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ABSTRACT

The initial flight-test operations of piloted aircraft, in which 

Digital Flight Control (DFC) systems were first employed, exposed 

handling qualities problems that were not predicted during the 

design stage. Subsequent studies attributed the cause of these 

problems to the techniques used in the design of the digital control 

systems. The particular feature which unites the reported 

difficulties is that, an infinite-resolution sampled-data model is 

assumed for the design process but the practical DFC implementation 

is realised as an amplitude-quantised sampled-data system.

A modern DFC system exemplifies the concept of a mixed-data, digital 

control system. In the case of an aircraft, a mixed-data flight 

control system is a configuration of the following data domains: 

The Continuous-Amplitude, Continuous-Time (CACT) domain of the basic 

aircraft model; the Discrete-Amplitude, Discrete-Time (DADT) domain 

of the flight control computer; and the Discrete-Amplitude, 

Continuous-Time (DACT) domain of the basic aircraft’s control data. 

This observation, which defines the data-domains of a DFC system, 

exposes an interesting paradox; viz. the theoretical techniques for 

mixed-data system design are defined in a domain that does not exist 

in a modern DFC system. This non-existent domain is the Continuous 

Amplitude, Discrete Time (CADT) domain and is usually referred to 

as the sampled-data domain. In addition to the mixed-data issue, a 

modern DFC system communicates with other aircraft-subsystems using 

a wide variety of data formats and information bandwidths. 

Consequently the DFC system must combine these various data



structures into a unified flight-control data-set.

This dissertation describes a DFC system design methodology. The 

rationale of the methodology is to unify the flight control data 

types and give contemporaneous consideration to the quantisation 

issue of the implementation domain, within a framework of familiar 

CADT domain techniques. The basis of the methodology is a multirate 

sampled-data model and a direct digital design approach. A general 

feature of multirate sampled-data systems is the rapid expansion of 

the model complexity. To minimise the possibility of model assembly 

errors, an effective assembly-management technique is required. 

This requirement is satisfied in the proposed multirate sampled-data 

design model through a systematic assembly procedure.

In contrast to the normal qualitative practice of selecting a 

practical sampling-rate for a unirate system, the proposed 

multirate sampled-data DFC design methodology incorporates an 

analytical selection technique for the sampling policy. The 

technique has the facility of directly referring the sampling-rate 

of a given state element to a specification of an aircraft’s 

handling qualities, as embodied in the military standard 

MIL-F-8785C.

Extensions of both the w- and w'-plane design methods to the 

multivariable, multirate sampled-data domain are developed. 

Although both the w- and in particular the w'-plane are established 

techniques for the design of unirate sampled-data DFC systems, their 

widespread adoption is impeded by the need to map a w plane design



model from a z-plane transfer-function description. Algorithms are 

described which avoid the transfer-function mapping route and allow 

an easy transition between the CADT state-space and the w planes. 

Apart from yielding a less cumbersome symbolic form of a w plane 

transfer-function representation, the proposed algorithms have the 

facility to model multivariable systems.

Parameters to assess the performance of the direct digital design 

and multirate sampled-data models are also developed. These 

parameters are derived directly from a discrete system description 

and therefore contrast with the usual s- to z-plane parameter maps. 

The assessment of multirate sampled-data systems is facilitated 

through the development of a two parameter root-locus diagram.

The proposed DFC design methodology is tested through a case study. 

Although relatively simple, the case study exercises most of the 

techniques developed in this dissertation.
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CHAPTER ONE

INTRODUCTION

1.1 THE FUTURE REQUIREMENTS AND CURRENT PROBLEMS OF DFC SYSTEMS

In 1985 Fraser [1.1] described the type of aircraft that could be 

produced by the year 2000. Fraser’s description is based on the 

deliberations of a committee, set-up under the auspices of the 

National Research Council (NRC) in the United States. The National 

Aeronautics and Space Administration (NASA) requested the committee 

to consider the following question; "if resources were not an 

issue, what developments would be made in aircraft systems by the 

end of this century?" The committee answered the question by

describing what can be regarded as an Information Technology (IT) 

aircraft. The committee asserted that the enabling technology for 

realising the IT aircraft would be digital computing coupled with 

real-time control.

At the same time as the ambitious predictions of an IT aircraft were 

being advanced, Moran [1.2] described the problems that were 

experienced with the DFC system used for the McDonnell Douglas 

F/A-18A combat aircraft. The difficulties with the F/A-18A DFC

system exemplified the problems that were being exposed in a number 

of other aircraft DFC development programmes. In 1987, Tischler 

[1.3] gave a succinct account of digital fly-by-wire aircraft 

developments and the problems encountered with their DFC systems.
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Tischler noted that the DFC problems were associated with the design 

method. Tischler’s conclusions were confirmations of earlier work 

reported by McRuer et-al [1.4] and Goodchild [1.5]. The problems 

associated with DFC design methods, cited in the open literature, 

are summarised by the following three statements:

(i) Initial DFC design studies have consistently over-estimated 

the bandwidth achieved in the implementation. As Tischler 

[1.6] observes, this over-estimation is generally not exposed 

until after hardware implementation and the initial flight 

test.

(ii) Time delays between pilot initiated commands and the aircraft 

response are a significant problem in digital computer 

controlled aircraft. These delays tend to cause pilot 

induced oscillations. Powers [1.7] noted that a similar 

problem had been experienced in the pitch axis control of the 

Space Shuttle. Burton et-al [1.8] observed the same effect 

occurring in both longitudinal and lateral axes of the 

digitally controlled F/A-18A .

(iii) Neuromuscular interference from the pilot can be coupled into 

the high bandwidth DFC. This phenomenon is called "roll 

ratchet" [1.9] and is particularly noticeable to pilots 

during lateral control activity. Johnston et-al [1.10] 

reported the occurrence of the problem in the AFTI F-16 

research aircraft. Smith et-al [1.11] described a similar 

effect occurring in the digital fly-by-wire Jaguar.
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In all the cases cited above, the problems with the DFC performance 

were reported to have been overcome. However, the the problems were 

not exposed until the aircraft had reached their initial operational 

status. The reports also imply that the problems with these DFC 

systems were finally resolved by heuristic design methods. The 

reported inadequacy of the current approach to the design of DFC 

systems produced the conclusion that a better method of DFC system 

design is needed, particularly if the ideas for the information 

technology aircraft, described by Fraser, are to be realised.

1.2 THE CASE FOR DIGITAL FLIGHT CONTROL RESEARCH

The general conclusion that emerges from the references cited above, 

is that a digital flight control system design methodology is 

required which addresses the implementation issue of data amplitude 

quantisation. The research, reported in this dissertation, focuses 

of the notion that the data amplitude quantisation should be 

considered during the preliminary design stage of the DFC system. 

Data amplitude quantisation is a feature which distinguishes a 

digital control system from the classical concept of a sampled-data 

system. A relationship between data amplitude quantisation and 

sampling imposes an upper bound on the sampling-rate for a given 

Continuous-Amplitude, Continuous-Time system. This observation is 

considered in detail in Appendix Three.

The following observations provide the basis of the digital flight 

control system design methodology which is described in this



dissertation:

(i) The design of a digital flight control system must be 

undertaken in a domain in which the continuous-data basic 

aircraft system and the digital-data flight controller can be 

unified for the purpose of design, analysis and 

implementation modelling.

(ii) Amplitude quantisation of the basic aircraft’s flight control 

data imposes an upper-bound on the sampling-rate, for a given 

characteristic frequency. For the same characteristic 

frequency, the Sampling Theorem defines a lower-bound on the 

sampling-rate. Thus for each characteristic frequency in a 

high order system, there exists a limited range of 

appropriate sampling-rates.

(iii) Control data is produced by merging the information from a 

wide range of aircraft mission and flight sensors. These 

sensors produce information in different data formats with 

different data-rates or bandwidths.

Consideration of the first observation leads to the conclusion that 

the design of a digital flight control system should be undertaken 

in the discrete-data domain, employing a sampled-data description of 

the basic aircraft’s dynamics. The arguments that support this view 

are presented in Chapter Two and Appendix Two. Although the nature 

of the second and third observations is fundamentally different, a 

consideration of both issues produces the same conclusion; viz, the
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design methodology of a digital flight control system must, in 

general, accommodate a multirate sampling policy. The arguments 

that underpin this assertion are presented in Chapter Three.

1.3 THE PROPOSED DFC SYSTEM DESIGN METHODOLOGY

A digital flight control system design methodology is the subject of 

this dissertation. The objective is to define an approach to 

digital flight control system design which takes account of the 

issues associated with mixed-data flight control systems. The 

thesis is formulated within a framework of requirements that are 

identified as essential attributes of a practical digital flight 

control system design philosophy.

The first requirement is generated by the National Research 

Council’s (NRC) prediction, [1.12], of developments in the 

technology of aircraft flight systems. The NRC predicts a growth in 

airborne capabilities that will encourage advances in operational 

requirements and involve the integration of aircraft systems to an 

extent where the classical division of functions will disappear. 

For example, the aircraft structure, its propulsion and aerodynamics 

will be integrated with the mission, navigation and guidance 

functions in a general flight control system architecture. The 

enabling technologies for this total integration concept will be 

digital computer architectures and control system design 

methodologies.
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As noted in Section 1, the reported inadequacies of current digital 

flight control systems are generally attributed to the control 

system design approach. A design methodology which implicitly 

addresses the mixed-data issues of digital flight control systems is 

required if the ambitious predictions for the integrated systems 

aircraft are to be realised.

The second requirement of a practical digital flight control system 

design methodology is concerned with the integrity of aircraft 

flight control systems. The design methodology of a flight control 

system is as important as the hardware, software and system 

configuration in establishing the integrity of the implemented 

system. Four aerospace system design maxims are defined by Mulcare 

et-al [1.13]. These maxims provide the fundamental guidance for the 

establishment of the design methodology proposed in this 

dissertation; Mulcare defined the maxims as:

(i) Simplicity: Within a framework that encompasses all the 

relevant design issues, the objective of the simplicity maxim 

is to enhance confidence in both the control function and its 

implementation.

(ii) Visibility: A compact and precise model description 

possesses visibility in the sense that a clear perspective of 

the physical problem is maintained throughout the development 

of a control system.
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(iii) Consistency: The development of a large scale flight control

system inevitably requires a design methodology that allows 

an incremental approach to modelling and conceptual 

verification. A design methodology possessing this property 

has consistency.

(iv) Cone Xusiveness: A design methodology which permits the

analysis (validation) of the most critical functions with the 

highest degree of confidence possess conclusiveness.

The digital flight control system design methodology proposed in 

this dissertation is constructed to meet the above requirements and 

address the pragmatic needs of flight control system designers. To 

achieve these objectives, the digital flight control system model 

builds on the established and proven concepts of analogue flight

control system design. Thus, the linear aircraft model and the gain 

scheduling strategies of flight control are the fundamental 

assertions on which the proposed design methodology is built.

The principle of the proposed digital flight control system design 

methodology is the recognition that a basic continuous-data aircraft 

model must be recast in different data domains as the the control 

system evolves through the design, modelling and implementation 

process. The data-domains associated with digital flight control 

systems are identified and defined. The current methods of digital 

flight control system design appear to adopt an ad-hoc approach to 

this important issue. The proposed methodology establishes the 

appropriate data-domains for the modelling, design and analysis of
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digital flight control systems.

The DFC design methods described in this dissertation focus on the 

direct digital design approach. Direct digital design adopts the 

policy of control system design in the discrete-data domain. The 

basis of the direct digital design method is to recast a 

continuous-time plant as an equivalent, discrete-time system. In 

the flight control case, the continuous-time plant represents the 

basic aircraft, the control actuators and the data sensors etc. 

Direct digital design contrasts with the widely used emulation 

design methods. With the emulation approach, a digital control 

system is realised by designing the controller as a continuous-time 

system and then mapping the resulting continuous-time control law 

equations to the discrete-time domain for purposes of implementing 

the digital controller. An example of the emulation method in the 

design of a DFC system is provided by Joshi et-al [1.14]

The direct digital design method has, for some time, been recognised 

as the appropriate domain for DFC design. Kidd [1.15] and Goodchild 

[1.16] identified this fact during their studies into DFC systems 

for remotely piloted aircraft. Tischler [1.17] observed that 

emulation methods are useful for preliminary design and performance 

trade-off studies but direct digital methods are necessary to 

accurately evaluate the many important high-frequency dynamic 

characteristics of a modern digital system. Oz et-al [1.18] 

observed that the results produced by direct digital design can be 

significantly different to the results produced by emulation design. 

Oz concluded that the common blithe assumption of simplistic
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interchangeability between discrete and continuous control design 

techniques should be given careful scrutiny and perhaps discarded.

A cornerstone of a successful development of a digital flight 

control system is the selection of the control-data and 

measurement-data sampling rate or rates [1.19], The appropriate 

sampling rate is determined from an analysis of the associated 

dynamics and the implementation environment. In general, this leads 

to a multirate sampling policy. The proposed design methodology 

includes a utility to model and analyse multirate sampled-data 

flight control systems. The four design methodology maxims are 

major factors in the proposed multirate sampled-data model.

The proposed design methodology of an aircraft’s digital flight 

control system is described in the subsequent chapters of this 

dissertation. The problems associated with digital flight control 

are classified as handling qualities issues. The proposed design 

methodology is directed towards the design of the inner 

control-loops and autopilot functions, because the primary purpose 

of these inner-loop functions is to control and modify the handling 

qualities of a basic aircraft. The general performance requirements 

for manned-aircraft flight control systems are embodied in standard 

handling-qualities documents, for example MIL-F-8785C [1.20]. This 

particular document is employed to provide the performance 

objectives of the digital flight control system designs described in 

this dissertation. A design domain is defined and methodology 

developed which permits the direct transformation of handling 

qualities requirements into digital control-law specifications.
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1.4 ORGANISATION OF THE DISSERTATION

The digital flight control design methodology is described in 

Chapters Two, Three and Four. Chapter Five presents the results of 

an application of the proposed methodology to the design of a 

Digital Flight Control (DFC) system. Although the scope of the 

design study is limited to a basic aircraft stabilisation and simple 

flight control law problem, the salient features of the methods 

given in this dissertation are exposed.

Chapter Two considers the basic aircraft modelling problems 

associated with the preliminary design of a flight control system. 

The development of the basic aircraft design model is approached 

from the perspective of the flight control design practitioner. 

Thus, the proposed design method accommodates an incremental 

assembly of the basic aircraft system and attempts to maintain a 

conspicuous representation of the physical dynamics. The proven 

concept of a linear time-invariant design model, coupled with a gain 

scheduling policy for global control over the total flight envelope, 

provides the basis for the proposed DFC design methods.

The rationale for DFC design in the discrete-data domain is 

considered in Section 2.3. The data domains incorporated in a DFC 

system are defined. The fundamental questions, concerning the 

domain in which a unified model of a mixed-data system can be 

established for the purpose of DFC design, are addressed.

The method of transforming a continuous-time, basic aircraft model
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into an equivalent discrete-time model is considered in Section 2.4. 

To reflect normal DFC implementation practice, it is assumed that 

digital control data is applied to the continuous aircraft via a 

Zero-Order-Hold. This means that digital control data is available 

at the sampling instant as an impulse from a time sequence of 

impulses. The amplitude of each impulse is held and applied as a 

constant control action to the continuous aircraft over the 

following intersample period.

It is considered that the methods proposed in Chapter Two represent 

a contribution to the general practice of DFC design. Although the 

proposed methods are established techniques in control system design 

practice, it is believed that some novel applications have been 

identified, which overcome some of the common modelling problems 

associated with DFC design.

The classical interpretation of a discrete-time representation of a 

continuous-time model is a sampled-data system. The implicit 

assumption of a sampled-data system is that the sampled-data 

amplitude is continuous. The modern, practical implementation of a 

DFC system is a digital-data system; that is, the time sampled data 

undergoes a process of amplitude quantisation. In Chapter Three, it 

is reasoned that a DFC system must be implemented as a multirate 

sampled-data system. In this context, it is necessary to note that 

sampling refers to both the time sequence of impulses applied to 

control the basic continuous aircraft system and the sampled 

system’s state-data, from which the control actions are generated.
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The selection of a sampling policy is a critical factor in the 

design of a DFC system. Various methods of selecting a

sampling-rate for a continuous-data system have been studied and 

reported [1.21]. For the design of a DFC system, it is observed 

that the selection of a sampling-rate, or sampling-policy must 

usually be made on the basis of very limited information. In fact, 

the available information is often restricted to the basic aircraft 

system dynamics. Other data, which would be relevant for the 

sampling rate selection procedure, only becomes known some time 

after the initial design decisions need to be made. Methods are 

given in Section 3.2 which establish quantitative measures for the 

selection of a sampling policy on the basis of limited system 

information.

A multirate sampled-data state-space model is developed in Section 

3.4. The multirate model is developed because, in contrast to the 

currently available models [1.22], [1.23],and [1.24], the proposed

assembly meets the objectives of the four maxims with greater 

facility. Although the multirate sampled-data model can be utilised 

in the direct design of a DFC system, its application challenges the 

requirements of the four maxims. Several case studies examined for 

the thesis have therefore been omitted from this dissertation and 

are given in a supplementary report [1.25]. The issue of a suitable 

multirate sampled-data DFC system design domain is addressed in 

Chapter Four.

Chapter Four considers the design, analysis and implementation 

issues associated with preliminary design of a DFC system. Section

1-12



4.2 reviews the w- and w'-planes as candidate domains for the design 

of multirate sampled-data DFC systems. The w- and w7-planes are 

identified by Whitbeck and Hofmann [1.26] to be particularly 

suitable for the design of DFC systems. Although the the w- and 

w7-planes design methods have advantages over z-plane design 

methods, there is no evidence of their widespread use in practical 

DFC design. A reason for this may lie in the fact that an innocuous 

z-plane transfer function can produce a confusing w- or w7-plane 

expression. As Tischler [1.27] states in a summary identifying the 

requirements for DFC design; "methods which allow easy transitions 

between the s-plane, the z-plane and the w-plane are needed". 

Methods which map the high order and multivariable system models 

from the time-domain state-space and s-plane, to the w-plane and 

w7-plane are developed for this thesis.

Section 4.3 presents methods for the analysis of the performance of 

DFC systems. The methods are developed from the well known s-plane 

graphical techniques, such as root-loci diagrams and Bode plots. A 

survey of the literature indicates that the z-plane root-locus is 

the most common method of sampled-data system performance analysis. 

The analysis methods sponsored by most reports are based on mapping 

the parameters of the s-plane criteria to the z-plane. The 

sampled-data and discrete system analysis criteria proposed in this 

dissertation are based on identifying the equivalence between the 

parameters of a continuous system and the parameters of a 

corresponding discrete system model.

The digital computer implementation of a DFC system casts the flight
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control algorithms in a quantised-data discrete-time domain. This 

domain imposes additional constraints which must be considered 

during the preliminary stages of DFC system design. The adoption of 

a multirate sampled-data policy gives an implicit consideration of 

the implementation domain.

The results of a DFC design case study are presented in Chapter 

Five. The purpose of the design exercise is to explore the 

properties of the proposed methods that are not explicitly described 

by examples given in the preceding chapters and appendices. The w- 

and w'-planes are utilised to design the digital autopilot function 

of a manned aircraft. The DFC design target specifications are 

identified from the handling qualities document MIL-F-8785C and cast 

in terms of the discrete design domain.

The computational requirements of the proposed methods are serviced 

in a matrix manipulation environment, called MATLAB [1.28]. The 

influence of MATLAB on development of the multirate sampled-data DFC 

design methodology is significant. The facility which the package 

offers for realising high order numerical routines makes it an 

almost ideal environment for the proposed DFC system design 

methodology.
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CHAPTER TWO

MODELLING AIRCRAFT DYNAMICS FOR DIGITAL FLIGHT CONTROL

2.1 INTRODUCTION

This chapter considers the development of a model for Digital Flight 

Control (DFC) design and analysis. The development addresses the 

specific requirements of design, analysis and implementation in the 

discrete-time domain. In the case of analogue flight control, the 

controller and aircraft are modelled by continuous-time differential 

equations, so the design, analysis and implementation processes are 

naturally carried out in one domain. However, when a digital 

computer is used to implement the flight control laws, the 

convenience of a single modelling domain is lost. This chapter 

address the issues of combining continuous and discrete processes 

for the purpose of DFC design.

2.1.1 A Generic Aircraft Model for DFC Design

The design model considered in this dissertation is based on a 

generic aircraft and DFC system. The total aircraft system is 

illustrated below in Fig.2.1. As a generic concept, the model 

encompasses all types of manned aircraft. The principal

characteristics linking this generic model to a more general class 

of dynamical system are; high bandwidth, fast response and inherent
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relaxed static-stability. Aircraft are dynamical systems which 

belong to the information-rich and energy-deficient system group. 

This classification is used for systems in which the plant dynamics 

can be readily identified but the available energy for their control 

is strictly limited. This classification contrasts with the notion 

of an information-deficient and energy-rich system which, for 

example, can be ascribed to a chemical processing plant. In this 

case relatively little is known about the plant dynamics but, as a 

fixed terrestrial system, high energy levels are available for 

control purposes.
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Digital Flight Control Law Computer

A generic aircraft design model controlled 

with a digital-flight-control computer 

Fig.2.1
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In practice, the design of a flight control system is initiated 

without a complete knowledge of the ultimate system specification, 

or even a complete set of data for the basic aircraft. A general 

flight control system design method must, therefore, accommodate an 

incremental approach to the assembly of a flight control system. 

The implicit consequence of this practical issue gives weight to the 

argument to base the design of an aircraft flight control system on 

the physical states and not to transform them to a mathematically 

more convenient set of state variables. The DFC design model, 

developed in this chapter, facilitates the requirements of the 

incremental assembly approach.

2.2 THE ANALOGUE-DATA MODEL OF THE BASIC AIRCRAFT

The most widely used method of modelling aircraft flight control 

systems is based on reducing the non-linear, time-varying dynamic 

equations of the basic aircraft to a set of linear, time-invariant 

equations [2.1]. The complex structure of the basic aircraft can be 

be generalised into two groups of first order equations, given as

It is often convenient, particularly in large systems, to generate 

an auxiliary equation representing subsystem interconnections. The 

general form of the auxiliary equation is given by

x(t) = f(x(t),x(t),u(t),y(t),t) (2.1a)

y(t) = g(x(t),x(t),u(t),y(t),t) (2.1b)

a(t) = h(x(t),x(t),u(t),y(t),t). (2.1c)
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For the three equations, x(t) is a vector of m time-dependent state 

functions, u(t) is a vector of q time-dependent input and y(t) is a 

vector of p time-dependent output functions. The functions f, g and 

h are non-linear.

Linearisation of f , g and h is achieved by considering perturbation 

models at strategic operating points in the aircraft’s flight 

envelope [2.2]. The time-invariant requirement is achieved by 

assuming the time-varying parameters to be quasi-steady-state [2.3]. 

Linear flight control laws are defined on the basis of the 

aircraft’s characteristics at these flight envelope design points. 

A scheme of parameter scheduling produces the necessary control law 

changes to account for the non-linear and time-varying dynamics of 

the aircraft as it transits from one design point to the next. This 

technique is a popular method for the design of analogue flight 

control systems. The equations produced by the linearisation 

process are given by

The three members of (2.2) are rearranged to produce the standard, 

(A,B,C,D) quadruple form of the state and output equations, given as

x (t) = F* x(t) + F x (t) + F y(t) + F u(t)x x y \i
y(t) = G* x(t) + G x(t) + G y(t) + G u(t)
J x x y u
a(t) = H* x(t) + H x(t) + H y(t) + H u(t).x x y u (2.2c)

(2.2b)

(2.2a)

x(t) = A x(t) + B u(t) (2.3a)

y(t) = C x(t) + D u(t). (2.3b)
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The state and output equations are the starting point for the 

digital flight control design, analysis and implementation methods 

proposed in this dissertation.

2.3 PRELIMINARY ISSUES

An approach to the DFC design is described which attempts to cast 

the popular analogue system techniques in the discrete-time domain. 

Although, in principle, this idea is not new, the use of 

multivariable w- and w'-plane models for the design of multirate 

sampled-data systems appear not to have been explored. The proposed 

method of designing a DFC system starts with the basic linear, 

time-invariant aircraft model, given by equations (2.3a) and (2.3b). 

The design objective is to determine a set of control law equations 

that, when implemented, cause the aircraft to have a defined 

performance policy.

2.3.1 Definitions of the Domains in a Mixed-Data DFC System

The design, analysis and implementation domains for digital flight 

control systems are defined in this section. These domains are 

explicitly considered for this thesis and represent an aspect of 

digital control system design that is often overlooked. Although 

the issues considered are framed in the context of aircraft flight 

control applications, the concepts are generic and apply to a wide 

range of control systems.
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When defining the domain in which modern digital flight control 

systems operate, consideration must be given to the fact that 

control data is both time-sampled and amplitude-quantised. 

Classifying control systems by "data-type" defines four domains of 

operation. These domains are:

(a) Continuous-Amplitude, Continuous-Time.... CACT,

(b) Continuous-Amplitude, Discrete-Time..... CADT,

(c) Discrete-Amplitude, Discrete-Time....... DADT,

(d) Discrete-Amplitude, Continuous-Time..... DACT.

The systems that correspond to each domain are:

(a) CACT.....Analogue-data system,

(b) CADT.....Sampled-data system,

(c) DADT. Digital-data system,

(d) DACT...... Quantised-data system.

A digital flight control system, consisting of the aircraft, the 

digital-control processor and the aircraft-to-processor interfaces, 

involves all four data types. Comparing this situation with the 

classical analogue flight control system gives an indication of the 

added complexity generated by the introduction of digital control 

processes. This complexity is compounded by an expectation that 

enhanced control activity can be achieved with a digital computer.
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2.3.2 The Mixed-Data Configuration of a DFC Aircraft

The data handling operation in digital flight control involves 

taking a measurement of an aircraft’s analogue-data state vector and 

converting it to digital-data. The signals representing the 

aircraft state are processed as the parameters of the digital 

control laws. By definition, the digital control laws are 

implemented in the DADT domain and generate a digital-data control 

vector. To control the CACT aircraft system, the digital-data 

control vector is converted back to continuous-time. However, as no 

realisable scheme exists to convert the discrete amplitude aspects 

of the data into continuous, smooth control signals, the CACT 

aircraft is effectively controlled by a quantised-data control 

vector. In general terms, an aircraft employing digital flight 

control exemplifies a "mixed-data" system. The closed-loop 

configuration of a mixed-data system is shown in Fig.2.2.

quantised data analogue data

sampled datadigital data

DCC CDC

CACT Domain system

(Basic Aircraft)

(Flight control computer)

DADT Domain system

(quantised) (quantised)

DCC is a Discrete to Continuous Converter 
CDC is a Continuous to Discrete Converter.

The configuration of a mixed-data DFC system

Fig.2.2
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2.3.3 Data Domain Conversion

The generation of a digital-data representation of the aircraft’s 

analogue flight state vector is carried out by the 

Continuous-to-Discrete Converter, (CDC), shown Fig.2.2. In the case 

of digital flight control the CDC is usually implemented as an 

Analogue-to-Digital Converter (ADC) [2.4].

The generation of continuous-time flight control data from the DADT 

domain flight control computer is carried out by the 

Discrete-to-Continuous Converter, (DCC), shown in Fig.2.2. The 

generic name of the discrete-to-continuous process is 

function-reconstruction [2.5]. It is theoretically possible to 

define a perfect function reconstruction model [2.6]. In formal 

terms, if u(i) is a sampled-data version of an analogue-data signal, 

u(t), then a perfect function reconstructor will map the u(i) into

u' (t) such that u(t)-u'(t) is identically zero. In practice

however, perfect function reconstruction cannot be achieved [2.7].

Function reconstruction is a dynamic process and therefore augments 

the basic aircraft dynamics. In the limit, as the order of the 

reconstructor dynamics tends to infinity, the reconstruction will 

become the perfect process, described above. The additional 

dynamics, introduced into a flight control system, by a function 

reconstructor, has a degrading effect on the closed-loop stability 

performance [2.8]. For this reason, the preferred implementation of 

the discrete-to-continuous process is a reconstructor with minimal 

order dynamics. In the case of digital flight control, the
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discrete-to-continuous process is normally implemented with a 

Digital-to-Analogue Converter (DAC) [2.9]. In some related flight 

control cases [2.10], where the data reconstruction has the 

appearance of a high-order process the actual situation can be 

reduced to a DAC implementation with discrete-time dynamics that are 

modelled as augmentation states. For less fundamental but equally 

important reasons, the DAC is used because it is readily available 

as a proprietary device [2.11].

It is not uncommon for the ADC and DAC to be called a Sampler and 

Zero-Order-Hold (ZOH), respectively. Strictly, however, the notion 

of both a sampler and ZOH, referred to in classical sampled-data 

control system theory [2.12], does not include an amplitude 

quantisation effect, which is an implicit feature of the ADC and DAC 

data conversion processes.

2.3.4 The Proposed Route for DFC Design

As stated above, the modern implementation of a DFC system is a 

closed-loop arrangement of continuous and discrete functions that 

process all four data-types. The suggested method for the design 

and analysis of a DFC system follows an approach that maps the basic 

analogue-data aircraft model into an equivalent sampled-data model. 

The sampled-data model of the basic aircraft is then used for 

control law design and preliminary performance analysis. Although 

the stated objective of the proposed DFC design methodology is to 

take implicit account of the amplitude quantisation effects of the
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DADT and DACT domains, the issues associated with the discrete 

amplitude domain represent a major activity in the total DFC design 

process. This observation identifies a significant extension to the 

DFC design methodology described in this dissertation and is 

therefore noted as a topic for future research.

2.3.5 The Case for DFC Design in the Discrete-Time Domain

The DFC design methodology is based on the proposition that DFC 

design should be carried out in the CADT domain. The proposed 

method is therefore associated with the direct digital design 

techniques [2.13]. The following observations make the case for 

using the CADT domain for the design of sampled-data systems.

To undertake a quantitative design on a mixed-data system, it is 

necessary to define a mathematical model of the system in a single 

data-type domain. To explore this issue, consider the discrete 

element subsystem shown in Fig.2.3.

u(t) y(t)
CDC DCC

Sampling
Clock

y(i)

The arrangement to define a CACT system 

in terms of the CADT system parameters 

Fig.2.3
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A possible method of producing a unified model of a mixed-data 

system is to recast the CADT subsystem of Fig.2.3 as an equivalent 

CACT system. This leads to the basic question; does a CACT 

S.(A,B,C,D) exist which will map u(t) into y(t) in precisely the same 

way as the arrangement shown in Fig.2.3?. For the answer, it is 

observed that y(t) is produced by the discrete-to-continuous 

converter which, as stated above in Section 2.3.3, is implemented by 

a DAC. The signal constructed by a DAC is a staircase function for 

all inputs of u(t). As no continuous-time system S(A,B,C,D) has 

this characteristic the answer to the question is in the negative.

Another option of defining a unified data-domain model of a 

mixed-data system is based on the arrangement shown in Fig.2.4. The 

objective with this arrangement is to recast a CACT system as an 

equivalent discrete-time system. The question is therefore; does a 

discrete-time E ( $ , C d ,D̂ ) system exist which will map u(i) into 

y(i) in precisely the same way the as continuous-time arrangement 

shown in Fig. 2.4 suggests? The answer to the question is in the 

affirmative. This answer is examined below, in Section 2.4.

DCC CDC
u(t) y(t)

Sampling
Clock

The arrangement to define a CADT system 

in terms of the CACT system parameters 

Fig.2.4
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A further reason supporting the case of design in the CADT domain 

comes from the well known claim [2.14]; that a digital-control 

system, designed by a direct-digital method, can achieve a given 

performance with a minimum sampling-rate. This claim is usually 

asserted without proof. Appendix Two presents an analysis which 

demonstrates the validity of the claim through a simple example. An 

alternative demonstration of support for the direct-digital design 

approach is given in a recent report by Boucher et al [2.15]. The 

report compares two cases of controller designs for the same 

continuous-time process. In one case, the controller is designed by 

direct-digital methods while, in the other case, the controller is 

designed in the continuous-time domain and mapped to the z-plane for 

implementation. The result of the comparison confirms the validity 

of the claim, stated above.

2.4 DISCRETE-DATA MODELS OF CONTINUOUS-TIME SYSTEMS

The underlying principle of the direct-digital design method is that 

an equivalent discrete-time model can be defined for a 

continuous-time system. This section gives a review of the methods 

that are available to produce an equivalent discrete-time model of a 

continuous-time system. The basic assumptions upon which the 

methods in this section, and the remainder of this dissertation, are 

built have already been discussed and are reasserted as follows:

(i) The basic flight control system design model of an aircraft’s 

non-linear, time-varying dynamics is represented as a set of
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linear, time-invariant equations.

(ii) The non-linear, time-varying aspect is taken into account by 

adjusting or "scheduling" the parameters of the linear, 

time-invariant control equation, as the aircraft manoeuvres 

over its flight envelope.

(iii) The continuous to discrete conversion processes are 

instrumented by analogue to digital converters and the 

discrete to continuous conversion processes are instrumented 

by digital to analogue converters. The combined effect of 

these converters is an impulse sampler followed by a zero 

order hold.

The linear time-invariant equations, for a basic CACT domain 

aircraft system with deterministic control inputs, can be cast in 

state-space form. This is discussed in Section.2.2 and is given by 

the equations (2.2a) and (2.2b),

given by the solution of the differential equation (2.3a). From a 

zero initial condition, x(0), the solution of (2.3a) is given by

x(t) = A x(t) + B u(t) (2.3a)

y(t) = C x(t) + D u(t) (2.3b)

Under the assumptions, given above the system state at time t̂  is

x(t) = exp(At) x(0) + exp A(t - t ) B u (t ) dr
.t

(2.4)
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This equation is the basis of the time-domain continuous to discrete 

state-space mapping that is central to the DFC system design method 

described in this dissertation. The proposed method is generally 

referred to as a direct digital design technique and is in direct 

contrast with the widely used emulation method. The emulation 

method starts by solving the differential equation (2.3a) via 

Laplace transforms to determine the s-plane state

When (2.5) is substituted into 2.3b with an initial condition 

x(0)=0, the resulting system model is the s-plane transfer function 

matrix description and is given by

The single input single output transfer-functions, that are derived 

from (2.6), are models of the basic aircraft system. In the 

emulation design approach, a continuous-time flight controller is 

designed, using an s-plane model of the basic aircraft. The 

resulting continuous-time control equations are transformed into an 

set of discrete-time equations for implementation in a DFC computer.

2.4.1 Transfer-Function Methods

Although the transfer-function model is mainly used in the emulation 

design method, a transfer-function model can be employed for a 

direct digital design approach. The method proposed in this 

dissertation requires a CADT domain model of the basic aircraft

sX(s) = A X(s) + B U(s) (2.5)

Y(s)

2-14



equations. When these CACT aircraft equations are generated as 

s-plane transfer-functions, mapping them directly from the CACT 

domain into a CADT domain produces a z-plane transfer-function model 

of the basic aircraft. Flight control law design is then carried 

out using classical sampled-data control system techniques.

The classical approach [2.16], usually associated with sampled-data 

servomechanisms, uses the a z-transform substitution, z = exp(sh). 

This substitution maps the CACT domain transfer-function to a "pulse 

transfer-function", F (z) [2.17], where

There is a temptation to regard F (z) as a realisable CADT domain

representation of the CACT domain transfer-function. This assertion

terms of the concept of a perfect switch, producing a chain of 

delta-functions spaced by a time interval h. Each delta-function 

assumes the strength of the sampled analogue signal at the sampling 

instant. As no physical system can realise a delta-function, the 

switch concept is replaced by a function reconstructor, described in 

Section 2.3.3.

As noted in Section 2.3.3, the usual implementation of a function 

reconstructor in DFC systems is the DAC. The classical ZOH model, 

that the DAC conforms to, has a transfer-function given by

P
m

1-exp(sh) ^
F(s) . (2.7)

i = i

P

is incorrect. The pulse transfer-function, F (z), is interpreted in

■,  ̂ 1 - exp(-sh)F (sj = ----- ------ (2.8)
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Assuming the continuous-to-discrete conversion interface is 

implemented by a ZOH, then the CADT domain model is obtained by 

transforming the product of CACT and ZOH transfer functions to an 

equivalent z-plane model.

Fd(z ) = z| Fh(s ) F(s)j . (2.9)

The direct transfer-function mapping technique is cumbersome; this 

is particularly so in the cases of high order and/or multivariable 

systems. An alternative transfer-function mapping technique makes 

use of the Tustin bilinear transform [2.18]. The Tustin bilinear 

transform is a substitution for the s variable of transfer-functions 

and is given by

s= TT-i-T-T • (2'10)

The Tustin bilinear transform is usually used in the emulation 

method of DFC design. Its application is to map control laws* 

designed in the CACT domain and expressed as s-plane 

transfer-functions, to an "equivalent" set of CADT domain z-plane 

transfer-functions. From the z-plane transfer-functions, a set of 

corresponding difference equations can be deduced. These difference 

equations represent an algorithm of the DFC laws. For complex 

transfer-functions, the Tustin transform mapping technique produces 

unwieldy algebraic equations.

The discussion of this section has been included for completeness. 

The emulation method is not relevant to the objectives of the DFC 

design method proposed for this dissertation. A comprehensive
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account of the emulation method and its application to DFC system 

design is available [2.19].

2.4.2 State Space Mapping Methods

A state-space representation of a mixed-data system can be derived 

by integrating, with respect to time, equations (2.3). To 

illustrate this approach, consider the closed-loop system shown in

Fig.2.2. Assume the CACT aircraft state is propagated from an

initial state x(tQ) and an impulse sample of the state is taken at

time t , where t -t =h. This measured state will be identical to h h o
the solution of continuous-time state equation, (2.4), defined with 

an initial condition x (tQ) and an integration interval h. This 

observation assumes an error free measurement and a 

continuous-to-discrete conversion that does not incur an amplitude 

quantisation process. When the sampling process is generalised into 

a continuous sequence of samples, separated in time with a period h, 

the mixed-data system represents a sampled-data system [2.20]. This 

well known method of producing an equivalent CADT model of a 

mixed-data system forms the basis of the DFC design methodology

described in this dissertation. As shown below, various forms of 

the basic mapping functions are produced from equation (2.4).

From an initial state given at time t =nh, the state at time t =nh+h& o h
is calculated by substituting these time values into (2.4). 

Therefore, the solution to the CACT state equation (2.3a), at time 

(n+l)h is given by
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x((n+l))h = exp(Ah) x(nh) +
(n+l)h

exp
nh

A(nh+h-x )|b dx , (2.11)

where n is the sample number, h is the sampling period and x is an 

integration variable.

The usual flight control system implementation of the 

discrete-to-continuous converter is the DAC. The DAC maintains a 

constant value of u(nh) at the input of the system Ŝ , (see Fig.2.4) 

during the time period nh^r<(n+l)h. If, in addition to this, A is 

substituted for (nh+h-x) in equation (2.11) then the solution to the 

state equation at the sample point is given by

x((n+l))h = exp(Ah) x(nh) + exp(AA) dA B u(nh) (2 .12)

Consider the situation for the general case, in which a new member 

of the number sequence u(i) arrives at the discrete-to-continuous 

converter every h units of time. If the continuous-to-discrete 

converter is clocked after a delay of A seconds, following 

presentation of data number to the discrete-to-continuous converter 

then, for the input u, occurring at time nh, there is a 

corresponding output y, occurring at time n(h + A). This type of 

sampling policy is called "non-synchronous" sampling. With the ZOH 

implementing the discrete-to-continuous interface, the system has 

the solution given by
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x((n+l))h = exp(Ah) x(nh) + exp(AX) dX B u(nh) , (2.13a)

y((n+A)h) = C exp(AA) x(nh)+ exp(AX)dX B + D u(nh) .(2.13b)

The CADT domain quadruple, in terms of the CACT quadruple, is 

deduced from equations (2.13a) and (2.13b), and is given by four 

equations;

$ = exp(Ah) (2.14)

= exp(AX) dX B , (2.15)

Cd = C exp(AA) ,

D = DD exp(AX) dX B + D

(2.16)

(2.17)

For synchronous sampling the delay parameter A is zero, so the

coefficient matrices C and D of the output equation become C = Cd d r n D
and D = D.D

Substituting the terms from the left-hand-side of equation (2.14) to 

(2.17) into equations (2.13a) and (2.13b) produces the standard form 

of state and output difference equation that represent the basic 

aircraft as an equivalent discrete-time system, given as

x(n+l)h = $ x(nh) + # u(nh)

y(n+A)h = C x(nh) + D u(nh)D D

(2.18a) 

(2.18b)
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In the case of sampled-data system with synchronous input and 

sampling, the delay time A = 0 and hence y(n+A)h reduces to y(nh). 

The state-space diagram for this system is given in Fig.2.5.

u(nh) *

x(n+l)h x(nh)

Q —  DLY

~ 6

*A =

* A "

DLY

y(n+A)h

exp(AA) ,

A
exp(AX) dX B , 

symbolises a single sample delay.

The general discrete system diagram deduced 

from the CACT to CADT mapping functions 

Fig.2.5

Equations (2.18a) and (2.18b) are the basic aircraft model employed 

in the digital flight control law design methodology. The key issue 

in deriving these equations is the selection of a sampling period, 

h. In the most basic form, the CADT sampled-data model is defined 

for a unirate (single-rate) sampling policy. However, for the 

thesis developed in Chapter One, it is recognised that, in general, 

a DFC system will require a multirate sampling policy. Further
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consideration of this central issue is given in Chapter Three. The

purpose of this chapter is served by assuming a unirate sampling

policy.

2.4.3 Mapping a CACT Model into the CADT Domain

The key technique in producing an equivalent CADT domain state-space 

model from the CACT state-space is evaluation of the matrix function 

exp(Ah). A large amount of published material is available that 

discusses various ways of evaluating this matrix function [2.21]. 

The requirement to numerically compute the exponential matrix exp(Ah) 

efficiently and without error is obvious. The problems of computing 

an exponential matrix function are widely discussed in the

literature. An extensive review of these problems is given by Moler

and Van-Loan [2.22]. This section presents methods of checking the 

correctness of the computation of exp(Ah).

Surprisingly, many textbooks that include a discussion on the matrix 

exponential imply a straight forward exponential series solution. 

Informed sources [2.23] consider the weakness in the series method 

and offer a more robust and efficient solution. However, the 

problems in computing, for example, exp(Ah), are such that results 

must be checked for correctness. Methods to check the correctness 

of the computation of exp(Ah) are developed below.

The basis of the method used to check the correctness of a mapping 

from A to $, by the exponential matrix function exp(Ah), arises from
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the observation that, at the sampling instants, the continuous-time 

states are equal to the equivalent sampled-data states. Formally, 

this is expressed as x(t) = x(nh) where, at the sampling instants, 

t - nh. Under steady-state conditions where x(t) = 0, the

continuous-time state and output equations are given by

0 = A x  (t) + B u (t)
ss ss

y (t) = C x  (t) + D u  (t)
ss ss ss

The state equation (2.19a) can be rearranged to give

x (t) = - A 1B u (t) . (2.20)
ss ss

In the case of steady-state sampled-data where x(nh+h) = x(nh), the 

state and output equations are given by

x (nh) = $ x (nh) + ^ u (nh) , (2.21a)
ss ss ss

y (nh) = C x (nh) + D u  (nh) . (2.21b)
ss ss ss

The state equation can be rearranged to give

x (nh) = [I - u (nh) . (2.22)
ss ss

Assuming that the sampled-data amplitude is not quantised, then, at 

the sampling instants where t = nh, equations (2.19a) and (2.21a)

- A_1B u (t) = [I - S]"1* u (nh) . (2.23)
ss ss

(2.19a) 

(2.19b)
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A check for the correctness of the mapping from A to $ is provided 

by equation 2.23. If

- A_1B = [I - S]"1* (2.24)

then the sampled-data system given by the quadruple ($,¥,C ,D ),■ is 

an accurate equivalent of the continuous-time system quadruple, 

given by (A,B,C,D). If A is rank deficient its inverse cannot be 

determined; however, a check on the CACT to CADT mapping can be 

performed by rearranging (2.24) to give

-A * = [I - $] B . (2.25)

Another method of checking the equivalence of A and $ is to use the 

following procedure:

(1) Compute the eigenvalues of the continuous-time state matrix A 

using

det[XI - A] = 0 . (2.26)

(2) Map each eigenvalue X j to the z-plane using the scalar

function exp(X h) to give z .i i

(3) Compute the eigenvalues of the sampled-data state matrix $ 

using

det[£I - 4] = 0 . (2.27)

(4) Compare the mapped continuous-time system eigenvalues X. with

the directly computed sampled-data eigenvalues and

establish a sampling period h to give z. = .
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A further check on the correctness of the mapping function can be 

made by the inverse of the above procedure. The inverse correctness 

check is as follows:

(1) Using equations (2.26) and (2.27) compute the eigenvalues, A 

and £, of the continuous-time and sampled-data systems, 

respectively.

(2) Map the sampled-data eigenvalues to the s-plane using the 

function

s ln(z ) (2.28)i h  i

where z = -<r + ja>i z z

(3) Compare the eigenvalues, s, of the mapped z to s domain 

sampled-data model, with the directly computed with the 

continuous-time eigenvalues, A, and establish and confirm the 

sampling period value h that gives s = A .

There is an ambiguity in the inverse correctness check that must be

considered. The inverse mapping from the z-plane to the s-plane is
1not unique. However, with a sampling-rate, , that complies with 

the requirements of the Nyquist-rate, the mapping defined by (2.28) 

is one-to-one.

The solution of the integral terms depend on the way in which the 

exponential matrix, exp(Ah), is evaluated, so the evaluation 

checking techniques, developed above also apply to the integral
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terms. The integral always exists; its evaluation can be 

simplified, if the CACT state matrix A is of full rank and hence has
-ian inverse A . For these cases, the integrals (2.15) and (2.17) 

can be evaluated by

(2.29)

(2.30)

The two right-hand-side terms of equations, (2.29) and (2.30), give 

an algebraically convenient solution to integrals (2.15) and (2.17). 

However, the occurrence of rank-deficient state matrices in the 

basic aircraft model is not uncommon. In spite of this, some 

commercially available computer-aided-design programs offer the 

simplified expressions as the only means of mapping a model from the 

CACT domain to the CADT domain [2.24].

A solution -to the rank-deficient state matrix problem, that avoids 

the need to explicitly solve the integrals (2.15) and (2.17), even 

when the matrix, A, is singular, is outlined below and described in 

more detail in Appendix One. Surprisingly, this technique cannot be 

attributed to any of the published literature reviewed for this 

thesis.

When the CACT system has a rank-deficient state matrix, A, caused by 

the presence of open-loop integrations, an equivalent discrete-time
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system quadruple (fc.'P.Ĉ .D̂ ) can be computed as follows:

exp

exp

' Ah Bh' ’ $

0 0 0 I _

‘ AA BA' 1
•e* > •a

0 0 0 I

(2.31)

(2.32)

The discrete-time equivalent state equation terms are sub-matrices 

with dimensions that correspond to the their continuous-time 

counterparts in (2.31). The output equation terms, and Dd, are

evaluated by

C = C $A 
d A (2.33)

(2.34)

The CACT to CADT mapping techniques given in this section are only 

applicable to sampled-data systems, where the sampled-data has 

infinite amplitude resolution. In the case of DFC systems or, 

indeed, any mixed-data digital control process, in which the control 

is provided by a digital computer, the added complications of data 

amplitude quantisation must be considered. Amplitude quantisation 

of the sampled-data is a stochastic process which is more readily 

included as part of a simulation exercise. However, it is 

appropriate to consider some features of amplitude quantisation 

during the initial design stage. These features are described in 

Chapter Four.
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2.5 SUMMARY

This chapter presents a view of the data-domains associated with 

modern computer based DFC systems. Classifying the functions of a 

DFC system in terms of the CACT, CADT, DADT and DACT data-domain 

operations represents a novel view of digital computer control 

systems. While this view may be regarded as obvious, explicit 

attention to the quantisation issue is omitted from much of the 

literature covering general design aspects of computer-based 

control. Having set the route for DFC design and implementation, a 

review of methods of recasting an analogue-data model into an 

equivalent sampled-data model was presented. Support for this 

chapter is provided by the appendices. In particular, Appendix Two 

describes an experiment, the results of which support the case for 

direct-digital-design. Appendix One gives details of the

development of the CACT to CADT mapping techniques presented in this 

chapter. The work of this chapter contributes to DFC design 

practice by exposing some useful techniques seldom, if at all, found 

in standard tutorial reference texts.
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CHAPTER THREE

A SAMPLED-DATA AIRCRAFT MODEL FOR DFC DESIGN

3.1 INTRODUCTION

The case to transform the Continuous-Amplitude, Continuous-Time, 

state-space model of a basic aircraft into an equivalent 

Continuous-Amplitude, Discrete-Time domain, for the purpose of DFC 

system design, was presented in Chapter Two. The key parameter of 

the CACT to CADT mapping procedure is the sampling-period, h. This 

chapter addresses the issues concerned with the selection of the 

sampling-period and the production of a CADT state-space for the 

purpose of DFC design.

A general feature of a modern DFC system is a multirate sampling 

policy, which is employed in the implementation of the control 

functions. The principal aspect of the DFC design model, that is 

developed in this chapter, is the accommodation of a multirate 

sampling policy. Multirate sampling is necessary for the practical 

implementation of a DFC system; this assertion is based on two 

unrelated observations. The first observation focuses on the 

integrated-systems concept associated with modern DFC. In contrast 

to a classical analogue flight control system, a DFC system 

integrates information from a wide range of aircraft sensors and 

subsystems for the purpose of automatic flight control. As 

autonomous entities, these sensors and subsystems produce
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information over a wide spectrum of bandwidths and data-rates. 

These bandwidths and data-rates are naturally selected to suit the 

primary function of the sensor or subsystem. The application of the 

information in flight control is a secondary function, therefore the 

data-rates may not be harmonised for a unirate sampled-data DFC 

process. For example, a terrain-following flight control function 

employs information from an inertial navigation system, a forward 

looking sensor (radar), a downward looking sensor (radio-altimeter) 

and a data-base of terrain contours. Each of these subsystems will, 

in general, have a frequency or data-rate at which information is 

made available for the secondary purpose of the terrain-following 

control system. A terrain-following flight controller which 

accommodates a spectrum of data-rates is, by definition, a multirate 

sampled-data system.

A second observation, which leads to the adoption of a multirate 

sampling policy for a DFC system, is concerned with the fundamental 

property of data amplitude quantisation. Amplitude quantisation is 

an implicit feature of a digital computer implementation of a 

control system. A classical view of the sampling-rate selection 

problem is that the ultimate, ideal sampling-period is zero. This 

view does not apply to sampled-data systems implemented in the 

Discrete-Amplitude, Discrete-Time domain of a digital computer. For 

a given characteristic frequency, in addition to the classical 

lower-bound limit on the sampling-rate, (maximum h), there is also 

an upper-bound limit, (minimum h); a demonstration of this fact is 

given in Section 3.2. A dynamical system consisting of several 

characteristic frequencies will not, in general, be encompassed
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within the boundaries of a single sampling rate. Consequently, for 

the digital control of large-scale systems such as aircraft, a 

multirate sampling policy will be selected.

Although methods of assembling models of multirate sampled-data 

systems have been reported, [3.1], [3.2], their complexity, even in

the state-space form, [3.3], [3.4], is considered to violate the

four design methodology maxims that were prescribed in Section 1. 

of Chapter One. A state-space multirate sampled-data model format 

is developed which is considered to be more compatible with the 

design methodology objectives of the thesis.

3.2 THE SAMPLING RATE SELECTION PROBLEM

Given a CACT domain model of a basic aircraft, the primary design 

task is to transform it to an equivalent CADT domain (sampled-data) 

model. The method by which this can be achieved was described in 

Chapter Two. The cardinal issue of the CACT to CADT mapping problem 

is the selection of a sampling period, h. As with any rational 

approach to an engineering problem, a sampling period must be 

selected from known facts. In the case of a typical digital flight 

control system problem, the design is usually initiated with only a 

partial model of the basic aircraft available. It is, however, 

necessary to know, with reasonable certainty, the CACT dynamics of 

the system which includes the basic aircraft, the control actuators 

and the response sensors, plus any amplification, signal-processing 

and signal-filtering.
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3.2.1 Sampling Rate and Digital Processing Wordlength

Before the methodology of selecting a sampling-rate or 

sampling-policy is considered, some results are presented to 

demonstrate the intimate relationship between sampling-rate and 

digital-data wordlength. These results are obtained in Appendix 

Three and serve to reinforce the arguments of this chapter.

Consider the modal form, discrete-data model of a sampled-data CACT 

system,

x(n+l) = A x(n) + w , (3.1)D Q

where Ad is a discrete, mxm, diagonal state-matrix, produced by 

mapping a CACT domain mxm diagonal matrix, A, to the CADT domain. 

The input function, wq, from a digital computer, is an mxl vector 

of white-noise quantities, representing the quantisation noise 

produced by the finite wordlength digital-data. The analysis given 

in Appendix Three produces the following equations which relate the 

sampling-rate to the digital-data wordlength, in terms of a noise 

amplification parameter.

The noise amplification factor is defined as

<r

where cr̂ is the standard deviation of the noise component associated
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with a single state x, and cr is the standard deviation of thew
quantisation noise of a single control input. As shown in Appendix 

Three, each diagonal element of the matrix Aq produces one 

eigenvalue. Defining the eigenvalue of x as A then, as shown in 

Appendix Three the sampling period, h, is given in terms of this 

eigenvalue and the quantisation noise amplification, tj, by

h = x -1 ± 1 -  —  2
T)

(3.3)

Since A is a pole of the system, it is clear that if the noise

amplification term is constant then, as the pole moves towards zero,

h tends to infinity. Equation (3.3) shows that, to achieve a given

constant noise amplification, the sampling-period, h, must be

increased as the pole location is reduced. Assuming the

quantisation noise variance in terms of the digital computer
2 (2~W)2wordlength, W, is given as <rw = — ^ —  , [3.5] then, as shown in

Appendix Three, W is given by

W =
log(2)

log-
V'12 (r /  (Ah)" + 2Ah x

(3.4)

This expression indicates that, for a given standard deviation of 

output noise, c r , a reduction in the sampling period will require an 

increase in the data-conversion process wordlength, W. It is also 

clear that, for both a constant standard deviation of output noise 

and constant sampling period, a decrease in the pole location must
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be accompanied by an increase in the wordlength of the data 

conversion devices.

3.3 SELECTING A SAMPLING POLICY

It is assumed, that a sampling policy for a digital flight control 

system must be identified on the basis of a subset of the CACT, 

open-loop state-space model of the basic aircraft. The implicit 

information available in this subset model, are the natural 

frequency components of the system’s characteristic frequency 

response. It is common practice to select a single sampling-ratd on 

the basis of the some multiple of the highest natural frequency 

component [3.6]. As illustrated in the previous section, a 

sampling-rate can be too high as well as too low. For a system with 

both high and low frequency modes, an appropriate sampling-rate for 

the high frequency mode may be too fast for the low frequency mode.

The sampling-rate selection problem receives surprisingly little 

attention in the digital control systems literature. However, a 

noted exception to this paucity is the widely quoted work of Powell 

and Katz, [3.7]. However, their technique is not suitable for the 

approach to DFC system design that is proposed for this thesis. The 

sampling-rate, or -policy, must be established in order to transform 

the basic CACT aircraft system into an equivalent CADT model, on 

which the DFC design tasks are undertaken. Therefore, the 

sampling-policy selection procedure starts with an open-loop, CACT, 

state-space model of the basic aircraft. The procedure is based on
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the intersample divergence characteristics of the basic aircraft 

state, which occurs in response to a random disturbance signal 

applied to the control input. The procedure explicitly addresses 

each state and input and therefore has the facility to identify a 

multirate sampling-policy. To ensure that the selected

sampling-policy meets the minimum sampling rate requirements of 

Shannon’s Sampling Theorem (or the Nyquist Sampling Criteria), 

[3.8], a z-plane diagram of the zeros of the system’s characteristic 

equation is produced. Details of this and the selection procedure 

are described in the following paragraphs.

In this section, guidelines and techniques are given that can be 

used to select a sampling policy for a DFC system. The fundamental 

principle upon which these techniques are based is summarised as 

follows: At each sampling instant, the sampling switch is closed

and an unbroken path effectively exist between the control signal 

source and the control inputs of the basic aircraft. At this 

instant the basic aircraft system is under control and the state 

error is assumed to be zero. Between sampling instants, the 

sampling switch is open, thus breaking the connection between the 

control signal source and the basic aircraft. For this period the 

basic aircraft system is free-running and diverging from the 

required, controlled state. When the magnitude of the error of a 

free-running, physical-state of the system reaches a predefined 

level, another sample of control activity must be applied to zero 

the state error, which is built up during the intersample period.
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3.3.1 Sampling Policy Selection Procedure

This section describes another technique, which has a practical 

application in the methodology of selecting a sampling policy for a 

DFC system. The technique focuses on a time history analysis of the 

open-loop system state uncertainties, when the control inputs are 

exercised with stochastic functions. The technique compliments the 

method described in the last section by effectively addressing the 

lowest control signal regimes. It is assumed that the control 

inputs are exercised with signals which are produced by a numerical 

round-off quantisation process within the DAC interface device. 

Although this is a slight misinterpretation of the real process 

taking place in the combined ADC/Digital-Computer/DAC subsystem, it 

does not matter for the purpose of this analysis. The assumptions 

permit the stochastic control inputs to be defined in terms of the
( 2 ' Vthe variance of the quantisation noise, o*w = — ^ —  • The state

equation with a stochastic signal applied to the control inputs is 

defined as

x(t) = A x(t) + B w(t) . (3.5)

The terms A, B, and x(t) have their usual meaning in the sense of 

the CACT state equation (2.3a). The term w(t) is a vector of white 

noise functions that couple into the system through control matrix, 

B. The interpretation of the noise term is given in Appendix Four. 

Further comments on the questionable validity of this equation are 

also given Appendix Four. The covariances of the stochastic inputs 

and output states are defined as
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|w(t)wT(t)jQc(t) = 8 |w(t)w (t)| , (3.6)

and

|x(t)xT(t )jGc’(t) = ' & |x(t)x (t)| , (3.7)

respectively, where 8 is the expectation operator. The state 

covariance is propagated in time by the differential equation

G (t) = A G  (t) + G (t) AT + B Q B T . (3.8)c c c c

Equation (3.8) is recast in terms of first order discrete-time 

approximations to A and B, in order to obtain a numerical solution. 

The approximate form of (3.8) is

Gr+i = |Y+ A StjG^I + A 5tj + B QcBT5t , (3.9)

where <5t is a time step, chosen by the rule, [3.9]

<5t = ------- —  , (3.10)
2 IIAll 104

and It All denotes a norm of the mxm matrix A, which is defined as
m m \ 1

IIA If = | Z S (a )2i = l j = l ij 2 with a representing the elements of A.

From an assumed initial state covariance of G = 0 (G (t ) = 0),
k c o

equation (3.9) is propagated in steps of 5t to a final state

covariance G (t ). The resulting record of the state covariance c i
time-history provides a quantitative measure in the process of 

selecting a sampling policy. From the DFC system design example,
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considered in detail in Chapter Six, the resulting covariance 

time-history for two of the four state elements is shown in Fig.3.1.

Pitch-rate q(t) Pitch attitude 0(t)
30 0.1o<1)w

Zi 0.05 hl
PC

’o

0
0 0.05

Time - seconds
0.1 0 0.05

Time - seconds
0.1

The covariance time-history for two state elements from 

the DFC system design example described in Chapter Five

Fig.3.1

The application of the state covariance time-history for the 

determination of a sampling rate for each state element and each 

control input proceeds as follows: Consider, for example, a state

element, x, its covariance plotted according to the procedure 

described above. From zero uncertainty at time t=0 (assumed as a 

sampling instant), the uncertainty increases as time progresses 

(assumed as the intersample period). The time at which the value of 

the uncertainty reaches an unacceptable level represents the maximum 

sampling period of the state x. For the two state elements 

considered above in Fig.3.la and Fig.3.lb, the sampling-periods are 

selected (as described in Chapter Five) as ^  and h2, respectively.
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What constitutes a value of acceptable uncertainty for any given 

state element is a matter of engineering judgment which is based on 

an interpretation of the physical significance and scaling of each 

state element. This is one reason why emphasis is placed on 

retaining the physical states of the basic system dynamics. In the 

case of an aircraft, guidelines on the uncertainty are provided by 

the standard flight control and aircraft handling . qualities 

specifications, such as MIL-F-8785C.

The lower sampling-rate boundary is set by the requirements of 

Shannon’s Sampling Theorem and the derived Nyquist-rate, which gives 

the theoretical lower limit of the sampling-rate. The above 

procedure produces a sampling-policy on the basis of an open-loop, 

uncontrolled system model. However the application of a feedback 

controller will modify the dynamics of the basic system and hence 

the related distribution z-plane poles and zeros. The problem is 

that these closed-loop characteristics are are also function of the 

sampling policy. This is easily seen by inspecting the closed-loop, 

sampled-data, z-plane transfer-function,

zl - exp (Ah) [I+A-1]B H + A_1B H j A_1|exp(Ah) - ij B v(z).

(3.11)

where the closed-loop input v(z) = u(z) - H x(z). The matrix, H, is 

the negative state feedback function which, in the case of DFC 

systems, represents the digital flight computer.

x(z) =
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The problem of selecting a closed-loop sampling policy, on the basis 

of an open-loop model, suggests that the direct digital design 

method must proceed from an a priori knowledge of the required 

closed-loop characteristics. For flight control systems,

particularly in the case of the inner-control-loops which are 

associated with aircraft stability, the a priori knowledge of the 

required closed-loop characteristics can be deduced from the 

appropriate flight control or aircraft handling qualities documents. 

When only the basic open-loop aircraft model data is available, a 

sampling-policy which maps the CACT domain dynamics to a sector of a 

right-half z-plane usually gives adequate results. Using this 

method, the minimum sampling rate of a multirate sampling policy is 

determined from the sampling period h that casts the highest 

frequency eigenvalues inside the envelope indicated in Fig.3.2.

z-Plane

-Real axis
<? =0.45

Unit circle
Imaginary axis

Mapping boundary for the highest frequency eigenvalue

Fig.3.2
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The basis of the boundary is the establishment of a design margin 

between the highest frequency mode and the Nyquist sampling 

frequency limit, which is represented as the negative-real axis of 

the z-plane. The design margin must be sufficient to accommodate 

the pole-shifts produced by the design of closed-loop controllers. 

The margin must also accommodate the increasing z-plane sensitivity 

of a system’s dynamic characteristics as they map towards the 

negative real axis. In the case of the inner-loop control of 

aircraft including stability augmentation and autopilot systems, the 

boundary defined in Fig.3.2 has been shown to be adequate [3.10].

A formal statement of the z-plane boundary is defined as follows:

Given a CACT system pole As=<r±jw, the equivalent z-plane pole under

a sample period mapping h is given by

Az = exp(Agh) = exp(crh) ̂ cos(wh) ± jsin(wh)j . (3.12)

The value of h is selected to map Az on a z-plane such that

exp((rh) 2: 0.45 and wh ^ -J-

The significance of the values assigned to these quantities is 

described in detail in Appendix Seven.

The criterion imposed by the z-plane boundary, described above, is 

interpreted as a property of the CADT domain. To assess the DACT 

domain properties of the system’s dynamics, as they apply to this 

application of the z-plane, interest focuses on the separation of
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the individual z-plane poles and zeros. Distinct CACT poles and 

zeros can be, by virtue of the selected sampling-rate, collocated in 

the z-plane and give rise to a number of design and implementation 

problems. In general, these problems are identified as a loss of 

controllability and observability caused by time-sampling and 

amplitude-quantisation of the CACT data. This observation has been 

studied in detail [3.11], [3.12].

As applied in this current research, the sampling-policy selection 

procedure, described in this section, is a pseudo-analytic approach. 

However, the potential of the procedure to determine a multirate 

sampling policy for a DFC system hinges on the ease with which an 

aircraft’s handling qualities can be directly related to its 

physical state elements. This issue is a topic that is identified 

for further study.

3.3.2 The Presentation of a Hultirate Sampling Policy

The result of the sampling-rate selection exercise is, in general, a 

multirate sampling policy. To keep a practical perspective of a 

complex multirate sampled-data model requires a systematic approach 

to the multirate data structure. In principle, a separate 

sampling-rate could be defined for each control input and each state 

output of the multiple-input, multiple-output basic aircraft system. 

In practice, there is usually sufficient flexibility in the 

assignment of a sampling rate to allow more than one control input 

and/or one state output to be grouped under a single sampling rate.

3-14



In the case of flight control applications both the modelling and 

implementation tasks become more tractable if the sampling periods 

are synchronised and scheduled as integer multiples of the shortest 

sampling period; for an example refer to Fig.3.3. The form of the 

multirate state measurement sampling vector is

xT(t)
■  [x*(t) x*(t)2 V ( t )  ]  • (3.13)

where T 1x (t)-,i = 1, 2, ...f defines a transposed column subvector 

of states that are assigned to the i-th state measurement sampling 

rate and f is the number of sampling-rates assigned to the state 

measurement process. The multirate sampling control inputs are the 

elements of the vector

uT(t)
= [ 1

(t) u*(t)2 \ ( t )  ] (3.14)

where ûj(t) ,i = 1, 2, ...kj defines a transposed column subvector 

of control inputs that are applied to the CACT system at the i-th 

sampling rate and k is the number of sampling-rates assigned to the 

control input process.

3.4 A MULTIRATE SAMPLED-DATA MODEL FOR DFC DESIGN

As indicated in the introduction to this chapter, a consequence of 

the proper recognition of the four domains associated with a DFC 

system results in a controller with a multirate sampling policy. A 

general method is therefore required by which the basic aircraft and

3-15



subsequent control structures can be modelled and analysed. The 

concept of multirate sampling is not new. However, it was concluded 

from a survey of the various available methods of modelling 

multirate sampled-data system that an alternative method was 

required to meet the DFC design maxims of this thesis. This section 

describes a multirate sampled-data system model that has been 

developed to meet the objectives of the thesis. Before this model 

is described, a summary of the methods reviewed for the thesis is 

given.

3.4.1 A Review of Multirate Sampled-data Modelling Methods

The original methods of modelling multirate sampled-data system were 

established as part of the classical transfer-function approaches to 

sampling [3.13], [3.14]. State-space methods of modelling multirate 

sampled-data systems have been developed [3.15], [3.16], [3.17].

Most notable among these state-space methods is the work of Kalman 

and Bertram. Although Kalman and Bertram’s method satisfies the 

generality objectives, their model is considered to be unsuitable 

for this thesis for the following reasons. First, the combined 

configuration of the CACT and CADT subsystems must be defined before 

a model can be developed. This means that the reduction of the 

state-space model to a transfer-function will be a closed-loop 

system equation. Second, the state-space model is not 

automatically cast in the form of the (A,B,C,D) quadruple. Third, 

the growth in complexity, as a specific symbolic model is assembled, 

is considered to compromise the design maxims of the thesis.

3-16



Techniques that overcome the first two deficiencies have been 

developed, and are described in an ancillary report of this thesis

[3.18]. This report also demonstrates the growth in complexity that 

is considered to undermine the utility of the Kalman and Bertram 

model.

3.4.2 A Development of a Multirate Sampled-Data System Model

A method of assembling a multirate sampled-data system model is

described in this section. The proposed assembly method has been

developed to meet the design maxims and systematic modelling 

objectives of the thesis. The technique builds on an open-loop, 

state-space quadruple model of a basic aircraft. The control input 

to this model is the partitioned vector, u(t), that was defined in 

Section 3 as the multirate sampled control data. Substituting the

multirate sampled control data vector into the state-space quadruple

(A,B,C,D) gives
k

x(t) = A x(t) + £ B^u^Ct) (3.15a)
1=1

k
y(t) = C x(t) + [ D u  (t) . (3.15b)Lt 11

1 = 1

The controls, ^  ,£=l.-..k and direct matrix terms, ,£=l...kj

are submatrices of B and D, respectively. The row dimensions of the 

and terms are given by the number of states and number of 

outputs, respectively. The column dimensions of both the B^ and 

terms are determined by the number of inputs assigned to each 

partition.
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3.4.3 A Proposed Model of a Multirate Sampled-Data System

The process of assembling a multirate sampled-data model of an 

open-loop CACT state-space system is described for the case of a 

three rate sampling schedule. Limiting the development to a 

specific sampling schedule serves two purposes. First, the specific 

case facilitates the description of the assembly procedure without 

compromising the generality of the methodology. Second, the ease by 

which the principles of the specific case are extended to other 

sampling schedules demonstrates the compatibility of the method with 

the prescribed design maxims.

Consider a CACT domain system, with its control inputs partitioned

for the application of three different sampling rates. The CACT

state-equation, deduced from (3.15a), is given by

x(t) = A x(t) + B u  (t) + B u  (t) + B u  (t). (3.16)1 1  2 2  3 3

For the purpose of the description, it is assumed that the system

has been assigned the multirate sampling policy which is defined by

the schedule shown in Fig.3.3.
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The demonstration three rate sampling policy schedule

Fig.3.3

From the sampling policy schedule it can be seen that the base 

sampling period hfa = hj and the program period hp = 6hfa. The 

program period is formally defined as the lowest common multiple 

(LCM) of the sampling-rates, in this case given by

LCM(s ,s ,s ) = LCM(1,2,3) = 6 = hp (3.17)

For the notation used in the development of this example, it is 

convenient to define hp = p. The sampling policy schedule also 

shows that all the samplers are asserted at the initial increment of 

the program sample sequence.
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The process of defining a CADT domain model for the system, given by 

equation (3.16), starts by finding the solution to the state 

equation at the initial program increment. The initial solution is 

propagated over the base-rate time interval because a ZOH keeps the 

sampled input constant between base-rate samples. At time increment 

n, shown as the initial sample on the schedule of Fig.3.3, the CADT 

domain state equation for the period ((n )t^ t <(n +1 )t) is given by1 n 1

x[(n+l)h ] = $ x(nh ) + ¥ u (nh ) + ¥ u (nh ) + u (nh ), (3.18)I 11 1 1 1 1 2 2 1 3 3 1

where n is the initial sample number of the program period.

There is no loss of generality by considering the initial program

sample as the increment np = 0. Under this condition, equation

(3.18) is recast as

x (1) = $ x(0) + * u (0) + ¥ u (0) + ^ u (0). (3.19)1 1 2 2  3 3

Repeating the solution for each new member of the input set for one 

cycle of the program produces the CADT domain multirate sampled-data 

state equation, given by
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x(6) = $6 x(0) + $5^iui(0) + S5* u (0) 2 2 + u (0) 3 3
+ V *  u (1) 1 1 + u (0) 2 2 + $4tf U (0) 3 3
+ $3^1U1(2) + $3* u (1)2 2 + $3tf U (0) 3 3
+ u (3) + $ V u  (1)2 2 + ♦ V u  (1)3 3
+ $ ¥ u (4) + $ U (2)2 2 + $ U (1)3 3
+ u (5) + U (2)2 2 + 3 3 (3.20)

The coefficient matrices of (3.20) are given in terms of the CACT 

state-equation (3.16) coefficients by

$ = exp(A h ) (3.21)b

= [ J b eXp(A A) dX ] Bi (3.22)

[*2] = [ J b exP(A A) dA J b2 (3.23)

[̂ 3] = [ J b exP(A A> dA j b3* (3.24)

The next task is to rearrange equation (3.20) into the standard 

state-equation form. This is achieved by separating the input 

coefficient matrices from the input vectors to give

x(p) = [$ ]p x(0) + r [ p $ I B„ u (k .k ,k ). (3.25J p p 0,5 0,3 0,2

From equations (3.16) and (3.17) p = 6. The notation of k

parameters, associated with the three inputs, is interpreted as

follows; k defines u over five base sampling periods, k „ 0,5 1 ^  ^  0,3
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defines u over three base sampling periods, and k defines u2 0,2 3

over two base sampling periods. The matrices associated with the 

inputs are defined as

£■ exp(A X) dX (3.26)

['•] ■ [
for p = 6

$5 $4 $3 $2 $ (3.27)

B B 0 0 0 0 0 B 0 0 B 01 2 3
0 B 0 0 0 0 B 01 2 0 B 03
0 0 B 0 0 0l 0 B 0 B 02 3
0 0 0 B 0 0 0 B  0 0 B1 2 3
0 0 0 0 B 0  0 0 B 0  B1 2 3
0 0 0 0 0 B 0 0 B 0 B1 2  3

(3.28)

u (k) = P u (0)
(1)
(2)
(3)
(4)
(5)

u (0)2
U (1) 2
u (2)2
U (0) 3
U (1)3

(3.29)

The CACT output equation for this is deduced from equation (3.15b) 

and is given by

y (t) = C x (t) + u (t) + D2 u2(t) + D3 u3(t). (3.30)
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Mapping equation (3.30) to the CADT domain with the multirate 

sampling policy defined in Fig.3.3 produces the multirate

sampled-data output equation given by

y(p-1 )=C [$]P ^(OJ+C r [P” 1$ I ° ]

(3.31)

The matrix, C, is identical to the C matrix of the CACT domain

equations (3.27), (3.26) and (3.28), respectively. The multirate

state at the beginning of each multirate program period. The 

remaining terms, for p=6, are given by

The dimensions of the coefficient matrices are deduced from the 

dimensions of the state vector, x(t), the input vector, u(t), the 

output vector, y(t), and the parameters of the sampling policy. 

Consider, for example, the three rate system described above, 

assuming the model has m states, q inputs and r outputs. These 

quantities produce the following information for the CADT model.

output equation. The matrix terms , T , and B are given above by

input vector is defined as equation (3.29) and x(0) is the system

(3.32)

DP 0 0 0 0 0 D  J O O Dl 2 0 D3.]•
(3.33)
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x(nh)
y(nh)

$

m state vector
r output vector 
mxm matrix

r mxm matrix
C rxm matrix.

To determine the dimensions of the remainder of the terms, in both 

the state and output equations, requires analysis of the multirate 

sampling policy. Using the results of the above example, some 

general observations can be made to support this analysis. Consider 

the q element input vector u(t); this is partitioned for three 

sampling rates u , u , and u . Assume that u is a vector with a1 2  3 1
elements, is a vector with /3 elements and u3 is a vector with y

The null sub-matrices have dimensions that are given by the B 

matrix of the column in which they occur. In the case of the

elements.

First observation

Second observation B is an mxa matrixl
B2 is an mx£ matrix 

B3 is an mxy matrix

example, the dimension of the matrix B is given by



The general form of the notation employed in equation (3.32) is

X2 X I . (3.34)

The dimensions of ^ 1 $ { 0 are m x m(p+l)

is partitioned, where the number of partitions isThe matrix, D

given by p. Each partition has one D sub-matrix; all the other 

sub-matrices in the associated partition are assigned as null 

matrices. The dimensions of the null matrices assume the dimensions 

of their associated D sub-matrix. In the case of the example, the 

dimensions of the three D sub-matrices are

-i— -1, and -t— -1 for the terms associated with D , D , and D , h h 1 2  32 3
respectively.

D = r x a . D  = r x 8 and D = r x x . l 2 3

P
The number of null sub-matrices in each partition is given by -^-“1

lP P

The overall dimension of the matrix is given by

P P P
+

2

The CADT domain multirate sampled-data state and output equations 

are put into the standard, generalised quadruple form by defining
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the following relationships,

p (3.35)

(3.36)

X = C [ $ ]P 1p (3.37)

(3.38)

From these expressions the state and output equation are given as

where the subscript p denotes the program period.

3.4.4 Multirate Sampling with State-Feedback

Consideration is now given to the organisation of a state-feedback 

model for systems with their control input partitioned for multirate 

sampling. The utility of the resulting closed-loop equations and 

the importance of keeping a physical insight of the system these 

equations represent are significant features of the formulation. A 

specific example is used to illustrate the method of organising a 

state-feedback model for a multirate sampled-data system. The 

proposed organisation of a state-feedback model starts by

x (n +l)h p pJ

(3.39b)

(3.39a)
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considering a closed-loop arrangement of the form illustrated in 

Fig.3.4.

x(t)
ZOH

ZOH

ZOH

CACT Model 
with inputs partitioned 
for multirate sampling

The general arrangement of a multirate sampled-data 

system model employing state feedback control

Fig.3.4

Consider the system, described in Section 3.4.2,which employs a 

three-rate sampling-policy. The structure of the overall state 

feedback element, H, is a key feature of a closed-loop multirate 

sampled-data system. With the multirate sampling defined in

Fig.3.3, the input equations for the state-feedback system are 

defined over one program period, hp, by

3-27



u (0)=H x(0)+vl (0)
u (1)=H x(l)+vl (1)
u (2)=H x(2)+vi (2)
u (3)=H x(3)+v (3)
u (4)=H x(4)+v (4)
u (5)=H x(5)+v (5)

u (0)=H x (0)+v (0)2 2 2
U (1)=H X (2)+V (1)2 2 2
u (2)=H x (4)+v (2)2 2 2

u (0)=H x(0)+v (0)3 3 3
u (1) =H x (3)+v (1)3 3 3

In matrix form this set of multirate input equations is recast as

u^O) r h i 0 0 0 0 0 ~ _ x(0j~ - Vj (o r
u (1) 1 0 Hl 0 0 0 0 x (1) V (1)
u (2) 1 0 0 H1 0 0 0 x(2) V (2) 1
u (3) 0 0 0 Hl 0 0 x(3) va(3)
u (4)l 0 0 0 0 Hl 0 x(4) v (4)
u (5) 1 = 0 0 0 0 0 Hl _ x (5)_ + v (5)
u (0) 2 H2 0 0 0 0 0 v (0) 2
U (1)2 0 0 H2 0 0 0 V (1) 2
u (2) 2 0 0 0 0 H2 0 v (2) 2
u (0)3 H3 0 0 0 0 0 v (0)3
U (1) 3 0 0 0 H3 0 0 V (1) 3

Writing (3.40) in a succinct form

u (k) = H x (n ) + v (k) . (3.41)P P P i P
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Substituting this equation into equations (3.39a) and (3.39b),

respectively, gives

$ |B H x (n ) + r|P $ |b v (k) (3.42)
J P P P i L J P P

and

y(p-l) = C [$ ]p 1 x(0)

+ C r r ' 1 $ i 0 |B H x (n ) + D H x  (n )L i J p p p l  p p p l

0 IB V (k) + D V (k) . (3.43)
J P P P P

These two equations are further refined by eliminating all but the 

initial program state, x(0), from the incrementing state vector, 

x^fn^. The substitution term is developed by propagating the state 

equation over one program period and collecting the expressions for 

each state increment as elements in a matrix equation. This process 

produces the following equation:

C r iP-1

x(p) = [$ ]p x(0) + T y

3-29



x(0)_ I 0 0 0 0 “
X (1 ) n123 0 0 0 0
x(2) — 0 ni 0 0 0
x(3) 0 0 n12 0 0
x(4) 0 0 0 n13 0
x(5) 0 0 0 0 ni

0 0 0 0 0
41 0 0 0 0

+ 0 41 0 0 0
0 0 4 0 0
0 0 0 41 0
0 0 0 0 41

x(0)
x C l)
x(2)
x(3)
x(4)

0 0
4 0 2
0 0
0 4 0 02

0 0
4 03
0 0

0
4

v cor
(1)
(2)
(3)
(4)
(5)

v (0)2
V (1)2
v (2) 2
V (0)3
V (1) 3

, (3.44)

where the sub-matrix terms of the state coefficient matrix are 

defined as

n123 = [4 + 4 H +l l 4 H + 4 H2 2 3 :

ni = [4 + 4 H ]l l >

n12 = [4 + 4 H +l l 4 H ] ,2 2
n13 = [4 + 4 H + 1 2 4 H ]3 3

(3.45)

(3.46)

(3.47)

(3.48)

The reduction of the right-hand-side state vector continues by 

reapplying the substitution process, as shown below.
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x(0)
x(l)
x(2) =
x(3)
x(4)

I 0 0 0 0 “ x(0)
n123 0 0 0 0 x(l)
0 n L 0 0 0 x(2)
0 0 n12 0 0 x(3)
0 0 0 n13 0

0 0 0 0 0 0 0 0 0 0 0
V1 0 0 0 0 0 2 0 0 3 0

+ 0 1 0 0 0 0 0 0 0 0 0
0 0 V1 0 0 0 0 y2 0 0 0
0 0 0 *1 0 0 0 0 0 0

V. CO J
(1)
(2)
(3)
(4)

v (5)2
v (0) -2
V Cl) 2
v (2) 2
v CO)3
V (1)3

.(3.49)

The following notation provides a convenient mechanism to illustrate 

the completion of the reduction process. The notation defines

the state vector with n elements as .............  xOn
the coefficient matrix of x as .................   ITOn On
the matrix IT as . . .  ........................   I00
the coefficient matrix of x , for (m =n+l) as ...... $om On

Using this notation for the six element state vector under 

consideration gives

x = in n n n i]x(o) + .'[* * * * * ]v (k) . (3.so)05 04 03 02 01 04 03 02 01 00 p

Substituting x for the state vector x(n ) in both the state and 05 l
output equations, respectively, casts the multirate sampled-data 

state quadruple into the desired form. In this form, the state,
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when propagated over one program period hp is determined by 

considering only the value of the state at the start of the program.

3.4.5 An Alternative Form of the Multirate Sampling Model

The multirate sampled-data system model, described above, represents 

the multirate properties through an augmented control vector, u, in 

the open-loop case and the control vector, v, in the closed-loop 

case. This model can be recast to a form in which the multirate 

features are represented by an augmented state vector. The basis of 

the transformation method is a formal definition of the 

zero-order-hold (ZOH) elements. This formal definition of a 

multirate sampling and ZOH operation is given by

0 0 .... 0 u s 0 .... 0 V1 i 1
0 0 ___ 0 u 0 s .... 0 V2 + 2 2 , (3.51)

0 0 ___ 0 U 0 0 .... s Vk k k

where s , for i=l,...,k, is a diagonal matrix that couples thei
sampler inputs, v̂ , to the hold state at an assigned sampling 

instant. This notation presents an explicit expression of the 

multirate sampling switch function. Consider the CACT state and 

output equation (3.15), with the control inputs partitioned for
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multirate sampling. Using equation (3.51) with the highest sampling 

rate inputs grouped in the vector, u , equation (3.15a) is reformed 

in terms of a sampling policy for the highest sampling rate. This 

form is given by

x(t ) A Bk
u (t) k 0 0

U^ (t) 
u (t)i

0 0
0 0

B B j i
0 0

x(t) 
u (t)k

Uj (t)
(t)

B

s 0 'j

U 1 (t)
V (t) k

V .(t)
V (t) 1

(3.52)

The open-loop CACT model of the multi-rate sampled-data system, 

defined by equation (3.52), is mapped to an equivalent CADT 

open-loop model using the methods described in section 2.4 of 

Chapter Two and Section A1.4 of Appendix One. The time interval for 

the mapping is given by the highest sampling rate in the multi-rate 

schedule. The equivalent CADT model of equation (3.52) is therefore 

given by
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x(( n +1)h )l l $ a .k . ifj 'ifi x C ^ h  )
u ((n +1 )h )k 1 1 0 I . . 0 0 u (n h ) k l l

u ^((ni+l )h^) 0 0 . . I 0 u (n h ) j i i
u ((n +1 )h )i 1 1 0 0 . . 0 I u (n h )i 1 1

'if 'if s .. . 'if s if s u (n h )1 k k j j i i l 1 1
0 s ... 0 0 v (n h )k k k k

0 0 . . . s 0 v (n h )J j J J
0 0 ... 0 s v (n h )i i i i

(3.53)

where n , n , n and n are increment numbers for the samplers s , 1 i j k 1
ŝ , s., and srespectively. The sub-matrix elements of the

controls matrix, that are functions of s, only appear at their 

appropriate sampling instant; at other times, these sub-matrix 

elements are set to zero.

The augmented state, multirate sampled-data model represents the 

state-space link between the augmented control vector assembly and 

the open-loop form of the Kalman and Bertram model. It is 

considered that the augmented control vector form offers a greater 

facility for the time-domain and transfer-function analysis methods 

of the current research.
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3.5 ACCOUNTING FOR COMPUTATIONAL DELAY IN THE DFC CONTROLLER

The control requirements of the basic aircraft can usually be

achieved with a state-feedback controller. In the case of an

analogue controller, the computational processes are confined to

simple state scaling operations. As such, the order of the total 

feedback control system dynamics is no greater than the order of the 

dynamics of the basic open-loop aircraft model.

In the ideal case of a digital state feedback controller, the

digital process is once again a non-dynamic scaling operation. 

However, with a practical realisation of a state feedback controlled 

DFC system, the controller may require a dynamic element to account 

for computational delay. It is appropriate to consider this 

requirement as part of the initial stages of a DFC design exercise 

and to model the delay dynamics as augmentation states attached to 

the basic CADT aircraft system. In general, a model can be defined 

to accommodate a computational delay of any length. From a 

practical point of view, it is desirable to avoid delays that exceed 

more than one sampling period. This can be done by either 

increasing the processing speed of the digital controller or 

reducing the sampling-rate of the system.

A unirate sampled-data model of a single-input, single-output 

system, which includes the dynamics of a computational delay, is 

developed in [3.19]. In this section, this computational delay 

model is extended to the multirate sampled-data system.
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Consider the CADT domain multirate sampled-data state equation given 

by equation (3.18). This equation is partitioned for the 

application of a three rate sampling policy. If the multirate 

control inputs are delayed by one sampling period then, equation

(3.18) is modified to give

x(n+l)h = $ x(nh) + $ u (n-l)h + ¥ u (n-l)h + # u (n-l)h . (3.54)1 1 2 2 3 3

The diagram which reveals the structure of the system modelled by 

(3.67) is given in Fig. 3.5; the functions DLY^ DLX and DLY3 

represent a time delay of anc* h3> respectively.

u

u

u

x (n+1)

x (n+1) x(n+l) x(n)

x (n+1)

DLYDLY

DLY

DLY

A multirate (three) sampled-data model including delay dynamics

. Fig.3.5

The normal state space form is directly produced from Fig.3.5 to 

give

x (n+l)h

xi (n+1)h

x (n+l)h 2
x (n+1)h 3

$ $ $1 2 3
0 0 0
0 0 0

0 0 0

x (nh)

x (nh)1
x (nh)2
x (nh)3

0 0 0 
1 0  0 

0 1 0  

0 0 1

u
u
u

(3.55)
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The general form of the output state-space equation is similarly 

deduced and is given by

The delayed inputs are recast as the augmentation state elements, 

x , x and x , these state elements can also be included as inputs1 2  3
to a state-feedback controller.

3.6 SUMMARY

In this chapter, a method of constructing a multirate sampled-data 

system model, in a state-space format, is developed. Two new

techniques are presented for this development; first, the 

identification of the multirate sampling policy through the

covariance time-history of the state elements, and second, the 

open-loop assembly of the multirate sampled-data model. Alternative 

methods are considered and rejected because it is not possible to 

cast them in a form which meets the requirements of the design 

maxims of the thesis. The most promising of the reviewed methods is 

the approach developed by Kalman and Bertram. Although the

techniques reported in [3.20] overcome the deficiencies of the

Kalman-Bertram method, the complexity of the model assembly

D D D 1 fX  (nh)’1 2 3 J (3.56)
x (nh)l
x (nh) 2
x (nh)3
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mitigated against its utility for this thesis. The example used to 

describe the assembly of a multirate sampled-data model demonstrates 

equivalence proposed method to other multirate modelling techniques.

The multirate, sampled-data, time-domain state-space model, 

developed in this chapter, can be directly applied to the problem of 

DFC design. However, as with a unirate sampled-data digital flight 

control design, the main difficulty arises from the interpretation 

of the standard flight control specification which as previously 

mentioned, gives no regard to the possibility of a digital system 

implementation.

In Chapter Four, two data domains are reviewed which are identified 

as suitable instruments for design and analysis of DFC systems. 

These data domains are commonly referred to as the w- and w7-planes. 

The usual application of these two planes is for the direct digital 

design of DFC systems that employ unirate sampled-data controllers. 

The multirate sampled-data state-space model, developed in this 

chapter, is readily transformed to either a w- or w7-plane 

description by employing a multivariable system mapping algorithm. 

This algorithm, together with performance and analysis measures, is 

developed in Chapter Four.
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CHAPTER FOUR

DESIGN AND ANALYSIS OF DFC SYSTEMS

4.1 INTRODUCTION

The handling characteristics of manned aircraft provide the 

fundamental criteria on which the performance of flight control 

systems are assessed. The general specifications of aircraft 

handling qualities, embodied in documents such as MIL-F-8785C [4.1], 

are cast in terms of both time-domain and frequency-domain criteria. 

Although the multirate, sampled-data CADT model, developed in 

Chapter Three, is suitable for time-domain analysis, it is 

convenient to have a CADT design and analysis domain which is 

equivalent to the CACT s-plane. The most familiar CADT domain that 

fills this role is the z-plane. A sampled-data, time-domain, 

aircraft model is defined as a z-plane model by taking the 

z-transform of the CADT state-space quadruple to produce a set of 

z-plane transfer-functions. When the CADT domain state-space model 

has a multirate sampled-data structure, the z-plane 

transfer-function matrix is defined in terms of the program sampling 

period hp. This procedure is demonstrated in Appendix Five and 

results in equation (A5.13).

The z-plane design of a digital control system can incur numerical 

problems, [4.2]. These problems are, in general, associated with 

systems that have widely separated natural frequencies. It is, of
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course, this type of characteristic that generates the need for the 

multirate sampled-data system model that is developed in Chapter 

Three. The numerical problems associated with z-plane design 

methods are eliminated if the CADT design is undertaken in either 

the w-plane or w7-plane.

Both the w- and w7-planes have, on several occasions, been

identified as suitable domains for the design of sampled-data flight

control systems [4.3], [4.4], [4.5]. This chapter includes a brief

review of the both the w- and w7-planes and discusses their

application in the design of DFC systems. The major difficulty in

applying both the w- and w7 -plane in the design of sampled-data

control systems, is the awkward method of mapping equivalent w 
1domain CADT models from the z-plane. The traditional mapping

technique starts with a z-plane transfer-function. The z-plane to

w- or w7-plane bilinear transformation is then substituted for z to 

produce an equivalent w domain transfer-function. Not only is this 

procedure unsuitable for high-order systems, it also results in a 

cluttered expression of the w plane transfer-function. This chapter 

introduces a method to directly map a CADT domain state-space model 

to an equivalent w-plane or w7-plane model. The familiar 

transfer-function matrix technique can be applied to the resulting 

model to obtain the w7-plane transfer-functions.

To a v o id  c o n fu s io n , when d is c u s s in g  th e  w - and w7 -p la n e s ,  th e

fo l lo w in g  c o n v e n tio n  has been adopted: (w -) r e f e r s  to  th e  w -p la n e ,

(w7 - )  r e f e r s  to  th e  w7 -p la n e  and (w dom ain) im p lie s  a s im u lta n e o u s

re fe re n c e  to  b o th  th e  w - and w7 -p la n e s .
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To assess the behaviour of proposed DFC systems, this chapter 

includes descriptions of z-, w- and w'-plane stability and 

performance measures. Stability and performance measures for 

sampled-data systems are usually defined in terms of the z-plane. 

It is a common practice to define these z-plane measures by mapping 

the equivalent CACT s-plane criteria to the z-plane, [4.6]. The 

stability and performance criteria, described in this chapter, 

departs from the conventional s- to z-plane mapping and directly 

defines the measures in terms of the CADT domain state-space 

parameters. These alternative definitions are considered to be a 

natural consequence of the direct digital design methodology. The 

w- and w7-plane stability and performance measures are derived from 

their corresponding z-plane definitions and are therefore mapped 

from the z-plane to w-plane or w7-plane by the appropriate z to w 

domain transformation.

4.2 w-PLANE AND w7-PLANE ANALYSIS METHODS

This section gives a detailed commentary on the characteristics of 

w-plane and w7-plane. Familiar s-plane CACT performance measures 

are extended to the w- and w7-planes for use in the design of 

digital control systems. During the last three decades, numerous 

reports have proposed both the w-plane and w7-planes as suitable 

domains for the design and analysis of digital flight control 

systems. However, there is a paucity of reported applications in 

which the w- and w7-plane methods have been used. A possible reason 

for the rarity of w domain designed digital control systems is the
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practical inconvenience of generating w- and w'-plane models [4.7]. 

A contribution of this chapter is the development of a method to 

directly transform the CADT state-space equation to an equivalent w- 

or w'-plane model.

4.2.1 Properties of the w-Plane

The advantage of the w plane is that the design is carried out in a 

complex Cartesian frame rather than the complex polar frame of the 

z-plane. This means that the well known s-plane methods used in 

CACT systems work can be directly applied in the design and analysis 

of CADT domain systems.

The w-plane is related to the z-plane through the bilinear 

transform. Cast as the z-plane to w-plane parameter-mapping 

function, the bilinear transform has the form

1 + w i i\
z “ ■ (4'1)

The inverse of equation (4.1), which maps the w-plane to the 

z-plane, is given as

W =  1-^4- , (4.2)

The corresponding cardinal points on the z and w complex-planes are 

identified in Fig.4.1.
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z-plane point —co -1 1
2 0 1

+ 2 + 1 +00 -j +j

w-plane point +1 —co -3 -1 1
3 0 +1 -j +j

Cardinal point mappings between the z-plane and the w-plane

Fig.4.1

4.2.2 The w-Plane Analogue of Frequency

In Section A7.3.2 of Appendix Seven, it is shown that the imaginary

axis of the s-plane maps to the unit circle of the z-plane. Points

on the unit circle are defined by exp(j0), indicating that the

z-plane analogue of the the s-plane frequency variable is <f>. In

this section, a relationship is developed that gives the w-plane 

imaginary axis in terms of the z-plane unit circle.

Defining the complex w-plane as w = tr + jw and comparing it withw w
the z-plane unit circle, z = exp(j<£), gives cr = 0 andW

exp(j0) - 1
jw =    . (4.3)

w exp(j0) + 1

Converting equation (4.3) to the form in which the variable <f> is 

cast in terms of the half angle gives



Equation (4.4) shows that the z-plane parameter, <f>, given in the

range produces a value of tô  in the range (-00,00). Defining

a sampling period, h, which in terms of the envelope-cycle shown in
TFig.A7.3 of Appendix Seven, is given by h = — , the analysis of

Section A7.3 produces the relationships /i = , with to = and

0 = toh. Substituting <f> = toh into equation (4.4) defines the w-plane 

variable, to , in terms of the CACT frequency, to, and thus to isw w
given by

to = tan( ) . (4.5)w Z

4.2.3 Properties of the w'-Plane

An equivalent w7-plane model is obtained by multiplying equation
2(4.5) by the factor to give

w' = -Jj-w , (4.6)

or, in terms of the z-plane,

[Kf]w' = . (4.7)

The following analysis describes the profound effect of this simple 

modification in regard to the interpretation of the w domains.

The corresponding cardinal points on the z and w' comp1ex-planes are 

identified in Fig.4.1.
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z-plane point -00 -1 1
“ 2 0 +1 +00 -j +j

w7-plane point h 
+ 2 —00 -3h

2
h
2

h
6 0

* 4
.h
J2 +J y

Cardinal point maps between the z-plane and the w7-plane

Fig.4.2

An additional facility of the w'-plane is revealed by considering 

the effect of a sampling interval, h, that tends to zero. Consider 

first, the w-plane given by equation (4.2), when it is cast in terms 

of a z-transform, where z is defined as

00

z = exp(sh) ■ I
(sh) 
n!

n = o

(4.8)

Substituting the summation term of (4.8) into equation (4.2) gives

I
w = n = 1

I (4.9)

2 +
n = 1

Equation (4.9) shows that, in the limit, as h tends to zero, w tends 

to zero. Consider the w7-plane as defined by equation (4.7).

Substituting the summation term of equation (4.5) for z gives
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1 imConsequently, ^ w7 = s. This means, at high sampling rates, a 

sampled-data w7-plane model has dynamics which are numerically 

similar to the dynamics of its equivalent, CACT domain, s-plane 

model. In summary, the intuitive expectation, that, with an 

infinite sampling rate, a CADT system becomes a CACT system, is a 

feature of the w7-plane where, for h=0, w7=s. In contrast to this, 

the w-plane limit for h=0 is w=0. The main purpose of both the 

w-plane and w7-plane is to emulate the geometry of the s-plane and 

thereby bring to the design and analysis of digital control systems 

the well established and widely understood CACT control system 

performance measures. The analysis for h=0 indicates that, for 

high sampling rates at least, the w7-plane is better than the 

w-plane for emulating the s-plane.

The diagram, given in Fig.4.3, represents the distortion which 

exists between the s-plane and the w planes. The diagram is 

produced by taking the difference between given points on the 

s-plane and their equivalent counterparts on the w7-plane. The 

w-plane distortion is identical to the distortion of the w7-plane; 

the difference measure produced by the s- and w7-planes directly 

quantifies the absolute distortion.



20

o 10 100

'i-2 cr =-10

-10
w =80  io o50

s -P la n e  im a g in a ry  a x is  c o o rd in a te

20

ju> =100

u 10

Jw =10

-10
-5 0 -100

s -P la n e  r e a l  a x is  c o o r d in a te

Each d o t in d ic a te s  
an in c re m e n t o f  10

Distortion measure between the s-plane and w'-plane

Fig. 4.3

The identified points on Figs.4.3a and 4.3b indicate that a complex 

location in the s-plane, given as s = -40 + j80, maps to the w-plane 

location, w = (-40 + 5) + j(80 - 2), when the sampling period is 

h=0.01.

4.2.4 Frequency Response Plots in the w- and w'-Planes

Frequency response is an important device for the design, analysis 

and appraisal of CACT systems. Even in sophisticated Computer Aided 

Control System Design environments, based on the techniques of
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modern control theory, the insight gained from graphical 

presentations of a CACT frequency response is widely accepted. The 

classical graphical presentations of frequency response are:

Bode gain and phase plots,

Nyquist gain-phase polar plots,

Nichols gain-phase plots,

Root-locus plots.

These classical graphical methods are widely recognised as suitable 

instruments for the design and analysis of CACT control systems. In 

particular the s-plane root-locus is usually preferred for design of 

aircraft analogue-flight control systems. Although z-plane

frequency domain diagrams can be produced for CADT systems, they 

present unfamiliar data visualisation patterns. The contribution of 

w- and w7-planes, for the design and analysis of CADT control 

systems, is in casting the sampled-data system frequency response 

graphs in the same form as their analogue-data counterparts.

An example, illustrating the utility of both the w- and w7-plane 

gain and phase frequency response characteristics, is discussed in 

this section. The example illustrates the transformation of a 

second order CACT domain model into equivalent w- and w7-plane 

models. The respective gain and phase frequency responses are 

plotted and comparisons are made between the characteristics 

produced by the CACT system and those produced by the equivalent w- 

and w7-plane models.
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Consider the single-input, single-output CACT state-space model, 

given as

X (t) ■O'" 11 _
X (t) 2 -25 -7

y(t) _ f t  ol

xi(t)

xjt)2

xi(t)

X (t) 2

u(t) (4.11a)

(4.11b)

. 2With a sampling period h = 0.05, the equivalent w-plane system is

wX^ (w)

wX (w) 2 -0.622 -0.175

X (w) -0.00061 + U(w)."1
/—s(M
X

1 0.0293
U(w) , (4.12a)

Y(w)
- [ ■  "1

Xi (w)

X (w) 2

|̂ -0.079jU(w) (4.12b)

Under the same sampling period, the w7-plane model is given by

w7X -(w7') -0.036 0 . 995

w7X (w7) -24.87 -72 .

X ^ w 7)

X (w7)2

■0.023

1.17
U(w7) , (4.13a)

y(w7) X1 (w7)
X (w7) 2

j^-0.079ju(w7 (4.13b)

The s t r i c t  n o ta t io n  is  X I -------------- I in  th e  case o f  th e  w -p la n e  and
[ 1 -  w J

(  i  + w7 Y
X | -------------/ I in  th e  case o f  th e  w -p la n e .  In  th e  i n t e r e s t  o f

I 1 '  w J
s im p l ic i t y  th e  n o ta t io n  X(w ) and X( w7 ) ,  r e s p e c t iv e ly  is  a d o p te d .
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The gain and phase frequency response diagrams, for each of the 

three systems are given in Fig.4.4. The CACT system’s gain and 

phase response is, shown in Fig.4.4a provides a benchmark for the 

purpose of comparison. The w-plane gain and phase characteristics 

are shown in Fig.4.4b. The point at which the conditions of the 

sampling theorem are violated is indicated by a rapid transition of 

both the gain and phase. The frequency axis scaling in terms of w 

is produced from the analysis of Section 4.2.2 and is given by

2a) = -r-arctan(w ) . (4.14)h w

The w7-plane gain and phase plots, shown in Fig.4.4c, circumvents 

the need to calculate o> from . The frequency axis scaling is 

deduced from the approximation

2 2-r— arctan(ci) ) = -r— w = u> , . (4.15)n w n w w

The w7-plane plot behaves quite differently to the w-plane plot. At 

high frequencies, both the gain and phase plots continue to or, = co. 

Unlike the w-plane diagram, the w7-plane plot gives no indication of 

the problems which exist at the sampling limit, n/h.
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4.2.5 Mapping the State Equations to the w- and w7-Planes

As mentioned in Section 4.1, the usual method of producing both the 

w- and w7-plane system models from the CACT state-space domain 

progresses via z-plane transfer-functions and in some cases via both 

s-plane and z-plane transfer-functions. In this section, direct 

methods of mapping a CACT state-space model to an equivalent w or w7 

state-space are described. The methods are numerically more sound 

than the transfer-function approaches and accommodate 

multiple-input, multiple-output systems with more facility.

The standard methods of mapping a time domain model of a CACT system 

into the w-plane or w7-plane are identified in Fig.4.5. The diagram 

indicates that the z-plane transfer function description is required 

for the mapping procedure.

TRANSFER FUNCTION 
s-PLANE

TIME-DOMAIN MODEL

TRANSFER FUNCTION 
z-PLANE

TRANSFER FUNCTION 
w7-PLANE

TRANSFER FUNCTION 
w-PLANE

Conventional approaches for mapping a CACT domain 

state-space model into the w-plane or w7-plane

Fig.4.5
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It is thought that a possible reason which inhibits the application 

of the w-plane and w7-planes for the design and analysis of 

sampled-data control systems is the inconvenience of the 

transfer-function mapping processes, outlined in Fig.4.5. Even when 

efficient computer aided design facilities [4.8] are available, the 

process of mapping between s-plane, z-plane and w planes involves 

numerical algorithms that have recognised weaknesses [4.9], and 

which inevitably cast doubt on the validity of solutions.

In this section, methods of mapping a CADT state-variable model 

directly from the time-domain to the w- and w7-planes, are 

presented. The two CADT domain to w domain algorithms, together 

with the basis of their derivations, is given below. A 

comprehensive derivation the two algorithms is given in Appendix

Consider the z-plane state-space model of the standard CADT 

state-space quadruple, ($,¥,C ,D ), given as

Equations (4.16) are mapped to the w-plane by applying the z-plane 

to w-plane bilinear transform (4.1). The z-plane state and output 

equations, (4.16a) and (4.16b), are thereby recast as

Six.

z X (z) = $ X(z) + ¥ U(z) (4.16a)

Y(z) = C X(z) + D U(z)
D D

(4.16b)

(4.17a)

Y(w) = C X(w) + D U(w)
D D

(4.17b)

4-15



The w-plane state and output equations derived from equation (4.17) 

are defined as

wX(w) = A X(w) + B U(w) (4.18a)
w w

Y(w) = C X(w) + D U(w) . (4.18b)w w

where, as shown in Appendix Six, the w-plane quadruple,

(A ,B ,C ,D ), when cast in terms of the CADT quadruple, is given byw w w w

A = -(I + $) 1(I '- $) , (4.19)
w

B = 2(1 + $)~2* , (4.20)w
C = C , (4.21)

w D

D = -C (I + S*)"1* + D . (4.22)
w D D

Mapping a CADT domain model to an equivalent w-plane state-space 

model, by applying equations (4.19) through (4.22), circumvents the 

need to calculate s- and z-domain transfer-functions. In computer 

aided design and analysis, this is a convenient feature because the 

computational robustness of the matrix computations associated with 

this algorithm are superior to computations using the alternative 

transfer-function approach.

An interpretation of the w-plane system model is shown in Fig.4.6. 

The model illustrates the relationship between the w-plane system 

states, X(w), and the CADT system states, Xd (w ), in the w-domain, 

where Xd is given by

X (w) = X(w) - [I + 9 ] 1* U(w) . (4.23)
D
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D
D

X(w)U(w) X (w)

The w-plane system diagram 

Fig.4.6

The inverse transformation equations, that map a w-plane model to a 

CADT domain state-space model, are derived by recasting equations

(4.19) through (4.22) to give

-l$ = [I + A ] [I +A ]w w
¥ = 2 [I - A ]"2B

w w

C = C

D = C [I - A ] 1B + D
D w w w w

(4.24)

(4.25)

(4.26)

(4.27)

The w'-plane state-space model can be derived directly from a CADT 

state space model using the approach developed in Section A6.2 of 

Appendix Six. However, substituting w = in the w- state-space

equation (4.18) and the CADT to w- state-space algorithm, equations

(4.19) through (4.22), gives the w7- state and output equation as
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w7X(w7)=A /X(w/)+B /U(w/) (4.28a)
w w

Y(w7)=C ,X(w7)+D ,U(w7) . (4.28b)
w w

and the CADT to w7 state space mapping algorithm as

A ,  = - [I + $] 1 [I - $] , (4.29)
w n

B , = 4- [I + $J~2* , (4.30)
w n

C , = C , (4.31)
w D

D , = - C [I + $]_1^ + D . (4.32)
w D D

As in the case of the w-plane, the utility and robustness with which 

these quadruple mapping equations can be computed makes this method 

of mapping a CADT system in the w7-plane superior to the alternative 

transfer-function methods. The w7-plane state-space model can be 

interpreted in the form illustrated in Fig.4.7.

[I+$] — Q

The w7-plane system diagram 

Fig.4.7
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The inverse, w'-plane to CADT domain state-space coefficient 

matrices are derived by recasting equations (4.29) through (4.32) to 

give

[I +-|-A ,] [I --^-A ,] 1
Z  w Z  w

2 [i --|-a ,r2|-B , ,
Z  w Z  w

(4.33)

(4.34)

C = C
D

(4.35)w

w
(4.36)

4.3 ANALYSIS PARAMETERS FOR CADT DIRECT DIGITAL DESIGN

The practical processes of a control system design are usually 

augmented by a graphical presentation of the system’s dynamical 

performance. The frequency domain presentations are particularly 

useful during the preliminary design phase. In the case of CACT 

control systems, the facility of the graphical data presentations is 

enhanced by a set of general system parameters, against which the 

results of the design processes can be assessed. These parameters 

are particularly relevant in the design of flight control systems 

because they convey the general specifications embodied in aircraft 

design standards, such as MIL-F-8785C, into the control system 

design process. For sampled-data control system design, a similar 

set of general system parameters can also be defined. One, widely 

reported method of defining these sampled-data parameters is to map 

the CACT parameters from the s-plane to the z-plane [4.10]. This 

section defines an alternative set of parameters which can be
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applied to assess the performance of sampled-data systems. These 

alternative parameters are considered to be more appropriate for 

direct digital design methods.

Six analysis parameters are derived in Appendix Seven; the first 

three are produced by comparing the geometries of the s-plane and 

z-plane and are defined as follows:

Envelope-frequency <f> ,

Samples-per-envelope-cycle p ,

Decrement-per-unit-cycle y .

The remaining three parameters are derived by comparing the s-plane 

and z-plane geometries associated with complex conjugate pole-pair 

and are defined as follows:

Natural-frequency <f> .
n

Resonance-frequency <t> »
in

Resonance-magnification m .Z

4.3.1 Envelope-Frequency and Samples-per-Envelope-Cycle

The envelope-frequency, 0, is a notional CACT periodic function 

which intersects all the values, u(n), in the discrete time 

sequence, n. The number of samples and hence control-law 

iterations, within each period of the envelope frequency, is

referred to as the samples-per-envelope-cycle parameter, p. For
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example, if a sequence of fi iterations occurs within the envelope 

period of a sinusoidal function and produces a set of values, u(n), 

then

u(n) = sin 2tt n

The envelope-frequency, 0, is defined as 2n

(4.32)

Comparing equation

(4.32) with its CACT counterpart, u(t) = sin(a)t), indicates that 0

and n correspond to the frequency, a>, and time, t, respectively.

For the case of 0 in the range (-n,+n), then fi > 2 in order to 

satisfy the minimum requirements of the Sampling Theorem [4.11].

This observation can be interpreted as a graphical overlay of the

z-plane, as illustrated in Fig.4.8.

z -P la n e

= 32
R e a l a x is

U n i t  c i r c l e

Im a g in a ry  a x is

27TLines of Samples-per-envelope-cycle (p = )

Fig.4.8
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4.3.2 Decrement-per-Envelope-Cycle

The decrement-per-envelope-cycle, y, as derived in Appendix Seven, 

corresponds to the CACT domain concept of damping-factor. The 

decrement-per-envelope-cycle z-plane contour is given by

where r is a radius measure from the origin of the z-plane. A point 

on the z-plane unit circle is defined by r = 1; thus, r < 1 implies 

stability and r > 1 implies instability.

The z-plane contours of decrement-per-envelope cycle are also the 

sampling-rate root-loci of complex pole-pairs. This is a useful 

feature in the exercise of selecting sampling rates. It should be 

noted that the decrement-per-envelope-cycle contour, given by

(4.33), is inversely related to the s-plane constant damping radial 

when it is mapped to the z-plane. A family of

decrement-per-envelope-cycle contours is illustrated in Fig.4.9.

1
(4.33)
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4.3.3 Natural Frequency and Resonance Magnification

The three CACT domain parameters of natural-frequency, a> ,
ns

resonance-frequency, <*> , and resonance-magnification, m , are
ms s

important measures in the specification and assessment of control 

systems. As in the case of the damping factor described above, the 

natural-frequency and resonance parameters can be mapped from the 

s-plane to a z-plane. Details of the s-plane to z-plane mapping 

method are well documented [4.12]. The concepts of

natural-frequency and resonance, based on the direct CADT domain 

definition, are developed in Appendix Seven.

4-23



The z-plane contours of natural frequency, <p i an<3 resonance
n

magnification, m , are shown in Fig.4.10 and Fig.4.11, respectively.
z

These two sets of contours are defined in terms of the z-plane but 

are derived from the w-plane and mapped to the z-plane. In terms of 

the z-plane geometry, the contours for these two parameters, 

together with the z-plane definition of resonance frequency, <f> , areID

given by

2r
<p = arccos

n 1 + r
—  cos(0 ) 2 0 (4.34)

m =
z

(1 + r ) - 2r cos(0 )  o______ o o
(1 - r2) sin(<f> ) o o

(4.35)

<p = arccosm
r 1 + r‘

2r
cos [<b ) o (4.36)

z -P la n e

R e a l a x is

U n i t  c i r c l e

Im a g in a ry  a x is

CADT domain natural frequency contours <p

Fig.4.10
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4.3.4 The Two Parameter Root-Locus

The concept of the two parameter root-locus is introduced in this 

section. A root-locus plot can be developed for a transfer-function 

model which is cast in any of the three CADT domains described in 

this chapter. A conventional root-locus, which is defined in terms 

of a transfer-function gain parameter, can be plotted on the 

z-plane, the w-plane or the w'-plane to assess the stability 

characteristics of a unirate sampled-data system. A two parameter 

root-locus, defined in terms of gain and sampling period, can be 

used to estimate the behaviour of multirate sampled-data systems.
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The idea of the two parameter root-locus is straight forward; a 

surface grid is produced by computing the gain root-locus of a given 

CADT domain transfer-function at different sampling periods. In 

formal terms, the two parameter z-plane root-locus is defined as 

follows:

The general single-input single-output z-plane transfer-function is 

given by

C(z(h)) G(z(h))
R(z(h)) 1 + GH(z(h)) (4.37)

where C is the controlled output variable, R is the control 

reference variable, G is the forward path z-plane transfer-function 

and H is the feedback path z-plane transfer function. The sampled 

data transfer-functions are defined for the sampling period, h. The 

open-loop transfer-function can be represented by

GH(z(h)) = K , (4.38)

where N and D are the z domain numerator and denominator 

polynomials, respectively, and K is the gain parameter. Equation

(4.38) can therefore be recast as

C(z(h)) _ N(z(h)) (4 3g)
R(z(h)) D(z(h)) + KN(z(h))

The closed-loop poles of (4.39) are the roots of

D(z(h)) + KN(z(h)) = 0 . (4.40)

The solutions of (4.40) are produced at values of K from zero to 

infinity and values of h from zero to 1/u , where fi =2
m in m in

samples-per-envelope-cycle of the highest frequency component in 

GH(s). These solutions can be mapped onto the z-plane to give the
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two parameter root-locus or, more correctly, a root location 

surface. An example, to illustrate the utility of the two parameter 

root-locus in the analysis of a multirate sampled-data system, is 

given below.

Consider the CACT s-plane transfer function

C(s) = Us  ♦ 10)___
R(s) s(s + 2 ± j4.58) '

The root-locus plot of this system, with 0^K^25, is shown in 

Fig.4.12. Mapping the transfer function to the CADT z-domain at 

sampling periods, h = 0.1, 0.2, 0.3 and 0.4, produces a z-plane

transfer-function of the form

C(z(h)) (z + n )(z + n )
------- = K ----- --- -------- — ---  . (4.42)
R(z(h)) (z + di)(z + d3 ± jd4)

The components of the transfer function, for different values of h, 

are summarised in Table 4.1. The corresponding two parameter 

z-plane root-locus, for 0^K^25 and O.T^h^O.4, is shown in Fig.4.13.

nl n2 dl d3 d4

h = 0.1 -1.1963 0.3364 -1 -0.7343 0.3622
h = 0.2 -1.3093 0.12 -1 -0.4079 0.5319
h = 0.3 -1.2974 0.0073 -1 -0.1069 0.5383
h = 0.4 -1.1763 -0.0563 -1 0.1165 0.434

The components of the z-plane transfer-function (4.42)

Table 4.1 •
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The equivalent CADT w-plane transfer function has the form

C(w(h)) (w + n )(w + n ) (w + n )
  — - = K-        . (4.43)
R(w(h)) w(w + d ± id )1 2

The component values of (4.43) are summarised in Table 4.2.

nl n2 n3 dl d2

h = 0.1 -11.1889 -1 0.4647 0.105 0.2308
h = 0.2 -7.4663 -1 0.7858 0.2431 0.4696
h = 0.3 -7.7257 -1 0.9855 0.4613 0.7106
h = 0.4 -12.3437 -1 1.1192 0.8237 0.8958

The components of the w-plane transfer-function (4.43)

Table 4.2

Finally, the CADT w7-plane equivalent model of (4.41) is given by

C(w’(h)) (w* + n ) (w’ + n ) (w* + n )
 ------  = K -------- ‘-------- ?----- — L .  . (4.44)
R(w’(h)) w ’(w’ + d ± jd )1 2

The components of the w7-plane transfer-function are summarised in 

Table 4.3.

nl n2 n3 dl d2

h = 0.1 -223.778 -20 9.2734 2.1007 4.6157
h = 0.2 -74.6635 -10 7.8577 2.4311 4.6961
h = 0.3 -51.5046 -6.6667 6.5701 3.0751 4.7376
h = 0.4 -61.7187 -5 5.5962 4.1185 4.4788

The components of the w7-plane transfer-function (4.44)

Table 4.3

The two parameter root-locus plots with 0^K^25 and 0.1^h^0.4, for 

the equivalent CADT domain w and w7-plane transfer-functions, are 

shown in Figures 4.14 and 4.15, respectively.
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4.4 SUMMARY

Consideration has been given to the CADT domain methods of design 

and analysis. The w- and w'-plane techniques have been exposed to 

the extensive range of CACT state-space methods through the two CADT 

domain to w domain algorithms. The w domain model of a multirate 

system is simply defined in terms of the program period hp. An 

alternative approach to the w domain design of a multirate 

sampled-data control system is to consider a separate control 

strategy for each rate in the multirate sampling policy. This 

technique is considered in detail for the design case study, 

described in Chapter Five.

The quantitative performance parameters, described in Section 4.3, 

are presented as appropriate measures for the analysis of mixed-data 

control systems. Although the final appearance of the geometry 

produced by the parameters has the form of the directly mapped 

s-plane to z-plane geometry, the basis of the two sets measures are 

fundamentally different.
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CHAPTER FIVE

A DIGITAL FLIGHT CONTROL DESIGN CASE STUDY

5.1 INTRODUCTION

This chapter presents the application of the proposed digital flight 

control design methods, in the context of a manned-aircraft flight 

control problem. The intermediate and final results of a DFC design 

exercise are discussed. The DFC design problem focuses on the 

requirements to stabilise and control the basic dynamics of an F4-E 

combat aircraft. The control specifications are defined by the 

relevant clauses of the handling qualities standard, MIL-F-8785C. 

These specifications are cast into the CADT domain for the purpose 

of DFC design.

The first part of the DFC design case study is concerned with the 

stability augmentation of the longitudinal dynamics of a basic F4-E 

aircraft. The second part of the design is an attempt to define a 

control law that decouples the longitudinal speed and attitude 

dynamics. The digital control is designed with a multirate 

(dual-rate) sampling policy. The stability augmentation control is 

applied at the faster of the two sampling-rates and the decoupling 

control-law is applied at the slower sampling rate. This separation 

of the two functions, in terms of the sampling policy, illustrates 

the point that the flight instrumentation, from which the 

control-law data is derived, will, in general, produce data at
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different rates.

The stability augmentation control is achieved through a suboptimal 

state-feedback control-law. The primary, optimal control-law, from 

which the suboptimal controller is deduced, is designed through a 

standard state-space optimal pole placement algorithm, [5.1]. The 

speed/attitude decoupling control-law is derived through a 

state-space system decoupling algorithm, [5.2]. Although these two 

algorithms are defined in terms of the CACT state-space their 

application to CADT domain design is facilitated through the w- and 

w'-planes

5.2 A STATEMENT OF THE FLIGHT CONTROL DESIGN PROBLEM

The four-state, linear, perturbation model of the basic F4-E combat 

aircraft, which represents the kernel of the longitudinal axis 

dynamics, is given in terms of the following state variables: 

u forward-speed metres-per-second,

w normal-speed metres-per-second,

q pitch-rate radians-per-second,

0 pitch-angle radians.

The basic longitudinal axis model is exercised by two flight control 

inputs, these are;

7) elevator-angle radians,

c engine-thrust newtons.
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The CACT state matrix, A, and control input matrix, B, of the 

aircraft, when it is flying at Mach 1.1 at sea level, are given as

-0.068 -0.011 
0.023 -2.1
0.011 -0.16

375 0
- 2.2 0
1 0

0 -9.81
(5.1)

0 0

-0.41 1
-77 -0.09
-61 -0.11 
0 0

(5.2)

The output equation consists of a 4x4 identity state output matrix, 

C, and a null direct matrix, D, and therefore does not require an 

explicit representation in this exercise.

The stability characteristics of this system, defined by the roots 

of the characteristic equation, p(s) = det[sI-A], are;

(i ) T h e  short-period mode roots are, ssp=-2.15±j7.75. The

associated damping factor and natural frequency are £sp=0.27 

and o> =8, respectively.

(ii) The phugoid mode roots are, s =-0.035±j0.041. The associated
PH

damping factor and natural frequency are £ =0.64 and
PH

wpH=0.055, respectively.

Table 5.1 summarises the characteristics of the required 

longitudinal dynamics, as defined by MIL-F-8785C. The comparison of 

the specified and actual characteristics, together with the 

compliance status, is noted.

SP
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Characteristic Mode MIL-F-8785C Basic F4-E Status

C min
SPShort period damping

C max 
^ S P

0.35

1.3
0.27

not
compliant

Phugoid mode 
Damping <pH 
(Stable)

Natural frequency w (rad/sec)
PH

(Unstable)

> 0.04 
(level 1)

> 0.114 
(level 2)

0.64
compliant

A comparison of the required and actual 

F4-E longitudinal stability parameters 

Table 5.1

The stability characteristics of the basic aircraft are clearly 

revealed by the state time-history diagrams, shown in Fig.5.1. The 

time-history diagrams illustrate the state response of the basic 

aircraft, following a ±0.1 radian doublet movement of the aircraft’s 

elevator. The control problem is to design a DFC system that will 

stabilise the basic aircraft to the level specified by MIL-F-8785C. 

This control function is know as stability augmentation.
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A ten second time-history of the basic aircraft’s state elements, 

produced by applying a scaled (±0.1 radian) unit doublet to the 

elevator.

Fig.5.1
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5.3 THE SAMPLING POLICY

The first task in the design process is to identify a multirate

(two-rate) sampling policy for the stability augmentation control

function. The sampling rates selection procedure, described in

Section 3.2, is applied to this task. In addition to the basic

aircraft model, the procedure requires an estimate of the

disturbance energy that impinges on the aircraft and which the DFC

system is design to reject. In terms of the selection procedure

defined by equation (3.9), this means estimating the element values

Qc> These values must be chosen to make the resulting matrix

symmetric, positive-definite. In practice, disturbance information,

such as, for example, a stochastic model of the air turbulence in

which an aircraft operates, may be available to relate the elements

of Qc to the specific requirements of a handling qualities

specification. For the demonstration purpose of this case study, it

is assumed that the disturbances are applied through the elevator

and thrust controls. The matrix Q , chosen for this case study isc

Qc =
0.1 0
0 0.1

(5.3)

the element values are heuristic estimates. With Gc assigned an 

initial value of 0, equation (3.9) is propagated in time for 0.01 

seconds to produce the time-history estimate of the uncertainty 

associated with the value of the state elements. These measures of 

state element uncertainties are plotted in Fig.5.2.

5-6



Forward speed u(t)
0.03

£0.02

u 0.01

0.10.050
Time - seconds 
Pitch-rate q(t)

0.05
Time - seconds

(A C
10

0.1

Z axis speed w It)

0.10.050
Time - seconds 

Pitch attitude 0(t)
0.1

rj 0.05 /O

~0.05 0.10
Time - seconds

The covariance time-history of each state 

element of the basic CACT aircraft model 

Fig.5.2

A qualitative inspection of covariance time-history diagrams 

indicates that pitch-rate, q, is the most sensitive state element. 

A similar analysis with each input exercised separately, reveals 

that the elevator has greater control authority than the thrust

input over a short time period. The sampling policy which this 

analysis produces is given by the schedule shown in Fig.5.3. In the 

case of this example, the levels at which the state element

covariances are deemed unacceptable is somewhat arbitrary. The

procedure is only intended to illustrate the sampling period 

selection technique. However, it seems reasonable to suggest that a 

firm link between this method and the general aircraft handling

qualities could be established.
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Fig.5.3

The dual-rate sampling policy, produced by the methods described 

above, confirms what flight control practitioners would expect; 

viz., the vertical speed state, w, and pitch-rate state, q, are 

associated with the "fast" short-period dynamics. The forward speed 

state, u, and pitch-attitude state, 0, are associated with the 

"slow" phugoid dynamics.

Confirmation of the suitability of the sampling policy is provided 

by a two parameter root-locus analysis, described in Section 4.3.4, 

and the criterion defined by Fig.3.2. In this case study, the 

analysis produces eight root-locus diagrams, one for each 

combination of input and output. To illustrate the application of 

the two parameter root-locus, Fig.5.4 shows the plot for the 

pitch-rate to elevator transfer-function, q(z)/7j(z).
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Fig.5.4

The effect of multirate sampling on the state element covariance can 

be estimated by modifying the application of equation (3.9) in the 

following way:

The state elements are assumed to be reset to zero error at the 

instant they are sampled. In terms of the covariance equation 

(3.9), this infers that, if the state element is reset, the i-th 

row and i-th column elements of G are also reset to zero.1 K+l

Applying this procedure to the sampling policy of Fig.5.3 means that 

every 0.0125 seconds (h ) of the covariance time history, the second
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row and third column elements of Gr+i (the associated state elements

are w and q) are reset to zero, and every 0.05 seconds (h ) all the2
elements of G are reset to zero. K+l The resulting multirate 

sampled-data state covariance time-history is shown in Fig.5.5.

Forward speed u(t)
5

u<Da
10ou

0
0 0.05 0.1

Z axis speed w (t) a

Time - seconds 
Pitch-rate q(t)

5
o0M
(_0a
wc(3•HTSrtJ

£  o
o 0.05 0.1

200

50

0.10.050
Time - seconds 

Pitch attitude 0(t)

0.05 0.10
Time - seconds Time - seconds

Time histories of the state element covariances produced by applying 

the multirate sampling policy to the solution of equation (3.9)

Fig.5.5
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5.4 THE MULTIRATE SAMPLED-DATA STATE-SPACE MODEL

The open-loop, dual-rate, sampled-data model of the basic aircraft

is cast in the form of equation (3.30) (Chapter 3). The components
1of this equation are as follows:

The base sampling rate, 

The program period,

h = h = 0.0125 seconds,
b 1

h = h =0.05 seconds,
p 2

The parameters of k are k and k , and p = = 4.0,3 o,o’ K 0.0125

0.9992 -0.0001 -0.0011 -0.1226' 
0.0006 0.9695 4.5561 -0
0.0001 -0.0019 0.9683 -0
0 -0 0.0123 1

(5.3)

[$]P = [$]4 =
0.9966 -0.0005 -0.0164 -0.4897' 
0.0058 0.8337 16.4211 -0.0011
0.0005 -0.007 0.8294 -0.0001
0 -0.0002 0.0462 1

(5.4)

(5.5)

r̂ b 0.0125 r"-0.068 -0.011 0 -9.81
r =

D
exp(AA)dA = exp 0.023

0.011
-2.1
-0.16

375
-2.2

0
0 A

*0 0 0 0 1 0 j

dA. (5.6)

A l l  th e  c a lc u la t io n s  a re  p ro cessed  to  fo u r te e n  d ec im al p la c e s .

However, f o r  th e  purposes o f  a re a d a b le  p r e s e n ta t io n , numbers a re  

g iv e n  to  fo u r  dec im al p la c e s . Hence, sm a ll v a lu e  numbers a re  

d is p la y e d  as a s ig n e d  z e ro .
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B O 0 O B1 2
0 B 0 0 B1 2
0 0 B 0 B1 2
0 0 0 B B1 2

0.41 0 0 0 1
-77 0 0 0 -0.09
-61 0 0 0 -0.11
0 0 0 0 0
0 -0.41 0 0 1
0 -77 0 0 -0.09
0 -61 0 0 -0. 11
0 0 0 0 0
0 0 -0.41 0 1
0 0 -77 0 -0.09
0 0 -61 0 -0.11
0 0 0 0 0
0 0 0 -0.41 1
0 0 0 -77 -0.09
0 0 0 -61 -0.11
0 0 0 0 0

(5.7)

u (k) = u. (k ,k ) p 4 0 ,3  0,0 (0) u (1) u (2) u (3) u (0) 1 1 1 2 (5.8)

Combining these function in the manner prescribed by (3.25) produces 

the form of state equation given in Chapter Three as (3.39a), where

$ = p

0.9966 -0.0005 -0.0164 -0.4897 
0.0058 0.8337 16.4211 -0.0011
0.0005 -0.007 0.8294 -0.0001
0 -0.0002 0.0462 1

(5.9)

and

A =p

0.1928 -0.1306 -0.41 -0.41 3.9966'
-848.4769 -610.2654-352.5747 -77 -3.2142
-53.3934 -56.3656 -58.9176 -61 -0.4139
-2.1574 -1.471 -0.75 0 -0.0079

(5.10)
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5.5 THE DIGITAL DESIGN PROCEDURE

The DFC design proceeds by mapping the multirate sampled-data 

equations of the basic CACT domain aircraft model to either the 

w-plane or w'-plane. The results of the DFC system, reported in 

Section 5.5.4 are produced by a w-plane design. The DFC is designed 

to perform two flight control functions; the first, is an inner-loop 

stability augmentation of the basic aircraft system, and the second 

is a speed-attitude decoupling control law.

The w-plane model of the basic multirate sampled-data aircraft model 

is computed through the time domain to w-plane algorithm, described 

by equations (4.19) to (4.22); the resulting quadruple is 

(A ,B ,C ,D ), where
w w w w

A =
-0.0017 -0.0003 -0.0002 -0.2452 
0.0007 -0.0545 9.4655 0.0002
0.0003 -0.004 -0.057 -0
0 -0 0.0253 0

(5.11)

B =
w

-0.0059 -0.0052 -0.0037 -0.0012 0.025
0.0292 1.9535 3.9638 6.0441 0.0229

-0.4001 -0.4093 -0.4147-0.4162 -0.003 
0.0019 0.0069 0.0121 0.0173 0.0001

(5.12)

It is assumed that the state sampling operation is synchronised with 

the control action sampling, as described in Section 2.4.2; the 

components, C and D , of the w-plane output equation are thusw w

c  =
w

1 0  0 0 
0 1 0  0 
0 0 10  
0 0 0 1

(5.13)

D =w

0.0031 0.004 0.0042 0.0034 -0.0250
3.2585 1.5695 -0.2291 -2.1247 0.0032
0.3661 0.3812 0.3932 0.4018 0.0028
0.0074 0.0027 -0.0021 -0.0071 0

(5.14)
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5.5.1 The Design of a Stability Augmentation System

The stability augmentation control-law is determined by applying a 

CACT domain optimal pole assignment procedure [5.3] to the w-plane 

model. The objective control function is selected to achieve 

compliance with the requirements of MIL-F-8785C, outlined in Table 

5.1. In this case, the locations of the basic aircraft’s CACT 

s-plane poles which meet the stability requirements are

s = -5.6 ± j5.6 and s = -0.035 ± j0.041. 
s p i . p h i u

The equivalent short-period and phugoid mode w-plane pole locations 

for the sampling-period, 1^=0.0125, are,

w = -0.0362 ± jO.0363 and w = -.0002 ± j0.0003. 
s p i  °  PHI

Under the sampling-period, h = 0.05 seconds, the same w-plane poles 

are mapped to

w = -0.1418 ± jO.1381 and w = -0.0009 ± jO.OOl. 
s p i  u p h i  J

The optimum state-feedback stability augmentation control matrix is 

computed through a standard CACT procedure. The distortion of the 

w-plane (when compared with the s-plane) places an additional 

restriction on the achievable pole positions. Identifying the 

general boundaries for pole placement is a significant problem and 

is clearly an area for further research. For the current design, 

the required pole locations are determined by trial. The resulting 

stability augmentation state feedback control matrix is given by

0.0006
0

0.1120  - 0.0001 (5.15)
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The state-feedback matrix is examined to identify those elements can 

be set to zero. Although this practice produces a non-optimum

controller, the result often removes the need for an actuator, or a

sensor, or both, from the required control system. For the 

control-law in question, the element (1,3) is judged to be the only

significant element in H . The feedback control is reduced to
wl

applying the pitch-rate state element, q, onto the elevator. The 

feedback matrix is therefore recast as

To 0 -0.12 0]
H W 1  ■  [ o  0  0  o j  • ( 5 - 1 6 )

The resulting closed-loop system is analysed to ascertain the 

performance of, the sub-optimal feedback control. A check is then 

made to determine whether the sub-optimal control law produces 

handling quality measures that compliant with the design 

specification. The w-plane stabilised system is given by

w X(w) = |A - B H  |x(w) + BU(w) (5.17)
I w w wl 

h = 0 .0 1 2 5  L J

The closed-loop poles produced by (5.17) are

w = -0.0367 ± jO.0429 and w = -.0002 ± j0.0003, 
spi J phi °

The stability augmentation control is therefore implemented by 

closing a digital feedback loop from the pitch-rate state to the 

elevator. The sampling period required for this digital flight 

control activity is 0.0125 seconds.

5-15



5.5.2 The Design of a Speed-Attitude Decoupling Control Law

The final part of this exercise is concerned with the design of a

digital control law that decouples the speed and attitude dynamics

of the stabilised aircraft. A system decoupling algorithm [5.4] is

applied to the stabilised w-plane aircraft model which, for this

exercise, is defined for h =0.05 seconds. The CADT domain2
stabilised aircraft model is mapped from its defined form at 

11^=0.0125 to h2=0.05. The general procedure for this operation is 

described in Section 3.4. With a sampling period of 0.05 seconds, 

the w-plane model, on which the speed-attitude decoupling control is 

required, is given by

Hw h = 0 .0 5  2

B

D

h = 0 .0 5  2

h = 0 .0 5  2

-0.0017 -0.0003 -0.0021 -0.2452'
0.0007 -0.0545 10.9044 0.0002
0.0003 -0.0040 -0.2539 -0
0 -0 0.0299 0

'-0.016 0.025 ‘
11.9905 0.0229
-1.6403 -0.003
0.0382 0.0001_

0.0147 0.025 '
2.4742 0.0032
1.5424 0.0028 •
0.0008 0

(5.18)

(5.19)

(5.20)

The state feedback matrix is produced by a standard CACT domain 

state decoupling design procedure [5.5]. Unlike the optimal pole 

placement technique, the CACT domain decoupling algorithm presents 

no w-plane application problems in this case study. The

state-feedback control matrix which achieves the speed-attitude 

decoupling requirement is,

H = fnwl [ 0 - 23
-0.034 -
0

1.27]
0 J

(5.21)
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In addition to the state feedback, the speed-attitude decoupling 

control law includes a control input (elevator and thrust control) 

mixing function. This facet of the control law is automatically 

produced by the state element decoupling design procedure. The 

proposed control also includes a gain function on the elevator 

inceptor. This compensates for the loss of control sensitivity 

caused by the stability augmentation system.

5.5.3 The Digital Flight Controller

For the purposes of control law implementation, the w-plane 

controller must be mapped to the CADT domain. In this case study, 

the mapping does not change the purely gain H matrices. In the case 

of a dynamic controller, the inverse w-plane to discrete-time 

state-space mapping algorithms would be applied.

The proposed multirate digital control-law diagram is illustrated in 

Fig.5.6. The DFC terminology is noted on the diagram; that is, an 

iteration period, during which the control law is updated, is called 

a computing frame. The maximum time available for a computing frame 

is 0.0125 seconds; thus, a computing frame equates with the

sampling period, h . The digital computing cycle consists of four

frames and is clearly associated with the sampling period, h2> The

implicit assumption of the proposed controller is that the

computational delay is small enough for the synchronous sampling 

assumption to remain valid.
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5.5.4 Test Results

The state vector time-history, following the application of a scaled 

(0.1 radian) unit doublet on the elevator, is given for each state 

of the decoupled, stability augmented aircraft, in Fig.5.7. The 

time histories indicate that a satisfactory stability performance is 

achieved with the multirate sampled-data control system.

An oscillation, which has a period equal to the sampling period, h ,' 

is particularly noticeable on the pitch-rate state. This 

oscillation is caused by the continuous-time dynamics of the basic 

aircraft. As the state element covariance analysis indicates, 

between the sampling instants, the basic aircraft state diverges 

from the control set-points or set-functions. The higher frequency 

response characteristic of the pitch-rate makes this state element 

more sensitive to the open-loop (intersample period) behaviour of 

the CACT dynamics of the basic aircraft. In a practical flight 

control system, the level of this sampling interference may be 

unacceptable. The level is reduced by selecting a smaller sampling 

period, h , for the stability augmentation control; this solution 

assumes that the pitch-rate state can be measured at an increased 

sampling frequency.

The published results of other DFC system designs [5.6] appear to be 

uncorrupted by the intersample oscillations that feature in this 

current design. At this stage it is only possible to speculate on 

this observation. One possibility, which is consistent with the 

operational DFC problems, described in Chapter One, is that the
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analysis procedure used for this case study exposed the intersample 

oscillation, whereas the analysis applied in the reported DFC cases 

did not. Further work, employing hardware-in-the-loop simulations, 

is required in this area of DFC system design.

A comparison of two unirate sampled-data systems and the multirate 

sampled-data DFC system is summarised by the step response 

time-history characteristics, shown in Fig.5.8. These one-second 

time histories represent the CACT state element responses of the 

digitally controlled aircraft. The time responses are produced by 

applying a 0.1 radian step input to the elevator. The three curves 

produced for each of the four state elements represent three 

equivalent DFC systems, with each system incorporating a combined 

stability augmentation and speed-attitude decoupling control law. 

The two unirate systems, one operating with a 0.0125 second sampling 

period and the other with a 0.05 second sampling period, are 

compared with the multirate sampled-data DFC system produced in this 

case study.

The time histories are produced by pseudo analogue simulation [5.7] 

(a digital simulation with a simulation time step, At, much smaller 

than the shortest period in the DFC sampling policy; that is, 

At« h  ). The state element sampling and digital control functions 

are applied at the appropriate sampling instants, h and h . The 

results represent the continuous-time response characteristics of 

the basic aircraft’s state elements. The one-second time history 

curves show, once again, the intersample oscillation on the 

pitch-rate state element. The significant issue of these results is

5-20



the comparison of the two unirate sampled-data systems with the 

equivalent multirate sampled-data system. It is first observed 

that, as predicted by the two parameter root-locus, the dynamics of 

the sampled-data system is a function of the sampling rate. This 

observation underpins the recommendation to undertake a DFC design 

in the CADT domain. A second observation is the decreasing 

effectiveness of the control as the sampling period is increased. 

The multirate sampled-data system clearly represents a compromise 

between the two unirate systems.
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5.6 SUMMARY

The results of the DFC stability augmentation and speed-attitude 

decoupling exercise, presented in this chapter, should only be 

regarded as a representation of a full DFC design process. Even in 

the case of this limited scale example, a considerable amount of 

work is required to establish, what is thought to be, a satisfactory 

flight control system. On the basis of this exercise, it can be

concluded that the facility of the methodology proposed in this

dissertation is suitable for practical DFC design.

Although the exercise only considers a design in the w-plane, the 

extension of the method to the w'-plane is readily deduced. For the 

selected sampling periods of this example, the w'-plane eigenvalues 

of the basic aircraft dynamics have numerical values that are, to 

four decimal places, identical to the s-plane eigenvalues.

A question that remains unanswered is: given a DFC system which is

designed and analysed by the proposed methodology, will the

resulting implementation avoid the difficulties that have been

experienced with digital controllers designed by other methods? 

Although the results indicate the answer to this question is in the 

affirmative, a more positive conclusion requires further study. A 

specific aspect of this study will be the inclusion of the effects 

of data quantisation. The study will be expensive and will require 

both flight simulation and actual aircraft facilities.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

6.1 GENERAL CONCLUSIONS

The conclusions on the proposed Digital Flight Control (DFC) system 

design methodology are based on the results of the application 

exercise given in Chapter Five and the various examples presented in 

other sections of this dissertation.

The data-domain in which the dynamics of a mixed-data DFC system can 

be unified, for the purposes of flight control design and analysis, 

is the Continuous-Amplitude, Discrete-Time domain (CADT). A 

practical digital flight control system design model includes data 

elements which are continuous and discrete, in both amplitude and 

time. Thus, in addition to the CADT domain element, there is a 

Continuous-Amplitude, Continuous-Time data element which models the 

basic aircraft; a Discrete-Amplitude, Discrete-Time data element 

which is the digital flight control computer; and a 

Discrete-Amplitude, Continuous-Time data element which represents 

the flight control data on the output of the ZOH. The irony of this 

observation is that, in a practical implementation the CADT data 

domain exists only in a notional form within the structure of the 

Analogue-to-Digital converters. The three other domains exist in a 

physical sense.
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A digital control system which retains the continuous amplitude 

characteristic of the data represents the classical concept of a 

sampled-data system. The design of sampled-data systems can be 

carried out on the basis of a unirate sampling policy, employing a 

direct digital design method. The advantage of the direct digital 

design method when compared with the emulation method is inferred by 

the results of the example, described in Appendix Two. While 

caution is required when drawing a general conclusion from the 

results of a specific case, the example supports the frequently 

asserted claim; viz., for a given control function, the direct 

digital design method yields a sampled-data control system with a 

lower sampling-rate than an equivalent sampled-data system which is 

designed by the emulation method.

A digital flight control system will, in general, require a 

multirate sampling policy. The two observations leading to this 

conclusion are:

(i) Flight control-data is associated with sensors and actuators

that impose a variety of sampling-rates on a digital flight 

control system. By definition, a DFC system designed to 

accommodate a variety of sampling-rates is a multirate

sampled-data system.

(ii) Data amplitude quantisation is a feature that distinguishes

modern digital computer control systems from the classical

sampled-data system. In terms of a given characteristic 

frequency, the minimum practical sampling-rate is defined by a
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multiple (at least-eight as defined in Fig 3.2) of the Nyquist 

rate. The effect of a quantisation process, is the imposition 

of a maximum limit to the sampling-rate. High dynamical order 

DFC systems, have several characteristic frequencies which are 

distributed over a wide spectrum. The consequence of a 

minimum sampling-rate (imposed by the Sampling Theorem) and 

maximum sampling-rate for each characteristic frequency is a 

DFC system with a multirate sampling policy.

The multirate sampling policy selection procedure, described in 

Chapter Three, is based specifically on the issues associated with 

the above item (ii). The selection procedure, which produces a 

multirate sampling policy, represents an interpretation of the basic 

aircraft’s open-loop state covariance. The method gives an 

indication of intersample uncertainty on each state element of a 

multivariable system. A multirate sampling policy, which includes 

both state measurement and control-actuation sampling operations, is 

directly deduced from the variance time-history characteristic of 

each state element. The facility of the state covariance time 

history, in identifying a multirate sampling policy, establishes the 

technique as an appropriate procedure for the DFC design 

methodology. In association with . z-plane pole-zero maps of the 

basic aircraft transfer-functions and the guidelines provided by the 

standard flight control design requirements, the sampling policy 

selection procedure offers a quantitative approach to this 

particular design task.
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Preliminary studies revealed that the established multirate 

sampled-data system models are unsuitable for the objectives of the 

DFC system design methodology. An alternative formulation of a 

multirate sampled-data model, which addresses the requirements of 

the thesis, is described in Section 3.2. The assembly of a basic 

aircraft model for the purpose of DFC system design requires 

considerable assiduity if errors are to be avoided. It is believed 

that the assembly of the proposed multirate sampled-data model 

facilitates the goal of an error free DFC design.

The established multirate sampled-data system models are grouped 

into two basic forms. The first group comprises the z-plane 

transfer-function forms, developed by Sklansky [6.1] and Kranc [6.2] 

and the second group are the state-space, time-domain forms, which 

are epitomised by the Kalman and Bertram model [6.3]. Of these two 

established forms, the state-space model of Kalman and Bertram is 

the most suited to the requirements of the multivariable aircraft 

flight control system objectives of the thesis. However, an 

application study, described in a supplementary report, demonstrates 

that, although straight forward in principle, in practice the Kalman 

and Bertram model is complex and difficult to manage. While not 

explicitly discussed by Kalman and Bertram, it is considered that 

their model is directed towards multirate sampled-data system 

simulation, where it is intended to exercise a known digital 

controller configuration.

The multirate sampled-data system model developed for this thesis is 

assembled by inspection. The model is initially produced for the
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equivalent, open-loop discrete-time system of the basic aircraft. A 

multirate structure of a digital feedback controller can also be 

defined and applied to the open-loop model using standard 

state-space matrix algebra. Two closely related forms of the model 

are described; one casts the multirate structure into the controls 

vector, and the other takes explicit account of the multirate 

sampling switch and ZOH functions by casting them as augmentation 

states to the basic open-loop model. The additional dynamics 

generated by a delay in computing the control data from the state 

data is easily accommodated by incorporating a delay operator at the 

input section of the plant model.

Although the w-plane and, in particular, the w7-plane are already 

established as suitable domains for unirate DFC system design, their 

potential has not been realised in the design of practical flight 

control systems. The major constraint on the practical application 

of both w planes is removed by the CADT state-space to w- and 

w7-plane transformation algorithms, described in Chapter Four. Both 

w domains are employed in the multirate sampled-data DFC design case 

study. Although of limited scope, the study demonstrates the 

utility of the w domain, for the design of a DFC system, which is 

bounded in a framework of a standard analogue flight control 

specification, namely MIL-F-8785C. In addition this study also 

indicates possible design techniques which will harmonise a DFC 

system implementation with the general requirements of MIL-F-8785C.

The CADT domain parameters, developed in Section 4.3, are presented 

as alternatives to the more commonly defined s-plane to z-plane
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mappings. The main reason for developing these alternatives is to 

give a more natural image of the direct digital design performance 

measures. The two parameter root-locus gives a convenient, 

simultaneous parametric view of the sampling and gain changes. A 

reasonable presentation of a system’s dynamics under multirate 

sampling policy is a feature of the two parameter root-locus.

The computational tasks of this thesis are undertaken in a MATLAB 

[6.4] computer aided design environment. The MATLAB package 

provides excellent facilities for processing the multirate sampled 

data model, and the algorithms for mapping between the time, z-plane 

w-plane and w'-plane. The simulation exercises of Chapter Five are 

are also the product of MATLAB processing. The collection of MATLAB 

subprograms combine to form a multirate sampled-data system design 

"toolbox".

6.2 TOPICS FOR FURTHER RESEARCH

The specification of piloted aircraft handling qualities, given in 

MIL-F-8785C is supported by a User Guide handbook [6.5]. The 

current version of this handbook gives no consideration to the 

digital-data implementation of flight control systems. The DFC 

design methods, described in this dissertation, could form the basis 

of a DFC supplement to the User Guide handbook.

By extending the transfer-function forms of aircraft handling 

qualities criteria to the state elements, a direct relationship
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between the handling qualities requirements and the sampling policy 

could be established. The described method of selecting a multirate 

sampling policy is based on an assessment of the time history of 

state uncertainty. However, it may be more appropriate to consider 

the time rate-of-change of these state uncertainties.

A detailed study of the continuous-time state-space control system 

design techniques is required in the context of both the w- and 

w'-planes. A particular method, which has potential for directly 

synthesizing control laws that meet the aircraft handling qualities 

requirements specified by MIL-F-8785C, is Solheim’s optimal pole 

placement technique [6.6].

The problems caused by amplitude quantisation require further study. 

The DFC methodology implicitly addresses the quantisation issue 

through the multirate sampling-policy approach. However, the 

methodology requires a practical technique for extending the design 

model to the DADT and DACT domains. A possible vehicle for this 

research task is the multirate sampled-data state-space model. The 

interference effects of multirate sampling are exposed on the time 

histories, as shown in the case study of Chapter Five.

The question of modelling the noise processes, both continuous and 

discrete, in mixed-data systems is still, largely, unanswered. It 

is felt that the current approach to the problem is based on a 

procedure which has become respectable through popular use, because 

it provides a quantitative design measure. As aircraft develop, an 

increased reliance is placed on active flight control systems to
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maintain the structural integrity of the airframe and 

handling-quality requirements. For these aircraft developments, a 

better understanding of the nature of stochastic disturbances in 

digital flight control systems is required.

A multirate, sampled-data DFC system, incorporating all the flight 

control functions, and a redundant system architecture, has an 

implicit parallel structure. As such, the multirate DFC system is 

well placed to address the current developments in parallel 

processing DFC systems [6.7]. The methods described in this 

dissertation should be investigated for their application in the 

design of parallel computing DFC implementations.

For the practitioner, the only credible test of any engineering 

design, analysis, and implementation method is in its application in 

an engineering environment. The DFC design methodology proposed in 

this dissertation should be exercised in a practical environment to 

establish its utility as a general DFC system design technique. The 

resulting DFC systems will also require flight tests, to determine 

if the methodology avoids the deficiencies of the current digital 

flight control implementations, cited in Chapter One.
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APPENDIX ONE

A BASIC AIRCRAFT MODEL FOR DFC DESIGN

Al.l INTRODUCTION

This appendix gives details of a systematic method of organising the 

basic aircraft system into an analogue-data state-space model. In 

principle, once the states have been defined, the assembly of a 

state-space model is easily accomplished. In practice, the 

construction of a state-space model for a large complex aircraft 

system requires careful organisation. A model assembly, in which 

irregularities can be readily observed, facilitates the goal of an 

error free, flight control design, and thus accommodates the design 

methodology maxims prescribed in the thesis.

A1.2 A METHOD OF ASSEMBLING THE BASIC AIRCRAFT MODEL

The proposed method of assembling the state-space aircraft model 

approaches the task from the perspective of the flight control 

system design practitioner [A1.13. In practice, the information 

required to model the total aircraft is produced from a variety of 

sources and is cast in a variety of different forms.

The complete, basic aircraft model consists of four subsystem 

groups. These are the actuators group, the sensors group, the

Al-1



inceptors group and the vehicle group. The vehicle group is 

subdivided into rigid body dynamics and structural dynamics. An 

illustration of this arrangement is given in Fig.2.1 of Chapter Two. 

The development of the basic aircraft model starts with the 

non-linear, time-varying equations of the four subsystem groups. 

The first task is to combine the equations of the four subsystem 

models. The most convenient domain for modelling the

Continuous-Amplitude, Continuous-Time (CACT) subsystem dynamics is 

the time-domain state-space. In practice, the vehicle system is 

naturally assembled as a collection of first and higher order 

differential equations. The high order equations are reduced to an 

equivalent set of first order equations.

The models, representing the dynamics of the actuators, sensors and 

inceptors are generally produced in a variety of forms. A typical 

representation is the single-input, single-output s-plane 

transfer-function. Of all the typical models, the transfer-function 

model requires the most effort to convert it to the common form. 

This is particularly true if the resulting independent variables are 

to be cast in terms of the physical coordinates [A1.2]. Standard 

methods are available for mapping state variables from one 

coordinate frame to another [A1.3].

In Section 2 of Chapter Two, three groups of non-linear time-varying 

equations are defined. These equations, repeated below as (Al.la), 

(Al.lb) and (Al.lc), are described as the basic aircraft model.
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x(t) = f(x(t),x(t),u(t),y(t),t) 

y(t) = g(x(t),x(t),u(t),y(t),t) 

a(t) = h(x(t) ,x(t) ,u.(t) ,y(t), t).

(Al.la) 

(Al.lb) 

(Al.lc)

The dimensions of the components in these equations are defined as 

follows: x(t) is a vector of m time dependent state functions,

u(t) is a vector of q time dependent input functions and y(t) is a 

vector of p time dependent output functions. The functions f , g 

and h are non-linear. The linearising process is based on the 

equilibrium-condition, smal1-perturbation procedure [A1.4]. The 

equilibrium-condition also establishes time-invariance. The utility 

of the subsystem method is improved by explicitly including 

differential states, x(t), in the right hand side functions. This 

feature is is discussed in more detail in the next section. The 

linearised equations are described in Section 2 of Chapter Two and 

are repeated below as equations (A1.2a), (A1.2b) and (A1.2c).

The subsystem form of block diagram model, which the above equations 

represent, is shown in Fig.A1.2. The diagram demonstrates the 

purpose of the interconnection equation (A1.2c).

x(t) = F* x(t) + F x(t) + F y(t) + F u(t)x x y u
y(t) = G* x(t) + G x(t) + G y(t) + G u(t)* x x y u
a(t) = H- x (t) + H x (t) + H y(t) + H u(t).x x y u (Al.2c)

(Al.2b)

(Al.2a)
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A standard form of the linear, time-invariant, state-space model is 

given in Section 2 of Chapter Two by equations (2.3a) and (2.3b). 

These equations are repeated below as (A1.3a) and (A1.3b)

respectively,

x(t) = A x(t) + B u(t) (A1.3a)

y(t) = C x(t) + D u(t). (A1.3b)

The basic aircraft model of the digital flight control design 

methodology proposed for the thesis is cast in the form of equations 

(A1.3a) and (A1.3b). The equations, (A1.2a), (Al.2b) and (A1-.2c), 

which are produced from the model assembly exercise, must be 

reformed into the state-space pair of (A1.3a) and (A1.3b).

Rearranging equations (A1.2a) and (Al..2b) gives
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[I - F-] x(t) = F x(t) + F y(t) + F u(t) x x y * u
[I.-G ] y(t) = x(t) + G^ x(t) + G^uCt)

(Al.4) 

(Al.5)

By defining the two vectors

[ * " ]  “  [ : « ! ]  •

equations (A1.4) and (A1.5) can be expressed as the matrix equation

I-F- -Fx y
-G- I-Gx y

’ x(t)' r f f i
X u

’ x(t)‘
.o3o
x1 u(t)

(Al.6)

Rearranging equation (A1.6) gives

x(t)"

. y (t).

I-F- -Fx y
-G- I-G

x y

-i r f f . i x(t)’x u

o31 u(t)
(Al.6)

Evaluating the inverse, then multiplying out the matrix and vector 

terms produces the standard CACT matrix quadruple (A,B,C,D).

The interconnection vector is defined by substituting equation 

(A1.6) into (Al-.2c) to give

a(t) =
ri - f- -f 1 -i fF F 1

[H- H ] X y X u + [H H ]x y -G • I - G
x y.

G
X

Gu x y
rx(t)l
[u(t)J (A1.7)
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Al.3 REASONS FOR THE PROPOSED MODELLING METHOD

At first sight, it would appear that including a state differential 

term in the right-hand-side of the basic equations produces an 

unduly complicated method of model assembly. The utility of the 

technique is apparent, as a general method, by considering the 

incremental assembly of a complex system. This approach is typical 

of the standard methods of flight control system design [Al.5]. As 

an example, consider the block diagram model of an aircraft’s 

longitudinal dynamics, shown in Fig.A1.2. This form of presentation 

of aircraft dynamics is used extensively in flight control systems 

work.

* Q — S'

(*)dt (*)dt —
Ma

Me

a

A partial diagram of an aircraft’s longitudinal dynamics

Fig.Al.2
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When states and state derivatives appear in a subsystem model as 

open loop inputs, as shown in the model of Fig.A1.2, then the 

procedure developed in this appendix provides a systematic method of 

assembling the state-space quadruple. This procedure accommodates 

the piecemeal assembly of a basic aircraft model, which is a typical 

approach to modern flight control system design. A common feature 

in flight system dynamics is the occurrence of an algebraic loop. 

Algebraic loops are formed as natural processes, as, for example, in 

the case of a missile guidance system [A1.6], or they can be 

deliberately introduced as a control law, as in the case of a 

washout function (a practical implementation of a 

differentiation function) [A1.7]. The assembly of a model which 

includes an algebraic loop is a systematic process for the method 

outlined above.

Al.4 A CADT MAPPING METHOD FOR RANK DEFICIENT SYSTEMS

The production of a rank deficient state matrix is caused by CACT 

domain dynamics that have the characteristics of open-loop 

integrators. The presence of an open-loop integrator, at the input 

of a system, is identified by a row of zeros in the state matrix, A. 

If the integrator is at the output then a column of zeros is 

produced in the state matrix. From basic matrix theory, a square 

matrix with a column or row of zeros is rank deficient and is 

therefore noninvertable. In the case of an open-loop integrator 

enclosed within a system, the determinant is once again zero but, 

unlike system’s with an input or output integrator element, this
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fact is not revealed by either a row or column of zeros in the A 

matrix. A technique that circumvents the singular matrix problem, 

and allows a CACT to CADT mapping without the need to solve the 

integral (2.15), is given below.

Consider the standard form of a state-space system model with an 

open-loop integrator at the output and a set of zero input 

augmentation states, as shown by the diagram of Fig.A1.3.

x
a

X

Standard form of a CACT system incorporating an integrator element

Fig.Al.3.

From Chapter Two, the state equation deduced from the model of

Fig.A1.3. is given by

x(t) = A x(t) + B u(t). (2.3a)

For this system, assume x^ to be an mxl state vector, with the nth

element defined as the state open-loop integrator. The mxm state

matrix, A, is partitioned into the form

Al-8
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A = (Al.8)

where A is an (m-l)x(m-l) matrix and hence the dimensions of the
R

zero sub-matrix in the last row is lx(m-2). The nxq input matrix, B, 

is, in turn, partitioned into

B =
B

(Al.9)

where B has the dimensions (m-l)xq and the zero sub-matrix has theR
dimensions Ixq. The next step is to define an augmented state 

vector

x = 
A

(Al.10)

The number of augmentation states is defined by the number of inputs 

q. The objective is to generate a (m+q)x(m+q) square matrix, A ,
c l

where

A =a
A B

0 0
(Al.11)

Evaluating the matrix function

exp(A h) = exp
Ah Bh' 

0 0
(Al.12)

gives
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exp(A h) a (Al.13)

where $ and $ are equal to the expressions given in Chapter Two by 

equations (2.14) and (2.15), respectively. The method is also 

applicable to systems with non-synchronous sampling by replacing h 

with the output delay parameter, A, to yield and ¥ in place of $ 

and S', respectively.

Proof of this result is obtained by recasting the state equation as 

a diagonal state matrix. The diagonalised state matrix and 

transformed B matrix are scaled by the sampling"'period, h, and 

substituted into equation (A2.12). The exponential matrix function 

is evaluated and compared with the $ and $ matrices which are 

obtained by the direct application of equations (2.14) to (2.17).

A1.5 SUMMARY

This appendix describes a systematic method of assembling the CACT 

state-space quadruple for the purpose of the digital flight control 

system design methodology proposed in this dissertation. The method 

facilitates the model construction from subsystems in which state 

variables and derivatives of the state variables appear as inputs.

The assembly of the basic aircraft’s subsystem model is readily

automated in a matrix manipulation, computer-aided-design 

environment. A technique to map a rank deficient CACT state matrix

to the CADT domain, which avoids the need to solve a matrix

integral, has also been exposed.
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APPENDIX TWO

A STUDY OF DIGITAL DESIGN METHODS

A2.1 INTRODUCTION

The fundamental proposition of this thesis is that the design and 

analysis of a DFC system should be carried out in the CADT domain. 

In making this assertion, it is recognised that successful digital 

control systems have been designed through emulation and pseudo 

continuous methods by assuming high sampling-rates. However, the 

thesis proposes the direct digital design of DFC systems for the 

following reason. A claim, often made, is that a given control 

specification can be achieved at lower sampling-rate if it is 

designed in the CADT domain [A2.1]. This claim is widely asserted 

in the digital control literature but given without clear 

justification. This appendix presents a compelling argument that 

supports the "lower sampling-rate" claim of the direct digital 

design method.

The argument for direct-digital-design is made through a specific 

case study. Before the case study is considered, a general scheme 

for comparing the various digital control design methods is 

described in the next section.
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A2.2 A COMPARISON OF DIGITAL SYSTEM DESIGN METHODS

Consider the mixed-data model shown below in Fig.A2.1. This model 

represents the generic arrangement of the basic aircraft and its DFC 

system. The flight control signals from the digital controller are 

coupled into the basic aircraft via a digital-to-analogue converter 

(DAC). An analogue-to-digital converter (ADC) forms part of the 

feedback-loop from the continuous-time system output to the digital 

controller input. The feedback-loop element, Hc> is implemented in 

the form of a program in the digital control computer.

DAC

ADC

A general CACT system with digital control and output feedback

Fig.A2.1

The state-space equation for the system of Fig.A2.1, with the 

analogue-data elements recast in their equivalent discrete-time 

form, is given by

x (n+1) r$ -¥ MA A A

x (n+1) -tf Nc c

-l. M-1CA C

. - 1,
C A $ 4 N  H D CC C C A C

"x (n)‘ r* m -1d iA
+

A C

x (n) N"1c c
v(n),

(A2.1)

where M = [I + D H D  ] and N = [I + H D D  ].C C A  C A C
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The CACT elements, A and B , are mapped to their equivalentA A
discrete-time functions, and ¥ respectively, where

$ = exp(Ah) (A2.2)A A

* = A
r h

o
expCA^A) dA B . (A2.3)

Assuming the sampling instants of the ADC and DAC coincide, then the 

terms, C and D , of the continuous-data output equation, areA A
unchanged by the continuous to discrete mapping.

The general state-space expression, given by equation (A2.1), forms 

the basis of an experimental procedure to compare the performance of 

a digital controller, designed by emulation methods with a 

controller designed by the direct-digital method.

A2.2.1 Experiments to Compare Digital Design Methods

An experimental procedure, used to compare the most common methods 

of DFC design, is outlined in this section. The procedure starts 

with a CACT system to which feedback control must be added. The 

benchmark for the experiment is the simulated performance of the 

system with an analogue controller. The performance measures used 

to compare the systems of each design method are closed-loop 

stability margin and disturbance attenuation. Both measures are 

investigated by taking the sampling rate as the base parameter. The 

experimental procedure is outlined in the diagram Fig.A2.2.
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Basic CACT system

Emulation Design Specified Controlled 
Performance

Direct
Digital
Design

Analogue-Data 
Controller

Discretized 
CACT System

Map the Controller 
to the CADT Domain

Sampled-Data
Controller

Tustin’s Bilinear z-Transform
Transform with ZOH

Combine the Basic Discretized CACT 
System with the Discrete controller 

Using equation (A2.1)

Simulate and Compare 
the Results of each 

Design Method

The procedure to compare the emulation design 

methods with the direct-digital-design method

Fig.A2.2

The experimental procedure, illustrated in Fig.A2.2, is exercised in 

the next section. Although trivial, the example exposes the lower 

sampling-rate advantage of the direct-digital-design method.
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A2.3 THE EXPERIMENTS IN DIGITAL DESIGN METHODS

Consider a CACT system consisting of a simple integrator. In terms 

of the state-space quadruple, the matrices are cast as scalars and 

the values 0,1,1,0 are assumed for A ,B ,C and D , respectively. AA A A  A
unity gain feedback controller is required to reduce the effects of 

a stochastic disturbance applied at the input of the CACT system. 

The stochastic disturbance is modelled as a white-noise source with 

zero-mean and standard deviation, cr. Further, the closed-loop 

dynamics are designed to have a damping ratio of 0.58. The analogue 

controller that meets the specification is given by

x (t) = -x (t) + y(t)2 2 (A2.4)

The simple analogue system design produces the closed-loop model 

shown in Fig.A2.3.

v(t)— - Q --- S

-1

x

w

- O —  1

X

y(t)

A closed-loop feedback and a dynamic controller 

producing the specified damping ratio 

Fig.A2.3
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The state-space model for this system is given by

" X! (t)"
X (t) 2

y(-t) _

1

-1

’ X (t)' ' 0 ' ' 1 *1 + v (t) +
X (t) 2 1 0

w (A2.5a) c

Xi(t) . (A2.5b)

Using the analysis detailed in Appendix 5, the mean-square noise 

response at the output is given by (c.f. equation (A4.5))

G = & c
xi.(t)‘
X  (t)2

gll g12 
g21 g22

(A2.6)

where * j is the expectation operator. A convenient form of the 

definition (A2.6) is to expand it as a Lyapunov equation, which is 

given by (c.f. equation (A4.6))

0 1
■1 -1

gll g12 
g21 g22

gll g12 
g21 g22

0 -1
1 -1 = [0 ]

(A2.7)

Solving equation (A2.7) for the four elements of Gc gives

2 2 2 W  , Wg = w , g = - —  = g and g = .toll 12 2 21 22 2

The statistical response associated with the system output is 

therefore given by

Y = C G C .CH C (A2.8)
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The next step is to embark on the design of the digital controller. 

Following the emulation procedure there, are two possible methods 

available. The first method is to form an equivalent discrete-data 

model of the analogue controller using Tustin’s bilinear transform 

(equation 2.10). Substituting the parameters of the analogue 

controller, A =-1, B = 1, C = 1 and D= 0, into the Tustin transform 

gives

The alternative method for mapping the controller model to the CADT 

domain is by the z-transform with a ZOH. This mapping gives

T
(A2.9)

h (A2,10)

C
T

1 (A2.ll)

n

h
2 (A2.12)

$ = exp(-h)
Z

(A2.13)

# = 1 - exp(-h)
Z

(A2.14)

C 1 (A2.15)
z

D 0. (A2.16)
z
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With a sampling period h, the equivalent discrete-time system for 

the integrator is obtained by evaluating (c.f. equations (2.22) and 

(2.24))

exp
■ 0 h ' ' 1 h ' 6h

= — A | A
° 0 _ _ 0 1 _

" " 1 
Ho
1

k. >

Using equation (A2.1) to combine the equivalent discrete system 

model with the controller model produced by the Tustin transform, 

and omitting the disturbance input, gives the Tustin equivalent 

state equation as

x (n+1)A
X (n+1) c

hf
1 - ^ h

h2
2

( “ t ] X (n)‘A
x (n) c

+
1 ‘ * t )

- h
( “ t ) -L t * * + ) *

v(n)

(A2.17)

Applying the same procedure for the z-transform controller model 

gives

x (n+1)A
x (n+1) c -(1-exp(-h)) exp(-h)

x (n)A
x (n) c l-exp(-h)

v(n) . (A2.18)
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A2.3.1 Stability Measured Against Sampling Period

Computing the characteristic equation for both the Tustin derived, 

and z-transform derived, systems reveals the stability 

characteristic for a varying sampling-period, h. The

sampling-period root-locus of the control system designed with the 

Tustin transform progresses out of the z-plane unit disc when the 

sampling-period exceeds two seconds. In the the case of the control 

system designed using the z-transform, the sampling-period 

root-locus leaves the unit disc when the sampling period exceeds one 

second.

The two stability test results, for the systems produced by the 

non-direct-digital-design methods, are compared with the stability 

of an equivalent controller, produced by the direct-digital-design 

method. For the purpose of comparison, the controller designed by 

the direct-digital method is specified to produce a system with 

closed-loop dynamics that are equivalent to the original CACT system 

given by equation (A2.5). The combined CADT domain sampled-data 

model of the basic CACT system and the proposed digital controller 

is assembled through equation (A2.18) to give

x (nh+h)"
t

' 0 l' ’x (nh)' rh r

' 0 1' 'O'
i

x (nh+h) = exp
-1 -1

h l

x (nh) + exp 1 1 A dA
1
v (t)

2 2 * A
, j

u
j

(A2.19)

From equation (A2.19), the z-plane transfer function is computed for 

increasing values of h. The sampling-period z-plane root-locus 

remains within the unit circle for all values of h. The
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sampling-period root-locus diagrams shown in Fig.A2.4 give an 

obvious comparison of the three design methods in terms of the 

system stability.

z-Plane

-  Real ax is

Imaginary axis  

E m u l a t i o n  D e s ig n
Unit  c i r c le

v i a  z  T ra n s fo rm s

z-P lane

Real axis

Unit  c i r c leImaginary axis  

E m u la t io n  Design v i a  th e
T u s t in  B i l i n e a r  T rans fo rm

z-Plane

Real axis

Unit  c i r c leImaginary axis  

D i r e c t  D i g i t a l  D es ign

The sampling-rate z-plane root-locus diagrams of equivalent digital 

control systems designed by the direct method and emulation methods

Fig.A2.4
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A2.3.2 Disturbance Measured Against Sampling Period

Consider a discrete system, which has a state matrix, $, and a 

controls matrix, If the system is excited by a white noise

signal, it is shown in Appendix Four that the covariance matrix, G ,d
is given by (c.f. equation (A4.ll))

G = $ G $ + Qd d d

where

(A2.20)

«d = exp(A A)w (A) dA a c (A2.21)

In this example A =0, then Q is given byA d

hw 0c (A2.22)

The next task is to evaluate equation (A2.20) for the three design 

methods; that is, for the Tustin transform, the z-transform and the 

direct-digital-design method, where $ is obtained from equations 

(A2.17), (A2.18) and (A2.19), respectively. In each case, the 

computation is repeated for different values of sampling period, h. 

Applying equation (A2.6) to these discrete-time results gives the 

sampled-data system output noise as

Y = C G G .DN d (A2.23)

The normalised noise response is defined as

r Y
Y = 20 logNN

DN

CN
(A2.24)
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For each design method, the result of equation (A2.24) is plotted 

against a base of sampling period, as shown in Fig.A2.5. The 

plotted results clearly illustrate that, to achieve a given noise 

performance, the emulation design methods require a higher sampling 

rate than the the direct-digital-design method. Differentiating 

equation (A2.22) with respect to h gives a measure of the noise 

sensitivity as a function of the sampling rate.

10- E m u la t io n  D es ign   ̂

v i a  z  T ra ns fo rm s  f
E m u la t io n  Design v i a  th e  

T u s t in  B i l i n e a r  T ransform

/ D i r e c t  D i g i t a l  D es ig n

■ f  M M ---
0 . 2 5 1 2 40.1 0 . 50 . 0 3  0 . 0 5

Sampling p e r io d  -  seconds

The normalised wind gust disturbance response of equivalent digital 

control systems designed by the direct method and emulation methods

Fig.A2.5
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A2.4 SUMMARY

This appendix has offered an argument to support the method of 

direct-digital-design of a mixed-data control system. The argument 

is based on the results obtained from an analysis of a particular 

system configuration. The results, while exposing interesting 

comparisons, must be treated with caution when drawing general 

conclusions. The analysis technique is, however, general and can be 

extended to compare emulation and direct-digital-design methods for 

higher-order, mixed-data systems. The analysis, which produces the 

normalised gust response against sampling period, forms the basis of 

the sampling rate selection procedure employed in Chapter Three.
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APPENDIX THREE

SAMPLING, QUANTISATION AND DATA RESOLUTION

A3.1 INTRODUCTION

This appendix presents an example to demonstrate the relationship 

that exists between the sampling-rate, the quantisation noise and 

the digital-data wordlength of a sampled-data, digitally controlled 

CACT system. The purpose of the example is to support the specific 

arguments of Chapter Three.

A3.2 THE PROBLEM STATEMENT

Consider the discrete-data model of a sampled-data system shown in 

Figure A3.1.

w x(n)DELAY

The discrete-data model for quantisation noise analysis

Fig.A3.1

Without loss of generality, it can be assumed that the discrete-data 

model is cast in the modal form, given by

x(n+l) = A x(n) + w ,D Q

A3-1
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where is a discrete, mxm, diagonal state-matrix, produced by 

mapping a CACT domain mxm diagonal matrix, A, by the function

exp(Ah). If the input function, w ,̂ is a white noise quantity

representing the quantisation noise then, using the analysis

developed in Appendix Four, the steady-state condition of the mean 

square quantisation error is given by

G = exp (Ah) G exp(ATh) + Q , (3.2)
CS CS N

where the matrix Gcs is the output noise covariance, with elements
2usually denoted as <r and Q , is an mxm diagonal matrix whose

X N

elements values represent the "strength" of the quantisation-noise.

A3.3 SAMPLING, QUANTISATION AND DATA RESOLUTION COMPROMISES

In the case of a mixed-data system, where the CACT to DADT domain

interfaces are implemented with ADC and DAC devices, and the CACT

domain data is represented as a W-bit digital-data vector, it can be
W 2 — W 2

shown, [A3.1], that the matrix = jll , where —  = »

and I is an mxm identity matrix. Substituting these two quantities 

into (A3.2) gives

I <r 2 = exp(Ah) <r 2 exp(ATh) + I <r 2 . (A3.3)
X X w

With the parameters of (A3.3) expressed in the modal form, the 

equation can be reformed as

exp(Ah) <r -Ic r  +Icr = 0 (A3.4)
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If a noise amplification factor is defined as

<rx (A3.5)<rw

then equation (A3.4) can be reformed to give

£exp(Ah)j = I (A3.6)

The purpose of the analysis is served by considering the particular 

case of a system with distinct eigenvalues. It is recalled that a 

system with distinct eigenvalues has a diagonal modal-form 

state-matrix, thus the states are uncoupled and the analysis can be 

performed on scalar equations. A single row of (A3.6) represents 

one dynamic mode and produces a scalar equation given by

Expanding the exponential function as a series and truncating the 

result after the first order term gives

Since A is a pole of the system, it is clear that if the noise 

amplification term is constant then, as the pole moves towards zero, 

h tends to infinity. For the purposes of selecting a sampling-rate,

A3-3

exp(Ah) (A3.7)

(A3.8)

Solving (A3.8) for h gives
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it can be seen that, for a constant noise amplification, the 

sampling-period, h, must be increased as the pole location is reduced.

( 2 ~ VExpressing the noise amplification in terms of — ^ —  anc* leads 

to a relationship between sampling-rate, quantisation-noise and 

wordlength. Rearranging equation (A3.7) and substituting the 

quantisation-noise expression for <rw gives

(2 W)2 
12 = <rx| 1 - (1 + Ah)2j (A3.10)

Solving (A3.10) for the word-length, W, gives

W =
log(2)

log
/  12 °x 1/ (Ah)2 + 2Ah

(A3.11)

This expression indicates that, for a given level of output noise, 

<r , a reduction in the sample period will require an increase in the 

data-conversion process wordlength W. It is also clear that for a 

constant output noise level and sampling period, a decrease in the 

pole location must be matched by an increase in the data-conversion 

wordlength.

A3.4 SUMMARY

The analysis presented in this appendix exposes the relationship 

between sampling-rate and amplitude-quantisation, in terms of the 

data wordlength, and the effect they have on the noise level in a 

digital data system. The clear relationship, that higher
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sampling-rates require higher data wordlengths in order to achieve a 

given quantisation, is a feature that distinguishes the modern 

concept of a sampled-data system from the classical sampled-data 

system.
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APPENDIX FOUR

NOISE PROCESSES AND SAMPLED-DATA SYSTEMS

A4.1 INTRODUCTION

This appendix presents a method for including a continuous noise 

process in a sampled-data system model. In the context of an 

aircraft digital flight control system, the typical noise processes 

are the continuous air-turbulence disturbances impinging on the 

airframe and the amplitude quantisation noise which is an inherent 

feature of digital computer control. The sampled-data noise model 

is developed by progressing an argument from both the purely 

continuous and purely discrete noise model cases. The form of 

system implicitly considered in this appendix is the generic 

aircraft model illustrated in Fig.2.1 of Chapter 2.

A4.2 NOISE PROCESSES IN CONTINUOUS-TIME SYSTEMS

The basic system for which the continuous-time noise process is 

defined is shown in Fig.A4.1 and modelled by the state-equation

x(t) = Ax(t) + Bw(t), (A4.1)
H C

where x(t) and A are interpreted in the usual deterministic system 

sense. The matrix couples the white noise process wc(t) into the
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system state. For engineering purposes, equation (A4.1) is 

respectable; in a rigorous sense, it should be interpreted as a 

stochastic differential equation of the form

dx(t) = A x(t)d(t) + B d/3(t), (A4.2)N

where dx(t) and d£(t) are differential operators of the state 

vector, x(t), and Brownian motion input vector, £(t), respectively. 

Equation (A4.2) is the proper form because /3(t)=Jw(t) but w(t) = 

d|3(t)/dt does not exist [A4.1]. The purpose of this appendix is 

served without further reference to this interpretation.

In formal terms the properties of white noise are defined as

= 0 (A4.3)

& [̂wc(t) ] [wc(x)]Tj = Qc6(t-r) , (A4.4)

where & is the expectation operator and 8 is the Dirac delta

function. The covariance state matrix is defined as

Gc = & I[x(t)][x(t)]T . (A4.5)

In terms of the system parameters, the steady-state covariance 

matrix is found by solving the equation

A G + G AT + B Q BT = 0. (A4.6)
C C N C N

The development of equation (A4.6) is a well documented process and 

is given in detail in [A4.1].
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w (t)- c A,6 x(t)

A continuous-time system driven by white noise

Fig.A4.1

A4.3 NOISE PROCESSES IN DISCRETE-TIME SYSTEMS

This section considers the definition of a model for the case of a 

discrete system being exercised by a discrete noise process. The 

arrangement for this case is shown in Fig.A4.2 and modelled by the 

discrete state-equation

x(n+l) = $x(n) + ¥ w (n).
N D

(A4.7)

The properties of the discrete noise data w^ are defined as

& [w ]
V J

= 0

ij

CA4.8)

CA4.9)

where & | * j is the expectation operator. The discrete state 

covariance matrix is defined as

Gd = g ^[x ][x JTj . (A4.10)

In terms of the discrete system parameters, the covariance matrix is 

expressed by the equation
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G (n+1) = $ G (n)$T + * Q *T. (A4.ll)D D N D N

Details of the development of equation (A4.ll) are given in [A4.1]

”D(n)- N x(n)

A discrete system driven by discrete noise 

Fig.A4.2

A4.4 THE EQUIVALENT DISCRETE MODEL FOR A SAMPLED-DATA SYSTEM

The development of a practical design model of a sampled-data

system, which includes continuous noise data sources as inputs to

the analogue-data elements, is based on the approach employed to

model deterministic systems. Although in a rigorous sense this

approach is questionable, a convincing theory of noise processes in

a mixed-data system appears not to have been developed. The basis

of the generally accepted sampled-data noise model is a continuous

system, S, embedded in a discrete system, E; the arrangement is

shown in the diagram of Fig.A4.3. In this model, the process noise

vector, wc(t), and the measurement noise vector, vc(t), are directly

applied to the input and output of S, respectively. A continuous

measurement noise, vc(t), can be redefined as a sequence of discrete

vectors and therefore becomes an input to the discrete system E.

The continuous system output is sampled every h units of time, so
1the ADC clocking rate is given by .
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V.

ADCDACu.-

v Ct)
System S

System E

The definition model of the sampled-data stochastic system

Fig.A4.3

The process model, S, represents the basic CACT domain system and

any augmentation states needed to make the process noise, white.

If the measurement noise, v- , occurs within S so that it is 

processed by the ADC then it is standard practice [A4.2] to 

calculate the statistics of the resulting noise sequence emerging 

from the ADC and call this sequence v^. If is not white then 

augmentation is carried out on the equivalent discrete-time system.

A white measurement noise vector, vc> with a covariance defined as

Rc§ is applied to the input of the ADC. The resulting output

sequence, v.,, can be considered as white, [A4.3], with a covariance 

given by

R
R = -rr~ • (A4.12)d h

The physical interpretation of equation (A4.12) is obscure and this 

is one reason that the procedure described in the previous paragraph 

is adopted.
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The equivalent CADT domain state-space model of the system 

illustrated in Fig.A4.3 is given by

x(i+l) = $ x(i) + ¥.u(i) + w (i)
D

y(i) = C x(i) + D u(i) + v(i)
D D

(A4.13a) 

(A4.13b)

On the assumption that the members of arrive at the DAC at the 

same instant the ADC is clocked, then the quadruple terms of CA4.13) 

are given by '

$ =

* =

C =
D

D =
D

exp(Ah),
rh

exp(AA)dA B,

C ’

D.

(A4.14) 

(A4.15) 

(A4.16) 

(A4.17)

The noise term wD(i) is given by

H D ( i )  =

lh

(i-l)h
exp(AA) w (A)dA.D (A4.18)

The discrete process-noise covariance is defined by equation (A4.9) 

From (A4.18), it is deduced that

rh
exp(AA) Qcexp(A A) dA. (A4.19)

From (A4.19), it is observed that for a high sampling-rate, Qd= hQc<
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A4.4.1 The Covariance Matrix of Sampled-Data Noise

This section examines the effect that sampling has on a continuous 

system’s output-data covariance. The basic model on which the 

analysis is carried out is shown in Fig.A4.4 as a subset of the 

system given above.

w_(t) x ( i)

A continuous-time system driven by white noise and sampled by an ADC

Fig.A4.4

The objective is to find a mapping function for the continuous 

covariance matrix, Gc> given in (A4.6), that will generate an 

equivalent sampled-data covariance matrix, G^, for the arrangement 

shown in Fig.A4.4.

For Gc to be finite, the state matrix A must have open,

left-half-plane eigenvalues so that A 1 exists. The procedure to

find the mapping between Gc and Gd starts with the solution of Q̂ , 

where matrix Qd is defined by (A4.19). The arrangement shown in 

Fig.A4.4 implies that the noise is also processed by the coupling

matrix, Bn> The modification to Q̂ , given by (A4.19), is easily

deduced to account for this generalisation. The modified equation

for Qq is given by

V  =
rh
exp(AX) B Q BTexp(ATA) dA.

, N c N
(A4.20)
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Integrating (A4.20) by parts yields

rh
exp (AX) B Q BTexp(ATX) dX = Q *  n c N

A exp (AX) B Q Ba|A xexp(ATX) dX.

[exp(AX) B Q BT] A Texp(ATX)
I N C N I

Q B T]a‘T( 
n  c nJ

(A4.21)

Evaluating the limits of (A4.21) produces

Q = Texp(Ah) B Q BTexp(ATh) - B Q B T - A q | A~T. (A4.22)
D I N C N  N C N  Dl

TPost-multiplying both sides of (A4.22) by A and rearranging to 

separate the terms Qd and Qc gives

A Q + Q AT = exp (Ah) B Q BTexp(ATh) - B Q BT . (A4.23)
D D  N C N  N C N

From the discrete system covariance (A4.ll), is given as

Q = G - $ G $ T (A4.24)
D D D

and from (A4.14),

$ = exp(Ah). (A4.14)

Substituting (A4.14) and (A4.24) into (A4.23) gives 

A Gd - A exp(Ah) Gd exp(ATh) + GdA'T- exp(Ah) GD|exp(ATh)jAT

= exp (Ah) B Q BTexp(ATh) - B Q BT . (A4 25)N C N  N C N

Functions of the same matrix commute, therefore Aexp(Ah) and

^exp(ATh) TA terms can be recast as

A4-8
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respectively, to allow (A4.25) to be written as

A G  + G A T + B Q B T - exp (Ah) \A G + G AT + B Q BTlexp(ATh) = 0.
D D N C N L D D N C Nj

(A4.26)

Given that exp(Ah) has full rank and is not equal to a unit matrix 

I, it is seen that equation (A4.26) is satisfied if

a V + G /  + B nQX  = °- (A4-27)

Comparing (A4.27) with (A4.6) gives the interesting result of

G = G . (A4.28)
D C

which implies that sampling does not change the covariance of x.

A4.5 SUMMARY

This appendix has outlined the development of an approach to map 

stochastic system parameters between the CACT and CADT domains under 

the operation of a ZOH sampled-data scheme. It should, however, be 

realised that only plausible arguments have been presented. A 

complete and definitive approach to the problem of stochastic 

modelling in aircraft DFC systems is not available and is the 

subject of current research [A4.4].
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APPENDIX FIVE

MODELLING A MULTIRATE SAMPLED-DATA SYSTEM MODEL

A5.1 INTRODUCTION

This appendix gives an example to demonstrate the procedure, 

developed in Chapter Three, of assembling a multirate sampled-data 

system model. The example builds a state-feedback closed-loop model 

with a dual-rate sampling policy. The model and resulting multirate 

digital control system are compared to an identical system that is 

designed by the alternative method of Kalman and Bertram, which is 

described in detail in reference [A5.1].

A5.2 THE PROBLEM STATEMENT

Consider the system illustrated in Fig.A5.1, where both the CACT 

system’s inputs and the digital feedback loops are partitioned for 

the application of a dual-rate sampling policy.
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v (k)

fast

slow

ZOH

ZOH

The model of a dual-rate sampled-data system with state-feedback

Fig.A5.1

The model of this dual-rate system is obtained directly by the 

methods described in Chapter Three. The sampling rates are selected 

for a policy of 2^, where p is an integer. That is, from an 

iteration increment rate of, say, one time-unit, the next sampling 

rate is two time-units and the next is four time-units and so on.

A5.2.1 The Assembly of the Closed-Loop Sampled-Data Model

The state equation for the dual-rate system, with a sampling policy 

of hp = 2^hfe , is given by

x(nh + h ) = I $ 1 x(nh ) + | ¥ 1 v (nh ) . (A5.1)p p L P J p L P J P p
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The state coefficient matrix is given by

W - [ [$ + ¥ H ]P + [$ + ¥ H ]p_1 + . . .1 1  1 1  2 2

. . . + [ $ +  ¥ H ]P 2 ¥ H '+[$ + ¥ H ] ¥ H + [I ] ¥ H I , (A5.2) 1 1  2 2  1 1  2 2  2 2J •

and the inputs coefficient matrix is given by

F ¥ 1 = [$ + ¥ H ]P_1 ¥ + [¥ + ¥ H ]P 2 ¥[ p j  11 2 1 1 2

... + [ M ¥ H ]  ¥ + [I ] ¥ 1 1 2  2 (A5.3)

The matrix terms $ , ¥^ and ¥2 have the usual interpretation under 

the assumption of a ZOH sampling process and are given by

$ = exp(Ahj) , (A5.4)

¥ = l

¥

exp(AX) dX B

exp(AX) dX B,

(A5.5)

(A5.6)

In this final part of the example, the application of these 

equations is illustrated using the system introduced to demonstrate 

the modified Kalman and Bertram method given in [A5.1] For 

convenience, this system model is summarised in Fig.A5.2.
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The continuous time system model

x (t)‘ o o X 1 (t)‘ l"1
xo (t) 2

— 0 -1 X (t) 2
+ 0 ■U' (t ) + u (t)2

The sampling policy

Iteration Increments n

The feedback system

"u "o’ H 1 X "1"l 2 1 “u H 0 X 02 l 2
v(nhi)

with H = -1 and H = +1l 2

The sampled-data state equation

"x (nh + h)" '1 o "x (nh)*
x (nh 2 + h) 0 exp(-h) x (nh) 2

h 0 
0 1-exp(-h)

*1 *1* h 0
0 uj(nh) + 0 l-exp(-h) u (nh) 2

A summary of the multirate sampled-data system model from [A5.1]

Fig.A5.2

A5-4



For the open-loop model, the equivalent discrete matrix terms of the 

CACT system are evaluated using equations (A5.4), (A5.5) and (A5.6), 

and are given by

$ =
1 0 
0 exp(-hi) (A5.7)

* = l
h 0l
0 l-exp(-hi) (A5.8)

¥ = 2
h 0l
0 1-exp(-h ) 1-expC-^) (A5.9)

The state feedback matrices are given as

^=[0 -1]

H =[1 0]2

(A5.10) 

(A5.11)

Substituting these equations into the dual-rate state model defines 

the closed-loop system given by

x (nh + h )1 p p
x (nh + h )

2 P P
0 exp(h^)

- 2*1 [h 1 x (nh )’
+ l

0 [0 -1] l  p
x (nh )

- * 2 P

0 exp(hi)
h ' '1 O'

+ l
0 0 1 + 0 1 l-exp(-h )l

' x (nh )"
[1 0] l  P

x (nh )
J 2 P

0 expOv )
h ' '1 O'

+ l
0 [0 -1]+ 0 1 l-exp(-hi) [ 1 03 v(nh )p (A5.12)
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Multiplying out the matrices of equation (A5.12) gives

x (nh + h  )" 1 p p l - h 1 ( l - e x p f - ^ ) - h i ( l + e x p ( - h i )’ x (nh )’ 1 p
x (nh + h  )2 P P l - e x p f ^ h ^ ) e x p ( - 2 h i ) x (nh )2 P

-hi(l+exp(-h) 

l-exp(-2hi)
v ( n h  )p .(A5.13)

A5.3 SUMMARY

The application of sampled-state feedback control to the 

Continuous-Amplitude, Continuous-Time system, shown in Fig.A5.1, 

results in the closed-loop state-equation (A5.13). This result is 

identical to the one produced by the modified Kalman-Bertram method 

[A5.1]. In the above case, the approach starts with an open-loop 

system and progresses to the closed-loop model. By apparently 

reversing the Kalman-Bertram method, the proposed approach is 

aligned to conventional flight control system design techniques. In 

this respect, the facility of the above method appears to offer an 

advantage for the particular requirements of DFC design. A further 

advantage of the above approach appears from the structure of the of 

matrix equations used to develop the multirate sampled-data model. 

The visibility of the physical system, throughout the development of 

the control system, is greater than that offered by other multirate 

modelling methods. It is therefore claimed that the proposed 

digital control system design methodology meets the requirements of 

the design maxims of the thesis.
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APPENDIX SIX

MULTIVARIABLE w-PLANE AND w ' -PLANE MODELS

A6.1 INTRODUCTION

This appendix supports the discussion presented in Section 4.2 of 

Chapter Four. In that chapter^ the w-plane and w7-plane system 

models were defined. The relationship between the CADT system 

quadruple^ cd>Dd) and the w-plane and w7-plane quadruples,

(A ,B ,C ,D ) and (A ,,B , ,C ,,D #), respectively, are given. Thesew w w w  w w w w
relationships are developed in this appendix.

A6.2 MAPPING THE CADT STATE-SPACE MODEL TO THE w-PLANE

By definition, the bilinear transform maps the w-plane from the

z-plane. However, if an equivalent CADT model is obtained directly 

from the CACT state-space equations, the w-plane is effectively cast

in terms of the discrete-time quadruple C ,D ). Under theseD D
conditions, the algorithm developed in this section can be regarded 

as a time-domain to w-plane mapping.

The bilinear transform that maps the w-plane from the z-plane is

1 + w , .z = -s----- . (A6.1)1 — w

Substituting (A6.1) into the z-plane state-space equation,
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z X (z) = $ X(z) + *U(z) (A6.2a)

Y(z) = C X(z) + D U(z) , (A6.2b)
D D

1and adopting a minor abuse of notation , gives

(K*)X(w) = $ X(w) + U(w) (A6.3a)

Y(w) = CX(w) + D U(w) . (A6.3b)
D D

As a first step, the product of the scalar form of the bilinear 

transform and the state vector is recast as a matrix equation.

( - ^ 1
X(w) = [I - wl] *[I + wI]X(w) . (A6.4)

Substituting equation (A6.4) into (A6.3a) and premultiplying both 

sides by [I - wl] gives

[I + wI]X(w) = [I - wl]$ X(w) + [I - wl]* U(w) . (A6.5)

Collecting the state vector, |x(w)j, on the left hand side, 

multiplying out the bracketed terms and factorising to isolate w 

gives

[w[I + $] + [I - $]Jx(w) = [I - wl]* U(w) . (A6.6)

(■̂1^The s t r i c t  n o ta t io n  is  X |   — I b u t in  th e  in t e r e s t  o f  s im p l i c i t y

th e  n o ta t io n  X(w ) has been adopted th ro u g h o u t t h is  t e x t .
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Taking [I + $] as a common factor gives

-l[I + $] wl + [I + 9] [I - 9] X(w) = [I - wl]¥ U(w) . (A6.7)

The next objective is to isolate a single term containing the 

transform variable, w. This is most readily achieved by rearranging 

the right hand side of equation (A6.7) and adding the term

[I + 9] *[1 - 9] - [I + 9] 1[I - $]

[I + 9] wl + [I + 9] X(w) =

wl + [I + 9] 1[I - 9]\ - I + [I + 9] *[I - 9 ] 9 U(w) . CA6.8)

-lTaking the term [I + $] outside the second bracket of the right 

hand side of equation (A6.8) gives

-l[I + 9] wl + [ ! + $ ]  [I - 9]\ X(w) =

wl + [I + 9] a[I - $]j - [I + 9]'1 21 9 U(w) (A6.9)

Premultiplying both sides of equation (A6.9) by

[wl + [I + 9] *[I - 9]] [I + 9] 1

gives

X(w) = - |wl + [I + $]_1[I - $]j [I + 9] *|wl + [I + 9] 1[I - 9]

wl + [I + $] 1[I - 9]] [I + 9] 1[I + $]_12I 9 U(w) .

(A6.10)
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Using the two matrix relationships

wl [I + *] = [I + *] wl 

[I - $ ] [ ! +  $] = [I + $] [I - $] ,

•l .the term [I + $] in the first part of the right hand side of 

equation (A6.10) commutes to the left to give

X(w) = 1 1 _ _
2 [I + $] - [I + $] h U(w) .

(A6.ll)

Substituting equation (A6.ll) into the w-plane output equation gives

Y(w) =

[wl + [I + &] 1[I - $]1 2[I + $] 2# - [I + $] ^ U(w) + D U(w)D

CA6.12)

The relationship between the w-plane quadruple and the CADT 

quadruple is found by comparing equation (A6.12) with the w-plane 

transfer-function. From the w-plane state-space equations given in 

Chapter Four by (4.13), the w-plane matrix transfer-function is 

given as

Y(w) = C [I - A ] *B U(w) + D U(w) . (A6.13)w w w w

A comparison of the coefficient matrices of equation (A6.12) and 

equation (A6.13) gives the w-plane quadruple. In summary, the 

w-plane quadruple, in terms of the CADT state-space quadruple, is



given by

A = -[I + $] 1[I - $]
w

B = 2[I + $3”2tfw
C = C ,w D

D = - C [I + S]”1* + D
w D D

(A6.14) 

(A6.15) 

(A6.16) 

(A6.17)

The inverse mapping functions are directly deduced from these four 

equations and are given by

[I + A ] [I - A ]
w w

2 [I - A ]~2Bw w

-1

=  c
D w

D = -l.C [I - A ] B + DW W W W

(A6.18) 

(A6.19) 

(A6.20) 

(A6.21)

A6.3 MAPPING THE CADT STATE-SPACE MODEL TO THE w'-PLANE

The w'-plane, defined in terms of the w-plane, is given as

w = T w' (A6.22)

Substituting equation (A6.22) into (A6.12) gives

Y(w' ) =

[v'l + |- [ I+̂ >]-1 [ 1-^3 [i+$] 2* -[i+$] 1<nh U(w' ) + D U(w' ) .
D

6.23)
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Comparing the coefficient matrices of equation (A6.23) with the 

matrix coefficients of equation (A6.13) gives the w'-plane

quadruple. In summary, the w7-quadruple, in terms of the CADT 

state-space quadruple, is given by the following equations:

A , = [I + i]_1[I - $] , (A6.24)
w h

B , = [I + i]"2i , (A6.25)
w h

C , = C , (A6.26)
w D

D , = - C [I + S]"1* + D . (A6.27)
w D D

The inverse mapping functions deduced from these equations are

$ = [I +4-A ,] [I -^- A  J " 1 , (A6.28)
Z  w Z  w

¥ = 2 [I - A a  ,]~2 -£-B , , (A6.29)
Z  w Z  w

C = C , , (A6.30)
D w

D = C , [I --5-A ,+ D , . (A6.31)
D w Z  w Z  w w/

A6.4 SUMMARY

The algorithms developed in this appendix provide a convenient and 

efficient method for directly mapping a CACT state-space quadruple 

to the w- and the w7-planes.The algorithms avoid the generation of 

the cumbersome transfer-functions that usually occur with the 

single-input single-output transfer-function mapping method.
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APPENDIX SEVEN

ANALYSIS TECHNIQUES FOR DIRECT DIGITAL DESIGN

A7.1 INTRODUCTION

The z-plane performance criteria, for sampled-data control systems, 

are usually defined from a one-to-one mapping of the s-plane to the 

z-plane. Alternative criteria, that suits the direct digital design 

methods prescribed in this thesis, are developed by applying the 

arguments used to establish CACT frequency domain criteria to a CADT 

system. As a basis for comparison, a brief review of the CACT 

domain performance criteria is given in the next section.

A7.2 A REVIEW OF CACT DOMAIN DESIGN AND ANALYSIS CRITERIA

Consider the CACT domain linear, time-invariant state-equation

x(t) = A x(t) + B u(t) . (A7.1)

The poles of the system, described by (A7.1), are the eigenvalues of

the state matrix A. In terms of the s-plane, the eigenvalues are

the zeros of the characteristic equation, given by the determinant

of [sI-A]. In the case of dynamical systems, the concepts of

bandwidth and natural frequency are often ambiguous, particularly 

when the order of the system is greater than two. This ambiguity 

also applies to the performance measures listed in Fig.A7.1.
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However, the performance of higher order systems can often be 

deduced by considering the natural-frequency, damping-ratio, etc, 

associated with the lowest frequency mode (a technique usually 

referred to as dominant pole approximation). The s-plane 

performance criteria, used as design guides for pole placement 

techniques and performance analysis, are summarised in Fig.A7.1 and 

defined on the s-plane diagram of Fig.A7.2.

Frequency U s
Decrement per unit time <rs
Decrement per unit cycle )s
Natural frequency 0)ns
Resonance frequency Ci>ms
Resonance magnification ms

Performance measures for s-plane pole placement and analysis

Fig.A7.1

+jfc>

s-Plane ns

ms

ns

•CTs

Performance and analysis criteria defined on the s-plane

Fig.A7.2
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The three parameters, w , cr , and f(£ ), listed in Fig.A7.1, are
s s s

measures associated with the zero-input characteristics of a given 

system. The other three parameters are defined on the s-plane shown 

in Fig.A7.2.

A7.3 THE DEVELOPMENT OF CADT DOMAIN DESIGN AND ANALYSIS CRITERIA

The CADT z-plane analysis criteria, described in this section, are 

developed by observing the equivalence between CACT and CADT system 

parameters. The first observation, which forms the basis of the 

criteria development, is the previously described equivalence of the 

CACT state equation (A7.1) and the CADT state-equation given as

x (n + 1) = $ x (n) + S' u(n) . (A7.2)
D D

The s-plane analysis criteria are primarily concerned with a 

system’s characteristic equation; therefore, without compromising 

generality, the criteria can be developed by considering a 

zero-input modal state model. For the CACT system of (A7.1), this 

is given by

x (t) = A x , (A7.3)
M MO

where x (t) = M x(t) and A = M *A M, and the matrix M is a modal
M

transformation which produces the diagonal form of the state matrix.

The i-th modal state is therefore given by

x (t) = exp(A t) x . (A7.4)
i  i  io
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In general, Â  is a complex number, so equation (A7.4) can be 

written as

x (t) = exp(<r t) exp(jw t) x , (A7.5)
i  s s iO

where the real and imaginary components of A are <r and w ,
i  s s

respectively.

For the CADT system given by the state equation (A7.2), the 

associated zero-input modal form is given by

-  -  k fx (n) = A x . (A7.6)
DM D DMO

With a discrete-system inverse modal matrix, M^, the modal state 

vector is x (n) = M x(n) and the matrix A = M M . The i-th
DM D D D D

modal state of the CADT system is therefore given by

x (n) = U ) n x . (A7.7)
D i D i D iO

In general, A^ is a complex number, so equation (A7.7) can be 

written as

Xdi (n ) - rnexp(J^n) XDiQ . (A7.8)

The CADT domain criteria, that have equivalent roles to the CACT 

domain criteria listed in the table of Fig.A7.1, are deduced by 

comparing equations (A7.5) and (A7.8). The two CADT domain 

parameters, sample-number, n, and envelope-frequency, <p, are
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equivalent to the CACT parameters, t and a>, respectively. These 

observations are interpreted in the following paragraphs.

A synchronous sequence of samples, with members, u(n), represents, 

for example, instantaneous values of a continuous periodic function 

which has a time period, T. The frequency of this periodic function 

can be interpreted as the envelope-frequency of the sample sequence. 

The number of data samples taken during the period, T, of the 

notional continuous function, is fi; this parameter is referred to as 

the samples-per-envelope-cycle. For the case illustrated in 

Fig.A7.3, fi=6 samples-per-envelope-cycle.

u(n)

Sinusoidal envelope of discrete samples

Fig.A7.3

It should be noted that the ratio —  for 0<n^u need notn n

necessarily be an integer. From Fig.A7.3, it can be seen that the

values of the discrete sample sequence are given by

, , . f 2nnu(n) = sin — — (A7.9)

Defining 4> = ---- and substituting this relationship into equation

(A7.9) gives u(n) = sin(0n). For a CACT model with complex



eigenvalues given by (cr ± jw ), the envelope-cycle is w . An
S S s

important issue associated with this concept is that to satisfy 

Shannon’s sampling theorem the parameter p ^ 2. The

samples-per-envelope-cycle locus is plotted within the unit circle 

of the z-plane. Each sample-per-envelope-cycle produces a radial 

line, projecting from the origin of the z-plane, as shown in Fig.4.8 

of Chapter Four.

Comparing, again, the modal forms of the zero-input CACT and CADT 

state-equations, (A7.5) and (A7.8), respectively, it is seen that 

the rate of decay of the CACT domain system is governed by the 

function, expfcr ), and the rate of decay of the CADT domain systemS
is governed by the parameter, r. These two parameters are both 

referred to as the decrement-per-unit-time. On the s-plane, a CACT 

system’s modes converge to the zero-state for negative values of cr
s

and diverge for positive values of cr . Modes are in a steady-state
S

condition for all time when cr is zero. In the case of a CADT
s

domain system defined in a z-plane, it is seen that modes converge 

to a zero-state for values of r less than unity and diverge for

values of r greater than unity. When r has is unity, the CADT 

domain mode is steady-state for all time.

A7.3.1 Damping Factor in the CADT Domain

The damping factor, gives a measure of the stability

characteristics of CACT domain systems. The damping factor is 

related to the decrement-per-time parameter through the function
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Radial lines of constant damping factors can be plotted on the 

s-plane, as shown in Fig.A7.2. In terms of the s-plane axes, cr and
s

o) , a constant damping line is given by a constant ratio ratio of <r
s s

to a) ; this ratio is called the damping-per-unit-cycle. The
S

zero-input, CACT domain, modal form of the state equation (A7.5) can 

be recast to give < in terms the damping-per-unit-cycle ratio. The 

parallel operation in the CADT domain is based on equation (A7.8) 

and defines a set of contours on the z-plane. These contours are 

equivalent to the constant decrement radials of the s-plane.

To define a CADT parameter which can be regarded as equivalent to 

the CACT domain damping factor, consider the CACT zero input modal 

state equation (A7.5), recast in the form

x o>
= exp 0) exp(jp ) x

s 10
(A7.11)

where p = w t. The equivalent parameter in the CADT domain is
s s

defined as p^ where p^ = <f> n. Substituting pd into equation (A7.8) 

gives

D i 4>
= (r)^ exp(jp ). x

D DiO
(A7.12)

From the CACT domain equation (A7.ll), the decrement-per-unit-cycle 

is given by



where the function, = tan arccos(£ )l. Comparing this

parameter with the equivalent term in equation (A7.12) gives the 

CADT domain decrement-per-unit-cycle as

As shown by Fig.4.9, in Chapter Four, the CADT constant value 

decrement-per-cycle z-plane contours produce a family of logarithmic 

spirals. These spirals converge on two points. For an infinite 

sampling-rate, the convergence point is z(l,jO). For zero 

sampling-rate (a meaningless notion), the contours meet at z(0,j0). 

In progressing towards the zero sampling rate limit, the contours 

make successive crossings of the negative real z axis for fi=2k, and 

the positive real axis for /i=2(k+l) for k=l, 2, 3, ...oo.

It is observed that the decrement-per-envelope-cycle contours 

defined in this section have the same logarithmic spiral form as the 

s-plane damping factor contours when they are mapped onto the 

z-plane. However, it should be noted that the z-plane contours 

illustrated in Fig.4.9 are directly defined for the CADT domain and 

therefore have a different interpretation to similar contours 

produced by an s-plane to z-plane mapping. The different 

interpretation arises because the geometrical basis for both sets of 

contours is the origin of their respective planes. In addition,the 

s-plane origin, s(0,j0), maps to z(l,jO) and not to the origin of 

the z-plane.

1
(A7.14)
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In the CACT domain, <r can have either a positive or negative value. 

For negative values of cr , as the decrement-per-cycle ratio becomesS

smaller, the damping factor tends to zero. The equivalent to <r inS
the CADT domain is the radial vector r of equation (A7.12), which 

can only have positive values. The interpretation of r in terms of 

<r is that 0<r<l corresponds to <r <0. For digital control system
S S

design in the CADT domain, r is the appropriate parameter for 

measuring stability.

A7.3.2 Natural-Frequency and Resonance in the CADT Domain

The three CACT domain parameters of natural-frequency, ,
ns

resonance-frequency, w , and resonance-magnification, m , are
ms s

important measures in the specification and assessment of control 

systems. As in the case of the damping factor described above, the 

natural-frequency and resonance parameters can be mapped from the 

s-plane to a z-plane. Details of the s-plane to z-plane mapping 

method are well documented [A7.1]. The concepts of

natural-frequency and resonance, based on the direct CADT domain 

definition, are developed in this section.

The CACT domain system performance parameters can be defined by 

considering the s-plane geometry associated with a complex 

pole-pair. The development of equivalent CADT domain parameters can 

be achieved by following the s-plane geometry with a corresponding 

z-plane geometry, as shown in Fig.A7.4.
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s-Plane
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-cr
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-v

s

z-Plane

lz
lz

Unit circle

-j«

s-plane z-plane

The s- and z-plane geometries of a pole-pair which are applied 

in the definition of the control system performance parameters

Fig.A7.4

To examine the CADT concepts of natural frequency and resonance, 

consider the CADT domain second order system given as

F(z) =
z - r exp(j0 )o ° )

z - r exp(-j0 )
o o

(A7.15)
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If the system modelled by equation (A7.15) is stable and is 

processed in discrete-time within the time frame of the primary 

iteration rate, then the complex pole-pair is mapped onto the 

z-plane, as shown in Fig.A7.4.

The concept of frequency response and its associated parameters is 

based on the geometry of Fig.A7.6 and the product of the magnitudes 

of vectors, lzi and lz2» where lzj is given by

lz = 1 exp(j0) - rQexp(j0o)

and lz2 is given by

lz = 2 exp(j(f>) - rexp(-j<f>Q)

(A7.16)

(A7.17)

To facilitate the development of the CADT domain z-plane frequency 

response criteria, the variable, <f>, is replaced by

6 - 2  arctan(w )
w

(A7.18)

This, apparently obscure substitution, is a direct consequence of 

the w-plane frequency response, which is discussed in Section 4.2 of 

Chapter Four.The z-plane contours of natural frequency, (<f> ), andn
resonance magnification, (m ), are shown in Chapter Four by Fig.4.10

z

and 4.11, respectively. These two sets of contours are defined in 

terms of the z-plane geometry of Fig.A7.4b and were derived from the 

w-plane parameters described in Chapter Four.In terms of the z-plane 

geometry, the contours for these two parameters, together with the 

z-plane definition of resonance frequency, (0 ), are given bym
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A7.4 SUMMARY

<f> = arccos
n

2r

1 + r
—  cosid ) 2 0 (A7.19)

m =
z

(1 + r ) - 2r cos(<f> ) o o o
(1 - r^) sin(0 ) o o

(A7.20)

<f> = arccosm 2r
cos(0 ) o (A7.21)

The CADT domain analysis criteria described in this appendix 

represents the appropriate measures for the assessment of a 

mixed-data DFC system. The direct discrete domain definitions of 

the criteria establish the techniques as suitable measures for 

analysing both sampled-data and purely discrete-data systems.
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