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Synopsis

The aim of this project has been to investigate the crustal structure, in
particul ar the upper crustal structure, of the southern Midland Valley of
Scotland using quarry blast and controlled-shot seismic refraction methods.
The study was designed as a follow-up of the LISPB and LOWNET crustal
refraction studies in Central Scotland, extending their interpretations of
upper crustal structure into southern and western parts of the Midland Valley
of Scotland.

The aquisition and presentation of new data collected over a period of 2
1/2 years is discussed, along with results from the application of various
interpretational methods. This new data is grouped for convenience into the
results from the Lesmahagow array (LES), and the Hillhouse - Broughton
profile. Some older data, from the Broughton array (BIN; El-Isa 1977),are
also presented and interpreted in the light of this new data

Thesedata were interpreted using a variety of methods depending on the
amount of data available and its distribution

Individual shot/quarry profiles were interpreted for the near surface
velocity structure using the Wiechert-Herglotz-Bateman (WHB) inversion and
planar-layer modeirling methods., Most of the near surface data were
independently interpreted by both of these methods, providing some measure of
the consistency of the near surface velocity structures, ratﬁer than as a
direct comparison of each method. The suspected existence of velocity
inversions wnder some of these profiles suggested that an inversion technique
such as the tau-p method might provide a means of directly modelling these
low velocity zones. Initial tests were encouraging, but further development
had to be abandoned.

High apparent velocity arrivals were noticed on a number of profiles and

these were initially interpreted using time-term analysis. This provided a



reasonable statistical solution proving the existence of a high velocity
refractor (Vp > 6.0 km s~1) under the study area (southern Midland Vallay),
but the site time-terms did not obviously correlate with those expected from
dowrwards extrapolation of the surface geology. The reasons for this are two-
ford. The variable velocity-depth structures modelled for different
stratigraphic units within the southern Midland Valley makes the depth
conversion of each site time-term an individual process, dependent on
knowledge of the geological structure under each site

The other factor affecting the geological interpretation of the time-term
solution was the realisation, from ray trace modelling and the regional
apparent velocity modelling, that the structure of this high velocity layer
(now designated a; to conform to the LISPB standard nomenclature) does not
appear to conform to the structure predicted by the downwards extrapolation
of the surface geological structure, Even after quantifying the errors
involvedin the field data and ray trace modelling procedure, the expected
vertical relief on the g, refractor is much less than predicted.

Ray modelling of the Hillhouse - Broughton profile also highlighted the
existence of several high velocity layers within the sedimentary layer. These
can be related to hyperbyssal intrusive suites seen at the surface.

From these interpretations, it is concluded that both the LISPB and LOWNET
P-wave velocity models for the near surface layer (as) have oversimplified
the ranges of velocity found to characterise the three main 1litho-
stratigraphic groups within the study area (ie the Upper 0l1d Red Sandstone &
Carboniferous, the Lower Old Red Sandstone, and the Silurian). This can be

sunmarised as below:



xvii

Stratigraphic Unit P-Wave velocity range
Carboniferous & Upper O.R.S. 3.2 - 4.0 km s 1
Laver Old Red Sandstone 4,0 - 5.2 km s~
Silurian (& ?0rdovician) 3.5 = 5.5 km s~

Evidence is presented from this study, and collated from other applicable
sources, such as ul trasonic measurements on rock cores and other field
studies over cratonic areas, that the LISPB interpretation of the geological
nature of the ) refracting layer (as Lower Palaeczoic clastic sediments) is
erroneous. On the basis of the near surface velocity interpretations and a
series of lithological comparisons, it was concluded that the seismic
characteristics of this layer would be best matched by a quartz-feldspar
rich, crystalline layer.

The geological impact of the velocity and structural information on the Ty
refracting layer is discussed, highlighting the difference between the
apparently low relief, near planar ag refractor and the highly variable
Palaeozoic sedimentary thickness recorded a.t the surface. It is suggested
that the major faults of the southern Midland Valley (the Kerse Loch,
Carmichael and Southern Uplands faults) may not give displacements on the 3
refractor commensurate with those found at the surface. A major basement
strike-slip zone, producing a 'flower' fault pattern whose branching 'petals
are these major faults, might be one explanation for the above evidence.

Some new data are presented from the aq (LISPB 6.4 km s=h refracting layer,
and its interpretation fitted into the existing LISPB structural model. The
geological nature of this layer is discussed using all available seismic
information, and geochemical/petrological data available from local volcanic

xenoliths.

The conclusion from thisisthat the interpretation of the aj refracting
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layer is consistent with quartz-rich, probably granulitic lithology, and the
simplest interpretation for the nature of the ao/a1 interface is as a
metamorphic facies change, from amphibolite to granulite

The basic granulitic xenolith suite from within the Midland Valley and
previously assumed by some workers to be derived from the aq refracting
layer, is now, on the basis of simple mineral modelling of the LISPB a
refractor data, suggested to have a lower crustal origin.

In sunmary, a general ised crustal model of the Midland Valley is presented
showing the surface sedimentary layer extending to between 2 - 4 km depth and
overlying quartz-rich gneissose basement, possibly with localised hornbl ende
granite intrusions, This in turn overlies a quartz-rich, granulitic layer
extending from 6 - 8 km to 18-— 20 km depth which may-be-the granulite facies -
equivalent of the overlying layer. The lower crust, from 18 - 20 to 34 - 35
km depth, is suggested to be composed predominantly of basic, pyroxene
granulites.

Further work is required to extend the structural models of the =) and ay
refractors throughout the Midland Valley and further intec the Southern
‘Upl ands. Additionally, preliminary interprétation of S-waves from this study
suggest that much extra geological informationwould result from a fuller
study of the S-wave velocity distribution, used in conjunction with a P-wave
velocity model.

Localised seismic reflection profiling couldv provide rigorous tests of the

structural hypotheses suggested in this study.



Chapter 1 Regional geclogy and geopysical background

1.1 Introduction

This study investigates the structure of the upper crust within the Midland
Valley of Scotland using seismological techniques. The area under
investigation here extends from the Ayrshire coast around Troon eastwards
across toBroughton in the Southern Uplands (for locations see figure 1.1),
and comprises outcrops of predominantly 0ld Red Sandstone or older
sedimentary rocks (see figure 1.2). Particular attention has been paid in
this study to the relations between the known surface geology and crystalline
basement in view of the significance of the Midland Valley in Caledonian

tectonic studies.

1.2 Regional framewark

The Midland Valley of Scotland is defined in terms of surface geology as
being the area of predominantly weakly deformed Palaeozoic sedimentary and
volcanic rocks bounded to the north by the Highland Boundary Fault (HBF), and
to the south by the Southern Uplands Fault (SUF) (see figure 1.2). The
tectonic significance of the Midland Valley lies in the fact that it
separates highly deformed Dalradian rocks in the Highlands from more mildly
detormed Ordovician and Silurian rocks in the Southern Uplands. No Caledonian
structures can be correlated between these two areas.

Much early speculation centred over whether the Midland Valley basement was
of continental or oceanic origin (Kennedy 1958; George 1960; MclLean & Qureshi
1966; Dewey 1971; Mitchell & McKerrow 1975), but with the publication of the
results of the LOWNET study (Crampin et al 1970) and the LISPB crustal
profile (Bamford 1979; Bamford et al 1976; 1977; 1978), the existence of
continental crust was confirmed. The geological relationship of sedimentary
cover and basement within the Highlands, Midland Valley and Southern Uplands

was still not known and one of the aims of this project is to establish this
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Figure 1.1 Location map for Central Scotland.

EBF - Highland Bowdary fault, SUF - Southern Uplands fault.






Figure 1,2 Key.

HBF - Highland Bourdary fault
OF - Ochil fault

CPF -~ Clyde Plateau fault
DVF - Dusk Water fault

IGF - Inchgotrick fault

KIF - Kerse Loch fault

PF =~ Pentland fault

STF =~ Straiton fault

CF = Carmichael fault

SUF - Southern Uplands fault
IF = Leadburn fault
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relationship in the southern part of the Midland Valley of Scotland.

1.3 Geological succession within the project area
A brief summary of the major features of the geclogical succession in the
Midland Valley is given with particular reference to the southern part of the

Midland Valley,.

1.3.1 Ordovician rocks of the Midland Valley

The oldest rocks seen at the surface within the Midland Valley are found in
its SW corner, at Ballantrae (see figure 1.1 for localities). These rocks
comprise a suite of intrusive and extrusive, predominantly basic igneous
rocks and associated marine sediments, known as the Ballantrae ophiolite
(Church & Gayer 1973; Dewey 1974). This allochthonous complex, of Arenig age
(Stone & Rushton 1983), is thought to represent the remnants of a Pacific
type ocean island (Barrett et al 1982) or part of a marginal basin (which
may have included small oceanic islands) (Bluck et al 1980; Bluck & Halliday
1982; Bluck 1983; Thirlwall & Bluck 1984), which was then obducted, probably
northwards at 478 ¥ 4Ma.

The Ballantrae complex is overlain by a thick sequence of conglomerates,
sandstone turbidites and shallow water reefal limestones of Upper Llanvirn to
Ashgill age (Ingham 1978; Ince 1984), which were laid down in a series of NE
-~ SW striking basins which had contemporaneous and probably parallel faults
at their northwestern margins (Williams 1962) (see figure 1.3), and were
probably formed in a strike- or oblique- slip stress regime relating to
oblique subduction further S (Ince 1984; Phillips et al 1976). Successively
yownger basins formed towards the NW so that a progressive faul t-controlled
overstep was achieved in that direction (Williams 1962). Radiometric dating
of clasts within the conglomerate sequences (Longman 1980; Longman et al

1979; Longman et al 1982) (figure 1.4) have shown the close proximity of the
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large granite clasts to their original source , and a source-basin
relationship has been proposed where continuous uplift of this source
accompanied the granite intrusion, while flanking, coeval and genetically

related basin wnderwent compl ementary subsidence (Bluck 1983).

1.32 Silurian rocks of the Midland Valley

A number of inliers ot Silurian rocks occur within the Midland Valley
ranging in age from Llandovery to Ludlow (see figure 1.5) (Cocks et al 1971).
A base for this sequence is seen only at Craighead, near Girvan where a
patchy conglomerate oversteps Ashgillian rocks of the Girvan sejuence (Ingham
1978). Up to 2 km of sediments have been preserved and palaeofacies analysis
indicates a lagoonal, occasionally shallow marine, environment predominating
throughout the Llandovery until the appearance of the first of the three
major conglomerate wedges, the 'igneous conglomerate', at around the base of
the Wenlock, After this, the sediments become progressively terrigenous in
nature and indicate a transition to fluvial, lacustrine and inter-tidal

environments (McdGiven 197).

1.3.3 0ld Red Sandstone in the southern Midland Valley
1.3.3.1 Lower Old Red Sandstone

The Lower 0OLd Red Sandstone rocks of the southern margin of the Midl and
Valley occur as a series of fault bounded outcrops between the Southern
Upland fault and a number of parallel, en echelon faults towards the NW and
often associated with older Silurian outcrops. The seqjuence is characterised
by red, drab conglomerates and lithic arenites which often interstratify with
lavas of basalt, andesite, trachyte, dacite and rhyolite (Bluck 1978). These
are accompanied by many minor intrusions of felsite, dolerite and various
porphyries. The thickest development of Lower 0ld Red Sandstone in the
southern part of the Midland Valley is probably to be found in the Pentland

Hills (Mykura 1960), where around 2 km of lavas can be demonstrated; al though
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some of these, at least, have been subsequently shown to be sub-équeous,
sof t-sediment intrusions (Kokelaar 1982)., These pass southwestwards into a
thinner sequence of conglomerates and sandstones. Around Cumnock the
thickness is estimated as 1.7 km and in the Maybale inlier as 1.5 km

Throughout the Midland Valley the Lower 01d Red Sandstone lies
unconformably on Silurian rocks, except possibly in the Lesmahagow and
Hagshaw Hills inliers (see figure 1.5 for locations) where the succession may
be conformable (Thirlwall 1981).

Geochronological studies have placed most or possibly all this vulcanicity
in the late Silurian (Thirlwall 1983) and also suggest that some of the minor
acidic intrusions around Tinto are late Silurian in age (Herriot 19%56; Bluck
1984).

With these new age date constraints, it is clear that the Lower 0l1d Red
Sandstone is predominantly, if not totally, a late Silurian continental
facies, and thus the unconformity with the Upper Old Red Sandstone may mark a

considerable hiatus.

1.3.3.2 Distinkharn compl ex

The Distinkhorn igneous complex is an enigmatic plutonic complex cropping
out over about 6 knf and intruded into Lower Old Red Sandstone and Silurian
sediments at the northwestern corner of the Lesmahagow Inlier (see figures
1.1 & 1.5 for locations). It is the only known Caledonian plutonic intrusion
in the Midland Valley yet very little is known about it. The only detailed
field and petrological studies are found in the Geolgical Survey Memoirs
(Sheet 22, Richey et al 1930) and MacGregor & MacGregor (1936) (see figure
1.6).

There are very few exposures of the plutonic rocks owing to the extensive
post-Glacial cover of peat and boulder clay. Of the variety of igneous rock-

ty pes present, none are found in contact with each other and thereis only
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ore contact with the country rocks.

Two main groups of plutonic rocks are present. The older and less extensive
group are dioritic to quartz-dioritic, thermally altered rocks which, when
the origimal petrology can be recognised, contain plagioclase (often zoned)
in the andesine-labradorite range, with biotite, augite (sometimes diopsitic)
and occasionally hypersthene, Quartz and K feldspar are always subordinate in
volume, if present at all. Hornblende and biotite are the common products of
the thermal metamorphism which emplaced the second suite of rocks.

The second, and more extensively outeropping, group consist of a medium
grained tonalite containing andesine, orthoclase (often sodic), biotite and
primary hornblende with interstitial quartz.

Isotopic age dates have been obtained for the tonalite (Pidgeon & Aftalion
1978) using U-Pb from zircon fragments, and give an age of emplacement of 386
t?i Ma. This age is equivalent to dates obtained by the same method for the
Criffel-Dalbeattie (391 ‘111'3 Ma) and Fleet (382 -:%4 Ma) granites from the
Southern Uplands (Pidgeon & Aftalion 1978; Aftalion et al 1984), and is
distinctly younger than the 405-410 Ma ages quoted by Thirlwall (1983) for
the Lower OLd Red Sandstone lavas of the northern Midland Valley. The
relationship in time between these lavas and the petrologically similar lavas
of the Lower 0OLd Red Sandstone in the southern Midland Valley is not clear,
but stratigraphic evidence (Bluck 1984) suggests that the base of sedimentary
sequence in the southern Midland Valley could be older. Thus the
contemporanous lavas must be at least 405 Ma in age, so that the Distinkhorn
Complex cannot relate to that episode of igneous activity.

Regional maps of the gravity and aeromagnetic fields over the complex show
only small anomalies compared to the surrounding country rocks, implying
either that the density and magnetic suseptibility values are comparable

(which, from the above petralogical discriptions, appears wnlikely), or that
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the igneous complex has no great vertical thickness or buried lateral exﬁen‘t.

1.3.3.3 Upper Old Red Sandstone

The Upper 0l1d Red Sandstone is everywhere separated from the Lower 0ld Red
Sandstone by a marked unconformity., It is a more thinly developed sequence
than the Lower Old Red Sandstone and it is characterised by generally finer
grained sediments. The' thickest development of the Upper Old Red Sandstone,
at 1 km, is at the NW margin of the Midland Valley (see figure 1.7). The
formation thins to a uniform 0.5 km to the south and east. On the basis of
palaeocurrent analysis on the constituent groups of the Upper 01d Red
Sandstone, Bluck (1978) has proposed an E or NE drainage direction throughout
the Upper OLd Red Sandstone. Changes in distribution, grain-size and
provenance of these sediments indicate that in the lower division of the
Upper OLd Red Sandstone, sedimentation was confined to a series of small,
fault controlled basins in the NW corner of the Midland Valley, whose
existence may be linked to a local tensional, or transtensional, stress
regime, possibly linked to strike slip movement along the HBF itself (Bluck
1978). The middle division of the Upper Old Red Sandstone is characterised by
mature, braided stream type sediments, indicati'ng a highland source to the W
and SW but outwith the present limits of the Midland Valley of Scotland.

The southern Midland Valley also received some sedimentary input from a
mature Southern Upl and source area at this time. The upper division of the
Upper 01d Red Sandstone is characterised by finer grained sediments,
suggesting a more locally confined but also possibly a more mature source
area. Some locally derived and locally developed conglomerates may indicate a

minor reactivation of the HBF at the top of the Upper 0Old Red Sandstone

sequence (Bluck 1978).



14

0,01 w

%

SIlH puonuad

SiitH puowo”

wouwnd

uo3I$|0O

$S0JOUNI0d

)

&S
evo

0

nom

SIH puouad

SIIH PUOWOT

SuoIspups

Figure 1.7 Distribution of Upper 01d Red Sandstone rocks in the Midland

Valley (after Bluck 1973).



15

1.3.4 Carboniferous rocks in the southern Midland Valley

The base of the Carboniferous in the Midland Valley is ambiguous. It is
conventionally placed at the base of the lowest cementstone bed, but it can
be argued (Lumsden & Wilson 1979), that the immediately underlying Upper Old
Red Sandstone is Tourmaisian in age and that the base of the Tournaisian is
enclosed within the unfossiliferous Upper Old Red Sandstone fluvial seguence.

Total thicknesses vary considerably across the western half of the Midland
Valley as shown by figure 1.8, with the greatest thickness of Carboniferous
sediments found in Ayrshire

The Carboniferous sedimentary sequence formed entirely in either shallow
marine or fluviatile environments with localised, often persistent, volcanic
activity contemporaneous with, and often exerting control over, sedimentation
(Francis 1978; 1983). A summary of the age ranges and lateral extents of
Carboniferous igneous activity is provided in figure 1.9. However the major
control on sedimentation from early Dinantian to mid-Silesian, was
differential subsidence along NE-SW trending basement fractures, bounded by
the HBF and SUF (see figure 1.10)., Within the western Midland Valley, the
near surface expressions of these are the Duskwater, Inchgotrick and Kerse
Loch faults (Eyles et al 1949; McLean 1966; 1978) and elsewhere by sharp
gradients on isopach contours produced for various stratigraphic levels
within the Midland Valley (Kennedy 1958; Francis 1983).

The source of basement instability at this time has not been traced to one
particular cause. Anderson (1951) showed that a period of compressional
stress with the major axis oriented N-S, would result in sinistral
transpressive movement along these fractures. The field evidence is
equivocal. According to McLean (196) there is no conclusive evidence of such
movements along major faults in S Ayrshire, but Williams (1962) does report
evidence of post-Caledonian wrench movement along major NE-SW faults in the

Girvan region. An alternative hypothesis relates the apparent relative
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Figure 1.9 Summary of the distribution of ages and lateral extent of



Map showing basement controls of
volcanism and sedimentation during the
Carboniferous. 1. Axes of syndepositional
basins; 2. Syndepositional fractures; 3. Tecto-
volcanic lineaments. AF Ardross Fault; BF
Brodick Bay Fault; DF Dusk Water Fault; DL
Dron Line; HBF Highland Boundary Fault;
IF Inchgotrick Fault; KL Kerseloch Fault;
OF Ochil Fault; PF Pentland Fault; PR Paisley
Ruck; SF Straiton Fault; SUF Southern
Uplands Fault.

Figure 1.10 from Francis (1983).
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stability of the Highlands and the Southern Uplands compared with the Midl and
Valley, to the increased bouyancy of the crust under these two regions due to
the presence of large volumes of late-Caledonian granite (Bott 1976; Leeder
1976).

During late Westphalian or early Stephanian times the stress regime changed
abruptly producing E-W trending fractures which are directly associated with
extensive tholeiitic dyke and sill empl acement dated c295 Ma (Fitch et al
1970; Klingspor 1976) covering an approximately 200 km wide belt extending
into nothern England and which can be correlated both geochemically and
geochronologically with a similar suite of intrusions in Norway (MacDonald et
al 1981).

During the late Carboniferous, the direction of principal regional stress
switched from a N-S tension to a NE-SW tension, giving rise in the western
Midland Valley to a series of broad faul t~bounded basins in which subsidence
kept pace with sedimentation through to New Red Sandstone times. In Ayrshire,
the Mauchline Basin is separated from the East Arran Basin to the NW by a
block bounded by the Dusk Water and Inchgotrick faults in which there is no
evidence of structural continuity. To the SE, the Kerse Loch and Southern
Uplands faults, similarly divide the Mauchline Basin from the Sanquhar
Basin Associated with this linear feature is the anticlimal swell running
from Renfrew to Lesmahagow which exposes the Clyde Plateau Lavas N of the
Inchgotrick fault and the Silurian rocks of the Lesmahagow Inlier to the
south. McLean (1978) has proposed that these zones of subsidence may be
correlated with other similarly aligned basins to produce a 400 km long
linear zone of contemporaneous subsidence, the 'Clyde Belt', which is linked
Wwith local volcanic activity. As this NW-SE tension is recognisable elsewhere
in northwestern Europe during the early Mesczoic times, MclLean proposed that

the subsidence could be due to stress transmitted regionally due to
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initiation of plate movement from a new spreading axis. Failure would then
have occured along this lineament either due to a focus ing of stress
relating to the geometry of the spreading axis or due .to the presence of a
previous line of weakness in the crystalline basement. The later point
suffers from the problem that the 'Clyde Belt' crosses the Caledonian suture
and so links two cratons with separate pre-Caledonide crustal identity and
develoment.

However, as mentioned in 1.3.3.2, Bluck (1978) invoked the presence of a
series of approximately NW trending faults generated in Upper Old Red
Sandstone times as a result of transtensional stress along the HBF, producing
(a) pull-apart basin(s) in the region of Renfrew and the Firth of Clyde. The
situation of the East Arran Basin in ‘late-Car'bonifer-ous might then be related
to reactivation of these fractures. This hypothesis may be extended to
account for the position of the Mauchline and possibly Sanquhar Basins,
depending on the lateral extent of propagation of these fractures during
Upper OLd Red Sandstone times. (The original assumption was of a local
tensional or transtensional stress regime centred around that part of the
HBF, and arising from dextral strike-slip movement along it. Sedimentological
evidence does not offer any support for continuing thesé fractures much
further south than N Ayrshire). This hypothesis cannot explain the existence
of aligned basins developed NW of the HBF, if indeed this alignment is more
than coincidental, nor basins found considerably further south of the SUF.
The absence of any subsidence between the Dusk Water and Inchgotrick faults
may be a problem within the hypothesis, but may also be due to a major

difference in upper crustal structure in this region compared with the areas

to the N and S.
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14 Geological evidence for the mature of the basement in the Midland Valley.

The geological evidence for the nature of the basement within the Midland
Valley comes from two main sources: crustal xenoliths from volcanic vent
agglomerates (Upton et al 1976; Graham & Upton 1978; Upton et al 1983; 1984)
and provenance relations obtained from clasts found in Lower Paleaozoic
conglomerates now cropping out along the marginal regions of the Midland

Valley (Longman et al 1979; Bluck 1983).

1.4.1 Crustal xenoliths

Within the Midland Valley, xenoliths are found in vents exclusively
Carboniferous in age (figure 1.9), and comprise a suite of rocks yielding
intormation on crustal and upper mantle composition down to around 100 km, as
it was during late Paleaozoic times., Since then, there have been only
vertical movements within this region, and so a study of these xenaliths can
provide a useful source of information on lithological types, as distinct
from physical properties, present within given depth ranges in the
lithosphere, As this project is concerned with upper crustal structure, there
is no need for a discussion of the ultrabasic, mantle-derived portion of
this xenolith suite, although it provides more than half the number of
crystalline samples,

The petrographic similarity of all pyroxene-feldspar basic granulite
inclusions across the region fram the N of Scotland to central Ireland, along
with the absence of any other common xenalith lithalogy compatible with the
observed LISPB ¢7 km s-! lower crustal velocity (Bamford 1979), implies that
the lower crust is dominantly gabbroic to dioritic in composition, but
possibly containing localised zones with anorthositic fractions (Upton et al
1983; Collette et al 1970).

Within the Midland Valley, quartz-feldspar gneiss xenoliths with very

occasional garnet are found in vents in Renfrewshire, Ayrshire and along the
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Fife coast, and are inferred to be samples of the sub-Palaeozoic basement
(Upton et al 1976). There is no evidence of a lower-grade metamorphic
basement layer as might be expected if Dalradian rocks underlie the Lower
Palaeozoic sediments (Upton et al 1983; cf Dewey 1971). Samples similar to
Southern Uplands sedimentary sequence are also conspicuwusly absent (Upton et
al 1976). On the assumption of a chemically-zoned continental crust becoming
more siliceous upwards (Rogers 1977), the acid gneisses generally may be
derivatives from more superficial crustal layers than those that supplied the
basic granulites (Upton et al 1983). Xenoliths from this residual but
intermediate composition do not appear to be present, or have not yet been
recognised.

Unfoliated igneous xenoliths are not common, but where found they can be
correlated with exposed Caledonian plutons or with granitic bodies proposed
from geophysical evidence (eg Tweeddale granite, Lagios & Hipkin 1979).
Crustal xenoliths from vents in the Southern Uplands also show a continental
affinity instead of oceanic as would be expected if the Southern Uplands
accretionary prism was floored by oceanic crust. The results of
_interpretation of the WINCH profile N of the Solway Basin (Brewer et al 1983;
Hall et al 1984), show that the northern edge of the Baltic Continent does
not extend for any great distance northwestwards under the Southern Upl ands,
and so continental crust beneath these vents must be related to the Midland
Valley continental crust. This then suggests that an allochthonous contact

may exist between the continental basement and the Lower Palaeozoic

sedimentary prism.
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1.4.2 Lower Palaeczoic conglamerate provenances,

Within the Ordovician (Llanvirn to Ashgill) sedimentary sequence around
Girvan, there exist a series of NW derived conglomerates (see 1.3.1).
Provenance relations indicate sources which comprised basic and ul trabasic,
predominantly intrusive, igneous rocks (see figure 1.11). Later conglomerates
record the influx of granitic material which is petrographically and
isotopically dissimilar to possible Highland sources (van Breemen & Bluck
1981; cf Yardley et al 1982). The size of these clasts indicate that much of
this material was derived from sources nomore than 50 km to the NW (ie N
Ayrshire) and probably within an active island-arc environment (Longman et al
1979; Bluck 1983).

The oldest two of the three major Silurian conglomerates, the 'igneous' and
'quartzite' conglomerates (McGiven 1967; Bluck 1983)(see 1.3.2), indicate a
provenance from the SE (except around Girvan, NW) for the derived acid and
basic, intrusive and extrusive igneous rocks; and a prolific source of
metaquartzite, Again, on the basis of geochemical and isotopic evidence, this
has been proposed as indicating derivation from an island-arc regime, but now
situated a shart distance to the SE. This movement may be in line with the
coincident southeasterly migration of the Iapetus trench margin, This island-
arcis not visible in the northern part of the Southern Upl ands at present,
and Yardley et al (1982) maintain that this, along with the continental
source of the southerly derived Southern Highland Group of the Dalradian
(Phillips 1975; Harris et al 1978), has been removed by strike-slip movement
during the Upper Palaeozoic and cannot now be traced. However Uptonet al
(1976), Longman et al (1979), Thirlwall (1981; 1983) and Bluck (1983;1984)
have, with an increasing volume of evidence, proposed that the Southern
Uplands accretionary prism is allochthonous on crystalline basement of
Midland Valley continental/island-arc affinity; and that this over-thrusting

took place sometime between the deposition of the 'quartzite conglomerate’



r ENOLY

d1ydioweiow

S3dA 1l M¥OOH

eaisnyje [An

s)mipowieul - Diseq AN N

(01q9qeB jour)
sAISNsUl Ji88q

=
|esshqediy 21p1de E

sAiSn} e I1pIdE I

NVIOIAOQHO

ENBEYV

Jjusweseq
pue sejiuesB ‘sx20s di1swg

I NUIANYI]

S50 SAISN )0 B R|POWISIUI-IPIOE
swos pue sejiueiB epusjquioy
19A0)-ybiy ‘u1B110 ujE)IedUN JO
s01qqeB pue sejriejop ‘sijeseg

‘ONIANYIT -~ D0QVHYD

%

NYIHNUS

— W B8O0Y —

NVINOA3Q

s)10yd ! 9)810W0|BUCS 8)1Z)sENnb,
pue ®ji1zysenb jo juesweseq

‘eBe uiejsedUN jO $XJ01
ajeipowWIsIUI-2IPIdE pue S8}IUEID

P AH3IA0ANV T

seyoemie,

pue sjieyd (se wiewo|Buod
9)izisenb ‘8320 BAISN) )0
olvipowIejuI-NIPIOY

I MO0INIM

(@ies) sy20) d1ydiowelow
pepunos pue ‘exoemieib
‘S3 001 8AISN} )@ JIp1de-DIseqg

P NVINOA3Q ¢ -MOIaN1 ¢

A~ A > AA
Val A A ~ .
~ A %501 N~ N
A ™ auesjon 70§
~ peieijuRIe IpUN A
~ A ~

A~ A A \/\/ al
\
A A A ~ ~o o\o

AN

W3LSAS

JONVN3IAOHd 40 3HNILVN

NOILISOdWOD 1SV1D SNO3NOI

ion

ble configurati

i

and poss

Figure 1,11 Change in conglomerate composition

to Silurian

ician

of the M¥idland Valley source during Ordov

(from Bluck 1983).

time



25

and the final Silurian conglomerate - the 'greywacke conglomerate' (see
figure 1.5 for stratigraphy), when at last, southeasterly derived sediment,
recognisably from the Lower Palaeozoic accretionary prism, is found in -

Midland Valley sediments.

15 Regional geophysical background in the Midland Valley
1.5.1 Regional gravity studies

The earliest regional geophysical study of the crustal structure of the
Midland Valley was performed by Mclean & Qureshi (1966) who used the gravity
coverage then available to construct a profile across the western part of the
Midland Valley and perpendicular to the HBF and the SUF. Thew data wee
stripped to the base of the OLd Red Sandstone so that the sedimentary cover
could be represented by an equivalent thickness of Lower Palaeczoic sediments
of density 2720 kg m=3. From this, they produced a two layer crustal model
which showed the crust within the Midland Valley to have a thickness of
approximately 32 km, and bounded to the N and S by thickened crust; this
thickening of 5 km occuring only within the upper crust and reguired at this
shallow level to provide the marginal gradients

With a complete gra-vity coverage of northern Britain now available (Hussain
& Hipkin 1981), it is apparent that the gravity gradients do not closely
relate to the boundary faults defining the Midland Valley. The gravity low
with amplitude ~100 mgal, elongated to the SE of and parallel to the SUF NE
of the Sanquhar basin has been postulated as being the result of a large
granite intrusion at shallow depth with a density of 2650 kg m=3 ygiving a
density contrast with the country rock of =70 kg m~3 (the Tweeddale granite;
Lagios & Hipkin 1979). Also, modelling of the gravity field in the
southwestern portion of the Southern Uplands around the post-Caledonian
acidic intrusions of Loch Doon, Cairnsmore of Fleet and Criffell (El-Batroukh

1975), has suggested that the Loch Doon and Cairnsmore of Fleet bodies are
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connected at a depth of around 7.5 km by a saddle-like structure, and that
they rest on a 4.5 km thick slab of material of intermediate composition.
This slab thins to around 2 km in thickness between Cairnsmore of Fleet and
Criffell, and extends under the Criffell body at a depth of around 10 km.
From this study, it has been concluded that all the exposed post-Caledonian
granites in the soutlwestern Southern Uplands are connected at depth, but no
evidence has been produced to indicate that this batholith may have a
connection at depth to the NE with the concealed Tweeddale body. Seismic
refraction investigations are at present wnderway to attempt to resolve the
relationship between the basal, intermediate compositional layer and the
Midland Valley basement in southern Ayrshire (D.Majid, private
communication). The implications of these studies of the gravity field have
been to postulate a very large volume of granitic material existing at
present at shallow depths in the NE and SW of the Southern Uplands,

The regional gravity gradient on the northern margin of the Midland Valley
is noWw seen to be centred some 20 km to the N of the HBF. It has been
proposed as relating to the -100 kg m=3 density contrast between the

Dalradian and Moine rocks of the Central Highlands (Hipkin & Hussain 1983).

152 The LGWNET array

A network of shart-period seismometers sited around the eastern part of the
Midland Valley and named LOWNET, was established in 1969 by the then
Institute ot Geological Sciences with the aim of monitoring local
seismological activity (see figure 1.12 for locations). With this purpose in
mind, a preliminary upper crustal model based on observations of P-wave
arrivals generated mainly from commercial quarry blasts within the Midland
Valley was published in 1970 (see figure 1.13) (Crampin et al 1970). This
model took the form of a three layered upper crust. The top two layers were

characterised by P-wave velocities of 3 km s~ and 567 km s"1, and assumed
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Edinburgh of Lower Old Red Sandstone
age.
AU Auchinoon Hill 55°50°40”" N 3°277 17" W 350 Sill of dolerite intruded into
Carboniferous sandstones.
BH Blackhill 56°14° 57" N 3°30°43" W 375 Volcanic tuff, of Lower Old
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Sandstone.
AB Aberfoyle 56° 11’17 N 4°20° 24" W 250 Lower Old Red Sandstone
conglomerate.
BL Broad Law 55°46’24” N 3°02'371" W 365 Granodiorite intruded into
Ordovician shales.
DU Craigow! Hill, 56°32'51” N 3°00 51" W 275 Lower Old Red Sandstone
Dundee conglomerate.

Figure 1,12 LOWNET locations and site details (after Crampin et al 1970).
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to represent the Palaeozoic sedimentary sequence, At between 7 km and 8 km
depth, a refractor characterised by a P-wave velocity of 6.4 km s1 was
assumed to represent the top of the crystalline basement.The nature of this
interpretation, together with the wide distribution of quarries and receiver
stations result in a broad interpretation of the regional crustal structure

which bears very little relationship to surface geology and structure

1.5.3 The LISPB study

In 1974, the Lithospheric Seismic Profile across Britain (LISPB) was
recorded (Bamford .1979; Bamford et al 1978; 1977; 1976). It crossed the
Midland Valley on a N-S line centred on Edinburgh (see figure 1.14 for
locations). Again, the interpretation defined a three layered upper crust
with boundaries at between 2-3 km and between 7-8 km depth (figure 1.15). The
P-wave velocities quoted for Layer 1, 4.0-5.0 km s=1 (figure 1.15a), were
interpreted as the direct arrival (ag) through Carboniferous and Old Red
Sandstone sediments, This was followed by the aj refracted phase giving a
velocity from plus-minus analysis of 5.93 ¥ 0.03 km s~1 between shotpoints 1
and E, and 5.84 ¥ 0.02 km s=1 between shotpoints E and 2. With ray-trace
modelling, this phase was best fitted using a velocitﬁ of 5.8 km s~
increasing to 6.0 km s~ at 7 km depth. This layer, Layer 2, was attributed
to Lower Palaeczoic sediments, The refractor generated from the top of Layer
3 and interpreted as the top of crystalline basement (a1) was, in the absence
of suitable reversed coverage for a plus-minus analysis, poorly constrained
from plane-layer modelling to have a P-wave velocity of 6.50 ¥ 0.17 km 5'1.
Subsequent ray-tracing showed that a value of 6.40 km s increasing to 6.45
im s~ at the base, gave a tolerable fit to the travel-time data, while still
remaining within the error estimates of the mean apparent velocity
determination.

The interpretation of the aq refractor phase as being generated from the
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top of the crystalline basement was confirmed by ul trasonic P and S-wave
measurements on cores of Lewisian rock samples (Hall & Al-Haddad 1979; Hall &
Simmons 1979; Al-Haddad 1977), who concluded that anhydrous pyroxene
granulites, similar to those found in the Central Belt of the Lewisian
foreland, would give the best lithological match to these data

The LISPB profile was conceived as a lithospheric experiment with
shotpoints spaced at 1ess than 1 per 100 km and with an average receiver
spacing of 3 km. This geometry precludes the accurate determination of
detailed crustal structure within the top 2-3 km of crust (Bamford 1979).

Shear wave studies of the Midland Valley portion of the LISPB dataset
(Assumpcao and Bamford 1978; Assumpcao 1978), allowed the modelling of
Poisson's ratio distribution using the tg/tp method (figure 1.15b). The use
of both P and S-wave data allows greater confidence to be placed in any
resulting lithological interpretation as P and S-wave velocities are not
linearly related in their response to variations in constituent mineral
proportions. This technique has been used successfully in detecting subtle
variations in lithalogy and porousity by a number of authors (eg Tatham 1982;
Hall & Ali 1985). Untortunately, due to the limitations of the dataset
mentioned above, the upper layer (Layer 1) was modelled across the eastern
Midland Valley with a bimodal distribution of blocks which has only a very
loose association with the surface distribution of Upper Palaeozoic sediments
and volcanic rocks. Similar modelling of Layers 2 and 3 show values of
Poisson's ratiowhich are significantly lower than the crustal average of
0.25 and lower than the values obtained for the surrounding crust to the N
and S of the Midland Valley, Figures 1.16a,b,c,d show the tg/tp data on
which the upper crustal model for the Midland Valley is based.

The tg/tp method has both an advantage and a disadvantage over the normal

Vp/Vg method of calcul ating Poisson's ratio, The former is that tg and tp can
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be measured directly from thexdata, removing the need to calculate Vp and Vg,
and so minimising the cumul ative effect of errors in the calculation. The
di sadvantage is in the assumption of common raypaths and raypath lengths for
both P and S waves, This could be a serious deficiency in a medium of
laterally varying physical properties.

The published geological model of the LISPB data interpretation (figure
1.17) (eg Bamford 1979), was acknowledged by the authors as being the
simplest and therefore most likely solution given the background geological
knowledge at that time, Since then, this model has been used, by
geophysicists at least, as a basis for further research with the inevitable
result that some of the original assumptions have been proven either invalid

or only partially correct.

1.5.4 The Broughton array and subsequent studies

One of the first tests of localised aspects of the LISPB model was in the
attempt to reconcile the 12 km thick Lower Palaeczoic sedimentary layer of
LISPB in the Southern Uplands with the previously published proposal (Powell
1970; 1971) that magnetic crystalline basement should underlie the Southern
Uplands at shallow depth.

To this end, a temporary 9-seismometer Geostore array was operated in the
Broughton area some 10 km SE of the SUF, with the intention of recording
quarry blast data from either side of the fault (E1 Isa 1978). Due to the
limited distribution of active quarries recorded during that time, the
results in themselves were not completely conclusive, but they did suggest
the occurence of a high velocity layer (Vp > 5.8 km s"1) at no more than a
few kilometers depth beneath the array and dipping to the NW. This work and
measurements fram a similar study over the Eskdalemuir array (EKA), have been
combined with a later study into the physical properties of Lower Palaeozoic

sediments using ul trasonic measurements on small rock cores to presures of 5
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kbars (Adesan;(a 1982). These results have been summarised by Hall et al
(1984) (figure 1.18). It was found that the velocity-depth ranges of the
Lower Palaeozoic sediments, regardless of the ratio of greywacke to shale
used, were much lower than the P-wave velocities quoted from LISPB for either
the Southern Uplands or the Midland Valley Layer 2 at equivalent depths.
Similarly the values of Poisson's ratio obtained from these cores show values
distinctly higher than predicted by LISPB for the Lower Palaeczoic layer, and
more in line with the expected values for clastic sedimentary rocks.
Velocity-depth information from the Southern Uplands Profile (SUSP) (see
figure 1.18, and Warner et al 1982) also tend to confirm these results,
al though the aim of this profilewas more to confirm the presence of high-
velocity, 'granite-like' material under the large Tweeddale gravity low
(Lagios and Hipkin 1979).

As a result of a magnetometer study along the 1ine of the LISPB profile
across the Midland Valley, Powell (1978) proposed the sub-division of the
LISPB Layer 3 into two groups, one more highly magnetised than the other. He
proposed that the more highly magnetised layer could represent hornblende
granulite retrogressed from pyroxene granulite

Subsequent work on the Lewisian Units Seismic Traverse (LUST, Hall 1978)
(Ali 1983; Hall & Ali 1985) has shown the potential of using S-waves to
produce a Poisson's Ratio model