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V

Synopsis

There are many structural situations involving shallow cracks, 

in which it is not possible to make direct measurements of the 

relevant fracture toughness using existing British (BSI) and 

American (ASTM) deep notch fracture mechanics tests. The 

objective of the present work to establish the size requirements 

for a one parameter characterisation the crack tip fields for short 

cracks in edge cracked bars subject to tension and bending.

Elastic and elastic-plastic plane strain finite element analyses 

were used. The stress and strain distribution ahead of short 

cracks was investigated, with small geometry change solutions 

with a sharp crack and for large geometry change solutions with a 

blunt crack with very small initial radius. For the small geometry 

change solution the calculated stress fields were compared with iV  

HRR field. However for the large geometry change solution the 

fields were compared w ith^sm all scale yielding (SSY) solution 

given by McMeeking .

The comparison shows that the geometry with crack length (a) 

to width W ratios of (a/W) less than 0.3, J dominance is lost at 

crack lengths of order 200J/oo for both tension and bending. 

However for geometries with ratios of (a/W )> 0.3 maintain J 

dominance up to criteria given by McMeeking and McMeeking and 

Parks.



Introduction

The failure of critical engineering structures has caused both 

injury and financial loss. Many of these failures can be attributed 

to pre-existing defects arising from material processing, or from 

cracks produced as a result of fatigue. It is thus important to be 

able to predict the ability of materials and structures to tolerate 

cracks and flaws. This is the prime purpose of fracture mechanics, 

which has led to the emergence of design concepts, which have 

been incorporated in standards and codes of practice.

The development of fracture mechanics has followed the 

development of welded structures. The first indication that the 

design and fabrication of welded structures needed to be 

substantially different to those of riveted structures was the 

failure of three welded truss bridges in Belgium between 1938 and 

1940. In 1943, the first all welded tanker built by the Kaiser 

company of USA broke in half in cold but calm conditions in the 

fitting out dock. This was to be followed by a sequence of 

dramatic failures of American welded ships including Liberty 

ships, the tankers and victory ships, which have been reviewed by 

Anderson (1), Broek (2) and Biggs (3)

The conclusion arising from those failures is that classical 

engineering design criteria are inadequate to deal with the 

problems of structures containing defects, but fracture prevention 

criteria can be derived from fracture mechanics principles, and 

allow the integrity of costly structures to be maintained. Fracture 

mechanics is divided into two areas.

Firstly linear elastic fracture mechanics (henceforth LEFM)
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which is concerned with fracture at stresses very much less than 

the yield stresses where when the body is largely elastic, and 

crack tip plasticity is still small enough to be viewed and treated 

as a small perturbation to the local stress field. Secondly yielding 

fracture mechanics, which is applicable as the plastic zone 

becomes significant in comparison to the dimensions of the body, 

and the LEFM treatment becomes inadequate. The critical 

dimensions of the body for valid LEFM as codified in British and 

American standards is given by:

B,W,W-a > 2.5 (K/co)2

Where oo is the yield stress measured in uniaxial tension, a is 

the crack length, (W-a) is the ligament and B is the thickness. Out 

with these requirements it is more appropriate to use elastic 

p las tic -p las tic  fracture  mechanics (EPFM), in which the 

deformation is characterised by the J-integral, and the field will 

be J dominated if the dimensions of the body satisfy certain size 

requirements. For deeply cracked geometries McMeeking and Parks 

(4) have shown that the J dominance occurs if :

W-a > 25 J/ao for bending

W-a > 200 J/ao for tension.

However many brittle fractures start at shallow surface cracks, 

in these instances the true fracture toughness may be dangerously 

overestimated by a standard test specimen having a relatively deep 

crack. From this view point it is clearly important to determine

2



the fracture toughness associated with short cracks.

In the work presented in this thesis, e lastic-p lastic finite 

element analysis has been used to study the stress and strain 

distribution ahead of short cracks in single edge cracked bend and 

tensile specimens using both small and large geometry change 

solutions, with the object of determining the conditions under 

which single parameter characterisation of the elastic plastic 

deformation ahead of the short cracks can be achieved by the J 

contour integral and the crack opening displacement.
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Chapter (1) 

STRESS and STRAIN

1.1 Stress

The state of stress at any point can be described by the stresses 

acting on three mutually perpendicular planes passing through the 

point of interest. The stresses acting on any other plane can then 

be determined by means of analytical or graphical methods. All the 

stresses shown in Fig (1.1) are positive according to the usual sign 

convention, in which tensile stresses are defined as being positive. 

The rationale behind the double-subscript notation, is that the 

first subscript designates the direction of the force while the 

second suffix indicates the direction to the normal of the plane on 

which it acts.

On this basis, the state of the stress can be conveniently 

written as a tensor, Gj. and represented in matrix form

G G G
XX xy xz

G. =
'J

G
yx

G
yy

Q
*< N ij = x, y,z (1)

G G G
zx zy zz_

Where c yx> Q X *< Tyz are the shear stresses. Although the

involves nine stress components, only six of these are independent 

as:

Gjj =  Gjj

The stress system can always be referred as a set of orthogonal
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axes 1,2,3 such that the shear terms become zero and the stress

tensor takes the form

a 1 1
0 0

0
° 2  2

0

0 0 CO

e
"

The axes 1,2,3 are referred to as principal axes, and a 11 a22 ,a 33 

are the principal stresses. An important example of this occurs at 

a free surface, which is necessarily a principal plane.

The distribution of the stress throughout a body is limited by 

the need to satisfy equilibrium, which in the absence of body 

forces can be written as

a ij,j = 0

where the suffix 1 , ' denotes differentiation

1.2 Strain

Forces acting on a body can produce both deformation and rigid 

body motion, both of which are described in terms of the 

displacements in the x, y and z directions denoted u,v,w 

respectively. The state of strain is a complete definition of the 

magnitude and directions of deformation excluding rigid body 

motion and is a second order tensor analogous to the state of 

stress. For convenience, strains are always resolved into normal 

components and shear components, which can be written in terms 

of the displacements as:
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ejj = 1 / 2  [ ( 3 u j / 3 x j )  +  ( 3 u j / 3 x j ) (3)

This definition, defines the mathematical or tensor shear 

strains exy eyz, ezx, however it is also common to use the 

engineering shear strain.

Yij= [(auj/axj) + o Vj/axj)  (4)

Although the state of strain can vary through a body in response 

to the variation in the state of stress, the allowable distributions 

of stress are lim ited by the need to satisfy com patib ility 

(Timoshenko (5 ))

^2 ^2 J2. -.2
d e„ d e , , o e„  d e.,

 U-+  SsL*  IL. +  iL (5)
3x, 8x, aY av 3x.3x, dx.3x, k I ox ox. i | i k

'  J

Which ensures that the strain and displacement distributions 

are consistent.

1.3 Stress-strain relations for elastic solid

The relationships between stress and strain are fundamental to 

the analysis of deformation and fracture of engineering materials. 

Many materials can be considered to be isotropic, having identical 

physical properties in all directions. The present discussion is 

limited to isotropic materials.

The relationship between uniaxial stress and strain was first 

enunciated by Hooke (1635-1703) in connection with the 

application of a hair spring of a watch. Young(1773-1829) noted

6



that the constant of proportionality was a material property and in 

terms of Young's modulus E. Hooke's law can be written for 

uniaxial tension as :

a x”  ^  ex cjy= gz =0 (6)

Cauchy (1789-1857) generalized Hooke's law for general state 

three dimensional states stress, so that each of the six stress 

component ay, is a linear function of all six strain components e ^

W here  C ykj is a fourth order tensor known as the stiffness. 

Symmetry of the tensor equation requires that:

This reduces the number of independent elastic constants to 21. 

Symmetry further reduces the number of constants to three for a 

cubic crystal; and for isotropic materials the constants can be 

further reduced two to, G and X.

gx = (2G+A,) £x + X ( £ y  +ez)

Gy = (2G+^) £y + X (ez+£x) (9 )

g z  = (2G+X) £z +  X (ex + £ y )

a ij ”  G ijk |ekl (7)

G ijkl “  Cjikl -  Cyik -  Cjj|k (8)

Txy “  GYXy 

xyz = GYyz

Tzx = GYZX

7



Here G is the shear modulus or modulus of rigidity, and X is 

known as Lame’s constant. Alternatively these equations can be 

written using Young's modulus E, and Poisson’s ratio d

ex = 1/E[ <tx -t> ( a y +  a z  )]

ey = 1/E[ <jy -u ( <tz + ax )] (1 0 )

ez = 1/E[ gz-o) ( ox + Gy )]

\ y  =  W G “  ^O+'u) ^ x y ^

7yZ = TyZ/G = 2 (1+d) TyZ/E

Yzx = = 2(1+0)) Tzx/E

For the special case in which the x, y, z axes are coincident with 

the principal axes 1, 2 and 3 equation (7) reduces to

8  ̂= 1 /E [ C2~ o) ( G2 + a3 )]

82 = 1 /E [ G3-  o) ( G3 + 02 )] (*11)

£3 = 1/E [ C3-  0) ( G2 + a2 M

For an isotropic material the stress strain relations can also be

written in terms of the stress deviators sy

Sjj = ay- 5jj <Jkk/3 (12 )

The corresponding strain deviators ejj can be defined in a

sim ilar way

8



e ij “  eij " 3ij ek k ^ (13)

The isotropic elastic stress strain relations can then be written 

in terms of the deviatoric and volumetric strain e |j and e ^

e ij = Sij/2G

ekk = Skk/3B (14)

Or in terms of total strains ejj

e ij = Sjj/2G + Sf<k/3B

Where B is the bulk modulus B= E/3(1-2d )

1.4 Yield Criteria

Linear elastic deformation is limited to stress states which do 

not satisfy the conditions for the onset of yielding or plastic flow 

as defined by the Tresca or von Mises yield criteria. The von Mises 

yield criterion is often written in terms of the stress deviators or 

the equivalent stress oe

cre2 = 3/2 S ijS ij (15)

In uniaxial tension (o-j = o0 , 0 2  = <73 = 0 )

c e = a 1 = c o

where o 0 is the initial yield stress. The Tresca yield criterion 

is sometimes used as an alternative to that proposed by von Mises. 

This criterion is written in terms of the maximum and minimum 

principal stresses a max and a mjn

9



°m ax " a min -  2k -  c 0 (16)

where k is the yield stress as measured in shear. deyP|astlc,

Reuss assumed the plastic component of the strain increments to 

be proportional to the deviatoric stresses

dejjP|astic = Sy d X  (17)

6 X  is a factor of proportionality, which is not necessarily

constant. If the total plastic strain is required it must be 

integrated along the strain path taken. The total strain increment 

for an elastic-plastic material is written as the sum of elastic and 

plastic components

. . plastic . elastic , ,
dey= dey +dey (18)

Then

dey= SjjdX + dS jj/2G + (1-2d) d c ^ /E  (19)

d X =  de@/ae

1.5 Plane Stress and Plane Strain

Full three dimensional problems are in general very difficult to 

solve without introducing simplifications such as those allowed by 

symmetry. It is thus very desirable to simplify three dimensional 

problems by reducing them to two dimensions and thus diminish 

the number of variables in the problem. In this context it is 

appropriate to introduce the concepts of plane stress and plane 

strain as applied to fracture mechanics. The mathematical 

defin ition of plane strain, requires that the out of plane

10



displacement shall be zero, or constant for generalized plane 

strain. Thus the displacements are only dependent on the x,y, 

coordinates.

U = u(x,y)

V= v(x,y) (2 0 )

W = 0 (or constant)

Alternatively the definition can be given in terms of strains:

ez = d w / d z  = 0

ezx = d w / d x  + d u / d z  = 0

exz = d w / d y  + d v / d z  = 0 (2 1 )

Using Hooke's Law for an isotropic elastic material the 

corresponding stresses are.

g z  = d  ( a x +  CJy)

Xz x = ^ x y = 0

In contrast, in plane stress the out of plane components of 

stress are zero and :

= ^xz= V °  (23)

Hooke's law gives the out of plane strains as:

e z  = (cx + Oy) (24)

y  =  y  = 0 'zx 'yz

11



1.6 Slip Line Field and Cracks

An important class of solution used for plasticity problems is 

rigid-plastic slip line field analysis (Hill (6 )). The solution based 

on slip line field theory assumes that the plastic strains are very 

much greater than the elastic strains, and the material has a 

su ffic ien tly  low hardening rate to enable the stress-strain 

equations to be idealised as rigid elastic non-hardening plastic. It 

is also generally assumed that the plastically deforming material 

moves in plane strain condition by sliding along the lines of 

maximum shear stress

The slip line field consists of a set of curvilinear (a and P) axes 

which are orthogonal and represent the curvilinear axes of the 

planes of maximum shear stress and strain rate. As the stress of 

system changes, the orientation of these new axes can also change 

and the a and p lines also curve but must always lie at ± rc/4 to the 

direction of the principal stresses a 1 and o 2. The equilibrium 

equations referred to the a and p slip lines is

o m - 2 Ko = Ca = constant on a line (25)

om + 2Ko = Cp = constant on p line

These equations which are attributed to Hencky, restate the 

equilibrium  equations for a m aterial which is deform ing 

plastically. The a and p axes can be identified correctly , by 

recalling that the largest principal stress must lie between the +a 

and +p axes.

The stress at any point can be described completely if only o 1, 

02 and 012 are known. In the slip line field solution these three

12



variables can be reduced to two, the mean stress (am = okk/3) and 

the orientation of the plane of maximum shear stress, and the 

stresses at any point can be determined by identifying a  and p 

lines. For an incompressible material under plane strain 

conditions:

°m  = CTkk/3 = °3  = 1/2 (<71+ c 2) (2 6 )

Therefore the principal stress in plastic deformation can be 

found if the mean stress is known. However the non principal 

stresses oxx, oyy and xxycan only be found if the orientation of the 

stress system is known.

The slip line field for three plane strain configurations are 

shown in Figs (1.2,1.4,1.5). The near tip stress field of the central 

crack panel (CCP) Fig (1.2) can be determined by identifing the a 

and p lines. The analysis starts at the free surface where the 

stresses are known to be

° z  = °m = k

<Ty = 2 k (27)

c x = 0

Because the slip lines are straight intense shear deformation is 

confined to slip planes eminating at 45 degree from the tensile 

direction, and the Hencky equation indicate that the stresses are

constant at any point on the slip planes. The stress at the crack

tip, is small, ay = 2K and constant every where on the slip planes 

as represented by the broken line in Fig (1.3). The stress in this

13



geometry is independent of the distance from the tip and depends 

only on the angular coordinate 0 , which is consistent with limiting 

HRR singularity for the sharp crack.

For the double edge deeply crack specimen the slip line field is 

shown in Fig (1.4), where the stress can be determined by 

following Hencky equations, starting at the free surface (3) where 

the stresses are 2K, K, and zero.

Following the a line the rotation of the slip line field through 

region (2) gives the stresses to be

oz = o m = k (1+ 3/2 tz -0 )

° 0 = or = %  = CTm (28)

where 0 is measured from an axis straight ahead of the crack 

tip. Following the same slip line into the region a head of the 

crack the stress in region (1) can be given as

a z = = k (1+7C)

cjy = k ( 2 + i z )  (29)

ax = k7t

Although the stress at the crack tip is limited by yielding the 

strain becomes infinite at the crack tip and the strain singularity 

causes the crack tip to open and blunt to a radius 8. Within 28 from 

the crack tip the stresses depend on the distance X of the point 

ahead of the crack, and the crack opening 8. For this geometry the 

stresses can obtained in terms of the crack tip opening 8 and the 

slip line field are shown in Fig (1.5)

The smallest value of the stress at the crack tip,which is a free

14



surface is oy =2K, and the largest value at the end of the log spiral 

at 25 as shown by the solid line in Fig (1.3). Following the a l i n e  

the stress can be calculated to be

am = cjz =2/3 o 0 (1+2 ln(1+2x/5))

ay = 2 / 3  o0 (1+ ln(1+2x/5)) (30)

ax = 2/3 a0 (ln(1+2x/5))

The slip line field solution of deeply notched bar under pure 

bending or by a combination of bending and shear force, was given 

by Green (7), and Green and Hill (8). They assumed that the strain 

in the direction parallel to the length of the notched is zero and the 

initial deformation develops through the ligament and does not 

extend to the surface of the bar on either side of notch Fig (1.6). 

They concluded that the shape of slip line field depends only on the 

shape of the root of the notch and the loading condition and is 

independent of the ratio of the notch to the thickness of the bar at 

the minimum section.

Green (9) emphasised that the above condition can only be true

if the notch is sufficiently deep. In his modification of the slip

line field for shallow cracks he assumed that the deformation 

extended to the back face of the bar on one or both sides of the 

notch as supported by the experimental work of Green and Hundy 

( 10).

Following Green (9), an analysis of the slip line field of the

shallow crack was performed by Ewing (11) who defined the

critical width of the notch as a minimum width for which the 

depth-notch slip lines field solution applies Fig (1.6). For pure

15



bending the critical ratio (a/W) is close to 0.3 for plasiticity to be 

limited to the uncracked ligamen.
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State of stress in a small element.
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Fig (1.2)

The slip line field of the CCP
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Fig (1.3)

The stress value of the CCP and blunted Crack
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CRACK

Fig (1.4)

The slip line field for the double edge deepiycrackedspecimen.
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Fig (1.5)

1-966

The slip line field of the blunted crack
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Fig (1.6)

The slip line field of deep and shallow cracks under bending 

follow Green (39)
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Chapter (2)

LINEAR

ELASTIC FRACTURE MECHANICS

2.1 Introduction

For structures which contain cracks or flaws it is necessary to 

predict both the conditions under which the cracks will grow, and 

the residual strength of the structure. These predictions are the 

object of fracture mechanics. The main aim is to predict the 

critical crack size at which failure occurs and how long it takes 

for the crack to grow from an initial size, to the critical condition 

at which failure occurs. As a starting point for a discussion of 

fracture mechanics it is essential to realise that cracks and flaws 

produce severe stress concentrations.

2.2 Stress Concentration Factors

Stress concentrations assume major importance in engineering 

design because virtually all failures occur at stress concentrations 

The maximum stress at any section is customarily expressed in 

terms of the nominal stress multiplied by a stress concentration 

factor, which is the ratio of the maximum stress in the body to the 

applied stress

Stress concentration factors can be obtained from fatigue tests 

by comparing the fatigue life of corresponding notched and 

unotched specimens, and experimental methods for determining 

stress concentration factors have been used extensively since 

1930. The first mathematical analysis of stress concentration
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factors appeared in the literature shortly after 1900. As an 

example consider the problem of an elliptical hole, with semi axes 

a and b, in a large plate subject to tension, as illustrated in Fig 

(2 .1). The plate is sufficiently large, in comparison with the hole 

that the reduction of cross-sectional due to the hole can be 

neglected. The plate may be considered to be infinite Fig (2.1), and 

the stress- concentration factor pertaining to the peak stresses 

has been given by Robert (1) as:

k=1 + 2(a/b) (25)

Three limiting cases can be distinguished:

(a). For a circular hole a/b=1 and k=3

(b). For a crack parallel to direction of loading (a - >  0), k=1

(c). For a crack perpendicular to the direction of loading b->o

and k = oo

The infinite stress concentration factor associated with the 

final load case is particularly important. Cracks under loading 

modes which produce stress singularties are fundamental to the 

study of fracture.

2.3 Cracks in Linear Elastic Materials

A crack in a solid can be subject to three different modes of 

loading, namely the opening mode, or mode i ,  in which the 

displacements of the crack surfaces are perpendicular to the plane 

of the crack. The sliding mode or, mode II, in which the 

displacements of the crack surface are in the plane of the crack 

and perpendicular to the leading edge, and mode III, the tearing or
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antiplane mode surface in which the displacements are parallel to 

the leading edge of crack. The superposition of these three modes 

describes the perfectly general case, although in practice mode i  

is usually the most important Fig (2.2).

Westergaard (2) has studied the stress field of an infinite plate 

of linear elastic material containing a crack of length 2a subject 

to a remote tensile loading, Fig (2.3). With respect to the crack 

plane the stresses at the crack tip can be expressed as a series in 

which the leading term has the form.

g x x  = o V(a/2 r) f i j ( o )  +"other terms"

Gyy = g V(a/2r) fij(o) +"other terms" (26)

Txy= a V(a/2r) fij(o) +"other terms"

Here, a is the crack length and the other terms on the series are 

bounded at the crack tip. Fig (2.3) shows the cylindrical co

ordinate system (r, 0 ) centered at the leading edge of the crack and 

the stress components on an element ahead of the crack. As r 

approaches zero, the stresses approach infinity and there is a 

singularity at the crack tip r=0. In fact whatever the geometry and

loading, the stresses at a crack tip have a singularity of the order 
- 1 / 2r and the asymptotic linear elastic solution for the stress 

ahead of the crack can be written in the generalised form.



Rearranging equation (26) the stress intensity factor can be 

defined as:

K j = l i m i t  V(27rr) cj22 

r-> 0

The parameter K j  is the stress intensity factor which is a 

function of loading and geometry, and has the dimension of (Nrrf
3/2

), and for the other modes the stress intensity factors can be 

formally defined as:

K n =///7?/fV(27cr) g 2i 

r-> 0

K m = l i m i t  V(2n;r) o 23 (2^)

r-> 0

Shih (3) has pointed out that there is a mistake in Westergaard's 

work (27), but this mistake does not affect the solution of the 

strength of the stress singularity. Generally the stress intensity 

factor can be expressed in the form.

K j=  F(a/w) oV(rca) (30)

Here F(a/w) is a dimensionless function of the geometry which 

has been tabulated for many practical cases by Tada et al (4).
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The strains ahead of the crack can also be expressed in terms of 

the stress intensity factor.

e„ =-i===5=-----  L i e )  (31)
IJ V(2rcr) E ,J

As the strain is the derivative of the displacement with respect 

to length, the displacement is the integral of strain and the 

displacements approach the crack tip as r1/2

u= { k t [r/2ic] 1/2 hx(0 ) } /E (32)

v= { K j  [r/2 it] 1/2 hy(0 ) } /  E (33)

Here hx(o), hy(o) express the angular variation of displacement. 

Along the crack surface 0 = n ,  and u is directly proportional to r1/2 

and v=0 , and the crack opens into a parabola near the tip.

2.4 Small Scale Yielding and Limits of Applicability of

L.E.F.M.

In the elastic field a stress singularity exists at the crack tip 

and the components of stress gx and o y approach infinity as the 

crack tip is approached. In real materials, however there is always 

a region around the crack tip where plastic deformation occurs 

because the yield criteria are violated by the elastic stress 

system. The condition in which there is only local yielding at the
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crack tip and the surrounding elastic field controls the crack tip

region is called small scale yielding. It is to this problem that

linear elastic fracture mechanics or LEFM is applicable. When the 

plastic zone is small compared with the other dimensions of the 

body, plasticity can be viewed as a minor perturbation to the 

elastic field which can be described by equation (27), and 

characterized by the stress intensity factor K.

The radius of the plastic zone rp can be derived from the von 

Mises yield criterion

(ar c2)2 + ((Tj-Og)2 + (a3-O i)2= 2 a 02 (34)

The asymptotic elastic stress field can be written in terms of

the principal stresses a ^ a g .a g  as

[“ s f <usin f"
- T w ^ r  [cost (1'slnf)] (35>

For plane strain

' j k n  l 0 0 8 S

for plane stress

a 3 = 0
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The boundary of the plastic zone as a function of 0 can be 

derived to a first approximation by substituting equation (35) into 

equation (34)

For plane strain

K2/(2 jtr) [3/2 sin20 (1-2u)2(1+cos 0 )] = 2 g o 2 (36)

while for for plane stress:

K2/(27tr) [1+3/2 sin20 + cos 0 ] = 2 g o 2 (37)

Therefore the plastic zone as a function of 0 can be written for 

plane stress as

Tp (0 ) =(1/47t) ( K / g o )2 [1+3/2 sin20 + (cos 0 )] (38)

For plane strain

r p ( o )  =  ( 1 / 4 t c )  ( K / g o )2 [3/2 sin20 ( 1 - 2 d ) 2 ( 1 + c o s  0 )] (39)

It is clear that the plastic zone in plane stress is larger than 

that in plane strain, particularly ahead of the crack tip 0=0  as 

illustrated in Fig (2.4). This is because a higher hydrostatic stress 

occurs in plane strain which does not promote yielding.

Due to the high stress-strain gradient near the crack tip, the 

zone of plasticity at the tip is constrained against contraction 

along the crack front by the elastic material, thus creating plane 

strain conditions in thick plates

The ratio of the plastic zone radius rp to the thickness of the
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specimen B, determines whether plane stress or plane strain

exists. If (rp/B) is very much less than unity, plane strain exists. 

The critical stress intensity factor for thick bodies in which

perfect plane strain conditions apply is a material constant known

as the plane strain fracture toughness, denoted K Jc. The British

Standard (5), requirement for small scale yielding and valid LEFM 

is:

B,a,(w-a)> 2.5 (K lc / c 0 )2 (4 0 )

where B is the thickness of the specimen, a is the crack length, 

and w is the width of the specimen as shown in Fig (2.5).

A different approach to determine the extent of the plane stress 

plastic zone was developed by Dugdale (6). In his analysis plastic 

deformation is assumed to occur in a strip in front of the crack In 

these calculations the plastic zone radius is:

rp= 0.393 (K j / go )2 (41)

Dugdale (6) argued with Irwin (7) that the effective crack length 

is longer than the physical crack length as shown in Fig (2.6). The 

Dugdale plastic zone is larger than that calculated by Irwin, the 

latter analysis gives a plastic zone diameter as:

rp= 0.318 (K I /o o )2 (42)

As pointed out by Hahn et al (8 ) the plastic zone is effected by
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both the plane state and slightly by strain hardening. Many 

experimental investigations have measured the plastic zone size 

and shape, however experimental methods are difficult particularly 

in plane strain conditions. Hahn et al (8 ), used specimens of 

silicon-iron and pointed out that the shape of the plastic zone was 

reasonably approximated by the Dugdale strip yield models in plane 

stress. Davidson and Lankford (9) used other experimental 

techniques including the use of electron microscopy.

2.5 Potential Energy Release Rate (G)

The energetics of crack advance were first-considered by 

Griffiths (10) who considered crack advance in an infinite plate of 

unit thickness with a central crack of length 2a, loaded with a 

remote tensile stress a. The basic argument is that as the crack 

extends, elastic strain energy in the material is released to create 

the new area which absorbs the energy. When the energy release 

rate, is greater than or equal to the energy consumption rate crack 

propagation is energetically favourable. If Ue is the elastic energy 

of an uncracked plate, Us is the change in surface energy caused by 

creating the crack surface, Uc is the change in elastic strain 

energy caused by introducing a crack in the plate and W, is the 

work performed by the external forces. Then the total potential 

energy of the system Uj. can be written as:

Ut = Ue + Uc + Us -W (43)

The change in strain energy produced by introducing a crack of 

length 2a can be calculated by the work done by a stress a acting
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between +a and -a on the uncracked body, to produce a traction 

free surface which deforms into an ellipse:

= Jo u dx= 2 /0  * 2 a V(a2-x2)/E"Uc = J a u dx= 2J a * 2 a v (a -x )/E dx (44)
-a 0

Giving

Uc = 7t 0 2 a2/E"

Where E"= E for plane stress and E"= E/(1-tf2) for plane strain. 

The surface energy of the crack can be written in terms of the 

surface energy per unit area of the material y
e

Us= 2 (2a ye) (46)

The condition for crack extension is obtained by setting

(9Ut/3a)=0

9(71 o 2 a2/E '+  4 a Y ) /3a =0 (47)
6

Then

n  a2 a/E"=2 y (48)
6

(n g 2 a 2/E") is called potential energy release rate G, and it is 

defined to be the energy release per unit area of crack advance.

G = (3Ut/3a) (1/B) (4 9 )

While the right hand side of equation (48) is called the crack
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resistance.

As pointed out by Irwin (11) the Griffith theory strictly applies 

to a material in which there is no plasticity at the crack tip. 

However Irwin proposed equation (49) could be modified for 

materials which exhibit plastic deformation by replacing the 

surface energy by the sum of the surface energy and plastic strain 

work y  .

% a 2 a/E"= 2 (ye + yp) (50)

For most materials (y «  y ), and the surface energy can bee r
neglected

Within the context of the linear theory of elasticity, there is an 

important connection between the stress intensity factor and the 

rate of change of the potential energy of a cracked body. Fracture 

occurs when the stress intensity factor reaches it's critical value 

(Kc), and identically when the strain energy release rate reaches a 

critical value (Gc ). The energy approach is thus equivalent to the 

stress field approach. The relationship between the stress 

intensity factor and the energy release rate can be generalised to 

cover the three basic loading modes I, n  , III

Gr= K,2/E"

Gn = K .2 /E - 

Gm = (1--o) K m 2/E"

G = Gj+Gjj+Gjjj

G = [(1-*) K /V aG M C I-d) K j ^ G M K ^ G ]  (5 1 )
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Where E=2(1-$)G and E"= E for plane stress and. E"=E/(1-£2) for 

plane strain.

2.6 Methods of determining Stress Intensity Factors

Many methods of determining stress intensity factors have been 

developed, and a wide range of solutions, for two-dimensional 

configurations are now available in the literature (Isida (12))

The common methods are set out in Fig (2.7). These methods are 

divided into three groups, in which the choice of the method 

depends on the time available, the required accuracy, the cost,the 

frequency of use and how simply the structure can be modelled. 

Some of the methods are described briefly and emphasis is placed 

on those methods which are most suitable for planar geometries in 

tension and bending.

2.6.1 Finite Element Methods

Finite element analysis is a numerical method which can be used 

to determine the stress intensity factor, when the structure 

cannot be modelled analytically. The application of the finite 

element method to determine stress intensity factor has undergone 

rapid development, as the method has great versatility, and allows 

the analysis of complicated engineering geometries (13,14). It 

also enables the treatment of three dimensional problems and 

permits the analysis of crack tip plasticity. Finite element 

methods fall into three categories. Firstly those which allow 

stress intensity factors to be determined directly, secondly those 

which require stress intensity factor to be determined indirectly
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by considering the change in the energy due to the presence of the

crack, and thirdly, those involving special crack tip elements.

2.6.1.1 Direct Finite Element Methods

Chan et al (15) have discussed the methods which can be used to

estimate the stress intensity factor directly, once the numerical

solution has been obtained from a particular fin ite  element

representation. Two specific methods were considered .

(i)- Stress method

(ii)- Displacement method.

2.6.1.1.1 The Stress Method:

The stress intensity factor can be determined directly from the 

stress numerically calculated ahead of the crack. The asymptotic 

elastic stresses take the form :

where fij are the following universal functions of angle (0 ). 

/xx(o)=  cos(0 /2 ) [1-sin (0 /2) sin (30/2)]

/x y  (0 )= sin(0 /2) cos(0 /2) cos(30/2).

The stress a.  ̂ in the vicinity of the crack tip can be substituted 

into eqs (27) and the value of can be calculated as the limit of

CTjj=(K i / V 2 7 t r) / j j ( 0 ) (52)

/yy(o)= cos(0 /2) [1+sin (0 /2) sin (30/2)] (53 )

cjjj (V27cr) /  / y( 0 ) as r -> 0 (54)
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This is most conveniently evaluated straight ahead of the crack 

with 0=0 when

2.6 .1 .1 .2 The Displacement Method:

Major emphasis has been placed on the displacement method due 

to it's simplicity and the easy with which displacements can be 

extrapolated to the crack tip. In particular Kobayashi et al (16) 

conclude that the results obtained from the displacement method 

are more accurate than those obtained from the stresses. The 

displacement method involves a correlation of the finite element 

nodal point displacem ents with the asym ptotic crack tip 

displacement. The plane strain displacements are:

By substituting the displacement u at some point near the crack 

tip K can be calculated from a parameter which is here defined as

and

K j  = l i m i t  cjjjV(27cr) 
r-> 0

(55)

u = K j [r/2rc] 1/2 / jj(0 ) / G (56)

(5 7 )

The stress intensity K j is given by the limit of K j*  as r -> 0
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K j = l i m i t  K j*  

r->0

From a plot of K j*  as a function of r at a fixed angle and a 

particular displacement component, the stress intensity factor K j 

can be obtaind. K i may also be determined from the crack surface 

displacement at some small distance r from the crack tip. The 

most accurate estimates are obtained from the v displacement on 

the crack surface.

2.6.1.2 Indirect Finite Element Methods

Indirect techniques involve the determination of the stress 

intensity factor from the potential energy decrease per unit crack 

advance G for plane strain and unit thickness, or from the change of 

compliance with crack length. If C is the compliance, of the plate 

and the displacement V = CP, where P is the load. The elastic 

energy contained in a cracked plate is written as

Ut= 1/2 CP2 (58)

G= -(3Ut/3a)/B = P2/2B ( 3C/3a) (5 9 )

From the relation between G and K .

K j2= E'G = E" P2/2B ( 3C/3a) (60)

The stress intensity factor is here related to the rate of change 

of compliance with crack length. Mowbray (17) analysed the same 

specimen geometry for several cracks of slightly different lengths
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and was able to obtain the compliance as a function of the crack 

length, numerical differentiation of this relationship with respect 

to crack length enabled the determination of G and hence K.

2.6.2 The Virtual Crack Extension Method

The compliance method is limited by the need to compute 

complete solutions for incrementally different crack lengths. This 

problem is over come by the virtual crack extension method, which 

is an finite element technique based on the relation between the 

crack stress intensity factor and the potential energy release rate. 

The potential energy can be expressed in terms of the stiffness 

matrix [M], the nodal force {F} and the nodal displacement {u} 

Zienkiewicz (18)

U=1/2 {u}* [M] {u} -{u}t {F} (61)

where the superscript (t) indicates a matrix transpose. By

differentiating equation (49), with respect to the crack length, the

energy release rate G can be found as:

G = [a U t/3aJ=-3{u}t[[M]{u}/aa-{F}]l/2{u}t3[M]{u}/aa+{u}ta{F}/aa 

load (62)

The factor in square brackets on the right hand side of the 

above equation is zero, because [M] is symmetric.
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G = [9U t/3a] = (1-u2)K 2/E = -1/2{u}t3[M ]{u}/3a+{u}ta{F}/aa 

load (63)

The matrix 3 {F }/3a , represents the change in the master 

stiffness per unit crack advance. Let the nodes surrounding the 

crack tip be arranged in two contours r x and r 2 and the crack 

direction be in the X direction as shown in Fig (2.8a). Virtual crack 

extension can be effected by moving the nodes within in the first 

contours r 1 in X direction, a small distance 3a and while the other 

nodes remain their initial position as shown in Fig (2.8b). The 

master stiffness [M], which depends only only individual element 

geometries, displacement function and elastic properties, remains 

unchanged in regions interior to r 1 and exterior to r 2, except in the 

band of element between the contours.

The master stiffness matrix [M], can be written as the sum over 

all the element stiffness matrices [M], therefore:

Nc

-1/2 {u}t 3[M] {u}/3a = 1/2 {u}t Z3 [m i] /3a {u} (64)
i=1

[mi] represents the element stiffness matrix. Therefore the 

stress intensity factor can be determined by:

G = (1 -v2) K j2/E = G = -1/2 {u /a tM ] {u}/3a (65)

The virtual crack extension method has the advantage that no 

special elements are required and it avoids determ ining the 

potential energy before and after crack extension. A solution for
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only a single crack is required, and the crack is advanced by moving 

nodal points rather than by moving nodal tractions at the crack tip 

and performing a second analysis. The virtual crack extension 

method can be applied to three dimensional problems, and has been 

extended for the use in non-linear'e lastic and elastic-plastic 

materials by Parks (19) .

2.6.3 Special Crack Tip Elements

Many types of special elements have been developed for 

calculating stress intensity factors. Blackburn (20), Barsoum (21) 

and Henshell and Shaw (22 ) have pointed out that second order 

elements with the mid side nodes of the crack tip element moved 

to the 1/4 -point position are particulary useful. The idea is to ' 

use 8 noded isoparametric element as a focused mesh concentric 

with the crack tip. In these elements the mid-side nodes are 

located at the quarter point position. This procedure allows the

element to adopt the correct form of displacement function in
1 /2which the displacements approach the crack tip as r as given by 

eqs (32) and (33). These techniques provide the capability to 

model, the singularity which dominates the solution close to the 

crack front. This method enables stress intensity factors to be 

determined directly or in conjunction with virtual crack extension 

and, in general, requires fewer elements than the methods 

previously described.
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2.6.4 Experimental Methods

Experimental methods are sometimes useful for obtaining 

approximate values of the stress intensity factor. They either use 

a known relationship between a measurable quantity such as the 

fatigue crack growth rate and the stress intensity factor, or 

attempt to measure the stress intensity factor by direct stress 

measurement on a model. Most methods are applicable only in 

laboratory conditions, but a few have a limited use under service 

conditions provided the load on a structure can also be measured 

(1). Photoelastic techniques have several advantages as, 

photoelasticity is a well known method for which experimental 

equipment and materials are widely available. By using the frozen 

stress technique photoelastic analysis can be extend to three 

dimensional configurations. Considerable use has been made of 

photoelasticity in determining stress concentration factors and 

this technique has been used for determine the stress intensity 

factor.

The growth rate of cracks extending under fatigue has been used 

to determine the stress intensity factor (Kobayshi (23)) .

da/dn = f(AK) (6 6 )

Here the rate of fatigue crack propagation is related to the 

range of the stress intensity factor AK. Where f(AK) can be 

determined from fatigue crack propagation in a specimen with 

known K j solution to determine the stress intensity factor for a 

new configuration. This method generally gives reliable results, it 

is simple and can be applied to any three dimensional crack
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problem in which crack growth experiments are possible.

The most w idely applied experimental procedure is the 

compliance measurement. If the displacement measurements are 

made close to the crack tip, the effect of the crack size on the 

displacement decreases rapidly. The most accurate measurement 

of compliance can be expected if the point of the load application 

is as close to the crack as possible, which makes crack line loaded 

cases particularly suitable for this technique..
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Fig (2.1)

An infinite plate with an elliptical hole under remote tensile 

loading.
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Mode 1

Mode II

Mode 11

Fig (2.2)

The three basic mode of cracking.
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Fig (2.3)

An infinite plate containing a central crack under remote tensile 

loading.
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Fig (2.4)

Dimensionless plane stress and plane strain plastic zone.
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Fig (2.5)

Fracture mechanics standard three point bend specimen.
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Fig (2.6)

Schematic of Dugdalefs analysis.

51



reference 

books on 

k

soulution

Superposition

Stress distributior

Coupled laminas

Analytical

Green function
Collocation (mapping)

Weight function

Integral transfirm/Continuous dislocation

Compounding

S tres s
concentration

Alternating

csmpatioie ciso-acner.c

Body force

3oundarv
integral

Finite element

Compliance

Optical

Fatigue Crac* 

growth

Stage 1 Stage 2 Stage 3

1 0 - 2
10

- 1 0 1 2 
10  10  10Approximate time scale{hours} 1 0

Fig (2.7)

Methods for determining stress intensity factors.
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Fig (2.8)

The arrangement of nodes in the crack tip area for virtual crack 

extension method
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Chapter (3)

RESULTS OF LEFM CALCULATIONS

3.1 Introduction

It has been noted that the stress intensity factor can be 

estimated by comparing numerical solutions with the asymptotic 

crack tip field. In this section finite element calculations of the 

stress intensity factor are given as a precursor to elastic-plastic 

calculation on short cracks.

3.2 Finite Element Models

The mesh used 8 noded quadratic isoparametric elements with a

focused mesh concentric with crack tip. To allow these elements

to adopt the correct form of the displacement function, in which
1/2

the displacements approach crack tip as r , as given by equations 

32 and 33, the mid side nodes were located at the quarter point 

positions Fig (3.1).

The configurations considered were single edge cracked bars 

(SEC) with non-dimensionalised crack depths a/W=0.1 and a/w=0.5 

subiect to oure bending as shown in Fig (3.2.a and 3.2. b)

laments models were generated with aid of a 

commercial program called FEMGEN. Fig (3.3) shows the 

idealisation of a plate of width W containing a crack of length a 

with a/w=0.1. The model consisted of 70, eight noded plane strain 

isoparametric elements consisting of, 393 nodes with 786 degree 

of freedom. Fig (3.4) represents the mesh of the deep crack 

a/w=0.5 in it's undeformed configuration. It contained 112, eight 

noded plane strain isoparametric element comprising, 613 nodes
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and 1226 degrees of freedom. Poisson's ratio u was set at 0.3 and 

the modulus of elasticity E was 2.E11. The models were forced 

loaded on the remote boundary either by a uniform tensile stress or 

by pure bending

3.3 Elastic Stress Field at the Crack Tip

The distribution of the elastic stress straight ahead of the 

crack at 0=0  is shown in Fig (3.5) and Fig (3.6), for a/w=0.1 and 

a/w=0.5 respectively, for both specimens subject to bending using 

force boundary conditions. The variation of the stress ( c i y y / a 0 ) 

with respect to the distance along the ligament is shown in Fig 

(3.5,3.6 ).

3.4 Methods of Calculating the Stress Intensity Factor

3.4.1 The Stress Method.

The stress ahead of the crack is of the form:

CTy- K x/ V ( 2 n r )  fij(er) ( 1 )

Here f jj(0 ) =1 for 0=0  . At this point it is convenient to 

introduce a parameter K j* defined by

K I * =  a y y V ( 2 r c r )  ( 2 )

This can be evaluated at point ahead of the crack using the 

stress extrapolated to the nodes. The stress intensity K j factor 

the defined as the limit of K j*  as r goes to zero.
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Kj = L i m  Kj* 

r- > 0

(3)

From plots of Kj* as a function of r, at 0=0 , Kj is obtained as 

the limiting value at r=0 shown in Fig (3.7) and (3.8). This is given 

in non-dimensionalised form in Table (1) for the short and deep 

cracks.

3.4.2 The Displacement Method

According to the Westergaard equations, the plane strain 

displacements are of the form :

Ui = (Kj/G) V(r / 2 % )  fjj(0 ) (4)

/x x (0) = C °s (0 /2)[1-2\) +Sin2(0 /2 )]

/y y (0 ) = Sin (0 /2)[2-2u -Cos2(0 /2 )]

By substituting a nodal point displacement Ui* at some (r,0 ) 

near the crack tip in equation (4) a quantity Kj* was calculated:

Kj*= V(27u/r) (G Ui*) /fij(0 ) (5)

The stress intensity Kj was then given the limit of Kj* as r - > 0 .  

By plotting Kj* as a function of r for 0=0 as shown in Fig (3.9) and 

(3.10), the value of non-dimensionalised Kj is given Table (1), for 

the short and deep cracks.
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3.4.3 Virtual Crack Extension Method

The value of Kj can also calculated from J .

K I = V [J  E/(1-v2)] (6 )

Where J-integral was determined by the virtual crack extension 

method of Parks (1) as implemented in ABAQUS (2). Five contours 

were used, although the contours were largely path independent the 

values have been always been taken from the second contour which 

generally exhibts the best results, for reasons that are considered 

to be more fortuitous than fundamental.

The stress intensity factors obtained using this method are 

given in table (1)

3.5 Brown and Srawlev's Results

The present calculations have been compared with those 

presented by Brown and Srawley (3), who used the boundary 

collocation technique, for pure bending and obtained

K j/K o  =1.12 -1.39(a/w) +7.32(a/w)2-13 .1 (a /w )3+14.(a /w )4 (7)

Where at a bending moment per unit thickness M. Ko takes the 

following form

Ko = 6 M (V(jta) /w2 (8 )

The value of (K j/K o ) estimated from equation (3) for a/W=0.1 is 

found to be (1.05). For a/w=0.5, under the same conditions (K j /K 0 )
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is found to be (1.459).

3.6 D iscussion of the Results

The values of the stress intensity factor obtained by using 

direct finite element methods, displacement, stress and virtual 

crack extension methods are given in Table (1). The results 

obtained by using the displacement method are shown to be more 

accurate results than those of the stress method when compared 

with the method of Brown and Srawley (3) which have an an 

accuracy of 1%.

In the present work the displacement method and the virtual 

crack extension method agree with those given by Brown and 

Srawley with a maximum error of 2%. In comparison the stress 

method which gives an error of 13%. From these results, one can 

conclude that the displacement and virtual cracks extension 

methods give better results than those given by the stress method, 

and both are consistent with published data (3)
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1/4 point nodes

Fig (3.1)

Second order element with mid side nodes of the crack tip 

element moved to 1/4 point position
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W-a W-a

a/W =0.1 
Ua= 30

a/W =0.5 
L/a= 6

Fig (3.2)

Single edge cracked (SEC) configuration (a) for a/w=0.1 and (b) 

for a/w=0.5
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f '3 (3.3)

Finite element mesh for deeo
P crack specimen.
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Fig (3.4)

Finite element mesh for short crack specimen.
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Fig (3.5)

The elastic distribution ahead of the short crack tip.
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Fig (3.6)

The elastic distribution ahead of the deep crack tip.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 xE-2

Xo/a

Fig (3.7)

The stress intensity factor for the deep crack obtained by using 

the stress method.
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Fig (3.8)

The stress intensity factor for the short crack obtained by 

the stress method
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2.0 -

1.5-

0.5-

Displacement Method
o.o

0.40.2 0.3 0.50.10.0 0.6 0.7

Xo/a

Fig (3.9)

The stress intensity factor for the short crack obtained by using 

the displacement method.
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Displacement Method
1 1 • i 1 1 1 1 ■ 1 1
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Xo/a

Fig (3.10)

The stress intensity factor for the deep crack obtained by using 

the displacement method.
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a /w  =0.1 
(K,/Ko)

a /w  = 0.5 
(K,/Ko)

Brown and Srawley 
[Boundary Collocation] 
Method [2]

1 .o45 * 1.459

[Displacement Method] 
[Finite Element Method] 

Present work

1.02 1.45

[Stress Method] 
[Finite Element Method] 

Present work
1.19 1.78

[Virtual Crack Extension] 
[Method]

1.06 1.46

TABLE (1)
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Chapter (4)

ELASTIC-PLASTIC FRACTURE MECHANICS

4.1 Introduction

For monotonic loading problems, linear e lastic fracture 

mechanics has found extensive application to high strength, 

relatively brittle materials which fail when small scale plasticity 

is exhibited at the crack tip. LEFM essentially applies only when 

the material behaviour is dominantly elastic and the fracture 

response, brittle. However above the ductile-brittle transition 

temperature fracture takes place with suffic ient plasticity to 

invalidate LEFM. This is the territory of elastic-plastic fracture 

mechanics as shown schematically in Fig (4.1)

Realistic measures of fracture behaviour and design criteria can 

be obtained through the use of elastic-plastic analysis which has 

identified two parameters to characterise elastic -plastic crack 

tip deformation.

1. The J-integral introduced by Cherepanov (1) Eshelby (2) and

Rice (3).

2. The crack tip opening displacement (CTOD) introduced by

Wells (4).

4.2 The J Integral

The unifying theoretical idea underlying non-linear elastic 

fracture mechanics is the J-ln tegra l, which was introduced 

independently by Cherepanov (1), Eshelby (2), and Rice (3), but 

whose application to fracture mechanics is primarily attributable
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to Rice (3). Rice considered a homogeneous body of non-linear 

elastic material, free of body forces subject to a two dimensional 

deformation field, such that the stresses ay depend only on the 

coordinates x and y. The body contains a notch of the type shown in 

Fig (4.2), having a flat surface parallel to the x-axis and with this 

geometry the J-integral was.defined by Rice (3) as

r  is an anticlockwise curve surrounding the notch tip fig (4.3), 

Fj is the traction vector defined according to the outward normal 

along r, u is the displacement vector and ds is an element of arc 

length along r .  The strain energy density w is defined by

Which for a linear elastic fracture material is simply 1/2 ay ey 

The traction factor Fj, is the force vector acting on an 

infinitesimal area, with an outward normal n= the area is regardedJ*

as a scalar so that Fj is a first order tensor with units of force per 

unit area, in contrast to the stress tensor ay which is of second 

order, but also has the units of force per unit area. The two 

tensors are related by

J (1 )

r

(2 )

F i = ° i j  nj
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Rather than reproduce the formal derivation of J given by Rice 

(3), it is perhaps more useful to illustrate the form of J by a non - 

rigorous derivation attributable to Finnie.

Fig (4.3) shows an arbitrary contour from the lower crack face 

to the upper face around the crack tip. On each small element ds, 

of this surface there is a force F which is a vector. If the crack 

advances, by a small amount Aa the surface also moves, and the 

element ds moves by a small displacement Au. As the crack 

advances, the stress field only changes by a negligibly small 

amount and because both the force F and the displacement Au are 

vectors the work done on the element is F.Au where the dot or 

scalar produce takes care of the fact that Au and F may not be in 

the same direction. The total work done the material inside the 

contours is obtained by integrating around the circuit

The displacement Au can be written in terms of crack advance in 

the x direction

(3)
r

Au = (du/dx) Aa (4)

Thus the.work done by external forces

Aa j[F»(du/dx)]ds (5)

As the crack advances and the contour moves the material inside



the contour "loses" and "gains" strain energy from the shaded 

regions. If W is the strain energy per unit volume change of strain 

in small strip indicated in Fig(4.3)

W Aa dy (6 )

The net loss in strain energy of the material inside the contour 

is obtained by integration around the path

j -Aa J W dy (7)

r

The material inside the contour losses strain and external 

forces do work on it so the net loss in energy is

=a Jw dy - Aa J[F»|AU =a JW dy - Aa J[F«(du/dx)]ds (8 )

r

The energy released per unit area of crack advance defines J

-j.J = AU/Aa = JW dy - [F«(du/dx)]ds (9)

r

An important feature of the integral demonstrated by Rice is its 

path independence for both linear and non linear elasticity. Non 

linear elastic stress strain relations are identical to the plastic 

relation as long as the material is not unloaded. The stress-strain
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relations of plasticity take account of history of the material and 

are written in terms of increments, whereas in elasticity the 

stresses and strains only depend on the current values and are 

history independent. However at the moment this difference does 

not appear cause problems in practice.

Path independence may be shown by considering the difference 

between J values evaluated over two contours r-i and r 2 Both terms 

of the integral vanish on the crack surface, and on transforming 

from a line to an area integral. Rice (3) has shown that the 

difference is zero assuming that the region between r 1 and r 2 is 

simply connected and free of singularities.

J thus characterises the crack tip singularity, and can be 

evaluated remote from the tip. As an illustration it is useful to 

consider the example given by Rice (3). Consider an infinitely long 

cracked strip with clamped boundaries subject to a constant 

displacement v i=v , V 2 = 0  as shown in Fig (4.4)

Evaluating J on the outer boundary, dy and (du/dx) are zero on 

the clamped boundaries, and ay and Fj disappear at X =±«>. The only 

term arises from the contribution at X=±°o but as (du/dx) is zero at 

x=°°,

J = 1/2 o2 e2 h = Eh/2(1-u2) e222 (x=~) (1 0 )

This allows J to be evaluated purely from the remote field. In 

the case of L.E.F.M

J= G= (K2/E ') (11)
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The line integral as a parameter derived from non-linear elastic 

behaviour has the same function as G does in linear elastic theory. 

It is an expression of the rate of change of potential energy with 

respect to an incremental extension of crack length, Rice (3).

J = - (3U /3a) (1/B) (12)

For a linear elastic material J is thus identical to the potential 

energy release rate G and establishes contact with the stress 

intensity factor K

Unfortunately as demonstrated by Turner (5) when applied to 

elastic-plastic material, the physical meaning of J as a energy 

release rate is lost, since in incremental plasticity the energy 

term, is no longer available for crack propagation.

4.3 HRR Field

It has been noted that the J-integral can be used as an energy 

based fracture criterion, however Rice and Rosengren (6 ) and 

Hutchinson (6) have also shown that J has a role in characterising 

the deformation field ahead of stationary cracks. The material 

behaviour is taken to be described by a plastic power law. For such 

materials the plastic strain e is simply proportional to the tensile 

stress a raised to some power

Ep/eo =  a  (a /a o )n ( 1 3 )

Using J2 deformation theory with <Ie2=3/2  Sjj Sy
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n  ^

8 j j / £ 0 =  [3 /2  a  ( o e / a o )  " ( S j j /C o ) ] (14)

The method of solution employed by Hutchinson (8) used the 

minimum complementary energy theorem, under which of all the 

stress distributions which satisfy equilibrium and the stress 

boundary conditions, the correct distribution is the one which 

minimizes the complementary energy Uc over the volume v.

Uc= JJ eydcjy dv (1 5 )

V

In plane stress or plane strain the complementary energy can be 

written in terms of the stress as

Uc= J(1/3( 1+d) c e )^ + ( 1+2u/c) ak|<2+  (a/N+1) o@n +1 (16)
A

Equilibrium  is sa tis fied  by a non-d im ensiona l stress 

d istribution X, which in cylindrical co-ordinates satisfies the 

following relations.

o r =1/r (3£/3r) + 1/r2 (32Z /302) (17)

0 0 =(32S/3r2) (18)

a r0 = - d (1/r (3X/30)) / d r  (19)

On this basis a solution is sought in the vicinity of the crack 

which satisfies the equilibrium equations, and the local boundary
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conditions.

I ,  =  3E/30 =0 (0 = -k  , +rc) (2 0 )

The solution is assumed to take the form of an asymptotic 

expansion whose dominant term is

E = KrS E (0 ) (21)

With this form of solution the complementary energy can be 

evaluated and minimised by using the amplitude K and the exponent 

s. The solution is given by

s = (2n+1)/(n+1) (2 2 )

Hence the crack tip stress and strain field could be obtained in 

terms of J as

1/n+1
ay = Go [ J / a 8 0  Go In r] / jj(0 ) (23)

n/n+1
B y  =  ( g o  a/E) [ J / a 8 0  g o  In r] / j j ( 0 )  (24)

Where / jj(o) is a function of 0 and, In is a tabulated function of n 

(6,7). The J-integral thus characterises the crack tip stress and 

strain field and is not only a energy parameter but also a stress 

field parameter.
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4.3.1 Measurement of the J-lntearal

4.3.1.1 Form of Solution

Before introducing techniques for determining J, experimentally 

or numerically, it is appropriate to consider the non-dimensional 

form that the solution must adopt in a power law problem. If P is a 

load parameter, the solution to any power law problem necessarily 

has the property that the stress and strain are everywhere 

proportional to P and P n respectively.

oy a P

DnEjjOC P

Using the energetic definition of J , it can then seen that J has 

the units of the product of stress and strain per unit thickness and

is thus proportional to Pn + \ l t  can thus always be written in the 

non dimensional form

J / a ao £o a= (P/Po) n+1 h(n) (25)

Where h is a function of the strain hardening exponent n and a 

dimensionless group of geometry parameters. Contact with limit 

analysis can be made using the limit load (Po) of the perfectly 

plastic cracked body as a reference load.

It is appropriate to write J as the sum of an elastic and plastic 

term s

J= Je +Jp (26)
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For example for the centre cracked infinite panel Hutchinson (7) 

gives:

J = (1-u2) % a  a 2/E + a ao eoV(nTc) (V3 a/2 g o )  n+1 (27)

which is asymptotically correct for large and small stresses.

4.3.1.2 Energy Approach

The most straight forward experimental and numerical method 

for the evaluation of J derives from it's definition as the rate of 

change potential energy with crack length. For example, consider 

specimens containing cracks of incrementally different length a 

and a+Aa. The J-integral value for both nonlinear elastic and 

elastic-plastic conditions is given by

This can be interpreted graphically as the area between the 

load displacement curves and converted to absorbed energy per unit 

thickness as shown schematically in Fig (4.5)

Although this method is conceptually easy, it is very 

inconvenient, as it requires the use or analysis of two specimens. 

The use of J as a practical fracture -mechanics criterion required

A

(28)

J = (Ur U2) /  (a i-a2 ) B (29)
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the ability to measure J from one specimen.

The first development in this process was made by Rice et al (9) 

for deeply cracked specimens in which the uncracked ligament is 

the only relevant length dimension.

If the load point rotation for an uncracked specimen is denoted 

by onc and that of the cracked specimen is 0 cr, the total rotation is 

given by:

By taking the length L to be large compared to the width W, 0 cr 

takes the form.

Here f is dimensionless function which independent of (W-a)/W. 

For a sufficiently deep crack (w -a )/w « 1 . For linear elastic 

deformation the rotation under a moment M per unit thickness is 

given by:

For full plasticity, deformation is confined to the uncracked 

ligament (w-a). and the general expression for J is

0 Cr = f I(M/cy0 (w -a)2)» (w-a)/a, a 0/E, n] (31)

0 cr = 16M/E(w-a) 2
(32)

M

(33)
0
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[30cr/3a] = -[30cr/3(w-a)] = 2 f1, [M/a0(w -a)3]- f2> 1 / w 

M M
(34)

Where the commas denote the partial-derivatives and

3o/3a = 30cr/3a

[30cr/3M] = f 1, (1/a0(w -a)2 ) (35)

So that equation (34) can be rewritten as

[30cr/3a] = -[30cr/3M] 2 M/(w-a)]-f2>1 / w (36)
M a

Substitution of equ (36) into equ (33) and noting that (30cr/3M) 

dM=d0cr

M M

J= 2 /(w -a )jM 3 0 cr- 1/(w-a) J f2, dM (37)
0 0

For the deeply cracked specimens J takes the following form

M

J= 2/(w-a)J*M30cr (38)
0

This has the geometric interpretation of 2/(w-a) time the area 

under a plot of M vs 0 cr

J= 2Um/B(w-a) (39)
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By using the area under the load vs displacement relation equ 

(39) can be written as

J= 2U/B(w-a) (40)

Where U is the total area under the load-displacement curve, B 

is the specimen thickness and (w-a) is the ligament. As pointed 

out by Rice (9), the J-integral for center cracked panel takes the 

form

J = G+ [(2 Up- p 5p)][(w-2a) B] ' 1 (41)

where P is the load and 8p is the displacement due to plastic 

deformation for all (2a/w).

Sumpter and Turner (10) pointed out that the above equation can 

be applied to any test piece geometry for which elastic stress 

intensity and plastic limit load solution are available. By splitting 

the total energy (UG) into elastic components Ue and plastic 

components Up, J can be expressed in the form

j = je + j p
Je = r ie u e / (w-a) B (42)

JP = rip Up / (w-a) B

J= r je Ue / (w-a) B + Tip Up / (w-a) B

Where T|e )Tipare geometry dependent dimensionless constants 

given by Turner (11). Sumpter (12) has recommended the use of a
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sim ilar formula based on clip guage displacem ent for J- 

determination in three point bending specimens for all (a/w).

J = {[K j2 / E']+[ i i p Uv / (w-a) B ] [ 0.25 S/ a + r(w-a)]} (43)

Where K is the the stress intensity factor calculated from the 

load.

S is the specimen loading span S = 4w .

U vp is the plastic component of the area under the load versus

clip gauge displacement . 

r is a constant

r=0.4 for a/w>0.3

r= 0.3 +0.5 a/w for a/w<0.3

rip is constant

r ip = 2  for a/w>0.283

rjp= 0.32- 11.2(a/w) -49(a/w)2 + 99 .8(a /w )3 for a/w< 0.283

4.3.1.3 E.P.R.I. Method

The approach developed by E.P.R.I. is designed to permit fracture 

fracture evaluations of flawed structures to be carried out by 

personal who are not specialists in fracture mechanics or inelastic 

analysis. The evaluation does not require any further finite 

element analysis, rather only desk top calculation and simple 

graphical procedures using the Ramberg-Osgood power hardening 

relation in equation (5). Elastic-plastic solutions are obtained by 

combining elastic and fully plastic terms, with a plastica lly 

adjusted crack length (ae).
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J = Je (ae) + JP(ae , N) (44)

ae = a + <|> ry 4̂ 5 ^

Where

ry = ( M M  [N-1/N+1] [K ,/c 0) (46)

*  -  1/[ p+( p/p0)2 ] (47)

For plane stress p =2 and for plane strain p =6 . LEFM provides a 

solution for the stress intensity factor, which can be converted to 

the J-integral through the relation

J8= [K2 / E" ] (48)

To provide a smooth interpolation between elastic and elastic 

plastic terms using the crack length (ae) suggested by Irwin (13).

J e solutions are available from elastic hand books, in which the

data are generally tabulated in the following form Kumar et al (14)

J®= [ f(ae ) P2/ E' ] (49)

For the case of a single edge cracked bar of length L under three 

point bending

f(a e)= 9 % ae (L/2)2 F2 1 w4 (50)

where F is a tabulated dimensionless function (14). JP> which

is the full plastic contribution, is written as:
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JP = a a0 e0 a [p/p0] n+1 f(a/b, n) (51)

Here P0 is a reference load per unit thickness defined as :

P0 = /  (w-a) g0/(L/2) (52)

/  is a dimensionless function, whose value depend on whether 

plane stress or plane strain applies. Substituting in equation (44) 

and (49) and the estimation formula equation (53), one gets the 

following expression.

J = [ f(ae) p2/ E- ] + [a 00 eo a [p/po] N+1 f(a/b, N)] (53)

where the function for a range of standard geometries are 

available in the EPRI hand book (14).

4.4. Crack Opening Displacement

Wells (4) noticed that the tip of a slot crack subject to plastic 

deformation opened giving a definite tip opening called the crack 

tip opening displacement (C.T.O.D). Wells (4) proposed that the 

C.T.O.D characterized crack tip deformation and fracture would 

occur at a critical value of this parameter. This proposal was 

pursued experimentally and theoretically by Burdekin and Stone 

(15). who provided the basis for the practical application of the 

C.T.O.D concept, using Dugdales' strip yield model (16). The crack 

tip opening displacement is related to the stress intensity factor 

for LEFM, and plane strain conditions by:
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5 = m K2/ E oo (54)

Alternatively in terms of the potential energy release rate G

8 = m G / ao (55)

Where m is a constant. In elastic-plastic conditions the Dugdale

strip yield model gives the crack opening as:

8 = (8 a0 a/rca) In sec (n a/2 aQ) (56)

Where a is the remotely applied tensile stress. In LEFM (a/o0« 1 )  

recovers the LEFM identify

J = G =K2/ E" (57)

The relation between J and CTOD can be written in the form

8 = m J/ao (58)

Here m depends both on the hardening rate, the extent of 

plasticity, and for fully plastic situations the nature of loading. 

The range of m values reported in the literature is summarised in 

Table (1)

Using the Hutchinson-Rice-Rosengren (HRR) singularity the 

relation between J and 8 can be derived for the elastic-plastic 

conditions. The separation between the opened cracked faces
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according to the HRR field will be denoted by (8).

n /n+1 1 /n+1
5= a eo [ J / a So co In ] r 2v"y(n) (5 9 )

The relative displacement of the faces of the crack tip in the x 

direction ux is given as:

n /n+1 1 /n+1
ux =a eo [ J / a So ao In ] r u"x (n) (60)

v -y(n), u "x (n )a re  a function of the displacement in y and x

direction respectively given by Hutchinson (25). As shown in Fig
0

(4.6) St is the opening at the intercepts of the two 45 lines drawn 

back from the tip of the deformation profile where

r-u x = 8/2  (61)

Rice(20) and Tracey (24) used this definition of St which can be 

used for both hardening and non-hardening materials In general the 

crack tip opening can be expressed in terms of J by an expression 

of the form (Dawes (23))

St =dn (J/cto) (62 )

Values of dn, which are dependent on n and ao/E, are given in 

tabulated form by Hutchinson (25) and Shih (26)
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4.5 Elastic Plastic Fracture Mechanics Size Requirement

McClintock (27) has observed that the fully plastic slip-line 

field solution for a cracked bar subjected to bending, and the 

center-cracked panel subjected to tensile loading are radically 

different in the limit of a non hardening material. In the fully 

plastic state there is no unique stress and strain in the crack tip 

region. Rice (28) pointed out in his solution of the anti-plane shear 

problem that the e lastic-p lastic size requirement w ill be a 

function of the extent of plastic deformation, and the strain 

hardening rate.

From these observations it is clear that valid elastic-plastic 

fracture mechanics must be subject to a size requirement in the 

same manner as LEFM. This means that a one parameter singularity 

characterisation of the crack tip field by J or 8 is dependent on a 

geometric criterion. As a minimum requirement the dimensions 

must be large enough to fully encompass the fracture process zone, 

which exceeds some m ultiple of 8 . According to these 

considerations the e lastic-p lastic  size requirem ent may be 

expressed in the form:

.(w-a) >  M i (ec,n) J(c/<j0 (63)

or equivalently

(w-a) >  M 2 (e0,n) 5C (64)

To ensure plane strain condition in the process zone, Paris (29) 

has suggested a value of M ranging from 25 to 50. Using large 

deformation plane strain finite element methods McMeeking and 

Parks (30) have studied the deeply cracked center-crack panel
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(CCP) and single edge cracked bend bar (CBB), using a power law

hardening constitutive law. They compared the full plastic field

with that of small scale yielding obtained in earlier finite element 

analyses by McMeeking (31), For the CBB specimen they found that 

the stress and strain distribution ahead of the crack at J values as 

large as ao(W-a)/25, were virtually identical to the standard field 

within a region of 2 to 5 blunted openings. In conclusion they 

suggest the minimum size requirement to be

(W-a) >  (25 to 50) Jc/oo (65)

For the CCP geometry, even with a moderate amount of strain 

hardening their results shown that a more stringent size 

requirement is necessary for elastic-p lastic toughness test to 

ensure a sensible J characterization of the crack tip region. They 

suggest a value of M equal to 200 in equation (2) so that in tension 

the size requirement becomes

(W-a) >  200 Jc/cjo ( 6 6 )

This means that for the CCP geometries, the size requirement 

for valid elastic-plastic fracture toughness parameter, is almost 

as severe restriction as those of LEFM

Shih and German (32) carried out a plane strain finite element 

study of CBB, SECP and CCP specimens, in order to compare their 

results with the HRR field, employing a small strain formulation, 

with the assumption that the finite deformation at the crack tip
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region does not invalidate the small strain theory. McMeeking's 

analysis (31) suggests that the effect of finite deformation is 

important over distances of order 2 to 3 times the crack opening 

displacement ahead of the crack tip. Shih and Germans' results 

(32) show that under well-contained plasticity or small scale 

yielding, the HRR field is achieved over distances ranging from 2 to 

6 8 for different geometries. These results are consistent with the 

size requirement, which is independent of specimen type for small 

scale yielding. Under large scale yielding the dominance of the HRR 

singularity is shown to be quite dependent on the hardening rate 

and the specimen type. For the case of a single edge cracked bar 

subject to remote bending, their results show that the stresses 

and stra ins fie lds remain essentia lly  s im ilar to the HRR 

singularity at all levels of plastic deformation. In conclusion Shih 

and German suggest that the current size requirement (that the 

ligament must exceed 25 to 50 J/go) (27) will be sufficient to 

ensure J dominance in the crack tip region for CBB or similar 

specimens subject to bending, for law strain hardening and perfect 

plastic materials. For the CCP they draw a similar conclusion, that

((W-a) go/J) has to be >  200 to ensure J dominance of the crack tip 

region.

Shih (33) has also carried out solutions for a semi-infinite 

crack aligned perpendicular to free edge of a semi-infinite half 

space, where the ligament is subject to arbitrary combinations of 

tension and bending. The finite element solution was compared 

with HRR singularity fields. These comparisons show that the size 

requirement for J dominance is strongly dependent on the relative 

amount of bending to tension. For the case of pure bending the zone
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of J-dominance was shown to be a significant function of the 

ligament and does not depend on the hardening behaviour, whereas 

for pure tension the zone of J dominance is substantially smaller 

and depends strongly on the hardening characteristics

Finally Shih drew the conclusion that the zone of J-dominance 

depends very strongly on the type of loading and less strongly on 

the hardening behaviour. The results show that the moment about 

the ligament greatly elevates stress triaxiality in the crack tip 

regions, therefore increasing the zone of J-dominance. In his 

solution Shih suggests that the centre-crack tensile configuration 

studied by McMeeking (30,31) and the configuration of the pure 

tensile load should be considered as a special cases, because these 

particular configuration do not permit any rotation about the 

ligament.

For the edge cracked tensile configuration with crack of 

sufficient depth, in which a positive moment about the ligament is 

induced and accompanied by a rotation, the results show that the 

J-dominance size is substantially larger than that suggested by 

McMeeking (30,31).

Three dimensional non linear finite element analyses have also 

been carried by Parks and Wang (34). They analysed a wide plate 

which was contained a semi-elliptical surface crack under remote 

uniaxial tension. In order to measure the effect of parameters 

such as the load level, amount of strain hardening and the aspect 

ratio, on the size requirements for J-dominance, they compared 

the ir result with the asymptotic singular fie ld (HRR). By 

considering the stress component oyy ahead of the crack where 0 =0
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their results show that for the lower load the local stress profile 

is slightly beneath the smale scale yielding result, which in turn 

falls below the HRR field, and for the higher load the local stresses 

diverged rapidly from the HRR field. The result for the lower load 

for angles 0=0,30,45, showed nearly identical degree of one 

parameter (J) characterisation of the ir local stresses field, 

although the trend of decreasing of dominance with decreasing 0 

still existed.

In conclusion Parks and Wang (35) pointed out that the semi

circular crack geometry is more resistant to abrupt loss of HRR 

dominance in the fully plastic region than the semi-elliptical crack 

configuration, and at the highest applied stress the divergence 

from the J dominance is accelerated in a low hardening material.

93



4.6 References:

1. Cherepanov, G. P.,J Appl Math Mech., Vol 31, pp 503, (1967)

2 . Eshelby, J. D., "Stress Analysis of Cracks , ISI publication, Vol 

(121), pp13-48, (1968)

3. Rice, J. R., J Appl Mech, Vol 35 pp 379-386, (1968).

4. Wells, A. A., In Proceedings Crack Propagation Symposium, 

Cranfield, England, Vol 1 paper B4 , (1961).

5. Turner,C.E.,and Sumpter., J.D.G, Int J Fracture, Vol 12, pp 816- 

871 (1976).

6 . Rice,J. R., and Rosengren, G. F., J Mech Phys Slds, Vol 16, pp 1, 

(1968).

7. Hutchinson, J.W., J Mech Phys Slds, Vol 16, P13-31, (1968).

8 . Hutchinson, J. W., J of Appl Mech, pp 1042-1051, (1983)

9. Rice, J. R., Paris, D. C. and J. G. Merkle., ASTM STP 559, pp 139- 

158, (1974)

10. Sumpter, J. D. G. and Turner C. E., " Method for Laboratory 

Determination of Jc" ASTM Special Technical Publication STP 601, 

pp. 3-18, (1976)

11. Turner C. E., "Post yield fracture mechanics" ed. D.G.H Latzko , 

Applied Science Publishers, London, (1979).

12 . Sumpter, J. D. G. "Jc Determination for Shallow Notch Bend 

Specimens, Admiralty Research Establishment. (I987).

13. Irwin, G. R., Plastic zone near a crack and fracture toughness 

Proc 7th Sagamore conf., pp IV-63, (1969)

14. Kumar, V. German, M. D., and Shih, C. F. , An Engineering approach 

to Elastic-Plastic Fracture Analysis, Report No .EPRI Np-1931, 

July, (1981), General Electric Co, Schenectady

15. Burdekin, F.M and Stone, D.W , J of Strain analysis, Vol 1,

94



pp144, (1966) .

16. Dugdale, D.S., Yielding of Steel Sheet Containing Slits, J Mech 

Phys Slds., Vol 8 (1960)

17. Rice, J. R., J Appl Mech Trans ASME, Vol. 35, pp 191. (1968).

18. Rice, J. R. and Johnson, M. A., In Inelastic Behaviour of Solids, 

ed. Kanninen et al, McGraw Hill, New York, pp 641, (1970).

19. Shih, C. F., General Electric Company, Technical Information 

Series Report, TIS No. 79CRD075, (1979).

20. Rice J R Proc 3rd Int Conf Fracture, Mech, p 1441, (1973).

21. Tracey, D. M., Trans. ASME, J Eng Material and Technol., Vol. 98, 

p 146, (1976).

22. Robinson J. N. and Tetelman, A. S., ASTM STP 599, pp. 139-158, 

(1974).

23. Dawes M.G , ASTM STP 668 , pp 307-331, (1971)

24. Tracey, D. M. J Eng Mat and Tech, Vol 98, PP 146, (1976)

25. Hutchinson, J. w., J. Mech Phys Slds Vol 26, pp 163, (1978).

26. Shih C. F..' The Relationship Between Initation and Growth 

Parameters Based on the J-in tegra l and Crack Opening 

Displacement, Oct ,(1978)

27. McClintock, F.A., An Advanced Treatise, H. Leibowitz. Ed Vol 3, 

Acedemic Press, New York, pp71-225 (1975)

28. Rice, J. R., J of Appl Mech, Vol 34, pp 287-298, (1967) ASME Vol 

19, pp23-53 (1976)

29. Paris, P.C., ASTM STP 514 , pp 210-220 (1972)

30.McMeeking, R. M. and Parks, D. M. " Elastic-Plastic Fracture 

Mechanics" ASTM STP 668 , pp 175-191, (1979).

31. McMeeking, R. M., J Mech Phys Slds,. Vol 25, pp 375-381, (1977).

95



32. Shih, C. F. and German, M. D., Int J of Fracture, Vol 29, pp 73-83, 

(1981)

33. Shih, C. F.,lnt J Fracture, Vol 12, (1985).

34. Parks, D. M. and Wang Y.Y. "Elastic-Plastic Analysis of Part 

Through Surface Crack " To appear in ASME Symp (1988)

96



ttttt ttttt
B

ttttt u r n
D

i 1 0----- 0 j>— i

TTtTT TTTTT TVfYf M
High Strength High Strength
Material In Material In
Plane strain Plane strain

I LEFM  I

More Ductile Ductile M aterial
Material In Plane With Spread of 
Stress or Plane P las tic ity  
Strain

EPFM I

PLASTIC

Fig (4.1)

Ranges of applicability of LEFM and EPFM

Ductile Material 
Full Plastic

COLLAPSE

9 7



77777

Fig (4.2)

Convention for a cracked body in fnode I



All

-►J Aa M — Aa
A V

J J (W d y  -(F- - ^ - ) ds ) 
r

Fig (4.3)

Crack tip coordinate system and arbitrary line integral.

99



f tfi t

I I t t

Fig (4.4)

►  ©o

Infinitely long cracked strip with clamped boundaries subject to 

constant vertical displacement.

100



Aa

JBAa

A

Fig (4.5)

Interpretation of the J-lntegrai 

101



5/2
r -u x

Fig (4.6)

The crack opening displacement defined as the opening at the 

intercept of two 45° lines from the crack tip

1 0 2



m= S / ( j /  c o  )

Rice (17) Non-hardening material 
based on estimates for 
velocities on slip lines 

near crack tip

0.67

Rice and Johnson 
(18)

Non-hardening limit of 
HRR singularity

0.79

Shih (19) Finite element analysis 
using HRR singularity

0.63

Rice (20) Using hardening material 0.55

Tracey (21) Finit element analysis for 
small scale yielding

0.54(1+n)

Robinson and 
Tetelman (22)

Experimental result using 
standard ASTM specimen

1.0

Table (1)

103



Chapter (5)

J DOMINANCE OF SHORT CRACKS 

THE RESULTS OF EPFM CALCULATIONS

5.1 Introduction

In engineering components, crack initiation usually begins with 

small surface defects which are produced at stress concentrations 

under load levels that cause local plasticity (2,3,4,5). During the 

early stages of crack growth the cracks show fatigue growth rates 

much in excess of that expected on the basis of the elastic stress 

intensity factor. However for larger cracks linear elastic fracture 

mechanics has long been a potent tool in the analysis of the 

engineering components containing defects.

Most of the work published during the last 10 years has been 

concerned with deep cracks under fatigue and monotonic loading, or 

with the fatigue behaviour of shallow cracks. Unfortunately many 

brittle fractures start at shallow cracks, when it is not possible 

to make direct measurements of the fracture toughness by using 

the existing BSI (6 ) and ASTM (7) or other fracture mechanics 

standard tests methods.

Wang Tzu Chang (1) pointed out that short cracks are 

fundamentally different from deep cracks, because the net section 

stresses are so high that the crack tip plastic zone is so large that 

LEFM parameters do not characterise the elastic-plastic stress 

field a head of the crack with sufficient accuracy. Alternatively 

the crack itself may be so small that LEFM parameters can not 

quantify the fracture process zone at the crack tip

104



Short cracks are of interest to alloy designers because they 

represent a key to improving material properties. They are 

interest to the scientist because they can not be analysed by valid 

linear elastic fracture mechanics. But perhaps most importantly, 

they are of concern to the engineer as LEFM prediction of the 

growth rate, the calculated inspection interval and possibly the 

critical crack size may be non conservative.

In the work presented in this thesis, e lastic-p lastic finite 

element analysis has been used to study the stress and strain 

distribution ahead of short cracks in single edge cracked bend and 

tensile specimens using both small and large geometry change 

solutions. With the object of determining the conditions under 

which single parameter characterisation of the elastic plastic 

deformation ahead of the short cracks can be achieved by the J 

contour integral and the crack opening displacement.

5.2.Numerical Analysis and Finite Element Models

Four edge cracked bars have been analysed, with (a/W) ratios of 

0.1, 0.2, 0.3, and 0.5 ,where a is the crack length and W is the width 

of the specimen as shown in Fig.(5.1). The models were meshed 

with eight noded plane strain isoparametric elements provided by 

the finite element code ABAQUS (10) as illustrated in Fig.(5.2 ). 

The details of each model are given in Table (5.1). The models 

were force loaded on the remote boundary by either a pure couple, 

or by a uniform tensile stress. The crack tip was modelled in two 

distinct ways. For the small geometry change solutions a focused 

mesh with initially coincident,but independent crack tip nodes was 

used as shown in Fig (5.3a. In contrast the large geometry change
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solutions utilised a tip with a small but finite radius as described 

by McMeeking (8), and illustrated in Fig (5.3b). Typically the tip 

elements had dimensions of the order of S0 /4, while the initial 

opening 50 was approximately (a/100)

The material response was represented by a Ramberg-Osgood 

power law of the form

•£ - =  -s - +  a ( - 2 - ) n (1)
e „ aO o  o

For the small geometry change solutions the material constants 

a and n were set at 3/7, and 13 respectively. In contrast the large 

geometry change calculations were performed with a uniaxial 

stress strain relation of the form

( J L )  1/m - ( - 2.) (2)

% % eo

with a strain hardening exponent m =0.1 which allows contact to 

be made with the deeply cracked solutions of McMeeking (8 ) and 

McMeeking and Parks (9). The two uniaxial stress strain relations 

of equations (1) and (2) are shown in Fig (5.4) and can be seen to be 

similar. These uniaxial stress strain relations are generalised into 

J 2 deformation theory to give an incremental relation of the form
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de (1 -x)) da., v da,, 5.
11 '  '  i i  1 /1 /  ikk iiI (3)

e a
o 0 0

The J-integral was determined by the virtual crack extension 

method of Parks(11) as implemented in ABAQUS(10) using 

sufficient contours to ensure path independence.

5.3 Small Scale Yielding Solutions

The small scale yielding plane strain solution was obtained 

from a finite element calculation for an elastic-plastic material 

with the small geometry change formulation. The finite element 

model had 144 8-noded isoparametric elements and 471 nodes. 

Twelve rings of 12 elements comprised the upper half of the crack 

from 0=0  to 0 =7i.  The displacement field corresponaing to the 

singular elastic field was imposed as the boundary condition at a 

distance remote from the tip. The calculated stress field is 

compared with the HRR singularity field Fig (5.5), calculated using 

the tabulated constants given by Hutchinson (12), although a more 

complete tabulation of HRR constants has been given by Shih (13).

One interesting result for the small scale yielding field as 

compared to the HRR field is shown in Fig (5.5) in which the 

calculated stress field obtained from the small scale yielding 

solution falls below the HRR solution., although a sim ilar result 

has been found by Parks et al (22)
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5.4 Stress and Strain Fields

5.4.1 Small Geometry Change Solutions

In order to study the stress distribution ahead of short cracks, 

the stress fields ahead of crack with (a/W) ratios 0.1 , 0.2, 0.3, 0.5 

are shown in Figs (5.6) through (5.12), where they are compared 

with the SSY field. The stresses are non dimensionalised by the 

yield stress a0, while the original distance x of a point ahead of the 

crack is non-dimensionalised by (J/ao). For small values of (x ao/J) 

corresponding to small scale yielding conditions and contained 

plasticity the results for all the geometries with (a/w) > 0.3 tend 

to converge on the SSY curve. For cracks with (a/W) = 0.1 Fig (5.6 

and 5.10) the smallest value of (aao/J) was 312 which corresponds 

to more plasticity than the LEFM limit, and a plastic zone size of 

order the crack length. The stress at this level of plasticity falls 

somewhat below the SSY solution. It was d ifficu lt to obtain 

solution for aao/J greater than 300 because of the extreme mesh 

refinement needed in this geometry. It can however be noted from 

Fig (5.13 a) that under conditions where the plastic zone size is of 

the order of the crack length (contained plasticity), outside the 

plastic zone and straight ahead of the crack the finite element 

solution converges towards the K field as the elastic plastic 

boundary is approached. Inside the plastic zone the SSY and HRR 

fields becomes similar to the stress field at a value of (aao/J) 

equal to 312. After plasticity has broken back to the cracked face 

Fig (5.13b) the stress field ahead of the crack diverges from the K 

field, and the SSY and the HRR field fail to describe the stress 

ahead of the crack tip inside the plastic zone. In these conditions J
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no longer characterises the crack tip deformation.

For the crack with (a/w) =0.2 under small scale yielding 

conditions when the plastic zone is small compared with all 

relevant dimensions and (aoo/J) equals 1200 (which is the limit of 

valid LEFM) the stress were close to, but slightly less than the SSY 

solution. Increasing deformation shows that the stresses continue 

to fall below the SSY value and the HRR field until at large values 

of (x ao/J) corresponding to extensive plasticity the stresses 

converge to a fully plastic field which is geometry dependent. The 

development of the plastic zone for these two geometries are 

shown in Figs (5.14,5.15,5.16), from which it can be seen that 

plasticity extends to the back face of the specimen before the 

ligament becomes fully plastic. Fig (5.17) shows the stress field

along a plane inclined at 45° ahead of the crack under both

contained and large scale plasticity conditions. In both cases the 

stresses d o e s  ir i& t, agree  ̂ with the HRR field. In contrast 

the stresses ahead of the crack fall rapidly below the HRR field 

with increasing the plastic deformation.

The results for (a/W) = 0.5 are given in Fig (5.9), from which it 

can be seen that the stresses can be described by the SSY field at 

non-dimensionalised distances (x a 0/J) of the order of 2, even for 

extensive plasticity. The development of plasticity is confined to 

the ligament as illustrated in Fig (5.18) corresponding to the 

deeply cracked slip line field of Green (14).

5.4.2 Large Geometry Change Solutions

Large geometry change solutions have been used to investigate

the deformation within one or two crack tip openings of the
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blunting tip in the spirit of the work by McMeeking (8 ). In this case 

the original distance of a point x0 ahead of the tip are non- 

dimensionalised by the crack tip opening 8 which is defined by the 

convention introduced by Shih (13). Results are presented for three 

geometries (a/W) = 0.1 , 0.2 and 0.3 and these are compared with 

the calculations of McMeeking (8) and McMeeking and Parks (9) in 

Figs (5.19) through (5.24) for both tension and bending with strain 

hardening exponents m = 0.1 and 0 .2 . For the critical geometry 

defined by (a/W) = 0.3 the stresses ahead of the crack approach the 

small scale yielding solution over distances close to 28. However 

for the sub-critical geometries of (a/W) = 0.1 and 0.2 the stresses 

do not achieve the full values of the J dominated field but reach a 

maximum stress at distances of less than 8, although within this 

distance the fields are closely similar. The equivalent plastic 

strains ahead of the cracks are shown in Figs.(5 25a,5.25b) and are 

not dissimilar.

5.5 DISCUSSION

The reason for loss of J dominance for weakly hardening 

materials is most clearly seen by referring to the appropriate slip 

line field. The slip line field for a deeply cracked bar under 

bending given by Green (14) is shown in Fig (5.26). Here the 

deformation is confined to the uncracked ligament, and the field is 

thus independent of notch depth, and can be easily modified 

blunting by the inclusion of a log-spiral slip line field detail which 

extends to almost 28, giving a local stress field sim ilar to that 

calculated in small scale yielding by Rice et al (15). J dominance 

thus applies for extensive plasticity. However for shallow cracked
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bars, plasticity spreads to the surface of the bar on either side of 

the crack , in away that was proposed qualitatively by Green (14) 

and has been examined quantitatively by Ewing (16) using the 

extension to the deeply cracked slip line field indicated by the 

broken lines in Fig (5.26). Although Ewing did not explicitly 

consider cracked geometries the critical depth for plasticity to be 

confined to the ligament for a notch with an included angle of 3.21° 

is (a/W) = 0.3. The present finite element calculations for a 

weakly hardening material are consistent with these observations 

in that plasticity is confined to the uncracked ligament for (a/W = 

0.5), while for the critical geometry (a/W = 0.3) plasticity is 

confined to the ligament until the highest load levels studied when 

a small amount of yielding appears on the cracked face , remote 

from the crack. Both of these geometries thus essentially behave 

as deeply cracked bars, and the stress straight ahead of the crack 

in the small geometry change solutions is closely sim ilar to the 

HRR field, as shown in Figures (5.8) and (5.9), and this similarity is 

maintained as plasticity extends from small scale yielding into 

full plasticity of the uncracked ligament. For these geometries the 

size of the ligament is clearly the controlling dimension and the 

present results are consistent with the J dominance criteria of 

McMeeking and Parks(9) and Shih and German (17)

In contrast the sub-critical crack geometries of (a/W) = 0.1 and 

0.2  shown in Figures (5.6,5.7,5.11,5.12) show that even under 

contained yielding conditions the stresses ahead of the crack fall 

below the small scale yielding values determined from the 

boundary layer solution until they approach another lim iting
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distribution which is geometry dependent in both tension and 

bending. Even for the valid LEFM result obtained for a/W=0.2 and 

aao/J =1200 the stress falls slightly below the SSY value and may 

be necessary to conclude that the solution for the state of stress 

at the crack tip can not be characterised by the stress intensity 

factor K j alone, even at the load levels close to the ASTM-limit 

(20 ).

In order to obtain a good agreement between the boundary layer 

formulation and a full geometry solution Larsson et al (20) found it 

necessary to modify the boundary layer solution. This modification 

consists of an addition to the boundary traction of the boundary 

layer problem of traction corresponding to the non-singular terms 

of the X direction stress of the actual geometry. The magnitude of 

this stress can be found from the elastic finite element solution 

for the geometry and called the T stress. (Rice (23))

The limiting fields for bending are shown in Figure (5.27) from 

which it is clear that the four geometries exhibit a consistent 

trend. This trend is also clearly seen in the large geometry change 

results illustrated in Figure (5.28). Deeply cracked geometries are 

represented by McMeeking's small scale yielding solution (8) and 

the loss of J dominance with crack length is clear.

Criteria for loss of J dominance are somewhat subjective, 

nevertheless it is clear that there is a marked loss of J dominance 

with crack length which is consistent with the criterion that the 

crack length should be greater than 200J/aQ for (a/W < 0.3 ) in both 

bending and tension while for more deeply cracked geometries the 

criteria proposed by McMeeking and Parks(9) and Shih and German 

(17) applies. The loss of single parameter characterisation is

1 12



shown in both tension and bending, being most marked for the 

shortest crack (a/W) = 0.1

Experimental data on cracks with ratios a/W=0.1 and 0.3 have 

been given by Sumpter (18) who has given the value of {2 go 8 E/1 - 

u 2} which he defined as Kg in both valid and non valid LEFM 

condition. Kg was found to be geometry dependent at 0 °c, but 

experimental the results converged with decreasing temperature,

until at (-100 °c) the Kg became geometry independent and equal to
3/2

100 MN/m This data has been re-analysed in terms of J in Fig 

(5.29). The J integral is calculated using the form

8 = d(a eo,n) J/oo (67)

Where d(a so,n) is geometry independent function and equal to

0.7 for N=13 and eo =0.002. The CTOD was calculated from relation
2

used by Sumpter with E=207 MN/m and a temperature dependent
2

value of yield stress g o , which was taken as 216 MN/m at room

tem perature

5 = K2 (1-d2 )/ 2cjo E (6 8 )

At low temperatures J for both a/W=01 and a/W=0.3 coincide at 

temperature of approximately (-100 °c) when (a oo/J=200) which 

is in a good agreement with finite element results obtained in the 

present work.
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5.6 C onclus ion

In the present calculations in which the stresses ahead of the 

crack with aspect ratios (a/W )=0.1,0.2,0.3 and 0.5 have been 

compared with the HRR field and the SSY solutions. The critical 

crack depth for plasticity to be confined to the ligament is close to

0.3 for both tension and bending. Both small geometry change 

solutions with sharp cracks and large geometry change solution 

with blunting cracks have been examined. The results of the small 

geometry change solution were compared with HRR field and the 

SSY solution. Edge cracked bars with the (a/W) ratios less than 0.3 

are shown to lose J dominance for crack length less than 200 J/ao 

in both tension and bending. However for the geometries with 

ratios (a/W) >0.3 in which plastic ity developed through the 

ligament without spreading to the back face maintain J dominance 

up to criteria given by McMeeking and McMeeking and Parks (8,9).

The results of the large geometry change solution were 

compared with the small scale yie ld ing solution given by 

McMeeking (8). For the critical geometry defined by (a/W) = 0.3 the 

stresses ahead of the crack approach the small scale yielding 

solution over distances close to 28. However for the sub-critical 

geometries of (a/W) = 0.1 and 0.2 the stresses do not achieve the 

full values of the J dominated field but reach a maximum stress at 

distances of less than 8, although within this distance the fields 

are closely similar. For the critical geometry (a/W=0.3) plasticity 

confined to the ligament and the stress field ahead of the crack 

approaches that given by McMeeking (8 ). Both the small and large 

geometry change solution are thus consistent with proposal that J
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dominance is lost for crack length less than (200J/co) in tension

and bending for (a/W <  0.3). For the (a/W>0.3 ) the edge crack bars 

behave as deeply cracked geometries and follow the criteria 

described by McMeeking and McMeeking and Parks (8,9) and Shih and 

German (17)

In the present small scale yielding solution the non singular 

terms have been neglected, and only the dominant singular term 

was retained. However as suggested by previous numerical 

investigation on the effect of the non singular terms on the elastic 

- plastic fields in the vicinity of a crack tip (19,20,21), the 

elastic-plastic field in the vicinity of a crack may be better 

characterised using singular and non singular terms.

Further work will investigate the effect of the non singular 

terms on a one parameter characterisation of the elastically 

contained plastic field ahead of short cracks in tension and 

bending.

115



5.7 REFERENCES

1. Wang Tzu Chiang and Miller K.J., Fatigue of Eng Mat and Structure 

Vol 5, pp 249-263, (1982)

2. Dowling N. E. and Begley, J. A., ASTM STP 590, pp82-130, (1976)

3. Haddad, M. H. , Dowling, N. E. Topper, T. H. and Smith, K. N., Int J of 

Fracture, Vol 16, pp 15-30, (1980)

4. Miller K.J.,Fatigue of Eng Mat and Structure Vol 4, pp 223-232, 

(1982)

5. Miller K. J and Ibrahim M. F. E., Fatigue of Eng Mat and Structure 

Vol 4, pp 263-277, (1981)

6 . ASTM, Standard, E 394-78. A Standard Test Method of Plane 

Strain Fracture Toughness of Metallic Materials., ASTM, Standards, 

Part 10, pp 540-561, (1979).

7. British Standard 5447 !A Method for Test for Plane Strain 

Fracture Toughness Testing of Metallic Materials' . The British 

Standards Instution.

8 . McMeeking, R. M. and Parks, D. M. " Elastic-Plastic Fracture 

Mechanics" ASTM STP 668 , pp 175-191, (1979).

9. McMeeking, R. M., J. Mech. Phys. Solids. Vol 25, ppP 375-381, 

(1977).

10. Hibbitt, Karlsson and So rensen , ABAQUS Users Manual, (1984).

11. Parks, D. M., J of Fracture , Vol 10, pp 487-496, (1974)

12 . Hutchinson, J. W., J. Mech. Phys. Solids. Vol 16, pp 13-31, 

(1968).

13. Shih, C. F. "Tables of Hutchinson-Rice-Ronengren Singular Field 

Quantities " Brown University Report, MRL E-147

14. Green, A. P. Q. J Mech Appl Maths. Vol 6 pp 223, (1953).

15. Rice, J. R. and Johnson., M. A., Inelastic Behaviour of Soild., ed

116



Kanninen et al, McGraw Hill New York, pp 641, (1970).

16. Ewing, D. J., J Mech Phys Solids. Vol 16, pp 305-213, (1968).

17. Shih, C. F. and German, M. D., Int J of Fracture, Vol 17, pp 27-43, 

1981

18. Sumpter J. D. G , Int J Press Ves and Piping Vol 10, pp169-180 

(1982)

19. Kfouri, A.P., Int J of Fracture, Vol 30, pp 301-315, (1986)

20. Larsson, S.G. and Carlsson, A.J., J Mech Phys solids, Vol 21, pp 

263-277, (1973)

21. Leevers, P.S. and Radon, J.C., Int J of Fracture, Vol 19, pp 311- 

325, (1982)

22. Parks, D. M. and Wang Y.Y. "Elastic-Plastic Analysis of Part 

Through Surface Crack " To appear in ASME Symp July (1988)

23. Rice J. R. J Mech Phys Solids. Vol 16, pp 305-213, (1968).

117



w -a

L=3 w

Fig (5.1)

The notation of the edge cracked bar
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Fig (5.2)

The overall mesh geometry for (a/W = 0.1 0.2, 0.3, 0.5 )
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Fig (5.3a)

A focussed mesh at a sharp crack tip.

Fig (5.3b)

A blunt crack with a small initial radius
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Fig (5.4)

Uniaxial stress- strain relations
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Fig (5.5)

The comprasion between the SSY solution and the HRR fields.
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Fig (5.6)

The stress field ahead of a sub-critica l crack in bending

(a/W=0.1, n = 13)
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Fig (5.7)

The stress field ahead of a sub-critica l crack in bending 

(a/W=0.2, n = 13)
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Fig (5.8)

The stress field ahead of a sub-critical crack in bending

(a/W=0.3, n = 13)
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Fig (5.9)

The stress field ahead of a sub-critical crack in bending

(a/W=0.5, n = 13)

1 2 6



6

tfyy

do

N=13, a/w = 0.1 

□ a /(J /c fo ) =350
□ a/(J/<?0) = 178
«a/(J/<J0)= 145 
■ a/(J/<Jo) = 31

5

4
SSY

3

2

1

TENSIONo

8 106420

X / ( J / do)

Fig (5.10)

The stress field ahead of a sub-critica l crack in tension

(a/W«0.1, n = 13)
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Fig (5.11)

The stress field ahead of a sub-critica l crack in tension

(a/W=0.2, n = 13)
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Fig (5.12)

The stress field ahead of a sub-critica l crack in

(a/W=0.3, n = 13)

tension
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Fig (5.13a)

The stress ahead of the crack tip in side and out side the plastic 

compared with HRR solution and K field respectively at the 

small scale yielding condition
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Fig (5.13b)

The stress ahead of the crack tip in side and out side the plastic 

compared with HRR solution and K field respectively at the large 

scale yieldin conditon
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Fig (5.14)
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Fig (5.17)

The stress field at 45° of sub-critical crack in bending 

(a/W=0.1, n=13)
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Fig. (5.19)

The stresses ahead of a blunting crack in bending (a/W = 0.1,

m=0.1)
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Fig (5.20)

The stresses ahead of a blunting crack in bending (a/W = 0.1,

m=0.2)
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Fig (5.21)

The stresses ahead of a blunting crack in bending (a/W = 0.2,

m=0.1)
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Fig (5.22)

The stresses ahead of a blunting crack in bending (a/W = 0.2,

m=0.2)

140



5

yy
<*o

4

McMeeking

3

2

BENDING
o

0 2 4 6 8 10
Xo

Fig (5.23)

The stresses ahead of a blunting crack in bending (a/W = 0.3,

m=0.1)
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Fig (5.24)

The stresses ahead of a blunting crack in tension (a/W = 0.1, 

m=0.1)
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Fig (5.25a)

The equivalent plastic strain ahead of blunting cracks in bending 

(a/W = 0 .1 , m-0.1)
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Fig. (5.25b)

The equivalent plastic strain ahead of blunting cracks in bending 

(a/W = 0.1, m=0.2)
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Fig (5.26)

The slip line field for the deep and shallow cracks following 

Green (14).
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Fig (5.27)

The limiting Field for the Small Geometry Change solution in 

Bending for (a/W= 0.1,0.2,0.3 and 0.5)
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Fig (5.28)

The limiting Field for the large Geometry Change solution in 

Bending for (a/W= 0.1,0.2 and 0.3)
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Fig (5.29)

The experimental result of the J-integral for deep and shallow cracks 
following Sumpter (18)


