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Consider T as the redundant. Substituting equation
(3.25) into the first derivative of equation (3.20) and
rearranging in terms of the second derivative of T gives

the general governing differential equation as

2

3;2 - ¥or = -p%m%M (3.26)
where v -
§2 = pPRA (g5 4 1) (3.27)
142
2
= 1211
P 5= (3.28)
hb~T
and I = I+ 12

Similarly, expressions for the variables q and y can be

derived.
3.4.5 Boundary Conditions

At the top of the building there is no axial force

acting on the wall, so that,

at =0 T=20 (%3.29)
at the base where g§=1 dy =0
v de
and from (3.20) and (3.21)
%% = 0 at  the base. (3.30)
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%.4.6 Assumed interactive load on coupled walls

1) Concentrated load at the top

If a pair of coupled shear walls of height H
(Fig. 3.2) is subjected to a point load P_ applied at
the top; i.e at E= 0O, the applied external moment at

any level is then given by

M =P HE (3.31)

Substituting equation (3.31) into equation (3.26) gives
the governing differential equation as

2
d°T 2 2.3
— - 8 T = = H P & (3032)
d22 . P (o} ‘

Equation (3.32) is a second order linear equation with

constant coefficients. The solution of equation (3.31)

is given by

T = PH’p°(C sinh¥g + C,cosh¥E §2) (3.33)
On using the boundary conditions (3.29) and (3.30) the

constants C1and 02 can be found as follows

C17 T — (3.34)
¥ cosh¥

The deflection at any level can be -found by integrating
equation (3.25) and by substituting the boundary conditions

at & = 1, that is

y =0 and dy =0 (3.36)
dg
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3 ‘
2 {gu-l%ﬁ—)(é-agwn

kI

1 2H2

PE (1 -g+ sinnBE - sinhK)} (3.37)
¥ ¥coshy

2) Polynomial loéd distribution

Again, considering the action of any term pngn in
(3.8), the applied moment at any level & on the coupled

walls is given by,

2 n+2
n: % (%.38)

On substituting equation (3.38) into equation (3.26), the

differential equation becomes

2 ' n:2
:dfa_g - ¥1 = -pH'p Ry, & (3.39)

The solution of equation (3.39) may be shown to be

T = an4p2 {C1sinh&'g + C,cosh¥E +

. 2 ¥ n+1 .
nisin”(n+3)3 b3 n!sinz(i+1)z-gQ“l+2
n+4 2
¥ i=0 (i+2 .
0% “(n-i+2)!

ceess(3.40)

By applying the boundary conditiuns (3.29) and (3.30) the

constants are found to be .
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C, = n! tanhd ein2(n+3)% -
n+é4

n+ 1 -
s 20 T
1 n! sin“(i+1)M/2
iCOth 12=0 514»2 (n - ; + 1)) (3-41)

C, = =-n!
Kn‘i'

sin’(n43)5 - (3.42)

By integrating equation (3.25) and substituting in the

boundary conditions (3.3%6), the deflection at level & is

given by
¥ = Pyt ( p ghté _ _n! + n!(n+3)
EI |JUn+4)! (n+3)! (n+4) ! )~

2,2 2 \ '
lE—H—[( 2 B Dy . _n_-_(1-co§h6(1-a>)) Sinz(n+3)r_2r_ .

54 X2 2 b ¥ coshX
n+1 n-i+4
n! € _._nlég ni(n-i+3)y _1
2 (in-i+4)l (n=i+3)! ¥ Tn-i+4)! ) 51-2 -
1=

¥ (n-1+1)1

‘n! _ Sinh¥%E - sinh¥ sinz(' 1)E
(1- & + SCOShE )) 3

o000 (3.43)

The combined deflection due to the top concentrated

— ————load-and-the polynomial load gives
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3
= P H 2:,2
3 {;’(1-1;L2H—)<a3-3g+2)+

2
l%i‘. (1-& + sint¥E - sinh¥) +
X ycoshy

4
_ an [ n! 6“‘4 _ n!& + ni(n+3)) _
(n+4)!} (n+3)! (n+4)!

2.,2 f 2
16°H n! hl n!(1-coshy(1-£)) . 2 T
_.54_ (.._(% - £ + 2) + X—n xchthL) sin (n+3)§ +

T ot &P nt€  ni(n-ien))
, (n-i+4)! (n-i+3)! (n=3i+4;! 8i—2

n! - £ 4 Hs.i'n‘nga‘ 7Ksinhb’)) sinz(iﬂ)%)
cosn

coees (3.44)
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3.5 Torsion of individual elements

3.5.1 Elements of constant torsional stiffness

The distribution of twisting moment on each element
is‘assumed to be of an analogous form to the direct load
distribution, that is, the twisting moment, t, carried
by any particular elements for the different assumed

distributions are expressed as follows

1) Concentrated torque at the top
t = T (3-45)

2) Polynomial torque distribution

n :

_ m

t= s t& (3.46)
m=0 '

The torsional moment on any assembly at any level is

related to the resultant twist by,

T=Hjt da=-%9% (3.47)

where C is the torsional rigidity of the cross-section.

The twisting moment-rotation relationship for any
assumed torque distribution can be obtained by substitu-
ting the corresponding torque distribution into equation
(3.47). Equation (3.47) may then be integrated, .and, on
putting in the boundary condition of zero twist at the

base, the rotation at any level g due to the assumed

~———applied torque-distribution may be-expressed as-follows



1) Concentrated torque at the top

0 =E£T (1-8) - (3.48)

Q

2) Polynomial torgue distribution

Y4 ! +
e = _g__ ty 'h—n-; 2)!(1,_&1'1 2) (3.49)

3.5.2 Elements of variable torsional stiffness

For elements of variable torsional stiffness
throughout the height, such as that of a shear core with
openings, where the coupling effects of the linter beams
and floor slabs restrain “the rotatioh of the element to
a variable degree (Fig. 3.3), the standard 'stfength of
materiais! procedure fails to represent the situation,
and resort to more rigorous methods has to be made. Thé
method\adopted in this analysis is similar to that for
coupled shear walls where the continuous connection
technique is employed, and is set out in Reference 22.
On following the same procedure, the governing differen-
tial equation for the.rotation at any level 6f a perfora-

ted core is found to be

oo _ 2 d _ 2
dX3 e dx - T (3050)
where

2 .2
a = BT GJ B

_ 1l
1 E

W
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In the case of a doubly symmetrical perforated cores of the form

shown in Fig.3.3\, the values of Iw, JD and J become:

5 ,
1 = warping constant = ( ° Il + BZI Y o+ £3--2--(D-+»d)2 dt
w o p1ng = 2 2 A 2
. ZQBZDZI £
J = torsional constant = J + —_FC . =
o A 3 G
b h
J = St. Vénant torsional constant = 2 Bt3 + ﬁ-dtj
3 1 3 2
and T = is the total applied torque.

Similar expressions for other cross-sectional forms can also

(23

be obtained

Equation (3.50) may be rewritten in non-dimensional coordinates

as,
o 2 23, (3.51)
d£3 dg T
where ¥y = aH-
The general solution of equation (3.51)may be shown as,
6 = Cl + Cz coshyf + C3 sinhyt + ep (3.52)
where ep is a particular integral solution which depends on the

loading function.
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3.5.2.1 Load cases

(1) Concentrated Torque at the top

The total applied torque at any level is,

In this case the particular integral solution of equation

becomes:
] 2
BT H
e = T ¢
2
p Y o

and the complete solution may be written as,

BZHB

. T :
6= C5 + C2 coshyf + C3 sinhyf + T2 TS (3.53)

Assuming that the core is rigidly fixed at the base, which is
a realisfic assumption for most practical cases, the integration

constants may be obtained'from thé‘following boundary conditions.
21, =0 and £ o0
At the base, §=1, 6= a at - (3.54)

At the top , £ = 0, the bending moment in each wall is zero

and hence,

Pe | :
dE2 (3.55)
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The constants are then found to be,

2 o2y
€, = ——== tanhy - o
3 2
Y Y
C2 = 0
2,3
By H™ T,
C = -
3 73coshy

The general solution for a coupled core structure fixed at the base,

free at the top and subjected to a point torque at the top is

thus given by,

2 3
g, H T .
ez.l_é_s_{;-an_mrf_+._tﬂwr__l, (3.56)
Y ycoshy Y
2)  Polynomial Torque distribution

In the case of a polynomial torque distribution of intensity

tn kn, the twisting moment at level § may be expressed as,

13
T = H [t A\ da = nil t. gl
(e}

The particular solution of equation (3.52)may be shown to be

2 .4
g H't 2 ) .
e = —IA—E—D I —7r—£2———— gn-1+2 sinz(i+l)g
P v i=0 Yy (n-i+2)!
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The complete solution of the differential equation (3.52)is given by,

P gl

) BZHatn n+2
e = C1+C2cosh7£ + C3 sinhyg + 5 .E
Y i=0
—e——ﬂl———-, gn’1+2 sinz(i+l)§
' (n-i+2)! (3.57)

Assuming again that the core is fixed at the base and free at

the top, the integration constants, El, C2 and C3 are found to be;

g;H't n '
Cl = T 5 n {( 2 _T_Q;__— coshy =~ l2 tanhy sinhy
Y iz0 vy (n-i)! _ Y
n ' n+1
5 - n! . tanhy . 'ﬁflﬁ""_"
i=0 y (n-i)! y  i=0 y (n-i+l)!
n+2 )
- I — sin2 (i+l)g-}
i=0 (n=1+2)!
2,4 .
8TH tn T n! .2 ,. T
C2 = - 3 z - sin (1+l;§
Y i=0  y (n-1)!
s
2,4 '
BHt n
C3 = T 7 n { (lz tany A n! - 1 :
Y Y i=0 y (n-i)! ycoshy
n+l ! 2 -
I —————— ) sin (i+l)§ }

i=0 v (n-i+1)!
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Hence the general solution for a coupled core structure fixed at
the base, free at the top and subjected to a general polynomial

torque may be written as,

2,4
B:H't n ' .
6 = T - n - i-Zn. ( En--1+2 1) o+
Y i=0 vy (n-1+2)!
n! : - n!
T Da— (sinhy - sinhyg ) + - T
yl (n=i+1)! coshy vy (n-i)!
(tanhysinhyg - coshy{-F tanhy sinhy + coshy ) ]
| .
sinz(i+l}2 . n! (¢ - sinh y& . tanhy 1)
2 n-1
Y ycoshy Y
sin’ (mz}% } -
(3.58)

For a single channel-section without coupling, equations (3.56),
€3.57) and {3358) can again be obtained provided that the constants

are redefined as follows:_

2 2 .2
Y = ST H GJO
B% = 1
£l
W
sti dtg
JO = J = st. Venenat torsional constant = 3 + -5
| 2 2 g2
I = warping constant = I.e” + 1.8° + — {e+d)(D+2e)dt
. W 1 2 4
N . 3d2
and e = the shear centre of the section from the web = g
B (l1+ —)

B
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CHAPTER 4

NUMERICAL PARAMETER STUDIES

4.1 Introduction

In order to examine the validity and accuracy of the
approximate method described in Chapter 2 for the analysis
of symmetric and asymmetric structures consisting of
different load bearing elements, several numerical inves-
tigations of the structural behaviour have been carried

out.

These investigations consist of two parts and concern
wall-frame structures, The first part is an investigation
of ‘a general wall-frame structure with symmetrical plan
form as shown in Fig. 4.1. A representative stiffness
parameter and the number of reference levels are varied
and the results of the analysis are presented in graphical

form.

The second part is a comparison between the results
of the present analysis and published data on tall buil-
ding structures taken from different‘publications(1o’13).
Because of the limited number of published data on struc-
tuyes of the forms considered it has proved possible
to compare with only these publications. The structures

in this part are asymmetrical in plan-form to prcduce the

effects of torsion. Again, the number of reference levels
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is varied and the results compared.

4.2 Interaction between walls and frames

As stated in section 2.1, walls and frames indepen-
dently exhibit different behaviour when they deform under
the action of similar horizontal loads., If they are
constrained to deflect together by floor slabs, they
will have to be 'pushed apart' at the top, and 'pulled

together' near the base.

The equations governing the behaviour of the
structure, subjected to a wind load of intensity w are,

for a wall,

(4.1)

and for a frame,

2
) G_é L% = ny (4.2)
He 4%

where n, is the horizontal interactive force distributed

1
over the height of the structure,

Adding equations (4.1) and (4.2) and dividing through

by ﬁ% yields
d4y _xadzy _ WHAr
dg de

n .
where 8 is the relative stiffness ratio, given by

-



= and £= x/H

Equation (4.3) may readily be integrated to give a
closed-form solution for any standard applied loading.
The four constants of integration which arise in the
solution may-be determined from the boundary conditions

at the base and the top of the structure.

In the particular case of a structure which is free
at the top and rigidly built in at the base and subjected
to a uniformly distributed load of intensity w, the

complete solution becomes, in non-dimensional form

¥°E

o wet [ 2 1- cosh¥(1-&) + ¥(sinh¥ - sinhUi)l
vy =5 313501-8%) - >
I ¥ cosh¥

ceeseee(dod)

The shear forces in the wall and frame are

sinh¥(1-&) - ¥coshds
s, = -WH{ Bl } (4.5)
s - wﬂ{g+ Kvsinhl(;-i) - choshxé.}

S ¥ “coshy¥ (4.6)

‘where the subscripts 'b' and 's' refer to the flexural
and shear cantilevers respectively. The bending moment

in the wall and frame are

2 . .
_ wHS coshX(1-§)+-531nh5&}
My, = ¥2 { -1+ coshy¥ (4.7)
2 .2 . -cosh¥(1-&) - Bsinhd% . 1
M = wH g, + 4 -
s { Pl ¥2eosnd 32}' (4.8)
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4.3 Symmetrical wall-frame structure

In order to investigate the degree to which, and
the conditidns under which, the present method of analysis
are applicable, a wall-frame structure as shown in plan
in Fig 4.1 is considered and analysed by the 'exact!'
method in the preceeding section, which is independent
of the number of reference levels. The results from the
approximate method given in Chaptef 2 using different
number of reference levels are compared with those from

the 'exact' analysis,

Equations (4.4) to (4.8) show that the load distribu-
tions are dependent on the relative stiffness & where
8= H GA . It is then necessary to examine the effect of
this pggameter on the results. 8 is the significant para-
meter governing the behaviour of a wall-frame structure.
Buildings that arerbredominantly shear walls with little
or no frame action (i.e when §=0) will have a low value of
¥ and will behave as a flexural member. As the proportion
of frame action increases, 3 increases, and the structure
behaves more as a‘shear member, Similarly as the height
of a structure of given cross-sectional proportions is

(5)

increased, it behaves more as a shear member

In this example, 8 is varied from O to 6 in steps

of 1.0.
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4.3.1 Deflections, bending moments and shear forces

bRésults were obtained hy varying the number of
reference levels from 2 to 8 and also the value of ¥
for the deflections of the structure, bending moments in
the walls and shear forces in the frames. These are
plotted in Fig. 4.2 to 4.21., They are shown in non-
dimensional form as Y/Y(0), M/M(1) and Q/Q(1) respectively.
Y(0) is given by Y(0)= Hgi that is the deflection at the
end of the cantilever wi%i due to load intensity w.

‘¥(1) and Q(1) are the applied moment and shear at the base

respectively.

Points of deflections using corresponding number of
reference levels and their chosen positions are plotted in
the graphs of Fig. 4.2 to 4.8. The positions: of - the
reference levels are chosen to be at equal intervals from
the top of the assembly. Some points overlap each other
and where this occurs they are labelled for identification
accordingly with figures representing the number of refe-

rence levels,

Generally the deflections (Fig 4.2 to 4.8) correspond
closely to the 'exact' solution for the complete range of
. »The bending moment values agree with'the texact!
solution for about 6 reference levels. At the base, for
§= 0 (Fig. 4.9) and using 6,7 and 8 levels, the difference

between the results obtained and the 'exact! solution are

- 3%,-8% and-12%-respectively. As-§-increases these -



differences decreases,

For the shear forces distribution, Fig. 4.16 to 4.21
for the range of values of ¥, the results agree closely
for about 4 to 6 reference levels, Hence it is accurate -
for this central range only. At other number of reference
levels the solutions fluctuate especially at the top and

bottom of the structure, producing unreliable results,

In general it can be seen from these Figures that the
solution varies with the number of reference levels used
in the analysis. Using 2 and 3 reference levels seems to
be insurficient to portray the shear force distributions
in the frames accurately. The instability of the solution
using more than 6 reference levels may be due to the shape
of the load distribution curvés'being indistinct for the-
higher exponent terms and the successive lines in the‘
matrix of flexibility coefficients become increasingly
similar. The matrix then tends towards singularity and

the solution fluctuates.

4.4 Comparison with published data

In order to examine the accuracy and validity of the
approximate method, two-éxample structures which were
analysed by previous investigators are considered. They’
are essentially wall-frame structures, a continuation

to section 4.3, but with asymmetrical plan-forms.




Therefore an investigation was carried out for structures
under lateral loads and torsional moments. These examples
have been taken as originally presented in the publications
thus the unit of applied load in example 1 is in imperial

units and in example 2 all units are metric.,

Example 1

This example is a ten-storey model structure of the
plan-form shown in Fig. 4.22(a) which was first considered
by Stamato and Mancini(10). The model of this structure
was first tested by Stamato and analysed by his proposed
method. It was based on the continuous approach whereby
the floor slabs are assumed a 'continuous medium' consis-
ting of an infinite number of horizontal diaphragms with
no transverse stiffness but infinite in-plane rigidity.

A matrix analysis was used to derive solutions for the
deflection, rotation and the internal forces. Frame
asssemblies were replaced by equivalent shear cantilevers.

" Because of the basic assumptions of this example are

similar to the present analysis this example is taken

to compare with present results,

All the éolumns were 3 in. square, the beams were
z in. thick and 5/4 in. deep and the wall dimensions
were # in. and 4 in. in the z and y directions respectively,
and have a constant cross-section throughout the height

of the building. The horizontal uniformly distributed

-~ load was—w=0,2-1b/in.—applied—in the plane of frame 2,

So



All frames are identical and they are considered

(10)

to act independently , though they appear to form a

closed tube., The relevant structural data are

Storey heignt h =5 in.
Total model height, H = 50 in.
1.5333 in*,

4.2 x 102 1b/in°.

Por shear wall I

E

For each frame GA 2960 1b.,

For this analysis the datum axis is chosen at point
C, the centroidal axis of the shear wall (fig. 4.22(a)).

The choice . of datum is the same as Stamato's.

The model is analysed using the approximate method

in Caapter 2 as follows

1) Using the two-dimensional analysis with displacements
of the elements in one direction only (the y direction)
and without taking into account the stiffnesses of frames

4 and 5.

2) Using the above analysis but incorporating the

stiffnesses of frames 4 and 5,

3) Using the.complete three-dimensional analysis with
displacements in two orthogonal directions (the y and z
directions).

Hereafter the above analyses are referred to 2D, 2DS and

3D respectively.
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Thé distributions of the deflectidns of frame 2,
rotations, bending moments in the wall, and shear forces
in frames 2,3,4 and 5 for each of the three analyses
above are shown in Fig. 4.23 to 4.39. The results are

compared to those given by Stamato.

From the graphs, comparing the 2D and 2DS analyses
it is shown that incorprating the orthogonal stiffnesses
of frames 4 and 5 in the two-dimensional analysis gives a
closer aggreement to the datum results. The 3D analysis

is very much similar to the 2DS one.

The graphs in the 3D analysis (Fig. 4.34 to 4.39)
show that by using 4 to 6 reference levels close
agreement to the results of Stamato is achieved., Tabulated
below are the differences to Stamato's analysis for the
base bending moment in the wall and the base shears in

frames 2,3 and 4 using the various number of reference

levels,
Percentage Difference
Number of|Base moment |3ase shear|Base shear|Base shear
ref. levels}{in wall 1 in frame 2{in frame 3|in frame 4
2 1% 50% 6% 63%
3 1% 16 2% - 20%
4 0% 1% 0% 1%
5 0% 0% 0% : 0%
6 2% 2% 3% 3%
7 15% 4% 6% 12%
8 % 30% 28% 1674

Table 1. Percentage difference between the

results—of present-analysisand that

of Stamato's results,
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Therefore again, it can be concluded that close agree-

ment, and consistant results are achieved using 4 to 6

levels. Although Stamato's analysis is itself an appro-

Xximate analysis, nevertheless, this central range of

number of reference level gives consistant results with

it. Using 2,3,7 and 8 levels give fluactuating results,

especially at the top and bottom of the structure.

These are probably due to the reasons given earlier on

in section 4.3.1.

Example 2

This second example is another wall-frame structure.

The plan form of the building considered is shown in

fig. 4.22(b). It has been analysed by MOrtelmans et a1(13)

initially 2nd was later used by Khachatoorian

(17)

in his

'exact' analysis. It consists of nine frames and a core.

The dimensions of the columns were 0.28m and 0.7m in the

z and y directions, horizontal beams were 0.2m thick and

0.4m deep and the dimensions of the core were 6.5m and 4m

in z and y directions.

The wall thickness of the core was

0.18m and the lateral uniformly distributed wind load was

w o= 1 KN/mz. The relevant structural data are

‘ Storey height

Total building

Ffor core I2

“0

e}
1

h

height H

9.9897m%

51.5172m4

2.5 x 107

:3m

= 30m

KN/m2
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G. = 1.0417 x 107 KN/m?

0.
For each frame GA

60194 KN

AS the structure is asymmetric in plan, the effects of
bending and torsion upon the results of the present

approximate analysis can be investigated.

In many tall buildings box cores provides an impor-
tant contribution both to the bending and the torsional
stiffness of the building. Mortelmans et al have assumed
that, due to crack formation, the bending and torsional
rigidities of the core are reduced to one third and one

tenth of the original value respectively.

In this example variations of the bending and torsional
stiffnesses of the core is included. They are classified
as Case I (I,¢ ), Case IT (I,/3,5)), Case III (I_,J_/10)
and Case IV (IZ/B.JO/1O), where (IZ/B,J§/1O) for example
denotes a case where one third of the bending stiffness
is used in combination with one-tenth of the torsional

stiffness.

The results using the present analysis are compared
with both results from Khachatoorian and Mortelmans et al.
Khachatcorian presented an 'exact' analysis with the frames

modelled as a shear cantilever.

The analysis was for three-dimensional uniform asym-
metric structure consisting of cores, coupled walls and

rigidiy jointed framewor<s in two orthogonal directions.
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By considering the general equilibrium conditions of
structure three goverﬁing differential equations (two
translational and one rotational) were generated. By
integrating them and using known boundary conditions,
they are solved simultaneously. Closed-form solutions
were obtained for the deflections, rotation and the

internal forces,

Mortelmans et al analysed the structure using an
approximate frame methcd of analysis which is based on

the following assumptions:

(i) the rotations at all the junction nodes of one beum

have the same size - 1i.e. the slopes are equal.
(ii) the beams are of constant stiffness.

{131} the vending moments concentrated in the nodes and
exerted by the beams may be spread over the height

of the floor,.

From the bending and twisting equilibrium equations
of the wall and frames, a system of six equations were set
up and later reduced to four simultaneous linear equations
by expresing two of them as a function of the other four.
The equations then be solved simultaneously using a

pocket calculator. -

Fig. 4.40 to 4.47 show the distributions of the

deflections in Frame 1 and the rotations for the various
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cases. From the graphs, by using a range of number of
referénce levels from 2 to 8, it is seen that most of
the points, esnecially those usipg 2 to 6 levels appear
to lie on a smooth curve (not shown in graphs), fér each
of the graphs. Theée curves correspond more closely to

the 'exact' analysis of Khachatoorian.

Fig. 4.44 to 4.47 for cases III and IV (for the tor-
sional stiffness reduce by a tenth), show that there is a
large error in using 8 levels., This may be due to the
instability of the matrices as a larger number.of levels

is used.

Fig. 4.49 to 4.50 show the distribution of bending
moments in the core (Case 1), and the distribution of the
torsional moments in the core (Case I and III) respectively.
They all show a closer agreement with the results of
Khachatoorian. As a larger number of levels are used,
for example 7 and 8, fluactuations occur especially at

the top and bottom of the structure.

On the whole, the results show that using about 4
to 6 levels produces sufficiantly accurate results and
they conform more closely to the ‘'exact' analysis. .This
is most probably due to the similar assumptions in the
'exact'! analysis whereby the frame actions are modelled

as a 'shear cantilever!,




Results from Mertelmans et al are those from another
approximate method, using a different set of assumptions

as mentioned earlier for the frame action.

For cases I and II there is close agreement betweeh
the present method and that of Mortelmans ét al, while
there are significant differences for cases III and IV.
These differences were most §robab1y due to the assumption
from Mortelmans et al that at the base of the structure
izo = %g = O where Yo is the displacement of frame 1
dx
and 6 is the rotation of the structure.

By considering the twisting equilibrium at the base

of the structure with mid point of frame 1 as the datum,

(

)

Fy

'ig.2.2) the equilibrium equation becomes

8
T = = {GA)

— y 1. _d(y.+1,8) +
=2 -‘fi s 3 0 fi

(2l

GJ 48 = w.20.H
ax

where GAf is the shear rigidity of one frame and lf is
i i

the distance of the frames from f'rom Frame 1,

therefore




If the torsional effects of the columns are consi-

dered negligible,

8 2 8 ... 2
= GA, 1S = 0.1709 x 10° XKNm
i=2 i ~1

and
g J = 3 2
G, Jd, = 33,2623 x 10° KNm

o)

From the above it is obvious that for this case GOJO

is a more important part of the denominator, for any
reduction of its value will in turn result in a higher

value of d8 and hence the overall analysis.
dx :

For case I where G_J_ is unaltered d8 = 7.0 x 1072 o~
dx

while when'GoJo is reduced to one tenth of its original

value (for cases III and IV) the value of de = 4.8 x 1074y
dx

which is almost seven times larger.

Therefore it may be deduced that the large differences
between the results abtained by Mortelmans et al and the
present method together with the 'exact' analysis of
Khachatoorian for cases III and IV are mainly due to the

boundary conditions chosen.

the torsional moments in the core for case T and III
respectively. There are significant differences at the
base of the core due to the boundary conditions chosen as

explained above,
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS
FOR FUTURE WORK

5.1 Conclusions

A relatively simple approximate method has been
presented for the solution of structural problems invol-
ving laterally loaded three-dimensional tall shear wall-

frame systems.

The frame has been represented by an equivalent
shear cantilever of infinite flexural rigidity which has
the same shear stiffness as the frame. 3Single shear
walls or isolated box cores have been analysed by means
of elementary bending theory. Coupled walls have been
analysed by using the widely accepted continuous connec-
tion technique to provide explicit solutions suitable
for inclusion in a three-dimensional analysis.

Solutions were given for the assumed concentrated load at
the top together with a polynomial load distribution

acting on the elements,

The complete structure was analysed by satisfying
the compatibflity and equilibrium conditions at a chosen
number of reference levels throughout the height of the
structure-whereby the load-displacement characteristics
of the individual assemblies may be evaluated in the

loading forms assumed above. These loads may than be



used to evaluate the forces and displacements at any

- point on the individual elements in the structure.

The method may be extended to include any load form
for which an explicit mathematical solution for the
horizontal deflections of an element may be found at
ahy level., The method may also be extended to incorpo-
rate any structural form for which the above explicit

solution for the deflection may be described.

It was found that for a shear wall-frame system
the recommended number of reference levels to be employed
in the solution is 4 to 6, as shown by the consistency of
all the results to produce a sufficiently accurate

solution.

Although the positions of the reference levels were
chosen to be at equal intervals from the top of the
assembly, the forces and displacements of the elements
may be evaluated at any desired level irrespective of the

positions of the reference levels used.

Lastly, it can be concluded that the approximate
method described in Chapter 2 may be used for the rapid
analysis of the type of structures cohsidered, particular-
ly in the earlier design stages. Hence the method enables
more plans and more economical sthemes to be decided upon

before adopting morercomplex and costly analysis.
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5.2 Suggestions for future work

In this thesis, a relatively simple approximaté
method have been presented for the ewvaluation of
lateral load distribution among the various elements
of a three-dimensional structure, and the corresponding
forces and displacements. However, there are still
some related problems which need to " be investigated.

Some to these problems are detailed below.

1) In the present study the three-dimensional structures
were only analysed under the action of uniform lateral
loads. Both-theoretical and experiméntal_work should
be carried out on such structures when irregular lateral

loadings are applied.

2) The method presented are applicable to uniform
regular structures. An extension of this- method to
structures with variable configuration aiong the height

needs further research.

3) Consideration should also be given to the possibility
of including the action of wind gusts and earthquake to

the method.

4) The methods presented deal with structures consisting
of various structural elements in two orthogonal
directions. An investigation into the behaviour of
structures consisting of obliguely placed load bearing
elements is desirable. |

5) Other structural systems for example coupled wall-frame

systems need also to be investigated.
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APPENDIX A

Yhis appendix consists of computer programmes for the

numerical examples in Chapter 4. The subroutines for the

inversion (MINV), multiplication(MPRD), addition (MADD) and

subtrzction (MSUB) of the matrices are also included.

In the programmes the dimension arrays sre changed according to

the number of reference levels used, For example, the programmes

listed consist of the figure 7 in the dimension brackets. This

means that the programme is set for seven reference levels. This

should be changed if other number of reference levels are used.

Below are the programme names amd their functions

PROGREN. WFT -

PROGREM DWTT2 -

PROGRAM THREED -

PROGRAY, FC7T . -

to find the deflections and the internal
forces for the wall-frame example of fig. 4.1

to find the deflections, rotztions and the
internel forces for the structure of example 1.
Tris prograkme is also for two-dimensional
analysis.

similar to DWF72, but for three-dimensional
analysis for example 1 structure.

to finZ deflections and rot=tions of the
example structure 2.

The following are the abbreviations used in the programmes,

N -

FW, FF and FT -

8 -
BMS -
m [] wY -

Progtam SWALL1 -
FRAME1
SWTOR1

no. of reference levels used.

the flexibility matrices, for the wall, frame
and the rotational flexibility matriz for the
wall/core.

matrix of coeffeiients s.

matrix of coefficients to calculate base
moment in wall

matrii of applied load in the two orthogonal
directions.

to compute FW, FF and FT respectively,

T2



1 FROGRAM WF7
z DIMENSION FW(7:7)» FF(7:7)s B1(7:7): FWI(7:7). FFI(7:7). BLI(7.7)
3 s S(7.7)Ys PW(7)s FF(7). FUWS(7.7): FWSI(7:7), FBF(7.7). W(7}s L7,
4 . B(7:7). BFI(7:7}. SPE(7}, BM(7), BS(7)., BMS(7.7). BMWI(7),
5 2 M{7)s Y(7). FWFC(7.7)

& READ (5, %) N

7 READN (S.4) ((FW{I,J),J=1.0) - I=1./)
8 READ {5.4) ((FF{I,J),J=1.M)»I=1,M)
.9 READ (S.4) ((S(I.,J),J=1,N), I=1,HM)

10 READ (S.#%) ((BMS(I,J3).J=1.N),I=1,N)

11 REAL {S,#4) (W(I),I=1,N)

13 00 2 I=i.N

13 oo 2 J=1.N

14 2 FWI(I,Jy=FW(I,D

15 CALL MINY (FWI2 Ny Dy Lo M)

16 00 3 I=1.N

17 00 3 J=i.N

18 3 FFICI. D) =FF(I,J)

19 CALL MINVIFFI.Ns I, Lo M)

20 CALL MADD(FWI.FFI,FBF: Ny Ny, 0)

21 CALL MPRO(S:FEF,G1s N, Na 0s 0 N)

o, .onD 10 I=i.N

23 Do 10 J=1.N

24 10 B1ICI.Jr=6B1(I,J)

25 CALL MINV(ELT.N, DL M)

26 CALL MPROCEII . We Yo NaN: 020y 1)

27 CALL MPRD(FWI .Y PR, Mo Ny 00 05 1)

8 CALL MPROC(FFI. Y. FPFy NaNa 00 O 1)

29 0o 55 I=2.N

30 1G=I-1

31 BS (1) =34. 0/FLOAT(IS)

3z BS(1)=1.0 A

33 55 CONTINUE
4 0o 58 I=2.N

35 IM=T~1

36 BE=FACT (IM~1) /FACT (IM+1)

37 BM(I)=RBE+*1296.0

36 BM(1)=34.0

29 58 CONTINUE |

46 CALL MPROCEM. PR BFL. 1. M. 0,0, 1)

41 CALL MPRO(BMS. P, BMWL . N. N, 0,0, 1)

4z CALL MPRD(ES, PF.ES1. 1. M 0,0y 1)

43 CALL MFRDN(S: FF . SFF 2 Mo Mo 00 00 1)

44 00 100 I=1.N

45 WRITE (&.101) BMWL(I). Y (D)

46 101 FORMAT (2E13.5)

47 100 CONTINUE

48 WRITE (&»121) EM1

49 121 FORMAT (E13.5)

50 N0 106 I=i.N

51 WERITE (6,108) PRI

5 108 FORMAT (E13.5)

53 106 CONTINUE

54 STOR

55 END ~

=6 FUNCTION FACT(I)

557 IF (I.LT.0) GOTO 110

56 FECT=1.0

55 IF (I.E@.0) GOTO 109

&0 [0 99 NM=0, I-1

&1 TERM=FLOAT (I-NN)



&2 29 FACT=FAOT=TERM

&3 109 RETURN

&4 110 STOF "FACTORIAL OF NUMBER LESS THAN O
&5 ENI '

FOLISTING OF FILE :GNCVAS.S0URCE (1.%,1).WF7(18) FOR USER GNCV4AS AT 1987707/

Ao b ook ook e sl sk sk ol e ek ke e ohok sl e ok ok e oo shole e e oo sl sl ol e ool el ofe ol sl ol e ol sl ol ofe ot ste o ool ohe ok sl e o ol R ook e el

F BATCH :GNCY4S KHAIRUNAINI AT 1987/07/13_ 121371325
FEPRRRPEFPPEFFPFFFFFRFPFRFPFPPPPPPPPPPPPPPFFPPPFFFFFFFPPFPFFPFFRFFFPFPFPRFRF
FREFPFFPPRPPPEFF PP FPPPPFFFFPPPFPFEFFFPPRPFFFFFFFFFPFFFFRPRPFFEPFPFFFFFFEFFFF]
[PPFPPPPPPPPPPPPPPPPPPPPPPPPPPPPPFFPPPPFPPPPFPPPPPPFPPPFPPPPPPPPPPPPPPPPPPPPH

_

3 7K

LISTED GRADRLE LPGL4

RS 2980 EMASHwE
RS Z9B0. EMASHk®

FTPMAN SPOOLING
FTFMAN SPOOLING

GELASEOW CENTRE VWME
GLASEOW CENTRE VME

leared

IAS 2980 EMASHk: FTFPMAN SFOOL ING GLASEOW CENTRE VME
S 2980 EMASka: FTPMAN SFOOLING GLASGEOW CENTRE VME
a8 2980 EMASH4: FTPMAN SPOOLING GLASEOW CENTRE VME
S 2980 EMASHaor FTPMAN SFROLING GELASE0W CENTRE VME
C1AS 2980 EMASHd4k FTPMAN SPOOLING GLASHEOW CENTRE VME
IAS 2980 EMAS®#s4 FTPMAN SPOOL ING GLASEOW CENTRE VHME
duration: GOI00116 Fackets out: © Fachets in: 74
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St

24

e
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26

30

w
L1
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0

0o o oo
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FROGRAM DWT7Z
DIMEMSION FW(7.7), FF(7.7)s FTI{7.7),

FWI{

B(7:7). C(727), CL{7.7). E(7:7): F(7.7),

her 4 ~ra

i3

fi
S5(7:7).
BAFFIL(7.7)s FBF{7.7)., CAFWIA(7.7), CLYEFFI(7.7),

FXFFI(7:7). EWFF (7.7}, EWFT(7.7)., GIEZI(7.7}),

EXFWIC7.7). B1(7.7), GE{7.7), G3(7.7)>
G2IL7.7), LA7). M{7). GIGERI(7.7), XE1{(7.7),

TL7)

W73,
GEBUB(7.7)

FFI(7.7),

FTI(7.7).

EI2TSRI(7.7),

CWCIF (7.7}

XG3(7:7) 4.
THETH{T) ,

WELIE (7)) 4

EEROURI(7.7), G3EZIWZ). TSGUB(T7)., Y{(7). GETBE{(7.7). GIGZIT{7),

HTHET& (7). HI727). Y1(7), F(7). 8V{T),
HIL(7.7). HIT{7), P2AT7). SPZ{(T7). YZAT}).

BEL(7), BMS(7.7), BMW1{7)., BM{(7).

B ara

PR D I

FFTI(7:7),
F:t

537,

BL2(7). BLE3(7). T27)s T3(7) TAL(T)Y, TI3(7)¥, TI234(7),

ET{(7), TW1(7), BTWIL(7).

B{7.7), QTHETA(7,7). FL {7}, BVI{7}
READN (S.%) N

READ (S.#) ((FW(I.J).J=1.M),;I=1.M)
READ (S} ((FF{I.J}.J=1.N}:I=1.M)
READ (S.%) ((FT{I.J).J=1.N).I=1.N}
READ (S.#%) ((8(I.0).J=1-N),I=1.MN)
READ (S.%) ({BMB{I.J),JI=1.N},I=1,M)
READ (S.%) (TC(I), I=1,R)
READ (F.4) (WL, I=1.1)
READ (G.%) ((B{I.J).J=1.N).I=1.MN)
REALD (F.#) ((C(I.J)-J=1:-N)-I=1./ D)

CREAD (S.w) ((H(I.J).J=1.N)4 I=1,M)

RE&D (FG.%) ((EX(I.J).J=1.N).I=1.N)
READ (S.#) {((CL{I.J).J=1.M),I=1.hD)
READ (S.#%) ((F{I.J3),J=1.0).I=1.M\)
READ (S.#) ({(G(I.3).J=1.N)>I=1.M)
READ (G {((HLI(I.J):.I=1.N) s I=1.N}
0o 2 I=i.h

oo 2 J=i.n

FWICI. J)=FW{I.J)

CaLL MINVIORFWI.N.D. L. M)

WRITE (&.%) ({FWI{I.Ji.3=1.M),sI=1.N)
ng 3 Is=isp

oo 3 J=1i.n

FFI(I.J)=FF(I.J)

CalL MINVA(FFI NI LM .
WRITE (&%) ({(FFI{I.J).3=1-M),I=1.M}
00 4 Is=i.n

D0 4 J=1i.M

FTIA(E: Jy=FT{I.0)

CALL MINVFTI.N.D. LM}

CAaLL MPRO(B.FFI.BXFFI-N:M0:0,MN)
CAall MADD(FWI.BXFFI.FEF.N.N>0,Q)
CaLL MPRO(S.FBFGL1: NN Qs Qs M)

Call. MPRO(C. FWI.CXFWRI N N-0-0,N)
Call MPRO(CL.FFI.CLAFFI-N-N,O, 0,/
Call MADDH{CXFWI.CIXFFI, CWCIF: N M. O, 0)
CAalLL MPRO(S. CWOIF, G2, My My Ga 00 N)
Calll MPRO(S,CLIXFFI, G2, N 050, /)
Call MPROE.FWIEXFRWI-NN20O-0. 1)
CaLL MPRIO(F.FFI-FXFFI NN 00N
CALL MADDEXFWI . FXFFI.EWFFs NN, O, G
CHLL MADDC(EWFF. FTI.EWFT NN G, 0)
CALL MPROS-EWFT.G3:N-N-0-0-N)

Call MADDFXFFIFTISFFTI. MM G.0)
CAlL MPRO(S. FAFFI-G3, M N. Gs 05 NI
CALL MPRI(S.FFTI.G3-MNN-0:0.1N)
WRITE (&%) ((E3(I.3),J=1.MN).I=1,/)



@7

100
101

1oz

103
104
105
104
107
108
109
110
111
112
113
114
115
114
117
118
119
126G
121
1z

L e
el

il

G4
3

th

11

G0 10 I=i.M

0o 10 J=1.N

GEI (Y, Jy=E201.0)

Cali MINVIGED N.DL LMD

CalL MPROG3, G211, 63621, M. M, 0, 00 b
CoALL MPRIV(GEGE2I.G1. XE1. MM O O D
CallL MSURGE, X681, 528UB. NN, D, 0O)

0o 20 I=i.N

0o 20 J=1.MN

EEEURI (I, J) =GE28UR(I..J)

Call MINV(GEBURI. N, O, L, M)

CaLL MPRO(G3EEI W, B3E2TH M N 0.0, 1
Call MBUB(T.G3GEIN, TSUB.N- 10,03
CALL MPRDOGZEUBI. TEUE. Y NN, 0.0, 1)
FORMAT (7E1Z.5)

Call MPROGL.G2T. 61621 NN, O, G N

Call MPROGEIG2T.G63: K63 NN G 0. /)
Call MBUB{GZ., XE3,62T8E, M. N, 0,0}

oo 30 I=i.WN

0o 30 J=1i.N

GETSRIC(I, N =G2TSE (1. J)

CALL MINV(E2TSBI.N.D, L. M)

CaLL MPRO(GIGELI. T-G1G62IT MM 0.0, 1)
Call MBUB(W.GIGEZIT. WEUB.N-1-0,0)
CALL MPRD(GETSEI.WSUR. THETA N MN. 0,0, 11
FORMAT (FE1S.5)

CaLl MPROMH, THETA HTHETA- Mo N. 0,05 1)
CAlL MADDCY  HTHETA. Y1, N 1.0.0)
FORMAT (7E13.3)

CCALL MPRO(FWI-Y:FoNaNsOs 0. 1)

£n
i

Lo 55 I=2,N
I8=1-1
BS(I) =50, O/FLOAT(IS)
BES{1)=1.0
CONTINUE
Do 58 I=2.N
IM=I~1
BE=FACT (IM-1) /FACT (IM+1)
BM{I) =RE®ZS500, 0
BM (1) =50, O
CONTIRNUE
CALL MPRO(S,F. SV N M. 050y 1)
FORMAT (7E15.5)
CALL MPRD (G, THETA GTHETA Na N, 0,0, 1)
CALL MPRO(FFI.GSTHETA,FL:MaMaGa 0, 1)
CALL MPRD(S.P1.8V1IaNsN.0,0,1)
FORMAT (7E15.5)
CaLl MPROFFI.Y1.PZ. NN 0. 00 1)

- CALL MPRD({G:PZ. 8P MM 0200 1)

CAalL MPROHL, THETA HIT- NaN- 0,0, 1)
CaAlLL MADDC(Y . HIT,YZ. N, 1,0,0)

CaLL MPROFFI.YZ.FP3.MNM- 005 1)
CaLlL MPRO(S.PZ.8F3, Ny N2 G, 00 1)
CaLL MPRIMBM-F-EBEM1-1.MN.0.0.1)
Call MPRO(BMS.F,BMAL, NN, G0, 1)
Call. MPRO(BS.FZ.B82-.1.N-0:0. 1)
Call FPRO(ES.F3.B53.1.N.0.0.1)
call MPRO(BS,.F1.B54.1.M-0,04.1)
CALL MPROGTI, THETA. TWl1 . N.N-0, 0,13
Call MPROG, TWI.8TWI- MM G0, 1)
Call MADDSV. 8F2, 812 My 1,3, O)
Call MADD{S1E.8F3,.8123-N. 1,0, 0)



124 Coall. MPROGH, SFE. T2, Ma M 0. 05 1)

135 CALL FMFRO(HL, SF3: T3 Na Ny 0,04 1)
1526 CALL MPRDCH. BYLs T4. Na Mo Cs 05 1)
127 CALL MADD (TR, T3 TE3s Ny 1202 0)
128 CALL MADD(TES, T4, TE34, Ny 1,0,0)
129 CALL MADD (TE34, STWL » ST+ Mo 170, 0)
130 [0 100 Is1.H
131 WRITE (&.101) Y(I). THETA(I). Y1(I), S1ZI(I). ST(D
132 101 FORMAT (SE13.5)
133 100 CONTINUE
134 Lo 102 I=1.N
135 WRITE (&.103) BMWL(I). SFZ(I), SF3(I). SVI(D)
136 103 FORMAT (4E13.5)
137 102 CONTINUE

138 WRITE (&.132) BMi, ESZ. BS3, ES4
139 122 FORMAT (4E13.5)
140 N0 130 I=1.N
141 CWRITE (6-133) F(I}, F2(I). F3(I), F1(D)
142 132 FORMAT (4E13.5)
1473 130 CONTINUE
144 STOF
145 ENII
146 FUNCTION FACT(I)
147 IF (I.LT.0) BOTO 110
148 FACT=1.0
149 IF (I.E0.0) BOTO 1G9
150 [0 99 NN=G, I-1
151 TERM=FLOAT ¢ I~RN)
15z 59 FACT=FACT#TERM
153 109 RETURN
154 110 STOF 'FACTORIAL OF NUMBER LESS THAN O
155 END

F LISTING OF FILE :GBNCV4S.TWOD(L,#, 1) .P72(14) FOR USER :1GNCV4S AT 1987707713

s o dbe sfe o ol obe sfe sbe o oo e o ode ot ale ol ofe e ofe ofe of o ofe o ot okt oo ode ol ade ofe oo o okt ofe ode ofe e sl b oo e ol e oo sl sfeoshe e sl sk oo o e ol obe sl e s sle sl Al ol e e e s R e ook e sk e e

= BATCH GRNCVAS KHATIRUNAINI AT 1987/07/13___ 12187043

vl

VIME

B G G O S R S AR R R AR R QR QR R QR QR R AR G R R
l UGG 1 R 1 IR RN I RN TR IA R GGG

L R A A R R R QR R ARG RINIR RinIm IR p iR A R R R R R T e R

4 11K LISTED GRADL4 LPGEL4

AS 2980 EMABSERE: FTFMAN SPDOLING BLABEOW CENTRE VME

ﬁS 2980 EMASHe® FTFMAN SFOOLING GLASGEOW CENTRE VME

58 2780 EMASwa: FTRFMAN SPOOLING GLASEOW CENTRE VME

ﬁS 2980 EMASHEx FTFMAN SFOOLING GLASGEOW CENTRE VME

38 2980 EMASEdck FTPMAN SFOCOL ING GALASEOW CENTRE VME

ﬁS 2980 EMASHkE FTPMAN SPOOLING GLABEOW CENTRE VME

ﬁS 2780 EMASHkd FTRMAN SPOOLING GLASEOW CENTRE VME

A8 2980 EMASHk: FTPMAN SFOOLING GELABGEOW CENTRE

duration? O0:Q0:27

Fackets out: O
leareaed

Fackets in: 110
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FROGRAM THREED

DIMENSION (7)., M7}, G1I( fvf)w Gi{7.7). G2

BE3I(7.7)
G377

BI(7.7),

CEAIT(T) .
G3IE4(T 7Y ZLAT7.73, ZGBE(T:7). E(7.73+ EIL(
B3IT (7).
HBI(727),
FW(7.73,
B1(7.75,
EBXFFI(7.7), FBF(7.7), CXFWI(7.7), CLXFFI(
FXFFI(7.7), BZROT(7)., PF2{7),. ULL(7). EWFF
SFWL (7).,

SFF3(7) .

S12(7:. &
B5{7). EM
FW1(7.73 4
SE5(7.7) .
B2(7.73,

READ
RE&D
REAT
READ
READ
READ
REAL
RE&D
RF&D

REHE

(51"‘)
(3,4
(Sy 00}
{55, %)
(\.Jv ()
(k)
(g k)
FE 2R
Sl )
{5y )
(55, 8}

(5, %)

(Fak)
READN (5y %)
REATT (5. %)
READ (5. %)
REALD (3. %)
READ (54 %)
READ (5. %)
READ - (Go )
00 2 I=1.M
0g 2 J=1.MN

83(??7)7 .:I"ll(l'.v:’):v <?v7)7 G4
GEG3Y (7.7 . GAIESET (77?‘ G4IE3(7
WXL7) s BWXT). WY{(T). GBEIWY(T),

VIA7y, U{(7)Y, BIIG3(7.7). G11341

F{7y. FIWY (7). V(7). GB3I4Z21(7.7)

EB{7.7. R{7). X{(7). XR{(7). ROT(7

FE(7:7)% FT(7.7%» FWI(7.7), FFI(
G(7)s C1(7.7), E1(7:7}. F1(7.7),

W3S{7.7)., WBROT(7). B3{(7.7)., B3RO
BT(7i. TWI(7), STWI(F). FF4(7),
B123(7) ATy T3(7Y. T4(FY. TE3
S{7. 7;7 EMHl(f1~ BM{7), FW2(7),
SESFWA7.7) . EZEFW(T7.73,

FW1 (73, UM(7). SFF2(7). FFS(7),
M :
({FWI.J), 3=1.M).I=1.M)
((FF{T:.3), J=1.0) 2 I=1.1}
({FT{1.,3), 0= 1 MY, I=1.0)
(L{8{I:3),3=1.0)-I=1-1)
((BEMS{I. 0, J=1.M), I=1
(T(I), I=1.MJ
WXA(I) s I=1, 1)

(WY (1) .I=1,N}

((BLCI.J) =14} I=1,N}
({RE(I,JY, J=1. M) - I=1.0D)
C(OI(T Iy I=1.0ND) 2 I=1.WD)

CELL D I=1N) - I=1.0D
(F1{T, 33 0=1,M) - I=1.h)
(WS (I:J)23==0.0) s I=1.1)
((E3(I,J) 2 J=1aN 2 I=1 1)
CFWLCTJ o I=1 N 2 T=1 . B3
({82510 =1 Nl I=1.1

N

-t

FWITI ., J)=FW(I.T)
CalL MINMVIFHEI M Ds L.

ng 3
no 3

I=1.N
J=1.N

FFIAI.J)=FF{(1..J)
Call. MINVIFFI.N.D. LM}

oo 4
nog 4

J=1.N

FTI(I. d=FT(I,J}
CALL MINVAFTI.N.D:L.M)

no S
no o

I=1.0
J=1 M

FWII (I, J)=Fl4l{I:3}

CaLl
CalL.l.
Cal.l.
CaLl
Call
Calll.
call.

MINV(
MFRIT(
MADD(
MPRII(
MPRII(
PRI
PRI

FWiI-N-D. LM

Bl .FFI.BXFFI-NMN-G.GN)
BXFFI FWLI.BFWLII,N.RN, G0
S:BFWII-GE1 MM Oy 0N
BZ-FFI.B2FFI- NN GO0
WS FWLT W3F M N Q. Qs )
BIFFI . WSFW, B25F W, N Ry O, O3

EI(TA7)
ZI(7.7) s

2 73. AGL

E2{7:73,
EEI431I(7-7),
(7:732 B(727),

T(7). BAITITY., CE{7)»
(7.7), GB3IGS{(7.7),

7273, 31

» G(7.7)

TWX (73, ZWY (T3,
2 H{7:7}.

Yo ALT7.T7) . B3IB4I(7.7),

7273

S{7:.7)

FTI(7:7)-

EXFWI{7-7),

727y, CHWCIFA(7.7),
{.?7?}7 EL\;FT';J-;» k]
T3, VEA(TY. PF3(T).

SPF4(7) .

7y TE344(7),

b BEGFW(T7.7).

SPFS(7)

BEFFI(7.7)
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63
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7
71
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