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ABSTRACT

The initial flight-test operations of piloted aircraft, in which
Digital.Flight Control (DFC) systemé were first empioyed, exposed
handling qualities problemé that were not predicted during the
design stage. Subsequent studies attributed the cause of these
problems to the techniques used in the design of the digital control
systems. The particular ‘feature which wunites the reported
difficulties is that, én infinite-résolution sampled-data model is
assumed for the design process but the practical DFC implementation

is realised as an amplitude-quaﬁtised sampled-data system.

A mddern DFC system exemplifies the concept of a mixed-data, digital
control system. In the case of aniaircraft, a mixed-data flight
'coﬁtfol system is a configﬁration of the following data domains:
The Continuous-Amplitude, Continuous-Time (CACT) domain of the basic
aircraft model; the Discrete-Amplitude, Discrete—Timé (DADT) domain
of the flight coptrol computer; and the Discrete-Amplitude,
Continuous-Time (DACT) domain of the basic aircraft’s control data.
This observation, which defines the data-domains of a DFC syétem,
exposes an interesting paradox; viz. the theoretical techniques for
mixed-data system design are defined in a domain that does not exist
in a modern DFC system. This non-existent domain is the Continuous
Amplitude, Discrete Time (CADT) domain and is usually referred to
as the sampled—datévdomaiﬁ. In addition to the mixed-data issue, a
modern DFC system communiqates with other aircraft—subsystems using
a wide - variety of data formats and information bandwidths.

Consequently the DFC system‘ must combine these various data
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structures into a unified flight-control data-set.

This dissertation describes a DFC system design methodology. The
rationale of the methodology is‘tobunify the flight control data
types and give contemporaneous consideration to .the quantisation
issue . of fhe implementétidn domain, within a framework of familiaf
CADT domain techniques. The basis of the methodology is a multirate
sampled-data model and a direct digital design approach. A general
feature of multiraté sémpled—data systems.is the rapid expansion of
the model complexity. To minimise the possibility of model assembly
errors, an effective assembly-management technique is reduired.
This requirement is satisfied in the proposed multirate sampled-data

design model through a systematic assembly procedure.b

In contrast to the normal qualitative practice of selecting =a
practical sampling-rate for a unirate system, the = proposed
multirate sampled-data DFC design methodology incorporates an
analytical selection technique for the sampling policy. The
technique has the facility of directly referring the sampling-rate
"of a given state element to a specification of an aircraft’s
handling <qualities, as embodied in the military standard

MIL-F-8785C.

Extensions of both the w- and w’-plane design methods to the
multi?ariable, multirate sampled-data dbmain are developed.
Although both the w- and in particular the w’-plane are established
techniques for the design of unirate sampled-data DFC systems, their

widespread adoption is impeded by the need to map a w plane design
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bmodel from a z—plane transfer-function description. Algorithms are
described which avoid the transfer-function mapping route and allow
" an easy transitioﬁ between the CADT state-space and the w planes.
Apart from yielding a less cumbersqme‘symbolic form of a w plane
transfer;function representation, the proposed algorithms have the

facility to model multivariable systems.

Parameters to assess the performance of thé direct‘digital-design
and multirate sémpled-data models are also developed. These
parameters are derived directiy from a discrete system description
and therefore contrast with the usual s- to z-plane parameter maps.
The assessment of multirate sampléd-data systems 1is facilitated

through the development of é two parameter root-locus diagram.
The proposed. DFC design methodology is tested through a case study.

Although relatively simple, the case study exercises most of the

techniques developed in this dissertation.
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- CHAPTER ONE = )

INTRODUCTION

1.1 THE FUTURE REQUIREMENTS AND CURRENT _PROBLEMS. OF DFC SYSTEMS

In 1985 Fraser [1.1] described the type of aircraft that could be
produced by the year 2000. Fraser’s description is based on the
'_deliberations of a committee, set-up under the auspices of thek
National Research Council (NRC) in the United States. The National
Aeronautics and Space Administration (NASA) requested the committee
to consider the following question; "if resources were not an
issue, what developments would be made in aircraft systemé by the
end of this century?" The committee answered thé ‘question by
describing what can be regarded as an Information Technology (IT)
aircraft. The committee asserted that the enabling technology for
realising the IT aircfaft would be digital computing coupled with

real-time control.

At the same time as the ambitious pfedictions of an IT aircraft were
being advénced, Moran [1.2] described the problems that were
experienced with the DFC system used for the McDonnell Douglas
| F/A-18A combat aircraft.  The difficulties with the F/A-18A DFC
system exemplified the prbblems that were being exposed in a humber
of other aircraft DFC devélopment programmes. - In 1987, Tischler
[1.3] gave' a succinct account of digital fly-by-wire aircraft

developments and the problems encountere@vwith their DFC systems.
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Tischler noted that the DFC problems were associated with the design

method. Tischler’s conclusions were confirmations of earlier work

reported by McRuer et-al [1.4] and Goodchild [1.5]. The prbblems

associated with DFC design methods, cited in the open 1iteratufe,‘

areysummarised by the following three sfatements:

(1)

(ii)

(iii)

Initial DFC design studies have consistently over-estimated
the bandwidth achieved in the implementation. As Tiéchler
[1.6] observes, this over-estimation is generally»not exposed
until after hardware implementation and the initial flight

test.

Time delays between pilot initiated commands and the aircraft
response are a significant problem in digital computer
controlled éircraft. These delays tend to céuse pilot
induced 6scillations. Powers [1.7] noted that a similar
problem had been experienced in the pitch axis céntrol of the
Space Shuttle. Burton et-al [1.8] observed the same effect

occurring in both longitudinal and lateral axes of the

‘digitally controlled F/A-18A .

Neuromuscular interference from the pilot can be coupled into
the high bandwidth DFC. This phenomenon is called "roll

ratchet" [1.9] and is particularly noticeable to pilots

: dufing lateral control activity. Johnston et-al [1.10]

reported the occurrence of the problem in the AFTI F-16
research aircraft. Smith ‘et-al [1.11] described a similar

effect occurring in the digital fly-by-wire Jaguar.
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In all the cases cited above, the problems with the DFC performance
were reported to have been overcome. However, the the problems were
not exposed until the aircraft had regched their initial operational
status. The reports also imply that the problems with these DFC
sysfems were finaliy resolved by heuristic design methods. The
reported inadequacy of the current approach to‘the design of DFC
systems produced the conclusion that a better method of DFC system
design is needed, pérticularly' if the ideas for the information

‘technology aircraft, described by Fraser, are to be realised.

1.2 THE CASE FOR DIGITAL FLIGHT CONTROL RESEARCH

The general conclusion that emerges from the references cited above,
is thaf a digital flight contfol sysfem design methodology . is

required which addresses the implementation issue of data amplitude.
quantisation. The research, reported in'this dissertation, focuses
of the notion that the data amplitude quantisation should be
considered during the preliminary design stage of the DFC systen.
Data amplitude quantiéation is "a feature which distinguishes a
digital control system from the claséical concept of a sampled-data
systen. A relationship between data amplitude quantisatién and
samplihg imposes an upper bound on the sampling-rate for a given
Continuous-Amplitude, Continuous-Time system. This obéervation is

considered in detail in Appendix Three.

The following observations provide the basis of the digital flight

control system design methodology thch is described 1in this
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"dissertation:

(i)

(i1)

(iii)

The design of a digital flight control system must be
undertaken in a domain in which the continuous-data basic
aircraft system ana the digital-data flight controller can be
unified for the purpose of  design, analysis - and

implementation modelling.

Amplitude quantisation of the basic aircraft’s flight control

daté imposes an upper-bound on the sampling-rate, for a given
characteristic frequency. For the same characteristic
frequency, the Sampling Theorem defines a lower-bound on the
sampling-rate. Thus for each characteristic frequency in a
high order system, there exists a limited range of

appropriate sampling-rates.

Control data is produced by merging the information from a
wide range of aircraft mission and flight sensors. These
sensors produce information in different data formats with

different data-rates or'bandwidths.'

Consideration of the first observation leads to the conclusion that

the design of a digital flight control system should be undertaken

in the discrete-data domain, employing a sampled-data description of

the basic aircraft’s dynamics. The arguments‘that support this view

are presented in Chapter Two and Appendix Two. Although the nature

of the second and third observations is fundamentally different, a

consideration of both issues produces the same conclusion; -viz, the



‘design methodology of a digital flight control system must, in
general, accommodate a multirate sampling policy. The arguments

that underpin this assertion are presented in Chapter Three.

1.3 THE PROPOSED DFC SYSTEM DESIGN METHODOLOGY

A digital flight control system design methodology is the subject of
this disseftation. The objective is' to define an approach to ‘
digital flight coqtrol‘ system design thch takes account of the
issues associated with mixed-data flight control systems. The
thesis is formulated within a framework of requirements that are
identified as essential attributes of a practical digital fligﬁt

control system design philosophy.

The first requirement 1is generated by the National Research.b
Council’s (NRC) pfediction, [1.12]; of developments in the
technology of aircraft flight systems. The NRC predicts a growth in
airborne capabilities that will encourage advances in operational
requirements and involye the integration of aircraft systemé to an
extent where the classical division of functions will disappéar.
’For ekample, the aircraft structure, its propulsion and aerodynamics
will be integrated with .the imission, navigation and guidance
functions in a general flight control system architecture. The
enabling technologies fof this total integration concept will be
digital computer aréhitectures and control system design

methodologies.
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As noted in Section 1, the reported inadequacies of current digital
fiight control systems are generally attributed to the eontrol
.systemv design approach. A deéign methodology which implicitly
addresses the mixed—data issues of digital flight control systems is
required if the ambitious predictions for fhe integrated systems

aircraft are to be realised.

The second requirement of a practical digital flight control system
design methodology . is concerned with the Iintegrity of aircraft
flight control systems. The design methodology of a flight control
system is as important as the hardware, software and system
configufation in establishing the integrity of the implemented
system. Four aerospace system design maxims are defined by Mulcare
et-al [1.13]. These maxims provide the fundamental guidance for the

establishment of the design methodology ©proposed in this

dissertation; Mulcare defined the maxims as:

(1) Simplicity: Within a framework that encompasses all the
relevant design issues, the objective of the simplicity maxim
is to enhance confidence in both the control function and its

implementation.

(ii)  Visibility: A compact and precise model description
possesses visibility in the sense that a clear perspective of
the physical problem is maintained throughout the development

of a control system.
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(iii) Consistency: The development of a large scaie flight control
system inevitably requires a design methodology that allows
an incremental aoproach to modelling and conceptual
verification. A design methodology possessing this property

has consistency.

(iv) Conc lusiveness: A design methodology which pérmits the
analysis (validation) of the most critical functions with the

highest degree of confidence possess conclusiveness.

The digital flight control system design methodology proposed in
this dissertation is constructed to meet the above requirements and
”address‘the pragmatic needs of flight control system designers. To
achieve theée objecfives, the digital flight control system model
builds on the established and proven concepts of analogue flight
control system design. Thus, the linear aircraft model and the gain
scheduling strategiés of flight control bare the fundamental

assertions on which the proposed design methodology is built.

The principle of the proposed digital flight control system design
methodology is the recognition that a basic continuous-data aircréft
model must be recast in different data domains as the the control
system  evolves through the désign, modelling and implemeﬁtation
process. The data-domains associated with digital flight control
systems are identified and defined. The current methods of digital
flight control system design appear to adopt an ad-hoc approach to
this important issue. The proposed methodology establishes the

appropriate data-domains for the modelling, design and analysis of
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digital flight control systems.

eThe DFC design methods described in this dissertation focus on the
direct digital design approach. Direct digital design adopts the
policy of control system design in the discrete-data domain. | The
besiS' of the direct digita} design Amethod, is to recast =a
continuous-time plant'as an equivalent, discrete-time system. In
the flight contrel case, the continuous-time plant represents the
‘basic aircraft, the control actuators and the data sensors etc.
Direct digital design contrasts with the widely used emulation
design methode. With the emulation approach, e_digital control
system 1s realised by designing the controller as a continuous—timev
system and then mapping the resulting continuous-time control law
equations to the aiScrete-time domain for purposes of implementing .
the‘digitel controller. An example of the emulation method in the

design of a DFC system is provided by Joshi et-al [1.14]

The direct digital design‘method has, for some time, been recognised
as the appropriate domain for DFC design. Kidd [1.15] and Goodchild
t1.16] identified this facf~dufing their studies into DFC systems
for remotely piloted aircraft. Tischler [1.17] observed that
emulation methods are useful for preliminary design and performance
trade-off studies but direct digital methods are necessary to
accurately evaluate the many important high-frequency »dynamic
chefacteristics of a modern digital system. Oz et-al [1.18]
ebserved that the results produced by direct digital design can be
Significantly different to the results produced by emulation design.

Oz concluded that the common blithe assumption of simplistic:



interchangeability between discrete and continuous control design
teéhniques shoﬁld be giveﬁ careful scrutiny and perhaps discarded.

A cornerstone of a successful development of a digital flight
control system 'is' the selection of the cdntrOl-data and
measurement-data .sampling rate or rates [1.19]. The appropriate
sampling rate is determined from an anélysis of the associated
dynamics and the impleméntafion environment. In general, this leads
to a multirate sampling‘policy. The proposed design methodology
includes a wutility to model and analyse multirate sampled-data
flight control systems. The four design methodology maxims are

‘major factors in the proposed multirate sampled-data model.

The préposed design methodology of an aircraft’s digital flight
control system 1is described in the subsequent. chapters_ of this
dissertation. The problemsbassociafed with digital flight control
are classified as handling qualities issues. The proposed design
methodology is directed towards the design of the inner
control-loops and autopilot functions, because the_primary purpose
of these inner-loop functionsvis to coﬁtrol and modify the handling
qualities of a basic aircrafil The general performance requirements
for manned—aircfaft flight control systems are eﬁbodied in standard
handling-qualities documents, for example MIL-F-8785C [1.20]. This
particular document is employéd tq provide the performance’
objectives of the digital flight control system designs described in
this dissertation. A design domain is defined and meﬁhodology
developed which permits  the direct tranéformation of handiing

qualities requirements into digital'control-law specifications.
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1.4 ORGANISATION OF.THE DISSERTATION

The digital flight control design methodology ié described in
Chapters Two, Three and Four. Chapter Five presents the results of
an application of the proposed methédology to the design of a
Digital Flight Control (DFC) system. Although the scope of the
-design study is limited to a basic aircraft stabilisation and simple
flight control law problem, the salient features of the methods

given in this dissertation are exposed.

Chapter Two considers . the bésic aircraft modelling problems
associated with the preliminafy design of a flight control syStem.
The development of the basic aircraft design model is approached
‘from the perépective of the flight control design practitioner.
Thus, the proposed design method accommodates ian inéremental
assembly of the basic aircraft system and attemptsrto maintain a
conspicuoﬁs representation of the physical dynamics. The proven
concept of a linear time-invariant design model, coupled with argain
scheduling policy for global control over the total flight envelope,

provides the basis for the ﬁfoposed DFC design‘methods.

The rationale for DFC design in ‘the discrete-data domain is
donsidered in Section 2.3. Thé data domains incorporated in a DFC
system are defined. | The fundamental ‘quéstions, concerning the
domain in which a unified model of a mixed-data systemv can be

establishedrfor the purpose of DFC design, are addressed.

The method of transforming a cohtinuous-time, basic aircraft model
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into an equivalentAdiscrete—time'model is considered in Section 2.4.
To reflect normal DFC implementation practice, it is assumed that
digitel control data is apblied to'the'continﬁous aircraft‘via a
Zero-Order-Hold. This means that digitalAcontrol date is aveilable
at the sampling instant as an impulee from a time sequence of
impulses. The amplitude of each impulse.is held and applied as a
constant control action to the .continuous aircraft over the

following intersample period.

It is considered that the methods proposed in’Chapter Two represent
a contribution to the general practice of DFC desigh. Although the
proposed methods are established techniques in control system design
pfactice, it is believed that some novel applications have been
identified, which overcome some of the common modelling problems

associated with DFC design.

'.The classical interpretation of a discrete-time representation of a
continuous-time model 1is 'a sampled-data syetem. The implicit
assumption of a sampied—data system 1is that the sampled-data
amplitude is continuous. Tﬁe modern, practical implementation of a
DFC system is a digital-data system; that is, the time sampled‘data
undergoes a procees of amplitude quantisation. In Chapter Three, it
is reasoned that a DFC system must be implemented as a multiraie
sampled-data system. In this context, it is necessary to nete that
sampling refers to both the time sequence of impulses applied to
control the basic continuous aircraft system and the . sampled

system’s state-data, from which the. control actions are generated.
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The selection of a sampling policy is a critical factor in the
design of a DFC system.' Various - methods of selecting a
sampling?rate for ~a continuous-data systém have been studied and
reported [1.21]. For the design of a DFC'system, it is observed
that the selectioﬁ of a Samplingfraie, or sampling—poiicy must
usually be made on the basis of very‘limifed,information. In fact,
the available information is often restricted to thé basic aircraft
system dynamics. Other data, which would ‘be relevaﬁt for the
sampling rate selection procedure, only becomes known some time
after the initial design decisions heed to.be made. Methods éré
given‘in Section 3.2 which establish quantitativevmeasures for the
selection of a sampling policy on the basié of limited system

information.

» A multirate sampled-data state-space model is developed in Section
3.4. The multirate model is developed because, in contrast to the
currently available models [1.22], [1.23],and [1.24], the proposed
assembly meets thé objéctivés. of the four maxims with greater
facility. Although the multirate sampled-data model can be utilised
in the direct design of a DFC system, its application challenges the
requirements of fhe four maxims. 'Severél case studies examined for
the thesis have therefore been omitted from this dissertation and
. are given in a supplementary report [1.25]. The issue of a suitable
multirate sampled-data DFC system designv domain is addressed in

Chapter Four.

vChapterv Four considers the design, analysis and implementation

issues associated with preliminary design of a DFC system. Section
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4.2 reviews the w- and w’-planes as candidate domains for the design
of muitirate sampled—aata DFC systems. The w~- and w’-planes aré

identified by Whitbeck and Hofmanh [1.26] to be particuiarly
suitable for the design of DFC systems. Although the -the w- and
w’-planes design methods have advahtages over z-plane  design
methods, there is no evidence of their Qidespread use in practical
DFC design. A reason for this may lie in the fact that aﬁ innocuous
z-plane transfer’functioh can produce a confusing w- or w’-planev
expression. As Tischler [1;27] states in a summary identifying the
requirements for DFC design; "methods which allow easy transitions
‘between the s-plane, the =z-plane and the w-plgpe are needed".
Methods which map the high‘order and multivariablé system models
from the time-domain state-space and s-plane, to the w-plane and

w’-plane are developed for this thesis.

Section 4.3 presents methods for the analysis of the performance of
DFC systems.. The methods are developed from the well known s-plane
graphical’techniques; such as root-loci diagrams and Bode plots. A
survey of - the literature indicates that the z-plane root-locus is
the.most'common,method of sémpled—data systém performance analysis.
The analysis methods sponsored by most reports are based on mapping
the parameters of the s-plane criteria to the z-plane. The
sampled-data and discrete system analysis criteria proposed in thié
dissertation are based on identifying the equivalence between the
pafameters of a continuous system and the parameters of a

cofresponding discrete system model.

The digital computer implementation of a DFC system casts the flight
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control algofithms'in a quéntisedfdata.discrete—time domain. This
domain imposes additional constraints which must 'be considered
during the preliminary stages of DFC syétem design. .The adoption of
a multirate sampled-data policy gives an implicit consideration of

the implementation domain.

vThe results of a DFC Aesign case vstudy are presented inv Chapter
Five.  The purpose of the design exercise is to explore the
properties of the proposed mgthods that are not explicitly described
by examples given in the preceding chapters and appendices. The w-
and w’-planes are utilised to design the digital ggtopilot function

of a manned‘aircraft. The DFC design target specificétions are
identified from the handling qualities document MIL-F-8785C and cast

in terms Qf the discrete design domain.

The computational requirements of the proposed methdds are serviced
in a matrix manipulation environment, called MATLAB [1.28]. The
influence of MATLAB on‘development of the multirate sampled-data DFC
design methodology is significant. The facility which the package
offers for realising high‘uorder numerical routines makes it an
almost ideal environment for the proposed DFC system design

methodology.

1-14



CHAPTER TWO

MODELLING AIRCRAFT DYNAMICS FOR DIGITAL FLIGHT CONTROL

2.1 INTRODUCTION

This chapter consivders fhe development of a model for Digital Flight
Control .(DFC) design and analysis. - The development addresses the
specific requirer-nentSIOf design, analysis and implementation in the
discrete-time démaih. In fhe case of analogue flight control, the
controllér and aircraft are modelled by continuous-time differential
equations, so the design, anaiysis and implementation processes are
-naturally carried out in one domain. However, when é digital
computer is used to implement the ,flight .control laws, - the
convenience of a single modelling domain 1is lost. This chapter
address the issues of combining continuous and discrete précesses

for the purpose of DFC design.

2.1.1 A Generic Aircraft Model for DFC Design

The design model considered in this dissertation is based on a

generic aircraft and DFC system. The total aircraft system is
illustrated below in Fig.2.1. As ak generic concept, the model
encompasses all types of manned aircraft. The * principal

characteristics linking this generic model to a more general class

of dynémical system‘are; high bandwidth, fast response and ihherent



relaxed static-stability. - Aircraft are dynamical systems which
; beléng to the information—riph and energy4deficient' system group.
This classification is used for systems in which the plant dynamics
can be readily identified but the available energy for ﬁheir control
is strictly limited. This classificafion contrasts with the notion
of “an information—deficient and ' energy-rich system' which, for
example, can be ascribed to a chemical processing plant. In this
case relatively little is known about the plant dynamics but, as av
fixed térrestrial system, high enefgy levels are available for.

control purposes.

Disturbance Inputs

Rigid-Body
Dynamics [ |
Actuator 4 L Sensor
Dynamics | | ! ‘. Dynamics
Structural
Dynamics [ |
Inceptor-Feel § Inceptor
Dynamics | | Dynamics
Function ‘ Data
Reconstructor Quantizer

s ’ s ’ Sam lers ‘ S *' S
c \ c \ | P : \ s \ s

Digital Flight Control Law Computer

A generic aircraft design model controlled
with a digital-flight-control computer

Fig.2.1
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" In practice, the design of a flight control syStem is initiated
without a complete knowledge of the ultimate system specification,
or even a complete set of data for the basic aircraft. A general
flight control system desigh method must, therefore, accommodate an
incremental approach to the assembly of a flight control system.
'The implicit consequence of this practical issue gives weight to the
argument to base the design of an aircraft flight control system on
the physiéal statgs and not to transform them to a mathématiﬁally
more convenient set of state variables. The DFC design model,
‘aeveloped in this chaptér, facilitates the requirements of the

incremental assembly approach.

2.2 THE ANALOGUE-DATA MODEL OF THE BASIC AIRCRAFT

The moét widely used method of modelling aircraft flight control
systems is basea on reducing the non-linear, time-varying dynamic
equations of fhe basic aircraft to a set of linear, time?iﬁvariant
equations [2.1]. The complex structure of the basic aircraft can be

" be generalised into two groups of first order equations, given as .

x(t) = f(x(t),x(t),ult),y(t),t) ~ (2.1a)

y(t) = glx(t),x(t),ult),y(t),t). _ (2.1b)

It is often convenient, particularly in large systems, to generate
an auxiliary equation representing subsystem interconnections. . The
géneral form of the auxiliary equation is given by

a(t) = h(x(t),x(t),ult),y(t),t). (2.1c)
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For the three equations, x(t) is a vector of m time-dependent state
functions, u(t) is a vector of q time-dependent input and y(t) is a
vector of p time-dependent output functions. The functions f, g and

h are non-linear.

Linearisation of f , g and h is achieved by considering perturbation
models at strategic operating peints in the aircraft’s flight
envelope [2.2]. The time-invariant requirement 1is achieved by
assuming the time-varying parameters to be quasi-steady-state [2.3].
Linear flight control laws are defined on the basis of the
aircraft’s characteristics at these flight envelope design points.
A scheme of parameter scheduling produces the necessary control law
changes to account for the non-linear and time-varying dynamics of
the aircraft as it transits from one design point to the next. This
technique is a popular method for the design of analogue flight
control systems. The equations produced by tne linearisation

process are given by

x(t)

= F; i(t) + F x(t) + F, y(t) + F_ u(t) (2.2a)
y(t) = G x(t) + G x(t) + G y(t) + G, ult) (2.2b)
alt) = Hy x(t) + H x(t) + Hy y(t) + H u(t). (2.2¢)

The three members of (2.2) are rearranged to produce the standard,

(A,B,C,D) quadruple form of the state and output'equations, given as

x(t) = A x(t) + B u(t) ‘ (2.3a)

y(t) = C x(t) + D u(t). (2.3b)
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The state and output equations are the starting point for the
digital flight control design, analysis and implementation methods

proposed ‘in this dissertation.

2.3 PRELIMINARY ISSUES

.An appréach to the DFC design is described which attempts to cast
the popular analogue system teéhniques in the discrete-time domain.
Although, 1in principle, this 1idea 1is not new, the wuse of
multivariablerw— and w’-plane models for the design of multirate
sampled-data systems appear‘not to have been explored. The proposed
method of designing a DFC system starts with the basic linear,
time-invariant aircraft model, given by equationé (2.3a) and (2.3b).
The design objebtive is to determine a set of control law equations
that, when imblemented, cause the aircraft to have a defined

performance policy.

2.3.1 Definitions of the Domains in a Mixed-Data DFC System

The design, analysis and’implementation domains for digital flight
confrol systems are defiﬁed iﬁ this section. These domains arev
explicitly considered for ihis thesis and represent aﬁ’aspeét of
digital”control system design that is often overlooked. Although
the issues considered are framed in the context of aircraft flight
control applications, the éoncepts are generic and apply to a wide

range of control systems.
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When. defining the domain in which modern digital flight control
systems operate, consideration must be given to tﬁe fact that
control data is both time-sampled and amplitude-quantised.
Classifying control systems by "data-type" defines four domains of

operation. These domains are:

(a) Continuous-Amplitude, Continuous-Time....CACT,

(b) Continuous-Amplitude, Discrete-Time...... CADT,
(c) Discrete-Amplitude, Discrete-Time........DADT,
(d) Discrete-Amplitude, Continuous-Time...... DACT.

The systems that correspond to each domain are:

(a) CACT...... Analogue-data systenm,
(b) . CADT...... Sampled-data system,
(c) DADT......Digital-data systenm,
(d) DACT. .....Quantised-data system.

A digitél flight control system, consisting of the ‘aircraft, the
digital-control processor and the aircraft-to-procéssor interfaces,
involves all four data types. Comparing this situation with the
- classical analogue flight control system gives an indication of the
‘addedléomplexity generated by fhe introduction of digital control
processes. This complexity is‘compounded by an expectation that

enhanced control activity can be achieved with a digital computer.



2.3.2 The Mixed-Data Configuration of a DFC Aircraft

The data handling operation .in digital flight control involves
taking a measurement of an aircraft’s analogue-data state vector and
‘converting it to 'digital-data. ' The signals representing the
aircraft state are processed as the parémeters ‘of the digital
’control laws. By -definitibn, the digital control ’lawél'are
implemented in the DADT domain and génerate a digital—data control
“vector. To control the CACT aircraft system, the digital-data
control véctor is convefféd back to continuous—timé; However, as no
fealisable scheme existé to convert the discrete amplitude aspects
- of the data into continuous, smooth control signals, the CACT
aircraff» is 'effectively controlled by a quantised-data control
vector. In general terms, an vaircraft employing digital flight
control éxemplifies a. "mixed-data" system. The closéd—loop

configuration of a mixed-data system is shown in Fig.2.2.

quantised data analogue data

CACT Domain system

(Basic Aircraft)

DADT Domain system

digital data (Flight control computer) sampled data

{quantised) - {quantised)

DCC is a Discrete to Continuous Converter

CDC is a Continuous to Discrete Converter.

The configuration of a mixed-data DFC system

- Fig.2.2
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2.3.3 Data Domain Conversion

The generation of a digital-data representation of the aircraft’s
analogue flight  state vector is carried | out by the
Continuous—to-Discréte Converter, (CDCi, shown Fig.2.2. In the case
of digitai flight control the CDC is ﬁsually iﬁplemented ‘as an

Analogue-to-Digital Converter (ADC) [2.4].

The generation of continuous-time flight control data from the DADT
domain. flight control computer is carried out by the
Discrete-to-Contihﬁous Coﬁvérter, (DCC), shown %P Fig.2.2. The
generic name of the discrefe—to—continuous process is
function-reconstruction [2.5].. It is 'theoretically possible to
define a perfect functicn reconstruction model [2.6]. In formal
terms, if u(i) is a sampled-data versioﬁ of an analogue-data signal,
u(t), then a perfect function reconstructor will map the u(i) into
u’ (t) such that [u(t)—d’(t)] is identically =zero. In practice

however, perfect function reconstruction cannot be achieved [2.7].

Function reconstruction is a dynamic process and therefore augments
the basic aircraft dynamics. In the limit, as the order of the
reconstructor dynamics tends to infinity, the reconstruction will
become the perfect process, described -above. The additional
dynamics, introduced into a flight control éystem, by a function
reconstructor, has a degrading effect on the closed-loop stability '
performance [2.8]. For this reason, the preferred implementatioﬁ of
the ‘discrete-to-continuous process is a reconstructor with minimal

order dynamics. In the case of digital flight control, the



discrete-to-continuous process .is normally implemented with a
Digital—fo—Analogue Converter (DAC) [2.9]. In some related flight
control cases 12.10], where the data reconstruction has the
appearance of a high-order process the actual situaiion' can be
reduced to a DAC implementation with discrete-time dynamics that are
modelled as augmentation states. For less fundamental but equally
important reasons, the DAC is used because it is readily available

as a proprietary device [2.11].

It is hot uncommon fof the ADC and DAC to be called a Sampler and
Zero-Order-Hold (Z0H), respectively. Strictly, however, the notion
of both a sampler aﬁd Z0H, referred to in classical sampled-data
control system theory '[2.12], .does not include an amplitude
- quantisation effect, which is an implicit feature of the ADC and DAC

data conversion processes.

2.3.4 The Proposed Route for DFC Design

As stated above, the modern implementatioh of é DFC system is a
closéd-loop arrangement of continuous and discrete functions that
process all four data-types. The suggested method for thekdesign
and analysis of a DFC system follqws an approach that maps the basic
analogue-data aircraft model into an equivalent sampled-data model.
The sampled-data model of the basic éircraft is then used for
control law design and‘preliminary performance analysis. Although
» the stated objective of the proposed DFC design methodology is to

take implicit account of the amplitude quantisation effects of the
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'DADT and DACT domains, the issues associated with the discrete
v amplitude domain represent a major activify in the total DFC design
process. This obsérvation identifies a significant extension to the
DFC design methodology‘ described in this“dissertation ‘and is

-therefore noted as a topic for future research.

2.3.5 The Case for DFC Design in ﬁhe Discrete-Time Domain

The DFC design methodology is based on the proposition that DFC
design should be carried out in the CADT domain. The proposed
method 1is therefore assooiated with the oirect digital ‘design
techniquesi[z.i3]. The following observations make the case for

using the CADT domain for the design of sampled-data systems.

To undertake a quantitative design on a mixed-data system, it is
necessary to define a mathematical model of the system in a single
data-type domain. To explore this issue, consider the discrete

element subsystem shown in Fig.2.3.

Sampling
Clock

| .

u(t) u(i) ] y(1) y(t)
CDC z(%, ¥, CD, DD) - DCC

The arrangement to define a CACT system
in terms of the CADT system parameters

Fig.2.3

2-10



A possible method of producing a unified model of a mixed-data
system is‘to‘recast the CADT subsystem of Fig.2.3 és an equivalent
CACT system. This leads to the basic question; does a CACT
S(A,B,C,D) exist which will map u(t) int§ y(t) in précisely the same‘
way as the arrangement shown in Fig.2:3?. For the answer, it is
observed that y(t) 1is produced by fhe discrete-to-continuous
coﬁverter which, aé stated above in Sectioﬁ 2.3.3, iskimpiémented by
a DAC. The signal constructed by a DAC is a staircase function for
all inputs of u(t). As no continuous-time system S(A,B,C,D) has
this characteristic the answer to the question is in the negativé.
/Another option of defining a unified data-domain model of a
mixed-data system is based on the arrangement shown in Fig.2.4. The
objective with this arrangement is to recast a CACT systemvas an
équivalent discrete-time system. The question is therefore; does a
discrete-time Z(Q,W,CD,DD) system exist which will maplli(i) into
y(i) in precisely the same way the as continuous-time arrangement
shown in Fig.2.4 suggests? The answer to the question is in the

affirmative. This answer is examined below, in Section 2.4.

Sampling
‘ Clock

]
u(i) u(t) ’ y(t) y(i)
DCC S(A, B, C, D) ChC —

>

The arrangement to define a CADT system
in terms of the CACT system parameters

Fig.2.4



" A further reason supporting the case of design in.the CADT domain
comes from the well known claim [2.14]; that a ’digital—contr§1
" system, designed by a direct—digital method, can achieve a given
vperfdrmance with a minimum’sambliﬁg-rate. This claim is usualiy
asserted without probf. Appendix Two preéents an analysis which
demonstrates the validity of the claim through a simple example. An
alternative demonstration of support for the direct-digital design
‘approach is given ih a recent repdrt by Boucher et al [2.15]. The
report coﬁpares two ' cases of‘ controller designs for the same
~continuous-time proceés. In oné case, the controller is designed by
direét—digital methods while, iﬁ the other case, the controller is
designed in the continuous-time domain and mapped to the z-plane for
implementation. The result 6f the comparison confirms the validity

of the claim, stated above.

2.4 DISCRETE-DATA MODELS OF CONTINUOUS-TIME SYSTEMS

The underlying principle of fhe direct—digital design method is that
an equivalent discrete-time modelk can be defined fér a
“continuous-time system.’ This section gives a review of the methods
thatiare available to produce an equivaleht discrete-time model of a
continuous-time system. The basic assumptions upon which -“the
methods in this section, and the remainder of this dissertation, are

built have already been discussed and are reasserted as follows:

(1) The basic flight control system design model of an aircraft’s

non-linear, time-varying dynamics is represented as a set of
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linear, time-invariant equations.

(ii) The non-linear, time-varying aspect is taken into account by
adjusting or "scheduling" the parameters of the linear,
time-invariant control equation. as thé aircraft manoeuvres

over its flight envelope.

(iii) The continuous to discrete conversion processes  are
instrumented by  analogue to digital converters and the
discrete to continuous convefsion proceéées are instrumented
by digital to analogue converters. The combined effect of.
these converters is an impulse sampler féllowed by a zero

order hold.

The * linear time-invariant equations, for a basic CACT domain
aircraft system with deterministic control inputs, can be cast in
state-space form. This is discuséed in Section.2.2 and is given by

the equations (2.2a) and (2.2b),

x(t) = A x(t) + B u(t) (2.3a)

y(t) = C x(t) + D u(t) . | (2.3b)

Under the assumptions, given above the system state at time t1 ié
given by the solution of the differential equation (2.3a). From a

zero initial condifion, x(0), the solution of (2.3a) is given by -

t

x(t) = exp(At) x(0) + J

exp[A(t - T)]B u(t) dr . (2.4)
o o
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' This equation is the basis of fhe time-domain continqous to discrete
state-space mapping that is central to the DFC system design method
described in this dissertation. The proposed method is generally

referred to as a direct digital design technique énd ié in direct
contrast with the widely used emulation method. The emulétion
method starts by solving the differential equation (2.3&) via

Laplace transforms to determine the s-plane state
sX(s) = A X(s) + B U(s). (2.5)

When (2.5) is substituted into 2.3b with an initial condition
x(0)=0, the resulting system model is the s-plane transfer function

matrix description and is given by
Y(s) = [C [sI -A]1'B +'D] u(s) . (2.6)

The single input single output transfer-functions, that are derived.:
from (2.6), are models of the basic aircraft system. In the
emulation design approach, a continuous-time flight controller is
designed,v using an s-plane ‘model of the basic aircraft. The
resulting continuous-time control equétions are transformed into an

set'of discrete-time equations for impiementation in a DFC computer.

2.4.1 Transfer-Function Methods

Although the transfer-function model is mainly used in the emulation
design method, a transfer-function model can be employed for a
direct digital design approach. The method proposed in this

dissertation requires a CADT domain model of the basic aircraft
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equations. ‘When these CACT aircrafﬁ equations are generated as
s—pléne transfer—functions,’ mapping them directly from  the CACT
domain into a CADT domain produces a z-plane transfer-function model
of the basic aircraft. Flight control law design is then éarried

out using classical sampled-data control system techniques.

The'classical apprdach f[2.16]1, usually associated with sampled-data
servomechanisms, uses the a z-transform substitution, z = exp(sh).
This subétitution maps the CACT domain transfer—fuhction to a "pulse
transfer-function", Fp(z) [2.17]1, where

m

F (z) =§:[residue of F(s) at the pole i of F(s)] . (2.7
P -1 |
1-exp(sh) z

i=1

There is a temptation to regard Fp(z) as a realisable CADT domaiﬁ
representation of the CACT domain transfer-function. This assertion
is incorrect. The pulsé transfer-function, Fp(z), is interpreted in
terms. of the concept of a perfect switch, producing a cﬂain of
delta-functions spaced by a time interval h. Each delta-function
assumes the.strength of the sampled analogue signal at the sampling
instant. Asvno physical system can realise a delta-function, the
switch concept is‘replaced by a funétion reconstructor, described in

Section 2.3.3.

As noted in Section 2.3.3, the usual implementation of a function
reconstructor in DFC systems is the DAC. The classical ZOH model,
that the DAC conforms to, has a transfer-function given by

1 - exp(-sh)
)

(2.8)

FH(s) =
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‘ Assuming the continuous-to-discrete conversion interface is
implemented by a ZOH, then the CADT domain model is obtained by
transfofming the product of CACT and Z0OH transfer functions to an

equivalent z-plane model.
F,(2) = z[ F,(s) F(s)] . (2.9)

The direct transfer?function mapping technique is cumbersome; this
is particularly so in the cases of high order and/or multivariable
~systems. An aiternative transfer-function mapping technique makes
use of the Tustin bilinear transform [2.18]. ’The Tustin bilinear
transform is a substitution for the s variable of transfer—functions
and ié given by

_ 2 z-1 . ‘
s = —H- Z 1 . . (2.10)

The Tustin bilinear transform is wusually used in the emulation
method of DFC design. Its application is to map control iaws;
designed in the CACT domain and expressed as s-plané
transfer-functions, to an "equivalent" set of CADT domain z-plane
transfer?functiOns. From the z-plane transfer-functions, a set of
corresponding difference equations can be deduced. Theée difference
equations represént an algorithm of the DFC laws. For complex -
transfer-functions, the Tustin transform mapping technique produces

unwieldy algebraic equations.
The discussion of this section has been included for completeness.
The emulation method is not relevant to’the objectives of the DFC

design method proposed for this dissertation. =~ A comprehensive
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account of the emulation method and its application to DFC system

design is available [2.19].

2.4.2 State Space Mapping Methods

A state-space rgpfesentatioﬁ of a mixed-data system can'be derived
by vintegrating, with respect to time, equations (2.3). To
_illustfate this approach, consider the-closed—ioop system shown in
Fig.2.2. Assume the CACT aircraft state is pfopagated from an
iﬁitial state x(to) and an impulse sample of the fﬁate is taken at
time th, where th-t0=h. This measured state will be identical to
the solution of cbhtinuous—time state equafion, (2.4), defined with
an initial condition x(to) and an integration interval h. This
observation assumes an error free measurement énd‘ a
continuous—to—discrete conversion that does not incur an amplitude
quantisation process. When the sampling process ié geheralised into
a continuous sequence of samples, separated in’time with a period h,
the mixed-data systém represents a sampled-data éystem [2.20]. This
well »kndwn method of producing an equivalent 'CADT model of é
mixed-data system fqrms. the basis of the DFC design methodology

described in this dissertation. As shown below, various forms of

the basic mapping functions are produced from equation (2.4).

From an initial state given at time td=nh, the state at time th=nh+h
is calculated by 'substitutihg these time values into (2.4).
Therefore, the solution to the CACT state equation (2.3a), at time

(n+1)h is given by
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(n+1)h

x((n+1))h = exp(Ah) x(nh) + J exp[A(nh+h—t)]B u dr , (2.11)

nh

where n is the sample number, h is the sampling period and T is an

integration variable.

The usual flight control system = implementation of the
discrete~to-continuous converter is the DAC. The DAC maintains a

constant value of u(nh) at the input of the system S_ (see Fig.2.4)

z
during the time period nh=t<(n+1)h. If, in addition to this, A is
substituted for (nh+h-t) in equation (2.11) then the solution to the

state equatidn at the sample point is given by

h ,
x((n+1))h = exp(Ah) x(nh) + J. exp(AA) da B u(nh) . = (2.12)
o

Consider the situation for fhe general case, in which a new member
éf the number sequence u(i) arrives at the discrete-to-continuous
converter every h units of time. If the continuous;to-discrete
converter 1is clocked after - a delay of A’ seconds, following
presentation of dafa number to the discrete-to-continuous converter.
then,v for the inéut u, occurring at time nh, there is a
corresponding output y, occurring at time n(h + A). This type of
sampling policy is called "non—synéhronous" éémpling.r With the ZOH
‘implementing thé discrete—tofcontinuous interface,‘the system has

the solution given by
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h

x((n+1))h = exp(Ah) x(nh) + J exp(AA) dA B u(nh) s (2.13a)

0

" y((n+A)h) = C exp(AA) x(nh)+ [C J exp(AA)dA B + D]u(nh) . (2.13b)

The CADT domain quadruple, in terms of the CACT quadruple, is
deduced from equations (2.13a) and (2.13b), and is given by four

equations;

® = exp(Ah) ,  (2.14)
A .
v = J "exp(AA) dA B, (2.15)
0 . !
CD = C exp(AA) , (2.16)
Ja\ .
D = DJ exp(AA) dA B + D . (2.17)

For syﬁchronous sampling the delay parameter A is zero, so the
coefficient matrices Cb and DD of the output equation become CD =C

and D = D.
D

Substifuting the terms from the left-hand-side of equation (2.14) to
(2.17) into equations (2.13a) and (2.13b) produces the standard form
of state and output difference equation that represent the basic

aircraft as an equivalent discrete-time system, given as

x(n+1)h ¢ x(nh) + ¥ wu(nh) _ (2.18a)

y(n+A)h

C_ x(nh) + D_ unh) . (2.18b)
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'In the case of sampled-data system with synchronous input and
sampling, the delay time A = 0 and hence y(n+A)h reduces to y(nh).

The state-space diagram for this system is given in Fig.2.5.

- D
x(n+1)h  x{(nh)
u{nh) v DLY c "~ y(n+A)h
d
%A
WA
@A = exp(AA) ,
A
WA = exp(AA) dA B ,
, )

DLY symbolises a single sample delay.

The general discrete system diagram deduced
from the CACT to CADT mapping functions

Fig.2.5

Equations (2.18a) and (2.18b) are the basic aircfaft model employed
in the digital flight control law design methodology; The key issue
in deriving these equations is the seléction of a sampling period,
h. In the most basic form, the CADT sampled—data model is definéd
for a unirate (single-rate) sampling policy} However, for the
thesis developed in Chapter One, it is recognised that, in general,

~a DFC system will require a multirate sampling policy. Further
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consideration of this central issue is given in Chapter Three. The
purpose of this chapter is served by assuming a unirate sampling

. policy.

2.4.3 Mapping a CACT Model into the CADT Domain

The key technique in producing an equivalent CADT domain state-space
model from the CACT statefspace is eValuétion'of the matrix function
exp(Ah). A large amount of published material is available that
discusses various ways of evaluating this matrix function [2.21].
The'requirément to numerically compute the exponential matrix éxp(Ah)
-efficiently and without error is obvious. The problems of computing
an exponential matrix function are widely discussed in the
literature. An extensive review of these problems is given by Moler
and Van-Loan [2.22]. This section presents methods of checking the

correctness of the computation of exp(Ah).

Surprisingly, many textbooks that include a discussion on the matrix
exponential imply a straight forward exponential series solution.
'Informéd sources [2.23] consider the weakness in the series method
and offer a more robust and efficient solution. However, the
problems in computing, for example, exp(Ah),'are such that reéults
must be checked for correctness. Methods to check the‘correctness

of the comphtation of exp(Ah) are developed below.

The basis of the method used to check the correctness of a mapping

from A to &, by the exponential matrix function exp(Ah), arises from-
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the observation that, at the sampling instahfs, the continuous-time
states are equal to the equivalent sampled-data states. Formally,
this is expressed as x(t) = x(nh) where, at the sampling instants,
t = nh. Under steady—étate conditions where =x(t) = 0, the

continuous-time state and output equations are given by

I

0 Ax (t) + Bu (t) , (2.19a)
SS sSS

y_(t) Cx (t) + Du (t) . (2.19b)
sSs ss SS »

The state equation (2.19a) can be rearranged to give

x_(t) =- A'B u (1) . (2.20)

S

In the case of steady-state sampled-data where x(nh+h) = x(nh), the

'state and output equations are given by

‘x (nh) = & x (nh) + ¥ u (nh) , (2.215)
SSs Ss sSS

y (nh) = Cx (nh) + Du (nh) . - (2.21b)
ss : ss ss

The state equation can be rearranged to give

xss(nh) = .[I - @]—1¢ uss(nh) . (2.22)

Assuming that the sampled-data amplitude is not quantised, then, at

the sampling instants where t = nh, equations (2.19a) and (2.21a)

S

-ABu_ (1) = [T-e7wu (sh) . (2.23)

2-22



A check for the correctness of the mapping from A to & is provided

by equation 2.23. If

-ATB = [1-98l' , ' (2.24)
then the sampled-data system given by the quadruple (@,W,CD,DD), is
an accurate equivalent of the continuous-time system quadruple,
giveﬁ by (A,B,C,D). If A is rank deficient its inverse cannot be
determined; however, a check on the CACT to CADT mapping can be

performed by rearranging (2.24) to give

-A¥y = [I -¢]B . - (2.25)

Another method of checking the equivalence of A and ¢ is to use the

following procedure:

(1) Compute the eigenvalues of the continuous-time state matrix A
using

det[AI - A] = O . . (2.26)

(2) Map each eigenvalue ;Ai to the z-plane using the scalar

function exp(Aih) to give z, -

(3) Compute the eigenvalues of the sampled-data state matrix ¢

using

det[¢I - 8] = 0 . |  (@2.2n)

(4) Compare the mapped continuous-time system eigenvalues Ai with
the directly computed ' sampled-data eigenvalues Ci and

establish a sampiing period h to give z, = gi.
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A further check on the correctness of the mapping function can be
made by the inverse of the above procedure. The inverse correctness

check is as follows:
(1) Using equations (2.26) and (2.27) compute the eigenvalues, A
and &, of the continuous-time and sampled-data systems,

respectively.

(2) Map the sampled-data eigenvalues to the s-plane using the

function
s, = -—In(z)  (2.28)
i h i ) )
where Tz, = o+ jw
i z z
(3) Compare the eigenvalues, s, of the mapped z to s domain

sampled-data model, with the directly computed with the |
continuous-time eigenvalues, A, and establish and confirm the
sampling period value h that gives si = Ai.
There is éh ambiguity in the inverse correctness check thatvmust be»
cdnsidered. The inverse mapping from the z-plane to the s-plane is
not unique. However, with a sampling-rate, %T; that. complies with
the requirements of the Nyquist-rate, the mapping defined by (2.28)

is one-to-one.

The solution of the integral terms depend on the way in which the
exponential matrix, exp(Ah), 1is evaluated, so the -evaluation

checking techniques, developed above. also apply to the integral
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 terms. The integral always exists; 1its evaluation can be
simplified, if the CACT state matrix A is of full rank and hence has
an inverse A™'. For these cases, the integrals (2.15) and (2.17)

can be evaluated by

h : :
J exp(AA) dA A_l[exp(Ah) - I] (2.29)
(o]

and .

]

i .
J ‘exp(AA) da A_l[exp(AA) - 1] ) (2.30)
0 : .

The two right-hand-side terms of equations, (2.29) and (2.30), give
an algebraically convenient solution to integrals (2.15) and (2.17).
jHowever, the occﬁrrence of rank-deficient state matrices in the
basic aircraft model is not uncommon. In spite of this, some
commercially availabie computer-aided—design' programs offer the
simplified expressions as the only means of mapping a modei from the

CACT domain to the CADT domain [2.24].

A solution-to the rank-deficient state matrix problem, that avoids
the need to explicitly solve the integrals (2.15) and (2.17), even
Qhen the matrix, A, is singular, is odtlined below and described in
- more detail in Appendix One. Sﬁrprisingly, this technique cannot be
attributed to any of the published literature reviewed for this

thesis.

When the CACT system has a rank-deficient state matrix, A, caused by ‘

the presence of open-loop integrations, an equivalent discrete-time
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‘system quadruple (@,W,CD,DD) can be computed as follows:

Ah Bh] ] v v )
exp c = ‘ ' (2.31)
i 0 0_ | 0 1 i :
[ AA  BA] K v, ' :
exp = A A . (2.32)
K 0] K I ,

The discrete-time equivalent state equation térms'are sub-matrices
with dimensions that éorrespond to the their continuous-time ‘
counterparts in (2.31). The output equation ternms, CD and DD, are

“evaluated by

CD =C @A : (2.33)
DD =C WA +D . o (2.34)

The CACT to CADT mapping techniques given in this section are only
applicable to éampled-data systems, where the sampled-data has
infinite amplitude resolution. In the case of -DFC systems or,
indeed,'any mixed-data digital control process, in which the control
is provided by a digital computer, the added complications of data
amplitude quantisation must be. considered. Amplitude quantisation
of the sampléd—data’is a stochastic procéss which is more readily
included as part of a simulation exercise. However, it is
"~ appropriate to consider some features of amplitude quantisafion
during the initial design stage. These features are described in

Chapter Four.
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2.5 SUMMARY

This chapter presents a view of the data—domains associated with
modern computer based DFC systems. Classifying the functions of a
DFC sjstem in terms of the CACT, CADT, DADT and DACT data-domein
operations represents a novel view of digital computer control
systems.‘ ‘While this view may be regarded as obvious, explicit
attention to the quantisation issue is omitted from much of the
literature cevering general  design aspects of computer-based
control. Having set the route for DFC design and implementation, a
review of methods of recasting an analogue—da%e model "into an
equivalent sampled-data model was ptesented. Support for this
chapter is provided by the appendices. In particular, Appendix Two
‘describes an experiment, the results of which support the case for
direct-digital-design. Appendix One gives details of the
development of the CACT to CADT mapping techniques presented in this
chapter. The work of this chapter contributes to DFC design
practice by exposing some useful technigues seldom, if at all, found

in standard tutorial reference texte.
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CHAPTER THREE

A SAMPLED-DATA AIRCRAFT MODEL FOR DFC DESIGN

3.1 INTRODUCTION

The case to transform the Continuous-Amplitude, Continuous-fime,
state-space model of a basi§ aircraft into an equivalent
Céntinuous-Amplitude, Discrete—fimé domain, for the purpose of DFC
system design, was presented in Chapter Two. The key parameter of
the CACT to CADT mapping prpcedure is the sampling-period, h. This
chapter addresses the issues concerned with the selection of the
-sampling-period and the production of a CADT state-space for fher

purpose of DFC designf

‘A general feature of a modern DFC éystem,is a muitirate saﬁpling
policy, which is employed in the implementation of the control
functions. The principal aspect of the DFC design model, that is
developed in Vthis chapter, 1is the accommodation of a multirate
sampling pqlicy. Multirate sampling is necessary for the practical
implementation of a DFC system; this assertion is based on two
. unrelated observations. The first observation focuses on the
integrated-systems concept associated with modern DFC. In contrast
to a classical analogue flight control system, a DFC system
integrates information from a wide range of aircraft sensbrs and
subsystems for the purpose of automatic flight control. As

autonomous entities, these Sensors and subsystems produce



information over a wide spectrum of bandwidths and data-rates.
These bandwidthé and daﬁa—rates are naturally selected to suit the
primary function of the sensor or sﬁbsystem. The apblication of the
information in‘flight control is a secondary function, therefore the»
data-rates may not- be harmoniséd for a uniraté sampled-data DFC
process. For eiample, a terrain-following flight control function
employs information from an inertial navigation system, a forward
looking sensor (radar), a downward looking sensor (radio-altimeter)
and a data-base of terrain contours. Each of these subsystems will,
in general, have a frequency or data-rate at which iﬁformation is
made avaiiaﬁle for the secondary purpose of thé terrainffollowing
‘control system. A terrain-following flight controller which
accommodates a spectrum‘of data—rates is, by‘definition, a multirate’

sampled-data system.

A second observétion, which’leads to‘the adoption cﬁ'-a multirate
sampling policy for a DFC system, is concerned with the fundamental

property of data amplitude quantisation. Amplitude quantisation is
an implicit feature of a digital compufer implementation of a
control system. A claséical view of the sampling-rate selection
problem is that the ultimate, idéal sampling-period is zero.  This
view does not apply to_-sampled-data systems implemented in the
Discrete;Ampliiude, Discrete-Time domain of a digitai computer. For
a given characteristic fréquency, in addition to the classical
lower-bound limit on the sampling-rate, (maximum h), there is also
an upper-bound limit, (minimum h); a démonstfation_of this fact is
given in Section 3.2. A dynamical éystem consisting of several

characteristic frequencies will not, in general, be encompassed
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within the boundaries of a single sampling rate. Consequéntly, for
the digital control of large-scale systems such as aircraft, a

multirate sampling policy will be selected.

Although methods véf -assembling models' of multirate sampled-data
systeﬁs héve been reporfed, [3.1], [3.2], their complexity, even in
the state-space form, [3.3], [3.4], is considered to violate the
four design methbdology maxims that were prescribed in Section 1.
of Chapter One. A state-space multirate sampled-data modelAformat
is develpped which is Considered to be more compatible with the

 design methodology objectives of the thesis.

3.2 THE SAMPLING RATE SELECTION PROBLEM

Given a CACT domain model of a basic aircraft, the primary design
task is to transform it to an equivalént CADT domain (sampled-data)
model. The method by which this can be achieved was described in
Chapter Two,‘ The qardinél issue of the CACT to CADT mapping problem
is the selectidn of a sampling period, h. As with any rational
approach to an engineéring probiem, a sampling period must be
selected from known facts. In'the case of a typical digital flight
contfol system problem, the design is usually initiéted with only a
partial model of the basic aircraft - available. It is, however,
necessary to know, with reasonable certainty, the CACT dynamics of
the system which includes the basic aircraft, -the control actuators
and the response sensors, plus any amplification, signal-processing

and signal-filtering.



" 3.2.1 Sampling Rate and Digital Processing Wordlength

Before = the methodology  of selecting a sampling-rate or
sampling-policy 1is considered, some results are presented to
demonstratev the intimate relationship between sampling-rate and
digital-data wordlength. These results afe obtained in Appendix

Three and serve to reinforce the arguments of this chapter.

Consider the modal form, discrete-data model of a sampled-data CACT

system,

x(n+1) = A x(n) + LA | (3.1)

where AD is a discrete,k mxm, diagonal stafe—matrix, produced by
mapping a CACT domain mxm diagonal matrix, A, to the CADT domain.
The input function, wb, from a digital computer, is ah mx1 vector
of white—noise quantities, represenfing the quantisation noise
produced by the finite wordlength digital-data.v The analysis given
in Appendix Three produces the following equations which relate the
sémpling-rate to the»digital-data wordlength, in terms of a noise

~amplification parameter.

The noise amplification factor is defined as

o, .
n = 0— N : (32)
W

where oy is the standard deviation of the noise component associated



with a single’ state. X, and o, ié the standard deviation of the
quahtisafion noise of a single control input. As shown'in Appendix
Three, each diagonal glement of the matrix AD produces one
eigenvalue. Defining the eigenvalue of x as A then, as shown in
Appendix Three the sampling period, h, is given in terms of‘thié

eigenvalue and the quantisation noise amplification, 7, by

= — - + - — !
h= +|-1t /1 = . (3.3)

Since A is a pole of fhe system, it is clear that if the noisé
amplification term is constant then, asvthé pole moves téwards zefo,
h tends to infinity. Equation (3.3) shows that, to achieve a given
constant noiée amplification, the sampling-period, h,. must be
increased as the pole 1location 1is reduced. | Assuming the

quantisation noise variance in terms of the digital computer

W2
wordlength, W, is given as 0: = (212) , [3.5] then, as shown in
Appendix Three, W is given by
1 - 1
W = —— log . (3.4)

log(2) VIZ o v (ah)? + 2an

This expression indicates that, for a given standard deviation of
outputvnoise, o, 2 reduction in the sampling period.will fequire an
’increase in the data~conversion process wordlength, W. It is alsov
clear that, for both a constant standard deviation of output noise

and constant sampling period,'a decrease in the pole location must
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"be accompanied by an increase in the wordlength of the data

conversion devices.

3.31 SELECTING A SAMPLING POLICY

It is assumed, that a sampling policy for a digital flight control
system must be identified on the basis of a subset of the CACT,
oben—loop state-space model‘of the basic aircraft. The implicit
information -available in this vsubsét.‘model, are the natural
frequency components of the system’s characteristic frequency
response. It is common practice to select a single sampling-raté on
the basis of the some multiple of the highest natural frequency
component [3.6]. As illustrated in the previous section, a
sampling-rate can be too high as well as téo low. For a system with:
both‘high and low.frequency modes, an appropriate sampling-rate for

the high frequency mode may be too fast for thé low fréquency mode.

The sampling—réte selection problem receives surprisingiy little
attention in the'digital controi systems literature. However, a
noted exception to this paucity is the Qidely quoted work of Powell
and Katz, [3.7]. However, their technique is not suitable for the
approach‘to DFC system design that is propdSed for‘this thesis. The
sampling-rate, or -policy, must be established in order to transform
the .basic CACT aircraft system into an equivalent CADT model, on
which the DFC design tasks are undertaken. | Therefore, the
sampling-policy selection procedure starts with an open-loop,. CACT,

state-space model of the basic aircraft. The procedure is based on



the intersample divergence characteristics of the basic aircraft
stafe, which occurs in response to a krandom disturbance signal
applied to the comtrpl input. The procedure explicitly addresses
each state and input and therefére has»the facility to identify a
multirate sémpling—policy. | To  ensure that the selected
sampling-policy meets the minimum sampling Trate requireménts of
Shannom’s Sampling Theorem (or the Nyquist Sampling Criteria),
[3.8], a z-plane diagram of the zeros of the system’s characteristic
equation is produced. betails of this and-the selection‘proceduré

are described in the following paragraphs.

In this section, guidelines and techniques are given that can be
used to sélect a sampling policy for aFDFC system. The fundamental
principle upon which these techniques are based ié summarised as
follows: At each sampling instant, the sampling switch is closed
and an unbroken path effectively exist between the control signal
source and the control inputs of tme basic éircraft. At this
instant the basic aircraft system is under control ahd thg state
error is assumed to be zero. Between éampling instants, fhe
sampling switch is open, thus bfeaking the connection between the
control sighal source and the basic aircraft. For this period the
basic aircraft system is free-running and diverging from the
fequired, controlled state. When the magnitude of the error of a
free-runmihg, physical-state of the system‘.reaches a predefined
level, another sample of Cmntrol activity must be applied to zero

the state error, which is built up during the intersample period.



3.3.1 Sampling Policy Selection Procedure

v This section describes another technique, which has a practical
application in the methodology of selecting a sampling policy for a
DFC system. The technique focuses on a time history analysis of the
open-loop system state uncertainties, when the control inputs are
exercised.with stochastic functions. ' The technique compliments the
method described in the last section by effectively addressiog the
lowest‘ control signal bregimes. It is assumed that the control
inpufs are exercised with signals which are produced by a numerical
round-off quantisation process within the DAC Epterface device.
Although this: is a slight misintefpretation. of the real process
taking place in the combined ADC/Digital-Computer/DAC subsystem, it
does not matter for the purpose of this analysis. The aésumptions
permit the stochastic control inputs to be defined in terms of the
27")?

the variance of the quantisation noise, oy = 1z The state

equation with a stochastic signal applied to the control inputs is

'defined as

x(t) = Ax(t) + Bu(t) . @)

The terps A, B, and x(t) have their usual meaﬁing in the sense of
the CACT state equation (2.3a). The term w(t) is a vector of white
noiée functions that couple ihto the system through control motrix,
Bf The interpretation of the noise term is given in Appendix Four.
Further comments on the qdestionable validity of thié eouation are
‘also g;ven Appendix Four. The covariances of the stochastic inputs

and output states are defined as



Q(t) = & w(t)uT(t)] . (3.6)
and

G (t) = & x(t')xT(t)] . - (3.7)
respectively, where & is ' the expectation operator. The state

covariance is propagated in time by the differential equation
. _ ‘ T - T
Gc(t) = A/Gc(t) +; Gc(t) A + B QCB - (3.8)

Equation (3.8) is recast in terms of first order discrete-time
approximations to A and B, in order to obtain a numerical solution.

‘The approximate form of (3.8) is

. , T
G = [1 + A St]G [1 + A at] + BQBSt (3.9)
K+1 K C

where 8t is a time step, chosen by the rule, [3.9]

1 o
8t = ———— , (3.10)
2 Al 10 :

and liAll denotes a nofm of the mxm matrix A, which 1is defined as
: m m 1 . . .
Al = [2 = (a, )2]_2— with a _ representing the elements of A.
i=1 j=1 " ij ij
From an assumed initial state covariance of GK = O'(Gc(to) = 0),
‘equation- (3.9) is propagated in .steps of &t to a final state
covariance Gc(tl). The resulting record of the state covariance

time-history provides a quantitative measure in the process of

selecting a sampling policy. From the DFC system design example,



considered in detail in Chapter Six, the resulting covariance

time-history for two of the four state elements is shown in Fig.3.1.

Pitch-rate q(t) Pitch attitude 6(t)
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- The covariance time-history for. two state elements from
the DFC system design example described in Chapter Five

Fig.3.1

The application 6f the state covariance timé—history for the
determination of a sampling rate for‘eachvstate‘element and each
control input proceéds as follows: Consider, for example, a state
element, x, - its ’covariance piotted according to the procedure
described above. From zero‘uhcertainty at time t=0 (assumed as a
sampling ‘instant), the uncertainty increases as vtime progresses
(assumed as the intersample period). The time at which the value of
the uncertainty reaches an unacceptable levél represents the maximum
sampling period of - the state X. For the two state elements
considered above iﬁ Fig.3.1la and Fig.3.1b, the sampling-periods are

selected (as described in Chapter Five) as hl’and hz’ respectively.
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'Whgt constitutes a value of acceptable uncertainty for any given
state element iska matter of engineering judgment which is based on
an interpretation of the physical significance and scaling of each
state element. This is one reason why - emphasis 1is placed on
retaining the physicél states of the basic éystem dynamiés. In the
case of an aircraft,'gﬁidelines on the uncértainty are provided by
the standard flight éontrol ahd aircraft - handling . qualities

specifications, such as MIL-F-8785C.

Thg lower sampling—rafe boundary 'ié set by the requirements of
Shannon’s Sampling Theorem ahd the derived Nyquist-rate, which gives
the theoretical 1lower 1limit of the sampling-rate. The _above
procedure produces a sampling-policy on the basis of an open-loop,
uncéntrolled system model. However the application of a feedback
controller Qill modify the dynamics of the basic system and hence
the related distribution z-plane pples and zeros. The problem is
that these CIOéed-loop characteristics are are also function of the
sampling policy. This is'easily seen by'inspecting the closed-loop,

sampled-data, z-plane transfer-function,

-1 )
x(z) = [zI - exp(Ah) [I+A™'IBH + A™'B H] A_l[exp'(Ah) - I]B v(z).

(3.11)

where the closed-loop inpuf v(z) = u(z) - H x(z). The matrix, H, is
the negative state feedback function which, in the case of DFC

systems, represents the digital flight computer.
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The problem of selecting a closed-loop saméling policy, on the basis
of an open-loop model, suggests that the direct digital design
method must proceed from an a priori knoﬁledge of the required
closed-loop characteristics._ For flight control systehs.
particularly in the case ,6f the' inner-control-~loops which are
associated with aircraft'stability, the a priori knowledge of the
required ‘closed—loop characteristics can be deduced frém the
appropriate flight control or aircraft handling qualities dbcuments.
When only'the Basic open-loop aircraft model data is available, a
sampling-policy which maps the CACT domain dynamics to a sector of a
right—halfv z-plane wusually gives adequate results; Using tﬁis
‘ method, the minimum sampling rate of a multirate sampling policy is
determined from the sahpling’ period h that casts the highest

frequency eigenvalues inside the envelope indicated in Fig.3.2.

—+Real axis

Unit circle

Imaginary axis

Mapping boundary fof the highest frequency eigenvalue

Fig.3.2
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‘The basis of -the bQundar§ is the establishment of a design margin
‘between the highest frequency mode 'and, the ' Nyquist sampling:
frequency limit, which is represented as the negative-real axis of
~the z-plane. The design margin must be sufficient to accomhodate
the pole-shifts produced by the design of closed—loob contfollers.
The marginvmuét also accommodate the increasing z-p1ane sensitivity
of a system’s dynamic characteristics as they mapr towards the
negative real axis. In the case of the innef-loop control of
aircraft including‘stability augmentation‘and autopilot syStems, the

boundary defined in Fig.3.2 has been shown to be adequate [3.10].
.A formal statement of the z-plane boundary is defined as follows:

Given a CACT system pole AS=0ijw, the equivalent z-plane pole under

a sample period mapping h is given by

A, = exp(Ash) = exp(oh)[cos(wh) + jsin(wh)] . (3.12)

The value of h is selected to map AZ on a z-plane such that

T

exp(ch) = 0.45 and wh = T

The significance of the values assigned to these quantities is

described in detail in Appendix Seven.

The criterion imposed by the z-plane boundary, described above, is
interprefed as a property of the CADT domain. To assess the DACT
domain properties of the System’s dynamics, as they apply to this

application of the z-plane, interest focuses on the separation of
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' the individgal z-plaﬁe poles and zeros. Distinct CACT poles and
zeros can be, by virtue of the4selected sampling-rate, collocated iﬂ
the z-plane and give rise to a ﬁumbef of design and implementation
problemé. Ih general, these‘problems.arebidentified as a loss of
controllability and obsérvabilify‘ caused by time-sampling and
amplitude—quantisationfof the CACT data. This observation has been

‘studied in detail [3.11], [3.12].

As applied in this current research, the‘sampling-policy selection
procedure, described in this section, is a pseudo-analytic approach.
However, the potentiél of the procedure to determine a multirate
sampling policy for a DFC éystem hingeé on the ease withvﬁhich_an
aircraft’s handling qualities can be directly 1re1ated to its
vphysical state elements.‘ This issue is a topic that is identified

for further study.

3.3.2 The Presentation of a Multirate'Sampling Policy

The result of fhe‘sampling—rate selection exercise is, in general, a
multirate sampling policy. To‘keep a préctical perspective of a
complex multirate sampléd—data model requires a systehatic approach
to the multirate data strﬁcture. - In principle, a separate
sampling-rate could be defined for each control input and each state
output of the multipleeinbut, mﬁltiple-output basic aircraft,éystem.i
In practice, there is usually sufficient flexibility in the
assignmentbof a sampling rate to allow more than one control input

and/or one state output to be grouped under a single sampling rate.
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"In the case of flight control applications both the modelling and
implementation tasks become more tractable if the sampling periods
are synchronised and scheduled as integer multiples of thé shortest
sampling period; for an example refer to Fig.3.3. - The form of the

multirate state measurement sampling vector is
x' (t) = [xf(t) EXON I x:(t)] , (3.13)

where [x:(t) ,i =1, 2, ;..f] defines a traﬁsposed column subvector
of states that are assigned to the i-th staté méasurement sampling
rate and f is the number of samﬁlingfrates assigned to the state
measurement process. The multifate sampling control inputs are the
elements of the vector

T _ T N .
u(t) = [ ul(t) % uz(t) ; uk(t) ] , (3714)

H

where [u:(t) ,i =1, 2, ...k] defines a transposed column subvector
of control inputs that are applied to the CACT system at the‘i—th
sampling rate and k is the number of sampling-rates assigned to the

_control input process.

3.4 A MULTIRATE SAMPLED-DATA MODEL FOR DFC DESIGN

"As iﬁdiCated in the introduction to this chapter, a consequence of
the proper recognition of the four domains associated with a DFC
system results inré controller with a multirate sampling policy. A

general method is therefore required by which the basic airéraft and
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.subsequent control structures cankbe modelled and analysed. The
concept of multirate sampling is not new. However, it was concluded
from a survey of ‘thé various available methods of modelling
multirate sampled-data syétem that an altérnative method was
required to ﬁeet the'DFC-design maxims of this thesis. This section
describes a multirate. sampled-data ‘system vmodel that has been
developed to meet the objectives of the thesis. Befofe this model
is described, avsummary of the methods reviewed fdr fhe thesis is

given..

3.4.1 A Review of Multirate Sampled-data Modelling Methods

The original methods of modelling multirate sampled-data system were
. established as part of the classical transfer-function approaches to
sampling [3.13], [3.14]. State-space methods of modelling multirate
sampled-data systems have been developed [3.15], [3.16]1, [3.17].
Mostvnotable among these state-space methods is the work of Kalman
and Bertram. Although KalménAand Bertram’s method satisfies the
.generalityvobjectives, their model is cbnsidered tovbe unsuitable
for this thesis for the following reasons. First, the combined
configuration of the CACT and CADT subsystems must be defined before
a model can be developed.‘ This means that the reduction of the
state-space model to a Atransfer-function will be a élosed—loop
’ system equation. Second,' the state-space ﬁodel ‘is not
automatically cast in the form of the (A,B,C,D) quadruple. Third,

the growth in complexity, as a specific symbolic model is assembled,

is considered to compromise the design maxims of the thesis.
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Techniques that overcome the first two deficiencies have beeh
. developed, and are described in an ancillary report of this thesis
[3.18].‘ fhis report also demonstrates the growth in complexity that
is considered to undermiﬁe fhe utility of fhe Kalman end Bertram

model.

3.4.2 A Development of a Multirate Sampled-Data System Model

A method of assembling a multirate sampled—data‘ system model is
described in this section. The proposed assemblz method has been
developed to ﬁeet the design maxims and systematic modelling
objectives of the thesis. The technique builds on an open-loop,
state-space quadruple model of a basic aircraff. The control input‘
to this ﬁodel is the partitioned vector, u(t), that was defined in
Section 3 as the multirate sampled control data.v Substituting the
multirate‘sampled control data vector into the state-space quadruple

(A,B,C,D) gives

k
x(t) = A x(t) + ZBeue(t) . : (3.15a)
S f=1
. vk ,
y(t) = C x(t) + ZDlul(t) . (3.15b)
g:l » o

The controls, P% ,2=1...k] and direct matrix terms, [De

,£=1...k]
are submatrices of B and D, respectively. The row dimensions of the

BE and D2 terms are given by the number of states and number of
outputs, respectively. The column dimensions of both the BE and Dé
terms are determined by the number of 1inputs assigned to each

partition.
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'3.4.3 A Proposed Model of a Multirafe Sampled—Data'System

The process of - aésembling a multirate sampled-data model of an-
open-loop CACT staté-space system is described for the case of a
three rate sampling ‘séhedule. Limiting the developmenf to a
speéific_sampling schedule servés(two purposes. Firét, the specific
case. facilitates the description of the assembly procedure without
compromising the genérality of the methodology. ' Second, the ease by
which the princibles'of the specific casé are exténded to other
sampling schedules demonstrates the ¢ompatibility of the method withv

the prescribed design maxims.

Consider a CACT domain system,twith its control inputs partitioned
for the application of three different sampling rates. The CACT
state-equation, deduced from (3.15a), is given by

x(t) = A x(t) + B1u1(t) + Bzuz(t)‘+ B3u3(t). (3.16)

For the purpose of the description, it is assumed that the system
has been assigned the multirate sampling policy which is defined by

the schedule shown in Fig.3.3.
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o Sample Number n
n = 0 1 2 3 4 S 6
Sampling| - h I h | h l I
Period h
‘ni= 0 1 2 3 4 5 6
h | h h l I
1 1 1
n_= 0 1 2 3
h h h
2 2 2
n=20 1 2
3 h h
3 3
n=20 1
P h
p

The demonstration threerrate sampling policy schedule

Fig.3.3

From the sampling policy schedule it can be seen that the' base
sampling period hb = h; and the program period -hp = Shb. The
program period is formally defined as the iowest comﬁon multiple
‘(LCM) of the sampling-rates, in this case given by

LCM(SI,SZ,SS)'= LCM(1,2,3) = 6 = hp- o (3.17)

convenient to define hP = p. - The sampling policy schedule also
shows that all the samplers are asserted at the ihitial increment‘of

the program sample sequence.
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' The process of defining a CADT domain model for the system, given by
equation (3.16), starts by finding the solution to the state
equation at the initial program increment. The initial solution is’
propagated over the base-rate time interval because»a ZOH keeps the
sampled input constanf between base-rate samples. At time increment
n, shown as the initial sample on the schedule of Fig.3.3, the CADT

domain state equation for the period ((nl)ts tn<(n1+1)t) is given by
x[(n+1)h1] = ¢ x(nhl) f Ql ul(nhl) + Wz uz(nhi) + Ws u3(nh1)f (3.18)7

where n is the initial sample number of the program period.

There is no loss of generality by considering the initial program
sample as the increment n, = 0. Under this condition, equation

(3.18) is recast as
x(1) = @vx(O) + WI ul(O) +-¢E u2(0) + Wa u3(0). v (3.19)

Repeating the solution for each new mémber of the input set for one
cycle of the program produces the CADT domain multirate sampled-data

state equation, given by
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_ .6 5 . 5 5
x(6}.— ) x(O)’+ ) Qlul(O) + ¢ quz(o) + 0 @393(9)

+

4 a_ 4
+ @ Wlul(l) + 0 WZUZ(O) ) Waus(o)

+

23 3 3 ’
@V u (2) + &% u (1) + &% u (0)

+

2 2 2.
) W1u1(3) + @ quz(l) + & T3u3(1)

+

+ & W1u1(4) +‘¢ W2u2(2) ) W3u3(1)

+

+ Tu(5)+ ¥oul(2) You (1). (3.20)

The coefficient matrices of (3.20) are given.in terms- of the CACT

state-equation (3.16) coefficients by ‘

o = exp(A h ) (3.21)
: - "hb . -
w1 = exp(A A) da | B - (3.22)
_“o ° N
F by -
[Wzl = exp(A A) da B2 - (3.23)
L “0 ol
» ,.hb - .
(v1 = [ I exp(A A) da | B_. (3.24)

The next task is to rearrange equation (3.20) into the standard
state-equation form. This is achieved by separating the input

coefficient matrices from the input vectors to give

o P o
x(p) = [& 1P %(0) + T [ @] B (k) Lk k). (3.25)

From equations (3.16) and (3.17) p = 6. The notation of k

parameters, associated with the three inputs, is interpreted as

0,3

?

follows; k,0 5 definés‘ u over five base sampling periods, k
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‘defines u, over three base sampling periods, and kb 5 defines u3

over two base sampling periods. The matrices associated with the

ihputs are defined as

r = J'h"exp(A A) dd o, , (3.26)
(o]

[PQ] = [@5 ot & <I>?q>1] (3.27)

, (3.28)

[=Y

© o o o w o
© ©o oW o o
O W o © o o

No ©o o o o wl
© oW o © ©

up(k) = [u (0) . - (3.29)
ul(l)
u1(2)
-u1(3)
u1(4)
u1(5)
uZ(D)
u2(1)
u2(2)
u3(0)
u3(1)

The CACT output equation for this is deduced from equation (3.15b)

and is givenvby

y(t) =C x(t)‘ + D1 ul(t) + D2 uz(t) ‘+ D3 ua(t). (3.30)
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Mapping equation (3.30) to the CADT domain with the multirate
sampling policy defined in Fig.3.3 produces the multirate

sampled-data output equation given by

0[Bu (k)+D u (k. ,k .,k
]pup() % o )

y(p-1)=C [&]P? prlg
y(p=1)=C [e]" "x(0)+C I‘[ ¢ 50,3 70,2

(3.31)

The matrix, C, is identical to the C matrix of the CACT domain
oﬁtput eqhation. The matrix terms ¢ , I' , and Bp are given above by
equations (3.27), (3.26) and (3.28), respectively. The multirate
input vector up is defined as equation (3.29) and x(0) is the systeﬁ
state at the beginning of each multirate program period. The

remaining terms, for p=6, are given by

?0]=[¢4‘1’3¢2¢I§O] (3.32)

[w)
]

[ooooon%oon%dn]. (3.33)
1; 2 3

The dimensions of the coefficient matrices are deduced from the
dimensions of the sfate vector, x(t),'the input véctor, u(t), the
output vectof, y(t), and the parameters of the sampling policy.
Consider, for example;_ the three rate system kdescribed above,
assuming the model has m states, g inputs and r outputs. These

quantities produce the following information for the CADT model.
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x(nh) - m state vector

y(nh) Lo r output vector
$ - mxm matrix
r - mxm matrix
C - rxm matrix.

To determine the dimensions of the remainder of the terms, in béth
the state énd output equations, requires analysis of the multirate
sampling policy. Using the results of the above example, some
general observations can be made to support this analysis. Consider
. the g element input vecfor u(t); this is partitioned for three
sampling rates u1 T S and u. ASsume.that u is a vector with «

elements, u2 is a vector with B elements and u3 is a vector with 7%

elements.
First observation ) q=a+B + 7
Second observation B is an mxa matrix

B is an mxB matrix

B is an mxy matrix

The null sub-matrices have dimensions that are given by the B
matrix of the column in which they occur. In the case of the

example, the dimension of the matrix Bp is given by
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‘The general form of the notation employed in equation (3.32) is

[ Y x ] = [ X X x> X I ].'  (3.34)
The dimensions of [p ¢ ] and [p—1 ¢ g 0 ] are m x m(p+1)

The matrix, Dp’ is partitioned, where the number of partitions is
given by p. 'Each partition has one D sub-matrix; all the other
- sub-matrices in- the associated partition are assigned as null
matrices. The dimensions of the null matrices assume the dimensions
of their associated D sub-matrix. In the case of the example,vthe

dimensions of the three D sub-matrices are

D1 = rxao. , D2 = r x B and D3 = r x 7.
v P
The number of null sub-matrices in each partition is given by 'Ef‘l'
1
P P
—=1, and -——-1 for the terms associated with D, D, and D,
h2 h3 1 2 3
- respectively.

The overall dimension of the matrix Dp is given by

The CADT domain multirate sampled-data state and output equations

are put into the standard, generalised quadruple'form by defining
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the following relationships,

o, = [o1f (3.35)
- P
A, =T [ o] B, (3.36)
X, = cle]1f (3.37)
@=[cr[p’1¢§o]3 +D}. (3.38)
P . i | P P

From these expressions the state and output equation are given as

x((np+1)hé] @P x(nphp) + Aé u(nphp) (3.39a)

y(nphp)

]

XP'x(nPhP) + @P u(nPhP) , (3.39b)

where the subscript p denotes the program period.

3.4.4 Multirate Sampling with State-Feedback

Consideration is now giVen to the organisation oan state-feedback
model for systems with their controi input partitioned for multirate
sampling. The utility of the resulting closed—loop‘equations and
the importance of keeping a physical insight of the system these
equations fepresent are significant features’of the'fprmu;ation. A
specific example is used to illustrate the mefhod‘of brganising a
state-feedback model for a multirate sampled-data system. The

proposed organisation of a state-feedback model starts by
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considering a closed-loop arrangement of the form illustrated in

Fig.3.4.
Y
v ———*(;}————————- ZOH
1 1
Y
/)
V2 Y 200, _ CACT  Model
. with inputs partitioned |—x(t)
. for. multirate sampling
R uk‘
v =) ZOH
K _ “7/ K
, R
kK[ s
K
Hv-—;\
2 s_
2
N
s

The general arrangement of a multirate sampled-data
system model employing state feedback control

Fig.3.4

Consider‘ the system, described iﬁ Section 3.4.2,which employs a
three-rate: sampling-polioy. The structure of the overall state
feedback‘element, H, is é key feature of a cloéed—loop multirate
sampled-data system.  With the multirate sampling defined in
Fig.3.3, the input equations for the 'staté—feedback system. are

defined over one program period, hP, by
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' u1(0)=H1x(0)+v1(0)
u1(1)=H1x(1)+v1(1)
u1(2)=Hlx(2)+v1(2)
u1(3)=H1x(3)+v1(3)
u1(4)=H1X(4)+V1(4)
u1(5)=Hlx(5)+v1(5)

u2(0)=H2x(0)+v2(0)
u2(1)=H2x(2)+v2(1)
u2(2)=H2x(4)+v2(2)

u3'(0)=i{3g(0)+v3(0)
u_ (1)=H x(3)+v_(1)

-~ .

In matrix form this set of ‘multirate inputAequations is recast as

'_ul(Of
ul(l)
u1(2)
u1(3)
u1(4)
ul(S)
u2(0)
u2(1)
uz(Z)
u3(0)

u3(1)

]

—

O M O O m O O O © O m

[=Y

[\

W

0 00 0 O7][ x(0]] B
HO0OOoOo x(1)
0 H O OO x(2)
0 0 HOO x(3)
0 0 0HO x(4)
0 0 00 H[x(5)] +
0 00 0O
0O HOOO O
2
0 0 0 H O
2

00000
0 0H OO

3 — —

Writing (3.40) in a succinct form

u(k)=H x(n) + v (k)
P p P 1 P
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vl(O)_
vl(l)
v1(2)
v1(3)
v (4)
1
v1(5)
vz(O)

.v2(1)'

v2(2)
v3(0)

v3(1{J

(3.40)
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‘Substituting this equation into equations (3.39a) and (3.39b),

respectively, givesv
o p P P,
x(p) = (2 1° x(0) + r[ 5 ]BpHp ) r[ 5 ]Bp v (3.42)

and

y(p-1) c [e 1°7! x(0)

+ cr[p'ldxiso BHx (n)+DH x (n)
| | PP P 1 PP P 1

+ C r[p‘l s | o]B‘ v (k) +D v (k) . (3.43)
i P P P P

These two equations are further réfined by eliminating all but the
initial program state, x(O), from the incrementing state vector,
xp(n;). The substitution term is developed by propagating the state
equation over one program period and collectingvthe expressions for
each state incremént as elements in a matrix equation. This process

 produces the following equation:
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[%(0)] T 0 o0 o0 o07][x(0)]

x(1)| - H123 0 o] 0 0 ||x(1)

x(2)| _ |0 H1 0 0 0 |{x(2)

x(3) o o T, 0 0 [x(3)

x(4) 10 0 0 “13 0 ||x(4)

_x(S)J _o o 0 o0 111J
“ooooooooo'oo"vi(or.'
¥ 00 00 0 ¥ 00 ¥ 0 |lv(l)
1 2 3 1

. 0 %000 OO0 00 00| v(2)

' 00 ¥ 0000 ¥O 00O v, (3) , (3.44)
©000% 000000 V/lv(4)
0000 ¥ 0000 00/ v(5)

VZ(O)
vz(l)
v _(2)
2
v3(0)
v,

where the sub-matrix terms of the state coefficient matrix are

defined as

H123 = [® + \Irl}{1 + \I/ZH2 + W3H3] , (3.45)
II1 = [& + WIHI] 3 , (3.46)
o = [+ VH + ¥ H] , (3.47)
12 11 2 2

H13 = [® + W1H2 + W3H3] - ' | (3.48)

The reduction of the right-hand-side state vector cdntinues by

reapplying the substitution process, as shown below.



[%(0)] B 0 0 0 o0][x(0)]
x(1) T 0. 0 0 0 ||x()
123
1x(2) _ |0 H1 ; 0 0 -0 x(2)
x(3) o o W, 0 0 x(3)
hx(4)_ _o 0 o m, o_
"ooooooooooo‘_vlto)'
¥ 00 0 0 O ¥ 0 0 Vv 0 ||v(1)
1 2 3 1
. 0 v oo o} 0000 00]|v(2 (3.49)
0 0 Wl 0 0 0 O Wz 0 0 O vi(3)
000 ¥ 00 0 0 0 0 V¥ ||v(a)
| 1 3_ 1
v2(5)
1’2(0)
v2(1)
v2(2)
v3(0)
Va1

The following notation provides a convenient mechanism to illustrate

the completion of the reduction process. The notation defines

the state vector with n elements as .............. b4

On

the coefficient matrix of xo = S HO
: . n . n

the matrix Hoo AS t it et et e I
the coefficient matrix of xom , for (m =n+1) as ..... Wo
) . - . n

Using this notation for the six element state vector wunder

consideration gives

xp= U, T M T TIx(0) + [, % ¥ ¥ ¥ Iv (K) . (3.50)

Substituting X for the state vector x(nl) in both the state . and
output equations, respectively, casts the multirate sampled-data

state quadruple into the desired form. In this form, the state,
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when propagated over one program period hP is determined by

considering only the value of the state at the start of the program.

3.4.5 An Alternative Form of the Multirate Sampling Model

The multirate sampled-data system model, described above,'represents
the multirate properties through an augmented control vector, u, in
the open-loop case and the control vector,.v, in the closed—lodp
case. This model can be recast to a forﬁ in which the multirate
features are represented by an augmented state vecEqr. The basis of
the 'transformation method is a formal definition of the
zero-order-hold ’(ZOH) ~elements. This formal definifion of a

multirate sampling and ZOH operation is given by

s
1 1 1 1
u, e u, S, ---- v,
=1 . . . . + .o . . , (3.51)
u 0 0 0|l u 0o s || v
[ k] L JL k] L kKL k]
where S for i=1,...,k, is a diagonal matrix that couples the

'ksampler inputs, v to the hold state at an assigned sampling
instant.  This notation presents an explicit expreséion of the
multirate sampling switch function. Consider the CACT state and

output equation (3.15), with the control inputs partitioned for
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‘multirate sampling. Using equation (3.51) with the highest sampling
rate inputs grouped in the vector, u, equation (3.15a) is reformed
in terms of a sampling policy for the highest sampling rate. This

form is given by>

x(t) A Bk Cel Bj Bi x(t) : B1 0O ...0 O ul(t)
uk(t) 0 0 'f"o, 4] uk(t) 0 S .- 0O O vk(t)
= + . .
u (t) 0 0 ...0 O u, (t) 0 0 ...s 0|lv(t)
ui(t) 0 o ... 0 0 ul(t) 0 o ... 0 s1 Vi(t)

(3.52)

fhe open—-loop CACT model of the multi-rate sampled-data ‘system,
defined by equation (3.52), is mapped to .an- equivalent CADT
open-loop ‘model using the methods described in section 2.4 of
Chapter Two and Section A1;4 of Appendix One. The time interval for
the mappihg>is given by the highest sampling fate in the multi-rate
schedule. The equivalenf CADT model of equation (3.52) is therefore

given by
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x(( n1+1)h1) v Wj  . X(n1h1)
u k((n1+1 )h1) 0 I ...»0 0. uk(nlhl)
u j((n1+1 )h1) 0 0 ... 1.0 uj(nlhl)
_u 1((n1+1 )h1)_ _0 0 ... 0 I__ui(nlhl)_
Y ¥s ...¥s ¥s ||lu(nh)
1 "k k T3 i 171
0 s ... 0 0 v (nh )
k k kK k
+ ’
s 0 v (nh}
) 315
s v (nh )
N S NS R

(3.53)

where‘nl, ni, nj and nk are increment numbers for the samplers si,'
si, sj, and sk, respectively. The sub—matrix elements of the
controls matrix, that are functions of s, only appear at their

appropriate sampling instant; at other times, these sub-matrix

elements are set to zero.

The augmented state, multirate sampled-data model represents the
state-space link between the augmented control vector assembly‘and
the open-loop form of the Kalman and Bertram model. It is
considered that the augmehted control vector form offers a greater
faéility for the time-domain and transfer—functiéﬁ analysis methods

of the current research.
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3.5 ACCOUNTING FOR COMPUTATIONAL DELAY IN THE DFC CONTROLLER

The control requirements of the basic aircraft can usually be
achieved wifh a state-feedback controller. In the case of an
_analogue controller, the computational processes are ‘confined to
_ simple state scaling operations. As such, the order of the total
feedback control system dynamics is no greater than the order of the

dynamics of the basic open-loop aircraft model.

In the ideal. casé of a digiial state feedback controller, the
digital process is once again a hon-dynamic scaling operation.
However, with a practical realisation of a state feedback controlled
DFC systen, the controller may require a dynémic element to account
for computatibnal delay. It 1is appropriate to consider this
requirement as part of the initial stages of a DFC design exercise
and to model the delay dynamics .as augmentation states at£ached to
the basic CADT aircraft system. In general, a model can be defined
to accommodate a computational delay of any length. From a
practical point of view, it is desirable to avoid‘delays that exceed
more than one samplingr period. ’This can be done by either
increasing the processing speed of the digital controller or

reducing the sampling-rate of the systenm.

A unirate sampled-data model of a single-input, single-output -
system, which includes the dynamics of a computational delay, is
developed in [3.19]. In this section, this computational delay

model is extended to the multirate sampled-data system.
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Consider the CADT domain multirate sampled-data state equation given

by equation - (3.18). This equation 1is partitioned for the

applicétion of a three rate sampling‘ policy.r If the multirate
control inputs are delayed by one sampling period then, equation

(3.18) is modified to give

x(n+1)h = & x(nh) + Wlul(n-l)h +7W2u2(n—1)h + W3u3(n—1)h (3.54)

The‘diagram which reveals the structure of the system modelled by
(3.67) 1is given in Fig.3.5; the functions DLYl, DLYé and DLY3

represent a time delay of h1’hz and h3, respectively.

-

xl(n+1) xl(n)
u ——— = DLY v
1 1 1
xz(n+1) -x2(n) x(n+1) x(n)
u —~— SDLY ¥ DLY
2 2 2
x3(n+1) xa(n)
4 ——— = DLY - v d
3 3 3

A multirate (three) sampled—data model including deiay dynamics

Fig.3.5

The normal state space form is directly produced from Fig.3.5 to

give
x (n+1)h] & ¥ ¥ ¥ |[x (nh)] 0 0 0]
’ 1 T2 3
xl(n+1)h 0 0 0 O xl(nh) 0 0 1
= L (3.55)
xz(n+1)h {0 0 o0 O xz(nh) I 0
3
_x3(n+1)h_, _0 0 0 O J_xa(nh)_ 0 I—
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The general form of the output state-space equation is similarly

deduced and is given by

y(n) = [c D D Da] (3.56)

The delayed inputs are recast as the augmentation state elements,
xl; x, and X, these state elements can also be included'as inputs = .

to a state-feedback controller.

3.6 SUMMARY

In this chapter, a method of constructing a multirate sampled-data
system MOdel, in a state-space format, 1is developed. .qu new
techniques "= are presented for this development; first, the
identification of the multirate sampling policy throﬁgh the
covariance tihe—history of the state elements, and second, the
open—loop'assembly of the multirate sampled-data model. Alternative
methods are cénsidered and‘rejected because it is not possible to
cast them in a form which meets the requirements of the design
_maxims of the thesis. The most promising of the reviewed methods is
the approach . developed by Kalman and Bertram. Although the
techniques reported in [3.20] overcome the deficiencies of the

Kalman-Bertram method, the complekity of the model assembly
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mitigated against its utility for this thesis. The example used to
describe the assembly of a multirate sampled-data model demonstrates

equivalence proposed method to other multirate modelling techniques.

The multirate, sampled-data, time-domain state-space model,
developed in this chapter, can be directly appliéd to thé problem of
DFC design. However, as with a unirate sampled—data digital flight.
control design, the maih difficulty arises from thé interpretation
| of thé standard flight control specification which' as previously
mentionéd, gives no regard to the possibility of a digitél system

implementation.

In Chapter Four, two data domains are reviewed which are identified
as suitable instruments for design and analysis of DFCV systems.
These data domains are commonly referred to as the w- and w’/-planes.
The usual application of these two planes is for the direct digital
design of DFC systems that employ unirate,sémpledfdata controllers.
The multirate sampled-data bstate—space model, developed 1in this
chépter, is readily transformed to either a w-  or w’—plaﬁe
description by employing a‘multivariable'syStem mapping algorithm.
This‘algorithm, together with berformance and analysis measures, 1is

- developed in Chapter Four.
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CHAPTER FOUR

DESIGN AND ANALYSIS OF DFC VSYSTEMS

4.1 INTRODUCTION

The handliﬁg characteristics of manned aircraft provide the
fundamental criteria on which the performance. of flight control
systems are assessed. The general specifiéations of aircraft
handling quélities, embodied in documents such as MIL-F-8785C [4.11],
"are cast in terms of botﬁ time-domain and frequehcy—domain criteria.
Aithough the multirate, sampled-data CADT model, developed in
Chapter Three, 1is suitable for time-domain analysis, it is
convenient to have a CADT design and analysis domain which is
equivalent‘to the CACT s—plane. The most familiar CADT domain that
- fills this role is the 2z-plane. A sampled-data, time-domain,
aircraft modél is defined as a z-plane model by taking the
z—transfbrm of the CADT stéte—spaée quadruple to produce a set of
z-plane transfer-functions. ~When the CADT domain state-space model
has a multirate- sampled-data structure, ‘the z—plane
trénsfer—functioﬁ matrix is defined in terms of the program sampling
period hp. Thié proéedure is demonstrated in Appendix Five ‘and

results in equation (AS5.13).

The z-plane design of a digital control system can incur numerical
problems, [4.2]. These problems are, in general, associated with

systems that have widely separated natural frequencies. It is, of
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course, this type of»charactériétic that generates the need for the
multirate sampled-data system model that is deveioped in Chapter
Three. The numerical problems associated with 2z-plane design
methods are eliminated if the CADT design is. undertaken in either

the w-plane or w’-plane.

Both the w- and w’-planes -have, on several océasions, been
identified as suitable domains for‘the design of sampled—aata flight
control systems [4.3], [4.4], [4.5]. This chapter includes a brief
review of the both the w- and w’-planes and discusses their
application in the desigh of DFC syétems. The major difficulty in
applying both the w- and w’-plane in the design of sampled-data
control systems, 1is the awkward method of mapping equivalent w
domain1 CADT quels from the z-plane. The traditional mapping
technique starts with a z-plane transfer-function. The z-plane to
W~ or wW/-plane bilinear tranéformation ié thén'substituted forvz to
produce aﬁ equivalent w domain transfer-function. Not only is this
prbcedure unsuitable for high-order systems, it also results in a
cluttered expression of fhe w plane transfer-function. This chapter
introduces abmethod to directly map a CADT domain state-space model
to an equivalent w-plane 'or w‘—plane model. The familiar
transfer-function matrix technique can bé‘applied to the resulting

model to obtain the w’-plane transfer-functions.

To avoid confusion, when discussing the w- and u'-planes, the
following convention has Dbeen adopted:_ (w-) refers to the w-plane,
(w'-) - refers to the w’-plane and (w domain) implies a simultaneous

reference to both the w- and w'-planes.
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To assess the behaviour of proposed DFC systems, this chapter'
includes descriptionsb ofA z-, Ww-  and W’ -plane stabiiity and
performance measures. Stability and performance measures for
sampled-data systems are usually defined in terms ofbthe z-plane.

It is a common practice to define these z-plane measurés by mapping
the equivalént CACT s—plané criteria to the z-plane, [4.6}. - The
stability and performance criteria, described in  this chapter,
aeparts from the conventional s- to z—pléne mapping and directly
',‘défines the measures in terms of the CADT domain state-space
parameters. These alternative definitions are considered to be a
natural consequence of the direct digital design methodology. The
W- and w’-plane. stability and performance measures are derived from
their corresponding z-plane definitions and are thérefore mapped
from the z-plane to w-plane or w’-plane by the appropriate z to w

domain transformation.

4.2 w-PLANE AND w’'-PLANE ANALYSIS METHODS

This section gives a detailed commentary on the characteristics of
w-plane and w’-plane. Familiar s-plane CACT performance measures
are exténded to the w- and w/-planes for usé in the kdesignk of
.digital control systems.; During the last three decades, numerous
reporfs have proposed both the w-plane and w’—planes as suitable
ddmains for the design and analysis of digital flight control
systems. However, there is a paucity of reported applications in
which the w- and w’—plane‘methods have been used. A possibleireason

for the rarity of w domain designed digital control systems is the
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practical inconvenience of generating w—- and w’-plane models [4.7].
A contribution of this chapter is the deVelopment of a method to
directly transform the CADT state-space equation to an equivalent w-

or w’-plane model.

4.2.1 Properties of the w-Plane

The advaﬁtage of the w plane is that the design is carried out in a
complex’Cartesian frame rather thah‘the complex polar frame of the
z-plane. This means that the well known s-plane methods used in
CACT systems work can bevdireétly applied.in the design andvanalysis

of CADT domain systems.
The w-plane is related to the z-plane through the bilinear

transform. Cast as the z-plane to w-plane parameter-mapping

function, the bilinear transform has the form
z: — ,} . (4.1)

The inverse of equation (4.1),: which maps the w-plane to the

z-plane, is given as

W= . | (4.2)

The corresponding cardinal points on the z and w complex-planes are

identified in Fig.4.1.



z-plane point —o | =1 —-%— 0 +-%- +1 +o | =] +j
. : 1 .
w-plane point +1 -0 | =3 -1 -5 0 +1 -J +j

Cardinal point mappings between the z-plane and the w-plane

Fig.4.1

4.2.2 The w-Plane Analogue of Frequency

-

In Section A7.3.2 of Appendix Seven, it is shown tﬁat the imaginary
axis of the s-plane maps to the unit circle of the z—plaﬁe. Points
on the unit circle are defined by exp(j¢), indicating that the
z-plane analbgue of the the s-plane frequency variabie is ¢. In
thisvsection, a relationship is developed that gives "the w-plane

imaginary axis in terms of the z-plane unit circle.

Defining the complex w-plane as w = c. ¥ jww and comparing it with

the z-plane unit circle, z = exp(j¢), gives 0;‘= 0 and

-exp(j¢) - 1 :
Jou = . (4.3)
exp(j¢) + 1

'Converting equation (4.3) to the form in which the variable ¢ is

¢

cast in terms of the half angle = gives
o = tan( L) . (4.4)
W 2

4-5



‘Equation (4.4) shows that the z-plane parameter, ¢, given in the
range (-m,m), produces a value of w in the range (-w,»). Defining

a sampling period, h, which in terms of the envelope-cycle shown in

Fig;A7.3 of Appendix Seven, is given by h = %%, the analysis of
Section A7.3 produces the relationships pu = -%%—, with =.—%E—, and

¢ = wh. Substituting ¢ = wh into equation (4.4) defines the w-plane
variable, v, in terms of the CACT frequency, w, and thus w, is

givén by

w = tan(fﬁl) . k (4.5)
w 2 . .

4.2.3 Properties of the w’-Plane

An equivalent w’-plane model is obtained by multiplying equation

(4.5) by the factor 2 to give

h
., _ h |
w = —z—w N (4.6)
or, in terms of the z-plane,
h z - f
r :
wo= ~§—[ 1 ] . (4.7)

The foIlowing analysis describes the profound effect of this simple

modification in regard to the interpretation of the w domains.

The corresponding cardinal points on the z and w’ complex-planes are

identified in Fig.4.1.
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z-plane point - -1 --%— 0 +-%_ +1 +co -j +]j
. : h| _[3h| nh| n h| .h|, .k
w’/-plane point +7 o e el 0 +? -3 +J_2_

Cardinal point maps between the z-plane ahd the w’/-plane

Fig.4.2

An additional facility of the w’-plane is revealed by considering
the effect of a sampling interval, h, that tends to zero. Consider

first, the w-plane given by equation (4;2), when it is cast in terms

-

of a z-transform, where z is defined as

0
(sh)”
n!

n==o

z = exp(sh) = (4.8)

Substituting the summation term of (4.8) into equation (4.2) gives

(4.9)

Equation (4.9) shows that, in the limit, as h tends to zero, w tends
to zero. Consider the w’-plane as defined by equation (4.7).

Subéfituting the summation term of equation (4.5) for z gives
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, _ 2 n =1
W = T P (4.10)
n
2+Z (sh)
n!
o= 1 .
Consequently, ;ig ! #'s. This means, at high sampling rates, a

sampled-data w’-plane model has dynamics which are numerically
similar to the ~dynamics‘ of its equivalent, CACT domain, s-plane
model. 'In summary, the intuitive expectation, that, with an
infinite sampling rate, a CADT system becomes a CACT system, is a
feature of the w’-plane where, for h=0, w/=s. In contrast to this,
the w-plane limit for h=0 is w=0. The.main purpose of both the
w-plane and w’-plane is to emulate £he geometry of the s-plane and
- thereby bring to the design and analysis of digital control systems
the well established and widely understood CACT control system
performance measures. The analysis for h=0 indicates that, for
high® sampling rates at 1least, -the w’-plane is bettér ‘than the

w-plane for emulating the s-plane.

The diagram, given in Fig.4.3, represents the distortion which
exists between the s-plane and the w planes. The diagram is
produced by -taking the difference between given points on the
s-plane and their equivalent counterparts on the w’-plane. The
w-plane distortion is identical to the distortion of the w’-plane;
thé difference meaéure]produced by the s-’and w’-planes directly

quantifies the absolute distortion.
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20 T 20 T

w=Plane error
w-Plane error

o =-40 - \\§\\
1 3 . .
-10 1

0 -50 - =100 0. 50 » =80 100

s-Plane real axis coordinate s=Plane imaginary axis coordinate

Each dot indicates
an increment of 10

Distortion measure between the s-plane and w’-plane

Fig.4.3

The identified points on Figs.4.3a and 4.3b indicate that a complex
- location in the s-plane, given as s = -40 + j80, maps to the w-plane
location, w = (-40 + 5) + j(80 - 2), when the sampling period is

h=0.01.

4.2.4 Frequency Response Plots in the w- and w’ ~Planes

Frequency response is an important device for the design, analysis
and appfaisal of CACT systems. Even in sophisticated Computer Aided

Contfol System Design environments, based on the techniques of
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‘modern ~control theory, the insight gained from graphical
presentations of a CACT frequency response is widely accepted. The

classical graphical presentations of frequency response are:

Bode gain and phase plots,
Nyquist gain-phase polar plots,
Nichols gain-phase plots,

Root-locus plots.

Thesé classical graphicallmethods are widely ‘recognised as suitable
instruments for the design and analysis of CACT control systems. 1In
particular the s-planebroot—locus is usually preferred for design of
aircraft analogﬁe—flight control systems. Although z-plane
frequency domain diagrams can be prpduced for CADT systems, they
present unfamiliar data visualisation patterns. The contribution of
w- and Ww’-planes, for the design and analysis of CADT control
systems, is in casting the sampled-data system frequency response

graphs in the same form as their analogue-data counterparts.

An example,'illuétrating the utility of both the w- and w’—plahe
gain and phase frequency response characteristics, is discussed in
this section. The example illustrates the transférmation of a
second order CACT domain model into equivaient w- and w’'-plane
models. The respective vgain and phase frequency responses are
plotted and comparisons are  made betweén‘ the characteristics
produced by theVCACT system and those produced by the equivalent W=

and w’-plane models.
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Consider the single-input, single-output CACT state-space model,

given as

[ () o 1| x o]
N ' |+ u(t) (4.11a)
% (t) 25 7)| %)) 1
yt) =1 o] x (L) . | (4.11b)
- xa(t)—

With a sampling period h = 0.05, the equivalent w-plane system is2

WX, (50) [0.009 0.025 X, )| |-0.0006
= - + U(W) ’ (4- 12a)
sz(w) -0.622 -0.175 Xz(w) 0.0293
Yo =1 o] x ] + -0.079]U(w) . (4.12b)
Xz(w)

Under the same sampling period, the w’-plane model is given by

fw’Xl(w') -0.036 0.995 Xl(w’) -0.023_
=1 4+ Uw’) , (4.13a)
w'X (w) -24.87 -7 X (w) 1.17
2 2 .
vo) =1 of[xwn] [—0.079]u(w') . (4.13b)
xz(w’)

2 1+ W
The strict notation is X 1 in the «case of the w-plane and
- W
1+ w .
X 1 7 in the case of the W' -plane. In the interest of
1 - w . .

simplicity the notation = X(w) and X(w'),_ respectively is adopted.
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‘The gain and phase frequency response diagrams, for each of the
three systems ére given in Fig.4.4. The CACT system’s gain and
phése respénse is, shown in Fig.4.4a brovides a benchmark for the
purpose of comparison. The w-plane gain and phase characteristics
are shown in Fig.4.4b. The point at which fhe conditions of the
sampling theorem are violated is indicated by a rapid transitién of
both the gain and phase. ‘The frequency axis scaling in terms of w

is produced from the analysis of Section 4.2.2 and is given by

W = -g—arctan(w ) . : (4.14)
h W

The w’—plane‘gain and phase plots, shown in Fig.4.4c, circumvents
the need to calculate w from w,- The freQuency axis scaling is

deduced ffom the approximation

—?—arctan(w) =4 iw = W, . (4.15)
h w

The w’-plane plot behaves quite differently to the w-plane'piot. At
- high frequencies, both the gain and phase plots continue to*ww, = .
Unlike the w-plane diagram, the w’-plane plot gives no indication of

the problems which exist at the sampling limit, =n/h.
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4.2.5 Mapping the State Equations to the w- and w’-Planes

As mentioned in Section 4.1, the usualvmethod of producing both the
w- and w’-plane  system models ffom the CACT state-space >domain
progresses via z-plane transfer-functions aﬁd in some cases via both
s-plane and 2z-plane transfer-functions. 1In this section, direct
methods of mapping a CACT state-space model to an equivalent w or w’
state-space are described. The methods are numerically more sound
than  the transfer-fﬁnction 'épproaches and accommodate

multiple-input, multiple-output systems with more facility.

The standard methods of mapping a time domain model of a CACT system
into the w—plané or w'-plane are identified in Fig.4.5. The diagram
indicates that the z-plane transfer function description is required

for the mapping procedure.

TIME-DOMAIN MODEL |

TRANSFER FUNCTION
s-PLANE

TRANSFER FUNCTION
z-PLANE

TRANSFER FUNCTION TRANSFER FUNCTION
w~PLANE - W' -PLANE

Conventional approaéhes for mapping a CACT domain
state-space model into the w-plane or w’-plane

Fig.4.5
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It is thought that a possible reason which inhibits fhe application
of the w-plane and w’-planes:  for the design and analysis of
sampled-data control Systems - is the ' inconvenience of the
transfer-function mapping pfoceéses, outlined in Fig.4.5. Even when
efficient computer‘aided design facilities [4.8] are availéble, the
process of mapping between s—plane, z-plane and w planes involves
numerical algorithms that have recognised weaknesses [4.9], and

which inevitably cast doubt on the validity of solutions.

In this section, methods of mapping ar CADT state-variable model
directly from the time-domain to the w- and w’-planes, are
 presented. The two CADT domain to w domain algorithms, together
with the basis of their derivations, 1is given Dbelow. A
comprehensive derivation the two algorithms is given in Appendix

Six.

Consider the z-plane state-space model of the standard CADT

state—spacé quadruple, (@,W,CD,DD), given as

zX(z) =& X(z) + ¥ U(=z) (4.16a)

Y(z) CD X(z) + DBU(Z) . . (4.16Db)

Equations (4.16) are mapped to the w-plane by applying thé_z-plane
to w-plane bilinear transform (4.1). The z-plane state and output

equations, (4.16a) and (4.16b), are thereby recast as

® X(w) + ¥ U(w) ' (4.17a)

[_1_'*_”_] X(w)

1 -w

Y(w)

L}

CDX(W) + DDU(w) . (4.17b)
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The w-plane state and output equations derived from equation (4.17)

are defined as

wX(w) = A“X(w) + B‘U(w)' ~ (4.18a)

Y(w) = CwX(w) + DwU(w) . (4.18b)

where, as shown in Appendix  Six, the w-plane quadruple,

(AW,BH,C",D"), when cast in terms of the CADT quadruple,vis given by

A =-(1+ »nta-e o, (4.19)
B =2(I+®7°% o (4.20)
CwéCD , o : - (4.21)
D =-C (I +& '¢v+0D . C(4.22)
W D D

.Mapping a CADT domain model to an equivalent w-plane state-space
model, by applying equations (4.19) through (4.22), circumvents the
need to calculate s- and z-domain transfer-functions. In cdmputer
aided design and analysis, this is a convenient feature ‘because the
computational robustness of the matrix computations associated with
this algorithm are superidr to cbmputations using the alternative

transfer-function approach.

An interpretation of the w-plane system model is shown in Fig.4.6.
The model illustrates the relationship between the w-plane system
 states, X(w), and the CADT system states, XD(w), in»the w—-domain,

where XD is given by

X (W) =X - [T+elvum . (4.23)

4-16



D
[1+6] 'y
-1 1
U(w) 2l1+2] ¥ w [ Xw) \/ CD Y(w
XD(w)

[I+6]1 ' [I-8]

The w-plane system diagram

Fig.4.6

The inverse transformation equations, that map a w-plane model to a
CADT domain state-space model, are derived by recasting equations

(4.19) through (4.22) to give

® = [I+AI[I+A1Y , (4.24)
) W W ) A
v =2[1-A1% |, (4.25)
w w
c=c | | (4.26)
D = CII-A]B +D (4.27)
D W w w w

The w’-plane state-space model can be derived directly from a CADT
state space model using the approach developed in Section A6.2 of
Appendix Six. However, substituting w = —g-w’ in the w- state-space

‘ equation (4.18) and the CADT to w- state-space algorithm, equations

(4.19) through (4.22), gives the w'~ state and output equation as
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W X(Ww )=A_,X(w')+B U’ ) ‘ ' (4.28a)

Y(w')=C ,X(w')+D ,U(w') . (4.28b)

and the CADT to w’ state space mapping algorithm as

A,=- 2+ tr-e (4.29)
W h v .
: 4 -2

B, = —[1+8] % (4.30)
B, h |

c,=c¢  (a.31)
D, =-C[I+& 'v+D ) (4.32)
W ‘ D D

As in the case of the w-plane, the utility and robustness with which
these quadruple mapping equations can be computed makes this method
6f mapping a CADT system in the w’-plane superior to the alternative
transfér-fuﬁction methods. The w’-plane state-space model can be

interpreted in the form illustrated in Fig.4.7.

[1+¢] ¥

Z = 1 ' |
o) n e Y W X G| ’bv(w")

XD(W’)

.%_ [1+0] 1 [1-8]

The w’-plane system diagram

Fig.4.7
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The inverse, w’'-plane to CADT domain state-space coefficient
matrices are derived by recasting equations (4.29) through (4.32) to
give

h

(1 +2a,)] [(1-2a 771 | (4.33)
W W

1

¢ = 2 73

_ _h -2 h .
v o= 2[1-54A,1"°5B, , (4.34)
c =c, |, (4.35)
D w } .

_ _’_h -1 h
D =C,II->4,l >B.*D., . (4.36)

4.3 ANALYSIS PARAMETERS FOR CADT DIRECT DIGITAL DESIGN

The practical processes of a control system design are usually
augmented by a graphical presentation of the system’s dynamical
performance. The frequency domain presentationsiare particularly
useful during the preliminary design phase. In the cése of CACT
control systems, the facility of the graphical data presentations is
enhanced by a set of general éystem pafameters, against which the
resulfs of the design processes can be assessed. These parametefs
are particularly'relevant in the design of flight control systems
because they convey the general specifications embodied inkaircraft
desigh standards, such as MIL-F-8785C, 1into the control system
design process. For sampled-data control system design, a similaf
set of general systemkparameters can also be defined. One, widely
reported method of defining these sampled-data parameters is to map
the CACT parameters from the s-plane to the z-plane [4.10]. This

section defines an alternative set of parameters which can be
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applied to assess the performance of sampled-data systems. These
alternative parameters are considered to be more appropriate for
direct digital design methods.

o
Six analysis parameters are derived in Appendix Seven; the first
»thfee are produced by comparing the geometries of the é-plane and

z-plane and are defined as follows:

Envelope-frequency ¢,
Samples—per—envelope-cycle [T
Decrement-per-unit-cycle . 7 .

The remaining three parameters are derived by comparing the s-plane
and z-plane geometries associated with complex conjugate pole-pair

and are defined as follows:

Natural-frequency ¢n ,
Resonance-frequency ' ¢m ’
Resonance-magnification . m

4.3.1 Envelope-Frequency and Samp1es—per-Envelope—Cyc1e

The envelope—fréquency,‘ ¢, is a notional CACT periodic function
which intersects all the values, u(n), in the discrete time
sequence, n. The number of samples and hence control-law
iterations, ‘within each period of‘ the envelope frequency, 1is

referred to as the samples-per-envelope-cycle parameter, u. For
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'example, if a sequence of i iterations occurs within the envelope
period of a sinusoidal function and produces a set of values, u(n),

then
. 2n ' -
u(n) = ~sin o n . (4.32)

The envelope—frequency,’¢, is defined as é?i. Comparing equation
(4.32) with its CACT counterpart, u(t) = sin(wt), indicates that ¢
and‘n correspon& to the frequency, w, and time, t, respectively.
For the case of ¢ in the range (-m,+m), then p > 2 in ofder to
satisfy the minimum requirements ofvthe Sampling Théorem [4.11].
This observation can be interpreted as a graphical overlay of the

zéplane, as illustrated in Fig.4.8.

z~Plane H =4
n=

16
u = 32

b~
L}

Real axis

Unit circle

Imaginary axis

Lines of Samples-per-envelope-cycle (u = jg&)

¢
Fig.4.8
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4.3.2 Decrement-per-Envelope~Cycle

The decrement-per-envelope-cycle, ¥, as derived in Appendix Seven,
corresponds to the CACT domain concept of damping-factor. The

decfément—per—enve1ope—cycle z-plane contour is given by
7T = ( r ]¢ , ' (4.33)

where r is a radius measure from the origin of.the'z—plane. A point
‘on the z-plane unit circle is defined by r = 1; thus, r < 1 implies

stability and r > 1 implies instability.

The z-plane contours of decrement-per-envelope cycle are also the
Sampling—rate root-loci of complex pole-pairs. This is a wuseful
feature in the exercise of selecting sampling rates. It should be
noted that the decrement-per-envelope-cycle contour, given by
(4.33), is inversely related to the s-plane constant damping radial
when it is mapped to the z-plane. A family of

decrement-per-envelope-cycle contours is illustrated in Fig.4.9.
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Real axis
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Contours of constant decrement-per-cycle |y = [ r ]

Fig.4.9

4.3.3 Natural Frequency and Resonance Magnification

The three CACT domain parameters of natural-frequency,

ns

bl

resonance-frequency,

s’ and resonance-magnification, m , are
S

important measures in the specification and assessment of control

systems. As in the case of the damping factor described above, the

natural-frequency and resonance parameters can-bebmapped from the

s-plane to a z-plane. Details of the‘s-plane to z-plane mapping

method are well documented [4.12]. The concepts of

natural-frequency and resonance, based on the direct CADT domain

definition, are developed in Appendix Seven. — e
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The z-plane contours of natural frequency, ¢n, and resonancé
magnification, m, are shown in Fig.é.lo and Fig.4.11, respectively.
These two sets of contours are defined in terms of the z-plane but
are derived from the w-plane and mapped to the z-plane. in terms of
the z—plane,‘geometry, the contours for these two parametérs,
together with the z-plane définition of resonance frequency, ¢m, are
given by -

2r

arccos| —2>— cos(¢ ) ., (4.34)
2 o o
1+ ro

©-
i

1 + rl) - 2r cos(¢ )
m = O - ° ° , (4.35)
(1 - ro)‘51n(¢o)

2
1 +r

arccos| ——2 cos(¢ ) R (4.36)
o
2ro : :

¢=

z-Plane

Real axis

Unit circle

Imaginary axis

CADT domain natural frequency contours ¢n

Fig.4.10
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Real axis

Unit circle

Imaginary axis

CADT domain resonance magnification contours

- Fig.4.11

4.3.4 The Two Parameter Root-Locus

Thé concept of the two parameter root-locus is introduqed in this
section. -A root-locus plot can be déveloped for a £raﬁsfer—function
model which is cast in any of the three CADT domains described in
this chapter. A conventional root-locus, which is defined in terms
of a tfansfer;function gain barameter, can be plotted on the
- z-plane, the w-plane or the w’-plane to aséesé' the stability:
characteristics of a unirate sampled-data system. A two parameter
root-locus, defined in terms of gain and sampling period, can be

used to estimate the behaviour of multirate sampled-data systems.
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The idea of the two parameter root-locus is straight forwafd; a
surface grid is produced by compufing the gain root-locus of a givén
CADT domain transfer-function at different sampling periods. .In
formal terms, the two parameter z-plane root-locus is defined as

follows:

The general single-input single-output z-plane transfer-function is
given by

Clz(h)) _  G(z(h))

R(z(h)) = 1 + GH(z(h)) (4.37)

where C 1is the controlled output  variable, R 1is the control
refereﬁce variable, G is the forward path z-plane transfer-function
and H is the feedback path z-plane transfer function. The'sampled
data transfer-functions are defined for the sampling period, h. The -

open-loop'tfansfer-function can be represented by

N(z(h))

Dz(h)) , (4.38)

GH(z(h)) =K

where N and D are the 2z domain numerator and denominator
polynomials, respectively, and K is the gain parameter. Equatibn

(4.38) can therefore be recast as

C(z(h)) _ N(z(h))

R(z(m) - D) + KN(z(R)) (4.39)
The closed-loop poles of (4.39) are the roots of
D(z(h)) + KN(z(h)) =0 .  (4.40)

The solutions of (4.40) are produced at values of K from zero to

infinity and values of h from zero to - /0, where u =2
N . min min

samples-per-envelope-cycle of the highest frequency component in

GH(s). These solutions can be mapped onto the z-plane to give the
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correctly, a root

two parameter root-locus or, more

location
surface. An example, to illustrate.the'utility of the two parameter
root-locus in the. analysis of a multirate sampled-data system, is

given below.

Consider the CACT s-plane transfer function

_ K(s + 10)
= S(s+2fjase) (4.41)

' The root-locus plot of this system, with O0=K=25, 1is shown in

Fig.4.12. Mapping the transfer function to the CADT z-domain at

sampling periods, h = 0.1, 0.2, 0.3 and 0.4, produces a z-plane

transfer-function of the form

C(z(h)) (z +n)(z +n)

= K (4.42)

R(z(h)) (z + dl)(z +d, ¢ jd4)

The components of the transfer function, for different values of h,

are summarised in Table 4.1. The corresponding two parameter

z-plane rdot—locus, for 0=K=25 and 0.1=h=0.4, is shown in Fig.4.13.

n1 nz d1 , ' d3 d4
h =0.1 |-1.1963 0.3364 -1 -0.7343 0.3622
h=0.2 |[-1.3093 | 0.12 -1 -0.4079 0.5319
h =0.31-1.2974 | 0.0073 -1 -0.1069 0.5383
h =0.4 |[-1.1763 |-0.0563 -1 0.1165 0.434

The components of the z-plane transfer-function (4.42)

Table 4.1
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The equivalent CADT w-plane transfer function has the form

C(w(h)) (w + nl)(w + nz)(w +'n3)
- = K . (4.43)
R(w(h)) wiw + d1 * jdz)

‘The component values of (4.43) are summarised in Table 4.2.

ni n2 n3 dl d2
h=0.1-11.1889; -1 0.4647 | 0.105 0.2308
h = 0.2 |-7.4663 -1 0.7858 | 0.2431 0.4696
h = 0.3 |-7.7257 -1 0.9855 | 0.4613 | 0.7106
h=0.4 (-12.3437 -1 1.1192 | 0.8237 | 0.8958

The components of the w-plane transfer-function (4.43)

Table 4.2

Finally, the CADT w’-plane eqﬁivalent model of (4.41) is given by

C(w’ (h)) (w + nl)(w’ + nz)(w’ + n3) ;
- = K : : . (4.44)
R(w’ (h)) oW (W o+ d1 + jdz)

The components of the w’-plane transfer-function are summarised in

Table 4.3.
n n n d d
Y1 2 3 1 2
h =0.1 -223.778 =20 9.2734 2.1007 4.6157
h=20.2 —74.6635 ‘10 ' 7.8577 2.4311 4.6961
h = 0.3 -51.5046| -6.6667| 6.5701 3.0751 4.7376
h =20.4 -61.7187 -5 5.5962 4.1185 | 4.4788

The components of the w’-plane transfer—function (4.44)

Table 4.3

The two parameter root-lbcus plots with 0=K=25 and 0.1=h=0.4, for
the equiValent CADT domain w and w’-plane. transfer-functions, are

. shown in Figures 4.14 and 4.15, respectively.
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4.4 SUMMARY

Consideration has been given»to the CADT domaiﬁ methods of design
éndbanalysis. Thé w—- and w’—plane‘techniques have been- exposed to
the extensive range of CACT state—space methods through the two CADT
domain to Q domain algorithms. The w domain model of a multirate
syStem is simply defined in terms of the program period hp., An
alternative approach to the w domain design of a multirate
‘sampled—data' control system 1is to consider a separate »control
strategy for each rate in the multirafe éampling policy. This
technique 1is considered in detail for the des%gp case study,

described in Chapter Five.

The quantitative performance parameters, described in Section 4.3,
are preseﬁted as‘appropriate measures for the analysis of mixed-data
controll systems. Although the final appearance of the geometry
produced by the parameters has the form of the directly mabped
s-plane to z-plane geometry, the basis of the two sets measures are

fundamentally different.
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CHAPTER FIVE

A DIGITAL FLIGHT CONTROL DESIGN CASE STUDY

5.1 INTRODUCTION

This chapter presénts the application of the proposed digital flight
control design methods, in the éontext of a ménned—aircraft flight
control problem. The intermediate and final resulté'of a bFC design
~ exercise are _discussed. The DFC design problem focuses on the
requirements to stabilise and con£r¢l the basié dynamics of an f4-E
combat aircraft. VThe control specifications are defined by the
relevant clauses of the handling qualities standard, MIL—F—8785C.
These specifications are castvinto the CADT domain for the purpose

of DFC design.

The first part of the DFC design case study is cdncernéd with the
stability augmentation of the longitUdinal dynamics of.a basic F4-E
aircraft. The second part of the design is an attempt to define a
¢ontrol law that decouples the‘ iongitudinal speed and attitude
dynamics. The digital control 1is designed with a multirate
(dual—réte) sampling policy. The stability augmentation control is
applied at the faster of the two‘sampling—rates and the decoupling
control-law is applied at the slower sampling rate. This separation
of the two functions, in terms of the sampling policy, illustrates
the point that 1the flight inétrumentation, from which the

control-law data is derived, will, in general, produce data at
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different rates.

>The stability augmentation control is achieved through a suboptimal
state-feedback control—lawf ‘The primary, optimal control-law, from
which the suboptimal controller is deduced, is designed through a
standard state-space optimal pole placement algorithm, [5.1]. Ther
: spéed/attitude découpling control-law is derived ‘through a
state—space system decoupling aigorithm, [5.2]. Although.these two
algorithms are‘ defined in - terms of the CACT state-space their
application to CADT domain design is facilitated through the w- and .

w’-planes
5.2 A STATEMENT OF THE FLIGHT CONTROL DESIGN PROBLEM
The four-state, linear, perturbation model of the basic F4-E combat

aircraft, which represents the kernel of the longitudinal axis

dynamics, is given in terms of the following state variables:

u forward-speed A metres-per-second, .
W normal-speéd metres-per-second,

q pifch—rate . radians-per-second,
e pitch¥anglé radians.

The basic longitudinal axis model is exercised by two flight control

inputs, these are;
7n . elevator-angle radians,

£ engine-thrust newtons.
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The CACT state matrix, A, and control input matrix, B, of the

aircraft, when it is flying at Mach 1.1 at sea level, are given as

-0.068 -0.011 0  -9.81 |
_|o0o023 -2.1 315 o0 |

A=1o0.011 -0.16 -2.2 o0 _ (5.1)
o o 1 0
-0.41 1

| -7 -0.09

B=1_61 -0.11 | (5.2)

| 0o o

The output equation consists of a 4x4 identity state output matrix,
C, and a null direct matrix, D, and therefore does not require an

-~ .

explicit representation in this exercise.

The stability characteristics of this system, defined by the roots

of the characteristic equation, p(s) = det[sI-Al, are;

(i) The short-period mode roots are, ssp=-2.151j7.75. The
associated damping factor and natural frequency are csg=0.27
and agp=8, respectively.

(ii) The phugoid mode roots are, sPH=-O.03SijO.O41. The associated
damping factor and natural frequency are CPH=O.64 and

wPH=O.055, réspectively.

Table 5.1 summarises the characteristics of the required
longitudinal dynamics, as defined by MIL-F-8785C. The comparison of
the specified and actual characteristics, together- with the

compliance status, is noted.



Characteristic Mode : MIL-F-8785C |Basic F4-E | Status
¢, min 0.35 " not
Short period damping 0.27 .
compliant
< max 1.3
SP
Phugoid mode
Damping CPH > 0.04 - 0.64
(Stable) ' (level 1) ’ compliant
Natural frequency wPH(rad/sec) > 0.114 -
(Unstable) ‘ - (level 2)

A comparison of the required and actual
F4-E longitudinal stability parameters

Table 5.1

The stability characteristics of the basic aircraft are clearly
révealed by the state time-history diagrams, showﬁ in Fig.5.1. The
4time—history diagramé illustrate the state response of the basic
aircraft, following a #0.1 radian doublet movement of the aircraft’'s
elevator,‘ The control problem is to design a DFC system that will
stabilisé the basic aircraft t§ the level specified by MIL-F-8785C.

This control function is know as stability augmentation.
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5.3 THE SAMPLING POLICY

The first task iﬁ the dosign prooess is to identify a multirate
(two-rate) sampling policy for theAstability augmentation control
function. The -sémpling rates selection procedure, described in
Section 3.2, 'is apolied to this task. In addition to the basic
éircraft model, the prooédure requires an estimate of the
disturbance energy that impinges onrthe aircraft‘and which the DFC
system is desigo to feject. Ih terms of the selection procedure
;defined by equation (3.9), this means estimating the element volues
QC. -These values must be chosen to hake the resulting matrix
symmetric; positive-definite. In practice, disturbance information,
such as, for example, a stochastic model of the air turbulence in |
which an aircraft operates, may be available to relate the elements
of»vQC to ‘the Spécific requirements of a handling gualities
specification. For the demonstration purpose of this case study, it

is assumed that the disturbancés are applied through the elevator

and thrust controls. The matrix Qc’ chosen for this case study is

e. = | S (5.3)

the element valués are heuristic estimates. With‘Gc assigned an
initial Qalue of 0, equation‘(3.9)‘is propagated in time for 0.01
‘seconds to produce"tho time-history ,éstimate of the uncertainty
associated with the_value‘of the state elements. These measures of

state element uncertainties are plotted in Fig.5.2.
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A qualitative inspection of covariance time—histofy diagrams
indicates thatrpitch—fate, q, is the most sensitive state element.
A similar analysis with each input exercised separately, reveals
that the elévator has greater control authority than the thrust
input over a short time period. The sampling‘policy which this
analysis produces is given by the schedule shown in Fig.5.3. In the

casé of this example, the levels  at which the -state element

‘covariances are deemed unacceptable is somewhat arbitrary. The

procedure is only intended to 1illustrate the sampling period

- selection technique. However, it seems reasonable to suggest that a

firm link between this method and the general aircraft handling

qualities could be established:



SamPllng Iteration increments
-period h v
h = 0.0125 n=n

1 1 b

0 1 2 3 4 5 6 7 8

Input 17 : v
swe w ||| ][] ] ]
State g )
h = 0.05 n

2 2

Input ¢ 0 1 2
State u l ’ o I‘ ' : ‘
State 6 ‘ ’

The DFC multirate sampling policy schedule

Fig.5.3

The dual-rate sampling policy, produced by the methods deScribed
above, confirms what flight control practifioners would expect;
viz., the vertical speed state, w, and pitch-rate state, q, are
associated with the "fast" short-period dynémics. The forward speed
state, u, and pitch-attitude state, e,b are associated with the

"slow" phugoid dynamics.

Confirmation of the suitability of the sampling policy isvprovided
by a two’parametef rbot—locus analysis, desbribed in Section 4.3.4,
»aﬁd the criterion defined by Fig.3.2. | In this case study, the
analysis produces - eight vroot-locus diagrams, one for each
combination of input and butput. To illustrate the application of
'vthe' two parameter root-locus, Fig.5.4 shows the plot for the

pitch-rate to elevator transfer-function, q(z)/7n(z).
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The effect of multirate sampling on the state element covariance can
be estimated by modifying the application of equation (3.9) in the

following way':

The state elements aré assumed to be reset to zero error at the
instant they are . sampled. In terms of the covariance equation
(3.9), this infers that, if the state element xl is‘reSet, the i-th

row and i-th column elements of GK+1 are also reset to zero.

Applying this procedlire to the sampling policy of Fig.5.3 means that

every 0.0125 seconds (h1) of the covariance time history, the second



row and third,column elements of Gk+1 (the associated state elements
are w and q) are reset to zero, and every 0.05 seconds (hz) all the
elements of Gx+1 are reset to =zero. The resulting multirate

sampled-data state covariance time-history is shown in Fig.5.5.
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5.4 THE MULTIRATE SAMPLED-DATA STATE-SPACE MODEL

The open-loop, dual-rate, sampled—datavmodel of the basic aircraft

(Chapter 3). The components

is cast in the form of equation (3.30)

of this equation are as follows:1

The base sampling rate, hb = h1 = 0.0125 seconds.
The program period, hP = h2 = 0.05 seconds.
_ 0.05 _
The parameters of k are kb,3 and ko,o’ and p = o 0125 = 4.
0.9992 -0.0001 -0.0011 -0.1226
_ |0.0006 0.9695 4.5561 -0
(2] = {5 0001 -0.0019 0.9683 -0 (5.3)
0 -0 0.0123 1
0.9966 -0.000S -0.0164 -0.4897
p _ 4 _ |0.0058 0.8337 16.4211 -0.0011
[e1™ = 181" = 15 0005 -0.007 0.8294 -0.0001 (5.4)
0 -0.0002 0.0462 1
[pqs] = [445] = [@3 8 o' I] (5.5)
o 0.0125(|-0.068 -0.011 0 -9.81
_ : 0.023 -2.1 375 0
r = exp(AA)dA = J eXPl| 0011 -0.16 2.2 0 Alda. (5.6)
o 0 0 0 1 0
,1A11 the calculations are processed to fourteen decimal places.
‘ However, for the purposes of a readable presentation, numbers are
given to four decimal places. Hence, small value numbers are -

displayed as a signed =zero.
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up(k) = u4(ko,3’ko,o) =

-0.41 © 0 0 1]
-77 0 0 0 -0.09
-61 O 0 0 -0.11 (5'7)

0 0 0o o 0
0 -0.41 O 0 1
o -77 0 0 -0.09
0 -61 0 0 -0.11
0 0 0 0 0
0 0 -0.41 O 1
0 0 =77 0 -0.09
0 0 -61 0 -0.11
0 o 0 0 0
0 0 0 -0.41 1
0 0 0 -77  -0.09
0 0 0 -61 = -0.11
0 0 0 0 0 |

T
[ul(O) u1(1) u1(2) u1(3) uZ(O)] . (5.8)

Combining these function in the manner prescribed by (3.25) produces

the form of state equation given in Chapter Three as (3.39a), where

0.9966 -0.0005
0.0058  0.8337
P 0.0005 -0.007
0 ~0.0002

and

0.1928

-848.4769 -610.
-56.
-1.

P -53.3934
-2.1574

-0.

-0.0164 -0.4897
16.4211 -0.0011

- 0.8294 -0.0001 ’ (5.9)
0.0462 1

1306 -0.41 -0.41 3.9966

2654 -352.5747 -T7 -3.2142 (5.10)
3656 -58.9176 -61 -0.4139 T
471 -0.75 0 -0.0079
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5.5 THE DIGITAL DESIGN PROCEDURE

The DFC design proceeds by mapéing the multirate sampled-data
equations of - the basic CACT domain aircraft model to either the
w-plane or w’-plane. The reéesults of the DFC system, reported in
Section 5.5.4 are produced by a w-plane désign. The DFC is designedv
to perform two flight cqntrol functions; ihe first, is an inner-loop
stability augmentation of the basic aircraft system, and ihe second

is a speed—attitude decoupling control law.

The w-plane model of the basic multirate sampled-data aircraft model
is computed through the time domain to w-plane algorithm, described
by equations (4.19) to (4.22); the resulting quadruple is

(A ,B,C,D ), where
W W W W

[-0.0017 -0.0003 -0.0002 -0.2452
.0007 -0.0545 9.4655 0.0002| (5.11)
.0003 -0.004 -0.057 -0 ’ )

-0 0.0253 O ‘

>
]
O0O0O0

[-0.0059 -0.0052 -0.0037 -0.0012 0.025

B = 0.0292 1.9535 3.9638 6.0441 0.0229 (5.12)
"W -0.4001 -0.4093 -0.4147 -0.4162 -0.003 - :
0.0019 0.0069 0.0121 0.0173 0.0001

It is assumed that the state sampling operation is synchronised with
the control action sampling, as described in Section 2.4.2; the

components, C" and Dw, of the w-plane output equation are thus

(5.13)

b o
00O~
[eNeN e
oOm oo
~O00O0o

.0031 0.004 0.0042 0.0034 -0.0250

.2585 1.5695 -0.2291 -2.1247 0.0032 (5.14)
.3661 0.3812 0.3932 0.4018 0.0028 ) ’
.0074 0.0027 -0.0021 -0.0071 O

oo wo
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5.5.1 The Design of a Stability Augmentation System

The stability augmentatidh control-law is determinéd by applying a
CACT domain optimalbpole assignment procedure [5.3] to the w—piane
model. The dbjective control function is selected to achieve
compliance with the requirements of MIL-F-8785C, outlined in Table
5.1. In this case, the locations of the basic aircraft’s CACT

s-plane poles which meet the stability requirements are

= - + 3 = - + 3
SSP1 5.6 £ j5.6 and SPHI 0.035 * JO.Q41.

The equivalent short-period and phugoid mode w-plane poleVIOCations

for the sampling-period, h1=0.0125, are,

= - + j = - + 3
W, = -0.0362 * j0.0363 and w_ = -.0002 * jO.0003.

Under the sampling-period, h2 = 0.05 seconds, the same w-plane poles

are mapped to

= - + j L= - + 3
Weps 0.1418 * jO.1381 and Wi 0.0009 * jO.001.

The optimum state-feedback stability augmentation control matrix is
computed through a standard CACT procedure. The distortion of the
w-plane (when bcomparéd with the s-plane) places an additional
restriction on the achievablev pole. positionsi Identifying the
general boundaries for pole placement is a.significant problem and
is clearly an area for further research. For the current design,
the required pole ldcations are determined by trial. The resulting

stability augmentation state feedback control matrix is given by

(5.15)

= 0 0.0006 -0.1120 -0.0001
0 0 0 0
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The state—feedback matrix is examined to identify those elements can
be set to =zero. Although this practice produces a non-optimum
controller, the result often removes the need for an actuator, or a
sensor, or both, from the reqqired control system. For the
~control-law in question, the element (1,3) is jﬁdged to be the only
significant element in le. The feedback control is reduced to
applying the pitch-rate state element, q, onto the elevator. The

feedback matrix is therefore recast as

H =[° 0 0.2 0] . (5.16)

The resulting closed-loop system is anélysed to ascertain the
performance of, the sub-optimal feedback control. A check is then
made to determine whether the sub-optimal control law produces
handling quality measures that compliant with the design '

specification. The wfplane stabilised system is given by

w X(w) = [A - BH ]X(w) + BU(w) . (5.17)
. W w wl
h = 0.0125 : :

The closed-loop poles produced by (5.17) are

W = -0.0367 * jO.0429 and w = -.0002 = jO.0003.
SP1 PH1

The stability augmentation control 1is therefore implemented by
closing a digital feedback loop from the pitch-rate state to the
elevator. The sampling period required for this digital flight

control activity is 0.0125 seconds.
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'5.5.2 The Design of a Speed-Attitude Decoupling Control Law

The final part of this exercise is concerned wifh the design of a
. digital control law thét decouples .the speed and attitude dynamics
of the stabilised aircraft; A system decoupling algorithm [5.4] is
applied to the‘stabilised w-plane aircraft model which, for this
exercise, is defined for h=0.05 seconds.  The CADT domain
stabilised aircraft. model 1is mapped from its defined form at
h1=0.0125 tg h2=0.05. Thé general procedure for this operation is
described in Section 3.4. With a sampling beriod of 0.05 seconds,
the w-plane model, on which the speed-attitude decoupling control is

required, is given by

-0.0017 -0.0003 -0.0021  -0.2452
A _ | 0.0007 -0.0545 10.9044  0.0002 (5.18)
“Hu |n= 0.05 ~ | 0.0003 -0.0040 -0.2539 -0 )
o -0 0.0299 ©
-0.016  0.025 |
_ [11.9905  0.0229
Pl oo | |-1-6203 -0.003 (5.19)
2 O | 0.0382  0.0001)
£ 0.0147  0.025 ]
_ | 2.4742  0.0032
%l e | 1-5224 0.0028 (5.20)
2 O | 0.0008 0 . |

The state feedback matrix is pfoduced by a standard CACT domain
state decoupling design procedure [5.5]. Unlike the optimal pole
placement technique, the CACT domain decoupling algorithm presents
no w-plane application problems ih this gase. study. The
state—feédback control ‘@atrix which achieves the speed-attitude ‘

decoupling requirement is,

B - [o 0 ~0.034 -1.27] (5.21)

0.23 0 0 0
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In addition to the state feedback, the speed-attitude decoupling
control law includes a control»input (elevator and thrust control)
mixing function. This facetkof the control law is automatically
produced by the state element decoupling design procedure. The
proppsed control also includes a gain fﬁnction on the elevétor
inceptor. This compensateé for fhe loss of controi sensitivity

caused by the stability augmentation system.

5.5.3 The Digital Flight Controller

For the purposes of control 1law implementation, the w-plane
controller must be mapped to the CADT domain. In this case study{
the mapping does not change the purely gain H matrices. 1In the case
of a dynamic controllér, the inverée w—planev to discrete-time

state-space mapping algorithms would be applied.

The proposed multirate digital éontrol-law diagram is illustratéd in
Fig.5.6. The DFC terminology is noted on the diagram; that is, an
iteration period, during which the control law is updated, is called
a computing frame. The maximum time available for a computing frame
is 0.0125 seconds; thus, a computing frame equates with the
;ampling period, h1' The digital computing cycle qonsiéts of four
frames and is clearly associated with the sampling pefiod, h2. The
implicit assumption of the proposed controller 1is that the
computational delay is small enough for the'synchronous sampling

assumption to remain valid.
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5.5.4 Test Results

The state vector time-history, following the application of a scaled
(0.1 radian) unit doublet on the elevator, is given for each state
of the decoupléd, stability augmented airgraft, ih Fig.5.7. The
time histories indicate that a satisfactory stabiiity performahce is

achieved with the multirate sampled-data control sysfem.

An oscillation, which has a period equal to the sampling period, h1’
is particularly mnoticeable on the pitch-rate  state. This
oscillation is caused by the continuous-time dynamics of the basic
aircraft. As the state element covariance analyéis indicates,
between the sampling instants, the basic aircraft state divergés
from the control set-points or set-functions. The higher fréquengy’
response characteristic of the pitch-rate makes this state element
more sensitive to the open-loop (intersample period) behaviour’of
the CACT dyhamics of the basic aircraft. In a practical flight
control system, the level of this sampling interference may be
unacceptaﬁle. The level is reduced by selecting a smaller sampling
period, h1’ fof the stability -augmentation control; this solutién
assumes that the pitch—tate state can be measured at an increased

sampling frequency.

The published results of other DFC system designs [5.6] appear to be
uncorrupted by the intersample oscillations that feature in this
current design.‘ At this stage itris only poésible to speculate on
this observation. One possibility, which is consistent with the

operational DFC problems, described -in Chapter One, is that the
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‘analysis procedure used for this case study exposed the intersample
oscillation, whereas the analysis applied in the reported DFC cases
did not. Further work, employing hardware-in-the-loop simulations,

is required in this area of DFC system design.

A comparison of two unirate sampled-data systems and the multirate
sampled-data DFC system is summarised by the step response
time-history characteristics, shown in Fig.5.8. These one-second
time histories represent the CACT state element responses of the
digitaily'controlled aircraft.. The time responses are produced‘by
~applying a 0.1 radian step input to the elevator. The three curves
produced for eachr'of the four state elements represent three
equivalent DFC systems, with each system incorporating a combined
stability augmentation and speed-attitude decoupling control law.
AThe two unirate systems, one operating with a 0.0125 second sampling
peried and the other with a 0.05 second sampling period, are
cempared with the multirate sampled-data DFC system produced in this

case study.

The time histories are produced by pseudo analogue simulation [5.7]
(a digital simulation with a éimulation time step, At,_much.smaller
than the shortest period in the DFC sampling policy; that is,
At(<h1). The state element sampling ane digital eontrol functions
are applied at the appropriate sampling instants, h1 and hz' The
results represent the continuous-time response characteristics of
the basic.aircraft’s state elements. The one-second time history
curves show, once again, the intersample oscillation on the

pitch-rate state element. The significant issue of these results is
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‘the comparison of the two unirate. sampled-data systems with the
equivalent multirate sampled—data system. It is first observed
that, as predicted by the two parameter root-locus, the dynamics of
the'sampled—data system is a function qf the sampling rate. ‘This
observation underpins the recommendation fo_undertake a DFC design
in the CADT domain. A second observation is the decreasing
effectiveness of the control as the sampling period is increased.
The multirate sampled-data system clearly represents a compromise

between the two unirate systems.
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5.6 SUMMARY

The results of the DFC stability augmentation and speed-attitude
decoupling exercise, .presented in this éhapter,‘ should oniy be
regarded as a representatibn of a-full DFC design process. Even in
the case of this limited scale example, a considerable amount of
work is required to establish,.what is thought to be, a satisfactory
flight control systenm. On the basis of this exercise, it can be
concluded that the facility of the methodology proposed in this
dissertation is suitable for practical DFC design.

Although the éxercise only considersra design in the w-plane, the
extension of the method to the w'-plane is readily deduced. For the
selected sampling periods of this example, the w’-plane eigenvalues
vof the basic aircraft dynamics have numerical values that afe, io

four decimal places, identical to the s-plane eigenvalues.

A question that remains unanswered is: given a DFC system which is
designed and analysed by the proposed methodology, will the
resulting implementation avoid the difficulties that have been
experienced with digitall controllers‘ designed by other methods?
Although the results indicate the answer to this question is in the
affirmative, a more positive conclusion requires further étudy. A
specific aspect of this study will be the inclusion of the effects
of data quantisation. The study will be expensive and will require

both flight simulation and actual aircraft facilities.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

6.1 GENERAL CONCLUSIONS

The conclusions on the proposed Digital Flight Control (DFC) system
design methodology are based on the results of the application
exercise given invChapteerive and the various examples presented in

other sections of this dissertation.

The data—doﬁain in which the dynamics of a mixed-data DFC system can
be unified, for the purposes of flight control design and analysis,
is the Contiﬁuous—Amplitude, Discrete-Time domain (CADT). A
practical digital flight control system design model includes data
elements which are continuous and discrete, in both amplitude and
time. Thus, inkadditién to the CADT domain element, there is a
Continuous-Amplitude, Continuous-Time data element which models - the
basic aircraft; a Discreté-Amplitude, Discrete-Time data eiement
which is the digitél flight control computer; and a
Discrete-Amplitude, Continuous-Time data -element which represents
the flight control data on thé output of the ZOH. The irony of this
observation is that, iﬁ a practicai implementation the CADT data
domain exists only in a notional form within the structure of the

Analogue-to-Digital converters. The three other domains exist in a

physical sense.



‘A digital control system which retains the continuous amplitude
characteristic of the data représents the classical concept of a
sampled-data system. The design of sampled-data systems can be
carried out on the basis of a unirate sampling policy,vemploying a
direct digital design method. The advantagevéf the direct aigital
design method when compafed-with the emulation method is inferred by
the results of the example, described in Appendix Two.’ While
caution is required ‘when drawing a general conclusion from the
results: of a specific case, the example supports the frequently
asserted claim; viz.; for a given control function, the difect
: digital design method yields a sampled-data control syétem with a
lower sampling-rate than an equivélent sampled-data system:which is

designed by the emulation method.

A digital flight control system will, 1in -general, require a
multirate sampling policy. The two observations leading to this

conclusion are:

(i) Flight control-data is associated with sensors and actuators
that impose a variety bf sémpling—rates on a digital flight
control system. By definition, a DFC system designed to
accommodate a variety of sampling-rates is a multirate

sampled-data system.

(ii) Data amplitude quantisation is a feature that distinguishes
modern digital computer control systems from the classical
sampled-data system. In terms of a given characteristic

frequency, the minimum practical sampling-rate is defined by a



multiple (at least-éight as defined in Fig 3.2) of the Nyquist
rate. The effect of a quantisétion process, is the imposition
of a maximum limit to the sampling-rate. High dynamical order
DFC systems, havé several charaéteristic frequencies which are
distributed over a wide spectrunm. The consequence of a
minimum sampling-rate (imposed by the_Sampling Theorem) and
maximum saﬁpling—rate for each charécteristic frequency is a

DFC system with a multirate sampling policy.

The multiraté sampling policy »Selection >proceduré, described in
Chapter Three, is based specifically on the issues associated with
the above item (ii). The selection procedure, which produces a
" multirate sampling policy, represents an interpretatién of the basic
aircraft’s open-loop state covariance. The method gives an
indication of intersample uncertainty on each state element of a
multivariable system. A multirate sampling policy, which includes
both state measurement and confrol—actﬁation sémpling operatiqns, is
directly deduced from the variance time-history characteristic of
‘each state element. = The facility of the state covariance time
history, in identifying a multirate sampling policy, establishes the
technique as an appropriate procedure for the DFC design
methodology. In association with | z-plane pole-zero maps of the
basic éircraft transfer-functions and the guidelines provided by the
standard flight control design requirements, the sampling policy
selectiqn' procedure offers a quantitative approach to this

particular design task.
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Preliminary studies revealed that the established multirate
sampled-data system models are unsuitable for fhe objectives‘of the_v
DFC system design methodology. An alternative formulation of a
multirate sampled-data modei; which addresses the requireﬁents of
the thesis, is described in Section 3.2. The assembiy of a basic
aircraft model for the purpose of DFC system design requires
considerable assiduity if erfors are to be avoided. It is believed
that the assembly of the proposed multirate sampled-data model

facilitates the goal of an error free DFC design.

The established multirate sampled—data eystem models are grouped
into two basic forms. The first group _comprises the z—plane
transfer-function forms, developed by Sklansky [6.1] ana Kranc [6.2]
and the second group are the state-space, time-domain forms, which
are epitomised by the Kalman and Bertram model [6.3]. Of these two
established forms, the state-space model of Kalman and Bertram is
the most suited to the requirements ef’the multivariable aircraft
flight control system objectives of >the thesis. HoweQer, an
application study, described in a supplementary report, demonstrates
that, although straight forward in principle,:in practiee the Kalman
and Bertram model is complex and difficult to manage. While not
explicitly discussed by Kalman and Bertram, it is considered that
their model is directed towards multirate sampled-data system
simulation, where eit' is intended to exercise a known digital

controller configuration.

The multirate sampled-data system model developed for this thesis is

assembled by inspection. The model is initially produced for the
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equivalent, open-loop discrete-time system of the basic aircraft. A
multirate structure of a digital feedback coﬁtroller can also be
defined and applied to the open-loop model using standard
state-space matrik algebra. Two closely related forms of the model
are described; one casts the multirate structure into the controls
vector, and the other takes explicit account of the multirate
Sampling switch and Z0H functions by casting them as augmentation
states to the basic open-loop model. The additional dynamics
generated by a delay in computing the control data from the state
data is easily accommodated by incorporating a delay operator at the

input séction of the plant model.

Although the w-plane and, in particular, the w’-plane are already
established as suitable domains for unirate DFC system design, their
potential has not been realised in thé design of practical flight
control systems. The major constraint on the practical application
of both w planes is femoved by the CADT state-space to w- and
w’-plane transformation algorithms, described in Chapter Four. Both
w domains are empioyed in the multirate sampled-data DFC design case
study. Although of 1limited ‘scope, the study demohstrates the
utility of the w'domain, for the design of a DFC system; which is
bounded in a framework of a étandard analogue flight control
’specifiéation, namely MIL-F-8785C. In addition this study also
indicates poséible deéign techniques which will harmonise -a DFC

system implementation with the general requirements of MIL-F-8785C.

The CADT domain parameters, developed in Section 4.3, are presented

as alternatives fo the more commonly defined s-plane to z-plane
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mappings. The main reason fér developing these .alternatives is to
give a more natural image of the direct digital design performance
measures. The‘ two parameter broot—locus 'gives a ' convenient,
simultaneous parametric view of the sampling and gain changes. A
reasonable presentation of a system’s dynamics‘ under mulfirate

sampling policy is a feature of the two parameter‘root-locus.

The computational tasks of this thesis are undertaken in a MATLAB
‘[6.4] computer aided design en§ironment. The MATLAB package
provides excellent facilities‘for~processing the multirate sampled
data model, and the algorithms for ﬁapping betweenvﬁhe time, z-plane
w-plane and w’-plane; The simulation exercises of Chapter Five are
are aléo the product of MATLAB processing. The collection of MATLAB
subprograms combine to form a multirate sampled-data system design

"toolbox".

6.2 TOPICS FOR FURTHER RESEARCH

The specificatioﬁ of piloted aircraftvhandlihg qualities, given in
MIL-F-8785C is supported by a User Guide handbook [6.5]. The
current version of this handbook gives no consideration to the
digital-data impleﬁentation of flight control systems. The ‘DFC
design methods, described in fhis dissertation, could fbrm the basis

of a DFC supplement to the User Guide handbook.

By extending the transfef—function forms of aircraft handling

qualities vcriteria to the state elements, a direct relationship
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between the handliné qualities requirements and the sampling policy
could be established. The described method of selecting a multirate
‘sampling policy is based on ‘an assessment of the time history df
state uncertainty. However, if may>be more appropriate to consider

the time rate-of-change of these state uncertainties.

A detailed study of the continuous-time state-space control system
design techniques is required in the context of both the w- and
' w%-planes. A particular method, which has potential for directly
synthesizing control laws that meet the aircraft handling qualities
requirements specified by» MIL-F-8785C, 1is Solhq}m’s optimal pole

placement teéhnique'[6.6].

The problems caused by amplitude quantisation require further study.
The DFC methodblogy implicitly addressés the qﬁantisation issue
through the multirate sampling-policy approach. However, the
methodology requires a practical technique for extending the design
model to the DADT and DACT domains. A possible vehicle for this
research task is the multirate sampled-data state-space model. The
interferenée effects of multirate sampling are exposed on the time

‘histories, as shown in the case study of Chapter Five.

The question of modelling the noise processes, both continuous and
discrete, in mixed—data systems is still, largely, unanswered. It
is felt that the current approach to the problem is based on a
-procedure which haé become respectable thrbugh popular use, because
it provides a quantitative design measure. As aircraft develop, an

increased reliance is placed on active flight control systems to
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maintain the structural integrity of the airframe and
handling—quality requirements. For these aircraft developments, a
better understanding of the nature of stochastic disturbances in

digital flight control systems is required.

A multirate, sampled-data DFC system, incorporating all the flight
control functions, and a redundant system architécture, has 'an
implicit parallel structure. As such, the multirate DFC system is
well placed to addreés the bcurrent. developments in parallel
processing DFC systems [6.7]. . The ﬁethdds described in this
dissertation should be investigated for their application 1in the

design of parallel computing DFC implementations.

For the practitioner,‘ the only credible test of any engineering
design, aﬁalysis, and implementation method is in its épplication in
an engineering environment. The DFC deéigﬁ-methodology proposed in
this dissertation should be exercised in a practical environment to
establish its utiiity as a general DFC system design technique. The
resulting DFC systems(will élso require flight tesfs;'tq determine
if the methodology avoids thé deficiencies of the current digital

flight controlyimplementations, cited in Chapter One. -
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APPENDIX ONE

A BASIC AIRCRAFT MODEL FOR DFC DESIGN

Al.1 INTRODUCTION

This appendix gives details of a systematic method of organising the
basic aircraft system into an analogue-data state-space model. In
‘principle, once the states havé been defined, the assembly of a
state—space‘ model is easily accbmplished. In practice, the
construction of a state-space model for a large complex aircraft
system fequires careful organisation. A model assembly, in which
irregularities can be readily observed,.facilitates the goal of an
error free, flight control design, and thus accommodates the design

methodology maxims prescribed in the thesis.

Al1.2 A METHOD OF ASSEMBLING THE BASIC AIRCRAFT MODEL

The proposed method of assembling the state-space aircraft model
approaches the task from the perspective of the flight control
system design practitioner [Al1.1]. In practice, the information

"required to model the total aircraft is produced from a variety of

.sources and is cast in a variety of different forms.:

The complete, basic aircraft model consists of four subsystem

groups. These are the actuators group, the sensors group, -the
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inceptors group and vthe vehicle group. The vehicle group is
subdivided into rigid- body dynamics and structural dynamics. An
illustration of this arrangement is given in Fig.2.1 of Chapter Two.
The developmen£' of the basic ‘aircraft model starts with the
" non-linear, time-varying equations of .ihe four sﬁbsystem groups.
The first-taék is to combine the equationé of the four subsystem
‘models. Thé ‘most convenient domain for modelling the
Confinuous—Amplitude, Continuous-Time (CACT) subsystem dyﬁamics is
the time-domain state-space. In practice, the.véhicle system is
naturally assembled‘ as a collection of first and higher order
differential equations.. The high order equationé are reduced to an

equivalent set of first order equations.

The models, representing the dynamics of the actuators, sensors and

inceptors are generally produced in a variety of forms. A typical
representation . is - the ‘single-input, single-output é—plane
‘transfer-function. Of ali the typical models, the,trahsfer-function
model requires thé most effort to convert it to the common form.
This is particularly true if the resulting independent variables are
to be cast in terms of the physicai coordinates [A1.2]. Standard

methods are available for mapping stafe variables from one

coordinate frame to another [Al1.3].
In Section 2 of Chapter wa, three groups of non-linear time—varying

equations are defined. These equations, repeated below as (Al.la),

(A1.1b) and (Al.1c), are described as the basic aircraft model.
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x(t) = f(x(t),x(t),ult),y(t),t) (Al.1a)
y(t) = g(x(t),x(t),ult),y(t),t) (Al.1b)
a(t) =

h(i(t),x(t),u(t),y(t),t). , " (Al.1c)

The dimensions of the components in these equations are définéd as
follows: x(tj is a vector of m‘time dependent state functions,
u(t) is a vector of q time dependent input functiohs and y(t) is a
»vectér 6f‘p time dependeht oufput fﬁncfions. Thé functions f , g
and h are non-linear. Thék linearising process 1is based on the
equilibrium-condition, smali-perturbation procedure [Al.4]. vThe
equilibrium-condition also establishes time-invariance. >The utility
of the subsystem method 1is improved by explicitly inéluding
differential stétes, x(t), in the right hand side functibns.‘ This
feature is is discussed in more detail in the next section. The
linearised equations are described inlS¢ction 2 of Chapter Two and-

are repeated below as equations (Al1.2a), (A1.2b) and (Al.2c).

x(t) = F, x(t) +F_x(t) + Fy'y(t) + F_ult)  (AL.2a)
y(t) = G;{ x(t) + Gx x(t) + Gy y(t)‘ + Gu u(t) ) (A;.Zb)
a(t) = He x(t) + H, x(t) + Hy y(t) + H_ ult). ‘(Al.Zc)

The subsystem form of block diagram model, which the above equations
represent, is shown in Fig.Al.2. The diagram demonstrates the

purpose of the interconnection equation (Al.2c).
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Elevator 31 Aircraft 33 Pitch-Rate aq
Actuator | Longitudinal Sensor -
Dynamics . Dynamics Dynamics
Engine ‘ Pitch-Angle an
Thrust ' o Sensor -
. a. .
Dynamics i2 _ Dynamics

- A subsystem block diagram, showing the elements of the
internal and external system interconnection vector a

Fig.Al.1

A standard form of the linear, time-invariant, state-space model is
given in Section 2 of Chapter Two by equations (2.3a) and (2.3b).
These equations ' are repeated below as (A1.3a) and (Al.3b)

reépectively,

x(t)

A x(t) + B u(t) | (A1.3a)

y(t) = C x(t) + D u(t). ‘ -(A1.3b)

The basic aircraft model of the‘ digital flight control design
,méthpdology proposed for the thesis is cast in fhe form of equations
(A1.3a) and (A1.3b). The equations, (Al.Zé), (A1.2b) and (Al.2c),
which are producgd from the model assembly exercise, must be
‘reformed into the state-space pair of (A1.3a) and (Al.3b).

Rearranging equations (Al.2a) and (Al.2b) gives
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[1 - F,) %(t) = F, x(t) + F, y(t) + Fu(t) (A1.4)

1 - Gy] y(t) G* x(t) + GX x(t) + Guu(t) . (A1.5)

By defining'the two vectors

x(t) T x(t)
[ y(t)] and [ u(t)] '

equations (Al.4) and (A1.5) can be expressedvas the matrix equation

I-F, -F x(t) F. F_7[ x(t) |
Y ’ = x v . (A1.6)
-G* I-Gy y(t) Gx Gu u(t)
Rearranging equation (Al1.6) gives
. -1, ’
x(t) I-F: -F F ) x(t) .
y(t) —G* I-Gy . Gx Gu u(t) .

Evaluating the inverse, then multiplying out the matrix and vector

terms produces the standard CACT matrix quadruple (A,B,C,D).

The interconnection vector is defined by substituting equation

(A1.6) into (Al.2c) to give

(t) - [H- H ] PRy B % T « . ou | X (A1.7)
a S e s G I T S G,| |6, G, x 7y ()| - .
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'A1.3 - REASONS FOR THE PROPOSED MODELLING METHOD

At first sighf, it_would appearvthat including a state differential
" term in the right-hand-side of the basic equations produces an
unduly compliCéted method of model assembly. The utility of thé
technique is apparent, as a general method, by considering .the
incremental assembly of a complex system. This approach is typical
of the standard methods of flight control sysfem design [Al1.5]. As
an example, consider the block diagram model of an aircraft’s.
longitudinal dynamics, shown in Fig.Al1.2. This form of presentation
of aircraft dynamics is uéed extensively in flight control systems

work.

R

U
~~

»*

oY
o

—

»*

Q.
o

A partial diagram of an aircraft’s longitudinal dynamics

Fig.Al.2
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When states and state derivafives appear in a subsystem ﬁodel as
open loop inputs, as shown in the model of Fig.Al.2, then the
procedure developed in this appendix provides a systematic method of
assembling'the state—spaee quadruple. This procedure accoﬁmodates
the pieeemeal assembly of a basic aircraft model, which is a typical
approach - to mpdern flight control system design. A common feature’
~in flight system dynamics is the occurrence of an algebraiclloop.v
Algebraic loops are formed as natural processes, as, for example, in
the case of a missile guidance system [Al.6], or they can be
deliberately. introduced as’ a contfol law, as in the case of a
washout function (a practical implementation of a
differentiation function) [A1.7]. The assembly of a model which
includes an algebraic loop is a systematic process for the method

outlined»above.'

Al.4 A CADT MAPPING METHOD FOR RANK DEFICIENT SYSTEMS

The prpduction of a. rank deficient state matrix is caused by CACT
domain dynamics that have the characteristics of open-loop
integrators. The presence of an open-loop integrator, at the input
of a‘System, is identified by a row of zeros in the’state matrix; A;
If the integrator is at the outbut then a column of zeros is
. produced in the state matrix. From basic matrix theory, a square
matrix with a cqluma or row of 2zeros is rank deficient and is
therefore noninvertable. ' In the case of an open-loop integrator
enclosed within a system, the determiﬁant is once again zero but,

‘unlike system’s with an input or.output integrator element, this
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fact is not revealed by either a row or column of zeros in the A
matrix. A technique that circumvents the singular matrix problen,
and allows a CACT to CADT mapping without the need to solve the

integral (2.15), is given below.

Consider the standard fprm of a state-space system model with an
open-loop integrator at the output and a set of zero input

augmentation states, as shown by the diagram of Fig.Al.3.

Augmentation states :
(0) J * dt - X
a
u B, 'J'*dt J*dt 1o x
R n
Integrator
A state
R

Standard form of a CACT system incorporating an integrator element

Fig.Al.3.

From Chapter Two, the state equation deduéed from the model of

Fig.Al1.3. is given by
x(t) = A x(t) + Bu(t). (2.3a)

For this system, assume xn to be an mx1l state vector, with the nth
- element defined as the stéte open-loop~integrator{ The mxm state

matrix, A, is partitioned into the form
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A, | O | .
A= | (A1.8)
0, 1.0 ‘

where AR is an (m-1)x(m-1) matrix and hence the dimensions of the
zero sub-matrix in the last row is lx(mf2). The nxq input matrix, B,

is, in turn, partitioned into
BR ‘
B = , ' (A1.9)

where BR has the dimensions (m-1)xgq and the zero sub-matrix has the

dimensions 1xq. The next step is to define an augmented state

vector
I x ‘
x, = | . : (A1.10)

The number of augmentation states is defined by the number of inputs

q. The objective is to generate a (m+q)x(m+q) square matrix, Aa ,

where
a4 B
Aa = . (A1.11)
0 o] .
Evaluating the matrix function
| " Ah  Bh
exp(Aah) = exp (A1.12)
‘ ’ 0 0 ‘

gives
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exp(Aah) = 1 . (Ai.13)

where ¢ and ¥ éré equal.to the expressions given in Chapter Two’by
equations (2.14) and (2.15), respectively. The method isb.also'
applicable to‘systems with non-synchronous sampling by replacing h
with the output delay parameter, A, to‘yield @A and WA in place of ¢

and ¥, respectively.

Proof of this result is obtained by recaéting the state equation as
a diagonal vstate matrix. The diagonalised siate matrix and
transformed B matrix are scaled by the sampling” period, h, and
substituted info equation (A2.12). The exponential matrix function
is evaluated and compared with the ¢ and ¥ matrices which are

obtained by the direct application of equations (2.14) to (2.17).

Al.5 SUMMARY

This appendix describes a systematic method of assembling the CACT
state-space quadruple for the purpose of the>digita1 flight control
system design methodology proposed in this diésertation.‘The méthod
facilitates the modei construction from subsystems in which state
variablés and derivatives of the state variables appear as inpﬁts.
The assembly of the basic aircraft’s subsystem model is readily
automatéd in a. matrix manipulatioﬁ, computer—aided—design
environment. A technique to map é rank deficient CACT state matrix
to the CADT. domain, which avoids tﬁe need to solve a matrix

integral, has also been exposed.
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APPENDIX TWO

A STUDY OF DIGITAL DESIGN METHODS

A2.1 INTRODUCTION

The fundamental proposition‘of this thesis is that the design»and
analysis of a DFC systém should be carried out in the CADT domain.
In making this assertion,(it is recognised that successful digital
control systems have been designed. through emulation and pseudo
continuous methods by assuming high sampling-rates. However, the
thesis proposes’the direct digital design of DFC systems for the
following reason. A claim, often made, is that a given control
specificatioh can be achieved at lower sampling-rate if it s
designed in the CADT domain [A2.1]. This claim is widely asserted
in the digital éontrol literature but given without <clear
justification. This appendix presents a compelling argﬁment that
supports the "lower sampling-rate" ciaim of the direct 'digitai

design method.

The argument for direct-digital-design is made through a specific
case study. Before the case study is considered, a general scheme»
for comparing the various digital control design methods is

described in the next section.
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A2.2 A COMPARISON OF DIGITAL SYSTEM DESIGN METHODS

Consider the mixed-data model shown below in Fig.Azkl. This‘model
represents the generic arrangement of the basic aircraft ana its DFC
system. The flight control signals from the digital controller are
coupled into the basie aircraft via a digital-to-analogue converter
(DAC). An analogue-to—digitel converter (ADC) forms part of the
.feedback—loop from the continuous-time system output to the digifal
controller input. The feedback-loop element, Hc,yis implemented in

the form of a program in the digital control computer.

D

[ Al

DAC B, I S,
A
A

ﬁ;j , ADC

A general CACT system with digital control and output feedback

Fig.A2.1

The state-space equation for the system of Fig.A2.1, withj the
analogue-data elements recast in their equivalent discrete-time

form, is given by

x (n+1)] [¢ -t M 'DHC v M x (n)] ¢ M D
A A A C CA A C A A C

: = 3 " + ) v(n),
x (n+1) -YN 'HC -y N HDC x (n) ¥ N
c cC TCA c ¢ cac)|c c
(A2.1)

where M = [I + DHD ] and N = [I + HDD ].
o cCcCa caAc
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‘The CACT elements, AA and BA, are mapped to their equivalent

discrete-time functions, @A and WA, respectively, where

¢, = exp(Ah) o | (A2.2)
h

¥, = | @) aaB, . L w2
0

Assuming the'sampling instants of the ADC and DAC coincide,. then the
terms, CA and DA, of the continuous-data output equation, are

unchanged by the continuous to discrete mapping.

The general state-space expression, given by equation (A2.1), forms
the basis of an experimental procedure to compare the performance of
a digital controller, designed by emulation methods with a

controller designed by the direct-digital method.

A2.2.1 Experiments to Compare Digital Design Methods

An experimental procedure, used to compare the most common methods
of DFC design, .is outlined in this sectiqn."The procedure starts
with a CACT system to which feedback qqntrol ﬁust be added. The
benchmark for the experimenf is the simulated performance of the
system with an analogue controller. The performance measures used
to comparé the systems' of each design method are closed-loop
stability margin and disturbance attenuation. Both measures are
investigated by taking the sampling rate as the base parameter. The

experimental procedure is outlinedvin the diagram Fig.A2.2.
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Basic CACT system

)

Emulation Design Specified Controlled Direct
‘ Performance : Digital
/
Analogue-Data Discretized
Controller : \ ‘CACT System
Map the Controller Sampled-Data
to the CADT Domain Controller
Tustin’s Bilinear z-Transform
Transform with ZOH
/

~_—

Cbmbine the Basic Discretized CACT

System with the Discrete controller

Using equation (A2.1)

\
Simulate and Compare

the Results of each
Design Method

The procedure to‘compare the»emulation design
methods with the direct-digital-design method

Fig.A2.2
The experimental procedure, illustrated in Fig.AZ;Z, is exercised in
the next section. Although trivial, theAexample exposes the lower

sampling-rate advantage of the direct-digital-design method.
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'A2.3 THE EXPERIMENTS IN DIGITAL DESIGN METHODS

Consider a CACT system consisting of a sihple integrator. In terms>
of thé state-space quadruple, the matrices are cast as scalaré énd
the values 0,1,1,0 are assuhed for A.A,BA,CA and DA,'respectively. A
unity géin feedback controller is required to reduce the effects of
a Stobhastié disturbance applied af the input of the CACT systemn.
- The stochastic disturbance is modelled as a white-noise source with
zero-mean and standard deviation,' c. Further, the closed-lobp
dynamiés are designed to have a damping ratio of 0.58. The énalogue

controller that meets the specification is given by

xz(t) = -xz(t) + y(t). (A2.4)

~The simple analogue system design produces the closed-loop model

shown in Fig.A2.3.

v(t) J ‘ 1 1 y(t)

A closed-loop feedback and a dynamic controller
producing the specified damping ratio

Fig.A2.3
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The state-space model for this system is given by

x, (1) o 1] x(t) 0 1
. = + v(t) + W, (A2.5a)
xz(t) | -1 -1 xz(t) 1 , 0
yi = x (1) .  (A2.5b)

Using the analysis detailed in Appendix 5, the mean-square noise.

response at the output is given by (c.f. equation (A4.5))

x (t) g g -
_ 1 _ 11 °12
Gc =g [ xz(t)][ X1(t) xz(t)] = [ g ] . (A2.6)

21 g22

where 8[ * ] is the expectation operator. A convenient form of the
definition (A2.6) is to expand it as a Lyapunov equation, which is

given by (c.f. equation (A4.6))

o 1 €1 &2 g, 8|0 1 1 2
-1 -1 ¥ 1 1| Yo | Y[t of=Ttol
8 &x €1 &

(A2.7)

Solving equation (A2.7) for the four elements of GC gives

= w2 = - 12 = and = 12
81 ! €12 2 €21 €22 2 -
The statistical response associated with the system output is
therefore given by

Y = cGCc. ‘ (A2.8)
CN C .
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The next step is to embark on the design of the digital controller.
Following the emulation procedure there, are two possible methods
available. The first method is to form an equivalent discrete-data
model -of the analogue controllér using Tuétin’s bilinear transform
(equatioh 2.10). Substituting the parameters of the analogue
controller, A =-1; B=1, C=1 and D= 0, into the Tustin transform

gives

h
1- 7
o = (A2.9)
T -1+ b
2
v = —5 2 (A2.10)
>
c = 1 O (A2.11)
h _
D = ,—2 . (A2.12)
T h
[ 1 + Ef]

The alternative method for mapping the controller model to the CADT

domain is by the z-transform with a ZOH. This mapping gives

@z = exp(-h) ' | (A2.13)‘
vo= 1~ exp(-h) : (A2.i41
c, =1 ) | ~ (A2.15)
D = o. (A2.16)

A2-7



With a sampling period h, the equivalent discrete-time system for
the integrator is obtained by evaluating (c.f. equations (2.22) and

(2.24))

Using equation (A2.1) to combine the equivalent discrete system
mddel with the controllef model produced by the Tustin transform,
and omitting the disturbance input, gives the Tustin equivalent

state equation as

LY LY
2 2
' T. BT 1+ B
x;(n+1) 2 xA(n) 2
= - . . R . V(n).
x (n+1) 1 - 0 x.(n) h 5
- h 2 [ 1 + ll)
[1 + 32‘_] 1+ % | 2
L i j

(A2.17)

Applying the same procedure for thevz—transform controller model

gives
xk(n+1) 1 § h - xA(n) 0

= . » ’ B I Y [———————— R 4 (n ) . ( A2.18 )
xc(n+1) -(1-exp(-h)) .exp(-h) xc(n) 1-exp(-h)
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A2.3.1 Stability Measured Against Sampling Period

'Computing the characteristic equation for both the Tustin deri&ed,
and ‘z—transform‘ deri&ed, -systems :reveals~ the stability
charaétefistic for a Varying sampling-period,k h. The
sampling-period root-locus of the control system designed with the
Tustin transform progrésses out of the z-plane unit disc when the
sampling-period exceeds two seconds. In the the case of the control
system designed using thé - z-transform, the sampling-period
root;loéus leaves the unit disc'ﬁhén'fhé sampling period exceéds 6ne

second.

The two stability test results, for.thé systems produced by the‘
‘non-direct-digital-design methods, are compared with the stability
of an equivalent controller, produced by the direct—digitalfdeéign‘
method. For the purpose of comparison, the controller designed by
the direct-digital method is specified to _produce a system with
closed-loop dynamics that are equivalent to the oriéinal CACT system
given by equation (A2.5). jThe combined CADT domain sampled-data
model of the basic CACT system:and the'proposed'digital controller

is assembled through equation (A2.18) to give

xl(nh+h) 0] 1 xl(nh) ho 0 1 0
% (mh+n)| = S*Pl[-1 -1|B[|x (mm)| * J expll_1 A9 |V(V)
2 2 '

]
(A2.19)
From equation (A2.19), the z-plane transfer function ié computed for
increasing Qalues of h. The sampling-period z-plane roof-locus

remains within the unit circle for all values of h. The
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sampling-period root-locus diagrams shown in Fig.A2.4 give an
obvious comparison of the three design methods in terms of the

system stability.

z-Plane

[Réal axis

\_ Imaginary axis Unit circle
Emulation Design o
via z Transforms

z-Plane

[Real axis

\ Imaginary axis Unit circle

Emulation Design via the
Tustin Bilinear Transform

z-Plane

Real axis

——f ———— g ——————s

\ Imaginafy axis Unit circle
Direct Digital Design

Thevsampling—rate z-plane root-locus diagrams of equivalent digital
control systems designed by the direct method and emulation methods

Fig.A2.4
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'A2.3.2 Disturbance Measured Against Sampling Period

Consider a discrete system, which has a state matrix, ®, and a
controls matrix, ¥.  If the system is excited by a white noise
signal, it is shown in Appendix Four that the covariance matrix, Gd,

is given by (c.f. equation (A4.11))

Gd = @.Gd ® +» Qd , (A2.20)
where
Qd = . exp(Akh)wc(A) dx . (A2.21)

In this example AA = 0, then Qd is given by
' hwi 0 '
Q= : ' (A2.22)

The next task is to evaluate equation (A2.20) for the three design
methods; that is, for the Tustin transform, the z-transform and the
direct-digital-design method, where & is obtained from equations
(A2.17), (A2.18) and (A2.19), respecti?elyr .In - each case, the
computation is repeated for different valuesydf sampling period, h.
Applying equation (A2.6) to these discrete—time results . gives the
sampled-data system outputvnoise as

Y = cGg. , (A2.23)
DN d ‘

The normalised noise résponse is defined as
Y .
Y =20 lOg 7—' . (A2.24)
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For each design method, the result of eéuation (A2.24) is plotted
against a base of sampling period, as shown in Fig.A2.5. The
‘plotted results clearly illustrate that, to achieve a given noise
performanée, the emulation design methods require‘a higher sampling
rate than the thé direct-digital-design method. Differentiating
equation (A2.22) with respect to h gives a measure of the noise

sensitivity as a function of the sampling rate.

] 101 Emulation Design
S 94 via z Transforms |
& | - Emulation Design via the
P B+ " Tustin Bilinear Transform
5 7 ] /
© ! : /
T 61 / / /
= . / / .,l . '
3 / / /Direct Digital Design
w 4 / / !
E // . / /l
£ 3 / / /
s / y /
2 / % /
21 4 e /
g Phe /
-~ -~ /
14 - - e
o=t e
PP S- ~ b S P .
0.03 0.05 0.1 0._25 0.5 1 2 4

Sampling period - seconds

. The normalised wind gust disturbance response of equivalent digital
control systems designed by the direct method and emulation methods

Fig.A2.5
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A2.4 SUMMARY

This appendix has offeréd an argument to support the method of
direct-digitél—design of a mixed-data control system. The argument
is based on the resﬁlts obtained from én analysis of a particular
system configuration.‘b The results, while exposing interesting
comparisons, must be treated with caution when drawing general
conclusions. The analysis technique is, however, general and can be
extended to compare emulation and direct-digital-design methods for
higher-order, mixed-data systems. bThe analysis,‘ﬁhich prodhcés the
normalised gust response against sampling period, forms the basis. of

the sampling rate selection procedure employed‘in Chapter Three.
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APPENDIX THREE

SAMPLING, QUANTISATION AND DATA RESOLUTION

A3.1 INTRODUCTION

This appendix presents an example to demonstrate the relationship
that exists between the sampling-rate, the quantisation noise aﬁd
the digital—data wordlength of a sampied—data, digitally controlled-
' CACf‘system. The purpose of the example is to support the specific

arguments of Chapter Three.

A3.2 THE PROBLEM STATEMENT

Consider the discrete-data model of a sampled-data system shown in

Figure A3.1.

x(m+1) ] pppay - x(n)

w _/-\
Q T
A

The discrete-data model for quantisation noise analysié

Fig.A3.1
Without loss of generality, it can be assumed that the discrete-data
model is cast in the modal form, given by
x(n+1) = AD x(n) + wd_ , (A3.1)"
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Where Aﬁ is a discrete, mxm,k diagoﬁal state-matrix, produced by
mapping a CACT domain mxm diagonal matrix, A, by the function
exp(Ah). If the .input function, L is a white noise quantity
representing the quantisation noise then, using the analysis
developed in Appendix.Four, the steady-state condition of the mean

square quantisation error is given by

Gcs = exp(Ah) GCs exp(A'h) + QN , (3.2)

where the matrix Gcs is the output noise covariance, with elements
usually denoted as 0&2 and QN, is an mxm diagonal matrix whose

elements values represent the "strength" of the quantisation-noise.

A3.3 SAMPLING, QUANTISATION AND DATA RESOLUTION COMPROMISES

In the case of a mixed-data system; where the CACT to DADT domain
interfaces are implemented with ADC and DAC devices, and the CACT

domain data is represented as a W-bit digital-data vector, it can be

-W,2 ~-W,2
2") 2 ") _ 2
Vi where 15 = ow,

shown, [A3.1], that the matrix Q = [1]
and I is an mxm identity matrix. Substituting these two quantities

into (A3.2) gives |
1 0}2 = exp(Ah) ckz.exp(ATh) + 1 0w2 . | - (A3.3)

With the parameters of (A3.3) expressed in the modal form, the

equation can be reformed as

, |
[exp(Ah)] o -1c%+Ic%=0 . (A3.4)
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If a noise amplification factor is defined as

UX
n= - : ' (A3.5)
W .

then equation (A3.4) can be reformed to give

2
[exp(Ah)] =1 - I-l—z .  (A3.6)

n
The purpose of the analysis is served by considering the particular
case of a system with distinct eigénvalués. It is recalled that a
system with distinct eigenvalues has a diagonal modal-form
state-matrix, thus the étates are uncoupled and the analysis can be
.performed on scalar equations. A single row of (A3.6) représents

one dynamic mode and produces a scalar equation given by
1
exp(Ah) = 1 - = . (A3.7)

Expanding the exponential function as a series and truncating the

result after the first order term gives

1+a = /1 - —1-2 i (A3.8)
7 | ‘

Solving (A3.8) for h gives

IS _ 1 '
h= + 1+ /1 | k(A3.9)

Since A is a pole of the system, it is clear that if the noise
amplification term is constant then, as the pole moves towards zero,

h tends to infinity. For the purposes of selecting a sampling-rate,
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it can be seen that, for a constant noise amplification, the

sampling-period, h, must be increased as the pole location is reduced.

-W,2
Expressing the noise amplification in terms of (212) and oy leads

to a relationship between sampling-rate, quantisation-noise and
wordlength. Rearranging equation (A3.7) and substituting the
quantisation-noise expression for o gives

—w)z

(2 _ _ ’; 2 '
L - vox[l (1 + AR) ] : (A3.10)

Solving (A3.10) for the wordélength, W, gives

, 1 ' 1
W = lo

) |
log(2) V12 %Y (an)? + 2an

(A3.11)

This expreésion indicates that, for a given level of output noise,
o&, a reduction in the sample period will require an increase in the
data-conversion process wordlength W. It is also clear that for a
constant output noise level and sampling period, a decrease in the

pole location must be matched by an increase in. the data-conversion

wordlength.

A3.4 SUMMARY

The analysis presented in this appendix exposes the relationship
between sampling—rate‘and amplitude-quantisation, in terms of the
data wordlength, and the effect they have on the noise level in a

digitai ~data systen. The clear relationship, that higher
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sampling-rates require higher data wordlengths in order to achieve a
given quantisation, is a feature that distinguishes the modern
concept of a sampled-data system from the classical sampled-data

system.
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APPENDIX FOUR

NOISE PROCESSES AND SAMPLED-DATA SYSTEMS

A4.1 INTRODUCTION

This appendix presents a method for including a continuous noise
process in é sampled-data vsystem model. In the context of an
airéréft digital flight control system; the typicai hoise processes
: afe the continubus air-turbulence disturbances impinging on the
airframe and the amplitude quantisation noise which is an inherent
featurevof digital computérAcontrol. The sampled-data noise model
is developed by progressing an argument from both the purely
continuous and purely discrete noise model éasés. The form of
system implicitly considered in this appendix 1is the generic

aircraft model illustrated in Fig.2.1 of Chapter 2.

A4.2 NOISE PROCESSES IN CONTINUOUS-TIME SYSTEMS

The basic system for which the continuous-time noise process is

defined is shown in Fig.A4.1 and modelled by the state-equation
x(t) = Ax(t) + Bw(t), (A4.1)

where x(t) and A are interpreted in the usual deterministic system

sense. The matrix B couples the white noise process wc(t) into the

Ad-1



-system state. Fof engineering purposes, equation (A4.1) is
respectable; in a rigorous sense, it should be interpreted as a

stochastic differential equation of the form
dx(t) = A x(t)d(t) + BNdB(t), ' (A4.2)

where dx(t) and dBg(t) are differential opefators of the state
vector, x(t), and Brownian motion input vector, B(t), respecfively.
Equation (A4.2) is the proper form because B(t)=fw(t) but w(t) =
dBg(t)/dt does not exist [A4°1]f The pﬁrpose of thié appendix is

served without further reference to this interpretation.

In formal terms the properties of white noise are defined as

& [[wc(t)]] = 0 ' (A4.3)

& [[uc(;)][wc(r)]T] = Qa(t-7) (A4.2)

where 8[ * ] is the expectation operator and 8 is the Dirac delta

function. The covariance state matrix is defined as

c =€ [[x(t)][x(t)]T] L | (A4.5)

In terms of the system parameters, the steady-state covariance

matrix GD is found by solving the equation .
AG +cAT+BQE = 0.  (ALe)
c c NC N :

The development of equation (A4.6) is a well documented process and

is given in detail in [A4.1].
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w (t)
c

S[A,BN]A x(t)

A continuousftime system driven by white noise

Fig.A4.1

A4.3 NOISE PROCESSES IN DISCRETE-TIME SYSTEMS

This section considers the definition of a model for the case of a
discrete system being exercised by a discrete noise process. The
arrangement for this case is shown in Fig.A4.2 and modelled by the

discrete state-equation

x(n+l) = éx(n) + ¥ (n). (A4.7)

The properties of the discrete noise data W are defined as

e ['[wnl] = 0 | (A4.8)
1 _ .
& [["b]i["nlj] = Q 61j , (A4.9)
where 8[ * ] is the expectation operator. The discrete state

covariance matrix is defined as

G =€ ([x_ 1[x ]T] - (A4.10)

In terms of the discrete system parameters, the covariance matrix is

expressed by the equation
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_ T T
GD(n+1) =9 GD(n)Q ’+ @kQDWN° (A4.11)

Details of the development of equation (A4.11) are given in [A4.1]

W (n)— z[cb,wn] [~ x(n)

A disqrete system driven by discrete noise

Fig.A4.2

A4.4 THE EQUIVALENT DISCRETE MODEL FOR A SAMPLED-DATA SYSTEM

The developmént of a practical design model of a sampled-data
system, which includes continuous noise data sources aé inputs . to

the analogue-data elements, is based on the approach employed to
model deterministic systems. Although in a rigorous sense this
approach is queétionable, a convincing theory of noise précesses in
a mixed-data system appears not to have been,develoéed. The basis
of the generally accépted sampled-data.nbise model ié a continuous
system, S, embedded in a aisérete system, X; the arrangement is
shown in the diagram of Fig.A4.3. In this model, the process noise
vector, wc(t), and the measufement noise vector, vc(t), are directly
“applied to the input and output of S, respectively. A continuous
measurement noise,‘vc(t), can be redefined as a sequence of discrete
vectofs and theréfore becomes an input to the discrete system Z.
The continuous system oufput is sampled every h units of time, so

the ADC clocking rate is given byv{%.
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1
: D -—
wc(t) To T v,
u—~DAC B Idt _x() | ¢ ADC v
8
v (1)
System S vA ¢
System Z

The definition model ofvthe sampled-data stochastic system

Fig.A4.3

The process model, S, represents the basic CACT domain system and
any augmentation states needed to make the process noise, L white.
If the measurement noise, vc, occurs within S so that it is
processed by the ADC then it Iis standardv practice [A4.2] “to
calculate the statistics of the resulting noise sequence emerging
from the ADC and call this sequence‘vi. If vi is not white then

augmentation is carried out on the equivalent discrete-time system.

A white measurement noise vector;'vc, with a covariance defined as
RCB is applied to  the input of the ADC. The resulting output

‘sequence, V., can be considered as white, [A4.3], with a covariance
given by

R

- _c |
R o= +. (A2.12)

The physical interpretation of equation (A4.12) is obscure and this
is one reason that the procedure described in the previous paragraph

is adopted.
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4The equivalent CADT domain state-space model of the system

illustrated in Fig.A4.3 is given by

x(i+1) K x(i) + Yu(i) + wD(i) : (A4.13a)

y(i) Cx(1) + Du(i) + v(i)  (A4.13Db)

On the assumption that the members of u, arrive at the DAC at the
same instant the ADC is clocked, then the‘quadruple terms of (A4.13)

are given by

¢ = exp(Ah), | (A4.14)

v = Jh exp(AA)dA B, (A4.15)
0

‘CD = C, ' (A4.16)

D = D | (A7)

The noise term wD(i)’is given by

ih ' :
wD(i) = [ exp(AA) wD(A)dA. ' (A4.18)
(i-1)h - '

The discrete process—noise‘cdvariance is defined by equation (A4.9).

From (A4.18), it is deduced that

Q = Jhexp(AA) chxp(ATA) da. ‘ (A4.19)
o ,

From (A4.19), it is observed that for a high sampling-rate, QD= hQC.
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Ad4.4.1 The Covariance Matrix of Sampled-Data Noise

This section examines the effect that sampling has on a continuous
system’s output-data covariance. The basic model on which the
analysis is carried out is shown in Fig.A4.4 as a subset of the

system given above.

wc(t)——- S[A,BN]' x(t) ADC  |—ex(i)

A continuous-time system driven by white noise and sampled by an ADC

Fig.A4.4

The objective is to find a mapping function for the continuous
covariance matrix, Gc’ given in (A4.6), that will generaté an
equivalent sampled-data covariance matrix,le, for the arrangement

shown in Fig.A4.4.

For GC to . be finite, the _State» matrix A must have open,
left-half-plane eigenvalues so that A_lAexists. The procedure to
find the maﬁping between Gc énd GD starts with the solution of QD,
where matrix‘QD is défiﬁed by (A4.19). The arrangement shown in
Fig.A4.4 implies that thevnoise is‘aléo processed by the coupling
matrix, BN. The modification to Qn’ given by (A4.19), is easily

deduced to account for this generalisation. The modified equation -

for QD is given by

Q = Jhexp(AA) BQ Blexp(ATa) da. (A4.20)
d 0 ‘ Nc¢c N =~ » )

AL-7



Integrating (A4.20) by parts yields

h

Jhexp(AA) BNQCB;exp(ATA) dx = [[exp(AA) BNQCB:] A—Texp(ATA)]
0 | 0

- [A exp(Ar) B QBF]A‘Texp(ATA) da.
A 0 NC N
(A4.21)
Evaluating the limits of (A4.21) produces
T

_ [ T Ty ool -
QD.— [exp(Ah) BchBuexP(A h) BNQCBN A QD] A . (A4.22)

Post-multiplying both sides of (A4.22) by A" and rearranging to

separate the terms QD and QC gives
AQ + QA" = exp(Ah) B.Q B'exp(A'h) - B.Q B’ . (A4.23)
D D : NCN NC N - )
From the discrete system covariance (A4.11), QD is given as

Q =G, -9 Gb¢T : (A4.24)

and from (A4.14),

o
]

exp(Ah). O (Ag.19)
Substituting (A4.14) and (A4.24) into (A4.23) gives
T T T T
A GD ~ A exp(Ah) GD exp(A'h) + GDA - exp(Ah) Gn[exp(A h)]A
T

T T ‘ '
= exp(Ah) BNQCBNexp(A h) - BNQCBN : (A4 25)

Functiohs of the same matrix commute, therefore Aexp(Ah) and

[exp(ATh)]AT terms can be recast as [exp(Ah)]A and ATexp(ATh),
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'respectively, to allow (A4.25) to’be written as
T T T T T, y _
A GD + GDA + BNQCBN exp(Ah)[A GD + GDA + BNQCBN]exp(A h) = 0.

(A4.26)

Given that exp(Ah) has full rank and is not equal to a unit matrix

I, it is seen that equatiqn (54.26) is satisfied if
AG +GA" +BQB" = o. (A4.27)
"D D . NTCN
Comparing (A4.27) with tA4.é) gives the interesting result of
G = G. | © (A4.28)

which implies that sampling does not change the covariance of x.

A4.5 SUMMARY

- This appendix hasvoutlined the development of an approach to map
stochastic.system parameters between the CACT and CADT domains under
the operation of a ZOH‘sampledjdata scheme. It should, however, be
realised  that only plausible arguments have been presented. A
complete and definitive approach to. the problem of stochastic
modelling in aircraft DFC systems is not available and is the

subject of current research [A4.4].
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APPENDIX FIVE

MODELLING A MULTIRATE SAMPLED-DATA SYSTEM MODEL

-A5.1 INTRODUCTION

This appendix gives an exémple to demonstrate the 'procedure,;
dévéloped in Chapter Threé,-of assembling a multirate sampled—data
system model. The example builds a state-feedback clpsed—loqp model
with a dual-rate sampling policy. The model and resulting multirate
digitai control system are compared to an identical system that is
deéigned by the alternative method of Kalman aﬁd Bertranm, whichAis :

described in detail in reference [AS.l].

A5.2 THE PROBLEM STATEMENT
Consider the system illustrated in Fig.A5.1, where both the CACT

system’s inputs and the digital feedback loops are partitioned for

the application of a dual-rate sampling policy.
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v(k) u

| ZoH_—=
) : x=Ax+Bu +Bu
u 11 2 2
ZCH
1
fast H N
1 s
1
slow H NG
2 s,

The model of a dual-rate sampled-data system with state-feedback

Fig.A5.1
The model of this dual-rate sysfem is obtained directly by the
methods described in Chapter Three. The sampling rates are selected
-for a policy of 2p, where p is an integer. That 1is, from ‘an
iteration increment rate of, say, one time-unit, the next sampling’
rate is two time-units and the next is four time-units and so on.

A5.2.1 The Assembly of the Closed-Loop Sampled-Data Model

The stateiequation for the dual-rate system, with a sampling policy

of hP = 2phb , is given by

x(nh, + b)) = [@p] x(nh ) + [‘Pp] vmh) . (45.1)
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‘The state coefficient matrix is given by
[% ] = [[<1> * qfinllp + @ +‘w11{1]p'1 YH + ...
.+ [0+ §1H1]P'2‘w2H2'+‘[§ + @13%] WZHZ + [T ] WJEJ , (AS.Z)F
and the ihputs qdeffiéient matrix is given by

[\1/ ]= e+ vHIP 'y + [0+ vHIP?y + ...,
P 11 2 11 2

oo+ [0+ \P1H1] \Ilz + [I ]'\112 . (A5.3)

The matrix terms & , Wl and Wz have the usual interpretation under

the assumption of a Z0H sampling process and are given by -

d = exp(Ahl) R (A5.4)

~ h .
1 v

W1= exp(AA) da B1 , (A5.5)
Uo i .
fhz :

W2= exp(AA) dA B2 . (A5.6)

- Jo :

In this‘kfinal part .of the .example; the application of these
equations is illustrated using the system introduced to demonstrate
the modified. Kalman and Bertram method given in [A5.1] For

" convenience, this system model is summarised in Fig.AS5.2.
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The continuous time system modei

x, (t) 0 0]fx, (t) 1l 0
x (1) T o —1ffx, )] T o u (8 + g Uy ()

The sampling policy

» Iteration Increments n
n =0 1 2
b
h ’ h
b b
n = 0 1 2
1
h I h
1 1
n = 0 1
2
h
2
n =0 1
3
h
P
| |

u1 0] H2 x1 1
ul = o |lx| * |o|v(nh,)
2 1 2
with H = -1 and H_ = +1
1 2

- The sampled-data state equation
x, (nh + h) 1 0 ][, (nh)
x,(nh + h) © |0 exp(-h)||x,(nh)

' h 0 17 h 0 o]
* 0 1-exp(-h)|]|O ui(nh) * o 1-exp(-h)||1 uz(nh)

A summary of'thé multirate sampled-data system model from [AS5.1]

Fig.AS5.2
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For the open-loop model, the equivalent discrete matrix terms of the
CACT system are evaluated using equations (A5.4), (AS5.5) and (A5.6),

and are given by

1 o 1 |
d = 0 exp(-hl) : (A5.7)
f'hl 0 1117 'h1 ,
¥=lo 1-exp(-h, ) oJ* 0 (A5.8)
Y=o 1—exp(-h1) 1|* 1—exp(-h1) (AS.9)
The state feedback matrices are given as
H1=[O -1] (A5.10)
Hé=[1 0]. ' (A5.11)

Substitutihg these equations into the dual-rate state model defines

the closed-loop system given by

. 2
%X (nh_+ h ) 1 o] - |n x (nh_)
s A M + 1 o -11 1P
xz(nhp+ hp) 0 exp(hl) 0 xz(nhP) ,
1 o h, ] 1 0]|[ o ) x, (nh)
‘ - 10
* -O exp(hi)J+-O j[O 1]+-0 1_ blfexp(;hl)J[ ] xz(nhp)
1 0] 'hl' - Jr10]|[o 1
*1lo exp(h, ) o |10 -11+[5 4 1-exp(-h, ) [10] v(nh) .(AS.12)
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"Multiplying out the matrices of equation (A5.12) gives

[xl(nhp+ hp)] _ [1—h1(1—exp(-h1) -h1(1+exp(-h1)' [x1 (nhp)]

xz(nhp+ hp) 1—exp(-2h1) exp(—2h1) J xz(nhp)

v(ah ) . (A5.13)

[‘—h1(1+exp(—h1)'

1—exp(-2h1) |

A5.3 SUMMARY

The application of sampled-state feedback control . to the
Continuous-Amplitude, Continuous-Time system, shown in Fig.AS.1,
results in the closed—loop state-equation (A5.13). This result is
identical tp the one produced by the modified Kalman-Bertram method
[AS5.1]. In the above case; the approach stérts with an open-loop
system and progresses to the closed-loop model. = By apparently -
feversing the Kalman-Bertram method, the proposed approach is
aligned to conventional flight control system design techniques. In
this respect, the facility of the above méthod appears to offer an
advantage for the particular requirements of DFC design. A further
advantage of the above approach appears from the structure of the‘of
matrix equations used to develop the multirate sampled—datavmodel.
The visibility of the physical system, throughout the development of
the control system, is greater than thatkoffered by other multiraté
modelling methods. It ié "therefore claimed -that the proposed
digital control system design mefhodology meets the requirements of

the design maxims of the thesis.
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APPENDIX SIX

MULTIVARIABLE w-PLANE AND w’-PLANE MODELS

A6.1 INTRODUCTION

This aﬁpendix supports the discussion presented in Section 4.2 of
- Chapter Four. In that chapter, the w-plane and w’-plane system
models - were defined. The relationship between the CAbT systém
quadruple; (Q,W,CD,DD) and the w-plane and w’-plane quadruples,
(AW,BW,C",DW) and (Aw, ,Bw, ,C", ,D", ), respectivelvy, are given. These

relationships are developed in this appendix.

A6.2 MAPPING THE CADT STATE-SPACE MODEL TO THE w-PLANE

By definition, the bilinear transform maps the w-plane from the
z-plane. However, if'an equivalent CADT modei is obtained»direétly
from the CACT state-space equations, the w-plane is effectively cast
in terms of the discreté—time’quadruple (@,W,CD{DD). Under these
conditioﬁs, the algorithm developed in this section can be regarded

as a time-domain to w-plane mapping.

The bilinear transform that maps the‘w—plané from the z-plane is

1+ w k
oz = g . _ (A6.1)

Substituting (A6.1) into the z-plane state-space equation,
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z X(z) = & X(z) + ¥ U(z) ' (A6.2a)

¥(z) = CX(z) + D U(z) , ~ (46.2b)

and adopting a‘minor abuse of notationi , 8ives

[ 14w ]X(w)

— 2 XG0+ VUG | | (A6.3a)

Y(w)

CDX(w) + DDU(w) . | (A6.3b) -

As a first step, the product of the scalar form of the bilinear

transform and the state vector is recast as a matrix equation.

[ = ]X(w) = [T - w117 I + wIIXOW) . (A6 4)

Substituting equation (A6.4) into (A6.3a) and premultiplying both

sides by [I - wI] gives

[I + wIlX(w) = [I - wI]® X(w) + [I - wIl¥ U(w) .  (A6.5)

Collecting the state wvector, [X(w)], on the 1left hand side,

multiplying out the bracketed terms and factorising to isolate w

gives

[w[I + 8]+ [I - @]]x(w).?v[I S WY UG) . (A6.6)

1 +w
1 - w

1
The strict notation is X but in the interest of simplicity

the notation X(w) has been adopted throughout this text.
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Taking [I + &] as a common factor gives

1 + Q][WI + (1 + 81701 - ¢]]X(w) = [I - wI]¥ U(w) . (A6.7)

- The next objective is to isolate a single term containing the
transform variable, w. This is most readily achieved by rearranging

the right hand side of equation (A6.7) and adding the term
[[1 + 917N I - 8] - [1+ @17 (I - @]] =0

[1 +”¢1[w1,+ (1 + )71 - @1] X(w) =

—[[wxg [1 + 8] %1 - @]] - [1 + [I + 817 M1 - @]]}w U(w) . (A6.8)

- Taking the term [I + @]_1outside the second bracket of the right

hand side of equation (A6.8) gives
[1 + @][wI + [1 + 81 I - Q]] X(w) =
_[[wx + 11+ 0171 - q:]] -1+ ]! 21]\1/ Uuw) . (46.9)

Premultiplying both sides of equation (A6.9) by

’ -1
[wI + [1+ @) YT - @]] 1+ 81!

gives

' : -1
X(w) = - [wI + [I + Q]—l[l - @]] [I + @]-1[w1 + [I + @]_I[I - @]]

-1
fur [1 + &) I - ¢]] [+ 8] 1[I + &) ‘21 } v U(w)

(A6.10)
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Using the two matrix relationships

WI (I + @] = [1+ 6] uI

[T - @l[I +¢] =I[I+@lll-eal ,

1

the term [I + @]f,~in the first part of the right hand side of

equation (A6.10) commutes to the left to give

. L |
X(w) = [[wl + [I + 81701 - <I>]] 2 [I+@17% - [T+ &) '] uw)
(A6.11)

Substituting equation (A6.11) into the w-plane output equation givés

Y(w) =
' -1 -1 - -2 ' -1 o
CD [wI + [1I.+ &) [I - @]] 2[1 + @] ¥ - [I + @] "¥| U(w) + DDU(w).
(A6.12)

The . relationship betweeﬁ the w-plane 'quadrﬁple and the CADT
éuadruple is found by comparing equation (A6.12) with the w-plane
transfer-function. Froh the w—pléne state-space equations givenbin
Chapter Four ‘by (4.13),A the w-plane matrix transfer-function is

given as

Y(w) =C[I-A1'B UMW) +D UMW) . (A6.13)
w W W W .

A comparison of the coefficient matrices of equation (A6.12) and
equation (A6.13) givés the w-plahe quadruple. In summary, the

w-plane quédruple, in terms of the CADT state-space quadruple, is
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given by

A =-lI+e] ' [1-0] . (46.14)
B =2[I+ o1 %y ' (A6.15)
c =c_ | (A6.16)
W D - .

D =-cC[I+d w+D . (A6.17)
W D D

The inverse mapping functions are directly deduced from these four

equations and are given by

- .

® = [T +A1[TI-A1Y | (A6.18)
W w .
v =2[(I-A1° |, (A6.19)
W w :
c =c |, (A6.20)
D W
D = ClI-A]'B +D . ©(A6.21)
D W w w W

A6.3 MAPPING THE CADT STATE-SPACE MODEL TO THE w’-PLANE

The w’/-plane, defined in terms of.the w-plane, is given as
w = fg-wf . - ‘ (A6.22)

Substituting equation (A6.22)‘intor(A6.12) gives

Y(w') =

-1

, 2 et P 4 -2
cD[[w I +Z (140] [1;]] 2 [1+0)

v -[1+0] 1| Uw’) + D UGW)

6.23)
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‘Comparing the coefficient matrices of equation (A6.23) with the
matrix coefficients of equation (A6.13) gives the w’-plane
quadruple. In summary, the w’fquadruple, in terms of the CADT

state-space quadruplé, is given by the following equations:

A, =-2[1+0 M 1-91 | (A6.24)
W h
4 -2 ‘

B, = —[I +&] %% |, (A6.25)

W h

c,=c, . : - (A6.26)
D,=-ClI+¢] ¢ +D . (A6.27)
5 w D D

The inverse mapping functions deduced from these equations are

® = [T+2a,1[1-24,17" ,  (s6.28)
W 2w ,
¥ = 2 [I —%A 12hg (A6.29)
w 2 w :
c =c, |,  (A6.30)
- D . W
_ - _h ,-1 h
D =C,II-74A,l £2 B,+D, . (A6.31)

A6.4 SUMMARY

The algorithms developed in thisvappendix provide a convenient and
efficienf method for directly mapping a CACT state-space quadruple
to the w- and the w’-planes.The algorithms avoid the generation of
the‘ cumbersome transfer-functions that usually occur with the

- single-input single-output transfer-function mapping method.
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~ APPENDIX SEVEN

ANALYSIS TECHNIQUES FOR DIRECT DIGITAL DESIGN

A7.1 INTRODUCTION

Thé z-plane performance criteria, for sampled-data control systems,
are ﬁsually defined from avone-to—one mapping of the s-plane to the
z-plane. Alternative criteria, that suits the direct digital design
methods prescribed in this thesis, are developed by applying the
arguments usgd to establish CACT frequency domain criteri# fo a CADT
system. As a basis for comparison, a brief review of the CACT

domain performance criteria is given in the next section.

A7.2 A REVIEW OF CACT DOMAIN DESIGN AND ANALYSIS CRITERIA

Consider the CACT domain 1inear; time-invariant state—eqﬁation

%(t) = A x(t) + Bu(t) . w1

The poles of the system, described by (A7.1), are the eigenvalues of
the state matrix A. In terms of the s-plane, the~eigenvalues are
the zeros of the characteristic equation, given by the determinant
of _[sI—A]. | In the case. of dynamicél systems, the concepts of
bandwidth and natural frequency are often ambiguous, pérticularly
when the order of the system is gfeater thanvtwo. This ambiguity

also <applies to the performanée measures listed in Fig.A7.1.
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" However, the performance of higher order systems can often be
deduced by consi@ering the natural-frequency, damping-ratio, eté,
associated Qith the’ lowest frequency mode (a technique wusually
referred to as -dominant pole approximation). - The s-plane
performance criterié, used as désign guideé for pole  p1acement
techniques and performancé‘analysis, are summarised in Fig.A7.1 and

~defined on the s-plane diagram of Fig.A7.2.

Frequency = ws
Decrement per unit time o,
Decrement per unit éycle f(§sJ
Natural'frequenqy ©
Resonance frequency 7 wés
Resonance magnification m_

Performance measures for s-plane pole placement and analysis

Fig.A7.1
+Jjw
j s
A
s-Plane P ns
I/ w
//,/ /’,’ °
/
w
// ms
// w )
w
/, ) s
/ )
/ . : = C
/ Cs‘ os(¢s)
1 : :
!
v i ¢
. i S
v P _
' o Jo_

Performance and analysis criteria defined on the s-plane

Fig.A7.2
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The thrée parameters, W, o;,kand f(qs), listed in Fig.A7.1, are
measures associated with the zero-input characteristics of a given
system. The other three parameters are defined on the s-plane shown

in Fig.A7.2.

A7.3 THE DEVELOPMENT OF CADT DOMAIN DESIGN AND ANALYSIS CRITERiA

The CADT z—plané analysis criteria, desgribed in this section,vare
developedbby observing thé equivalence betﬁeen CACT and CADT sysﬁem
parameters. The first observation, which forms the basis of the
criteria developmént, is the previously described equivalence of the

CACT state equation (A7.1) and the CADT state-equation given‘és

x (n+1) =&x(n) + ¥ u(n) . (A7.2)

The s-plane analysis criteria are primafily concerned with a
system’s characteristic equation; therefore, without compromising
generality, the criteria can be developed by Acénsidering a
zero-input modal state model. For the CACT system of (A7;1); this

is given by
iH(t) = A x , ‘ (A7.3)

MO

where xH(t) = M x(t) and A‘= M'A M, and the matrix M is a modal
transformation which produces the diagona1 form of the state matrix.

The i-th modal state is therefore given by

&i(t) = exp(At) x, . (A7.4)
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‘In general, Ai is a complex number, so equation (A7.4) can be

written as

Xx(t) = exp(05§)~ exp(stt) X0 (A7.5)

where the real and imaginary components of Al are ¢ and o,
s S

respectively.

For the CADT system given by the state equation (A7.2), the

associated zero-input modal form is given by

: o n , , :
an(n) = [Ah] X Mo (A7.6)

With a discrete-system inverse modal matfix, MD, the modal state

vector is x (n) = M x(n) and the matrix A = Mo M. The i-th
DM D D D. D

modal state of the CADT system is therefore given by

. n
xm(n) = (J\M) X o . (A7.7)

In general, ADl is a complex number, so equation (A7.7) can be

written as

_ . . |

xm(n)_ =T exp(j¢n) X0 o (A7.8)
The CADT domain criteria, that have equivalent roles to the CACT
domain critefia listed in the table of Fig.A7.1, are deduced by
comparing equations (A7.5) and (A7.8). The two CADT domain

parameters, sample-number, n, and envelope-frequency, ¢, are
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equivalent to the CACT‘parameters, t and w, respectively. These

observations are interpreted in the following paragraphs.

A synchronous sequence of samples, with members, u(n), represents,
for example, instantaneous valués 6f a continuous periodic function
which has a time peri@d, T. Thé frequency of this periodic functioﬁ
can be interpreted as the envelope-frequency of the sample sequence.
The humber of ‘data samples taken during the period, T, of thé
notional continuous function, is [TH this-parameter is referred té as
the samples—per—envelope4Cycle. For the case illustrated in

Fig.A7.3, u=6 sampleé—per—enve1ope-cycle.

u(n)

Sinusoidél envelope of discrete.samples
Fig.A7.3
. M '
It should be noted that the ratio Y for O<n=p need not
necessarily be an integer. From Fig.A7.3, it can be seen that the

values of the discrete sample sequence are given by

(A7.9)

u(n) = sin[ ZRn ]

Definihg’¢ = -gg- and substituting this relationship into equation

(A7.9) gives u(n) = sin(¢n). For a CACT model with  complex
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‘eigenvalues given by (os + jws), the enveiope-cy;le is ws. An
important iséue associated with this concept is that to satisfy
Shannon’ s ‘sampling theorem = the parameter p = 2. The
samples-per-envelope-cycle locus is plotted within the unit circle
of the z-planei Each sahple—perQenvelope-cycle produces a radial

line, projecting from the origin of the z-plane, as shown in Fig.4.8

of Chapter Four.

Comparing, again, the modal forms of the zero-input CACT and CADT
' state-equations, (A7.5) and (A7.8), respéctively, it is seen that
the rate of decéy of the CACT domain system is géverned by the
function, exp(vs), and the rate pf décay of the CADT domain system
is governed bykthe parameter, r. These two parameters are both
referred to as the decrement-per-unit-time. On the s;plané, a CACT
system’s modes converge to.the zero-state for negative values of 05'
and diverge for positive values of o_. Modes are in a steady-state
condition for all time when o is zero. In the case of a CADT

domain system defined in a Z—plane, it is seen that modes converge
to a zero-state for values of r less than unity and diverge for
values of r greater than‘unity. When r has is unity, the CADT

domain mode is steady-state for all time.

A7.3.1 Damping Factor in the CADT Domain

The damping factor, ¢, gives a 'measure of the stability
characteristics of CACT domain systems. The damping factor is

related to the decrement-per-time parameter through the function
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C = —m————— W . (A7.10)

Radial 1lines of constant damping factors can be plotted on the
s-plane,»as'shown in Fig.A7.2. In terms of the s—pléne axes, ws and
'ws, a constant damping line is given by a constant ratio fatio of o
to w3 this ratio is called the damping—per—unit—cycle. Tbe
zero-input, CACT dqmain, modalkform of the state equation (A7.5) can
be recast to give £ in terms the damping-per-unit-cycle ratio. The
~ parallel operation in the CADT domain is based on equation (A7.85
and defines a set of contours on the z-plane. These contours are

equivalent to the constant decrement radials of the s-plane.

To define a CADT parameter which can be regarded as equivalent to

the CACT domain dampihg factor, consider the CACT zero input modal

state equation (A7.5), recast in the form
Py %
x| 5 = exp|— exp(Jps) X | (A7.11)
s S
where p = wst. The equivalent parameter in the CADT domain is

defined as P, where P, = ¢ n. Substituting P, into equation (A7.8)

gives

1

2| = (0 explip) x (A7.12)
| | T - SPUPY) Xy '

From the CACT domain equation (A7.11), the decrement-per-unit-cycle

is given by

fle) = —~ (A7.13)



where the function, f(cs) = tan[arccos(cs)]. - Comparing this
parameter with the equivalent term in equation (A7.12) gives the

CADT domain decrement-per-unit-cycle as
y = (r]¢ . | (A7.14)

As shown by Fig.4.9, in Chapter ‘Four, the CADT constant valué
decrement-per-cycle z-plane contours produce a.family of logarithmic
- spirals; These spirals converge on two points. For an infihite
sampling-rate, the convergence point is z(1, jO). For 'iero
sampling-rate (a meéningless notion), the contours meet at z(0, jO).
In progressing towards the zero sampiing rate limit, the contours
make successive‘crossings of the negative real z axis for u=2k, and

the positive real axis for u=2(k+1)'for k=1, 2, 3, ...,

It is observed that the decrement—per—envelope—pycle contours
defined in this section have the same logarithmic spiral form as the
s-plane damping factor contours when they are mapped onto the
z-plane. However, it should be noted that the z-plane contours
illustrafed in Fig.4.9 are directly defined for the CADT domain and
therefore have a different interpretation to similar contours
produced .by an s-plane to z—planek mapping. The different
interpretation arises because the geometrical basis for both sets of
contours is the origin of their respective planes. In addition,the
s-plane origiﬁ, s(0, jO0), maps to z(1,jO0) and not to the origin of

the z-plane.
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In the CACT domain,‘crS can have either a positive or negative value.
For negative values of o, as the decrement-per-cycle ratio becomes
smaller, the damping factor tends to zero. The equivalent to a; in
the CADT domain is the radial vector r_of'equafiony(A7.12), which
can only have positi&e values. The interpfetatiqn of r in terms of
o is that o0<r<i »corresponds to o;<0. For digital control system
design in the CADT domain, r is the appropriate parameter for

measuring stability.

A7.3.2 Natural-Frequency and Resonance in the CADT Domain

The three ‘CACT domain parameters of natural-frequency, u;s,
resonance-frequency, wms, andk resonance-magnification, m_, are
important measures in the specification and assessment of control
systems. As in the case of the damping factor described above, thé
natural-frequency and resonance parameters can be mapped from the
s-plane to a z-plane. Details of the s—pléne»to z-plane mapping
method are well ~ documented [A7.1]. The  concepts  of

natural-frequency and resonance, based on. the direct CADT domain

definition, are developed in this section.

The CACT domain system performance parameters can be defined by
considering the s-plane geometry associated with a  complex
pole-pair. The deQelopment of equivalent CADT domain parameters can
be achieved by following the s-plane geqmetry with a corresponding

z-plane geometry, as shown in Fig.A7.4.
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The s- and z-plane geometries of a poie-pair which are applied
in the definition of the control system performance parameters

Fig.A7.4

To examine the CADT concepts of natural frequency ahd resonance,

consider the CADT domain second order system given as

1

. (A7.15)
z - roexp(J¢o)J[Z - TOGXP('J¢°)}

F(z) - [
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If the system modelled by equation (A7.15) 1is stable and is
processed in discrete-time within the time frame of the primary
iteration rate, then the complex pole-pair 1is mapped onto the

z-plane, as shown in Fig.A7.4.

The concept of frequency reéponse and its associated parameters is
based on the geometry of Fig.A7.6 and the product of the magnitudes

of vectors, lz1 and 122, where lz1 is given by

lz1 = |(exp(j¢) - roexp(j¢o) (A7.16)
and lz2 is given by
122”= exp(j¢) - roexp(-j¢0)| . | (A7.17)

- To facilitate the development of the CADT domain z-plane frequency

response criteria, the variable, ¢, is replaced by
¢ =2 a’rctan(w") . (A7.18)

This, apparently obscure substitution, is a direct consequence of
the w-plane frequency response, which is discussed in Section 4.2 of
Chapter Four.The ;fplane contours of natural frequency, (¢n), aﬁd
resonance magnification, (mz), are shqwn in Chapter Four by Fig.4.10
and 4.11,'respective1y. These two sets of contours are defined in
terms of the z-plane geometry of Fig.A7.4b and wefe derived from the
w-plane parameters déscribed in Chapter Four.In terms of the z-plane
geometry, ‘the contours fof these two parameters, together with the

z-plane definition of resonance frequency, (¢m), are given by
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2r -
arccos| —2— cos(¢ ) , - (A7.19)
n 0
1 +r v

©-
n

(1 +r°) -2r cos(¢ ) :
m = 2 0 . (A7.20)
(1-- ro) 51n(¢°)

2
1 +r

arccos[-—————g- cos(¢b)] . (A7.21)

2r
o

©-
n

A7.4 SUMMARY

The CADT domain analysis criteria described in‘ this . appendix
represents the appropriate measures for the assessment of a
mixed-data DFC system. The direct discrete domain definitions of
the criteria establish thé techniques as suitable measures for

analysing both sampled-data and purely discrete-dafa systems.
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