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SUMMARY i

Summary

There are many methods to describe manipulator dynamics, the iterative Newton-
Euler dynamic formulation and the Lagrange-Euler formulation are two of them.
Between these two well i(nown methods, the former has been regarded as computation-
ally efficient, and the latter as understandable in representing manipulator dynamics. It
is hard and dull to generate robot manipulator dynamic equations manually from either
the iterative Newton-Euler dynamic formulation or the Lagrange-Euler formulation.
Therefore, the two general programmes, which are based on these two formulations
respectively and suited to rotary joint manipulators, have been written in REDUCE.
After running the programmes, we find that the calculation time for generating the
dynamic equations of a rotary joint manipulator by the programme based oﬁ the
Lagrange-Euler formulation is much shorter than the one by the programme based on

the other.

Robot manipulator dynamic equations are a set of differential ones. Therefore,
the simulation of the motion of a rigid manipulator belongs to mathematical modelling
problems. It requires numerical integration.

Robot validation is a new area of research. To model the general dynamic charac-
teristics of flexible links and to examine the friction effects on DC motors are a contri-
bution of this work.

We have presented four different analytic methods to set up the dynamic model
of one flexible link manipulators. The method based on vibration theories to generate
the exact model, which is described by transfer functions, is efficient. There are a

number of simplifications used in deriving the dynamic equations of one-link flexible
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manipulators by three other approximate methods: one is derived in time domain, one
is derived by using ‘complete set of functions’ and the Lagrange-Euler formulation,
and one is derived by adding‘ same stiffness springs to connect equal length rigid parts
to approximate a flexible link. However, the corresponding methods are found to be
reasonable by comparing the frequency responses of the models obtained by them with

the one obtained by experimental test.

The friction effects on DC motors include two parts: one is the static effect which
causes the system to have a positive or a negative constant resistant torque which
depends on the rotation direction of the motors shafts, and the other is the dynamic
effect which causes the system to have a friction torque which is proportional to the
rotation speed. These friction effects have been verified by the system parameters

identified by Least-squares method.

In summary, the manipulator dynamics generation programmes, the simulation
method and the robot validation work are shown to be satisfactory. Computer simula-

tion is efficient for the preliminary research on robot manipulators.
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Chapter 1. Introduction

1. Introduction

1.1. Motivation

An industrial robot manipulator is a mechanical device whose purpose is to
enable its end point — equipped with a gripper or a tool — to follow a desired trajec-
tory in order to perform a given task. The manipulator can generally be thought as a
chain of structurally rigid links interconnected by rotary or sliding joints, each joint

can be controlled by its own actuator.

It is an efficient way for the researchers who study in the field of mechaniéal
manipulators to work with a simulated manipulator by using computers. Craig’s book
[1] and Fu’s book [2] describe a basic approach to set up the dynamic equations of a
manipulator by using the iterative Newton-Euler dynamic formulation. Nicosia [3]
gives.a method to obtain manipulator dynamic equations by using the Lagrange-Euler
formulation. To generate manipulator dynamic equations from both of these two for-
mulations by hand is dull and arduous. Is it possible to solve the problem by
machines? The SAM (System Algebraic Manipulation) language MACSYMA [4] and
REDUCE [5] can give a positive answer.

For today’s manipulators, the position of the end point is controlled by "dead-
reckoning” that is, by commanding the appropriate joint-angles derived through a real-

time inverse manipulator kinematics, and then assuming that the links are stiff enough

so that the end point will be automatically in the intended location.
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Instead of this conventional dead-reckoning method, a new concept of end point
position feedback is developed resently for the control of flexible manipulators. The
new concept is that the position of the end point is sampled directly by a sensor whose
output is then fed back to the joint actuators with a proper servo compensation. End

point sensing has two main advantages over the dead-reckoning.

First, it improves the static and dynamic position accuracy of the end point

through feeding back the quantity to be controlled to the actuators.

Second, with end point sensing, the links do not need rigid any more. The mani-
pulator can be built with light links. The moments of inertia at each joint are smaller
so that smaller actuators can be used or higher performing speed can be achieved. Also
it becomes possible to use direct drives instead of gear driven motors, with the advan-

tages of manufacturing simplicity, actuator linearity and lower cost.

Lighter links will cause the system to be more flexible, even to vibrate. There-

fore, to realise the characteristics of flexible links is placed on agenda.

Robot validation is a newly developed research aspect. It deals with the problems
of searching and arranging theoretical methods to explain practical phenomena. The
existed do not satisfy robot developments. One example is that, according to classical
dynamics, manipulator designers must face the problem of faster and faster perfor-
mance of its end point demanded by working environments against the heavier and
heavier devices chosed by safety requirements. To realise the characteristics of flexible

links and to search the friction effects on DC-motors are based on this idea.

1.2. Literature

Most research in the field of flexible manipulators has focused on the dynamic

modelling aspects. Relatively fewer references are on the control design aspects.

Much of the literature has been devoted to producing algorithms to model open-

loop chains of rigid and elastic bodies. This thesis first deals with the problem of
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modelling rigid link manipulators, later develops the idea of adding springs into rigid

links to approximate the real flexible link of manipulators.

Book [6] [7] applies a transfer matrix method to describe the elastic bending
motion of a two-link planar elastic arm in the frequency domain, for a given relative

configuration of the link and for small angular velocities.

Schmits [8] and Skaar [9] use a fourth order partial differential equation to
develop the transfer functions for one flexible link manipulators. The bound conditions
are chosen as the same as the ones of cantilevered beams’. They all only give the
definitions of the transfer functions.

Nicosia [3] provides the Lagrange energy method to derive multi-link flexible
manipulator dynamic equations in time domain. He establishes two generalised (or
Lagrangian) coordinates: one denotes the relative displacement between connected
links when the elastic deformation is neglected, the other characterises the shapes of
the links. The "complete set of function” is used to approximate the dynamic equa-
tions.

To our knowledge, most of the aﬁthors have considered proportional and deriva-
tive (PD) joint angle feedback. With a PD feedback for each joint, Book [6] shows
that the maximum attainable closed loop bandwidth for a two-link planar manipulator

is 0.5 Q , where Q is the system first vibration frequency with both joints locked.

Maizza-Neto [10] discusses the use of a pole placement algorithm to obtain full-
state feedback gains for a 12th order linear model of the same two-link planar manipu-
lator as Book’s.

More detailed references are given in the appropriate chapters.
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1.3. Thesis outline

This thesis is about the establishment of dynamic equations of rotary joint mani-
pulators, the simulation of the dynamic equations and the validation of robot manipula-

tors.

The first part of the thesis is on the aspects of using REDUCE to set up manipu-
lator dynamic equations. Both the iterative Newton-Euler dynamic formulation and the
Lagrange-Euler formulation are described and applied to illustrative examples. A big
part of the thesis is on the research of robot validation. Some vibration theories are
used for obtaining the transfer functions of one-link flexible manipulators. The simu-
lated one-link elastic beams’ natural frequencies correspond to the theoretical calcu-
- lated ones and the ones from the expeﬁment. After that, the basic idea of adding
springs to approximate real flexible links is developed. Another validation work is to
realise the friction effects on DC motors. In the discussion and éonclusion part, we dis-
cuss the possibility of the application of the validation wofk to the control of manipu-

lators.

To review the Chapters briefly, the programmes in REDUCE for generating the
dynamic equations of rotary joints manipulators are presented in chapter 2. Chapter 3
describes a method to simulate the motion of rigid manipulators using SIMNON
language. The characteristics of flexible links are presented and simulated in chapter 4
and chaﬁter 5. Chapter 6 presents the friction effects on DC-motors. The final

Chapter, Chapter 7, gives the discussion and the conclusion of the thesis.
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Chapter 2. Dynamic Equations of Rigid Manipulators

2. Dynamic Equations of Rigid Manipulators

2.1. Introduction

Manipulator dynamics deals with the mathematical formulations of equations of
robot arm motion. The dynamic equations of motion of a manipulator are a set of
mathematical equations describing the dynamic behaviour of the manipulator. Such
equations are useful for compilter simulation , the design of suitable control strategies,

and the evaluation of robot arm kinematic design and structures.

Formulation of manipulator dynamics in relation to computational efficiency and
control analysis has been an active research topic. Between the two well-known formu-
lations, the iterative Newton-Euler dynamic formulation and the Lagrange-Euler formu-
lation, the former has been regarded as computationally efficient, and the latter as per-
ceptible in representing manipulation dynamics. However, the comparison of computa-
tional efﬁcienéy has been based on the premise that the dynamic equations have been
expressed in vector / matrix form and a numerical approach used to solve the joint
forces (or torques). If the vector / matrix equations were expanded symbolically to
scalar form, the expanded scalar equations from these two formulation would be
equivalent. The expanded scalar equations would not only provide insight into under-
standing of the system dynamics, but also result in faster computation than the numeri-
cal approach based on either of the formulations. The saving computation cost would
be quite substantial if most of the matrices in the system equations were sparse [11].

The matrices in manipulator dynamic equations are usually sparse.
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The objective of this chapter is to provide a systematic methodology for the
dynamic equations of rigid manipulators. It is divided into four sections, Introduction,

Dynamics, Programmes, and Conclusion.

In the dynamic section, two formulations are used to present the equations of
motion for a manipulator. It is shown how the equations for position, velocity,
acceleration of the link coordinates can be used in the Newton-Euler forward and
backward recursive equations of motion of a free rigid body to obtain the model of an
open-chain manipulator. It also gives the Lagrange-Euler formulation ( or the Lagrange
energy method ) to get the torque and motion equations.

The programmes section gives two general programmes, which are based on the
two formulations described in the following section, for calculating the torques acting

on rotary manipulators.

2.2. Dynamics

There are two aspects which relate to manipulator dynamics. In the first, the tra-
jectory of each joint and its first and second derivatives are given, the required torque
on the joint can be found. This dynamic formulation is useful for manipulator controls.
The second deals with the approach to obtain the motion of the joints forced by given

torques. This is useful for manipulator dynamic simulations.
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2.2.1. Iterative Newton-Euler dynamic formulation

All manipulators can be classified into one of two categories: those that contain
closed kinematic loops and those that do not ( open-chain mechanisms ). In this sec-

tion, we only discuss the cases of open-chain type manipulators.

The complete algorithm for computing joint torques from the motion of the joints
is composed of two parts. First, link velocities and accelerations are iteratively com-
puted from link 1 out to link n and the Newton-Euler equations are applied to each
link. Second, forces and torques of interaction and joint actuator torques are computed
recursively from link n back to link 1. The equations are summarised below for gen-
eral rigid manipulators.

Considering the problem of computing the torques that correspond to a given tra-
jectory of a manipulator, we assume the position, velocity, and acceleration of the
joints, q, ¢, 4, are known. With this knowledge and the one of the kinematics and
mass distribution information of the manipulator, we can calculate the joint torques

which cause the particular motion [1] [2].
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Forward equations: i = 1, 2, ..., n, to compute the link motions ( kinematics ).

If link i is rotational
o =R (0 + Zo g ), . (2-1)
o =R LGy + Zogp + o1 xZo4; ], (2-2)
v = xp®; + of; x(of; xp™;) + R, (2-3)
at; =0 xst; + of; x(0f; xsi;) + v (2-4)
If link i is translational
©'; = R 407, | (2-5)
o = R0, ~ (2-6)

v =R (Zogi + VL) + @' p™y + 200 X (R Z6g; ) +
o'y x (o' xp™;), @7
al; =@ x5t + o x(of; x5t ) + v (2-8)

Backward equations i = n, n-1, ..., 1, to compute the joint torques corresponding to

link motions ( dynamics ).
F': =ma‘,, , (2-9)
fh=Raf i + FY, (2-10)
ni; = R (n ¥y + pPY <L)+ (™ s )X FlL o+

I, + o) x(I40f), 2-11)
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If link 1 is rotational
t=(n'; (R _1Zy) + big; (2-12)

If link i is translational

T=(f5) (R L4Zy) + big; (2-13)

Terminology

n = number of degrees of the manipulator

q = n x 1 vector of joint variable positions

g = n x 1 vector of joint variable velocities

q = n x 1 vector of joint variable accelerations

R'; = 3 x 3 transformation matrix for link jth coordinates reference to link ith
coordinates

o'; = 3 x1 vector, angular velocity of link ith coordinates

@; = 3 x1 vector, angular acceleration of link

vi; = 3 x 1 vector, linear velocity of link ith coordinates

v, = 3 x 1 vector, linear acceleration of link ith coordinates

a‘; = 3 x 1 vector, linear acceleration of link ith mass center

f% = 3 x1 vector, force exerted on link i by link i-1

n'; = 3 x 1 vector, moment exerted on link i by link i-1

F'; = 3 x1 vector, total force exerted on link i

Ni; = 3 x1 vector, 'total moment exerted on link i

m; = total mass of link i

s'; = position vector from the link ith mass center to the origin of the coordi-

nate system (x;, y;, z;)

p*: = the origin of the ith coordinate system with respect to the (i-1)th coordi-

L
nate system

I’; = inertia matrix of link i about its mass center with reference to base
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coordinate system (x, Yo, zo)

Z; = vector (00 1)7

The effect of gravity loading on the links can be included quite simply by setting
v% = G, where G is the gravity vector. This is equivalent to saying that the base of the
robot is accelerating upward with 1G acceleration./ This fictitious upward acceleration
causes exactly the same effect on the links as gravity would. So, with no extra com-

putational expense, the gravity effect is calculated.

It is often convenient to express the dynamic equations of a manipulator in a sin-

gle equation which hides the details, but shows some of the structure of the equations.

When the Newton-Euler equations are evaluated symbolically for any manipula-

tor$, they yield the dynamic equations which can be written in the form:

T=M@)q + 0@.9) (2-14)

where M(q) is the nxn mass matrix of the manipulator, Q(g.¢) is an nx1 vector of cen-

trifugal, Coriolis and gravity terms.

2.2.2. Lagrange-Euler formulation

The general motion equations of a manipulator can conveniently be expressed
through the direct application of the Lagrange-Euler fonﬁulaﬁon to nonconservative
systems. Many investigators utilise the Denavit-Hartenberg [12] matrix representation
- to describe the special displacement between the neighbouring link coordinate frames
to obtain the link kinematics information, and they employ the Lagrangian dynamics
technique to derive the dynamic equation of a manipulator. The direct application of
the Lagrangian dynamics formulation, together with the Denavit-Hartenberg link coor-
dinate representation, results in a convenient and compact algorithmic description of

the manipulator equations of motion. The algorithm derived from the Lagrange-Euler
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equation is expressed by matrix operations and facilitates both analysis and computer

implementation.

The derivation of the dynamic equations of an n degrees of freedom manipulator

is based on the understanding of the Lagrange-Euler equation:

— (== - =)=1 i=12.,n (2-15)

where
L = Lagrange function = kinetic energy K - potential energy P
K = total kinetic energy of the robot arm
P = total potential energy of the robot arm
g; = generalised coordinates of the robot arm
¢; = first derivative of the generalised coordinates, g;

7; = generalised force ( or torque ) applied to the system at joint i to drive link i

From the above Lagrange-Euler equation, one is required to properly choose a set of
generalised coordinates to describe the system. Generalised coordinates are used as a
convenient set of coordinates which completely describe the location (position and
orientation) of a system with respect to a reference coordinate frame. For a simple
manipulator with rotary joints, since the angular positions of the joints are ready avail-
able because they can be measured by potentiometers or encoders or other sensing
devices, they provide a natural correspondence with the generalised coordinates. This

in effect, corresponds to the generalised coordinates with the joint variable defined in

each of the 4x4 link coordinate transformation matrices.

According to the book [2], the total kinetic and potential energy of a robot mani-

pulator are:



DYNAMIC EQUATIONS OF RIGID MANIPULATORS 12

n i i
K = Z ZKcipr (q)q.pdr (2-16)
i=lp=1r=1
and
d =0
P =3 - mgF; 2-17)

where Kc;,,(¢) is a function of ¢, n is the link number, m; is the ith link mass, g is a
gravity row vector expressed in the base coordinate system, 7°; is a vector from the
origin of the base coordinate frame to the ith link mass center and expressed in the

base coordinate system.

From the Lagrange-Euler equation and the kinetic and potential energy equations,

we derive the motion equation in the form

D@)q + H(g.q)q + Clgq) =1 (2-18)

where

D(q) is an nxn inertial acceleration-related symmetric matrix whose elements are

o’k
04;0q;

d@.j)=d@i) = (2-19)

H(g,3) is an nxn nonlinear centrifugal and Coriolis force vector-related matrix whose

elements are

02K s 0%k
04;9¢; 0g;0q;

h@.j) = =h(j.i) (2-20)

C(q.4) is an nx1 gravity loading force vector whose elements are

JdK -P)

o (2-21)

c@i)= -
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Generally, the total manipulator’s kinetic and potential energies can be symboli-

cally evaluated

N
K=YK; P=3YP,.
=~

where
1,LG) . . .
K=~ fo l pi.(xi? + 37 + 2ddl

LG)
P, =gy piZid

p; = mass per unit length of the ith link
L) = length of ith link

So far, the each link’s torque of a manipulator can be calculated in symbolic form
from the equations described above. It takes long time to find the torque equations by
hand. Moreover, the model we chose may change. In order to simplify this stage

work, we write programmes in REDUCE to generate the torque equations symboli-

cally.

2.3. Programmes

Manual symbolic expansion of manipulator matrix equations is tedious, time-
consuming, and error-prone. The equations generation process consists of many vector
/ matrix manipulations, and the generated equations may consist of hundreds of terms.
Automatic derivation of equations using a computer is desirable even for simple mani-
pulators. The expense of computation is justifiable considering the elimination of the

manual derivation process and the saving of computation costs in the later numerical
computation phase.

Various computer programmes for deriving manipulator dynamic equations have

appeared in the literature. Some of them are written in general programming languages
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such as FORTRAN [13] or PL/I [14]; other are written in Lisp-based symbolic algebra
languages such as MACSYMA [15], Both the Newton-Euler and the Lagrange-Euler

formulations have been used for the equation derivation.

2.3.1. Introduction to REDUCE

REDUCE is a system for carrying out symbolic algebraic operations accurately,
no mater how complicated the expressions become. It can manipulate polynomials in a
variety of forms, both expanding and extracting various parts of them as required.
There are many other functions in REDUCE such as MATRIX CALCULATIONS,
PROCEDURES.

REDUCE is designed to be an interactive system, so that the user can input an
algebraic expression and see its value before moving on to the next calculation.
REDUCE can also be used m batch mode by inputing é sequence of calculations and
getting results without the necessity of interaction during the calculations.

Now we introduce the programmes for calculating the torgues of rotational mani-
pulators using the iterative Newton-Euler dynamic formulation and the Lagrange-Euler

formulation respectively.

2.3.2. The general programmes for calculating the torques acting on rotational
manipulators

After considering the structure of the iterative Newton-Euler dynamic formulation,
the Lagrange-Euler formulation and the functions provided by REDUCE, we have

written the general programmes for calculating the torques of rotational manipulators.
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2.3.2.1. Link coordinate position and orientation

The link coordinate is the position of the joint variable. For rotational joint, its
position is measured in radians. To each link of the manipulator is attached a right-
handed coordinate system composed of three orthogonal unit vectors. These coordinate
systems are called link coordinates, and their position and orientation are defined in

terms of 4x4 link coordinate transformation matrices.

One particularly suitable method for assigning link coordinates is attributed to
Hartenberg and Denavit [11]. In this method four parameters are used to describe the
position of successive link coordinates, Figure 2.1. The parameters are a, «, d and 6.

The definitions of these parameters are:

a; = the shortest distance between Z; and Z;_;

o; = the angle between Z; and Z;_;
d; = the shortest distance between X; and X;_;
0; = the angle between X; and X;_;
Only one of ihese four parameters is variable and is denoted by g;. For rotational

joints manipulators, 6; is the joint variable and 4;, g;, and o; are constants.

X

Axis of rotation ( or
transiation) of
jointi+ 1

Axis of rotation (or

translation) of joint { -

|

I

L,

-
~

Fig.2.1 Parameters relating adjacent link coordinate systems.
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2.3.2.2. Notes for the two programmes

Firstly, we introduce the programme based on the iterative Newton-Euler dynamic
formulation. This programme is written in REDUCE. It can calculate all sorts of rota-
tional manipulators’ torques. We write it in the form of procedure. The variables are

all in matrix form.

In the programme, everything from the symbol % to the end of the line on which
it api)ears is ignored as comments. The programme can be divided into three pafts: the
part which defines and inputs variables before the procedure, the outward recursive
loop part which calculates kinematics, and the inward recursive loop part which com-
putes dynamics in the procedure. In order to correspond with the symbols in the

Newton-Euler equations, we choose the variables symbolically.

Secondly, the programme based on the Lagrange-Euler formulation has some
differences from the one above. The main programme in PROCEDURE form is not
valid for IBM 3090. Therefore, the main programme is written in the form a sequence

of commands.

Trying to write the programme efficiently and clearly, we write the Vector-
CrossProduct function and Transformation function in PROCEDURE form. The vari-

ables are all meaningful words.

It is difficult to say which programme is better. The Newton-Euler one has a clear
outline. One can check any calculation steps when the programme is running. Another
advantage is that it is conducive to the design of a manipulator because of knowing the
kinematics. The Lagrange-Euler one is more efficient to generate the dynamic equa-

tions, because it does not need to calculate the acceleration and the force of each link.
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2.3.2.3. Advantages of symbolic expansions of dynamic equations

By expanding the vector / matrix dynamic equations symbolically, insights on the
dynamics of a manipulator can be generated in two ways:
(1) examining directly the terms of the dynamic equations, and

(2) using the dynamic equations to simulate individual force components.

Another merit of expanding the vector / matrix equations of motion is that, if
most manipulator links are symmetric in geometry, the resultant equations are more
computationally efficient even than the efficient iterative Newton-Euler dynamic for-

mulation of manipulator dynamics in vector / matrix form.

This section has presented the techniques and programmes for deriving the scalar
form of manipulator dynamic equations by symbolically expanding the iterative
Newton-Euler dynamic formulation and the Lagrange-Euler formulation using
REDUCE. The automatic equation derivation process is highly desirable because it not
only eliminates the time-consuming, error-prone manual derivation process, but also
generates equations which are both perceptible and more computational efficient than

the numerical approach.

2.3.3. An example of closed form dynamic equations

Now we adopt the equations which are described in 2.2 to generate the torque

equations in two ways: one is by hand, the other is by running the programmes.
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2.3.3.1. The torques are calculated by hand

Here we first compute the closed form dynamic equatibns for the 2-link planar
manipulator shown in Figure 2.2. For simplicity, we assume that the mass distribution
is extremely simple: all mass exists as a point mass at the distal end of each link.

These masses are m1 and m?2.

7777777777777 7777 77777777777

FIGURE 2.2 Two-link with point masses at distal end of links.

By using Newton-Euler dynamic formulation, the joint torques are calculated:

T = m2122(91 + 92) + "!2.’1.’2(:2(291 + 92) T (i‘i]_ + 7712)112é1 - mzl'IZzSzég'
- 2m21112S26192 + mzlngu + (ml + m2)llgC1 (2-22)
Ty = Mol yloC o0y + Mol l,S,07 + molagCry + mol2 (B + 6,) (2-23)

From these and equation (2.1) we can get M and Q:

- M(e) _ 122m2 + 21112m2C2 + 112(m1 + mz) 122m2 + lllzm2C2
122m2 + 1112m2C2 122m2
008 = | mol 155247 - 2m211125241422 + mologCig + (my + mz)118C1]
’ mol1l28S2q1 + malogCoy

This example is taken from the book "Introduction to Robotics Mechanics &

Control” by John J. Craig. The purpose of doing this is to check the results of the
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programmes.

23.3.2. The torques obtained by running the programmes

The torques of the manipulator which is described in 2.3.3.1 can also be obtained

by running the programmes. The form M (6) and Q(8.,6) are:

M(1,1) = 2myl l,c080, + mylE + my(? + 12)
M(1,2) = myll,c0s0, + myl?

M(2,1) = myll,c0s0, + myl?

M@22) =myl3?

Q1) = —myl 1526, + 6,)0,5i00, + molagcos(By + 0y + (my + my)l gcosd,
Q) = mylyl,0%in0, + mologcos(®; + 6,)
and

d(1,1) = 2m,ll,c0s0, + milE + my(IE +13)
d(1,2) = myl,l,c080, + myl2

d(2,1) = myl11,c080, + myl?

d22) = myl}

h(1,1) = —2m,l,1,8,sin6,

h(1,2) = —myl,1,8,sin6,

h(2,1) = mol1,0,sin6,

h272) =0

c(1) = mylogcos(8, + 0y + (m; + my)l,gcosH,

c(2) = mylogcos(9, + 6,
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After having compared the results of M and Q with the ones in 2.3.3.1, we find
the results are correct. Moreover, the programmes are very efficient. It only takes
several minutes to obtain the results.

We have also verified the examples described in the book "Robotics: control,

sensing, vision, and intelligence" by K.S. Fu, R.C. Gonzales and C.S.G. Lee.

2.4. Conclusion

Two different formulations and the related REDUCE programmes for robot arm
dynamics have been presented. The iterative Newton-Euler dynamic formulation is
very efficient, and the Lagrange-Euler forrriulation has a well structured form. After
running the two programmes, we find the one derived from the Lagrange-Euler formu-
lation is more efficient because it does not need to calculate the acceleration and the

force of each link.
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Chapter 3. Simulation of Rigid Manipulators

3. Simulation of Rigid Manipulators

3.1. Introduction

To model a system is to replace it by something which is (a) simpler and / or
easier to study, and (b) equivalent to the original in all important respects. If the real
system interacts with the outside world in some way, that interaction must be reflected
in the model. The (simplified) logical equivalent is subjected to the same, or similar,
external stimuli as the original. It then produces outputs which may be interpreted as
the system’s reaction to the stimuli (see figure 3.1). Thus, by varying the model inputs

and examining the corresponding outputs, one attempts to study the behaviour of the

real system.
External ——— " Real [~ Observable
stimuli -===-===- 5 system  [-------- = reactions
Inputs representing ——————= Logical Outputs indicating
external stimuli ~-"""—"-% equivalent [ """ "" ~ observable reactions

Fig. 3.1 Simulation process
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The first and most basic distinguishing feature of a model is the nature of the log-
ical equivalent used. That may be a physical system, in which case we talk of physical
modelling, or it may be a set of abstract variables whose behaviour is controlled by a

number of assumptions and equations; then the model is said to be mathematical.

Physical modelling belongs primarily, although not exclusively, to the engineering
domain: applications rang from car and ship design, through aircraft testing in wind
tunnels, to the training of astronauts in centrifuges. The mathematical modelling
methods can be divided into ‘analytical’ and ‘numerical’, depending on the approach
to the solution. An analytical solution provides a closed-form expression for the
desired system characteristics in terms of the defining parameters. The numerical
methods are divided further into ‘deterministic’ and ‘stochastic’. The terms ‘deter-
ministic’ and °‘stochastic’ refer, respectively, to the absence or presence of random
variables in the model. These may, or may not, reflect the absence or presence of ran-

dom phenomena in the system being modelled [16].

The robot manipulator dynamics described in chapter 2 are structured in
differential equations. The simulation of these equations belongs to mathematical

modelling.

SIMNON is a special language for solving difference and differential equations
and for simulating dynamical systems. The systems may be described as interconnec-
tion of subsystems whose behaviour are characterised by differential equations. Models
of this type are common in mathematics, biology, economics and in many branches of
erigineen'ng, especially in robot manipulators. SIMNON has an interactive implementa-
tion which makes it easy for a user to work with the system. The user interacts with
the system by typing commands. Parameters, initial conditions and system descriptions
can be modified interactively. The results are displayed as curves on the screen. The

layout can be easily modified and the results can be documented using a hard copy

facility.
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The main characteristic of SIMNON is that it can be used in a very simple way
to find solutions to difference and differential equations. So it can be used as a tool to

simulate robot manipulator dynamic equations.

This chapter presents a method which specially suits robot manipulator dynamics
simulation. The dynamics of a three-link manipulator, which is calculated by running
the programmes in chapter 2, is simulated by using SIMNON. Several different cases

are discussed in the simulation.

3.2. Simulation method

In order to design a controller, one needs to model a system first. Robot dynamic
simulation should enable the real performance of a robot to be reproduced. We use the
simulation method to simulate a simplified three-link manipulator which is described in
Fig. 3.3.

To simulate the motion of a manipulator, for example the first three links of
MA3000, we could make use of the dynamic model which can be obtained by running
the programmes. Given the dynamics written in closed form as in equation (2-14), the
most common way of simulating the motion is to solve for the acceleration (which

involves inverting M (g)):
§=M@)"'[t-0@.9)] (3-1)

We may then apply any known numerical integration techniques to integrate the
equations forward in time. SIMNON provides a software for solving difference and
differential equations. By using SIMNON, we can calculate the joint output ¢, ¢, and
¢ when we know the torque input t and initial conditions. Usually the initial condi-

tions are:
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q0)=q0 4¢0 =0, 4O=0 (3-2)

The above process can be summarised in the block diagram:

Robot - 1
T e e e pme— e q -
Manipulator - .

Fig. 3.2 Input 1, output ¢, ¢, 4.

The method to perform numerical integration is fixed in the SIMNON software.
Integration is a discrete numerical calculation process. The accuracy is depend on the
size of time interval Ar. It should be sufficiently small that breaking continuous time
into these small increments is a reasonable approximation. SIMNON can choose At
automatically and manually during the simulation process. So, the simulation accuracy

can be controlled by setting a reasonable small time interval Ar.

3.3. The model of three-link manipulator

The example of the two-link planar manipulator shown in figure 2.2 is too simple
to imply the power and convenience of the method for the simulation of rigid manipu-
lators. So, we apply this method to sirﬁulate a three-link manipulator which is shown

in figure 3.3 by using SIMNON language.
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3.3.1. Dynamic equations
We have run the programme which is based on the iterative Newton-Euler

dynamic formulation to generate the dynamic equations of the three-link manipulator.

SHOULDER

Fig. 3.3 Three-link manipulator

A feature of REDUCE is that it can handle a mixture of symbolic and numerical
values. This is illustrated by running the procedure ‘NewtonEuler’ firstly with sym-

bolic values for the masses and link lengths, and secondly with numerical values.
a) Using symbolic values:
In our programme, the variables are in the general symbolic form except the

alpha, alpha = (%, 0, 0)7, because we know it.

The torques of each link’s joint which are in the form of M(g), Q(q.4) can be
obtained, where g = (8, 6,, 83)7, ¢ = (8;, 6,, 85)T are vectors of 6 and 8.

M@1,1) = ((m3lF - 43, + 413,)CO82(0, + 83) + (mal? + dmjl} - 4I,, + 415,)COS20, +
4mlglsCOSBs + 4malolsCOS(20; + 03) + mol? + dmsld + mal? + 81, + 4l + 4l + 4l5 +
45,) /8

M(12) =0

M13)=0



SIMULATION OF RIGID MANIPULATORS 26

M@21) =0
M(22) = (4m3lylsC0803 + myld + 4mald + myl? + 4y + 415;) [ 4
M(2,3) = (2m3lyl5c080; + m3l? + 4l5,) [ 4

M@3,1) =0

M(3,2) = (2malol3c0803 + mal? + 413,) / 4

M(33) = (mal} +4l3,) /4

Q(1,1) = —~((mal? - 413, + 4I5,)(6; + 0:)9,C082(8; + 03) + 2m3l5l5(20, + 6:)0,5in(26, + 03)
+ (mold +4mald - 41, + 415,)8,0,5i020, + 2m;l,140,0,5in0;) / 4
Q@2,)) = (Ml - 4Ia, + 4I3,)67sin2(0, + 63) + Amalol,H7SIn(20, + 05) -
4mall3(20, + 05)0,8in0; + 4mslsg COS(O, + 03) + 4(my + 2m3)l,gCOSH,) / 8
Q@3,1) = ((mal? - 44, + 415,)07sin2(0, + 03) + 2m3l,l30725in(20, + 05) +
2malol3(0F + 203)sin0; + 4mslsg cOS(O, + 03) / 8
b) Using numerical values:

m1112

Let my = 25kg, my = Skg, m3 = 10kg, I, =03m, I, =0.5m, I3 = 04m, I, =1, = '—1—2—,

M2122 : M3132 .
Iy =Iy =13 =0,15 =1y, = —5 Isy =15, = —5 > Tun the programme again, then the

torques in the form of M(¢) and Q (g ,qj are:

M (1,1) = (4000C0S(20; + 05) + 1066C0S2(8, + 6s) + 5833C0820, + 400008, + 6899) /
4000

M(12)=0

M(13)=0

M@21) =0

M (2,2) = (4000c0s6; + 6899) / 2000

M(2,3) = (1000cos8; + 533) / 1000

M@3B1)=0

M (3,2) = (1000c0s6; + 533) / 1000
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M (3,3) = 533 / 1000

T Q(L1) = —((40008, + 200003)8;  Sin(20, + 0;) +  1066(6, + 6)0;5in2(6, + 05)  +
58336,0,5in20, + 20008,8,5in65) / 2000
0 (2,1) = ((4000sin(20, + 63) + 10665in2(6, + 05) + 58335in20,)67 -  80008,8,sind; -
400067sin0; + 800002 COS(6, + 63) + 25000g COSO,) / 4000
0(3,1) = ((1000sin(26, + 0;) + 533sin2(8, + 0s) + 1000sin8;)82  +  20000Zsin6;  +

4000g cOS(6, + 03) / 2000

Note that the resulting equations are much simplified compared with the symbolic
form, but this is at the expense of not being able to change masses in the simulation

itself.
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3.3.2. Simulation process

Using the summarised block described in figure 3.2 to simulate the three-link

manipulator, we have the structure block for the simulation of equation (3-1):

: |

|

M(g)™!

- i=M@ ' [t-0@d)] —e— i

Q0(q.4)

_ Fig. 3.4 Structure block of simulation process
Three programmes are used for calculating the three-link manipulator dynamic

equations in the form of equation (3-1). Under given initial conditions, the initial
values of M(¢) and Q(¢.4) are obtained in the second programme (CONTINUOUS
SYSTEM CalculateMQ). Under input torque 1, which is a Vector of (11,712,157, the out-
put, ¢, 4. ¢, are calculated in the first programme (CONTINUOQUS SYSTEM ThreeL-
ink) and then transferred to the second programme by the third connecting programme
(CONNECTING SYSTEM ConTLandMQ); and versus the output M(¢) and Q(q.4) are

transferred back to the first one.

3.3.3. Figures

Now we run the simulation programmes to check the correctness of the dynamic
equations obtained by the programme in REDUCE. |

To simplify the problem and to show it easily, we suppose there is no any friction
in our system.

First, let the torques which act on the links equal to zero, that is 1, =0, 1, =0,
73 = 0. In this case, the manipulator works under the effect of gravity force. There-
fore, the angular position of the first link which is called WAIST should keep its origi-
nal position; the second link (SHOULDER) and the third link (ELBOW) must move
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up and down in a certain way.

Let 1, =0, 1,=0, 13 =0, m; = 5kg, m, = lkg, m3 = 0.5kg, and assume the mass dis-
tribution is the same along the axis of the link, the results are shown in figure 3.5.
Note that the angular position of the shoulder changes between 0 and - =, and the
movement of the elbow is a little complicated, but the value keeps around 0.

Figure 3.5 shows us the case of under zero initial position conditions, that is the
shoulder and the elbow are at the horizontal position. If we keep them nearly along the
vertical line position, for example the initial value of 6,, = —1.55, other conditions are
the same as that in the case of figure 3.5, the amplitude of the elbow’s movement
should be much smaller.

Figure 3.6 shows that the value of the elbow’s position is much smaller compared
with that in figure 3.5, but the movement of the shoulder is not exactly in the shape of
the cosine function because of the existence of elbow.

If we let m; — 0, the effect of the elbow to the shoulder can be ignored. This
means that, in this case, the movement of the shoulder should be in the shape of the
cosine function. The results are shown in figure 3.7. Note: we can not let m; = 0. If
ms = 0, there is no inverse form of M(q).

Now let us see the case of the waist having an initial angular velocity, for exam-
ple, élo = 0.1 1/s, the other initial conditions are the same as that in figure 3.5. From
figure 3.8, we find that when thé tangents of 6, and 6; are zero, the tangent of 6,
equals to 0.1. This means that the initial value of 6, keeps to effect on the system dur-
ing the whole time. This can be obviously shown by setting the gravity vector G = 0.
The results are shown in figure 3.9. The curve of 6, is a line. Its tangent equals to
6, = 0.1

Secondly, let 7, = 0.INm, 7, =13 =0, the initial condition 6,, = -1, and the other

initial conditions are the same as that in figure 3.5. In this case, the shoulder and the
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elbow just like two flying sticks under no weight condition. When time -, they
should keep in the horizon position. The results are shown in figure 3.10.

Thirdly, let 1, = 0.INm, 1, = 5.88Nm, 1, = 0.98Nm, G = 9.8kgm/s?, and the initial
conditions are the same as that in figure 3.5. In this case, 1, and t; balance the effect

of the gravity. The results should be the same as that of the case with G = 0. See
figure 3.11.

Now let 1, increase, for example 1; = 1INm, the other conditions are the same as
the one in figure 3.11. The results should be much complicated. It is shown in figure
3.12.

Change the input torques, such as 1, = 0.INm, 1, = 2Nm, 7; = 0.1Nm, then the

results are shown in figure 3.13.

3.4. Conclusion

The simulation method is efficient for rigid manipulator simulation. All figures
obtained from running SIMNON programmes show that the simulation of the three-

link manipulator is desirable.
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Chapter 4. Analytic Model for One-Link Flexible Manipula-

tors

4. Analytic Model for One-Link Flexible Manipulators

4.1. Introduction

A model is a description of some system intended to predict what happens if cer-
tain actions are taken. Virtually any useful model simplifies and idealises. Often the
boundaries of the system and of the model are rather arbitrarily defined. Most forces
that impinge on the system must be neglected on a priori grounds to keep the model
tractable, even when there is no rigorous proof that such neglect is justified. Inevit-
ably, the model is better defined than the real system. For a model to be useful, it is
essential that, given a reasonably limited set of descriptors, all its relevant behaviour
and properties can be determined in a pracﬁcal way: analytically, numerically, or by
driving the model with certain ( typically random ) inputs and observing the
cofresponding outputs. |

An analytical model gives us a mathematical formula into which we substitute the
characteristics of the system in question. It can then be quickly evaluated to give a
performance number for the system. The formula is obtained by some sort of analysis:
probability theory, queuing theory, or differential equation theory, for example. The
mathematical sophistication required to derive the formula is usually substantially
higher than that needed to develop a simulation model; however once derived, a for-

mula is much easier to use.
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In this situation, the simulation model may be more credible: perhaps its
behaviour has been compared to that of the real system or perhaps it requires fewer
simplifying assumptions and hence inevitably captures more of a hypothetical real sys-
tem. However, the analytic model may give more insight into which policies are likely
to be good. |

Whether the model and the programme implementing it accurately represent the

real system can be checked in two stages [17]:

Verification. Checking that the simulation programme operates in the way that
the model implementation thinks it does; that is, is the programme free of bugs and

consistent with the model? Such checks are rarely exhaustive.

Validation. Checking that the simulation model, correctly implemented, is a
sufficiently close approximation to reality for the intended application. Due to approxi-
mations made in the model, we know in advance that the model and the real system
do not have identical output distributions; thus statistical tests and theoretical analysis

of model validity have to be use.

vThe validation problem arises because various approximations to reality are made
in creating the model. We always restrict the boundary of the model, ignoring every-
thing outside that is not an explicit input, and neglect factors believed to be unimpor-
tant.

Indusﬁ‘ial robots are required to have light structures, because of the needs of
high-speed performance and low energy consumption. Flexible manipulator systems
exhibit many advantages over their traditional ( rigid-arm ) counterparts: they require
less material, have less (arm) weight, consume less power, are more maneuverable,
require smaller actuators, and are more transportable. However, they have not been
much favoured in production industries due in part to the fact that manipulators are
required to have a reasonable accuracy in the response of the arm’s end-point to the

joint control system input commands and this is severely deteriorated by structural
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deformation, especially in the case of flexible links where the deformation is oscilla-
tory. Traditionally, these vibrations have becn eliminated by increasing the rigidity of
the arms, but this solution is not available in the case of flexible manipulators; there-
fore, it is important to realise ( or validate ) the characteristics of flexible links from

theoretical point of view.

The problem of modelling flexible mechanical systems has been studied only par-
tially. In the papers of Balas [18] and Karkkainen and Halme [19] a model approach to
the problem of approximating a general flexible mechanical system is used. Book,
Maizza-Neto and Whitney [7] directly approximate a two link flexible robot with a
linear model derived from a nonlinear distributed parameter model. Book [20] also
uses a special technique called lumping approximation to analyse flexible mechanical
system assuming that the links bend is in a first mode vibration; Judd and Falkenburg
[21] apply this method to nonrigid articulated robots; the same technique is adopted by
Sunada and Dubowsky [22], and modified in such a way that more vibration modes
are allowed. Chassiakos and Bekey [23] approximate the distributed parameter system
response. This chapter provides a method of using transfer functions to model one-

link horizontal planar flexible manipulators.

In this chapter, we set up a model by using transfer functions which are the
responses of the two end points of a flexible distributed parameter system versus the
input torque. These transfer functions which are purely based on vibration theories
described by many people [24] [25] are symbolically calculated by REDUCE. Four
different methods are presented to obtain the model of one-link flexible manipulators.
The poles and zeros of the open-loop transfer functions, the frequency response and
impulse response have been obtained by MATLAB. Also, the frequency response of a
hinged-free beam has been tested by experiment. The correspondence between the four

different methods and the experiment shows that the established model is reasonable.
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4.2, Exact model

Consider the system of Fig. 4.1. Along the length of the arm (0sx<L ), the
Young’s modulus of elasticity (E), the transverse area moment of inertia (/), and the
mass per unit length (p) are constant. Although the radius of the base axis of rotation is
assumed for convenience to be zero, a motor armature and gear box are modeled by
way of nonzero rigid mass moment of inertia, /,, located at this base axis: The end
mass, m, ( located at the opposite end of the arm ) is considered to occupy a point.
The control torque, 1, is continuously variable.

The variable y(x.t) is the deflection of the arm at a point located a distance x
from the torqued end, measured relative to the undeformed position of the arm. The
angular displacement, 6(¢), is the angular position of the base measured from its origi-

nal or reference position.

o<
‘*\fj

El, o

o(t)

L = MARIPULATOR ARM LENGTH

El = - " BENDING STIFFNESS

p= * ® MASS/LENGTH

Ip = RIGID BASE MASS MOMENT OF INERTIA

® = MASS OF END LOAD

o = ANGULAR POSITION OF BASE

y = DEFLECTION FROM EQUILIBRIUM

Z = POSITION LOCATION ALONG ARM

t = TIME (MEASURED FROM BEGINMING OF MANEUVER)

Fig.4,] Manipulator arm mode!
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4.2.1. Transfer functions

44

Trying to find the transfer functions ( G(s), G1(s) ) of the tip’s angle and the joint

angle versus the input torque of a one flexible link, we can think it is the case of a

cantilevered beam forced by adding inertial forces shown as below:

Pf(t) = - m(LO(t) + (L, 1)dt?

2
YO q(xrt) = -X -g_e
! ’ pdt

X

Fig.4.2. Inertial forces of the manipulator arm model

The method for solving the forced vibration of finite beams has been developed

in Chen’s book [24]. The inhomogeneous differential equation is

4
%y azy
El —= q(x,t).
ox*
that is
d%y azy
El — + p(—= X — 0
ox* P ' dr 2
For the torque, we have
d%0 d¥y(L.1) L _ 3%
[, — + mL ————<~ 4+ X —= dx =
" odr? dr? P Jo or2

where

I = Iy + pls 4 mr?
;= 0+p?+mL

@-1)

(4-2)

(4-3)
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The geometric boundary conditions at the torqued end are:

)’(O,t) = Os (4'4)
% l,0 = O. (4-5)

The natural boundary conditions at the free end are:

0
éyz_ lyer = O, (4-6)
dy a9 Yy
EISL -m@=+ £y 1., = o 4-7
ox3 ! dr? at2) = @7

Using the Laplace transform method to solve the wave equation, it is possible to
obtain a solution in terms of standing or travelling waves. The type of solution

obtained depends on the manner in which the inverse transformation is carried out.

The Laplace transforms of equation (4-2) and (4-3) in view of zero initial condi-

tions are
4
BEZEEL 4 ps?(Y@s) + x8(5)) = 0 49
I,s%® + mLs%(L) + ps2fox Y dx = T 4-9)

where Y(x), ©, and I are the Laplace transforms of y, 8, and 7, respectively. In writing

equation (4-8) it was assumed that

0y (x,t) _ (= _g 0y (x,t) , 0% pe _ _ d*Y(x,s)
[ 555 =l et - gplemyna = S5

which implies that the function e™y(x,+) is such that interchange of the order of

differentiation with respect to x and integration with respect to ¢ is possible [26]. The

function Y (x,5) is subjected to the transformed boundary conditions

YO0 =0 (4-10)
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4y
E lyeg = 0 4-11)
2
%x%: Iy =0 4-12)
3
ms2Y (L) +mLs2®-EI%I3-,— Iy = 0 4-13)

where Y(x), ©, and I' are the Laplace transforms of y, 6, and 7, respectively. A gen-

eral solution to equation (4-8) is

Y(x) = exp(Bx)[ A cosfx + B sinfx ] +

exp(—Px) [ C cosPx + D sinfx ] - Ox (4-14)
where
4 - ps? )
B 4E] (4-15)

The constants A, B, C, and D are evaluated using equations (4-10) - (4-13). The
resulting solution for Y is then substituted into the definite integral of equation (4-9),
which is evaluated analytically. From this result and equation (4-14), the transfer func-

tions G(s), G1(s) are found, where

G = YIL + © (4-16)
r
®
1] = — 4-
G T 4-17)

The above process can be done by using REDUCE. The REDUCE code and the

expending equaﬁons of G and G1 are listed in appendix 3.
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4.2.2. Open-loop responses

MATLAB has a rich collection of functions immediately useful to the control
engineers. Complex arithmetic, root-finding, and FFT’s are just a few examples of
important numerical tools. Moreover, the most important is the tools are not found in
the toolbox can be created »by writing new M-files. The results in this report are all got

by running written M-files.

Figures 4.3 - 4.6

le1 order to simplify the model, suppose the length of the link is L =1 M, the
mass per unit length is p =1 Kg/M, the base moment of inertia is I, = 0, the end mass
is m = 0. Figures 4.3 - 4.6 show the poles and zeros of G near the origin of axes. They

are:
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P

The Poles and Zeros of G

EI Poles Zeros

50 0.0000+- | +-
0.0000*i, | 079.10+0.0000%*,

0.0000+- | +-

109.02*i, | 427.46+0.0000*i.
0.0000+-

355.30%*i.

100 | 0.0000+- | +-
0.0000*i, { 111.87+0.0000%*i,

0.0000+- | +-

154.18%, | 604.52+0.0000%i.
0.0000+-

499.65%*i.

200 | 0.0000+- | +-
0.0000*, | 158.20+0.0000%*i,

0.0000+- | +-

218.05*1, | 854.90+0.0000%i.
0.0000+-

706.61%*i.

300 | 0.0000+- | +-
0.0000*, | 193.80+0.0000%*i,

0.0000+- +-

267.05%, | 1047.1+0.0000%i.
0.0000+-

865.42%*i.

According to Thomson’s book [25], for any kind of beams, the natural frequencies of

vibration are found by the equation:

0, = n? \/-EEI- (4-18)

where the number n depends on the boundary conditions of the problem. Here the

beam configuration is the hinged-free kind. So
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(mL ) = 0, 154, 500, ..
Back to the equation (4.18)
EI = 50: © =0, @ = 108.89, w; = 353.55.

El = 100: o =0, 0, = 15400, @; = 500.00.

1l

EI 707.11.

200: w; = 0, o, = 217.79, o

El = 3000 o

I
L
e
N
|

= 266.74, 0; = 866.03.

The values of the natural frequencies are the same of the poles value of G.

Figures 4.7 - 4.10

Figures 4.7 - 4.10 show the poles of the transfer function ( G1 ) which is the
joint angle versus the input torque. The poles are the ones near the origin of the axes.
Because the ones far from the origin have small effects on the system, they can be
ignored. G1 has no zeros. The poles’ values are the same as the ones of G shown in

the table above.

Figures 4.11 - 4.12

Figures 4.11 - 4.12 are the frequency responses of G when different values of EI

are chosen. The peaks occur at the exact points of the natural frequencies.

Figures 4.13 - 4.14

Figures 4.13 - 4.14 show the impulse responses of G. The larger stiffness causes
larger vibrational frequencies.

The results of figures 4.11 - 4.14 correspond with the results in Gawthrop’s report

[27].




ANALYTIC MODEL FOR ONE-LINK FLEXIBLE MANIPULATORS 50

4.3. Approximated model derived in time domain

In equation (4-1), the assumed force g(x,r) varies with time in the same way for

all points on the beam, that is
q(x,t) =pX) f ) (4-19)
where
p(x)=-xp, F@) =860

equation (4-1) becomes

4
E%l + pazy @ F () (4-20)

The general solution to equation (4-20) will be the form

y =2 x)q,. @) (4-21)

where ®(x) is a normal mode which has the form:

®, = B coshAx + B,sinhAx + B;cosAx + B sinAx (4-22)
L 12
Jop @GN dx =M (4-23)

2
where A% = p%, M is the mass of the beam, ¢,(s), a principal coordinate, is a function

of time.

After some tedious manipulations [28], we obtain

L
PHI, (x) dx
g, + 0?q, = FOk p(;; d (4-24)

For a known distribution of applied force p(x) and known mode shapes the integrals in

equation (4-24) can be evaluated; if the ratio is X,, then

g, + 02q, =K,f () ‘ (4-25)
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4.3.1. Transfer functions

For the system of figure 4.1, there are two kinds of virtual forces acted on the
cantilevered flexible beam: one is a distributed force g(x,r) = - px6(s), the other is a
concentrated force acted at the free end Pf(t) = - m(LO() + 3>y (L,t)3t?) as shown in

figure 4.2.

A concentrated force can be thought as Pf(t) = p(x)Axf (t) as Ax—0. Equation

(4.24) becomes

PO, (L '
. _ POLN® 26

éir + O)r qr = M
So, the differential equation of our system’s coordinate ¢, (¢) is
L .
., o -exbme,.x)dx POL ()
qr + mr Qr = . M + M
=K, 0+K, (LO+Fl,) 4-27)
where
. :
P I A L (D)
- M ’ pr — M
The normal mode of cantilevered beam has the boundary conditions:
oD
O0,)=0, —l,0=0 -28) .
©0.) 3% *=0 (4-28)
0°® °®
e =0 S5 =0 (4-29)
With this foﬁr boundary conditions, the frequency equation is
cosAL coshAL +1 =10 ' (4-30)

With equation (4-23), the constants B,, B,, B3, B4 can be obtained. Take these constants

back to equation (4-27), K,, and K, can be calculated.
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Take Laplace transform of equations (4-3), (4-21), and (4-27), the transfer func-
tions G(s), G1(s) which are defined by equations (4-16) and (4-17) respectively can be
obtained. This process also has been done by using REDUCE. The REDUCE code

and the expanding equations of G and G1 are listed in appendix 3.

4.3.2. Simulation results

We take the same system which has been discussed in section 4.2. The transfer
function G of the uniformed beam’s manipulator is listed in appendix 3. Having
obtained the transfer function, it is easy to see its frequency response, and to compare

the results with that of the exact model.

Figures 4.15 - 4.16 are the frequency responses of G derived in time domain with
different stiffness of EI=50, 100, 200, 300 as the same cases in section 4.2. Figures
4.17 - 4.18 show the comparison of the frequency responses of exact model’s transfer
function G and of the transfer function derived in time domain approximated by eight
orders. The first seven peaks of the two different model’s frequency responses happen
at the same frequency points. They have the same frequency responses except the part

after the seventh peak.

4.4. Approximated model of using Lagrange-Euler formulation

For the same system of figure 4.1, we can also get its approximated model by

using the Lagrange-Euler formulation [3].

The application of the Lagrange-Euler formulation in deriving flexible links’
manipulator dynamic equations is based on the approximation method known as the
Ritz-Kantorovitch method which is on account of a function series expansion and uses
a so called ¢ complete set of functions ’. A set of function { fi(x) with fi : [0.L]-R
and f,€C*(0.L])} is said complete if \f yEC*([#; 4;1x[0,L]) and ¥ e>0 an index & exists

and, & time functions B(r), B(t), ....Bs(t) exist such that
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)
ly@x) - X Be(®) frix)li<e (4-31)
k=0

Given a complete function set each function ye C*([1;.t¢]) can be expanded in a function

series

Yex) = 3 Be(®) fix) (4-32)

k=0

In particular, if an approximate description is sufficient to the purpose of the analysis,

the expansion can be truncated at a finite order term
n
y@x) =3 Bp() fr(x) (4-33)
k=0

In this way our problem is reduced to the classical formulation of Lagrangian discrete
mechanics and, the motion equation of the system can be given by the Lagrange-Euler

formulation described in chapter 2.

For one-link flexible manipulator shown in figure 4.1, we apply the Ritz-

Kantorovitch method. Given a set of functions { f, } y can be approximated by

y@x) = }u_‘, Bi(t) fr(x) with an error depending on the order n. We choose f,(x) = x*,
k=0

consequently in frame (X, Yo) of figure 4.2 the parameter equations of the curve are

Xolx,t) = xcosO - Zn: Be(@®) x*sin® (4-34)
k=0

Yo(x,t) = xsin® + )'_f B (t) x*cosd (4-35)
k=0

in which, in order to respect the geometrical constraints, y(:,0) =0, y(z,0) =0,
Bo=P1=0.
Introduce the new variables ¢, = 6 and ¢; = B;, (i#1). From which, with some tedi-

ous manipulations, we obtain the following approximate model which has the form

Dg +Hg +C =7 (4-36)
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We have done this process by REDUCE. The REDUCE code and the expanding
equations of D, H and C for the model approximated by six order are listed in appen-
dix 3.

This model is described by a set of non-linear differential equations, we cannot
directly give its transfer functions. So, we just can check the correctness by the simula-
tion in time domain. Figure 4.19 shows the response of the differential equations of
equation (4-36) using ACSL (Advanced Continuous Simulation Language) [28] under
unit input torq<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>