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SUMMARY ii

Summary

There are many methods to describe manipulator dynamics, the iterative Newton- 

Euler dynamic formulation and the Lagrange-Euler formulation are two of them. 

Between these two well known methods, the former has been regarded as computation­

ally efficient, and the latter as understandable in representing manipulator dynamics. It 

is hard and dull to generate robot manipulator dynamic equations manually from either 

the iterative Newton-Euler dynamic formulation or the Lagrange-Euler formulation. 

Therefore, the two general programmes, which are based on these two formulations 

respectively and suited to rotary joint manipulators, have been written in REDUCE. 

After running the programmes, we find that the calculation time for generating the 

dynamic equations of a rotary joint manipulator by the programme based on the 

Lagrange-Euler formulation is much shorter than the one by the programme based on 

the other.

Robot manipulator dynamic equations are a set of differential ones. Therefore, 

the simulation of the motion of a rigid manipulator belongs to mathematical modelling 

problems. It requires numerical integration.

Robot validation is a new area of research. To model the general dynamic charac­

teristics of flexible links and to examine the friction effects on DC motors are a contri­

bution of this work.

We have presented four different analytic methods to set up the dynamic model 

of one flexible link manipulators. The method based on vibration theories to generate 

the exact model, which is described by transfer functions, is efficient. There are a 

number of simplifications used in deriving the dynamic equations of one-link flexible
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manipulators by three other approximate methods: one is derived in time domain, one 

is derived by using ‘complete set of functions’ and the Lagrange-Euler formulation, 

and one is derived by adding same stiffness springs to connect equal length rigid parts 

to approximate a flexible link. However, the corresponding methods are found to be 

reasonable by comparing the frequency responses of the models obtained by them with 

the one obtained by experimental test.

The friction effects on DC motors include two parts: one is the static effect which 

causes the system to have a positive or a negative constant resistant torque which 

depends on the rotation direction of the motors shafts, and the other is the dynamic 

effect which causes the system to have a friction torque which is proportional to the 

rotation speed. These friction effects have been verified by the system parameters 

identified by Least-squares method.

In summary, the manipulator dynamics generation programmes, the simulation 

method and the robot validation work are shown to be satisfactory. Computer simula­

tion is efficient for the preliminary research on robot manipulators.
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Chapter 1. Introduction

1. Introduction

1.1. Motivation

An industrial robot manipulator is a mechanical device whose purpose is to 

enable its end point — equipped with a gripper or a tool — to follow a desired trajec­

tory in order to perform a given task. The manipulator can generally be thought as a 

chain of structurally rigid links interconnected by rotary or sliding joints, each joint 

can be controlled by its own actuator.

It is an efficient way for the researchers who study in the field of mechanical

manipulators to work with a simulated manipulator by using computers. Craig’s book

[1] and Fu’s book [2] describe a basic approach to set up the dynamic equations of a

manipulator by using the iterative Newton-Euler dynamic formulation. Nicosia [3] 
%

gives a method to obtain manipulator dynamic equations by using the Lagrange-Euler 

formulation. To generate manipulator dynamic equations from both of these two for­

mulations by hand is dull and arduous. Is it possible to solve the problem by 

machines? The SAM (System Algebraic Manipulation) language MACSYMA [4] and 

REDUCE [5] can give a positive answer.

For today’s manipulators, the position of the end point is controlled by "dead- 

reckoning" that is, by commanding the appropriate joint-angles derived through a real­

time inverse manipulator kinematics, and then assuming that the links are stiff enough 

so that the end point will be automatically in the intended location.
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Instead of this conventional dead-reckoning method, a new concept of end point 

position feedback is developed resently for the control of flexible manipulators. The 

new concept is that the position of the end point is sampled directly by a sensor whose 

output is then fed back to the joint actuators with a proper servo compensation. End 

point sensing has two main advantages over the dead-reckoning.

First, it improves the static and dynamic position accuracy of the end point 

through feeding back the quantity to be controlled to the actuators.

Second, with end point sensing, the links do not need rigid any more. The mani­

pulator can be built with light links. The moments of inertia at each joint are smaller 

so that smaller actuators can be used or higher performing speed can be achieved. Also 

it becomes possible to use direct drives instead of gear driven motors, with the advan­

tages of manufacturing simplicity, actuator linearity and lower cost.

Lighter links will cause the system to be more flexible, even to vibrate. There­

fore, to realise the characteristics of flexible links is placed on agenda.

Robot validation is a newly developed research aspect. It deals with the problems 

of searching and arranging theoretical methods to explain practical phenomena. The 

existed do not satisfy robot developments. One example is that, according to classical 

dynamics, manipulator designers must face the problem of faster and faster perfor­

mance of its end point demanded by working environments against the heavier and 

heavier devices chosed by safety requirements. To realise the characteristics of flexible 

links and to search the friction effects on DC-motors are based on this idea.

1.2. Literature

Most research in the field of flexible manipulators has focused on the dynamic 

modelling aspects. Relatively fewer references are on the control design aspects.

Much of the literature has been devoted to producing algorithms to model open- 

loop chains of rigid and elastic bodies. This thesis first deals with the problem of
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modelling rigid link manipulators, later develops the idea of adding springs into rigid 

links to approximate the real flexible link of manipulators.

Book [6] [7] applies a transfer matrix method to describe the elastic bending 

motion of a two-link planar elastic arm in the frequency domain, for a given relative 

configuration of the link and for small angular velocities.

Schmits [8] and Skaar [9] use a fourth order partial differential equation to 

develop the transfer functions for one flexible link manipulators. The bound conditions 

are chosen as the same as the ones of cantilevered beams’. They all only give the 

definitions of the transfer functions.

Nicosia [3] provides the Lagrange energy method to derive multi-link flexible 

manipulator dynamic equations in time domain. He establishes two generalised (or 

Lagrangian) coordinates: one denotes the relative displacement between connected 

links when the elastic deformation is neglected, the other characterises the shapes of 

the links. The "complete set of function" is used to approximate the dynamic equa­

tions.

To our knowledge, most of the authors have considered proportional and deriva­

tive (PD) joint angle feedback. With a PD feedback for each joint, Book [6] shows 

that the maximum attainable closed loop bandwidth for a two-link planar manipulator 

is 0.5 Q. , where Q is the system first vibration frequency with both joints locked.

Maizza-Neto [10] discusses the use of a pole placement algorithm to obtain full- 

state feedback gains for a 12th order linear model of the same two-link planar manipu­

lator as Book’s.

More detailed references are given in the appropriate chapters.
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1.3. Thesis outline

This thesis is about the establishment of dynamic equations of rotary joint mani­

pulators, the simulation of the dynamic equations and the validation of robot manipula­

tors.

The first part of the thesis is on the aspects of using REDUCE to set up manipu­

lator dynamic equations. Both the iterative Newton-Euler dynamic formulation and the 

Lagrange-Euler formulation are described and applied to illustrative examples. A big 

part of the thesis is on the research of robot validation. Some vibration theories are 

used for obtaining the transfer functions of one-link flexible manipulators. The simu­

lated one-link elastic beams’ natural frequencies correspond to the theoretical calcu­

lated ones and the ones from the experiment. After that, the basic idea of adding 

springs to approximate real flexible links is developed. Another validation work is to 

realise the friction effects on DC motors. In the discussion and conclusion part, we dis­

cuss the possibility of the application of the validation work to the control of manipu­

lators.

To review the Chapters briefly, the programmes in REDUCE for generating the 

dynamic equations of rotary joints manipulators are presented in chapter 2. Chapter 3 

describes a method to simulate the motion of rigid manipulators using SIMNON 

language. The characteristics of flexible links are presented and simulated in chapter 4 

and chapter 5. Chapter 6 presents the friction effects on DC-motors. The final 

Chapter, Chapter 7, gives the discussion and the conclusion of the thesis.
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Chapter 2. Dynamic Equations of Rigid Manipulators

2. Dynamic Equations of Rigid Manipulators

2.1. Introduction

Manipulator dynamics deals with the mathematical formulations of equations of 

robot arm motion. The dynamic equations of motion of a manipulator are a set of 

mathematical equations describing the dynamic behaviour of the manipulator. Such 

equations are useful for computer simulation , the design of suitable control strategies, 

and the evaluation of robot arm kinematic design and structures.

Formulation of manipulator dynamics in relation to computational efficiency and 

control analysis has been an active research topic. Between the two well-known formu­

lations, the iterative Newton-Euler dynamic formulation and the Lagrange-E uler formu­

lation, the former has been regarded as computationally efficient, and the latter as per­

ceptible in representing manipulation dynamics. However, the comparison of computa­

tional efficiency has been based on the premise that the dynamic equations have been 

expressed in vector / matrix form and a numerical approach used to solve the joint 

forces (or torques). If the vector /  matrix equations were expanded symbolically to 

scalar form, the expanded scalar equations from these two formulation would be 

equivalent. The expanded scalar equations would not only provide insight into under­

standing of the system dynamics, but also result in faster computation than the numeri­

cal approach based on either of the formulations. The saving computation cost would 

be quite substantial if most of the matrices in the system equations were sparse [11]. 

The matrices in manipulator dynamic equations are usually sparse.
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The objective of this chapter is to provide a systematic methodology for the 

dynamic equations of rigid manipulators. It is divided into four sections, Introduction, 

Dynamics, Programmes, and Conclusion.

In the dynamic section, two formulations are used to present the equations of 

motion for a manipulator. It is shown how the equations for position, velocity, 

acceleration of the link coordinates can be used in the Newton-Euler forward and 

backward recursive equations of motion of a free rigid body to obtain the model of an 

open-chain manipulator. It also gives the Lagrange-Euler formulation ( or the Lagrange 

energy method ) to get the torque and motion equations.

The programmes section gives two general programmes, which are based on the 

two formulations described in the following section, for calculating the torques acting 

on rotary manipulators.

2.2. Dynamics

There are two aspects which relate to manipulator dynamics. In the first, the tra­

jectory of each joint and its first and second derivatives are given, the required torque 

on the joint can be found. This dynamic formulation is useful for manipulator controls. 

The second deals with the approach to obtain the motion of the joints forced by given 

torques. This is useful for manipulator dynamic simulations.
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2.2.1. Iterative Newton-Euler dynamic formulation

All manipulators can be classified into one of two categories: those that contain 

closed kinematic loops and those that do not ( open-chain mechanisms ). In this sec­

tion, we only discuss the cases of open-chain type manipulators.

The complete algorithm for computing joint torques from the motion of the joints 

is composed of two parts. First, link velocities and accelerations are iteratively com­

puted from link 1 out to link n and the Newton-Euler equations are applied to each 

link. Second, forces and torques of interaction and joint actuator torques are computed 

recursively from link n back to link 1. The equations are summarised below for gen­

eral rigid manipulators.

Considering the problem of computing the torques that correspond to a given tra­

jectory of a manipulator, we assume the position, velocity, and acceleration of the 

joints, q, <?, are known. With this knowledge and the one of the kinematics and 

mass distribution information of the manipulator, we can calculate the joint torques 

which cause the particular motion [1] [2].
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Forward equations: i = 1, 2, n, to compute the link motions ( kinematics ).

If link i is rotational

COl i = R l i_1( CD1-1;.! + Z 0 cfr ), „ (2-1)

+ z o <7; + x Z„ % ], (2-2)

v ', =d)‘; x p ‘*; + (O'i x ( co‘; x / j  ) + (2-3)

a li= 6 ) li X s l i + (rfi x ( a 11 x  s l i ) + v lh (2-4)

If link i is translational

= R ‘i - i“ i_1i-i- (2-5)

CO1; = (2-6)

v ‘ i = R i i_1( Z 0qi +  + 20)'; X (fl'V iZ o?; ) +

co‘f x  ( O)1'; x / i  ), (2-7)

a*; = cb1/ x 5 ‘j- + c o * x  ( co1/ x V /  ) + v*/. (2-8)

Backward equations i = n, n-1, 1, to compute the joint torques corresponding to

link motions ( dynamics ).

F l i = m ia li , (2-9)

f ‘i = R ii+l f M M  + F ‘n  (2-10)

« ‘i =-Ri i+ i(" i+1i+l + P i+1*i x / i+1i+l > + ( p ‘*i + s ‘i ) x F ii +

+ CO1' , - x ( / ‘,coi i ), (2-11)
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If link i is rotational

x = f ( R ii. lZ 0 ) + bi4i (2-12)

If link i is translational

i  = )T( R ‘i-iZ0 ) + M ; (2-13)

Terminology

n = number of degrees of the manipulator

q = n x l  vector of joint variable positions

q = n x 1 vector of joint variable velocities

q = n x 1 vector of joint variable accelerations

R l j = 3 x 3  transformation matrix for link jth coordinates reference to link ith

coordinates

co* / = 3 x 1  vector, angular velocity of link ith coordinates

cb‘ i = 3 x 1  vector, angular acceleration of link

v‘ i = 3 x 1  vector, linear velocity of link ith coordinates

vli = 3 x 1 vector, linear acceleration of link ith coordinates

a11 = 3 x 1  vector, linear acceleration of link ith mass center

/*’,• = 3 x 1  vector, force exerted on link i by link i-1

nli = 3 x 1  vector, moment exerted on link i by link i-1

F'i = 3 x 1 vector, total force exerted on link i

Nli = 3 x 1  vector, total moment exerted on link i

mi = total mass of link i

s'i = position vector from the link ith mass center to the origin of the coordi­

nate system fo, yit z,)

pl* i = the origin of the ith coordinate system with respect to the (i-l)th coordi­

nate system

I11 = inertia matrix of link i about its mass center with reference to base
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coordinate system {xQ, y0, *0)

Z, = vector (0 0 1)T

The effect of gravity loading on the links can be included quite simply by setting 

v°o = G, where G is the gravity vector. This is equivalent to saying that the base of the 

robot is accelerating upward with 1G acceleration. This fictitious upward acceleration 

causes exactly the same effect on the links as gravity would. So, with no extra com­

putational expense, the gravity effect is calculated.

It is often convenient to express the dynamic equations of a manipulator in a sin­

gle equation which hides the details, but shows some of the structure of the equations.

When the Newton-Euler equations are evaluated symbolically for any manipula­

tor^, they yield the dynamic equations which can be written in the form:

% = M (q) q + Q (q ,q), (2-14)

where M(q) is the nxn mass matrix of the manipulator, Q(q ,q )  is an n x i  vector of cen­

trifugal, Coriolis and gravity terms.

2.2.2. Lagrange-Euler formulation

The general motion equations of a manipulator can conveniently be expressed 

through the direct application of the Lagrange-Euler formulation to nonconservative 

systems. Many investigators utilise the Denavit-Hartenberg [12] matrix representation 

to describe the special displacement between the neighbouring link coordinate frames 

to obtain the link kinematics information, and they employ the Lagrangian dynamics 

technique to derive the dynamic equation of a manipulator. The direct application of 

the Lagrangian dynamics formulation, together with the Denavit-Hartenberg link coor­

dinate representation, results in a convenient and compact algorithmic description of 

the manipulator equations of motion. The algorithm derived from the Lagrange-Euler
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equation is expressed by matrix operations and facilitates both analysis and computer 

implementation.

The derivation of the dynamic equations of an n degrees of freedom manipulator 

is based on the understanding of the Lagrange-Euler equation:

d ,d L  dL . . _ . _N
“ T (—  - 3 — ) = ii 1 = 1, 2, n (2-15)dt dqt oqi

where

L = Lagrange function = kinetic energy K - potential energy P 

K = total kinetic energy of the robot arm 

P = total potential energy of the robot arm 

qt = generalised coordinates of the robot arm 

4i = first derivative of the generalised coordinates, qt

Tj* = generalised force ( or torque ) applied to the system at joint i to drive link i

From the above Lagrange-Euler equation, one is required to properly choose a set of 

generalised coordinates to describe the system. Generalised coordinates are used as a 

convenient set of coordinates which completely describe the location (position and 

orientation) of a system with respect to a reference coordinate frame. For a simple 

manipulator with rotary joints, since the angular positions of the joints are ready avail­

able because they can be measured by potentiometers or encoders or other sensing 

devices, they provide a natural correspondence with the generalised coordinates. This 

in effect, corresponds to the generalised coordinates with the joint variable defined in 

each of the 4x4 link coordinate transformation matrices.

According to the book [2], the total kinetic and potential energy of a robot mani­

pulator are:
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K  = 'L 'L 'L KcipA‘i)Qp4r (2-16)
i=lp=lr=l

and

P = £  - migr (2-17)

where Kcipr(q) is a function of 4 , n is the link number, mi is the ith link mass, g is a 

gravity row vector expressed in the base coordinate system, r0,- is a vector from the 

origin of the base coordinate frame to the ith link mass center and expressed in the 

base coordinate system.

From the Lagrange-Euler equation and the kinetic and potential energy equations, 

we derive the motion equation in the form

D (q )  is an nxn inertial acceleration-related symmetric matrix whose elements are

rP'K’
d ( i , j )  = d (J , i ) = ■ . (2-19)

oQiuQj

H (q ,q ) is an nxn nonlinear centrifugal and Coriolis force vector-related matrix whose 

elements are

D(q)q + H(q,q)q + C(q,q) = i (2-18)

where

(2-20)

C(q,q)  is an n x i  gravity loading force vector whose elements are

(2-21)
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Generally, the total manipulator’s kinetic and potential energies can be symboli­

cally evaluated

N  N
k  = p  = £ /> ;.

i=l i=1

where

1 fL (/) . 2 -2 • 2\ »/
= y  Jo P/C*; + yi + z;

Pi = g $ % i Z , d l

pi = mass per unit length o f the ith link

L ( i) = length o f ith link

So far, the each link’s torque of a manipulator can be calculated in symbolic form 

from the equations described above. It takes long time to find the torque equations by 

hand. Moreover, the model we chose may change. In order to simplify this stage 

work, we write programmes in REDUCE to generate the torque equations symboli­

cally.

2.3. Programmes

Manual symbolic expansion of manipulator matrix equations is tedious, time- 

consuming, and error-prone. The equations generation process consists of many vector 

/  matrix manipulations, and the generated equations may consist of hundreds of terms.

Automatic derivation of equations using a computer is desirable even for simple mani­

pulators. The expense of computation is justifiable considering the elimination of the 

manual derivation process and the saving of computation costs in the later numerical 

computation phase.

Various computer programmes for deriving manipulator dynamic equations have 

appeared in the literature. Some of them are written in general programming languages
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such as FORTRAN [13] or PL/I [14]; other are written in Lisp-based symbolic algebra 

languages such as MACSYMA [15], Both the Newton-Euler and the Lagrange-Euler 

formulations have been used for the equation derivation.

2.3.1. Introduction to REDUCE

REDUCE is a system for carrying out symbolic algebraic operations accurately, 

no mater how complicated the expressions become. It can manipulate polynomials in a 

variety of forms, both expanding and extracting various parts of them as required. 

There are many other functions in REDUCE such as MATRIX CALCULATIONS, 

PROCEDURES.

REDUCE is designed to be an interactive system, so that the user can input an 

algebraic expression and see its value before moving on to the next calculation. 

REDUCE can also be used in batch mode by inputing a sequence of calculations and 

getting results without the necessity of interaction during the calculations.

Now we introduce the programmes for calculating the torques of rotational mani­

pulators using the iterative Newton-Euler dynamic formulation and the Lagrange-Euler 

formulation respectively.

2.3.2. The general programmes for calculating the torques acting on rotational 

manipulators

After considering the structure of the iterative Newton-Euler dynamic formulation, 

the Lagrange-Euler formulation and the functions provided by REDUCE, we have 

written the general programmes for calculating the torques of rotational manipulators.
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2.3.2.I. Link coordinate position and orientation

The link coordinate is the position of the joint variable. For rotational joint, its 

position is measured in radians. To each link of the manipulator is attached a right- 

handed coordinate system composed of three orthogonal unit vectors. These coordinate 

systems are called link coordinates, and their position and orientation are defined in 

terms of 4x4 link coordinate transformation matrices.

One particularly suitable method for assigning link coordinates is attributed to 

Hartenberg and Denavit [11]. In this method four parameters are used to describe the 

position of successive link coordinates, Figure 2.1. The parameters are a, a, d and 0. 

The definitions of these parameters are:

ai = the shortest distance between Zf and Z-t_x

a i -  the angle between Zt and Z ,^

-  the shortest distance between Xt and

0; = the angle between Xt and X ^

Only one of these four parameters is variable and is denoted by qt. For rotational 

joints manipulators, 8; is the joint variable and dt, at, and a; are constants.

A xis o f  ro ta t io n  ( or 
tra n s la tio n )  o f 
jo in t  i + 1

A xis o f  ro ta t io n  (or 
tra n s la tio n )  o f  jo in t  i

Link i -  1

F ig -2 .1  param eters relating adjacent link coordinate systems.
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2.3.2.2. Notes for the two programmes

Firstly, we introduce the programme based on the iterative Newton-Euler dynamic 

formulation. This programme is written in REDUCE. It can calculate all sorts of rota­

tional manipulators’ torques. We write it in the form of procedure. The variables are 

all in matrix form.

In the programme, everything from the symbol % to the end of the line on which

it appears is ignored as comments. The programme can be divided into three parts: the

part which defines and inputs variables before the procedure, the outward recursive 

loop part which calculates kinematics, and the inward recursive loop part which com­

putes dynamics in the procedure. In order to correspond with the symbols in the 

Newton-Euler equations, we choose the variables symbolically.

Secondly, the programme based on the Lagrange-Euler formulation has some 

differences from the one above. The main programme in PROCEDURE form is not 

valid for IBM 3090. Therefore, the main programme is written in the form a sequence 

of commands.

Trying to write the programme efficiently and clearly, we write the Vector- 

CrossProduct function and Transformation function in PROCEDURE form. The vari­

ables are all meaningful words.

It is difficult to say which programme is better. The Newton-Euler one has a clear 

outline. One can check any calculation steps when the programme is running. Another 

advantage is that it is conducive to the design of a manipulator because of knowing the 

kinematics. The Lagrange-Euler one is more efficient to generate the dynamic equa­

tions, because it does not need to calculate the acceleration and the force of each link.
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2.3.2.3. Advantages of symbolic expansions of dynamic equations

By expanding the vector /  matrix dynamic equations symbolically, insights on the 

dynamics of a manipulator can be generated in two ways:

(1) examining directly the terms of the dynamic equations, and

(2) using the dynamic equations to simulate individual force components.

Another merit of expanding the vector / matrix equations of motion is that, if 

most manipulator links are symmetric in geometry, the resultant equations are more 

computationally efficient even than the efficient iterative Newton-Euler dynamic for­

mulation of manipulator dynamics in vector /  matrix form.

This section has presented the techniques and programmes for deriving the scalar 

form of manipulator dynamic equations by symbolically expanding the iterative 

Newton-Euler dynamic formulation and the Lagrange-Euler formulation using 

REDUCE. The automatic equation derivation process is highly desirable because it not 

only eliminates the time-consuming, error-prone manual derivation process, but also 

generates equations which are both perceptible and more computational efficient than 

the numerical approach.

2.3.3. An example of closed form dynamic equations

Now we adopt the equations which are described in 2.2 to generate the torque 

equations in two ways: one is by hand, the other is by running the programmes.
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2.3.3.1. The torques are calculated by hand

Here we first compute the closed form dynamic equations for the 2-link planar 

manipulator shown in Figure 2.2. For simplicity, we assume that the mass distribution 

is extremely simple: all mass exists as a point mass at the distal end of each link. 

These masses are ml and m2.

777777777777777777777777777m

FIGURE 2.2 Two-link with point m a sses at distal end of links.

By using Newton-Euler dynamic formulation, the joint torques are calculated: 

Ti = m 2l 2 ( ^ 1  + ^2) + m 2'i'2~2\29i + 02) -r (mj + ■ m 2l \L2^2^2

~ ^2^1^ 2^ 2^ 1^2 + m 2̂  2 8 ^ 1 2  + (m I + m 2)h§^I

*2 = m2̂ 1̂ 2̂ 2®l + m 2h^2^2^1 + m 2^2S^12 + m2̂ 2 (®1 + ^2) 

From these and equation (2.1) we can get M and Q:

(2-22)

(2-23)

M(0) = /2m 2 + ^h^2m2^2 + l̂2(m l + m 2) ^2m 2 + h^2m 2^2
^2m2 + h h m 2^2 l i m 2

(2(0,9) = m 2h ^ 2^ 2^2 " 2m 2/ 1/ 2*52^  1^2 + + (m i +

m 2hh^2(i i  + m 2hgC\2

This example is taken from the book "Introduction to Robotics Mechanics & 

Control" by John J. Craig. The purpose of doing this is to check the results of the
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programmes.

2.3.3.2. The torques obtained by running the programmes

The torques of the manipulator which is described in 2 .3 .3 .1 can also be obtained 

by running the programmes. The form M (0) and <2(0,6) are:

Af (1,1) = 2m2/ 1/ 2cos02 + m i l l  + m2(Ji + l 2 )

M ( 1,2) = m2/ 1/2cos02 + m2l2 

M (2,1) = m2/ 1/2cos02 + m2l%

M(  2,2) = m2l }

<2(1) = -m ^x/^20! + 02)02sin02 +  m^ig cos(Qi + 0^ +  (mi + m^l  xgcosQl

<2(2) = m2/ i /29i2sin02 + m2/ ^  cos(0! + 0^

and

d(  1 ,1 ) =  2w i2/ 1/ 2c o s0 2 +  m i l l  + m2{ l l  +  l 2 )

d (  1,2) = m2l il2cosQ2 + m2/ |

d(  2,1) = m2li l2 cos02 + m2l2

d  (2,2) = m2l2

A (1,1) = -2m 2l\l 202sin02

h(  1,2) = -m 2/ 1/202sin02

/i(2,l) = m2/ i /2Gisin62

h (2,2) = 0

c ( l)  = m2lQgc os(0! + Qq) +  (nil + m^ligcosQi  

c(2) = m2l2gcos(Qi + 0^
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After having compared the results of M and Q with the ones in 2.3.3.1, we find 

the results are correct. Moreover, the programmes are very efficient It only takes 

several minutes to obtain the results.

We have also verified the examples described in the book "Robotics: control, 

sensing, vision, and intelligence" by K.S. Fu, R.C. Gonzales and C.S.G. Lee.

2.4. Conclusion

Two different formulations and the related REDUCE programmes for robot arm 

dynamics have been presented. The iterative Newton-Euler dynamic formulation is 

very efficient, and the Lagrange-Euler formulation has a well structured form. After 

running the two programmes, we find the one derived from the Lagrange-Euler formu­

lation is more efficient because it does not need to calculate the acceleration and the 

force of each link.
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Chapter 3. Simulation of Rigid Manipulators
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3. Simulation of Rigid Manipulators

3.1. Introduction

To model a system is to replace it by something which is (a) simpler and / or 

easier to study, and (b) equivalent to the original in all important respects. If the real 

system interacts with the outside world in some way, that interaction must be reflected 

in the model. The (simplified) logical equivalent is subjected to the same, or similar, 

external stimuli as the original. It then produces outputs which may be interpreted as 

the system’s reaction to the stimuli (see figure 3.1). Thus, by varying the model inputs 

and examining the corresponding outputs, one attempts to study the behaviour of the 

real system.

External
stimuli

^  Observable 
'T, reactions

Inputs representing 
external stimuli

^  Outputs indicating 
T. observable reactions

Real
system

Logical
equivalent

Fig. 3.1 Simulation process
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The first and most basic distinguishing feature of a model is the nature of the log­

ical equivalent used. That may be a physical system, in which case we talk of physical 

modelling, or it may be a set of abstract variables whose behaviour is controlled by a 

number of assumptions and equations; then the model is said to be mathematical.

Physical modelling belongs primarily, although not exclusively, to the engineering 

domain: applications rang from car and ship design, through aircraft testing in wind 

tunnels, to the training- of astronauts in centrifuges. The mathematical modelling 

methods can be divided into ‘analytical’ and ‘numerical’, depending on the approach 

to the solution. An analytical solution provides a closed-form expression for the 

desired system characteristics in terms of the defining parameters. The numerical 

methods are divided further into ‘deterministic’ and ‘stochastic’. The terms ‘deter­

ministic’ and ‘stochastic’ refer, respectively, to the absence or presence of random 

variables in the model. These may, or may not, reflect the absence or presence of ran­

dom phenomena in the system being modelled [16].

The robot manipulator dynamics described in chapter 2 are structured in 

differential equations. The simulation of these equations belongs to mathematical 

modelling.

SIMNON is a special language for solving difference and differential equations 

and for simulating dynamical systems. The systems may be described as interconnec­

tion of subsystems whose behaviour are characterised by differential equations. Models 

of this type are common in mathematics, biology, economics and in many branches of 

engineering, especially in robot manipulators. SIMNON has an interactive implementa­

tion which makes it easy for a user to work with the system. The user interacts with 

the system by typing commands. Parameters, initial conditions and system descriptions 

can be modified interactively. The results are displayed as curves on the screen. The 

layout can be easily modified and the results can be documented using a hard copy 

facility.
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The main characteristic of SIMNON is that it can be used in a very simple way 

to find solutions to difference and differential equations. So it can be used as a tool to 

simulate robot manipulator dynamic equations.

This chapter presents a method which specially suits robot manipulator dynamics 

simulation. The dynamics of a three-link manipulator, which is calculated by running 

the programmes in chapter 2, is simulated by using SIMNON. Several different cases 

are discussed in the simulation.

3.2. Simulation method

In order to design a controller, one needs to model a system first. Robot dynamic 

simulation should enable the real performance of a robot to be reproduced. We use the 

simulation method to simulate a simplified three-link manipulator which is described in 

Fig. 3.3.

To simulate the motion of a manipulator, for example the first three links of 

MA3000, we could make use of the dynamic model which can be obtained by running 

the programmes. Given the dynamics written in closed form as in equation (2-14), the 

most common way of simulating the motion is to solve for the acceleration (which 

involves inverting M(q)):

q = M { q T l [ i - Q ( q , q ) ]  (3-1)

We may then apply any known numerical integration techniques to integrate the 

equations forward in time. SIMNON provides a software for solving difference and 

differential equations. By using SIMNON, we can calculate the joint output q,  q ,  and 

q when we know the torque input x and initial conditions. Usually the initial condi­

tions are:
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<7(0) = <7o> <7(0) = 0, <7(0) = 0

The above process can be summarised in the block diagram:

24

(3-2)

4

4

<?

Fig. 3.2 Input X, output q,q ,q .

The method to perform numerical integration is fixed in the SIMNON software. 

Integration is a discrete numerical calculation process. The accuracy is depend on the 

size of time interval At.  It should be sufficiently small that breaking continuous time 

into these small increments is a reasonable approximation. SIMNON can choose At 

automatically and manually during the simulation process. So, the simulation accuracy 

can be controlled by setting a reasonable small time interval At .

3.3. The model of three-link manipulator

The example of the two-link planar manipulator shown in figure 2.2 is too simple 

to imply the power and convenience of the method for the simulation of rigid manipu­

lators. So, we apply this method to simulate a three-link manipulator which is shown 

in figure 3.3 by using SIMNON language.

Robot

Manipulator
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3.3.1. Dynamic equations

We have run the programme which is based on the iterative Newton-Euler 

dynamic formulation to generate the dynamic equations of the three-link manipulator.

SHOULDER

WAIST ELBOW

Fig. 3.3 Three-link manipulator

A feature of REDUCE is that it can handle a mixture of symbolic and numerical 

values. This is illustrated by running the procedure ‘NewtonEuler’ firstly with sym­

bolic values for the masses and link lengths, and secondly with numerical values.

a) Using symbolic values:

In our programme, the variables are in the general symbolic form except the 

alpha, alpha = ( y , 0, 0)r , because we know i t

The torques of each link’s joint which are in the form of M(q) ,  Q(q , q )  can be 

obtained, where q = (0b 02, 03)r , q = (9i, 02, 03>T are vectors of 0 and 0.

M ( 1, 1)  =  ((7723/3 -  4 /3 *  +  4 / 3>) C O S 2 ( 0 2  +  03)  4-  (JTI2I2  +  47723/2 " 4 / 2 *  +  4 / 2y ) C O S 2 0 2  +

4 /W 3 /2 /3 C O S 0 3  +  4/ t i 3 /2 / 3C O S(202 +  03)  +  7722/2 4" 47723/2 4" 7723/^ +  8 / ly  +  4 / 2 *  4-  4/ 2-y 4* 4 / 3 *  +  

4/  3y )  /  8

M ( 1,2)  =  0

A f ( 1,3)  =  0
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Af (2,1) = 0

A/(2,2) = (4m3/2/3COS03 + #*2/2 + 4m^li + W3/3 + 41^ + 4/3Z) /  4 

Af (2,3) = (2^ 3/2/300883 + 77*3/3 + 4/3Z) /  4 

Af (3,1) = 0

Af (3,2) = (277*3/2/300863 + 7 7 * 3 /3  4- 41 ̂ z) I  4 

Af (3,3) = (77*3/ 32 + 4/a,) /  4

<2(1,1) = -((77*3/32 - 4 /3x + 4 /3,)(02 + 03)0 1cos2 (e2 + 83) + 277*3/2/3(282 + 83)81 sin(282 + 83)

+ (77*2/2 + 477*3/2 ■ 4 /2* + 4 /^ )8i82sin282 + 277*3/2/38183511163) /  4

6(2,1) = ((77*3/3 ■ 4 /3 x  + 4/3>)8i2sin2(82 + 83) + 4 *723/2/36 2sin (282 + 6 3 )

477*3/2/3(282 + 63)83511183 + 4 *7*3/3^ 0 0 5 (82  + 83) + 4 (77*2 + 277*3) /^  cosSz) /  8

6(3,1) =  ((77*3/3 ■ 4/ 3* +  4/3>)8i2sin2(82 +  83) +  277*3/2/3 6 2sin (282  +  83) +

2*7*3/2/3(8 ^ +  28^sin83 +  4 *7*3/3^ 005 (82  +  83) /  8

b) Using numerical values:

772 /  2
Let 77*1 = 25&g, 77*2 = 5 ^ ,  77*3 = 10£g, /1 = 0 .3*7*, l 2 = 0.577*, / 3 = 0.4tt*, 7ix = I u  = 1 —,

77*2/2 w3/ 2
I \y = f 2x = f 3x = 0 , f 2> = / 2z = “ J J ” ’ /3> = /3z = “ 2~ 9 11111 the program m e again, then the

torques in the form  o f M(q)  and Q( q , q ) are:

Af (1,1) = (4000cos(282 + 83) + 1066cos2(82 + 83) + 5833cos282 + 4000cos83 + 6899) /

4000

Af (1,2) = 0 

Af (1,3) = 0 

Af (2,1) = 0

Af (2,2) = (4000cos83 + 6899) /  2000 

Af (2,3) = (1000COS83 + 533) /  1000 

Af (3,1) = 0

Af (3,2) = (1000COS83 + 533) /  1000
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Af (3,3) = 533 /  1000

Q (1,1) = -((400002 + 200003)01 sin(292 + 03) + 1O66(02 + 83)01sin2(e2 + 03) +

58330i02sin202 + 2OOO0!03sin03) /  2000

0(2,1) = ((4OOOsin(202 + 03) + lO66sin2(02 + 03) + 58335^202)0? - 8OOO0203sin03 -

4OOO93sin03 + 80000^cos(02 + 03) + 25000#COS02) /  4000

Q (3,1) = ((lOOOsin(202 + 03) + 533sin2(02 + 03) + lOOOsinO^O? + 2OOO022sin03 +

4000# cos(02 + 03) /  2000

Note that the resulting equations are much simplified com pared with the symbolic 

form, but this is at the expense o f not being able to change masses in the simulation 

itself.
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3.3.2. Simulation process

Using the summarised block described in figure 3.2 to simulate the three-link 

manipulator, we have the structure block for the simulation of equation (3-1):

M( q y

q = M{q)  1 [ x - Q{q,q) ]

Fig. 3.4 Structure block of simulation process 
Three programmes are used for calculating the three-link manipulator dynamic

equations in the form of equation (3-1). Under given initial conditions, the initial 

values of M{q)  and Q( q , q) are obtained in the second programme (CONTINUOUS 

SYSTEM CalculateMQ). Under input torque x, which is a vector of (xi,x2,x3)r , the out­

put, q , q , q ,  are calculated in the first programme (CONTINUOUS SYSTEM ThreeL- 

ink) and then transferred to the second programme by the third connecting programme 

(CONNECTING SYSTEM ConTLandMQ); and versus the output M(q)  and Q( q , q ) are 

transferred back to the first one.

3.3.3. Figures

Now we run the simulation programmes to check the correctness of the dynamic 

equations obtained by the programme in REDUCE.

To simplify the problem and to show it easily, we suppose there is no any friction 

in our system.

First, let the torques which act on the links equal to zero, that is ii = 0, x2 = 0, 

x3 = 0. In this case, the manipulator works under the effect of gravity force. There­

fore, the angular position of the first link which is called WAIST should keep its origi­

nal position; the second link (SHOULDER) and the third link (ELBOW) must move
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up and down in a certain way.

Let -  0, %2 = 0, x3 = 0, mi = 5kg, m2 = 1 kg, m3 = 0.5kg, and assume the mass dis­

tribution is the same along the axis of the link, the results are shown in figure 3.5. 

Note that the angular position of the shoulder changes between 0 and - n, and the 

movement of the elbow is a little complicated, but the value keeps around 0.

Figure 3.5 shows us the case of under zero initial position conditions, that is the 

shoulder and the elbow are at the horizontal position. If we keep them nearly along the 

vertical line position, for example the initial value of Q2q = -1.55, other conditions are 

the same as that in the case of figure 3.5, the amplitude of the elbow’s movement 

should be much smaller.

Figure 3.6 shows that the value of the elbow’s position is much smaller compared 

with that in figure 3.5, but the movement of the shoulder is not exactly in the shape of 

the cosine function because of the existence of elbow.

If we let m3 -> 0, the effect of the elbow to the shoulder can be ignored. This 

means that, in this case, the movement of the shoulder should be in the shape of the 

cosine function. The results are shown in figure 3.7. Note: we can not let m3 = 0. If 

m3 = 0, there is no inverse form of M(q).

Now let us see the case of the waist having an initial angular velocity, for exam­

ple, 0lo = 0.1 1/s, the other initial conditions are the same as that in figure 3.5. From 

figure 3.8, we find that when the tangents of 02 and 03 are zero, the tangent of 0! 

equals to 0.1. This means that the initial value of 0t keeps to effect on the system dur­

ing the whole time. This can be obviously shown by setting the gravity vector G = 0. 

The results are shown in figure 3.9. The curve of 0j is a line. Its tangent equals to 

0! = 0.1.

Secondly, let xx = O.lNm, t2 = x3 = 0, the initial condition 02q = - l, and the other 

initial conditions are the same as that in figure 3.5. In this case, the shoulder and the
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elbow just like two flying sticks under no weight condition. When time they

should keep in the horizon position. The results are shown in figure 3.10.

Thirdly, let = O.lNm, x2 = 5.88Nm, x3 = 0.98Nm, G = 9.8kgm/j2, and the initial 

conditions are the same as that in figure 3.5. In this case, x2 and x3 balance the effect 

of the gravity. The results should be the same as that of the case with G = 0. See 

figure 3.11.

Now let x3 increase, for example x3 = lNm, the other conditions are the same as 

the one in figure 3.11. The results should be much complicated. It is shown in figure 

3.12.

Change the input torques, such as X! = O.lNm, x2 = 2Nm, x3 = O.lNm, then the 

results are shown in figure 3.13.

3.4. Conclusion

The simulation method is efficient for rigid manipulator simulation. All figures 

obtained from running SIMNON programmes show that the simulation of the three- 

link manipulator is desirable.
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Fig. 3.5 The angular positions, G = 9.8
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Fig. 3.10 The angular positions, G = 0, Xi = O.lNm, thd20 = -1
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Chapter 4. Analytic Model for One-Link Flexible Manipula­
tors

4. Analytic Model for One-Link Flexible Manipulators

4.1. Introduction

A model is a description of some system intended to predict what happens if cer­

tain actions are taken. Virtually any useful model simplifies and idealises. Often the 

boundaries of the system and of the model are rather arbitrarily defined. Most forces 

that impinge on the system must be neglected on a priori grounds to keep the model 

tractable, even when there is no rigorous proof that such neglect is justified. Inevit­

ably, the model is better defined than the real system. For a model to be useful, it is 

essential that, given a reasonably limited set of descriptors, all its relevant behaviour 

and properties can be determined in a practical way: analytically, numerically, or by 

driving the model with certain ( typically random ) inputs and observing the 

corresponding outputs.

An analytical model gives us a mathematical formula into which we substitute the 

characteristics of the system in question. It can then be quickly evaluated to give a 

performance number for the system. The formula is obtained by some sort of analysis: 

probability theoiy, queuing theory, or differential equation theory, for example. The 

mathematical sophistication required to derive the formula is usually substantially 

higher than that needed to develop a simulation model; however once derived, a for­

mula is much easier to use.
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In this situation, the simulation model may be more credible: perhaps its 

behaviour has been compared to that of the real system or perhaps it requires fewer 

simplifying assumptions and hence inevitably captures more of a hypothetical real sys­

tem. However, the analytic model may give more insight into which policies are likely 

to be good.

Whether the model and the programme implementing it accurately represent the 

real system can be checked in two stages [17]:

Verification. Checking that the simulation programme operates in the way that 

the model implementation thinks it does; that is, is the programme free of bugs and 

consistent with the model? Such checks are rarely exhaustive.

Validation. Checking that the simulation model, correctly implemented, is a 

sufficiently close approximation to reality for the intended application. Due to approxi­

mations made in the model, we know in advance that the model and the real system 

do not have identical output distributions; thus statistical tests and theoretical analysis 

of model validity have to be use.

The validation problem arises because various approximations to reality are made 

in creating the model. We always restrict the boundary of the model, ignoring every­

thing outside that is not an explicit input, and neglect factors believed to be unimpor­

tant.

Industrial robots are required to have light structures, because of the needs of 

high-speed performance and low energy consumption. Flexible manipulator systems 

exhibit many advantages over their traditional ( rigid-arm ) counterparts: they require 

less material, have less (arm) weight, consume less power, are more maneuverable, 

require smaller actuators, and are more transportable. However, they have not been 

much favoured in production industries due in part to the fact that manipulators are 

required to have a reasonable accuracy in the response of the arm’s end-point to the 

joint control system input commands and this is severely deteriorated by structural
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deformation, especially in the case of flexible links where the deformation is oscilla­

tory. Traditionally, these vibrations have been eliminated by increasing the rigidity of 

the arms, but this solution is not available in the case of flexible manipulators; there­

fore, it is important to realise ( or validate ) the characteristics of flexible links from 

theoretical point of view.

The problem of modelling flexible mechanical systems has been studied only par­

tially. In the papers of Balas [18] and Karkkainen and Halme [19] a model approach to 

the problem of approximating a general flexible mechanical system is used. Book, 

Maizza-Neto and Whitney [7] directly approximate a two link flexible robot with a 

linear model derived from a nonlinear distributed parameter model. Book [20] also 

uses a special technique called lumping approximation to analyse flexible mechanical 

system assuming that the links bend is in a first mode vibration; Judd and Falkenburg 

[21] apply this method to nonrigid articulated robots; the same technique is adopted by 

Sunada and Dubowsky [22], and modified in such a way that more vibration modes 

are allowed. Chassiakos and Bekey [23] approximate the distributed parameter system 

response. This chapter provides a method of using transfer functions to model one- 

link horizontal planar flexible manipulators.

In this chapter, we set up a model by using transfer functions which are the 

responses of the two end points of a flexible distributed parameter system versus the 

input torque. These transfer functions which are purely based on vibration theories 

described by many people [24] [25] are symbolically calculated by REDUCE. Four 

different methods are presented to obtain the model of one-link flexible manipulators. 

The poles and zeros of the open-loop transfer functions, the frequency response and 

impulse response have been obtained by MATLAB. Also, the frequency response of a 

hinged-free beam has been tested by experiment. The correspondence between the four 

different methods and the experiment shows that the established model is reasonable.
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4.2. Exact model

Consider the system of Fig. 4.1. Along the length of the arm ( 0<x<L ), the 

Young’s modulus of elasticity (£), the transverse area moment of inertia (/), and the 

mass per unit length (p) are constant. Although the radius of the base axis of rotation is 

assumed for convenience to be zero, a motor armature and gear box are modeled by 

way of nonzero rigid mass moment of inertia, 70, located at this base axis: The end 

mass, m, ( located at the opposite end of the arm ) is considered to occupy a point. 

The control torque, x, is continuously variable.

The variable y(x,t) is the deflection of the arm at a point located a distance x 

from the torqued end, measured relative to the undeformed position of the arm. The 

angular displacement, 0(f), is the angular position of the base measured from its origi­

nal or reference position.

EI. ^

l « ( t )

L -  MANIPULATOR ARM LENGTH
E I -  * * BENDING ST IFFN E SS

p •  '  '  HASS/LENGTH
I 0  -  R IG ID  BASE MASS MOFCNT OF IN ERTIA

■  -  MASS OF END LOAD 
9 -  ANGULAR PO SITIO N OF BASE 
y  -  DEFLECTION FROM EQUILIBRIUM  
1 -  POSITION LOCATION ALONG ARM 
t  -  TIME (MEASURED FROM BEGINNING OF MANEUVER)

Flg.4.1 Manipulator arm modal
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4.2.1. Transfer functions

Trying to find the transfer functions ( G(s), Gl(s) ) of the tip’s angle and the joint 

angle versus the input torque of a one flexible link, we can think it is the case of a 

cantilevered beam forced by adding inertial forces shown as below:

Pf ( t )  = -  m(L'e(t) + d2y(L, i ) /dt2)

r

q(x,t) =

m -

L
0

Fig.4.2. Inertial forces of the manipulator arm model

The method for solving the forced vibration of finite beams has been developed 

in Chen’s book [24]. The inhomogeneous differential equation is

rpr d4y . d^y ( (4-1)

that is

t̂ t d4y  . / <Py d 2Q N n

* p ( - ^  -  °-
(4-2)

For the torque, we have

r d2d , r d^y iL j )  cL dfy _r /, —  + mL ■ ■ + p x —f d x
dr dr J dr

=  T . (4-3)

where
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The geometric boundary conditions at the torqued end are:

y(0,t) = 0, (4-4)

S  = °- <4-5>

The natural boundary conditions at the free end are:

d2)?
dx2

'x=L = 0 ,  (4-6)

n,<Py d 20 d2)’ . . „
- 0 ' < 4 - 7 )

Using the Laplace transform method to solve the wave equation, it is possible to 

obtain a solution in terms of standing or travelling waves. The type of solution 

obtained depends on the manner in which the inverse transformation is carried out.

The Laplace transforms of equation (4-2) and (4-3) in view of zero initial condi­

tions are

EI dAY(x's) + p s 2 (T (x ,i)  + * 0 ( s ) )  = 0 (4-8)
dx4

It s 20  + mLs2Y(L) + p s 2 j$x Y dx = T  (4-9)

where Y(x), 0 , and r  are the Laplace transforms of y, 0, and t, respectively. In writing 

equation (4-8) it was assumed that

f  = JoV ,  = - ^ - g e -«y(x ,t)d t =
JL^ ox oxz ox dx1

which implies that the function e~sty(x , t )  is such that interchange of the order of 

differentiation with respect to x  and integration with respect to t is possible [26]. The 

function Y(x,s)  is subjected to the transformed boundary conditions

7(0) = 0 (4-10)
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f  U o  = 0 (4-11)

drY \X=L = 0 (4-12)
dx 2

ms2Y (L) + mLs2® - E I^-^r \X=L = 0 (4-13)
dx3

where Y(x), 0 , and r  are the Laplace transforms of y, 0, and x, respectively. A gen­

eral solution to equation (4-8) is

Y(x) = exp (fix) [A  cos[k + B sinpjt ] +

exp(-Pjc) [ C cospix + D sinP% ] - 0jt (4-14)

where

P4 = (4-15)

The constants A, B, C, and D are evaluated using equations (4-10) - (4-13). The 

resulting solution for Y is then substituted into the definite integral of equation (4-9), 

which is evaluated analytically. From this result and equation (4-14), the transfer func­

tions G(s), Gl(s) are found, where

G = r + -®- (4-16)

G1 = (4-17)

The above process can be done by using REDUCE. The REDUCE code and the

expending equations of G and G1 are listed in appendix 3.
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4.2.2. Open-Ioop responses

MAILAB has a rich collection of functions immediately useful to the control 

engineers. Complex arithmetic, root-finding, and FFT’s are just a few examples of 

important numerical tools. Moreover, the most important is the tools are not found in 

the toolbox can be created by writing new M-files. The results in this report are all got 

by running written M-files.

Figures 4.3 - 4.6

In order to simplify the model, suppose the length of the link is L  = 1 M, the 

mass per unit length is p = 1 Kg/M, the base moment of inertia is 70 = 0, the end mass 

is m = 0. Figures 4.3 - 4.6 show the poles and zeros of G near the origin of axes. They 

are:
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The Poles and Zeros o f G

EI Poles Zeros

50 0.0000+-
0.0000*i,
0.0000+-
109.02*i,
0.0000+-
355.30*i.

+-
079.10+0.0000*i,
+-
427.46+0.0000*i.

100 0.0000+-
0.0000*i,
0.0000+-
154.18*i,
0.0000+-
499.65*i.

+-
111.87+0.0000*i,
+-
604.52+0.0000*i.

200 0.0000+-
0.0000*i,
0.0000+-
218.05*i,
0.0000+-
706.61*i.

+-
158.20+0.0000*i,
+-
854.90+0.0000*i.

300 0.0000+-
0.0000*i,
0.0000+-
267.05*i,
0.0000+-
865.42*i.

+-
193.80+0.0000*i,
+-
1047.1+0.0000*i.

According to Thomson’s book [25], for any kind of beams, the natural frequencies of 

vibration are found by the equation:

where the number n depends on the boundary conditions of the problem. Here the 

beam configuration is the hinged-free kind. So
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( tiiL )2 = 0, 15.4, 50.0, ..

Back to the equation (4.18)

EI = 50: ©i = o, ©2 = 108.89, ©3 = 353.55.

EI = 100: C0j = o, ©2 = 154.00, ©3 = 500.00.

EI = 200: ©1 = o, ©2 = 217.79, ©3 = 707.11.

EI = 300: ©i = o, ©2 = 266.74, ©3 = 866.03.

The values of the natural frequencies are the same of the poles value of G.

Figures 4.7 - 4.10

Figures 4.7 - 4.10 show the poles of the transfer function ( G1 ) which is the 

joint angle versus the input torque. The poles are the ones near the origin of the axes. 

Because the ones far from the origin have small effects on the system, they can be 

ignored. G1 has no zeros. The poles’ values are the same as the ones of G shown in 

the table above.

Figures 4.11 - 4.12

Figures 4.11 - 4.12 are the frequency responses of G when different values of EI 

are chosen. The peaks occur at the exact points of the natural frequencies.

Figures 4.13 - 4.14

Figures 4.13 - 4.14 show the impulse responses of G. The larger stiffness causes 

larger vibrational frequencies.

The results of figures 4.11 - 4.14 correspond with the results in Gawthrop’s report

[27].
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4.3. Approximated model derived in time domain

In equation (4-1), the assumed force q(x,t) varies with time in the same way for 

all points on the beam, that is

q ( x , t ) = p ( x ) f ( t ) (4-19)

where

equation (4-1) becomes

p(x)  = - x p, / ( f )  = 0(0

+ p - ^ f  = p(x)  f ( t ) 
dx4 dt2

(4-20)

The general solution to equation (4-20) will be the form

y = X<Dr (x) qr (r) (4-21)
r

where <t>0c) is a normal mode which has the form:

Or = B ^oshta; + R2sinh^t + B scoshc + .S^inXx (4-22)

Jo P [Or Oc )]2 dx = M  (4-23)

CO2where X4 = p—•, M is the mass of the beam, qr(t), a principal coordinate, is a function
E l

of time.

After some tedious manipulations [28], we obtain

,  f ( t ) \ o P ( x )P H I r(x)dx  
Qr + =       (4-24)

For a known distribution of applied force p(x) and known mode shapes the integrals in 

equation (4-24) can be evaluated; if the ratio is Kr, then

<?; + <82qr = Krf ( t )  (4-25)
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4.3.1. Transfer functions

For the system of figure 4.1, there are two kinds of virtual forces acted on the 

cantilevered flexible beam: one is a distributed force q(x, t ) = - p*0(r), the other is a 

concentrated force acted at the free end P f ( t )  = - m(LQ(t) + (Py(L,t)/dt2) as shown in 

figure 4.2.

A concentrated force can be thought as P f ( t ) =  p(x)Axf ( t ) as Ax->0. Equation 

(4.24) becomes

2 P ® r {L ) f ( t )
Qr + “ r Qr =  Jj   (4-26)

So, the differential equation of our system’s coordinate q,(t) is

.  Jo - pxQ(t)®r (x) dx PQ?r (L)f  (t)
Qr + a rQr ~ '------------ 77------------  +M M

= KqrQ + Kpr (LQ + y  \X=L ) (4-27)

where

Jo - Px®r dx -m<br(L)
qr ~~ M ’ pr ~ M  

The normal mode of cantilevered beam has the boundary conditions:

O(0,r) = 0, -^ -0 = 0  = o (4-28)

3^0 3^0^ 1 ^ = 0 ,  ^ - 1 ^ = 0  (4-29)

With this four boundary conditions, the frequency equation is

cosTJL coshAL + 1 = 0  (4-30)

With equation (4-23), the constants Bu B2, B3, B4 can be obtained. Take these constants 

back to equation (4-27), Kqr and Kpr can be calculated.
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Take Laplace transform of equations (4-3), (4-21), and (4-27), the transfer func­

tions G(s), Gl(s) which are defined by equations (4-16) and (4-17) respectively can be 

obtained. This process also has been done by using REDUCE. The REDUCE code 

and the expanding equations of G and G1 are listed in appendix 3.

4.3.2. Simulation results

We take the same system which has been discussed in section 4.2. The transfer 

function G of the uniformed beam’s manipulator is listed in appendix 3. Having 

obtained the transfer function, it is easy to see its frequency response, and to compare 

the results with that of the exact model.

Figures 4.15 - 4.16 are the frequency responses of G derived in time domain with 

different stiffness of EI=50, 100, 200, 300 as the same cases in section 4.2. Figures 

4.17 - 4.18 show the comparison of the frequency responses of exact model’s transfer 

function G and of the transfer function derived in time domain approximated by eight 

orders. The first seven peaks of the two different model’s frequency responses happen 

at the same frequency points. They have the same frequency responses except the part 

after the seventh peak.

4.4. Approximated model of using Lagrange-Euler formulation

For the same system of figure 4.1, we can also get its approximated model by 

using the Lagrange-Euler formulation [3].

The application of the Lagrange-Euler formulation in deriving flexible links’ 

manipulator dynamic equations is based on the approximation method known as the 

Ritz-Kantorovitch method which is on account of a function series expansion and uses 

a so called ‘ complete set of functions ’. A set of function { f k(x) with f k : [0L]->i? 

and f k £ C 2([0£])} is said complete if V y€C2(R-,r/]x[0L]) and \ f  e>0 an index 8 exists 

and, 5 time functions pi(/), p2(0 , ...,P«(U exist such that
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5
Iyifjc)  - X  f o ( t ) f k(x)\<E (4-31)

k=0

Given a complete function set each function y^,C2{[ti,tf '\) can be expanded in a function 

series

y ( t * ) =  £  ftk(f) /* (* )  (4-32)
k=0

In particular, if an approximate description is sufficient to the purpose of the analysis, 

the expansion can be truncated at a finite order term

y ( t j ) =  X  ftk(O/*G0 (4-33)
k=0

In this way our problem is reduced to the classical formulation of Lagrangian discrete

mechanics and, the motion equation of the system can be given by the Lagrange-Euler

formulation described in chapter 2.

For one-link flexible manipulator shown in figure 4.1, we apply the Ritz- 

Kantorovitch method. Given a set of functions { f (x) } y can be approximated by
rt

y(tjc) = X P*(0/jk(*) with an error depending on the order n. We choose f k(x) = x k,
k =0

consequently in frame (Z0, 70) of figure 4.2 the parameter equations of the curve are

X 0(x,t) =*cos0 - X  P*(0**sin8 (4-34)
k=0

Y0(x,t) = x sin0 + X  Pjfe(/) jc*cos0 (4-35)
k=o

in which, in order to respect the geometrical constraints, y(t,0) = 0, y(t,0) = 0, 

Po = Pi "  0.

Introduce the new variables qx = 0 and qt = pif (i>l). From which, with some tedi­

ous manipulations, we obtain the following approximate model which has the form

Dq +Hq + C  = T (4-36)
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We have done this process by REDUCE. The REDUCE code and the expanding 

equations of D, H and C for the model approximated by six order are listed in appen­

dix 3.

This model is described by a set of non-linear differential equations, we cannot 

directly give its transfer functions. So, we just can check the correctness by the simula­

tion in time domain. Figure 4.19 shows the response of the differential equations of 

equation (4-36) using ACSL (Advanced Continuous Simulation Language) [28] under 

unit input torque. This result also has been compared by the step response of exact 

model’s transfer function G shown in figure 4.20.

4.5. Approximated model of adding springs

In this section, we investigate another approximate model whereby a flexible link 

can be replaced by several rigid links connected by springs. Assume that the number 

of added springs is n. The distribution of the springs is that the first one is at the fixed 

end and the others divide the beam into equal parts. According to the elastic theory, 

they have the same stiffness k. There are a number of ways to choose the spring con­

stant k. Two possible methods are given.

First, in static state, if the free end of the link is acted with a moment M, the dis­

placements of the end of the two links are the same.

Actual beam

ML
2EI

Approximated beam

A
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For the actual beam, the displacement of the end point of the beam is

ML2
Ay I = 2EI

where L is the length of the beam, E is the Young’s modulus of elasticity, I is the 

transverse area moment of inertia.

For the approximated beam, the displacement of the end point of the beam is:

A ML „ ,  0/ , N ML(n+1)
Ay 2 =  ~ ( 1/n + 2/n + • • * +  n /n)  = ------ ^ — L

where k is the springs’ stiffness.

That is

ML2 _ M{ n+1 )L 
2EI 2k (4-37)

k = ( ” +1 (4-38)

Second, another way of choosing the stiffness is that the angles of the end of the 

two links are the same. In this case, we can similarly get the stiffness k

k = (4-38a)
Lf

After some simulation ( described in chapter 5 ), it is better to use equation (4-38) 

than equation (4-38a) to choose the springs’ stiffness.

We have only considered the static state condition to derive the ways of choosing 

the springs’ stiffness described by equation (4-38) and (4-38a) . The more rigid parts 

are used to approximate a flexible link, the better correspondence with the real 

response of the dynamic characteristics of the link can be obtained.

With these assumption, the differential equations can be obtained by using the 

programmes described in chapter 2. In order to use the approximated method to simu­

late the flexible link, We must use the free joint linked parts to replace the real link. If
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a manipulator has three real links, we use three rigid parts to simulate each link, we 

will equal to calculate a manipulator with twelve links. It must be a real problem to 

get the dynamic equations although the programme in REDUCE can calculate a mani­

pulator with any links. Even though we have obtained the dynamic equation, to simu­

late it is a problem.

In real systems, the added joints’ angle is small. The effect of the angles is in the 

form of cosine and sine function. So we can let the angles equal to zero to get the 

approximated dynamic equations. This approximation will cause the dynamic equation 

to be much simplified. Another advantage of with this assumption is that the dynamic 

equations of one-link flexible manipulators is a set of linear differential equations. This 

means that we can obtain the transfer functions of the system by introducing the equa­

tion

%nd = 0 + 01 + - ^ - 0 2  + • • • + (4-39)

The model has approximately been obtained by adding eight springs using 

REDUCE and MATLAB. The MATLAB programme is listed in appendix 3.

Figures 4.21 - 4.22 show the comparison between the frequency responses of 

exact model’s transfer function G and the ones of the transfer function of the model 

approximated by adding seven springs. The first four peaks of the two different 

models’ frequency responses happen at the same frequency points. They have the 

same frequency responses except the part after the fourth peak.



ANALYTIC MODEL FOR ONE-LINK FLEXIBLE MANIPULATORS 57

4.6. Experimental results

The four different methods to model one-link flexible manipulators are fully 

developed in frequency domain. Do they correspond with real flexible beams? We 

should do some experiments to verify the simulation results.

The experiment is based on the idea of measuring the end point linear accelera­

tion of a vertical hinged-free beam excited by a force shown in figure 4.23.

“ COMPUTER I

A,ly

Fig.4.23. Experiment diagram

The force F(t )  is a sine function of time t, that is

F(r) = F q sin(cor + <J>0) (4.40)

where F 0 is the force amplitude which can be preset manually, co is the frequency of 

the exciting force F( t ), is the initial phase of F(t) .

The measured end-point linear acceleration’s amplitude Ay can be read by 

accelerometers. Consequently, the correlated frequency response of the end-point

A
angle’s acceleration, 10*̂ 1 = —L, versus input torque It I = F0xa can be calculated byLi

the computer. The comparison between the frequency response of the experiment
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results and the one of the exact model is shown in figure 4.24. The beam’s data are EI 

= 842.285, L = 0.727 M, a = 0.005 M, p = 2.45 Kg/M.

We must note that the excited force is not the same as the real system’s input 

torque. But, when the distance a is much small, the force can approximately be 

thought as the real system’s input torque. This has been verified by the simulation of 

the forced beam system described in figure 4.23. The simulation method is similar to 

the one described in section 4.3. The simulation results are shown in figures 4.25 - 

4.26.

4.7. Conclusion

The work of one-link flexible manipulator validation is important and efficient. 

Any of the four different analytic methods can lead to obtain the analytic model of a 

one-link flexible manipulator. The exact model is efficient. The other three approxi­

mate methods are reasonable. The experiment result gives us much more confidence to 

the analytic models. One big advantage of the method of adding springs to approxi­

mate our model is that it is easy to be used for modelling multi-link flexible manipula­

tors.
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Fig4.3. The poles and zeros of G, EI=5Q1000
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Fig4.9. The poles of Gl, EI=200
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Fig4.7. The poles of Gl, EI-50



Fig.4.11. The frequency response of G, EI=50,100
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Fig.4.12. The frequency response of G, EI=200, 300
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Fig.4.13. The impulse response of G, EI=50,100
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Fig.4.14. The impulse response of G, EI=200,300
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Fig.4.15. The F-R of G derived in time domain, EI=50,100
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Fig.4.16. The F-R of G derived in time domain, EI=200,300
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Fig.4.17. Compare of exact model and time domain model, EI=50
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xlO*3 Fig.4.20. Step response of exact model G, EI=50
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Fig.4.21. Comparison of exact model and adding springs model, EI=50
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Fig.4.22. Comparison of exact model and adding springs model, EI=200

10°

10*1



67

Fig.4.24. Comparison of experiment results and exact model
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Fig.2.25. Comparison of forced model and exact model, a=0.05 M
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Fig.2.26. Comparison of forced model and exact model, a=0.20 M
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Chapter 5. Simulation of Flexible Links of Manipulators

5. Simulation of Flexible Links of Manipulators

5.1. Introduction

The analytic models of one-link flexible manipulators in the previous chapter are 

quite satisfied. We use the method of adding springs to approximate the model. This 

approximation has been verified in frequency domain. Because the relative simplicity 

of the dynamic model obtained for a one-link flexible manipulator disappears alto­

gether when considering a multi-link flexible manipulator, we should also verify the 

approximation in time domain.

This chapter continues to describe the validation work about flexible beams. It 

concentrates on the method of adding springs to simulate flexible links of manipula­

tors. The basic method to verify the simulation results is to compare the natural fre­

quencies of a cantilevered beam with the ones of the approximated model.

5.2. Bending vibration of a uniform beam

In order to simulate flexible links, we first analyse the transverse vibration of a 

beam. Referring to any standard text on strength of materials, for a beam, we find that 

the bending moment M is given by

- M = El (5-1)
dx
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while the corresponding transverse force on the beam per unit length q is given by

d2M d2
dx2 dx2

and when the beam is uniform

E l^ r
dx2

(5-2)

- ,  .  m  0  <5-3,

If the beam is vibrating with a periodic motion we can always represent the 

vibration as a sum of a set of Fourier components which are all harmonic functions of 

time, and whose amplitudes are functions of x. For any mode of vibration the motion 

y(t) will be represented by yo(x)eJ(0t, where co is the natural frequency of the mode and 

y0(x) is the mode shape. Assuming that the inertia and elastic forces are independent, 

the equation of motion in each mode is expressed by

+ “ 0  '  ° ’ <” >

where p is the mass density of the link along length. Since y is a function of x and t, 

this is a form of wave equation with a wave velocity ± V£7/p, and each mode can be

represented by a standing wave. We can express the displacement as y  = <fo(x)<|>2(0 ,

where <j»i and <J>2 are independent, so that and = 4 ^  (j>j. Thus for each
dx dx dt dt

mode we can replace -|^L by - co2y  in equation (5-4), resulting in the pair of ordinary

differential equations

and

+ aPy = 0 (5-5)
dt1

d4<I>(x) pw2<b(x) _ 0 f 5 „
dx4 El '
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where equation (5-6) gives the shape of each mode ®(x) corresponding to the value of 

co.

To solve the equation (5-6) we need to find a function whose fourth derivative is 

equal to itself. There are now four possibilities, namely e^,e ejyjc, and e~jXx. Since 

the general solution to a fourth order differential equation will require four arbitrary 

constants of integration, the general solution to equation (5-6) will be

y 0CO = B 1 e hc + B 2 e ' hc + B 3 ejhc + B ^ jhc, (5-7)

or alternatively

y 0(x) = Bjcoshta:  + B 2 sinh foe + B 3 cos foe + sin foe (5-7a)

where

while the general solution to equation (5-5) is given by

y = <D(jc) e*™. (5-9)

We now have the problem of finding the constants in equation (5-7), for which 

we require four boundary conditions. These can be determined from the constraints 

placed at the ends or other parts of the beam when the problem is originally defined.
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5.3. The natural frequency of a uniform cantilevered beam

Assuming the beam’s length is L, the constraint at the fixed end is such that the 

beam has zero deflection and slope there. At the free end there is zero moment and 

shear force so the boundary conditions for this problem are

Fig.5.1 The natural frequencies of the first three modes 

The first two of these conditions gives

B i + B 3 = 0, and B 2 + B 4 = 0,

while the other pair of conditions gives

BjCOshAX + B 2 sinh XL - Z?3 cos XL - Z?4 sin AX = 0,

B i  sinh XL + B 2 cosh XL + B 3 sin XL - £ 4 cos XL = 0,

from which it may be shown that the frequency equation is given by

and the first three wave numbers are then A* = 1.875/L, X2 = 4.694/L and X3 = 7.855/L 

corresponding to the first three modes o f vibration o f the cantilevered beam.

The natural frequencies for the first 3 modes which are illustrated on figure 5.1 

are therefore

0(0) = 0,0(0) = 0 ,0 (L) = 0, 0 (3)(L) = 0.

-  2 2 - 0 3 8  I E l  2“ ,2

cos XL cosh XL -  -1 (5-10)
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El  22.038
°°2  ~  — 79 —

5.4. The response of adding springs in the cantilevered beam

We think a flexible link can be replaced by several rigid parts connected with 

springs, if only their natural frequencies are more or less the same. The problem of 

accomplishing this is that how many rigid links we should need and how large the 

stiffness of the springs we must choose.

Assume the number of the added spring is n. The distribution of the springs is the 

same as described in section 4.5 of chapter 4. The springs’ stiffness can be chosen by 

equation (4-38) or (4-3 8a).

5.4.1. The model approximated by two rigid parts.

In order to simplify the model, we assume the shape of the flexible link is shown 

below

600 20

Fig.5.2 The shape of the flexible link

and the material of the link is steel, then we can choose the Young’s modulus 

E = 200 GPa , and the second moment of area I  = = -  01^ Q‘02 = 1.667X10-9 m4, mass

, . . i 7800x0.02x0.01x0.6 , ^  ™density along length p = -----------—----------   = 1.56 kg/m. Then,
0.6
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3.515^ [ W ~  A! 22.038 . [HzTcortl = ----— A /------ 142.7 rad/s, (&n2 = ------;— A / —  = 894.8 rad Is.
L 2 '  P L 2 > p

According to equation (4-38), the stiffness of the springs is k  =  1666 Nm.  By 

using REDUCE programmes described in chapter 2, we can obtain the dynamic equa­

tions of the model in vertical plane. The generated equations have the general form of 

equation (2-14).

Because each joint is connected with a spring, the torque acted on the joint is 

x =  -  kQ,  where 0 is the generalised joint coordinate vector. By using ACSL, we can 

get the transient response of the end point under the effect of gravity.

Figure 5.3 shows us that the frequency of the transient response of the end point

is

co = 114.8 rad Is 

the difference between a> and the first mode natural frequency conl is

Icom1 - col
Tj = —  --------  = 19.58 %

®»i

This result shows that the model approximated by two rigid parts with two 

springs is quite satisfied. The difference is caused by the less rigid parts used for the 

model.

According to equation (4-38a), the stiffness of the springs is k = \ l l \ N m .  The 

transient response of the end point of the model is shown in figure 5.4. The frequency 

of the end point is

co = 91.4 rad/s 

the difference between co and co„i is
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having compared this result with the one in figure 5.3, we find that it is better to 

use equation (4-38) than equation (4-38a) to calculate the springs’ stiffness.

5.4.2. The model approximated by three rigid parts

The transient response of the end point of the model approximated by three rigid 

parts is shown in figure 5.5. The frequency of the end point is is

co = 120.7 rad Is

the difference between co and coBl is

Ico-i - col
T| = —  -------  = 15.41 %

©nl

Compared with the case in section 5.4.1, it is a little better. From figure 5.3 and 

figure 5.5, we notice that their end point response’ shapes are almost the same. That is 

these two cases show a same characteristic which is the real flexible link’s.

5.4.3. The model approximated by four rigid parts

The transient response the end point of the model approximated by four rigid 

parts is shown in figure 5.6. From figure 5.6, the frequency of the transient response 

is co = 123.8 rad/s. In this case, the difference t\ is

lconl - col 
T| = —  -------  = 13.23 %

The more rigid parts are used, the more approximated model is obtained. How­

ever, it is satisfied to simulate the real flexible link by using four rigid parts.
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5.5. Conclusion

From the results of the simulation in real time domain, we can conclude that the 

approximate method by adding springs to connect equal length rigid parts to simulate 

real flexible links is reasonable. It can be used as a reference to the simulation of 

multi-link flexible manipulators.
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Fig.5.3 The end-point transient response of adding two springs
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Chapter 6 Friction Effects on DC Motors
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6. Friction Effects on DC Motors

6.1. Introduction

Robot validation involves a wide range of research topics. Chapter 4 and chapter 

5 focus on the realisation of characteristics of flexible links. This chapter focuses on 

actuating systems.

Actuating systems provide a robot with muscle power. They are energy conver­

sion devices, converting electrical, hydraulic or pneumatic power to mechanical power. 

With respect to robot applications, electrical power offers several advantages. One is 

that electric actuators are easy to control. In order to identify the parameters of an 

electric actuator system, we must know the friction effects on motors. This chapter 

changes its point to the verification of friction effects on DC motors.

The Quin DSC-1 digital device provides a convenient control system which is 

essentially described in a continuous-time form. This chapter is based on the report 

[30] to identify the friction effects on the DC motor used in the system.
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6.2. System identification

82

6.2.1. Least-squares method

The friction effects on a DC motor are assumed in the form as described by the 

figure below

Fig.6.1 Friction effects of DC motors

where F is the resistant torque which includes static friction ( f u f 2 ) and dynamic 

friction ( the slope of the lines ), co is the rotation speed of the motor.

If we add a fixed inertia load, the system can be described by

y(s)  = ---------- ----------- ( u(s) - f xsign(co + I co I) - f 2sign(co - I co I) ) (6-1)
ao> + + a2

where y ( s )  is the ( Laplace transformed ) motor’s rotation angle, u(s) is the ( Laplace 

transformed ) control signal input, a0 is the sum of the load inertia and the motor shaft 

inertia, ax is the slope of the dynamic friction, a2 is the term proportional to y ( a2 usu­

ally equals to zero. We assume that there is a zero order term to complete a second 

order system. From system parameters identifications, we can find that the value of a2 

approximates to zero ), f x and f 2 are constants of resistant torques. With this assump­

tion, there are five unknown parameters : a0, au a2, f  u f 2, . To perform system 

identification, the system is rewritten as:
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1 d n S 2 d \ S  d o

= 7T T T y(J ) + T T T T ^ ^ ) + TT7T  +Cs(s) Cs(s) Cs(s) Cs(s)

/ 1 f  2•s/grt (co + I co I) + sign (co - I co I) (6-2)
Cs (s) Cs (s)

where C.y(y) is a second-order polynomial.

This can be converted into the time domain and written in the standard form for 

Least-Squares estimation as:

<|>(r) = X T(t)8 (6-3)

where the filtered output is

m  = - ^ ) u(s)  (6‘4)

the Laplace transformed data vector X(s) is

X(s)  = r ‘SyC-y) y( s )  ^ ( c o  + Icol) signjco - l c o l ) , r  (6 ^
; Cs(s) Cs(s) Cs(s) Cs(s) Cs(s) J K ' }

and the parameter vector 0 is

0 = [d0 d x d2 f  i f d T (6-6)

The unknown parameter vector 0 can be estimated from the data using the stan­

dard least-squares solution which has the form

NA „  NA
e = [X X (t)x r ( t ) r 1£ x ( f  m )  (6-7)

t=A t -A

where N  is the number o f applied data, A is the sampling time interval.
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6.2.2. Control signal in static state

The motor control system operates by sampling the position of the motor at regu­

lar intervals which is A  =  1 /2 5 6  S, and calculating a motor control signal according to 

some control algorithm. The algorithm used is of the following form:

i
ui = Kp ei + K t + K d (ei - ei_i)  - K v (yt - yi_{) + K f  - Wi_{) (6-8)

y=i

where ut is the control signal at time i, yt is the system output at time i, and w-t is the 

demand signal at time i, et = w,- - yt is the error signal.

The electric voltage output of the amplifier used in the DSC-1 module usually has 

an initial value VouIq when the input signal is zero. The value of initial electric voltage 

output V0UtQ can be measured in static state. First, set Kiy Kd, Kv, Kf  to zero. Second, 

choose a proper value of Kp , for example, Kp = 100,200,300 respectively. Third, add a 

moment, which is done by hand, that is to cause the shaft to have a deviation angle, 

this will cause the amplifier to have an output voltage which is read from a voltage 

meter, and the voltage value is proportional to the control signal. Repeat these three 

steps, we can obtain another point of voltage value versus control signal value. There­

fore, we can draw the curves of static state control signals versus electric voltage out­

puts.

Three curves of the static state control signals versus electric voltage outputs are 

shown in figure 6.2 when Kp = 100, Kp = 200, Kp = 300 respectively. From figure 6.2, we 

find V0UtQ = -0.73 Volt These curves should not depend on the value of Kpi that is they 

should be a coincident slope line. The differences of the curves are caused by the low 

precision of the measuring method.
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6.2.3. Simulation results

If the assumed friction effects which are described in figure 6.1 are right, we can 

write MATLAB files to identify the unknown parameters 0. These system identification 

files can be tested by using simulated data.

Assuming a system has the parameters 0 = [0.8 3 0.5 26 I0]r . The control signal is 

chosen from any measured data of the real system, for example, from the the data file 

when Kp = 100. After running the MATLAB files, the identified system parameters are 

0 = [0.7751 2.8477 0.4992 26.0115 9.9955]r . These simulation results which are shown in 

figure 6.3 imply that the MATLAB files can be applied to the system identification.

6.2.4. Experimental results

After running the data files when Kp = 100, 200, 300, we get the results which are 

shown in figures 6.4 - 6.9:

Kp = 100: 0 = [0.6489 1.8741 0.1182 18.7031 11.7938]r

Kp = 200: 0 = [0.6579 1.7145 0.2375 19.0903 13.5122]r

Kp = 300: 0 = [0.6026 1.8979 -0.4106 21.0599 4.025i f

Figure 6.4, 6.6, 6.8 are the simulation and actual system outputs when

Kp = 100, 200, 300 respectively, and the related control signals are shown in figures 6.5, 

6.7, 6.9.

The identified parameters under the different values of Kp should have same 

values. We are quite happy with the results except the values of a2 and the value of f 2
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The major differences between f 2 when Kp = 300 and the one when Kp = 200, or 

Kp = 100 can be explained from the errors between the real control signals input to the 

system and the estimated control signals used for the identification. Figure 6.9 shows 

the system control signals when Kp = 300. They are bounded in a certain scope because 

of the capacity of the amplifier. The capacity of the amplifier is in the range from -12 

Volts to +12 Volts, and the related scope of the control signals is in the range from 

-125 to +150. They are shown in figure 6.2. When the control signal is beyond the res­

tricted scope, the related amplifier voltage is not strictly bounded at the point of +12 ( 

or -12 ) Volts, it can reach as high as +12.5 ( or -12.5 ) Volts. Therefore, the relation­

ship between the control signal and the electric voltage output which is proportional to 

the torque input is nonlinear when the control signal is beyond the scope. The non­

linear output of the amplifier causes the estimated control signal unreliable.

In figure 6.9, when the rotation speed of the motor is positive, the control signals 

are below the restricted scope, therefore, the value of f x is reasonable compared with 

the other values of f  x when Kp = 200,100. However, when the rotation speed is nega­

tive the control signals are bounded by the capacity of the amplifier, therefore, the 

wrong identified value of f 2 ( compared with the other values of f 2 ) is not strange.

We know that the system of a motor with a fixed rotation inertia load has a zero

term of a2. Therefore, we can assume a2 = 0 In this case, we run the MATLAB files

with the same data files as above, we get the identified parameters values:

Kp = 100: 6 = [0.6411 1.8911 0 19.1033 10.9335]7

Kp = 200: 6 = [0.6410 1.7029 0 20.4705 12.603 l]r

Kp = 300: 0 = [0.6326 1.8991 0 18.8158 6.0287]r

What we must note at here is that the simulation results are all obtained by 

open-loop simulation process. The errors will be accumulated during the whole pro­

cess. Therefore, the simulation results may have more and more errors compared with
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the real system shaft angle outputs when time becomes larger and larger.

6.3. Conclusion

The differences of the identified system parameters from different data files can 

be explained by (1) poor quality power amplifier being used, (2) low precision measur­

ing method being applied and (3) some unknown factors in the Quin DSC-1 digital 

device. Even so, the results show that the friction effects on DC motors are describes 

by figure 6.1.
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Fig6.4. Simulation and actual system outputs, Kp=100
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Fig6.6. Simulation and actual system outputs, Kp=200
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Fig6.8. Simulation and actual system outputs, Kp=300
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Chapter 7. Discussion and Conclusion
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7. Simulation of Rigid Manipulators

The establishment of robot manipulator dynamic equations is the basis of robot 

validation. There are many methods to obtain the manipulator dynamics, the iterative 

Newton-Euler dynamic formulation and the Lagrange-Euler formulation are two of 

them. By applying these two methods, we write two programmes to generate the codes 

which can be read by both machine and man.

For today’s manipulator, the environments require it having light component dev­

ices and fast speed responses. This causes the manipulator to have flexible links. The 

concise way to realise the characteristics of flexible manipulators is to study the case 

of one-link flexible manipulators at the beginning stage. This thesis has described four 

methods to set up the dynamic equations of a one hinged-free flexible link manipula­

tor.

Robot validation is a recently developed research area. To realise the general 

dynamic characteristics of flexible manipulators and to verify the friction effects on 

DC motors are the research in this area.

The modelling and the validation of robot manipulators are developed quite 

smoothly in the thesis, but there still exists limitations.
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In the first part of the thesis, we have created two programmes to set up the 

dynamic equations of rigid manipulators. We know that either the iterative Newton- 

Euler dynamic formulation or the Lagrange-Euler formulation suits the manipulators 

with both rotational and translational joints, but the programmes can only be applied 

for the manipulators with rotational joints. However, this limitation can easily be 

solved by adding some condition loops into the programmes. Moreover the robot 

manipulator MA3000 in our laboratory is the one with rotational joints. Another limi­

tation is that it can not be directly for the programmes to generate the dynamic equa­

tions of a manipulator with a constant mass load at its end point. This problem can be 

prevented by adding a zero length link with the load mass to the end point of the 

manipulator. Because a manipulator with a constant mass load is an ordinary case dur­

ing its working time, this should have been considered when writing the programmes. 

Lastly, because the whole modelling and the validation work is done by computer 

simulations, we are not quite certain how much it is coincident with the real cases.

In the second part, four analytic methods are developed to set up the model of a 

one-link flexible manipulator, and the static and dynamic friction effects on DC 

motors are verified. There are also three main limitations.

Firsdy, the transfer functions which describe the model of one-link flexible mani­

pulators are very complex, especially when we consider the real ones which have rigid 

base mass moment inertia, end point load mass and nonlinear mass distributions. This 

limitation can be overcome by substituting the transfer functions with the ones 

described by zeros and poles in S plane. The disadvantage of this substitution is that 

different system has its own zeros and poles.
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Secondly, because of the limitation of the experimental devices, the applied beam 

in the frequency response experiment is not flexible at all ( the beam’s elastic constant 

coefficient is El = 842.285Mw2, its length is L = 0.727m ). If time and experiment devices 

permit, we can sample data from other more flexible beams to test their frequency 

responses.

Thirdly, the robot validation work about flexible links and actuating systems in 

this thesis is only at its beginning stage. The contents of robot validation are rather 

widespread. Taking transmission system alone for example, we can consider many fac­

tors: the nonlinear area relationship between the electric voltage inputs and the 

mechanical rotational torque outputs for electric motors, the backlash between gears 

when the rotation direction changes, the elastic slipping problem in belt transmissions 

and so on. Therefore, it is not enough for a real system to consider link flexibilities 

and friction effects on motors. Anyway, the link flexibility is a major factor to be con­

sidered in the modelling of flexible manipulators.

Robot manipulators tend to have light and sensitive devices and components. 

This tendency will cause the manipulators’ links to be flexible. In order to solve these 

problems, we should investigate the all-round factors of robot validation. The valida­

tion work in this thesis is partial, but essential to the establishment of dynamic models.

A proper control strategy for either rigid or flexible manipulators is not difficult 

to be found by computer simulation, if a suitable dynamic model has been set up. As 

described in chapter 1, there are some existed control laws for the manipulator control. 

Compute torque technique and PID controller are two of them. We have used these 

two control strategies for the control of the established dynamic models of one-link 

flexible manipulators. Because there is not any new ideas in this part of research, we 

have not included it in the thesis.
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In summary, the manipulator dynamics generation programmes, the simulation 

methods, and the robot validation work are satisfied from simulation point of view. 

Computer simulation is efficient for the preliminary research on robot manipulators.
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The Programmes for Calculating the Torques 
Acting on Rotational Manipulators

First, the Newton-Euler recursive equations programme is presented below:

% Put in the link’s number of the manipulaor,

PAUSE;

% Define the variables in matrix,

% MA(I,l)The mass of ith link,

% IL The inertials of all links,

% THE(I,1) The ith joint’s variable position,

% D 1(1,1) The ith joint’s variable velocity,

% D2(I,1) The ith joint’s variable acceleration,

% ALPHA(I,1) The angle between Zi and Zi-1,

% DX(I,1) The shortest distance between Zi and Zi-1,

% DZ(I,1) The shortest distance between Xi and Xi-1,

% POS(I,3) The ith link mass center position from the origin of,

% the ith coordinate system respect to its system,

%ENDN The moment load of the end link,

%ENDF The force load of the end link,

%W0 The angular velocity of the base coordinate system,

%E0 The angular acceleration of the base coordinate system,

%A0 The linear acceleration of the base coordinate system,

MATRIX

MA(N,1), IL(3*N,3), THE(1+N,1), D l(l+N,l), D2(l+N,l), ALPHA(1+N,1),
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DX(N,1), DZ(N,1), POS(N,3), ENDN(3,1), ENDF(3,1), W0(3,l), E0(3,l), 

A0(3,l);

PAUSE;

% The procedure of calculating the torques,

PROCEDURE

NewtonEuler(MA,IL,THE,D 1 ,D2, ALPHA,DX,DZ,POS ,ENDN,ENDF,W0,E0, AO);

% el e2 e3 hi h2 h3 ul u2 u3 ol o2 o3 are uesd for creating a cross product,

% m is the matrix M(n,n) in the general torque equations,

% q is the vector QI(q, q )in the general torque equations,

BEGIN

MATRIX el(3,3), e2(3,3), e3(3,3), hl(l,3), h2(l,3), h3(l,3),

u l(l,l) , u2(l,l), u3(l,l), z(3,l), m(N,N), q(N,l);

% Define the variables in array form,

The transformation of link i to i-1,

The transformation of link i-1 to i,

The angular velocity of link ith coordinate system,

The cross product form of w(i),

The angular acceleration of link ith coordinate system,

The cross product form of e(i),

The linear acceleration of link ith coordinate system,

The linear acceleration of link ith mass center,

Force exerted on linki by link i-1,

% rr(i) 

% r(i)

% w(i) 

% ww(i) 

% e(i)

% ee(i) 

% a(i)

% ac(i) 

% f(i)
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% rp rpl Used as the function of cross product,

% v(i) The moment exerted on link i by link i-1,

% t(i) Input torque acting on joint i,

% i(i) Used as the array form of IL,

% p(i) Used as the array form of DX and DZ,

% d(i) USsed as the array form of POS,

ARRAY

r(l+n), rr(l+n), w(l+n), ww(l+n), e(n+l), ee(n+l), a(n+l), 

ac(n+l), f(l+n), rp(l+n), rpl(l+n), v(l+n), t(n+l), i(n), 

p(n), d(n);

% Assignment of the basic data,

w(0):=w0;

e(0):=e0;

a(0):=a0;

el:=mat((0,0,0),(0,0,-1), (0,1,0));

e2:=mat((0,0,1),(0,0,0),(-1,0,0));

e3:=mat((0,-1,0),(1,0,0),(0,0,0));

hl:=mat((l,0,0)); h2:=mat((0,l,0)); h3:=mat((0,0,l));

z:=mat((0),(0),(l));

f(n+l):=endf; v(n+l):=endn;

% The loop for calculating transformations, w and e,

% Outward recursion,

FOR j:=l STEP 1 UNTIL n+1 DO
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«

rr(j):=mat

(

(cos(the(j,l)), 

-sin(the(j,l))*cos(alpha(j,l)), 

sin(the(j,l))*sin(alpha(j,l))), 

(sin(the(j,l)), 

cos(the(j, 1)) *cos(alpha(j, 1)), 

-cos(the(j, 1)) *sin(alpha(j, 1))),

(0,

sin(alpha(j,l)),

cos(alpha(j,l)))

),

r(j):=tp(rr(j)),

w(j):=r(j)*(w(j-l)+z*dl(j,l)), 

ul:=hl*w(j-l); o l:=ul(l,l), 

u2:=h2*w(j-l); o2:=u2(l,l), 

u3:=h3*w(j-l); o3:=u3(l,l), 

w w(j):=o 1 *e 1 +o2*e2+o3 *e3, 

e(j):=r(j)*(e(j4)+zM2(jJ)+ww(j)*(z*dl(j,l))), 

ul:=hl*e(j); o l:=ul(l,l), 

u2:=h2*e(j); o2:=u2(l,l), 

u3:=h3*e(j); o3:=u3(l,l), 

ee(j):=ol*el+o2*e2+o3*e3 

» ;

% The loop for calculating the accelerations a and ac,



APPENDIX 1 103

FOR j:=l STEP 1 UNTIL n DO 

«

P(j):=r(j)*m at(

(cos(the(j, 1 ))*dx(j, 1)),

(sin(the(j, 1)) *dx(j, 1)),

(dzOM))), 

d(j):=mat((pos(j,l)),(pos(j,2)),(pos(j,3))),

a(j):=ee(j)*p(j)+ww(j+l)*(ww(j+l)*p(j))+r(j)*a(j-l),

ac(j):=ee(j)*d(j)+wwO’+l)*(ww(j+l)*d(j))+a(j)

» ;

% The loop for calculating the torque t,

% Inward recursion,

FOR j:=n STEP -1 UNTIL 1 DO 

«

f(j):=rr(j+l)*fQ+l)+maO',l)*ac(j), 

ul:=hl*(p(j)+d(j)); ol:=ul(l,l); 

u2:=h2*(p(j)+d(j)); o2:=u2(l,l); 

u3:=h3*(p(j)+d(j)); o3:=u3(l,l); 

rp (j): =o 1 *e 1+o2*e2+o3 *e3, 

ul:=hl*(r(j+l)*p(j)); ol:=ul(l,l); 

u2:=h2*(r(j+l)*p(j)); o2:=u2(l,l); 

u3:=h3*(r(j+l)*p(j)); o3:=u3(l,l); 

rp 1 (j): =o 1 *e 1+o2*e2+o3 *e3; 

i(j):=mat 

(
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(il(j*3-2,l),il(j*3-2,2),il(j*3-2,3)),

(iia*3-l,l),il(j*3-l, 2), iia*3-l,3)),

(il(j*3,l),ilG*3,2),il(j*3,3))

),

v(j):=rr(j+l)5ic(v(j+l)+rplQ)*f(j+l))+rpO')*(ma(j,l)*ac(j))+

iQ)*e(j)+ww(j+l)*(i(j)*w(j)),

t® ‘=tp(v(j))*(rO’)*z)»

ul:=t(j);o4:=ul(l,l);

% The loop for calculating M and Q,

FOR k:=l STEP 1 UNTIL n DO 

<<

m(j,k):=df(o4,D2(k,l))

» ;
q(j,l):=FOR k:=l STEP 1 UNTIL n SUM o4/n-m0',k);

» ;

END;

END;

Second, the programme of applying Lagrange-Euler formulation is presented 

below:

%Number of links entered 

%For example N:=3;

N:=3;
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%0 r this can be done before running the programme 

MATRIX

Masses(N, l),Il(3*N,3),Thetas(N, l),Dthetas(N, 1), Alpha(N, 1), 

Disalongxes(N,l),Disalongzs(N,l),Masscenters(N,3), 

Frameacceleration(3,1),B(N,N),C(N,N),D(N, 1);

% N Number of links

% Masses N X 1 vector masses of links 

% II Links’ inertials 

% Thetas Joints’ variable positions 

% Dthetas Joints’ variable velocities 

% Alpha Angles between Zs 

% Disalongxes Shortest distances between Zs.

% Disalongzs Shortest distances between Xes 

% Masscenters Centers of masses under their own coordinates 

%

% Wait for entering basic parameters 

% Type "N" then "return"

% In a file including the above parameters 

% Type "cont;"

PAUSE;

% Unit and zero vectors

MATRIX Xunit,Yunit,Zunit,unit,Zero;

Xunit:=MAT((l),(0),(0));

Yunit:=MAT((0),(l),(0));
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Zunit:=MAT((0),(0),(l));

Unit :=MAT((1,0,0),(0,1,0),(0,0,1));

Zero :=MAT((0),(0),(0));

PROCEDURE Vectorcrossproduct(X,Y);

%INPUT X,Y

% OUTPUT VCP

BEGIN

XX:=TP(Xunit)*X; XY:=TP(Yunit)*X; XZ:=TP(Zunit)*X; 

YX:=TP(Xunit)*Y; YY: =TP(Yunit)*Y; YZ:=TP(Zunit)*Y; 

VCP:=MAT( .

(XY(1,1)*YZ(1,1)-YY(1,1)*XZ(1,1)),

(XZ(1,1)*YX(1,1)-YZ(1,1)*XX(1,1)),

(XX(1,1)*YY(1,1)-YX(1,1)*XY(1,1))

);

END;

PROCEDURE Transfermation(Theta,Alpha);

%Input Theta, Alpha

%Output R

BEGIN

R:=MAT(

( COS (Theta) , SIN(Theta) , 0
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(-SIN(Theta)*COS(Alpha), COS(Theta)*COS(Alpha) , SIN(Alpha)), 

(SIN(Theta)*SIN(Alpha) , -COS(Theta)*SIN(Alpha), COS(Alpha))

);

END;

% The Main Programme of Lagrange Method for the Dynamic Equations 

% of Rotational Joints Manipulators

MATRIX

R1 ,Omiga,Omigal ,Linkposition,Linkpositionl ,Masscenter, 

Linkvelocity,Masscentervelocity, Inertial, Middlemax,

Middleml;

Rl:=unit; %Base coordinate system

Omiga:=Zero; %Base angular speed 

Linkpositionl:=Zero;%Base origin 

Linkvelocity:=Zero; %Base origin’s speed

Kineticenergy:=0;

Potentialenergy:=0;

FOR J:=l STEP 1 UNTIL N DO 

BEGIN

Transfermation(Thetas(J, 1), Alpha(J, 1));

R1:=R1*TP(R); %R1 Transfform to base

Omiga:=R*(Omiga+Zunit*Dthetas(J,l));

%Omiga Rotation speed of link 

Omigal:=Rl*Omiga; %Omigal Compare to base
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Linkposition:=Rl*R*MAT(

(COS(Thetas(J,l))*Disalongxes(J,l)),

(SIN(Thetas(J,l))*Disalongxes(J,l)),

( Disalongzs(J,l) )

);

%Linkposition

% Link length vector compare to base 

Linkposition 1 :=Linkposition 1 +Linkposition;

%Linkpositionl 

% Compare to base 

Masscenter:=Rl *M AT(

(Masscenters(J,l)),

(Masscenters(J,2)),

(Masscenters(J,3))

);

%Masscenter 

% Compare to base 

Vectorcrossproduct(Omigal,Linkposition); 

Linkvelocity:=Linkvelocity+VCP;

%Linkvelocity 

Vectorcros sproduct(Omiga 1 ,Masscenter);

Masscentervelocity :=Linkvelocity+V CP;

%Masscentervelocity 

Velocitysquare:=Masscentervelocity(l,l)**2+ 

Masscentervelocity(2,1)**2+

Masscentervelocity (3,1) * *2;

%Velocitysquare
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Inertial:=MAT(

(IL(3*J-2,l),IL(3*J-2,2),IL(3*J-2,3)),

(IL(3 * J-1,1) ,IL(3 * J-1,2) ,IL(3 *J-1,3)), 

(IL(3*J,1),IL(3*J,2),IL(3*J,3)));

%Inertial

Middleml :=TP(Omiga)*Inertial*Omiga;

%Middlemax 

InertialOmigasquare:=Middleml (1,1);

%InertialOmigasquare 

Kineticenergy:=Kineticenergy+Masses(J, l)*Velocitysquare/2+

InertialOmigasquare/2;

%Kineticenergy 

Middlemax:=Masses(J,l)*TP(Frameacceleration)* 

(Linkposition 1 +Masscenter);

Potentialenergy :=Potentialenergy+Middlemax( 1,1); 

%Potentialenergy

END;

FOR J:=l STEP 1 UNTIL N DO 

BEGIN

FOR K:=l STEP 1 UNTIL N DO 

BEGIN

D(J,K):=DF(DF(Kineticenergy,Dthetas(J,l)),Dthetas(K,l));

H(J,K):=DF(DF(Kineticenergy,Dthetas(J,l)),Thetas(K,l));

END;

C(J,l):=DF(Kineticenergy-Potentialenergy,Thetas(J,l));

END;



APPENDIX 1



APPENDIX 2 111

The Programmes for the Simulation of a Three 
Rigid Link Manipulator

The first one is the programme for obtaining 0, 0, 0.

CONTINUOUS SYSTEM ThreeLinkSys
t i

"THIS IS THE SYSTEM FOR SOLVING THE EQUATION (3-1).

"INPUT THE TERMS OF AND <2(0,0),

"MMij IS THE TERM OF iTH ROW jTH COLUMN OF M(Q)~\

"Qi IS THE iTH TERM OF Q (0,0).

input MM11 MM12 MM13 MM21 MM22 MM23 MM31 MM32 MM33 Ql Q2 Q3

"DEFINE STATES ADN DERIVATIVES.

state theta 1 theta2 theta3 thetadotl thetadot2 thetadot3

der dthetal dtheta2 dtheta3 dthetadotl dthetadot2 dthetadot3

"DEFINE THE SYSTEM’S TIME t.

time t

"THE EQUATION OF (3-1). 

dthetal = thetadotl 

dtheta2 = thetadot2 

dtheta3 = thetadot3

dthetadotl = MMll*(torquel-Ql)+MM12*(torque2-Q2)+MM13*(torque3-Q3) 

dthetadot2 = MM21 * (torque 1 -Q1) +MM22* (torque2-Q2)+MM23 * (torque3-Q3) 

dthetadot3 = MM31 *(torquel-Ql)+MM32*(torque2-Q2)+MM33*(torque3-Q3) 

"GIVE THE VALUES OF ALL CONSTANTS. 

tl:0
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t2:0

t3:0

end

"END OF THE PROGRAMME.
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The second programme is for obtaining the values of A/(0)-1, AND 0(0,0). 

CONTINUOUS SYSTEM MQValue
if

"THIS SYSTEM CALCULATES THE TERMS OF AND <2 (0,0).

"INPUT THE ANGLES AND THEIR FIRST DERIVATIVES, 

input thetal theta2 theta3 thetadotl thetadot2 thetadot3 

"OUTPUT THE TERMS OF M(Q)~\ AND 0 (0,0).

output MM11 MM12 MM13 MM21 MM22 MM23 MM31 MM32 MM33 Q1 Q2 Q3 

"WHERE MMij IS THE TERM OF iTH ROW jlH  COLUMN OF M(0)-1.

"Qi IS ilH  TERM OF 0 (0,0).

"DEFINE THE SYSTEM’S TIME t. 

time t

"THE ASSIGNMENTS BELOW ARE THE TERMS OF M(0) AND <2 (0,0).

Ml 11= cos(2*(theta2+theta3))*(m3*13*13-4*I3X+4*I3Y)

Ml 12 = cos(2*theta2)*(m2*12*12+4*m3*12*12-4*I2X+4*I2Y)

Ml 13 = 4*cos(theta3)*m3*12*13+4*cos(2*theta2+theta3)*m3*12*13+m2*12*12

Ml 14 = 4*m3 *12*12+m3 *13 *13+8 *11Y+4*I2X+4*I2 Y+4*I3X+4*I3 Y

M il = (Ml 11+M112+M113+M114)/8

M12 = 0

M13 = 0

M21 = 0

M22 = (cos(theta3) *13+12) *m3 *12+(m2*12*12+m3 *13 *13)/4+I2Z+I3Z 

M23 = (2*cos(theta3)*m3*12*13+m3*13*13+4*I3Z)/4 

M31 = 0

M32 = (2*cos(theta3)*m3*12*13+m3*13*13+4*I3Z)/4 

M33 = (m3*13*13+4*I3Z)/4
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DETM = M l 1*(M22*M33-M23*M32)+M21*(M32*M13-

M12*M33)+M31*(M12*M23-M22*M13)

MM11 = (M22*M33-M23*M32)/DETM 

MM12 = (M32*M13-M12*M33)/DETM 

MM13 = (M12*M23-M22*M 13)/DETM 

MM21 = (M23 *M31 -M21 *M33)/DETM 

MM22 = (M il *M3 3-M31 *M 13)/DETM 

MM23 = (M21*M13-M11*M23)/DETM 

MM31 = (M21 *M32-M22*M31 )/DETM 

MM32 = (M12*M31-M11*M32)/DETM 

MM33 = (M il *M22-M21 *M 12)/DETM

Q11 = -sin(2*(theta2+theta3))*thetadotl*m3*13*13*(thetadot2+thetadot3)

Q12 = sin(2*(theta2+theta3))*thetadotl *4*(I3X-I3 Y)*(thetadot2+thetadot3)

Q13 = 2*sin(2*theta2+theta3) *m3 *thetadot 1 *12*13 *(-2*thetadot2-thetadot3)

Q14 = sin(2*theta2)*thetadotl*thetadot2*(-12*12*(m2+4*m3)+4*I2X-4*I2Y)

Q15 = -2*sin(theta3)*m3*thetadotl*thetadot3*12*13 

Q1 = (Q1 l+Q12+Q13+Q14+Q15)/4

Q21 = sin(2*(theta2+theta3))*thetadotl *thetadotl *(m3*13*13-4*I3X+4*I3 Y)

Q22 = 4*sin(2*theta2+theta3)*m3*thetadotl*thetadotl *12*13

Q23 = sin(2*theta2)*thetadotl*thetadotl*((m2+4*m3)*12*12-4*I2X+4*I2Y)

Q24 = 4*sin(theta3)*m3*thetadot3*12*13*(-2*thetadot2-thetadot3)

Q25 = 4*cos(theta2)*G*12*(m2+2*m3)+4*cos(theta2+theta3)*G*m3*13 

Q2 = (Q21+Q22+Q23+Q24+Q25)/8

Q31 = sin(2*(theta2+theta3))*thetadotl*thetadotl*m3*13*13-4*I3X+4*I3Y)

Q32

m3*13*(2*sin(2*theta2+theta3)*thetadotl*thetadotl*12+4*cos(theta2+theta3)*G)

Q33=2*sin(theta3)*M3*12*13*(thetadotl*thetadotl+2*thetadot2*thetadot2)
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Q3 = (Q31+Q32+Q33)/8

’’GIVE THE VALUES OF ALL CONSTANTS.

11:0.3

12:0.5

13:0.4

ml:25

m2:5

m3:10

G:9.801

I1X:0.1875

I1Y:0

I1Z:0.1875

I2X:0

I2Y:0.104

I2Z:0.104

I3X:0

I3Y.-0.133

I3Z:0.133

end

"END OF THE PROGRAMME.
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Third, the programme for connecting the two programmes above is listed below: 

CONNECTING SYSTEM ConnectingSys
II

"TfflS IS THE CONNECTING PROGRAMME FOR CONNECTING THE PRO­

GRAMS OF MQValue AND ThreeLinkSys.

"DEFINE THE SYSTEM’S TIME t. 

time t

"THE CONNECTING ASSIGNMENTS, 

ql [ThreeLinkSys] = ql [MQValue] 

q2[ThreeLinkSys] = q2[MQValue] 

q3 [ThreeLinkS y s] = q3[MQValue] 

theta 1 [MQValue] = theta 1 [ThreeLinkSys] 

theta2[MQValue] = theta2[ThreeLinkSys] 

theta3 [MQValue] = theta3 [ThreeLinkSys] 

thetadotl [MQValue] = thetadotl [ThreeLinkSys] 

thetadot2[MQValue] = thetadot2[ThreeLinkSys] 

thetadot3 [MQValue] = thetadot3[ThreeLinkSys]

MM 11 [ThreeLinkSys] = MM11 [MQValue]

MM12[ThreeLinkSys] = MM12[MQValue]

MM 13 [ThreeLinkS y s] = MM13[MQValue]

MM21 [ThreeLinkSys] = MM21 [MQValue]

MM22[ThreeLinkSys] = MM22[MQValue]

MM23 [ThreeLinkS y s] = MM23[MQValue]

MM31 [ThreeLinkSys] = MM31 [MQValue]

MM32[ThreeLinkSys] = MM32[MQValue]

MM33[ThreeLinkSys] = MM33[MQValue]
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end

"END OF THE PROGRAMME.
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The Computer Codes for Chapter 4

The REDUCE codes for obtaining the exact model described by the transfer func­

tions of one flexible link manipulators.

%Simplify equations

FOR ALL X,Y LET

sin(X)*cos(Y) = (sin(X+Y)+sin(X-Y))/2,

sin(X)*sin(Y) = (cos(X-Y)-cos(X+Y))/2,

cos(X)*cos(Y) = (cos(X-Y)+cos(X+Y))/2;

FOR ALL X LET 

sin(X)**2 = (l-cos(2*X))/2, 

cos(X)**2 = (l+cos(2*X))/2, 

sin(X)*cos(X) = sin(2*X)/2, 

sinh(X)**2 = (cosh(2*X)-l)/2,

. cosh(X)**2 = (cosh(2*X)+l)/2, 

cosh(X)*sinh(X) = sinh(2*X)/2;

%Define matrix. A is the coefficients of A,B,C,and D. K1 is the substitute of 

A,B,CJ).

%U1 is the other part of equations (4-4) - (4-7). K2 used for saving the result of 

A,B,C, and D.

MATRIX A(4,4),K1 (4,1),U 1 (4,1),K2(4,1);

%Let K1 have symbolic values.

K1 := MAT((A1),(A2),(A3),(A4));

%Define array.
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ARRAY YY(4);

% Assignment of equation (4-14).

Y := EXP(B*X) * ( Kl(l,l)*cos(B*X)+Kl(2,l)*sin(B*X) ) + EXP(-B*X) * ( 

Kl(3,l)* cos(B*X)+Kl (4, l)*sin(B*X)) - theta*X;

Integration 1 := INT(X*Y,X);

Y1 := DF(Y,X);

Y2 := DF(Y1,X);

Y3 := DF(Y2,X);

LET X = 0;

YY(1) := Y;

YY(2) := Yl;

ValuelntegrationlO := Integration 1;

LET X = L;

YY(3) := Y2;

ValuelntegrationlL := Integrationl;

YY(4) := M*S**2*Y + M*L*S**2*theta - EI*Y3;

%Torque is the input torque’s transform.

Torque := (I0+P*L**3/3 +M*L**2) *S**2*theta + P*S**2* (ValuelntegrationlL- 

ValuelntegrationlO) + M*L*S**2*Y;

FOR J := 1 STEP 1 UNTIL 4 DO 

« F O R  K := 1 STEP 1 UNTIL 4 DO 

«A (J,K ) := DF(YY(J),K1(K,1)); YY(J) := YY(J) - A(J,K)*K1(K,1)»;

U1(J,1) := -YY(J)»;

K2 := 1/A*U1;

A1 := K2(l,l);

A2 := K2(2,l);

A3 := K2(3,l);
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A4 := K2(4,l);

%G is the transfer function of the tip-point’s angle versus input torque. B is the p in 

equation (4-16).

G := (Y/L+theta)/Torque;

G1 := theta/Torque;

9

END;

%End of the main codes.
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The transfer functions of G, and G1 of the one flexible link manipulator with 

rigid bass mass moment of inertia and end-point mass is listed below:

G = (8*E**(B*L)*B**5*EI* (2*E**(6*B*L)*cos(B*L)*B**3*EI + E**(6*B*L)* 

cos(B*L) * M*S**2 + 2*E**(6*B*L)*sin(B*L)*B**3*EI

+E**(6*B*L)*sin(B*L)*M*S**2 + 8*E**(4*B*L)*cos(B*L)*B**3*EI

2*E**(4*B*L)*cos(B*L)*M*S**2 + 2*E**(4*B*L)* cos(3*B*L)*B**3*EI +

E**(4*B*L)*cos(3*B*L) * M*S**2 + 8*E**(4*B*L) * sin(B*L)*B**3* El + 

2*E**(4*B*L)*sin(3*B*L) * B**3*EI - E**(4*B*L)*sin(3*B*L) * M*S**2 - 

8*E**(2*B*L) * cos(B*L)*B**3*EI - 2*E**(2*B*L) * cos(B*L)*M*S**2-

2*E**(2*B*L)* cos(3*B*L)*B**3*EI + E**(2*B*L) * cos(3*B*L)*M*S**2 + 

8*E**(2*B*L)* sin(B*L)*B**3*EI + 2*E**(2*B*L) * sin(3*B*L)*B**3*EI + 

E**(2*B*L) * sin(3*B*L)* M*S**2 - 2*cos(B*L)*B**3*EI + cos(B*L)*M*S**2 + 

2*sin(B*L)*B**3*EI - sin(B*L)*M*S**2)) /  (L*S **2*

(8*E**(8*B*L)*B**9*I0*EI**2 + 8*E**(8*B*L) * B**6*M*S**2*I0*EI +

4*E**(8*B*L) * b **6*P*EI**2 + 2*E**(8*B*L) * b **3*M**2*S**4*I0 + 

4*E**(8*B*L) * B**3*M*P*S**2*EI + E**(8*B*L)*M**2 * P*S**4 + 16

*E**(7*b*L)* cos(B*L)* B**8*L*M*EI**2 + 8*E**(7*B*L)* cos(B*L)*B **5*L* 

M**2*S**2*EI - 4*e **(7*b*L)* cos(B*L)*B**4*L*M*P* S**2*EI

2*E**(7*B*L)* cos(B*L)*B*L*M**2* p*S**4 + 16*E**(7*B*L)* sin(B*

L)*b**8*L*M*EI**2 + 8*E**(7*B*L)* sin(B*L)*B**5*L* M**2*S**2*EI - 

4*E**(7*B*L)*sin(B*L)*B**4*L*M*P* S**2*EI - 2*E**(7*B*L)* sin( B*L)*B*L* 

M**2*P*S**4 + 32*E**(6*B*L)* cos(2*B*L)*B**9*I0* EI**2 + 16* E**(6*B*L)* 

cos(2*B*L)*B**6*M* S**2*I0*EI + 8* E**(6*B*L)*cos(2*B*L)*B**6*P*EI**2 - 

2*E**(6*B*L)* cos(2*B*L)*M**2*P* S**4- 16*E**(6*B*L)* sin(2*B*L)*B**6*M* 

S**2*I0*EI - 8* E**(6*B*L)* sin (2*B*L)*B**6* P*EI**2 - 8*E**(6*B*L)* 

sin(2*B*L)*B**3* m**2*S** 4*10 - 8* E**(6*B*L)* sin(2*B*L)*B**3*M*
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p*S**2*EI - 2*E** (6*B*L )* sin(2*B*L)*M**2* P*S**4 + 64*E**(6*B*L)* 

B**9*I0*EI**2 + 32*E** (6*B*L)*B**6*M* S**2*I0*EI + 16*E**(6*B*L)* 

B**6*P*EI**2 + 8*E** (6*B*L)* B**3*M* P*S**2*EI + 64*E** (5*B*L)* 

cos(B*L)*B**8*L* M*EI **2 - 16* E**(5*B*L)*cos(B*L)* B**5*L*M**2*S**2*EI 

- 16*E**(5*B*L)* cos(B*L)* B**4*L*M* P*S**2*EI + 4*E**(5*B*L)*

cos(B*L)*B*L* M**2*P*S**4 + 16*E**(5*B*L)* cos(3*B*L)* B**8*L*M*EI**2 + 

8*E**(5*B*L)* cos(3*B*L)*B**5*L* M**2*S**2*EI - 4*E**(5*B*L)*

cos(3*B*L)*B**4*L*M* P*S**2*EI - 2*E**(5*B*L)* cos(3*B*L)*B*L* M**2* 

p*S**4+64*E**(5*B*L)* sin(B*L)*B**8*L* M*EI**2 - 16*E**(5*B*L)* sin(B*L)* 

B**4*L*M*p * s**2*EI + 16*E**(5*B*L)* sin(3*B*L)*B**8*L* M*EI**2-

8*E**(5*B*L)* sin(3*B*L)* b **5*L*M**2* S**2*EI - 4*E**(5*B*L)*

sin(3*B*L)*B**4*L*M*P* S**2*EI + 2*E**(5*B*L)* sin(3*B*L)*B*L*

M**2*P*S**4 + 16*E**(4*B*L)* cos(4*B*L)*B**9*I0* EI**2 - 4*E**(4*B*L)* 

cos(4*B*L)* B**3*M**2*S**4*I0 - 8*E**(4*B*L)* cos(4*B*L)*B**

3*M*P*S**2*EI + 128*E**(4*B*L)* cos(2*B*L)*B**9* I0*EI**2 - 16*

E**(4*B*L)*cos(2*B*L)*B**3*M* P*S**2*EI - 16*E**(4*B*L)* sin(4*B *L)* 

B**6*M* s**2*I0*EI - 8*E**(4*B*L)* sin(4*B*L)*B**6* P*EI**2+

2*E**(4*B*L)* sin(4*B*L)* M**2*P*S**4 - 64*E**(4*B*L)* sin(2*B*L)

*B**6*M* S**2*I0*EI - 32* E**(4*B*L)* sin(2*B*L)* B**6*P*EI**2 + 160* 

E**(4*B*L)* b**9*I0*EI**2 - 64* E**(3*B*L)* cos(B*L)* B**8*L*M *EI**2 - 

16* E**(3*B*L)* cos(B*L)*B**5* L*M**2* S**2*EI + 16* E**(3 *B*L)* 

cos(B*L)* B**4*L*M* P*S**2*EI + 4* E**(3*B*L)* cos(B*L)* B*L* M**2*P* 

S**4 - 16*E**(3*B*L) *cos(3*B*L) *B**8*L* M*EI**2 + 8*E**( 3*B*L)* 

cos(3*B*L)* B**5*L*M**2* S**2*EI + 4*E**(3*B*L)* cos(3*B*L )*B**4* 

L*M*P* S**2*EI - 2*E**(3*B*L)* cos(3*B*L)* B*L*M**2* P*S**4+

64*E**(3*B*L)* sin(B*L)* B**8*L* M*EI**2 - 16*E**(3*B*L)* sin(B*L)*B**4* 

L*M*P* S**2*EI + 16* E**(3*B*L)* sin(3*B*L)*B**8* L*M*EI**2 + 8*
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E**(3*B*L)* sin(3*B*L)* B**5*L* M**2* S**2*EI - 4*E**(3*B*L)* sin(3*B*L)* 

B**4*L*M*p* S**2*EI - 2*E**(3*B*L)* sin(3*B*L)* B*L*M**2* P*S**4. + 32* 

E**(2*B*L)* cos(2*B*L)* B**9* I0*EI**2 - 16* E**(2*B*L)* cos(2*B*L)*B**6* 

M*S**2* IO*EI - 8* E**(2*B*L)* cos(2*B*L)* B**6*P*EI**2 + 2*E**(2*B*L)* 

cos(2*B*L)* M**2*P*S**4 - 16* E**(2*B*L)* sin(2*B*L)* B**6*M* S**2*I0*EI - 

8*E**(2*B*L)* sin(2*B*L)* B**6*P*EI**2 + 8*E**(2*B*L)* sin(2*B*L)*B**3* 

M**2*S**4*I0 + 8*E**(2*B*L)* sin(2*B*L)*B**3*M*P* S**2*EI - 2*

E**(2*B*L)* sin(2*B*L)* M**2*P*S**4 + 64* E**(2*B*L)* B**9*I0*EI**2 - 32* 

E**(2*B*L)*B**6*M* S**2*I0*EI - 16* E**(2*B*L)*B**6* P*EI**2 + 8* 

E**(2*b*L)* B** 3*M* p*S**2*EI - 16*E**(B*L)* cos(B*L)* B**8* L*M*EI**2 + 

8*E**(B*L)* cos(B*L)* b**5*L*M**2* S**2*EI + 4* E**(B*L)* cos(B*L)* 

B**4*l*M* p*S**2*EI - 2* E**(B*L)* cos(B*L)*B* L*M**2*P*S**4 + 

16*E**(B*L)* sin(B*L)*B**8*L* M*EI**2 - 8*E**(B*L)* s in(B*L)*

B**5*L*M**2* S**2*EI - 4* E**(B*L)* sin(B*L)* B**4*L*M*P* S**2*EI + 2* 

E**(B*L)* sin(B*L)* B*L*M**2* P*S**4 + 8*B**9* I0*EI**2 - 8*B**6* 

M*S**2*I0*EI - 4*B**6* P*EI**2 + 2*B**3*M**2* S**4*I0 + 4*B**3*M* 

p*S**2*EI- M**2* P*S**4));

G1 = (2*B**3*(2* e **(4*B*L)* B**3*EI + E**(4*B* L)*M*S**2 +

4*E**(2*B*L)* cos(2*B*L)* B**3*EI - 2*E**(2*B*L)* sin (2*B*L)*M*S**2 + 

8*E**(2*B*L)*B**3*EI + 2*B**3*EI - M*S**2)) / (S**2*(4*E**(4*B*L)* 

B**6*I0*EI + 2*E**(4*B*L)* B**3*M* S**2*I0 + 2*E**(4*B*L)* B**3*P*EI + 

E**(4*b*L)* m*P*S**2 + 8* E**(3*B*L) * cos(B*L)* B**5*L*M*EI - 

2*E**(3*B*L)* cos(B*L)*B*L* M*P*S**2 + 8 * E**(3*B*L)* sin(B*L)*

B**5*L*M*E! - 2*E**(3*B*L)* sin(B*L)* B*L*M* P*S**2 + 8*E**(2*B*L)* 

cos(2*B*L)* B**6*I0*EI - 2*E**(2*B*L)*cos (2*B*L)*M*P*S**2 - 4*E**(2*B*L)* 

sin(2*B*L)*B**3* M*S**2*I0 - 4*E**(2*B*L)* sin(2*B*L)* B**3*P*EI +

16*E**(2*B*L)* B**6*I0*EI - 8*E**(B*L)* cos(B*L)* B**5*L*M*EI +
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2*E**(B*L)* cos(B*L)* B*L*M*P *S**2 + 8*E**(B*L)* sin(B*L)* B**5*L*M*EI - 

2*E**(B*L)* sin(B*L)* B*L*M*P*S**2 + 4*B**6*I0*EI - 2*B**3*M* S**2*I0 - 

2*b**3* P*EI + M*P* S**2));
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I
The equations above is very complicated. If we let the rigid bass mass of inertia 

and the end-point mass be zeros, the equations are:

M := 0;

10 := 0;

G = (4*E**(B*L)*B**2*( E**(6*B*L)* cos (B*L) + E**(6*B*L)*sin(B*L) + 

4 * E * * ( 4 * b * l ) * c o s ( B * L )  +  E**(4 * B*L)*cos(3*B*L) +  4*E**(4*B*L)*sin(B*L) +  

E**(4*B*L)*sin(3*B* L ) - 4*E**(2*B*L)*cos(B*L) - E**(2*B*L)*cos(3*B*L) + 4* 

E**(2*B * L)*sin(B*L) + E**(2*B*L)*sin(3*B*L) - cos(B*L) + sin(B*L)))/( L 

*P*S**2*(E**(8*B*L) + 2*E**(6*B*L)*cos(2*B*L) - 2* E**(6*B*L)* sin (2*B*L) 

+ 4*E**(6*B*L) - 2*E**(4*B*L)*sin(4*B*L) - 8* £**(4* B *L)*sin(2*B*L) - 

2*E**(2*B*L)*cos(2*B*L) - 2*E**(2*B*L)*sin(2 * B*L) - 4*E**(2*B*L) - 1));

G1 = (2*B**3*(E**(4*B*L) + 2* E**(2 * B*L)*cos(2*B*L) + 4*E**(2*B*L) + 

1))/(P*S**2*(E**(4*B*L) - 2* E **(2*B*L)*sin(2*B*L) - 1));
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The MATLAB files for generating the transfer functions in section 4.3 are listed 

below:

F.m:

function y = F(x)

%Function of y used for obtaining the results of X in equation (4-30). 

y = (exp(x) + exp(-x))/2*cos(x) + 1;

ValueB lB2B3B4.m:

function [ B 1 , B 2 , B 3 , B 4 ]  = y alueBlB2B3B4(lambda,L)

%Function [B1,B2,B3,B4] = ValueB lB2B3B4(lambda,L):

% To find the value of Bl, B2, B3, B4 in the function of phi(x) of equation (4-22) 

from equation (4-23).

%Output:

% A, B, C, D 

%Input:

% lambda 

% L 

%

% 1/89

ansi = 2*sinh(lambda*L)*sinh(2*lambda*L)*sin(lambda*L)-.. 

2*sinh(lambda*L)*cosh(2*lambda*L)*cos(lambda*L)+..

10*sinh(lambda*L)*cos(lambda*L)+8*sinh(lambda*L)*sin(lambda*L)*lambda*L; 

ansi = ansl+2*sinh(2*lambda*L)*cosh(lambdas,!L),,ccos(lambda*L)+..

3*sinh(2*lambda*L)*cos(2*lambda*L); 

ansi = ansl+3*sinh(2*lambda*L)-
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2*cosh(lambda*L)*cosh(2*lambda*L)*sin(lambda*L)-..

10*cosh(lambda*L)*sin(lambda*L)-3*cosh(2*lambda*L)*sin(2*lambda*L)+..

2*cosh(2*lambda*L)*lambda*L-2*cos(2*lambda*L)*lambda*L-

3*sin(2*lambda*L);

ans2 = 2*lambda*L*(4*sinh(lambda*L)*sin(lambda*L)+cosh(2*lambda*L)-.. 

cos(2*lambda*L));

%ansl and ans2 can be obtained by REDUCE fron the integration equation (4-23). 

B1 = sqrt(ans2/ansl);

B2 = -(cosh(lambda*L)+cos(lambda*L))/(sinh(lambda*L)+sin(lambda*L))*B 1;

B3 = -Bl;

B4 = -B2;

Timemethod.m

function [G,G1] = Timemethod(w,EI>rfio,L,N)

%Function [G,G1] = Timemethod,(w,EI,rho,L);

%The frequency response of approximated method by transfer functions derived

% in time domain

%Output:

% G The T-F of angle of the tip point versus input torque

% G1 The T-F of angle .of the torqued point versus input torque

%Input:

% w Frequency

% El Stiffness

% rho Mass per unit

% L Length

% N Approximated number

%
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% 1/89.

for n = 1:N 

x = (n-0.5)*pi; 

al = zeroin(’F\x)/L; 

lambda(n) = al;

[B1,B2,B3,B4] = ValueB lB2B3B4(al,L);

phi(n) = Bl*cosh(al*L) + B2*sinh(al*L) + B3*cos(al*L) + B4*sin(al*L);

Ks(n) = - L*(B 1 *(al*L*sinh(al*L) - cosh(al*L) + 1) + B2*(al*L*cosh(al*L) - 

sinh(al*L))+..

B3*(al*L*sin(al*L) + cos(al*L) - 1) - B4*(al*L*cos(al*L) - sin(al*L))) /  

(al*L)~2; 

end

omegaS quare= lambda.~4*EI/rho;

s=sqrt(-l).*w;

for n = 1:N

qs(n,:) = (omegaS quare(n) + s."2),"2;

qq(n,:) = Ks(n)*qs(n,:);

end

Y = phi*qq;

%torque equation (4-3)

torque = l/3*rho*L~3.*s.A2 - rho*L*Ks*qq.*s.~2;

G = torque.\(l+Y/L);

G1 = torque.\l;
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The REDUCE codes and the expansion form of B, H, an C of section 4.4 is listed 

below:

%N is the order of the approximation.

%B, H, C are the terms of equation (4-36).

%Q is the general virables.

%M is the mass of the flexible link.

%L is the length of the link.

%G is the gravity acceleration constant.

%DTH is the rotation speed of the link.

%EI is the stiffness of the link.

%The calculation process is based on [3].

N := 6;

MATRIX B(N,N),H(N,N),Q(N,1),C(N,1);

Q:=MAT((ql),(q2),(q3),(q4),(q5),(q6));

FOR J:=l STEP 1 UNTIL N DO 

« F O R  K:=l STEP 1 UNTIL N DO 

« B  (J,K): =M*L* * (J+K)/( J+K+1 )» ;

F(JJ):=M*G*SIN(Q1)*L**J/(J+1)>>;

B(l,l):=M*L**2/3; •

FOR K:=2 STEP 1 UNTIL N DO 

« F O R  J:=2 STEP 1 UNTIL N DO 

« B  (1,1 ):=B (1,1 )+Q(K, 1 )*Q(J, 1 )*L**(K+J)/(K+J+1 )sfsM; 

H (l>J):=2*M*DTH*Q(Kfl)*L**(K+J)/(K+J+l)+H(lfJ); 

C(J,1):=M*DTH**2*Q(K,1)*L**(K+J)/(K+J+1)-

EI*(K**2-K)*(J**2-J)*Q(KJ)*L**(K+J-3)/(K+J-3)+C(J,l)>>;
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C(1,1):=C(1,1)+M*G*Q(K,1)*L**K/(K+1)*C0S(Q1)»;

9

END;

%End of the codes.

The results of B, H, C are:

B (l,l) = ( L**2*M*(13860*L**10* Q6**2 + 30030*L**9* Q6*Q5 + 32760*L**8* 

Q6*Q4 + 16380*L**8 *Q5**2 + 36036*L**7* Q6*Q3 + 36036*L**7 *Q5*Q4 + 

40040*L**6* Q6*Q2 + 40040*L**6* Q5*Q3 + 20020*L**6* Q4**2 + 45045*L**5* 

Q5*Q2 + 45045*L**5* Q4* Q3 + 51480*L**4* Q4*Q2 + 25740*L**4* Q3**2 + 

60060*L**3 *Q3*Q2 + 36036*L**2* Q2**2 + 60060)) /  180180 

B(l,2) = L**3*M/4 B(l,3) = L**4*M/5 B(l,4) = L**5*M/6

B(l,5) = L**6*M/7 B(l,6) = L**7*M/8

B(2,l) = L**3*M/4 B(2,2) = L**4*M/5 B(2,3) = L**5*M/6

B(2,4) = L**6*M/7 B(2,5) = L**7*M/8 B(2,6) = L**8*M/9

B(3,l) = L**4*M/5 B(3,2) = L**5*M/6 B(3,3) = L**6*M/7

B(3,4) = L**7*M/8 B(3,5) = L**8*M/9 B(3,6) = L**9*M/10

B(4,l) = L**5*M/6 B(4,2) = L**6*M/7 B(4,3) = L**7*M/8

B(4,4) = L**8*M/9 B(4,5) = L**9*M/10 B(4,6) = L**10*M/11 

B(5,l) = L**6*M/7 B(5,2) = L**7*M/8 B(5,3) = L**8*M/9 

B(5,4) = l**9*M/10 B(5,5) = L**10*M/11 B(5,6) = L**11*M/12 

B(6,l) = L**7*M/8 B(6,2) = L**8*M/9 B(6,3) = L**9*M/10 

B(6,4) = L**10*M/11 B(6,5) = L**11*M/12 B(6,6) = L**12*M/13 

H (l,l) = 0

H(l,2) = (L**4*M*DTH* (280*L**4* Q6 + 315*L**3* Q5 + 360*L**2* Q4 + 420 

*L*Q3 + 504* Q2))/1260

H(l,3) = (L**5*M*DTH* (252*L**4* Q6 + 280*L**3* Q5 + 315*L**2* Q4 + 360 

*L*Q3 + 420* Q2))/1260
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H(l,4) = (L**6*M*DTH* (2520*L**4* Q6 + 2772*L**3* Q5 + 3080*L**2* Q4 + 

3465*L*Q3 + 3960* Q2))/13860

H(l,5) = (L**7*M*DTH* (330*L**4* Q6 + 360*L**3* Q5 + 396*L**2* Q4 + 440 

*L*Q3 + 495* Q2))/1980

H(l,6) = (L**8*M*DTH* (1980*L**4* Q6 + 2145*L**3* Q5 + 2340*L**2* Q4 + 

2574*L* Q3 + 2860* Q2))/12870

H(2,l) = 0 H(2,2) = 0 H(2,3) = 0 H(2,4) = 0 H(2,5) = 0 H(2,6) = 0 

H(3,l) = 0 H(3,2) = 0 H(3,3) = 0 H(3,4) = 0 H(3,5) = 0 H(3,6) = 0 

H(4,l) = 0 H(4,2) = 0 H(4,3) = 0 H(4,4) = 0 H(4,5) = 0 H(4,6) = 0 

H(5,l) = 0 H(5,2) = 0 H(5,3) = 0 H(5,4) = 0 H(5,5) = 0 H(5,6) = 0 

H(6,l) = 0 H(6,2) = 0 H(6,3) = 0 H(6,4) = 0 H(6,5) = 0 H(6,6) = 0 

C(l,l) = (G*L*M* (60*COS(Q1)*L**5* Q6 + 70*COS(Q1)*L**4* Q5 + 84* 

COS(Ql)*L**3* Q4 + 105* C0S(Q1)*L**2* Q3 + 140* C0S(Q1 )*L*Q2 + 210* 

SIN(Ql)))/420

C(2,l) = (L*(840* SIN(Q1)*G*L*M + 280*L**7*M* DTH**2*Q6 + 315*L**6* M* 

DTH**2*Q5 + 360*L**5*M* DIH**2*Q4 + 420*L**4*M* DTH**2* Q3 - 

30240*L**4* EI*Q6 + 504*L**3*M* DTH**2*Q2 - 25200 *L**3*EI*Q5 - 

20160*L**2* EI*Q4 - 15120*L*EI*Q3 - 10080* EI*Q2))/2520 

C(3,l) = (L**2*(630* SIN(Q1)*G*L*M + 252*L**7*M* DTH**2*Q6 + 280*L**6 

*M* DTH**2*Q5 + 315*L**5*M* DTH**2*Q4 + 360*L**4*M* D1H**2 *Q3 - 

75600*L**4* EI*Q6 + 420*L**3*M* DTH**2*Q2 - 60480*L**3* EI*Q5 - 

45360*L**2* EI*Q4 - 30240*L*EI* Q3 - 15120* EI*Q2))/2520 

C(4,l) = (L**3*(5544*SIN(Q1)*G*L*M + 2520*L**7*M* DTH**2*Q6 + 2772 

*L**6*M* DTH**2*Q5 + 3080*L**5*M* DTH**2*Q4 + 3465*L**4*M * 

DTH**2*Q3 - 1425600*L**4* EI*Q6 + 3960*L**3*M* DTH**2* Q2 -

1108800*L**3* EI*Q5 - 798336*L**2* EI*Q4 - 498960*L* EI*Q3 - 221760* 

EI*Q2))/27720
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C(5,l) = (L**4*(4620*SIN(Q1)*G*L*M + 2310*L**7*M* DTH**2*Q6 + 2520 

*L**6*M* DTH**2*Q5 + 2772*L**5*M* DTH**2*Q4 + 3080*L**4*M * 

DTH**2*Q3 - 2079000*L**4* EI*Q6 + 3465*L**3*M* DTH**2* Q2 - 

1584000*L**3* EI*Q5 - 1108800*L**2* EI*Q4 - 665280*L* EI*Q3 - 277200* 

EI*Q2))/27720

C(6,l) = (L**5*(25740*SIN(Q1)*G*L*M + 13860*L**7*M* DTH**2*Q6 + 

15015*L**6*M* DTH**2*Q5 + 16380*L**5*M* DTH**2*Q4 + 18018*L**4*M* 

DTH**2*Q3 - 18018000*L**4* EI*Q6 + 20020*L**3*M* DTH**2*Q2 -

13513500*L**3* EI*Q5 - 9266400*L**2* EI*Q4 - 5405400*L* EI*Q3 - 2162160* 

EI*Q2))/180180
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The MATLAB programmes for section 4.5 is listed below:

SpringMethod.m

function [theta,W] = SpringMethod(k)

% The transfer function obtained by using adding 8 springs 

% The one-link manipulator is a uniform beam.

% k is the stiffness of the springs.

% Ml is the rigid link’s mass, Ml = l/8Kg. L is the length, L = l /8m. II is the rota­

tion inertia along the axis through its centre.

Ml=0.125;

L=0.125;

n=Ml*L~2/12;

%The symbolic value of M matrix is obtained by running the programmes in chapter 

2.

M(1,1)=2.*(85.*L"2*M1+4.*II);

M(l,2)=(7.*(79.*L~2*Ml+4.*II))/4.;

M(l,3M215.n/2*Ml+12.*II)/2.;

M(l,4)=(5.*(63.*L~2*Ml+4.*II))/4.;

M( 1,5)=53.*L*2*M 1+4.*II;

M(l,6)=(125.*L"2*Ml+12.*II)/4.;

M( 1,7)=(29. *L~2*M 1 +4. *II)/2.;

M( 1,8)=( 15. *L~2*M1 +4.*II)/4.;

M(2,l)=(7.*(79.*L"2*Ml+4.*II))/4.;

M(2,2)=(7.*(65.*L~2*Ml+4.*II))/4.;

M(2,3)=(179.*L"2*Ml+12.*II)/2.;

M(2,4)=(5.*(53.*L~2*Ml+4.*II))/4.;

M(2,5)=45.*L~2*M1+4.*II;



APPENDIX 3

M(2,6)=(107.*L~2*Ml+12.*II)/4.;

M(2,7)=(25. *L~2*M 1 +4. *II)/2.;

M(2,8)=( 13. *L~2*M 1 +4. *II)/4.;

M(3,l)=(215.*L~2*Ml+12.*II)/2.;

M(3,2)=(179.*L~2*Ml+12.*II)/2.;

M(3,3)=(143.*L/'2*Ml+12.*II)/2.;

M(3,4)=(5.*(43.*L"2*Ml+4.*II))/4.;

M(3,5)=37.*L/'2*M1+4.*II;

M(3,6)=(89.*L/'2*Ml+12.*II)/4.;

M(3,7)=(21. *L*2*M1 +4. *II)/2.;

M(3,8)=( 11. *L~2*M 1 +4. *II)/4.;

M(4,l)=(5.*(63.*L~2*Ml+4.*II))/4.;

M(4,2)=(5.*(53.*LA2*Ml+4.*II))/4.;

M(4,3)=(5.*(43.*I/2*Ml+4.*II))/4.;

M(4,4)=(5.*(33.*L~2*Ml+4.*II))/4.;

M(4,5)=29. *L"2*M 1 +4. *11;

M(4,6)<71.*L"2*Ml4d2.*II)/4.;

M(4,7)=( 17. *L~2*M1 +4. *II)/2.;

M(4,8)=(9.*L"2*Ml+4.*II)/4.;

M(5,1)=53.*L'‘2*M1+4.*II;

M(5,2)=45.*I/2*M1+4.*II;

M(5,3)=37.*U'2*M1+4.*II;

M(5,4)=29.*L"2*M1+4.*II;

M(5,5)=21. *L~2*M 1 +4. *11;

M(5,6)=(5 3. *L*2*M 1+12. *II)/4.;

M(5,7M13.*LA2*Ml+4.*II)/2.;

M(5,8)=(7.*L~2*Ml+4.*II)/4.;
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M(6,l)=(125.*L"2*Ml+12.*H)/4.;

M(6,2)=(107.*L~2*Ml+12.*II)/4.;

M(6,3)=(89.*L/'2*Ml+12.*II)/4.;

M(6,4)=(71.*La2*M1+12.*II)/4.;

M(6,5)=(53.*L/'2*Ml+12.*II)/4.;

M(6,6)=(35.*L/'2*Ml+12.*II)/4.;

M(6,7)=(9. *L~2*M 1 +4. *II)/2.;

M(6,8)=(5.*L/'2*Ml+4.*II)/4.;

M(7,l)=(29.*L~2*Ml+4.*H)/2.;

M(7,2)=(25. *L~2*M 1 +4. *II)/2.;

M(7,3)=(21.*L/v2*M1+4.*II)/2.;

M(7,4)=(17.*L/'2*Ml+4.*II)/2.;

M(7,5)=(13.*L~2*Ml+4.*II)/2.;

M(7,6M9.*L~2*Ml+4*II)/2.;

M(7,7)=(5.*L"2*Ml+4.*II)/2.;

M(7,8)=(3.*L"2*Ml+4.*II)/4.;

M(8,1 )=( 15. *L~2*M 1 +4. *II)/4.;

M(8,2)=( 13. *L~2*M 1 +4. *II)/4.;

M(8,3)=(l

M(8,4)=(9.*LA2*Ml+4.*II)/4.;

M(8,5)=(7. *L~2*M 1 +4. *II)/4.;

M(8,6)=(5.*L/'2*Ml+4.*II)/4.;

M(8,7)=(3.*L"2*Ml+4.*II)/4.;

M(8,8)=(L/'2*Ml+4*II)/4.;

unit=[0 0 0 0 0 0 0  0;0 1 0 0 0 0 0  0;0 0 1 0 0 0 0  0;0 0 0 1 0 0 0  0; 

0 0 0 0 1 0 0 0;0 0 0 0 0 1 0 0;0 0 0 0 0 0 1 0;0 0 0 0 0 0 0 1];



APPENDIX 3

torque=[l;0;0;0;0;0;0;0]; 

theta = []; W = []; 

n=0;

for j=0:4/300:4;

w = lCTj;

n=n+l;

s=sqrt(-l)*w;

mm=M*s*s;

mm=mm+k*unit;

thi=mmorque;

theta(n)=[l 7/8 6/8 5/8 4/8 3/8 2/8 l/8]*thi;

W(n)=w;

end

%End of the programme.


