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ABSTRACT

Correlations for pressure drop, in terms of mass flux and tube 

diameter, have been obtained for two-phase flow in tubes, both straight.and 

coiled. The two-phase correlation for straight test sections is presented 

in Equations 5.1 and 5.2.

0]2new = 0 ^  . C3 (5.1)

The parameter 0̂ , used above, is a two-phase multiplier of a type used 

by Chisholm (34) and a standard correlation for this has been developed by 

rtfs*. In the present work a revised parameter "0̂  new" is introduced, 

related to 0̂  by coefficient C3. This coefficient is given by:-

C3 = 0.5 + (G/(d . 105 )1 *115 )0 *5 (5.2)
where • G/(d . 1.1554 > i.O

5 1 1554C3 = 1.0 for G/(d . 10 ) < 1.0 where G, the mass flux, is in
2kg/m .s and d is the tube bore in metres. The range of this correlation is

1152 kg/m2.s < G < 6257 kg/m2.s and 0.0077 m < d < 0.0124 m.

The above correlation, and also the subsequent one for two-phase flow
2in coils, are effective at mass fluxes up to 6500 kg/m .s and in small bore

tubes (d < 13 mm). The earlier correlations of Baroczy and Chisholm
2Sutherland have been restricted to mass fluxes less than 4000 kg/m .s.

A correlation for single-phase friction factor in the coils tested, is 

presented (Equation 6.3) and is shown to agree well with other well 

established correlations.

fjD/d)0,5 = 0.081 . (Re (d/D)2 )“ 0 *225 (6.3)

where D and d are the coil diameter and tube bore respectively, in metres.

* HTFS - Heat Transfer and Fluid Flow Service, National Engineering 

Laboratory, East Kilbride, Scotland.



An improved correlation for two-phase frictional pressure loss in 

helically coiled tubes is also presented (Equations 5.1 and 5.3).

C3 = 0.1 + (G/(105 . a )1 *0671 )0 -35 (5 .3 )
where G/(d . 10  ̂ )1*0671 > and

C3 = 1.0 where G/(d . 10̂  jl-0671  ̂ where G again is the mass flux
2in kg/m .s and d the tube bore is in metres. The range of this correlation

is 1063 kg/m^.s < G < 4735 kg/m^.s and 0.0077 m < d < 0.0124 m.

Another aspect of this research was the discovery of flow pattern

induced vibration in the test coils.

It was noted that when the mass flux of the two-phase mixture was
2greater than approximately 1000 kg/m .s and the quality greater than 0.005 

(mass flow of air/total mass flow), then vibration started in the coils. 

The frequency appeared to increase with air mass flowrate. The vibrations 

became severe, shaking the whole test bench and apparatus. The test coils 

were replaced with clear plastic tubes of similar dimensions to enable flow 

visualisation tests to take place. These tests showed that the flow regime 

known in straight tube, two-phase flow, terminology as churn flow was seen 

to rotate within the tube.

While the test apparatus did not allow conclusive tests to be carried 

out, some high speed photographs were taken which showed that the rotation 

could switch in either direction and that there was no evidence of a time 

related pattern.

Suggestions are presented for possible flow patterns that might be 

occurring under these vibrating conditions.



CONTENTS

CONTENTS PAGE NO.

NOTATION I

1.0.0 INTRODUCTION 1

2.0.0 THEORY 3

2.1.0 Single-Phase Frictional Pressure Gradient 3

2.1.1 Straight Tubes 3

2.1.2 Coiled Tubes 5

2.2.0 Two-Phase Frictional Pressure Gradient 6

2.2.1 Straight Tubes 6

2.2.2 Coiled Tubes 10

3.0.0 LITERATURE SURVEY 12

3.1.0 Single-Phase Flow 12

3.1.1 Straight Tubes 12

3.1.2 Coiled Tubes 12

3.2.0 Two-Phase Flow 19

3.2.1 Straight Tubes 20

3.2.2 Coiled Tubes 21

4.0.0 EXPERIMENTAL APPARATUS AND INSTRUMENTATION 24

4.1.0 Test Loop 24

4.2.0 Equipment 25

4.2.1 Drive Pump 25

4.2.2 Cooler 25

4.2.3 Mixer 25

4.2.4 Flow Separator 25

4.3.0 Instrumentation 2 5

4.3.1 Flowmeters 25

4.3.2 Pressure Gauges 26



CONTENTS (Cont'd)

PAGE NO.

4.3.3 Pressure Transducer 26

4.3.4 Thermometers and Thermocouples 27

4.3.5 Voltmeter 28

4.3.6 Digital Counter 28

4.3.7 Hypodermic Tapping Circuit 28

4.4.0 Test Sections 28

5.0.0 METHODOLOGY 30

5.1.0 General 30

5.2.0 Single-Phase Tests 30

5.2.1 Experimental Method 30

5.2.2 Data Analysis 32

5.3.0 Two-Phase Results for Straight Tubes 33

5.3.1 Experimental Method 33

5.3.2 Data Analysis 33

5.4.0 Two-Phase Results for Coiled Tubes 35

5.4.1 Experimental Method 35

5.4.2 Data Analysis 35

5.5.0 Two-Phase Data Correlation 36

5.5.1 Straight Tube Correlation 37

5.5.2 Coiled Tube Correlation 38

5.5.3 Correlation Development 38

6.0.0 DISCUSSION 41

6.1.0 Straight Tubes 41

6.1.1 Single-Phase 4 2

6.1.2 Two-Phase 43

6.2.0 Coiled Tubes 46

6.2.1 Single-Phase 46

6.2.2 Two-Phase 47



cuivi'-tiiivj-'ib ^conr a ;

PAGE NO.

6.3.0 Limitations of Modelling Boiling Flow
with an Air/Water Mixture 48

6.4.0 Flow Visualisation Tests 50

7.0.0 CONCLUSIONS 52

8.0.0 RECOMMENDATIONS FOR FUTURE WORK 53

REFERENCES 55

LIST OF TABLES 59

LIST OF FIGURES 60



LIST OF APPENDICES

PAGE NO.

APPENDIX 1 Turbine Meter Calibration Graph 61

2 Pressure Transducer Calibration Graph 62

3 Thermocouple No. 1 Calibration Graph 63

4 Thermocouple No. 2 Calibration Graph 64

5 Thermocouple No. 3 Calibration Graph 65



NUTATION

A - Blasius Equation Numerator

a - Section Area

C - C - Coefficient in two-phase multiplier

C2 - Chisholm-Sutherland Mass Flux Dependant Coefficient

C3 - Test Correlation, Mass Velocity and Diameter Dependant, 
Coefficient

D - Coil Diameter

Dn - Dean Number

Dp - Pressure gradient

d - Tube Inside Diameter

f - Friction factor

G - Mass Velocity or Flux

K - Slip Ratio

M - Mass Flowrate

m - Test Correlation Indice

n - Blasius Equation Indice

P - Coil Pitch

p - Pressure

Re - Reynolds Number

r - Section Radius

S - Force Per Unit Length of Interface Between Tube Wall
and Fluid Phase or Between Fluid Phases

U - Velocity

X - Lockart-Martinelli Parameter

x - Circumferential Dimension

Z - Dimensionless Group Defined In Equation 2.26

z - Axial Dimension

£ - Helix Angle

- Surface Roughness 

Phase Density



NOTATION (Cont'd) UNITS

m
1 2 N/m

f  - Phase Perimeter
*£ - Shear Stress

A  - Baroczy Property Index
e  - Chisholm Model Phase Angle

0  - Two-Phase Multiplier

M - Dynamic Viscosity

SUFFIXES

a - Accelerational

c - Coil

f - Friction

g - Gravity

r - Ratio

T - Total

TRANS - Transition

tp - Two-Phase

X - Circumf erential

z - Axial

0c - c - Calculated

- m - Measured

ABBREVIATIONS

Ns/m^

HTFS - Heat Transfer and Fluid Flow Service, National Engineering

Laboratory, East Kilbride, Scotland 

ESDU - Engineering Science Data Unit

11



1.0.0 INTRODUCTION

The aim of this project is to determine a suitable correlation to 

predict pressure drop for single and two-phase flow along a given set of 

helical coils. The need for this information has arisen from development 

work being carried out on a new type of compact Rankine-cycle power plant in 

which boiling of the working fluid is carried out, not in a bank of tubes, 

but along a single-pass pair of coils in contact with the heat source. The 

coils lie one inside the other. The inner, a stainless steel tube of 

approximately 7.7 mm diameter heats the fluid frcm the subcooled state to 

the saturation temperature. The working fluid is then passed to the outer 

coil, 12.4 irm inside diameter, on the outside of the heat source where it is 

boiled to produce steam which emerges considerably superheated.

During tests on the power package it was found that measured pressure 

losses in the boiler coils differed greatly from the values calculated by 

the most accepted methods. There are many possible reasons for this 

discrepancy in value. There is, for instance, a possibility of the fluid 

starting to boil before leaving the inner, small bore, coil. If this were 

the case an appropriate two - rather than single-phase, correlation would 

have to be applied to the unit design. The resulting two-phase flow in the 

restricted channel would greatly increase the observed pressure drop - an 

effect not taken into account in the presently used calculations.

As will be seen in a later section, the acoelerational pressure drop is 

also important during boiling and can greatly increase the total pressure 

drop. These effects are not considered in this report but may require to be 

the object of future investigation.

In the present tests it is proposed to use air and water to examine the 

frictional pressure drop through the coils. In order to be confident of the

results it is also proposed to test straight samples of the same tubing in

order to obtain an accurate correlation to verify whether it can be

considered smooth. The sequence of tests will therefore be carried out in
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order of increasing uncertainty:-

a) Single-phase (air and water) flow through straight tubes.

b) Single-phase flow through coils.

c) Two-phase flow through straight tubes.

d) Two-phase flow through coils.

At each stage, comparisons will be made with existing theory and data, 

but it is not the object of this work to produce a correlation which 

predicts all geometries of coil. What is required is an accurate 

correlation which applies only to the coils under test or limited 

extrapolations of them.
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2.0.0 THEORY

When there is flow through a tube or other channel pressure drop occurs 

for various reasons:

1) A frictional component which can be attributed to the irreversible 

conversion of mechanical energy to thermal energy by the mechanism of 

viscous damping.

2) An accelerational component which can occur either by density change in 

the vapour (or gaseous) phase or by phase change where the flow is 

accompanied by heat transfer.

3) A gravitational component where the flow rises or falls in the 

gravitational field.

These components can be added to give the total pressure gradient

(dp/dz)T = (dp/dz)f + (dp/dz)̂  + (dp/dz)g (2 .1 )

In the present studies the prime interest is going to be in the frictional 

component since in the boiler the high pressure prevailing will tend to make 

the accelerational component of secondary importance. However in the tests, 

carried out as they are at lower pressure, the accelerational component will 

have to be taken into consideration. The straight tubes are tested in the 

horizontal position and so there is no gravitational component to allow for.

The mass velocity of the flows tested in the coils are such that the fluids 

are subjected to centrifugal forces which have a far greater effect on flow 

patterns than does the force of gravity. Additionally, the first and last 

tappings are mounted on the same horizontal plane. The gravitational 

component will therefore be ignored.

2.1.0 Single-phase frictional pressure gradient

2.1.1 Straight Tubes

When flow of either gas or liquid occurs through a tube of circular 

section the pressure falls in the direction of flow due to shear forces 

occurring within the flow. Carrying out a force balance on the element of 

fluid shown in figure 2.1 gives the equation
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a dp = . . d . dz (2 .2 )

The Fanning friction factor for turbulent flow is defined in terms of the 

shear stress and the mean kinetic head to give

■cf =
1/2 . U2 (2.3)

This can be substituted into equation 2.2 to give the well known 

relationship

■■ /■, 4 . f . Udp /dz =   ( 2_4)

For flow through a straight tube research has been carried out over many

years and shows that

f = f (Re. ) (2.5)

where describes the roughness of the wall of the tube.

The form of the relationship in eq (2.5) is, in its simplest fom, for a 

smooth tube

f = — nr Re1 ' (2.6)

for turbulent flow through an hydraulically smooth tube. The constants A 

and n often take the values 0.046 and 0.2 respectively. This is known as 

the Blasius equation,

0.046f =
Re0,2 (2.7)

A modified form of the equation which applies over a wider range of Reynolds 

Number is that of White (39) and is

0.125f = 0.0014 +
Re0 *32 (2.8)

For laminar flow, where the Reynolds Number is less than 2100, the 

friction factor is given by

f = Re (2.9)
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2.1.2 Coiled Tubes

It has been shown that for a straight tube a friction factor is defined

as f = _  ~ . This was for the case of one-dimensional flow. For
1/2 . . U

flow in a coil the equation will be more complicated due to the presence of 

secondary flow. A suitable model might be,

-cf = c
1/2 .JO. (u 2 + u 2) (2.10)Z X

where u and u are the axial and circumferential velocities respectively,Z X
their relative sizes, it might be expected, being a function of the coil 

geometry d, D, and the helix angle. Various workers (2,3,5) have 

reported that the helix angle is of minor importance and it is usually not 

necessary in correlating data.

A dimensionless number often used to characterise the laminar flow is 

the Dean (22) Number,

/d
Dn = ReCo; (2 .1D

It should be noted that there are other similar numbers which can be 

mistaken for this value but which are used for different purposes. For 

turbulent flow a cannon plot used to non-dimensionalise data for coils with

(!?"”*(§)“2 0 5different diameters is one which has Re {d\ and fc /D\ * as the axes

(see fig 3.5).

Existing correlations will be considered in the literature survey in section 

3.

The transition from laminar to turbulent flow occurs at a greater 

Reynolds Number than for a straight tube. In the literature survey the 

correlations for friction factor put forward by Srinivasan(2) have been 

selected as the most reliable and his correlation for the transition point 

is

ReTRANS = 2100 [1 + 12^ '  1C§)0'5 (2.12)
This has the advantage over the other correlations (3,10,12,36) of reducing
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to the straight tube value for a coil of infinite diameter and/or 

exceptionally small bore where secondary flow ceases.

2.2.0 Two-Phase Frictional Pressure Gradient

2.2.1 Straight Tubes

Two-phase pressure drop is not so well defined as for single phase 

flow. This is because of the existence of various flow patterns depending 

on the phase flowrates and properties which make the understanding of the 

physics of the flow very difficult. The simplest of these models is 

probably a homogenous model, where the phases move with the same velocity 

and the specific volume can be calculated by a simple sum of the mass ratios 

and specific volumes of each phase. The viscosity can be either the liquid 

viscosity or one of several effective viscosities averaged by equations 

proposed, for example by McAdams (38) or Cicchitti(37). The homogenous model 

is found to be reasonably accurate for vertical tubes at low velocities (u = 

approx. 2 m/s) but in many other applications has been found to be grossly 

in error. The homogenous model will be returned to later in this section. 

The next stage of complexity is to allow the phases to have differing 

velocity, known as the 'slip flow' model.

Consider a tube with the cross section occupied partly by liquid and 

partly by gas (see fig 2 .2 ) and for a case where the friction factor is 

independent of the phase Reynolds Number (i.e. f̂  = f = f). If we balance 

the forces in the axial direction we have equations similar to the one for 

single phase friction drop (equ 2.2) but with an extra variable S 

representing the shear force per unit length acting between the phases, then

(where it is assumed the gas flows faster than the liquid). As is the 

case for the single phase equation (2.3)

al* ^tp ^  1 * ^  1 + S 0

a . Dp - of . £  - S = 0g M-p Kg i g

(2.13)

(2.14)

(2.15)
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for each phase. For convenience a shear force ratio is defined

s =  i______r (a . Dp,. ) (2.16)g ^tp
Combining eqs 2.13, 2.15 for the liquid and 2.16, for the shear force ratio, 

we get

f 1 « ul . 4s i i
^tp (1 + Sr f a  V  = -___-____̂__-____—tp VafJ 2 . ax (2.17)

also eqs 2.14, 2.15 for the gas phase and 2.16 combine to give
2f . u . k . p

Dp (i - s ) = g g f g  Atp 2 . a (2.18)g
In fig 2.2 the assumed phase area geometry is shown and in fig 2.3 it is

seen how the shape of the area can be changed without grossly changing the

length of the phase interfaces or the surface area. Frcm a consideration of 

the geometry involved

_ 4 . 0 .?d _ 4_ ,
a 0 . d d (2.19)g

similarly t l =  i '
a1 d (2 .2 0 )

recalling that a = a^ + â  (2 .2 1)

Combining equations 2.17 and 2.20 together with 2.18 and 2.19 yields
2

^  (1 + S /a \ ) = 4 • fl • ui • -2°°P^ r (=9tp \aJJ 2 . d (2 .2 2 )

4 . f . u 2 . jO 
Dptp <1 - Sr ) =  _?
rp r 2 . d (2.23)

respectively.

Using these equations to describe the two-phase pressure drop in terms of 

each fluid we can equate one with the other to give

uj (2.24)

Recallinq that since f = f, = f then f or f, = 1y g 1 zg -if?



; where Z = /I + /a^  '

1 - S ; (2.26)r
and from the phase continuity equations

M 1 = al 'J° 1 ‘ U 1 ' (2.27)
igM = a . ^  . u , (2.28)g g J* g r

and equ 2.25 we can derive,
..  0.5a.i = 1

\  (2-29)
If the phases were to flow alone, the pressure drop per unit length

would be

2 . f, . M,2
°Pl =

d . a2 (2.30)

2 . f . M 2
and Dp _  ^ ^g =

g
Combining 2.29 and 2.30 gives

1 /r^ \0.5al = 1 ( DPi

d . a2 , (2.30)

a Z \Dp J . (2.31)g x g7
Recalling equ 2.21, then frcm equations 2.22, 2.27, 2.30

Dptp = f1 + 5
al.

Dp, /l + S . a ’ r g
ax j (2.32)

Substituting equations 2.26 and 2.31 into 2.32 gives

>*tp = 1 + c A ^ g N 0'5 + f Dpg

where C = Z + —

Dp-ĵ \ P y  VOPi/ (2.33)
C 1 =  1 +  —  +  —21 X XZ (2.34)

(2.35)
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Dp,
and the parameter X =|

Dp J (2.36)

where the general forms

a 2 - i x £  , i,
h  X X  (2.37)

and 0 2 = 1 + CX + X2 (2.38)g
are used it is possible to fit these equations to data simply by modifying 

the factor C. Since the value of S is not known, equation 2.26 cannot be 

used to evaluate the value of Z. However if the slip ratio K is known then 

equation 2.25 can be used. Gonsider the case for homogenous flow. The 

value of K is 1, i.e. the two phases have the same velocity and by equation 

2.25

z
0.5

\j>qJ  (2‘39)
which using equation 2.35 gives

0.5 0.5
C - ffh , /0°g\W W (2-40)

For the case of no shear between the phases S = 0, Z = 1 and therefore
^ 0-5K ~(—)\PJ (2.41)

and C = 2.

Homogenous flow results in a C value which is dependent on the density ratio 

of the two phases. Vfe might therefore expect that as the critical point is 

reached, where = JO , that K would approach unity and C approach to a 

value of two. In practice Chisholm has found this to be the case (34).

Such correlations will be set aside in favour of correlations of the 

type of Baroczy(33), and his work subsequently adapted and revised by 

Chisholm and Sutherland (45). These correlations are dependent on mass flux 

and this is considered important since it is intended to attempt to raise
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mass flux values to an excess of 2000 kg/m .s in the tests for this work. 

The Baroczy(33) method is graphical and quite unsuitable for use in a 

computer program for handling and processing data. Chisholm and 

Sutherland(35) transformed the Baroczy(33) method to provide a set of simple 

curves. In addition they proposed their own correlation.

where C2 is dependent on the density ratio as wall as the mass flux (35).

These correlations have brought the calculating of two-phase pressure 

drop extensively forward. However, correlations are required which will 

provide accurate values for pressure drop under a wide range of conditions.

The HTFS have, using the Chisholm and Sutherland wark (35) as a basis, 

correlated the C - coefficient based on their very large database. This 

correlation is available only to members of HTFS but it can be said that C

2.2.2 Coiled Tubes

A model for two phase flow in coils could be built in a similar fashion

to the method used for straight tubes but with consideration of the factors

raised in the section on coiled tube single phase flow (2 .1 .2 ).

Basing such a model on stratified flew we could carry through the

concept of there being a secondary flow within each flow stratum (see fig 

2.4). This concept of stratified flow is further justified in its use by 

the work of Banerjee et al (10) describing the effects of centrifugal forces 

in a coiled tube flow stream. The mathematics for a solution would be 

difficult to resolve without making assumptions. Wattendorf(24) showed that 

the degree of secondary flow is dependent on the flow section shape. If we 

assume the twa phases are flowing in separate but continuous strata the 

degree of secondary flow in each phase will also change with flew quality.

There will be a situation where the circumferential flow is so strong in 

* Heat Transfer and Fluid Flow Service, at NEL, East Kilbride, Scotland.

(2.42)

*

is a function of mass flux andVt, the Baroczy property index.
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one phase that it impinges on the other strata.

Various models have been proposed but there is none which can claim to 

be in general use. What is of interest is that it has been found by many 

workers that the use of Lockart-Martinelli type (2.37 and 2.38) equations 

proved adequate (5) after having replaced the equations used for the single 

phase pressure gradients with ones for pressure loss in coiled tubes.

It is proposed that this work will examine the accuracy of the HTFS 

correlation used in this way and ccxnment and/or revise this correlation to 

provide a suitable correlation for the tubes under scrutiny.
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3.0.0 LITERATURE SURVEY

3.1.0 Single Phase Flow

3.1.1 Straight Tubes

The relationship between Reynolds Number and friction factor for a case 

with laminar flow is well established by analytical study. Such analysis 

can be found in many standard textbooks, for example Kays(41) or Rogers and 

Mayhew(42). The reliability of the relationship

has been proved by experiment and is accurate and consistent due to the 

predictability of the laminar flow stream.

Because of the random motion in turbulent flow no completely 

satisfactory mathematical relationship has been found. There are however a

coefficients to fit experimental data. One such equation, the Blasius

equation, is found to be a good approximation to the Karman-Nikuradse

equation (from 41) and as will be shown in 3.1.2 the simplicity of the

Blasius equation, 2.6 and 2.7, and a modified Blasius equation, 2.8, make

this form a powerful foundation for making comparisons with single phase 

flow in coils.

3.1.2 Coiled Tubes

In the 1920 's Dean (22,31) wrote two papers wherein the motion of a 

single phase liquid flowing through a coiled tube is considered. The first 

product of his analysis of the similarity laws, as applied to the flow in 

curved bends was to show that for a given shear, the ratio of the mean 

velocities in two tubes of the same dimensions, one straight and one curved, 

depended on a parameter given by the product

His theoretical ground-work established his position as the researcher who 

first presented the prime flow patterns for single phase flow in coils and
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the parameters on which these depended. He introduced the concept that, 

through centrifugal forces, a secondary flow would be set up (see figs 3.1 

and 3.2) and at the time his ideas were oorroberated by the experiments of 

Eustice(23). Eustice had carried out flow visualisation work nearly twenty 

years earlier, having carried out tests himself comparing the effects of 

varying coil diameter using flexible, rubber covered, canvas tubing.

White (32) found it easier to apply the converse of Deans statement and 

this can be expressed thus; for a given velocity in two tubes of the same 

dimensions, one straight and the other curved, the ratio of the resistances 

depends on a parameter given by the product of the Reynolds Numbers and the 

root of the curvature ratio,

White(32) carried out a substantial programme of tests on coiled tubes and 

used equ. 3.2 to help correlate the data. The increased resistance of flow 

with the increase of curvature was held to be a function of the Dean number 

but only as long as the flow remained laminar. White(32) discovered that 

the onset of turbulence occurs at a higher Reynolds Number than for a 

straight tube. He suggested that this was probably due to the centrifugal 

force which would dampen eddy current movements in the radial direction 

relative to the coil central axis.

Thylor (30), like Eustice(23), carried out flow visualisation tests. 

Dye was introduced through an orifice in the wall of the tube through which 

the liquid was running, a method far more revealing than the method employed 

by Eustice (23) who had simply introduced dye at the entrance to the coil 

section, (stream movement due to settling probably dispersing the dye before 

the settled patterns could be examined properly). The tests confirmed the 

conclusion reached by White (32) with respect to the late onset of 

turbulence with Taylor(30) noting that with a d/D ratio of 0.055 turbulence 

did not become established until the Reynolds number reached 5800. Taylor

Re (3.2)
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(30) also noted that the secondary flow streamline (fig 3.2) persisted 

despite high turbulence.

Experiments were carried out by Wattendorf (24) to try to determine the 

effect that flow section shape would have on friction losses. The 

experiments involved measuring the losses through rectangular sections with 

a very small width-to-depth ratio. The experiments showed that the 

resistance to flow for these sections when coiled was only slightly more 

than for a straight tube of the same section. In conclusion it was proposed 

that the virtual elimination of a third dimension of the flow pattern had 

also had a dampening effect on the second dimension. The movement of flow 

outward ' from the inner wall is inhibited by the flow moving in the opposite 

direction around the tube wall (see fig 3.3). This being the case, the flow 

pattern approached that of flow in a straight tube, it is almost one 

dimensional.

Keulegan and Beij (1937) (14) carried out a study of flow in curved

pipes which was to set a post-war trend with their presentation of laminar, 

transitional and turbulent flows as separate areas for investigation. This 

was most appropriate since it had already been shown that the plot of 

friction factor against Reynolds Number for a coil consisted of a continuous 

line with three distinct sections. This is unlike the case for a straight 

tube where there are two lines, one for each of laminar and turbulent flow 

joined by a 'broken leg' transitional line. While curved tubes were used 

instead of coils, care was taken to allow settled flow to establish itself 

and thereafter tappings through the tube wall were used for pressure 

measurement. Unfortunately correlations for laminar and transitional flow 

only were presented since the authors felt that a further study would be 

required to cover the field of turbulent flow adequately.

With the various post Second-World War nuclear power generation 

projects there has been renewed interest in the use of coils for fluid 

transport in heat transfer roles. While two-phase experiments are more
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(Common in the post 1945 literature, a number of investigators have sought to 

complete the study of single-phase flow in coils. Questions asked with 

respect to previous work include:-

a) Had workers considered the change in section areas and ovality which 

would result frcm bending the tubes into coils?.

b) How would accuracy be affected given the relatively crude 

experimental arrangements (pressure readings were previously taken before 

and after test sections instead of at intermediate tappings placed after a 

settling length and before fittings at the outlet)?

c) Could flow visualisation be improved with the aid of modem high 

speed photographic techniques?

Rogers and Mayhew(22) used the correlation proposed by White (32) and 

found that while the equation for laminar flow was accurate, the equation 

for turbulent flow was considerably adrift of their data. Ito(43) had a 

correlation which performed better and was accurate to within 3% for Roger 

and Mayhew's data. A later comparison between White(32) and later 

researchers (of which there are many) can be seen in fig 3.5.

While there were workers who carried out conventional studies on flow 

in coiled tubes, progress had presented new fields which could add to the 

understanding of methods of analysis which might be used. Patankar, Pratap 

and Spalding (15) used a finite difference method to predict the development 

of laminar and turbulent flow in curved pipes. The use of such methods had 

only been made possible by the arrival of computers to carry out the mass of 

calculations. However, while there were improvements over previous results 

the outcome was the same as it had been for many previous theoreticians. 

While the results for laminar flow were acceptable the results for turbulent 

flow required further development. Tarbull and Samuels (13) used the 

alternating direction-implicit method to solve the equations of motion and 

energy. The correlation given is for a very low Dean number (laminar flow 

range), which was not new, but their plots of velocity and temperature are
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interesting (see fig 3.7).

Mishra and Gupta(12) set out to look at the effect of coil pitch on 

flow resistance. Sixty different coils were tested and correlations of 

their own were presented. They stated that since the data collected could 

be expressed by

fc - fst = A (D/d)"0,5 (3.3)

where A is a constant, coil pitch has no direct effect on the flow 

resistance. Other workers were more cautious. Srinivasan(2), used coils 

with pitch-to-coil diameter ratios frcm 0.029 to 0.749 and noted that the

effect of pitch was "insignificant" given that the maximum variation in

friction factors over his test range of P/D ratios was +4%. Sadasivudu(3) 

tested coils with P/D <1 and confirmed the insignificant effect of pitch 

stated by Srinivasan(2). This may be the case for "normal coils" but if a 

coil of infinite pitch and very small coil diameter is considered the tube 

losses should approach those of a straight tube. In such a case we might 

consider at what point the radius of curvature of the tube is affected by 

the coil pitch (see fig 3.6). The ESDU(6 ) paper on coiled tube flow 

suggests that for P/D ratios greater than 0.5, an equivalent diameter for 

the coil should be used which makes allowance for pitch dominating the true 

radius of curvature.

In 1970 Srinivasan, Nandapurkar and Holland(2) presented a paper 

"Friction Factors for Coils". The paper dealt with both helical coils and

Archimedean spirals and provides equations to predict friction factors in

the laminar, transition and turbulent regions of the flow spectrum as well 

as providing equations to predict critical Reynolds numbers where there are 

changes in the flow regime.

Comparing various equations for the critical Reynolds numbers

a) Fastovskii and Rovinskii (1957)

Rec = 18500 (d/D)0 *28 for d/D > 0.0004 (3.4)

b) Ito (1959)
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Rec = 20000 (d/D)0,32 for 0.00116 > d/D > 0.0667 (3.5)

c) Aronov (1960)

Rec = 18500 (d/D)0 *3 (3.6)

d) Schmidt (1967)

Rec = 2300 [1 + 8.6 (d/D)0*45] (3.7)

e) Srinivasan(2), (1968)

Rec = 2100 [1 + 12 (d/D)0*5] (3.8)

The equations by Schmidt, and Srinivasan (2) in particular, approximate 

to the equation for a straight tube for small d/D ratios. Additionally the 

paper presenting Srinivasan "s equation contains details of both tube 

geometries used (12 in all) and graphs displaying data. For these reasons 

the use of Srinivasan "s (2) equation for the critical Reynolds number is 

recommended.

For the case of laminar flow the following equations are presented.

a) White(32) (1932)

fc/fs = 1 / 1 - [1 - (11.6/Dn)0 -4 5 ]2 -2 (3.9)

for 11.6 < Dn < 2000

b) Srinivasan et al(2) (1970)

fc/fs = 1 for Dn < 30 (3.10)

fc/fs = 0.418 Dn0 *275 for 30 < Dn < 300 (3.11)

fc/fs = 0.1125 Dn0 *5 for Dn > 300 (3.12)

c) Schmidt (1967)

fc/fs = 1 + [0.14 (d /D )0-97 Re (1 - 0.644 ( d /D )0 *314) ] (3.13)

for Re > 100 and 0.012 < d/D < 0.2

d) Ramana Rao and Sadasivudu(3) (1974)

fc = 1.55 exp (14.12 (d/D) Re" 0 *64 (3.14)

for Re > 1200 and 0.0159 < d/D < 0.0566

As was the case for laminar flow in a straight tube, the relatively 

good order in a laminar flow stream has led to close agreement between 

theoretical and experimental results. For this reason the first workers to
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publish papers on the theory of laminar flow and subsequent experimental 

results, Dean(22) and White(32) respectively, have provided answers that 

have stood the test of time. White's(32) correlation covers a good range of 

Dean numbers and has been plotted for comparison by many authors and has 

been found to give good agreement. Outside the range of Dean numbers given 

for this correlation, Srinivasan has two equations, 3.10 and 3.12, which can 

be used with accuracy.

For the case of turbulent flow most of the tests carried out are using 

plastic or smooth drawn metal tubes so that the effects of roughness are not

known. A number of correlations have been presented to date and these

include,

a) White(32) (1932)

fc (D/d)0,5 = 0.08 [Re (d/D)2 ]"0,25 + 0.012 (3.15)

for 1.5 x 104 < Re < 105

b) Ito(43) (1959)

fc (D/d)0,5 = 0.076 [Re (d/D)2] "°*25 + 0.00725 (3.16)

for 0.034 < Re (d/D)2 < 300

c) Srinivasan(2) (19 70)

fc (D/d)0,5 = 0.084 [Re (d/D)2] ” 0 -2 (3.17)

for Re (d/D)2 < 700 and 0.0097 < (d/D) < 0.135

d) Ramana Rao and Sadasivudu(3) (1974)

fc (D/d)0,5 = 0.382 [exp (11.7 (d/D))] Re" 0,2 (3.18)

for Rec < Re < 2.7 x 104 and 0.0159 < d/D < 0.0556

The line given by equ 3.15 by White(32) is adrift of the other 

correlations but b), c) and d) all agree within 15%. The form given by 

Srinivasan(2) can also be broken down for any ratio of diameters to give a 

Blasius type equation

fc = 0.084 (d/D)0,1 / Re0,2 (3.19)

making it suitable for comparison with straight line data without 

sacrificing accuracy.
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Finally, a paper by Constantine, Vytoyannis and Hsien-wen hsu(18) 

discusses the effects of vibration on friction factor. The results of their 

tests are largely in graphical form where the increase in friction factor 

for a coil with vibration of various fixed types is given by a ratio of the 

friction factor of the coil with vibration to the friction factor without. 

From the summary graph it can be seen that vibration can have a massive 

effect in increasing the friction factor. An ESDU paper (6 ) quotes an 

example based on the information given in (18). For a situation where Re = 

1400, the fluid water, D/d = 23.25, D = 0.59 m, vibrations are at 125 Hz and 

with an amplitude of 5.1 x 10- m: the friction factor is doubled.

Additionally it was noted that the transition to turbulence could occur at a 

Reynolds number as low as 800 depending on the magnitude and frequency of 

vibration.

3.2.0 Two-Phase Flow

The field of two-phase flow has received a lot of attention 

particularly over the span of this century. Chisholm(34) opens his book 

with a brief historical review of earlier work. He states that a worker by 

the name of Gouse published an extensive Bibliography of two-phase data in 

1966 which contained about 8000 references. It was observed that up to 1948 

the number of papers doubled every 9.66 years ; after that the number of 

publications doubled every 5.12 years. Chisholm believed this was due to 

the post war interest in water cooled reactors because both USA and USSR 

have extensive nuclear power programmes based on this type of reactor.

Given the mass of literature available it was decided to reduce the 

data search areas to those directly related to the project in hand. The 

purpose of the project was to investigate friction losses in coiled boiler 

tubes; it was decided therefore to carry out a survey limited to this field.

Additionally there were other factors which were unique to the system under 

investigation. The mass flux of the system was expected to be very high and 

a number of references were found which were found to be of interest in this
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respect. The fact that the boiler tubes were in the form of a helical coil

was expected to have a significant effect on the losses. Finally, in the

later stages of the test programme it was found that the test sections

developed a strong vibration in certain flow conditions and given the

implications with respect to friction factors suggested by Hsien-wen hsu(18)

it is intended to return to this paper in section 6 .0 .

3.2.1 Straight Tubes

Lockart and Martinelli(20) made one of the earliest attempts to produce

a general correlation for two-phase frictional pressure gradient. They

showed that their data could be correlated by plotting the twc-phase

multiplier for liquid or gas against the Lockart Martinelli two-phase flow
0 5modulus X = ((Dpfl/Dpfg) ’ ). They separated the data into four sets 

dependent on whether the phases would be laminar or turbulent when flowing 

alone in the same tube. The curves in fig 3.8 show the relations between 

the multipliers and modulus as shown in their paper.

Baroczy(33) used a property index, in his correlation of data (see fig 

3.9). The relationship between the index and multiplier was also dependent 

on quality since,

Many workers had noted that there was often an effect on the two-phase 

pressure gradient related to flowrate. While the curve in fig 3.9 is

correction curves (fig 3.10) which allowed for correction for mass flux

it provided the best correlation of the time for high mass flux flows.

Chisholm and Sutherland (28) approximated the Baroczy(33) correlation by 

the family of curves for the coefficient C as can be seen in fig 3.10 where 

C is used in equ 2.37. In addition, Chisholm and Sutherland (28) presented

(3.20)

(3.21)

2restricted to one mass flux (1356 kg/m .s), Baroczy(33) provided a set of

2rates of up to 4068 kg/m .s. While this method of prediction was graphical
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their own correlation (equ 2.42) which had the advantage of not being 

graphical but set in the form of an equation, thereby making calculations 

using computer a more straight forward process. This correlation was also 

sensitive to mass flux and as such might suit the requirements of this 

investigation.

3.2.2 Coiled Tubes

Lacey(25) carried out a survey (1970) of what was known at the time of

two-phase flow in bends and helices. A number of factors affecting flow

patterns are explained and backed by experimental data where possible. It 

is worth noting some of these since they will clarify the understanding of 

the flow mechanisms in section 6.3.0.

It was thought that the water rivulets seen through the clear tube wall 

during visualisation tests with high quality mixtures indicated a highly 

helical flow on the part of the gas core. Closer examination showed that 

the rivulets were waves with a bulge at one end which was simply the most 

upstream part of the-wave. The gas secondary flow has, it appears, a very 

strong axial flow aspect with less circumferential flow evident than had 

been expected. Another phenomenon occurs when the gas core in a high 

quality flow is travelling so fast that the vortices can whip droplets frcm 

the top of the waves at the inner wall and deposit them on the outer wall 

where they are pulled back along the wall, by the force of the gas core 

secondary flow, to the inner wall, see fig 3.12.

Another paper to which Lacey contributed (25) was that by Maddock, 

Lacey and Patrick(27). Again the main theme of the work is the structure of

two-phase flow in helical coils. However, this paper is not a survey of

literature but an experimental investigation carried out on annular film 

flow. Pictures are shown which have been taken frcm within the flow passage 

and velocity profiles have been constructed using pitot tubes.

Bannerjee, Rhodes and Scott(10) carried out tests on a number of coils. 

They found that their data agreed well with the Baker plot (see fig 3.13)
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for straight tubes. This was something that a number of workers had 

reported : Stepanek and Kasturi(8 ), Lacey(25), Reddy and Satyanarayan(4) and 

Boyce, Collier and Levy(5), Akagawa(l) and Kozeki(16) carried out

experiments and showed where the small differences between straight tube 

flow and coiled tube flow occurred. Essentially however all the references 

obtained come to the same conclusion with respect to the similarity in flow 

patterns between straight and coiled tube flow. For this reason all of

these workers attempted to correlate their data using the

Lockart-Martine11i(20) correlation.

It is generally agreed that the modified Lockart-Martinelli method

gives a good approximation to the correlation. The modification consists of 

replacing straight tube single-phase pressure loss gradients by coiled tube 

single-phase pressure loss gradients in the calculation of the two-phase 

multiplier and Lockart-Martinelli parameter.

Papers by Stepanek and Kasturi(8 ), and Puri et al(ll) have noted that 

the correlation starts to lose accuracy at higher liquid mass flow rates as 

well as higher total mass flow rates. This is not surprising since the same 

tendency was noted in straight tube flow, hence the Baroczy(33) and Chisholm 

and Sutherland(28) correlations specialising for high mass flowrates in 

staight tube flow. Rippel, Eidt and Jordan(44) discussing the flow patterns 

in two-phase flow in a coil, correlate their data using Lockart-Martinelli 

and suggest alternative methods of correlating coil two-phase flow data 

where higher mass flow effects are apparent. It is interesting to note 

their reasoning as to why Lockart-Martinelli and other straight tube 

correlations can be used for low but not high mass flux flows. They point 

out that up to a point (slug flow), and depending on the twc-phase quality, 

the nature of the flow patterns are such that they make it very difficult, 

if not impossible, for the Dean effect (secondary flow brought about by 

centrifugal forces) to establish itself, and until this happens there is no 

reason why the coiled tube flow should be any different from straight tube
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flow. It is also interesting to note that in this paper an attempt is being

made to deal with increasing flowrate effects where the maximum flow being
2dealt with is less than 100 Kg/m .s. It is intended to run the tests for

2this investigation up to mass flux values in excess of 4000 Kg/m .s.

Since the Lockart-Martinel li method could be modified for use with 

coiled flow by the replacement of straight tube single-phase pressure 

gradients by coiled tube single-phase pressure gradients it may be possible 

to do the same with the Chisholm and Sutherland (28) and other mass flux and 

quality dependent correlations. It is intended that this approach be 

adopted in the data analysis for this report.
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4 .U .U  H^FUKljyLmNTAL APPARATUS AND INSTRUMENTATION

4.1.0 Test Loop

An open circuit test loop was constructed using light gauge copper 

pipework, as shown in fig 4.1.

The pipework immediately before and after the test section was made 

frcm 1/2 " bore tube and had couplings fitted which enabled the test sections 

to be changed without disturbing the remaining pipework. The couplings 

consisted of T-pieces which were fitted with pressure gauge lines and 

thermocouple glands. After the test section outlet coupling a short length 

of straight tube led to the main flow control valve. From this valve a 

length of large bore rubber tubing led the test fluids into a separator 

tank. The separator allows air to exhaust to atmosphere and the water to 

drain to a sump tank in the laboratory basement. A pump recirculates the 

water to a constant head tank on the laboratory roof.

The test loop supply pump draws water from the constant head tank. A 

short bypass loop was installed between the pump discharge and inlet, and 

was fitted with a hand operated valve. This arrangement would provide 

better control and more flexibility over water supply flowrates and 

pressures. At the pump outlet a T-piece was fitted to house a thermocouple 

and a high pressure purging water supply which allowed de-aeration of the 

pressure tapping lines. A water cooler was installed to prevent an 

excessive rise in temperature. The cooling element was supplied with water 

from a main supplied by the site cooling tower.

Since the cooler had been installed at floor level, advantage was taken 

of a long straight vertical section running to the test bench level to 

install a turbine flowmeter.

At bench level the tubing was turned to the horizontal before being 

coupled to a flow mixer. Frcm here the test fluid mixture entered a 

straight section of tube leading to the test section.

Air is supplied to the mixer from the main air line via a bank of
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rotameters. Immediately before the mixer, the air line is fitted with a 

pressure regulator and flow control valve. Finally each test section is 

installed with the coil axis horizontal and in line with the supply tubing 

as shown in figure 4.1.

4.2.0 Equipment

4.2.1 Drive Pump

The loop drive pump used was a 5WMV20 Worthington Simpson multistage 

pump. This model is capable of supplying 19 bar pressure at a flowrate of 

0.5 kg/sec.

4.2.2 Cooler

A Bowmans shell and tube heat exchanger with disc and doughnut baffling 

was used as a cooling unit. The exchange heat rating was 4.5 kW.

4.2.3 Mixer

A sintered tube flow mixer was used to mix the air and water phases. 

This unit consisted of a body-shell made frcm 2.5" bore pipe fitted with an 

internal sleeve made from porous sintered tube. Water enters the pipe 

through the side wall and occupies the annular space between the sintered 

tube and the pipe inner wall. Under pressure the water passes through the 

sintered tube wall and mixes with the air which is moving through the 

central passage. The combined phases then move together down the central 

passage of the sintered tube and out to the test section.

4.2.4 Flow Separator

At the discharge from the test section the two-phase mix passes into a 

separator consisting of a tank which allows the water to separate under 

gravity while exhausting the separated air to atmosphere (see fig 4.1). The 

unit is made frcm a simple steel casing with ports for the two-phase inlet, 

water and air emission and a water level indicator. This last item was 

installed to avoid accidental flooding.

4.3.0 Instrumentation

4.3.1 Flowmeters
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Air

A bank of four rotameters were used to monitor the air flowrate through the 

test section. Due to the large quantities of air which it was anticipated 

would be used it was decided to measure the air at the inlet to the test 

section where the pressure would be highest and hence the volume lowest. 

These rotatmeters had a scale indicating the volume of air corrected to a 

standard atmosphere of 1.013 bars and 15 degrees Celsius. Although the rig 

was run with the air supply considerably in excess of these pressures there 

is a standard method by which higher or lower supply pressures can be 

corrected without undue loss to the accuracy of the units.

Water

A Bestobell type M9 turbine flowmeter was used to measure the water 

volumetric flowrate. This flowmeter gives an electromagnetically generated 

signal which has a frequency proportional to volumetric flow. Calibration 

was carried out at the test bench and with the flowmeter in it's intended 

working location. The accuracy of this unit is +0.05% of its maximum rating 

within the calibration range. A copy of the calibration graph is found in 

Appendix 1.

4.3.2 Pressure Gauges

Four Bourdon-type pressure gauges were used. Two were used as safety 

measures to protect the pressure transducer and the manometer tubing 

network. Two more were of test instrument standard and were used to measure 

the rotameter and test section inlet pressures. In conjunction with the 

barometric reading these values provided absolute pressures. Calibration 

was carried out by the gauge company and a test certificate issued.

4.3.3 Pressure Transducer

Ihe main function of the experimental rig is to measure pressure drops 

over designated lengths of pipework. To this end a system of valves and 

hypodermic pressure tappings were used in conjunction with a pressure 

transducer to measure pressure drop through the system. The majority of the
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pressure measurements made were those involving water and air. The complex

system of tappings shown in fig 4.2 is used with a differential pressure

transducer to provide pressure drop measurements along the test section.

The pressure transducers used were Rosemount E1151DP differential

transducers. Three were used depending on the range required. They were

calibrated for 1, 3 and 7 bar FSD respectively. This type of unit can be

calibrated in situ to cover a wide range of pressure differentials up to 
22000 KN/M and have an accuracy of 0.1% FSD. A typical calibration graph is 

included in Appendix 2.

4.3.4 Thermometers and Thermocouples

Three thermocouples were used in the test loop. One was used to 

monitor the loop temperature at the multistage pump discharge to ensure that 

liquid in recirculation did not build up too great a temperature. Two 

thermocouples were also used, one each at the inlet and outlet of the test 

section. A thermometer was also used to read the air stagnation temperature 

at the exit from the separator.

Thermocouples

Three K-type thermocouples were used to obtain stage temperatures in the 

test loop. Manufactured to B.S. 4937, these are of the Chromel/Alumel type 

and have a generated EMF of 41 microvolts per degree Celsius. Calibration 

was carried out at the National Engineering Laboratory over the range +50C 

to -5C. Overall accuracy when used with the Solartron Multimeter 71520 is 

estimated to be +0.1°K. Calibration graphs for the thermocouples are in 

Appendices 3, 4 and 5.

Thermometer

A mercury filled glass thermometer was used at the separator to determine 

the stagnation temperature of the air. This was mounted above and behind 

the two-phase inlet to the separator thus reducing the water pick-up to a 

minimum by immersing the mercury bulb in the air while the air is at a 

suitably low velocity. The accuracy was taken to be approximately +0.25°K.
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4.3.5 Voltmeter

Voltage readings from the pressure transducers and thermocouples were 

taken frcm a Solartron Digital Multimeter, via channelling through an

instrument-standard multiway switchbox.

4.3.6 Digital Counter

An Orbital B-115M digital counter was used to read the signal from the 

turbine meter. Readings frcm both the voltmeter and the counter were taken 

directly, the various programmes used to calculate the results being 

equipped with the required constants and linear equations supplied by 

calibration.

4.3.7 Hypodermic Tapping Circuit

The ten tappings on the test section were connected to the pressure 

transducer via a bank of valves and a Schrader manifold. The various

components were all interconnected using 1/8 " bore nylon, used for its

flexibility and small effect on the response time. A clean water purging

supply was taken direct frcm the pump to the manifold to provide a means of 

removing air bubbles frcm the hypodermic tubing. The circuit used can be 
seen in fig 4.2.

4.4.0 Test Sections

There were four test sections in all, the details for which are as 

given below:- 

COIL DIMENSIONS

COILED TUBES: LARGE BORE SMALL BORE

TUBE ID 0.0124 m 0.007 m

COIL MEAN DIAMETER 0.274 m 0.0745 m

TAPPING BORE 1.6 mm 1.6mm

NO. OF TAPPINGS 10 9

NO. OF TURNS - 4 5

ANGULAR DISPLACEMENT

OF TAPPINGS 160° 270°
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JflKbT TAFF±N(iS AT 
TAPPING TYPE 

END FITTINGS 

MATERIAL 

STRAIGHT TUBES: 

TUBE ID 

LENGTH

NO. OF TAPPINGS 

TAPPING TYPE 

END FITTINGS 

MATERIAL

IT

1/8" BSP 

1/2" BSP 

STAINLESS STEEL 

LARGE BORE 

0.0124 m 

1 m 

10
1/8" BSP 

1/2" BSP 

STAINLESS STEEL

0“

1/8" BSP 

1/2" BSP 

(ADMIRALTY SPEC) 

SMALL BORE 

0.007 

1 m 

10
1/8" BSP 

1/2" BSP 

(ADMIRALTY SPEC)
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5.0.0 METHODOLOGY

5.1.0 General

There are a number of aspects of this work, which do not appear to have 

been met with and studied by other investigators, which form this thesis and 

these were arranged into three different sections.

First, the experimental methods, coirmonly used in assessing fluid 

pressure drop in a tubular length of test section, were modified to suit the 

test section orientation and conditions of test. A single-phase correlation 

was also developed at this point for use during the two-phase analysis. 

While many investigators have tested coils with the coil central axis 

running vertically, conditions of service of the boiler being modelled 

required that these tests be carried out with the central axis lying 

horizontally. The test method development was carried out during the 

single-phase test work and while collecting single phase data.

In the second section, straight tubes were tested and the changes in 

test method, required for carrying out two-phase tests, developed while 

comparing the test section data with readily available correlations.

Finally, tests are carried out for two-phase flow in the coiled test 

sections and compared with correlations where possible. At this stage

improved correlations for all the two-phase test data were developed.

5.2.0 Single Phase Tests

5.2.1 Experimental Method

The single-phase water tests with straight tubes were run first. The 

use of water made leak detection a simple matter and due to the

incompressible nature of the fluid at the test conditions the analysis

procedure was the simplest of the fluids under test. Having established

that the test rig was functioning properly, single-phase air tests were also 

carried out with minor changes to the test method to enable the fluid volume 

to be assessed.

The test method involved the following stages:-
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multistage pump was primed. For air tests, the pressure regulator on the 

air supply to the rotameter bank was set, before opening first the butterfly 

valve on the chosen rotameter and then the supply valve to the flow mixer. 

This routine was adoped to make sure that any water which might have leaked 

back through the air supply route during water tests did not find its way 

into the rotameters.

2) All pressure gauge and transducer tapping and supply lines were purged, 

for water or two-phase tests. For air tests the rig would be left to run 

dry at a nominal flow with bleed points open to dry all tappings and 

instrumentation.

3) For water tests the multistage pump was switched on and the supply 

pressure to the test section raised to a maximum safe level to check all 

connections for leakage. For air tests, having turned on the air supply at 

the required pressure, a special soap solution could be sprayed onto 

couplings to assist in leak detection.

4) Having assessed the maximum and minimum flow which could pass through 

the section fitted and be measured, the range obtained was divided into ten 

subdivisions, (a set of test readings would be taken at each of the ten 

calculated flows).

5) Starting at the highest flowrate, the pressure gauge reading was taken 

from the first tapping (number 1 ) and, by the use of the tapping isolation 

valves, a sequence of pressure differential voltage values were taken from 

the pressure transducer/voltmeter. The readings were taken between the 

tapping furthest down the section and tapping number one, first, and then 

between tapping number one and each preceding tapping towards tapping number 

one. By following this method it is possible to reduce the ingress of air 

bubbles to the tapping lines, during two-phase tests, to a minimum and so 

this method of purging was adopted generally.

6 ) Having taken all relevant pressure readings, the signal value from the
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pressure readings had been taken) and the thermocouple voltages read.

7) After all readings had been taken, and before reducing the flowrate to 

the next selected value, the tapping lines would be purged or dried again.

As a rule, whether required or not, the ambient temperature and 

barometer reading were taken before all tests, single-phase water, air and 

all two-phase tests. Typical raw data can be found in Figure 5-25.

5.2.2 Data Analysis

For single-phase tests on either test fluid, air or water, equation 2.4 

can be used to determine the friction factor where there is no gravitational 

or accelerational pressure drop to take into account. A computer progam was 

written which read test data files, converting voltage and frequency values 

as required, and determined friction factors based on frictional, as well as 

accelerational pressure losses where air is the test fluid. The results 

obtained can be seen in figure 5.1, 5.2, 5,3 and 5.4 It should be noted 

that separate programs were written for coils and straight sections as well 

as for each fluid. While the flow in the straight tubes did not require 

additional settling length other than that which was provided up to the 

first tapping, the literature survey had produced papers which suggested 

that up to 270° of rotation should be allowed as settling length before

pressure differentials are read frcm coils. The early water tests on the

coiled test sections confirmed this as being the case. Hence the computer 

programs handling coil test data did not include pressure readings for 

tapping numbers one and two in their calculation of the frictional pressure

drop. Frcm figure 5.5 it can be seen that the air data does not follow the

expected trend. Estimates showed that the air tests were producing stream 

velocities in excess of 80% of the critical velocity. At these velocities 

it is necessary to use a Fanno line method used in gas dynamics (40) to 

assess the value of the friction factor. A computer program was written 

which produced the required Mach Numbers, but since the method employed
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since the work involved in producing the software for the whole solution was 

not justified. From figure 5.6 it can be seen that this method succeeded in 

producing the expected results for the straight tubes. While improvement 

resulted, a satisfactory solution was not found for the high velocity gas 

flow in the case of the coiled tube. On comparing the data (figures 5.7 and 

5.8) it was suggested that the reason for the disparity between the

compressible and incompressible results was almost certainly due to the 

failure of the Fanno line method to allow for secondary flow in the flow 

stream of the coil, the analysis of which is outwith the remit of the

report. Fortunately this air data was unlikely to be needed in the analysis 

of the two-phase data,in Chapter 6.0 the case is discussed further.

The water test results for flow in a coiled tube showed good agreement 

with the correlation proposed by Srinivasan(2) (figures 5.9 and 5.10).

5.3.0 Two-Phase Results for Straight Tubes

5.3.1 Experimental Method

The experimental method employed was essentially the same as for the 

single-phase tests. Regular checks had to be made of the pressure tapping 

lines to ensure that they remained free of air bubbles and as an additional 

precaution the test sections were inserted with the tappings to the bottom.

Due to the presence of finely dispersed air bubbles in the test mixture, the

procedure had to be ordered in such a way that pressures in the tapping 

lines always erred on the positive side to make sure that there was no 

induction of the bubbles into the lines. Where checks had to be made on 

data points, the whole system was purged with clean water before retaking 

data.

5.3.2 Data Analysis

The values of the density, velocity, mass flow, viscosity, measured 

two-phase multiplier and Lockart-Martinelli parameter were calculated by 

computer program and comparison made with the Lockart-Martinelli correlation
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From the graph it can be seen that the smaller tube data with higher

mass flux values lies closer to the Lockart-Martinelli line. Chisholm(34)

presented a graph showing this tendency for particular mass velocities (up 
2to 2078 kg/m .s) to show better agreement with the Lockart-Martinelli

correlation. Brief comparisons were made with the Baroczy(33) and the

Chisholm and Sutherland(35) correlations and there was a reasonable (within

20%) agreement at the lower mass flux values achieved on test. This was,

perhaps to be expected since the limit to the Baroczy(33) data was in the
2region of 4000 kg/m .s with Chisholm and Sutherland (35) using the same data

•kas a base for their correlation. Finally the correlation presented by HTFS 

was used in a computer program. This correlation was developed using 

computer software to provide a fit to the HTFS adiabatic two-phase flow 

data. Based on the Lockart-Martinelli method (equation 2.37), the C 

coefficient is '’tuned' to provide a fit to the HTFS data and is mass flux

and property index (density and viscosity) dependent. Figures 5.12 and 5.14

show the two-phase multipliers obtained by the HTFS correlation compared to 

the two-phase multipliers measured and using equation 2.8 for the

single-phase friction factor. The computer output supplying other 

information for this data can be found in tables 5.1 and 5.3. An

alternative equation for the friction factor, obtained frcm the single-phase 

test data, was employed and the resultant graphs and data are found in 

figures 5.13 and 5.15, tables 5.2 and 5.4. It was found however that the 

difference in values of the two-phase multipliers obtained was 

insignificant. The two-phase correlation used here provides the best fit 

for the test data to date but the tendency for even this correlation to 

become less accurate at higher mass velocities can still be seen. This is 

not surprising if the mass velocities are examined. The best correlations 

available have been dependent on data with a mass velocity upper limit of 

* Heat Transfer and Fluid Flow Service, NEL, East Kilbride, Scotland.
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26400 kg/m .s. Also it can be seen that there is a difference between the

multipliers for the respective tube diameters even after allowing for the

high mass flux values. It was noted that the HTFS correlation had been

fitted to data which had thousands of points above, but practically no data

for tubes below, 18 mm in diameter. Other data for small tubes was

extracted and compared with the test data and the resultant graph can be

found in figure 5.16. The 8 mm data shown has mass flux values of up to 
29000 kg/m .s and displays seme data confirming the test results. Seme data 

points appear to be adrift but it is worth noting that this data is for

boiling flow. The 2.6 mm data also show fair agreement. It was decided to

collect the coil two-phase data to confirm the trends shown in the straight

tube data before attempting to find a suitable correlation which would add

tube diameter and further mass velocity dependence.

5.4.0 Two-Phase Results for Coiled Tubes

5.4.1 Experimental Method

During all of the coil two-phase tests and over almost the entire range 

of qualities tested the test section vibrated with substantial force. This 

vibration persisted despite the rotation of the coil so that the central 

axis was in the vertical position. The resultant fluctuations in the 

various instrument readings may have reduced the consistency of the data 

obtained so far. To minimise the effects of the vibration the 

instrumentation was mounted on a separate bench. The procedure for 

collecting readings was as described in section 5.2.1., forces acting on the 

liquid phase producing a fairly consistent water cover over the tapping 

entrances, reducing the amount of purging required.

5.4.2 Data Analysis

The literature survey had not produced any reference to research work 

for two-phase flow in coils at high mass velocities of the magnitude covered 

in these tests. Those references which had dealt with two-phase flow in
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similar to those found in straight tube horizontal flow. Additionally the 

replacement of the straight tube single-phase friction factor with that of 

the coiled tube single-phase friction factor had produced a calculated 

two-phase multiplier with a good agreement with measured multipliers. This 

approach was adopted in writing the software to handle the coiled tube 

two-phase flow test data. Versions were written utilizing both the equation 

proposed for the single-phase friction factor by Srinivasan(2) and the 

equation obtained from the test data. The resultant graphs and output are 

found in figures 5.17 to 5.20 and tables 5.5 to 5.8. Again it was found 

that the change in single-phase friction factor had very little effect on 

the ratio of the calculated - to measured - multipliers. With reference to 

the multiplier ratios it should be noted however that the correlation is in 

fact better than the case for straight tubes. Typical raw data can be found 

in Figure 5-25.

5.5.0 Two-Phase Data Correlation

Both the straight and coiled tube data suggest a relationship exists 

between the HTFS two-phase multiplier and the tube diameter. It has also 

been established that the mass velocities achieved during test are greatly 

in excess of the limits of the data for which existing mass 

velocity-dependent correlations have been produced. Therefore it is 

proposed that a correlation developed for the test data be further dependent 

on both these parameters. In addition it . is proposed that there is a limit 

up to which the flow patterns for two-phase flow in a coiled tube can be 

predicted as being similar to those for a straight tube. Lacey (25) did not 

provide test data but did present such evidence from flow visualisation 

tests. He showed that at low mass velocities, bubble and slug flow are much 

the same in each type of tube geometry, with the phase breakages preventing 

secondary flow from establishing a difference. It is suggested however that 

there will come a point, with the increase in velocities and at certain
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qualities,- where the secondary flow will establish itself in the coil. At 

this point there will be differences between the flows in straight tubes and 

coils for which different correlations must be provided.

5.5.1 Straight Tube Correlation

The new correlation was only required to come into effect at a certain 

level of mass flux for each tube. Accordingly a ratio of the chosen mass 

flux to the tube diameter was chosen. The new two-phase multiplier would be 

of the form,

0x2new = 0 2 . C3 (5.1)
2where C3 contains the mass flux/tube diameter ratio and 0̂  is as found in

equation 2.37. Having examined both the large and small bore data and after

trying a number of different values, a suitable computer subroutine was

written which achieved good results for both tubes. It was decided to adopt

the methods of Chisholm and Sutherland who presented different values of the

coefficient C2 depending on certain ratios of mass flux. For the test data,

each tube diameter had a suitable value of mass flux chosen, after which the
2new correlation was required to have an effect. This value was 3750 kg/m .s

2for the large bore tube and 2162 kg/m .s for the small bore tube.

The group (G/( const . d)m) was used as a ratio which should equal 1

when the required mass flux was reached. This same group was in turn used, 

being diameter and mass flux dependent, as the base for the modifying C3 

coefficient as described in equation 5.1
5The value for the constant was taken as 1 x 10 for both the cut-off 

point ratio and the modification factor. The index was taken as 1.554 for 

the cut-off ratio and 1.115 for the correlation. The final form of the

straight tube correlation coefficient C3 for equation 5.1 is,
C3 = 0.5 + (G/(d . io5 )1 *115 )0 *5 (5.2)

where G/(d . 10^  1.1554 > ]̂ q and
5 1 1554C3 = 1.0 for G/(d . 10°) < 1.0

The graphs of the modified multipliers compared to the test measured
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multipliers can be seen in figures 5.21 and 5.22 together with the actual 

data in tables 5.9 and 5.10.

5.5.2 Coiled Tube Correlation

As was the case for the straight tube correlation, the coiled tube 

correlation is not required to come into effect until certain levels of mass 

flux are reached for a particular diameter of tube. The levels of mass 

velocity at which the correlation is needed for the coiled tube flow can be 

seen to be considerably lower than those for straight tube flow as can be 

seen if figures 5.12 and table 5.1 are compared with figure 5.18 and table 

5.5.

The format of the correlation is the same as for the straight tube 

data, based on equation 5.1. A significant difference achieved was that of 

retaining the same index m for both the cut-off ratio and the correlation. 

The final form of the coiled tube two-phase flow correlation coefficient C3 

is,

C3 = 0.1 + (G/(105 . d )1 *0671 )0 *35 (5.3)
where G/(d . 103 )1-0671 >

C3 = 1.0 where G/(d . 103 )1-0671  ̂ -ĵ q̂

The graphs and specific data for this correlation can be found in 

figures 5.23 and 5.24, tables 5.11 and 5.12.

5.5.3 Correlation Development

As can be seen from Figures 5.14 and 5.12, the HTFS correlation could 

be improved for high mass flux values and low diameters. The first stage in 

improving the mass flux and diameter dependency was to include a term 

involving these parameters. Examining the data frcm Tables 5.5 and 5.6 it

was decided that the new correlation should take effect from approximately
2 2 2000 kg/m .s for the 12.4 mm tube data and 1200 kg/m .s for the 7.7 mm tube

data.

Since at this point the new tern in the correlation should equal 1.0 

for each set of data the term can be solved to provide a suitable index.
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2000 kq/m^.s = 1.0 = 

(0.0124 m x 105)N

1200 kq/m^.s 

(0.0077 m x 105)N

=> 2000 kg/m^.s 

1200 kg/m^.s (0.0124 x 100.0077 x 10

1.667 = 1.614N

N = 1.0671

A computer program was written which calculated the mean, standard 

deviation and percentage of data within 10% of the correlation in use. The 

original HTFS correlation was then compared with the same correlation

the two diameter data sets, as can be seen in Tables 5.13 and 5.14 

respectively. The intention of introducing a diameter term had been to 

bring the line of data for each diameter together (Figures 5.5 and 5.6) by 

bringing in a mass flux factor "lifting" the high mass end of the data 

group. It was recognised that in bringing the groups together and then 

"lifting" both sets of data together that a considerable proportion of low 

mass flux data would exceed the 10% limits on the correlation. However 

there can be seen to be a very large improvement in the total group (both 

diameter sets) as well as a substantial improvement in the smaller diameter 

set standard deviation.

Having brought the data sets into alignment the next stage was to reset 

the lower mass flux data to the HTFS correlation line. A constant would be 

added to achieve this and the effects of adding valves of 0.1, 0.11 and 0.09 

can be seen in Tables 5.15, 5.16 and 5.17 respectively. The lower mass flux 

data in the large bore results were examined but it was found that the 

effects of the constants could not be assessed easily.

The differences in standard deviation and mean for the large bore data 

were very small. It was decided that the best measure was a 3% increase in

multiplied by the new term G/(d x 10 )5,1.0671, term succeeds in realigning
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data within the 10% limit when a constant of 0.1 was added.

The new tem now read
0.1 + G/(d x io5)1*0671 

The data at this stage will lie on a single line, agreement with the 

measured values of pressure drop varying from good at lower mass flux values 

to poor at higher values.

The final stage of development involves "bending" the correlation to 

remove the mass flux effect variance. To achieve this an index is applied 

to the mass flux/diameter ratio to give an equation, of the form 

0.1 + (G/(d x iO5)1*0671)1"

Values of index of 0.5, 0.35 and 0.2 were tried and the results can be

seen in Tables 5.18, 5.19 and 5.20. Where m = 0.35. It can be seen that

the correlation shows a maximum of data within 10% of the measured values,

and has a greater consistency of standard deviation and mean for both large 

and small bore data. before deciding on 0.35 as an index value the 

sensitivity of the index was examined by trying values of 0.36 and 0.34 for 

m, (see Tables 5.21 and 5.22). The correlation with m = 0.35 has a 

mid-value for both total mean and standard deviation but the variation 

between the three sets of values can be seen to occur in the third 

significant figure. Additionally with m =0.35 the correlation has the 

greatest amount of data within the 10% limits.
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6.0.0 DISCUSSION

This discussion will be divided into four parts. The pressure drop in 

straight tubes will be discussed firstly for the single and two-phase 

results. The second section will essentially repeat this for coiled tubes. 

The third section will deal with the usefulness of these tests in modelling 

boiling flow. Finally a brief discussion with respect to the flow 

visualisation tests will relate the findings of the high mass flux tests 

carried out using clear plastic tube.

Gompressibility effects were experienced with single-phase air flow 

which resulted in a significant accelerational pressure gradient as 

discussed in connection with equ (2.1). Gas dynamic methods were employed 

in order to compare the single phase air results with the existing 

correlations for incompressible single-phase flow. While the Fanno method 

employed produced satisfactory results for the straight tubes, the results 

for flow in coiled tubes did not compare so well with the Srinivasan 

correlation. Possible reasons for this apparent discrepancy will be 

discussed.

6.1.0 Straight Tubes

The relationship between friction factor and Reynolds Number for 

straight tubes has been thoroughly investigated by other researchers and a 

number of correlations are in common use covering various ranges of Reynolds 

Number.

Two of the simplest of these, covering a relatively limited range of 

Reynolds Number are given in equ (2.7) and (2.8). These, particularly equ 

(2.7), have the advantage of simplicity of form which makes them useful for 

substitution into other equations. The widest range of Reynolds Number is 

found in a correlation found in the ESDU(45) papers on frictional pressure 

drop. Good agreement was obtained when comparing these correlations with 

the test data obtained.

As has been discussed in section 2, the prediction of two-phase

PAGE 41



pressure drop is much less certain owing to the greater complexity of the 

flow. The best available correlation for the prediction of two-phase 

frictional pressure drop is of a proprietary nature, being the property of 

the Heat Transfer and Fluid Flow Service (HTFS) and is based on a large data 

bank covering a range of fluid properties : mass flux, quality, tube

diameter and orientation. There are however in the data bank relatively few 

data for tubes less than 12 mm in diameter and it might therefore be 

expected that this might be an area of weakness.

6.1.1 Single-Phase

Tests carried out using air and also water in the straight tubes are to 

provide confirmation that the rig instrumentation is functioning accurately, 

that the experimental technique is adequate and to establish whether the 

tube can be regarded as smooth. This area of study is particularly well 

covered and results are compared with the friction characteristic equations 

chart and showed good agreement.

Looking at fig 6.1 showing pressure loss against distance it can be 

seen that there are a number of small deviations from the straight line. 

These are also discussed in the chapter on experimental methods and were, it 

is believed, due to small burrs on the inside of the tappings (see figs 6.2 

and 6.3). The depth of these irregularities is uncertain but they were 

positively identified by the use of a flexible fibrescope. There were 

distinct grinding marks around the inside of the tappings. There were also 

considerable amounts of weld bum - through where the tappings had been 

welded to the tube, and large areas of rust. This rust was present despite 

the use of stainless steel for the tube construction.

Despite the presence of these surface irregularities in the tube bore, 

the data, when plotted on the friction characteristic, agreed with the line 

for an hydraulically smooth tube.

Whilst the results for air flow through the large bore tube showed a 

good agreement with the Blasius line, the small bore results did not. It
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was decided to use a method frcm John(40) where, having calculated the Mach 

numbers at two different points a known distance apart, the difference 

between the results of a standard integral give a term:

C (the difference) = ,d (6 .1 )

Tests were run and differences calculated for a range of Mach Numbers. 

In calculating Mach Numbers for both large and small bore tubes with 

single-phase air flow it was found that the method originally used was 

adequate until Mach Numbers exceeded approximately 0.2. Thereafter it 

became necessary to apply the Fanno method, employing the equation shown 

(6.1) and respective method based on gas dynamic theory. It should be noted 

that the Mach Numbers were estimated to have reached values as high as 0.83 

in the small tube. It was believed that at the point where accelerational 

and frictional terms became insufficient, local changes in the temperature 

vvould have started to affect the true volume of the fluid. Additionally 

while Mach Numbers reached 0.83 at the tapping with the lowest pressure 

value, the changes of section and still lower pressures at the downstream 

coupling gave rise to the possibility of there being choked flow conditions 

affecting the through flow of fluid.

However, the Fanno flow method used succeeded in bringing the data to 

the expected position on the Reynolds Number/friction factor plot. Where 

the Mach Numbers were less than 0.2 - 0.3 the two methods employed provided 

very similar results, confirming the suitability of the Fanno flow method 

for use in this application.

The single phase water tests provided good agreement with the line for

an hydraulically smooth tube. For the purposes of calculating two-phase

pressure drop, an equation for the friction factor was derived frcm this

data,

f = 0.0016 + 0.106/Re0,32 (6.2)

6.1.2 Two-Phase
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The method used to assess the accuracy of two-phase correlations is to 

compare a calculated multiplier ratio with the actual two-phase multipliers 

measured in the tests. Calculations are based both on a recognized equation 

for the single-phase gradient and for an improved equation based on single 

phase data frcm this test work (equ 6.1). The difference between the 

equations and the resultant multiplier comparisons was minimal as can be 

seen comparing figures 5.12 with 5.13 and 5.14 with 5.15. Comparing these 

graphs it was decided that there was no difference, with respect to 

single-phase friction factors, worth investigating.

The measured multipliers for the large-bore data can be seen to agree

quite closely with the calculated multipliers. Tables 5.1 and 5.2 show a

grouping of the ratio + approximately 30%. However the small-bore data

shows a different trend. The values of measured multipliers were between

two and three times the calculated value (tables 5.3, 5.4 and figures 5.13

and 5.14). Noting the tendency of the ratio of calculated-to-measured

multiplier to decrease as the mass flux increases, we may also note that

this same trend is visible in the large-bore data (tables 5.1, 5.2 and

figures 5.11 and 5.12) but the movement here is less noticeable. There is

no direct link since frcm the data we can see that a mass flux value for say 
24500 kg/m .s has a very different multiplier ratio value for the large and 

small-bore tubes respectively. However it may be the case that a 

relationship may exist which entails factors related to tube diameter. 

Graphs displaying both large and small-bore results for mass quality and 

mass flux against calculated and measured multipliers (figs 6.4, 6.5, 6.6 

and 6.7) show that while there is a small difference between the calculated 

and measured values of mass flux there is a marked difference in the values 

of measured mass quality frcm that expected. Only when mass flux and 

quality were shown against individual multipliers instead of their ratio did 

this trend become apparent. In order to check the truth of the small-bore 

test data a comparison was made with data from the HTFS (fig 5.16) data
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bank. Referring to fig 5.16 it can be seen that while there are some data 

points which are askew of_the main trend (High mass flux boiling data) it 

can be seen that there are points which confirm the trend found for the 

measured two-phase multiplier to increase with mass flux at a greater rate 

than calculated values.

Surrmarising the assessment of the data, while it was found that the 

values for the large bore two-phase flow data is fairly accurately predicted 

by the combined Baroczy-Chisholm-Sutherland method it was found that the 

small bore data - is not. Plots of mass quality against measured and 

calculated multipliers indicate that the relationship between these factors 

changes for two-phase flow in smaller diameter tubes (less than 10 mm).

In section 5.0, as part of the data analysis an attempt was made to 

provide a correlation for the data which, in addition to providing a better 

estimation of the characteristics of these particular test sections, would 

have a base on which later work could develop.

First, the effect of mass flux. It has been shown that the general

limit of data, on which mass flux dependent correlations have been based, is
2approximately 4000 kg/m .s. Since the data collected rises to values in

2excess of 6500 kg/m .s it was decided that the new correlation would present 

an additional mass flux dependent term. Secondly, it is suggested, that for 

a given combination of phases, there is a lower limit of diameter under 

which this parameter has been correlated to date. Up to this point in time 

investigators may only have noted a trend in data for small tubes tested to 

10 mm diameter. However, when viewed frcm the point where evidence of a 

diameter effect is sought, data for quite large tubes may show signs 

displaying such an effect. It was therefore proposed that the correlation 

should include a tube diameter dependent term. Finally, the design of the 

test rig was such that the spectrum of mass qualities which could be 

investigated was limited. For this reason it would not be appropriate, 

despite the evidence of figs 6.6 and 6.7, to include a term dependent on
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mass quality. The range of mass qualities tested, was narrow and so the 

visible effects on these tests are small.

6.2.0 Coiled Tubes

Single-phase flow in coiled tubes has not been investigated to the same 

extent as flow in straight tubes but there are a number of sound 

correlations in use. These tend to break down to the same forms as those 

for straight tubes but with the addition of ratios related to the Dean 

Number. Both Blasius and modified Blasius forms are found to be in 

reasonable agreement with the data taken; but the line proposed by 

Srinivasan(2), taking the Blasius form with Re0,2 (d/D)°*̂  replacing Re0 *32 

was found to be the best frcm those available. While this correlation was 

found to be good it was decided to fit a line through the test data for the 

specific coils under test and to compare these with values obtained using 

Srinivasan's correlation. This is important since the best method to date 

of predicting two-phase flow in coiled tubes involves replacing the straight 

tube single-phase gradient by an equation for single-phase flow in coiled 

tubes.

The coiled tube two-phase test results were analysed in exactly the 

same way as those for the straight tube tests but with the replacement of 

the straight tube friction correlation by the coiled tube correlations, both 

Srinivasan (2) and a correlation based on the single-phase test data were 

used.

6.2.1 Single-Phase

The single-phase data were closely predicted by a number of the 

existing correlations available with Srinivasan(2), Akagawa(l) and White(32) 

all within an acceptable range. In addition to these a line was fitted 

through the data to provide a correlation for this specific data.

fc(D/d)0 ’5 = 0.081 . (Retd/D)2 )-0-225 (6.3)

In discussing the straight tube data it was shown that compressibility 

effects had to be dealt with by using a method normally employed in gas
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dynamic work. While this method worked well for the straight tube it can be 

seen from fig 6.8 that it did not work when used with the coil data. Tests 

were carried out to check both straight and coiled tube data but no reason 

was found for the apparent drop in friction factor values. There may be, 

however, given the differences in flow regime between flow in the straight 

and coiled tubes, an explanation available.

In the literature survey it was shown that a number of papers agree

that the maximum velocity of a fluid flowing round a bend is greater than 

would expected to be the case (see figure 6.9) due to the secondary flow 

pattern which develops. A simple vector diagram will show that the true 

velocity of the fluid would involve adding a vector of circumferential 

velocity. Extending this concept it is possible to imagine that local Mach 

Numbers can rise above estimated values rendering the method for straight

tubes (dependent on one-dimensional flow) inadequate.

6.2.2 Two-Phase

The two-phase data for coils were better predicted by the methods

adopted than the straight tube data. This appears at first to be an odd

situation. There are, however, a number of important features of the coil 

flow which should be considered before conclusions are drawn.

Firstly it was noted that during the two-phase coil tests there was a 

constant vibration frcm the coil. Fig 6.10 gives some idea of the magnitude 

involved, surprising if only because the coil is firmly fixed at one end and 

suppressed at the other. While the frequency of this vibration changed with 

flow rate it was of an intensity such that the whole test bench shook and it 

became necessary to remove the instrumentation and other loose equipment to 

a separate table. The vibration was steady and powerful and it is feasible 

that this phenomena had a regulating effect on the two-phase mix which is 

not normally present in straight tube flow. The orientation of the coil was 

moved frcm having the central axis horizontal to vertical, but did not have 

any effect on the vibration. (It is worth noting that none of the papers
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dealing with two-phase flow in coils made any reference to such vibrations. 

This may have also been due to the generally low limit of mass velocities 

tested).

It has been stated that these tests have been run to new, higher limits 

of mass flux. It is suggested that a point had been reached where rather 

than the flow moved in a generally single dimension, secondary flow patterns 

have established themselves and it is no longer valid to apply the 

single-phase friction factor as previously used.

6.3.0 Limitations of Modelling Boiling Flow 

with an Air/Water Mixture

For the purpose of this research water and air have been used to model 

boiling flow in a coiled boiler tube. It was recognized at the outset that

there would be a limit to which the comparison could be taken and this

section will deal with areas where it is expected that differences would be 

met.

First it is important to know how the flow patterns in boiling and two 

component two-phase flow differ.

With air and water it has been shown how various types of flow pattern

evolve as the volumes of the two phases change. Starting with bubble flow
i

with a relatively small amount of gas dispersed as bubbles in a continuous 

liquid phase, as the quantity of gas increases plug flow will develop with 

coalescing gas bubbles forming plugs of gas. With greater gas volume 

stratified flow may form and as the gas phase increases in quantity, and 

hence velocity, the liquid phase may be whipped up to form wavy flow and 

then slug flow as the waves cover the tube section and are pushed along as 

slugs of liquid. If the gas phase flows with a high enough velocity 

relative to the liquid phase the gas may push the liquid to the wall to form 

an annul us and the gas itself run along the tube centre as a core to give 

annular flow perhaps with liquid entrainment as small waves on the liquid 

surface are broken off and carried in the gas flowstream. With the flow in
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a coiled tube there nay well be other patterns which develop. The secondary 

flow and the centrifugal effects will■both act to alter the liquid and gas 

distribution, in the tube section. While for low velocities it has been 

shown that the liquid phase will tend to dominate the outer areas of the 

tube section, if the gas phase velocity is high enough film inversions will 

occur (Lacey(25)) with the gas occupying the outer regions but with 

secondary flow within the gas phase causing entrainment of liquid from the 

inner liquid strata.

In the case of boiling flow there are a number of differences in the 

way in which the flow patterns develop.

At the tube wall the presence of nucleate boiling will have the effect 

of increasing the friction losses between the phases and the tube wall. 

Indeed it is not altogether impossible that if the rate of heat flux were 

great enough dryout could occur whilst there is still a liquid core, forming 

an annular flow with vapour to the tube wall. The point is made that for a 

given quality, the boiling flow situation will have a dry wall before the 

two-component adiabatic flow and this will have an effect on the accuracy of 

the friction pressure drop prediction.

The boiler being modelled in this study consists of two coils, one 

forming the inner wall and the other forming the outer wall with the heat 

source placed between the coils, (see fig 6.11). The effect of this 

arrangement is to limit the heat transfer almost exclusively to the outer 

side of the inner coil and the inner surface of the outer coil. This 

presents a situation which is an opposite to the ideal.

It is intended that the inner coil be used to heat the liquid from a 

subcooled state to a saturated condition. If indeed it is the case that the 

liquid in this coil remains liquid then there will be no problem in 

predicting the pressure drop in this coil. However if there is any boiling 

of the liquid, the surface on which nucleate boiling will occur will be the 

outer surface (see fig 6.12). As has been discussed earlier, where there is
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a small amount of gas or vapour present in the coil travelling at a low 

velocity relative to the liquid, it will move to the inner surface due to 

the centrifugal forces acting on both phases. These phase flow phenomena 

present a situation where the highest part of the liquid velocity profile is 

moving along the surface with the highest local friction factor caused by 

the nucleate boiling. Additionally the interphase shear will be at a

maximum since the vapour bubbles will traverse the whole tube diameter

before arriving at the inner surface where they may recondense.

The situation is similarly far from ideal at the outer coil.

In this coil the saturated liquid is to be heated to a point where at

the coil exit the steam is superheated. During the boiling process the heat

transfer is through the inner wall but due to the mass of vapour being 

generated the increasing vapour phase velocity will quickly bring about film 

inversion (see fig 6.13). This will occur at a point where the centrifugal 

forces acting on the vapour are greater than those acting on the liquid due 

to the higher velocity outweighing the effects of the greater liquid mass. 

Again there is a situation where the vapour bubbles will be formed at the 

wetted surface, maximising the interphase shear and if the entrainment model 

by Lacey(25, 27) is considered, liquid at the boiling surface may be

entrained in between the secondary flow vortices and thrown onto the cool 

outer wall surface.

These circumstances may not be the worst imaginable and indeed the 

resultant effects on the pressure drop may be negligible. However it can be 

seen that the effects and circumstances described above could not happen in 

the air/water tests and consideration should be given before applying the 

results of this research directly to the intended boiler design.

6.4.0 Flow Visualisation Tests

Clear plastic tube of 12.4 mm internal diameter was wound onto a 

mandrel to give an arrangement exactly the same as that of the larger bore 

coil.
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The primary goal of these tests was to ascertain the flow patterns 

which were responsible for the coil vibration. At the same time general 

observations were made of the flow patterns at lower mass flowrates.

With the air content at a minimum the mixed flowstream quickly moved to 

form a stratified flow as the section became curved and the centrifugal 

forces separated the phases.

When the operating conditions were reached which had been present at 

the onset of vibration the stratified flow pattern was seen to break up. 

The use of a high speed polaroid photograph allowed the examination of the 

flow pattern but it was felt that high speed cine or video film would be 

required for a thorough examination.

It appears that secondary flows.impart, a rotational motion to the whole 

mixed fluid body in bursts. Sections of low quality flow could be seen 

swirling along the tube, broken up by sections of high quality flow.

It is suggested that' the secondary flows present were rotating slugs of 

liquid with forces which exceeded the centrifugal forces created by the flow 

about the heli central axis. These slugs of liquid, rotating about the 

secondary flow axis amount to eccentric masses causing out-of-balance 

forces, subsequently causing vibrations. As the velocity increases the 

vibrational frequency will increase, with increased secondary flow. 

Additionally however the increased secondary flow will lead to 

homogenisation, less slugging and hence the reduction of the out-of-balance 

forces. It is expected therefore that the vibration would reduce in power 

at sufficiently high mass velocities.
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/ . U. U CONCLUSIONS

Frictional pressure drop for two particular coil geometries has been 

examined with air and water adiabatic, both single and two-phase flows.

For the single-phase friction factor, the correlation by Srinivasan 

(equ 3.17) is confirmed by experiment and is recommended for general use. A 

correlation is also presented for the specific coils under test (equ 6.3).

For frictional pressure drop with two-phase flow either the 

Chisholm-Sutherland(31) or HTFS coefficient is confirmed by experiment as 

suitable for use up to certain mass velocity and tube diameter conditions. 

Thereafter a correlation is provided which allows for the correction of the 

two-phase multiplier by equation 2.37 for the coils under test and for 

general use at high mass flux.

Straight tubes of similar bore were also tested at the same wide range 

of flow conditions. A suitable correlation for small tube diameters and 

high mass flux flows is also provided (equ 5.2).

.The possible use of this study with respect to using the results for 

modelling the changing quality flow in a boiler is discussed as are the 

results of a short series of flow visualisation tests carried out with the 

large bore coiled tube.

Finally, strong vibrations were produced in the coils over most of the 

two-phase flow conditions. These were at a high mass velocity and the flow 

visualisation tests indicated that secondary flow was causing a rotational 

slugging which produced the vibrations. While data was not collected for 

these flow visualisation tests it was noted that the frequency of vibration 

increased with mass flux. A paper by Hsien-wen hsu(18) on vibration effects 

on single-phase flow suggests that such vibration could cause massive 

increases in frictional losses.
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8.0.0 RECOMMENDATIONS FOR FUTURE WORK

The area of study concerning single-phase flow in helical coils has 

been adequately covered for the purposes of this work.

It may be that the case for study of near critical flow in a coil would 

be one of interest to users of gas dynamic studies. It is understood by the 

author that some work is being carried out at the tine of writing this 

thesis whereby a two-phase flow is being treated as a single compressible 

fluid and the laws applicable to compressible flows used to provide a 

correlation for high velocity two-phase flow.

From the literature survey and the work carried out for this study it 

is felt that the subject of high mass velocity two-phase flow is one which 

could be expanded considerably together with the effect of tube diameter on 

two-phase flows. It is likely that the applications and hence the 

justification of such study would be limited. If a use for such information 

has not arisen to date for such conditions what likelihood in the future? 

However, the ever present need for the compaction of plant gives constant 

life to studies which might apply to coiled boiler tubes.

This last statement leads to the main area in which study might produce 

interesting and original work.

This study has added a flow regime to those already known and 

established for two-phase flow. This is the two-phase secondary flow 

slugging which caused substantial vibrations in the test coil. The flow 

visualisation tests carried out were very crude. No mention of either the 

vibration caused or the phenomenon itself has been traced in the literature 

survey. Lacey has discussed annular flow in a coiled tube with liquid 

entrainment but this flow regime is believed to occur at much higher 

qualities. It is suggested that the presence of secondary flow might lead 

to some very interesting results at high mass velocities with many different 

flow pattern combinations and effects, the knowledge of which will be very 

useful to design engineers.

PAGE 53



Finally it would be of great interest to know more about the effects of 

vibration on flow in coils and particularly for two-phase flow. If 

vibration is a characteristic of two-phase flow in coils and the friction 

factor increases as suggested by Hsien-wen hsu(18) then such knowledge will 

be of great importance to anyone involved in plant design.
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Tube Bore = .0124

Mass Qual L-M Mult T.P .Mult
Flux Param Ratio Meas Calc

KG/M2.i3 <-) <-> C/M (-) (-)

1152.7 .174 3.275E-01 .924 61.50 56. 84
1122.7 .170 3.293E-01 .911 62. 70 57.13
1104.0 .153 3.516E-01 .894 60.02 53. 6 8
1086.9 .136 3.793E-01 .922 53.99 49.79
1056.6 . 1 2 0 4.095E-01 .965 48. 00 46.32
1055.0 . 100 4.657E-01 1.146 35.25 40.41
1024.4 .083 5.225E-01 1.068 33.74 36. 03
985.5 .064 6.281E-01 1 . 1 2 1 26.69 29. 92
979.2 .043 8.515E-01 1.016 21.48 21.82
960.6 . 023 1.400E+00 .907 14.66 13.30

1968.5 .059 9.130E-01 1.420 1 1 . 06 15.71
1933.1 . 056 9.350E-01 1.412 1 1 . 01 15.54
1924.2 . 049 1.005E+00 1.465 9.95 14.57
1911.2 .043 1.093E+00 1.408 9.60 13. 53
1910.2 .039 1.168E+00 1.381 9.20 12.70
1894.4 . 033 1.310E+00 1.195 9.57 11.44
1855.5 .028 1.440E+00 1.252 8.44 10.56
1882.2 . 021 1.763E+00 1.114 7. 80 8 . 69
1865.6 .014 2.454E+00 .952 6.79 6 . 47
2864.9 .033 1.573E+00 1.412 5.34 7.53
2907.4 .029 1.698E+00 1.352 5.17 6.98
2813.8 . 027 1.746E+00 1.513 4. 62 7.00
2834.6 .024 1.944E+00 1.225 5.18 6.35
2824.5 .021 2.130E+00 1 . 2 1 1 4.86 5.89
2804.3 .018 2.320E+00 1.406 3.92 5.51
2782.0 .015 2.677E+00 1.069 4. 61 4.93
2781.5 .011 3.253E+00 .954 4.42 4.22
2772.7 .008 4.341E+00 . 867 3.93 3. 40
3721.0 . 017 2.828E+00 1.154 3.26 3.76
3723.9 .014 3.199E+00 1. 063 3.24 3.44
3701.2 . 0 1 2 3.425E+00 1 .0 B6 3.05 3.31
3749.0 . 0 1 0 4.015E+00 .850 3.46 2.94
3746.4 .008 4.856E+00 .854 3.05 2.61
3705.7 . 0 0 2 1.621E+01 .563 2.63 1.48
3709.7 .004 7.937E+00 .923 2.15 1.99
3708.0 .006 5.857E+00 . 848 2.76 2.34
3716.1 .008 4.927E+00 .807 3.22 2.59
3710.6 .006 5.757E+00 .783 3.02 2.37
3777.9 .003 9.373E+00 .624 2.91 1.82
4587.2 .008 5.121E+00 .651 3.25 2 . 1 2
4599.1 .007 5.620E+00 .637 3.16 2 . 0 1
4625.1 .006 6.340E+00 .732 2.58 1.89
4570.5 .006 6.922E+00 .716 2.56 1.83
4576.9 .005 8 .012E+00 .608 2. 83 1.72
4547.5 .004 9.299E+00 .599 2.72 1.63

TWO-PHASE TEST RESULTS USING ’WHITE'S* EQUATION
' FOR SINGLE-PHASE FRICTION FACTOR (HITS QOKR)

TABLE 5.1



Tube Bore = .0124

Mass Qual
Flux 

KG/M2.S {-)

L-M
Param
<->

Mult
Ratio
C/M

T.P.Mult 
Meas Calc 
(-) (-)

4554 
4559 
4566 
5516 
5504 
5537 
5476 
5461.0 
5468.8 
5508.6

003 
002 
001 
005 
005
004 
003 
002 
001 
001

1.144E+01 
1.852E+01 
3.350E+01 
8.076E+00 
8 .797E+00 
1.036E+01 

172E+01 
458E+01 
09BE+01 
508E+01

. 573 

.634 

.742 

.560 

. 490 

.526 

. 505 

. 510 

.573 

. 744

63
07
58
60
90
57
62
48 
06
49

51
31
17 
45 
42 
35
32 
26
18 
11

TABLE 5,1 (Cont’d)



Mass Qual L-M Mult T .P .Mu1 t
Flux Par am Rat i o M e a s Calc

KG/M2 .S c -) C - ) C/M i i

1152.7 .174 3 . 208E-01 .873 66.69 58.21
1122.7 .170 3.226E-01 .860 6 8 . 0 1 58.48
1104.0 .153 3.449E-Q1 .843 65.10 54 .86
1086.9 .136 3.726E-01 .867 58.55 50 .79
1056.6 .120 4.028E-Q1 .906 52.07 47.18
1055.0 .100 4.589E-01 1 .074 38.23 41 .05
1024.4 . 083 5.159E-01 .998 36 .60 36 . 53
985.5 .0 64 6.218E-01 1 .044 28.96 30 .24
979.2 .043 8 .459E-01 . 943 23.29 21 .97
960 . 6 . 023 1 .398E+00 . 838 15.90 13.32

1968.5 .0 59 9.028E-01 1 .336 11 .90 15.89
1933.1 . 056 9.251E-01 1.327 11 .84 15.71
1924.2 .0 49 9.952E-Q1 1 .375 10 .70 14.71
1911.2 .043 1 . 0 84E+00 1 .320 10 .33 13.64
1910.2 .039 1 .160E+0 0 1 .293 9 .89 12.79
1894.4 .033 1 .30 3E+00 1 .117 10 .29 11 .50
1855.5 .028 1 .434E+00 1 .168 9.08 10 .61
1882.2 .021 1.760 E+U U 1 .038 8.39 8.70
1865.6 .014 2.45SE+0 0 -.885 7.30 6.46

_ 2864.9 . 033 1.562E+00 1 .328 5.71 7.58
2907.4 .029 1 .6 8 8 E+ 0 0 1 .270 5.53 7.02
2813.8 . 027 1 .736E+G0 1 .421 4.95 7.03
2834.6 .024 1.936E+00 1 .149 5.55 6.37
2824.5 .021 2.124E+00 1 .134 5.21 5.90
2804.3 . 018 2.316E+00 1 .316 4 . 20 5.52
2782.0 .015 2.677E+00 . 998 4.94 4.93
2781.5 .011 3.260E+00 . 890 4.73 4.21
2772.7 .008 4.363E+00 .807 4.20 3.39
3721.0 .017 2.825E+0 0 1 .084 3.48 3.77
3723.9 .014 3.200E4-0 0 .997 3. 45 3.44
3701.2 . 0 1 2 3.434E+0 0 1.019 3.25 3. 31
3749.0 .010 4.0 33E+0 0 .798 3 . 6 8 2.94
3746.4 . 0 0 8 4.886E+0 0 .800 3.24 2 . 60
3705.7 . 0 0 2 1 .646E+01 . 526 2.80 1 .47
3709.7 .004 8.016E+0 0 . 862 2.29 1 .98
3708.0 .006 5 .899E+00 .794 2.94 2. 33
3716.1 .008 4 .953E+00 . 755 3.43 2.59
3710.6 .006 5.796E+00 .732 3.22 2.36
3777.9 .003 9.478E+0 0 .583 3.10 1 .81
4587.2 .008 5 .151E+0Q .613 3.44 2 . 1 1
4599.1 .007 5.658E+00 . 599 3.35 2 . 0 1
4625.1 .006 6.392E+00 .689 2.73 1 .88
4570.5 .006 6.985E+00 . b73 2.71 1 .83
4576.9 .005 8.097E+00 .572 2.99 1 .71
4547.5 .004 9 . 411E+00 . 5b3 2 . 8 8 1.62

TWO-PHASE RESULTS USING TEST EQUATION
FCR ’ SMGLE-PHASE FPJCTICN ‘ FACTOR ; IHTFS CORRJ

TABLE 5.2



r  1 ■=■ U| u d i U -  l l n u o .  x i . r . n u i  t:
Flux Par am Ratio M e  a •=• Calc

KG/M2.S ( — ) C “ ) C/M ( -) ( -)

4554.4 . 0 0 3 1.160E+01 . 538 2.79 1 .50
4559.4 . 0 0 2 1.885E+01 .596 2.19 1 .31
4566.6 . 0 01 3.423E+01 • 698 1 .67 1.17
5516.7 . 0 0 5 8.158E+00 . 529 2.74 1 .45
550 4.3 . 0 0 5 8 .894E+00 .463 3 .0 6 1 .42
5537.6 .004 1 .0 43E+01 .497 2.71 1 .35
5476.1 . 0 0 3 1 .188E+01 . 477 2.76 1 .32
5461.0 . 0 0 2 1 .481E+01 . 482 2.61 1 .26
5468.8 .001 2.137E+01 . 542 2.18 1 .18
5508.6 .001 3.588E+01 . 703 1 .57 1 .10

TABUE 5,2 (Cont’d)



Tube Bore = . 0077
Mass Ljual L-M Mult T.P.Mult
Flux Par am Flat i o Meas Calc

KG/M 2 .S ( -) C -) C/M (-) <-)

2617.7 .068 7.248E-Q1 .572 30 .46 17.43
2615.6 .061 7.709E-01 .578 28.36 16.40
2584.8 . 056 8.151E-01 .508 30 .77 15.64
2559.4 .048 8 . 857E—01 .537 26.95 14.48
2565.6 .043 9.459E-01 .537 25.20 13.54
25b7.U . 036 1.0 72E+00 .549 21 .74 11 .94
2542.0 .031 1 .161E+00 .580 19.10 11 .07
2562.0 . 022 1 .443E+00 . 657 13.48 8 .86
3510.5 .031 1.271E+00 .387 20 .88 8 . 09
3491.0 .028 1 .331E+0 0 .420 18.54 7.78
3477.1 .025 1.433E+00 .440 16.55 7 . 28
3452.5 . 023 1 .536E+00 . 433 15.83 6 . 8 6
3491.6 .019 1.736E+00 .414 14.61 6 . 05
3472.0 . 016 1 .910E+00 .475 11 .69 5.55
3446.5 .013 2 .2 1 1 E+ 0 0 .481 10 .18 4 .89
3445.0 . 009 2.660E+00 .510 8.14 4.15
3391.5 . 0 0 6 3.437E+00 . 537 6.29 3.38
3404.8 . 0 0 3 5.415E+00 . 799 3.01 2.40

£ 4453.7 .020 2.226E+00 . 322 11 .97 3.85
4429.8 .018 2.377E+00 .387 9.55 3.69
4442.1 .016 2.505E+00 . 333 10 .64 3.54
4417.8 .014 2.744E+00 . 365 9.14 3.34
4425.1 . 012 2.923E+00 .372 8 .57 3.18
4415.8 .010 3.273E+00 . 366 8.04 2.95
4385.1 .009 3.642E+0 0 . 369 7.47 2 . 76
4414.1 . 007 4.341E+00 . 378 6 .45 2.44

'4373.2 .005 5.223E+00 . 4fa6 4.71 2.19
4352.3 . 0 0 2 8.496E+00 .649 2 . 62 1 .70
5258.9 .013 3.217E+00 .321 7.47 2.40
5256.7 .011 3.439E+00 .327 7.07 2.31
5275.3 . 0 1 0 3.632E+00 .314 7.11 2.23
5279.3 . 009 3.890E+00 .315 6.80 2.14
5277.6 . 008 4.240E+00 .324 6.31 2.05
5258.5 .007 4.551E+00 .343 5.78 1 .98
5253.3 .006 5.000E+00 . 356 5.30 1.89
5265.9 .005 5.723E+00 .354 4.99 1 .77
5233.7 .003 7.375E+00 . 430 3.70 1 .59
5273.5 . 0 0 2 1 .057E+01 .465 2.99 1 .39
6184.6 .008 4.605E+00 .288 5.43 1 .57
6351 .2 .007 5.324E+00 .295 4.84 1 .43
6266.3 .006 5.690E+0Q .309 4.61 1 .43
6289.3 .005 6.284E+00 .336 4.09 1 .38
6246.2 .004 6 .999E+00 .343 3.93 1 .35
6258.9 .003 8.292E+00 .361 3.57 1 .29
6413.6 . 0 0 2 1 .048E+01 .426 2.82 1 .20

TWO-PHASE TEST RESULTS USING 'WHITE'S* EQUATION 
FOR SINGLE-PHASE FRICTION FACTOR (HTFS CORK)

TABLE 5,3



Tube Bore = .0077

Hass Qual L-M Mult
Flux Param Ratio

KG/M2.S (-} (-) C/M

6257.6 .002 1.305E+01 .464

T .P.Mult 
Meas Calc 
(-) (-)

1.17

TABLE 5.3 (Cbnt'd)



mass Liuai L-n nui1 1 . h'.MUlt
Flux Par am Ratio Maas L- ale

KG/M2 .S (~) (-) C/M (-) (~)

2617 7 . 068 7 158E-01 . 538 32 8 6 17.66
2615 & .0 61 / 620E-01 .543 30 60 16.60
2584 8 .056 O 065E-01 .476 oo 20 15.81
2553 4 . 0 48 8 776E-Q1 . 50 3 29 0 8 14.62
2565 6 . 043 9 381E-01 .502 27 18 13.65
2567 0 . 0 36 1 065E+00 .513 cLO 45 1 2 . 0 2
2542 0 .031 1 155E+00 .540 20 60 11 .13
2562 0 . 0 2 2 1 439E+00 . 610 14 54 8 . 87
3510 5 .031 1 265E+00 . 363 2 2 38 8 .1 2
3491 0 . 028 1 32bE+00 .393 19 87 7 . 81
3477 1 .025 1 429E+0 0 .411 17 75 7.30
3452 nr . 023 1 532E+00 .405 16 98 b . 8*7
3491 G . 019 1 735E+00 007 15 67 6 . 0 6
3472 0 . 016 1 912E+0 0 .443 1 2 54 5 .55
3446 5 .013 2 21bE+U 0 .447 10 92 4 .89
3445 0 . 0 0 9 d 672E+U U . 474 8 74 4.14
3391 cr . 0 0 6 o 4 b 3 E+00 .498 8 75 3.36
340 4 8 . 00 3 5 478E+0 0 . 740 C* 23 2 . 39
4453 7 . 0 2 0 d 224E+U U .301 1 2 78 3.85
4429 8 .018 2 377E+00 . 362 10 20 3.69
4442 1 .016 2 50 6E+00 .312 11 36 3.54
4417 8 .014 2 749E+00 .342 9 76 C* O
4425 1 . 0 1 2 O 931E+00 .347 9 15 3.18
4415 8 .010 •“i 288E+00 . -342 8 59 2 .94
4385 1 . 0 0 9 o 662E+00 .344 7 97 2 . 75
4414 1 .007 4 374E+0 0 . 353 £ 89 2.43
4373 2 . 0 0 5 5 274E+0 0 .434 cr 03 2.18
4352 C; . 0 0 2 C| 617E+00 . 604 80 1 .69
5258 9 .013 3 226E+00 .301 / 95 2. 40
5256 7 .011 o 451E+00 . 306 7 53 2.31
5275 . 0 1 0 •“» 648E+00 . 294 7 57 *“r O *~i
5279 3 . 009 3 910E+00 . 295 7 24 2.14
5277 6 .008 4 266E+00 .304 G 7 2 2.04
5258 5 .007 4 533E+00 . 321 G 15 1 .97
5253 3 . 0 0 6 5 042E+00 . 333 cr\J 65 1 .88
5265 3 .005 5 778E+00 .331 cr 31 1 .76
5233 7 .003 7 466E+00 .402 y 94 1 .58
5273 crj . 0 0 2 1 074E+01 . 435 1 8 1 .38
6184 s . 0 0 8 4 632E+00 .271 5 7.7 1 .56
6351 2 .007 5 364E+00 .277 5 14 1 .42
6266 o . 006 5 736E+00 . 290 4 90 1 .42
6289 3 .005 6 343E+00 .316 4 35 1.37
6246 2 .004 7 073E+00 . 322 4 17 1 .34
6258 9 .003 8 395E+00 . 339 3 79 1 .28
6413 6 . 0 0 2 1 064E+01 .400 2 99 1 . 2 0

TWO-PHASE RESULTS USING TEST EQUATION 
K)R SINGLE-PHASE FRICTION FACTOR 

(HTFS CORE)

TABLE 5.4



TABLE 5,4 (Cont’d)



Mass Qual L-M Mult T.P Mu 1 1
Flux Par am R. a t i o M 035 U ale

KG/M2 -S (-) (-) C/M ( — ) ( “)

1063.1 .124 4.279E-01 1 .0 59 40 .95 43.37
10 44.4 .110 4.418E-01 1.114 38 . 85 42.59
1 U 3 8 . 9 . U 9 8 4.70 4E-01 1 .0 61 37 . 71 40 .02
1013.7 . U 8 8 4.925E-01 1 . 099 34.39 38.46
1 0 0 2 . 8 . 077 5.341E-01 1 . 283 27.53 35.33
393.0 . 064 5.925E-01 1 . 269 24.97 31 . 69
352.5 .053 6.413E-01 1 . 283 22.81 29.26
354.3 . 039 7.980E-01 1.305 17.74 23.14
362.2 . 026 1 .0 2 0 E+ 0 0 1 . 838 14.22 17.60
343.7 .013 1.610E+00 1 . 0 6 8 10 . 0 6 10 .74

1401.8 . 072 b . 87bE—U 1 1 .0 35 23. 41 24.24
1381.0 . 0 6 8 7.113E-01 1 .0 64 22.19 23.62
1374.4 . 062 7.459E-01 1 . 1 0 2 20 .51 22.60
1360.0 . 054 8.003E-G1 1 .0 49 20 .18 21 .17
1348.2 . 047 8 .656E-01 1 .0 78 18.21 19.64
1340.4 . 039 9.594E-01 1 .159 15.29 17.73
1336.5 . 0 31 1 .1 0 1 E+GQ 1 .0 74 14.34 15.40
1327.0 .024 1 .321E+00 1 .153 11 .15 12.85
1315.3 . 016 1 .694E+00 1 .137 ' 8.76 9.96
1295.8— - . 007 5.988E+0G . 596 5. 64 3.3b
1723.3 . 049 1.009E+00 . 975 15.54 15.15
1711.2 .046 1 .046E+00 1 . 0 0 2 14.70 14.73
1719.1 .041 1 .107E+00 1 .060 13.17 13 .36
1719.2 . 038 1 .160E+00 1 . 0 0 2 13.34 13.37
1698.5 . 035 1 .2 UbE+ 0 0 1 .082 11 .38 12.37
1691 .2 .031 1 .304E+00 1 .029 11 .72 1 2 . 0 6
1695.9 . 027 1 . 406E+00 1 .038 10 . 80 11 .21
1692.9 . 023 1 .553E+00 . 972 10 .50 10 .20
1674.5 .019 1.736E+00 1 .109 8.29 9.13
1 fo7 6 . 8 .014 2 . 0 75E+00 1 . 0 76 7.17 7.71
1662.4 . 0 0 8 3.2 0 1 E+ 0 0 . 965 5.39 5 .20
2083.3 . 0 34 1.422E+00 . 954 1U .4 8 10 . 0 0
2058.3 .032 1 .474E+00 . 899 1U . 8 4 9.75
2063.5 .027 1.616E+00 «356 8 .38 8 .96
2049.8 .025 1 .684E+00 . 333 3.33 8.70
2062.9 . 02 1 1.857E+00 . 384 8 . 0 8 7.95
2048.9 .018 2.024E+00 1 .021 7.23 7.38
2024.6 . U16 2.158E+00 . 90 7 7.72 7.01
2027.6 .013 2.440E+00 .904 6 .93 6.27
2032.7 .010 2.803E+00 .986 5.60 5.52
1993.6 . U 0 6 4.077E+00 1 . 0 0 0 4.06 4.06
2415.5 .024 1 .915E+00 . 876 8.05 7.05
2420.8 .023 1 .986E+00 . 886 7.72 6.84
2405.8 .021 2.0 78E+00 . 837 7.37 6.61
2410.0 .019 2.195E+00 .914 6.90 6.31

LARGE BORE COIL DATA - HTFS CORRELATION

TABLE 5,5



Mass Qual L-M Mult T.P.MuIt
Flux Param Ratio Meas Calc

KG/M2.S (-) (-) C/M (-) (-)

2411.9 .018 2.324E+00 .893 6.74 6.01
2398.8 .016 2.458E+00 .885 6.51 5.76
2391.4 .014 2.667E+00 .946 5.70 5.39
2366.1 .011 2.987E+00 .852 5.78 4.93
2379.9 .009 3.440E+00 .976 4.48 4.37
2356.4 .007 4.145E+00 .896 4.24 3.80
2380.6 .004 1.248E+01 .525 3.61 1.89

TABLE 5.5 (Cont'd)



Mass Dual L-M Mult T . P .Mu1 1
Flux Par am Ra t i o M 0 a s Calc

K b'/ M 3 . 8 (-) (-) C/M C-) (->

2507.8 .038 1.244E+00 .898 11 .51 10 .34
2524.5 .035 1 .314E+00 .949 10 .32 9.80
2491.1 .032 1.250E+00 .866 12.08 10 .46
2494.1 .027 1 .537E+00 .941 9.11 8.57
2502.1 .023 1 .709E+00 . 990 7.86 7.77
2475.7 .018 1 .960E+00 1.132 6.10 6.90
2450.7 .014 2.317E+00 1 .041 5.72 5.96
2454.2 .009 7.515E+00 .600 4.11 2.46
2447.6 .005 9.129E+00 .898 2.40 2.15
2963.8 .026 1 .762E+0 0 . 866 7.76 6.72
2958.9 .023 1 .877E+00 . 882 7.25 6.40
2979.4 .020 2,0 40E+00 .856 6. 93 5. 93
2961.5 .018 2.210E+00 .905 b .16 5.58
2944.0 .015 2.437E+00 .908 5. 68 5.16
2959.0 .012 2.836E+00 .948 4.78 4.54
2969.8 . 0 0 9 3.285E+00 . 973 4.12 4.01
2946.2 . 0 0 6 9.992E+0 0 . 624 3.14 1 .96
2919.9 .004 1 .152E+01 .843 2.16 1 .82
3438.0 . 019 2.32UE+UU .821 5.80 4.76
3420.9 .017 2.496E+0 0 . 78b 5.74 4.52
3422.2 .015 2.7Q3E+00 .850 5.01 4.25
3380.8 .012 3.033E+00 .851 4 .62 3. 93
3401.4 . 010 3.487E+00 .917 3.84 3.52
3404.9 .008 3.901E+00 . 989 3. 27 3.24
3417.9 .0 06 1 .152E+01 . 562 3.09 1 .74
3422.2 . 005 1 .231E+01 . b 6 3 2.53 1 .68
3388.1 . 0 0 3 1.376E+01 .642 2. 49 1 .60
3891.5 .014 3.G77E+0 0 .762 4.51 3.43
3919.4 .013 3.30 3E+U U .775 4.19 3.25
3918.4 .011 3.560E+00 .797 3.88 3.09
3913.4 .010 3.823E+00 . 799 3. 70 2.95
3915.5 .008 4.344E+0 0 .819 3.32 2.72
3883.0 .007 4.697E+00 . 835 3.12 2.60
3872.5 .0 06 1.364E+01 .614 2.51 1 .54
3862.2 .004 1.477E+01 .718 2.09 1 .50
3862.4 .003 1.614E+01 .697 2.08 1 .45
4367.3 .010 4.038E+00 .722 3.56 2.57
4334.5 . 0 0 9 4.279E+00 .737 3.39 2.50
4389.5 .008 4.832E+00 .766 3.01 2. 30
4364.1 .006 5.518E+00 . 788 2.73 2.15
4313.1 .005 1 .558E+01 .558 2.53 1 .41
4362.7 .004 1 .736E+01 .612 2.22 1 .36
4352.7 .003 1 .945E+01 .721 1 .83 1 .32
4805.5 .008 4.998E+00 .702 2.94 2.06
4772.1 .007 5.403E+00 .714 2.80 2.00

SMALL BORE COIL DATA - HIES CORRELATION

TABLE 5.6



Mass Dual L-M Mult
Flux Par am Ratio

KG/M2.S (-) (-) C/M

4787.0 .0 06 5.913E+0 0 .697
480 6.9 .0 0 6 6.442E+0 0 .684
4788.6 .0 05 1.823E+01 .591
4821.1 .004 1.983E+01 .636
4735.8 .003 2.134E+01 .698

T.P . Mul t
Me as Calc
<-) (“ )

2.74 1 .91
2.67 1 . 83
2.18 1 .29
1 . 99 1 .26
1 .79 1 .25

TABLE 5.6 (Cont’d)



Flu x 
KG/M2 .S

Par am 
( — >

1 IU  _L

Ratio
C/M

I • i • I iu  j. *-

Meas Calc
(-> i ' -  j

1063/1 .124 4.398E-01 .918 45.81 42.08
1044.4 .110 4.533E-01 .968 42.78 41 .41
1038.9 . 098 4.820E-01 . 924 42.19 38.98
1013.7 .088 5.038E-01 . 959 39.13 37.53
1002.8 .0 77 5.454E-01 1 .122 30 .85 34.61
999.0 .064 6.036E-01 1 .112 27.94 31 .08
952.5 . 053 6.516E-01 1 .129 25.50 28.78
954.3 . 039 8.076E-01 1 .153 19.83 22.86
962.2 .026 1.0 27E+00 1 .099 15.90 17.48
943.7 . 013 1.606E+00 .957 11 .25 10 .76

1401.8 .072 7.Q12E-01 . 898 26.43 23.75
1381.0 .068 7.248E-01 .925 25.0 4 23.16
1374.4 .062 7.592E-01 . 959 23.14 22.19
1360.0 .054 8.132E-01 .915 22.77 20 .83
1348.2 .047 8.781E-01 .942 20 .54 19.35
1340.4 . 039 9.708E-01 1.015 17.25 17.52
1336.5 .031 1 .111E+00 .944 16.18 15.27
1327.0 . 024 1.328E+00 1 .016 12.58 12.78
1315.9 . 016 1.694E+00 1 . 0 0 8 9.88 9.95
1295.8 . 0 0 7 5.638E+00 .551 6.36 3.51
1729.9 .0 49 m i  2 4 E+0 0 .846 17.65 14 .93
1711.2 . 046 1.061E+0 0 . 871 16.69 14 .53
1719.1 .041 1.121E+00 . 923 14.94 13. 79
1719.2 .038 1.173E+0 0 .873 15.14 13.22
1698.5 . 0 35 1.218E+0 0 .944 13. 60 12 .83
1691.2 .031 1 .316E+00 . 899 13.30 11 .95
1695.9 . 027 1 .416E+00 .908 12.26 11.13
1692.9 .023 1.561E+00 . 852 11 .92 10.15
1674.5 . 019 1.741E+00 .975 9.41 9.17
1676.8 .014 2.073E+0 0 . 950 8.13 7.72
1662.4 . 008 3.172E+00 . 857 6.12 5.24
2083.3 .034 1 .436E+00 .829 11 .96 9 .91
2058.3 .032 1.487E+0 0 .781 12.37 9. 67
2069.5 .027 1.628E+0 0 .832 10 .71 8.91
2049.8 .025 "1 . 694E+U U .813 10 .64 8. 65
2062.9 .021 1 .864E+0 0 .859 9.22 7.92
2048.9 .018 2.0 28E+0U . 894 8.25 7.37
2024.6 .016 2.158E+00 .795 8. 81 7.00
2027.6 .013 2.435E+00 .794 7.90 6.28
2032.7 .010 2.788E+00 .868 6.39 5.54
1993.6 .006 4.032E+00 .885 4 .63 4/10
2415.5 .024 1 .925E+00 .761 9.22 7.02
2420.8 .023 1 .995E+00 . 770 8.84 6.81
2405.8 .021 2.085E+00 .780 8.44 6.59
2410.0 .019 2.200E+00 .796 7.91 6.30

TEST ‘ SINGLE - PHASE CORRELATION USED- 
HTFS CORRELATION

TABLE 5,7



Flux 
KG/M2 .S

Par am Rati o 
C/M

Me as
( '  -  ' i

2411.9 .018 2.326E+Q0 .778 7.72
2398.8 .016 2.458E+00 .772 7.45
2391.4 .014 2.662E+0Q .827 6.53
2366.1 .011 2.975E+00 .746 6.63
2379.9 .009 3.415E+00 .856 5.13
2356.4 .007 4.106E+00 .789 4.85
2380.6 .004 1.167E+01 .474 4.13

C a 1 c 
(-)

6.01 
5. 76 
5.40 
4.95 
4.39 
3.83 
1 .96

T,AB1£ 5,7 (Cont'd)



Mass Qual L-M Mult T.P.Mult
Flux Par am Rat i o Meas Calc

KG/M2.S (-) (-) C/M (-) c-:>

2 5 0 7 . 8 . 0 3 8 1 . 2 5 8 E + 0 0 . 7 5 3 1 3 . 5 9 1 0  . 2 3

2 5 2 4 . 5 . 0 3 5 1 . 3 2 S E + 0  0 . 7 9 6 1 2 . 1 9 9 . 7 1

2 4 9 1 . 1 . 0 3 2 1 . 2 6 1 E + 0  0 .  7 2 7 1 4 . 2 6 1 0  . 3 8

2 4 9 4 . 1 . 0 2 7 1 . 5 4 8 E + 0 0 . 7 9 2 1 0 . 7 5 8 . 5 2

2 5 0 2 . 1 . 0 2 3 1 . 7 1 7 E + 0 0 . 8 3 5 9 . 2 8 7 . 7 4

2 4 7 5 . 7 . 0 1 8 1 . 9 6 3 E + 0 0 . 9 5 8 7 . 2 0 6 . 8 9

2 4 5 0 . 7 . 0 1 4 2 . 3 1 2 E + 0 0 . 8 8 4 6 .  7 6 5 . 9 7

2 4 5 4 . 2 . 0 0 9 6 . 9 1 7 E + 0 0 . 5 3 4 4 . 8 5 2 .  5 9

2 4 4 7 . 6 . 0 0 5 8 . 4 0  3 E + 0  0 . 7 9 6 2 . 8 3 2 . 2 5

2 9 6 3 . S . 0 2 6 1 . 7 7 5 E + 0 0 . 7 2 6 9 . 1 9 6 . 6 8

2 9 5 8 . 9 ^ . 0 2 3 1 . 8 8 6 E + 0 0 . 7 4 1 8 . 6 0 6 .  3 7

2 9 7 9 . 4 ' . 0 2 0 2 . 0 4 7 E + 0 0 . 7 2 0 8 . 2 2
cr i-j 0  O  . 3  cl

2 9 6 1 . 5 . 0 1 8 2 . 2 1 3 E + U 0 .  7 6 3 7 . 3 0 5 .  5 7

2 9 4 4 . 0 . 0 1 5 2 . 4 3 6 E + 0 0 .  7 6 6 6 . 7 3 5 . 1 6

2 9 5 9 . 0 . 0 1 2 2 . 8 2 6 E + U 0 . 8 0 2 5 . 6 7 4  . 5 5

2 9 6 9 . 8 . 0 0 9 3 . 2 6 3 E + 0 0 .  8 2 4 4 . 8 9 4  . U  3

2 9 4 6 . 2 . 0 0 6 9 . 1 7 5 E + 0 0 . 5 4 9 3 . 7 3 2 . 0 5

2 9 1 9 . 9 . 0 0 4 1 . 0 5 8 E + 0 1 . 7 4 0 2 . 5 6 1  . 8 9

3 4 3 8 . 0 . 0 1 9 2 . 3 2 6 E + 0 0 . 6 8 9 6 . 8 9 4 . 7 5

3 4 2 0 . 9 . 0 1 7 2 . 4 9 9 E + 0 0 . 6 6 1 6 . 8 3 4 . 5 1

3 4 2 2 . 2 . 0 1 5 2 .7 0 1 E + 0 0 . 7 1 5 5 . 9 5 4 . 2 6

3 3 8 0 . 3 . 0 1 2 3 . 0 2 4 E + 0 U . 7 1 7 ^  5 . 4 9 3 . 9 4

3 4 0 1 . 4 .  0 1 U 3 . 4 6 7 E + 0 0 . 7 7 4 4  . 5 6 3 . 5 4

3 4 0 4 . 9 . 0 0 8 3 . 8 7 0 E + 0 0 . 8 3 6 3 . 8 9 3  . 2 6

3 4 1 7 . 9 . 0  0  6 1 . 0 5 6 E + 0 1 . 4 9 1 3 .  6 7 1  . 8 0

3 4 2 2 . 2 . 0 0 5 1 . 1 2 8 E + 0 1 . 5 7 8 3 . 0 1 1  . 7 4

3 3 8 8 . 1 . 0 0 3 1 . 2 6 1 E + 0 1 . 5 5 9 2 . 9 7 1  . 6 6

3 8 9 1 . 5 . 0 1 4 3 . 0 7 5 E + 0 0 . 6 3 9 5 . 3 7 3 . 4 3

3 9 1 9 . 4 . 0 1 3 3 . 2 9 7 E + 0 0 . 6 5 1 5 . 0 0 3 . 2 5

3 9 1 8 . 4 . 0 1 1 3 . 5 4 7 E + 0 0 .  6  7  U 4 . 6 2 3 . 1 0

3 9 1 3 . 4 . 0 1 0 3 . 8 0 5 E + 0 0 . 6 7 2 4.41 2.96
3915.5 . 0 0 8 4.312E+00 . 690 3 . 96 2, 73
3883.0 .007 4.654E+00 .704 -3.72 d* a fc'Cl

3872.5 .006 1 .249E+01 .532 2.99 1 .59
3862.2 .004 1 .353E+01 .621 2.49 1 .54
38b2•4 .003 1 .478E+01 .602 2.48 1 .49
4367.3 .010 4.017E+00 .605 4.26 2.58
4334.5 .009 4.253E+00 .618 4.06 2.51
4339.5 .008 4.791E+00 . 643 3.60 O  H Od » wc.
4364.1 .006 5.457E+00 .663 3.27 2.17
4313.1 .005 1 .425E+01 .479 3.02 1 .45
4362.7 .004 1.588E+01 .525 2.65 1.39
4352.7 .003 1 .779E+01 . 616 2.19 1 .35
4805.5 .008 4.958E+00 .588 3. 53 2.07
4772.1 .007 5.351E+00 .593 3.36 2 . 0 1

TEST SINGLE-PHASE CORRELATION USED - 
HTFS CCREELATION

TABLE 5,8



Mass Qual L-M Mult T.P
Flux Param Ratio Meas

KG/M2.S (-} C-) C/M <-)

4787.0 .006 5.847E+00 .585 3.29
4806.9 .006 6.360E+00 .574 3.21
4788.6 .005 1.664E+01 .503 2.62
4821.1 .004 1.811E+01 .541 2.38
4735.8 .003 1.949E+01 .594 2.15

.Mult 
Calc 
( - )

1 .92 
1.84 
1 .3 
1.2 
1.2

TABLE 5,8 (Cont'd)

cm cr-i co



i u i t; r- * PiU x r-
PlUK Pa ram Rat i 0 i J ale

KG/M2.S (--) (-) C/M i ~ ) t _)

1152 ~ri , 174 3, 275E--01 , 924 61 - 50 56. 84
1122 -7! , 170 3,293E-01 , 911 62- 70 57. 13
1 104 0 , 153 3,516E-01 - 894 60. 02 53. 68
1 OSS 9 = 138 3m 7935-01 , 922 53- 99 49- 79
:i 056 6 - 120 4.095E—01 . 965 48. 00 46. 32
1055 0 100 4.657E-01 1, 146 35. 25 40. 41
1024 4 , 083 5. 225E—01 1 - 068 6* :X' ,74 36. o3
985 5 . 064 6.28IE-01 1. 121 26, 69 29, 92
ST'S v , 043 8-515E-01 1-016 21. 43 21- 82
9S0 6 . 023 1, 400E+00 . 907 14- 66 13, 40
1988 5 - 059 9,130E-01 1 - 420 11 - 06 15. 71
1933 1 . , 056 9.3505-01 1 . 412 11,01 15, 54
1924 *7* „ 049 1. 005E+00 1. 465 9- 95 14. 57
1911 . 043 1,0935+00 1 - 408 9. 60 13. 53
1910 , 039 1. 1685+00 1. 381 9, 20 12. 70
1894 4 „ 033 1.310E+00 1 - 195 9- 57 11. 44
1355 cr * 028 1„4405+00 1- 252 8. 44 10- 56
1832 X , 021 1.7635+00 1 - 114 7, 80 3, 69
1385 6 . 014 2.4545+00 . 952 6, 79 6, 47
2864 9 033 1,573E+00 1,412 5, 34 7 r.-
2907 4 , 029 1,8985+00 1 ... 35.9 5, 17 6. 98
2813 8 , 027 1.746E+00 1, 513 4. 62 7, 00
2334 8 . 024 1. 9445+00 •* 993 5, IS 6, 35
2024 ET , 02:1 2*1305+00 1,211 4, 86 5, 89
2804 =, 018 2= 320S+00 1 - 406 3, 92 cr nr •:
2782 0 •M ! 0 2,S77E+00 1 - 069 4, 61 4- 93
2'/M 1 r.T , 01 1 3,2535+00 ' - 954 4, 42 4. 22
2772 ~7: , 008 4,341E+00 , 667 9, 2 3, 40
3721 0 - 017 2*8285+00 1, 154 6= 2 b 3, 76
i.3 ~7 .o! vl'9 , 014 3, 1995+00 1 - 063 3, 24 3, 44
3701 0 . 012 3= 425E+00 1 - 086 3, 05 3, 31
3749 0 . 010 4,.0155+00 - 850 3. 46 2- 94
3746 4 . 008 4,8565+00 - 854 3. 05 2, 61
3705 7 , 002 1,6215+01 , 563 2.63 1. 48
3709 7 . 004 7,9375+00 , 923 2, 15 1,99
3708 0 - 006 5.8575+00 - 848 2, 76 2- 34
3716 1 , 008 4,9275+00 - 807 3, 22 2. 59
3710 6 - 006 5,757E+00 - 733 3, 02 2, 37
3777 9 , 003 9,3735+00 1, 035 2. 91 3- 01
4587 . 008 5,1215+00 1-157 t •■*\sr

v~> * wU w4 3. 76
4599 1 * 007 5.6205+00 1- 133 3 . 1 b 3, 58
4625 l , OUb &• .j'AOL.+OO 1 - 305 2. 58 3, 37
4570 5 , 006 6-922E+00 1, 270 2. 56 3. 26
4576 9 - 005 S. 0126+00 1-080 2, 83 3. 05
4547 5 . 004 9.299E+00 I - 062 2. 72 2- 88

LARGE BORE STRAIGHT TUBE DATA - TEST CORRELATION 
ON HTES CORRELATION

TABLE 5.9



FI- K !•••' S P a i }< Rat i o Me as
KG/M2,S (-} { -) C / M (_)

4554, 4 „ 003 1. 1443+0.1. 1.016 2, 63
4559, 4 . 002 1, 8523+01 1,125 7
4566, 6 - 001 3, 3503+01 1, 316 1, 58
551S,7 , 005 8, 0769+00 1, 065 2, 60
5504,3 , 005 8.7973+00 . 930 2, 90
5537.6 „ 004 1,0363+01 1. 001 2, 57
5476, 1 , 003 1,1723+01 . 958 2. 62
5461, 0 , 002 1,4583+01 . 966 2. 48
5468, 8 , 001 2.0983+01 1 „ 086 2. 06

TABXiE 5,9 (Cont’d)



Tube yore = « 0077
Mass 1.-.! U ct 1 L-M Mult 7.P.Mult
F 1 U X P S r a iYf Rat i. g Me? as Calc

KG/M2.S (-) (--) C/M {-> <-)

2617.7 . 068 7,24SE-01 1. 007 30, 46 30. 68
2615.6 . 061 7,709E—01 1. 018 2 8. 3b 28. 86
2584.8 . 056 8,151E-01 890 30. 77 27. 39
2552.4 » 048 8.857E“01 93 a 26, 95 25. 28
2565. 6 . 043 9,459E-01 a 939 25, 20 23. 66
2567. 0 . 036 1 . 072E+00 X.-960 21. 74 20. 87
2542.0 . 031 1 = 16’ 1 4 4 O O 1,010 19. 10 19. 28
2562.0 « 0 _ e 2 1„ 443E+00 1-147 13, 48 15, 47
3510,5 . 031 1,27IE+00 a 759 20, 88 15, 85
3491= 0 , 028 1, 33IE+00 * 620 18, 54 15. 21
3477,1 , 025 1„ 433E+00 s.-858 16, 55 14, 20
3452.5 , 023 1„53SE+00 *643 15, 83 13. 35
34g1.6 . 019 1,736E+00 810 1.4, 61 11. 8b
3472, 0 „ 016 1,910E+00 a927 11. 69 10. 84
3446,5 ,013 2,211E+00 a935 10, 16 9. 52
3445. 0 = 009 2.660E+00 a 9921 - 8. 14 8. OS
,3391. 5 , 006 3,437E+00 1. 039 6. 29 6. 54
-3404. 8 , 003 5.415E+00 1. 548 3. 01 4. 66
4453,7 . 020 2.226E+00 a689 11, 97 S. 25
4429.8 , 018 2.377E+00 *827 9, 55 7, 90
4442,1 . 016 2,505E+00 a 713 10, 64 7. 59
4417,8 , 014 2.744E+00 a 780 9, 14 7, 13
4425,1 . 0 1 2 2.923E+00 a 795 8. 57 6 .  81
4415.8 , 0 1 0 3.273E+00 a 782 8 ,  04 6. 29
.4385, 1 , 009 3.642E+00 a 786 7, 47 5. 87
4-414. 1 , 007 4.34IE+00 a 808 6. 45 5, 21
4373,2 , 005 5.223E+00 a 992 4, 71 4, 67
4352.3 , 0 0 2 S . 496E+00 1,373 2, 62 3, 62
5258,9 , 013 3.217E+00 a 734 7, 47 5. 49
5256. 7 .011 3.439E+00 „ 747 7. 07 5. 28^ -r- 
u/̂ m. / \mS m |J . 0 1 0 3. 632!"+UO » 713 7. 11 5. 10
5279,3 , 009 3,S90E+00 a 722 6. 80 4, 91
5277.6 . 008 4,240E+00 a 742 6, 31 4, 69
5258.5 . 007 4.551E+00 a 784 5. 78 4. 53
i—l JL. -2 a . 006 5,OOOE+OO a 815 5. 3u 4. 32
5265. 9 . 005 5.723E+00 a 810 4. 99 4. 04
5233,7 . 003 7. 37bb+oo a 981 4 « 7o 3. 63
5273.5 . 002 1.057E+01 1. 065 2. 99 3. 18
6184.6 . 008 4.SO5E+0O . 703 5. 43 3. 81
6351.2 . 007 5.324E+00 , 725 4. 84 3. 51
6266.3 . 006 5,690E+00 , 757 4. 61 3. 49
6289.3 . 005 6.2S4E+00 , 825 4. 09 3. 38
6246.2 , 004 6.999E+00 , 839 3. 93 3. 30
6258.9 . 003 S.292E+00 „ 884 3. 57 3. 15
6413.6 , 002 1.048E+01 1,053 2, 82 2.97

v SMALL PORE STRAIGHT TUBE DATA '6 TEST CORRELATION 
’ ON HTFS CORRELATION

TABLE 5.10



ube Bore = = 0:124 Coil Mean ilia wete r -=2739

Mae 5 Q u a 1 L-M Mult 7= P=Mult
FI UK Pa rs m Rat i o Mb sb Cale

KG/M2.3 <-> i ~ ) C/M <-) <-)

1 063=1 = 124 4.398E-0I = 918 45= 81 42= OS
1044,4 = 11 0 4.533E-01 = 968 42= 78 41= 41
038.- 9 , 038 4= S20E-0I = 924 42= 19 38. 98
1013, 7 = 068 5= 03SE—01 = 959 39= 13 37= 53
1 0 0 2 = S = 077 5= 454E-01 1= 1 2 2 30= 85 34= 61
999= 0 = 064 6 = ObSt™Ul 1 = 1 1 2 27= 94 31 = 08
952 „ 5 » o 3 o 6.516E.01 1= 129 25= 50 28= 78
954= 3 = 039 S.076E-01 1= 153 19= S3 2 2 = 8 6
962= 2 = 026 1„027E+00 1 = 099 15= 90 17= 48
943= 7 = 013 1.S06E+-00 . 957 11 = 25 1 0 .. 76
1401= 8 = 072 7= 012E-01 = 898 26= 43 23= 75
1331=0 = 068 7= 248E-01 925 25= 04 23= 16
1374,4 = 062 7= 592E--01 , 9 5 9 23= 14 2 2 = 19
1330,. 0 , 054 8=1322-01 Q 1 ̂ 22= 77 20= 83
1348= 2 , 047 8 = 78IE—01 = 942 20= 54 19= 35
1340,4 = 039 3= 7086-01 1 = 015 17= 25 17= 52
1336= 5 = 031 1 = ill E-j-oo ,3144 16= 18 15= 27
1327= 0 » 024 i.328E+00 1. 016 12= 58 12= 78
1315= 9 = 015 1 = S94E--00 1 = 008 9= 8 8 9= 95
1295.= 8 = 00"7 5= 638E-00 cr cr •; 6= 36 3= 51
1723= 9 = 0 '18 1 = 0247 '-00 . 846 17= S3 14= 93
1711=2 = 043 1 = 061 Er-00 67: 16 = 69 14 = 53
1718=1 . 041 1=121E—00 , 923 14, 94 13= 79
1719= 2 - 036 1= 1737 -00 = 673 15= 14 ; ~r .“■>
1698= 5 = 035 1 = 2 1 bc.-KXl = 944 13=50 12= S3
1 fo9 1=2 = 031 1=3ISE+-00 899 13 = 30 11, 95
1635= 9 = 027 1 „ 41SE K>0 = 908 12 = 28 11= 13
1692= 9 = 023 1 = 561 E-'-00 = 852 1192 10= 15
1674= 5 . 019 1= 741E-*-00 , 975 9= 41 9= 17
1676= S = 014 2= 073E-i-00 * 950 6 = lb "7 70: a :
1662=4 . 008 3=172E+00 = 357 6= 12 5= 24
2083=3 = 034 I = 436E+00 = 923 - 11, 96 11» 04
2058= 3 = 03*2 1= 487E+00 = 367 12= 37 10= 73
2069.5 , 027 1.62SE+00 = 925 10= 71 9= 90
2049= 8 = 025 1.694E+00 = 901 10. 64 9= 59
2062= 9 = 021 1.864E+00 = 954 9= 22 8= 79
2048= 9 » 018 2. 0286̂ -00 = 990 S. 25 8= 17
2024= 6 = 016 2=1583^00 , 378 8r81 7= 73
2027= 6 = 013 2= 4b5E"i-UO = 877 7= 90 6= 93
2032= { = 010 2= 738E-:-00 = 959 6= 39 6= 13
1993.6 = 006 4= 032E+OO = 835 4= S3 4= 10
2415= 5 = 024 1.9257^00 , 888 9. 22 8= 19
2420.8 = 023 1. 995E-’-00 = 900 8, 84 7= 95
2405.8 = 021 2.OSSEeOO = 910 3= 44 7= 63
2410.0 , 019 2= 200Ea00 = 930 7= 91 7, 35

LARGE BORE COILED TUBE DATA - TEST CORRELATION 
CN HIES CORRELATION

TABLE 5,11



'uhs Bore -•= . 0124 Cdi Mean L> i a-Yet e r --a, 273'2
Macs 
r X U '?<

KG/M2.

Qua:
j .... >

L-M
a f' a iY? 
(-)

Mult 
Rat i o 
C/M

T. P 
Me as 
<->

2411.3 
2398,8
2391.4 
2366.1 
2379. 9
2356.4

018 
016 
O j. 4 
0 A A 
009 
007 a

326E-K>0 
45 BE+-00 
662E+-00 
S75E-K>0 
415E-S-00 
106E~K>0

909
900
963
866
396
914

7, 72 
7, 45 
S. 53 
6 „ 63
cr -n-

4„ 35

, Mult 
Calc 
<-•>

7. 01 
6, 71 
6. 28 
5. 74 
5, 11 
a ,  43

TABLE 5,11 CCont’d)



"s u b e  Bo re ~ . n o  /'/ i.jo i j. I’M E a n  l> i a m e t e r  =. u/atj

’’’lass Qua I L~iY! Mu It T. P.Mult
FI UK Pa raiY! Rat i o Me? a s Calc

KG/M2.S i — ) <-> C/M <->. (->

2507,8 , 038 1 258E+00 1 , 050 13. 59 ■14. 27
2524.. 5 , 035 I 328E+00 1. 113 1 2, 19 13, 56*
2491.1 , 032 -!.i. 261E+00 1. 0 1 2 14, 26 14, 44
2494,1 . 027 1 548E+00 1, 103 10. 75 1 1 = 8 6
2502.1 , 023 i 717E+00 1, 153 9, 28 10. 79
2475,7 . 018 1 963E+00 1= 33*0 7= 20 9= 57
2450,7 , 014 2.! 3129+00 1 „ 224 S. 76 8 . 26
2454„2 , 009 6 917E+00 . 740 4, 35 3. 59
2447,6 , 005 8 403£+00 1. 102 2, S3 3. 12
29S3,8 . 026 i 775E+00 1, 069 9. 19 9, 83
2958. 9 , 023 J 866E+00 1, 090 8 , 60 9. 37
2979, 4 , 0 2 0 ..2 047E+00 1, 062 S. 2 2 8 . 73
2981.5 , 018 213E+00 1, 123 7, 30 Or 2 0
2944,0 ... 015 4369+00 1, 126 6 , 73 7= 58
2959= 0 , 0 12 v 8269+00 1, ISO 5. 67 6 = 69
2969, 8 009 "T 2S3E+00 1,215 4, 89 5, 94
2946,2 , 006 9 175E+00 , 807 3, 73 3, 01
2919, 9 , 004 % 05SE+01 1, 084 2, 56 •“ ~ 7 ~ 7

J... U t '

3438,0 , 019 v 2  8 + "'"‘J C..5 1. 065 6 , 89 7 * 3 a
3420,9 . 017 4999+00 1 . 0.1 9 6 . 83 6 . 96
o 4 xl 2 a 2 ... 015 7019+00 1, 103 5= 95 6 = 57
3380.S , 0 1 2 *tr 0249+00 1 = 1 0 2 5, 49 6 , 05
3401, 4 , 01 0 O / •+..• + 1=193 4, 56 5, 45
3404,9 , 008 870E+00 1 , 283 3, 89 5, 02
3417.9 , 006 2. 05SE 4-01 , 758 3, 67 •- ~ r r-

2 .. n r '.3
•- „ 005 1289 + 01. , 892 3. 01 2 , 59

3388,1 . 003 1 26IE+01 , 859 2. 97 cr cr8 J
3891,5 , 014 Jj 075E+00 1 « 029 5, 37 5= 53
3919,4 ,013 y: 297E+00 1, 050 5, 00 sr rr O, O
39IS.4 , 01 1 547E+00 1 „ 081 . 4. 62 5, 00
3913,4 , 0 1 0 605E+00 1. 084 4, 41 4 . 78
3915,5 , 008 U.;.. 3:12E+00 1,113 3, 96 4, 40
3883, 0 , 007 A 6=549+00 1=133 3. 72 4, 21
3872,5 , 008 .1 2499+01 , 855 2. 99 2= 56
o a  c> 2 , 2 , 004 .4 353E+01 . 997 2. 49 2= 48
3862,4 , 003 •! 473*9+0! , 966 2, 43 2. 39
4367,3 , 0 1 0 A 017E+00 1, 0 1 2 4-, 2 & 4, 31
4 334. 5 , 009 4. 253E+00 1, 031 4. 06 4, 19
4389,5 , 008 4 79IE+00 1, 077 3, SO 3. 8 8
4364,1 , 006 cr 4,579+00 1. 108 3. 27 3. 6 2
4313,1 , 005 1 425E+01 . 793 3, 02 2. 41
4362,7 , 004 1 588E+01 , 877 2, 65 2, 33
4352,7 , 003 i 779E+01 1, 029 2. 19 2. 25
4805,5 . 008 4 958E+00 1, 014 3. 53 3. 5*6
4772, 1 . 007 5 351E+00 1. 030 3. 36 3, 46

SMALL BORE COILED TUBE DATA - TEST CORRELATION 
ON HTFS CORRELATION ______

TABLE 5.12



03 
"4 

&

>'• a ' 
r ' :

;g/v:
-S iY>

( - >
Rat
P / :y!

■'■■sas 
(-)

y,uit
ta.i 
(-)

4787,0 
OS, 9 
SB, G 
21, :L

006 
006 
005 
on a

5 „  S47E-K>0 
b«3fo0E+00 
1, 6642^0 !. 
1, SI 16>0:l

:1, 007 
„ 990 
, 867 
, 934

29 
0 21 
62 
38

TABLE 5.7L2 (Cont’d)



I 'Mean 
tvi'3'fc e r.

0, 0 1 2 4

kg /ir r ' '2 .  s 7' w 0 ” p n a s e 7' w o — P 0 a s e C a l  cu  1 a t  eci M e a n ) '''2 Co uni;
3 a  1 1 i  p 1 i  e  r M u I t  i  p 1 i e  r R a t  i  o

(H TFS )
1083., 1 4 5 -  81 4 2 -  OS 1 - 0 8 9 0 . 0 0 4 1
I  0 4 4 .  4 4 2 .  7 5 4 1 - 4 1 1 - 0 3 2 0.. 0 1 5 1
1 0 3 8 , 9 4 2 .  19 3 8 .  9 6 1. 0 8 2 0 . 0 0 5 1
1 0 1 3 . 7 ,39 - 13 3 7 .  5 3 1. 0 4 3 0 - 0 1 3 1
1 0 0 2 .  3 3 0 .  8 5 3 4 - 6 i 0 .  891 0 . 0 6 9 0

3 9 9 -  0 2 7 .  9 4 3 1 - 0 8 0 - 8 3 9 0 - 0 6 5 0
9 5 2 -  5 25.. 51 2 8 -  78 0 .  8 8 6 0 . 0 7 2 0
9 5 4 .  3 1 3 .  S3 2 2 .  8 6 U» 8 6 7 0 . 0 8 2  • 0

9 S 2 .  2 15 . 90 17- 48 0- 9 1 0 0- 0 6 0 1

3 4 3 .  7 1 1 - 2 5 10 - 7 6 1. 0 4 6 0  - 0 1 2 1
1 4 0 1 . 3 2 6 .  4 3 23 -  7 5 1 - 1 1 3 0- 0 0 2 o
1 3 8 1 . o 2 5 .  04 2 3 -  16 1. 081 0„ 0 0 5 i
1374.. 4 2 3 .  14 2 2 .  19 1. 0 4 3 0 - 0 1 2 i
1 3 6 0 - 0 2 2 .  77 2 0 .  S3 1 0 3 3 0 . 0 0 4 i
1 3 4 6 . 2 20.. 5 4 19.. 3 5 1 - O 61 0 , 0 0 9 •;

1 3 4 0 .4 1 7 - 2 5 17- 5 2 0 .  9 8 5 0  - 0 2 9 1
1 3 3 8 -  5 is., i a 15 . 27 1 - 0 6 0 0 0 0 9
1 3 2 7 . 0 12.. 5 6 12- 78 0 .  3 8 4 0 0 2 9 1.

1 5 1 3 3 9., 3 8 9- 9 5 0.: 3 3 3 0 0 2 6 ■:

1 2 3 5 .  A 6  - a 6 -y cr *.w) u w .1. 1. 812 0 - 4.32 o
1 72.9. 3 1 / .  6  5 14- 93 1- 182 0- 0 0  i 0

1 7 1 1 . 2 16- 6 9 •; /. 253, 1- 149 0,. 0 0 0 0

1 7 1 3 .1 14- 9 4 13 , 7 9 1 - 0 8 3 0 , 0 0 5 1
1 7 1 9 - 2 15- 14 -1. vl> - ,.L 1- 145 0 - 0 0 0 o

1 6 3 6 . 5 1 3,. 6 0 12- 8 3 1 - 0 6 0 0 - 0 0 3
1£3 5 . 2 13 - 3 0 1 1.. 9 5 1. 113 0.. 0 0 2 o
1 £.95. 9 12 , 2 6 11- 13 1 - 1 0 2 0 0 0 3 0

1 8 9 2 - 3 1 i 92 10 - 15 1 - 1 74 0 o oo o

1 8 7 4 .  5 3 ,  1:- 1 9- 17 1 „ 0 2 6 0 . 0 1 6 1

1 8 7 8 . 8 6 -  1 3 7„ 72 1 „ 0 5 3 0.. 01 0 1
1 3 8 2 .  4- 6 -  12 D, 2 4 1„ 168 0- 0 0 0 o

2 0 8 3 .  3 1 1 8 6 9 .  91 1 - 2 0 7 0.. 0 0 3 o
2 0 5 8 .  3 12- 37' 9 - 6 7 1„ 2 7 9 0 0 1 6 o

2 0 8 9 . 3 10- 71 B - 91 1 .« ,.C•’ .ci 0 0 0  2 0
204 9.. S 10- 6 4 8- 6 5 1 - 2 3 0 0 0 0 6 0

2 0 6 2 .  9 9 -  2 2 7- 92 1- 164 0 „ 0 0 0 o

2 0 4 8 .  9 8 -  2 3 7 . 3 7 1 - 1 1 9 0 . 001 0

2 0 2 4 . 6 8 .  81 7 .  0 0 1 . 2 5 9 0 . 01 1 0
2 0 2 7 .  6 7 .  9 0 S. 2 8 1 - 2 5 3 0 , O i l 0

201:-2. f 6 .  3 9 5 .  5 4 1 - 1 5 3 0 , 0 0 0 0
1 3 9 3 .  6 4 .  6 3 4- 10 1. 129 0 - 0 0 1 o
2 4 1 5 . 5 9 .  2 2 7- 0 2 1 - 5 1 4 0 0 2 5 0
2 4 2 0 .  8 8 .  8 4 6 . 8 1 1 - 2 9 8 0 . 021 o

2 4 0 5 . 8 B. 4 5 6 - 5 9 1 - 2 8 2 0 0 1 6 0
2 4 1 0 .  0 7 .  91 6- 3 0 1- 2 5 6 0 - 0 1 0 0
241 l . 9 7 .  7 2 6 .  01 1. 2 3 5 0 . 0 1 7 0
2 3 3 8 .  8 7 .  3 8 5- 7 6 1. 2 8 1 0 . 0 1 6 0
2 3 9 1 . 4 6 .  5 3 5 .  4 0 1 „ 2 0 9 0.. 0 0 3 0
2vl>tofci« 1 6 .  6 3 4 .  9 5 1. 3 3 9 0 . 0 3 4 o
2 3 7 3 . 9 cr * *7* wJ w X w» 4 .  3 9 1. 169 0 . 0 0 0 0
x.'. a Zj & • 4- 4 .  3 5 3 . 8 3 1. 2 6 6 0 . 0 1 3 o
2 3 8 0 .  S 4 .  13 1. 9 6 2 .  107 0 . 9 0 S 0

Mean Std Dev 10"/- LiiYi.it 
1. 154 0-204 35”/
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2524.5 12.. 19 9. 71 1 . 2 55 0. 073 »/*>
249 1. 1 14,. 26 10. 38 1. 374 0023 0
2494. X 10. 75 8. 52 1. 262 0. 070 0
2502. 1 9.. 28 7. 74 1. 199 0. 107 0
2475. 7 / . 20 6. 89 1.. 045 0. 231 1
2450. 7 6,. 7b 5. 97 1. 132 0. 155 0
2454. 2 4. 85 2. 59 1. 873 0. 120 0
2447.& 2 M 8 b 2.. 25 1.. 258 0. 072 0
2963. S 9. 19 6. 68 1 - 376 0. 022 0
295S. 9 S. 60 6. 37 1. 350 0. 031 0
2979. 4 y. 2 2 5. 92 1. 389 0. 019 0
2961.5 7 a bO 5. 57 1.31 1 0. 046 0
2944. 0 6. 73 5. 16 1. 304 0. 049 0
2959. 0 5. 67 4. 55 1. 246 0. 078 o
2969.a 4. 89 4, 03 1.213 O. 096 o
2946.2 b « / b 2. 05 1. 820 0. 086 o
2919. 9 2. b 6 1. 89 1. 354 0. 029 o
4 •_■* 6 • O 6. 69 4. 75 1. 451 0. 006 0
b 4 X-'. 9 6. 83 4. 51 1.514 0. 000 0
3422.2 5. 95 4. 26 1. 397 0. 017 ()
3380. 3 5. 49 3. 94 1. 393 0.017 o
3401.4 4. 56 3. 54 1. 288 0. 056 o
3404,. 9 3. 89 3. 26 1. 193 0 „ 110 o
-34X7. 9 3. 67 1. 80 2. 039 0« 263 o
b* 43« 4 3 . 01 1. 74 1, 730 0. 042 o
3388. i 2.. 97 1 „ 66 1789 0., 069 o
3891. 5 5. 37 b. 5. b 1. 566 0. 002 0
3919. 4 5. 00 *7* ***% r.:rv.2 o 4 vJ 1 „ 538 0.. 000 0
3918.4 4. 62 3. 10 1490 0,, 001 -o
V. J 9 J. b • b 4., 41 2.96 1. 490 0.. 001 o
3915. 5 3. 96 .1̂. 4 / VJ 1. 451 0. 006 0
3883. 0 3. 72 2. 62 1 . 420 001 1 o
3872. 5 2. 99 1. 59 1. 881 0. 126 o
3862.2 2. 49 1 „ 54 1. 617 0. 008 0
3862. 4 2. 48 1. 49 1. 664 0* 019 o
4367. 3 4. 2 6 2. 53 1651 0 „ 01 6 o
4 b 4. 5 4. 06 2. 51 1.618 0. 008 0
4389. 5 5 „ Go 2. b2 1. 552 0. 001 0
4364. 1 3. 27 2. 17 1 „ 507 0. 000 0
4 b 1 b . 1 3- 02 1. 45 2. 083 0. 310 o
4362. 7 2. 65 i. 39 1. 90S 0. 145 0
4352.7 2. 19 1. 35 1.622 0. 009 0
4805. 5 3. 53 2. 07 1. 705 0. 032 o

4772. 1 3. 36 2. 01 1. 672 0. 021 0
4787. 0 3. 2‘9 1. 92 1.714. 0. 035 0
4806. 9 W  - -4- i. 1. 84 1. 745 0. 048 0
478S. 6 2. 62! 1. 32 1. 985 0. 211 0
4821»1 2!. b S 1. 29 1. 845 0. 102 o
4735. 8 2. 15 1. 2 8 1. 680 0. 024 0

Mean Std Dev 10% L
1. 526 0. 250 2
Total Group
Mean Std Dev
1. 340 0. 227
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10-o hase Caleui ated Mean) ■"'•'2 Count
PI. t i p 1 i e i' Rat 10
iYi~G/d"’“n)
22- 37 2. 048 0. 372 0
2.1. « So 1- 977 0. 290 0 '
20. 25 2. 083 0. 4 17 0
IS- 02 2 . 057 0. 383 (I)
17- 36 i,. 778 0. 1 15 0
15 - 53 1 - 800 0. 131 0
13. 71 1. 861 0. 179 0
10. 91 1- 818 0. 144 0
3.. 41 1. 891 0. 205 0
S.. 08 2, 216 0. 605 0
16.. 65 1. 563 0. 022 0
15. 99 U 566 0.. 016 0
15. 25 1.517 0. 006 0
14. 17 1 „ SO7 0. 029 0
13. 05 1. 575 0, 019 0
1174 1 - 469 0001 0
10., 21 1. 583 0- 022 0
S.. 48 1. 433 0 - 0 0 2 0
6. 55 1 . 509 0- 005j 0
.4! .1*2’ / 2. 70S 1.. 846 0
12. 91 1 . 3 b ■: 0. 005 0
12, 43 1. 342 0. 009 0 ---
:l. 1.. 35 1.260 0. 032 0
11. 36 X « Jj w> 2l 0„ 01 1 0
10- 90 1. 248 0- 036 0
1 0. 1 i 1„ 31b Ou 015 0
3- 44 1.. 299 0. 0 1 9 0
6. 59 1... 337 0- 003 0
7, 68 1. 226 0. 045 0
4 ! ■._» O 0. 033 0

4, 36 1. 405 0- 001 0
10.. 32 1. 158 0,. 078 0
9, 95 1 24 b) 0. 038 0
9. 22 1. 162 0. 076 0
3.. 87 1, 200 0. 057 0
3.. 17 1 . 123 0. 096 0
7- 55 1. 093 0. 1 19 1
7. 09 I. 243 0- 038 0
S. 37 1. 241 0. 039 0
3.. S3 i « J. OO 0. 092 0
4, 09 1. 133 0-033 0
S.. 48 1067 0. 123 1
S. 24 1. 072 0. 134 1
7. 33 1» 0 6S 0- 138 i
7. 59 1. 042 0. 157 1
7. 25 1. 065 0. 139 1
6. 91 1. 060 0. 137 1
S. 4S 1.011 0. 182 1
5. QS 1. 132 0. 094 0
5. 22 0. 982 0. 208 1
4. 51 1. 075 0. 132 1
2. 33 1. 770 0.. 110 0

Meavi Std Dev 10% LiiYiit
1.438 0. 378 19*/.
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20- 38 0. 59a 0» 0 0 5 0
2 i.. SO 0. 663 0 - 0 19 0
17- 67 0. 608 0- 007' o
16- 10 0. 576 0. 002 o
14,. 18 0.. 508 0. 000 0
12- 16 0. 556 0-001 o
5. 28 0. 918 r\ KT.-.Ti> X -.J 1
4. 5 S 0. 618 0. 008 o
16. 46 0. 558 0.. 001 0
15. 67 0. 549 0. 000 0
14.. 66. 0. 561 0 - 001 o
13- 71 0. 532 0 .. o o o 0
12. 63 0. 533 0 - 000 o
11. 19 0. 507 0. 000 0
9- 95 0. 491 0- 00 1 o
5., 02 O, 7 6 S 0. 047 0
4- 59 0- 558 O Ov ... 0
13. 58 0, 507 0 - 0 0 0 0
12., S3 0- 532 0- 000 0
12. 12 0. 491 0- 001 0
1 107 0. 496 0., 001 o
10 - 01 0. 455 0, 005
9 - 2 5 0„ 422 O O  1 1 o
rr ~wJ 4 .5. SL 0. '7 i 7 0.. 036 0
4 3^ 0- 608 0- 007' 0
4. 68 0- 635 0. 012 0
11. 10 0. 484 0.. 002 0
10- 59 0. 472 0. 003 o
10.. 10 0. 457 0., 005 o
9, 63 0. 4 58 0.. 0 0 S' o
8. 89 0. 468 On 007
8. 4b 0- 4 40 0, 008 01
5« 1 2 0- 584 o , 003
4. 95 0. 504 0 - O' 0 1 0
4. 78 0. 518 0. 000 0
9. 37 0. 455 0. 005 0
9.. 05 0. 469 On 006 0
6- 47 0. 425 0 - 010 ' )

7- 87 0- 415 0 - 012 0
5. 20 O - 5181 0. 003 0
5. 04 0. 526 0.. 000 o
4. 89 0. 448 0- 006 0
8. 27 0. 427 0.. 01 0 0
7. 98 0. 421 0 - 011 o
7. 64 0- 431 0- 009 0
7. 3J5 0. 437 0. 008 o
5. 26 0. 499 0. 001 (j
5. 17 0. 4-60 0. 004 0
5. 04 0. 427 0. 0 x 0 o

Mean St d Dev 10“/ L
0. 527 0. 097
Total G ro up
Mean Std Dev
0, 991 0. 238
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Two-phase Galculated 
Mu11 i p 1 i e r Ratio 
(ct=0,1)
26- 58 
25- 77 
24. 15 
22. 78 
20- 82 
IS. 63
15. 59
13. 19 
10. 16
6. 15 
19. 02 
1S » 3.1
17.. 47
16. 25
14. 98
13. 49
1 1 . 73 
9- 76
7. 54
2 - 6 ■_ j
14. 41 
13. 63 
13. 23 
12 - 63 
12. 18 
11. 30 
10. 55
3., 61
8. 60
7. 25 
4- 68 
11-31 
10. 32 
10. .11 
3- 73
8 . 96
8. 29 
7. 79
7. 00
6. 13
4. 50
9. 18
8. 92 
8. 59 
8 . 2 2
7 .  8 5  

7 .  4 9  

7 .  0 0  

6 .  3 5

5 .  6 6  

4 .  3 0

2 . 5 3  1 . 6 3 3

Mean 
1 .  2 6 6

Mean) 2 Count

0» 2 10 0
0 7155 0
0. 2:32 0
0.204 0
0.047 0
0- 055 0
0. 074 0
0-056 0
0-090 0
0, 316 0
0, 015 0
0 „ 010 0
0. 003 0
0» 013 0
0,0:11 O
0.000 0
0.013 0
0,001 0
0. (702 O
1,338 0
0- (7(72 O
0.1204 0
0. 019 O
0.005 0
O.022 0
0., 008 0
0. 0 11 0
0,001 o
0,029 1
0. 021 0
0. 000 0
0. 044 1
0 018 0
0„043 1
0„030 1
0.056 1
0. 073 ' 1
0,018 0
0-019 O
0.054 1
0.056 1
O.068 1
0. 075 1
0.079 1
0.092 1
0.080 1
0. 078 1
0. Ill 1
0-049 1
0- 130 1
0. 076 1
0.135 0

Std Dev 107- LiiYiit 
0.232 357

. 724 

. 659 

. 747 

. 718 

. 482 

. 433 

. 538 

. 503 

. 565 
- 828 
. 383
- 368 
. 3 2 5
- 401 
. 371 
, 278
- 379 
. 289 
.310 
. 423
- 225 
„ 202 
. 123
- 133
- 1 17 
.. 177 
.. 162 
. 241
- 095 
. 122 
.. 254 
. 057
, i. vJ

. 059
- 033 
. 029
- 335 
. 131 
. 123 
. 033
- 030 
. 004 
. 931 
. 984 
. 962 
. 384 
. 986 
. 333 
. 044
- 306 
. 991
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21. 35 0» h71 0. 004 0)
22.. 5a 0. 633 0. 015 (j

13. 52 0. 580 0„ 005 0
16. 88 0. 550 0. 002 0
14. 87 0. 484 0 . 001 0
12. 76 0» 530 0. 000 o
5. 54 0. 875 0. 134 0
4. 80 0. 589 0. 007 o

17'. 13 0. 537 0. 001 0
16. 31 0. 527 0. 000 o

15..26 0. 539 0. 001 0
1 / 0. 511 0. 000 o
1 W.I « X O O. 512 0. 000 0
11. 65 0. 4 S 7 0. 000 Q

10. 35 0. 4'7 2 0. 001 o
5. 23 0. 714 0. 042 o
4„ 78 0. 536 0. 00 1 0
14. 05 0. 490 0. 000 o
13. 23 0. 514 0.. 000 o
12. 52 0. 474 0. 001 A
11. 47 0. 479 0. 001 0
10. 37 0. 440 0 .  005 A
9. 55 0. 407 0. 01 0 0
5. 3-0 0. 633 0, 034 o
t.r ̂ 1 0. 587 0. 006 0
4. 84 0. o 13. 0. 011 0
11. 44 0. 469 0  a 002 o
•j f) 0. 458 0. 003 o
10 .41 0. 444 0. 004 A

9. 93 0. 444 0. 004 o

9. 16 0. 432 0.. 0 0 6 0
8. 72 0. 427 0. 007 A
~ . ' j2 8 0.. 566 0. 003 o

5. 1 0 0. 488 0. 000 0
4. ’"ivj 0. 503 0„ 000 o
9. >33 0. 4^3 04 004 0

0. 437 0. 005 o
8. 70 0 „ 414 0. 009 0
8. 03 0,. 404 0. 01 1 0
5. 34 0. 565 0. 0)03 o
5.. 18 0. 511 0. 00)0) o
5. 02 0. 438 0. 005 rj
S. 48 0.416 0. 00 8 0
a, is 0.411 0. 003 o
7. 83 0. 420 0. 008 0
7. 54 0. 426 0. 0 0 7 0nr rrovJ It v-7 -/ 0. 466 0 . 00)0) 0
vj« w*jU 0. 449 0. 004 0
cr •: -7 0. 416 0. 009 0

Mean Std Dev 107. L
0. 508 0.091 O'
Total 8 r o u p
Mean Std Dev
0. 835 0 . 192
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!D”phase C<3.1 cu 1 at ed Mean) '"'2 C o uni;
; 11 i p lie r Rat i o
: t --011)
27. 00 1. 697 0- 199 (j
26, IS 1. 633 0, 146 0
24, 54 1. 719 0. 219 o
23, 15 1. 690 0. 193 0
21, 16 1. 458 0- 043 Q
1Q . 94 1 - 475 0- 050 0
16. 87 •1 CT ’! ~ 1 - JliL 0. 068 o
13- 42 1. 477 0. 05 1 o
10- 33 1. 539 0. 083 Cj
6. 26 1 - 797 0. 293 0
19.. 2 6 1 . i U 0. 015 Q
IB. 54 1- 351 0 „ 01 0 0
1 /.. 6 9 * “x .•*% n J. * 0. 003 o
16-46 1. 384 0.013 o
15. 17 3. * 0 0 1  1 o
13- 67 1. 262" 0. 000 o
11-88 1361 0. 012 (*)
9. 89 0. 000 o
7. 64 •? •*> c’-i yz 0, 002 o
2„ 66 Li! w'r/1  ̂* ]? *“*•' ̂ 0
14. 56 1.212 0, O 0 o
14- 03 1. 189 0, 004 o
13. 37 1. 1 17 0 - 013 _ i )
12. 82 1„ 181 0, 005 ~ 0
12. 31 1. 105 0. 0 21
11. 42 1. 165 0 - 007 Q
10. 66 1, 150 0 - 010 u
9,71 0., 001 0
8. 69
**/ v

I.. OS3
j i ■, ('■)

0. 028 
( j t ( \' .■* { j

1

4. 93 1. 24 1 0, 000 0
11.4 1 1 « 040 0 , 04 1 1
11 „ 02 1, 123 0. 0 16 o
10- 20 1. 050 0, 040 1
9. Q 2’ 1« 064 0.. 028 1
9, 04 1 - 020 0- 053 X

S. 36 0.. 9o7 0. 070 1
7. 86 1. 121 (j. 01 7 o
7. OS i.  119 0« 01 7 o
6 > 2’ 4 1. 024 0. 052 1
4. 54 1, 020 0- 053 1
9- 25 0. 997 0. 065 -1.
8. 99 0. 983 0. 072 1
8. 65 0- 977 0. 075 1
8. 29 0- 955 0. 088 •<X
7. 91 0. 976 0- 076 1
7. 54 0. 978 0. 074 i
7. 05 0- 926 0. 106 1
6. 40 1. 036 0. 046 1
5. 71 0. 899 0. 124 0
4. 93 0. 983 0. 072 1
2. 55 1. 620 0 . 1 o 6 0

Mean Std Dev 10'/- L;
1. 251 0. 285 O O *
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2 1 n 4 5 0 , 3 by 0 ,  0 0 4 0
22.. 64 0 . 6 3 0 0» 0 1 5 if)

18 - 60 0 .  5 7 8 O'. 0 0 5 o

16- 95 0. 5 4 7 0 .  0 0 2 0
14. - 94 0- 4 8 2 0 .  0 0 1 0
12.. 82 0. 5 2 7 0 .  0 0 0 0
5- 5 7 0 . 871 0 -  1 3 3 o
4. 8 3 0 .  5 8 6 0 .  0 0 6 o

1 7 ,  20 0 .  5 3 4 0 ,  0 0 1 0
16, 37 0 . 5 2 5 0 . 0 0 0 0

115. 52 0 .  5 3 7 0.. 0 0 1 o
14.. 33 0 . 5  10 0 .  0 0 0 o
13 ,  20 0 ,  5 1 0 0 ,  0 0 0 o
11. 69 0 . 4 8 5 0 . 0 0 0 0
10 . 39 0 ,  4 7 0 0 .  0 0 1 o
cr c_ 0 . 7 11 0- 0 4 2 0

4„ 80 0 .  5 3 4 0 ,  OO'l (j

14.. 1 0 0- 4 8 9 0 , ooo o
5 5 0« 5 1 3 0.. 0 0 0 0

12. 59 0 , 4 7 3 0 . 001 o
11 .. 5 1. O „ 4 7 7 0 .  001 o
10. 40 0 .. 4  3 8 0 . 0 0 5 0

8., 5 9 0 ,  4 0 6 0 - 0 1 0 o
5 - 3 1 0 . 681 0 „ o 3 4 o
5 „ 1 4 ____0 . 5 8 5 0.. 0 0 6 o

4 . a s 0 , & 11 0 ,  01 1 0

11 „ 4 8 0 , 4 6 8 0 ,  0 0  1 0
10.. 95 0. 4 5 7 0„ 0 0 2 0

0 .  4 4 3 ■ 0 . 0 0 4 0
C3 0 .3 0 , 4 4 3 0.. 0 0 4 0

S.. 19 0 .  431 0 ,  0 0 6 o
C» ’*/" £7 0 . 4 2 3 0.. 0 0 7 0
cr rov J .*£ 27 0 . 5 6 5 0 ,  0 0 3 o
tr* -* *4 0 . 4 8 7 0 ,  0 0 0 o
4 ,  9 5 0 ,  501 0 ,  0 0 0 0
9. 6 5 0 , 4 4 1 0 ,  0 0 4 if)

9 ,  32 U ii A C' 0,. 0 0 5 0

8 . 7 2 0, 4 1 3 0 ,  0 0 9 o

8 . 11 0.. 4 0 3 0 .  01 1 o

5 . 3 6 0 . 5 6 4 0 .  0 0 3 0

5 .  19 0 .  5 1 0 0 .  0 0 0 0

5 . 0 3 0 .  4 3 5 0 .  0 0 5 o

8- 5 0 0 .  4 1 5 0 .  0 0 8 0
8. 2 0 0- 4.1.0 0 .  0 0 9 0

7 . 8 5 0 .  4 l 9 0 ,  0 0 8 0
7 . 5 6 0- 4 2 5 0- 0 0 7 o

5 ,  40 0 .  4 8 5 0 .  0 0 0 0

■* w.* JL 0 . 4 4 3 0 .  003' o

5 .  18 0 .  4 1 5 0 .  0 0 8 o
Me a vi Std Dev 107- L

0 . 5 0 7 0 .  0630 0
Total S r o u p
Mean Std Dev

O. 8Q6 0. 188
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Two-pha«se Ca 1 cuiated I'oean) "2 
Mu 11 1 p 1 i e r Rat :i. o 
(et - 0 0 9 )
26. 16 1. 751 0. 221
ir-b.. 3 b 1. 666 0. 164
2 a.. 7t> 1. 776 0. 245
22. 40 1. 747 0. 217
20. 47 1. 507 0. 051
18. 32 1 „ 523 0. 059
16. 30 1. 565 0. 081
12. 97 I. 529 0. 062:
9. 98 1.. 593 0. 097
6. 05 1. 66 1 O.. 336
13. 79 1, 407 0. CIS
18. 08 1.. 365 0. Oil
17.. 25 1. 342 0. 004
16. 04 1. 420 0. 019
14. 79 1. 389 0. 012
13. 32 1. 235 0. 000
1 1. 56 1, 397 0, 014
9. 63 1. 306 0001
7. 44 1 . 327 0., 002
2. 39 2.. 455 1 379
14. 26 1. 238 0. 002
X Jj . / 1. 215 0. 004
13. 10 1. 141 0. 020
12. 55 1. 206 0.. 006
12. 05 1 , 1 28 0. 023
11. 18 1. 189 0.. 003
10. 44 1. 174 0. 011
S., 51 1. 254 0. 00 1
8.. 50 1. 107 0.. 030
7. 17 . 13 4 0. 022
4. S3 1. 263 0. 000
1 122 1. Obfo 0. 046
10. 62 1. 143 0. 01 9
10. 02 1. 069 0 , 045
9. 64 1. 103 0. 032
8. 68 1. 033 0. 059
3.. 21 1. 004 0. 077
7. 72 1. 142 0. 019
6. 9 3 1. 140 0. 0 2 0
& .  13 1. 0 4 2 0 -  0 5 7
4. 46 1. 0 3 9 0 .  0 5 9
9 .  11 1 . 0 1 2 0. 0 7 2
8. 86 0 . 9 9 8 0. 0 8 0
8 .  5 2 0 .  992 0, 0 8 4
8. 16 0 .  969 0, 0 9 7
7. 73 0. 991 0 .  0 8 4
7 . 4 3 0. 9 9 4 0. 083
6. 94 0. 940 0 . 116
6. 30 1. 0 5 2 0 .  0 5 2
5. 62 0. 913 0. 1 3 5
4. 86 0. 998 0, 0 8 0
2. 51 1. 646 0. 133

Mean Std Dev 
1.281 0.299

Co unt;

O
0
0
0
O
0
0
0
o
0
o
0
o
0
o
0
o
o
o
0
n
0
o
0
o
o
o
Q
o
0
Q
1
0
1
0
1 
•1 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
o

10*/. LiiYiit
31"/.
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*.C .L )• .2 "j 0. 574 0.. 0 0 4 0
.< £-v 3 0.. 636 0 , 01 £ 0

1Q„ 43 0. 583 0 . 005 0
16 „ 80 0 . 552 0 . 0 0 2 0
14. SO 0 . 4SB 0 „ 00 1 0
1 2,. 70 0. 532 0 . 0 0 0 0
•r- cr ■-. •_J„ ■._< .c. 0 . 879 0 . 136 0
4. 78 0. 592 0. 007 0
17. 06 O. 559 0 . 0 0 1 0
16.. 24 0. 529 0 . 0 0 0 0
15. 2 0 0- 541 0 „ 0 0 1 0
14. 22 0. 513 0 . 0 0 0 0
13. OS 0. 514 0 .. 0 0 0 0
1 1.. 60 0. 469 0 . 0 0 0 0
10 „ 31 0. 474 0 . 0 0 1 »._}
D * X 0. 7 x 6 0. 043 0
<% « / b 0. 538 0 „ 0 0 1 0
14. 01 0 .. 492 0 . 0 0 0 Q
.L W> n XL O 0. 51S 0 . 0 0 0 0
12.. 50 0. 4 7 £ 0 , 0 0 1 0
1 1 n 43 0 . 480 0 . 0 0 1 Q

0 . 441 0. 005 /'■}
rj i.rr 0. 409 0 . 0 10 0
D. 23 0. 635 0.. 034 0
3 * 1 0. 589 0 . 006 0
4. 83 __ 0, 615 0. Oil 0
11 .41 - 0., 471 0 . 0 0 2 0
10.. 33 0. 433 0 . 003 0
10.. 33 0 ,. 445 0 . 004 0
S. 90 0 ., 446 0 . 004 0
Q j f-' 0 . 0 0 b 0
3., 69 0» 426 0. 007 0
5. 28 0. 568 0 „ 003 0
5.. 03 . 0 /| Qn 0 . 0 0 0
4,. 92 C ) > i L\. 0 . 0 0 0 0
9 „ 60 y)A / . \ . d  4 0. 004 0
O ~f 0. 005 Q
3. 6 8 0% A 1 3 0 . 003 0
3. 07 0. 405 0 0 1  1 0cr ~r irrr *y V./ M vJ t'.‘ ✓ 0. 003 r>
l— •> - 7O. i ̂ 0. 513 0 . 0 0 0 0
5. Ol 0. 437 0. 005 0
S. 46 0. 417 0 . 009
8 . 1 6 0. 412 • 0» OlO 0
7. 81 0. 421 0 ., 008 0
7. 52 0. 427 0. 0* 07 0
5. 37 0 . 4SQ 0. 001 0
5. 29 0, 450 0. 004 0
5. 16 0. 417 0 . 009 (j

Mean Std Dev 10% L
0. 510 0 . 091 O’
Total Group
Mean Std Dev

0. 903 0. 195
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IO “  p h 3 S 0 L:a i  cu  1 a t  eci M ean )  "72 Co u n t
I t i p l i e r Rare i o
n d ~ 0 . 5 )
3 4 .  6 9 1.. 3 1 3 0 . 0:29 0
3 4 .  0 7 A rpr 0 . 0 1 2 cj

31.. 99 l .  3 1 9 0 . 031 cj

3 0 .  4 7 1. 284- 0 . 0 2 0 0
2 7 .  97 1. 103 0 . 0 0 2 ij

2 5 .  07 1. 114 0 . 0 0 1 (j

2 2 .  74 1. 122 0 . 0 0 0 0
I S .  OS 1. 0 9 7 0 . 0 0 2 V

13. 87 1» 1 46 0 . 0 0 0 0
8 . 4 7 1. 3 2 9 0 . 0 3 4 cj

22. 26 1. 187 0 . 0 0 2 0
21 „ 5 6 1. 161 0 . 0 0 0 o

20. 6)1 1, 122 0 ., 0 0 0 t j

1 9 .  26 1. 182 0 . 0 0  1 0
17 . 82 1. 1 52 0 . 0 0 0 o

16. 10 1. 0 7 2 0 .  0 0 5 1
14 . 01 1. 155 0 . O 0 0 o

11. 69 1. 0 7 6 0 .. 0 0 5 J.

9 . 0 7 : „ 0 9 0 0 .  0 0 3
» 1 8 2» 0 0 2 0„ 7 3 7 Cj

l b .  3 1> 1 * 1 2 A 0 . 0 0 0 O
1 4 .  8 9 X i* X 2 j 0 . 0 0  1. cj

14 . 16 1 . 0 5 5 0 . 0 0 8 -  1
13 .  58 A i •* HP-2 M j. J O 0 .. 0 0 1 cj

13.. 1 1 i . 0 2 6 0 . 0 1 1
j. t: ' . [ L  C> 1 14 0 9 2 0 . 0 0 3  -
X  .W - 0**2* 1 . 0 7 9 0 ,. 0 0 4 1
10 „ 3 5 1.. 151 f) >t (j  Cj i~j l~-,

9 . 3 1 1 0 1 1 0 0 1 8 i

7„ 8 4 1.. 0 3 7 0 .. 01 1

5. 3 0 1. 154 0 . 0 0 0 -  0

11.1 1 1. 0 7 7 0 . 0 0 4 1
1. 1 48 0 , 0 0 0 o

c. CJ 1. 0 7 6 0 .. 0 0 5 1

9. 6.2 1. 1 06 0 . 001 O'
S. 8 4 1. 0 4 3 0 . 0 1 0 1
8. 2 0 1. 0 0 6 0 ,  0 1 9 1
7 .  7 4 1. 138 0 . 0 0 0 0
6. 9 5 1. 136 0 . 0 0 0 Cj

6 . 14 1. 041 0 „ 01 1 1
4 . 5 0 1. 0 2 8 0 . 0 1 3 1
8 . 4 2 1. 0 9 5 0 . 0 0 2 1
8. 17 1, 0 8 2 0 .  0 0 4 i
7 .  89 1. 071 0 . 0 0 3 1
7 . 5 5 1. 0 4 8 0 .  0 0 9 1
7 .  2 0 1. 0 7 2 0 .  0 0 5 1
6. 8 6 1. 0 7 2 0 .  0 0 5 1
6 . 4 5 1. 0 1 3 0 . 0 1 7 1
5 . 8 8 1. 128 0 . 0 0 0 0
vJ • aC. v) 0 .  981 0 . 0 2 6 1
4 . 5 4 1. 0 6 8 0 . 006) 1
XL m w*w> 1. 7 6 9 0 .  391 0

Mean Std Dev 10*/- L:
1 . 1 4 4 0 .  170 48:
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15.. 04 0. 81 1 On 00 1 0
15. 93 0. 833 0. 003 0
13. 12 0. 819 On 000 0
11. 34 0. 777 On 004 0
10. 57 0. 681 0. 026 0
3. 12 0. 741 0 n 010 o
3. 36 1 „ 225 0- .147 0
3. 43 0. 824 On 000 o
11. 15 0. 824 On 000 0
10. 63 0. 803 0. 001 0
3„ 31 0.. 830 0. 000 0
3. S u 0. 765 On 003 o
a. 53 0. 784 On 003 o
7, 53 0. 747 On 009 0
6,. 74 0. 726 0 „ 0.1 3 0
3.41 1093 On 065 1

X O 0. 817 0. 00 1 o
8, 51 0. 810 On 001 0
8. 06 0. 348 On 000 0
7. 61 0,. 76 7 0- 004 o
7. 00 0., 764 0. 003 o
31 0. 723 0 n 014 0

5, 81 0. 663 On 030 o
3- 21 1. 142 0. 030
3. 11 0. 968 0.. 01 6 1
2. 95 1. DOS 0. 027 X
6. 51 0. 825 On 000 0
6. 13 0. 808 On 00 1 i'\
5„ 31 0. 782 On 003 o
5, 64 0. 783 ■ On 003 o.
5. 20 0.. 762 On 006 0
4, 97 On 743 0. 003 o
3. 01 O'.. 3 3 3 0.. 023 1
2.. 9 1 0, 855 Ou 000 o
2. 82 0. 880 On 001 0
5. 17 0.. 823 0. 000 o
5.. 02 0. 809 On 00 1 0
4. 66 0. 772 On 005 0
4. 35 0. 752 0- 008 0
2. 63 1045 On 041 1
2. 73 0. 351 0.012 1
2. 70 0. 810 0. 001 0
4. 34 0. 612 0 n 00 1 o
4. 20 - 0. 739 0. 002 o
4. 02 0. 8IQ On 001 o
3. 86 0. 831 On 000 o
2. 77 0. 947 On 01 1 1
2. 71 0. 873 0. 001 0
2. 67 0. 806 0. 001 0

Mean Std Dev 10’/ LiiYiit
0. 841 0. Ill 147.
Total Group
Mean Std Dev

0. 396 0. 141
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JO" p hct'Se Calculated Mean) •‘"2 (Jo unt
111 i p 1 i e r R a t :i. o
. n&~0. 2)
4 1 . 23 1. 1 09 0. 001 0
40. 51 1.. 055 0. 001 1
38. 09 1.103 0. 001 o
36. 51 1. 072 0. 000 I

33. fel> 0. 918 0. 028 1
30. 16 0. 326 0. 025 1
27. 89 0. 321 0. 027 1
22:. 00 0. 301 0. 033 1
16. 85 0. 344 0. 020 1
10. 34 I.. 086 0. 000 1
24. 50 1. 073 0. 000 1
23. 82 1. 051 0.00.1. 1
22. 81 1.015 0. 005 1
" 17 1 „ 066 0„ 000 1
19. 82 1. 036 o. 0 0 2: i
17. 32 0. 362 0. 015 1
15. 61 1, 036 0. 002 1
13.. 05 0. 964 0. 01 4 1
10.15 0. 374 0. 012 ■i
cr ..j 1.. 782 0. 487 0

IS. 00 j. *s Jr. Ovi 0. 000 0
« irr cr /, - ■-J n ‘J 1 „ 074 0. 000 1
14. 76 1, 0  I2 0- 005 1
14. 13 1070 0. 000 1
13. 70 0. 933 On 008 1
12 „ 75 1.. 043 0. 002 1
11. 88 1. 032 0., 003 1
10.83 i. i oo 0. 000 C j

3. 77 0. 363 0. 015 1
8 2  2 0. 388 0. 009 i
~i '”,7 J. < 038 On 000 i
10. 38 1. 089 0. 000 1
10. 69 1. 1 57 0. 005 0
9. as 1. 086 0.. 000 1
3. 56 1.  113 0•> 0 01 o
S. 76 v „ 052 0001 i
6. 14 1. 013 On 005 1
7. 72 1. 142 On 003 Cj

S„ 93 1. 141 On 003 0
6. 11 1. 045 0.001 i
4. 51 1. 027 On 003 1
7. 39 1.. 15 4 0. 005 o
7. 78 1. 140 On 003 o
7. 50 1. 127 0. 002 0
7. 17 1, 103 On 000 o
6. 84 1. 129 0. 002 0
6. 55 1. 127 0. 002 o
6. 14 1. 064 0. 000 1
5.61 1. 181 0. 009 o
4. 33 1. 029 0. 003 1
4. 34 1.117 0. 001 0

» yl O 1. 856 0. 535 0
Mean Std Dev 10*/- Lil
1. 084 0. 163 65*/.
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12. 23 0- 996 0.. 020 1
13- 05 1. 033 0. 00 2 1
10. 71 1. 004 001 Q 1
9. 74 0. 953 0- 034 1
8. 65 0. 832 0. 093 0
7. 48 0- 904 0. 054 1
5. 112 1.. 494 0- 128 0
11. 8 2 1.. 004 0. 018 1
8. 67 1 - 060 0, 006 1
8. 26 1. 041 0- 009 1
7. 63 1. 069 0. 005 1
7. 23 1. 010 0. 016 1
6. 63 1. 006 0. 017 1
5. 30 0- 361 0. 031 1
5. 23 0 . 335 0- 041 1
2,. 66 1.. 404 0. 071 o

2. 45 1. 047 0- 008 1
6,. 34 i. oaa 0.. 002 1
6. 01 1. 137 0. 000 o
5., 68 1. 048 0.. 008 1
5. 24 1. 048 0- 008 1
4. 71 0, 363 0 „ 023 1
4. 34 0. 696 0.. 058 0
2.. 40 1. 530 0- 155 0
2. 32 1. 238 0026 o
2. 21 1. 345 0. 043 0
4. 68 1. 147 0» 000 o
4„ 44 1- 126 0« 000 0
4- 24 1 „ 091 0,. 002 1
4. 04 .1. 091 0. 002 1
3. 73 1. 062 0.. 006 1
3.. 57 1.. 041 0» 003 1
2. 17 373 0. 059 0
2. 10 1.. 18b 0- 002 o
2. 03 1.221 0. 007 0
3. SO 164 0. 002 o

3. 43 1 „ 1 S '.zi 0.. 00 l 0
3, 24 l .. 112 0. 001 0
3. 03 1. 08 1 0.. 003 i
2, 02 1,. 437 0- 130 o
1. 34 1. 368 0. 053 o
1. 88 1- 164 0. 001 0
2. 94 1 „ 202 0. 004 0
2. 85 1. 179 0. 002 0
2. 72 1. 208 0. 005 0
2. 61 1. 229 0 „ 009 o
1. 87 1. 399 0- 069 0
1. 83 1. 299 0. 026 (I)
1- 81 1- 187 0. 00:2 0

Mean Std Dev 10% L1 iYi i t
1. 137 0. 163 48%
Tot al Group
Mean Std Dev
1.110 0. 163
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Two—phace Ca1cu1 at ed Mean) •'"’2 Count
M u 11 i p 1 i e r Rat i o
(i nd~0.35)
37. 94 1, 207 0, 009 0
37. 13 1. 151 0. 00 1 0
34. 89 1,209 0. 009 0)
■j) . 6 4 1. 174 0. 004 o
30. 84 1. 007 0, Oil 1
27.49 1.017 0. 009 i
25. 08 1. 0.1.7 0, 009 1
19. 93 0. 995 0 . 014 1
15. 28 1 „ 041 0. 005 1
9. 35 1. 203 0,. 008 (j

1. 132 0. 000 0
22. 86 1. 105 0, 000 o

21, 68 1 „ o 6 7 0. 002 1
20. 28 1. 123 0. 000 o
18. 79 1., 093 0, 000 1
16. 98 1. 016 0. 009 1
14. 78 1, 094 0. 000 :
12. 35 1.019 0, 009
9, 59 1 „ 030 0. 007 j.

3. 37 1 „ SS9 0. 603 0
15.. 63 1. 1 25 0 .  000 o
15.21 - —  1.097 0 .  000 1.
14, 46 1. 033 0, 006 1
13. 86 1, 092 0, 000 J.

13. 40 t. 0 15 0, 0 J. 0
12 „ 4 6 1067 0, 002 1
11.. 6 2 1, 055 0, 003 1
10. 59 1.. 176 0, 000 0
8 .  53 0, 987 0. 0 :6 1
8. 03 •. o 2 o , o o 1
5. 44 1 .  126 0 .  000 0
11. 04 1 „ 063 0, 001 1
10. 74 1, 1 52 0, 002 0

9. 91 1. 061 0, 001 1
9. 58 1, 108 0. 000 o

8. 80 1 „ 048 0. 004 1
8. 17 1 , 0 10 0. 0 i i 1
7. 73 1, 140 0, 001 0
6. 94 1. 139 0. 001 0

6. 13 1. 043 0- 005 1
4, 51 1, 023 0, 007 i
8. 20 1. 124 0, 000 0
7. 96 1„ 1 10 0, <200 o
7. 69 1. 099 0. 000 1
7. 36 1. 075 0. 001 1
7. 02 1. 100 0. 000 1
6, 71 1. 099 0. 000 1
S. 29 1. 038 0. 006 1
5. 75 1. 154 0. 002 o
5. 10 1. 005 0, 012 1
4, 44 1. 092 0. 0)00 1
2. 28 1. 812 0. 489 0

Mean Std Dev 10% L i i Y i i t

1. 113 0. 160 62*/.
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£> 
ro 
rO 
iO 
P- 
£■• 
P- 
CH 
Lf'i 
01 
Ml 
Ml 
Ml 
CO 
CO 
Cr' 
jii 
!.n 
-v! 
W 
W 
CO 
m 
*4 
Co 
03 
uj 
u> 
C< 
C4 
CD 
i£S

13, 56 
Mi.. 43 
11.. 85 
10. 78 
56 
26 
.. 56 
.. i i 
.. 83 
. 37 
.. 72 
. 19 
. 57 
. S3 
. 93 
. 01 
. 77 
, 34 
. 95 
, ‘5 7 
. 05 
, 45 
02 
. 77 
66

. 2 4  

.. 00  

. 77

. 40

.  47 

.. 33
* -..V;

4.. 13
3.. 0 6  
3. 62
2 . 41
2 » -32

3. 57 
3. 46
* ol 
3» 17 
2. 27

Jj
2 . 2 O

0,  Q'39 0„ 0 0 6 0
0.  9 8 8 0.. 0 0 0 1
0 .  9 0 7 0  a 0 0 5 1
O .i 8  fa 1 0 .  0  14 0
0 .  7 5 3 0 .  05  1 0
0.  8 1 3 0., 0 2 5 0
1 3 5 3 0 1 4 1 0
0.  9 1 0 0 ,  0 0 5 1
0 .  9 3 5 Om 00:2 1
0.  3 1 8 0„ 0 0 4 1
0 .  9 4 2 0 .  00.1 1
0 .  831 0 .  0 0 3 0
0 .  8 6 8 0 .  0 0 8 0
0 .  8 4 8 0 .  0 1 7 0
0 .  8 2 4 0 .  0 2 4 0
i . 2 3 3 0 .  0 6 3 0
0.  9 2 5 0 ,  0 0 3 I
0 .  9 3 3 0 .  0 0 2 1
0 .  3S 2 0 , 0 0 0 1
0,  9 0 6 0 .  0 0 5 1
0.. 9 0 7 0 .  0 0 5 1
0 .  8 3  7 Dm 0 2 0 0
0 .  7 7 5 0 .  041 0
L  3 2 3 0 .  1 13 0
1. 122 0 .  021 ___Q

1. 164 0 ,  0 3 5 0
0.  9 7 3 0 ,  0 0 0 1

0.  3 5 4 0 ,  001 x

0 .  3 2 5 0 .  0 0 3
0.  3 2 5 0.. 0 0 3 1
0,  9 0 0 0 „ 0 0 6 1
0•, 8 6 3 0.. 0 0 9 0

i v i 0 0 3 7 0
1» 0 0 8 Ou 001 J.
1.. 0 8 7 0 .  0 0 4 J.

0- 9 8 8 0 .  0 0 0 1
0.. 37  i 0 .  0 0 0 j.
0,  9 2 7 0 . 0 0 3
0.  9 0 2 0 ,  0 0 6 1
1. 2 5 2 0 .  0 7 5 0
1.  142 0 .  0 2 7 0
0 .  9 7 2 0 .  0 0 0 1
0 .  9 3 9 0 .  0 0 0 1
0.  9 7 2 0 .  0 0 0 1
0.  3 9 5 0 .  0 0 0 1

1 . 0 1 2 0 00 1 1
1. 153 0 .  0 3 0 0
1. 063 0. 008 1

0. 979 0. 000 1
Mean Std Dev 107- L
0. 978 0. 131 go:
Total Grouo
Mean Std Dev
1. 047 0. 145
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T I-'! \ < "" ”) 1 Ca 1 1 1 t?d e !•;;) ■' ■'
:V'.i ; : l p 1 i 8 1 O
( 1 Vi O ■ = 0 . 3

o ■; 1 . 2 CO 0. 008
37.. 3/i. 1165 0. 001
35- lo i. 202 0. 008
33.. 54 l- 167 0.. 003
30., 33 1, 00.;. 0. 012
27.. 65 i, o i o 0.. <31 <3
25.. 24 1 . O 1 1 0. <310
20,. 06 0.. 988 0.. 01 5
15. 38 1 .034 0 , DOS
9. 4'. 1. 195 0., 007
23- 42 1- 123 0, <300
22- 74 i. ioi 0„ 000.. ̂ y - 1 . 066 0„ 002
20 - 35 . l- 113 0.. <30 <3
: 6.. 86 •; ̂ V) 85 <3., <300
17- 04 1,. 012 0 - 0 1 <3
:i 4 .. 84 1 - 090 0. 000
12.. 39 1,. 015 <3. <3 <3 9
8.. 65 1 - 025 0 , 007
3. 38 1 . 682 0.. 595
15- 70 1 . 3 26 0., 000

1 ., O '.'/Cv 0. 000
14.. 46 I, COp <3,. <306
13- £8 1 „ 0’91 <3, 000
13.. 4 2 1. 0 13 0. 007
12.. 4 6 -1. 065 ;_j <_>*■:
1 1 .. 0.;, i. 054 0 . <3 <3 3
1 0 6 l. :: 24. 0,. 00 <3
9,. 58 0.. 965 <) . O’ 1 6
8. 04 1.. 01 1 0. 01 0
5, 64 1 - 1 24 o., oco
1 1 .. 04 1,. 063 <3., <30 l
to- 73 l. :i 53 <3, <307:
9.. 91 :l . 03i 0.. 001
9. 59 k  1:0 - 0- 000
Q, 30 1.. 048 0.. 004
6. 17 1. 0 10 0.. 0.9)
7- 73 1- 140 0,. 00 1
6- 94 1- 139 0, <301
6- 3.2 1 - 063 0„ 005
6. 51 1. 028 0, <307
0. 13 1- 126 0„ 000
7 . 35 j.. 112 <3, 000
7- 68 1- 101 0.. 000
7- 34 1. 077 0- 001
7.01 1. 102 0- 000
6- 70 1- 101 0. <300
6. 28 1.. <340 0- 005
5. 76 1. 153 0- 002
5. 10 1 - 007 0. 01 1
4„ 43 1- 094 0. 000
2- 28 1.. 815 0. 496

Mean Std De'
I. 111 0. 160

0

1 
0 
o 
0 
j.
0
0
1
0
1 
1 
0

10'/- LitYii t
56%

Tabled .21
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.14. 33 0 m 9 3 5 D m 0 0 0 j
11. 77 0„ 3 1 3 0. 0 0 6
10.. 70 0. 86 7 0 » 0 1 5 0
9. 50 0. 7 5 8 0. 0 5 3 0
8„ 2 0 0. 824 0. 0 2 7 Q
3« 36 1. 3 6 2 0.. 140 0
3. 0 9 0. 916 0. 0 0 5 1
9. 75 O. 9 4 5 0„ 0 0 2 1
9.. 2 9 0.. 926 0, 0 0 4 1
S.. 65 0„ 3 5 0 0. 00 1 1
a. 12 0. 83 9 0. 0 0 3 o
7. 51 0. 836 0.. 0 0 8 o
6, 6 3 0, 855 0- C I S (j
5. 88 0. 831 0, 0 2 5 o
2,. 98 1.. 2:5*0 0, 0 6 8 o

2. 74 0- 9 3 3 0. 0 0 3
7, 2 6 0. 94 3 0, 0 0 2 1
6. 89 0. 9 3 2 ( 1 ! ,11 j £_.l
6 m 5 0 0 9 1  5 O nr,~, 1
5, 93 0. 9 1 6 0, 0 0 5
5 m 39 0 m 8 4 5 D m 0 2 0 0
4.. 97 0„ 7 8 3 0. 0 4 2 Q
2̂ ̂ | j *“r ‘“:t 0. 121 0
2.. 66 i m i jj 5 0.. 02 1 Q
•—» cr.•C. * V. J O 1.. l 73 0.. 0 3 5 o
5. 46 0- 3 3 5 0. 0 0 0 x
5-. 18 0- 365 0.. 001 :i.
4. 94 0„ 3 3 5 0. 0 0 3 1
4, 7 2 C m 935 0., 0 0 3 1
4 „ 35 0 .31 0 0 0 0 6 *
4„ 1 6 0, 833 0, 0 0 9irj 1. 134 0 it 0 3 8 o
2.. 44 1« 01 3 0., 001 1
7 a 4 6 1 0 4 9 0 „ 0 0 4 1
4. 26 I M 001 0 , o o o 1
4.. 13 ■ 0 . 3 3 3 0. 0 0 0
3. 83 0. 933 0.. 0 0 2 i
3, 58 0. 9 1 3 0. 006* i
2. 3 8 1. 267 0. 0 7 8 o
2. 29 1. 136 Os 0 2 8 o
2- 2 3 0» 984 0» 0 0 0
3. 52 1 „ 00 2 0  „ 0 0 0 1
3. 41 0. 9 8 5 0. 0 0 0 1
3 m 26 1 u 0 0 8 On 0 0 0 1
*_>« 1 j 1 „ 0 2 5 0, 001 1
2,. 24 1. 168 0„ 0 3 2 0
2. 2 0 1, O S 3 0. 0 0 9 i
2,. 17 0. 9 9 2 0. 0 0 0 1

Mean Std Dev 107- L
0. 9 8 8 0. 133 S2:
Total G r o u  p
Mean Std Dev

1.051 0. 146
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> W O “ 
*1'.l 1.1 
(i nd

p Pa Be 
i p Uer 
~0»36)

Ca 1 O'.; 1 ated 
Rat i o

Moan)

37. 73 i. 2 i 4 0. 010
36. 92 1. 158 0.. 002
34. 69 1. 216 0.. 0 L 0
vj P ii i- 4 1. 181 0. 004
30. 46 1 , 013 0. 010
27. 32 1023 0. 008
24.. 91 1. 024 0. 008
19,. SO 1. 001 0.013
15. IS 1, 047 0. 005
9. 29 1.211 0. 003
23., 97 1. 136 0. 000
22. 59 1. 109 0. 000
21. 81 1 . 071 0. 002
20.. 21 1. 126 0. 000
13. 72 1. 097 0, 000
IS. 92 1013 0. 003
14. 73 1.. 098 0. 000
12. 30 1 „ 022 0.. 009
9, 55 1.. 034 0. 007
■j.' >> - v-J 1. 897 0.611
15. Sb 1. 127 0 . ooo
15. 19 1. 099 0.. 000
14. 44 1 , 035 0. 006
13. 84 1. 094 0. 000
13. 38 1 , 0 16 0. 010
12.. 45 1.. 069 0. 002
11. £0 i.. 057 0. 003
10. 57 1. 127 0.. 000
9. 52 0. 939 0.. 01 £
8. 02 1 - 014 0 . 010
5. 43 1. 123 0. 000
11. 05 1. 083 0.. 001
10. 74 1. 1 52 0, 001
3. 31 1081 0. 001
9. 59 1. 1 0 3 0. 000
8. 80 1. 048 0. 005
8. 17 1. 010 o. oi i
7. 73 1.. 140 0. 001
6. 94 1. 138 0. 001
6» 13 1. 043 0. 005
4. 51 • 1. 028 0. 008
8. 22 1. 122 0. ooo
7. 38 1, 103 0. 000
7. 70 1. 097 0. 000
7. 37 1. 074 0. 002
7. 03 1. osa 0. 000
6, 73 1. 097 0. 000
6. 30 1. 037 0. 006
5. 75 1. 152 0. 001
5. 11 1. 003 0.012
4. 45 1. 091 0. 001
2. 28 1 „ 809 0. 482

Mean Std Dev
1. 115 0. 160

3 Llttt

1 0%

ij
1
1
0
0
1 
I
o
0
1 
1 
1 
1 
1
04
1 
o
L i iY) i t 
62%

Table 5*22



13. 65 0. 893 0. 006 0
14. 53 0. 982 0, 000 1
11. S3 0. 901 0. 005 1
10. 65 0. 855 0. 013 0
9. 62 0. 748 0. 049 0
Bn 31 On 813 On 024 o
3. 61 1. 345 0. 141 o

3. 13 0, 904 0. 004 1
9. 91 0. 927 0. 002 1
9. 45 0. 911 0. 003 1
Q. 80 0. 934 0. 00 1 1
0. 26 ■0. 884 0. 007 o

7. 64 0. 881 0. 008 0
6. 75 0. 840 0. 016 o
5. 98 0. 817 0. 023 o
3- 04 1, 229 On 068 0
2,. 79 0. 918 0, 003 1
7. 41 On 930 On 001 1
7. 02 0. 973 0. 000 1
6. 63 0, 897 On 005 0
6. 11 0. 899 0. 005 0
5. 50 0. 829 On 019 0
5, 07 0. 766 On 040 0
24 SO 1,310 - 0. 117 0
2. 71 i i i 0- 020 0
2. 58 1. 153 0. 034 0
5. 58 0. 963 On 000 1
5.. 30 0. 944 On 001 1
5.. 05 0, 914 On 003 1
4. 82 0. 914 On 003 1
4. 45 0, 890 0. 006 o
4, 26 0. 874 On 009 0
2- 58 1. 158 On 036 0
2. 50 0., 997 0. 001 1
2. 42 1. 026 On 003 1
4. 36 0. 977 0. 000 1
4., 23 0, 959 On 000 1
3. 33 O.. 9 I Ei On 003 1
3. 67 0. 891 0. 006 0
2. 44 1. 237 0. 072 o
» S 3 1. 128 0. 025 0

2. 28 0, 961 0. 006) 1
62 0. 976 0. 000 1

3. 50 0, 959 0. 000 1
o. 0)5 O. 982 0. 000 I
3. 21 0, 999 0. 001 1
2. 30 1. 138 0. 023 o
2 m 2 El 1. 055 0. 008 1

0. 967 0- 000 1
Mean Std Dev 10% L
0. 968 0. 129 wJ oil
T o t a I G r o u p
Me a vi Std Dsv
1. 043 0. 145

Table 5*22 contd



a-dp = area x shear 

= VT-d. dz. 'jf

a. dp

dz.

FORCE ON AN ELEMENT OF FLUID IN A PIPE WITH 
RESPECT TO SHEAR AT THE WALL

FIG. 2.1 SIMPLE SKEAR/FRICTION FACTOR MODEL



A REPRESENTATIVE PHASE DISTRIBUTION 

FIG, 2.2

EQUIVALENT CROSS SECTION AS USED IN MODEL

FIG. 2,3



FIG. 2.4 SECONDARY FLOW IN EACH PHASE 
OF A TWO PHASE FLOW



FIG. 3.1 SECONDARY FLOW AS PREDICTED BY DEAN(22)

xO

FIG. 3.2 THE STREAMLINE ON THE CENTRAL PLANE 
(DEAN(22))



\
\



ssaNHonoH aALivaan
LO  o

o  o8 8
of\Jooo

oo vO 
 T O O  Oo o o  oco 'O  r r— O  O  o  o o o  o

OJO  ------o  ; o o o  o o.m roo  o  o
oO-

s j :
t o

o.

a;W
Eh o  W uo
s
d ■
Q o« C\J- (Q O

o.

to.I*Hi—i t o
OS ■H> r\j
tuoE
a 2- 
eo
COc- LO.

o
E-«<
Q'3
O
COWE
<>

Cr­

oc
UJ

2= ̂

8 8LOO  CO
o  o r-~O O (V)OLOOO

m = j XNaioiaaaoo nolloihj
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FIG. 3.5 EQUATIONS FOR TURBULENT FRICTION 
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Axial velocities as a function of radius for various 
Dean numbers (horizontal profiles).
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Temperature as a function of radius for various Dean 
numbers (horizontal profiles).
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Stream function profiles for various Dean numbers.
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Temperature as a function of radius for various Prandtl 
numbers (horizontal profiles).

FIG, 3.7 TARBCJLL AND SAMUELS VELOCITY AND 
'TEMPERATURE PROFILES



1.00
PARAMETER X

FIG, 3.8 FAIRED CURVES SHOWING THE RELATIONSHIP 
BETWEEN ̂  R1 AND Rg PROPOSED BY
IOCKART & MARTINELLI EOR ALL FLOW 

" ’MECHANISMS
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■FIG. 3,10 MASS FLUX CORRECTION CURVES FROM RAROCZY(33), 
' FOR ' VARIOUS ' FIXED MASS FLUX VALUES



FIG. 3,11 - SECONDARY ~ FLOW IN A BEND FROM LACEY(25)



GAS VAPOUR 
PHASE

FIG. 3.12 HIGH QUALITY HOW LIQUID ENTRAPMENT 
~ FROM ‘ LACEYC25) ___________
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c o m p a ris o n  o f  th e  d a ta  fo r  a n n u la r  a n d  s lu g - 
a n n u la r  flo w  w ith  the  p re d ic tio n s  b y  B a k e r .

- _ \ - * - I - K* - •*

G_
X

c o m p a ris o n  o f  th e  d a ta  fo r  s lu g  Bow  w ith  th e  
p re d ic tio n s  b y  B a k e r .

• •

• «

co m p a ris o n  o f  th e  d a ta  f o r  w a v y *s lra tif ie d  flo w  
w ith  th e  p re d ic tio n s  b y  B a k e r .

FIG, 3,13 v BAKER PLOT (BANNERJEE, RHODES AND SOOTT)
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'ube Bors ~ -0077
FI u>: Rev Fr ict

No Fac
KG/L --2, S

.165Z>3„ 03756. .00431
15242. 87791. .00440
13700. 83159. .00458
12499. 76570. .00458
10947. 67409. .00467
956b. b'04o6. .00481
8110. 50923. .00492
6785. 43081. .00491
5319. 34304. „00527
3901 „ 25671. .00590
2463. 16656. .00610

STRAIGHT TUBE SINGLE-PHASE WATER DATA 
FIG. 5.1

0124

!- r i ct
i\!n Far-

7236. 65834. .00491
6565. 59812. .00510
5878. ' 53720. .00515
5128. 47055. .00509
4406. 4214O. .0 0 5 14
3681. 35739. .00570
2989. 29538. .00581
2229. 22517. .00644
1503. 15531. .00697

FIG, 5.2



‘.'ue po re , t.>';.?//

J. U >; F r i et 
Fac

353.64 
315.40
275.30
228.30 
185,77 
153,02 
120.97
89. 52 
58, 02 
464.83

151943, 
135268. 
117761. 
97538. 
79259. 
65209, 
51516, 
38097, 
24665, 
199994.

00275 
00304 
00336 
00396 
00461 
00486 
00568 
00658 
00722 
00247

STRAIGHT TUBE SINGLE-PHASE AIR DATA 

FIG. 5.3

'uhe Or?r;

ux

KG/F"'"2. S

r  C t
Fac

264,44 
251.94 
234.83 
214,62 
198.54 
172,57 
145,11 
123,34 
96, 49 
61,25

1 ofc>044,
178048.
165814.
151446.
140034,
121578.
101754,
86180,
67138.
42433

00498 
00423 
00405 
00411
00430
00431 
00486 
00554 
00565 
00563

FIG. 5.4
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FrictionFactor / Reynolds Number 
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FIG, 5,5
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FrictionFactor / Reynolds Number 
Air , Straight Tube , Fanno Method

FIG. 5.6



Fr
ic

ti
on

 
ba

ct
or

V  12. 4mm Data 
X 7.7mm Data
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Friction Factor / Reynolds Number 
Single Phase Air , Coiled Tube

FIG. 5.7



Tube Bore = . 0124 Coi 1 M e a ri D i a »yi e t e r = « 273' J

Flux Re(d/D)'J'•2 Rev Friot Fc(D/d)
N o Fac

K6/!*!"'■• 2., S

275,47 400,13 195226, ,00377 .01770
260.15 07 o, 0-3 ;l. 84447, .00371 .01742
243.15 353, 2*3 172373. .00375 .01761
226,54 329.22 160630, .00394 .01853
210,23 305.52 149068. = 00387 .01817
194.26 2 8 2, 3 137752, ,00390 .01871
176,98 257,03 125408, =00427 ,02006
158,22 229,33 111892, 00462 ,02070
139,32 20.1.. 26 98199= ,00484 .02272
120,84 174.14 84966, ,00496 ,02330
76, 77 110, 23 53780, „00742 ,03487
55, 15 78, 90 __38495, ,00686 ,03223

Tube Bore ~ .,0077 boil r! e a r* D a ;Y: e t e r ~ , 0745

FIux Re(d/D) ■'■'•2 Rev F ricfc Fe(D/d)
No Fae

K6/M---2, S

474,76 2 i yO,94 20616S. 00292 .00909
440.27 2025,23 190574. ,00279 .00867
379,75 1739,IS 163657= .00306 .00954
313.45 1431,92 134744, ,00329 .01024
281,32 1283,01 120732. ,00363 .01131
246= 90 1124.71 1 08836'. ,00375 .01167
210,73 959. 12 90253. „00409 .01275
173= 76 790,22 74360 * ,00460 = 01432
135=IS 616,86 58046. ,00512 .01594

COINED TUBE' SINGLE-PHASE AIR DATA 

FIG. 5.8



Tube Bore = .0124 Coil Mean Diameter = .2739
FIuk Re(d/D}---2 Rev Frict Fc(D/d)'s

No Fac
KG/M2,s

6 9 8 1 .
i  . rr nr cr
I  jLxlm UxJ 6 0 2 7 9 . .0 0 6 0 3 . 0 2 3 3 6

6 0 3 4 . .1 06  a 2 4 5 1 8 3 4 . «0 0 6 1 5 . 0 2 3 9 0

5 4 7 7 . 9 5 .  9 7 4 6 8 2 4 . 0 0 6 3 3 „ 0 2 9 7 5

4 9 6 7 . 8 6 .  8 1 4 2 3 5 5 . »0 0 6 3 4 . 0 2 9 8 0

4 3 8 4 . 7 6 .  7 2 3 7 4 3 1 . .0 0 6 6 1 .0 3 1 0 9

3 8 5 1 , 6 7 .  3 3 3 2 8 5 3 . .0 0 6 7 7 . 0 3 1 8 1

3 3 0 1 . 5 3 .  3 6 2 8 4 7 7 . . 0 0 6 8 5 . 0 3 2 2 2

2 6 9 7 . 4 8 .  0 2 2 3 4 2 9 . .0 0 7 1 0 . 0 3 3 3 6

2 1 8 7 . 3 9 . 2 6 1 9 1 5 4 . 0 0 6 8 9 0 3 2 4 1

1 6 9 6 . 3 0 .  9 3 1 5 0 9 3 . u0 0 7 1 5 = 0 3 3 6 0

Tube hore = .0077 uo i I M e a Vf .0 i a m * e b e r . 0745

F .1. U K Re (d / D) '2 Rev 
No

F rict 
Fac

F c (D /d)

KG/M2, b

1 0 2 1 4 . 6 2 1 . 4 8 5 8 4 8 1 . , 0 0 6 1 3 .0 1 2 0 8
9 5 0 0 . 5 7 9 . 8 7 5 4 5 6 6 . . 0 0 6 5 3 . 0 2 0 3 4
8 6 3 0 . 5 2 4 . 1 5 4 9 3 2 3 . « 0 0 6 5 8 0 2 0 5 0
i o / 5 . 46-4. 6 6 4 3 6 3 0 . * 0 0 6 9 6 . 0 2 1 6 8
£>7 • 5  - 4 0 6 . 2 3 382! 2  6. . 0 0 6 9 1 , 0 2 1 5 2
5 7 5 0 . 54-3. 7 2 *T O Q ■] cr . 0 0 7 0 9 . 0 2 2 0 8
4 3 4 5 . 2 9 5 . 5 0 2 7 8 0 7 . . 0 0 7 1 1 . 0 2 2 1 4
3 8 7 7 . 2 3 7 . 5 6 2 2 3 5 4 . .0 0 7 1 0 ,02212
2 9 7 3 . 1 8 4 . 5 6 1 7 3 6 7 . , 0 0 7 6 1 , 0 2 3 7 1
1 9 9 9 . 1 2 5 . 2 3 1 1 7 8 9 . . 0 0 8 5 3 , 0 2 6 5 5

COILED TUBE SINGLE-PHASE WATER DATA 

FIG, 5,9
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FIG, 5,11
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M e a s u r e d  M u l t i p l i e r

TWO-PHASE MULTIPLIER COMPARISON 
FOR 1/2" STRAIGHT TUBE

FIG. 5.12
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SINGLE-PHASE EQUATION FROM TEST USED 
TWO-PHASE MULTIPLIER COMPARISON FOR STRAIGHT TUBE

FIG, 5.13
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SMALL BORE COIL TWO-PHASE MULTIPLIERS 
USING SRINIVASAN CORRELATION FOR SINGLE 
PHASE FRICTION FACTOR
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LARGE BORE COIL TWO-PHASE MULTIPLIERS 
USING SRINIVASAN CORRELATION FOR SINGLE 
PHASE FRICTION FACTOR

FIG. 5.18



A / A  A

SMALL BORE COIL TWO-PHASE MULTIPLIERS 
USING TEST CORRELATION FOR SINGLE- 
PHASE FRICTION FACTOR _______

FIG. 5.19
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LARGE BORE COIL TWO-PHASE MULTIPLIERS 
USING TEST CORRELATION FOR SINGLE 
PHASE FRICTION FACTOR

FIG, 5.20



LARGE BORE STRAIGHT TUBE BY TEST OORRELATICN

FIG, 5.21



SMALL BORE STRAIGHT TUBE BY TEST CORRELATION

FIG. 5.22



LARGE BORE OOIL BY TEST OORRELATICK

FIG. 5.23



SMALL BORE COIL BY TEST CCHRELATIQN

FIG, 5,24



SINGLE-PHASE AIR TESTS - RAW DATA

T in T out f t . PI P2 P5 P4 P5 P 6 P7 P8 P9 P10
*0 #C kg/sec Bar - - - - - - - -
7.8 7.0 0.0515 1.98 1.95 1.95 1.89 1.91 1.86 1.84 1.82 1.80 1.77
8.0 7.1 0.0295 1.90 1.87 1.86 1.82 1.85 1.79 1.77 1.75 1.75 1.70
8.2 7.5 0.0278 1.78 1.76 1.74 1.71 1.75 1.68 1.66 I.64 1.62 1.60
8.4 7.8 0.0255 I.65 1.65 1.61 1.58 1.60 1.56 1.54 1.55 1.51 1.48
8.6 8.1 0.0256 1.55 1.52 1.5P 1.47 1.49 1.45 1.45 1.41 1.40 1.58
9.2 8.5 0.0205 1.58 1.57 1.56 1.55 1.54 1.51 1.50 1.28 1.27 1.25
10.2 10.5 0.0175 1.28 1.28 1.27 1.24 I.25 1.25 1.22 1.21 1.19 1.18
11.4 12.1 0.0147 1.21 1.20 1.19 1.18 1.19 1.17 1.16 1.15 1.14 1.15
12.9 15.6 0.0115 1.15 1.15 1.14 1.15 1.14 1.15 1.12 1.11 1.11 1.10
14.7 14.9 0 ♦ 0 0 1 .09 1.10 1.10 1.09 1.10 1.09 1.08 1.08 1.08 1.076
Ambient temp , 17 *0 Barometric Press 0.9956 Bar.

Tube Diameter 0.0124 m. - Straight Tube.

TWO-FHASE TESTS - RAW DATA

in
nu

T out•c ft H2O
kg/sec

ft AIR 
kg/sec

PI
Bar

P2 P5 P4 P5 P6 P7 F8 P9 P10

0.1 19.9 0.1125 0.0185 1.82 1.81 1.78 1.74 I .69 1.62 1.56 1.49 1.42 1.35

0.2 20.0 0.1100 0.0172 1.72 1.71 1.68 1.65 1.58 1.52 1.46 1.59 1.35 1.27

0.5 20.0 0.1104 0.0152 1.49 1.48 1.45 1.41 1.56 1.51 1.26 I.19 1.15 1.07

0.2 20.0 0.1109 0.0155 1.29 1.28 1.25 1.22 1.18 1.15 1.08 1.05 0797 0.92

0.1 19.9 0.1098 0.0114 1.08 1.07 1.05 1.02 0.98 0.94 0.90 0.85 0.80 0.75

0.0 19.9 0.1122 O.OO95 0.89 0.88 0.85 0.85 0.79 0.76 0.72 0.69 0.64 0.60
0.2 20.1 0.1109 0.0076 0.70 O .69 O .67 O .65 0.62 0.59 0.56 0.52 0.49 0.45

0.5 20.2 0.1089 0.0057 0.50 0.49 0.48 O.46 0.45 0.41 0.59 0.56 0.53 0.31

0.5 20.4 0.1107 0.0058 0.55 0.54 0.55 0.51 0.29 0.27 0.26 0.25 0.21 0.19

0.5 20.6 0.1109 0.0020 0.15 0.15 0.14 0.15 0.12 0.11 0.10 0.08 0.07 0.05

Ambient Temp , 18.2*0 Barometric Press O .9678 Bar.
Tube Diameter , 0.0124 m. - Coiled Tube.

FIG 5.25
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FIG. 6,2 GRINDING MARKS AROUND A TAPPING



FIG. 6.3 V.FLD BURN THROUGH AT TAPPING
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FIG, 6,10 COIL VIBRATION
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