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Abstract

Transmission Electron Tomography: Quality Assessment and

Enhancement for Three-Dimensional Imaging of Nanostructures.

Ala’ Al-Afeef

Nanotechnology has revolutionised humanity’s capability in building micro-
scopic systems by manipulating materials on a molecular and atomic scale. Nan-
osystems are becoming increasingly smaller and more complex from the chemical
perspective which increases the demand for microscopic characterisation tech-
niques. Among others, transmission electron microscopy (TEM) is an indispens-
able tool that is increasingly used to study the structures of nanosystems down
to the molecular and atomic scale. However, despite the effectivity of this tool, it
can only provide 2−dimensional projection (shadow) images of the 3D structure,
leaving the 3-dimensional information hidden which can lead to incomplete or
erroneous characterization. One very promising inspection method is Electron
Tomography (ET), which is rapidly becoming an important tool to explore the
3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions
of the sample under investigation. However, the fidelity of the ET tomogram that
is achieved by current ET reconstruction procedures remains a major challenge.
This thesis addresses the assessment and advancement of electron tomographic
methods to enable high-fidelity three-dimensional investigations.

A quality assessment investigation was conducted to provide a quality quanti-
tative analysis of the main established ET reconstruction algorithms and to study
the influence of the experimental conditions on the quality of the reconstructed
ET tomogram. Regular shaped nanoparticles were used as a ground−truth for
this study. It is concluded that the fidelity of the post-reconstruction quantitative
analysis and segmentation is limited, mainly by the fidelity of the reconstructed
ET tomogram. This motivates the development of an improved tomographic
reconstruction process.

In this thesis, a novel ET method was proposed, named dictionary learn-
ing electron tomography (DLET). DLET is based on the recent mathematical
theorem of compressed sensing (CS) which employs the sparsity of ET tomo-
grams to enable accurate reconstruction from undersampled (S)TEM tilt series.
DLET learns the sparsifying transform (dictionary) in an adaptive way and re-
constructs the tomogram simultaneously from highly undersampled tilt series.
In this method, the sparsity is applied on overlapping image patches favouring
local structures. Furthermore, the dictionary is adapted to the specific tomo-
gram instance, thereby favouring better sparsity and consequently higher quality
reconstructions. The reconstruction algorithm is based on an alternating pro-
cedure that learns the sparsifying dictionary and employs it to remove artifacts
and noise in one step, and then restores the tomogram data in the other step.



Simulation and real ET experiments of several morphologies are performed with
a variety of setups. Reconstruction results validate its efficiency in both noiseless
and noisy cases and show that it yields an improved reconstruction quality with
fast convergence. The proposed method enables the recovery of high-fidelity in-
formation without the need to worry about what sparsifying transform to select
or whether the images used strictly follow the pre-conditions of a certain trans-
form (e.g. strictly piecewise constant for Total Variation minimisation). This can
also avoid artifacts that can be introduced by specific sparsifying transforms (e.g.
the staircase artifacts the may result when using Total Variation minimisation).

Moreover, this thesis shows how reliable elementally sensitive tomography
using EELS is possible with the aid of both appropriate use of Dual electron en-
ergy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm
to make the best use of the limited data volume and signal to noise inherent
in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an
industrially important material.

Taken together, the results presented in this thesis demonstrates how high-
fidelity ET reconstructions can be achieved using a compressed sensing approach.
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“I think it’s much more interesting to live not knowing

than to have answers which might be wrong.”
Richard Feynman, 1981

1
Introduction

T
he key expertise for industrial utilisation of nanoscience is the ability

to control matter at the nanoscale which allows us to design and pro-

duce nanostructures and devices with advanced functionality and per-

formance. For instance, in health and life science, electronics, the R&D areas

of functional and structural composite materials and energy, the first products

are being introduced that make use of nanotechnology. For manufacturing these

products mainly conventional but outperformed technologies are used that just

make things smaller; examples are the current production of integrated circuits

or active catalytic nanoparticles (TiO2 or Ag).

The full potential of the nanoworld for striking and peculiar (physical) func-

tionality for e.g. quantum informatics, optical antennas for light concentrators

or artificial photosynthesis or spintronics, however, only can be developed when

tools exist to provide (sub-)nanometer precision for the making and subsequent

quality verification of nanostructures. Moreover, in order to move nanotechnology

from the experimental stage to industrial production, accurate forms of product
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1.1 Thesis statement

inspection are required. Small discrepancies in the organisation of nanostructures

may lead to huge degradations in performance (Oregan and Grfitzeli, 1991).

A leading tool to explore the nano-world is transmission electron microscopy

(TEM) which provides nanoscale imaging and spectroscopy. TEM is an indis-

pensable tool to characterise and reveal properties of nanostructures in materials

and biological sciences. However, standard TEM image is only a 2D projection

(shadow) image of the 3D structure, leaving the 3-D information hidden. This

can lead to incomplete or erroneous characterisation Williams and Carter (2009,

Chapter 1).

One very useful inspection method is Electron Tomography (ET), which is

becoming a leading tool to explore the 3D nano−world. ET provides (sub-

)nanometer resolution in all three dimensions of the sample volume under inves-

tigation (Kübel et al., 2005; Subramaniam et al., 2007). However, it is recognised

clearly by the TEM community that there are reasons to doubt the accuracy of

the results achieved by current ET reconstruction procedures (Kübel et al., 2005).

Successful 3D analysis relies on several processing steps, and presently, each step

significantly degrades the achievable precision of the result. Therefore, a qual-

ity assessment study of the existing ET measurement protocols is now essential.

Also, improved procedures are necessary to achieve higher fidelity, quantitative

3D TEM analysis that is also capable of studying a range of important structures

that cannot currently be analysed. This can substantially boost ET to its ulti-

mate performance and allow the design of new nano-molecular architectures and

devices.

1.1 Thesis statement

There is currently a pressing demand for establishing a methodology allowing for

reliable and quantitative volume analysis of the 3D reconstructions of nanostruc-

tures based on electron tomography (ET).

This thesis argues that: by harnessing prior knowledge about the specimen

in the ET reconstruction process, it is possible to enhance the fidelity of the 3D

algorithmic reconstruction from the tilt series in a way that improves the accuracy

of segmentation and quantitative analysis produced in ET investigation.

We demonstrate this by developing and applying an improved reconstruction

method that utilises the theory of compressed sensing and dictionary learning,
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1.2 Scope of thesis

to different specimens in material and biological sciences, after having explored

the quality limitations of current ET reconstruction process of the various exper-

imental settings.

1.2 Scope of thesis

The main theme of this thesis is concentrated on nanoparticle morphology via

STEM, including Bright-Field (BFTEM), Energy Filtered (EFTEM) and Dual

Electron Energy-Loss Spectroscopy (DualEELS) tomography. There are three

overlapping topics:

• Conducting a quality assignment investigation to quantify the quality of

the established ET reconstruction algorithms.

• Advancing 3D TEM by the development of high-fidelity ET techniques.

• Exploring the relevant ET 3D imaging applications of this new ET method.

1.3 Contributions

ET has emerged as the leading method used to extract 3D information of nanos-

tructures in the TEM. ET has given us many insights in both the physical and

biological sciences. Basically, it begins with the collection of a tilt series of 2D

TEM shadow images by tilting the specimen with respect to the electron beam.

The 3D information is then reconstructed by processing this tilt series using

computational algorithms. However, despite their rich 3D information capacity,

limitations exist in current ET procedures which hinder the ability to extract

reliable quantitative data.

In this work, a detailed quantitative quality assignment investigation of ET

tomographic reconstructions is described specifically using MgO nanocubes and

nanospheres as ground truth objects. Both of these nanoparticles are of well−known

morphology and have regular geometrical shapes which allow the quality assess-

ment of the ET reconstruction. The study includes the effect of the main exper-

imental factors: the tilt increment, missing wedge size, tilt axis mis-alignment

and algorithm type. This assessment shows that the fidelity of the quantitative

analysis is limited mainly by the accuracy of the reconstruction, which in turn, is
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1.3 Contributions

sensitive to the limited sampling of the input projections. The study concluded

that there is a need to improve the ET reconstruction algorithms in order to

achieve high-fidelity reconstructions from limited tilt series.

The reconstruction process in ET is considered a very challenging inverse

problem. This is mainly due to limitations in the acquisition process, which

makes this inverse problem ill-posed (i.e. a unique solution may not exist). Fur-

thermore, reconstruction usually suffers from missing wedge artefacts (e.g., star,

fan, blurring, and elongation artefacts). In this work, a new ET reconstruction

method was developed. This new method was named dictionary learning electron

tomography (DLET). In DLET, the ET reconstruction was enhanced by intro-

ducing prior knowledge about the specimen during the reconstruction process.

The prior-knowledge approach was based on the mathematical theory of com-

pressed sensing (CS) which has drawn significant attention in signal processing

fields. This rests on the principle that, if redundancy exists in a signal one can re-

construct it from far fewer measurements than required by the Shannon-Nyquist

sampling theorem. It is shown that the prior knowledge harnessed in compressed

sensing is extremely powerful for the recovery of under−sampled signals.

Also, this work provided a solution to the main problem that limits the ap-

plication of compressive sensing to ET studies. Specifically, the CS-based ET

methods require that the reconstructed object is sparse (compact) in some trans-

form domain (e.g., Total Variation (TV)). However, a fixed sparsifying transform

may only be applicable to a very limited type of specimens. For example, a TV

transform can be effective for ET reconstruction if the object under study can

be described as a piecewise constant. However, this is not true for many sam-

ples and, in general, this assumption is often partially achieved. This limitation

was eliminated by introducing dictionary learning which provides an adaptive

sparsifying transform that is tailored for the sample under study. This approach

provides opportunity to study numerous samples and also extend the fidelity of

CS−based ET methods.

Elementally sensitive ET in STEM using DualEELS is then investigated. It is

demonstrated that this can be used to produce an EELS signal that is linearly de-

pendent on the projected density of the element in each pixel. This linearisation

is important to satisfy the projection requirement of tomography to achieve a re-

liable elementally sensitive EELS tomography and avoid reconstruction artefacts

4



1.4 Publications

(such as the cupping artefact). It also demonstrated that a high-fidelity recon-

struction can be achieved, even from very few projections, using DLET which

enables a reliable segmentation and quantitative analysis without requiring an

excessive radiation dose to the sample. A comparison between DLET and SIRT

ET tomograms that were reconstructed using VC precipitates extracted from

steel in a carbon replica is also provided.

The last chapter of this thesis describes the application of compressed sensing

to ET reconstruction in material and biological sciences. The efficacy of DLET is

then qualitatively evaluated and it shows appreciable performance enhancements

over conventional reconstruction algorithms. It also demonstrates that the en-

hanced contrast of the DLET tomograms enables automatic (or semi-automatic)

segmentation procedures for extracting surfaces for quantitative studies. Such

segmentation is often subject to time-consuming and user-dependent manual pro-

cedures when reconstructed using conventional ET methods. The high fidelity

and robust reconstruction produced by a compressed sensing approach could open

the door to new ET investigations.

1.4 Publications

A significant portion of the research presented in this thesis has been peer-

reviewed and published in various academic venues. The author of this thesis

is the primary author of most the publications, which are also based on the work

presented in this thesis. Much of the text in the thesis is taken from following

publications:

[1] Ala AlAfeef, W.Paul Cockshott, Ian MacLaren, and Stephen McVitie.

Electron tomography image reconstruction using data-driven adaptive com-

pressed sensing. Journal of Scanning Microscopies, 38(3), 2016.

[2] Ala AlAfeef, Joanna Bobynko, W Paul Cockshott, Alan J Craven, Ian

Zuazo, Patrick Barges, and Ian MacLaren. Linear chemically sensitive elec-

tron tomography using dualeels and dictionary-based compressed sensing.

Ultramicroscopy, 107:96−106, 2016.

[3] Alexander Alekseev, Gordon J Hedley, Ala AlAfeef, Oleg A Ageev, and

Ifor DW Samuel. Morphology and local electrical properties of PTB7:PC71

BM blends. Journal of Materials Chemistry A, 3(16):8706−8714, 2015.
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[4] Ala AlAfeef Ala AlAfeef, W.Paul Cockshott, and Ian MacLaren. Dic-

tionary based reconstruction of the 3D morphology of ebola virus. In Mi-

croscopy and Microanalysis MM2015, 21(S3): 905−906, 2015.

[5] Ala AlAfeef, W. Paul Cockshott, Patrick Barges, Ian Zuazo, Joanna

Bobynko, Alan J. Craven, and Ian Maclaren. Linear chemically sensitive

electron tomography using DualEELS and compressed sensing. Microscopy

and Microanalysis, 21(S3): 2341−2342, 2015.

[6] Ala AlAfeef, Alexander Alekseev, Ian MacLaren, and Paul Cockshott.

Electron tomography based on a total generalized variation minimization re-

construction technique. In Picture Coding Symposium (PCS), pages 95−99,

May 2015.

[7] Ala AlAfeef, P Cockshott, I MacLaren, and S McVitie. Compressed Sens-

ing Electron tomography using adaptive dictionaries: a simulation study.

J.Phys.: Conf. Ser., 522(1):012021, June 2014.

[8] Ala AlAfeef, Alexander Alekseev, Gordon J Hedley, Ifor DW Samuel,

Cockshott Paul, MacLaren Ian, and McVitie Stephen. Electron tomography

of ptb7:pc70bm. In IMC2013, Prague, Czech Republic, 2014.

1.5 Thesis outline

The thesis is organised to progress from quality assessment of current ET tech-

nique, through to the development of ET methods with new capabilities and their

applications.

Chapter 2 presents an overview of S/TEM principles and the imaging modes

used. The relevant foundation, practices, and recent advances of ET are reviewed

in detail.

Chapter 3 addresses the influence of the experimental conditions on the quality

of the reconstructed ET tomogram. The presented results motivate the devel-

opment of improved ET reconstruction via dictionary learning and compressed

sensing.

Chapter 4 deals specifically with ET reconstruction method development.

Firstly, the main aspects of compressed sensing theory are introduced, along

with their applications to ET. Then, the DLET method is detailed. In the final
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part of this chapter, the DLET approach is evaluated using a simulation study

that is provided as a proof-of-principle, then by two investigations of samples

from material and biological sciences.

Chapter 5 details an investigation on the use for DualEELS in elementally

sensitive ET in the STEM. It shows that reliable EELS tomography of VC pre-

cipitates is possible with appropriate use of DualEELS and a compressed sensing

based reconstruction algorithm to overcome the low sampling and limited signal

to noise inherent in core-loss EELS.

Chapter 6 presents a qualitative study of samples from materials science and

the biological sciences. It is shown that the results obtained have a higher con-

trast and a reduced noise which enables reliable automated segmentation. This

advantage helps to produce higher quality and robust segmentation results for

quantitative studies with less labour and a reduced subjective bias that can be

introduced by the operator.

Final conclusions and areas for fruitful future work are given in chapter 7.
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“When we look through the little universe that we

know, and think of the transmission of electrical force

and of the transmission of magnetic force and of the

transmission of light, we have no right to assume that

there may not be something else that our philosophy

does not dream of”
Lord Kelvin, 1904

2
Introduction to electron tomography

anotechnology has revolutionised the industry’s ability in building

microscopic nanosystems by manipulating materials on a molecular and

atomic scale. The prefix ’nano’ is used because of the dependence on

physical size which is observed close to the nanoscale, somewhere around 10−9

metre. Nanosystems are becoming increasingly more complex and smaller from

the chemical perspective which increases the demand for microscopic characteri-

sation techniques. Among many, transmission electron microscopy (TEM) is an

indispensable tool that is increasingly used to study the structures of nanosystems

down to the molecular and atomic scale. However, despite the effectiveness of

this tool, it can only provide a 2−D projection (shadow) images of 3−D structure

which can lead to incomplete or erroneous characterization especially when know-

ing that our visual system is equipped to handle light reflection images rather

than light transmission ones Williams and Carter (2009, Chapter 1). To over-

come this limitation, Electron Tomography (ET) is widely used to reconstruct a

3D representation of the structure using 2D series of projection images that are

8



2.1 Introduction to transmission electron microscopy (TEM)

taken at a different orientations of the specimen. Enhancing and quality assessing

the 3D characterisation of nanostructures using electron tomography is the main

purpose of this work.

In this chapter the foundations, established practices and state-of-the-art

methods in electron tomography (ET) are reviewed, along with, limitations and

opportunities. The main limitation of electron tomography is the so−called miss-

ing wedge of images for most kinds of specimens, due to unavoidable technical

limitations, which reduces the angular range that can be acquired practically.

Also, many samples do not stand unlimited radiation doses, and this limits the

number of projections that may be recorded and/or the SNR in each projection.

These problems severely degrade the quality of reconstruction and introduce ar-

tifacts that are not part of the original object. Conventional reconstruction ET

algorithms do not provide an adequate solution from such limited measurements

and, therefore, are considered an important limiting factor for image reconstruc-

tion fidelity in ET (Arslan et al., 2006). This provides a motivation for the work

in chapters 4 and 6, where new dictionary based compressed sensing approach

for ET reconstruction is introduced and investigated.

This chapter also outlines the primary TEM imaging techniques that were

used in this thesis and described the reasons behind their use. These includes

bright field TEM, annular dark−field scanning TEM, energy filtered TEM and

spectroscopic DualEELS TEM technique.

2.1 Introduction to transmission electron mi-

croscopy (TEM)

2.1.1 The development of electron microscopy

The first electron microscope prototype was constructed in 1931 by Max Knoll

and Ernst Ruska who, in 1986, was awarded the Nobel Prize for his fundamental

work in electron optics, and for the design of the first electron microscope1. The

1The invention of the electron microscope sometimes attributed to Reinhold Rudenberg
since he was the first to patent the idea. Actually, he did not contribute to the development of
the first electron microscope. When Rudenberg submitted his patent request, Knoll and Ruska
had already finished the first prototype [Freundlich 1963]
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2.1 Introduction to transmission electron microscopy (TEM)

imaging capabilities of electron microscopy was improved since its first develop-

ment. The first customised electron microscope (the ’Siemens Super Microscope’)

was introduced in 1939. Further developments were disrupted because of the Sec-

ond World War, in which a leading laboratory (Siemens laboratory) was bombed,

and two leading researchers died (Heinz Mueller and Friedrich Krause). Following

the war, electron microscopes were again being built and led to ”Elmiskop 1”in

1954 (Ruska, 1987).

The development of the electron microscope was a result of significant scientific

breakthroughs that can be summarised as:

• In 1874, the German physicist Ernst Abbe established the theory of optical

imaging experimentally and declared that the resolution in microscopy is

limited by the wavelength of the illumination source. This discovery led

to the following theoretical question: Is it possible to use an illumination

source of wavelength shorter than light? moreover, How?

The answer to the first question came later by two Nobel Prize Laureates:

– in 1896, Sir Joseph Thomson (Cambridge) proved experimentally the

existence of highly charged light particles called electrons (Thomson,

1966, p. 145-153) and

– in 1924, Louis de Broglie (Paris), introduces the theory of electron

matter waves (the wave properties of moving particles) which when

applied to electrons, shows that the wavelength (λe−) of accelerated

electrons is related to their kinetic energy (E) when neglecting the rel-

ativistic effects as: λe− ≈ 1.22
E1/2 , where λe− is in nanometer unit and E

in electrons volts. Resolution can therefore be boosted by increasing

the accelerating voltage. For example, an electron wavelength of (3.7-

2 pm) can be achieved with a high acceleration voltage of (100−300

kV). Such wavelength is much smaller than a wavelength in the opti-

cal microscope (which is typically around 400−600 nm) and than the

typical atomic diameter of 200 pm (De Broglie, 1929).

and the second part of the question was answered in

– 1925, by Hans Busch (Germany) who showed mathematically the pos-

sibility to deflect electrons in a similar way to optical lenses (Ruska,

1987), and

10



2.1 Introduction to transmission electron microscopy (TEM)

– 1927, by another two Nobel laureates in physics, Sir George Thomson

(Cambridge) and Clinton Davisson (USA), with their experimental

discovery of electron diffraction (Davisson, 1995).

Because the moving electron wavelength is several orders of magnitude

smaller than the wavelength of light, these breakthroughs made it possi-

ble that nanoscale objects could be imaged by mean of electron beam and

lenses (Freundlich, 1963).

• In 1931, All the pieces in the theoretical puzzle behind the electron micro-

scope was put together by Ernst Ruska and Max Knoll (Technical Univer-

sity of Berlin), leading to the first (two stage) ×16 magnification electron

microscope (Ruska, 1987).

• In 1933, Ruska built an electron microscope that exceeded the resolution

attainable with a light microscope (Wilson, 1993).

• In 1934, The publication of the first EM micrograph of a biological specimen

(a 15 µm thick specimen of sundew plant tissue) by Marton (1934).

• In 1938, Development of the first scanning electron microscope (SEM) and

the scanning transmission electron microscope (STEM) by Ardenne (1938).

• In 1952, Palade and Claude shared the Nobel Prize in 1974 for their discov-

eries in applying electron microscopy to study the functional structure of

the cell that was considered a breakthrough in the development of modern

cell biology.

• In 1982, First edition of an influential text on high−resolution electron

microscopy (Spence, 1981).

Despite the fact that the resolution of a TEM microscope is away much better

than that which can be achieved with a light microscope, the practical resolution

in TEM was worse than 1Å due to geometric aberrations of the electromagnetic

lenses, principally spherical aberration which causes the electron rays on the sides

to be focused at closer focal points Batson et al. (2002). This aberration is a con-

sequence of the geometry of focussing with a cylindrically symmetric magnetic

field MacLaren and Ramasse (2014). Cylindrical electromagnetic lenses have a
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positive focal length (i.e. are converging lenses) and have positive spherical aber-

ration. To get negative spherical aberration, a negative focal length is required,

and there are no cylindrical diverging lenses for electrons. Aberration is unavoid-

able and was recognized early on in the history of TEM (Scherzer, 1936). The

limitation of aberration has been overcome during the last decade using aberra-

tion correctors enabling the resolution to enter the sub−angstrom limits for both

the TEM (Haider et al., 1995; Lentzen et al., 2002; Rose, 1971; Zach and Haider,

1995) and the STEM (Krivanek et al., 1999, 2015). For a more comprehensive

review, the interested reader is referred to the review by MacLaren and Ramasse

(2014) and the references therein.

Since its early development, electron microscopy has been applied to many

fields ranging from biological material (such as cells, viruses, and plants) to ma-

terial science (such as catalysis, glasses, metals, nanoparticles, electronic devices

and more). In recent years, tomographic reconstruction of 3-D structures using

electron microscopy has become possible and has been applied in many of these

fields (more details will be given in the subsequent chapters). For a more complete

list of important events in electron microscopy history, please refer to (Haguenau

et al., 2003).

2.1.2 The structure of the TEM

A schematic illustration of the TEM structure is presented in Figure. 2.1. The

electron−emitter (gun) is the source of illumination in a TEM and can be either

a thermionic gun or field emission gun (FEG) Williams and Carter (2009, Chap-

ter 5) . FEG emitters are more commonly used nowadays to produce an electron

beam that is more coherent and monochromatic, smaller in diameter and with

higher brightness than can be achieved with conventional thermionic emitters

such as LaB6 or tungsten filaments that are of limited emitting life and reliability

Williams and Carter (2009, Chapter 5). The TEM column consists of a condenser

system, objective lenses, projection system and detectors. The condenser system

consists mainly of two or more electromagnetic lenses and an aperture. These

lenses are used to control beam spot size and convergence to form an electron

beam of the desired intensity, size and convergence angle at the specimen. By

inserting a condenser aperture, only the electrons of a path close to the optic axes

is allowed to pass through the aperture disc (around 40−160 mm radius). The

sample is placed in a dedicated TEM holder that can be inserted in the TEM
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2.1 Introduction to transmission electron microscopy (TEM)

Figure 2.1 |Conventional TEM setup, (a) the structure of the TEM start
from the top with the illumination source and condenser system. The objective
lens system forms a diffraction pattern in the back focal plane, and an image
can be generated in the image plane by inserting the objective aperture in the
back focal plane. The projection system enlarges this image and projects it onto
the viewing screen. (b) Electron beam−specimen interactions and the generated
signals. Diagram re-drawn partially from (Williams and Carter, 2009).

vacuum chamber allowing the beam to interact with the specimen Williams and

Carter (2009, Chapter 6). There are different types of TEM holders (see section

2.3.2). The objective lens forms a diffraction pattern in the back focal plane and

is used to form a magnified initial image, usually up to 50 times. An objective

aperture can be inserted in the back focal plane to improve the contrast of the

final image by selecting those electrons which will contribute to the image and

reduce the effect of aberration of the objective lens. It can also be used to select a

specific spot of the diffraction pattern. A selected area diffraction (SAD) aperture

can be inserted in the imaging planes to choose from which part of the specimen

to obtain the diffraction pattern. Magnification in the electron microscope can be

varied by changing the strength of the projector and intermediate lenses system.

The object input plane of this system can be either the image plane or the back

focal plane of the objective lens system. The final image is viewed on a fluores-
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2.1 Introduction to transmission electron microscopy (TEM)

cent screen or captured using detector device. A typical TEM is usually equipped

with one or more detector such as: charged coupled device (CCD), Annular Dark

Field (ADF) detector, spectrometer (e.g., Gatan Imaging Filter (GIF)), or a new

generation of CCD devices that detect the electrons directly without the need for

a scintillator layer to convert electron into photons (direct detectors).

2.1.2.1 The nature of the detector System

TEM electron micrograph are formed when a thin specimen scatters electrons

that are transmitted through it; the information contained in this micrograph is

a result of a difference in electron flux through each point in the projected image

(i.e., the contrast); this is why EM images are monochrome (grayscale). Resulted

images are then, magnified and projected onto a fluorescent screen within the

microscope column and captured using imaging devices.

Fluorescent screen The 1is located under the lenses system. The screen is

viewed through a lead−glass window which is equipped with radiation shielding

to protect the operator against x−rays. The viewing screen in a TEM is coated

with a material such as phosphor grains that glows when it is hit by electrons,

displaying the image. A typical screen is coated with phosphor grains of 50µ

size since, the size of grains should be small enough so that eyes cannot resolve

individual grains. The viewing screen is also modified to display magnified pro-

jections at different shades of green light (light with a wavelength of 550 nm).

The secret behind the green light lies in being in the middle of the visible spec-

trum, which is best relaxing for the eyes. Many modern TEM still relies on an

analogue screen (e.g., JEOL ARM200F).

Moving to digital recording and display, brings with it the opportunity of pro-

cessing the image to enhance the information before presentation or publication.

Historically, electron microscopists have used micrograph electron film since the

beginnings, until the new developments in TEM, particularly electron tomogra-

phy and cryo−electron microscopy, pressed for the needs of digital imaging, and

recently has seen the common use of the CCD in all fields of TEM.

1Also known as CRT, which stands for cathode-ray tube
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Charge−Coupled Device (CCD) Detectors Because of developments in

computing, there is great interest in recording TEM images via CCD cameras

that are advancing rapidly. CCDs have much greater range of intensities ( dy-

namic range of CCD is equivalent of 2−3 films), are rapid, linear in response,

uniform in output, have an anti−blooming technology and can record electrons

at high detective quantum efficiency (lowering the dosage to radiation sensitive

specimen). However, The, relatively, higher spatial resolution of films is the

only property that favours it over CCD cameras (Fan and Ellisman, 2000; Faruqi

and Andrews, 1997; Jin et al., 2008; Williams and Carter, 2009). CCDs are

Figure 2.2 | Schematic diagram of a detector, CCD detectors usually oper-
ate on an indirect detection method, using a phosphor as the first element in the
detector. The scintillator is optically coupled to a CCD by a fiber−optic plate.

metal−insulator−silicon devices that store charges generated by light or electron

beams. CCD arrays consist of several million (mega) of pixels which are individ-

ual capacitors that are electrically isolated from each other through the creation

of potential wells under each CCD cell so that they can accumulate charge in pro-

portion to the incident radiation intensity. Due to radiation damage and signal

saturation (Roberts et al., 1982), it is not useful to place the CCDs directly to

the electron illumination. Thus, a phosphorescent mineral and a scintillator are

required to convert the electron image to a photonic image. The resulting pho-

ton image is then transferred to the CCD using a suitable light optical coupling
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element (Daberkow et al., 1996). Figure. 2.2 shows a schematic of a typical CCD

detector system. The size of the CCD can be expanded by stitching together

multiple CCD images which can be controlled via software (Williams and Carter,

2009).

Figure 2.3 | Image resolution in CCD Camera.

To compare the properties of recording devices, the concept of the detection

quantum efficiency (DQE) is used. If a given detector has a linear response, then

the DQE is defined as

DQE =
(S/N)2out
(S/N)2in

(2.1)

Where S/N is the signal−to−noise ratio of the output or input signal. A perfect

detector has a DQE= 1 and in practice all detectors have a DQE < 1.

In addition to the DQE, the quality of image detector may also be character-

ized by the number of available pixels and the dynamic range (Daberkow et al.,

1996). The CCD chip, when cooled, enables the storage of images with a higher

signal−to−noise ratio.
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The main drawback of CCD detectors is the limited spatial resolution and sen-

sitivity which are fundamentally limited by the electron−to−photon conversion

process in the scintillation. This is caused mainly by multiple light scattering

within the phosphor and the fiber optics which causes the signal to be shared

between numbers of adjacent pixels (Figure. 2.3) in the CCD, resulting in a loss

of resolution.

2.1.3 Electron beam−specimen interactions

Electrons are strongly scattered because they are charged particles. When a high-

energy beam of electrons interacts with the matter of a thin specimen, different

scattering process occurs by the electron cloud and by the nucleus of an atom in

the specimen. This scattering generates different signals (as illustrated in Figure.

2.1b) which can be detected in various types of TEM. The scattering processes

generate the contrast in the projection image and can be categorized as elastic

or inelastic.

2.1.3.1 Elastic scattering

An incident electron entering into the electron cloud of an atom is attracted by

the positive potential of the nucleus. This interaction can be described using

Coulomb’s law in Equation. 2.2.

FC =
1

4πε0

Q1Q2

r2
. (2.2)
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Figure 2.4 | Elastic scattering.

Where FC is the Coulombic force be-

tween the incident electron Q1 and the nu-

cleus Q2 with a distance r between them

and ε0 the dielectric constant. The shorter

the distance between them (i.e. smaller r),

the larger the force F that deflects the elec-

tron towards the core, and as a result, the

larger is the scattering angle. This scatter-

ing is elastic, as the scattered electron con-

serves, approximately, all of its kinetic en-

ergy. Also, this elastic scattering process is

called Rutherford scattering and is employed

in STEM (Z−contrast imaging).

The model in Equation. 2.2 explains the basic contrast mechanisms in (S)TEM.

In the mass−thickness contrast, regions in the sample with heavy atoms appear

with darker contrast in the projected image than such with light atoms (mass

contrast). This happens due to the stronger interaction between electrons and

heavy atoms (with high charge Q2) compared to light atoms. Also, in thick ar-

eas, more electron scattering events occur; therefore, these regions appear darker

compared to thin regions (thickness contrast). This mass−thickness contrast is

central in both bright and dark field imaging.

2.1.3.2 Bragg scattering

Rutherford scattering model is only valid for single nuclei and does not consider

regular lattice of crystalline materials.

Figure 2.5 |Bragg diffraction.

When a crystalline specimen is trans-

mitted by electrons, each atom in

such a regular lattice acts as a scat-

tering point. The scattered elec-

tron waves may interact with each

other either forming constructive or

destructive interference, which gives

rise to a diffraction pattern (bragg diffractions). This is formed by phase differ-

ence caused by scattering at atomic planes with inter-planar spacing d and can
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be explained using Bragg’s Law:

nλ = 2d sin(θ) (2.3)

Where λ is the wavelength of the incident electron beam, n is an integer, θ an-

gles of incidence. In Figure. 2.5, if the path difference (2d sin[θ]) is equal to an

integer multiple n of the wavelength λ, then rays r1 and r2 will be scattered and

arrive at point X in the same phase (i.e. constructive interference). This will

result in a diffraction patterns in the back focal plane of the objective lens. In

real specimens, all contrast mechanisms, namely mass−thickness and Bragg con-

trast, occur simultaneously, making the interpretation of TEM images sometimes

difficult.

2.1.3.3 Inelastic scattering

Figure 2.6 | Inelastic scattering.

The electrons of the high−energy incident

beam can transfer a significant amount

of energy to an inner shell electron of

an atom (ionization), causing the ejection

of this electron and filling up the empty

place by an electron with higher energy

from an outer shell (Figure. 2.6). This

process also causes the emission of char-

acteristic Auger electrons or X−rays. The

incident electron is scattered inelastically

and loses a certain amount of energy (ion-

ization energy). This lost energy can be

analysed using the electron energy loss

spectroscopy (EELS) as explained in sec-

tion 2.1.5.
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2.1.4 Imaging techniques in

a TEM

2.1.4.1 Conventional TEM and scanning TEM

In this section, we will justify the reasons behind using the BFTEM and STEM

imaging modes for different specimens in this thesis. The modern TEM allows a

variety of signals to be recorded. There are two primary modes of TEM op-

eration that must be considered: (1) Conventional−TEM (Figure. 2.1a and

Figure. 2.9), and (2) Scanning TEM (STEM) as sketched in Figure. 2.7. The

Conventional−TEM mode uses parallel illumination, and usually the bright−field

(BF) signal is commonly used. In the STEM mode, the electron probe is focused

on a single point in the specimen and the image is formed by the raster scanning.

The high angle annular dark field (HAADF) signal is usually used in the STEM.

An experimental example of MgO cubes STEM imaging is presented in Figure.

2.8.
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Figure 2.7 |Microscope setup for STEM imaging, specimen is rastered by a
focused convergent probe (with semi−convergence angle α), and the transmitted
radiation is detected. This radiation passes through the specimen and may be
scattered to an angle. Annular detectors pick up the un−scattered or scattered
electrons as bright−field or dark−field signals, respectively. In HAADF−STEM
mode, the ADF detector is set to detect scattered electrons between inner (θin)
and outer (θout) collection angles. This setting can be tuned by adjusting the
camera length of the ADF detector.

Essentially, the reasons for choosing conventional TEM or STEM for mor-

phological study is well established in the literature. For the biological research

(such as, virology and cellular studies), BF−TEM is considered the predomi-

nant approach for 3−D imaging (Medalia et al., 2002; Milne and Subramaniam,

2009), While for material science studies (e.g., nanoparticle) STEM is becoming

more popular (e.g., (Midgley and Weyland, 2003; Pennycook, 1989; Pennycook

and Nellist, 1999, 2011; Thomas and Midgley, 2011)) especially for studying 3D

nanoparticle morphology using ET (Banhart, 2008a; Friedrich et al., 2009; Midg-

ley and Dunin-Borkowski, 2009; Midgley and Weyland, 2003; Midgley et al., 2006;

Weyland and Midgley, 2004).
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Figure 2.8 |Magnesium Oxide STEM imaging, acquired using different
modes in STEM: a) BF-TEM, b) HAADF-STEM, and the energy-dispersive Xray
spectroscopy (EDS) maps of c) oxygen/magnesium, d)oxygen, e) magnesium and
f) carbon elements.

Although BF−TEM is very popular for biological sample studies and has been

used for a long time in material science. It is not easy to interpret the BF images

due to many reasons, mainly the non−linearity of BF signal, in general, on thick-

ness (Midgley and Weyland, 2003). Moreover, this complicates the interpretation

of contrast which can be a result of specimen thickness or changes of the electron

optical settings (mainly defocus). Another limitation of the BF−TEM, especially

for crystalline materials, is that the contrast can be a mix of mass−thickness con-

trast and diffraction contrast (Bragg scattering) which further complicates the

general interpretation (Midgley, 2005). This limitation hinders the application of

ET due to the lack of the projection requirement1 as explained in section 2.3.4.

Also, chemical sensitivity is weak in BF−TEM, which is a critical limitation es-

pecially when seeking to resolve the small features of the specimen against the

support (e.g., amorphous solar cell against carbon support film) (Yang, 2012).

1Monotonic variation in intensity with specimen thickness
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Unlike the parallel field mode in conventional TEM, which relies on the main-

tenance of phase coherence across neighbouring points to generate meaningful

image contrast, STEM contrast depends on discriminating the scattering angles.

Detection is usually incoherent and, viz., is less sensitive to the scattering mecha-

nism. Another significant practical advantage of STEM is that it does not require

defocusing to generate contrast, which consequently, eliminates the correspond-

ing complications. Furthermore, the scanning nature of the STEM enables the

possibility of dynamic focusing which allows the imaging conditions to be uni-

form across a tilted specimen. HAADF−STEM imaging typically sensitive to

atomic (Z) number and shows, to some extent, a monotonic relationship between

intensity with the thickness.

The work in this thesis has primarily focused on the use of electron tomogra-

phy using (S)TEM imaging for material science specimens due to this advantages.

The main imaging modes used are HAADF−STEM, EF−TEM, and DualEELS.

Also, in chapter 6, ET case studies from biological sciences are demonstrated us-

ing BF−TEM. In the next sections, a description and the reason behind adopting

these imaging modes is given.

2.1.4.2 Bright Field Transmission Electron Microscopy

The Bright Field (BF−TEM) is one of the simplest and widely used imaging mode

in TEM. It is based on a parallel beam illumination source and the resulting con-

trast can be either mass−thickness or diffraction contrast. The mass−thickness

contrast is usually dominant in the biological and amorphous materials while

diffraction contrast is dominant in the crystalline specimen as explained in sec-

tion 2.1.3.2. This contrast mechanism is based on Bragg scattering and is widely

used for characterizing the atomic structure since it is sensitive to the orientation

and periodicity of the atomic lattice. An optimised contrast for crystalline ma-

terials can be obtained using Dark field (DF−TEM) imaging mode by inserting

an objective aperture in the back focal plane to block the central diffraction spot

and to select a specific diffraction spot. Figure. 2.9 shows the ray diagram of the

BF−TEM and DF−TEM mode. Figure. 2.13 shows an experimental

BF−TEM and DF−TEM of Silver nanocubes.
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Figure 2.9 | Essential aspects of TEM, Electron ray diagram of Bright Field
and dark field TEM. Diagram re-drawn partially from (Williams and Carter,
2009).

2.1.4.3 Annular dark−field scanning transmission electron microscopy

Conventional electron microscopy uses BF−TEM contrast, due to its biological

origins, however for materials specimens, BF images can be unacceptable because

of the non−monotonic contrast generated by diffraction or Fresnel fringe. There-

fore, alternative contrast mechanism should be used. The Z−contrast imaging is

a suitable approach to overcome this limitation, using the HAADF−STEM.

Figure. 2.7 illustrate the principal aspects of STEM. In this mode, the electron

beam is converged to a small probe and focused at the specimen. This beam is

then moved point−by−point across an area of the specimen, and the generated

signal is recorded for each point. The annular detector is used to generate an

ADF signal. This detector integrates the signal from electrons that are scattered

to relatively high angles (50-200 mrad). The angular range of the scattered

electrons determines the contrast of the STEM image. BF images are typically
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formed using an axial detector and both the unscattered transmitted electron

and the low angle scattered electron are detected making Brag diffraction the

main contributor for the image contrast. When increasing the collection angle,

electrons that are scattered elastically to higher angles (Rutherford scattering)

and thermal diffusive scattered electrons are collected in addition to the Bragg

scattering. When further increasing the collection angle to a very high angle (50

mrad), the contrast becomes dominated by Rutherford−like and thermal diffuse

scattering, and the diffraction effects are further reduced. This means that the

image intensity should vary monotonically with the thickness of the specimen and

is approximately proportional to the power of the dominant atomic number (Zn)

in the specimen integrated over the thickness. The value of n lies in the interval

[1.1-2] and depends mainly on the inner and outer collection angles (θin and θout in

Figure. 2.7) of the angular STEM detector (LeBeau and Stemmer, 2008; Treacy,

2011). The collection angle can be adjusted by changing the camera length of

the detector. A higher collection angle can be achieved by shorting the camera

length and vice versa. This mode that uses very high detection angle is also

known as HAADF−STEM and proves ideal for tomographic reconstruction as it

generates strong contrast that has a monotonic relationship with thickness. The

ADF−STEM signal was successfully used for electron tomography of crystalline

specimens (e,g., Midgley et al., 2001; Weyland et al., 2001). Figure.2.8 presents

an example of the HAADF−STEM projection image. For more details about the

principles of STEM imaging, the reader is advised to consult (Pennycook et al.,

2007) and the earlier work by (Pennycook, 1989; Pennycook and Nellist, 1999).

2.1.5 Spectroscopy in the TEM/STEM

The incident electron can be scattered elastically or inelastically when interacting

with the specimen as described in section 2.1.3. This processes can be studied

in detail by appropriate spectroscopies. In TEM, spectroscopic signals can be

recorded to aid the BF and DF imaging modes. Energy dispersive X−ray spec-

troscopy (EDXS) and electron energy−loss spectroscopy (EELS) are the most

established techniques.

In the EDXS mode, the detector is placed on one side on the microscope

column to detect the X−rays emitted from the specimen when exposed to the

electron beam. This technique can be used for elemental identification by detect-

ing the x−ray that is emitted by the inelastically scattered electrons when passing
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through the specimen. EDX tomography was applied for 3D−nanoscale chemi-

cally sensitive microscopy (as in, Haberfehlner et al., 2014a; Saghi et al., 2007).

On the other hand, EELS is a powerful spectroscopy technique which provides an

energy−loss spectrum to characterise the specimen. This energy−loss spectrum is

more useful than an X−ray spectrum that only contains elemental information.

In fact, elemental imaging is an effective aspect of the high-energy-loss EELS,

because both the superior spatial resolution and the lower detection limits than

EDX (i.e., single−atom detection are more easily achievable in EELS) (Williams

and Carter, 2009, Chapter 39). Also of the simple elemental distribution, EELS is

capable of delivering a wealth of information such as absolute thickness, absolute

composition, chemical phase, oxidation state, optical via the detection of surface

plasmons, electrical conductivity, band gaps, etc. These cannot be obtained using

EDX (Williams and Carter, 2009, Chapter 37).

In this thesis, we are going to use EELS among other imaging modes for

tomography. Despite that EDX is not used in this work, the EDXS tomography

procedure is related to the scope of ET work in chapters 4. Williams and Carter

(2009) and Egerton (2011) provided a broad cover of these techniques. Recent

development is covered by Brydson and Hondow (2011); Hofer et al. (2016);

Pennycook and Nellist (2011).

2.1.5.1 Principles of electron energy loss spectroscopy

EELS spectroscopy deals with the electron excitation process which results in

the fast electron losing a distinctive amount of energy. These transmitted elec-

trons are directed into a high−resolution electron spectrometer that produces an

energy−loss spectrum showing the number of electrons scattered as a function of

their kinetic energy.
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Figure 2.10 |An EELS spectrum, consists of the zero−loss peak and the
plasmon peak, which are both an order of magnitude more intense than the
small ionization edges in the high energy−loss range. The representation of the
high−loss region is often strongly enhanced. After Williams and Carter (2009,
Chapter 37).

The EELS spectrum, exemplified in Figure. 2.10, split up into the low−loss

and high−loss regions, with ≈ 50 eV being the arbitrary break point. The

low−loss region contains information from the more weakly bound conduction

and valence band electrons, while the high−loss region contains primarily ele-

mental information from the more tightly bound, core−shell electrons and also

details about bonding and atomic distribution. The low−loss regime contains two

very intense peaks; the zero−loss peak (ZLP) and the plasmon peak (PP). The

ZLP contains mainly electrons that have only interacted elastically or without

suffering any measurable energy loss. The PP arises mainly from the inelastic in-

teraction with the conductive electrons of the specimen. With higher energy loss,

the intensity decreases, accordingly which makes it more convenient to use a log-

arithmic scale to represent the spectrum. The high−loss regime of the spectrum

is superimposed by the smoothly decreasing intensity from the low−loss region

and contains edges (rather than peaks). These edges are used to characterise the

chemical elements of the sample since it corresponds to a specific binding energy,

(i.e., ionization threshold) that must be transferred from the incident electron

to expel an inner−shell electron during the ionisation process. The overall sig-

nal intensity drops rapidly with increasing energy loss, reaching negligible levels
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above ≈ 2 keV (Williams and Carter, 2009, Chapter 37), which defines the energy

limits of this technique. Figure. 2.11 shows a schematic illustration of the main

components in a GIF detector and the electron ray diagram in EELS mode.

Figure 2.11 |Gatan imaging filter (GIF), Schematic illustration of GIF de-
tector showing the key components. The electrons are chromatically dispersed by
a magnetic prism according to their kinetic energy. Energy selecting slits restrict
the contribution from the beam to only electrons within a certain energy range.
An image can be recorded on the CCD camera.

2.1.5.2 Energy Filtered Transmission Electron Microscopy (EFTEM)

Imaging

The energy loss of the scattered elections can be detected using a CCD in the

energy dispersive plane which can be formed by deflecting electrons using a mag-

netic prism. A specific energy loss can be selected by inserting a piezo-controlled

energy-selecting slit following the prism in the GIF system. In this way, only the

electrons with a certain range of energies can pass through, and capture an image

that represents a specific chemical element. This technique is referred to as energy

filtered TEM (EFTEM). It should mentioned here that, the EF−TEM imaging

is not straightforward due to the dominant background signal in the energy loss

spectrum. Therefore the spectrum data needs to be processed using model fitting

methods to remove the effect of the background signal (Midgley and Weyland,
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2003; Weyland and Midgley, 2003). Figure 2.12 shows a schematic illustration

of EFTEM mode and two EFTEM elemental maps of solar cells sample showing

the carbon and sulphur distribution.

Figure 2.12 | Energy Filtered TEM (EFTEM), The energy selecting slit is
adjusted to only allow electrons which have lost a specific amount of energy to
obtain elementally sensitive images. a)EFTEM images on PTB7:PC71BM solar
cells sample showing the carbon and b) sulphur distribution.

2.1.5.3 DualEELS spectrum imaging

EELS is a powerful technique and can be more effective when combined with mod-

ern TEM with higher spatial resolution and aberration correction where a probe

size of sub 0.1 nm (Falke et al., 2005). The spectrum imaging technique, with

modern computer-controlled microscopes, allows a range of data to be captured

at each pixel in the STEM mode.

The dynamic range in an EELS spectrum covering the energy loss range 02

keV can be 106 or higher, and this can be challenging as CCD detectors are
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usually of a lower dynamic range and cannot record the whole spectrum in a

single acquisition. Also in practice, it is even more challenging if the minimum

signal is at the readout noise level which makes the signal−to−noise (SNR) ratio

very low. In fact, to get a decent SNR ratio for detailed analysis of the data, a

minimum signal of 1% of saturation is required and hence useful data can only

be recorded over a specific intensity range (e.g., 102 with CCD of 104 dynamic

range) in a single acquisition (Scott et al., 2008a). Thus, the low loss region

containing the zero loss peak (ZLP) must be recorded separately from the core

loss region. Both the low loss and core loss regions are required to evoke the

maximum information and allow correction of the elastic and multiple inelastic

scattering effects.

One of the challenges when using GIF detectors is to record the low loss

and one or more core loss spectra, each with adequate SNR ratio, without being

subject to the significant time penalties that arise when the integration time is

changed. Another challenge with older commercial instruments (such as., GIF200

(Krivanek et al., 1991)), is that the shortest integration time is set by the speed

of the beam shutter, which is usually electromagnetic in nature and therefore;

has a minimum shutter time of the order of tens of milliseconds which is long.

Using the GIF Quantum detector (Gubbens et al., 2010a), the high−speed

DualEELS mode (Scott et al., 2008a) allows the simultaneous acquisition of

core−loss spectrum and the corresponding low−loss spectrum, before moving

on to the next pixel, and combining both spectra into a single continuous data

set with no energy or spatial drift artifacts. With the full range spectral data,

advanced analysis techniques such as Fourier logarithmic deconvolution can be

applied. DualEELS acquisition is also fully integrated into STEM mode EELS

spectrum imaging and uses a 1 µs electrostatic shutter which shortens the inte-

gration time by orders of magnitude and allows both the core loss and low loss

regions to be acquired under the same electron optical conditions. The electro-

static deflector (shutter) is placed in front of the CCD camera and alternately

reflects the spectrum perpendicular to the dispersive direction to opposite halves

of the CCD camera. The voltage on the prism drift tube is changed between the

different exposures so that one spectrum contains the core−loss region of inter-

est and the low−loss spectrum in the other. The low−loss intensity is typically

several orders of magnitude higher than that of the core−loss therefor; the low

loss region is acquired with a short dwell time of the drift tube and the core loss
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part with a much longer dwell time. There is a well−defined ratio between the

two times so that, in principle, the intensities of the two regions can be scaled to

the same incident charge.

The capability to accurately align and calibrate spectra using DualEELS has

great potential to allow information to be extracted from small chemical shifts.

In this thesis, the DualEELS acquisition is used for the chemically sensitive ET

reconstruction of vanadium carbide precipitates on an extraction replica prepared

from a vanadium micro alloyed high manganese steel as detailed in chapter 5 and

(AlAfeef et al., 2016, 2015b).

2.1.6 Radiation damage & contamination

Besides providing valuable information, the electron beam used in an electron

microscope (TEM or STEM) can adversely affect the sample during examination

in various ways. The most significant effects, as identified by Egerton et al.

(2004), are: ionization damage (radiolysis), displacement damage, sputtering,

heating, electrostatic charging, and hydrocarbon contamination.

Minimising the beam−induced changes is one of the factors that a micro-

scopist usually take into consideration, to obtain a original−state analysis of the

specimen. Reducing the beam energy can potentially reduce both sputtering and

atom displacement damage, however, it can increase the ionisation damage and

heating effects. Also, decreasing the electron dose leads to lower SNR of the

signal and may cause artifacts which reduce the fidelity of analysis.

Hydrocarbon contamination occurs when mobile hydrocarbon molecules are

polymerized on the surface the specimen by the incoming or outgoing electrons

as shown in Figure. 2.13. This builds up, increases in thickness as the radiation

proceeds. The problem of specimen contamination has been greatly reduced, com-

pared to the early days of electron microscopy, with the steady improvement of

the vacuum in the S/TEM. Nevertheless, it is not yet eliminated as the specimen

itself can act as a local source of hydrocarbons. There are techniques which can

be used to reduce this beam−induced contamination (such as, sample cleaning

using plasma, sample baking to desorb hydrocarbons from its surface or inserting

a ’cold finger to distract contaminants). For ET, the problem of beam−induced

damage and contamination is critical as multiple images (tilts) need to be ac-

quired for the tomographic reconstruction. If the specimen changes during the
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Figure 2.13 |Radiation damage of Silver nanoparticle, after being left
under the election beam for a) 1, b) 30 minutes. The top row shows the BF−TEM
images. Note the carbon deposition on the edges of the cube (indicated by the
red arrows). Also, the sharp edges of the Ag nanocube is changing into a round
shape over time.

acquisition or the projection images are of a low SNR, then the fidelity of tomo-

graphic reconstruction will be limited. It is obvious that lower exposure time of

the electron beam will reduce beam−induced damage and contamination for ET.

Therefore, there is a compelling reason to develop methods of reconstruction and

sensing that reduce the required electron exposure, as addressed in chapters 3

and 5.

2.1.7 Aberration-corrected S/TEM

Electron microscopes achieve prominent spatial resolution. Theoretically, an elec-

tron beams of 2.5pm (2.5 × 10−12 m) should be obtained when accelerating the

electrons to 200 keV, 3.7 pm for 100 keV and 4.9 pm for 60 keV which is much

shorter than the typical atomic diameter of 200 pm. Unfortunately, such reso-

lution has never been obtained in electron microscopes, for many reasons. The

most important one is the large aberrations of electron lenses.

For round lenses, the main aberration coefficients are typically similar to the

focal length of the lenses. The aberrations are unavoidable, as was identified early

on in the history of electron microscopy, as highlighted by Scherzer (1936), and
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Figure 2.14 |Aberrations in electron lens, (a) An ideal lens focuses a point
source to a single point in the image. (b) Spherical aberration: occurs due to
the increased focusing of electron rays when they strike a lens near its edge, in
comparison with those that strike nearer the centre. (c) Chromatic aberration:
the lens is unable to bring all electron rays with different energy to the same focal
point.

of two main types: spherical aberration and chromatic aberration. Both of which

limit the resolution of the S/TEM to around 250 pm at 60 keV Krivanek et al.

(2015). This is typically not sufficient to resolve individual atoms tightly packed

in a solid.

Figure. 2.14(b) shows how spherical aberration reduce lens performance by

focusing rays passing through different locations of the lens to different points.

Chromatic aberration, as in Figure. 2.14(c), is also a common problem that

occurs when the lens is unable to bring all wavelengths of electron rays to be

focused at the same position in the focal plane.

Many attempts at aberration correction had been made since early days, how-

ever it was not until the 1990s with the availability of the required computational

power, computer memory, efficient algorithms, and stability of electrical compo-

nents that enables the reduction of the aberration problem to a practical levels

using aberration correctors. In this work, an aberration corrected microscope is

used to image Magnesium Oxide (MgO) nanocubes and nanospheres as in chapter

3 and vanadium carbonitride particles as in chapter 5. A summary of recent de-

velopments of aberration−corrected STEM is provided by Krivanek et al. (2015);

MacLaren and Ramasse (2014).
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2.2 Electron tomography: foundations and meth-

ods

Tomography is a method of producing (reconstructing) a section of the internal

structures of an object. Technically, tomography1 means to reconstruct the 3D

structure of objects from a series of 2−D projections (Frank, 2010; Mobus and

Inkson, 2007). Electron tomography refers to any technique that applies the

transmission electron microscope (TEM) to record a series of 2D projections of an

object (specimen) from various directions by incrementally tilting that object in a

multiple directions with respect to the electron beam and uses these projections to

generate a 3−D reconstruction (tomograms) of the reconstructed object (Frank,

2010; McIntosh et al., 2005).

In this section, a review of the foundations, practices and established recon-

struction methods in electron tomography (ET) is given. Along with the main

limiting factors that hinder ET. This includes the under−sampling of the mea-

surements in ET due to the practical limitation in the acquisition process that

limits the number of images in a tilt series that can be acquired. Conventional re-

construction methods does not usually provide accurate results from such limited

measurements. This limitations motivates the work in chapters 3 and 5, where

new ET reconstruction methods are provided.

2.2.1 From 2D to 3D electron microscopy

As stated in section 2.1, S/TEM is an indispensable tool for materials characteri-

sation; however, any TEM or STEM image is a 2−D projection of a 3D specimen

and this is a fundamental limitation as the depth dimension is lost. Although, it

might be sufficient when studying periodic or isotropic structures; however, when

imaging asymmetric structures, relying on 2D projections only may lead to an

incomplete characterisation (see Williams and Carter, 2009, chapter 1).

Therefore, the goal of ET methods is to retrieve the 3D information from 2D

projection images. This can be performed by tilting the specimen and recording

a tilt series (2D projection images) at different tilting angles. These tilt series

1The compound word ’Tomography’ is derived from the Greek word tomo that means a
cut, section.
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need then to be aligned and reconstructed using a mathematical algorithm as

schematically illustrated in Figure. 2.15.

Figure 2.15 | Schematic illustrating the data collection and reconstruc-
tion principles for electron tomography: (a) The specimen is tilted relative
to the electron beam and a tilt series of projection images is acquired. (b) The
tilt series are then aligned and reconstructed to generate a 3−D tomogram of the
specimen. This tomogram can be segmented to generate a 3D model for quan-
titative study. The segmented model of the virus was provided by Bhella and
Goodfellow (2011).

2.2.2 Brief history of tomography

The mathematical foundations behind tomography were first introduced by the

Australian mathematician Radon (1917). In his pioneering work, he introduce

the Radon transform which explains the relationship between a 2D object to its

infinite 1D projections. When inverting the Radon transform, the 2D object can

be fully restored from its projections. Radon’s work did not get much interest at

that time due to computational requirement and complexity. Bracewell (1956)

was the first to put Radon’s theory into practice by reconstructing 2D slices of

solar microwave emission from 1D profiles recorded by a radio telescope.

Tomographic methods were further studied by Cormack (1963) and employed

by Hounsfield (1973) in the design of the first CT scanner and later the computed
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axial tomography (CAT) which gave both of them the Nobel Prize for medicine

in 1979 (Hounsfield, 1981). The work on computerised tomography led to other

applications that were awarded the Nobel Prize: in chemistry for (Klug, 1983)

for his work on crystallographic electron microscopy and medicine for (Lauterbur,

2004) and (Mansfield, 2004) for their work on magnetic resonance imaging (MRI).

The first example of 3D reconstruction using TEM was by DeRosier and Klug

(1968) in which they obtained a 3D reconstruction of the T4 bacteriophage’s tail

from a single 2D image, benefiting from the prior knowledge of the helical sym-

metry of the tail. Also, the work by Hart (1968) defined the principles of ET for

reconstructing asymmetric 3D objects from a tilt series of 2D TEM projections.

These two papers are generally considered the starting point of ET.

ET is currently widely used both in material and biological sciences with

significant research impact. It is also among (if not the most) successful method

of 3D analysis in TEM till now. Alternative 3D TEM imaging modes are reviewed

in the next section.

2.2.2.1 Alternative methods

In this section, a briefly description is provided of the techniques that may be

complemental to ET. These methods includes: traditional stereo microscopy,

single particle microscopy (SPM) and the relatively resent and promising type

of 3D STEM imaging that is based on depth sectioning. Also, atom−probe

tomography and mechanical sectioning of materials using focused ion beam is

described.

Stereology is an old established discipline that is similar in principle to tomog-

raphy. The stereo microscopy techniques are based on acquiring two pictures of

the same area with tilting for few degrees, then showing the two images simulta-

neously to the operator’s eyes using a stereo viewer. This relative shift (parallax

shift) between the two images is perceived by our visual cortex as a relative depth

difference and can be used to calculate the relative depth of a feature (Williams

and Carter, 2009, chapter 29). Although stereo microscopy is well established,

however, it can yield only partial 3D information in TEM. The theory of elec-

tron stereomicroscopy is reviewed by Nankivell (1963) and applications of stereo

techniques in electron microscopy are summarised by Hudson (1973).

Single−particle electron cryo−microscopy (SPEM), abbreviated to cryo−EM

or SPEM (Frank, 2006b; Henderson, 2004) is closely related to ET as it is capable
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of providing 3D analysis for nano−structures. In SPEM, images of the random

distribution of orientations of identical specimens, such as viruses and ribosome,

are classified according to their viewing angles and reconstructed. SPEM can

provide an isotropic 3D reconstruction if a large number of particle images are

used. The reconstruction procedures of SPEM is very similar to ET, and many

of the methods proposed in this thesis apply to SPEM. SPEM is usually possible

when multiple identical copies of the specimen are possible; this is why SPEM is

very popular in biological fields while ET is widely used in the physical sciences.

It should also be mentioned here that, SPEM can be susceptible to pitfalls and

reconstructing erroneous features especially when electron exposure are limited.

The most recent Einstein from noise pitfall (Henderson, 2013) is a case in point,

in which the investigator thinks that they have acquired true images of their

particles, however; in reality, nearly all of their data are pure noise.

Depth sectioning based 3D−imaging (Nellist et al., 2006; Nellist and Wang,

2012) is among the recent developments in the physical sciences. The reduced

depth of focus in a state−of−the−art STEM systems, which is now just a few

nanometres, enables the possibility to explore the 3D information of the sample

at a nanoscale resolution by focusing the beam to examine features at a specific

layer in the sample, a technique known as optical sectioning. This improvement

arises from the possibility to increase the numerical aperture of the objective lens

that aberration correction enables, which reduces the depth of focus (DFoc) of

the imaging process. For example, the DFoc of a typical uncorrected TEM of 200

kV is around 32 nm. With aberration correctors, the numerical aperture can be

increased to around 35 mrad, which yields a DoF of 3 nm, which is below the

thickness of most samples. Also, this enables an entire 3D image to be formed

by recording a focal series of 2D images similar to the confocal configuration in

light−optical microscopes. Each of these 2D−images can be considered as a slice

of the full 3D image. This technique is also referred as scanning confocal electron

microscopy (SCEM). The SCEM and STEM depth−sectioning have recently re-

viewed by Nellist and Wang (2012). Although the foundations of these promising

techniques have been established, these techniques are still very much in its in-

fancy and may be slightly ahead of its time regarding the technology required

beside it also requires expensive aberration−corrected instruments.

Other techniques for nanoscale 3D−imaging and analysis of materials cannot

go without brief mention, includes atom−probe tomography and mechanical sec-
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tioning using a focused ion beam (FIB). Atom−probe tomography (Miller and

Forbes, 2009) allows single−atom counting of a 3D structure. It takes advantage

of the field evaporation of individual atoms from a sharp tip, which are then

identified via time−of−flight spectroscopy. The trajectory of each atom after

evaporation is used to determine its location within the sample. However, this

technique requires pre−conditioning of the specimen, such as to be conductors

and fabricated into sharp needles. Also, because it counts individual atoms, the

analysed volume is limited to around 100 nm in diameter by 100 nm in depth

with a data−collection time of several hours (Kelly and Miller, 2007).

In mechanical sectioning (Uchic et al., 2011), the sample is milled and then

imaged or analysed. The experiments usually involve material volumes that are

typical > 1000 mm3 with voxel size down to tens of nanometres. This method can

be effective when a combination of spatial coverage and resolution is required for

the analysis. However, experiments with FIB tomography can require significant

time to complete (days), depending on the type of data that is collected and the

volume size that is examined. Also, it may not be suitable for materials that are

sensitive to ion beam or when a specific analytical method requires low−damage

surfaces. The applications of FIB microscopes for 3D materials characterisation

is usually performed at the micro−scale.

Electron tomography is a powerful tool to investigate a variety of nanoma-

terials with nanometer-scale resolution. Electron microscopes equipped with

aberration-corrected electron lenses have pushed the resolution to the atomic level

enabling electron tomography with atomic-scale resolution . Three-dimensional

information in atomic-scale is critical to understand the specific relationship be-

tween the physical−chemical properties and the atomic structure of nanomate-

rials (Bals et al., 2016; Chen et al., 2013; Saghi et al., 2009; Scott et al., 2012;

Xu et al., 2015). A review of the latest progress in the field of atomic-resolution

electron tomography is provided by Bals et al. (2016). Other novel techniques for

atomic−resolution electron tomography had been proposed such as the Big Bang

tomography by Van-Dyck et al. (2012).

2.2.3 Principles of tomographic image reconstruction

The foundational principles of tomography relies mathematically on the Radon

transform (Radon, 1917) and Fourier transform (Bracewell, 1956). In this sec-

tion, the theoretical background of tomography are explained.
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2.2.3.1 The Radon Transform

The reconstruction process of ET involves generating a 3D volume data from

several 2D projections of a real space object, described by the function f(x, y, z),

viewed from different angles. Since the 2D projections in ET are acquired in sin-

gle axis parallel beam geometry (i.e., tilting around the y−axis while the electron

beam is parallel to the microscope optical axis), the volume reconstruction prob-

lem can be simplified by reconstructing each 2D slice f(x, y = SectionNumber, z)

from the corresponding 1D projections (i.e., slice−by−slice 2D reconstruction of

a 3D volume). The process of projecting f(x, const, z) with increment ds along

lines L determined by a tilt angle θ, is referred to as Radon transformation R

(Radon, 1917):

Ryi(l, θ) =

∫
L

f(x, yi, z)ds, (2.4)

The discrete outcome of this projecting process is called Sinogram. Figure.

2.16 shows a graphical presentation of the Radon transform. This relationship

Figure 2.16 |Radon transform, The square object here is defined by func-
tion f on the 2D real space co−ordinates (x, z) and the Radon transform (R)
converts the coordinates of the data into Radon space (l,θ), where l is the line
perpendicular to the projection direction and θ is the projection angle.

can be also described using the polar coordinates (Deans, 1983; Midgley and

Weyland, 2003). A point in polar space (r,θ) is a line in Radon space (l,θ) with

l = rcos(θ− φ). The Radon geometry is illustrated in Figure. 2.17. In principle,
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given a sufficient number of projections, the object f(x, yi, z), can be recovered

from the Radon domain by an inversion of the Radon transform (R−1).

Figure 2.17 |Radon transform of a point object, Relationship between
polar space (r, θ) and Radon space (l,θ) and shows how a point object is projected
through the tilt series. After (Weyland and Midgley, 2004)

2.2.3.2 The Central Slice Theorem

The central slice theorem states that the Fourier transform of a projection of an

object at a given angle is equivalent to a central plane through the Fourier trans-

form of the object at an angle that is perpendicular to the projection direction

(Cramer and Wold, 1936; Deans, 1983; Kak and Slaney, 2001). Hence by taking

1D Fourier transform of projections at many different angles, many Fourier slices

will be sampled. Figure. 2.18 illustrates the theorem for 2D object from its 1D

projections, which can be extended to 3D object in the 3D Fourier space.

The proof of this theorem is simple and direct. Suppose f(x, z) is a 2D object

that is transformed to the Fourier domain as:

F (u, v) =

∫ +∞

−∞

∫ +∞

−∞
f(x, z)e−2πi(xu+vz)dxdz. (2.5)
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Figure 2.18 |Central slice theorem, schematic illustration of the mathemat-
ical concept of the Central slice theorem in 2D. The projection of a 2D object
f(x, z) in real domain is a 1D measurement Pθ(t) in the radon domain. The 1D
Fourier transform of Pθ(t) is equivalent to a central slice Sθ(kx) through the 2D
Fourier transform of the 2D object f(x, z).

moreover, projected along z direction as:

pθ=90(x) =

∫ +∞

−∞
f(x, z)dz. (2.6)

The central slice through the Fourier transform that is perpendicular to the pro-

jection direction can then be driven as:

F (u, 0) =

∫ +∞

−∞

(∫ +∞

−∞
f(x, z)dz

)
e−2πi(xu)dx =

∫ +∞

−∞
pθ(x)e−2πi(xu)dx. (2.7)

Which is equivalent to the 1D Fourier transform of the projection pθ(x). In

principle, the reconstruction can be obtained by applying the inverse Fourier

transform to the sum of all lines through the Fourier domain. However, this will
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result in a blurry reconstruction due to the over sampling of the low−frequency

components as illustrated in Figure. 2.20. This oversampling can be reduced

by filtering (such as Ram−lack and Hamming filters). It should also be pointed

here that, due to the radial symmetry, an interpolation step is required before

the inverted Fourier transform can be applied. This interpolation is not exact

and can be a source of large error especially, with a limited number of projection.

The relationships between spatial, Radon and Fourier domain are illustrated in

Figure. 2.19.

In addition to the Fourier inversion approach, the tomographic reconstruc-

tion process can be also approached using a real space back−projection method.

In general, it is not straightforward to apply either of these approaches due to

practical issues in ET which is reviewed in the following sections.

Figure 2.19 | Illustration, the relations between real, Fourier and Radon space.
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Figure 2.20 |Radial and Cartesian sampling geometry, In the radial sam-
pling, the low−frequency components of the Fourier space are over sampled com-
pared to the high−frequency components. An interpolation is required to convert
the radial geometry into Cartesian before applying the inverse Fourier transform.

2.3 Practical aspects of electron tomography

Electron tomography consists of a number of stages which is summarised in Fig-

ure. 2.21. These stages are reviewed hereinafter. Detailed reviews of ET practices

in the physical sciences are provided in (Pennycook and Nellist, 2011, chapter 8),

(Banhart, 2008a, chapter 11 and 12), (Midgley and Weyland, 2003; Mobus and

Inkson, 2007).

2.3.1 Specimen preparation

Specimen preparation is a very broad subject, there are books devoted to this

topic only. Different approaches exist for many materials, and these approaches

vary depending on many factors such as: material type, time constraints, avail-

ability of equipment, operator skill, and safety (to the microscope and investiga-

tor). For TEM specimens, the sample must be electron transparent (as possible)

and representative of the material under−study. It should also be uniformly

thin, conducting, non−magnetic and stable under the electron beam and in the

laboratory environment.

In general, the specimens can be categorised into two main groups: con-

ventional specimens resting on a support grid and self−supporting specimens

(Williams and Carter, 2009, Chapter 10). The simplest form of specimens for

the first type can be made from several droplets that contain the specimen, dis-
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Figure 2.21 | The main stages of electron tomography.

persed on a support grid with a thin carbon layer. The grid is usually made of

Cu but could be Au, Ni, Be, C or Pt. An example of conventional TEM grid

is showed in Figure. 2.22(ai). Although these support grids are convenient and

easy to handle, they might not have the capability to be tilted to high angles

without shadowing effects (as illustrated in Figure. 2.26). This shadowing effect

occurs when the electron beam is blocked by the grid bars at high tilting angles

which prevent the acquisition of projection images. Therefore, special grids with

larger grid size and thinner bars are more suitable for tomography. These grids

enable higher tilting angles and provide a high percentage of open area and may

be enforced with perforated support foil (e.g., QUANTIFOIL) with a pre-defined

hole size, shape and arrangement. Figure. 2.22(b) show an illustration of to-

mography grids. A self−supporting specimen is one where the whole specimen

consists of one material (which can be a composite). This specimen are usually

prepared using focused ion beam (FIB) and can be shaped as a rod, needle or slab

(Hernndez-Saz et al., 2013, Chapter 9). A detailed review of Specimen prepara-

tion in electron microscopy is given by (Williams and Carter, 2009, Chapter 10).
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Figure 2.22 | TEM Grid, a) illustration of ai) conventional TEM sample sup-
port Cu mesh grid with carbon film. b) illustration of QUANTIFOIL holey
carbon grid with the thin carbon layer, bi) shows an SEM image of the surface
of the QUANTIFOIL (bi was adapted from Quantifoil Micro Tools GmbH).

2.3.2 Acquisition of tilt series - geometry

In ET, the specimen is tilted in a goniometer inside the vacuum of the TEM−column

during acquisition, and an image is acquired at each tilt step. The resulting set

of images is often referred to as a tilt−series. The single−axis tilt acquisition

scheme is the most commonly used geometry in ET, because of its simplicity for

data acquisition and reconstruction.

Single-axis acquisition geometry In an ET experiment, higher resolution

of tomographic reconstruction is achieved, in principle, with higher radial sam-

pling of projections and wider tilting range. However, this radial sampling is

limited due to several technical restrictions. Firstly, the limited space between

the polepieces of the objective lens of the S/TEM (Figure. 2.23) which limits

the angular range over which the specimen can be tilted. Therefore, the tilting

range of a typical specimen holder is limited to ±35o, which leaves a missing
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wedge of un-sampled information that degrades in the quality of reconstruction

and causes artifacts such as elongation in the direction of the optic axis. Figure.

Figure 2.23 | Polepiece space limitation, the maximum tilting angle of θamx
is limited by the space between the polepieces of the objective lens of the S/TEM.
Partially re-drawn from (Williams and Carter, 2009).

2.25 illustrates the effect of finite tilt increment and limited angular tilt range on

the reconstruction of a ring phantom. This pole−piece gap must be kept short

in order to minimise the effects of spherical and chromatic aberration (Arslan

et al., 2006; Brydson, 2011). As dedicated short profile tomography holders were

developed (e.g. Figure. 2.24b) and enabled tilting the sample to high angles

(≈ ±80o) and reduced the missing wedge. These tomography holders are now

common, however another limitation may occur at high tilt angles and limit the

useful projection image that can be acquired. These limitation can be:

• The shadowing effect from the specimen holder or grid (as explained in

section 2.3.1 and Figure. 2.26).

• The increase in projected thickness of the sample at the high tilt angles,

which significantly, reduces the resolution and SNR in images and may

cause the sample to be no longer electron transparent (Figure. 2.27).

• The limited focusing (or more specifically, the depth−of−field) of the beam

may add regions of the specimen that are out of focus (Figure. 2.27).
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To reduce the missing wedge problem, other sampling geometries has been

proposed, namely dual−axis (Mastronarde, 1997; Pawel Penczek and Frank, 1995)

and On-axis tomography (Kawase et al., 2007).

Figure 2.24 | Specimen holders, Shows the Tip of A) Single Tilt Holder Lim-
ited to ±30o, b) Gatan high tilt tomography holder (Model:916) with a maximum
tilt range ±75− 80o which can be reached due to the low profile tip.

Dual-axis acquisition geometry In this geometry, another tilt series of the

specimen is acquired to reduce the missing wedge artifacts in the reconstruction.

As illustrated in Figure. 2.28, two orthogonal tilt series can be acquired around

both the α and β planes1, which when reconstructed, the missing wedge can be

1Other types of double tilt tomography holders are not equipped with a β tilt mechanism,
in this case, it is still possible to acquire another orthogonal tilt series by rotate the sample by
90o in the tomography holder plane (i.e. γ plane) and acquiring another tilt series using the α
tilt.
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Figure 2.25 |Reconstruction artifacts, the effect of missing wedge and finite
tilt increment on tomographic reconstruction of a ring phantom, reconstructed
using weighted back−projection. The columns headings represent variations in
missing wedges of the tilting axis (y−axis) while the rows headings denote the
projections tilt increment for each reconstruction. The evident elongation and
streaks tangent to the edges of phantom and along the projection directions can
be seen in the reconstruction.
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Figure 2.26 | Shadowing effect, the support grid or holder may shadow the
region of interest which limits angular sampling in ET.

reduced into a missing pyramid in the Fourier domain (Figure. 2.29). Dual−axis

tomography leads to a higher quality reconstruction and resolution, however,

there are disadvantages associated with this approach especially for beam sensi-

tive materials and contamination as it increases the exposure time. Also, it is

not straightforward to align and reconstruct the dual tilt series. Although, this

method is successful in biological sciences (e.g., virology as in: Tran et al., 2014)

where alignment using fiducial marker (Frank, 2010, chapter 5) method is used to

align the tilt series and combine the reconstructed volumes, however, this method

is not popular in material sciences and was applied in a limited number of cases

(e.g. Arslan et al., 2006; Goris et al., 2013a; Mastronarde, 1997; Pawel Penczek

and Frank, 1995; Tong et al., 2006; Tong and Midgley, 2006).
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Figure 2.27 | Thickness and focus, the projected thickness of slab−type sam-
ples increases by (1/ cos θ), where θ is the tilt angle, reaching 3.8 times the initial
thickness at a tilt of ±75o. Also blurry images can result when parts of the spec-
imen that contributes to the projection images are out of focus, which is a direct
result of the limited depth−of−field of the electron beam.

Other acquisition geometry As discussed previously in section 2.3.1, it is

possible to shape certain types of specimens as a needle−like using FIB Nanopro-

cessing. Such sample geometry allows ±90o image acquisition, when using a ded-

icated on−axis holder, which eliminates two main problems that the slab−type

TEM samples suffer from (i.e. shadowing and thickness increases) (Haberfehlner

et al., 2014a; Jarausch et al., 2009; Kato et al., 2008; Yaguchi et al., 2008). There-

fore, the missing wedge of information can be eliminated and stable quality of

projection can be obtained even from relatively thick specimens. This greatly

reduces the artifacts and improves the resolution in the final 3D reconstruction.

There is a growing interest in the preparation of needle−like, especially for

spectroscopic tomography where the quality of a sampled signal greatly depends
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Figure 2.28 |Double tilt and rotate stage, schematic diagram showing the
principle of Double−tile stage. The specimen holder can tilt a specimen in two
axes, α tilt in the direction of the X−axis and β tilt in the Y−axis. Also the
specimen can be rotated around ±360o of the γ plane. After Alani et al. (2002)
and Frank (2010, chapter 1).

on the thickness of the specimen (Yaguchi et al., 2008). However, for ET, the

quality of reconstruction can be still limited due to the finite angular increment

of the radial sampling between each projection. Also, there are other difficulties

associated with this method; that is: it can only be applied to samples that can

be self−supporting and are stable under the FIB. Also, it requires a dedicated

tomography holders (the On−Axis rotation tomography holders) that can hold

a cylindrical specimen cartridge. Therefore, this technique is used on a limited

number of studies (Haberfehlner et al., 2014a; Jarausch et al., 2009; Kato et al.,

2008). Two types of incrementing schemes between tilt angles are usually used:

1. Linear data collection scheme: fixed for the entire tilting range.

2. Saxton data collection scheme: continuously decreases with increasing tilt

angle (by a scaling factor of cos θ, where θ is the tilt angle). This scheme is

usually preferred with thin−film samples (e.g., solar cells as in: van Bavel
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Figure 2.29 |Missing wedge, missing wedge in single-axis tomography reduced
into a missing pyramid when using dual-axis acquisition geometry. After Arslan
et al. (2006).

and Loos, 2010) since the thickness of such samples increases steeply with

higher tilting angle. This will result in sampling larger number of images at

higher tilt−angles which help to maintain a stable resolution throughout the

tilt series and thus improve the quality of the final reconstruction (Saxton

et al., 1984).

Other less common tilting geometries had been proposed such as: multiple−axis

(Messaoudi et al., 2006) and conical (Lanzavecchia et al., 2005; Zampighi et al.,

2005). (Frank, 2006a) provided a review of acquisition geometry in ET.

Automated data acquisition Acquisition of TEM tilt series is a very much of

computer-automated (or semi-automated) process, nowadays. This automation

has extended ET to beam-sensitive specimens, especially in biological sciences,

where damage by inelastic processes is a critical problem (Koster et al., 1992,

1997). In the physical sciences, ET can be severely limited by both the knock-

on damage and contamination. Such problems can be significantly reduced with

automated low-dose protocols (Leschner et al., 2010). The ET acquisition process

involves several steps: tilting, image tracking, to minimize shifts between images,

and focusing. The first step involves tilting the specimen to a specific angle and

tracking the features of interest to keep it in a central position ( x and y planes)
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of the field of view. Such image shifts occur usually due to the unavoidable

drift in the sample stage caused by different mechanical vibrations (e.g. motors,

thermal expansion) (Zheng et al., 2010). Such image shifts can be handled using

of various algorithms using a reference image (Koster et al., 1992) or predicted

positions (Zheng et al., 2004) or both (Koster et al., 1997). It is also critical to

keep the sample at the correct eucentric height in order to minimise drift during

tilting and avoid large shifts which result in losing the feature of interest. Small

remaining shifts are handled in the image alignment step (section 2.3.3). Flowing

the tracking step, the need to be focused before acquiring. The sample is then

filtered, and the previous steps are applied till reaching the highest possible tilt

angle.

EM data acquisition for single (Koster et al., 1997) and dual-tilt (Zheng et al.,

2009), have been automated and is provided by many software packages, such as:

commercially by DigitalMicrograph from Gatan and Xplore3D from FEI, or non-

commercially (such as SerialEM Mastronarde, 2005) from Boulder Laboratory.

Although, automated acquisition is promising in reducing the exposure time, it is

sensitive to parameter tuning (such as, focus interval, image filter and acquisition

time) and can be limited in some cases especially when it is not possible to focus

the images automatically.

Focusing during acquisition When a sample is tilted to high angles, the

problem of the lack of uniform focus may arise when different regions of the

specimen are out of focus (Figure. 2.27). This will result with an image of

different focusing values (blurred) for different regions. Such problem can reduce

the quality of tomographic reconstruction. This problem can be reduced using a

dynamic focus option in STEM imaging mode. This allows the STEM to optimise

the focusing values for each raster line. This option becomes more important with

highly convergent beams where the depth-of-focus1 is limited.

Since TEM imaging uses a fixed focus, only a very narrow area can be op-

timally focused on for obtaining images of highly tilted specimens. Therefore,

the introduction of a sufficiently large defocus is required in TEM tomography.

However, the scanning beam can be focused flexibly in STEM. Therefore, the en-

tire image area can be optimally focused on, even in highly tilted specimens, and

1The range of the thickness in the sample plane which can remain focused in the projection.
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defocusing becomes unnecessary (Aoyama et al., 2008). The STEM tomography

system used in this study is capable of providing the dynamic focus function.

2.3.3 Tilt series alignment

One of the major problems during the acquisition process is the shift of specimen

caused by the mechanical (or thermal) instability of specimen holder. Therefore,

it is crucial, for obtaining a high-quality tomographic reconstruction, to carefully

align the tilt series after been acquired. It is also important to align the tilt

series to a common tilt axis with a sub-pixel accuracy. The inaccurate estimation

of the tilting axis causes the distinctive arcing artifacts (as in Figure. 2.30).

Figure 2.30 | Tilt axis misalignment, the arcing artifacts are shown in the
reconstruction of the head phantom. The numbers indicate the magnitude and
the direction of misalignment that was introduced perpendicular to the tilting
axis. Adapted from Kirkland and Hutchison (2007, figure 6.19).

There are two types of alignment methods, fiducial marker-based alignment, and

marker-free alignment. Fiducial marker-based alignment (Kremer et al., 1996)

is performed by placing reference points (heavy-metal markers, often, 510 nm-

diameter gold particles) in the specimen. The coordinates of these markers are
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tracked on each projection manually or automatically, followed by calculating an

alignment model using least-squares procedures (e.g., Frank, 2006a, p. 197) that

minimise the error of the alignment as a function of the angle of the tilt axis and

lateral translations. Gold beads can be localized very accurately, even at a high

tilt angle, because of their typically high contrast compared to the background

and their round shape. This is why, this approach is accurate and very common

in biological applications, where projection images usually sufferer from limited

contrast. Also, it can be efficient in correcting the projection series for image

rotation, and magnification change that might occur during the acquisition1.

However, fiducial markers are usually hard to apply in material science as the

gold beads may interfere with the sample and introduce undesirable artifacts, in

addition to difficulties such as finding enough gold beads at the region of interest

and the very time-consuming labour involved.

Alternatively, the marker-free alignment methods, which do not require any

sample manipulation before data acquisition, can be applied. These methods can

be sub-categorised into correlation methods and feature-based methods (Frank,

2010, chapter 6). Alignment by Correlation methods, such as cross-correlation

(Guckenberger, 1982; Winkler and Taylor, 2006) have been widely used in the

physical sciences, and few studies in biological sciences (e.g., Dai et al., 2013).

Cross-correlation is implemented by computing the cross-correlation2 coefficients

between two adjacent images. Then the relative shift between the two images

can be obtained by the position of the maximum value of the cross-correlation

image. However, this method depends critically on the availability of distinctive

high-contrast objects in the image. This limitation might hinder the accuracy

of alignment compared to marker-based approach, especially with low-contrast

imaging. Also, the effect of noise and tilting results in a blurry cross-correlation

maxima which affect the accuracy of alignment. A band-pass or edge detection

filters are usually applied to reduce this problem. Iterative cross-correlation ap-

proach (as in Winkler and Taylor, 2006) are commonly available in commercial ET

packages. It works by generating a tomogram and correlating with re-projections

from it to minimise the re-projection error. This method is considered a standard

routine in ET applications in material sciences and considered the first step of

1By incorporating these parameters into the alignment model. However, some of such
additional parameters may have a large degree of freedom. Therefore, several gold markers
may be needed to reduce the uncertainty of these parameters.

2The inverted Fourier transforms F−1 of the product of the Fourier transform F of the first
image and the complex conjugate of the F of the second one.
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alignment before applying other methods. Feature-based methods utilize image

features as virtual markers and align images iteratively by minimizing the re-

projection error of virtual markers. The principle of feature-based alignment is

same as that of marker alignment. For more for details of alignment methods in

ET, the reader is referred to (Frank, 2010, chapter 6). In this thesis, different

alignment methods were used and are described in the relevant sections.

2.3.4 Reconstruction of tomographic tilt series

As shown in section 2.3.2 and 2.3.3, ET is performed in a very limited practical

conditions, compared to many other tomographic techniques (e.g., CT). Conse-

quently, reconstructing a faithful representation of the sample is a challenge and

has been studied by many groups since the first application was published by

DeRosier and Klug (1968).

Established ET reconstruction algorithms that are discussed in this thesis

are, weighted back-projection (WBP) and simultaneous iterative reconstruction

technique (SIRT) (Gilbert, 1972). Other methods such as the discrete algebraic

reconstruction technique (DART) and wighted SIRT (W-SIRT) are mentioned

briefly. It should be noted that, before the reconstruction algorithm can be

applied, there is an important condition that needs to be fulfilled, known as the

Projection Requirement.

Projection Requirement As defined by the Radon transform (Equation. 2.4

in section 2.2.3.1), the ideal projection is a summation of line integrals through

the object. This integral summation can be of some physical property (e.g. den-

sity, magnetic or electronic properties of materials). In ET, this ideal projection’

is hard to achieve and therefore, a more relaxed condition is usually accepted

instead, known as projection requirement (Hawkes, 2006). Therefore, it is gen-

erally regarded as sufficient that TEM intensity response, at the minimum, be a

monotonic function of a projected physical quantity (Hawkes, 2006).

For non-crystalline materials (e.g., biological samples), mass-thickness con-

trast is the primary imaging mechanism in TEM. This contrast satisfies, approx-

imately, the projection requirement for ET. However, for crystalline materials,

mass-thickness does not meet the projection requirement due to the coherent na-

ture of TEM illumination which results in a strong, nonlinear interaction between

electrons and the specimen (as in Figure. 2.13). This will lead to a non-monotonic
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image intensity variations for crystalline materials at different tilts. Instead, an

incoherent scanning (STEM) imaging modes (e.g., high angle annular dark field-

HAADF) are employed for crystalline materials tomography (Midgley and Wey-

land, 2003). Consequently, both imaging techniques have been widely used in

ET. If the imaging process is non-linear (e.g. intensity is a decaying exponential

function of thickness), then some pre-processing of the images may be required

before reconstruction is sensible or possible (Van-den Broek et al., 2012).

Weighted back-projection (WBP) The WBP is one of the most widely

used reconstruction technique in ET due to its speed and simplicity. In the sim-

plest form of back-projection (Deans, 1983; Pennycook and Nellist, 1999), each

projection is smeared back into the tomogram at the projection angle. In prac-

tice, given a sufficient number of projections, the tomographic reconstruction

of an object can be obtained by back-projecting all projections as illustrated

in Figure. 2.2. However, back projection reconstructions typically produce to-

mograms with blurred features, as in Figure. 2.31. This degradation of fine

spatial details happens because of the oversampling of the low-frequency infor-

mation (corresponding to larger detail in the spatial domain) near the center of

the Fourier domain, as illustrated in Figure. 2.36 and 2.20, compared to the high

frequencies (corresponding to small spatial details). This can be corrected by

convolving the reconstructed tomogram with a simple ramp-like weighting filter1

to balance the uneven sampling distribution in Fourier domain (Deans, 1983).

WBP is highly parallelisable, and the implementation on GPU graphics cards

or multi-cores CPUs produce a significantly faster reconstructions (Frank, 2010,

chapter 8). However, due to a discrete number of projections acquired and the

missing wedge of information, reconstructions using WBP usually contains se-

rious artifact which complicates the interpretation of the resulted tomograms.

In addition to the presence of noise in the projections which further reduce the

accuracy of the reconstruction process.

It should be remarked that there is a fundamental connection between the

Radon transform and the Fourier transform for the tomographic reconstruction,

as previously discussed in section 2.2.3.2 and Figure. 2.19, such that both theoret-

ically provide equivalent methods. However, the implementation of the forward

1i.e., with an amplitude that increases linearly to a maximum at a high cut-off value.
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Figure 2.31 |Back-projection, shows the difference between the simple back-
projection with blurred features in (b) and the weighted back-projection in (c).

and inverse Radon transforms in real space is often preferred over the implemen-

tation in the Fourier domain as it avoids the interpolation1 errors associated with

of the Fourier-based implementations (Radermacher, 1988). Nevertheless, new

interpolation methods (e.g., Min-Max NUFFT approach (Fessler et al., 2003))

that provide higher interpolation accuracy, have made it feasible to apply the re-

construction in the Fourier domain. Fourier-based methods are computationally

faster than real space methods due to the utilisation of the fast Fourier algorithm

(FFT) (Rockmore, 2000). Such advantage in speed is important for implementing

ET iterative reconstruction methods.

Regularisation reconstruction methods Mathematically, the projection pro-

cess can be discretised as a large linear system of equations (Figure. 2.32) of the

form:

Am×n × xn×1 = Bm×1, B = B̂ + e (2.8)

Where x ∈ IRn is a real-valued vector of size n in the real space IR and represents

the unknown tomogram (a vector representation of a 2D image representing a

slice through 3D object). A ∈ IRm×n is the projection matrix (i.e., discrete Radon

transform operator) that transforms x into projection measurements B ∈ IRm in

the sinogram domain, with m =number of projections × number of pixel in each

projection and e is an error term modelling measurement errors. B̂ denotes the

1To convert the data between the polar co-ordinates and Cartesian co-ordinate systems.
also known as gridding process.
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exact measurements and is under-sampled, when m smaller than n (i.e. Rθ<180◦

) by one or several orders of magnitude indicating severe under-sampling. The

ET problem is underdetermined due to the under-sampling of the tilt series. The

projection matrix A can be constructed using the ray diagram in Figure. 2.32.

To make a reconstruction of the object x, one has to solve the inverse problem

Figure 2.32 | The Projection geometry for tomographic problem., An
element aij in the projection matrix A can be constructed by computing the
contribution percentage of each pixel xi in the projected object x to the ray that
result in pixel bj in the projection matrix B.

in (Equation. 2.8) for recovering the unknown vector x from the measurements

b. However, the inverse of A does not exist and therefore, other methods must

be used, such as singular value decomposition (SVD). SVD provides a means to

obtain the solution of previous equation directly. A can be decomposed as

A = UΣV T =
n∑
i=1

uiσiv
T
i . (2.9)

where, Σ ∈ IRm×n is a diagonal matrix with the singular values, satisfying

Σ = diag(σ1, ..., σn), σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.
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Matrices U ∈ IRm×m and V ∈ IRn×n contains the left and right singular vectors:

U = (u1..., um), V = (v1..., vn).

and contains orthonormal columns (i.e., UTU = V uV = I). If the inverse of A

exist, then it is given by

A−1 = V Σ−1UT , Σ−1 = [
1

σ1
, ...,

1

σn
]. (2.10)

Therefore, when substituting Equation. 2.10 in Equation. 2.8, the reconstruction

problem can now be formulated as in (Equation. 2.11) when expressed in terms

of the generalized SVD associated with the regularization problem. x? is usually

called the Naive solution.

x? = V Σ−1UTB =
n∑
i=1

uTi B

σi
vi. (2.11)

However, the inverse problem described by A is a discrete ill-posed problem (as

characterised by the large condition number of matrix A 1), this also implies

that x? is very sensitive to the noise in measured data B. This might result

in x? to be very far from the exact solution. An approximate solution, that

is less sensitive to the perturbations in the measurements B, can be obtained

by regularisation methods. These methods enforces regularity on the computed

solution (i.e., by introducing additional prior-knowledge constraints or applying

smoothness in some sense) which lead to suppressing the noisy component and

prevent over-fitting during the reconstruction process (Hansen, 2010, chapter 2).

The approximation properties of regularized solutions need to satisfy the dis-

crete Picard condition (PC) for obtaining good regularized solutions. That is if

the coefficients uTi B of Equation. 2.11 on average, decay to zero faster than the

singular values σi, then the regularized solution x∗ is guaranteed to have approx-

imately the same properties as the exact solution x (Hansen, 1990; Varah, 1979).

The Picard condition plays an important role in the analysis of discrete ill-posed

problems.

The behaviour of the regularisation method can be revealed when investigat-

ing the SVD coefficients uTi B and
uTi B

σi
of (Equation. 2.11). The plot of there

1cond(A) = ‖A‖2
∥∥A−1

∥∥
2

= σ1/σn
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coefficients along with the singular values σi is usually referred as the Picard plot.

Figure. 2.33, shows the Picard plot of the tomography problem (Equation. 2.11)

for both the noisy and noise-free measurements B. The horizontal-axes represent

the index i while the vertical shows the values of the coefficients. Higher index

values correspond to the higher frequency information. Singular vectors σi corre-

sponding to large singular values (low i) carry mainly low-frequency information,

while singular vectors corresponding to the smaller singular values (large i) tend

to represent high-frequency information. In Figure. 2.33(a), it is clear that the

coefficients uTi B decay faster than σi, which satisfy the PC. However, in Figure.

2.33(b), despite the initial decay of the SVD coefficients uTi B, they start to in-

crease for larger index values i until they level off at a plateau determined by

the noise. Most regularisation methods can be expressed using a Filtered SVD

Figure 2.33 | Illustration of the Picard condition (PC), (a) shows the Pi-
card plot for the noise free case of Equation 2.11, (b) shows how the SVD com-
ponents changes after adding Gaussian noise to the measurements B. The PC is
satisfied in (a) but not in (b) for σi>103.4 .

expansion:

x? =
n∑
i=1

φ
[k]
[i]

uTi B

σi
vi (2.12)

where φ
[k]
[i] are the spectral filters associated with the regularisation method. Sev-

eral regularisation methods have been proposed to solve ill-posed problems. These

methods include Truncated SVD, Tikhonov or iterative regularisation methods

(e.g., SIRT) for large scale problems. These methods depends critically on the
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regularisation parameters and require tuning to yield a proper solution (Hansen,

2010).

Simultaneous iterative reconstruction techniques (SIRT) The rapid ad-

vancement in computing power and the availability of sufficient memory has made

it possible to implement more-complex reconstruction algorithms, such as the si-

multaneous iterative reconstruction technique (SIRT) (Gilbert, 1972; Herman,

2009; Kak and Slaney, 2001). SIRT constrain the reconstruction process to pro-

duce a tomogram that is consistent with the measured projections. SIRT starts

from an initial reconstruction obtained using WBP. This reconstruction is then

linearly re-projected along the original tilt direction of the experimental pro-

jections and the difference is computed simultaneously, either by subtraction in

additive techniques or division in multiplicative techniques. Then the current re-

construction is improved by adding (or multiplying) the obtained difference. This

procedure iterates tell the maximum number of iterations is reached. Figure. 2.35

illustrates the principles of SIRT.

SIRT is nowadays a common reconstruction method that is favoured due to its

robustness to noise. However, similar to WBP, it still requires a large number of

projections with a reduced missing wedge to produce optimum results. Further-

more, SIRT suffers from what is called semi-convergence (Elfving et al., 2012),

whereby initial iterations converges towards better estimations of the solution

before the reconstruction quality degrades with more refinement steps (Figure.

2.34). The semi-convergence of projected iterative methods has been realised in

several papers (e.g., Benvenuto et al., 2010; Elfving et al., 2012; Herman, 2009).

However, it should be mentioned that the number of iteration is a critical param-

eter and is highly affected by the noise level in the projection and therefore, need

to be estimated independently for each experiment. In practice, this parameter is

estimated visually which can lead to subjective results. Mathematically, the iter-

ative process of the SIRT algorithm for updating vector x̂t+1 can be represented

as in Equation. 2.13, with positive relaxation parameters sequence {λt}.

x̂t+1 = x̂t + λtA
′
M(B − Ax̂t), t = 0, 1, ...tMax (2.13)

Several well-known SIRT variations can be written in the form of (Equa-

tion. 2.13) for appropriate choices of the matrix M . Hansen (2010) and Banhart
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Figure 2.34 | Semi-convergence in tomographic reconstruction, the initial
iterates tend to a better approximation of the exact solution but above a certain
number of iterations they begin to deteriorate.

(2008a) provided a comparison between different SIRT forms. Setting M to the

identity, the classical common variant, Landweber method (Landweber, 1951) can

be used as a least squares optimisation (Gregor and Benson, 2008) of the form:

x̂ = arg min
x
‖Ax̂−B‖22 (2.14)

The spectral filters φspi of the Landweber SIRT method can be expressed as:

φ
[k]
i = 1− (1− ωσ2

i )
k (2.15)

where k is the iteration number (which is the regularisation parameter). Equa-

tion. 2.15 provide an explanation of the semi-convergence behaviour (Figure.

2.34) of the SIRT algorithm. When the number of iteration k increases, more

SVD components are effectively included in the solution. This means with large
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k more high frequency spectral component which might contains noise are being

included in the solution while a low k means that the solution will lack the high

spectral information and can be blurry. A detailed mathematical elaboration

of the established methods in ET can be found in (Deans, 1983; Frank, 2010;

Herman, 2009; Kak and Slaney, 2001; Natterer, 1986) and (Penczek, 2010).

Recent reconstruction methods The quality of reconstruction can be fur-

ther enhanced by incorporating further knowledge about the specimen during the

reconstruction process. Several methods had been proposed recently for ET re-

construction and employs prior knowledge constraints about the specimen, such

as grey level as in the discrete tomography methods (such as the discrete alge-

braic reconstruction technique DART (Batenburg et al., 2009) which can provide

a good approximation of the reconstructions if there are information about the

gray-level/density of the specimen’s features and it is possible to describe the

features in discrete terms. This technique had gained interest in atomic resolu-

tion electron tomography where it is possible to harness the fact that crystals are

discrete assemblies of atoms (atomicity) (Jinschek et al., 2008). Other recently

proposed ET algorithms include:

• Weighted-SIRT (WSIRT): This method showed an improved resolution

and reduced reconstruction error compared to SIRT. It is based on a hybrid

reconstruction approach than combines WBP and SIRT (Wolf et al., 2014).

• Direct iterative reconstruction of computed tomography trajecto-

ries (DIRECT): This method showed an improved resolution and contrast

from noisy and incomplete dataset compared to SIRT algorithm (Lange

et al., 2011).

• Object-based reconstruction methods: They employ prior knowledge

about the shape and geometry to refine the reconstruction. These methods

are considered a different class of the ET reconstruction methods and is

usually based on modeling the imaging process (Alpers et al., 2013).

A new class of ET 3D reconstruction methods that employ the recent new

paradigm shift in signal processing (known as compressed sensing) are gaining

popularity. These methods use prior knowledge about signal sparsity to overcome

the problems arising from under-sampling and the missing wedge (e.g., DLET

Al-Afeef et al., 2016). Chapter 4, address these methods.
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Figure 2.35 | SIRT flowchart, illustrating how iterative reconstruction is im-
plemented for a t = tMax iterations. After Kirkland and Hutchison (2007, chap-
ter 6).
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Reconstruction resolution and artefacts Due to the limited sampling of

tomographic-acquisition in ET, the reconstruction from a single-axis tilt series

result in anisotropic resolution. This also lead to serious artefacts in the recon-

structions (Friedrich et al., 2009, 2005; Midgley and Weyland, 2003; Wang et al.,

2012).

The missing wedge causes two main problems. The first problem is that cer-

tain structures may be misshapen or even completely absent from the tomogram

depending on their orientation to the tilting axis (Sugimori et al., 2005; van Bavel

and Loos, 2010). The second problem, is the elongation ezx of the reconstructed

volume in the direction parallel to the electron beam (i.e. this result in distorted

features and the distance measurements along the z-axis have to be taken with

care as shown in Figure. 2.25) (Radermacher and Hoppe, 1980). The work of

Radermacher (1988) showed that this elongation ezx depends on the size of the

missing wedge (viz., the maximum tilt angle θα) and is related using Equation.

2.16.

ezx =

√
θα + sin θα cos θα
θα − sin θα cos θα

(2.16)

Using Equation. 2.16, elongation of 1.3 times is expected in the z-direction for

a θα of ±70o, 1.55 times for ±60o, and 1.9 times elongation for ±50o which are

a significant distortion. Experimental studies, however, showed that Equation.

2.16 provided an over-estimation of the elongation. A detailed study by Kawase

et al. (2007) on the observed missing wedge impact on a rod-shaped specimen

(that are tilted around ±90o), showed the following experimentally measured

elongation factors: 1.10 for ±70o and 1.23 for ±60o. Other studies (e.g. van

Bavel and Loos, 2010, on gold particles) support this observation.

The limited angular sampling causes shading or streaking (Figure. 2.25) in

the reconstructed image, seriously degrades the reconstruction resolution and

make it vary with direction (CAO et al., 2009). The resolution along the tilt axis

direction is determined by the resolution of the original TEM projection image

and the alignment accuracy. The resolution along the axis that is perpendicular

to both the beam direction and the tilt axis (y), depends on the number of

projections (N) and the diameter (D) of the reconstructed volume as derived by

Crowther et al. (1970) as in equation. 2.17. When the specimen’s thickness T is
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known, D can be computed as D = T
cos θα

.

dy =
πD

N
=

πT

N cos θα
(2.17)

Figure 2.36 | Under-sampling in ET, Shows the tilt series sampling in the
reciprocal space. Each dotted line represent a tilt projection (Fourier slice) at
θ. The angular increment on each Fourier slice varies with δθ. The data is
oversampled at low spatial frequencies near the centre, which yields a blurred
version of the object if not compensated for in the reconstruction method. The
missing wedge of information is illustrated between θmax and −θmax.

Figure. 2.36 illustrates the geometry of Equation. 2.17. The maximum res-

olution through the specimen thickness (i.e. along the electron beam direction)

can be approximated using resolution dy, however, due to the missing wedge, it

is subject to additional deterioration by a value of ezx as shown by Radermacher

(1988) in Equation. 2.18.

dz = dy.ezx =
πT

N cos θα

√
θα + sin θα cos θα
θα − sin θα cos θα

(2.18)
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It should be noted that, although the resolution approximation in Equation.

2.17 and 2.18 are frequently cited in EM literature, the general validity of these

expressions has been questioned (Friedrich et al., 2007; van Bavel and Loos, 2010;

Weyland et al., 2001; Ziese et al., 2002) and by Frank (2006a, chapter 10). Other

methods for measuring resolution had been proposed (Chen et al., 2014; Mezerji

et al., 2011; Vulović et al., 2013).

Such methods are based on empirical measuring. However, this method can

be difficult to apply and usually not consistent with their predicted resolution.

In general, no straightforward widely accepted approach exists (Frank, 2006a,

chapter 4). The general consensus is that, the tomographic study of any particular

object should be unique and the resolution should be derived from other factors

such as the noise level of data (SNR), number/angular distribution of projections

(Frank, 2006a, chapter 10), shape of the object and type of the reconstruction

method (Midgley and Weyland, 2003).

2.3.5 Tomogram segmentation and quantification

In order to obtain a quantitative analysis, the 3D reconstructed volume requires to

be segmented. During this segmentation step, each voxel (or gray level) in the re-

constructed tomogram needs to be assigned to a specific features or compositions

that represent the original object (e.g., nanoparticle and background). Following

this, quantitative information (e.g., volume percentage and surface area) can be

obtained.

The quality of segmentation is highly affected by the quality of the 3D re-

construction. Therefore, segmentation is usually achieved by manual procedures,

where the features in a 3-D reconstruction are interpreted by highlighting voxels

(or boundaries) belonging to the features of interest in each slice of the recon-

structed 3D tomogram. This is very time-consuming, labour intensive and usually

led to subjective interpretation. Alternatively, automatic or semi-automatic seg-

mentation methods can be used. The importance of such methods has increased

over recent years especially for biological sciences.

Several advanced segmentation methods had been proposed mainly from the

biological ET community. The most common and straightforward automatic

segmentation method is by thresholding (e.g., Otsu method (Otsu, 1975b) or

multi-level Otsu method). In this method, the boundary between materials is

determined by choosing the optimal separation grey level which is specified by
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minimising the interclass variance of the tomogram histogram. This method can

be effective with high-quality images with sharp intensity difference between dif-

ferent materials. However, in practice, such sharp boundaries are rarely achieved

due to reconstruction and imaging artifacts, and, therefore, these methods may re-

sult in over/underestimation of the boundaries between different features and the

background. More sophisticated automatic segmentation methods proposed, i.e.

Watershed (Beucher and Meyer, 1992; Vincent and Soille, 1991), gradient vector

diffusion (Bajaj et al., 2003). Recent reviews summarising other advanced seg-

mentation methods are provided by Frank (2006a, chapter 11) (Banhart, 2008a;

Fernandez, 2013; Volkmann, 2010).

It is critical to point out that, it is often preconceived that segmentation proce-

dure needs to be developed as a case-by-case basis. The segmentation algorithms

outcomes are highly influenced by the quality of tomographic reconstructions and

often fails when applied to poor quality and noisy reconstruction. Therefore, a

high fidelity reconstruction (as clearly demonstrated in chapter 3) will simplify

the segmentation procedures and enables higher quality quantification results.

2.3.6 Visualization

Optimal visualization of the 3D reconstruction is critical for successful charac-

terization and quantification of 3D structures. Several visualization techniques

can be used to interpret the 3D volume. In this thesis, three main techniques

of visualisation, are used: orthoslices, volume rendering and surface rendering.

Figure. 2.37 shows an illustration of these techniques for the 3D volume of Feline

Calicivirus (FCV). Orthoslices, are the most trivial way of visualisation, where

2D slices through the 3D volume are shown. The intensity in orthoslice images

represent the intensity distribution (or often the density) of a feature in the 3D

structure, which differ from the 2-D projections intensity that represent a sum-

mation of the whole structure in a single tilting angle direction. Orthoslices

are usually carried out perpendicular (orthognal) to the primary axes (x,y,z) and

accurately reveals the true distribution of intensity in the 3D reconstruction, com-

pared to other visualisation methods (Kirkland and Hutchison, 2007, chapter 6).

An orthoslice through the 3D reconstruction of FCV is shown in Figure. 2.37 (a).

Volume rendering, on the other hand, is a very intuitive method in which

properties of interest are emphasised by setting voxels with different intensity

ranges, to a specific optical characteristic, such as Luminance, colour, texture
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Figure 2.37 | Feline Calicivirus, (a) An orthoslice through the 3D recon-
structed volume of FCV. (b) showes a volume rendering and (c) isosurface ren-
derings of the FCV volume which provides an direct 3-D qualitative information.
The segmented model of the virus is provided by Bhella and Goodfellow (2011).

or transparency. This type of rendering can give immediate information about

the localization of features in the 3D volume. Therefore, they are preferred to

visualising internal structures and subtle variations. An illustration of a volume

rendering rendering is given in Figure. 2.37(b).

The surface rendering (isosurface) reduces the volume data in to a set of

surfaces. A set of polygons is generated by selecting a single threshold intensity

within the volume data. They are favoured for revealing certain morphologies

and topography in a fast manner (e.g., Figure. 2.37(c)).

2.4 Conclusions

In this chapter, the background material of this thesis has been introduced and

discussed. An overview is given of the general principle of the transmission elec-

tron microscopy (section 2.2) and the primary S/TEM imaging modes that is

used in this thesis (chapter 4, 5 and 6).

The foundations of electron tomography (section 2.1) is reviewed. It is shown

that ET a 3D characterisation technique that is now widely used for materials

in both the physical and biological sciences. The practical aspects of ET was

discussed (Section 2.3). It has also underlined several limitations that need to be

conquered to improve the fidelity of ET studies. The limited angular sampling

of ET acquisition lead to the degradation of the ET reconstruction and limit its

fidelity. This motivates the development of advanced reconstruction methods in
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chapter 4 by incorporating additional prior knowledge in the ET reconstruction

process, to produce high-fidelity reconstructions. This is preceded by a quality

assessment study in chapter 3. In chapter 5, advanced signal modes in ET is

used to reveal the chemical information of VC nanoparticles. Finally, additional

cases from both material and biological science are examined using ET via both

traditional and the proposed advanced ET method in chapter 6.
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”If you can not measure it, you can not improve it”
Lord Kelvin, 1883

3
Quality assessment of electron

tomography for TEM/STEM imaging

This chapter studies the influence of the experimental conditions on the quality of

the reconstructed ET tomogram. Regular shaped nanoparticles are used for test-

ing tomograms obtained using the conventional weighted backprojection (WBP)

and simultaneous iterative reconstruction technique (SIRT) methods against dif-

ferent experimental setups. The volumetric reconstruction is then followed by

quantitative quality analysis. It is concluded that the fidelity of the post -

reconstruction quantitative analysis and segmentation is limited, mainly by the

fidelity of the tomogram. This motivates the development of an improved tomo-

graphic reconstruction process, as addressed in the subsequent chapters.
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3.1 Introduction

As introduced in chapter 2, the ET process begins with the acquisition of a tilt

series which is then reconstructed using an algorithm to produce a 3D tomogram

to be segmented for quantitative analysis. There are many experimental parame-

ters that need to be determined before acquisition, which include: tilt increment,

electron dose, acquisition time, and acquisition scheme. Following the acquisition,

image alignment parameters (such as the type of alignment procedure) and image

reconstruction parameters (such as, type of algorithm used, and the number of

iterations) needs to be chosen and can affect the quality of the tomogram.

It might be correct to assume that a lower tilt increment and a higher acqui-

sition time will lead to a higher quality tomograms, However, this will increase

the electron dose and might damage the sample and hinder the ability to image

the sample in its original state as mentioned in section 2.1.6 in chapter 2. There-

fore, the proper trade-off needs to be found between minimisation of damage and

reconstruction quality.

WBP and SIRT methods are commonly used in ET. WBP has been one of

the most widely used algorithms due to the high computational efficiency and

the linearity of its steps. However, the main disadvantage that hinders WBP is

the sensitivity to the tilt under-sampling which produces streaking artefacts that

interfere with the reconstructed object. On the other hand, the SIRT method,

although it is computationally more expensive, generates reconstructions of a

better visual quality and is more robust to noisy data. Consequently, SIRT has

become an increasingly popular ET reconstruction method.

The performance of the above algorithms has been mainly examined using

experimental data (Goris et al., 2013b; Leary et al., 2013a; Saghi et al., 2011),

which in general lack any ground−truth information about the exact 3D struc-

ture of the specimens. In this chapter, a detailed quantitative study is provided

for both WBP and SIRT using nanocubes and nanospheres. Both of these mate-

rials are of well−known morphology and have regular geometrical shapes which

makes the quality assessment of the ET reconstruction quantifiable with higher

accuracy. The study includes the effect of three main experimental factors: the

tilt increment, missing wedge size, tilt axis mis-alignment.
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3.2 Experimental methods

3.2.1 Materials and sample preparation

In this work, magnesium oxide (MgO) nanocubes and nanospheres are used to

assess the quality of 3-D reconstruction. The MgO nanoparticles (or so-called

MgO smoke particles) are electron transparent and stable under the electron

beam therefore, they can be directly examined by TEM (Williams and Carter,

2009). They are constituted by individual, nearly perfect, separated regular cubic

microcrystals dominated by the high crystallographic quality, characterized by

well-defined low index [001], [010] and [100] faces (McKenna et al., 2007; Scarano

et al., 2004; Spoto et al., 2004), with a low concentration of defects, which makes

them perfect samples to test the accuracy of 3D reconstruction. The morphology

and associated properties are discussed in more details by Klabunde (2004).

The polystyrene nanospheres are also optimal for testing tomographic recon-

struction methods. These polystyrene particles are usually used as a size standard

for calibration in particle size analysis. The nanospheres that were purchased from

Thermo Scientific Inc.with an average diameter of 46 nm ± 2nm.

3.2.2 Instrumentation and experiment

MgO smoke nanocubes were prepared by burning magnesium ribbons in the am-

bient air. The use of this method for producing samples for TEM characterisation

was first described by Heidenreich (1942). The smoke was directly collected on

TEM Quantifoil grids and stored in a vacuum desiccator to reduce the contact to

humidity which might reduce the sharpness of these cubes, as reported by Gey-

sermans et al. (2009). The tomography experiment was performed on a JEOL

ARM200F STEM equipped with a cold field emission gun and operated at 200kV.

The sample was held in a JEOL tomography holder which allows a nominal tilt

range of ±80◦, although, in practice, we were limited to a range of ±75◦ because

of shadowing from grid bars on the sample support; images were recorded at 2◦

intervals in this range. Figure 3.1(a and b) shows HAADF-STEM images ac-

quired at different tilt angles. The edge length of the nanocubes is on the order

of a few tens of nanometers. Figure 3.1(c and d) shows the reconstruction of

these tilt series using both WBP and SIRT.
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3.2 Experimental methods

Figure 3.1 | Example MgO HAADF-STEM projection images acquired at
(a)+0.4◦ and (b) +71.4◦. The detector was set to make sure that it will not
saturate as the thickness increases when tilting the cubes and avoid truncation
error in the projection images. The cube that is highlighted in (a) was selected
for quantitative study and shows no saturation when it is tilted to its maximum
thickness in (b) as can be seen in the intensity profile. The second row shows
a voxel projection visualisations of the reconstruction of this tilt series using (c)
WBP and (d) SIRT. These visualisations were created using the volume-rendering
module in AMIRA with a restricted display windows and the alpha value (overall
transparency) decreased until the density from the object(s) prevailed over the
background.
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The nanosphere sample was prepared by depositing the nanoparticles from

suspension onto a holey carbon TEM grid. The particles were first, thoroughly

dispersed by immersing the suspension of the nanospheres in an ultrasonic bath

for 10 minutes then diluting using distilled water. Finally, a drop of the suspen-

sion with nanoparticles was deposited onto the TEM grid. The sample was then

left to dry in under the heat of a table lamp before it was examined in the TEM.

These nanospheres were also used as fiducial markers in the organic photovoltaic

solar cells sample (section 4.5 in chapter 4). The electron tomography tilt series

was acquired over a tilt range of ±62◦, with an increment of 1◦ between consecu-

tive projections using an FEI Tecnai T20 TEM operated at 200 kV and equipped

with a Gatan GIF2000 Imaging Filter. The bright field transmission electron mi-

croscopy (BF-TEM) imaging mode was used. Figure 3.2 shows BF-TEM images

of a nanosphere with diameter 64nm and their reconstruction.

Regarding the reconstruction algorithms, all reconstructions were performed

using IMOD (Mastronarde, 2006). WBP tomograms were based on ramp filter.

As mentioned in section 2.3.4 in chapter 2, determining the optimal iteration num-

ber in SIRT is critical, and this is usually selected empirically. Large numbers of

iterations will produce a solution that is similar to the weighted back projection

algorithm (which can be problematic (Hansen, 2010)), while very small iterations

will produce less accurate reconstruction and lose important features of the to-

mogram. In this work, a strategy was adopted for deciding the optimal SIRT

iteration number (detailed in section 4.4.2 in chapter 4). The iteration number

was selected after investigating which a number of iterations gave the maximum

quality regarding the Structural SIMilarity (SSIM) metric1 (Wang et al., 2004)

by running SIRT for 100 iterations on a simulated projections and recording the

quality metric values for each iteration. It was found that an iteration number

of 15 gives the optimal SSIM values which are also in agreement with the IMOD

guidelines2.

3.2.3 Quality evaluation methods

A quantitative comparison is made with respect to quantitative metrics: the re-

constructed cube’s diagonal length, surface area, volume, in addition to resolution

1For further details about the SSIM metric, please refer to section 4.4.1 in chapter 4 of this
thesis.

2To select an iteration number in the range 8 to 25.
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Figure 3.2 | Example nanosphere BF-TEM projection images acquired at (a)
+0◦ and (b) +62◦. The nanosphere is attached to the carbon layer with what is
believed to be ice as in (b). The second row shows the reconstruction of this tilt
series using (c,d) WBP and (e,f) SIRT.
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measuring. The resolution measure in ET, as described earlier in section 2.3.4

in chapter 2, several techniques have been aimed to approximate the resolution

in ET but no straightforward widely accepted method exists yet. Classical stud-

ies of resolution in ET by Crowther et al. (1970) and Radermacher (1988) are

only based on sampling considerations. Other approaches have been introduced,

but no straightforward method exists (Harauz and van Heel, 1986; Koster and

Bárcena, 2007). It should be also noted that, since the achievable resolution

is also influenced by blurring and noise in the reconstruction, both need to be

considered in the resolution measurement as well.

In this work, edge intensity profiles have been used to determine the resolu-

tion measure. It is based on the assumption that: the intensity profiles taken

across the reconstructed particle, should be, in theory, constant for both the

HAADF and BF-TEM imaging modes as they satisfy the projection requirement

for tomography for this particular samples. Since the morphology of the test

object is well known, it is possible to evaluate the resolution in an accurate way

by comparing the simulated ground-truth model with the reconstruction. The

method begins by taking edge intensity profiles across three orthogonal directions

of the ground-truth object and the reconstruction. This is to take accounts for

anisotropy caused by the missing wedge which makes the resolution vary across

X,Y and Z dimensions.

In the ground-truth model, the edge intensity profile should be a step function.

In practice, this step function is convolved (i.e. degraded) with a one-dimensional

point spread function (1D PSF) which is called the edge spread function (ESF)

(Carazo, 1992) leading to a sigmoidal profile. Information about the intensity

range, the background intensity, the edge position, and the edge steepness can be

extracted, by curve fitting the measured profiles to an appropriate ESF contain-

ing these four unknown parameters. The resolution is defined by the inverse of

the edge steepness which can be obtained by the full-width-at-half-maximum of

the first derivative of the fitted ESF. Each measured profile is characterised sep-

arately to obtained a resolution measure for the X, Y, and Z directions. Similar

approaches have been used previously to measure the accuracy of optical imaging

devices (Yin et al., 1990) and for ET (Mezerji et al., 2011).
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3.3 Influence of reconstruction methods

In this section, the effect of the reconstruction algorithm (mainly, WBP and

SIRT) is investigated both visually and quantitatively. Following the reconstruc-

tion of the tilt series for both samples, the tomograms were segmented using au-

tomated procedure based on the Otsu threshold method (Otsu, 1975b) to avoid

the subjective nature of the manual segmentation. An arithmetic cube (for the

MgO sample) and sphere (for the nanosphere sample) was fitted to each surface

to provide a visual assessment as in Figure 3.3 and Figure 3.4. The fitting strat-

egy was to find a transform A that applies rotations and a uniform scale factor

that minimises the root mean square distance (Euclidean measure) between the

points on the segmented model surface to the corresponding points on the ref-

erence octahedron surface. This was performed using the iterative closest point

algorithm (ICP) (Besl and McKay, 1992). Movie Ch4-M01 and Ch4-M02 in ap-

pendix A, shows a 360◦ volume rendering views and the segmented surface of the

MgO nanocubes and the nanosphers respectively.

The resolution procedure was applied to all reconstructions in this work in

addition to measuring the object’s diagonal. Table 3.1 shows the quantitative

measures for the MgO reconstruction.

It was not possible for the analytical fitting procedure to fit the model to the

data points to extract the resolution from the nanosphere reconstructions. This

was due to the noisy reconstruction. Therefore the reconstructions were filtered

before resolution extraction as in table 3.2. The filtering was using the anisotropic

diffusion (AD) technique (Perona and Malik, 1990). The AD filtering is typically

used in image processing to remove noise from digital images with minimal edge

blurring (Weickert, 1998). It should be noted that this denoising step further

degrades the resolution of the reconstruction.

Both qualitative and quantitative measures show that WBP does not provide

a reliable reconstruction and good resolution in the missing wedge direction com-

pared to SIRT. In the next section, the robustness of each algorithm is tested

against the radial under-sampling.
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3.3 Influence of reconstruction methods

Figure 3.3 | Segmented surface of the MgO reconstruction, using the full tilt
series, fitted to an arithmetic cube. The SIRT reconstruction shows a reduced
elongation compared to WBP.

Figure 3.4 | Isosurface of the nanosphere reconstruction, using the full tilt se-
ries, fitted to an arithmetic sphere. The SIRT reconstruction shows a reduced
elongation compared to WBP.
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3.4 Effect of the radial under-sampling

In this section, the robustness of tomography reconstruction using WBP and

SIRT is quantified. The tilt series of both the MgO and nanospheres are re-

duced to different radial under-sampling angles and different quality measures

are computed.

Figure 3.5 and figure 3.6 show XZ-orthoslices through reconstructions. These

slices are presented with a linear mapping between the maximum and minimum

values of pixel in each image. The missing wedge direction is parallel to the z−axis

on the orthoslices which is also parallel to the optic axis and perpendicular to the

x−axis.

The results show that the quality of reconstruction deteriorates severely with

reducing the number of tilts in the reconstruction. This is also confirmed by the

resolution degradation in all axes (e.g. the z−axis, approximately by a factor of

−1.25 for θ=2o to 8o). Also, WBP shows the worst visual quality and resolu-

tion. The SIRT results in Figure 3.5, shows more robust tomograms compared

to WBP, which drops significantly with increasing the tilt increments (especially

after 6o which shoes that the auto-segmentation procedure failed to produce cu-

bic shaped reconstruction). SIRT continues to produce similar results even with

high degree of under-sampling (8o), however, beyond this, the segmented surface

failed to preserve the cubic shape of the nanocube (as indicated by the arrows).

In figure 3.6, despite the noisy tilt series, the SIRT tomograms have higher con-

trast than the WBP. It should be mentioned here, that the auto-segmentation

procedure failed to generate any meaningful surface from the tomograms in figure

3.6 without applying filtering.

Table 3.1 lists the quality limits for the MgO nanocube case. Both of the

volume and surface area values of the segmented cube are more robust for the

SIRT tomograms while increasing rapidly in WBP case, indicating sensitivity

to under-sampling. Also, the diagonal elongation, which was extracted from

the segmented surface, is more consistent in the SIRT case. Table 3.2 list the

quality limits for the nanosphere case, which also confirms these observations.

The resolution degradation was larger, and it was not possible to measure the

resolution of WBP tomograms with tilt increments of 16o and 20o due to noisy

reconstruction. It can be seen that the SIRT provide a higher quality than WBP

tomograms. WBP yield a worse resolution in the low under-sampling cases.
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3.4 Effect of the radial under-sampling

Figure 3.5 | Shows the radial under-sampling effect on the quality of the MgO
reconstruction, with the tilt increment marked for each row. Each row shows
an orthoslice extracted from the centre of the reconstructed MgO nanocube with
an edge length of 66nm and a segmented surface fitted the ideal cube (red line).
The tilt series was reduced in each case to represent a tilting between ±75◦ with
various increments as indicated by the number. The SIRT results show a more
robust quality compared to WBP.
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Figure 3.6 | Shows The radial under-sampling effect on the quality of the
nanosphere reconstruction. Each row shows an orthoslice extracted from the
centre of the nanospheres with a diameter of 46nm. The tilt series was reduced
in each case to represent a tilting between ±62◦, with various increments as in-
dicated by the numbers for each row.
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3.5 Effect of the missing wedge

Table 3.1 | Quality measure for under-sampling of the MgO nanocube case.

Method Tilt Volume Area 3D Resolution (nm)

θ (%) (%) x−axis y−axis z−axis

WBP

2o 1.18 1.03 1.5±0.3 1.3±0.3 4.7±0.3

4o 1.23 1.07 2.1±0.3 1.5±0.3 5.1±0.3

6o 1.23 1.07 2.9±0.3 1.8±0.3 5.9±0.3

8o 1.43 1.39 3.6±0.3 2.1±0.3 8.3±0.3

12o 2.21 5.10 4.9±0.3 3.9±0.3 21.1±0.3

16o 2.59 6.66 – – –

20o 3.35 7.70 – – –

SIRT

2o 1.09 0.97 1.4±0.3 0.3 ±0.3 3.4±0.3

4o 1.09 0.97 2.0±0.3 0.8±0.3 4.3±0.3

6o 1.10 0.97 2.3±0.3 0.9±0.3 6.1±0.3

8o 1.11 0.97 2.5±0.3 1.1±0.3 7.2±0.3

12o 1.13 0.98 2.8±0.3 1.9±0.3 8.7±0.3

16o 1.22 1.01 3.1±0.3 2.1±0.3 9.2±0.3

20o 1.46 1.15 5.2±0.3 3.8±0.3 12.6±0.3

3.5 Effect of the missing wedge

As detailed in section 2.3.4 in chapter 2, the limitation of the missing wedge cause

image artifacts that prominently appear in the XZ orthoslise. The missing wedge

causes the elongation ezx of the reconstructed objects in the direction parallel to

the electron beam (i.e. along the z−axis) (Radermacher and Hoppe, 1980). The

work of Radermacher (1988)) showed that this elongation ezx depends on the size

of the missing wedge (viz., the maximum tilt angle αmax) and is related using

Equation. 3.1.

ezx =

√
αmax + sinαmax cosαmax
αmax − sinαmax cosαmax

(3.1)

Using Equation. 3.1, an elongation of 1.3 times is expected in the z-direction for

a θα of ±70o, 1.55 times for ±60o, and 1.9 times elongation for ±50o which are

considered a significant distortion. Experimental studies, however, showed that

Equation. 3.1 provided an over-estimation of the elongation. A detailed study

by Kawase et al. (2007) on the observed missing wedge impact on a rod-shaped
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3.5 Effect of the missing wedge

Table 3.2 | Quality measure for under-sampling of the nanosphere dataset. The
nanosphere had a recorded diameter of 46nm acquired over tilt range ±62◦ and a
pixel size of 0.29nm per pixel. The resolution fitting procedure was applied after
filtering the tomogram using the anisotropic diffusion technique.

Method Tilt 3D Resolution (nm)

θ x−axis y−axis z−axis

WBP

1o 4.7±0.3 4.5±0.3 6.6±0.3

2o 5.1±0.3 4.9±0.3 7.2±0.3

4o 6.4±0.3 5.8±0.3 11.5±0.3

6o 7.9±0.3 7.3±0.3 24.2±0.3

8o 9.7±0.3 8.5±0.3 29.7±0.3

16o 13.7±0.3 12.3±0.3 –

20o – – –

SIRT

1o 2.0±0.3 2.4±0.3 6.1±0.3

2o 3.8±0.3 3.4±0.3 7.1±0.3

4o 4.9±0.3 4.5±0.3 9.1±0.3

6o 6.1±0.3 5.7±0.3 11.1±0.3

8o 7.5±0.3 5.3±0.3 15.1±0.3

16o 9.0±0.3 7.7±0.3 23.1±0.3

20o 11.3±0.3 8.8±0.3 –

specimen of spherical zirconia grains ( tilted around ±90o), showed the following

experimentally measured elongation factors: 1.10 for ±70o and 1.23 for ±60o.

Other studies (e.g. van Bavel and Loos, 2010, on spherical gold particles) support

this observation.

In this work, 3D tomograms were reconstructed from exactly the same tilt

series of the MgO and nanosphere samples, and were repeated with various max-

imum tilt angles, ±αomax. Figure 3.7 shows the XZ cross-sections of the MgO

specimen from αomax = ±70o to ±55o in 2 increments. Figure 3.8 shows the

XZ cross-sections of the nanosphere specimen from αomax = ±62o to ±32o in 1

increments.

As can be observed, the missing wedge degrades the reconstruction with lower

sampling (as can be seen with the volume and surface area percentage increase

in table 3.3). The elongation factor ezx was calculated based on the segmented

surfaces and the fitted mathematical model. Values of the elongation factors
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that was obtained experimentally from the MgO cube in table 3.3, indicates that

Equation. 3.1 provides an under-estimation of the elongation of the MgO cube

based on WBP reconstruction and a fair-estimation of the elongation of the MgO

cube based on SIRT reconstruction. However, for the nanosphere case, the values

of ezx in table 3.4 shows that Equation. 3.1 provides an over-estimation of the

elongation for this particular morphology. The nanosphere case is consistent with

the observation in the empirical studies by Kawase et al. (2007); van Bavel and

Loos (2010). This indicates that, an accurate estimation of elongation in ET

needs to include consideration of the shape of the object under study.

The resolution measurements of the XZ slices are provided in table 3.3 for the

MgO case and, table 3.4 for the nanosphere case. It shows that the resolution

in the Z−direction degrades when the missing wedge increases. For instance, the

resolution of WBP reconstruction in table 3.3 decreases by a factor of (≈ −2.6) for

αmax=70o to 55o, and a factor of (≈ −2.3) for the SIRT results. The degradation

was higher for the nanosphere sample. These quantitative results shows how

severe missing wedge artifacts can affect the fidelity of the reconstruction.

Table 3.3 | Quality measures for the missing wedge study on the MgO nanocube
dataset.

Method Tilt Volume Area eexperimentalzx etheoreticalzx 3D Resolution (nm)

αmax (%) (%) (%) (%) z−axis

WBP

±70o 1.29 1.12 1.56±0.3 1.31 4.9±0.3

±65o 1.38 1.21 1.73±0.5 1.42 6.3±0.3

±60o 1.72 1.63 2.35±0.5 1.55 8.4±0.3

±55o 2.89 3.99 2.24±0.7 1.71 12.9±0.3

SIRT

±70o 1.13 1.01 1.27±0.2 1.31 3.6±0.3

±65o 1.18 1.11 1.42±0.3 1.42 3.9±0.3

±60o 1.25 1.24 1.54±0.5 1.55 5.7±0.3

±55o 1.61 2.11 1.68±0.6 1.71 8.4±0.3
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3.5 Effect of the missing wedge

Figure 3.7 | Shows the effects of missing wedge under-sampling on the quality
of the MgO nanocubes reconstruction. Each row shows an orthoslice extracted
from the centre of the reconstructed tomogram and the corresponding segmented
volume fitted to ideal cube(red line). The tilt series was reduced in each case to
represent a missing wedge various sizes as indicated by the numbers. Note the
increased elongation of the object and the reduction of density inside the cube
area (i.e. Cupping artefact) in the reconstructions of SIRT.
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Figure 3.8 | Shows the effects of missing wedge under-sampling on the quality of
the nanosphere reconstruction. Each row shows an orthoslice extracted from the
centre of the reconstructed tomogram and the corresponding segmented volume
fitted to ideal sphere. The tilt series was reduced in each case to represent a
missing wedge various sizes as indicated the numbers.
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Table 3.4 | Quality measure for the missing wedge study on nanospheres. The
resolution fitting procedure was applied after filtering the tomogram using the
anisotropic diffusion technique.

Method Tilt eexperimentalzx etheoreticalzx 3D Resolution (nm)

αmax (%) (%) z−axis

WBP

±62o 1.25± 0.5 1.50 6.6±0.3

±52o 1.35± 0.6 1.82 9.2±0.3

±42o 1.52± 0.6 2.28 19.3±0.3

±32o 1.69± 0.8 3.04 –

SIRT

±62o 1.22±0.4 1.50 6.1±0.3

±52o 1.33±0.4 1.82 7.4±0.3

±42o 1.52±0.6 2.28 12.1±0.3

±32o 1.67±0.6 3.04 –

3.6 Effects of mis-alignment

As discussed in section 2.3.3 in chapter 2, it is important to align the tilt series to

a common tilt axis with a sub-pixel accuracy. The inaccurate estimation of the

tilting axis causes the distinctive arcing artifacts (as in Figure. 2.30 in chapter

2). This also will spread the density of the reconstructed object and distort the

shape.

To investigate the effect of the mis-alignment of the tilting axis on the quality

of reconstruction, the tilt series of the MgO and nanosphere samples were used.

After applying the cross-correlation alignment technique to correct for the image

shifts and finishing the alignment step in IMOD, the tilting axis was mis-aligned

by 7 pixels lateral shift. Such mis-alignment error is realistic for practical tomog-

raphy experiments (Leary et al., 2013b; Saghi et al., 2011). The mis-aligned tilt

series were then reconstructed using WBP and SIRT with 20 iterations in IMOD.

The resolution measurements of the X,Y and Z slices are provided in table

3.5 for the MgO case and, Table 3.6 for the nanosphere case. The results show

degradation of the resolution for the mis-aligned dataset.
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Table 3.5 | Quality measures for misalignment of the MgO nanocube dataset.

Method Alignment 3D Resolution (nm)

x−axis y−axis z−axis

WBP
aligned 1.5±0.3 1.3±0.3 4.7±0.3

mis-aligned 1.8±0.3 1.5±0.3 4.8±0.3

SIRT
aligned 1.4±0.3 0.3 ±0.3 3.4±0.3

mis-aligned 1.8±0.3 0.5 ±0.3 3.6±0.3

Table 3.6 | Quality measures for misalignment of the nanospheres dataset.

Method Alignment 3D Resolution (nm)

x−axis y−axis z−axis

WBP
aligned 4.7±0.3 4.5±0.3 6.6±0.3

mis-aligned 5.2±0.3 4.9±0.3 6.9±0.3

SIRT
aligned 2.0±0.3 2.4±0.3 6.1±0.3

mis-aligned 2.4±0.3 2.7±0.3 6.4±0.3

3.7 Conclusion

In this chapter, the influence of the experimental conditions on the quality of the

ET reconstruction was studied qualitatively and quantitatively. The originality of

this work lays in using a regular shaped nanoparticles for testing a reconstruction

obtained using well established ET methods against different experimental setups.

It is shown that the performance of the reconstruction methods, under in-

vestigation, declines with the tilt under-sampling and larger missing wedges. In

summary, SIRT algorithm is the least sensitive to changes in angular sampling.

There is no advantage of SIRT on WBP in suppressing the elongation artefacts

and degradation of resolution along the beam direction, especially in low sampling

cases. This elongation and resolution degradation is a significant challenge for

quantification. Finally, the elongation factor varies with the shape of the object,

under study and the misaligned tilt axis causes a slight degradation of resolution.

It is concluded that the reconstruction algorithm employed is one of the main

limiting factors of the fidelity of quantitative analysis. This motivates the devel-

opment of an improved tomographic reconstruction process as attempted in the

subsequent chapters.
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“Measure what can be measured“
Galileo Galilei, 1883

“In light of the data deluge we are facing today, it

is perhaps time to modify this principle to:

Measure what should be measured“
Thomas Strohmer, Professor of Mathematics,

University of California, 2012

4
Compressed sensing electron tomography

and the DLET algorithm

E
lectron tomography (ET) is an increasingly important technique for

the study of the 3-D morphologies of nanostructures. However, due to

limitations in the acquisition process, the reconstruction problem is an

inverse problem which is considered to be ill-posed (i.e. a unique solution may not

exist). Furthermore, reconstruction usually suffers from missing wedge artifacts

(e.g., star, fan, blurring, and elongation artifacts). Recently, the mathematical

theory of compressed sensing1 (CS) has drawn quite an amount of attention

and has been applied to ET and showed promising results for reducing missing

wedge artifacts (e.g. Goris et al., 2012; Leary et al., 2013b; Saghi et al., 2011).

This is based on the principle that, the redundancy existing in a signal can be

exploited to reconstruct it from far fewer measurements than required by the

1also known as compressive sensing, compressive sampling, or sparse sampling.
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4.1 Introduction

Shannon-Nyquist sampling theorem. CS theory demonstrates that, a signal can

be reconstructed with high probability when it exhibits sparsity in some domain.

This chapter is primarily based on the technical and application papers: (Al-

Afeef et al., 2015, 2016; Alaa et al., 2014; AlAfeef et al., 2014a; Alekseev et al.,

2015).

4.1 Introduction

As detailed in chapter 2, the quality of 3D reconstructed tomograms depends on

many different factors, principally the maximum angular range and the number of

acquired projections. Consequently, two critical problems arise, as highlighted by

Kawase et al. (2007); Midgley and Dunin-Borkowski (2009); Midgley and Weyland

(2003): First, the Missing wedge artifacts which cause elongation and blurring

of the reconstructed object in the direction of the optical axis due to a missing

wedge of information caused by limited angular range. Secondly, the Resolution

degradation that results from a limited number of projections (Radermacher,

1988).

The quality of a tomographic reconstruction can be enhanced by including

additional prior knowledge about the specimen throughout the reconstruction

process. A relatively recent prior knowledge technique, compressive sensing (CS)

(Candès et al., 2006; Candès and Wakin, 2008; Donoho, 2006) has been applied

with great success in Magnetic Resonance Imaging (MRI) (Candès et al., 2006;

Lustig et al., 2007). CS has more recently been applied to ET (Binev et al., 2012;

Goris et al., 2012; Leary et al., 2013b; Monsegue et al., 2012; Saghi et al., 2011)

and image acquisition for high-resolution scanning TEM (Stevens et al., 2014). It

has been demonstrated that, even with reduced datasets, it is possible to recon-

struct tomograms with high fidelity and reduced missing wedge artifacts (Saghi

et al., 2011). Such advantages make CS an effective method for decreasing beam

damage, obtaining reliable, high-resolution morphology, and enabling quantita-

tive measurements from 3D tomograms. The key prior knowledge employed in

CS is that the signal is likely to be sparse (compact) in a transform domain as

illustrated in figure 4.1(a). If such a sparsifying transform can be determined, the

original signal can then be accurately reconstructed from a set of measurements

significantly lower than that which would be required by the classical Nyquist
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sampling theorem (Candès et al., 2006; Candès and Wakin, 2008; Donoho, 2006;

Fornasier and Rauhut, 2011).

As sparsity is the key requirement, to derive any benefit from compressive

sensing; researchers have experimented with a variety of sparsifying transforms

(Gan, 2007; Lustig et al., 2007; Tsaig and Donoho, 2006). Such transforms hold

for signals that are sparse in the standard coordinate basis or other orthonormal

basis. One common sparsifying transform is the Total Variation (TV), which

is a summation of the Discrete Gradient Transform (DGT) coefficients. In the

case of ET, CS algorithms have been suggested for tomographic reconstruction

by maximising sparsity in the TV domain. For example, Goris et al. (2012) have

investigated the use of a total variation minimisation (TVM) in ET. Saghi et al.

(2011) proposed a CS-ET algorithm, which maximises sparsity in both the TV

and spatial domains. Also, they showed that CS-ET was able to reconstruct 3D

maps from a very limited number of tilt images. Furthermore, Monsegue et al.

(2012) showed that elongation artifacts caused by limited angle sampling can be

effectively reduced using anisotropic total variation (i.e. decreasing contributions

from the missing wedge direction) (Monsegue et al., 2012).

Despite the success of these algorithms, they apply to signals that are sparse

in certain predefined (fixed) sparsifying transforms. In many practical examples,

the signal under study is not compressible (sparse) in such transforms. For ex-

ample, TV minimisation can be effective for reconstruction if the object under

study can be described as a piecewise constant (i.e. having sharp boundaries as

in figure 4.1(a); however, this is not true for many samples as illustrated in figure

4.1(b). Other drawbacks of using the TV operator include over-smoothing of fine

structures, difficulties in separating true structures from noise, and a degrada-

tion of spatial resolution (which becomes especially apparent in noisy examples).

Consequently, there are compelling reasons to investigate alternative sparsifying

methods for CS-based ET reconstruction to avoid such difficulties.

The choice of a sparsifying transform is typically decided using some sim-

plifying assumptions, usually utilising a pre-chosen basis set such as steerable

wavelets or curvelets. An alternative effective approach is by learning the sparsi-

fying transform directly from examples (i.e. images) adaptively.

This chapter introduces the important aspects of CS theory and applies it to

electron tomography (ET) image reconstruction. It also addresses the main per-

formance limitations of CS when being applied to ET. That is, the performance

93
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Figure 4.1 | Schematic illustration of sparse representation. (a) a piecewise con-
stant image becomes sparce when transformed to the gradient domain using spa-
tial finite differences transform, while in (b) the number of nonzero pixels in the
gradient domain is similar to the original image.

of CS relies heavily on the degree of sparsity in the selected transform domain.

The main contribution of this work is the development of a fast and robust nu-

merical algorithm, called DLET, for ET reconstruction and the application to

experimental data sets. The algorithm employs a sparse reconstruction tech-

nique that incorporates prior information using adaptive sparsifying transform

(dictionaries). The dictionary is adapted to the data and is learned during the

reconstruction process in a way that leads to a sparser representation of the un-

derlying image. This help to overcome the limitation of CS when using the fixed

sparsifying transforms. Finally, the technique is tested using simulated phan-

toms in both noisy and noiseless cases (section 4.4), a range of experimental data

sets (section 4.5, section 4.6 and Chapter 6) and compared to other techniques

utilising fixed sparsifying transforms in ET.
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4.2 Compressive sensing theory

4.2 Compressive sensing theory

Compressive sensing (CS), proposed by Donoho and Tanner (2005) and Candès

et al. (2006), is one of the major advances in signal processing in the last decade

(Candès and Wakin, 2008; Duarte and Eldar, 2011; Foucart and Rauhut, 2013).

Subject to appropriate conditions, it allows one to recover useful information from

far fewer measurements than is classically considered possible (namely, Nyquist

sampling theorem). CS had been applied successfully in a variety of fundamen-

tal applications such as Medical Imaging (Lustig et al., 2007, 2008), Compressed

Imaging (Duarte et al., 2008), Radar (Baraniuk and Steeghs, 2007), Commu-

nications (Cotter and Rao, 2002), Robotics (Mostofi, 2011), Astronomy (Bobin

et al., 2008) and Quantum Information Processing (Gross et al., 2010). CS em-

ployees principles of sparse approximation that is well established in images and

audio compression standards such as JPEG and MP3. In the context of ET, the

reconstruction problem can be modelled, in the presence of noise, as:

B = Rθx+ e (4.1)

Where x ∈ IRN is a real-valued vector of size N in the real space IR and

represents the unknown tomogram (2D image representing a slice through a 3D

object). Rθ ∈ IRM×N is the discrete Radon transform operator that transforms

x into projection measurements B ∈ IRM in the sinogram domain and e is an

error term modelling measurement errors. B is under-sampled when M smaller

than N (i.e. Rθ<180◦ ) by one or several orders of magnitude indicating severe

undersampling. Sampling is nonadaptive as R does not depend on x.

Assume the unknown tomogram x is sparse (or approximately s-sparse1) in

a domain denoted by Ψ which is a linear operator that transforms from pixel

representation into a sparse representation. The representation of x is said to be

s-sparse in the Ψ domain if x can be represented by at most s non-zero coefficients

and s � N . If Ψ captures only the most important information about x by

s � N non-zero coefficients, then x is said to be compressible in Ψ. Let Rf
u

be the sampling matrix (i.e. under-sampled Radon transform implemented using

the direct Fourier inversion technique discussed in section 2.2.3.2). The standard

theory of compressed sensing, asserts that x may be recoverable from under-

sampled measurements B given that: x can be compressed by Ψ, and both Rf
u, Ψ

1Maximum number of non-zero coefficients in X is equal or less than S.
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are incoherent (dissimilar)(Candès et al., 2006; Donoho, 2006). The incoherence

requirement is to ensure that each measurement in B provides information about

many coefficients of x and to ensure that the x coefficients encoding is different

for each measurement in B. In the tomography problem, incoherence has been

proven empirically (e.g., Lustig et al., 2007). They show that, in incoherent

sampling, the undersampling (aliasing) artefacts should spread throughout the

sparse domain such that they appear as noise interference. This will enable the

recovery of the significant coefficients that stick above the interferences, by a

non-linear optimisation process via convex programming.

It should be noted that, despite the lack of mathematical justification for the

principle of incoherence in many real-world inverse problems including tomog-

raphy, CS has been, and continues to be used with great success in many areas

(e.g., the pioneering work of Larson et al. (2011); Lustig et al. (2007, 2008)). Fur-

thermore, recent studies suggest that the inverse problem need not be incoherent

and sparse, but asymptotically incoherent and asymptotically sparse (Adcock

et al., 2013). This significantly more relaxed condition can be satisfied in many

inverse problem applications including ET and can narrow the gap between the

theoretical and applied sides of the field.

The typical CS model formulation for ET can be expressed as a constrained

optimisation problem:

min ‖Ψx‖1 s.t.
∥∥Rf

ux−B
∥∥
2
≤ ε (4.2)

where B is the under-sampled measurement. ε is the discrepancy level that

controls the fidelity of the reconstruction to the measured data and is usually set

above the expected noise level. Ψ is the sparsifying transform which is usually

chosen as an orthonormal transform for images. For instance, Ψ can be a wavelet

transform, which transforms x into wavelet coefficients Ψx, that are mostly zero

(sparse). This objective function promotes sparsity (Chen et al., 1998; Fornasier

and Rauhut, 2011) as it minimises the l1 norm (sum of absolute values) of Ψx,

and enforces data consistency using the constraint
∥∥Rf

ux−B
∥∥
2
≤ ε. In other

words: among all solutions that are consistent with the measured data, equation

(4.2) tries to find a simple, sparse solution that is compressible by the transform

Ψ.
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Different methods can be used to solve this minimisation problem. These in-

clude linear programming methods such as basis pursuit (BP) (Chen et al., 1998;

Donoho et al., 2006) (which is effective if measurements are noisy), the least ab-

solute shrinkage and selection operator (LASSO) method (Tibshirani, 1996), the

focal under-determined system solver (FOCUSS) (Gorodnitsky and Rao, 1997),

sparse Bayesian learning (Wipf and Rao, 2004), and other sparse approxima-

tion algorithms (Rice, 2015). In many real-world applications, these algorithms

usually provide better performance than predicted by the existing theory based

on analytical mathematics (Adcock et al., 2013). Alternatively, an approximate

solution can be obtained using greedy algorithms, such as orthogonal matching

pursuit (OMP) (Tropp and Gilbert, 2007), which are based on replacing the l1

norm with l0 quasi-norm (the count of non-zero elements). These algorithms are

usually simpler and faster to implement. However, empirical studies had shown

that BP is more powerful than OMP (Chen et al., 1998; Tropp, 2004). A recent

review of the sparse coding algorithms is provided by Tropp and Wright (2010).

For more details on CS theory, we direct the reader to a more extensive coverage

in (Davenport et al., 2012) and the CS resources: http : //dsp.rice.edu/cs.

The success of compressed sensing depends critically on sparsity (Candès and

Wakin, 2008). In equation (4.2), the compression degree of the sparsifying trans-

form Ψ, is crucial to achieving high-quality reconstructions. Ψ can be either a

fixed or adaptive transform. Fixed transforms have been used successfully in

many applications (Binev et al., 2012; Goris et al., 2012; Leary et al., 2013b;

Monsegue et al., 2012; Saghi et al., 2011); however, their compression degree may

be limited, and in many cases, cannot be applied to any image without satisfying

certain pre-conditions. For example, finite-differences (commonly known as Total

Variation) performs well for piecewise-constant images since the uniform regions,

and discrete boundaries can be well recovered (Leary et al., 2013b; Lustig et al.,

2007; Radin et al., 1992). However, for non-piecewise-constant images, the car-

toon effect can be damaging for the reconstruction quality (Liu et al., 2015; Sidky

and Pan, 2008; Zhang et al., 2013). Therefore, other sparsifying techniques need

to be considered for such images.

Furthermore, fixed transforms can produce undesirable artefacts such as block-

ing, blur, ringing or edge artefacts. For example, the use of Total Variation (TV)

in image restoration, can damage fine details, and cause staircase artefacts (Chan

et al., 2005). The use of the Discrete Cosines Transform (DCT) or wavelet-based
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coding can produce ringing artefacts in an image which appears like ripples or os-

cillations around sharp contours or edges in the spatial domain (Marziliano et al.,

2004). This is caused by truncation of the high-frequency transform coefficients

from (DCT) or wavelet-based coding.

Adaptive sparsifying techniques, on the other hand, benefit from the intrin-

sic sparsity that images usually have, which improves recovery by tailoring the

best sparsifying basis (i.e. by dictionary learning). The learning process can be

controlled in a way that produces dictionaries with improved sparsifying ability.

Recent studies in image processing showed the feasibility of adaptive transform

techniques for a variety of problems (Elad and Aharon, 2006; Mairal et al., 2008;

Protter and Elad, 2009), with the state of the art results and possible extensions

to inverse problems.

4.2.1 Dictionary Learning

Dictionary learning (DL) is the process by which a dictionary adapted to the data

is produced. Given a vector Y ∈ IRN to represent a training image of size Nx ×
Ny = N pixels as in (Fig.4.2-a). Mi ∈ IRn,S is an operator that extracts Y into S

blocks (patches) of size n =
√
n×
√
n pixels represented as MiY = {yi,j}S,ni=1,j=1.

These patches are extracted with overlaps and 1 pixel sliding, meaning that the

value of each pixel in Y will be included in a maximum of n patches. The

maximum number of patches in a training set S = (Nx−
√
n+ 1)(Ny −

√
n+ 1).

A dictionary is a matrix D ∈ IRn,K (Fig.4.2-b) with columns di=1,2,...,K ∈Rn×1,

(also called Atoms) which form the basis that is used to approximately represent

a given image. D can be initiated by selecting K patches from MiY . The choice

of Y can either be the current tomogram under reconstruction or a high-quality

tomogram of a similar specimen.

Let D ∈ IRn,K be an overcomplete dictionary, by which we mean there are

more entries in the dictionary than the required number of linearly independent

vectors, the sum of which could be used to exactly represent any given vector as

demonstrated in (Fig.4.2-b). Since this always can be done with exactly n linearly

independent vectors, this means that the number of entries in the dictionary

K > n. Suppose an image patch yi can be represented exactly or approximately

as a sparse linear combination of the atoms (as in Fig.4.2-c) drawn from D (i.e.,

yi ≈ Dαi) where αi ∈ IRK is a vector with very few nonzero entries (� n),

typically around 5 atoms are used. Then, the DL process aims to find a possible
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Figure 4.2 | A schematic illustration of (a) patch-based processing of images by
breaking the given image Y into overlapping (small) patches to be used in dic-
tionary learning and sparse coding. (b) the sparse coding process, which is the
problem of taking a large input image, and finding an approximate decomposi-
tion of that image using a linear blend of small images (patches) of commonly
occurring subpatterns from a dictionary. The vector αi is sparse with K = 5
nonzero coefficients; the image patch (vector x) is a linear combination of these
columns (images patches). (c) the Sparse coding using basis to approximate two
patterns. The coefficients αi are all of the same order of magnitude and are not
shown due to space limitations.
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optimal dictionary for sparse representation of training samples MiY . It can be

expressed as:

min
D,α

∑
i

‖MiY −Dαi‖22 s.t. ∀i ‖αi‖0 ≤ nnz (4.3)

where nnz is the maximum number of atoms that can be used in sparse repre-

sentation (i.e. the number of non-zero coefficients). The objective function in

Eq(4.3) is ’called Orthogonal Matching Pursuit (OMP)’ for approximating the

fit of a linear model with constraints imposed on the number of non-zero coeffi-

cients (i.e. the L0 quasi-norm). (Fig. 4.2-b) and (4.3) is an example of learned

dictionary.

Figure 4.3 | An adaptively learned dictionary consisting of (K=100) atoms of
5× 5 patches, normalized to the range of [-1,1].

In terms of computational complexity, a problem using the L0 quasi-norm

(as in equation 4.3) is shown to be NP-hard1 (Davis et al., 1997; Natarajan,

1995). Different techniques have been developed to solve the DL problem in

(4.3). These can be classified into three main categories (Tosic and Frossard,

2011): 1) probabilistic learning methods such as Maximum Likelihood methods

(Olshausen and Field, 1997) and the Optimal Directions (MOD) method (Engan

et al., 1999); 2) clustering or vector quantisation methods, such as Stuart Lloyd’s

algorithm (Lloyd, 1982) and its generalisation, the K-SVD method (Aharon et al.,

2006); and 3) learning dictionaries with a particular construction. A review of

dictionary learning methods is provided by Tosic and Frossard (2011).

Among these methods, the vector quantisation (VQ) approach has been ap-

plied successfully in many fields such as in image compression and 3D-microscopic

image coding (Cockshott et al., 2003; Tao and Cockshott, 2004). In particular,

the K-SVD algorithms have attracted increasing interest recently because of their

1Non-deterministic polynomial acceptable problem. NP-hard problems cannot be solved in
polynomial time.
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numerical efficiency and fast convergence (Elad, 2010; Peyré, 2011). The K-SVD

algorithm typically iterates between two steps:

1. The Sparse Coding step: the minimisation problem in (4.3) is solved with

respect to αi with at most nnz non-zero coefficient and fixed D. This step

can be performed using any pursuit algorithm, however, the OMP method

(Tropp and Gilbert, 2007) is typically used.

2. The Dictionary Codebook Update Stage: the columns (atoms) of D are

updated sequentially, as well as the corresponding relevant coefficients αi.

This algorithm continues to iterate between the two steps until it converges,

providing a normalised dictionary D (i.e., each atom has a unit norm). Further

details about the K-SVD algorithm is provided by Aharon et al. (2006). An in-

depth review of the applications of dictionary learning to image processing and

computer vision can be found in (Elad, 2010; Wright et al., 2010)

4.3 Methodology

In this work, a dictionary learning based compressive sensing technique for the ET

image reconstruction problem is proposed. This technique is named Dictionary

Learning for Electron Tomography (DLET). It relies on the prior innovations

for CS-MRI (Lustig et al., 2007) and (Elad and Aharon, 2006) for dictionary

learning. This section shows that 3D reconstruction quality in ET can be further

enhanced when enforcing sparsity using an adaptive dictionary. To solve the ET

tomographic reconstruction problem, an over-complete dictionary is used as a

regularisation term:

xt , min
x,D,α

1

S

S∑
i

1

2
‖Mix−Dαi‖22 + λ ‖αi‖1 s.t. ‖Rx−B‖22 ≤ ε (4.4)

Where λ > 0 is the sparsity Lagrange multiplier, ε controls the discrepancy

level to the measured data, t is the iteration number. This cost function enforces

sparsity in the image domain x using an adaptive dictionary D and obtains a

reconstruction that is consistent with the measured sinogram data B. The first

two terms in equation (4.4) optimise the ability of the dictionary to sparsely

approximate image patches and enforces sparsity in the D domain. This equation
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is subject to a data fidelity constraint in the Radon domain. In the absence of

noise, ε should equal zero, otherwise, it should be estimated according to standard

deviation σ of noise in the measurements. The estimation of ε is critical to making

this cost function robust to noise.

In ET, a rough estimate of the noise can be performed by calculating a power

spectrum of a TEM image acquired without a sample. The resulting curve is ap-

proximately a Gaussian function that can be characterized by a mean µ and stan-

dard deviation σ (Frank, 2010, Chapter 11). ε should be slightly above estimated

noise level. Section 4.3.2 provides more details about tuning this parameter.

This adaptive sparsity-based formula in Eq(4.4), is potentially capable of re-

constructing tomograms using only the under-sampled sinogram measurements

and prior knowledge about the noise level. By regularisation using a patch-based

dictionary, missing wedge artifacts and noise can be further suppressed, without

introducing new artifacts, compared to other transforms that are based on the

relationship of neighbouring pixels. Since patches are extracted with overlap for

training the dictionary, the DLET algorithm benefits from an additional aver-

aging operator that can be effective for de-noising and reducing reconstruction

artifacts. This is a well-known advantage1 of the non-local mean denoising meth-

ods (Buades et al., 2011). Also, the patch size can be altered depending on the

size of the features in the reconstructed image, and this can be very effective

in allowing this technique to perform well in separating strong noise from weak

structures.

4.3.1 Proposed Algorithm

The proposed DATE algorithm is explained in the data flow diagram in figure

4.5. The image reconstruction optimisation problem in equation (4.4) is solved

using an alternating minimisation to optimise x, D and α. This is performed

using three stages.

1Since the DLET is a patch-based approach, (i.e., each pixel in the reconstructed image is
an average from different image patches), the variance law in probability theory ensures that if
N pixels are averaged, the noise standard deviation of the average is divided by square root of
(N).
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4.3.1.1 On-line Dictionary Learning

In the first stage, the reconstructed image x is initialised using the Weighted Back

Projection (WBP) method in order to reduce data discrepancies. Then, x is fixed

and the dictionary D and the sparse representation α are updated by solving the

following subproblem:

Dt , min
D

1

S

S∑
i

1

2
‖Mix−Dαi‖22 s.t. ‖αi‖1 ≤ nnz (4.5)

Typically, this optimisation problem can be solved efficiently using the K-SVD

algorithm (Aharon et al., 2006) to learn the dictionary D dynamically from x

during the reconstruction process. A fast implementation of dictionary-learning

algorithm of (Mairal et al., 2010) is used to train D. To avoid any scaling prob-

lem that might arise, atoms are produced with unit norm. After learning the

dictionary, a sparse coding step is executed.

4.3.1.2 Sparse Coding

In the second stage, keeping D and x fixed, α is updated according to the cost

function:

αt , min
α
‖αi‖1 s.t. ‖Mix−Dαi‖22 ≤ ε (4.6)

This formulation is called the basis pursuit denoising (BPDN) problem. Solv-

ing this is very efficient if there is inherent noise in the measured signal (Tropp

and Wright, 2010; Van-Den-Berg and Friedlander, 2008). For the ET reconstruc-

tion the Poisson model of shot noise is assumed (as in Scott et al., 2012; Williams

and Carter, 2009). Sparse coding is applied to all image patches Mix in order to

determine the sparse coefficients α.

4.3.1.3 Image update

Finally, the solution x is updated by reassembling overlapping patches using the

transpose of M as
∑N

i M
T
i Dαi and constructing an intermediate image x∗. In

this step, the intensity value of a pixel in x∗ is computed by averaging all the

corresponding patches that cover it.

The image x∗ is then back projected to the fully sampled Radon domain

using Rθx
∗ to get B∗. Both the new B∗ and the measured under-sampled B
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are combined to get Bϕ, and another iteration of dictionary learning and sparse

coding is applied to Bϕ to computer Bt. Finally, the new xt+1 is formed by R−1Bt

as detailed in the DLET Algorithm (4.4). The above procedures are iterated until

a stopping criterion is reached (i.e., maximum number of iterations is reached).

Figure 4.4 | DLET algorithm to reconstruct ET images from undersampled tilt
series.
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Figure 4.5 | DLET algorithm data flow diagram.
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4.3.2 Parameters

The proposed algorithm requires user input for a few parameters:

• Discrepancy level (ε): controls the allowed tolerance between recon-

structed and measured data. Typically, this is mainly affected by the

noise standard deviation σ in the measured data and can be computed

as: ε = (Cσ)2, where C is a scaling factor.

• Patch size (n): controls the dictionary efficiency in learning features of an

image. A large patch size produces more dictionary atoms, which increases

the computing cost of the algorithm.

• Number of atoms (k): controls degree of over-completeness (redundancy)

of the dictionary which improves the sparsity of representation. The number

of dictionary atoms should be larger than patch size to ensure good redun-

dancy. Elad and Aharon (2006) shown that a redundancy of (K = 4n)

would be sufficient for image de-noising problems.

The sensitivity of the DLET algorithm to these parameters was tested (see section

4.4.4).

4.3.3 Objective function convergence

The cost function in (4.4) is non-negative and is solved by alternating between

dictionary learning (sub-cost function 4.5), sparse coding (sub-cost function 4.6),

and updating the solution x. Each of these terms in the cost function decreases

monotonically on iteration, meaning that the objective function in (4.4) also

decreases monotonically using the proposed algorithm. However, this monotonic

decrement does not guarantee the convergence of the reconstruction process. The

convergence of DLET is difficult to prove, and beyond the scope of this work.

However, our empirical studies suggest that the proposed algorithm converges in

a well-behaved manner.

106



4.4 Numerical simulation

4.3.4 Termination criterion and computational complex-

ity

The algorithm iterates until a plateau is reached such that successive iterations

no longer produce better results. For the simulation study, the algorithm was

terminated when a fixed number of iterations is reached. This number is chosen

to fall after the convergence plateau. For practical implementation, other common

terminating conditions may be included, such as allocated budget (computation

time/memory) reached, manual inspection or combinations of the above.

In this work, both dictionary learning and sparse coding are achieved using the

SPAM toolbox (Mairal et al., 2010) which is the state-of-the-art approach at the

current time and significantly faster than other methods of sparse optimisation

(Szlam et al., 2012). The DLET algorithm was prototyped using Matlab and

implemented using CUDA C++.

4.4 Numerical simulation

An enhanced ET reconstruction algorithm should be able to avoid artifacts typi-

cally seen in conventional ET reconstructions. Artifacts arise mainly for three rea-

sons: missing wedge, radial undersampling, and noise in the measurements. The

first two problems cause aliasing in the image domain in the form of streak, blur-

ring and elongation artifacts. The noise in TEM microscope images depends on

the experimental conditions, however two types of noise are permanently present:

the quantum noise of the electron beam (shot noise) and the noise originated

from the image recording system which is usually characterised by a modula-

tion transfer function (MTF) and a detective quantum efficiency (DQE) (Frank,

2010, Chapter 11). The propagation of noise from the sinogram domain into the

reconstructed volume domain is a complicated process.

To evaluate the performance of the proposed reconstruction algorithm, two

simulation studies were performed. In the first case, a modified version of the

well-known Shepp-Logan phantom (Fig. 4.8a) is used. For the second case, a

more challenging phantom is used with features that are hard to reconstruct

and which are not sparse in the gradient domain as shown in (Fig.4.13). For

comparison, we performed the reconstruction using the following methods: WBP,
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SIRT, a CSTV-based method, and the proposed DLET approach, using a range

of different under-sampling factors and noise levels.

4.4.1 Image quality metrics

With the phantom images as the ground truth, all the reconstructed cases were

assessed in terms of two commonly used metrics: Peak Signal-to-Noise Ratio

(PSNR) and Structural SIMilarity (SSIM) index. The PSNR was obtained as

the ratio between the signal’s maximum power (peak reference intensity MAXI

to the power of the signal’s noise (root mean square of reconstruction error)

MSE(Io − IR) as in equation (4.7).

PSNR(Io, IR) = 10 · log10

(
MAXI√

MSE(Io, IR)

)
(4.7)

The PSNR is measured in decibels (dB) and the higher the PSNR value, the

better the quality of the reconstruction.

Although the PSNR is a simple mathematical metric that is commonly used

as a distortion metric, it often fails to correlate closely with perceived image

quality (Chandler and Hemami, 2007). Consequently, we have chosen to use an

additional, more advanced metric, the SSIM index.

The SSIM index is shown to be consistent with visual perception (Wang et al.,

2004). The calculation of the SSIM index for the two images ζ and % to be

compared begins with computing three similarities: luminance l(ζ, %), contrast

c(ζ, %) and structures s(ζ, %) similarity. Local SSIM is defined as:

LCS(ζ, %) = l(ζ, %) · c(ζ, %) · s(ζ, %)

=

(
2µζµ% + C1

µ2
ζ + µ2

% + C1

)α1(
2σζσ% + C2

σ2
ζ + σ2

% + C2

)β1(
2σζ% + C3

σ1
ζσ

1
% + C3

)γ1
(4.8)

where µζ and µ% are local means, σζ and σ% are local standard deviations, and

σζ% is cross-correlation after subtracting corresponding means. C1, C2, C3 are

stabilisers and α1 > 0, β1 > 0, γ1 > 0 are parameters used to adjust the

relative importance of the three components. The maximum value of the SSIM

index is 1, which indicates perfect structural similarity. In this work, we used
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the default values for the parameters in Eq.(9) (as in Wang et al., 2004) with

c1 = (0.01L)2, c2 = (0.03L)2, c3 = c2/2, L = 255 and α1 = β1 = γ1 = 1.

For further information on image quality metrics, the interested reader is

referred to the review by Sayood et al. (2002).

4.4.2 Simulation study 1: the modified SheppLogan phan-

tom

In this section, the proposed DLET technique is compared with conventional ET

methods, namely, WBP, SIRT and the CS-based total variation (CSTV) method.

The simulated phantom shown in (Fig. 4.8a) is used. This phantom was edited

to include a bright circle region in the top part with gradual intensity variation

in the background. Such intensity variations can simulate realistic materials in a

typical STEM experiment such as solar cells (van Bavel and Loos, 2010). Also,

horizontal lines with different thicknesses were added to verify the degree of detail

that each algorithm can preserve. Two simulation setups were performed. The

first one aimed to test the case of a noisy fully sampled sinogram as in (Fig.

4.6b) and (c) while the second is to test with a noiseless under-sampled sinogram

with a missing wedge as in (Fig. 4.6d and e). In order to avoid committing

an inverse crime 1, which happens when the data is inappropriately simulated

(Kaipio and Somersalo, 2006, chapter 1), the tilt series were generated using

the parallel projection discrete Radon transform, while the reconstruction was

coded using Fourier-based methods so that a different system matrix is used for

creating projections than in the reconstruction methods. Furthermore, the tilt

series was misaligned by randomly shifting each projection by a maximum of

±0.5o to account for the alignment imperfections in the experimental ET data.

By doing so, critical errors can be avoided when these methods are applied to

real ET data.

1occurs when nearly the same theoretical ingredients are used to invert data in an inverse
problem.
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Figure 4.6 | Simulated Sinogram data from the phantom shown in Fig.4.8(a). a)
noiseless fully sampled true sinogram (512 pixel ×180o). (b) and (c) noisy fully
sampled sinogram with SNR of 52dB and 15dB, respectively. (d) and (e) are
noiseless undersampled sinogram obtained using sampling masks in Fig.4.7 with
70 and 28 radial lines, respectively (leaving a 20o missing wedge of un-sampled
information).

Figure 4.7 | Sampling masks - applied in Fourier domain with a) 70 and b) 28
radial lines, respectively and a missing wedge of 20o similar to a typical STEM
tomography setup.

The input data in each case was then prepared by taking the 1D Fourier

transform of each projection in a tilt series and sampling it to the corresponding

radial line in the 2D Fourier domain using a sampling in Fig.4.7. The WBP

reconstruction was performed with a ramp filter in the frequency domain to pro-

duce an image in the spatial domain. This image was then used to initialise the

SIRT, CSTV and DLET algorithms. SIRT was performed using 32 iterations.

This number was selected after investigating which number of iterations gives
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the maximum quality in terms of PSNR and SSIM metrics by running SIRT for

100 iterations and recording the quality metric values for each iteration. CSTV

reconstruction was performed using the method provided by Lustig et al. (2007)

seeking sparsity in gradient and image domain with default regularisation weight-

ing of λTV = 7 and λl1 = 0.1 respectively. This provides a balance between the

loss of fine details and the elimination of ghosting artifacts. With CSTV, 150

conjugate gradient iterations were performed with a re-initialisation every 50 it-

erations in order to decrease the likelihood of falling into local minima. DLET

was run for 20 iterations with the parameters chosen as n = 64, K = 4n and

T0 = 0.5n. The dictionary learning stage using K-SVD was performed for 20

iterations, with 103 overlapping patches extracted from the intermediate image

as a training set and a target sparsity of T0. The boundary condition is assumed

to be reflective in the DLET training set. All implementations were executed on

Matlab v7.12 (R2011a) installed on a 64-bit Windows 7 operating system with

an Intel Core i5 processor running at 3.10 GHz with 24 GB RAM and a NVIDIA

GeForce GTX 460 with 336 cores.

4.4.2.1 Noisy full-sampled setup

To compare ET reconstruction methods with noisy data, the Phantom in (Fig.

4.8a) of 512 × 512 pixels, was projected into the sinogram domain (Fig. 4.6a)

between ±90o with 1o tilt increment. This was then corrupted by applying 1)

Poisson noise to simulate the shot noise and 2) Gaussian noise with low standard

deviation σ = 5 (Fig. 4.6b) and high σ = 20 (Fig. 4.6c) . In (Fig. 4.8 and 4.9),

(b) shows WBP reconstructed images with obvious artifacts and noise. Based on

visual assessment, WBP with a Ramp filter cannot successfully remove artifacts

in reconstructions. Fig. 4.8 and 4.9, (c) shows the SIRT image with improved

reconstruction and contrast (SSIM = 0.3478 in Fig. 4.8, SSIM = 0.1555 in

Fig. 4.9 ) compared to (0.1748, 0.0886) for WBP. (Fig. 4.8d), CSTV reconstruc-

tion shows an effective contrast and noise suppression in homogeneous regions.

However, this improvement comes at the cost of losing the fine details of struc-

tures and of introducing staircase artifacts in the region with gradual changes of

intensity (blue and orange arrows in zoomed images in (Fig. 4.8); these staircase

artefacts can not be suppressed by increasing the λTV parameter values. In (Fig.

4.9d), CSTV was tuned to de-noise by increasing λTV , however, it was found that

increasing λTV above 12 will cause the loss of fine details.
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Figure 4.8 and 4.9,(e) show results obtained after applying the DLET algo-

rithm, and these are promising showing both noise suppression and the preser-

vation of fine structures. The degradation of visual quality with respect to the

phantom image was noticeably lower than for other algorithms when applied to

the sinogram with the higher noise level, with a much lower percentage decrease

the of SSIM index (∆ SSIM = −5.01%) compared to CSTV (−63.39%), SIRT

(−55.29%) and WBP (−49.31%).

Figures 4.12(a) and (b), shows the intensity line profile comparison along the

vertical dashed line in (Fig. 4.8a) and Fig.4.9(a). It can be seen that reconstruc-

tion using DLET and CSTV leads to images with a better match to the phantom

than the WBP and SIRT results. It is also noticeable that both the CSTV and

DLET reconstruction methods can provide a relatively accurate recovery of the

homogenous area (see the red arrows in zoomed area of (Fig. 4.8). In addition,

DLET is more robust in cases with high noise (Fig. 4.9e) with better preservation

of fine details (see blue arrows in (Fig. 4.8) and regions with gradual intensity

variation (see orange arrows in (Fig. 4.8). Table.4.1, lists the PSNR and SSIM

values computed with respect to the reference phantom images in (Fig. 4.8a).

4.4.2.2 Noiseless under-sampled setup

To verify how each method behaves in the case of undersampling, projections

(columns) were removed from the sinogram in (Fig.4.6a) to simulate undersam-

pling between ±70o with tilt increment of 2o (Fig.4.6d), and 5o (Fig.4.6e).

As a consequence of such under-sampling, aliasing effects can be seen in both

cases as streak artefacts. Also, the missing 20o wedge, located on both sides

of sinograms, causes another form of aliasing (i.e. elongation artefacts) which

increases the object length in the horizontal direction. Such artefacts can be

clearly seen in Fig. 4.10 and 4.11b and c) which show results obtained by WBP

and SIRT methods.

Figure 4.10 and 4.11, (d) and (e) show that both DLET and CSTV result in

reduced undersampling artifacts. In (Fig. 4.10), the DLET reconstruction shows

sharper edges with SSIM = 0.8256 compared to 0.4113 of CSTV. In (Fig. 4.11),

it was harder to reduce artifacts with the increasing undersampling. However,

DLET showed a slightly better visual quality with SSIM = 0.7857 compared to

0.3656, 0.2304, 0.1324 for CSTV, SIRT and WBP, respectively. Figure 4.12(c)
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Figure 4.8 | Comparison of different reconstruction algorithms using the noisy
fully sampled sinogram in Fig.4.6(b). a) Ground truth, compared to reconstruc-
tion using b) WBP, c) SIRT, d) CSTV with λTV = 7 and and λl1 = 0.1, e) DLET
with ε = 1 × 10−7. (ai) are zoomed regions extracted from the phantom at the
area indicated by oval-dotted region in (a). (bi-ei) are zoomed regions extracted
from the corresponding reconstructions in (b-e). For visualisation purposes, the
image contrast of zoomed areas is enhanced.

and (d) shows the intensity line profile comparison along the vertical dashed line

in (Fig. 4.10a) and (Fig. 4.11a).

4.4.3 Simulation study 2: CS-phantom

In this section, the performance of the DLET reconstruction algorithm is eval-

uated using the test phantom (the CS-phantom) proposed by Smith and Welch

(2011), which is not a piecewise constant image. The CS-phantom (Fig. 4.13-

a) is designed for testing the accuracy of CS solvers and the properties of CS

reconstruction artifactsartifacts. For comparison, we performed the reconstruc-

tion based on WBP, SIRT and DLET method using simulated data set. The
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Figure 4.9 | Comparison of different reconstruction algorithms using the noisy
fully sampled sinogram in Fig.4.6(c). a) Ground truth, compared to reconstruc-
tion using b) WBP, c) SIRT, d) CSTV with λTV = 12 and λl1 = 0.1, and e) DLET
with ε = 2 × 10−6. (ai) are zoomed regions extracted from the phantom at the
area indicated by oval-dotted region in (a). (bi-ei) are zoomed regions extracted
from the corresponding reconstructions in (b-e). For visualisation purposes, the
image contrast of zoomed areas is enhanced.

CSTV-based method was excluded because the CS-phantom is not sparse under

a gradient transform, since this violates the requirement for a TV-L1 minimisa-

tion. The DLET method was applied using two setups that are based on adaptive

dictionary approach. In the first setup, the dictionary was trained using local (i.e.

the tomogram under reconstruction) during the reconstruction process. This local

dictionary was re-learned on each iteration of the reconstruction process using the

tomogram that resulted from the previous iteration. The second setup, a Global

dictionary was trained using prior training set that contain features similar to

those in the original phantom (e.g. images that contain circles/spheroids with

various diameters and centers). The global dictionary was learned only in the

first step of the reconstruction process.

An under-sampled tilt series was modelled with 70 noiseless projections with
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Figure 4.10 | Comparison using noiseless undersampled sinogram in Fig.4.6(d)
with 70 radial lines. a) Ground truth, compared to reconstruction using b) WBP,
c) SIRT, d) CSTV and e) DLET with ε = 45 × 10−7. (ai) are zoomed regions
extracted from the phantom at the area indicated by oval-dotted region in (a).
(bi-ei) are zoomed regions extracted from the corresponding reconstructions in
(b-e). For visualisation purposes, the image contrast of zoomed areas is enhanced.

2o increments between each projection. The simulation setup described in section

(4.4.2) was adopted in preparing sinograms for reconstruction.

To further assess the visual quality of the reconstructions, the tomograms were

thresholded based on the image intensity followed by binarization (i.e. setting

pixels above a threshold limit to a value of 1/white and the rest to zero/black).

The threshold values were obtained via automated thresholding using Otsu’s

method (Otsu, 1975b).

Figure (4.13) shows the reconstruction using WBP, CSTV, and DLET. In

Fig.4.13(b2), two type of artifacts can be seen; 1) streaking artefacts, which is

a prominent kind of aliasing caused by the finite and limited angular sampling

in ET, 2) elongation and blurring of the object boundaries (see horizontal red

arrow), which occurs primarily due to the missing wedge of unsampled data. The

missing wedge direction runs horizontally between the left and right of the image.
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Figure 4.11 | Comparison of different reconstruction algorithms using the noise-
less undersampled sinogram in Fig.4.6(e) with 28 radial lines. a) Ground truth,
compared to reconstruction using b) WBP, c) SIRT, d) CSTV and e) DLET with
ε = 45 × 10−7. (ai) are zoomed regions extracted from the phantom at the area
indicated by oval-dotted region in (a). (bi-ei) are zoomed regions extracted from
the corresponding reconstructions in (b-e). For visualisation purposes, the image
contrast of zoomed areas is enhanced.

The high artefact levels are clear in Fig. 4.13(b1-c1, b2-c2), for both the SIRT

and WBP reconstructions, including the well-known artefact of elongation of the

reconstructed object in the missing wedge (horizontal) direction. For the DLET

reconstruction, Fig.4.13(d1, d2) and Fig.4.13(e1, e2), show further reduction of

streaking background artifacts and missing wedge elongation.

The missing wedge direction and object morphology is an important factor

that affects the accuracy of the reconstruction. The boundaries of the parallel

horizontal lines (indicated by a vertical red arrow) are well reconstructed. This is

due to the presence of the significant projection for this shape which is the pro-

jection at 0o (horizontal direction) that provides the information about width and

distances between each line. However, the horizontal lines (indicated by horizon-

tal red arrow) are difficult to distinguish as the most important projection is in
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Figure 4.12 | Intensity line profile comparison along the vertical dashed line in
a) Fig.4.8(a), b) Fig.4.9(a), c) Fig.4.10(a) and d) Fig.4.11(a). Each figure is a
comparison between reference phantom image with reconstruction from WBP,
SIRT, CSTV and DLET for different test cases.

Table 4.1 | Noise and Undersampling Evaluation - Quality values of modified
Shepp-Logan phantom.

Figure 4.8 4.9 4.10 4.11

Method/Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

WBP 14.40 0.1748 12.19 0.0886 14.61 0.2414 12.64 0.1324

SIRT 20.88 0.3478 14.71 0.1555 16.61 0.2926 15.74 0.2304

CSTV 21.35 0.8552 15.45 0.3131 17.68 0.4113 17.31 0.3656

DLET 21.52 0.8710 17.39 0.8274 18.5941 0.8256 18.24 0.7857

the middle of the missing wedge region (90o). The DLET with global dictionary

was able to compensate for most of the missing wedge artefacts when trained

using similar examples. However, such examples are not usually available in the

case of ET. Although the DLET with local dictionary was not able to compen-

sate for the missing wedge of vertical lines, there was a significant reduction of

streaking and elongation artefacts compared to both WBP and SIRT.

The quality metric values are listed in Table (4.2). Quantitatively, the WBP

algorithm had the worst results. The SIRT result is slightly better than the WBP

result (SSIM of 0.6164 and 0.5651 respectively). However, DLET outperformed

both with SSIM 0.8188 with respect to the reference image. Also, the PSNR met-
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Figure 4.13 | Visual assessment of the missing wedge artifact. The top row is
a1) Reference phantom extracted from (Smith and Welch, 2011) which is recon-
structed using b1) WBP , c1) SIRT , d1) DLET using local dictionary and e1)
DLET using global dictionary. Bottom row, is the corresponding thresholded im-
ages obtained after applying automated thresholding using Otsu’s method (Otsu,
1975a).

ric confirms this with values of 24.97 dB compared to 18.73 dB for the SIRT and

14.20 dB for WBP. Also, background artefacts and false elongation are markedly

reduced.

Based on this simulation study, it is clear that the use of an adaptive dictionary-

based reconstruction method suppresses artefacts due to under-sampling, streak-

ing and elongation far more effectively than conventional compressed sensing

electron tomography (Binev et al., 2012; Goris et al., 2012; Saghi et al., 2011) or

the well-known weighted back-projection algorithm. Additionally, DLET demon-

strated a stable and fast convergence for this particular challenging phantom as

shown in various figures suggesting that it will be robust for use in real cases. A

particularly promising feature of DLET is the relatively competitive reconstruc-

tions than existing methods for significantly under-sampled datasets with large

tilt steps, at least up to a certain point at which artefacts start to creep in. Nev-

ertheless, it seems likely that even this limitation could be avoided by using a

global dictionary, in order to preserve high spatial frequency structures effectively

and to avoid undesirable artefacts due to the high under-sampling. This would

make it especially attractive for low-dose electron tomography of beam-sensitive

structures, such as biological ultrastructure or polymer solar cells.
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Table 4.2 | Quality metric values of CS-phantom reconstruction in Fig.4.13.

Method/Metric PSNR SSIM

WBP 14.20 0.5651

SIRT 18.73 0.6164

DLET (Local D) 24.97 0.8188

DLET (Global D) 26.57 0.8964

4.4.4 Parameter Comparison

To evaluate the sensitivity of the DLET algorithm to parameter settings, the

algorithm performance in reconstructing the reference CS-phantom in (Smith and

Welch, 2011) from 70 projections was investigated by altering a single parameter

each time whilst fixing the others at their default values. The parameters assessed

were: the dictionary patch size (n), the number of atoms (K) and the discrepancy

level (ε).

In Table 4.3, the quality of reconstruction continues to improve as the patch

size increases from 2× 2 to 10× 10 pixels. This is to be expected, as each pixel

will be a result of the averaging of patches with a larger area.

Table 4.3 | Patch Size Parameter Evaluation OF DLET - Quality values of dif-
ferent runs of DLET from noiseless 70 projections.

Patch Size (n) PSNR SSIM Time (mins)

2 24.34 0.6724 5

4 24.54 0.7647 7

6 24.89 0.8058 15

8 24.97 0.8188 44

10 25.00 0.8224 121

In Table 4.4, the performance metrics reached a plateau when the number of

dictionary atoms increased to twice the patch size, meaning that the dictionary

contains most of the important atoms that can be found in the training data to

produce a good sparsity. The training algorithm used here was initiated using the

blocks from the discrete cosine transform (DCT) (as in Elad and Aharon, 2006)

and trained on patches extracted from intermediate reconstruction results.
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Table 4.4 | Number of Atoms (Dictionary Size) Parameter Evaluation of DLET
- Quality values of different runs of DLET from noiseless 70 projections.

Dictionary Size PSNR SSIM Time

64 24.6 0.80 7

128 24.9 0.81 8

192 24.9 0.81 9

256 24.9 0.81 10

In Table 4.5, the quality of reconstruction was maximised when the discrep-

ancy level (ε) was increased to 1× 10−3 and declined slightly for higher values.

This behaviour can be explained as follows: when ε is set at a precision level that

Table 4.5 | Discrepancy level (ε) Parameter Evaluation OF DLET - Quality val-
ues for different runs of DLET from noiseless 70 projections as a function of
ε.

ε PSNR SSIM Time

1× 10−4 24.60 0.7246 28

1× 10−3 24.97 0.8188 16

5× 10−3 24.71 0.8002 8

1× 10−2 23.87 0.7847 7

1 23.38 0.7257 7

10 23.38 0.6792 6

100 23.38 0.6624 6

is too small, the algorithm includes under-sampling artefacts and noise in the re-

construction during the sparse coding step, which may introduce fake structures.

On the other hand, when ε is too large, the quality degrades as the sparse solver

does not include enough important patches to properly approximate the solution

which causes a loss of resolution. Figure. 14 shows the quality limit for higher

under-sampling factors using default DLET settings. Both the PSNR and SSIM

values of DLET are high even at very large tilt increments such as 25, indicating

good removal of artefacts and noise. From these results, it can be seen that satis-

factory results can be obtained with a little tuning of (n and K), as the proposed

algorithm is not very sensitive to deviation in these parameters. However, the

discrepancy level, ε, needs to be accurately estimated. It should be mentioned
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Figure 4.14 | Quality limit for higher under-sampling factors using (doted) WBP,
(squares) SIRT and (diamonds) DLET with higher increment steps between pro-
jections.

that the improvement introduced by DLET comes at the cost of a higher com-

putational expense, The execution time of this simulated dataset using the WBP

was 0.3 minutes and 0.9 minutes using the SIRT method. This is lower that

DLET execution time (≈ 5− 16 minutes). Therefore, a realistic compromise will

have to be struck in real application between quality and computational expense.

4.5 Organic photovoltaic solar cells 3D-morphology

In this section, the DLET algorithm is used to study the morphology of a solar

cell sample (PTB7:PC71BM blends). In (Alekseev et al., 2015) SIRT reconstruc-

tion was used to investigate the shape of PC71BM-rich domains using Energy

Filtered TEM (EFTEM). SIRT was able to show a nearly ellipsoidal shape of

these domains, however, the reconstruction was noisy which made the segmenta-

tion a difficult task. This affects the accuracy of quantitive studies. The sample is

a blend of polymer (PTB7) and fullerene derivative (PC71BM) spin-coated from

chlorobenzene with average particle size of 200 nm in diameter. The tilt series

in (Alekseev et al., 2015) has a low signal-to-noise ratio (SNR) making it an ideal

sample to test the denoising capability of DLET. An EFTEM projection from

the tilt series is shown in (Fig. 4.15).

Before CS can be applied for tomographic reconstruction of organic solar

cells using the EFTEM tilt series, two key criteria need to be satisfied: 1) The

contrast mechanisms of the microscope using EFTEM need to obey the projection

requirement for tomographic reconstruction (Frank, 2006a; Weyland and Midgley,
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Figure 4.15 | Example EFTEM tomography tilt-series projection of
PTB7:PC71BM film- (a) Elemental map of carbon was obtained using the
three-window mapping method (Egerton, 2011) by subtracting (b from c), (b)
background estimation image produced from two pre-edge EFTEM images, (c)
Post-edge image for the C-K edge. The elemental map in (a) shows PC71BM-rich
domains (large bright regions) embedded in a PTB7-rich matrix.

2003), 2) A sparsifying transformation must exist for which the tomogram image

is sparse when represented by that transformation.

In order to satisfy the first criterion, the intensity of EFTEM images should

be a monotonic function of the projected physical quantity. The PTB7:PC71BM

blends sample consists mostly of amorphous material; therefore, the EFTEM con-

trast is principally determined by the total amount of the specific element mapped

in the image (Hofer et al., 1997, 1995; Weyland and Midgley, 2003) and should

not show diffraction contrast. Therefore, the intensity shown in the elemental

map of (Fig. 4.15a) is a projection of a number of atomic species through the

structure of the specimen. As such, EFTEM maps for this particular specimen

fulfil the projection requirement for tomographic reconstruction. This also means

that the reconstructed volume should contain multiple grey levels, corresponding

to a range of different reconstructed intensities of the PTB7:PC71BM sample. It

should also be noted that the intensity of the reconstructed grey levels, might not

be significantly different due to the noise level in the tilt series arising from the
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imaging system. For the second criterion, it possible to reconstruct this sample by

seeking sparsity in the gradient domain (i.e., optimisation using total variation)

since it is expected for the PC71BM-rich domains to have a uniform composi-

tion. However, the boundary between PC71BM domains (carbon-rich) and the

PTB7 matrix (sulphur-rich) may not be sharp leading to a range of (non-discrete)

grey levels. This makes the reconstruction using TV (i.e. the piecewise constant

approximation) inaccurate and may lead to artefacts in reconstruction and lose

important details. On the other hand, by using an adaptive data-driven transform

via a dictionary learning approach, a sparsifying transform can be tailored to pro-

duce a more efficient transform which is crucial for the success of reconstruction

using CS. We have performed a simulation study to support the investigation of

the experimental data.

4.5.1 Simulation study

To simulate the experimental data, a 3D mesh model of a sphere and two oblate

spheroids (see Fig.4.16) was designed using CAD software. The sphere was

made with a radius of units (top part of Fig. 4.16) while the spheroids were

made with a fixed value for the equatorial axis (a = 10 units in Fig. 4.16)

and a different length for the polar axis (c = 4 and 1 units in Fig. 4.16).

Figure 4.16 | Oblate spheroid : a ro-
tationally symmetric ellipsoid having a
polar axis (c) shorter than the diameter
of the equatorial axis (a).

Such a model is suitable to simulate the

PC71BM-rich domains which are be-

lieved to have a spherical shape as can

be seen in Fig.4.15 and the cross-section

view in Fig.2 in (Alekseev et al., 2015).

The simulated mesh model is shown in

Fig.4.17. This mesh model is then vox-

elised using the method of (Nooruddin

and Turk, 2003) generate a binary 3D

bitmap with voxel values of logical 1 or

0. The voxels represent the boundary

and inside region of the 3D object, while the voxels represent the background

region.

The projection tilt series for simulation was generated by applying the discrete

Radon transform to the 3D bitmap over a tilt range of ±62◦, with an increment

of 2◦ between consecutive projections around the y-axes. Then the tilt series was
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Figure 4.17 | Simulated mesh model for simulating the polymer solar cell top
object is a true sphere of radius,c = 10, the lower two objects are oblate spheroids
with different polar axis lengths, c = 4, 1 units, respectively.

scaled to match the approximate mean intensities of the PC71BM-rich domains

evaluated from the experimental EFTEM projections. These were then degraded

by the addition of shot and Gaussian noise to get a low SNR dataset that roughly

simulates the experimental EFTEM projections. The Gaussian noise was esti-

mated in a way that yields an SNR of 7.1, which provides a good visual match

to the noise in the experimental images. Finally, quantisation noise is added.

The mapping to quantised intensity was assumed to be linear and is added using

Equation 4.9:

Iq = floor[2Bd[
Iin
Imax

]] (4.9)

Where Iq is the quantised intensity, Bd is the bit depth, Iin is the input inten-

sity from the previous stage and Imax is the maximum number of electrons that

can be detected by a single pixel of the detector. For this simulation, a quanti-

sation with a bit depth of Bd = 16 gives 216 = 65536 discrete values of intensity

that can be assigned. The parameters for WBP and SIRT were as described in

section 4.4.2. For the CSTV, finding the appropriate values for λTV , λl1 parame-

ters for a given data set is generally a trial-and-error process which is made more

difficult by the subjective nature of deciding what constitutes a correct recon-
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struction. For this reason, the CSTV algorithm was run for a range of different

values for the parameters between [20 − 0] for both λTV and λl1 and choosing

the values that maximise the SSIM metric between a 2D XY-slice through the

centre in the simulated 3D map as in Fig.4.19(a1-c1) with the corresponding slice

in the reconstructed map. The SSIM was shown to be consistent with perceived

visual quality (as can be seen in Wang et al., 2004, Fig. 2). For the DLET

method, the dictionary size is set to (K = 256 atoms) for 8× 8 patches (n = 64);

the dictionary for DL processing is pre-trained from the intermediate image, as a

training set, using K-SVD with parameters as follows: 20 iterations are used in

dictionary training (Iter = 20 ); the target sparsity limits T0 is set to 0.5n atoms.

To assess the fidelity of reconstruction quantitatively, the normalised Eu-

clidean Distance (NED) metric was used in both the image and sinogram domains.

In the image domain, it is defined as: NEDimg = ‖x− x′γ‖2 / ‖x‖2 where x is the

ground truth map, x′ is the reconstructed image and γ is the scaling constant. In

the sinogram domain, the quality metric is: NEDproj = ‖b− ϕb′‖2 / ‖b‖2 where

b is the projection data, b′ is the decrease Radon transform of x′ and ϕ is a scal-

ing constant. The scaling factors γ and ϕ are important for a fair comparison

between different algorithms as this will reverse any scaling or negative intensity

that might be applied to the simulated data by different numerical implemen-

tations used in this paper. The values for γ and ϕ are obtained in a way that

minimises the Euclidean distance metric, which is an unconstrained nonlinear

optimisation that can be solved using MATLAB.

Figure 4.18 (a1-c1) shows a volume rendering from the WBP reconstruction.

This clearly suffers from blurring, streaking, and missing wedge artefacts, which

can also be viewed in the noisy orthoslices in Fig.4.19(a1-c1). The SIRT results

in Fig.4.18 (a2-c2) show higher SNR and contrast than of the WBP. SIRT was

also able, to some degree, to retrieve the challenging third spheroid that is lost in

WBP as indicated by the arrow in Fig.4.19(a2). In the CSTV case, the parameters

that maximise the SSIM between the reconstructed and ground truth maps were

λTV = 10, λl1 = 13 as shown in Fig 4.18(a3-c3). It can be seen that the CSTV

was able to reduce the elongation artefact and noise. However, this came at

the cost of losing both of the spheroids. This problem can be ameliorated by

decreasing the λl1 contribution to 10 as can be seen in Fig.4.18 (a4-c4). CSTV

was able in this case to retrieve the middle sphere . However, this comes at the

cost of increasing noise in the reconstruction, as can be seen in the orthoslices in
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4.5 Organic photovoltaic solar cells 3D-morphology

Table 4.6 | Quality metric values for the polymer solar cell reconstructions

Figure 4.19 4.20

Method/Metric SSIM NEDimg NEDproj NEDproj

WBP 0.0470 0.74 0.56 (a) 0.42

SIRT 0.0840 0.57 0.31 (b) 0.29

CSTV
(a3) 0.7454 0.11 0.08 (d) 0.24

(a4) 0.5755 0.20 0.15 -

DLET 0.8039 0.08 0.07 (f) 0.23

Fig.4.19(a4-c4). It should also be noted that the CSTV reconstruction was not

able to retrieve the second spheroid, even with a lower value of λl1 as the noise

remains dominant.

Figure 4.18 (a5-c5) shows the DLET results, and these clearly show reduced

noise and minimal missing wedge artefacts. The error tolerance parameter ε is

set to 2.5 × 105. It can be clearly seen that all of the spheroids were recovered

with good contrast. As for the challenging second spheroid, despite the weak

signal, it can be seen that this was much better reconstructed by DLET than by

any other algorithm. Such an object is challenging to recover as its intensity is

very near to the noise level in the sinogram domain, making it hard to distinguish

from the noise. The DLET performed better due to the patch averaging step,

where each pixel is an average of the image patches that cover the surrounding

area. Also, since the other objects contain similar features, this enhances the

sparsifying capability of the learned dictionary. This also enables the use of

features from other objects with better contrast to recover objects with noisy

pixels in a way that is consistent with the measurements. Table 4.6 shows the

quantitative quality measurements for each of the reconstructions in this section.

4.5.2 Experimental results

As stated above, in a previous publication (Alekseev et al., 2015), ET was used to

study the 3D morphology of PTB7:PC71BM blends, but only using SIRT. Here

the CSTV and DLET are applied to an EFTEM tilt-series of PTB7:PC71BM

blends (Fig. 4.15-a), looking for a reconstruction of a higher quality than can be
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4.5 Organic photovoltaic solar cells 3D-morphology

Figure 4.18 | Volume rendering of reconstruction from noisy projections of simu-
lated solar cells- (a1-c1) shows a visualisation WBP (a2-c2) SIRT, (a3-c3) CSTV
with λTV = 10, λl1 = 13 , (a4-c4) CSTV λTV = 10, λl1 = 10 , (a5-c5) DLET
reconstruction. As before, the a) images are Z-projections, the b) images are
Y-projections, and the c) images are X-projections.
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4.5 Organic photovoltaic solar cells 3D-morphology

Figure 4.19 | Orthognal Slices through the reconstructed volume in Fig.4.18.-
(a1-c1) shows an orthoslice of WBP reconstruction (a2-c2) SIRT, (a3-c3) CSTV
with λTV = 10, λl1 = 13 , (a4-c4) CSTV λTV = 10, λl1 = 10 , (a5-c5) DLET
reconstruction. As before, the a) images are slices perpendicular to Z, the b)
images are slices perpendicular to Y, and the c) images are slices perpendicular
to X. 128



4.5 Organic photovoltaic solar cells 3D-morphology

provided by SIRT and WBP. For this purpose, a tilt series was acquired for a

cross-section lamella of the polymer blend with thickness (≈ 130nm), making it

electron transparent. The lamella was prepared using a focused ion beam (FIB)

lift-out technique. Such thinning is also important to avoid shadowing at higher

tilts. The electron tomography dataset was acquired on an FEI Tecnai T20 TEM

operated at 200 kV and equipped with a Gatan GIF2000 Imaging Filter. The

EFTEM imaging mode was used for energy-selected images for the C-K edge to

highlight the PC71BM domains. A tilt series was acquired over a tilt range of

±62◦, with an increment of 2◦ between consecutive projections. After obtaining

the elemental map tilt series, an automated spatial drift correction (alignment) for

the EFTEM series was performed with the Statistically Determined Spatial Drift

algorithm (Schaffer et al., 2004) using the SDSD plug-in for DigitalMicrograph

(DM). The visualization of all the reconstructions was done using the Amira 6.0

software package from FEI Visualization Sciences Group. More details about

imaging conditions can be found in (Alekseev et al., 2015).

Figure 4.20, shows an XY-orthoslice taken at the centre of reconstructed vol-

ume using different methods. The WBP and SIRT slices show noisy results in

Fig.4.20(a and b) and missing wedge artefacts in the XZ-orthoslices in Fig.4.21(a

and b) which are very difficult to segment. Fig.4.20(c and d) shows a reconstruc-

tion from CSTV with different values for λTV = 10, 20 respectively. The values

for λl1 in both slices was 10 and not increased in order not to lose features from

the reconstruction. It can be seen that CSTV in slice (c), using parameter values

similar to those used in the simulation in Fig.4.18(a4), has a limited ability to

reduce the noise. When increasing the λTV from 10 to 20 in slice (d), the re-

construction noise was further suppressed. However, this came at the expense of

introducing staircase artefacts (as indicated by the arrows in the zoomed area).

The DLET slices in Fig.4.20(e and f) show reconstruction with higher fidelity for

this noisy and reduced dataset. The results are improved when increasing the

error tolerance parameter ε from 2.5×105 to 1.3×104 in slice (f), which makes it

very easy to segment using (semi-)automated methods. In Fig.4.21(c and d), the

elongation of the PC71BM-rich domains is reduced using both CSTV and DLET.

However, we noted that different tuning for CSTV parameters will affect the size

of PC71BM domains while in the case of DLET, the only effect that was noted

is the blurring of the boundaries of the domains when increasing the ε above the

error levels. Fig.4.22 shows the corresponding volume renderings of reconstructed
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4.6 Ebola virus-like particles 3D reconstruction using DLET

volumes. The volume rendering display windows were limited with alpha value

(transparency) reduced until the true signal from the object(s) prevailed over the

background intensity.

The experimental data results (Fig.4.20, Fig.4.22 , Fig.4.21 and Table 4.6) are

consistent with many of the features in the simulation studies. DLET was able to

produce clear reconstructions with decreased streaking and missing wedge arte-

facts. The denoising capability was also demonstrated without sacrificing sharp

details or introducing new artefacts. Also, DLET results maintained a higher

SNR and contrast compared to other methods in this study, which maintains

separation between different independent features (as indicated by the arrows in

Fig.4.22-d). When using a value of ε that was far too large, the DLET processing

will be faster. However, this will result in some loss of genuine signal as the sparse

coding step of DLET will tend to approximate each patch in the reconstructed

image with large errors, which can introduce some blurring. On the other hand,

setting ε too small or below the noise level will increase the computing time and

will add more noise and artefacts to the reconstructed image.

4.6 Ebola virus-like particles 3D reconstruction

using DLET

The filoviruses Ebolavirus (EBOV) and Marburgvirus cause fatal hemorrhagic

fevers in humans and other mammals, known as Ebola virus disease (EVD), with

mortality rates approaching 90% (Feldmann and Geisbert, 2011) which makes it

listed as world health organization risk group 4 pathogen. Ebola virus caused

the 2013 − 2015 epidemic in West Africa, which has resulted in at least 11, 276

confirmed deaths and 27,678 suspected cases as of 12 July 2015 (WHO, 2015).

Consequently, considerable effort is focused on developing therapeutics and vac-

cines to prevent infections.

4.6.1 Motivation

EBOV infections begins with the attachment the glycoprotein (GP), that is lo-

cated at the EBOV envelope, to the target cell surfaces (Chandran et al., 2005;

Clercq, 2015). Understanding the structural information of GP is of vital interest
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Figure 4.20 | Reconstructions of solar cells PTB7:PC71BM polymer blend from
the EFTEM tomography tilt series of Fig.4.15. (a and b) Orthoslices through
WBP and SIRT reconstructions, respectively. (c and d) Orthoslices through
CSTV reconstructions with λl1 = 10, 20,respectively and λTV = 10 for both. (e
and f) Orthoslices through DLET reconstructions with ε = 2.5×105 and 1.3×104,
respectively.
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4.6 Ebola virus-like particles 3D reconstruction using DLET

Figure 4.21 | Cross-sectional slices, (a and b) XZ Orthoslices through the dotted
blue line indicated on WBP and SIRT reconstructions in Fig.4.20 (a and b),
respectively. (di) XZ Orthoslice through the dotted blue line indicated on the
CSTV reconstruction in Fig.4.20(b). (fi) XZ Orthoslice through the dotted blue
line indicated on the DLET reconstruction in Fig.4.20(f). (e) cross-sectional
TEM image of the PTB7:PC71BM photoactive layer of the solar cell sample.
(See Alekseev et al., 2015, Fig. S1) for other views.
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4.6 Ebola virus-like particles 3D reconstruction using DLET

Figure 4.22 | Direct Volume Rendering - 3D perspective view voxel Z-projections
of (a) WBP, (b) SIRT, (c) CSTV and (d) DLET.

for improved understanding of the principles of infection strategies to combat

the viral infection and is of fundamental interest for EBOV vaccine development

(Tran et al., 2014).

Cryo-electron tomography (cryo-ET) (Frank, 2010, chapter 4) is an effective

tool for obtaining structural details of complex viral component organization at

sub-nanometer resolution. Specifically, concerning EBOV, cryo-ET can be used

for studying the arrangement and structural information of the internal viral

components of EBOV such as the glycoprotein (GP) spikes on the surface of

EBOV which are the target of multiple neutralising antibodies (Qiu et al., 2012).

To determine the three-dimensional structure of glycoprotein in viruses, the
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4.6 Ebola virus-like particles 3D reconstruction using DLET

procedure starts with Fiducial-based reconstruction of tomograms using weighted

back-projection or SIRT techniques. Following this, single particle data analysis

methods can be applied to individual virions to segment the tomograms and pick

the GP spikes. Alignment, classification and 3D averaging of the extracted spike

volumes can be performed using methods similar to (Bartesaghi et al., 2008)

which will result in final density maps from the raw spike images.

However, the final density maps quality is effected by many factors, mainly

the reconstruction techniques used. Constructing a tomogram using traditional

methods (such as, WBP or SIRT) still suffers from distortion (especially the

missing wedge artifacts) due to the limited range of angles sampled. Also, specif-

ically for tomography on sensitive biological materials, low signal-to-noise ratio

is a problem due to the need to limit the electron dose over the entire tilt series,

resulting in noisy 3D representations as can be seen in Fig.4.23, Fig.4.23(b) and

Fig.4.24(b).

This can benefit from compressed sensing reconstruction techniques (such

as DLET) and increase the fidelity of tomograms. This work present a visual

assignment between tomograms that was constructed using traditional SIRT and

the DLET method.

4.6.2 Experimental

Two cryo-tilt series are reconstructed. Both was acquired at approximately 2o in-

tervals from ±60o of an Ebola entry-competent virus-like particles (Ebola-VLPs)

and published previously by Tran et al. (2014). Automatic fiducial-based align-

ment of datasets was performed using IMOD software and then reconstructed

using DLET algorithm (AlAfeef et al., 2014a). These results are compared to a

3D reconstruction of the same datasets obtained using SIRT algorithm.

4.6.3 Results and discussion

Figure 4.23 shows a comparison between SIRT and DLET for reconstruction 1

using tilt series 1. In Fig 4.24, DLET gives a noticeable much clearer visibility of

the details of the virus and its morphology, including the clearly visible GP spikes

1Please note that this and the subsequent figure are produced without any segmentation to
show the raw results of the reconstruction and to emphasise the clear difference between the
results of the two methods.
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surrounding particles. Figure 4.24 shows a volume rendering of reconstruction

from a second tilt series. Here the DLET shows a clearer reconstruction with a

significant decrease of reconstruction noise.

Consequently, this case study shows that the use of this dictionary-based re-

construction algorithm gives major benefits for the reconstruction the 3D volume

of viruses from ET datasets of limited tilt range, relatively low signal to noise,

and low contrast levels. It is anticipated that the application of this technique will

present major advantages in discerning the nanoscale details of virus structure

and infection behaviour when being integrated in the cryo-electron tomography

and subtomogram averaging of GP spikes procedures (e.g. Tran et al., 2012)

compared to established tomographic reconstruction algorithms.

Figure 4.23 | a) Projection at 0o of Ebola-VLP b)XY-Orthoslice obtained
through the constructed volume using SIRT, c) DLET with error tolerance
ε = 2× 10−6 and d) DLET with error tolerance ε = 3× 10−4. The GP spikes are
clearly visible surrounding particles as indicated by arrows in (c) and (d).

4.7 Conclusion

This chapter address the ET reconstruction problem, where a tomogram is being

reconstructed from an undersampled noisy tilt-series. A novel ET reconstruc-

tion method was developed. This new method was named dictionary learning

electron tomography (DLET). In DLET, the ET reconstruction was enhanced by
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Figure 4.24 | a) Projection image at 0o of Ebola-VLP and gold fiducial markers.
The other figures show volume rendering of reconstructed 3D map using (b) SIRT
and (c) DLET. Noise and smearing due to markers is reduced in (c).

introducing prior knowledge about the specimen during the reconstruction pro-

cess. The prior-knowledge approach was based on the mathematical theory of

compressed sensing (CS). The approach taken is based on sparse and redundant

representations in a way that incorporates prior information through trained dic-

tionaries. The dictionary is learned during the reconstruction process in a way

that describes the underlying image content effectively and leads to a sparser rep-

resentation. The DLET technique was tested using a simulated phantoms and

experimental data that are known to be difficult to reconstruct using traditional

(non-sparse) techniques such as the well-used Total Variation (TV) method in

compressed sensing. Reconstruction results validate its efficiency in both noise-

less and noisy cases and yield an improved reconstruction quality with fast con-

vergence. The improvement is compared with other techniques that are based

on fixed sparsifying transforms in ET and with the conventional algorithms. The

proposed method enables the recovery of high-fidelity information without the

need to worry about what sparsifying transform to select or whether the images

used strictly following the pre-conditions of a certain transform (e.g. strictly

piecewise constant for TV). This can also avoid artifacts that can be introduced

by specific sparsifying transforms (e.g. staircase artifacts from TV).
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”Nature composes some of her loveliest music for

the microscope”
Theodore Roszak, Where the Wasteland Ends,

1972.

5
Chemically sensitive electron

tomography using DLET

I
n principle, ET is applicable using any imaging mode that fulfills the projec-

tion requirement such that the signal must show, at least, a monotonic rela-

tionship with some function of the physical property of the sample (Hawkes,

2006). This condition is approximately fulfilled for mass-thickness contrast in

bright field TEM of amorphous biological specimens, and high angle annular dark

field (HAADF) STEM imaging of thin specimens. Consequently, both imaging

techniques have been widely used in ET. Recently, ET has been performed using

electron energy loss spectroscopy (EELS) in the STEM, to achieve a chemically

sensitive 3D reconstruction which opens the door for additional possibilities for

studying detailed chemistry. Early studies have already shown the feasibility of

EELS-STEM tomography (Jarausch et al., 2009; Rebled et al., 2011; Yedra et al.,

2012a,b, 2014). Nevertheless, EELS suffers significantly from multiple scattering,
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especially for thicker specimens, and this makes the background-subtracted edge

signal a non-linear function of thickness, which leads to reconstruction artefacts.

In this chapter, linear chemically sensitive tomography is performed on nanopar-

ticles of an industrially important material, using a probe corrected STEM with

an electron spectroscopy system that is equipped with DualEELS capability.

Using DualEELS, the low- and high-loss EELS signals can be simultaneously

recorded for each pixel in a spectrum image. This allows the subsequent decon-

volution of the multiple scattering out of the high-loss signal, resulting in edges

with integrated intensities that have a clear linear relationship to thickness. The

processed EELS maps are then aligned using a feature-based alignment method

and reconstructed using the SIRT and the DLET methods, followed by quanti-

tative analysis of the results.

5.1 Introduction

Recently, ET has been performed using spectroscopic signals, including Xray

spectroscopy, energy-filtered TEM (EFTEM), and electron energy loss spectroscopy

(EELS) in the STEM, to achieve a chemically sensitive 3D reconstruction (Ja-

rausch et al., 2009; Yedra et al., 2012b). Additionally, low-loss EELS has recently

been used to allow a 3D reconstruction of plasmon modes on silver nanocubes

(Nicoletti et al., 2013). While X-rays and EFTEM mainly allow the mapping

of elemental contents; core-loss EELS offers additional possibilities for studying

detailed chemistry including bonding and valence states using the near-edge struc-

ture. Early studies have already shown the feasibility of core-loss EELS-STEM

tomography (Jarausch et al., 2009; Yedra et al., 2012a,b). Nevertheless, EELS

signals usually contain a significant amount of multiple scattering, except for the

thinnest specimens, meaning that the background-subtracted core loss signal is a

non-linear function of thickness, which leads to reconstruction artefacts. This also

means that the use of single range EELS for 3D reconstruction is only really jus-

tifiable for datasets where all projections have a maximum thickness of less than

30% of the mean free path for inelastic scattering (Egerton, 2008, chapter 3).

Extending EELS tomography to thicker specimens requires explicit account

be taken of the multiple scattering, which requires that the low loss and core loss

signals are simultaneously acquired, i.e. this necessitates the use of DualEELS
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(Gubbens et al., 2010b; Scott et al., 2008b) for the data acquisition. The mul-

tiple scattering can be dealt with by using either deconvolution (Egerton, 2008,

chapter 4) to remove it or modelling (Thomas and Twesten, 2012; Verbeeck and

Van-Aert, 2004) to take account of it in the quantification. This latter approach

has recently been used by Haberfehlner et al. (2014b) to perform chemically sen-

sitive 3D reconstruction of precipitates in an Al-Si alloy containing Yb.

In principle, the intensity in an EELS edge is given by the equation:

I/I0 = Nσ (5.1)

where I is the intensity for a given energy range above the edge, I0 is the

intensity of the zero loss peak, N is the projected areal density of atoms in

the area sampled by the beam and σ is the partial cross-section for the edge of

interest for this energy range and for the electron optical parameters used in the

experiment (including probe convergence angle, spectrometer collection angle,

and primary beam energy). For a constant density material, N will have a linear

scaling with thickness and thus, in order to achieve a truly linear relationship

between integrated, background-subtracted core-loss signals and thickness, the

signal I should be normalised by the intensity present in the zero loss peak I0.

This normalisation is implicit in the model based approach used by Haberfehlner

et al. (2014b) but needs to be performed explicitly if deconvolution, background

subtraction and numerical integration of edge intensity are to be used to produce

maps for 3-D reconstruction.

This work examines the advantages of using DualEELS for the chemically

sensitive reconstruction of vanadium carbide precipitates on an extraction replica

prepared from a vanadium microalloyed high manganese steel, as part of an EU

RFCS project (Precipitation in High Manganese Steels) using the DLET algo-

rithm for ET. In particular, great emphasis is laid on assessing the reliability

of the tomographic reconstruction by comparing results from experimental and

simulated tomography dataset calculated from a model particle in the shape of

an octahedron.
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5.2 Methods

5.2.1 Advanced high strength steels and vanadium allows

High manganese steels are materials with excellent properties in terms of ductility

and strength. For automotive applications the formability of these steels is in

several cases superior to that of the so called 3er generation steels. To improve

crash-behaviour for those applications it is desirable to improve the yield strength

and this can be achieved by the precipitation of fine, well-dispersed carbonitrides.

In this system, the addition of vanadium is one possible method for precipitating

nanoscale carbides. Another issue concerning advanced high strength steels is

hydrogen embrittlement. Several publications (e.g., Depover et al., 2015; Spencer

and Duquette, 1998; Szost et al., 2013) suggest the beneficial effect of particles

on hydrogen trapping, although the mechanism remains unclear.

5.2.2 Materials and sample preparation

As a suitable test object for experimentation, vanadium carbide particles a carbon

extraction replica were used. These particles were extracted from a high man-

ganese steel of composition 22Mn− 0.6C − 0.2V − 0.01N(wt.%− Fe− balance)
and heat treated at 800◦ C for 3h to promote precipitation of V Cx. For the

extraction the direct carbon replica method was used. In this method, it is nec-

essary to start from an etched sample surface and for that a mirror-polished

surface was etched with 2% Nital to reveal the microstructure without damaging

the precipitates. This etchant reveals the micro-structure without damaging the

precipitates. Then, a carbon film is deposited (30 to 50 nm of thickness) using

the Edward E306A coating system. In order to remove the film with the precipi-

tates attached, the film is scarified to obtain a grid of dimension of 3mm and the

sample is immersed completely in a nitric acid 20% solution (80 ml of nitric acid

and 400 ml of water distilled). This allows the detachment of the square-pieces

of carbon replicas. They are then placed in ethanol for rinsing and finally placed

on copper grid for TEM examination. After 3h heat treatment relatively large

(tens of nm) vanadium carbide particles, with well developed facets are observed.

Initial studies have shown that these are often faceted on {111} planes, and that

particles appearing approximately octahedral in shape are commonly observed

on the replica.
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5.2.3 Instrumentation and experiment

The tomography experiment was performed on a JEOL ARM200F scanning trans-

mission electron microscope equipped with a cold field emission gun and operated

at 200kV. The probe half-angle was 29 mrad, the probe current was ∼ 400 pA

and the probe diameter was ∼ 1 Å. The acquisition of the datasets and the sub-

sequent processing of tomography data using DualEELS is summarised in Figure

5.1. The EELS spectrum image datasets were recorded using a Gatan GIF Quan-

tum ER using a fast DualEELS mode with a drift tube offset of 150 eV between

the low loss and high loss datasets. The collection half angle was 36mrad. The

low loss was integrated for 0.000952 s and the high loss for 0.019055 s (i.e. an ex-

posure ratio of 20). The spectrum images were 86 pixels horizontally, but varied

in the vertical direction (from 81−132 pixels) in order to have sufficient pixels to

cover all precipitates of interest (in practice, only a smaller sub-region was used

for the reconstruction). Each pixel was 0.99 x 0.99 nm and the total acquisition

time for each DualEELS dataset was about 7.5 minutes. The sample was held in

a JEOL tomography holder which allows a nominal tilt range of ±80◦, although,

in practice, we were limited to a range of approximately −50◦ to +50◦ because of

shadowing from grid bars on the sample support. Spectrum images were recorded

at 10◦ intervals in this range. Fig. 5.2 shows HAADF-STEM images and EELS

elemental maps acquired at different tilt angles, EELS low/core loss spectra from

pixels indicated in the projection.
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Figure 5.1 | Schematic illustration of tomography using DuallEELS that has
been performed in this work. The acquired spectrum-image data set at each tilt
in the series is used to generate 2D chemical maps, one for each element under
investigation, and thence to reconstruct 3D chemical maps for each element. After
Maign and Twesten (2009).
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Figure 5.2 | (Top Row) HAADF-STEM projection 2D image and normalised
EELS elemental maps of C from the tilt series. (last row) A Fourier-ratio decon-
volved EELS spectrum extracted from pixel (α) in the first precipitate, displayed
using a log-linear plot.

5.2.4 Post-acquisition procedure

The low loss and high loss spectra were acquired as spectrum images. In a recent

publication by Bobynko et al. (2015), the procedure for the extraction of precip-

itate signals from a matrix using DualEELS was described. The early stages of

this procedure were also applied in the present case: energy alignment, spectrum

cropping, subtraction of any stray signal from the low loss spectrum, noise reduc-

tion using principal component analysis (Bosman et al., 2006; Lucas et al., 2013;

Lucic et al., 2005), splicing of the low loss and high loss spectra, and Fourier-
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log deconvolution to remove the multiple scattering 1. Following this, vanadium

elemental maps were extracted from each spectrum image using background sub-

traction with a window from 470-505 eV and signal integrated with a window

from 505-555 eV. (This energy range is only usable in the absence of any oxy-

gen in the sample, which was the case for this extraction replica). Similarly, for

carbon, all maps were produced using a background window from 245-275 eV

and a signal window from 280-340 eV. Finally, all maps were normalised by I0,

the intensity of the zero loss peak, to produce maps that should have a linear

relationship of the intensity to the projected atomic content in each pixel.

Fig. 5.2 shows HAADF-STEM images and EELS elemental maps of C ac-

quired at different tilt angles, together with a spliced and deconvolved EELS

spectrum (on a log scale) showing both the low loss and core loss regions in a

single spectrum from one pixel on a precipitate in the 0◦ projection. The tilt

axis is vertical in the orientation of this figure. It may be noted that the carbon

contribution from the support is asymmetric about the 0◦ tilt position. It was as-

sumed that the carbon replica was not completely flat and that a higher effective

angle to the surface normal was seen at −50◦ than at +50◦.

The resulting tilt sequences of projected normalised 2D elemental maps for

C and V were then aligned to a common tilting axis and used as the input for

the tomographic reconstruction as outlined in Fig. 5.1 (in this case for V). To

allow demonstration of the advantages of using deconvoluted data, a sequence

of maps was also created in the same way, but without removing the effects of

multiple scattering by deconvolution, but still normalising by the division of the

edge intensity by I0.

To obtain high-quality reconstructed results, accurate alignment is critical be-

fore reconstruction. The conventional alignment approach that is commonly used

in electron tomography depends on the cross-correlation between neighbouring

projections (Frank, 2006a; Guckenberger, 1982). This approach was not accurate

in aligning our current data set. Fig.5.3(a) show an XZ slice from SIRT recon-

struction of a tilt series that was aligned using cross-correlation method. The tilt

axis still suffers from a degree of misalignment; which causes the reconstruction

to smear out into ’arcs’.

1Data processing was performed using Digital Micrograph software. Image acquisition was
performed by Dr. Ian MacLaren.
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To overcome this limitation, a feature-based alignment method using contour

detection and centre of gravity approach was adopted (AlAfeef et al., 2016, Ap-

pendix A). The tilt series alignment was performed using the HAADF-STEM

images that were acquired simultaneously with the EELS spectra. The align-

ment process is initiated with the cross-correlated tilt series to decrease degree of

freedom. For each tilt, a high-performance contour detector (globalPb) (Arbelaez

et al., 2011) was applied to detect the boundary of features in the tilt series in or-

der to calculate the centre of gravity with sub-pixel accuracy. After detecting the

boundaries of particles, the tilt series is masked to remove the background pixels,

and the weighted centroid of particles in each image is calculated. The resulting

centroids are then tracked and treated as virtual markers to generate a model

that is used to align the tilt series in IMOD (Mastronarde, 2006). The images

are transformed so that they represent projections of particles tilted around the

Y axis, as well as to refine the projection angles. This is performed after calcu-

lating the rotation, translation, and scaling (magnification) to be applied to each

image. Finally, the alignment process was iterated to minimise the re-projection

error of virtual markers. 1 An alternative approach for complex samples can be

achieved by using Scale-Invariant Feature Transform (SIFT) (Lowe, 1999) sim-

ilar to (Han et al., 2014). The absence of the crescent-shaped artifacts in the

experimental results in Fig.5.3(b) indicate that this approach provide accurate

alignment compared to cross-correlation methods for the dataset in this study.

1We found that the convergence rate of this approach for our data set was fast and does
not differ significantly from the first iteration.
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Figure 5.3 | The effect of tilt-axis misalignment, on the reconstruction of a
vanadium carbide precipitate. (a) XZ slice from a SIRT Reconstruction of a tilt
series that was aligned using a standard cross-correlation method. A distinctive
arcing artefact is observed, which is a known signature of misalignment. The
curvature of this arcing is dependent on the direction and the magnitude of mis-
alignment. (The interested reader is referred to Fig.11.4 in (Banhart, 2008b) for
further clarification). (b) The same slice after using the improved feature-based
alignment procedure described in (AlAfeef et al., 2016, Appendix A).

5.2.5 Three dimensional image reconstruction

The reconstruction of 3D elemental maps was performed using SIRT algorithm,

as well DLET (Al-Afeef et al., 2016; AlAfeef et al., 2014b, 2015a). SIRT recon-

structions were performed using IMOD (Mastronarde, 2006). Determining the

optimal iteration number in SIRT is critical and this is usually selected empiri-

cally. Large numbers of iterations will produce a solution that is similar to the
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weighted back projection algorithm (which can be problematic (Al-Afeef et al.,

2016)), while very small iterations will produce less accurate reconstruction and

lose important features of the tomogram. In this work, the IMOD guideline (Mas-

tronarde, 2006) was followed which is to select an iteration number in the range

8− 25. It was found that 15 iterations provided a visually sensible solution.

The DLET parallel implementation was run for 20 iterations with dictionary

learning stage performed for 20 iterations. All implementations were executed on

Matlab v7.12 (R2013a) installed on a 64-bit Windows 7 operating system with an

Intel Core i5 processor running at 3.10 GHz with 24 GB memory and NVIDEA

GPU card with 336 cores.

5.2.6 Visualisation

Following the image reconstruction step, the constructed volume was then seg-

mented, to generate triangulated surfaces, and visualised. The segmentation was

performed using the Otsu method (Otsu, 1975a) which is an automated threshold-

ing technique to avoid subjective judgment. All visualization performed here were

using AMIRA (FEI − Visualization Sciences Group). Orthoslices through recon-

structions are shown with linear mapping between the maximum and minimum

values of pixel in each image. The labeled y−axis on each orthoslice, is parallel to

the tilt axis, the z−axis is parallel to the optic−axis at zero tilt (which is also the

missing wedge direction), the x−direction is orthogonal to both. The reconstruc-

tion’s voxel projection views were generated using the volume−rendering module

in AMIRA. Its histogram windows were restricted to only show the true signal

from the reconstructed object prevailed over the background intensity. An arith-

metic octahedron was fitted to each surface to provide a visual assessment as in

Fig.5.5 and Fig.5.7. The fitting strategy was to find a transform A that applies

rotations and a uniform scale factor that minimises the root mean square distance

(Euclidean measure) between the points on the segmented model surface to the

corresponding points on the reference octahedron surface. This was performed

using the iterative closest point algorithm (ICP) (Besl and McKay, 1992).
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5.3 Simulations and experimental results

5.3 Simulations and experimental results

A simulation study was performed to support the investigation of the experimen-

tal data.

5.3.1 Simulation study: Reconstructions on simulated tilt

series from an idealised octahedron

Since the precipitates are expected to approximate to octahedra in shape, a re-

alistic looking octahedral precipitate was computer generated and the imaging

process was then simulated upon these particles. The simulated tilt series were

obtained taking in to consideration the imaging conditions, such as detector res-

olution, bit depth and intensity. ET reconstruction was then performed on the

simulated tilt series.

5.3.1.1 Generation of simulated octahedral precipitate tilt series:

The simulated test object should have one solid component shaped as a regular

octahedron, defined as the shape which is formed by connecting all the face centres

of a cube. This will have 8 faces, angles between edges are 90◦, and angles between

faces meeting at an edge are 70.5◦ and angles between sides meeting across a

point are 109.5◦. To simulate the experimental data closely, a 3D model (mesh

model) was created using CAD software. This mesh model is then voxelised using

(Patil and Ravi, 2005). The voxelisation involves converting geometric objects

from their continuous geometric representation into a set of voxels that best

approximates the original object. The result is a binary 3D matrix with voxel

values of logical 1 to represent the boundary and inside region of 3D object or 0

to represent the background.

This 3D matrix is spatially quantised in a way that simulates what would

be an ideal output from the detector of the STEM imaging process (i.e. each

octahedron object requires a box of approximately 233 pixels to be represented

as similar to the real precipitates in the experimental EELS elemental-map tilt

series). Fig.5.4(a1-c1) show the simulated octahedra from three orthogonal pro-

jections. To simulate the imaging process, the Radon transform for parallel-beam

geometry is performed upon the sampled 3D matrix at 10◦ intervals from ±50◦

rotations. Then, shot and quantisation noise is included in the simulated images.

148



5.3 Simulations and experimental results

All simulation was performed using MATLAB (Mathworks Inc.), reconstructed

using IMOD (Mastronarde, 2006) and visualised using AMIRA (FEI).

The Radon transform represents the path-length of the rays in the material,

which is determined by taking line integrals through the sample between the

source and detector to generate the projection image Iout. The simulated projec-

tions were scaled to a mean value equivalent to the mean of the EELS elemental

maps, and subsequently corrupted by shot, Gaussian and quantisation noise to get

a low SNR dataset. This should nicely approximate the signal seen by HAADF

imaging in the STEM (which should be close to linear for low object thicknesses)

or EELS edge intensities, after correction for multiple scattering (which should

be linear with thickness).

5.3.1.2 Addition of noise and quantisation

It was assumed that only shot and Gaussian noise are present in the detected

intensity. Shot noise originates because the electron quanta reach the detector at

irregular intervals. Therefore, the number of electrons detected in a fixed time

period will vary, following Poisson statistics. The SNR on each pixel is equal to
√
Iout. Gaussian noise with standard deviation ρ was added to the projections, to

simulate electronic noise in the amplifier system, resulting in a dataset with lower

SNR. The ρ parameter was approximated to mimic the experimental projections.

In any electron detecting system, there is a limited number of possible discrete

values of electrons that can be detected. For digital processing, the continuous

intensity of detected intensity needs to be converted into a discrete value, (i.e.

Quantised). Quantisation is the process of mapping measurements values from a

continuous scale to a discrete value. Quantising with a bit depth of L gives 2L

discrete values of intensity that can be assigned. The mapping process between

the detected intensity and quantised intensity was assumed to be equal to Iout.

The formulation for the quantised intensity IQ detected at each pixel after the

addition of noise is:

IQ(`, p, θ) = b2LP (Iout) + N(Iout, ρ)

Iin
c (5.2)

Where P (x) returns a random number taken from a Poisson distribution with

a mean (and variance) of x and L is the pixel bit depth and N(x, ρ) returns a

random number taken from a Gaussian distribution with a mean of x and variance
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Table 5.1 | Quality metric values of simulation reconstruction in Fig.5.4.

Method/Metric PSNR SSIM

SIRT 16.61 29.25%

DLET 19.51 82.26%

of ρ. With the phantom images as the ground truth, the reconstructed simulation

was assessed regarding two commonly used metrics: Peak Signal-to-Noise Ratio
1 (PSNR) (Huynh-Thu and Ghanbari, 2008) and Structural SIMilarity (SSIM)

index (Wang et al., 2004). For further details about the PSNR and the SSIM

metrics, please refer to section 4.4.1 in chapter 4 of this thesis.

5.3.1.3 Simulation Results

Figure.5.4(a2-c2) shows the SIRT and DLET reconstructions from the simulated

10 projection tilt series of a vanadium carbide octahedron. As can be seen, the

SIRT reconstruction obviously suffers from elongation and boundaries blurring

in the missing wedge (z) direction. Also, as expected, it suffers from streaking

artifacts due to the limited angular range. These artifacts are obviously reduced

in the corresponding DLET reconstruction as can be seen in Fig.5.4 (a3-c3), where

it is clear that the DLET reconstruction has accurately recovered the simulated

3D phantom. Also, the denoising capability of the adaptive sparsifying transform

in DLET has produced a near uniform intensity across the background. It should

further be noted that SIRT orthoslices falsely show a reduced density in the centre

of the octahdron, whereas the correct uniform density through the octahedron is

reproduced by the DLET algorithm. The quality metrics for the reconstruction

(Table 5.1) confirm the effectiveness of the adaptive sparsifying transform.

Figure.5.5 shows the result of fitting the reconstruction results from simula-

tions to an idealised octahedron. The SIRT reconstruction (Fig.5.5a) is clearly

elongated in the missing wedge (z-direction) as indicated by the arrows. This arte-

fact is significantly reduced in the DLET reconstruction as shown in (Fig.5.5b).

1For further details about the PSNR and SSIM metric, please refer to section 4.4.1 in
chapter 4 of this thesis.
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5.3 Simulations and experimental results

Figure 5.4 | Simulation of 3D reconstruction of an octahedron from a
tilt series of 50◦ to 50◦ , (a1-c1) volume rendering of the original object along
the three principal axes of the octahedron, together with orthoslices taken from
the central slice for each the corresponding view (on black backgrounds). (a2-
c2) SIRT and (a3-c3) DLET reconstructions from simulated projections, together
with their central orthoslices. For visualisation purposes, the image intensities of
the orthoslices were enhanced.
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5.3 Simulations and experimental results

Figure 5.5 |A comparison, of reconstructions of the simulated octahedron VCx

using (a) SIRT and the (b) DLET algorithm showing a comparison to an idealized
octahedron. Note that the distortion in the z (missing wedge) direction is much
reduced using DLET.

5.3.2 Experimental study: Reconstructions on experimen-

tal maps from DualEELS

After extracting 11 different maps from the DualEELS spectrum images of an area

containing two precipitates, the 3D vanadium map was reconstructed using both

SIRT and DLET. The resulting reconstruction comparison is shown in Fig.5.6.
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Figure 5.6 |Reconstructions of the Vanadium signal, in VC precipitates
from the experimental DualEELS tomography tilt-series. (a1-c1) Orthogonal
slices through reconstructions using SIRT.(a1i-b1i)3D perspective view from
which (a1) and (b1) were extracted respectively. (a2-c2) Orthogonal slices
through reconstructions using DLET. (a2i-b2i) 3D perspective view from which
(a2) and (b2) were extracted, respectively.

OrthoSlices through reconstructed EELS elemental maps of the VCx precipi-

tate from the V-L2,3 signal are shown to the left in 5.6(a1-c1) for SIRT and to the

right in 5.6(a2-c2) for DLET. As can be seen, DLET provided a reconstruction

with reduced noise and a clear separation between the particles and the back-

ground signal. This makes the segmentation step much more straightforward

and provides high-fidelity surfaces for quantitative analysis. For comparison, a

3D reconstruction performed on the HAADF signal recorded simultaneously with

the collection of the DualEELS spectrum images is shown in Fig.5.8 (a1-c1) are

for DLET and (a2-c2) are for SIRT. The HAADF data reconstructs in a very

similar manner to the EELS, giving confidence that the reconstruction is reliable.

It is also clear that the use of DLET together with DualEELS to accurately re-

construct a signal that is a linear function of thickness has resulted in well-behaved

orthoslices with constant density throughout the thickness (i.e. no cupping arte-
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facts (Saghi et al., 2008; Van-den Broek et al., 2012)), as is clearly shown in Fig.

5.9for both the V − L2,3 maps and the HAADF maps. This is of particular im-

portance, and for comparison, a DLET reconstruction is also shown using EELS

maps made without deconvolution to remove the effects of plural scattering in

the spectra in Fig. 5.10 together with the same profile through the centre of the

precipitate. In this case, even in a relatively thin precipitate, there is a subtle,

but noticeable cupping artefact. It is anticipated that such artefacts would be far

worse in thicker precipitates examined with EELS tomography.

The streaking and blurring present after using SIRT is also absent in the

DLET reconstruction. These results accord well with the simulation study, and

it is clear that reconstruction using DLET has massively outperformed SIRT

for reconstruction fidelity, and the results are particularly impressive considering

just 11 projections were used. This really demonstrates the usefulness of this

compressed sensing approach to 3D reconstruction of spectroscopic mapping data

such data is always likely to be limited in signal to noise by its very nature, since

the total possible signal will be limited by either how much radiation dose can

be applied to the sample before it is altered significantly or by the available time

for data collection.

For a further comparison of SIRT versus DLET, Fig.5.7 show surface rendered

views of segmented 3D EELS elemental map fitted to idealised octahedra, again

showing very clearly the massive z-elongation that results from the use of SIRT.

just as was predicted in our simulation study above.
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Figure 5.7 |A comparison, of reconstructions of the VCx precipitate from the
V-L22,3 signal using (a) SIRT and the (b) DLET algorithm showing a comparison
to an idealized octahedron. Note that the distortion in the Z (missing wedge)
direction is much reduced using DLET.

Movie Ch5-M01 in Appendix A, shows 360◦ volume rendering views and the

segmented surface of the reconstructed EELS dataset. It should be noted, that

whilst the precipitate approximates to an ideal octahedron, corners and edges are

not as sharp as in the ideal geometric shape: this is entirely as would be expected

since single atoms for corners or lines of single atoms for edges are unlikely to be

thermodynamically stable, and it is likely that both corners and edges would be

somewhat rounded to minimise surface energy.

With the benefit of the DLET algorithm in combination with EELS maps for

C and V from deconvoluted data, it is therefore possible to produce 3D renderings

of the actual structure of the carbon extraction replica, as shown in Figure 5.11 ,

showing both the carbon and the partially embedded VC precipitates. A full 3D

rendering of this is also shown in Movie Ch5-M02 in Appindix A. Perhaps un-

surprisingly, parts of the precipitates are encapsulated within the carbon, whilst

other parts protrude beyond it. Moreover, the roughness of the carbon surface is

clear, which is a reflection of the surface roughness of the steel that the replica

was extracted from after the initial etch. The use of such 3D reconstructions may

in future also help to better understand the replica extraction process.
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Figure 5.8 |Reconstructions of Vanadium precipitates, from the experi-
mental HAADF signal recorded simultaneously with EELS dataset. (a1-b1) 3D
perspective view voxel projections of reconstruction using DLET, (c1) Orthogo-
nal slice through the centre of volume in a1. (a2-b2) 3D perspective view voxel
projections of reconstruction using SIRT, (c2) Orthogonal slice through the centre
of volume in a2.
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Figure 5.9 |Averaged line profile, through the region of the orthoslices be-
tween the red dotted lines indicated in (a) Fig.6a2, which is a DLET reconstruc-
tion of EELS elemental maps, and (b) Fig.5.8-c1, which is a DLET reconstruction
of HAADF tilt series. Neither show any cupping artifacts.

Figure 5.10 | Cupping artefacts resulting from omitting deconvolution to remove
multiple scattering from the EELS data (a) Orthogonal slice through the centre of
the DLET 3D reconstruction from the raw normalised V-L2,3 signal (i.e. without
applying deconvolution), (b) Average Line profile integrated vertically through
the red dotted area indicated in (a).
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Figure 5.11 | (a) Volume rendered views of the combined volume resulted from
reconstructions of Vanadium Maps and Carbon maps. (b) Surface rendered views
of the segmented volume of (a).

5.4 Conclusion

The originality of this this chapter lays in showing the importance of using

DualEELS to generate EELS maps without multiple scattering for generating

correct 3D reconstruction of the chemistry of materials using EELS. This, when

combined with the DLET algorithm, is shown in both simulation and experiment

to do an excellent job of reconstructing the 3D shape of octahedral vanadium

carbide precipitates. These are shown to deviate slightly from pure octahedra

in reality, but the use of the DLET algorithm was found to be important for

quantitative measures since the SIRT algorithm distorts the shape significantly

in the missing wedge (z) direction.

This work could easily be extended to encompass changes in near-edge EELS

fine structure in order to produce 3D views of chemical form or bonding in nanos-

tructured materials.
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”The life and soul of science is its practical application”
Lord Kelvin, Electrical Units of Measurement, 1883.

”It is only in the microscope that our life looks so big”
Arthur Schopenhauer, 1788-1860.

6
Further applications of electron

tomography using DLET

T
his chapter discuss the general application of DLET algorithm for char-

acterising the 3D morphology of two samples in material and biological

sciences.

6.1 Acetonema longum bacteria

Bacteria are very diverse organisms that are able of surviving nearly anywhere

on the planet. They show a variety of different cell morphologies, and some are

capable of sporulation which can produce dormant spores that can live for a long

periods in harsh environmental conditions.

Many types of bacteria have been studied extensively over the past decades

in many diverse areas, however, even in well-studied model bacteria, there still
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many fundamental questions remain to be answered (Vollmer, 2012): how do

bacteria extend their envelope layers during cell division? How do cell growth

and envelope growth coordinate? How the cell shape of bacteria is sustained while

the stress-bearing peptidoglycan layer is enlarged? How do bacteria achieve major

reorganisation of the cell wall during differentiation when forming spore? Also,

taking into consideration the theory of evolution where all species evolved from

a common ancestral cell, an important question arise: how have these different

cell-envelope architectures evolved?

Electron cryo-tomography (ECT) is an indispensable tool for revealing the

answers of many of the remaining fundamental questions about bacteria. ECT

allows thin samples (such as small bacterial cells) to be imaged in 3D in a nearly

native state to macromolecular resolution (Tocheva et al., 2010). In ECT, cells

are imaged in a vitreous, ”frozen-hydrated” state in a cryo-transmission electron

microscope (cryo-TEM) at low temperature (typically < −180oC). A tilt series of

images is then collected through the sample which is then reconstructed to obtain

the 3D-tomogram. ECT is well known for providing higher quality 3D-imaging

and for the preserving important details better than conventional approaches

such as chemical fixing, dehydration, plastic embedding, sectioning, and staining

of the samples which can introduce misleading artifacts (Pilhofer et al., 2010).

ECT has been used to image different types of bacterial cells (e.g., Oikonomou

and Jensen, 2016; Tocheva et al., 2010).

6.1.1 Background and motivation

Acetonema longum (A. longum) is a Gram-negative (double-membraned) bac-

terium that is interesting from three standpoints: First, it provides important

clues to the possible origin of the second membrane typical of Gram-negative

bacteria. Secondly, it is a small cell bacterium that is able to sporulate. Sporula-

tion has been well studied in other type of bacterium (such as B. subtilis) (Kane

and Breznak, 1991), However, such bacterium cells are relatively large, which

makes it difficult to make an electron transparent sample to achieve high res-

olution imaging. A. longum circumvented these disadvantages as the cells are

somewhat smaller which provides a unique opportunity to study the biology of

membrane generation during sporulation. Third, A. longum contains microcom-

partments (Tocheva et al., 2014). It is widely thought that the main function of

such structures is to isolate certain biochemical reactions within the cytoplasm.
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The morphology, contents, and functions of these microcompartments are active

areas of research (Tocheva et al., 2014, 2011).

In this study, a cryoTEM tilt series of A.longum bacteria cells is reconstructed

using DLET and compared to results from the conventional SIRT algorithm.

6.1.2 Experimental procedure and results

The cells were prepared1 in a near-native, frozen-hydrated state without stain-

ing, dehydration or fixation artefacts and the cells then imaged as described by

Tocheva et al. (2011). Single axis tilt series were collected with an angular step

of 1o in the range ±60o (a total of 121 images) using a total dose of 200 e/Å2, a

resolution of 1 nm in bright field TEM mode with a defocus of 10 µm on a 300-kV

TEM equipped with an energy filter. Figure 6.1 shows an example image from the

acquired tilt series at 0o tilt. The dataset was then reconstructed using both the

SIRT and DLET algorithms (Fig. Figure 6.2). Segmentation of the microcom-

partment (in Fig. 6.4) was performed using Amira (FEI) using Otsu’s automated

thresholding module to represent a 3D surface of the whole microcompartment.

The surface was additionally smoothed for visual representation.

Figure 6.2(a), shows an orthogonal slice through the SIRT reconstruction

while Figure 6.2(b) is of the DLET reconstruction. As can be seen, the DLET

results are of a higher contrast and a reduced noise which enables automated

segmentation of the microcompartment (as in Fig. 6.4). This advantage helps to

produce higher quality segmentation results with less labour and a less subjective

bias from the operator.

1The preparation and imaging of the A. longum was performed by Grant J. Jensen, Professor
of Biology, Caltech.
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6.1 Acetonema longum bacteria

Figure 6.1 | Example of cryoTEM tomography tilt-series projection of Ace-
tonema longum bacteria cells acquired at 0o degree tilt.
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Figure 6.2 | Visual Assessment of the A. longum reconstruction from the full tilt series (a total of 121 images, angular step
of 1o between ±60o). The orthoslices were taken from the centre of the (a) SIRT and (b) DLET reconstruction. Both the
z-x and y-z slices, were taken in the position indicated by the horizontal, vertical lines respectively, as indicated in the x-y
slides. The the x-direction is perpendicular to the tilt axis and the z-direction is the direction of the missing wedge. For
consistent comparison, the intensity mapping in each orthoslice is presented with a linear mapping between their maximum
and minimum pixel values. Zoomed areas were further enhanced.
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Figure 6.3 | Visual Assessment of the A. longum reconstruction from the full tilt series (a total of 25 images, angular step
of 5o between ±60o). The orthoslices were taken from the centre of the (a) SIRT and (b) DLET reconstruction. Both the z-x
and y-z slices, were taken in the position indicated by the horizontal, vertical lines respectively, as indicated in the x-y slides.
The x-direction is perpendicular to the tilt axis, and the z-direction is the direction of the missing wedge. For consistent
comparison, the intensity mapping in each orthoslice is shown is presented with a linear mapping between their maximum
and minimum pixel values. Zoomed areas were further enhanced.
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Figure 6.4 | Shows the auto-segmentation results of the intracellular microcom-
partments in A. longum. This result is extracted from the DLET reconstruction
in Figure 6.2(a).

Figure 6.3 shows the reconstruction results after reducing the tilt series from

121 to 25 images (i.e, an angular step of 5o between ±60o) to test the performance

of both algorithms. It is clear that the limited total radiation dose and the

radial under-sampling results in an increase of noise in the tomogram domain of

both reconstructions. Nevertheless, the quality of the DLET reconstruction still

exceeds that of the the SIRT reconstruction of the full dataset, and is certainly

of acceptable quality for detailed structural analysis.

Movie Ch6-M01 in Appendix A and Fig. 6.4, shows the segmented intracel-

lular microcompartments in A. longum extracted for the DLET reconstruction in

Figure 6.2(a).

6.2 Carbon nanofiber for fuel cell catalysts

Low-temperature fuel cells, that are based on hydrogen (e.g. the polymer elec-

trolyte membrane fuel cell, with phosphoric acid fuel), ethanol (direct ethanol

fuel cell) or methanol (direct methanol fuel cell) present environmentally-friendly

methods for producing electricity by direct electrochemical conversion of hydro-

gen/methanol/ethanol and oxygen into water (and carbon dioxide). Platinum
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crystallites on a conductive support are usually used as oxidation catalysts. In

such catalysts, maximising the surface area of the metal particles available for the

reactions is critical for maximising the efficiency of these types of fuel cells. This

can be done by optimising the structure and dispersion of these metal particles

(Antolini, 2009).

Recently, nanostructured carbon materials with graphitic structure, such as

carbon nanofibers (CNFs) were investigated as a possibility for supporting nano-

sized electrocatalyst particles in low-temperature fuel cells because of their large

surface area and high electrical conductivity (Zhou et al., 2012) .

TEM is an important method for characterising both the catalysts and the

carbon nanofibers support in order to determine further processing to increase the

electrochemical catalytic activity for oxidation in fuel cells. Electron tomography

can be used to examine the dispersion of crystallite nanoparticles in the catalyst

supports and can clearly determine the exact location of the particles with respect

to tube like nanomaterials.

In this section, a tilt series of carbon nanofibers (CNFs) coated with car-

bonized polyaniline (PANI) to support Pt catalysts (CNF/HPANI-Pt) is recon-

structed using both SIRT and DLET, and a visual assessment is performed com-

paring both tomograms.

6.2.1 Experimental procedure and results

The tomography tilt-series of (CNFs/HPANI-Pt) were recorded1 in bright-field

TEM mode using a high-tilt sample holder on a JEOL 1400 (120 kV). The tilt

series were acquired with dynamic focusing (corrections of focus and horizon-

tal displacement as described in section 2.1.4.1) by using the SerialEM package

(Mastronarde, 2005). A total of 130 images were acquired the tilt range ±65o

with angular increment of 1o.

Typical 2D TEM images are shown in Figure 6.5. The Pt particles are present

on the surface of the carbon fibres as dark-coloured grains. However, it is not

clear if there are some Pt nanoparticles inside the fibres. Also, this sample is of

a cylindrical shape which is ideal for testing the robustness of the reconstruction

algorithms for reducing the messing wedge artefacts.

1BF-STEM acquisition was performed by Dr Dave Mitchell from University of Wollongong,
NSW, Australia.
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6.2 Carbon nanofiber for fuel cell catalysts

Figure 6.5 | Example of bright-field images of the TEM tomography tilt-series of
carbon nanofiber/carbonized polyaniline-supported platinum (CNF/HPANI-Pt)
sample. The images shows the carbon nanofiber tilted 90o from (a) +68o and (b)
−22o degrees tilt.
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The TEM tomograms in Figure 6.6, reveals a coaxial structure in which the

CNFs have a hollow core (see also movie Ch6-M03 in Appendix A). The Pt

nanoparticles are dispersed both on the inside of the inner tube-wall and on the

outer surface of the hollow carbon nanofibers. The inner Pt particles may be

unable to contribute to the electrochemical catalytic performance.

The DLET reconstruction shows tomogram with a higher contrast between

the Pt nanoparticles and the CNF. The SIRT tomogram failed to reconstruct

some of the Pt nanoparticles compared to the DLET results (as indicated by the

red arrows in Fig. 6.6(b)). Also, SIRT results showed elongation of the tube in

the direction of the missing wedge (z-direction as indicated by the yellow arrows

in Fig. 6.6(a)). The elongation was reduced in the DLET reconstruction.

The enhanced contrast of the DLET tomograms enables use of automatic (or

semi-automatic) segmentation procedures for extracting surfaces for quantitive

studies. Figure 6.7(a) and Movie Ch6-M02 in Appendix A, shows the segmented

tomogram from the SIRT volume. This segmentation was obtained automatically

by Otsu thresholding followed by binarisation. The SIRT results show a less

faithful surface, and a manual segmentation is still needed to extract the required

areas. Figure 6.7(b) and Movie Ch6-M03 in Appendix A shows the segmentation

from the DLET volume.

The location, size, aggregations and distribution of the Pt catalyst nanopar-

ticles in the catalyst support can be extracted for quantitative study and com-

pared with its electrochemical catalytic performance that can be obtained by

Chronoamperometry and by measuring the current intensity of the CNF/HPANI-

Pt catalyst.
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Figure 6.6 | Visual assessment of the CNF/HPANI-Pt reconstruction from a total of 130 images, angular step of 1o between
±65o). The orthoslices were taken from the center of the (a) SIRT and (b) DLET reconstruction. Both the z-x and y-z slices,
were taken through the central horisontal, vertical lines respectively. The the x-direction is perpendicular to the tilt axis and
the z-direction is the direction of the missing wedge. The arrows in the SIRT reconstruction (ai, aii) shows the elongation
due to the missing wedge which is reduced in the the DLET results (bi, bii).
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6.2 Carbon nanofiber for fuel cell catalysts

Figure 6.7 | Surfaces extracted using automatic segmentation procedure based
on Otsu thresholding method of the (a) SIRT (b) DLET reconstruction.
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6.3 Conclusion

6.3 Conclusion

This chapter disused two general applications of DLET algorithm for character-

ising the 3D morphology of samples in material and biological sciences. It was

clear that the effect of noise due to limited total radiation dose and radial under-

sampling was further reduced in DLET results compared to SIRT. The main

novel results in this chapter are in showing that the elongation along the missing

wedge-direction can be reduced using the DLET reconstruction. Also, the DLET

reconstruction produced tomograms with a higher contrast than the SIRT results.

This enables the use of automatic (or semi-automatic) segmentation procedures

for extracting surfaces for quantitive studies. Such automatic segmentation is

not possible using tomograms that were reconstructed using traditional methods

(e.g. WBP or SIRT).
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”It is very easy to answer many of these fundamental

biological questions; you just look at the thing! ... It

would be very easy to make an analysis of any compli-

cated chemical substance; all one would have to do would

be to look at it and see where the atoms are ... I put this

out as a challenge: Is there no way to make the electron

microscope more powerful?”
Richard Feynman, 1959.

7
Conclusions and Outlook

Currently, nanotechnology faces an increasing requirement for 3D characteriza-

tion of materials. Three-dimensional information can be obtained from a wide

range of instruments using electron tomography (ET). ET has evolved greatly

and become a standard technique for reconstructing the morphology of nanoscale

materials. However, obtaining a qualitative 3D concept of a structure is often in-

sufficient due to the advent of more complex nanostructures and the requirement

for quantitative understanding of the nanostructure. Therefore, the focus of ET

is moving towards obtaining quantitive information such as volume and lengths

and thus the quality and fidelity of reconstruction is of critical importance. The

quality of a 3D reconstruction, based on ET, is influenced by a number of ex-

perimental factors, such as the maximum tilting range, tilt increment and the

alignment of the tilt series. Another important factor that has a significant im-

pact on the quality of a 3D reconstruction is the reconstruction technique. In

order to perform a reliable quantitative measurements of segmented tomograms,
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development of reconstruction algorithms that minimise under-sampling artefacts

in the reconstruction is necessary.

This thesis has addressed advancing the characterisation capabilities of TEM

using electron tomography. This was from two perspectives, providing a quality

assessment for established ET methods, and developing a high-fidelity and novel

method for 3D tomographic reconstruction. Relevant potential applications have

also been investigated.

Firstly, this thesis has reviewed the different computational stages involved in

ET for materials science, from image acquisition to interpretation of the 3D recon-

struction, and provides an introduction to the transmission electron microscopy

(TEM) imaging modes that were used in this thesis. This is principally, high

annular dark field scanning transmission electron microscopy (HAADF-STEM),

electron energy-loss spectroscopy (EELS), energy filtered TEM (EFTEM) and

the Bright Field TEM (BF-TEM). Both HAADF-STEM and the EELS mode are

commonly used techniques to characterise materials in physical sciences.

The quality assignment investigation of ET tomographic reconstructions has

been approached qualitatively and quantitatively using particles of a well-known

morphology. The analysis aimed to quantify the influence of different experimen-

tal parameters such as tilting increment and missing wedge size on the quality

of ET 3D reconstruction. The results of this analysis showed that the type of

ET reconstruction algorithm has a significant effect on the fidelity of the recon-

structed tomogram. This result has motivated the development of an improved

tomographic reconstruction process.

This thesis further extended the ET reconstruction capabilities for high-fidelity

3D structural imaging. This has been via the development of the DLET recon-

struction method to achieve reliable electron tomograms for robust quantitative

analysis in 3D nano-metrology. The DLET method is based on the powerful

theoretical results of the compressed sensing (CS) theory combined with recent

advances in machine learning. CS uses image sparsity as a priori knowledge to

improve the accuracy of reconstruction, and can require fewer projections than

other reconstruction techniques. The performance of CS relies heavily on the de-

gree of sparsity in the selected transform domain, and this depends essentially on

the choice of sparsifying transform. The unique feature of DLET technique is that

it learns the sparsifying transform adaptively using a dictionary-based approach.

By doing so, the learned transform can have enhanced capabilities to compress
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the images and therefore improve the reconstruction quality. Also, this adaptive

transform can overcome many of the limitation of fixed sparsifying transforms

used in recent published works. The DLET algorithm was demonstrated to effi-

ciently reduce missing wedge and star artefacts. Using simulations from complex

phantoms. It was shown that this new approach reconstructs the morphology

with a higher fidelity than either analytically-based CS reconstruction algorithms

or traditional WBP and SIRT. The efficacy of DLET was also demonstrated with

several experimental example studies, including using an EFTEM tilt series of

polymer solar cells and a cryo-TEM tilt series of an Ebola entry-competent virus-

like particle (VLP). It is believed that the technique will become of tremendous

importance for 3D nanoscale imaging in physics and biological science.

Furthermore, this thesis has also examined the use of DualEELS in elementally

sensitive tilt series tomography in the scanning transmission electron microscope.

A procedure is implemented using Fourier-log deconvolution to remove the effects

of multiple scattering from the spectra followed by normalisation by the zero

loss peak intensity to produce a spectroscopic signal that is linearly dependent

on the projected density of the element in each pixel, and this was compared

with a procedure that does not include deconvolution (although normalisation

by the zero loss peak intensity is still performed). Additionally, a comparison

was performed between the 3D reconstruction using the DLET, with the well-

established SIRT algorithm. For the sample of VC precipitates extracted from

steel in a carbon replica, it is found that the use of this linear signal results in

a very even density throughout the precipitate, whereas when deconvolution is

omitted, a slight density reduction is observed in the cores of the precipitates (a

so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D

morphology is much better reproduced using the DLET algorithm, with a reduced

elongation in the missing wedge direction. It is therefore concluded that reliable

elementally sensitive tilt tomography using EELS is best undertaken with the aid

of both appropriate use of DualEELS and a sensible compressed sensing based

reconstruction algorithm to make the best use of the limited data and signal to

noise, inherent in core-loss EELS.

This thesis has focused the experimental studies on drawn from across a range

of physical science and nanotechnology. The broadening use of ET though, in-

evitably leads to the desire to study more challenging samples which would be

easily damaged by overlarge radiation does. Two final examples were studied: the

174



acetonema longum bacteria using cryo-TEM and a carbon nanofiber supported

Pt-based fuel cell catalysts using BF-STEM. However, these results are only qual-

itative and with resolution in the nanometer range. The obtained results have

higher contrast and have a reduced noise which enables reliable automated (or

semi-automatic) segmentation. This helps to produce higher quality and robust

segmentation for quantitative studies with less labour and a reduction in the

subjective bias that is introduced by the operator.

In terms of future work, the analysis of nano-structures using reconstruction

methods that incorporate intelligent prior-knowledge about the specimen in the

ET reconstruction, similar to the DLET method, should be a particularly fruitful

area of investigation. Time-resolved microscopy is a potential application which

can benefit from the compressive sensing theory, especially for the 4D election

tomography (e.g., Kwon and Zewail, 2010). Other cutting edge electron tomog-

raphy, including statistical parameter estimation for atom counting, STEM-EDX

tomography and single particle reconstruction are areas that can benefit of using

advanced reconstruction methods such as DLET.

Also, further research could usefully explore other optimal sub-sampling strate-

gies using the signal structure in ET. The recent findings by Adcock et al. (2013)

suggest that the optimal sampling strategy depends not just on the overall spar-

sity of the signal, but also on its structure. By leveraging not just sparsity,

but also structure, the CS-based ET reconstruction algorithms, may be further

improved enabling more information to be recovered from fewer measurements.

Finally, further investigation may examine the possibility to improve the DLET

for extremely undersampled data. This could be via the use of Separative Sparse

Representation (SSR) which involves training an additional global dictionary to

characterise artefact components. Such an approach can be effective as it will add

a discriminative nature to the learned dictionary and exclude sparse coefficients

that correspond to artefact atoms. This may enhance the dictionary’s ability to

characterise artefacts that are often hard to suppress without introducing blur-

ring effects such as streak artefacts. Also, the dictionary learning formulation of

DLET can be further enhanced via the use of a multi-scale dictionary formula-

tion to enforces sparsity of the reconstructed tomogram at multiple scales (i.e.,

patch sizes) and combines the outcomes at those scales to achieve superior recon-

structions. This approach could further improve the reconstruction fidelity and

suppress the under-sampling artefact in extremely reduced datasets. This can be
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efficiently implemented using a sequential procedure which begins with the low-

est scale and includes the higher scales sequentially over iterations. Also the use

of Deep Learning Convolutional Neural Networks and in particular those based

on Autoencoders which perform hierarchical feature encoding for reconstruction

tasks could be further improve the quality of ET reconstruction since they are

capable of synthesising complete feature non-linear hierarchies that capture more

of the pattern-space being modelled.

deeper discussion of the recent progress in cutting edge electron tomogra-

phy (including statistical parameter estimation for atom counting, STEM-EDX

tomography, single particle reconstruction).

As a final thought, it should be pointed out that the work in this thesis (es-

pecially, chapter 5) is an example of an emerging challenge in microscopy as a

result of the large quantity of data being stored and processed. By combining

real space and data from other domains such as spectral, gigabytes of data are

generated very quickly. Processing these large data volumes is expected to bring

significant engineering and science advances. However, with such a big bless-

ing comes big challenges in dealing with large-scale datasets. Running analysis

on voluminous datasets by central processing and storage units seems infeasible

(if not impossible), and with the advent of time domain, processing must often

be performed in real time. This is especially true when medium quality results

obtained quickly is more useful than high-quality results obtained slowly. As

a consequence, processing and analytic tools need to be re-evaluated in today’s

high-dimensional electron microscopy data regime. Decentralised and parallelised

multi-cores will be preferred. Signal processing tools such as principal compo-

nent analysis (PCA), dictionary learning and compressed sensing may be effective

tools for data reduction. Also the advances in processing methods such as con-

vex optimisation (Cevher et al., 2014) and the sparse Fourier transform Gilbert

et al. (2014) will be crucial for rapid analysis. This challenge is cross-disciplinary

and known as the ”Big Data” problem. Quoting a recent press article ”The ef-

fect is being felt everywhere, from business to science, from governments to the

arts.”(Cukier, 2010). There is no doubt that this will be an era of data deluge

for microscopy.

Although there is still lots to do in tackling Feynman′s 1959 challenge, it is ap-

parent that electron tomography will take a key role in analysing the ′′complicated

chemical substances′′ in materials and biological sciences.
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A
Supplementary movies

Supporting movies are available on the supplementary DVD.

Ch4-M01: 360◦ volume rendering views and the segmented surface of the MgO

nanocubes that was reconstructed using HAADF-STEM tilt series ( with a tilt

range of ±75◦ and an increment of 2◦ between consecutive projections).

Ch4-M02: 360◦ volume rendering views and the segmented surface of the nanospheres

that was reconstructed using BF-TEM tilt series ( a tilt range of ±62◦, with an

increment of 2◦ between consecutive projections).

Ch5-M01: 360◦ volume rendering views and the segmented surface of the Vana-

dium nanoparticles that was reconstructed using EELS dataset.

Ch5-M02: shows Volume rendered views of the combined volume resulted from

reconstructions of Vanadium Maps and Carbon maps.
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Ch6-M01: shows the auto-segmentation results of the intracellular microcom-

partments in A. longum. This result is extracted for the DLET reconstruction in

Figure 6.2(a).

Ch6-M02: automated segmentation results from SIRT reconstruction using

Otsu’s method.

Ch6-M03: automated segmentation from DLET reconstruction using Otsu’s

method.

178



References

Adcock, B., Hansen, A., Poon, C., and Roman, B. (2013). Overcoming the co-

herence barrier in compressed sensing. In 10th international conference on

Sampling Theory and Applications (SampTA 2013), pages 1–4, Bremen, Ger-

many. 96, 97, 175

Aharon, M., Elad, M., and Bruckstein, A. (2006). K -SVD: An algorithm for de-

signing overcomplete dictionaries for sparse representation. Signal Processing,

IEEE Transactions on, 54(11):4311–4322. 100, 101, 103

Al-Afeef, A., Alekseev, A., MacLaren, I., and Cockshott, P. (2015). Electron

tomography based on a total generalized variation minimization reconstruction

technique. In Picture Coding Symposium (PCS), 2015, pages 95–99. 92

Al-Afeef, A., Cockshott, W. P., MacLaren, I., and McVitie, S. (2016). Elec-

tron tomography image reconstruction using data-driven adaptive compressed

sensing. Scanning, 38(3):251–276. 64, 92, 146, 147

Alaa, A., Paul, C., Ian, M., , and Sephen, M. (2014). Improved electron tomog-

raphy image reconstruction using compressed sensing based adaptive dictio-

naries. In 18th International Microscopy Congress - IMC 2014, pages IT–10.

http://www.microscopy.cz/proceedings/all.html. 92

AlAfeef, A., Bobynko, J., Cockshott, W. P., Craven, A. J., Zuazo, I., Barges, P.,

and MacLaren, I. (2016). Linear chemically sensitive electron tomography using

dualeels and dictionary-based compressed sensing. Ultramicroscopy, 170:96 –

106. 31, 145, 146

179



REFERENCES

AlAfeef, A., Cockshott, P., MacLaren, I., and McVitie, S. (2014a). Compressed

sensing electron tomography using adaptive dictionaries: a simulation study.

Journal of Physics: Conference Series, 522(1):012021. 92, 134

AlAfeef, A., Cockshott, P., MacLaren, I., and McVitie, S. (2014b). Compressed

Sensing Electron tomography using adaptive dictionaries: a simulation study.

J. Phys.: Conf. Ser., 522:012021. 146

AlAfeef, A., Cockshott, W., and MacLaren, I. (2015a). Dictionary based recon-

struction of the 3D morphology of ebola virus. In Microscopy and Microanalysis

MM2015, volume 21, pages 905–906. Paper: 1172. 146

AlAfeef, A., Paul Cockshott, W., Barges, P., Zuazo, I., Bobynko, J., Craven, A. J.,

and Maclaren, I. (2015b). Linear chemically sensitive electron tomography

using dualeels and compressed sensing. Microscopy and Microanalysis, 21:2341–

2342. 31

Alani, R., Armbruster, B. L., Mitro, R. J., Malaszewski, L., Kozar, R. M.,

Zolkowski, R., and Suzuki, S. (2002). Double tilt and rotate specimen holder

for a transmission electron microscope. US Patent 6,388,262. 51

Alekseev, A., Hedley, G. J., Al-Afeef, A., Ageev, O. A., and Samuel, I. D. (2015).

Morphology and local electrical properties of ptb7: PC 71 bm blends. Journal

of Materials Chemistry A, 3(16):8706–8714. 92, 121, 123, 126, 129, 132

Alpers, A., Gardner, R. J., Knig, S., Pennington, R. S., Boothroyd, C. B.,

Houben, L., Dunin-Borkowski, R. E., and Batenburg, K. J. (2013). Geometric

reconstruction methods for electron tomography. Ultramicroscopy, 128(0):42–

54. 64

Antolini, E. (2009). Carbon supports for low-temperature fuel cell catalysts.

Applied Catalysis B: Environmental, 88(1):1–24. 166

Aoyama, K., Takagi, T., Hirase, A., and Miyazawa, A. (2008). {STEM} tomog-

raphy for thick biological specimens. Ultramicroscopy, 109(1):70–80. 54

Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and

hierarchical image segmentation. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 33(5):898–916. 145

180



REFERENCES

Ardenne, M. (1938). Das elektronen-rastermikroskop, theoretische grundlagen.

Z. Physik, 109(9. u. 10):553–572. 11

Arslan, I., Tong, J. R., and Midgley, P. A. (2006). Reducing the missing wedge:

high-resolution dual axis tomography of inorganic materials. Ultramicroscopy,

106(11):994–1000. 9, 46, 49, 52

Bajaj, C., Yu, Z., and Auer, M. (2003). Volumetric feature extraction and vi-

sualization of tomographic molecular imaging. Journal of Structural Biology,

144(1):132–143. 69

Bals, S., Goris, B., De Backer, A., Van Aert, S., and Van Tendeloo, G. (2016).

Atomic resolution electron tomography. MRS Bulletin, 41(7):525–530. 38

Banhart, J. (2008a). Advanced tomographic methods in materials research and

engineering. Oxford University Press New York. 21, 43, 62, 69

Banhart, J. (2008b). Advanced tomographic methods in materials research and

engineering. Oxford University Press New York. 146

Baraniuk, R. and Steeghs, P. (2007). Compressive radar imaging. In Radar

Conference, 2007 IEEE, pages 128–133. IEEE. 95

Bartesaghi, A., Sprechmann, P., Liu, J., Randall, G., Sapiro, G., and Subrama-

niam, S. (2008). Classification and 3d averaging with missing wedge correction

in biological electron tomography. Journal of structural biology, 162(3):436–

450. 134

Batenburg, K., Bals, S., Sijbers, J., Kübel, C., Midgley, P. A., Hernandez, J.,
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