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SUMMARY OF THESIS

Aspects of Glucose Metabolism in Uraemia

This thesis takes the form of a tripartite study on aspects of 

glucose metabolism in uraemia. The work examines certain biochemical 

aspects of glucose metabolism in a clinical context.

Continuous ambulatory peritoneal dialysis (CAPD) is a relatively 

new but now established mode of renal replacement therapy, that 

presents an unique clinical situation in that glucose is continuously 

self-administered intraperitoneally to control fluid balance. The 

metabolic consequences are thus clinically important.

The first 4 chapters review the background to the work and include 

the topics of glucose homeostasis, glucose metabolism in uraemia, CAPD 

and glycosylated haemoglobin. Chapter 5 describes the biochemical 

methods and chapters 6, 7 and 8 detail the three projects performed.

1. The first project "Pancreatic Beta Cell Function in Uraemia" 

evaluated beta cell function in renal failure. The specific 

objective was to determine if CAPD adversely affected the beta 

cell secretory capacity. Beta cell integrity was also 

investigated in diabetics to assess the effect of uraemia and 

dialysis.

2. Residual beta cell function was assessed, in 70 patients, by 

using intravenous glucagon stimulation and measuring in the 

peripheral blood the beta cell peptide response.



Fasting glucose and insulin concentrations were normal in uraemic 

patients but c-peptide was grossly elevated due to impaired renal 

catabolism. Following glucagon stimulation, an exaggerated blood 

glucose response with delayed glucose peak was observed, while 

the peak insulin response was normal, but the return to basal 
concentrations was delayed. The c-peptide response was 

exaggerated and peak concentrations were greatly increased. 

Responses were similar in all non-diabetic uraemic patients. The 

above features reflect glucose intolerance in uraemia which 

persisted despite dialysis therapy.

The glucagon challenge showed significant increments in the beta 

cell peptides reflecting adequate residual pancreatic function. 

The response was similar in both new and established CAPD 

patients compared to non-dialysed uraemics and haemodialysis 

subjects. Thus, it can be concluded, that despite continuous 

glucose administration, CAPD does not‘adversely affect pancreatic 

beta cell function.

Type I insulin-dependent diabetics had no beta cell response to 

glucagon, but type II uraemic diabetics had raised fasting 

c-peptide concentrations which might suggest hypersecretion of 

the beta cell. However, absolute concentrations can be 

misleading as the increase was largely due to renal impairment. 

This was confirmed by the lack of response to glucagon challenge, 

indicating no significant residual beta cell function. The 

effect of long-standing diabetes overshadowed any discernible 

effect of uraemia or dialysis.



The second project "Glucoregulatory Hormones and Intermediary 

Metabolites in CAPD" assessed the acute metabolic consequences of 

intraperitoneal glucose administration. Fasting hormones and 

metabolites were evaluated in non-dialysed uraemic and

haemodialysis patients for comparison with CAPD subjects.

Metabolic profiles were monitored during a CAPD cycle comparing 

high and low dextrose dialysate solutions. Specific groups of 

CAPD patients were studied including diabetics, the elderly and 

patients with peritonitis.

In the fasting state blood glucose and insulin were normal in

most uraemic patients, but c-peptide was grossly elevated and

glucagon moderately increased. Growth hormone was normal and 

cortisol, although normal in CAPD patients was increased in other 

uraemic subjects. The gluconeogenic precursors lactate, pyruvate 

and alanine were normal, but ketone bodies and glycerol tended to 

be elevated particularly in the elderly CAPD patient.

The hormone and metabolite profiles during a CAPD cycle showed 

greater changes x̂ ith high dextrose solutions, particularly during 

the first two hours of dialysate dwell. Peritoneal glucose 

absorption induced hyperglycaemia, hyperinsulinaemia and a 

transient fall in glucagon, while growth hormone and cortisol 

were unchanged. Lactate increased, largely due to absorption 

from the dialysate, rather than via endogenous glycolysis, as the 

blood lactate increment was independent of dialysate glucose 

concentration. Ketone bodies and glycerol were suppressed in the 

early part of the cycle during the period of maximum glucose 

absorption. In general, the metabolic variables returned to



their basal state by the end of the 6 hour cycle. Thus 

peritoneal glucose absorption causes hyperglycaemia which induces 

hyperinsulinaemia, which in turn stimulates glycolysis, inhibits 

gluconeogenesis and suppresses ketogenesis and lipolysis.

9. Peritonitis increased the rate of glucose and lactate absorption 

from the dialysate due to increased permeability of the 

peritoneum. Elderly patients had similar profiles to younger 

CAPD subjects.

10. The effect of peritoneal glucose absorption in a state of insulin 

deficiency was evaluated in diabetics deprived of insulin. 

Dialysate glucose absorption induced hyperglycaemia but no beta 

cell response and glucagon, growth hormone and cortisol were 

unchanged. Lactate increased but pyruvate and alanine were 

essentially unaltered. Ketone bodies and glycerol remained 

elevated and were not suppressed despite the ambient 

hyperglycaemia. Thus in a state of insulin deficiency peritoneal 

glucose absorption failed to stimulate glycolysis or inhibit 

gluconeogenesis and ketogenesis and lipolysis were maintained.

11. The third project evaluated "Glycosylated and Carbamylated 

Haemoglobin in Uraemia". Glycosylated haemoglobin in renal 

failure is a controversial subject and was reappraised in a 

uraemic population of over 200 patients, including non-dialysis, 

dialysis, transplants, diabetics with and without renal failure.

12. The study confirmed that glycosylated haemoglobin was increased 

in non-diabetics with uraemia, when measured by mini-column



. ion-exchange chromatography, but was normal when total ketoamine 

glycosylation of the red cell was measured by colorimetry.

13. In diabetics glycosylated haemoglobin was increased independent 

of methodology and both techniques showed excellent correlation. 

Although colorimetry is unaffected by uraemia and may be the 

method of choice, the chromatographic method was still useful for 

assessing glycaemic control in diabetics with renal failure.

14. All chromatographic HbA^ fractions increased in uraemia, but the 

HbA-̂ c component was more influenced by diabetes and the HbA^a+  ̂

component by uraemia.

15. Carbamylated haemoglobin was detected in all subjects but was 

grossly elevated in renal failure. The increase paralleled the 

rise in the HbA^ fractions in non-diabetic uraemics and 

correlated with the severity of uraemia.

16. The concept that carbamylated haemoglobin in uraemia is analogous 

to glycosylated haemoglobin in diabetes warrants further 

investigation. From the work of this thesis further research is 

being done to assess the clinical usefulness and possible 

pathophysiological significance of carbamylated haemoglobin.



PREFACE

In the early 1980fs, while a registrar in renal medicine in 

Glasgow, I developed an interest in continuous ambulatory peritoneal 

dialysis (CAPD). At that time, CAPD was a new mode of treatment and 

clinical experience was limited, but from this my interest grew. An 

increasing number of young diabetic patients with end stage renal 

disease were also being treated, particularly with CAPD. This 

nurtured my interest in diabetics with renal failure and initiated my 

plans to study glucose metabolism in uraemia. While thinking about a 

research project in the field of glucose metabolism I was attracted to 

a research post in Sheffield.

On arrival in Sheffield in 1984, I was full of enthusiasm to get

started only to realise that no formal research programme or expertise

existed in this busy department of nephrology. However, with an

abundance of renal failure patients, particularly a large CAPD 

population, and encouragement and cooperation from many departments in 

the Royal Hallamshire Hospital, Sheffield and the metabolic 

departments in Newcastle, I set about designing and exploring certain 

aspects of glucose metabolism in uraemia.

The first project, "Pancreatic beta cell function in uraemia" was 

designed to determine if CAPD treatment, which involves continuous 

glucose administration, had an adverse effect on the beta cell 

secretory function. This seemed to me an obvious, yet unanswered 

question of great clinical significance.

The second project followed, that continuous intraperitoneal 

glucose administration was a unique clinical situation, with possible 

metabolic consequences and yet, the physiological or

pathophysiological effects had not been investigated. This stimulated



me to study glucoregulatory hormones and intermediary metabolites 

during CAPD treatment in a variety of patients including diabetics and 

the elderly.

The third project, "Glycosylated and carbamylated haemoglobin in 

uraemia" originated from both, my endeavours to achieve good blood 

glucose control in uraemic diabetics, and the confusing and 

conflicting data on glycosylated haemoglobin in the literature. The 

suggestion that uraemia interfered with the analysis of glycosylated 

haemoglobin directed me to measure carbamylated haemoglobin. From the 

work of this thesis, I believe that carbamylated haemoglobin may have 

a clinical usefulness as well as a pathophysiological significance and 

in 1987 this continues to be an ongoing research interest.



CHAPTER 1

GLUCOSE METABOLISM AND HOMEOSTASIS



1. INTRODUCTION

Glucose is the major energy source for the human body and is the 

only metabolic fuel utilized by the brain under most conditions 

encountered in normal life. The brain cannot synthesize or store 

glucose and thus the maintenance of blood glucose concentration is 

critical. The concentration of glucose in the blood is kept within a 

narrow range although there is some variation as circumstances change, 

such as feeding or fasting. The blood glucose concentration depends 

on the balance between glucose entering or leaving the extracellular 

compartment.

Glucose entry into the circulation results from absorption of 

glucose derived from digested dietary carbohydrates and release of 

endogenous glucose from the liver. Endogenous glucose is derived from 

hepatic glycogen (glycogenolysis) and glucose synthesized in the liver 

(gluconeogenesis). Gluconeogenic precursors include lactate and 

pyruvate transported to the liver from a variety of extrahepatic 

tissues and carbon skeleton intermediates which are derived from amino 

acids, principally alanine from muscle and to a smaller extent 

glycerol from adipose tissue.

Glucose exits from the circulation into a variety of tissues where 

it is rapidly metabolized. Glucose has several metabolic fates. It 

can be stored in the liver and muscle as glycogen, undergo glycolysis 

to pyruvate which can be reduced to lactate, transaminated to alanine 

or converted to acetyl-CoA. Acetyl-CoA can be oxidized to carbon 

dioxide and water via the tricarboxylic acid cycle (Krebs or citric 

acid cycle), converted to fatty acids (lipogenesis) and stored as 

triglycerides, or utilized for ketone body synthesis (ketogenesis). A 

schematic presentation of glucose metabolism is summarized in Figures
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1.1 and 1.2. The inter-relationship between glucose and the various 

substrates are shown.

2. THE LIVER

The liver is central in the role of glucose metabolism and 

flexible depending on the metabolic demands at any given time, such as 

fasting or feeding. It is the single most important organ ensuring a 

constant energy supply to other tissues (see Figures 1.3 and 1.4).

The liver can store excess glucose as glycogen (glycogenesis). The 

rate of glycogen synthesis from glucose 6-phosphate is modulated by 

insulin, which is secreted from the pancreatic beta cells in response 

to systemic hyperglycaemia. The excess of glucose, following a meal, 

results in the hepatic conversion to fatty acids which are ultimately 

stored as triglyceride in adipose tissue. The entry of glucose into 

hepatic cells (as well as cerebral cells) is not affected directly by 

insulin but depends on the extracellular glucose concentration. The 

conversion of glucose 6-phosphate, the first step in glucose 

metabolism in all cells, is catalysed in the liver by the enzyme 

glucokinase, which has a low affinity for glucose compared to that of 

hexokinase found in most tissues. Glucokinase activity is induced by 

insulin secreted in response to systemic hyperglycaemia. Thus 

proportionately less glucose is extracted by hepatic cells during 

fasting compared to the post prandial state. This helps maintain a 

fasting glucose supply to vulnerable tissues such as the brain.

Under aerobic conditions the liver can synthesize glucose by 

gluconeogenesis using lactate, glycerol or carbon chains resulting 

from deamination of most amino acids (mainly alanine) which are 

products of metabolism of other tissues. The liver contains the 

enzyme glucose 6-phophatase, which hydrolyses glucose 6-phosphate



yielded from glycogen breakdown or by gluconeogenesis to produce 

glucose and maintain extracellular glucose homeostasis. Hepatic 

glycogenolysis is stimulated by glucagon from the alpha cells of the 

pancreas.

During fasting the liver can convert fatty acids released from 

adipose tissue to ketones which can be used by other tissues, 

including the brain, as an energy source when glucose is in short 

supply (Figure 1.4). The renal cortex is also capable of 

gluconeogenesis and of converting glucose 6-*phosphate to glucose, but 

this is generally only significant under certain conditions such as 

prolonged fasting. Although other tissues, such as skeletal muscle, 

store glycogen it can only be utilized locally in that tissue as 

muscle does not have the necessary enzyme glucose 6-phosphatase. Thus 

muscle glycogen cannot directly maintain blood glucose concentration.

The effects of an oral glucose load are schematically presented in 

Figure 1.3. The liver modifies the potential hyperglycaemic effect of 

a high carbohydrate meal by extracting relatively more glucose from 

the portal blood than in the fasting state. Some glucose passes 

through the liver unchanged and a rise in the systemic concentration 

stimulates the pancreas to secrete insulin which further stimulates 

hepatic and muscle glycogenesis. The entry of glucose into adipose 

tissue and muscle cells, unlike that of liver and brain, is stimulated 

by insulin, and the blood glucose falls rapidly to near fasting 

levels. This does not happen if there is a relative or absolute 

insulin deficiency (as in diabetes mellitus). Conversion of 

intracellular glucose into glucose 6-phosphate in adipose and muscle 

cells is catalysed by hexokinase which, because its affinity for 

glucose is greater than that of hepatic glucokinase, ensures that 

glucose enters the metabolic pathways in these tissues at lower
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concentrations than in liver. Muscle and adipose tissue store the 

excess post-prandial glucose although the mode and function of each is 

very different.

3. ADIPOSE TISSUE AND THE LIVER

Adipose tissue triglyceride is the most important long term energy 

store in the body and increased utilization of fat stores can be 

associated with ketosis.

Adipose tissue, in conjunction with the liver, converts excess 

glucose to triglyceride and stores it in this form rather than 

conversion to glycogen. The component fatty acids are derived from 

glucose entering the liver and the component glycerol from glucose 

entering adipose tissue cells. In the liver triglycerides are formed 

from glycerol 3-phosphate (from triose phosphate) and fatty acids 

(from acetyl-CoA). This triglyeride is transported to adipose tissue 

in VLDL (very low density lipoprotein), where it is hydrolysed by 

lipoprotein lipase. The released fatty acids (of hepatic origin) 

condense with glycerol 3-phosphate derived from glucose entering 

adipose tissue under the influence of insulin and the resultant 

triglyceride is stored. More energy can be stored as triglyceride 

than glycogen.

During fasting, when exogenous glucose is unavailable, endogenous 

adipose tissue triglyceride is reconverted to free fatty acids (FFA) 

and glycerol by lipolysis (Figure 1.4). These are transported to the 

liver where glycerol enters the gluconeogenic pathway at the triose 

phosphate stage. The glucose synthesized can be released into the 

circulation to maintain the blood glucose concentration. Most tissues 

other than the brain use the FFA as a metabolic fuel after conversion 

to acetyl-CoA. The liver can also form acetoacetate by enzymatic



conversion of acetyl-CoA, acetoacetate in turn can be reduced to 

3-hydroxybutyrate and decarboxylated to acetone. The ketone bodies 

can be used as an energy source by brain and other tissue when glucose 

supply is reduced.

Ketosis occurs when fat stores are the main energy source and can 

be seen in conditions such as fasting and reduced nutrient absorption 

due to vomiting. Mild ketosis may occur after 12 hours of fasting, 

but is not usually associated with acidosis unless the fasting is 

prolonged. Diabetic ketoacidosis is accompanied by hyperglycaemia 

unlike the ketotic hypoglycaemia seen in prolonged fasting such as in 

anorexia nervosa. However the mechanism of ketosis is similar. In 

starvation ketosis the supply of glucose to cells of adipose tissue is 

insufficient for normal glycolysis and lipogenesis. In diabetes the 

insulin deficiency induces intracellular glucose deficiency due to 

impaired entry of high extracellular concentrations of glucose into 

the fat cells. The high extracellular concentrations of glucose is 

thus a misleading index of intracellular events.

4. MUSCLE AND THE LIVER

Glucose enters skeletal muscle post-prandially under the influence 

of insulin and is stored as glycogen (Figure 1.3). The glycogen 

cannot be reconverted to glucose due to the absence of glucose 

6-phosphatase and therefore muscle glycogen can only supply local 

needs.

During muscle activity (Figure 1.5) glycogenolysis is stimulated 

by adrenaline and the resultant glucose 6-phosphate undergoes 

glycolysis to pyruvate and lactate. Under aerobic conditions pyruvate 

is oxidized via the tricarboxylic acid cycle. However, the oxygen 

availability during exercise is readily depleted and anaerobic
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glycolysis with production of lactate becomes important. Lactate is 

transported from muscle to liver in the circulation where it can be 

used for gluconeogenesis (Cori cycle) and provides further glucose for 

muscle activity. Alanine can also be transported from muscle to liver 

where it serves as a gluconeogenic precursor (glucose-alanine cycle). 

During gluconeogenesis hydrogen ion is also neutralized. Under 

aerobic conditions the liver consumes more lactate than it produces. 

The physiological accumulation of lactate during increased muscle 

activity is temporary and disappears at rest when slowing of anaerobic 

glycolysis allows the aerobic processes to equilibrate.

5. LACTIC ACIDOSIS

Lactic acid produced by anaerobic glycolysis may be oxidized to 

carbon dioxide and water in the tricarboxylic acid cycle or be 

reconverted to glucose by gluconeogenesis in the liver. Pathological 

accumulation of lactate can occur due to increased production or 

decreased utilization. This may be due to increased production by 

anaerobic glycolysis and decreased utilization by impaired 

gluconeogenesis or impairment of the tricarboxylic acid cycle. This 

is seen in tissue hypoxia due to poor tissue perfusion. The 

combination of impaired gluconeogenesis and increased anaerobic 

glycolysis converts the liver from a lactate consuming to a lactate 

producing organ (Figure 1.6).

6. GLUCOSE HOMEOSTASIS AND INTERMEDIARY METABOLISM

In the post-absorptive state (after an overnight fast) blood 

glucose concentrations are stable indicating that production and 

utilization are equivalent. The brain accounts for 60% of glucose 

utilization (Sherwin, 1980) and the remainder is used for other



glycolysing tissues such as red blood cells, renal medulla, muscle and 

fat. Hepatic glucose production after an overnight fast is largely 

from glycogenolysis (75%) and the remainder from gluconeogenesis 

(25%). Gluconeogenesis from lactate, pyruvate, alanine and glycerol 

is estimated to represent 13, 1, 4 and 4% of endogenous glucose 

production respectively and, therefore, 52, 4, 16 and 16% of 

gluconeogenesis respectively (Cryer, 1985).

Gluconeogenesis is important in providing new glucose and 

replenishing hepatic glycogen storage in the post-absorptive state due 

to the limited availability of preformed glucose. The glucose pool 

consists of free glucose in the extracellular fluid and in the cells 

of some tissues especially the liver, but also small amounts in the 

kidney, blood cells, pancreatic islets, brain and intestinal mucosa. 

The glucose pool amounts to 15 to 20 g in the normal adult (Searle, 

1976) and glycogen can be mobilized to provide 70 g of glucose 

(Nilsson, 1973). In more prolonged fasting plasma glucose falls and 

then stabilizes, hepatic glycogen falls and gluconeogenesis becomes 

the only source of glucose production. Muscle protein is degraded 

providing amino acid substrate and glucose utilization by muscle and 

fat is inhibited. Lipolysis and ketogenesis accelerate and 

circulating ketone concentrations increase with ketone bodies becoming 

the major fuel for the brain.

After a meal, in the post-prandial state, glucose absorption 

results in a large increase in exogenous glucose delivery to the 

circulation, often doubling the rate of post-absorptive glucose 

production. As glucose is absorbed, endogenous glucose production is 

suppressed and glucose utilization by the liver, muscle and adipose 

tissue increases. Thus exogenous glucose is assimilated and blood 
glucose returns towards the post-absorptive state.



In this way glucose homeostatic mechanisms result in keeping blood 

glucose within a relatively narrow range. The regulation of systemic 

blood glucose involves hormonal, neural, and autoregulatory factors.

7. HORMONAL GLUCOREGULATORY FACTORS

Glucoregulatory hormones include insulin, glucagon, adrenaline, 

growth hormone and cortisol (Figure 1.7). Insulin is the dominant 

glucose lowering hormone. It suppresses endogenous glucose production 

and stimulates glucose utilization. Insulin inhibits hepatic 

glycogenolysis and gluconeogenesis and in association with other 

factors, including hyperglycaemia and hypoglucagonaemia converts the 

liver into an organ of glucose consumption and fuel storage in the 

form of glycogen and triglycerides. Insulin stimulates glucose 

uptake, storage and utilization by other tissues such as muscle and 

fat. Insulin also increases fatty acid and triglyceride synthesis and 

triglyceride transport via VLDL, increases fatty acid uptake and 

incorporation into triglyceride in adipose tissue and suppresses 

tissue lipolysis. The latter results in decreased fatty acid flux to 

the liver which coupled with direct hepatic effects of insulin results 

in decreased ketogenesis. Insulin also stimulates amino acid uptake 

and net protein synthesis in muscle. Thus insulin promotes the 

storage of carbohydrate, fat and protein.

Glucose-raising or counterregulatory hormones include glucagon, 

adrenaline, growth hormone and cortisol. Glucagon is secreted by the 

alpha cells of the pancreas into the portal circulation and acts 

predominantly on the liver under physiological conditions. Glucagon 

is a potent stimulator of glycogenolysis and gluconeogenesis and 

rapidly increases hepatic glucose production. Glucagon also 

stimulates hepatic ketogenesis particularly when insulin
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concentrations are low. However, hepatic glucose production induced 

by hyperglucagonaemia is only transient and other factors such as 

glucose induced insulin release and autoregulation due to 

hyperglycaemia may also be involved (Cryer, 1985).

The hyperglycaemic effect of adrenaline is complex. Adrenaline 

stimulates hepatic glucose production and restricts utilization and 

these effects are mediated via alpha and beta adrenergic mechanisms 

(Rizza etal., 1980). Adrenaline can also increase hepatic 

glycogenolysis and gluconeogenesis independently of other hormones. 
Adrenaline, like glucagon, acts rapidly and produces a transient 

increase in glucose production and continues to support glucose 

production even in the fasting state. In contrast to glucagon, 

adrenaline also limits glucose utilization. Sustained increases in 

adrenaline causes persistent hyperglycaemia due to reduced glucose 

utilization.

Long term elevation of growth hormone limits glucose transport 

into cells and can produce an insulin resistant state. Growth hormone 

may have a glucose lowering effect but it is not obvious for hours 

(MacGorman et al., 1981). Thus growth hormone is unlikely to be 

important for rapid glucose counter-regulation. Infusion of cortisol 

does not increase glucose production by limiting glucose utilization 

(Shamoon et_al., 1981) and thus, like growth hormone, cortisol does 

not appear to have a major role in the short term glucose control. In 

the long term growth hormone and cortisol may have a permissive role 

to play in glucose homeostasis in that their presence is necessary 

even though they do not have a direct effect (Cryer, 1984). 

Furthermore, the hyperglycaemic effects of glucagon, adrenaline and 

cortisol may be synergistic and thus have a role in glucose 

counter-regulation (Shamoon et al., 1981).



Neural and autoregulatory factors also have a role in glucose 

homeostasis. Vagal stimulation increases hepatic glycogen synthesis 

and direct hepatic sympathetic nerve stimulation decreases glycogen 

and increases blood glucose (Lautt, 1980). The concept of hepatic 

glucose autoregulation, that is, the role of hepatic glucose 

production is altered in inverse relation to the blood glucose 

concentration independent of the effects of circulating hormones, has 

been advocated (Sacca et al., 1979).

a) Glucose Counter-Regulation

Glucagon plays a primary role in promoting glucose recovery from 

hypoglycaemia. Glucose recovery from insulin induced hypoglycaemia is 

essentially normal when glucagon secretion is intact and partially 

impaired when glucagon secretion is inhibited. The latter is 

associated with an increased adrenomedullary adrenaline response 

(Rizza et al., 1979). Glucose recovery is impaired little, if at all, 

during adrenergic blockade. However, when glucagon secretion is 

inhibited glucose recovery from hypoglycaemia is markedly impaired by 

adrenergic blockade. Thus glucagon plays a primary role in recovery 

from insulin induced hypoglycaemia and glucagon deficiency is largely 

compensated by increased adrenomedullary adrenaline secretion.

Glucose recovery is severely impaired in the absence of both glucagon 

and adrenaline. The acute release of cortisol and growth hormone has 

little role in recovery from insulin induced hypoglycaemia, although 

chronic deficiency of both cortisol and growth hormone increase the 

sensitivity to insulin (Rizza et al., 1979).

b) Post-Absorptive State

Diminished insulin secretion is fundamental to the maintenance of



the post-absorptive blood glucose concentration in that it permits 

hepatic glucose production to proceed via hepatic glycogenolysis and 

gluconeogenesis and limits glucose utilization by the liver, muscle 

and adipose tissue. Thus obligatory glucose utilization (brain, renal 

medulla, red blood cells) does not result in hypoglycaemia. However, 

insulin is not the sole determinant of the post-absorptive blood 

glucose concentration. Glucagon and possibly adrenaline may also have 

a role in maintaining the fasting glucose concentration (Rosen et al., 

1984).

c) Post-Prandial State

After glucose ingestion blood glucose concentration rises as a 

result of glucose absorption and endogenous glucose production is 

markedly suppressed. The circulating concentration of glucose 

declines rapidly due to accelerated glucose utilization coupled with 

diminishing glucose absorption towards fasting levels. When glucose 

absorption is complete glucose production resumes. The transition 

from endogenous glucose declining to endogenous glucose production is 

regulated by the coordinated actions of insulin and glucagon. In the 

state of glucagon deficiency (induced experimentally by somatostatin 

and partial insulin replacement) adrenaline has a counter-regulatory 

effect but this is not observed in the presence of glucagon (Cryer, 

1984).

8. GLUCOSE METABOLISM IN DIABETES

A decrease in insulin production and release and/or decreased 

insulin activity in target tissue is fundamental to the development of 

diabetes. Consequent to insulin deficiency glucagon concentrations 

may rise and a fall in the insulin:glucagon ratio causes increased



production of glucose by the liver, while an absolute decrease in 

insulin concentration or insulin action reduces glucose utilization in 

peripheral tissues resulting in hyperglycaemia. A further decline in 

the insulin:glucagon ratio can lead to syndromes of decompensation 

such as diabetic ketoacidosis and hyperosmolar non-ketotic coma. The 

release of catecholamines and other stress hormones can act in many 

ways and affect both insulin and glucagon secretion from the islets. 

Catecholamines can reduce endogenous insulin and increase glucagon 

stimulated lipolysis, decrease muscle glucose utilization and increase 

hepatic glucose production. Growth hormone can increase insulin and 

glucagon secretion, stimulate lipolysis from adipocytes, promote 

hepatic glucose production and inhibit muscle glucose utilization. 

Cortisol can also have similar actions to growth hormone (Unger and 

Foster, 1985).

Insulin deficiency blocks glucose utilization by insulin requiring 

tissues, activates lipolysis in adipose tissue, increases proteolysis 

in muscle, causes hyperglucagonaemia and enhances glucagon effects on 

the liver. Glucagon when opposed by a normal insulin response is 

primarily responsible for the hepatic components of diabetic 

decompensation, i.e. increase glycogenolysis, gluconeogenesis and 

ketogenesis (Unger and Foster, 1985).

The metabolic pathways in liver, muscle and adipose tissue during 

insulin deficiency are depicted in Figure 1.8. In the liver (Figure 

1.8a) glucose release is mediated via glucagon although adrenaline, 

cortisol and growth hormone have a complementary role. Amino acid 

catabolism is stimulated by glucagon although cortisol does have an 

auxiliary role. Ketone body production is modulated by glucagon and 

adrenaline also has a 'permissive1 role. In muscle (Figure 1.8b), 

when the action of insulin is insufficient there is increased fatty
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acid and ketone body uptake. Adrenaline and growth hormone both 

contribute to fatty acid utilization in muscle. In the adipocyte 

(Figure 1.8c), triglycerides are broken down during insulin deficiency 

and the fatty acid release is modulated by adrenaline, cortisol and 

growth hormone.

This introductory chapter outlines glucose metabolism and its 

complex inter-relationships. The metabolic pathways and the role of 

the liver, muscle and adipose tissue were briefly discussed. Glucose 

and intermediary metabolism are regulated by hormonal and other 

factors to produce accurate control and reliable homeostasis. Aspects 

of glucose metabolism in diabetes were briefly summarized, including 

hormone physiology and intermediary metabolism. This chapter gives 

the biochemical and endocrine background to part of the research work 

of this thesis, in particular the study of glucoregulatory hormones 

and intermediary metabolites in uraemia and continuous ambulatory 

peritoneal dialysis (CAPD).



CHAPTER 2

GLUCOSE METABOLISM IN URAEMIA



1. INTRODUCTION

Abnormalities of carbohydrate metabolism in uraemia have been 

recognised for many years. Neubauer in 1910 first described 

hyperglycaemia in renal disease and this was soon confirmed by Hopkins 

in 1915. The prevalence of hyperglycaemia was probably overestimated 

prior to the mid 1960's as the methods for measuring glucose did not 

discriminate between glucose and non-glucose reducing substances 

(Reaven, 1974). However, these observations of 'uraemic 

pseudodiabetes' (Westervelt and Schriener, 1962) did not become 

clinically significant until the advent of dialysis. The development 

of dialysis and transplantation in the 1960's created a new 

significance for uraemic carbohydrate intolerance. The limited 

facilities for dialysis and restricted availability of donor kidneys 

resulted in exclusion of diabetics for renal replacement therapy. In 

many centres diabetics had a significantly higher morbidity and 

mortality than non-diabetics (Comty and Shapiro, 1975; Kjellstrand et 

al., 1972). Thus, it became important to distinguish between true 

diabetes and uraemia induced glucose intolerance.

In the past 20 years there has been a multitude of reports on 

carbohydrate metabolism which have widened our understanding of the 

complicated pathophysiology of renal failure.

2. THE ROLE OF THE KIDNEY IN PANCREATIC PEPTIDE METABOLISM

The kidney plays an important role in the metabolism of low 

molecular weight proteins including the alpha and beta cell peptides. 

This is characterised by a high extraction from the circulation and 

negligible urinary excretion of the intact molecule suggesting that 

hormone removed by the kidney is degraded locally (Katz and Emmanouel,



1978). Renal disposition involves both glomerular filtration and 

tubular uptake and degradation. The kidney plays an important 

function in the lowering and stabilizing of peptide hormone 

concentrations but does not regulate them, this being a function of 

the secreting endocrine gland. The increased circulating levels of 

certain peptide hormones in uraemia suggests that the secretory rate 

remains inappropriately high for the degree of reduction in their 

metabolic clearance. This reflects either impaired feedback control 

mechanisms, possibly in some instances due to end-organ resistance, or 

to the inability of the endocrine gland to reduce secretion rates 

appropriately (Emmanouel et al., 1981).

a) Insulin

Insulin is normally rapidly removed from the blood by the liver, 

which clears 40-60% in a single passage (Ferrannini et al., 1983).

This proportion of insulin removed is dependent, in part, on the 

plasma insulin concentration. The renal arterio-venous concentration 

difference is about 30-40% (Rabkin et al., 1970; Katz and Rubenstein, 

1973) and this is unaffected by changes in the plasma insulin 

concentration within the physiological range (Maude et al., 1981).

The renal clearance of insulin is about 200 ml/min in man and from 

this it is estimated that 6-8 units/day are degraded by the kidney 

(Rubenstein et al., 1975). This accounts for a quarter of the daily 

pancreatic secretion in man. However, only 0.1% of the endogenous 

pancreatic insulin is excreted in the urine (Rabkin et al., 1984). 

Since the normal glomerular filtration rate (GFR) (120 ml/min) is 

significantly less than the renal clearance of insulin (200 ml/min) 

peritubular uptake must be responsible for a significant portion of 

the renal removal. The physiology of the renal handling of insulin



has been recently reviewed (Rabkin et al., 1984).

The clinical importance of these observations is that there is 

little change in the metabolic clearance rate of insulin until the GFR 

is decreased to 40 ml/min. Marked prolongation of the half life does 

not occur until the GFR is below 20 ml/min (Rabkin et al., 1970; 

Rubenstein et al., 1975). However, with progressively declining GFR 

there is a compensatory increase in peritubular insulin uptake such 

that insulin clearance changes only minimally. However, when renal 

functional mass is reduced to a critical level and the GFR is less 

than 20 ml/min the metabolic clearance rate falls precipitously 

(Rubenstein et al., 1975).

Impaired hepatic degradation of insulin may contribute to the 

prolonged half life observed in uraemia (DeFronzo et al., 1978a). 

Improved insulin clearance was observed after haemodialysis and was 

attributed to increased degradation by non-renal tissues, liver and 

muscle (Mondon et al., 1978). The accumulation of uraemic toxins that 

might inhibit insulin degrading systems may be removed by 

haemodialysis and account for the improved clearance of insulin 

(DeFronzo et al., 1978a). Metabolic clearance rates and secretory 

rates of insulin have been reported to improve after haemodialysis 

(Navalesi et al., 1975; Ferrannini et al., 1979). However, several 

direct studies have not detected any hepatic abnormality of insulin 

clearance even in hepatic cirrhosis (Proietta et al., 1984; Taylor et_ 

al., 1985).

b) C-peptide

Insulin and c-peptide are secreted into the portal circulation in 

equimolar concentrations, but in the peripheral blood c-peptide is 5-7 

fold higher due to differences in the metabolic clearance rate (MCR).



The MCR for insulin (11 ml/min/kg) is higher than for c-peptide (4.4 

ml/min/kg). Unlike insulin, c-peptide passes through the liver 

without significant extraction and is almost exclusively metabolized 

and degraded by the kidney. The immunological half life for insulin 

(5 mins) is considerably shorter than c-peptide (11-33 mins depending 

on experimental conditions). Normally 5-20% of pancreatic secretion 

of c-peptide is excreted in the urine. Renal dysfunction causes an 

increase in serum c-peptide level and the relative concentrations may 

be dependent upon the quantitative role which the kidneys play in 

their removal (Jaspan et al., 1977).

c) Proinsulin

Small amounts of proinsulin are released into the circulation with 

insulin and c-peptide in normal subjects, but this accounts for less 

than 15% of the total circulating insulin immunoreactivity. There is 

no evidence to suggest that proinsulin is converted to insulin in the 

circulation (Rubenstein et al., 1977). The metabolic clearance 

independent of plasma levels, is slower for proinsulin (3.1 ml/min/kg) 

compared to insulin (11 ml/min/kg) and the half life for proinsulin is 

about 25 mins compared to 5 min for insulin. In contrast to the 

difference in their MCR, the renal disposition of both peptides is 

similar with high extraction and very low urinary clearance (Katz and 

Rubenstein, 1973). The extraction rate for proinsulin is 

approximately 36% while the fractional urinary clearance is about 

0.6% indicating more than 99% of the amount filtered is sequestered in 

the kidney. Thus the kidney is the major organ for proinsulin 

degradation and thus high concentrations of proinsulin may be expected 

in renal failure (Katz and Rubenstein, 1973; Mako et al., 1973).



d) Glucagon

Circulating glucagon is heterogeneous, consisting of proglucagon 

(molecular weight 9000) and the biologically active glucagon 

(molecular weight 3500). Glucagon is freely filtered by the 

glomerulus, reabsorbed and catabolized in the proximal tubule. There 

is active uptake and degradation by the peritubular membrane 

(Emmanouel et al., 1976). The metabolic clearance rate is

approximately 10 ml/min/kg and the half life is 5.5 mins (Alford e£

al., 1976). The fractional extraction by the kidney is about 40% and 

less than 5% is excreted in the urine. Compared to insulin the liver 

plays a less important role in glucagon degradation (Felig et al., 

1976) and renal excretion accounts for about half of glucagon 

degradation. In chronic renal failure the marked increase in

circulating glucagon levels is largely due to proglucagon, but there

is a significant rise in the biologically active glucagon (Emmanouel 

et al., 1976). The hyperglucagonaemia in uraemia is due to reduced 

renal clearance (Kuku et al., 1976) as the pancreatic secretion of 

glucagon is normal (Lefebvre and Luyckx, 1975).

3. GLUCOSE INTOLERANCE

Elevated fasting plasma insulin concentration with normal fasting 

glucose has been well documented in uraemia (Hutchings et al., 1966; 

Briggs et al., 1967; Horton et al., 1968). The fall in blood glucose 

following exogenous insulin administration is delayed and decreased 

(Westervelt and Schriener., 1962; Hampers et al., 1966; Horton et al., 

1968; Spitz et al., 1970). The fall in blood glucose following IV 

tolbutamide was also diminished and delayed (Cerletty and Engbring, 

1967; Spitz et al., 1970) and the concomitant insulin levels were 

elevated. All these studies suggest insulin antagonism. However,



there are conflicting reports on the plasma insulin response to both 

oral and IV glucose tolerance tests.

The early (2-10 mins) insulin response following IV glucose has 

been reported as normal (Horton et al., 1968), increased (Hutchings et_ 

al., 1966) or decreased (Hampers et al., 1966). Insulin levels during 

the latter part of the test (25-60 mins) have been uniformly increased 

(Horton et al., 1968; Hutchings et al., 1966; Hampers et al., 1966). 

Following an oral glucose stimulus the early release of insulin was 

found to be normal (Briggs et al., 1967; Cerletty and Engbring, 1967) 

or increased (Spitz et al., 1970) while late responses were elevated 

in all the studies.

These effects could be explained in part by prolongation of the 

half life of insulin, true hypersecretion of insulin, relative 

hypersecretion secondary to the higher glucose concentrations found 

later in the tests or a combination of these. Furthermore, the 

conflicting results could be explained by differences in the uraemic 

populations studied, such as the severity of renal failure (i.e. 

residual renal function) and the use and the 'adequacy1 of dialysis. 

The decreased insulin response to IV glucose, in contrast, to the 

increased response to oral glucose (Hampers et al., 1966; Hampers et 

al., 1968) has been suggested to be due to insulin-releasing gut 
hormones which may have a role for maintenance of insulin secretion in 

uraemia (Creutzfeldt et al., 1970).

4. TISSUE SENSITIVITY TO INSULIN AND BETA CELL SENSITIVITY TO GLUCOSE

DeFronzo (1978b) suggests that the seemingly conflicting results 

in the literature concerning the plasma insulin response in glucose 

tolerance tests may represent two distinct groups of uraemic patients. 

He postulates that one group have 'normal' glucose tolerance and



increased plasma insulin levels, while the other group have impaired 

glucose tolerance and diminished or normal plasma insulin responses to 

infused glucose.

DeFronzo proposed that since peripheral antagonism (tissue 

insensitivity) to insulin is uniform in uraemia, glucose tolerance 

would only remain normal if the pancreatic beta cells were able to 

increase their insulin secretion to overcome the insulin resistance. 

This would conform to the first group of patients with 'normal1 

glucose tolerance and increased plasma insulin responses. However, if 

significant inhibition of insulin secretion was superimposed on a 

state of insulin antagonism glucose intolerance would become overtly 

impaired. This would conform to the second group, with impaired 

glucose tolerance and normal or decreased insulin responses. Thus an 

interaction between tissue sensitivity to insulin and beta cell 

sensitivity to glucose might explain the seemingly discrepant results 

concerning the insulin response to glucose. DeFronzo (1978a) 

quantitated the relative contributions of impaired insulin secretion 

and insulin resistance using clamp techniques. Using the 

hyperglycaemic clamp technique the plasma insulin response was 

biphasic, the early (0-10 mins) response was normal but the later 

(10-120 mins) was higher in uraemics. After 10 weeks haemodialysis 

the late plasma insulin response decreased and was not significantly 

different from the controls. The decline in the insulin response was 

mainly due to an increase in the metabolic clearance rate of insulin. 

The change in insulin secretion was quite variable. In the majority 

of patients insulin secretion increased negligibly (suggesting that 

uraemia had an inhibitory effect on the beta cell). In some insulin 

secretion fell post-dialysis (suggesting that the primary disturbance 

was one of impaired insulin action). During the hyperglycaemic clamp



performed post dialysis the decreased insulin response resulted from a 

small increase in insulin secretion and a larger increase in the 

metabolic clearance rate of insulin. The amount of glucose 

metabolized during the clamp studies was significantly less in 

uraemics than controls. Although haemodialysis resulted in a marked 

improvement in glucose metabolism it did not restore it to normal. To 

provide an independent measure of tissue sensitivity to insulin, 

DeFronzofs group (1978a) employed the euglycaemic insulin clamp 

technique and found that tissue sensitivity to insulin was 

significantly reduced in uraemics and following haemodialysis insulin 

mediated glucose metabolism improved to a level only slightly less 

than controls. The observations for the above clamp techniques has 

promoted the concept than insulin resistance is present in most 

patients with chronic renal failure and plays a dominant role in 

glucose intolerance in uraemia. The normal beta cell response to this 

insulin antagonism would be to augment its insulin secretion in an 

attempt to override the insulin resistance. In some patients, 

however, uraemia also impairs insulin secretion. In those subjects in 

whom both tissue insensitivity to insulin and impaired beta cell 

response to glucose occur together, the greater decline in glucose 

tolerance is observed (DeFronzo, 1978a;1978b).

However, it should be noted that the increased circulating insulin 

in uraemia may not necessarily be due to resistance to the action of 

insulin, but delayed insulin degradation due to loss of renal 

parenchyma may also be important (Reaven and Olefsky, 1978). The 

insulin response to a constant glucose infusion was studied in an 

animal model of acute uraemia induced without loss of renal mass.
There was no difference between pre- and post-insulin responses 

(Swenson et al., 1973). The authors concluded that there was no



increase in insulin response when there was no loss of renal 

parenchymal tissue. These results suggest that the elevation of the 

insulin response in uraemia may be due to a defect in insulin removal 

rather than insulin hypersecretion. Thus the rise in insulin 

concentration does not necessarily mean an increased pancreatic 

insulin response.

5* THE SITE OF INSULIN RESISTANCE

Impairment of insulin-mediated glucose metabolism in uraemia could 

result from increased hepatic glucose production that does not 

suppress normally following insulin, diminished glucose uptake by the 

liver or impaired glucose uptake by peripheral (muscle and adipose) 

tissues. Using the euglycaemic insulin clamp technique in combination 

with radioisotope (H^-glucose) turnover methodology and 

hepatic/femoral vein catheterisation (DeFronzo et al. 1978a; 1980;

1981) showed that both suppression of hepatic glucose production and 

splanchnic (hepatic) glucose uptake are normal in uraemia. In 

contrast, the ability of insulin to increase glucose uptake in the leg 

was markedly impaired in uraemic subjects. These results suggest that 

the major site of insulin resistance resides in the periphery. This 

is consistent with the forearm perfusion studies with constant 

intra-arterial insulin infusion which showed reduced glucose uptake in 

uraemia (Westervelt, 1969). Following haemodialysis tissue 

insensitivity to insulin was found to return towards normal and 

overall glucose intolerance improved (DeFronzo et al., 1978a).

6. INSULIN RECEPTOR AND POST RECEPTOR DEFECTS

Insulin, like other peptide hormones, is known to initiate its 

effects on target tissues by binding to specific surface receptors



(Pastan et al., 1966). The resultant hormone receptor interaction 

triggers a sequence of membrane and intracellular events that produce 

the biological response. Thus insulin resistance could result from 

either a receptor or post receptor (intracellular) defect.

Decreased insulin binding to red cells has been reported in 

non-dialysed uraemics, however, after 1 year of haemodialysis 

erythrocyte binding decreased relative to controls (Gambhir et al.,

1981). In contrast, insulin binding to rat adipocytes was normal 

(Maloff and Lockwood, 1981) and insulin binding to circulating 

monocytes in uraemic subjects was also normal (Smith and DeFronzo,

1982). Thus, by inference if receptor binding is normal in uraemia 

then it may be predicted that intracellular defects are responsible 

for the insulin resistance.

The site of insulin resistance has been studied by constructing an 

in vivo dose-response curve using the euglycaemic clamp technique. 

Insulin resistance can be classified as being due to either a 

decreased sensitivity or a decreased responsiveness to insulin. These

two abnormalities are manifest by a shift to the right in the 

dose-response curve or a reduced maximum response respectively. The

spare receptor concept indicates that reduced insulin receptor binding 

usually results in a decreased sensitivity while a post-receptor 

defect results in insulin unresponsiveness. The maximal 

responsiveness to insulin was decreased in uraemics and partially 

corrected by dialysis (Schmitz et al., 1983). A similar study showed 

both a decreased sensitivity and reduced responsiveness but the 

monocyte insulin binding was normal in keeping with a post-binding 

defect (Smith and DeFronzo, 1982). Thus, there is evidence that the 

site of insulin resistance is due to impaired intracellular glucose 

metabolism or abnormal glucose transport within the cell.



7. THE ROLE OF THE LIVER

The role of the liver in the development of glucose intolerance 

has been examined by measuring the rate of glucose turnover and by 

quantifying the hepatic responses to glucose and insulin infusion.

Data on hepatic glucose production in uraemia are conflicting. 

Rubenfeld and Garber, 1978, observed a 50% increase in glucose 

turnover, a 2-fold rise in alanine and that gluconeogenesis (mainly 

from alanine) increased in non-dialysed uraemic patients. Following 

haemodialysis there was a reduction, but not a complete reversal of 

the accelerated gluconeogenesis (Rubenfeld and Garber, 1979). They 

postulated an increase in glucose utilization following dialysis 

treatment. The increased gluconeogenesis could also be due to 

increased hepatic sensitivity to glucagon (Sherwin et al., 1976).

The importance of gluconeogenesis for glucose homeostasis has been 

underlined by the observation of hypoalaninaemia and decreased rates 

of gluconeogenesis in debilitated uraemic patients presenting with 

hypoglycaemia (Garber et al., 1974). The kidney also has a role in 

gluconeogenesis. During prolonged starvation the normal kidney has 

been reported to contribute about half of the glucose production 

through recruitment of the gluconeogenic pathway (Owen et al., 1969).

However, in contrast, normal rates of glucose production have been 

reported (DeFronzo et al., 1981; Ricanati et al., 1983). Both 

suppression of hepatic glucose production and splanchnic (hepatic) 

glucose uptake were normal in uraemia. Kalhan et al. (1983) showed 

that in chronic renal failure glucose production did not change, but 

glucose carbon recycling increased and glucose oxidation decreased. 
Haemodialysis had no effect on any of these variables.



8. GLUCAGON AND GLUCOSE METABOLISM

Increased circulating levels of glucagon have been implicated in 

the development of carbohydrate intolerance and insulin resistance in 

uraemia. Although proglucagon is primarily responsible for the 

elevated levels of increased circulating glucagon, there is up to 

3-fold elevation of the biologically active glucagon (MW 3500) 

(Emmanouel et al., 1976). High circulating plasma glucagon 

concentrations result from decreased renal clearance (Kuku et al., 

1976). The increase in glucagon (MW 3500) is due to the decrease in

metabolic clearance rate as glucagon secretion is normal (Lefebvre and

Luyckx, 1975). Compared to insulin the liver plays a much less 

important role in glucagon degradation (Felig et al., 1974). The 

primary effect of glucagon is to stimulate hepatic glucose production. 

Basal hepatic glucose production is not increased and is normally

suppressed by insulin in uraemia and glucagon has no clear effect on

the peripheral utilization of glucose (DeFronzo et al., 1978a). Thus 

it is unlikely that hyperglucagonaemia per se plays a role in glucose 

intolerance under conditions where the plasma insulin is elevated.

However, the plasma glucose response to glucagon is enhanced in 

uraemia indicating increased hepatic sensitivity to glucagon.

Following glucagon infusion the increase in plasma glucose 

concentration in uraemia was 3-4 fold greater than controls. 

Haemodialysis corrected the excessive glycaemic response to glucagon 

(Sherwin et al., 1976). These findings suggest that hepatic 

sensitivity to glucagon is increased while tissue sensitivity to 

insulin is decreased in uraemia. In the situation, for example after 

a protein meal, when the plasma glucagon response is high and the 

insulin response is relatively low excessive stimulation of hepatic 

glucose output may ensue and result in glucose intolerance. Elevated



glucagon levels may also contribute to increased gluconeogenesis from 

alanine in skeletal muscle (Rubenfeld and Garber, 1978). Furthermore, 

DeFronzo and Smith (1985) have found increased alanine uptake by 

splanchnic tissue (liver) in uraemia suggesting gluconeogenesis is 

increased in chronic renal failure. This has important clinical 

implications and may explain the muscle wasting and negative nitrogen 

balance commonly observed in uraemia.

9. PARATHYROID HORMONE AND GLUCOSE METABOLISM

Abnormalities in the metabolism of parathyroid hormone (PTH) have 

also been implicated in the pathogenesis of carbohydrate intolerance 

associated with uraemia.

Increased insulin secretion was observed in uraemic patients with 

severe secondary hyperparathyroidism which improved following 

parathyroidectomy (Lindall et al., 1971). This observation was 

attributed to the parathyroid hormone effect on pancreatic islet 

function. However, others have failed to show any relationship 

between secondary hyperparathyroidism and glucose tolerance, insulin 

secretion and insulin sensitivity (Amend et al., 1975).

More recently studies in animals (Akmal et al., 1984) and humans 

(Mak et al., 1983) suggest that excess PTH inhibits the compensatory 

increase in insulin secretion in a insulin resistant state, thus 

contributing to the glucose intolerance of chronic renal failure.

Graf et al. (1985) using the hyperglycaemic clamp technique evaluated 

the role of PTH on glucose metabolism in chronic renal failure and 

dialysis. They found that patients on haemodialysis had normal 

peripheral glucose uptake. The beta cell response to hyperglycaemia 

(during the early phase as well as during the steady state) was the 

same in controls and non-parathyroidectomised uraemics, whereas, those



who had parathyroidectomy, i.e. previous severe and long standing 

secondary hyperparathyroidism, had markedly increased insulin 

secretion. Tissue sensitivity to insulin was normal in the 

non-parathyroidectomised haemodialysis group but was decreased in the 

parathyroidectomy group. Thus PTH may have a suppressive effect on 

insulin secretion.

10. GROWTH HORMONE AND GLUCOSE METABOLISM

Growth hormone (GH) concentrations are frequently elevated in 

renal failure but do not correlate with glucose intolerance in 

individual patients (Horton et al., 1968; Saaman and Freeman, 1970; 

Orskov and Christensen, 1971). Further, despite an apparent 

improvement in carbohydrate intolerance and insulin sensitivity with 

haemodialysis levels of growth hormone remain unaffected (Saaman and 

Freeman, 1970). Abnormal growth hormone concentration in chronic 

renal failure results from both impaired degradation and abnormalities 

in secretion. Peripheral disposal of this peptide depends largely on 

renal mechanisms (Cameron et al., 1972; Gottheiner et al., 1979). The 

normal response of reduction in growth hormone following glucose 

administration does not occur in renal failure suggesting that the 

secretory dynamics are altered. In fact, levels of growth hormone 

often show a paradoxical rise during glucose tolerance testing (Wright 

et al., 1968; Saaman and Freeman, 1970). The latter change has been 

attributed to protein and caloric malnutrition since this paradoxical 

response is observed in conditions such as kwashiorkor and marasmus 

(Pimstone et al., 1966).

DeFronzo (1978b) found no difference in fasting GH levels pre- and 

post-dialysis. The majority of patients showed no change in GH 

response with sustained hyperglycaemia. Thus the deranged growth



hormone physiology in uraemia is unlikely to be related to 

carbohydrate metabolism.

11. LIPID METABOLISM AND CARBOHYDRATE METABOLISM

There is an important inter-relationship between carbohydrate and 

lipid metabolism in uraemia. Type IV - (carbohydrate induced and 

accompanied by glucose intolerance) hyperlipidaemia is common in renal 

failure.

Hypertriglyceridaemia with normal or increased cholesterol is 

common in uraemia. The lipid abnormalities in chronic renal failure 

include an increase in very low density lipoproteins (VLDL), normal or 

increased low density lipoproteins (LDL) and decreased high density 

lipoproteins (HDL). There is also an increase in saturated fatty acid 

esters and a reduction in linoleic acid. Low concentrations of 

HDL-cholesterol, high total serum cholesterol (Kannel et al., 1979), 

high VLDL-triglyceride (Norbeck et al., 1980) and relatively low 

linoleic acid and high fatty esters (Norbeck et al., 1982) are thought 

to promote atherosclerosis.

The aetiology and pathogenesis of lipid abnormalities in uraemia 

are still unclear. Abnormalities from deranged carbohydrate 

metabolism have been long implicated (Bagdade et al., 1968; Olefsky et_ 

al., 1974). Increased hepatic synthesis of triglycerides or impaired 

removal of triglycerides from the circulation have been suggested as 

the cause of hypertriglyceridaemia.

Peripheral insulin resistance combined with hyperinsulinaemia, 

resulting from insulin antagonism and/or impaired degradation, have 

been reported to increase the hepatic synthesis of VLDL triglyceride 

(Bagdade et al., 1968). However, later studies have failed to show 

any relationship between hyperinsulinaemia and hypertriglyceridaemia



in chronic renal failure (Cattran et al., 1976). Indeed, reduced 

rates of triglyceride synthesis has been reported (Cattran et al., 

1976; Sanfelippo et al., 1977).

The main abnormality appears to be diminished catabolism of 

lipoproteins. Impaired removal of circulating triglycerides has been 

well documented (Cattran et al., 1976; Ibels et al., 1976). This may 

be due to low enzyme levels of both serum and hepatic lipoprotein 

lipase (Chan et al., 1982).

Serum lipoprotein abnormalities occur early in chronic renal 

failure and are only marginally, if at all, affected by haemodialysis 

(Hass et al., 1983) or low protein diets (Attman et al., 1984). In 

uraemia increased dietary intake of carbohydrate markedly increases 

triglyceride concentrations which may reverse with dietary restriction 

(Sanfelippo et al., 1978). In CAPD, patients are exposed to large 

quantities of glucose and subsequently develop an increase in both 

triglyceride and cholesterol (Gokal et al., 1981).

12. URAEMIA AND DIABETES

In type I (insulin dependent) diabetes mellitus, destruction of 

the beta cells leads to loss of insulin secretory capacity and the 

insensitivity to insulin appears to be secondary to the metabolic 

consequences of insulin deficiency (Nankervis etal., 1984).

In type II (non-insulin dependent) diabetes mellitus, the 

mechanism of the disorder is still not clear. Abnormalities of both 

insulin secretion and insulin action are found in patients with 

established type II diabetes (Weir, 1982) and in glucose intolerance 

(Reaven and Miller, 1979).

Insulin insensitivity was found to be a more constant feature of 

type II diabetes than defective insulin secretion which might result



from secondary decompensation of the beta cells in response to 

hyperglycaemia (Reaven, 1984). In contrast, others have found 

impaired beta cell secretory activity as the dominant feature 

(Kadowski et al., 1984). Recently, using the technique of continuous 

infusion of glucose with model assessment (CIGMA), O'Rahilly et al. 

(1986) found beta cell function the primary defect in type II 
diabetes.

In uraemia, insulin insensitivity appears to be the dominant 

feature whereas the beta cell response is variable and probably plays 

a minor role. Basal hepatic production of glucose is normal or only 

minimally elevated in both uraemia and type II diabetes (DeFronzo, 

1978b). Futhermore, glucose production decreases in both groups 

following physiological hyperinsulinaemia. Thus uraemia and type II 

diabetes share some similarities, with insulin resistance being more 

prominent in uraemia and beta cell dysfunction being more 

characteristic of type II diabetes (Figure 2.1). However, despite 

insulin insensitivity it is uncommon for uraemics to develop overt 

diabetes unless there is an underlying genetic diabetic 

predisposition. Both type I and II diabetes often have marked 

deterioration in their glucose control with progression of renal 

failure. Insulin requirements may need to be increased and type II 

diabetes may need insulin supplementation to control their glycaemia. 

However, when the GFR falls below 20 ml/min a paradoxical situation 

arises. The clearance of insulin becomes markedly reduced and less 

insulin is degraded resulting often in better control or reduced 

requirements and improved glucose tolerance. Following the 

institution of dialysis a complex situation situation develops. 
Dialysis may increase the tissue sensitivity to insulin thereby 

decreasing insulin requirements. However, dialysis may also improve
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insulin degradation towards normal thereby increasing the need for 

insulin. In view of this paradox it is difficult to predict for any 

individual what will happen to their insulin requirements.

13. CLINICAL IMPLICATIONS OF GLUCOSE INTOLERANCE IN URAEMIA

As previously discussed, it is unusual for uraemic patients to 

develop overt diabetes despite their underlying glucose intolerance. 

However, impaired glucose metabolism in uraemia may have potential 

adverse effects.

Patients with chronic renal failure have a higher incidence of 

cardiovascular disease (Linder et al., 1974). Figure 2.2 shows the 

possible inter-relationship of disturbed carbohydrate, lipid and 

protein metabolism. However, there is no direct evidence that glucose 

intolerance per se contributes to atherosclerosis and its subsequent 

complications. Nevertheless, some insight can be gained from data 

available on patients with diabetes mellitus.
Accelerated atherosclerosis is common in diabetes. 

Hyperinsulinaemia in diabetes has been implicated as a causative 

factor in the pathogenesis of atherosclerosis (Stout, 1979). Insulin 

has been shown to increase the transport of cholesterol into 

arteriolar smooth muscle cells and to stimulate the proliferation of 

endothelial cells lining the arterial vascular wall. Thus the uraemic 

hyperinsulinaemic state may play a role in hyperlipidaemia.

Diabetes has been associated with an increase in cardiovascular 

mortality in clinical (Kessler, 1971), life insurance (Goodkin, 1975) 

and population studies (Garcia et al., 1974). Although other risk 

factors such as hypertension, obesity and hyperlipidaemia are well 

known, the presence of fasting hyperglycaemia and a diabetic glucose 

tolerance curve is an independent risk factor in cardiovascular



disease (National Diabetes Data Group, 1979).

However, most uraemic patients do not fulfil the criteria for the 

diagnosis of diabetes but do have impaired glucose tolerance. Some 

cross sectional population studies have shown that impaired glucose 

tolerance carries an increase in prevalence of coronary artery disease 

and is independent of hypertension and hyperlipidaemia (Keen et al., 

1965; Yano et al., 1982).

Although it is difficult to separate the other risk factors in 

uraemia, in particular hypertension and hyperlipidaemia, there is 

suggestive evidence that impaired glucose tolerance carries an 

increase risk of cardiovascular complications. Hyperglycaemia per se 

can result in production of abnormal circulating proteins such as 

glycosylated haemoglobin and albumin and this may contribute to 

abnormalities in structural proteins of the capillary basement 

membrane in muscle and kidney in diabetics (Skyler, 1979; Jovanovic 

and Petersen, 1981). Glycosylated haemoglobin has also been found to 

be elevated in uraemia in the absence of diabetes and is discussed in 

detail in Chapters 4 and 8. If uraemia per se increases glycosylated 

haemoglobin or some similar substance then possibly structural changes 

may ensue which might have a role in atherosclerosis (DeFronzo and 

Smith, 1985).

14. SUMMARY

In summary, abnormal glucose metabolism in uraemia is 

characterised by fasting normoglycaemia, abnormal glucose tolerance, 

hyperinsulinaemia and hyperglucagonaemia. Impaired renal degradation 

plays a significant role in the circulating concentrations of both 

insulin and glucagon. Glucose intolerance results from impaired 

glucose utilization manifested by reduced glucose uptake in peripheral



sites such as skeletal muscle due to the resistance to the action of 

insulin. In addition and possibly inter-related to tissue 

insensitivity to insulin impaired beta cell function to glucose may 

play a role. This concept could explain some of the conflicting 

evidence in the literature. Increased glucose production by the liver

is controversial. Recent studies have shown that hepatic glucose

production is normal but increased gluconeogenesis from amino acid 

pathways in skeletal muscle may be important. Hepatic sensitivity to

glucagon is increased while peripheral insulin sensitivity is reduced.

The site of peripheral antagonism appears to be post-receptor, that 

is, an intracellular rather than a receptor defect. The suppressive 

effect of parathyroid hormone on insulin secretion remains 

controversial but recent work suggests that it may have a role in 

carbohydrate metabolism in uraemia.

The pathophysiology of carbohydrate metabolism in uraemia remains 

complex and probably multifactorial. The abnormalities may partly be 

improved with dialysis treatment but complete reversal is uncommon.

The similarities between glucose intolerance in uraemia and diabetes 

mellitus, and the inter-relationship between disturbed carbohydrate 

and lipid metabolism and the resultant hyperlipidaemia, provide 

suggestive evidence that impaired glucose metabolism predisposes to 
cardiovascular disease.



CHAPTER 3

GLUCOSE METABOLISM AND CAPD



1. CONTINUOUS AMBULATORY PERITONEAL DIALYSIS

The term dialysis was introduced by the Scottish chemist Thomas 

Graham who demonstrated the process of separating substances using a 

semipermeable membrane made of parchment and albumin (Graham, 1854).

As well as designing a ’dialyser’ he suggested that tissue could be 

used as a functioning semipermeable membrane. However, it was not 

until the 1920's that both haemodialysis and peritoneal dialysis were 

used in man to treat acute renal failure. In the 1960's significant 

advances were made in the treatment of chronic renal failure. Vessel 

access in the form of arteriovenous shunts and the subcutaneous 

fistula were developed for haemodialysis, while Tenckhoff and 

Schechter (1968) designed a permanent peritoneal catheter for chronic 

intermittent peritoneal dialysis. Further development in machine and 

artificial dialyser technology made haemodialysis a more efficient and 

acceptable treatment for general use. However, intermittent 

peritoneal dialysis remained less popular because of inferior solute 

clearances, the high incidence of peritonitis and the relatively long 

periods patients were attached to fluid cycling machines. Continuous 

ambulatory peritoneal dialysis (CAPD) was developed in 1975 when 

Popovich and Moncrief described a 'portable equilibrium dialysis 

technique' (Popovich et al., 1976). Modifications (Oreopoulos et al., 

1978) and clinical experience have now made CAPD an acceptable mode of 

renal replacement therapy.

a) Principle

CAPD is jbased on solute diffusion across a semipermeable membrane 

and fluid movement by osmosis. The fluid compartments, blood and 
dialysis fluid in the peritoneal cavity are separated by a natural 

semipermeable membrane, the peritoneum. The process of



transperitoneal equilibration between dialysate and plasma is

determined by time of exposure of the dialysate to the peritoneum and

the molecular size of the solute.

Small molecules, such as urea (60 Daltons) achieve equilibration

within 2 hours of dialysate dwell whereas larger solutes (500-5000 

Daltons) take proportionately longer to approach equilibrium.

Although it may be expected that after small solutes achieve rapid 

equilibration clearances would be reduced with dwell times longer than 

3-4 hours the continuous nature of the system compensates such that 

weekly clearances are satisfactory to control uraemia. Small solute 

clearances in CAPD are superior to intermittent peritoneal dialysis 

though inferior to haemodialysis. The process of equilibration for 

large solutes continues for long periods and favours long dwell times. 

Clearance of large molecules falls less rapidly with long exchanges 

than small solutes. Large solutes are cleared more efficiently in 

CAPD than either intermittent peritoneal dialysis or haemodialysis. 

Thus CAPD has a low solute flow rate but this is compensated by the 

continuous process of the technique.

b) Technique

The procedure consists of instilling by gravity dialysis fluid, 

contained in plastic (PVC) bags, through a plastic tube (transfer set) 

which is connected to a permanent peritoneal catheter. The fluid 

equilibrates within the peritoneal cavity for 4 to 6 hours and is then 
drained out by gravity. Generally, three 2 litre exchanges are 

performed during the day and a longer (8 hours) exchange is done 
overnight. Following instillation of the fluid the empty plastic bag 

is rolled up and attached to the body, allowing the patient freedom to 

carry out normal daily activities, till the end of the cycle. At the



end of the exchange the bag is disconnected and replaced by fresh 

dialysis fluid. The instilling and drainage procedure takes about 25 

minutes. Several modifications of the system and innovations in 

’connector* technology have improved the technique and reduced the 

incidence of peritonitis.

Variations in the technique can be applied to meet the needs of 

the individual patient. Continuous cyclic peritoneal dialysis (CCPD) 

is a variation of CAPD which involves using a machine to instil and 

drain fluid automatically. Generally several cycles are performed 

during the night when the patient is asleep and one exchange (or none 

- empty peritoneum) is done during the day. Currently experience with 

this technique is limited.

2. THE ROLE OF GLUCOSE IN CAPD

a) Dialysis solutions

The chemical composition of peritoneal dialysis solutions is 

fundamental in the process of CAPD. Commercially available solutions 

are now relatively standardised and provide satisfactory electrolyte, 

mineral and acid-base balance. Ultrafiltration is achieved by an 

osmotic agent which to date has been glucose. Dialysis solutions and 

systems in CAPD have been recently reviewed by Winchester (1986).

There are minor differences in the non-osmotic composition of 

fluids which vary between manufacturers. In general, the constituents 

are sodium (130-134 mmol/1), chloride (100-103 mmol/1), calcium 

(1.35-1.75 mmol/1), magnesium (0.5-1.5 mmol/1) and lactate (35 

mmol/1). Fluids are usually potassium free. The osmotic component of 

the fluid is glucose (dextrose), which varies between 1.36 g/dl (%) 

and 4.25 g/dl. This allows manipulation of the osmotic strength of 

the fluid to achieve the desired degree of ultrafiltration.



A sodium content of about 132 mmol/1 is adequate in most clinical 

situations in CAPD and any extracellular fluid contraction and 

postural hypotension due to excessive ultrafiltration can be corrected 

by adjustment to the osmotic strength of the fluid or to the sodium 

and water oral intake. This is in contrast to intermittent peritoneal 

dialysis when a lower sodium concentration is often recommended, 

particularly when the dwell times are short and hypertonic solutions 

result in disproportionately greater removal of extracellular water 

than sodium. Potassium is generally not required to maintain normal 

serum concentrations and any change in serum potassium can be 

corrected by oral or dietary manipulation. A positive calcium balance 

is maintained in most patients, but underlying renal osteodystrophy 

may require alterations in either the calcium content of the fluid or 

more usually oral supplementation with calcium and vitamin D 

analogues. Magnesium concentrations are usually well maintained and 

rarely require alteration, but the increased use of magnesium 

containing phosphate binders may in the future warrant changes in the 

dialysate magnesium concentration.

Acid-base balance is achieved by lactate. Bicarbonate would be 

ideal but there are two drawbacks related to the manufacturing process 

that prevents its use. In the presence of bicarbonate insoluble 

calcium and magnesium salts precipitate on storage and the alkali pH 

of bicarbonate produces caramelisation of glucose during autoclaving. 

Acetate and lactate have been used as alternative buffers without the 

above problems. However, recently the use of acetate has been 

associated with loss of ultrafiltration (International Study Group,

1984) and a possible association with the rare,' but lethal, condition 

of sclerosing peritonitis (Slingeneyer et al., 1983). Thus lactate is 

now exclusively used as the buffer in CAPD fluids.



b) Osmotic agents

Fluid removal during peritoneal dialysis depends on osmotic 

forces. Glucose has been used as an osmotic agent since the early 

experimental days and has proven to be safe, effective and 

inexpensive. Indeed dextrose is the only commercially available 

osmotic agent at present. However, the high rate of peritoneal 

glucose absorption has lead to obesity, hypertriglyceridaemia and the 

potential hazardous effects on carbohydrate metabolism and accelerated 

atherosclerosis has generated interest in alternative osmotic agents.
Glucose in dialysis fluids can undergo spontaneous breakdown to 

aldehyde, 5-hydroxymethylfurfural, laevulinic and formic acids. This 

process may be accentuated by extreme heat during the sterilization of 

fluids during manufacture. The effect of storage and heating of the 

dialysis solution by the patient prior to instillation has been shown 

to increase glucose metabolites (Henderson et al., 1984). Henderson 

et al. (1984) propose that metabolites (5-hydroxymethylfurfural) may 

combine with lactate to form Schiff bases which can alter the 

properties of tissue components. Thus glucose metabolites may have an 

adverse effect on the peritoneal membrane. To prevent the 

caramelisation of glucose during autoclaving, hydrochloric acid is 

added to the dialysis solution to keep the pH below 5.5. This low pH 

may have disadvantages, as it has been attributed to the pain some 

patients have on initial instillation. It can also inhibit 

phagocytosis and affect intracellular killing of bacteria, but this is 

probably only transient as the dialysate pH rises to 7 within 1 hr 

after instillation (Vas et al., 1981).

Alternative agents have been investigated and reviewed by 

Winchester (1986). Currently, no agent has shown any definite



advantage over dextrose. Some agents have shown good ultrafiltration 

characteristics but adverse effects have prevented their use.

Sorbitol, fructose, xylitol and polyanions have revealed toxic 

effects. Amino acid solutions are potentially useful and have both 

good ultrafiltration properties and nutritional value but at present 

are too expensive for general use. Glucose polymers which are not 

significantly absorbed, with sustained ultrafiltration characteristics 

and reduced caloric load look promising but some have shown prolonged 

retention and impaired metabolism. Future research may soon find a 

suitable alternative to dextrose.

3. CLINICAL EXPERIENCE

Since its conception in 1975 there has been a vast global 

expansion in CAPD. The reasons are multiple and include medical, 

social and economic factors.

In recent years many reports on the clinical experience with CAPD 

have revealed variable results (Chan et al., 1981; Kurtz et al., 1983; 

Ramos et al., 1983; Heaton et al., 1986; Morgan et al., 1986, Tsakiris 

et al., 1986). Although patient selection can have a strong bias on 

clinical data (Coward et al., 1982), with experience clinical outcome 

has significantly improved. Peritonitis is undoubtedly the major 

complication (Williams et al., 1981; Gokal et al., 1982; Smith et al., 

1986), but catheter related problems are responsible for many hospital 

admissions and technical failures. CAPD is particularly suitable for 

diabetics (Flynn, 1983), the elderly (Nicholls et al., 1984) and young 

children (Balfe and Watson, 1986). These groups were often denied 

treatment in the recent past as they were considered ’poor candidates’ 

for haemodialysis or transplantation.

The merits of CAPD are generally compared to those of



haemodialysis as it is accepted that for most patients a successful 

transplant is the optimal treatment. In brief, CAPD provides adequate 

control of uraemic symptoms and signs. Salt and water removal is 

achieved by hypertonic glucose solutions and helps maintain fluid 

balance and controls hypertension. Electrolyte, mineral and acid-base 

balance are regulated by the chemical constituents of the dialysis 

fluid. The advantages of CAPD are; a feeling of well being (perhaps 

due to several factors including better clearance of ’uraemic 

toxins’), less restricted fluid and diet control, steady state 

biochemistry, improved control of anaemia and hypertension and is 

generally more appropriate for diabetics, young children and the 

elderly. Social factors such as relative independence, freedom to 

travel and lower financial cost are also important. The disadvantages 

include peritonitis and catheter-related problems, particularly if 

they require regular hospital admissions, obesity and other forms of 

malnutrition, hyperlipidaemia and the uncertainty of long term 

viability of the peritoneum.

It is estimated that about 30,000 patients are on CAPD worldwide 

(Gokal, 1986). In the UK the ’CAPD explosion’ has resulted in more 

patients being treated with CAPD than home haemodialysis (EDTA report,

1985). Patient and technique survival have improved and are now 

similar to haemodialysis. Patient survival is about 80% at 2 years 

and 50% at 4 years, and the main reason for ’drop out' from CAPD is 

now transplantation (Gokal, 1986).

a) Diabetes and CAPD

Prior to 1970 most diabetics with end stage renal disease were 
denied treatment largely due to the high morbidity and mortality 

(Drukker et al., 1971; White et al., 1973). Progress on the



understanding of the pathophysiology of diabetes, improved control of 

glycaemia and management of complications as well as advances and 

improved facilities in dialysis and transplantation have dramatically 

changed the outlook. It is now estimated that 25% of new dialysis 

patients and 20% of transplant recipients in the USA are diabetic 

(Friedman, 1985). In the UK the proportion of diabetics on renal 

replacement therapy has increased from 1.4% in 1975 to 11.1% in 1984 
(Cameron and Challah, 1986).

The advantages of CAPD over haemodialysis for diabetics is partly 

factual, partly anecdotal and still debatable (Legrain and Keen, 1983; 

Whitley and Kjellstrand, 1984; Friedman and Peterson, 1986). In 

brief, the advantages of CAPD include steady state control of uraemia, 

good control of hypertension and a stable cardiovascular state without 

rapid fluid shifts and tighter blood glucose control by the use of 

intraperitoneal insulin. Heparinisation and vessel access are 

avoided. However, the peritoneal glucose load may promote obesity, 

hyperglycaemia, hyperlipidaemia and aggravate accelerated 

atherosclerosis. Despite the theoretical advantage of removal of 

middle molecules and uraemic toxins in CAPD peripheral neuropathy is 

generally unchanged.

b) Blood glucose control and intraperitoneal insulin

Improved blood glucose control is seen in most diabetics on CAPD 

and is largely due to the use of intraperitoneal insulin 

administration (Flynn et al., 1979; Khanna et al., 1983; Rottembourg 

et al., 1983). Normally insulin is secreted into the portal vein in 

response to various stimuli and about 50% is removed by passage 

through the liver. Intraperitoneal insulin acts like an ’artificial 

pancreas’ and mimics this physiological route. Clinical experience in



CAPD suggests that intraperitoneal insulin is superior to the 

subcutaneous route. However, the dose of insulin requires to be 

increased (often 3-4 fold) to achieve adequate glycaemic control. In 

addition to the peritoneal glucose load, insulin binding and retention 

to the dialysate bags, slow transperitoneal absorption because of its 

large molecular size, losses to the dialysate and possibly other 

metabolic and kinetic factors contribute to the higher insulin 

requirements (Khanna et al., 1986).

The use of intraperitoneal insulin to reduce hypertriglyceridaemia 

is unclear. A fall in triglyceride concentrations has been reported 

by some (Moncrief et al., 1981) but not by others (Beardsworth et al., 

1983). Despite the use of intraperitoneal insulin, which usually 

involves injecting directly into the dialysate bags, the incidence of 

peritonitis in diabetics is no different from non-diabetics on CAPD 

(Rottembourg et al., 1983).

The use of glycosylated haemoglobin in monitoring glycaemic 

control in diabetics is well established but the value of this 
indicator in uraemic diabetics is controversial and is discussed and 

investigated in Chapters 4 and 8.
The survival of diabetics on dialysis and transplantation has 

significantly improved in recent years (Friedman and Peterson, 1986). 

Recent data from two large centres show that CAPD (Toronto) and 

haemodialysis (Minnesota) have similar morbidity and mortality and 

this was largely due to accelerated atherosclerosis (Khanna and 

Oreopoulos, 1986).



4. GLUCOSE ABSORPTION AND CAPD

CAPD provides the patient with a continuous glucose infusion and 

quantification of this carbohydrate load is important due to its 

nutritional consequences.

The average daily absorption of glucose from dialysis solutions 

varies between 100 to 200g (Grodstein et al., 1981; Von Baeyer et al., 

1981). On a typical regimen of 3 isotonic (1.36%) and 1 hypertonic 

(3.86%) 2 litres exchanges about 120g of glucose will be absorbed per 

day (Nolph et al., 1979). During a 6 hour cycle 60-80% of glucose 
instilled into the peritoneal cavity is absorbed. This amounts to 

45-60g from a 3.86% solution and 15-22g from a 1.36% solution 

(Grodstein et al., 1981). These workers calculated that on average 

182g of glucose was absorbed per day, which represented 8.4 

Kcal/Kg/day or between 12% and 34% of the total energy intake.

Similar studies have reported that glucose absorption from peritoneal 

dialysis fluid accounts for about 20% of the total energy intake 
(Lindholm and Bergstrom, 1986).

The rate of glucose absorption varies between patients, indicating 

individual differences in peritoneal permeability. However, within an 

individual patient the glucose absorption is fairly constant for a 

given fluid regimen (Grodstein et al., 1981; Lindholm and Bergstrom, 

1986).

The rate of glucose absorption may increase during episodes of 

peritonitis due to increased peritoneal permeability and increased 

diffusive transperitoneal transport of glucose (Rubin et al., 1981a; 

Verger et al., 1984). The accelerated glucose absorption results in a 

rapid decrease in dialysate glucose concentration and a reduction in 

the osmotic driving force for water removal (Henderson, 1985). This 

may result in the need for more hypertonic and/or more frequent



exchanges to maintain adequate ultrafiltration.

The long term effect of glucose absorption through the peritoneum 

is unknown. Loss of ultrafiltration has been reported with time on 

CAPD and several aetiological factors have been proposed, including 

the use of hypertonic dextrose, acetate, impurities such as 

particulate matter, endotoxins and glucose metabolites. Morphological 

and functional changes in the peritoneum have also been observed and 

associated with some of these factors. This subject has been reviewd 

by Diaz Buxo (1984) and more recently by Henderson and Gokal (1986).

5. METABOLIC AND NUTRITIONAL ASPECTS OF CAPD

The continuous absorption of glucose in CAPD may contribute to: 

hyperglycaemia, hyperinsulinaemia, excess weight gain, aggravation of 

lipid and lipoprotein abnormalities, alteration in protein and amino 

acid metabolism which may induce malnutrition, and possibly promote 

premature atherosclerosis.

a) Glucose intolerance in CAPD

Glucose intolerance is common in uraemia and is largely due to 

impaired peripheral insensitivity to the action of insulin (DeFronzo 

et al., 1978a). The effect of CAPD on glucose intolerance is unclear. 

Further deterioration in glucose tolerance and a decreased rate of 

insulin secretion was found with oral glucose testing (Armstrong e_t 

al., 1980) and a suggestion of beta cell depletion after intravenous 

glucose loading has also been reported (Panzetta et al., 1982). In 

contrast, others have found no change in the degree of glucose 

intolerance up to 1 year after commencing CAPD (Lindholm et al., 1981; 

Von Baeyer et al., 1983). The continuous glucose administration could 

potentially alter pancreatic beta cell function possibly by depleting



the beta cells. This is discussed in Chapters 2 and 6.
During CAPD a hypertonic exchange induces hyperglycaemia and 

hyperinsulinaemia in a similar manner to an oral or intravenous 

glucose load. Isotonic solutions, however, appear to have only a 

marginal effect on blood glucose and insulin (Heaton et al., 1983; 

Armstrong et al., 1985). Although the occasional patient on CAPD may 

develop diabetes mellitus de novo, there is no convincing data 

currently to suggest that CAPD induces diabetes. However, it is not 

uncommon to find type II diabetics on CAPD to require insulin 

supplementation to control their blood glucose (DeFremont et al., 

1981). It is possible, therefore, that patients with a genetic 

predisposition to diabetes may have precipitation of type II disease 

induced by the continuous hyperglycaemic stress of CAPD.

b) Nutritional state

Weight gain, particularly during the first year on CAPD, is well 

documented (Kutz et al., 1983; Young et al., 1983; Tsakiris et al.,

1986). This may be due to increased body fat (Young et al., 1983; 

Bouma et al., 1984) and has been attributed to excessive glucose 

absorption and hyperinsulinaemia. However, most patients return to 

their premorbid non-uraemic weight after 1 year on CAPD (Rubin et al., 

1983). Weight gain has also been attributed to an increase in lean 

body mass indicating an improved nutritional state (Rubin et al.,

1983; Lindholm et al., 1981). Accumulation of body water is usually 

easily recognisable and readily correctable provided there is no loss 

of ultrafiltration. In the early years of CAPD a liberal oral intake 

of fluid was prescribed which often resulted in the frequent use of 

hypertonic solutions to control fluid balance and lead to excessive 

caloric intake.



On the contrary, malnutrition and loss of appetite may also be 

related to glucose absorption. The abdominal distension due to the 

volume of fluid in the peritoneal cavity may suppress satiety and the 

continuous peritoneal absorption of glucose has been reported to 

contribute to anorexia (Von Baeyer et al., 1983; Young et al., 1983).

c) Lipid metabolism

Lipid metabolism is deranged in uraemia and further changes occur 

in CAPD. Excessive carbohydrate and abnormalities in glucose 

metabolism (hyperinsulinaemia and insulin insensitivity) may lead to 

hyperlipidaemia (Olefsky et al., 1974; Coulston et al., 1983). Serum 

VLDL and total triglyceride concentrations in renal failure strongly 

correlate with the quantity of carbohydrate consumed (Cattran et al., 

1976; Sanfelippo et al., 1977). Thus in CAPD with continuous glucose 

absorption one might anticipate deterioration in lipid status.

Indeed, within the first year of CAPD hyperlipidaemia is very common

(Gokal et al., 1981; Nolph et al., 1984) and about one third of

patients may develop hypertriglyceridaemia. The latter change has 

been associated with protein loss in the dialysate (Gokal et al.,

1981) similar to that seen in the nephrotic syndrome. However, many 

studies have shown that after about 1 year on CAPD there is a tendency 

for both cholesterol and triglycerides to fall (Khanna et al., 1983; 

Lindholm et al., 1983). This may indicate a metabolic adaption to the 

glucose load and also correlates with weight reduction in many 

patients. This may be due to changes in energy intake over time. It

has been shown that the total carbohydrate intake in some CAPD

patients is regulated by a spontaneous reduction of the oral 
carbohydrate intake (Von Baeyer et al., 1981).



d) Protein and amino acid metabolism

Protein and amino acid abnormalities are well recognised in 

uraemia and CAPD. In CAPD protein is lost (5-15 g/day) in the 

dialysate and this is membrane permeability dependent (Rubin et al., 

1981b; Blumenkrantz et al., 1981). This explains the large 

interindividual difference in dialysate loss. Variations in 

ultrafiltration volume and the use of hypertonic exchanges appear to 

have little effect on protein losses (Rubin et al., 1981b;

Blumenkrantz et al., 1981). Small proteins may be depleted rapidly, 

particularly after peritonitis, that synthesis or oral replacement is 

insufficient. Thus protein depletion can contribute to malnutrition 

in CAPD. A high protein diet is generally recommended but compliance 

can be a problem. Patients may have a reduced appetite for reasons 

previously discussed or may genuinely have difficulty consuming 

protein, especially if they have been accustomed to a low protein diet

for many years as part of their chronic renal failure management.

CAPD patients often require to be re-educated to reduce their 

carbohydrate and fat intake and increase the protein content of their 

diet.

Deranged amino acid metabolism is observed in chronic renal

failure, haemodialysis and CAPD (Bergstom et al., 1978). In CAPD the

loss of amino acids depends largely on the plasma concentration and 

ultrafiltration volume (Dombros et al., 1982). The decreased 

essential amino acids and reduced valine-glycine ratio seen in CAPD is 

also observed in non-dialysed uraemics. This tends to suggest that 

the amino acid abnormalities may largely reflect the underlying 

uraemia. Sustained hyperinsulinaemia in CAPD has been reported to 

contribute to reduced amino acid concentrations (Dombros et al., 1982; 

Martin et al., 1982). Glucose administration to non-uraemic patients



has been shown to lower plasma amino acid concentrations (Martin et 

al., 1982). Thus peritoneal glucose may affect amino acid metabolism. 

Dialysate solutions containing amino acid have been studied and may 

have a further role in selected patients (Winchester, 1986).

6. SUMMARY

CAPD, at least in the short term, has proven to be an effective 

and acceptable treatment for end stage renal failure. Glucose plays a 

major role in this therapy being responsible for the osmotic and 

ultrafiltration effect. However, the long term effect of glucose on 

the integrity of the peritoneum is unknown. Glucose exerts metabolic 

and nutritional changes during CAPD. The hyperglycaemia and 

hyperinsulinaemia can, at times, be an advantage in promoting 

anabolism and improving the nutritional state. However, CAPD may also 

be detrimental by promoting nutritional imbalances in the form of 

protein deficiency and net catabolism. Furthermore, the increased 

body fat in some patients, in addition to hyperlipidaemia may 

aggravate atherosclerosis. The continuous effect of peritoneal 

glucose absorption on pancreatic beta cell function is still not 

known. Nevertheless, despite these possible adverse effects of 

glucose, the use of CAPD has resulted in good control of uraemia, 

hypertension and blood glucose.

The future of CAPD ultimately depends on the preservation of the 

peritoneum to retain its solute clearances and ultrafiltration. New 

dialysis solutions, substituting non-glucose osmotic agents, may prove 

advantageous in reducing the metabolic and nutritional consequences of 

glucose.



CHAPTER 4

GLYCOSYLATED HAEMOGLOBIN



Glycosylated haemoglobin has become universally accepted in the 

past 10 years as an independent and objective indicator of glycaemic 

control in diabetes. Its clinical value is clear, but it also 

provides an important tool for research as a model of non-enzymatic 

glycosylation and has opened up new avenues into the pathogenesis of 

the complications of diabetes as well as advancing the concept of 

non-enzymatic carbamylation.

1. INTRODUCTION

The non-enzymatic 'browning1 reaction was recognised in 1916 by 
Maillard who pioneered work on sugar and amino acid condensation in 

food. In the past 20 years there has been a great surge of interest 

in non-enzymatic glycosylation, that is, the attachment of glucose to 

certain amino acid residues of proteins, particularly in the field of 

diabetes. Current interest in glycosylated haemoglobin began with the 

potential clinical application of the measurement of modified 

haemoglobins. Blood from diabetic patients was observed to contain 

increased amounts of unusual haemoglobin fractions that migrated 

faster on electrophoresis or chromatography (Rahbar et al., 1968; 

Trivelli et al., 1971). In addition to identifying the haemoglobin 

species it was also demonstrated that non-enzymatic glycosylation 

occurred slowly and cumulatively, and the measured percentage of 

glycosylated haemoglobin in an individual could reflect ambient 

glucose concentrations over an integrated period of time (Bunn et al., 

1976; Koenig et al., 1976).

In the past 10 years, there has been an explosion of data, on 

glycosylated haemoglobin as a tool in assessing diabetic status, on 

the development of new and improved methodology, on the understanding 

of the nature and use of haemoglobin glycosylation and the widespread



use of glycosylated haemoglobin as an indicator of blood glucose 

control in diabetics.

Non-enzymatic glycosylation of haemoglobin has stimulated research 

into the pathogenesis of the complications of diabetes. Increased 

glycosylation of other proteins, in particular proteins derived from 

specific tissues typically involved in diabetic complications suggest 

that the glycosylated proteins may have altered structure and function 

(Cohen, 1986).

It has been suggested that non-enzymatic carbamylation of 
haemoglobin, that is, the attachment of urea-derived cyanate to 

haemoglobin, occurs in uraemia (Fluckiger et al., 1981) and this is 

analogous to non-enzymatic glycosylation in diabetes. However, little 

is known about carbamylated haemoglobin and the possible clinical 

relevance and pathophysiological significance in uraemia remains to be 

seen.

2. CHEMISTRY

a) Structure and Biosynthesis of Glycosylated Haemoglobin

Enzymatic glycosylation is a normal post-translational process 

which greatly expands the structure and function of proteins that are 

synthesized from the 20 amino acids. Collagen, basement membrane 

protein, HLA antigens, some cell surface receptors and certain 

hormones are but a few glycoproteins synthesized enzymatically. When 

a protein is exposed to a high glucose concentration for a relatively 

long duration non-enzymatic incorporation of glucose can occur.

Structural heterogeneity of a protein is generally due to either 

multiple gene coding for that protein or to post-translational 

modifications. Normal human red cells contain one major haemoglobin 

component, HbA [ot̂, $2] anc* two minor components, HbA2 [ĉ j anc*



HbF [(*2, Y2̂  eac^ with 4 polypeptide chains. These proteins are coded 
by 4 different globin genes. Haemoglobin consists of HbA which 

accounts for 97% of the total and HbA2 and HbF, 2.5% and 0.5% 
respectively. Additional minor components arise because of 

non-enzymatic glycosylation. Chromatographic analysis of HbA has 

identified HbA^a, HbAj^, HbA^> ^^lc' ^^ld» ^^le* âtter two
are not clearly elucidated and will not be discussed further.

The components of HbA^ result from post-translational 

non-enzymatic modification of HbA-̂  by a variety of small molecular 

weight substances, such as glucose, phosphorylated sugars, cyanate and 
aspirin, and comprise about 7% of the total haemoglobin in normal 

subjects. Each of the chromatographically determined components is

not homogenous and may be composed of many different entities. The

major component of the HbA-̂ c peak is glycosylated haemoglobin (about 

70% in normal subjects).

Glycosylated haemoglobin is formed when a glucose molecule 

attaches to the N-terminal amino group (valine) of the 3 chain of 
haemoglobin to form a Schiff base (Bunn et al., 1975). The labile 

Schiff base, often called ’pre HbA^c' or the ’labile fraction', is an 

intermediate which is reversible and increases rapidly in amount 

within a few hours after incubation of HbA with glucose (Higgins e£ 

al., 1981). The Schiff base subsequently undergoes an Amadori 

rearrangement to a stable ketoamine linkage (Bunn et al., 1975). This 

is present in increased amounts in diabetics as a consequence of 

increased blood glucose concentrations. The post-translational 

non-enzymatic glycosylation of HbA occurs slowly but continuously 

within the red cell throughout its 120 day life span in the 
circulation.

The attachment of glucose to haemoglobin occurs non-enzymatically



via a 2 step mechanism (Figure 4.1). In the initial rapid and 

reversible condensation the Schiff base aldimine is formed and slowly 

undergoes the Amadori rearrangement to the more stable ketoamine form. 

The Schiff base formation is dependent on the glucose concentration 

and is readily reversible with dialysis of the reaction mixture or 

lowering of the blood glucose concentration. The Schiff base accounts 

for the labile fraction as it elutes from the cation exchange resin 

with the same mobility as the more stable ketoamine form. Although 

there is equilibrium between the 2 configurations the balance is in 
favour of the ketoamine.

The formation of 5-hydroxymethylfurfural (5HMF) by mild acid 

hydrolysis of the Amadori rearrangement of HbA^c is shown in Figure 

4.2. The characteristic spectrum of the adduct formed with 

thiobarbituric acid is specific for ketoamine linked hexoses and forms 

the basis of the specific chemical method to detect total ketoamine 

glycosylation of proteins (Gabbay et al., 1979).

HbAiai and HbA â2 (Table 4.1) are predominantly the 3 chain 
N-terminal adducts of fructose-1,6,-diphosphate and
glucose-6-phosphate respectively (McDonald et al., 1978), while HbA^ 
is not yet fully clarified but may be a deamidisation product of HbA 

(Krisnamoorthy et al., 1977). In addition to the termini of the 8 
chain, glucose adducts can form with the amino terminal of the a chain 

as well as free amino groups in the haemoglobin molecule. Various 

lysine residues (Table 4.II) in the a and 3 chains become glycosylated 

on exposure to glucose (Bunn et al., 1979) and glucose can also 

condense with e-amino groups of lysine residues along the polypeptide 

chains of many proteins. Thus haemoglobin glycosylation is a general 

and non-specific process. The amount of HbA in red cells, like HbA^c, 

is increased in diabetics, but unlike HbA^c, the modification of
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Table 4. I Minor Components of Haemoglobin A

Haemoglobin Modification
Abundance

(%)
A  (a2&2) • • • 95*
Aia i a^p-iV-fructose-1,6-diphosphate)2(?) 0.2
A l»2 a2(P-jV-gliicose-6-phosphate)2 0.2
Ajb CL̂  p-JV-ca rbo hyd ra te)̂ ?) 0.5
Aic a2(P-Ar-glucose)2 4

•An estimated 8% to 10% is glycosylated at sites other than //term ini.

Table 4. II Sites on Human Haemoglobin which 
Undergo Nonenzymatic Glycosylation

In V itro In V ivo

/3 V a l 1 p  V a l 1
a  L y s 16 p  Lys 66
13 Lys 66 a  Lys 61
P  Lys 17 P  Lys 17
or Va l  1 a Va l  1
or Lys 7 a  Lys 40

P  Lys 8



glucose at these other sites do not result in changes in the 

electrophoretic or ion exchange chromatographic properties (Gabbay et̂  

al., 1979).

b) Modifying Factors

Non-enzymatic glycosylation takes place under physiological 

conditions in normal individuals. The reaction follows second order 

kinetics (McDonald et al., 1979) and the amount of glycosylated 

product is proportional to the concentration of reactants. The major 

determinant is the glucose concentration which according to the law of 

mass action will cause a proportionate increase in the amount of 

Amadori product formed. The second main determinant is the time of 

exposure of the protein to the increased glucose concentration. Thus, 

in vivo, the degree and duration of hyperglycaemia are the prime 

factors in determining the amount of glycosylated haemoglobin.

Temperature and pH are important in vitro factors and are 

critical, particularly in column chromatography (see later). The 

half-life of the protein in the circulation or tissue is also 

significant. Reduced half-life of the protein such as in haemolytic 

anaemia and shortened red cell survival can cause a decrease in HbA^c 

even in diabetics (Bunn et al., 1976) and old erythrocytes contain 

more HbA^c than young ones (Fitzgibbons et al., 1976).

The permeability and availability of glucose in different tissues 
will influence the extent of glycosylation. The erythrocyte is freely 

permeable to glucose and hence the ease of haemoglobin glycosylation. 

It is interesting that several characteristic complications of 

diabetes occur in tissue that do not require insulin for glucose 

transport and can dispose of glucose via insulin-independent pathways. 

This adds to the concept that non-enzymatic glycosylation contributes



to the pathogenesis of diabetic complications in these tissues.

Biochemical factors such as the number of free amino groups, 

accessibility and pK of the amino group within the structure of the 

protein also influence the formation of glycosylated proteins (Cohen, 

1986).

c) The Mai Hard Reaction

The ketoamine adduct formed from the reaction between glucose and 

protein amino groups can undergo a series of dehydration, 

rearrangement and cleavage reactions collectively known as the 

Maillard or browning reaction (Figure 4.3). The products of such 

reactions are highly cross-linked, insoluble pigmented and fluorescent 

polymers. The formation of these substances has been studied 

extensively in vitro, particularly in the food industry but recent 

evidence indicates that these products can form in vivo, particularly 

in long-lived proteins and when non-enzymatic glycosylation is 

increased. These advanced glycosylation products have recently been 

implicated in the pathogenesis of diabetic complications (recently 

reviewed by Cohen, 1986) as well as in the aging process. Thus the 

Maillard browning reaction involves three stages, first the formation 

of a ketoamine (as seen in Figure 4.1), i.e. non-enzymatic 

glycosylation, then deamination followed by dehydration, cyclization 

and fusion to generate secondary products such as 

hydroxymethylfurfural (Figure 4.2) and the final stage involves 

polymerization (Figure 4.3). The biological significance of advanced 

glycosylation end-product formation is at present unclear but has 

stimulated a new area of research in the field of glucose metabolism.
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3. MEASUREMENT OF GLYCOSYLATED HAEMOGLOBIN

a) Nomenclature

There has been some confusion about the nomenclature of 

glycosylated haemoglobin and this is mainly due to the fact that our 

knowledge of the subject has been changing rapidly. Glycosylated 

haemoglobin (is synonomous with glycohaemoglobin and glycated 

haemoglobin) refers to a series of stable adducts that are formed 

between haemoglobin and sugars and whose concentrations are increased 

within the red cell of patients with diabetes. Some assay methods 

quantify all glycosylated haemoglobin species regardless of the 

haemoglobin tetramer and this is called total glycosylated 

haemoglobin. Other assays measure the products formed by 

glycosylation of the amino termini of HbA (ĉ , l̂ )* Some are specific 

for one product, e.g. HbA^c, while others measure the sum of HbA^a, 

HbA-ĵ  and HbA-̂ c, which is called HbA-̂  or ’fast1 haemoglobin (Figure 
4.4). It is generally accepted that regardless of the particular 

glycosylated haemoglobin, values obtained from the same blood sample, 

but assayed by different methods are clinically comparable. However, 

there are exceptions such as in renal failure which will be discussed 

later.

b) Methods

Glycosylated haemoglobin is currently estimated by 2 basic methods 

which operate on different principles and yield independent results 

which are nonetheless related. The chromatographic methods depend on 

a net change in the charge of the haemoglobin molecule when the 

N-terminal position of the 3 chain is modified. Thus the components 

of HbA^ are eluted readily from a cation exchange resin and can be 

quantified and expressed as a percentage of total haemoglobin.



Haemoglobin molecules glycosylated at sites other than the 3 

N-terminal do not have sufficiently altered net charge to increase 

their mobilities and are thus not measured by these techniques. These 

chromatographic operations are very sensitive to minor changes in 

buffer pH and temperature which can significantly affect the values 

obtained.

Separation based on a charge difference is the principle for the 

macro-column (Biorex-70 column chromatography - Trivelli et al.,

1971), isoelectric focus ing (Spicer et al., 1978), agar gel 

electrophoresis (Nathan, 1981), high performance liquid chromatography 

(HPLC) (Dunn et al., 1979a) and the convenient commercial mini-column 

kits (Bio-Rad, Richmond, Calif.). The latter columns can measure the 

sum of HbA^a_c (HbÂ ) or specific fractions (HbA^c and HbA^a+^).

These are detailed in Chapter 5.

The other general type of method involves direct chemical 

measurement of total glycosylation in the red cell. In the 

thiobarbituruic acid (TBA)-colorimetric method (Fluckiger and 

Winterhalter, 1978), furfural compounds are generated from the 

ketoamine-linked carbohydrate moieties upon heating under acidic 

conditions and are quantified colorimetrically with TBA (Figure 4.2). 

This method is detailed in Chapter 5.

Several new methods have been developed in recent years and one of 

the most promising is affinity chromatography (Klenk et al., 1982), 

which uses affinity gel columns to separate glycosylated haemoglobin 

from the non-glycosylated fraction. Results from this method suggest 

that glycosylation accounts for only about 70% of the HbAjLQ peak 

isolated by cation-exchange chromatography. This is consistent with 

the finding that a variety of non-glucose substances can modify the 

N-terminal amino acid of the 8 chain such as carbamylation and



acetylation (see later).

c) Limitations of Assay Methods

Despite the variety of methods all have some limitations although 

all are adequate for assessing clinical status and glycaemic control. 

Ion exchange chromatography is greatly influenced by buffer pH, the 

temperature of reagents, interference by non-glucose adducts, aldimine 

intermediates (pre-HbA^c) and haemoglobinopathies. It also requires a 

high degree of operator skill for precision, but has the advantage of 

being rapid to perform, relatively inexpensive to run and suitable for 

the small laboratory. HPLC has similar limitations and is expensive 

to install but is useful particularly for research purposes. 

Electrophoresis is subject to interference by several reactants 

including non-glucose adducts, can be time consuming and relatively 

expensive. The TBA-colorimetry method is unaffected by non-glucose 

adducts, aldimine intermediates and haemoglobinopathies and is 

relatively inexpensive to run. However, standardization can be a 

problem (with no universally accepted standard) and hydrolysis 

conditions must be carefully controlled for precision. Generally it 

is a time consuming manual process but can be semiautomated for use in 

large laboratories.

d) Interference

The chromatographic-type procedures can under certain conditions 

produce falsely abnormal results due to interference. These are 

listed in Table 4.Ill (adapted from Gabbay, 1983). Conditions such as 

uraemia, chronic aspirin intake, antibiotic therapy and recent alcohol 

intake can lead to false elevation of glycosylated haemoglobin. These 

effects are due to changes in charge of the haemoglobin molecule



I  - Conditions leading to false elevation of HbA-̂

A. Chromatographic abnormalities:
1. Hyperlipidaemia - due to lactescence
2. Elevated temperature and/or buffer pH
3. Negatively charged Hb variants - e.g. HbF
4. Acute hyperglycaemia - ’fast glycosylation’

B. Other post-translational Hb modifications:
1. Aspirin - acetylation
2. Antibiotics - penicilloylation
3. Alcohol - 5-deoxy-xylulose-l-phosphate
4. Uraemia - carbamylation

II - Conditions leading to falsely low Hb A^ values

A. Chromatographic abnormalities:
1. Low temperature and/or buffer pH
2. Positively charged Hb variants - e.g. HbS,C

B. Altered red blood cell dynamics:
1. Increased destruction - e.g. haemolytic anaemia
2. Active erythropoeisis - e.g. pregnancy
3. Recent transfusions

Table 4. Ill Factors interfering with HbA^
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Figure 4. 5 Formation of isocyanate from urea and its reaction 
with an amino group



brought about by post-translational modification occurring via 

mechanisms other than glycosylation. Elevation of HbA^ in uraemia has 

been reported to be due to a carbamylation species (Fluckiger et al., 

1981) which is detected by the chromatographic technique but not by 

the TBA-colorimetric method. Glycosylated haemoglobin measured by any 

method will be significantly reduced in patients with decreased red 

cell life span (Elseweidy etal., 1983) such as in haemolytic anaemia, 

uraemia or in patients with active erythropoiesis such as pregnancy. 

The use of whole blood haemolysates in chromatography may give rise to 

artefacts which can falsely elevate HbA-̂  or HbA^c- The presence of 

the labile fraction or pre-HbA^c is influenced by the ambient blood 

glucose concentration and in a poorly controlled diabetic acute 

hyperglycaemia can cause false elevation of HbA^c unless the labile 

fraction is removed (Nathan et al., 1981). Hyperlipaemic blood, 

common in both diabetes and uraemia, can also increase the 'fast' 

(HbA^a__c) fraction due to interference from lactescence, which elutes 

with the HbA-̂  fraction and is absorbed at the same wavelength (Dix et 

al., 1979a). However, these complications are circumvented by the 

TBA-colorimetric method with the exception of shortened red cell 

survival.

4. CLINICAL SIGNIFICANCE

The clinical usefulness of glycosylated haemoglobin in diabetes 

has been firmly established.

a) Blood Glucose Control

Periodic monitoring of glycosylated haemoglobin is useful in 

documenting the degree of glucose control that has prevailed during an 

interval of weeks to months before the sample is taken since



glycosylated haemoglobin concentration reflects the time averaged 

concentration of glucose within the erythrocyte during that period.

The evidence supporting the correlation between glycosylated 

haemoglobin and glucose control is well established (Gabbay et al., 

1977; Gonnen et al., 1977; Koenig et al., 1976; Jovanic et al; 1981). 

Periodic measurement of glycosylated haemoglobin concentrations 

provides an objective assessment of glycaemic control that complements 

and extends information obtained from traditional methods (such as 

regular home urine and blood glucose testing). This assessment is 

independent of the daily variations due to meals, insulin dosage and 

physical activity and improves the clinical management of diabetes.

The technique employed to measure glycosylated haemoglobin is less 

critical than the consistent use of the same technique with reliable 

performance, since normal ranges will differ according to what is 

being measured by different methods.

b) Diagnosis

Attempts to use glycosylated haemoglobin as a more sensitive or 

specific test and to replace the oral glucose tolerance test have not 

been corroborated in clinical studies (Santiago et al., 1978; Dunn et_ 

al., 1979b; Flock et al., 1979). The combination of an elevated 

fasting blood glucose and elevated glycosylated haemoglobin usually 

obviates the need for further testing and indicates clinically 

significant hyperglycaemia. However, the value of glycosylated 

haemoglobin in detecting degrees of glucose intolerance is limited. 

Screening studies have shown that there is considerable overlap in 

glycosylated haemoglobin values in patients with normal and abnormal 

glucose tolerance (Dix et al., 1979b; Cederholm et al., 1984; Hall et 

al., 1984).



c) Complications of Diabetes

The complications of diabetes include microvascular and 

macrovascular disease, retinopathy, neuropathy and nephropathy, but 

the biochemical basis for the development of such sequelae is not 

known. Moreover, considerable controversy exists about the 

relationship between the degree of control of blood glucose and the 

eventual development of such sequelae. Strict control of carbohydrate 

metabolism should reduce the risk of secondary complications, but it 

has been difficult to document this because of the lack of means of 

measuring both the degree of control and the pathological changes that 

occur with chronic disease. Long term prospective clinical studies 

are necessary to assess the contribution of the severity and duration 

of hyperglycaemia to the development and progression of diabetic 

complications.

Several short term studies show a correlation between HbA^c and 

cholesterol possibly indicative of hyperglycaemia as a causative 

factor in macroangiopathy (Gabbay et al., 1977; Sosenko et al., 1980). 

Muscle basement capillary membrane thickness has been reported to 

decrease after optimal glucose control assessed by glycosylated 

haemoglobin (Petersen, 1980; Raskin, 1983). Increased glomerular 

filtration rate (GFR), an early marker of diabetic nephropathy, has 

been shown to fall in conjunction with normalisation of HbA^ (Wiseman 

et al., 1985). Thus microangiopathy may be influenced by persistent 

hyperglycaemia. However, although glycosylated haemoglobin can be 

used as an index of metabolic control much more investigation is 

needed before a definite link can be established between 

hyperglycaemia and the complications of diabetes.



5. PATHOPHYSIOLOGICAL SIGNIFICANCE

a) Haemoglobin

The amino terminal of the B chain of haemoglobin, to which glucose 

attaches, is also a site where 2,3-diphosphoglycerate (2,3-DPG) binds.

2.3-DPG is an important red cell glycolytic intermediate which 

influences the affinity of haemoglobin for oxygen through its binding 

to B chain residues of deoxyhaemoglobin. Addition of organic 

phosphate decreases the oxygen affinity of haemoglobin, whereas 

removal increases the oxygen affinity of HbA and HbA-^. The 

availability of this site for interaction with 2,3-DPG is compromised 

when it is covalently linked to glucose (Bunn et al., 1970). Hence 

HbA^c exhibits greater oxygen affinity than HbA in the presence of

2.3-DPG (McDonald et al., 1979). The increase in HbA^c in red cells 

of diabetics shows a slight increase in oxygen affinity of these cells 

in the presence of 2,3-DPG compared to non-diabetics (Arturson et al., 

1974). This difference could be due to interference by the

NH2-terminal glucose of HbA^c to the binding of 2,3-DPG.
The impact of the minor shift in the haemoglobin-oxygen 

dissociation curve arising from increased HbA^c in diabetics is 

unclear. It has been suggested increased HbA^c coupled with low red 

cell 2,3-DPG could compromise oxygen delivery to the tissues and 

promote hypoxia and diabetic complications (Ditzel et al., 1979). 

However, this has been challenged by the fact that certain 

haemoglobinopathies produce greater shifts in the oxygen dissociation 

curve without significant effects on tissue oxygen (Bunn et al.,

1981).



b) Other Proteins

Glycosylation of other proteins may also have pathological 

significance. Like HbA-p measurement of glycosylated albumin provides 

an index of blood glucose control during the preceding 1-2 weeks 

(Dulhofer et al., 1981). Furthermore, glycosylated albumin has been 

implicated in the pathophysiology of diabetic microangiopathy as it is 

filtered through the glomerulus faster than normal albumin (Ghiggeri 

et al., 1984) and may contribute to the increased capillary membrane 

permeability and proteinuria seen in diabetic nephropathy.

Glycosylated lipoproteins are increased in poorly controlled diabetics 

(Curtiss et al., 1985) suggesting a possible role in atherosclerosis. 

Glycosylation of lens protein has also been implicated in the 

pathogenesis of cataract formation (Kasai et al., 1983) and 

glycosylation of myelin has been observed in the central nervous 

system and peripheral nerves in diabetics (Vogt et al., 1982; Vlassara 

et al., 1983).

Increased glycosylation of collagen is found in many tissues of 

diabetics including aorta, skin, tendon, glomerular and lens capsular 

basement membrane collagen (Vogt et al., 1982). Non-enzymatic 

glycosylation may induce resistance to collagenase digestion and cause 

a premature aging process which correlates clinically with 

complications, such as the premature atherosclerosis seen in Type I 

diabetes.

Covalent interactions or cross-linking between glycosylated 

proteins and other soluble proteins such as albumin and IgG have been 

reported (Brownlee et al., 1983). This may explain the increased 

concentration of albumin in glomerular basement membrane of patients 

with diabetic nephropathy (Michael et al., 1981). Glycosylation can 

also alter the immunogenic properties of proteins (Bassiouny et al.,



1983) which may initiate an immune response against tissue components 

and could also explain the deposition of albumin and IgG in the 

microvascular matrix of diabetic patients.

c) Advanced Glycosylation

Glucoadducts produced as a result of non-enzymatic glycosylation 

can give rise to advanced glycosylation end-products, which can induce 

molecular modifications and subsequent trapping or binding of 

unrelated proteins. Thus advanced glycosylation has the potential for 

disturbing structural and biological characteristics of proteins or 

for exerting toxic effects on cell processes. It has been postulated 

that a period of hyperglycaemia could initiate excess non-enzymatic 

glycosylation, but deleterious effects could ensue as a result of 

protein interactions and abnormalities brought about by the subsequent 

formation of advanced end-products even after hyperglycaemia is 

corrected (Cohen, 1986). However, further studies are needed to 

confirm this possible link between diabetic control and the chronic 

complications of diabetes.

6. GLYCOSYLATED HAEMOGLOBIN AND HAEMOGLOBIN CARBAMYLATION IN URAEMIA 

Uraemia influences the chromatographic measurement of HbA^ (DeBoer 

et al., 1980; Lunetta et al., 1981; Fluckiger et_al., 1981). Elevated 

concentrations of both HbA^ and HbA^-like haemoglobins have been 

reported in renal failure. Glucose intolerance is common in uraemia 

and some dialysis patients are dialysed against fluid with a high 

glucose content. This has lead to the assumption that the increase, 

at least in part, may be due to increased formation of glycosylated 

haemoglobin resulting from abnormalities in carbohydrate metabolism. 

However, the colorimetric estimate of glycosylated haemoglobin



does not show an increase in uraemia (Fluckiger et al., 1981). The 

increase in fast (HbA-̂ a_c) haemoglobin has been suggested to result 

from haemoglobin carbamylation occurring via the condensation of 

urea-derived cyanate with the N-terminal amino groups of the 

haemoglobin chains (Figure 4.5). This form of non-glycosylated 

haemoglobin is detected by column chromatography, but not by the 

TBA-colorimetric method which is specific for the detection of 

glycosylation. Fluckiger et al. (1981) identified valine hydantoin, 

which is released from the carbamylated N-termini of the haemoglobin 

chains upon acid hydrolysis and showed that valine hydantoin 

correlated with time averaged blood urea of the previous 2-3 months in 

uraemic patients. These authors also suggest that the increase in 

HbA^ in uraemia was entirely due to an increase in the HbA-̂ a+  ̂

component.

Thus carbamylated haemoglobin may reflect the urea concentration 

over a period of time, a situation analogous to that of glycosylated 

haemoglobin in diabetes. It should also be noted that the 

interpretation of glycosylated haemoglobin in uraemia is complicated 

by the presence of shortened red cell survival which would tend to 

reduce glycosylated haemoglobin independently of the method of 

measurement. Glycosylated haemoglobin status in uraemia is complex 

and caution is required in interpreting results in both diabetic and 

non-diabetic uraemic patients. The relevance of carbamylated 

haemoglobin is unclear, but the implication that it may be analogous 

to glycosylated haemoglobin suggests that future research is needed to 

explore possible clinical applications and pathophysiological 

consequences.



7. GLYCOSYLATED AND CARBAMYLATED HAEMOGLOBIN IN URAEMIA -

REVIEW OF THE LITERATURE

The use of glycosylated haemoglobin as an indicator of long-term 

blood glucose control in diabetics with normal renal function is well 

established (Koenig et al., 1976; Gabbay et al., 1977). However, the 

role of glycosylated haemoglobin in uraemia and diabetics with renal 

failure is unclear. Confusion is partly related to methodology and 

nomenclature and partly to conflicting data in clinical studies.

Generally chromatographic techniques measuring HbA^ or HbA-̂ c have 

shown elevated concentrations of glycosylated haemoglobin in 

non-diabetic uraemia patients (Casparie et al., 1977; DeBoer et al., 

1980; Kovarik et al., 1981), but other have found low concentrations 

(Dandona et al., 1979; Freedman et al., 1982). Chemical methods such 

as the thiobarbituric acid-colorimetric technique, which measures the 

total glycosylation of the red cell have revealed normal values of 

glycosylated haemoglobin (Fluckiger et al., 1981; Oimomi et al., 1981; 

Nath et al., 1982) in non-diabetic uraemic patients. Thus differences 

in methodology reveal different results in the presence of uraemia.

Clinical studies showing increased HbA^ or HbA^c in non-diabetic 

uraemic patients initially suggested that the elevation was due to 

glucose intolerance which is common in uraemia (DeFronzo and 

Alvestrand, 1980) or coexisting hyperglycaemia in renal patients 

(Casparie et al., 1977; Stanton et al., 1978). However, later studies 

did not find any correlation between glucose intolerance, fasting 

blood glucose or 24 hour glycosuria and HbA^ (Kovarik et al., 1981; 

Panzetta et al., 1983). The association between uraemia and elevated 

HbA-̂  was strengthened by the common finding of a linear relationship 

between urea or creatinine and HbA^ (Graf et al., 1980; Fluckiger et 

al., 1981; Kovarik et al., 1981). However, others did not find a



correlation between HbA^ and urea in haemodialysis patients (De Marchi 

et al., 1983a). The latter group found HbA^ strongly correlated with 

arterial pH and plasma bicarbonate. De Marchi et al. (1983b) 
reported, in a larger study in non-dialysis chronic renal failure 

patients, a weak correlation between HbA-̂  and urea, but again 

emphasised the role of acidosis. The effect of acidosis, however, was 

not confirmed by others (Panzetta et al., 1983).

The increase in HbA-̂  and sub-fractions has also been related to 

the presence of a non-glucose adduct of haemoglobin that is 

chromatographically indistinguishable from glycosylated haemoglobin. 

Fluckiger et al. (1981) demonstrated that HbA-̂  was elevated largely 

due to haemoglobin carbamylation resulting from a condensation of 

urea-derived cyanate with the N-terminal amino groups of haemoglobin. 

These authors showed that this non-glycosylated haemoglobin was 

detected by column chromatography but not by a chemical method 

specific for the detection of glycosylation. In addition to elevation 

of HbA^ they found an increase in HbA^a+  ̂fraction. Carbamylation of 

haemoglobin was detected in vitro from the components of the 
chromatographic peaks. Although frequently suggested as a possible 

cause for the elevation of glycosylated haemoglobin in uraemia no 

other studies have directly measured carbamylated haemoglobin in 

uraemia. Oimomi et al. (1984) studied the in vitro addition of urea 

to erythrocytes and found the amount of cyanate produced was

proportional to the amount of HbA^.

Reduced concentrations of HbA^ have been reported by one group

(Dandona et al., 1979; Freedman et al., 1982) in a wide range of

uraemic patients. They suggested that low concentrations were due to 

shortened red cell life span although no measurement of erythrocyte 
survival was done. It is well documented that red cell survival is



reduced in uraemia (Shaw, 1967; Hocken, 1982; Hefti et al., 1983). 

Furthermore, glycosylated haemoglobin is reduced in conditions with 

shortened red cell life span but not in non-haemolytic anaemias 

(Fitzgibbons et al., 1976).

The effect of uraemia on diabetes is clinically important if 

glycosylated haemoglobin is to be used as an integrated index of 

glycaemic control. The data on glycosylated haemoglobin in diabetics 

with uraemia measured by direct chemical means is apparently unaltered 

by uraemia and should therefore reflect glycaemic control in diabetics 

with renal failure. This would then appear to be the method of choice 

but the effect of shortened red cell life span must also be 

considered. To date this has not been directly studied.

HbA-̂  has been reported to be higher in uraemic diabetics than 

non-diabetic uraemics (Kumar et al., 1983), while others found little 

difference between similar groups of patients (Panzetta et al., 1983). 

Saloranta et al. (1986) assessed HbAp HbAj,c, HbA^a+  ̂by column 

chromatography in diabetics and non-diabetic uraemic patients. They 

found the expected increase in HbA-̂  which weakly correlated with urea 

and creatinine in non-diabetics, while diabetics had even higher HbA^ 

which was less influenced by urea and creatinine concentrations. 

Saloranta and colleagues also found that the HbA^c/HbA^a+k ratio was 

higher in diabetics than non-diabetics confirming the findings of 

others (Lantz et al., 1981; Oimomi et al., 1981). This suggests that 

the diabetics state influences HbA^c more than HbA^a+ .̂ However, 

Saloranta et al. (1986) did not find any change in the H^ ^ c/HbA^a+  ̂

ratio in non-diabetic uraemic patients. This is contrary to the 

results of others (Fluckiger et al., 1981; Lantz et al., 1981) who 

found that uraemia influenced the HbA^a+  ̂components more than the 

HbA-̂ c fraction. In a small number of diabetics with renal failure



repeated measurements of HbA^ and blood glucose showed correlation and 

the authors (Saloranta et al., 1986) concluded that HbA^ or HbA^c 

measured chromatographically was still a useful index of glycaemic 

control.

In summary, current data suggests that HbA-̂  is elevated in uraemia 

when measured chromatographically. The cause of this elevation could 

be due to glucose intolerance, acidosis or carbamylation of 

haemoglobin. The latter is an attractive possibility, bearing in mind 

the similarities with non-enzymatic glycosylation. Shortened red cell 

survival in uraemia would be expected to reduce or have an inhibitory 

effect on glycosylated haemoglobin independent of the assay method 

used and theoretically, could also influence the concentration of 

carbamylated haemoglobin. Assessment of diabetics with uraemia 

requires further clarification and although the direct chemical 

colorimetric methods appear to be unaffected by uraemia the usefulness 

of the common chromatographic procedures are still unclear.

8. THE ROLE OF NON-ENZYMATIC CARBAMYLATION IN URAEMIA

Non-enzymatic carbamylation of haemoglobin in uraemia has been 

suggested as being analogous to non-enzymatic glycosylation in 

diabetics (Fluckiger et al., 1981). To date, no studies have been 

published to implicate a clinical or pathophysiological role for 

non-enzymatic protein carbamylation in uraemia. However, recently an 

in vitro study demonstrated reduced biological activity of insulin 

after incubation with cyanic acid (Oimomi et al., 1987).

Carbamylated adducts of haemoglobin have been known for many years 

and were used experimentally both in vitro and in vivo in the 

treatment of sickle cell disease. Sodium cyanate was used as a 

covalent agent to inhibit sickling of red cells. Cyanate binds firmly



to both alpha and beta chains of haemoglobin and increases the oxygen 

affinity and reduces the capability of the red cell to sickle (Nigen 

et al., 1974). Red cell survival was increased and the increase in 

red cell life span reflected the degree of carbamylation (Cerami et_ 

al., 1971; Gillette et al., 1974). Unfortunately, carbamylation in 

vivo was not confined to the NH2 groups of haemoglobin, but affected 
the other enzyme systems (De Furia et al., 1972). Numerous symptoms 

including weight loss, nausea, vomiting, epigastric pain and 

drowsiness were reported (Gillette et al., 1974; Petersen et al., 

1974). Peripheral nerve conduction was also abnormal but resolved on 

cessation of cyanate therapy (Petersen et al., 1974). Thus toxicity 

limited the potential clinical benefit of prolonging red cell survival 

and inhibition of sickling.

Theoretically, many of the characteristics of non-enzymatic 

glycosylation may also be applicable to non-enzymatic carbamylation. 

Fluckiger and coworkers suggested that carbamylated haemoglobin may 

reflect time averaged blood urea. Thus carbamylated haemoglobin may 

be used as an integrated index of uraemic control. This could 

conceivably have a clinical value in several situations. Carbamylated 

haemoglobin may have a role in distinguishing acute from chronic renal 

failure, detecting the timing of deterioration in chronic renal 

failure, assessing compliance in protein diet restriction therapy and 

evaluating the efficiency of dialysis therapy. Carbamylated 

haemoglobin may give a mean estimate of the uraemic state prevailing 

during the previous 4-8 weeks.

Non-enzymatic carbamylation may also have a wider application if 

it can modify other proteins analogous to non-enzymatic glycosylation. 

Carbamylated plasma proteins and carbamylated insulin have recently 

been demonstrated in vitro (Oimomi et al., 1985; Oimomi et al., 1987).



It is interesting that vascular disease, lipoprotein abnormalities and 

neuropathy are common to both diabetes and uraemia and it is tempting 

to speculate that non-enzymatic modification of proteins are 

implicated. The effects of cyanate used in sickle cell disease are 

similar to common uraemic symptoms such as the nausea, vomiting and 

tiredness and peripheral neuropathy with prolonged nerve conduction 

time*

Thus non-enzymatic carbamylation of proteins would appear to 

warrant further investigation in uraemia to assess its potential 

clinical usefulness and pathophysiological relevance.

9. SUMMARY

The structure, biosynthesis and measurement of glycosylated 

haemoglobin has been outlined, with particular emphasis on the 

difference between methods, modifying and interfering factors. The 

clinical usefulness of glycosylated haemoglobin as a measure of 

integrated long-term glucose control is well established in diabetics 

without uraemia. The effect of interference due to uraemia is 

unclear, but may be circumvented by using colorimetry as opposed to 

ion-exchange chromatography. The process of non-enzymatic 

glycosylation has wide implications from the evidence that it can 

alter the structure and function of proteins. The association between 

non-enzymatic glycosylation and the complications of diabetes provides 

a possible link between glucose control and the sequelae of diabetes. 

This has long been suspected but has generally lacked direct evidence. 

Thus, glycosylation of proteins has an important pathophysiological 

significance.

The controversial data on the role of glycosylated haemoglobin in 

non-diabetic patients with renal failure is reviewed. The concept of



a non-glucose adduct of haemoglobin interfering with the 

chromatographic, but not the colorimetric measurement of glycosylated 

haemoglobin is presented. The formation of carbamylated haemoglobin 

from urea-derived cyanate is discussed and the analogy between 

glycosylated haemoglobin and diabetes, and carbamylated haemoglobin 

and uraemia is developed. The potential role of carbamylated 

haemoglobin in uraemia including the possible clinical usefulness and 

pathophysiological significance is postulated. This Chapter provides 

the background to the project "Glycosylated and Carbamylated 

Haemoglobin in Uraemia" (Chapter 8).



CHAPTER 5

METHODS



This Chapter describes the biochemical procedures performed during 

the work of this thesis. Brief details are given of the methods used 

to assay hormones which were undertaken by others. A more in depth 

description of the methods carried out by myself include the 

measurement of intermediary metabolites, glycosylated haemoglobin and 

carbamylated haemoglobin.

PREPARATION OF SAMPLES

1. Containers

a) Plain tubes without anticoagulant were used for serum separation 

and lithium heparin tubes were used for plasma separation.

b) Standard tubes coated with potassium oxalate and sodium fluoride 

were used for blood glucose estimation by the colorimetric 

oxidase method.

c) Aprotinin and EDTA were added to plain tubes for pancreatic 

glucagon analysis.

d) Whole blood was added to perchloric acid for the assay of 

intermediary metabolites.

e) Lithium-heparin tubes were used for analyses of glycosylated 

haemoglobin, haemoglobin A^ and carbamylated haemoglobin.

f) Full blood count and platelets were measured in EDTA-K^ 
vacutainers.

2. Separation, Storage and Transportation

All hormone and metabolite specimens were kept on ice until 

centrifuged at 0°C (3000 rpm for 5 minutes) and the separated serum or 

plasma was stored at -20°C until assayed. Specific sample preparation 

is detailed where appropriate later in the Chapter. Frozen specimens 

were transported between laboratories in card ice (-80°C).



BIOCHEMICAL ASSAYS

1. GENERAL

a) Biochemical profile: Urea, creatinine, electrolytes, liver

function tests and proteins were analysed by the SMAC (Sequential 

Multiple Analyser plus Computer), a Technicon instrument. 

Haematological profile: Full blood count was analysed by the

Technicon H6000 autoanalyser.

b) Blood glucose was measured by two methods: a) Automated

colorimetry using the oxidase method with 4-aminophenazine in the

colour reagent (Barham and Trinder, 1972) and b) Enzymic 

fluorometric continuous flow analysis (Lloyd et al., 1978) which 

is detailed in below.

c) Serum lipoproteins were measured by Cobas biocentrifugal analysis 

using standard Boehringer reagents. Cholesterol was assayed by 

automated enzymatic determination (Deeg and Ziegenhorn, 1982) and 

total triglycerides by enzymic hydrolysis (Wahlefeld, 1974).

2. HORMONES

a) INSULIN: Serum insulin was measured by double antibody

radioimmunoassay (Soeldner and Slone, 1965) [Courtesy of the 

Department of Clinical Biochemistry, University of Newcastle].

The standard was human insulin (RD13, Wellcome Diagnostics,

Dartford), the first antibody was antisera to insulin raised in 

guinea pig (RD10, Wellcome) and the second antibody was rabbit 

anti-guinea pig serum (RD18, Wellcome). In diabetics, free 

insulin was measured by the removal of endogenous insulin 

antibodies with polyethylene glycol (PEG) precipitation 

(Desbuquois and Auerbach, 1971). This was done immediately after 

serum separation and prior to storage. Details of the PEG



solution are given in Appendix 2. All insulin samples were 

assayed in duplicate. The intra- and inter-assay coefficients of 

variation were between 5% and 8%.
C-PEPTIDE: Plasma c-peptide was measured by the Department of

Clinical Biochemistry, University of Newcastle. The modified 

method (Heding, 1975), used the Novo radioimmunoassay kit for 

human c-peptide (Novo Biolab, Denmark). The standard was 

synthetic human c-peptide and the antibody antisynthetic human 

c-peptide guinea pig serum (M1230). This antiserum had about 10% 

cross reactivity with proinsulin and no prior separation of 

c-peptide was needed with non-diabetics subjects. In insulin 

treated diabetics with insulin antibodies a significant amount of 

proinsulin might be bound to the antibodies, and to prevent 

co-determination of the proinsulin, c-peptide was determined by 

PEG precipitation to remove antibody bound proinsulin. The 

sensitivity of the assay showed a lower limit of detection of 

0.02 nmol/1. Precision over the linear range of the standard 

curve had a within-assay C.V. of 3% and between-assay C.V. of 5%. 

Uraemic patients with high serum c-peptide concentrations had 

dilution of serum samples so that the working samples were within 

the linear part of the standard curve.

GLUCAGON: Glucagon was measured by c-terminal specific

radioimmunoassay using wick chromatography (Orskov et al., 1968) 

[Specimens were sent to Professor Hans Orskov, Aarhus, Denmark 

for assay]. Due to the instability of pancreatic glucagon, blood 

was added immediately after venesection to a mixture of EDTA and 

the proteinase inhibitor aprotinin (Trasylol, Bayer). Details of 

this solution are in Appendix 2.

GROWTH HORMONE: Serum growth hormone (GH) was measured by the



Supraregional Assay Service (SAS), Royal Victoria Hospital, 

Newcastle upon Tyne. The method was a double antibody 

radioimmunoassay using human GH, UK6 standard (EQAS, Edinburgh), 
the first antibody was anti-human GH raised in rabbit (RD16, 

Wellcome) and the second antibody was goat anti-rabbit gamma 

globulin (Calbiochem-Behring, Cambridge). The assay precision 

was;

GH level Between Batch Within Batch 
mu/1 C.V.% C.V.%

1.7 11.1 7.1

4.2 8.6 7.2
1.8 6.0 5.0

e) CORTISOL: Plasma cortisol was measured by the SAS laboratory in

Newcastle using a double antibody radioimmunoassay technique. A 

commercial cortisol standard was supplied by Seron o Biodata, the 

first antibody was antisera to cortisol raised in rabbits (NZ06, 

Cambridge Medical Diagnostics) and the second antibody was goat 

anti-rabbit gamma globulin. The precision of the assay was;
Cortisol level Within Batch Between Batch 

nmol/1 C.V.% C.V.%

130 8.9 10.7

435 7.3 10.5

996 8.8 11.5



3. INTERMEDIARY METABOLITES

Blood glucose, lactate, alanine, 3-hydroxybutyrate and glycerol 

were measured by enzyme fluorometric continuous flow assays by the 

method of Lloyd et al., 1978. Dialysate glucose and lactate were also 

measured by the same technique. Blood acetoacetate and pyruvate were 

measured by manual spectrofluorometry. A detailed description of both 

techniques are described.

Preparation of samples

Two ml of whole blood was deproteinised in 5 ml of 5% ice cold 

perchloric acid (0.8 mol/1). The sample was mixed and the bottle 

reweighed, centrifuged (3000 rpm for 5 minutes at 0°C) and the acid 
supernatant was removed for analysis. The dilution factor was 

calculated from the weight change observed. Glass bottles were 

weighed before and after the addition of perchloric acid (PCA) and 

then again after the addition of blood.

Dilution factor (DF) = Wt. of PCA + Wt. of blood
Wt. of blood

The supernatant was stored at -20°C until specimens were assayed 

in batches. All metabolites were analysed within 2 weeks of 

collection except for acetoacetate and pyruvate which were measured 

within 24-48 hours.

a) AUTOMATED ENZYME FLUOROMETRIC ANALYSIS

The method used was adapted from that of Lloyd et al., 1978. 

Principle: The principle of the assay is the detection of changes

in fluorescence due to altered concentrations of NADH. Reduced NAD 

has a characteristic fluorescence, whereas the corresponding oxidised 

form does not exhibit the same property. Thus with the use of a 

fluorometer and specific hydrogenase enzymes one can measure



metabolites that require NAD in the reduced or oxidised form as 

coenzymes.

Reagents: En zymes and coenzymes were from Boehringer Corporation

Ltd., Sussex. The following enzymes were used; glucose-6-phosphate 
dehydrogenase (G-6-P-DH) 700 kU/1, hexokinase 1400 kU/1, lactate 
dehydrogenase (LDH) 4000 kU/1, L-alanine dehydrogenase (ADH) 150 kU/1, 

glycerokinase 600 kU/1, glycerol-3-phosphate dehydrogenase (G-3-P-DH) 

1700 kU/1, 3-hydroxybutyrate dehydrogenase (3-0HB-DH) 15 kU/1, NAD, 

NADH (Grade II Analar).

Standards: Glycerol, L-alanine, glucose (50 mol/1): Analar grade

(British Drug Houses, Dorset). Lithium lactate (Grade L, Sigma 

Chemical Co. Ltd., Surrey). DL-3-hydroxybutyrate (Boehringer Corp. 

Ltd.). All other reagents were Analar grade.

Method:

GLUCOSE
hexokinase

GLUCOSE + ATP ------------ * GLUCOSE-6-PHOSPHATE + ATP
G-6-P-DH

GLUC0SE-6-PH0SPHATE + NADP------- > 6-PH0SPH0GLUC0NATE + NADPH + H

Buffer: prepare 0.1 mol/1 triethanolamine buffer, pH 8.0 

containing 2 mmol of magnesium chloride per litre. Enzyme-coenzyme 

reagent : Dissolve 37 mg ATP, 32 mg NADP, 140 U of glucose-6-phosphate 
dehydrogenase and 160 U hexokinase in 10 ml of 0.4 mol/1 

triethanolamine buffer, pH 7.4.

LACTATE

LDH
LACTATE + NAD r ■ PYRDVATE + NADH + H

Buffer: prepare 0.5 mol/1 glycine buffer, pH 9.6, containing 0.2 

mol of hydrazine and 2 g of disodium ethylene-diaminetetracetate per 
litre. Enzyme-coenzyme reagent : Dissolve 20 mg NADH and 60 U of 

lactate dehydrogenase in 10 ml of 0.1 mol/1 phosphate buffer, pH 7.4.



ALANINE

ADH
L-ALANINE + NAD + H20 V —  NPYRUVATE + NADH + NH^

Buffer: Prepare 40 mol/1 tris (hydroxymethyl) methylamine buffer, 

pH 10.0, containing 1 mol of hydrazine and 500 mg of disodium 

ethylenediaminetetracetate per litre. Enzyme-coenzyme reagent : 

Dissolve 20 mg of NAD and 15 U of L-alanine dehydrogenase in 10 ml 0.1 

mol/1 phosphate buffer, pH 7.4.

GLYCEROL

Glycerokinase
GLYCEROL + ATP -------------- * L-GLYCER0L-1-PH0SPHATE + ATP

G-3-P-DH
L-GLYCEROL-1-PHOSPHATE + NAD ^ = = = ±  DIHYDROXYACETONE PHOSPHATE

+ NADH + H

Buffer: Prepare 0.2 mol/1 glycine buffer containing 1 mol of 

hydrazine and 0.01 mol of magnesium chloride per litre.
Enzyme-coenzyme reagent : Dissolve 20 mg NAD, 20 mg of ATP, 20 U of 

glycerokinase and 30 U of glycerol-3-phosphate dehydrogenase in 10 ml 

of 0.4 mol/1 triethanolamine buffer, pH 7.4.

3-HYDROXYBUTYRATE

, 3-OHB-DH
D(-) 3-HYDROXYBUTYRATE + NAD *.-— . ÂCETOACETATE + NADH + H

Buffer: Prepare 0.1 mol/1 of tris (hydroxymethyl) methylamine 

buffer, pH 9.0, containing 500 mg/1 disodium

ethylenediaminetetracetate. Enzyme-coenzyme reagent : Dissolve 20 mg 

NAD and 1.5 U of 3-hydroxybutyrate dehydrogenase in 10 ml of 0.1 mol/1 

phosphate buffer, pH 7.4.



Dialysate glucose and lactate were analysed in an similar manner. 

The dialysate solutions were diluted 1 in a 100 with 0.5 mol/1 

perchloric acid.

Standard solutions:

Stock solutions were prepared in deionised water and all dilutions 

of stock were made with perchloric acid 0.5 mol/1. The range of 

working standards were (mmol/1)
Glucose 1.0 - 5.0

Lactate 0.5 - 2.0
Alanine 0.04 - 0.30

3-Hydroxybutyrate 0.01 - 0.10

Glycerol 0.02 - 0.12

Instrumentation:

Modules consisted of an Autoanalyser II sampler and peristaltic 

pump (Technicon, Hants), fluorescent spectrophotometer (Model 1000 

with a 355 nm excitation filter and a 485 nm emission filter) and a 

twin channel recorder (Perkin-Elmer, Bucks).

Procedure:

Details of the manifold are shown in Figure 5.1. Perchloric acid 

(0.5 mol/1) was pumped through the sample line from the wash reservoir 

and the appropriate buffer through the other line until a steady 

baseline was reached on the recorder. Enzyme-coenzyme reagent was 

then pumped into the system and the baseline readjusted to give a 5% 

deflection for NADH. Standards were run at the beginning of each 

batch and at intervals of 5 samples to compensate for drift changes 

during analysis. The native fluorescence of each sample was measured 

by omitting the enzyme-coenzyme reagent on a blank run for all 

samples. All assays were done at room temperature (20-25°C).
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Native fluorescence:

This assay system depends on changes in fluorescence resulting 

from alterations in NADH concentrations produced by enzyme action.

Any fluorescence that is non-enzymatic in origin must be taken into 

account to increase the accuracy of the analysis. Serum from uraemic 

patients has a native fluorescence, the intensity correlating with the 

level of serum creatinine and the presence of drugs can also affect 

the fluorometric analysis (Hadjivassiliou et al., 1984). Thus all 

samples were run with blanks (i.e. omitting the enzyme-coenzyme stage 

in the assay) to exclude all non-enzyme (native) fluorescence.

Precision:
Analytical recovery was not performed during the assays but 

previous estimates from the laboratory by adding a known quantity of 

stock solution showed a recovery range of between 90-95%.

Within-batch and between-batch precision was under 5% for each 

metabolite, except 3-hydroxybutyrate which had a within assay C.V. of 

8% and between assay C.V. of 12%.
Calculation of metabolites:

The metabolite concentration was determined by subtracting the 

blank from the standard activity and calculating the concentration 

relative to the appropriate working standard. Metabolite 

concentrations were expressed in mmol/1 by multiplying the whole blood 
dilution factor for each sample.

b) MANUAL SPECTROPHOTOMETRIC ANALYSIS OF ACETOACETATE AND PYRUVATE

Acetoacetate (AcAc) and pyruvate (Pyr) are unstable relative to 

the other metabolites even at -20°C storage. Thus a manual 

spectophotometric method was used for the analysis, which was 

performed usually within 24 hours, but always within 48 hours of



collection. Samples were stored at -20°C during this short storage 

period. This method is based on the following reactions:

LDH
PYRUVATE + NADH + H ~ " - LACTATE + NAD

3-OHB-DH
ACETOACETATE + NADH + H s  - D(-) 3-HYDROXYBUTYRATE + NAD

Reagents:

Enzymes: lactate dehydrogenase (LDH) 4000 kU/1, 3-hydroxybutyrate 

dehydrogenase (3-OHB-DH) 15 kU/1.

NADH 0.3%: NADH (13.33 mg) was dissolved in 4 ml of deionised water. 

Acetoacetate standard: 10.8 mg was dissolved in 10 ml water.

Pyruvate standard: 11.0 mg was dissolved in 10 ml water.

Standards were frozen in aliquots and working standards were prepared 

on the day of assay by dilution (1:100) to give a final concentration 
of 0.1 mmol/1. Phosphate buffer, pH 7.4, contained 61 ml Na2HP04, 0.1 
M (1.42 g/100 ml) and 39 ml NaH2P04, 0.1 M (1.56 g/100 ml).

Procedure:

All manipulations were carried out at room temperature although 

all reagents xrere kept on ice during procedure.

Sample neutralization:

To 1.4 ml of sample (volume 1) was added 4 drops of universal

indicator solution (BDH) and a few drops of 20% potassium hydroxide
•neuntil the solution was alkali^(pH 10). This was back titrated with 5% 

perchloric acid till neutral (pH 7.0). The total volume of solution 

was noted (volume 2). The sample dilution factor was volume 2/volume



Cuvettes: (volumes-ml)

Spec Reag AcAc
STD

Pyr
STD

Samp]

Phosphate buffer - 1.0 1.0 1.0 1.0
Distill H2O 3.0 2.0 1.0 1.0 1.0
NADH 0.04 0.1 0.1 0.1 0.1
STD - - 1.0 1.0 -

Sample - - - - 1.0

STD = standard : Spec = Spectrometer blank : Reag = Reagent blank.

Cuvette solutions were mixed well and the optical densities read 

on a SPS 400 UV/VIS spectrophotometer (Pye, Unicam, Cambridge) at 340 

nm wavelength using a tungsten lamp.

Then, 10 |ul of diluted lactate dehydrogenase (5 mg/1) [1:1 in 3.2 

M (NH^^SO^] was added, mixed and read after 10 minutes. The change 

in optical density estimates the pyruvate concentration. Then, 10 pi 

3-hydroxybutyrate dehydrogenase was added, mixed and read after 20 

minutes. The change in optical density estimates the acetoacetate 

concentration.

Calculation of metabolite j concentration

The concentration of metabolite (mmol/1) was determined from:-

I  IA0D = E X TVc X V̂ V-ĵ  X B.D.F.

A0D = change in optical density

E =| Extinction coefficient of NADH at 340 nm = 6.22 

TVc = total volume in cuvette = 3.10 ml

V2/V̂  = sample dilution factor 

B.D.F. = whole blood dilution factor

Precision: The within-assay C.V. was 5% and 8% for pyruvate and
acetoacetate respectively (n=10), and between-assay C.V. was 8% and 
12% for pyruvate and acetoacetate respectively (n=6).



4. GLYCOSYLATED HAEMOGLOBIN

a) SEMIAUTOMATED COLORIMETRIC METHOD

This method of determining the total glycosylation in the red cell 

was based on the colorimetric assay described by Fluckiger and 

Winterhalter, 1976. The automated aspect being loosely based on the 

methods of Ross and Gibson (1979) and of Burrin et al., 1980. The 

modifications were made by M. Benton (unpublished) and now form the 

routine method of determining glycosylated haemoglobin in the 

Department of Clinical Chemistry, Royal Hallamshire Hospital, 

Sheffield.

Principle: Blood was collected in lithium heparin tubes to prevent 

coagulation, the red cells were spun, separated and then washed with 

saline. The cells were then lysed, diluted and heated with oxalic 

acid to hydrolyse off the glycosyl (frucrosyl) moiety which converts 

to 5-hydroxymethylfurfural (HMF). The HMF was then measured 

colorimetrically by forming an adduct with thiobarbituric acid (TBA). 

The reaction is shown in Figure 5.2.

Sample preparation: Blood (5-10 ml) was collected in tubes

containing an anticoagulant (lithium heparin), centrifuged at 3000 rpm 

for 5 minutes, the plasma was removed and the red cells washed twice 

with isotonic saline to eliminate interference from glucose and 

glycosylated plasma proteins. The red cells were then hydrolysed by 

the addition of an equal volume of 0.1% Brij. The haemolysate was 
stored at 4°C prior to analysis. All assays were determined within 5 

days of haemolysate storage.

Preparation of working haemolysate:

The original haemolysate was diluted 1:30 in 0.1% Brij. A small 

amount of haemolysate (0.25-0.5 ml) was left undiluted and stored in 

case adjustment of the total haemoglobin content was required (see
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below).

Determination of Total Haemoglobin

Haemoglobin reagent: (Van Kampen and Zijlstra, 1961)

Potassium Ferricyanide 400 mg (Sigma Ltd.)

Potassium Cyanide 100 mg (Sigma Ltd.)

Potassium Dihydrogen Phosphate 280 mg (Sigma Ltd.)

Sterox SE 1 ml (Monsanto Chemical Co.)

These were dissolved in 2 litres of water. This reagent was 

stable for at least 2 weeks at room temperature. Working haemolysate 

(1 ml) was added to 5 ml of haemoglobin reagent and the optical 

density (OD) was determined at 540 nm using a digital 

spectrophotometer (Cecil Instruments). The haemoglobin concentration 

of the working reagent was calculated from the formula 

Dilution factor X OD = 6 X OD

There was an inverse and non-linear relationship between the 

concentration of haemoglobin in the reaction mixture and the final 

yield of 5 HMF per mol of haemoglobin. Concentrations of haemoglobin 

were expressed in terms of the monomer (M Wt = 16,520). The 

haemoglobin concentration was kept within 10% of 0.275 mmol/1 (range

0.250 - 0.300). This range adjustment of the total haemoglobin of the 
haemolysate was made by further dilution with 0.1% Brij, if greater 

than 0.300 or by taking the remainder of the original haemolysate and 

making a weaker dilution if the concentration was less than 0.250.

mmol/1
m molar Extinction coefficient 11



Determination of Hydroxymethylfurfural (HMF)

Reagents:

Brij 0.1% solution in water.

Oxalic acid (BDH, Dorset) 0.5 M : Oxalic acid (126 g) was 

dissolved in water and made up to 2 litres.
Thiobarbituric acid (BDH, Dorset).

TBA reagent 0.2% in 0.25 M oxalic acid : TBA reagent (1 g) was 

dissolved in 0.25 M oxalic acid and made to 500 ml with 0.25 oxalic 

acid, 0.5 ml of Brij was also added. This solution was stable for at 

least 1 week at 4°C.

Standard Hydroxymethylfurfural (HMF)

Stock HMF (Sigma Chemical Co., Dorset) 10 mmol/1 : HMF (126 g) was 

dissolved and made to 100 ml with water. A 1:100 dilution was made 

with water and the optical density was determined at 283 nm on a Cecil 

spectrophotometer. This was normally between 1.68 and 1.72. The 

volume of stock was adjusted if necessary and then stored in 10 ml 
aliquots at -20°C. Substock solutions were prepared in 0.1% Brij at 

150, 300, 450, 600 and 750 umol/1. This method was used to prepare 

standard HMF because solid HMF is deliquescent and accurate weighing 

of the pure substance is difficult.

Working standards

Since HMF standards degrade on heating, a set of standards were 

diluted 1:30 as in the tests, then diluted 1:1 oxalic acid and 

hydrolysed before being assayed colorimetrically.

Hydrolysis

Hydrolysis liberates fructose and converts it to 5 HMF.

Haemolysate (4 ml) was placed in a 10 ml vial and 4 ml of 0.5 M oxalic 

acid containing 0.1% Brij was added. This mixture was capped and 

placed on a heating block at 100°C for 6 hours and then cooled in



water immediately.

Colorimetry

The flow diagram shows the manifold for the glycosylated 

haemoglobin method (Figure 5.3). The sampler, peristalic pump, 

dialyser, colorimeter and dual channel recorder were all standard 

autoanalyser II equipment (Technicon, Hants.).

Samples of hydrolysate were aspirated, air segmented and dialysed

with a 'C* type membrane into the TBA reagent. The sample stream was

dialysed either directly into the TBA reagent (to increase
0.25M

sensitivity) or into ^ oxalic acid for the blank measuremnt. The 

recipient stream was passed through a double length mixing coil (DMC) 

to develop the colour, this reaction as well as the dialysis, being 

carried out at 47°C to increase the.sensitivity.

Calculation

The values are read from a conventional chart reader, the 

difference between test and blank being the concentration of HMF in 

the working haemolysate in pmol/1. The final result is obtained by 

dividing the level of glycosylated haemoglobin (i.e. HMF) in pmol, by 

the concentration of haemoglobin in the sample in mmol. This is 

expressed as mmol HMF/mol Hb (i.e. multiplying each by 1000).

Reference range for normal adults in the laboratory was 29-39 mmol

HMF/mol Hb, established by testing 80 healthy subjects.

Precision

Within batch and between-batch coefficients of variation were 3.5% 

and 6.0% respectively at a mean glycosylated haemoglobin level of 35 

mmol HMF/mol Hb. A very strong correlation was found between this 

method and the micro-column method of determining HbA^ (Bio-Rad Lab. 

Ltd., Herts.) [r=0.92, n=130].
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b) HAEMOGLOBIN Al, Ale, Ala+b BY MINICOLUMN CHROMATOGRAPHY

Haemoglobin Ap ^la+b were measured using commercial kits.
Haemoglobin A^ and haemoglobin A^c column tests (Bio-Rad, Herts.).

Principle

In the Bio-Rad haemoglobin A^ column test whole blood was mixed in 

a haemolysis reagent which lysed the red cells and liberated 

haemoglobin. An aliquot of haemolysate was then applied to a weak 

acidic cation exchange resin in a disposable column. An 

elution/developing reagent was then added to the column, which 

separated the ’fast* moving glycosylated haemoglobin component 

(HbA^a,b,c) from the remaining 'slow' haemoglobin fraction.

The total haemoglobin was measured by mixing an aliquot of 

haemolysate with the elution/developing reagent. After the column 

eluate containing HbA-̂  (A^a+b+c) had been collected the relative 

concentrations of the glycosylated and the total haemoglobin were 

determined spectrophotometrically (415 nm) and the percentage 

glycosylated haemoglobin (HbÂ ) was calculated.

In the Bio-Rad HbA^c column assay separate determination of HbA^c

and HbA^a+k was achieved by using 2 elution/developing reagents.
Haemolysate was prepared as in the HbA^ method which lysed the cells

and initiated removal of the Schiff base (aldimine). A low ionic

strength borate/phosphate buffer was added to the column after

application of the haemolysate. This first buffer eluted the HbA^a

and HbA^ and further dissociated the labile Schiff base fraction.

The HbA. and HbA fractions remain on the column. HbA. was then lc o lc
eluted from the remaining haemoglobin fraction by the addition of the 

second elution/developing reagent.

The total haemoglobin was prepared as in the HbA-̂  method and the 

relative percentage concentrations of HbA-̂ a+  ̂and HbA^c were



determined by spectrophotometric analysis of the first and second 

elutes respectively.

The assays were performed according to the manufacturers 

instructions, but several modifications were made to improve the 

sensitivity and precision. The exact method for each assay is 

detailed below. All assays were carried out at a constant 26°C in a 

water bath. Positive displacement micropipettes (50 pi and 500 pi) 

were used to obtain adequate reproducibility and accuracy. Assays 

were performed in batches of 10 samples and analysed within 24-48 

hours after collection.

Haemoglobin A1 Assay

Reagents

Haemolysis reagent : polyoxyethylene ether (0.33% v/v). 

Elution/developing reagent : phosphate buffer pH 6.7. Resin columns : 

disposable columns containing a measured amount of weakly acidic 

cation exchange resin. All stored at room temperature.

Procedure

1. Whole blood in a lithium heparin tube was mixed well and 100 pi

(2x50 pi) was added to 500 pi of haemolysis reagent, vortexed and

allowed to stand for a least 5 minutes.

2. Resin columns were shaken, resuspended and the waste fluid

allowed to drain. The columns were placed in a bath at 26°C

(controlled by a Grants Thermostatic heater) throughout the 

assay.

3. Within 15 minutes of preparing the columns 100 pi (2x50 pi) of 

haemolysate or control was carefully pipetted dropwise onto the 

centre of the resin bed.

4. After 5 to 7 minutes 10 ml of elution/developing reagent was



added to the column without disturbing the resin bed. The column

eluate was collected within 45 minutes (Solution A).

5. Total haemoglobin of the sample was determined by adding 50 pi of 

haemolysate or control to 10 ml of elution/developing reagent 
(solution B).

6. Samples were then read on a spectrophotometer (Digital 

spectrophotometer CE 393, Cecil Instruments, Cambridge) at 415 nm

after ’zeroing* with a elution/developing reagent blank.

Calculation of HbAl

The purpose of the test was to determine what percentage of total 

haemoglobin was the A-̂ fraction. This was calculated from the 

formula

Absorbance of Solution A 1 *
%HbA1 =  X ~ X 100

Absorbance of Solution B

^correction factor for differences in sample concentration 

Precision

Within-batch precision, in the normal range (10 replicate samples) 
gave a mean and standard deviation of 7.73+0.26%, i.e. coefficient of 

variation of 3.36%. In the upper or ’diabetic1 range (10 samples) 
mean and SD was 14.42+0.62%, C.V. was 4.3%.

Between-batch precision (5 replicate samples), in the ’normal* 

range was 7.60+0.47% with a C.V. of 6.2%. In the ’diabetic' range 

mean and SD was 13.63+0.95, C.V. was 7.0%.

Haemoglobin Ale and Ala+b assay

Reagents

Haemolysis reagent : polyethylene ether (0.33% v/v). 

Elution/developing reagent. First elution buffer : borate/phosphate



buffer, pH 6.7. Second elution buffer : phosphate buffer, pH 6.7. 

Resin columns : disposable columns with weakly acidic cation exchange 

resin. All stored at room temperature.

Procedure

1. Whole blood in a lithium heparin tube was mixed well and 100 pi 

(2x50) was added to 500pl of haemolysis reagent, vortexed and 

allowed to stand for 5 minutes.

2. Resin columns are shaken, resuspended and waste fluid allowed to 

drain. The columns were placed in a constant temperature bath 

(26°C) throughout the assay.

3. Within 20 minutes of preparing the columns 100 pi (2x50) of the 

haemolysate or control was carefully pipetted on to the column 

resin bed.

4. After 5 minutes 4.0 ml of the first elution/developing reagent 

was added to the column without disturbing the resin bed. Within 

30 minutes the first elution buffer was drained and collected for 

HbA^a+  ̂estimation (Solution A).

5. Then 10 ml of the second elution/developing reagent was added and

after 45 minutes the second eluant was collected for HbA,lc
determination (Solution AA).

6. The total haemoglobin of the sample was prepared by adding 50 pi 

of haemolysed sample or control to 10 ml of the second elution 
buffer (Solution B).

7. Samples were then read on a spectrophotometer at 415 nm.



Calculation of HbAla+b and HbAlc

la+b was calculated using the formula

Absorbance of Solution A fl]* 10l+
X —  X —  X 100

Absorbance of Solution B 2 4

HbA^c was calculated using the formula:-

Absorbance of Solution AA 1 *
HbAlc%

Absorbance of Solution B
X

2
X 100

Correction factors:

* to correct for difference in sample concentration 

+ to correct for difference in sample volume 

Precision

HbA-̂ a+k within-batch precision was (on 10 replicate samples)
a) in the normal range : C.V. 4.1% (mean 1.46%, SD 0.06)

b) in the diabetic range : C.V. 4.4% (mean 2.04%, SD 0.09)

Between-batch precision was (on 5 replicate samples);

a) in the normal range : C.V. 4.8% (mean 1.65%, SD 0.08)

b) in the diabetic range : C.V. 6.6% (mean 2.12%, SD 0.14)

HbA^c within-batch precision was (on 10 replicate samples);
a) in the normal range : C.V. 2.8% (mean 5.96%, SD 0.17)

b) in the diabetic range : C.V. 2.4% (mean 9.71%, SD 0.23)

Between-batch precision was (on 5 replicate samples);

a) in the normal range : C.V. 3.4% (mean 6.21%, SD 0.21)

b) in the diabetic range : C.V. 4.9% (mean 9.2%, SD 0.45)



Quality control

Periodicaly during the HbA-̂  and HbA^c assays precision and 

accuracy was checked using lyphochek controls (Bio-Rad, Hants). 

Lyphochek was prepared from human whole blood and exhibits column 

elution profile and temperature restrictions comparable to those of 

patient whole blood haemolysate.

HbA-̂  lyphochek for normal levels gave a mean value of 7.4% 

(manufacturer's mean value 7.1%, range 6.4-7.7) and for the higher 
(diabetic) levels a mean value of 13.8%, (manufacturer's assayed 

value, mean 13.3%, range 12.2-14.3).

HbA^c lyphochek for normal levels gave a mean value of 6.1%, 
(manufacturers assayed value, mean 5.8%, range 5.3-6.3) and for the 

higher (diabetic) levels a mean of 9.8%, (manufacturer's assayed 

value, mean 9.4%, range 8.6-10.1).



5. CARBAMYLATED HAEMOGLOBIN

Carbamylated haemoglobin was measured by the methods of Fluckiger 

et al. (1981) and Manning et al. (1973) with several modifications 

which are detailed.

Principle

Red blood cells were washed in normal saline and the haem was 

removed by washing in acid-acetone. The globin was then hydrolysed 

with acetic acid and hydrochloric acid to split off isopropyl 

hydantoin (IPH). IPH was extracted into ethyl acetate and estimated 

by gas liquid chromatography (GLC). The reaction is showi in Figure 

5.4.

Reagents

Sodium hydroxide 10 M 

Concentrated hydrochloric acid 

Sodium chloride; saturated solution 

Sodium bicarbonate; 5% solution 

Acid-acetone; 2% HC1 in acetone 

Acetic acid 

Diethyl ether

Analar grade reagents used when available 

Standards

Isopropyl Hydantoin (MW 142) (Aldrich Chemical Co., Dorset)

Stock solution; 172.5 mg in 25 ml methanol

Working solution; Dilute 2 ml to 100 ml with de-ionised water; 100 

pi of this solution was used for the standard, i.e. working 

standard contained 13.8 jig of isopropyl hydantoin.
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Internal Standard

Hexobarbitone (MW 236) (May and Baker, Dagenham).

Stock solution; 70.8 mg in 25 ml methanol.

Working solution; dilute 2 ml to 100 ml with de-ionised water; 100 

pi of this solution was used for the working internal standard, i.e. 

working internal standard contained 5.7 pg of hexobarbitone.

Preparation of sample

Blood was taken into lithium heparin tubes and the red cells 

separated within 24 hours. The red cells were washed in normal 

saline. The red cells were then resuspended in an equal volume of 

physiological saline. To 1 ml of this suspension, 10 ml of ice cold 

acid-acetone was slowly added on a vortex mixer. The globin was 

washed several times (on average 5) in 10 ml volumes of ice cold 

acetone to removed the haem and finally washed with diethyl ether and 

dried overnight at room temperature. The globin (white powder) was 

then stored at 4°C until hydrolysis was carried out (usually within 

1-2 weeks).

Hydrolysis of Globin

Globin (50 mg) was resuspended in 0.5 ml of 50% acetic acid in a B 

14 tube and 0.5 ml of concentrated hydrochloric acid was added. The 

tube was then capped with a glass marble and heated for 1 hour at 
100°C and then cooled on ice.

Extraction

Sodium hydroxide 10 M (0.65 ml) was added to the hydrolysate. The 

pH should be between 3.0 and 5.0. Saturated sodium chloride (0.5 ml)



was added, then 100 pi of the internal standard, hexobarbitone, 100 pi 
of de-ionised water and finally 5 ml of ethyl acetate. The tube was 

stoppered and mixed gently for 3 minutes. The ethyl acetate was 

transferred to another B14 tube and washed with 1 ml of 5% sodium 

bicarbonate. After centrifuging 4 ml of ethyl acetate was taken off 

into a conical glass centrifuge tube and evaporated to dryness at 60°C 

under a stream of air. The residue was redissolved in 100 pi of ethyl 

acetate and 5 pi prepared for injection on to the GLC column.

Standard

forking1 internal standard, hexobarbitone (100 pi) and isopropyl 
hydantoin (100 pi) fworkingf standard were added to a mixture of 0.5 

ml of 50% acetic acid and 0.5 ml hydrochloric acid and then treated as 

in the sample extraction.

Gas liquid chromatography

GLC analysis was performed using a Sigma I gas chromatograph 

(Perkin Elmer, Bucks). Aliquots (5 pi) were chromatographed on a 

glass column, 2 mm x 1 m, packed with GP 2% SP 2110/1% SP-2510 DA on 

100/200 supelcoport (Supelco Inc., Bellfonte, PA, USA). The carrier 

gas was Argon, flow rate 40 ml/min, using a nitrogen detector and an 

oven temperature of 170°C.

The retention times (Figure 5.5) were 2 minutes for isopropyl 

hydantoin and approximately 5 minutes for hexobarbitone. Periodically 

the column was repacked when accumulation of 'contaminants1 produced 
extra or erratic peaks.
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GLC peaks and retention times

Carbamylated Haemoglobin is determined by the release 
of isopropyl hydantion, calculated from:

Ht. of Test/Ht. of INT STD X 13.8* .
Ht. of IPH STD/Ht. of INT STD 50 " nSIPH/mg globin

INT STD - internal standard (hexobarbitone)
IPH STD - Isopropyl hydantoin standard 
HT - peak height

* 13.8 ng is weight of IPH injected onto column 
50 mg is weight of globin hydrolysed

Figure 5. 5 GLC peaks and retention times
Calculation of carbamylated haemoglobin



Calculation

Carbamylated haemoglobin was calculated using the formula

Ht. of Test sample/Ht. of Internal Std. 13.8
— ------------------------------   X   = ng IPH/mg
Ht. of Std. IPH/Ht of Internal Std. 50

where 13.8 ng is the weight of IPH injected into the column and 50 mg 

is the weight of globin hydrolysed.

Precision

A reference range has not been previously recorded, but in 40 

subjects (20 healthy controls and 20 patients with normal renal 
function) concentrations were less than 40 ng IPH/mg globin. A mean 

value with 95% C.I. was 27 (22-32) ng IPH/mg globin.

All samples were assayed in duplicate and a coefficient of 

variation of 12% was found between test samples.

STATISTICS

Multics is the operating system on the Joint Cardiff Computing 

Service mainframe computer (Honeywell DPS - 8/70 M). This facility 

was used at the University of Wales College of Medicine.

Much of the data in this thesis were analysed using the MLnitab 

Statistical Package on the Multics system. Some data were also 

analysed using the HP 67/97 and 41Cx Hewlett Packard statistical 

package on a micro computer.

Specific statistical methods are described in the appropriate 

chapters under the method section.



CHAPTER 6

PANCREATIC BETA CELL FUNCTION IN URAEMIA



INTRODUCTION

The abnormalities of carbohydrate metabolism in uraemia have been 

discussed in Chapter 2 and include the effect of tissue sensitivity to 

insulin and the beta cell response. It has been suggested that the 

beta cell response may be altered in uraemia. To compensate for the 

increased peripheral antagonism to the action of insulin the beta cell 

may hypersecrete in an attempt to overcome the insulin resistance. 
However, despite the tissue insensitivity to insulin a normal or 

decreased insulin response to oral glucose has also been observed.

Thus beta cell function may be normal, hyperactive or relatively 

inhibited in uraemia.

1. HAEMODIALYSIS

The glucose intolerance of uraemia has been reported to improve 

markedly with haemodialysis (Hampers et al., 1966; Alfrey et al., 

1967). In contrast, more recent studies, using glucose specific 

methods, have shown that haemodialysis produces only marginal 

improvement or no significant improvement in glucose tolerance 

(Swenson et al., 1974; Ferannini et al., 1979; Marumo et al., 1979). 

However, studies on the metabolic clearance rates have shown that 

haemodialysis significantly improves but does not fully correct the 

abnormalities of carbohydrate metabolism in uraemia (DeFronzo et al., 

1978a; Graf et al., 1985).

2. INTERMITTENT PERITONEAL DIALYSIS

During intermittent peritoneal dialysis large quantities of 

glucose are absorbed from the dialysis fluid and can induce 

hyperglycaemia (Nolph et al., 1970). The serum insulin response to an 

oral glucose load has been shown to decrease within a few days after



intermittent peritoneal dialysis suggesting possible exhaustion of the 

pancreatic beta cells (Spitz et al., 1970).

3. CONTINUOUS AMBULATORY PERITONEAL DIALYSIS (CAPD)

CAPD is a unique clinical situation that involves constant glucose 

administration. The effect of this persistent glycaemic stress is a 

potential hazard and its effect on beta cell function is of paramount 

importance. The continuous glucose absorption from the dialysate 

could affect insulin release with profound effects on carbohydrate, 

lipid and amino acid metabolism (see Chapter 3).

There are several similarities between uraemia and diabetes, 

particularly type II (maturity onset) as discussed in Chapter 2. The 

tissue insensitivity to insulin and impaired beta cell reponse to 

glucose are seen in both conditions although to different degrees. 

Continuous glucose administration in maturity onset diabetes has been 

shown to exhaust insulinogenic reserves (Seltzer and Harris, 1964). 

Thus CAPD with its continuous peritoneal glucose administration may 

possibly exhaust beta cell function. Alternatively, continuous 

stimulation of the beta cell may further augment serum insulin 

concentrations that are already increased in response to the insulin 

resistance in uraemia. Thus CAPD may adversely affect beta cell 

secretory function, either by depletion of the beta cell or even to 

stimulate further secretion, both of which would affect glucose 

homeostasis. The inability to adapt to the extra glycaemic stress in 

CAPD might even lead to overt diabetes mellitus.

Present data on glucose metabolism in CAPD is limited because the 

duration of experience of this mode of dialysis is short. Few centres 

have more than 7 years experience and relatively few patients have 

been on CAPD for longer than 3 years due to the initial high failure



rate of this technique (see Chapter 3).

Deterioration in the insulin response to oral glucose has been 

reported (Armstrong et al., 1980). In contrast, others have shown 

that although glucose intolerance was present prior to CAPD, no 

further deterioration was observed in the short term (Lindholm et al., 

1981; Von Baeyer et al., 1983). A similar study in children showed no 

change in glucose intolerance after 1 year on CAPD (Broyer et al., 

1983).

4. DIABETES AND DIALYSIS

CAPD is not only a viable alternative to haemodialysis for the 

diabetic with end stage renal disease but is, in the United Kingdom, 

the preferred mode of dialysis treatment (Cameron and Challah, 1986). 

In other parts of Europe haemodialysis is the main modality of 

treatment (Jacobs et al., 1983) for diabetics. At present most 

diabetics on CAPD are type I but increasing numbers of older type II 

diabetics are being treated (Cameron and Challah, 1986). It initially 

may seem paradoxical that a treatment consisting of continuous glucose 

administration is actually beneficial. The advantages of this 

treatment are discussed in Chaper 3. Although insulin requirements 

increase in type I and many type II diabetics require supplemental 

insulin blood glucose control with intraperitoneal insulin is much 

improved (Flynn, 1979; Khanna et al., 1983; Rottembourg et al., 1983).

Type I diabetics have negligible beta cell function, especially 

after 20 to 30 years, when they reach end stage renal disease, but 

type II diabetics often have some residual beta cell function which 

could be depleted by continuous glucose administration.



5. BETA CELL SECRETORY FUNCTION

Stimulation of the beta cell normally results in extrusion of the 

beta cell granule where proteolytic cleavage of proinsulin to insulin 

and c-peptide takes place. The secretory products of the beta cell 

consists of equimolar amounts of insulin and c-peptide, which account 

for 94% of the secreted products. The remaining 6% is due to 
proinsulin intermediates (Rubenstein etal., 1977). In the peripheral 

blood the circulating c-peptide concentration is approximately 5-fold 
greater than insulin in healthy fasting subjects and this falls to 

about 2-3 fold after pancreatic stimulation (Faber et al., 1978).

This reflects the slower metabolic clearance of c-peptide compared to 

insulin (see Chapter 2).

Beta cell secretory activity has been assessed using intravenous 

glucagon stimulation and measuring the c-peptide response in 

peripheral blood (Faber and Binder, 1977; Binder and Faber, 1978).

This dynamic test is simple, specific, sensitive, rapid to perform, 

causes no discomfort to the patient and applicable to both diabetic 

and non-diabetic subjects. Diabetic patients with insulin antibodies 

and those taking exogenous insulin present a problem when measuring 

plasma insulin concentrations. The plasma of these patients contain 

both free (unbound) and antibody bound insulin which makes 

interpretation of plasma insulin difficult unless specific extraction 

procedures are carried out (Heding, 1969; Desbuquois and Auerbach, 

1971; Hanning et al., 1985). Hence the value of c-peptide 

measurement. In non-diabetics both insulin and c-peptide measurements 

are complementary.



6. OBJECTIVES

The primary objective of this study was to evaluate beta cell 

function in a mixed uraemic population and to determine if CAPD 

treatment per se affects the beta cell secretory capacity. However, 

as beta cell peptides can be elevated in uraemia it was necessary to 

compare non-dialysed uraemic and haemodialysis patients with those on 

CAPD to distinguish the effects of uraemia from dialysis therapy.

The secondary aim of this study was to determine beta cell 

integrity in diabetics with renal failure including those on 

haemodialysis and CAPD.



METHODS

1. PATIENTS

Beta cell function was investigated in 67 subjects. Forty 

non-diabetic uraemic patients on different modes of dialysis were 

studied. They were classified into four groups (with 10 patients in 

each): chronic renal failure (CRF) on conservative treatment, i.e. 

non-dialysis; haemodialysis (HD); NEW CAPD (on CAPD for less than 6 
months); and CHRONIC CAPD (established on CAPD for more than 1 year). 

Eight healthy subjects were used as controls.
In the diabetic groups all 19 patients had proven diabetes of 

varying duration and most, but not all, had diabetic nephropathy as 

the cause of their renal failure. The selection of diabetic subjects 

with renal failure was limited due to the relatively small number 

available for study. Diabetic patients were classified in two ways i) 

by mode of renal therapy, i.e. CRF, HD or CAPD and ii) by type of 

diabetes, i.e. type I insulin dependent or type II non-insulin 

dependent. Diabetics with normal renal function (NRF) were used as 

controls. Normal renal function was judged by normal serum creatinine 

concentrations, but lesser degrees of diabetic nephropathy such as 

impaired glomerular filtration rate and microalbuminuria were not 

excluded.
All subjects had normal liver function assessed by history and 

absence of clinical manifestations of hepatic disease and normal 

biochemical indices of liver function. The non-diabetic subjects had 

no clinical or biochemical features of diabetes. No subjects were 

taking steroids, beta blockers or thiazide diuretics at the time of 

the study. All subjects continued with their usual diet prior to the 

study. Haemodialysis patients were studied on their interdialysis day 

(i.e. 24 hours after their last dialysis) and all CAPD patients



omitted their overnight dialysis exchange prior to the study.

Diabetics on insulin omitted their morning dose and oral hypoglycaemic 

drugs were delayed until after the study.

2. PROTOCOL

All subjects had a 12 hour oral fast and CAPD patients also had an 

overnight ’peritoneal1 fast by omitting their overnight exchange. The 

study was done between 9.00 and 11.00 a.m. All subjects remained 

semi-supine throughout the 1 hour test. An intravenous cannula was 

inserted into a forearm vein for serial blood sampling and kept patent 

by heparinised saline flushes after each blood sample was taken. 

Patients were constantly under medical supervision throught the study. 

The Sheffield hospitals medical ethics committee approved the study.

3. PILOT STUDY

Prior to the main study 5 patients were given 0.5 mg or 1.0 mg of 

glucagon intravenously and samples were taken at frequent intervals to 

determine the optimal dose and timing of samples. From this study, 1 

mg of glucagon and eight time intervals were chosen for the glucagon 

stimulation test.

4. MAIN STUDY

After a fasting blood sample (time zero), 1 mg glucagon (Novo 

Labs) was given by I.V. bolus and blood specimens were taken at 5, 10, 

15, 20, 30, 45 and 60 minutes post injection for glucose, insulin and 

c-peptide determination. Fasting serum lipoproteins, glycosylated 

haemoglobin, full blood count and a ’routine1 biochemical screen 
including liver function tests were measured. Specimens were kept on 

ice until transported to the laboratory. Blood for peptide



estimations were separated within 3 hours of collection and stored at 

-20°C until assayed.

5. ASSAYS

Blood glucose was measured by the glucose oxidase method (Barham 

and Trinder, 1972). Serum insulin was determined by modification of 

the double antibody radioimmunoassay technique of Soeldner and Slone 

(1965). Serum free or unbound insulin was measured in diabetic 

subjects by using PEG precipitation after serum separation but prior 

to storage. Plasma c-peptide was determined by a modification of the 

Heding (1975) technique using a radioimmunoassay kit (Novo Biolab). 

Serum insulin had a 5% and 8% intra- and inter-assay precision 
respectively. The intra- and inter-assay coefficients of variation 

for c-peptide were 3% and 5% respectively. C-peptide antibody had 

less than 10% cross-reactivity with proinsulin. Glycosylated 

haemoglobin was measured by colorimetry (a modification of the 

Fluckiger and Winterhalter (1976) technique) and serum lipoproteins by 

Cobas biocentrifugal analysis (Deeg and Ziegenhorn, 1982; Wahlefeld, 

1974). A more detailed description of each assay is given in Chapter

5.

6. STATISTICS

Data within each group was analysed by the paired ft! test and 

data between groups by analysis of variance. Analyses of the glucagon 

response with time curves was done by the analysis of variance 

technique using repeated measures analysis to investigate differences 

between the groups and their response patterns with time.



RESULTS

Intravenous glucagon was given without any adverse effects 

although approximately 30% of subjects experienced transient nausea 

lasting about 1 minute which occurred usually between 3 and 4 minutes 
post-injection. Results of the study are divided into two sections:-

1. Non-diabetics, 2. Diabetics.

1. NON-DIABETICS

Clinical data (values are mean and S.D.) are given in Table 6.1. 

The mean age and weight of each group were comparable. The difference 

in duration of dialysis was clearly seen particularly distinguishing 

NEW CAPD from CHRONIC CAPD. Serum creatinine although higher in the 

CHRONIC CAPD group was not statistically different from the other 

uraemic groups. Fasting total serum triglycerides were increased in 

all uraemic groups but this was only statistically significant in the 

HD group (p<0.05). Glycosylated haemoglobin was normal in all groups.

Fasting lipoprotein profiles are shown in Figure 6.1 (values are 

mean and SEM). Total triglycerides and cholesterol were increased in 

all uraemic groups and HDL-cholesterol was decreased in all uraemics 

except the CRF group. However, there was marked variation within each 

group and the only statistically significant change was the increase 

in total triglycerides in HD group compared to controls.

a) Basal and peak responses to glucagon

Fasting and maximum responses (values are mean and SEM) of 

glucose, insulin and c-peptide to I.V. glucagon are shown in Table 

6.II and Figure 6.2. Basal glucose concentrations (3.6 to 4.4 mmol/1) 
were similar in all groups and there was also no difference between 

peak concentrations (6.4 to 7.4 mmol/1). The increment (59-80%)
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between basal and peak was significant (p<0.001) in all groups.
Fasting serum insulin was higher (9.5 to 11.7 mu/1) in the uraemic 

groups but this was not statistically significant. There was also no 

difference between the uraemic groups maximum response (49.9 to 59.2 

mu/1) and the controls (53.4 mu/1). The increment between fasting and 

maximum responses was highly significant in all groups. Fasting 

plasma c-peptide concentrations were significantly increased in all 

the uraemic groups (1.84 to 2.38 nmol/1) compared to controls (0.48 

nmol/1) (p<0.001). There was a 4-5 fold rise in the uraemic groups. 

Similarly peak c-peptide concentrations were significantly increased 

(p<0.001). Peak c-peptide concentrations in the uraemic groups were 

2-3 times higher than controls. There was no difference between any 

of the uraemic groups in either basal or peak concentrations. The 

increment from basal to peak stimulation by glucagon was highly 

significant in all groups (p<0.001). This increment was between 163% 

and 208% in the uraemic groups compared to 314% in the controls.

b) Glucagon-response curves

The glucose response to glucagon over 60 minutes, Figure 6.3 

(values are mean and SEM), showed that the four uraemic groups were 

different from the controls (Fy gQ^=14.74, p<0.001). The rate of rise 

in the early phase (0-15 minutes) was similar in all groups, but the 

uraemic groups continued to rise for 30 minutes and had a prolonged 

elevation and delayed fall in glucose concentration. Repeated 

measures analysis of variance showed no difference between any of the 

uraemic groups.

The insulin response to glucagon, Figure 6.4, revealed significant 

differences between the 5 groups (̂ 28 301=^*^* p<0.001). However, 
this was due to the difference between controls and the 4 uraemic
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groups (Fy pcO.OOl). There was no difference between the

uraemic groups, all of whom showed a similar rise and delayed fall in 

serum insulin concentration.

The c-peptide response to glucagon, Figure 6.5, showed significant 

differences between the groups (F2g gQ^=4.90, pcO.OOl). This was 

mainly due to differences between the controls and the four uraemic 

groups (Fy gQ^=13.6, P<0»001)> but there was a small difference 
between the CRF group and the 3 dialysis groups ( F y  gQ^=2.04, pc0.05). 

The control group had a prompt rise reaching a peak at 5 minutes 

followed by a progressive fall over the remaining hour. The uraemic 

groups had a supranormal basal concentration, which increased within 

20 minutes of stimulation and then had a plateau effect over the 
remainder of the test period.

c) Time to maximum response

The time course of glucose, insulin and c-peptide from basal to 

maximum response was prolonged in all uraemic groups. The mean time 

in minutes, for individuals to reach their maximum response is shoitfn 

in Table 6.Ill (values are mean and SD). Glucose peaked significantly 

earlier in controls (pcO.OOl). The uraemic groups had similar time 

courses. The insulin response peaked at 6 minutes in controls which 
was significantly shorter (pcO.OOl) than the uraemic groups. There 

was no difference between any of the uraemic groups. C-peptide also 

peaked at 6 minutes in controls which was markedly shorter than the 
uraemic groups (pcO.OOl). Thus, all uraemic groups had a protracted 

time course in response to glucagon. It should be noted that there 

was marked variation in the time to reach maximum response within each 

uraemic group. The timing of the absolute maximum response in 

individual patients was occasionally difficult to assess as many had



small increments over a period of time before their absolute maximum. 

This is clearly seen in Figures 6.3, 6.4 and 6.5. This probably 

accounts for the small difference (p<0.05) in time course between the 

HD group and the other uraemic groups with respect to the glucose and 

c-peptide responses.

d) Molar ratio of c-peptide/insulin

The molar ratios of c-peptide to insulin, calculated from 1 mu/1 

insulin equals 0.00689 nmol/1, are shown in Table 6.IV (values are 
mean and SD). The elevated basal ratios in the uraemic groups 

reflected the high c-peptide concentration. The maximum response 

after glucagon stimulation resulted in a decrease in the ratio due to 

a relatively greater increase in insulin. All uraemic groups had 

higher basal (pcO.OOl) and maximum response (0.1cpc0.05) ratios 

compared to controls. The fasting molar ratio was increased 2-3 fold 

in uraemics and the stimulated ratio was increased by about 2-fold 
compared to controls. However, all groups showed a significant fall 

in the c-peptide to insulin ratio with beta cell stimulation. There 

was no difference between any of the uraemic groups.

Fasting serum triglycerides showed a strong positive correlation 

with fasting serum insulin in controls (r=0.923, pcO.Ol) but no 

significant correlation was found in uraemic subjects. Fasting plasma 

c-peptide showed a positive correlation with serum creatinine in the 

CRF group (r=0.800, pcO.Ol) but no correlation was found in the 

control or any of the dialysis groups. Fasting c-peptide showed a 

positive correlation with fasting serum insulin in the control 

(r=0.795, p<0.01), CRF (r=0.861, p<0.01) and HD (r=0.710, p<0.05) 

groups but no significant association was found in either of the CAPD 

groups.
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2. DIABETICS
r

Diabetics were classified by renal status and diabetic type. When 

classified by renal status the diabetic patients were grouped as 

normal renal function (NRF), CRF, HD and CAPD (Table 6.V). When 

classified by diabetic type the diabetic groups consisted of NRF type 

I (insulin dependent), uraemic type I and uraemic type II (non-insulin 

dependent) (Table 6.VI).

a) Clinical data

When patients were classified by renal status (Table 6.V, values 
are mean and SD), subjects were of comparable age and weight. Serum 

creatinine in the three uraemic groups was also similar although there 

was more variation in the CRF group. The mean time on dialysis was 

2.5 times longer in the haemodialysis group than the CAPD group but 

there was marked variation between patients in both groups. Fasting 

triglycerides were increased in all diabetic subjects compared to 

healthy controls. There was no difference in triglyceride 

concentrations between the diabetic groups. Glycosylated haemoglobin 

was raised in all groups compared to healthy controls (37.1 +2.7 mmol 

HMF/molHb), but there was no difference between diabetic groups.

When the same patients were reclassified by diabetic type (Table

6.VI, values are mean and SD) it was seen that there were more type I 
uraemic diabetics than type II. It was also observed that all CRF 

diabetics were type I as were most of the CAPD group. Type II 

diabetics were older but there was marked variation in age in type I 

diabetics. Serum creatinine did not differ between the uraemic 

groups. Serum triglycerides were higher and glycosylated haemoglobin 

(although increased compared to controls) lower in the type II group.



DIABETICS: RENAL STATUS

NRF CRF HD CAPD

Subjects 4 5 5 5
Age 49 ± 17 44 ± 11 49 ± 13 46 ± 11
Weight (Kg) 75.5 ± 17..5 65.8 ± 6.0 70.6 ± 8.5 66.6 ± 12.1
Duration of Dialysis 
(months)

- - 53 ±40 21 ± 20

Creatinine
(jimol/1) 116 ± 12 618 ± 216 846 ± 168 728 ± 143

Triglycerides . 
(mmol/1) 2.0 ± 0.7 2.5 ± 1.1 3.0 ± 0.8 2.3 ±0.7

Glycosylated 
Haemoglobin 
(mmol HMF/mol Hb)

56 ± 8 55.0 ± 7 46 ± 7 51 ± 10

Table 6. V
Clinical Data: Diabetics classified by renal status 

Values are mean and SD

DIABETICS: DIABETIC TYPE

NRF Type I Uraemic Type I Uraemic Type II

Subjects 4 11 4
CRF
HDCAPD - 524 31
Age 49 ± 17 43 ± 1 55 ± 6
Weight (Kg) 75.5 ± 17.5 64.8 + 8.3 74.0 ± 7.5
Creatinine
(pmol/l)

116 ± 12 712 ± 210 782 ± 134

Triglycerides
(mmol/1) 2.0 ± 0.7 2.41 ± 1.0 3.1 + .3

Glycosylated 
Haemoglobin 
(mmol HMF/mol Hb)

56 ±8 54 ± 7.0 41 ± 3

Table 6. VI 
Clinical Data: Diabetics classified by diabetic type 

Values are mean and SD



b) Basal and peak responses to glucagon

Basal and peak responses to glucagon are shown in Figures 6.6 and
6.7 (values are mean and SEM).

When diabetics were classified by renal status (Figure 6.6) the 
glucose response to glucagon showed a significant increase in hepatic 

released glucose in all diabetics (p<0.05). There was no difference 

between the groups both in basal or peak concentrations but the

increment (40-61%) from basal to peak (mean 4.0 mmol/1) was

statistically significant. Basal serum free insulin (unbound) was 

lower in the CAPD diabetics than the other groups but this is not 

statistically significant. Peak free insulin also showed much 

variability between the groups, but again no significant difference 

was found. The increment from basal to peak was not significant in 

any of the groups (p>0.05), although the HD group had a greater rise 

in free insulin. Plasma c-peptide concentrations were almost 

undetectable in the NRF and CRF groups and did not change with 

glucagon stimulation. The HD group had a relatively high basal 

c-peptide concentration and the CAPD group had basal levels within the 

normal range (0.18-0.52 nmol/1). After glucagon stimulation neither 

the HD nor CAPD groups showed a change in c-peptide concentration.

When diabetics were reclassified by diabetic type (Figure 6.7) 

basal glucose was similar in all groups. Peak response was also 

similar in the three groups but the increment (about 50%) from basal 

to peak (mean 4.2 mmol/1) was significant. Basal free insulin was 

similar in all groups but peak free insulin in the type II uraemic 

group was higher than in both type I groups, although the difference 

was not significant. The change from basal to peak was not 

significant in any of the groups. Basal and peak c-peptide were 

negligible in both type I groups. Type II uraemic diabetics had both
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DIABETIC: BASAL AND PEAK RESPONSE TO GLUCAGON

Figure 6.

\

J
o(/>ous

"o
E

0)
aOJo-

NS

16

12

8

4

0
NS

NSNS
3
E

60-

20-

NSNS5

3

1
l

NRF UD UD
type I type II type I 

n 4 4 11

* P < 0.05 
* *  P<0.01

js^j Basal 

I | Peak

NRF-Normal renal function 

UD = Uraemic diabetic

7 Basal and peak responses to glucagon in diabetics 
classified by diabetic type 
Values are mean and SEM



increased basal and peak concentrations (p<0.05) compared to the other 

diabetic groups, but this did not change with glucagon stimulation.

Thus all diabetics independent of diabetic type and renal status 

had a positive glucose response to glucagon. None of the diabetic 

groups showed a beta cell response as neither free insulin nor 

c-peptide concentrations changed with glucagon stimulation. The high 

c-peptide concentrations in the HD group corresponded to the type II 

diabetics in this group.

c) Glucagon response curves

Diabetics classified by renal status (Figure 6.8, values are mean 
and SEM), showed a small but steady rise in glucose in the first 20 

minutes following glucagon and thereafter glucose levels remained 

relatively stable. There was much variability within each group (for 

clarity some of the error bars have been omitted) and overall there 

was no difference between any of the groups.

The free insulin time response showed that the HD group had a 

slight but not significant rise in response to glucagon and 

concentrations throughout remained higher than in the CAPD group. 

Diabetics with NRF, CRF and CAPD showed no response to glucagon and 

free insulin levels remained unchanged. Absolute concentrations of 

free insulin in the NRF and CRF groups were intermediate between the 

HD and CAPD groups. Statistically there was a small difference 

between the HD and CAPD groups (p<0.05).

Plasma c-peptide concentrations were low to negligible in the NRF, 

CRF and CAPD groups, but were elevated in the HD group (p<0.05). No 

change occurred in the curve patterns with time in any group, i.e. 

there was no positive beta cell response.

When the same patients were reclassified by diabetic type (Figure
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6.9, values are mean and SEM), the glucose response showed a slow 

steady rise with time but there was no difference between any of the 

groups.

The free insulin time response was similar in both uraemic and non 

uraemic type I diabetic groups, neither or which responded to glucagon 

stimulation. Type II uraemic diabetics had a small but not 

statistically significant rise in free insulin after glucagon.
Although the type II group had a higher free insulin level in the 

first 20 minutes following beta cell stimulation this was not 
significantly different from the other groups.

G-peptide was negligible in both type I groups and no change 

occurred with glucagon. C-peptide concentrations were elevated in 

type II diabetics (p<0.05) but no change occurred with glucagon.

Thus all diabetics independent of renal status or diabetic type 

had a slow but steady increase in glucose especially within 20 minutes 
of glucagon administration. Although there was variability in the 

free insulin concentrations the small rise following glucagon in the 

HD group could be accounted for by the presence of type II diabetics 

in that group. Likewise, the elevated c-peptide concentrations found 

in the HD group largely corresponded with the type II diabetics. 

However, neither free insulin nor c-peptide increased in any group 

following glucagon, thus there was no positive beta cell response.



DISCUSSION

1. NON-DIABETICS

In this study CAPD was temporarily discontinued 12 hours before 

the glucagon challenge to achieve a fperitoneal* as well as on oral 
fast, for comparison with the other groups. Haemodialysis patients 

were studied on their interdialysis day, that is 24 hours after their 

last dialysis, which represented a state midway between the two 

extremes of pre and post dialysis. These conditions were applied in 

an attempt to achieve comparable basal states. Steroids, which can 

decrease hepatic and peripheral tissue sensitivity to insulin and 

induce hyperglycaemia (Pagano et al., 1983; Rizza et al., 1982), and 

beta blockers, which can impair the insulin response in uraemia (Pun 

et al., 1985), were part of the exclusion criteria of the study. A 

minority of patients (4 out of 10) in the chronic renal failure group 

had been taking frusemide, but there is no direct evidence that loop 

diuretics unlike thiazides can cause deterioration in glucose 

tolerance (Taylor, 1986).

The glucose, insulin and c-peptide responses to glucagon were 

abnormal in uraemics compared to controls. These were manifested by a 

prolonged elevation and a delayed fall in glucose and insulin, as well 

as an increased fasting and persistent elevation of c-peptide. These 

features reflect glucose intolerance induced by uraemia.

Normal fasting blood glucose was found in all subjects. This is a 

common finding in uraemia despite the presence of glucose intolerance 

(DeFronzo et al., 1973), in contrast, to maturity onset diabetes where 

fasting hyperglycaemia and often a normal fasting insulin are found 

(Turner and Holman, 1978).

Although fasting serum insulin was slightly increased in the 

uraemic groups this was not statistically significant. JData on the



fasting insulin state in uraemia are conflicting. Normal fasting 

insulin concentrations have also been reported by many (Spitz et al., 

1970; Roth et al., 1973; DeFronzo, 1978b). Spitz et al. (1970) have 

also reported a group of uraemics with increased basal levels.

Several reports, particularly in the late 1960’s (Hutchings et al., 

1966; Briggs et al., 1967; Horton et al., 1968) found basal 

hyperinsulinaemia in patients with chronic renal failure some of whom 

were on haemodialysis. More recently, decreased fasting insulin 

concentrations were found in CAPD patients (Von Baeyer et al., 1983). 

The reason for the discrepancies is not clear and is probably 

multifactorial.

Studies in the late 1960’s used assay techniques which by today's 

standards were crude and less specific. Both insulin standards and 

antibody preparation were less pure and specific and probably much 

cross-reactivity with proinsulin occurred. This may have resulted in 

over-estimation of serum insulin. The relatively more sensitive and 

specific assay used in this study (detailed in Chapter 5) was a double 

antibody radioimmunoassay with minimal cross-reactivity with 

proinsulin. It has been suggested (DeFronzo, 1978b) that two 

categories of uraemic patients may exist, some having normal basal 

insulin (possibly reflecting impaired beta cell function) and others 

having increased basal insulin (in an attempt to overcome peripheral 

insulin resistance). In this study 8 or the 40 uraemic patients had 
basal levels above the laboratory normal reference range (2.5-13.5 

mu/ml). However, the majority of these had only marginally elevated 

concentrations. Even allowing for the heterogeneity of the uraemic 

population there was no difference between any of the groups.

Fasting plasma c-peptide concentrations were increased in all 

uraemic patients. This confirms the findings of others (Jaspan et



al., 1977) that renal failure impairs the catabolism of c-peptide.
The elevated c-peptide basal concentrations reflect impaired renal 

metabolism rather than basal hypersecretion of the beta cell and this 

in keeping with the essentially normal basal insulin concentrations in 

all the uraemic groups. This has important clinical implications as 

elevated c-peptide in uraemia may mistakenly be interpreted as 

increased beta cell secretory activity. Similarly, the occurrence of 

hypoglycaemia in renal failure in association with elevated c-peptide 

might erroneously suggest the presence of endogenous hyperinsulinaemia 

due to an insulinoma. Increased c-peptide concentration may also be 

due to the presence of proinsulin. The antibody to c-peptide used in 

the radioimmunoassay (Novo Biolab M1230) had a 10% cross-reactivity, 

on a molar basis, with proinsulin. Proinsulin is increased in 

uraemia, largely due to impaired renal degradation (Katz et al., 1973) 

and, therefore, may have contributed in a small way to the increase in 

c-peptide.

The time dependent glucose response to glucagon showed prolonged 

elevation with a delayed rate of decline in all uraemic patients 

although the absolute maximum responses were similar to healthy 

subjects. This is typical of the glucose intolerance induced by 

uraemia and was seen in both non-dialysis and dialysis patients. The 

abnormal time dependent changes may be explained by several 

mechanisms. Increased hepatic sensitivity to glucagon, which is 

documented in uraemia (Sherwin et al., 1976), could account for the 

prolonged hepatic glucose production and the impaired degradation of 

glucagon in uraemia (Lefebvre et al., 1975) could also explain the 

prolonged glucose response. However, peripheral resistance to the 

action of insulin causing impaired peripheral glucose utilization 

(DeFronzo, 1973; 1978b) may also induce the prolonged hyperglycaemia.



The insulin response to glucagon was similar in all uraemic groups 

but differed from the controls. Although the absolute maximum 

response was similar in all subjects a slower rate of rise, prolonged 

elevation and delayed fall in insulin was found in uraemic patients. 

Several mechanisms could be responsible for this type of response. 

Impaired beta cell secretion might account for the slower rate of

rise, but the similar maximum responses in all groups suggests that

beta cell secretion was adequate. The prolonged hyperinsulinaemia 

could be due to tissue insensitivity to insulin (peripheral insulin 

resistance) with relative secondary hypersecretion of the beta cell 

(DeFronzo, 1978b). The prolonged elevation and delayed decline could 

also be explained by delayed renal degradation of insulin (Rubenstein

et al., 1975; Rabkin et al., 1984).

The c-peptide response to glucagon differed markedly in uraemic 

patients compared to normal subjects. The increased basal 

concentrations most likely due to impaired renal catabolism have been 

discussed. However, all uraemic groups despite their elevated basal 

concentrations showed a significant increase in response to glucagon. 

The metabolic clearance rate of c-peptide is much slower than that of 

insulin, thus differences in hepatic extraction and peripheral 

kinetics (Faber et al., 1978) explain the difference in rate of 

decline between insulin and c-peptide in all groups. The slower rate 

of rise followed by persistent elevation (plateau effect) can be 

explained by the impaired renal clearance of c-peptide (Jaspan et al., 

1977; Faber et al., 1978). The small difference between the 

non-dialysis (some residual renal function) and the 3 dialysis groups 

reflects the quantitative role the kidney has in c-peptide removal.

The mean time to reach the maximum response was 6 minutes for both 

insulin and c-peptide in normal subjects and confirms the findings of



others (Faber and Binder, 1977). The time course for all uraemic 

subjects was prolonged in keeping with glucose intolerance.

The molar ratio of c-peptide to insulin is an index of beta cell 

function. The basal ratio in normals was similar to that found by 

Jaspan et al. (1977) and Heding (1975). Following stimulation the 

ratio fell, due to a relatively greater increase in insulin because of 

its lower basal concentration, and was comparable with data of Heding 

(1975). In uraemia the increased basal ratio was due to the high 

basal c-peptide concentration. The basal ratios in this study were 

comparable to that found by Jaspan et al. (1977), who studied a group 

of haemodialysis patients. Following stimulation, although both 

insulin and c-peptide increased there was a fall in the ratio as there 

was a relatively greater increase in insulin. The CRF non-dialysis 

group had marginally lower basal and maximum molar ratios than the 

dialysis groups due to lower c-peptide concentrations which reflected 

a degree of residual renal function.

Fasting plasma c-peptide strongly correlated with fasting serum 

insulin in controls, CRF and haemodialysis subjects but the two 

variables did not correlate in either CAPD group. The reason for this 

is not clear but possibly peritoneal clearance of c-peptide (Wideroe 

et al., 1984) may play a role, although absolute concentrations of 

c-peptide and insulin in both CAPD groups were similar to the other 

uraemic groups. Plasma c-peptide showed a strong positive correlation 

with serum creatinine in the non-dialysis chronic renal failure group, 

but no linear relationship was found in the dialysis groups. This may 

be explained by the differential clearances of both molecules by 

dialysis.

Serum lipoproteins were abnormal in all uraemic groups. The 

characteristic pattern of hypertriglyceridaemia, increased total



cholesterol and low HDL-cholesterol was found in agreement with 

numerous previous studies (Kannel et al., 1979; Norbeck et_al., 1980). 

However, as previously documented, there was much interpatient 

variability in lipoprotein concentrations.

This study confirms that glucose, insulin and c-peptide responses 

to glucagon stimulation in renal failure are different from controls 

and that the abnormalities are due to uraemia. The significant rise 

in beta cell peptides to glucagon confirms adequate pancreatic 

reserve. There were no differences between the non-dialysis, 

haemodialysis or CAPD patients. Thus, there is no evidence that CAPD 

therapy per se has any adverse effect on beta cell function.

2. DIABETICS

The limited number of diabetics on dialysis restricted the study 

and this has to be taken into account when interpreting the results. 

Diabetics were classified by renal status to determine if mode of 

treatment affected beta cell function and by diabetic type which 

clearly has a profound effect on the beta cell integrity.

The majority of diabetics studied were type I. All of the CRF 

group and most of the CAPD group were insulin dependent, of variable 

duration, but generally had diabetes for at least 15 years. Type II 

diabetics were in the minority but accounted for three-fifths of the 

HD group. The duration of type II diabetes was difficult to assess 

with any accuracy but was at least 10 years in all patients.
Hypertriglyceridaemia was found in all diabetic patients and this 

was most marked in the older type II patients. This association 

between hyperlipidaemia and diabetes is well established (Steiner, 

1981; Gibbons, 1986).

All diabetic patients independent of diabetic type or renal status



had an increase in blood glucose in response to glucagon. This is in 

agreement with others (Faber and Binder, 1977), who found an increase 

in hepatic glucose release to glucagon in diabetics. Diabetics had 

persistent hyperglycaemia throughout the 1 hour test suggesting no 
effective counterregulatory insulin response.

Serum free (unbound) insulin was measured by PEG precipitation 

after separation of serum and prior to storage which improves the 

accuracy of the assay (see Chapter 5). However, immediate 

precipitation after venesection has been shown to further improve the 

sensitivity and precision of the method (Hanning et al., 1985). There 

was considerable variation in free insulin concentrations, 

particularly between type I and II diabetics, the latter having much 

less or negligible antibody bound insulin. However, there appears to 

be no definite correlation between total insulin and free insulin 

concentrations in diabetics (Nakagawa et al., 1973). Thus a direct 

comparison between total insulin concentrations in non-diabetics and 

free insulin concentrations in diabetics is not possible. All 

diabetics had similar basal free insulin concentrations which did not 

significantly change after glucagon stimulation, indicating no 

significant beta cell reserve. The time dependent changes essentially 

showed no response, but in the type II group (predominantly HD 

patients) there was a suggestion of an increase in free insulin 

although this was not significant. This has to be interpreted with 

caution in view of the small numbers studied. The absolute 

concentrations of free insulin were higher than found by Nakagawa and 

colleagues (1973). The reason for this is not entirely clear.

Several explanations may account for the differences. The 

radioimmunoassay may have been more sensitive, the presence of uraemia 

in the majority of patients may have contributed to elevated insulin



by inducing peripheral insensitivity to insulin as well as impaired 

renal degradation. Furthermore, type II diabetics may have relatively 

1normal* or even 'high' circulating insulin concentrations due to 
defects in insulin receptor binding. This has been reviewed by Bailey 

et al. (1984).

Fasting plasma c-peptide was just detectable in the type I 

diabetics confirming negligible beta cell function which did not 

change with glucagon stimulation. However, in the type II diabetics 

elevated basal c-peptide was observed but again there was little 

change following glucagon. Thus, it is evident that the circulating 

c-peptide levels were high largely due to the presence of uraemia 

rather than significant residual beta cell function. The time 

dependent changes confirm no effective residual beta cell function.

The high c-peptide concentrations in the type II diabetics obviously 

reflect some degree of beta cell secretion, perhaps even relative 

hypersecretion as a secondary compensatory mechanism, but as no change 

occurred with glucagon stimulation the main mechanism behind the 

elevated levels must be the presence of uraemia. Elevated proinsulin 

in uraemia, which has some cross-reactivity with c-peptide 

estimations, may also have contributed to the increase.

Type I, insulin dependent diabetics generally have negligible beta 

cell function, particularly after 10-20 years, when end stage renal 
disease is reached and therefore it is not unexpected that no response 

to glucagon occurred. Type II, non-insulin dependent diabetics 

present a more complex problem. Defects in both insulin secretion and 

insulin action have been demonstrated (Reaven, 1984; Truglia et al., 

1985; O’Rahilly et al., 1986). This is further complicated by the 

effect of uraemia (discussed in detail in Chapter 2). From this study 

the effects of diabetes predominate over the uraemic effects and it is



not possible to conclude what effect if any, dialysis per se has on 

beta cell function in diabetics. The small though insignificant rise 

in insulin in the HD group reflects the presence of type II diabetics 

rather than any specific effect of haemodialysis.

The important points derived from this study are that c-peptide 

and possibly free insulin concentrations may be altered by the 

presence of uraemia. The interpretation of beta cell function by 

random c-peptide measurements may falsely imply adequate reserve. The 

use of c-peptide determination as a means of assessing deficiency of 

endogenous insulin secretory capacity and to categorise type II 

diabetics into those requiring diet, oral drugs or even insulin 

therapy has been widely studied (Madsbad et al., 1981; Rendell, 1983). 

However, the presence of renal failure will increase the c-peptide 

concentration and thus limit the potential of this test.

The use of recent techniques such as the hyperglycaemic and 

euglycaemic clamp (DeFronzo et al., 1978a) and continuous infusion of 

glucose with mathematical model assessment (O'Rahilly et al., 1986) 

may in the future elucidate residual beta cell function in diabetics 

with uraemia.



SUMMARY

Pancreatic beta cell function was evaluated in uraemic patients by 

measuring the beta cell peptides in the peripheral blood after glucagon 

stimulation. Non-diabetic subjects in chronic renal failure, on 

haemodialysis, new to and established on CAPD were studied. Fasting 

glucose and insulin concentrations were normal and did not differ between 

the uraemic groups, but c-peptide concentrations were markedly increased. 

Following glucagon stimulation an exaggerated blood glucose response with 

delayed glucose peak was observed, while the peak insulin response was 

normal but the return to basal concentrations was delayed in uraemia. The 

c-peptide response was also exaggerated and peak concentrations in uraemic 

subjects were greatly increased. The possible underlying mechanisms are 

discussed. Glucose intolerance persisted despite dialysis therapy 

confirming the abnormalities were due to the underlying uraemia. However, 

the glucagon test showed significant increments in beta cell peptides 

reflecting adequate residual beta cell function. The response was similar 

in both new and established CAPD patients to those on haemodialysis and 

non-dialysed chronic renal failure patients. Thus, it can be concluded 

that despite continuous intraperitoneal glucose CAPD per se does not 
adversely affect beta cell function.

Glucagon stimulation in diabetics was assessed by classifying patients 

by diabetic type and mode of renal therapy. As expected, type I diabetics 

had no beta cell response, although glucagon caused a rise in glucose.

Type II diabetics showed hepatic glucose release and a very small beta cell 

response. However, the absolute concentrations of c-peptide in uraemic 

diabetics can be misleading as concentrations are elevated due to impaired 

renal degradation. This dynamic test of residual beta cell function 

confirmed no significant reserve in any of the diabetic subjects. The 

effect of diabetes predominated over any possible uraemic effect and 

dialysis per se had no detectable effect on beta cell function.



CHAPTER 7

GLUCOREGULATORY HORMONES AND INTERMEDIARY METABOLITES IN CAPD



INTRODUCTION

The continuous peritoneal glucose absorption that occurs in CAPD 

could conceivably affect glucoregulatory hormone homeostasis and 

intermediary metabolism, but to date this has not been adequately 

investigated. The normal physiological and biochemical changes in the 

post-absorptive state (after an overnight fast) induce a tendency to 

stimulate gluconeogenesis, lipolysis and ketogenesis. After a meal or 

oral glucose load increased glycolysis and inhibition of 

gluconeogenesis, lipolysis and ketogenesis occurs. This has been 

discussed in Chapter 1.

The hyperglycaemia and hyperinsulinaemia in CAPD have been 

documented (Heaton et al., 1983; Armstrong et al., 1985), but only one 

group has studied the changes in intermediary metabolism (Heaton et 

al., 1983). In a small group of patients Heaton et al. showed 

elevation of gluconeogenic precursors and decreased ketone bodies 

during CAPD. No other reports have been published.

Furthermore, although high and low dextrose dialysis solutions may 

affect hormone and metabolite homeostasis, other factors such as age, 
diabetes mellitus and peritonitis may also have additional 

consequences. CAPD patients are frequently elderly or diabetic and 

peritonitis is the commonest complication of this mode of treatment.

1- Age

Disposal of an oral or intravenous glucose load is impaired with 

aging. This is probably multifactorial and factors such as reduced 

diet, physical inactivity and decreased lean body mass may all play a 

role. Pancreatic beta cell function appears to be normal but evidence 

of insulin antagonism is strong though not conclusive (Davidson,

1979). Peripheral insensitivity to insulin has been suggested as the



mechanism of glucose intolerance in the elderly (DeFronzo et al., 

1978a) and probably due to a post-receptor or intracellular defect 

rather than a receptor defect (Jackson et al., 1982). A similar 

mechanism has been suggested for the glucose intolerance seen in 

uraemia (Smith et al., 1982; Pedersen et al., 1985) and is discussed 

in Chapter 2. CAPD has been a particularly suitable treatment for the 

elderly (Nicholls et al., 1984), and at least one third of CAPD 

patients are over 60 years of age (Nolph et al., 1985). Hence the 
importance of assessing the effect of CAPD on glucoregulatory hormones 

and intermediary metabolites in the elderly. To date no studies have 

been reported.

2. Diabetes

The effect of diabetes on gluconeogenesis and ketogenesis is well 

documented and is discussed in Chapter 1. Diabetics have deranged 

glucoregulatory hormones and under certain conditions, particularly 

infection and poor blood glucose control, can have disturbances of 

intermediary metabolism, such as lactic acidosis and increased 

ketogenesis. Furthermore, diabetics with end stage renal failure are 

frequently treated by CAPD (Flynn et al., 1983; Khanna et al., 1986). 

Indeed in the U.K. CAPD is the preferred mode of dialysis for 

diabetics (Cameron and Challah, 1986). Thus it is relevant to 

investigate the hormonal and intermediary metabolic effects of 

intraperitoneal glucose absorption, particularly as no studies have 

been previously reported.

3. Peritonitis

Peritonitis is by far the commonest complication of CAPD. Single 

centre studies show an incidence of about 1.7 episode of peritonitis



per year (Smith et al., 1986) and large multicentre registry data 

shows similar results with a 66% risk of patients developing 
peritonitis in 1 year (Nolph et al., 1985). Occasionally, peritonitis 

can be recurrent and is one of the main reasons for failure of CAPD 

therapy (Heaton et al., 1986; Tsakiris et al., 1986). Peritonitis is 

associated with increased glucose absorption from the dialysate (Rubin 

et al., 1981), which can induce loss of ultrafiltration (Verger et_ 

al., 1984) resulting in the need for more hypertonic exchanges to 

achieve adequate fluid balance. Although the effect of increased 

permeability of the peritoneum to glucose is known the hormonal and 

intermediary metabolite status during peritonitis have not been 

studied.

4. Objectives

Thus, the primary objective of the study was to determine the 

glucoregulatory hormone and intermediary metabolite status in CAPD 

patients. This was investigated in several ways. Firstly, fasting 

concentrations were determined in CAPD patients as well as other 

uraemic patients to distinguish the effects of CAPD from those of 

uraemia. Secondly, low and high dextrose dialysate solutions were 

studied to assess the quantitative effect of peritoneal glucose 

absorption. Thirdly, specific categories of CAPD patients were 

investigated, namely, diabetics, the elderly and patients with 

peritonitis to determine if any of these factors had any metabolic 

consequences on glucoregulatory hormone homeostasis and intermediary 

metabolism.



METHODS

1. Patients

Glucoregulatory hormones and intermediary metabolites were 

measured after an overnight fast in a 'mixed uraemic population1. Ten 

healthy subjects acted as controls, 6 non-dialysis patients with 
advanced chronic renal failure were the CRF group, 6 patients on 
haemodialysis were the HD group and 42 patients on CAPD were also 

studied. After a 12 hour overnight fast CAPD patients had hormone and 

metabolite profiles measured during a 6 hour peritoneal dialysis 
cycle.

The CAPD patients were classified into 7 groups, with 6 patients 
in each; isotonic, hypertonic, new, elderly, peritonitis, diabetic and 

overnight peritoneal dialysis. The isotonic group was given low 

dextrose (1.5% or isotonic) dialysis solution during the study. All 

the other groups were given high dextrose (4.25% or hypertonic) 

dialysis solution. The group named 'hypertonic1 (H) was used as the 
reference group during the CAPD profiles. The 'new' (N) group were 

patients recently established on CAPD (for more than 1 month but less 

than 6 months). Most patient had about 3 months of therapy prior to 

the study. The 'elderly' (E) group were patients over the age of 65 

years. The 'peritonitis' (P) group consisted of patients with proven 

bacterial peritoneal infection who were studied within 4 days of the 

onset of peritonitis. The 'diabetic' (D) group were patients who had 

diabetic nephropathy as the cause of their renal failure. All were 

taking insulin supplementation in the form of intraperitoneal insulin. 

Four patients were 'insulin dependent* and 2 were 'insulin treated'. 

The last group, overnight peritoneal dialysis (OPD), were patients who 

continued their peritoneal dialysis prior to the study, i.e. they did 

not omit their overnight exchange and had an isotonic cycle prior to



the metabolic profile.

2. Protocol

All subjects had a 12 hour oral fast and all CAPD patients except 

the OPD group omitted their overnight dialysis cycle. Haemodialysis 

patients were studied on their interdialysis day (18-24 hours after 

their last dialysis). Fasting blood specimens were taken between 0900 

and 1000 hours and CAPD profiles were studied between 0900 and 1500 

hours.

None of the CAPD patients were taking steroids, B-blockers or 

thiazide diuretics prior to the study. Diabetics omitted their 

intraperitoneal insulin during the study and blood glucose was 

monitored regularly with BM stixs (Boehringer). Patients with 

peritonitis also omitted their intraperitoneal antibiotics during the 

study cycle.

An intravenous cannula was inserted into a forearm vein and kept 

patent by heparinised saline flushes after each blood sample. Any 

residual peritoneal fluid was drained from the peritoneal cavity into 

the empty overnight bag which was attached the previous night to keep 

the CAPD system closed and sterile. Body weight and blood pressure 

were recorded and dialysis fluid bags were weighed and an aliquot 

taken for analysis prior to instillation. The exact time of 

instilling the fluid was recorded and the mid-point was taken as zero 

time. Subsequent blood specimens were taken at 15, 30, 45, 60, 90, 

120, 180, 240 and 360 minutes. At the end of the cycle the dialysate 

effluent was drained, weighed and an aliquot was taken for analysis.

During the 6 hour exchange no food or fluids were given except 
water. Most patients consumed between 200 and 400 ml of water. 

Patients remained semi-supine for most of the study. At the end of



the study cycle an isotonic exchange was performed and patients 

continued with their usual CAPD regimen. Intraperitoneal insulin was 

adjusted according to blood glucose estimations and intraperitoneal 

antibiotics were resumed in the peritonitis group. Patients continued 

their usual diets which had a caloric value of 35-45 Kcal/Kg/day and 

protein intake of about 1.2 g/Kg/day.

The study was approved by the Sheffield Hospitals Medical Ethics 

Committee and all subjects gave informed written consent.

3. Assays

Blood for glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate, 

acetoacetate and glycerol was taken into ice cold perchloric acid.

The automated enzymic fluorometric continuous flow assays (Lloyd et_ 
al., 1978) and the manual spectrofluorometric assay for acetoacetate 

and pyruvate are detailed in Chapter 5. Dialysate glucose and lactate 

were measured by the same technique. Blanks were run for all 

metabolites to exclude non-specific (native) fluorescence due to 

uraemia. Blood for hormone assays was kept ice cold until separated 

(within 4 hours). Frozen plasma or serum was stored at -20°C until 

assayed. Serum insulin was measured by double antibody 

radioimmunoassay, a modification of the method of Soeldner and Slone 

(1965). Free insulin in diabetics was measured after antibody 

precipitation with polyethylene glycol. Plasma c-peptide was measured 

by a radioimmunoassay kit (Novo Biolab) and glucagon by c-terminal 

specific radioimmunoassay with wick chromatography (Orskov et al., 

1968). Growth hormone and cortisol were measured by double antibody 

radioimmunoassays from ’in house kits'. Details of all assays are 

described in Chapter 5.



4. Peritoneal dialysis solutions

All CAPD patients used Fresenius standard dialysis solutions 

(Perito-Flex, Fresenius, The Dylade Co. Ltd., Runcorn, U.K.). The 

isotonic fluid contained 1.5% glucose (15 g/1 or 84 mmol/1) and the 
hypertonic solution contained 4.25% glucose (42.5 g/1 or 237 mmol/1). 

The other constituents of the peritoneal fluid were:- 

Sodium 134 mmol/1 (5.786 g/1 NaCl)

Calcium 1.75 mmol/1 (0.257 g/1 CaC^)

Magnesium 0.50 mmol/1 (0.102 g/1 MgC^)

Chloride 103.5 mmol/1

Lactate 35.0 mmol/1 (3.924 g/1 Na lactate)

The isotonic fluid contained glucose in the form of dextrose 

monohydrate 16.5 g/1, equivalent to anhydrous dextrose 15 g/1. The 

hypertonic fluid contained dextrose monohydrate 46.5 g/1, equivalent 

to 42.5 g/1 of anhydrous dextrose. The osmolality of the isotonic 

fluid was 358 mosm/1 and the hypertonic solution was 511 mosm/1.

5. Statistics

Statistical analysis was performed using the paired Tt' test to 

compare changes within a group and by analysis of variance to compare 

changes between groups. Generally parameters had a normal 

distribution but metabolites had a slightly skewed distribution. 

Correlations were sought using linear regression analysis.



RESULTS

Glucoregulatory hormones and intermediary metabolites were 

determined in a mixed uraemic population. In the fasting state 

healthy control subjects were compared with chronic renal failure, 

haemodialysis and CAPD patients. This latter group, CAPD (n=30), was 

an amalgamation of 5 CAPD subgroups (viz: isotonic, hypertonic, new, 

elderly and peritonitis). The CAPD subgroups were abbreviated by the 

letter(s)

I = Isotonic 

H = Hypertonic 

N = New 

E = Elderly 

P = Peritonitis 

D = Diabetic

OPD = Overnight peritoneal dialysis

It should be noted that during the CAPD cycle all patients were 

given a hypertonic (high dextrose) solution except those in the 

isotonic group who were given isotonic (low dextrose) solution.

Results are presented in five sections

1. General data including clinical variables

2. Fasting hormone and metabolite status

3. Hormones and metabolites during a CAPD cycle

4. Hormones and metabolites in diabetics on CAPD

5. Dialysate glucose and ultrafiltration

1. GENERAL DATA

Clinical data for the control and three uraemic groups (CRF, HD, 

CAPD) are shown in Table 7.1 (values are mean and SEM). Age and serum 

creatinine were comparable in the uraemic groups. Fasting serum total
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cholesterol was elevated in the CAPD group (p<0.01), whereas the CRF 

and HD subjects, although they had a high cholesterol level this was 

not significantly different from controls. Fasting serum total 

triglycerides were markedly increased in all the uraemic groups 

(p<0.001). Fasting HDL-cholesterol was significantly decreased in the 

uraemic subjects.

CAPD patients were subgrouped as shown in Table 7.II (values are 

mean and SEM). This classification is used throughout the result 

section of the chapter. More females participated in the study 

reflecting the female predominance in CAPD at the centre. Most 

patients were between 50 and 65 years of age except for the elderly 

group, all of whom were over 65 years. The mean weight in each group 

was comparable and varied between 60 and 75 Kg. Fasting serum total 

cholesterol and triglycerides were increased and HDL-cholesterol was 

decreased in all subgroups.

2. GLUCOREGULATORY HORMONES AND INTERMEDIARY METABOLITES IN THE 

FASTED STATE

a) Glucoregulatory Hormones

Fasting hormone concentrations for each group and CAPD subgroups 

are shown in Table III (values are mean and SEM). Glucose 

concentrations were not significantly different in any of the groups 

or subgroups compared to controls. Fasting serum insulin 

concentrations were similar to controls in all but two CAPD subgroups. 

The hypertonic (H) subgroup had a higher basal insulin concentration 

(p<0.05), although the mean value was in the accepted normal reference 

range (2.5-13.5 mU/1) for the assay. The OPD subgroup also had a 

higher basal insulin concentration but this set of patients were not 

in a true fasted state as they have peritoneal dialysis immediately
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prior to the study. Plasma c-peptide was grossly elevated (pcO.OOl) 

in all uraemic patients with the exception of diabetics on CAPD.

Basal c-peptide in diabetics was similar to controls (p<0.05).

Fasting plasma glucagon was increased in all the uraemic groups 

particularly the CRF and haemodialysis groups (p<0.01). However, in 

CAPD patients basal glucagon was variable and was only significantly 

increased in the I subgroup (p<0.01). Serum growth hormone 

concentrations showed wide variation in the fasting state and although 

increased in some uraemic patients overall there was no difference 

between controls and any of the uraemic groups or CAPD subgroups. 

Fasting plasma cortisol was increased (p<0.01) in the CRF and HD 

groups. However, the main CAPD group and all subgroups, (except the 

OPD subgroup), showed no significant change in basal cortisol 

concentrations.

Figures 7.1 to 7.6 show the fasting glucose and hormone 

concentrations for each main group and the subgroups. Values are mean 

and SEM. The p values are derived from one way analysis of variance 

and compare controls with the appropriate uraemic group or subgroup. 

The CAPD subgroup, N (new), OPD (overnight peritoneal dialysis) and D 

(diabetic) have been omitted. These subgroups were omitted because 

the N group behaved in an identical manner to the H group, the OPD 

group did not represent a true fasted state and the D group is 

presented later in the diabetic section.

b) Intermediary Metabolites

Fasting intermediary metabolites for each main group and CAPD 

subgroups are shown in Table 7.IV (values are mean and SEM). Glucose 
was unchanged as previously stated. Fasting blood lactate, pyruvate 

and alanine were similar to control values and the lactate:pyruvate
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ratio was normal in all groups and subgroups. Fasting 

3-hydroxybutyrate was higher in the uraemic patients but this was only 

significantly different in the CRF group (p<0.05) and the elderly CAPD 

subgroup (p<0.05). Basal acetoacetate was also higher in uraemia but 

was only significantly increased in the CAPD group (p<0.05) and 

largely due to the elderly subgroup (p<0.01). The 

3-hydroxybutyrate:acetoacetate ratio was essentially normal but was 

moderately increased in the CRF group due to a relative increase in 

3-hydroxybutyrate. Fasting glycerol concentrations were generally 

higher in uraemia and this was most marked in the CAPD group (p<0.05) 

and again predominantly due to the elderly subgroup (p<0.01). The 

diabetic and OPD subgroups also had significantly raised glycerol 

concentrations.

Figures 7.7 to 7.12 show the fasting intermediary metabolite 

concentrations for each group and CAPD subgroups. Values are mean and 

SEM. Three subgroups have been omitted for reasons explained above.

In summary, in the fasting or post-absorptive state total 

triglycerides were increased and HDL-cholesterol decreased in all 

uraemic patients. Total cholesterol was significantly increased only 

in CAPD patients. Fasting glucose and insulin were normal but 

c-peptide was grossly elevated in uraemia. Glucagon was increased in 

the CRF and haemodialysis patients and in many of the CAPD subjects. 

Lactate, pyruvate and alanine were normal but the ketone bodies and 

glycerol were increased in uraemic patients, particularly the elderly 

subjects on CAPD.
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3. HORMONE AND INTERMEDIARY METABOLITES DURING A PERITONEAL DIALYSIS

CYCLE

The hormone and metabolite changes with peritoneal glucose 

absorption over a 6 hour dwell period are shown in Figures 7.13 to 
7.24. The mean concentrations are plotted at 10 time intervals but 

the SEM has been omitted from some points for clarity of illustration, 

where there was no significant difference. The new, diabetic and 

overnight peritoneal dialysis groups have been omitted for reasons 

previously stated.

a) Glucoregulatory Hormones

Glucose: Blood glucose (Figure 7.13) significantly increased in

all groups (p<0.01) and especially with hypertonic dialysate. Glucose 

showed a small but significant increase from 5 to 6 mmol/1 with 
isotonic dialysate reaching a maximum at 30 minutes. Hypertonic 

dialysate increased blood glucose from 5 to over 9 mmol/1 and peaked 

at 60 minutes. Patients with peritonitis had a more rapid rise and . 

increased blood glucose concentration which was significantly higher 

than the H (hypertonic) group (p<0.05). The H group had a markedly 

increased blood glucose compared to the I (isotonic) group (p<0.01). 

Blood glucose concentrations returned to their basal levels by 4 

hours.

Insulin: The rise in serum total insulin (Figure 7.14) paralleled

that of glucose. The rapid rise in the first 15 minutes was followed 

by smaller increments over the first hour. All groups showed a 

significant rise in insulin from basal concentrations (0.001<p<0.05). 

The isotonic fluid produced much smaller increments compared to 

hypertonic fluid. There was approximately a 3-fold increase in
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insulin in response to hypertonic solution. The difference in serum 

insulin between the hypertonic (H) group and the isotonic (I) group 

was highly significant throughout most of the cycle (p<0.001). The 

peritonitis (P) group had a higher insulin concentration over the 

first 3 hours of the cycle but this was not statistically different 

from the H group. Insulin concentrations returned to basal level by 4 

hours.

C-peptide: Plasma c-peptide concentrations (Figure 7.15) were

elevated at the start and increased further during peritoneal 

dialysis. The isotonic solution produced a small but significant 

increase (p<0.05) but the 3 groups using hypertonic fluid had a marked 

increase (p<0.01). The rate of rise was slower than that of glucose 

and insulin, reaching a maximum by 2 hours with hypertonic fluid.
There was a very slow decline and c-peptide concentrations did not 

return to their basal levels by 6 hours in groups using the high 
dextrose dialysate. The difference between the H and I groups was 

significant throughout most of the cycle (p<0.05). The peritonitis 

(P) group had a more rapid rise and reached higher concentrations than 

the other groups using hypertonic fluid but the difference was not 

significant.

Glucagon: There was marked variation in plasma glucagon

concentrations within each group (Figure 7.16). The general trend 

showed a fall in glucagon over the first hour of the dialysate dwell. 

Although basal glucagon was high in the isotonic group no significant 

change occurred during the dialysis cycle. The hypertonic (H) and 

elderly (E) groups showed a small but significant fall in glucagon 

(p<0.01), while patients with peritonitis (P), although they had a
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similar trend did not produce a significant fall in glucagon.

Glucagon was significantly decreased (p<0.05) during the first 2 hours 

of dialysate dwell in the H group compared to the I group.

Growth hormone: Serum growth hormone concentrations fluctuated

both within and between groups (Figure 7.17). Overall there was no 

clear trend in response to the peritoneal glucose load. The isotonic 

group showed a fall in growth hormone over the 6 hours (p<0.05) while 
the other groups showed marked variability and no real change. There 

was no difference between any of the groups.

Cortisol: Plasma cortisol concentrations (Figure 7.18) also

showed considerable variation both within and between groups. Overall 

there was no change during the peritoneal dialysis cycle and no 

difference between any of the groups.

b) Intermediary Metabolites

Lactate: Blood lactate (Figure 7.19) increased in all patients

during peritoneal dialysis (p<0.05) reaching a peak by 60 minutes and 

returning to basal concentrations by 4 hours. There was no 

significant difference in lactate concentrations throughout the cycle 

between the isotonic (I) and the hypertonic (H) or elderly (E) groups, 

although the elderly group did have higher levels in the first 2 
hours. However, lactate concentrations were significantly higher 

(p<0.01) in the peritonitis (P) group compared to the others. A rapid 

rise within the first hour of dwell and approximately a 3-fold 

increase from basal concentrations was observed.

Pyruvate: Pyruvate (Figure 7.20) behaved similarly to lactate but
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the increase from basal concentrations was smaller. The rise in 

pyruvate concentration was not significant in the hypertonic (H) 

group, but small and significant changes (p<0.05) were seen in both 

the isotonic and elderly groups. The peritonitis group showed a 

marked increase in pyruvate (p<0.01) which reached a maximum at 60 
minutes and declined to basal levels by 4 hours. The difference in 

peak pyruvate between the hypertonic (H) and peritonitis (P) groups 

was significant (p<0.05).

Lactate:pyruvate ratio: The lactate:pyruvate ratio (Table 7.V)

was essentially normal (10:1) throughout dialysis in most groups. The 

exceptions were in the elderly and particularly in the peritonitis 

group which showed an increased ratio due to the relatively greater 

increase in lactate.

Alanine: Blood alanine concentrations (Figure 7.21) were variable

but remained normal during dialysis. There was a small but 

statistically significant rise in alanine concentrations (p<0.05) in 

the elderly and isotonic groups during the first 2 hours of dwell. No 

change occurred in either the hypertonic (H) or the peritonitis 

groups. Furthermore, there was no difference between any of the 

groups during the cycle.

3-Hydroxybutyrate: Blood 3-hydroxybutyrate (Figure 7.23)

decreased from high fasting concentrations to trough levels between 2 
and 3 hours and then increased over the remainder of the cycle. The 

decrement was generally greater with the high glucose dialysis 

solutions. However, the decrease in 3-hydroxybutyrate was significant 

in the isotonic and elderly groups (p<0.05) but not in the hypertonic
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(H) and peritonitis groups. The increment from the mid cycle trough 

to the end of the dwell was more prominent with the low glucose 

dialysate than with hypertonic fluids. The difference in 

3-hydroxybutyrate concentrations between the isotonic (I) and the 

hypertonic (H) groups was significant (p<0.01) in the latter half of 

the cycle.

Acetoacetate; Acetoacetate (Figure 7.24) responded similarly to 

3-hydroxybutyrate. All groups showed a significant fall from high 

fasting concentrations to trough levels at about 1 hour (p<0.05).

There was no difference between any of the groups, with the exception 

of higher acetoacetate concentrations in the latter half of the cycle 

in the isotonic (I) compared to the hypertonic (H) group (p<0.05).

3-hydroxybutyrate:acetoacetate ratio; The 3-hydroxybutyrate: 

acetoacetate ratio (Table VI) was essentially normal (1:2) throughout 

most of the dialysis cycle in most groups. However, the hypertonic 

(H) and elderly (E) groups had low ratios in mid cycle due to the 

relatively greater decrease in 3-hydroxybutyrate.

Glycerol: Blood glycerol concentrations (Figure 7.22) decreased

(p<0.05) in all groups in the first 60 minutes and then gradually 

returned towards basal levels particularly during the last 2 hours of 
the dialysis dwell. The hypertonic solutions appeared to have a more 

suppressive effect on glycerol but there was no significant difference 

between any of the groups.

A summary of the glucoregulatory hormone and intermediary 

metabolite changes induced by peritoneal glucose absorption during a
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dialysis cycle are shown in Table 7.VII. Generally, greater changes 

were observed with hypertonic than isotonic fluid. The presence of 

peritonitis showed a greater, increase in glucose, insulin, c-peptide, 

lactate and pyruvate compared to other patients given similar 

hypertonic solutions.

4. HORMONAL AND METABOLITE CHANGES IN DIABETICS ON CAPD

a) Post-Absorptive State

Fasting serum total cholesterol and triglycerides were increased 

(p<0.001) and HDL-cholesterol decreased (p<0.01) in diabetics on CAPD 

compared to controls (Table 7.II). Fasting blood glucose was higher 

(7.3+1.5 mmol/1), but due to the wide individual variation this was 

not significantly different from controls. Serum free (unbound) 

insulin was measured in diabetics and, therefore, not directly 

comparable with the total insulin measured in non-diabetics. Fasting 

c-peptide, glucagon, growth hormone and cortisol were not 

significantly different from controls. The mean fasting c-peptide 

concentration was within the normal range but this was due to 2 
patients having high basal levels and 4 having low concentrations. 

Lactate, pyruvate and alanine were normal but the ketone bodies 

(3-hydroxybutyrate and acetoacetate) and glycerol were increased in 

diabetics (p<0.05).

b) During a Hypertonic Dialysate Cycle

Changes in hormone and metabolite concentrations in diabetics 

during a hypertonic exchange are shown in Figures 7.25 to 7.35 (values 

are mean and SEM). It should be noted that no exogenous insulin 

supplementation was given prior to or during the dialysis cycle. The 

non-diabetic group used for comparison with the diabetics was the



hypertonic (H) group.

Glucose: Blood glucose (Figure 7.25) increased from 7.3 to 14.5

mmol/1 in the first 90 minutes (p<0.05) and then reached a plateau 

over the remainder of the cycle. There was no decline in glucose 

during the 6 hour cycle. The difference in glucose concentrations 

were significant between diabetic and non-diabetics from 1 hour 
onwards (p<0.05).

Insulin: Diabetics showed no change in free (unbound) insulin

(Figure 7.26) in contrast to the endogenous insulin release in 

non-diabetics with hypertonic dextrose solution. Accepting the 

limitations of comparing free with total insulin, it can nevertheless 

be seen that there was an obvious difference in insulin response 

between the groups (p<0.05), particularly during the first 2 hours of 

the dialysis exchange.

C-peptide: Plasma c-peptide concentrations (Figure 7.27) remained

unchanged in diabetics throughout the hypertonic exchange. In 

contrast, non-diabetics had a progressive increase in c-peptide in the 

first half of the cycle and then remained persistently elevated in the 

second half of the exchange. Significant differences were found 

between the 2 groups throughout (0.001<p<0.05). The diabetics had a 

mean c-peptide value of about 1 mmol/1. This was due to 2 patients 

having concentrations in excess of 2 mmol/1 and 3 patients having 

negligible concentrations. However, none of the diabetic patients 

showed any tendency to increase their c-peptide with peritoneal 

glucose absorption.
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Glucagon: Plasma glucagon (Figure 7.28) showed no change in

diabetics throughout the dialysis cycle. Although the non-diabetic 

group had a lower concentration of glucagon in the first half of the 

cycle there was no significant difference between the groups.

Growth hormone and cortisol: Serum growth hormone and plasma

cortisol (Figure 7.29) did not show any change during the 6 hour dwell 
and there was no difference in either hormone between diabetics and 

non-diabetics.

Lactate: Blood lactate (Figure 7.30) in diabetics increased

(p<0.05) over the first hour of dialysis and gradually decreased from 

2 to 6 hours. This was similar to non-diabetics and no difference was 

found between the groups.

Pyruvate: Pyruvate (Figure 7.31) did not show any significant

change in diabetics over the 6 hour exchange. There was no difference 

between diabetics and non-diabetics throughout the cycle. The 

lactate:pyruvate ratio was essentially normal in diabetics throughout 

the exchange (Table 7.V).

Alanine: Blood alanine (Figure 7.32) did not show any change

during the dialysis cycle and there was no difference between diabetic 

and non-diabetic patients.

3-hydroxybutyrate: 3-hydroxybutyrate (Figure 7.34) remained

elevated and did not change in diabetics during the hypertonic glucose 

load. In contrast, the non-diabetics showed a decrease from fasting 

concentrations to a trough level in 1 hour, although the decrement was
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Ê

rs**
V

0.06-

0.02-

•  D iabetic  

o Non Diabetic

u M I U -
o..

V f l - '"£ £

0 2 3
Time(hours)

o-JL

"I

6

Figure 7.35 Diabetic: Acetoacetate profile



not statistically significant due to the large variation in basal 

concentrations. However, diabetics had significantly higher (p<0.05) 

3-hydroxybutyrate concentrations between 1 and 3 hours than 
non-diabetics.

Acetoacetate: Acetoacetate (Figure 7.35) responded similarly to

3-hydroxybutyrate. In diabetics acetoacetate remained persistently 

elevated throughout the hypertonic exchange. In contrast 

non-diabetics showed a decrease (p<0.05) within the first hour. There 

was marked variation in acetoacetate concentrations in the diabetic 

group particularly towards the end of the cycle. Significant 

differences (p<0.05) were found between the groups at 1 to 2 hours of 

dialysis dwell.

The 3-hydroxybutyrate:acetoacetate ratio remained essentially 

normal in diabetics (Table 7.VI). In contrast the non-diabetics (i.e. 

hypertonic H group) showed a decrease in the ratio between 1 and 3 

hours of the cycle due to a relatively greater fall in 

3-hydroxybutyrate.

Glycerol: Glycerol (Figure 7.33) showed no change during the

dialysis cycle in diabetics and concentrations remained persistently 

elevated. In contrast the non-diabetics had a small but significant 

fall (p<0.05) in glycerol in the first half of the cycle. There was, 

however, no significant difference in glycerol concentrations between 

the two groups throughout the dialysis dwell.

A summary of the hormone and metabolite changes in diabetics in 

the post absorptive (fasting) state and during a high dextrose 

peritoneal dialysis exchange are shown in Table 7.VIII. As previously
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stated, the non-diabetics were patients in the hypertonic (H) CAPD 

subgroup.
In the fasting state glucose was increased and c-peptide was 

decreased in diabetics compared to non-diabetics on CAPD. Glucagon 

was marginally increased in both diabetics and non-diabetics though 

not significantly different from healthy subjects. Fasting growth 

hormone, cortisol, lactate, pyruvate and alanine were unchanged in 

both CAPD groups, xrhile basal ketone bodies and glycerol were 

increased in diabetics.

During the hypertonic (42.5 g/1) dextrose peritoneal load the 

changes due to glucose occurred generally in the early part of the 

cycle. Blood glucose increased but serum free insulin, c-peptide and 

glucagon remained unchanged in diabetics. Growth hormone and cortisol 

were unaltered in both groups. Lactate showed a small increase but 

pyruvate and alanine did not change in diabetics. In contrast to 

non-diabetics the ketone bodies and glycerol were not suppressed by 

peritoneal glucose in diabetics.

5. DIALYSATE, GLUCOSE AND ULTRAFILTRATION

The ultrafiltration volume (UFV) was calculated from the 

difference in weight between the pre- and post-dialysis fluid.

Glucose and lactate were also measured in the dialysate pre- and 

post-exchange. The ultrafiltration volumes and dialysate glucose 

concentrations are shown in Figure 7.36 (values are mean and SEM).

The isotonic (15 g/1) solution had a measured pre-dialysis glucose of 

81.0+0.7 mmol/1 and a post-dialysis glucose of 24.3+2.2 mmol/1. The 

ultrafiltration volume was 150+50 ml for the isotonic group. The 

pre-dialysis glucose concentration for the hypertonic (42.5 g/1) 

solution was 224.6+52.4 mmol/1 and the post-dialysis concentration was
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42.5+2.0 mmol/1. These values were the mean of 30 hypertonic 

solutions. The mean ultrafiltration volume for the hypertonic groups 

varied between 678 ml and 923 ml for the 6 hour dwell. Dialysate 

effluent glucose concentrations were similar in all hypertonic groups 

and although the ultrafiltration volume was lower in the peritonitis 

group this was not significantly different from the others.

It should be noted that a "2 litre" dialysis fluid bag contained 

marginally more than 2000 ml. A 2 litre 1.5% (isotonic) bag weighed 

about 2100g and a 2 litre 4.25% (hypertonic) bag weighed about 2150g. 

This data was derived from over 100 separate bag weighings including 

the 42 bags used in this study. However, the marginal excess does not 

affect the results and was consistent throughout.

The amount of glucose and lactate absorbed from 2 litres of 

dialysis fluid over a 6 hour cycle is shown in Table 7.IX (values are 
mean and SEM). The isotonic fluid (15 g/1 dextrose) resulted in 21g 

(70%) of glucose being absorbed while the hypertonic solutions (42.5 

g/1 dextrose) resulted in absorption of between 65 and 71g of glucose 

(76-84%). Lactate absorption, 6.6-6.9g (84-88%), was uniform in all 

patients.

Changes in total body weight was a relatively insensitive marker 

of ultrafiltration capacity over a single dialysis cycle. The 

decrease in body weight and measured ultrafiltration volume are shown 

in Table 7.X. No significant correlation was found between change in 

body weight and ultrafiltration volume.

Ultrafiltration showed considerable variability within each group. 

Individual ultrafiltration volumes are plotted against the amount of 

glucose absorbed over 6 hours (Figure 7.37). Apart from the obvious 
difference between the isotonic and hypertonic fluids, ultrafiltration 

varied from individual to individual even though the amount of glucose



absorbed was fairly constant (approximately between 60 and 80g with 

hypertonic solutions). No significant linear correlation was found 

between the quantity of glucose absorbed and ultrafiltration capacity 

for any one group or even all groups combined.
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DISCUSSION

The study is discussed in 5 sections in a similar format to the 

results. Firstly, some comments on the design of the study followed 

by discussion of the metabolic variables in the post-absorptive state 

and then during the peritoneal dialysis cycle. The penultimate 

section discusses diabetics on CAPD and finally comments about 

dialysate changes and ultrafiltration.

1. GENERAL

Glucoregulatory hormones and intermediary metabolites were 

investigated in a 'mixed uraemic population' in a fasting state to 

determine if any specific changes were due to the type of dialysis 

rather than uraemia per se. Metabolic variables were assessed in CAPD 

during a 6 hour dialysis cycle to determine the effects of peritoneal 

glucose absorption. The CAPD population was divided to evaluate 

factors such as age, diabetes and peritonitis which might induce 

further metabolic changes.

This work was performed at a large centre for CAPD but the number 

of patients suitable for investigation was nevertheless limited. To 
date no large, in depth, metabolic study has been published on CAPD. 

The few published reports of hormone and/or metabolite changes in CAPD 

have been limited to 5 patients in each study. The variability of 

metabolite and hormone concentrations even in normal healthy subjects 

is well recognised (Foster et al., 1978) and thus some caution is 

needed in interpretating changes in the metabolic variables.

Values of hormones and metabolites tended to have a normal or

slightly skewed distribution but log transformation was not performed
*

in the analysis. Comparison between the groups was done by analysis 

of variance and p values were derived using the pooled standard



deviation for all groups. However, accepting the statistical 

restrictions comparison between the sub-groups was necessary to assess 

specific clinical factors. The possibility of a type I error is 

increased by the numerous variables and patient groups studied.

2. FASTING STATE

Hyperlipdaemia was present in all uraemic patients. Fasting serum 

total triglycerides were markedly increased in all patients, but total 

cholesterol although increased in all was only significantly elevated 

in CAPD patients. HDL-cholesterol was also uniformly suppressed in 

uraemia. These results are in agreement with many previous studies 

(Olefsky et al., 1974; Sanfellipo et al., 1978; Cattran et al., 1976; 

Ramos et al., 1983). In this study higher cholesterol and 

triglyceride concentrations were found in the CAPD population compared 

to other uraemic patients. The difference could not be readily 

explained by age or body weight and there was no correlation with 

duration of CAPD therapy. Cholesterol and triglycerides have been 

reported to fall after 1 year on CAPD (Lindholm et al., 1983), which 

may indicate a metabolic adaption to the glucose load. It has been 

shown that the total carbohydrate intake in some CAPD patients is 

regulated by the spontaneous reduction of the oral carbohydrate intake 

(Von Baeyer et al., 1983). In the present study lipid status was 

assessed at a single point in time and in view of the well known 

individual variability in blood lipids, a longitudinal type study 

would be more appropriate to evaluate the effect of CAPD on 

hyperlipidaemia. Nevertheless, the marked hyperlipidaemia 

particularly in CAPD (partly carbohydrate induced and accompanied by 

glucose intolerance - type IV) is a major risk factor in 

atherosclerosis. If one then considers other factors, such as



hypertension and possibly hyperglycaemia and hyperinsulinaemia (Keen 

et al., 1965), uraemic and particularly CAPD patients are strong 

candidates for ischaemic heart and other vascular diseases.

In the post-absorptive state (after a 12 hour fast) blood glucose 

was normal in uraemic patients. This has been well documented 

(DeFronzo, 1973, 1978b). However, recent studies on CAPD patients 

have shown increased fasting glucose concentrations (Heaton et al., 

1983, 1985), but in these studies the patients were not truly fasted 

for 12 hours as they had peritoneal dialysis overnight prior to the 

study. Glucose absorption from the overnight exchange could explain 

the increased blood concentrations. This was seen in the present 

study in patients who had an overnight exchange. CAPD is normally a 

continuous 24 hour process, but for comparison with other groups a 

basal reference state is necessary and thus CAPD patients had both an 

oral and peritoneal overnight fast prior to the study.

Fasting insulin has been reported as being increased, normal and 

decreased in uraemia. Normal basal levels have been found by many 

(Spitz et al., 1970; Roth et al., 1973; DeFronzo, 1978b), while others 

have recorded basal hyperinsulinaemia (Hutchings et al., 1966; Briggs 

et al., 1967; Horton et al., 1968). In the present study fasting 

serum insulin was increased in all uraemic groups compared to 

controls, but the difference was small and in most cases not 

significant. Haemodialysis patients had marginally higher insulin 

than non-dialysis uraemics and CAPD patients. Recent studies continue 

to show conflicting data. Haemodialysis patients after a 12 hour fast 

had insulin levels higher though not significantly different from 

controls (Dumbauld et al., 1983), while undialysed chronic renal 

failure patients had significantly higher insulin concentrations 

(Ricanati et al., 1983). However, on reviewing these studies the mean



fasting serum insulin concentrations were similar, but control insulin 

levels varied and this may have accounted for the different 

interpretations. In CAPD basal hyperinsulinaemia was found in 5 

patients in each of Heaton et al. (1983, 1985) studies, but these 

patients did not have a true fast as they had peritoneal dialysis 

prior to the study. Interestingly, in the current study one of the 

two subgroups to have a significant increase in basal insulin was the 

group who had overnight peritoneal dialysis. Thus this may, in part, 

explain some of the divergence of data. Normal fasting insulin 

(Armstrong et al., 1985) and low fasting insulin concentrations (Von 

Baeyer et al., 1983) have also been observed in CAPD. Each of the 

above studies in CAPD evaluated only 5 patients. Larger studies are 

obviously needed. The low basal insulin concentrations were explained 

by peritoneal clearance of insulin (Von Baeyer et al., 1983), but in 

the present study no significant difference was found between 

haemodialysis and CAPD patients.

Thus with these conflicting reports what is the basal insulin 

state in uraemia and CAPD? There is certainly individual variability 

and perhaps some patients have normal and some increased basal insulin 

concentrations depending on their degree of glucose intolerance 

(DeFronzo, 1978b). In the present study 30 CAPD patients, in a truly 

fasted state had a mean basal insulin concentration within the normal 

reference range, which was not significantly different from controls. 

Four individuals had basal concentrations just out with the normal 

range. Thus, on balance, basal insulin was normal in CAPD. In 

addition to individual variability, standards of radioimmunoassay are 

important and it is not feasible to simply compare absolute 

concentrations of insulin found in different studies as the quality of 

standard and anti-sera are bound to vary. It is interesting that



earlier studies found hyperinsulinaemia more frequently than later 

ones. Currently available assays are more sensitive, specific and 

precise compared to methods of 10-15 years ago, when cross-reactivity 

with proinsulin was a major problem and tended to overestimate serum 

insulin concentrations. In the present study the assay method used a 

double antibody technique with inter- and intra-assay coefficients of 

variation of between 5% and 8%. The assay was part of the 

supraregional assay service (SAS) and subject to stringent quality 

control procedures. There was no significant cross-reactivity with 

proinsulin.

C-peptide was grossly elevated in all uraemics and confirms the 

findings of Chapter 6 on beta cell function. Elevated c-peptide 

concentrations have been documented in uraemia (Jaspan et al., 1977) 

and increased levels have also been reported in CAPD (Wideroe et al.,

1984). Raised circulating plasma c-peptide concentrations are due to 

impaired renal degradation, the kidney being almost exclusively 

responsible for metabolism and excretion (Jaspan et al., 1977). 

Interestingly, haemodialysis patients had higher concentrations than 

both non-dialysed chronic renal failure and CAPD patients but the 

difference was not significant. It is possible that residual renal 

function and peritoneal clearance of c-peptide may have contributed to 

the small difference between the uraemic groups. It has been 

suggested that CAPD may increase proinsulin production which could 

lead to an increase in c-peptide (Wideroe et al., 1984). However, 

although proinsulin concentrations are increased in uraemia due to 

impaired renal degradation (Katz et al., 1973) increased production is 

unlikely in CAPD as serum insulin concentrations were normal. 

Furthermore, cross-reactivity between c-peptide and proinsulin during 

the assay was less than 10% using the c-peptide antiserum M1230 (see



Chapter 5).

Fasting plasma glucagon was increased in all uraemic groups with 

significant differences observed in undialysed chronic renal failure, 

haemodialysis and some of the CAPD subgroups. Hyperglucagonaemia in 

uraemia has been documented and is largely due to reduced renal 

clearance (Emmanouel et al., 1976; Kuku et al., 1976) as pancreatic 

secretion is normal in uraemia (Lefebvre and Luyckx, 1975). However, 

in uraemia there is also a marked increase in proglucagon and other 

glucagon intermediates which are not biologically active (Emmanouel e£ 

al., 1976). The assay used in this study specifically measured 

c-terminal (pancreatic) glucagon but some interference with the 

biologically inactive 9000 Dalton precursor cannot be excluded. 

Although elevated, relatively lower concentrations of glucagon were 

found in CAPD patients than other uraemics. After overnight dialysis 

basal glucagon was also found to be increased in three small studies 

(Heaton et al., 1983, 1985; Armstrong et al., 1985), in agreement with 

results in this study. The small difference between CAPD patients and 

others may be due to peritoneal clearance of pancreatic glucagon.

Growth hormone concentrations were markedly variable in the 

uraemic population studied. Generally, no significant differences 

were observed in comparison with controls although haemodialysis 

patients and some CAPD patients had raised fasting concentrations. 

Growth hormone has been reported as normal (Marumo et al., 1979) and 

increased (Saaman and Freeman, 1970; Orskov and Christensen, 1971) in 

uraemia. In CAPD normal fasting growth hormone has also been observed 

(Von Baeyer et al., 1983; Heaton et al., 1985). However, the value of 

isolated concentrations is minimal and growth hormone status is best 

assessed by a dynamic test. The differences found in this study 

between haemodialysis and CAPD patients is small and probably
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unimportant, although better middle molecule clearance of growth 

hormone (MW 21000) by CAPD is a possible explanation.

Pasting plasma cortisol was increased in all uraemic patients, but 

significant elevation was found in the chronic renal failure and 

haemodialysis patients but not in CAPD patients. Only a marginal 

increase was found in CAPD in agreement with others (Heaton et al.,

1985). Considerable controversy exists regarding the 

pituitary-adrenocortical axis in uraemia. Although normal diurnal 

variation in plasma cortisol is described, frequent irregular bursts 

of cortisol secretion occurs interspersed with periods of 

non-secretion (Weitzman et al., 1971). Thus major variations in 

plasma cortisol can occur depending on the time of sampling. Cortisol 

conjugates accumulate in the plasma of uraemics and can cross-react 

with cortisol antibodies. This may lead to gross over-estimation 

(Nolan et al., 1981). Changes in cortisol binding protein which is 

reduced in uraemia can also influence plasma cortisol concentrations 

(Rosman et al., 1984). Thus, it is not surprising that conflicting 

results have been reported. Normal (Nolan et al., 1981) and increased 

(Wallace et al., 1980) fasting cortisol have been described. It is 

interesting, but purely speculative, that CAPD patients, who in this 

study had lower cortisols than other uraemics, may be able to clear 

cortisol conjugates via the peritoneum thus lowering the cortisol 

components measured by radioimmunoassay.

Patients new to CAPD had similar hormone concentrations as those 

well established on the technique. Elderly patients and those with 

peritonitis had similar fasting profiles as other CAPD patients. The 

use of an overnight dialysis cycle did affect some variables, such as 
increasing blood glucose, insulin, c-peptide and cortisol.

Non-dialysed chronic renal failure patients differed from CAPD



patients in having higher glucagon and cortisol concentrations, while 

haemodialysis patients tended to have a generally increased profile 

with raised c-peptide, glucagon, growth hormone and cortisol.

Although the difference between CAPD patients and other uraemics was 

usually small peritoneal clearance of middle molecules may have played 

a role.

Data on intermediary metabolites in uraemia are sparse and only 

one group has studied metabolites in CAPD (Heaton et al., 1983, 1985). 

Thus frequent reference is made to these studies which assessed 

metabolic profiles during a dialysis cycle and also 24 hour metabolic 

rhythms in 2 separate groups of 5 patients on CAPD. Values for 

circulating intermediary metabolites in healthy subjects have been 

documented (Alberti et al., 1975; Foster et al., 1978) and the mean 

and normal reference range for the variables measured in this study 

are given in the Appendix 1. The values are similar to those of 

Foster et al. (1978), who used the same semi-automated enzyme 

fluorometric assays as in this study. These authors found 

considerable variation in intermediary metabolites even in overnight 

fasted, resting, apparently healthy subjects. In the present study 

the precision of the assay was good. The inter- and intra-assay 

coefficients of variation were under 5% for all metabolites except 

3-hydroxybutyrate which had a coefficient of variation of about 12%. 

Acetoacetate and pyruvate were assayed by a manual method, within 48 

hours of sampling, due to their relative instability on storage. 

Precision was again satisfactory with coefficients of variation of 

about 5% (see Chapter 5).

The principle behind the assay of intermediary metabolites depends 

on changes in fluorescence resulting from alterations in NADH 

concentrations produced by enzyme action. Fluorescence that is



non-enzymatic must be taken into account to increase the accuracy of 

analysis. Serum from uraemic patients has a 'native* fluorescence, 

which correlates with the level of serum creatinine and can also be 

affected by drugs (Hadjivassiliou et al., 1984). Thus all samples 

were run with blanks (that is, omitting the enzyme-coenzyme stage in 

the assay), to exclude non-enzymatic or native fluorescence due to 

uraemia. Values for healthy control subjects were similar to 

previously reported normals (Alberti et al., 1975; Foster et al., 

1978).

The three gluconeogenic precursors lactate, pyruvate and alanine 

were not significantly different from controls. The lactate:pyruvate 

ratios were also normal. Fasting blood lactate and pyruvate 

concentrations have been widely reported as normal in chronic renal 

failure, haemodialysis, intermittent peritoneal dialysis and after 

renal transplantation (Campanacci et al., 1968; Attman et al., 1979; 

Parrish, 1981; Nakao et al., 1982). In contrast, elevated fasting 

lactate has been observed in haemodialysis and CAPD (Dumbauld et al., 

1983; Heaton et al., 1985) although pyruvate was normal. The reason 

why lactate was increased while pyruvate was normal in these latter 

studies is unclear, as they are theoretically in equilibrium. Fasting 

blood alanine was normal in all uraemic patients in this study and is 

in agreement with others (Randerson et al., 1981; Deferrari et al., 

1983). In contrast, elevated basal alanine has also been reported in 

dialysis patients (Dumbauld et al., 1983; Heaton et al., 1985). 

However, in the study by Dumbauld et al. the control group had 'low' 

alanine concentrations compared to the usually accepted normal values. 

The circulating concentration of alanine depends on the balance 

between production and uptake. Increased hepatic uptake has been 

reported by some (Rubenfeld et al., 1978) and normal uptake by others



(DeFronzo and Felig, 1980). Thus, it is possible that both normal and 

increased alanine can occur in renal failure depending on the balance 

between production, utilization and uptake as well as other metabolic 

and hormonal events.
The ketone bodies, 3-hydroxybutyrate and acetoacetate, as well as 

glycerol which was used as an index of lipolysis, were generally 

increased in the fasting state in uraemia. 3-Hydroxybutyrate was 

higher in all uraemic patients compared to controls, but significant 

increases were observed only in the non-dialysis chronic renal failure 

group and the elderly CAPD patients. Data in the literature is again 

conflicting. 3-Hydroxybutyrate was increased in chronic renal failure 

(Ricanati et al., 1983), normal in haemodialysis (Dumbauld et al.,

1983) and decreased in CAPD (Heaton et al., 1985). It is also 

documented that fasting ketone bodies increase with age (Foster e£ 

al., 1978) and in the present study the elderly patients had higher 

basal concentrations than the other CAPD patients. The effect of 

overnight dialysis in one study (Heaton et al., 1985) may have 

contributed to suppression of ketogenesis as the patients were not in 

a 'true' fasted state, thus explaining the lower basal ketone body 

concentrations. Acetoacetate was found to be normal in CAPD (Heaton 

et al., 1985) and decreased in haemodialysis (Dumbauld et al., 1983). 

Like 3-hydroxybutyrate, acetoacetate in the present study was higher 

in uraemic patients, but significant increases were found only in CAPD 

patients and primarily due to the elderly subset of patients. 

Acetoacetate is elevated in healthy elderly subjects (Foster et al., 

1978). Bearing in mind the possible suppressive effect of overnight 

peritoneal glucose absorption on ketone bodies, the basal 

concentrations of both 3-hydroxybutyrate and acetoacetate observed by 

Heaton et al. are not too disimilar from the data in the present



study. Fasting glycerol concentrations in the current study were not 

significantly different between either chronic renal failure or 

haemodialysis patients and controls. CAPD patients tended to have 

higher glycerol concentrations particularly the elderly. Glycerol was 

found to be normal in CAPD (Heaton et al., 1985) but increased levels 

are documented in healthy elderly subjects (Foster et al., 1978; 

Davidson et al., 1979; Jackson et al., 1982). Allowing for possible 

suppression of lipolysis due to overnight peritoneal glucose 

absorption, the difference between the ’normal1 glycerol 

concentrations found by Heaton et al. and the ’increased’ glycerol 

found in the present study is small, particularly if the age factor is 

also considered.

Patients new to CAPD had similar metabolite profiles as those well 

established on CAPD. Peritonitis did not have any specific influence 

on basal levels but elderly patients tended to have higher ketone 

bodies and glycerol, which is well recognised in healthy elderly 

subjects.

3. PROFILES DURING CAPD

Glucoregulatory hormones and intermediary metabolites during a 

peritoneal dialysis cycle has been studied to date by only two groups. 

Hormone (Heaton et al., 1983; Armstrong et al., 1985) and intermediary 

metabolites (Heaton et al., 1983) were measured during low and high 

glucose exchanges in 5 patients in each study. The possible effect of 

age, peritonitis and diabetes has not been reported. Diabetics will 

be discussed in the next section.

The change in blood glucose in response to both low and high 

dextrose dialysis solutions in this study confirms the findings of 

others (Heaton et al., 1983; Armstrong et al., 1985). Isotonic



solutions induced only a marginal increase in blood glucose over 6 

hours, while hypertonic solutions caused a significant increase in the 

first hour of dwell and blood glucose returned to basal values by 4 

hours. Elderly patients behaved similarly to younger patients and new 

patients produced the same response as those established on CAPD. 

Patients with peritonitis had an exaggerated increase in blood 

glucose. There was an increase in the rate of blood glucose elevation 

and a higher peak due to the increased permeability of the peritoneum 

due to infection. This increase in permeability has been previously 

documented by several groups (Rubin et al., 1981a; Verger et al.,

1984). However, the total net amount of glucose absorbed from the 

dialysate was similar to non-infected patients using hypertonic 

solutions by the end of the 6 hour cycle. Thus during peritonitis the 

rate of glucose absorption, but not the quantity of glucose absorbed 

is increased. This may reduce the ultrafiltration capacity by 

decreasing the osmotic gradient across the peritoneum, resulting in 

the need for more hypertonic or more frequent exchanges to control 

fluid balance. Furthermore, the increased permeability of the 

peritoneum can affect the pharmacokinetics of intraperitoneal drugs 

(McIntosh et al., 1984) and can also lead to greater protein losses 

(Rubin et al., 1981b).

The serum insulin response mimicked that of glucose, reaching a 

maximum within 1 hour and returning to basal concentrations by 4 

hours. Small increments were seen with 1.5% dextrose solutions but a 

3-fold rise in insulin occurred with the 4.25% dextrose fluid. This 

data is in agreement with others (Heaton et al., 1983; Armstrong 

al., 1985). Elderly and patients new to CAPD did not differ from 

those established on the technique, but the insulin response was 

further increased during peritonitis though not significantly. The



relatively higher insulin response in peritonitis corresponds to the 

increase rate of glucose absorption. The effect of other hormones and

peptides of the 'enteroinsular axis1 such as somatostatin and

gastrointestinal polypeptide are unknown in CAPD.

Hypertonic solutions induced a marked increase in c-peptide due to 

pancreatic stimulation by the peritoneal glucose load. The rate of 

rise was slower than that of glucose and insulin in keeping with the 

lower metabolic clearance rate (Jaspan et al., 1977). The maximum 

response was obtained by 2 hours in agreement with c-peptide kinetic 

studies (Wideroe et al., 1984). The rate of decline of c-peptide was

slow, in comparison with insulin, due to the lower metabolic clearance

rate and its almost exclusive renal degradation. C-peptide did not 

return to basal concentration with hypertonic solutions by the end of 

the 6 hour cycle. This might suggest accummulation of c-peptide, but 

peritoneal clearance does occur (Wideroe et al., 1984) and during 

isotonic exchanges c-peptide returns to basal levels by 4 hours. 

Elevated c-peptide appears to have no metabolic effect (Faber and 

Binder, 1977; Jaspan et al., 1977). In peritonitis both the rate of 

rise and peak response was greater, though not significantly 

different, from other non-infected patients using hypertonic 

solutions. This exaggerated response is due to increased pancreatic 

stimulation caused by the increased rate of glucose absorption due to 

increased permeability of the peritoneum. Elderly patients had a 

similar c-peptide response suggesting that beta cell function, 

assessed by both the insulin and c-peptide response, is no different 

from younger uraemics. This is in agreement with data from 

non-uraemic elderly subjects (Jackson et al., 1982).
During the dialysis cycle hyperglucagonaemia persisted, although 

there was an initial fall in the first hour of dwell corresponding to



the period of maximum glucose absorption and insulin secretion. This 

transient fall in glucagon, although small, was more marked during 

high dextrose cycles. This is in agreement with the findings of 

others (Heaton et al., 1983; Armstrong et al., 1985). Elderly 

patients and those with peritonitis had a similar response to other 

CAPD patients. Thus despite the increased rate of glucose absorption 

and beta cell stimulation glucagon was not suppressed further. In the 

study by Armstrong et al. (1985) higher glucagon concentrations were 

observed in all his 5 patients. This may reflect the presence of 

proglucagon. In the present study a c-terminal specific assay was 

used which measured pancreatic glucagon and concentrations were 

similar to those of Heaton et al. (1983).

The normal response of a fall in growth hormone concentration 

following glucose administration is not seen in uraemia. A 

paradoxical rise during glucose tolerance testing has been observed 

(Wright et al., 1968; Saaman et al., 1970). In haemodialysis high 
levels persist (Spitz et al., 1970) and a paradoxical rise is found 

after a glucose challenge (Swenson et al., 1974). During the 

procedure of haemodialysis growth hormone concentrations fall (Hansen 

et al., 1979), possibly due to the absorption of acetate from the 

dialysis fluid, as i.v. infused acetate inhibits growth hormone 

secretion (Schmitz et al., 1982). In CAPD patients during a dialysis 

exchange there was considerable variation in growth hormone 

concentrations, but levels were essentially normal and did not 

significantly change despite both glucose and lactate absorption.

This is in agreement with others (Von Baeyer et al., 1983), but 

contrasts with the paradoxical rise reported in intermittent 

peritoneal dialysis (Gahl et al., 1980). The reason for the latter 
difference is unclear. Theoretically, CAPD might affect growth



hormone secretion and clearance. The constant glucose absorption over 

24 hours may lead to suppression of growth hormone secretion (Heaton 

et al., 1985). Alternatively, protein losses from the dialysate may 

lead to malnutrition. Malnutrition is associated with raised growth 

hormone (Pimstone et al., 1968) and an inverse relationship between 

serum albumin and growth hormone has been observed (Wright et al., 

1968). Furthermore, growth hormone (MW 21,000) is likely to cross the 

peritoneal membrane and may contribute to lower concentrations in 

CAPD. Whether a balance between the tendency to hypersecretion and 

increased excretion exists is not clear, but in CAPD no paradoxical 

rise in growth hormone has been reported.

Plasma cortisol did not change during the CAPD cycle and 

concentrations were essentially normal. Little is known about 

cortisol secretion in CAPD, but a higher 24 hour secretion was found 

by Heaton et al (1985) due largely to reduced nocturnal suppression. 

This is, in contrast, to observations found in chronic renal failure 

and haemodialysis patients who maintained a normal circadium rhythm 

(Wallace et al., 1980). As previously discussed, CAPD may clear 

cortisol conjugates via the peritoneum, reduced cortisol binding to 

albumin and relative hypoalbuminaemia may also contribute to lower 

cortisol in CAPD than in other forms of uraemia. Interpretation of 

cortisol concentrations in uraemia remains complex. In this study no 

apparent change occurred in response to hyperglycaemia and 

hyperinsulinaemia, suggesting that cortisol is not involved in the 

glucoregulatory hormone control during CAPD, although a ’permissive* 

role for cortisol cannot be ruled out.

Blood lactate increased significantly from normal fasting 

concentrations to peak levels in 1 hour in all CAPD patients. A 

similar rise was seen with both low and high dextrose solutions and,



therefore, was independent of glucose concentration. The blood 

lactate increase was most likely due to the dialysate lactate, which 

was similar in both isotonic and hypertonic solutions, rather than 

secondary to increased glycolysis. The blood lactate profile in new 

and elderly patients was similar to the other non-infected CAPD 

patients and returned to baseline by 4 hours. In peritonitis blood 

lactate increased markedly in the first hour of dwell. This could be 

explained by, either a greater rate of lactate absorption from the 

peritoneal fluid due to increased permeability of the peritoneum, or 

from increased glycolysis due to the greater rate of glucose 

absorption and exaggerated hyperinsulinaemia. Possibly both 

mechanisms play a role, although the increased rate of dialysate 

lactate absorption was probably the major factor. The amount of 

lactate absorbed during the 6 hour cycle was constant, in all groups, 

at about 7g or 28g per day which is much less than the estimated 

endogenous production of 120g per day and maximum utilising ability of 

330g per day (Krebs et al., 1975). Thus dialysate lactate is unlikely 

to have any significant clinical effect on lactate homeostasis. 

Furthermore, the blood lactate rise was relatively transient and 

values of greater than 3 mmol/1 were observed only in a few 

individuals with peritonitis. These levels are not high enough to 

induce lactic acidosis. (>5 mmol/1). Lactate normally increases 

temporarily after exercise but is readily metabolized and utilized 

particularly by the liver. Higher lactate concentrations after 

exercise have been found in uraemics compared to healthy controls by 

some (Parrish et al., 1981), while others (Nakao et al., 1982) 

observed lower concentrations in uraemic patients. However, it is 

unlikely that either lactate or glucose in dialysis fluid per se could 

induce lactate acidosis under normal conditions. A recent case report



of lactic acidosis (Conte et al., 1986), the first documented in CAPD, 

cited lactic acid coma, but this patient had concomitant hepatic 

failure, which was the most likely predisposing factor. In the 

present study, all patients had normal liver function and blood 

lactate concentrations returned to basal levels within 4 hours, again 

evidence that lactate was not accumulating.

Pyruvate, which theoretically is in equilibrium with lactate, 

increased in the first hour of the cycle and was also independent of 

the dialysate glucose concentration. In peritonitis a more marked 

increase in pyruvate occurred in parallel with changes in blood 

lactate. It is more likely that dialysate lactate absorption was 

responsible for the rise in blood pyruvate, but again stimulation of 

glycolysis and suppression of gluconeogenesis by hyperinsulinaemia 

cannot be excluded. The lactate:pyruvate ratio was normal in all 

patients except those with peritonitis. In the latter group the ratio 

increased due to a relative increase in lactate. The only other data 

on blood lactate and pyruvate during CAPD (Heaton et al., 1983) showed 

that basal blood lactate was high but remained unchanged during the 

dialysis cycle, while normal basal pyruvate became elevated during 

hypertonic dialysis. These results are not easily explained.

Blood alanine did not show any significant overall change during 

the peritoneal exchange. There was a small rise in the isotonic, 

elderly and peritonitis groups. This is not surprising as 

hyperinsulinaemia can induce endogenous production by glycolysis and 

suppress utilization by gluconeogenesis. However, this small rise was 

seen with low glucose solutions but not x*ith all high glucose 

solutions. Nevertheless, although the alanine profile did not alter 

significantly a suggested trend similar to the other gluconeogenic 

precursors was observed. Alanine, in theory, is in equilibrium with



lactate, through its equilibrium with pyruvate (Krebs et al., 1975; 

Alberti and Nattrass, 1979). Thus dialysate lactate might also induce 

a rise in alanine. Patients with peritonitis had a small but 

marginally greater relative rise than the other patients using 

hypertonic solutions. This could be explained by,either increased 

glycolysis and suppression of gluconeogenesis by raised ambient 

insulin levels, or secondary to raised blood lactate induced by 

dialysate lactate absorption. It is not possible to clarify which was 

the most important pathway. Blood alanine concentrations, although 

higher, were unchanged with CAPD in the study of Heaton et al. (1983). 

Alanine production and utilization have been observed to be increased 

(Rubenfeld et al., 1978) and also normal (DeFronzo and Felig, 1980) in 

renal failure. In the present study blood alanine showed no obvious 

change despite the ambient hyperinsulinaemia and dialysate lactate 

absorption.

Ketone bodies, 3-hydroxybutyrate and acetoacetate were suppressed 

by peritoneal glucose absorption, the effect being more marked with 

high glucose dialysate. Dialysate induced hyperglycaemia stimulates 

insulin release and suppresses gluconeogenesis and ketogenesis.

During the latter half of the dialysis cycle, when blood glucose was 

returning to basal concentrations, suppression of ketogenesis was less 

marked with isotonic than hypertonic dialysate. The

3-hydroxybutyrate:acetoacetate ratio was essentially normal during the 

CAPD cycle as both ketone bodies fell in parallel, but in the middle 

of the cycle at the point of maximum suppression of ketogenesis the 

ratio increased due to a relatively greater suppression of 

acetoacetate. Similar though less obvious changes were observed by 

Heaton et al. (1983). Although elderly patients had higher basal 

levels of ketone bodies the decrement was similar to other groups



using hypertonic exchanges. The presence of peritonitis despite 

increasing the rate of glucose absorption and did not induce any 

further change in ketone body concentrations.

Glycerol, an indicator of free fatty acid status, was suppressed 

during the dialysis cycle in all patients in a similar manner to the 

ketone bodies. The changes were mainly in the early part of the cycle 

corresponding to the period of maximum hyperinsulinaemia which 

inhibited lipolysis. The suppression of glycerol and free fatty acids 

in response to oral glucose has been long recognised in uraemia (Roth 

et al., 1973). In CAPD, non esterified fatty acids, glycerol and 

ketone bodies correlated with each other, although glycerol did not 

significantly differ from controls in the study of Heaton et al. 

(1983).

'4. HORMONE AND METABOLITE CHANGES IN DIABETICS ON CAPD

No data on hormone or metabolite changes in diabetics on CAPD have 

been reported. The metabolic consequences of diabetes, uraemia and 

peritoneal glucose absorption may be superimposed on each other. In 

this study exogenous insulin (normally given by addition to the 

peritoneal fluid bag immediately prior to instillation) was omitted 

during the dialysis cycle. Thus, this study gave the opportunity to 

investigate the metabolic changes unopposed by insulin. Although all 

6 patients were insulin treated diabetics, 2 did have some residual 

pancreatic function manifested by high basal c-peptide concentrations.

Hypercholesterolaemia, hypertriglyceridaemia and low 

HDL-cholesterol were found in the diabetics but it was not possible to 

conclude whether uraemia, CAPD or diabetes was responsible, as each is 
a predisposing factor to abnormal lipid metabolism.



a) Fasting state

In the fasting state (that is, no overnight dialysis, a 12 hour 

oral fast and no insulin for 12 hours) blood glucose was as expected 

higher than both healthy controls and non-diabetic CAPD patients.

Serum free (unbound) insulin, although not strictly comparable with 

total serum insulin (Nakagawa et al., 1973) was quantitatively similar 

to the 'hypertonic* CAPD group, which was used as the control CAPD 

group in this study. Fasting c-peptide was higher than expected for 

type I diabetics and this can be explained by the presence of 2 

patients who were 'type II-insulin treated' diabetics. Type II 

diabetics frequently have normal or raised c-peptide concentrations 

(Unger and Foster, 1985) and in the presence of uraemia impaired renal 

degradation can markedly increase the c-peptide concentration (Jaspan 

et al., 1977). Hence caution is needed in interpreting isolated 

c-peptide concentrations which may be elevated due to uraemia rather 

than significant residual beta cell function (see Chapter 6). Fasting 

plasma glucagon concentrations were higher, though not significantly, 

than healthy controls but similar to non-diabetic CAPD patients. 

Absolute and relative hyperglucagonaemia are recognised in diabetes 

(Unger and Foster, 1985), but it is unclear from the study whether the 

raised fasting glucagon was due to diabetes or uraemia. However, it 

is interesting that diabetics and uraemics on CAPD had very similar 

concentrations. The role of growth hormone in diabetes is still 

uncertain, but raised growth hormone concentrations are seen in poorly 

controlled diabetes and can cause hyperglycaemia and hyperketonaemia 

(Press et al., 1984). Increased growth hormone may also induce 

insulin resistance in non-diabetics, by impairing both insulin 

supression of hepatic glucose and peripheral utilisation (Rizza et 

al., 1982). However, in this study fasting growth hormone did not



significantly differ from non-diabetic uraemics.

Although cortisol is capable of increasing blood glucose, cortisol 

infusion in healthy subjects failed to increase glucose production and 

even during prolonged fasting plasma cortisol remained normal (Shamoon 

et al., 1981). In this study fasting plasma cortisol concentrations 
were normal in diabetics as well as non-diabetics on CAPD. It is 

suggested that cortisol has no direct short term role in the control 

of glucose in diabetics (Cryer, 1984).

The gluconeogenic precursors lactate and pyruvate have been 

reported to be normal (Nosadini et al., 1985) and increased (Alberti 

et al., 1975) in diabetics on insulin. In type II diabetics improved 
glycaemic control by diet has resulted in lowering fasting lactate 

pyruvate and alanine (Sheppard et al., 1983). In the present study, 

in the relative absence of insulin, fasting lactate and pyruvate were 

similar to both healthy controls and non-diabetic uraemic patients. 

Fasting values were similar to those observed by Sheppard et al. 

(1983). Fasting alanine is usually normal in diabetics (Capaldo et̂  

al., 1984; Nosadini et al., 1985) and basal concentrations in this 

study confirmed that diabetics on CAPD were not any different from 

either healthy controls or non-diabetic uraemics. The fasting alanine 

concentrations were similar to those found by others (Potter et al., 

1982; Sheppard et al., 1983). Fasting ketone bodies and glycerol are 

significantly elevated in both type I and II diabetics (Alberti et̂  

al., 1975; Sheppard et al., 1983; Nosadini et al., 1985). The 

cardinal factor affecting lipolysis and ketogenesis in the fasting 

state is the balance between insulin and glucagon. In this study 

elevation of 3-hydroxybutyrate, acetoacetate and glycerol were 

observed in diabetics compared to healthy subjects. However, ketone 

body concentrations in diabetics on CAPD were similar to non-diabetic



uraemics and fasting glycerol was also similar to non-diabetic CAPD 

patients although higher than other uraemics. Thus, it is not clear 

whether the rise in ketone bodies and glycerol, due to augmentation of 

ketogenesis and lipolysis, in the post absorptive state was due to 

diabetes or uraemia.

b) During CAPD

Diabetics had a progressive rise in blood glucose over the first 

90 minutes of dialysate instillation and then reached a plateau, the 

hyperglycaemia being unopposed due to the lack of insulin. Serum free 

insulin remained unchanged throughout the period of peritoneal glucose 

absorption. Two patients (type II insulin treated diabetics) did show 

a small, but insignificant rise in free insulin which might have 

suggested some residual pancreatic function. This is, in contrast, to 

the non-diabetic CAPD patients who had a significant rise in total 

serum insulin. Mean c-peptide concentrations were relatively 

increased but remained unchanged during the dialysis cycle. Raised 

mean concentrations were due to 2 patients having high c-peptide 

levels, while the others had negligible concentrations. The elevated 

levels of c-peptide may be explained, in part, by some residual 

pancreatic function, but largely by impaired renal degradation of the 

peptide. However, as c-peptide concentrations did not change despite 

the dialysis induced hyperglycaemia it can be concluded that no 

clinically significant beta cell reserve existed in any of the 

diabetics.

A pure carbohydrate meal normally causes suppression of glucagon 

and stimulation of insulin but signals other than the absorbed glucose 

may be responsible for the alpha and beta cell peptide changes. 

Somatostatin is a strong suppressor of glucagon and may play a role in



response to an oral carbohydrate load (Unger and Foster, 1985). 

Gastrointestinal polypeptide, which is released during a carbohydrate 

meal, is a stimulus to insulin secretion. When the insulin response 

is adequate (as in non-diabetics) the stimulating effect of 

gastrointestinal polypeptide upon glucagon is not apparent because of 

concomittant suppression of glucagon by insulin. However, in 

diabetics the insulin response is blunted and the glucagon response to 

an oral carbohydrate load becomes paradoxically positive. This may be 

a consequence of the unoppossed actions of gastrointestinal 

polypeptide on the acells of the pancreas (Unger and Foster, 1985).

In this study diabetics showed no change in glucagon while 

non-diabetics had a fall in response to the dialysate glucose 

absorption. It is not known whether peritoneal glucose absorption 

stimulates the enteroinsular axis although most of the glucose is 

absorbed into the portal circulation. The actions of somatostatin and 

gastrointestinal polypeptide are unknown in CAPD.

As previously discussed, the role of growth hormone in diabetes is 

unclear but several reports link increased plasma growth hormone with 

poorly controlled diabetes (Vigneri et al., 1976; Press et al., 1984). 

The small group of diabetics in this study had good glycaemic control, 

assessed by glycosylated haemoglobin measured colorimetrically.

Growth hormone did not show any change during the dialysis cycle in a 

similar manner to non-diabetics. Thus, neither raised concentrations 

due to the presence of diabetes or a paradoxical rise due to uraemia 

(Orskov et al., 1971) were observed during peritoneal glucose 

absorption. Whether prior good glycaemic control or the specific 

effect of CAPD prevented changes in growth hormone is unclear. Growth 

hormone probably has a permissive rather than glucoregulatory role in 

diabetes (Cryer, 1984).



Cortisol, like growth hormone, probably has a permissive rather 

than regulatory role in diabetes (Cryer, 1984). Thus, it is not 

surprising that no change in cortisol occurred during peritoneal 

glucose absorption, even in the absence of exogenous insulin. Normal 

plasma cortisol concentrations were observed in both diabetics and 

non-diabetics throughout the dialysis cycle. It is possible, though 

speculative, that peritoneal removal of cortisol conjugates could 

explain the normal values found in all CAPD patients, in contrast to, 

elevated concentrations in non-dialysed chronic renal failure and 

haemodialysis patients.

Lactate concentrations are usually normal (Nosadini et al., 1985) 

or slightly increased (Capaldo et al., 1984) in diabetics with 

'average* glycaemic control. The normal response after oral glucose 

or a meal would be to increase lactate due to increased glycolysis 

modulated by insulin release. However, in this study despite the lack 

of insulin, blood lactate had a small, though significant increase in 

diabetics during the first hour of dwell similar to non-diabetics.

The most likely explanation for the rise in blood lactate was 

dialysate lactate absorption rather than an increase in endogenous 

lactate via glycolysis. It was also observed that the decline in 

blood lactate was slower in diabetics suggesting suppression of 

lactate utilization due to insulin deficiency.

Pyruvate was marginally but not significantly higher in diabetics 

in the fasting state in agreement with Nosadini et al. (1985).

However, during peritoneal glucose absorption pyruvate did not change 

in diabetics although increased in non-diabetics. The lack of change 

in pyruvate may be explained by the failure to suppress 

gluconeogenesis. and inhibition of glycolysis due to insulin 

insufficiency. Although, theoretically, lactate and pyruvate are in



equilibrium the dialysate lactate absorption would explain the greater 

change in lactate than pyruvate.

Alanine is usually normal in well controlled diabetics (Potter e£ 

al., 1982; Capaldo et al., 1984; Nosadini et al., 1985) but several 

reports of raised blood alanine have been documented, particularly 

after pancreatectomy (Barnes et al., 1975; Del Prato et al., 1985).

In this study diabetics had normal alanine concentrations which did 

not change with peritoneal glucose absorption. This might be due to 

lack of insulin stimulation with failure to increase glycolysis and 

suppress gluconeogenesis, but the non-diabetics who had a significant 

hyperinsulinaemia also failed to induce a significant increase in 

alanine, although some patients did show a small rise compatible with 

insulin mediated glycolysis.

Ketogenesis and lipolysis are under integrated control and 

represent a link between carbohydrate and lipid metabolism. Ketone 

bodies accumulate in plasma during fasting and uncontrolled diabetes 

and the initiating event is a change in the molar ratio of glucagon to 

insulin. Insulin deficiency triggers the lipolytic process liberating 

free fatty acids and glucagon appears to be the primary hormone 

involved in fatty acid oxidation and the formation of ketone bodies 

(Miles et al., 1980; Foster and McGarry, 1982).

Normally ketone bodies and glycerol are suppressed by glucose 

loading, but in this study diabetics in contrast to non-diabetics 

failed to suppress 3-*hydroxybutyrate and acetoacetate. This can be 

explained by insulin deficiency and relative glucagon excess.

Glycerol did not change from fasting concentration in diabetics 

despite glucose absorption whereas non-diabetics had a significant 

fall in the early part of the cycle. Again, the imbalance between 

insulin and glucagon explains the failure to suppress lipolysis in



diabetics.

5. DIALYSIS FLUID AND ULTRAFILTRATION

In view of the potential hazards from excessive dialysate glucose 

absorption, such as hyperlipidaemia and accelerated altherosclerosis 

it is prudent to limit the number of hypertonic exchanges, but many 

patients require at least one high dextrose cycle per day. On a 

typical regimen of 3 isotonic (1.5% dextrose) and 1 hypertonic (4.25% 

dextrose) cycles, it is estimated from this study that 130g of glucose 

is absorbed per day from the peritoneal cavity. This is in agreement 

with data from others (Nolph et al., 1979; Grodstein et al., 1981). 

Although the rate of glucose absorption varies between individuals, 

reflecting individual peritoneal characteristics the total amount of 

glucose absorbed was quite uniform. In 30 CAPD patients using 4.25% 

dextrose solutions (2 litres) glucose absorption was between 60 and 

80g over a 6 hour dwell, but the ultrafiltration volume varied 

considerably.

Ultrafiltration depends on many factors such as the state of 

hydration, residual renal function, catheter mechanics, integrity of 

the peritoneum and the osmotic gradient between blood and dialysate 

(Nolph, 1983). Nolph et al. (1981) postulated that ultrafiltration 

takes place at the proximal side of the peritoneal capillary network 

and glucose absorption at the distal end of the network. The proximal 

end has a higher hydrostatic pressure and there is low solute 

permeability due to 'tight* (10A°) cell junctions. The distal end has 

lower hydraulic pressure and wider cell separation (40A°). This 

theory suggests different sites for glucose absorption and water 

removal. It has also been shown that ultrafiltration capacity can be 

severely reduced while solute (glucose) transfer remains unaffected



(Manuel, 1983). Thus, it is not surprising that no significant 

correlation was found between the amount of glucose absorbed from the 

dialysate and net ultrafiltration.

Hyperglycaemia per se may reduce the osmotic glucose gradient and 

decrease the ultrafiltration capacity, but in this study diabetics who 

had persistent hyperglycaemia did not show reduced ultrafiltration.

In contrast, patients with peritonitis had reduced ultrafiltration.

In peritonitis the rate of dialysate glucose absorption increased and 

this had been previous verified by others (Rubin et al., 1981a; Verger 

et al., 1984). However, the total amount of glucose absorbed over the 

6 hour cycle was the same as in other patients using similar dextrose 

solutions. Overall, glucose absorption and ultrafiltration were 

similar in new and established patients, as well as the elderly and 

diabetics using the same concentration of glucose in the dialysate. 

Thus the rate of glucose absorption as well as the concentration of 

glucose is important in respect to ultrafiltration. The method of 

assessing ultrafiltration in this study was crude, but easily 

applicable to any patient, especially at an out-patient clinic. More 

accurate kinetic models for solute transfer and ultrafiltration 

measurement have been designed (Spencer and Farrel, 1986). Although 

more applicable for research purposes, further information on the 

viability and integrity of the peritoneum needs to be obtained to 

determine the durability of CAPD.

Dialysate volume measurements based on dilution of high molecular 

weight marker molecules have shown that with a 2 litre hypertonic 

exchange (3.86% dextrose) the ultrafiltration volume peaked at 3.0-3.3 

litres at 3 hours and, thereafter, reabsorption took place and the 

ultrafiltration rate varied between 25 ml/min and -1.5 ml/min (Pyle et̂  

al., 1981). Thus at the start of the dialysis cycle the glucose



gradient and ultrafiltration rate are highest. These fall as the 

dwell time lengthens and after long dwells glucose may diffuse back to 

the dialysate and water may be reabsorbed.

Peritoneal lactate absorption was constant in all groups and 

amounted to 6.8g during a 6 hour cycle or about 28g per day. As 

previously discussed, this adds little to the normal endogenous 

lactate production of about 120g/day (Krebs et al., 1975). During 

peritonitis, the rate of lactate absorption increased but the rise in 

blood concentration was not sufficient to induce lactic acidosis and 

the effect was only temporary. Thus dialysate lactate, in the 

presence of normal liver function, does not adversely affect lactate 

homeostasis. Lactate in commercial dialysis solutions is present in a 

racemic configuration. The lactate measured in this study did not 

distinguish between the L(+) and D(-) species, but the clearance of 

lactate from the peritoneal cavity is relatively stereospecifc. The 

L(+) isomer has a greater clearance from the peritoneum than the D(-) 

and the latter is less readily metabolised (Rubin et al., 1982). 

However, the difference in clearance between the two isomers is only 

about 2.5 ml/min and probably not clinically significant.



SUMMARY

Hyperlipidaemia was observed in all uraemic patients, but 

hypercholesterolaemia and hypertriglyceridaemia were most marked in 

CAPD and particularly diabetics on CAPD. This emphasises the role of 

glucose intolerance, hyperinsulinaemia and carbohydrate induced 

hyperlipidaemia and the risk of coronary heart disease in patients 

with end stage renal disease.
In the fasting state glucose and insulin were normal although 

haemodialysis patients tended to have marginally increased insulin 

concentrations. C-peptide was grossly elevated in uraemia due to 

impaired renal degradation. Glucagon was generally increased, while 

cortisol was normal in CAPD patients though increased in other 

uraemics. Growth hormone was essentially normal in most uraemic 

patients. The gluconeogenic precursors, lactate, pyruvate and alanine 

were normal in the post-absorptive state, but ketone bodies and 

glycerol tended to be higher in uraemia particularly in the elderly 

CAPD patients.

Hormone and intermediary metabolite profiles during a peritoneal 

dialysis cycle generally showed greater changes with the higher 

dextrose solutions. Peritoneal glucose absorption produced 

hyperglycaemia which induced hyperinsulinaemia and an increase in 

c-peptide. Glucagon decreased while growth hormone and cortisol were 

unchanged. Lactate and to a lesser extent pyruvate increased during 

the cycle. This was largely due to absorption of dialysate lactate as 

the increase appeared to be independent of dialysate glucose 

concentration, although some endogenous production of lactate and 

pyruvate from glycolysis cannot be excluded. Alanine was unchanged 

throughout the cycle. Ketone bodies and glycerol were suppressed 

during peritoneal glucose absorption. Thus dialysate glucose



absorption causes hyperglycaemia and the concomitant hyperinsulinaemia 

stimulates glycolysis, inhibits gluconeogenesis and suppresses 

ketogenesis and lipolysis. Peritonitis increases the permeability of 

the peritoneum and enhances the rate of glucose absorption which 

induces a more marked hyperinsulinaemia, although glucagon was not 

further suppressed. The elevated lactate and pyruvate during 

peritonitis was most likely due to increased dialysate lactate 

absorption, but increased endogenous production due to 

hyperinsulinaemia cannot be excluded. Ketogenesis and lipolysis were 

not further suppressed by peritonitis. Elderly patients who had 

higher basal concentrations of ketone bodies and glycerol had similar 

profiles as other patients.

Hormones and intermediary metabolites in diabetics on CAPD were 

deranged with the deprivation of exogenous insulin. Peritoneal 

glucose absorption produced persistent hyperglycaemia and no beta cell 

response. Glucagon, growth hormone and cortisol were unchanged. 

Lactate increased despite the absence of hyperinsulinaemia due to 

dialysate lactate absorption, while pyruvate and alanine were 

unaltered during the cycle. Ketone bodies and glycerol were not 

suppressed despite the ambient hyperglycaemia due to the lack of 

endogenous and exogenous insulin. Thus insulin deficiency and 

relatively normal or increased glucagon failed to stimulate 

glycolysis, while gluconeogenesis, ketogenesis and lipolysis were 

maintained.

Glucose absorption from the peritoneal dialysate in general terms 

is similar to an oral glucose load, although the role of the 

entero-insulin axis is not known in CAPD. The essential role of 
insulin in controlling metabolic substrates during CAPD is clearly 

shown. During CAPD hyperinsulinaemia stimulates glycolysis and



inhibits gluconeogenesis, ketogenesis and lipolysis. It should be 

noted that normally the CAPD patient is never truly fasted as dialysis 

normally continues 24 hours per day, every day. It is estimated that 

about 130g of glucose per day is absorbed from the dialysis fluid, in 

addition to the oral carbohydrate intake. It is, therefore, important 

that caloric and dietary intake is regularly reviewed and ideally an 

individual dietary prescription should be formulated to minimise 

obesity and hyperlipidaemia.

The long term sequelae of the metabolic consequences remain to be 

seen, but the risks, particularly of vascular disease have to be 

balanced against the alternatives. Although renal transplantation is, 

undoubtedly, the preferred mode of treatment for end stage renal 

disease it is not suitable or available for all patients.

Haemodialysis is also not suitable or available for all patients and 

hypertension and fluid balance are usually better controlled by CAPD. 

The other alternative is CAPD, thus the metabolic effects and 

potential consequences of CAPD need to be assessed in perspective.



CHAPTER 8

GLYCOSYLATED AND CARBAMYLATED HAEMOGLOBIN IN URAEMIA



INTRODUCTION

Glycosylated haemoglobin, as an indicator of integrated long term 

blood glucose control, in diabetics with normal renal function is well 

established clinically and biochemically (Gabbay et al., 1977; Jovanic 

et al., 1981). Recently, a possible pathophysiological significance 

has been suggested between the formation of non-enzymatic 

glycosylation of proteins and the complications of diabetes mellitus 

(Cohen, 1986). This has been discussed in Chapter 4. Glycosylated 

haemoglobin status in uraemia is complex and controversial with 

reports of elevated, normal and reduced concentrations.

Elevated concentrations of haemoglobin A-̂ (HbÂ ) and HbA^c in 

non-diabetic uraemic patients has been frequently documented (De Boer 

et al., 1980; Graf et al., 1980; Kovarik et al., 1981; Fluckiger et_ 
al., 1981). Normal concentrations of total glycosylated haemoglobin 

in the red cell have been reported (Fluckiger et al., 1981; Nath et 

al., 1982) in renal failure. Reduced concentrations of HbA-̂  have also 

been observed in uraemia (Dandona et al., 1979; Freedman et al.,

1982). Haemoglobin A-̂ has been reported to be higher in uraemic 

diabetics than non-uraemic diabetics (Kumar et al., 1983), but others 

have found no difference between similar groups (Panzetta et al.,

1983).

Several explanations have been forwarded to account for the 

elevation of glycosylated haemoglobin in renal failure such as 

co-existing hyperglycaemia and glucose intolerance (Casparie et al., 

1977; Stanton et al., 1978). However, many more recent studies have 

found no association with impaired glucose metabolism in non-diabetic 

uraemic patients (Graf et al., 1980; Kovarik et al., 1981; Nath et 

al., 1982; 0'Regan et al., 1982; Saloranta et al., 1986). Evidence 

that a direct effect of uraemia is responsible, is supported by the



correlation between HbA^ and plasma creatinine (Kovarik et al., 1981) 

and urea (DeMarchi et al., 1983a), although the latter authors favour 

the role of acidosis as the cause of increased glycosylated 

haemoglobin. Interference in the measurement of HbA^ by some 

non-glucose adduct such as urea has been demonstrated (Fluckiger e£ 

al., 1981). These authors suggest that haemoglobin carbamylation 

results from urea-derived cyanate and this may be responsible for the 

rise in glycosylated haemoglobin in uraemia. Reduced concentrations 

of glycosylated haemoglobin in renal failure have been postulated to 

be due to the reduced red cell life span (Freedman et al., 1982).

Objectives

In view of the complex and conflicting data in the literature this 

study aimed to reassess and clarify the subject of glycosylated 

haemoglobin in uraemia. The objectives of the study were:-

1. To evaluate glycosylated haemoglobin in a large uraemic 

population including non-dialysis, dialysis and transplant 

patients, as well as diabetics with and without renal failure.

2. To compare different methods of measuring glycosylated 

haemoglobin (from the same blood sample);

a) by cation chromatography to detect HbA^ and specific 

components HbA^Q and HbA^a+ .̂

b) by a specific chemical method using colorimetry to detect the 

total glycosylation in the red cell.

3. To measure carbamylated haemoglobin simultaneously with 

glycosylated haemoglobin and to investigate the possible 
associations.

4. To clarify the role of glycosylated haemoglobin in uraemia and in 
diabetics with renal failure.



METHODS

1. Patients

Over 200 subjects were studied to evaluate glycosylated and 

carbamylated haemoglobin in a wide spectrum of renal disease. Nine 

groups of subjects were investivated. The abbreviations for each 

group are used throughout the Chapter.

Group

1 Control (healthy volunteers)

2 PRD (primary renal disease)

3 CRF (chronic renal failure)

4 CAPD (continuous ambulatory peritoneal dialysis)

5 HD (haemodialysis)

6 Tx (transplants with normal renal function)

7 Tx-RF (transplants with renal failure)

8 D (diabetics with normal renal function)

9 D-RF (diabetics with renal failure)

A further 9 haemodialysis patients were studied pre- and 

post-dialysis to assess the effects of the procedure. Patients in the 

PRD group had proven underlying renal disease (mainly 

glomerulonephritis, polycystic kidney disease or tubulointerstitial 

disease) with normal blood urea and creatinine. Impairment of 

glomerular filtration rate and proteinuria were not excluded. The CRF 

group consisted of patients with wide degrees of renal impairment from 

mildly elevated creatinine to end stage renal disease, but none of the 

group were on dialysis. The CAPD and HD groups comprised patients 

established on dialysis for at least 6 months. Transplant patients

20
22

40

24

31

16

14

22
24



with normal renal function had normal blood chemistry but impairment 

of the glomerular filtration rate and proteinuria were not excluded. 

Transplants with renal failure had persistently elevated urea and 

creatinine but were managed without dialysis. Diabetics with normal 

renal function (14 type I, 8 type II) had normal urea and creatinine 
but milder degrees of diabetic nephropathy, such as abnormal 

glomerular filtration and proteinuria, were not excluded. Diabetics 

with renal failure (20 type I, 4 type II) had elevated urea and 

creatinine and 8 patients in this group were on dialysis.

2. Study criteria

None of the patients had a blood transfusion within 3 months of 

the study or any detectable haemoglobinopathy. Liver disease, 

alcoholism, jaundice and recent alcohol ingestion were all exclusion 

criteria. Some of the patients had hyperlipidaemia but this was not 

formerly screened or excluded. Drug therapy was not altered for this 

study. All transplant patients took prednisolone and either 

cyclosporine A or azathioprine. Uraemic patients were taking many 

drugs but the only exclusion was aspirin or antibiotic medication at 

the time of the study. None of the patients were diabetic other than 

the two diabetic groups.

3. Protocol

Random venous blood samples were taken from subjects usually 

during out-patient clinic visits and after informed consent. Blood 

was taken for the simultaneous measurement of glucose, full blood 

count, urea, electrolytes, creatinine, liver function tests, 

glycosylated and carbamylated haemoglobin. Blood for glycosylated 

haemoglobin was allowed to stand for 24 hours at 4°C to reduce the



’labile' fraction in diabetics. None of the diabetics had severe 

hyperglycaemia at the time of sampling. To assess the effect of 

haemodialysis blood was taken immediately pre-dialysis (i.e. 48 hours 

after last dialysis) and post-dialysis (after a 4 hour session). 

Arterial blood for H+ ion concentration and bicarbonate was taken from 

the arterial line in the 9 patients investigated during haemodialysis. 

Ethical committee approval was obtained for this study.

4. Assays

Glycosylated haemoglobin was measured by 2 distinct methods. 

Firstly, total glycosylation in the red cell by the thiobarbituric 

acid - colorimetric method (Fluckiger and Winterhalter, 1976) with 

modifications as described in Chapter 5. Red cells were washed, lysed 

and hydrolysed to split off the glycosyl moiety which converts to 

5-hydroxymethylfurfural (5HMF) (as shown in Figure 4.2). The 5HMF was 

then measured colorimetrically following reaction with thiobarbituric 

acid. Within and between batch coefficients of variation were 3.5% 

and 6% respectively.
Secondly, cation chromatography using minicolumn commercial kits 

estimated HbA-̂  and the specific components HbA-̂ c and HbA-̂ a+ .̂ The 

kits were from BioRad laboratories and the methods are fully described 

in Chapter 5. The chromatographic methods used whole blood 

haemolysate which was applied to a weakly acidic cation exchange 

resin. An elution/developing reagent was then added to the column 

which separated the fast moving components. By using specific buffers 

the components were separated. The within and between batch 

coefficients of variation were approximately 3% and 6% respectively.
Carbamylated haemoglobin was estimated by quantifying the amount 

of valine (isopropyl) hydantoin released from the acid hydrolysis of



globin. Valine hydantoin was then measured by gas liquid 

chromatography. The method was adapted from Manning et al. (1973) and 

Fluckiger et al. (1981) with modifications as described in Chapter 5. 

The reaction is represented in Figure 8.1. All samples were assayed 

in duplicate and between assay variation was 12%.

5. Statistics

Parametric tests were used as glycosylated and carbamylated 

haemoglobin had a normal distribution. In view of the multiple groups 

investigated analysis of variance was used for comparison between 

groups. In calculating the ' t' statistic the "combined standard 

deviation" was employed. Comparison between pre- and post-dialysis 

data was done using the paired ftf test. Correlations were sought by 

linear regression analysis. Analysis of ratios were done by the 

Mann-Whitney non-parametric test.
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RESULTS

1. General data

Sex and age (mean and SD) are shown for each group in Table 8.1. 

The control group were the youngest and the CAPD group the oldest, but 

most of the other groups were, of comparable age, between 40 and 50 

years. Haemoglobin, packed cell volume (PCV) and serum albumin are 

shown in Table 8.II (mean and SEM). Haemoglobin and PCV were 

decreased in all groups with renal failure (p<0.001) compared to 
controls, while diabetics and transplants with normal renal function 

had similar values to controls. Albumin was normal in all groups 

except the CAPD group which had a lower albumin concentration 

(p<0.05).

Blood urea, serum creatinine and plasma bicarbonate (mean and SD) 

are shown in Table 8.III. The primary renal disease (PRD), transplant 

(Tx) and diabetic (D) groups had normal urea and creatinine 

concentrations while all the other groups had increased urea and 

creatinine (p<0.001). Bicarbonate was statistically reduced in all 

the renal failure groups compared to controls (p<0.01).
Random blood glucose (mean and SEM) values are shown in Table 

8.IV. Glucose concentrations were normal in all but the 2 diabetic 

groups which had significantly increased concentrations (p<0.001).
Most diabetics with or without renal failure had random glucose 

concentrations under 12 mmol/1 and all were below 16 mmol/1.

2. Glycosylated haemoglobin

Glycosylated haemoglobin measured by the colorimetric method was 

evaluated in about 100 patients prior to this study. This confirmed 

that glycosylated haemoglobin by this technique (GHb) was elevated



Group n Sex
M F

Age

1 C 20 9 11 33.1 ( 7.4)

2 PRD 22 13 9 41.7 ( 8.9)

3 CRF 40 25 15 52.2°( 8.3)

4 CAPD 24 12 12 57.7C (11.8)

5 HD 31 18 13 44.0b( 7.9)

6 TX 16 7 9 38.8 ( 9.7)

7 TX-RF 14 12 2 40.6 (10.9)

8 D 22 9 13 46.5b( 9.9)

9 D-RF 24 16 8 49.8b(10.2)

Age - values are mean and (SD) 
p values refer to comparison with controls 
b - p <0.01

Table 8 . I c - p <0.001 Clinical Data
Sex and Age

Group n Haemoglobin
g/dl

PCV
%

Albumin
g/1

1 C 20 14.6 (0.3) 43.8 0.9) 47 (0.6)
2 PRD 22 14.7 (0.2) 43.9 0.6) 42 (1.2)
3 CRF 40 10.^ (0.3) 32.4° 1.0) 40 (0.7)
4 CAPD 24 9.6° (0.3) 28.8° 0.9) 36a (0.9)
5 HD 31 9.0° (0.4) c27.7 1.2) 43 (1.0)
6 TX 16 14.0 (0.5) 42.0 1.3) 43 (1.0)
7 TX - RF 14 12.5b(0.5) 37.0 1.4) 41 (0.8)
8 D 22 14.0 (0.3)

c
42.1

c
1.0) 41 (1.4)

9 D-RF 24 11.0 (0.5) 33.7 1.5) 38 (1.2)

Values are mean and (SEM) 
p values refer to comparison with controls 

Table 8. II a - p <0.05 . . ~
b - p <0.01 Clinical Da
c - p <0.001 Haemoglobin 

and Albumin



Group n UREA
(mmol/1)

CREATININE
(pmol/1)

BICARBONATE
(mmol/1)

1 C 20 5.1 (1.1) 89 ( 20) 27.7 (6.2)
2 PRD 22 5.8 (1.2) 97 ( 21) 27.8 (5.9)
3 CRF 40 24.7° (3.9) 521° ( 82) 22.3k(3.5)
4 CAPD 24 20. 3C ( 4.1) 998° (204) 23.7̂ (4.8)
5 HD 31 21.3°(3.8) 967° (174) b23.4 (4.2)
6 TX 16 6.9 (1.7) 111 ( 28) 26.6 (6.7)
7 TX-RF 14 13.0°(3.5) 277° ( 74) b24.3 (6.5)
8 D 22 5.6 (1.2) 87 ( 19) 26.7 (5.7)
9 D-RF 24 20.1° (4.1) 466° ( 95) 25.2 (5.1)

Table 8. Ill

Values are mean and (SD) 
p values refer to comparison with controls
k ~ n’m  Clinical Datab - p< 0.01
c - p< 0.001 Urea, Creatinine, Bicarbonate

Group n Glucose (mmol/1)

1 C 20 4.0 (0.2)
2 PRD 22 3.8 (0.1)
3 CRF 40 4.1 (0.1)
4 CAPD 24 4.5 (0.2)

5 HD 31 4.4 (0.2)

6 TX 16 4.1 (0.2)

7 TX - RF 14 4.1 (0.3)

8 D 22 9.4C (0.8)

9 D-RF 24 7.2F (0.7)

Table 8. IV
Values are mean and (SEM) Clinical Data
p values refer to controls

c - p <0.001 Glucose



GLYCOSYLATED HAEMOGLOBIN - COLORIMETRIC METHOD

Subjects n GHb (mmol HMF/mol Hb)

A) Controls 17 35.9 (0.7)

B) Uraemia 60 37.0 (0.4)

CRF 13 38.3 (0.9)
CAPD 31 35.8 (0.9)
HD 16 37.1 (0.8)

C) Diabetes 22 50.6 (2.2)

No Uraemia 4 55.8 (4.2)
CRF 5 55.0 (3.3)
CAPD 9 49.3 (3.8)
HD 4 43.5 (4.7)

Values are mean and (SEM)

A v B NS
A v C p < 0.001
B v C p < 0.001

Table 8 . V
Glycosylated Haemoglobin measured by the TBA - colorimetric 
method in pilot study.



only in diabetics. Results are shown in Table 8.V (mean and SEM). 

Non-diabetic uraemic patients and healthy controls had similar GHb 

concentrations, whereas diabetics had significantly higher 

concentrations (p<0.001).

Glycosylated and carbamylated haemoglobin (CHb): Table 8.VI shows the 

values of glycosylated haemoglobin (GHb, HbA^, HbA^c, + )̂ and

carbamylated haemoglobin for 6 groups. The PRD, Tx and Tx-RF groups 

are discussed later. Values are mean, (SEM) and [95% confidence 

intervals]. Comparison of these results are shown below.

HbA :̂ Figure 8.2a shows the scatter of HbA-̂  values for each group 

(transplants are shown later) and Figure 8.2b shows the mean, 95% 

confidence interval and statistical difference between the groups.

HbA^ was elevated in all 3 non-diabetic uraemic groups and in both 

diabetic groups. The haemodialysis (HD) group had a lower HbA^ than 

the other non-diabetic uraemic groups. Both diabetic groups had 

significantly higher HbA^ than non-diabetics (p<0.001). The mean 

level of HbA^ was similar in both diabetics groups.

HbA-ĵ : Figure 8.3a shows the scatter of HbA^c values and Figure 8.3b 

shows the mean, 95% confidence interval and statistical difference 

between the groups. The 3 non-diabetic uraemic groups (CRF, CAPD, HD) 

had increased HbA^c values compared to controls although there was 

some overlap. Statistically there was no difference between the HD 

group and controls although the other non-diabetic uraemic groups had 

significantly increased HbA^c concentrations. The diabetic groups had 

significantly increased HbA^c compared to controls and non-diabetic 

uraemic subjects (p<0.001). There was no difference between the
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diabetic groups.

HbAia+b: Figure 8.4a shows the scatter of HbA^a+  ̂values and Figure 

8.4b the mean, 95% confidence interval and statistical difference. 

HbA^â  was significantly increased in all uraemic and diabetic groups 

compared to controls (p<0.001). The scatter of HbA^a+  ̂values was 

similar in both uraemia and diabetics. The HD group had the lowest 

mean HbA^a+  ̂concentration of the uraemic groups and was significantly 

lower than the CAPD group (p<0.001) but not significantly different 

from the CRF group. Diabetics with renal failure had a marginally 

higher mean than diabetics with normal renal function but the 

difference was not significant. Diabetics with renal failure had 

similar HbA^a+  ̂concentrations as the CAPD group and both were higher 

than the CRF group.

GHb: Figure 8.5a shows the scatter of GHb values and Figure 8.5b the 

mean, 95% confidence interval and statistical difference.

Glycosylated haemoglobin measured by colorimetry was elevated only in 

the presence of diabetes (p<0.001). There was no difference between 

diabetics with normal or impaired renal function. GHb was similar in 

non-diabetic uraemics and controls.

CHb: Figure 8.6a shows the scatter of CHb values and Figure 8.6b the 

mean, 95% confidence interval and statistical difference. Although 

there was a wide scatter of CHb concentrations there was no overlap 

between individuals with renal failure and normal renal function. All 

uraemic groups including diabetics with renal failure had gross 

elevation of CHb (p<0.001). The HD group had a lower mean CHb 

concentration than the CRF and CAPD groups (p<0.01), but this was not
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statistically different from diabetics with renal failure.

3. Comparison of glycosylated haemoglobin methods

Glycosylated haemoglobin measured by colorimetry (GHb) and by the 

minicolumn cation chromatographic techniques (HbAp HbA^c, HbA^a+ )̂ 

were compared and are shown in Figures 8.7, 8.8 and 8.9. Figure 8.7a 

shows the correlations of HbA-̂  and GHb and Figure 8.7b the correlation 

of HbA^c and GHb in diabetics with normal renal function. A strong 

and significant positive linear correlation was found in both 

comparisons. Linear regression analysis was carried out in diabetics 

with renal failure comparing HbA-̂  (Figure 8.8a) and HbA^c (Figure 

8.8b) with GHb. A strong linear correlation was found for both 

methods. Comparison between HbA-̂ a+  ̂and GHb in diabetics with normal 

renal function is shown in Figure 8.9a and Figure 8.9b shows the 

correlation between HbA^a+  ̂and GHb in diabetics with renal failure. 

Linear regression analysis shows that the correlation was less strong 

in both diabetic groups with the HbA^a+  ̂fraction compared to the HbA^ 

and HbA-̂ c fractions, although a significant correlation was found in 

all. No significant correlations between GHb and HbA^ or HbA^c or 

HbAia+b were found in any of the non-diabetic uraemic groups.

Comparison of the microcolumn methods for each fraction are shown 

in Table 8.VII. The correlation coefficients for each patient group 

are shown with the strongest correlation in diabetics with and without 

renal failure. Generally the best correlation was found in comparing 

the HbA-̂  component with the HbA^c fraction.

The ratio of HbA^a+ /̂HbA-̂ c for each group is shown in Table 

8.VIII. The values are mean and (SD). The ratio ®>A^ ^/HbA^ was 

significantly increased in all non-diabetic uraemics compared to the 

control group due to a relatively greater increase in the HbA^a+^
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Table 8. VII 
C o r r e l a t i o n  c o e f f i c i e n t s  (r) of

HbA-] and s u b f r a c t i o n s

GROUP A 1 v A 1c A 1 v A 1 a+b A 1 c v A 1 a + b
C 0.731 0 . 7 0 7 0 . 7 4 9

CRF 0 . 5 1 8 0 . 5 3 9 0 . 7 1 2
CAPD 0 . 7 2 4 0 . 6 9 5 0 . 5 5 5
HD 0 . 4 7 5 0 . 3 8 8 0 . 3 1 8

DIAB 0 . 8 5 7 0 . 8 2 9 0 . 6 7 5
DI A B - R F 0 . 8 8 9 0 . 7 6 3 0 . 7 9 9

Comparison of ion exchange chromatographic methods

Rat i o
Table 8. V I I I  
of HbA-j a+b/H^A-] c

GROUP n H b A 1 a + b / H b A lc P
C 20 0 . 2 9 2  (0.021)

CRF 40 0 . 3 2 8  (0.049) < 0 . 0 1
CAPD 24 0 . 3 6 8  (0.039) < 0 . 0 0 1
HD 31 0 . 3 4 7  (0.046) < 0 . 0 0 1

DIAB 22 0 . 2 5 7  (0.033) < 0 . 0 1
DIAB -RF 24 0.301 (0.042) NS

V a lu es are m e a n and (SO)
p valu es r e f e r  to c o m p a r i s o n  w i t h  c o n t r o l s

Identical le v e l s  of s i g n i f i c a n c e  w e r e  o b t a i n e d  
by both M a n n  W h i t n e y  t e s t  and A n a l y s i s  of 
V a r i a n c e



fraction. Diabetics with normal renal function had a significantly 

lower ratio due to a relatively greater increase in the HbA^c 

components. Diabetics with renal failure had a ratio similar to 

controls, even though the absolute quantities of both HbA^a+  ̂and 

HbA^c increased.

4. Glycosylated haemoglobin and renal function

Comparison of glycosylated haemoglobin (HbA-̂ , HbA^c, HbA^^^, GHb) 

and both urea and creatinine were sought by linear regression 

analysis.

HbA-̂  and urea showed no significant correlation in any of the 

groups except for the HD group (r=0.502, p<0.01). All the other 

groups had an r value below 0.2. HbA^ and creatinine showed no 

correlation in any of the groups except controls (r=0.710, p<0.001).

HbA^c and urea showed no correlation in any of the groups with the 

exception of a modest correlation with the CAPD group (r=0.460, 

p<0.05). HbA^c and creatinine did not show any correlation in any of 

the groups.

HbAia+b an£* urea were observed to have a correlation in the CRF 

(r=0.331, p<0.05) and CAPD (r=0.422, p<0.05) groups but not in any of 

the others. HbA-̂ a+  ̂and creatinine were correlated in the CAPD group 

(r=0.473, p<0.05) but not in the others. Neither urea nor creatinine 

showed any correlation with GHb in any of the groups. Overall none of 

the glycosylated haemoglobin components consistently correlated with 

urea or creatinine in any of the groups.

Glycosylated haemoglobin did not correlate with random blood 

glucose, total haemoglobin, sex or age in any of the groups.



5. Carbamylated haemoglobin and renal function

Carbamylated haemoglobin (CHb) expressed as isopropyl hydantoin 

(IPH) was similar in controls (Table 8.VI) to both diabetics and 

patients with primary renal disease (Table 8.XIII). The 'normal1 

concentration of CHb was 26 (range 23-29) in 20 healthy controls. 

Combining the above 3 groups a non-uraemic reference range was 

determined in 64 patients: mean=27, range 22-32 ng IPH/mg globin.

Comparison of CHb concentrations and renal function are show in 

Table 8.IX and Figures 8.10 and 8.11. The correlation coefficients 

and p values between CHb and both urea and creatinine are shown in 

Table 8.IX. A stronger correlation was found between CHb and urea 

than between CHb and creatinine. The strongest correlation was found 

in undialysed patients with chronic renal failure. Controls showed a 

weak correlation but diabetics with normal renal function showed no 

correlation. Figure 8.10a displays a significant positive linear 

correlation between CHb and urea in the CRF group and Figure 8.10b 

shows the correlation between CHb and creatinine in the CRF group.

The comparison between CHb and urea for diabetics with renal failure 

is shown in Figure 8.11. The CAPD group was found to have a stronger 

correlation between CHb and both urea and creatinine than the 

haemodialysis (HD) group.

CHb and bicarbonate: No significant correlation was found between CHb 

and bicarbonate in any of the groups with the exception of the CAPD 

group (r=-0.411, p<0.05), which had a mean bicarbonate level within 

the normal range.



Table 8. IX

C o r r e l a t i o n  of C a r b a m y l a t e d  H a e m o g l o b i n  
and Renal F u n c t i o n

GROUP U R E A C R E A T I N I N E
n r P r P

C O N T R O L 20 0.551 <0.0 5 0.521 < 0.0 5
CRF 40 0 . 7 5 2 <0.001 0 . 6 2 4 <0.001
CAPD 24 0 . 5 5 2 <0.01 0 . 4 6 7 <0. 0 5
HD 31 0 . 4 4 0 <0.0 5 -0 . 0 2 2 NS
DIAB 13 0 . 4 8 3 NS 0 . 4 4 5 NS
D I AB -RF 22 0 . 5 8 2 <0.001 - 0 . 0 6 5 NS
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CHb and haemoglobin: There was no correlation between CHb and total 

haemoglobin (or PCV) in any of the groups.

CHb and glucose: No correlation between CHb and random blood glucose 

was observed in any of the groups.

6. Carbamylated and glycosylated haemoglobin

CHb and HbA :̂ Plots showing the correlation between HbA-̂  and CHb are 

shown in Figure 8.12. In the CRF group (Figure 8.12a) and the CAPD 
group (Figure 8.12b) a significant positive linear correlation was 

found between the 2 variables. A weak correlation (r=0.355, p<0.05) 

was found in the HD group but no significant correlation was found 

between HbA^ and CHb in diabetics with renal failure (Figure 8.13).

CHb and HbA^g: HbA^c and CHb showed a significant linear correlation 

in CRF patients (r=0.605, p<0.001) as displayed in Figure 8.14. A 

moderate correlation was found in the CAPD group (r=0.434, p<0.01).

No correlation was found between the variables in either the HD 

(r=0.042) or the diabetic renal failure groups (r=0.178).

CHb and HbA^ +̂ :̂ HbA-̂ a+  ̂and CHb showed a significant positive 

correlation in CRF and CAPD patients as seen in Figures 8.15a and 

8.15b. The HD and diabetic renal failure groups showed no correlation 

(HD: r=0.233; D-RF: r=0.248).
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CHb and GHb: There was generally no correlation between glycosylated 

haemoglobin measured by colorimetry and CHb. The only exception was a 

weak correlation in the CRF group (r=0.341, p<0.05). No correlation 

was observed between GHb and CHb in diabetics with renal failure 

(r=0.174).

Overall there was a correlation between CHb and the 

chromatographic measured components of glycosylated haemoglobin but 

not with the colorimetric measured species. This relationship was 

seen in non-diabetic uraemic patients, particularly the CRF and CAPD 

groups, but not in diabetics with renal failure.

The absolute values for glycosylated and carbamylated haemoglobin 

were shown in Table 8.VI and a summary of the relative change, in each 

variable for each patient group, compared to the control group is 

shown in Table 8.X. HbA-̂  increased by about 12 to 20% in the 

non-diabetic uraemic patients compared to a 50% increment in 

diabetics. HbA^c showed more variation but less relative change in 

uraemics while diabetics had a rise of about 50%. was

increased by over 50% in uraemic diabetics but all the uraemic groups 

showed a relatively greater increase in the HbA^a+  ̂fraction than the 

HbAic. GHb showed negligible change in non-diabetics while both 

diabetic groups showed an increment of 35 to 40%. CHb had a 2 to 

4-fold increase in all uraemic patients including diabetics with 

uraemia.

7. The effect of haemodialysis

Several variables were measured in 9 haemodialysis patients 

immediately pre- and post- a 4 hour dialysis session. The paired * t' 

test was used to compare the changes. The results are shown in Table



Table 8. X
R e l a t i v e  c h a n g e  in g l y c o s y l a t e d  and 

c a r b a m y l a t e d  h a e m o g l o b i n

HbA']
%

H b A 1c
%

H b A 1a+b
%

G H b
%

CH b
%

CRF 2 2 . 4 18.1 3 3.3 3.0 427
CAP D 21.6 16.8 47.1 <1 385
HD 12.9 3.8 2 2.9 <1 285
D 51.9 57.5 3 8.6 4 0.3 4
D-RF 52.0 47.2 51. 0 35.1 3 0 4
T x - R F 1 1.4 9.3 19.0 4.6 235

V a l u e s  are the p e r c e n t a g e  c h a n g e  (inc r e a s e )  in c o m p a r i s o n  
to cont rols.



Table 8. XI 
The effect of haemodialysis

Pre Dialysis Post Dialysis P

Glucose 4.2 ( 3.9 - 4.6) 6.9 ( 5.6 - 8.1) < 0.001

A1 9.0 ( 8.3 - 9.8) 9.1 ( 8.6 - 9.6) NS

Alc 5.3 ( 4.9 - 5.7) 5.3 ( 4.9 - 5.7) NS

Ala+b 1.9 ( 1.7 - 2.1) 2.0 ( 1.7 - 2.2) NS
GHb 38.3 (35.2 - 41.4) 36.8 (34.7 - 38.9) NS
CHb 111 (84 - 139) 100 (79 - 120) NS
Urea 26.9 (23.3 - 30.5) 12.9 (9.2 - 16.5) < 0.001
Creatinine 1043 (928 - 1159) 568 (516 - 622) < 0.001
H+ 43.4 (40.1 - 44.6) 36.1 (32.4 - 39.8) < 0.01
Bicarb 22.2 (21.4 - 23.1) 25.8 (24.5 - 27.0) < 0.001

n = 9
Values are mean and (95% C.I.)
P-comparison between pre and post dialysis



Table 8. XII
Correlation between Glycosylated/Carbamylated 
Haemoglobin and Bicarbonate/H+ concentrations

GROUP n r P

HbA'i vBic C 20 0.238 NS
HbA-| vBic CRF 40 0.141 NS
HbA-j vBic CAPD 24 -0.545 < 0 . 0 1
HbA-j vBic HD 31 -0.425 < 0.05
HbA1vH+ HD 8 0.221 NS
HbA-] vBic DIAB-RF 24 -0.044 NS

H b A ^ v B i c . CRF 40 0.033 NS
H b A ^ v B i c CAPD 24 -0.441 < 0 . 0 5
H b A ^ v B i c HD 31 -0.191 NS
HbAlc vH+ HD 8 -0.086 NS
H b A ^ v B i c DIAB-RF 24 0.205 NS

HbA1a+bvBic CRF 40 0.094 NS
HbA1a+bvBic CAPD 24 -0.576 <0.01
HbA1a+bvBic HD 31 0.026 NS
HbA1a+bvH+ HD 8 -0.396 NS
HbA1a+bvBic DIAB-RF 24 -0.197 NS

GHbvBic CRF 40 -0.070 NS
GHbvBic CAPD 24 -0.386 NS
GHbvBic HD 31 -0.095 NS
GHbvH+ HD 8 0.282 NS
GHbvBic DIAB-RF 24 -0.160 NS

CHbvBic CRF 40 -0.234 NS
CHbvBic CAPD 24 -0.411 <0.05
CHbvBic HD 31 -0.254 NS
CHbvH+ HD 8 0.232 NS
CHbvBic DIAB-RF 24 0.102 NS



8.XI (values are mean and 95% Cl). Blood glucose (random) and plasma 

bicarbonate increased (p<0.001), while hydrogen ion concentration 

(p<0.01), blood urea and serum creatinine decreased (p<0.001). 

Glycosylated haemoglobin (HbA-p HbA-^, HbA^a+fc, GHb) and carbamylated 

haemoglobin did not change.

8. The effect of acidosis

Comparison between plasma bicarbonate and both glycosylated 

haemoglobin and carbamylated haemoglobin in general showed no 

significant correlation. Correlation coefficients are shown in Table

8.XII. A weak but persistent correlation was found in the CAPD group 

but the bicarbonate concentration was essentially normal. As a group 

the CRF patients were more 1acidotic' but no correlation was found. 

There was no correlation between H+ ion concentration in the HD group 

and either glycosylated or carbamylated haemoglobin.

9. Glycosylated and carbamylated haemoglobin in renal transplantation 

This part of the study evaluated 4 groups of subjects: controls

(as previously described), patients with underlying renal pathology 

but normal renal function i.e. primary renal disease (PRD), renal 

transplant subjects with normal renal function (Tx) and renal 

transplants with failing graft function (Tx-RF).

a) General data

Age and sex are shown in Table 8.1; total haemoglobin, PCV and 

albumin in Table 8.II; and urea, creatinine and bicarbonate in Table 

8.III. Patients in the PRD group were similar to controls for all 

variables. Transplants with normal renal function had normal total 

haemoglobin, PCV, albumin, urea, creatinine and bicarbonate.



Transplants with renal failure had reduced total haemoglobin, PCV and 

bicarbonate and increased urea and creatinine. Random blood glucose 

(Table 8.IV) was normal in all groups.

b) Glycosylated and carbamylated haemoglobin

Glycosylated haemoglobin (HbÂ , HbA-̂ c, HbA-̂ a+ ,̂ GHb) and 

carbamylated haemoglobin are shown in Table 8.XIII. Values are mean 

(SEM) and [95% Cl]. Figure 8.16 shows the chromatographic measured 

components of haemoglobin A-̂, i.e. HbA^, HbA^c and HbA^a+  ̂for each of 

the 4 groups. Values are mean and 95% Cl, and statistical differences 

are also shown. The PRD group had similar HbA^, HbA^c and HbA^^-^ 

values as the control group. Transplants with normal renal function 

had an increase in HbA^ concentration (p<0.05) but HbA^c and HbA^a+  ̂

were similar to controls. Transplants with renal failure had an 

increase in HbA^ (p<0.01), HbA-̂ c (p<0.05) and HbA^a+  ̂(p<0.01).

Glycosylated haemoglobin measured by colorimetry (GHb) is shown in 

Figure 8.17 (values are mean and 95% Cl) for each of the 4 groups. 

There was no change in GHb and all groups were similar to controls.

Carbamylated haemoglobin is shown in Figure 8.18 with the scatter 

of values, mean, 95% Cl and statistical difference between the groups. 

The control and PRD groups were similar but transplants with normal 

renal function, although they generally overlapped with the control 

group, had a few individuals with elevated concentrations of CHb and 

the mean of the Tx group was significantly increased (p<0.05). 

Transplants with renal failure showed a wide scatter and the mean CHb 

concentration was grossly elevated (p<0.001).
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c) Renal function and other associations

HbAp HbA^c and GHb did not correlate with either urea or 

creatinine in any of the groups. HbAia+b showed a significant 

correlation (r=0.602, p<0.05) with urea but not with creatinine in the 

Tx-RF group. The other groups showed no correlation with HbA^a+ .̂

CHb was found to have a strong positive linear correlation with urea 

in the transplants with renal failure (r=0.874, p<0.001) and is 

plotted in Figure 8.19. The other groups did not show any correlation 

between CHb and urea. Transplants with renal failure also showed a 

correlation between CHb and creatinine (r=0.589, p<0.05) but this was 

not observed in the other groups.

Comparison of bicarbonate with HbÂ , HbA^c or HbA^a+  ̂did not show 

any correlations between the variables in any of the groups.

In transplants with renal failure CHb and HbA-̂ a+  ̂showed a strong 

correlation (r=0.761, p<0.01) but correlations of CHb with HbA^ 

(r=0.471, p-NS) or HbA-̂ c (r=0.634, p<0.05) were less obvious. The 

other groups did not show any correlation between CHb and glycosylated 

haemoglobin.

The ratio of HbA^a+ /̂HbA-̂ c in transplants with renal failure was 

significantly higher than controls (p<0.01). The other groups showed 

no change in the HbAia+b/HbA^c ratio.
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DISCUSSION

The aims of this study were to evaluate glycosylated and 

carbamylated haemoglobin in uraemia and attempt to clarify the 

confusing and conflicting data in the literature. In this large 

study, over 200 patients with varying degrees of renal impairment were 

studied. Different methods of measurement and several components of 

glycosylated haemoglobin were assessed and the association with 

carbamylated haemoglobin examined.

This study showed elevation of chromatographically determined 

glycosylated haemoglobin (HbAp HbA^c and HbA^a+ )̂ and normal 

colorimetrically measured glycosylated haemoglobin in non-diabetic 

uraemic subjects. The increased formation of carbamylated haemoglobin 

was confirmed and showed a parallel rise with HbA-̂  and its 

sub-fractions. This investigation provides strong evidence that this 

non-glucose adduct of haemoglobin is responsible for the interference 

and 'false' elevation of glycosylated haemoglobin measured by 

ion-exchange column chromatography. Carbamylation of haemoglobin was 

strongly influenced by the degree of uraemia but was detectable in 

non-uraemic subjects. Diabetics with renal failure had elevated 

glycosylated haemoglobin independent of assay method and increased 

carbamylated haemoglobin, but the latter did not correlate with 

glycosylated haemoglobin.

1. Study design

This study was designed to measure simultaneously, i.e. from the 

same blood specimen, the chromatographic components of HbA^, total 

glycosylation of the red cell, carbamylated haemoglobin and other 

biochemical variables in a population of uraemic and diabetic 

patients. This enabled a comparison to be made between the components



of glycosylated haemoglobin and carbamylated haemoglobin in 

individuals.

A number of situations can cause interference with the measurement 

of chromatographically determined glycosylated haemoglobin (Gabbay e£ 

al., 1983) and these have been discussed in Chapter 4. In the study 

protocol several exclusion criteria were implemented to reduce 

interfering factors. None of the subjects had a recent blood 

transfusion (within 3 months of the study), haemoglobinopathy, 

jaundice or had recent alcohol, antibiotic or aspirin ingestion. The 

presence of hyperlipidaemia was, however, not excluded and as most 

subjects were uraemic or diabetic or both, interference from 

lactescence cannot be ruled out. Lactescent plasma due to 

hyperlipoproteinaemia has been shown to elute with the HbA^ fraction 

(Dix et al., 1979a). In reality, it would be very difficult to find a 

population of uraemic or diabetic patients without some degree of 

hyperlipidaemia. The determination of total glycosylation in the red 

cell by a direct chemical method (colorimetry) circumvents most 

interfering factors, but shortened red cell life span can reduce the 

concentration of glycosylated haemoglobin independent of methodology. 

In uraemia red cell survival is generally accepted to be reduced in 

undialysed chronic renal failure (Shaw, 1967), haemodialysis (Fried at 

al., 1978) and CAPD patients (Hefti et al., 1983). However, by the 

simultaneous measurement of both chromatographic and colorimetric 

determined glycosylated haemoglobin the net effect of reduced 

erythrocyte life span should be minimised.

In view of the multiple groups of patients investigated and the 

numerous variables measured the risk of a type-I error is increased 

and thus some caution has to be used in the statistical interpretation 

of the results.



2. Methodology

Much of the confusion about glycosylated haemoglobin is related to 

nomenclature and methodology. This has been discussed in Chapters 4 

and 5. In this study two separate cation exchange minicolumn 

chromatographic methods were used. One measured HbA^ (i.e. total 

HbA-̂ a+ ĵ_c) and the other measured the specific fractions HbA^c and 

HbAfa+b* These methods based on the principle of a net change in 

charge were quite similar, with different fractions being eluted by 

changing the buffer solution. The assays used whole blood 

haemolysates, were sensitive to temperature changes, required a high 

degree of operator skill to achieve reproducibility and precision, and 

were relatively expensive. All assays were performed in a water bath 

with a constant ambient temperature of 26°C. Glycosylated haemoglobin 

was also measured by the thiobarbituric acid - colorimetric method, 

whereby furfural compounds are generated from the ketoamine linked 

carbohydrate moieties upon acid hydrolysis and quantified 

colorimetrically after reacting with thiobarbituric acid. This direct 

chemical method measures the total glycosylation in the red cell and 

has the advantages of being unaffected by non-glucose adducts, 

aldimine intermediates and is inexpensive to run, but has the 

drawbacks of having no universally accepted standard, hydrolysis 

conditions must be carefully controlled for precision, and is a 

time-consuming, labour intensive procedure compared to the minicolumn 

kits.

3. Haemoglobin glycosylation

In this study HbA^ was significantly increased in non-diabetic 

uraemic patients. This is in general agreement with many others 

(DeBoer et al., 1980; Graf et al., 1980; Kovarik et al., 1981). HbA^



was found to be increased by 13 to 20% in uraemics compared to 

controls. The increment was greater in non-dialysed chronic renal 

failure and CAPD patients than haemodialysis patients. By comparison 

diabetics independent of renal function had a greater rise in HbA^, 

showing a 50% increase.

HbA-̂ c has been less frequently measured in non-diabetic uraemics, 

but the elevated concentrations found in this study are in agreement 

with others (Graf et al., 1980; O’Regan et al., 1982; Saloranta eit 

al., 1986). HbA-̂ c increased proportionately less in uraemics (less 

than 20%), in contrast to increments of 40 to 50% in diabetics.

The HbA-̂ a+k fraction was increased in diabetic and uraemic 

patients. HbA-̂ a+  ̂has been reported to be increased in uraemia 

(Fluckiger et al., 1981; Lantz et al., 1981) but no elevation of this 

fraction was found in diabetics with uraemia (Saloranta et al., 1986). 

In the present study HbA^a+  ̂increased by between 20 and 50% in 

non-diabetic uraemic patients, by about 40% in diabetics with normal 

renal function and by 50% in diabetics with renal failure.

Glycosylated haemoglobin measured by colorimetry was unchanged by 

uraemia, both in this study and in the pilot study (unpublished data) 

and was only increased in the presence of diabetes. This is in 

agreement with the findings of others (Fluckiger et al., 1981; Nath e_t 

al., 1982). Thus differences in methodology can explain some of the 

confusion regarding glycosylated haemoglobin in uraemia. Furthermore, 

the effect of reduced red cell life span, which could conceivably 

suppress glycosylated haemoglobin concentration independent of 

methodology, was not seen in the colorimetric estimation as 

non-diabetic uraemic patients had similar values to control subjects. 

Colorimetrically measured glycosylated haemoglobin (GHb) was, by 

chance, similar in both diabetics with and without renal impairment.



This finding allows further comparison between the methods and renal 

function in diabetics.

Comparison of the methods of measuring glycosylated haemoglobin 

showed an excellent correlation between the colorimetric and 

chromatographic techniques for diabetics, independent of renal 

function, and particularly for the HbA-̂  and HbA-̂ c components. ^^ia+b 

was found to have a strong correlation with the colorimetric method in 

diabetics with renal failure, while diabetics with normal renal 

function showed a weaker, though statistically significant 

correlation. No correlation was found between the 2 different methods 

in non-diabetic uraemic patients. This latter finding is in agreement 

with others (Fluckiger et al., 1981; Oimomi et al., 1981).

The data from this investigation suggests that either method of 

estimating glycosylated haemoglobin can be used to monitor blood 

glucose control in diabetics with renal failure. The colorimetric 

method is unaltered by uraemia and may be the preferred method, but it 

has other limitations as previously discussed. The excellent 

correlation between colorimetry and chromatography suggests that HbA-̂  

or HbA^c is still useful and its rapid estimation does allow the 

result to be available more readily and is particularly suitable for 

out-patient management. The assumption that since uraemic patients 

have elevated HbA-̂  or HbA^c then diabetic uraemic patients would have 

false elevation of glycosylated haemoglobin must be questioned. There 

is little data in the literature specifically on glycaemic control in 

uraemic diabetics, but data extracted from 2 studies show conflicting 

results. Kumar et al. (1983) found HbA-̂  to be higher in uraemic 

diabetics than non-uraemic diabetics, but clinically the latter were 

better controlled and the number of patients studied was small. Thus 

the difference may be due to the glycaemic rather than the uraemic



effect. In contrast, Saloranta et al. (1986) found no difference 

between uraemic and non-uraemic diabetics in HbA-̂  or HbA^c

concentrations measured chromatographically. In the present study the

similar GHb measurements by colorimetry in the uraemic and non-uraemic 

diabetics gave an independent assessment that both groups had similar 

glycaemic control uninfluenced by uraemia. Comparison of the 

chromatographic components showed that HbA^ and HbA^c were also 

similar. This provides further evidence that chromatographically 

measured glycosylated haemoglobin is still a useful clinical measure 

of glycaemic control in uraemic diabetics.

The ratio of chromatographically determined HbA^ components 

demonstrated that the HbA^a+  ̂fraction was more influenced by uraemia 

and the HbA^c fraction by diabetes. This has been previously 

suggested by others (Fluckiger et al., 1981; Oimomi et al., 1981). In

diabetics with renal failure both fractions were proportionately 

raised and thus the ratio was unchanged.

HbA^ and components had a weak, but significant correlation with 

urea in some of the non-diabetic uraemic groups, but the relationship 

was quite variable. The HbA^a+  ̂fraction correlated with urea in 

non-dialysed chronic renal failure and CAPD patients but not in 

haemodialysis subjects. Diabetics with renal failure showed no 

association between glycosylated haemoglobin concentration and renal 

function. Thus, overall no consistent significant correlation was 

found between either random (at time of sampling for glycosylated 

haemoglobin) urea or creatinine and glycosylated haemoglobin. A weak 

but significant correlation between HbA-̂  and creatinine (Graf, 1980; 

Kovarik et al., 1981), between HbA-̂  and urea (Oimomi et al., 1984; 

Saloranta et al., 1986) have been reported, while others have found no 

correlation (Nath et al., 1982; 0'Regan et al., 1982). Furthermore,



others have reported a significant correlation between both urea and 

the time-averaged concentration of urea and HbA-̂  in non-dialysed 

chronic renal failure patients but no correlation in haemodialysis 

patients (DeMarchi et al., 1983a; DeMarchi et al., 1983b). This 

variable response was seen in the present study and may be explained 

by the difference in uraemic status between haemodialysis patients, 

who have wide fluctuations in urea concentration, and other uraemics 

who tend to have a more stable level of blood urea. This will be 

discussed later in relation to carbamylated haemoglobin.

All glycosylated species of haemoglobin showed no correlation with 

random glucose, total haemoglobin, age or sex in any of the groups 

including diabetics. It is well recognised in diabetes that 

glycosylated haemoglobin reflects the time-averaged concentration of 

glucose rather than random glucose estimations. However, as 

previously discussed, there is ample evidence against glucose 

intolerance or hyperglycaemia being the explanation of elevated 

glycosylated haemoglobin in uraemia.

4. Haemoglobin carbamylation

Carbamylated haemoglobin was estimated by detecting the amount of 

isopropyl hydantoin released after hydrolysis of globin. Increased 

concentrations of carbamylated haemoglobin were demonstrated in all 

patients with renal impairment. Non-uraemic diabetics and patients 

with underlying renal pathology but normal urea and creatinine, had 

similar concentrations as control subjects. These results confirm the 

only previous report of direct measurement of haemoglobin 

carbamylation in uraemia (Fluckiger et al., 1981). These workers 

detected valine hydantoin from the eluate of three haemoglobin peaks 

(HbAp HbA^a+k anc* HbA^ ) of a uraemic haemolysate chromatographed on



a macrocolumn. Although they did not detect valine hydantoin in 

non-uraemic haemolysate a highly significant correlation was found 

between the amount of valine (isopropyl) hydantoin released from 

haemoglobin and the time-averaged urea concentration in uraemic 

patients.

In the present study modification of the assay, (detailed in 

Chapter 5) increased its sensitivity and isopropyl (valine) hydantoin 

release was detected in non-uraemic subjects. A normal range can now 

be established. In 64 patients with normal renal function a mean 

value of 27 ng IPH/mg globin with a 95% confidence interval of 22 to 

32 ng IPH/mg globin was found. Patients with overt renal failure had 

gross elevation with increases of 200 to over 400% and there was no 

overlap between uraemics and non-uraemics. Carbamylated haemoglobin 

had a significant correlation with urea and creatinine in uraemic 

patients. Urea estimations in this study were taken from a single 

random sample, whereas Fluckiger et al. found a strong correlation 

using time-averaged urea concentrations in a small group of patients. 

Carbamylated haemoglobin has been more extensively studied in Sickle 

Cell disease and the carbamylation mechanism is represented by an 

irreversible covalent second-order kinetic reaction (Uvelli et al., 

1978; Uvelli et al., 1980). Most studies report in vitro 

carbamylation characteristics, but it is likely that in vivo the urea 

derivative isocyanate forms a stable adduct with the N-terminal amino 

group on the haemoglobin chain (Manning et al., 1974), analogous to 

the non-enzymatic glycosylation reaction. Although there are some 

differences in the biochemical characteristics and binding sites 

between carbamylated haemoglobin and glycosylated haemoglobin they, 

nevertheless, share several common features. Thus one can postulate 

the analogy, between urea and carbamylated haemoglobin in uraemia and



glucose and glycosylated haemoglobin in diabetes. In both situations 

low molecular weight reactants, urea-derived isocyanate and glucose, 

are present in limited amounts, but as both reactions with haemoglobin 

are irreversible the modified haemoglobin accumulates in the red cell 

throughout its life span. Hence in both conditions haemoglobin 

behaves as a reporter molecule.

In this investigation carbamylated haemoglobin significantly 

correlated with chromatographically determined glycosylated 

haemoglobin in uraemic patients. This is in agreement with the in 

vitro findings of raised HbA-̂  in normal erythrocytes incubated with 

cyanate (Oimomi et al., 1984). Non-dialysed chronic renal failure and 

GAPD patients showed the strongest correlation with HbA^, HbA^a+  ̂and 

HbAfc, but haemodialysis patients tended to have a weaker and more 

variable correlation and diabetics with chronic renal failure showed 

no correlation. The generally weaker association in haemodialysis 

patients can be explained by the fluctuating concentrations of urea, 

which reach a peak pre-dialysis and trough post-dialysis. These 

oscillations will influence the time-averaged urea concentration and a 

random urea estimation is not representative. In contrast, most of 

the non-dialysed chronic renal failure and CAPD patients had a 

relatively more stable urea concentration which was more 

representative of the time-averaged urea. The lower carbamylated 

haemoglobin in haemodialysis patients also explains the lower HbA^, 

HbA-̂ c and HbA^a+  ̂concentrations generally observed in relation to 

other uraemic patients. It is possible that reduced red cell life 

span, due to haemolysis in the extracorporeal circulation, may have 

contributed to lower values in haemodialysis patients. However, there 

was no direct evidence to support this and colorimetrically measured 

glycosylated haemoglobin which is equally dependent of red cell life



span was also normal.

The combination of glycosylation and carbamylation of haemoglobin 

was observed in diabetics with renal failure. In these patients 

carbamylated haemoglobin correlated with urea but not with HbA^ and 

sub-fractions. HbA^ and sub-fractions correlated with 

colorimetrically determined glycosylated haemoglobin (the latter 

reflecting time-averaged glucose concentrations and unaffected by 

uraemia). From the molecular point of view, it is possible for both 

reactions to occur together and although they share the common binding 

site at the N-terminal valine residue, the glycosyl moiety is attached 

predominantly to the 3 chain (Bunn et al., 1979) while the carbamyl 

moiety is distributed to both a and 3 chains with a slight preference 
for the a chain (Manning et al., 1974; Nigen et al., 1974). Several 

other binding sites for both adducts have been identified but this 

detail is beyond the scope of this discussion.

The combination of both reactions in uraemic diabetics may

initially appear antagonistic. However, the colorimetrically

determined glycosylated haemoglobin was similar, in both diabetics

with and without renal failure and the similar HbA.. and HbA, values1 lc
confirm that the latter measurements reflect the glycaemic rather than 

the uraemic effect in diabetics with renal failure. The marginal 

difference in HbA^a+  ̂between the diabetic groups would be in keeping 

with a small carbamylation effect. In non-diabetic uraemic patients 

all 3 components HbAp HbA^c and HbA^a+  ̂were increased, but the 

HbA-̂ a+k sub-fraction was relatively more increased, which is in 

partial agreement with Fluckiger et al. (1981) who detected most of 

the carbamylated haemoglobin (valine hydantoin) from the HbA^a+  ̂

fraction. Carbamylated haemoglobin did not show any correlation with 

age, sex or total haemoglobin concentration.



The effect of reducing urea and creatinine concentrations and

correcting the metabolic acidosis during a 4 hr haemodialysis session

did not induce any acute change in either glycosylated or carbamylated 

haemoglobin. The latter are formed by a non-enzymatic process taking 

weeks or months and dependent on the life span of the red cell as well 

as the ambient glucose or urea concentration.

It has been suggested that uraemic acidosis plays a major role in

the elevation of glycosylated haemoglobin (DeMarchi et al., 1983a; 

DeMarchi et al., 1983b). This was based on data showing correlations 

between HbA-̂  and either arterial blood pH or plasma bicarbonate. In 

this present study no correlation was found between glycosylated 

haemoglobin and either H+ concentration or plasma bicarbonate and is 

in agreement with others (Panzetta et al., 1983).

Generally, patients with a primary renal disease or a renal 

transplant but normal renal function, showed the same features as 

control subjects. However, carbamylated haemoglobin was elevated in a 

few transplant individuals who had rejection episodes or were 

recovering from post-transplant acute tubular necrosis over the 

preceding 3 months. This reflects the retrospective marker effect of 

carbamylated haemoglobin. Transplant patients with failing graft 

function were similar to other chronic renal failure patients and 

demonstrated elevation of carbamylated haemoglobin, HbA^, HbA^c an(* 

particularly HbA^a+ .̂ The association between carbamylated 

haemoglobin and HbA^a+k was reaffirmed and both variables showed a 

strong correlation with both urea and creatinine.

5. Red cell life span

Reduced concentrations of HbA-̂  in uraemia have been reported by 

one group (Dandona et al., 1979; Freedman et al., 1982) who explained



their findings by assuming shortened red cell life span was 

responsible. However, this was not measured in the study. As 

previously discussed, reduced erythrocyte survival is well documented 

in uraemia, but no studies have been published that directly measure 

red cell life span in conjunction with glycosylated haemoglobin in 

uraemia. Glycosylated haemoglobin measured by colorimetry is 

dependent on red cell life span and the finding that all uraemic 

patients had normal values is evidence, albeit indirect, that red cell 

survival in uraemia does not have a significant effect on the 

measurement of glycosylated haemoglobin. Decreased glycosylated 

haemoglobin has been demonstrated in haemolytic but not non-haemolytic 

anaemia (Panzer et al., 1982). Thus the normochromic normocytic 
anaemia of uraemia should not affect glycosylated haemoglobin 

concentrations. There is no data available on carbamylated 

haemoglobin and erythrocyte survival in uraemia, but it is interesting 

that in Sickle Cell disease cyanide was used therapeutically and the 

resultant carbamylated haemoglobin prolonged sickled red cell life 

span and increased oxygen affinity (Cerami et al., 1971; Gillette et 

al., 1974). The increase in red cell life span reflected the degree 

of carbamylation (Milner and Carache, 1973; Gillette et al., 1974).

It might be postulated that the formation of carbamylated haemoglobin 

could prolong red cell survival in uraemia and this may also directly 

affect glycosylated haemoglobin. However, this is purely speculative 

and further studies are necessary to elucidate any relationship 

between carbamylated haemoglobin and red cell life span.

The analogy between non-enzymatic carbamylation in uraemia and 

non-enzymatic glycosylation in diabetes should create further avenues 

of research. The possible clinical and pathophysiological role of 

non-enzymatic carbamylation warrants further investigation. Data from



this study suggests that carbamylated haemoglobin could be a useful 

clinical indicator of the 'uraemic state* as it appears to reflect the 

time-averaged urea concentration. This could be clinically valuable 

in several situations such as differentiating acute from chronic renal 

failure, detecting the timing and progression of chronic renal 

failure, assessing compliance in protein diet restriction therapy and 

evaluating the efficiency of dialysis procedures. The 

pathophysiological role of non-enzymatic carbamylation could have 

wider implications, if it can modify other proteins analogous to 

non-enzymatic glycosylation. Diabetes and uraemia share several 

common pathological complications, such as vascular disease, 

lipoprotein abnormalities and neuropathy and it is tempting to 

speculate that non-enzymatic modification of proteins may be 

implicated. Thus non-enzymatic carbamylation warrants further 

investigation in uraemia to assess both its potential clinical 

usefulness and possible pathophysiological significance.



SUMMARY

In a large number of patients with a wide spectrum of renal 

disease glycosylated haemoglobin was increased in uraemia when 

measured chromatographically but not colorimetrically. All components 

of HbA^ increased, particularly HbA^a+ .̂ Carbamylated haemoglobin was 

detected in all subjects, but was grossly elevated in renal failure 

and paralleled the rise in HbA^a_c and correlated with the severity of 

uraemia. Glycosylated haemoglobin increased in both assay methods in 

diabetics independent of renal function, but carbamylated haemoglobin 

was elevated only in uraemic diabetics. HbA-̂ c appeared to be more 

influenced by diabetes and HbA^a+  ̂by uraemia. Although the 

colorimetric assay may in some situations be the method of choice 

being unaltered by uraemia, it is suggested that HbA^ or HbA^c is 

still useful in monitoring glycaemic control in uraemic diabetics.

The role carbamylated haemoglobin requires further study, but the 

current findings suggest that it may reflect the recent mean uraemic 

state and thus analogous to diabetes and glycosylated haemoglobin. 

Thus, carbamylated haemoglobin may act as a retrospective indicator of 

integrated uraemic control. The concept of non-enzymatic 

carbamylation of proteins may also have some pathophysiological 

significance and warrants further investigation.
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APPENDIX 1

NORMAL VALUES AND REFERENCE RANGE

Mean Reference Range Source

INSULIN 5.0 2.8-13.5 mu/1 1

C-PEPTIDE 0.18-0.52 nmol/1 1

GLUCAGON 70 60-80 pg/ml 2

GROWTH HORMONE 2-10 <10 mu/1 3

CORTISOL 140-610 nmol/1 3

GLUCOSE 5.0 2.2-6.7 mmol/1 4

LACTATE 0.638 0.041-1.136 mmol/1 4

PYRUVATE 0.064 0.029-0.144 mmol/1 4

LACTATE/PYRUVATE RATIO 10.8 7.0-14.5 4

ALANINE 0.304 0.206-0.449 mmol/1 4

3-HYDROXYBUTYRATE 0.046 0.010-0.217 mmol/1 4

ACETOACETATE 0.032 0.007-0.160 mmol/1 4

3-HYDROBUT/ACACETATE RATIO 1.3 0.4-4.8 4

GLYCEROL 0.053 0.031-0.093 mmol/1 4

TOTAL CHOLESTEROL 3.8-7.0 mmol/1 5

TOTAL TRIGLYCERIDES 0.5-2.2 mmol/1 5

HDL-CHOLESTEROL 1.0-1.7 mmol/1 5

GLYCOSYLATED HAEMOGLOBIN (colorimetry) 29-39 mmol HMF/molHb 5

HbA1 7.6 7.3-8.0 % 6

HbAic 6.1 5.9-6.3 % 6

HbAla+b 1.5 0.9-2.3 % 6

CARBAMYLATED HAEMOGLOBIN 27 22-32 ng IPH/mg globin 6



Values from sources 1, 2, 4 and 5 refer to normal subjects after an 

overnight fast

Source

1. Department of Medical Biochemistry, University of Newcastle: 

values are for normal subjects after overnight fast.

2. Prof. Orskov, Kommune Hospitalet, Aarhus, Denmark.

3. Supraregional Assay Service, Royal Victoria Infirmary, 

Newcastle: cortisol values are for 9 am specimens.

4. Adopted by Department of Therapeutics, University of Sheffield, 

from Forster, K.J., Alberti, K.G., Hinks, L. et al., 1978. 

Values are for whole blood.

5. Department of Clinical Chemistry, Royal Hallamshire Hospital, 

Sheffield.

6. Work from this thesis: a) Values for HbAp A^c and A^a+^ are

similar to Biorad Ltd. reference ranges, b) carbamylated 

haemoglobin values have not been previously published: values 

taken directly from this thesis.



APPENDIX 2

1. Free Insulin Concentrations:

Polyethylene Glycol Solution (PEG)

The measurement of free insulin in diabetics was performed after 

removal of insulin antibodies by precipitation with PEG solution,

a) Buffer 3.1g/l Boric Acid

b) Take 200 ml buffer and add lg Bovine Serum Albumin (BSA) 

(Armour) and make up to 400 ml with deionised water.

c) Polyethylene glycol (PEG) 6000 (British Drug Houses). Add 

30 g PEG to 70 g of the buffer/BSA solution (pH 7.2-8.0) to 

give the final PEG solution.

Specimen: 0.25ml fresh serum was added to 0.25ml PEG/buffer

solution, centrifuged at 3000 rpm for 30 minutes at 0°C and 

the supernatant was stored at -20°C until assayed.

2. Due to the instability of pancreatic glucagon, blood was taken 

immediately into the proteinase inhibitor, aprotinin. The 

’preservative’ solution contained:

Disodium EDTA (Sigma) 372 mg, Aprotinin (Trasylol, Bayer) 5ml 

(100,000 Kallikrein Inactivator Units) made up to 10 ml with 
fresh deionised water.

Specimen: 0.25ml of EDTA/Aprotinin was added to a plain glass 
tube and kept at 0°c prior to the addition of 2.5ml of whole 

blood. After separation the serum was stored at -20°C.

3.7g KCL

0.24g/l Thiomersal

39.7ml 0.1 M NaOH
and made up to 1 litre with deionised water
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