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General abstract 

 

The use of chemical control measures to reduce the impact of parasite and pest 

species has frequently resulted in the development of resistance. Thus, 

resistance management has become a key concern in human and veterinary 

medicine, and in agricultural production. Although it is known that factors such 

as gene flow between susceptible and resistant populations, drug type, 

application methods, and costs of resistance can affect the rate of resistance 

evolution, less is known about the impacts of density-dependent eco-

evolutionary processes that could be altered by drug-induced mortality. The 

overall aim of this thesis was to take an experimental evolution approach to 

assess how life history traits respond to drug selection, using a free-living 

dioecious worm (Caenorhabditis remanei) as a model.  In Chapter 2, I defined 

the relationship between C. remanei survival and Ivermectin dose over a range 

of concentrations, in order to control the intensity of selection used in the 

selection experiment described in Chapter 4. The dose-response data were also 

used to appraise curve-fitting methods, using Akaike Information Criterion (AIC) 

model selection to compare a series of nonlinear models. The type of model 

fitted to the dose response data had a significant effect on the estimates of LD50 

and LD99, suggesting that failure to fit an appropriate model could give 

misleading estimates of resistance status. In addition, simulated data were used 

to establish that a potential cost of resistance could be predicted by comparing 

survival at the upper asymptote of dose-response curves for resistant and 

susceptible populations, even when differences were as low as 4%. This approach 

to dose-response modeling ensures that the maximum amount of useful 

information relating to resistance is gathered in one study. In Chapter 3, I asked 

how simulations could be used to inform important design choices used in 

selection experiments. Specifically, I focused on the effects of both within- and 

between-line variation on estimated power, when detecting small, medium and 

large effect sizes. Using mixed-effect models on simulated data, I demonstrated 

that commonly used designs with realistic levels of variation could be 

underpowered for substantial effect sizes. Thus, use of simulation-based power 

analysis provides an effective way to avoid under or overpowering a study 

designs incorporating variation due to random effects. In Chapter 4, I 
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investigated how Ivermectin dosage and changes in population density affect the 

rate of resistance evolution. I exposed replicate lines of C. remanei to two doses 

of Ivermectin (high and low) to assess relative survival of lines selected in drug-

treated environments compared to untreated controls over 10 generations. 

Additionally, I maintained lines where mortality was imposed randomly to 

control for differences in density between drug treatments and to distinguish 

between the evolutionary consequences of drug treatment versus ecological 

processes affected by changes in density-dependent feedback. Intriguingly, both 

drug-selected and random-mortality lines showed an increase in survivorship 

when challenged with Ivermectin; the magnitude of this increase varied with the 

intensity of selection and life-history stage. The results suggest that interactions 

between density-dependent processes and life history may mediate evolved 

changes in susceptibility to control measures, which could result in misleading 

conclusions about the evolution of heritable resistance following drug treatment. 

In Chapter 5, I investigated whether the apparent changes in drug susceptibility 

found in Chapter 4 were related to evolved changes in life-history of C. remanei 

populations after selection in drug-treated and random-mortality environments. 

Rapid passage of lines in the drug-free environment had no effect on the 

measured life-history traits. In the drug-free environment, adult size and 

fecundity of drug-selected lines increased compared to the controls but drug 

selection did not affect lifespan. In the treated environment, drug-selected lines 

showed increased lifespan and fecundity relative to controls. Adult size of 

randomly culled lines responded in a similar way to drug-selected lines in the 

drug-free environment, but no change in fecundity or lifespan was observed in 

either environment. The results suggest that life histories of nematodes can 

respond to selection as a result of the application of control measures. Failure to 

take these responses into account when applying control measures could result 

in adverse outcomes, such as larger and more fecund parasites, as well as over-

estimation of the development of genetically controlled resistance. In 

conclusion, my thesis shows that there may be a complex relationship between 

drug selection, density-dependent regulatory processes and life history of 

populations challenged with control measures. This relationship could have 

implications for how resistance is monitored and managed if life histories of 

parasitic species show such eco-evolutionary responses to drug application. 
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Chapter 1: General introduction 

 

 

1.1 Resistance evolution and communication between disciplines 

 

 

Parasitic diseases caused more than one million human deaths in 2013 (GBD 

collaborators 2015), while pests and diseases account for around one third of 

crop losses annually (Oerke 2006), and are a serious concern in the production of 

livestock (Oxford Analytica 2012). The financial cost of controlling parasites and 

pests is considerable: for example, 39.4 billion dollars were spent on pesticides 

globally in 2007 (Grube et al. 2011). Control agents are designed to reduce 

target populations but massive global application has led to extensive 

development of resistance (Kaplan and Vidyashankar 2011; zur Wiesch et al. 

2011). Overcoming the problem of resistance requires finding methods of drug 

use such that parasite and pest populations are kept at low numbers and the 

evolution of resistance is minimised. Several factors are known to affect the rate 

at which parasites can evolve resistance, including the type of drug, dosage, 

timing of application, migration rates between susceptible and resistant 

populations, the standing frequency of resistance alleles in the population and 

the specific mechanisms of resistance (Committee on Strategies for the 

Management of Pesticide Resistant Pest Populations 1986; James, Hudson, and 

Davey 2009; Gilleard and Beech 2007; REX Consortium 2013; Barnes, Dobson, and 

Barger 1995). In addition, life history characteristics of parasites and pests, as 

well as their reproductive strategies could influence the rate at which resistance 

develops (Kliot and Ghanim 2012; Galvani and Gupta 1998). Current research to 

date has considered many of these factors in isolation but there has been little 

attempt to explore interactions between life-history traits and the rate of 

resistance evolution. 

 

Intensive use of pesticides and drugs has generally been followed by the rapid 

evolution of resistance in pathogens, pests and disease vectors (Palumbi 2001). 

Models of resistance evolution take into account the evolutionary forces that 

shape adaptive responses of populations subject to strong directional selection 

(Barnes, Dobson, and Barger 1995; Leathwick 2013). Evolutionary forces such as 
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selection, drift, mutation and migration are common to many pest and pathogen 

groups including viruses (Bull et al. 1997), bacteria (Lenski and Travisano 1994), 

fungi (Anderson et al. 2003) and invertebrates (Leathwick et al. 2012). They are 

therefore likely to play a role in the adaptation of these groups to intense 

perturbations such as drug treatment (Greene et al. 2012). A recent study by the 

REX Consortium (2007) found that research in the field of resistance evolution 

has become divided into two main scientific groups; one group focuses an 

interest in agricultural pests and pathogens while the other focuses on human 

pathogens and their vectors (Rex Consortium 2007). Both groups work in parallel, 

with little exchange of methodology or theory. Within these two groups further 

subdivisions were found; network analysis of citation and authorship revealed 

groups working independently on antibiotic, antiviral, anthelmintic and 

antimalarial drug resistance as well as insecticide, herbicide and fungicide 

resistance. It would seem logical that the scientific community studying the 

evolution of resistance in these organisms should collaborate and quote the 

same references, use similar approaches and strategies to manage resistance 

evolution. However, communication between different disciplines still remains a 

persistent problem. For example, the REX Consortium paper entitled ‗Structure 

of the Scientific community modeling the evolution of resistance‘ (2007), 

highlighting the lack of interdisciplinary work in the field, had only 13 citations 

at the time of writing this thesis. 

 

The flow of information between the scientific community and how that 

information is applied in the field is also an area of concern in resistance 

management. It has been suggested that resistance management practices are in 

need of review and that in some circumstances current practices may even 

promote the evolution of resistance (Leathwick et al. 2009; Greene et al. 2012). 

However, in many cases these warnings have gone unheeded. For instance, the 

use of anthelmintics in managing sheep parasites has largely remained the same 

since the 1980‘s (Leathwick et al. 2009). Over this same period the resistance of 

parasitic worms has gone from rare to being commonplace (James, Hudson, and 

Davey 2009). Management strategies used to control parasites during this period 

have clearly applied significant selection pressure for the development of 

resistance to anthelmintics. This highlights the need for the implementation of 

more effective control measures to prevent the evolution of resistance (Hendry 
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et al. 2011; Greene et al. 2012). In the case of agricultural systems, resistance 

management practices need to be implemented that reduce the level of 

resistance while maintaining an acceptable level of productivity (Committee on 

Strategies for the Management of Pesticide Resistant Pest Populations 1986; 

Leathwick et al. 2009). A thorough knowledge of the factors that affect the rate 

of resistance evolution is therefore required if resistance is to be managed 

effectively (Georghiou and Taylor 1977; Committee on Strategies for the 

Management of Pesticide Resistant Pest Populations 1986; Greene et al. 2012). 

 

 

1.2 Rates of resistance evolution 

 

 

Research has shown that rapid or ‗contemporary‘ evolution, in the sense of a 

novel trait spreading through a population, is possible over a short time period, 

as few as 10-20 generations or less in some circumstances (Stockwell, Hendry, 

and Kinnison 2003). Contemporary evolution was thought to be a relatively rare 

event, restricted to a few cases such as industrial melanism in the peppered 

moth Biston betularia (Cook, Sutton, and Crawford 2005). However, since 

scientists have begun measuring the strength of natural selection in the wild 

they have found that it is stronger than expected, which suggests that 

contemporary evolution may be more commonplace than previously expected 

(Stockwell, Hendry, and Kinnison 2003). For example, studies of wild guppy 

(Poecilia reticulate) populations have shown that their life-histories show rapid 

evolutionary responses when exposed to a predation (Reznick 1997; Reznick et 

al. 2004; Reznick and Ghalambor 2005). Contemporary evolution may be 

promoted by factors such as invasion of new habitats, predation, resource 

availability, competition and environmental perturbations (Hairston et al. 2005; 

Ellner, Geber, and Hairston 2011). Evolutionary responses of populations are 

expected to be high where there is high trait heritability and following an 

increase in the intensity of directional selection (Reznick and Ghalambor 2001). 

Other factors that influence the rate of evolution include population size, gene 

flow and initial allele frequencies within populations (Stockwell, Hendry, and 

Kinnison 2003). Resistance has been shown to spread rapidly through populations 

challenged with xenobiotics (Taylor, Quaglia, and Georghiou 1983; Lopes et al. 
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2008; James, Hudson, and Davey 2009), but how factors such as density 

dependent competition in target populations interact with the evolution of 

resistance is unclear.   

  

Anthropogenic factors such as dramatic environmental changes impose 

particularly strong selection on organisms (Hendry et al. 2011) . The evolution of 

resistance provides many examples of strong selection pressure resulting in 

reduced efficacy of treatments. Bacteria, viruses, insect vectors and 

invertebrate crop pests have all quickly evolved resistance to control measures 

across many different clades (Palumbi and Mu 2001; Whalon, Mota-Sanchez, and 

Hollingworth 2008; Reece et al. 2010; Greene et al. 2012). For instance, in the 

case of pest invertebrates, Whalen et al (2008) summarises 7747 cases of 

resistance to 331 compounds in 553 species. Thus, the rapid evolution of 

resistance as a result of human activities is widespread and understanding how 

species rapidly adapt to efforts to reduce their numbers is of critical importance 

to disease control. In this thesis I will concentrate on resistance of parasitic 

nematodes to anthelmintics as an example of how resistance is managed and 

how rapidly resistance can evolve.  

  

Anthelmintic resistance of parasitic nematodes is now a global problem that 

affects human health as well as threatening the production and welfare of 

agricultural livestock (Sangster and Gill 1999). The treatment of parasitic 

nematodes with anthelmintic drugs has invariably led to the appearance and 

spread of anthelmintic resistance. Application of new anthelmintic drug 

treatments such as benzimidazoles, imodothiazoles and macrocyclic lactones has 

been followed by reports of widespread resistance within three to nine years of 

their introduction (James, Hudson, and Davey 2009). Agricultural practices such 

as treatment, followed by movement of livestock into low contamination pasture 

have been implicated as high-risk strategies that are likely to select for 

resistance, because any worms surviving the treatment become the major source 

of subsequent infection (Leathwick et al. 2009). These measures select for 

highly resistant parasites, which then go on to re-infect hosts as there is no 

dilution of resistance from free-living susceptible parasites within the 

population. Martin et al (1981) have shown that exposing a high proportion of 

parasites that contribute to the next generation will accelerate the rate of 
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resistance evolution. They conducted a study in which populations of 

Haemonchus contortus were passaged through lambs for six generations and 

exposed different proportions of populations to Thiabendazole. Resistance was 

slower to develop in populations with higher proportions of untreated worms. 

However, due to logistical constraints, such studies do not select parasite 

populations beyond a few generations so it is not possible to assess the rate of 

resistance evolution over the long-term.  

 

 

1.3 Dosage and resistance 

 

 

The evolution of resistance is determined by the extent to which survivors of 

drug treatments contribute genes to future generations; timing of treatments 

and drug efficacy moderate this contribution (Barnes, Dobson, and Barger 1995). 

Experimentation and monitoring of complicated host-parasite systems is 

technically difficult, expensive and time-consuming (Leathwick et al. 2009). 

Because many variables interact to determine the size and genetic background 

of parasite populations, mathematical modeling has often been used to predict 

evolutionary responses under different selection regimes (Barnes, Dobson, and 

Barger 1995; REX Consortium 2013). For example, Barnes et al (1995) 

investigated the effects of under-dosing on the evolution of resistance when 

using a single control agent (Barnes, Dobson, and Barger 1995). They found that 

with an initial resistance allele frequency of 0.01% and allowing 10% of 

susceptible worms to survive due to under dosing slowed the rate of resistance 

evolution relative to scenarios where treatment of susceptible worms had 99% 

efficacy. They suggested that under-dosing can slow the rate of resistance 

evolution if homozygous susceptible individuals survive and contribute to the 

next generation. However, they also suggested that if under-dosing occurs at a 

level where heterozygous resistant individuals are more likely to survive then 

this might speed the development of resistance.  

 

A series of empirical studies on rye grass investigating under-dosing have also 

suggested that lower doses may promote the evolution of resistance (Neve and 

Powles 2005; Busi and Powles 2009; Manalil et al. 2011), and that varying the 
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level of under-dosing may affect the rate at which resistance evolves (Busi and 

Powles 2009). For example, Busi and Powles (2009) found that Lolium rigidum 

selected for three generations under both low and high dose treatments of 

glyphosate caused a rapid increase in survival over three generations, and higher 

doses were associated with a greater magnitude of resistance. However, 

assessment of resistance was conducted on first generation offspring at the end 

of selection, meaning that any observed response in survival could have been a 

result of maternal effects. Ideally, to explore the role under-dosing plays in the 

evolution of resistance, selection should occur over more generations than 

maternal effects can influence responses to treatment. In addition, at the end of 

selection treated lines should be passaged through a further three generations 

without treatment to ensure any observed responses to selection are due to 

treatment. Thus, selection over multiple generations at different sublethal doses 

would aid in elucidating the relationship between the strength of selection 

(dose) and the rate of resistance evolution.  

 

Resistance to anthelmintics in nematodes has been shown to evolve in laboratory 

studies (Lopes et al. 2008), though to date much of this work has concentrated 

on mechanisms of resistance (James, Hudson, and Davey 2009), rather than 

focusing on how rates of resistance evolution interact with drug dose. For 

example, James and Davey (2009) exposed a single population of Caenorhabditis 

elegans to gradually increasing doses of Ivermectin for 44 weeks to investigate 

the role of transport proteins in resistance evolution. The study found the 

expression of some transport proteins increased after drug selection and showed 

that they played an important role in resistance. However, using a gradually 

increasing dose does not reflect how treatment is applied in the field. Long-term 

laboratory studies using replicate populations exposed to a consistent level of 

under-dosing would provide a greater insight into what affect dosage has on the 

rate of resistance evolution. 
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1.4 Life history traits and resistance 

 

 

Life history theory addresses the birth and death schedule of an organism in the 

context of its environment and attempts to explain how natural selection is 

expected to shape an organism‘s reproduction, fecundity and survival (Roff 

1992; Stearns 1992). The extent to which individual organisms can adjust 

different combinations of traits is mediated by resource allocation trade-offs. 

This results in organisms splitting finite resources between different processes 

such as growth, survival and reproduction (Roff 1992; Stearns 1992). Fitness 

costs could occur in the production and maintenance of drug resistance in 

parasitic or pest species that divert resources from other fitness-enhancing 

traits. Identifying such costs associated with resistance may be of importance in 

developing strategies that limit the spread of resistant populations (Kliot and 

Ghanim 2012). If fitness costs are high then it is likely to take longer for 

resistance to spread through a population because susceptible individuals may 

have higher reproductive rates or grow faster even though they may have 

reduced survival in a drug-treated environment (Kochin, Bull, and Antia 2010).  

 

Fitness costs associated with insecticide resistance have been extensively 

documented in agricultural systems; see Kliot and Ghanim (2012) for a review. 

For example, Carriere et al (1994) investigated the effects of selection for 

insecticide resistance on the oblique-banded leaf-roller, Choristoneura 

rosaceana (Carriere et al. 1994). Insects were collected from pesticide-free and 

treated orchards; these were then reared in a common garden in the laboratory. 

Resistant insects from treated orchards were found to suffer considerable life 

history costs; they had lower larval and pupal masses, and longer development 

times than susceptible individuals. Also, the degree of resistance was strongly 

correlated with these costs; resistance levels were negatively correlated with 

larval growth rates and pupal mass, and positively correlated with development 

time. Such studies have revealed life history costs to resistant individuals; 

however, they have not documented whether these costs remain constant over a 

period of continued exposure. It is possible that continuous drug exposure may 

promote the selection of modifier genes that reduce the fitness costs associated 

with resistance (Kliot and Ghanim 2012). Lopes et al (2008) found that replicated 
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populations of C. elegans exposed to anthelmintic treatment over 20 generations 

at first incurred a cost to resistance in terms of survival, fecundity and a 

decrease in the proportion of males. However, after 20 generations survival and 

fecundity returned to previous levels, and male frequency had begun to 

increase.  This suggests that populations can indeed adapt to continued exposure 

to drug treatment; however, these studies have only begun to explore the 

relationship between resistance and life history traits. For example, it would be 

interesting to establish whether there are eco-evolutionary feedbacks between 

resistance and life history, and whether other ecological factors such as changes 

in mortality rates and competitive interactions influence resistance evolution. 

  

Differences in mortality rate and population density between treated and 

untreated populations could result in differential selection due to density-

dependent processes such as competition (Gilleard and Beech 2007). Studies of 

resistance evolution can impose strong directional selection on life history traits 

such as development time, size at maturity and investment in and timing of 

reproduction (Chehresa, Beech, and Scott 1997). Because life history traits can 

respond to selection in many types of environments as a result of changes in 

mortality and density (Reznick and Ghalambor 2001), adequate controls are 

needed to assess the effects of changes in traits not directly associated with the 

application of control measures (Gilleard and Beech 2007). Laboratory-based 

selection experiments typically assess resistance evolution by comparing survival 

in treated and untreated control populations (Ranjan et al. 2002; Coles, Rhodes, 

and Wolstenholme 2005; Lopes et al. 2008). However, this methodology does not 

account for differences in mortality and density between treatments. Inclusion 

of treatments that mimic the rate of mortality and density caused by control 

measures would allow the assessment of any responses in life history traits not 

due directly to chemical exposure (Fuller, Baer, and Travis 2005).  
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1.5 Study system 

 

 

1.5.1 Selection experiments 

 

Selection experiments study evolution as it happens, in a controlled and 

replicated manner, in contrast to observational studies made in the wild where 

replication and strict control of environmental variables is difficult (Fuller, Baer, 

and Travis 2005; Garland and Rose 2009; Kawecki et al. 2012). In essence, by 

replicating the number of populations exposed to a novel environment, it can be 

established whether there is a consistent evolutionary response to selection. 

Experimental evolution studies allow the observation of phenotypic and genetic 

change in populations and communities caused by experimentally imposed 

selective pressures. Because other environmental factors not of direct interest 

to a study can be closely controlled, their impact can be reduced to noise, and 

any changes occurring as a result of those intentionally imposed by the 

researcher can be attributed to the selection regime (Fuller, Baer, and Travis 

2005; Buckling et al. 2009; Garland and Rose 2009). Experimental evolution does 

not directly attempt to reproduce or predict evolution in the wild; the main 

purpose is to test evolutionary theory and hypotheses. Selection experiments 

have been classified into two different categories: artificial selection, where 

individuals are selected to propagate the next generation on the basis of a 

specific trait value, and laboratory natural selection (LNS), where the 

investigator decides on the source and intensity of selection but does not control 

which traits respond to selection (Fuller, Baer, and Travis 2005). Other 

categories have been suggested, but these can usually be designated as sub 

categories, such as culling experiments, a subcategory of LNS experiments, 

where populations are exposed to a stressful environment causing some 

mortality, and the offspring of survivors go on to form the next generation. 

Culling experiments have been particularly useful in exploring factors that affect 

the rate of resistance evolution. For example, cage studies of replicate 

populations of flies exposed to insecticide have been used to assess the effect of 

dose and decay rate of a control agent, and immigration rate of susceptibles on 

the rate of resistance evolution (Taylor, Quaglia, and Georghiou 1983). Taylor et 
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al (1983) found that higher insecticide doses with a slow decay rate and little or 

no immigration promoted the rapid evolution of resistance, whereas, with a 

rapidly decaying insecticide and some immigration of susceptible flies, the rate 

of resistance evolution was slower. In addition to exploring what factors affect 

the rate of resistance evolution, culling experiments have been used to assess 

the effectiveness of control strategies used to delay the rate of resistance 

evolution. For instance, the effectiveness of drug combination treatments in 

conjunction with maintenance of refugia for susceptible parasites has been 

investigated in parasitic nematodes (Leathwick et al. 2012). At the end of the 

selection experiment, drug efficacy was highest when using a combined strategy 

of drug combinations and refugia, but maintaining a refuge out performed a 

combination drug treatment when implemented separately, and the use of a 

single drug with no refugia resulted in the highest rate of resistance evolution. 

This experiment illustrates how experimental evolution can be exploited to 

assess the effects of different drug dosage regimes on the rate of resistance 

evolution. 

Culling experiments have also been used to test predictions of life-history 

theory, with much of this work being conducted on fruit flies (Joshi 2000; Prasad 

and Joshi 2003). For example, high rates of extrinsic mortality imposed randomly 

on replicate populations of Drosophila melanogaster resulted in shorter lifespan, 

decreased age and size at maturity, and a shift in peak fecundity to earlier in 

life, relative to populations exposed to a low rate of extrinsic mortality (Stearns, 

Ackermann, and Doebeli 1998; Stearns et al. 2000). The results confirmed 

predictions about how growth, maturation, reproduction, and ageing respond to 

selection in environments varying in the risk of mortality. The application of 

control measures reduces population density and imposes a source of high 

extrinsic morality on target populations, which could both influence life-history 

evolution of pests and parasites. Selection experiments implementing controls 

for differences in density between drug-treated and drug-free environments 

would allow the effects of density and high risk of mortality to be separated 

from those of direct adaptation to a control agent. 
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1.5.2 Caenorhabditis remanei as a model of resistance evolution 

 

Studies of adaptation have mainly been conducted on small organisms, which are 

easy to maintain and have a short generation time. The choice of the study 

system becomes largely a matter of suitability to the question being addressed 

by a study. For instance, phage-bacteria and Daphnia-pathogen systems have 

been used to study questions relating to coevolution (Buckling and Rainey 2003; 

Ebert 2008). For investigating long-term evolution over tractable periods of 

time, using microbes has obvious advantages. However, metazoan systems are 

required to answer evolutionary questions involving complex processes such as 

sexual selection, development and behaviour. Therefore, model systems have 

expanded to include fruit flies, fish, mice and plants, amongst others (Kawecki 

et al. 2012). Recently, the nematode worm Caenorhabditis elegans and closely 

related species have been adopted as powerful models for addressing ecological 

and evolutionary questions using selection experiments (Gray and Cutter 2014). 

The genus contains 26 species, many of which have had their whole genome 

sequenced (Kiontke et al. 2011). In addition, many species within the group have 

differing reproductive modes, making them an ideal model for studying the 

evolution of sex. Caenorhabditis species have numerous other qualities that 

make them an ideal candidate for use in experimental evolution. Under 

laboratory conditions, the Caenorhabditis life cycle is around two days from egg 

to adult at 20°C; therefore, selection experiments can be run over many 

generations within a few weeks. Early larval stages of the genus can survive 

cryopreservation (Hope 2001), meaning that samples of evolving populations can 

be stored and preserved indefinitely, and traits of interest can be compared 

between ancestral and evolved populations. Populations can be reared in liquid 

culture or on a solid agar substrate in petri dishes, and only require a diet of 

bacteria as a food source, which means that large numbers of individuals can be 

cultured quickly and cheaply (Hope 2001). The average lifespan of worms is two 

weeks under standard laboratory conditions and makes them a tractable model 

for studying life-history characters such as lifespan, fecundity, and age and size 

at maturity in replicate populations subjected to different environments (Chen 

and Maklakov 2012). The development of automation, image processing and 

microfluidic techniques complementing the Caenorhabditis system is now 
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making it possible for high-throughput studies of many traits to be conducted 

(Husson 2012). The range of molecular methods open to evolutionary biologists 

using Caenorhabditis species is unrivalled. For instance, reversible gene 

knockout using RNAi is relatively simple to perform in Caenorhabditis by 

inserting or removing a plasmid into the E. coli food source, and can be used to 

assess gene function in different environments (Timmons and Fire 1998). In 

addition, strains with specific gene deletions are available publically, and recent 

work on targeted genome editing using CRISPR/Cas9 has made it possible to 

engineer specific alleles in Caenorhabditis (Frokjaer-Jensen 2013). 

Treatment of nematode infections provides a well-documented area of research 

in which problems relating to the evolution of resistance have been explored 

using C. elegans (Driscoll 1989; Coles et al. 1988; Geary and Thompson 2001; 

Lopes et al. 2008; James and Davey 2009). Because parasitic helminths are 

difficult to culture, research into anthelmintic resistance has used C. elegans in 

screening potentially new candidate drugs and identifying resistance loci 

(Simpkina and Coles 1981; James, Hudson, and Davey 2009; Ghosh et al. 2012). 

However, C. elegans is an androdioecious nematode and reproduces mainly by 

self fertilisation, although low levels of outcrossing do occur due to a small 

proportion of males (Brenner 1974; Barrière and Félix 2007). In contrast, most 

parasitic nematodes are obligately outcrossing; therefore a free-living, dioecious 

nematode species such as C. remanei would provide a more realistic model 

system to explore resistance evolution. Additionally, C. remanei populations, 

like parasitic species, have abundant standing genetic variation and high levels 

of recombination due to their reliance on sexual reproduction (Cutter, Baird, 

and Charlesworth 2006). Both of these attributes should facilitate a rapid 

response to selection in the face of drug treatment. Thus, selection experiments 

using C. remanei as a model organism afford a tractable model system in which 

to explore the factors affecting resistance evolution in commercial drugs. 
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1.6 Thesis aims and objectives 

 

Eco-evolutionary processes such as feedbacks between density-dependence and 

life history could occur as a result of the application of xenobiotics, but this type 

of interaction is difficult to observe in parasitic species. Free-living species from 

clades related to parasitic species can be kept in microcosms allowing 

population density to be manipulated, either by chemical application or 

artificially, over generations as part of a controlled selection experiment. This 

type of experiment allows all other environmental factors to be kept constant 

during selection, and provides an explicit test of what changes in life history 

occur as a result of drug application, due either directly to long-term exposure 

to a control agent or indirectly as a consequence of density-dependent 

processes. C. remanei is a free-living, short-lived nematode worm, and has been 

previously used as a model to study rapid adaptation of life history to changing 

environments. As a model system it offers the opportunity to assess how changes 

in life history, population density and resistance interact. The overall aim of this 

thesis was to take an experimental evolution approach to assessing how life 

history traits respond to drug selection, using a free-living dioecious worm (C. 

remanei) as a model. The principal objectives of each chapter were: 

 

1) Chapter 2: To establish the relationship between C. remanei survival and 

Ivermectin dose over a range of concentrations within a single generation, 

in order to control the magnitude of selection during the selection 

experiments described in Chapter 4. 

2) Chapter 3: To perform simulation-based power analyses aimed at 

optimising the number of replicate lines and the intensity of subsampling 

from those lines after selection, for selection experiments similar to that 

used in Chapter 4. 

3) Chapter 4: To assess whether there is an increase in survival across 

generations of populations selected in drug-treated environments, and 

whether this varied with the intensity of selection (i.e. drug dosage). In 

addition, I asked whether density-dependent selection affects the 

apparent evolution of resistance by measuring survival of randomly culled 
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lines, which controlled for differences in mortality and density between 

drug-treated and drug free populations.  

4) Chapter 5: To establish whether rapidly passaged control lines, drug 

selected lines or randomly culled lines from the selection experiment 

conducted in Chapter 4 showed any evolved changes in life history. 

 

In Chapter 2, I investigated the relationship between C. remanei survival and 

Ivermectin dose. Two doses were chosen that differed in the intensity of 

selection that would be imposed during the selection experiment in Chapter 4. 

The dose-response data were also used to appraise curve-fitting methods, which 

could be used to improve model fitting of dose-response studies in parasitology. 

In addition, I showed how dose-response modeling that incorporates background 

mortality into the analysis could be used to test for a cost of resistance in terms 

of survival. In Chapter 3, I asked how simulations can be used to inform 

important design choices used in selection experiments; specifically, the number 

of replicate selection lines, the number of samples taken from within each 

replicate line, and variation due to repeated measures used to assess traits at 

the end of selection. In Chapter 4, I investigated how Ivermectin dosage and 

changes in population density affect the rate of resistance evolution. I created 

replicate lines of C. remanei exposed to Ivermectin at high and low doses to 

assess whether survival of lines selected in drug-treated environments increased, 

and if this varied with the intensity of selection. Additionally, I maintained lines 

where mortality mimicked that of treated lines to control for differences in 

density between drug-treatments and to distinguish between the evolutionary 

consequences of drug-treatment vs changes in density-dependent feedback on 

life history traits. Both adult and juvenile survival was measured to explore 

relationships between life-history stage, selection regime and survival. In 

Chapter 5, I investigated whether there were any evolved changes in life-history 

of C. remanei populations after selection in a drug-treated environment. I 

measured larval and adult size, female fecundity and female lifespan in drug-

free and treated environments, asking: 1) Does rapid passage of lines in the 

drug-free (control) environment result in selection for smaller size, lower 

fecundity or shorter lifespan? 2) Does drug selection affect life-history traits? 3) 

Does density-dependent selection affect the life history of randomly culled lines? 

Finally, in Chapter 6, I discuss the broader implications of my work. Specifically: 
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1) how improved methods of analysing dose-response data would benefit 

parasitology studies monitoring resistance; 2) how a priori simulation-based 

power analysis can help to optimise the experimental design of selection 

experiments; 3) how ecological change such as changes in density or extrinsic 

mortality occurring as a result of the application of control measures interacts 

with life history and susceptibility to control measures. 
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Chapter 2: Detecting a cost of resistance using 

dose-response modeling 

 

 

2.1 Abstract 

 

 

Dose response studies are an import diagnostic tool for measuring resistance in 

target populations. Current dose-response models of parasite and vector survival 

often fit simple sigmoidal curves and do not consider alternative models, which 

could affect estimates of the metrics used to assess levels of resistance. 

Standard pre-analysis practices remove valuable data on background mortality, 

which could be used to test for costs associated with resistance. Using survival 

data from a larval development test (LDT) following treatment with Ivermectin 

applied at varying concentrations to Caenorhabditis remanei, this study used 

Akaike Information Criterion (AIC) model selection to compare a range of 

potential dose-response curves, and used maximum likelihood ratios to test for a 

cost of resistance at sublethal drug doses. Specifically, comparisons were made 

between LD50 and LD99 estimates obtained using log-logistic, Weibull and 

hormetic dose-response models. Using the best-fitting model, the upper 

asymptote of the dose-response curve was then used to test whether a cost of 

resistance in survival would be detectable, based on lower survival at these 

sublethal lethal doses (i.e. the background mortality that is often removed prior 

to data analysis) of a simulated resistant population compared to a fully 

susceptible population. The type of model fit to the dose-response data from the 

LDT had a significant effect on the estimates of LD50 and LD99, suggesting that 

failure to fit an appropriate model could give misleading estimates of resistance 

status. A test of difference in asymptotes detected a cost of resistance of 4% 

survival in the simulated resistant population, meaning that even a small cost of 

resistance would be detectable using this approach. The results suggested that 

widening the range of models considered can give more accurate predictions of 

dose-response curve parameters, and that incorporating background mortality 

into the analysis can provide an effective method for assessing potential costs to 

resistance. 
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2.2 Introduction 

 

 

Drug resistance in parasites, parasite vectors and pest species poses serious 

challenges to disease control and agriculture around the world (Oerke 2006; GBD 

collaborators 2015), and the development of new xenobiotics that combat such 

species tends to be slow (Livermore et al. 2011). Diagnostic methods that 

monitor drug efficacy play a key role in preserving the effectiveness of existing 

control measures, and numerous methods are used to detect and measure 

resistance in different disciplines (Coles et al. 2006; Bagi et al. 2015). One 

common approach is to establish the relationship between survival and drug dose 

using dose-response assays (Coles et al. 1988; Michaela Dolinská, Königová, and 

Várady 2012). Samples of resistant populations can then be compared either 

temporally or geographically with known susceptible populations to assess 

differences in their resistance profile. In addition, it is important to establish 

whether there is a cost to resistance; i.e. if resistant individuals have lower 

fitness than susceptible individuals in drug-free environments. If susceptible 

members of the population have higher fitness than resistant individuals this 

could slow the spread of resistance alleles, depending on factors such as the 

frequency of application of control measures (Barnes, Dobson, and Barger 1995; 

REX Consortium 2013). Costs to resistance in terms of survival can be measured 

by exposing susceptible and resistant isolates to untreated environments and 

contrasting survival between the isolates. Current methods of analysis used to 

detect resistance employing a dose-response approach generally do not 

incorporate a measure of the cost of resistance, because survival in treated 

environments is scaled against survival in drug-free environments prior to 

statistical analysis; i.e. mortality occurring in drug-free controls is deducted 

from mortality occurring at each dose used in the dose-response assay. This 

rescaling of survival data means that valuable information about potential costs 

of resistance is lost during the analysis of dose-response data. Measuring costs of 

resistance can be easily incorporated into dose-response analyses by including 

sources of mortality not directly due to a control agent. 

 

Dose-response studies measure the relationship between the quantity of a 

substance or time of exposure and the effect it has on an organism. The 
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response variable may be continuous, as in the case of data measuring growth; 

alternatively, it may be binary (e.g. alive/dead), such as data collected when 

measuring drug efficacy. Dose-response studies are important in numerous 

fields, including: ecotoxicology (Ritz 2010), parasitology (Coles et al. 2006), pest 

control (Bagi et al. 2015) and weed control (Busi and Powles 2009). In addition, 

dose-response studies are used to establish and control the intensity of selection 

during experimental evolution studies, with the aim of applying an 

environmental stressor consistently over the duration of an experiment (Busi and 

Powles 2009). Dose-response models assume a given response variable y is 

explained in terms of a model function f that depends on the dose x (Equation 

1): 

 

   (   )                                                                  ( ) 

 

 

The form of the function f is known as it reflects the assumed relationship 

between x and y, except for the values of the model parameters β, which are 

estimated from the data (Ritz and Streibig 2007). Dose-response curves are 

usually sigmoidal and can be defined by four parameters (Equation 2). The first 

two parameters are d and c are the upper and lower asymptotes and define the 

upper and lower limits of mean survival, respectively. In other words, d is the 

expected survival before increasing dose has any effect (background mortality), 

and c is the expected survival at doses where increasing dose has no further 

effect. The third parameter e, is the inflection point, which is the dose where 

the curve changes from concave to convex and is located at or near the LD50 

(dose causing 50% mortality) for the drug. The fourth parameter b, is the slope 

of the curve at the LD50. Log-logistic models are often used to describe the dose-

response relationship between survival and dose, and generally the 4-parameter 

model is applied, corresponding to the model function:  

 

 (  (       ))      
   

      ( (   ( )     ( )))
                       ( ) 

 

Log-logistic models assume that the dose-response relationship is symmetrical 

around the inflection point e (Fig 2.1 A). However, a range of asymmetric 
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models, such as Weibull and hormetic curves can be applied to dose-response 

data (Fig 2.1). Fitting a range of potentially suitable models that can 

accommodate asymmetry in the dose response relationship, in addition to log-

logistic dose response models, should ensure that the most appropriate model is 

applied to a data set to improve the accuracy of estimates. 

 

Fig 2.1 Symmetric and asymmetric dose-response curves: A) Asymmetric dose- 
response curve (logistic or log-logistic); B) An asymmetric curve where the 
decrease in survival from the upper limit is rapid, but the approach towards the 
lower limit is slow (Weibull-2); C) An asymmetric curve where the decrease in 
survival from the upper limit is slow, but the approach towards the lower limit is 
rapid (Weibull-1); D) An asymmetric curve suitable for modeling an initial 
increase in survival (Hormetic). Figure adapted from Ritz et al (2007). 
 

 

Studies interested in the control of pest and parasite populations often 

summarise estimates from dose response curves of different populations to 

assess any differences in resistance (Amarante et al. 1997; Busi and Powles 

2009). If these estimates are based on inappropriate dose-response models then 

any attempt to evaluate differences between resistant and susceptible 

populations could result in inaccurate conclusions. Two frequently used metrics 

in dose response studies are the LD50 and LD99; the lethal doses representing 50% 

and 99% of a target population. The LD50 is useful when comparing resistant and 
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susceptible isolates; for example, the degree of resistance (resistance factor) 

can be calculated by dividing the LD50 of an isolate of interest by the LD50 of a 

known susceptible isolate (Amarante et al. 1997). The resistance factors of 

several isolates can then be compared with one another and help in assessment 

of how resistance changes in time or space (Busi and Powles 2009; Michaela 

Dolinská, Königová, and Várady 2012). The discriminating dose is the dose (LD99) 

that represents the maximum dose a given population can tolerate; any 

individuals surviving are considered to be resistant (Coles et al. 2006). Both the 

LD50 and LD99 are estimated from the dose-response model fitted to survival ~ 

concentration data. Thus, fitting an inappropriate model could result in 

inaccurate estimates of LD50 and LD99 and erroneous inferences about the 

comparisons of resistance between populations. Comparing a range of dose-

response models and selecting the most appropriate model could improve the 

accuracy of estimates of the degree of resistance both within and between 

populations. 

 

Investigators using a dose-response approach as a diagnostic method to quantify 

drug resistance usually measure survival over a range of doses but adjustments 

for background mortality prior to analysis could affect model estimates. During a 

dose-response assay survival is measured over a range of doses. Counts of the 

initial number of individuals and the final number of survivors are then used to 

calculate the proportion of mortality due to drug treatment as a function of 

concentration. Data about background mortality can be accounted for by 

subtracting mortality in control (untreated) conditions from that in drug-treated 

environments (Abbott 1925). It is difficult to establish how prevalent this type of 

a priori data manipulation is within the field of dose-response studies associated 

with documenting resistance, but it could be extensive. For example, WHO 

guidelines on conducting dose-response assays on mosquitoes specifically 

incorporate the use of Abbott‘s correction prior to data analyses (World Health 

Organization 2013). In addition, the method of adjusting survival data described 

by Abbott (1925) has over 11,000 citations (Google Scholar), a search within 

citied articles for ‗vector control‘ found 2420 citations, and a search of 

‗parasite‘ found 918 citations. Modifying the data collected from dose response 

assays in this way results in two unwanted outcomes. Firstly, manipulating data 

prior to analysis is not necessary for survival data with a binomial distribution, 
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and can result in incorrect estimates of variance in adjusted data (Rosenheim 

and Hoy 1989). Secondly, fitness costs could occur in relation to drug resistance 

if parasitic species divert resources from other fitness-enhancing traits including 

survival. If resistant populations have lower survival than susceptible populations 

at sublethal doses then a fitness cost can be measured. This information about 

differences in background mortality between resistant and susceptible 

populations is forfeited in the process of adjusting dose response data. 

Identifying fitness costs associated with resistance may be of importance in 

limiting the spread of resistant populations (Kliot and Ghanim 2012). If fitness 

costs are high then it is likely to take longer for resistance to spread through a 

population because susceptible individuals may have higher reproductive rates 

or grow faster even though they may have reduced survival in drug-treated 

environments (Carriere et al. 1994). Testing for a cost of resistance could be 

achieved simply by comparison of susceptible and resistant populations in a 

drug-free environment, but estimating a cost of resistance based on differences 

in survival at sublethal doses across the upper asymptote of the dose-response 

curve will provide a more powerful test given the greater sampling effort. The 

upper asymptote of the dose response curve represents concentrations of drug 

that have no direct effect on survival. Incorporating background mortality into 

the analyses of dose-response data would allow direct comparisons of survival to 

be made between resistant and susceptible isolates across a range of sublethal 

doses, which could be used to quantify costs to resistance in terms of survival. 

Thus, lower survival at the asymptote of a resistant isolate relative to a 

susceptible isolate would provide evidence of a fitness cost. However, to my 

knowledge, there are no studies that have implemented a test of a cost to 

resistance at sublethal doses to infer such costs. In addition, I am unaware of 

any dose response studies assessing drug resistance that have published the 

original survival data along with the study, so a test of upper asymptotes 

between resistant and susceptible cannot be conducted on previously collected 

data. However, simulations can be used to explore the patterns that emerge 

from biological models, and examine whether models based on mathematical 

functions with associated probability distributions provide realistic 

representations of a study system (Bolker 2007). Simulated data with higher 

survival of resistant individuals over the range of doses associated with normal 

drug efficacy and lower survival at sublethal doses, relative to susceptible 
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individuals, would allow the assessment of a test of differences in asymptote. A 

method of modeling survival data, which assesses a range of suitable dose-

response models and incorporates background mortality would provide an 

effective means of increasing the accuracy of estimates of resistance, and 

provide a test of a cost of resistance.  

 

Treatment of parasitic nematodes often involves the application of broad-

spectrum anthelmintics from one of three major classes: benzimidazoles, 

imodothiazoles and macrocyclic lactones. Ivermectin is a macrocyclic lactone 

and has been used commercially since 1981 (James, Hudson, and Davey 2009), 

with the first reports of resistance in 1988 (Kaplan 2004). Ivermectin causes 

paralysis in larvae and adult nematodes and inhibits feeding (Sangster and Gill 

1999) but also has a repellent effect at sub-lethal doses (Ardelli et al. 2009). 

Ardelli et al (2009) found that replicated measures of C. elegans movement 

exposed to 2.5 nM and 5 nM Ivermectin resulted in increased traveling behaviour 

(long-range roaming) relative to zero dose controls, but worms exposed to 10 nM 

showed no increase in movement. Thus, at high doses where worms are 

paralysed, repellency does not occur, but at low doses Ivermectin has a 

repellent effect resulting in hyperactivity and is likely to be an additional source 

of mortality, due to worms attempting to evade the effects of the drug. This 

additional source of mortality should be taken into consideration when assessing 

the relationship between survival and drug dose. Because parasitic helminths are 

difficult to culture, studies of nematode disease have often used the model 

organism Caenorhabditis elegans in both drug screening and identifying 

candidate resistance loci (Simpkin and Coles 1981; James, Hudson, and Davey 

2009; Ghosh et al. 2012). However, C. elegans reproduces mainly by self-

fertilisation, and although low levels of outcrossing do occur, genetic variation 

within the species does not reflect that observed in parasitic species, which are 

usually obligately outcrossing (Geary and Thompson 2001). Other free-living 

dioecious nematodes such as C. remanei may thus provide a more realistic model 

system to explore resistance. C. remanei populations have abundant standing 

genetic variation and high levels of recombination, due to their reliance on 

sexual reproduction (Cutter, Baird, and Charlesworth 2006), which also makes 

them a good candidate for studying resistance.  
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The overall aim of this chapter was to fit the most appropriate non-linear 

regression model to dose-response data, which could then be used to test for 

evidence of a cost of resistance at sublethal doses. Specifically, I asked:  

1) Which dose-response curve model best describes the relationship 

between Ivermectin dose and C. remanei survival? 

2) Can background mortality at sublethal doses be used to detect a cost 

of drug resistance? 

 

 

2.3 Methods  

 

 

2.3.1 Origin and maintenance of worm populations 

 

 

In order to perform a LDT on a population with abundant standing genetic 

variation, I obtained a genetically diverse strain of C. remanei (SP8) from N. 

Timmermeyer in the Department of Biology, University of Tübingen, Germany. 

This strain was originally created by a fully factorial crossing of three wild-type 

strains isolated from geographically distant locations (SP146 from Freiburg, 

Germany; MY31 from Tübingen, Germany; PB206 Ohio, US). Offspring of the 

crosses had been tested to ensure they were fertile then pooled, and maintained 

for eight generations to create recombinant genotypes and allow adaptation to 

standard laboratory conditions (Fritzsche et al. 2014). Upon arrival in Glasgow, 

strain SP8 was cultured for four generations to acclimate to the laboratory 

conditions, which were standard for Caenorhabditis species: 20˚C and 60% 

humidity on Nematode Growth Medium (NGM) petri dishes and fed on a lawn of 

Escherichia coli (OP50) (Hope 2001). 

 

 

2.3.2 Larval development test 

 

 

To quantify the relationship between drug dosage and survival for strain SP8 

replicate samples of the population were exposed to a range of doses of 
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Ivermectin. A stock solution of 2 mg/ml Ivermectin (22,23-Dihydroavermectin 

B1; Sigma-Aldrich) dissolved in DMSO was decanted into 1-ml aliquots and frozen 

to provide a standardised drug dose. I used a modified version of the dose 

response approach taken by Coles et al. (1988), exposing replicate samples of C. 

remanei over a range of 15 doses (0, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 

and 10 ng/ml); chosen because this range has been previously used in studies of 

C. elegans (James and Davey 2009). Dilutions of Ivermectin were added to 100 

ml liquid NGM (50°C) and mixed with a magnetic stirrer before pouring 7 ml 

aliquots into 5.5 cm plastic petri dishes. These were left to dry, seeded with E. 

coli (OP50) ad libitum to minimise indirect mortality resulting from worms 

leaving the agar surface of the petri dishes in search of food, and incubated at 

20°C overnight. Concurrently to preparing dosed plates, age-synchronised eggs 

were harvested from stock populations of C. remanei by bleaching using 

standard protocols (Hope 2001). This process kills adults and juveniles but leaves 

unhatched developing embryos unharmed. Eggs were moved to fresh drug and 

food-free 9-cm petri dishes and incubated overnight to provide a source of L1-

arrested larvae for drug screening. After 12 hours incubation, larvae were 

suspended in M9 buffer solution (3g KH2PO4, 6g Na2HPO4, 5g NaCl, 1 ml M MgSO4, 

H20 to 1 litre and sterilised by autoclaving) and 5 µl aliquots of this suspension 

were added to Ivermectin-dosed plates, with the aim of applying approximately 

60 larvae per plate. Larvae added to petri dishes were counted as they were set 

up. Survival data were obtained by counting the number of adults present per 

plate at 75 hours, which is long enough to ensure the adult stage was exposed to 

the drug but was not long enough for any offspring of the screened population to 

develop to adulthood and confound accurate survival counts. Twenty replicate 

plates were established for each Ivermectin dose (ten replicates in each of two 

different batches, tested one month apart using separately prepared plates).  

 

 

2.3.3 Statistical analysis 

 

 

Preliminary analysis performed by visual assessment of a range of dose-response 

curves found evidence of an indirect source of mortality at low doses. Models 

using all the survival data resulted in overestimates of mortality at very low 
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doses, and under estimates of survival at the upper asymptote compared to a 

reduced dataset excluding the values at 0.5 and 1 ng/ml Ivermectin. Because 

indirect mortality has been previously observed in C. elegans (Ardelli et al. 

2009), a sister species to C. remanei and because I was interested in modeling 

mortality directly associated with the action of the drug, I used a reduced 

dataset. The reduced dataset excluded survival data at two doses (0.5 and 1 

ng/ml) of Ivermectin where indirect morality was apparent. An assessment and 

justification for removing these data is given in Appendix A. All further analysis 

was conduct on the reduced dataset, which included survival data for 13 doses 

(0, 0.1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 and 10 ng/ml Ivermectin). 

 

All statistical analyses were performed using the drc package (Ritz and Streibig 

2007) in the statistical environment R v 3.1.2 (R Core Team 2014), and I defined 

a significance threshold of P = 0.05 for all tests. In order to establish the best 

fitting model of survival as a function of the concentration of Ivermectin, dose-

response log-logistic and Weibull and hormetic models were fitted to the 

reduced dataset collected in the LDT, assuming X is a binomially distributed 

random variable, n is the total number of worms, and p is the probability of 

survival at a particular dose determined by the dose response model (Fig 2.1, 

Equation 3). 

 

     (   )                                          (3) 

 

Three parameter Log-logistic, Weibull-1, Weibull-2 and Hormetic models with 

the lower asymptote of the dose-response curve set to zero were used to 

prevent negative predictions of survival in the fitted dose response curves. 

Because 4-parameter Log-logistic models are commonly applied to survival ~ 

concentration data, this model was also used in the analysis. The relationship 

between survival and dose for each of these models is described in Table 2.1.  

Model choice was made using AIC, assuming that the lowest AIC value identified 

the best-fitting model of the dose-response data (Aho, Derryberry, and Peterson 

2014). Estimates of the LD50 and LD99 were calculated for each model to assess 

differences in predictions between models. 
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Table 2.1 List of dose-response models and their functions for describing the 
relationship between survival and dose.  

Model (parameters) Model function 

Log-logistic (4)  
   

   

     ( (   ( )     ( )))
 

Log-logistic (3)  

      ( (   ( )     ( )))
 

Weibull-1 (3)     (     ( (   ( )      ))) 

Weibull-2 (3)  (     (    ( (   ( )     ( ))))) 

Hormetic (4) 
  

    

      ( (   ( )     ( )))
 

NB: The hormetic model has an additional linear parameter (f) to model 
increases in the response variable at low doses (Fig 2.1D).  
 

 

To test for a difference in background mortality (a cost of resistance) between 

susceptible and resistant populations, survival at the upper asymptote of the 

dose-response curve was compared. Survival data for the susceptible population 

was the same data collected in batch one of the LDT. Survival data for a 

simulated resistant population with a cost of resistance in terms of survival was 

generated by adjusting the data from batch two of the LDT. The data set from 

batch two was adjusted to decrease survival by 4% for 0 and 0.1 ng/ml 

Ivermectin to simulate a cost of resistance. In addition, survival across the range 

of doses where survival dropped in batch two was increased by 5% to simulate 

resistance, doses 1.5, 2, 2.5, 3 and 4 ng/ml Ivermectin. Adjustments in survival 

were achieved by changing the number of survivors in each replicate plate of 

batch two. For instance, to simulate a decrease in survival at the asymptote, 

survival data for each replicate plate at 0 and 0.1 ng/ml Ivermectin was 

adjusted by increasing the number of deaths that occurred in each replicate 

plate by 4%. To confirm that the simulated resistant population had significantly 

higher survival than the susceptible population over the range of doses where 

mortality due to drug treatment increases from zero to 100%, a Weibull-1 model 

of the survival-dose relationship was applied to the simulated data with a 

further explanatory variable for population, and contrasted with a null model 

where population was removed. To test for a cost of resistance between the 

simulated susceptible and resistant populations, a Weibull-1 model of the 

survival-dose relationship was applied to the simulated dataset, which assumed 
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different upper asymptotes between populations, compared to a null model 

assuming a common asymptote. In addition, the survival data from a drug-free 

environment (zero dose) was used to test for a cost of resistance in the 

simulated populations using a GLM, assuming a binomial distribution. This test 

was conducted to assess differences in using a comparison of asymptotes as part 

of dose response modeling, with a standard test of a cost of resistance in a drug-

free environment. Differences in survival between susceptible and resistant 

populations were assessed by comparing a full model with population as an 

explanatory variable against a null model assuming no difference in survival due 

to population.  

 

 

2.4 Results 

 

 

2.4.1 The relationship between C. remanei survival and Ivermectin dose over a 

range of concentrations  

 

 

The 3-parameter Weibull-1 model was identified as the best-fitting model to the 

survival ~ concentration data and had a AIC value 30 points lower than the next 

best model (Fig 2.2 and 2.3, Table 2.2). The predicted LD50 of the 4-parameter 

log-logistic model was similar to that of the Weibull-1 model but no estimate of 

the LD99 or confidence intervals could be made due to the negative predictions 

of survival at high doses (Fig 2.2, Table 2.2). There was no difference between 

the 3-parameter Log-logistic and hormetic models, indicating no initial increase 

in survival due to hormesis at low concentrations of Ivermectin (Fig 2.2, Table 

2.2); both models gave the same predicted LD50 as the Weibull-1 model but the 

predicted LD99 was 20% higher than the Weibull-1 model. The Weibull-2 model, 

which predicts a sharp descent in survival at low doses, gave the worst fit to the 

dose response data; the predicted LD50 was 4% lower than the Weibull-1 model, 

whilst the LD99 was 35% higher (Fig 2.2, table 2.2).  
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Fig 2.2 Comparison of 3-parameter log-logistic, 4-parameter log-logistic, 
Weibull-1 and Weibull-2 models for the relationship between C. remanei survival 
and Ivermectin concentration. A hormetic model was indistinguishable from the 
3-parameter log-logistic model. Black circles show raw data for each replicate 
plate of the larval development assay, and red circles show mean survival at 
each concentration of Ivermectin used in the larval development test. 
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Fig 2.3 Observed data (black circles) and fitted Wiebull-1 model of the 
relationship between survival of C. remanei and concentration of Ivermectin 
with survival data at 0.5 and 1 ng/ml (red circles) removed form analysis. Circles 
show observed mean survival at each concentration of Ivermectin used in the 
larval development test. Dark grey bands show 95% confidence intervals for 
mean survival based on the model.  
 
 
 
 
Table 2.2 Estimates of the slope, LD50 and LD99 (ng/ml Ivermectin) for the dose 
response models fitted to the larval development assay reduced data set (CI: 
95% confidence interval for LD50 and LD99). AIC (Akaike Information Criterion) is 
given for each model fit to the full dataset from the larval development test. SE 
is the standard error of the slope.  

Model (no. 

parameters) 

AIC Slope SE LD50 (CI: 95%) LD99 (95% CI) 

Weibull-1 (3) 

Log-logistic (4) 

Log-logistic (3) 

Hormetic (3) 

Weibull-2 (4) 

666.63 

696.86 

732.83 

732.83 

805.71 

3.04 

4.69 

5.70 

5.70 

4.39 

0.116 

- 

0.210 

0.210 

0.13 

1.85 (1.80, 1.90) 

1.84 

1.85 (1.80, 1.89) 

1.85 (1.80, 1.89) 

1.77 (1.74, 1.81) 

3.45 (3.33, 3.56) 

- 

4.13 (3.94, 4.33) 

4.13 (3.94, 4.33) 

4.65 (4.41, 4.89) 

No estimates could be extracted for the standard error or the LD99 of the 4-
parameter log-logistic mode, because of the negative model predictions. 
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2.4.2 Detecting a cost of resistance in simulated survival data 

 

 

The Weibull-1 model applied to the simulated survival data showed a significant 

difference in the relationship between survival and Ivermectin dose between the 

simulated resistant and susceptible populations (χ2 = 84.60, d.f. = 3, P < 0.0001; 

Fig 2.4), and a difference in slopes of the curves (χ2 = 33.68, d.f. = 1, P < 

0.0001; Fig 2.4). The predicted LD50 for susceptibles of 1.80 (95% CI: 1.73, 1.87) 

was 12% lower than the simulated resistant population: 2.07 (95% CI: 1.99, 2.15; 

χ2 = 74.01, d.f. = 1, P < 0.0001). The test of a difference in background 

mortality, as indicated by a difference in asymptotes between curves, showed 

significantly higher mean survival in susceptibles: 78% (95% CI: 75, 80%) than the 

resistant population: 74% (95% CI: 72, 77%; χ2 =4.33, d.f. = 1, P = 0.033; Fig 2.4, 

Table 2.2). A GLM assuming a binomial distribution found no difference in mean 

survival when applied to data from a drug-free environment (χ2 = 3.08, d.f. = 1, 

P = 0.079; Table 2.2); estimated mean survival for the GLM was 77% (95% CI: 73, 

80%) for susceptibles and 73% (95% CI: 70, 76%) for the simulated resistant 

population. Thus, the test of a difference in asymptote suggested a cost of 

resistance, whilst the GLM failed to detect any cost of resistance. 
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Fig 2.4 Comparison of dose response curves for simulated susceptible (circles) 
and resistant (triangles) populations. 
 
 
 
 
 
 
Table 2.2 Predictions of mean survival at the upper asymptote of the dose 
response curve for simulated susceptible and resistant populations. The GLM 
gives predictions of mean survival using only survival data from a drug-free 
environment.  

Model 

 

X2 

 
 

df    P Mean survival 

susceptible      

(CI: 95%) 

Mean survival 

resistant    

(CI: 95%) 

Weibull-1 4.33 1  0.033 78% (75, 80) 74% (72, 77) 

GLM 3.08 1  0.079 77% (73, 80) 73% (70, 76) 
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2.5 Discussion 
 

 

In order to establish the relationship between survival and drug dose it is 

necessary to fit the most appropriate dose response model and recognize other 

biological sources of mortality, which could affect any estimates derived from 

the final model. This study shows that failure to assess a range of potentially 

suitable dose-response models can result in inaccurate predictions of the level of 

resistance. The best model fit was achieved with the 3-parameter Weibull-1 

model (Fig 2.2 and 2.3). In addition, because the survival data were not 

manipulated prior to analysis, this allowed for a test of a cost of resistance in 

terms of comparing survival at the upper asymptote of the dose response curves. 

 

 

2.5.1 The relationship between C. remanei survival and Ivermectin dose over a 

range of concentrations  

 

 

The principal challenge facing diagnostic measures of resistance is their ability 

to provide early detection during the development of resistance when the alleles 

for resistance are rare in the parasite population (Dolinská et al. 2013). Few 

studies concerned with the detection of resistance consider fitting a range of 

dose response curves when estimating parameters such as LD50‘S and LD99‘S, with 

most implementing log-logistic models (Amarante et al. 1997; Tandon and 

Kaplan 2004; Michaela Dolinská, Königová, and Várady 2012; Dolinská et al. 

2013). My analyses suggest that failing to take into consideration other possible 

dose-response models could result in poorly fitting models with erroneous 

estimates of parameters of interest. For instance, in my study, predictions of 

the LD50 and LD99 differed with respect to the type of dose response curve fitted 

to the data. In particular, the log-logistic model gave higher predictions of the 

LD99 than the best-fitting Weibull-1 model, meaning that estimates of the 

maximum dose the population can tolerate were 20% higher than the best-fitting 

model.  
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Reduced efficacy of a drug could lead to other strategies being implemented to 

control parasite populations, and prevent the spread of resistance (Leathwick 

and Besier 2014). If this decision is made based on incorrect estimates of drug 

efficacy then this could mean that a more expensive control measure is applied 

erroneously. Implementing a range of potentially suitable models that can 

accommodate asymmetry in the dose response relationship, in addition to log-

logistic dose response models, should ensure that the most appropriate model is 

applied to a data set to improve the accuracy of estimates of LD50 and LD99 

values. Studies focusing on the detection of resistance may sample a large 

number of parasite populations over a number of years (Martin et al. 1984; 

Michaela Dolinská et al. 2014), assess resistance to a range of drugs (Demeler, 

Küttler, and von Samson-Himmelstjerna 2010), and perform a variety of in-vivo 

or in-vitro diagnostic tests (Taylor, Hunt, and Goodyear 2002), all of which can 

be analysed using a dose-response approach. It seems unlikely that a log-logistic 

dose response model would be the best fitting under all these circumstances but 

this requires further testing. My study shows that a range of dose response 

models, not commonly applied in parasitology, can be easily implemented and 

assessed when quantifying resistance of parasitic populations. Accuracy, 

reliability and sensitivity of early detection methods aimed at assessing the 

resistance status of parasite populations are all likely to be improved by 

choosing the most appropriate model of dose response data. 

 

 

2.5.2 Detecting a cost of resistance in simulated survival data 

 

 

The test of a difference in asymptotes found a 4% difference in background 

survival between the simulated susceptible and resistant population, suggesting 

that this approach provides a sensitive test to detect a cost of resistance in 

survival. This test was more sensitive than a test of differences in survival in a 

drug-free environment because modeling the asymptote assesses differences in a 

range of doses that cause no drug-induced mortality. However, the difference in 

survival between resistant and susceptible populations at 0.1 ng/ml was greater 

than the difference at dose zero so the GLM used only zero dose data and 

assessed a smaller effect size estimate than the drc model. This does not 
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invalidate the approach of testing for a difference in asymptotes because the 

greater sampling effort used in a test of asymptotes will be more powerful than 

the GLM using less data from a drug-free environment. If dose-response analysis 

was routinely conducted on data that was not standardised for background 

mortality, then a test of the cost of resistance in survival of resistant 

populations could be implemented in addition to comparing LD50 and LD99 

derived resistance ratios. Costs of resistance in other traits measured using dose 

response approaches in relation to resistance could also provide useful data on a 

suite of traits for a parasite population. Fitness-defining traits such as 

development time, fertility and size at maturity can all be measured using a 

dose-response approach, meaning that any of these traits could be assessed for a 

cost of resistance (Ritz et al. 2015). Studies focused on costs of resistance often 

measure life-history traits in environments where control measures are not 

applied (Kliot and Ghanim 2012). However, these investigations could be 

performed as part of a dose response study and would provide informative data 

on both the resistance ratio relative to control populations, and a measure of 

any cost to resistance, for a given trait. 

 

 

2.5.3 Conclusions 

 

 

My study suggests that fitting the most appropriate model without removing data 

on background mortality will give more accurate predictions of dose-response 

curve parameters, compared to methods that manipulate data prior to analysis. 

Incorporating background mortality into the analysis also provides an effective 

method for assessing potential costs to resistance. Current software available for 

analysing dose-response data makes it easy to implement a range of models and 

select the most appropriate model (Ritz et al. 2015). This software also allows 

predictions of measures of resistance (LD50 and LD99) to be easily extracted, and 

provides a test for a cost of resistance. To ensure that the amount of useful 

biological information relating to resistance is maximised when conducting dose-

response studies I recommend: 1) not rescaling data to untreated controls; 2) 

fitting a range of models and testing which provides the best fit to the data to 

ensure accurate predictions; and 3) a test for potential costs of resistance by 
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comparison of asymptotes from dose-response curves from susceptible and 

resistant populations.  
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Chapter 3: Will my selection experiment actually 

be informative? 

 

 

3.1 Abstract 

 

 

Estimating sample size and statistical power for a study is an important part of 

experimental design. Formulae are available to calculate power only for simple 

studies; for more complex designs, simulation provides a potent alternative 

approach. For example, selection experiments to study evolutionary patterns 

often include multiple sources of variation with potentially complex 

interactions. The purpose of this study was to examine how power to detect 

differences in survival among replicate populations exposed to one of two 

different treatments is affected by experimental design.  Specifically, I focused 

on the effects of both within- and between-line variation on estimated power, 

when detecting small, medium and large effect sizes? Using mixed-effect models 

to analyse simulated data, I demonstrated that commonly used designs with 

realistic levels of variation could be underpowered for substantial effect sizes. 

Thus, use of simulation-based power analysis prior to initiation of selection 

experiments provides an effective tool to avoid under- or over-powering study 

designs incorporating variation at multiple levels. 
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3.2 Introduction 

 

 

Selection experiments are an indispensable tool for asking specific questions 

about changes in the evolution of traits. They can provide valuable evidence as 

to whether a given selection pressure is capable of causing a long-term change 

in either single or multiple traits, and the extent to which genetic correlations in 

traits might constrain evolution (Hill and Caballero 1992; Prasad and Joshi 2003; 

Fuller, Baer, and Travis 2005; Hill and Robertson 2007; Garland and Rose 2009). 

The design of an experiment plays a fundamental role in whether a selection 

experiment is likely to provide a robust answer to a given research question. In 

an early selection experiment, Rev Dallinger (1887) cultivated protists in an 

incubator, gradually increasing the temperature from an initial 60°F up to 

158°F, over seven years. Dallinger noted that the ancestral protists were unable 

to tolerate temperatures above 73°F, whilst protists from the derived 158°F 

culture could not withstand a temperature lower than 150°F. He concluded that 

the change in the environment over many generations had resulted in adaptation 

of the protist culture to increased temperature. However, Dallinger omitted 

several features of selection experiments considered desirable when conducting 

experimental evolution studies, including: use of control populations (lines), 

replication of selected lines, and a method of statistical inference used to assess 

evolved changes. Dallinger‘s work is without doubt a brilliant example of 

pioneering research in experimental evolution. To judge his work in the context 

of today‘s research practices would be unfair, but his experiment provides an 

opportunity to ask a fundamental question facing all researchers when designing 

a selection experiment, ‗Will my study design answer my research question?‘ or 

in statistical terms ‗What is the power of my study?‘ (Johnson et al. 2015). 

 

Power is defined as the probability of correctly rejecting a null hypothesis when 

it is false (Cohen 1962). In other words, power is the chance of detecting an 

effect given that it exists. In simple scenarios, power depends on four other 

parameters: sample size, the size and variability of the effect to be detected 

and the significance level, which is typically set at 5%. Although any of these 

five parameters can be the focus of a power analysis, the usual role of power 
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analysis in experimental design is to determine the sample size required to 

achieve sufficient power (typically 80%, but see Di Stefano 2003). Selection 

experiments often seek to address questions within the constraints imposed by 

limited resources.  Failure to adequately consider power prior to conducting an 

experiment, by adopting sampling schemes based solely on constraints or 

educated guess work using previous research, can result in under or over-

powered studies, which are wasteful of resources (Taborsky 2010).  Thus, using 

power analysis in devising a sampling scheme that will optimise the efficiency of 

the experimental design can result in more robust experiments (Kain, Bolker, 

and McCoy 2015). 

 

Power analysis has been used in the design of selection experiments but 

published methods focus on evolve resequence studies (Kim and Stephan 1999; 

Baldwin-Brown, Long, and Thornton 2014; Kessner and Novembre 2015). For 

example, in a study focused on detecting divergence in single nucleotide 

polymorphisms of lines selected during evolve re-sequence experiments, it was 

found that differentiation between populations was affected by selection 

coefficient, population size, number of replicate populations, and initial 

standing genetic variation (Baldwin-Brown, Long, and Thornton 2014). However, 

use of power analysis to detect divergence in phenotypic traits during selection 

experiments has been less common in methods publications. The importance of 

replication, both at the population level, and sampling within replicate lines is 

well appreciated (Fuller, Baer, and Travis 2005; Garland and Rose 2009c), but 

power analyses are not always reported. For example, of the studies involving 

selection experiments published in BMC Evolutionary biology (n = 6) and 

Evolution (n = 12) in the 12 months from April 2015, none explicitly mention 

power analysis being involved in experimental design to justify study design 

choices in terms of numbers of replicate lines or the sampling of those lines. 

Retrospective power analysis using the observed effect size to estimate the 

power to reject the null hypothesis of no evolutionary change in traits of 

interest between selection regimes has been reported (e.g. Sikkink et al. 2015). 

However, this approach has been frowned upon because calculating power 

retrospectively will not change interpretation of the result, high power always 

corresponds with a significant p-value (Hoenig and Heisey 2001). It would be 



   
 

 52 

more useful to address the optimal design of an experiment prior to 

implementation. Conducting an a priori power analysis to optimise the sampling 

design of the experiment for a given research question and publishing it along 

with the findings from a study will lend weight to the credibility of the research, 

whereas retrospective power analysis does not aid the design of a study. 

 

A potential obstacle to the use of power analysis is that standard methods are 

too simple to deal with the more complex design of many selection experiments 

(Fuller, Baer, and Travis 2005; Johnson et al. 2015). Selection experiments often 

seek to measure evidence of selection on traits in environments that differ with 

respect to some abiotic, biotic or demographic condition. During the course of 

selection, new genetic variants are produced through recombination, mutation 

or sampling of alleles, meaning that stochastic processes can make the outcome 

of selection unpredictable (Garland and Rose 2009). In addition, initial 

population size, pre-existing genetic variation and the strength of selection are 

all likely to influence change in any trait. Selection experiments usually aim to 

manipulate one or two environmental or genetic conditions and keep all other 

factors fixed, but the magnitude of change in a trait will always be subject to 

sampling error due to stochastic differences in recombination, mutation or any 

other factor which affects the response to selection occurring between selected 

lines. While some of these variables will be of primary interest, others may be 

included as random effects that could affect interpretation of variance 

associated with the focal fixed effects. Experimental units in selection 

experiments are populations, which are replicated within treatments. This type 

of design introduces random variation at two levels, within and between 

populations, and can be dealt with by the use of simulation. The type of trait 

measured during and at the end of a selection experiment will define what type 

of distribution the response variable takes (Gaussian, binomial, Poisson or 

negative binomial). Simulation-based power analysis with non-normal responses 

such as binomial responses need to take account of within- and between-line 

variation because of the potential for large amounts of variation in the response 

due to binomial sampling variation. Binomial sampling could be accounted for by 

assuming approximation to a normal distribution with standard methods, but 

simulations allow sampling variation in the response to be incorporated into 
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power studies. In addition, by performing multiple hypothetical experiments, 

simulations allow the user think about how data will be analysed before it is 

collected, and identify poor models, which would not be possible when only real 

data is analysed. 

  

One common type of selection experiment, sometimes referred to as laboratory 

culling (Juliano 2002), demonstrates the type of complexity that can pose a 

challenge for standard power analyses.  This type of study involves imposing an 

environmental stress that is lethal to some proportion of a population and the 

offspring of survivors are carried through to the next generation under selection. 

Environmental stressors could take the form of temperature, pathogens, 

predators or chemical control agents and often the strength and consistency of 

selection can be controlled by the investigator (Busi and Powles 2009; Morran et 

al. 2011; Chen and Maklakov 2014). Adaptation in the form of increased survival 

or other traits of lines exposed to the environmental stressor can then be 

assessed by comparisons between evolved treated and control lines. One way to 

assess the effect of selection is to test the null hypothesis that there is no 

difference between treated and control populations. Generalised linear mixed 

models (GLMMs) are often used in null hypothesis testing of selection 

experiments, to assess differences in phenotypes between treatments and deal 

with random variation occurring from multiple sources, such as variation in the 

response between replicate lines (Bolker et al. 2009). Calculating power 

analytically for GLMMs is difficult, but an alternative is to use simulations, which 

can incorporate complex experimental designs with multiple sources of variation 

at different levels like those occurring in selection experiments (Bolker 2007; 

Johnson et al. 2015; Kain, Bolker, and McCoy 2015).  

 

The aim of this chapter is to illustrate how simulations could be used to inform 

important design choices used in selection experiments. Specifically, I asked, 

how do multiple sources of variation resulting from within and between-line 

variation affect power estimates of study designs aimed at detecting small, 

medium and large effect sizes? 
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3.3 Methods 

 

3.3.1 Power analysis simulations 

 

Estimating the power of a range of study designs using a test of a null hypothesis 

by simulation requires the following steps (Bolker 2007):  

1. Identify a suitable range of study designs and establish estimates of 

sources of additional variation. 

2. Simulate many data sets over a range of study designs assuming that the 

null hypothesis is false; i.e., that the effect of interest is not zero. 

Typically, 1000 simulations for a given scenario are adequate to ensure 

confidence intervals of power estimates are acceptable (Johnson et al. 

2015). With 1000 simulations and 80% power, 95% of power estimates 

should fall between 77.5–82.4%. 

3. Perform a statistical test of the null hypothesis that the effect size is zero 

for each simulated data set. 

4. The power estimate for a given scenario can then be calculated as the 

proportion of simulated data sets where the null hypothesis was rejected. 

 

3.3.2 Selection experiment scenario 

 

Here I consider the effects that a realistic range of study designs have on the 

power to detect a difference in survival between treatments in a hypothetical 

study assessing adaptation to a control agent. Replicate populations were 

selected in each environment (drug and control) and at the end of selection two 

replicate samples of each line were exposed to the drug treated environment 

during a resistance assay, and survival data collected. Survival data from this 

type of experimental design were analysed using a GLMM assuming a binomial 

error distribution with a logit link (Zuur et al. 2009). In our hypothetical study, 

treatment was fitted as a fixed effect, the evolutionary replicate (line) was 
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fitted as a random effect to account for additional variation in survival due to 

differences in the response to selection between lines. Additionally, variation in 

survival due to repeated sampling from lines after selection (within-line 

variation) was also fitted as a random effect. The GLMM fitted to describe the 

selection experiment models the number of survivors exposed to the control agent 

in the jth repeated sample from the ith line across the number of individuals initially 

exposed, where survivors yij from nij individuals are binomially distributed yij ~ 

Binom (nij, pij). The log odds of survival, sij = logit (pij), is modeled by equation 1. 0 

is the log odds of survival when x = 0, 1 is the difference between the control and 

treatment groups in log odds of survival (or, equivalently, 1 is the log of the 

treatment effect odds ratio [OR]), and xij defines treatment during selection. Where 

the odds ratio (OR) equals one, there is no difference between treatments xij (1 = 

0); as the OR increases, treatments become increasingly different in terms of the 

proportion of individuals surviving. Thus, the odds ratio is a measure of effect size. 

The replicate line random effect, bi and the repeated sampling random effect wij 

are normally distributed with zero means and variances σb
2 and σw

2, respectively, 

i.e. bi ~ N(0, σb
2) and wij ~ N(0, σw

2).  

 

                                                            ( ) 

 

A likelihood ratio test was used to determine whether survival was affected by 

treatment, by comparing the full model (equation 1) and a null model where 

treatment had no effect. The effect size (difference in survival between 

treatments), total sample size (total number of individuals in the resistance 

assay), number of replicate selection lines, and the number of samples taken 

from within each replicate line, will all have an influence on whether the null 

hypothesis was rejected.  

 

3.3.3 Simulation methods 

 

To assess the effect of between-line and within-line variation on power 
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estimates of a range of experimental designs, I simulated survival data. This was 

achieved by estimating power across a realistic range of study designs 

incorporating assumptions about sources of additional variation (Table 1), and 

then identifying those that gave adequate (≥80%) power. For the simulated 

selection experiments the number of replicate lines used for each treatment was 

varied over the range; 2, 4, 6, 8 and 10. To incorporate an estimate of the 

effect of increasing sampling effort in resistance assays used at the end of the 

selection experiment into the simulation, the total number of individuals 

assayed across both treatments was simulated at n = 200, 400, 800, 1600, 3200 

and 6400. To explore the effect of within-line variation on power estimates, 

realistic variance (σw
2 = 0.1) in survival was simulated. This level of variation in 

survival was consistent with that found during analysis of dose-response data in 

Chapter 2. To explore the effect of not accounting for within-line variation, σw
2 

= 0 and σw
2 = 0.1, were simulated only for large effects, with a sampling effort 

of n = 400. Differences in effect size, the absolute difference in survival 

between control and treated lines, were set at 5%, 10% and 20%, and correspond 

to Cohen‘s definition of small, medium and large effect sizes (Cohen 1962). In 

addition, to estimate the chances of making a type I error, the simulations 

included a scenario with no difference between treatments; i.e. survival in the 

control lines equaled survival in treated lines. Survival of drug naive populations 

in a treated environment was fixed at 13%; this information was used to 

establish the predicted log odds of survival in control lines. To explore the effect 

that between-line variation (σb
2) had on power estimates, differences in survival 

due to variation in the response to selection were simulated at three levels (σb
2 

= 0, 0.1, and 0.2) for both treated and control lines: σb
2 = 0, as a means of 

assessing the impact of not incorporating realistic assumptions about variation in 

between-line responses to selection; σb
2 = 0.1, similar to the variation in 

response to selection observed in Chapter 3; and σb
2 = 0.2, a pessimistic 

assumption of strong between-line variance.  
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Table 3.1 Values for the parameters used in the study designs to assess power in 
the simulation-based power analysis.  

Study variable Simulated values 

Number of lines used per treatment 
group 

2, 4, 6, 8, 10 

Between-line variance σb
2 

Total number of individuals assayed 
at the end of selection across both 
treatments 

Number of drug resistance assay 
replicates conducted for each line at 
the end of selection 

Within-line variance σw
2 

0, 0.1, 0.2 

200, 400, 800, 1600, 3200, 6400 

 

2 

 

0a, 0.1 

Initial survival as a result of control 
agent 

13% 

Absolute increase in survival between 
drug-treated and untreated lines 
(Odds ratio) 

0% (1), 5% (1.5), 10% (2), 20% (3.3) 

a: Within-line variance was only simulated at two levels for large effect size 
(20% difference in survival) with a sampling effort of 400 individuals. For 
simulations at medium (10%) and small (5%) effect size, within-line variance was 
fixed at 0.1. 

  

Survival data was then simulated over the range of study designs and sources of 

additional variation. All combinations of the parameter values from table 1 were 

used in the simulations, resulting in 360 scenarios. For each scenario 1000 

datasets were simulated from binomial distributions using the statistical 

environment R (R Core Team 2014). Power was then calculated for each scenario 

by analysing each dataset with a linear mixed effects model (LMM) using Wald t 

tests to assess significance under the null hypothesis that there is no difference 

between treated and control lines, with a significance threshold of P = 0.05. We 

fitted a LMM to the binomial response data rather than a GLMM to test for 

significance because GLMMs have been found to suffer from high type I errors as 

a result of variance in random effects being misspecified (Ives 2015), and high 
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type I errors were observed with GLMMs in preliminary simulations. Where 

samples sizes are large, as was the case in the simulations, the distribution of 

binomial data approaches that of a normal distribution and can be modeled with 

a LMM. The LMMs were implemented using the lme4 package (Bates, Maechler 

2014), and p–values calculated using lmerTest (Kuznetsova, Brockhoff, and 

Christensen 2016). In the final step of the power analysis, the power to detect a 

difference in survival between drug-treated and control populations for each 

scenario was estimated as the proportion of 1000 simulated data sets where the 

null hypothesis was rejected. The simulated survival datasets were then used to 

assess how within- and between-line variation affect power estimates when 

aiming to detect small, medium and large differences in survival between 

treatments.  

 

3.4 Results 

 

The simulation-based power analysis showed that the effect size, the number of 

replicate lines and subsampling effort all affected the power of the experiment 

(Fig 3.1). In terms of trade-offs between the number of lines and total sampling 

effort, power estimates benefitted from greater numbers of lines, but only when 

a certain level of sampling effort was achieved, and higher levels were required 

for smaller effect sizes. In addition, power decreased with increasing variance in 

the between-line response to selection (Fig 3.1; dashed and dotted lines). The 

false positive (Type I error) rate for null hypothesis testing remained at an 

acceptable level (5% ±2%) under all scenarios (Fig 3.1A-F; black lines). Not 

accounting for within-line variation in survival resulting from repeated 

subsampling from lines led to higher power estimates than where this source of 

variation was included, but the magnitude of difference in power estimates due 

to within-line variation decreased with the number of replicate lines (Fig 3.2). 
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3.4.1 Large effect size 

 

In scenarios with a large effect size (20% difference in absolute survival), 

adequate power (≥80%) was not achieved with only two replicate lines per 

treatment group, even when using the highest level of sampling effort, and with 

no variation in the response to selection (Fig 3.1F; blues lines). Where four 

replicate lines per treatment were used in simulations, the 80% power threshold 

was achieved when total sampling effort in the resistance assays was 400 and 

800 individuals, for scenarios where the variance in the response to selection 

was zero and 0.1, respectively (Fig 3.1B; blue solid line, and Fig 1C; blue dashed 

line, respectively). Six replicate lines per treatment and a sampling effort of 400 

individuals ensured ≥80% power when variance in the response to selection was 

at its highest (Fig 3.1B; blue dotted line).  

 

3.4.2 Medium effect size 

 

To detect an absolute difference in survival between treatments of 10%, eight 

replicate lines and a total sampling effort of 800 individuals were required to 

meet the 80% power threshold under scenarios with no variation in the response 

to selection (Fig 3.1C; solid red line). Where σ2 = 0.1 for the between-line 

response to selection, scenarios with eight replicate lines and a sampling effort 

of 3200 individuals were required to meet a target power of 80% (Fig 3.1E; 

broken red line). Under simulations at the highest variance (σ2 = 0.2) scenario 

for between-line variation in the response to selection, 10 replicate lines and a 

sampling effort of 6400 individuals achieved 79% power. 

 

3.4.3 Small effect size 

 

Power estimates from simulations with a small difference in survival (5%) 
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between treatments at the end of selection remained well below the 80% 

threshold under all scenarios, except in the case where sampling effort was at it 

greatest (n = 6400), with 10 replicate lines per treatment, and no variation in 

the between-line response to selection (Fig 3.1F; solid green line).  
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Fig 3.1 The relationship between the power to detect a difference in survival 
between drug-treated and control lines, and the number of replicate lines within 
a treatment after a hypothetical selection experiment. Each power estimate was 
derived from 1000 simulated data sets, generated under scenarios that varied 
effect size (increase in survival relative to control treatment), and variance in 
the response to selection between lines (variance). Panels A through F show the 
effect of increasing sampling effort in resistance assays after selection.  The 
broken grey line shows the target power of 80%, and the solid grey line shows 
the 5% expected type I error rate when there is no survival difference between 
control and treatment. Within-line variance was set at σw

2 = 0.1 for all 
scenarios. 
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Fig 3.2 The effect of increasing variance in survival due to subsampling of 
replicate lines over a range of replicate line numbers, where a large difference 
in absolute survival (20%) between treatments was simulated. Within-line 
variance is variation due to differences in survival between resistance assay 
replicates. Between-line variance represents variation in the response to 
selection between replicated evolutionary lines. 
 
 

3.5 Discussion 

 

 

The results of the simulations presented here show that power increases with 

replication of lines and increasing sampling effort from lines. Study designs 

simulating large differences in absolute survival (≥20%) between treatments 

showed adequate power to reject the null hypothesis even when variation in the 

response to selection was high, so long as line replication was above two. Even 

where there was no variation in the response to selection (i.e. no variation 

between replicate lines), detection of medium effects (10%, difference in 

survival between treatments) required four times the total sampling effort 

needed to detect a large effect. When between-line variation was included in 

simulations, a substantial investment in line numbers and total sampling effort 

was necessary to achieve sufficient power; 10 lines and 1600 individuals in total, 

respectively. All but the most intensive sampling strategy in terms of line 

numbers and total sampling effort was insufficient to achieve target power for 

small effects, and only where there was no variation in the response to 

selection. Collectively, the results of these simulations indicate the importance 

of clearly designating the sources and possible magnitude of variation when 

determining an appropriate experimental design.  

 

Perhaps the most influential constraint facing investigators when planning a 

selection experiment is the number of replicate selection lines to use. Often this 

is constrained by the study organism. Line replication is generally higher in 

systems using viruses and microorganisms (Lenski and Travisano 1994), than in 

the case of invertebrates (Stearns, Ackermann, and Doebeli 1998) and 
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vertebrates (Baer, Travis, and Higgins 2000), but is also influenced by the 

number of treatments used in the experiment. Typical line replication per 

treatment can be in the range of two to ten lines for many of these study 

systems. For example, experimental evolution studies using nematodes all use 

line replication within this range (Lopes et al. 2008; Morran, Parmenter, and 

Phillips 2009; Anderson et al. 2011;Chen and Maklakov 2012; Dutilleul et al. 

2014; Fritzsche et al. 2014; Morran et al. 2014; Savory et al. 2014; Dutilleul et 

al. 2015). My results suggest that replication within this range is prone to low 

power to detect an effect for the specific example of divergence in survival 

during culling selection experiments, under the conditions presented here. The 

low power estimates are of particular concern when detecting smaller effects 

where variation in the response to selection and variation affecting estimates of 

the response to selection is large. It is difficult to assess whether selection 

experiments often have underpowered designs, as such studies are less likely to 

be published, but if the results of my simulations generalise to measures of 

divergence in other traits, as well as survival, then simulation-based power 

studies would do much to ensure the design of new selection experiments is 

optimised. The number of samples taken from within each replicate line at the 

end of selection used to measure divergence in a trait can also be a key 

constraint when designing a selection experiment. Increasing sampling effort 

from within lines will improve the precision of line estimates for the trait of 

interest. Decisions about within-line sampling effort, like replication of lines 

themselves, are not generally justified by investigators other than the suggestion 

that greater replication is better (Fuller, Baer, and Travis 2005; Garland and 

Rose 2009). My study suggests that incorporating both the intensity of repeated 

sampling and variation that occurs as a result of repeated measures into power 

analysis, has significant implications for experimental design. Generally, greater 

sampling effort improves power, but specifically conducting power analysis 

allows the trade-off between replication of lines and the intensity of sampling 

effort from those lines to be explored.  

 

Simulation-based power analysis can be extended beyond the binomial response 

variable modeled in this study, to Gaussian (Arnold et al. 2011), Poisson 

(Johnson et al. 2015), proportional hazards models (Feiveson 2002), and to 

detecting differences in among treatment variation (Kain, Bolker, and McCoy 
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2015). Simulation-based methods of a priori power analysis provide a flexible 

framework in which to test a study design‘s ability to answer a particular 

research question. Given the utility of simulation-based power analysis, it seems 

surprising that it is underused or underreported within the field of experimental 

evolution. Researchers within the field are aware of sources of random variation 

that might affect inferences drawn, and take appropriate measures to deal with 

these effects in statistical analyses (Hurlbert 1984; Bolker et al. 2009). Why then 

is power analysis infrequently used? One reason is that investigators are 

unaware, or aware and lack the know-how involved in testing complicated study 

designs using power simulations.  Alternatively, researchers are aware but 

unconvinced of the value of simulation-based power analysis for their study, and 

instead rely on experience or duplicating designs used by others. My study shows 

that selection experiment designs incorporating multiple sources of variation, 

which would be difficult to deal with using standard analytical techniques, can 

be assessed using simulation-based methods comparable in complexity to the 

methods used to analyse real experimental data. Thus, any barrier in adopting 

simulation-based methods due to lack of know-how can be easily addressed. The 

results of the power simulations also show the danger in adopting a strategy of 

copying other study designs. For example, if the expected effect size differs 

greatly between two studies then a copying strategy to experimental design risks 

over- or under-powering the study, which are both wasteful of resources. 

Instead, power simulations allow a study to be designed, which is aimed at 

detecting the smallest effect judged to be biologically meaningful in the context 

of the question being asked. 

 

My study shows that commonly used designs with realistic levels of variation can 

be underpowered, even for substantial effect sizes. The use of simulation to 

estimate study design power extends conventional power calculations to 

accommodate complex designs that often arise in practice. Researchers can use 

simulations to estimate power for virtually any realistic experimental design; 

meaning that study designs are constructed using a formal statistical approach, 

and thus, more likely to yield informative results. Promoting the use of a 

simulation-based approach would improve the standard of study design in 

evolutionary biology by providing a convenient means to identify and avoid 

under or overpowered designs. 
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Chapter 4: Evolution of drug-tolerant nematode 

populations in response to density reduction 

 

 

4.1 Abstract 

 

 

Resistance to xenobiotics remains a pressing issue in parasite treatment and 

global agriculture. Multiple factors may affect the evolution of resistance, 

including interactions between life-history traits and the strength of selection 

imposed by different drug-doses. We experimentally created replicate selection 

lines of free-living Caenorhabditis remanei exposed to Ivermectin at high and 

low doses to assess whether survivorship of lines selected in drug-treated 

environments increased, and if this varied with dose. Additionally, we 

maintained lines where mortality was imposed randomly to control for 

differences in density between drug-treatments and to distinguish between the 

evolutionary consequences of drug-treatment vs ecological processes due to 

changes in density-dependent feedback. After 10 generations we exposed all of 

the selected lines to high-dose, low-dose and drug-free environments to 

evaluate evolutionary changes in survivorship as well as any costs to adaptation. 

Both adult and juvenile survival was measured to explore relationships between 

life-history stage, selection regime and survival. Intriguingly, both drug-selected 

and random-mortality lines showed an increase in survivorship when challenged 

with Ivermectin; the magnitude of this increase varied with the intensity of 

selection and life-history stage. Our results suggest that interactions between 

density-dependent processes and life-history may mediate evolved changes in 

susceptibility to control measures. 
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4.2 Introduction 

 

 

Pesticide and drug treatments are designed to suppress populations of parasites, 

pests and disease vectors. This makes them strong selective factors; as a result, 

adaptation consistently occurs in natural populations exposed to xenobiotics 

(Jackson 1993; Carriere et al. 1994; Wolstenholme et al. 2004; Sparks et al. 

2012). Resistance can evolve quickly (Lopes et al. 2008; Brausch and Smith 2009; 

Tabashnik et al. 2014), and the development of resistance is becoming an 

important theme in applied evolutionary biology due to the risk of reduced 

efficacy of chemical applications to control parasite and pest species (Palumbi 

and Mu 2001; REX Consortium 2010; REX Consortium 2013; Hendry et al. 2011). 

However, evolutionary strategies which could curtail the rate of resistance 

evolution have yet to be adopted universally (Greene et al. 2012). Several 

factors are known to affect the rate at which parasites can evolve resistance, 

including the type of drug, dosage, timing of application, migration rates 

between susceptible and resistant populations, the standing frequency of 

resistance alleles in the population and the specific mechanisms of resistance 

(Committee on Strategies for the Management of Pesticide Resistant Pest 

Populations 1986; James, Hudson, and Davey 2009; Gilleard and Beech 2007; REX 

Consortium 2013; Barnes, Dobson, and Barger 1995). Low population densities in 

drug-treated environments may also have some influence on susceptibility if 

there are interactions between susceptibility and competition for resources or 

any other density-dependent processes. However, it is difficult to tease apart 

the effects of mortality caused by the drug from those caused by density-

dependence (Gilleard and Beech 2007). In addition, life history characteristics 

and reproductive strategies of parasites and pests could influence the rate at 

which resistance develops (Galvani and Gupta 1998; Lynch, Grimm, and Read 

2008; Kliot and Ghanim 2012). The influence of such factors, and their 

interactions, on resistance evolution has been considered theoretically but there 

has been little attempt to show that these factors are of practical significance in 

the laboratory or field.  

 

Experimentation and monitoring of complicated host-parasite systems is 

technically difficult, expensive and time-consuming (Leathwick et al. 2009) and 
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thus resistance evolution is often predicted by simulations. For example, Barnes 

et al (1995) used mathematical modeling to investigate the effects of under-

dosing on the evolution of resistance. They suggested that the outcome of 

under-dosing in terms of the rate of resistance evolution would depend on the 

genetic mechanism underlying resistance. An alternative to allow specific testing 

of factors associated with resistance while maintaining more biological 

complexity, is to use laboratory models to simulate the evolutionary process 

(Taylor, Quaglia, and Georghiou 1983; Lopes et al. 2008; Busi and Powles 2009).  

Previous experimental evolution studies have reported rapid evolution of drug 

resistance in a variety of organisms; including insects, nematodes and other 

invertebrates (Barros et al. 2001; Lopes et al. 2008; Jansen et al. 2011). These 

studies often employ one of two strategies in generating resistance: 1) impose a 

continuous drug or pesticide dose on a population and monitor adaptation over a 

number of generations; or 2) increase drug dose at regular intervals, often every 

generation, to track the dose of drug required to cause a target mortality level 

(e.g. 50% mortality; LD50) in the population under selection. Few studies have 

specifically looked at the effect of dosage on the rate of resistance evolution, 

although Busi and Powles (2009) found that selection under exposure to both low 

and high doses of glyphosate caused a rapid increase in survival of rye grass over 

three generations and that higher doses promoted a greater magnitude of 

resistance. However, resistance screens were performed on the first generation 

offspring of selected plants therefore any response could have been due to 

maternal effects. Experimental selection over multiple generations at different 

sublethal doses would help to further elucidate the relationship between dose 

and the rate of resistance evolution. 

 

In addition to dosage, differences in population density between treated lines of 

parasites and pests could result in differential selection due to density-

dependent processes such as competition (Gilleard and Beech 2007). Laboratory-

based selection experiments often impose strong selection on generation time or 

timing of reproduction when reproductive strategies are influenced by density-

dependent effects (Chehresa, Beech, and Scott 1997). Since the application of a 

drug or pesticide treatment reduces population size, this will create differences 

in population density between treatments, which could alter apparent evolution 

of resistance due to changes in traits that are not directly associated with 
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responding to the chemical exposure (Gilleard and Beech 2007). Selection 

experiments investigating the rate of resistance evolution typically involve 

comparisons of survival and/or life history in a drug treatment compared to a 

control treatment with no drug applied (Ranjan et al. 2002; Coles, Rhodes, and 

Wolstenholme 2005; Lopes et al. 2008). However, this methodology does not 

account for differences in population density resulting from differences in 

mortality between the treatments. If studies are to be biologically realistic and 

drug treatments involve the bottlenecking of populations then the experimental 

design must separate the indirect effects of reduced density from the direct 

effects of the drug (Fuller, Baer, and Travis 2005). 

 

The treatment of helminth diseases provides a well-documented field of 

research in which to explore problems related to resistance evolution using an 

experimental approach (Driscoll 1989; Kaplan et al. 2011; Sangster and Gill 

1999). Ivermectin is a broad-spectrum antiparasitic drug and has been used 

commercially since 1981 (James, Hudson, and Davey 2009), with the first reports 

of resistance in 1988 (Kaplan 2004). Ivermectin causes paralysis in larvae and 

adult nematodes and inhibits feeding (Sangster and Gill 1999) but also has a 

repellent effect at sub-lethal doses (Ardelli et al. 2009). Because parasitic 

helminths are difficult to culture, research into anthelmintic resistance has a 

long history of using the model organism Caenorhabditis elegans in both drug 

screening and identifying candidate resistance loci (Simpkin and Coles 1981; 

James, Hudson, and Davey 2009; Ghosh et al. 2012). However, C. elegans is an 

androdioecious nematode species that reproduces mainly by sef-fertilisation, 

although low levels of outcrossing do occur as a result of the small proportion of 

males present in a population (Brenner 1974; Barrière and Félix 2007). Since 

most parasitic nematodes are dioecious and obligately outcrossing, other free-

living dioecious nematodes such as C. remanei may provide a more realistic 

model system to explore resistance evolution. C. remanei populations have 

abundant standing genetic variation and high levels of recombination due to 

their reliance on sexual reproduction (Cutter, Baird, and Charlesworth 2006). 

Both of these attributes should facilitate a rapid response to selection. 

Additionally, Caenorhabditis species provide an effective microcosm system, 

which has been used to answer a broad range of evolutionary questions related 

to rapid evolutionary change (Lopes et al. 2008; Morran et al. 2011; Gray and 
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Cutter 2014). Manipulating drug dosage, as well as controlling for differences in 

population density between treated lines in simple microcosm systems, may 

provide us with a better understanding of how natural populations of parasites 

and pests adapt to control measures. 

 

The terms resistance and tolerance are often used inter-changeably when 

defining reduced susceptibility to xenobiotics and has led to much confusion on 

their relative importance in the evolution of reduced susceptibility. Tabashnik et 

al. (2014) define resistance as a genetically based decrease in susceptibility as a 

result of exposure to a control agent; this definition emphasizes a heritable 

change in susceptibility of a target population due to previous exposure to a 

control measure. In other words, the spread of resistance through a population is 

the result of an increase in frequency of pre-existing alleles conferring reduced 

susceptibility, novel or spontaneous mutations or migration of resistance alleles 

between populations during a period of time where the population is exposed to 

a drug (Gilleard and Beech 2007). By this definition a population cannot be 

resistant prior to exposure to a control agent and resistance results as an 

evolved response, specifically due to drug application. Tolerance, on the other 

hand, is due to natural variation in susceptibility already pre-existing within or 

between populations rather than a result of selection pressure imposed by 

control measures (Scott 1995). Tolerance may also be used to describe pre-

existing differences in susceptibility between different species or between life-

history stages of organisms (Coles and Dryden 2014). For example, sensitivity to 

Ivermectin has been shown to vary substantially among species of sepsid dung 

flies (Puniamoorthy et al. 2014). Puniamoorthy et al (2014) found that tolerance 

was explained by phylogenetic relationships; more closely related species had 

similar levels of susceptibility to Ivermectin on naïve exposure. However, they 

could not rule out the possibility of rapid adaptation of species to Ivermectin but 

suggested that this was unlikely as they found more variation in Ivermectin 

sensitivity between species within sample sites than variation within species 

between sample sites. Additionally, some of the least susceptible species were 

known to be drug naïve as they were sampled from locations where 

anthelmintics have not been used. This suggests that tolerance may occur due to 

pleiotropic effects and selection on some other unknown trait may result in pre-

adaptation in the form of reduced susceptibility. If the frequency and magnitude 
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of tolerance within a population is affected by selection on unknown traits, the 

factors which effect selection on those traits will play an important role in 

governing susceptibility to control agents prior to exposure. In addition, drug-

treated populations could evolve tolerance in parallel to resistance if evolved 

decreases in susceptibility are associated with density-dependent selection, and 

affect the apparent rate of resistance evolution (Gilleard and Beech 2007). It is 

difficult to separate tolerance from resistance unless this is explicitly 

incorporated into the experimental design but this also requires knowledge 

about which traits confer differences in tolerance to a particular xenobiotic.  

 

The overall aim of this study was to assess how Ivermectin dosage, and changes 

in population density affect the rate of resistance evolution in replicate lines of 

C. remanei. Specifically, we asked: 1) What is the relationship between C. 

remanei survival and Ivermectin dose over a range of concentrations within a 

single generation? 2) Is there an increase in survivorship across generations of 

populations selected in drug-treated environments, and does this vary with 

dosage? 3) Does density-dependent selection affect the apparent evolution of 

resistance in selected lines? 4) Is there a cost of adaptation to drug-treated 

environments in terms of survival in drug-free environments? We also explored 

the relationship between life-history and drug selection, asking: 5) Does survival 

of different life-history stages (juvenile and adult) respond to drug-selection in 

the same way? 

 

 

4.3 Methods 

 

 

4.3.1 Origin and maintenance of experimental lines 

 

 

In order to maximise the degree of standing genetic variation available to select 

for resistance we obtained a genetically diverse strain of C. remanei (SP8) from 

N. Timmermeyer in the Department of Biology, University of Tübingen, 

Germany. This strain was originally created by a fully factorial crossing of three 

wild-type strains isolated from geographically distant locations (SP146 from 
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Freiburg, Germany; MY31 from Tübingen, Germany; PB206 Ohio, US). Crosses 

had been tested for fertility, offspring pooled, and maintained for eight 

generations to create recombinant genotypes and allow adaptation to standard 

laboratory conditions (Fritzsche et al. 2014). Upon arrival in Glasgow, strain SP8 

spent a further four generations adapting to any differences in conditions 

between laboratories and was maintained under standard laboratory conditions 

for Caenorhabditis species: 20˚C and 60% humidity on NGM (Nematode growth 

medium) petri dishes and fed on a lawn of Escherichia coli (OP50) (Hope 2001). 

 

 

4.3.2 Dose response assay 

 

 

In order to choose two distinct doses that differ in the intensity of selection 

imposed during the selection experiment, it was first necessary to quantify the 

relationship between drug dosage and survivorship for strain SP8. A stock 

solution of 2 mg/ml Ivermectin (22,23-Dihydroavermectin B1; Sigma-Aldrich) 

dissolved in DMSO was decanted into 1 ml aliquots and frozen to provide a 

standardised drug dose. We used a modified version of the dose response 

approach taken by Rufener et al. (2010) to quantify survivorship of C. remanei 

over a range of doses (0, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 and 10 

ng/ml). Appropriate dilutions of Ivermectin were administered to 100 ml liquid 

NGM (50°C) and mixed with a magnetic stirrer before pouring 7 ml aliquots into 

5.5 cm plastic petri dishes. These were left to dry, seeded with E. coli (OP50) ad 

libitum to minimise indirect mortality resulting from repellence at low doses and 

incubated at 20°C overnight. Concurrently to preparing dosed plates, age-

synchronised eggs were harvested from stock populations of C. remanei by 

bleaching using standard protocols. This process kills adults and juveniles but 

leaves developing embryos unharmed (Hope 2001). Eggs were moved to fresh 9 

cm drug and food-free petri dishes and incubated overnight to provide a source 

of L1-arrested larvae for drug screening. After 12 hours incubation, larvae were 

suspended in M9 buffer solution (3g KH2PO4, 6g Na2HPO4, 5g NaCl, 1 ml M MgSO4, 

H20 to 1 litre and sterilised by autoclaving) and 5 µl aliquots of this suspension 

were added to Ivermectin-dosed plates with the aim of applying approximately 

60 larvae per plate. Larvae added to petri dishes were counted as they were set 
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up; survival data were obtained by counting the number of adults present per 

plate at 75 hours. C. remanei become reproductively active two days after 

hatching (Diaz, Lindström, and Haydon 2008) so survivorship was measured at 75 

hours after L1 larvae were exposed to the relevant dose of Ivermectin. Twenty 

replicate plates were established for each Ivermectin dose (ten replicates in 

each of two different batches conducted at different times).  

 

 

4.3.3 Selection experiment 

 

 

Two Ivermectin doses were chosen as drug treatments for experimental 

evolution (Fig B1: Appendix B) a high dose that corresponded to 80% mortality at 

75 hours in naïve populations; and 2) a low dose that corresponded to 40% 

mortality. These two doses were combined with a control of no drug application 

(zero = Z, low drug = LD, and high drug = HD, Fig 1A). In addition, a random 

mortality treatment was included for the low and high dosages to account for 

differences in density between drug treatments (low random = LR, and high 

random = HR) by randomly removing the same number of individuals from these 

plates as had died in response to the corresponding drug treatment. For 

instance, if two females and six males had died in a drug-treated line, a sister 

random mortality line had the same number of each sex removed. All lines were 

exposed to high (HD and HR) and low mortality environments (LD and LR), with 

three replicates per experimental line per treatment, with the exception of the 

controls, which were replicated six times. 

 

Experimental lines were cultured for 10 generations. The ancestral stock strain 

(generation 0) as well as samples of larval worms from each line at generations 5 

and 10 were cryogenically frozen at -80˚C Fig. B1: Appendix B), at a density of 

approximately 2000 L1 larvae in liquid freezing solution as described in Hope 

(2001). Generation 1 (18 lines overall) was initiated using standard bleaching 

methods from the ancestral stock strain of SP8 cultured in the lab for four 

generations after thawing and represents the ancestral condition (generation 0; 

Fig 4.1B). L1-arrested larvae were suspended in M9 buffer and worm density of 

the suspension obtained by counting worms from five replicates of 5-µl aliquots. 
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A volume of the suspension corresponding to 400 L1-larvae was then added to E. 

coli seeded NGM plates (9 cm) with the appropriate dose of Ivermectin. 

Establishing populations with 400 larvae prevented density-dependent 

competition but still contains sufficient numbers of individuals to ensue a 

substantial proportion of standing genetic variation (Allendorf 1986). After 48 

hours of development worms reach the 4th larval stage (L4) at which point the 

sex can be determined. At this time, 25 pairs of male and female L4 larvae were 

transferred to fresh agar plates of the appropriate dose for each replicate. 

These 50 adults constituted generation one, day one. After 24 hours adults were 

counted and census data were used to impose an equivalent mortality on the 

random mortality lines for the respective treatments. After 48 hours of drug 

exposure the same process of adult census and compensatory-induced mortality 

was repeated. By 72 hours larvae from the next generation had developed to L4 

larvae: 25 pairs were selected to continue the next generation and transferred 

to fresh petri dishes. This was continued for 10 generations. Census data were 

gathered each generation to assess whether there was an increase in 

survivorship of lines selected in drug-treated environments and whether this 

increase varied with dosage. In addition to adult census, a juvenile census was 

performed after 48 hours to provide an estimate of juvenile population 

densities.  L2 and L3 larval stages were counted along a 1cm transect covering 

the center of the petri dish; L1 juveniles were too small and numerous to gather 

reliable counts. 
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Fig 4.1 A) Schematic representation of dose-response assay, selection 
experiment and resistance bioassay. The starting population of SP8 was adapted 
to lab conditions. The lab-adapted strain was then assayed for variation in 
susceptibility to Ivermectin over a range of 15 doses, to select an appropriate 
high and low dose for the selection experiment. The lab-adapted strain was then 
randomly divided into five treatments with three replicates each for HD, LD, HR, 
and LR lines, and six replicates for Z lines. After 10 generations of selection, 
lines were frozen and later thawed, before being challenged with the three 
doses of Ivermectin used during the original selection experiments. B) Schematic 
representation of selection experiment showing initial population set up and one 
generation. Initially, lines were established with 400 larvae exposed to the 
relevant dose of Ivermectin; 50 adults were then selected to begin generation 
one on day one. After 24 hours lines were counted and compensatory mortality 
imposed on random lines; this was repeated at 48 hours. After 72 hours sub-
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adults from the next generation were transferred to new plates. Generations 2 
to 10 proceeded as for generation 1. HD: High dose treatment; HR: High random 
treatment; LD: Low dose treatment; LR: Low random treatment; Z: Zero dose 
treatment. 
 

 

4.3.4 Drug resistance bioassays 

 

 

In order to formally assess whether heritable increases in survivorship were 

imposed by selection with Ivermectin, ancestral stocks (generation 0) as well as 

each of the selected lines from generation 5 and 10 were exposed to the same 

high and low doses of Ivermectin used during selection and raised in a drug-free 

environment. Firstly, to test the effects of drug dosage on survival, revived 

samples of HD, and LD lines were exposed to a dose of Ivermectin corresponding 

to that used during selection. Survival of these lines was then contrasted with 

survival of Z lines to assess whether there was a change in evolved lines. 

Secondly, to test for effects of differences in population density on survival of 

selected lines we exposed HR and LR lines to a high and low dose of Ivermectin, 

respectively. Survival of HR and LR lines were contrasted with Z lines, with any 

significant differences in survival between random mortality and Z lines 

indicating an effect of population density on relative survival. Thirdly, we tested 

for any cost to adaptation to selection regime in terms of survival by raising 

evolved lines in a drug-free environment, with the hypothesis that if there is a 

cost to adaptation then experimentally treated lines should show significantly 

lower survival than control (Z) lines.  

 

Preserved samples of lines from the selection experiment at generations 0, 5 and 

10 were thawed and raised for three generations in a drug-free environment to 

ensure that any observed responses in survival were due to genetic differences 

among populations and not maternal or environmental effects due to freezing. 

Larvae were thawed at room temperature and maintained at a density of 

approximately 1000 individuals per 9cm agar plate over the three generations 

from thawing to age synchronization with ad libitum lawns of E. coli OP50. 

Transfers between generations were achieved by cutting out sufficient agar from 

plates already containing samples and transferring these to fresh E. coli seeded 
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plates ensuring the density remained as constant as possible. Agar plates, 

synchronisation of experimental lines and set-up of larvae were conducted with 

the same protocol used in the dose response assay. Mortality due to drug 

application may differ between life history stages; in order to gain some 

measure of this difference we measured survival both at 52 hours, encompassing 

juvenile development and 75 hours, during the first day of reproduction. 

Generations 5 and 10 of each experimental line were replicated four times, as 

was the ancestral line (generation 0). 

 

 

4.3.5 Statistical analyses 

 

 

All statistical analyses were performed using R v 3.1.2 (R Core Team 2014) and 

we defined a significance threshold of P = 0.05 for all tests. A more detailed 

description of the rationale for the statistical approaches used is provided in the 

Supplementary information.  The doses required to cause 40% and 80% mortality 

of the ancestral SP8 strain were estimated, with 95% CI‘s, using the drc package 

(Ritz and Streibig 2007). In order to calculate estimates of these two doses we 

constructed a dose-response curve of the relationship between worm survival 

and concentration of Ivermectin. We fitted a range of dose-response models 

(log-logistic, Weibull-1 and Weibull-2) with the lower asymptote of the curve 

fixed at 0% survival and used maximum likelihood to select the most appropriate 

model of survival data. Ivermectin concentration and batch were fitted as fixed 

effects in our full model. To assess whether the relationship between 

survivorship and Ivermectin concentration remained the same between batches 

performed at different times (i.e. repeatability), batch was removed from the 

model and compared against the full model using a likelihood ratio test. 

Estimates of the required doses, with 95% CIs, were then derived from model 

predictions. 

 

Our experimental design incorporated a power analysis, which specifically 

adjusted for the effects of the number of lines, interline variation, the potential 

observable difference in survival between treatments (effect size), and bioassay 

replicate (Johnson et al. 2015). We estimated that our experimental design gave 
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93% power to detect an absolute difference in survivorship of 10% in the high 

dose environment between the control Z lines and both HD and HR lines. To 

assess whether survivorship changed over the course of the selection 

experiment, data from the resistance bioassay were analysed using generalised 

linear mixed models using the glmer function in the lme4 package assuming a 

binomial error distribution with a logit link function (Bates et al 2014; see 

Appendix B). Treatment and generation and the interaction between them were 

fitted as fixed effects. The evolutionary replicate (line) was fitted as a random 

effect. An observation-level random effect was fitted to account for any 

overdispersion between replicate lines in the selection experiment and repeated 

sampling of populations in the drug resistance bioassay (Browne et al. 2005). 

Treatment effects in the selection experiment were tested using likelihood ratio 

tests. The null hypothesis of no difference in survival between the three 

treatments (H0: Drug = Random = Zero) was tested independently for high and 

low mortality selection regimes by comparing the full model with a null model 

with no fixed effect of treatment or interaction terms. Generation was kept in 

the null model to account for any drift in survivorship. Three post-hoc tests 

comparing treatment pairs were then conducted to assess the effects of 

individual treatments. This general approach was used to answer each of our 

research questions.  

 

 

4.4 Results 

 

 

4.4.1 What is the relationship between C. remanei survival and Ivermectin dose 

over a range of concentrations within a single generation? 

 

 

Two Ivermectin doses were chosen as drug treatments for experimental 

evolution (Fig B1: Appendix B): 1) a high dose that corresponded to 80% 

mortality in the stock strain at a concentration of 2.46 ng/ml Ivermectin (95% CI: 

2.41, 2.50); and 2) a low dose that corresponded to 40% mortality at 75 hours at 

a concentration of 1.61 ng/ml Ivermectin, (95% CI: 1.55, 1.68). Analysis using 

comparisons of log likelihood found that a three-parameter Weibull-1 model with 
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the lower asymptote fixed at zero gave the best fitting model of survival as a 

function of the concentration of Ivermectin (Fig B1: Appendix B) and there was 

no difference between the two survival curves for data collected in the two 

batches (χ2 = 6.821, d.f. = 3, P = 0.0778; Fig B1: Appendix B). 

 

 

4.4.2 Is there an increase in survivorship of populations across generations 

selected in a drug-treated environment, and does this vary with dosage? 

 

 

In the selection experiments (Fig 4.2), survival in zero-dose populations 

remained constant over generations; the mean adult survival in generation 1 was 

94% (CI: 90%, 99%), at generation 5 survival was 94% (CI: 90%, 98%) and at 

generation 10 survival was 94% (CI: 91%, 97%). Larval offspring densities of zero 

dose lines also remained relatively constant over the course of 10 generations; 

mean larval density at generations 0, 5 and 10 was 2079, 2051 and 1878 

respectively (Fig B2: Appendix B). In lines treated with the lower dose of 

Ivermectin, survival increased gradually over 10 generations, from 47% in 

generation 1 (CI: 36%, 57%) to 73% (CI: 45%, 100%) at generation 5 and 75% (CI: 

62%, 87%) in generation 10. Larval offspring numbers remained low in LD lines 

throughout the course of the selection experiment; the mean number of 

offspring at generation 1 was 1088 at generations 5 and 10 it was 1132 and 1248 

respectively (Fig B2: Appendix B). Survival in high-dose treated populations 

increased more dramatically, from 30% (CI: 20%, 39%) at generation 1, to 65% 

(CI: 54%, 76%) at generation 5 and 77% (CI: 49%, 100%) at generation 10. 

Offspring numbers of HD lines increased during the selection experiment; the 

mean number of offspring was 394, 1166 and 1435 at generations 0, 5 and 10 

respectively (Fig B2: Appendix B). 

 

In our formal test of changes in susceptibility of evolved lines, challenge with 

the dose used during selection, HD lines exposed to a high dose of Ivermectin for 

75 hours exhibited an increase in mean survival of 19% and 10%, at generations 5 

and 10 respectively, relative to Z lines (H0: HD = Z: P < 0.0001; Fig 4.3A, Table 

4.1). Survival was relatively consistent between lines within a treatment (Fig B3: 

Appendix B). Mean survivorship of the three HD lines remained between 59% and 
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66% at both generations 5 and 10, except in the case of one line in generation 10 

where survivorship dropped to 48%. Variation in the mean survivorship of the six 

Z lines ranged between 37% and 51% at both generations 5 and 10. At 52 hours of 

exposure to Ivermectin the HD lines showed a similar increase in mean survival 

to data collected at 75 hours (Fig B4A, Table B1: Appendix B). Thus, both 

juveniles and adults exhibited a comparable response to selection in terms of 

increased survival in the high dose environment. LD lines exposed to a low dose 

of Ivermectin for 75 hours showed no increase in survival relative to control lines 

(H0: LD = Z: P = 0.11; Figure 4.3D, Table 1), but at the earlier observation time 

of 52 hours LD lines exhibited increased survival relative to Z lines at both 

generations 5 and 10 (H0: LD = Z: P = 0.022; Fig B4D, Table B1: Appendix B). 

Therefore, selection at the low dose of Ivermectin resulted in higher survivorship 

of juveniles but not adults when re-exposed to a low drug dose. 

 

Exposing drug-selected lines to a dose other than that imposed during selection 

tested the effects of how evolved responses in survivorship might vary with drug-

dosage. After 75 hours of drug exposure HD had significantly higher survivorship 

than Z lines; the mean difference in survival between treatments was 9% at 

generation 5 and 15% at generation 10 (H0: HD = Z: P < 0.0001; Fig 4.3C, Table 

1). In addition, there was an interaction between generation and treatment (χ2 

= 7.07, df = 2; P = 0.029), accounted for by the increase in survival of HD lines 

between generation 5 and 10 (Fig 4.3C, Table 1). At 52 hours of exposure to a 

low Ivermectin dose, experimental lines from the HD treatment exhibited an 

increase in mean survival across generations relative to Z lines (H0: HD = Z: P = 

0.0005; Figure B4C, Table 1). Mean survival of HD populations was 10% higher 

than Z lines at both generation 5 and 10. There was no interaction between 

generation and treatment (χ2 = 3.20, df = 2, P = 0.20). Thus, the observed 

evolutionary response in juvenile survivorship of HD lines remained of a similar 

magnitude from generation 5 to 10. When exposed to a high Ivermectin dose LD 

lines showed no significant change in survivorship relative to control (Z) lines 

across generations when challenged with a high drug dose environment at both 

52 and 75 hours (H0: LD = LR = Z: P = 0.43, P = 0.38, respectively for 52 and 75 

hours; Figures 4.3B and B4B, Table 1). Therefore, selection in a low drug-dose 

environment conferred no advantage on survivorship in a high-dose environment. 
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Fig 4.2 Survivorship during original selection experiments. Lines represent mean 
survival for each treatment; points are the proportion of adults surviving on day 
two of each generation for each replicate line within a treatment. Circles, solid 
line = zero dose; squares, dotted line = low dose; triangles, dashed line = high 
dose.  Error bars; standard error for mean survival. 
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Fig 4.3 Seventy-five hour survival when exposed to the three drug doses used 
during selection (A and B = high; C and D = low: E and F = zero) of samples taken 
from generations 0, 5 and 10 during selection. Panels A, C and E show 
survivorship of high mortality lines: HD and HR. Panels B, D and F show 
survivorship of low mortality lines: LD and LR. Points are raw survival data from 
resistance bioassays, lines represent predictions of maximal models (generation 
+ treatment + generation*treatment) for each treatment: circles, solid line = 
zero dose; triangles, dashed line = drug treatment; diamonds, dotted line  = 
random mortality.  Error bars; 95% confidence intervals for mean survival. 
 

 

 



   
 

 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
a
b
le

 
4
.1

 
E
ff

e
c
t 

o
f 

tr
e
a
tm

e
n
t 

d
u
ri

n
g
 

se
le

c
ti

o
n
 

(m
o
rt

a
li
ty

 
tr

e
a
tm

e
n
t)

 
o
n
 

su
rv

iv
o
rs

h
ip

 
(S

u
rv

.d
if

f)
, 

a
ft

e
r 

7
5
 h

o
u
rs

 i
n
 d

ru
g
-t

re
a
te

d
 e

n
v
ir

o
n
m

e
n
ts

 (
d
o
se

);
 a

ss
e
ss

e
d
 b

y
 n

u
ll
 m

o
d
e
ls

 (
se

e
 

A
p
p
e
n
d
ix

),
 
u
si

n
g
 
li
k
e
li
h
o
o
d
 
ra

ti
o
 
te

st
s,

 
w

h
e
re

 
su

rv
iv

a
l 

is
 
c
o
n
st

ra
in

e
d
 
to

 
b
e
 
e
q
u
a
l 

a
c
ro

ss
 

tr
e
a
tm

e
n
ts

, 
a
n
d
 d

e
p
e
n
d
e
n
t 

u
p
o
n
 t

h
e
 b

e
st

 f
it

ti
n
g
 m

o
d
e
l.

 d
.f

.:
 D

e
g
re

e
s 

o
f 

fr
e
e
d
o
m

. 
S
u
rv

.d
if

f:
 

A
b
so

lu
te

 
d
if

fe
re

n
c
e
 

in
 

m
e
a
n
 

su
rv

iv
a
l 

b
e
tw

e
e
n
 

th
e
 

h
ig

h
li

g
h
te

d
 

tr
e
a
tm

e
n
ts

 
(f

ir
st

 
m

in
u
s 

se
c
o
n
d
).

 

M
o
rt

a
li
ty

 
tr

e
a
tm

e
n
t 

 
D

o
se

 
B
e
st

 f
it

ti
n
g
 

m
o
d
e
l 

N
u
ll
 m

o
d
e
ls

 
χ
2

 (d
.f

.)
 

P
-v

a
lu

e
 

S
u
rv

.d
if

f 

G
e
n
 5

 
 

G
e
n
 1

0
 

H
ig

h
 

H
ig

h
 

G
 +

 T
 +

 G
x
T
 

1
) 

H
D

 =
 H

R
 =

 Z
 

2
2
.2

6
 (

4
) 

 0
.0

0
0
1
8
 

 
 

 
 

 
2
) 

H
D

 =
 Z

 
2
1
.1

1
 (

2
) 

<
 0

.0
0
0
1
 

0
.1

9
 

0
.1

0
 

 
 

 
3
) 

H
R
 =

 Z
 

8
.5

6
 (

2
) 

  
 0

.0
1
4
 

0
.0

9
 

0
.0

9
 

 
 

 
4
) 

H
D

 =
 H

R
 

6
.5

6
 (

2
) 

  
 0

.0
3
8
 

0
.1

0
 

0
.0

1
 

 
L
o
w

 
G

 +
 T

 +
 G

x
T
 

1
) 

H
D

 =
 H

R
 =

 Z
 

2
9
.1

3
 (

4
) 

<
 0

.0
0
0
1
 

 
 

 
2
) 

H
D

 =
 Z

 
2
5
.9

5
 (

2
) 

<
 0

.0
0
0
1
 

0
.0

9
 

0
.1

5
 

3
) 

H
R
 =

 Z
 

3
.6

9
 (

2
) 

  
 0

.1
6
 

0
.0

5
 

0
.0

0
 

4
) 

H
D

 =
 H

R
 

2
2
.5

2
 (

2
) 

<
 0

.0
0
0
1
 

0
.0

4
 

0
.1

5
 

 
Z
e
ro

 
G

 
1
) 

H
D

 =
 H

R
 =

 Z
 

3
.5

9
 (

2
) 

  
 0

.4
7
 

 
 

L
o
w

 
H

ig
h
 

G
 

1
) 

L
D

 =
 L

R
 =

 Z
 

4
.2

0
 (

4
) 

  
 0

.3
8
 

 
 

 
L
o
w

 
G

 
1
) 

L
D

 =
 L

R
 =

 Z
 

7
.6

7
 (

2
) 

  
 0

.1
1
 

 
 

 
Z
e
ro

 
G

 +
 T

 +
 G

x
T
 

1
) 

L
D

 =
 L

R
 =

 Z
  

1
1
.4

7
 (

4
) 

  
 0

.0
2
2
 

 
 

 
 

 
2
) 

L
D

 =
 Z

 
1
1
.3

3
 (

2
) 

  
 0

.0
0
3
5
 

-0
.0

1
 

-0
.0

6
 

 
 

 
3
) 

L
R
 =

 Z
 

1
.8

4
 (

2
) 

  
 0

.4
0
 

0
.0

0
 

-0
.0

2
 

 
 

 
4
) 

L
D

 =
 L

R
 

3
.2

5
 (

2
) 

  
 0

.2
0
 

-0
.0

1
 

-0
.0

4
 

G
: 

G
e
n
e
ra

ti
o
n
; 

T
: 

T
re

a
tm

e
n
t;

 G
x
T
: 

G
e
n
e
ra

ti
o
n
 x

 T
re

a
tm

e
n
t 

in
te

ra
c
ti

o
n
; 

H
D

: 
H

ig
h
 d

o
se

  
tr

e
a
tm

e
n
t;

 H
R
: 

H
ig

h
 r

a
n
d
o
m

 t
re

a
tm

e
n
t;

 L
D

: 
L
o
w

 d
o
se

 t
re

a
tm

e
n
t;

 L
R
: 

L
o
w

 r
a
n
d
o
m

 
tr

e
a
tm

e
n
t;

 Z
: 

Z
e
ro

 d
o
se

 t
re

a
tm

e
n
t.

 
 



   
 

 83 

4.4.3 Does density-dependent selection affect the apparent evolution of 

resistance in selected lines? 

 

 

In the selection experiment, survival in both random mortality treated lines 

remained of a similar magnitude to zero dose lines prior to random removal of 

worms; the mean adult survival of LR lines at generation 1 was 95% (CI: 92%, 

98%), at generation 5 survival was 97% (CI: 86%, 100%) and at generation 10 

survival was 93% (CI: 90%, 96%). Larval densities of LR lines remained similar to 

those of LD lines during the selection experiment; the mean number of larvae 

was 1088, 1132 and 1248 at generations 0, 5 and 10 respectively (Fig B2: 

Appendix B). Mean adult survival of HR lines at generation 1 was 96% (CI: 91%, 

100%), at generation 5 survival was 96% (CI: 87%, 100%) and at generation 10 

survival was 95% (CI: 87%, 100%). Offspring numbers of HR lines during the 

selection experiment remained lower than zero dose controls; the mean number 

of offspring was 1083, 1203 and 1172 at generations 0, 5 and 10 respectively (Fig 

B2: Appendix B). 

 

Surprisingly, in the resistance bioassays, high random mortality (HR lines) 

showed an increase in mean survival when populations were challenged with a 

high dose of Ivermectin. Mean survival of HR lines was 9% for both generations 5 

and 10 after 75 hours (H0: HR = Z: P = 0.014; Fig 4.3A, Table 2). Therefore, 

reducing density by removing individuals randomly had a similar effect to drug 

treatment in HD lines. However, there was a difference between HD and HR 

treatments; HD lines showed higher survival at generation 5 but not 10 (H0: HD = 

HR: P = 0.038; Fig 4.3A, Table 1). Variation in mean survivorship of the three HR 

lines remained consistently between 50% and 56% at both generations 5 and 10; 

smaller than the between-line variation observed in both HR and Z lines (Fig B3: 

Appendix B). At 52 hours of drug exposure, the increase in survival of HR lines 

relative to Z lines was comparable to that of data collected at 75 hours (Fig B4A, 

Table B1: Appendix B). Thus, when exposed to the high dose of Ivermectin, 

survival of both juveniles and adults from HR lines responded to selection in a 

similar manner. Survivorship of lines selected in the LR environment showed no 

response to selection when exposed to a low dose of Ivermectin for 75 hours; 

survivorship remained comparable to that of Z lines at both generations 5 and 10 
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(H0: LD = LR = Z: P = 0.11; Fig 4.3D, Table 1). However, when survival of LD lines 

was observed at 52 hours of exposure to a low drug dose, survival was similar to 

LD lines, relative to Z lines (H0: LR = Z: P = 0.035; Fig B4D, Table B1: Appendix 

B). As was the case with LD lines, increased survivorship of LR lines in the low 

dose environment was only observed for juveniles at 52 hours, and not adults at 

75 hours.  

 

When exposed to the low dose of Ivermectin, there no was evidence of a 

difference between survival and treatment in HR lines relative to Z lines at both 

generation 5 and 10 (H0: HR = Z: P = 0.098; P = 0.16, respectively for 52 and 75 

hours; Fig 4.3C and B4C, Table 1). In addition, mean survival of HR lines was 

lower than HD lines in the low-dose environment at both generations 5 and 10 

(H0: HD = HR: P = 0.005, P < 0.0001, respectively for 52 and 75 hours; Fig 4.3C 

and B4C, Table 1). When exposed to a high Ivermectin dose LR lines showed no 

change in survivorship relative to control (Z) lines across generations at both 52 

and 75 hours (H0: LD = LR = Z: P = 0.43, P = 0.38; Figures 4.3B and B4B, Table 1). 

 

 

4.4.4 Is there a cost of adaptation to drug-treated environments in terms of 

survival in drug-free environments? 

 

 

In an environment where no drug was administered, HD and HR lines performed 

equally as well as Z lines in terms of survival over 75 hours (H0: χ2 = 3.95, df = 2, 

P = 0.47; Figure 4.3E, Table 1). In contrast, LD lines had significantly lower 

survivorship than Z lines in the drug-free environment. However, this was only 

apparent at generation 10 and the magnitude of the effect was relatively small 

(H0: LD = Z: P = 0.0035; Figure 4.3F, Table 1). LR lines also maintained a similar 

response in survivorship as Z lines at both generation 5 and 10 (H0: LR = Z: P = 

0.40; Figure 4.3F, Table 1), and there was no significant difference between LR 

and LD lines with respect to survival (H0: LD = LR: P = 0.20; Figure 4.3F, Table 

1). The relationship in survival measurements taken at 52 hours for the evolved 

lines remained similar to survival measured at 75 hours for all treatments (Table 

A1, Fig B4E and B4F: Appendix B). 
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4.4.5 Does survival of different life-history stages (juvenile and adult) respond 

to drug-selection in the same way?  

 

Mortality due to drug challenge continued between 52 hours and 75 hours in HD 

and LD selected lines when challenged with Ivermectin and was of a greater 

magnitude than observed in a drug-free environment (Fig 4.3 and B4: Appendix 

B). When exposed to the dose used during selection, HD lines showed no 

interaction between generation and selection regime at 52 hours (χ2 = 1.33, df = 

2, P = 0.51) but at 75 hours an interaction was apparent (χ2 = 5.96, df = 2; P = 

0.05). The change in significance of treatment and generation interactions 

indicates a change in the way juvenile and adult survival responded to drug 

selection in HD lines; juvenile survival remained similar between generations 5 

and 10, whilst adult survival declined (Fig 4.3A and B4A: Appendix B). When 

worms were exposed to a low dose of Ivermectin, we observed differential 

survival between LD and control (Z) lines at 52 hours but not at 75 hours (Fig 

4.3D and B4D: Appendix B, Table 1); suggesting that juvenile survival responded 

to drug selection but adult survival remained unaffected by drug treatment. 

 

In our pooled data sets, we found no evidence of a three-way interaction 

between selection experiment treatment, bioassay dose and life-history stage at 

generations 5 or 10 (χ2 = 2.77, df = 4, P = 0.60, χ2 = 0.47, df = 4, P = 0.98, 

respectively). However, there was a significant two-way interaction between 

selection experiment treatment and bioassay dose at both generations 5 and 10 

(χ2 = 28.98, df = 4, P < 0.0001, χ2 = 38.96, df = 4, P < 0.0001, respectively); 

suggesting that survival in drug-treated environments was dependent on 

selection regime. In addition, there was an interaction between bioassay dose 

and life-history stage at generation 5 but not generation 10 (χ2 = 6.07, df = 2, P 

= 0.048, χ2 = 3.82, df = 2, P = 0.15, respectively). There was no evidence of an 

interaction between selection experiment treatment and life-history stage for 

generations 5 or 10 (χ2 = 0.77, df = 2, P = 0.68, χ2 = 4.40, df = 2, P = 0.11, 

respectively). 
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4.5 Discussion 

 

 

4.5.1 What is the relationship between C. remanei survival and Ivermectin dose 

over a range of concentrations within a single generation? 

 

 

The dose-response curve of the survival of the drug-naive ancestral strain of C. 

remanei (SP8) was similar to those previously reported for drug-naive C. elegans 

when challenged with a range of Ivermectin concentrations (James and Davey 

2009). The confidence intervals of the two Ivermectin doses used in the 

selection experiment differed; the high dose had narrower intervals than the low 

dose. This suggests that the intensity of selection applied to the first generation 

of the selection experiment was more variable in lines exposed to low doses of 

Ivermectin, though even at low doses this would translate into no more than ± 

3.25% variation in survival.  

 

 

4.5.2 Do drug-treated lines show an increase in survivorship across generations 

in drug-treated environments, and does this vary with dose? 

 

 

Census data from the selection experiment indicated that populations of C. 

remanei exposed to low and high doses of Ivermectin showed a response to 

selection in terms of increased survival over 10 generations (Fig 4.2, Table 1). 

Furthermore, the increase in survivorship in HD lines was of a greater magnitude 

than LD lines, suggesting that evolution was more rapid in populations exposed 

to a higher drug dose. The data from resistance bioassays support the responses 

observed in the selection experiment in terms of the greater magnitude of 

response in survivorship of HD lines relative to LD lines. In both dosage regimes, 

the increase in survivorship during the selection experiment slowed over the 

course of the experiment, suggesting a rapid response of populations to drug 

treatment that reached a peak for a given drug dose. Rapid responses to drug 
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selection and peaking of the response have been previously observed in 

Levamisole-selected strains of C. elegans (Lopes et al. 2008). 

 

Previous research focused on under-dosing has suggested that lower doses (doses 

below recommended use) may promote the evolution of resistance, especially 

where the basis of resistance is polygenic (Manalil et al. 2011; Shi et al. 2013), 

and that varying the level of under-dosing may affect the rate at which 

resistance evolves (Busi and Powles 2009). Our data suggest that selection at a 

low dose of Ivermectin conferred no advantage on LD lines when re-exposed to 

the low-dose environment for 75 hours. However, HD-selected lines showed 

higher survivorship relative to Z lines on exposure to the high drug dose. Thus, 

the intensity of selection played a role in how selected populations responded to 

Ivermectin treatment. The lack of a response in survival of LD lines exposed to 

the low dose for 75 hours conforms to models of resistance evolution in 

nematodes where under-dosing retards the development of resistance (Barnes, 

Dobson, and Barger 1995). Under such models under-dosing may reduce the 

evolution of resistance by allowing more susceptible worms to survive.  

 

 

4.5.3 Does density-dependent selection affect the apparent evolution of 

resistance in selected lines?  

 

 

Intriguingly, survival of lines selected in random mortality environments showed 

a similar trend, but of a lower magnitude, to drug-selected lines, and in contrast 

to zero-dose lines, suggesting that density-dependent effects on life history 

traits might be affecting the apparent rate of resistance evolution. Random 

culling of adults reduced larval densities in random-mortality treated lines; 

meaning that larval densities remained comparable to drug-treated lines and 

lower than control (Z) lines. Density-dependent natural selection has been 

shown to affect the competitive abilities of selected lines; Mueller (Mueller 

1988) showed that the feeding efficiency of K-selected (high density) lines was 

58% greater than r-selected (low density) lines of Drosophila melanogaster after 

128 generations of density-dependent selection. Though our selection 

experiment design aimed to provide an abundant bacterial food source, at the 
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time lines were transferred to new plates, bacterial lawns were patchy and no 

doubt some competition for resources is likely to have occurred. Life-history 

traits such as development time, size at maturity and reproduction may all be 

influenced by density-dependent selection ( Joshi, Prasad, and Shakarad 2001; 

Prasad and Joshi 2003; Dey, Bose, and Joshi 2012). If traits associated with 

selection in a low-density environment confer an advantage in a novel drug-

treated environment then this may explain the observed increase in survivorship 

of random mortality lines relative to control (Z) lines. Thus, much of the 

observed response in survivorship in drug-treated and random-mortality lines 

when challenged with Ivermectin could be due to increased tolerance as a result 

of density-dependent processes, rather than resistance evolution per se. Put 

another way, if the response in survival of HR lines is attributable to the 

evolution of tolerance then perhaps a large part of the response in survival of HD 

lines, which would have faced similar density-dependent processes to HR lines, 

is also due to selection for tolerance rather than resistance.  

 

Alternatively, the increase in survivorship of drug-treated and random-mortality 

lines when exposed to drug treatment could be a result of loss of genetic 

variation due to drift. This hypothesis would require all lines to drift in the same 

direction, which could have occurred during bottlenecking of drug treated and 

random mortality lines, particularly in the early generations of selection. 

However, the loss of diversity may not have been severe relative to the control 

zero dose lines (see Appendix: drift and loss of diversity). Our theoretical 

predictions of the loss of genetic diversity in HR and Z lines suggest that both 

treatments went through similar losses of genetic diversity. Predicted 

heterozygosity and the total number of alleles decreased more rapidly in HR 

lines relative to Z lines but the difference between the two treatments was 

small. In the case of rare alleles, it is likely that any rare allele would have been 

lost from populations in both HR and Z lines. Thus, it seems likely that any 

evolved increase in survivorship of HR and potentially drug-treated lines, was 

due to ecological processes occurring as a consequence of density-dependent 

selection and not loss of genetic variation due to drift. 

 

Differentiating between the effects of drug selection and traits not directly 

associated with resistance has been a long-standing problem in studies of 
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resistance evolution (Chehresa, Beech, and Scott 1997; Gilleard and Beech 

2007). The increase in survival of HR lines over generations when challenged 

with both low and high drug doses was of a lower magnitude than HD lines; this 

difference in absolute survival could represent the effects of selection solely due 

to drug treatment. If this is the case, then our experimental design provides a 

means of partitioning the evolved response in survival due to drug application 

and responses due to the effects of population size, density and the risk of 

mortality. Increased parasite densities generally have a negative effect on traits 

such as survival and fecundity (Churcher, Filipe, and Basáñez 2006); however, 

how density-dependence interacts with drug treatment remains unclear and may 

depend upon which life history stage is most severely affected by the drug 

(Churcher and Basáñez 2008). It is also possible that the difference in 

survivorship between HR and HD lines was due to the experimental protocol 

during selection. Random mortality populations were culled once every 24 hours 

to simulate the same level of mortality as ‗sister‘ drug-treated populations, but 

drug-treated populations are likely to have suffered additional mortality over 

the course of this 24 hour period. This would have resulted in a lag between 

drug-induced mortality and culling between ‗sister‘ populations. If HR lines had 

tracked the rate of mortality in HD lines more closely, maintaining similar 

densities between HD and HR treatments, potentially the same magnitude of 

response could have been observed in both high mortality treatments, regardless 

of mortality source. A more synchronised method of tracking drug-dependent 

mortality and imposing compensatory mortality on random mortality lines would 

reveal whether the lag in random culling is responsible for the difference in 

survivorship between HR and HD lines. 

 

 

4.5.4 Is there a cost of adaptation in drug-treated environments in terms of 

survival in drug-free environments? 

 

 

When random mortality and drug-treated lines were exposed to a drug-free 

environment, no differences were observed in survivorship relative to Z lines. 

Therefore, bottlenecking and small population size of random mortality lines 

resulted in no beneficial or detrimental effects on survival in an environment 
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where no extrinsic mortality was imposed. It has been suggested that the 

evolution of reduced susceptibility may lead to fitness costs in life-history traits 

if resistance is costly (Roush and McKenzie 1987). In order to asses the fitness 

costs that might result from reduced susceptibility one could either measure 

gene frequencies of susceptible alleles over a number of generations in the 

absence of the drug (Roush and McKenzie 1987) or estimate fitness based on 

measures of life-history traits such as fecundity, development time, fertility and 

mating competitiveness (Carriere et al. 1994; Gassmann, Carrière, and 

Tabashnik 2009) in the presence and absence of the drug. In this study we 

looked solely at differences in survival in drug-free and drug-treated 

environments; it would be interesting to assess a suite of traits associated with 

fitness and explore their relationship with apparent susceptibility to Ivermectin.  

 

 

4.5.5 Do different life-history stages respond to drug selection in the same way? 

 

 

Mathematical models have suggested that the life history of parasites may 

evolve in response to drug-treatment as a result of altering parasite survival and 

reproduction (Lynch, Grimm, and Read 2008). The differing responses of life 

history stage (juveniles and adults) in HD and LD lines at low and high dosages 

suggest that age-related effects and interactions with selection intensity may be 

important to consider in predicting resistance or tolerance evolution. We 

observed a significant interaction between resistance bioassay dose and life 

history. In addition, resistance bioassay data from 75 hours showed a response in 

survivorship of HD lines but not LD lines; i.e. adults of HD lines were less 

susceptible than Z lines whereas LD lines remained of a similar susceptibility to Z 

lines, across selected generations. However, 52-hour bioassay data showed that 

both HD and LD lines responded to drug selection in terms of increased 

survivorship. Therefore, at the high dose of Ivermectin, both juveniles and 

adults responded to drug selection, whereas at low doses only juveniles 

responded to selection.  

 

Body size is often used as a predictor of fecundity across a range of nematode 

species (Morand 1996). Under standard life history theory, interventions that 
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reduce adult life expectancy should select for parasites that mature earlier at a 

reduced size and produce fewer offspring (Roff 1992; Stearns 1992; Skorping and 

Read 1998). However, Lynch et al. (2008) used mathematical models to 

demonstrate that interventions that affect mortality rates of mature parasitic 

nematodes could have complicated effects on optimal age to maturity, 

regardless of whether mortality is size dependent or independent. They argued 

that where an intervention measure is continuously applied, the optimum age at 

maturity may be longer relative to a situation with no intervention and that 

parasites should benefit from a greater reproductive life span. Field experiments 

studying the evolutionary effects of anthelmintics on Teladorsagia circumcincta 

showed that worm size was consistently larger in resistant isolates when 

compared to susceptible isolates (Leignel and Cabaret 2001). Worryingly, if drug 

selection favours increased size at maturity then resistant worms may be more 

fecund than susceptibles. It would be interesting to measure size at maturity as 

well as other life history traits of our evolved lines and investigate whether any 

responses in such traits correlate with apparently reduced susceptibility to 

Ivermectin.  

 

 

4.5.6 Conclusions  

  

 

Our inclusion of a novel treatment that controls for both the increased risk of 

mortality and changes in population size of drug-treated populations raises the 

question of whether previous studies that have not incorporated such controls 

should be re-evaluated. For example, Lopes et al (2008) report the rapid 

evolution of resistance to Levamisole within 10 generations of exposure under 

very similar experimental conditions to this study. Levamisole was administered 

at a concentration lethal for 75% of the ancestral population. A resistance 

bioassay was then performed on samples from generations 10 and 20, which 

showed a 25% increase in survival of populations under drug selection at 

generations 10 and 20. However, as there was no control for mortality between 

drug-treated and control populations, it is difficult to assess whether there were 

effects of differences in density and mortality between treatments. We 

recommend that future work on resistance should incorporate adequate controls 
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for parasite/pest density when assessing drug resistance evolution.  In addition, 

controlling for differences in population size and rate of mortality could be 

implemented in any experimental evolution study where the selective agent 

induces greater mortality than control treatments. 

 

Standing genetic variation in the form of susceptibility to chemical applications 

is important in the study of resistance evolution (Gilleard and Beech 2007). This 

study suggests there may be a complex relationship between the intensity of 

selection and, density-dependent regulatory processes and life history of 

populations challenged with control measures. How these factors interact and 

affect characteristics such as tolerance and resistance could result in significant 

impacts on the evolution of susceptibility. For instance, studies of drug 

susceptibility in nematodes have shown that environments where conditions are 

inhospitable to free-living larvae, which reduces larval densities, promote the 

evolution of resistance (Besier and Love 2003; Lawrence et al. 2007; Leathwick 

and Besier 2014). What proportion of this reported resistance is due to drug 

application or tolerance, and how it interacts with life history, is difficult to 

establish in the field. In order to understand how drug tolerance and resistance 

evolution may interact, future research should aim to identify precisely which 

traits are associated with tolerance and what influence they may have on 

resistance. The Caenorhabditis system allows a range of traits to be assessed 

over the course of selection experiments (Gray and Cutter 2014), and therefore 

should provide an invaluable model to explore factors which may affect the 

evolution of resistance and tolerance. 
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Chapter 5: The evolution of life-history traits of 

nematodes in response to drug selection  

 

5.1 Abstract 

 

 

Resistance management is a key concern in human and veterinary medicine and 

in agricultural production systems. Studies of resistance evolution consider the 

influence of factors such as gene flow, drug type, application method and costs 

of resistance, on the rate of resistance evolution. However, how life history 

traits of susceptible parasites interact with control measures remains unclear. 

This study used a free-living soil nematode to investigate the evolutionary 

effects of drug treatment on life-history traits. I experimentally evolved 

replicate populations (derived from the same ancestral line) of Caenorhabditis 

remanei in three environments: drug-treated (Ivermectin), drug-free, and drug-

free with random-mortality to match the mortality in the drug-treated 

population. This last group was included to distinguish effects of drug treatment 

and population density on life history evolution. The effect of these treatments 

on larval and adult size, female lifespan and fecundity was assayed in both drug-

treated and drug-free environments after 10 generations. Adult size was larger 

for both drug-selected and random-mortality lines compared to control lines, but 

only when assayed in drug-free environments. In contrast, lifespan was longer 

for drug-selected lines in drug-treated environments and was not affected by the 

random-mortality treatment. Higher fecundity was found in drug-selected lines 

relative to control lines in both treated and drug-free environments while that of 

random mortality lines was intermediate to drug-selected and control lines in 

drug-free environments but similar to controls in the treated environments. Our 

results suggest that life histories of nematodes may respond to selection, acting 

via ecological processes due to mortality and density-dependence. Failing to 

take these responses into account when applying control measures could result 

in adverse outcomes, such as larger and more fecund parasites.  
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5.2 Introduction 

 

 

Parasitic diseases caused more than one million human deaths in 2013 (GBD 

collaborators 2015), while pests and diseases account for around one third of 

crop losses annually (Oerke 2006). The financial cost of controlling parasites and 

pests is considerable: for example, 39.4 billion dollars were spent on pesticides 

globally in 2007 (Grube et al. 2011). Control agents are designed to reduce 

target populations but massive global application has led to extensive 

development of resistance (Kaplan and Vidyashankar 2011; zur Wiesch et al. 

2011). Standard models of resistance evolution consider the influence of factors 

such as gene flow, drug type, application method and costs of resistance 

(Barnes, Dobson, and Barger 1995; James, Hudson, and Davey 2009; Consortium 

2013). Evolved responses in life-history in the form of fitness costs associated 

with insecticide resistance have been extensively documented in agricultural 

systems (reviewed by, Kliot and Ghanim 2012). Tolerance, natural variation in 

susceptibility already existing within a population, which is not a result of 

selection pressures imposed by control measures (Scott 1995; Coles and Dryden 

2014), could also influence life history responses to drug-selection via feedbacks 

between ecological and evolutionary processes. For instance, changes in density 

as a result of application of control measures may lead to evolutionary responses 

in life history traits, which in turn affect susceptibility to the control agent. The 

potential influence of eco-evolutionary interactions between pathogen or pest 

life history traits and control measures on the evolution of susceptibility 

(tolerance and resistance) has been paid little attention beyond theoretical 

consideration (Skorping and Read 1998; Lynch, Grimm, and Read 2008; Ferguson 

et al. 2012), and it remains unclear how such traits will respond to drug 

selection. The consequences of responses in life history traits to drug selection 

may be alarming given that epidemiological properties such as pathogenicity and 

virulence are often linked to the life cycle of parasites (Anderson and May 1982; 

Frank 1996; Gandon et al. 2001). 

 

Life history theory predicts how the birth and death schedules of an organism 

are shaped by its environment. The theory relies on optimality models, which 

assume trade-offs between fitness-related traits such as growth, survival and 
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reproduction when making predictions about how populations will respond to 

selection (Medawar 1952; Roff 1992; Stearns 1992). Human interventions have 

imposed intense selection on life history traits of commercially exploited species 

and have resulted in strong responses in such traits. For instance, meta-analysis 

of commercial fisheries showed that age and size at maturity have been 

significantly reduced by intense size-dependent harvesting (Sharpe and Hendry 

2009). The application of control measures to pest and pathogen populations 

dramatically changes their environment and will affect both birth and death 

schedules as a result of high extrinsic mortality caused by the treatments. Thus, 

drug treatment is likely to induce a change in the optimal allocation of resources 

between growth, lifespan and reproduction (Skorping and Read 1998). 

 

Some theoretical studies have predicted that the evolution of life history traits 

of parasitic nematodes in response to drug treatment could be beneficial from 

the perspective of disease control (Gemmill, Skorping, and Read 1999; Lynch, 

Grimm, and Read 2008), if increased extrinsic mortality of adult parasites due to 

drug treatment selects for early maturation and lower investment in growth, 

resulting in smaller less fecund worms; a situation often found in fisheries-

induced evolution (Sharpe and Hendry 2009). A reduction in fecundity could be 

beneficial in terms of disease control because it may reduce transmission of the 

parasite (Walker et al. 2009; Reece et al. 2010). Selection experiments imposing 

high extrinsic mortality on adults have been shown to cause this type of 

predicted response in life history. For instance, a long-term laboratory study 

using Drosophila melanogaster exposed replicate populations of flies to different 

extrinsic mortality regimes in early adult life (high and low) over a period of five 

years (Stearns, Ackermann, and Doebeli 1998; Stearns et al. 2000); they found 

that higher extrinsic mortality rates led to the evolution of shorter lifespans, 

earlier maturity at a smaller size, and a shift in peak fecundity to earlier in 

adulthood. However, divergence in all life history traits between the two 

treatments did not occur until after the first year of the experiment, when 

larval food quality was lowered and larval density was increased; suggesting 

density-dependent competition modulating selection on life history. If parasites 

respond to drug selection in the same way as invertebrate models like 

Drosophila then the application of control measures could be beneficial from a 

disease control perspective. That is, if parasites respond to drug selection by 
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evolving earlier maturation and lower investment in growth, resulting in smaller 

less fecund worms, then the number of offspring available to transmit infections 

will be reduced. In addition, life history traits of parasites could respond 

differently in drug-free and treated environments as a result of adaptive changes 

in phenotypic plasticity, which occur during drug selection (Reece et al. 2010; 

Kochin, Bull, and Antia 2010). Therefore, to quantify any evolved changes in life 

history due to drug-selection, measures of traits should be performed in both 

drug-free and treated environments (Carriere et al. 1994; Lopes et al. 2008). 

 

Mathematical models have predicted that drug-induced mortality could select 

for larger more fecund pathogens (Skorping and Read 1998), for example, if the 

risk of mortality differs between life history stages (Lynch, Grimm, and Read 

2008). Where the risk of mortality is higher throughout adult life relative to 

juvenile mortality (e.g. because adults are more susceptible to the drug 

treatment), selection may favour delayed maturity, larger size and greater 

fecundity. In a 20-generation study of the effects of harvesting on the life 

history in replicate populations of soil mites, populations exposed to adult 

harvesting showed delayed maturation and had a larger adult size than un-

harvested controls (Cameron et al. 2013). This contradicts studies of fisheries 

induced evolution of life history, where harvesting results in earlier maturation 

at a smaller size (Sharpe and Hendry 2009). The difference in outcome on life 

history between the two studies is due to the timing of extrinsic mortality 

(Stearns et al. 2000). High extrinsic mortality imposed early in adulthood favours 

selection for early maturation, but if mortality is imposed at the time of 

maturation and for the whole of the adult lifespan, then selection favours 

remaining in a juvenile stage for longer. Distinguishing between these two 

possible evolutionary outcomes in terms of the effects of drug application on life 

history traits could be achieved by measuring fitness-defining traits 

(development time, size, lifespan and fecundity) of populations challenged with 

drug treatment. Previous studies have focused on evolved changes in size 

(Leignel and Cabaret 2001) or fecundity (Kelly et al. 1978; Maingi, Scott, and 

Prichard 1990) of treated populations of parasites: a study focusing on a range of 

life history traits would provide a clearer picture of how life history responds to 

drug selection. 
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Differences in population density between drug-treated and untreated 

populations of parasites and pests could result in differential selection due to 

density-dependent processes such as competition (Gilleard and Beech 2007), and 

these processes can also result in evolutionary changes in growth, survival and 

reproduction (Reznick et al. 2012). For example, a 20-generation experiment 

selecting replicated populations of D. melanogaster in high or low-density 

environments found that low-density lines evolved longer development times in 

both growth environments (Roper, Pignatelli, and Partridge 1996). Longer 

development time was also associated with larger adult size and higher 

fecundity, but only in low-density growth environments, suggesting environment-

mediated evolved differences in size and fecundity. In addition, the same study 

measured lifespan of high and low-density selected lines and found no 

differences in lifespan in either growth environment. Thus, long-term 

differences in population density can be influential on the evolution of life 

history traits. In order to understand the effects of drug treatment on 

evolutionary responses in life history it is necessary to separate indirect effects, 

such as reduced density, from the direct effects of drug application. Adequate 

controls that compensate for differences in density between treatments are 

often overlooked in selection experiments but can be achieved with an 

additional treatment, which mimics mortality and density patterns imposed on 

drug-selected lines (Fuller, Baer, and Travis 2005).  

 

Measuring life-history traits of parasites within a host is technically difficult and 

time consuming (Leathwick and Hosking 2009). Studying how model organisms 

respond to selection pressures causing high extrinsic rates of mortality, and 

differences in population density, may provide insights into how parasite life 

history responds to drug selection. C. elegans has been used as a model organism 

to study both evolutionary processes (Manoel et al. 2007; Morran, Parmenter, 

and Phillips 2009; Fritzsche et al. 2014) and mechanisms of drug resistance 

(Simpkina and Coles 1981; James, Hudson, and Davey 2009; Ghosh et al. 2012). 

However, C. elegans is a hermaphroditic species and most reproduction is due to 

self-fertilisation (Brenner 1974), whereas most parasitic nematodes are 

dioecious and obligately outcrossing. Therefore, dioecious nematodes such as C. 

remanei can provide a more realistic model system to study potential 

evolutionary changes in life history-traits in response to drug selection. The 
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basic demography of C. remanei has been previously studied under laboratory 

conditions; the species shows high variation in development time, lifespan and 

fecundity (Diaz, Lindström, and Haydon 2008; Reynolds and Phillips 2013). 

Lifespan and fecundity have also been previously studied in C. remanei in 

relation to selection for condition-dependent mortality when subjected to high 

temperature (Chen and Maklakov 2012). Furthermore, Lopes et al (2008) 

explored the relationship between survival and fecundity in Levamisole-selected 

populations of C. elegans but did not measure traits such as lifespan and size at 

maturity. However, to date there are no studies of how life-history traits 

respond to drug-selection in a free-living dioecious species of nematode. 

Laboratory-based selection experiments can often impose strong selection on 

the timing of reproduction and development time due to the desire of 

researchers to achieve rapid progress through numerous generations (Chehresa, 

Beech, and Scott 1997; Gilleard and Beech 2007). Caenorhabditis nematodes can 

be cryogenically frozen and revived, making them an ideal model to test 

whether control treatments are effected by the design of a selection 

experiment. By reviving ancestral and selected control lines and measuring a 

trait of interest, any differences in control lines relative to ancestral lines can 

be detected (Gray and Cutter 2014; Sikkink et al. 2015). Thus, if there is a no 

response to selection in control lines relative to ancestral lines, and a response 

to selection in treated lines relative to controls, then any change associated 

with phenotypes between treated and control lines must be due to treatment 

during selection and not rapid passage during experimental evolution.  

 

In a previous study (Chapter 4; Reynolds et al. 2016), I explored the relationship 

between drug selection, population density and the evolution of resistance to 

Ivermectin. Replicate lines of C. remanei exposed to the anthelmintic 

Ivermectin, and drug-free control lines, which had mortality imposed randomly 

at the same rate as drug-treated lines, evolved an increase in survival relative to 

standard drug-free control lines over 10 generations. The results suggested that 

similarities in the population density and mortality between drug-treated and 

random mortality lines could be responsible for the increased apparent drug 

tolerance observed in both treatments. In this study I asked if the evolutionary 

changes in survival of these selected lines were associated with changes in other 

life history traits (larval and adult size, female fecundity and female lifespan), 
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whether there is a trade-off between adaptation to the drug-treated 

environment and fitness, and does any trade-off differ in drug-free and treated 

environments. I specifically asked: 1) Does rapid passage of control lines through 

numerous generations have an effect on life-history traits; 2) Does drug 

application have an effect on life-history traits; 3) Do conditions with high 

extrinsic mortality and density-dependent selection have an effect on life 

history traits? 

 

 

5.3 Methods 

 

 

5.3.1 Origin of experimental lines and selection experiment 

 

 

The construction of the ancestral strain and the details of the selection 

experiment have been described previously (Chapter 4). Briefly, a genetically 

diverse starting population of C. remanei (SP8) created by crossing three strains 

(SB146, PB206 and MY31) was provided by N. Timmermeyer in the Department of 

Biology, University of Tübingen, Germany. After the crosses were performed, 

strain SP8 was maintained for eight generations to create recombinant 

genotypes and allow adaptation to standard laboratory conditions (Fritzsche et 

al. 2014). Upon arrival in Glasgow, strain SP8 spent a further four generations 

adapting to any differences in conditions between laboratories and was 

maintained under standard laboratory conditions for Caenorhabditis species: 

20˚C and 60% humidity on NGM (Nematode Growth Medium) petri dishes and fed 

on a lawn of Escherichia coli (OP50) (Hope 2001). Experimental lines derived 

from the ancestral SP8 stock strain underwent three selection treatments (Fig 

5.1): exposure to Ivermectin at a dose calibrated to cause 80% mortality in a 

non-resistant population (drug-treated, D); a drug-free control (zero-dose, Z); 

and a second zero-dose control where the population size was reduced by 

randomly removing adult worms to match the level of mortality in the drug-

treated lines (zero-dose + random mortality, R). The random mortality control 

was included to control for effects of differences in density between treated and 

untreated lines. Experimental lines were cultured for 10 generations with three 
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replicate lines for the D treatment and R control lines and six for the Z controls, 

making a total of 12 lines. The ancestral (A-line) stock strain as well as samples 

of larval worms from generation 10 of each selected line were cryogenically 

frozen at -80˚C), at a density of approximately 2000 L1 larvae in liquid freezing 

solution as described in Hope (2001).   

 

Prior to each life history assay, preserved samples of the ancestral line and lines 

from the selection experiment at generation 10 were thawed and raised for 

three generations in a drug-free environment to ensure that any observed 

responses in survival were due to genetic differences among populations and not 

maternal or environmental effects due to freezing. Larvae were thawed at room 

temperature and maintained at a density of approximately 1000 individuals per 

9cm agar plate over the three generations from thawing to age synchronization 

with ad libitum lawns of E. coli OP50. Transfers between generations were 

achieved by cutting out sufficient agar from plates already containing samples 

and transferring these to fresh E. coli seeded plates ensuring the density 

remained as constant as possible. L1 synchronised larvae from revived lines were 

generated using a standard bleaching protocol for the beginning of each life 

history assay (Hope 2001).  
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Fig 5.1 Schematic representation of selection experiment and life-history assays. 
The starting population of SP8 was adapted to lab conditions. The lab-adapted 
strain was then randomly divided into three treatments with three replicates 
each for drug-selected (D), and random mortality (R) treatments, and six 
replicates of zero dose (Z) lines. After 10 generations of selection, lines were 
frozen and later thawed, before being exposed to drug-free and treated 
environments and data gathered on life-history traits.  
 

 

5.3.2 Larval and adult size 

 

 

Size estimates for larvae, females and males were calculated by collecting 

digital images of worms and then estimating their volume from these images. 

Images of 50-100 developmentally arrested larvae from the ancestral line and 

each selected line were collected three hours after hatching on 9 cm NGM plates 

in the drug-free environment. Larval sizes were not taken in the drug treated 

environment because they could not be exposed to Ivermectin over the same 

period of time, as size measures taken for adults. To collect images of adults in 
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the drug-treated environment 9 cm plates were prepared by adding 2.46 ng/ml 

Ivermectin dissolved in the solvent DMSO (0.02%) to NGM media: the media was 

kept at 50˚C and mixed thoroughly using a magnetic stirrer prior to pouring. The 

dry plates were seeded with E. Coli and approximately 1000 L1 synchronised 

larvae per line were added to the drug-treated plates and incubated for 75 

hours. After 75 hours adults were washed onto clean (i.e. no E. coli) plates and 

images were collected with a Zeiss Stemi 200-C stereomicroscope using a 

Celestron digital microscope camera (Model: 44421) at x 30 magnification. 

Depending on how many adults had survived to 75 hrs, 50 to 100 images of 

females and males were collected for each of the 12 selected lines + 1 ancestral 

line. To collect images of adults in the drug-free environment the same 

procedure was conducted as for the drug-treated environment but without the 

addition of Ivermectin to the solvent. The volume of worms in picolitres was 

estimated from digitised images using wormSizer software (Moore, Jordan, and 

Baugh 2013); volume calculations assume worms are made up of a series of 

frustums (cones with the tip removed) and the sum of the volume of all frustums 

equals total volume for an individual worm. 

 

 

5.3.3 Female lifespan and fecundity 

 

 

Lifespan was assessed only for females so that it could be compared with 

differences in reproductive output based on fecundity.  I assessed only three out 

of the six control lines for comparison with the three replicates of the drug-

treated and random-mortality lines, to maximise the number of replicates per 

experimental line. I chose control lines on the basis of the results from the size 

assay, choosing three lines that had the largest, smallest and intermediate 

volumes of the six control lines to prevent any bias due to size. Lifespan was 

measured by counting the number of females alive every two days during the 

course of the experiment. To measure lifespan in a drug-treated environment L1 

synchronised larvae from each line were cultured in drug-free conditions at a 

density of approximately a 1000 until developing till the L4 stage. At the L4 

stage sex can be distinguished but mating does not occur. L4 females were taken 

from these cultures and transferred to drug-treated 2.5 cm E. coli seeded agar 
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plates, maintained with male worms from their source population, of which the 

number of individuals was adjusted throughout the experiment to maintain a 1:1 

sex ratio on all plates at all times. Females were transferred to fresh drug-

treated plates every 48 hours to prevent larval offspring development 

confounding counts of females. Census data were collected whilst transferring 

replicates to new plates; census continued until the last female died. Measuring 

lifespan in the drug-free environment followed the method used for the treated 

environment except Ivermectin was not added to agar plates. I measured the 

lifespan of 20 females per line (four replicates of five females) in both the drug-

free and treated environments. Lifespan measurements were taken for 400 

females in total: 10 lines (3 treatments x 3 replicates + 1 ancestral) x 4 plates 

per line x 5 females per plate x 2 environments). 

 

Fecundity of selected and ancestral lines was evaluated by census of the number 

of eggs produced by females from each line during the lifespan assay. The 

number of eggs laid by females on each replicate plate was counted for a 3-hour 

period every 48 hours: this was done at the beginning of the experiment and 

three hours after each transfer, and repeated until females either died or 

stopped producing offspring. I recorded two measures of fecundity: the total 

number of eggs counted, which provided an index of total lifetime reproductive 

output; and the number of eggs counted on day two when fecundity reached a 

maximum in all lines, which was used as an index of peak fecundity. 

 

 

5.3.4 Statistical analysis 

 

 

My three main questions were concerned with assessing the effects of treatment 

during selection on life history traits (larval and adult size, female fecundity and 

female lifespan). The analysis separately compared each life history trait of lines 

from the original selection experiment (drug-treated, random mortality and zero 

dose), as well as the ancestral line, in both drug-free and treated environments, 

using generalised linear mixed models. I used the same approach to test for 

differences between treatments for each trait, but models varied for traits 

depending on the distribution of the response variable and the random effects 
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included in the model. The first step of the analysis tested for the significance 

of an interaction between treatment during selection and environment, and 

provided a test of whether responses of life history traits were the same in drug-

free and treated environments; a full model with fixed effects for treatment, 

environment and their interaction was compared with a null model with no 

interaction term. Because of differences in sample sizes and variance in the 

response variable between environments, further tests of differences between 

treatments were performed on datasets for each environment (drug-free and 

drug) separately. The second step of the analysis involved testing for a 

difference in the specified trait between the four treatments, by comparing the 

full model with a null model with no fixed effect of treatment (H0: Ancestral = 

Zero = Drug = Random). A further four post-hoc measures were then used to 

address my main questions, with the tests performed on discrete datasets for 

specific treatment pairs addressing each question. The effect of passage of 

control lines through 10 generations of the selection experiment was assessed 

for each trait individually by comparing a full model with treatment as a fixed 

effect to a null model without treatment (H0: Ancestral = Zero). A difference in 

a trait due to drug selection was assessed by using the same model but for the 

zero-dose and drug selected lines (H0: Drug = Zero). To answer the question: Do 

conditions with high extrinsic mortality and density-dependent selection have an 

effect on life history traits? Differences in the response of traits to the random 

mortality treatment (H0: Random = Zero) and density-dependence in response to 

selection (H0: Drug treatment = Random treatment) were tested in the same 

way, comparing a full model with a fixed effect of treatment against a null 

model without treatment. The second step was repeated for each trait in each 

environment providing an assessment of how traits responded to selection in 

terms of their phenotype when challenged with each environment. 

 

All statistical analyses were performed using R v 3.1.2 (R Core Team 2014) and I 

defined a significance threshold of P = 0.05 for all tests. I tested for differences 

in life-history traits between experimental treatments using generalized linear 

mixed effects models (GLMMs) fitted using the lme4 package (Bates, Maechler 

2014). I fitted a GLMM with a normal error distribution to assess differences in 

larval and adult size between lines. Treatment during selection and assay 

environment was fitted as a fixed effects and evolutionary replicate (line) as a 
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random effect. The interaction between treatment and environment was 

performed for females and males only, because data on larval size was only 

collected in the drug-free environment. Furthermore, no interactions between 

sex and selection regime were explored, because female size was twice that of 

males in both drug-free and treated environments. Differences in lifespan were 

assessed with the same model structure as size but included a further random 

effect for replicate plate in the lifespan assay. In addition, a parametric survival 

model with a Weibull distribution and a fixed effect of treatment during 

selection was fitted to the lifespan data to provide a plot of survival over time. 

Differences in egg count data were evaluated using a GLMM with a Poisson error 

distribution. Treatment during selection and assay environment were fitted as 

fixed effects and random effects were fitted for evolutionary line and repeated 

sampling of lines during the fecundity assay. An additional random effect was 

added for each observation to account for the overdispersion in the response 

variable (Browne et al. 2005). 

 

 

5.4 Results 

 

 

5.4.1 Size 

 

 

In the drug-free environment, there were no differences in larval size due to 

treatment during selection (P = 0.54; Fig 5.2E, Tables 5.1 and 5.2). There was a 

significant interaction between assay environment (drug-free or drug-treated) 

and treatment during selection in terms of adult size for both females and males 

(females: χ2 = 169.57, df = 3, P < 0.0001; males: χ2 = 47.51, df = 3, P < 0.0001). 

In the drug-free environment there were significant differences in mean size 

accounted for by treatment during selection for both females and males 

(females: P = 0.0023; males: P = 0.0072; Fig 5.2A and C, Tables 5.1 and 5.2). 

There was no significant difference in mean size between ancestral and zero-

dose lines for either females or males (females: P = 0.08; males: P = 0.66; Fig 

5.2A and C, Tables 5.1 and 5.2). Thus, rapid passage of control lines had no 

effect on adult size when comparing the ancestral and zero-dose lines. Females 
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and males from drug-selected lines were significantly larger (14% and 15%, 

respectively) than those from zero-dose lines (females: P < 0.0001; males: P = 

0.00022; Fig 5.2A and C, Tables 5.1 and 5.2). Females and males from random 

mortality lines were also significantly larger (9% and 8%, respectively) than those 

from zero-dose lines (females: P = 0.016; males: P = 0.035; Fig 5.2A and C, 

Tables 5.1 and 5.2). Therefore, density-dependent selection had an effect on 

size in the drug-free environment. There was no significant difference in size 

between drug-treated and random mortality lines for either females or males 

(females: P = 0.30 males: P = 0.35; Fig 5.2A and C, Tables 5.1 and 5.2). In the 

drug-treated environment there were no differences in mean adult size of either 

females or males with respect to selection regime (Females: P = 0.13; Males: P = 

0.20; Fig 5.2 B and D, Table 1 and 2). 
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Fig 5.2 Violin plots showing the kernel density estimation of the distribution of 
size at maturity for selected (Drug, Random and Zero) and Ancestral lines. The 
grey areas show how size data were distributed within a given treatment. 
Diamonds represent estimated mean volume for each treatment (estimated from 
the maximal model – see methods). Females (panel A and B) and males (panel C 
and D) when exposed to drug-free (panel A and C) and drug-treated (panel B and 
D) environments. Panel E shows larval size in a drug-free environment. Error bars 
indicate 95% confidence intervals for mean volume. 
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5.4.2 Female lifespan 

 

 

There was a significant interaction between assay environment and treatment 

during selection in terms of female lifespan (χ2 = 9.52, df = 3, P = < 0.023). No 

differences were observed in lifespan between females from different selection 

regimes in the drug-free environment (P = 0.76; Figs 5.3 and 4, Tables 5.1 and 

5.2); mean (95% CI) lifespan was 8.7 (6.6, 10.8), 7.8 (6.6, 9.0), 7.9 (6.7, 9.1), 

7.6 (6.4, 8.8) days for ancestral, drug-selected, random mortality and zero-dose 

lines, respectively (Fig 5.3A and 5.4A, Tables 5.1 and 5.2). Treatment during 

selection had an effect on female lifespan in the drug-treated environment (P = 

0.017, Figs 5.3B and 5.4B, Tables 5.1 and 5.2). There was no difference between 

ancestral and zero-dose lines in terms of lifespan (P = 0.23; Figs 5.3B and 5.4B, 

Tables 5.1 and 5.2), suggesting the selection experiment had no effect on 

lifespan in the control treatment. In the drug-treated environment, females 

from drug-selected lines had a 42% longer lifespan than the zero-dose lines (P = 

0.015; Figs 5.3B and 5.4B, Tables 5.1 and 5.2). There was no difference in 

female lifespan between random mortality and zero-dose lines in the treated 

environment (P = 0.86; Figs 5.3B and 5.4B, Tables 5.1 and 5.2); and female 

lifespan of random mortality lines was significantly shorter than that of drug-

selected lines. Therefore, differences in density between random mortality and 

zero-dose lines during selection had no effect on lifespan when the selected 

lines were exposed to Ivermectin. 
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Fig 5.3 Violin plots of mean lifespan for selected (Drug, Random and Zero) and 
Ancestral lines, grey areas show how lifespan data were distributed within 
treatments. Diamonds represent estimated mean lifespan in drug-free (panel A) 
and treated (panel B) environments for each selection regime (estimated from 
the maximal model – see methods). 95% confidence intervals for mean volume. 
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Fig 5.4 Survival curves of females from selected and ancestral lines when 
exposed to drug-free (A) and drug-treated (B) environments. Solid line = zero 
dose; dashed line = drug treatment; dotted line = random mortality: dot-dashed 
line = ancestral population. On plot A, the random mortality curve (dotted) is 
difficult to see because it is very similar to the drug treatment curve (dashed). 
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Table 5.1 Effect of treatment during selection on size, female life span and 
fecundity in treated and drug-free environments, assessed by null models, using 
likelihood ratio tests. Maximal models assumed a difference between the 
selection regimes. For each trait and environment, null model 1 assumed no 
difference between treatments and was tested against a maximal model 
assuming treatment had an effect. Null models 2-5 are post hoc tests and 
assumed no difference between the specified pair of selection regimes; they 
were tested against a model assuming a difference between paired treatments. 
D: Drug-treated; R: Random mortality; Z: Zero dose; A: Ancestral line. 

Trait Environment Null models χ2 (d.f.) P-value 

Female 
size 

Drug free 1) A = Z = D = R 
2) A = Z 
3) D = Z 
4) R = Z 
5) D = R 

14.47 (3) 
2.96 (1) 
18.9 (1) 
5.78 (1) 
1.06 (1) 

0.0023 
0.08 
< 0.0001 
0.016 
0.30 

Drug 1) D = R = Z = A 5.59 (3) 0.13 

Male size Drug free 1) A = Z = D = R 
2) A = Z 
3) D = Z 
4) R = Z 
5) D = R 

12.07 (3) 
0.19 (3) 
13.65 (1) 
4.44 (1) 
0.088 (1) 

0.007 
0.66 
0.00022 
0.035 
0.35 

Drug 1) A = Z = D = R 4.59 (3) 0.20 

Larval 
size 

Drug-free 1) A = Z = D = R 2.14 (3) 0.54 

Female  
lifespan 
 

Drug-free 1) D = R = Z = A 1.38 (3) 0.71 

Drug 1) A = Z = D = R 
2) A = Z 
3) D = Z 
4) R = Z 
5) D = R 

10.25 (3) 
1.46 (1) 
5.95 (1) 
0.03 (1) 
4.97 (1) 

0.017 
0.23 
0.015 
0.86 
0.026 

Lifetime 
fecundity 

Drug-free 1) A = Z = D = R 
2) A = Z 
3) D = Z 
4) R = Z 
5) D = R 

9.68 (3) 
1.62 (1) 
6.55 (1) 
1.44 (1) 
1.50 (1) 

0.022 
0.20 
0.011 
0.23 
0.22 

Drug 1) D = R = Z = A 
2) A = Z 
3) D = Z 
4) R = Z 
5) D = R 

22.03 (3) 
6.87 (1) 
13.47 (1) 
1.21 (1) 
10.81 (1) 

< 0.0001 
0.0088 
0.00024 
0.27 
0.0010 

Peak 
fecundity 

Drug-free 1) A = Z = D = R 
2) A = Z 
3) D = Z 
4) R = Z 
5) D = R 

11.06 (3) 
2.21 (1) 
6.96 (1)  
0.20 (1) 
4.83 (1) 

0.011 
0.14 
0.0083 
0.66 
0.028 
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Trait Environment Null models χ2 (d.f.) P-value 

Peak 
fecundity 

Drug 1) A = Z = D = R 
2) A = Z 
3) D = Z 
4) R = Z 
5) D = R 

11.50 (3) 
4.09 (1) 
5.69 (1) 
0.56 (1) 
4.68 (1) 

0.0093 
0.043 
0.017 
0.81 
0.031 

Table 5.1 Continued.  
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Table 5.2 Effect of treatment during selection on adult and larval size (volume; 
nanolitres), female lifespan (days) and fecundity (predicted egg numbers) in 
drug-free and drug-treated environments, as assessed by predicted trait means 
of the maximal model with selection treatment as a fixed effect (CI: 95% 
confidence interval for estimated trait means). Estimates significantly different 
from Zero dose lines are highlighted in bold. 

Trait Environment Selection 
treatment 

Trait mean  (95% CI) 

Female size Drug-free Ancestral 
Drug 
Random 
Zero 

6.4 (5.8, 7.0) 
7.1 (6.7, 74) 
6.8 (6.4, 71) 
6.2 (5.9, 6.4) 

Drug Ancestral 
Drug 
Random 
Zero 

5.3 (2.6, 8.0) 
8.3 (6.8, 9.9) 
6.4 (4.8, 8.0) 
7.0 (5.9, 8.1) 

Male size 
 
  

Drug-free Ancestral 
Drug 
Random 
Zero 

2.9 (2.5, 3.2) 
3.2 (3.0, 3.4) 
3.0 (2.9, 3.3) 
2.8 (2.7, 3.0) 

Drug Ancestral 
Drug 
Random 
Zero 

2.2 (0.9, 3.6) 
3.5 (2.7, 4.3) 
2.7 (1.9, 3.4) 
3.4 (2.2, 3.9) 

Larval size Drug-free Ancestral 
Drug 
Random 
Zero 

155 (123, 186) 
158 (139, 176) 
143 (124, 161) 
145 (132, 158) 

Female 
lifespan 

Drug-free Ancestral 
Drug 
Random 
Zero 

8.7 (6.6, 10.8) 
7.8 (6.6, 9.0) 
7.9 (6.7, 9.1) 
7.6 (6.4, 8.8) 

Drug Ancestral 
Drug 
Random 
Zero 

2.0 (0.9, 3.1) 
3.8 (3.1, 4.4) 
2.6 (2.0, 3.3) 
2.6 (1.9, 3.2) 

Lifetime 
fecundity 

Drug-free Ancestral 
Drug 
Random 
Zero 

38.1 (36.0, 40.3) 
52.8 (50.7, 54.7) 
48.0 (45.9, 50.0) 
43.2 (41.1, 45.3) 

Drug Ancestral 
Drug 
Random 
Zero 

1.9 (0, 4.5) 
13.6 (11.3, 15.9) 
3.6 (1.3, 5.9) 
4.7 (2.4, 7.0) 
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Trait Environment Selection 
treatment 

Trait mean  (95% CI) 

Peak 
fecundity 

Drug-free Ancestral 
Drug 
Random 
Zero 

23.9 (21.7, 26.1) 
37.5 (35.4, 39.6) 
31.5 (29.4, 33.6) 
30.0 (27.9, 32.1) 

Drug 
 

Ancestral 
Drug 
Random 
Zero 

4.0 (1.3, 6.7) 
15.9 (13.6, 18.3) 
8.0 (5.6, 10.3) 
8.3 (6.0, 10.7) 

Table 2.2 Continued. 
 

 

 

5.4.3 Fecundity 

 

 

5.4.3.1 Lifetime fecundity 

 

 

There was a significant interaction between assay environment and treatment 

during selection in terms of lifetime fecundity (χ2 = 57.34, df = 3, P = 0.0001). In 

the drug-free environment there was a significant effect of selection regime on 

lifetime fecundity (P = 0.022; Figs5.5A, Tables 5.1 and 5.2). Independent 

contrasts of ancestral and zero-dose lines showed no difference in lifetime 

fecundity in the drug-free environment (P = 0.20; Figs 5.5A, Tables 5.1 and 5.2), 

suggesting the zero-dose selection regime had no effect on lifetime fecundity 

relative to the ancestral population. Drug-selected lines had higher lifetime 

fecundity than zero-dose lines in the drug-free environment (P = 0.011; Figs 

5.5A, Tables 5.1 and 5.2); the mean number of eggs produced by females from 

drug-selected lines was 22% higher than from zero-dose lines. Thus, selection in 

a drug-treated environment led to higher reproductive output in the drug-free 

environment relative to the zero-dose lines. Mean lifetime fecundity of random 

mortality lines was intermediate to drug-treated and zero-dose lines and was not 

significantly different from either (P = 0.23; P = 0.22, respectively for drug-

treated and zero-dose lines, Figs 5A, Tables 5.1 and 5.2). Estimates of lifetime 

fecundity of females from random mortality lines were 9% lower than drug-



   
 

 115 

treated lines but 11% higher than zero-dose lines. Selection regime also had a 

significant effect on lifetime fecundity in the drug-treated environment (P = 

0.0001; Figs 5B, Tables 5.1 and 5.2). Lifetime fecundity in zero-dose lines was 

significantly higher than in the ancestral lines (P = 0.0093; Figs 5B, Tables 5.1 

and 5.2). Drug-selected lines had significantly higher lifetime fecundity than 

zero-dose lines (P = 0.00024; Figs 5B, Tables 5.1 and 5.2); mean lifetime 

fecundity of drug-selected lines was three times that of zero-dose lines. Lifetime 

fecundity of random mortality lines was not significantly different from zero-

dose lines but was lower than that of drug-treated lines (P = 0.27; P = 0.0010, 

respectively; Figs 5B, Tables 5.1 and 5.2); mean fecundity of random mortality 

lines was 23% less than zero-dose lines but 74% less than drug-treated lines in 

the treated environment. Thus, differences in density between random mortality 

and zero-dose lines during selection had no effect on lifetime fecundity when 

the selected lines were exposed to Ivermectin. 
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Fig 5.5 Violin plots showing the kernel density estimation of the distribution of 
fecundity (number of eggs). The grey areas indicate how fecundity data were 
distributed within a given treatment. Diamonds represent estimated mean 
number of eggs for each treatment (estimated from the maximal model – see 
methods). Lifetime fecundity (panels A and B) and peak fecundity (panels C and 
D) when exposed to drug-free (panels A and C) and drug-treated (panels B and D) 
environments. Error bars denote 95% confidence intervals for mean fecundity. 
 

 

5.4.3.2 Peak fecundity  

 

 

There was no interaction between assay environment and treatment during 

selection in terms of fecundity at the peak time of two days (χ2 = 1.30, df = 3, P 

= 0.73). In the drug-free environment, peak fecundity was significantly different 

between selection regimes (P = 0.011; Fig 5.5C, Table 5.1 and 5.2). Independent 

contrasts of peak fecundity for ancestral and zero-dose lines indicated no 
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difference in fecundity in the drug-free environment (P = 0.14; Figs 5.5C, Tables 

5.1 and 5.2) suggesting that selection in the control environment had no effect 

on peak fecundity when comparing the ancestral line to zero-dose lines. 

Predictions of peak fecundity from drug-selected lines were 25% higher than 

zero-dose lines (P = 0.0083; Figs 5C, Tables 5.1 and 5.2) indicating selection in a 

drug-treated environment resulted in increased reproductive output under drug-

free conditions. Peak fecundity of random mortality lines was not different from 

zero-dose lines (P = 0.66), but was 16% lower than in drug-treated lines (P = 

0.028; Figs 5.5C, Tables 5.1 and 5.2). In contrast to lifetime fecundity, peak 

fecundity in random mortality lines remained similar to that of the zero-dose 

lines suggesting differences in density between these lines had no effect on peak 

fecundity in the drug-free environment. 

 

In the drug-treated environment, selection regime also significantly affected the 

mean number of eggs produced per female (P = 0.0093; Figs 5D, Tables 5.1 and 

5.2). Peak fecundity of zero-dose lines was two-fold greater than that of 

ancestral lines when exposed to the drug-treated environment (P = 0.043; Figs 

5D, Tables 5.1 and 5.2) indicating that experimental evolution increased peak 

fecundity in zero-dose lines relative to the ancestral line. In the drug-treated 

environment, peak fecundity of drug-selected lines was 92% higher than zero 

dose lines (P = 0.017; Figs 5D, Tables 5.1 and 5.2). Peak fecundity of random 

mortality lines was similar to that of zero-dose lines (P = 0.81), but 50% lower 

than drug-selected lines (P = 0.031; Figs 5D, Tables 5.1 and 5.2). Thus, there was 

no evidence that density had an effect on peak fecundity in the drug-treated 

environment. 

 

 

5.5 Discussion 

 

 

My study sought to test what effects drug treatment has on life history traits, 

and at the same time assess the effects of high extrinsic mortality and 

differences in density-dependent effects, which occur when control measures 

are applied. In addition, I aimed to test whether life history traits of control 
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lines were affected by rapid passage through the 10 generations of the selection 

experiment.  

  

 

5.5.1 Does rapid passage of control lines through numerous generations have an 

effect on life-history traits? 

 

 

Control zero-dose lines showed no response to selection relative to the ancestral 

line in either size or lifespan. However, zero-dose lines did show increased 

fecundity relative to ancestral lines but only in the drug-treated environment, 

and though significant, the absolute difference in numbers of eggs was small. 

Chehresa et al (1997) performed an experiment focused on measuring changes in 

life history traits of replicate lines of the parasitic nematode Heligmosomoides 

polygyrus bakeri selected for rapid passage using a mouse host over eight 

generations. By generation eight, development of the parasite was faster and 

fecundity was higher early in life, suggesting rapid passage of the parasite was 

associated with evolved changes in life history. In my study, I did not measure 

development time but changes in worm size can be used to infer changes in 

development time, as selection for early maturity is associated with small size at 

maturity (Roff 1992; Stearns 1992). Also, higher peak fecundity in my study 

would be suggestive of earlier investment in reproduction. I found no evidence 

of smaller size in either sex for zero-dose lines and a reduction in fecundity was 

only observed in the drug-treated environment, indicating that my experiment 

did not select for rapid development and early reproduction in drug-free 

environments. The lack of response to selection of zero-dose lines relative to the 

ancestral line means that any differences in life history between the zero-dose 

lines and drug-selected or random mortality lines must be associated with 

treatment during selection, and not with rapid passage during experimental 

evolution.  
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5.5.2 Effects of drug-selection on life history 

 

 

In drug-free environments, there were no differences in lifespan between drug-

selected and zero dose lines but adults of drug-selected lines were larger than 

zero-dose lines, suggesting a greater investment in growth of the former. In 

addition, females from drug-selected lines showed greater reproductive output 

than zero dose lines. In drug-treated environments, longer lifespan and higher 

fecundity were apparent in drug-selected lines relative to zero dose lines, but 

there was no difference in size at maturity. Body size has been associated with 

drug tolerance; i.e. larger individuals require a higher dose of drug to achieve 

the same effect (Anderson and Weber 1975; Lavadinho 1975; Maggi et al. 2012), 

and evolved differences in size have been observed in susceptible populations of 

parasitic nematodes exposed to drug treatment (Leignel and Cabaret 2001). For 

example, Liegnel and Cabaret (2001) found that both susceptible and resistant 

genotypes of an isolate of Teladorsagia circumcincta exposed to Benzimidazole, 

increased in size over the course of a two-year experimental infection study. If 

larger size is advantageous in treated environments then drug-treatment could 

favour selection on investment in growth (Lynch, Grimm, and Read 2008). Lynch 

et al (2008) used mathematical models to show that later development and 

larger size at maturity could be favoured in drug-treated environments but was 

dependent on the difference in the rate of mortality experienced by juveniles 

and adults in treated and drug-free environments, on whether survival was size 

dependent in treated environments, and on how the drug was applied 

(continuously or in pulses). Their results showed that size-dependent mortality 

to the drug, in particular, favoured delayed maturation and a larger adult size. I 

found no differences in juvenile size in our study and therefore attribute the 

larger size of adults from drug-treated lines in the drug-free environment as 

evidence of greater investment in growth. I suggest that exposure of populations 

to a high rate of mortality in adults may favour late maturation or greater 

investment in growth during the juvenile stage to achieve a larger size, as has 

been observed in some studies of the effects of harvesting (Conover et al. 2005; 

Cameron et al. 2013). Similar observations have also been noted in experimental 

life-history evolution of wild guppies in streams driven by predation by large or 

small predators specialising on adult or juvenile guppies (Reznick, Bryga, and 
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Endler 1990; Reznick et al. 1996). Spending a longer period as a juvenile in these 

circumstances could be beneficial as it lowers the risk of mortality over the 

same time period, and could result in higher fecundity due to more time to 

invest in juvenile growth. Such a scenario might explain the observed increase in 

size at maturity of drug-selected lines in drug-free environments, if drug-

induced mortality of adults was high relative to juveniles then selection would 

favour spending a greater period as a juvenile and investing in growth. 

 

The lack of any difference in female lifespan between drug selected and zero-

dose lines in the drug-free environment suggests that any adaptation to the 

treated environment incurred no cost in the untreated environment.  A previous 

study using the same species found that where mortality was related to survival 

in heat stress, lifespan increased for populations selected in a high mortality 

heat-stressed environment (Chen and Maklakov 2012b). Replicate lines of C. 

remanei were selected for 12 generations in heat-shocked environments (high 

and low mortality), while other lines were selected in random culling 

environments (high and low mortality) before measuring lifespan of evolved 

populations in a benign environment. Mean lifespan increased in high mortality 

heat-shocked lines relative to both low mortality treatments and where 

mortality was imposed at random (Chen and Maklakov 2012b). In addition, the 

authors found that high-mortality random-culling of lines led to a shorter 

lifespan relative to low-mortality controls. Their results confirmed predictions 

that selection of populations in high mortality environments can result in 

reduced lifespan (Medawar 1952; Gadgil and Bossert 1970); however, if mortality 

was condition-dependent longer lifespan was favoured. In my study, selection in 

a drug-treated environment could also be view as selection based on condition in 

a similar way to heat stress, but drug-selected lines showed no increase in 

female lifespan. However, In Chen and Maklakov‘s study (2012) selection for 

heat tolerance (condition-dependent) was achieved by exposure to acute heat-

shock as opposed to the drug-selection conducted in this experiment, which 

involved chronic, constant exposure of lines to drug treatment. Thus, the length 

of exposure to an environmental stress may be of importance in determining the 

evolutionary outcome of condition-dependent mortality. 
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The observed longer lifespan of females from drug-selected lines in the drug-

treated compared to the drug-free environment suggests that females from 

drug-treated lines had adapted to the drug-treated environment. Increases in 

female lifespan in treated environments could have important implications for 

transmission dynamics of offspring in parasitic nematodes, if females are able to 

continue reproduction throughout their lifetimes (Skorping, Read, and Keymer 

1991; Walker et al. 2009). Furthermore, if my drug-selected lines represent a 

larger drug-tolerant but still susceptible phenotype due to size-dependent 

selection, rather than a resistant phenotype, this could have significant 

consequences for managing the rate of resistance evolution. Maintaining 

susceptible individuals in a population is thought to play a critical role in slowing 

the rate of resistance evolution (Leathwick and Hosking 2009): if drug-tolerant 

and resistant phenotypes compete in terms of the number and duration of 

offspring they produce, this could potentially affect the rate of resistance 

evolution. Potentially, larger more fecund drug-tolerant susceptible phenotypes 

could have higher fitness than resistant phenotypes, especially if there is a cost 

to resistance, and act to slow the rate of resistance evolution. However, it may 

be difficult to differentiate between tolerant and resistant phenotypes. 

 

My observation that fecundity (lifetime and peak) of females from drug-selected 

lines was greater in both drug-free and treated environments relative to control 

lines has significant implications for the treatment of nematode infections. 

Several previous studies on parasitic nematodes have compared reproductive 

fitness of resistant and susceptible strains, but the results have been 

contradictory. For instance, a study of Benzimidazole-resistant strains of 

Haemonchus contortus found that their fecundity was higher than that of 

susceptible strains (Kelly et al. 1978) but a similar study using different strains 

of the same species obtained the opposite result (Maingi, Scott, and Prichard 

1990). However, both of these studies used resistant and susceptible isolates 

from different locations and therefore the contrasting results could be due to 

the different environmental background of isolates. When resistant and 

susceptible isolates from the same strain have been compared, no difference 

was observed in fecundity (Elard, Sauve, and Humbert 1998). Humbert et al 

(1998) compared female nematodes collected from slaughtered sheep infected 

with a strain containing resistant and susceptible worms. The number of 
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offspring produced by these females and the development time of the offspring 

did not differ with respect to genotype. Collectively, these studies show that 

differences in life history traits have been observed following field and artificial 

selection for anthelmintic resistance but in other cases no response in life 

history occurred. This could be due to life histories of worms responding to 

differently to different classes of drug. Alternatively, life histories of different 

species of nematode could respond differently to individual drugs. However, 

responses of life histories to drug selection have shown to be inconsistent even 

in situations where a single species has been selected for resistance to one drug 

(Bartley et al. 2015). Bartley et al (2015) selected three different isolates of T. 

circumcincta in vivo for resistance to Monepantel over 9 to 13 generations and 

measured responses in life history relative to ancestral isolates. Shorter 

development time, larger adult size and higher fecundity was observed in only 

one of the selected isolates. Interestingly, this isolate was also resistant to four 

other classes of anthelmintic prior to selection. Thus, the previous history of 

populations, as well as species and drug type could play a role in how life 

histories of parasites respond to drug selection. The larger size of drug-selected 

lines in my study is most likely responsible for the observed increase in 

fecundity. Body size has been found to be a good predictor of fecundity across a 

range of nematode species (Morand 1996); therefore, evolved increases in size 

are likely to be associated with greater fecundity. Worryingly, if drug selection 

favours increased size then resistant or tolerant parasites may be more fecund 

than drug naive susceptible parasites.  

 

 

5.5.3 Effects of high mortality and density-dependant selection on life history 

traits 

 

 

The random-mortality lines showed a similar increase in size as drug-selected 

lines in the drug-free environment relative to zero-dose lines but not in the 

drug-treated environment. In the drug-free environment, lifespan of random-

mortality lines remained similar to drug-treated and zero-dose lines. Lifetime 

fecundity of random-mortality lines was intermediate to drug-treated and zero-

dose lines, but peak fecundity of random-mortality lines was similar to zero-dose 
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lines. In contrast, in the drug-treated environments all measured life history 

traits of random-mortality lines were similar to zero-dose lines. In my previous 

study (Chapter 4; Reynolds et al. 2016), random mortality lines showed higher 

survival relative to the zero dose lines when challenged with Ivermectin. The 

drug resistance assay used to assess susceptibility in that study measured 

juvenile survival and one day of adult survival, whereas, the drug-treated 

environment in the lifespan assay exposed females to the drug throughout their 

lives. A response in survival of juveniles and not adults, suggests that the 

response is stage specific, as only juveniles from random mortality lines show a 

decrease in susceptibility. A stage specific reduction in drug sensitivity has been 

previously observed in juveniles of Haemoncus contortus (Sarai et al. 2015). In 

Sarai et al 2015, juvenile stages of the parasite were treated with Levamisole for 

nine generations, but adults remained unexposed during selection; drug 

resistance assays on both juveniles an adults showed only juveniles had evolved 

resistance. However, in my study, the drug-selected lines showed an increase in 

lifespan when exposed to a treated environment, suggesting adaptation of drug-

treated lines beyond that observed in random–mortality lines. During the 

selection experiment worms from the drug-treated regime were exposed to 

Ivermectin throughout their life, and both juvenile survival and adult lifespan in 

the treated environment showed an increase after drug selection. Thus, drug-

selected lines showed adaptation beyond that observed in random–mortality 

lines in treated environments, and selection of random mortality lines in a low-

density drug-free environment, only conferred an advantage in survival for the 

juvenile stage when challenged with a novel drug treated environment. 

 

The similarities between drug-treated and random mortality lines in terms of 

size and fecundity in a drug-free environment could be due to similarities in 

mortality and density between the two treatments during selection. Roper et al 

(1996) found that populations of D. melanogaster selected at low densities 

evolved larger size when maintained in a low-density environment, and larger 

size was associated with greater fecundity. Low-density environments can select 

for larger size if selection favours delayed maturation because of benefits in 

fecundity to larger adults (Bassar et al. 2010). However, where low density 

occurs as a result of high extrinsic mortality, a different response of life history 

might be expected. For example, early maturation and reduced fecundity will be 
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selected for where the timing of extrinsic mortality on adults is imposed 

relatively early in adult life (Roff 1992; Stearns 1992; Stearns, Ackermann, and 

Doebeli 1998). In contrast, if adult mortality is high immediately after 

maturation then selection will favour remaining in the juvenile stage longer and 

achieving a larger adult size and greater fecundity (Stearns et al. 2000; Cameron 

et al. 2013). During the selection experiment, adult worms were culled early in 

their lives to simulate the high mortality occurring in drug-treated regimes. 

Thus, high mortality in both drug-treated and random mortality lines resulted in 

a greater investment in growth and higher fecundity. 

 

 

 

5.5.4 Conclusions 

 

 

This study is the first to my knowledge that explores how a range of life history 

traits of nematodes changes in response to drug-treatment. I have shown that 

size at maturity, fecundity and lifespan are all affected in lines previously 

selected in a drug-treated environment, but this depends on which environment 

populations are exposed to. If these results generalise to parasitic nematodes, 

this may have important consequences for their pathogenicity and transmission, 

especially if individuals from drug-treated populations become larger, and thus 

could cause more host damage as well as producing greater numbers of 

offspring, increasing the chances of transmission (Skorping 2007; Skorping and 

Read 1998). In addition, the immune response of hosts is another complicating 

factor that makes the study of life-history responses to drug selection 

complicated, as immune responses of the host may vary with differences in life-

history of parasites (Leignel and Cabaret 2001). Experimental studies using free-

living nematodes provide an opportunity to explore how life-history traits 

respond to drug-treatment in isolation of host immune responses and allow 

control of density-dependent effects. Developing such studies to encompass 

effects including host immune responses would be a logical next step and bring 

us closer to making accurate predictions of how parasite life histories will 

respond to drugs and vaccines. 
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Chapter 6: General discussion 

 

 

6.1 Summary 

 

 

The overall aim of this thesis was to assess how life-history traits change in 

response to drug selection, and whether changes in population density and the 

risk of mortality resulting from drug application are involved in the observed 

evolved responses in these traits. In Chapter 2, I established the relationship 

between C. remanei survival and Ivermectin dose so that the strength of 

selection imposed in the experimental evolution study in Chapter 4 could be 

chosen and applied at a consistent dose. Additionally, the survival data from the 

dose response assay were used to show that current methods of fitting dose 

response data in parasitology studies can be improved upon and provide a test of 

a cost of resistance by not removing background mortality from survival data 

prior to analysis. Using the best-fitting dose response curve was shown to 

improve the accuracy of estimates of summary statistics used to measure 

resistance, such as LD50 and LD99, and incorporating a cost of resistance into the 

analysis ensured that the maximum amount of useful information on resistance 

could be extracted from dose response data.  

 

In Chapter 3, I used simulation-based power analyses to explore how design 

choices used in selection experiments, such as the number of replicate selection 

lines, the number of samples assayed within each replicate line, and variation 

due to repeated measures when assessing traits at the end of selection, can 

affect the power of a study. My study demonstrated that selection experiment 

designs incorporating multiple sources of variation can be assessed using 

simulation-based methods comparable in complexity to those used to analyse 

experimental data. This forces researchers to think about the analytical tools 

they will use prior to conducting a study. My results showed that the number of 

replicated experimental lines, and within-line sampling effort that have typically 

been used in published studies to measure responses in survival in culling 

selection experiments, were prone to low power to detect a difference between 

treatments, when all potential sources of variation were considered.   
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Chapter 4 explored the relationship between dose and the rate of resistance 

evolution in replicated lines of Caenorhabditis remanei, asking whether survival 

of lines selected in drug-treated environments increased, and if this varied with 

dose. In addition, I maintained lines where mortality was imposed randomly to 

control for differences in density between drug-treatments to distinguish 

between the evolutionary consequences of drug-treatment vs ecological 

processes due to differences in density and mortality between drug-treated and 

control lines. After 10 generations, both drug-selected and random-mortality 

lines showed an increase in survival when challenged with Ivermectin, and the 

magnitude of this increase varied with the intensity of selection and life-history 

stage. My results suggest that interactions between density-dependent 

processes, and life-history traits may mediate evolved changes in susceptibility 

to control measures.  

 

Finally, in Chapter 5, I investigated the effects of selection in the high mortality 

environments (drug-treated and random mortality; Chapter 4) on life history 

traits, by measuring larval and adult size, female lifespan and fecundity in both 

drug-free and treated environments, compared to control populations. In 

addition, life history traits of controls were compared to the ancestral 

population to distinguish effects on life history due to rapid passage through 10 

generations of selection. Adult size was larger for both drug-selected and 

random-mortality lines compared to control lines, but only when assayed in 

drug-free environments. In contrast, lifespan was longer for drug-selected lines 

in drug-treated environments and was not affected by the random-mortality 

treatment, when compared to controls. Drug-selected lines had higher fecundity 

in both drug-free and treated environments, whereas fecundity of random 

mortality lines was intermediate to drug-selected and control lines in the drug-

free environment but similar to controls in the treated environment. These 

results suggest that life histories of nematodes respond to selection in drug-

treated environments, which acts via ecological processes due to the timing of 

mortality and density-dependence. Failure to take responses of life history traits 

into consideration when applying control measures could lead to unfavourable 

outcomes, such as larger, more fecund parasites and over-estimation of 

evolution of genetically controlled resistance. 
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6.2 Dose response modelling and costs of resistance 

 

 

Drug efficacy can be preserved with the help of effective monitoring practices, 

which measure changes in resistance of populations treated with control 

measures (Coles et al. 2006; Bagi et al. 2015). An approach common to 

assessment of resistance in many parasite and pest species is to use a dose-

response assay to characterise the relationship between survival and dose of the 

control agent. My results suggest that a risk for such studies is that they will fail 

to fit the most appropriate dose curve simply because only a single model is 

assessed; fitting the wrong curve could result in incorrect estimates of summary 

statistics used to quantify resistance. My study focused on the relationship 

between dose and survival in only one species and using a single drug treatment. 

Comparing a range of dose-response curves fit to data collected in dose-response 

field studies of parasites or disease vectors would give a clearer picture of what 

effect model selection has on the accuracy of resistance estimates.   

 

The common practice of removing background mortality from datasets prior to 

analysis means that an opportunity to measure a cost of resistance is lost. I have 

shown that by incorporating background survival into the analysis of dose 

response data, a test of a difference in the upper asymptote of the survival 

curve could be used to detect a relatively small cost of resistance. Fitting a 

range of dose response curves, which allow the most appropriate model to be 

selected and including a test of the cost of resistance maximises the amount of 

useful data extracted from a study. This information could play an important 

role in decisions about management strategies employed to control target 

species, such as whether or not to replace an existing treatment with another 

where the costs of resistance are greater and could slow the rate of resistance 

evolution. In this case, using a treatment with a higher cost of resistance would 

slow the rate of resistance evolution, because susceptible individuals with higher 

survival are likely to produce more offspring, resulting in a smaller proportion of 

resistant individuals in the next generation. My study used simulated data to test 

for a cost of resistance in terms of a difference in the upper asymptote of the 
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dose-response curve. Conducting the same analysis on field data across a number 

of different species and control agents would provide a more effective test of 

how model estimates are affected by choice of dose-response curve, and 

whether incorporating a test of a cost of resistance into analysis would be 

useful.  

   

 

6.3 Powering future selection experiments 

 

 

Research areas such as animal behaviour (Taborsky 2010; Smith, Hardy, and 

Gammell 2011) and biomedical science (Ioannidis 2005; Button et al. 2013) have 

expressed concern that the statistical power of reported studies is often below 

the recommended minimum of 80%. This could be attributed to a lack of 

awareness and/or understanding of the concept of power analysis. Alternatively, 

researchers may lack the technical know-how needed to conduct power analysis 

for studies that have complex designs incorporating multiple sources of 

variation. Within the field of experimental evolution, specific guidance on using 

simulation-based power studies to optimise the design of selection experiments 

has recently become available, and has been used to optimise designs of evolve 

re-sequence studies (Baldwin-Brown, Long, and Thornton 2014; Schlötterer et al. 

2015). However, little attention has been paid to optimising the design of 

selection experiments measuring changes in phenotypes, in terms of publications 

about power analysis, but it is difficult to demonstrate evidence of a problem 

with underpowered studies without conducting a meta-analysis. Funnel plots can 

be used to detect bias in meta-analyses, and could give an indication whether 

there is any evidence of a publication bias against non-significant results (Egger 

et al. 1997; Sterne and Egger 2001). 

 

My results, concerning the number of replicate selection lines and the number of 

samples taken from within each replicate line, conform to those of power 

simulations of evolve re-sequence studies: increasing the number of selection 

lines and sampling effort from those lines resulted in higher power (Baldwin-

Brown, Long, and Thornton 2014). Furthermore, my results suggest that besides 

tradeoffs between these types of logistical constraints, additional sources of 
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variation such as those that occur during measurement of phenotypes have a 

negative effect on study power. I have demonstrated with a practical example 

how to use simulation-based power analysis methods to optimise the study 

design of selection experiments, based on simulating data for the actual 

response and explanatory variables that would be used in the analysis of the real 

data. These simulations can be extended to accommodate most complex 

designs, and to incorporate a range of response variable distributions (Bolker 

2007). My study focused on a response variable with a binomial error 

distribution, conducing similar power studies for other types of response variable 

would given an indication of what kind of experimental design is appropriate for 

traits with different error distributions. In addition, my study did not incorporate 

many other factors, which are important in experimental evolution studies e.g. 

initial population size, standing genetic variation, strength of selection and the 

number of generations under selection. Simulation allows all these factors to be 

included in power studies in addition to accounting for multiple sources of 

variation. Collectively, my results indicate the importance of clearly defining a 

biological question and designating sources of variation before performing 

simulations aimed at detecting evidence of a biologically meaningful effect for a 

given study design scenario.   

 

 

6.4 Drug dosage and the rate of resistance evolution 

 

 

Previous research on under-dosing has suggested that low doses may promote 

the evolution of resistance, especially where the basis of resistance is polygenic 

(Manalil et al. 2011; Shi et al. 2013), and that varying the level of under dosing 

could affect the rate at which resistance evolves (Busi and Powles 2009). The 

mathematical modeling study of Barnes et al (1995) used to explore the effects 

of under dosing suggested that the outcome in terms of the rate of resistance 

evolution would depend on the genetic mechanism underlying resistance. My 

study supports the view that lower doses slow the rate of resistance evolution 

because lines selected at the lower drug dose showed less response to selection 

than high dose lines.  This conforms to the view that under-dosing may reduce 

the evolution of resistance by allowing more susceptible individuals to survive 
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(Barnes, Dobson, and Barger 1995). My results also add to the current body of 

work on dosage and resistance evolution (Barnes, Dobson, and Barger 1995; Busi 

and Powles 2009; Manalil et al. 2011), with the finding that life history stage 

interacts with drug dose. Both juveniles and adults from high-dose lines evolved 

resistance to Ivermectin, but only juveniles from low-dose lines showed 

increased survival in the treated environment. My experiment used only two 

doses of Ivermectin, but it would be interesting to select populations over a 

range of doses and explore the interaction between life history stage, dose and 

susceptibility. 

 

 

6.5 The evolution of tolerance 

 

 

Resistance to a control agent is defined as a genetically based decrease in 

susceptibility occurring as a direct result of exposure to a control agent 

(Tabashnik et al. 2014). This definition of resistance emphasizes heritable 

change in susceptibility due to long-term exposure. Thus, the spread of 

resistance through a population occurs because of an increase in the frequency 

of pre-existing alleles conferring reduced susceptibility, novel mutations or 

migration of resistance alleles between populations, when populations are 

exposed to a control agent for an extended period of time (Gilleard and Beech 

2007). By this definition, resistance evolves because of an increase in the 

frequency of resistance alleles due to drug application. In Chapter 3, I showed 

that reduced susceptibility to drug treatment in random mortality lines evolved 

in populations exposed to an environment that mimicked the mortality and 

population density observed in the drug-treated environment. I defined this 

reduced susceptibility as tolerance rather than resistance, because reduced 

susceptibility evolved in drug-naive populations as a result of selection on traits 

conferring a benefit in a random mortality environment, which also conferred an 

advantage in terms of survival in the drug-treated environment. Although 

tolerance has many definitions, one version is natural variation in susceptibility 

already pre-existing within or between populations rather than a result of 

selection pressure imposed by control measures (Scott 1995). The evolution of 

tolerance is therefore distinct from that of resistance in that tolerance evolves 
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due to pleiotropic effects and selection on some other unknown trait that results 

in pre-adaptation in the form of reduced susceptibility or reduced efficacy of 

the drug (Puniamoorthy et al. 2014).  

 

How the factors that affect resistance and tolerance interact could have 

significant impacts on the evolution of susceptibility. For example, environments 

which are inhospitable to free-living larval stages of parasitic nematodes reduce 

density, and promote the evolution of resistance (Besier and Love 2003; 

Lawrence et al. 2007; Leathwick and Besier 2014); although, what proportion of 

resistance is due to drug application or tolerance in this case is difficult to 

establish. A further example of the potential of tolerance evolution to influence 

susceptibility can be seen in increasing cuticle thickness of bed bugs (Lilly et al. 

2016). Resistance to pyrethroid insecticides was found to be associated with 

thicker cuticles of bed bugs collected in Sydney, Australia. However, resistance 

to pyrethroids could have occurred as a result of tolerance, as thicker cuticles 

could be selected for in drier environments (Benoit et al. 2007), and increased 

resistance to pyrethroid insecticides by bed bugs coincides with increasing use of 

air-conditioning since the turn of the century. In addition, tolerance evolution 

may not be confined to metazoans; drug naive soil bacteria have been shown to 

exhibit reduced susceptibility to commercial antibiotics, due to selection on 

efflux pumps, which overcome the effects of natural toxins, but are also 

effective against synthetic drugs (Walsh and Duffy 2013). 

 

It is difficult to separate resistance from tolerance unless this is explicitly 

incorporated into experimental design but this also requires knowledge about 

which traits confer differences in tolerance to a particular control agent. To 

understand how resistance and tolerance interact, future research should focus 

on identifying which traits are associated with tolerance and the degree of 

influence they may have on susceptibility. The Caenorhabditis model system 

allows a range of traits to be assessed over the course of selection experiments 

(Gray and Cutter 2014), and would provide an invaluable model to explore 

factors which may affect the evolution of resistance and tolerance. For example, 

establishing continuous populations with over lapping generations in flasks would 

allow large populations to be kept, which approximate those of parasitic 

nematodes in the field. Manipulating population size by drug-treatment and 
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artificially by random culling in addition to maintaining control lines would allow 

the population dynamics and age structure of drug-treated lines to be explored 

in detail. Furthermore, measuring life-history traits of continuous populations at 

the same intervals as population counts would allow any changes in population 

density that affect life-history to be identified. This type of selection 

experiment could potentially provide a clearer picture of the eco-evolutionary 

responses to drug-selection. 

 

 

6.6 Susceptibility and life history evolution 

 

 

Differences in population density between drug-treated and drug-free 

populations of parasites and pests could result in differential selection due to 

density-dependent processes such as competition (Chehresa, Beech, and Scott 

1997; Gilleard and Beech 2007), and these processes can also result in 

evolutionary changes in growth, survival and reproduction (Reznick et al. 2012). 

In addition, high extrinsic mortality imposed by application of a control agent 

could select for either early maturation, small size and low fecundity or delayed 

maturity, larger size and greater fecundity, depending on the timing of mortality 

(Stearns et al. 2000). High extrinsic mortality imposed early in adulthood favours 

selection for early maturation, but if mortality is imposed at the time of 

maturation and for the whole of the adult lifespan, then selection favours 

remaining in a juvenile stage for longer. In Chapter 4, I found that lifespan and 

fecundity of drug-selected lines increased, relative to controls, when evolved 

lines were challenged with drug treatment, suggesting that the life history of 

drug-treated lines adapted to the treated environment. In addition, worms from 

drug-treated lines were larger and more fecund than control lines when exposed 

to the drug-free environment, suggesting that drug treatment of parasites could 

result in larger, more fecund parasites, as suggested by Skorping and Read 

(1998) and  Lynch, Grimm, and Read (2008). If parasite life histories adapt to 

treated environments and drug-selected populations have greater fitness in 

drug-free environments then this could have serious implications for parasite 

control and transmission; drug-adapted phenotypes would produce more 

offspring than susceptible phenotypes, resulting in increased transmission of 
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drug-adapted populations. However, imposing the same density, and rate and 

severity of mortality on random mortality lines described in Chapter 4 had no 

effect on the life history of random mortality lines when exposed to the drug-

treated environment, which contradicted the findings of Chapter 3, where 

selection in the random mortality environment caused higher survival in the 

treated environment. A response in life history only in juveniles could explain 

this discrepancy (Sarai et al. 2015); juvenile survival of random mortality lines in 

the resistance assays responded to selection in low density environments, whilst 

adult lifespan in the life history assays showed no response to this novel 

environment. However, in the drug-free environment, similarities between the 

life history of both drug-treated and random mortality lines in terms of larger 

size and greater fecundity could be due to similarities in mortality and density 

between the two treatments during selection. These findings are in agreement 

with the view that high extrinsic mortality early after maturity or density 

dependant processes could favour remaining in the juvenile stage longer and 

achieving a larger adult size and greater fecundity (Stearns et al. 2000; Reznick 

et al. 2012; Cameron et al. 2013). Measuring development time in addition to 

lifespan of selected lines in treated environments would give a clearer picture 

whether juvenile or adult worms suffer greater extrinsic mortality. My thesis 

suggests that there may be a complex relationship between extrinsic mortality, 

density-dependent regulatory processes and life history of populations 

challenged with control measures. I recommend that future work on resistance 

should incorporate adequate controls for differences in parasite/pest density 

between treatments when assessing drug resistance evolution.   

 

 

6.7 Conclusions 

 

 

Understanding life histories and the selection pressures that shape them is a 

fundamental goal of evolutionary ecology. Ecological change such as changes in 

density or extrinsic mortality can lead to evolutionary changes in life history 

traits (Reznick 1982; Roff 1992; Stearns 1992), which in turn can affect density, 

resulting in a feedback loop (Kokko and López-Sepulcre 2007). These types of 

eco-evolutionary interactions can result in rapid evolutionary responses in a 
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variety of traits induced by changes in the environment, mortality rates, and 

competitive interactions (Reznick and Ghalambor 2001). Rapid adaptive change 

is often associated with populations subject to human activities such as 

predation (Darimont et al. 2009), so it is logical to assume that our efforts to 

control parasitic and pest species will result in similarly rapid adaptive 

responses. Previous research on the effects that control measures have on life 

history traits has tended to focus on evidence of costs of resistance (reviewd by, 

Kliot and Ghanim 2012), but it has been proposed that control measures could 

have a positive effect on life history (Lynch, Grimm, and Read 2008). My thesis 

shows that ecological changes occurring as a result of selection in treated 

environments could result in increased fitness of parasites and pests via 

interactions with life history. This will have significant implications for control 

methods if selection in treated environments drives the evolution of larger more 

fecund parasites and pests. My results suggest that life histories of parasites and 

pests should be monitored as part of mitigation strategies to control populations 

in order to prevent unintentional selection of undesirable traits in the target 

populations. Future work should explore the limits of how much evolutionary 

change is possible in the life history of populations treated with control 

measures. For example, parasitic nematode species vary massively in size, 

development time, longevity and fecundity (Skorping, Read, and Keymer 1991); 

thus, intense selection in treated environments could drive significant change in 

life history traits. To explore the limits of evolved responses of life-history to 

drug selection using experimental evolution, the strength of selection could be 

gradually increased every generation, to track the dose of drug required to 

cause a target mortality level. The rate of change in life history traits could then 

be measured from frozen samples taken at regular intervals during selection.   

 

My use of a novel treatment during the selection experiment, which controls for 

both the greater mortality and differences in density of drug-treated 

populations, suggests that a population‘s tolerance to control measures can 

evolve independently (i.e. without previous exposure), as a result of pleiotropic 

effects of selection on traits that confer reduced susceptibility. My results 

provide experimental evidence of the evolution of tolerance in action. This 

raises the question of whether previous studies of resistance not incorporating 

such controls should be re-evaluated, and how influential tolerance evolution is 
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in efforts to control parasite and pest species. My thesis suggests that eco-

evolutionary processes involved in life history adaptation to control measures 

could be responsible for the evolution of tolerance. Therefore, eco-evolutionary 

responses of target populations to changes in the environment, mortality rates 

and competitive interactions should be taken into consideration when 

implementing control strategies. Research into invertebrate susceptibility to 

insecticides might provide a good opportunity to establish how important 

tolerance evolution is in the field, because crop pests have been intensively 

studied and life history traits, as well as evolutionary processes are much easier 

to monitor than in parasitic species.  

 

Finally, my thesis shows that both resistance and tolerance can affect 

susceptibility to xenobiotics, and that the evolution of both should be viewed as 

distinct processes. Resistance is driven directly by drug selection, tolerance on 

the other hand is driven by selection on some other unknown trait that results in 

pre-adaptation, and both result in reduced susceptibility. Thus, possible 

environmental drivers of tolerance should be considered in resistance 

management strategies. In addition, both these processes have the potential to 

interact with life history, which could affect the reproductive schedule of the 

target populations and their chance transmission.   
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Appendix A 
 

 

Assement of indirect mortality at low doses of Iveremctin 

 

 

To explore whether low doses affects model fitting of the survival-dose 

relationship, Weibull-1 curves were fitted to the whole LDT dataset including 15 

doses (0, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9 and 10 ng/ml Ivermectin), 

and a reduced dataset in cases where higher mortality due to indirect mortality 

was suspected at 0.5 and 1 ng/ml Ivermectin. Weibull-1 models were fitted to 

the survival data because these are the most accommodating in cases where 

asymmetry in the dose-response curve occurs, causing survival to decrease more 

gradually over the initial upper slope of the dose response curve, compared to 

log-logistic models. Because the datasets for each curve were of different sizes, 

models could not be compared formally using likelihood ratio tests. Instead, 

estimates of model parameters (LD50, LD99, and survival at the upper asymptote) 

were used to assess the goodness-of-fit of the two dose response models. 

 
 
Does indirect mortality at low doses affect fitting a dose response curve? 

 

 

The three-parameter Weibull-1 model using all the data collected in the dose 

response assay estimated the LD50 and LD99 of Ivermectin at 1.83 (95% CI: 1.78, 

1.89), and 3.57 (95% CI: 3.44, 3.71), respectively (Fig A1); predicted mean 

survival at the upper asymptote of the dose response curve was 72% (95% CI: 71, 

74%). The three-parameter Weibull-2 model with data excluded at 0.5 and 1 

ng/ml Ivermectin estimated the LD50 and LD99 of Ivermectin at 1.85 (CI: 95%: 

1.80, 1.90; Fig 2.3, Chapter 2), and 3.45 (3.34, 3.56), respectively; predicted 

mean survival at the upper asymptote was 76% (95% CI: 74, 78%). Thus, the LD50 

and LD99 estimates of the two curves were similar, but at higher survival (>50%) 

the Weibull-1 model using all the data resulted in an overestimate of mortality 

at very low doses, and underestimate of survival at the upper asymptote, 

compared to the reduced dataset excluding the values at 0.5 and 1 ng/ml 

Ivermectin (Fig A1 and Fig 2.3, Chapter 2).  



 
 

 137 

 

 

 
Fig A1 Observed data and fitted Wiebull-1 model of the relationship between 
survival of C. remanei and concentration of Ivermectin using all the data 
collected in the dose response assay. Black circles show observed mean survival 
at each concentration of Ivermectin used in the larval development test. Dark 
grey bands show 95% confidence intervals for mean survival based on the model.  
 
 

 

My data suggest that indirect mortality not due to the drug occurred at low 

doses of Ivermectin and had a significant effect on predictions of survival, both 

at low doses, where the drug causes little mortality, and in the estimation of 

background mortality. It is difficult to assess whether indirect mortality at low 

doses of Ivermectin is common in other studies using LDTs because often only 

estimates of the LD50 and LD99 are published and the original data are not 

included. This additional source of mortality could be due to repellency at sub-

lethal doses as a result of worms leaving the surface of agar plates in an attempt 

to evade the effects of the drug. Hyperactivity of worms exposed to low doses of 

Ivermectin has been shown to occur in C. elegans (Ardelli et al. 2009), and the 

mode of action of the drug is thought to be similar in parasitic species, 

suggesting that repellency could occur in parasitic species (Cook et al. 2006). 
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Assays which measure motility over a range of doses could clarify the effect that 

low doses have on worm movement, with the expectation that the dose-response 

relationship between motility and concentration would show a hormetic trend if 

repellency had an effect.  
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Appendix B 

 

 

Statistical methods 

 

 

All statistical analyses were performed using R v 3.1.2 (R Core Team 2014) and 

we defined a significance threshold of P = 0.05 for all tests. Our first question 

was concerned with drug dose efficacy and asked ‗What is the relationship 

between C. remanei survival and Ivermectin dose over a range of 

concentrations?‘ The doses required to cause 40% and 80% mortality were 

estimated, with 95% CI‘s, using the drc package (Ritz and Streibig 2007). In order 

to calculate estimates of these two doses we constructed a dose response curve 

of the relationship between worm survival and concentration of Ivermectin. Dose 

response curves are generally sigmoidal and can be defined by four parameters: 

the first two parameters are the upper and lower asymptote, where changes in 

concentration have no effect on survival (Ritz 2010). The third parameter is the 

slope of the curve, which defines the potency of the drug where efficacy 

increases from zero to its maximum, the more potent a drug is the steeper the 

curve will be. The fourth parameter is the inflection point, where the curve 

changes from concave to convex and is located at or near the LD50 (dose causing 

50% mortality) for the drug. We fitted a range of dose-response models (log-

logistic, Weibull-1 and Weibull-2) with the lower asymptote fixed at 0% survival 

and used maximum likelihood to select the most appropriate model of survival 

data. Ivermectin concentration and batch were fitted as fixed effects in our full 

model. To assess whether the relationship between survivorship and Ivermectin 

concentration remained the same between batches performed at different times 

(i.e. repeatability), batch was removed from the model and tested against the 

full model. Estimates of the required doses, with 95% CIs, were then derived 

from model predictions. 

 

Our three remaining questions involved potential changes in survival of evolved 

lines used in the selection experiment, which could result in differential survival 

between treatments. We addressed these questions with a common general 
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approach described below. We conducted the analyses on discrete data sets 

from the resistance bioassays, which specifically addressed our research 

questions. In order to simplify our analyses, survival of high mortality (HD and 

HR) and low mortality treatments (LD and LR) were contrasted with control Z 

lines in separate tests, unless explicitly stated otherwise. The analysis compared 

survival of lines from the original selection experiment treatment groups (drug-

treated, random mortality and zero dose) using generalised linear mixed models 

with the glmer function in the lme4 package and assuming a binomial error 

distribution with a logit link function (Bates et al 2014). Treatment and 

generation, as well as the interaction between them, were fitted as fixed 

effects. The evolutionary replicate (line) was fitted as a random effect. An 

observation-level random effect was fitted to account for any overdispersion 

between replicate lines in the selection experiment and repeated sampling of 

populations in the drug resistance bioassay (Browne et al. 2005). We refer to this 

model for the fixed effects as the full model. Treatment effects in the selection 

experiment were tested using likelihood ratio tests. The null hypothesis of no 

difference in survival between the three treatments (H0: Drug treatment = 

Random mortality = Zero dose) was tested by comparing the full model with a 

null model with no fixed effect of treatment or treatment x generation 

interaction. Generation was kept in the null model to account for any drift in 

survivorship. This first step of the analysis tested for significance of fixed effects 

and interactions between them. A further three post-hoc measures were then 

used to assess the effects of individual treatments; differences in survival in the 

drug treatment relative to the zero dose treatment were tested by comparing 

the full model to a null model where survival in drug and zero dose treatments 

were constrained to be equal (H0: Drug = Zero). Differential survival in response 

to the random mortality treatment (H0: Random = Zero) and density-dependence 

in response to selection (H0: Drug treatment = Random treatment) were tested 

in the same way. This general approach was used throughout the analyses to 

answer our research questions by establishing any evidence of differential 

survival between treatments challenged with different drug doses and at 

different life-history stages.  

 

Firstly we asked: ‗Is there an increase in survivorship across generations of 

populations selected in drug-treated environments, and does this vary with 
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dosage?‘ The formal assessment of whether heritable increases in survivorship 

occurred in drug-selected lines was tested by challenging drug-selected and zero 

dose lines to the same high and low doses of Ivermectin used during selection. 

Survival data of HD lines exposed to a high dose of Ivermectin was assessed by 

the null hypothesis of no difference in survival between the three treatments 

(H0: HD = HR = Z) using the general approach discussed. After establishing a 

significant effect of treatment on survival a post-hoc test was performed with 

the null hypothesis of no difference in survivorship between HD and Z lines (H0: 

HD = Z). Any evolved increase in the survivorship of LD lines relative to Z lines 

was assessed under the null hypothesis (H0: LD = LR = Z) and if treatment was 

significant, a post-hoc test was applied to assess differential survival between 

drug-treated and control lines (H0: LD = Z).  

 

Secondly we asked ‗Does density-dependent selection affect the apparent 

evolution of resistance in selected lines?‘ We challenged random mortality (HR 

and LR) treated lines to both high and low doses of Ivermectin and again used 

our general approach to assess differential survival between selection 

experiment treatments. Differences in survivorship between high mortality 

treatments where the null model (H0: HD = HR = Z) was rejected were tested 

with two post-hoc tests. The first tested for a difference in survival between HR 

and Z lines, and the second, differential survival between HD and Z lines. 

Assessment of low mortality lines was conducted using exactly the same 

approach but with the null model (H0: LD = LR = Z). 

 

Thirdly we asked ‗Is there a cost of adaptation to drug-treated environments in 

terms of survival in drug-free environments?‘ We answered this question by 

exposing evolved lines to a drug-free environment and used our general 

approach to assess differences in survival between treatments, with the 

assumption that if there were a cost to adaptation then drug-treated lines would 

show lower survival than control (Z) lines. 

 

Finally, we asked ‗Does survival of different life-history stages (juvenile and 

adult) respond to drug-selection in the same way? To answer this question we 

conducted the analyses used in questions two to four separately on survival data 

collected at 52 and 75 hours and informally compared differences of model 
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predictions from the two time points. In addition, we pooled our whole datasets 

from the resistance bioassays using survival data from all drug-treated 

environments at both 52 hours (juvenile survival) and 75 hours (adult survival) 

and asked whether there were any interactions between selection experiment 

treatment, bioassay dosage and life-history stage. This was done for generations 

5 and 10 independently to account for any changes in survival over generations. 

If there was no evidence of a three-way interaction we explored two-way 

interactions.  We assumed that any evidence of interactions of life-history stage 

with treatment, dosage or both suggests that survival responded differently in 

juveniles and adults. We used a full model with fixed effects of treatment, 

bioassay dosage and life-history stage, as well as all possible two-way 

interactions between them. Random effects were: selection line, bioassay 

replicate and an observation-level random intercept. The full model was 

compared with a null model without the interaction of interest using a likelihood 

ratio test to assess the significance of interactions. 

 

 

Drift and loss of genetic diversity 

 

 

The evolutionary potential of small populations may be affected by drift due to 

the loss of genetic variation (Allendorf 1986). During the course of the selection 

experiment, population sizes varied both between lines within a treatment, and 

between treatments, due to bottlenecks imposed by drug application or random 

mortality. These bottlenecks could have resulted in a reduction in genetic 

diversity. Although we have no data on levels of genetic diversity it is worth 

considering the risk and extent of the loss of genetic variation in the selected 

lines used in this study. Allendorf (1986) outlines three useful measures of 

genetic variation and its loss: 1) changes in heterozygosity; 2) loss of multiple 

equally frequent alleles and 3) loss of rare alleles. Using census data from the 

selection experiment each measure of genetic variation was estimated for the 

HR and zero dose treatments at each generation (Table B2). Predicted changes 

in heterozygosity were calculated using equation (1) where N is population size. 

The expected proportion of the original heterozygosity remaining after each 

generation is:  
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This expectation is only valid if there are no selective differences between 

alleles; all other genetic diversity calculations in this paper also make this 

assumption of allelic neutrality. Predicted changes in the loss of multiple equally 

frequent alleles were calculated using equation (2). 

 (  )      ∑(     

 

   

)                                                       ( ) 

 

Where n equals the number of alleles in the population, and p the frequency of 

an allele. We calculated the predicted number of alleles present at each 

generation of the selection experiment assuming the initial number of alleles for 

a given locus was 10. This potentially overestimates genetic diversity within our 

study species but C. remanei have been shown to be a particularly genetically 

diverse species (Cutter, Baird, and Charlesworth 2006; A. Dey et al. 2013). The 

greater the numbers of alleles are at a given locus, the more likely it is an allele 

will be lost where alleles are considered to have equal frequency. Therefore, 

our high estimate of initial allele numbers may exaggerate the risk of allele loss; 

lower estimates of initial allele numbers would result in allele loss being less 

likely. Rare alleles (P < 0.01) are especially susceptible to loss during a 

bottleneck. The probability of losing a rare allele with frequency p = 0.01 is 

given by equation (3). 

 

(     )
                                                                  ( ) 

 

An assumption was made that rare alleles were present at a frequency of 0.01, 

as this should provide some measure of the potential for rare allele loss in both 

HR and Z lines during the course of the selection experiment. 

 

In HR lines, predicted heterozygosity decreased by 10% and 15% at generations 5 

and 10, respectively (Table B2) whereas estimated heterozygosity of Z lines 

decreased by 5% and 10% (Table B2). The estimated number of alleles present in 

HR lines fell from 10 to 9.35 and 9.24 at generations 5 and 10, respectively, 
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whereas in Z lines there was no decrease over 10 generations (Table B2). The 

high cumulative risk of loss of rare alleles by generation 5 (Table B2), suggests 

that any rare alleles would be unlikely to persist within both HR and Z lines. 

Heterozygosity and the number of alleles remaining after a bottleneck are 

expected to be important in terms of a population‘s ability to respond to 

selection. Populations subjected to bottlenecks such as the HD and HR 

treatments in this study could be subject to considerable drift as a result of 

bottlenecking events. The increase in survivorship of High-dose and random-

mortality lines could be a result of loss of genetic variation due to drift, and 

would require that all populations drifted in the same direction. However, our 

theoretical predictions of the loss of genetic diversity in HR and Z lines suggest 

that both treatments went through similar losses of genetic diversity. Predicted 

heterozygosity and the total number of alleles did decrease more rapidly in HR 

lines relative to Z lines but the difference between the two treatments was 

small. In the case of rare alleles, it is likely that any rare allele would have been 

lost from populations in both HR and Z lines. Thus, it seems reasonable that any 

evolved increase in survivorship of random-mortality and potentially drug-

treated lines, was due to ecological processes occurring as a consequence of 

density-dependent selection and not loss of genetic variation due to drift. 
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Table B2 Predicted theoretical loss of genetic diversity based on a simple 
population genetic model during the course of selection (generation) in HR (High 
random) and Z (Zero dose) lines. Predictions of heterozygosity, the number of 
equally frequent alleles and risk of loss of rare alleles were made using mean 
population sizes for each treatment at each generation, using methods described 
by Allendorf (1986). Bold values show predicted diversity at generations 5 and 
10, which correspond to when resistance bioassays were performed.  

Treatment Generation Population 
size 

Heterozygosity* Number 
of Alleles 

Risk of 
loss of 
rare 
alleles 
(%) 

HR 1 15 0.97 9.58 74 
HR 2 18 0.94 9.4 33 
HR 3 28 0.92 9.38 18 
HR 4 33 0.91 9.37 13 
HR 5 33 0.9 9.35 13 
HR 6 29 0.89 9.31 17 
HR 7 35 0.88 9.29 12 
HR 8 38 0.87 9.28 10 
HR 9 31 0.86 9.25 15 
HR 10 39 0.85 9.24 9 
Z 1 47 0.99 10 39 
Z 2 48 0.98 10 38 
Z 3 49 0.97 10 37 
Z 4 47 0.96 10 39 
Z 5 46 0.95 10 40 
Z 6 47 0.94 10 39 
Z 7 47 0.93 10 39 
Z 8 47 0.92 10 39 
Z 9 47 0.91 10 39 
Z 10 47 0.9 10 39 

Number of alleles: an assumption of 10 alleles for a given locus was made; loss 
of rare alleles: rare alleles were assumed to at an initial frequency of 0.01. * 
Heterozygosity is the proportion of original heterozygosity remaining in the 
populations in each generation. 
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Fig B1 Relationship between survival and dose of Ivermectin for the SP8 strain of 
C. remanei. Panel A shows the relationship between survival and dose for two 
repeated assays (batches) accounting for differences in survival between dose-
response assays performed on different dates. Points are individual replicates for 
each batch (triangles and circles). Panel B shows the doses used in the selection 
experiment (black broken lines) estimated to cause 40% and 80% mortality after 
taking into account any background mortality not due to the drug (LD40 and 
LD80). Grey broken lines show 95% confidence intervals around the estimated 
doses. 
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Fig B2 Larval density over the course of the original selection experiment. Lines 
represent mean number of juveniles for each treatment; points are the number 
of juveniles on day two of each generation for each replicate line within a 
treatment. Panel A shows density of high mortality lines: HD and HR with Z lines. 
Panel B shows density of low mortality lines: LD and LR with Z lines; circles, 
solid line = zero dose; triangles, dashed line = drug treatment; diamonds, dotted 
line  = random mortality. Error bars; standard error for the mean number of 
juveniles. 
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Fig B3 Seventy-five hour survival of High dose, High random and Zero dose lines 
when exposed to the high dose of Ivermectin used during selection. Red, blue 
and grey lines show survival of replicate populations for each treatment during 
selection. 
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Fig B4 Fifty-two hour survival when exposed to the three drug doses used during 
selection (A and B = high; C and D = low: E and F = zero) of samples taken from 
generations 0, 5 and 10 during selection. Panels A, C and E show survivorship of 
high mortality lines: HD and HR. Panels B, D and F show survivorship of low 
mortality lines: LD and LR. Points are raw survival data from resistance 
bioassays, lines represent predictions of maximal models (generation + 
treatment + generation*treatment) for each treatment: circles, solid line = zero 
dose; triangles, dashed line = drug treatment; diamonds, dotted line  = random 
mortality.  Error bars; 95% confidence intervals for mean survival. 
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