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SUMMARY

+(1) Regulation of NA release from rat O.C. tissue chops is K and
2+Ca dependent.

+ 3(2) K -stimulated release of [ H]NA from rat O.C. and

hypothalamic tissue chops is inhibited by a -adrenergic
the inhibitory effect is

agonists and^reversed by oc -adrenergic antagonists.

+ 3(3) In O.C. tissue chops, 20mM K -stimulated release of [ HJNA

is enhanced by db-cAMP, forskolin and IBMX but inhibited by

RO 20-1724. In addition, db-cAMP or forskolin when combined
+with IBMX further enhanced the K -stimulated release of 

3[ H]NA while the inhibitory effect of RO 20-1724 on
+ 3K -stimulated release of [ H]NA is reversed by db-cAMP or

forskolin. The 0C2~a^rener<3i-c agonist inhibition of
+ 3K -stimulated release of [ H]NA is partially reversed by

db-cAMP alone but not by forskolin.

(4) In hypothalamic tissue chops, 25mM, but not 30mM,
+ 3K -stimulated release of [ H]NA is enhanced by db-cAMP or

forskolin combined with IBMX. However, the inhibitory effect
+ 3of clonidine on K -stimulated release of [ HJNA is not

reversed by either db-cAMP or forskolin in the presence of IBMX,

6(5) The selective adenosine A^ agonist, N -cyclohexyl adenosine
+ 3(CHA) inhibited 20mM K -stimulated release of [ HJNA from

O.C. tissue chops more potently than adenosine. The inhibitory 

effect of adenosine is reversed by IBMX but not by RO 20-1724.
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-4Furthermore, IBMX (10 M) is not only able to reverse the
+ 3adenosine inhibition of K -stimulated release of [ H]NA, but

3also enhances the release of [ H]NA to approximately 20%.

Also, the selective adenosine antagonist
-58-cyclopentyl-l,3-dopropylxanthine (CPDPX) (10 M) not only

+reverses the adenosine inhibition of K -stimulated release of
3 3[ H]NA but further enhances the release of [ H]NA by about

10%.

(6) Direct measurement of intracellular cAMP formation by the method

of Shimizu et al. (1969) showed that the ^-adrenergic agonist,
+isoprenaline,as well as NA, adenosine, forskolin and K all 

stimulated cAMP formation maximally by about 1.5, 3.0, 3.5, 7 

and 2.5 fold repesctively.

(7) Isoprenaline stimulation of cAMP formation is potentiated by 

the OC^-adrenergic agonist, phenylephrine, but not affected by 

the OC^-adrenergic agpnist, UK 14304-18.

(8) NA stimulation of cAMP formation is not affected by

phenylephrine, but partially inhibited by (^-adrenergic 

agonists in a biphasic manner with the following order of

potency (IC^ values in parenthesis) UK 14304-18 (6 x
-9 -8 -710 M) >  clonidine (10 M) >  BHT-920 (5 x 10 M).

However, there is no evidence that a 2~a^rener9^c agonists
+inhibit the isoprenaline, forskolin and K -stimulation of cAMP 

formation.
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(10)

(11)

a-and j3-Adrenergic antagonists inhibit NA stimulation of cAMP

formation with the following order of potency, propranolol ( )>

prazosin (a ) = yohimbine (a ) and with IC values of 1 2 50
-9 -8 -86 x 10 M, 3 x 10 M and 3 x 10 M respectively.

+Isoprenaline, NA, adenosine and 20mM K stimulation of cAMP 

formation is blocked by IBMX, but not by RO 20-1724. In 

contrast, forskolin stimulation of cAMP formation is not 

affected by either IBMX or RO 20-1724.

Adenosine stimulation of cAMP formation is potentiated by NA and 

UK 14304-18.

(12) These results are discussed in relation to current hypotheses on 

the mechanisms by which a^-adrenergic agonists modulate NA 

release in the CNS.
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1. INTRODUCTION

1.1 Neurotransmitters

Neurotransmitters are chemical compounds found in the nerve 

terminals of neurons which are released into the synapse in response to 

nerve impulses (Katz and Miledi, 1969) or membrane depolarization 

(Schoffelmeer et al., 1981). Examples of neurotransmitters identified 

in the brain include catecholamines (noradrenaline and dopamine), amino 

acids [glutamate, y  -aminobutyric acid (GABA) and aspartate], 

acetylcholine, histamine, serotonin (see Chesselet, 1984; Middlemiss, 

1988, for review) and several neuropeptides including methionine or 

leucine eukephalin, endorphins, substance P, neurotensin, 

cholecystokinin (Bradford, 1986b).

Neurotransmitters play a very important role in neuroscience as 

they provide the basic link between neurons. Thus, many biological and 

physiological changes are affected by the release of neurotransmitter.

A few examples are (a) high concentrations of NA cause hypertension (De 

Champlain et al., 1967; Przuntek et al., 1971), (b) dopamine deficiency 

leads to mental deterioration in Parkinson's disease (Lees and Smith, 

1983) and (c) loss of cholinergic neurons in the brain lead to senile 

dementia, or Alzheimer's disease (Robbins, 1988). Furthermore, 

deficits in the noradrenergic system have been reported in postmortem 

Alzheimer brains. This involves the decrease of both noradrenaline 

(Aldolfsson et al., 1979) and dopamine- ̂ -hydroxylase levels (Cross 

et al., 1981), particularly in the cortex and hypothalamus. Thus, the 

study of the regulation of neurotransmitter release may lead to more 

understanding on neuronal functions that may indirectly control our 

biological responses.
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1.1.1 Criteria identification of a neurotransmitter

A number of criteria have been suggested which a compound has to 

fulfil before it can be classified as a neurotransmitter. When a 

chemical compound fulfils most but not all the requirements for a 

neurotransmitter, it is then known only as a putative neurotransmitter.

(1) The chemical compound must be stored in those neurons from which 

it is released.

(2) Precursors for the biosynthesis of the chemical compound must be

present.

(3) Enzymes necessary for the synthesis of the chemical compound

must be present in the same neurons.
2+(4) Ca dependent release of the chemical compound to the 

extracellular fluids upon nerve stimulations.

(5) Mechanisms e.g. active uptake into nerve ending, must be present 

for the inactivation of the released chemical compound.

(6) Specific neuroreceptors for the chemical compound must be 

present at both pre- and post-synaptic sites.

(7) It must be able to recognise the specific pharmacological 

agents, such as agonists or antagonists at its receptor sites. 

Drugs used must be able to mimic the response of the chemical 

compounds at the synaptic sites.

The above statements can be depicted diagrammatically as in 

Figure 1.

1.2 Catecholamines

Catecholamines are compounds with amines attached to a benzene 

ring bearing two o-phenolic hydroxy groups (Catechol). Examples of 

naturally occurring catecholamines are dopamine [ ^ (3,4-dihydroxyphenyl)
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Nerve terminal
Precursors

(a)SynthesisNerve
activation

Neurotransmitter(NT)
Change inmembranepotentiation Storage Vesicles Presynaptic

neuron

release
Glial
cell

Uptake and inactivation

Postsynaptic
neuron

Figure 1 Basic principle of neurotransmitters at synaptic sites.
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ethyl amine], Noradrenaline (Norepinephrine), and Adrenaline 

(Ephinephrine). Their structural formulae are depicted in Figure 2.

The main sites of production of catecholamines are the brain, the 

sympathetic neurons and the chromaffin cells of the adrenal medulla. 

However, the most important catecholaminei-- neurotransmitters produced in 

the brain are dopamine and noradrenaline, while epinephrine is mainly 

produced quantitatively by the chromaffin cells of the adrenal medulla.

1.2.1 Noradrenergic pathways

The neuroautomical distribution of noradrenaline was detected by 

the use of formaldehyde histofluroescence technique (Falk et al., 1962; 

Fuxe, 1965). The noradrenergic pathways were distinguished by the 

fluroescence colours given by the aldehyde derivatives of noradrenaline. 

The use of high performance liquid chromatography with electrochemical 

detection (HPLC-ED), which is a highly selective and sensitive method of 

measuring ' catecholamines down to pico mole amounts helped to confirm 

the histochemical results as it allowed the same degree of precision in 

the localization of catecholaminergic pathways (Keller et al., 1976; 

Felice et al., 1978; Westerink and Mulder, 1981).

Noradrenaline nerve terminals in the cerebellum, hypothalamus, 

hippocampus and cerebral cortex arise from the perikarya in the lower 

brain stem, most notably the locus coeruleus as depicted in Figure 3.

1.2.2 Biosynthesis of catecholamines

Tyrosine was shown to be the direct precursor for catecholamine 

biosynthesis in the in vivo and in vitro study using radiolabelled 

tyrosine (Clonet et al., 1970; Harris and Roth, 1970; Heffner et al., 

1980; Bennett et al., 1981). The biosynthetic pathway for 

catecholamines is as shown in Figure 4.
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h o y ^
H(Â

Catechol (dlhydroxybenzene)
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Figure 2 Structural formulae of catecholamines
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Cerebral cortex Hippocampus Cerebellum

Median forbrain bundle Hypothalamus Locus coeruleus
Stria medullaris

Figure 3 Noradrenaline pathways in rat brain shown in sagittal
section

Hatched areas represent nerve terminal fields. Pathways descending 

to the cerebellum and brain stem nuclei are not shown (From 

Ungerstedt, U. (1971) Acta Physiol. Scand. Suppl. 367, 49-67).
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Tyrosine is converted to 3,4-dihydroxyphenylalanine (dopa) by

the enzyme Tyrosine hydroxylase (Tyrosine-3-mono-oxygenase, EC 1.14*6.2)
2+which uses tetrahydrobiopterine, molecular C^, Fe and NADPH as its

cofactors. Tyrosine hydroxylase is considered to be the rate-limiting

step for dopamine and noradrenaline synthesis, since the enzyme reaction

is the slowest of the sequence (Bradford, 1986). Catecholamine

depletion is observed when tyrosine hydroxylase is inhibited by drugs

like a-methyl para-tyrosine (a-MpT) (Iversen and Glowinski, 1966;

Bennett et al., 1981). cAMP-mediated phosphorylation may lead to the

activation of tyrosine hydroxylase, thereby increasing its afinity for

the pteridine cofactor for tyrosine (Mestikawy and Glowinski, 1983).
2+ +Increase in the conductance of Ca either by K -depolarization of 

neuronal membrane potential (Harris and Roth, 1970) or via the 

regulation of cAMP dependent protein kinase may also affect the tyrosine 

hydroxylase activity (Harris and Roth, 1970). When the noradrenergic 

vesicles are filled with noradrenaline, further synthesis of 

noradrenaline is inhibited. This is because excess NA competes with 

pteridine cofactors for the tyrosine hydroxylase, thereby decreasing the 

enzyme activity (Harris and Roth, 1970). Feedback inhibition of 

dopamine, synthesis is also observed in dopaminergic neurons (McGeer 

et al., 1967).

In both the noradrenergic and dopaminergic neurons, dopa is then

decarboxylated by the enzyme dopa-decarboxylase which uses pyridoxal

phosphate as its cofactor to convert it to dopamine. However in

noradrenergic neurons the enzyme dopamine-^ -hydroxylase, using
2+ascorbate, molecular C>2 and Ca as its cofactors will then covert 

dopamine to noradrenaline.

For a small group of neurons in the brain stem and chromaffin 

cells of adrenal medulla, NA is further converted to adrenaline by the
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enzyme phenylethalamine N-methyl transferase (PNMT). The enzyme uses

S-adenosylmethionine as its cofactor. Surprisingly, the PNMT exists in 

a soluble cytosol outside the catecholamine storage vesicles. The

level of PNMT can also be regulated by corticoisteroids.

1.2.3 Receptors for Noradrenaline

Based on the various physiological studies on the relative 

potency of agonists, Alquist (1948) proposed that there were two types 

of catecholamine receptors, which he termed a - and p -adrenoceptors. 

This concept was further confirmed by Powell and Slater (1958) when they 

introduced dichloroisoproterenol (DCI), the first series of drugs 

capable of blocking p-adrenergic receptors response. The structural 

analogs of isoproterenol were then synthesised and made available by 

Biel and Lum (1966) and Moran (1967). It was thus possible to 

distinguish a ~  and p -  adrenoceptors not only on the relative potency 

of agonists, but also on the types of antagonists which could prevent 

the response in question.

Phentolamine, phenoxybenzamine and dibenamine blocked the 

a-receptors response; while p-adrenoceptors blocking agents include 

DCI, propanolol, practolol and alprenolol(Bradford, 1986).

Depending on the pharmacological properties of drugs in various 

tissue systems, a-adrenoceptors are further sub-classified into 

(X^-postsynaptic and a^-presynaptic adrenoceptors (Langer, 1974;

Doxy, 1977; Bethelsen and Pettinger, 1977). a^-adrenoceptor 

response are blocked by its selective antagonist, prazosin (Cambridge 

et al., 1977), and Ot^-adrenoceptors are preferentially blocked by 

yohimbine (Starke et al., 1975). The hypothesis of separate (X^- 

and a^-adrenoceptors are further supported by ligand binding studies
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with labelled catecholamine antagonists (Miach et al., 1980? U ’Prichard

et al., 1979; Wood et al., 1979). Recently, based on radioligand

binding studies Kawahara and Bylund (1985) and Boyajian et al. (1987;

1988) proposed that a receptors may be divided into a and a2 2A 2B
subtypes. The occurence of a and a adrenergic receptor2A 2B
subtypes has been confirmed by Kobilka (1987). In addition an a 2C
subtype has been identified (Kobilka, 1987). Similarly,

(X ^-adrenoceptors can be subdivided into OC^ and OC ̂  (Bylund,

1988). Based on the functional effects of {3-adrenoceptors, Land

et al., (1967) subdivided {3-adrenoceptors into and

Examples of {3̂  selective antagonists are practolol, atenolol,

metoprolol and p-oxprenolol; and {^-selective agonists are zinteral

(NJ 1999), terbutalin and salbutamol (Minneman et al., 1980; Synder

et al., 1980). It is possible to measure {3-adrenoceptors directly by
3specific binding of high-affinity antagonists [ H] dihydroalprenolol

125 3and [ I] iodohydroxy-benzylpindolol and the agonist [ H]

hydroxybenzyl- isoproterenol (William et al., 1978). Some drugs used

in the study of adrenoceptors are as shown in Table 1.

_ Guanine nucleotide-binding regulatory (G) proteins couple

hormone and neurotransmitters receptors to second messenger systems.

The present classification of adrenoceptors suggests that each of the

four major subtype's is coupled to a different class of G-protein.

Both {3̂  and {3̂  are coupled to the stimulation of adenylate

cyclase of Gs, whereas a , a and a are coupled to the2A 2B 2C
inhibition of adenylate cyclase of Gi (Bylund, 1988). Recently it is 

proposed that a^-adrenoceptors are coupled to an unknown G protein 

(Gx) leading to the breakdown of phosphotidyl-inositol breakdown 

(Litosch and Fain, 1986). Thus, the four major adrenoceptor subtypes 

are coupled to a different G protein and is illustrated as in Figure 5.
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Table 1 Some drugs interacting with noradrenergic receptors

a  f p - agonist 

CC-agonist 

OC 2- agonist 

OC2-agonist

CC-antagonists

Ctj-antagonists

(X2-antagonists 

{3-antagonist 

^-antagonist 

P-agonist 

P 2-agonists

$l-agonist

^-antagonists

Noradrenaline

Adrenaline

phenylephrine

clonidine, UK 14304-18, 
oxymetazoline BHT-920, BHT-933, 
xylazine, 1-NA tramazoline

phentolamine, phenoxybenzamine, 
dibenanime

prazosin, indoramine, WB-4101, 
labetolol, UK 33274

yohimbine, piperoxan, rauwolscine

1-propranolol

butoxamine, ICI 118 551

isoprenaline

zinterol (MJ 1999), terbutalin, 
sabultamol

tazolol

antenolol, metonolol, practolol, 
p-oxprenolol
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Adrenoceptors
^  ' I  |

p^-adrenoceptor p2-adrenoceptor ot2"a<̂ renocePtor oc^-adrenoceptor

Coupled to Gj Coupled to Gx

Coupled to Gs

a2A a2B a2C a lA  a lB

Figure 5 Classification of adrenoceptors
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1.2.4 Storage of catecholaminergic neurotransmitter

Most catecholaminergic neurotransmitters are stored in the

granular or dense core vesicles found at the nerve terminals. During

biosynthesis, dopamine is actively transported into the granular or
2+synaptic vesicles via an ATP+Mg -dependent carrier (Bianchi et al., 

1984). Noradrenergic vesicles can be identified by the presence of the 

enzyme dopamine- ̂ -hydroxylase (DBH) in its membrane. This enzyme 

catalyses the conversion of dopamine to noradrenaline in the granular 

vesicles. Agents that deplete the neurotransmitter store, e.g. 

reserpine, also remove the dense core (Van Orden et al., 1967). The 

vesicular uptake process has a broad substrate., specificity for other 

phenylethylamines, including tryptamine, tyramine and amphetamine; 

these amines act as indirect sympatomimetic agents and compete with the 

endogenous catecholamines for the vesicular storage capacity. These 

phenylethylamines can thus stimulate the release of NA by displacing 

from its vesicles (Nieoullon et al., 1977; De .BefSeroche et al., 1976; 

Arnold et al., 1977).

There is evidence that DA is not retained as well as NA by large 

dense core vesicles prepared from bovine splenic nerve (Klein, 1982).

From the study using the crude vesicle associated fractions, it is found
3 3that [ H ]NA retained more stable than [ H]DA because a more stable

interaction of the former with ATP was promoted by its {3-hydroxy group
3(Weiner, and Jardetsky, 1964), also [ H]NA was found to be more 

resistant to the catecholamine depleting effect of reserpine and its 

analogs (Bianchi et al., 1984).
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1.2.5. Release of catecholaminergic neurotransmitters

1.2.5.1 Evidence for the release of noradrenaline via exocytosis

In exocytosis, the expulsion of vesicular contents into the 

extracellular fluids is achieved by the fusion of the vesicular membrane 

with that of nerve terminal (Fig. 6) (Bowman and Rand, 1980). Evidence 

for exocytosis is largely based on chemical analysis and freeze-fracture 

study using electron microscope. A good example is the proportional 

release of NA and dopamine-[3-hydroxylase (DDH) from sympathetic nerves 

(Weinshilboum et al., 1971).

The soluble vesicular content of noradrenergic neurons are 

noradrenaline, ATP, enzyme DBH and large granule chromogranin A. The

demonstration that DBH, an enzyme of 300,000 Mr, is released 

concurrently and proportionately with NA established that the release of 

NA occurs via exocytotic process (Weinshilboum et al., 1971).

2+1.2.5.2 Stimulus evoked Ca -dependent release of catecholaminergic 

neurotransmitter

Electrophysiological studies using squid axons, (Kat,2 and

Miledi, 1969) have shown that release of neurotransmitter is not only

dependent on nerve impulses. Depolarizing agents that affect the

ionic-channel permeability may also influence the neurotransmitter
2+release, which has been shown to be Ca -dependent (Baker et al.,

1973; Kalz and Miledi, 1967; Nachshen, and Blaustein, 1980 and 1982;

Leslie et al., 1985 and Daniell and Leslie, 1986). Thus Taube (1977)
+ 3showed that K -evoked or electrical stimulation of [ H]NA was

2+abolished when Ca was omitted in the buffer medium. In contrast, 

the spontaneous non depolarization-evoked efflux of neurotransmitter is 

not calcium dependent.
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Vesicles

Presynaptic neuron
«

Postsynaptic neuron

Exocytosis of a vesicle's content at the nerve terminal 
(From Bowman and Rand, 1980 textbook of pharmacology, 
2nd edition, Blackwell Scientific publication, pp 5.23)
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2+Llinas et al. (1972; 1975) studied the influence of Ca on

synaptic transmission by first injecting aequorin into the pre- and

post-synaptic terminals of the squid giant synapse through micropipette.
2+Aequorin is a bioluminiscent protein which reacts with Ca to produce

light (see Blinks et al., 1976 for review). The pre- and post-synaptic

terminals loaded with aequorin were activated by means of external

electrodes, and membrane depolarization which was capable of triggering

the release of synaptic transmitters also led to a substantial increase

in light emission. Thus, their results give direct evidence of the 
2+influence of Ca in synaptic transmission.

1.3 Regulation of NA release by presynapitc (X^-adrenoceptors

NA released from both the peripheral (Langer, 1974; 1981) as

well as central nervous system (see Chesselet, 2984 for review) is able

to modulate the stimulated release of NA by either activating the

adrenoceptors situated on the presynaptic or postsynaptic membrane,

thereby leading to the changes in the physiological response via a

negative feedback mechanism. In brain, most studies on presynaptic

regulation of the release of NA are performed in vitro using

radiolabelled NA with either brain slices or synaptosomes (Middlemiss,
+1988). Electrical stimulation or K depolarization evoked release of

radiolabelled NA from the peripheral and central nervous system (CNS)

can be inhibited by selective a^-adrenergic agonists, such as

clonidine (Starke et al., 1974; Medgett et al., 1978; Schoffelmeer et

al., 1986) and BHT-920 (Van Meel et al., 1981; Leus and Schmann, 1984;

Cichini and Singer, 1987). In addition, a more potent (X^-adrenergic
3agonist such as UK 14304-18 on the regulation of [ H]NA release from 

the peripheral nervous system has also been pharmacologically
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characterized (Cambridge and Davey, 1980; Cambridge, 1981; Van Meel

et al., 1981). While selective (X^-adrenergic antagonist such as.

yohimbine enhances the release of NA from both the peripheral (Langer,

1981) and central nervous system (Starke et al., 1975; Taube et al.,

1977). This is because OC^-adrenergic antagonists block the

inhibitory effect of NA, acting at presynaptic O^-adrenoceptors, on

its own release. The OC^-adrenergic agonist, phenylephrine and

(X^-antagonist, prazosin, did not have any effect on the release of NA

from the peripheral as well as central nervous system (Cambridge, et

al., 1977; Reichenbacher et al., 1982). In the CNS the {3-adrenergic

agonist, isoprenaline, does not affect the depolarization evoked release
3of NA (Taube et al., 1977). Thus release of [ H]NA from the central 

nervous system is not mediated by |3-adrenoceptor. In support of this

the j3-adrenergic antagonist, propanolol, does not antagonise the
3inhibitory effect of NA on the stimulated release of [ H]NA from the

-6central nervous system (CNS) (up to 10 M) (Taube et al., 1977). In

contrast, isoprenaline enhances and propranolol is found to antagonise
3the isoprenaline enhancement of [ H]NA release from the peripheral 

nervous system (Adler-Graschinisky and Langer, 1975; Celuch et al.,

1978; Dahlof et al., 1978). Furthermore at higher concentrations 
-5(above 10 M), propranolol enhanced the inhibitory action of NA on

release. A possible explanation for this observation is that by

preventing NA from binding to (3-adrenoceptors its effective

concentration is increased, thus leading to greater inhibition of NA

release.(see Langer, 1981 for review).

In conclusion, activation of presynaptic a^-adrenoceptor
3leads to the inhibition of stimulated release of [ H]NA from both the 

peripheral and the central nervous system. However, based on radio
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ligand binding studies, it is found that OC^-adrenoceptors found in

the CNS are also present at the post-synaptic sites, since the same 
3number of [ H] clonidine is found to bind to the rat cerebral cortex 

membranes after the pretreatment of the membrane fractions with 

6-hydroxydopamine, which function was to destroy presynaptic 

noradrenoceptors (U'Prichard and Snyder, 1979).

2+1.3.1 Influence of CX ̂ -adrenoceptors on voltage-sensitive Ca and 
+K. channels

It has been suggested that (X^-adrenergic agonist inhibit the 
3release of [ H ]NA from the peripheral as well as the central

2+noradrenergic neurons by acting on voltage-sensitive Ca channels.

Thus (x2-adrenergic agonists inhibit depolarization-evoked 
2+Ca -dependent release whereas the spontaneous efflux is not affected

(Gothert et al., 1979; Alberts et al., 1981; Schoffelmeer and Mulder,

1983, 1983b). Further support for this suggestions is provided by

electrophysiological studies which demonstrate that CC^-adrenergic
2+agonists, NA and clonidine inhibit the voltage-sensitive Ca current

in embryonic chick dorsal root ganglion neurons (Dunlap and Fishbach,

1981) and in post-ganglionic neurons of the rat superior cervical

ganglion (Hons and Mcaffee, 1980) respectively, thereby reducing the 
2+Ca inward current.

Electrophysiological studies show that a^-adrenoceptors 

situated on the cell bodies of noradrenergic neurons in the locus 

coeruleus (LC) are the same as the (X^-adrenoceptors found on nerve 

terminals in the peripheral as well as the central neurons system. For

example action potentials of neurons in the LC are inhibited by 

OC ̂ -adrenergic agonists including adrenaline, noradrenaline (Svensson
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et al., 1975; Cedarbaum and Aghajanian, 1976) and clonidine (Cedarbaum

and Aghajanian, 1976; Aghajanian and Van der Maalen, 1982) and the

inhibitory effect produced by these agonists can be blocked by the

a 2_adrenergic antagonist piperoxane but not the ^-adrenergic antagonist

satolol (Cedarbaum and Aghajanian, 1976). Activation of

a ^-adrenoceptors situated on the cell bodies of noradrenergic neurons
+in the LC by clonidine is found to increase the K conductance leading 

to hyperpolarization of noradrenergic neurons in the CNS (Aghajanina and 

Van der Maalen, 1982).

Zimanyi et al. (1988) show that in the presence of selective
+K channel blockers such as 4-aminopyridine (4-AP) and quinine, the 

inhibitory effect of CC ̂ -adrenergic agonists including 1-NA and

xylazine are reduced, while the enhancing effect of OC^-adrenergic
3antagonist yohimbine on electrically stimulated release of [ HjNA from

the peripheral noradrenergic nerve terminals are completely abolished.
+The effect of 4-AP is to selectively block the voltage-dependent K

permeability (Meves and Pichon, 1977), and that of quinine is to block
2+ + the Ca -activated K conductance (Cherubini et al., 1984;

Bartschat and Blaustein, 1985). Thus, OC^-adrenergic agonists

inhibit the release of NA from the peripheral noradrenergic neurons
+primarily through hyperpolarization resulting from increased K 

permeability.

Schoffelmeer and Mulder (1984) suggest that Ot^-adrenoceptors 

located on noradrenergic axonal varicosities, unlike those located on 

the cell bodies and the peripheral nerve terminal, do not primarily

mediate hyperpolarization of the neuronal membrane. Thus NA and
+ 3clonidine inhibit 13mM K -stimulated release of [ HJNA in the

2+ + presence of 1.2mM Ca to the same extent as 56mM K -stimulated
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release of [ H]NA in the presence of O.lmM Ca . According to

them, the diminished inhibitory effect of both NA and clonidine on 56mM
+ 3 2+K -stimulated released of [ H]NA in the presence of 1.2mM Ca may

2+be due to the effect of high Ca influx during depolarization leading 

to the oversaturation of release mechanism. Thus, their data strongly

argue against the general view that OC^-adrenergic agonists inhibit the
+ 3K -stimulated release of [ H]NA via hyperpolarization of

noradrenergic nerve terminals during depolarization in the CNS.

1.3.2 Possible role of cAMP in the regulation of NA release

Depolarization leads to the increase in intracellular cAMP 

levels in brain slices (Shimizu et al., 1970; Shimizu and Daly, 1972? 

Zanella and Rail, 1973; Ferrendelli et al., 1976) as well as in 

synaptosomes (Daly et al., 1980). Indirect evidence for a role of cAMP 

in synaptic transmission can be studied by using non-hydrolysable 

membrane penetrating cAMP analogue including db-cAMP and 8-Br-cAMP, and 

the adenylate cyclase activators, NaF and forskolin (Wermer et al.,
N

1982; Schoffelmeer et al., 1983). Db-cAMP has been reported to

enhance the electrical stimulated release of acetylcholine (Goldberg and

Singer, 1969) and NA (Wooten et al., 1972) from the peripheral nervous

system (PNS). In the CNS, db-cAMP, 8-Br-cAMP, and forskolin enhanced

the electrical (Markstein et al., 1984; Schoffelmeer et al., 1985,
+1986) K (Wermer et al., 1982) and veratrine (Schoffelmeer et al.,

31983) induced release of [ H]NA from rat brain slices (Wermer et al.,

1982? Markstein et al., 1984; Schoffelmeer et al., 1982, 1986) and

synaptosomes (Schoffelmeer et al., 1985), without affecting the
3spontaneous efflux of [ H]NA (Schoffelmeer et al., 1983, 1985).

However, Rabe et al. (1982) demonstrated that the forskolin
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enhancement of K -stimulated release of [ H]NA from rat PC 12

pheochromocytoma cell line is biphasic with facilitation by O.T-lOuM

forskolin but inhibition at lOOuM. They thus conclude that elevation

of intracellular cAMP cannot initiate release, but can enhance

depolarization dependent release of NA.

Electrophysiological studies in neurons from suboesophageal

ganglia of Helix aspersa demonstrate that intracellular perfusion with

cAMP or intracellular application of ATP, at nanomolar concentration
2+cause a slight increase in Ca current (ICa) (Yatani et al., 1982).

In addition, intracellular injection of cAMP or application of serotonin

to the cell body of Aplysia californica caused a prolonged and complete
+

closure of individual K channels (Klein and Kandel, 1978; Siegelbaum

et al., 1982) leading to a longer action potential and hence a
2+ 2+ prolongation of Ca influx into the cell. Since Ca influx is

associated with the release of neurotransmitter, it is then suggested 
2+that cAMP and Ca may act closely as interrelated second messengers 

involved in the stimulus-secretion coupling process.

PDE inhibitors, that prevent the breakdown of cAMP^including
3IBMX and ZK 62771^increase the electrically evoked release of [ H]NA

from rat brain slices (Markstein et al., 1984; Schoffelmeer et al.,

1985, 1986) and synaptosomes (Schoffelmeer et al., 1985). In contrast,

PDE-inhibitors including RO 20-1724, IBMX, 7-benzyl-IBMX and ZK 62771
+inhibited the 13mM K (Werner et al., 1982) and veratrine (Schoffelmeer

3et al., 1983) induced release of [ H]NA from rat neocortical brain

slices. However, ZK 62771 is able to enhance the K+-stimulated
3 + channelrelease of [ H]NA in the presence of Na ^blocker, TTX. This

indirectly suggests that PDE inhibitors may also possibly act as a Na channel 

blocker. Till a more selective PDE inhibitor is available, it is
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difficult to interpret the cAMP effect with the existing PDE

inhibitor. For example, IBMX which is a PDE inhibitor has also been

reported to be a potent adenosine receptor antagonist (Stiles, 1986).

a 2~Adrenergic agonists have been reported to inhibit cAMP

formation in a number of tissues, including cultures of astrocytes

derived from mouse (Van Calker et al., 1978) and rat brain (McCarthy

et al., 1979), mouse neuroblastoma X glioma cells, NG 108-15 cells

(Sabol and Nirenberg, 1979; Griffi et al., 1985) human (Burns et al.,

1982) and hamster adipocytes (Fain and Garcia-Sainz, 1980; Garcia-Sainz

et al., 1980). In addition, activation of a^-adrenoceptors has been

shown to mediate inhibition of adenylate cyclase activity stimulated by

forskolin in rat cerebral cortical membrane (Kitamura et al., 1985).

In contrast, in intact brain slices and synaptosomes, there is no direct

evidence to show that Ot^-adrenergic agonist inhibits the stimulated 
3release of [ H]NA by decreasing the intracellular cAMP levels.

However, inhibitory effect of a^-adrenergic agonists, including

clonidine (Schoffelmeer et al., 1983, 1986), oxymetazolin (Werner

et al., 1982) and the enhancement effect of (X -adrenergic antagonist
+phentolamine on electrical (Schoffelmeer et al., 1986), K (Werner

et al., 1982) and veratine (Schoffelmeer et al., 1983) induced release 
3of [ H]NA are strongly reduced in the presence of 8-Br-cAMP and 

db-cAMP. Furthermore, the inhibitory effect of oxymetazoline and the 

enhancement effect of phentolamine are also reduced in the presence of 

NaF, a potent activator of adenylate cyclase (Werner et al., 1982).

Thus, the findings indirectly support the role of cAMP in presynaptic 

regulation of NA release.
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Unlike many peripheral tissue, mammalian brain contains adenylate
2+cyclase (EC 4.6.1.1) activity that is stimulated by Ca via the 

2+endogenous Ca binding protein, calmodulin (CaM) (Brostrom et al.,

1977; Cheung, 1980). In turn, cAMP may lead to the phosphorylation of
2+  2+Ca channels, thereby enhancing their Ca conductance (Reuter,

2+1983), thus increasing the availability of Ca for secretory
2+processes. However, phosphorylation by Ca and calmodulin may act

in parallel or synergistically with phosphorylation of intracellular

cAMP dependent proteins, some of which are located in synaptic vesicles,

thereby indirectly leading to the exocytotic process (Nestler and

Greengard, 1983). Moreover, in synaptic vesicles and nerve terminal
2+membrane, cAMP and Ca have been shown to regulate phospholipase A2 

activity, which may play an essential role in the exocytotic process

(Moskowitz et al., 1983, 1984). Thus, it would be interesting to know
3whether (X^-adrenergic inhibition of stimulated release of [ H]NA is

2+directly affected by the Ca influx or by the regulation of

intracellular cAMP levels.
2+Ca ionophore, which helps to transport the extracellular

2+  _ "2 1*Ca into the nerve terminals by artif iciall-y ■ open up the Ca-
3-eh-afmcl, induced release of [ H]NA from rat brain slices. Clonidine

and phentolamine do not have any effect on, while forskolin and
2+ 38-Br-cAMP enhanced the Ca ionophore induced release of [ H]NA

(Schoffelmeer, 1986). This suggests that forskolin and 8-Br-cAMP can
3enhance the stimulated release of [ H]NA without effecting voltage 

2+sensitive Ca channels. Clonidine inhibits and phentolamine further
2+enhanced the forskolin enhancement effect of Ca ionophore induced 

3release of [ H]NA, while they remain without any effect on 8-Br-cAMP 

enhancement effect (Schoffelmeer, 1986). Thus, it is suggested that



- 24 -

forskolin and 8-Br-cAMP operate via separate mechanisms, and that
3clonidine may inhibit the release of [HJNA by inhibiting the

adenylate cyclase activity stimulated by forskolin, thus decreasing

intracellular cAMP formation. Until more direct evidence is obtained,

the hypothesis that ^-adrenergic agonist inhibits the stimulated 
3release of [ HJNA by decreasing cAMP levels in the CNS is inconclusive 

and remains a speculation.

1.3.3 Possible relationship between adenosine and CC^-adrenoceptors 

on the regulation of NA release

It is well established that ATP is released together with 

catecholamines from the adrenergic nerve terminals (Burnstock, 1981).

The levels of extracellular adenosine concentrations in the brain tissue 

were found to be in a low micromolar range (Dunwiddie et al., 1981; 

Zetterstrom et al., 1982). In electrophysiological experiments, both 

spontaneous and evoked synaptic transmission were depressed by adenosine 

(Krentzberg et al., 1983), the effects of which are antagonised by 

adenosine receptor antagonists, such as the methylxanthines (Jackisch 

et al., 1985).

In the CNS, the depolarization-evoked release of several

neurotransmitters including noradrenaline (Harms et al., 1978; Jonzon

and Fredholm, 1984; Jackish et al., 1985; Allagier, 1987), dopamine

(Harms et al., 1979; Jarvis and Williams, 1987), acetycholine (Pedata

et al., 1983b; Corradetti et al., 1984; Jackisch et al., 1984),

serotonin (5-HT) (Harms et al., 1979), glutamate (Dolphin and Archer,

1983) and GABA (Hollins and Stone, 1980) is inhibited by adenosine.
45 2+Adenosine decreases Ca uptake into synpatosomes during

depolarization (Wu et al., 1982; Silinsky, 1986), which suggests that
24-adenosine inhibits neurotransmitter release by reducing Ca influx.
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In addition, the adenosine depression: of synaptic transmission is
+ + blocked by K -channel blockers suggesting that adenosine enhances K

conductance in nerve terminals (Perkins and Stone, 1980; Scholfield,

1986).

When rat brain slices were treated either with N-ethylmaleimide
many proteins including(NEM) which inactivates^the guanine nucleotide-binding protein

(G-protein) (Allagier, 1987), and pertussis toxin (IAP) which

ADP-ribosylate the inhibitory G-proteins (Fredholm and Lindgren, 1987),

the inhibitory effects of adenosine on the stimulated release of

noradrenergic neurotransmitters from the rabbit hippocampal brain slices

was reduced. These findings suggest that the depolarization-evoked

release of NA is modulated by adenosine receptors linked to a G-protein.

Radioligand binding studies show that adenosine interacts with

specific adenosine receptors in the CNS (Williams and Risley, 1980; Wu

et al., 1980; Patel et al., 1982). These receptors are subclassified

into A or (Ri) and A (or Ra) receptors. The A or (Ri)1 2 1
receptors have a high (nanomolar) affinity for adenosine while A^ or 

(Ra) have a lower (micromolar) affinity for adenosine which either 

inhibit or activate adenylate activity (Van Calker et al., 1979; Londos 

et al., 1980) respectively. The 'R' nomenclature was initially 

suggested since the ribose portion of the adenosine molecule had to be 

intact for adenylate cyclase activity (Londos and Wolff, 1977).

Adenosine A^ and A^ receptors can now be distinguished by

various synthetic and enzyme stable adenosine analogues. For example,
6 6 N -substituted derivatives of adenosine including N -cyclohexyl

6adenosine (CHA) and N -phenylisopropryl adenosine (R-PIA) are more 

potent at activating A^ receptors, which are often linked to a 

decrease in the formation of cAMP. In contrast, 5'-N-ethylcarboxamido
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adenosine (NECA) is more potent than CHA or R-PIA at activating A^

receptors, leading to increase in intracellular cAMP formation in the

cell or tissue studied (Fredholm and Dunwiddie, 1988). In addition

adenosine 'P' sites have also been described (Stiles, 1986). The 'P'

stie is a putative site on the catalytic unit through which ribose

modified adenosine analogs directly inhibit adenylate cyclase activity

(Stiles, 1986). However, adenosine 'P' sites are sometimes designated

when the purine portion of the adenosine molecule is required for the

inhibition of adenylate cyclase activity (Londos and Wolff, 1977, 1980).

Stiles (1986) suggests that in brain slices, activation of

A^-receptor leads to the inhibition of neurotransmitter release,

whereas, activation of A^-receptor leads to the increase of

neurotransmitter release. In rabbit hippocampal brain slices, the
3 3electrically stimulated release of [ H]NA and [ H]-ACh . are

inhibited by various adenosine agonists with the following order of

potency: CHA> [(-)PIA] >  NECA >  2-chloro-adenosine >  adenosine >  ATP,

effects which are reversed by adenosine receptor antagonists, the

methylzanthines including theophylline, 8-theophylline and IBMX (Jackish

et al., 1984, 1985). It is concluded that adenosine inhibit the
3electrically-stimulated release of [ H ]NA from rabbit hippocampal

brain slices via adenosine A^-receptors. Since NA also inhibits the
3electrically-stimulated release of [ H]NA via OC^-adrenoceptors, 

question then arises as to the contributory effect of adenosine on

noradrenergic neurotransmitters release. Inhibitory effect of
3adenosine on electrically-stimulated release ( H]NA from rat brain 

slices is not antagonised by the a^-adrenoceptor antagonist, 

yohimbine (Reichenbacher et al., 1982), and the results suggest that 

adenosine does not act at a CC^-adrenoceptor. In contrast, Allgaier
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et al. (1987) found that the inhibitory effect of the adenosine

A^-receptor agonist, (-)PIA on electrically-stimulated release of 
3[ H]NA from rabbit hippocampal brain slices is further enhanced by

yohimbine. The results suggest that adenosine A^-receptor acts

synergistically with a^-adrenoceptor in the regulation of NA release

from rabbit hippocampal brain slices. This controversy may actually be
betweendue to the differences^- animal species.

1.4 Cyclic AMP in various rat brain regions

Brain was shown to contain a higher level of adenylate cyclase 

and PDE acitivites than in other tissue systems (Sutherland, et al., 

1962). Adenylate cyclase is a membrane bound enzyme which is 

responsible for the conversion of ATP to cAMP and PDE catalyses the 

conversion of cAMP to 5 'AMP. The concentrations of cAMP in various rat 

brain regions was then studied by Schmidt, et al. (1971) using microwave 

irradiation technique, since cAMP was shown to be stable to heat 

(Sutherland, et al., 1958). Concentrations of cAMP found was: 

cerebellum = brain stem> hypothalamus mid-brain >  hippocampus = 

cortex. On the contrary, Weiss and Costa (1968) showed that the 

PDE-activities in the brain were: cortex-hippocampus >  hypothalamus>-

medulla-pons> cerebellum. This suggests that those parts of the brain 

which contains higher adenylate cyclase acitivites has lower PDE 

activities and vice versa.

1.5 Regulation of cAMP levels in intact brain slices 

Adenylate cyclase activity in the brain may be activated by

hormones and neurotransmitters, which catalyses the conversion of ATP to 

cAMP and pyrophosphate (PP).
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ATP Adenylate cyclase cAMP + PP 
GTP, Mg2+

Krishna et al. (1968) described a simple method for the assay of
-  32adenylate cyclase in tissue homogenates by using either [a- , P]-,

14 3[ C]- and [ H ]-ATP as substrates, but this is not possible with

slices of brain because ATP does not easily penetrate unbroken cells.
14However, Santos et al. (1968) found that [8- C] adenine, which is 

actively transported into slices of brain, is converted to ATP, which in
isturny^converted to cAMP. Shimizu et al. (1969) found that the technique

developed by Santos et al. (1968) is excellent for measuring the

neurotransmitter mediated changes in intracellular cAMP content in brain

slices. Schmidt et al. (1971, 1972) found that immediately following

decapitation there is a rapid and substantial increase in cAMP levels in

the brain. In order to obtain a stable and relatively low basal value

of cAMP in the brain slices, it is necessary to preincubate the brain

slices in the normal buffer medium for about 15 minutes before
14incubating it with [ C] adenine following by 10 minutes post

incubation period (Schultz and Daly, 1973a). Earlier studies using 

radiolabelling techniques demonstrate that neurotransmitters such as NA, 

serotonin and histamine elicited cAMP accumulation in brain slices 

(Kakiuchi et al., 1968a, 1968b; Shimizu et al., 1970; Rail and Sattin, 

1970; Schultz and Daly, 1973a). However, the effects of NA, serotonin 

and histamine are greatly reduced or absent when tested in incubated 

homogenates of brain (Klainer et al., 1962; Voigt and Krishna, 1967). 

The magnitude of biogenic amines response varies between different 

animal species and the region of the brain from which slices are 

prepared. For example, NA which elicits marked accumulation of cAMP in 

cerebral cortical slices from rat (Rail and Sattin, 1970; Shimizu
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et al., 1970; Forn and Krishna, 1971) has either no effect or a minimal 

effect in cortical slices from guinea pig (Kakiuchi et al., 1969;

Schultz and Daly, 1973a) and rabbit (Kakiuchi and Hall, 1968b). In 

addition, NA is more active than histamine in rabbit cerebellum 

(Kakiuchi and Rail, 1968a) but less active in cerebral cortex (Kakiuchi 

and Rail, 1968b).

1*5.1 Adenylate cyclase

It is now established that hormone-sensitive adenylate cyclase

is regulated by stimulatory receptors (Rs) and inhibitory receptors (Ri)

which activate the catalyst adenylate cyclase (C) through the

heterotrimeric regulatory GTP binding proteins, Gs ( a sr p and y  ) an<̂  Gi 
oc( i, (5 and y  ) (Gilman, 1984; Schramm and Selinger, 1984; Taylor and 

Merritt, 1986; Thomas and Hoffman, 1987). The hydrophilic a-subunits

are associated with the two hydrophobic subunits, p and y . The 

actions of Gs and Gi are not symmetric since Gs associates tightly with 

C, whereas Gi does not (Levitzki, 1987). The structure of hormone- 

sensitive adenylate cyclase is as illustrated in Figure 7. The 

regulatory proteins (Gs and Gi), in addition to binding GTP, appear to 

be associated with GTPase activity which terminate the activation of the 

G-proteins. G-proteins play a key role in coupling process by which 

the hormone-bound receptor conveys activation upon the catayltic unit, 

which in turn catalyses the conversion of ATP to cAMP.

The receptors (Rs and Ri) are hydrophobic with seven 

membrane-spanning domains (Levitzki, 1987). Activation of Rs by 

stimulatory hormones (Hs) leads to the dissociation of subunits of Gs,
fy j Is and p y  . The (X -subunit activates C, resulting in the3

accumulation of cAMP within the cell (Thomas and Hoffman, 1987).
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ATP c A M P + P P i

Figure 7 The structure of hormone-sensitive adenylate cyclase

The receptors are highly hydrophobic with seven 

membrane-spanning domains. The p-subunits of Gg and G. are 

embedded in the membrane bilayer. The 0C-subunits are bound to 

the -subunits but are themselves hydrophobic. The

(X-subunit interacts with Rg and the catalyst C, probably through 

unique sequences in the cytoplasmic domains.

(From Levitzki, A., Trends in Pharmacological Sciences 8,, 299-303 

(1987)).
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cAMP may then activate cAMP-dependent protein kinase, resulting in the 

phosphorylation of specific protein substrates (Nestler and Greengard,

1983). However, activation of inhibitory receptors (Ri) by inhibitory 

hormones (Hi) leads to the dissociation of subunits of Gi, a i and P Y  • 

Inhibition of adenylate cyclase probably occurs directly via
ff i inhibition of C or indirectly by inactivation of C (Thomas and 

Hoffmann, 1987). This leads to the fall in intracellular cAMP levels, 

and decreases in the protein kinase activity. Some examples of 

stimulatory and inhibitory hormones receptors that coupled to the 

adenylate 'cyclase are as depicted in Table 2.

1.5.2 Receptor^-mediated cAMP formation

1.5.2.1 (X - and ^ -Adrenergic agents (Noradrenaline)

Stimulation of the locus coeruleus has been shown to increase 

cAMP levels in the cortex, hippocampus, striatum and hypothalamus 

leading to the release of NA (Bloom, 1975; Korf and Sebens, 1979). 

Considerable evidence exists that NA stimulates cAMP formation in many 

brain regions by activating a- and -adrenergic receptors, since the 

NA response on cAMP formation is more potently blocked by 

Ot^-adrenergic antagonist, prazosine and |3-adrenergic antagonist, 

propranolol than by CC^-adrenergic antagonist, yohimbine (Perkin and 

Moore, 1973; Davis et al., 1978; Daly et al., 1980; Johnson and 

Minneman, 1986). This is further supported by the findings of Etgen 

et al. (1987), who demonstrate that p-adrenergic agonist stimulation of 

cAMP formations in rat hypothalamus brain slices is potentiated by 

(X ̂ -adrenergic agonist, phenylephrine but not (X^-adrenergic 

agonist, clonidine. In contrast, Pile and Enna (1986) found that 

isoprenaline stimulation of cAMP formation in rat neocortical brain
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Table 2 Examples of stimulatory and inhibitory hormone receptors that

couple to the adenylate cyclase

Stimulatory receptors Inhibitory receptors

(Ra) (Ri)

J3 -Adrenergic Cc ̂ “Adrenergic

Adenosine (A ) Adenosine (A )2 1
Dopamine (D^) Dopamine (D^)

ACTH Muscarinic

Glucagon Opiates (Enkephalin/morphine (p)

Prostaglandin (E^) Somatostatin

Vasointestinal peptide (VIP) 

Vasopressin (v ^̂

Angiotensin (II)
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slices is potentiated by clonidine but not phenylephrine. Furthermore, 

they reported that isoprenaline and a-adrenergic agonist,

6-fluoronorepinephrine stimulation of cAMP formation is more potently 

blocked by yohimbine than by prazosin They thus suggest that NA 

stimulation of cAMP formation via the synergistic effect of an^

P-adrenoceptors.

Destruction of presynaptic noradrenergic nerve terminals with 

6-hydroxydopamine results in enhanced responsiveness of cAMP-generating 

systems by both a- and p-adrenoceptors (Huang et al., 1973; Kalisker 

et al-., 1973). The findings suggest that these receptors may also be 

located post-synaptically.

Activation of CC^-adrenoceptors have been shown to inhibit 

cAMP formation in a number of tissues, including human (Burns et al.,

1982) and hamster adipocytes (Garcia-Sainz et al., 1980), mouse 

Neuroblastoma X glioma cells, NG 108-15 cells (Sabol and Nirenberg,

1979) and cultures of astrocytes derived from mouse (Van Calker et al.,

1978) and rat brain (McCarthy et al., 1979). So far, there is no 

direct evidence which shows that activation of oc^-adrenoceptors 

linked to the inhibition of cAMP formation in brain slices since the 

CX^-adrenergic agonist, clonidine inhibition of NA stimulation of cAMP 

formation in rat neocortical brain slices is not reversed by 

CC^-adrenergic antagonist (Pile and Enna, 1986).

NA stimulation of cAMP formation in rat cerebral cortex and 

hypothalamus may involved PGE^ since the effect of NA is decreased by 

the protoglandin synthetase inhibitors indomethacin, aspirin and 

acetominophan and this could be reversed by PGE^ (Partington et al.,

1980).
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Daly et al. (1980) demonstrate that in slices of rat cerebral 

cortex, the a-adrenergic agonist, 6-fluoronorepinephrine and 

the [3-adrenergic agonist, 2-fluoronorepinephrine stimulation of cAMP 

formation can be blocked by 8-phenyl theophylline and propranolol, 

respectively. The finding suggests that OC-adrenergic response is 

dependent on adenosine. Furthermore, adenosine or histamine 

potentiated NA and 6-fluoronorepinephrine but not |3 -adrenergic agonist, 

2-fluoronorepinephrine stimulation of cAMP formation. The results show 

that (X-adrenoceptor acts as a receptor modulator leading to the 

potentiation of adenosine, histamine and p-adrenoceptors stimulation of 

cAMP formation. In contrast, a-adrenoceptor does not elicit any 

response in cerebellum (Daly et al., 1980).

NA at high concentrations may also activate dopamine-sensitive 

cyclases. This is the reason why NA is able to stimulate cAMP levels 

in slices of caudate nucleus (Forn et al., 1974).

1.5.2.2 Adenosine

Adenosine stimulates cAMP formation 20-30 fold in guinea pig 

cortex slices, and the effect can be blocked by methylxanthines 

including theophylline and caffeine (Satin and Rail, 1970). However, 

in guinea pig particulate preparation, adenosine is only able to 

stimulate cAMP formation 4 fold (Daly et al., 1980).

It was initially presumed that adenosine increased cAMP 

formation by increasing the availability of substrate ATP for enzymes 

adenylate cyclase. However, using deoxy ATP, which does not give rise 

to adenosine in the assay medium, Cooper et al. (1980) show that 

adenylate cyclase in rat cerebral cortex is inhibited by low 

concentration of adenosine. In addition, adenosine analogue such as
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phenylisopropyladenosine (PIA) and N -cyclohexyladenosine (CHA) are 

able to exert their effect on adenylate cyclase activity in a biphasic 

manner i.e. in the presence of GTP, low concentration lOnM of the 

analogue inhibits and high concentration above luM stimulates adenyl 

cyclase activity. The inhibitory effect of the adenosine analogue is 

antagonised by IBMX (Ki, 0.45uM). Van Calker et al. (1979) also 

demonstrate a high affinity inhibitory site (nanomolar) and a low 

affinity stimulatory site (micromolar) from the studies on adenosine 

stimulation of cAMP formation in glial cell cultures, which they termed 

A^ and A^ respectively. In rat brain slices, adenosine uptake 

inhibitors such as dipyridamole, hexobendine and

p-nitrophenylthioguanosine were found to significantly potentiate the 

response to low concentrations of adenosine stimulation of cAMP 

formation. The finding suggests that adenosine stimulates cAMP 

formation by activating the adenosine receptors located on the 

extracellular sites.

Adenosine have also been shown to potentiate biogenic amines

including NA, serotonin and histamine (Sattin and Rail, 1970; Schultz

and Daly, 1973; Daly et al., 1980; Daum et al., 1982), glutamate and
+aspartate (Shimizu et al., 1974) and K (Huang et al., 1971) 

stimulation of cAMP formation in brain slices, and their effects can be 

blocked by adenosine antagonists, methylxanthines.

1.5.3 Forskolin stimulation of adenylate cyclase

The diterpene forskolin, isolated from the roots of the Indian 

medicinal plant Coleus forskohlii (Bhat et al., 1977) has been shown to 

directly stimulate the catalytic unit of the adenylate cyclase by 

passing the guanine nucleotide regulatory proteins, Gs and Gi (see Daly, 

1984 for review).
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Low concentrations of forskolin, which alone have no effect on 

adenylate cyclase activity, are able to potentiate agonist stimulations, 

thereby increasing the potency and/or efficacy of the agonists. This 

suggests that forskolin may interact synergistically with Gs (Daly 

et al., 1982; Seamon and Daly, 1983). A two-site model of forskolin 

action in C6-2B rat astrocytoma cells was proposed by Borovsky et al. 

(1984), who suggested that a low affinity site which mediates the direct 

action of forskolin to increase intracellular cAMP accumulation and a 

high-affinity site which mediates the potentiation of forskolin exist.

The actual mechanism(s) and site(s) of forskolin action are 

still unknown. It has been suggested that forskolin may stimulate 

adenylate cyclase activity via an unknown regulatory protein that is not 

linked to hormone receptors and Gs (Brooker et al., 1983).

1.5.4 Effect of depolarization on cAMP formation

Electrical stimulation (KaKiuchi et al., 1969; Zanella and

Rail, 1973) as well as membrane depolarization by various depolarizing
+agents including high concentrations of K , batrochotoxin, veratrine, 

ouabain (Shimizu et al., 1970, 1973; Shimizu and Daly, 1972) cause an 

increase in intracellular cAMP formation in guinea pig cerebral cortex

slices. The effects of these depolarizing agents are found to be
2+ 2+ depended on Ca concentrations since the absence of Ca

concentrations inhibit depolarization induced cAMP formation. In
2+addition,Schwabe et al. (1978) demonstrate that the addition of Ca 

chelator, EGTA to guinea pig cortical slices acutely reduce 

extracellular calcium increased basal levels of cAMP formation. 

Similarly, the addition of theophylline, an adenosine antagonist 

(Schwabe et al., 1978) has also been found to inhibit electrical
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(KaKiuchi et al., 1969) as well as ouabain, batrachotoxin, veratrine and
+high concentrations of K (KaKiuchi et al., 1969; Shimizu et al.,

1970; Shimizu and Daly, 1972) stimulation of cAMP formation in guinea

pig cerebral cortex slices. The findings thus suggest that
2+depolarization which increases Ca influx may lead to the release of 

endogenous adenosine which in turn stimulates cAMP formation via 

external adenosine receptors.

2+1.5.5 Ca /Calmodulin regulation of neuronal cAMP levels

Neuronal cAMP levels have been shown to be regulated by 
2+calmodulin (CaM), a Ca -binding protein since the latter is able to 

stimulate both adenylate cyclase (Brostrom et al., 1977; Wolff and 

Brostrom, 1979) and phosphodiesterase (Cox et al., 1981) activities.

Native calmodulin (CaM) is inactive and contains four high affinity
2+  ...   . _ —  —  —  —  —  - —  'Ca -binding domains (Watterson et al., 1980) and six auxiliary

2 +ion-binding sites (Cox, 1988). Divalent ion such as Mg can

modulate the affinity of CaM by occupying the auxiliary sites which are
2+ 2+ more specific for Mg , and less so for Ca (Cox, 1988).

2+Brostrom et al. (1977) demonstrate that Ca exhibits a 

biphasic response on adenylate cyclase activities in rat cerebral

cortical membrane when CaM is present in the assay medium; that is, low
2+ 2+Ca concentrations CT-O.lmM) activates and high Ca concentrations

(< 0.5mM) inhibit the activity. In addition, the inhibitory effect of 
2+high Ca concentrations on the adenylate cyclase activity in the 

presence of CaM can be reversed by the addition of EGTA to the assay 

medium.

The exact mechanism(s) of CaM are still unknown since there are 

evidences which suggest that CaM may either stimulate cAMP formation by
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directly activating the catalytic subunit (C) independent of the 

GTP-binding protein (Seamon and Daly, 1982), or interacts with guanyl 

nucleotides in an additive (Seamon and Daly, 1982) or synerigstic 

(Heideman et al., 1982) manner.

1 .6 Modulation of voltage-sensitive ion channels by guanine 

nucleotide regulatory proteins (G-proteins)

A family of pertussis toxin (IAP) sensitive G-proteins including

Gi , Gi , Gi and Go have been identified in tissues (Falloon 1 2  3
et al., 1986; Mitchell et al., 1986; Graziano and Gilman, 1987;

Milligan, G., 1988) which when coupled to receptors may translate

external messengers into intracellular responses by directly activating

the voltage-sensitive ion channels instead of the adenylate cyclase.

The brain contains two Gi-type G-proteins, namely Gi^ and Gi^ (Neer

et al., 1984) and it is highly enriched in G (Neer et al.f 1984;o -------
Sternweis and Robishaw, 1984). Similarly, neuroblastoma-glioma hybrid

cells are also found to contain Gi-type G-proteins and high

concentrations of Go (Milligan et al., 1986).

Electrophysiological techniques including whole cell patch-clamp

recording from dorsal root ganglion (DRG) neurons demonstrate that NA

and y-aminobutyric acid (GABA) inhibitory effect on voltage-dependent

calcium channels are blocked by preincubation of cells with pertussis

toxin (Ui, 1984) or intracellular administration of guanosine

5 ,-0-(2'-thiodiphosphate) (GDP-y-S), a non-hydrolysable analogue of GDP
that competively inhibits the binding of GTP to G-proteins (Eckstein

et al., 1979; Holz et al., 1986). Angiotensin (II) stimulation of 
2+Ca current in the adrenocortical cell line Y1 (Kojima et al., 1986) 

is abolished in Y1 cells pretreated with pertussis toxin, while
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2 +mtracellular application of cAMP does not stimulate the Ca current

in the cells. Thus, the finding suggests that G-proteins act as signal

transducers by directly linking the hormones or neurotransmitters to
2+voltage-sensitive Ca channel independently of cAMP (Fig. 8A).

Sasaki et al. (1987) demonstrated that when hormone receptors

activation of the ganglion cells of the sea slug Aplysia by either
+acetylcholine (Ach.), histamine or DA leads to an increase in K

conductance, which can be irreversible and selectively blocked by

intracellular injection of pertussis toxin. Furthermore, intracellular

application of guanosine-5'-0-(3-thiotriphosphate) (GTP^y-S), a poorly

hydrolysed analogue of GTP alone, caused extremely slow and irreversible 
+opening of K channels. This suggests that G-proteins may be

+involved in the receptor regulation of K channels (Fig. 8B).
+ 2+K induced depolarization leads to an increase in Ca

      +
influx, which in turn activates K channels causing hyperpolarization

and promoting repolarization (Blatz and Magleby, 1986) thereby switching 
2+off Ca dependent cellular responses.

2+1.6.1 Modulation of ion channels by Ca mobilizing receptors

possibly mediated via unknown G-proteins
2+Occupancy of Ca mobilizing receptors by either adrenaline

( acetycholine (M), substance P, NA ( thyroliberin

(TRH), 5-hydroxytryptamine (5-HT), caenilein or vasopressin (V^)

involve the breakdown of membrane-bound phosphoinositides to a number of

inositol phosphate and diacylglycerol (Taylor and Merritt, 1986).

These reactions are catalysed by phospholipase C. Consequences of the

breakdown of phosphoinositides include mobilization of intracellular 
2+Ca (Berridge and Irvine, 1984; Taylor, 1987), which in turn may
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activate protein kinase C (Nestler and Greengard, 1983; Hemmings
2+et al./ 1986). In mast cells, activation of Ca -mobilizing

receptors lead to the stimulation of phospholipase C, the effect of

which is inhibited by pertussis toxin (Nakamara and Ui, 1984).

Similarly, in adipocytes, OC^-adrenergic stimulation of phospholipase C

is inhibited by pertussis toxin, while cholera toxin does not affect the 
2+coupling of Ca -mobilizing receptors to phospholipase C (Taylor and

Merrit, 1986). The finding suggests that Gs is not involved in this

coupling process. Furthermore, a crude plasma membrane preparation of

blow fly salivary glands produced In(l,4,5)P^ in response to 5-HT only

in the presence of GTP. In addition, stable analogues of GTP, GTP-^-S

and 5 1-guanylylimidodiphosphate [Gpp(NH)p], which stimulate the

formation of Ins(l,4,5)P^ are able to potentiate the effects of 5-HT

(Litosch et al., 1985). The results suggest a close link between an

unknown pertussis toxin sensitive G-protein and phospholipase C. Also,
2+the increase in intracellular Ca via receptor/G-protein mediated

hormone sensitive phospholipase C may also lead to the activation of
+ 2+K conductance thereby reducing Ca influx (Fig. 8C).

1.6.2 Modulation of ion channels by intracellular messengers

Protein kinases including cAMP-dependent protein kinase
2+(cAMP-PK), cGMP-dependent protein kinase (cGMP-PK) and the Ca /

phospholipid-dependent protein kinase (protein kinase C) (PKC) have been
2+shown to modulate voltage sensitive Ca channels (Rosenthal and

Schultx, 1987; Fig. 8D).
2+Ca channels of hippocampal neurons are stimulated by cAMP-PK 

(Gray et al., 1987). Electrophysiological studies using the whole cell 

clamp technique demonstrate that intracellularly applied cAMP or the
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2+ +catalytic subunit of cAMP-PK enhances the Ca activated K currents

in snail neurons (Ewald et al., 1985). Similarly, intracellular

infusion of cGMP or of cGMP-PK via patch pipette in snail neurons also 
2+enhances Ca currents and increases the 5-hydroxytryptamine (5-HT)

2+induced Ca current (Paupardin-Tristch et al., 1986). Injection of
2+PKC into mollusc neurons has also been found to enhance Ca currents 

(De Reimer et al., 1985). Nichols et al. (1987) demonstrate that

activation of protein kinase C by tumour-promoting phorbol esters
+ 3 3enhanced the K -stimulated release of [ H]NA and [ H]Acetycholine

2+from rat cerebral cortex synaptosomes preparations in a Ca -dependent 

manner. The results suggest that phosphorylation of ion channels by 

protein-kinases may also regulate the release of neurotransmitters.
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Figure 8 Modulation of ion channel activity via cell surface
receptors

(A) G proteins mediate either hormonal stimulation or hormonal 
inhibition of Ca^+ channel activity

(B) Receptor control of K+ channel activity via G-protein

(C) Receptor control of K+ channel activity by an intracellular
messenger

(D) Hormonal modulation of Ca^+ channel activity achieved by
protein kinases including cAMP-PK, cGMP-PK or protein kinase C

Abbreviations: HA, hormonal agonist (hormone or neurotransmitter);
HR, hormone receptor; G, G protein

(From Rosenthal, W. and Schultz, G. (1987) Trends in Pharmacological 
Sciences 8, 351-354.)

)
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1.7 Aim of project

The aim of this project was to examine the hypothesis that 

presynaptic OC^-adrenergic inhibition of noradrenaline release is 

mediated via changes in cAMP formation. This hypothesis is based on 

the observations that CC^-adrenergic agonist in a number of tissues 

have been shown to be linked to the inhibition of cAMP formation.

Answers to the following two questions, relating to this hypothesis were 

sought (i) Does increasing the concentration of cAMP in occipital cortex 

tissue chops reverse the a^-adrenergic inhibition of NA release and

(ii) Is there a relationship between the effect of a^-adrenergic 

agonists on NA release and cAMP formation in rat brain occipital cortex 

tissue chops?
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2. MATERIALS & METHODS

2.1 Materials

Materials used were obtained from the following sources:

Amersham International/ Amersham Buckinghamshire 
31— [7,8]— [ H]-Noradrenaline (30-50Ci/mmol)

38-[ H]-Adenine (20-25Ci/mmol)
14U-[ C]-cAMP (261mCi/mmol)

BQC Limited/ Brentford

95% 0 - 5% CO
2 2

Sigma, Poole, U.K.

Noradrenaline

Clonidine

Propranolol

Prazosin

Yohimbine HC1

Isoprenaline

Adenosine

Forskolin

3-Isobutyl-l-methylxanthine

Desipramine

Pargyline

Neutral alumina

Imidazole HC1 
6N -cyclohexyl adenosine

Ethyleneglycol-bis-(|^-amino-ethyl)N,N'-tetra acetic 

acid (EGTA)
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The a 2_adrener9ic agonists BHT-920 and UK-14304-18 were kindly 

donated by Syntex Research Centre, Riccarton, Edinburgh and Pfizer 

Central Research, Sandwich/ Kent, respectively.

Kindly donated by Dr. D. Pollock/ Department of Pharmacology/ 

University of Glasgow,

Phenylephrine

Kindly donated by Roche Products Ltd., Welwyn Garden City/ 

Hertfordshire 

RO-20-1724 

BDH Chemicals Ltd., Poole, England 

Ascorbic acid 

Folin-Ciocaltean reagent 

Sodium dodecyl sulphate

N-2-Hydroxyethylpiperazine-N-2-ethane sulphonic acid (HEPES) 

BioRad

Dowex AG 50W-X-4; 200-400 mesh (hydrogen form)

Research Biochemical Inc., MA., U.S.A.

8-cyclopentyl-l,3-dipropylxanthine

2.2 Dissection of rat brain

Male Wistar rats (230-250g) were sacrificed by CO^ 

anaesthesia followed by decapitation. Brains were removed and placed 

in a chilled glass petri dish.

For the dissection of occipital cortex, a transverse section 

(Fig. 9 C , dashed line, 1) was made to remove the front brain (A).

The occipital cortex could be easily removed by gently peeling back 

using a spatula beginning at the central ridge (Fig. 9A ). The white 

and grey matter attached to the cortex was removed using forceps. The
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Figure 9 Dissection of occipital cortex and hypothalamus
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hypothalamus was dissected out by the method of Glowinski and Iversen, 

1966 (Fig. 9C ). The anterior commissure was taken as a horizontal 

reference and the line between the posterior hypothalamus and the 

mammillary bodies as the caudal limit.

2.3 Preparation of tissue chops

Tissue from occipital cortex or hypothalamus was chopped using
oa Mcllwain tissue chopper to produce 0.26 x 0.26mm slices cut at 90 

to each other. The tissue chops were then washed once with HEPES

buffer in order to remove tissue debris, and then used for uptake and 
3release of [ H]NA or for cAMP assay.

2.4 HEPES buffered salines

The HEPES buffer used for both the centrifugation assay and the

cAMP assay consisted of (in millimolar concentrations) : NaCl, 140;

KC1, 5; CaCl , 0.5; HEPES, 15; D-Glucose, 10; K HPO , 1.5;
2 2 4

MgSO .7HO, 1.5; pargyline, 0.1; ascorbic acid, 0.1. The buffer 4
was equilibrated with 95% °2“5% c°2f anc  ̂ pH adjusted to 7.4

owith 1M NaOH. It was then kept at 4 C. For cAMP assay, pargyline 

and ascorbic acid were omitted from the buffer. High potassium 

concentrations were obtained by replacing NaCl with the equivalent 

amount of KC1 to maintain isomolarity.

2.5 HPLC-ED Assay of endogenous catecholamines from rat brain 

regions

Endogenous NA and DA were assayed by HPLC-ED as shown in 

Figure 10. Brain samples were weighed and then homogenised in 0.5ml 

0.1M PCA in Eppendorf tubes using a mini drill (Expo Drills Ltd.,



- 48 -

London, U.K.) fitted with a teflon-tipped pestle. The tubes were then 

centrifuged at 10,000g for 5 minutes in an Eppendorf 5412 bench 

centrifuge. After that 80ul aliquots of supernatant were injected 

onto a Partisil 10 ODS column (Whatman Ltd., 25cm x 4.6mm i.d.) via a 

six port rotary injection valve (Model 7120, Rheodyne Instruments Ltd., 

U.S.A.) fitted with a 20ul sample loop. A mobile phase of 0.027M 

citric acid, 0.05M sodium acetate, 0.06M sodium hydroxide, pH5.2 

containing 0.057g sodium octyl sulphonate per litre and 2.5% (v/v) 

methanol was used for the separation of catecholamines (Keller et al., 

1976). The mobile phase was filtered through Sartorius filters (0.45m 

pore size) before use, degassed with helium and delivered at a constant 

flow rate of l.lml/min using an LC3-XP pump (Pye Unicam Ltd.,

Cambridge, U.K.). Catecholamines were detected with a TL-5 

electrochemical detector cell (silicon-grease based carbon paste, CP-S, 

Bio-Analytical Systems Incl.) which consisted of a glassy-carbon 

working electrode, Ag/AgCl reference electrode, a platinum auxiliary 

electrode and a LC-4 controller Unit. The operating potential was 

0.65v and the current produced by oxidation of catecholamines was 

transduced by the LC-4 Controller Unit into a peak on a Philips PM8251 

single pen chart recorder (Philips Ltd.). The retention times of NA 

and DA were 4 and 12 minutes respectively. The unknown concentrations 

of NA and DA were calculated from the peak heights produced by the 

samples compared with the peak height produced by standard solutions of

NA and DA (4-20ng/100ul in 0.1M-HC1O ) (Fig. 11).4

32.6 Uptake of [ H]NA into occipital cortex tissue chops

The effect of desipramine (DMI), an uptake inhibitor, on the 

uptake of NA by chopped brain slices was examined using the method of
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32.7 Determination of [ H]NA release
- 7Tissue chops were prelabelled by incubating with 0.3 x 10 M

3[ H]NA (specific activity, 30-50Ci/mmol) in HEPES buffer containing 
_ 2+ o0.5mM Ca for half an hour at 37 C. The tissue chops were then

washed by gently turning the test tube upside down three times,

allowing the tissue to settle and carefully removing the supernatant.

The tissue chops were resuspended in fresh HEPES buffer. This process
2+was repeated eight times. For the study on Ca dependent release,

tissue chops were washed with HEPES buffer containing O.lmM EGTA,
2+without Ca . Aliquots (12ul) of the resuspended tissue chops

(5-10mg) were pipetted into Eppendorf tubes using a Gilson pipette with
-6the tip cut off. 50ul DMI 10 M (final concentrations) was added to

3each tube to prevent re-uptake of the released*. - [ H]NA. Total

volume in the Eppendorf tube was 0.5ml.
3Release of [ H]NA was evoked by the addition of 20mM or 30mM

+ oK and the tubes were incubated for 6 minutes at 37 C either in the

presence or absence of drugs as indicated in the legends of the
+ 2+relevant figures. For K -evoked Ca -dependent study, different

2+concentrations of Ca were added to the tubes as mentioned in

legends of the relevant figures. The tubes were shaken at regular

intervals. In some cases, the tissue chops were preincubated for
operiods up to 30 minutes at 37 C, shaken at regular intervals with

appropriate drugs as indicated in the relevant figures and tables
+before evoking release with 20mM K as described above. The

reaction was terminated by centrifuging the Eppendorf tubes at 2000 x g 
ofor 5 minutes at 4 C. The supernatant was transferred to vials

containing 4ml "Ecoscint" (liquid scintillant) for scintillation 
3counting. [ H]NA left in the pellet was extracted by
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Carmichael and Israel (1973). The assay was modified to separate the

labelled tissue from the medium by centrifugation. 12ul aliquots of

the tissue chops (5-10mg) suspended in minimal volume of HEPES buffer

was pipetted into Eppendorf tubes using a Gilson pipette with the tip
-8 -4cut off. Desipramme (DMI) over the range 10 M-10 M was added

to the tubes except the control, and these were incubated for 10 min at 
o37 C with regular manual shaking at 2-3 minute intervals. The tubes

owere then centrifuged for 5 min at 250 x g, at 4 C, and the

supernatant was discarded. After that, fresh medium containing 0.3 x
-7 310 M [ H]NA (specific activity, 30-50Ci/mmol) in the presence of

an appropriate dilution of DMI was added to the tubes, which were
ofurther incubated for half an hour at 37 C and shaken at regular

intervals. The total volume in the tubes was 0.5ml. The tubes were
ocentrifuged at 2000 x g at 4 C for 5 minutes and the supernatant in

each tube was discarded. The pellets were washed by adding fresh

medium to the tubes, shaking the tubes gently, and allowing the tissues

to settle and the supernatant was discarded. The process was repeated
3three times. The [ H]NA in the pellet was extracted by homogenising

the tissue with 500ul 0.1M perchloric acid (PCA). The tubes were
ocentrifuged at 2000 x g at 4 C for 5 minutes. The PCA extracts were

transferred into vials containing 4ml "Ecoscint" (scintillation fluid), 
3and the [ H]NA was determined in a scintillation counter. NA uptake 

was initially expressed as counts per minute (CPM)/mg protein, and then 

converted into % of control value. The protein content of the chopped 

brain slices in the tube was determined by method of Lowry et al. 

(1951).
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homogenisation with 0.5ml 0.1M PCA, and then centrifuged at 2000 x g 
3for 5 min. The [ H]NA content in the PCA supernatant was determined 

by liquid scintillation counting.

32.7.1 Calculation of [ H]NA release 
3The [ H]NA released under each condition was expressed as:

% of total tissue tritium

= counts per minutes (cpm) supernatant x ^00 
cpm(pellet) + cpm(supernatant)

or s x 100 
P + S

+ 3The results were expressed as K -induced release of [ H]NA in the

presence or absence of drugs minus the basal (unstimulated) release of 
3[ H]NA in the presence or absence of drugs.

3The [ H]NA release expressed as a % of the control value was 

calculated as follows:

[^H]NA release as = % of total tissue tritium in the presence of drugs x 100
% of control % of total tissue tritium

2.8 cAMP assay

cAMP formation in tissue chops was followed by measuring the 
3 3production of [ H]cAMP from [ H] adenine using the method of Shimizi

oet al. (1969). Tissue chops were incubated for 15 minutes at 37 C in 

9ml HEPES buffer. The tissue chops were allowed to settle, the

supernatant removed and the tissue chops were incubated for 40 min at
o , -7 337 C in fresh medium (9ml) containing 10 M [ H] Adenine (specific

activity 20-25Ci/mmol). The tissue chops were rinsed five times by 

gently shaking the tubes, allowing the tissues to settle, and then 

removing the supernatant. A further incubation of tissue chops with
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fresh HEPES buffered saline was carried out for 10 min at 37°C. The

incubation medium was discarded, and the tissues were suspended in

minimal volume of HEPES buffer. 12ul aliquots of the tissue chops

(5-10mg) were pipetted into Eppendorf tubes using a Gilson pipette with
othe tip cut off. cAMP formation was stimulated for 10 min at 37 C by 

the addition of isoprenaline, noradrenaline, adenosine, potassium or 

forskolin in the concentrations stated in the relevant figures or 

tables. For the studies with (X^-adrenergic agonist, the tissue chops 

were preincubated with the relevant agonist for 5 minutes before the 

addition of the compound used to stimulate cAMP formation. The reaction

was terminated by centrifuging the tubes for 3 minutes, 2000 x g, at
o 34 C. The supernatant was decanted. [ HjcAMP in the tissue pellet

was extracted by homogenisation with 1ml 10% TCA containing 
14[ C]-AMP(5Ci/100ml 10%.TCA) as internal standard. The Eppendorf

tubes containing 1ml 10% TCA extracts were centrifuged for 10 minutes 
o2000 x g at 4 C. 50ul of the TCA supernatant was used to determine

3the total radioactivity in the tissue. [ HjcAMP in the rest of the 

TCA supernatant was then purified using Dowex and alumina columns by

method of Solomon et al. (1974). Results are expressed as percentage
3 ,conversion; i.e. the percentage of total [ H] adenine taken up by the

3tissue converted to [ H] cAMP.

2.9 Preparation of Dowex 50 and aluminium columns for adenylate 

cyclase assay (Solomon#1979)

2.9.1 Supplies

(1) Columns used were 5ml syringes, diameter 1 cm, containing a 

sintered filter disk.
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(2) Racks were constructed to hold 24 columns each. They were made 

in such a way that the two columns fitted onto each other in 

pairs, with the columns in the upper and lower racks vertically 

aligned.

(3) The lower columns were properly spaced so that the effluent
3 14containing [ HjcAMP and [ Cj-AMP could drain into 24

scintillation vials arranged directly below the columns.

2.9.2 Packing Dowex 50 columns

Dowex AG 50W-X4 (200-400 mesh) was placed in a conical flask, 

washed twice with 1M HC1, and equilibrated with 100ml 1M HC1 for 30 

minutes. The acid-treated resin was washed with distilled water until 

the effluent was colour free. Columns were then filled with the resin 

to about 4cm. In order to prevent bacterial and fungal growth, columns 

were stored with 2ml 1M HC1 at room temperature. Columns were washed 

with 10ml distilled water before use.

2.9.3 Packing Alumina Columns

0.6g dry neutral alumina was placed in each column and washed 

with approximately 10ml 1.0M imidazole HC1 buffer, pH 7.5, and stored at 

room temperature. Before use columns were washed with 6ml 0.1M 

imidazole buffer.

2.9.4 Column recycling

Dowex 50 columns; The columns were regenerated by washing with 

4ml 1M HCl, followed by 10ml distilled water.

Alumina columns: Columns were regenerated with 3ml 1M

imidazole/HCl buffer, pH 7.5, followed by 6ml 0.1M imidazole/HCl buffer.
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2.10 cAMP purification

lml TCA extracts of the samples were applied to Dowex columns.

ATP and ADP were eluted with 2.0ml 0.1M HC1, followed by 2.0ml distilled

water. cAMP was then eluted onto the alumina columns with 6ml distilled

water. The alumina columns were washed with lml 0.1M imidazole HC1 and
3[ HjcAMP eluted with 3.0ml 0.1M imidazole/HCl buffer directly into 

vials containing 12ml Ecoscint.

2.11 Preparation of a dual-label quench curve by external standard 

method

The Beckman LS1800 scintillation spectrophotometer uses a high
137energy gamma source, such as Cs as an external reference standard

#and is equipped with the H method for quench correction.
3The quench curve was calibrated using 10 sealed samples of [ H]

14or [ C ] of known dpm, supplied by Amersham, containing different

amounts of quenching agent in scintillation fluid. The counting 
3 14efficiency of [ H ] or [ CJ was then obtained using the formula below:

counting efficiency (CE) = -2HL x 100%
dpm

As a result of this preliminary quench curve, the counter was then
f

programmed to obtain dpm from cpm. H values were set at a minimum of
3 1439 and a maximum of 219. Counting efficiencies for [ H] and [ C] 

were found to be approximately 40% and 70% respectively.

2.12 Scintillation counting
3The [ H]NA released was determined by adding in 0.5ml of 

supernatant or 0.5ml of 0.1M PCA tissue extracts to scintillation vial 

containing 4ml Ecoscint, and counted in Beckman LS1800 liquid
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scintillation spectrophotometer for 5 minutes. In the case of cAMP
3 14assay, radioactivity of [ H]cAMP and [ CjcAMP was counted in larger 

volume of imidazole buffer (3.0ml), therefore it required the use of 12ml 

of Ecoscint to ensure homogeneity.

2.13 Protein estimation

Protein in the tissue pellet was estimated using a modification 

of the method of Lowry et al. (1951) as follows:

(i) Tissue in the pellet was dissolved in 500,ul of 2% (w/v) SDS in

0.1M NaOH overnight, and lOOjal aliquots placed in test tubes.

(ii) To each tube was added 3ml of a mixture of 50ml solution A + lml 

solution B.

Solution A consisted of 2% (w/v) anhydrous Na CO and 0.2%2 3
(w/v) SDA in 0.1M NaOH, and solution B consisted of 0.5% CuSO 4
5H^O in 1.0% (w/v) trisodium citrate.

(iii) After 10 minutes, 0.5ml Folin-Ciocalteau reagent diluted 1:2

(v/v) with water was added to the tubes, and then mixed with a 

vortex mixer.

(iv) The test tubes were left for at least 30 minutes in order to

allow colour development to stabilize before reading the

absorbance at 650 of the samples using a Beckman Dual Beam

spectrophotometer (Beckman Ltd.).

(v) Protein was estimated by reference to a protein calibration curve

(0-100ug protein) using bovine serum albumin as a standard (Fig. 12).

2.14 Statistical Evaluation

Standard deviation (S.D.) is a measure of the difference of each



- 58 -

0,4

0.3
650

0.2

0.1

0 10 20 30 40 50 90 100
jjg protein

Figure 12 Calibration curve for protein estimation



- 59 -

observation from the mean. It was calculated using the formula:

SD = (x-x)2
n-1

where,

x = individual observation

x = mean of number of observations

(x-x)2 = sum of the squares of differences

(or deviation from the mean)

n = number of observations

(x~*\ = variance
n-1

Standard errors mean (S.E.M.) was used to describe the 

significance of the difference between the means. It was obtained by 

dividing the S.D. of each sample by the square root of the number of 

observations in the sample (n). It was calculated by using the formula 

below:

S.E.M. — S.D.
I T T

Statistical significance of the effects of two alternative treatments or 

experiments comparing in pairs was determined by the t-test or sometimes 

referred to as Student's t-test. The factor t, the significance of a 

deviation of a statistic from zero was calculated by using the formula: 

t = d —  S «D«.

where,

d = mean of the differences between the two alternative treatments 

= S.E.M. of the differences
>nr

Entering the t value into the table of the t-distribution (Pollard, 197 7) 

at the appropriate degree of freedom gave the probability value of a 

chance effect.



RESULTS
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3.1 Preliminary studies

3.1.1 NA and DA content in the occipital cortex and hypothalamus of 

rat brain

Occipital cortex (O.C.) and hypothalamus were dissected as 

described in the Methods Section. The wet weights of O.C. and

hypothalamus were 37.9 _+ 14.8mg (n = 7, mean +_ S.D.) and 90.1 jf 17.3mg

(n = 7, +_ mean S.D.) respectively.

The NA and DA contents of O.C. and hypothalamus were measured 

using HPLC with electrochemical detection. The NA contents of O.C. 

and hypothalamus were 502 +_ 347ng/g wet weight (n = 7, mean +_ S.D.) and 

1404 +_ 251ng/g wet weight (n = 7, mean +_ S.D.) respectively, while the 

DA contents were 59 _+ 18ng/g wet weight (n = 7, mean _+ S.D.) and

220 Hh 16ng/g wet weight (n = 7, mean +_ S.D.) respectively. Thus both

NA and DA contents in the hypothalamus are,higher than those found in 

the O.C.

33.1.2 Effect of desipramine (DMI) on the uptake of [ H]NA in O.C. 

tissue chops

The centrifugation assay used in this study has the advantage

of enabling release to be followed in a small volume, thus economising

on tissue and material. However, the released NA could be rapidly

taken up into the nerve endings, thus reducing the net release of NA.

Therefore, DMI, an inhibitor of NA uptake was included in the assay to
- 6prevent the re-uptake of released NA. DMI (10 M) inhibited about 

390% of [ H]NA uptake (Fig. 13). Thus, this concentration was 
3included m  all [ H]NA release experiments.
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3Figure 13 Effect of DMI on [ H]NA uptake into O.C. tissue chops

Aliquots of tissue chops were preincubated for 10 min at 37 C with

oxygenated HEPES buffer containing DMI. The tissue chops were 
3loaded with [ H]NA in HEPES buffer containing DMI, range 

-8 -4(10 M-10 M) for 1/2 h. The total uptake of tissue tritium
-4averages 10 cmp/mg protein. Protein assay was performed by 

method of Lowry et al. Each point represents the mean +_ S.E.M. of 

4 separate experiments, each of which was performed in triplicate.
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3.1.3 _K+-stimulated Ca2+-dependent release of [2H]NA from O.C.

and hypothalamic tissue chops
+ 3K -evoked release of [ H]NA was examined in O.C. (Fig. 14)

3and hypothalamic (Fig. 15) tissue chops. Release of [ H]NA increased 
+with increasing K concentration and reached a maximum over the range

+ +80mM - 120mM K for both tissues. High K was obtained by

replacing NaCl with the equivalent amount of KC1.
2+ + 3Ca -dependent K -stimulated release of [ H]NA was

studied in O.C. tissue chops. Figure 16 shows that high K (40mM or
3 2+20mM) stimulation of [ H]NA is more dependent on Ca

+ + concentrations than low K (5mM). The effect of K stimulation on
2+Ca - dependent release from O.C. tissue chops was examined either in

HEPES buffer equilibrated with 95% 0 - 5% CO and the pH2 2
subsequently adjusted to 7.4 (Fig.16B) or in non-oxygenated HEPES

+ 3buffer (Fig. 16A). K stimulation of [ H]NA release is not

dependent on the oxygenation of buffer since very little difference was

observed between maximal release in oxygenated (Fig. 14) compared with

non-oxygenated (Fig. 14) buffer. However, lower basal release was

observed in oxygenated HEPES buffer (Fig. 16A) compared with

non-oxygenated HEPES buffer (Fig. 16B).

3.1.4 Time course of the effect of clonidine on the release of 
3[ H ]NA from O.C. tissue chops

The effect of clonidine, an CC^-adrenergic agonist, on the
3 +release of [ H ]NA was studied under depolarizing (30mM K ) and

+non-depolarizing (5mM K ) conditions by incubating tissue chops with

clonidine (10 ^M) for the different times shown in Figure 17.
-6 3Clonidine (10 M) did not inhibit the basal release of [ H]NA over
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3 3Tissue chops were preloaded with [ H]NA. Release of [ H]NA was

evoked by incubating the tissue chops with different K+

concentrations as shown above either in non-oxygenated (A ) or

oxygenated (95% 0^ - 5% (O) HEPES buffer medium containing
-6 o10 M DMI for 6 min at 37 C. Each point is the mean of 5

experiments _+ S.E.M., each of which was performed in triplicate.
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hypothalamic tissue chops

3 3Tissue chops were preloaded with [ H]NA. Release of [ H]NA was

evoked by incubation of tissue chops under the conditions described

in Fig. 14. Results are means _+ S.E.M. of 4 experiments, each of

which was performed in triplicate.
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2+ +Figure 16 Effect of Ca -dependent K -evoked release of

3_[_ H]NA from O.C. tissue chops

3Tissue chops were preloaded with [ H]NA under two conditions

(A) non-oxygenated or (B) oxygenated HEPES buffer. Tissue chops were
2+then washed with HEPES buffer without Ca containing O.lmM EGTA

according to the conditions in (A) and (B) respectively. 5mM (• ),
+ 320mM (□) and 40mM ( O )  K -evoked release of [ H ]NA in the

2+presence of different Ca concentrations described above were 

performed under conditions described in Fig.14. Results are means 

+_ S.E.M. of 4 experiments.
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+a 15 min incubation period,while it inhibited 30mM K -evoked release 
3of [ H ]NA at all time points (Fig. 17). The above observation

+ 3suggests that clonidine inhibition of K -evoked release of [ H]NA

was an instantaneous effect, and remained effective over the time range.

3.1.5 Effect of pretreatment of tissue chops with clonidine on
+ 3K -evoked release of [ H]NA from O.C. tissue chops

-6Clonidine (10 M) added to the incubation tube at the same
+ 3time as 30mM K inhibited release of [ H]NA from O.C. tissue chops

by 40.% (Fig. 18A). Pretreatment of tissue chops with clonidine for 10

min (Fig. 18B), 20 min (Fig. 18C) or 30 min (Fig. 18D) at 37°C before
3 + oevoking [ H]NA release with 30mM K for 6 min at 37 C did not

3alter the extent to which clonidine inhibited [ H]NA release. These

results show that it is not necessary to pretreat the tissue chops with
3clonidine to obtain maximum inhibition of [ H]NA release.

+3.1.6 Effect of clonidine on 40mM, 30mM and 20mM K -evoked release 
3of [ H 3NA from O.C. tissue chops

+ 3The effect of clonidine on K -evoked release of [ H]NA was

investigated either in non-oxygenated (Fig. 19A) or oxygenated (Fig. 19B)
+ 3HEPES buffer medium. K -evoked release of [ H]NA was expressed as

the difference between percentage release in the presence of 40mM, 30mM

or 20mM KC1 and 5mM KC1. When the experiment was performed in
-6non-oxygenated HEPES buffer medium, clonidine (10 M) did not inhibit

+ 340mM K -stimulated release of [ H]NA, while only 20.6% and 33.1%

inhibition were observed at 30mM and 20mM K+ respectively (Fig. 19A).

However, when the experiment was performed in oxygenated HEPES buffer
-6 + medium, clonidine (10 M) inhibited 40mM, 30mM and 20mM K -evoked

3release of [ H ]NA by 17.1%, 37.3% and 52.5% respectively (Fig. 19B).
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Figure 17 Effect of clonidine on [ H]NA released from O.C.tissue chops
Time course study

3Aliquots of tissue chops preloaded with [ H]NA were incubated in 

oxygenated (95% 0^ - 5% CO^) HEPES buffer for up to 15 min either in

the presence ( B  , •  ) or absence (□, O  ) of 1 lpM clonidine with either
4- 4-5mM K (B, □  ) or 30mM K (•, O  ). Results are means 4- S.E.M. of

3 experiments.
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The above observations show that oxygenation of HEPES buffer medium is

prerequisite to a better clonidine inhibition, and that lower
+ +K -depolarization (20mM K ) gave a greater extent of clonidine

inhibition. Therefore, oxygenated HEPES buffer was used in all the
3experiments on C^-adrenergic regulation of [ H]NA release.
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+ 3Figure 18 Effect of clonidine on K stimulated [ HjNA release
from O.C. tissue chops under different preincubation 
conditions

3Tissue chops were preloaded with [ H]NA. The experiments were

carried out under four conditions: (A) No preincubation, (B) 10 min,

(C) 20 min and (D) 30 min preincubation of tissue chops with lpM
- 4* 3clonidine. 5mM (^) or 30mM ([J) K -evoked release of [ H]NA

either in the presence or absence of lpM clonidine for 6 min . Results 

are means + S.E.M. of 3 experiments.
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(A) Non-oxygenated Hepes-buffer (B) Oxygenated (95°/ 0^ - 5% CO^) 
Hepes-buffer

td s—CD 4-» CO
CD CD CD Z3 ■— 1 CO CD CO

CD4—’O
H—O

30mM K
30mM K3 0 -

20mM K20-

20mM K

+ + + +

Clonidine O jjM)

Figure 19 Inhibitory effect of clonidine on 40mM, 30mM and 20mM
K +-evoked release of [ ^HjNA from O.C tissue chops

Aliquots of tissue chops preloaded with [ H]NA in either

(A) non-oxygenated, or (B) oxygenated (95%)2-5%CC>2) HEPES buffer.
+ 3 ujsjK -evoked release of [ H]NA either in the presence (g|j) or

absence ( □ >  of lpM clonidine described in (A) and (B) was examined by

incubating the tissue chops for 6 min. Results are means _+ S.E.M. of

5 experiments.
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3.2 a  adrenergic regulation of [ H]NA release

The results from the preliminary studies show that the
3a 2~adrenergic agonist, clonidine inhibits [ H]NA release 

+stimulated by K from rat O.C. tissue chops. Ot ̂ -Adrenergic

agonists have been reported to inhibit cAMP formation in a number of

tissues, including human (Burns et al., 1982) and hamster adipocytes 

(Garcia-Sainz et al., 1980) mouse Neuroblastoma X glioma cells, NG 108 

- 15 cells (Sabol and Nirenberg, 1979), and cultures of astrocytes 

derived from mouse (Van Calker et al., 1978) and rat brain (McCarthy et

al., 1979), thus the major aim of this study was to test the hypothesis

that the (X^-adrenergic agonist inhibition of NA release is mediated 

by cAMP. Two approaches were adopted in the study:

(1) If the (^-adrenergic agonist inhibition of NA release is 

mediated by cAMP then it would be predicted that increasing 

intracellular cAMP levels would (a) stimulate NA release and 

(b) reverse the inhibitory effect of the a^-adrenergic 

agonist. Therefore intracellular levels of cAMP were increased 

using the cAMP analogue db-cAMP, Forskolin, (which is known to 

alter intracellular cAMP levels) and with PDE inhibitors, that 

prevent the breakdown of cAMP.

(2) The effect of c^-adrenergic agonists on cAMP formation in 

O.C. tissue chops was examined to see if there is a correlation 

between conditions under which oc^-adrenergic agonists 

inhibit both cAMP formation, and the release of NA.

In this thesis the effects of o^-adrenergic agonists,

clonidine, BHT-920 and UK143-4-18 were compared with the effects of NA,
3on both release of [ H]NA, and cAMP formation in rat O.C. tissue 

chops.
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■f 33.2.1 (X^-adrenergic modulation of K -evoked release of [ H]NA

from O.C. and hypothalamic tissue chops

BHT-920, clonidine, UK14304-18 and NA inhibited the release of
+ 320mM K -evoked release of [ H]NA in a dose-dependent manner

+ 3(Fig. 20). 20mM K was used to stimulate ( H]NA release in O.C.

tissue chops since it was found (Fig. 19) that clonidine was most 

effective at this concentration. The IC values (concentration of
59

drug which exhibits half the maximum inhibitory effect) on the release
3 -7 -7 -7of [ H]NA) were 1 x 10 M, 3.5 x 10 M, 5.5 x 10 M and

-77.5 x 10 M for UK14304-18, clonidine, BHT-920 and NA respectively

(Fig. 20). This suggests a potency order of UK14304-18'>* clonidine>-
^  3BHT-920 NA. Maximum inhibition of the release of [ H]NA was

-5achieved by a 10 M concentration of each a 2~agonist. NA was the
+ 3most effective as it inhibited 20mM K -evoked release of [ H]NA by

about 84%, compared with 70%, 53% and 37% inhibition achieved by

UK14304-18, clonidine and BHT-920 respectively (Fig. 20). On the
-5contrary, yohimbine (10 M), an (^-adrenergic antagonist, enhanced

+ 320mM K -stimulated release of [ H]NA by 25% (Fig. 20).
+Clonidine and NA also inhibited the 30mM K stimulated 

3release of [ H]NA from hypothalamic tissue chops (Fig. 21). Unlike
3O.C. tissue chops, maximum inhibition of [ H]NA release was not 

-4reached by 10 M concentration for both NA and clonidine. Clonidine
+and NA had the same inhibitory effect on 30mM K -evoked release of

3 -6 -7[ H]NA at submicromolar (10 M - 10 M) concentrations.
-4 -4However, NA (10 M) was more effective than clonidine (10 M) as it

+ 3inhibited K -stimulation of [ H]NA release by 60% compared with an

inhibition of 40% observed with clonidine (Fig. 21). On the contrary,
-5 3yohimbine (10 M) only slightly enhanced [ H]NA release (Fig. 21).
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Figure 20 Dose response curves forC^-adrenergic agonists and

antagonist (yohimbine) on the release of [ ]NA from 
O »C. tissue chops

3Aliquots of tissue chops preloaded with [ H]NA were stimulated 
+with 20mM K in the presence of C^-agonist, BHT-920 (■),

clonidine (□), UK14304-18 (A.) and NA ( A)  or (X -antagonist,
2

yohimbine ( O)  for 6 min. Control release was 9.6 _+ 0.5% of total 

tissue tritium. Results are means _+ S.E.M. of 4 experiments.

Each was performed in triplicate.
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Figure 21 Dose response curves for PC -adrenergic agonists and

3antagonist on the release of [ H]NA from hypothalamic 
tissue chops

Aliquots of tissue chops preloaded with [ H]NA were stimulated with 
+30mM K in the presence of OC2~adrenergic agonist, clonidine ( O)  or

NA (• ) or OC^-adrenergic antagonist, yohimbine ( A)  for 6 min.

Control release was 16.8 +_ 0.45% of total tissue tritium. Results are 

means + S.E.M. for 4 experiments.
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The above observations suggest that O.C. tissue chops is a

better system to use in the study of ot^a^enoceptors regulation of 
3[ H]NA release since more potent inhibitions by 0C2-adrenergic 

agonists are observed.

33.2.2 The effect of yohimbine on the inhibition of [ H]NA 

release from O.C. and hypothalamic tissue chops by 

OC^-adrenergic agonists
+ 3The mhibiton of 20mM K -evoked release of [ H]NA from O.C.

-6tissue chops by a 2-a^rener9ic agonists (10 M), BHT-920, NA,

clonidine and UK14304-18 were reversed by the (X^-adrenergic

antagonist, yohimbine, in a dose-dependent manner (Fig. 22). Complete
-5reversal of inhibition was achieved by yohimbine (10 M). In

contrast, neither the p _a<3rener9^c antagonist propranolol (Fig. 23)

nor a^-adrenergic antagonist prazosin (Fig. 24 ) reversed the
+ 3inhibitory effect of NA on K stimulation of [ H]NA release from

O.C. tissue chops. This suggests that the inhibitory effect of NA on
+ 3K -stimulation of [ H]NA release is mediated by a^adrenergic

-6receptors. Interestingly, in the presence of propranolol at 10 M
-5 -6or 10 M concentration, the inhibitory effect of NA (10 M) on

+ 3K -stimulation of [ H]NA released was increased (Fig. 23). The
+ 3inhibition of K -stimulation of [ H]NA released by clonidine

-5(10 M) in hypothalamic tissue chops was also reversed by yohimbine 

(Fig. 25 ).

+3.2.3 Effect of preincubation with forskolin on K -evoked release 
3of [ H]NA from O.C. tissue chops

-5Premcubation of tissue chops with 10 M forskolin for 30 min
+ 3enhances K -evoked release of [ H]NA by 26.7% (Table 3). On the
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120-1 i 10 M Agonist

[Yohimbine] M
Figure 22 Reversal effect of OC^-adrenergic antagonist (yohimbine)

on PC -adrenergic agonist inhibitory response on
+ 3K -evoked release of [ H]NA from O.C tissue chops

Aliquots of tissue chops preloaded with [ H]NA were stimulated
+  —  6with 20mM K in the presence of 10 OC2-adrenergic agonist,

NA ( O ) ,  clonidine (•), UK14304-18 ( A )  or BHT-920 (▲ ) and

increasing concentration of yohimbine for 6 min. Control release

was 9.8 _+ 0.3% of total tissue tritium. Results are means _+ S.E.M.

of 4 experiments, each of which was performed in triplicate.
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Figure 23 Effect of ^-adrenergic antagonist (propranolol) on the
inhibitory response of NA on K+-evoked release from 
O.C. tissue chops

3Aliquots of tissue chops preloaded with [ H]NA were stimulated
+  - 6with 20mM K in the presence of 10 M NA with increasing

concentrations of propranolol for 6 min. Control release was

10.2 hp 0.5% of total tissue tritium. Results are means _+ S.E.M.

of 4 experiments.
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Figure 24 Effect of a  -adrenergic antagonist (prazosin) on the
+inhibitory response of NA on K -evoked release of 

[ ]NA from O.C. tissue chops

Aliquots of tissue chops preloaded with [ H]NA were stimulated with
+  —  6 20mM K in the presence of 10 M NA and increasing concentration

of prazosin for 6 min. Control release was 9.3 _+ 60% of total tissue 

tritium. Results are means _+ S.E.M. of 3 experiments.
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Figure 25 Effect of yohimbine on clonidine inhibition of K +-evoked
3release of [ H]NA from hypothalamic tissue chops

3 3Tissue chops were preloaded with [ H]NA. Release of [ H]NA from

hypothalamic tissue chops was stimulated by 30mM K+ under condition

described in Fig. 22. Control release was 15.2 _+ 0.38% of total

tissue tritium. Results are means ±  S.E.M. of 3 experiments.
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contrary, only 18.0% enhancement of stimulated release was observed if 

the tissue chops were incubated with forskolin for 15 min, while 5.6% 

was observed if forskolin was added without preincubation (Table 3 ).

This suggests that increases in intracellular cAMP stimulate release 

since forskolin has been shown to stimulate adenylate cyclase by acting 

on the catalytic unit (Seamon and Daly, 1980; Seamon et al., 1981; 

and Daly et al., 1982).

3.2.4 Effect of db-cAMP, forskolin and PDE-inhibitors (IBMX and

RQ20-1724) on OC^-adrenergic agonist modulation of
+ 3K_ -evoked release of [ H]NA from O.C. tissue chops

3 +Stimulation of [ H]NA release by 20mM K was also increased
-3 -4by 28.2% (Table 4) even when db-cAMP (10 M) and IBMX (10 M) were

added without preincubation. These concentrations of db-cAMP and IBMX
+ 3did not affect clonidine inhibition of K stimulation of [ H]NA

release under these conditions. Preincubation of tissue chops with
-4 -3 -5IBMX (10 M), db-cAMP (10 M) and forskolin (10 M) for 30

+ 3minutes enhanced K -evoked release of [ H]NA by 19.0%, 29.0% and

20.8% respectively (Table 5). in addition db-cAMP was capable of
— 6 + partially reversing clonidine (10 M) inhibition of K -evoked

3release of [ H]NA (Table 5).
-4 + 3In the presence of IBMX (10 M) K stimulation of [ H]NA

release by forskolin and db-cAMP was enhanced. Under these conditions
3only db-cAMP was able to partially reverse the inhibiton of [ H]NA

release by the c^-adrenergic agonists clonidine, BHT-920, UK14304-18
3and NA (Table 6). No reversal of [ H]NA release could be observed

-4when tissue chops were preincubated for 30 min with IBMX (10 M) and 
-5forskolin (10 M) (Table 6). On the contrary, db-cAMP and forskolin in the
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Table 3 Effect of forskolin on [ H]NA release at various 
preincubation time from the O.C. tissue chops

Condition %[3H]NA released 
+ S.E.M.

% Enhancement of 
[3H]NA released

(a) No preincubation 

Control 7 . 2 + 0 . 6 1  -

Forskolin 7.6 + 0.81 5.6

(b) 15 min preincubation 

Control 8.8 + 0.09, b 1

Forskolin . 10.4 + 0.79, b 18.2

(c) 30 min precinubation 

Control 8.6 ±  0.22, c'

Forskolin 10.9 ±  0.25, c 26.7

3 -5Tissue chops preloaded with [ H]NA were treated with 10 M forskolin 

under the following conditions: (a) without preincubation; (b) 15 min

precubation and (c) 30 min preincubation, before stimulating release with
+20mM K for 6 min. Enhancement of release is expressed to their

relative control. results are means _+ S.E.M. of 6 experiments.

k Significantly different from control b 1 0.05)
c Significantly different from control c 1 (p<0.01)



Table 4 Influence of IBMX, db-cAMP and clonidine (without pretreatment
of tissue chops with IBMX and db-cAMP) on K+ stimulation of •
3[ H ]NA released from O.C. tissue chops

Preincubation % of [3H]NA % Inhibition of % Enhancement of
condition released +_ S.E.M. [3H]NA released [3H]NA released

None (control 7.8 + 0.49

Clonidine 4.9 + 1.67 37.2

db-cAMP + IBMX 10.0 +_ 0.20, a 28.2

db-cAMP + IBMX
+ clonidine 5.7 + 2.25 43.0

-4 -3 -610 M IBMX, 10 M db-cAMP and 10 M clonidine were added to
3aliquots of tissue chops preloaded with [ H]NA and stimulated with 20mM 

+K for 6 min. Data is expressed as the difference between % release
+ +in the presence of 20mM K and 5mM K . Results are means _+ S.E.M. 

of 6 experiments.

Significantly different from control (p<0.05)



Table 5 Effect of forskolin, db-cAMPr IBMX and clonidine on the release 
3of [ H]NA from O.C. tissue chops

Preincubation
condition

% of [3 
released 

(n)

H ]NA 
±  S.E. M.

% Inhibition of 
[3H]NA released

% Enhancement of 
[3H]NA released

condition 10.1 + 0.50 (10)

clonidine 4.6 _+ 0.30 (10) 54.5, b

IBMX 12.0 + 0.28 (8) 19.0

IBMX+clonidine 5.7 + 0.49 (8) 52.5

forskolin 12.2 + 0.20 (5) 20.8

forskolin + 5.1 + 0.15 (5) 58.2
clonidine

db-cAMP 13.0 +_ 0.50 (5) 29.0

db-cAMP + 8.0 0.20 (5) 38.5, a
clonidine

3 -4Tissue chops preloaded with [ H]NA were preincubated with 10 M IBMX,
-3 -5 „10 M db-cAMP or .10 M forskolin for 30 m m .  Release was stimulated

+by 20mM K either in the presence or absence of clonidine for 6 min,

and is expressed as the mean +_ S.E.M. of (n) experiments, of the
+difference between percentage release in the presence of 20mM K and 

+5mM K . Enhancement of release is expressed relative to control. 

Inhibition of release is expressed relative to the respective condition 

in the absence of clonidine.

Significantly different from b (p <  0.01)
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Table 6 Effect of forskolin or db-cAMP in the presence of IBMX
on 0t9-adrenergic agonist regulation of [3H]NA release from 
O.C. tissue chops

Preincubation % of [3H]NA % Inhibition of % Enhancement of
condition released + S.E. 

(n)
M. [3H]NA released [3H]NA released

control 10.1 +_ 0.50 (10)

clonidine 4.5 + 0.24 (10) 55.4, a*

BHT-920 7.1 + 0.46 (6) 29.7, b*

UK 14304-18 4.1 + 0.34 (6) 59.4, c*

NA 5.7 +_ 0.49 (6) 43.6, d*

IBMX + forskolin 13.2 ±  0.39 (4) 30.7

IBMX + forskolin 
+ clonidine 6.2 +_ 0.50 (4) 53.0

IBMX + forskolin 
+ BHT-920 10.0 +_ 0.33 (4) 24. 2

IBMX + forskolin 
+ UK 14304 6.0 + 0.36 54.5

IBMX + forskolin 
+ NA 8.1 + 0.32 (4) 39.0

IBMX + db-cAMP 14.6 + 0 . 6 (6) 40.0

IBMX + db-cAMP 
+ clonidine 9.4 + 0.5 (6) 33.3, a

IBMX + db-cAMP 
+ BHT-920 11.7 ±  0.21 (4) 17.0, b

IBMX + db-cAMP 
+ UK 14304-18 8.8 + 0.30 (4) 37.6, c

IBMX + db-cAMP 
+ NA 9.7 + 0.20 (4) 31.2, d

Tissue chops preloaded with [3H]NA were preincubated alone or with 
10”3M db-cAMP or lCT^M forskolin in the presence of 10“^M IBMX for 
30 min. Release was stimulated by 20mM K+ either in the presence or 
absence 10“^M C^-adrenergic agonist for 6 min. Results are means 
Hh S.E.M. of (n) experiments. Enhancement of release is expressed 
relative to control. Inhibition of release is expressed relative to the 
respective condition in the absence of O^-adrenergic agonist.

a, b, c and d significantly different from a*, b*, c* and d* respectively 
(p ̂  0.01)
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+ 3presence of RO 20-1724 neither enhanced K -evoked release of [ H]NA

nor partially reverse the inhibition caused by UK 14304-18 (Table 7).

3.2.5 Influence of db-cAMP and forskolin in the presence of IBMX on
+clonidine inhibitory response of K -evoked release of 

3_L H]NA from hypothalamic tissue chops
Preincubation of hypothalamic tissue chops with either db-cAMP

-3 -4 -5 -4(10 M) and IBMX (10 M) or forskolin (10 M) and IBMX (10 M)

gave rise to a slight enhancement of about 7.0% each on 30mM
+ 3K -evoked release of [ H]NA (Table 8a). Similarly, a 25%

3enhancement of [ H ]NA release was observed when the release of 
3 +[ H]NA was stimulated with 25mM K following the preincubation of

hypothalamic tissue chops with db-cAMP or forskolin in the presence of
-4 -5 +IBMX (10 M). Clonidine (10 M) inhibited 25mM K -evoked

3 +release of [ H]NA by 37.3% (Table 8B) and 30mM K -evoked release of
3[ H ]NA by 30.0% (Table 8A). Preincubation of hypothalamic tissue

chops for 30 min with either db-cAMP or forskolin in the presence of
+IBMX did not reverse clonidine inhibiton of K -evoked release of 

3[ H]NA release (Table 8a, B). The failure of db-cAMP in the 

presence of IBMX to partially reverse clonidine inhibition of NA 

release represents a difference between hypothalmus and occipital 

cortex tissue chops.

3.2.6 Effects of adenosine and cyclohexyl-adenosine (CHA) on the
3release of [ HjNA from O.C. tissue chops

+ 3Adenosine inhibited 20mM K -evoked release of [ H]NA in a
-9dose-dependent manner (Fig. 26), with an IC_. value of 6 x 10 M.5U

+ 3Maximum inhibition of 20-30% of K -stimulated release of [ H]NA was
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Table 7 Effect of forskolin or db-cAMP in the presence of RO 20-1724 on
UK 14304-18 regulation of 3[ H]NA release from O.C. tissue
chops

Preincubation % of 3[ H ]NA % Inhibition of
condition released _+ S.E. M. (n) 3[ H]NA released

control 10.1 + 0.5 (10)

UK 14304-18 4.1 + 0. 34 (6) 59.4

RO 20-1724 8.2 + 0.60 (5) 18.8

RO 20-1724 + UK 14304-18 3.6 + 0.46 (5) 56.1

RO 20-1724 + db-cAMP 9.6 + 0.90 (5)

RO 20-1724 + db-cAMP
+ UK 14304-18 4.5 ±  0.42 (5) 53.1

RO 20-1724 + forskolin 10.8 + 0.33 (5)

RO 20-1724 + forskolin
+ UK 14304-18 4.8 + 0.48 (5) 55.6

Tissue chops with [ H]NA were preincubated alone or with 10 M
-5 -4db-cAMP or 10 M forskolin in the presence of 10 M RO 20-1724 for

+30 min. Release was stimulated by 20mM K either in the presence or 
-6absence 10 M UK 14304-18 for 6 min. Results are means +_ S.E.M. of 

(n) experiments. Inhibition of release is expressed relative to the 
respective conditions in the absence of UK 14304-18.
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Table 8A, B Effect of db-cAMP, forskolin and clonidine on K+-evoked 
release of [^HjNA from hypothalamic tissue chops

Table A 30mM K+ stimulation of [^H]NA released

Preincubation % of [^H]NA % Inhibition of % Enhancement of
condition released + S.E.M. [^H]NA released [^H]NA released

None (control) 17.7 +_ 0.21

clonidine 12.4 + 0.68 30.0

IBMX + db-cAMP 19.0 + 0.36, a 7.3

IBMX + forskolin 18.9 + 0.89, a 6.8

IBMX + db-cAMP 
+ clonidine 13.4 Hh 1.04 29.5

IBMX + forskolin 
+ clonidine 12.5 + 0.56 33.9

a Significantly different from control (p^ 0.05) 

Table B 25mM K+ stimulation of [^H]NA released

Preincubation % of [ ]NA % Inhibition of % Enhancement of
condition released + S.E.M. [^H]NA released [^H]NA released

None (control 11.0 +_ 0.47

clonidine 6.9 + 0.57

IBMX + db-cAMP 13.8 +_ 0.57, b

IBMX + forskolin 13.6 + 0.61, b

IBMX + db-cAMP 
+ clonidine 8.7 + 0.18

IBMX + forskolin 
+ clonidine ^.7 —  0*19 43.4

k Signifcantly different from control (p*C0.05)

3Aliqots of tissue chops previously preloaded with [ H]NA were
-3 -5preincubated either alone or with 10 M db-cAMP or 10 M forskolin in

-4 othe presence of 10 IBMX for 30 min at 37 C. Release was affected
+ + with either 30mM K (Table A) or 25mM K (Table B) in the absence or

-5presence of 10 M clonidine for 6 min. Results are means + of 6 
experiments.
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achieved by 10 M adenosine. CHA which is more potent as an A^
+ 3than A2 agonist, also inhibited the K -stimulation of [ H]NA

release in a dose-dependent manner (Fig. 26), with an value of 8
-10 + x 10 M. Maximum inhibition of 40% of K -stimulated release of

3 -6[ H]NA was achieved by 10 M CHA. This suggests that CHA is more
3potent and effective than adenosine in inhibiting [ H]NA release.

Slight reversal of inhibition was observed with higher concentrations
-5 -4(10 -10 M) of CHA.

3.2.7 Effects of PDE-inhibitors, IBMX and RQ20-1724 on the adenosine
3inhibitory response of [ H]NA release from O.C. tissue chops

-6 -4 %IBMX (10 M - 10 M) did not affect the 20mM
+ 3K -stimulated release of ( H]NA (Fig. 27B). However, this

concentration range of IBMX reversed the inhibition of 20mM 
■ + 3 -6K -stimulated release of [ HjNA caused by 10 M adenosine (Fig. 27A)

-4 -6IBMX (10 M) in the presence of adenosine (10 M) enhanced the
+ 3K -stimulated release of [ H]NA by about 15% (Fig. 27A). This

observation is in agreement with reports that IBMX acts as an adenosine

antagonist as well as a PDE inhibitor. This suggestion is supported

by the observation that RO 20-1724, a PDE-inhibitor which does not act

as an adenosine receptor antagonist did not reverse the inhibitory
-6 + 3effect of 10 M adenosine on K -stimulation of [ H]NA release

(Fig. 28A).

3.2.8 Effect of adenosine A^ antagonist, CPDPX on adenosine inhibitory
+ 3response of K -evoked release of [ H]NA from O.C. tissue chops

-7 -58-Cyclopentyl-l,3-dipropylxanthine, CPDPX (10 M - 10 M),

which is approximately 150 times more selective as an A^ than A^
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Figure 26 Dose response curves for adenosine and cyclohexyl-adenosine

3(CHA) on the release of [ H]NA from O.C. tissue chops

3Aliquots of tissue chops preloaded with [ H]NA were stimulated with

20mM K either in the presence of adenosine (6 ) or CHA ( O )  for

6 min. Control release was 9.2 +_ 0.5% of total tissue tritium.

Results are means _+ S.E.M. of 4 experiments.
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Figure 27 Effect of IBMX on the inhibitory response of adenosine on
+ 3_K -evoked release of [ H]NA from O.C. tissue chops .

Aliquots of tissue chops preloaded with [ H]NA were stimulated with
+  —  6 20mM K in the presence of 10 M adenosine with increasing

concentration of IBMX (© ) or IBMX alone ( O)  for 6 min Control

release was 9.8 _+ 0.28 % of total tissue tritium. Results are means

_+ S.E.M. of 3 experiments.
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Figure 28 Effect of RO 20-1724 on the inhibitory response of
+ 3adenosine on K -evoked release of [ H]NA from 0. C.

tissue chops

Aliquots of tissue chops preloaded with [ H]NA were stimulated with
+  —  6 20mM K in the presence of 10 M adenosine with increasing

concentration of RO 20-1724 (• ) or RO 20-1724 alone ( O  ) for 6 min

Control release was 10.5 +_ 0.25% of total tissue tritium. Results

are means + S.E.M. of 3 experiments.
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antagonist (Martinson et al., 1987), reversed the inhibition of 20mM
+ 3 - 6K -stimulated release of [ H]NA caused by 10 M adenosine

-5(Fig. 29A). Furthermore, CPDPX (10 M) in the presence of adenosine
-6 + 3(10 M) enhanced the K -evoked release of [ H]NA by about 10%

-4(Fig. 29A), as was also observed with IBMX (10 M) (Fig.27A).

+ 33.2.9 NA and adenosine modulation of K -evoked release of [ H]NA

from O.C. tissue chops
-6 .-6 ... +NA (10 M) and adenosine (10 M) inhibited 20mM K -evoked

3release of [ H]NA by 40% and 20% respectively (Fig.30 ). The
-5OC^-adrenergic antagonist, yohimbine, at a concentration of 10 M,

+slightly reduced the adenosine inhibition of K -stimulation of 
3[ H]NA release, while it was able to completely reverse the NA

+ 3inhibition of K -stimulation of [ H ]NA release (Fig. 30). On the
-4contrary, the adenosine antagonist, 10 M IBMX, did not affect NA

+ 3inhibition of K -evoked release of [ H]NA, while it was able to
+completely reverse the adenosine inhibition of K -stimulation of 

3[ H]NA release. The partial reversal of adenosine inhibition by

yohimbine suggests that a^-adrenoceptors may also play a regulatory
3role in adenosine effect of [ H]NA release.
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Figure 29 Effect of CPDPX on the inhibitory response of adenosine
+ 3on K -evoked release of [ HJNA from O.C. tissue chops

Aliquots of tissue chops preloaded with [ H]NA were stimulated with 
+20mM K in the presence of adenosine with increasing concentration 

of CPDPX ( •  ) or CPDPX alone (O  ) for 6 min. Control release was 

T0.5 +_ 0.30% of total tissue tritium. Results are means _+ S.E.M. of. 

3 experiments.
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Figure 30 NA and adenosine modulation of K+-evoked release of 
3J_ H ]NA in O.C. tissue chops 

3Tissue chops preloaded with [ H]NA were stimulated with either 20mM 

K+ alone (O) or in the presence of adenosine (|§) or NA (§§) with or 

without yohimbine (YOH) or IBMX as indicated on the figure for 6 min. 

Results are means _+ S.E.M. of 4 separate experiments.
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3.3 Regulation of cAMP formation in O.C. tissue chops

3.3.1 Stimulation of cAMP formation by forskolin, NA and isoprenaline

in the absence or presence of IBMX and RO 20-1724

Forskolin, NA and isoprenaline stimulated cAMP formation in

O.C. tissue chops (Fig. 31) with EC values (i.e. concentration of50
-6drug which stimulates half maximal cAMP formation) of 5 x 10 M,

-6 -94 x 10 M and 55 x 10 M respectively. Maximum responses were
-4 -5 -4achieved by 10 M forskolin, 10 M NA and 10 M isoprenaline,

with 5-9 fold, 2-3 fold and 1.5 fold stimulations being observed

respectively.
-4IBMX (10 M) had no effect on either the potency or efficacy

of forskolin to stimulate cAMP formation. Thus the inclusion of a

PDE-inhibitor did not affect forskolin stimulation. On the contrary,

NA and isoprenaline no longer stimulated cAMP formation in the presence

of IBMX (Fig. 32). These observations were unexpected since the

inclusion of a PDE-inhibitor would be expected to enhance, rather than
-4inhibit cAMP formation. Interestingly, 10 M RO 20-1724 although

elevating the basal levels, did not affect the EC values of50
forskolin, NA and isoprenaline stimulation of cAMP formation (Fig. 33).

3.3.1.1 Effects of CX and {5 -adrenergic antagonists on NA or

isoprenaline stimulation of cAMP formation

The a t a 2 and p-adrenergic antagonists prazosin,
-5yohimbine and propranolol blocked the NA (10 M) stimulation of cAMP

formation in O.C. tissue chops in a concentration dependent manner
—9 —8 —8(Fig. 34) with IC_n values of 6 x 10 M, 10 M and 3 x 10 M 5U

respectively. This suggests a potency order of prazosin>  yohimbines
-5propranolol. At 10 M concentrations, prazosin, yohimbine and
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Figure 31 Dose response curves of forskolin/ NA and isoprenaline
3stimulation of [ HjcAMP formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with 

forskolin (•), NA ( O)  and isoprenaline ( A)  for 10 min. Results 

are means +_ S.E.M. of 6 experiments
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Figure 32 Influence of IBMX on dose response curves of forskolin,
3NA and isoprenaline stimulation of [ HjcAMP formation 

in O.C, tissue chops

Tissue chops were labelled with [ H] adenine then incubated with

forskolin ( O ) ,  NA (•) and isoprenaline (A) in the presence of 
-410 M IBMX for 10 min. Results are means + S.E.M. of 3 experiments.
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Figure 33 Influence of RO 20-1724 on dose response curves of
3forskolin/ NA and isoprenaline stimulation of [ H]cAMP 

formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with

forskolin (•)/ NA ( O)  and isoprenaline ( A)  for 10 min in the 
-5presence of 10 M RO 20-1724. Results are means _+ S.E.M. of 3 

experiments.
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-5propranolol inhibited NA (10 M) stimulation of cAMP formation by

30%, 35% and 60% respectively. This suggests that although prazosin

was the most potent adrenergic antagonist propanolol was more effective
-5than yohimbine or prazosin at inhibiting the NA (10 M) stimulation 

of cAMP formation (Fig. 34). The results suggest that NA stimulation of

cAMP formation was due to the synergistic effect of a , a and ft1 2 K
-adrenoceptors.

Propranolol at submicromolar concentrations (10 "^M -
-7 -610 M) blocked isoprenaline (10 M) stimulation of cAMP formation,

-6 -5and complete inhibition was observed at 10 M and 10 M propranolol 

(Fig. 35). This shows that isoprenaline is a ^-adrenergic agonist 

since its stimulation of cAMP formation is blocked completely by the 

J3-adrenergic antagonist, propanolol.

3.3.1.2 Stimulation of cAMP formation by adenosine in the absence or 

presence of IBMX and RO 20-1724

Adenosine stimulated cAMP formation in chopped'brain slices in

a concentration-dependent manner (Fig. 36) with an EC value of50
-56 x 10 M. A maximum stimulation of 2.7 - 3.5 fold was achieved by

-3 -4adenosine (10 M). In the presence of IBMX (10 M), the dose

response of adenosine was shifted to the right, suggesting that IBMX

inhibits cAMP formation by acting at adenosine A^ receptors (Fig. 36).
-5In contrast, RO 20-1724 (10 M) elevated the basal level of cAMP

-5formation, but it did not affect the EC_rt value (6 x 10 M) of5U
adenosine stimulation of cAMP formation (Fig. 36).

3.3.1.3 Effects of (X - and ft-adrenergic antagonists on adenosine

combined with NA stimulation of cAMP formation
-7Low concentrations of adenosine (10 M) did not affect the 

-5basal as well as NA (10 M) stimulation of cAMP formation (Fig. 37).
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Figure 34 Effect of prazosin, yohimbine and propranolol on NA 

stimulation of cAMP formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with 
different concentrations of prazosin (A), yohimbine (O)

-5propranolol (H ) in the presence of 10 M NA for 10 min. The
basal level of cAMP formation was 0.64 +_ 0.04% conversion, and

-5 .10 M NA stimulated cAMP formation by 1.5 0.08% conversion.
-5Therefore 10 M NA stimulation increased cAMP level by 0.87% 

conversion, and this was expressed as 100% control on the figure. 
Results are means _+ S.E.M. of 4-6 experiments.
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Figure 35 Effect of propranolol on isoprenaline stimulation of cAMP 
formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with
-6different concentrations of propranolol in the presence of 10 M 

isoprenaline for 10 min. Basal level of cAMP formation was 0.56 _+ 0.02% 

conversion, and isoprenaline stimulation of cAMP formation was 

0.98 +_ 0.03% conversion. Therefore, isoprenaline stimulation increased 

cAMP formation by 0.42% conversion, and this is expressed as 100% of 

control on the figure. Result is the representative of 2 experiments.
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Figure 36 Influence of IBMX and RO 20-1724 on adenosine stimulation
of cAMP formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with

different concentrations of adenosine (O) either in the presence of
-4 -510 M IBMX (A  ) or 10 M RO 20-1724 (Q) for 10 min. Results are

means _+ S.E.M. of 3 experiments.



- 103 -

However, adenosine at 10 M potentiated NA (10 M) stimulation of 

cAMP formation by 0.7 fold, taking into account the individual NA and 

adenosine stimulation of cAMP formation (Fig. 37),. a^-Adrenergic 

antagonist, yohimbine, a^-adrenergic antagonist, prazosin and

(3-adrenergic antagonist, propranolol blocked the adenosine
-4 -5(10 M)combined with NA (10 M) stimulation of cAMP formation in a

concentration dependent manner (Fig. 38) with IC values of 8 x50
-9 -9 -710 M, 2.5 x 10 M and 6 x 10 M for yohimbine, prazosin and

propranolol respectively. This suggests a potency order of
-5yohimbines prazosin S  propranolol (Fig. 38 ). At 10 M

concentration yohimbine, prazosin and propranolol inhibited adenosine
-4 -5(10 M) combined with NA (10 M) stimulation of cAMP formation by

40%, 30% and 22% respectively. This suggests that yohimbine is a more

potent and effective adrenergic antagonist at inhibiting adenosine
-4 -5(10 M) combined with NA (10 M) stimulation of cAMP formation than

prazosin and propranolol. In contrast, propranolol was shown to be 

the most effective adrenergic antagonist at inhibiting NA stimulation 

Of cAMP formation (Fig. 34 ). In other words the adenosine component 

is more sensitive to a-adrenergic than -adrenergic antagonists.

3.3.1.4 Influence of forskolin on NA, isoprenaline and adenosine

stimulation of cAMP formation 
-7Forskolin (10 M) which did not affect the basal level of

-5 -6cAMP formation potentiated NA (10 M), isoprenaline (10 M) and
-4adenosine (10 M) stimulation of cAMP formation (Fig. 39) by 0.7, 0.8

-6and 1.5-fold respectively. However, forskolin (10 M and 5 x 
-610 M) which itself stimulated cAMP formation was only able to 

increase NA, isoprenaline and adenosine stimulation of cAMP formation 

in an additive manner (Fig. 39).
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Figure 37 Effect of adenosine on NA stimulation of cAMP formation 
in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with
-7 -4 -5adenosine (10 M; 10 M) or NA (10 M) or both for 10 min.

Results are means S.E.M. of 4 experiments.
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Figure 38 Effect of (X - and ft-adrenergic antagonists on., adenosine

and NA stimulation of cAMP formation

3Tissue chops labelled with [ H] adenine were preincubated with

different concentrations of propanolol (8H), prazosin (A) and
-4yohimbine (O ) for 10 min in the presence of adenosine (10 M)

-5combined with NA (10 M) for 10 min. The basal level of cAMP

formation was 0.55% conversion, while adenosine combined with NA

stimulated cAMP formation to 3.55% conversion. Therefore, adenosine 

combined with NA increased cAMP formation by 3.0% conversion, which is 

expressed as 100% control on the figures. Results are means _+ S.E.M. 

of 5 experiments.
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Figure 39 Effect of forskolin on NA, isoprenaline and adenosine 
stimulation of cAMP formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then  incubated with lOpM 

NA, lpM isoprenaline (Iso) or lOOpM adenosine (Ads) either in the 

absence (§j|) or presence of O.lpM o ), lpM (||) or 5pM (|H}) forskolin 

for 10 min. Results are means _+ S.E.M. of 3 experiments.
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3.3.2 K_+ stimulation of.cAMP formation in the absence or presence

of IBMX, RO 20-1724 or DMI

l^tassium-stimulated cAMP formation in O.C. tissue chops

(Fig. 40). Maximuinirrc^eased in cAMP formation of 2.2 fold was
+ _achieved by 40mM K and remained effectiv^eiy^onstant until 80mM.

+
Increasing K above 80mM led to a decrease in cAMP formatlbrr^-^JThere

+is no evidence that IBMX or RO 20-1724 enhanced K stimulation of 

cAMP formation when compared to their respective control (Fig. 41).

DMI was included in the release experiments to prevent 
3re-uptake of release of [ H]NA (Fig. 13), thus it was important to

see if it had any effect on cAMP formation. However, no evidence was 
-6found that DMI (10 M) modified cAMP formation under depolarizing 

condition (Fig. 42).

+3.3.2.1 Influence of forskolin on K stimulation of cAMP formation
-4 +Forskolin (10 M) in the presence of 5mM and 20mM K

stimulated cAMP formation by about 9 fold. However, in the presence
+ - 4of 40mM and 60mM K , cAMP formation due to forskolin (10 M) was

reduced by 50% and 100% respectively (Fig. 43). RO 20-1724 increased
+ + the basal level (5mM K ) as well as 40mM K stimulation of cAMP

formation in a concentration-dependent manner (Fig. 44). in the
-3 -5presence of RO 20-1724 (10 M), forskolin (10 M) stimulation of

+cAMP formation was not reduced to half with 40mM K depolarization

(Fig. 44). This suggests that the decrease in cAMP formation observed
+ +with forskolin in the presence of 40mM K and 60mM K may due to

2+the stimulation of Ca -dependent PDE, activated by the influx of
2+ +Ca into tissue chops following K depolarization.
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Figure 40 K stimulation of cAMP forination in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine for half an hour and
+then incubated with different K concentrations for 10 min. Results 

are means + of 4 experiments.
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Figure 41 Effect of IBMX and RO 20-1724 on K* stimulation of cAMP
formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with
+ . different K concentrations either alone ({_J) or in the presence of

-4 __ -5
10 M IBMX ({^) or 10 M RO 20-1724 (|§§) for 10 min. Results are

means _+ S.E.M. of 4 experiments.
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Figure 42 Effect of DMI on K -stimulation of cAMP formation in 
O.C. tissue chops

Tissue chops were labelled with [ H] adenine then incubated with

different K+ concentrations either in the presence ( □  ) or absence (j|§) 
-6or 10 M DMI for 10 min. Results are means +_ S.E.M. of 3 experiments.



111 -

co
COs_
CD>£Zoo

ClS<co
r— i

L _ l

Figure 43 Influence of forskolin on K+ stimulation of cAMP
formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with
+ _ _different K concentration either alone (§|j) or in the presence of

4 __10“  M forskolin ((__j) for 10 min. Results are means S.E.M. of

3 experiments.
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Figure 44 Effect of RO 20-1724 and forskolin on K stimulation of 
cAMP formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then incubated with

RO 20-1724 and forskolin in either 5mM or 40mM K+ for 10 min.

Results are means + S.E.M. of 3 experiments.
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3.3.3 Effect of (X̂ -adrenergic agonists in the presence of various 

cAMP stimulating agents:

3.3.3.1 Forskolin
-5Forskolin (10 M) stimulated cAMP formation 3-5 fold. 

Increasing concentrations of the a^-adrenergic agonist, UK 14304-18, 

had no effect on forskolin stimulation of cAMP formation (Fig. 45).

This is further supported by the observation that neither UK 14304-18
-5 -6(10 M; Fig. 46) nor clonidine (10 M; Fig. 47) affected the

forskolin dose response curve.

3.3.3.2 Noradrenaline (NA)

a^-Adrenergic agonists, BHT-920, clonidine and UK 14304-18 
-5inhibited NA (10 M) stimulation of cAMP formation in a biphasic and

concentration dependent manner (Fig. 48) with IC values of50
-7 -8 -95 x 10 M, 10 M and 6 x 10 M respectively. This suggests a

potency order of UK 14304-18 >  clonidine >  BHT-920. At concentration 
-5of 10 M, BHT-920, clonidine and UK 14304-18 maximally inhibited the 
-5NA (10 M) stimulation of cAMP formation by 22%, 30% and 55%

respectively (Fig. 48). The results indicate that UK 14304-18 is the

most potent and effective (X^-adrenergic agonist. This is further
-5supported by the evidence that UK 14304-18 (10 M) shifted the dose

response curve of NA to the right (Fig. 49). On the contrary, the
-5OC^-adrenergic agonist, phenylephrine (10 M) did not affect the

dose response curve of NA (Fig. 49). This suggests that only the

OC ̂ -adrenergic agonist inhibits NA stimulation of cAMP formation.
-5UK 14304-18 (10 M) did not affect the dose-response curve of

-5isoprenaline (Fig. 50). On the contrary, phenylephrine (10 M)
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Figure 45 Dose response of UK 14304-18 on forskolin stimulation of 
cAMP formation in O.C. tissue chops

Tissue chops were labelled with [ H] adenine then preincubated with

different concentrations of UK 14304-18 for 5 min and then further
-5incubated in the presence of 10 M forskolin for 10 min. Basal

-5level of cAMP formation was 0.85 _+ 0.06% conversion, and 10 M

forskolin stimulated cAMP formation 4.8 _+ 0.08% conversion.
-5Therefore, 10 M forskolin stimulation increased cAMP formation by 

3.95% conversion, which is expressed as 100% on the figure. Result is 

the mean + S.E.M. of 3 experiments.
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Figure 46 Effect of UK 14303-18 on forskolin dose response
stimulation of cAMP formation in O.C. tissue chops

3Tissue chops were labelled with [ H] adenine then preincubated in the
-5absence (• ) or presence (O  ) of 10 M UK 14304-18 for 5 min and then 

further incubated in the presence of different concentrations of 

forskolin for 10 min. Results are means _+ S.E.M. of 4 experiments.
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Figure 47 Effect of clonidine on forskolin dose response
stimulation of cAMP formation in O.C. tissue chops

Tissue chops were labelled with [ H] adenine then preincubated in the
-5presence (O  ) or absence (O ) of 10 M clonidine for 5 min and then 

further incubated in the presence of different concentrations of 

forskolin for 10 min. Results are means +_ S.E.M. of 3 experiments.
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Figure 48 Effects of BHT-920, clonidine and UK 14304-18 on NA 

stimulation of cAMP formation in O.C, tissue chops

3Tissue chops were labelled with [ H] adenine then preincubated with 

different concentrations of BHT-920 (B), clonidine ( O )  and

UK 14304-18 (•) for 5 min, and then further incubated for 10 min in 
-5the presence of 10 M NA. The basal level of cAMP formation was

-40.53% conversion, while 10 M NA stimulated cAMP formation to 1.5% 

conversion. Therefore, NA stimulation increased cAMP formation by 

0.97% conversion, which is expressed as 100% control on the figure. 

Results are means S.E.M. of 6 experiments.
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Figure 49 Effect of phenylephrine or UK 14304-18 on NA stimulation 
of cAMP formation in O.C, tissue chops

3Tissue chops were labelled with I H] adenine then preincubated with
-5 -510 M phenylephrine (A) or 10 M UK 14304-18 (□) for 5 min and

then further incubated with increasing concentrations of NA in the 

presence of respective drugs mentioned above or alone (®) for 

10 min. Results are means _+ S.E.M. of 4 experiments.
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Figure 50 Effect of phenylephrine or UK 14304-18 on isoprenaline 
stimulation of cAMP formation in O.C, tissue chops

3Tissue chops labelled with [ H] adenine were preincubated with
-5 -510 M phenylephrine ( A )  or 10 M UK 14304-18 (□) for 5 min and

then further incubated with increasing concentration of isoprenaline in

the presence of respective drugs mentioned above or alone (•) for

10 min. Results are means ±  S.E.M. of 3 experiments.
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potentiated the dose-response curve of isoprenaline (Fig. 50). The 

results show that the a^-adrenergic agonist was able to potentiate 

the J3~adrenergic agonist stimulation of cAMP formation.

3.3.3.3 Adenosine
-5UK 14304-18 (10 M) slightly potentiated the stimulation of 

-5cAMP formation by 10 M adenosine (Fig. 51). However, a greater

potentiation (0.9-fold) was observed at higher concentrations of 
-3adenosine (10 M). The ECcr. value for adenosine stimulation ofou

-5cAMP formation was not altered by UK 14304-18 (10 M).

+3.3.3.4 K
—  6 +UK 14304-18 (10 M) did not affect K stimulation of cAMP

-5formation in the absence or presence of RO 20-1724 (10 M) (Fig. 52)
-5The apparent slight inhibition observed with 10 M UK 14304-18 and 

+20mM K was statistically insignificant.
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Figure 51 Effect of UK 14304-18 on adenosine stimulation of cAMP 
formation in O.C. tissue chops

3Tissue chops labelled with [ H] adenine were preincubated in
-5the absence ("O ) or presence (□) of 10 M UK 14304-18 for 5 min, and 

then further incubated with different concentrations of adenosine for 

10 min. Results are means _+ S.E.M. of 4 experiments.
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Figure 52 Effect of UK 14304 on K+ (in the absence or presence of 
RO 20-1724) stimulation of cAMP formation in O.C. tissue 
chops

3Tissue chops labelled with [ H] adenine were preincubated in the

absence or presence of UK 14304-18 indicated on the figure for 5 min,

and then further incubated with different [K ] in the absence (f8|)
+or presence (|gg)of UK 14304-18, or with different [K ] combined with 

RO 20-1724 in the absence (Q) or presence ({§§) of UK 14304-18 for

10 min. Results are means _+ S.E.M. of 3 experiments.
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4. DISCUSSION

A large number of studies have provided evidence that receptors 

located on nerve endings regulate the release of neurotransmitters. The 

presynaptic regulation of neurotransmitter release was initially studied 

in the peripheral nervous system (Langer, 1977, 1981) but has since been 

shown to occur in the central nervous system (CNS)(Taube et al., 1977; 

Chesselet, 1984; Middlemiss, 1988). For example, an CX^-adrenergic 

agonist such as clonidine, has been shown to regulate the release of NA 

(Reichenbacher et al., 1982; Schoffelmeer and Mulder, 1983) and 

serotonin (Frankhuyzen and Mulder, 1982; Ellison and Campbell, 1986) 

from the CNS. However, although a considerable amount of work has been 

carried out on the presynaptic regulation of neurotransmitter release, 

little information is available about the second messenger mediating 

this regulation. Thus, the aim of this project was to examine the 

hypothesis that the CC^-adrenergic regulation of NA release from O.C. 

and hypothalamic tissue chops was associated with a decrease in cAMP 

formation. The results presented in this thesis will be discussed 

under three main headings -

(1) The use of tissue chops and incubation assay to study the 

release of NA,

(2) a^-Adrenergic regulation of NA release, and

(3) The possible role of cAMP in mediating the a^-adrenergic 

regulation of NA release.
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4.1 The use of rat brain tissue chops and incubation assay to study

NA release

4.1.1 Choice of brain region

In this study, the NA concentration found in the hypothalamus 

was 1404 +_ 251ng/g. This is in agreement with literature values of 

1370 Hh 50ng/g (Holtzman, 1974) and 1622 +_ 182ng/g (Oke et al., 1978).

The DA concentration of the hypothalamus in this study was found to be 

220 +_ 16 ng/g. This is in agreement with the findings of Shellenberger, 

(1971) who reported a value of 260 _+ 20ng/g. The NA and DA 

concentrations found in the O.C. were 502 +_ 347ng/g and 59 +_ 18ng/g 

respectively, which agree well with the values of 380 +_ 40ng/g and 

65.9 +_ 0.2ng/g reported by Westerink and Mulder (1981). Thus, the NA 

content of the brain regions chosen for the present study agreed with 

the literature values. This provides confirmation that the correct 

brain regions were identified and that they contain noradrenergic nerve 

endings.

4.1.2 Comparison between tissue chops and synaptosomes preparations

The two preparations frequently used for the in vitro study of

biochemistry in the CNS are: (i) chopped brain slices and (ii)

synaptosomes. The advantage of using chopped brain slices is that they 

are a more intact preparation in which to study biochemical mechanism 

associated with neuronal function, without the influence of blood brain 

barrier. In particular, most studies on presynaptic regulation of 

nerve terminals have used a more intact system that is provided by 

synaptosomes (Middlemiss, 1988). One problem to consider when working 

with brain slices is that thick slices may become anoxic (Palfrey and 

Mobley, 1987), which will disrupt the energy metabolism of the neurons.
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In addition, anoxia increases cAMP levels (Gross and Ferrendelli, 1980), 

thereby affecting neurotransmitter release. On the other hand, thin 

slices may not contain enough nerve endings making typical synaptic 

contacts (Palfrey and Mobley, 1987). The thickness of brain slices 

routinely used to study presynaptic regulation of neurotransmitter 

release and cAMP formation range between 0.2mm to 0.3mm (Carmichael and 

Israel, 1973; Gothert, 1979; Schoffelmeer et al., 1986) and 0.26mm 

respectively (Perkin and Moore, 1973; Karbon and Enna, 1985). Because 

of this, tissue chops of 0.26mm in thickness were used in the present 

study.

Synaptosomes are pinched off nerve terminals containing 

mitchondria and small vesicles filled with neurotransmitters (Gray and 

Whittaker, 1962; Gordon-Weeks, 1987). Thus, they have the capacity to 

synthesize, store, release and metabolise neurotransmitters (Deutsch 

et al., 1981). One advantage of synaptosomes is that they are less 

heterogenous than tissue chops. Most preparations of synaptosomes, 

however, still contained significant numbers of other particles such as 

fragmented membranes, myelin sheath and free mitochondria (Gordon-Weeks,

1987). Besides this, they usually contain a heterogenous population of 

nerve endings, and so do not, in this sense, represent a purer 

preparation than tissue chops. Furthermore, synaptosomes possess high 

osmotic sensitivity (Marchbanks, 1967; Keen and White, 1971) thereby 

giving rise to "spurious release" of endogenous neurotransmitter. In 

addition, some researchers (Lane and Aprison, 1977; Mulder et al.,

1978; De Langen et al., 1979) find that it is difficult to demonstrate 

consistent regulation of neurotransmitter release by presynaptic 

receptors with synaptosomes preparations. Thus, they concluded that 

synaptosomes are not ideal preparations for a study on presynaptic
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regulation of neurotransmitter release. In view of this, chopped brain 

slices were selected for the study of o^-adrenergic regulation of NA 

release in the occipital cortex (O.C.) and hypothalamus of rat brain.

4.1.3 Comparison between superfusion and incubation assays

Neurotransmitter release from brain slices or synaptosomes is

usually studied by preloading the preparations with radioactive

neurotransmitter. Depolarization-stimulated release is then followed
3by measuring the efflux of labelled triated [ H] neurotransmitter into 

the superfusion or incubation fluids. Advantages and disadvantages of 

both the assays are discussed below.

(a) Superfusion assay; In this assay, preloaded brain slices or

synaptosomes are placed on a filter, and the superfusion fluids are

pumped over them at a regular flow rate, the superfusates are collected

in separate tubes. The release, expressed as a percentage of total

tissue tritium, is usually calculated as the ratio of a second

stimulation, S to the first stimulation, S .2 1
The advantage of superfusion technique is that the brain slices 

or synaptosomes are continuously exposed to fresh superfusion fluids, 

reducing the problem of re-uptake and feedback regulation effects. One 

disadvantage of superfusion is that clogging of filter may occur, which 

may then affect the maintenance of regular flow rates. Furthermore, 

relatively large volumes of buffer are needed, which can lead to large 

use of expensive chemicals.

(b) Centrifugation assay: In this assay, preloaded brain slices are

distributed in a small volume into different Eppendorf tubes. Here, 

only a small volume (i.e. 0.5ml) is required. Stimulus evoked release 

of neurotransmitters is studied by incubating the brain slices in the
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* +Eppendorf tubes containing high K with regular shaking for a short

period of time. Release is terminated"; by rapidly centrifuging the

Eppendorf tubes. The supernatants are removed and collected in

different vials. The remaining tritium in the pellet is extracted with

PCA. The release of tritiated noradrenergic neurotransmitter 
3([ H]NA) expressed as a percentage of total tissue tritium is 

calculated as below:

_ ,3. , cpm(supernatant)% release of [JH jNA =  —  ---- -— —  ----------------------
cpm (pellet) + cmp (supernatant) x 100

The advantage of using centrifugation assay is that small

amounts of buffer are required, with a more economical use of agonists

and antagonists. In addition, more concentrated solutions of released

neurotransmitters can be achieved. Another advantage of using

centrifugation assay is that it provided a convenient technique in which

to compare the effect of a^-adrenergic agonists on both NA release

and cAMP formation under comparable conditions. However, the main

disadvantages of this assay are that the re-uptake and feedback

inhibition (autoinhibition) of the release of NA at the nerve terminals

may be more pronounced than in the superfusion system. An important
3stage in the present study therefore, was to establish that [ H]NA 

release from rat brain tissue chops using incubation assay gave results 

consistent with those reported in the literature for the superfusion 

technique. The use of incubation assay has also been reported in the 

study of endogenous NA and DA release from rat brain slices (Lane and 

Aprison, 1977; Kant and Meyerhoff, 1978 ) as well as the 

neurotransmitter release from cells in monolayer (Marriott et al., 1988).
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4.1.4 Influence of uptake inhibitors on the regulation of NA release 

The tricyclic antidepressant imipramine and its metabolites

desipramine (DMI), 2-hydroxyimipramine and 2-hydroxydesipramine (Javid

et al., 1978) as well as narcotic analgesics including codeine, cocaine,

morphine, naloxone and methadone (Carmichael and Israel, 1973) have been
-6shown to inhibit the uptake of NA. In the present study, DMI (10 M)

3inhibited the uptake of [ H]NA by 90% (Fig. 13). In the absence of
3DMI, the basal release of [ H]NA has beeen shown to consist of only

3 310% [ H]NA while the remaining 90% was [ H] metabolites of NA (Taube

et al., 1977). In the presence of DMI, however not only is the basal 
3release of [ H] metabolites is strongly reduced (Taube et al., 1977),

but also in the presence of uptake inhibitors including cocaine and DMI,
+ 3electrical as well as K -stimulated release of [ H]NA consisted

3mainly of [ H]NA and not its metabolites (Langer et al., 1976; Taube

et al., 1977). Two possibilities are that uptake inhibitors are either

acting as monoamine oxidase inhibitors, or else they are increasing the

uptake into storage vesicles which thus protects NA from metabolism.
-6Thus, in the present study, DMI (10 M) was added in the incubation 

medium of centrifugation assay in the study of NA release experiments.

+ 2+ 34.1.5 K stimulated Ca dependent release of [ H]NA
3Release of [ H]NA from brain slices or synaptosomes is usually

stimulated electrically or by exposing the tissue preparation to high 
+K concentration (Schoffelmeer, 1981; Daniel and Leslie, 1986). It

is generally accepted that depolarization whether achieved electrically 
+or by increasing K concentration activates the voltage sensitive 

2+Ca channels and that neurotransmitter release is induced by the
2+consequent rise in intracellular Ca . Other depolarizing agents
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including veratrine and scorpion venom have also been shown to increase
*u 45 2+the ca uptake in rat brain synaptosomes (Blaustein, 1975).

+The present result demonstrates that 20mM or 40mM K 
3stimulation of [ H]NA release from O.C. tissue chops is dependent on

2+ 3Ca (Fig. 16) while basal (5mM) release of [ H]NA is not affected
2+by Ca throughout the range 0.5mM - 2.0mM (Fig. 16). Similarly, 

non-depolarized induced release of endogenous NA using synaptosomes

prepared from rat hypothalamus, brainstem and cerebellum brain regions
2+ ,is not dependent on Ca (Daniel and Leslie, 1986). The release of 

3[ H]NA has been shown to be directly proportional to the membrane
+potential developed by different K concentration throughout the range

+ +13 - 120mM K (Dismukes et al., 1977). This suggests that K

provides a suitable stimulus for studying release from rat brain tissue
+ 2+ chops. K -stimulated Ca -dependent release is also observed in

other neurotransmitter systems including GABA (Cotman et al., 1976),

serotonin (Klein and Kendal, 1980) acetylcholine (Suszkiw and O'Leary,

1983; Tanaka et al., 1985) and dopamine (Leslie et al., 1985).
+Schoffelmeer et al. (1981) found that 20mM K -stimulated

3 2+release of [ H]NA reached a maximum value between 0.6mM - 0.9mM Ca
2+followed by a slight decrease at 2mM Ca . They also found that high

2+ ' 45 2+Ca concentrations (2-5mM) decreased Ca release from rat
3 2+brain slices. The decrease in [ HJNA release at high Ca

2+concentrations suggest that Ca inhibits its own transport through 
2+Ca channels in the nerve terminals. In contrast, no inhibition of

+ + 320mM K or 40mM K -stimulated release of [ H]NA is observed at 2mM
2+Ca in the present study (Fig. 16). This is in agreement with

Cotman et al. (1979) who found no inhibition of K+ stimulated release
2+of Y  -aminobutynic acid (GABA) and NA using superfusion method by Ca 

concentrations above 2mM.
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Orrego (1979) reported that Ca independent release of

neurotransmitter originating from extravesicular cytoplasmic pools was

increased under strongly depolarizing conditions. Therefore, mildly 
+depolarizing K concentration (20mM) was used in the present study to

decrease the contribution of NA release from non-vesicular pools.

The brain consists of several cell types in addition to

neurons. Electrophysiological studies show that one of these cell
+types, glia, express K channels (Bevan and Raff, 1985). Furthermore 

primary cultures of glial cells have been shown to accumulate 

neurotransmitters (Kimelberg and Katz, 1986). Thus, the contribution 

of glia to the release of neurotransmitter should be considered.

Sugino et al. (1984) found that stimulation of cultured rat astrocytoma
+ 2+ cells, C6 BU-1 with 50mM K did not increase the intracellular Ca

concentrations. Also, when neurotransmitters such as NA, DA and

acetylcholine are applied to glia cell cultures in the presence of the 
2+Ca indicator, Quin 2, no change m  fluorescence is observed,

2+indicating that there is no change in intracellular Ca (Sugino

et a1., 1984). This implies that glial cells do not express
2+ + voltage-dependent Ca channels. Thus, K -stimulated release of

3[ H]NA from chopped brain slices in the study is mainly of neuronal 

origin.

34.1.6 Conditions for a^-adrenergic regulation of [ H]NA release 

Noradrenaline regulates its own release via a^-adrenergic 

receptors located on noradrenergic nerve endings (Starke, 1979; Langer, 

1981). These receptors are described as the 'presynatic autoreceptors', 

the first term referring to their location on nerve terminals and the 

second to their sensitivity to the neurotransmitter released by the 

neurons themselves (Chesselet, 1984).
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The present study shows that the a^-adrenergic agonist,
+ 3clonidine, inhibition of 30mM K -stimulated release of [ H]NA from

O.C. tissue chops does not depend on pretreatment of tissue chops (Figs.
+17, 18). Thus clonidine inhibition of 30mM K stimulation of 

3[ H]NA release is the same whether clonidine is preincubated for up to

30 min (Fig. 18) or added immediately (Fig. 18) before evoking release 
+with K . This suggests that the effect of clonidine is very rapid.

On the contrary, in superfusion studies, tissues are normally superfused 

with drugs for 20 - 30 min. (Werner et al., 1981; Ueda et al., 1983) as 

it is generally presumed to obtain a better effect of the drugs on the 

regulation of neurotransmitter release.

Clonidine inhibition of NA release is dependent on the extent of
+ +K depolarization, since clonidine inhibited 40mM, 30mM and 20mM K

3stimulation of [ H]NA release by 17.0%, 37% and 50% respectively (Fig.

19). The results obtained in the present study is in agreement with

the findings of Werner et al. (1981) using another a2~a<3rener9ic

agonist, oxymetazoline who report that at low depolarizing stimuli a

greater proportion of NA release is subject to a^-adrenergic agonist

inhibition. One possible explanation is that a^-adrenergic agonists 
+may increase K permeability during depolarization, thereby leading to

+hyperpolarization which is more pronounced at low K concentrations.

This could then lead to a decrease in NA release as shown in the 

peripheral nervous system (Alberts et al., 1981; Zimanyi et al. ,

1988). Another alternative explanation provided is that
2+CL ^-adrenergic agonists inhibit the voltage-sensitive Ca channels

(Gothert et al., 1979; Langer, 1981), and that this effect is more
2+clearly observed at suboptimum depolarization conditions when Ca 

influx might be expected to be rate limiting. In contrast,
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Schoffelmeer and Mulder (1984) demonstrated that Cc ̂ -adrenergic
3agonists, NA and clonidine inhibition of [ H]NA release from rat brain

cortex slices is independent of the degree of depolarization when the
+release was effected by 15mM or 56mM K . Instead the activation of

2+these presynaptic receptors causes a decrease in Ca availability or
2+the utilization of Ca by the secretion process upon invasion of an 

action potential.

+4.1.7 Influence of oxygenation on the effect of K and clonidine on 
3[ H]NA release

+The present study demonstrates that K -stimulated as well as 
3basal release of [ H]NA from rat O.C. tissue chops is higher in non

oxygenated (Figs. 14, 19) than in oxygenated HEPES buffer (Figs. 14, 19).

Furthermore, clonidine is less effective at inhibiting NA release in

non-oxygenated than in oxygenated HEPES buffer (Fig. 19). One possible

explanation would be that anoxia increases cAMP formation (Gross and
+Ferrendelli, 1980), thus leading to the enhanced K -stimulated release 

3of [ H]NA, thereby overcoming the a 2~adrenergic inhibition of 
+K -stimulated release. Alternatively, since anoxia also effects 

glucose metabolism of the cell,thus altering the phosphorylation state 

of regulatory proteins and this could affect the release of 

neurotransmitters (Gross and Ferrendelli, 1980). Thus, all release 

experiments were carried out with the HEPES buffer equilibrated with 95% 

0 ■- 5% CO^ and then adjusting the pH to 7.4 before use. Using 

this procedure, the degree of inhibition observed with clonidine is 

comparable with that obtained by the superfusion technique (Taube 

et al., 1977; Werner et al., 1979).
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34.2 g ^-Adrenergic regulation of [ H]NA release from rat O.C.

and hypothalamic tissue chops

Autoradiographic study shows that both and

a^-adrenoceptors are widely distributed in the intact rat brain

tissue (Young and Kuhar, 1979; 1980). Based on a pharmacological

characterization study CX-adrenoceptors in rat brain cortex are found to

be exclusively of Q^-type (Hedler et al., 1981). However, a

6-hydroxydopamine-induced destruction of noradrenergic nerve terminals

increases rather than decreases the number of receptor binding sites of

C^-ligand, clonidine (U * Prichard and Snyder, 1979), thus suggesting a

pre- and post-synaptic location of a^-adrenoceptors.

The present study compared the effect of the a^-adrenergic
+agonists, clonidine, BHT-920 and UK 14304-18 with NA on the K 

3stimulation of [ H]NA release from O.C. tissue chops. It was found
■ +that a 2~adrenergic agonists inhibit 20mM K -stimulated release of 

3[ H ]NA with the following order of potency (IC,.n values in
ou

-7 -7parenthesis), UK 14304-18 (1 x 10 M) >  clonidine (3.5 x 10 M) ‘P7’
-7 -7BHT-920 (5.5 x 10 M) x7, NA (8.5 x 10 M) and a maximum inhibition of

-570%, 53%, 37% and 84% respectively achieved at 10 M concentration of

these agonists (Fig. 20). This shows that although UK 14304-18 is the

most potent ^-adrenergic agonist, it is not as effective as NA.

UK 14304-18 has also been shown to be more potent than clonidine and NA 
3at regulating [ H]NA release from ileum and pulmonary artery

(Cambridge, 1981; Van Meel et al., 1981). Ligand-binding studies in

rat brain membranes showed that UK 14304-18 is highly selective for
-9a 2-adrenoceptors as UK 14304-18 (10 M) displaced bound

3OC^-adrenergic agonist, [ H] clonidine by 50% whereas a
-6concentration of 10 M was needed to displace the Ct^-adrenergic 

3antagonist, [ H] prazosin by an equivalent amount (Cambridge, 1981).
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This confirms that ’UK 14304-18 is both a selective and potent

a.2-adrener9ic agonist. Since clonidine (Medgett et al., 1978) and

BHT-920 (Lues and Schumann, 1984) have been shown to be partial

adrenergic agonist in the smooth muscle, it then suggests that the lower

effectiveness of both clonidine and BHT-920 may possibly be due to the

pre- and post-synaptic effect of both drugs. In contrast, Chicini and

Singer,(1987) showed that BHT-920 acts mainly as presynaptic

a^-adrenergic agonist on the electrical stimulated release of 
3[ H]NA from rat brain cortex and hypothalamus.

The hypothalamic tissue chops, NA and clonidine at submicromolar
-7 -6 +concentrations (10 M - 10 M) inhibited 30mM K -stimulated

3release of [ H]NA to the same extent (Fig. 21). At higher
-4concentrations, however, NA (10 M) is shown to be more effective than

— 4 +clonidine (10 M) at inhibiting the 30mM K -stimulated release of
3[ H ]NA (Fig. 21). This finding is in agreement with more effective

+ 3inhibition of 20mM K -stimulated release of [ H]NA from the O.C.

tissue chops by NA than clonidine. Using superfusion techniques, other

researchers have also shown that a^-adrenergic agonists including NA,
+clonidine, phenoxybenzamine and oxymetazoline inhibited K and

3electrical stimulation of [ H]NA release in rat brain slices (Taube

et al., 1977; Werner et al., 1982; Reichenbacher et al., 1982;

Chesselet, 1984; Middlemiss, 1988) and synaptosomes (Lane and Aprison,

1977; De Langen et al., 1979). The results presented in this thesis

show that the method used to examine a^-adrenergic agonists 
3inhibition of [ H]NA release gives comparable results to those 

reported in the literature. The ce^-adrenergic antagonist,

yohimbine, not only reversed the inhibition caused by a  -adrenergic
+agonists but also (Figs. 22, 25) enhanced the K -stimulated release of
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3[ H]NA from O.C. and hypothalamic tissue chops by 25% and 10% at 
-6 -510 M and 10 concentrations respectively (Figs. 20, 21). This

+suggests that endogenous NA is able to inhibit the K -stimulated 
3release of [ H]NA from O.C. and hypothalamic tissue chops by acting 

at (X^-adrenoceptors. Similarly, using superfusion technique Werner

et al. (1979) found that OC -adrenergic antagonists, yohimbine and
+ 3phentolamine enhanced the K -stimulated release of [ H]NA by 60% and

-590% at 10 M concentration respectively from rat frontal cortex brain 

slices. Thus they concluded that presynaptic Ot-adrenoceptors are

partially activated by released endogenous NA thereby reducing the
+ 3K -evoked release of [ H]NA. This view is supported by the

3observation that phentolamine does not enhance the release of [ H]NA

from synaptosomes since with this preparation endogenous NA is more

effectively removed by superfusion medium than from brain slices (De

Langen et al., 1979). It is interesting that less inhibition of

release appears to take place with the assay used in this study than in

the perfusion system used by Werner et al. (1979). Thus endogenous NA

appears to have less effect on release in this study than in the work

reported by Werner et al. (1979).

In contrast to the effect of a^-a^renergic antagonist

yohimbine, in O.C. tissue chops, the a^-adrenergic antagonist,

prazosin (Fig. 24) and p-adrenergic antagonist, propranolol (Fig. 23)
+did not reverse the NA inhibitory effect of K -stimulated release of 

3[ H ]NA. The present results are, in agreement with the findings of

Taube et al. (1977) and Reichenbacher et al. (1982) who also show that

propranolol and prazosin had no effect on the stimulated release of 
3[ H]NA from both rat and rabbit cortical slices. This suggests that 

in O.C. tissue chops, only the CX^-adrenoceptors are involved in the
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+ 3regulation of K -stimulated release of [ H]NA. Furthermore, in

O.C. tissue chops, propranolol increased the inhibitory effect of NA
-6 -5when the concentration of NA increased from 10 M to 10 M

(Fig. 23). Similarly, in the peripheral nervous system, NA inhibition
+ 3of K -stimulated release of [ H]NA increased when the concentration

of propranolol was increased (see Langer, 1981 for review). One

possible explanation is that propranolol which block the

p-adrenoceptors increases the effective concentrations of NA in the

vicinity of the nerve terminals, thereby allowing more NA to activate
3OC ̂ -adrenoceptors which leads to a greater inhibition of [ H]NA

release. This can be depicted diagrammatically as shown in Figure

53. Receptor binding studies showed that the density of

P-adrenoceptors in rat cerebral cortex is about 50fmol/mg protein

(Dibner et al., 1979).

Unlike O.C. tissue chops, Ueda et al. (1983) demonstrates that

the release of endogenous NA in the hypothalamus may be regulated via

presynaptic as well as p^ and p^-adrenoceptors. Thus, they

found that not only yohimbine but also isoprenaline enhanced electrical

stimulation (2HZ) of endogenous NA release. In contrast, the

^-adrenergic antagonist, prazosin only weakly enhanced NA release.

Furthermore, the stimulation of release by p-adrenergic agonist,

isoprenaline is antagonised by the {^-adrenergic antagonist, atenolol

and the p^-adrenergic antagonist, butoxamine. These studies of Ueda

et al. (1983) suggest the a role for p^ and p^-adrenoceptors in
3the regulation of [ H]NA release.

It is generally accepted that during depolarization, adenosine 

(Kuroda, Y. and Mcllwain, H., 1979; Fredholm and Hedqvist, 1980) and 

ATP, ADP and AMP (Mcllwain, 1977; Burnstock, 1981) released from the
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nerve terminals might themselves function as neurotransmitters and cause 

presynaptic inhibition or regulate the release of other neurotransmitter 

systems such as noradrenaline (Harms et al., 1979; Jonzon and 

Fredholm, 1984; Allgaier et al., 1987), dopamine (Harms et al., 1979; 

Javis and Williams, 1987) and acetylcholine (Pedata et al., 1983; 

Corradetti et al., 1984).

The present study demonstrates that the adenosine A^ agonist,

CHA (Fredholm and Dunwiddie, 1988) inhibited the 20mM K -stimulated 
3release of [ H]NA more potently than adenosine (Fig. 26) from the O.C.

+tissue chops. Additionally, adenosine inhibition of K -stimulated 

release is reversed by IBMX (Fig. 27) but not by the PDE-inhibitor RO 

20-1724 (Fig. 28) suggesting that IBMX acts as an adenosine antagonist

as well as a PDE inhibitor. Furthermore, the fact that IBMX is able to
+ 3further enhance the K -stimulated release of [ H]NA in the presence

- 6of 10 M adenosine by 20% (Fig. 27) suggests the possible involvement
+of released endogenous adenosine in the regulation of K stimulation 

3of [ H]NA release. The above findings are in agreement with those

reported by other researchers which show that adenosine and ATP
3inhibition of depolarization stimulated release of [ H]NA can be 

antagonised by methylxanthines including theophylline, IBMX and caffeine 

(Phillis et al., 1979; Fredholm, 1980).

This view is supported by the observation that the selective 

adenosine A^ antagonist, CPDPX (Martison et al., 1987) not only more

potently reverses the adenosine inhibitory effect, but at concentrations
-5 +greater than 10 M further enhances the 20mM K stimulated release

3of [ H]NA by 10% (Fig. 29). However, the finding that IBMX which
+reverses the adenosine inhibition of 20mM K -stimulated release of 

3[ H]NA does not reverse the C^-adrenergic agonist, NA inhibition of
+ 320mM K -stimulated release of [ H]NA (Fig. 30) suggests that

Oendogenous adenosine does inhibition [ H]NA release.
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4.3 The possible role of cAMP in mediating the (X^-adrenergic

regulation of NA release

a^-Adrenoceptors have been shown to inhibit cAMP formation

in adipocytes (Aktories et al., 1980; Burns et al., 1982), neuronal

cell NG 108/15 (Sabol and Nirenberg, 1979; Kahn et al., 1982),

platelets (Jakobs et al., 1976) and rat pancreatic islets (Yamazaki et

al., 1982). In view of this, a likely mechanism for a^-adrenergic

agonist inhibition of NA release is that it is mediated by decreasing

cAMP levels. However, G protein linked to the inhibition of voltage 
2+sensitive Ca channels and Gv protein linked to the regulation ofI\

+K channels have recently been described (Sasaki and Sato, 1987;

Logothetis et al., 1987) Allagier et al. (1985) demonstrated that

pretreatment of rabbit hippocampus brain slices with pertussis toxin

(IAP) which ADP-riboxylates the G-protein of the cell membrane or

N-ethylmaleimide (NEM) (Allagier et al., 1986) which inactivates

G-protein reduces the effect of both a^-adrenergic agonist, clonidine

and (x^-adrenergic antagonist, phentolamine response on the electrical
3stimulated release of [ H ]NA. Thr.s - raises the possible role of cAMP 

in the regulation of NA release. Thus, the present study sought to 

provide evidence for a role of cAMP by studying the effect of (a) 

conditions that increase cAMP i.e. of cAMP analogue db-cAMP, 

PDE-inhibitors to prevent the catabolism of cAMP or by direct activation 

of the catalytic unit of adenylate cyclase by forskolin on 

a^adrenergic inhibition of NA release and (b) a comparison between the 

conditions under which a 2_adrenergic agonists inhibit NA release and 

cAMP formation. Thus, if a 2“a^rener9^c agonists inhibit NA release 

by inhibiting cAMP formation, then a correlation between these two 

actions of oc^adrenergic agonists would be predicted.



- 139 -

4.3.1 Influence of cAMP on OC^-adrenoceptors regulated release of 
3[ H]NA from O.C. and hypothalamic tissue chops

The present study shows that forskolin, db-cAMP and IBMX enhance
+ 3the 20mM K -stimulated release of [ H]NA from O.C. tissue chops by

20.8%, 29.0% and 19.0% respectively (Table 5) but had no effect on the
3basal release of [ H]NA. In addition, when forskolin or db-cAMP is

3 +combined with IBMX, the release of [ H]NA stimulated by 20mM K is

further increased by 10% (Table 6). Similarly, in hypothalamic tissue

chops, dbcAMP or forskolin when combined with IBMX enhance the 25mM but
+ 3not the 30mM K -stimulated release of [ H]NA by 25.5% and 23.6%

respectively (Table 8A and B). This suggests that cAMP may be involved
3in the regulation of depolarization-evoked release of [ H]NA from rat

O.C. and hypothalamic tissue chops. These results are in agreement

with the finding that substances which increase intracellular cAMP

formation such as cAMP analogues including db-cAMP and 8-Br-cAMP as well

as PDE-inhibitors including IBMX, 7-benzyl-IBMX, ZK 62771 and

RO 20-1724, or forskolin enchanced the electrical-stimulated release of 
3[ H]NA from rat brain slices (Markstein et al., 1984; Schoffelmeer

et al., 1985, 1986) and synaptosomes (Schoffelmeer et al., 1985). On
+ 3the contrary, veratrine or 13mM K -induced release of [ H]NA from

rat neocortical slices, is enhanced only by cAMP analogues and forskolin

while PDE inhibitors including IBMX, ZK 62771 and RO 20-1724 inhibited
3the stimulated release of [ H]NA (Schoffelmeer and Mulder, 1983b).

The difference between the effect of PDE inhibitors on
+ ’ 3electrical stimulation and K or veratrine-induced release of [ H]NA

may be related to the differences in the degree of stimulation. An
+alternative explanation for the effect of IBMX on K -stimulated 

3release of [ H]NA between the present study and that of Schoffelmeer
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et al. (1985), is that IBMX may penetrate better into the neocortical 

rat brain slices used in the study of Schoffelmeer et al. (1985) 

compared to the cortical brain slices obtained from adult rats used in

the present study. In support of this although IBMX inhibited the 13mM
+ 3K -stimulated release of [ H]NA, theophylline, an adenosine

antagonist, which does not normally appreciably penetrate cell membranes
3enhances the stimulated release of [ H]NA (Schoffelmeer et al.,

1985). The present study suggests that IBMX enhances the 20mM
+ 3K -stimulated release of [ H]NA by acting as an adenosine

antagonist. Furthermore, in agreement with the findings of Schoffelmeer 

et al. (1983b), RO 20-1724 which inhibits cAMP-PDE selectively (Daly,

1977) but does not act as adenosine antagonist, is found to inhibit the
+ 3K -stimulated release of [ H]NA by about 20% (Table 7). The result

+suggests that RO 20-1724 may affect the K -stimulated release of 
3[ H]NA possibly via other unknown release mechanisms.

+If OC ̂ -adrenergic agonists inhibit the K -stimulated 
3release of [ H]NA by decreasing the intracellular cAMP formation, it 

would then be anticipated that the increase in intracellular cAMP by 

db-cAMP or forskolin could counteract the inhibitory effect of the

agonist. However, the present study demonstrates that a^-^renergic
+ 3agonist inhibition of 20mM K -stimulated release of [ H]NA from O.C.

tissue chops is partially reversed by db-cAMP either in the absence 

(Table 5) or presence (Table 6) of IBMX, but unexpectedly, not by 

forskolin either in the absence (Table 5) or presence (Table 6) of

IBMX. In hypothalamic tissue chops c^-a^renergic agonist
+ 3inhibition of 25mM K -stimulated release of I H]NA is not reversed

by either db-cAMP (Fig. 8) or forskolin (Fig. 8) combined with IBMX

suggesting that unlike O.C. tissue chops changes in intracellular cAMP
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levels by db-cAMP do not affect the a 2_a(3renergic agonist inhibitory
+ 3effect on the 25mM K -stimulated release of [ H]NA from hypothalamic

tissue chops.

Rabe et al. (1982) demonstrate that unstimulated release of
3[ H]NA from clonal pheochromocytoma cell line, PC 12 is not affected

by any concentration of forskolin. However, forskolin up to 10/iM
+concentration is able to enhance the 50mM K -stimulated release of

3 -4[ H]NA, while higher concentration (10 M) of forskolin tends to
3inhibit [ H]NA release. Their results thus suggest a modulatory role 

3of forskolin on [ H]NA release. This may provide an explanation for

the failure of forskolin to reverse the a^-adrenergic agonists
+ 3inhibition of K -stimulated release of [ H]NA observed in the

present study.
+The inhibition of (X^-adrenergic agonists on K stimulated 

3release of [ H]NA from O.C. tissue chops is very rapid (Figs. 17,

18). The fact that a minimum incubation period of 30 minutes with very
-3high concentration of db-cAMP (10 M) is required to partially reverse

+the CX^-adrenergic agonists inhibition of K -stimulated release of 
3[ H]NA suggest that other mechanisms may be involved (Table 5).

Electrophysiological studies show that neurotransmitters including NA,
+ +5-HT and GABA which do not have any effect on Na and K

2+voltage-sensitive channels, inhibits the voltage sensitive Ca

channels in chick sensory neurons (Dunlap and Fishback, 1981).

Furthermore, db-cAMP has been shown to cause a prolonged

hyperpolarization of neuronal membranes, and hence a prolongation of 
2+Ca influx, thereby preventing the inhibitory effect of these

2+neurotransmitters on voltage sensitive Ca channels (Reuter, 1983).

This may be an alternative suggestion for the present study to explain
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why db-cAMP was able to partially reverse the C^-adrenergic agonists
+ 3inhibitory effect on K -stimulated release of [ H]NA from the O.C.

tissue chops but not forskolin. One interpretation of the data

obtained in the present study is that Ct^-adrenergic agonists may
+ 3inhibit the K -stimulated release of [ H]NA via G-protein linked to

2+voltage sensitive Ca channels.

4.3.2 Stimulation of cAMP formation

4.3.2.1 Stimulation of p -adrenergic agonist isoprenaline, a  and 

B -adrenergic agonist, NA and adenosine

The present study demonstrates that isoprenaline stimulated cAMP 

formation 1.5 fold (Fig. 31), whereas NA stimulated cAMP formation about 

3.0 fold (Fig. 31). Furthermore, isoprenaline stimulation of cAMP 

formation is potentiated by a^-adrenergic agonist, phenylephrine 

(Fig. 50) but not by (^-adrenergic antagonist, UK 14304-18 (Fig. 50). 

This is in agreement with the findings of Etgen et al. (1987) who also 

show that isoprenaline stimulation of cAMP formation is enhanced by 

phenylephrine but not clonidine. Thus, the results suggest that the 

greater stimulation of cAMP formation observed with NA compared with 

isoprenaline is due to the synergistic effect of and p -adrenergic 

agonist.

From the present study, NA stimulation of cAMP formation is not

affected by phenylephrine (Fig. 49) but is inhibited by a^-adrenergic

agonists in a biphasic manner with the following order of potency
-9(ICp-Q values in parenthesis) UK 14304-18 (6 x 10 M ) clonidine

-8 -7(10 M) >  BHT-920 (5 x 10 M). This suggests that there could be

two subclasses of a^-adrenoceptors blocking the response of 

NA-stimulation of cAMP formation.
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NA stimulation of cAMP formation is more potently blocked by 

a^-adrenergic antagonist, prazosin than o^-adrenergic antagonist, 

yohimbine and p-adrenergic antagonist, propranolol (Fig. 34). The 

result is supported by the findings of Perkin and Moore (1973), Davis 

et al. (1978), Daly et al. (1980) and Johnson and Minneman (1986) who 

also reported that a^-adrenergic antagonist is more potent than 

a^-adrenergic antagonist at inhibiting the NA stimulation of cAMP 

formation in rat brain slices. Thus, the failure of a^-sdrenergic 

antagonist to enhance the NA stimulation of cAMP formation argues against 

the involvement of a^-adrenoceptors in NA stimulatory effect of cAMP 

formation. This further confirms the present suggestion that NA 

stimulation is due to the synergistic effect of and p-adrenergic 

agonist.

Evidence of a potentiation of p -stimulation by 

a^-adrenoceptor is also observed in membrane particulate fractions 

prepared from guinea pig cortex (Daly et al., 1980). In contrast, 

cultures of astrocytes isolated from perinatal mouse brain (Van Calker 

et al ., 1978; 1979) or rat cerebral cortical tissue (McCarty and De

Vellis, 1978) do not show augmentation of p-adrenergic agonist 

stimulation of cAMP formation since a greater increase in cAMP formation 

is observed with isoprenaline alone. Furthermore, isoprenaline 

stimulation of cAMP formation is inhibited by NA, and the effect of 

which can be reversed by Ct^-adrenergic antagonists such as 

phentolamine and phenoxybenzamine (Van Calker et al., 1978). In 

addition, NA stimulation of cAMP formation can be further enhanced by 

phentolamine (McCarthy and De Vellic, 1978). Unlike brain slices, 

these results suggest a^-adrenoceptors in astrocytes cultures are 

linked to the adenylate cyclase.
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In contrast, Pile and Enna (1986) reported that isoprenaline 

stimulation of cAMP formation is not potentiated by phenylephrine but by 

UK 14304-18. Furthermore, they reported that isoprenaline and 

a  -adrenergic agonist (6-fluoronorepinephrine) stimulation of cAMP 

formation is more potently blocked by yohimbine than by prazosin. The 

inhibitor results of the present study taken together with those of 

other researchers (Perkin and Moore, 1973; Davis et al., 1978; Daly 

et al., 1980; Daly et al., 1981; Johnson and Minnemari, 1986; Etgen 

et al., 1987) do not support the results obtained by Pile and Enna,

(1986) which suggest that NA stimulation of cAMP formation is due to the 

synergistic effect of {3 and a^-adrenergic agonist.

Since cAMP formation in brain slices may continuously be

catabolised by PDE, the effect of PDE on isoprenaline and NA stimulation

of cAMP formation were examined with PDE inhibitors IBMX (Well and

Kramer, 1981) and RO 20-1724 (Schwabe et al., 1978). The results show

that surprisingly IBMX inhibited the isoprenaline and NA (Fig. 32)

stimulation of cAMP formation, whereas RO 20-1724 although raising the

basal level of cAMP did not alter either the EC values i.e. 4 x50
-6 -910 M and 55 x 10 M or the overall stimulation i.e. 1.5 fold and 3

fold of cAMP formation stimulated by isoprenaline and NA respectively 

(Fig. 33). Since IBMX can act as a potent adenosine antagonists 

(Stiles, 1986), the abolition by IBMX of NA and isoprenaline stimulation 

of cAMP formation suggests that endogenous adenosine potentiates the 

action of p -adrenergic agonist on cAMP formation in rat brain slices. 

The above observations are in agreement with Daly et al. (1980) who show- 

that NA, isoprenaline, histamine, dopamine, serotonin and adenosine 

stimulation of cAMP formation in guinea pig cerebral cortex particulate 

preparation is inhibited by adenosine antagonists, theophylline and
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IBMX, but not potentiated by PDE inhibitor ZK 62771. Furthermore, Daly

et al. (1980) in rat cerebral cortical slices also found that adenosine

is necessary for a a-response.

In the present study, IBMX inhibited adenosine stimulation of

cAMP formation, causing a shift to the right of adenosine concentration

curve (Fig. 16), while RO 20-1724, although raising the basal level of
-5cAMP formation does not affect the EC-.- value (6 x 10 M) ofDU

adenosine (Fig. 36). Indeed, NA stimulation of cAMP formation is 

further potentiated by 0.9 fold in the presence of adenosine (Fig. 37). 

This agrees with the hypothesis that adenosine potentiates NA effects in 

rat brain.

Interestingly when NA stimulation of cAMP formation is 

potentiated by adenosine, adrenergic antagonists have a different order 

of potency and efficacy (Fig. 38) when compared with their action of NA

stimulation along (Fig. 34). Thus values in parenthesis)
-9 -9yohimbine (8 x 10 M ) >  prazosin (2.5 x 10 M) >  propranolol (6 x

“ 7 % .10 M) and inhibited cAMP formation by 40%, 30% and 22% respectively 
-5at 10 M concentration (Fig. 38). This suggests that yohimbine is 

the most effective and potent at inhibiting the adenosine combined with 

NA stimulation of cAMP formation. This is supported by the findings of 

Schultz and Kleefeld (1979) who show that adenosine combined with NA 

stimulation of cAMP formation is inhibited more by phentolamine than by 

propranolol. In addition, the present study also demonstrates that 

adenosine stimulation of cAMP formation is potentiated by UK 14304-18 

(Fig. 51). On the contrary, in the absence of adenosine, NA 

stimulation of cAMP formation is most effectively blocked by 

propranolol. Thus, the results suggest that adenosine potentiates NA 

stimulation of cAMP formation by modulating the cell surface receptors.
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4.3.2.2 Stimulation of cAMP formation by forskolin

Forskolin which is known to increase cAMP formation by directly

activating the catalytic unit of the adenylate cyclase (Seamon and Daly,

1981, 1983; Daly et al., 1982; Bender et al., 1984) stimulated cAMP

formation in a concentration-dependent manner (Fig. 31) with e c 5q 
-6value of 5 x 10 M and a maximum stimulation of 6 to 8 fold cAMP

-4formation achieved at 10 M either alone or in the presence of PDE 

inhibitors including IBMX (Fig. 32) and RO 20-1724 (Fig. 33).

Therefore this suggests that in brain slices PDE activity is low 

compared to cell culture where PDE-inhibitors are found to enhance cAMP 

formation (Van Calker et al., 1978; Wojcik and Neff, 1984). In

addition, from the above study, it can be concluded that failure of
+ 3Ct^-adrenergic agonist to inhibit the K -stimulation of [ H]NA

release could not be due to the failure of forskolin to stimulate cAMP 

formation in the O.C. tissue chops used in the present study, since 

there are considerable increased in cAMP formation with the concentrations

of forskolin used to try and reverse a^-adrenergic inhibition.
- 6 - 6  Forskolin (10 M and 5 x 10 M) which itself stimulated cAMP

formation, is only able to increase NA, isoprenaline and adenosine

stimulation of cAMP formation in an additive manner (Fig. 39). On the
-7contrary, at submicromolar concentration (10 M), forskolin, which

itself does not have any effect on cAMP formation potentiated NA
-5 -6 -4(10 M), isoprenaline (10 M) and adenosine (10 M) stimulation of

cAMP formation by 0.7, 0.9 and 1.5 fold respectively (Fig. 39).
-6Forskolin (10 M) has also been shown to potentiate cAMP formation by 

histamine, serotonin, NA, isoprenaline, adenosine, prostaglandin E2 and 

vasoactive intestinal peptide in rat and guinea pig cerebral cortical 

slices as well as in rat striatal slices (Daly et al., 1982; Seamon and
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Daly, 1983). It has been proposed that at low concentration, forskolin 

acts synergistically with the high affinity sites of Gs , which then 

potentiate the receptors effect on cAMP formation (Daly et al., 1982; 

Seamon and Day, 1983; Seamon and Wetzel, 1984; Barovsky et al., 1984, 

1985).

Forskolin stimulation of cAMP formation in human adipocytes 

(Burns et al., 1982, 1987), human platelets (Insel et al., 1982) and in 

rat cerebral cortical membranes(Kitamura et al., 1985) have been shown 

to be inhibited by oc^-adrenergic agonists such as clonidine, NA and 

adrenaline. Furthermore, using rat neonatal cerebral cortical slices, 

Duman and Enna, (1986) reported that a 2~a^rener9ic agonists including

6-fluoronorepinephrine, clonidine and UK 14304 inhibited forskolin 

stimulation of cAMP formation in a concentration dependent manner, 

while ^-adrenergic agonist, phenylephrine slightly potentiated the 

forskolin response. Thus all the above findings suggest that 

CX^-adrenergic agonist is directly linked to Gi and thus to the 

catalytic unit of adenylate cyclase.

In contrast, the present study found that the c^-adrenergic 

agonist, clonidine (Fig. 47) and UK 14304-18 (Fig. 46) were unable to 

inhibit forskolin stimulation of cAMP formation in O.C. rat brain 

slices. This is a surprising observation in view of reports that (a) 

forskolin stimulation is inhibited by a 2-adrenergic agonist and (b) 

there are plenty of a^-adrenoceptors in cortex (Rouot et al., 1980; 

Loftus et al., 1984; Boyajian et al., 1987; Boyajian and Leslie,

1987). This suggests that not all a^-adrenergic receptors are 

linked to adenylate cyclase via Gi.

4.3.2. 3 Effect of depolarizing agents on cAMP formation

Electrical stimulation (Kakinchi et al., 1968a, b; Zanella and 
+Rail, 1973), K depolarisation (Shimiju and Daly, 1972) as well as
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other depolarizing agents including batrochotoxin, veratine and ouabain 

(Shimizu et al., 1970) have been shown to stimulate cAMP formation in 

rat brain slices.
+The present study demonstrates that K depolarization (40 -

80mM) stimulated cAMP formation maximally between 2.2 and 2.5 fold
+(Fig. 40) in rat O.C. tissue chops. High K concentrations

(100-140mM) decreases cAMP formation (Fig. 40) possibly due to influx of 
2+Ca which activates the calcium/calmodulin dependent PDE (Hemmings 

et al., 1986).
+In contrast, in guinea pig cerebral cortex slices, K

depolarization (140mM) stimulated cAMP formation by 48 fold, while
+ + maximum K stimulation (150mM) in the absence of Na only slightly

+reduced the K response (Shimizu et al., 1972). This could simply be
2+due to the difference of Ca sensitivity of PDE between different

+animal slices. In addition, K , batrochotoxin, ouabain, veratine
2+stimulation of cAMP formation are dependent on Ca (Shimizu et al.,

1970; Zanella et al., 1973; Ferrendelli et al., 1976; Schwabe
2+et al., 1978). An alternative explanation is that low Ca activates 

2+while high Ca inhibit adenylate cyclase activity (Brostrom et al., 

1977).
-6Forskolin (10 M) stimulated cAMP formation by 6 fold under

+ + non depolarizing (5mM K ) and mild depolarizingf (20mM K )
+conditions (Fig. 43). However, when combined with 40mM and 60mM K ,

its response on cAMP formation is reduced to 50% and 100% respectively
2+(Fig. 43). This suggests that the influx of Ca during 

depolarization may activate the calcium/calmodulin dependent PDE 

(Hemmings et al., 1986), thereby leading to a decrease in cAMP
-3 %formation. This is confirmed by the finding that RO 20-1724 (10 M)
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completely reverses the effect of forskolin combined with 40mM K+ 

stimulation of cAMP formation (Fig. 44).

Cocaine, a potent NA uptake inhibitor (Carmichael and Israel,
+1973) has been shown to inhibit K , ouabain, veratine, NA, histamine

and adenosine stimulation of cAMP formation (Shimizu et al., 1972).
3Since DMI, which is used as NA uptake inhibitor in the study of [ H]NA

+release, its effect on K stimulation of cAMP formation in the O.C.

tissue chops is examined. The present study demonstrates that 20mM and 
+40mM K stimulation of cAMP formation is not affected by DMI (luM)

(Fig. 42).

The present study demonstrates that UK 14304-18 does not inhibit
+the K stimulation of cAMP formation either alone or in the presence

of RO 20-1724 (Fig. 41). Since depolarization is mainly due to the

neuronal event rather than glial, and the proportion of neurons to glia

population is not determined, it may therefore be difficult to pick up a

small a^-effect situated on the nerve terminals during 
+K -stimulation of cAMP formation.

In conclusion, the findings that activation of

CC^-adrenoceptors by ct^-adrenergic agonist leads to large
+ 3inhibition of K -stimulated release of [ H]NA, and the failure of

+the agonist to inhibit K -stimulation of cAMP formation under parallel

experimental conditions suggests that there is little correlation
3between cAMP inhibition and C^-adrenergic inhibition on [ H]NA 

release.
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+ve -ve

Figure 53 Schematic representation of presynaptic autoinhibition

CX^-Adrenoceptors acted upon by NA in the presence of 

J3-adrenergic antagonist, propranolol on the noradrenergic 

nerve terminals in the CNS.
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5 CONCLUSION

The ability of forskolin and db-cAMP to enhance
+ 3K -stimulated release of [ H]NA suggests a role for cAMP in

synaptic transmission. There is no evidence that CX^-adrenergic
+ 3agonists inhibit K -stimulated release of [ H]NA by inhibiting

cAMP formation, since forskolin does not reverse the CX^-adrenergic

inhibitory effect. OC ̂ -Adrenergic agonist inhibition of
+ 3K -stimulated release of [ H]NA is very rapid. However, the fact

that db-cAMP is only able to partially reverse the (X^-adrenergic

agonist inhibitory effect over a period of 30 minutes incubation at a

high concentration suggests that other mechanisms may be involved.

Furthermore, the failure of a^-adrenergic agonists to inhibit
+forskolin, isoprenaline, adenosine and K stimulation of cAMP 

formation under parallel experimental conditions indicates that there

is no correlation between cAMP and CC^-adrenergic agonists
3inhibitory effect on [ H]NA release. In contrast, CX^-adrenergic

agonists are found to inhibit the NA stimulation of cAMP formation in

a biphasic manner. This suggests that different pools of

a^-sdrenoceptors are present. However, the fact that

O^-adrenergic antagonists do not enhance the NA stimulation of cAMP

formation suggests that different mechanisms may be involved.

My results however support the increasing evidence in the

literature which suggests that OC ̂ -adrenoceptors may be directly
2+linked to voltage-sensitive Ca channels via G-proteins, since

3OC2“a{3renergic inhibitory effects on [ H ]NA release can only be 

observed during depolarization.



- 152 -

REFERENCES

Adler-Graschinsky, E. and Langer, S.Z. (1975) Br. J. Pharmacolol. 53, 
43-50.

Adolfsson, R., Gootfries, C.G., Roose, B.E. and Winblad, B. (1979)
Br. J. Psychiatry 135, 216-223.

Aghajanian, G.K. and Van der Maalen, C.P. (1982) Science 215, 
1394-1396.

Ahlquist, R.P. (1948) Am. J. Physiol. 153, 586-600.

Aktories, K., Schultz, G. and Jakobs, K.H. (1980)
Naunyn-Schmiedeberg1s Arch. Pharmacol. 312r 167-173.

Alberts, P., Bartfai, T. and Stjarne, L. (1981) J. Physiol. (Lond.) 
312, 297-334.

Allgaier, C., Feuerstein, T.J., Jackisch, R. and Hertting, G. (1985) 
Naunyn-Schmiedeberg1s Arch. Pharmacol. 331, 235-239.

Allgaier, C., Feuerstein, T.J. and Hertting, G. (1986) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 333, 104-109.

Allgaier, C., Hertting, G. and Kugelgen, O.V. (1987) Br. J.
Pharmacol. 90, 403-412.

Arnold, E.B., Molinoff, P.B. and Rutledge, C.O. (1977) J. Pharmacol. 
Exp. Ther. 202, 544-557.

Baker, P.F., Meves, H. and Ridgway, E.B. (1973) J. Physiol. (Lond.) 
231, 527-548.

Barovsky, K., Pedone, C. and Brooker, G. (1984) Mol. Pharmacol. 25, 
256-260.

Barovsky, K. and Brooker, G. (1985) Mol. Pharmacol. 28, 502-507.

Bartschat, D.K. and Blaustein, M.P. (1985) J. Physiol. (Lond.) 361, 
419-440.

Bender, J.L., Wolf, L.G. and Neer, E.J. (1984) Advances in Cyclic 
Nucleotide and Protein Phosphorylation Research 17, 101-109.

Bennett, B.A. and Sundberg, D.K. (1981) Life Sci. 28, 2811-2817.

Berridge, M.J. and Irvine, R.F. (1984) Nature 312, 315-321.

Berthelsen, S. and Pettinger, A. (1977) Life Sci. 21, 595-606.

Bevan, S. and Raff, M. (1985) Nature 315, 229-230.

Bhat, S.V., Bajwa, B.S., Dornauer, H. and de Souza, N.J. (1977) 
Tetrahydron Lett. 19, 1669-1672.



- 153 -

Bianchi, B.R. and Takimoto, G.S. (1984) Life Sci. 34, 607-615.

Biel, J.H. and Lum, B.B. (1966) Prog. Drug. Res. 10, 46P.

Blatz, A.L. and Magleby, k.L. (1986) Nature 323, 442-444.

Blaustein, M.P. (1975) J. Physiol. (Lond.) 247, 617-655.

Blaustein, M.P. (1979) (ed. Paton, D.M.) pp 39-58, Permagon Press,
Oxford.

Blinks, J.R., Prendergast, F.G. and Allen, D.G. (1976) Pharmacol.
Rev. 28, 1-93.

Bloom, F.E. (1975) Rev. Physiol. Biochem. Pharmacol. 74, 1-103.

Bowman, W.C. and Rand, M.J. (1980a) Textbook of Pharmacol., 2nd
edition, Blackwell Scientific Publication, PP5.22-5.23.

Bowman, W.C. and Rand, M.J. (1980b) Textbook of Pharmacol., 2nd
edition, Blackwell Scientific Publication, PP9.10-9.14.

Boyajian, C.L., Loughlin, S.E. and Leslie, F.M. (1987a) J. Pharmacol. 
Exp. ther. 241, 1079-1091.

Boyajian, C.L. and Leslie, F.M. (1987b) J. Pharmacol. Exp. Ther. 241, 
1092-1098.

Bradford, H.F. (1986a) Chemical Neurobiology, Freeman, W.H. and 
Company, N.Y., 195P.

Bradford, H.F. (1986b) Chemical Neurobiology, Freeman, W.H. and 
Company, N.Y. PP265-302.

Brooker, G. Pedone, C. and Barovsky, K. (1983) Science 220, 1169-1170.

Brostrom, C.O., Brostrom, M.A. and Wolff, D.J. (1977) J. Biol. Chem. 
252(16), 5677-5685.

Burnstock, G. (1981) J. Physiol. (Lond.) 313, 1-35.

Burns, T.W., Langley, P.E., Terry, B.E., Bylund, D.B. and Forte, L.R.
(1982) Life Sci. 31, 815-821.

Burns, T.W., Langley, P.E., Terry, B.E., Bylund, D.B. and Forte Jr.,
L.R. (1987) Life Sci. 40, 145-154.

Bylund, D.B. and Snyder, S.H. (1976) Mol. Pharmacol. 12, 568-580.

Bylund, D.B.(1985) Pharmacol. Biochem. Behav. 22, 835-843.

Bylund, D.B. (1988) Trends Pharmacol. Sci. 9, 356-361.

Cambridge, D. (1981) Eur. J. Pharmacol. 72, 413-415.

Cambridge, D., Davey, M.J. and Massingham, R. (1977) Br. J.
Pharmacol. 59, 514-515.



- 154 -

Cambridge, D. and Davey, M.J. (1980) Br. J. Pharmacol. 69, 345-346.

Carmichael, F.J. and Israel, Y. (1973) J. Pharmacol. Exp. Ther. 186, 
253-260.

Cedarbaum, J.M. and Aghajanian, G.K. (1976) Brain Res. 112, 413-419.

Cedarbaum, J.M. and Aghajanian, G.K. (1977) Eur. J. Pharmacol. 44, 
375-385.

Celuch, S.M., Dubocovich, M.L. and Langer, S.Z. (1978) Br. J. 
Pharmacol. 63, 97-108.

Cherubini, E., North, R.A. and Surprenant, A. (1984) Br. J.
Pharmacol. 83, 3-5.

Chesselet, M.J. (1984) Neurosci. 12(2), 347-357.

Cheung, W.Y. (1980) Science 207, 19-27.

Cichini, G. and Singer, E.A. (1987) Naunyn-Schmiedeberg's Arch. 
Pharmacol. 335(6), 613-617.

Clonet, D.H. and Ratner, M. (1970) Science 168, 854-856.

Cooper, D.M.F., Londos, C. and Rodbell, M. (1980) Mol. Pharmacol. 18, 
598-601.

Corradetti, R., Lo Conte, G., Moroni, F., Passani, M.B. and Pepeu, G. 
(1984) Eur. J. Pharmacol. 104, 19-26.

Cotman, C.W., Haycock, J.W. and White, W.F. (1976) J. Physiol.
(Lond.) 254, 475-505.

Cox, J.A., Malnoe, A. and Stein, E.A. (1981) J. Biol. Chem. 256, 
3218-3223.

Cox, J.A. (1988) J. Biol. Chem. 249, 621-629.

Cross, A.J., Crow, T.J., Perry, E.K. and Perry, R.H. (1981) Br. Med. 
J. 282, 93-94.

Dahlof, C., Ljung, B. and Ablad, B. (1978) Eur. J. Pharmacol. 50, 
75-78.

Daly, J.W. (1977) Int. Rev. Neurobiol. 20, 105-168.

Daly, J.W., McNeal, E., Partington, C., Neuwirth, M. and Creveling,
C.R. (1980) J. Neurochem. 32(2), 326-337.

Daly, J.W., Padgett, W., Nirnikitpaisan, Y., Creveling, C.R., 
Cantacuzene, D. and Kirk, K.L. (1980) J. Pharmacol. Exp. Ther. 212, 
382-389.

Daly, J.W., Padgett, D. and Seamon, K.B. (1982) J. Neurochem. 38, 
532-544.



- 153 -

Daly, J.W. (1984) Advances in Cyclic Nucleotide and Protein 
Phosphorylation Res. 17, (ed. Greengard, P. et al.), Raven Press, N.Y.

Daniell, L.C. and Leslie, S.W. (1986) J. Neurochem. 46, 249-256.

Daum, P.R., Hill, S.J. and Young, J.M. (1982) Br. J. Pharmzcol. 77, 
347-357.

Davis, J.N., Arnett, C.D., Hoyler, E., Stalvey, L.P., Daly, J.W. and 
Skolnick, P. (1978) Brain Res. 159, 125— 135.

De Belleroche, J.S., Bradford, H.F. and Jones, D.G. (1976) J. 
Neurochem. 28, 561-571.

De Champlain, J., Krakoff, L.R. and Axelrod, J. (1967) Circulation 
Res. 20, 136-145.

De Langen, C.D.J., Hogenboom, F. and Mulder, A.H. (1979) Eur. J. 
Pharmacol. 60, 79-89.

De Riemer, S.A., Strong, A.J., Albert, K.A., Greenfard, P. and 
Kaczmarek, L.K. (1985) Nature 313, 313-316.

Deutsch, C ., Drown, C., Rafalowska, U. and Silver, I.A. (1981) J. 
Neurochem. 36, 2063-2072.

Dibner, K.D. and Molinoff, P.B. (1979) J. Pharmacol. Exp. Ther.
210(3), 433-439.

Dismukes, K., De Boer, A.A. and Mulder, A.H. (1977)
Naunyn-Schmiedeberg's Arch. Pharmacol. 299, 115-122.

Dolphin, A.C. and Archer, E.R. (1983) Neurosci. Lett. 43, 49-54.

Doxey, J.C., Smith, C.F.C. and Walker, J.M. (1977) Eur. J. Pharmacol. 
36, 313 - 320.

Drew, G.M. (1978) Br. J. Pharmacol. 64, 293-300.

Dubocovich, M.L. and Langer, S.Z. (1976) J. Pharmacol. Exp. Ther.
198, 83-101.

Dubocovitch, M.J. (1979) PP29-36, Permogon Press, Oxford.

Duman, R.S. and Enna, S.J. (1986) Brain Res. 384, 391-394.

Duman, R.S., Karbon, E.W., Harrington, C. and Enna, S.J. (1986) J. 
Neurochem. 47, 800-810.

Dunlap, K. and Fischbach, G.C. (1981) J. Physiol. (Lond.) 317, 519-535.

Dunwiddie, T.V., Hoffer, B.J. and Fredholm, B.B. (1981) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 316, 326-330.

Eckstein, F., Cassel, D., Levkovitz, H., Lowe, M. and Selinger, Z. 
(1979) J. Biol. Chem. 254, 9829-9834.



- 156 -

Ellison, D.W. and Campbell, I.e. (1986) J. Neurochem. 46, 218-223.

Ernsberger, P., Meeley, M.P., Mann, J.J. and Reis, D.J. (1987) Eur.
J. Pharmacol. 134, 1-13.

Etgen, A.M. and Petitti, N. (1987) J. Neurochem. 49, 1732-1739.

Ewald, D.A., William, A. and Levitan, I.B. (1985) Nature 315, 503-506.

Fain, J.N. and Garcia-Sainz, J.A. (1980) Life Sci. 26, 1183-1194.

Falk, B., Hillarp, N.A., Thieme, G. and Torp, A. (1962) J. Histochem. 
Cytochem. 10, 348-354.

Falloon, J., Malech, H., Milligan, G., Uson, C., Kahn, R., Goldsmith,
P. and Spiegel, A (1986) FEBS Lett. 209, 351-356.

Felice, L.J., Felice, J.D. and Kissinger, P.T. (1978) J. Neurochem.
31, 1461-1465.

Ferrendelli, J.A., Rubin, E.H. and Kinscherf, D.A. (1976) J.
Neurochem. 26, 741-748.

Forn, J. and Krishna, G. (1971) Pharmacol. 5, 193-204.

Forn, J., Krueger, B.K. and Greengard, P. (1974) Science 186, 
1119-1120.

Frankhuyzen, A.L. and Mulder, A.H. (1982) Eur. J. Pharmacol. 81, 
97-106.

Fredholm, B.B. (1980) Trends Pharmacol. Sci. 1, 124-132.

Fredholm, B.B. and Dunwiddie, T.V. (1988) Trends Pharmacol. Sci. 9, 
130-134.

Fredholm, B.B. and Hedquist, P. (1980) Biochem. Pharmacol. 29,
1635-1643.

Fredholm, B.B. and Lindgren, E. (1987) Acta. Physiol. Scand. 130,
95-105.

Fuxe, K. (1965) Acta. Physiol. Scand. 64, 247-249.

Garcia-Sainz, J.A., Hoffman, B.B., Li, S.Y., Lefkowitz, R.J. and Fain, 
J. (1980) Life Sci. 27, 953-961.

Gilman, A.G. (1984) Cell 36^ 577-579.

Glowinski, J. and Iversen, L.L. (1966) J. Neurochem. 13, 655-669.

Goldberg, A.L. and Singer, J.J. (1969) Proc. Natl. Acad. Sci. USA,
64, 134-141.

Gordon-Weeks, P.R. (1987) Neurochem. a practical approach (ed.
Turnder, A.J. and Bachelard, H.S.) IRL Press, Oxford, Washington D.C. 
PP1-26.



- 157 -

Gothert, M. (1979) Naunyn-Schmiedeberg's Arch. Pharmacol. 307, 29-37.

Gothert, M., Phol., I.M. and Wehking, E. (1979) Naunyn-Schmiedeberg1s 
Arch. Pharmacol. 307, 21-27.

Grant, J.A. and Scrutton, M.C. (1980) Br. J. Pharmacol. 71, 121-134.

Gray. R. and Johnston, D. (1987) Nature (Lond.) 327, 620-622.

Gray, E.G. and Wittaker, V.P. (1962) J. Anatomy 96(1), 79-88.

Graziano, M.P. and Alfred, G.G. (1987) Trends Pharmacol. Sci. 8, 
478-481.

Griffin, M.T., Law, P.Y. and Loh, H.H. (1985) J. Neurochem. 45, 
1585-1589.

Gross, R.A. and Ferrendelli, J.A. (1980) J. Neurochem. 34(5), 
1309-1318.

Harms, H.H., Wardeh, G. and Mulder, A.H. (1978) Eur. J. Pharmacol.
49, 305-308.

Harms, H.H. Wardeh, G. and Mulder, A.H. (1979) Neuropharmacol. 18, 
577-580.

Harris, J. and Roth, R. (1970) Mol. Pharmacol. 7, 593-604.

Hedler, H., Stamm, G., Weitzell, R. and Starke, K. (1981) Eur. J. 
Pharmacol. 70, 43-52.

Heffener, T.G. and Seiden, L.S. (1980) Brain Res. 183, 403-419.

Hemmings Jr., H.C., Nairn, A.C. and Greengard, P. (1986) Raven Press, 
N.Y. (ed. Martin, J.B. and Barchas, J.D.) PP47-69.

Hollins, C. and Stone, T.W. (1980) Br. J. Pharmacol. 69, 107-112.

Holtzman, S.G. (1974) Biochem. Pharmacol. 23, 3029-3035.

Holtz, W. G.G., Rane, S.G. and Dunlap, K. (1968) Nature 319, 670-672.

Horns, J.P. and McAfee, D.J. (1980) J. Physiol. (Lond.) 301, 191-204.

Huang, M., Shimizu, H. and Daly, J.W. (1971) Mol. Pharmacol. 7, 
155-162.

Huang, M., Ho, A.K.S. and Daly, J.W. (1973) Mol. Pharmacol. 9, 
711-717.

Insel, P.A., Stengel, D., Ferry, N. and Hanoune, J. (1982) J. Biol. 
Chem. 257, 7485-7490.

Iversen, L.L. and Glowinski, J. (1966) Nature 210, 1006-1008.

Jackish, R., Werle, E. and Herting, G. (1984) Neuropharmacol. 23, 
1363-1371.



- 158 -

Jackish, R., Strittmatter, H., Kasakov, L. and Hertting, G. (1984) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 327, 319-325.

Jackisch, R., Fehr, R. and Hertting, G. (1985) Neuropharmacol. 24(6), 
499-507.

Jakobs, K.H., Saur, W. and Schultz, G. (1976) J. Cyclic Nucleotide 
Res. _2L 381-392.

Jarvis, M.J. and Williams, M. (1987) Trends Pharmacol. Sci. 8 , 
330-331.

Javid, J.I., Perel, J.M. and Davis, J.M. (1979) Life Sci. 24, 21-28.

Johnson, R.D. and Minneman, K.P. (1986) Eur. J. Pharmacol. 129, 
293-305.

Jonzon , B. and Fredholm, B.B. (1984) Life Sci. 35, 1971-1979.

Kahn, D.J., Mitrius, J.C. and U'Prichard, D.C. (1982) Mol. Pharmacol. 
21, 17-26.

Kakiuchi, S. and Rail, T.W. (1968a) Mol. Pharmacol. 367-378.

Kakiuchi, S. and Rail, T.W. (1968b) Mol. Pharmacol. 4, 379-398.

Kakiuchi, S. and Rail, T.W. and Mcllwain, H. (1969) J. Neurochem. 16, 
485-491.

Kalisker, A., Rutledge, C.O. and Perkins, J.P. (1973) Mol. Pharmacol. 
9, 619-629.

Kant, G.J. and Meyerhoff, J.L. (1978) Life Sci. 23, 2111-2118.

Karbon, E.W. and Enna, S.J. (1984) Mol. Pharmacol. 27, 53-59.

Karbon, E.W. and Enna, S.J. (1986) Nature 323, 829P.

Katz, B. and Miledi, R. (1967) J. Physiol (Lond.) 192, 407-436.

Katz, B. and Mildei, R. (1969) J. Physiol (Lond.) 203, 459-487.

Kawahara, R.S. and Bylund, D.B. (1985) J. Pharmacol. Exp. Ther. 233, 
603-610.

Keen, P. and White, T.D. (1971) J. Neurochem. 18, 1097-1103.

Keller, R., Oke, A., Mefford, I. and Adams, R.N. (1976) Life Sci. 19, 
995-1004.

Keller, H.H., Bartholini, G. and Pletscher, A. (1974) Nature (Lond.) 
248, 528-529.

Kimelberg, H.K. and Katz, D.M. (1986) J. Neurochem. 47, 1647-1652.

Kitamura, Y., Nomura, Y. and Segawa, T. (1985) J. Neurochem. 45, 
1504-1508.



- 159 -

Klainer, L.M., Ch, Y.M., Freidberg, S.L., Rail, T.W. and Sutherland, 
E.W. (1962) J. Biol. Biochem. 237, 1239-1243.

Klein, M. and Kandel, E.R. (1978) Proc. Natl. Acad. Sci. USA, 75, 
3512-3516.

Klein, M. and Kandel, E.R. (1980) Proc. Natl. Acad. Sci. USA, 77(11), 
6912-6916.

Kelin, R.L. (1982) Neurotransmitter vesicles (ed. by Kelin R.L., 
Langer, H.C. and Zimmerman, H.) PP134-174, Academic Press, N.Y.

Kobilka, B.K., Matsui, H., Kobilka, T.S., Yang-Feng, T.L., Francke,
U., Caron, M.G., Lefkowitz, R.J. and Regan, J.W. (1987) Science 238, 
650-656.

Kojima, I., Shibata, H. and Ogata, E. (1986) FEBS Lett. 204, 347-351.

Korf, J. and Sebens, J.B. (1979) J. Neurochem. 32, 463-468.

Kreutzberg, G.W., Reddington, M., Lee, K.S. and Schubert, P. (1983)
J. Neural. Trans. 18, 113-115.

Krishna, G., Weiss, B. and Brodie, B.B. (1968) J. Pharmacol. Exp. 
Ther. 163(2), 379-385.

Kuroda, Y. and Mcllwain, H. (1979) J. Neurochem. 22, 691-699.

Lands, A.M., Arnold, A., McAuliff, J.P., Luduena, F.P. and Brown, T.C. 
(1967) Nature 214, 597-598.

Lane, J.D. and Aprison, M.H. (1977) Life Sci. 20, 665-672.

Langer, S.Z. (1977) Br. J. Pharmacol. 60, 481-497.

Langer, S.Z. (1974) Biochem. Pharmacol. 23, 1793-1800.

Langer, S.Z. (1981) Pharmac. Rev. 32, 337-362.

Lasch, P. and Jaboks, K.H. (1979) Naunyn-Schmiedeberg's Arch. 
Pharmacol. 306, 119-125.

Lees, A.J. and Smith, E. (1983) Brain 106, 257-270.

Leslie, S.W., Woodward, J.J. and Wilcox, R.E. (1985) Brain Res. 325,
99-105.

Levitzki, A. (1987) Trends Pharmacol. Sci. 8 , 299-303.

Litosch, I., Wallis, C. and Fain, J.N. (1985) J. Biol. Chem. 260,
5464-5471.

Litosch, I. and Fain, J.N. (1986) Life Sci. 39, 187-194.

Llinas, R., Blinks, J.R. and Nicholson, C. (1972) Science 176, 
1127-1129.



- 160 -

Llinas, R. and Nicholson C. (1975) Proc. Natl. Acad. Sci USA, 72(1), 
187-190.

Llinas, R.R. and Heuser, J.E. (1977) Prog. Bull. 15, 557-687.

Loftus, D.J., Stolk, J.M. and U'Prichard, D.C. (1984) Life Sci. 35, 
61-69.

Logothetis, D.E., Kuarchi, Y., Galper, J., Neer, E.J. and Clapham,
D.E. (1987) Nature 325, 321-326.

Londos, C. and Wolff, J. (1977) Proc. Natl. Acad. Sci., USA, 74, 
5482-5486.

Londos, C., Cooper, D.M.F. and Wolff, J. (1980) Proc. Natl. Acad.
Sci. USA, 77(5), 2551-2554.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. 
Biol. Chem. 193, 265-275.

Lues, I. and Schumann, J.H. (1984) Naunyn-Schmiedeberg's Arch. 
Pharmacol. 325, 42-46.

Marchbanks, R.M. (1967) J. Biol. Chem. 104, 148-157.

Marriot, D., Adams, M. and Boarder, M.R. (1988) J. Neurochem. 50, 
616-623.

Martinson, E.A., Johnson, R.A. and Wells, J.N. (1987) Mol. Pharmacol. 
31, 247-252.

Markstein, R., Digges, K., Marshall, N.R. and Starke, K. (1984) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 325, 17-24.

McCarthy, K.D. and de Vellis, J. (1978) J. Cyclic Nuc. Res. 4, 15-26.

McCarthy, K.D. and de Vellis, J. (1979) Life Sci. 24, 639-650.

McGeer, E.G., Gibson, S. and McGeer, P.L. (1967) Can. J. Biochem. 45, 
1557-1560.

Mcllwain, H. (1977) Neurosci._2, 357-372.

Medgett, I.C., McCulloch, M.W. and Rand, M.J. (1978) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 304, 215-221.

Mestikawy, S.E., Glowinski, J. and Hamon, M. (1983) Nature (lond.) 
302, 820-832.

Meves, H. and Pichon, Y. (1977) J. Physiol. 268, 511-532.

Miach, P.J., Dausse, J.P., Cardot, A. and Meyer, P. (1980) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 312, 23-26.

Middlemiss, D.N. (1988) Trends Pharmacol. Sci. 9, 83-84.



- 161 -

Milligan, G., Gierschik, P., Spiegel, A.M. and Klee, W.A. (1986) FEBS 
Lett. 195, 225-230.

Milligan, G., Streaky, R.A., Gierschik, P., Spiegel, A.M. and Klee, 
W.A. (1987) J. Biol. Chem. 262(18), 8628-8630.

Milligan, G. (1988) Biochem. J. 255, 1-13.

Mitchell, T., Winslow, J.W., Smith, J.A., Seidman, J.C. and Neer, E.J.
(1986) Proc. Natl. Acad. Sci. USA, 83, 7663-7667.

Minneman, K.P. and Molinoff, P.B. (1980) Biochem. Pharmacol. 29, 
1317-1323.

Moran, N.C. (1967) Ann. N.Y. Acad. Sci. 139, 648-652.

Moskowitz, N.S., Puszkin, S. and Schook, W. (1983) J. Neurochem. 41,
1576-1586.

Moskowitz, N., Schook, W. and Puszkin, S. (1984) Brain Res. 290, 
273-280. -----

Mulder, A.H., De Langen, C.D.J., De Regt, V. and Hogenboom, F. (1978) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 303, 193-196.

Muscholl, E. (1978) (ed. Paton, D.M.) 87-110, Pergamon Press, Oxford.

Nachshen, D.A. and Blaustein, M.P. (1980) J. Gen. Physiol. 76, 
709-728.

Nachshen, D.A. and Blaustein, M.P. (1982) J. Gen. Physiol. 79, 
1065-1087.

Nakamura, T. and Ui, M. (1984) FEBS Lett. 173, 414-418.

Neer, E.J., Lok, J.M. and Wolf, L.G. (1984) J. Biol. Chem. 259, 
14222-14229.

Nestler, E.J. and Greengard, P. (1983) Nature 305, 583-588.

Nichols, R.A., Haycock, J.W., Wang, J.K.T. and Greengard, P. (1987)
J. Neurochem. 48,’ 615-621.

Neioullon, A., Cheramy, A. and Glowinski, J. (1977) J. Neurochem. 28, 
819-828. ---

Oke, A., Keller, K. and Adams, R.N. (1978) Brain Res. 148, 245-250.

Orrego, F. (1979) Neurosci. _4^ 1037-1057.

Palfrey, H.C. and Mobley, P. (1987) Neurochem. a practical approach 
(ed. Turner, A.J. and Bachelard, H.S. ) PP161-191, IRL Press, Oxford, 
Washington DC.

Patel, J., Maranges, P.J., Stivers, J. and Goodwin, F.K. (1982) Brain 
Res. 237, 203-214.



- 162 -

Partington, C.R., Edwards, M.W. and Daly, J.W. (1980) Proc. Natl. 
Acad. Sci. USA, 77, 3024-3028.

Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H.M., Nairn, A.C. 
and Greengard, P. (1986) Nature, 323, 312-314.

Pedata, F. Pepeu, G. and Spignoli, G. (1983) Br. J. Pharmacol. 80, 
471-478.

Perkins, J.P. and Moore, M.M. (1973) J. Pharmacol. Exp. Ther. 185, 
371-378.

Phillis, J.W., Edstrom, J.P., Kostopoulos, G.K. and Kirkpatrick, J.R.
(1979) Can. J. Physiol. Pharmacol. 57, 1289-1312.

Pile, A. and Enna, S.J. (1986) J. Pharmacol. Exp. Ther. 237(3),
725-730.

Pollard, J.H. (1977) "A handbook of numerical and statistical 
techniques" Cambridge University Press.

Powel, C.E. and Slater, I.H. (1958) J. Pharmacol. Exp. Ther. ,1,2,2*. 
480P.

Przuntek, H., Heyd, G. and Burger, A. (1971) Eur. J. Pharmacol. 15,
200-208.

Rabe, C.S., Schneider, J. and McGee, R. (1982) J. Cyclic Nucleotide 
Res. 371-384.

Raiteri, M., Marchi, M. and Maura, G. (1983) Eur. J. Pharmacol. 91,
141-143.

Raiteri, M., Maura, G. and Versace, P. (1983) J. Pharmacol. Exp. 
Ther. 224(3), 679-684.

Reichenbacher, D., Reiman, W. and Starke, K. (1982) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 319, 71-77.

Reimann, W., Zumstein, A., Starke, K. and Herting, G. (1979) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 319, 71-77.

Reuter, H. (1983) Nature 301, 569-574.

Robins, T.W. (1988) Nature 336, 207-208.

Rosenthal, W. and Schultz, G. (1987) Trends Pharmacol. Sci. 8 , 
351-354.

Rouot, B.M., U 1Prichard, D.C. and Snyder, S.H. (1980) J. Neurochem. 
34(2), 374-384.

Sabol, S.K. and Nirenberg, M. (1979) J. Biol. Chem. 254, 1913-1920.

Santos, J.N., Hempstead, K.W., Kopp, L.E. and Miech, R.P. (1968) J. 
Neurochem. 15, 367-376.



- 163 -

Sarantos-Laksa, C., Majenski, H., McCulloch, M.W. and Rand, M.J.
(1980) Archs. Int. Pharmacody. Ther. 247, 294-304.

Sasaki, K. and Sato, M. (1987) Nature, 325, 259-262.

Sattin, A. and Rail, T.W. (1970) Mol. Pharmacol. 6, 13-23.

Schlicker, E., Gothert, M. and Clansing, R. (1982)
Naunyn-Schmiedeberg's Arch. Pharmacol. 320, 38-44.

Schmidt, M.J., Schmidt, D.E. and Robinson, G.A. (1971) Science 173, 
1142-1143.

Schmidt, M.J., Hopkins, J.T., Schmidt, D.E. and Robinson, G.A. (1972) 
Brain Res. 42, 465-477.

Schaepp, D.D., Knepper, S.M. and Rutledge, C.O. (1984) J. Neurochem. 
43, 1758-1761.

Schoffelmeer, A.N.M., Werner, J. and Mulder, A.H. (1981) Neurochem. 
m t .  3( 2), 129-136.

Schoffelmeer, A.N.M. and Mulder, A.H. (1982) Naunyn-Schmiedeberg's
Arch. Pharmacol. 318, 173-180.

Schoffelmeer, A.N.M. and Mulder, A.H. (1983) Naunyn-Schmiedeberg's
Arch. Pharmacol. 323, 188-192.

Schoffelmeer, A.N.M. and Mulder, A.H. (1983b) Naunyn-Schmiedeberg's 
Arch. Pharamcol. 323, 188-192.

Schoffelmeer, A.N.M. and Mulder, A.H. (1984) Eur. J. Pharmacol. 105,
129-135.

Schoffelmeer, A.N.M., Wardeh, G. and Mulder, A.H. (1985) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 330, 74-76.

Schoffelmeer, A.N.M., Hogenboom, F. and Mulder, A.H. (1985) J. 
Neurosci. 5(10), 2685-2689.

Schoffelmeer, A.N.M., Wierenga, E.A. and Mulder, A.H. (1986) J. 
Neurochem. 46, 1711-1717.

Schramm, M. and Selinger, Z. (1984) Science 225, 1350-1356.

Schultz, J.E. (1978) FEBS 54, 81-91.

Schultz, J. and Daly, J.W. (1973) J. Neurochem. 21, 1319-1326.

Schultz, J. and Daly, J.W. (1973a) J. Biol. Chem. 248, 843-852.

Schultz, J. and Kleefeld, G. (1979) Pharmacol. 18, 162-167.

Schwabe, U., Ohga, Y. and Daly, J.W. (1978) Naunyn-Schmiedeberg's 
Arch. Pharmacol. 302, 141-151.

Seamon, K.B. and Daly, J.W. (1980) J. Biol. Chem. 256, 9799-9801.



- 164 -

Seamon, K.B., Padgett, W.L. and Daly> J.W. (1981) J. Cyclic 
Nucleotide Res. 7, 201-224.

Seamon, K.B. and Daly, J.W. (1983) Trends Pharmacol. Sci. 4, 120-123.

Seamon, K.B. and Wetzel, B. (1984) Advances in Cyclic Nucleotide and 
Protein Phosphorlyation Res. 17, 91-99.

Shellengerger, M.K. (1971) Neuropharmacol. 10, 347-357.

Shimizu, H., Daly, J.W. and Creveling, C.R. (1969) J. Neurochem. 16, 
1609-1619.

Shimizu, H., Creveling, C.R. and Daly, J.W. (1970) Mol. Pharmacol. 6 , 
184-188.

Shimizu, H. and Daly, J.W. (1972) Eur. J. Pharmacol. 17, 240-252.

Shimizu, H., Takenoshita, M., Huang, M. and Daly, J.W. (1973) J. 
Neurochem. 20, 91-95.

Shimizu, H., Ichishita, H. and Odagiri, H. (1974) J. Biol. Chem. 249, 
5952-5955.

Siegelbaum, S., Camardo, J.S. and Kandel, E.R. (1982) Nature 299, 
413-417.

Silinsky, E.M. (1986) Trends Pharmacol. Sci. 7f 180-185

Solomon, Y., Londos, C. and Rodbell, M. (1974) Anal. Biochem. 58, 
541-548.

Solomon, Y. (1979) Advances in Cyclic Nucleotide Res. Vol. 10 (ed. 
Brooker, G., Greengard, P. and Robinson, G.A.) Raven Press, NY.

Starke, K., Montel, H., Gay, K.W. and Merker, R. (1974) 
Naunyn-Schmiedeberg's Arch. Pharmacol. 285, 133-150.

Starke, K., Borowski, E. and Endo, J. (1975) Eur. J. Pharmacol. 34, 
385-388.

Starke, K. (1979) (ed. Paton, D.M.) PP143-183, Pergamon Press, Oxford.

Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 
13806-13813.

Stiles, G.L. (1986) Trends Pharmacol. Sci. J?, 486-490.

Sugina, H., Oguar, A., Kuda, Y. and Amano, T. (1984) Brain Res. 322, 
127-130.

Suszkiw, J.B. and O'Leary, M.E. (1983) J. Neurochem. 41, 868-873.

Sutherland, E.W. and Rail, T.W. (1958) J. Biol. Chem. 232, 1077-1080.

Sutherland, E., Rail, T.W. and Menon, T. (1962) J. Biol. Chem. 237, 
1220-1227.



- 165 -

Svensson, T.H., Biinney, B.S. and Aghajanian, G.K. (1975) Brain Res.
92, 291-306.

Snyder, S.H. and Goodmann, R.R. (1980) J. Neurochem. 35, 5-15.

Tanaka, C., Fujiwara, H. and Fujii, Y. (1985) FEBS 195, 129-134.

Taube, H.D., Starke, K. and Borowski, E. (1977) Naunyn-Schmiedeberg's 
Arch. Pharmacol. 299, 123-141.

Taylor, C.W. (1987) Trends Pharmacol. Sci. j3_, 79-80.

Taylor, C.W. and Merritt, J.E. (1986) Trends Pharmacol. Sci. 7, 
238-242.

Thomas, J.M. and Hoffman, B.B. (1987) Trends Pharmacol. Sci. 8, 
308-311.

Ueda, H., Goshima, Y. and Misu, Y. (1983) Life Sci. 33, 371-376.

Ui, M. (1984) Trends Pharmacol. Sci. 5^ 277-279.

U'Prichard, D.C. and Snyder, S.H. (1979) Life Sci. 24, 79-88.

U'Prichard, D.C., Greenberg, D.A. and Snynder, S.H. (1979) Mol.
Pharmacol. 13, 454-473.

Van Calker, D., Muller, M. and Hamprecht, B. (1978) J. Neurochem. 30,
713-718.

Van Calker, D., Muller, M. and Hamprecht, B. (1978) J. Neurochem. 33,
999-1005.

Van Meel, J.C.A., de Jonge, A., Timmermans, P.B.M.W.M. and Van 
Zwieten, P.A. (1981) J. Pharmacol. Exp. Ther. 219, 760-767.

Van Orden, L.S., Bensch, K.G. and Giarman, N.J. (1967) J. Pharmacol. 
Exp. Ther. 155, 428-439.

Versteag, D.H., Van der Gugten, J., De Jong, W. and Palkovits, M.
(1976) Brain Res. 113, 563-574.

Voigt, K. and Krishna, G. (1967) Pharmacol. 311-313.

Watterson, D.M. and Vincenzi, F.F. (1980) Ann. NY. Acad. Sci. 356,
P466.

Weimer, N. and Jardetsky, O. (1964) Naunyn-Schmiedeberg's Arch. Exp. 
248, 308-318.

Weinshilboum, R.M., Thoa, N.B., Johnson, D.B., Kopin, I.J. and 
Axelrod, J. (1971) Science 174, 1349-1351.

Weiss, B. and Costa, E. (1968) Biochem. Pharmacol. 17, 2107-2110. 

Well, J.N. and Kramer, G.L. (1981) Mol. Cell. Endocrin. 23, 1-9.



- 166 -

Werner, J., Van der Lugt, J.C., De Langen, C.D.J. and Mulder, A.H. 
(1979) J. Pharmacol. Exp. Ther. 211, 445-451.

Werner, J., Schoffelmeer, A.N.M. and Mulder, A.H. (1982) J.
Neurochem. 39, 349-356.

Westerink, B.H.C. and Mulder, T.B.A. (1981) J. Neurochem. 36, 
1449-1462.

Westfall, T.C., Kitay, D. and Wahl, G. (1976) J. Pharmacol. Exp.
Ther. 199, 149-159.

Wikberg, (1978) Acta. Physiol. Scand. 103, 225-239.

Williams, L.T. and Lefkowitz, R.J. (1979) P157, Raven Press, NY.

Williams, M. and Risley, E.A. (1980) Eur. J. Pharmacol. 64, 369-370.

Williams, M. and Risely, E.A. (1980) Proc. Natl. Acad. Sci. USA, 77, 
6892-6896.

Wojcik, W.J. and Neff, N.H. (1984) Mol. Pharmacol. 25, 24-28.

Wolff, D.J. and Brostrom, C.O. (1979) Adv. Cyclic Nucleotide Res. 11, 
27-88.

Wood, C.L. Arnett, C.D., Clarke, W.R., Tsai, B.S. and Lefkowitz, R.J. 
(1979) Biochem. Pharmacol. 28, 1277-1282.

Wooten, G.F., Thoa, N.B., Kopin, I.J. and Axelrod, J, (1973) Mol. 
Pharmacol. 9, 178-183.

Wu,Ph., Phillis, J.W., Balls, K. and Rinaldi, B. (1980) Can J. 
Physiol. Pharmacol. 58, 576-579.

Wu, P.H., Phillis, J.W. and Thierry, D.L. (1982) J. Neurochem. 39, 
700-708.

Yamazaki, S., Kanatada, T. and Ui, M. (1982) Mol. Pharmacol. 21, 
648-653.

Yatani, A., Tsuda, Y., Akaibe, N. and Brown, A.M. (1982) Nature 296, 
169-171.

Young, W.S. Ill and Kuhar, M.J. (1979) Eur. J. Pharmacol. 59, 317-319.

Young, W.S. Ill and Kuhar, M.J. (1980) Proc. Natl. Acad. Sci. USA,
77, 1696-1700.

Zanella, J. Jr. and Rail, T.W. (1973) J. Pharmacol. Exp. Ther.
186(2), 241-252.

Zimanyi, I., Folly, G. and Vizi, E.S. (1988) J. Neurosci. Res. 20, 
102-108. '

GLASGOW fi 
UNIVERSITY 

| LIBRARY


