

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk A HUCKEL MOLECULAR ORBITAL STUDY

OF SOME AROMATIC HYDROCARBONS

1

A thesis submitted to the University of Glasgow for the degree of Doctor of Philosophy

Ъy

David Antony Morton-Blake.

Chemistry Department, University of Glasgow - December 1963

ProQuest Number: 10984175

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10984175

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

Acknowledgments

It is a pleasure to thank Dr. T. H. Goodwin for the interest and unfailing helpfulness which he has extended throughout the three years during which I have worked under his supervision, and for the use of some of his programs for the DEUCE Computer, using which many of the calculations were carried out. I also gratefully acknowledge many interesting and helpful discussions with Dr. E. Clar and Professor D. W. J. Cruickshank.

I am particularly grateful to Professor J. Monteath Robertson for a maintenance grant during my first year of research (1960-1) and to H. M. Department of Scientific and Industrial Research for the award of a Studentship for the last two years (1961-3).

My thanks are also due to Mrs. J. Beresford, who undertook the task of typing the thesis.

CONTENTS

e

§1	Intro	duction and Definitions 1	L
§ 2	Basic	Theory 4	Ŀ
	2.1	The LCAO-MO method 4	
	2.2	Matrix form of the Schrödinger equation 9)
	2.3	The Hückel theory 11	Ļ
	2.4	Variation in β' 14	-
	2.5	Bond orders 16	\$
	2.6	Simplifications due to symmetry 20)
9 3	Applic	cation of the Hückel theory to the aromatic	
	hyði	rocarbon 1-2, 6-7 dibenzpyrene, and the	
	rest	ults obtained 24	F
	3.1	Application of Group Theory 24	2
	3.2	Results of the calculation:	
		(i) Electronic states 31	•
		(ii)Electronic spectra 35	;
§ 4	The Cl	lar theory of aromatic hydrocarbons	;
§ 5	Result	ts of the computations on some aromatic	
	hydı	rocarbons	,
	5.1	The effect of iterating 47	,
	5.2	Bond variations:	
		(a) Acenes 52	,
		(b) Other hydrocarbons	\$
		(c) A comment on the relationship between	
		the Clar and Hückel theories)

			Page
	5.3 1	Molecular W electronic energies	60
		(i) Aromaticity and stability	63
		(ii) Calculated energies	69
		(iii) A comparison of the stabilities of	
		some isomers	74
§ 6	The con	nstruction of a new r(p) curve, and the	
	calc	ulation of more accurate bond orders and	
	ener	gies	79
	6.1	A criticism of the r(p) and $\beta'(r)$ curves used	
		for the calculations of the molecular	
		constants listed in Appendix A	79
	6.2	A more accurate order-length curve	80
	ŗ	Treatment of molecules containing long bonds.	90
	6.3	Results obtained for aromatic hydrocarbons	
		using the new order-length relationship	91
	6.4	(a) The calculation of the positions of the	
		electronic transition bands for aromatic	
		hydrocarbons	9 7
		(b) The calculation of spectral shifts due	
		to annelation	103
§7	The cal	lculation of aromatic character of the acene	
	ring	s in terms of Clar's oscillating aromatic	
	pair	model	107

:

G			Page
38	A simple tre	etment of inter-electronic repulsion	
	in aromati	c hydrocarbons	116
	8.1 The gr	ound state	116
	Applic	ation to some hydrocarbons	122
	8.2 The fi	rst excited singlet state	127
	References	• • • • • • • • • • • • • • • • • • • •	134
	APPENDIX A:	Molecular constants calculated using the Coulson-Goodwin $p(r)$ curve and the Mulliken, Riecke and Brown $\beta'(r)$ curve.	
	APPENDIX B:	Molecular constants calculated using the "improved" $p(r)$ curve and the Longuet-Higgins and Salem $\beta'(r)$ curve.	
	APPENDIX C:	Molecular constants calculated using the $p(r)$ and $\beta'(r)$ curves used for Appendix B results, but with special provision made for extreme long and short bonds.	
	APFENDIX D:	Papers with T. H. Goodwin submitted for publication:	
		(i) "L.C.A.OM.O. Calculations on Pyrene Benzologues": Tetrahedron Letters <u>14</u> 901 (1963)	٥
		(ii) "The Configuration of Diphenyl in the Crystalline and in the Vapour States: A Simple Non-bonded H-H Potential Function": Theoretica Chemica Acta <u>1</u> 458 (19	

.

APPENDIX D (Cont'd):

- (iii) "An Empirical Determination of the Huckel Parameter β, and of the C-C and C-H Bond Energies in Aromatic Hydrocarbons": To be published in Journal of the Chemical Society.
- (iv) "A Simple Molecular-Orbital Study of the β, α and p-Bands in Triphenylenes": To be published in Theoretica Chemica Acta.

\$1 INTROLUCTION AND DEFINITIONS

We shall discuss the application of the Hückel LCAO-MO method to some benzenoid alternant aromatic hydrocarbons and the results obtained, making comparisons where possible with the predictions of the theories developed by Clar concerning these molecules.

The torm "benzenoid" will be defined as a description of those molecules composed only of sixmembored rings of sp² hybridized stoms. An arometic system is one containing ring stoms with each of which there is associated a 2p atomic orbital containing 0, 1 or 2 electrons, and which is directed perpendicular to the plane formed by the atom and its immediate Alternant hydrocarbons are those in which neighbours. the carbon atoms may be classified into two sets. "starred" and "unstarred", in such a way that each starred atom has only unstarred nearest neighbours, and vice versa. Alternant hydrocarbons therefore contain no odd-numbered rings. Some examples of molecules using these terms are naphthalene, which is a benzenoid alternant aromatic hydrocarbon, cyclobutadione, which is an alternant aromatic hydrocerbon though not benzenoid, cyclooctatetraene, which

is an alternant hydrocarbon but is neither benzenoid nor aromatic (since it is not planar), and azulene which is an aromatic hydrocarbon, but is neither benzenoid nor alternant. The molecules pyridine and borazole are in many ways similar to benzene, and by our definitions may be described as being both benzenoid and aromatic, but they are not hydrocarbons and so cannot be described as alternant or non-alternant.

In an aromatic molecule the 2p atomic orbitals, which are usually directed at right-ongles to a nuclear plane, interact, with the result that the electrons produce an electric field above and below this plane, in the regions where the atomic orbitals ovorlap. These electrons are therefore considered to be delocalised to a greater or less extent over the nuclear framework in discrete molecular orbitals. Since the wave functions of the basis set of 2p atomic orbitals, and therefore of the molecular orbitals are antisymmetric with respect to the nuclear plane, both are termed w orbitals, and their associated electrons ere called Welectrons. This is principally to distinguish them from the & electrons in the system, which are localised between two nuclei and are cylindrically symmetrical with respect to the internuclear line.

-20

The principal results obtained from the Hückel ICAO theory calculations are the energies of the electron molecular orbitals as a linear combination of two parameters α and β_{α} . No attempt is made to calculate these quantities directly, but since the coefficient of the β , term varies from one orbital to another, it has been possible to estimate empirical values for β_{σ} , which we have done on two different experimental bases, by comparing molecular orbital energies as derived from thermochemical measurements and also from the electronic transition energies in the U.V. absorption spectra. The calculations also furnish the w bond orders, which measure the degree of w bond formation between neighbouring pairs of carbon atoms.

Where it has been possible, we have attempted to compare our results with experimental data. This, however, has been difficult, both because of the uncertainties in the positions of the relevant U.V. spectral bands (which would make ideal comparisons for the calculated energies) and because sufficiently accurate bond lengths (which are useful measures of ψ bond orders) are available for only a very few aromatic hydrocarbons. From the comparison of our results for different molecules it has often been

-3-

possible to observe some regularities in the behaviour of the T electrons, and in comparing these with the empirically-based rules of Clar, to effect indirect comparison with experiments.

The nomenclature of the aromatic hydrocarbons is that used in Clar's book "Aromatische Kohlenwasserstoffe", but the numbering of the carbon atoms in the Appendices and in the text to refer to bond orders etc., has been our own. The rather irregular form of the numbering is due to convenience in the computations, but because of the risk of errors in translation into Chemical numbering, has been used throughout.

·

§ 2 Basic Theory

2.1 The LCAO-MO Method, and on and m-separation

Because of the potential energy terms in the hamiltonian operator H, the solutions such as ϕ_i of the Schrödinger stationary -state equation

$$H\phi_i = E_i\phi_i$$

for an electron in the neighbourhood of an atom or ion are well-known to be discrete. The wave function $\underline{\mathcal{F}}$ of the electon must then be written as a linear combination of the solutions:

 $\Phi = a_1 \phi_1 + a_2 \phi_2 + \dots$

Since the electron must be somewhere in space, we have the normality condition

$$\int \Phi^* \Phi \, d\tau = 1 \tag{1}$$

where the integration is carried out over the whole range of the spacial coordinates of the wave functions Φ . It is convenient to use orthonormalised solutions (i.e. such that $\int_{0}^{\infty} \phi_{i}^{*} \phi_{j} dt = \delta_{ij}$) since then the normality condition (1) imposes the following simple restriction on the a's:

 $|a_i|^2 + |a_2|^2 + \dots = 1$ The quantity $|a_i|^2$ is therefore the probability that the electron is in the state described by the solution ϕ_i with energy E_i .

Because the discrete solutions ϕ_i are associated with particular energies E_i , it is convenient to speak of an <u>atomic orbitel</u> (AO) with energy E_i which may be accommodated by either 0, 1 or 2 electrons, and which provides a real distribution function for the electron. In many cases the atomic orbitals can be just the solutions themselves or convenient approximations to them, but when more than one solution corresponds to the same energy E, it may be necessary to take linear combinations of these degenerate solutions to give functions which are real (i.e. not complex) and which may therefore be used to represent the distribution of the electron. We shall suppose that the atomic orbitals which we require are known, and shall denote them by the symbol Ψ .

The electron is also in a bound state in a molecule, and analagous to the atomic case we can speak of molecular orbitals (MO's), in which the electron is associated with more than one atom. In principle a MO can be expressed as a linear combination of a complete set of wave functions. However except for very simple molecules (e.g. H_2 or H_2^+), this is unpracticable, and for many purposes satisfactory molecular orbital wave functions are obtained by taking a linear combination of appropriate atomic orbitals in the molecule (LCAO):

$$\Psi_{MO} = C_1 \Psi_1 + C_2 \Psi_2 + \dots + C_n \Psi_n$$
 (2)

Even if we make use of the Born-Oppenheimer approximation, which allows us to neglect the effect of the nuclear motions on the electronic wave functions, \mathcal{P}_{MO} does not adequately cater for all the influences which the electron experiences in the molecule. However the "best" choice of coefficients c will reduce this uncetainty to the minimum possible for the particular set of Ψ 's used in (2).

The coefficients c may be determined by calculating the energy of the molecular orbital Ψ_{MO} according to the rules of quantum mechanics:

$$E = \int_{0}^{\infty} \Psi^{*} H \Upsilon d\tau \qquad (3)$$

where II is the hamiltonian operator for the system. The variation principle states that as long as we are using an accurate hamiltonian H, (which can usually be done quite readily) the energy given by (3) will be creater than or equal to the true lowest energy of the system. In other words the lower the value of E, the nearer is Ψ to the true MO wave function. The "best" Ψ of the form given in (2) can therefore be found by minimising (3) with respect to the various c's. In this way, although effects such as interelectronic repulsions have been neglected in forming the LCAO-MO (2), they may be included in the hamiltonian in (3) as "perturbation" energy-terms, and the LCAO-MO's evaluated will be such that the c's "allow for" these effects as far as is possible.

If $\mathbb{Y}_1, \mathbb{Y}_2$, etc. are the MO wave functions constructed in this way from the various AO's in the molecule, the ground state will be that in which the MO's with the lowest energies are occupied by electrons. We can write the wave function Γ for such a state of an n-electron molecule as a product of the n lowest-energy molecular orbitlas \mathbb{Y}_1 to \mathbb{Y}_n , in such a way that Γ is antisymmetrical to the interchange of any two electrons, in accordance with the Pauli principle. Γ is written

 $\Gamma = \mathcal{A} \left[\mathcal{L}_{1}(l) \mathcal{L}_{2}(2) \dots \mathcal{L}_{n}(n) \right]. \tag{4}$

The general factor $\mathscr{Y}_{r}(r)$ denotes the rth electron in the rth molecular orbital. The antisymmetrising operator \mathscr{A} (which includes the normalising factor) permutes all the electrons and sums the antisymmetrised results, since there are equal probabilities of finding any one electron in any of the n MO's.

In forming the MO's F' it often happens that one or more of the component AO's do not combine with the others in the form (2) with any appreciable energy change. This may be because the centres of the AO's are too far apart, or because they belong to different symmetries. In either case the cross-terms in the expansion of $(3)_9$ $\int_0^{\infty} \Psi_a^* H \Psi_b dt$ (the energy of the interaction of the AO's) and the overlap, $\int_0^{\infty} \Psi_a^* \Psi_b dt$ (which is often a useful simple measure of the former quantity) are very small or zero. The atomic orbitals Ψ_a and Ψ_b may therefore be treated as distinct by appearing in (4) in separate wave functions F'. For this reason the $2p_{\pi}$ AO's, which are directed at right

-7-

angles to the molecular plane of the aromatic hydrocarbons, form distinct w Molecular orbitals, which may be distinguished from the σ MO's by their <u>antisymmetry</u> in the molecular plane, the σ MO's being <u>symmetric</u>.

These two kinds of MO are very different. The \leftarrow MO's may be manipulated (Coulson, "Valence" 2nd. edn., p.173) into the form of "bond orbitals" in which the electrons are localised in the internuclear regions and form what are known as $\underline{\leftarrow}$ bonds. The π MO electrons on the other hand are delocalised over large parts of the molecule. Since the localised \bigcirc bond orbitals are characteristic only of the two atoms forming the bond, the C-C \leftarrow bonds in an aromatic hydrocarbon are similar, and effectively provide a carbon atom framework over which the π electrons are delocalised. The π MO's are therefore highly dependent on the topology of the molecule, and in this thesis we shall suppose that many of the characteristics of the aromatic hydrocarbons (e.g. relative bond lengths and UV spectra) may be explained quite well by the π MO's alone.

The electronic energy E of a molecule in the state Γ ,

 $E = \int_{0}^{\infty} \Gamma^{*} H \Gamma dt$

contains kinetic energy and nuclear-attraction terms for each of the σ and Welectrons. However there are in addition terms describing the mutual repulsions of the electrons; "some of these terms involve both σ and W functions, and express the interactions of the σ and \overline{w} electrons. The existence of these σ -W "coulomb" and "exchange" integrals shows that the <u>total energy</u> of an aromatic molecule cannot be separated into parts which involve the σ and \overline{w} electrons alone, since the two parts do not constitute independent systems.

Nevertheless it is convenient to suppose that the σ and π electron parts of the total energy can be separated, and that the

-8-

description " π electron energy" applies to the sum of those energy terms which involve the π MO wave functions even if they also involve σ wave functions. Although π electron energy cannot be a strictly meaningful physical quantity, the σ - π separation procedure allows us to obtain results which are often surprisingly accurate for molecules whose complexities make them intractable to more rigorous treatments.

- 8a-

1.20

In the form of the σ - π separation procedure which we shall be using, our wave functions will be just those of the π MO's, and the π -electron hamiltonian will include a potential energy term which expresses the total coulombic interactions with the nuclei and the σ electrons. In the bulk of the thesis this term will also include the interelectronic repulsions of the π electrons, but in the final chapter an explicit account will be taken of these. The σ MO's will not be considered at all.

2.2 Matrix form of the Schrodinger equation.

We shall express the it MO according to (4) but in the convenient vector rotation

$$\Psi_{i} = \langle \Psi |. | c_{i} \rangle$$

where $\langle \Psi |$ is a row vector of the <u>N</u> 2p_x atomic orbitals in the system, and $| c_i \rangle$ is a column vector of the <u>N</u> coefficients relating to the <u>it</u> molecular orbital. The condition ensuring the normalisation and orthogonalise of the MO's is that the vectors $| c_i \rangle (i = 1 \text{ to } N)$ are orthonormal, i.e., the coefficients C_{ri} themselves taken in columns, are normalised and orthogonal. If this is the case, then the N x N matrix C consisting of a row of the <u>N</u> $| c_i \rangle$ column vectors is a unitary matrix. The row vector of the <u>N</u> molecular orbitals may then be expressed as

$$\langle \Psi | = \langle \Psi | C \qquad (2.5)$$

and the energy sigenvalues can be calculated by forming the square matrix

$$E = \int \langle \Psi |^{\dagger} H \langle \Psi | d\tau$$
where $\langle \Psi |^{\dagger}$ is the adjoint of $\langle \Psi |$, and H is the

hamiltonian operator relevant to the system. From (5) and (2) we have

$$E = \int c^{\dagger} |\Psi\rangle^{*} H\langle \Psi | c dx = c^{\dagger} H c = c^{-1} H c$$
(2.7)

where H is the matrix whose elements are $Hrs = \int \psi_{n}^{*} H \psi_{n} dx$. The replacement of C^{\dagger} by C^{-} follows from the unitary property of C. While in general the (\mathbf{r}, \mathbf{s}) th elements in H is non-zero, the matrix E (formed by subjecting H to a unitary transformation using the C matrix) is diagonal and the diagonal elements E_{il} are the energy eigenvalues.

Writing (7) as

Hc = Ec(2.8)

and using the fact that E contains only diagonal elements E_1 , (8) may be separated into N vectoral equations

$$\mathbb{H}(\alpha) = E_i(\alpha)$$

which is the Schrödinger equation in matrix form. This can be rewritten

$$(\mathbb{H} - E_i \cdot \mathbb{I}) | c_i \rangle = O$$
 (null matrix)

where 1 is the unit matrix equidimensional with H, and for a non-trivial solution ($|c_i\rangle \neq 0$) it is necessary that

det $|H_{pe} - E_i S_{pe}| = 0$

the N solutions of which are the eigenvalues Ei.

2.3 The Huckel Theory.

In the argument developed above, it has been implicitly assumed, following Hückel¹, that the atomic orbitals Ψ , although not eigenfunctions of the Hamiltonian operator H, are orthogonal amongst themselves, so that the matrix $\int |\Psi\rangle^{*} \langle \Psi| d\tau$ is a unit matrix. This assumption as stated is not justifiable, but its adoption results in considerable simplifications of the computations, and may be "corrected for" afterwards, if desired.

A second simplification made by Hückel¹ is to suppose that the Hamiltonian has exactly the same form for each molecular orbital, so that each π electron moves in the same average electrostatic field provided by the nuclei and the other electrons. Moreover this field is the same at all $2p_{\pi}$ stomic orbitals in the molecule. For this reason another considerable simplification results if we do not <u>explicitly</u> consider the interactions between the atomic orbitals, but write the diagonal and non-diagonal elements of the \mathbb{R}^{d} matrix respectively as

$$H_{rr} = \int \psi_r^* H \psi_r d\tau = \alpha_r$$

and
$$H_{rs} = \int \psi_r^* H \psi_s d\tau = \beta_{rs}$$

From what we have just said, $lpha_{\mathbf{r}}$ is the same for all $2\mathbf{p}_{w}$ atomic orbitals Win an aromatic hydrocarbon; it is theoretically the energy of a single electron in a 2p atomic orbital, and is written % . Making the next Huckel assumption¹ that only nearest-neighbour interactions need be considered, the interaction term Brs becomes a bond parameter. Although a good first approximation is to assume that this is constant for all bonded atoms r, s, aromatic hydrobcarbons are characterised by some variation in their CC bond lengths. As a result, the value of $\beta_{\rm rs}$ is expected to depend somewhat upon the distance between the centres of the interacting atomic orbitals, 1.e. upon the length of the bond <u>res</u>. We therefore write $\beta_{rs} = \beta'_{rs} \cdot \beta_{o}$ where β_{o} is the interaction term for an arbitary standard bond. chosen in such a way that the numerical factor $eta_{\mathbf{rs}}'$ is fairly close to unity. In our calculations β_0 is the interannirical relations suggested by Mulliken, Rieke and the the for Longuet-Higgins and Salem³. the bond res with that of the benzene bond, using the empirical relations suggested by Mulliken, Rieke and Brown² or Longuet-Higgins and Salem³.

H-E.1Each element of $H_{\Lambda}(whose Coneval element is$ \mathbb{H}_{rs} -EiSrs) is now divided by β_{o} and the resulting elements are of two kinds, the non-diagonal elements which are independent of the energy E become simply $\beta_{\mathbf{rs}}$, whereas all the diagonal elements are

$$\frac{\alpha - E_1}{\beta_0} = \chi_1 \quad (say). \qquad (2.9)$$

Zi is the energy eigenvalue parameter (sometimes called the Huckel number) and becomes the general latent root of the matrix B.H.

The energy eigenvalues for the system are then given by (9) or

$$E_{i} = \alpha - x_{i} \beta_{o} \qquad (2.10)$$

 β_0 is a negative quantity, so negative values of x_1 lead to bonding MO's (molecular orbitals whose energies are less then the energy of the 2p_w atomic orbital), and positive values to antibonding ones. In certain cases, as for example a molecule containing an odd number of $2p_{TF}$ atomic orbitels (which, because of the lack of complete spin pairing must be a free radical), x may be zero, resulting in an MO whose energy is seen by (10) to be just the same as that of a 2p atomic orbital. Such an MO is called a non-bonding molecular orbital.

In alternant aromatic hydrocarbons, the Hucket theory leads to x velues which are paired in positive and negative velues, so that for each bonding molecular orbital $(-x_1)$ there is a corresponding antibonding one. A system of <u>N</u> interacting atomic orbitals must have <u>N</u> molecular orbitals, and so a neutral even alternant hydrocarbon possesses a ground state in which all <u>N</u> electrons are, by the Pauli Principle, accommodated in the N/2 bonding molecular orbitals. We may conveniently denote the number of occupies molecular orbitals by <u>n</u>. In the ground state, N=2n.

2.4 Variation in B'

As was discussed in the last section, the β value for a CC bond in an aromatic hydrocarbon should be fairly constant, since the variations in bond lengths are seldom very marked. For this reason the <u>Simple</u> <u>Huckel Method</u> in which all the β ^s values are assumed to be unity, has often yielded very satisfactory results. We have sometimes used the results of the Simple Huckel Method in order to compare the results calculated for a series of hydrocarbons when we wish to avoid the difficulties of assigning uncertain bond β ^s values.

In cases where we can assign β ' values, however, (when the bond orders or bond lengths are known with some degree of certainty) the results are probably better. Various relationships between the length of a bond and its β ' value are to be found (these we shall call β '(r)), and we have used those due to Mulliken, Riecke and Brown², and later to Longuet-Higgins and Salem³. Finally we have calculated a new β '(r) relationship using some recently-determined force-constants and bond energies.

For a general hydrocarbon, however, the bond lengths are not known, so the required set of β values cannot be assigned. Our precedure (following Goodwin) has been to compute the bond orders p_{rs} using the Simple Hückel Method first of all, infer from these the approximate set of bond lengths rrs using an empirical bond order/bond length curve r(p) (such as that due to Coulson), and from these calculate a set of β ' values by reference to a β (r) relationship. This set of β values is then used in a second "iteration", and new sets p_{rs} , r_{rs} and β°_{rs} are computed. These latter values are expected to be more accurate then the first sets, end the bond orders and bond lengths obtained by a further iteration should be better still. Although at first sight successive iterations should yield progressively better results until self consistency is obtained, we have decided to stop after three iterations, since the desired self-consistency is generally not achieved. This

a] ეი

is probably due to the uncertainties in the
$$p(r)$$
 and $\beta^{*}(r)$ curves used for the interpolations; later curves will be seen to improve the position somewhat.

-16-

2.5 Bond Orders.

The eigenvectors $|c_i\rangle$ consist of the coefficients C_{rs} of the atomic orbitals ψ_r in the <u>i</u> th MO as expressed by $N_r = \sum_{i=1}^{N} c_i w_i$

$$\Psi_i = \sum_{r=1}^{n} c_{ri} \Psi_r$$

In the following calculations all the coefficients will be assumed to be real, since this assumption considerably simplifies the computations which involve the products of the coefficients. Multiplication of

 $|G\rangle$ by its transpose $\langle c_i |$ yields an n x n matrix whose (r, s)th entry $isC_{ri} \cdot C_{si}$. Now the probability of finding an electron in the i th MO is $\int Z_i^{\#} Z_i \, d\tau$ which for real vectors $|c_i\rangle$ is equal to

 $P = \int Y_i^2 d\tau = \int (c_{ii}^2 \Psi_i^2 + c_{2i}^2 \Psi_i^2 + \dots + c_{Ni}^2 \Psi_N^2) d\tau = \sum_{N=1}^{N} c_{Ai}^2$ (essuming the orthogonality of all pairs of Ψ 's). The diagonal elements of a matrix $|c_i\rangle\langle c_i|$ therefore measure the probabilities of finding a T electron associated with the various atomic orbitals; c_{ri}^2 thus is the T electronic charge q_{ri}^1 on atom r_i due to the i th MO. The non-

diagonal terms in the same matrix might then reasonably be expected to measure the π electron density in the region between two atoms, i.e. $C_{T}C_{S}$ is a measure of the amount of π bond character between atoms <u>r</u> and <u>s</u>, and is called the <u>partial bond order</u>⁴ pⁱ_{rs} of the bond r-s due to the <u>i</u> th MO. When a matrix of these quantities is multiplied by the occupation number w_{i} of the <u>i</u> th MO (the number of π electrons in the orbital), and summed over all the MO's, it results in the total bond order matrix, whose elements are the total bond orders and charge densities:

The total bond order p_{rg} of a bond or <u>Coulson bond order</u> accounts for the observed shortening of the bond due to W bond formation⁵. p=0 implies an absence of W electrons (hence no π -bond), and p=1 an ethylene-type W bond (which together with the σ bond, constitutes the classical "double bond"). The C-C bond orders in aromatic hydrocarbons are usually between 0.4 and 0.8.

The Coulson bond order is elso a useful concept

-18-

The energy of the i th molecular orbital is

$$E_{i} = \int \Psi_{i} H \Psi_{i} d\tau = \int \langle \psi | . | c_{i} \rangle H \langle \psi | . | c_{i} \rangle d\tau$$

$$= \int \langle c_{i} | \Psi_{i} \rangle H \langle \psi | | c_{i} \rangle d\tau$$

$$= \langle c_{i} | \Psi_{i} | c_{i} \rangle$$
(2.12)

If is now separated into two matrices which involve only α and the β terms respectively, as discussed in the last section:

 $\mathbb{H} = \propto . 1 + \beta$

(12) then becomes

$$E_{i} = \langle c_{i} | (\alpha 1 + \beta) | c_{i} \rangle$$

= $\alpha \langle c_{i} | | c_{i} \rangle + \langle c_{i} | \beta | c_{i} \rangle$
= $\alpha + \sum_{\substack{n=1 \ n \neq s}}^{n} \sum_{\substack{s=1 \ n \neq s}}^{n} c_{ni} c_{si} \beta_{ns} (\text{for real } c_{r}, c_{s})$
 $n \neq s$

But the actual energy of the electrons in the \underline{i} th molecular orbital is $V_i \in \underline{i}$, where v_i is the occupation number. The total T electron energy in the system is therefore:

$$\mathcal{E} = \sum_{i=1}^{n} \mathcal{N}_{i} E_{i} = \alpha \sum_{i=1}^{n} \sum_{A=1}^{N} \mathcal{N}_{i} C_{Ai}^{2} + \sum_{i=1}^{n} \sum_{A=1}^{N} \sum_{S=1}^{N} \mathcal{N}_{i} G_{i} G_{i} G_{i} \beta_{AS}$$
$$= \alpha \sum_{A=1}^{N} \mathcal{P}_{A} + \sum_{A=1}^{N} \sum_{A=1}^{N} \mathcal{P}_{AS} \beta_{AS}, \left[\mathcal{L}_{S} 11 (\mathcal{L}_{S} c) \right] \quad (2.25)$$

The first term in (13) is Not, which follows from the facts either that the C_{ri} 's are normalised over all \underline{r} , and so the term is $q n \sum_{k} k = 2nq = Nq$ or simply that $\sum_{k=1}^{N} \varphi_{k}$ must equal the total number of electrons, which is N. So the ground state W electronic energy is

$$\Sigma = Na + \sum_{n \neq S}^{N} P_{ns} \beta_{ns} \qquad (2.14)$$

But from (10)
$$\xi = \sum_{i} v_i E_i = N\alpha - \beta_0 \sum_{i=1}^{N} x_i v_i$$
 (2.15)
 \therefore from (14) and (15): $\frac{\pi}{2}$

 $\sum_{i=1}^{n} \chi_i \, \mathcal{V}_i = -\sum_{\substack{A \neq S \\ A \neq S}} \mathcal{P}_{AS} \, \beta_{AS}$ Since we are mostly concerned with the ground states, when $\mathcal{V}_1 = 2$ for $i = 1, \ldots, n$, the last equation becomes simply

$$\sum_{i=1}^{n} x_i = -\sum_{\substack{n>s}}^{N} \sum_{\substack{n>s}}^{N} \beta_{ns} \beta_{ns} \qquad (2.16)$$

That is, if we multiply each bond order by the corresponding β value and sum the result over all the T bonds in the molecule, we shell obtain the sum of all the Hückel numbers.

We shall use this formula when we wish to know the w electron energy in a given part of a system, which could not be calculated using an energy formula such as (10).

2.8 Simplifications due to symmetry

The naphthalene molecule contains carbon atoms which are chemically equivalent because of the C_{2V} symmetry which may be assumed for the molecule. This means that the electron dessities at certain positions in the molecule are equal. For the two equivalent carbon atoms r and s, we express this as

$$\int |C_{ri}|^2 |\Psi_{r}|^2 dt = \int |C_{si}|^2 |\Psi_{s}|^2 dt$$

Integrating over all the coordinates of ψ , we find that the coefficients of ψ_r and ψ_s must have the same modulus. The <u>i</u> th molecular orbital

$$\Psi_{i} = C_{ii} \Psi_{i} + C_{2i} \Psi_{2} + \dots + C_{ii} \Psi_{ii}$$

may therefore be expressed in the form

$$\Psi_{i} = C_{ii} \left(\omega \Psi_{i} + \omega' \Psi_{i} + \omega'' \Psi_{6} + \omega''' \Psi_{9} \right) + C_{2i} \left(\omega \Psi_{2} + \omega'' \Psi_{3} + \omega'' \Psi_{3} + \omega'' \Psi_{6} \right) + C_{5i} \left(\omega \Psi_{5} + \omega' \Psi_{6} \right)$$

where the ω 's are $\Rightarrow 1$. (For a molecule containing an <u>n</u>-fold symmetry axis, the ω 's would in general be <u>n</u> th roots of unity). Writing the above equation for $Y_1 \approx 3$

 $\Psi_{n} = d_{n}\phi_{n} + d_{n}\phi_{n} + d_{\sigma}\phi_{\sigma} \qquad (2.37)$

where $\dot{\phi} = \frac{1}{h} \left(\omega \psi_{i} + \omega' \psi_{i} + \omega'' \psi_{i} + \omega'' \psi_{i} + \omega'' \psi_{i} \right)$ etc., the $\dot{\phi}$'s may be called <u>symmetry orbitals</u>, and (17) expresses the molecular orbital Ψ_{i} as a linear combination of them. It is convenient, for computational purposes, to use normalised symmetry orbitals.

The correct as 's are given 6, 7, 33 in "character tables". These determine the forms of the symmetry orbitals in order that they shall be eigenfunctions of all the symmetry operators of the point-group of the Now since symmetry operation leaves the molecule. hamiltonian invariant, the latter commutes with the symmetry operators, and so they possess the same The symmetry orbitals thus generated are eigenfunctions. those that are required in (17). There will in general be different sets of characters ω , and in the character tables these form the irreducible representations belonging to the various symmetry classes. Owing to the orthogonal properties of these characters, the symmetry orbitals belonging to the different symmetry classes are orthogonal, and so the M matrix element $\int \langle \phi_p | H | \phi_q \rangle dx$ is non-zero only if $\dot{\phi}_{e}$ and $\dot{\phi}_{e}$ belong to the same symmetry therefore factorises into submatrices II; class. corresponding to the various symmetry classes, showing that in constructing the molecular orbitals (17), only \$'s belonging to the same symmetry class need be used.

-22-

The procedure obviously reduces the amount of calculation considerably: in the naphthalene problem, for example, instead of having to find the latent roots of a 10 x 10 matrix, we have instead two 3 x 3 and two 2 x 2 matrices. The generated matrices are necessarily symmetric matrices, and their latent roots and eigenvectors (i.e. energy eigenvalues and atomic orbital coefficients) may therefore be conveniently extracted using the GWens method 34 , for which **4n** electronic computer program is available.

-22-

				E → √v E'
	E	C2	$\sigma_{\overline{v}}$	0- 1 V
· · ·	A B C D E F G C C C C C C C C C C C C C C C C C C	A* 1 \$ B * 1 7 C * 1 7 D * 7 1 E * 7 7 F * G * D * 7 F * C * 7 D * 7 F * G * A * F * C * D * F * C * D * E * C * D * E *	A ¹ B ¹ C ¹ D ¹ E ¹ F ¹ G ¹ A B C D E F G A ¹¹¹ B ¹¹¹ C ¹¹ C ¹¹	A * * * B * * C * * D * * E * * F G A * * * C * * * D * * * C * * * D * * * E * * * F * C * E * * E * C * D E E A B C D E E E
γ (R):	.24	0	0	4

5. <u>A description of the application of the Hückel</u> <u>dibenzpyrene. and of the results obtained</u> 10AO-MO theory to an aromatic hydrocarbon 1-2, 6-7

dibenzpyrene, and of the results obtained.

3.1 <u>Application of Group Theory to form symmetric</u> secular metrices.

The point-group of this molecule is D_{2ip}, but we shall find it convenient to use the subgroup C_{2v} . The symmetry operations of this group consist of a twofold axis of rotation, C2, perpendicular to the plane of the molecule, and two mirror planes σ_v and σ_v ' mutually at right-angles, and perpendicular to the molecular plane. In addition of course there is the identity operation E. The results of the operations on 2pm atomic orbitals are shown in the table on the 24 the opposite page, in which each atomic orbital is denoted by its position in the molecular diagram. At the foot of each column is recorded the number of times that the symmetry operation R converts an atomic orbital This number, $\gamma(\mathbf{R})$, must be the trace of into itself. the reducible representation matrix D(R) associated with R which acts on the basis set of atomic orbitals, and is therefore the sum of the traces $\mathcal{K}_{j}(\mathbf{R})$ of the irreducible We therefore have the relationship representations.

 $\chi(\mathbf{R}) = \sum_{i=1}^{n} a_i \chi_i(\mathbf{R})$

where h is the order of the group (which is 4 for C_{2v}) and a_j is the number of times that the j th irreducible representation is used to form molecular orbitals belonging to the symmetry class j. It follows that

-250

$$a_{j} = \frac{1}{h} \sum_{R} \mathcal{X}(R) \mathcal{X}_{j}(R)$$
(5.1)

using the orthogonality properties of the characters $\mathcal{X}_{j}(R)$. From the definition of a_{j} , this quantity is also equal to the number of non-zero symmetry orbitals in this class, and therefore to the order of the H_{j} submatrix. As usual the characters \mathcal{X}_{j} are given by a character table 6,7:

°8∆ C	E	¢ ₂	σ	σ_{∇}^{+} '
Al	1	1	1	1
Bg	. 1	-]	1	-]
Az	· 1	1	-1	,-1
Bl	1	-1	-1	1

From the characters of the irreducible representations given in this table, and those of the reducible representations $\chi(R)$, (1) gives $a_{A_1} = \frac{1}{4} (24.1 + 0.1 + 0.1 + 4.1) = 7$ $a_{B_2} = \frac{1}{4} (24.1 + 0.1 + 0.1 - 4.1) = 5$ $a_{A_2} = \frac{1}{4} (24.1 + 0.1 + 0.1 - 4.1) = 5$ $a_{B_1} = \frac{1}{4} (24.1 + 0.1 + 0.1 + 4.1) = 7$ which prodicts that the H_{A1} , H_{B2} , H_{A2} and H_{B1} matrices are respectively 7th, 5th, 5th and 7th order.

The symmetry orbitals are generated as described in the last section, using the characters given in the C_{2v} character table:

Al symmetry class

$$A_{i} \varphi_{A} = \frac{1}{2} (A + A'' + A' + A')$$

$$A_{i} \varphi_{B} = \frac{1}{2} (B + B'' + B' + B')$$

$$A_{i} \varphi_{C} = \frac{1}{2} (C + C'' + C' + C')$$

$$A_{i} \varphi_{D} = \frac{1}{2} (D + D'' + D' + D')$$

$$A_{i} \varphi_{E} = \frac{1}{2} (E + E'' + E' + E')$$

$$A_{i} \varphi_{E} = \frac{1}{2} (F + E')$$

$$A_{i} \varphi_{G} = \frac{1}{2} (G + G')$$

B₂ symmetry class

$$\begin{array}{l}
 B_{2} \phi_{A} = \frac{1}{2} (A - A'' + A' - A'') \\
 B_{2} \phi_{B} = \frac{1}{2} (B - B'' + B' - B'') \\
 B_{2} \phi_{C} = \frac{1}{2} (C - C'' + C' - C'') \\
 B_{2} \phi_{D} = \frac{1}{2} (D - D'' + D' - D'') \\
 B_{2} \phi_{E} = \frac{1}{2} (E - E'' + E' - D'') \\
 B_{2} \phi_{E} = \frac{1}{2} (E - E'' + E' - E'') \\
 B_{2} \phi_{E} = \frac{1}{2} (F - F' + F' - F) = 0 \\
 B_{2} \phi_{C} = \frac{1}{2} (G - C' + G' - G) = 0
 \end{array}$$

- 26-

A2 symmetry class

B1 symmetry class

$^{\mathfrak{B}_{I}}\varphi_{\!A}$	= 1/2	(A 🗢	1/1 A	57	л'	+	A")
$B_{I} \phi_{B}$	= 1/2	(B 😁	B'll	23			B")
		(C 📾					c"}
Bio	= 1	(D 🚥	D#	භ	ď	ł	D")
-		(E -					
$^{B_{1}}\phi_{F}$	= 1/2	(F -	F'	c3	F'	+	F)
B. q.	= 숥	(G •	G'	8	G'	+	G)

The symmetry operations have been applied only to the seven chemically distinct positions (the unprimed set); the other sets give symmetry orbitals which are identical with these. The number of non-zero symmetry orbitals in the four cases are 7, 5, 5 and 7, just as predicted by the application of (1).

The matrix elements of the HI reduce to quite

simple quantities involving the parameters of and
$$\beta$$
.
The element $\int \phi_A H \phi_B d\tau$ in $\mathbb{H}I_A$ becomes
 $\int \phi_A H \phi_B d\tau = \frac{1}{4} \int (A H B + A'' H B'' + A' H B' + A'' H B'') d\tau$
 $= \beta_{AB}$
and the diagonal element $\int \phi_B H \phi_B d\tau$ in $\mathbb{H}I_B$, ,
 $\int \phi_B H \phi_B d\tau = \frac{1}{4} \int (D H D + D'' H D''' + D' H D'' + D'' H D''' - 2D H D' - 2D'' H D''') d\tau$

$$= \alpha - \beta_{DD'}$$
.

The matrices consequently become:

where the upper and lower signs in the diagonal terms refer to the upper and lower symmetry classes on the left hand sides, respectively.

The factors of $\sqrt{2}$ in the F and G rows and columns occur with elements referring to bonds between atoms of different multiplicities (i.e. between those which are, and which are not, on a symmetry element). The fact that the coefficients of all the non-diagonal β s between atoms of the same multiplicities, ± 1 is explained as follows. The matrix element between symmetry orbitals ${}^{i}\phi_{T}$ and ${}^{i}\phi_{S}$ in H_{i} is $\int \phi_{S}^{*} H \phi_{T} d\tau = \int [\langle S|.|\gamma_{i}(R) \rangle]^{i} H \langle T|.|\gamma_{i}(R) \rangle d\tau$ where $\langle S|$ and $\langle T|$ are the row vectors of the basis set of atomic orbitals in ϕ_{S} and ϕ_{T} and $|\gamma_{i}(R) \rangle$ is their column eigenvector, obtained by normalising the j th cheracters in the character table.

$$\begin{split} \int \phi_{s}^{*} H \phi_{\tau} d\tau &= \int \langle \mathcal{X}_{j}(\mathbf{R}) | . | S \rangle H \langle \tau | . | \mathcal{X}_{j}(\mathbf{R}) \rangle d\tau \\ &= \langle \mathcal{X}_{j}(\mathbf{R}) | . \int | S \rangle H \langle \tau | d\tau . | \mathcal{X}_{j}(\mathbf{R}) \rangle \end{split}$$

Now $\int |S\rangle H \langle T | dT$ is a 4 x 4 diagonal matrix of β_{ST} 's; it is therefore a constant matrix and commutes with $\langle \chi_j(R) |$ The latter vector is unitary, and so the expression reduces to

 $\beta_{\rm ST} \langle \mathcal{X}_{j}(\mathbf{R}) | . | \mathcal{X}_{j}(\mathbf{R}) \rangle = \beta_{\rm ST}$

i.e. the matrix elements expressing the interactions between symmetry orbitsle containing atoms of the same multiplicities are independent of the symmetry class.

3.2 <u>Results of the calculation of energy eigenvalues</u> and eigenvectors.

In the first approximation (the Simple Hückel Method) the β values for all the bonds were assumed to be equal, and the calculation was done in two ways. Firstly the determinental equation

det $|(H_j)_{RS} - E \delta_{RS}| = 0$ was solved for the energies E, and these were then substituted in the secular equations

 $d_{Ri}(\alpha - E) + \beta \sum_{s} d_{si} = 0$

in order to determine the coefficients \mathbf{d}_{Ri} of the symmetry orbitals. The second method was to use a computer program based on the Givens method³⁴ to find the latent roots of the symmetric \mathbf{H}_{j} matrices and to determine the eigenvectors $|d_i\rangle$ of the symmetry orbitals. Consistent results were found by the two methods, and the eigenvalues and their associated eigenvectors are listed in their appropriate symmetry classes in Table I.

The discussion of the electronic states and of the spectra which follow is nominally of the results of the Simple Hückel Method (in which all the bond /³ values are assumed equal), but it is qualitatively also valid for the subsequent iterations, for which the energy eigenvalues and bond orders are summarised later (in Table IV). (i) Electronic States.

In order to describe the lower excited electronic states, we shall need to know the symmetries of the singly-occupied molecular orbitals Ψ_i with respect to the full symmetry point-group of the molecule, which is Dgh. The symmetry of an electronic state is that whose characters correspond to the direct product of the characters of the symmetry classes of the corresponding molecular orbitals. Consequently all doubly-filled levels are totally symmetric (all the characters are +1), and therefore contribute nothing to the symmetry of the state.

Mho	ah	****	~ P	* ~ ~	n	-	30
THU	character	68076	U1	6110	ν_{2h}	Storb	18

Dzh	E	C ₂ (1)		C ₂ (2)	1	-	σ _₹ ′	Th
Ag	1	1	1	1	1	1	1	1
An	1	2	1	1	-1	-1	-1	-1
Blg	1	1	-1	æ]	1	-1	1	-1
Bla	1	1	-1	-]	-1	l	-1	1 1
B _{2g}	1.	-]	1	-•]	1	1	-1	-]
Ban	1	-1	1	-1	-1	-1	l	1 y
B3g	1	÷]_	-1	1	1	-1	-1	1
B311	1	~]	-1	1	-1	1	1	-1 z

-31-

Mille I: Energy eigenvalues and eigenvectors for the Welestron LGAO symmetry orbitals in 1-2, 5-7 dibenspyreae calculated by the Simple Hickel Method.

 A_{λ}

The second secon	-2.634328	-1.859943	-1.330575		~0.67 <u>32</u> 93	+1.122809	+2.028844
dA	.244660	.510057	.065306	0	.538161	.604513	.143759
d _B	。564029	204306	101876	0	470021	.231835	.595890
d	. 300796	260382	. 591 197	0	204607	. 352098	571289
ďD	.149701	. 593129	.197493	。632455	<u>R</u> ? H.C.	284770	047463
d _E	.494815	。355547	110592	632455	040722	393982	244202
dr	.161479	197983	.628312	0	.429766	443479	_ 。 398219
d _G	.488065	335991	435697	.447214	.397246	154448	278230

E2

X	-2.246980	-1.414214			1
da	.471314	. 303891	168210	.,681068	.439733
d _B	° 377965	429766	. 377965	377965	.621876
d _d	.168210	303691	.631068	.471314	- 。439733
d	. 377965	.733657	. 377965	377965	182143
dE	.681063	303891	471314	168210	439733

 \mathbb{A}_2

2					
Z		-0,801938	1	2	
d	°439733	.681058	.168210	303891	
d _B	。621876	377965	377965	。429766	- 377965
dc	-439733	471314	.681068	303891	.168210
d _D	.182143	。377965	. 377965	°7336 57	<u>، 377965</u>
d _E	.439733	.169210	471314	303891	.681068

(UNIXAGENCE)	a service and the service of the ser	CALIFORNIA STRATEGY CONTRACTOR	TRUE TOTAL CONTRACTOR OF STATE		a natural tangent and the second state	The second s	gunner and and the
X	-2.028844	-1.122809	-0.673293	◆1 . 000000	+1.330675	+1.859943	+2.634328
đ	.1.4.3759	.604513	. 536161	0	.065306	510057	.244660
dB	.595890	.231835	470021	0	101876	.204306	。564 029
dC	.571289	352098	. 204607	0	591197	260383	300796
d _D	.047463	.284770	. 321618	。632456	197493	.593129	149701
dE.	.244202	. 393982	.040722	632456	.110592	. 3555%7	- ,494815
d _F	. 398219	443479	.429766	0	.628312	.197983	.161479
¢ _G	.278230	.154448	397246	.447214	.4.35697	335991	488065

where the operations $G_2(x)$, $G_2(y)$ and $G_2(z)$ are rotations of 180° about the x, y and z axes; <u>i</u> is inversion through the centre of symmetry, and σ_h a reflection in the molecular plane. Applying these operations to the atomic orbital A in the symmetry orbital with the lowest possible energy (where the only node is in the molecular plane, a plane of antisymmetry) we have

If we think of this sequence as a vector, its scalar product with the vector (1, -1, -1, 1, -1, 1, 1, -1) produces the atomic orbitals with the correct sign in the symmetry orbital $\phi_A(A_1)$ in Ψ_2 (see Table II).

Ta	b	10	II
#241P-0:01	-	# CR290	8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

P.	Huckel No. Xi	Symm.class <u>j</u> (C _{2V})	Symm.erbital	Orbital vector $\langle \gamma_j $	Symm.class j (D _{2h})
HA H	0.673295 0.554958	. La		l, ~l, -l , l, ² , l, l, ^{-l} , -l, -l, -l, -l, -l, -l, -l, -l, -l, -l	B3k ^A u
	-0.554958	B ₂	414 A 84	L,-L,L,-L,L,L,-L,-L	~5
$ \Psi_{2} $	-0.673293	Bl	A=A'''=A' + A''],],+],-],],-],l,-]	Blg

But this vector consists of the characters of the $B_{3\mu}$ representation (see D_{2h} character table), hence Ψ_2 belongs to $B_{3\mu}$. Table II contains the symmetry orbitals $\hat{\psi}\phi_A$ for the two highest bonding molecular orbitals

=53=

 Ψ_2 and Ψ_1 and the two lowest entibodding ones, Ψ_1 and Ψ_2 , together with their energies (in the form of the Hückel numbers x_1) and their symmetry classes in the full D_{2h} point-group.

*** {})~: (4)

The lowest excited state of the molecule is that in which one electron has been promoted from Ψ_{-1} to Ψ'_{1} and as explained at the beginning of this sub-section, its symmetry is that of the direct product of the representations of Ψ_{-1} and Ψ'_{1} . So the symmetry of the $\Psi'_{-1} \Psi'_{1}$ state is that whose characters are $(1,1,1,1,-1,-1,-1,-1) \ge (1,-1,1,-1,-1,-1) =$ $(1,-1,1,-1,-1,-1,-1), i.e. B_{2u'}$ The second excited state is degenerate in the Hückel theory, since the states $\Psi'_{-1} \Psi''_{-1} \Psi''_{-2}$ and $\Psi'_{-2} \Psi''_{-1} \Psi''_{-1}$ have the same energy. Their symmetries are both $B_{1u'}$. (i1) Electronic Spectra.

The probability of a transition between two electronic states $\overline{\Phi}_{a}$ and $\overline{\Phi}_{\ell}$ of the kind described above is proportional to the square of the electronic transition moment $\overline{\lambda}_{a\ell}$ which is defined as

-35-

$$\overline{\lambda}_{ab} = \int \overline{\Phi}_a \sum_{v} \overline{\mathcal{R}}_v \, \overline{\Phi}_b \, d\tau$$

where λ_{ν} is the position vector of the ν th electron. The integral may be resolved into components, and so the probability of transition giving rise to radiation with a component in the <u>z</u> direction depends upon

$$\lambda_{x al} = \int \Phi_a \sum_{v} x_v \Phi_l d\tau \qquad (3.2)$$

and there would be similar expressions for the y and y directions. One of the election rules relating to such a transition states that it is allowed provided the product $\Phi_{\alpha} \Phi_{\beta}$ transforms like the vector X, Y or Z. In other words, the representations of the electronic state must be the same as those of the radiation vector, in order that those of the product $\Phi_{\alpha} \Phi_{\beta}$ shall be totally symmetric (Ag), and the integrand in (2) non-zero. Application of the D_{2h} operations to the radiation vectors X, Y and Z shows that those have symmetries $E_{1\mu}$, $E_{2\mu}$ and $E_{3\mu}$ respectively. The second selection rule is based on the fact that the spin operator commutes with the right hand side of (24), and so there can be no interaction ($\lambda_{a\ell} = 0$) between the states $\underline{\Phi}_{a}$ and $\underline{\Phi}_{\ell}$ if they have different multiplicities. The allowed transitions are therefore singlet-singlet, triplet-triplet, etc.

Table III shows the 8 lowest electronic states, their energies and term symbols, and the polarisations of the allowed transitions between them. The symmetry terms are obtained by forming the direct product of the representations of the singly-occupied molecular orbitals Ψ_i (column 5 of Table II), and reference made to the D_{2h} character table. The multiplicity terms s = 2S + 1(where S is the total spin quantum number) are written as superscripts.

Table III

The lower electronic states in 1-2, 6-7 dibenzpyrene.

El state Occupation Nax of Hergy of $\overline{\Phi}$ Symm. & Direction $\overline{\Phi}$ $\Psi_2 \Psi_1 \Psi_1 \Psi_2$ rel. to gd. st. Mul. termo $\overline{\Phi}_1 \overline{\Phi}_1$	a d polacization of trans. to $\overline{\Phi}_3 \overline{\Phi}_4 \overline{\Phi}_5 \overline{\Phi}_6 \overline{\Phi}_6$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	y (2) (2) (2) (4 y (2) (2) (4) (4 x x " " y y " x x x x

Recalling the symmetries of the radiation vectors X, Y and Z, the allowed transitions in which the ground state Φ_i is the lower one are just those whose upper states belong to B_{14} , B_{24} or B_{34} , whose associated radiations are polarised in the X, Y or Z directions respectively. Sub-column Φ_i in column 5 shows that there are two distinct transitions, polarised in the X and the Y directions. The polarisation directions of allowed transitions involving other states as lower states are also shown in column 5. (f) indicates a forbidden transition.

Some of the allowed transitions shown in column 5 are in fact many-fold degenerate. Each transition with Φ_2 as lower state for example is at least doubly degenerate, since it can be singlet-singlet or triplettriplet, and similarly the transitions shown under $\Phi_{3,4}$ occur 8 times over. Moreover since the singlet, triplet and quintuplet states represented by Φ_7 are respectively two-fold and three-fold degenerate and non-degenerate (by the "branching diagram"), the degeneracies of the $\Phi_7 \rightarrow \Phi_1$ and of the $\Phi_7 \rightarrow \Phi_{3,4}$ transitions are increased by a factor of six.

The energy levels calculated from the subsequent iterations are summarised in Table IVa, where, however, the Hückel numbers of only the bonding MO's, together with their symmetry classes in the G_{SV} group, are given.

(111) Bond Orders and Bond Longths.

The second column of Table IV b contains the Coulson Gerbon Bond Orders calculated from the data of Table I. Using Coulson's empirical bond orders/bond length curve⁵ (amended by Goodwin⁶ in the low-order region), a first-approximation set of bond lengths was interpolated. This set p^{X} was then used to infer the appropriate β^{11} values for the next iteration, which yielded presumably more accurate energies and bond orders. Table IV b contains the g, \underline{r} and β' values for the eight distinct C-C bonds in the molecule for the four iterations which were carried cut.

The bond orders show a certain tendency towards convergence, but do so at different rates. As a result the low-order bonds 2-4 and 10-11 which converge most slowly become excessively low-order (the third iteration length of the 2-4 bond is 1.606Å) which causes increasing aberrations in the orders of the other bonds. This behaviour is probably due to uncertainty in the order/ length curve used: few of the lengths used to construct this curve are accurate to within 0.01Å, and in view of the paucity of exparimental data in the low-order region, the abnormal values for these bonds is not unexpacted.

It is clearly desirable to strike a balance between the two sources of error (insufficient and ercessive iterations), and a possible way of doing this (following Goodwin⁸) is to stop iterating at a stage when the total π electron energy of the molecule becomes constant. The last row of Table IV a contains the sum of the Hückel numbers for the bonding orbitals, and the relative changes in these are small after the second iteration. Using Goodwin's criterion, then, we should accept p^{II} and r^{II} as the most reliable orders and lengths.

Even considering the iteration table as a whole, however, the general behaviour of the π bonds is preserved in the various iterations. This is that the pyrene part of the molecule tends towards two benzene rings connected by the low-order bond 10-11, and that the two annelated benzo-rings become more benzene-like and are joined to the rest of the system by means of the even lower-order bonds such as 2-4. The tendency of these benzo-rings towards benzene rings is shown by the bond orders, which approach the benzene bond order of $\frac{2}{3}$.

The calculation would suggest that 1-2, 6-7 dibenzpyrene should behave, if not like four loosely connected benzene rings, then to a certain extent, at least, like dephenyl in which benzene rings join the 2 and 2' and the 6 and 6' positions.

-39-

osli (las

(a) Energy eigenvalues -x,

C _{2v} symm	• I	LI	III	IV
A ₁	2。634328	2.295189	2.259156	2.223204
	1.859943	1.830550	1.868839	1.911160
	1.330675	1.264078	1.235308	1.215826
	1.000000	0.906619	0.923630	0.950999
^B 2	2.246980	2.047033	2.037332	2.027803
	1.414214	1.298507	1.253866	1.203296
	0.554958	0.600053	0.637294	0.770962
A2	1.414214	1.246422	1.197235	1.146297
	0.801938	0.830170	0.870257	0.902765
B	2./ 0288 44	1.897162	1.910213	1.922799
	1.122809	1.072405	1.056662	1.040109
	0.673293	0.660868	0.705058	0.751680
$\sum_{i} (-x_{i})$	17.082196	15, 949056	16.004850	16,056500

(b)	Bond	orders,	bond	lengths	and	8°-values	
-----	------	---------	------	---------	-----	-----------	--

Bond		pI	rI	β° ^I	P II	r	β°II	P		$\beta^{,III}$	P IV	IV
1	2	.614	1.402	0.955	.639	1.394	0.982	.653	1.390	0.996	.662	1.,388
1	8	.667	1.386	1.008	.665	1.387	1.006	.663	1.387	1.005	°663	1.387
2	4	.428	1.483	0.714	. 342	1.538	0.571	.265	1.606	0.433	.194	1.684
2	10	. 549	1.424	0.876	. 579	1.413	0,914	.608	1.404	0.948	.628	1.397
3	4	.603	1.405	0.943	.617	1.401	0.958	.624	1.399	0.966	.630	1.397
3	6	.690	1.380	1.028	. 699	1.378	1.036	。700	1.378	1.037	.698	1.379
4	5	。562	1.419	0.892	.605	1.404	0.945	.641	1.394	0.984	.666	1.387
6	7	.637	1.395	0.980	.626	1.398	0.968	.627	1.398	0.969	. 631	1.397
10	11	.482	1.451	0.796	.421	1.487	0.703	. 346	1.535	0.634	.286	1.583
THE MONTH	1241 82014		*****			##27/136#333.1P vit.	1.7.10.00 20 6 TT 16.157	1000003.70000070/800	1991 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	lannes University of	The second sector	10.7039134 marks 3496-aast 1070

- A. J ---

\$4. The Clar theory of aromatic hydrocarbons.

According to the Frice⁹ Rule, a benzenoid aromatic hydrocarbon tends to behave as if its T electron structure were that for which the greatest number of isolated aromatic sextets may be written. By the term "isolated arometic sextet" we mean a benzenoid ring in which three formal alternating single and double bonds may be written, which are associated with this ring, but with no other. For example, of the Kekulé structures I to V which may be written for phenanthrene, I to IV contain aromatic sextets which are associated with rings A and C only, and V that in which only ring B contains an aromatic By the Fries Rule, phenanthrene would be predicted sextet. to behave as if its T structure corresponded to the former set (I to IV), and in Clar's system¹⁰ etc. is written as VI, in which the circles represent the erometic sextets, the precise nature of which is as yet undefined. The ring between the aromatic sextets, i.e. ring B, is considered non-aromatic, because it contains three single bonds, two "aromatic bonds" and an ethylenic double bond. Similarly triphonylene is written as VII, in which we have three aromatic sextets and one "empty ring". This accounts in a valence-bond way for the bond variations in these There is good chemical evidencell for the molecules.

-942m

ethylenic 9,10 bond, which parallels also the Molecular Orbital results (previous section).

In an acone, only one benzenoid ring may contain an aromatic sextet at any one time, as is shown by the structures VIII to XII for pentacene. The other rings contain formal butadine systems. Since one would expect these systems to have very nearly equal energies, Cler supposes 11,12,13 that the aromatic sextet can migrate from the extreme left hand ring throughout the system, thereby converting each ring in turn into an aromatic ring, in the sequence VIII to XIII. At structure XII the direction of the motion is reversed, and the sextet thus undergoes an oscillatory motion along the acens. We note that in order to account for the oscillation of the aromatic sextet, it is necessary to suppose the motion of only two electrons: since a non-aromatic acene ring already contains a butadione system, it requires only two further electrons to complete its aromatic sextet. The motion of this "aromatic pair" is represented in Clar's system by Clar's models of other means of the arrow in VIII. aromatic hydrocerbons may be described similarly. For the phone isomers of pentacene, 1-2 benztetracene XIV and pentaphene XV, the Fries Rule stipulates the existence of

~{30

-44-

two aromatic sextets. This accounts for the greater stability¹¹ and benzene-like character of these isomers over that of pentacene.

In order to complete the Clar theory, we shall give its picture of the aromatic benzenoid ring in its simplest form. Clar supposes that this ring which has hitherto been written (O) actually contains three double bonds¹⁴ as does a Kekulé structure (), two of which can interact 13,15 as in the velonce-bond picture of 1,3 butadiene, but that the third bond may not because of opposed orbital directions, and is consequently different from the other two. When two aromatic rings are engularly annelated onto a third ring to give phenenthrene XVI, the electrons in the bonds 11-12 and 13-14 interact to give a system which, together with the electrons in the "different" bond 9-10 forms an induced aromatic sextet14 in the ring B, which would be "empty" The interaction and the induction on the Fries picture. are indicated by arrows, and the induced sextet by a The effect is shown too for triphenylene dotted circle. XVII and 1-2, 5-6 dibenzanthracene XVIII. In the latter molecule we note that the induced aromatic sextet occurs on only one side of the molecule at any one time.

#46a

5. <u>Results of the computations on some aromatic</u> <u>hydrocarbons</u>.

5.1 The effect of iterating.

The negative Hückel numbers x; defining the energy levels $E_1 = \langle - x_i \beta_i \rangle$ of the bonding MO's \mathcal{L}_i are given in parts (a) of the Tables in Appendix A, together with their sums, which define the total π electronic energies in the molecules. The columns labelled I. II and III refer to the three iteractions which were carried out on most of the molecules. Parts (b) contain the sets of bond orders p_{rs} , bond lengths r_{rs} and β'_{rs} values as calculated by the various iterations, the two latter quantities being interpolated using the Coulson-Goodwin⁸ r(p) and the Mulliken, Risks and Brown² $\beta'(r)$ The first iteration energy eigenvalues and bond ourves. orders for some of the molecules have already been celculated by other workers¹⁶, and we have usually accepted these bond orders for use in subsequent iterations. We have listed the values of $x_i^{\overline{1}}$ and $p_{A_S}^{\overline{1}}$ for the sake of completeness and comparison, but have indicated with an asterisk when the values have been taken from elsewhere.

Although the total π electronic energies as measured by $\sum_{i} (-x_i)$ converge quite rapidly, the ideal self-consistency in the bond orders, and therefore in the individual energy levels, is not realised, particularly when the p^{T} values are less than 0.4; in this case serious divergence occurs, and leads to r values which may far exceed the length of the longest measured C-C bond: As we shall discuss later, this is probably due to defects in the r(p) end $\beta'(r)$ curves in the long-bond region. Since we are primarily interested in the tendencies in bond lengths, we shall not attach any particular significance to these abnormal results, and shall accept the second-iteration results as being probably the most reliable.

The tables in Appendix A show that the increment or decrement in the bond order p of a given bond between two successive iterations shows a rough dependence on p. On the average, the greater the bond order of a bond, the greater are the quantities $p^{II}_{-p}I$ and $p^{III}_{-p}II$. In Fig. 2 we have plotted the second-iteration bond order p^{II} for 1-2 benzanthracene against $p^{II}_{-p}III$. Although the resulting points are somewhat diffuse, many of them lie very alose to a straight line which passes through the zero value of $p^{II}_{-p}I$ at $p^{II}_{=}0.585$. This value is near to the average bond order $\overline{p}^{II}_{-p}I$ and hence we may infer an approximate proportionality between the iterational increment in bond order $p^{II}_{-p}I$ and the quantity $p^{II}_{-p}I^{II}_{-p}$.

₩\$8**~**

Since the average bond order is on inspection almost independent of the iteration, i.e. $\overline{p}^{II} \simeq \overline{p}^{I}$, the proportionality can be written

$$p^{II} - p^{I} = k (p^{II} - \overline{p})$$

i.e. $p^{II} = p^{I} + \frac{p^{I} - \overline{p}}{1 - k}$ (5.1)

For the accnes (Tables 1 to 4) where we have recorded the average bond orders \overline{p} , it is easy to verify the prediction of (1) that if $p^{I} > \overline{p}$, the effect of a further iteration is to increase the value of p, whereas if $p^{I} < \overline{p}$ the result is a decrease.

If the points had been a little more colinear, a relation such as (1) could have been used to estimate improved bond orders from the first-iteration set p^I. As it is, there would be too many uncertainties. However, our rule may be used as a rough Guide to the reliability of a particular first-iteration bond order and to the probable effect of a second iteration.

-50-

A comparison of the bend orders and (calculated) bond lengths of "corresponding bends" in the acone series.

Acene Bond	anth P ^{II}	racene _E II	totra P ^{II}	cene _E II	pente p ¹¹	cone vII	haxac P	eno _r II
α β	.787	1.362	،795	1.361	.798	1.361	.799	1.361
Υδ	.630	1.397	.662	1. 388	.673	1.385	.677	1.384
٤ 3	gado	വത	-	-	.615	1.401	.627	1.398
a b	.490	1.447	.476	1.454	.471	1.456	.469	1.457
83	673	inga	。584	1.412	. 568	1.417	.561	1.420
εη	cm ,	en,	672	ನ್ನಡ	~	ে ম্	. 598	1.407
ββ	. 520	1.421	.508	1.439	. 503	1.441	.501	1.442
δ δ°	.486	1.449	.457	1.464	.446	1.471	.442	1.473
25'	ran.	45.36	.433	1.476	.417	1.489	.408	1.494
リッ	-	834	477	40	a	45 4	.400	1.499

-52-

5.2 Bond veriations

(a) Aconos.

Tables 1 to 4 in Appendix A show that the highest bond order in an accene is always that of the $\alpha\beta$ bond, the rest decreasing in the progression shown in the diagrams opposite, which were constructed from the results of the first and third iterations. The general pattern of the progressions is clearly very uniform for the four accense illustrated. The bond orders of the bonds $\alpha\beta$, $\gamma\delta$ etc. (indicated here for hexacene, but extendable to all other accenes) and of the "peri" bonds $\beta\beta'$, $\delta\delta'$ etc., <u>decrease</u> with increasing distance from the ends of the accene, whereas the bond orders of the adjacent bonds $\alpha\delta$, $\delta\zeta$ etc., <u>increase</u>.

A comparison of I and III shows that iterating has no effect on this progression, but in each case, however, it has resulted in a relative lowering in the bond orders of the $\alpha\delta$ bonds.

In Table V we compare the (second iteration) bond orders and bond lengths of the bonds which are in corresponding positions in the four acenes. While the bond orders of these bonds either increase or decrease as we pass from one member to the next, they show a clear tendency to reach limiting values. The bond lengths do so more rapidly (since experimental bond length is a fairly insensitive function of "three-figure" bond order), and it can be seen that the length of the $\alpha\beta$ bond has already reached a constant value at tetracene, i.e. that the $\alpha\beta$ bond lengths for tetracene and the higher acenes are equal.

0530

-540

(b) Other aromatic hydrocarbons. Comparison with Fries-Clar theory.

* 55-

There are very few aromatic hydrocarbon series which are such that from a few "typical" mambers, a general picture of the whole series may be obtained, as was possible for the acenes. We shall therefore discuss briefly under this heading the results for the rest of the molecules studied. In order to reduce the complexity a little, it is useful to compare various kinds of aromatic hydrocrabons containing linearly annelated benzenoid rings with the corresponding acenes.

II

The diagrams opposite show the p values of some benzologues of tetracene and pentacene. Examination of the tetracene chains in IV, VI and VIII shows that the bond orders in the rings D, onto which the benzo rings are annelated, are much lower than those in the other rings, and that the scene residue resembles anthracene rather than tetracene. Similarly the molecules 1-2 benzpentacene and 1-2, 3-4 dibenzpentacene (V and VII) should be thought of as derivatives of tetracene, not pentacene. The bond orders in the annelated rings E and F in IV and VI, and F and G in VI and VII, depart fairly little from 0.667; these rings are therefore benzene-like, but with a small degree of bond alternation. We may therefore make the general observation that a bonzenoid ring at a branch point of otherwise linear annelated systems has little bonzene-like character, and serves partially to isolate the systems which are annelated onto it. Such an isolated system may in fact be observed even when there is no annelated benzo system; in the phone series such as 1-2 benztetracene IV, 1-2 benzpentacene V and homophene VIII, the "un-annelated" bonds $\alpha \beta$ or $\alpha' \beta'$ become partially isolated ethylenic systems, as may be seen from their relatively high p^{II} values of 0.850 to 0.860.

The isolated benzene-like rings are in exectly the same positions as those of the aromatic sextets predicted by the Fries Rule. This is immediately clear in such simple cases as g tetrabenz@nthracene X, and triphenylone XXX, where the aromatic sextets are uniquely defined in rings A, B, D, F and G, and in A, C and D wespectively. Although for a molecule containing a linearly annelated system it is not possible to define the position of the aromatic sextet uniquely, our calculations are still in agreement with the Fries Rule provided we essume with Char that the aromatic sextet is shared between the various acone wings of the molecule. The molecule then contains a loosely-coupled scene system, which is the

-56-

picture at which we arrived for the molecules IV to IX.

Using the concept of "isolated arometic sextets" defined in § 4, we may amend the Fries Rule to deal more adequately with the general case as follows:

> The T electrons in a benzenoid aromatic hydrocarbon may be pictured in a valencebond way as distributed so as to form the maximum number of isolated aromatic sextets. Nowever, if as a result a ring A containing

an aromatic sextet is annelated onto a ring B containing an isolated butadiene system, the position of the aromatic sextet is not uniquely defined, and AB then resembles an <u>isolated naphthalene system</u> in bond lengths and chemical properties. <u>isolated naphthalene system</u> in bond lengths

The rule may clearly be extended to account for the isolated anthracene and tetracene systems such as those discussed for the molecules IV to IX, and in fact to all the molecules whose molecular constants are listed in the appendices. Bisanthracene (Table 15) for example

-57-

obviously tends to behave like two isolated anthrecene molecules, and 1-12 benzperylene (Table 14) to a certain extent like two naphthalene molecules joined by the loworder bonds ll-12 and 13-14 and the ethylene-like bridge bond 9-10. Picene (Table 10) and 3-4, 9-10 dibenzpentacene (Table 22) show the isolation of terphenyl and quaterphenyl systems respectively, and also contain ethylene-like bridge linkages. The presence of these linkages, however, appears to distort the rings slightly, thus conferring more bond alternation than would be expected in the polyphenyls assuming the usual 6-fold symmetric model for the benzene-like ring.

Earlier in this sub-section we observed that a ring containing a fixed or isolated aromatic sextet may be replaced by a fixed double bond without appreciably altering the rest of the bond orders in the molecule. An exception to this generality may be seen in the example 1-2, 3-4, 5-6 tribenznaphthalene (Table 31). Although this molecule might possibly be regarded as the symmetrical tetrabenznaphthalene I for which one of the isolated aromatic rings C has been amputated and replaced by an ethylenic bond 1-2 (see II), we now have one aromatic sextet D edjacent to a butadiene system in the ring F;

-58-

-58-

by the Fries Rule, therefore, the aromatic sextet will be shared between the rings D and F, creating a naphthalene-like system. This is confirmed by the comparison of the bond orders in rings D and F with those in the benzene-like rings A and B.

It is curious that in <u>s</u> tetrabenznaphthalene I, the bond order of the 8-9 bond, which the Fries Rule predicts to be nearly ethylenic, is almost benzene-like in the first two iterations, and only as a result of the third does it become the most pronounced π bond in the molecule. In the second iteration the value is almost identical with that of the 9-22 bond in tribenznephthalene II (0.673 and 0.675 respectively), and it suggests that <u>s</u>tetrabenznephthalene tends to behave as if the aromatic sextet in one of the rings were shared, as shown in III, contrary to the Fries Rule. (c) A comment on the relationship between the Clar models and the results of the Hückel Molecular Orbital salculations of bond orders.

~600

Although the calculated bond orders are in some approximate agreement with the Clar models, a more quantitative relationship between the two theories should not be extected since the two theories are inherently contradictory. The Clar theory is based on the concept of the electron-pair bond; a C-C bond which is drawn as single in a Fries model has no π electron character, since the w electrons are required for coupling in another part of the system. Thus the 8-9 and the 1-6 bonds in phenenthrene (using the numbering system used in Table 5 of Appendix A) have zero T bond order, whereas The Hückel MO the bond order of the 6-7 bond is unity. theory on the other hand does not require electron-pairing for bond formation, and stipulates an approximately equal degree of interaction between the atomic orbitals of neighbouring carbon atoms. As a result all bonds between two sp² hybridized carbon atoms generally contain an appreciable amount of w bond character (pIII for the quoted bonds in phenenthrene are 0.351 and 0.381 respectively), unless the $2p_{rr}$ atomic orbitals are directed at right-engles to each other.

The fact that approximate agreement is obtained is not altogether surprising, however, A Fries structure together with the Clar model of the oscillating aromatic pair (the "Fries-Clar model") constitutes a structure which is effectively a superposition of most of the Kekulé structures from the complete canonical set in the Valence Bond theory. Now if sufficient highly-weighted structures are selected, we should have a "truncated set", which from wave-mechanical experience is known frequently to furnish a good total state function. Peuling17,18 shows that quite good bond lengths and qualitative pictures of benzene, naphthelene, anthracene, phenenthrene and even 1-14 benzbisanthrene, are obtained by considering the Kekule structures alone. However, the importance of including the second - and higher-excited structures (i.e., the "Dewar structures") in the largor aromatic systems may be judged from the Valence Bond colculations that although the Kekulé structures in benzene contribute a combined weight of 78% to the total resonance structure, in nephthelene the figure is only 64%34. For the more complex hydrocarbons Fullman¹⁹ has found increasing contributions from more excited structures, and that for molecules larger than anthrecene the Kekulé structures are In such cases we may expect no more quite unimportant.

-61-

than a rough agreement between the Fries-Clar model and the results of the Huckel calculations. An example of this is seen from the average bond orders p in various sizes of molecules; according to Huckel MO calculations p decreases from 0.667 in the smallest aromatic system (benzene) to 0.525 in the largest (graphite). While this is confirmed by the experimental bond lengths of 1.395 and 1.421A respectively, the Fries-Clar theory predicts no change in bond order. Anticipating the calculations described in a later section (§6.2), we quote the result that the bond orders predicted by the Fries Rule to be benzone-like decrease towards the centre of the molecule. Thus, the decreasing bond orders in hexabenzcoronene (Table 11 in Appendix C) for the bonds 1-16, 1-2, 2-14 and 10-11 (.665, .629, .571 and .565) and the increasing values for bonds 2-3 and 7-10 (.373 end .438) indicate increasing graphite-like character to-Again the Fries-Clar words the centre of the molecule. theory predicts only two different bond orders.

•82a

5.3 Molecular IT electronic energies.

(i) Aromaticity and stability.

Chemical evidence suggests that aromatic molecules may be distinguished from other molecules by virtue of their W molecular orbitals, which confer on them a property called "aromatic character" or "aromaticity". We are now in a position to attempt to provide a more quantitative basis for this term. Let us firstly examine the empirical qualitative bases for aromaticity from chemical and physical aspects.

Chemically a molecule is said to be aromatic if its formula corresponds to a cyclic array of formal alternating single and double bonds on the Kakulé velence theory, but which nevertheless does not exhibit typical unsaturation properties. With electrophilic reagents it undergoes substitution rather than addition reactions, and shows a tendency to couple with diazonium compounds. Aromatic molecules are generally unreactive in comparison with olefinic unsaturated molecules, and since many of them may be hosted to high temperatures without suffering decomposition, they are often described as "stable".

Physically an aromatic molecule may be diagnosed by the presence of prominent and intense bands in the UV

-63.

absorption spectrum, characteristic diamagnetic susceptibility, and very low proton resonance frequencies for those hydrogen atoms outside (but or -bonded to) the

w-electron system. Aromaticity may also be detected by use of certain additive properties, since characteristic increments must be made for aromatic rings in Parachor, Molar Refrictivity etc. studies. The most common criterion of aromaticity is that of Resonance Energy. which is a direct calorimetric measurement of the extra stability of an aromatic molecule over a hypotentical one which is structurally identical, but which contains "fixed" or Kekulé single and double bonds. This information is provided by Heats of Combustion and However, since Resonance Heats of Hydrogenation. Energy is by definition a Valence Bond concept, we shall prefer to work without it, and use instead the energy of a molecule which is provided by its w electrons; this is directly colculable from MO theory, is negative and tends to stabilise the molecule.

The most striking criterion of aromaticity which we have mentioned under the chemical and physical aspects is that of <u>stability</u>, and since this is easily the best measurable quantity, we whall use it as a basis

-64-

for aromaticity. Now there are two quite different definitions of the term "stability", both of which have been implied above to contribute to aromaticity.

(a) Thermochemical stability: A molecule is thermochemically stable if its internal energy is low. If under certain conditions, A and B are in general equilibrium, the component said to be the more stable is the one with the lower internal energy, irrespective of the reaction path or of the activation energy barrier between A and B and thus of the ease of the reaction to the component with the lower energy. According to the definition we may, strictly speaking, compare the thermochemical stabilities only for isomeric molecules. However, since the atomisation states and the combustion products are each identical for all aromatic hydrocarbons, the heats of formation or heats of combustion per repeating unit may be compared for non-isomeric molecules.

(b) Thermodynamic stability: A molecule is thermodynamically stable if it possesses a large free energy of activation ΔF^+ to the transition state. Although this quantity could in principle be evaluated from knowledge of the temperature, the enthelpy of activation ΔH^+ (which could be computed if the transition

~65.

state were known) and the entropy of activation ΔS^* , the latter quantity is very difficult to calculate, and can certainly not be assumed constant over the very wide range of shapes and sizes of aromatic hydrogarbons considered:

Thus we have regretfully abandoned the attempt to calculate thermodynamic (i.c. chemical) stubilities, which would have been useful to correlate with kinetic We shall therefore use only definition (a) above, data. and claim that a molecule is stable if it possesses a high T stabilization energy; this is the emount by which the energy of a structure is reduced due to the formation of W MO's. Since we shall be concerned with the stabilities of molecules only in their ground states, we shall define the W stabilisation energy as the modulus of equation (2.10) summed over all the n/2bonding molecular orbitals, and the result doubled to take account of the occupation number 2 for each occupied molecular orbital:

$$\pi s.e. = n\alpha - 2\sum_{i=1}^{\frac{1}{2}n} \chi_i \beta_o = E_{\pi}$$
 (5.2)

The molecular Tr stabilisation energy affords a basis of comparing the stabilities of aromatic hydrocarbons

possessing the same number of atoms and electrons (i.e. isomers). To compare the aromaticities of nonisomeric molecules we shall have to coin a slightly different definition. For aromatic hydrocarbons we can use either

(i) π s.e per benzenoid ring.

(11) Ts.e per carbon atom.

or (iii) Ws.e per electron.

(11) and (111) are of course identical for neutral aromatic molecules, but are different if we are dealing with their cations or anions.

:	(i) N _R	(ii) N _C	(111) E ₁₁	(iv) Se _n	(*) E _n	(vi) ΔE_{π}^{c}	(vii) E ^R w	(viii) - ΔE_{T}^{R}
Acenes	1 2 3 4 5 6 7 8 9	6 10 14 18 22 26 30 34 38	6a+8.000β. 10a+13.684β. 14a+19.314β. 18a>24.930β. 22a>30.544β. 26a+36.156β. 30a+41.768β. 34a>47.378β. 38a>52.990β.	4a>5.6848. 4a>5.6308. 4a>5.6168. 4a>5.6148. 4a>5.6128. 4a>5.6128. 4a>5.6128.	α+1.3333β. α+1.3684β. α+1.3796β. α+1.3850β. α+1.3894β. α+1.3906β. α+1.3923β. α+1.3923β. α+1.3935β.	.0351β. .0112β. .0054β. .0034β. .0022β. .0017β. .0012β.	6a+8.000β. 5a+6.8420β. <u>14</u> -5.8420β. <u>18</u> -4.4380β. <u>18</u> -4.4380β. <u>18</u> -4.4380β. <u>28</u> -4.4380β. <u>28</u> -4.4380β. <u>28</u> -4.4380β. <u>30</u> -3.9669β. <u>38</u> -3.8878β.	$a > 1.1580\beta_{0}$ $\frac{a}{3} > 0.4040\beta_{0}$ $\frac{a}{5} > 0.2055\beta_{0}$ $\frac{a}{10} > 0.1237\beta_{0}$ $\frac{a}{15} > 0.0828\beta_{0}$ $\frac{a}{21} > 0.0591\beta_{0}$ $\frac{a}{28} > 0.0591\beta_{0}$ $\frac{a}{28} > 0.0595\beta_{0}$
1-2 benz- acenes	3 4 5 6 7 8	14 18 22 26 30 34	34a+19.450β+ 18a+25.102β+ 22a+30.726β+ 26a+36.342β+ 30a+41.954β+ 34a+47.566β+	4@+5.65280 4@+5.62480 4@+5.61680 4@+5.61280	a>1.39938. a>1.39468. a>1.39668. a>1.39788. a>1.39858. a>1.39908.	. 0053βa . 0020βa . 0012βa . 0007βa . 0005βa	2yex5.993480	² / ₅ ↔ D ₂ 2078βο ² / ₁₀ ↔ 0.1303βο ² / ₂ ↔ 0.0882βο

Table VI: Tratabilization energies in the acone and 1-2 bennacene cories.

~6<u>0</u>~

(11) Calculated energies

As was discussed in the last section, molecules consisting of non-linearly condensed benzenoid rings contain some bonds which are of particularly low bond orders, and some of high bond order, both of which suffer distortion on iterating. When we were discussing the <u>tendencies</u> in bond variation, we did not regard this as being a vary serious defect in the second iteration, but in the comparison of the stabilities of isomeric molecules where w electron energies differ very little, it raises some difficulty. We have therefore decided to use first-iteration energies for this purpose in order to avoid these iteration effects.

(a) Acones and 1-2 benzacones.

Table VI contains the results of energy calculations carried out on the acene and 1-2 benzacene The columns of the table refer respectively to: series. the number $N_{\rm P}$ of benzenoid rings in the molecule, (1)(ii) the number N_C of carbon atoms in the molecule, (iii) the molecular π electron energy, E_{π} , (iv) the increment ΔE_{μ} in (iii) between two successive members, the π electron energy per carbon atom E_{π}^{c} (v) (vi) the increment ΔE_{w}^{c} in (v) between two successive members, E rr (vii) the W electron energy per ring and (viii) the decrement $\sim \Delta E_{\eta}^{R}$ in (vii) between two successive mambers.

-69-

m70m

The results show that the increment in the molecular π stabilisation energy $\frac{4}{2}$ (i.e. $-\Delta E_{\pi}$) between two successive members decreases slightly as we proceed along each of the two series illustrated, but that for $N_R > 4$ for the access and $N_R > 6$ for the benzecenes, the increment becomes constant at $4\alpha + 5.612 \beta_0$. This means that the π s.e per carbon atom, $-E_{\pi}^{c}$, also increases slightly as the molecule gets larger, but tends to the limiting value of $\frac{1}{4}(4\alpha + 5.612\beta_0) = \alpha + 1.403\beta_0$.

Column (vii) shows that the π s.e per ring, $-E_{\pi}^{R}$ decreases as we ascend the two series. This indicates that the relative stability of an aromatic hydrocarbon is not necessarily ensured by the possession of a large number of rings. We know anyway that for a lea large acone $-E_{\pi}^{R}$ declines to $4 \propto + 3.612/S_{o}$.

The decrease of the π s.e per ring, $-E_{\pi}^{R}$ as we move down the table indicates that the benzenelike character of the rings is lost as the length of the acene increases. The loss is initially very rapid, but soon decreases to a small quantity, as may be seen from

R. R.

^{*}In discussing the results of π electron energy computations, it is convenient to speak of π stabilisation energies (π s.2.) defined by (5.2) rather than the energies themselves.

the comparison of $-\Delta E_{\pi}^{R}$ for benzene-nephthelene and naphthalono-anthracono. The rapid loss of benzene charactor in an acone with increasing length corresponds with the constant increments of $\Delta E_{\pi} = 4 \ll + 5.612 \beta_{o}$ for $N_R > 4$. That is, it would seem that for tetracene and the higher acenes, the only increase in w s.e. comes from the addition of discrete butadiene units. for which $E_{\pi} = 4\alpha + 4.472\beta_0$, together with a π stabilisation energy of $\frac{1}{2}(5.612 - 4.472)\beta_o = 0.570\beta_o$ for each of the two connecting bonds. We recall that it was at tetracene too that the bond orders and lengths of the $\alpha\beta$, $\alpha\beta$ and $\beta\beta'$ bonds showed a tendency to converge (see Table V), when they assumed p and r values which tended towards those of a 1,3 butadians system locsely soupled to the rest of the molecule. This result is in agreement with the Clar model of the acones, and we shall examine the correlation later. For the 1-2 benzagenes the increment in W s.e. becomes constant at benzpentecene, suggesting that the benzacenes for which $N_R > 6$ resemble the acenes which contain one ring less than the number contained in the linear portion of (In other words 1-2 benz-(n)-acone the acone chain. This observation is in resembles (n-1)-acene.)

-710

qualitative agreement with the results of the bond order and bond length calculations for the benzacenes (see § 5.1 part (b)).

The Clar theory also accounts for the higher Ws.e of each of the 1-2 benzecenes over those of the isomeric acenes. In the latter we have only one aromatic sextet, which, by means of the mobile aromatic pair, is shared between n rings, whereas in the letter there are two aromatic sextets: one is fixed forming e benzene-like ring, while the other is shared between Therefore the 1-2 benzacenes contain more n-2 rings. benzeno-like character and less butediene-like character than the acenes, and hence more T stabilisation energy. The ws.e. difference between n-acene and 1-2 benz(n-1)acone increases as the sizes of the molecules increase, but becomes constant at hexacene- 1-2 benzpentacene reaching a value of 0.186 $\beta_{\rm s}$, suggesting an extra stabilising energy of ~ 3-4 kcel./mole due to the presence of an aromatic sextet.

-720

en la sur

Table VII T c.c's of some isomeric bongenoid aromatic hydrocarbons

^N R ^N C ^R		ET	ET	Er
1 6 a	\diamond	6a + 8.000Bs	a + 1.33338.	ба + 8.000080
2 10 b	00	10a + 13.684 8 0	a + 1.3684Bs	5a ÷ 6₀842080
314 c	∞	14a + 19°31480	a + 1.379680	$\frac{14}{3}a + 6.4380\beta_{0}$
đ	∞	14a + 19°420β°	a + 1.389380	$\frac{14}{3}a + 6,4833\beta_0$
4 18 e	0000	18a + 24.930po	a ≠ 1.3850βo	$\frac{18}{4}a + 6.2325\beta_0$
1	aag	18a + 25.102 ⁶ 0	a * 1.394680	$\frac{18}{4}a + 6.2755\beta_{2}$
g		18a + 25,1878.	a + 1.3993βo	$\frac{18}{4}a + 6.2968\beta_0$
h	202	18a + 25.1908.	a + 1.399480	18 <u>4</u> a × 6.2975βo
i	XXX	18a + 25°275β _θ	a + 1.404280	<u>18</u> 4 + 6.318880
5 22 j	čcccc	22a + 30°54880	a + 1.388460	$\frac{22}{5}a + 6.1088\beta_9$
k		22a + 30.72680	a + 1.396680	$\frac{22}{5}a + 6.1452\beta_0$
1	000	22a + 30°763β9	α ↔ 1 .398 3βe	$\frac{22}{5}a + 6.1525\beta_0$
	· 000	22a + 30°8348º	α → 1°4015β°	22 5 * 6.166880
D	$\omega \alpha \beta $	22a * 30.838ße	a +].4017ß.	$\frac{22}{5}a + 6.1676\beta_{0}$
0	0 0000 -	22a + 30.879Bu	a + 1.4036po	$\frac{22}{5}a + 6.1758\beta_{0}$
p	800	22a + 30.880po	a + 1.4037βo	$\frac{22}{5}a + 6.1761\beta_0$
q	۰ ﷺ	22a + 30.93680	a + 1.406280	$\frac{22}{5}a + 6.1872\beta_{c}$
ĩ	· 200	22a + 30.942Bo	a + 1,406580	<u>22</u> 5 + 6.1884βα
3	, coco	22a × 30°944β°	α + 1.4065βο	22 5 5 6.1888 80

(iii) (b) A comparison of the stabilities of some isomeric aromatic hydrocarbons.

Because of the difficulty of completely classifying eromatic hydrocarbons according to "families" as was possible for the scene and the 1-2 benzacene series the somewhat arbitrary method of classifying according to the number of benzenoid rings contained in the molecules will be used instead, i.e. we shall compare isomers.

A glance at Table VII shows that roughly speaking the more branced or bent is the annelated benzenoid chain, the higher its ws.e. The Clar account of this observation is similar to that for the acenes and the benzacenes which was discussed under (a). The more branched or bent the chain, the greater the opportunity for "trapping" aromatic sextets in the short limbs, which serves to increase the benzene-like character of the aromatic hydrocarbon; the latter fact is interpreted by Clar as increased stability and therefore higher ws.e.

Writing the Fries or Fries-Cler structures for the molecules (a) to (s) in Table VII, it is easy to verify that the greater the number of aromatic sextets, and the smaller the number of rings over which they are shared, the higher is the Ws.e. The similar stabilities

-740

for g and h for example would be accounted for by the diagrams

each of which shows "isolated" naphthalene and styrene (Of course in reality h is appreciably more systems. stable than g due to the serious overcrowding of hydrogen atoms and possibly other repulsions in the latter which distort the molecule from its planarity; we have not taken account of this fact here.) A comparison of the stabilities of k and 1 suggests that the loss in stability resulting from the extension of the aromatic sextet from one to two rings is more than compensated by the confinement of the aromatic sextet in the other limb from three rings to two. The similarity in TS.0'S for m and n may be understood by drawing out the Fries-Clar structures, and identifying the similar isolated systems in each as we did for g and h.

Finally we call attention to the effect of Clar's "induced sextet" concept (which was described

-750

in §4) in some of these molecules. Structures o and p each contain three aromatic sextets and two "fixed double bonds", and as expected have similar ws.e. values which are higher than those of the preceding molecules in the table, which contain no more than two sextets. But although three aromatic sextets and two "fixed double bonds" may similarly be written for q and s, the ws.e.'s of these two molecules is relatively much greater (the E_w^c values are $\alpha + 1.4062 \beta_0$ and $\alpha + 1.4065 \beta_0$, compared with $\alpha + 1.4036 \beta_0$, and $\alpha + 1.4037 \beta_0$. for o and p, respectively). The diagrams

0760

P

indicate the formation of the induced sexters. Assuming the Soul nature of the aromatic sextet, it is clear that in o and p an induced sextet may be formed on one side of the molecule (indicated by a dotted circle) but not on the symmetrically equivalent opposite side. Since there is no reason to believe that the double bonds in Cler's aromatic sextet are permanently localised in the positions shown in the centre rings of o and p in the above diagrams, we must suppose that the structures in which the induced sextet appears in the right hand rings is equally probable. The energy barrier between the two forms is likely to be small, and so the result is a sharing of the ireduced sextet between the two sides of the molecule. The directions of the annelations in q and s, however, permit the induction of two permenent sextets as shown. The extra stabilisation energy contributed by the presence of a fixed induced aromatic sextet is small ($\simeq 0.05 \beta$.

~ 1 kcal./mole) in comparison with that for a normal ("inherent") aromatic sextet (3-4 kcal./mole; see (a) above).

An ideal way to confirm the predictions of both Hückel and Clar theories relating to the relative stabilities of the various molecules is to study their

0770

oxperimental molecular energies as revealed by thermochemical measurements. Unfortunately, few of these ere evailable for the condensed benzencid systems in which we are interested, but the heats of combustion of seven aromatic hydrocarbons are quoted in the paper submitted for publication "An Empirical Determination of the Hückel Parameter & and of C-C and C-H Bond Energies in Aromatic Hydrocarbons" in Appendix $\bar{\xi}$. The order of the heats of combustion for the three isomeric hydrocarbons triphenylone, 1=2 benzanthracone and chrysene is exactly that predicted by the Hückel theory. The Clar theory also predicts the increased stability of triphonylene over 1-2 benzenthracene and chrysene, but fails to distinguish the stabilities of the two latter molecules.

S 6. The construction of a new r(p) curve and the calculation of more accurate bond orders.

6.1 A criticism of the r(p) and $\beta'(r)$ curves used for the calculations of the molecular constants tested in Appendix A.

As was mentioned in § 5.1 the non-convergence with successive iterations of bond orders and lengths and of the welectron energy levels is probably due to erroneous bond order/bond length and bond length/ β' value relationships (i.e. r(p) and $\beta'(r)$) which were assumed in the region of low bond orders. Let us examine the forms of the curves in this region.

The empirical r(p) curve used was constructed by extrapolating⁸ Coulson's 1951 r(p) curve⁵, thereby implying a diverging bond length as p tends to zero. Using this curve the "long bond" lengths of 1.534 and 1.524Å measured²⁰ for quaterrylene were quite accurately calculated.

The $\beta'(p)$ curve was drawn from the calculations of Mulliken, Riecke and Brown², and it was further assumed that as p tends to zero, β' does the same; the curve therefore started at the origin. However, this is probably not correct: although the interaction quantity β_{RS} should increase with bond order p_{RS} the relationship between them is practically purely through the length of the bond r.s. Since the (ideal) pure bond between two sp²-hybridized carbon atoms (i.e. p = 0) has a finite length (probably somewhere between 1.48 and 1.54Å), it is unlikely that β actually decreases to zero at p = 0, but should itself have a finite value.

6.2 A more accurate order/length ourve.

In constructing⁵ his original order/length curve Coulson calculated some 36 bond orders from 9 eromatic hydrocarbons using the Simple Hückel method, i.e. assuming that the β 's of all the bonds were equal, and these were then plotted against the corresponding bond lengths as measured by X-ray analysis. Owing to the relatively large uncertainties in the latter, together with the error due to neglect of β -veriation, the result was a rather southered set of points, but which strongly suggested an r(p) curve, and it was this "best curve", together with Goodwin's extrapolation that was used for the molecules whose results are in Appendix A.

A more successful approach is to restrict the choice of data for the order/length curve to those bonds whose lengths are known accurately, and to use in the calculation β' values which are inferred from the experimental bond lengths. The compounds chosen were naphthalene and anthracene, which have recently been the subject of careful X-ray analysis²¹, and also benzene²² and graphice²³, whose bond lengths are reliable. The experimental bond lengths r_x , the inferred β' values and the calculated bond orders are given in columns 3, 4 and 5 of Table VIII. (We have used the β (r) curve derived by Longuet-Higgins and Selem³ for this and the subsequent calculations, since being based on more recent bond data, we believe it to be more reliable than the Mulliken, Riecke and Brown relationship². According to this curve the β' value of a bond for which p = o is 0.639 corresponding to a bond length of 1.532A.) The Table also includes the Burns and Iball bond lengths²⁴ for chrysene, which although not as accurate as the naphthalene and enthracene values, serve as a comparison. The r(p) curve obtained by plotting column 3 against column 5 is shown in Fig. 3. The board least-squares curve pessing through the naphthalene, anthracene, benzene and graphite points is the straight line shown, and

-82.00

has the equation

 $r \approx 1.532 - 0.209p$ (6.1)

For the 11 bonds in the nolecules nephthalene, enthracene, benzene and graphite, the maximum vertical deviation from this line is 0.007% for the bond g in naphthalene, which we calculate to be longer than the measured value. (The experimental "estimated standard deviation" for the 11 bonds is 0.005Å.) In column 6 of the Table, r_{calc} gives the "probable bond lengths" for the bonds in naphthalene, anthracene, chrysene, benzene and graphite obtained by substituting the calculated p values in the relationship (1), which probably corrects for slight inaccuracies in the X-ray bond length measurements.

**B2es

The consistency between the order-length curve (1) and the chrysene bond data (denoted by X's in Fig.3) is a little less marked, but there are still only two deviations greater than 0.01Å. One of these refers to the bond $\boldsymbol{\ell}$ whose length is well outside the range of the ll bonds used to derive equation (1). The locus of the r(p) curve in this region is uncertain, but if the Burns and Iball length for the bond <u>l</u> is nearly correct it would indicate that the gradient of the r(p)

an a	n an	anna 19 a' chuiseann ann ann ann ann ann ann ann ann ann		ng hay to Apply the state of	an the street of the street
Molecule	Bond	F X	ß٥	P	^r calc
l) Naphthaleno	Ø	1.364	1.095	.772	1.371
a kaa	Ъ	1.421	0.910	.521	1.423
	C	1.415	0.929	.541	1.418
d c	đ	1.418	0.919	•5 71	1.413
2) Anthracene	8	1.436	0 .869	.475	1.433
	1	1.368	1.080	.796	1.365
- tert	8	1.428	0.890	。506	1.426
g i	h	1.399	0。976	.628	1.401
	ż	1.419	0. 916	。510	1.425
3) Chrygene	j	1.409	0.945	۰5 7 3	1.412
	k	1.409	0.945	. 587	1.409
\sim \sim	1	1.468	0.780	。 424	?
$(\uparrow \uparrow \uparrow)$	20	1.381	1.035	.732	1.379
L the im	n	1.394	0.995	.581	1.410
st the In	0	1.363	1.095	.751	1.375
	p	1.428	0.890	.534	1.420
r q p s	ą	1.421	0.910	.492	1.429
	r	1.368	1.080	.777	1.369
	8	1.428	0.890	.525	1.421
	t	1.401	0 .97 0	.624	1.401
			1010;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		ĊġĸĸĊĸĊĸĊŎĊĬĊĸĊĊĸĸĊĬĸĸĊĬĸĊŎĬĸĊĬĊĸĊĸĬĸĊĬŔĊŎĊġĊŢŔĊĬŔĬŔŎ
4) Benzene	Q	1.395	1.000	.667	1.395
5) Graphite	4	1.421	1.000	₀525 [↔]	1.422

Table VIII Measured bond lengths, inferred β⁰ values and calculated bond orders for some aroustic molecules.

ourve should increase negatively, i.e. depart from linearity, as p decreases from 0.8.

The length of the ethylene bond according to (1) is obtained by substituting p = 1, where we get r = 1.323Å, which is 0.01Å shorter than the now accepted value²⁶. Putting p = 0 we get 1.532Å for the length of a bond between sp^2 -hybridized carbon atoms for which there is no π bond character. This is exactly the value assumed by Longuet-Higgins and Salem³ when deriving their $\beta(r)$ curve; they assumed that the length of e^{thane} such a pure c bond was the C-C distance in $\frac{sthylese}{stimetes}$. It is now believed that such a bond is probably shorter^{27, 28} then 1.532Å, but as yet there are no reliable estimates.

As a matter of interest, we observe that if the bonds a to 1 in Table VIII are disregarded, and a straight line joins the benzene and graphite points u and v (whose bond lengths are known the most accurately of all), the equation of such an order length relationship is

r = 1.517 - 0.183p (6.2)

The length 1.517A for a pure sp² C-C o bond which is implied by this equation is a reasonable value (Coulson²⁹

-85.

now uses 1.51Å). Moreover this equation predicts a length of 1.334Å for p = 1, which is very close to the measured length²⁶ of an ethylenic bond. However, because of the fact that equation (2) is that of a line drawn through only two points, we shall use (1) in preference to (2) in calculating bond lengths.

The offect of iterating using (1) is shown in Table IX. Here we have computed the bond orders sto, in nephthalene and anthracene by the usual method of starting with the Simple Huckel Method, and inferring bond lengths and improved β' values. The results of the six iterations show that almost complete convergence is now obtained for the bond lengths, and that the values converged to are very nearly the rcale values in Table VIII, which we described as the probable bond The results lengths in naphthalene and anthracene. suggest that the use of the r(p) function (1) for bonds for which 0.45<p<0.8 gives bond lengths which are free from the "iteration offlots" described earlier.

Because of the non-validity of the order/length ourve (1) in the region of low bond order (p < 0.45), it should clearly be used only for molecules which do not contain "long bonds". Such molecules can actually

-86-

Table IX (a): Emergy eigenvalues for maphtablens and anthracene calculated using the new order/length curve (equation 6.1) and Lenguet-Higgins and Salem^os β(r) relationship. Six iterations, to test for convergence.

(i) naphthalene

C _{2v} symm.	I	II	III	IV	V	VI
A _l	2.30278	2.191591	2.193508	2.193572	2.193911	2. 193892
	1.00000	0.934187	0.928616	0.927788	0.927439	0.927079
₿ ₂	1.61803	1.618048	1.620106	1.620892	1.621756	1.62219 3
A2	0.61803	0.662048	0.683106	0.6 91 892	0.696756	0.699193
B	1.30278	1.269778	1.269124	1.2 66 360	1.265351	1.264971
∑ (-z _i) ż	6.94162	6.675652	6.694461	6.700503	6.705214	6.707327

(ii) anthracene

$c_{2^{ abla}}$ syme.	I	II	III	IV	V	VI
Al	2.41421	2.271416	2.270316	2.270553	2.271944	2 .272133
	1.41421	1.394118	1.399380	1.401730	1.403919	1.404047
B ₂	1.33333	1.921526	1.917809	1.916810	1.917271	1.917233
	1.00000	0.908911	0.897882	0.894590	0.894184	0.893821
A2	1.00000	1.003438	1.013691	1.019400	1.022455	1.024054
Bl	1.41421	1.377851	1.379864	1.378044	1.378358	1.377722
	0。41421	0.460683	0。467831	0.501439	0.508505	0.511457
Z (-23) 2	9.65684	9.337944	9。366772	9。383366	9.396636	9.400467

Table IX (b) Bond orders, bond lengths and β^0 values for naphthalene and anthracene (six iterations)

.

be easily recognized before making any calculations: in a molecule containing an arrangement of bonds:

it is invariably found that the bond order of the C_2 -C₃ bond is low, as may be verified from the examples in Appendix A. Moreover, the hydrogen atoms which are bonded to C_1 and C_4 are situated at a mutual distance of 1.8 to 2.1Å, which is less than 2.4Å, twice the van der Waals radius for the hydrogen atom. Thus there is an additional uncertainty due to H-H repulsion, which may possibly cause some stretching of the C_2 -C₃ bond ³⁰. The molecular constants (x_1 , p, r and β') for

The molecular constants (x_i , p, r and β) for aromatic hydrocarbons not containing long bonds of the kind described in the last paragraph are listed in Appendix B. Again we get satisfactory convergence of the bond lengths: the third iteration in each case deals with an almost self-consistent model, and we may therefore claim that the bond lengths r^{III} are reliable to within about 0.003\AA .

~69∞

~90»

The self-consistency extends to the energy eigenvalues: the Hückel numbers of corresponding levels in the second and third iterations are usually consistent to within 0.01, which was not generally the case for computations on the same molecules recorded in Appendix A. These values may therefore be useful in the comparison of electronic energy levels with the observed UV spectra.

Treatment of aromatic hydrocarbons containing long bonds.

We should not expect the results of calculations of the molecular constants of molecules containing "long bonds" to be as accurate as those for the molecules listed in Appendix B if, for such calculations, the r(p) curve of Fig.3 is merely linearly extrapolated. However, for molecules which our earlier calculations show a resemblance to small aromatic systems which are loosely coupled by means of low-order bonds, some simplifications may be made which lead to improved accuracy.

1-2, 3-4, 5-6 tribenzanthracene is known somewhat to resemble four benzene rings and en ethylene bond which are coupled together by means of low-order bonds (see Table 21(b) of Appendix A). We therefore assign β' values of 0.7 to these low-order bonds, 1.0 to the bonds in the benzene-like rings and 1.1 to the ethylene-like bond 22-23, and perform the usual calculation. For the next iteration we use β' values corresponding to the p and r values obtained from the first iteration for the bonds in the benzene-like rings, but we keep the β' values for the low- and high-order bonds at 0.7 and 1.1 respectively. Successive iterations of this kind lead to setisfactory convergence, and the results are shown in Appendix C.

6.3 Results obtained for aromatic hydrocarbons using the new bond order-bond length relationship.

The energies listed in Tables X (a) and (b) are taken from the 4th iteration results in Appendices B and C respectively; they are obtained using the improved r(p) and the Longuet-Higgins and Salem $\beta'(r)$ relationships, with the special provisions made for the extreme long and short bonds in the molecules in Table X(b), described in S 6.2. The 2nd, 3rd etc. columns refer respectively to the number of carbon atoms in the molecule. N_c, the number of aromatic sextets, N_B , the π stabilisation energy (which for conciseness has been expressed as $(E_w - N \propto) / \beta_v$), the π s.e. per carbon atom, and the Hückel number of the highest bonding molecular orbital, π_n in units of β_v . The last two columns contain the wavelengths and wave numbers of Clar's p-bonds for these molecules, which will be used later.

From a comparison of the E_{π}^{C} values of various sizes and classes of aromatic hydrocarbons, we had hoped to reach some conclusion regarding the relative stabilities of the molecules, such as the confirmation of Hückel's Un + 2 rule. However, the only regularity observed is a slightly increasing E_{π}^{c} value as the size of the molecule increases. In trying to compare this perticular prediction with chemical experience, it must be remembered that there are as yet very few quantitative measurements of the stabilities of molecules according to our definition of $\mathbf{E}_{\mathbf{w}}^{\mathbf{c}}$. Also the fact that some of the compounds listed in Tables X(a) and (b) contain "ethylenic" bonds introduces some chemical instability into these molecules; this requires a definition of thermodynamic stability (mentioned in § 5.3) for a proper description. However experiment essentially verifies the predictions for molecules which do not contain these "ethylenic" bonds.

-920

Calorimetric data reveals that diphenyl is indeed more stable than benzene; Clar¹³ reports that triphenylene XVIII is certainly more stable than its isomers (we also deduced this from the results discussed in part (ii) of §5.3), since it does not dissolve in concentrated sulphuric acid. Dibenzpyrene XX is similarly very stable in comparison with pyrene, and may be heated without decomposition to 340° when sublimation takes place¹¹. The molecules XXV and XXVI are also immune from attack by conc. sulphuric acid, and sublime at 400°. Hexabenzcoronene XXVII is the most stable hydrocarbon known, and melts only at 700°13,31.

The progressive increase in the π s.e. of the isomers XXI, XXII and XXIII is accounted for by the Clar theory: all three molecules contain four inherent sextets, but whereas XXI contains only one induced sextet at any one time, there are reasons for believing that the double bond in XXII somehow participates in forming two sextets simultaneously¹⁴. The dibenzperylene XXIII, however, contains two normal permanent induced sextets and so has a The molecules XXI and XXII correspondingly higher Ws.e. are exceptional in that their \mathbb{E}_{π}^{c} values are less than those of the two preceding members XIX and XX which contain a Other examples of this smaller number of carbon atoms. The reason for this is not behaviour are XXIV and XI. understood,

a93a

	Moleculo	Nc	N ^B	En	Er	R.	$\lambda_{\mathbf{p}}(\mathbf{\hat{x}})$	N _p x10 [°] on
I	naphthalono	10	2	13.4147	1.3415	0.6992	2865	3.490
II	anthracone	14	2	18.8009	1.3429	0.5115	3781	2.645
m	totracenø	18	3	23.5480	1.3082	0.3641	4728	2.115
IV	pentacone	22	3	28.9243	1.3147	0.2797	5754	1.738
A	hexacene	26	ł <u>s</u>	34.1058	1.3118	0.2204	6854	1.459
VI	heptacono	30	5	39.8289	1.3276	0.1700	40 0 0	-
VII	octaceno	34	5	45.0928	1.3263	0.1381		40a
VIEI	nonacene	38	6	50.3428	1.3248	0.1138	÷÷	427
IX	pyrone	16	2	21.3799	1.3362	0.5284	3372	2 .966
х	anthanthrene	22	3	29.8096	1.3550	0.3536	4331	2.309
XI	coronene	24	l <u>a</u>	32.3942	1.3498	0.4698	3415	2,928
XII	2 -3,8-9 dibenzcoroacne	30	5	40.7606	1.3587	0.2369	5236	1.910
XIII	ovalene	32	5	43.9992	1.3750	0.3742	4560	2.193

Table X (a) Molecular constants for the molecules listed in Appendix B

ංාවුණුංං

Table X (b) Molecular constants for some "fully aromatic" molecules (Appendix C)

Molecu	le N _c	NB	En	Ec	Z n	ک _ی (۲)	$\widetilde{\mathcal{V}}_{p^{\chi_{(cm^{-1})}}}$
XIV CH2=	CH ₂ 2	43	2.2000	1.1000	1.1000		_
xv ô	6	1	8.0000	1.3333	1.000	2068	4.835
XVI 🌀	-② 12	2	16.0568	1.3381	0.765	2530	3.953
XVII 🔍	34	2	18.9256	1.3518	0.682	2.945	3.396
XVIII ()(3	24.4285	1.3571	0.701	2870	3.484

Cont'd....

Table X (b) cont^od.

Moleculø	Nc	NB	E tr	E _t	X n	۸ _р (Я)	$\widetilde{\mathcal{V}}_{\mathbf{p}}_{(\mathbf{cm}^{-1})}$
XIX 🔿	20	3	27.2391	1.3620	0.564	3315	3.017
xx @@@	24	4	32.7352	1.3640	0.587	3290	3.040
XXI QOO	26	ž <u>a</u>	35.3800	1.3601	0.589	3450	2 .89 9
хки 9,0	26	4	35 °3908	1.3612	0.555	?	?
XXIII D	26	4	35.5733	1.3682	0.518	3775	2.649
XXIV DOG	30	5	40.8620	1.3621	0.611	3310	3.026
XXV S-S	30	5	41.0763	1.3692	0.534	3740	2.674
XXVI QQQ	36	6	49.4003	1.3722	0.531	3650	2.,740
XXVII J	42	7	57.9294	1.3793	0.490	3875	2.581

The fact that a very small but fairly regular increase in \mathbb{E}_{W}^{c} with N_c is obtained showing no departures for non-Hückel hydrocarbons (for which N_c 4n + 2) indicates that we observe no validity of the Hückel rule for condensed benzenoid systems.

In Fig. 4 we have plotted the molecular π s.e. E_{π} against one-sixth of N_c, so that the abscisse measures the number of benzenoid rings in the molecule. Although we know that E_{π}^{c} increases slightly with N_c which must result in a corresponding increase in the gradient of the E_{π} /N_c curve, the curve is closely linear. This means that the π s.e. of any benzenoid aromatic hydrocarbon is nearly directly proportional to the number of carbon atoms in the molecule, and may be calculated approximately from the equation

 $E_{-} = N_{0} (\alpha + 1.373 \beta_{o}).$

8.4 (a) The calculation of the positions of the electronic transition bonds for aromatic hydrocarbons.

The energy of the electronic transition from the i th to the j th molecular orbital is calculated from equation (2.9) to be

 $\Delta E_{ij} = (\alpha - \chi_i \beta_o) - (\alpha - \chi_j \beta_o) = \Delta \chi_{ij} \beta_o$

where Δx_{ij} is the difference $(x_j - x_i)$ between the "Hückel numbers" of the i th and j th MO's, where it is essumed that $E_i > E_j$ in order that the calculated transition energy ΔE_{ij} be positive. The frequency of the radiation Y_{ij} is therefore given by

$$\mathcal{V}_{ij} = \frac{1}{h} \Delta \mathbf{x}_{ij} \beta_{o}$$

and by comparing the observed values of V_{ij} with the calculated Δx_{ij} an empirical value for β_o may be calculated.

It is generally supposed that Clar's p-bands in the UV absorption spectrum are caused by transitions from the highest occupied to the lowest unoccupied levels. This is evidenced by the fact that in naphthalene, anthracene and tetracene, the p bands are found experimentally³¹ to be polarised in the direction parallel to the short axis of the acene, which indeed corresponds to the ${}^{1}B_{2u}$ symmetry expected for the transition $x_n \rightarrow x_{n+1}$. In alternant aromatic hydrocarbons $x_{n-1} = -x_{n+1+1}$, so the calculated frequency of the p-band is

$$V_p = \frac{2\beta_o}{h} X_n$$

where zn is the Hückel number of the highest occupied molecular orbital. Quite good linear correlations are

obtained by plotting x egainst the experimental values \mathcal{N}_p . Fig.5(a) shows such an attempt; \mathcal{N}_p are taken of from Clar¹⁰⁻¹⁵, and x_n from the results of the calculations in Appendices B and C and summarised in Tables X (a) and In Fig. 5 (b) we have plotted only the data for (b). the acenes (benzone to hexacene) showing an almost perfect linear correlation. This shows the importance of taking account of bond length variations in assigning β' velues: whereas the benzene point is colinear with the points for the other accenes in our treatment, it is not if Simple Hückel xn values are used. Data for the other five molecules listed in Table X (a) do not give such a good correlation. It would appear that something has been neglected whose effect is revealed in comparing different classes of molecule.

The β_0 value calculated for the scenes is half the slope of the lower curve in Fig. 5(b), i.e. 2.12 x 10^4 cm⁻¹ = 60 kcal/mole. This is more than twice the value obtained from a comparison of the calculated total W energies with thermochemical date (see for example Appendix D). The discrepancy is almost certainly due to neglect of configurational interaction, which occurs to different extents in the ground and excited states.

~99o

The correlation line does not pass through the origin as might be expected; Fig. 5(a) shows that when $x_n = 0$, $\tilde{V}_p = 6 \times 10^4 \text{ cm}^{-1}$. Streitwieser (see p.213 of ref.7) explains that the calculated transition energy $2 \times_{n} \beta_{o}$ is for a transition from the "centre of gravity" of the singlet and triplet states to the ground state. Since the observed transition is the singlet to ground state (triplet to ground state is forbidden), the calculated transition energy $2 \chi_{\mathcal{A}} \beta_{\mathcal{A}}$ will be too high by the factor E (singlet) = E(c. of g.). From the \tilde{V}_p/x_n surve published by Streitwieser (p.220) in which Simple Hückel xn values are used, E(singlet)-E(c. of g) is about 1.0 x 10⁴ cm⁻¹. From our curve (Fig. 5 (b)) the quantity is 0.5 x 10⁴ cm⁻¹. Since it has not been established that the Hückel energy levels are in fact the quantities suggested by Streitwieser, it is possible that with increasing refinements of the Hückel-type calculations, the quantity "E(singlet)-E(c. of g.)" may vanish altogether.

. .

-102-

-105-

I

III

λp (X)	2068 <u>802</u> 2870	<u> </u>	3450
λβ (Å)	$1819 \xrightarrow{751} 2570$	<u> </u>	2925
$HOMO(\beta_0)$ (i)	$1.000 \xrightarrow{0.316} 0.684$	0.107	0.577
(ii)	$1.000 \xrightarrow{0.299} 0.701$	0,080	0.611

II

The above figures show the effect on the positions of the UV absorption bands, of the annelation of a diphenyl system, firstly onto benzene (I), and then onto the resulting triphenylene (II) to produce tetrabenzanthracene (III). The shifts in the wavelengths of the bands are much less in the second case than in the first, although the addendum is the same in both cases. This effect is called <u>asymmetric annelation</u>, and is interpreted by Clar as being due to the asymmetry -104.

of the fully aromatic rings. Whereas in the first annelation an induced sextet is formed in the central ring, it is not possible to produce a second induced sextet in III for the reason discussed in § 4, and the spectral shift is consequently much less.

Also shown above are the Huckel numbers xn of the highest occupied molecular orbital (HOMO) in each These have been obtained (i) using the simple case. theory, in which β' values for all the bonds have been assumed to be unity, and (ii) assuming that there are two types of bonds: "single" and "aromatic" to which β' values of 0.7 and 1.0 were assigned, as described in \$ 6.2, and the calculation iterated until convergence was obtained. Since the lowest-energy transitions in each case are $(x_{n+1} - x_n) \beta_o = 2 |x_n \beta_o|$, the HOMO Hückel numbers x, may be used as a basis for the comparison Both series of figures of the spectral energy shifts. (1) and (11) show that the "asymmetric annelation effect" is borne out in calculation.

An interesting annelation is that of a butadiene system onto a "fixed double bond" in fully aromatic hydrocarbons, which, as we observed in § 5.2, has little effect on bond orders. The simplest system which contains such a bond is phenenthrene, and the wavelengths of the β and p bands given below show that their positions are changed very little by the annelation of a benzo-ring onto the 9-10 position:

$\lambda_{p}(\tilde{A})$	2945> 2870	-0.26% -2.6%
$\lambda_{\beta}(\hat{A})$	2547 2595	0.18% 1.8%
HOMO (i)	0,605> 0.684	1.31% 13.1%
u (ji)	0.682> 0.701	0.28% 2.8%

This would appear to indicate two alternative explanations. The first is that the shift produced by the removal of the 9-10 "double" bond is approximately equal and opposite to that produced by the new arcmatic sextet. The second is that the 9-10 "double" bond is present also in the corresponding position in triphenylene, indicating that

-205-

in an aromatic sextet there are two electrons which are somehow different from the other four. Clar has adopted the second explanation to formulate his theory of aromaticity described in S4.

This annelation effect is also predicted by is Molecular Orbital theory, as/shown by the figures in the last two rows. Clearly the improved Hückel treatment gives a better account of the percentage energy shift than the simple theory in which no account is taken of the variation in bond lengths.

Papers written on the calculation of spectral shifts in the pyrene and triphenylene homologues are given in Appendix D.

-106-

S 7. The calculation of aromatic character of the acone rings in terms of Clar's oscillating aromatic pair model.

If the model of the oscillating electron pair in the scenes is a valid one, it is reasonable to suppose that the velocity of the quasi-particle (the electron pair) is a continuous function of position. This requires the magnitude of the velocity to be a maximum at the centre of the acene and zero at the ends. The function which gives the velocity of the particle at the distance x from the centre of the acene,

$$\nu_{\chi} = A \left(a^2 - \chi^2 \right) \tag{7.1}$$

(where a is the amplitude of the oscillation and A is a constant related to the frequency), satisfies these conditions.

In order to calculate the aromatic character of, let us say, the xth ring from the contre of an econe with an <u>even</u> number of rings, we need to know the time spent by the particle (the aromatic pair) in the xth ring. Now the average speed of a particle between the points x-1 and x, and whose velocity is given by (1) is

 $\overline{\mathcal{N}_{x}} = \frac{1}{2} A \left(2a^{2} - 2x^{2} + 2x - 1 \right)$

The time spent in the xth ring is therefore given by

$$\pi_{x} = B(4a^{2} - 4x^{2} + 4x - 2)^{-1}$$
(7.2)

We have introduced an extra factor of 2 into the denominator of (2) in order that the equation for t_x may resemble that appropriate to an access with an <u>odd</u> number of rings. The equation in this case is

$$t_x = B(4a^2 - 4x^2 - 1)^{-1}$$

where the xth ring is now defined as the xth ring from the centre not including the centre ring.

So assuming that the amount of aromatic character A_X in the xth ring is proportional to the relative time spont by the oscillating aromatic pair in that ring, we get the equations

$$A_{x} = C(4a^{2} - 4x^{2} + 4x - 2)^{-1} \text{ for an even acene} \qquad (a)$$
and
$$A_{x} = C(4a^{2} - 4x^{2} - 1)^{-1} \text{ for an odd acene} \qquad (b)$$
(7.3)

We can calculate a value for A_x also from the Hückel theory using the technique discussed in § 2.5. Equation (2.16) tells us that a measure of the energy in a given part of an aromatic hydrocarbon is provided by

Bond orders and individual ring energies in some acenes as computed by the Simple Huckel Method.

nonacene

summing the bond orders of the constituent bonds, each multiplied by its respective β' value. Since we are dealing with very approximate theories, we shall use the simplest Hückel method and assume that the values of all the bonds are equal (i.e. $\beta' = 1$ for each bond). The diagrams opposite indicate the required values: the quantities associated with the bonds are bond orders, p_b , and those written inside the rings x are the $\sum_{k=1}^{6} p_{xk}$ where the summation takes place over the π bonds b = 1 to 6 forming the benzenoid ring. The results of the calculations are summarised in Table X.

Figs. 6 - 9 show the result of plotting A_X calculated from equations (3) (a) and (b) against $\sum_{i=1}^{6} P_{XL}$ for the acenes hexagene to nonscene. The curves in each case are closely linear. While we do not claim that this result furnishes evidence for the electron oscillation theory, the latter may now be seen to lead to an acene model which is quantitatively similar to that obtained from Hückel theory calculations.

-110-

Table XI: A compandence of the 17 G.C's of the various rings in four acons molecules as calculated from the Clar theory and from the Simple Nückel Method.

Acene	X	Az	$\sum_{k=1}^{6} \mathcal{P}_{xk}$
Hezacone	l	.02941 C	3.27038
(a=3)	2	.03346 C	3.31864
	3	.10000 C	3.59113
Heptacóne	0	.02083 C	3.25586
(a=32)	Pend	.02273 C	3.26589
	2	.03125 C	3.31712
	3	.08353 C	3.59054
Octecene	1	.01613 C	3.25151
(a=4)	2	.01852 C	3.26441
	3.	.02632 C	3.31661
	<u>k</u>	.07145 C	3.59033
Nonacens	0	.01250 C	3.24698
(a=4})	1	.01316 C	3.24999
	2	.01563 C	3.26394
•	3	.02273 C	3.31644
	4	.06250 C	5.59025

:

§ 8. <u>A simple treatment of inter-electronic repulsion</u> in aromatic hydrocarbons.

8.1 The ground state.

The state Ψ of an N-electron π system may be expressed as an antisymmetrical product of N oneelectron spin-orbitals Ψ_i . This is conveniently written as a determinant:

$$\Psi = (N!)^{-\frac{1}{2}} \det |\Psi_i(i) - \dots \Psi_i(k) - \dots \Psi_m(N)|$$

where $\psi_1, \ldots, \psi_i, \ldots, \psi_m$ are arranged in increasing energy order. The general element $\psi_i(k)$ refers to the ith one-electron orbital with which is associated the k^{th} electron. In the ground state i=k for all i and k which indicates that all N electrons are accommodated in the N lowest energy orbitals

Applying this to aromatic hydrocarbons we can substitute for the Ψ 's the molecular orbitals obtained by the Hückel ICAO-MO method. For an even alternant hydrocarbon with N carbon atoms, N molecular orbitals are obtained, $\frac{1}{2}N = n$ of which are bonding and by the Pauli principle may accommodate all N welectrons in the ground state. The ground state wave function is therefore

$$\Psi_{g} = \left(N!\right)^{\frac{1}{2}} det \left|\Psi_{1}(1) \ \overline{\Psi}_{1}(2) \dots \Psi_{n}(N-1) \overline{\Psi}_{n}(N)\right|$$

-117-

in which $\overline{\Psi}_i$ differs from Ψ_i only in the spin part of the orbital (Ψ_i has α spin and $\overline{\Psi}_i$ has β spin).

The Hamiltonian operator is

$$f_{b}^{\mu} = \sum_{k=1}^{N} \left[-\frac{t^{2}}{2m} \nabla_{k}^{2} - \sum_{\alpha=1}^{N} \frac{Ze^{2}}{R_{\alpha i}} \right] + \frac{1}{2} \sum_{k=1}^{N} \sum_{k=1}^{N} \frac{e^{2}}{R_{kl}}$$

which is the sum of the one-electron Hamiltonian operators H(k) (sometimes called the "core" hamiltonian) plus the electronic repulsion terms $\frac{1}{2} \sum_{\substack{n=1\\k\neq l}}^{N} \frac{a^2}{\lambda_{kl}}$. (The internuclear repulsion terms $\frac{1}{2} \sum_{\substack{n=1\\k\neq l}}^{2} \sum_{\substack{n=1\\k\neq l}}^{2} \frac{a^2}{\lambda_{al}}$ have been omitted from $\frac{1}{k}$).

$$\mathcal{H} = \sum_{k}^{N} H(k) + \frac{1}{2} \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{e^{2}}{\lambda_{kl}}$$
(9.1)

The total π electronic energy of the ground state is therefore

$$E_{g} = \int \Psi_{g}^{*} f \mathcal{E} \Psi_{g} dx = \int \Psi_{g}^{*} \sum_{k}^{N} H(k) \Psi_{g} dx$$
$$+ \frac{1}{2} \int \Psi_{g} \sum_{k=\ell}^{N} \sum_{k=\ell}^{N} \frac{e^{2}}{r_{k\ell}} \Psi_{g} dx$$

The general term in the complete expansion of the first

 $\left(\Psi_{i}^{*}(l) H(k) \Psi_{i}(m) d\tau \right).$ integral is In order that it shall be non-zero, k = 1 = m, and since the molecular orbitals W: are orthogonal functions of the energy matrix \mathbb{H} we have the condition that i = j. But the resulting general term $\int \Psi_i^*(k) H(k) \Psi_i^*(k) d\tau$ is just the Hückel energy eigenvalue (which we shall now write Ii) of the ith molecular orbital, which we know already in terms of the parameters α and β ,. The second integral in the above equation describes the total v electron interaction and does not reduce to a sum of such simple However it may be expressed (36) as the sums of two terms. different kinds of integrals Jij and Kij known respectively as the Coulomb and Exchange integrals for the interactions between orbitals Ψ_i and Ψ_i :

$$\int \Psi_{g}^{*} \sum_{k \neq l}^{N} \sum_{\tau_{kl}}^{\infty} \frac{e^{2}}{\tau_{kl}} \Psi_{g} dt = 2 \sum_{k \neq l}^{n} \sum_{\tau_{kl}}^{\infty} (2 J_{kl} - K_{kl})$$

where $J_{ij} = \text{Coulomb Integral for } \Psi_i \text{ and } \Psi_j, = \int |\Psi_i(i)|^2 \frac{a^2}{h_{i2}} |\Psi_j(2)|^2 dx$ $K_{ij} = \text{Exchange Integral for } \Psi_i \text{ and } \Psi_j = \int \Psi_i^*(1) \Psi_j(1) \frac{a^2}{h_{i2}} \Psi_j^*(2) \Psi_i(2) dx$

The ground-state energy is therefore

$$E_{g} = 2 \sum_{i=1}^{m} I_{i} + \sum_{i \neq j}^{n} \sum_{i \neq j}^{m} (2 J_{ij} - K_{ij})$$

$$= 2 \sum_{i=1}^{m} I_{i} + 2 \sum_{i \neq j}^{n} \sum_{i \neq j}^{n} J_{ij} + \sum_{i \neq j}^{n} J_{ii} - \sum_{i \neq j}^{n} K_{ij}$$
(8.2)
$$(since \ J_{ii} = K_{ii})$$

Substituting the molecular orbitals ψ_i by the LCAO expansions

$$W_i = \sum_{\mathcal{R}=1}^{N} c_{\mathcal{R}i} \, \mathcal{R}_{\mathcal{R}}$$

the molecular orbital integrals J_{ij} and K_{ij} may be expanded in terms of atomic orbital integrals, and we shall now proceed to consider this expansion.

Pople³⁶ assumed that the general term in the expansion of the J and K integrals in terms of atomic orbitals, namely $\int \gamma_{\Lambda}^{\tilde{\pi}}(t) \gamma_{s}(t) \frac{1}{\lambda_{m}} \gamma_{t}^{*}(x) \gamma_{m}(x) dt$ is different from zero only if the following conditions hold simultaneously:

(1) r = s and t = u
(2) {Either r = t
 or atoms r and t are "nearest neighbours",
 i.s., are ~ bonded.

The ground state energy E_g of an aromatic hydrocarbon can therefore be expressed in terms of the Hückel parameters \varkappa and β_o (coming from the I₁ terms), and in addition two new integrals A_r and B_{rs} :

$$A_{h} = \int |\chi_{h}(i)|^{2} \frac{e^{2}}{h_{n}} |\chi_{h}(i)|^{2} dx \qquad \text{the Atomic coulomb integral} \\ \text{for carbon atom } \mathbf{r} \\ B_{hs} = \int |\chi_{h}(i)|^{2} \frac{e^{2}}{h_{n}} |\chi_{s}(2)|^{2} dx \qquad \text{the Bond coulomb integral} \\ \text{for bond } \mathbf{r} \rightarrow \mathbf{s}. \end{cases}$$
(**r** and **s** are **r** bonded atoms)

 A_r is the repulsion energy of two electrons in the rth $2p_z$ atomic orbital, and we shall suppose that this is the same for all atoms r in an alternant aromatic hydrocarbon, and denote the value by A. Strictly speaking B_{rs} is not an invariant parameter, since as the repulsion between the atomic orbitals on atoms r end s, it will vary with the length of the bond r-s. However, we shall assume that the variation is sufficiently small that we can use a mean bond coulomb integral B for all bonds r-s.

We shall now express the molecular integrals J and K in terms of the atomic integrals A and B.

$$\begin{split} J_{ij} &= \int \psi_{i}^{*}(i) \ \psi_{i}(i) \frac{1}{\lambda_{12}} \ \psi_{j}^{*}(2) \ \psi_{j}(2) d\tau & \text{But } \psi_{i} = \sum_{\lambda=i}^{N} c_{\lambda i} \gamma_{\lambda} \\ &= \int (c_{1i}^{*} \ \chi_{1}^{*}(i) + c_{2i}^{*} \ \chi_{2}^{*}(i) + \dots + c_{Ni}^{*} \ \gamma_{N}^{*}(i)) (c_{1i} \ \chi_{1}(i) + \\ c_{2i} \ \gamma_{2}(i) + \dots + c_{Ni} \ \gamma_{N}(i)) \frac{1}{\lambda_{12}} (c_{1j}^{*} \ \gamma_{1}^{*}(2) + c_{2j}^{*} \ \gamma_{2}^{*}(2) + \dots \\ &= -c_{Nj}^{*} \ \gamma_{N}^{*}(2)) (c_{1j} \ \gamma_{1}(2) + c_{2j} \ \gamma_{2}(2) + \dots + c_{Nj} \ \gamma_{N}(2) \ d\tau \\ &= \int \gamma_{\lambda}^{*}(i) \ \gamma_{\lambda}(i) \frac{1}{\lambda_{12}} \ \chi_{\lambda}^{*}(2) \gamma_{\lambda}(2) d\tau \sum_{\lambda=1}^{N} |c_{\lambda i}|^{2} |c_{\lambda j}|^{2} \\ &+ \int \gamma_{\lambda}^{*}(i) \ \gamma_{\lambda}(i) \frac{1}{\lambda_{12}} \ \gamma_{\lambda}^{*}(2) \ \gamma_{\lambda}(2) \ d\tau \sum_{\lambda=1}^{N} |c_{\lambda i}|^{2} |c_{\lambda j}|^{2} |c_{\lambda j}|^{2} \\ &+ \int \gamma_{\lambda}^{*}(i) \ \gamma_{\lambda}(i) \frac{1}{\lambda_{12}} \ \gamma_{\lambda}^{*}(2) \ \gamma_{\lambda}(2) \ d\tau \sum_{\lambda=1}^{N} |c_{\lambda i}|^{2} |c_{\lambda j}|^{2} |c_{\lambda j}|^{2} \end{split}$$

i.e.
$$J_{ij} = A \sum_{n=1}^{N} |C_{ni}|^2 |C_{nj}|^2 + B \sum_{\substack{n \neq S \\ (lemded})}^{N} |C_{ni}|^2 |C_{sj}|^2$$
 (8.4)

--120-

$$\begin{aligned} \mathsf{K}_{ij} &= \int \Psi_{2}^{\mathbb{X}}(i) \Psi_{j}(i) \frac{1}{\lambda_{iz}} \Psi_{j}^{*}(2) \Psi_{1}(2) dz \\ &= \int (c_{iz}^{*} \mathcal{R}_{1}^{*}(i) + C_{2i}^{*} \mathcal{R}_{2}^{*}(i) + \dots + c_{nz}^{*} \mathcal{R}_{nz}^{*}(i)) (c_{1i} \mathcal{R}_{1}(i) + c_{2j} \mathcal{R}_{2}(i) + \dots + c_{nj} \mathcal{R}_{nj}^{*}(2) + \sum_{1 \leq i \leq j} \mathcal{R}_{2}^{*}(i) + (c_{1i} \mathcal{R}_{1}(i) + c_{2j} \mathcal{R}_{2}(i) + \dots + c_{nj} \mathcal{R}_{nj}^{*}(2)) x \\ &= \int (c_{iz}^{*} \mathcal{R}_{1}^{*}(i)) \frac{1}{\lambda_{12}} (c_{ij}^{*} \mathcal{R}_{1}^{*}(2) + c_{2j}^{*} \mathcal{R}_{2}^{*}(2) + \dots + c_{nj}^{*} \mathcal{R}_{nj}^{*}(2)) dz \\ &= \int (c_{1i} \mathcal{R}_{1}(2) + c_{2i} \mathcal{R}_{2}(2) + \dots + c_{Ni} \mathcal{R}_{nj}(2)) dz \\ &= \int (c_{1i} \mathcal{R}_{1}(2) + c_{2i} \mathcal{R}_{2}(2) + \dots + c_{Ni} \mathcal{R}_{nj}(2)) dz \\ &= \int (c_{1i} \mathcal{R}_{1}(2) + c_{2i} \mathcal{R}_{2}(2) + \dots + c_{Ni} \mathcal{R}_{nj}(2)) dz \\ &= \int (c_{1i} \mathcal{R}_{1}(1) \frac{1}{\lambda_{12}} \mathcal{R}_{nj}^{*}(2) \mathcal{R}_{nj}(2) dz \sum_{A=1}^{N} \int (c_{Aj})^{2} \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{1}(i) \frac{1}{\lambda_{12}} \mathcal{R}_{A}^{*}(2) \mathcal{R}_{2}(2) dz \sum_{A=1}^{N} \int (c_{Aj})^{2} \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{1}(i) \frac{1}{\lambda_{12}} \mathcal{R}_{A}^{*}(2) \mathcal{R}_{2}(2) dz \sum_{A=1}^{N} \int (c_{Aj})^{2} \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{1}(i) \frac{1}{\lambda_{12}} \mathcal{R}_{A}^{*}(2) \mathcal{R}_{2}(2) dz \sum_{A=1}^{N} \int (c_{Aj})^{2} \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{1}(i) \frac{1}{\lambda_{12}} \mathcal{R}_{A}^{*}(2) \mathcal{R}_{2}(2) dz \sum_{A=1}^{N} \int (c_{Aj})^{2} \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{1}(i) \frac{1}{\lambda_{12}} \mathcal{R}_{A}^{*}(2) \mathcal{R}_{2}(2) dz \sum_{A=1}^{N} \int (c_{Aj})^{2} \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{1}(i) \frac{1}{\lambda_{12}} \mathcal{R}_{A}^{*}(2) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{A}(i) \mathcal{R}_{A}(i) \\ &+ \int \mathcal{R}_{A}^{*}(i) \mathcal{R}_{A}(i)$$

•

Application to some hydrocarbons.

Benzene

The jth molecular orbital ψ_j in benzene is given by

$$\psi_{j} = \frac{1}{\sqrt{6}} \sum_{R=1}^{6} e^{2\pi i R j/6} \chi_{R}$$

where (for the ground state molecular orbitals) $j = 0, \pm 1$. Substituting these values in equations (4) and (5) we have $J_{00} = J_{-1-1} = J_{11} = J_{0-1} = J_{01} = J_{11} = \frac{1}{6}A + \frac{1}{3}B;$ $K_{0-1} = \frac{1}{6}A + \frac{1}{6}B;$ $K_{1,-1} = \frac{1}{6}A - \frac{1}{6}B;$ $K_{01} = \frac{1}{6}A + \frac{1}{6}B$ In the equation $E_g = 2\sum_{i=1}^{n} I_i + 2\sum_{i>j}^{n} J_{ij} + \sum_{i=1}^{n} J_{ii} - \sum_{i>j}^{n} K_{ij}$ $= 2\sum_{i=1}^{n} I_i + 2(J_{0-1} + J_{01} + J_{-1}) + (J_{00} + J_{-1-1} + J_{11}) - (K_{0-1} + K_{1-1} + K_{0-1})$ we substitute the above J and K values, and the fact that $2\sum_{i=1}^{n} I_i = 6\alpha + 8\beta_0$

$$E_g = 6 \propto + 8\beta_0 + A + \frac{17}{6}B$$

Using real orthogonal molecular orbitals (for which the C_{rj} were obtained by applying C_{2v} symmetry to benzene), the resulting energy is slightly different, namely $E'_{q} = 6\alpha + 8\beta_{0} + \frac{13}{12}A + \frac{11}{4}B$ Other molecules

A computer program was written to calculate Eg from the eigenvalues and eigenvectors obtained from a Hückel-type computation, and the results obtained for some hydrocarbons are listed in Table XII. The last three summation terms in equation (3) have also been recorded, for purposes of checking. On examining these quantities it now appears that the first two summations, namely $\sum_{i=1}^{n} \sum_{j=1}^{m} J_{ij}$ and $\sum_{i} J_{ii}$ need not have been computed for the calculation of E_g since although not obvious from equation (6), column 5 of the table shows that the sum $2\sum_{i=1}^{n} \overline{J}_{ij} + \sum_{i=1}^{n} \overline{J}_{ii}$ is in each case simply $\frac{1}{4}NA + \frac{1}{2}bB$ where N and b are respectively the number of C atoms and the number of C-C bonds in the This means that as far as the coulomb integrals molecule. Jij are concerned, the coefficients of the atomic coulomb integral A and of the bond coulomb integral B in the energy expression are proportional respectively to the number of atoms and to the number of bonds in the molecule, a fact which might be expected from simple considerations. The only components of the repulsion energy which depend upon the m electron distribution (detormined by the matrix C), therefore, are the terms involving the

-123-

Molecule	<u>الم</u> ت:	₹. ₹. ₹.	ΣΣ κ _ü
	(a)	A ASA	www.www.c.Z.J.
Ethylene	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	0
1,3 Butadione	0°59996AA & 0°699876B	0.19994eA ~ 0.399954B	0°199948A & 0.099974B
Benzene (complex C	0.500000A + 1.00000B	0°200000V + 1°00000B	0.500000A ~ 0.166667B
freal c	1.000000 + 1.000000B	1.000000A ~ 1.000000B	I OUODODA ~ 1. COODDB
Napthelene	0.735897A * 1.035897B	0.882051A + 2.232051B	0.832051A + 0.563732B
Anthracene	0.777212A + 1.067171B	1.361394A + 3.466410B	1.361394A ~ 0.953292B
Totraceno	0.805091A ~ 1.141238B	1.847455A + 4.679381B	1.847455A + 1.317299B
Pantaceno	0.825017A 4 1.144214B	2.337491A + 5.927897B	2.337491A + 1.715237b
llaracono	0.839821A ~ 1.185967B	2.830069A + 7.157016B	2.830089A + 2.093157B
Phenunthreno	0.796257A + 1.156434B	1.350871A < 3.420783B	1.350371A + 0.928081B
1-2 Benzanthrucono	0.875253A + 1.198705B	1.812774A * 4.650648B	1.812374A + 1.317612B
1-2 Bonztetraceno	0.892750A ~ 1.209424B	2.308625A + 5.895789B	2.303625A + 1.716051B
1-2 Benzpontacene	0.941630A ~ 1.276064B	2.779185A + 7.111969B	2.779185A + 2.032541B
Chryseno	0.815300A + 1.210726B	1.842350A + 4°.644637B	1.842350A ~ 1.323186B
Hernphene	0.941072A + 1.271536B	2.779464A + 7.114232B	2.779464A + 2.096825B
Dàphenyl	0.720477A + 1.02596AB	1.139762A + 2.737066B	1.139762A ~ 0.797674B

-124-

Table XII

٠

ţ

,

.

Molecule	$\sum J_{ii} + 2 \sum J_{ij}$	$E_{g} = 2 \sum_{i=1}^{n} I_{i} + 2 \sum_{i=1}^{n} J_{ij} + \sum_{i=1}^{n} J_{ii} - \sum_{i=1}^{n} K_{ij}$
	-	
Lthylene	· * * * * *	2a ~ 2.000060 ~ 0.5000A ~ 0.5000B
1,3 Uutadiene	0.999856A + 1.499784B	4a + 4.47209. + 0.7999A + 1.3998B
Benzene (complex c	1.500000A + 3.000000B	6a ~ 8.000082 ~ 1.0000A ~ 2.8333B
F real o	1.500000A + 3.000000B	6a ~ 8.000082 ~ 1.08334 ~ 2.7500B
Nayhthalene	R666667°C & V666667°Z	10a + 13.68323, + 1.6179A + 4.9362B
Anthraceno	3.500000A ~ 7.999991B	14a ~ 19.31376. ~ 2.1386A ~ 7.0467B
Tetracons	4.500001A ~ 10.500000B	18a ~ 24.929kpc ~ 2.6525A ~ 9.1027B
Pentacano	5.4999999A + 13.000008B	22a + 30.54406° + 3.1025A + 11.2840B
Искасоно	6.499999A ~ 15.499999B	26a ~ 36.156080 ~ 3.66992 ~ 13.4068B
Phenauthrane	3.4999999A ~ 8.0000001	14a + 19.449260 + 2.1491A + 7.0719B
1-2 Benzanthracono	4.500001A ~ 10.5000B1B	18a ~ 25.101265 ~ 2.6876A ~ 9.1822B
1-2 Denztetrucone	5.500000A + 13.000000B	22a + 30.725683 + 3.1914A + 11.28391
1-2 Benzpentacono	6.500000A + 15.500000B	26a + 36.3413pc + 3.7208A + 13.4175B
Chrysono	4.500000A + 10.500000B	18a ~ 25.19002a ~ 2.65764 ~ 9.1768B
lloxaphone	6.500000A + 15.500000B	26a + 36.3905ps + 3.7205A + 13.4032B
Diphenyl	3.000001A + 6.499996B	12a ~ 16.39328 ~ 1.8602A ~ 5.7023B

Table X II (cont'd)

-125-

exchange integrals K_{ij} ; (3) and (6) may consequently be written more simply as

$$E_{g} = 2 \sum_{i=1}^{n} I_{i} + \frac{1}{4} NA + \frac{1}{2} B - \sum_{i>j} K_{ij}$$

$$E_{g} = 2 \sum_{i=1}^{n} I_{i} + \sum_{i>j}^{n} \sum_{i}^{n} \left[A \left\{ \frac{1}{4} N - \sum_{k=1}^{N} |c_{ki}|^{2} |c_{kj}|^{2} \right\} + B \left\{ \frac{1}{2} B - \sum_{i>j}^{N} c_{ki}^{*} c_{kj} c_{kj}^{*} c_{kj}$$

If accurate values of the heats of combustion or of hydrogenation were known for these molecules, the values of the parameters α , β_{e} , A and B could be calculated empirically, in a similar way to the calculation described in the paper entitled "An Empirical Determination of the Huckel parameter β_{e} and of the CC and CH Bond Emergies in Aromatic Hydrocarbons", in Appendix D. However, the presence of the two extra parameters A and B introduces too much uncertainty into the set of simultaneous equations to enable even approximate values of the parameters to be calculated, using the currently available thermometric emergy values.

The first excited singlet state 8.2

The first excited state results from the promotion of an electron in the highest occupied to the lowest unoccupied molecular orbital. The state wave function may be written as a linear combination of two wave functions Ψ'_p and Ψ'_p :

-127-

$$Y_{p} = \sqrt{2} \left(Y_{p}' \pm Y_{p}'' \right)$$
(8.7)
where $Y_{p}' = (N!)^{-\frac{1}{2}} \det |\Psi_{1}(i)\overline{\Psi_{1}}(2)....\Psi_{n}(N-1)\overline{\Psi_{n+1}}(N)|$
and $Y_{p}'' = (N!)^{-\frac{1}{2}} \det |\Psi_{1}(i)\overline{\Psi_{1}}(2)....\overline{\Psi_{n}}(N-1)\Psi_{n+1}(N)|$

and

(Ψ'_{p} and Ψ''_{p} differ only in the spin part of the wave function and are therefore orbitally and energetically degenerate. They therefore appear with equal weight in (7))。 The upper sign in (7) leads to one of the triplet state wave functions, and the lower one to the singlet state, which is of interest in the calculation of transitions to the ground state.

The energy $E_p = \int \Psi_p^* \mathcal{H} \Psi_p d\mathcal{I}$ of the singlet first excited state, on substituting for Ψ_p and ${\mathscr H}$ from (7) and (1), becomes

 $E_{p} = \frac{1}{2} \left[E_{p}' + E_{p}'' - 2 \int \Psi_{p}' \left\{ \sum_{i=1}^{n} H(i) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{e^{2}}{\lambda_{ij}} \right\} \Psi_{p}'' d\tau \right]$

where E'_{p} and E''_{p} are the energies of the states Ψ'_{p} and Ψ''_{p} . However, since these states are degenerate but orthogonal because of their spin functions, the term $\int \Psi'_{p} \sum_{i} H(i) \Psi''_{p} dt$ is zero. The above equation therefore simplifies to

$$E_{p} = E_{p}' - \sum_{i \neq j} \Psi_{p}'^{*} \frac{e^{2}}{n_{ij}} \Psi_{p}'' dt \qquad (8.8)$$

 E'_{p} may be evaluated using (2), and the second term by multiplying the two determinants Ψ'_{p} and Ψ''_{p} together with the factor e^{z}/π_{ij} expanding the molecular orbitals Ψ in terms of etomic orbitals π , and integrating over orbitaland spin-space. All the terms in (8) will then involve only the four parameters α , β_{o} , A and B.

The energy of the lowest-energy singlet-singlet transition (which is usually assumed to be responsible for Clar's p-bands) is then the difference between E_p and E_g . Since Not appears as a term common to both these energies, the p-band transition energy becomes a function of only the three parameters β_o , A and B.

Now the expression for E_p contains terms which are Very tedious to evaluate, and we shall consider the ground and excited states of a molecule to be described purely by the highest bonding and lowest antibonding molecular orbital, treating the other π electrons as a "closed shell".

Making this approximation, the energy of the p-state is

$$E_{p} = I_{-1} + I_{1} + \int |\Psi_{-1}(i)|^{2} \frac{1}{\lambda_{ln}} |\Psi_{1}(2)|^{2} d\pi + \int |\Psi_{-1}(i)|\Psi_{1}(i)| \frac{1}{\lambda_{ln}} |\Psi_{-1}(2)|\Psi_{1}(2)| d\pi(2) d\pi$$
where I_{-1} and I_{1} are respectively the energies of the
highest bonding and of the lowest antibonding Hückel
molecular orbitals. Expanding the two molecular integrals
in terms of atomic integrals, and making use of the Pople
approximations described in $\int g_{0,1}$, we have

$$\int |\Psi_{-1}(i)|^{2} \frac{1}{\lambda_{12}} |\Psi_{1}(2)|^{2} d\pi = A \sum_{\lambda}^{N} C_{\lambda_{1}-1} C_{\lambda_{1}}^{2} + B \sum_{\lambda=0}^{N} C_{\lambda_{1}-1} C_{\lambda_{1}}^{2} C_{\lambda_{1}-1} C_{\lambda_{1}}^{2}$$

$$\int \Psi_{-1}(i) \Psi_{1}(i) \frac{1}{\lambda_{12}} \Psi_{-1}(2) \Psi_{1}(2) d\pi = A \sum_{\lambda=0}^{N} C_{\lambda_{1}-1} C_{\lambda_{1}}^{2} + B \sum_{\lambda=0}^{N} C_{\lambda_{1}-1} C_{\lambda_{1}}^{2} C_{\lambda_{1}-1} C_{\lambda_{1}}^{2}$$

:
$$E_p = \overline{I}_{-1} + \overline{I}_{+} + 2A \sum_{n=1}^{N} c_{n,-1}^{4}$$
 (8.9)

The explanation of the last step is as follows. In an alternant aromatic hydrocarbon, $C_{r,i} = \pm C_{r,-i}$, the sign depending upon whether the carbon atom <u>r</u> is a member of the arbitarily assigned "starred" or "unstarred" set. In an <u>alternant</u> aromatic hydrocarbon, any bond r-s must be formed between two atoms of different sets, and so $C_{r,1}C_{s,1} = -C_{r,-1}C_{s,-1}$. Hence $C_{r,-1}C_{r,1}C_{s,-1}C_{s,-1} = -C_{r,-1}C_{s,-$ For comparison with the above treatment of the first excited state we require to calculate the energy of the ground state considering only the doubly-filled highest bonding molecular orbital V_{-1} . This energy is

-130-

$$E_{g} = 2 I_{-1} + \int |\Psi(i)|^{2} \frac{1}{\lambda_{12}} |\Psi(2)|^{2} dz$$

Expanded in terms of atomic orbitals this becomes

$$E_{g} = 2 I_{-1} + A \sum_{n=1}^{N} c_{n,-1}^{4} + B \sum \sum c_{n,-1}^{2} c_{n,-1}^{4}$$
(8.10)

The energy of the p-band transition is therefore the difference of (9) and (10):

$$E_{p}-E_{q} = I_{1}-I_{-1} + A \sum_{\mathcal{R}}^{N} c_{\mathcal{R},-1}^{*} - B \sum_{\mathcal{R} \neq S}^{N} \sum_{\substack{\mathcal{R},-1 \\ \mathcal{R} \neq S}}^{N} c_{\mathcal{R},-1}^{*} c_{\mathcal{S},-1}^{*}$$
(honded)

and substituting $I_{\pm i} = \alpha \neq |\chi_i| \beta_0$ where x_i is the "Hückel number" of the highest bonding molecular orbital, we have

$$E_{p} - E_{g} = -2 |x_{1}|\beta_{0} + A \sum_{r}^{N} c_{r,-1}^{4} - B \sum_{\substack{\lambda \neq s \\ \lambda \neq s}}^{N} \sum_{\substack{\lambda \neq s \\ (londed)}}^{N} c_{\lambda,-1}^{2} c_{s,-1}^{2}$$
(8.11)

Results.

Using the molecular orbitals calculated using Simple Hückel theory, the coefficients of A, B and β_{\circ} are shown in Table XIII :

Nolecule	x,	$\sum_{\mathcal{R}}^{N} C_{\mathcal{R},-1}^{\mu}$	$\sum_{\substack{n=1\\n \neq s}}^{N} \sum_{\substack{n=1\\n \neq s}}^{N} c_{n-1}^{2} c_{n-1}^{2}$ (bonded)	19 (cm') exptl.
bonzeno	1.000008.	0.166667	0.333333	48,356
naphthalene	0 .6180380	0.150000	0.119098	34,900
anthracene	0.37535ße	0.121792	0.066258	26,450
tetracene	0.29496p.	0.104669	0.041155	21,150
pentacene	0.21969po	0.092667	0.027355	17,380
hexacene	0.16938Bo	0.083462	0.019066	14,590

Table XIII

Since three equations are sufficient to determine the unknown parameters β_{e} , A and B, the figures for naphthalene, tetracene and pentacene (benzene showed anomalous behaviour) were substituted into equation (11), and the parameters were thereby calculated to be as follows:

βο	æ	-27,280	cn]		77.99	kcel	mole	e	-3.38	οV
A	•	88,050	l. ED	m	251.73	kcal	molc_j	Ð		
ß	0	101,000	cm_]		288.76	kcal	molo	8	12.52	ø₹

When these values are substituted into (11), the calculated transition energies of the p-bands for enthracene and hexacene are found to be 24,511 and 14,664cm⁻¹ respectively. The volues found by Clar are 26,450 and 14,590cm⁺¹.

The value of β . calculated here is somewhat greater in magnitude than that calculated (S6.4) neglecting electronic repulsions (-62.7 kcal.mole⁻¹). This is probably because in the latter case (the Hückel method) an <u>implicit allowance</u> was made for these repulsions and so the energy value of β , is increased.

It is interesting that the value of A, which is the repulsion energy between two electrons in the same atomic orbital, i.e. $\int |\chi_{A}(t)|^{2} \frac{d^{2}}{\lambda_{A}} |\chi_{A}(2)|^{2} dx$ (called by Pariser and Parr³⁷ the (11|11) integral) is so close to the value calculated by Parisor and Parr (11.08eV) from ionisation potentials and electron affinities. The quantity B is the repulsion between two π electrons at a bond length (~ 1.4Å) apart, and is sometimes called the (11|22) integral. Its value should therefore be less than that of A, though from our calculation, the opposite is true. The cause of this anomaly is probably due to the fact that the calculation of B involves a very small difference between two large quantities, thus resulting in an inaccuracy in the calculated value of this quantity.

-134-

References

E. Hückel, Z. Physik, 70, 204 (1931). 1. R. S. Mullikon, C.A. Ricke and W. G. Brown, J.Amer. Chem. Soc., 2. 63, 41 (1941). H. C. Longuot-Higgins and L. Salon, Proc. Roy. Soc. A251,172 (1959). 3. C. A. Coulson, Proc. Roy. Soc., A159, 413 (1939). 4。 C. A. Coulson, Proc. Roy. Soc., A207, 91 (1951); 5. J. Phys. Chen., <u>56, 311 (1952)</u>. R. Daudel, R. Lefobre and C. Moser, Quantum Chemistry, 6. Interscience Publishers, New York (1959). A. Streitwiczer, Melecular Orbital Theory for Organic Chemists, 7. John Wiley & Sons, Inc., New York (1961). 8. T. H. Goodwin, J. Chem. Soc., 1960, 485. 9. K. Fries, R. Walter and K. Schilling, Ann., 516, 248 (1935). 10. E. Clar, <u>Tetrahedron</u>, 5, 98 (1959). 11. E. Clar, Arousticche Kohlenu asserstoffe, Springer-Verlag, Berlin (1952). 12。 L. Clar, Totrahedron, 6, 355 (1959). 13. E. Clar, Zeit. für Chemie., 2, 35 (1962). 14. E. Clar, Tetrahedren, 2, 202 (1960). 15. E. Clar, <u>Tetrahedron</u>, 18, 1471 (1962). C. A. Coulson and R. Daudel, Dictionary of Values of Molecular 16. Constants, Volume II. Céntre de Chimie Theorique de France, Paris (1955). 17。 L. Pauling, L. O. Brockway and J. Y. Beach, <u>J.A.C.S.</u>, <u>57</u>, 2705 (1935). 18. L. Pauling, The Nature of the Chemical Bend, pp.195-201, 232-239 Ithaca (1960). A. Pullman, <u>Ann. Chim.</u>, 2, 5 (1947); see also C.A. Coulson, Ref.5. H. N. Shrivastava and J.C. Speekran, <u>Proc. Roy. Soc</u>., <u>A257,477</u> (1960). 19. 20。 21. D. W. J. Cruickohank and R. A. Sparks, Proc. Roy. Soc., A258, 270 (1960). **22**。 I. L. Karle, J. Chem. Phys. 20, 65 (1952); E. G. Cox, D. W. J. Cruickshamk and J.A.S. S. ith, Proc. Roy. Soc., A247, 1 (1958); A. Almenningen, O. Bastiansen and L. Vernholt, Kul. Norske Vid. Selak. Skr. No.3 (1958); A. Langaeth and B.P. Stoicheff, Canad. J. Phys., 34, 350 (1956). J. B. Nelson and D.P. Hiley, Proc. Phys. Soc., 57, 477, 486 (1945). 23。 Originally D.M. Burno and J. Iball, Proc. Roy. Soc. A257, 491 (1960), 24: corrected values in Nof. 21. J. Barriel and J. Metzger, <u>J. chim. phys.</u>, <u>47</u>, 432 (1950). For further references see D. R. Lide, <u>Tetrahedron</u> 17, 125; 25。 26 B. P. Stolchoff, ibid, 135; O. Bastiansen and M. Trastteberg, ibid, 147 (1962). C. A. Coulson, Contribution à l'Étude de la Structure Moleculaire 27. (Victor Henri Memorial Volume) Descer, Liège (1948). N. J. S. Downs and H.N. Schweising, Tetrahedron, 2, 166 (1959). 28. C. A. Coulson and W. T. Diron, <u>Retrahedron</u>, 17, 215 (1962). 29. For example this repulsion may be the cause of the abnormal bond **3**0。 lengths in Ref. 20.

- 31. E. Clar, J. Chen. Soc. (1959) 142.
- J. J. McChure, J. Chem. Phys. 22, 1256, 1668 (1954);
 J. W. Sidman, Abid, 115, 122 (1956).

-135-

- 33. For a very comprehensive collection see S. L. Altmann, <u>Quantum Theory, Vol.11</u> (Edited by D. R. Bates), the Academic Press, New York (1962); pp.175-182.
- 34. See for example "Modern Computing Methods", National Physical Laboratory, H.H. Stationery Office, London (1961).
- 35. See also Clarkson, Coulson and Goodwin, <u>Totrahedron</u> <u>19</u>(1963) (in press).
- 36. J. A. Pople, Transactions of the Faraday Society, 49, 1375 (1953).
- 37. R. Pariser and R. G. Parr, J. Chem. Phys., 21, 466, 767 (1953).

APPINDIX A

Energy eigenvalues, bond orders, bond lengths and β^1 values of some benzenoid aromatic hydrocarbons as calculated using the Coulsen and Goodwin bond order/ bond length curve and the Mulliken, Riecke and Brown bond length/ β^1 value curve.

An asterisk (*) denotes the energy eigenvalues and bond orders calculated by other workers, and found in Ref. 16.

Table 1: Anthracene

(a)	Energy	eigenvalues	[∞] Σί
С ₂₄ вуша.	I#	II	III

	24-2	-	**	4.44
	A,	2,41421	2。188035	2.116719
	4	1.41421	1.385490	1.387694
	^B 2	2.00000	1.875232	1.796839
	-	1.00000	0.845830	0.768595
	A_2	1.00000	1.001062	0.988433
	B	1.41421	1.363392	1.359914
	-	0.41421	0。490134	0.567499
matha jada	Summe annander ander anne anne anne anne		an taga ta fala anna an anna 1809 ann a taga an	
	<u>} (-x;)</u>	9.65684	9.149176	8。985694

(b)	Bond	orders,	bond	lengths	and	ß٥	values.

Bond	p ^{I*}	rI	β°I	p ^{II}	FII	β, ^{II}	P ^{III}	r ^{III}	β, ^{III}
1 2 1 4 2 3 2 6 4 5	•535 •738 •485 •606 •586	1.429 1.370 1.450 1.403 1.410	0.860 1.065 0.800 0.945 0.920	.490 .787 .486 .630 .520	1.449 1. 39 7	0.758 1.095 0.735 0.972 0.842	.437 .827 .498 .647 .464	1.476 1.357 1.443 1.392 1.460	0.750 1.111 0.808 0.990 0.750

mean = .604

Table 2: Tetracenc

(a) Energy eigenvalues - z_i

	C _{2v} syum.] #	II	III
	A ₁	2.46673	2.212575	2.171466
		1.77748	1.662737	1.624727
\wedge \wedge 1 \wedge 3 \wedge		1.00000	0.814609	0.764594
	B ₂	2.19353	2.005262	1.917537
		1.29426	1.229272	1.248572
	. A2	1.19353	1.171060	1.129985
		0.29496	0。363474	0.449125
	B ₁	1.46673	1.422235	1.418260
		0.77748	0.807688	0.825527
	<u> </u>	12.46470	11.688911	11.549794

						8	
(b)	Bond	orders,	bond	lengths	and	βÅ	valuos

Bond	p ^{I*}	R	β ^{lI}	II P	r II	β ^{lII}	p	FIII	βlIII
13	° 6 18	1,400	0.960	.662	1.388	1.003	.703	1.377	1.039
17	. 584	1.412	0.920	. 584	1.412	0.920	。570	1.417	0.902
23	.530	1.432	0.855	.476	1.454	0.716	۰ 3 95 -	1.502	0.662
25	.741	1.370	1.067	.795	1.361	1.099	。850	1.355	1.118
34	.475	1.454	0.785	.457	1.464	0.760	.467	1,458	0.742
56	.581	1.412	0.915	。508	1.439	0.827	.435	1.478	0.726
78	.458	1.463	0.760	.438	1.476	0.730	.460	1.462	0° 7 65
				AND THE OWNER OF THE OWNER		-			

mean =.594

Table 3: Pentacone

(a) Energy eigenvalues -x_i

	2v ^{Symm} .
	A ₁
A A 3 4 5 2 7	^B 2
	A2
10	Bl

Ĩ

C _{2v} syme.	ά Ι	II	III
Al	2.49551	2.225505	2.206876
	2.00000	1.828067	1.786598
	1.21969	1.122191	1.115375
^B 2	2.30278	2.081386	2 .039275
	1.61803	1.502393	1.475489
	1.00000	0.796976	0° 735950
A2	1.30278	1.271932	1.284300
	0.61803	0。661824	0.702414
Bl	1.49551	1.453092	1.486768
	1.00000	0。998938	1.019325
	0.21969	0.276733	0.338755
a Theory of the state of the other states and a state of the states of t	- Salah particular - Villandar Salah - Salah	a and a subscription of the subscription of th	
$\sum_{\lambda=1}^{2} (-x_{j})$	15。27202	14,219037	14.191125
STATE CONTRACTOR CONTACT AND CONTRACTOR		ana tana mana mana ang ang ang ang ang ang ang ang ang	

(b) Bond orders, bond lengths and β^{1} values

Bond	p ^{L*}	r	β ¹¹	P	r I I	βl ^{li}	p ¹¹¹	r ¹¹¹	β ¹¹¹¹
13	۰5 7 9	1.413	0.915	. 568	1.417	0.900	。 543	1.420	0.870
15	622 ،	1.399	0.965	.673	1.385	1.013	.713	1.375	1.048
25	<u>。</u> 529	1.432	0.853	.471	1.456	0.731	.417	1.489	0.698
27	。742	1.369	1.067	.798	1.361	1.100	。840	1.356	1.115
34	.451	1.466	0.750	。417	1。489	0.698	。418	1.488	0.699
39	。596	1.407	0。930	.615	1.401	0.956	。627	1.398	0。969
56	。4 7 2	1.455	0.782	.446	1.471	0.744	°433	1.479	0.723
78	•579	1.412	0.915	₅503	1.441	0.822	。 440	1.475	0.734

шеал: "587

(a) Energy eigenvalues -x.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
11 5 7 9	

3 /		-Generatere (2	Ĩ,
С _{2v} вуша.		II	III
A	2.512943	2.232924	2.207674
	2.141658	1.936735	1.875294
	1.501509	1.375365	1.362615
	1.000000	0.783655	0.711801
B ₂	2, 370021	2.125681	2.072688
	1.843487	1.680765	1.640123
	1.169375	1.045237	1.036887
A2	1.370021	1.334196	1.343294
	0.843487	0.861720	0.884835
	0.169375	0.216767	0.281569
B ₁	1.512943	1.473341	1.514546
-	1.141658	1.127141	1.127461
	0.501509	0。549197	0.606375
$\sum (-x_i)$	18.077986	16.742724	16.665162
	a and the second se	A REAL PROPERTY OF A REAL PROPER	A REAL PROPERTY OF THE OWNER AND A REAL PROPERTY.

(b) Bond orders, bond lengths and  $\beta^1$  values

Bond	pI	P	β ^{lI}	p ^{II}	R R	βlII	PIII	rIII	βl ^{III}
14	。599	1.406	0.938	。627	1.398	0.970	°632	1.390	0。996
1 10	。 <b>59</b> 0	1.409	0.926	. 598	1.407	0.937	. 596	1,408	0.934
24	•577	1.413	0.910	. 561	1.420	0.891	. 526	1.421	0.848
26	.623	1.398	0.963	.677	1.384	1.017	.731	1.371	1.061
36	。528	1.432	0.853	.469	1.457	0.736	. 394	1.503	0.660
38	.742	1.369	1.068	。799	1.361	1.101	.852	1.355	1.118
45	.448	1.468	0.745	.408	1.494	0.683	.401	1.498	0.672
67	.471	1.455	0.781	。 <b>442</b>	1.473	0.738	。427	1.483	0.713
89.	. 578	1.413	0.913	. 501	1.442	0.819	。427	1.483	0.713
10 11	.443	1.470	0.740	。4 <b>:00</b>	1.499	0.669	° 393	1.503	0。659

uean = .583



(a) Emergy eigenvalues -xi



С _с вулаа.	ľ ×	II	III
A _r	2.43476	2.197145	2.176692
	1.51673	1.481947	1.449152
	1.30580	1.217168	1.190297
TT	0。60523。	0.656614	0.703350
AII	1.95063	1.882546	1.894248
	1.14238	1.059776	1.048613
	0.76905	0.756552	0.784630
$\sum_{i} (-x_i)$	9.72458	9。251750	9.246983

(b)	) Be	nd	orders,	bond	lengtha	and	βŤ	values
-----	------	----	---------	------	---------	-----	----	--------

Bond	p ^{I*}	r ^I	$\beta^{I}$	II P	rll	β ^{II}	P	^s III	$\beta^{III}$
12	₀575	1.414	0.910	₀5 <b>7</b> 7	1.414	0.911	。578	1.414	0.912
16	。506	1.441	0.825	.4 <b>3</b> 9	1.475	0.733	. 381	1.511	0.641
18	° 542	1.426	0.867	。583	1.412	0.919	.624	1.399	0.966
23	<b>.707</b>	1.377	1.042	.725	1.372	1.057	₀733	1.371	1.062
34	。623	1.398	0.962	。598	1.406	0.938	. 590	1.409	0.928
45	.702	1.378	1.037	.720	1.373	1.053	.728	1.372	1.059
58	<u>ہ 5</u> 99	1.408	0.925	。590	1.409	0.927	° <b>28</b> 8	1.410	0.925
67	°775	1.364	1.088	<b>.831</b>	1.357	1.112	.872	1.353	1.124
89	<b>، 461</b>	1.461	0.766	°400	1.495	0.680	.351	1.531	0.635

-



1

. 1

(e)	Energy	olgonvalues	4774 612 + 612 +
-----	--------	-------------	---------------------

3 4	C _S symme	I *	E S	III
	A ¹	2.51457	2.234765	2.201942
		2.00000	1,829125	1.772780
		1.50352	1.434988	1.414667
		1.23542	1.168758	1.160296
13 12		1.00000	0,929244	0.919788
»، در،	ŦT	0.43716	0.513814	0.587725
	AII	2.28379	2.087312	2 <b>.07</b> 9424
		1.59703	1.520429	1.517902
			1.244210	
			0.855558	
	PERSONAL AND A DESCRIPTION OF A DESCRIPTION	0.52086	0.583186	0,632148
	$\sum_{i} (-x_{i})$	15.38134	14.401389	14.359.397

(b) Bond orders, Bond lengths and  $\beta^1$  values

Bond	P I×	z.	βl ^I	II P	E	βl ^{II}	IIZ P	r III	β ^{1III}
12	₀5 <b>7</b> 8	1.413	0,912	。570	1.417	0.902	:551	1.420	0.879
1 10	.653	1.389	0.997	.706	1.377	1.042	.733	1.370	1.065
23	。548	1.424	0.875	.519	1.435	0.839	.494	1.445	0.784
27	.498	1.444	0.815	. 519	1.435	0.839	.557	1.420	0.886
34	.728	1.372	1.058	.767	1.365	1.084	.793	1.361	1.098
45	。596	1.406	0.932	.544	1.420	0.870	. 509	1.439	0.829
56	.729	1.372	1.059	.769	1.365	1.086	.795	1.361	1.099
67	.545	1.425	0.870	.514	1.437	0.834	.490	1.447	0.762
78	. 584	1.411	0.919	. 579	1.413	0.914	.559	1.420	0.888
89	.634	1.395	0.976	.688	1.381	1.027	.729	1.372	1.059
910	.501	1.443	0.820	.495	1.445	0.791	<u>.</u> 490	1.447	0.762
912	.484	1.450	0.798	. 394	1.503	0.661	. 318	1.555	0.526
1011	.435	1.475	0.725	. 349	1.532	0.635	. 296	1.572	0.483
1213	。790	1.362	1.095	.858	1.354	1.120	.905	1.350	1.133



(a) Energy Eigenvalues -z;



(b)	Bond	orders,	Bond	lengths	and	ß	valuos
-----	------	---------	------	---------	-----	---	--------

#### Table 8: Chrysene

.

8

# (a) Energy eigenvalues -x;

	С ₂ вуши.	Ĩ*	II	TI
	A	2.4990	2.228365	2,211558
		1.7008	1.649414	1.646265
		1.2858	1.200426	1.185362
		0.7923	0.738649	0.758870
		0.5201	0.570916	0.620391
	B	2.1655	2.012092	2.009877
		1.5398	1.482406	1.453109
		1.2164	1.096295	1.077060
		0.8753	0.891976	0.902400
and the second se	$\sum_{i}(-x_{i})$	12,5950	11,870540	11.864890

<b>(</b> b)	Bond	orders,	bond	lengths	and	pl	values

Bond	p P	rI	βlI	P	PII	β ^{lII}	p ^{III}	rIII	βl ^{III}
12	.754	1.367	1.075	。802	1.360	1.102	°834	1.356	1.113
19	\$538	1,428	0.863	.490	1.447	0°806	.449	1.469	0,74 <b>7</b>
23	.521	1.435	0.842	·。471	1.456	0.781	。432	1.480	0,721
34	.568	1.416	0.900	。562	1.419	0.892	<b>۵554</b>	1.422	0.883
38	₀535	1.429	0 _° 860	。572 .	1.416	0。905	_و 609	1.403	0.950
45	。712	1.376	1.046	.736	1.370	1.064	.750	1.368	1.074
56	.617	1.400	0。958	。586	1,411	0。923	<b>57</b> 0ء	1.417	0。902
67	<u>,</u> 707	1.377	1.042	.731	1.371	1.061	c 746	1.368	1.071
78	.583	1.411	0.915	.574	1.415	0.908	<b>。564</b>	1.419	0.895
8 10	.476	1.454	0.786	.442	1.474	0.737	.409	1.494	0.684
9 10	.573	1.415	0.905	.637	1.395	0.980	.694	1.379	1.032

## Table 9: 3-4 benzophenanthrene

# (a) Energy eigenvalues -x;



С _в ауша.	Ĩ*	II	III
<b>1</b>	2.5070	2.231.960	2.332723
	1.7694	1.694779	1.757159
	1.4142	1.303874	1.297956
	1.1234	0.988157	0.954535
***	0.5676	0.601381	0.738167
AII	2.1358	1.998487	1.996029
	1.4142	1.385533	1.370725
	1.0000	0.984372	0.992630
	0.6621	0.682331	0.717212
$\sum_{i} (-x_{i})$	12.5937	11,870874	12.157136

(b) Bond orders, Bond lengths and  $\beta^1$  values

Bo	nd	]≠ P	E	6 ₁₁	pII	EII	81 ₁₁	P ^{III}	, III	pl ^{III}
1	2	. 578	1.413	0.913	.570	1.417	0.902	. 570	1.416	0.903
1	6	.533	1.430	0.856	.570	1.417	0.902	.622	1.399	0.964
1	9	<b>.</b> 489	1.447	0.805	.456	1.465	0.759	. <b>371</b>	1.517	0.625
2	3	.709	1.377	1.044	.733	1.371	1.062	.743	1.369	1.069
3	l _a	.616	1.400	0.956	. 585	1.411	0.921	.574	1,415	0.907
4	5	.712	1.376	1,046	.736	1.370	1.064	.747	1.368	1.072
5	6	<u>,</u> 570	1.416	0,902	. 564	1.419	0.895	.560	1.420	0.890
6	7	. 519	1.436	0.839	<u>.</u> 469	1.458	0.778	<u>414</u>	1.491	0.692
7	8	_{.9} 762	1.366	1.080	e08,	1.359	1,105	.861	1.354	1.121
8	io	.522	1.435	0.845	.475	1.454	0.785	384	1,509	0,646
9	10	. 574	1.414	0.906	.638	1.394	0.981	.769	1.365	1.086
		l		THE OTHER DESIGNATION			i 17 yant want data an	l Maria and Arian Card		P Name of the second s

Table 10: Picene

,

C syrm.	I*	II	III
Å ₽	2.53480	2.681167	2.224165
	1.93633	1.925163	1.845549
	1.56112	1.641610	1.470898
	1.20163	1.112136	1.046119
	1.00000	0.982602	0.992512
	0.50192	0.460636	0.578872
AII	2.29599	2.196601	2.080793
	1.53446	1.703137	1.516044
	1.36559	1.328438	1.204040
	0.85948	0.895510	0.844055
	0.68030	0.808627	0.755182
[ <u> </u>	15.47162	15.735627	14.498228

(b) Bond orders, Bond lengths and  $\beta^1$  values

Bond	P P	r	βlI	p II	FI	βl ^{II}	p ^{III}	»III	PLII
12	.471	1.456	0.781	. 380	1.511	0.640	. 359	1.525	0.603
1 10	. 554	1.421	0.883	. 598	1.407	0.937	.553	1.422	0.881
1 12	. 563	1.418	0.892	.607	1.404	0.947	。650	1.391	0.992
23	. 586	1.410	0.920	.591	1.409	0.928	. 583	1.412	0.918
27	. 537	1.428	0.861	. 533	1.412	0.919	.618	1.400	0.960
34	.705	1.377	1.040	.724	1.373	1.056	.736	1.370	1.063
45	.619	1:399	0.960	.592	1.409	0.929	.578	1.414	0.913
56	.710	1.376	1.045	.735	1.370	1.064	.747	1.368	1.071
67	<del>،</del> 570	1.416	0.902	. 561	1.420	0.891	.555	1.422	0.885
78	.517	1.437	0.836	.477	1.453	0.786	。428	1.482	0.715
89	.758	1.367	1.077	.763	1.366	1.082	.821	1.358	1.110
9 12	.552	1.430	0.857	.554	1.420	0.882	.475	1.454	0.787
10 11	.732	1.371	1.061	.687	1.381	1.026	.744	1.369	1.070
12 13	. 493	1.446	0.810	.401	1.498	0.672	.440	1.475	0.733

Table 11: 1-2,3+4 dibensenthracene



C _s symm.	Į*	े 	III
Al	2.5588	2.253620 2	.205929
	2.2219	2.053335 2	.042831
	1.7223	1.623528 1	.607857
	1.3165	1.212531 1	.167415
	1.2020	1.095837 1	.064048
TT	0.7140	0.707760 0	.750653
AII	1.9711	1.908333 1	.952182
÷	1.3797	1.302817 1	.282524
	1.0949	1.039925 1	.032103
	0.7908	0.807979 0	
and the second second second second	0.4991	0.589557 0	.651802
$\sum_{i} (-x_i)$	15.4711	14.575221 14	.585467

						1.000	a la companya a	J
					:			
<b>(</b> b)	Bond	orders,	bond	longthe	and	βl	values	

Bo	nd	p Iv	2.I	βlI	I II P	FII	βl ^{II}	p III	F	βl ^{III}
1	2	.606	1.403	0.945	.624	1.399	0.967	635	1.395	0.978
1	8	.565	1.418	0.895	.608	1.404	0.948	.642	1.393	0.985
1	10	.420	1.485	0.702	. 324	1.550	0.538	.239	1.636	0.390
2	3	.686	1.382	1.024	.692	1.380	1.030	.690	1.380	1.029
3	l <u>à</u>	.641	1.393	0.985	.633	1.396	0.976	.637	1.395	0.980
4	5	.687	1.381	1.025	.692	1,380	1.030	.690	1.380	1.028
5	8	.606	1.403	0.945	.624	1.399	0.967	.636	1.395	0.979
6	10	.658	1.388	1,000	.717	1.374	1.050	.754	1.367	1.076
6	12	.575	1.414	0.910	.559	1.420	0.888	.536	1.428	0.851
7	12	.548	1.424	0.875	.518	1.435	0.839	.497	1.444	0.814
7	14	.727	1.372	1.057	.767	1.365	1.084	.792	1.362	1.097
8	9	.420	1.485	0.702	. 324	1.550	0.538	.237	1.639	0.386
10	11	.513	1.438	0.833	.503	1.441	0.822	。503	1.441	0.821
12	13	.503	1.442	0.848	.535	1,429	0.858	.572	1.416	0.905
卫	15	.598	1.406	0.935	.547	1.424	0.874	.514	1.437	0.834

Table 12: 1-2,7-8 dibensenthrasone

(a) Energy Eigenvalues -x_i



(b) Bond orders, bond lengths and eigenvalues

Bo	nd	p ^{I#}	e _l	β1	p II p	5	β ¹¹¹	PIII	r ^{III}	81 ^{III}
1	2	.454	1.465	0.754	. 390	1.505	0.656	. 331	1.545	0.551
1	10	.513	1,438	0.833	.530	1.431	0.853	<b>。561</b>	1.420	0.891
1	11	。623	1.398	0,965	.646	1, 392	0,989	.655	1,390	0.997
2	3	. 594	1.407	0,930	, 598	1.407	0.937	. 599	1.406	0.938
2	7	<u>, 544</u>	1.426	0,870	.586	1.411	0.922	:625	1.398	0.968
3	l <u>s</u>	。697	1.379	1.035	.713	1.375	1.048	.720	1.373	1.053
l <u>a</u>	5	.626	1.397	0.968	。606	1.404	0,946	。601	1.406	0.940
5	6	.703	1,378	1.039	.719	1.374	1.052	.724	1.373	1.056
6	7	.579	1.413	0.914	. 585	1.411	0.921	, 590	1.410	0,926
7	8	. 498	1.444	0.815	.424	1,485	0.709	. 359	1.525	0.604
8	9	。780	1.363	1.091	.840	1.356	1.115	.883	1.352	1.127
9	10	<u>.</u> 498	1.444	0.815	.424	1.485	0.709	. 360	1.524	0.605
10	12	.611	1,402	0.951	.633	1,395	0.981	.649	1.391	0:992

Table 13: 3-4,5-6 dibensephenanthrene



Parane and an and an and an		eigenvalu	
C _B symm.	I	I,I	III
A1	2.551076	2.252446	2.236240
	1.944188	1.838455	1.839960
	1.464192	1.367383	1.342954
	1.330644	1.265219	1.242587
	0.787244	0.825155	0.852071
TT TT	0.656705	0.655453	0.694478
AII	2.257206		2.061983
	1.655699		1,555685
	1.218462	,	1.120314
	1.067232	0,941470	
Zahrende and and a strategy of the	0.535449	0.571388	0.618150
$\sum_{i}(-x_i)$	15.468098	14.497223	14.491579

(b) Bond orders, Bond lengths and  $\beta^1$  values

Bo	nd	P P	J.	$\beta^{11}$	p ^{II}	II	β ^{lII}	III P	FIII	91 ₁₁₁
1	2	.51.9	1.436	0.840	.465	1.459	0.773	0.419	1.488	0.701
1	10	. 537	1.428	0.862	.508	1.439	0.828	0.490	1.447	0.806
1	12	. 561	1.419	0.891	<u>.</u> 615	1.401	0.957	0.664	1.387	1.006
2	3	.764	1.366	1.081	.815	1.359	1.107	0.850	1.355	1.118
3	<i>I</i> <u>6</u>	.515	1.437	0.835	.459	1.463	0.763	0.412	1.492	0.689
43	5	. 572	1.415	0.905	. 569	1.417	0.901	0.564	1.418	0.895 j
4	9	.536	1.429	0.860	<b>57</b> 4ء	1.415	0.908	0,613	1.402	0.954
5	6	.710	1.376	1.045	.732	1.371	1.061	0.743	1.369	1.069
6	7	.619	1.399	0.960	.591	1.409	0_928	0.577	1.414	0.911 -
7	8	.706	1.377	1.041	.728	1.372	1.059	0.740	1.369	1.067
8	9	.583	1.411	0.916	.578	1.414	0.912	0.571	1,416	0.904
9	12	.479	1.452	0.790	.438	1.476	0.731	0.394	1,502	0,661
10	11	.746	1.369	1.070	.782	1.363	1.093	0.801	1.360	1.102
12	13	. 520	1.435	0.841	.511	1.430	0.831	0.496	1.444	0.814

Table 14: 1-12 Benzoperylene

(e) Energy eigenvalues -z_i



C _B symm.	Ĩ×	II	HAR.
AI	2.63859	2.306786	2.290028
	2.08009	1.897950	1.887439
	1.59991	1.451827	1.417544
	1.35341	1.282734	1.267798
	1.00000	0。955273	0.952946
77	0.68429	0。664678	0. <b>68</b> 2662
<b>V</b> II	2,19906	2.004267	2.007787
	1.61296	1.539949	1.530808
	1.10504	0.978018	0.992861
	1.00000	0.936343	0.934650
	0.43922	0.486667	0.548312
Σ(-x _i )	15.71257	14.504494	14.512835

(b) Bond orders, Bond Lengths and  $\beta^{1}$  values

Be	nd	P P	T	β ^{lī}	P II	r II	βlII	p III	r ^{III}	β ^{liii}
i	2	. 519	1.436	0.840	.467	1.458	0.775	.425	1.484	0.710
1	9	₀550	1.423	0.8 <b>7</b> 8	.531	1.430	0.854	.516	1.436	0.837
i	11	。545	1.425	0.870	. 588	1.410	0.924	.632	1.396	0.975
2	3	。765	1.365	1.082	.815	1.359	1.107	.847	1.355	1.117
3	4	. 513	1.439	0.833	.458	1.464	0.761	.414	1.491	0.692
4	5	。579	1.412	0.911	。586	1.411	0.922	。588	1.410	0.925
4	8	。530	1.431	0.854	。558	1.421	0.887	。588	1.410	0.925
5	6	。688	1.381	1.025	.701	1.378	1.038	。712	1.375	1.047
6	7	.649	1.391	0.992	。631	1.396	0.974	.615	1.401	0.957
7	13	。627	1.397	0.970	°662	1.387	1.007	.693	1.580	1.031
8	11	.516	1.437	0.836	<b>.486</b>	1.449	0.801	ુ દેશ દેશ દેશ	1.472	0.741
8	13	。537	1.428	0.862	。548	1.424	0.875	₀557	1.421	0.886
9	10	.73L	1.371	1.062	.763	1.366	1.082	。779	1.363	1.091
11	12	.519	1.436	0.839	.510	1.439	0.829	.499	1.443	0.817
13	14	<u>,</u> 427	1.480	0.713	. 342	1.538	0.571	.271	1.600	0.442



	a) Lhergy e	igenvalues	er K
C _{2v} symm.	ALL DESCRIPTION AND ALL DESCRIPTION OF THE PARTY	LT.	I F I
A	2.701727	2.0336394	2.309927
	1.697860	1.550060	1.531703
	1.657582	1.498860	1.483246
	0.866451	0.778193	0.754149
^B 2	2.278414	2.023288	1.976314
	1.317431	1.193701	1.157412
	1.000000	0.876874	0.850116
^A 2	1.891220	1.783562	1.781435
-	1.000000	0.877145	0.850747
	0.704624	0.725136	0.796659
B	2.289795	2.064026	2.076249
	1.346607	1.320229	1.329014
	1.109792	1.055653	1.117063
	0.177427	0.226599	0.295698
$\frac{\sum_{i,j} (-x_{ij})}{\sum_{i,j} (-x_{ij})}$	20.038930	18.310740	18,309732
area hermanika heraran sakali			

(b) Bond Orders, Bond Lengths and  $\beta^1$  values

Boi	nd	pĨ	F	pl ^I	P II	E E	β ^{lII}	I III P	, III	<b>B</b> l ^{III}
1	2	. 541	1.427	0.866	.508	1.439	0.827	0477	1.453	0.790
1	5	。500	1.443	0.818	.496	L . halala	0.814	.505	1.441	0.823
1	8	. 561	1.409	0.928	.612	1.402	0.953	.625	1.398	0.967
2	3	.710	1.376	1.045	.749	1.368	1.073	.738	1.363	1.094
3	l _A	.625	1.398	0.968	.581	1.413	0.916	.532	1.430	0.856
4	6	.637	1.395	0.980	.697	1.379	1.035	.750	1.368	1.075
5	6	. 528	1.431	0.851	.515	1.437	0.835	.490	1.447	0.806
5	1.0	.547	1.425	0.873	. 568	1.417	0.900	. 588	1.410	0.925
6	7	.425	1.485	0.707	.334	1.544	0.556	.258	1.614	0.422
10	11	.477	1.453	0.790	.423	1.486	0.706	. 362	1.523	0.609

2

Table 15: Bisanthracene

Э,	( <i>6</i>	) Energy	eigenvalues	-Z1
	C _{sylem} . (D ₃ )	Į.	ĨĮ	an da an
	$A^2 (A_2)$	2.53209	2,241482	2,202798
	(E)	1.96962	1,905555	1.926641
	(A ₂ )	1.34730	1.258122	1.216782
	(E)	1.28558	1.183776	1.145069
	(E)	0.68404	0.700129	0.764814
	A ^{II} (E)	1.96962	1.905555	1.926641
	(E)	1.28558	1.183776	1.145069
	(A _l )	0.87939	0.911603	0.938581
l	(E)	0,68404	0.700129	0.764814
	$\sum_{i} (-x_{i})$	12.63726	11.990127	12.031209



<b>(</b> b)	Bond	orders,	Bond	longths	and	βl	values	

Bo		p ^I *	E	β ^{ll}	p ^{II}	e ^{II}	βl ^{II}	p ^{III}	FIII	β ^{lIII}
1	7	<b>。690</b>	1.381	1.028	.698	1.379	1.036	<u>.</u> 697	1.379	1.035
1	9	.603	1.404	0.943	.618	1.401	0.960	.627	1.398	0.970
2	9.	.428	1.480	0.715	.340	1.539	0.567	.258	1.614	0.421
2	11	.562	1.419	0.893	.605	1.404	0.944	.641	1.394	0,984
4	5	.637	1.394	0.980	.627	1.398	0.970	.629	1.397	0.972

Tablo	198	1-2, 3-4, 5-6, 7-8 Tetrabenzanthracenc
-------	-----	----------------------------------------

3

10

ĩ

۱

• •				
	C _{2v} symme	Ţ	II	III
	Al	2.605549	2.280060	2.236234
4	,	1.955551	1.842823	1.873071
5		1.314176	1.209359	1.167965
		0.899191	0.914792	0.952894
	^B 2	2.434764	2.158765	2.128793
		1.516274	1.336026	1.277140
		1.305800	1.193717	1.151230
		6.605225	0.608625	0.678059
	A2	1.950627	1.897721	1.921582
		1.142384	1.056279	1.039666
		0.769052	0.770133	0.815974
	Bl	1.989161	1.913451	1.931603
		1.352714	1.248791	1.205150
		0.855187	0.890130	0.922361
		0.577404	0.621662	0.713050
	$\sum_{i} (-x_{i})$	21.273058	19.942334	20.014772

(a) - Energy eigenvalues -- zi

(b) Bond Orders, Bond Lengths and  $\beta^{1}$  values

Bo	nd	P	r	8 ^{1I}	I JI	E II	plII	i III P	r ^{III}	β ^{1III}
1	2	.604	1.405	0.943	.619	1,400	0.960	.628	1.397	0.984
1	6	.426	1.483	0.712	.338	1.540	0.564	.257	1.615	0.488
1	8	.562	1.419	0.892	Å .605	1.405	0.944	.641	1.394	0.996
2	3	.689	1.381	1.028	.697	1.379	1.034	.696	1.379	1.040
3	£3	.633	1.395	0.981	.628	1.397	0.970	.631	1.397	0.987
ፈ	5	.689	1.381	1.027	.696	1.379	1.034	.696	1.379	1.039
5	8	.604	1.405	0.944	.620	1.400	0.961	。629	1.397	0。985
6	7	.538	1.426	0.863	. 567	1,418	0.898	.603	1.405	0.960
6	20	.625	1.398	0.967	.650	1.391	0.992	.659	1.388	1.011
8	9	.425	1.484	0.710	. 336	1.542	0.560	.254	1.619	0.482
	1			1				SCHOOL STREET,	LTRONT THE REAL PROPERTY OF	and the second second

Tablo 18: 1-2 bearpyreme





C _B syma.	Ţ	N.I.	
A]	2.593539	2.278510	2.308632
	2.103536	1.965829	2.001557
	1.555940	1.497120	1.491530
	1.333928	1.276314	1.277119
	1.000000	0.942716	0.972772
TT	0.496971	0.559009	0.628243
AII	2.015075	1.884231	1.924175
	1.350858	1.201713	1.193571
	1.000000	0.942127	0.960528
	0,718080	0.698426	0.732580
$\sum_{\hat{\lambda}} \left( \operatorname{arg}_{\hat{\lambda}} \right)$	14.168027	13.245995	13.490707
		an an ay Arta Blaidhline Artagouilt	An cherry of Cherry Spiriture and a straight

(b) Bond Orders, Bond Lengths and  $\beta^{1}$  values

		P	Ŧ	ß]I	E P	E	β ^{lII}	P .	FII	p ^{l III}
1	7	.687	1.581	1.028	.697	1.379	1,041	.696	1.379	1.039
1	9	.604	1.405	0.944	.618	1.400	0.975	。625	1.398	0.982
2	3	. 624	1. III	0.967	.660	1.398	1.012	.677	1.384	1.021
2	9	.427	1.483	0.712	: 340	1.539	0.624	.283	1.586	0.538
2 ]	.2	.539	1.427	0.863	.555	1,422	0.903	.570	1.417	0.925
3	43	.653	1.390	0.995	:638	1.394	0.994	.631	1.397	0:987
La.	5	2683	1.382	1.023	.694	1.379	1.038	.698	1.379	1.042
5	6	.585	L.411	0.921	: 596	1.407	0.953	.604	1.405	0.961
6 1	1	.532	1.430	0.856	:562	1.419	0.915	. 589	1.410	0.946
6 1	3	.505	] . 44]	0;825	<u>.</u> 440	1.475	0.752	: 393	1.503	0.698
7	8	.638	1.395	0.981	.628	1.398	0.984	.631	1:397	0.987
9 1	0	.562	1.419	0.892	.604	1.405	0.961	.631	1.397	0.987
11 1	2	.511	1.438	0,830	.671	1.456	0.806	.423	1.486	0.740
13 14	la	.777	1.364	1.090	.832	1.357	1.118	.86%	1.353	1.125

Ch 11 475 -



Table 19: 1,3,5 triphcnylbonzone

(a) Energy eigenvalues -X_i

(b) Bond orders, bond lengths and  $\beta^1$  values

Bo	nd	P P	F	βlÏ	PII	<b>P</b> II	β ^{lII}	p [.]	rIII	β ^{lIII}
1	2	.676	1.384	1.015	.676	1.384	1.017	。672	1.385	1.013
1	11	.660	1.388	1.001	.661	1.388	1.003	.664	1.387	1.005
2	12	.619	1.399	0。960	.643	1.393	0.896	.656	1.389	0.998
3	ł <u>s</u>	.622	1.398	0.963	.647	1.392	0.990	.658	1.389	1.000
4	5	. 368	1.520	0,620	.249	1.624	0.406	.163	67	<b>4</b> 79
				TOR BUT DE CAMPINE I ANN			NT CHARLES AND A THE CARD	Transa ti Martina		STATE OF CALL STOR

Table 20: p diphonylbonsone

(a) Energy eigenvalues -a,



(b) Bond orders, bond lengths and  $\beta^1$  values

Bor	ıd	T.A P	s.	ß1 ^I	JI P	E .	β ^{l II}	5 III	E III	β ¹¹¹¹
2	2	.677	1.384	1.015	.677	1.384	1.021	.672	1.385	1.019
1	7	.617	1.400	0.960	. 641	1.394	0.996	. 652	1.390	1.005
2	9	.660	1.388	1.001	.661	1.388	1.012	. 664	1.387	1.014
3	l <u>e</u>	.689	1.381	1.028	.689	1.381	1.032	.679	1.383	1.023
3	5	.61.1	1.402	0.951	.654	1.396	0.990	.649	1.391	1.002
5	7	• 375	1.516	0.630	.259	1.613	0.492	.196	1.683	0.371

Table 21: 1-2, 3-4, 5-6 tribenzonthracene

(a) Energy eigenvalues

f 2	8 10	I	11	III
3 4 5	6 7 1	2.575530	2. 320005	2.288920
24	112	2.359275	2.168169	2.149240
23 21		1.973033	1.931914	1.949581
22 20	" INT ]"	1.941084	1.871279	1.888810
	17 15	1.593673	1.527316	1.491491
	16	1.414214	1.316527	1.282760
· · ·		1.312436	1.231490	1.201311
		1.271627	1.186023	1.158650
		1.090294	1.023169	1.019050
		0.877374	0.915455	0.942161
		0.789409	0.804785	0.832900
		0.637066	0.649420	0.695430
		0.522346	0.582527	0.642140
		18.357361	17.528079	17.542444

Table 21 (cont'd)

Bond	pI	Cathorne Contraction (1975)	βl ^I	II P	PII	β ^{lII}	PIII	PIII	β ^{lIII}
1 2	.699	1.378	1.043	.713	1.375	1.055	.719	1.374	1.052
1 26	.625	1.398	0.981	.606	1.404	0.963	.602	1.405	0.941
2 3	.592	1.409	0.949	.596	1.407	0。953	۰ <b>597</b>	1.407	0.935
3 4	.456	1.465	0.786	.401	1.498	0.709	. 354	1.529	0。595
3 24	. 543	1.426	0,896	。580	1.413	0.937	.613	1.402	0。954
45	.612	1.402	0.969	。623	1.399	0。980	.624	1.399	0.967
4 21	。522	1.434	0.872	。549	1.424	0.902	. 582	1.412	0.918
56	635	1.395	0.991	.668	1.386	1.016	。681	1.383	1.021
67	。425	1.484	0.743	. 342	1.537	0.627	<b>.</b> 280	1.589	0.458
6 19	. 528	1.431	0.879	。543	1.426	0。896	. 566	1.418	0.897
78	<b>。6</b> 04	1.405	0.961	.620	1.400	0 _° 977	。629	1.397	0。972
7 12	<b>。56</b> 2	1.419	n. 916	.601	1.406	0.958	。629	1.397	0°9 <b>71</b>
8 9	° <b>6</b> 88	1.381	1.032	.693	1.380	1.037	.691	1.380	1.030
9 10	<b>。6</b> 38	1.394	0.994	.632	1.396	0.988	. 636	1.395	0。9 <b>7</b> 9
10 11	. 688	1. 381	1.031	692	1.380	1.036	.690	1.380	1.029
11 12	<b>.6</b> 05	1.404	0。962	。622	1.399	0.979	.631	1.397	0。974
12 13	.423	1。485	0.740	. 338	1.540	0.622	.275	1.595	0。1 <b>:49</b>
13 14	.605	1.404	0.962	.622	13399	0°9 <b>79</b>	.631	1.397	0.973
13 18	.563	1.419	0.917	。602	1.405	0。959	。629	1.397	0.972
14 15	<b>.68</b> 8	1.381	1.031	。692	1.380	1.036	.690	1.380	1.029
15 16	°639	1.394	0.994	.633	1.396	0.989	.636	1.395	0.9 <b>79</b>
16 17	°088°	1,381	1.031	.692	1.380	1.036	.691	1.380	1.029
17 18	° <b>6</b> 05	1.404	0.962	<b>°6</b> 25	1.399	0。978	.630	1.397	0.973
18 19	.423	1.486	0.740	. 339	1.540	0.622	.277	1.593	0.452
19 20	. 641	1.394	0.996	.675	1.384	1.020	。687	1.381	1.026
20 21	。596	1.408	0.953	.607	1.404	0.964	612	1.402	0.953
21 22	。503	1.441	0.850	。440	1.475	0.763	. 388	1.506	0.652
22 23	.776	1.364	1.098	.830	1.357	1.117	.866	1.353	1.122
23 24	.502	1.442	0.849	.438	1.476	0.760	. 385	1.508	0.648 0.923
24 25	. 578	1.414	0.93%	。582	1.412	0.939	。586	1.411	
25 26	。704	1.377	1.047	.719	1.37%	1.059	.723	1.373	1.055

(b) Bond orders, bond lengths and  $\beta^{1}$  values

Table 22: 3-4, 9-10 dibenzpentaphene

10

5

2

ŧ

V

3

	С _. вуши.	I	II	III
	Al	2,553125	2.316903	2 <b>.289234</b>
8		2.227646	2.058982	2.041862
		1.724539	1.650034	1.607941
9		1.459847	1.363755	1.335319
		1.365020	1.324841	1.295757
12		1.000000	0.920807	0.924340
13		0.816829	0.859885	0.878692
16		0.432088	0.498399	0。561269
	AII	2.427048	2。222142	2.200268
17		1.916930	1.543648	1.864409
		1.543829	1.490411	1.459631
و		1.229280	1.142565	1.134894
		1.196109	1.107341	1.090137
		0.683570	0.699047	0.726269
]		0.582329	0.621470	0.665805
J				
	$\sum_{i}(-x_{i})$	21.15 <b>81</b> 89	20,120250	20 <b>.075827</b>

# (a) Energy Eigenvalues

Table 22 (cont'd)

(b) Bo	nd orders,	bond	lengthe	and	β ^l	veluce
--------	------------	------	---------	-----	----------------	--------

Bo	nd	pl	, R, L	βll	PII	r ^{II}	βl ^{II}	p ^{III}	r ^{III}	βlIII
1	2	.601	1.406	0.958	.619	1.400	0.976	.629	1.397	0.971
1	14	.634	1.396	0.990	.661	1.388	1.012	.668	1.386	1.009
2	3	。502	1.442	0.850	.438	1.476	0.761	<b>。3</b> 85	1.508	0.647
2	11	<b>.5</b> 15	1.436	0.864	.534	1.429	0.887	. 564	1.419	0.895
3	L <u>e</u>	• <b>77</b> 7	1.364	1.098	.831	1.357	1.118	.869	1.353	1.123
4	5	。500	1.443	0.847	.434	1.479	0.755	<b>.3</b> 79	1.511	0。639
5	6	。578	1.414	0.935	. 584	1.412	0.941	.589	1.410	0.926
5	10	. 544	1.426	0.897	. 582	1.412	0.939	.615	1.401	0.956
6	7	.703	1.377	1.045	.717	1.374	1.058	<b>.721</b>	1.373	1.053
7	8	<b>。62</b> 6	1.398	0.982	.608	1.403	0.965	.605	1.405	0.944
8	9	<b>. 69</b> 8	1.379	1.402	.711	1.375	1.053	.716	1.374	1.050
9	10	。594	1.408	0.951	. 599	1.406	0.956	.601	1.406	0.940
10	11	.452	1.467	0.780	. 394	1.503	0.698	. 345	1.535	0.578
11	12	.625	1.398	0.981	。645	1.392	0.999	。649	1.391	0.992
12	13	.609	1.403	0.966	.635	1.396	0.990	。648	1.392	0.991
13	14	.514	1.437	0.863	.530	1.431	0.881	<b>5</b> 55ء	1.422	0.884
13	16	.495	1.445	0.840	.424	1.485	0.741	. 367	1.520	0.616
14	15	.443	1.473	0.767	. 376	1.514	0.674	. 325	1.550	0.539
16	17	.780	1.363	1.100	.839	1.356	1.119	.877	1.352	1.125
							the second second second		an a	and the second second



.



(a) Energy eigenvalues -x_i

ACCEPTED AND A CONTRACT OF A C	ili, ar san persistin siyi Davay genel biresendi	a Andrew and a state of the
I		III
2.525067	2.295729	2.275391
2.289955	2.135487	2.128735
1.968607	1.862506	1.837479
1.592402	1.563450	1.55461 <b>3</b>
1.495587	1.441988	1.425457
1.357875	1.321543	1.314619
1.162639	1.100756	1.097662
1.095007	1.022034	0.998745
0.823052	0.784565	0.793605
0.704514	0.730773	0 <b>。750948</b> 0。522736
0.404791	0.470036	чо <i>зыка</i> ( <i>уч</i>
15.419496	14.731867	14.699990

## Table 23 (contid)

Bond	P		β ¹¹	PII	R II	β ^{1II}	p III	FIII	βl ^{III}
12	.733	1.371	1.070	.772	1.364	1.091	.797	1.361	1.100
1 22	.540	1.427	0.893	.507	1.440	0.856	.482	1.451	0.796
23	. 591	1.409	0.948	. 540	1.427	0.893	.506	1.440	0.825
3 4	.732	1.371	1.069	.771	1.364	1.095	.796	1.361	1.099
45	. 543	1.426	0.896	.511	1.438	0.860	.485	1.449	0.80 ⁰
56	.569	1.410	0.946	. 595	1.408	0.952	。593	1.409	0.930
5 22	.492	1.446	0.836	.501	1.442	0.848	.525	1.433	0.847
67	.638	1.394	0.993	.672	1.365	1.019	.689	1.381	1.028
78	.460	1.462	0.791	.409	1.49%	0.720	.368	1.519	0.618
7 20	<b>.49</b> 6	<u>]</u> . <i>L</i> sky	0.841	°73	1.446	0.837	.504	1.441	0.822
89	.546	1.425	0.897	, 508	1.439	0.856	.479	1.452	0.793
8 <u>1</u> 7	.579	1.413	0.935	.643	1.395	0.998	.695	1.379	1.033
9 10	.748	1.368	1.081	.788	1.362	1.103	.813	1.359	1.106
10 11	•525	1.432	0.876	.486	1.449	0.827	°457	1.464	0.761
11 12	. 567	1.418	0.921	.559	1.420	0.912	.552	1.423	0.880
<b>ļi 16</b>	•533	1.430	0.885	.564	1.419	0.918	。593	1.408	0.931
12 13	.714	1.375	1.055	.757	1,370	1.072	.749	1.368	1.073
13 14	.615	1.401	0.972	.587	1.411	0.944	.572	1.416	0.905
14 15	。709	1.376	1.051	.731	1.371	1.068	.744	1.369	1.070
15 16	. 581	1.413	0.938	.573	1.416	0;928	。562	1.419	0.893
16 17	.481	1.451	.820	.455	1.466	0.784	.434	1.479	0.725
17 18	. <b>52</b> 4	1.433	.875	.467	1.458	0.801	.417	1.489	0.698
18 19	.764	1.365	1.092	.816	1.359	1.114	.852	1.355	1.118
19 20	.507	1.440	0.855	. 547	1.471	0.772	. 398	1.500	0.666
20 21	.620	1.400	0.977	.656	1.389	1.009	.677	1.383	1.018
21 22	.595	1.408	0.952	.603	1.405	0.960	. 599	1.405	0.938
						toosti 200 and 1200 and 1200 and 1200 and	A DESCRIPTION OF THE PARTY OF T	t THE REAL PROPERTY OF THE PARTY OF THE PART	

(b) Bond orders, bond lengths and  $\beta^1$  values

Table 24: Naphthe - (2'-3',6-7) - pentaphone

(a) Energy Eigenvalues -z.



			-
syne.	I	II	LIL
A٩	2.596155	2.321803	2.287053
	2.287050	2.140138	2.140540
	2.000000	1.848289	1.810337
	1.653864	1.583893	1.582493
	1.324922	1.295334	1.293583
	1.182644	1.056526	1.022570
·	1.000000	0.913584	0.901852
	0.527938	0.588817	0.647570
A9 0	2.287050	2.140138	2.140540
	1.653864	1.583893	1.582493
	1.324922	1.295334	1.293585
	1.263077	1.242175	1.241505
	1.000000	0.913584	0.901852
	0.527938	0.590442	0.647570
New WINE CAR STRATE	0.515722	0.588817	0.641455
(-x _i )	21.145146	20.102767	20.134996
A 17 TA	<u>, parantari si ka</u> natari dakan da		



Bond	P	2000 A	β°I	p ^{II}	2 II	β ^{, II}	, p III	F	β° ^{III}
1 12 1 14 2 14 2 16 3 16 12 13 14 15 16 17	.725 .552 .568 .665 .410 .600 .505 .514	1.372 1.423 1.417 1.387 1.493 1.493 1.406 1.441 1.437	1.063 0.905 0.923 1.015 0.721 0.957 0.853 0.853	。757 。531 。553 。720 。315 。559 。528 。506	1.367 1.430 1.442 1.373 1.557 1.420 1.421 1.440	1.088 0.882 0.906 1.060 0.591 0.912 0.880 0.854	6777 514 533 750 252 533 562 503	1.364 1.437 1.429 1.368 1.621 1.429 1.419 1.441	1.091 0.834 0.857 1.073 0.412 0.857 0.857 0.892 0.821

(b) Bond orders, bond lengths and  $\beta^0$  values

Table	25:	1-2,	56	dibenzanthracene
-------	-----	------	----	------------------

	3 2 7 6 9 8
$\checkmark$	

(a) Energy eigenvalues -x_i

C ₂ cymu,	<u>J</u> ¢	II	III
A	2,5212	2.297931	2.272092
	1.9285	1.868925	1.885739
	1.4142	1.383560	1.354457
	1.0696	1.007036	1.009194
	0.7866	0.829201	0.849073
В	2.3059	2.135407	2.116235
	1,6588	1.607519	1.567686
	1.4142	1.319802	1.291535
	1.1834	1.098973	1.083250
	0.6843	0.684260	0.711983
	0.4735	0.540692	0.599867
	17 <del>44-0072-3406-531-1</del> 0		ĨĨŢŢŢŢŎĊĬĬĬŎĬŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ
$\sum_{i}(-x_{i})$	15.4402	14:773305	k.741111

(b) Bond orders, bond lengths and  $\beta^0$  values

Bond	1	p I÷	8	₿° ^I	P	PII	p° ^{II}	p ^{III}	r ^{III}	β° ^{III}
1	2	.451	1.466	0.779	. 591	1.504	0.695	.342	1.537	0.572
1 1	10	.513	1.438	0.862	。529	1.431	0.881	.557	1.421	0.886
1 ]	11	.629	1.396	0.985	.652	1.391	1.005	.658	1.389	1.000
2	3	. 594	1.407	0.951	.600	1.406	0.957	°605°	1.405	0.942
2	7	.544	1.426	0.897	.583	].412	0.940	.615	1.401	0.957
3	ł <u>a</u>	。697	1.379	1.042	.710	1.378	1.052	.715	1.375	1.049
L.	5	.626	1.397	0.983	.609	1.403	0,966	.606	1.404	0.946
5	6	.703	1.378	1.047	.716	1.374	1.057	.719	1.373	1.053
6	7	.579	1.412	0.935	.585	1.411	0.942	. 591	1.409	0。928
7	8	.499	1.444	0.845	.432	1.480	0.752	. 376	1.513	0.633
8	9	.778	1.363	1.099	.853	1.357	1.118	.871	1.353	1.124
9 1	10	.501	1.443	0.848	.435	1.478	0.756	. 381	1.511	0.641
•	12	605	1.404	0.963	.627	1.398	0.984	.638	1.394	0。981

Table 38: Anthrassno (2'-1', 1-2)-anthrassno (a) Energy eigenvalues -x_i



С ₂ еуна.	I	II	III
A	2,542614	2.306891	2.281969
	2.124721	1.977339	1.947379
	1.472215	1.409889	1.415119
	1.346698	1.336567	1.339953
	1.000000	0.956684	0.957879
	0.786504	0.742691	0.748813
	0.348233	0.414353	0.469712
B	2,358475	2.182259	2.175677
	1.826184	1.726534	1.703734
	1.533591	1.479795	1.455302
	1.216572	1.210015	1.209315
	1.115969	0.973528	0.939426
	0.570193	0.630183	0.668390
<u> &gt; (-21)</u>	18,241968	17.346826	17, 312689

(b) Bond orders, bond lengths and  $\beta$ , values

Bo	nd	P	E. I	β'I	II P	ZII Z	e: II	III 2	III E	$\boldsymbol{\beta}_{j,\mathrm{III}}$
1	2	.758	1.366	1.039	.808	1.350	1.111	.842	1.356	1.115
Ì.	Ì3	.531	1.430	0,882	. 479	1.452	0.818	.434	1.478	0.725
2	3	.510	1.438	0.859	.455	1.466	0.783	.410	1.493	0.686
3	ł,	.618	1.400	0.975	.652	1.390	1.005	°641	1.385	1.012
3	12	.494	1.445	0.839	.490	1.447	0.833	. 501	1.442	0.819
4	5	<u>، 5</u> 96	1.407	0.953	.606	1.404	0.963	,604	1.405	0。944
5	6	0.539	1.427	0.892	.506	1.440	0.854	.479	1.452	0.793
5	10	0.491	1.447	0.835	.499	1.443	0.845	.521	1.434	0.842
6	2	0.734	1.371	1.070	.773	1.364	1,097	.799	1.361	1,101
7	3	0.590	1.409	0.947	,538	1.428	0.891	.504	1.441	0.822
8	9	0.733	2.371	1.070	.772	1.364	1.096	.793	1.361	1.100
9	10	0.542	1.426	0.895	. 509	1.439	0.858	° ⁴⁸⁵	1.450	0.797
10	11	0.591	1.409	0.948	. 599	1.406	0.956	. 599	1.406	0.937
	12	0.636	1.395	0.991	.668	1.386	1.016	.682	1.382	1.022
12	14	0.464	2.460	0.797	.419	1.488	0.735	. 383	1.509	0,645
13	14	0.585	A. GLA	0.942	.656	1.389	1.009	.714	1.375	1,048

Table 27: 1-2, 3-4 dihennietrasene

(a) Energy eigenvalues -z_i



Свуша		II.	III
$\mathbf{V}_{2}$	2.568771	2.309339	2,278055
	2.349856	2.165173	2.150507
	1.981455	1.869387	1.854908
	1.567392	1.461518	1.441742
	1.312043	1,227891	1.194291
	1.136554	1.032799	1.019439
	0.726541	0.715493	0.736880
¥,,	1.971116	1.933319	1.952454
	1.441.307	1.410405	1.416562
	1.213829	1.158838	1.145034
	0.914512	0。938548	0。956053
	0.746151	0.763419	0.804433
	0.355697	0.430070	0.495287
$\sum_{i} (-z_i)$	18,285223	17.416200	17.445644

(b) Bond orders, bond lengths and  $\beta^{\scriptscriptstyle 0}$  values

Bo	nd	p	rI	β ^{, Ī}	P II	Il	β° ^{II}	DII P	. III F	9° ^{XII}
1	9	.738	2.370	1.073	.781	1.363	1.100	.810	1.359	1.112
1	11	.535	1.429	0.867	.495	1.445	0.840	.462	1.461	0.794
2	11	.608	1,403	0.965	.632	1.396	0.988	。642	1.393	0.997
2	13	.600	1-406	0.957	.618	1.400	0.975	.627	1.398	0.984
3	13	。555	1.422	0.908	. 524	1.433	0.075	.491	1.447	0.854
3	15	.671	1.335	1.018	.735	1.370	1.071	.776	1.364	1.098
Ед	5	.607	1.404	0.964	.625	1.398	0.982	.636	1.395	0.992
4	15	.419	1.488	0.375	。 530	1.546	0.611	.266	1.605	0.506
4	17	. 564	1.419	0.918	.603	1.405	0.960	.629	1.397	0.985
5	6	.685	1.391	1.029	.688	1.381	1.031	。685	1.362	1.028
6	7	.641	1.394	0.996	.637	1.395	0.993	。642	1.393	0.997
7	8	.685	1.382	1.028	. 687	1.381	1.031	.634	1.382	1.028
8	17	.608	1.403	0.965	。627	1.398	0.983	.638	1.395	0.993
9	10	。585	1.411	0.942	。527	1.432	0.878	.486	1.449	0.828
11	12	.482	1.451	0.821	.477	1.453	0.815	.491	1.447	0.834
13	14	.471	1.456	0.206	.463	1.461	0.795	.481	1.451	0.320
15	16	. 498	1.443	0.845	. 474	1.455	0.811	.455	1.465	0.784
17	18	.418	1.489	0.733	. 327	1.548	0.607	.261	1.611	0,496



(a) Energy eigenvalues -x_i

I	II	III
2.509115	2.234811	2.207084
2.303438	2.086652	2.063815
1.967577	1.836871	1.822231
1.633451	1.544939	1.506144
1.473261	1.400986	1.40 <b>3309</b>
1.349669	1.284117	1.266882
1.179718	1.100182	1.093923
1.086685	0.986837	0.985200
0.845431	0.801479	0.817049
0.687423	0.702903	0.717774
0.327052	0.401739	0.478451
	an ang sa mang tang sa	
15. <b>3</b> 6282 <b>1</b>	14.381521	14.361864

## Table 28 cont³d:

# (b) Bond orders, bond lengths, and $\beta^0$ values

Bond	naration of the second se	E	β ⁰ ^Ι	PII		β ^γ ^{II}	PIII	rIII	β°III
12	.739	1.370	1.066	.790	1.362	1.096	.826	1.357	1.111
1 22	.533	1.429	0.851	.484	1.450	0.799	.442	1.474	0.737
2 3	.503	1.412	0.919	.515	1.437	0.835	.462	1.461	0.768
34	.739	1.370	1.066	.790	1.362	1.097	.827	1.357	1.111
4 5	. 533	1.430	0.856	.482	1.450	0.797	.440	1.475	0.734
56	.613	1.402	0.954	.646	1.392	0.969	.663	1.387	1.005
5 22	.479	1.452	0.793	.471	1.456	0.782	.483	1.450	0.798
67	. 592	1.409	0.929	.604	1.405	0,944	.610	1.403	0。950
78	. 569	1.417	0.902	. 747	1.425	0.874	.512	1.438	0.832
7 20	.466	1.459	0.773	.456	1.465	0.758	.478	1.452	0.792
89	. 64:0	1.394	0.983	.705	1.377	1.041	.755	1.367	1.077
9 10	.492	1.446	0.808	.406	1.495	0.680	. 330	1.546	0.549
9 13	.489	1.448	0.803	.462	1.461	0.768	.447	1.471	0.745
10 11	.785	1.363	1.094	.851	1.355	1.118	.900	1.350	1.132
11 12	.490	1.447	0.806	.405	1.496	0.677	. 326	1.549	0.541
12 13	.584	1.412	0.919	. 595	1.408	0.934	.606	1.404	0.946
12 17	.547	1,425	0.874	. 591	1.409	0.928	.630	1.397	0.975
13 14	. 698	1.378	1.035	.710	1.376	1.045	.710	1.376	1.045
14 15	.630	l. 397	0.973	.616	1.401	0.957	.616	1.401	0.957
15 16	.693	1.380	1.031	.70%	1.377	1.040	.706	1.377	1.042
16 17	. 599	2.406	0.938	.610	1.403	0.951	.617	1.401	0.958
17 18	.443	1.473	0.739	. 365	1.521	0.613	.291	1.577	0.476
18 19	. 659	1.389	1.001	.722	1.373	1.055	.768	1.365	1.085
19 20	.563	1.419	0.894	. 537	1.428	0.862		1.441	
20 21	. 596	1.409	0.934	.610	1.403	0.950		1.401	1
21 22	.611	1.402	0.952	.643	1.393	0.986	。660	1.388	1.002



,



(a) Energy eigenvalues -×:

I	II	III
2.529616	2.242956	2,209721
2.361777	2.133125	2.123053
2.133284	1.936795	1.888552
1.834132	1.690873	1.657985
1.534476	1.466607	1.453244
1.479086	1.381253	1.376889
1.361588	1.319562	1.318965
1.189726	1.141481	1.143207
1.127101	1.033246	1.024455
1.000000	0.856316	0.835975
0.823132	0.787079	0.784596
0.485598	0.555708	0.617625
0.335750	0.411825	0。490295
-Recentlyniae PALLETT (1995) M. Ball		STAL SOUTHING OF THE POLISICAL SUCCESSION OF
18.195264	16.954825	16.924563

Table 29 contods

Bond	P	e den den men en e	β ⁰ ^I	P P	TII B	β°II	pIII	r ^{III}	β° ^{TII}
12	, 581	1.412	0.917	. 574	1.415	0.908	. 553	1.422	0.882
126	.637	1.395	0.979	.691	1.330	1.030	.732	1.371	1.061
23	.546	1.425	0.875	.517	1.436	0.838	.494	1.445	0.810
27	.499	1.443	0.817	。520	1,434	0.842	₀559	1.420	0.889
3 4	.728	1.372	1.059	.767	1.365	11084	.792	1.362	1.098
<u>4</u> 5	• <b>5</b> 97	1.407	0.955	. 547	l.425	0.874	.513	1.437	0.833
56	.727	1.372	1.058	.765	1.365	1.083	۵ <b>791</b>	1.362 -	~1.097
67	. 549	1.424	0.877	. 521	1.434	0.843	<b>。</b> 498	1.444	0.816
78	.575	1.415	0.909	.565	1.418	0.896	. 545	1.425	0.871
89	<b>.6</b> 55	1.390	0.993	.710	1.376	1.045	.745	1.369	1.070
9 10	0 <b>4</b> 33	1.479	0.723	. 345	1.536	0.576	.266	1.605	0.434
926	. 501	1.442	0.819	.493	1.446	0.810	.497	1.444	0.814
10 11	<b>. 6</b> 66	1.386	1.008	.735	1.370	1.064	.784	1.363	1.094
10 23	.488	1.448	0.803	.459	1.463	0.764	. 440	1.475	0.734
11 12	• 557	1.421	0.887	。525	1.435	0.847	.485	1.449	108.0
12 13	. 599	1.406	0.938	.618	1.400	0.960	。627	1.398	0.969
12 21	.468	1.458	0.776	.459	1.463	0.763	.482	1.451	0.796
13 14	.609	1.403	0.949	.637	1.395	0.980	.650	1.391	0.993
14 15	.535	1.429	0.859	。 <b>487</b>	1.448	0.803	.447	1.471	0.744
14 19	.481	e.451	0.795	.476	1.45%	0.788	.491	1.447	0.807
15 16	.738	1.370	1.065	.788	1.362	1.095	.823	1.358	1.110
16 17	. 594	1.411	0.920	.518	1.435	0.838	.467	1.459	0.775
17 18	.738	1.370	1.066	۶88¢	1.362	1.096	.824	1.358	1.110
18 19	.534	1.429	0.858	.486	1.449	0.801	.445	1.472	0.741
19 20	.610	1.403	0.951	.640	1.394	0.983		1.390	0.996
20 21	• 595	1.408	0.933	.612	1.402	0.953		1.399	0.963
21 22	.564	1.419	0.895	:536	1.429	0.860		1.445	0.812
22 23	.646	1.392	0.989	.716	1.574	1.050		1.365	1.086
23 24	.403	1.450	0.798	. 391	1.504	0.657		1.560	0.510
24 25	.790	1.362	1.097	.858	1.354	1.120		1.349	1.134
25 26	.481	1.451	0.793	. 392	1.504	0.659	. 309	1.561	0.508
Carta (1912)		ದ ವಿಶ್ವಮಾತಿಗಳನ್ನು ಇವುಗಳು	TTER TO THE CONTRACTOR	ADDISTORY (CARDING DATE	an second south the	n and a state of the	201207#-201297618276271327762	The second s	Series and a sector of the sec

Table 30: 1-2, 3-4, 5-6, 7-8 tetrabenznaphthalene

(a) Energy eigenvalues -x_i



C _{2v} symm.	I		III
Al	2,621824	2.414229	2.269443
	1.661575	1。586302	1.528660
	1.308129	1.250619	1.195549
	0。511458	0。525395	0.575416
B ₂	2.278414	2.150453	2.083562
	1.317431	1.262543	1.207767
	1.000000	0.981260	0.982092
A2	1.891220	1.860851	1.871580
	1.000000	0.984451	0.991800
	0.704624	0.688954	0.716041
B ₁	2.032624	1.951151	1.924959
	1.277730	1.199052	1.125157
	0.792632	0.792341	0.810953
$\sum_{i} (-x_i)$	18.397659	17.647599	17.282978

(b) Bond orders, bond lengths and  $\beta^{\circ}$  values

Bor	ıd	pI	r	β ^{,1}	p ^{II}	r	β°II	p ^{III}	r ^{III}	β" ^{III}	
1 1 1 2 3	2 6 8 3 4	。590 。551 。459 。699 。629	1.409 1.417 1.436 1.386 1.400	1.018 0.973	。588 。572 。433 。711 。614	1.410 1.416 1.480 1.375 1.402	0.925 0.905 0.722 1.046 0.955 1.043	。593 。612 。371 。720 。604 。716	1.409 1.402 1.517 1.373 1.405 1.374	0.930 0.953 0.624 1.053 0.944 1.050	
4 5 6 8	5 6 7 9	。696 。597 。444 。631	L。387 L。407 L。439 L。400	1,016 0,953 0,860 0,974	。708 。596 。415 。673	1。376 1。407 1。490 1。385	1.049 0.934 0.694 1.014	600	1.406 1.532 1.366	0°940 0°585 1°079	ote 324 frame





(a) Energy eigenvalues -x_i

I	II	III
2.573324	2 <b>.262204</b>	2.231741
2。204962	2.041310	2.039170
1。971009	1.900215	1.915986
1.698870	1。628259	1。617256
1.414214	1。326103	1。298772
1. <b>311</b> 719	1。211216	1.176413
1.225088	1。104967	1.075929
1.000000	0。982515	0.991851
0.857702	0。855906	0.871293
0.710684	0。701129	0.749953
0.531921	0。570977	0.628817
	SHICK GED DATA MITTING THE BATTLE BATTLE	י
15.499493	14.584783	14.597181

Table 31 cont'd:

Bond	P	E	β ⁰ I	pII	FII	β ^{,II}	p III	FIIN	β° ^{III}
12	.746	1.368	1.071	₀ <i>7</i> 88	1.362	1.096	.813	1.359	1.106
1 22	. 547	1.424	0.874	.510	1.438	0.830	.481	1.451	0.795
23	° 221	1.430	0.854	。492	1.446	0。808	。464	1.460	0.771
34	。 <b>5</b> 65	1.418	0.896	۰ <b>5</b> 53 ،	1.422	0.891	。539	1.427	0.864
38	. 528	1.431	0.851	₅562	1.419	0.892	۰ <b>597</b>	1.407	0.935
45	.716	1.374	1.050	. 74 <i>4</i>	1.369	1.069	.762	1.366	1,081
56	。612	1.402	0.953	₀ <b>577</b>	1.414	0.911	。 <b>5</b> 54	1.422	0.882
6 7	.713	1.375	1.047	° <b>277</b> 1	1.369	1.068	。760	1.366	1.080
78	۵ <b>57</b> 4	1.415	0.907	. 560	1.420	0.890	.543	1.426	0.868
89	。 <b>49</b> 9	1.443	0.817	.478	1.453	0.791	°457	1.464	0.760
9 10	<b>。</b> 452	1.467	0.753	。 <b>382</b>	1.510	0.643	.311	1.559	0.513
9 22	。 <b>59</b> 9	1.406	0.938	.675	1.384	1.016	° <b>7</b> 37	1.370	1.065
10 11	• <b>59</b> 3	1.408	0.931	.603	1.405	0.942	。609	1.403	0.950
10 15	。55%	1,422	0.882	。595	1.408	0.933	.633	1.396	0.975
11 12	。 <b>69</b> 5	1.379	1.033	。707	1.376	1.043	.709	1.376	1.044
12 13	。632	1.396	0.974	.617	1.401	0.959	。617	1,401	0。958
13 14	°693	1.380	1.031	。704	1.377	1.040	。706	1.377	1.042
14 15	。 <b>60</b> 0	1.406	0。9 <b>39</b>	.611	1.403	0.951	。617	1.401	0.958
15 16	. 437	1.477	0.729	<b>. 36</b> 0	1.524	0.605	<b>.289</b>	1.580	0.472
16 17	۰ <b>59</b> 9	1.406	0;938	₀ <b>610</b>	1.403	0。950	<b>.616</b>	1.401	0 <b>。957</b>
16 21	₀ <b>5</b> 57	1.421	0.886	s <b>59</b> 8 ،	1.407	0.937	°632	1.395	0。978
17 18	.694	1.379	1.032	。704	1.377	1.040	.706	1.377	1.042
18 19	.633	1.396	0.976	。619	1.400	0.961	.618	1.400	0。960
19 20	° <b>6</b> 94	1.379	1.032	<b>。705</b>	1.377	1.041	。707	1.376	1.043
20 21	. 598	1.407	0.936	。607	1.404	0.947	.613	1.402	0.955
21 22	.439	1.475	0.733	<b>. 366</b>	1.520	0.616	.297	1.571	0.485
					and the state of the	THE REAL PROPERTY AND ADDRESS	and static property and the state of the	17.17.17.12.104 <u>-10</u> .100-100-000-000	na aryan gane rayan kana kana kana ka

Table 32: 3.4, 8-9 dibenztetraphone



(a) Energy cigenvalues -zi

I	II
2.545488	2.257034
2.381081 2.100478	2.139071 1.942875
1.772176	1.676881
1。595206 1。462827	1.530009 1.386244
1.344899	1.240654
1.270274 1.085394	1.163249 0.971138
0.911743	0.914740
0.729756 0.682544	0.736810 0.666276
0.428567	0.492448
18.310433	17.117430

no							
Second and some	CARLANCE AND	CONTRACTOR OF THE OWNER				nd β° val	1 12 0
Bond	p	r	β°I	P P	FII	β°II	
12	.713	1.375	1.047	° <b>73</b> 8	1.370	1.065	
	.567	1.417	0.899	.560	1.420	0.890	Contraction of the local division of the loc
23	.616	1.401	0.957	° 282	1.411	0.920	
34	.709	1.376	1.043	.733	1.371	1.062	
45	. 582	1.412	0.917	₀ <b>573</b>	1.416	0.906	
56	.479	1.452	0.792	<u>449</u> °	1.469	0.748	
526	. 534	1.429	0.857	。5 <b>6</b> 9	1.417	0.901	
67	.530	1.431	0.853	.474	1.455	0。785	
6 23	. 576	1.414	0.910	。643	1.393	0。986	
78	.758	1.366	1.079	.811	1.359	1.105	And the owner
89	• <b>5</b> 15	1.437	0.835	.458	1.464	0.761	auretrota.
9 10	. 598	1.407	0.937	.614	1.402	0.956	diaman and
9 22 I	. 508	1.439	0.827	。522	1.434	0.844	all
1011	.634	1.396	0.977	°066	1.397	1.607	Commerciane as
11 12	.450	1.469	0.749	. 383	1.509	0.644	Concernance of the local data
nw	. 509	1.439	0.829	.519	1.435	0.840	-
1213	. 596	1.408	0。934	.602	1.405	0.941	
1217	. 545	1.425	0.871	.587	1.411	0.923	and the second second
1	8		1.034				-
1415	627	1.398	0.969	°209°	1.404	0.948	
2	N		1.039				
1 . I	ll l		0.915				
1	R					0。705	Managara Andrews
4	8			3		1.115	
S	8			3		0.709	North State
3	м		0.951	1			COLUMN STATE
	8					0.981	-
5	5			1		0.703	
						0.816	
			1.073				Contract of Contract
2526	° <b>5</b> 24	1.417	0.845	.477	1.453	0.790	And the second
CANADAR PORTATION	i Menanda karaka	CONTRACTOR STREET			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	an a	ж¥





(a) Energy eigenvalues -z_i

Севуша	• I	II	В	ond	P	F	β°I	P.II	r	β°II
A ⁰	2.5 <b>792</b> 60	2.258597	1	13	.610	1.403	0.950	。629	1.397	0.972
	2.149134	1.997743	1	15	.683	1.382	1.023	.688	1.381	1.027
	1.812687	1.705029	2	I	.662	1.388	1.004	.722	1.373	1.054
	1.3941.59	1.322159	2	11	.513	1.437	0.833	.503	1.441	0.821
	1.212551	1.089387	2	23	.414	1.491	0.693	.313	1.558	0.516
	1.000000	0.914205	3	2	. 571	1.416	0。904	.555	1.422	0.883
	0.505758	0.573546	4	5	.550	1.423	0.878	.525	1.432	0.847
A° °	2,286939	2.093624	. 4	9	.504	].44]	0.822	.530	1.431	0.853
	1.644286	1.548461	5	6	.726	1.372	1.057	.762	1.366	1.081
	1.298063	1.247750	6	7	.599	1.406	0.938	.552	1.423	0.880
	1.140752	1.060924	7	8	.726	1.372	1.057	.762	1.366	1.081
	0.762824	0.746704	8	9	.550	1.423	0.878	.525	1.432	0.847
	0.520684	0.588203	9	10	.571	1.416	0.904	.555	1.422	0.884
	NEW CONTRACTOR	COMPANY AND WEARING CONTRACTOR	3	0 11	.662	1.388	1,004	。722	1.373	1,054
$\sum_{i}(-x_{i})$	18.307096	17. 146331	1	1 12	.414	1.491	0.693	. 314	1.558	0.517
	andahan menyakan karang bertakan karanar - A	ar marchine a management of the	1	3 14	.566	1.418	0.897	.609	1.403	0.949
			1	5 16	.642	1.393	0.985	.637	1.395	0。980
										111210-1122-11-123-12 788-12 788-14

Table 34: Naghtho (2°-3°, 3-4) pentaphene



(a)	Energy	eigenvalues	-2.
-----	--------	-------------	-----

(b) Bond orders, bond lengths and  $\beta^{\scriptscriptstyle 0}$  values

c ₂	зулил	s I	II	Bo	nd	P P	r	β' ^I	p ^{II}	r ^{II}	β, ^{II}
	B	2.550263 2.208499 1.678602 1.414214 1.161241 1.000000 0.536288 2.416497 2.000000 1.550624 1.414214 1.197253 1.000000	2.257236 2.015300 1.578989 1.365441 1.132605 0.864441 0.608269 2.166232 1.806677 1.470954 1.304612 1.107040 0.890322 0.613605	<b>~~~~</b>	2 14 16 3 4 5 13 6 7 11 8 9 10 11	.492 .519 .605 .783 .490 .631 .500 .587 .544 .496 .730 .594 .729 .547 .581	1.446 $1.404$ $1.363$ $1.404$ $1.363$ $1.447$ $1.443$ $1.443$ $1.426$ $1.444$ $1.371$ $1.408$ $1.371$ $1.408$ $1.371$ $1.425$ $1.413$	0.809 0.840 0.945 1.094 0.806 0.875 0.818 0.923 0.870 0.814 1.060 0.932 1.059 0.873 0.916	.411 .541 .630 .848 .406 .681 .494 .585 .511 .515 .771 .541 .770 .515 .777	r 1.493 1.427 1.355 1.355 1.495 1.383 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.455 1.456 1.456 1.414 1.378	0.688 0.866 0.972 1.117 0.680 1.021 0.811 0.922 0.831 0.835 1.087 0.867 1.086 0.835 0.911
<u>Σ</u> (.	-x _i )	21.098212	19.644565	12	14	.44]	1.391 1.475 1.397	0.735	. 364	1,522 1,389	0.611

# Table 35: Anthracono (2'-1', S-9) tetraphene



## (a) Energy eigenvalues -x_i

I	II
2.556939	2.262515
2,420842	2.168875
2.221184	2.015011
1.948637	1.804990
1.705199	1.605513
1.518789	1.426312
1.489155	1.406693
1.325618	1.270945
1.272037	1.183368
1.137608	1.051806
1.046266	0.913834
0.834681	0.837645
0.719463	0.687653
0.571777	0.615646
0.365130	0.433937
21.133329	19.684743

#### and an an and the answer of the offer

4

.

,

×.

1.1

4+3 F

•

. .

. ·

~

. :

٠,

,

· ,• . ·

.

Bond	p ^I	I III	β ¹	P	and the second s	P ⁰ ^{II}
1 2	.627	1.398	0.970	。609	1.403	0.949
1 30	。696	1.379	1.034	.710	1.376	1.045
2 3	.,702	1.378	1.038	.716	1.374	1.050
3 4	。580	1.413	0.915	. 587	1.410	0.924
4 5	.497	1.444	0.814	.421	1.487	0.703
4 29	.545	1。425	0.871	. 587	1.410	0.924
56	.780	1.363	1.092	.841	1.356	1.115
67	。499	1.443	0.817	.424	1.485	0.708
7 8	.612	1.402	0.953	.646	1.392	0.989
7 28	₀508	1.439	0.827	.516	1.436	0.836
89	.619	1.400	0.961	.633	1.396	0.976
9 10	.470	1.457	0.780	.432	1.480	0.722
9 26	.506	1.440	0.824	.519	1.435	0.839
10 11	. 52 <b>9</b>	1.431	0.851	.468	1.458	0.776
10 23	。582	1.412	0.917	.656	1.389	0。998
11 12	.760	1.366	1.980	.817	1.358	1.108
12 13	。50 <b>9</b>	1.439	0.828	.444	1.472	0.740
13 14	.619	1.400	0.961	.658	1.389	1,000
13 22	۰ <b>495</b>	1.445	0.812	。490	1.447	0.806
14 15	. 596	1.408	0。934	.605	1.404	0.945
15 16	。540	1.427	0.865	.501	1.442	0.819
15 20	.492	1.446	0.808	。502	1.442	0.821
16 17	.734	1.371	1.063	° <b>7</b> 78	1.363	1.091
17 18	。591	1.409	0.928	.532	1.430	0.856
	}		1.062			
1			0.868			
4			0.927			
4			0.980	1		
22 23	6.462	1.461 1 hor	0.769	.411 187	1.492	0.688
	. 1 Jas	1. 207	0.861 1.075	°907	1.300	1,102
25 26	.519	1.435	0.840 0.935	.467 610	1.459	0.775
27 28			0.978			
28 29	.449	1.469	0.748 0.934	. 381	1.510	0,642

# Tablo 36: Totrapheno (9°-8°, 8-9) tetrapheno



(a) Energy eigenvalues -x_i

;

a an		an land de la constant de la constant e l	<b>~</b> 6	f*200				
С ₂ вуша.	I	II		Bo	nd	PI	E, I	β° ^I
A	2.566716	2.269742		Call and	2	.754	1.367	1.070
	2.306855	2. <b>06</b> 9161		12	18	.535	1.429	0.85
	1.798743	1.689594		2	2	. 517	1.436	0.83
	1.514793	1.422198		5	43	• 597	1.407	0.93
	1.271000	1,2035%7		3	16	. 506	1.440	0.82
	1.148803	1.049660		4	5	.635	1.395	0.978
	0.855071	0.840854	and the second	5	6	.449	1.469	0.749
	0.667535	0.639026		5	14	.508	1.439	0.828
	0.382738	0.451170		5	7	. 596	1.407	0.934
В	2.459500	2 <b>.193</b> 953		6	]]	. 545	1.425	0.871
	2.056634	1.901342		7	8	。696	1.379	1.034
	1.671608	1.579231		3	9	。627	1.398	0.969
	1.459899	1.373569		9	10	.702	1.378	1.039
	1.372484	1.244709		10	11	. 580	1.413	0.915
	1.114314	1.001720		11	12	. 497	1.444	0.814
	0.795752	0.801933		12	13	.779	1.363	1.092
	0.852062	0.624494		13	24	.499	1:443	0.817
5/		anterio contra anterio da contra da contr		14	15	.611	1.402	0.952
$\zeta(-x_i)$	24.024508	22.355901		15	16	.620	1.400	0.962
angang kang kang kang kang kang kang kan				16	17	.468	1.458	0.777
		1		17	าดใ	570	1.413	0.914

(D)	Bond	orders,	bond	longthe	and	β٥	values
-----	------	---------	------	---------	-----	----	--------

Bo	nd	pl	FI	₿° ^I	p ^{II}	r	β° ^{II}
fa j	2	.754	1.367	1.076	.805	1.360	1.103
Į2	18	. 535	1.429	0.859	.483	1.450	0.797
2		. 517	1.436	0.838	.463	1.460	0.770
3	<b>L</b> 3	۰ <b>59</b> ?	1.407	0.935	.612	1.402	0°952
3	16	. 506	1.440	0.825	。520	1.434	0.841
5	5	.635	1.395	0.978	.668	1.386	1.009
5	6	.449	1.469	0.749	. 382	1.510	0.643
5	14	.508	1.439	0.828	.517	1.436	0.838
5	7	. 596	1.407	0.934	.602	1.405	0.941
6	11	. 545	1.425	0.871	.587	1.410	0.924
77	8	。696	1.379	1.034	.711	1.375	1.046
З	9	。627	1.398	0.969	.608	1.403	0.948
9	10	.702	1.378	1.039	.717	1.374	1.051
10	11	. 580	1.413	0.915	. 587	1.411	0.923
11	12	. 497	1.444	0.814	.421	1.487	0.70%
12	13	.779	1.363	1.092	° <b>8</b> 41	1.356	1-115
113	24	.499	1.443	0.817	<i>.</i> 424	1.485	0.709
14	15	.611	1.402	0.952	.644	1.393	0.987
15	16	.620	1.400	0.962	°632	1.395	0.978
16	17	.468	1.458	0.777	.427	1.483	0.713
17	18	. 579	1.413	0.914	. 649	1.391	0.991
l'an and the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	APRAIL STREET	L. L. COLEMENT & VOLENCE WATCHING		In the local of the property of the	Normal and a second

Table 37: 2-3, 8-9 dibonzpicene



(a) Energy eigenvalues - x,

(b) Bond orders, bond lengths and  $\beta^*$  values

C _s symm	I	II	Bo	nd	P ^I	z ^I	β ^{, I}	pII	r ^{II}	β°II
A ⁰	2.561095	2.262631	1	Ş	.769	1.365	1.085	.830	1.357	1.112
ļ	2.216503	2.014344	1	14	.518	1.435	0.838	.446	1.471	0.744
	1.679221	1.587760	2	3	.502	1.442	0.820	.429	1.482	0.716
	1.550440	1.459069	Ŋ	4	.623	1.399	0.966	.667	1.386	1.008
	1.272626	1.239038	5	12	.497	1.444	0.815	.493	1.446	0.809
	1.114141	0.954108	l _à	5	. 592	1.409	0.930	.597	1.407	0.936
	0.770283	0.777764	5	6	.541	1.427	0.866	。505	1.441	0.824
	0.396334	0.471143	5	10	.494	1,445	0.810	.508	1.440	0.827
A.,	2.412674	2.167020	6	7	.732	1.371	1.062	°775 ،	1.364	1.089
	1.977103	1.798199	7	8	。592	1.409	0.930	。536	1.428	0.860
	1.446328	1.369844	8	9	.731	1.371	1.061	.774	1.364	1.088
	1.327251	1.271372	9	10	. 544	1.426	0.870	.509	1.439	0.828
	1.072789	1.012224	10	21	.587	1.411	0.923	. 589	1.410	0.926
	0.864166	0.755625	11	12	。642	1.393	0.985	.684	1.382	1.023
	0.460333	0.515571	12	13	.454	1.466	0.756	. 392	1.504	0.657
 			13	14	. 564	1.419	0.895	.618	1.401	0.959
∑(-x,)	21:121285	<b>9.655712</b>	13	16	.567	1.418	0.899	<b>。</b> 554	1,422	0.882
i t		National States	14	15	. 504	1.441	0.823	<b>。510</b>	1.439	0.830
			16	17	.719	1.373	1.053	.745	1.368	1.071

Table 38: 1-2, 6-7 dibenziotracene



(a)	Energy	oigonvalues	-1
-----	--------	-------------	----

(b) Bond orders, bond lengths and  $\beta^{\nu}$  values

2	.531827	2.248847 1.948442	E.			AND COLORADORY	Contraction of the local division of the loc	AND DESCRIPTION OF TAXABLE		
1		1 OLALLO	Ű,	2	.653	1.390	0.995	<b>。708</b>	1.376	1.043
11			1	13	.571	1.416	0.903	。557	1.421	0.887
1 1	。556946	1.478853	2	3	.445	1.472	0.741	. 369	1.518	0.621
1	.306423	1.168866	2	11	.493	1.446	0.809	.478	1.453	0.791
1.	.093862	0.977481	3	4	. 598	1.407	0.937	.608	1.403	0.948
0.	.680018	0.666843	3	8	.547	1.425	0.873	.590	1:410	0.927
0.	. 358381	0.435522	l ₂	5	.693	1.380	1.031	.705	1.377	1.041
B 2.	. 387201	2.135995	5	6	.630	1,397	0.972	.614	1,402	0,955
] ].	.802675	1.700422	6	7	.699	1.378	1.036	.712	1.375	1.046
1.	.802194	1.419896	7	8	. 583	1.412	0.918	₀ <b>59</b> 3	1.408	0。931
1.	.294106	1.223830	8	9	.492	1.446	0.808	.409	1.494	0.685
0,	.931761	0.912545	9	10	.784	1.363	1.094	.848	1.355	1.117
0,	.711366	0.746294	10	11	.493	1.446	0.810	.411	1.493	0.688
			11	12	.633	1.396	0.976	.688	1.391	1.027
5(-)	00000	18 0/ 7056	12	14	。580	1.413	0.915	.572	1.416	0.905
$\sum_{\lambda} (-\mathbf{x}_{\mathbf{i}}) 18,$	~~>>>0U5	17.00,00	13	14	.474	1.455	0.786	.478	1.453	0。790





ŝ

ñ

ų

I	II
2.523122	2.241214
2.377673	2.131665
2.123763	1.943341
1.819440	1.690782
1.558519	1.478011
1.472887	1.408024
1.361068	1.263762
1.230420	1.163712
1.089640	0.991453
1.000000	0.909692
0.752878	0.730016
0.617630	0.655549
0.243616	0.309677
18.170664	16.916902

#### Table 39 cont'd:

/

Bond	p el	β ^{, I}	p ^{II} r ^{II} g' ^{II}
1 2	.631 1.397	0.974	.617 1.401 0.959
1 26	.692 1.380	1.030	.702 1.378 1.039
2 3	.697 1.379	1.035	.708 1.376 1.043
3 4	.584 1.411	0.920	.597 1.407 0.956
4 5	<b>.489</b> 1.448	0.804	.401 1.498 0.672
4 25	.547 1.424	0.874	.592 1.409 0.929
56	.786 1.362	1.094	.853 1.354 1.119
6 7	.491 1.447	0.807	.404 1.497 0.576
7 8	.643 1.393	0。986	.715 1.375 1.049
7 24	.483 1.450	0.798	.449 1.469 0.748
89	.564 1.418	0.895	.532 1.430 0.855
9 10	.604 1.405	0.943	.636 1.395 0.979
9 22	.457 1.464	0.761	.431 1.480 0.720
10 11	.591 1.409	0.928	.600 1.406 0.939
11 12	.581 1.413	0.916	.576 1.415 0.909
11 20	.454 1.466	0.755	.427 1.483 0.714
12 13	.620 1.400	0。962	.667 1.386 1.008
13 14	.530 1.431	0.853	.473 1.455 0.784
13 18	.474 1.455	0.785	.453 1.467 0.754
14 15	.741 1.369	1.068	5 T
15 16	.580 1.413	0.915	i
16 17	.741 1.369	1.068	.796 1.361 1.099
17 18	.530 1.431		.474 1.455 0.785
18 19	.619 1.400	0.961	.666 1.387 1.007
19 20	.582 1.412	0.918	
20 21	.589 1.410	0.926	1
21 22	.608 1.404		.642 1.393 0.985
22 23	.558 1.421		
23 24	.663 1.388		2
24 25	8		.361 1.524 0.607
25 26	·600 1.406	0.938	.612 1.402 0.9 <b>5</b> 3
			Contractor processor and and the second second

Table 40: 1-2, 5-4 dibenzpentacene



(a) Energy eigenvalues -x_i

C _o synen.	I	II		Eo	nd	P P	E	β° ^I	PII	r	β° ^{II}
A٩	2.573150	2.259404		1	10	.741	1.369	1.068	.796	1.361	1.099
	2.419469	2.160073		1	12	. 530	1.431	0.853	.475	1.454	0.786
	2.150465	1.957846		2	12	.618	1.400	0.960	.663	1.387	1.004
	1.809396	1.657652		2	14	. 584	1.412	0.919	, 582	1.412	0.917
	1.457721	1.304200		3	14	.587	1.411	0.923	.589	1.410	0。926
	1. <b>309</b> 285	1.199135		Ş	16	.612	1.402	0.953	.652	1.390	0.995
	1.095484	0.954826		4	16	.550	1.424	0.877	.503	1.441	0.822
	0.731905	0.703470		ζ <u>η</u>	18	.674	1.384	1.015	.753	1.367	1.076
A••	1.971125	1.910516		5	6	.608	1.404	0.948	.627	1.398	0.969
	1.478700	1.432310		5	18	.419	1.488	0.701	.321	1.553	0.531
	1.292270	1.229525		5	20	.564	1.419	0.895	.608	1.404	0.948
	1.07,0259	1.034928		6	7	.685	1.382	1.024	。690	1.380	1.028
	0.812712	0.838360		7	8	.641	1.394	0.984		1.395	
	0.659703	0.684268	1000	8	9	。684	1.382	1.024		1.381	
	0.262107	0.332698		9	20	。609	1.403	0.949		1.397	
51-1		30 (2003)		10	31		1.413			1,440	
<u>ا المعنی الم</u>	21.093749	19°027511		12	13		1.454			1.465	
CONTRACTOR OF	Cardia de la Companya de La Company	j Nandala net stranger statistic and a fill of the		]4	15		1.465			1.479	
				16	17		1.461			1.475	
				18	19		1.445			1.467	
				20	21	.417	1.489	0.697	. 317	1.556	0.523

Table 41: Tetraceno (1º-2º, 1-2) tetraceno



(a) Energy eigenvalues  $-x_i$  (b) Bond orders, bond lengths and  $\beta^{\circ}$  values

C ₂	oyuxi	I	II	Во	nd	PI	r I	β ^{,1}	p ^{II}	r ^{II}	β° ¹¹
	A	2,557882 2,303617 1.846024 1.472010 1.278652 1.158244 0.864472 0.703919	2.259348 2.062669 1.684737 1.409634 1.196735 1.117944 0.761608 0.706392	1 1 2 3 3 4 5	2 14 18 3 4 12 5 6	.648 .482 .461 .570 .592 .463 .614 .532	1.392 1.451 1.462 1.417 1.409 1.461 1.402 1.430	0.991 0.796 0.767 0.902 0.929 0.769 0.955 0.856	.701 .457 .407 .555 .600 .448 .650 .481	1.378 1.464 1.495 1.422 1.406 1.470 1.391 1.451	1.037 0.761 0.681 0.883 0.939 0.747 0.993 0.795
	В	0.246964 2.439063 2.095118 1.642044 1.506263 1.336351 1.087476 0.932112 0.393357	0.313922 2.185137 1.896835 1.542788 1.395907 1.281910 0.959818 0.870125 0.455468	13	. 12 2 13	.740 .582 .740 .532 .615 .588 .576 .630	1.369 1.412 1.369 1.430 1.401 1.410 1.414 1.397	0.791 1.067 0.918 1.067 0.855 0.956 0.925 0.910 0.972 0.828	.792 .572 .793 .479 .653 .595 .563 .685	1.438 1.362 1.452 1.390 1.408 1.419 1.382	1.097 0.831 1.098 0.793 0.995 0.933
Σ i	(-x ₁ )	23.863568	22.110977	15	16 17	。759 。528	1.366 1.431	1.079 0 ₀ 851 0.925	.465		1.108 0.773 1.014



(a) Energy eigenvalues -x_i

I	
2.533047	
2.273711	
1.965356	
1.641058	
1.464570	
1.332738	
1.198236	
1.084844	
0.844650	
0.660116	
0.418589	
15.416915	

Bond $p^I$ $r^I$ $\beta^{,I}$ 12.5081.4390.827122.7721.3641.08723.5281.4310.851211.5801.4130.91534.7561.3671.07745.5241.4330.84556.5681.4170.800510.5301.4310.85267.7131.3751.04878.6141.4020.95589.7111.3751.046910.5761.4150.9101011.4951.4450.8121112.4731.4550.7841213.6321.3960.9751221.4941.4450.8101314.5911.4090.9281415.5421.4260.8671419.4921.4460.8081516.7331.3711.0621617.5911.4080.9281718.7331.3711.0621819.5411.4270.8661920.5941.4080.9322021.6231.4410.823	. The second	I STATISTICS AND		Description of the second second second
122 $.772$ $1.364$ $1.087$ 23 $.528$ $1.431$ $0.851$ 211 $.580$ $1.413$ $0.915$ 34 $.756$ $1.367$ $1.077$ 45 $.524$ $1.433$ $0.845$ 56 $.568$ $1.417$ $0.800$ 510 $.550$ $1.431$ $0.852$ 67 $.713$ $1.375$ $1.048$ 78 $.614$ $1.402$ $0.955$ 89 $.711$ $1.375$ $1.046$ 910 $.576$ $1.415$ $0.910$ 1011 $.495$ $1.445$ $0.812$ 1112 $.473$ $1.455$ $0.784$ 1213 $.632$ $1.396$ $0.975$ 1221 $.494$ $1.445$ $0.810$ 1314 $.591$ $1.426$ $0.867$ 1419 $.492$ $1.446$ $0.808$ 1516 $.733$ $1.371$ $1.062$ 1617 $.591$ $1.409$ $0.928$ 1718 $.733$ $1.371$ $1.062$ 1819 $.541$ $1.427$ $0.866$ 1920 $.594$ $1.408$ $0.932$ 2021 $.623$ $1.408$ $0.932$	Bond	$p^{I}$	r ^I	۶°I
23 $.528$ $1.431$ $0.851$ 211 $.580$ $1.413$ $0.915$ 34 $.756$ $1.367$ $1.077$ 45 $.524$ $1.433$ $0.845$ 56 $.568$ $1.417$ $0.800$ 510 $.530$ $1.431$ $0.852$ 67 $.713$ $1.575$ $1.048$ 78 $.614$ $1.402$ $0.955$ 89 $.711$ $1.375$ $1.046$ 910 $.576$ $1.415$ $0.910$ 1011 $.495$ $1.445$ $0.812$ 1112 $.473$ $1.455$ $0.784$ 1213 $.632$ $1.396$ $0.975$ 1221 $.494$ $1.445$ $0.810$ 1314 $.591$ $1.426$ $0.867$ 1419 $.492$ $1.446$ $0.808$ 1516 $.733$ $1.371$ $1.062$ 1617 $.591$ $1.409$ $0.928$ 1718 $.733$ $1.371$ $1.062$ 1819 $.541$ $1.408$ $0.932$ 2021 $.623$ $1.408$ $0.932$	12	s508 ه	1.439	0.827
211 $.580$ $1.413$ $0.915$ 34 $.756$ $1.367$ $1.077$ 45 $.524$ $1.433$ $0.845$ 56 $.568$ $1.417$ $0.800$ 510 $.530$ $1.431$ $0.852$ 67 $.713$ $1.575$ $1.048$ 78 $.614$ $1.402$ $0.955$ 89 $.711$ $1.375$ $1.046$ 910 $.576$ $1.415$ $0.910$ 1011 $.495$ $1.445$ $0.812$ 1112 $.473$ $1.455$ $0.784$ 1213 $.632$ $1.396$ $0.975$ 1221 $.494$ $1.445$ $0.810$ 1314 $.591$ $1.409$ $0.928$ 1415 $.542$ $1.426$ $0.867$ 1419 $.492$ $1.446$ $0.808$ 1516 $.733$ $1.571$ $1.062$ 1617 $.591$ $1.409$ $0.928$ 1718 $.733$ $1.371$ $1.062$ 1819 $.541$ $1.408$ $0.932$ 2021 $.623$ $1.408$ $0.932$	1 22	.772	1.364	1.087
3 $4$ .756 $1.367$ $1.077$ $4$ $5$ .524 $1.433$ $0.845$ $5$ $6$ .568 $1.417$ $0.800$ $5$ $10$ .530 $1.431$ $0.852$ $6$ $7$ .713 $1.375$ $1.048$ $7$ $8$ .614 $1.402$ $0.955$ $8$ $9$ .711 $1.375$ $1.046$ $9$ $10$ .576 $1.415$ $0.910$ $10$ $11$ .495 $1.445$ $0.812$ $11$ $12$ .473 $1.455$ $0.784$ $12$ $13$ .632 $1.396$ $0.975$ $12$ $21$ .494 $1.445$ $0.810$ $13$ $14$ .591 $1.409$ $0.928$ $14$ $19$ .492 $1.446$ $0.808$ $15$ $16$ .733 $1.371$ $1.062$ $16$ $17$ .591 $1.409$ $0.928$ $17$ $18$ .733 $1.371$ $1.062$ $18$ $19$ .541 $1.427$ $0.866$ $19$ $20$ .594 $1.408$ $0.932$ $20$ $21$ .623 $1.408$ $0.932$	2 3	. 528	1.431	0.851
4 $5$ $.524$ $1.433$ $0.845$ $5$ $6$ $.568$ $1.417$ $0.800$ $5$ $10$ $.530$ $1.431$ $0.852$ $6$ $7$ $.713$ $1.575$ $1.048$ $7$ $8$ $.614$ $1.402$ $0.955$ $8$ $9$ $.711$ $1.575$ $1.046$ $9$ $10$ $.576$ $1.415$ $0.910$ $10$ $11$ $.495$ $1.445$ $0.812$ $11$ $12$ $.473$ $1.455$ $0.784$ $12$ $13$ $.632$ $1.396$ $0.975$ $12$ $21$ $.494$ $1.445$ $0.810$ $13$ $14$ $.591$ $1.409$ $0.928$ $14$ $15$ $.542$ $1.426$ $0.867$ $14$ $19$ $.492$ $1.446$ $0.808$ $15$ $16$ $.733$ $1.371$ $1.062$ $16$ $17$ $.591$ $1.409$ $0.928$ $17$ $18$ $.733$ $1.371$ $1.062$ $18$ $19$ $.541$ $1.408$ $0.932$ $20$ $21$ $.623$ $1.408$ $0.932$	2 11	. 580	1.413	0.915
56 $.568$ $1.417$ $0.800$ 510 $.530$ $1.431$ $0.852$ 67 $.713$ $1.375$ $1.048$ 78 $.614$ $1.402$ $0.955$ 89 $.711$ $1.375$ $1.046$ 910 $.576$ $1.415$ $0.910$ 1011 $.495$ $1.445$ $0.812$ 1112 $.473$ $1.455$ $0.784$ 1213 $.632$ $1.396$ $0.975$ 1221 $.494$ $1.445$ $0.810$ 1314 $.591$ $1.409$ $0.928$ 1415 $.542$ $1.426$ $0.867$ 1419 $.492$ $1.446$ $0.808$ 1516 $.733$ $1.371$ $1.062$ 1617 $.591$ $1.409$ $0.928$ 1718 $.733$ $1.371$ $1.062$ 1819 $.541$ $1.427$ $0.866$ 1920 $.594$ $1.408$ $0.932$ 2021 $.623$ $1.408$ $0.932$	34	.756	1.367	1.077
5 $10$ $.530$ $1.431$ $0.852$ $6$ $7$ $.713$ $1.575$ $1.048$ $7$ $8$ $.614$ $1.402$ $0.955$ $8$ $9$ $.711$ $1.575$ $1.046$ $9$ $10$ $.576$ $1.415$ $0.910$ $10$ $11$ $.495$ $1.445$ $0.812$ $11$ $12$ $.473$ $1.455$ $0.784$ $12$ $13$ $.632$ $1.396$ $0.975$ $12$ $21$ $.494$ $1.445$ $0.810$ $13$ $14$ $.591$ $1.409$ $0.928$ $14$ $15$ $.542$ $1.426$ $0.867$ $14$ $19$ $.492$ $1.446$ $0.808$ $15$ $16$ $.733$ $1.571$ $1.062$ $16$ $17$ $.591$ $1.409$ $0.928$ $17$ $18$ $.733$ $1.371$ $1.062$ $18$ $19$ $.541$ $1.427$ $0.866$ $19$ $20$ $.594$ $1.408$ $0.932$ $20$ $21$ $.623$ $1.408$ $0.932$	45	。524	1.433	0.845
6 $7$ $.713$ $1.375$ $1.048$ $7$ $8$ $.614$ $1.402$ $0.955$ $8$ $9$ $.711$ $1.375$ $1.046$ $9$ $10$ $.576$ $1.415$ $0.910$ $10$ $11$ $.495$ $1.445$ $0.812$ $11$ $12$ $.473$ $1.455$ $0.784$ $12$ $13$ $.632$ $1.396$ $0.975$ $12$ $21$ $.494$ $1.445$ $0.810$ $13$ $14$ $.591$ $1.409$ $0.928$ $14$ $15$ $.542$ $1.426$ $0.867$ $14$ $19$ $.492$ $1.446$ $0.808$ $15$ $16$ $.733$ $1.571$ $1.062$ $16$ $17$ $.591$ $1.409$ $0.928$ $17$ $18$ $.733$ $1.371$ $1.062$ $18$ $19$ $.541$ $1.427$ $0.866$ $19$ $20$ $.594$ $1.408$ $0.932$ $20$ $21$ $.623$ $1.408$ $0.932$	56	. 568	1.417	0.800
78.614 $1.402$ $0.955$ 89.711 $1.375$ $1.046$ 910.576 $1.415$ $0.910$ 1011.495 $1.445$ $0.812$ 1112.473 $1.455$ $0.784$ 1213.632 $1.396$ $0.975$ 1221.494 $1.445$ $0.810$ 1314.591 $1.409$ $0.928$ 1415.542 $1.426$ $0.867$ 1419.492 $1.446$ $0.808$ 1516.733 $1.371$ $1.062$ 1617.591 $1.409$ $0.928$ 1718.733 $1.371$ $1.062$ 1819.541 $1.427$ $0.866$ 1920.594 $1.408$ $0.932$ 2021.623 $1.408$ $0.932$	5 10	₀530	1.431	0.852
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7	.713	1.375	1.048
9       10       .576       1.415       0.910         10       11       .495       1.445       0.812         11       12       .473       1.455       0.784         12       13       .632       1.396       0.975         12       13       .632       1.396       0.975         12       21       .494       1.445       0.810         13       14       .591       1.409       0.928         14       15       .542       1.426       0.867         14       19       .492       1.446       0.808         15       16       .733       1.571       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	78	.614	1.402	0 <u>.955</u>
10       11       .495       1.445       0.812         11       12       .473       1.455       0.784         12       13       .632       1.396       0.975         12       21       .494       1.445       0.810         13       14       .591       1.409       0.928         14       15       .542       1.426       0.867         14       19       .492       1.446       0.808         15       16       .733       1.371       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	89	.711	1.375	1.046
11       12       .473       1.455       0.784         12       13       .632       1.396       0.975         12       21       .494       1.445       0.810         13       14       .591       1.409       0.928         14       15       .542       1.426       0.867         14       19       .492       1.446       0.808         15       16       .733       1.371       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	9 10	。576	1.415	0.910
12       13       .632       1.396       0.975         12       21       .494       1.445       0.810         13       14       .591       1.409       0.928         14       15       .542       1.426       0.867         14       19       .492       1.446       0.808         15       16       .733       1.371       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	10 11	.495	1.445	0.812
12       21       .494       1.445       0.810         13       14       .591       1.409       0.928         14       15       .542       1.426       0.867         14       19       .492       1.446       0.808         15       16       .733       1.571       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	11 12	.473	1.455	0.784
13       14       .591       1.409       0.928         14       15       .542       1.426       0.867         14       19       .492       1.446       0.808         15       16       .733       1.371       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	12 13	.632	1.396	0.975
14       15       .542       1.426       0.867         14       19       .492       1.446       0.808         15       16       .733       1.371       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	12 21	。494	1.445	0.810
14       19       .492       1.446       0.808         15       16       .733       1.371       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	13 14	. 591	1.409	0.928
15       16       .733       1.371       1.062         16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	14 15	. 542	1.426	0.867
16       17       .591       1.409       0.928         17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	14 19	.492	1.446	0.808
17       18       .733       1.371       1.062         18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	15 16	۰7 <b>3</b> 3	1.371	1.062
18       19       .541       1.427       0.866         19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	16 17	. 591	1.409	0。928
19       20       .594       1.408       0.932         20       21       .623       1.408       0.932	17 18	.733	1.371	1.062
20 21 .623 1.408 0.932	18 19	.541	1,427	0.866
	19 20	· 594	1.408	0.932
21 22 .505 1.441 0.823	20 21	。623	1.408	0.932
	21 22	<b>. 50</b> 5	1.441	0.823

Pablo 43 - Anthrocomo (1°-2°, 1-2) tetracomo



	1	
I		
551195		
409129		
227686		
976496		
704607		
535281		
450963		
345303		
257323		
117555		
069436		
875695		
763481		
488799		
.279873		

	an	<u>d β[°] va</u>	luos	-
Bond	pI	rl	β°I	
12	。 <b>591</b>	1.409	0.929	
1 30	.635	1.395	0.977	
2 3	.542	1.426	0.867	
2 7	.491	1.447	0.807	
34	.753	1.371	1.062	
45	。590	1.409	0。927	
56	.734	1.370	1.063	
67	° <b>539</b>	1.427	0.864	
78	s <b>597</b> م	1.407	0.935	Ì
89		1.401	0.959	
9 10	.512		-	
9 30	.493		1	
10 11	.756			
11 12		1.430		
12 13	.460		0.765	
12 29	. 587			
13 14		1.391		
13 26		1.450		
14 15	. 569		0.902	
15 16	. 592		0.930	
15 24	1 · ·	1.461		
16 17	e <b>614</b>	1,402	0.965	
17 18	.532			
17 22	.478		0.791	
18 19	•739			Transfer Contract
19 20	•582	1.412		Construction of the local division of the lo
20 21	.740	1.369		Card Constant
21 22	°22 °			
22 23	.615	1.401 1.410		-
23 24 ol of	<u>, 589</u>			No. of Column
24 25 25 26	.575 .630	1.397		
26 27	.507	1.440	0.826	a designed and
27 28 28 29	.761 .526	1.373 1.432	1.080	-
29 30			0.773	

-



(b) Bond orders, bond lengths and  $\beta^0$  values.

Bo	nd	P	F	p ¹
1	15	。682	1.382	1.022
1	17	.621	1.403	0.952
2	3	.676	1.384	1.017
2	17	.413	1.492	0.690
2	19	.498	1.444	0.815
3	4	。550	1.423	0.878
4	5	.603	1.405	0。942
4	13	.472	1.456	0.783
5	6	.606	1.404	0.946
6	7	.536	1.429	0.860
6	11	.483	1.450	0.797
7	8	° <b>73</b> 7	1.370	1.065
8	9	. 586	1.411	0.922
9	10	°737	1.370	1.065
10	11	. 536	1.429	0.860
11	12	.606	1.404	0.946
12	13	.602	1.405	0.942
13	14	<b>。551</b>	1.423	0.878
14	19	.675	1.384	1.015
15	16	. 644	1.393	0.986
17	18	<b>。565</b>	1.418	
19	20	.414	1.491	0.693

(a) Energy eigenvalues -x_i

C _s symm.	I
$\mathbf{A}^0$	2 <b>. 592565</b>
	2.303672
	1.978607
	1.638066
	1.447394
	1.208682
	1,116139
	0.810991
	0.372999
A · ·	2.406781
	1.984822
	1.509046
	1.371466
	1.140933
	0.932209
	0.765116
	0.358745
$\sum_{i}(-\dot{x}_{i})$	23.938233

Table 45: 3-4, 8-9 dibenstetraphene



(a) Energy eigenvalue -x_i

2.538366 2.371029 2.115733 1.805521 1.573142 1.463090 1.351267 1.234758 1.091378 1.000000 0.741522 0.554934 0.428737	I ·
2.115733 1.805521 1.573142 1.463090 1.351267 1.234758 1.091378 1.000000 0.741522 0.554934 0.428737	2.538366
1.805521 1.573142 1.463090 1.351267 1.234758 1.091378 1.000000 0.741522 0.554934 0.428737	2.371029
1.573142 1.463090 1.351267 1.234758 1.091378 1.000000 0.741522 0.554934 0.428737	2.115733
1.463090 1.351267 1.234758 1.091378 1.000000 0.741522 0.554934 0.428737	1.805521
1.351267 1.234758 1.091378 1.000000 0.741522 0.554934 0.428737	1.573142
1.234758 1.091378 1.000000 0.741522 0.554934 0.428737	1.463090
1.091378 1.000000 0.741522 0.554934 0.428737	1.351267
1.000000 0.741522 0.554934 0.428737	1.234758
0.741522 0.554934 0.428737	1.091378
0.554934 0.428737	1.000000
0.428737	0.741522
Million and the second second second second	0.554934
18.269479	0.428737
18.269479	
	18.269479

		p. var	468.
Bond	pI	rI	β ^{,I}
12	.704	1.377	1.040
1 26	. 578	1,414	0.913
23	。625	1.398	0.968
3 4	. 698	1.378	1.035
45	. 594	1.408	0.932
56	.453	1.467	0.755
5 26	.543	1,426	0.869
67	。623	1.399	0.965
6 23	.517	1.436	0.837
78	.612	1.402	0.953
89	.490	1.447	0.806
8 21	.515	1.436	0.835
9 10	.785	1.363	1.094
10 1ļ	.483	1.448	0.804
11 12	.632	1.396	0.974
11 20	:500	1.442	0.818
12 13	。586	1.411	0.922
13 14	.544	1.426	0.870
13 18	.497	] .444	0.814
14 15	.730	1.371	1.060
15 16	. 595	1.408	0.933
16 17	.729	1.372	1.059
17 18	₀547	1.425	0.874
18 19	. 580	1.413	0.915
19 20	.651	1.391	0.993
20 21	.439	1.476	0.732
21 22	.637	1.395	0.979
22 23		1.406	
23 24		1.441	
24 25		1.364	
25 26	。500	1.442	0.819
i Letterstates encourse	MARGINESS & ROOM STREET		TATACHER AND

(ь)	Bond	orde	ra,	bond	longthe
		and	β ^θ	values	0

#### APPINDIX B

Energies, bond orders etc. calculated using the improved r(p) curve of Fig.3, and the Longuet-Higgins and Salem  $\beta'(r)$  curve.

#### Table 1: Totracene

С ₂₇ вули.	I\$	II	III
A	2.46673	2.278130	2.248053
	1.77748	1.686035	1.660570
	1.00000	0.875439	0.855706
^B 2	2.19353	2,050627	2.036424
	1.29426	1.243099	1.243191
A2	1.19353	1.169672	1.173807
	0.29496	0.336508	0.364052
^B 1	1.46673	1.422300	1.403269
	0.77748	0.790870	0.786936
$\sum_{i}(-x_{i})$	12.46470	11,852699	11.774006

# (a) Energy eigenvalues -x.

1							
(b)	Bond	orders,	bond	longths	and	β⁰	values

2

I	So	ad	p I*	r	β ^I	P	r II	۶° ^{II}	PIII	FIII	β° ^{III}
	l	3	.618	1.400	0.964	.647	1.395	0.981	.666	1.390	1.008
] ]	L	7	. 584	1.408	0.937	,554	1.420	0.900	. 572	1.411	0.940
	2	3	.530	1.420	0.898	.495	1.429	0.869	.471	1.435	0.870
2	2	5	.741	1.377	1.039	.778	1.370	1.060	.799	1.368	1.080
1.1	3	4	.475	1.434	0.853	.465	1.437	0.843	.463	1.438	0.861
	Ì	6	.581	1.409	0.935	.531	1.420	0.899	.503	1.427	0.891
1	7	8	.458	1.439	0.839	.447	1.44]	0.830	.471	1.435	0.870
				anna ann a nagal an an ann an ann an ann an ann an ann an a		And the foreign of the state of	1000 100-000000000000000000000000000000			-	₩₩ <u>₽₽₩₩</u> ₩₩₩₩₩₩₽ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>

Table 2: Pentacene

(a)	(a) Energy eigenvalues ⇔z _i										
c _{2v} eyven.	Ĩa	II	III								
Al	2.49551 2.00000		2.292523 1.856761								
^B 2	1.21969 2.30278 1.61803	1,146707 2,134603	1.146349 2.123645 1.520835								
A2	1.00000	0.863527 1.270904	0.843151 1.276311								
B ₁	0.61703 1.49551 1.00000	1.451297	0.659125 1.462897 1.000829								
Contraction and the second second	0.21969	0.254116	0.279716								
$\sum_{\lambda}(-\pi_{i})$	15.27202	14.447025	14。462145								



(b) Bond orders, bond lengths and  $\beta^{1}$  values

Bo	nd	p ^{Ie}	r	β° ^I	PII	*II	ß° ^{II}	PIII	FIII	βr ^{III}
1	3	。579	1.409	0.933	.571	1.411	0.929	. 560	1.414	0.930
1	5	。622	1.400	0.965	.655	k. <b>39</b> 3	0.987	.674	1.389	0。980
2	5	:529	1.421	0.897	.491	1.431	0.865	。466	1.437	0.867
2	7	.742	1.377	1.040	.781	1.370	1.062	.802	1.367	1.081
3	4	.451	1.440	0.834	.432	1.445	0.819	.434	1.444	0.890
3	9	. 596	1.406	0.945	.608	1.403	0。954	.613	1.402	0。967
5	6	.472	1.436	0.847	.457	1.439	0.837	.455	1.439	0.860
7	8	.579	1.409	0.933	.527	1.421	0.896	.497	1.429	0.886
	l	- • •			and the second second second second second		San of Spinning Concepts Spinning	A 42 To Campoor and and		and the second secon

Table 3: Hoxacene

(a) Energy eigenvalues -z_i

ê				
	C _{2⊽} sym		II	III
	Al	2.512943	2.306494	2.299449
		2.141658	1.986675	1.971598
		1.501509	1,406481	1.398417
		1.000000	0.855924	0.827824
	$^{B}2$	2.370021	2.187453	2.177512
		1.843487	1.719316	1.706633
		1.169375	1.080717	1.076209
	A2 ·	1.370021	1.333529	1.344643
	-	0.843487	0.846437	0.861534
		0.169375	0.197673	0.220368
	Bl	1.512943	1.468874	1.487777
	-	1.141658	1.121692	1.131485
		0.501509	0.527166	0.549437
6	∑(	18.077986	17. 038431	17. 052886

(b) Bond orders, bond lengths and  $\beta^{\circ}$  values

Be	nd	p ^I	r	β° ^I	P II	<b>B</b> II	p, II	P III	FIII	β' ^{III}
1	4	۰599	1.405	0.948	.617	1.401	0。955	.627	1.399	0.978
1	10	。590	1.407	0.941	。595	1.406	0.939	。594	1.406	0。953
2	4	۰ <b>57</b> 7	1.410	0.931	.566	1.412	0.920	.553	1.412	0.937
2	6	.623	1.399	0.967	.659	1.392	0.985	.679	1.388	1.011
3	6	。528	1.421	0.896	.490	1.431	0.858	.463	1.437	0.865
3	8	.742	1.377	1.039	.782	1.370	1.055	₀ 803	1.367	1.081
L.	5	°448	1.441	0.830	.425	1.445	0.800	.421	1.446	0.840
6	7	.471	1.436	0.847	°454	1.440	0.829	.449	1.441	0.851
8	9	.578	1.410	0.932	.525	1.421	0.890	.494	1.430	0.885
10	11	.443	1.443	0.827	.418	1.447	0.790	<i>。</i> 413	1.448	0.833
	-							and the second second	Na an International Contracts	·

Table 4: Noptacone

(a) Ezergy eigezvalues -×_i



C _{2v} syma,	I	II	EII		
Al	2.524292	2.346230	2.346517		
	2.236481	2.094551	2.092616		
	1.718455	1.621209	1.619104		
	1.134225	1.052033	1.048810		
₽ ₂	2.414214	2,252298	2.251570		
	2. <b>000</b> 000	1.880543	1.877563		
	1.414214	1.333648	1.332421		
	1.000000	0.878479	0.864625		
^A 2	1.414214	1.377057	1.386892		
	1.000000	0.993098	1.006245		
	0.414214	0.438813	0.457042		
B	1,524292	1.481408	1.492602		
	1.236491	1.212104	1.223517		
	0.718455	0.729842	0.746163		
	0.134225	0.154669	0.169964		
Ž (-=,)	20.883761	19.2459891	9.914456		

(b) Bond orders, bend lengths and  $\beta$ ' values

Bo	nd	PI	æ	۶° ^٦	PII	FII	8°II	p P	FIII	p° ^{III}
1	4	•588	1.409	0.947	j .589	1.409	0.947	, 584	1.410	0.943
1	6	.600	1.407	0.955	.617	1.403	0.965	.627	1.401	0.971
2	6	.576	1.412	0.939	.565	1.414	0.932	.552	1.417	0.924
2	8	.623	1.402	0.969	.655	1.395	0.988	.673	1.391	1.000
3	8	.528	1.421	0.908	.490	1.430	0.886	.467	1.435	0.873
3	10	.743	1.377	1.048	.782	1.369	1.078	.803	1.364	1.094
l _à	5	.\$41	1.440	0.859	.420	1. 200	0.847	.419	1.444	0.846
4	12	.593	1.403	0.950	.601	1.406	0.955	.604	1.406	0.958
6	7	. 1347	e.439	0.862	。 <b>4</b> 30	1.442	0.852	.430	1.442	0.852
8	9	.471	1.434	0.875	.460	1.435	0.869	.457	1.437	0.867
10	1	.578	1.411	0.940	.526	1.422	0.907	.496	1.428	0.889





# (a) Energy eigenvalues -x_i

C _{2v} symm.	· I	II	III
A	2: 532089	2.351540	2.352318
_	2.302776	2.150952	2.149354
	1.879385	1.764801	1.761894
	1.347296	1.26 <b>152</b> 0	1.260032
	1.000000	0.875488	0.860597
B ₂	2.444759	2.277110	2.277210
	2.111613	1.977607	1.975180
	1.618034	1.521024	1.5192 <b>9</b> 8
	1.108781	1.018150	1.013327
A2	1.444759	1.405640	1.416335
-	1.111613	1.095504	1.107647
	0.618034	0.632519	0.648952
	0.108781	0.125229	0.138081
B ₁	1。532089	1.488875	1。501286
	1.302776	1.273146	1.284090
	0.879385	0.878948	0.893072
	0.347296	0.370331	0.387746
$\sum_{i}(-x_{i})$	23.689468	22,468389	22.546423

Table 5: Octacene (cont'd)

Bo	nd	pI	rI	β°I	pII	FII	₿° II	PIII	FIII	β ^{, III}
1	5	. 594	1,408	0.951	.604	1.406	0.958	.609	1.405	0.961
1	13	. 592	1.409	0.949	。597	1.407	0.953	。597	1.407	0.953
2	5	。588	1.409	0.946	.587	1.409	0.946	. 582	1.411	0.942
2	7	.601	1.407	0。955	.618	1.403	0。966	。629	1.400	0.973
3	7	. 576	1.412	0.939	。564	1.414	0.932	۵5 <b>5</b> ۱	1.417	0.923
3	9	。623	1.402	0.969	.656	1.395	0.989	。674	1.391	1.001
4	9	. 528	1.421	<b>0</b> .908	。490	1.430	0.885	.466	1.435	0.872
4	11	.743	1.377	1.048	。782	1.369	1.078	.803	1.364	1.094
5	6	. 441	1.440	0.858	.418	1.444	0.846	.416	1.445	0.845
7	8	.4437	1.439	0.862	.429	1.442	0.852	<b>.</b> 428	1.442	0.852
9	10	.471	1.434	0.875	.459	1.436	0.869	.456	1.437	0.867
11	12	。578	1.411	0.940	。525	1.422	0.907	.495	1.428	0.888
13	14	°439	1.440	0.858	.415	1.445	0.844	.413	1.445	0.843





(a) Energy eigenvalues -x_i

C _{2v} symm.	I	II	III
A ₁	2.537673	2.356228	2.355961
1	2.350830	2.192359	2.190361
	2,000000	1.872429	2.190301 1.868745
	1.536547	1.438612	1.435907
n	1.089819	0。992558	0.985322
^B 2	2.466732	2.295466	2.294714
	2.193527	2.049381	2.046676
	1.777484	1.666032	1.662596
	1.294963	1.204546	1.201780
	1.000000	0.873142	0.857743
^A 2	1.466732	1.426839	1。437431
	1.193527	1.171201	1.183084
	0.777484	0.782108	0。796305
	0.294963	0.316418	0.332690
B ₁	1.537673	1.495117	1.507434
-	1.350830	1.318202	1.328803
	1.000000	0.991042	1.00366 <b>3</b>
	0.536547	0.552523	0.568517
	0.089819	0.103303	0.113778
			THE LOCAL STREET, SALES
		a	25.171417
$\sum_{\lambda} (\cdots x_{j})$	26.495151	25.097512	270162926

Table 6: Nonscene (Cont'd)

Bond	pI	rI	ß°۲	p ^{II}	r,II	β°II	PIII	, ^{III}	β°III
Bond 1 5 1 7 2 7 2 9 3 9 3 11 4 11 4 13 5 6 5 15 7 8	p .591 .595 .587 .601 .576 .623 .528 .743 .438 .593 .440	r 1.409 1.408 1.409 1.407 1.402 1.402 1.402 1.421 1.377 1.440 1.408 1.408 1.440	β° - 0.949 0.951 0.946 0.956 0.939 0.969 0.969 0.908 1.048 0.857 0.950 0.858	p . 595 . 605 . 587 . 619 . 564 . 656 . 490 . 782 . 413 . 600 . 417	x ¹¹ 1.408 1.406 1.400 1.403 1.414 1.395 1.414 1.395 1.430 1.369 1.445 1.407 1.445	β ⁰ ** 0.952 0.958 0.945 0.966 0.931 0.989 0.885 1.078 0.843 0.955 0.845	p ¹¹¹ .594 .611 .581 .629 .550 .675 .466 .803 .410 .602 .415	r ¹¹¹ 1.408 1.404 1.411 1.400 1.417 1.391 1.435 1.364 1.446 1.446 1.445	β ¹¹¹ 0.9 <b>51</b> 0.961 0.942 0.973 0.923 1.002 0.872 1.094 0.841 0.956 0.844
9 10 11 12 13 14	.447 .471 .578	1.439 1.434 1.434 1.411	0.862 0.875 0.940	。428 。459 。525	1.442 1.436 1.422	0.852 0.868 0.906	。428 。456 。495	1。442 1。437 1。429	0.851 0.867 0.888

(b) Bond orders, bond lengths and  $\beta$  values

Table 7: Pyrene

(a) Energy eigenvalues - x_i

5 1 7 8 4 6	
6	

C _{2v} sy	/1142 z		II	III	IA
AJ		2。53209 1。34730	2.327011 1.327295	2.321134 1.324600	2.319328 1.322599
B ₂		1.00000 1.80194	1.003853 1.706558	1.012262 1.687924	1.013462 1.680328
^A 2		0.44504 1.24698	0.487658 1.134904	0.514881 1.127597	0.528408 1.126055
Bl		2.00000 0.87939	1.890524 0.805494	1.895504 0.798672	1。900703 0。799050
(: _i	)	11.25275	10.683397	10.682574	10.689934

Bond	p ^{I#}	rI	۶°I	P P	rII	β°II	p III	r ^{III}	β, ^{III}	PIV	^r IA
1 2 1 5 2 3 2 7 3 4 7 8	.670 .504 .524 .777	1.390 1.427 1.422 1.361	0.944 0.996 0.875 0.892 1.059 0.903	。669 。459 。535 。815	1.390 1.439 1.419 1.366	0。996 0.839 0,902 1.0 <b>75</b>	.668 .436 .545 .833	1.390 1.444 1.417 1.364	0.996 0.822 0.909 1.083	。667 。424 。551 。841	1.447 1.415 1. <b>3</b> 62

Table 8: Coronene

### (a) Energy eigenvalues

	(C _{2V} )	I#	II	III	IA
<b>1 1 1 1 1 1 1 1 1 1</b>	A _l	2.67513 1.67513 1.53919	2.435168 1.573301 1.456050	2.428158 1.566910 1.442156	2.424069 1.564005 1.431972
	в2	0.53919 2.21432 1.00000 1.00000	0.537891 2.053330 1.041519 0.949914	0。549751 2。047172 0。952065 0。952064	0.557263 2.044518 1.061447 0.952176
	A2 B1	1.00000 1.67513 0.53919 2.21432	0.949914 1.573301 0.537891 2.053331	0.992004 1.566920 0.549754 2.047169	0.992170 1.318438 0.469775 2.044544
	L L	1.21432 1.00000	1.065595 0.949914	1.050000 0.952082	1.043692 0.802688
	Nr: Zrie	17.28592	16,227205	16.207292	16.187115

Bond	p ^{I &amp;} r ^I	β°I	pII	r ^{II}	β' ^{II}	PIII	rIII	β, ^{III}	, pIV	rIV
12 18 34 45	.745 1.376 .538 1.418 .638 1.418 .522 1.422	0。907 0。907	.518 .562	1.423 1.413	0.888 0.921	。508 。578	1.426 1.410	0.878 0.933	。502 。589	1.427 1.407

# (a) Energy eigenvalues -x_i



С ₂₇ вуле.	I	II	III
A	2.741020	2.505390	2.516719
	2.000000	1.865987	1.875449
	1.697124	1.603302	1.611745
	1.000000	0。958520	0.968476
	0.824152	0.843389	0.861882
^2 ^	1.950627	1.826058	1.832752
	1.142384	1.004370	0.997019
	0 <i>.</i> 769052	0.759788	0.776765
B ₂	2.434764	2.246374	2.257539
	1.516274	1.429085	1.431987
	1.305800	1.264749	1.276071
	0。605225	0.585008	0.591939
Bl	2.303555	2.137880	2.148662
	1.496453	1.392316	1.399443
	1.126413	1.068442	1.078937
1	0.335875	0.355949	0.374229
$\sum_{i} (-\mathbf{x}_{i})$	23.248718	21,846608	21.9999613
-			

Bond	p I *	r ^I	β°I	PII	rII	p, II	p ^{III}	rIII	β, ^{III}
1 2	.511	1.426	0.895	.475	1.432	0.880	.461	1.438	0,861
15	.508	1.426	0.894	.513	1.424	0 <b>。90</b> 0	.520	1.423	0.905
1 10	.604	1.40	0.955	.617	1.402	0 <b>.967</b>	.622	1.399	0.978
23	.763	1.373	1.060	.796	1.365	1.090	.809	1.365	1.090
3 4	.519	1.42	0.900	.486	1.430	0.885	.471	1.436	0.869
46	.535	1.4	0.910	₀555	1.415	0.929	.568	1.412	0.937
48	• 557	1.41	0.925	.550	1.416	0.925	。550	1.416	0.923
56	.526	1.42	0.904	.514	1.424	0.900	。504	1.428	0.890
5 12	.541	1.41	0.915	。549	1.417	0.923	°224	1.415	0.928
67	.521	1.47	0.900	.516	1.423	0。904	.515	1.424	0.90 ⁰
89	.726	1.38	1.035	.740	1.377	1.047	.742	1.374	1.060
R 13	.497	1.429	0.887	.479	1.432	0.882	.471	1.436	0.869

#### Table 10: 2-3, 8-9 dibenzooronene

9

ł

123

10

	e Marine and Anna and			
	C _{2v} syner.	I	II	III
	А _]	2.716258	2.483119	2.491155
		2.037634	1.904079	1.907505
		1.596663	1.538727	1.551964
		1.115875	1.069640	1.069786
		0。558884	0.584518	0.616263
	^B 2	2.228328	2.073581	2.079108
יך		1.360409	1.269352	1.269263
		1.000000	1.001309	1.023172
8		0.185885	0.216507	0.236935
	^2	1.774623	1.652786	1.660502
		1.000000	0.896963	0.892973
	B ₁	2.404039	2.217971	2.225061
		1.593990	1.505564	1.508991
		1.162195	1.078796	1.088492
		0.845089	0.766752	0.759128
	$\sum_{i}^{\sum} (-x_{i})$	21.559874	20.259662	20, 380295

(a) Lnergy eigenvalues -x,

(b) Bond orders, bond lengths and  $\beta^{\circ}$  values

Bo	nd	pI	rI	β' ^I	pII	rII	β, ^{II}	p ^{III}	r ^{III}	β' ^{III}
1	2	.571	1.416	0.926	。580	1.411	0.941	. 586	1.410	0.945
1	9	.670	1.386	1.017	.670	1.392	0.998	.670	1.392	0.998
2	3		1.424	0.902	.530	1.421	0.909	.515	1.424	0.900
2	11	.510	1.438	0.859	.512	1.425	0.898	.517	1.424	0.901
3	4	.646	1,392	1.000	.688	1.388	1.011	.707	1.384	1.024
l _à	5	.487	1.449	0.828	.472	1.433	0.876	.465	1.435	0.872
Ļ	7	.487	1.448	0.829	.434	1.44]	0.855	.412	1.446	0.842
5	6	.567	1.418	0.921	. 579	1.411	0.940	. 581	1.411	0.942
5	13	. 518	1.435	0.868	. 519	1.423	0.903	。523	1.423	0.905
7	8	. 788	1.362	.1.103	.831	1.358	1.115	.847	1.355	1.127
11	13	54-8	1.424	0.901	. 549	1.417	0.922	.543	1.418	0.918

#### Table 11: Anthanthrene

(a) Energy eigenvalues -x_i



CONTRACTOR AND ADDRESS OF THE OWNER OF THE PARTY OF THE P	Contraction of the local division of the loc	1997 / 2019 - 1997 (State of State of S	and the literation of the second states of the	
С ₂ вупи.	I	II	III	
A ·	2.625997	2.416783	2.424732	Ridean
	1.777259	1.682913	1.689656	
	1.534285	1.469204	1.475342	
	1.209901	1.169401	1.181641	
	0.874820	0.796329	0.790454	
	0.290959	0.329211	0。353582	
B	2.261340	2.108319	2.114741	
	1.965927	1.859047	1.865164	
	1.232394	1.183119	1.185156	
	1.103514	1.014571	1.015419	
	0.750047	0.783785	0.808926	
5(	15 606620	14.812682	14 004219	
<u> { ` ' i / </u>	4 J 0 V&V*8%	1.10016006	4307V2016	

Bo	nd	pI	rl	β, ^I	p ^{II}	FII	β' ^{II}	p ^{III}	r ^{III}	β, ^{III}
1	2	.563	1,415	0.929	.561	1.415	0.929	₀559	1.415	0.928
1	6	.507	1.428	0.891	.512	1.425	0.898	.521	1.423	0.903
l	12	.561	1.415	0.927	.549	1.417	0.922	.540	1.419	0.916
2	3	.689	1.389	1.008	.701	1.386	1.020	.708	1.384	1.024
3	4	.650	1.397	0.983	.637	1.399	0.978	。628	1.401	0.972
l <u>s</u>	5	.605	1.406	0.956	.631	1,400	0.974	.644	1.397	0.982
5	6	。520	1.424	0:900	.523	1.422	0。905	。524	1.422	0.906
5	7	.494	1.430	0.885	.446	1.439	0.861	.425	1.443	0.850
6	10	。550	1.418	0.920	。547	1.418	0.921	. 540	1.419	0.916
7	8	.784	1.369	1.078	.824	1.360	1:110	.840	1.357	1.121
8	9	.493	1.430	0.885	. l1111	1.439	0.860	.423	1.443	0.849
9	10	.487	1.432	0.880	.477	1.4 <b>32</b>	0.878	.474	1.433	0.877
9	13	.640	1.399	0.976	.676	1.391	1.002	.691	1.388	1.013
10	11	.541	1.420	0.915	.555	1.416	0.926	.665	1.414	0.932
						and the second		Transfer Street Street St.		and the second state of the se

#### APPENDIX C

Energies, bond orders etc. calculated as for molecules in Appendix B, but with special provision made for extreme short and long bonds, as described in § 6.3.



с ₂	вупа.		II	III	IV
	A	2.255841	2.281178	2.284230	2.284601
		1.429019	1.503049	1.502608	1.502689
		1.209599	1.232885	1.240754	1.242503
		0.724083	0.703251	0.687811	0.681615
	A°°	1.940954	1.913817	1.908630	1.905832
		1.064673	1.070064	1.074528	1.076752
		0.812916	0.779482	0.771244	0.768825
Σ.(	~x _i )	9-437084	9。483726	9.469805	9.462817

(a) Energy eigenvalues -x_i





	(	a) Energ	y Eigenval	lues -x ₁	
C _v sy ( D ₃		I	IL	III	I A
A'	(A2)	2.332253	2.320636	2.345921	2.348122
	(E)		1,925866	1.942828	1.922509
	(A ₂ )	1.275427	1.277255	1.289376	1.292069
	<b>(</b> E)	1.188240	1.195939	1.211062	1.214734
	<b>(</b> E)	0。758644	0.723369	0.707638	0.701191
A"	(E)	1.950012	1.925866	1.924828	1.922509
	(8)	1.188240	1.195939	1.211062	1.214734
	(A ₁ )	0.907680	0.898892	0.896297	0.897191
	<b>(</b> E)	0.758644	0.723369	0.707638	0.701191
∑(-×i	)	12.309150	12, 187131	12, 218648	12, 214250

(b) Bond orders, bond lengths and  $\beta^{\scriptscriptstyle 0}$  values

Bond	P	T.	β°I	PII	x	β° ^{II}	p III	, III P	β° ^{III}	pIV	FIV	β ^{, IV}
1 9 2 9 2 11	.637 .300 .613	1.390 1.399 1.469 1.404 1.395	0。978 0。780 0。963	。626 。334 。603	1.401 1.462 1.406	1.009 0.971 0.800 0.957 0.982	。617 。359 。596	1。403 1。456 1。408	1.013 0.965 0.814 0.952 0.977	.611 . <b>369</b> .595	1.404 1.455 1.408	0。961 0。818 0。951

## Table 3: 1-2, 3-4, 5-6, 7-8 tetrabenznaphthalene

(a) Energy eigenvalues -x_i



C _{2v} symm.	I	IT	III	IV
A ₁	2.341739	2.400140	2.409464	2.410867
	1.506626	1.579248	1.587492	1.587253
	1.209775	1.232438	1.239705	1. <b>2</b> 41681
	0.587146	0.565640	0.557610	0.554460
B ₂	2.167050	2.157296	2.155108	2.154827
-	1.230802	1.246968	1.253027	1.254749
	1.000000	0.988218	0.986695	0.987372
A2	1.914530	1.881255	1.873645	1.871344
-	1.000000	0.989173	0.988694	0.989967
	0.783322	0.732055	0.714489	0.707637
B	1.974111	1.957573	1.954064	1.953273
25	1.141091	1.168372	1.177048	1.181041
	0.830084	0.805520	0.801160	0.800947
∑(~xj)	17.686278	17.703896	17.698198	17.695419

Bond	Iq	r	ßI	p ^{II}	[ _II r	ßII	DII.	I _r III	ßIII	p ^{IV}	r ^{IV}	BILV
12	.628	1.401	0.972	.609	1.405	0.960	. 598	1.407	0.954	. 592	1.408	0.949
16	605	1.406	0.958	. 588	1.409	0.947	. 586	1.410	0.945	° 286	1.410	0.946
18	. 34 <b>0</b>	1.460	0.804	. 387	1.451	0.828	·402	1.448	0.836	۰409	1.446	0.840
23	.682	1.390	1.006	695،	1.387	1.016	:705	1.385	1.022	.711	1.383	1.027
34	.648	1.396	0.985	.633	l.400	0.975	. <b>62</b> 1	1.402	0.968	.614	1.404	0.964
4 5			1.005									
56			0.976									
67	.315	1.466	0.790	. 369	1.455	0.818	. 387	1.451	0.828	۰394 -	1.449	0.832
89	•793	1.366	1.086	.737	1.378	1.044	; 7 <b>17</b>	1.382	1.031	。707	1.384	1.024
									and the second			

Table						· · · •						
19010		-2 ben	zpyren	е	(	a) Ener	rgy e	igenva	lues -	xi		
	8			C	2 ^{symm}	Ţ	1990 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	II	<del>84-010-12 (2000) 10 (2000)</del>	III	 	IV
	0				A٩	2.3730	1.8 2.	392873	2.39	5815	2.397	330
		1/2	3			2.00679	3 2.	010938		0629		
			and the second se			1.46310	06 1.	523436	1.52	3831	1.524	240
	2/	<b>~</b> ("	74			1.2666	56 1.	282303	1.28	8296	1.290	666
	$\langle \rangle$	76	-5			0.87302	28 0.	986286	0.98	2585	0.980	34 <b>9</b>
	14	13			1	0.64269	99 0.	594362	0.57	2950	0.564	358
				ł	1	1.97350				38 <b>55</b>	1.931	314
					8	1.21407				383 <b>5</b>		376
						0.96392		1 1 L			0.953	830
					l	0.77378	38 0.	733890	0.72	1874	0.719	255
	, ·		•	Σ	[(-x_j)	13.65060	)1 13.(	656397	13.62	7210 :	13.619	549
(``) <b>P</b> o						01	R ^{del} ta produce	ing a state of the				
(0) 50.		lers,	bong te	engun	s and	B' valu	ເອຍ				ж. П	
Bond	P	r ^I	$\beta^{I}$	p ^{II}	r ^{II}	ß'II	,III	rIII	ßIII	817	777	
17	.676	1.391	-	1		8 · 9	Ľ	4 <b>3</b> 7	ß	pIV	rIV	ß ^{IV}
19	677		1.002	.685	1,389	1.009			······································			
	1.001					-	692ء	1.387	1.014	.697	1.386	1.017
23		1.399	0.978	.624	1.402	1.009	。692 。615	1.387 1.403	1.014 0.964	.697 .610	1.386 1.404	1.017 0.961
2 3 2 9	.645	1.399 1.397	0.978 0.982	.624 .642	1.402 1.398	1.009 0.969	。692 。615 。643	1.387 1.403 1.397	1.014 0.964 0.982	.697 .610 .645	1.386 1.404 1.397	1.017 0.961 0.983
	.645 .300	1.399 1.397 1.469	0.978 0.982 0.760	.624 .642 .346	1.402 1.398 1.459	1.009 0.969 0.981	。692 。615 。643 。363	1.387 1.403 1.397 1.456	1.014 0.964 0.982 0.815	.697 .610 .645 .368	1.386 1.404 1.397 1.455	1.017 0.961 0.983 0.818
29	.645 .300 .605	1.399 1.397 1.469 1.406	0.978 0.982 0.780 0.958	.624 .642 .346 .577	1.402 1.398 1.459 1.412	1.009 0.969 0.981 0.807	。692 。615 。643 。363 。564	1.387 1.403 1.397 1.456 1.414	1.014 0.964 0.982 0.815 0.932	.697 .610 .645 .368 .559	1.386 1.404 1.397 1.455 1.415	1.017 0.961 0.983 0.818 0.928
2 9 2 11	.645 .300 .605 .661	1.399 1.397 1.469 1.406 1.394	0.978 0.982 0.760 0.958 0.992	•624 •642 •346 •577 •656	1.402 1.398 1.459 1.412 1.395	1.009 0.969 0.981 0.807 0.939	692 615 643 363 564 652	1.387 1.403 1.397 1.456 1.414 1.396	1.014 0.964 0.982 0.815 0.932 0.986	.697 .610 .645 .368 .559 .648	1.386 1.404 1.397 1.455 1.415 1.396	1.017 0.961 0.983 0.818 0.928 0.985
29 211 34	.645 .300 .605 .661 .672	1.399 1.397 1.469 1.406 1.394 1.392	0.978 0.982 0.780 0.958 0.992 1.000	.624 .642 .346 .577 .656 .678	1.402 1.398 1.459 1.412 1.395 1.390	1.009 0.969 0.981 0.807 0.939 0.989	.692 .615 .643 .363 .564 .652 .682	1.387 1.403 1.397 1.456 1.414 1.396 1.390	1.014 0.964 0.982 0.815 0.932 0.986 1.006	.697 .610 .645 .368 .559 .648 .685	1.386 1.404 1.397 1.455 1.415 1.396 1.389	1.017 0.961 0.983 0.818 0.928 0.985 1.008
2 9 2 11 3 4 4 5	.645 .300 .605 .661 .672 .631 .603	1.399 1.397 1.469 1.406 1.394 1.392 1.400 1.406	0.978 0.982 0.760 0.958 0.992 1.000 0.974 0.957	.624 .642 .346 .577 .656 .678 .617 .580	1.402 1.398 1.459 1.395 1.390 1.403 1.411	1.009 0.969 0.981 0.807 0.939 0.989 1.003 0.965 0.941	.692 .615 .643 .363 .564 .652 .682 .609 .571	1.387 1.403 1.397 1.456 1.414 1.396 1.390 1.405 1.413	1.014 0.964 0.982 0.815 0.932 0.986 1.006 0.961 0.936	.697 .610 .645 .368 .559 .648 .685 .605 .568	1.386 1.404 1.397 1.455 1.415 1.396 1.389 1.406 1.413	1.017 0.961 0.983 0.818 0.928 0.985 1.008 0.958 0.934
2 9 2 11 3 4 4 5 5 6	.645 .300 .605 .661 .672 .631 .603 .339	1.399 1.397 1.469 1.406 1.394 1.392 1.400 1.406 1.460	0.978 0.982 0.780 0.958 0.992 1.000 0.974 0.957 0.804	.624 .642 .346 .577 .656 .678 .617 .580 .392	1.402 1.398 1.459 1.395 1.390 1.403 1.411 1.450	1.009 0.969 0.981 0.807 0.939 0.989 1.003 0.965 0.941 0.831	.692 .615 .643 .363 .564 .652 .682 .682 .609 .571 .415	1.387 1.403 1.397 1.456 1.414 1.396 1.390 1.405 1.413 1.445	1.014 0.964 0.982 0.815 0.932 0.986 1.006 0.961 0.936 0.844	.697 .610 .645 .368 .559 .648 .685 .605 .568 .425	1.386 1.404 1.397 1.455 1.415 1.396 1.389 1.406 1.413 1.443	1.017 0.961 0.983 0.818 0.928 0.985 1.008 0.958 0.958 0.934 0.850
2 9 2 11 3 4 4 5 5 6 6 11	.645 .300 .605 .661 .672 .631 .603 .339 .654	1.399 1.397 1.469 1.406 1.394 1.392 1.400 1.406 1.460 1.395	0.978 0.982 0.760 0.958 0.992 1.000 0.974 0.957 0.804 0.967	.624 .642 .346 .577 .656 .678 .617 .580 .392 .642	1.402 1.398 1.459 1.412 1.395 1.390 1.403 1.411 1.450 1.398	1.009 0.969 0.981 0.807 0.939 0.989 1.003 0.965 0.941 0.831 0.981	.692 .615 .643 .363 .564 .652 .682 .609 .571 .415 .634	1.387 1.403 1.397 1.456 1.414 1.396 1.390 1.405 1.413 1.445 1.399	1.014 0.964 0.982 0.815 0.932 0.986 1.006 0.961 0.936 0.844 0.976	.697 .610 .645 .368 .559 .648 .685 .605 .605 .568 .425 .629	1.386 1.404 1.397 1.455 1.415 1.396 1.389 1.406 1.413 1.400	1.017 0.961 0.983 0.818 0.928 0.985 1.008 0.958 0.958 0.934 0.850 0.973
2 9 2 11 3 4 4 5 5 6 6 11 6 13	.645 .300 .605 .661 .672 .631 .603 .339 .654 .613	1.399 1.397 1.469 1.406 1.394 1.392 1.400 1.406 1.406 1.395 1.404	0.978 0.982 0.760 0.958 0.992 1.000 0.974 0.957 0.804 0.967 0.963	.624 .642 .346 .577 .656 .678 .617 .580 .392 .642 .598	1.402 1.398 1.459 1.395 1.395 1.403 1.403 1.411 1.450 1.398 1.407	1.009 0.969 0.981 0.807 0.939 0.989 1.003 0.965 0.941 0.831 0.981 0.954	.692 .615 .643 .363 .564 .652 .682 .609 .571 .415 .634 .595	1.387 1.403 1.397 1.456 1.414 1.396 1.390 1.405 1.413 1.445 1.399 1.408	1.014 0.964 0.982 0.815 0.932 0.986 1.006 0.961 0.936 0.936 0.936 0.976 0.976	.697 .610 .645 .368 .559 .648 .685 .605 .568 .425 .629 .596	1.386 1.404 1.397 1.455 1.415 1.396 1.389 1.406 1.408 1.400 1.408	1.017 0.961 0.983 0.818 0.928 0.928 0.985 1.008 0.958 0.958 0.934 0.850 0.973 0.952
2 9 2 11 3 4 4 5 5 6 6 11 6 13 7 8	.645 .300 .605 .661 .672 .631 .603 .339 .654 .613	1.399 1.397 1.469 1.406 1.394 1.392 1.400 1.406 1.406 1.395 1.404	0.978 0.982 0.760 0.958 0.992 1.000 0.974 0.957 0.804 0.967 0.963	.624 .642 .346 .577 .656 .678 .617 .580 .392 .642 .598	1.402 1.398 1.459 1.395 1.395 1.403 1.403 1.411 1.450 1.398 1.407	1.009 0.969 0.981 0.807 0.939 0.989 1.003 0.965 0.941 0.831 0.981	.692 .615 .643 .363 .564 .652 .682 .609 .571 .415 .634 .595	1.387 1.403 1.397 1.456 1.414 1.396 1.390 1.405 1.413 1.445 1.399 1.408	1.014 0.964 0.982 0.815 0.932 0.986 1.006 0.961 0.936 0.936 0.936 0.976 0.976	.697 .610 .645 .368 .559 .648 .685 .605 .568 .425 .629 .596 .457	1.386 1.404 1.397 1.455 1.415 1.396 1.389 1.406 1.408 1.400 1.408 1.408	1.017 0.961 0.983 0.818 0.928 0.928 0.985 1.008 0.958 0.958 0.934 0.850 0.973 0.952

13 14 .895 1.345 1.166 .864 1.352 1.140 .849 1.355 1.128 .841 1.356 1.122



(a) Energy eigenvalues -x_i



C _{2v} symm.	I	III	III	IV
Al	2.453521	2.422130	2,423471	2.424225
	1.879222	1.843399	1.837668	1.837014
	1.282965	1.277637	1.280943	1.282541
	0.970925	0.945419	0 <b>.942266</b>	0.941556
^B 2	2.134998	2.115472	2.115503	2.115886
	1.337631	1.339870	1.343870	1.345714
	0.650486	0.604997	0.591831	0.587355
^A 2	1.285821	1.295061	1.300753	1.302482
	0.837294	0.821278	0.819451	0.820474
B ₁	1.982360	1.950640	1.945853	1.944010
	1.082691	1.083037	1.085155	1.086209
	0.721582	0.689907	0.682340	0.680115
<u> </u>	16.619494	16.388846	16.369102	16.367579

(b) Bond orders, bond lengths and  $\beta'$  values.

Вс	ond	p ^I	ŗ	ß	pII	r ^{II}	ß' ^{II}	$p^{III}$	r ^{III}	III ß'	VIq	rIV	ß
1	4	.678	1.390	1,004	.687	1.388	1.010	.694	1.387	1.015	.698	1.386	1.013
1	6	.632	1.400	0.975	.621	1.402	0.967	.613	1.404	0.963	.609	1.405	0.961
5	3	.638	1.398	0.979	.633	1.400	0.975	.631	1.400	0.974	.630	1.400	0.974
2	6	.324	1.464	0.795	• 355	1.457	0.812	.367	1.455	0.817	.3 <b>7</b> 0	1.454	0.819
2	8	.596	1.408	0.952	. 582	1.411	0.942	.576	1.412	0.938	₅573	1.412	0.937
3	10	.666	1.393	0.995	.666	1.393	0.995	.666	1.393	0.995	.666	1.393	0.995
4	5	.651	1.396	0.986	.639	1.398	0.979	.632	1.400	0.975	.627	1.401	0.972
6	7	.606	1.406	0.958	. 595	1.408	0.952	• 594	1,408	0.951	• 595	1.408	0.952
8	9	.374	1.454	0.821	.408	1.446	0.840	.424	1.443	0.849	.430	1.442	0.852





(a) Energy eigenvalues -x_i

I	II	III	IV
2.367521	2.380136	2.383953	2.384104
2.188349	2.204913	2.207058	2 <b>.20750</b> 4
1.950650	1.929108	1.925715	1.9244 <b>05</b>
1.920537	1.888114	1.880587	1.87 <b>7</b> 545
1.479890	1.539359	<b>1.54003</b> 6	1.539722
1.291391	1.324966	1.332452	1.334107
1.220772	1.236359	1.243024	1.245058
1.170802	1.190104	1.196875	1.198896
1.027811	1.026691	1.027573	1.027714
0.921024	<b>0.</b> 905598	0.901975	0.901543
0.831685	0.810828	0.804055	0.802683
0.710626	0.664399	0.651908	0.648304
0.665045	0.619526	0.598278	0.589393
17.746101	17.720101	17.693486	17.680976

Taule 6 contid.

Boi	nd	p ^I	r ^I	$\beta^{I}$	pII	rII	β' ^{II}	pII	I _r III	ß'III	VIg	r ^{IV}	ß' ^{IV}
1	2	<b>.</b> 680	1.390	1.005	.694	1.387	1.015	。704	1.385	1.022	.711	1.383	1.027
1	26	.649	1.396	0.925	•633	1.400	0.975	.621	1.402	0.967	613	1.404	0.963
2	3	°633	1.400	0.975	.613	1.404	0.963	.602	1.406	0.956	- 595	1.408	0.951
3	4	• 317	1.465	0.791	• 372	1.454	0.820	. 392	1.450	0.830	۰400°	1.448	0.835
3	24	.607	1.405	0.959	. 590	1.409	0.94 <b>8</b>	• 587	1.410	0.986	. 587	1.410	0.946
4	5	₀ <b>6</b> 41	1.398	0.981	.632	1.400	0.975	•626	1.401	0.971	.623	1.402	0.96 <b>9</b>
4	21	۰595	1.408	0.952	. 569	1.413	0.935	₀559	1.415	0.929	° 556	1.416	0.926
5	6	.651	1.396	0.986	.651	1.396	0 <b>,986</b>	652ء	1.396	0.987	654	1.395	0.988
6	7	. 300	1.469	0.780	• 345	1.459	0.807	.361	1.456	0.815	. 366	1.455	0.817
6	19	•597	1.407	0.953	. 567	1.414	0.934	• 554	1.416	0.925	° 548	1.417	0.921
7	8	.637	1.399	0.978	.625	1.401	0.970	.617	1.403	0.965	612	1.404	0.962
7	12	.613	1.404	0.963	• 598	1.407	0.953	• 594	1.408	0.951	° 595	1.408	0.951
8	9			1.002	÷						5		
9	10	5		0.988	5						Ē		
10	11	-676	1.391	1.002				5			¥.		
11	12		1.398		ê.			l.		0.966	8		
12	13	*		0.779	e e			8					
13	14			0.979	8			8					
13	18			0.963									
14	15			1.002									
15	16			0.988									
16	17	.676	1.391	1.002	.684	1.389	1.008	.691	1.388	1.013	.695	1.387	1.016
17	18	.638	1.399	0.978	.624	1.401	0.970	<i>°</i> 612	1.403	0.965	.613	1.404	0.965
18	19	•299	1.469	0,780	o 345	1.459	0.807	. 360	1.456	0.814	365	1.455	0.011
19	20	.652	1.396	0.987	₀65 <u>3</u>	1.395	0.987	.655	1.395	0.988	657	1.395	0.990
	21	•636	1.399	0.978	-625	1.401	0.971	<b>.</b> 620	1.402	0.967	.610	1.403 7.444	0.909
21	22	•339	1.460	0.804	- 391	1.450	0.830	.412	1.446	0.842	422	1.444	1 122
	23	•895	1.345	1.166	.865	1.351	1.141	<i>.</i> 850	1.354	1.129	.045	1.770	10167
1	24	° <b>3</b> 38	1.461	0.803	. 389	1.450	0.829	.411	1.446	0.841	421 500	1 100	0.947
	25	•628	1.401	0.972	.608	1.405	0.960	• 597	1.407	0.955	6707 777	1 292	1.028
25	26	.682	1.390	1.006	.696	1.387	1.016	.706	1.384	1.023	° {⊥)	20)	

Table 7: 1-2, 3-4, 5-6, 7-8 tetrabenzanthracene

(a) Energy eigenvalues -x_i

						с ₂	ysymm	0	J		II	II	:I	IV
					3		A	2	• 3919	68 2	399990	2.404	763 2	2.405244
	$\frown$	•		2		4	•	1	.9234	32 1	.893354	1.886	6803 3	.884131
			10	,				1	.2254	14 1	.239227	1.249	5473	1.246628
		$\sim$			8 mars	5		0	•9442	263 0	.919206	0.912	2564 (	0.911260
							^B 2	2	•2482	291 2	.253785	2.257	879	2.258323
/	人	$\checkmark$	~	7	9			1	. 3851	.84 1	. 399692	1.404	797	L。405723
			81					1	.2053	584 1	.222948	1.230	)4 <b>24</b> :	1.231692
		<b>,</b>						0	.6852	264 0	.636753	0.622	2378 (	0.618501
							A2	1	•9419	927 1	.917460	1.912	2915 :	L.911099
							_	1	.0680	)15 1	075543	1.079	983 :	1.081652
								0	.8140	65 0	.784175	0.777	7580 (	D <b>.775</b> 489
							B ₁	1	.9582	255 1	.938182	1.93	5331 :	1.934059
							-	1	.244	513 l	.267452	1.278	3073	1.281802
								0	<b>.</b> 8886	509 0	.874020	0.87	5759 (	0.874805
								0	.693	00 0	.636314	0.617	1439	0.610596
						ξ(	(-x _i )	20	.6182	282 20	.458290	20.44(	)1592	0.431003
(b)	Bong	l orde	ers, bo	ond lon	gths	and	B' vel	lue	8,	- 244-44				Notestic at the
Boi	nd	pI	r ^I	β′ ^I	p ^{II}	rII	ß	I	p ^{III}	r ^{III}	ß'	pIV	r ^{IV}	β' ^{IV}
1	2	.637	1.399	0.978	<b>.</b> 623	1.401	and the state of t		.616	1.40	3 0.964	.611	1.40	4 0.962
1	6	.300	1.470	0.780	• 347	1.459	) 0.80	)7	. 363	1.45	6 0.815	₀368	1.45	5 0.818
1	8	.613	1.404	0.963	. 598	1.407	0.95	53	•594	1.40	8 0.951	• 595	1.40	B 0.951
2	3	.676	1.391	1.002	.685	1.389	) 1.00	09	.692	1.38	7 1.013	.696	1.38	6 1.016
3	4	.654	1.395	0.988	.642	1.398	3 0.98	31	₀634	1.39	9 0 <b>.97</b> 6	.629	1.40	0 0.973
4	5	.676	1.391	1.002	.684	1.389	1.00	)8	.691	1.38	8 1.013	.696	1.38	7 1.010
5	8	.638	1.399	0.978	.624	1.40]	0.97	70	.617	1.40	3 0.965	.612	1.40	4 0.962
6	7	.601	1.406	0.956	. 576	1.412	2 0.93	59 I	.566	1.41	4 0.932	.562	1.41	5 0.930
6	10	.646	1.397	0.984	.641	1.398	3 0.98	31	.640	1.39	8 0.980	.640	1.39	8 0.980
8	9	.299	1.469	0.779	.345	1.459	0.80	)6	.361	1.45	6 0.814	•366	1.45	5 0.817

Table 8: 1-12, 2-3 dibenzperylene



(a) Energy eigenvalues -x_i

I	II	III	IV
2.430480	2.448547	2.452237	2.453011
2.153936	2.163320	2.164851	2.165387
2.018463	2.0 <b>0</b> 2741	1.997322	1.995066
1.896101	1.861576	1.851943	1,848653
1.495398	1.557778	1.559443	1.560127
1.328533	1.347940	1.355849	1.358894
1.265475	1.288092	1.297511	1.300957
1.130766	1.141567	1.144708	1.145788
0.987265	0。995647	0。989680	0° <b>986252</b>
0.952573	0.945150	0.943301	0。94 <b>2</b> 9 <b>37</b>
0.880546	0。862350	0.858513	0 <i>°</i> 888515
0.717348	0.670970	0.657195	0。 <b>653378</b>
0.608789	0.551582	0.527768	0-517686
17.865672	17.837261	17.800320	17.786650

Table 8 contid.

(b) Bond orders, bond lengths and  $\beta'$  values.

Во	nd	pŢ		ß' ^I	p II	r r	ß' ^{II}	III. g	I _I III	β ^{III}	pIV p	r ^{IV}	ß' ^{IV}
1	2	.894	1.345	1.165	. 860	1.352	1.138	.843	1.356	1.124	.834	1.358	1.117
1	22	. 341	1.460	0.804	- 395	1.449	0.832	.420	1.444	0.847	•433	1.441	0.854
2	3	•342	1.460	0.805	• 399	1.448	0.834	.424	1.443	0.849	.438	1.440	0.857
3	4	.621	1.402	0.968	- 597	1.407	0.953	. 582	1.411	0.942	. 571	1.413	0.936
3	24	606 ،	1.405	0.959	- 587	1.409	0.946	. 581	1.411	0.942	. 581	1.411	0.941
4	5	.686	1.389	1.009	• 703	1.385	1.021	.715	1.383	1.030	.724	1.381	1.035
5	6	.626	1.401	0.971	.604	1.406	0.95 <b>7</b>	• 589	1.409	0.948	- 580	1.411	0.941
6	7	. 303	1.468	0.782	- 354	2.457	0.811	• 374	1.453	0.821	382	1.412	0.825
6	25	.616	1.403	0.965	.602	1.406	0.956	.600	1.407	0.955	601	1.406	0.956
7	8	.636	1.399	0.978	.621	1.402	0.968	.611	1.404	0.962	. 605	1.406	0。958
7	12	.612	1.404	0.962	. 596	1.408	0.952	. 591	1.409	0.949	. 591	1.409	0.949
8	9	.676	1.391	1.003	687	1.388	1.010	.695	1.387	1.015	<b> </b> ₀700	1.386	1.019
9	10	.653	1.395	0.987	.640	1.398	0.980	.631	1.400	0.974	.625	1.401	0.970
10	11	.676	1.391	1.002	.686	1.389	1.009	.694	1.387	1.015	.699	1.386	1.019
11	12	.637	1.399	0.978	.623	1.402	0.969	.614	1.404	0.963	.608	1.405	0.960
12	13	₀ <u>3</u> 01	1.469	0.781	o 350 ا	1.458	0.809	.368	1.455	0.818	.376	1.453	0.822
13	14	.640	1.398	0.980	.632	1.400	0.974	.628	1.401	0.972	.625	1.401	0.971
13	26			0.960	8			13			5		
14	15	2		0.996	3			8			£		· · · · ·
15	16			0.995									
16	17	.641	1.598	0.981	635	1.399	0.976	.633	1.400	0.975	.633	1.399	0.976
17	18	٥٥٥ 。	1.469	0.780	. 347	1.459	0.807	. 363	1.456	0.816	. 368	1.455	0.818
17	26	609 ،	1.405	0.96 <b>0</b>	: 586	1.410	0.945	. 576	1,412	0.939	• 572	1.413	0.936
18	19	.645	1.397	0.983	.643	1.397	0.981	.644	1.397	0.982	.647	1.397	0.984
18	23	<b>.</b> 605	1.406	0.958	.577	1.412	0.939	. 563	1.414	0.931	• 557	1.416	0.927
19	<b>2</b> 0	.661	3.394	0.992	.655	1.395	0.988	.650	1.396	0.985	.645	1.397	0.983
20	21	.673	1.391	1.000	679	1.390	1.004	.684	1.389	1.008	.688	1.388	1.011
21	22	.630	1.400	0.974	615	1.403	0.964	.606	1.405	0.959	.600	1.407	0.955
22	23	.603	1.406	0.957	1.579	1.411	0.941	.570	1.413	0.935	. 566	1.414	0.900
23	24	. 348	1.462	0.799	. 397	1.449	0.834	.422	1.444	0.848	.432	1.442	0.000
24	25	.601	1.406	0.956	568	1.413	0.934	.550	1.417	0.922	. 540	1.419	0.210
25	26	• 331	1.462	0.799	- 397	1.449	0.834	.422	1.444	0.848	.432	1.442	0.855
	C. L. P. C.												ang ti shi a na sang gi na sa

Table 9: 1-12, 2-3, 10-11 tribenzperylene



## (a) Energy eigenvalues -x_i

С ₂ вулл.	I	II	III	IA
٩¢	2.449316	2.461744	2.466843	2.468354
	2.063061	2.048616	2.046921	2.045548
	1.926334	1.895198	1.887807	1.885009
	1.334771	1.357595	1.367886	1.370785
	1.271637	1.293631	1.302465	1.305871
	1.000000	<b>0.9</b> 93214	0.994618	0.996062
	0.969123	0.954568	0.949916	0。947550
	0.704437	0.652605	0.637795	0.632904
A* °	2.213538	2.216373	2°2 <b>20206</b>	2.221023
	1.883460	1.848679	1.840284	1.836833
	1.361340	1.379330	1.387786	1.390299
	1.175594	1.187417	1.193488	1.194732
	0.949310	0.940404	0.939075	0.939226
	0.806859	0.777892	0.771560	0.770258
	0.628579	0.564074	0.541853	0.533710
$\sum_{i}(-x_{i})$	20.737358	20.571339	20.548503	20.538163

(a) Energy eigenvalues -x_i

Table 9 cont'd.

(b) Bond orders, bond lengths and  $\beta'$  values

Во	nd	p ^I .	rI	β' ^I	p ^{II}	r ^{II}	β' ^{II}	p ^{III} r ^{II}	^{II} β' ^{III}	pIV	r ^{IV}	β' ^{IV}
1	2	₀ 302	1.469	0.781	• 352	1.458	0.810	.371 1.	454 0.820	• 379	1.452	0.823
1	13	.631	1.400	0.974	.613	1.404	0.963	.603 1.4	406 0.957	• 597	1.407	0.953
1	15	.612	1.404	0.962	• 595	1.408	0.951	.590 1.4	409 0.948	- 589	1.409	0.94 <b>7</b>
2	3	.637	1.399	0.978	.622	1.402	0.968	.612 1.4	404 0.962	.607	1.405	0.95 <b>9</b>
2	7	.613	1.404	0.963	. 596	1.407	0.952	.592 1.4	408 0.950	• 593	1.408	0.950
3	4	.676	1.391	1.002	.686	1.389	1.010	.694 1.	387 1.015	.699	1.386	1.019
4	5	۰653	1.395	0.987	.641	1.398	0.981	.632 1.4	400 0.975	.626	1.401	0.971
5	6	.676	1.391	1.002	•686	1.389	1.009	.693 1.3	387 1.014	.698	1.386	1.018
6	7	.637	1.399	0.978	623ء	1.402	0.969	.614 1.4	404 0.964	.609	1.405	0.960
7	8	.300	1.469	0.780	. 548	1.459	0.808	.366 1.4	455 0.817	• 373	1.454	0.821
8	9	.641	1.398	0.980	.632	1.400	0.975	.629 1.4	40 <b>0</b> 0.9 <b>73</b>	.627	1.401	0.972
8	12	.609	1.405	0.960	。587	1.410	0.945	.578 1.4	411 0.94 <b>0</b>	- 574	1.412	0.937
9	10	.666	1.393	0.996	.667	1.393	0.995	.668 1.	392 0.996	.668	1.392	0.997
10	11	666 ،	1.393	0。995	.665	1.393	0.995	.664 1.3	<b>3</b> 93 0 <b>.99</b> 4	.664	1.393	0.993
11	17	.641	1.398	0.981	• 586	1.410	0.945	.632 1.4	400 0.9 <b>75</b>	.631	1.400	0.975
12	15	•331	1.462	0.799	.396	1.449	0.833	.421 1.4	444 0.847	۰4 <b>3</b> 0	1.442	0.8 <b>53</b>
12	17	.609	1.405	0.961	. 586	1.410	0.945	.577 1.4	41 <b>2</b> 0.939	573 ،	1.412	0.937
13	14	.680	1.390	1.005	.692	1.387	1.013	.700 1.3	386 1.019	.705	1.385	1.022
15	16								114 0.931	4		-
17	18	. 300	1.469	0.780	• 347	1.459	0.808	.364 1.4	156 0.816	. 369	1.454	0.819
							· · ·					<del>الاردار</del> میں

.





(a) Energy eigenvalues -x

C ₂ symm.	I	II	III	IV
A٥	2.480455	2.493082	2.497368	2.498990
	2.151806	2.147803	2.149336	2.149895
	1.945161	1.910030	1.900673	1.896730
	1.863076	1.825775	1.816195	1.813196
	1.329778	1.352443	1.362409	1.366475
	1.235368	1.250317	1.257278	1.259288
	0.991032	0.966441	0。95 <b>853</b> 4	0.954938
	0.949807	0.940805	0.939 <b>393</b>	0.939558
	0。908025	0.892350	0。89 <b>0530</b>	0.890990
	0.639634	0.574895	0。55 <b>327</b> 4	0.545177
A ° °	2.266721	<b>2.27</b> 2431	2.276283	2° <b>277103</b>
	1.979162	1.958907	1.955980	1.954646
	1.385193	1.404437	1.412 <b>253</b>	1.414810
	1.354335	1.380294	1.391 <b>19</b> 1	1.394933
	1.122834	1.131793	1.136947	1.138187
	0.947052	0。939669	0.939608	0.940351
	0.777817	0.743917	0 <b>.735501</b>	0.733410
	0.623887	0.560103	0.539170	0.531458
$\sum_{i} (-x_{i})$	24.95115	24.745490	24.711924	24.700135

Table 10 cont'd.

# (b) Bond orders, bond lengths and $\beta'$ values.

Вс	nd	pI	Ţ	β' ^I	pII	r r	ß'II	pII	r _r III	$\beta^{III}$	pIV	rIV	ß' ^{IV}
L	2	.641	1.398	0.980	.633	1.400	0.975	.630	1.400	0.974	.629	1.400	0.973
1	17	.666	1.393	0.996	.666	1.393	0.995	.666	1.393	0.995	.666	1.393	0.995
2	3	. 301	1.469	0.781	• 349	1.459	0.808	. 366	1.455	0.817	.373	1.454	0.820
2	18	609ء	1.405	0.960	. 586	1.410	0.945	• 576	1.412	0.939	. 572	1.413	0.936
3	4	.641	1.398	0.980	653ء	1.400	0.975	.630	1.400	0.973	.628	1.400	0.973
3	16	609 ،	1.405	0.960	. 586	1.410	0.945	. 576	1.412	0.939	.572	1-413	0.937
4	5	666 。	1.393	0.995	.666	1.393	0.996	.667	1.393	0.996	₀667	1.393	0。996
5	6	°666	1.393	0.995	.665	1.393	0。9 <b>9</b> 5	.665	1.393	0.994	.664	1.393	0.994
6	7	.641	1.398	0.981	.634	1.399	0.976	₀6 <u>3</u> 2	1.400	0.975	.632	1.400	0.975
7	8	₀ <b>3</b> 00	1.469	0.780	• 347	1.459	0.807	. 364	1.456	0.816	. 370	1.454	0.819
7	16	.609	1.405	0.961	. 585	1.410	0.945	. 575	1.412	0.938	. 571	1.413	0.935
8	9	.637	1.399	0.978	.62 <i>8</i> .	1.402	0.969	.615	1.403	0.964	.610	1.404	0 <b>.96</b> 1
8	13	.613	1.404	0.953	. 597	1.407	0.953	. 594	1.408	0.951	<b>• 59</b> 4	1.408	0.951
9	10	.676	1.391	1.002	.685	1.389	1.009	692	1.387	1.014	.697	1.386	1.017
10	) 11	.653	1.395	0.987	.642	1.398	0.981	.634	1.399	0.976	.628	1.401	0.972
1]	. 12	.676	1.391	1.002	.686	1.389	1.009	.693	1.387	1.014	.697	1.386	1.017
113	2 13	.637	1.399	0.978	.623	1.402	0.969	.615	1.403	0.964	.610	1.405	0.961
13	14	. 300	1.469	0.780	. 348	1.459	808.0	. 365	1.455	0.817	.372	1.454	0.820
12	15	.604	1.406	0.957	. 578	1.411	0.940	. 567	1.414	0.933	. 562	1.415	0.930
14	20	.644	1.397	0.982	.638	1.398	0.979	.636	1.399	0.978	.636	1.399	0.977
1:	i 16		1.462				0.835				<b>A</b>		
11	5 19	.609	1.405	0.961	. 585	1.410	0.944	• 575	1.412	0.938	. 570	1.413	0.935
11	19			0.799									

		ł					
Table 11:	Hexabenzcoronene	· - Connect of the second s	(a)	Ener	rgy eigen	zelues -x.	
		C _{2v} sym	۵.	I	II	III	IV
		Al	2.52	7381	2.541485	2。544998	2.546477
			2.01	7115	1.999535	1.996524	1.995389
			1.95	0362	1.908510	1.894704	1.890363
			1.26	6259	1.277876	1.203917	1.285988
•			1.00	7843	0.977061	0.965699	0.959946
$\langle \gamma \rangle$	$\forall \forall \forall \forall$		0.94	0158	0。935345	0.936453	0.937802
	人。大人	^B 2	2.28	1889	2.287809	2.291876	2.292586
$\langle \rangle$	12 10 0000		1.40	9481	1.444751	1.460078	1.465389
			1.38	5161	1.409759	1.418759	1.423173
			0.96	1180	0.950374	0.948605	0 <b>.</b> 94 <b>8409</b>
			0.59	5300	0 <b>。523</b> 692	0.498994	0 <b>.489826</b>
	15	^A 2	2.01	7115	1.9999465	1.996687	1.995287
		-	1.26	6259	1.277904	1.283968	1.286016
			0.94	0158	0.935265	0。9 <b>36579</b>	0.937691
	17		0.70	9481	0.664751	0.651078	0.647389
		B ₁	2.81	889	2.287910	2.291702	2.292725
		~	1.83	0367	1.784929	1.772133	1.767918
			1.38	5161	1.409627	1.418798	1.423018
			0.96	1180	0.950319	0.948631	0.948344
			0.95	5219	0.944344	0.942054	0.941141
			0.59	5300	0.523682	0.498977	0.489819
		<u>Σ</u> (-x _i )	29,28	4258	29.03440 2	28.981214	28。964696
(b) Bond or	ders, bond lengths a	CALL DOWN CONTRACTOR	COLUMN STORE COLUMN	2(2 ⁽¹⁾ -0)-2 ⁽²⁾ -0 ⁽²		ىرى بىرى مەرىپى بىرىكى بىر بىرىكى بىرىكى بىرىكى بىرىكى بىرىكى	

Во	nd	- p ^I	rI	B'I	p ^{II}	"II r	ß'II	p ^{III}	III r	$\beta^{III}$	pIV	r ^{IV}	B'IV
1	2	.641	1.398	0.980	.633	1.400	0.975	.630	1.400	0.974	.629	1.400	0.973
1	16	.666	1.393	0.995	.666	1.393	0.995	.666	1.393	0.995	.665	1.393	0.995
8	3	.301	1.489	0.780	- 349	1.458	0.809	. 367	1.455	0.818	•373	1.454	0.821
2	14	.609	1.405	0.960	. 585	1.410	0.945	•575	1.412	0.938	.571	1.413	0.935
7	10	• 333	1.462	0.800	.401	1.448	0.836	.427	1.443	0.851	.438	1.440	0.857
10	11	.606	1.405	0.959	. 581	1.411	0.941	. 569	1.413	0.935	• 565	1.414	0.932
									CAN THE DOUGH STORE				۲۰۰۰ ۲۰۰۰ <del>۱۹۹۹ - ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰</del>

# Table 12: 1-2, 3-4, 5-6, 7-8 tetrabenztetracene (a) Energy eigenvalues -x,

					Frank Contractor and Contractor				-	- 1
				47	C _{2v} syn	nn .	I	II	III	IV
$\sim$	<b>`</b>		3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. A ₁	2.4	02864	2.394380	2.399253	2.400027
		ł	_					2.051148		
$\searrow$			7	9-6		2		1.293314		
								1.204507		
$\checkmark$	$\checkmark$		\$	10				0.666931		;
	ſ	. –	Ī	]	B			2.301825		. 7
$\checkmark$								1.683633		Į.
•				v				1.235327		
								01869903		1
					A2			1.926426		4
					۷			1.145860		ź
	•							0.821672		
								0.489730		4
					B			1.932408		1
								1.362442		4
								0.986347		
••,								0.759083		
		s, bond len	g <b>ths</b>					ligi saya yaka yara yara sa maya sa kata kata	, 	
and	B' va	lues.		-	ĮŽ(-x _i )	23.35	5945 2	3.124933	23, 125664 2	23.122997
Bond	p ^I r		p ^{II}	r ^{II}	β ^{'II} p	IIIŢI	II	B ^{III} p ^{IV}	r ^{IV} (	,IV
Patraction and the second second	Law and the second second									
	1	.390 1.006			1			Į.		Į.
1 11	• 582 1	.411 0.942	.561 1	415 (	.930 .5	53 1.	416 0	·924 ·549	1.417 ().	922

11	11	.582 1.411 0.9	42 .561	1.415	0.930	o 553	1.416	0.924	• 549	1.417	0.922
2	3	.638 1.398 0.9	79 .627	1.401	0.971	.620	1.402	0.967	.617	1.403	0.965
2	7	.298 1.469 0.7	79.340	1.460	0.804	. 354	1.458	0.811	• 357	1.457	0.813
5	9	.613 1.404 0.9	63 . 599	1.407	0.954	. 596	1.408	0°952	. 596	1.408	0.952
3	4	.675 1.391 1.0	01 .682	1.389	1.007	° <b>6</b> 88	1.388	1.010	.691	1.388	1.013
4	5	.655 1.395 0.9	88 .645	2.397	0.983	.639	1.398	0.979	.635	1.399	0.977
5	6	.674 1.391 1.0	01 .682 .	1.389	1.006	.687	1.388	1.010	.691	1.388	1.012
6	9	.639 1.398 0.9	79 .627	1.401	0.972	.621	1.402	0,968	.618	1.403	0.966
7	8	.561 1.415 0.9	30 .518 :	1.424	0.902	。500	1.427	0.891	۰494	1.429	0° <b>888</b>
9	10	-295 L-470 0.7									
1]	. 12	.448 1.438 0.8									



## (b) Bond orders, bond lengths and $\beta'$ values.

Во	nd	pI	ŗI	ß' I	p ^{II}	r ^{II}	β' ^{II}	p ^{III}	r ^{III}	ß' ^{III}
1	2	.672	1.392	0.999	.674	1.391	1.001	.675	1.391	1.001
1	7	.641	1.398	0.981	.639	1.398	0 <b>.</b> 979	.639	1.398	0 <b>.979</b>
2	9	.663	1.393	0.993	•662	1.394	0.992	.6 <b>62</b>	1.394	0.992
3	4	.678	1.390	1.003	.682	1.390	1.006	.683	1.389	1.007
3	5	.638	1.398	0.979	.635	1.399	0.977	.634	1.399	0.976
5	7	.270	1.475	0.766	.277	1.474	0.769	.277	1.474	0.769
L										

## Table 14: Diphenyl



(a) Energy eigenvalues -x_i

		The second s
C _{2v} symm.	L L	II
A ₁ B ₂ A ₂ B ₁	2.167050 1.230802 1.000000 1.000000 1.914335 0.783122	2.145424 1.218781 1.000000 1.000000 1.899696 0.764509
<u>ک</u> (-x _i )	8.095310	8.028410

(b) Bond orders, bond lengths and  $\beta'$  values

Bond	pI	r ^I	ß' I	pII	r ^{II}	۶' ^{II}
13 25	.642 .663	1.398 1.393	0.999 0.981 0.993 0.765	.640 .662	1. <b>398</b> 1.394	0.980 0.993

## APPENDIX D

Papers written with Dr T.H.Goodwin.

.



Reprinted from

## TETRAHEDRON LETTERS

The International Organ for the Rapid Publication of Preliminary Communications in Organic Chemistry



### PERGAMON PRESS

OXFORD · LONDON · NEW YORK · PARIS

Tetrahedron Letters No. 14, pp. 901-904, 1963. Pergamon Press Ltd. Printed in Great Britain.

L.C.A.O. - M.O. CALCULATIONS ON PYRENE BENZOLOGUES T. H. Goodwin and D. A. Morton-Blake Chemistry Department, The University, Glasgow, W.2. (Received 13 March 1963)

AT the suggestion of Dr. E. Clar, we have carried out some calculations on a number of benzologues of pyrene (I)



in which benzenoid rings are annelated linearly in the 1:2 and 6:7 positions. These have all been found by Clar and his co-workers¹ to have ultra-violet absorption spectrum bands, the positions of which are remarkably independent of the number of rings on the shorter side. If these molecules were thought of as dibenzoacenes this result would not be anticipated, as the absorption spectra would be expected to exhibit a resemblance to those of the corresponding parent acenes and to show marked and progressive displacement towards longer wave-lengths with increasing length of the acene chains. Moreover, the

 E. Clar, J.-F. Guye-Vuillème, A. McCallum, and I. A. Macpherson (private communication).

#### 902

#### Pyrene benzologues

#### No.14

positions of the absorption bands of the pyrene benzologues are very different from those of acenes having the same number of collinear rings, thus showing that the former are not just simple derivatives of the latter.

For convenience we shall adopt the following system to describe the pyrene benzologues: if the molecule can be regarded as pyrene with <u>n</u> annelated benzene rings on one side and <u>m</u> on the other (<u>m</u> not greater than <u>n</u>) we shall denote it as <u>nPm</u>. Naphtho-[2'.3':1.2]anthraceno-[2".3":6.7]pyrene (II) will therefore be written 3P2.

Calculations by the simplest Hickel method, <u>i.e.</u> with all overlap integrals neglected and all interaction integrals between orbitals on neighbouring atoms assumed equal to  $\beta_0$ , show moderate consistency in the energies of the highest occupied molecular orbitals, and hence in the transition energies of Clar's p-bands (highest occupied level to lowest unoccupied). If, however, we recognise a fundamental asymmetry² in the fully-aromatic benzenoid rings by allotting  $\beta$ -values in accordance with tendency towards the development of single-bond and double-bond character, then much more consistent results obtain.

The molecule 3P2, for example, was supposed to have an electronic structure indicated diagrammatically at (III). The bonds shown as single in rings D, E, H, I are, rather arbitrarily, assigned the value  $0.8\beta_0$ , those shown as double  $1.1\beta_0$  (for pure single and double bonds the assignments would be  $0\beta_0$  and  $1.20\beta_0$  respectively) 2. E. Clar, <u>Tetrahedron</u>, <u>5</u>, 98 (1959); <u>18</u>, 1471 (1962) etc. Pyrene benzologues

903

while those forming part of a delocalised acene system³ and enclosed by broken lines are taken to have values  $\beta_0$ . The "double" bonds in rings H and I have been assumed to



have such positions as to provide an induced aromatic sextet² in ring D, thus leaving ring E formally empty in accordance with Clar's picture of these molecules.

The  $\pi$ -bond energies (E -  $\alpha$ ) of the highest occupied molecular orbitals calculated for the pyrene series 3Pm, 2Pm are given in the table together with the measured wavelengths of the p-bands. The consistency of the calculated energies in column 3 is seen to parallel that of the observed wavelengths in column 4. This appears to give strong support to Clar's picture of the aromatic hydrocarbons and, in particular to his conclusion regarding the asymmetry of the benzene ring.

 E. Clar, Aromatische Kohlenwasserstoffe, p. 79, Springer-Verlag (1952).

No.14

904		Pyren	No.14	
	MOLECULE	α - E(uni Simplest Hückel	ts of β _o ) Improved Hückel	Longest p-wavelength measured (A)
	3P3	0.3391	v <b>.</b> 3629	4420
	3P2	0.3549	0.3656	4390
	3P1	0.3570	0.3658	4390
	<b>3P</b> 0	v <b>.</b> 3587	0.3663	4420
	222	0.4762	0.5117	3420
	2P1	0.5009	0.5147	3410
	290	0.5053	0.5168	3450

The method is being extended to other aromatic

hydrocarbon systems.

One of us (D. A. M.-B.) thanks the D.S.I.R. for a maintenance grant.

904

4

Theoret. chim. Acta (Berl.) 1, 458-462 (1963)

Chemistry Department, The University, Glasgow, W. 2

## The Configuration of Diphenyl in the Crystalline and in the Vapour States: A Simple Non-bonded H-H Potential Function

#### By

T. H. GOODWIN and D. A. MORTON-BLAKE

A set the set of th

non Netonony nagya Nanona na tagit∳

(a) an approximate provide a set of a set of

Electron diffraction shows that in the vapour the phenyl rings of diphenyl are inclined at about 42°. This is a compromise between the  $2p_z$ -orbital overlap, which tends to keep the whole molecule planar, and overcrowding of the 2:2' and 6:6' hydrogen atoms which causes twisting of the rings to reduce the steric repulsion. A potential function, having an exponential form, has been derived, which gives a minimum at the observed angle.

La diffraction électronique indique qu'en vapeur les anneaux phényles du diphényle s'inclinent à  $42^{\circ}$  approximativement. Cet angle est un compromis entre le recouvrement des orbitales  $2p_z$  qui tend à maintenir plan la molécule entière, et l'encombrance des atomes d'hydrogène 2:2' et 6:6' qui font tordre les anneaux pour réduire la répulsion stérique. On a dérivé une fonction potentielle, d'une forme exponentielle, qui a un minimum à l'angle observé.

Die Elektronenbeugung zeigt, daß die beiden Ringe des Diphenyls im Gaszustand um einen Winkel von etwa 42° gegeneinander verdreht sind. Dieser Zustand stellt einen Kompromiß dar zwischen der Überlappung der  $p_z$ -Orbitale einerseits, die das ganze Molekül planar zu halten sucht, und der Pressung der van der Waals-Radien der 2,2′ und 6,6′-Wasserstoffatome andererseits, die die Ringe aus der gemeinsamen Ebene herausdreht, um die sterische Hinderung abzumindern. Für die potentielle Energie wurde eine *e*-Funktion mit einem Minimum am beobachteten Winkel hergeleitet.

X-ray diffraction studies show that in the crystalline state diphenyl is planar [9] or very nearly so [12], but electron diffraction results [1] indicate that in the vapour phase there is an angle of about  $42^{\circ}$  between the planes of the phenyl rings. Since in the vapour the molecules may be regarded as free from mutual interaction the configuration in this state may be regarded as an equilibrium compromise between the tendency towards planarity, which is promoted by  $p_z$ -orbital overlap across the bond between the rings and which favours a lowering of  $\pi$ -electron energy, and that towards non-planarity which favours reduction of steric repulsion energy between the overcrowded hydrogen atoms 2 and 2', 6 and 6'.

#### 1. Calculation of $\pi$ -electron delocalisation energy across the interphenyl bond

For the planar diphenyl molecule it is a simple matter to calculate the total energy of the  $\pi$ -molecular orbitals by the usual Hückel approximation, particularly if group theoretical methods are used to factorise the 12th-order secular determinant of  $C_{2v}$  symmetry into the two quartics of the  $A_1$  and  $B_1$  symmetry classes and the two quadratics of the  $A_2$  and  $B_2$  classes. When the rings are not coplanar the interactions  $\beta_{rs}$  between neighbouring atomic orbitals on carbon atoms r, s remain unaltered except for that,  $\beta_{1:1'}$ , between the orbitals on atoms 1 and 1', which becomes  $\beta_{1:1}$ , cos  $\theta$ ,  $\theta$  being the angle by which one ring has been rotated about the axis 4:1:1':4' with respect to the other. It follows that, within the limits of the Hückel approximation ( $\beta_{rs} = 0$  if r and s are not neighbours) the  $A_2$  and  $B_2$  determinants remain exactly as for the completely planar molecule since they do not involve the orbitals on the two-fold axis of the twisted structure, and the  $A_1$  and  $B_1$  determinants require

only the multiplication of  $\beta_{1:1'}$  by  $\cos \theta$ . Thus pseudo- $C_{2v}$  symmetry remains.

Now the interphenyl bond, as measured by X-ray crystal analysis, is 1.50 Å long [9, 12] whereas the electron diffraction spectrum [1] is interpreted as showing its length to be 1.48 Å. DEWAR and SCHMEISING [7] believe that the

length of apure  $\sigma$ -bond between  $sp^2$  hybridised carbon atoms is 1.48 Å and this is supported by various other pieces of evidence [10, 13]. We have assumed, therefore, that the small difference of 0.02 Å is significant, that the bond 1:1' is stretched a little in the crystalline state to relieve the overcrowding of the hydrogen atoms at 2 and 2' and at 6 and 6', and that this extension persists for values of  $\theta$  not greater than 20°, i.e.  $\approx$  half of the observed 42° twist [1].

To calculate the  $\pi$ -electron energy levels for the molecule when  $C_1 - C_{1'} = 1.48$ and 1.50 Å the corresponding  $\beta$ -values were inferred from the LONGUET-HIGGINS and SALEM [11] relationship as 0.750  $\beta_0$  and 0.710  $\beta_0$  respectively,  $\beta_0$  being the interaction integral appropriate to the bond length in benzene, to which the ring bonds of diphenyl approximate fairly closely.

The total  $\pi$ -electron energy is then given, for the ground state, by

$$\mathscr{E}(\theta) = 2 \sum_{i=1}^{6} \varepsilon_1(\theta) = 12 \alpha - 2 \beta_0 \sum_{i=1}^{6} x_i(\theta),$$

where  $x_i(\theta)$  is the "Hückel number" (negative for binding orbitals) of the *i*-th molecular orbital, summation being over the six doubly occupied levels. The

(β-units) 0.15

0.20

1) 0.10 (1) 3

0,05

 $\pi$ -electron energy of two isolated benzene molecules in their ground states is  $12 \alpha + 16 \beta_0$  and hence the "energy of delocalisation" across the bond 1:1', i.e., the  $\pi$ -electron stabilisation gained by untwisting the molecule, is

$$e_{\pi}\left( heta
ight)=-\left[2\sum_{i=1}^{6}x_{i}\left( heta
ight)+16
ight]eta_{0}$$

Fig. 1 gives the plot of  $\varepsilon_{\pi}$  ( $\theta$ ) against  $\theta$  for  $0 \le \theta \le \pi/2$ ; that the curve is closely

sinusoidal is shown by the degree of coincidence with the fitted curve (broken line)

$$\varepsilon_{\pi} \left( \theta \right) = 0.196 \,\beta_0 \cos^2 \theta = -6.375 \,\cos^2 \theta \,\operatorname{kcal/mol} \tag{1}$$

when  $\beta_0$  is given [8] the value -32.5 kcal/mol.



θ

Fig. 1.  $\epsilon_{\pi}(\theta)$  against  $\theta$ 

#### T. H. GOODWIN and D. A. MORTON-BLAKE:

#### 2. The Potential Function for Repulsion between the Hydrogen Atoms

The form of the repulsive potentials between the hydrogen atoms at carbons 2 and 2' and at carbons 6 and 6' is not known with certainty. It is discussed for some similar situations by COULSON and HAIGH [4]. Most authors use a BUCKING-HAM "6-exponential" function [5]

$$V(r) = -Ar^{-6} + Be^{-cr} \tag{2}$$

in which r is the distance between the unbound hydrogens. We have worked, however, in terms of the variable  $\theta$  and since  $V(\theta)$  clearly decreases with increasing  $\theta$  for  $|\theta| < \pi/2$ , we shall assume that it may be expressed by an exponential function

$$V(\theta) = V_0 \exp\left(-n\theta^{2m}\right) \tag{3}$$

the shape of which may be adjusted by means of the parameters n and m, m being integral. We have chosen this type of function for its simplicity and because it is symmetrical about a maximum at  $\theta = 0$  as the problem requires.  $V_0$  is the empirical



barrier height for internal rotation due to the overcrowded hydrogen atoms *alone*, though this cannot be measured in the normal way for diphenyl because of the attractive contribution by the  $\pi$ -electrons to the observed barrier. We may, however, estimate it as follows. The energy difference between *cis* and *trans* butadiene is found [2] from thermodynamic considerations to be 2.30 kcal/mol. Since the  $\pi$ -electron energy in the two isomers is the same within the approximations of the

Hückel theory, this difference must be accounted for by steric repulsions between the hydrogen atoms at the 1 and 4 positions of *cis* butadiene since in the *trans* compound no two hydrogen atoms approach within twice their van der Waals radius. Now the distance between the 2 and 2' and the 6 and 6' hydrogen atoms in diphenyl is very close to that in *cis*-butadiene. Hence we take  $V_0$  in the former to be just twice the steric hindrance barrier height in the latter. (3) therefore becomes

$$V(\theta) = 4.60 \exp\left(-n\theta^{2m}\right) \text{ in kcal/mol.}$$
(4)

#### 3. Minimisation of the Total Energy

That portion of the total energy of diphenyl which is dependent on  $\theta$  is then given as the sum of (1) and (4)

$$E(\theta) = 4.60 \exp((-n\theta^{2m})) - 6.375 \cos^2 \theta.$$
(5)

Differentiating and using the fact that there is a minimum at  $\theta = 42^{\circ}$  we have

$$-9.20 \ mn \times 0.7330^{2m-1} \exp\left(-0.7330^{2m}n\right) + 6.375 \sin 84^{\circ} = 0. \tag{6}$$

For m = 1 no value of n makes  $E(\theta)$  a minimum at  $\theta = 42^{\circ}$  but to each greater integral m there corresponds a value of n satisfying (6). With m = 2, 3, 4, 5

460

Configuration of Diphenyl

 $V(\theta)$  has a flat portion with  $|\theta|$  less than 20° and decreases almost to zero at  $|\theta| = 45$  or 50°. We have selected (7), with m = 2,

$$V(\theta) = 4.60 \exp(-7.393 \ \theta^4) \tag{7}$$

as the most likely of this family of curves since it has the shortest flat portion  $(|\theta| < 10^{\circ})$ . With  $m = 3, 4, 5 n \approx 18, 40, 80$  respectively. Curve (7) is shown in Fig. 2 along with  $\varepsilon_{\pi}(\theta)$ , the  $\pi$ -electron energy across the bond 1:1', and the resultant energy  $E(\theta)$ . We note that besides the minimum in  $E(\theta)$  at 42° a shallower minimum is found at 0°. This may account for the planarity in the crystalline state since only 1 kcal/mol need be supplied by the crystal forces to convert the twisted to the planar configuration.

#### 4. Root Mean Square Amplitude of Twisting

Taking the potential well in  $E(\theta)$  at  $\theta \approx 42^{\circ}$  as shown in Fig. 2, we may attempt to estimate the root mean square amplitude of the twisting of the phenyl rings with respect to each other by assuming the motion to be simple harmonic and calculating the force constant  $\varkappa$ 

$$V(\theta) = \frac{1}{2} \varkappa \, \theta^2. \tag{8}$$

The best fit of (8) to E (42°) is with  $\varkappa = 0.003$  from which, using CRUICKSHANK'S relationship [6]

$$\overline{\Phi}^2 = \frac{2 kT}{\varkappa}$$

where k and T are the Boltzmann constant and the temperature, the mean square amplitude  $\overline{\varPhi}^2$  is found. Because of uncertainty in fitting (8) to (5) there is an appreciable uncertainty in  $\varkappa$  and hence in  $\overline{\varPhi}^2$  but a smaller uncertainty in  $(\overline{\varPhi}^2)^{\frac{1}{2}}$ , for which the value 28° is found, corresponding to a root mean square twist of each ring of 14° in opposite directions. The only experimental evidence which can be set alongside this calculation seems to be the inferences of ALMENNINGEN and BASTIANSEN [1] that the probability of finding the phenyl rings at any angle  $\theta$ in the neighbourhood of 42° is quite large and that to reduce this probability to one half of the equilibrium probability the phenyl rings would need to be rotated through 17° in opposite directions.

#### 5. Non-Bonded Repulsion as a Function of r

It is of interest to express the repulsive potential (7) in terms of the distance r between a pair of overcrowded hydrogen atoms. Using the bond lengths  $C_1C_1 = 1.490$ ,  $C_1C_2 = 1.398$ ,  $C_2H_2 = 1.084$  Å and the angle  $C_1C_2H_2 = 120^{\circ}$ 

$$r = (12.4949 - 9.2397 \cos \theta)^{\frac{1}{2}}.$$
 (9)

When (9) is substituted into (7) we have

$$V(r) = 4.60 \exp\left\{-7.393 \left[\cos^{-1}\left(1.3523 - 0.1082 \ r^2\right)\right]^4\right\}.$$
 (10)

461

#### 462T. H. GOODWIN and D. A. MORTON-BLAKE: Configuration of Diphenyl

The curve V(r) is shown in Fig. 3. As for most repulsive potential functions it rapidly approaches zero, doing so, in fact, rather abruptly at approximately



2.6 Å, i.e., at just over twice the van der

Waals radius of hydrogen (1.2 Å).

#### 6. C-H bending

The shoulder in V ( $\theta$ ) arises, of course, from the selection of a potential of the form (3). In planar and nearly planar molecules some relief of steric repulsion can be achieved by the bending of the C-H bonds (in conjunction with the stretching of the C-C bond) and would also have the effect of lowering (flattening) V ( $\theta$ ) at low  $\theta$ . That such bending does occur is revealed by the accurately determined crystal structures of certain overcrowded molecules, e.g., chrysene [3].

The authors acknowledge the award of a maintenance grant to one of us (D.A.M.-B.) by H.M. Department of Scientific and Industria Research.

#### References

- [1] ALMENNINGEN, A., and O. BASTIANSEN: Klg. Norske Videns Selsk. Skrifter 4 (1958).
- [2] ASTON, J. G., G. SZASZ, H. W. WOLLEY and F. G. BRICKWEDDE: J. chem. Physics 14, 67 (1946).
- [3] BURNS, D. M., and J. IBALL: Proc. Roy. Soc. A 257, 491 (1960).
- [4] COULSON, C. A., and C. W. HAIGH: Tetrahedron 19, 527 (1963).
- [5] See e.g. Ref. [4] for further references.
- [6] CRUICKSHANK, D. W. J.: private communication.
- [7] DEWAR, M. J. S., and H. N. SCHMEISING: Tetrahedron 5, 166 (1959); 11, 96 (1960).
- [8] GOODWIN, T. H., and D. A. MORTON-BLAKE: to be published.
- [9] HARGREAVES, A., and S. HASAN RIZVI: Acta Cryst. 15, 365 (1962).
- [10] LIDE, D. R.: Tetrahedron 17, 125 (1962).
- [11] LONGUET-HIGGINS, H. C., and L. SALEM: Proc. Roy. Soc. A 251, 172 (1959).
- [12] ROBERTSON, G. B.: Nature 191, 593 (1961).
- [13] STOICHEFF, B. P.: Tetrahedron, 17, 135 (1962).

#### (Received September 6, 1963)

To be published in "Journal of the Chemical Society" in February - March, 1964.

An Empirical Determination of the Hückel Parameter β and of the C-C and C-H Bend Energies in Aromatic Hydrocarbons.

#### by T. H. Goodwin and D. A. Morton-Blake

The atomic orbital interaction integral  $\beta$  is calculated from appropriate Morse functions and the Hückel theory of W-molecular orbitals, consistent results being obtained from data for benzene and ethylene. A third value, lying between these, has been derived from the heats of combustion of some aromatic hydrocarbons and estimates of the C-C and C-H bonds in such compounds have been made.

1. <u>Calculation of  $\beta(\mathbf{r})$ </u>

The energy of the  $\underline{i}$ th w -electron molecular orbital as calculated using the simple Hückel theory is of the form

$$\varepsilon_{i} = \alpha - \underline{x}_{i}\beta \qquad (1.1)$$

where  $\underline{x}_{\underline{i}}$  is the "Hückel number" of the <u>i</u>th molecular orbital and has a negative value for the levels contributing to the ground state,  $\boldsymbol{\alpha}$  is the energy of a  $2p_{\overline{u}}$  atomic orbital  $\boldsymbol{\mathcal{X}}$  i.e.  $\boldsymbol{\alpha} = \int \boldsymbol{\mathcal{X}}^{\underline{*}} \boldsymbol{H} \boldsymbol{\mathcal{X}} d\boldsymbol{\tau}$  (in which H is the non-explicit Hamiltonian operator), and  $\boldsymbol{\beta}$  is the matrix element  $\int \boldsymbol{\mathcal{X}}_s^{\underline{*}} \boldsymbol{H} \boldsymbol{\mathcal{X}}_s d\boldsymbol{\tau}$  expressing the interaction between the two atomic orbitals  $\boldsymbol{\mathcal{X}}_{\underline{B}}$  and  $\boldsymbol{\mathcal{X}}_{\underline{t}}$ .  $\boldsymbol{\beta}$  is a function of the distance  $\underline{r}$  between the atoms  $\underline{s}$  and  $\underline{t}$  but in the simple Hückel approximation it is considered negligible unless g and t are neighbours, in which case all  $\beta$ 's are taken as equal within the compound under discussion although it is frequently proposed to derive bond orders and hence to infer differing bond lengths.

(2)

The total w -electron energy of the ground state of a molecule containing a system of <u>n</u> neighbouring  $2p_w$  atomic orbitals is obtained by summing (1.1) over the  $\frac{1}{2n}$  doubly occupied levels.

$$2 \sum_{\underline{i}=1}^{\underline{i}\underline{n}} \xi_{\underline{i}} = \underline{n}\alpha - 2\beta \sum_{\underline{i}=1}^{\underline{i}\underline{n}} \underline{x}_{\underline{i}}$$

from which it may be inferred that the total binding energy of the w-component of the bonds is given by

$$\mathcal{E}_{\pi} = -2\beta \sum_{\underline{i}=1}^{\underline{i}\underline{n}} (1.2)$$

11

For a system in which the W-molecular orbitals are spread over <u>m</u> equivalent bonds the total energy of the W-component of each of these is  $E_W = \mathcal{E}_W / \underline{m}$ . In ethylene  $\underline{m} = 1$  and  $\sum \underline{x_i} = -1$ , while for benzene these are 6 and -4 respectively. Hence

$$E_{w} = 2\beta \qquad (1.3)$$

$$E_{\rm Tr} = \frac{4}{3}\beta \qquad (1.4)$$

and

The terms on the left of (1.3) and (1.4) are, however, not directly measurable, since a W-bond is known only in association with a  $\sigma$ -bond. Nevertheless, from the energies of a " $\sigma \rightarrow \pi$ " bond and of a  $\sigma$ -bond of the same length we can calculate the energy of the corresponding pure W-bond if we neglect interaction of  $\sigma$ - and W-electrons. Thus

$$\underline{E}_{\mathcal{H}}(\mathbf{r}) = \underline{E}_{\sigma \to \mathcal{H}}(\mathbf{r}) - \underline{E}_{\sigma}(\underline{\mathbf{r}}) \quad (1.5)$$

In general  $\underline{E}_{e \to +w}$  and  $\underline{E}_{e}$  are known only at particular, unequal values of  $\underline{r}$ ,  $\underline{\text{viz}}_{\bullet}$ , the equilibrium distance  $\underline{r}_{\underline{e}}$ . To calculate them at other bond lengths we require to take into account the energies of compression or expansion of the bonds. This may be done conveniently by use of the Morse function

$$\underline{\mathbf{E}}(\underline{\mathbf{r}}) = \underline{\mathbf{E}}(\underline{\mathbf{r}}) \left\{ e^{-2\underline{\mathbf{a}}(\underline{\mathbf{r}}-\underline{\mathbf{r}})} - 2e^{-\underline{\mathbf{a}}(\underline{\mathbf{r}}-\underline{\mathbf{r}})} \right\}.$$

The quantity <u>a</u> is characteristic of the particular bond and can be calculated from the stretching force constant.

However, the further difficulty arises that there is ample evidence^{1,2,3} that  $\underline{E}_{\sigma}(\underline{r})$  depends on the hybridisation of the atoms involved and that C-C in ethylene should be compared not with that in ethane but with that in a hypothetical C-C  $\sigma$  -bond between  $\underline{sp}^2$ -hybridised atoms. The length of such a bond is not unequivocally established nor, in the nature of things, can its stretching force constant and energy be directly known. We have taken²  $\underline{r}_{\underline{s}} = 1.48$  with  $\underline{E}_{\sigma}(\underline{r})$  and  $\underline{a}$  as in ethane. Otherwise our data are those selected by Coulson and Dixon and shown below.

(3)

C-C bond	Ze	<u>E(r</u> )	a
Ethylone	1.33Å	151 kgcal./mol.	2.189 ⁹⁻¹
Benzene	1.39	124	2.093
Ethane sp ² -sp ²	1.54 ) ) 1.48 )	84	2.028

(4)

From equations (1.3) to (1.5) we then have

$$\beta^{\text{ethylene}}(\underline{\mathbf{r}}) = \frac{1}{2} \left\{ E^{\text{ethylene}}(\underline{\mathbf{r}}) - E_{\sigma}(\underline{\mathbf{r}}) \right\}$$
(1.6)  
$$\beta^{\text{benzene}}(\underline{\mathbf{r}}) = \frac{3}{4} \left\{ E^{\text{benzene}}(\underline{\mathbf{r}}) - E_{\sigma}(\underline{\mathbf{r}}) \right\}$$
(1.7)

and within the limits of our approximations these should be equal, <u>i.e.</u>,  $\beta(\underline{r})$  is obtained from two independent sets of data. The results of these calculations are shown in Table 1. The last line gives a ratio which is frequently used in attempting to improve the simple Hückel approximation by allowing for the dependence of  $\beta$  or  $\underline{r}$  and assuming that the  $\beta$  of the simple Hückel ( $\beta_0$  of the next section) method is the same for all aromatic compounds.

The difference between the two values of  $\beta$  (1.39), 1.39Å being the benzene C-C bond length, is only 1.5 Kg.-cal./mol., <u>i.e.</u>, 2.2%. Greater reliance should be placed on the benzene curve since <u>r</u> is nearer the middle of the range of <u>r</u>-values used; this results in a more favourable application of the Morse function.

The "lest-squares" quadratic expression (c) = 31.83 r² - 149.52 r + 178.85

fits the calculated curve almost exactly.

Table 1.

(5)

<u>r</u> ( $\hat{R}$ ) 1.33 1.36 1.39 1.42 1.45 1.48 1.51 1.54  $\beta^{\text{ethylene}}(\underline{r})(\text{kg.-cal./mol.})$  38.81 36.38 34.04 31.79 29.64 27.59 25.64 23.60  $\beta^{\text{benzene}}(\underline{r})(\text{kg.-cal./mol.})$  36.30 34.39 32.53 30.71 28.95 27.26 25.63 24.08  $\beta^{\text{benzene}}(\underline{r})/\beta^{\text{benzene}}(1.39)$  1.116 1.057 1.000 0.944 0.890 0.838 0.788 0.740

## 2. A and Bond Energies from Heats of Combustion.

For molecules containing only  $\sigma$  -bonds, heat of combustion is a simple additive property of the individual bond energies. For molecules containing, in addition,  $\pi$  -molecular orbitals it is necessary to include a further term even if  $\sigma$ - $\pi$  interaction is neglected. This term is the total  $\pi$  -electron energy calculated usually by the simple Hückel approximation and given earlier as equation (1.2).

(6)

If we consider the heat of combustion as determined in two steps, first atomisation and secondly the conversion of the atomic fragments into the products of combustion, we have, neglecting energy terms due to changes in hybridisation

$$C_{\underline{H}}^{H} + (\underline{x} + \frac{1}{4}\underline{y})_{2} \rightarrow \underline{x}C + \underline{y}H + (\underline{x} + \underline{k}\underline{y})\underline{0} + \underline{n}_{CC}E_{CC} + \underline{n}_{CH}E_{CH} + (\underline{x} + \frac{1}{4}\underline{y})E_{00} + \mathcal{E}_{\pi}$$
(2.1)

$$\underline{\mathbf{x}}\mathbf{C} + \underline{\mathbf{y}}\mathbf{H} + (2\underline{\mathbf{x}} + \underline{\mathbf{y}}\underline{\mathbf{y}})\mathbf{O} \rightarrow \underline{\mathbf{x}}\mathbf{C}\mathbf{O}_{2} + \underline{\mathbf{y}}\mathbf{H}_{2}\mathbf{O} - \underline{\mathbf{x}}\mathbf{Q}_{\mathbf{C}\mathbf{O}_{2}} - \underline{\mathbf{y}}\mathbf{Q}_{\mathbf{H}_{2}\mathbf{O}}$$
(2.2)  
where  $\underline{\mathbf{n}}_{\mathbf{C}\mathbf{C}} = \mathbf{number}$  of C-C bonds in the Hydrocarbon  $\mathbf{C}_{\mathbf{x}}\mathbf{H}_{\mathbf{y}}$ ,

 $\frac{H_{CH}}{H_{CH}} = ""C-H"""",$   $E_{CC} = energy of C_{\underline{sp}} 2 - C_{\underline{sp}} 2 \text{ bond } = E_{\underline{\sigma}} \text{ of the previous section.}$   $E_{CH} = ""C_{\underline{sp}} 2 - H ",$   $E_{\underline{OO}} = \text{dissociation energy of oxygen molecule,}$   $Q_{CO_2} = \text{heat of atomisation of } CO_2$   $Q_{H_2O} = ""H_2O.$ 

Adding (2.1) and (2.2) we have

$$C_{\underline{H}} = (\underline{x} + \underline{1} \underline{y}) O_2 \longrightarrow \underline{x} C O_2 + \underline{1} \underline{y} H_2 O + C$$
(2.3)

where  $C = \underline{n}_{CC}E_{CC} + \underline{n}_{CH}E_{CH} + (\underline{x}, \underline{A}\underline{y})E_{00} + \underline{\varepsilon}_{w} - \underline{x}Q_{CO_2} - \underline{b}\underline{y}Q_{H_2O}$  (2.4) C being the heat of combustion of  $C_{H_2}$ . The available experimental quantities on the right of (2.4) are  $Q_{H_2O}$ ,  $Q_{CO_2}$  and  $E_{OO}$  for which we have taken the following values

Using the known heats of combustion of the three avomatic hydrocarbons benzene, naphthalene and anthracene (789.1, 1249.7, 1712.1 kg.-cal./mol.) we obtain three equations in the unknowns  $E_{CC}$ ,  $E_{CH}$  and  $\beta_0$  where  $\beta_0$ represents a standard  $\beta$  supposed applicable to all these compounds. Then  $c^{\text{benzene}} = 789.1 = 6x384 \div 3x221.2 = 6E_{CC}-6E_{CH} - (6+1\frac{1}{2})E_{00} - 8.000 \beta_0$ or  $1285.27 = 8 \beta_0 \div 6E_{CC} \div 6E_{CH}$ , and  $2045.9 = 13.683 \beta_0 \div 11 E_{CC} \div 6E_{CH}$ ,  $2904.75 = 19.314 \beta_0 \div 16E_{CC} \div 10E_{CH}$ Hence  $\beta_0 = 32.96 \text{ kg.-cal./mol.}$  $E_{CC} = 77.58 \text{ kg.-cal./mol.}$ 

E_{cu} = 92.68 kg.-cal./mol.

This  $\beta_0$  value compares very favourably with  $\beta(1.39) = 32.53$ kg.-cal./mol. determined in the previous section. This is particularly interesting since (a)  $\beta_0$  may vary somewhat from compound to compound and (b)  $\beta(\underline{r})$  varies with interatomic distance  $\underline{r}$  even within the same molecule. It seems however to encourage confidence in the  $\beta(\underline{r})$  values of the previous section.

(7)

 $E_{CC}$ , which we have noted as the  $E_{cr}$  of the first part of this paper has a numerically smaller value than the 84 kg.-cal./mol. which we supposed to be applicable to the pure  $sp^2 - sp^2 \sigma$  -bond. However we know that all the C-C bonds in the reference compounds are substantially shorter than 1.40Å. In fact the average of the 33 bonds⁵ is 1.401Å with a spread from 1.361Å to 1.436Å. Applying the Morse equation for the  $sp^2 - sp^2 \sigma$ -bond to this average gives  $E_{cr}$  (1.40) = 61.4 kg.-cal./mol., which is in reasonable agreement with our 77.58 kg.-cal./mol. when the approximations are borne in mind.

Substituting the values for  $\beta_0$ ,  $E_{CC}$ ,  $E_{CH}$ ,  $Q_{CO_2}$ ,  $Q_{H_2O}$  and  $E_{OO}$  in (2.4) the general equation for the heat of combustion of a hydrocarbon becomes (within the limits of our approximation)

$$C = 264.9 \underline{x} - 80.8 \underline{y} - 77.58 \underline{n}_{CC} - 92.68 \underline{n}_{CH} + 65.92 \sum_{\underline{i}=1}^{\underline{i}} \underline{x}_{\underline{i}}$$
(2.5)

the (negative) Hückel numbers being summed over all the (doubly) occupied levels, <u>i.e.</u>, the occupation number (2) has been included in the term 65.92.

Using (2.5) we calculate the following heats of combustion

	C _{calc.}	C _{obs} .
Phenanthrene	1708.4 kgcal./mol.	1705.0 kgcal./mol.
Triphenylene	2163.6	2164.4
1:2-Benzanthracene	2169.3	2169 <b>.8</b>
Chrysene	2166.4	2165.0

(8)

It is interesting to note that the quite small differences between the heats of combustion of the last three compounds are so accurately mirrored by the Hückel energies.

The authors thank H.M. Department of Scientific and Industrial Research for a maintenance grant to D.A.M-B., Chemistry Department, University of Glasgow.

(9)

# (10)

#### References

l Coulson and Dixon, <u>Tetrahedron</u>, 1962, 17, 215.

2 Dewar and Schneising, <u>ibid</u>., 1959, <u>5</u>, 166; 1960, <u>11</u>, 96.

3 Coulson, Victor Henri Memorial Volume, "Contribution a l'Etude de la Structure Molèculaire", Desoer, Liège, 1948; Lide, <u>Tetrahedron</u>, 1962, <u>17</u>, 125; Bastiansen and Traetteberg, <u>ibid</u>., p.147, etc.

4 Cottrell, "The Strengths of Chemical Bonds", Butterworths, London, 1958.

5 Stoicheff, <u>Canad. J. Phys</u>., 1954, <u>32</u>, 339; Cruickshank, <u>Acta Cryst</u>., 1956, <u>9</u>, 915; 1958, <u>11</u>, 507.

To be published in "Theretica Chemica acta" in March, 1964.

A Simple Molecular-Orbital Study of the  $\beta$ ,  $\alpha$ , and p-Bands in Triphenylenes

by T. H. Goodwin and D. A. Morton-Blake

Clar has observed that the spectra of annelated derivatives of triphenylene such as I, II, III, IV below show remarkable resemblance to those of the phenes defined by the central ring of the triphenylene and its two longest acene chains, I and II resembling tetraphene and III and IV pentaphene V. We show that this observation can be explained in terms of a simple modification of the Hückel molecular-orbital method.

1. Energy levels in Triphenylenes.

In this paper we discuss the positions of the absorption bands in a large number of annelated derivatives of triphenylene, but since the systemmatic names of these compounds are often decidedly cumbrous we have used the following simple scheme for referring to them. The molecules consist of benzenoid rings annelated at three alternate bonds in benzene; we therefore describe them as <u>sBml</u> where <u>s</u>, <u>m</u>, <u>1</u> are the numbers of rings in the three limbs. <u>s</u> is separated from the other two indices and refers to the shortest limb; <u>l</u> is the longest; <u>s</u>  $\nearrow$  <u>m</u>  $\implies$  <u>l</u>. Triphenylenes with the same <u>m</u> and <u>l</u> are said to form a class. Thus I to V (below) are described as OB1, 2; lB1,2; lB2,2; 2B2,2; OB2,2 and the first two and the last three belong to different classes.

Now Clar and his colleagues⁽²⁾ have observed only very small shifts in the positions of the  $\beta$  ultra-violet absorption bands when an aromatic system is annelated to a bond of high  $\pi$ -electron density. In tetraphene, I, (OB1,2), mlecular-orbital calculations, show that the bond  $\beta\gamma$  has a high double bond character corresponding to the chemical properties; for these reasons, and in accordance with Clar's ideas concerning these molecules we represent this bond as a formal double bond. The addition of a butadiene system at  $\beta\gamma$  of I to give the triphenylene II, (1B1,2) is accompanied by a zero spectral shift of the  $\beta$ -band and this leads Clar to conclude that the phene system I is present in II and is unaffected by the presence of the newly formed benzenoid ring A.

The high order of the bond  $\beta\gamma$  in I is apparently maintained in II with the consequence that the bonds are also of higher order and  $\alpha\beta$ ,  $\gamma\delta$ ,  $\xi\zeta$  of lower order than the average.



However, if a further ring is annellated to II at B (or A) to give III, it is found that the  $\beta$  -band of longest wavelength now occurs 240Å eway at 3140Å. This is almost exactly the position of the corresponding band,

3170A, in pentaphone V, and further extension of the shortest limb of III by a second ring to give IV is accompanied only by a very small (violet) shift to 3120A. Thus, III, IV and V all give rise to the same g-band and presumably have, at the moment of producing the spectrum, the same aromatic conjugation, that of pentaphene. Clar therefore concludes that, as far as the origin of the first  $\beta$  -band is concerned, the aromatic conjugation of any triphenylene extends only over the two longest limbs and is unaffected by the benzenoid rings of the shortest limb. This is clearly demonstrated in Table I where all the absorption spectra recorded for phones and triphenylenes are summarised. Fourteen spectra are noted including pairs of spectra for the five classes aB1,1, sB1,2, sB1,3, sB1,4, sB3,3 and three spectra for the class sB2,2. In no class is the spread of p-band heads greater than 60A. Similar though less close agreement is observed in the a/a and p-bands.

We must emphasise here that this paper is not concerned with the  $\beta'$  -bands which, according to Clar, originate from one of the two aromatic conjugation schemes which involve the shortest limb.

We have applied the method of molecular-orbitals to a large number of triphenylenes not strictly to calculate the positions of the  $\beta$ -,  $\alpha$ - and <u>p</u>-bands, but to determine in units of  $\beta_o^{\frac{N}{2}}$ , the energy levels of the molecular orbitals transitions between which are responsible for those bands.

With alternant hydrocarbons having 2n carbon atoms in the *N*-electron system it is well recognized that the p-bands (of intermediate intensity,  $\log \in \approx 4$ ) arise from transitions between the nth and (n + 1) th electronic levels (counting the lowest as the first level) while the &- and  $\beta$  -bands (of low and high intensity log  $\varepsilon$   $\approx$  2.5 and 5 resp.) both arise from transitions between the nth and  $(\underline{n} + 2)$ th and between the  $(\underline{n} - 1)$ th and  $(\underline{n} + 1)$ th levels these being degenerate in the simple forms of the moleculerorbital theory in which overlap is neglected. We have not here attempted to break this degeneracy (see e.g. ref.4 for one method of doing this) being more interested to see whether Clar's observations are explicable in terms of a simple molecular-orbital approach to the electronic Thus we have required the structures of molecules.

^{*} Confusion is unlikely to arise between this  $\beta$  and that labelling the most intense absorption band.

energies of the highest and penultimate levels of the ground states of the molecules since  $2\underline{k}_{\underline{n}}$  should be related to the p-band wavelengths and  $\underline{k}_{\underline{n}} + \underline{k}_{\underline{n}+1}$  to those of the  $\alpha$  and  $\beta$  -bands, where  $\underline{k}$  is the (positive) Hückel number <u>i.e.</u> the coefficient of  $\beta$  in the energy expression  $\xi_{\underline{i}} = \alpha + k_{\underline{i}} \beta$  and  $\underline{k}_{2\underline{n}+1-\underline{i}} = -\underline{k}_{\underline{i}}$ .

Two series of calculations have been carried out. In the first the  $\beta$  -values of the bonds were assumed equal except for the extreme single and double bonds. In VI, for example, the  $\beta$  's within the dotted islands were put equal to  $\beta_0$  the interaction integral between atomic  $2p_z$ -orbitals on neighbouring carbon atoms separated by the standard C-C distance in benzene, and since the



formulae written by Clar (2) for these triphenylenes show the bonds  $\alpha'\beta$ ,  $\beta'\delta$ ,  $\xi'\delta'$  as of low order, we have allotted them the  $\beta$  -values of  $0.8\beta_0$ . In the benzoring A we have supposed the  $\beta$ 's to be alternately  $0.8\beta_0$ and  $1.1\beta_0$ ,  $\alpha'\delta'$  having, of course, the higher value.

In VII and in molecules having a shortest limb of two or more rings  $(\underline{s} \ge 2)$  we have, however, put all  $\beta$  's equal to  $\beta_0$ . Again the  $\beta$ 's for  $\langle \beta, \gamma \delta, \xi \zeta$  have been taken to be  $0.8\beta_0$ .

We have felt justified in this approach by the results of Ahmed and Trotter (1) who have made a threedimensional examination of the crystal structure of triphonylone and report a mean bond length of 1.446% for the interphenylene bonds corresponding to  $\measuredangle\beta$  etc. of VI and mean lengths of 1.415 (for the bond corresponding to  $\chi$  ), 1.416, 1.377, 1.402, 1.377 and 1.416A round the peripheral  $\beta_{ij}$  must depend on the distance between atoms rings. **i** and **j** and these longths imply (5, 6)  $\beta$  -values of  $0.81\beta_0$  for  $\alpha\beta$ ,  $0.91\beta_0$  (for  $\alpha\zeta$ ),  $0.91\beta_0$ ,  $1.04\beta_0$ ,  $0.95\beta_0$ . Our calculations were complete before  $1.04\beta_0, 0.91\beta_0.$ the work of Ahmed and Trotter becaue available and in any case the X-ray results given above are not only the average values over all similar bonds in the crystal, but represent

averages over many minutes or hours whereas spectroscopy presents the situation over an enormously shorter interval of time. It is therefore of considerable significance that the length reported for the interphenylene bonds corresponds with the eta -value we have allocated to them and that the pattern of lengths in the peripheral rings corresponds (apart from  $\alpha \zeta$  ) with the  $\beta$ 's we have assumed for bonds in rings such as A of VI. We do not compars our selected / for the bonds between the rings with values appropriate to lengths such as the 1.50Å found by Hargreaves and Hasan Rizvi⁽⁵⁾ for the central bond in diphenyl because we believe this bond to be elongated by repulsions between the 2:2' and 6:6' pairs of hydrogen atoms (4).

In the second series of calculations Clar's scheme was not invoked. The triphenylene <u>sBm</u>, <u>l</u> was regarded as formed from <u>s</u>., <u>m</u> and <u>l</u>-ring acenes joined by low order bonds  $\alpha/\beta$ ,  $\beta \leq \zeta$ . The  $\beta$ -values for the bonds of the various limbs were derived from the bond orders calculated for these acenes. In VI, for example, the  $\beta$ 's for ring A were  $\beta_0$ , as in benzene, and those for the naphthalene systems were inferred from the calculated bond orders in naphthalene; those for  $\alpha/\beta$ ,  $\beta \leq$  and  $\leq \zeta$ 

								Ta	ble 1			±					
		Absorpt	siox Eco			8			S	eries I				Sei	eries II		
sEn Ż	n		ar in the second s		(a) Carlo		Leon J.	kn+kn-1	۵	ž. N	kn-1	kn ^{+k} n-1	Δ	<u>k</u> n	kn-1	kn+kn-1	
011	7	292 <b>5</b> A	3450A	25-32-7	604	0.605	0.769	1.374		0.741	0.816	1.556 🦓		0.741	0.816	1.556 2	
111	9	284 <b>0</b>	3400	2570 \$		0.684 <u>d</u>		1.368	0.006	0.749 <u>d</u>		1.498 J	0.058	0.749 <u>d</u>		1.498) 0.058	
012	9	3590	3850	2900 7		0.453	0.715	1.168		0.502	0.814	1.316 7		0.569	0.719	1.288 7 0.042	
115	11	349 <b>0</b>	3750	2900 J	0	0.499	0.714	1.213	0.005	0.516	0.794	1.310∫	0.006	0.604	0.726	1.330	
013	11	452 <b>5</b>		33.90-2		0.327	0.688	1.015		0.357	0.782	1.139 2		0.460	0.728	<b>1.18</b> 8 2 0.020	
113	13	441 <b>5</b>		3130 ]	30					0.366	0.777	1.143 }	0.004	0.481	0.727	1.208	
014	13	5510	2599	34,80 9	50					0.262	0.668	0.930 2		0.419	0.678	1.097 / 0.002	
114	15	538 <b>5</b>		3436 }						0.268	0.674	0.942 ]	0.012	0.397	0.702	1.099	
022	11	359 <b>0</b>	4230	31407	30	0.437	0.521	0.958		0.510	0.545	1.056 7	•	0.560	0.620	1.180 7 0.050	
122	13	3390	<b>3</b> 940	3140 6						0.531	0.545	1.076		0.605	0.620	1.225	
222	15	340 <b>0</b>	3890	32,50 J						0.531	0.566 <u>d</u>	1.097 )	0.041	0.615 <u>d</u>		1.230	
023	13	440 <b>0</b>	4670	3530						0.371	0.531	0.902 7		0.468	0.597	1.065 / 0.046	
123	15									0.378	0.541	0.918	0.028	0.488	0.617	1.105	
223	17		•							0.384	0.546	0.930)		0.491	0.620	1.111	
033	15	4230	5190		60				• .								
233	27	4380	4850	۰ ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰													

Table 1.

# g . Anddy degenerate level

Table II

Beri**ce I** 

.

Series II

4	0.043				0.048					0-023						0.013						
k tk	0.981 7	1.019	1.024 )		0.01	0.897	0°890 🧳	0.921		0.792 7	0.811	0.815	U.814	0.803	0 64E - 7	Ctosen	0.656	0.658	∪.658 J	)		
	0.592	0.617	0.620	G	0.4.0	0.494	0.498	0°520		0.398	0.417	0.425	0.429	0.4314		420.0	0.33 <b>8</b>	0.343	0.346			
чĘ	0°390	0.402	0.404		0.344	0.403	0.392	0.401		0.394	0.394	0.390	u.385	0.372		4-3,C+	0.318	0.315	0.313			
4		0.022				0.021						0.016		•				600.0				
L AK	0.8017	0.817	0.824 ]		0.047	0.657	0,668	0.654		0.547 ]	0.554	0.563	0.561	0.551 <i>(</i>		C.44.0	0.420	Sarat and	0.424	0.422	ł	
	0.531	0.542	0.545		0.574	0.381	0.390	0.377	•	0.276	0.285	0.297	0.299	0° 300 <u>4</u>		0.230	0.217		0°226	0.226		
	0.271	0.275	0.279		0.213	0.276	0.278	0.277		0.271	0.269	0.266	0,262	0.251		C . < U .	0.203		0,198	0.196		
55	ሆን ምሳ	(~~) (~~)	5	i.	12 m	19	র থে	ŝ		5	ଗ	ŝ	ഗ പ	N N	ć	vs V	S	27	29	Ľ	33	
e Tra Ŵ	024	1.24	224	, C	¥ n	W.	234	N.E.		740	144	244	344	500	i i c	(()	155	255	355	<b>4</b> 55	555	

were again  $0.8\beta_0$ . In this way it was hoped that the two series of calculations would provide some evidence for or against the Clar theory of aromaticity. The results are shown in Tables 1 and 2. These differ only in that Table 1 includes all the spectra of triphenylenes known to us and such Hückel molecular-orbital levels as have been published, either in Coulson and Daudel's "Dictionary of Values of Molecular Constants"³ or Streitwieser's "Molecular Orbital Theory for Organic Chemists" These Hückel molecular orbitals are based, as is well known, on the assumption of an interaction integral  $\beta = \beta_o$  between all neighbouring orbitals. Wø have not ourselves made such calculations for all the many compounds which have been the subjects of our study here because they seemed less likely to yield the desired explanation of Clar's observations.

Inspection of Tables 1 and 2 shows that our Series I calculations do lead to fairly constant values of  $\underline{k}_{\underline{n}} + \underline{k}_{\underline{n}-1}$ in any class of triphenylenes. The series II calculations are not generally quite so constant though the superiority of the series I results over those of series II and of the Huckel method is not so great as to compel out-of-hand rejection of the others or to constitute unequivocal







theoretical justification of Clar's conclusions. A more satisfactory comparison is to plot the frequencies of the  $\beta$ -bands against  $\underline{k_n} + \underline{k_{n-1}}$ , because Clar's conclusion is not accurate to an  $\beta$  unit and the slight variations in  $\beta$ -band wavelengths correspond to the variations in  $\underline{k_n} + \underline{k_{n-1}}$ . Graphical representation of these results is shown in Fig.l when it is seen that there is little to choose between our series I and series II results but that both are better than the Hückel values which show a much greater spread although, there being fewer of them, the comparison is not so extensive as one could desire.

Generally similar conclusions result from inspection of the values of  $\underline{k}_n$  and Fig.2 (p-band frequencies against  $\underline{k}_n$ ) and of Fig.3 ( $\alpha$  -band frequencies against  $\underline{k}_n + \underline{k}_{n-1}$ ).

A particularly important point is however that just as the spectra (p,  $\alpha$ - and  $\beta$ -bands as a whole) of pentaphene (OB2,2) and <u>iso</u>-pentaphene (1,2-benztetracene) (O B 1,3) are distinctly different so do the values of  $2k_n$  and  $k_n + k_{n-1}$  while agreeing within the classes sB2,2 and sB1,3 differ between the classes. So far this is in accordance with observation, but pentaphene and <u>iso</u>-pentaphene (1,2-benztetracene) have their  $\beta$ -bands at almost exactly the same wavelength. Our series I calculations suggest  $(\underline{k_n} + \underline{k_{n-1}} \text{ different})$  that the  $\beta$ -bands should differ appreciably, but the series II calculations do make them almost equal. This suggests that the series II results are superior. Unfortunately, no other similar comparison can be made for lack of experimental data on triphenylenes with  $\underline{m_1} + \underline{l_1} = \underline{m_2} + \underline{l_2}$  but with  $\underline{m_1} \neq \underline{m_2}$ .

# 2. Bond Length Alternation in a Benzonoid ring.

Consider a benzene molecule consisting of two kinds equal to  $\beta_1$  and  $\beta_2$ . equal to  $\beta_1$  and  $\beta_2$ . The molecule would, therefore, have D_{3h} symmetry and the one-electron molecular orbitals  $\underline{C}_{3v}^{\circ}$ . This leads to the following linearly independent molecular orbitals of the  $A_1$ , the  $A_2$  and the doubly degenerate E classes:

$$\begin{split} \bar{\Phi}(A_1) &= \frac{1}{\sqrt{6}} \left( \phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 + \phi_6 \right) \\ \bar{\Phi}(A_2) &= \frac{1}{\sqrt{6}} \left( \phi_1 - \phi_2 + \phi_3 - \phi_4 + \phi_5 - \phi_6 \right) \\ \bar{\Phi}'(E) &= \frac{1}{\sqrt{6}} \left( 2\phi_1 + 2\phi_2 - \phi_3 - \phi_4 - \phi_5 - \phi_6 \right) \\ \bar{\Phi}'(E) &= \frac{1}{2} \left( \phi_3 - \phi_4 - \phi_5 + \phi_6 \right) \end{split}$$

Expressing the energies  $\sum of$  these in terms of the interaction integrals  $\int \phi_{i-1}^* \, \mathcal{H} \, \phi_i \, d\tau = \beta_i$ ,

 $\int \phi_i^* \mathcal{H} \phi_{i+1} \, d\tau = \beta_2 \text{ and the coulomb integrals}$   $\int \phi_i^* \mathcal{H} \phi_i \, d\tau = \alpha \quad (\text{the subsoripts to } \phi \text{ being}$ expressed in modulus 6) we have

$$\begin{split} \mathcal{E}_{(A_1)} &= \alpha + \beta_1 + \beta_2 \\ \mathcal{E}_{(A_2)} &= \alpha - \beta_1 - \beta_2 \\ \mathcal{E}_{(E)}^{\pm} &= \alpha \pm \left\{ \beta_1^2 + \beta_2^2 - \beta_1 \beta_2 \right\}^{\frac{1}{2}} \end{split}$$

The doubly occupied molecular orbitals of the ground state are  $\underline{\Phi}(A_1)$ ,  $\underline{\Phi}'(E)$  and  $\underline{\Phi}''(E)$  leading then to the total ground state  $\overline{T}$  -electron energy

$$E(3\underline{y}) = 2 \tilde{\Sigma}(A_1) + 4 \tilde{\Sigma}(E) \\= 6\alpha + 2\{\beta, +\beta_2 + 2(\beta,^2 + \beta_2^2 - \beta_1\beta_2)^{\frac{1}{2}}\}....(1)$$

The  $\mathcal{T}$  -electron energy of the ground state if all C-C bonds are equivalent (molecular orbital symmetry  $\underline{C}_{6v}$ ) is

$$\mathbb{E}(6\underline{\nabla}) = 6\alpha + \beta\beta_0 \qquad \dots (2)$$

where  $\beta_0$  is the interaction integral for the observed benzene C-C bond length.



Equating (1) and (2) we obtain a relationship showing how  $\beta$ , and  $\beta_z$  must change relative to each other, in order to preserve in the  $\underline{C}_{3\underline{y}}$  model the same total  $\pi$  -electron energy obtained with the  $\underline{C}_{6\underline{y}}$  model. Since we are concerned with the relative rather than the actual magnitudes of  $\beta_o$ ,  $\beta$ , and  $\beta_z$  we shall work in terms of  $\beta'$  and  $\beta'_z$  the ratios of  $\beta_1$  and  $\beta_2$  to  $\beta_0$ . The required relationship is then

$$\beta_{1}^{\prime} = \beta_{2}^{\prime} - \frac{4}{3} \left\{ 1 - \left(4 - 3\beta_{2}^{\prime}\right)^{\frac{1}{2}} \right\} \qquad \dots (3)$$

This is plotted out in Fig.4, which is really a single  $\beta'$ -space. For an extended range a family of such contours  $\beta'$ -space. For an extended range a family of such contours would be required.

We may now observe the effect of changing the values of adjacent bonds in an annelated benzene ring subject to the requirement that the total  $\pi$  -electron energy of the annellated benzene ring remains constant. Thus, accepting the validity of Clar's explenation of the origin of the  $\beta$ -bands in the spectra of the triphenylenes, we may regard one of the three outer rings of VIII, say ring A, as having bonds of alternately high and low order,



while the other rings constitute a phenanthrene system. We may, therefore, vary the  $\beta'$ -values for the bonds in this ring iso-energetically according to (3) and, for simplicity, assume that the  $\beta'$ -values for bonds  $\alpha'\beta$  and  $\gamma\beta$  are the same as those of the low order bonds in ring A. In phenanthrene IX although the bond  $\beta\gamma'$  is not shared with



enother ring we may still suppose, for purposes of comparison, that the  $\beta'$ -values of bonds  $\alpha\beta$ ,  $\beta\gamma$ ,  $\gamma\delta$  are again given by (3).

The results of these calculations are illustrated in Fig.5 where the highest occupied molecular orbital energies have been plotted in units of  $-\beta_0$  against  $\gamma = \beta_2/\beta_1$ The curves cross at  $\gamma = 1.61$  and, using this with (3) we find that  $\beta_1 = 0.737$  and  $\beta_2 = 1.187$ . Substitution of these values into a new Hückel molecular-orbital

calculation on phenanthrene and triphenylene leads to  $\underline{k_n}$  equal to 0.7407/3, and 0.7403/3, respectively, and so confirms the technique described.

#### DISCUSSION

We do not claim that the calculations described here yet furnish unassailable proof of Clar's theories of aromaticity. They are in general agreement with the relevant spectra of the known triphenylenes and to this extent corroborate the predictions made on the basis of However, the fact that we ere using Clar's models. Huckel molecular-orbitals as bases precludes the acceptance of localised electron-pair models. These can have no meaning in the Hückel theory unless some of the  $\beta_{rs}$  values are assumed to be zero even when r and g are neighbours. For example, if in triphenylene VIII we put the  $\beta$  -values for bonds  $\beta$  and  $\gamma$  aqual to zero, as would be necessary if these were considered to be pure o -bonds, we should obviously find the secular determinant factorising to give the T -levels of phenanthrene from the conjugated system to the left of and including  $\beta \mathcal{J}$  and those of butadiene (or of ethylene if  $\kappa\lambda$  also has  $\beta=0$ ) from the rest of

the molecule. In either case the lowest electronic transition energies would therefore be those of phenanthrens. However, there is ample evidence to support the view that between  $sp^2$ -hybridised carbon atoms  $\beta$  is a function of bond length and cannot be zero in aromatic hydrocarbons. Further  $\beta'$  appears always to be between 0.7 and 1.2. Our calculations indicate that the relative spectral measurements are predictable by using  $\beta$  -values lying within this range.

### CONCLUSION

We conclude that the observations of Clar and his colleagues on the spectra of the triphenylenes are explicable on the basis of molecular orbital calculations such as our series I and II the latter being probably the better. We certainly do not assert that we can explain the spectra in detail or that we are confident that the interaction integrals  $\beta$  are unequivocally determined, indeed we show that it is possible to vary these in a benzene ring without altering the highest occupied levels  $\underline{k}_n$ . We hope to report in a subsequent publication on the

result of assuming in the Bm,1 portion of the molecule  $\underline{sBm,1}$  that the  $\beta$ 's are those of the phene OBm,1.

We gratefully acknowledge many helpful discussions with Dr. E. Clar and Dr. J. F. Guys-Vuilleme and the award of a D.S.I.R. Maintenance Grant to one of us (D.A.M..B.) Chemistry Department, University of Glasgow.

 $(2.11) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$ 

17.

## References.

- (1) AHMED, F.R. and J. TROTTER: Acta Cryst., 1963, 16, 503.
- (2) CLAR, E., A. McCALLUM and R.A. ROBERTSON: <u>Tetrahedron</u>, 1962, <u>18</u>, 1471.
- (3) COULSON, C.A. and R. DAUDEL: "Dictionary of Values of Molecular Constants", Volume II.
- (4) GOODWIN, T.H. and D.A. MORTON-BLAKE: Theoretica Chimica Acta, in press.
- (5) HARGREAVES, A. and S. HASAN RIZVI: Acta Cryst., 1962, 15, 365.
- (6) LENNARD-JONES, J.E: Proc.Roy.Soc., 1937, A.158, 280.
- (7) MULLIKEN, R.S., C. RIEKE and W. G. BROWN: J.Amer.Chem.Soc., 1941, 63, 48.
- (8) PARISER, R: J. Chem. Phys., 1956, 24, 250.
- (9) STREITWIESER, A., Jr.: "Molecular Orbital Theory for Organic Chemists", Wiley, New York, 1961, p.218.