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Abstract

It is well-known that the separation of flow from the leading 

edges of a highly swept wing at a high angle of attack results in the 

creation of a well-ordered vortical flowfield above the upper surface 

of the wing; the sudden disruption of this flowfield that occurs at a 

critical angle of attack limits the flight regime for such a wing. 

Although considerable research effort has been directed towards this 

"vortex breakdown" phenomenon, there is as yet no widely accepted 

explanation for its occurrence, nor a consistently effective means 

for its prevention or control.

An analytical study, based on a complex potential representation 

of the vortex flow over a slender delta wing, was undertaken in an 

attempt to determine the parameter(s) governing vortex breakdown.

This study indicated that the entrainment of flow into the vortex, as 

measured in the model by the ratio of sink-to-vortex strength, may 

play a dominant role in its subsequent breakdown. Further 

investigation revealed that control of this ratio, at some point 

close to the apex of the wing, can markedly delay the occurrence of 

vortex breakdown and that, as would be expected, the required control 

precision increases with angle of attack. It was considered that 

such control could be obtained in a real flow by the precise blowing 

of jets of air from the upper surface of the wing in a spanwise 

direction close to the leading edge. As has been found 

experimentally, the entrainment of these jets of air into the vortex 

does delay its breakdown, and it is hypothesised in this work that



the delay is a consequence of the effect of the jets on the overall 

entrainment level of the vortex. Comparison with experimental 

results provides evidence for such an enhancement mechanism, and it 

is concluded that a detailed experimental and numerical investigation 

should be undertaken of the role of entrainment in vortex breakdown.



Nomenclature

a radius of circular cylinder in Zj-plane

b entrainment coefficient = Q/T

bc critical entrainment coefficient

bi initial entrainment coefficient

Ct constant of proportionality in singularity strength
gradient relationship

Cp^ coefficient of normal force in crossflow plane

kinetic energy coefficient

Cg lift coefficient

pitching moment coefficient

Cpg pressure coefficient on the lower surface

Cpjj pressure coefficient on the upper surface

C q  air-blowing quantity coefficient

Cy blowing coefficient

Fg normal force in crossflow plane

G, Gamma vortex strength in graphs

i v̂ -1

j ordinate number

k cot A

Mqj freestream Mach number

n direction normal to particular geometry

P freestream static pressure

Q sink strength

r radial coordinate in Z-plane

r^ radial coordinate of vortex-sink in Z-plane

rs modulus of complex location on feeding sheet

iv



bounding surface of K.E. calculation region 

local wingspan

velocities along feeding sheet towards vortex-sink 

freestream velocity

crossflow component of freestream velocity

non-singular crossflow velocity at vortex-sink centre 
minus the normal component of the freestream

non-singular crossflow velocity at singularity location 

real component of complex velocity in Z-plane 

velocity along axis of vortex 

velocity normal to feeding sheet

radial velocity, +ve outwards from vortex centre

circumferential velocity about vortex centre,
+ve anti-clockwise

governing complex potential = <X> + i*P 

imaginary component of complex velocity in Z-plane 

cartesian coordinate system 

coordinate along axis of vortex

distance downwing of apex at which calculation fails

distance downwing of initial solution plane at which 
calculation fails

initial value of x

real and imaginary parts of Z

real and imaginary parts of

non-dimensionalised coordinates

coordinates of left-hand vortex-sink in Z-plane 

complex coordinate 

conjugate of Z

location of left-hand vortex-sink in Z-plane



Zt complex coordinate in transformed (cylinder) plane

ZAl transformation of ZA to Z t-plane

Zg complex location on feeding sheet in Z-plane

a angle of attack

<xc critical angle of attack

j3 internal angle,at a point on a feeding sheet, between a
line to the wing centreline and a line tangential to 
the sheet at that point.

T vortex strength, +ve anti-clockwise

C complex coordinate in transformed (vertical wing)
plane

9 angular coordinate in Z-plane

0A angular coordinate of vortex-sink in Z-plane

A angle of wing sweepback

v kinematic viscosity

p freestream density

o coordinate along feeding sheet in Mangier and
Smith model

<X> velocity potential

stream function

Subscript i relates to value in initial crossflow plane.

Subscript c denotes a critical value.

vi



Chapter 1

The Breakdown of Slender Wing Leading Edge Vortices

1.0 Introduction

The flow past a slender flight vehicle at a high angle of attack 

is extensively vortex-dominated. Widespread flow separations, from 

both the body and wings of the vehicle, generate the strong vortices 

which are responsible for a considerable enhancement of lift and 

thence manoeuvrability. As a result, vortex flows are now routinely 

employed to improve the performance of slender combat aircraft and 

missile configurations. However, it is necessary to restrict the 

vehicle flight regime to ensure that the flow remains well-ordered 

and controllable.

A major limitation is imposed by the disruption of the wing 

leading-edge vortices which occurs at, and above, a critical angle of 

attack. This "vortex breakdown" phenomenon is accompanied by such a 

variation of aerodynamic coefficients that continued steady flight is 

impossible. If the resultant degradation of control was to occur 

during air combat or low level manoeuvring, then loss of the aircraft 

could result. Similarly, the occurrence of breakdown during missile 

flight must be avoided if the target is to be acquired and 

destroyed. It follows that in order to advance the capabilities of 

slender configurations the breakdown phenomenon must be prevented or 

controlled. Consistently effective prevention or control can only be



achieved by determining those parameters which cause or influence 

vortex breakdown. The primary aim of this study was, therefore, to 

obtain these parameters and thereafter to establish the effect of 

their variation on the subsequent development of the flow.
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l.L The Slender Wing Flowfield

To appreciate the significance of vortex breakdown, it is first 

necessary to understand the flow past a slender wing at a subcritical 

angle of attack. The important features are summarised below. For 

particular details, refs 1-5 should be consulted.

For simplicity, a wing of delta planform with aerodynamically 

sharp leading edges is considered. A schematic representation of the 

major features of the flowfield is shown in fig.1.1. For this

configuration the two primary separation lines are fixed along the

leading edges - if the edges were rounded these lines could lie along 

the upper surface. The shear layers leaving the wing at the edges 

roll up to form the two primary vortices indicated. The flow passing 

over the top of these vortices attaches to the wing upper surface at 

some point downstream. It then divides and strong spanwise boundary 

layer flows develop. These separate as a result of the strong 

adverse pressure gradients encountered underneath the primary 

vortices, and roll up to form two secondary vortices. Two further 

vortices, not shown in fig.1.1, are those formed downstream of the 

trailing edge as a result of the rolling up of the trailing vortex

sheet. These are of opposite rotational sense to the primary

vortices.

The pressure distribution for a cross-section of the wing is 

shown in fig.1.2. It is obvious that considerable lift enhancement 

is produced by the vortex flows. Furthermore, it is found that with 

increasing angle of attack <x, the strengths of the vortices and



thereby the lift and nose-down pitching moment increase at low and 

moderate values of <x, as indicated in fig.1.3.

It can be seen that there is a limit to this behaviour. At a 

high angle of attack vortex breakdown will occur, initially at some 

point downstream of the trailing edge. At this point the cores of 

the primary vortices suddenly increase in diameter or "burst", and 

the flow downstream becomes turbulent and diffuse. With further 

increases in a this breakdown point moves forward, until at some 

critical value ccc it crosses the trailing edge and the vortices 

breakdown above the wing upper surface. This is accompanied by the 

sudden decay in lift and pitching moment indicated for the higher 

angles of attack in fig.1.3. As a is increased still further the 

breakdown point moves towards the wing apex until eventually the flow 

above the wing is completely turbulent and has no regular structure.

Experimental evidence on the breakdown phenomenon is presented in 

more detail in the following section.
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1.2 The Vortex Breakdown Flowfield

The first reported observation of vortex breakdown was made by 

Peckham and Atkinson1 in 1957. During wind tunnel tests on a gothic 

wing the "belling-out" of a vortex core was noted, but given little 

attention. Subsequently the phenomenon has been extensively 

researched, breakdown having been found in a wide range of small and 

large scale, internal and external flows. It is hypothesised to play 

an important role in many fluid dynamic phenomena, for example 

boundary layer transition, and is thought to occur within geophysical 

swirling flows such as tornadoes and hurricanes.

As a result of this widespread interest, a large database of 

experimental evidence is available, much of which is relevant to the 

particular case of vortex breakdown above a delta wing in an 

incompressible flow. For this case, the main conclusions can be 

summarised as follows.

(i) There can be considered to be two basic forms of breakdown -

the spiral and the bubble - although combinations of the two

forms have been observed. Fig.1.4 shows schematically the

behaviour of filaments of dye introduced along the axes of two

leading edge vortices, as reported by Lambourne and Bryer6. Note

that the upper vortex is undergoing breakdown of the spiral type, 

whilst the lower is displaying a bubble type. An additional form 

of breakdown, in which the filament of dye takes the form of a 

double helix, has been reported by Sarpkaya7 for a swirling flow

in a mildly diverging cylindrical tube. However, such a



breakdown pattern has yet to be reported over a delta wing.

(ii) A feature of both forms of breakdown is the deceleration of 

flow along the vortex axis as a stagnation point is approached. 

Introducing a filament of dye along this axis is a common form of 

visualization for this type of flow. In the case of spiral 

breakdown, this tracer kinks after the stagnation point has been 

passed and takes up a spiral configuration which persists for an 

axial distance of 1-3 times the diameter of the upstream vortex 

core. This spiral rotates about a central stagnant region before 

the flow breaks down into large scale turbulence. From a cine 

film analysis performed in ref.6, it was found that the fluid 

particles do not follow a spiralling path, but take a curved path 

through the central stagnant region, as shown in fig.1.5. In the 

fully developed bubble form of breakdown, the tracer of dye 

appears to spread and fill this zone. The axial extent of this 

bubble is of the same order as that of the spiralling 

configuration. In most cases the flow becomes completely 

turbulent immediately downstream of this region, although it has 

been found that under certain conditions a new vortex core 

emerges from the rear of the bubble and then undergoes a 

breakdown of the spiral form.

(iii) The form of breakdown which occurs appears to depend to a 

large extent on the ratio of swirl-to-axial velocities in the 

vortex. It has been found from investigations of vortex 

breakdown in pipe and channel flows that this velocity ratio must 

reach a certain value before a breakdown of any type occurs8.



Thereafter the spiral form is favoured until the swirl reaches 

such a level that it is replaced bv the bubble form. There may 

be some vacillation between the two forms until the bubble 

becomes established. In the majority of cases for the delta 

wing, it is the spiral type which is found.

(iv) One of the primary vortices may break down slightly in 

advance of the other, probably as result of small asymmetries in 

the flow. Therefore, the effect of breakdown is not limited to 

the longitudinal aerodynamic coefficients and lateral stability 

problems may ensue9.

(v) An adverse pressure gradient along the axis of a vortex 

moves the breakdown point upstream10. Conversely, the 

application of downstream axial suction can delay, if not 

prevent, breakdown. For example, the adverse pressure gradient 

produced by the deflection of a plain trailing edge flap moves 

breakdown upstream11, fig.1.6. Deflection of a leading edge flap 

reduces the pressure peak near the leading edge, and therefore 

the breakdown point is moved downstream12, fig.1.7.

(vi) It is possible to delay vortex breakdown by increasing the 

angle of leading edge sweepback12, fig.1.8.

(vii) The location of breakdown is only very slightly dependent 

on Reynolds' number. In ref.6, over a Reynolds' number range of 

0.01 x 106 to 4.6 x 106 the breakdown point moved upstream by a 

maximum of 15% of the root chord, fig.1.9. The breakdown



phenomenon can therefore be considered as essentially inviscid.

Until the advent of laser doppler velocimetry (LDV), 

conclusion (v) precluded detailed study of the structure of vortex 

breakdown. The sensitivity of the flow to pressure gradient is such 

that any intrusive method of measurement, e.g. a pressure probe, 

moves the breakdown point upstream. However, the basic principle of 

LDV is that it is possible to measure the velocity of a particle from 

the shift in frequency of a light beam that is incident upon it. It 

is therefore possible to study a flowfield in a non-intrusive manner 

and so the applicability of LDV to vortex breakdown investigation is 

obvious. ( The LDV equipment available in the Department of 

Aeronautics and Fluid Mechanics at the University of Glasgow is 

discussed in Appendix 1 ). Detailed research has been carried out 

over slender wings13”17 using LDV systems, but problems still remain, 

for example the difficulty of obtaining information from near the 

vortex core where there are few light-scattering particles.

An alternative non-intrusive method of flow measurement which may 

prove of value in the future is that of Particle Image Velocimetry 

( P.I.V.)18 At present this technique can provide an instantaneous 

two-dimensional velocity map of a flowfield by recording a double 

exposure photograph of a thin sheet of light in a seeded flow. A 

pulsed laser is used as a light source in order to ensure that the 

flow is "frozen" during each exposure, and to provide sufficient 

light energy to record the images of the flow particles. When the 

photographic negative is interrogated at any point by a laser beam , 

Young's fringes are produced. The orientation and spacing of these



fringes are dependent on the local displacement of a particle, and 

hence its velocity vector. Therefore it is possible to build up a 

velocity map of the flowfield.

As with L.D.V., certain problems exist with the application of 

P.I.V. to vortical flows, for example the lack of light-scattering 

particles in areas of high vorticity, and the requirement for a 

powerful laser. In addition, its present restriction to 

two-dimensional measurement would be of limited value in the highly 

three-dimensional vortex breakdown flowfield. Nevertheless, future 

experimental investigations of vortex breakdown should be based on 

some form of non-intrusive measurement in order to be worthwhile.

9



1.3 A Review of Theoretical Research

At present, a widely accepted explanation for the cause of vortex 

breakdown does not exist. As stated by Hall19, the available 

explanations for the phenomenon belong, in the majority of cases, to 

one of three main groups: those which view breakdown as being 

analogous to the separation of a two-dimensional boundary layer, 

those which regard the phenomenon as resulting from hydrodynamic 

instability, and those which require the existence of a ’’critical 

state" in the flow before breakdown can occur.

1.3.1 The Boundary Layer Analogy

The boundary layer analogy can be considered to offer a simple 

explanation. It has been found that well upstream of breakdown the 

axial gradients in a vortex are small compared with the radial 

gradients (i.e. d/dxa < d/dr). The stream surfaces are almost 

cylindrical, and so the vortex core is described as being 

quasi-cylindrical. The approximated (quasi-cylindrical) equations of 

motion for steady, laminar, incompressible, axisymmetric flow are, as 

derived in ref.20,

(1)

(2)

3vr vr 3va
  + -- 4-    a o
at r axa

v0 2 1 3P
.. a _
r p 3r
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av0 vrve ave
V-  ---- +    -+• V- ----

3r

ava ava
V ,  ---- +  U ----

ax,

a2v0 L ave 
  + - ------

a r ax. p ax.
+ V

a r

r a2va

L a r ‘

r 8r

v0 
„ 2

1 3v,

r 3r

(3)

(4)

By application of suitable boundary conditions and assuming initial 

upstream velocity profiles for vr, vQ and va, a solution can be 

obtained by stepping downstream in the axial direction (as for a 

boundary layer). The appearance of large axial gradients in the flow 

results in the failure of the quasi-cylindrical approximation; the 

vortex is assumed to break down at this point19 (cf boundary layer 

separation).

There are serious drawbacks to such an approach: the constraint 

of upstream axisymmetric flow is a major limitation, no knowledge can 

be obtained of the flow downstream of breakdown and, most 

importantly, it provides no explanation of several critical features 

of breakdown.

1.3.2 Hydrodynamic Instability

A theoretical criterion for vortex breakdown as a consequence of 

hydrodynamic instability was derived by Ludwieg21 on the basis of his 

study of the flow between two coaxial rotating cylinders. Ludwieg 

stated that a helical flow is unstable if

( 1 - C0 ) ( 1 - C*2 ) - ( 1.667 - C* ) Cz2 < 0 (5)

11



r 3vq r 8va
where = —    Cz = —  ---

V q  8 r  V q  0 r

A typical stability diagram is shown in fig.1.10.

If the flow is unstable* then the amplification of spiral 

disturbances may eventually lead to stagnation on the vortex axis.

In addition* there will be an abrupt expansion of the vortex core 

(which has become asymmetric as a result of the disturbances). This 

is taken to indicate vortex breakdown.

Ludwieg's approach is not valid for the axisymmetric bubble form 

of breakdown and therefore the possible vacillation between spiral 

and bubble forms is unexplained. The presence of instabilities 

within a vortical flow close to breakdown is extremely likely, given 

the range of velocities and velocity gradients present. Whether 

these actually cause breakdown is difficult to establish. In 

addition* as stated by Harvey22, the fact that in certain conditions 

a vortex reforms downstream of a bubble-type breakdown indicates that 

the phenomenon is reversible and unlikely to be the result of 

instability.

Bossel23 also investigated the possible amplification of 

disturbances in a swirling flow. He derived a criterion for such 

amplification which proposed a critical swirl angle ( = atan(vQ/va) ) 

of 54.8 . There is some experimental evidence which shows breakdown 

occurring close to this value. However, Bossel's criterion provides 

no further detail on* or explanation of, vortex breakdown.

12



1.3.3 The Critical State

The critical state for a vortex flow has been defined as the 

condition at which an infinitesimal stationary disturbance ( or 

standing wave ) of infinite wavelength just becomes possible. If a 

flow is subcritical then the wavelength of the disturbance reduces.

If, however, the flow is supercritical, no such disturbances can be 

supported.

Various explanations have been put forward for the role, if any, 

of the critical state in vortex breakdown. Squire24 stated that a 

subcritical flow would allow downstream disturbances to propagate 

upstream and cause breakdown. On this basis he equated a criterion 

for subcriticality to a criterion for breakdown of a vortex. Such an 

approach leaves major features of the phenomenon unexplained.

Benjamin25*26 advanced a more complex argument in which he drew 

an analogy between breakdown and the hydraulic jump found in open 

channel flow. He considered breakdown to mark the transition between 

two conjugate flows, the flow being supercritical upstream and 

subcritical downstream. Conservation of momentum required the 

appearance downstream of small standing waves. Benjamin considered 

the leading wave to represent breakdown. However, his case was 

founded upon small perturbations of the flow; this is clearly invalid 

at breakdown of a vortex.

Escudier and Keller27*28 postulated that vortex breakdown was 

characterised by three flow regimes connected by two fundamentally

13



different transitions. An inviscid analysis of the first transition, 

considered to be the non-dissipative diversion of an isentropic flow 

around a region of stagnant flow, showed that this transition 

occurred between two supercritical flow states, and provided a 

breakdown criterion based on a requirement for the conservation of 

momentum. ( This first transition is followed by a dissipative 

transition to the downstream state; however, no detailed analysis of 

this transition was attempted ). Realistic representations have been 

obtained for the bubble-type of breakdown in pipes and channels; 

however, the analysis relates only to this type of breakdown.

Much related work has been performed by Leibovich8* 29“31 in the 

areas of wave propagation, f3x>w stability and criticality 

classification. His "synthetic theoretical breakdown scenario" is of 

interest, but remains unestablished.

Solutions to a linear equation of motion were obtained by Bossel 

for a bubble type of breakdown between prescribed upstream and 

downstream flow profiles and boundary conditions. He considered that 

breakdown was a required characteristic of the solution of the 

equations of motion for an upstream supercritical flow when these 

conditions were imposed. This approach is obviously very 

restrictive, being dependent on a priori knowledge of the flow 

upstream and downstream.

Hall19 attempted to identify the failure of the quasi-cylindrical 

approximation with the critical state. He applied the approximation 

to a supercritical flow tending to critical and showed that this

14



tendency produces a retardation of the axial flow. Close to 

criticality, the axial gradients become very large, and the 

quasi-cylindrical approximation fails. The critical state is used to 

explain the sudden change in the vortex core and the importance of 

the swirl level in breakdown. However, it has been shown by Shi32 

that the critical state corresponds to a singularity, on opposite 

sides of which the flows are in contradistinction. Shi considered 

that the flow behaviour close to criticality reported by Hall was a 

result of the quasi-cylindrical approximation itself rather than 

physically realistic.

15



1.4 Catastrophe Theory

From the preceding section it should be clear that an acceptable 

theoretical explanation will be extremely difficult to obtain. 

However, it appears that the recent mathematical innovation of 

catastrophe theory may provide a means of realising such an 

explanation. Only the possible application of catastrophe theory to 

vortex breakdown is considered here. Further details of the theory 

are given in Appendix 2.

If a governing potential function for the flow past a delta wing 

can be determined, then study of this function may indicate the 

existence of multiple potential minima, i.e. more than one stable 

flow state is possible. Gradual variation of the control parameters 

such as pressure gradient and leading edge sweep may alter the stable 

states in a discontinuous way, such dicontinuities being 

‘'catastrophes". The required sudden changes in the flow could then 

cause breakdown of the vortices ( cf the separation of a boundary 

layer as it passes through the discontinuity of a shock ). By 

determination of the control parameters governing the catastrophe, it 

would be possible to develop a new criterion for breakdown.

The involved nature of catastrophe theory mathematics33,3* 

coupled with the complexity of the breakdown scenario, makes its 

application to this flow phenomenon too difficult to attempt by 

purely theoretical means. An alternative method of developing the 

catastrophe surfaces discussed in Appendix 2 must be found. The 

problem has been studied experimentally to a limited extent by

16



Gersten et al3S, who showed the existence of hysteresis between flow 

states. A comprehensive experimental research programme considering 

in turn the effect on breakdown of varying each possible control 

parameter would yield the required catastrophe surfaces. However, it 

would be beneficial if particular parameters of interest could first 

be established by analytical means. As stated in the Introduction, 

the identification of these parameters is a primary aim of this study.

17



1.5 Computational Fluid Dynamics (C.F.D.)

The recent advances in supercomputer technology have made 

feasible the numerical solution of the Navier-Stok.es equations for a 

fully three-dimensional vortical flow. Preliminary solutions for 

leading edge vortex breakdown have been obtained36 but are subject to 

a programme of validation and comparison with experimental data. 

Computational studies of an unconfined viscous vortex, for example 

refs.37-39, have indicated that axisymmetric bubble breakdown 

patterns can be calculated. However, the low Reynolds' number range 

(<1000) required for such solutions renders them of no practical 

importance in the vortex breakdown phenomenon as found in the external 

flow past an aerospace vehicle.

Although solutions to the Euler equations for the flow past a 

delta wing cannot predict viscous separations, they do capture the 

primary leading edge vortices, for reasons which have not yet been 

fully established. It has been shown40 that the dominant terms in 

the Navier-Stokes equations applied to a leading edge vortex are 

convective rather than diffusive, except in a very small region close 

to the vortex core. In addition, as discussed in section 1.2, 

experimental evidence has indicated the relatively minor role of 

viscosity in vortex breakdown. Therefore the use of the Euler 

equations in a study of the breakdown phenomenon can be justified.

Euler solutions41 have shown typical features found 

experimentally for the breakdown region, for example the reversal of 

axial flow downstream and the widening of the vortex core. As for
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the Navier-Stokes solutions, however, such results require careful 

validation.

In an application, such as vortex breakdown, where the flow is 

not fully understood, it would be hazardous to rely only on results 

from C.F.D. codes . The concept of the synergy of analytical, 

experimental and computational fluid flow modelling42 is particularly 

valid in vortex breakdown research. C.F.D. on its own will not 

provide a unifying solution to the breakdown problem.
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1.6 Project Guidelines

It was decided that any worthwhile experimental investigation 

could not be accomplished within a three year timescale and/or a 

reasonable budget. The Laser Doppler Velocimetry equipment available 

at the University of Glasgow is unproven, and in any case is 

unsuitable for an application to the vortex breakdown problem.

C.F.D. based research is best suited to centres where 

Navier-Stokes and Euler codes are well established and suitable 

guidance exists for their application to an already highly involved 

problem. The computational time required for any such study would be 

impractical in an university environment

A computer based analytical investigation of breakdown held most 

promise. A suitable model for the flow past a delta wing was to be 

developed, with the requirement that it was to be sufficiently simple 

to ensure that the dominant parameters in the flow could be readily 

identified as it proceeded to break down. The effect of the 

variation of these parameters would then be established.

Subsequently, recommendations could be made for further investigation 

of those parameters which appeared to control breakdown.
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Chapter 2

A Survey of Existing Theoretical Models for the Flow Over a Delta Wing

2.0 Model Requirements

A survey was performed of existing models for the well-ordered 

flow past a delta wing, to discover which, if any, were suitable for, 

or could be modified to allow, application to an investigation of 

vortex breakdown. It was stipulated that:

(1) the model should adequately represent the major features 

of the flow

(2) it should be possible to readily assess the contribution 

of each control parameter to the development of the flow

(3) excessive computational time should be avoided.

Available flow models were considered with regard to these 

requirements.
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2.1 Slender Potential Models

The four inviscid, irrotational models discussed in this section 

make the slender wing assumption, namely that the flow in any 

crossflow plane is governed by the two-dimensional Laplace equation

a 2*  a 2*
  +   = 0 (6)
3y2 3z2

Therefore, a complex potential representation for the crossflow is 

possible, which considerably simplifies analysis. The additional 

requirement of a conical flow pattern (i.e. one where the flow 

quantities over the wing are constant along a ray drawn from the 

apex) is imposed on the first three models and provides further 

simplification. However, it should be noted that a conical flow 

pattern cannot satisfy a Kutta condition at the trailing edge.

2.1.1 The Method of Legendre

For a delta wing flow, similar to that of fig.1.1, Legendre43 

considered that the crossflow could be represented by two 

symmetrically placed vortices, of equal but opposite strength, in the 

presence of a finite wing, as shown in fig.2.1. The complex 

potential W could not be obtained directly in the Z-plane, and so a 

transformation to the c-plane

C2 = Z2 - s2 (7)
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was employed, indicated in fig.2.2. Since the wing now lay along the 

axis of symmetry, in this case the imaginary axis, there was no image 

vortex problem. However, asymmetric flow could not be investigated 

in this plane. It was found for small angles of attack that

ir C - Cv
W = Ux - iccUc - —  In ----—  (8)

2tt c +

A Kutta condition was imposed in the Z-plane at the leading edges, 

Z = ±s, to represent flow separation there, i.e.

dW dW dc Z ir I 1
_  = -----------= -  [ -i<xU------ ( ----------------- —  ) ] = 0 (9)
dZ dc dZ c 2 ir c - Cv c + cv

and so, by requiring the square-bracketed term to equal zero

r Cv Cv
  »  —  (10)
2tt<xU Cv  + Cv

Thus the vortex strength could be determined in terms of its 

position. Legendre required that the vortex align itself with the 

local flow direction in order that it could be force free, i.e. the 

velocity V* normal to the vortex, in the limit as Z tended to Zy, was 

equal to zero. This was more easily satisfied by reference to the 

conjugate velocity V*, for which it followed that
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  dzv zv ir zv s2
v* = - u [ --- + icc-----  (    +   ) ] = 0 (11)

dx cv 2ttU Cv (c v + Cv ) 2Zvcv 2

Given the assumption of conical flow

d Z y  Z v
  = —  (12)
dx x

and taking s = kx, it was found that eqn.ll reduced to

Zy a Zv iT sZv s3
_  + i    ----- (    +   ) = 0 (13)
s k cv 2trkUs Cv(cv + <v) 2Zvcv2

The Kutta condition was then expressed as

r CC Cy;
  = ----------   (14)
27rkUs k s(<v + cv)

Conical solutions to (7), (13) and (14) have been obtained in which 

Zv/s, <v/s and T/kUs were constants and dependent only on the 

incidence parameter a/k, which is found to play the dominant role in 

all four models of this section.

This summary of Legendre's method is due to Smith4* ( as the 

original version was unobtainable ), who considered that the 

solutions showed the main qualitative features of the flow, i.e. 

vortices of the correct sign lying inboard of the leading edge and
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above the upper surface, and a non-linear lift curve. However, he 

found that the quantitative results were inaccurate. The vortices 

were located at too great a distance from the wing, and the 

non-linear lift was overpredicted. In addition, this approach 

violates Kelvin's theorem for the constancy of circulation as a 

result of the increase in vortex strength downstream.

2.1.2 The Method of Brown and Michael

Brown and Michael*s adopted a similar approach to Legendre, with 

the exception that the growth in circulation downstream was accounted 

for by the introduction of two feeding vortex sheets joining the 

leading edges to the point vortices, as shown in fig.2.3. Their 

apparently arbitrary selection of sheet shape has been found to be 

justified. The geometry of the physical and transformed planes was 

in accordance with that of Legendre. However, where Legendre 

considered that the point vortices should be force free, Brown and 

Michael imposed the force free condition on the point vortex-feeding 

sheet combinations.

An element Ax of the starboard feeding sheet sustains a force 

equivalent to

dr
Ffs = ipU —  (Zv - s) Ax (15)

dx

For an element Ax of the point vortex the force is expressed as in 

eqn.16 overleaf,
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Fv = -ipV*r Ax (16)

where V* is once again the limiting complex velocity as Z tends to 

the vortex location.

Since

Fv + Ffs = 0 (17)

it was found that

U dr
V* =  (Zv - s) (18)

T dx

Evaluating V* as before gave

dZv (Zv - s) dr Zv ir zv s
+   —  + i<x —  -   (   +   ) = 0 (19)

dx T dx cv 2irU Cv(cv + c^) 2Zvcvz

This was simplified, as in section 2.1.1, to

Zv « Zv ir sZv s3
2 —  - 1 + i    -----  (    +   ) = 0 (20)

s k cv 2wkUs CV(CV + Cv) 2ZvCvz

The Kutta condition, eqn.14, remained valid, and solutions to eqns.

7, 14 and 20 again gave solutions for which Zv/s, cv/s and T/kUs were 

constants and dependent only on the incidence parameter. Momentum
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considerations then permitted simple calculation of the resulting 

lift, and thence pitching moment.

The introduction of feeding sheets by Brown and Michael improved 

on the realism of Legendre's model and fixed the locations of the 

pressure discontinuities in the flow. However, slender wing theory 

requires that only the crossflow plane be considered, and therefore 

the addition of vortices acting out of this plane is a violation. 

Quantitative results were more accurate than those of Legendre, but 

the lift and the spanwise coordinate of vortex location were again 

overpredicted.

2.1.3 The Method of Mangier and Smith

Mangier and Smith46*47 removed the requirement for out-of-plane 

vortices whilst attempting to calculate the shape and strength of a 

feeding sheet. The flow pattern assumed for the crossflow plane was 

as shown in fig.2.4. It can be seen that the vortex core has been 

replaced by a point vortex, which is joined to the outer spiral by a 

cut (across which the pressure is discontinuous). Again a zero total 

force condition was applied, in this case to the combination of point 

vortex and cut. Five boundary conditions were imposed:

(a) no flow disturbance at infinity

(b) zero normal flow velocity on the wing surface

(c) smooth separation at the leading edge

(d) no discontinuity in pressure across the feeding sheet

(e) the feeding sheet was a streamsurface of the three 

dimensional flow.
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However, slender wing considerations required that these 

conditions be formulated in the two-dimensional crossflow plane. 

Conditions (d) and (e) are inherently three-dimensional, but after 

manipulation it was found that (d) could be satisfied by requiring 

that

drs svtm d*A<X> = ( rs —  -   ) A —  (21)
do 2kU do

where A indicates a jump in <!> on going from inside to outside the 

sheet, rg is the modulus of a complex location Zg on the feeding 

sheet, o is the coordinate along the sheet and vtm is the mean of the 

tangential velocities on opposite sides of the sheet. Condition (e) 

was expressed in two dimensions as

2kU
vn = - (   ) rs sing (22)

s

where B is the internal angle, at the point Zg, between a line to the 

wing centreline and a line tangential to the sheet at that point. 

Eqn.(22) indicates that the trace of the three-dimensional 

streamsurface in the crossflow plane does not form a streamline. 

Initially conditions (21) and (22) could only be applied to the sheet 

at one or two points . However, from the improved method of Smith48, 

it is now possible to satisfy (21) and (22) at a distribution of 

points along the sheet.

A transformation to the c-plane by eqn.(7) again removed the
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image vortex problem. Considerable algebraic manipulation was 

required to obtain the transformed boundary conditions, and for full 

details of these and the solution procedure for the resulting 

equations ref. should be consulted. A summary of the major results 

is given below.

It was found that close to the apex of the wing, where the real 

flow was near conical, good agreement with experimentally measured 

pressure distributions and hence lift could be obtained. However, on 

moving down the wing the theoretical predictions became less accurate 

as a result of the increased effect of secondary separations and the 

trailing edge in the real flow. As for the preceding two models, the 

quantitative predictions of overall lift and pitching moment were 

inaccurate. Nevertheless, the good representation of the position 

and shape of the primary vortex obtained by the improved method of 

Smith has resulted in its application to a wide range of problems in 

slender wing aerodynamics.

2.1.4 The Multi-Vortex Model of Peace

Using a crossflow geometry similar to that of Smith, Peace49 

modelled a feeding vortex sheet by a distribution of line vortices 

and used an isolated vortex to represent the core. By shedding 

discrete vortices at intervals downwing along the leading edge, it 

was found that these vortices would wrap around the "core" vortex and 

thereby describe the rolling up of the vortex sheet. Peace 

considered that initially a shed vortex had zero strength and that it 

then obtained its circulation along a cut joining it to the leading



edge (cf Brown and Michael). When this feeding process was 

terminated by the shedding of the next vortex, the first vortex then 

aligned itself with the local flow direction in order to be force 

free. Chaotic behaviour close to the core with an increasing number 

of discrete vortices was avoided by amalgamating vortices with the 

core whenever their angular separation exceeded a pre-assigned value.

Solutions for the flow were obtained by marching between downwing 

stations, and the method is therefore non-conical. However, no 

trailing edge effect was considered.

This flow model has been applied by Peace to several wings. For 

the case of a flat pla.a delta wing, the results were in close 

agreement with those from the Smith method. In consequence the 

predicted crossflow pattern was in good agreement with that found 

experimentally but the overall loading was not accurately predicted. 

The major advantage the multi-vortex model has over the vortex sheet 

model is its ability to handle flows where more than one vortex 

system is present, e.g a double delta wing.

2.1.5 Applicability of Slender Potential Models to 

Vortex Breakdown Investigation

It is obvious that the assumption of a conical flow pattern 

precludes any study of the vortex breakdown phenomenon. Furthermore, 

the appearance of the large axial gradients in the flow that 

accompany breakdown renders slender wing approximations invalid. 

However, as for the quasi-cylindrical approximation, in certain cases



it may be possible to relate the failure of the slender wing 

approximation to the onset of breakdown.

Of the four methods detailed in the preceding sections, it was 

considered that the Brown and Michael model offered the best balance 

of simplicity and physical realism. However, it would require to be 

set within a non-conical framework, and to provide a more complete 

description of flow within the vortex core region, if it were to 

provide the basis for a vortex breakdown investigation.
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2.2 Non-Slender Potential Models

To obtain a completely three-dimensional description of the flow 

past a delta wing it is necessary to consider that disturbances can 

propagate both upstream and downstream, i.e. a trailing edge Kutta 

condition is required and slender approximations are not valid. The 

governing equation for a potential flow is then the Prandt1-Glauert 

equation

a2<x> a2<r> a 2$
( 1 - Mro2 ) ---  +---- + --- = 0 (23)

3x2 ay2 3z2

Several approaches have been made to the solution of this 

equation, the majority of which hav,e been based on the single line 

vortex, multi-vortex or vortex-sheet models. It should therefore be 

apparent that these are inherently more complex than those of 

subsections 2.1.1 to 2.1.4. Nevertheless, it was considered 

worthwhile to study the methodology of a typical model to assess both

its suitability as an investigative tool and the degree of physical

realism achieved.

2.2.1 A Panel Method for the Solution of the Leading Edge 

Vortex Flow

The inviscid flow model employed by Johnson et al50 represented a 

highly swept wing of arbitrary geometry by a distribution of source 

and/or doublet singularity panels. Doublet panels alone were used to 

represent the rolled-up vortex sheets and the wake. It can be seen
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in fig.2.5 that the core was once again replaced by a line vortex,

which was joined by a cut to the feeding sheet ( cf Smith ). The

boundary conditions imposed were:

(a) zero normal flow velocity on the wing surface,feeding 

sheet and wake.

(b) zero pressure difference across the feeding sheet and 

wake.

(c) the total force on the line vortex and cut was required 

to be parallel to the line vortex.

(d) Kutta conditions along the leading, side and trailing

edges of the wing.

(Condition (c) requires the normal force on the representation of the 

vortex core to equal zero. It should be noted that it is no longer 

necessary for the normal direction to lie in the crossflow plane.)

The required singularity distributions and the geometry of the 

feeding sheets were then calculated iteratively from a starting 

solution based either on the user's experience or Smith's conical 

solutions. Careful consideration of the numerical methods employed 

was required to optimise the method run time and to ensure that any 

numerical instabilites were properly damped.

Results obtained for a delta wing show good agreement with 

experimental measurements, although secondary vortex effects cannot 

be calculated. However, Johnson and his co-workers concluded that 

considerable work was required to obtain a reliability similar to 

that of an attached potential method.
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2.2.2 Applicability of Norv-Slender Potential Models to

Vortex Breakdown Investigation

The additional requirement to satisfy the Kutta condition at the 

trailing edge led to a considerable increase in complexity of models 

for the leading edge vortex flow. From the first model of Nangia and 

Hancock51, to the most recent work by Hoeijmakers52, this has 

produced a need for computational resources that is unmatched by 

slender models. Even so, the representation of flow near the core 

remains poor. Any attempted modification of such a method to 

accurately simulate flow within the core region and to reproduce the 

breakdown phenomenon would so increase the complexity of the model as 

to make it almost unworkable. This feature, coupled with the 

detailed validation program required by even the most up-to-date 

potential-based panel methods, renders such models unsuitable for use 

in an investigation of vortex breakdown.
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2.3 Modelling the Vortex Core

It is widely believed that the vortex breakdown phenomenon may 

originate from the core of a leading edge vortex. To assess the 

validity of this hypothesis, it is necessary to include some 

representation of the core regions in a model of the flow past a 

delta wing. In the models of sections 2.1 and 2.2, this was 

attempted by reducing a core to a line vortex. While such a 

representation provides an approximate simulation of the effect of 

the core on the outer flow, its indication of singular behaviour at 

the centre of the core is unrealistic. In addition, the importance 

of features such as the entrainment of flow into the core cannot be 

determined.

Considerable effort has been directed to overcoming these 

restrictions, most notably by researchers at R.A.E. Farnborough in 

the 1960's. The major features of their work are detailed in the 

following subsections.

2.3.1 The Inviscid Rotational Vortex

The experimental results of Harvey, as summarised by Hall53 

indicated that, for a leading edge vortex, within one convolution of 

the spiral it was not possible to distinguish the feeding shear layer 

( or vortex sheet ) as it became progressively more diffuse. From 

this feature, Hall concluded that a rotational model based on 

distributed vorticity was more physically realistic than one based on 

vorticity concentrated along feeding sheets in an otherwise



irrotational flow. However, to simplify the model, Hall was required 

to make certain restricting assumptions:

(1) the flow was to be axisymmetric and incompressible

(2) the velocity field was to be conical

(3) the effects of viscous diffusion were to be neglected. 

Hall named his model the “Euler Vortex" since, with these 

assumptions, the Euler equations govern the flow.

It is known, from the work of Earnshaw^ , that at the centre of a 

leading edge vortex there exists a small viscous subcore, within 

which the effects of viscosity are dominant. Furthermore, in a real 

flow there is a progressive departure from axial symmetry as the 

distance from the vortex axis is increased. Therefore, the "Euler 

Vortex" is only valid within a limited region of the flow close to 

the core, but outwith the viscous subcore.

Solutions obtained by Hall show good general agreement with 

experiment, in particular the high axial velocities and low pressures 

within the core. In addition, the sensitivity of flow within the 

vortex to external boundary conditions has also been confirmed 

experimentally. Hall hypothesised that this sensitivity could partly 

explain the vortex breakdown phenomenon.

2.3.2 An Improved Representation of Flow Within the Core

Hall 54 improved his representation of the flow within the leading 

edge vortex core through inclusion of a model for the viscous 

subcore. The outer part of the core was again represented by the
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"Euler Vortex", which provided the edge boundary conditions for the 

subcore. Further extensions to Hallfs theory for the subcore were 

made through collaboration with Stewartsonb5 , and it is their 

modified theory which is summarised overleaf.

As a first stage in obtaining a solution for the subcore ( the 

inner solution ), the flow was assumed to be laminar and boundary 

layer type approximations were made to the governing Navier-Stokes 

equations. Subsequently, suitable independent flow variables were 

identified, and the outer solution expressed in terms of these 

variables. An asymptotic expansion for the subcore solution was then 

obtained and substituted in the approximated governing equations. An 

order of magnitude analysis of these equations then yielded a set of 

ordinary differential equations which, when coupled with suitable 

boundary conditions, resulted in an inner solution which approached 

the solution for the outer core with increasing distance from the 

vortex axis.

The results obtained from this method have shown good qualitative 

agreement with experiment. However, quantitative comparison 

highlighted some shortcomings which may have been a consequence of 

the laminar, instead of turbulent, representation of the subcore. It 

has been shown that substitution in the governing equations of an 

eddy viscosity, of approximately five times the magnitude of the 

kinematic viscosity, produces acceptable agreement with experimental 

results.
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2.3.3 Two Further Models for the Flow Near a Vortex Core

Subsequent to the work of Hall, Mangier and Weber56 determined a 

non-slender potential representation of the flow near a vortex core. 

As assumed by Smith, they considered that the vorticity in the flow 

was concentrated on a thin sheet, and that elsewhere the flow was 

inviscid, incompressible and conical. However, slender wing 

approximations were made in only one case, for the purpose of 

comparison with the non-slender model.

Results from this method indicated that, as would be expected, 

the required shape of the sheet was a tightly wound spiral and that 

high axial velocities existed within the spiral. The differences 

between slender and non-slender representations were also 

highlighted, in particular for the values of the circumferential and 

radial velocities as the centre of the spiral was approached. In the 

limit, the circumferential velocity in the slender solution tended to 

a finite value, whereas that in the non-slender solution tended to 

infinity. For the slender solution, it was found that the mean value 

of radial velocity was always zero whilst that of the non-slender 

solution only tended to zero at the centre. In both solutions the 

axial velocity tended to infinity.

A detailed comparison with experimental results was not attempted 

by Mangier and Weber. Nevertheless, it is apparent that such a 

method is inapplicable within the viscous subcore and close to the 

wing leading edge.
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It appears that the three-dimensional vortex filament method
5 7developed by Leonard • may yield useful results for flow behaviour 

within the core. The basic assumption made by Leonard was that it is 

possible to represent a vorticity field by a distribution of vortex 

filaments (within each of which the vorticity distribution is 

non-singular). The development of the flow is calculated from the 

dynamic interaction between the individual filaments. This method 

was applied by Nakamura et al to simulate the axisymmetric breakdown 

of an isolated vortex.

NakamuraSa found that it was possible to reproduce several of the 

characteristics associated with axisymmetric vortex breakdown, 

including changes in the vortex core as breakdown was approached. 

These included the deceleration of the axial flow and an increase in 

the swirl angle. Furthermore, with the provision of suitable 

upstream boundary conditions from experiment, it was possible to show 

the occasionally observed feature of a recovery zone behind the 

initial axisymmetric breakdown followed by a second breakdown of the 

spiral type.

However, the application of the vortex filament method to the 

breakdown of a leading edge vortex represents a more complex task. 

Such an application has not yet been attempted.
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2.3.4 Applicability of Core Models to Vortex Breakdown

Investigation

It is considered that the vortex core has a considerable role to 

play in the breakdown phenomenon. However, it is unclear whether 

breakdown originates from within the core or is, alternatively, a 

consequence of the effect of the core on the outer flow. It was 

therefore vital that an investigation of the breakdown of the leading 

edge vortex should be performed on a model that included detailed 

representation of the core flow. Such an approach was adopted by 

Luckring and is discussed in the following section.
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2.4 The Method of Luckring: A Comprehensive Model for the Leading

Edge Vortex

S 9Luckring developed a composite representation for the 

three-dimensional leading edge vortex flow in an attempt to obtain a 

fuller understanding of the flow within the core and the breakdown 

phenomenon.

The major features of this model are shown in fig.2.6. The 

three-dimensional panel method of Johnson et al, summarised in 

section 2.2.1, was selected to represent the outer part of the flow. 

This was matched to an inner solution of the quasi-cy1 indrical 

Navier-Stokes equations of section 1.3.1, where the numerical 

solution procedure was that developed by Hall. As discussed in 

section 1.3.1, such a representation for the inner flow requires a 

starting solution. In this case, the inner flow in the initial plane 

was provided by a solution of the core representation detailed in 

section 2.3.2.

Calculations were performed for delta wings with a leading edge 

sweep angle ranging from 55* to 85*, and over an angle of attack 

range of 5* to 50*. Particular arrow and diamond wings were also 

analysed. All cases were considered for incompressible flow at a 

Reynolds' Number of the order of one million, based on the wing root 

chord.

Comparison of theoretical results with the experimental results 

of Earnshaw has indicated that reasonable agreement is achieved

41



throughout the core, with the exception that the centreline axial 

flow is not well predicted. It was considered that, in addition to 

experimental inaccuracies, a major cause of this error was the 

assumption of a laminar, incompressible flow within the viscous 

subcore. As discussed in section 2.3.2, a turbulent model of the 

subcore appears more appropriate. In addition, the local maximum in 

velocity on the vortex axis can result in compressibility effects in 

this area for an incompressible freestream.

From consideration of the experimental results of Wentz and 

Kohlman, Luckring found a close correlation, for all wings studied, 

between the occurrence at the trailing edge of vortex breakdown and a 

particular constant swirl angle (= atan (v0/va) ) within the vortex. 

The fact that at this condition the theoretical results did not 

exhibit any of the features associated with breakdown, was attributed 

by Luckring to the approximated representation of the viscous 

subcore. However, the ability of this composite method to model the 

vortex breakdown phenomenon remains unproven.
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2.5 Survey Conclusions

From the methods of modelling the leading edge vortex flow 

considered in this chapter, it was found that none were directly 

applicable to a simple, flexible investigation of vortex breakdown. 

The majority of the methods studied were deemed unsuitable for 

reasons of complexity and excessive computational requirements. It 

was concluded that the development of a basic model of the flow, 

designed to meet the requirements of section 2.0 and intended 

primarily for the study of vortex breakdown, should be undertaken.
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Chapter 3

Development of the Flow Model

3.0 Introduction

As discussed in Chapter 2, many extensive models have been 

developed for the high angle of attack flow past a delta wing. 

Although several of these models provide detailed representations of 

the vortex flow, it was considered that an investigation of the 

inherently complex vortex breakdown problem would be best performed 

with a simple, yet physically realistic, analytical model. Such a 

model would represent the essential aspects of the flow whilst 

facilitating identification of the dominant control parameters. The 

effect on the flow of a variation of these parameters could then be 

studied in an attempt to establish their importance, if any, in the 

vortex breakdown phenomenon.

The development of a suitable flow model was undertaken in two 

stages; initially a model was developed for the crossflow, this model 

being subsequently extended into three dimensions. In order to 

determine a representation for the crossflow which provided 

sufficient realism, whilst retaining simplicity, it was necessary to 

adopt a "building-block" approach. In this way it was possible to 

proceed from the simplest possible point vortex model, through a 

first vortex-sink model, to the modified vortex-sink model which 

represents the entrainment of flow into the vortex ( neglected in



earlier analytical models ), and also provides the basis for a 

quasi-three-dimensional study of the flow.

Application of a Kutta condition to the leading edges of the wing 

reveals a previously unreported result: it appears that the ratio of 

sink-to-vortex strength, a measure of the entrainment effect, plays a 

major controlling role in the crossflow. If this ratio falls below a 

critical value, then the crossflow exhibits behaviour which may well 

be related to vortex breakdown in three dimensions, thus indicating 

the possible importance of the entrainment effect of the vortex in 

the phenomenon.

The chapter concludes with the method chosen for extension of the 

model into three dimensions which, on the basis of the results for 

the crossflow plane, was chosen such that the importance of the 

entrainment-related parameter could be fully investigated.



3.1 The Point Vortex Model

The simplest possible representation for the crossflow past a 

delta wing is that of two point vortices in the presence of a flat 

plate, as shown in fig.3.1. As stated in Chapter 1, vortex breakdown 

is largely an inviscid phenomenon, and therefore an inviscid model 

for the crossflow is acceptable. Furthermore, with the concentration 

of the rotationalitv of the flow at two points, a governing complex 

potential can be derived. Obviously no representation of the flow 

within the vortex core is possible with such a model. As discussed 

in Chapter 2, there is no conclusive evidence on the role of the core 

in vortex breakdown. Therefore it was decided to simplify analysis 

of the phenomenon by considering only the core's effect on the outer 

flow, as modelled by a complex potential representation.

For the flow representation of fig.3.1, image vortices are 

required to ensure that the wing remains a solid boundary, and this 

problem cannot be resolved in the complex Z-plane. A conformal 

transformation to an additional complex plane is required.

In previous work, e.g. refs 45 and 46, the transformation 

employed has been such that the wing lies along an axis of symmetry 

of the flow and therefore no images are required. However, as such 

an approach precluded the possibility of extending the model to 

investigate asymmetric distributions of the leeside vortices, an 

alternative transformation ( as employed by Pullin in ref.60) was 

considered.
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By transforming the wing to a circular cylinder in the Z-plane, 

fig.3.2, it was possible to resolve the image vortex problem by 

application of the Circle theorem, as detailed in ref.61. The 

required transformation, derived in Appendix 3, is an inverse 

formulation of the Kutta-Joukowski transformation, and is given by

Zt = -0.5i ( Z + A  Z2 - 4a2 ) ) (24)

As shown in Appendix 4, the governing complex potential for the flow 

in this plane is of the form

a2 irt Zt ( Zt - ZA1 )
W(Zt) = $ + iV = Uc ( Z l + —  ) - -- In ( ----------------  ]

Zj 2.V a2 “  Z j

ir2 ^1 ( Zj - Zgt )
- --- In [     ] (25)

2-n a2 - ZjZgj

Through eqn.24 it is then possible to obtain the value of the complex 

potential for all points in the Z-plane.

3.1.1 Boundary Conditions

Three boundary conditions were imposed initially:

(a) the flow in the Z-plane was to be symmetric about the 

imaginary axis in order to simplify the analysis



(b) the complex velocity in the limit as a vortex centre was 

approached was to be zero i.e. the vortex was to be 

stationary

(c) a Kutta condition was necessary at the wing leading 

edges to ensure finite velocities there.

Condition (a) obviously requires symmetrically placed vortices of 

equal strength. The complex potential of eqn.25 then reduces to

W(ZX) = * + i*P = Ut Z, +

ir\

2n
In

( Zx - ZAl ) ( a2 - ZtZAl ) 

( Z, - ZBl ) < a2 - Z,ZBl )
(26)

To invoke condition (b), it was first necessary to note that a 

vortex induces no velocity at its own centre. As proven in Appendix 

5, it can then be deduced that the vortex will be stationarv if

W,
dZt

dZ

ir.

Z=ZA 4w

d2Z j dZx

dZ2 dZ
= 0 (27)

z=z,

II c 0

a 2 1
1 -

^Ai * ZBiL ZAi2 2ir a2 - ZA12 ZA1 - ZBl a2 - ZB12 .
(28)

d2Zt dZt - 4a2
/

dZ2 dZ ( Z2 - 4a2 ) ( Z + ✓ ( Z2 - 4a2) )
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The Kutta condition (c) required that

dW s
—  = 0 , Z = ± -
dZ 2

(30)

which is equivalent to requiring in the Z^plane that

dW

dZ.
(31)

From (26), it can be found that this leads to the condition

dW

dZ.
1 -

ir.

2 v
( W2 ) = 0 , Z x = * ai (32)

W, = 'A l 1 Z
  + ----B i (33)

which can be expressed, for a solution in the left half Z-plane, as

where

2U -
ir.

2 ir
W,= 0 (34)

W,
'Al 'B l

+
. ai - Z^t a2 - aiZ^j ai - Zgt a2 - aiZgt

(33)
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It would appear that the two boundary conditions (b) and (c) have 

provided four governing equations with only three unknowns: yAl, zAl > 

and T. Thus the problem would be overdetermined. However, as shown 

in Appendix 6, W 3 can be expressed as the wholly imaginary function 

given below

W, = i
-a + azA 1 iyAi a3 - azAl2 - avAl2

( a 2 - azAl)2 + a2vAl2 ( a2 + azAl)2 + a2yAi
(36)

and so the Kutta condition reduces to one real equation. Therefore, 

there are only three equations in terms of three unknowns and a 

solution, if one exists, is possible.
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3.2 Point Vortex Solution Method and Results

The problem of the simultaneous satisfaction of eqns.27 and 34 

has previously been addressed by Coe62, and also by Clark and 

Smith63. Coe found a locus of possible solutions for vortex position 

and strength; however, in ref.63 it was shown that Coe's derivation 

of the governing equations was incorrect and that no non-zero 

solutions were possible. On this basis, Clark and Smith stated that 

stationary vortices could not exist behind a two-dimensional flat 

plate.

It was considered that verification of this result was necessary, 

by an alternative means to the algebraic approach employed in 

ref.63. The Numerical Algorithm Group's64 (NAG) C05NBF algorithm, as 

implemented on the VAX11/750, was used in a numerical attempt to 

determine simultaneous solutions for eqns.27 and 34. This algorithm 

seeks the zero of a system of n nonlinear, well-behaved, functions in 

n variables by a modified Powell Hybrid method. The user is required 

to provide an estimate of the solution together with the desired 

convergence tolerance, which for this investigation was set at the 

recommended value of the square root of machine precision.

On the basis of flow symmetry, solutions were sought only for the 

left-half Z-plane. The crossflow velocity Uc and the wingspan s were 

fixed at 1.0 m/s and 1.0 m respectively. The initial estimated 

solutions are shown together with the results in Table 1. It can be 

seen that in no case was a converged solution obtained, as indicated 

by the typical results in figs.3.3 and 3.4. It was considered that
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this provided numerical verification of the result of Clark and 

Smith. The Kutta condition and the requirement for a stationary 

vortex cannot be met simultaneously. Therefore the point vortex 

model cannot provide a realistic model for the crossflow past a delta 

wing.

Utilising the "building-block" approach discussed in the 

introduction to this chapter, it was considered that the introduction 

of a sink to both vortices of the point vortex model would enhance 

the realism of the model, by representing the entrainment of flow 

into the vortices, and might permit satisfaction of the imposed 

boundary conditions. This possibility is investigated in the 

following section.
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3.3 Selection of an Alternative Crossflow Model

From the results of section 3.2, it is obvious that the point 

vortex model is unsuitable for the well-ordered delta wing crossflow, 

and cannot therefore be used in an investigation of vortex 

breakdown. The development of an alternative model for the crossflow 

became necessary. A logical progression from the point vortex model 

can be obtained by addition of a sink to both point vortices of the 

point vortex model, as this will provide representation of the 

entrainment effect of the cores of the leading edge vortices whilst 

requiring only slight modification of the original model.

Fig.3.5 shows the streamline pattern, in the crossflow plane of a 

delta wing, determined by Verhaagen5 from a topological analysis of 

experimental data. For comparison, fig.3.6 shows the pattern as 

obtained from the point vortex model, where the Kutta condition ( but 

not the stationary condition ) was satisfied. This highlights the 

failure of the point vortex model to show the spiralling nature of 

the crossflow, although it must be stated here that there is a view 

that any spiralling of the crossflow streamlines is minimal, and that 

spiralling is chiefly a feature of the three-dimensional 

streamlines. Nevertheless, it was judged that such crossflow 

spiralling, however small, had to be included in the model in order 

that its effect on the vortex flow could be established. The 

development of the necessary vortex-sink model is fully described in 

the following section.
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3.4 The Vortex-Sink Model

The modified representation for the delta wing crossflow is shown 

in fig.3.7. This was also the representation selected by Coe65 in 

his vortex entrainment model. ( It should be noted that the 

vortex-sink model developed by Mourtos66 was for the chordwise, 

rather than crossflow, plane ). As can be seen, two sinks of equal 

strength have been added to the point vortex model. Transformation 

to the Zj-plane was again required to resolve the image problem, 

fig.3.8, and the governing complex potential for symmetric flow was 

found to be of the form

W(Zt) = U(
ir ( Z x - ZAl )( a2 - ZtZAl)

Z j + —  — —  In---------------------------
Iit ( Zj — ZBl )( a2 — ZjZgj)

In
( z, - zAl X  z, - z B l )

(37)
2ir ( a  - ZtZAl )( a - ZtZBl ) Zt2 |ZAl

It was noted at this point that Q and T are dimensionally equivalent 

i.e. both have units of m 2s-1, and it was stated that

Q = br (38)

where b is a real number, and was defined as an "entrainment 

coefficient". Eqn.38 is used to simplify the later analysis.
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3,4.1 Boundarv Conditions

The three boundary conditions imposed were those of the point 

vortex model:

(a) symmetric flow

(b) the vortex-sink was to be stationary

(c) a Kutta condition was to be satisfied at the leading 

edges.

Condition (a) is automatically satisfied by the symmetric 

formulation of eqn.37.

As shown in appendix 7, condition (b) will be met if

dZ/ (i + b) r d2Zt dZj '
( Wj + W4 ) — - ---- / --- = 0 (39)

dZ z=zA 4tt . dZ2 dZ z=zA

where W, is expressed as

br

2it

"Ai 'B1

■ a “ ^l^Ai ^ “ ^Bi a* ^l^Bi
(40)

For this model the Kutta condition, as expressed in eqns.30 and 

31, reduced to the condition that

dW

dZ.
= U, 1 -

z 2

ir br
—  W2 - —  W5 = 0 , Zi = +ai (41)
27T 2it
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where W2 is given bv eqn.33 and W5 is given by

'Ai 1 ZB l 2-----  +   -   - __ (42)
Z i ZAi a Z iZAi Z i ZBi a Z iZBi Z i

Eqn.41 can be expressed as

4ttUc
iW2 + bW5 =   (43)

As shown in appendix 8, at = ai, W5 reduces to the wholly real 

function

~2yAi -2yAiW 5 =    -   (44)
a2 - 2azAl + zAl2 + yAl2 a2 + 2azAl + zAl2 + yAl2

and so given that W2 reduces to the wholly imaginary function W 3 

shown in eqn.36, it can be seen that the Kutta condition is again a 

real equation. The non-dimensional form of the equation is derived 

in appendix 9, and is found to be

zn " zn 3 " yn?zn “ byn " bynzn2 "byn 3 *uca (45)
* “ 2zn2 + 2yn2 + zn + 2yn2zn2 + yn* r

yn = yAi/a » zn = zAi/a <46>

It can be seen that the Kutta condition is controlled by the 

parameters Uca/r and b.
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The boundary conditions have again provided three equations. 

However, in this case there are four unknowns: t , T and b.
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3.5 Vortex-Sink Solution Method and Results

The simultaneous solution of eqns.39 and AI was attempted using 

the algorithm described in section 3.2. Again solutions were sought 

only for the left half Z-plane. The problem of the additional 

unknown was overcome by specifying a value for b, which was varied 

between 0.0 and -1.0 in steps of -0.01 over a series of runs. Since 

T is defined as negative for the left-hand vortex and Q defined as 

positive for a sink, a negative value of b was required to to ensure 

that a solution of the proper sense was obtained.

Initially, Uc and s were set at 1.0 m/s and 1.0m respectively, in 

order to correspond with the point vortex investigation. For this 

case the initial estimated solution was yA = -0.5, = 0.5, and T

= -5.0. As b was decreased, the estimated solution for a program run 

was the actual solution of the preceding run, if such existed. 

Otherwise, the last available solution was used.

The case b = 0 corresponds to the vortex alone case and, as would 

be expected, no solution was found. In addition, no solution was 

found for b = -0.01.

In the interval -0.02 > b ^ -0.71 solutions of the proper sense 

were obtained in the upper left half plane. ( No solutions were 

possible in the lower left half plane over the whole b range.) As 

can be seen in fig.3.9, initially the required vortex-sink locations 

are far removed from the wing. However, as b is progressively 

decreased, there is an allied inboard and downward movement of the
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vortex-sink; for -0.15 > b > -0.71 it lay inboard of the leading 

edge. As b tends towards -0.71 the solution locations become more 

compressed. When compared with the experimental results of 

Verhaagen5 ( for four angles of attack close to the apex of a slender 

delta wing ), in all cases the vortex-sink is either located too far 

inboard, or at too great a distance from the wing to provide even an 

approximately realistic representation of the position of a leading 

edge vortex core. However, as shown in fig.3.10, the inboard and 

downward movement of the vortex-sink is initially accompanied by a 

decrease in clockwise vortex strength, as is found in reality. This 

behaviour is reversed when the vortex-sink moves inboard of 

approximately the thirty-five percent semi-span point, well inboard 

of any core locations found by experiment.

It should be noted that no solutions were possible for 

-0.72 < b. This can be explained by reference to fig.3.11, where the 

required value of vortex strength at each solution location is 

plotted against the ratio b. As b tends from to 0 to -0.28, dT/db 

becomes progressively less negative. At b = -0.28 a maximum of T 

occurs ( indicating a minimum of clockwise vortex strength ), and 

thereafter dT/db becomes progressively more positive, until dr/db 

tends to infinity as b = -0.71 is approached. The resulting 

extremely high values of T preclude further solutions in the region 

of practical interest close to the wing.

The solution behaviour for this first case was only one of four 

types found.
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The solution for U = 2-0 m/s and s = 1.0 m is typical of the 

second type of behaviour. For the starting solution yA = -0.5 m, 

zA = 0.5 m and T = -5.0, the solution locations shown in fig.3.12 

were found over the range -0.02 ^ b>-1.0. As b was decreased, there 

was an inboard and upward movement of the vortex-sink solution, with 

the accompanying increase in the clockwise vortex strength indicated 

in fig.3.13. The variation of vortex strength with b is shown in 

fig.3.14. In this case, comparison with the Verhaagen results shows 

that the vortex-sinks are located too far outboard. However, the 

degree of physical realism achieved is considerably higher than that 

for the first case, and so it was considered that streamline and 

equipotential plots should be obtained.

The streamlines and lines of equal velocity potential for the 

crossflow plane could be determined for each solution point by use of 

the NAG contouring routine J06GBF. The resulting plots for one of 

the vortex-sink locations are shown in figs.3.15 and 3.16, and are 

typical of those found over the range of solutions. As a result of 

the periodic nature of the streamfunction for a sink in isolation

Q
= —  0 (47)

27T

and also that of the velocity potential for a vortex in isolation

r
$ = - —  9 (48)

2tt
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all streamline and equipotential plots exhibit two lines of

discontinuity, one from each vortex-sink to the boundary of the plane

for the streamline plots, and one from each vortex-sink to the wing 

for the equipotential plots. Although the values of and $ change 

across the lines of discontinuity , the gradients of V and $ are 

unaffected, and so the crossflow velocities v and w are unaffected 

across these discontinuities. ( The magnitude of the jumps in and 

$ are shown in the three-dimensional plots of ’P and $ against v and z 

in figs. 3.17 and 3.18 ).

The third type of behaviour is typified by that for the case 

Uc = 4.0 m/s and s = 1.0 m. For the starting solution yA = -0.5 m,

= 0.5 m and T = -5.0, it was found that solutions again existed 

over the range -0.02 > b > -1.0 . However, in this case the 

vortex-sink locations always lay inboard of the leading edge and 

below the wing, as shown in fig.3.19. As b was decreased, there was 

an inboard and downward movement of this location, accompanied by the 

increase in clockwise vortex strength of fig.3.20. Obviously such 

solutions bear no resemblance to the real crossflow.

The fourth type of solution behaviour is typically that found for
i

the case Uc = 1.0 m/s and s = 5.0 m, with the starting solution 

yA = 0.5m, zA = 0.5m and T = -5.0. Here no converged solutions were 

found for any value of b in the range -0.01 > b ^ -1.0.

It can be seen from Table 2 that there was no pattern to suggest 

which type of behaviour would be found. One interesting point is 

that where the first type was found, the vortex-sink location always
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moved inboard of the leading edge at b = -0.15, and the boundary 

beyond which no solutions could be found always lay at b = -0.71.

This indicates that the parameter b plays the dominant controlling 

role in the flow. However, the reason why this is not the case in 

the three other types of behaviour is not clear.

It should be noted that Coe also found solutions for such a 

vortex-sink model, with no reported difficulties. However, these 

solutions were obtained for specified locations determined from 

experimental results, no purely theoretical study being attempted.

It was considered that the unpredictable solution behaviour 

necessitated the rejection of the vortex-sink model in the form 

discussed in this section. However, comparison of the streamline 

plot of fig.3.15 with fig.3.5, the crossflow streamline pattern of 

Verhaagen, shows that the model does provide an adequate 

representation of the crossflow streamlines. In addition, there 

appears to be a dependence of the solution for the model on the ratio 

of sink-to-vortex strength. For both the above reasons, it was 

desired to retain the governing complex potential in the form given 

in eqn.37. Therefore the next development of the flow model could 

only be obtained by modification of one or more of the imposed 

boundary conditions. As discussed in the following section, the 

requirement for a stationary vortex-sink was replaced by a force-free 

condition on a vortex-sink-feeding sheet combination. Not only does 

this approach improve on the realism of the model, but it also 

provides the basis for the extension of the model into three 

dimensions, as the feeding sheet concept provides a mechanism for



growth of the vortex and sink strengths in the downstream direction.
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3.6 Modification of the Vortex-Sink Model

As was stated in section 3.5, the lines of discontinuity in the 

equipotential plot of fig.3.16 indicate the existence of a potential 

jump. In section 2.1.3 and eqn.21, it was shown that such a jump 

exists across the trace in the crossflow plane of the 

three-dimensional feeding sheet. It was therefore decided that a 

line of discontinuity in potential should be taken to represent such 

a trace. With the assumption that the discontinuity runs from the 

leading-edge to the vortex-sink ( which is approximately correct and 

must be imposed to avoid excessive computational time ), a force-free 

condition, similar to that of Brown and Michael, could then be 

applied to a vortex-sink-feeding sheet combination. This would 

replace the stationary vortex-sink condition, which is inapplicable 

as the vortex-sink is effectively "tethered” to the leading edge by 

the feeding sheet. However, the requirements for symmetric flow and 

a Kutta condition at the leading edges were again invoked.

It should be clear that the feeding sheet is not directly imposed 

on the flow, but rather is a function of the potential jump.

Therefore the governing complex potential and the Kutta condition are 

unchanged from eqns.37 and AI. The force-free condition is detailed 

fully in the following subsection, and is based on the 

three-dimensional coordinate system of fig.1.1.

3.6.1 The Force-Free Condition

An element Ax of the vortex-sink-feeding sheet combination is
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shown in fig.3.21. This differs from Brown and Michael's model in 

that not only has a sink been added to the point vortex, but there is 

also a component, (dr/dx),, of the feeding sheet circulation lying in 

the plane of the sheet. As can be seen in fig.3.22, this was used to 

represent a difference in velocities towards the vortex-sink along 

the sheet. For simplicity it was assumed that this difference in 

velocities could be directly related to the change in sink strength 

in the downwing (x) direction, and so it was stated that

dQ dr
—  = ( —  )i (49)
dx dx

where C : is a real constant.

It is shown in Appendix 10 that an approximate force balance on 

this element leads to the equation below.

1 dQ dr

dZA
b’co --- + V

dx
ns ( Q + ir )

C, dx dx Ura ( Z* + s/2) cos a
(50)

where UOT is the freestream velocity, a is the angle of attack and Vns 

is the non-singular component of crossflow velocity at the 

vortex-sink minus the normal component of the freestream. As stated 

in Appendix 10, the accuracy of this force balance decreases with 

increasing angle of attack.
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Although a conical solution for the vortex-sink model, modified 

by the inclusion of this force-free condition, would be of no 

importance in a study of vortex breakdown, its possible existence was 

investigated as detailed overleaf for the purpose of completeness.
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3.7 Conical Flow

From eqn.50 it can be seen that the forcf-— free condition is 

essentially three-dimensional. However, making the assumptions of 

conical flow, namelv

dx

dQ

dx

dr

dx

(51)

(52)

(53)

eqn.50 reduces, as proven in Appendix 11 for Cj = 1, to the condition 

that

vns +
r za i—  + cot A cos <x ZA + —
. x X

where A is the angle of wing sweepback. For a specified value of x 

the condition is effectively two-dimensional.

Such a conical formulation obviously cannot yield information of 

interest on vortex breakdown, since the conicity of the flowfield 

precludes any three dimensional behaviour. However, it was 

considered worthwhile to study any possible conical solutions before 

proceeding to a non-conical investigation., as in reality a region of
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near conical flow is found over a delta wing away from the trailing

edge.

3.7.1 Modified Vortex-Sink Solution Method and Results (Conical)

The simultaneous solutions of eans.54 and 41 was again attempted 

by use of the NAG C05NBF algorithm. The freestream velocity l!a and 

the wingspan s were fixed at 1.0 m/s and 1.0 m respectively for the 

values of A and <x given in Table 3. To obtain a solution of the 

proper sense, b was once more required to be negative. The spanwise 

vortex-sink coordinate, yA, was varied between -1.5s and 0.0 to find 

solutions in the variables zA, b and T in the left half plane.

As shown in Table 3, the solution behaviour was unpredictable 

over the range of freestream velocities and wing parameters 

investigated. In six cases no solutions could be obtained. Where a 

solution was possible, for example where

A = 70° , cc = 20#

it can be seen from fig.3.23 that all the possible vortex-sink 

locations lay outboard of the leading edge. The variations of b and 

T with y^ are also shown. Such a lack of physical realism, coupled 

with the non-existence of a solution in particular cases, rendered 

the conical vortex-sink model of little value. Its application was 

not pursued further. Full details of the non-conical investigation 

of the crossflow are given in the following section.
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3.8 Non-Conical Flow

By considering the flowfield to be non-conical, as it must be if 

vortex breakdown is to occur, further simplification of the 

force-free condition, eqn.50, is not possible. The equation remains 

three-dimensional, and yields no information on the flow in the 

crossflow plane. Therefore the crossflow problem is highly 

indeterminate, with only one real equation, the Kutta condition, in 

four unknowns: yA , zA, P and b.

In section 3.5, it was shown that the parameter b appeared to 

play a significant role in the crossflow under certain conditions.

It was considered that it would be worthwhile to study the effect of 

a variation in b on the required value of T for a fixed vortex-sink 

location ( and therefore for constant yAl and zAl in the transformed 

plane ). In addition, from the Kutta condition, eqn.45, it is 

obvious that for fixed values for b and r, a locus of solution points 

for the vortex-sink exists. This behaviour was also to be studied.

3.8.1 Variation of the “Entrainment Coefficient” b

A series of locations was specified for the vortex-sink in the 

left half Z-plane. These locations were then transformed to the 

Zj-plane, and the parameter b varied between -1.0 and 1.0 in steps of

0.01. The required variation of T, and thence Q, could then be 

obtained. The non-dimensional formulation of the Kutta condition is 

such that the only effect of crossflow velocity and wingspan is to 

factor the vortex strength, whilst all other features of the solution
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behaviour are unaffected. Therefore Ur and s were fixed at 1.0 ms 1 

and 1.0 m respectively.

Shown in fig.3.24 is the mesh indicating the 2401 vortex-sink 

locations investigated. For each location the solution behaviour 

with b was the same, as typified by the four cases shown in fig.3.25.

It was necessary for T to be negative and Q positive, i.e b 

negative, for the vortex-sink to be of the proper sense, and so it 

was the behaviour of T and 0 for -1.0 < b < 0.0 that was of 

particular interest. In all cases a discontinuity in the solution 

was found within this range at some value of b equal to br , the 

"critical entrainment coefficient", shown in fig.3.25. For 

-1.0 < b < bc, T was positive and Q negative. As bQ was approached, 

the magnitudes of T and Q became extremely high. ( It is assumed 

that these values would be well damped in a model where viscous 

effects within the vortex core were represented ). These remained 

high, but reversed in sense, as bc was passed. Thereafter, for 

bc < b < 0.0, a vortex-sink of the proper sense was possible, and

the magnitudes of T and Q quickly fell to what were considered 

reasonable values for the imposed flow conditions. As b passed 

through zero and became positive, Q fell through zero to become 

negative whilst T remained negative. Although solutions of the 

proper sense were impossible for 0.0 < b < 1.0, no discontinuities 

were present.

On the basis of the interesting nature of this solution 

behaviour, it was considered that a study of the associated variation
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of normal force, Fz, would be of interest. Although several methods 

exist for such a calculation, a simple approach was sought which 

would minimise computational time.

It was initially considered that Fz could be calculated by 

appl ication of the theorem of the Blasius

1 f dW 2
Fy - iFz = - pi ( —  ) dz (55)

2 . c dz

where c is a contour around the wing,vortex-sinks and feeding 

sheets. However, such an approach would calculate the force acting 

on both the wing and the vortex-sink-feeding sheet combinations.

This could not be reconciled with the requirement that only the wing . 

can sustain force and that the vortex-sink feeding sheet combinations 

should be force-free. As a result, any calculated normal forces 

would be excessive.

An alternative method was developed based on the pressure 

distribution close to the wing surface. In the crossflow plane the 

wing is represented bv a line of zero thickness, and therefore the 

pressure distribution directly on the wing could not be considered.

An artificial thickness, as shown in fig.3.26, was required.

The pressure coefficient Cp at any point in the crossflow is 

given by eqn.56 overleaf.



V2 + w2
1 - (56)

On the wing surface where w is required to be zero, this can be 

expressed as

1 -

' dW '
Re —

dz
IJc _ (57)

The pressure distribution for

vA = -0.4 , zA = 0.2 , T = -4.0 , b = -0.1

is typical and shown in fig.3.27. Unexpectedly, there is a region of 

positive pressure coefficient on the upper surface. The region of 

higher suction inboard of the leading edge occurs underneath the 

vortex-sink location. The pressure jump at the leading edge is a 

consequence of the introduction of the artificial thickness; from the 

equipotential plot of fig.3.16 it can be seen that the lines of equal 

$ will be more closely spaced on the artificial upper surface than on 

the artificial lower surface, and so a pressure discontinuity is to 

be expected at the artificial leading edge, despite the fact that a 

Kutta condition is satisfied at the real leading edge.

From the pressure distribution, it is possible to calculate the 

normal force acting on the wing from the relation
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1
- pUc2 
2

c S/2
( Cpi - CpU ) dv (58)

-s/ 2

where Cp^ and CpU are the pressure coefficients on the upper and 

lower surfaces respectively. A normal force coefficient Cpz was 

defined as

The required integration was performed numerically using the NAG 

algorithm D01GAF, which employs third order finite difference 

formulae with error estimates according to a method due to Gill and 

Miller. The variation of Cpz with b for the four cases of fig.3.25 

is shown in fig.3.28. As b falls from zero towards the critical 

value bc, there is an increase in normal force. Close to bc this 

increase becomes large and Cpz tends to an extremely high value. A 

maximum of Cpz exists at bc> followed by an abrupt decrease as b is 

further reduced. This decrease in Cpz becomes more gradual as the 

value of b tends to -1.0.

The critical dependence of the Kutta condition and normal force 

on b, and the flow behaviour at bc , indicate that the entrainment 

coefficient is the dominant control parameter in this crossflow 

model. Fig.3.29 shows two views of a three-dimensional plot of bc 

against y^ and z^, where bc has been determined by an inverse 

solution of eqn.43, with the vortex strength set at T = -10000 to

. s/2

 ̂ ^pl ^pu ) dy (59)
-s/2
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correspond to the asymptotic behaviour typified in Lig.3.25. ( It

should be noted that the region of constant bQ outboard of the 

leading edge does not exist in reality, but is a consequence of the 

truncation of the values of very low, i.e. highly negative, values of 

bc in this region. This truncation was required to ensure that a 

meaningful plot could be obtained for the remainder of the region 

considered ). It can be seen that outwith a region close to the 

wing, an inboard and upward movement of the vortex-sink produces an 

increase in the value of bc , i.e it becomes less negative.

There are three features of the controlling role of b that 

indicate the possible importance of the entrainment of flow into a 

leading edge vortex core in the subsequent breakdown of that vortex.

Firstly, if the entrainment varies such that b falls below bc,

i.e. -1.0 < b < bc , the required flow change is that the vortex 

should reverse its direction of rotation, and outflow should replace 

inflow as Q becomes negative. It was considered that this may be 

related to the spiralling of the vortex axis and the subsequent 

"bursting” of the vortex at breakdown.

Secondly, the existence of a critical sink-to-vortex strength 

ratio bc , the critical entrainment, indicates the existence of a 

critical radial-to-swirl velocity ratio. In three dimensions, the 

axial flow along a vortex core is largely controlled by entrainment 

into the core, and therefore to a certain extent by the radial 

velocity field. The experimentally deduced critical swir1-to-axial 

velocity ratio ( see section 1.2 of Chapter 1 ) may be further
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related to a critical swirl-to-rariia], or radial-Lo-swir], velocity 

ratio. This would be qualitatively in agreement with the critical 

nature of b found for this vortex-sink model of the crossflow.

Thirdly, although the values of normal force become extremely 

high close to bc ( as a consequence of the extremely high values of Q 

and T ), the behaviour of Cpz as b is decreased below bc is similar 

to that which occurs for the lift acting on a delta wing with 

increasing angle of attack. As the angle of attack of the wing is 

increased towards a critical value, there is a non-linear growth in 

lift, followed by a sudden reduction as the critical value is passed, 

marking the onset of vortex breakdown above the wing.

( As an aside, it is considered that it may also be possible to 

determine the role of b in the breakdown of a vortex flow within a 

circular pipe. This could be attempted by studying the crossflow 

within the cylinder in the Zj-plane, with a no-slip condition imposed 

at the cylinder wall ).

3.8.2 Variation of Vortex-Sink Locii with T and b

The Kutta condition, eqn.45, produces a locus of possible 

vortex-sink solution points for specified values of T and b. For a 

fixed value of b, and T varied between an upper and lower limit, the 

effect on this locus was studied. A similar study was performed for 

r held constant and b varied. The intention of the study was to 

ascertain whether a smooth variation in vortex strength or 

entrainment would produce a discontinuous change in vortex-sink
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location.

Again llc and s were set at 1.0 m/s and 1.0 m respectively. The 

solution of the Kutta condition was achieved bv varying yA between 

-0.5 and 0.0 in steps of 0.01 for each value of T and b, and using 

the NAG C05NBF algorithm to find the corresponding zA for each vA.

The coefficient b was varied between -0.1 and -0.6 and the vortex 

strength T between -2.0 and -60.0 in a series of steps.

In general, the cases detailed in Table 4 can be summarised as 

showing that a decrease in T or an increase in b moves a vortex-sink 

location further away from the wing, as would be expected. Fig.3.30 

highlights this behaviour for two particular cases. However, certain 

combinations of b and T resulted in erratic and discontinuous 

solutions. For b > -0.3, it was found that in an intermediate range 

of vortex strength the vortex-sink locations jumped from above to 

below the wing, as shown in the example of fig.3.31. In addition, 

for b = -0.1 a dramatic change in the trend of the locii can be seen 

at T = -17.0, fig.3.32, with the assumption of a positive, rather 

than negative, gradient, and locations for the vortex-sink lying only 

inboard of the leading edge. Also for b = -0.1, and T > -10.0, the 

normal solution behaviour with decreasing b was reversed, with the 

vortex-sink initially lying close to the wing, and moving away as b 

was decreased to -0.2. These last two types of behaviour were not 

found elsewhere.

From these results, and those of section 3.8.1, it was concluded 

that solution of the Kutta condition, and therefore the flow in the
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crossflow plane, is highly dependent on the parameters h and T. As 

has been shown, small changes in these parameters can result in a 

dramatic change in the nature of the flow ( cf Catastrophe theory ), 

and it was considered that such behaviour may well be related to 

vortex breakdown. In order to investigate this possibility more 

fully, it was necessary to extend the flow model into three 

dimensions. This was achieved through application of the non-conica' 

force-free condition, as fully discussed in the following section.



3.9 Extension of the Model into Three Dimensions

It was required that the non-conical modified vortex-sink 

crossflow model be made the basis for a three-dimensional, or 

quasi-three-dimensional, model of the delta wing flow. This was to 

be achieved in such a way as to ensure that the variation of the 

parameter b could be easily studied, and any tendency to a critical 

flow condition identified. The approach adopted is summarised below.

At some point downwing of the apex, a location Ẑ j_ for the 

vortex-sink in the left half Z-plane was specified, along with an 

initial value b^ for the entrainment coefficient b. For a symmetric 

flow, the Kutta condition eqn.45 was invoked to provide the required 

value for T and thence Q. With the assumption that eqn.51 was valid 

at the initial location, the force-free condition eqn.50 gave the 

singularity strength gradients dQ/dx and dr/dx for a specified value 

of Cj.

On the basis that w

dQi
Qi+1 “ Qi + --- (60)

dx

dri
r i+1 = ri + ---  ^x (61)

dx

the values of Q and r at the next downwing station i+1 could be 

obtained. Thus the only effect of an upwing station on its downwing
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neighbour was to establish these sink and vortex strengths. There 

was no upwing effect from a downwing station, and therefore the 

trailing edge could not be modelled.

As shown in the previous section, the provision of Q and T for a 

crossflow plane provides a locus of solution points for the 

vortex-sink in the crossflow plane, and so an additional boundary 

condition was required to fix the vortex-sink at a definite 

location. Given this boundary condition it would then be possible to 

repeat the calculation procedure, and to step down the wing between 

successive crossflow planes to find a quasi-three-dimensional 

solution for the flow. However, only a semi-infinite delta wing can 

be considered as the trailing edge could not be modelled.

3.9.1 A Constraint on Vortex-Sink Motion

In the absence of any obvious additional boundary condition, and 

to facilitate development of the flow model, a simple constraint was 

placed on the spanwise variation of vortex-sink location. This 

required that

= constant (65)

i.e. a conical variation was imposed. There was no solid physical 

basis for this condition. However, of the four variables yA , zA , T 

and b, it was considered that the variation of T and b would be of 

most importance in an investigation of vortex breakdown. In

2?A
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addition, from section 3.3.2 it can be seen that, in most cases, for 

a variation in r or b the accompanying variation of the z coordinates 

of the locus is more marked than that of the v coordinates.

Therefore, it was judged that the constraint on yA would have least 

impact on the results of the investigation, and the boundary 

condition of eqn.65 was imposed on the flow. This completed the 

quasi-three-dimensional model.
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3.10 A Summarv of the Flow Model

A complex potential based representation has been developed for 

the crossflow past a delta wing. The leading edge vortices are 

modelled by a pair of symmetrically placed point vortex and sink 

combinations, and the resulting lines of discontinuity in velocity 

potential are taken as indications of the presence of feeding 

sheets. It was found that the ratio b, of sink and vortex strengths, 

is a dominant control parameter in the crossflow, and at a critical 

value bc the flow behaviour is similar to that at vortex breakdown. 

The existence of this critical ratio may well be related to the 

swirl-to-axial velocity ratio discussed in section 1.2 of Chapter 1. 

Thus it may be that the entrainment effect of a vortex plays a major 

role in the breakdown phenomenon.

A force-free condition for the vortex-sink-feeding sheet 

combination, coupled with a constraint on the spanwise vortex-sink 

motion, permits extension of the model to provide a quasi-three 

dimensional representation for the flow over a semi-infinite delta 

wing, in the region downwing of the apex and upwing of the trailing 

edge. Such a model permits the variation, and hence the importance, 

of the entrainment-related parameter to be fully investigated. 

However, it provides only a limited approximation to the real flow, 

as it allows no calculation of downwing effects and becomes 

progressively less accurate with increasing angle of attack. 

Consequently, the results obtained from any application of the model 

should be assessed qualitatively rather than quantitatively, as its 

level of approximation is such that numerically accurate results



cannot be obtained.

The application of this model to a vortex breakdown investigation 

is fully described in the following chapter.
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Chapter 4

Application of the Flow Model to Vortex Breakdown Investigation

4.0 Introduction

In this chapter the quasi-three-dimensional flow model was 

initially assessed by its application to a single test case to ensure 

the proper functioning of its algorithm, as implemented in the 

FORTRAN program M0DEL3D on the VAX 11/750 computer. An extensive 

range of starting solutions and wing parameters were then considered 

in turn to determine the effect of each on the development of the 

flow. Particular attention was directed to the parameter b, in order 

to ascertain whether its variation in three dimensions played a 

similar controlling role to that in the crossflow plane, and to 

determine whether the resulting behaviour was purely a numerical 

phenomenon or indicative of the physical process of vortex breakdown.

It was found that outwith a limited flow regime the parameter b 

again dominated the flow, as the calculation failed where b tended 

towards its critical value, thus providing further evidence of the 

role of the entrainment effect in vortex breakdown. The variations 

of the calculation failure, or breakdown location, with angle of 

attack and wing sweepback were in qualitative agreement with those 

found experimentally. It was concluded that the critical nature of 

the entrainment coefficient b does relate to vortex breakdown.

Further results obtained indicate that it is possible to delay the

83



breakdown of the calculation, and hence the vortex flow, by suitable 

control of the initial entrainment coefficient, b^.
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4.1 The Test Case

The test case considered was that of a wing with a leading edge 

sweep A = 70* , and at an angle of attack <x = 20*. Both A and cz were 

chosen to correspond approximately to the mid-range of wing 

parameters for which the flow was to be investigated, i.e.

60* < A < 80*, 5’ < <x < 30*. The freestream velocity Ug, and the

wingspan Sj_ in the initial crossflow plane were set at 1.0 ms"1 and

1.0 m respectively.

For reasons to be explained in section 4.2, the initial 

vortex-sink location was expressed in polar coordinates as 

r^ = 0.5 m, ©^ = 150*, based on the geometry of fig.4.1. In this 

case the plots of T and Q against b, for solution of the Kutta

condition, are those of fig.4.2. It can be seen that bc =» - 0.56,

and so the value of b^ was set at -0.05 to ensure that it was far 

removed from this critical condition.

An additional coordinate x<j was defined, where x^ is the distance 

downwing of the starting location ( where s^ = 1.0 m ), as opposed to

x, which is the distance downwing of the apex.

The step-size, Ax, for the model was to be decided from the

results of this test case, and therefore several runs of M0DEL3D were

performed for a range of step-sizes.

85



4.1.1 Test Results

It was initially intended to test M0DEL3D over a run of 5000 

steps in x, for various values of Ax. However, it was found that in 

every case the calculation failed before the run was completed. The 

actual value of x^ at which this failure occurred, is plotted against 

Ax in fig.4.3. Note that a limit exists above which no calculation 

is possible. For any value of Ax below the limit, the mechanism of 

solution failure was the same, and it was therefore decided that a 

step-size of 0.001 was best suited to provide sufficient detail of 

the flow without requiring excessive CPU time.

The solution behaviour which resulted in failure of the

calculation is depicted in fig.4.4 (a-f). As can be seen, an

increase in x^ initially produced an upward movement of the

vortex-sink location, as a consequence of the growth in magnitudes of

the vortex and sink strengths. However, the increase in zA and the 

singularity strengths occurred more rapidly than might be expected. 

This can be explained by the high magnitudes of dr/dx and dQ/dx shown 

in figs d and e. The rapid increase in vortex strength is a 

consequence of the employment of a concentrated vorticity 

representation, where the growth in point vortex strength over one 

step is far greater than it would be for individual elements of a 

distribution of vorticity. As a result the associated movement of the 

vortex-sink away from the surface is considerably amplified. It 

should be noted that at x^ » 1.15, zA began to decrease, indicating 

the growing dominance of the sink as it "sucked" itself towards the 

wing. As x tended towards the calculation failure point at x^ =
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1.53, the singularity strengths became very high, and it was the 

associated values of dr/dx and dQ/dx that led to termination of the 

program run. ( It had been found during the assessment of Ax that 

excessive values of the singularity strength gradients produced, in 

the majority of cases, numerical overflow errors. However, highly 

erratic solution behaviour was found in the remaining cases.

Therefore limits were imposed on the magnitudes of dr/dx and dQ/dx 

which required that

dr
—  > - 999 (66) 
dx

dQ
—  < 999 (67) 
dx

Violation of one or both of these conditions resulted in termination 

of the calculation, as in the test case. The conditions were 

sufficient to prevent any undesirable solution behaviour, whilst the 

essential character of the flow was unaffected, In any case, 

extremely high gradient values could almost certainly not be 

sustained in a real flow. )

Figure 4.4 f shows the reason for the appearance of the large 

gradients in vortex and sink strength as calculation failure was 

approached. The value of b in each crossflow plane is plotted, along 

with the critical value bc for that plane, against the coordinate 

x^. ( The value for bc was obtained by setting T = -10000 at the

vortex-sink location in each downwing crossflow plane, and obtaining
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the necessary value of b from eqn.45 of Chapter 3 ). As x^ tended to

1.53, there was an associated tendency of b to bc , until at x^ =

1.53, the values of b and bc were almost equal. From the results of 

Chapter 3, shown in fig.3.24, such a proximity of b to bc must result 

in extremely high values of Q, T, dQ/dx and dr/dx, and the 

associated failure of the calculation.

The test case showed that the algorithm was functioning 

properly. It also indicated that the parameter b was dominant in the 

quasi-three-dimensional model. In addition, the behaviour of the 

singularity strengths and strength gradients as the critical value bc 

was approached is similar to that reported in ref.19, where Hall 

attempted to identify the failure of the quasi-cylindrical 

approximation with the critical state. It was considered that the 

critical nature of b could be purely a numerical phenomenon, in the 

same way that Shi32 considered Hall's findings to simply be a result 

of the quasi-cylindrical approximation. However, as is shown in the 

investigations of this and the following chapter, if b is assumed to 

play a controlling role then it is possible to obtain fair 

qualitative agreement with experimental results.
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4.2 The Investigative Procedure

From the Kutta condition of eqn.45, it was found that the only 

effect of varying the crossflow velocity and wingspan was to modify 

the required vortex and sink strengths without affecting the overall 

solution behaviour. It was therefore considered that holding both 

and s^ constant would not seriously limit the investigation. 

Therefore, these were set at 1.0 m/s and 1.0 m respectively.

However, a variation in A for a constant s^ will result in a change 

in x^,since

xi = si cot ^ (68)

To ensure a constant x datum, the location at which calculation 

failure occurred is always quoted as a distance, x^, downwing of the 

apex. It should be obvious, however, that information on the 

variation of the flow parameters is only available downwing of x^.

A relationship was sought between the initial vortex-sink 

location and the angle of attack <x, in order that the experimentally 

observed variation of vortex core location with angle of attack could 

be represented. From the results of ref.5 reproduced in fig.4.5 

( where cQ is the wing chord at the centreline ), it can be seen that 

an increase in angle of attack produces an upward and inward movement 

of the core position, where the upward movement is more pronounced.

To approximately model this behaviour, it was decided that the polar 

coordinate system of fig.4.1 should be employed, where

89



r ̂ = 0.5m (69)

Q ± = ( 170 - <x )* , 5 ’ < cc < 309 (70)

This models an inward, and more marked upward, movement of the 

initial vortex-sink location with increasing angle of attack, as 

shown in fig.4.6.

There remained four unspecified parameters: a, A, and C t.

Since Cx is a constant of proportionality in the relationship between 

dQ/dx and (dT/dx)1 , a value was sought for it which would remain 

suitable over the full range of flows to be investigated. The 

determination of this value is discussed in the following subsection.

4.2.1 The Constant of Proportionality C,

The effect of a variation in Cx was determined for three test 

cases which encompassed the range of values of a and A to be 

considered. The results are listed in Table 5. From these, and the 

plots of fig.4.7, it can be seen that beyond a certain value of Cx at 

higher angles of attack the solutions became oscillatory. However, 

as the value of C x was decreased the vortex-sink moved away from the 

wing surface increasingly quickly. To obtain a compromise between 

these types of behaviour, Cx was set equal to 1.0. This was 

sufficient to ensure a smooth solution in every case while retaining 

a fair degree of physical realism.

Having thus set Cx, it was then possible to proceed to the 

investigation proper, where the effects on the calculation of a
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variation in <x, A or fĉ were to be assessed.

4.2.2 The Influence of cc on xk

For each case investigated, the values of A and were held 

constant within the range 60* < A < 80*, -0.05 > b^ > -0.6, as <x was 

varied between 5’ and 30*. The model of eqns.69 and 70 was

assumed.

Two types of solution behaviour were identified. A typical 

result of the first type is shown in fig.4.8 (a-f). At lower values 

of a and |b̂ | the variation of zA and T with x^ was almost linear 

over the entire x^ range, away from the region of high x gradients of 

zA and T near the initial solution plane. However, the variation of 

Q was decidedly non-linear, with an initially abrupt increase 

followed by a more gradual fall to zero. The magnitude of Q remained 

small throughout. Away from the initial solution plane there was 

only a very slight tendency of b to bc . It can be seen that the 

calculation was terminated at the point where b became equal to zero, 

i.e. at the point where the sink strength was required to change in 

sign and a solution of the proper sense was no longer possible.

The second type of behaviour is typified by the results shown in 

fig.4.9 (a-f). The calculation behaviour here was of the type 

described for the test case in section 4.1, i.e. the failure was a 

consequence of b tending very close to bc .

The variation of x^ with oc was the same for both types of
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solution behaviour. As shown in fig.4.10 (a-c), for some limited 

range of <x the values of x^ were considerably greater than for all 

other values of a. A variation in b^ served to alter the endpoints 

of this a range and modified the maximum value of x^; from fig.4.11 

it can be seen that increasing ( decreasing ) b^ shifted the range to

the right ( left ).

Figures 4.12 and 4.13 show that the effects on the x^-vs-oc 

solution of an increase ( decrease ) in the angle of wing sweepback, 

A, were to amplify ( attenuate ) the magnitude of the higher x^ range 

and to shift the associated a range to the left ( right ).

The influence of angle of attack on x^ could not be fully 

determined from this investigation. As can be seen in 

figs.4.10 - 4.13, from the regions of higher x^ onwards, an increase 

in oc resulted in a decrease in x^, as found experimentally with the 

upwing movement of vortex breakdown location with angle of attack.

The regions of increasing x^ at lower values of a were unexpected. 

However, from the movement of the high x^ regions with b^, it

appeared that a relationship existed between a and b^ which would

enable a solution to be obtained showing a smooth decrease in x^ with 

increasing a. It was hoped that the form of this relationship could 

be determined from a study of the direct influence of on x^ ( to

be discussed in section 4.2.4 ).

4.2.3 The Influence of A on x̂ ,

The values of cc and b^ were held constant within the range
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5°  ̂<x ^ 30’, -0.02 > b^ > -0.6, as A was varied between 60’ and

80*. Again r^ and 8^ were provided by eqns. 69 and 70.

At lower values of the angle of attack ( a ^ 10* ) for > -0.15

the calculation was terminated when the required sink strength became

negative, i.e. solution behaviour of the first type. However, 

outwith this limited region ( <x > 10’ ) the results obtained 

indicated solution behaviour of the second type. Numerical failure 

occurred as b tended to bc , this failure being progressively delayed 

as A was increased, as shown in fig.4.14. This is in accordance with 

experimentally obtained variations of vortex breakdown location with 

the angle of wing sweepback, as can be seen from the results of 

Erickson reproduced in fig.1.8. Therefore it would appear that if 

the numerical failure of the calculation can be related to vortex 

breakdown, then M0DEL3D provides some representation of the effect of 

sweepback.

4.2.4 The Influence of b.; on x^

As has been discussed in the previous two subsections , it would 

appear that the initial entrainment coefficient b^ not only plays a 

considerable role in determining the value of x^, but also controls 

the manner in which the failure of the calculation occurs. The 

variation of x^ with b^ was assessed for 5 * < oc < 30* and A = 60*,

65*, 70*, 75* and 80’.

It was found that for a = 5* and 7.5’, no calculation failure 

occurred within 5000 steps, and the calculation was stopped at that 

point. This may suggest that the vortex flow does not break down at
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e
these angles of attack. For <x = 10", 12.5° and 15° the variations of 

with were those of fig.4.15 ( a-c ). Considering the 

particular case of cc = 10° ( which is typical of all three cases ), 

for 0 > > -0.12, the calculation failed as the required sink

strength became negative. For b^ < -0.12 the calculation failure 

occurred as b tended close to its critical value. As b^ was 

decreased below -0.12, this failure was progressively delayed until 

at b^ = -0.15 a maximum of existed. Further decreases in b^ 

resulted in a reduction x^, and when b^ came close to the critical 

value for the initial crossflow plane ( in this case for b^ ^ -0.62 ) 

the calculation failed immediately* i.e. at x^ = 0.0, x^ = 1.374 

( the distance downwing of the apex at which the calculation 

started). For cc = 12.5’ and 15" the solution behaviour was 

qualitatively the same, but with different limiting values for b^.

It can be seen from fig.4.15 that as cc was increased from 10* to 

15", the extent of the solution over which dx^/db^ was positive was 

increased. For cc > 15*, it is shown in figs.4.15 d,e and f that 

dxjj/db^ was always positive, and the maximum possible value of xj> 

existed at the highest value of b^.

It was noticeable that as a was increased, the maximum attainable 

Xfc was decreased, in accordance with experimental evidence on the 

movement of vortex breakdown location with angle of attack. The 

variation of maximum x^ with cc for the five sweepback angles 

considered is shown in fig.4.16.

The required variation of b^ with cc to produce the maximum x^ are
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shown in fig.A.17. It can be seen that a smooth increase in is 

required as <x is increased. Beyond a limiting value of a, <xc , where 

the limit appears to be controlled by A, it is necessary for b^ to 

tend closely to zero whilst remaining negative.

On the basis of the results of this section, it was considered 

that if the mechanism for the numerical failure of the calculation is 

indeed of a similar nature to that responsible for the breakdown of a 

leading edge vortex, then the breakdown of the vortex could be 

delayed by a parameter related to b ^  the entrainment coefficient, as 

hypothesised in ref.68.
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4.3 Summary of the Flow Investigation

It was found that two distinct forms of solution behaviour are 

possible using M0DEL3D.

The first type of behaviour, which occurs only at low values of cc 

and |b^|, results in a failure of the calculation when the required 

sink strength becomes negative, i.e. the sink must become a source. 

However, the sense of the vortex is unaffected. No physical parallel 

for such behaviour exists, and it is considered that this first type 

of solution is simply an indication that the flow model is not 

representative of a real flow for the starting conditions chosen.

This is evidenced by the decrease in sink strength that accompanies 

the later increases in vortex strength, when it would be expected 

that the entrainment effect of the vortex would increase. Such 

behaviour may be a consequence of the initial proximity of the 

vortex-sink to the wing.

The second type of behaviour is characterised by the calculation 

failure which occurs as b tends to its critical value, bc , and by the 

resulting large values of vortex and sink strength. Numerical 

failure at these values of T and Q prevents b passing bc, but it 

appears that the behaviour which results from the critical nature of 

bc may well be related to vortex breakdown, and is not simply a 

numerical phenomenon. This statement can be justified not only for 

the reasons which have been set out in Chapter 3, but also on the 

basis of the qualitative agreement of solutions from M0DEL3D with 

experimental results. In particular, further evidence for the
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validity of M0DEL3D as a representation of the breakdown of a leading 

edge vortex is provided bv the fact that the variation of x^ with <x 

and A is comparable to the dependence of the breakdown location in a 

real flow on the angle of attack and wing sweepback.

The results obtained from M0DEL3D indicate that the initial 

entrainment coefficient, b^, plays a dominant role in establishing 

the type and location of the numerical failure, or "breakdown*', of 

the calculation, and hence the vortex flow. It would appear that 

control of some parameter relating to the entrainment effect of a 

leading edge vortex may well permit the breakdown of that vortex to 

be delayed. The prospects for such control are discussed in the 

following chapter.

97



Chapter 5

Prospects for the Control of Vortex Breakdown

5.0 Introduction

It was shown in Chapter 4 that the numerical failure of 

calculations employing M0DEL3D could be delayed by selection of a 

suitable initial value b^ for the entrainment coefficient. On the 

basis that this numerical failure could be related to the breakdown 

of a leading edge vortex, boundary curves were derived for the 

variation of b^ with angle of attack which would ensure the 

persistence of a well ordered vortex over the order of one initial 

wingspan, i.e. 1.0 m, downwing of the calculation starting point.

Earlier investigations of possible methods of vortical flow 

control were then considered, as evidence was sought to provide 

verification of the role of entrainment in vortex breakdown. These 

investigations indicated that concepts such as the tangential blowing 

of air from the leading edge of a highly swept wing can offer 

considerable benefits in terms of high angle of attack performance. 

The application of these concepts is discussed in the light of the 

findings of the M0DEL3D investigation. It would appear that the 

enhancement of vortex flow possible through the application of 

spanwise blowing may well be related to the control effect of the 

blowing on the entrainment level of the vortex.
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5.1 Determination of the b.,- - vs - <x Boundary Curves

It was shown in the preceding chapter that an optimum value of 

existed for each angle of attack, at which the maximum delay could be 

obtained of the numerical breakdown of the calculation. Although the 

assumption was made that similar optimisation of a real 

three-dimensional flow would be possible, and that a practical means 

of entrainment control could be found, it was considered unlikely 

that precise optimisation could be obtained in the presence of, for 

example, unsteady and viscous effects. Therefore, suitable boundary 

curves were sought for a b^ - vs - cc variation which would ensure 

that, for a b̂ -oc combination lying on or within the curves, breakdown 

would be delayed to beyond a defined distance downwing of the initial 

solution plane. The range of the available flow control could then 

be assessed.

As stated in the introduction, it was stipulated that the 

breakdown should not occur within 1.0 m downwing of the initial 

crossflow plane. It was considered that in a real flow a delay of 

vortex breakdown of at least this order of magnitude would be 

required before the development of a suitable control system would be 

considered worthwhile.

The results of this investigation are shown in figs.5.1-5.5. It 

should be noted that a pairing of b^ and a lying above the upper 

curve bu will result in a failure within 1000 steps as b tends to its 

critical value. A pairing lying beneath the lower curve b^ will 

result in a failure either of this critical type or as the sink
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strength becomes negative. Although this latter type of failure 

would appear to be unrelated to vortex breakdown, its inclusion was 

necessary as it provided a limit to the calculation.

It can be seen that at lower angles of attack there exists 

considerable scope for the variation of b^ within the boundary curves 

of figs.5.1-5.5, i.e. precise control of entrainment is not 

necessary. As the angle of attack increases, the boundary curves 

move closer together, and their proximity to each other becomes such 

that only a very narrow range of b^ enables breakdown to be delayed 

to the required extent. Therefore it is obvious that there is an 

increasing demand for control precision associated with an increasing 

angle of attack. For all cases, beyond <x s 25° the required delay 

cannot be achieved, and control of b^ can provide only very limited 

benefits.

It should be remembered that M0DEL3D is based on an approximate 

quasi-three-dimensional model of the high angle of attack flow past a 

delta wing. It was therefore very necessary to seek evidence from 

other sources on the possibility, or otherwise, of delaying or 

preventing the breakdown of a leading edge vortex by directly 

controlling flow entrainment into the vortex core.

100



5.2 Applications of Leading Edge and Spanwise Blowing

The possibility of leading edge vortex enhancement by the 

application of blowing has been the subject of considerable research 

in recent years, with the goal of improved manoeuvrability for 

fighter aircraft at high angles of attack. A variety of blowing 

concepts have been studied, and these are summarised below.

5.2.1 Leading Edge Blowing

Two types of leading edge blowing have been investigated:

(i) blowing a jet of air outwards from the leading edge in 

the wing plane.

(ii) blowing a jet of air tangential to a rounded leading 

edge, as shown in fig.5.6.

Method (i) would intuitively be expected to increase the strength of 

the leading edge vortices and thereby the lift acting on the wing.

An experimental investigation by Trebble69 has shown that this is 

indeed the case, and the theoretical investigation of Barsby70 has 

further indicated the importance of parameters such as the rate of

blowing and the angle of the jet to the wing centre line. The

possible effect of the blowing on vortex breakdown was not 

investigated experimentally, as can be seen from fig.5.7, where the 

highest angle of attack tested was a = 20*. It may be considered 

that the effect of the jet in strengthening the vortex will provide
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added resistance to vortex breakdown. However, it can be noted that 

fig.5.7 shows that for a blowing coefficient of 0.025, the 

increase in is only of the order of 4% at <x = 20°,and any delaying 

effect on breakdown would be expected to be of a similar magnitude. 

This value of corresponds approximately to the maximum attainable 

blowing for a current fighter aircraft ( where the blowing is driven 

by bleed air from the engine compressors ), and so it would appear 

that the benefits available from this form of leading edge blowing 

are not sufficient to justify the development of a complex control 

system to enable its practical application.

Tangential leading edge blowing ( TLEB ), method (ii), has only 

recently been postulated as a means of controlling the delta wing 

vortical flowfield. By injecting small amounts of momentum into the 

crossflow near separation, Wood et al71*72 found that it was possible 

to re-energise the flow and delay separation. This modification of 

the separation point obviously alters the Kutta condition and leads 

to a change in both primary and secondary vortex locations and 

strengths.

The results reported by Wood indicate that this method of blowing 

has a considerable effect on the flowfield. At subcritical angles of 

attack TLEB shifts the primary vortex inboard and weakens it, whilst 

increasing the leading edge suction ( as shown in fig.5.8 ) such that 

the overall normal force acting on the wing is unaffected. At higher 

angles of attack, where vortex breakdown would occur in an unblown 

flow, the effect of TLEB is to re-establish the vortical flow 

structure up to a = 60*, as indicated by the pressure distributions
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of fig.5.8 for <x = 45*, thereby removing flow unsteadiness and 

increasing the normal force. Only small amounts of blowing are 

required to produce these marked changes in flow behaviour. It has 

also been found that tangential blowing only from a limited region of 

the leading edge at the apex produces similar results to those 

obtained from TLEB across the full wingspan.

As stated earlier, tangential leading edge blowing is a new 

concept, and as such requires further investigation. Nevertheless, 

the initial results indicate that it may well be a practical means of 

vortex breakdown control.

5.2.2 Spanwise Blowing

It has been widely shown, for example in refs.73-75, that it is 

possible to obtain enhancement of a leading edge vortex by direct 

control of the flow within the vortex core. Such control can be 

obtained by the spanwise blowing of a jet, or jets, of air over the 

upper surface of a slender wing just aft of the leading edge. A test 

blowing arrangement for a F4-C aircraft is shown in fig.5.9.

Various blowing configurations have been considered in attempts 

not only to optimise the effects of blowing on the aerodynamic 

performance of the wing, but also to gain an understanding of the 

underlying beneficial flow mechanism. In general it has been found 

that the application of spanwise blowing results in increased 

manoeuvrability and improved handling qualities. The increases in 

lift obtained are an order of magnitude greater than that obtained
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through conventional leading edge blowing, for example in the case 

shown in fig.5.10 an increase in of 25% at <x = 20° for Cu = 0.02 

in the spanwise direction, as opposed to an increase of 4% at =

0.025 from the leading edge. Most importantly for the purposes of 

this investigation, vortex breakdown can be delayed by the order of 

10° .

The reason that spanwise blowing results in a delay of vortex 

breakdown has not yet been fully established. A widely held belief 

is that the momentum or momentum gradient of the jet stabilises the 

vortex when it is entrained into the vortex core. An alternative 

explanation is that the vortex is stabilised as a consequence of the 

additional entrainment effect of the entrained jet. Gersten35 

investigated this possibility experimentally by pulsing the spanwise 

jet of air and thereby increasing its entrainment. Although Gersten 

concluded that this additional entrainment had no noticeable effect 

on the breakdown of the vortex, no careful variation of the 

entrainment was attempted; as the results of M0DEL3D have indicated 

that such a variation ( rather than a simple increase in 

entrainment ) may be necessary to delay vortex breakdown, such a 

result is not surprising.

However, Gersten went on to investigate the effects of blowing on 

vortex breakdown in a transonic flow. By reference to Catastrophe 

theory ( as discussed in Appendix 2 ) it was found that a bimodal 

flow existed, fig.5.11, indicating the hysteresis of the breakdown 

location with C^. As can be seen in fig.5.12, the value of 

required for the flow state to move to the higher level of x^ is
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approximately fourteen times higher than that required for it to 

remain there. ( The catastrophe surface is shown in fig.5.13 ). 

Although there has been no further evidence from other sources of 

such flow behaviour, Gersten's work at the very least indicates the 

applicability of Catastrophe theory in the investigation of vortex 

breakdown.

It can be concluded that the application of spanwise blowing to a 

slender wing will considerably delay vortex breakdown. However, 

further research is necessary to uncover the underlying flow 

mechanism which is responsible for the success of this method of 

vortex control.
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5.3 Interpretation of Blowing and M0DEL3D Results

As the method of tangential leading edge blowing is based on the 

ability to modify the position of crossflow separation on a wing of 

rounded leading edge, it is not possible to obtain any representation 

of its effect with M0DEL3D, where the separation point is fixed at a 

sharp leading edge. However, some interpretation can be attempted of 

the degree of success achieved by conventional leading edge and 

spanwise blowing by comparison with the results of M0DEL3D.

It was noted that conventional leading edge blowing directly 

strengthened the primary vortex, but could provide only a very 

limited delay of vortex breakdown at practical blowing rates. At 

these same blowing rates, a more marked delay of breakdown could be 

obtained by blowing in the spanwise direction, where the blowing jet 

interacted directly with the vortex core. Some explanation can be 

offered for the greater success of spanwise blowing, by reference to 

eqn.71, derived in ref.76 by Verhaagen for a slender conical vortex 

core, where entrainment was modelled by a distribution of sink 

strength along the vortex core.

Q ( x n )
^ce xc

* IT C'
■ ■ < CD 2 •
— 1 + V 1 + 2

m - ^ce ■ .
(71)

where xc = coordinate along vortex axis

rc = radius of rotational core

c = rc / x

Uce = axial velocity at edge of core

V q  = circumferential velocity at edge of core
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Leading edge blowing provides an increase in V q , and thence r, with 

little effect on the axial velocity at the edge of the vortex core. 

The increase in V q  is accompanied by an almost linear growth in Q, 

which for a constant Uce will result in a limited variation of the 

ratio Q/r = b, as shown in the example below.

Assume V q  = 5.0 m s~1 , Uce « 2.5 m s “1

Q = 5.0xc 7rc2 , r  = - 10.0 f rc

xc c*
Q/r = b = - 0.5------

rc

If V q  is increased to 10.0 m s“l for a constant U c e  

Q = 11.862 xc tt c2 , T = - 20.0 it rc

Xc C2
b = - 0.593 -----

rc

A 100% increase in Vq  gives an 18.6% decrease in b.

From the results of M0DEL3D it can be seen that control of the 

ratio b determined the calculation failure location. If it is 

accepted that this failure is related to vortex breakdown, then the 

limited control of vortex breakdown possible with leading edge 

blowing may be a consequence of this blowing method's limited 

authority over b.

Spanwise blowing results in a jet interacting with the vortex 

core, with considerably greater influence on Uce than on Vq. 

Therefore, by variation of the blowing rate, considerable control 

could be obtained of the sink strength Q, and thence b. This is
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highlighted in the following example.

Assume Vq = 5.0 m s-1 , Uce = 5.0 m s-1

Q = 3.660 xc 77 c2 , T = 10.0 77 rc

xc c2
■» b = - 0.366 -----

rc

By comparison with the earlier example, a 100% increase 

in Uce has resulted in a 26.8% increase in b.

From the example for leading edge blowing, it was noted that an 

increase in Vq resulted in a decrease in b. By the application of 

M0DEL3D, it was earlier found that in most cases an increase in b, 

i.e an decrease in its magnitude, was required to delay the 

calculation failure. As can be seen from the examples above, such a 

variation of b was only possible through the application of spanwise 

blowing. This provides a possible explanation for the greater 

control effect of spanwise blowing, as compared to leading edge 

blowing, on vortex breakdown.
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5.4 Summary of Control Prospects

From the results of M0DEL3D it was found that at high angles of 

attack precise control of the ratio b was required in order that the 

numerical failure of the calculation should be delayed beyond 1.0 m

downwing. An associated review of practical methods of vortical flow

control indicated that both tangential leading edge blowing and 

spanwise blowing offer considerable benefits in terms of aerodynamic 

performance. It was deduced that the greater delay of vortex 

breakdown through the application of spanwise blowing , as compared 

to conventional leading edge blowing, may well be a result of the 

beneficial control effect of the former on the entrainment effect of 

the vortex, as measured in M0DEL3D by the ratio b of sink-to-vortex 

strength. If this is the case, then it would provide further 

evidence on the role of the entrainment of flow into a vortex on the

subsequent breakdown of that vortex.
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Chapter 6

Conclusions

From a survey of previous theoretical and experimental 

investigations of the breakdown of slender wing leading edge 

vortices, it was concluded that a simple computer-based analytical 

investigation of the phenomenon would require the development of a 

new model for the flowfield.

A quasi-three-dimensional representation was determined for the 

high angle of attack flow over a delta wing, and implemented as the 

program M0DEL3D on the VAX11/750 computer. The major conclusions 

that can be drawn from the development of M0DEL3D, and its 

application to an investigation of vortex breakdown, are summarised 

below.

(1) Experimental evidence indicates that the mechanism of vortex 

breakdown is largely an inviscid process. If, in addition, the 

rotationality of a leading edge vortex and its feeding sheet are 

considered to be concentrated at the vortex core location, then an 

inviscid, irrotational, complex-potential-based representation of a 

slender wing flowfield is acceptable for use in an investigation of 

the breakdown phenomenon.

(2) The simplest possible model for the crossflow past a delta wing 

is that of two point vortices in the presence of a flat plate. As
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reported by Smith and Clark63 and verified here, the necessary 

boundary conditions requiring smooth outflow at the leading edges and 

stationary singularity locations cannot be satisfied simultaneously. 

Therefore, such a model is unrealistic.

(3) By the addition of a sink to both point vortices, it is possible 

to model the entrainment of flow into the leading edge vortices.

Such an approach has been attempted previously by Coe65 and 

Verhaagen76; however, it is believed that the work reported in this 

thesis is the first to consider a purely analytical vortex-sink model 

for the crossflow. For the same boundary conditions as in the point 

vortex model, the solution behaviour is unrealistic, with apparent 

dependence on the parameter b, the ratio of sink-to-vortex strength.

(4) Modification of the boundary conditions for the vortex-sink 

model, by replacement of the stationary singularity requirement with 

a force-free condition, had not been attempted previously, and 

provides more realism by consideration of a feeding-sheet effect and 

allows extension of the model into three dimensions. Conical 

solutions are possible in certain cases, but are unrealistic. The 

non-conical model, necessary for an investigation of vortex 

breakdown, requires one further boundary condition.

(5) The parameter b plays the dominant role in determining the 

solution for the crossflow plane in a non-conical flow. At a certain 

critical value bc , the discontinuous change in solution behaviour is 

such that it may well be related to vortex breakdown in three 

dimensions. It has been shown that the existence of bc could be
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indicative of a critical swirl-to-axial velocity ratio, which 

experiment has shown to be of importance in vortex breakdown. 

Therefore, the entrainment of flow into a vortex may play a role in 

its subsequent breakdown.

(6) Extension of the non-conical vortex-sink model into three 

dimensions is possible with the assumption of a conical variation of 

the spanwise coordinate of vortex-sink location. Only upwing 

influences can be considered, and as a result M0DEL3D is effectively 

three-dimensional.

(7) Below an angle of attack of ten degrees, calculations using 

M0DEL3D are terminated as the required sink strength becomes 

negative. The reason for this behaviour cannot be fully established, 

but is believed to be a consequence of the initial proximity of the 

vortex-sink to the wing.

(8) Above ten degrees angle of attack, calculations fail as b tends 

towards its critical value at some downwing location. The variation 

of the location of x^ with angle of attack and angle of wing 

sweepback is in qualitative agreement with that found 

experimentally. However, quantitative agreement cannot be expected 

from such an approximate model. The detailed behaviour of individual 

solutions is, in general good, although the variation of the vertical 

coordinate of vortex-sink location is excessive as the calculation 

steps downwing. It is believed that this is a consequence of 

M0DEL3D employing concentrated, rather than distributed, vorticity; 

the increase in point vortex strength over one step is far greater
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than it would be for individual elements of a distribution of 

vorticity, and therefore the associated movement of the vortex-sink 

away from the surface is amplified. The behaviour of the singularity 

strengths and strength gradients as bc is approached is in accordance 

with that found by Hall19, where the appearance of large axial 

gradients terminated a quasi-cylindrical calculation of vortex flow. 

Hall's identification of calculation failure with the critical state 

for vortex breakdown is also in agreement with the solution behaviour 

found for M0DEL3D.

(9) By careful control of the initial value specified for b, it is 

possible to achieve a marked delay of the failure of the 

calculation. In the light of this result, it is considered that 

control of the entrainment levels in a real vortex flow may provide a 

means of delaying is breakdown. A study of practical methods of 

vortex flow control indicates that the considerable flow enhancement 

and delay of vortex breakdown possible through the application of 

spanwise blowing over the upper surface of a slender wing, may well 

be related to such an effect on the entrainment level of the leading 

edge vortex.

(10) The results of this study strongly indicate that the 

entrainment of flow into a leading edge vortex plays a major role in 

the breakdown of that vortex. However, it is very necessary to 

emphasise that M0DEL3D provides only a very approximate 

representation of the high angle of attack flow past a delta wing: 

it is only possible to calculate the flow over a middle section of 

the wing, no downwing effects can be considered, the concentration
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of vorticity at one point is highly restrictive and the model becomes 

progressively less accurate with increasing angle of attack.

(11) Despite the restrictions of M0DEL3D, the results obtained from 

its application justify further investigation of the importance of 

entrainment effects in vortex breakdown. It is recommended that 

three synergistic approaches be employed in such an investigation.

(i) A catastrophe theory analysis of the phenomenon should be 

undertaken, with particular attention directed to the possibility 

that the dominant control parameter is related to the entrainment 

effect of the vortex.

(ii) The results from C.F.D. studies should be examined for any 

controlling role of the entrainment level.

(iii) Most importantly, an extensive and detailed programme of 

experimental research is required. This should be based on laser 

doppler velocimetry surveys of the vortical flowfield above a 

delta wing at high angles of attack, with close examination of 

all three velocity components as breakdown is approached. Also, 

the wing should be subject to a variety of blowing methods to 

establish the mechanism of vortex enhancement and breakdown 

delay. Associated flow visualistaion studies would assist in the 

interpretation of the L.D.V. data.

It is believed that such an investigative procedure would provide an 

important step towards establishing the cause of vortex breakdown.
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Appendix 1

Laser Doppler Velocinetry

Laser Doppler Velocimetry (LDV) provides a non-intrusive means of 

flow measurement on the basis of the Doppler effect on a beam of 

light incident upon a moving particle, i.e. the light scattered from 

the particle is of a different frequency from that of the incident 

beam, and this change in frequency can be directly related to the 

velocity of the particles through the equation

fD = 

where

The basic requirements for an LDV system are:

(1) a means of producing a coherent beam of light i.e. a 

laser

(2) focussing and detecting optics

- U . f es - e± ] (Al.l)
X 1 J

es = unit vector in scattering direction

e^ = unit vector in incident direction

U = velocity vector 

X = wavelength of incident light
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(3) a photomultiplier to convert the received optical 

signal to an electrical signal

(4) a processing system to reduce the electrical signals to 

the Doppler frequency or flow velocity

(5) light reflecting particles within the flow - this may 

necessitate seeding if the flow medium is air.

It should be obvious that as the complexity of the flowfield to 

be investigated increases, far greater performance and flexibility is 

required of the LDV system. The application of such systems to two 

and three-dimensional studies of vortex breakdown is well discussed 

in refs.13-17. The remainder of this Appendix considers only the LDV 

equipment available in the Department of Aeronautics and Fluid 

Mechanics at the University of Glasgow.

The coherent light source is provided by a 15 mW monochromatic 

( red ) Helium-Neon laser. This in itself imposes considerable 

limits on the possible uses of the LDV system:

(1) in certain flows it may be necessary to detect the 

light scattered backwards from the particles in the flow, 

i.e. to use the system in backscatter mode. The low level 

of light scattered in this direction, as compared to the 

forward direction, may require a more powerful light source, 

such as a 5 W Argon-Ion laser, if sufficient scattered light 

is to be received by the detecting optics.



(2) if the distance from the light scattering particle to 

the detecting optics is greater than the order of 1.0 m, 

then it is doubtful whether the He-Ne laser will provide a 

sufficient intensity of scattered light, particularly in the 

backscatter mode, and again an Argon-Ion laser may be 

required. Therefore it would not be possible to use the 

present LDV system in the University’s 5 ft x 7 ft 

Handley-Page wind tunnel.

(3) in vortical flows the number of light-scattering 

particles is low in areas of high vorticity. Use of a 

powerful laser would enable more measurements to be taken 

within these areas.

(4) with the focussing and beam-splitting optics available 

at present, the He-Ne laser based system can only measure 

one velocity component at any one time. However, this 

restriction could be removed by the purchase of suitable 

polarising and detecting optics. It would then be possible 

to simultaneously measure two velocity components by 

detecting the light scattered from horizontally and 

vertically polarised beams that are incident upon the flow 

from different directions. ( With the two colour blue-green 

Argon-Ion laser, such polarisation is unnecessary as colour 

separation in the detecting optics can achieve the same 

result ).

From the above restrictions it can be seen that, using the 15 mW
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He-Ne laser, only one-dimensional measurements of flows with 

relatively low vorticity and small scale can be attempted. Suitable 

polarisation optics would enable two-dimensional measurements of 

similar flows.

The processing electronics available at present consist of a 

counter processor, which simply provides a readout of the Doppler 

frequency of the incoming signal. This is adequate for a steady, 

laminar flow. However, for an unsteady and turbulent flow, 

further connection of the counter processor to a mini-computer would 

be required to provide information on, for example, velocity 

fluctuations and turbulence levels. Development of the processing 

software for the mini-computer would be a lengthy and involved task.

Despite the limits of the present LDV system, it could be 

successfully applied to the measurement of, for example, fully 

developed pipe flows. ( It would first be necessary to commission the 

system; a simple water channel with a glass-walled section is 

available and suitable for use in such a task). It should, however, 

be obvious from the above summary of the system's capabilities that 

an application of the system to study of the highly-three-dimensional 

and unsteady vortex breakdown flowfield would be completely 

impractical.

118



Appendix 2

Catastrophe Theory

Consider a system that is subject to a discontinuous phenomenon, 

the occurrence of which is governed by the form of potential function 

depicted on the left of fig.A2.1. A stable state of the system 

exists at point A where the function has a minimum; it is assumed 

that the system lies initially at this point. Subsequent variation 

of a parameter controlling the system may modify the form of the 

governing potential such that an additional minimum is created at 

point B, as shown to the right in fig.A2.1. However, the system 

remains in the first minimum, until it is completely removed by 

further variation of this control parameter, and the system must 

then jump to minimum B. Thus a smooth variation of the control 

parameter produces a discontinuous change in the system behaviour. 

Such a change of state is called a "catastrophe".

The study of this type of discontinuous behaviour in potential 

systems was revolutionised by Thom, who set out the principles of 

Catastrophe theory. From its basis in multi-dimensional geometry, 

the theory has indicated that seven elementary catastrophes exist in 

a control space of four or less dimensions. Study of these 

catastophes has been undertaken in connection with many areas of the 

physical, life and social sciences.

It is the three-dimensional cusp catastrophe, shown in fig.A2.2,
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that is of particular interest in this study of vortex breakdown. It 

is hypothesised that the surface of the plot could be considered to 

represent the vortex behaviour, whether well-ordered or "burst", 

where this behaviour is measured on the vertical axis. The curve on 

the surface where the upper and lower sheets fold over into the 

middle sheet is projected downwards into the plane of CPI and CP2, 

the two control parameters, where its trace is called the bifurcation 

set. ( It can be seen that this bifurcation set has a sharp point, 

forming a cusp, hence the name cusp catastrophe ). If the variation 

of the control parameters is such that the path PI is followed across 

the cusp, then the vortex behaviour will remain well-ordered on the 

lower sheet, until the point Q1 is reached, where a sudden jump to 

the upper sheet occurs and the vortex will break down. If the vortex 

has already undergone breakdown, then if path P2 is followed, it will 

have no regular structure until point Q2 is reached, where a 

catastrophic jump to the lower sheet will result in the formation of 

a vortex. ( There is no jump to the middle sheet, as marked by the 

point (4)*, as it is considered to represent inaccessible behaviour. 

This sheet could be removed from the plot, but is retained for the 

purpose of clarity. )

It can be noted that a hysteresis effect exists, in that the 

jumps from the upper to lower sheet and vice-versa, occur on opposite 

sides of the cusp. This can be explained by reference to the 

variation of potential.shown in fig.A2.1; if the path PI in fig.A2.2 

was considered to produce this variation, then simply reversing the 

direction of PI would not produce a jump from B to A at the same 

point as from A to B in the original case. The system would remain

120



at point B until this point disappeared and then jump to point A. 

Within the confines of the cusp, bimodal behaviour is possible, i.e. 

the vortex could be either formed or burst, depending on the path, 

followed.

As discussed in Chapter 5, an experimental investigation of 

vortex breakdown has revealed such a hysteresis effect, where control 

parameters were identified relating to the angle of attack of the 

wing, and the entrainment of flow into the vortex. Further 

confirmation of this result has not been provided but this, combined 

with the discontinuous nature of vortex breakdown, justifies a 

rigorous mathematical application of Catastrophe theory in an 

investigation of vortex breakdown. However, the difficulties in 

determining a suitable governing potential function are such that 

qualitative applications may be all that are possible in the near 

future.
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Appendix 3

The Transformation Fro« the Wing (Z) Plane to the Cylinder (Z,

Consider an intermediate transformation between the cylinder 

and wing plane, such that Z2 = iZt.

The transformation from the Z2-plane to the Z-plane is then 

simply of the Kutta-Joukowski form,

a2
Z = Z2 + —  (3

Z2

and so

Z22 - Z2Z + a2 = 0 (3

Z ± ✓( Z2 - 4a2 )
= > Z; (3

It must be determined whether the + or - case is correct. 

From the consideration that the flows at infinity in the Z 

and Z2-planes should be equivalent, it can be deduced that 

the + case should be selected. Since Z t = -iZ2, it can be 

written as in eqn.24 that

- i ( Z + ✓ ( Z2 - 4a2 )
(3

) Plane

.1)

-2)

.3)
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Appendix 4

Determination of the Governing Complex Potential in the Z, Plane for

the Point Vortex Model

The relevant flow geometry is shown in fig.3.2. It is considered 

that the governing complex potential W has two components,

W = Wj + W2 (4.1)

where is the complex potential for a cylinder in a uniform 

flow without vortices and W 2 is the complex potential for 

vortices in the presence of a cylinder. Therefore, for 

vortices located at ZAl and Zgj

a
W! = Uc ( Zi + _  ) (4.2)

Z.

W2 =   ( In (Zi - Z^j) - In (a2 - ZtZAl) + In Zt ]
2 IT

  ( In (Zt - ZBl) - In (a2 - ZtZBl) + In Zt ] (4.3)
2 IT

and so the expression for W reduces to that given in eqn.25.
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Appendix 5

Determination of the Stationary Vortex Boundary Condition

It is known that a point vortex can induce no velocity at its 

own centre, and therefore an additional complex potential W 1 

is defined, where

W = W +
ir

2 n
In ( Z - ZA ) (5.1)

such that the following equality

lim 
Z”>Z /

dW

dZ
= 0 (5.2)

is the necessary condition for the vortex to be stationary. 

This requires that

lim
Z-»Z,

dW’ dZj

. dZj dZ
= 0 (5.3)

which leads to
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b'
a2 ' ir ' " ZA l 1 " ZBi 1 _ -u

dZt
c

zi2. 27r ,a2-Z !Zai Zi“zBi a2-ZizBi- dZ z=z,

iT
lim

1 1 dZ

1 
£*• N

I M
_1

27T Z+ZA - Zi"ZAi Z-ZA ^Zi • dZ
= 0 (5.4)

Evaluating only the limit term,

L = lim 
Z->ZA

dZ

dZ

■ Z i “  Z A i  Z  -  h

(5.5)

This can be expressed as

L = lim
z->zA

dZ

dZ

Z i zAi
Z - Z,

- 1 / ( z - Z A  ) ( 5 . 6 )

By applying l'Hopital's rule, it can be deduced that this is 

equivalent to

L = lim d 
Z-»Ẑ  dZ

dZ.

dZ

Z, - ZAi

Z - Z,

(5.7)

which, by the product rule, is given by
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Z - zA dZ

dZt

dZ
1 im 
Z-»Z,

dZt
(Z-ZA)—  - (Zt-ZAl) 

dZ

( Z - ZA )2 (5.8)
Z, - ZAi
Z - Z,

which can be further reduced to

lim
Z-»Z,

dZ j

d2Zt dZt dZ
-  1 / ( Z - ZA )

dZ2 dZ “ ^Ai
L z - zA J

which is equivalent to

Z, - ZAi
Z - Z,

d2Z, dZ.

dZ‘ dZ
L =

dZ,

(5.9)

(5.10)

dZ :=z,

This expression can be manipulated to give
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L = -

dzZl

dZ‘

dZ

dZ

(5.11)

Z=Z,

Substitution of this expression in eqn.5.4 then permits the 

determination of those flow states, if any, where the 

stationary vortex boundary condition is satisfied.
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Appendix 6

Reduction of the Kutta Condition for the Point Vortex Model to One

Real Equation

As shown in eqn.34 of Chapter 3, the Kutta condition for the 

point vortex model can be written as

iri
2 Uc -   W 3 = 0 (6.1)

2ir

where for a solution at Zj = ai ( corresponding to the 

transformation of the left-hand leading edge to the Zj-plane )

1 ^Ai 1 BiW 3 =   -   -   +   (6.2)
ai - ZAl a2 - aiZAl ai - Zfil a2 - aiZfil

ZAl and Zgt are complex and as such can be expressed in terms 

of their real and imaginary parts,

ZA l “ yAi + izAi <6 -3 >

ZBl = yAi " izAi <6 -4 >

which leads to the expression for W 3 given overleaf.
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1 xai + izAiw, =

=> w, =

1 - yAi - izAi a2 - ai ( yAl + izAl )

yAi " izAi
ai ~ yAi + izAi a2 - ai ( yAl - izAl )

yAi " 1ZAl
a2 - azAl + iayAl a2 - azAl - iayAj

(6.5)

ai yA i + izAi

a2 + azAl + iyAl a2 + azAl - iayAl
(6.6)

-a3i + iazAl2 + iayAl2

( a2 - azAl + iyAl ) ( a2 - azAl - iayAl )

a3i - iazAl2 - iayAl2

( a2 + azAl + iyAl ) ( a2 + azAl - iyAl )
(6.7)

=> W, = i
-a3 + azAl2 + ayAl2 a3 " azAi2 " aYAiZ 1

(az - azAi)2 + a2yAl2 (a2+azAl)2 + a2yAl2
(6.8)

Substitution of this wholly imaginary expression for W 3 in 

eqn.6.1 shows that the Kutta condition reduces to one real 

equation.
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Appendix 7

Determination of the Stationary Vortex—Sink Boundary Condition

The modified complex potential W' is defined as in Appendix 5

iT
W' = W + —  In ( Z - ZA )

2-n
(7.1)

and so the velocity at the vortex-sink centre is given by

d W

dZ

' dW ir 1 dZ ' dZt
+ __

. dZt 2 TT I z - zA . dzi dZ
(7.2)

i.e. the vortex component induces no velocity at its own centre.

For a stationary vortex-sink it is required that

lim
Z->ZA

dW

. dZ
= 0 (7.3)

lim
Z->ZA

r d W  dZ.
= 0 (7.4)

dZt dZ

which leads to the condition (7.5) given overleaf.
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1 -

ir

277

-zAi 'B l

a2 - ZtZAl Z, - Zgt a2 ZjZ^t

br “ZA i 1 “ZBi
4- _

2 dZt

277 - 3,2 ~ zi^Ai zi " zBi a2 - ZXZA1 zt dZ

iT lim
277 Z_>ZA

1 D 1 dZ

z, - zAi Zi " ZAi Z - ZA dZt

dZx

dZ

Z = Zy

= 0 (7.5)

Evaluating only the limit term, it is found that this can be 

expressed as in eqn.7.6, given below.

LI = lim
Z-»Z,

( 1 - ib )
dZ

dZ
- 1

Z i “  Z A l

Z - Z,

/ ( Z - ZA ) (7.6)

By applying l'Hopital's rule, it can be deduced that this is 

equivalent to

LI = lim
Z-»ZA

d

dZ

( 1 - ib )
dZ

dZ

Z, - ZAt

Z - Z,

(7.7)

which, by comparison with eqn.5.7 of Appendix 5, can be reduced to

Li = ( 1 - ib ) L (7.8)
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d2Zt

1 dZ2
=> LI = - ( 1 - ib ) ------  (7.9)

2 dZt

dZ

Substitution of this expression in eqn.7.5 then permits the 

determination of those flow states, if any, where the 

stationary vortex-sink boundary condition is satisfied.
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Appendix 8

Reduction of the Kutta Condition for the Vortex—Sink Model to One

Real Equation

As shown in eqn.43 of Chapter 3, the Kutta condition for the

vortex-sink model can be written as

4tj-Uc
iW2 + bW5 =   (8.1)

r

At Zj = ai ( corresponding to a solution at the left hand 

leading edge in the Z-plane ) W 2 reduces to the wholly imaginary 

function W3, as derived in Appendix 6.

The function W5 is expressed as

1 ZA. 1 ZB. zW5 = --------- ----------  + -------      (8.2)
ai - Z ^  a2 - aiZ^j ai - Zgj a2 - aiZg* ai

As in Appendix 6, Z^j and Zgx are expressed in terms of their

real and imaginary parts to give eqn.(8.3) overleaf.
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1 yAi + izAi

ai - yai - izAi a2 - ai <yAi + izAi)

yAi ~ izAi 2i----------------- + _  (8.3)
ai - yAi + izAi a2 ~ ai ^ ai " izAi) a

-a3i + 2ia2zAl - 2azyAl - iazAl2 - iayAlz
=> W5 = ------------------------------------------

a ( a3 - 2a2zAl + azAi2 + ayAl2 )

a3i + 2ia2zAl + 2a2yAl + iayAl2 + iazAl2 2i

a ( a3 + 2a2zAl + ayAl2 + azAl2 ) a

1 2ayAi:> Wc = - - - ---------------
a a 2a zAl + azAlz + ayAl a

a3 + 2a2zAl + ayAl2 + azAl2 a

(8.4)

2aYAi 2i------------------ + __ (8.5)

-2y -2y
!> Wg = _________ ^   +  ^ _______  (8.6)

a2-2azA i +za!2 +yAi 2 a2 + 2 a z A i+ZA i 2 + y A i2

Substitution of this wholly real expression for W5 in eqn.8.1 

shows that the Kutta condition for this vortex-sink model 

reduces to one real equation.
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Appendix 9

The Non—Dimensional Fora of the Kutta Condition for the Vortex—Sink

Model

Expressing the Kutta condition of eqn.8.1 of Appendix 8 in 

terms of yAl and zAl, it is found that

a3 - azA 12 - ayAi2 a3 - azAi2 - ayAi2
( a2 - azAl )2 + a2yAl2 ( a2 + azAl )2 + a2yAl2

2byAl 2byAl 4ttUc
(9.1)

a -2azAl +zAl +y^i a +2azAi+zAi +yAi ^

Given that

( a2 - azAl )2 + a2yAl2 = a2 ( a2 - 2azAl + zAl2 + yAl2 ) (9.2)

( a2 + azAl )2 + a 2yAl2 = a2 ( a2 + 2azAl + zAl2 + Ya i 2  ̂ (9.3)

eqn.9.1 can be simplified to

l2~zAi Z-yAi Z"2abyAi a2"zAi 2_yAi 2+2abyAi 47rUca------------------- -   =   (9.4)
a2-2azAi+zAiZ+yAi2 a2+2azAi+zAiZ+yAi2 r

After obtaining a common denominator, eqn.9.4 reduces to 

eqn.9.5 given overleaf.

13 5



a3zAl-azAl 3-ayAl 2 z A t-a Jbv A x-abv ̂ l z ̂  t 2-abvAl 3 77Lira
— :-----:----------:------- :----- :— :-----:—  = — _  0 .5 )

a4-2a2zAl2+2a2yAl2+zAl4+2yAl2zAl2+yAl4 r

Dividing top and bottom bv a4, it is found that by defining 

the non-dimensional parameters vn and zn as

yAi 'Ai
(9.6)

eqn.9.5 can be expressed as

zn " zn 3 - yn2zn “ byn ~ bynzn2 " byn3 

1 - 2zn2 + 2yn2 + zn4 + 2ynZzn2 + yn4

which is the non-dimensional form of the Kutta condition given 

in eqn.46 of Chapter 3.

77- Ur a
  (9.7)
r
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Appendix 10

Force Balance on the Vortex-Sink—Feeding Sheet Element:

It was required that the total force acting on the vortex- 

-sink-feeding sheet combination, shown in fig.3.21 should be equal 

to zero.

From Blasius theorem, it can be found that the force on a 

combined vortex-sink in a flowfield of velocity VQ is given by

Fv_g = - pVQ ( Q +ir ) (10.1)

In this model there are two components of the velocity VQ - one 

component Vf from the freestream velocity and one component V* 

from the crossflow velocity. It is found that (assuming the 

angle of attack, a, and the angle of vortex inclination to the 

wing, dZA/dx, to be similar ) the freestream component can be 

approximately calculated from

dZA
Vf = UM   - ilVx (10.2)

dx

The crossflow component V* is given by the complex velocity 

in the limit as the vortex-sink centre is approached.
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By defining the parameter Vns as

Vns = V* - iÛ cc (10.3)

the force on the vortex-sink is given by

Fv-S = - P
dZA

Uco -----  + V
dx

ns ( Q + ir ) Ax (10.4)

As stated in section 3.6 of Chapter 3, it is considered 

that two orthogonal components of feeding sheet circulation 

are present. The component of the freestream velocity normal 

to the feeding sheet is equal to U^coscc, and the extent of 

the feeding sheet in the crossflow plane is assumed to be 

equal to the distance from the leading edge to the vortex-sink, 

i.e. ( ZA + s/2 ). From consideration of the force calculation 

in ref.44, it was concluded that this would result in a force 

F^s on the feeding sheet given by

■ ■ dr ' dr ' s
Ffs = - pUcoCOSCC — 1+H ZA + -

. dx . dx . 2 .
Ax (10.5)

As stated in eqn.49 of Chapter 3, it is considered that

dQ dr
—  = C ̂ —

dx dx
(10.6)



and so, given that

Fv-s + Ffs “ 0 <10-7>

the force-free condition can be expressed as

1 dQ dr

C, dx dx

dZ/

dx
'ns ( Q + ir )

(10.8)
Umcosa ZA + - 

2

It should be obvious that this provides only an approximate 

force balance, the accuracy of which decreases with increasing 

angle of attack.
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Appendix 11

A Conical Sinplification of the Vortex—Sink—Feeding Sheet Force

Balance

Making the simplifying assumptions of conical flow as 

detailed in eqns.5L-53 of Chapter 3, and setting Cx = 1, the 

force balance of eqn.10.8 in Appendix 10 reduces to

Q r
- + i - 
x x

—  + Vr 
x

( Q + ir )

Umcosa

= > U qoCOSOC
ZA s 
—  + —  

.x 2x .
- u OT —  - V

x
ns (U.2)

Since

= x tan ( 90 - A ) (U.3)

the force balance reduces to

Vns + + cot A cosoc + = 0 (11.4)
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Table 1

Estimated Solutions for the Point Vortex Model

At each location the initial estimated value for vortex strength 

was set at -1.0, -5.0 and -10.0.

A converged / non-converged final solution is indicated by the 

entry C / NC.

Spanwise vortex coordinate

014J«c•H
"0
u00u

0.6
0.5
0.4
0.3
0.2
0.1

-0.6 -0.5 I o -0.3 OJ01 01

NC NC NC NC NC NC
NC NC NC NC NC NC
NC NC NC NC NC NC
NC NC NC NC NC NC
NC NC NC NC NC NC
NC NC NC NC NC NC



Table 2

Solution Behaviour for the Unmodified Vortex—Sink Model

The behaviour types 1, 2, 3 and 4 listed in the table below

correspond to the four types of solution behaviour discussed

in section 3.5, i.e.

1 = solutions possible within the range -0.72 < b < -0.15

2 = z +ve solutions possible for -1.0 < b < -0.02

3 = z -ve solutions possible for -1.0 < b < -0.02

4 = no solutions possible.

In each case the initial estimated solution was set at

va = - s/2, ZA " s/2 and r = - 5.0 

Velocity Uc ( m/s )

1.0 2.0 3.0 4.0 5.0 6.0

E 1.0 1 2 4 3 1 2

o•CM 2 2 1 1 1 4
00
C0}a00

3.0 4 1 4 1 1 3
4.0 2 4 1 2 1 3

00
c•H 5.0 4 1 1 1 1 3

6.0 4 2 4 4 2 4
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Table 3

Conical Solutions for the Modified Vortex—Sink Model

The entries in the table below indicate whether convergence ( C ), 

or non-convergence ( NC ), was found in conical solutions of the 

modified vortex-sink model at the values specified for A and cc.

5.0
1 0 .0

15.0
20.0
25.0
30.0

60.0

C
NC
C
C
C
C

Wing Sweepback Angle A 

65.0 70.0 75.0

NC
C
C
C
C
C

NC
C
NC
C
c

c

NC
c

c

c

c

c

80.0

C
C
C
c

c

NC
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Table 4

Effect of a Variation in r and b on Solution of the Kutta Condition

The entries in the table below indicate the smooth ( S ) or 

erratic ( E ) behaviour of solutions to the Kutta condition 

for the values of T and b shown.

b

1 o • -0.2 -0.3 I o S' -0.5 -0.6

1 ro • o s S S s s s
-3.0 S S S s s s

I # o S S S s s s
-5.0 S S s s s s
-6.0 s S s s s s

0 •1 s s s s s s

0 •CO1 s s s s s s

0CT>1 E s s s s s

1 H-* O • o E s s s s s
-11.0 S s s s s s

0 •CM1 S E s s s s
-13.0 S E s s s s
-14.0 E S s s s s
-15.0 E S s s s s

0 •vDfH1 S S E s s s

0 •r-H1 S S E s s s
-18.0 S s E s s s

i ►—* vO o S s S s s s
-20.0 s s S s s s
-40.0 s s S s s s

o•01 s s S s s s



Table 5

Solution Behaviour with C,

The three test cases for which the effect of Ct was assessed 

are detailed below. In each case U = 1.0 m/s, s = 1.0 m and 

Ax = 0.001. In the table, the solution behaviour is given 

as S ( smooth ) or 0 ( oscillatory ).

Case 1: c: = 5 ” , A = 60° and b^ = -0.05.

Case 2: <x= 20®, A = 70® and b^ = -0.3.

Case 3: <x - 30®, A = 80* and b^ - -0.15.

H
O

Case 1 Case 2 Case
>>■u
•H

1.0 S S S
(dc 1.1 S S S
0•H4J 1.2 S s 0
b0a 1.3 S s 0
0
ua 1.4 S 0 0

0 1.5 S 0 0
u
C01
u

o•CM S 0 0

2.5 S 0 0co
cou



Fig.1.1 The High Angle of Attack Flow Over a Delta Wing
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4
Fig.1.2 Pressure Distribution in the Crossflow Plane
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Symbol Rc
2 in./sec 001 x 10'Wot«r

tunnelEllc (expt.) 0-09 x 10
10 ft/see 0-26 x 10'Wind

tunnel I90 ft/sec0-8

0-6 -

0-4 -

0-2 -

28Incidence (deg)

Fig.1.9 Effect of Reynolds' Number 6
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Fig.1.10 Ludwieg1s Stability Diagram 14
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Fig.2.3 Brown and Michael's Model for the Delta Wing Flow 45

point vortex
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Fig.2.4 Mangier and Smith's Model for the Crossflow
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Fig.3.5 Crossflow Streamlines of Verhaagen

Fig.3.6 Crossflow Streamlines from Point Vortex Model
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Fig.3.14 Vortex Strength - vs - b (type 2)



Fig.3.15 Crossflow Streamlines for Typical Solution of Type 2

Fig.3.16 Crossflow Equipotentials For Typical Solution of Type 2



Fig.3.17 Three-Dimensional Plot of

Fig.3.18 Three-Dimensional Plot of Q - vs - y and z



y

-.40 -.30 -.20 -.10
X10-1

0 .0 0
.00

.-0.40

.-0.80

L-1 .20

Fig.3.19 Vortex-Sink Solution Locations (type 3)

r- 50

40

30

20

-0.50 0.00-0.75 -0.25

csCD
<u>I

b

Fig.3.20 Vortex Strength - vs - b (type 3)
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Fig.5.9(a) General Spanwise Blowing Arrangement for F4-C
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Fig.A2.1 Form of Governing Potential, Showing the Effect of a Control 
Parameter Variation 33

..buret" vortex

breakdown
catastrophe

re-structuring \
V catastrophe \
\  f (4)

.behaviour

CP2
CPI

Fig»A2.2 Hypothesised Three-Dimensional Cusp Catastrophe for 

Vortex Breakdown

GLASGOW
u n i v e r s i t y
l i b r a r y


