https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

A HÜCKEL MOLECULAR ORBITAL STUDY

OF SOME AROMATIC HYDROCARBONS

A thesis submitted to the University of Glasgow for the degree of Doctor of Philosophy

by

David Antony Morton-Blake.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10984175
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Acknowledgments

It is a pleasure to thank Dr. T. H. Goodwin for the interest and unfailing helpfulness which he has extended throughout the three years during which I have worked under his supervision, and for the use of some of his programs for the DEUCE Computer, using which many of the caloulations were carried out. I also gratefully acknowledge many interesting and helpful discussions with Dr. E. Clar and Professor D. W. J. Crtickshank. I am partioularly grateiul to
Professor J. Montesth Robertson for a maintenance grant during my first year of research (1960-1) and to H. M. Department of Scientific and Industrial Research for the award of a Studentship for the last two years (1961-3). My thanks are also due to Mrs. J. Beresford, who undertook the task of typing the thesis.

CONTENTS

Page
Sl Introduction and Definitions 1
Siz Basic Theory 4
2.1 The LCAO MO method 4
2.2 Matrix form of the Schrödinger equation 9
2.3 The Hückel theory 11
2.4 Variation in β^{\prime} 14
2.5 Bond orders 16
2.6. Simplifications due to symmetry 20
83 Application of the Hückel theory to the aromatic
hydrocarbon 1-2, $6-7$ dibenzpyrene, and the
results obtained 24
3.1 Application of Group Theory 24
3.2 Results of the calculation:
(i) Electronic states 31
(ii) Flectronic spectra 35
§4 The Clar theory of aromatic hydrocarbons 42
S5 Results of the computations on some aromatic
hydrocarbons 47
5.1 The effect of iterating 47
5.2 Bond variations:
(a) Acenes 52
(b) Other hydrocarbons 55(c) A comment on the relationship betweenthe Giar and Hückel theorjes60
Page
5.3 Molecular π electronic energies 60
(i) Aromatioity and stability 63
(ii) Calculated energies 69
(iii) A comparison of the stabilities of some isomers 74
The construction or a new $r(p)$ curve, and thecalculation of more accurate bond orders andenergies79
6.1 A criticism of the $x(p)$ and $\beta^{\prime}(x)$ curves used for the caloulations of the molecular constants listed in Appendix A 79
6.2 A more accurate order-length curve 80
Treatment of molecules containing long bonds. 90
6.3 Results obtained for aromatic hydrocarbons using the new order-length relationship 91
6.4 (a) The calculation of the positions of the electronic transition bands for aromatic hydrocarbons 97
(b) The calculation of spectral shifts due to annelation 103
S7 The calculation of aromatic character of the acenerings in terms of Claris oscillating armaticpair model107
Page
SB A simple treatment of intermolectronic repulsion
in aromatic hydrocarbons 116
8.1 The ground state 116
Application to some hydrocarbons 122
8.2 The first excited singlet state 127
References 134
APPENDIX A: Molecular constants calculated using the CoulsonmGoodwin $p(r)$ curve and the Mulliken, Riecke and Brown $\beta^{\prime}(r)$ curve.
APPENDIX B: Molecular constants calculated usingthe "improved" $p(r)$ curve and theLonguet-Higgins and Salem $\beta^{\prime}(r)$ curve。
APPENDIX C: Molecular constants calculated usingthe $p(r)$ and $\beta^{\prime}(r)$ curves used forAppendix B results, but with specialprovision made for extreme long andshort bonds.
APE ENDIX D: Papers with T. स. Goodwin submitted for publicution:
(i) Pyrene Benzologueg":Tetrahedron Letters 14901 (1963).
(ii) Whe Configuration of Diphenyl inthe Crystalline and in the VapourStates: A Simple Non-bonded HefiPotential Function":Theoretica Chemica Acta 1458 (1963).
(iii) "An Erapirical Determination of the Huckel Parameter β, and of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{HI}$ Bond Energies in Aromatic Hydrocarbons": To be published in Journal of the Chemical Society.
(iv) "A Simple Molecular-Orbital Study of the β, α and $p-B a n d s$ in Triphenylenes": To be published in Theoretica Chemica Acta.

§1 ITHRCLUCTICN AND DEPINTHXCNS

"ie sholl discuss the applicotion of the Ifluckel LCAOMO method to some benzenoid altarnant aromatic hydrocarbons and the results obtained, naking comparisons where possible with the predietions of the theories developed by Clar soncerning these molecules.

The torm "benzenoid" will bo derined as a description of those molecules composed only of sixwembured rines of spa hybridized stoms. An aromatic systam is one containing ring atoms with each of winich thore is associated a $2 p$ abomic orbital containing C, lor 2 electrons, and which is directed perpendicular to the plene formed by the atom and its immediate neighbouxs. Alternant hydrocarbons are those in which the curbon atoms may be classified into two sots, "starred" and "unstarzed", in such a way that caoh starred atom has only unstarred nearest neighbours, and vice vexse, Alternant hedrocarbons therefore contain no odd-numbored rings. Some oramples of molecules usine these terms are naphthalene, which is a benzenoid alternant aromatic hydrocarbon. cyclobutadione, which is an alternant aromatic hydrocarbon though not benzenoid, oycloootatetraene, which

Is un altarnant hedrocarbon but is neithor benzenoid nor aromatio (sinco it is not planar), and azulene which is an aronatio hydrooarbong but is neither benzenoid nor alternant. The molecules pyridine and borazole are in many ways similar to benzene, and by our dafinitions may be described as being both banzenoid and aromatic, but they are not hydrocarbons and so cannot be dascribed as altarnant or non-alternant.

In an oromatic molecule the $2 p$ atomic orbitals. which are usually directed at right-angles to a nuclear plane, interect, with the result that the eleatrons produce an alectric field above and below this plane; in the regions where the atomic orbitals ovorlap. Those eloctrons are therefore considered to be delooaliged to a greater or less extent ovor the nuolear fromevork in aiscxete moleculgr orvitalg. Since the waye functions of the basis aet of z_{p} atomic orbitals, and therefore of the molecular orbitals are antisymmetric with respect to the nuolear plano, both are ternad π orbitals, and their associatsd olectrons are called 7 electrons. This is principally to distinguish them from the olectrons in the systom, which are localised between ewo nuclei ond are cylindrically gymmetriesl with respect to the intex nucleas line.

The prinoipal resulta obtalned from the Eückel LCAO theory calculations are the energies of the eleatron molecular orbitals as a linear combination of two parameters α and β_{0}. No attempt is made to caloulate these quantities directiy, but since the coeflicient of the β_{0} term varies from one orbital to another, it has bean possible to astimate empirical values for β_{0}, which we have done on two different experimental bases, by comparing nolecular orbital energies as derived from thermochenical measurements and also from the electronic transition energies in the $U_{0} V$. absorption spectra. The calculations also furnish the r bond orders, which measure the degree of $i r$ bond formation between neighbouring pairs of carbon atoms.

Where it has been possible, wa have attempted to compare our resuits with experimentel data. This, however, has been dipficult, both beoause of the uncertainties in the positions of the relevant $\mathbb{U} . \mathrm{V}_{0}$ spectral bands (whioh would make ideal comparisoris for the calculated energies) and because sufficiently acourate bond lengith (which are useful measures of Tr bond orders) aze available for only a very few arometic hydrocarbons, From the comparison or our results for aiferent moleoules it has often been
possible to observe sone regularitiee in the behaviour of the f electrons, and in comparing these with the mpirically-basod rules of clar, to etfect indirect comparison with experiment $\$$.

The nomenclature of the aromatic hydroarbons $1 s$ that used in Clar"s book "Aromatische Kohlenwasserstoffe", bat the numbering of the carbon atoms in the Appendices and in the text to refer to bond orders etce, hes been our own The rather irregular fors of the nubering is due to convenience in the computations, but because of the risk of errors in translation irto Chemical rumboriric, has been used throughout.

§2 Bisicic Theory

2.1 The LCAO-MO Method, and σ-and π-separation

Because of the potential enerpy terms in the hamiltonian operator H, the solutions such as ϕ_{i} of the Schrtidinper stationary -state equation

$$
H \phi_{i}=E_{i} \phi_{i}
$$

for an electron in the neighbourhood of an atom or ion are well-known to be discrete. The wave function Φ of the electon must then be written as a linear combination of the solutions:

$$
\Phi=a_{1} \phi_{1}+a_{2} \phi_{2}+\ldots \ldots
$$

since the electron must be somewhere in space, we have the normality condition

$$
\begin{equation*}
\int \Phi * \Phi d \tau=1 \tag{1}
\end{equation*}
$$

where the integration is carried out over the whole rance of the snacial coordinates of the wave functions Φ. It is convenient to use orthonormalised solutions (i.e. such that $\int_{0}^{\infty} \phi_{i}^{*} \phi_{j} d \tau=\delta_{i j}$) since then the normality concition (1) imposes the following simple restriction on the e's:

$$
\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots \cdot=1
$$

The quantity $\left|a_{i}\right|^{2}$ is tierefore the probality that the electron is in the state described by the solarion ϕ_{i} with energy E_{i}.

Because the discrete solutions ϕ_{i} are associated with perticular energies E_{i}, it, is convenient to speak of an atomic orbital (AO) with energy E_{i} which may be accommolated by oither 0 , 1 or 2 olectrons, and which provides a real distribution function fox the blectron. In many cases the atomic orbitals can be just the solutions themselves or convenient approximations to them, but when more than one solution corresponds to the tame energy E, it may be necessary to take linear conbinations of these degenerate solutions to give
functions which are real (i.e. not complex) and which may therefore be used to represent the distribution of the electron. We shell suppose that the atomic orbitals which we require are known, and shall denote them by the symbol ψ.

The electron is also in a bound state in a molecule, and analagous to the atomic case we can speak of molecular orbitals (MO's), in which the electron is associated with more than one atom. In principle a $M \mathrm{~m}$ can be expressed as a linear corabination of a complete set of wave functions. However except for very simple molecules (e.E. H_{2} or H_{2}^{+}), this is unpracticable, and for many purposes satisfactory molecular orbital wave functions are obtained by taking a linear combination of appronriate atomic orbitals in the molecule (LCAO):

$$
\begin{equation*}
\Psi_{M O}=C_{1} U_{1}+C_{2} U_{2}+\ldots+C_{n} \Psi_{n} \tag{2}
\end{equation*}
$$

Even if we make use of the Bom-Oppenheimer approximation, which allows us to neglect the elfect of the nuclear motions on the electronic wave functions, $\Psi_{\text {MO }}$ does not adeauetely cater for all the influences wrich the electron experiences in the nolecule. Yowever the "best" choice of coefficients c will reduce this uncotininty to the minimum possible for the particular set of ψ 's used in (2).

The coefficients c may be detemined by cnlculating the enery of the molecular orbitel $\Psi_{\text {mo }}$ eccording to the rules of quentum mechanics:

$$
\begin{equation*}
E=\int_{0}^{\infty} \Psi^{*} H \Psi d \tau \tag{3}
\end{equation*}
$$

where II is the hamiltonian operator for the system. the variation principle states that as long as we are using an accurate hwiltonion $H_{\text {, }}$ (waich can usually be done quite readily) the energy given by (3) will ve creater than ox equal to the true lowest energy of the system. In other words the lower the value of E, the nearer is Ψ to the true MO wave function. The "bost ${ }^{\text {r }} W$ of the form given in (2) can therefore
be found by minimising (3) with respect to the various c's. In this way, although effects such as interelectronic repulsions have beea neglected in foming the LCAO-MO (2), they may be included in the hamiltonian in (3) as "perturbation" energy-terms, and the LCAOMO's evaluated will be such that the c's "allow for" these effects as far as is possible.

If Ψ_{1}, Ψ_{2}, etc. axe the MO wave functions constructed in this way from the various $A O^{\prime} s$ in the molecule, the eround state will be that in which the MO's with the lowest energies are occupied by electrons. We can write the wave function for such a state of an noelectron molecule as a product of the n lowest-energy molecular orbitlas Ψ_{1} so Ψ_{n}^{\prime}, in buch \& way that Γ is antisymetrical to the interchaze of any two electrons, in accordance with the Pauli principle. r is uxitten

$$
\begin{equation*}
\Gamma=\cot \left[\Psi_{1}(1) \quad \Psi_{2}(2) \ldots \ldots \Psi_{n}(n)\right] . \tag{a}
\end{equation*}
$$

The general factor $X_{X}(x)$ denotes the rth electron in the rth molecular orbital. The antisymmetrising operator of (which includes the normelising factor) permutes all the electrons and sums the antisymetrised resulta, eince there are equal probabilities of finding any one electron in any of the n HO's.

In foming the Mo's \mathcal{F} it often happens thet one or more of the component AO's do not combine with the others in the soxn (2) with any appreciable energy change. This may be because the centres of the $A O^{\prime} s$ are too far apart, or because they belong to different symmetries. In either case the cross-teras in the expansion of (3), $\int_{0}^{\infty} \psi_{a}^{*} H \psi_{1} d \tau$ (the energig of the interaction of the AO's) and the overlap, $\int_{0}^{\infty} \psi_{\alpha}^{*} \psi_{\beta} d \pi$ (which is orten a useful simple measure of the foxneri quantity) are very small or zero. The atomic orbitals ψ_{a} axd ψ_{f} mey therefore be treated as distinct by appearing in (4) in separate wave functions Ψ. For this reason the $2 \mathrm{p}_{\mathrm{rr}}$ A0's, which are directed at right
angles to the molecular plane of the aromatic hydrocarbons, form distinct W Molecular oxbitals, which may be distinguished from the σ MO's by their antisymatery in the molecular plane, the σ MO's being symmetric.

These two kinds of MO are very different. The o MO's may be manipulated (Coulson, "Valence" 2nd. edn. © p.173) into the form of "bond orbitals" in which the electrons are localised in the internuclear regions and form whet aze known as σ bonds. The π MO electrons on the other hand are delocalised over laxge parts of the molecule. Since the localised o bond orbitals are characteristic only of the two atoms forming the bond, the C-C ornds in an aromatic hydrocestons are similar, and efrectively provide a carbon atom framework over which the π electrons are delocalised. The π MO's are therefore highly dependent on the topology of the molecule, and in this thesis we shall suppose that many of the characteristics of the aromatic hydrocarbons (e.g. relative bond lengths and UV spectra) may be explained quite well by the π MO's alone.

The electronic energy E of a molecule in the state T, ,

$$
E=\int_{0}^{\infty} r^{*} H \Gamma d \tau
$$

contains kinetic energy and nuclear-attraction terms for each of the σ and relectrons. However there are in eddition terms describing the mutual repulaions of the electrons; "sone of these tems involve both σ and π functions, and express the interactions of the w and π electrons. The existence of these σ "T "coulomb" and "exchange" integrals shous that the total energy of an aronatic molcule camot be separated into parts which involve the or and π electrons alone, since the two parts do not constitute independent systems.

Nevertheless it is convenient to supnose that the σ and π electron parta of the total energy can be separated, and that the
description " π electron energy" applies to the sum of those energy terms which involve the π HO wave functions even if they also involve Twave functions. Although Telectron energy cannot be a strictly meaningiul physical quantity, the o-m separation procedure allows ue to obtain results which are often surprisingly accurate for molecules whose complexities make them intractable to more rigorous treatments.

In the fom of the $\sigma-\pi$ separation procedure which we shall be using, our wave functions will be just those of the π MO's, and the T-electron hamiltonian will include a potential energy term which exprosses the totel coulombic interactions with the nuclei and the σ electrons. In the bulk of the thests this tern will also include the interelectronic repulsions of the π electrons, but in the final chapter an explicit account will be taken of these. The σ MO's will not be considered at all.

2. 2 Matrix form of the Schrodinger equation.

We shall express the it Mo according to ts
but in the convenient vector rotation

$$
\Psi_{i}=\langle\psi| .\left|c_{i}\right\rangle
$$

where $\langle\psi|$ is a row vector of the $N \mathrm{~Np}_{\mathrm{F}}$ atomic orbitals in the system, and $\left|c_{i}\right\rangle$ is a column vector of the N ooeffiolents relating to the eth molecular orbital. We condition ensuring the normalisation and orthogomater of the $\mathrm{MO}^{\prime} \mathrm{s}$ is that the vectors $\left|c_{i}\right\rangle(1=1$ to $\mathbb{N})$ ave orthonormal, i. ea, the coefficients $C_{x i}$ themselves: taken in column, ere normalised and orthogonal. If this is the case, then the $\mathbb{N} \times \mathbb{N}$ matrix \mathbb{C} consigtue of a row of the $\mathbb{N}\left|c_{i}\right\rangle$ column vectors is a unitary makuta The row vector of the \mathbb{N} molecular orbitals may then be expressed as

$$
\langle\Psi|=\langle\Psi| \mathbb{C}
$$

and the energy eigenvalues can be calculated by rosining the square metric

$$
E=\int\left\langle\left.\Psi\right|^{t} H\langle\Psi| d t\right.
$$

where $\left\langle\left.\Psi\right|^{+}\right.$is the adjoint of $\langle\Psi|$ and \bar{x} is the
hamiltonian operator relevant to the system. From (5) and (2) wo have

$$
\begin{equation*}
E=\int \mathbb{C}|\Phi\rangle^{+} H\langle\Phi| \mathbb{C} d x=\mathbb{C}^{+} H \mathbb{C}=\mathbb{C}^{-1} H \mathbb{C} \tag{2.7}
\end{equation*}
$$

 The replacement of \mathbb{C}^{t} by $\mathbb{C}^{-1 /}$ follows from the unitary property of (While in general the (\mathbf{x} (\mathbf{E}) th element in H is nonwexo, the matrix E (formed by subjecting
T to a unitary transformation using the (matrix)
is diagonal and the diagonal elements $E_{t i}$ are the energy eigenvalues.

Writing (7) as

$$
\begin{equation*}
\mathbb{H} c=\mathbb{E} c \tag{2.8}
\end{equation*}
$$

and using the fact that E contains only diagonal elements E_{1}, (8) may be separated into N veotoral -quations

$$
H\left|c_{i}\right\rangle=E_{i}\left|c_{i}\right\rangle
$$

which ia the schrodinger equation in matrix form.
This an be rewritten

$$
\left(H I-E_{i} \cdot 1\right)\left|c_{i}\right\rangle=0 \quad \text { (mull matrix) }
$$

where Is the unit matrix equidimonsional with \mathbb{H}.
 neeesseny that

$$
\operatorname{det}\left|H_{r s}-E_{i} \delta_{\lambda s}\right|=0
$$

the \mathbb{N} solutions of which are the eigenvalues \mathbb{F}_{1} 。

2.3 The Hückel Theory.

In the argument developed above, it has been implicitly assumed, following Eucken ${ }^{1}$, that the atomic orbitals ψ although not eigenfunction of the Hamiltonian operator $H_{\text {a }}$ are orthogonal amongst themselves. so that the matrix $\int|\psi\rangle^{*}\langle\psi| d x$ is a unit matrix. This assumption as stated is not justifiable, but ats adoption results in considerable simplifications of the computations, and may be "coxrboted for" afterwards, if desired.

A second simplification made by Hickey is to suppose that the Hamiltonian has oxatily the name form for each molecular orbital, so that each electron move a In the same average electrostatic field provided by the nuclei and the other electrons. Moreover this field is the same at ell $8 p_{n}$ atomic orbitals th the molecule. For this reason another considerable simplification results If we do not explicitly consider the interactions between the atomic orbitals, but write the diagonal and nonedigenat - lemants of the R matrix respectively as
\%

$$
\begin{aligned}
& f_{r y}=\int U_{r}+y_{r} d x=\alpha_{r} \\
& \text { and } H_{r s}=\int W_{\text {w }} H W_{s} d t=\beta_{0, s}
\end{aligned}
$$

Trom what we have just said, α_{2} is the sam for all $2 p_{v}$ atomio orbitais fif an aromatio nydrocarbon; it is theoretically the energy of a single eleotron in a $2 p$ atomic orbital, and is written of o Making the next Hidokeh assumstion that only nearest-neighbour interactions need be considored, the intoxattion term Fas boomes a bond parameter. Although a good efrst approrimation is to assume that this is constant for all bonded atoms I_{m}. , aromatic hydrobcarbons are characterised by some wariation in their CC bond longthe As a reault the value of β rg is expeoted to dopend somewhe upon the digtanoe between the aentres of the intasaoting atomio orbitals. 1.0. upon the length of the
 is the intexachion tom for an swotary grandexd bond. ohosen in such way bhot the nunericas factor $\beta_{\text {rem }}$ is Satriy cloce to unityo Ta our ealoulations β_{0} is

 the boad 9 teg with that of the benzene bond usiag the ompither rolathon sugested by mathex, Rieke and Bromat on Loaguetmbicgin and samem ${ }^{3}$

$w \mathrm{Em}$

$$
\mathbb{I H}_{-} E \cdot \mathbb{1}
$$

Each olement of Hitant $_{\text {(whose }}$ coneral elenent is
 aze of two kinds, the nonwiagonel elements whiom ase independent of the enexgy E beoome aimply $\beta_{\text {rgs }}$ whereas all the diagonal elementa are

$$
\frac{o f-E_{i}}{\beta_{0}}=x_{i} \quad(\text { gay }) \quad \text { (S. } \quad \text {) }
$$

Z Z th the onergy oigenvalua paramoter (sometimes called the सixokel number and becomos the general latont root ox the matrix $\frac{1}{\beta_{0}}$ TH.

The enargy oigenvalues for the system are them given by (9) ox

$$
E_{i}=\alpha-x_{i} \beta_{0}
$$

β_{0} is a nggative quantity, so negative values of zi lead to bonding No's (moleoular orbitals whose energies are legs then the energy of the $2 p_{0}$ atomio orbital), and positive velues to antibonding ones. In certain coseg. as for axample molecule oontoining an odd number of $2 p$ p atomic orbitela (which, because of the lack of complete spin pairing must be a froe radical). I may be zezo. resulthog in an mo whose anergy da mema by (10) to be jugt
 ta oallec nommbondin molecular orbltal.

In alternent aromato bydrocanbons: the Hekent

014

(αx_{1}) there is a corresponding antibonding one. A system of IN interacting atomis orbitals muat have N molecular orbitals, and so a neutral even altemant hydrocarbon possesses a ground state in whioh all IN electrons are, by the Paull Principle, accomodated in the $N / 2$ bonding molecular orbitals. We may conveniently denote the number of occup orbitals by n. In the ground state, $N=2 n$.

2.4 Wariation in β°

As wes discussod in the last section, the β value for a CC bond in an aromatic bydrocarbon should be fairly constant, since the variations in bond lengths are seldom very marked. For this reason the Simple Hugkel Method in which all the fo values are assumed to be unity, has often yielded very satisfactory results. We heve gometimes used the resulta of the simple fuckel Method in order to compare the results calculated for a geries of hydrocarbong when we wish to avoia the diffieuties of assigning uncertain bond β values. In cases where we can assign $\beta^{\text {s }}$ values, howerero fonen the bond orders or bond lengtis are known with some degree of certainty) the resulta are probably dettere Varioug relationships between the langen of a bond and

Browa ${ }^{2}$. and later to LonguetoHiggina and Salem ${ }^{3}$. Finally wo havo caloulated a now $\beta^{\prime}(x)$ relationship using some recontiy-determined forco-constanta and bond energies.

For a general hydrooarbon, however: the bond lengths are not known, so the required set of β° valuea cannot be assigned. Our precedure (following Goodwin) has been to compute the bond orders $p_{\text {ris }}$ using the simple Huckel Method first of 011_{0} infer from these the approzimate sot of bond lengths zrg using an empirical bond order/bond length curve $x(p)$ (such as that due to Coulson), and from these oaloulate a set of β values by reference to a $\beta(x)$ relationship. This set of β values is then used in a second "iteration", and new
 are expected to be more acourato than the tirst seta, and the bond ordexs and bond longths obtained by a Purther iteration should be better still. Although at fixst sight succeasive fterations should yiold progresmitely better results until self consistency is obtained, we have decided to stop after three iteretions. since the dosired solfoonsistency is generally not achieved. This
is probably due to the uncextointies in the $g(x)$ and $\beta^{3}(x)$ curves used iox the interpolations; lates curven will be geen to dmprove the position somernat.

2.5 Bond Orderis.

The oigenveotors $\left|c_{\$}\right\rangle$ consist of the coerifiolentiz $C_{\text {gs }}$ of the atomic orbitals ψ_{I} in the i th MO as expressed by

$$
\Psi_{i}=\sum_{r=1}^{N} c_{r i} \Psi_{r}
$$

In the following calculations all the coefficients will be assumed to be real, since this assumption considerably simplifies the computations which involye the products of the coefficients Multiplication of $\left|c_{s}\right\rangle$ by ita transpose $\left\langle c_{i}\right|$ yielas an $n \times n$ matrix whose
 an oleotron in the ith Mo $1 \mathrm{~s} \int \mathbb{F}_{i} \Psi_{i} d E$ which for real vectors $\left|c_{i}\right\rangle$ is equal to

$$
P=\int \Psi_{i}^{2} d x=\int\left(c_{1 i}^{2} W_{1}^{2}+C_{2 i}^{2} W_{2}^{2}+\ldots+C_{N i}^{2} \psi_{W}^{2}\right) d x=\sum_{S_{B i}}^{N} C_{N i}^{2}
$$ (anguning the orthogonality of all paire of $\mathrm{y}^{\circ} \mathrm{g}$)。 Tho diagonal olemgntg of a mativx $\left|c_{6}\right\rangle\left\langle C_{l}\right|$ therexome meagure the probeblitites of rinding a alectron essociated with

dagonal terms in the same matrix might then reasonably be expeated to measure the melectron density in the region between two atoms, $i{ }_{0} \theta_{0} \mathrm{C}_{7} \mathrm{C}_{8}$ is a measure of the amount of π boad character between atoms $\left\{\right.$ and g_{2} and is called the paxtial bond order $\mathrm{p}^{\mathrm{i}} \mathrm{ig}$ of the bond rem due to the i th MO. When a matrix of these quantitios is multiplied by the ocoupation number wi of the is th MO (the number of T eleotrons in tho orbitaz). and summed ovar all tho mo^{*}, it results in the totat bond ordex matrix, whose elomenta are the total bond ordors and oharge dengities:

$$
\begin{align*}
& q_{y}=\sum_{i=1}^{n} v_{i} \eta^{i}=\sum_{i=1}^{n} v_{i}\left|c_{i}\right\rangle\left\langle c_{i}\right| \tag{array}\\
& p_{r s}=\sum_{i=1}^{n} v_{i} p_{r s}^{i}=\sum_{i=1}^{n} v_{i} c_{2 i} c_{s i} \tag{2.11}\\
& q_{n}=\sum_{i=1}^{2 i} v_{i} q_{r}^{i}=\sum_{i=1}^{n=1} v_{i} c_{r i}^{2}
\end{align*}
$$

The total bond order $p_{r a}$ of a bond or Coulson bond order accounts for the observed shortening of the bond due to Tr bond formation ${ }^{5}, p=0$ impifes an absence of 7 eleobrong (hence no mbond) and $p=1$ an athyleneatype Te bond (which togethes with the or bond. constitutes
 aromatia hydrocembons ase usmally between 0, and 0.8 .
when calculating the m electron energy in a system ox part of a system．This relationship is explained as follows．

The energy of the i th molecular orbital is

$$
\begin{align*}
E_{i}=\int \Psi_{i} H \Psi_{i} d x & =\int\langle\psi| \cdot\left|c_{i}\right\rangle H\langle\psi|\left|c_{i}\right\rangle d x \\
& =\int\left\langle c_{i} \| \psi / H H\langle\psi| \mid c_{i}\right\rangle d x \\
& =\left\langle c_{i}\right| H I\left|c_{i}\right\rangle \tag{2,12}
\end{align*}
$$

Fit is now separated into two matrices which involve only α and the β terms respectively，as discussed in the last section：

$$
H I=\alpha \cdot 1+\beta
$$

（12）then becomes

$$
\begin{aligned}
E_{i} & =\left\langle c_{i}\right|(\alpha 1+\beta)\left|c_{i}\right\rangle \\
& =\alpha\left\langle c_{i}\right|\left|c_{i}\right\rangle+\left\langle c_{i}\right| \beta\left|c_{i}\right\rangle \\
& \left.=\alpha+\sum_{\substack{i=1 \\
\Omega \neq S}}^{n} \sum_{r_{i}=1}^{n} c_{s i} \beta_{R s} \text { (Tor zeal } c_{r o} c_{g}\right)
\end{aligned}
$$

But the actual energy of the electrons in the it molecular orbital is 除 E_{6} ，where ${ }^{\circ}$ is the occupation number．The total Te electron energy in the system is therefore：

$$
190
$$

The first berlin in (13) is Mot, which follows from the facts either the the $G_{2 x}{ }^{\circ}$ s are normalised over all In and so tho term 18 on $\sum_{i} V_{2}=2 n \alpha=N_{\alpha}$ or simply that $\sum_{r=m}^{N} q_{r}$ must equal the total number of electrons, which is N. So the ground state ir electronic energy is

$$
\begin{equation*}
\Sigma=N_{\alpha}+\sum_{r i s}^{N} \sum_{s=}^{N} p_{r s} \beta_{r s} \tag{2.14}
\end{equation*}
$$

But from (10) $\Sigma=\sum_{i} v_{i} E_{i}=N a-\beta_{0} \sum_{i=1}^{n} x_{i} v_{i}$
\therefore Prom (14) and (15):

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \nu_{c}=-\sum_{R=s}^{N} \sum_{s,}^{N} p_{s s} \beta_{k S}^{N} \tag{2.15}
\end{equation*}
$$

Since we are mostly concerned with the ground states, When $p_{2}=2$ for $i=1, \ldots, n$, the last equation becomes simply

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}=-\sum_{n>S}^{N} \sum_{s}^{N} p_{r s} \beta_{\gamma s}^{\prime} \tag{2,16}
\end{equation*}
$$

That is, if wo multiply each bond order by the corresponding β° value and sum the result over all the IT bonds in the molecule, we shell obtain the gum of all the Eucken numbers.

We shall use this formula when we wish to know the w election energy in a given part of a system, which could not be calculated using an energy formula such as (10).

The naphthalene molecule contains carbon atoms which are chemically equivalent because of the 020 symmetry which may bo assumed fox the molecule. This means that the electron deputies at oertain positions in the molecule are octal. For the two equatralent carbon atoms r and s, we express this as

$$
\int\left|c_{r i}\right|^{2}\left|\psi_{r}\right|^{2} d x=\int\left|c_{s i}\right|^{2}\left|\psi_{s}\right|^{2} d \tau
$$

Integrating over all the coordinates of ψ, wo find that the coeffloionts of H_{f} and H_{β} a must have the same modulus. The i th molecular orbital

$$
\Psi_{i}=C_{1 i} U_{1}+C_{2 i} U_{2}+\ldots++c_{1 a b} U_{10}
$$

may therefore be expressed in the form

$$
\begin{aligned}
\Psi_{-i}= & C_{1 i}\left(\omega \psi_{1}+\omega^{\prime} \psi_{4}+\omega^{\prime \prime} \psi_{6}+\omega^{\prime \prime \prime} \psi_{8}\right)+c_{2 i}\left(\omega_{1} \psi_{s}+\right. \\
& \left.+\omega^{\prime} \psi_{3}+\omega^{\prime \prime} \psi_{7}+\omega^{\prime \prime \prime} \psi_{8}\right)+C_{5 i}\left(\omega \psi_{5}+\omega^{\prime} \psi_{G}\right)
\end{aligned}
$$

where the $\cos ^{\circ} s$ are is I. For a molecule containing an n-fold symmetry acis. the wis would in general be in th mots of unity) : writing the above equation for y
mbers
may be called symperry orbitals, and (17\% expremses
the molocular orbital ${ }^{2}$ as a linoar combination of themo It is conreniont, for computational puiposes, to use normalised symmetry orbitale.

The correct cas a are givers $6_{3} 7_{0}$ 32 in
"character tables". These determine the forms of the symmetry orbitals in order that they ghall be eigenfunctions of all the symmetry operators of the point mroup of the moleoule. Now since a symetry operation leaves the hamiltonian invariant, the latter commutes with the symmetry operators, and so they possess the samo eigenfunctions. The symmetry orbitals thus genarated are those that are required in (17). There mill in general be difierent sets of characters ω, and in the ohezecter tables these form the invoducable representations bolonglag to the various symmetry classes. Owing to the orthogomal properties of these characters, the aymetry orbitals belonging to the airferent symmery classes are orthogonal, and so the h matrix element $\int\left\langle\phi_{p}\right| H\left|\phi_{q}\right\rangle d t$ is

 corresponding to the various symaetry classes, showing that in congtructing the molecular oxbitals (17), only噯 ${ }^{\text {s }}$ belonging to the same symetry elase need be used.

The procedure obviously reduoss the amount of calculation considexsbly: in the naphthalene problem, for example, instead of baving to find the latent roots of a 10×10 mairiz, wa have instead two 3×3 and two 2×2 matrices. The generated matrices are neoessarily symmetric matrices, and their latent roots and eigenvectora (i.e。 energy eigenvalues and atomic orbital coefficients) may themefore be conveniently extracted using the Givens method ${ }^{34}$ for which an electronic computer program is available。

> B. A descriputo of the application of the moles dibenzpyrene and of the result obtained Grope theory to an aromatic hydrocarbon 1a2, 6×8 dibenzpyene and of the results obtained.

3.1 Application of Group Theory to form symmetric

 gecakra matrices.The point -group of this molecule is $D_{\text {din }}$ but Wo shall ind it convenient to use the subgroup $C_{2 y}$. The symmetry operations of this group consist of a trow fold axis of rotation, C_{2}, perpendicular to the plans of the molecule, and two mirror planes σ_{∇} and $\sigma_{\nabla}{ }^{\circ}$ mutually at rightmangles, and perpendicular to the molecular plane. In addition of course there is the identity operation \mathbb{E}. The results of the operations on the $242 p_{\pi}$ atomic orbitals are shown in the table on the opposite pace, in which each atomic orbital is denoted by its position in the molecular diagram. At the foot of each colum is recorded the number of times that the symmetry operation R converts an atomic orbital into itself. This number, $\mathcal{X}(R)$, must be the trace of the reducible representation matrix $D(R)$ associated with R which acts on the basis set of atomic orbitals, and is therefore the sum of the traces $X_{f}(\hat{R})$ of the irreducible representations. We therefore have the relationship

$$
X(R)=\sum_{j=1}^{d} a_{j} X_{j}(R)
$$

where h is the order of the group (which is a for $C_{2 v}$) and a_{g} is the number of times that the ith irreducible repzesentation is used to form molecular orbitals belonging to the symmetry class i. It follows they

$$
\begin{equation*}
a_{j}=\frac{1}{h} \sum_{R} X(R) X_{j}(R) \tag{3.1}
\end{equation*}
$$

using the orthogonality properties of the charactere $X_{j}(R)$. Hxom the derinition of aj, this quantity is aiso equal to the number of non-zevo symmetry orititale in this ciass, and thererore to the order of the IH. gubmazix As usum the characters X_{j} are given by a chamacuer table 6,7 :

$C_{\text {QV }}$	B	C_{2}	σ_{V}	σ_{V}
A_{1}	1	1	1	1
B_{Q}	1	-1	1	-1
A_{Q}	1	1	-1	-1
B_{1}	1	-1	-1	1

From the whancters or the isrevuoible
mopremontations given in this Gable, and those on tho reauctita represonbations $X(E),(1)$ gites
$0-2$

$$
\begin{aligned}
& a_{A_{1}}=\frac{1}{2}\left(20.1+0.1+0.1+\Delta_{0} 1\right)=7 \\
& a_{B_{2}}=\frac{1}{2}(24.1+0.1+0.1-4.1)=5 \\
& a_{A_{2}}=\frac{1}{2}(24.1+0.1+0.1+4.1)=5 \\
& a_{B_{1}}=\frac{1}{4}(24.1+0.1+0.1+4.1)=7
\end{aligned}
$$

which predicts that the $\mathrm{H}_{\mathrm{A} 1}, \mathrm{H}_{\mathrm{BL},}, H_{H_{A 2}}$ and H_{BI} matrices are respectively Fth, 5 th, 5 th and Fth order.

The symmetry orbitals are generated as described In the last section, using the characters given in the Gev character table:

A1 wymermy class

$$
\begin{aligned}
& A_{1} \phi_{A}=\frac{1}{2}\left(A+A^{\prime \prime \prime}+A^{\prime}+A^{\prime \prime}\right) \\
& A_{1} \phi_{B}=\frac{1}{2}\left(B+B^{\prime \prime \prime}+B^{\prime}+B^{\prime \prime}\right) \\
& A_{1} \phi_{C}=\frac{3}{2}\left(C+C^{\prime \prime \prime}+C^{\prime}+C^{\prime \prime}\right. \\
& A_{1} \phi_{D}=\frac{1}{2}\left(D+D^{\prime \prime \prime}+D^{\prime}+D^{\prime \prime}\right) \\
& A_{1} \phi_{E}=\frac{1}{3}\left(E+B^{\prime \prime \prime}+E^{\prime}+E^{\prime \prime}\right) \\
& A_{1} \phi_{F}=\frac{1}{2}\left(B^{\prime}+E^{\prime}\right) \\
& A_{1} \phi_{G}=\frac{1}{2}\left(G+G^{\prime}\right)
\end{aligned}
$$

B_{2} symmetry clans

$$
\begin{aligned}
& B_{2} \phi_{A}=\frac{2}{E}\left(A-A^{\prime \prime \prime}+A^{\prime}-A^{\prime \prime}\right) \\
& B_{2} \phi_{B}=\frac{2}{2}\left(B-B^{\prime \prime \prime}+B^{\prime} \quad B^{\prime \prime}\right) \\
& B_{2} \phi_{C}=\frac{1}{B}\left(0 \quad 0^{\prime \prime \prime}+0^{\prime} \odot 0^{\prime \prime}\right) \\
& B_{2} \phi_{D}=\frac{1}{2}\left(D \quad D^{\prime \prime \prime}+D^{\prime} \leftrightarrow D^{\prime \prime}\right) \\
& B_{\Sigma_{E}}=\frac{3}{2}\left(B \rightarrow S^{\prime \prime \prime}+E^{\prime}-E^{\prime \prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& B_{2} \phi_{G}=\frac{2}{2}\left[\begin{array}{c}
\mathrm{G} \\
\mathrm{G}
\end{array} \mathrm{G}^{8} \cdots \mathrm{G}\right\rangle=0
\end{aligned}
$$

$$
-27
$$

$A_{\text {E }}$ symmetry class

$$
\begin{aligned}
& A_{2} \phi_{A}=\frac{1}{2}\left(A+A^{\prime \prime \prime}=A^{\prime} \circ A^{\prime \prime}\right) \\
& A_{2} \phi_{B}=\frac{\frac{\pi}{2}}{2}\left(B+B^{116}-B^{\prime} \odot B^{\prime \prime}\right) \\
& A_{2} \phi_{c}=\frac{1}{2}\left(C+C^{\prime \prime \prime}-C^{\prime}-C^{\prime \prime}\right) \\
& A_{2} \phi_{D}=\frac{\lambda}{2}\left(D+D^{\prime \prime \prime}-D^{\prime} \cdot D^{\prime \prime}\right) \\
& A_{2} \phi_{E}=\frac{2}{2}\left(E+E^{\prime \prime \prime} \oplus E^{\prime} \oplus E^{\prime \prime}\right) \\
& A_{2} \phi_{F}=\frac{1}{2}\left(F+F^{\prime} \Rightarrow F^{\prime} \infty F\right)=0 \\
& A_{2} \phi_{G}=\frac{1}{2}\left(G+F^{\prime}-G^{\prime}-G\right)=0
\end{aligned}
$$

B1 symmetry class

$$
\begin{aligned}
& { }^{B_{1}} \phi_{A}=\frac{1}{2}\left(A=A^{\prime \prime \prime} \Rightarrow A^{\prime}+A^{\prime \prime}\right) \\
& B_{1} \phi_{B_{3}}=\frac{7}{2}\left(B \Leftrightarrow B^{\prime \prime \prime} \quad B^{\prime}+B^{\prime \prime}\right) \\
& B_{1} \phi_{C}=\frac{2}{2}\left(C \Leftrightarrow C^{\prime \prime \prime} \quad \Leftrightarrow \quad C^{\prime}+C^{\prime \prime}\right) \\
& B \phi_{D}=\frac{1}{2}\left(D \Leftrightarrow D^{\prime \prime \prime} \Leftrightarrow D^{\prime}+D^{\prime \prime}\right) \\
& B_{1} \phi_{E}=\frac{1}{2}\left(\mathbb{E}=E^{\prime \prime \prime} \Leftrightarrow \mathbb{E}^{\prime}+E^{\prime \prime}\right) \\
& { }^{B_{1}} \phi_{F}=\frac{1}{2}\left(\mathbb{F} F^{\prime} \Rightarrow F^{\prime}+F\right) \\
& B_{1} \phi_{G}=\frac{1}{2}\left(G \quad G^{\prime} \propto G^{\prime}+G\right)
\end{aligned}
$$

The symmetry operations have been applied only to the seven chemically destines positions (the unprimed set): the other sets give symmetry orbitals which are identical. when these. The number of nonezero symmetry orbitals In the four cases are 7, 5, 5 and 7 , just as predicted by the apothection on (H)

The mater a loments of the $H_{j} \prod_{j}$ reduce to quite
simple quantities devolving the parameters of and β.
The element $\int \varphi_{A} H \phi_{B} d \tau \quad$ in $H I_{A_{1}}$ becomes

$$
\begin{aligned}
& \int \phi_{A} H \phi_{B} d \tau=\frac{1}{4} \int\left(A H B+A^{\prime \prime \prime} H B^{\prime \prime \prime}+A^{\prime} H B^{\prime}+A^{\prime \prime} H B^{\prime \prime}\right) d \tau \\
&=\beta_{A B}^{A_{1}} \\
& \text { and the diagonal element } \quad \int \phi_{D} H \phi_{D} d \tau \text { in } \mathbb{H} \|_{B_{1}},
\end{aligned}
$$

$$
\begin{aligned}
\int \phi_{D} H \phi_{D} d x= & \frac{1}{4} \int\left(D H_{D}+D^{\prime \prime \prime} H_{D^{\prime \prime \prime}}+D^{\prime} H_{D^{\prime}}+D^{\prime \prime} H_{D^{\prime \prime}}\right. \\
& \left.-2 D H D^{\prime}-2 D^{\prime \prime} H_{D^{\prime \prime \prime}}\right) d x \\
= & \alpha-\beta_{D D^{\prime}} .
\end{aligned}
$$

The matrices consequently become:

where tho upper and lower ate in the diagonal teams refer to the per and lower symmetry classes on the left hand sides, respectively.

The factors of $N(2$ in the F and G rows and columns occur with elements referring to bonds between atoms of different multiplicities (ide. between those which are, and which are not, on a symmetry element. The fact that the coefilaienta of all the non diagonal $\beta^{\circ} \mathrm{a}$ between atoms of the same multiplicities are $\pm I$ is
 symmetry orbitals ${ }^{j} \phi_{T}$ and $\dot{f} \phi_{S}$ in $H_{i} \quad$ is $\int \phi_{s}^{*} H \phi_{T} d \tau=\int\left[\langle s| \cdot\left|X_{j}(R)\right\rangle\right]^{\dagger} H\langle T| \cdot\left|X_{j}(R)\right\rangle d x$ where <S| and <I\| are the sow rectors of the basis sst of atomic orbitals in ϕ_{B} and ϕ_{t} and $\left|\chi_{j}(R)\right\rangle$ Is their colum eigenvector, obtained by normalising the 4 th shoractors in the character tabla.

$$
\begin{aligned}
\int \phi_{S}^{*} H \phi_{T} d \tau & =\int\left\langle\chi_{j}(R)\right| \cdot|S\rangle H\langle T| \cdot\left|x_{j}(R)\right\rangle d \tau \\
& =\left\langle x_{i}(R)\right| \cdot \int|S\rangle H\langle T| d \tau \cdot\left|x_{j}(R)\right\rangle
\end{aligned}
$$

Now $\int|S\rangle H\langle T| d t$ is a $4 x$ diagonal matrix of $\beta_{\mathrm{ST}}{ }^{\prime}{ }^{\prime}$; it is therefore a constant matrix and commutes with $\left\langle X_{i}(R)\right.$ The latter vector is unitary, and so the expression reduces to

$$
\beta_{S T}\left\langle x_{i}(R)\right| \cdot\left|x_{i}(R)\right\rangle=\beta_{S T}
$$

3. 2 Besults or ths calculation or onergy eigenvelues

 and oigenvectozs.In the first approximation (the simple Hückel Method) the β values for all the bonds were assumed to be oqual, and the caloulation was done in two ways. Pirstiy the determinental equation

$$
\operatorname{det}\left|\left(H_{j}\right)_{R s}-E \delta_{R S}\right|=0
$$

was solved for the energies \mathbb{E}, and these were then substituted in the seculaz equations

$$
d_{R i}(\alpha-E)+\beta \sum_{S} d_{S i}=0
$$

in order to detcrmine the coofiticients $d_{\text {Ri }}$ of the symmetry orbitals. The second method was to use a oomputer program baged on the Giveng method ${ }^{34}$ to ind the latent roota of the symmetric $\mathbb{H} I_{j}$ matriees snd to detemmine the -lgenveotors $\left|d_{i}\right\rangle$ ox the gymatry orbitals. Consistont results were sound by the wo methods, and the eigenvalues and thoir associeted eigenrectors are ligted in their appropriate gymmetry cladses in rable I。

The diacuggion or the eleotronic gtates and or the epoctra which rollow is nominally of the resulte of the simple HUCkel Hethod (in winich all the bond β values are assumed equal): but it is qualitatively also valid for the gubsequent sterations, for which the onergy aigenvelues and bond ordars are sumprised leter (in Table IV).
(i) Electronim Sivero.

In ozder to describe the lower aroited eloctronic states, we shall noed to know the symotioios of the ainglyooccupied molecular orbitals Ψ_{i} with respeat to the full symetry pointogroup of the molecule. which is Din. The symmetry of an electronic atate is that whose characters correspond to the direct product of the chajacters of the symmetry classes of the corresponding molecular orbitala. Consequent ly all doublywillled levels are tobally symmetrio (all the chaxacters axe +1$\}$, and therofore contribute nothing to the aymmoxy of the stato.

The Ghavacter table of the Den eroup is

Den	E	$C_{2}(\underline{H})$	Gg(y)	$C_{2}(2)$	15	σ^{*}	σ^{\prime}	$\sigma_{\text {d }}$	
$A_{\text {g }}$	1	1	1	1	1	1	1	1	
${ }^{\text {A }}$ a	1	2	2	1	-1	-1	-1	-1	
${ }^{B} 18$	1	2	-1	-1	1	-1	1	-1	
$\mathrm{Bl}_{\text {ta }}$	1	1	-1	-1	-1	1	-1	1	I
Bzg	1.	-1	1	± 1	1	1	-1	-1	
$\mathrm{B}_{2 \times 2}$	1	± 1	1	-1	-1	-1	1	1	y
B3g	1	- -1	-1	1	1	-1	- 1	1	
$\mathrm{B}_{3}{ }^{\text {t }}$	1	-1	-2	1	-1	1	1	-1	2

I_{2}

\%	-2.246980	[-2. $4144^{2} 22_{2}$	-9.554958	$1+0.301838$	6. 0438214
\otimes_{8}	0471314	- 303892	"0-66820	- 6823068	0439733
d_{B}	- 377965	- 0.429868	- 397965	-0. 077965	. 621876
${ }^{1}$	0.168210	--303922	- 638068	$0^{42723} 34$. 439733
c_{D}	-	65	- 378965	- - 377965	. 182343
c_{E}	. 682063	- -303508	$\cdots{ }^{6} 873$	- 162210	-. 439733

${ }_{2}$					
${ }_{2}$	$[-1.448213]$	-0.30,938\|	\| 00.253958	\|remb244]	+2,246980
d^{1}	. 439735	. 683088	. 268810	- 0303891	- ${ }^{\text {- }} 771314$
${ }^{18}$. 621876	$\cdots-377965$	$\rightarrow .377962$. 229766	- . 377965
${ }^{4}$	0439733	-0.47338	-681.068	-. 303808	- 168210
d_{D}	-282E43	- 377965	0.77965	. 737657	- 377965
$a_{\text {E }}$	0439733	. 163280	- -47328	-. 303891	. 681068

B_{1}

S	1080	2. 123802	-4969329\%	+1.000000	+1	3	
${ }^{3}$	-129859	-603593	0.5	0	6	4	. 24.860
$4^{\text {a }}$	-595	- 237835	ct\% ${ }^{4}$	0	-. 202886	-2023306	03
0_{0}	- 5	- 3	-2046	(1)			3
,	-04	-26	- 32	638	1∞	. 393829	- . 349722
a^{2}	-2		-049789	--.6324	- 11.059	- 35	-
${ }_{4}$	- 3	- ${ }^{\text {b }}$	0429	0	-6883	- 398	- 26
8_{6}	- 2760	- 252048	- 397246	0484234	08356	023	- deses

where the operations $\sigma_{2}(x)$, Gg(y) and $G_{2}(z)$ are zotations of 280° abont the x, y and a axem: is suversion through the centro or symetry, and $\sigma_{\text {a }}$ a replection in the molecular plano. Applying these operations to the atomic orbital A in the symmetry orbital with the lowest possible energy (where the only node is in the moleculax plane, a plane of antisymmery) we have

县	$C_{2}(x)$	$C_{2}(y)$	$C_{2}(z)$	i	σ_{v}	σ_{v}^{\prime}	σ_{h}
A	$-A^{\prime}$	$-A^{\prime \prime}$	$A^{\prime \prime \prime}$	$-A^{\prime \prime \prime}$	A^{\prime}	$A^{\prime \prime}$	$-A$

Te we think of this sequence as vector, its scalas product with the vector ($1,-1,-1,1,-1,1,1,-1)$ producos the dromse onbitals whth the correot sign in the gymmery orbital $\phi_{f}\left(A_{1}\right)$ in Ψ_{2} (see Tebio IT).

Teble IT

Ψ_{i}	Euckel Mo. xin		Symm. Qubtal ϕ_{A}	ZOZ $\left\langle x_{j}\right\rangle$	$\mathrm{S}_{2 \mathrm{ma}}$
Ψ_{2}	0.673295	A_{1}	$A^{\prime}+A^{\prime \prime \prime}+A^{\prime}+A^{\prime \prime}$		Bga
Ψ_{1}	0.558959	A_{2}	$A+A^{\prime \prime \prime}=A^{\prime}=A^{\prime \prime}$		A_{4}
Ψ_{-1}	-0.55855	B2	$A^{\prime}-A^{\prime \prime \prime}+A^{\prime} \Leftrightarrow A^{\prime \prime}$	I, $\left.\left.-1,3-1,2_{2} 3_{2}\right]_{2}\right]_{2}-2$	B_{28}
Ψ_{-2}	-0.873298	B_{1}	$A \in \lambda_{3}^{\prime \prime \prime}-A^{\prime}+A^{\prime \prime}$	$[, 3,1,1,1,2,-1,7,-1$	B_{1}

But this vochos congutg of the chavacters of the Bra sopreschtation (see Dat haraoter table), henee Ψ_{2}
 \hat{F}_{A} zor the wo htehest bonding moloculas orbitasn
Ψ_{-2} and Ψ_{-1} and the two lowest entibonding ones. $\Psi_{\text {, }}$ and Ψ_{2}, together with their energies (in the row n of the kiekcol numbers x) and their symmetry classes In the full Def point-group.

The lowest ezeltod state of the molecule is that in which one electron hes bern promoted from Ψ_{-1} to Ψ_{1} and as explained at the beginning of this subsection, its symmetry is that of the direct product of the representations or Ψ_{-1} and Ψ_{1}. So the symmetry of the $\Psi_{-1}^{\prime} \Psi_{1}^{\prime}$ state is that whose characters are $(1,1,1,1,-1, \cdots 1,-1,-1) \times(1,-1,1,-1,1,1,-1,-1)=$ $(1,-1,1,-1,-1,-1,1,1)$, ie. Bes The second excited state is degenerate in the Hückel theory, since the states $\Psi_{-1}^{\prime} \Psi_{: 1}^{0} \Psi_{12}^{\prime}$ and $\Psi_{-2}^{\prime} \Psi_{-1}^{2} \Psi_{1}^{\prime}$ have the same energy. Their symmetries are both Bu*
(ii) Electronic Spectra.

The probability of a transition between two electronic states Φ_{a} and $\Phi_{\&}$ of the kind described above is proportional to the square of the electronic transition moment $\vec{\lambda}_{a b}$ which is defined as

$$
\vec{\lambda}_{a b}=\int \Phi_{a} \sum_{v} \vec{r}_{v} \Phi_{b} d \tau
$$

where \vec{r}_{v} is the position vector of the vth electron. The integral may be resolved into components, and so the probability of transition giving rise to radiation With a componem in the a Erection depends upon

$$
\begin{equation*}
\lambda_{x a l}=\int \Phi_{a} \sum_{v} x_{v} \Phi_{l} d \tau \tag{5.2}
\end{equation*}
$$

and there mould be similar expressions for the \bar{y} and 2 directions, One of the selection rules relating to such a transition states that it is allowed provided the product $\Phi_{a} \Phi_{\&}$ trancrorms Like the vector X, I or Z 。 In other wotan, tho fepresenterione of the electronic grate must be the same as those of the radiation vector, in order the those of the product $\Phi_{a} \Phi_{b}$ shall be totally

 X, I and Z shone the those have gymobzios By m By and

($\lambda_{a f}=0$) between the states Φ_{a} and Φ_{ℓ} ir they have different multiplioities. The allowed transitions are therefore singletosinglet, tripletwiriplet, etc.

Table III shows the 8 lowest electronic states. their energies and term symbols, and the polarisations of the allowed transitions between them. The symmetry terms are obtained by forming the direct product of the representations of the singlywoccupied riolecular orbitals Ψ_{i} (column 5 of table II), and reference made to the $D_{\text {ah }}$ character table. The multiplicity torms $s=2 S+1$ (where S is the total spin quantum number) are written as supersoripta.

Table IIT

The lowar olectronio atabes in los, 6m dibenzpyrene.

	$\Psi_{-2} \Psi_{-1} \Psi_{1} \Psi_{2}$	 	 Mas Io torma	$\Phi_{1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{5} \quad \Phi_{5} \Phi_{7}$
Φ_{8}	O 2 1 1	$22_{0} 597837 \%$		
Φ_{7}	$\begin{array}{llllll}2 & 1 & 1 & 2\end{array}$	2.8569029		
Φ_{6}	\# \% 80			- $y^{\prime} y$ "
Φ_{5}	2080	2.2898320	${ }^{1} A_{0}$	$\cdots x$
Φ_{4}	$\begin{array}{llll}2 & 8 & 3 & 6\end{array}$	2.823595]	5, 3 发西	\% (f) (f)
Φ^{5}	8 ± 08	3.2232523	$\mathrm{H}_{8} 38 \mathrm{mb}$	\% \quad \%
Φ_{2}	2 ± 20	1.3039368		Y
\$1		6	${ }^{2} \mathrm{~A}_{\mathrm{B}}$	

Recalling the symetrios of the radiation vectors x, y and z, the allowed transitions in which the ground stete Φ_{1} is the lower one are just those whose upper states belong to $\mathrm{B}_{1 u}: \mathrm{B}_{2 u}$ or $\mathrm{B}_{3 \mu}$, whoae associated radiations are polarised in the \underline{x}, $\underset{\text { D }}{ }$ or directions respectively. Sub-column Φ_{1} in column 5 shows that there are two distinct transitions, Dolarised in the x and the y directione. The polerisation directions of allowed transitions involving other gtates as lower states are also shown in column 5. (f) indicates a forbidden transtion. Some of the allowed transitions shown in column 5 are in fact many-rold degenerate. Each trangition with Φ_{2} as lower state for example is at least doubly degenerate, since it can be singletesinglet or triplettriplet, and similarly the transitions show under $\Phi_{3,4}$ ocour 8 times ovex. Horeover since the singlat, triplot and quintuplait states represented by Φ_{7} are respectively twompold and three-rold degenerato and non-deganerate (by the "branching diagrani"), the dogenoracies of the $\Phi_{7} \rightarrow \Phi_{2}$ and of the $\Phi_{7} \rightarrow \Phi_{3,4}$ "transtiona are Encreaneă by factor or six.

The energy levela calculated from the subsequent
therntions aro summarased in Tebie Tre, where, howewer.

(5il) Bone ordere and Bond vemgtha.

The mocom coluna ot table IT b contetns the
Coulson
Gond Dxders onleulated mom the data ot Teble I. Ustag Coulgon's empirical bond orders/bond lencts curve ${ }^{\text {ai }}$
 approximation got of bond longthe was interpolated.
 7eluon for the next itoration, whion giolsod prosumaby mote mocurate oncrgiob and bond ordang rable TV b conteln tho 2 , E and β^{\prime} valuon for the oight distinct C-C bonds in the moloould for the four iterationg minich vore carriad cut.

The boad oxders ghow eertain tendenoy towards convergence, but do so at different ratea. An result the lowoordex bondm $2-4$ and 10011 which converge most slowly beoone excessively lowmorder (the thizd iteration length of the 24 bond is $I_{0} 606 A^{\circ}$) which cauges increasing aborrations in the orders of the other bonds. This behavious ia probably due to unoertointy in tho ordar/ lGngth curre used: few of the lengths uaed to congtivet this curve ase accurate to within $0.01 \AA^{\circ}$, and in view of the peuolty of experimental data in the loworder regiom: the abrommal paluas row these bonds is not unempeoted.

It ig oleaxiy dostrable to strike a balanae betwoen the wo sousacs of arror lingurficient ans

the total π electron energy on the molecule becomes oonstant. The last tow of Table IV a contains the sum of the Huckel numbers for tho bonding orbitals, and the relative changes in these are small after the gecond iteration. Using Goodvin's oxiterion, then, we should accept $p^{I I}$ and $r^{I I}$ as the most relieble orders and lengths.

Even considering the iteration table as whole. however, the general behafiour of the π bonda is preserved in the verious literakions. This is that the pyzene part of the molecula tonds towards two benzene xings oonneoted by fhe Lownordes bond $10-11$, and that the two annolated bemzomings become norg benzeno-1ike and are joined to the rest of the systen by means of tho ovon Lowormorder bonds such as 2we The tendency of theso benzomrings towerds benzeno ringe is shown by the bond orders. which approach the benzene bond order of $\frac{2}{5}$ The oalculation would suggest thet 1 -2, 6.7 dibencpyrene should behave, if not like four loosely oonnected benzene rings. then to a cortain extent, at least, like diphenyl in whioh benzene rings join the 2 and 2 and the 6 and 6 positions.

Table IV

(a) Knergy eigenvalues $-x_{2}$

$\mathrm{C}_{2 \mathrm{y}}$ symum	I	II	III	IV
A_{1}	2.634328	2.295189	2.259856	2.223804
	2.8599\% 5	1.830550	1.868839	20.912360
	1.330675	1. 26404078	1.235308	1. 38.5886
	1.000000	0.906619	0.923630	0.950999
\mathbb{B}_{2}	2.246980	2.0897033	2.037358	2. 128805
	104742Et	1. 2988507	1.253865	1.2033296
	0.554958	0.600053	0.63724	0.770969
A_{2}			2.197233	2. 246896
	0.801938	0.830270	0.37025	0.992765
B_{2}	2.028345	2. 29736	2091083	3.922989
	1. 222509	E. 572305	2.0566c62	2.0120509
	0.673293	0.650863	0.703058	19.753630
$\sum_{i}\left(\operatorname{lax}_{5}\right)$	7.032196	1259939036	86.004850	16, 086500

(b) Bond oxderg, bond hengtias end $\beta^{0}-$ values

Hond	$p^{\text {I }} \mathrm{r}^{\text {L }} \beta^{\text {S }}$	$p^{L I} r^{\text {P/ }} \beta^{\text {JI }}$		$\mathrm{P}^{\text {IV }} z^{\text {IV }}$
12	.614 2.4020 .955	-639 1. 30.30 .982	. 655 2. 3900.996	. 66881.388
18	.667 1.336 8.008	.665 1.38 3.006	.605 1.38\% 8.005	.663 1. 2.387
24	.428 1. 48830.714	. 3828.5380 .572	-269 3.606 0.4.35	. 194.2 .638
210		. 2791.481390 .922	0.6081 .84040 .948	.629 1. 397
34	.603 120405 0.9435	.687 2.8080 .958	.62\% 203990.966	.6301.397
36	069010.2901 .023	.699 1.978 2.076	. 7001.303781 .037	06981.379
45		-605 1.404040 .045	-64.	. 6361.387
6 \% 7	. 6371.3950 .980	.626 1.398 0.968	. 687 1. 39880.962	.638 1. 1297
10 IL	. 48818.40480 .796		-384 1-5 55 0.634	.286 1.583

§ 4. The clax thoory of aromatio bydrocarbons.

According to tho Frieg Rulo, benzenold
aromatio hydrooarbon tends to behave as if its π electron struoture wore that for which the greatest number of isolated aromatic sextets may be written. By the term "isolated aromatio sextetm we mean a benzenoid xing in whioh three sormal alternating gingle and double bonds may be written, which are associated with this ring, but with no other. For example, of the Eekule structurem I to F which may be written for phonanthrene. I to IV contein aromatic aextets which are asmociated with xiagg and C only, and V that in which only ring B oontaing am amomele gextet. By the Fries Rule, phonanthrene would bo prodiotod to behave as is $1 t s \pi$ structure corresponded to the former got (I to IV), and in Giarss syatomdo oto. in writton og VI, in which tho cirolas reprosent tho arometo gattota, tho prealse neture of whion 18 aa yot undefinod. The ring between the arometio sextotg, 10 osing B_{0} is considered nonmaromatio, because $1 . t$ ontoins three single bonds. Wo "aromatio bonde" and an othylonio double bond. Similarly thiphenylene is writbon as JII, in which we hare threm aromatio sextots and one "empty ring". This accounts In सalenee-bond way for the bond variations in these moloculem. There is good ohemical ovidenoel for the
ethylenic 9.10 bond whioh parallels also the Molooulax oxbltal rasulte (previous sootion).

In an acone, only one benzonoid ring may contain an arometic sextet at any one time, as is shown by the struatures VIII to XII for pentacone. The other rines contain formal butadine systems. Sinoe one would oxpect thear systoms to have very nearly equal onergiea, clar suppoges ${ }^{11}, 12,13$ that the aromatic sextet oan migrate from the oxtrome lext hand ring throughout the system, thereby converting each ring in tind into an aromatic ring, in the sequence VIII to KIIT. At structure XII the direction Of the motion is reversed, and the soxtot thus undergoes an oscillatory motion along the acens. We note that in order to account for the ogcillation of the aromatic sextot, $i t$ is necessary to suppose the notion of only two electrons: ainco non-aromatic aceno ring already condains a butadions gystem, it requizes only two furthor elsotrons to complote 158 arometio waztet. Tho motion of this "arometio pais" is ropresontod in daws systom by meang of tho axiov in WIII. claris modela of othes axomatic hydrooerbons may be casoribed aimilarly. Fos the phene igomers of pentecene, I-2 benztetraoene XIV and pentophone Ky, the FrLes Rule stipulatos the existence of

two aromatic sextets. This accounts for the freater stability ${ }^{21}$ and benzene-11ke chaxactier of these inomerg over that of pentecene.

In order to complete tho Clar theoxy. we shall give ita picture of the aromatic benzenoid ring in ats - implost form. Clan supposes that this ring wich hag hitherto been wittion (O) ectually contains thres double bondsit as does a Kekulé structure intoract ${ }^{13,15}$ ae in the valencembond ploture of $1, \%$ butadione, but that the thixd bond mey not becauge of opposed oxbital dirootiona snd ds oonsequently dixferent irom the other two. Thase two aromete rines axe engulariy annelated onto antrd xing to gite phenenthrene Xys, the electrons in the bonds 11 - 22 and 13-1A intereot to give a gygtom which, together with the olectrons in the "difrerent" bond 9010 forms an induced aromatio gextor its in the xing B_{0} which would be "empty" on the Frien picture. The interaction and the induction are indicated by arroms, and the induoed gextot by a dotied efrele. the efreat is ahown too rom triphenylene
 moleoule we note that the fnduead aromatio saxtot oceurs on only one aide of the molecule at any one tams.
-460

Fig. 2. The relation between the bond orders in l-2 benzanthracene and their inorements between the first two 1terations。

5. Resulta of the oomputation on some aromatio hydrooarbonis.

5.1 The afeot of itergtingo

The negative Hükel numbers x_{i} defining the enerey levels $\mathrm{K}_{1}=\alpha-x_{i} \beta_{0}$ of the bonding Mo's Ψ_{i} are given in parts (a) of the Tables in Appendix A, together with their sumg, which defins the totel π eleotronic energiss in the moleovios. The columns labelled I. II and III raRer to the three itoractiong which were asmated out on most of tha molaculos. Farts (b) contoin the sets of bond orderg pras bond lengthe m_{zg} and $\beta_{z \in}^{\prime}$ valuem as onlculated by the varioum aterarions. the swo latter quanitios being interpolated using tho CoulsonGoodwin ${ }^{8} r(p)$ and tho Mulsisen, Rioke and Broman $\beta^{\prime}(x)$ ourvea. Tho fixat itoration energy eigentalues and bond ordere for some of the moleculer have already bean caloulated by other workerg ${ }^{16}$, and we have usually aceeptad there bond orders for use in subsequent Itarationse We have listed the values of $z_{i}^{\frac{I}{i}}$ and $p_{\text {rs }}^{I}$ for the sake of completeness and comparison, but have indiaeted with an astexiak when the values have been taken from elsewhere. Although the total T electronic energies an meagurad by $\sum_{i}\left(-x_{i}\right)$ converge quite rapidiy, the ideal selewonglstency in the bond orderg, and theresore in the
individual onexgy levele, $1 s$ not realisen, pariseulariy
 divorgenco occurs, and loads to y Falweg whloh may foc OIGOQd the length of the longest measured Cul bond: As wo ahall discugs leter, thig is probsbly due to defocts in the $r(p)$ and $\beta^{\prime}(r)$ curves in the longebond region. Sinoe we are primarily intorested in the tendencieg in bond lengths, we shall not gttach any perticular signiflcance to these abormal results, and shall acoept the socond-lteration results as being probsbly the mosi reliablo.

The tables in Appendit A show that the ineroment or decrement in the bond order p of a given bond betwem two suocogaive itorations shows a zough dependenoe on p. On the quereco, the greator the bond oxder of bond, the grauter aro tho quantition $p^{I I_{m} p^{\prime}}$ and $p^{I I I} p^{I I} \quad$ In FAg. 2 we heve plotbed the necondmberetion bond oxdez $p^{\text {mI }}$

 alose to e stralght line which passos through the zero Falue of $\mathrm{p}^{T I}=\mathrm{p}^{I}$ ot $\mathrm{p}^{T I}=0.585$. whis yalue is neas to the averace bond order $\bar{p}^{\mathrm{NI}}=0.596$, and bonee we may infer an approwinete proporitionality betweon tho iterotional ancrenent in bond oxder $p^{T I} p^{I}$ and the quantity $p^{I T}=p^{I I}$.

Since the arexage bond oxder is on inspoction alnogt independent of the iteration, 1.e. $\overline{\mathrm{p}}^{\mathrm{II}} \underline{\sim} \overline{\mathrm{p}}^{\mathrm{I}}$, the proportionality can be written

$$
\begin{align*}
p^{I I}-p^{I} & =k\left\{p^{I I}-\bar{p}\right\rangle \\
\text { 1.0. } \quad & p^{I I}
\end{align*}=p^{I}+\frac{p^{I}-\frac{\bar{p}}{I-k}}{l}
$$

For the acenee (Tables 1 to 4) where we have recorded the average bond orders $\overline{\mathrm{p}}$. it 1 is easy to verify the prediction of (2) that if $p^{I}>$ D. the effect of a further iteration is to incresse the value of p, whereas is $\mathrm{p}^{I}<\overline{\mathrm{p}}$ the result ig a decrease。

It tha poinis had boen a little more colinear. a relation such as (I) could have been used to estimate improved bond orders from the first-iteration set $\mathrm{p}^{\text {I }}$ 。 As it is, there would be too many uncertaintias... However. our rule may be used as a rough guide to the reliability of a particular firsi-iteration bond order and to the probable offeot of a second iteration.

Decreasimg progreasion oif band orderg in the acenom for iterationg I and III
I

Thable V

nemane	$\frac{\operatorname{anch}}{p^{I N}}$						$\mathrm{p}^{\text {Pracenc }}$ It	
\& β	. 787	${ }^{2} 0.362$. 795	1. 3561	. 798	1.361	. 799	1. 361
$\bigcirc 8$. 630	2.397	-6422	1. 388	. 673	1.385	.677	1.384
を	\cdots	\square	-	-	-655	2.402	. 627	1.398
a 8	. 490	20.4ng 7	0.48	10453	- 8278	1. 2536	- 469	1.459
γ \%	\cdots	-	0.984	3.83 .2	. 968	1.487	. 26.5	2.420
\& η	∞	-	\cdots	∞	-	\cdots	. 598	1.407
00°	.520	1.428	05043	20839	. 503		. 502	
88°	, 4, ${ }^{2} 6$	8.484	$08^{2} 588$		- 4 4, ${ }^{6} 6$	20827	- 4482	1.475
	\cdots	\cdots	0.858	2. ${ }^{8} 86$	0487	1. 0.48	- 406	\#0.894
77°	**	"		*	\cdots	-	- 800	80889

5.2 Bond vaziations

(a) Acones.

Tables 1 to 4 in Appendix A show that the highest bond order in an acene is alvayg that of the $\alpha \beta$ bond, the reat decreasing in the progression shown in the diagrams opposite, which were constructed from the resulte of the firgt and thixd iterations. Tho general pattern of the progressions is olearly very unitorm for the four acenea 11 Iustrabed. The bond ordezs of the bonds $\alpha \beta$, To oto. (indiatod here for hexaceno, but extendable to all other aooneg and of the "pertm bonds $\beta \beta^{\prime}, \delta \delta^{\prime}$ ote., deoresse vith fucreasing alstance from the onds of the acone, wherems the boad ordorg of the adjooent bonds $\alpha \delta, \partial \zeta \quad$ otco. increass.

A comparison of I and III shows that iterating has no effect on this progression, but in each case, however, It has resulted in a relative lowering in tho bond ordere of the $d \delta$ bonds.

In Table V we compare the (second iteration) bona orders and bond lengths of the bonds which are in cozeogponding postrions in the soum scones. While the
bond ordetr of these bonds eithes inarease or decrease as we pess 4 som one member to the next, they show - clear tondeney to reach limiting valueg. The bond lengths do so nore rapialy (since experimentel bond length is a fairly insensitive function of "three-figure" bond order), and it oan be aeen that tho length of the $\alpha \beta$ bond has already reached a constant value at tetracene. i.e. that the $\alpha \beta$ bond lengths for tetracene and the higher acenes are equal.

(b) Other aronatis hydrocarbons. Comparimon with Frioanclas theory.

There mes vory now aromatio aydrocarbon astion which are such thot Irom a few "typical" mamera, a gereral picture of the whole serias may bo obtained, as was posaible for the aoones. We shall therefore discuss brierly under this hoading the results por the rest of the moleoules gtudied. In order to reduce the comvlexity a littio, it io useful to compare various tinds of aromatic hydroarabons containing linearly qanelatod bonzenoid ringe with the corresponding acencs.

The diegramg oppogite mhow the p valums of mone benzologuea of totraceno and pentacene. Examination os the totracane ohains in $X V, V I$ and VIIT ahcws that tho bond oxdera in the rings D, on wo whioh the boxzo ringa sme ganolatad, are nuch lower than those in the other rings, and thet the acenc restum rescmblea anthrae日e rather than totreacno Stmilarly the molecules loz benzpontecone and 1.n2, 3 m Rifomapentaceno (V and VII) should be thought of os dexitativea of totreceno, not pentacene. The bond ordexs in the anmelatod ringe n and T in $I V$ and $V I$ and Fand g in VI and VII, dopaxt tairly little from 0.667 ; these rings are therefore benzenewike, but with a small degree of bond alternation.

We may thenorore arse the gomexal observation that a bonzenoid zing at a branoh point on otherwise Innear amelatod syetons hes littla bonzeno-1ike cherootex, and serves partiajly to isolate the systeng which are annelatad onto it. Suoh an lsolstod gyetem may in fect be obsorfed arom when there is no annolatod benzo system; In the phone series such as ko bemzetracone IV,

 0.850600 .890.
 the samo positione as thove of the aromete sexteta

 bisphonylewo ry, mere the gronatic sombers are uniquely torined in ztags A, B, D, and G, and in A, C and D zospoctively. Anthoumh for moleoulo contenting a
 position of the aromathe gembet unigudy, our caloulathoms

piotuxe at which we axrived cor the moleculea If to IX. Using the concept of "1solated aromatio sextets" derined in 4 . we may amend the Fries Rule to deal more adequately with the general case as follows:

The π electrons in a benzenoid aromatic hydroogrtoon may be piotured in a valencem bone may as distzibuted so as to form the mazimum number of isolated arometio aextots. Hoveror, if as aresult a ring a oonteining

am aromptc sextot is annelated onto a mine B containing an imolated butadiene gystem. the position of the sromatio sertat is not waiguely defined, and $A B$ then regembles an Isolated naphthelene gysten in bond lengths and chemical properitios. Lsolated naphthelene gystem in bond lengths The mule may alearly be antended to account for the isoleted anthracene and totsacone gystems guch as thoge discusned tor the moleoulea IV to IX, and in fect to all the molecules whose molecular constants are listod

 moloculen, and lozz benzperylene (Table 1a) to a certain oxtent like two arphehateno rolecules joined by the loworder bonds 11 and 13 and and the ethylenealike bridge bond 9.10. Elcene (Tabje 20) and 3w4, 9w 10 dibenzm pentasene (Table 22) show the isolotion of terphenyl and quaterphenyl sustems respactively, and also contain ethylenemike briage linlages. The prosence of these Inkeges, however, appeass to distort the rings sli, htiy, thus conferring mors bond altarnation than would be oxpoosed in the polyphonyls assuming tho usual foriold symmerio model for the berzenemilke ring.

Eemifer in this gubwection wo obgerved that ming contoining a inmed on isolated amomatc gextot nay bo ropleood by efirad double bond without apprealably altosing the pest of the bord orders in the molecule. An oxcoption to this genexainty may be aeen in the arample 1-2, Boa, 5wb tilomnzaphthezone (Table 31). Although thte moleoule magh poasibly be fegarded as the symetrical tetrabonznaphthelane I fos winch one of the isolated aromatie migge has beon amputated and replacod by an ethylenie bond l-2 (see II), we now hove one aromatic gextet D adjacent to a butadieno system in the ring F;

by the Fries RuIe, therefore, the aromatio sextet will be shared betweon the rings D and F, creating a nophthalene-like system. This is confirmed by the comparison of the bond orders in rings D and F with those in the benzene-like rings A and B.

It is curious that in 㐒 Getrabenznaphthaien Io the bond order of the 8-9 bond, whioh the Fries Rule prediots to be nearly orbylenic, is almost bonzene-like in the ilist wo iterations, and only as a result of the third does it beoome the most pronounced π bond in the molecule. In the socond iteration the value is almost idenificel with that of the gmea bond in tribenznophthalene II (0.873 and 0.675 respectively) and it suggests that stetrobenznapithalone tends to bohave as if the aromatic sertet in one of the rings ware shared, as shown in III, contrary to the Fries Rule.
(c) A coment on the selationahip betwoon the clar modela and the resuzte of the Hïckol Molsculas Orbital oadculations or bond orders.

Although fino calculated bond ordars are in some approzimato agxeoment with the claz models, more quantitative relationship betwoon the two theories should not be expected since the two theories are inherently contradictory. The clar theory is based on the conoept of the eleotronmpair bond; a C-G bond whioh is drawn es single in a Frios model has no π olectron character. since the π electrons are required for coupling in gnother part of the system. Thus the 809 and the 1×6 bonds in phenanthrene (using the numbering gystem used in Table 5 of Appendix A) heve 2 ©ro π bond order, whereas the bond order of the 6.7 bond in unity. The Hückel 1 o theory on the other hand doss not require electronepairing for bond formation, and stipulatos an approximately equal degree of interaction between the atomio orbitals of noighbouring carbon atoms. Ag a result all bonds between two ap ${ }^{2}$ hybridized earbon atoms generally oontain an appreciable amount of if bond oharacter (pIII for the quoted bonds in phonanthrene axe 0.351 and 0.381 rescoctively) unless the $2 p_{\pi}$ atomic orbitals are directed at rightorngles to eaoh other.

The sact thes approzirate agreement is obteined is not altogethor surpxising, however, A Fries seruceure together with the Clas model of the osoillating aromatic pair (the "Friearolar modol") constisutes a structure which is offectively a superposition or nost of tho Kekulé atruotures from tho oornieto canonical sot in the Valsnce Bonc thooxy. Now is mufficiont inghly-moightec gtructurem ase seleotod, wo should havo a muncatod set", which from
 a good total stquo function. Pouling 37,28 ghows that quite good bond lengths and qualitative piotures of bonzene, naphenclone, anthraoone, phenenthrene and even 1-14 benzbisanthrene, are obtained by coasidering the Kekule gtructures alone. However, the importance of including the second and highereexcited structuren (i.e.s the "Dewar atructures") in the largor aronatio systems may be judged from the Valence Bond oolculations that although the Kekule structures in benzene contribute o combined wolght of 78% to the tovan zesonence strueture。 in naphthalene the sigure is ondy gefo ${ }^{3 \pi}$. Tox the more complar hydzocarbons Lullman 19 has found increasing contributlons fron mone axoited struchuros. and that for molectiles larger that anthrecone the Kokulé structures are quite unimporignt. In euch cases wo may expeot no more
than a rough agreement betwoen the Friesmolar model and the rosults of the Huckel caloulations. An example or this is seen from the average bond oxders \bar{p} in various sizes of molecules; sooording to Hücel 10 oaloulations $\overline{\mathrm{p}}$ deoreases from 0.667 in the smallest aromatic system (benzene) to 0.525 in the largest (graphite). While this is confimmed by the orperimental bond lengthg of 1.395 and 1. 121 A respeotitaly, the Frioselar theory predides no change in bond ordez. Anticipating the calculations dasoribed in a later gection (§6.2), wo quote the result thet the bond orders predietod by the Friea Rule to be bemzone-liko aeorease towards the oentro of the molecule. Thus, the decreasing bond ordess in hexabenzcoxonene (Table 11 in Appendix C) fox the bonds 1-26, 1-2, 2-14 and 10-11 (.665, .629, .571 and .565) and the inoreasing values for bonds 2 wis and $7-10$ (.373 and 0438) indioate increasing grephite-like character towards the centre of the molecule. Again the Fries-Clar theory prediots only two different bond orders.

$$
0.63
$$

5.3 Molecular Ti oleotronic enexpiog.

(i) Aromaticity and gability.

Chemicel evidence suggesta that aromatic
molacules may be distinguished from other noleculas by virtue of thoir molecular orbitals, which confer on them property called "arometic character" or "aromaticity". We are now in a position to attempt to provide moxe quantitative basis for this term.
 for aromatiolty from chemical and physical aspoots. Chemicaliy a molecule la said to be aromatio ir its formula corresponds to a cyelio arsay of rommal alternating single and double bonds on the Kokulé velonoo theory but which novertheless does not exalbit typieal unsaturation properties. Whth oleotrophilic reagenes it undergoes gubstitution rather than addition reections, and shows a tendenoy to couple with diazonium oomounds. Arometic molecules are generally unceaotive in oomparison with olefinic unasturatod molecules, and since many of them nay be huted to high tomperatures without surfering decomposition, they are often described as "stable".

Physjocily an asomatic molecule may be diagnosed by the presence of prominent and intense banda in the UV
abrorption spocsmun, charaoterdstio diamagnetio euscoptibilityg and vory low probon resonance rrequencies for thoge hydrogen atoms outgide (but -bonded tol the T-alectron system. Aromatiolty may also be detected by ume of certain additive propertiom, since characteristio increments must be made for axomatic rings in Parachor, Molar Refrictivity etc. studieg. The most comon criterion of axomaticity is that of Resonanoe Erergy, which is a direct oalosi:-etric measure:ent of the extra atability of an axomatio molecule over a hypotentical one wioh is structurally identicel but which contains "pixed" or Kekulé single and double bonds. This information is providea by Hauts of Combustion and Heats of Hydrogenation. Eowevars sinoe Resomance Energy la by dexinition a Falonon Bond conoopt, we shall prefer to woris withous it, and ugs instoad the onergy of moleoulo which is provided by its π elootrons: this is dirooty galchable trom Mo thooxy, is negative and fends to gwablise the nolsoule.

The mosi gexiking axiterion of arometleity which we have mentionod under the chemical and physioal aspeote is thet of stability, and since this is easily the best measurable quantity, wo whall use it as a basjo
for aromatioity。 Now thore are two quito ditiorent datinitionm of the texm "stablilty", both of whion have beon lmplied above to contribute to aromaticity.
(a) Thermoohemioal gitability: A molecule isthermochemically stable is its internal onergy is lowo If under certain conditiong. A and B are in genexal Oquilibrium, the component gaid to bo the more gtable is the one gith the lower Invernol enorgy, irrospective of the reaction pation of the activation energy barries botween A and B and thus of the ease of the reaction to the component with the lower energy. According to the definition me may, strietly speaking, compare the termochemicel atabilities only for isomerio molecules. However, since tho atomisation states and the combustion products are each identical sox all aromatic bydrocarbons. the heats of formation or heats of combustion per repeating unit may be compered sor nonmisomeric molecules.
(b) Thermodynamia stebility: A moleoulo
is thermodynamsealy sfablo 14 it possossea large freo anmeg of activation A Ftwo the frangition stato. Although this quantity could in principle be ovaluatad trom knowledge of the tomperature, the enthalpy of aoshyation $\Delta H^{\text {fitwhioh could ba computod if the transition }}$
state were known and the entropy of activation $\Delta S^{\text {s }}$, the latter quantity io very difficult to calculate. and oan certainly not be assumed constant over the very wide range or shapes and gizes of arometic hydrooarbons considered!

Thus we have regretfully abandoned the detempt to calculato themodynamie (1. © chemical) stubilitiam, whick would have been userul to corralato vith klnetio data. We shall thererore woony derinition (a) above, ond olalm that molocule is stablo if it poszesmes a high IT Gitabiligetion onazey this 1s the amount by whioh the anorgy of a gitrootura is reduood dug to tho formation of 7 hois. Since wo shall be concernea. with the gtabilitiog of molecules only in their ground gtates, we shell dotine the π stabilisetion onexgy as the modulus of equation (2.10) sumnod over all the $n / 2$ bonding molecular oxbitals, and the result doubled to take account of the occupation number 2 for each ocoupied moleoular orbital:

$$
\begin{equation*}
\pi \text { s.e. }=n \alpha-2 \sum_{i=1}^{\frac{1}{2} n} x_{i} \beta_{0}=E_{\pi} \tag{5.2}
\end{equation*}
$$

The molecular T stabillsation energy afiorda a bagia of comparing tho stobjlitios of aromatio hydrocarbone

$$
407
$$

poseasbing the some number of atoms and electrons (1.0. isoners). To compare the aromaticities of non isomeric moleoules we shall have to ooin a slightly different definition. For aromatic hydrocarbons we can use either
(i) π g.e per benzenoid ring.
(1i) $\pi \mathrm{s} .0$ per carbon atom.
or (isil) π aso per electron.
(ii) and (iii) ere of ourse identicel for neutral
aromatic molocules, but are difforent if we are dealing with their ostions or anions.

	$\left\|\begin{array}{cc} (i) & (i n \\ N_{n} & N_{C} \end{array}\right\|$	$\begin{aligned} & (i d i) \\ & E_{\pi} \end{aligned}$	ΔV_{π}	$\stackrel{\rightharpoonup}{\mathbb{E}_{n}}$	$\Delta \mathrm{E}_{\pi}^{(\mathrm{VI})}$	$\begin{gathered} \left(v \mathbb{Z}_{\pi}^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & (v i \mathbb{d}) \\ & -\Delta \mathbb{B}_{\pi}^{R} \end{aligned}$
Acenes	1 6 2 10 3 14 4 28 5 22 6 26 7 30 8 34 9 38		40.63840 $\cos 5.616 \beta$ $5 \cos 5025 \beta_{0}$ $4655018 \beta_{0}$ $40 \operatorname{5ab} 58$ 40s 3.6209 4at5.61298	601.3533 Ba 001.37930 as cos 1.59348 $\alpha 02.3906 \beta=$ ar8. 5203 $068.5935 B$ 048.3948	$\begin{gathered} .0351 \beta_{0} \\ .0128 \beta_{0} \\ .0074 \beta_{0} \\ .0024 \beta_{0} \\ .0028 \beta_{0} \\ .0027 \beta_{0} \\ .0082 \beta_{0} \\ .0010 \beta_{0} \end{gathered}$	$6 \mathrm{arB} 000 \mathrm{~B}_{0}$ $\frac{24}{3}=6{ }_{2} 4380 \beta_{0}$ $\frac{28}{2} 2 \sigma_{0} 2325 \beta_{8}$ 29046. 1083קO 590 	
$1-2$ berem açneb	3 14 4 18 5 22 6 26 7 30 8 34			610. 063946β 001.3966 064.3978β $\alpha+1.3589 \beta$ 002.39900_{0}			

(ii) Caloulated onoxgioe

As was discusged 10 the last section, moleculos consisting of non-linearly condensed benzenoid rings contain some bonds which are of particularly low bond orders, and some or high bond order, both of which suffer distortion on iterating. When we were discussing the tendencies in bond variation, we did not regard this as being a very serious derect in the sacond iteration. but in the comparison of the stabilities of isomeric molecules wheref electron energies dirfer very little, it raises some difficulty : \#e have therofore decidod to use first-iteration energies for this purpose in order to avold these iteration affects.
(a) Acenes and $1-2$ benzacenes.

Table VI contains the results of energy
calculations carried out on the acene and l-2 benzecone series. The colums of the table refer respectively to:
(1) the nurber N_{R} of benzenoid rings in the moleoule,
(i1) the number \mathbb{N}_{C} of carbon atoms in the molecules.
(iii) the molecular π olectron enerey, E_{π} o
(iv) the inorement $\Delta \mathrm{E}_{\mathrm{r}}$ in (iii) batween two successive mubers.
(∇) the π electron energy vor carbon atom \mathbb{E}_{w}^{c},
(vi) the increment $\Delta \mathbb{E}_{\pi}^{c}$ in (v) betweon two successive members,
(vii) the π electron energy per ring $E E_{\pi}^{R}$
and (viii)the dearenent o $\Delta \mathrm{E}_{\pi}^{R}$ in (vii) between two $\begin{array}{r}\text { auccessive mambers. }\end{array}$

The results show that the inerenent in the molecular π gtabilisation energy 荧 (i.e. $\sim \Delta \xi_{\pi}$) between two successive nombers decreasea alightly as wo procesd along each of the two series illustrated, but that for $N_{R}>4$ for the aconos and $N_{R}>6$ for the benzecones, the inorement beoomes constent at $4 \alpha+5.612 \beta_{0}$. This means that the π in.e per carbon atom, $-\mathbb{E}_{\pi}^{e}$. also increases slighty as the molecule gots largor, but tends to the limiting value of $\frac{1}{4}\left(400+5.632 \beta_{0}\right)=\alpha+1.403 \beta_{0}$ 。 Column (vii) shows that the π s.e per ring, $-\mathbb{E}_{\pi}^{R}$ decreases as we ascend the two series. This indicates that the relative stability of an aronetic hydrocarbon is not necessarily ensured by the possession of a large number of rings. We know anywey that for
 The decrease of the $\pi 8.0$ por ring, $-E_{\pi}^{R}$ as we move down the table indicates that the benzenelike chareoter of the rings is lost as the length of the acene inereases. The loss is initially very rapid, but soon decreasea to a amall quantity, as may be seen from

[^0]tho comparison of ΔE_{π}^{R} for benzenemaphthalone and naphthalonomanthracono. The rapid lose of bonzene chargoter in an aocns with Inoreasing length corresponds with the oonetans inerementes of $A E_{\pi}=4 \alpha+5.612 \beta_{0}$ for $\mathbb{N}_{R}>$ 4. That is, it would seem that for tetracene and the higher acenes, the only increase in π s.e. comes from the addition of diserete butadiene units. for which $\mathbb{H}_{T}=40+4.478 \beta_{0}$ together with a π stabjileation energy of $\frac{1}{2}(5.612-4.472) \beta_{0}=0.570 \beta_{0}$ Por each of the wo comneoting bonds. We reoall that it was at tetraceno too that the bond orders and leagits of the $\alpha \beta$, $\alpha \delta$ and $\beta \beta^{\prime}$ bonas anowed a tondoney to convorge (ano Tablev), whem thay assumed p and z valums whioh tonded fowasds thome of a 3 , butadien syotem loosely coupler to the zest of tho molooulo. Thia result is in agrement with the char model of tho coneg. and wolnell aramine the corxoletion later. For the 1-2 beazaoenes the incremant in T s.e. becomes conetant at benzpentrocens, guggesting that the benzacener for which $W_{\text {th }} \geqslant 6$ resemble the acenes whon contain one ring lems then the number contained in the Inear portion of the acene chain. fin other woxds $1-2$ benzo (n)-acene resembles $(n-j)$-acene. $)$ Thas observation is in
qualitativo greoinent vitin tha results of the bona ordor and bond length caloulation for the benzaoenen (sae (5.2 part (b)).

The Clar theory also acoounts sor the higher
$\pi s .0$ of each of the $2=2$ benzaceno over thoge of the isomeria acenos. In the latter we have only one aromatic sextet, which, by neans of the mobile aromatic pair, is shared between n rings, whereas in the letter there are two aromatic sertets: one is fixed forming a bemzene-like ring, while the othex is shared betweon n-2 rings. Theresore the laz bonzacenes contain more benzeno-1ike oharaoter and less butadiene-like oharaoter than the aognes, and hence mox Tr atabilisation energy. The π a.e. difference betwoan n-acene and $1-2$ benz $(n-1) \infty$ acene increases as the ajzes of tho moloculas inorease, but becomes constant at nexacone fobenzpentacene reaching quiue of $0.186 \beta_{0}$ suggesting an extra stabilising energy of $\sim 3 \times 4 \mathrm{kcel} / \mathrm{mole}$ due to the presence of an aromatic seztet:

${ }^{N_{R}} \mathrm{~N}_{\mathrm{C}}$ HaR Molacale

1. 68

π
的
E_{T}^{R}

$6 a+8.000 \%$
$\alpha+1.3533 \beta_{0} \quad 60+8.000080$
$10 a+13.684 \beta_{0}$
$\alpha+1.3684 \beta 3 \quad 5 a+6.8420 \beta_{0}$
$14 a+19.314 \beta 0 \quad a+1.3796 \beta 0 \quad \frac{14}{3} \alpha+6.4380 \beta 0$
$14 a+19.450 \beta_{0} a+1.389380 \quad \frac{14}{3} \alpha+6 \sigma 48330$
418 -
2
t

h

522 j
s accos
4

1

m

n

0

q
r

$18 a+24.930 \beta_{\theta} \quad a+1.3850 \beta_{0} \quad \frac{18}{4} \alpha_{\alpha}+6.2325 \beta_{0}$
$18 \alpha+25.102 \beta 0 \quad a+1.3946 \beta \circ \quad \frac{18}{4} \alpha+6.2755 \beta 0$
$18 a+25.187 \beta, \quad a+10.3993 \beta_{0} \quad \frac{18}{4} a+6.2968 \beta_{0}$
$18 a+25.190 \beta_{0} a+1.3994 \beta=\frac{18}{4} \alpha+6.2975 \beta_{0}$
$18 \alpha+25.275 \beta_{9}$ a $+1.4042 \beta_{9} \quad \frac{18}{4} \alpha+6.3188 \beta_{0}$
$22 \alpha+30.544 \beta_{e} \quad a+1.3884 \beta_{0} \quad \frac{22}{5} a+6.1088 \beta_{9}$
$22 a+30.726 \beta a+1.3966 \beta \quad \frac{29}{5} a+6.3452 \beta$
$22 \mathrm{a}+30.763 \beta_{\rho} \quad a+8.3983 \beta_{\mathrm{e}} \quad \frac{2 \mathrm{~m}}{5} \alpha+6.1525 \rho_{0}$
$22 \alpha+30.834 \beta_{\theta} \quad a+1.4015 \beta_{0} \quad \frac{22}{5} \alpha+6.1668 \beta_{0}$
$22 a+30.338 \beta \quad a+1.4017 \beta 0 \quad \frac{29}{5} \alpha+6.1676 \beta 0$
$22 \alpha+30.879 \beta_{u} \quad$ c $+1.4036 \beta \rho \quad \frac{22}{5} \alpha+6.1758 \beta e$
$22 \alpha+30.880 \beta_{\theta} \quad a * 1_{0} 4037 \beta_{0} \quad \frac{22}{5} \alpha * 6.1761 \beta 0$
$22 \alpha+30.936 \beta \theta \quad \alpha+1.4062 \beta \theta \quad \frac{22}{5} \alpha+6.1872 \beta e$
$22 \alpha+30.942 \beta, \quad a+204065 \beta-\quad \frac{28}{5} \alpha+6.1884 \beta$
$22 \alpha+30.944 \beta_{0} \alpha+2.4065 \beta_{0} \quad \frac{22}{5} \alpha+6.1888 \beta_{c}$
(iii)
(1) A compaxisom oi the stabilitios of aome isomeric aromatio hyarocarbong.

Becaus of tho dificulty of comiletely classifying aromatic bydrooarbons acoording to "familios" as was possible for the aceno and the 1-2 benzacone series the somewhat arbitrary method of classifying according to the number of benzenoid rings containod in the moleculeg will be used instead, ioe. wo shall compare isomers. A glance at Table VII shows thot roughly speaking the moxe branced or bent is the annelated benzenold chain, the higher its ing.e. The clax account of thia observation is similar to that for the acenea and the bonzaenes which heg diseusbed under (a). The more branohed or bent the chain, the Ereater the opportunity for "trapping" axomatic sextebs in the short limbs. whion serven to Inerease the benzenomike character of the aromatic hydrogarbom; tho lattor fact is interpreted by Clar as inoreasod stability and thererore highor Tsoo. Welting the Fries or Frieg-Cler structures iox the molooules (a) to (a) in Tablo VII, it is easy to Vorify that the greator the number of aromatic sextets, and the gmaller the number of ringe over which they are shered, the higher is the Ts.e。 The similar stabilities
for g and in fox axample would bo accounted for by the diagrams

8
each or which showe misolated" naphthalene and styrene systems. (Oi courge in reality h is appreciably more stable than g due to the serious overarowding of hydrogen atoms and possibiy other repulsions in the latter winch distort the noleoule rrom its planarity; we have not taken agcount of thim sact hare.) A omparigon of the stobilities of k and 1 guggesta that the lose in guabjuty resulting from the extension of the aromatio sextes from one to two rines is moxe than compensater by the consingmont of the azometio sextot In the obher Inmbrom shreo rings to two. The mimilarity

 1solated symemg in each as we did for gand b. Finally we oall attention to the criect of Clamis "nauped geztot" concept (whion was dosexibad
in (2) in some of these molecules. Structures 0 and p each conto in three aromatic sextets and two meszed double bond, and as expected have similar 4 ae. values which are higher than those of the preceding molecules in the table, which contain no more than two sextets. But although three aromatic sextets and two "fixed double bonds" may similarly be written for q and g, the $\pi \approx .0 \cdot$'s or these two moleoulea is relatively much greater (tho $\mathrm{F}_{\mathrm{F}}^{c}$ values are $\alpha+1_{0} 4002 \beta_{0}$ and $\alpha+1.4085 \beta_{0}$ compared with $\alpha+1.4036 \beta_{0}$ and $\alpha+1.4037 \beta_{0}$. for 0 and p. respect poly). The diagrams

Indicato the foxmation or the Induced gextobs.
 is oleax thet in ond p an inducod somtet may bo formed on one alde of the molecule (indicated by a dotted circle) but not on the symetricelly equivalent opposite side. Since there is no reason to believe that the double bonds in Clax's aromatic sextet are permanenty locelised in the positions shown in the contre rings of 0 and p in the above diacrams, we must suppose that the struotures in which the inducod gextot appeasa in the right hand ringg is aqually probable. The energy basrier betweon the two forms is likely to be small, and so the sesult is a shering of the indued sextot between the two gides of the molocule. The directions of the amolations in a and s, however, permdt the inauction of two permenent soxtets as showa. The aztra sbablifsetion onergy contributed by the presence of a fized induced aromatio sembet ie small ($20.05 \beta_{0}$ \sim I kcal. $/ m o l e$) in comparison with thot for a normal ("Anherenti) aromatio sextet (3m4 kcal./mole; see (a) above).

An ideal way to confirm the predictions of both Hưckel and Clar theories relating to the relative stobilities of the verioug molecules is to study their
oxpordmoneas molocmzas onerelos an zevealed by therrom chemianal mogauremantis. Unfortumately, sem of thase ese availathe roz the conconsed banzenote gymemg in whion wo ax intoreoted, but the heats of combustion of soven arometio hydroocrbons are quoted in the paper qubmittod for publication "An mmixical Determination of tho Kiakel Parameser and on Coc and Cof Bond Energies in Aromatio Hydiocambons in Appondiz in the order of D the heate of combustion hom the three isomeric hyero. oaxbons triphenylono, laz benzanthracene and chrysene ia oxactyy that preatoted by the Eutcel theory. The clax theory also perdiets the increased abobllity or triphonylene orex I-a benzenthraceno and ohrysenso but
 moleoulez.

S 6. The oongrivition of a nerf $x(p)$ curvo and the calculathon of more acourate bond ordars.
6.1 A cxitioism of tho $x(p)$ and $\beta^{\prime}(x)$ curves uged for the calculationa of the molscular constants listed in Appondix A. .

Ag was mentioned in 55.1 the nonmconvergence with suacessite itorations of bond orders and lengths and of the π electron encrgy levels is probably due to erroneous bond, ordem/bond length and bond length/ β^{\prime} value relationships (i。e. r (p) and $\beta^{\prime}(x)$) which were assumed in the reeion of low bond oxders. Let us examine the forms of the curves in this region.

The empirical $f(p)$ curve used was construeted by extrepolating ${ }^{8}$ Coulson's $1951 \mathrm{~m}(\mathrm{p})$ curvs ${ }^{5}$, thereby implying a diverging bone lengeh an p tends to zoro. Using this curye tho "Iong bond" lengens of lo534 and 1.524 measured ${ }^{20}$ for quatorrylene were quite ocouratoly ablculatod.

The $\beta^{\prime}(p)$ ourve was drawn from the oaloulations of Mulliken, Riecko and Brown ${ }^{2}$, and it was further assumed that as p tends to $z e r O_{2} \beta^{\prime}$ does the same; the curge themerore stantod at the origin. Hawever, this

Ls provably not corxect: although the interaction quantity $\beta_{\text {g.s }}$ should incroase with bond order yw the relationship betweon them is practioelly purely through the length of the bond twa. Sinco the (1deal) puxo bond between two spamybxidizod oarbon atome (1.0. $p=0$) has a finite longth (grobabiy nomewhere betweon lo4 and 1.54%), $1 t$ 1s unlikoly thet β actually deoreases to

6.2 A more acourate order/Iongth aurvo.

In oonstrueting 5 his ordginal orter/length ourve Coulson calculated some 36 bond orders from 9 aromatio hydrocarbons uging the simplo Húckel method. 1.e. assuming that the β 's of all the bonds were equal, and those were then plotted against the cormesponding bond lengtha as measured by Imxay analysis. Owing to the relatively large unoertantion in the latterg together with the axron due to neglect of β avariation, the roault was a sather soattered eet of points. but whion strongly guggosted an z(p) curve, and it was thiss
 was agod for tion moleculos whose regults are ta Appendiz A.

A rooze auecomarn approach te to restriot the choice of datid for the orter／hength ourve to those bonde whowe lengtha are known accurately，and to use in the caleulation β^{\prime} values whioh are inferred from the experimental bond lengits．The compounds chosen were naphthalene and anthracene，which have recentiy been the subject of careful X－rey analysis ${ }^{21}$ ；and also benzens ${ }^{28}$ and graphito ${ }^{25}$ ，whose bond lengths are relinble． The experimantal bond longths wa the infersed β^{\prime} values and the oaloulated bond oxders are given in colums 3 。 4 and 5 or rable VIIT．（We have usod the $\beta(x)$ ousve dorivod by Longuotmingeng and selom ${ }^{3}$ for this and the subsequent oalculations．sineo beiag based on more reoont boar data，we beliors it to bo more reliable than the Mulliken，Riocte sad Brown rolatiouship ${ }^{2}$ 。 Aocording to thia ourpe the β^{\prime} value of a bond for whion p a is 0.638 correaponcing to a bond langth of 1．532月．）The Tablo also includes the Burns and Tball bond lengths 24 for ohrygene，which elthough not as accurate as the naphthalene and anthrecene valuea，serpe as a comparison． The $r(p)$ curve obtained by plotting column 3 againgt column 5 is show in Tig．3．The leastwsquares ourve passing through the maphthaleze，anthracene，benzene and graphite points is the straight line shown and
has the equatton

$$
\begin{equation*}
\pm \cong 1.532-0.209 p \tag{6.1}
\end{equation*}
$$

For the il bonds in the noleoules naphthalene, anthracene, benzene and graphite, the maximum vertioal deviation from this line is $0.007 \AA$ for the bond an naphthalene, which we caloulate to be longer than the measured valme. TThe oxperimental "estimated atandard deviation" zor the II bonde $180.005 \mathrm{~A}^{\circ}$) In column 6 of the Toble, Pealo gived the nproblule bond lengens" for the bonde in nopiothelone, anthracene, ohrysene. benzone and grophite obtained by gubatituting tho oalculated p values in tho relationsing (I), which
 bond langin measurementa.

Tho oondistoney between tho order-1ength auryo (1) and the onsyme bond daba (denotod by x^{9} s in Fieno is a litto leas maxed, but theze aze still only two deviations greater than 0.01°. One of thege rerers to the bond $\&$ whoge length is well outside the range of the yl bonda used co derime equation (1). The locus of the $x(p)$ curve in this region is uncertain, but if the Burns and Iball length for the bond is neariy correet it would ind oete that the gradient of the $r(p)$

Tabla V4T
 bond arders Zor mome aroumtic moleculom.

Molecule	Bend	E_{x}	β	7	${ }_{\text {calc }}$
1) Naphthalano	a	20364	2.093	. 772	2.371
	\%	1.422	0.910	. 521	1.423
-	c	1.415	0.929	. 541	1.418
d	d	1.428	0.919	. 571	10413
2) Anthracane	-	1.436	0.869	0.475	1.433
	1	1.368	1.080	. 796	1.365
是	8	1.428	0.890	. 506	1.426
lg i	h	1.399	0.976	. 628	1.401
\sim	1	1.4219	0.916	. 510	1.425
3) Chrymen¢	j	1.409	0.945	.573	1.412
	k	1.409	0.945	. 587	1.409
,	1	1.468	0.780	. 424	?
-	${ }_{5}$	1.381	1.035	. 732	1.379
12	n	1.394	0.995	. 581	1.410
$5{ }^{6}$	-	1.363	1.095	. 853	1.375
1	p	1.428	0.890	.534	1.1820
q	a	1.421	0.910	. 498	1.429
	P	1.368	1.080	. 777	1.369
	E	1.428	0.890	. 585	20482
	*	1.401	0.970	.624	1.402
4) Berzene	m	1.395	1.000	.667	2.393
5) Graphite	∇	2.422	1.000	. 525 \%	1. 0882

ourvo should inozease negablvoly, i.e. dopart 2rom 1inoarlity, as p acoreases from 0.5 .

The length of the ethyleno bond according to
(I) is obtained by substitutiag $p=1$, where wo get $\mathbf{r}=1.323 \AA_{0}$ which is $0.01 \AA^{\circ}$ shortom than the now accepted Value ${ }^{26}$. Putting $p=0$ we get $2.532{ }^{\circ}$ for the length of bond betwoen spawnbridized oumbon atoms for whioh there is no T bond chasactor. Thim is exactiy the value assumer by Longuotmbiggins and Salem whon deriving thoir $\beta(x)$ curve; thoy assume that the longth of ethane such pure or bond was the 6 w distance in ethytome It 1 a now believed shet such a bond is probably shorter ${ }^{2 \%} 28$ than $1.532 \AA^{\circ}$, but an yot thare are no roliable ostimatoso Ag mattos on intesest, wo obacrve that it the bonds to 1 in Table TITI are diaregarded, and a - Eraight linc joins tho bonzome and graphito points u and y (whose bond lengthe axe known most accurately of 21.), the oquation of sum an order lengeh relationship is

$$
\begin{equation*}
x=1.517-0.1830 \tag{6,2}
\end{equation*}
$$

The length 1.517\% POE a pure sp $C-C \sigma$ bond which 19 implied by this equation is a reasonable value (Coulson 29
now usez 1.519 . Nozoover thie oquation psogices a
 meanured lemgh ${ }^{26}$ of an einy $\operatorname{sing} 0$ bond. However, bocause of the fract that gquation (2) 18 that of a ine drawn through only two points, we ghail ume (1) in praferenos to (i) in calculating bond lengtis.

The offect of iterating uging (I) is snowa in Table IX. Here we have compued the bond ordexa oro. in nephthalene and anthracene by the ugual mothod of gtarting with the simple Hückel hethod, and inferring bond lengths and improved β^{\prime} values. The sesults of the gix iterations show thet almost complete convergence is now obtained for the bond lengths, ond the the Walueb converged to are very nearly the reale valueg in Tebie VIIT, which we described as the probable bond lengtha in naphthalene and anthracone. The meaults auggest that the use of the $\mathrm{s}(\mathrm{p})$ function (1) for bonds for whick $0.45<p<0.8$ givos bond longths which are Reo from the miteration onicots" deseribod onslies. Bøcguse of the mozmwaldity of tho oxder/Length ourve (1) in the region of zow bond oxdex (p $\{0.45$). is ghould elearly bo used only for moleoules winioh do not contain mong bonds" Such molecules can actualy
 calculatad uming the new order/longth cuarve (equation 6.1) and Longue-litegino and Solems $\beta\left(x^{\circ}\right)$ relaicionship. Sis itarationm, to teat for convergence.
(i) maphthalene

$C_{2 y}$ gyram.	I	III	III	IV	V	VI
A_{1}	2.30278	2.193591	2.193508	2.19357	2.193912	2.193892
	1.00000	0.934187	0.928616	0.927788	0.927439	0.927079
TB_{2}	1.61803	1.618048	2.620206	1.620892	1.628756	1.622193
A_{2}	0.61803	0.662048	0.683106	0.691892	0.696756	0.699193
B_{3}	1.30278	1.269778	1.269124	1.266360	1.26535	1.264971
$\sum_{i}\left(\omega_{j}\right)$	6.94468	6.675658	6.694868	6.700503	6.705214	6.707327

(ii) anthracenc

$c_{2 v}$ byysio	\underline{T}	IS	III	IV	V	VI
A_{8}	2,41421	2.271426	2.270316	2.270553	2.271944	2.272133
	1.41428	1039418	3.399380	10404730	3.4403989	1.404047
B_{2}	2.33333	1.921526	2.917009	1.916810	1.91727	H.917233
	1.00000	0.908911	0.897882	0.894590	0.89480	0.89382
A_{2}	1,00000	1.003238	1.013692	1.019400	\$0224535	
, 02024054						
$\mathrm{B}_{\mathbb{1}}$	1041422	1.377854	2037986	1.378344	2. 277835	1.377782
	0.42481	0.460603	0.487832	0.502439	0.500505	0.512457
$\sum_{i}\left(\operatorname{sig}_{5}\right)$	9,6560\%	903, 36944	9.366778	9.38356\%	9.396656	9.400467

¢ $8^{\circ}{ }^{\circ} \mathrm{T}$	$1768^{\circ} 0837^{\circ} \mathrm{T}$		$368^{\circ} 0983^{\circ} \mathrm{V} 805^{\circ}$	¢0600 ¢ ¢ $\square^{\circ} \mathrm{T} 085^{\circ}$		0 O87 ${ }^{\circ} \mathrm{I} 985^{\circ}$	
109 ${ }^{\circ} \mathrm{T}$	1260 20\% $^{\circ} \mathrm{L} 269^{\circ}$	7 $26^{\circ} 0$ र0\% ${ }^{\circ}$ 亿 989°	ス $26^{\circ} 0$ \%07. ${ }^{\circ} 969^{\circ}$	02600 10\% $^{\circ} \mathrm{T} 389^{\circ}$	29600 $00{ }^{\circ} \mathrm{T}$ (069°	$096^{\circ} \mathrm{C} 07^{\circ} \mathrm{T} 909^{\circ}$	(4)
		$563^{\circ} 0987^{\circ} \mathrm{8} 909^{\circ}$		$688^{\circ} 088^{\circ} \mathrm{T} 267^{\circ}$	8880 0¢ $0{ }^{\circ} \mathrm{C} 88^{\circ}$	788 ${ }^{\circ} 0$	(8)
69	¢60 $0^{\circ} \mathrm{t} 895^{\circ} \mathrm{I} 208^{\circ}$	$360^{\circ} \mathrm{T} 595^{\circ}$ 008 ${ }^{\circ}$	$680^{\circ} \mathrm{C} 995^{\circ} \mathrm{C} 6 L^{\circ}$				(s)
$58{ }^{\circ}{ }^{\circ} \mathrm{I}$				$588^{\circ} 0607^{\circ} \mathrm{T} 06{ }^{\circ}$	¢68 $8^{\circ} 0987^{\circ} \mathrm{C}$ L0g	$986^{\circ} 0087^{\circ}$	$\text { (a) } 3!$
	Σ	Es	\%	9°	5°		
	$386^{\circ} \mathrm{LT} \mathrm{TV}^{\circ} \mathrm{T}$	$886^{\circ} 048{ }^{\circ} \mathrm{V} 065^{\circ}$		$686{ }^{\circ} 0587^{\circ} \mathrm{C} 655^{\circ}$	$\angle E 6^{\circ} 0 \mathrm{CEV}{ }^{\circ} \mathrm{E} \angle 25^{\circ}$	$946^{\circ} 0909^{\circ} \mathrm{T}$ ¢ 0	(0)
	$506{ }^{\circ} 8867^{\circ} \mathrm{Cz5}{ }^{\circ}$		$606{ }^{\circ} 088^{\circ} \mathrm{C} 985^{\circ}$	0r6 $6^{\circ} 88^{\circ} 8^{\circ}$	98	$586^{\circ} 09$ 978 $^{\circ} \mathrm{TS5} 5^{\circ}$	(c)
ชEL ${ }^{\circ} \mathrm{I}$	$990^{\circ} \mathrm{T}$ LLE ${ }^{\circ} \mathrm{T} 892^{\circ}$	\$90 $0^{\circ} \mathrm{T} 28^{\circ} \mathrm{K} 994^{\circ}$	$590^{\circ} \mathrm{I}$ ELE ${ }^{\circ} \mathrm{T} 9 \mathrm{~L}^{\circ}$	$660^{\circ} \mathrm{CLE} 8^{\circ} \mathrm{C} 6.52^{\circ}$		GE0 0° TEE $\frac{1}{\circ}$ G L° -xerver	$\text { (8) } 8$
${ }^{\circ}{ }^{3100}{ }^{30}$		$\Lambda^{\circ 8} \Lambda^{3 x} \Lambda^{\text {a }}$			$\mathrm{HI}^{\text {8 }} \mathrm{HI}^{\mathrm{S}} \mathrm{MI}$	$\mathrm{I}^{\text {d }} \mathrm{I}^{\text {a }} \mathrm{I}^{\text {d }}$	$p \mathrm{p}$

[^1]be easily recognised berore making any alculations:
in moloculo containing an arrangement of bonds:

it in invariably found that the bond order of the $C_{2}-C_{3}$ bond is low, as may be verified from the oxamples in Appendix A. Moreover, the hydrogen atoms which are bonded to C_{1} and C_{4} are gituated at mutual distance of 1.0 to 2.10 , which is less then $204 A^{\circ}$, twice the van der Waals radjug for the hydrogen atom. Thus there La an additional uncartainty due to H-स ropulsion. whioh may possibly oques somo stretching of the $\mathrm{C}_{2} \mathrm{Cl}_{3}$ bond ${ }^{30}$. The moleculat constanta ($y_{i}, p_{0} x$ and β^{\prime}) for The moleculas congtanta (x_{i}, p, r and β) for aromatie hydrocarbone not containing long bonds of the kind deseribod in the last paragraph are listed in Appondiz B. Again we get satisfactory conforgence ot Tho bond lengths: the thire iteration in each oase deals with an almost seleconsistent model, and we may thererore cI aln that the bond lengths rII are reliable to within about 0.003 A .

The self-consisteney extends to the enexgy oigenvalues: the Hidokel numbers of corresponding levola in the seoond and thifd iterationa are usually consistent to within 0.01 , whioh was not generally the oase for computation on the same molecules recorded in Appendix A_{0} These valuan may therefore be usetul in the comparison of electronio energy levels with the observed UV spectra.

Treatment of aromatie hydrocarbons containing long bonde.

We ghould not expect the results of caloulations of the molecular constants of molecules containing "Long bonds" to be as accurate as those for the molecules listod in Appendix B if. for such calculations, the $r(p)$ curve of Figo is merely linoazly eatrapolatod. However. for molecules which our earlier caleulations ghom a resemblance to small aromatio systems whioh are loosely coupled by means of lownorder bonds ann simplisications may be made which $200 d$ to fmproved aocuracy.

somswhe to resemble fous benzene ingss and an ethyleno bond which are coupled together by ceans of low-order
bonds (see Table $2 I(b)$ of Appondix A). We therefore assign β^{\prime} values of 0.7 to these low order bonds, 1.0 to the bondg in the benzeno-1ike rings and 1.1 to the eflylene-11ke boud 22-23, and persoxm the usual caloulation. For the nemt iteration we use β^{\prime} valuos correaponding to the p and x values obtained rrom the first iteration for the bond in the benzene-jike rings, but wo keop the β^{\prime} velues for the lowe and high-crder bonds at 0.7 and 1.2 raspectiveiy. Successive iterations of this kind lead to satisfactory convergences and the results are shown in Appendix C.

6.3 Results obtainod for aromatic bydrocarbong using

the new bond oxder-bond length relutionship.

The energies listed in Tables $X(a)$ and (b) are taken from the 4 th iteration results in Appendicea B and C respeotively; they are obtained using the improved $r(p)$ and the Longuetwigeins and Salem $\beta^{\prime}(x)$ relationahips, With the special provisions mede for the extrome long and shows bonds in the molecules in toble $x(b)$, dosoribed in SG.E. The and, 5ra eto. column reier respeotively to the number of oarbon ofome in the molecule. N_{c}, tho
number of aromesto, semeto, N_{B}, tho π, sebilisation onorgy (whion for oonclannese has bean erpressed as $\left.\left(E_{w}-\mathbb{N a}\right) / \beta_{0}\right)$, the $\pi s_{0} \theta$ o per carbon atom, and the Hückel number on the highest bonding rolecular orbital. min in unita of β_{0} 。 The last two colums contain the wavelengths and weve numbers of olaris p-bonde for these molowulas, whioh will bo uged later.

From a comparison of the \mathbb{E}_{5}^{c} valuae of rarious sizes and clanses or aromatic nydrocarbons, we had boped to reach some conclusion regaxding the relative stabilitien OL the molecules. guch as the confirmarion of Huckel's Lun +5 rule. Howerax, the only regulasity observed is a slightiy incieasing $5_{\pi}^{〔}$ value as the size of tho moleculs incraemeg. In twing to compare this particular prodiction with ohemioal oxperionoo, it must be remembered that there axe ag yot pery rar quantitative measurements of the atabilities of molocules acoording to our derinition of \mathbb{E}_{π}^{c} a. Also the fact thet some of the oompounds listed in Tables X(a) and (b) contain "ethylenio" bonds introducos sone chemioal instabinley into these molecules: this requirea a definition of thermodynamic stability (mentioned in 5.3) for a proper description. However experiment essentially verifies the urediotions for moloculea which do not contain these mothylemio" bonds.

Calorimetrie data reveals that diphonyl is indeed more stable then benzene; clar ${ }^{13}$ resorts that triphenylene XVIII is corticinly more stable than its isoners (we also deduced this from the results discussed in part (ii) of $\$ 5.3$), since it does not dissolve in concentruted sulphuric acid. Dibenzpyrene $X X$ is similarl: very stable in comparison with prrene, and mar be heated without decomposition to 340° when sublimation takes place ${ }^{12}$. The molecules XXV and XXVI are also imnune from attack by conc. sulphuric acid, and sublime at 400°. Hexabenzcoronene XXVII is the most stable hydro. carbon kiown, and maits only et 700013,31. The progressive increase in the $\pi s \theta_{0}$ of the isomers XXI, XXII and XXIII is acoounted for by tho Clax theory: all three molecules contain four inherent sextets, but whereas XXI containg only ons induced sextet at any one time, there are reasons for belleving that the double bond in XXII somehow paxticipates in forming two sextets simultaneously ${ }^{14}$. The dibenzperviene XXIII, however. contains two normal permanent induced sextets and so has a correspondingly hicher th soe. The molecules XXI and XXII are exceptional in that their \mathbb{E}_{π}^{c} values are less than those of the two preceding members XIX and XX which contain a smaller number of carbon atorns. Other examples of this behaviour are KKIV and XI. The reason for this is not uncerstood.
enfor

Moleculo	$\mathrm{N}_{\text {c }}$	${ }^{1}$	${ }^{817}$	$\mathrm{E}_{\mathrm{s}}^{\mathrm{c}}$	I_{3}	$\lambda_{p}(R)$	$\tilde{v}_{p} 3100^{-4}$ oma
I maphetialeat	10	3	13.4.4807	303485	0.69998	2365	30490
II anthracone	14	2	18.8009	1.3429	0.5125	3781	2.645
III totracene	18	3	23.5480	1.3088	0.3648	4728	2.115
IV pentacone	22	3	23.9245	1.344?	0.2797	5754	1.738
\checkmark heracene	26	4	34.1058	2.3128	0.2204	685\%	1.459
VI mejuacone	30	5	39.8289	1.3276	0.1700	-	-
VII octacene	34	5	4500928	2.3863	0.15 EL	-	-
VIE nomacene	38	6	50. 5 229	8.3848	0.818	\bigcirc	-
IX pirane	26	8	28.3799	1.3562	0.5284	3372	2.966
χ anthanthrene	28	3	29,8096	2. 3550	0.3536	43331	2.309
XI coromene	24	4	32.3942	1.3498	0.4698	3485	2.928
KII 2-3,8-9 dibenzcoromena	30	5	40.7606	1.3587	0.2369	5236	1.910
XIII ovalene	38	5	43.9992	1.3750	0.37452	4560	2.193

Table X (b) Holecular conments for some "Raly aromatic" molecules
(Appendix C)

Molecule	${ }^{\mathrm{N}} \mathrm{c}$	${ }^{\text {N }}$ B	${ }_{8}$	E_{π}^{c}	$z_{\text {m }}$	$A_{p}(\underline{y})$	$\tilde{v}_{\mathrm{p}} \mathrm{s}\left(0^{-4} \mathrm{~cm}^{-1}\right)$
$\mathrm{XIV} \quad \mathrm{CHI}_{2}=\mathrm{CHH}_{2}$	2	$\frac{1}{3}$	2.2000	1.1000	1.1000	-	-
xv 0)	6	1	8.0000	1.3333	1.000	2068	4.835
XVI (0)- 0	32	2	16.0568	8.3389	0.765	2530	3.953
หVİ 0	1/4	2	18,9256	1.3518	0.682	2.945	3.396
XVIII	18	3	2h, $2_{2} 285$	18.3578	0.701	2870	3.488

Table x (b) contsio

Molecule	N_{c}	N_{B}	E_{π}	E_{π}^{c}	I_{n}	$\lambda_{p}(\underline{A})$	$\tilde{V}_{\mathrm{p}}{ }_{\left(\mathrm{cm}^{10^{4}}\right)}$
XIX	20	3	27.2391	1.3620	0.564	3315	3.017
	24	4	32.7352	1.3640	0.587	3290	3.040
xxi	26	4	35.3800	1.3601	0.589	3450	2.899
XXII	26	4	35.3908	1.3612	0.555	$?$?
XXIII	26	4	35.5733	1.3682	0.518	3775	2.649
XXIV	30	5	40.8620	1.3621	0.611	3310	3.026
xxy	30	5	41.0763	1.3692	0.534	3740	2.674
xxvs	36	6	49.4003	1.3722	0.531	3650	2.740
KXUS	32	7	57.9294	8.3793	0.490	3875	2.583

Higo4o Molecular π soe's plotted againgt the number of carbon atoms in the moleculo.

The seot that a vexy gmal but fairly regular
 dopasturea for monwiticol hydrooarbons (som which Nof $4 n+2)$ indicatos that we obserfe no validiby of tho Htokel wulo sos condensed bemzonoid systems. In rig. \& wo havo plotiod the moloculas 7 a.o. F_{T} against onemittil of N_{0}, 30 thet the abgoissa moanuza the number or benzonold rings in the molecule. Although wo know that $\mathrm{m}_{\mathrm{w}}^{c}$ increasen glightiy with No Which must result in a compesponding inorease in the gradient of the \mathbb{E}_{T} / N_{G} curve, the ourve is closely Innear. This neang that the π soo. or any benzenoid arometio hydrocarbon 15 neamly directly proportional to the number of carbon atoma in the molecule, and may be caloulated approximatoly rrom tho equation

$$
\mathbb{B}_{\pi}=\mathbb{N}_{0}\left(\alpha+2.375 \beta_{0}\right)
$$

8. 4 (2) Tha eqlcusatiun os the poghtiong of the olectronio

 Erangitlor boncig for aromatio hydrocexbons.The mergy of tho aloctronic trangition Prom the Ith to tho it th nolecular oxibital tis oalculated from -quation (2.9) to be

$$
\Delta E_{i j}=\left(\alpha-x_{i} \beta_{0}\right)-\left(\alpha-x_{i} \beta_{0}\right)=\Delta x_{i j} \beta_{0}
$$

where $\Delta x_{i j}$ is the adarexenoe $\left(z_{j}-z_{i}\right)$ between the "Fucked numbered of the isth and 1 th Mo" where it is assumed that Et> Ff in order that the calculated transaction energy $\Delta E_{i f j}$ be positive. The frequency of the radiation
$\nu_{i j}$ ia cherorore given by

$$
v_{i j}=\frac{1}{h} \Delta x_{i j} \beta_{0}
$$

and by comparing the observed values of $V_{i j}$ with the celculabod $\Delta x_{i j}$ an empirical value dor β_{0} may be oaloulatad.

It is generally supposed that Clam's p-bands
in the UV absorption spectrum are caused by transitions from the highest occupied to the lowest unoccupied levels. This is evidenced by the foot that in naphthalene, anthracene and tetracene, the p bands are sound experimentally 31 to be polarised in the direction parallel to the short axis or the acene, which indeed corresponds to the $\mathbf{I}_{\text {Bud }}$ symmetry expected for the transition $X_{n} \rightarrow x_{n+1}{ }^{\circ}$ In alternant aromatic hydrocarbons $x_{n-1}=-x_{n+1}+1$. so the celeulatad Requenoy of the paband is

$$
v_{p}=\frac{2 \beta_{0}}{h} x_{n}
$$

where $I_{\text {P }}$ Is the Fitokel amber of the highest occupied molecular oxbltaz. Quite good linear corseiacioms mao
obtained by plotting z_{n} egalnst the expertmontel valuem of N. Tigos (a) shows such an attenpt; Np are taken from clac ${ }^{10-15}$, and x_{n} from the feaults of the calculations in Appendicen B and C and sumarised in Tables $X(a)$ and (b). In Fig. 5 (b) we have plotited oniy the data for the asenes (bonzone to hoxscone) ahowing an ajmone pereot Iinear cormelation. This shows the impostance of taking account of bond longth variotions in assigning β^{\prime} values: whoreas the bonzeno point ia colinoms with the points for the othes acenes in ous treatment, it in not 21 Simple Hiohel x_{n} values are uged. Date fox the other fito molecuios listod in Tobla $X(a)$ do not gito suoh agood corroletion. Tt would appoar that something hes been nogleoted whose effect im revealed in comparing dirterent clasges of molecule. The β_{0} value calculated for the ocenes is hals the Bhopo of tho lower curve in Fig. $5(b)$, i.e. . $2012 \times 10^{4} \mathrm{am}^{\mathrm{m}}=60 \mathrm{kcal} / \mathrm{mole}$. Thig ia more than twioe the value obtained rrom a comparison of the calculated total 7 enexgies with chermochemicol data \{seo sor amamplo Apponale D). The discrepancy is almosit oextasaly due to negleat of conpjgurationas interaction, whioh ogaurg to dissorgnt extents in the ground and oxaitod states.

- $8 g^{\circ}$ 85

$$
-102=
$$

The correlation line 200 not pass through the origin as mighi bo axpected; Fig. 5(a) shows that when $x_{n}=0, \quad \tilde{x}_{p}=6 \times 20^{A} \mathrm{om}^{-1}$. Streitwieser (soo poz13 of ref.7) explains that the calculated uransition energy 2 $x_{n} \beta_{0}$ is for otrangition from the "centre of gravity" of the singlet and triplet states to tho ground state. Since the observed trangition is the singlet to ground state (triplet to ground state is foxbidden), the oalculated taansition onergy $2 x_{m} \beta_{0}$ will be too high
 ourte published by streitwieser (p.220) in whioh simple
 $1.0 \times 10^{4} \mathrm{om}^{2}$. From ous curve (fig. $5(\mathrm{~b})$) the quantity is $0.5 \pm 10^{4} \mathrm{~cm}$. . $\sin 00$ it has not bon ostablimed that the Huckel onergy levels are in faot the quantitios sugeestod by stroitwieger, it is posajble that with increasing refinements of the fïckel-type calculations, the quantity" $\mathrm{E}(\mathrm{singlet})-\mathbb{E}(\mathrm{cos}$ of B) "may vanish altogether.
(b) The calculation of speotral ghifts due to annelation

I
$2068 \xrightarrow{802} 2870$
$1819 \xrightarrow{251} 2570$
$1.000 \xrightarrow[0.316]{ } 0.684$
$1.000 \xrightarrow{0.299} 0.701$

$\xrightarrow{380}$	3450 355 0.107 0.080
	0.577
	0.611

The above rigures show the offect on the positions of the UV absorption bands, of the annelation of a diphenyl system, firgty onto benzene (I), and then onto the resulting triphenylene (II) to produce tetrae benzanthracene (III). The shipts in the wavelengths of the bands are much lass in the second case than in the firet, although the addendum is the same in both cases. This effect is called gsymetric annelation, and is interproted by clar as being due to the asymmetry
of the fully aromatio rings. Whoreas in the ilrst annelation an induoed sextat is formed in the central ring, it is not possible to produce a second induced sextet in III for the reason discussed in $\delta 8$, and the spectral shitit is consequently much less.

Also shown above are the Hiuckel numbers x_{n} of the highest occupied moleoular orbital (HOMO) in each case. These heve been obtained (i) using the simple theory, in which β^{\prime} values for all the bonds heve been assumed to be unity, and (ii) assuming that there are two types of bonds: "single" and "aromatic" to which β^{\prime} values of 0.7 and 1.0 were assigned, as described in $\mathrm{S}_{\mathrm{S}} 6,2$, and the calculation iterated until convergence was obtained. Since the lowestaenergy transitions in each case are $\left(x_{n+1} \cdots x_{n}\right) \beta_{0}=2\left|x_{n} \beta_{0}\right|$, the HOMO Hückel numbers X_{m} mey be uaed as a basis for the comparison of the spectral enerey shifes. Both series of figures (4) and (11) show that the "esymetrio annelation offect" is bowno out in calounation.

An interesting anmelation is that of a butadieno syatem onto a míxed double bond" in fully aromatio hydroorrbons, which, as we obseryed in 5.2, has litole
aprect on bond orders. The simplest system whioh containg such a bond is phenanthrone, and the wavelengths of the β and p bands fiven below show that thoir positions are changed very litite by the annelation of a benzo-ring onto the $9-10$ position:

\% Energy sh1甲i

$\lambda_{p}(\AA)$	$294.5 \longrightarrow 2870$	-0.26%	-2.6%
$\lambda_{\beta}(\AA)$	2547	$\longrightarrow 2595$	0.18%
HOMO (i)	$0.605 \longrightarrow 0.884$	1.31%	13.1%
H (ii)	$0.682 \longrightarrow 0.701$	0.28%	2.8%

This would appuar to indicate two altornative explanations.
The first is that the shift producod by the removal of the 9-10 "double" bond is approximately equal and opposite to that produced by the new armatic sextet. The second. is that the $8-10$ mouble" bond is present also in the corresponding position in triphenylene, indicating that
in an arometic sextot there are wo alectrons which are somehow dipecent Prom the other fous. Clar has adoped the second axplanation to sormulate his theory of aromaticity described in gis.

This annelation oifeot is also predicted by is
Nolecular Orbital theory, as/shown by the figures in the last two rows. Clearly the improved Eüokel treatment gives a better account of the percentage onergy shift than the simple theory in which no account is taken of the variation in bond lengths.

Papers written on the calculation of spectral shifts in the pyrene and triphenylene homologues are given in Appendix D 。

$-206=$

S7. The calculation op aromatic character of the
gong ping in terms of classis ogeillating aromatic
pals model.

If the model of the oscillating eleotron pair In the scenes is a valid one, it is reasonable to suppose that the velocity of the quasi-partiole (the electron pair) is a continuous function of position. This requires the magnitude of the velocity to be a maximum at the centre of the acene and zero at the ends. The function which gives the velocity of the particle at the distance x from the centre of the aceno.

$$
\begin{equation*}
v_{x}=A\left(a^{2}-x^{2}\right) \tag{7.1}
\end{equation*}
$$

(where a is the amplitude of she oscillation and A is a constant related to the frequency. satisfies these conditions.

In order to calculate the aromatic character of, lot us say, the $x^{\text {th }}$ ring from the centre of an cen with an even number of rings, we need to know the time spent by the particle (the aromatic pass) in the $x^{t h}$ ring. Now the average speed of a particle between the points $x-1$ and x, and whose velocity is given by (1) is

$$
\bar{v}_{x}=\frac{1}{2} A\left(2 a^{2}-2 x^{2}+2 x-1\right)
$$

The time mpers in tho $x^{\text {tin }}$ ring io therefore given by

$$
x_{x}=B\left(4 a^{2}-4 x^{3}+4 x-2\right)^{-1}
$$

We have introduced an oztra factoz of 2 into the denominatos of (2) in oxcex that the equation for t_{x} mas resemble that appropriate to an aoone with an oda number of rings. Tho quation in this case is

$$
A_{x}=B\left(4 a^{2}-4 x^{2}-1\right)^{-1}
$$

Where the $x^{\text {bh }}$ ring is now depinod as the $x^{\text {tit }}$ fing from the centre not including the centre ring.

So agsuming that the amount of aromatic character A_{x} in the $\mathrm{m}^{\text {th }}$ ring is proportional to the relative time spent by the osollating aromatio pair in that ring, Wo get the equations

$$
A_{x}=C\left(4 a^{2}-4 x^{2}+4 x-2\right)^{-1} \text { zor an evon zoene }
$$

and

$$
\begin{equation*}
A_{x}=c\left(4 a^{2}-4 x^{2}-1\right)^{-1} \text { sox an odd acen } \tag{array}
\end{equation*}
$$

Wo oan caloulato a Taiue for A_{y} alao srorn tho Hibckel shooxy vaing the toobique aiscussed in 8.5. Equation (2.20) tolls us that meesure of tine enexey in - giten pare ci an aromatio myarocarbon is provided by

Bond orders and individual ring energies
in some acenes as computed by the simple Fiuckel Method:

-200

sumbing the bond orders of the constituent bonde, oon malblplied by lea zeapoobive β^{\prime} value: Since we are dealing with very approxirate thoorios, we shall use the simplase ntickel method and assume that the values of all the bonds are oqual (2.0. $\beta^{\prime}=1$ for naoh bond). The diagrana opposite indiosto the required valuen: the quantition ascosiated with the bomas are boud orders. p_{b}, end those written inside tha rings x are the $\sum_{f=1}^{6} p_{p} f$ where the sumpation tekes place over the π bonds $\bar{n}=1$ to 6 forming the benzenoid ring. The results of the calculations are sumarised in Table Z_{a} Fige 6-9 show the result of ploting A_{x} calculated from equations (3) (a) and (b) against $\sum_{b=1}^{6} P_{x b}$ for the acenes hexacene to nonscene. Th curves in each case are closely linear. While we do not clairi that this result furnishes evidence for the electron oseillation theory, the latter may now be aeon to lead to an acene model which is quantitatively similar to that obtained srom Hickel theosy calculations.

Acme	2	${ }_{8}$	$\sum_{\ell=1}^{6} p_{x}$
Hezmexer	1	-029424	3.87038
($\mathrm{a}-3$)	2	- 023846	3.31868
	3	-10000	3.598123
Hepteacén	0	-08033	
(\times cox ${ }^{\text {c }}$)	8	-02873 C	3.2659
	3	-03125 C	3.38788
	3	.009396	3.99054
Detascne	1	.0165 6	3.25851
(2×0)	2	.02852	3.26 ¢59
	3	$\bigcirc 02652$	3.31668
	,	.07845 C	3.59035
Nonacern	0	.01250 6	3.28698
($2=1438$	1	.02326 c	3.24939
	2	. 01563	3.26394
	3	.02873 6	3.31646
	4	.06250 6	5.59025

- oveobuon ${ }^{\circ} 6{ }^{\circ}$ ธิf

§8. A simple treatment of inter-electronic repulsion

 in aromatic hydrocarbons.
8.1 The ground state.

The state Ψ. of an N-electron π-system may be expressed as an antisymmetrical product of N oneelectron spin-orbitals ψ_{i} 。. This is conveniently written as a determinant:

$$
\Psi=(N!)^{-\frac{1}{2}} \operatorname{det}\left|\psi_{1}(1) \ldots \psi_{i}(k) \ldots \psi_{m}(N)\right|
$$

where $\psi_{1}, \ldots, \psi_{i}, \ldots \psi_{m}$ are arranged in increasing energy order. The general element $\psi_{i}(k)$ refers to the $i^{\text {th }}$ one-eleotron orbital with which is associated the $k^{\text {th }}$ electron. In the ground state $i=k$ for all i and k which indicates that all N electrons are accommodated in the N lowest energy orbitals Applying this to aromatic hydrocarbons wo an substitute for the ψ 's the molecular orbitals obtained by the Hückel LCAOMO method. For an even alternant hydrocarbon with \mathbb{N} carbon atoms, N molecular orbitals are obtained. 新 $=n$ of which are bonding and by the Pauli principle may accommodate all $\mathbb{N} \pi$ electrons in the ground state. The ground state waste function is therefore

$$
\Psi_{g}=(N!)^{-\frac{1}{2}} d e t\left|\psi_{1}(1) \bar{\psi}_{1}(2) \ldots . \psi_{n}(N-1) \bar{\psi}_{n}(N)\right|
$$

in which $\bar{\psi}_{i}$ differs from ψ_{i} only in the spic part of the orbital (ψ_{i} has α spin and \bar{W}_{i} has β spin). The Hamiltonian operator is

$$
\mathscr{H}=\sum_{k=1}^{N}\left[-\frac{\frac{1}{n}^{2}}{2 m} \nabla_{k}^{2}-\sum_{a=1}^{N} \frac{z k^{2}}{r_{a i}}\right]+\frac{1}{2} \sum_{k \neq l}^{N} \sum_{k l}^{N} \frac{e^{2}}{r_{k l}}
$$

which is the sum of the one-olectron Hamiltonian operators Hook) (sometimes called the "core" hamiltonian) plus the electronic repulsion terms $\frac{1}{2} \sum_{\ell=1}^{N} \sum_{i=\ell}^{N} \frac{e^{2}}{r_{h_{\ell}}}$. (The internuclear repulsion terms $\frac{1}{2} \sum_{a \neq b} \frac{\frac{2}{2}^{2} e^{2}}{r_{a b}} \quad$ have been omitted from 18

$$
\begin{equation*}
\therefore \quad \xi=\sum_{k}^{N} H(k)+\frac{1}{2} \sum_{k \neq l}^{N} \sum_{l}^{N} \frac{e^{2}}{r_{k l}} \tag{9.1}
\end{equation*}
$$

The total π electronic energy of the ground state is therefore

$$
\begin{aligned}
& E_{g}=\int \Psi_{g}^{*} f l \Psi_{g} d \tau=\int \Psi_{g}^{*} \sum_{k}^{N} H(k) \Psi_{g} d t \\
&+\frac{1}{2} \int \Psi_{g} \sum_{k \neq \ell}^{N} \sum_{k l}^{N} \frac{e^{2}}{r_{k l}} \Psi_{g} d \tau
\end{aligned}
$$

The general term in the complete expansion of the first

Integral ia $\int \psi_{i}^{*}(l) H(k) \psi_{j}(m) d t$. In order that it shall bo nonzero, is $m=m$, and since the molecular orbitals ψ_{i} are orthogonal functions of the energy matrix If ll we have the condition that $1=j$. But the resulting general term $\int \psi_{i}^{*}(k) H(k) \psi_{i}^{*}(k) d \tau \quad$ is just the Hückel energy eigenvalue (which we shall now write I_{i}) of the $1^{\text {th }}$ molecular orbital, which we know already in terns of the parameters α and β_{0}. The second integral in the above equation describes the total π electron interaction and does not reduce to a sum of such simple terms. However it may be expressed (36) as the sums of two different kinds of integrals $J_{i j}$ and $K_{i j}$ known respectively as the Coulomb and Exchange integrals for the interactions between orbitals ψ_{i} and ψ_{j} :

$$
\int \Psi_{g} \sum_{k \neq l}^{N} \sum_{r_{k l}}^{N} \frac{r^{2}}{r_{g}} d t=2 \sum_{k \geq l}^{n} \sum_{l}^{n}\left(2 J_{k l}-K_{k l}\right)
$$

where $J_{i j}=$ Coulomb Integral for ψ_{i} and $\psi_{i},=\int\left|\psi_{i}(1)\right|^{2} \frac{\Omega^{2}}{r_{12}}\left|\psi_{j}(2)\right|^{2} d t$

$$
K_{i j}=\text { Exchange Integral for } \psi_{i} \text { and } \psi_{j}=\int \psi_{i}^{*}(1) \psi_{j}(1) \frac{e^{2}}{r_{i}} \psi_{j}^{*}(2) \psi_{i}(2) d x
$$

The ground-stato energy is therefore

$$
\begin{aligned}
E_{g}= & 2 \sum_{i=1}^{n} I_{i}+\sum_{i=1}^{n} \sum_{j}^{n}\left(2 J_{i j}-K_{i j}\right) \\
= & 2 \sum_{i=1}^{n} I_{i}+2 \sum_{i>j}^{n} \sum_{i j}^{n} J_{i j}+\sum_{i} J_{i i}-\sum_{i \gg} \sum_{j} K_{i j} \\
& \left.\quad \text { (since } J_{i i}=K_{i i}\right)
\end{aligned}
$$

Substituting tho molecular orbitals ψ_{i} by the LCAO expansions

$$
\dot{u}_{i}=\sum_{r=1}^{N} c_{r i} x_{r}
$$

the molecular orbital integrals $J_{i j}$ and $K_{i j}$ may be expanded in terms oi atomic orbital integrals, and we shall now proceed to consider this expansion.

Poole ${ }^{36}$ assumed that the general term in the expansion of the J and K integrals in terms of atomic orbitals, namely $\int \chi_{\pi}^{*}(1) \chi_{s}(1) \frac{1}{\lambda_{12}} \chi_{\pi}^{*_{2}}(2) \chi_{\mu}(2) d \tau$ is different from zero only if the following conditions hold simultaneously:
(1) x \& and t is
(2) $\left\{\begin{array}{l}\text { Either } \quad x=t \\ \text { or atoms } x \text { and } t \text { are "nearest neighbours", }\end{array}\right.$

$$
\text { 1.*., are } \sigma \text { bonded. }
$$

The ground state energy E_{g} of an aromatic hydrocarbon can therefore be expressed in terms of the Hibokel parameters α and β_{0} (coming from the I_{1} terms), and in addition two new integrals A_{P} and $B_{r s}$:

$$
\begin{array}{ll}
A_{r}=\int\left|x_{r}(1)\right|^{2} \frac{e^{2}}{r_{12}}\left|x_{r}(1)\right|^{2} A x & \text { the Atomic coulomb integral } \\
B_{r s}=\int\left|x_{r}(1)\right|^{2} \frac{e^{2}}{r_{12}}\left|x_{s}(2)\right|^{2} d r & \text { the Bond coulomb integral } \\
(x \text { and } s \text { are } \sigma \text { bonded atoms }) &
\end{array}
$$

A_{r} is the repulsion energy of two electrons in the $x^{\text {th }}$ $2 p_{2}$ atomic orbital, and we shall suppose that this is the ambo for all atom a in an alternant aromatic hydrocarbon, and denote the value by A. Strictly speaking $B_{r s}$ is not an invariant parameter, sine as the repulsion between the atomic orbitals on atoms and a, it will vary with the length of the bond res. However, we shall assume that the variation ls sufficiently small that we can use a mean jond coulomb integral B for all bonds mos. We shall now express the molecular integrals J and K in terms of the atomic integrals A and B.

$$
\begin{aligned}
& J_{i j}=\int \psi_{i}^{*}(1) \psi_{i}(1) \frac{1}{r_{12}} \psi_{j}^{*}(2) \psi_{j}(2) d \tau \quad B_{n t} \psi_{i}=\sum_{r=1}^{N} c_{r i} X_{r} \\
& =\int\left(c_{1 i}^{*} X_{1}^{*}(1)+c_{2 i}^{*} X_{2}^{*}(1)+\ldots+c_{N i}^{*} X_{N}^{*}(1)\right)\left(c_{1 i} X_{1}(1)+\right. \\
& \left.c_{2 i} x_{2}(1)+\ldots .+c_{N i} X_{N}(1)\right) \frac{1}{r_{12}}\left(c_{1 j}^{*} X_{1}^{*}(2)+c_{2 j}^{*} x_{2}^{*}(2)+\ldots\right. \\
& \left.\ldots c_{N j}^{*} X_{N}^{*}(2)\right)\left(c_{1 j} x_{1}(2)+c_{2 j} x_{2}(2)+\ldots .+c_{N j} X_{N}(2) d \tau\right. \\
& =\int x_{r}^{*}(1) x_{r}(1) \frac{1}{r_{12}} x_{r}^{*}(2) x_{r}(2) d \tau \sum_{r=1}^{N}\left|c_{r i}\right|^{2}\left|c_{r_{j}}\right|^{2} \\
& +\int x_{r}^{*}(1) x_{r}(1) \frac{1}{r_{12}} x_{s}^{*}(2) x_{s}(2) d \pi \sum_{\substack{\hat{r} \neq s \\
(\text { boded) }}}^{N}\left|c_{r i}\right|^{2}\left|c_{s j}\right|^{2}
\end{aligned}
$$

$$
\begin{align*}
& K_{i j}= \int \psi_{i}^{*}(1) \psi_{j}(1) \frac{1}{\lambda_{12}} \psi_{j}^{*}(2) \psi_{i}(2) d \tau \\
&= \int\left(c_{1 i}^{*} x_{1}^{*}(1)+c_{2 i}^{*} x_{2}^{*}(1)+\ldots+c_{N i}^{*} x_{N}^{*}(1)\right)\left(c_{1 i} x_{1}(1)+c_{2 j} x_{2}(1)+\right. \\
&\left.\cdots+c_{N j} x_{N}(1)\right) \frac{1}{r_{12}}\left(c_{1 j}^{*} x_{1}^{*}(2)+c_{2 j}^{*} x_{2}^{*}(2)+\ldots+c_{N j}^{*} x_{N}^{*}(2)\right) \times \\
& x\left(c_{1 i} x_{1}(2)+c_{2 i} x_{2}(2)+\ldots \ldots+c_{N i} x_{H 1}(2)\right) d \tau \\
&= \int x_{r}^{*}(1) x_{r}(1) \frac{1}{\lambda_{12}} x_{r}^{*}(2) x_{r}(2) d \tau \sum_{r=1}^{N}\left|c_{r i}\right|^{2}\left|c_{r j}\right|^{2} \\
&+\int x_{r}^{*}(1) x_{\lambda}(1) \frac{1}{r_{12}} x_{s}^{*}(2) x_{s}(2) d \tau \sum_{\lambda \neq s}^{N} \sum_{s}^{N} c_{r i}^{*} c_{\lambda j} c_{s j}^{*} c_{s i} \tag{8.5}\\
&(\text { Conded })
\end{align*}
$$

i.e. $\quad K_{i j}=A \sum_{r=1}^{N}\left|c_{r i}\right|^{2}\left|c_{r j}\right|^{2}+B \sum_{r+\infty}^{N} \sum_{r i}^{N} c_{r i j}^{H} c_{s j}^{*} c_{s i}$

$$
\begin{aligned}
& \therefore \quad E_{g}=\sum_{i=1}^{n} I_{i}+\sum_{i}^{n} \sum_{i j}^{n}\left[2\left\{A \sum_{i=1}^{N}\left|c_{r i}\right|^{2}\left|c_{r_{j}}\right|^{2}+B \sum_{i=1}^{N} \sum_{j}^{N}\left|c_{r_{i}}\right|^{2}\left|c_{s i}\right|^{2}\right\}\right. \\
& \left.-\left\{A \sum_{r=1}^{N}\left|c_{r i}\right|^{2}\left|c_{r j}\right|^{2}+B \sum_{\substack{i+s \\
\text { (inded) }}}^{N} c_{n i}^{N} c_{r j}^{*} c_{s j}^{*} c_{s i}\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
& \text { (fonded) } \\
& \left.\left.\sum_{r \neq s}^{N} \sum_{s i}^{N} c_{r i j}^{*} c_{r i j}^{*} c_{s i}^{*}\right\}\right] \tag{8.6}
\end{align*}
$$

Application to soma hydrocarbons.

Benzene

The $j^{\text {th }}$ molsoular orbital ψ_{j} in benzene is
given by

$$
\omega_{j}=\frac{1}{\sqrt{6}} \sum_{r=1}^{6} e^{2 \pi i r i / 6} \chi_{r}
$$

whore (for the ground state molecular orbitals) $j=0, \pm 1$.
Substituting these values in equations (4) and (5)
we have

$$
\begin{aligned}
& J_{00}=J_{-1-1}=J_{11}=J_{0-1}=J_{01}=J_{-1}=\frac{1}{6} A+\frac{1}{3} B ; \\
& K_{0-1}=\frac{1}{6} A+\frac{1}{6} B ; \quad K_{i,-1}=\frac{1}{6} A-\frac{1}{6} B ; \quad K_{01}=\frac{1}{6} A+\frac{1}{6} B
\end{aligned}
$$

In the equation

$$
\begin{aligned}
E_{g} & =2 \sum_{i=1}^{n} I_{i}+2 \sum_{i>}^{n} \sum_{j}^{n} J_{i j}+\sum_{i=1}^{n} J_{i i}-\sum_{i>j}^{n} \sum_{j}^{n} K_{i j} \\
& =2 \sum_{i=1}^{n} I_{i}+2\left(J_{0-1}+J_{01}+J_{-11}\right)+\left(J_{00}+J_{-1-1}+J_{11}\right)-\left(K_{0-1}+K_{i-1}+K_{c}\right.
\end{aligned}
$$

we substitute the above J and K values, and the fact that $2 \sum_{i=1}^{n} I_{i}=6 \alpha+8 \beta_{0}$

$$
E_{g}=6 o<+8 \beta_{0}+A+\frac{17}{6} B
$$

Using ragi orthogonal molecular orbitals (ion
which the $C_{z y}$ were obtained by applying G_{28} symmetry to benzene) o the resulting energy is slightly different o namely

$$
E_{g}^{0}=60 x+8 \beta_{0}+\frac{13}{12} A+\frac{11}{4} B
$$

Other moleculeg

A conouter program was written to caloulate E_{g} from the eigenvalues and eicenvectors obtained from a Hückel-type computation, and the results obtained for some hydrocarbons are listed in Table XII. The last three summation terms in equation (3) have also been recorded, for purposes of checking. On examining these quantities it now appears that the lirst two summetions, namely $\sum_{i>j}^{n} \sum_{i}^{n} J_{i j}$ and $\sum_{i} J_{i i}$ nood not have boen computed for the calculation of E_{g} sinoe although not obvious from equation (6), column 5 of the table shows that the sum $2 \sum_{i>}^{n} \sum_{i}^{n} J_{i j}+\sum_{i=1}^{n} J_{i i} \quad$ is in each case simply $\frac{1}{4} N A+\frac{1}{2} d B \quad$ where N and b are respeotively the number of C atoms and the number of $C-C$ bonds in the molecule. Thia means that as far as the coulomb integrals Jij are concerned, the coefiicients of the atomic coulomb integral A and of the bond coulomb integral B in the enercy expression are proportional respectively to the number of atoms and to the number of bonds in the molecule, a fact which minht be erpeoted from simple considerations. The only components of the repulsion energy which depend upon the π electron distribution (detormined by the matrix (), therefore, are the terms involving the

 	966 $667^{\circ} 9+V 100000^{\circ} \varsigma$ q00000s.si $*$ voococs ${ }^{\circ} 9$ ש000000 $8 \rightarrow v 66656 \%^{\circ} \mathrm{C}$ $4166566^{\circ} \mathrm{L}$ * $8000005^{\circ} \mathrm{L}$ 186656 $65^{\circ} \mathrm{S}$ * $7666667^{\circ} \mathrm{C}$ $8000000^{\circ} \mathrm{Z}$ \& $\mathrm{V} 00000 \mathrm{~S}^{\circ} \mathrm{I}$ 【ท8L665 ${ }^{\circ}$ - 	TAxoydxa อแงษี่อxอท อะอตโสบก อus. - 1 180. ตueacerin ousocazad - so पămos) oxazuen อwor Ays
	$2+\sqrt{2} \frac{1}{3}$	ขrmoerom

oxaharge integrals $K_{i j} ;(3)$ ana (6) may consequent ry be written move simply as

$$
\begin{aligned}
& E_{g}=2 \sum_{i=1}^{n} I_{i}+\frac{1}{4} N A+\frac{1}{2} b B-\sum_{i>j} \sum_{i j} \\
& E_{g}=2 \sum_{i=1}^{n} I_{i}+\sum_{i}^{n} \sum_{i j}^{n}\left[A\left\{\frac{1}{4} N-\sum_{r=1}^{N}\left|c_{r i}\right|^{2}\left|c_{r j}\right|^{2}\right\}\right.+B\left\{\frac{1}{2} b-\right. \\
&\left.\left.-\sum^{N} \sum_{i \neq}^{N} c_{r i}^{N} c_{r j} c_{s j}^{N} c_{5 i}\right\}\right]
\end{aligned}
$$

If accurate values of the heats of combustion or of hydrogenation were know fox these molecules, the values of the parameters of, β_{0}, A and B could be calculated empirically, in a similar way to the calculation described in the paper entitled "An Empirical Determination of the Eucken parameter β_{0} and of the $C C$ and CH Bond Energies in Aromatic Hydrocarbons", in Appendix D. However, the presence of the two extra parameters A and B introduces too much uncertainty into the get of simultaneous equations to enable even approximate values of the parameters to be calculated, using the currently available thermometric energy values.

8.2 The pirst ezodtad singiet state If

The Pixst exreicod gtate results from the promotion of an oleotron in the highost ocoupied to the lowest unoocupied molooular orbital. The gtate wave function may be vriften as a linear combination of two wave functions Ψ_{p}^{\prime} and $\Psi_{p}^{\prime \prime}$:

$$
\begin{equation*}
\Psi_{\hat{p}}=\frac{1}{\sqrt{2}}\left(\Psi_{p}^{\prime} \pm \Psi_{p}^{\prime \prime}\right) \tag{8.7}
\end{equation*}
$$

where $\mathbb{E}_{p}^{\prime}=(N!)^{-\frac{1}{2}}$ det $\left|U_{1}(1) \bar{U}_{1}(2) \ldots \ldots U_{n}(N-1) \bar{U}_{n+1}(N)\right|$
and $\quad \Psi_{p}^{\prime \prime}=(N!)^{-\frac{1}{2}} \operatorname{det}\left|\psi_{1}(1) \bar{\psi}_{1}(2) \ldots \bar{\psi}_{n}(N-1) \psi_{n+1}(N)\right|$
(Ψ_{p}^{\prime} and $\Psi_{p}^{\prime \prime}$ difrer only in the spin part of the wave funcion and are therefore orbitally and energetically degenerate. They therefore appear with equal weight in (7)). The upper gign in (7) leads to one of the triplot atate wave functiong. and the lower one to the singlet aitate, whioh is or interest in the caloulation of transitions to the ground state。

$$
\text { Lhe anosgy } E_{p}=\int P_{p}^{*} \mathbb{Y}_{p} d t \quad \text { of the singlet }
$$

firge oxcited state, on aubstituting for \mathbb{I}_{p} and 路 from (7) and (1), becomen

$$
E_{p}=\frac{1}{2}\left[E_{p}^{\prime}+E_{p}^{n}-2 \int \Psi_{p}^{\prime}\left\{\sum_{i=1}^{n} H(i)+\frac{1}{2} \sum_{i=1}^{n} \sum_{i}^{n} \frac{p^{2}}{\lambda_{i j}}\right\} \Psi_{p}^{\prime \prime} d t\right]
$$

where E_{p}^{\prime} and $E_{p}^{\prime \prime}$ are the energies of the states Ψ_{p}^{\prime} and $\Psi_{p}^{\prime \prime}$. However, since these states are degenerate but orthogonal because of their spin functions. the term $\int \Psi_{p}^{\prime} \sum_{i} H(i) \Psi_{p}^{\prime \prime} d t$ is zero. The above equation therefore simplifies to

$$
\begin{equation*}
E_{p}=E_{p}^{\prime}-\sum_{i \neq j} \sum_{p} \Psi_{p}^{\prime \dot{r}} \frac{e^{2}}{r_{i j}} \Psi_{p}^{\prime \prime} d \tau \tag{8,8}
\end{equation*}
$$

E_{p}^{\prime} may be evaluated using (2), and the second term by multiplying the two determinants Ψ_{p}^{\prime} and $\Psi_{p}^{\prime \prime}$ together with the factor $e^{2} / r_{i j}$ appending tho molecular orbitals ψ in terms of atomic orbitals \mathcal{A}, and integrating over orbitaland spin-space. All the terms in (8) will then involve only the four parameters α, β_{0}, A and B.

The energy of the lowest-energy singlet-singlet transition mich is usually assumed to be responsible for Clary's prebends) is then the difference between \mathbb{P}_{p} and I_{g}. Since Ha appears as a team common to both these energies, the pobend transition energy becomes a function of only the there parameters β_{0}, A and B.

How the expression for E_{p} contains terms which are very tedious to evaluate, and we shall consider the ground and excited states of a molecule to be described purely by the highest bonding and lowest antibonding molooulas orbital. treating the other π 3loctrons as a proposed shell.".

Making this approximation, the energy of the pastato is $E_{p}=I_{-1}+I_{1}+\int\left|\psi_{-1}(1)\right|^{2} \frac{1}{r_{n}}\left|W_{1}(2)\right|^{2} d t+\int \psi_{-1}(1) \psi_{1}(1) \frac{1}{R_{12}} \psi_{-1}(2) \psi_{1}(2) d t(2) d t$
where I_{-1} and I_{1} are respectively the energies of the highest bonding and of the lowest antibonding Hückel molecular orbitals. Expending the two molecular integrals in terms of atomic integrals, and making use of the Pople approximations described in $\$ 8_{0} 1$, we have

$$
\int\left|\psi_{-1}(1)\right|^{2} \frac{1}{r_{12}}\left|\psi_{1}(2)\right|^{2} d t=A \sum_{i}^{N} c_{r_{r, 1}}^{2} c_{r_{, 1}}^{2}+B \sum_{\substack{r_{i j} \\ \text { (bonded) }}}^{N} c_{\lambda_{1}, 1}^{2} c_{s_{2,1}}^{2}
$$

$$
\int \psi_{-1}(1) \psi_{1}(1) \frac{1}{r_{12}} \psi_{-1}(2) \psi_{1}(2) d \tau=A \sum_{\lambda}^{N} c_{r,-1}^{2} c_{\lambda, 1}^{2}+B \sum_{\substack{\lambda \neq s \\ \text { (bonded) }}}^{N} \sum_{\lambda_{,-1}}^{N} c_{r_{, 1}} c_{s,-1} c_{s, 1}
$$

$$
\begin{equation*}
\therefore E_{p}=I_{-1}+I_{1}+2 A \sum_{r}^{N} c_{r,-1}^{4} \tag{8.8}
\end{equation*}
$$

The explanation of the last step is as follows. In an alternant aromatic hydrocarbon, $C_{x, 1}= \pm C_{P_{0}-1}$, the sign depending upon whether the carbon atom f is a member of the arbitarily assigned "starred" or "unstirred" set. In an alternant aromatic hydrocarbon, any bond res must bo formed between two atoms of different gets, and so
 $-C_{T,-1 C_{M}^{2}}^{2},-10$ and so the coefficient of B in \mathbb{B}_{p} vanishes.

For comparison with the above treatment of the first emoited state wo require to calculate the anergy of the ground stave considering only the doubly-fillod highest bonding molecular orbital $\quad(-1$. This energy is

$$
E_{g}=2 I_{-1}+\int|\psi(1)|^{2} \frac{1}{r_{12}}|\psi(2)|^{2} d t
$$

Expanded in terms of atomic orbitals this becomes

$$
E_{g}=2 I_{-1}+A \sum_{r}^{N} c_{r_{n-1}}^{4}+B \sum \sum c_{r,-1}^{2} C_{s_{2,-1}}^{*} \quad \text { (8.10) }
$$

The energy of the poband transition is therefore the difference of (9) and (10):
$E_{p}-E_{g}=I_{1}-I_{-1}+A \sum_{\Omega}^{N} c_{\lambda,-1}^{*}-B \sum_{\substack{i \neq s \\ \text { (forded) }}}^{N} c_{r,-1}^{2} c_{s,-1}^{2}$
and substituting $I_{ \pm 1}=\alpha \neq\left|x_{1}\right| \beta_{0} \quad$ where I_{i} is the "Fucker number i of the highest bonding molecular orbital, wo have
$E_{p}-E_{g}=-2\left|x_{1}\right| \beta_{0}+A \sum_{i=1}^{N} c_{\gamma,-1}^{4}-B \sum_{\lambda \neq s}^{N} \sum_{s}^{N} c_{\lambda,-1}^{2} c_{s,-1}^{2}$

Results.
Using the molecular orbitals calculated using Simple Hückel theory, the coefficients of A, B and β_{0} are shown in Table XII :

Table XIII

Molecule	$\left\|x_{1}\right\|$	$\sum_{\lambda}^{N} c_{\lambda,-1}^{4}$	$\sum_{r=1}^{N} \sum_{r=1}^{N} c_{r,-1}^{2}$ (bonded)	$p_{\text {expate }}\left(\mathrm{cm}^{-1}\right)$
benzene	$1.00000 \beta_{0}$	0.16656\%	0.333333	48,356
naphthalene	0.6380380	0.150000	0.119098	34,900
anthracene	$0.38535 \beta^{\circ}$	0.128798	0.066258	26, 4.50
tetracena	$0.29496 \beta_{0}$	0.104669	0.048155	21.150
pentacene	0.2996930	0.092667	0.027355	17,380
hezacene	0.3693930	0.083462	0.019066	14,590

Since three equations are surficient to detcrmine the unknown parameters β_{0}, A and B, the figures for naphthaleno, totracene and pentacene (benzene showed anomalous behaviour) were substituted inbo qquation (11), and the parameters wore thereby calculatod to be os followa:

$$
-132^{\circ}
$$

When these values are suostituted into (11), the calculated eransition energies of the p-bands for anthracene and hexacene are found to be 24,511 and $14,664 \mathrm{~cm}^{-1}$ respoctively. The volues found by clar are 26,450 and $10,590 \mathrm{~cm}^{10}$.

The value os β_{0} oalculated here is gomewhat greater in magnitude thar that caloulated (s6.\&) negleeting elootronio repulsions (0687kcal.mole-1). This is probably because In the lettor case (the Hïckel method) an implicit allowance mas mode for theso repulsiong and so the onerey valuo os β o is increasod.

It in lizeresting thet the veluo of A, whioh if the repulaton energy betweon two electrons in the same abomic orbibal, i. $\theta_{0} \int\left|x_{r}(1)\right|^{2} \frac{e^{2}}{\gamma_{12}}\left|x_{\lambda}(2)\right|^{2} d \tau$ (cailed by pariser and Parr^{37} the (11/11) intogral) is 80 close to the value caleulated by Parisor and Parp (11.08ev) from ionigation potentials and eleotron affinities. The quantity B fis the repulsion betwoen two olectrons at a bond length (\sim, 4 A) apart, and is sometimes called the (11/22) integral. Its value should therofore be less than thet of A, though from our calculation, the opposite is trua. The cause or this anomsly is probably aue to the

$$
-133-
$$

fact that $\hat{\text { fhe }}$ calculation of B involves a very small difference batween two large quontities, thus resulting in an inacouracy in the calculated value of this quantity.

$$
-130
$$

Repegeaces

1．Wo Hickel， 2 R Bryesk， 70,204 （ 1938 ）

63． $41(2941)$.

4．C．A。Coulzen，EEOE，Rov．Soco $4159,413(1939)$ ．

26．321（2952）。
6．M．Daudel，Ho Lefober and Co Roser，Quantan Chemigetyo Intoracience Rushiaheras．Now York（1959）．
 Jolan wiley \＆Some，Inco，Nev Yorit（1962）。
8．T．M．Goowiwin d．Whem．Soe 2950， 285.

10．H．Clar gevericerran 5， 98 （1959）。

 Congebnicn Vogate IV，Ceatre de Chinio Theorique de France， Paria（2055）．

 Thheea（1960）．

 Camad．Ja Rive 3 ． $350(1056)$ ．

 corrector values in hors 2R．

 Lemedtac in iber．20．
38. स. Gias, E. Grea, Sos. (1959) 249.
32. D. B. HCClume : S. Gicer Physo 29, 1256, 1668 (1954);

 Acmedmic Peobmo Nom York (1962); ppo175-182.
 Luboratosy. Hid. Stationery 08Rice, London (1961).
 (in prema).
36. J. A. Pople, Tranbactions of the Faraday Society, 49, 1375 (1953). 37. H. Pariser and I. G. Parr, J. Chem, Phyoon 21, 466, 767 (1'553)。

Abstract

APPLNDIX A

Eneagy eigegvalues, bond ordeze, bond lenghs and β^{1} values of asze bencenojd aromstic hydzocarbons as calculeced naing the Coulann and Goodrin bond order/ bond Iength curye and the Mallikeng Riecke and Brotn bond length $/ \beta^{1}$ value curve.

An asterials (\%) denotea the eneray eigenvalues and bond orderg calculated hy other workerm, and Pound in Ref. 16.

Table 1: Anthatacenc
(a) linezgy cigenvalueg axi
(b) Bond orders, bond lengtisg and β° vaiues.

Bond	$\mathrm{p}^{\text {T }}$	$\mathrm{I}^{\text {I }}$	$\beta^{0 /}$	$p^{\text {II }}$	$\mathrm{F}^{\text {III }}$	$\beta^{\text {III }}$	$p^{\text {IIII }}$	$2^{\text {IIII }}$	$\beta^{\text {III }}$
12	. 535	1.429	0.860	. 490	1.447	0.758	. 437	1.476	0.750
14	. 738	1.370	1.065	. 787	1.352	1.095	. 827	1.357	10111
23	0.485	2.850	0.800	-486	30449	0.735	0498	1.443	0.808
26	. 606	1.2403	0.945	. 630	1.397	0.972	. 647	1.392	0.990
45	. 586	10410	0.920	. 520	1.421	0.842	. 464	1.460	0.750

mean $=.604$

(b) Bond orders, bond Henctha and $\beta^{\text {d }}$ valuon

Bomd		$\beta^{1 /} \mathrm{R}^{\text {II }} \beta^{1 / \mathrm{II}}$	$p^{\text {IIL }} E^{\text {III }} \beta^{1 / \mathrm{IL}}$
13	-618 1. 20000.960	.665 1. 3881.003	. 7031.3778 .039
17	-584 10.4120.220	. 584.104120 .920	. 570 1. 41780.908
23	.5301.439 0.855	0.87618 .45350 .716	. $3951.502 \cdot 0.662$
25	.712 1.3701 .0667	. 295103621.099	. 8501.3551 .118
34	. 0475 1.4.454 0.785	. 457 H046is 0.760	04671.45880 .742
56	-581 1. 41200.915	. 5081.43390 .827	${ }_{0} 43551.4780 .0 .726$
78	. 4581.86630 .760	.438 1.8.86 0.730	. $46011.462 \quad 0.765$

[^2]
(b) Bond ordese, Bond lengths and $\beta^{\text {² }}$ valuem

Bond	$p^{2+1} x^{1} \beta^{1}$	$1^{11} x^{1 /} \beta^{11}$	p^{121}	2^{11}	$\beta^{1 / \Lambda \lambda}$
13	. 5791.4150 .915	. 5682.4170 .900	. 543	1.420	0.870
15	${ }_{0} 6221.3990 .965$.6731.3851.013	. 713	1.375	1.048
25	0.5291 .4320 .853	0.4711 .4560 .731	. 4.17	1.489	0.698
27	.7421 .3691 .067	. 7981.3611 .100	. 840	1.356	1.115
34	. 451.1 .4660 .750	04171.48890 .598	. 418	1.4888	0.699
39	. 5961.4070 .930	.615 1.401 0,956	. 627	1.398	0.969
56	. 4721.4550 .782	.446 1.471 0.744	. 433	1.479	0.723
78	.5791 .4120 .915	.5031 .4410 .822	${ }_{0} 440$	1.475	0.734

mean: 0587
Table s: Mexacene
(b) Bund orders, bond lengthe and $\beta^{\mathbb{1}}$ Faluew

Bond	$p^{\text {I }}$	$2^{\frac{1}{2}}$	β^{11}	$\mathrm{p}^{\text {II }}$	$3^{\text {III }}$	$\beta^{1 / 2}$	$\mathrm{p}^{\text {IIIX }}$	$5^{\text {II }}$	$\beta^{\text {dIIL }}$
14	. 599	10406	0.938	. 627	1.398	0.970	. 635	1.390	0.996
110	. 590	1.409	0.926	. 598	1.407	0.937	. 596	1.408	$0.93{ }_{4}$
24	. 577	1.413	0.910	. 561	1.420	0.892	. 526	1.421	0.848
26	. 623	1.398	0.963	. 677	1. 384	1.027	.738	10.378	1.061
36	. 528	1.438	0.853	-4699	1.457	0.736	- 394	1.503	0.660
38	-7 78	1.369	1.068	. 799	1.362	1.101	. 852	1.355	1.118
45	-4488	1.468	0.74 .5	${ }^{2} 808$	1059\%	0.683	- 4.01	1.498	0.672
67	0478	1.455	0.781	0482	10.403	0.738	0427	1.483	0.713
89	0.578	10433	0.923	- 508	2, 4.45	0.819	- 427	1.483	0.713
1012	0.484	1.4270	0.740	-400	10498	0.669	.393	1.503	0.659

seam $=0.583$

Tabre 5: Phemasablionc
(a.) Wargy eigenvalues mis

C_{5} zyra.	7.	IT	IIL
$A^{\text {a }}$	2.43276	2.197445	2.176692
	1.58673	1.4881947	1.4449852
	1.30580	1.217168	H. 190297
	0.60523	0.656614	0.703350
$A^{\text {II }}$	\$.95063	1.882546	2.894248
	1.14238	1.059776	1.048613
	0.76905	0.756552	0.784630
$\sum_{i}\left(-x_{i}\right)$	9.72458	9.251750	9.246983

(b) Bond orders, bond lengtha and β^{2} valuea

Bond	$\mathrm{p}^{1 / 4}$	$\mathrm{I}^{\text {I }}$	β^{1}	0^{11}	$5^{\text {III }}$	$\beta^{\text {III }}$	$\mathrm{p}^{\text {ITI }}$	$5^{\text {III }}$	$\beta^{\text {III }}$
12	. 575	10484	0.910	. 577	104 44	0.912	. 578	1.418	0.912
16	. 506	10.441	0.825	-439	1.4875	0.735	. 388	1.511	- 0.618
18	. 542	1.426	0.867	- 583	1.412	0.919	. 6028	1.399	0.966
23	. 707	1.377	1.042	. 725	1.372	1.057	. 733	1.373	1.062
34	. 623	1.398	0.962	. 598	1.406	0.938	. 590	1.409	0.928
45	. 702	1.378	1.037	. 720	1.383	1.053	. 728	1.372	1.059
58	. 590	1.408	0.925	. 590	$1{ }_{2} 409$	0.927	. 588	1.410	0.925
67	. 775	1.364	1.088	. 831	1.357	1.112	. 872	1.353	1.12\%
89	.461	1.461	0.766	. 406	1.495	0.680	-351	1.531	0.635

Taibe 6\% Pcatophane
fe. Lhergy atgervalues ant

(b) Bond orders, Bond lexgethe and β^{1} veireo

Bond	$p^{\text {P }}$	$5^{\text {s }}$	$\beta^{2 E}$	$8^{\text {IT }}$	$z^{\text {IJ }}$	$\beta^{1 \mathrm{E}^{\text {2 }} \text { 2 }}$	$\mathbb{w}^{I M}$	$\mathrm{m}^{\text {ITI }}$	$\beta^{\text {PLIL }}$
12	. 578	1,483	0.918	. 570	1.487	0.902	. 553	10.820	0.879
180	. 633	12389	0.997	.706	1.397	2.042	. 73.	1.370	1.065
23	- 548	10.424	0.875	- 52	1.435	0.339	-494	1.4.45	$0.78{ }^{4}$
27	- 988	1.4484	0.885	. 539	1. 2.35	0.839	. 597	10.420	0.885
38	- 728	H. 378	1.058	. 767	1.36\%	B.08t	.793	1.362	1.098
45	. 596	1. 406	0.932	-5443	B. 220	9.875	- 509	1. 4.39	0.829
56	- 729	1.372	8.059	. 769	1.365	3.086	-795	1.362	1.099
67	. 54.5	1. 0225	0.870	. 5 发 4	1.8837	0.832	- 890	1.4447	0.762
78	. 934		0.989	. 579	$1{ }_{0}^{8} 83$	0.918	. 559	10.220	0.883
89	-693噱	18.395	0.926	.688	1.5E8	In 028	. 729	1.372	1.059
910	- 902	1-463 3	0.820	.495	1.885	Q.793	0.490	1.4447	0.762
912	- R36	2.250	0.798	-2894	2.503	0.6601	. 215	1.555	0.525
30.28	- 435	$1{ }^{1} 0483$	0.725	. 349	20.532	9.6035	. 296	1.572	0.483
1283	. 790	I. 26.8	3.092	. 358	20.35	2.120	. 905	1.350	8.135

(b) Bond osders, Bomrd Lomgths and ficazues

Bend	m^{73}		$\mathrm{m}^{\text {d }}$	$8^{\text {IT }}$	$\mathfrak{z}^{\frac{1}{2}} \beta^{2 / 2}$	$\mathrm{P}^{\text {III }}$	$5^{1 \pi 8}$	$\mathrm{p}^{18 \mathrm{~L}}$
12	-623	1.396	20.970	-621	1.403 0.958	. 600	10. 204	0.948
128	. 695	\$. 379	1.0639	. 709	1.396 5,042	. 725	3.375	E04\%
23	. 700	2.378	1.036	. 72.5	\$. 375	-727	3037 ${ }^{3}$	1.051
38	-581	1.8988	0.985	.590	2.82000 .927	. 597	${ }_{10}{ }^{50} 907$	0.936
45	- 2993	$3_{0} 8.846$	0.820	083 崖	3.8920 .698	- 341	12.538	0.570
438	- 58.8	1.4285	0.873	. 590	1.40900 .927	-629	1.397	0.988
56	. 783	1. 3.5	1.092	. 849		. 893	1.358	2.130
67	-494	1.80846	0.820	$0{ }_{0} \tan _{4} 9$	10 29210.695	- 342	1.538	0.572
78	-628	8.398	0.989	. 675	1. 2.884 .10056	. 708	1.376	1.0045
786	. 500	10.428	0.818	0496		. 50 h	20 dist	0.822
89	- 590	1.4509	0.925	. 598	3.409 0.928	. 578	10418	0.983
910	-582	1.426	0.9297	. 507	3084000.826	. 479	10452	0.793
93	0.485	1.4825	$0.88{ }^{\text {a }}$	- 383	10437 0.835	. 547	10425	$0.88{ }^{4}$
3018	. 732	1.378	10062	-77	2.36 星 1.0089	. 802	11.360	1.302
128	. 593	1. 1.07	1.928	,538	1. 22010.868	\bigcirc	80.447	0.817
1215	. 738	1.382	1.060	.773		. 802	2.360	1. 101
1314	. 345	1.4285	0.872	- 52	1.404880 .832	- 483	$1{ }^{1} 4.40$	0.798
325	. 584	2, 8.80	0.928	- 583	104120.918	. 572	8.426	0.904
1516	-644	1.391	0.9990	-692	\$0280 1.050	.719 .810	8. 373	1.052 0.512
1617 1718	${ }^{0} 8.488$	1. ${ }^{2} 698$	0.785 0.938	- 374 .602	1.515 1.0 .659590 .9484	- 310 .608	20590	0.5818
1718	. 597	2.406	0.922	.603	$1.04050 .924{ }^{2}$	-600	Sorat	0.82

Table 8: Chryseme
(a) Lnergy exigenvalues - Hi

c_{2} вуми。	T ${ }^{*}$	IT	EII
A	2.4990	2.288365	2.211558
	1.7008	1.6494414	1.646265
	1.2858	1.200426	1.185362
	0.7923	0.738649	0.758870
	0.5208	0.570916	0.680398
B	2.1655	2.012092	2.009877
	1.5398	1.488406	1.8853109
	3.2364	1.096895	2.077060
	0.8753	0.891976	0.902400
$\sum_{x}\left(-x_{2}\right)$	12.5950	18.870540	11.864890

(b) Bond oxdery bond lengetm and in valuex

Bond	$\mathrm{p}^{\text {I* }}$	$z^{\text {I }}$	$\beta^{\text {I }}$		m^{2}	$\beta^{\text {PII }}$	$\mathrm{p}^{\text {I }}$	$\mathrm{m}^{\text {I }}$	$\beta^{1 / 1}$
12	. 754	1.367	1.075	. 802	1.360	1.102	.83\%	1.356	1.113
19	. 538	1,428	0.863	. 490	1.447	0.806	0449	1.469	0.747
23	. 521	1.435	0.842	-47	1.456	0.781	. 432	1.480	0.721
34	. 568	1.416	0.900	. 562	1.419	0.892	. 554	1.422	0.883
38	. 535	1.429	0.860	. 572	1.416	0.905	0609	1.403	0.950
45	-712	1.376	1.046	. 736	1.370	1.064	. 750	1.368	1.074
56	. 617	1.400	0.958	. 586	1.411	0.923	- 570	1.417	0.902
67	.707	1.377	1.042	. 731	1.371	12046	0.946	2. 368	$1.00{ }^{\text {ctict }}$
78	. 583	1.4.41	0.915	- 578	1. 4.415	0.909	. 564	10419	0.895
810	$0 \operatorname{lig} 76$	Ho45	0.786	0848	180474	0.737	0409	1.494	0.684
910	. 573	1.485	0.905	. 637	1.395	0.980	-6948	1. 379	1.032

Table 9: 3-d beazopicamorneme
(a) Mrexgy aifenvelues - 3

(1) Bond arders, Hord Lougetan and β^{3} velues

Bond	p^{p}	$E^{\text {E }}$	β^{15}		$2^{\text {IS }}$	$\beta^{1 / 2}$	$3^{3 T E}$	$5^{T / 5}$	$8^{32^{2 / 5}}$
12	. 578	1.483	0.923	. 570	$\mathrm{B}_{0} 888$	0.902	. 570	10489	0.803
16	. 533	10830	0.856	. 570	1.888	0.002	-692	1.399	0.964
19	- 889	10. $3_{3} 87$	0.805	- 8 的 6	12.8505	0.759	0372	1.51.8	0.625
23	0809	1.377		- 33	2036	8.062	. 285	1.359	1,069
3	-686	3.8000	0.95]	- 585	$88_{8} 8 \mathrm{BE}$	9.922	. 578	$1{ }^{1} 815$	0.907
45	. 712	1. 386	1.046	. 736	8.370	1.065	-789	1.368	3.072
56	. 570	1.4 .416	0.902	-5963	$11_{0} 459$	0.895	-560	1. 8.820	0.890
67	- 519	2.836	0.839	0469	$1{ }^{1} 4588$	0.778	a 414	1.498	0.698
78	. 762	1.356	1.080	. 809	1.359	1.105	0681	1.354	1.123
810	$\bigcirc 522$	1, 8.35	0.845	. 8375	10454	0.785	- 384	1.509	0.646
910	. 584		0.906	. 638	1.394	0.981	. 769	8.365	1.086

Table 20 P Picome
(a) hnergy engenvanues -az

		I* ${ }^{\text {I }}$	Th
	$A^{\text {I }}$ $A^{\text {II }}$		2.224165 1.843549 1. 4.70898 1.046319 0.992512 0.578872 2.030793 1. 526048 1.202040 D.848055 0.755182
	$\sum_{3}\left(-z_{2}\right)$	15.48816215 .73562	14,898228

(b) Bond oredra, Bomi lengthe and β^{3} velues

Bond	$\mathrm{p}^{\text {I* }}$	$2^{\text {I }}$	$\beta^{1 / 2}$	$\mathrm{m}^{\text {I/ }}$	$\Sigma^{\text {LI }}$	$\beta \mathrm{S}^{\text {M/ }}$	$w^{\text {III }}$	$x^{\text {INE }}$	$8^{\text {EETE }}$
12	- 0^{2} 管是	10, $0_{3} 515$	0.782	- 380	2.512	0.640	. 359	2.525	0.60%
110	. 554	P0, 228	-0.083	. 598	1.800°	0.937	. 553	1.4822	0.881
1212	. 563	3.488	0.892	. 6007	3.404	0.948	. 650	2.391	0.992
23	.586	1.480	0.920	. 591	. 1.809	0.928	- 585	3.412	0.918
27	. 537	1.1828	0.863	. 293	10.422	0.919	. 688	1.400	0.960
34	. 705	2.377	2,080	. 724	1.373	1.056	. 736	1.370	1.063
45	. 619	1.399	0.960	. 592	1. 409	0.929	. 578	10414	0.913
56	. 710	1. 378	1.045	. 735	1. 370	1.062	. 748	1.368	1.072
67	- 570	10.816	0.902	- 562	1. 480	0.892	. 555	1. 4.422	0.885
78	. 517	1. 4.37	0.356	$0^{89} 9$	1. 0.59	0.786	- 288	1.488	0.725
89	. 758	10.367	B.07\%	. 763	1.356	1.088	. 328	8.358	1. 130
912	- 532	2.430	0.857	-53s	1.420	0.882	0475	10.454	0.76%
10 ll	-732	3.37	10.062	.687	1. ${ }^{1} 882$	1.026	-748	1.369	1.070
1213	0.493	10,486	2.830	0202	1.498	0.672	0840	1. $8_{1} 75$	0.733

(a) Frezey oigravaikec niz

(b) Bond arders bome tongtia and $\beta^{\mathbb{2}}$ values

Bond	p^{12}	$22^{\frac{1}{4}}$	$\beta^{1 / 5}$	$2^{\text {II }}$	5^{3}	$\beta^{3 / 5}$	$p^{1 / 2}$	$2^{2 / 2}$	$\mathrm{el}^{\text {LM }}$
12	. 606	10.803	0.945	. 624	8.399	0.967	. 635	1. 395	0.978
18	. 565		0.395	-60s	20402	0.988	- 648	1.393	0.935
110	- 820	10.485	0.702	-328	2. 350	0.538	. 259	1.636	0.390
23	-686	1.332	H002\%	. 698	1.380	1.030	. 690	1.380	1.029
	-648	1.393	0.985	-633	1-396	0.976	. 638	1.395	0.980
	-689 ${ }^{\text {a }}$	1.392	1.025	. 698	2.380	2.030	.690	1.380	1.028
58	,606	${ }_{10} 8_{2} 03$	0.85	-62\%	± 0389	0.967	-636	1.395	0.979
610	. 653	1. 288	E,000	. 788	1.386	8.050	. 75	1.367	1.076
612	- 575		0.920	-559	1. 2420	0.888	. 596	B0428	0.851
$7 \quad 12$	- 548	$1{ }^{1} 424$	0.075	0.588	30835	0.839	0.497		$0.81{ }^{\text {c }}$
$714 n$. 727	1.392	2.057	. 868	8. 365	1.008	. 792	1.362	1.097
8. 9	- 820	30.685	0.762	-32\%	1.550	0.538	. 23.	2.638	0.326
10 IS	. 513	1-423	0.833	. 503	2.4888	0.832	- 903	$80 g_{4} h_{2} 8$	0.828
12.3	. 503	130489	0.848	. 535	1-8.829	0.858	- 978	1.816	0.905
14.2	. 998	1. 206	0.935	. 548		$0.80{ }^{3}$. 514	30337	0.834

(b) Bond orders, bond Hengthe and cigencalues

Dond	$p^{\text {B/ }}$	$5^{\text {I }}$	$\beta \beta^{\text {d }}$		$5^{5 / 5}$	$\beta^{\text {SK }}$	p^{12}	$s^{M / 5}$	$\beta^{8^{\text {2/X }}}$
12	0858	1. 2.45	0.758	. 390	20.505	0.656	-332	2.545	0.532
110	. 583	1.4.38	0.83	. 330	10.83	0.853	. 562	12.420	0.898
111	. 623	8. 398	0.965	-64tid	1.392	0.989	-655	1.390	0.997
23	-5994	8.408	0.330	-588	$\square_{0} 880 \%$	0.937	-599	10406	0.936
27	-5823	1. ${ }^{2} 295$	0.879	. 586	2.822	0.928	-625	1. 398	0.968
$3 \quad 4$	0.697	1. 389	1.035	0.723	1. $\mathrm{DF}^{5} 5$	1.048	- 720	1.373	1.0.95
45	-626	H. 397	0.968	. 606	10.404	0.984	-601	$\underline{B} \cdot 886$	0.980
56	. 703	18.378	1.039	- 9	3.374	1.052	. 724	1. 373	1.056
67	0.779	10tis3	0.324	. 535	108218	0.921	. 590	1.410	0.926
78	. 488		0.885	$\bigcirc 424$	1.4885	0.709	. 359	1. 525	0.604
89	. 780	1.363	1.098	. 880	2.356	1.335	${ }^{\wedge} 883$	1. 352	1.128
910	0893		0.815	0.824	80285	0.709	- 300	\$.524	0.605
1012	.628	12402	0.952	. 63	1.395	0.982	. 64.8	1.392	0.992

(i) Bond arders, Bond lenfehe and β^{2} vatues

Bond	p^{14}	5^{3}	β^{12}		3^{15}	$\beta^{1 / \mathrm{E}}$	$p^{\text {IT2 }}$	$z^{\text {II }}$	$3^{1 / 2 \mathrm{LH}}$
12	- 51.9	10,436	0.840		1.85	0.773	0, 818	1.488	0.702
110	. 537	A, 4238	0.868	- 508	2.839	9.82\%	0.480	1.447	0.806
112	. 568	10449	0.892	0685	2.408	0.957	0.604	1. 387	8.006
23	-764	1.366	1.088	-885	1.359	1.107	0.850	1.335	E. 118
3 星	. 515	20837	0.835	. 859	10.863	0.763	0. $0_{4} 18$	10492	0.689
45	. 578	80.485	C.005	. 569	\$. 3.78	0.901	0.564	10.418	0.895
49	. 536	1.4298	0.360	. 574	10485	0.208	0.613	1.802	0.95等
56	- 730	1.376	1.045	. 7.38	8.378	1.068	0.743	1.369	1.069
67	-639	11.399	0.960	. 598	1.409	0.923	0.577	20414	0.921
78	-706	E. 97	1.0n3	.728	8.372	1.059	0.720	1.369	3.067
89	033	1-4.37	0.926	0.59	D. 42.24	0.928	0.578	10.486	0.90%
9 22	$0 \cdot 89$	1. $3_{2} 523$	0.790	88	1.8486	0.73	0.394	1.502	0.668
10 It	-7 76	1. 360	1.079	. 882	1.353	1.093	0.805	18.350	E. 108
121.3	-520	8, 035	10.812	-5 51	20 4270	0.838	0.496	B, 484	0.888

Table lis: $3-12$ Remegorylame

5 syman	I*	IT	ITE
a^{8}	9.63859	2.306786	2.290038
	2008009	4.897950	1.488239
	8.5999	1.45182\%	
	1.35342	1028873	1. 267798
	1.00000	0.955273	0.959928
	0.68429	0, 66.4578	0.68266%
$A^{\text {II }}$	2.19906	2.00266	2.0079897
	1.61296	2.539949	1.530808
	1.10504	0.978018	0.992861
	1.00000	0.936343	0.934650
	0.43922	0.486667	0.548382
$\sum_{i}\left(-x_{i}\right)$	15.71257	14,5048984	14.512835

(b) Bond orders, Bond Lengtins and β^{2} Faluos

Bond	$p^{\text {I/ }}$	2^{2}	8^{15}	$\mathrm{p}^{\text {II }}$	$z^{\text {PI }}$	$\beta^{\text {III }}$	$\mathrm{p}^{\text {rIS }}$	e^{1}	$\beta^{288 I}$
12	. 519	1.436	0.840	0867	1.4.48	0.775	. 485	10884	0.710
19	. 550	2.423	0.878	. 53 I	E. 2.830	0.85%	. 516	10.436	0.837
112	. 545	1.4825	0.870	. 588	1.410	0.924	. 632	1.396	0.975
23	. 765	1.365	1.088	. 815	1.359	1.107	-8837	1.355	1.117
	. 513	1.4338	0.853	. 8588	10464	0.768	- $8_{4} \mathrm{E}_{4}$	1.498	0.692
45	. 579	104,2	0.911	. 586	$1048{ }^{4}$	0.922	. 588	1.410	0.925
48	. 530	20432	0.854	. 598	10423	0.897	. 588	10.410	0.925
56	. 688	1.381	1.025	-701.	1.378	1.038	. 712	1.375	1.047
67	-649	1.391	0.992	. 638	8.396	0.974	. 615	10.1201	0.957
$7 \quad 13$	- 628	1.397	0.970	. 665	1.38?	$\underline{1} 0007$. 693	1.380	1.031
811	. 516	80.487	0.836	- tin6	10489	0.802	-4648	1.472	0.741
$8 \quad 13$.537	1.428	0.862	. 548	1.424	0.875	. 557	1.428	0.886
9 10	. 738	1.392	1.062	. 763	1.306	1.082	. 779	1. 353	-.098
1282	. 519		0.839	. 510	1.839	0.329	-499	1.483	0.817
1324	- 4.2 ?	1.8800	0.715	. 38	1.598	0.575	-278	I 6.600	00.8888

Teble 15: Bumaturaceno
(4) herge aigenvaimes wre

(b) Bond ordera, Bann Lengethe anty β^{2} Falues

Bond	${ }^{3}$	\sum^{3}	$\beta^{3^{8}}$	$p^{\text {L/ }}$	5^{51}	$\beta^{33^{\text {IT }}}$			β
22	- 24 L	7. 0.827	0.066	. 508	3085	0.827	$0^{627} 77$	20.453	0.790
15	. 500		0.818	- 898	Iotagis	0.814	. 505	20.4.48	0.883
18	. 960	2.808	0.388	-612	1.4.32	0.953	.625	1.398	0.96%
23	. 710	3.376	11.045	- 74.8	1.368	1.073	. 738	1.363	1.094
34	0.685	2.398	10.068	. 583	1-283	0.986	. 5.382	1.430	0.856
46	.637	1.395	0.930	. 698	1.379	3.035	. 750	1.368	1.078
56	. 528	I, 432	0.853	-525	20.337	0.835	. 490	1.8448	0.306
510	- 5.5	1.425	0.893	0.683	1.888 .7	0.500	. 288	0.10	225
$6 \quad 7$	0425	2.485	0.807	- 2 Sh		0.559	. 258	6.64	0.28
10 BI	. 4.47	20.35	0.700	- 283	$\underline{2} \mathbf{2 6 6}$	0.706	. 362	10.52\%	0.6009

(b) Bond ordere; Bond Banctins asd β^{1} Valueg

Bond	$\mathrm{p}^{\text {I/ }}$	$z^{\text {I }}$	$\beta^{11^{[}}$		$\mathrm{s}^{\text {III }}$	$\beta^{11^{\text {II }}}$	$8^{\text {III }}$	$\mathrm{F}^{\text {III }}$	$\beta^{1 / 1 / 2}$
17	0.690	1.381	1.028	.698	1.379	2.036	0.697	1. 379	1.035
19	$\bigcirc 603$	8.404	0.943	-618	2.401	0.960	0627	1.398	0.970
29	- 428	1.480	0.715	- 320	1.539	0.567	. 258	1.614	D.422
211	. 568	8.489	0.893	. 605	20804	0.988	-645	1.394	0.93?
45	. 63	1.393	0.980	-627	\#. 398	0.970	.629	1.398	0.972

Hond	$2{ }^{2}$	${ }^{1}$	β^{18}	P^{51}	8^{15}	$\mathrm{pl}^{\text {IT }}$		$2^{\text {III }}$	$\beta^{\text {ITRI5 }}$
12	. 60.4	10205	0.983	- 619	1.200	0.960	.628	1.397	0.98!
16	0826	1.483	0.722	. 358	1.5300	0. 5 264	. 239	1.685	0.488
18	. 562	2.429	0.892	. 605	\$.505	0.944	. 682	\$039 ${ }^{5}$	0.996
23	. 689	1.382	2.026	. 697	2.379	1.03	. 696	11.379	3.040
38	.623].70y	0.982	. 628	1.397	0.970	. 638	1. 397	0.987
45	. 689	E. 382	8.027	. 696	1.279	2.03n	. 696	1. 379	1.039
58	. 604	1.405	0.9845	- 620	2.400	0.96?	-629	1.397	0. 285
67	. 538	1.426	0.065	. 268	1.858	0.898	. 603	1. 8.05	0.960
680	-625	2. 398	89.969	. 650	2.398	0.992	. 659	1. 388	2.003
83	0.283	1.888	0.8718	- 376	1.9398	0.560	-254	1.639	O.888

(a) Hergy checnvalise 0 ors

C_{3} gymsa	1	ITH	IKI
$\mathrm{A}^{\text {a }}$	2.593579	2. 278510	2.308638
	2.303636	1.965029	20092598
	1.55\%980	E.t97820	1. 408593
	1.335928	10.296384	3.877489
	1.000000	0.9287816	$0.9787{ }^{\text {a }}$
	0.496978	0.559009	0.628243
$\mathrm{A}^{\text {III }}$	2.015075	1.8802235	10.924.35
	1. 350055	1.208713	3.193978
	1.000000	0.942827	0.960528
	0.718080	$0.609{ }^{2} 26$	0.738500
$\sum_{i}(0.55)$	32.163027	83024599	$33^{29} 90709$

Bond	$p^{\frac{2}{3}}$	3^{2}	$\beta 0^{2}$	\square^{21}	$8^{\text {BS }}$	6^{312}	ETS	$z^{81 / 2}$	$\beta^{2 / 2 T}$
17	068	10.383	1.028	. 697	1.379	2.0469	. 696	1.369	2.039
29	-60	20.408	0,924	. 628	2.800	0.985	-6223	1.398	0.982
23	. 62	1.39	0.969	-663	2.385	8.088	. 67%	1.388^{4}	1.028
29	- $2 \times$		0.728	- 29	3.73	0.622	. 693	3.586	0.538
28	- 32	10.427	0.863	-535	1. 28.8	0.903	-590	1.847	0.985
38	. 65	20 59x	0.993	. 638		0, 394	. 638	1.397	0.987
45	. 633	1. 282	1.023	-694	1.379	H.038	. 698	1.379	8.048
36	0.235	E. 8.2 SI	0.822	-596	10898	0.95	-69\%	80405	0.065
6 13	. 532	10850	0.856	-562	1.829	0.98 明	-959	Ho 810	0.986
6 昞	0.505	Inotats	0.828	- 2480	1. 29.8	0.768	. 393	1.503	0.698
78	.698	E. 393	© 0.932	-628	1.288	0.984	. 63	1.397	0.98%
4. 20	.562	1.489	0.692	-6093	E, 0.05	0.968	. 63	1.397	0.287
2828	-582	1. 8.95	0.838		88_{0}^{885}	0.306	-423	20486	0.788
1348	- 278	1.364	2.090	.838	-5.397	1. 238	-85\%	1.553	$\underline{3} .285$

Table 19: $1,3,5$ triphonytbenazane
(a) Energy eigenvalues $-z_{8}$
(b) Bond orders, bond lengthe and $\beta^{\text {A }}$ valuex

Bomd	$\mathrm{p}^{\text {I }}$	${ }^{\text {I }}$	$\beta^{1 /}$	$\mathrm{p}^{1 / 2}$	$\mathrm{m}^{\text {II }}$	$\beta^{1 \mathrm{II}^{\text {II }}}$	$\mathrm{p}^{\text {IIJ }}$	$\mathrm{m}^{\text {IIII }}$	$\beta^{11^{I I I}}$
12	- 676	20, 364	1.015	. 676	1.384	1.087	0672	1.385	1.015
111	-660	1.3e8	8.001	.662	1.388	1.003	-664	1.388	1.005
212	. 62.9	1.399	0.960	-643	1.393	0.896	. 696	1.389	0.898
38	. 688	1.388	0.963	-648	1.392	0.900	. 698	1.389	1,000
45	. 368	12.920	18.620	-249	20626	0.406	0.86	-	-

Roble 20: maphaybremene

Bond	$\mathrm{P}^{2}{ }^{2}$	$3^{\text {² }}$	8^{2}		$8^{\text {IT }}$	$8^{2 \times \mathrm{Em}}$	$2^{\text {LTX }}$	$⿷^{\text {g }}$	$\mathrm{B}^{1 / 24}$
18	. 678	2.324	3.605	-67\%	1.838	8.023	.672	3.385	3.829
17	. 627	1. 2000	0.960		3.393	0.996	. 692	1.390	1.003
29	. 660	1. 283	2.008	. 653	1.288	1.012	. 664	1.387	1.0日8
$3 \quad 4$. 689	1. 0.31	1.028	. 639	1.381	3.032	.679	1.383	1.0223
35	-68.2	1.8.802	0.953	. 6 \%	1.395	0.990	-6.629	1.393	1.008
57	. 373	1.516	10.650	.259	1.603	0.492	- 296	1.683	0.372

(a) Energy eigenvalues

Table 22 (cona $\left.{ }^{\circ} \mathrm{C}\right)$
(b) Bond ordexs, bond Iengths ama β^{2} values

Bond	$\mathrm{p}^{\text {I }}$	${ }^{2}$	β^{1}	$\mathrm{P}^{\text {II }}$	T	$\beta^{1 L^{\text {L }}}$	$\mathbb{1}^{\text {IISI }}$	-	$\beta^{\text {IIII }}$
12	. 699	1. 378	1.043	. 713	1.375	1.055	. 719	1.374	1.052
126	-625	1.398	0.981	. 606	10404	0,963	. 602	1.405	0.94]
23	. 592	1.409	0.949	. 596	1.407	0.953	. 597	1.407	0.935
34	. 456	1.465	0.786	. 401	1.498	0.709	. 354	1.529	0.595
324	. 543	10.426	0.896	. 580	1.413	0.937	. 683	1.402	0.954
45	.612	10802	0.969	. 623	1.399	0.980	-624	1.399	0.967
421	- 522	1,434	0.872	. 549	10424	0.902	. 582	1.412	0.918
56	. 635	1.395	0.991	. 660	1.386	1.016	.681	1.383	1.021
67	. 425	10184	0.743	. 342	1.537	0.627	- 280	1.589	0.458
$6 \quad 19$. 528	$1{ }_{0} 1_{2} 31$	0.879	. 543	1.426	0.896	. 566	1.418	0.897
78	${ }^{-604}$	1.405	0.961	. 620	1.400	0.977	. 629	1.397	0.972
712	- 562	1.419	0,226	. 608	1.406	0.958	. 629	1. 397	0.971
8-9	-688	5. 381	1.032	. 693	1.380	2.038	. 692	1.380	1.030
910	.638	2.394	0.994	. 632	1.396	0.988	. 636	1.395	0.979
1011	. 688	1.381	1.031	. 698	10380	1.036	. 690	1.380	1.029
1112	. 605	1.404	0.962	. 622	1.399	0.979	.638	1.397	0.974
1213	0423	1.485	0.740	. 338	1.540	0.622	. 275	1.595	0.449
1314	. 605	1.4804	0.962	. 622	13399	0.979	. 631	1.397	0.973
1318	. 563	1.419	0.917	. 602	1.405	0.959	. 629	1.397	0.972
1415	-688	1.381	1.031	. 692	1.380	1.036	. 690	1.380	1.029
1516	. 63	1.394	0.994	.633	1.396	0.989	.636	1.395	0.979
1617	. 688	1.381	1.031	. 692	1.380	1.036	. 695	1.380	1.029
1718	. 605	1.404	0.962	. 622	1.399	0.978	. 630	1. 397	0.973
1819	0483	1. 888	0.740	. 339	1.540	0.622	. 277	1.593	0.452
1980	. 641	1.394	0.996	. 675	1,384	1.020	. 687	1.381	1.026
2021	. 596	1.408	0.953	. 60%	$10^{2} 804$	0.964	. 612	$1{ }^{1} 802$	0.953
2122	- 503	10.448	0.850	- 8480	1.485	0.763	. 388	3.506	658
2223	. 776	10364	1.098	. 830	1.357	\$. 117	. 866	1.353	1.122
23 24	- 502	104422	0.848	. 438	1.2886	0.760	. 385	1.508	0,648
24.25	. 578	10484	$0.93{ }^{4}$. 582	1.4812	0.939	. 586	10411	0.923
2526	. 708	1.377	1.048	. 719	1.374	1.059	. 723	1.373	1.055

Table 22: 3 mat. 9m, 0 dibenapentaphene
(a) Linexgy Ligenvalues

Teale 28 (600nt ${ }^{3}$)
(b) Bond orderes. bomd lenghts and β^{1} velues

Bond			$\beta^{\text {II }}$			$\beta^{\text {2 }}$	$p^{\text {III }}$	$\mathrm{s}^{\text {III }}$	$\beta^{\text {III }}$
12	. 602	1. 8.406	0.958	. 619	1.400	0.976	. 629	1.397	0.971
$1 \quad 14$. 634	1.396	0.990	.661	1. 388	1.012	.668	1.386	1.009
2	. 502	1. 4.482	0.850	. 4438	1.4276	0.761	. 385	1.508	0.647
211	. 51.5	2. 2.386	0.868	. 534	1.429	0.887	. 564	1.419	0.895
3	. 7787	1.364	1.098	. 831	1.357	I. 118	-869	1.353	H. 123
\& 5	. 500	10.4.483	0.847	- 品32	1.489	0.755	.379	2.51	0.639
5	. 578	20444	0.935	. 584	3.412	0.94 B	. 589	1.410	0.926
$5 \quad 10$. 54.4	1. 2.26	0.397	. 588	$\underline{8} 412$	0.939	. 62.5	1.401	0.956
67	. 703	2. 378	2.048	. 787	1.374	S.058	. 728	1.373	1.053
78	-626	2. 398	0.982	-603	1.403	0.965	. 605	1.405	0.0934
89	. 698	E.379	H.402	.781	1.375	1.053	.786	1.374	L.050
910	. 594	3.808	0.958	. 598	1. 8086	0.956	. 602	1. 406	0.940
1018	. 4258	T. 4.48	0.780	. 398	1.503	0. 698	. 385	1.535	0.578
1112	. 625	1. 398	0.983	. 645	1.392	0. 999	. 649	1.391	0.992
1213	. 609	10403	0.966	. 635	1. 396	0.990	. 648	. 39	0.993
1314	. 518	2.437	0.865	. 530	10832	19.0883	. 555	1.422	0.88\%
1316	-495	108485	0.840	-424	1.2885	0.768	- 367	1.520	0.616
1415	. 443	10.473	0.767	. 376	1.514	0.674	. 325	1.550	0.539
1617	. 780	1.363	1.100	. 838	1.356	1.119	-877	1.352	I. 125

(a) Linergy eigenvaluow $-2 z_{i}$

1	IT	TTT
2.525067	2.293729	2.275391
2.989955	2.135487	2.128735
1.968607	1.862506	1.837479
1.598402	1. 5634.50	4.559613
2.4.95587	1. 64481988	1. 4.425457
1. 357875	1.321543	1.314619
2.162639	1.100075	1.097662
2.095007	1.02203	0.998745
0.823052	0.704565	0.793605
0.704514	0.730773	0.750948
0.404791	0.470036	0.522736
25.4396896	15.738867	14.699990

Sabe 23 （combed
（b）Boned orderbo．bond longtas anal β^{3} valuem

Bund	$\mathrm{F}^{\text {H }}$	T	β^{12}		$x^{\text {ET }}$	$\beta^{12 I}$	$\mathrm{p}^{\text {IIIJ }}$	$\mathrm{E}^{1 / 2}$	$\mathrm{pl}^{1 \mathrm{IL}^{\text {IT }}}$
12	． 633	2． 372	1．870	． 772	1．368	1.091	． 797	1．361	18．100
122	－ 580	1.427	0．893	． 507	$10_{0}^{4} 40$	0.856	－482	1．458	0.796
23	．598	10409	0.948	． 540	10427	0.893	－ 506	1． 1.480	0.825
34	． 732	1.378	1－069	． 781	1.364	2.095	． 796	1． 361	1.099
45	.545	1． 828	0.396	． 511	1.438	0.860	－ 485	1.4449	$0.80{ }^{4}$
56	． 589	1． $2 \cdot 20$	0.946	． 295	1.408	0.958	． 593	1．809	0.930
$5 \quad 28$	． 892	2． $\operatorname{Han}_{46} 6$	0.836	． 50		0.848	． 525	1．439	0.88%
67	－698	1． 394	0.993	06	8.385	1．029	－689	1． 382	1．028
78	0460	20862	0.798	－469	1.494	0.720	－ 368	1.589	0.618
729	0896	2．$t_{3} \mathrm{~S}_{2} \mathrm{~S}_{4}$	D．cts	－ 293	2084\％	0.837	－504	1， $8_{4} A_{4} 1$	0.828
89	－546	$\therefore 2.25$	0.89%	－500	1.858	0.856	0679	1.452	0.793
8 8 8^{88}	． 579	2.823	0.939	－643	1.893	0.983	． 695	1． 379	1．035
910	－ 974	1． 2368	1．088	． 78	12.362	1． 103	． 885	1.359	8.806
1011		\．432	0.386	－ 43		0.827	0458	1－464	0.762
1122	－ 367	20428	0.983	－ 55	2.8280	0.212	． 558	1． 4823	0.880
1186	． 53	或里30	0.685	－56	E0 $0_{8} 19$	0.928	． 593	1． 408	0.932
1213	． 718	1．375	10.05	． 83	8， 370	1.072	． 72.8	2.368	1.073
1314	． 623	$\mathrm{E}_{0} \mathrm{I}_{3} 0 \mathrm{E}$	0.972	－58	［0． 4_{2} 且	0.944	． 578	1.8886	0.205
14.85	． 709	3． 3876	1．058	－7	1.371	1.068	．73㣍	1． 369	1.070
151.6	． 5803	20433	0.938	－ 57	20486	0.023	． 562	10419	0.893
1617	04891	1． 4.588	． 820	085	1.466	0.784	． 234	1.4379	0.725
1718	． 523	1．433	． 875	－ 86	2.4588	0.801	0817	1.48	0.698
1819	－ $96.6{ }^{\text {d }}$	80．965	H．092	－81	8.359	8． 314	． 852	$\pm .355$	1．118
1920	－507	20440	0.855	－嗉？	20872	0.778	． 398	1.500	0.666
2022	－620	I． 400	0.978	－ 6	1． 288	B．009	． 677	L． 383	1.018
21 29	－5995	\＄0408	0.952	－6	1.405	0.960	． 599	［1．R05	0.938

C_{R} sytuen	1	IIS	III
A 8	2.596]55	2. 321803	2.287053
	2.287050	2.140138	2.140540
	2.000009	1.848289	1.810337
	1.653862	1.583893	1. 582493
	1.324922	1.295334	1.293585
	1. 1.32684	1.059526	1.028570
	1.000000	0.913584	0.901852
	0.597938	0.588887	0.647570
A^{90}	2. 2389050	2.140538	20140540
	2.65386	1.58399\%	2.5882493
	1.384922	3.29535	2.293583
	2. 26.3078	1.248175	1.244505
	1.000000	0.98358	0.901358
	$0.52 \% 938$	0.590442	0.6425970
	0.535722	0.58882%	0.643455
$\sum_{i}\left(-2 z_{i}\right)$			

(b) Bond arders, bond lengthe and β^{0} vaines

Bond	F^{f}	$\mathrm{S}^{\text {I }}$	β^{88}	$\mathrm{m}^{1 / 2}$	8^{12}	$\beta^{8 / 2}$	${ }^{1 / 2}$	$5^{1 / 5}$	$\beta^{\text {\% }}$ [${ }^{\text {III }}$
$1 \quad 12$. 783	1.378	1.063	. 858	1.36\%	10088	. 788	1.364	1.098
13	- 592	10423	0.905	. 535	10.430	0.882	- 588	1.439	0.834
2 14	. 568	50487	0.923	. 555	10848	0.906	. 533	1.429	0.857
$2 \quad 16$. 665	50.85	2.085	.720	1.375	2.060	. 750	1.368	073
316	0210	Jots93	0.721	- 35	1.597	0.592	. 232	1.628	2
12 E 3	. 6000	2.406	0.927	- 59	1. 4220	0.912	.533	1.8829	.859
1485	- 205	20845	0.853	- 528	104 $4{ }^{\text {S }}$	0.800	. 562	Bober	. 892
16 37	- 53 \%	S0.437	0.863	. 506	1.440	0.85	. 503	20, 2.48	0.821

（a）Lisergy eigenvatuas $-z_{i}$

C_{2} eyma	面盛	II IEX
A	$\bigcirc{ }^{2} 5288$	4．297931 2．2\％2092
	8.9285	1．868925 1.385739
	1． 4.2482	1．383560 2． 354.457
	1.0696	1．007026 2．009194
	0.7866	0.8292010 .349073
B	2.3059	2.1354072 .116235
	1.6588	1．607519 1.567686
	1.48842	1．329802 1．291535
	1．1834	1．098975 2.083850
	0.6843	0.08342500 .711983
	0.4835	－ 0.54065920 .599867
$\sum_{i}\left(-\mathrm{sin}_{\mathrm{i}}\right)$		

（b）Bond ordere，bond hengelas and β° vaiuaj

Bond	p^{12}	${ }^{5}$	β^{3}	p^{15}	$2{ }^{\text {di }}$	$\beta^{\text {d／2 }}$	$p^{\text {DII }}$	$\mathrm{r}^{2 / 2 L^{2}}$	$\beta^{\circ M Y}$
18	0851	2.0866	0.779	． 391	1．504	0.695	． 342	B． 537	0.572
110	． 533	2．8388	0.868	． 529	2．432	0.882	． 558	10422	0．886
1 12	－629	8.396	0.985	－652	1．398	1．005	． 658	1． 389	10000
23	－593	1．0807	0.358	－600	30.806	0.958	.602	10205	0.948
$8{ }^{2} 8$	－3离客	具．426	0.897	． 583	308188	0.940	－635	1， 502	0.957
$3{ }^{3}$	－698	1．359	E． $0^{2} 28$	－710	1.378	1.058	． 785	8.375	9
45	－626	1．397	0.983	－609	Potas	0.966	－606	\＄． 20 OR	0.946
56	． 803	1．394	1．0039	－ 736	8.378	3．097	． 719	1．375	1.057
67	－ 578	$10^{2} 128$	©．933	． 985	50422	0.942	－ 591	1．409	0.92
78	－499		908R5	－ 3 等	1．480	0.758	． 386	3．518	0.633
89	． 978		3.0092	－85	1．358	1－318	． 378	1.353	2.128
9810	． 502	1.4843	${ }^{16}$	－435	10．476	0.756	0383	8．583	0.682
1028	． 605	1－204	0.963	－62\％	1239	0.384	－693	8．394	0，983

(a) Luergy eigenvaluea -aza

C_{2} symma	
A	2.5486\% 2.3068912 .281989
	3.124721 1.9773391 .949379
	10.472225 1.409889 10, $\mathrm{E}_{1} 15129$
	1.38669818 .3365671 .339953
	1,000000 0.956698\% 0.957879
	0.7865040 .7486980 .7488813
	0.348237004143530 .469712
\%	
	1. 2159590.9735280 .939896
	0.970 .9 0, 6301830.663390
5 cosi	13,24196317, 346226 , 312609

(b) Bond orders, bond dexyths and β^{3} vadues

Bond	$\mathrm{P}^{\text {I }} \mathrm{F}^{\text {d }}$	$\beta^{\text {² }}$	$\mathrm{P}^{1 / 2}$	$a^{\text {EI }}$	\% $\mathrm{B}^{\text {III }}$	$\sum^{T I T}$	-	$\beta^{3 / 2}$
12	.758 1.366	2.039	. 808	E. 230	2. 3 D	-842	1.356	2.116
$1{ }^{1} 3$. 53818.430	0,882	. 48	1.452	0.818	- $0^{\text {a }}$ 等	$1 \mathrm{I}_{0}^{4} 78$	0.725
23		0.859	. 0.55	10866	0.763	960	2.493	0.6ex
3 4	-618 1.400	0.978	. 698	1.390	30029	. 678	1.385	200, 8
318	0.49412 .45	0.839	- 290	10.885	0.833	. 508	$1 \mathrm{I}_{2482}$	0.819
	-596 1. 208	0.933	0606	10804	0.963	-608	1.405	$0.94{ }^{6}$
5 面	0.5391 .4884	0.892	- 596	20.420	0.854	. 2489	1.453	0.793
$5 \quad 10$	0.8921 .8487	0.835	$\bigcirc 8.89$	1304.43	0,885	. 521	10423	0.348
67	$0.73{ }^{2} 8.372$	4.0870	. 778	18.763	$1{ }^{1} 097$. 799	1.362	1.103
7 \%	0.5901 .409	0.945	. 538	¢. 428	0.893	.50\%	10.44.4	0.822
89	0.73382 .57	8.980	0778	E.364	1.096	. 793	2. 363	1.100
910	0.548 5.4266	0.895	. 309	1. 04538	0.858	08882	10.450	0.797
1018	0.3911 .8809	0.948	. 598	3. 2006	0.956	. 599	1.406	0.938
3212	0.636 I. 393	0.992	-663	1. 386	1.016	${ }^{\circ} 682$	1. 382	1.022
228	0.3683 .860	0.897	0489	12.458	0.732	-333	8.509	685
13 18	9.5053 .835	0.9382	. 656	1.389	2.009	. 73 Bl	1. 375	3.048

fsi Encmay argervaiuen mz

C_{8} symur	I	IH	ITI
4^{3}	2．568\％7	2．309339	2.278055
	2.3649855	2．165E73	2．850507
	1．9884．55	2．86938\％	1．354908
	1．567392	10 26.518	1． 4.448748
	\＄0320043	2，22989］	1． 298.292
	1． 138555	2.032799	1．019439
	0.72654 .1	0.785495	0.736380
A^{83}	1.971116	1.93538	3．95285 ${ }^{\text {a }}$
	10．4832．307	20 510405	18．886562
	5，213389	1． 5.58838	3．34503
	0.984512	0.938548	0，956053
	0.756852	0．7655．89	$3.80483{ }^{\circ}$
	0.355997	0.850070	0.8 .852887

（b）Eond azders，bond Lergetia and for valueg

Bond	$\mathrm{p}^{\text {d }}$	${ }^{2}$	β^{2}	m^{LI}	$5^{\text {II }}$	$8^{3 / 25}$	9	$\mathrm{g}^{\text {² }}$	$\beta^{8.81 / 2}$
19	． 738	8.378	3．073	－708	1．363	1．800	． 810	$\pm .359$	30132
［ 1.1	0.535	1.4829	0． 1 ¢8	－489	1.485	0.840	－ 862	1．4．42	0．794
2 21	． 608	1．403	0．965	． 632	1．396	0.988	． 632	1．393	0.997
$2 \quad 33$	． 600	1． 406	0.957	． 618	1．800	0.983	． 628	1.398	0.984
$3 \quad 83$	－ 355		0.9008	－58 ${ }^{\text {䍃 }}$	1．8535	0.075	－ 398	10．4247	0．83良
385	． 672	1．3935	3.008	． 737	1． 380	1．973	． 776	20．364	10．098
$8_{4} \quad 5$	． 608	30，40\％	$00_{0} 968$	． 625	1．399	10．988	． 6.96	1．395	0．992
\％ 85	－489	1.488	0.358	． 330	1.585	0.628	． 266	1.605	0.506
417	． 568	8.818	0.983	． 603	2．405	0.960	． 629	1． 397	0.985
56	－695	2．383	3.029	． 688	8． 388	2．033	－693	1．322	1.028
	－685	1．3984	0.996	． 637	2．395	0．993	－642	1.393	0.997
78	－683	［0788	1． 0.203	． 687		2．032	． 638	1．332	3.023
$8 \quad 87$	－ 6008	3． 203	0.965	． 627	1． 298	0.985	． 678	1.393	0.993
910	． 585		0.942	0587	10．332	0.876	． 886	10．849	0.828
1818	－E88		0.322	－ 4.78	1． 0.55	0.815	${ }_{0}^{8982}$	1，4．4．4．98	0．83哏
3318	－ 42	1． 2856	Qomob	0468	2． 86.3	0.795	－ 48.8	20．853	0.320
1536	0.298	$\mathrm{B}_{0} \mathrm{sth}_{4} \mathrm{~m}_{3}$	0.88 .5	－\％${ }^{\text {ang }}$	1.455	0.34 L	－ 435	$1{ }_{3} 8^{2} 669$	$0.78{ }^{\text {a }}$
1818	． 488	$\underline{1}$	0.733	． 327	30543	0.607	． 26.	3．623	0.396

(a) Energy eigenvelues $-x_{1}$

I	IE	III
2.509115	2.234838	2.207084
2.30]n38	2.085652	2.063815
1.967577	1.836871	1.822833
1.639351	4.544959	1.506144
1. 0473261	2.400986	1.403309
2. 34.9669	1.284327	1.266882
1.379718	$11_{0} 100182$	1.093923
1.086685	0.986837	0.985200
0.8445431	0.802489	0.817049
0.687423	0.702903	0.717774
0.327052	0.403739	0.478451
5. 362821	14.381521	24.361864

Tande 28 con's.
(b) Bond ownsew, bond Zangens, and β^{0} voluen

Bond	$\mathrm{P}^{\text { }}$	I	$8^{3}{ }^{\text {I }}$	$p^{\text {II }}$	$3^{\text {IT }}$	$\beta^{\text {a }}$ [8	$\mathrm{P}^{12 \mathrm{~S}}$	$3^{\text {IIT }}$	β^{812}
$1{ }^{1}$. 739	1.370	H.066	. 790	1.362	1.096	-826	1.357	1.115
1122	. 533		0.853	- 488	1.8450	0.799	0442	1.4274	0.738
23	. 503	Bo412	0.989	. 585	1.4380	0.835	0862	1.461	0.768
34	. 739	1. 290	1.066	. 790	1.362	1.097	. 827	1. 357	1.121
45	. 533	$1{ }^{1} 4380$	0.856	. 488	2. 850	90.99\%	$0{ }^{\operatorname{tas} 20} 0$	2. 4.475	0.738
56	. 623	I. 0402	0.954	-689	2.398	0.939	. 665	1.387	1.005
528	. 8879	+0.452	0.793	0878	2. 256	0.788	. 883	1.8550	0.798
67	. 592	2.509	0.929	. 634	3.805	0.944	. 610	20803	0.950
78	- 569	8.828	0.002	. 58.7	10285	D.8.8	-585	18.485	0.832
780	- 466	3.3259	©0.78	${ }^{4} 85$	1. 8.65	0,7988	08.88	3.4588	0.792
89	-6400	3.394	0.933	. 70%	3.378	DODEI	.755	1. 3.5	S.078
910	- 8892		0.803	0806	1.499	0.680	. 350	1. 5.5846	0.589
2 13	. 489	1) 0268	9.803	0868	1. 0.68	0.768	0.848	2.488	0.745
10 18	-789	2.363	1.093	.85]	1. 355	2.218	. 900	1.350	1.132
12 12	0890	2. 24.4	0.806	-405	Ioty	0.678	- 326	3.589	0.383
1813	-588	30.812	0.989	. 595		0.933	- 606	- $\mathrm{H}_{5} 50 \%$	0.986
12 L	- 52ay	20.285	5. 38	. 592	B. 8008	0.928	-630	1. 397	0.973
3318	-698	1. 278	2.035	-250	1.366	10045	. 812	1.376	1.045
1485	. 630	1. 39%	0.972	. 616	1.802	0.977	.616	Eoter	0.957
1516	-69	1.380	8.038	- 2908	1.578	10, 040	. 206	1.377	10043
1617	- 592	9. 50.96	0.938	. 6.9	$\mathrm{B}_{0} 803$	0.958	.617	1.5.08	0.958
1718	- 824	204\%3	0.739	- 305	1. 2521	0.653	. 2981	1.5377	0.486
1829	. 659	1.339	10003.	. 722	2.37%	1.035	. 768	2.365	1.085
3580	- 563	ㄲ.8239	0.8934	.537	1. 428	0.869	. 592	10.432	0.821
2083	. 593	2, E03	0.923	-6.09	E. 593	0.959	-605	10.405	0.956
2128	. 621	2.2002	-.958	.6.3 3	1. 393	0.986	. 660	2.388	2.002

(ब) Lncrey gigenvalues $-x_{i}$

\pm	II	III
2.529616	2.442956	2.209721
2.361777	2.153125	2.123053
2.133284	1.936795	1.88855
	2.690873	2.657985
1. 5384.456	1.466607	1. 8.53884 .4
1.479086	1.263253	1. 376889
1.365503	1.319562	1.328965
1. 189726	1. 24.14888	1.1493207
1. 197801	1.033286	1.024455
1.000000	0.856326	0.835975
0.823232	0.787079	0.784596
0.4885598	0.593708	9.617625
0.339250		0.490895
18.19926t	16.954825	16.92\%563

Leble 29 combe 5

Bome	P^{2}	2^{2}	β^{08}	$0^{\text {XI }}$	$5^{\text {II }}$	$\beta^{8 / 5}$	$2^{\text {IE }}$	$7^{1 / 1}$	
18	． 58.	8． 818	13．32？	－ 578		0.909	． 553	30 R2g2	0.888
826	－6987	A． 395	0.979	－692	1.380	1.030	．732	1．372	1．061
23	． 584	1．${ }^{2} 25$	0.893	－ 517	10．436	0.838	． 494	10445	0.810
	． 499		0， 82%	． 520	$1{ }^{1} 8.354$	0.842	． 559	10420	0.889
34	． 729	A． 292	1．059	． 76%	1．365	13034	． 792	1．362	1.098
45	． 598	1－ $\mathrm{R}_{1} 07$	0.935	． 5 dis	10．895	0.374	． 517	$1{ }_{0} 1238$	0.833
56	． 788	1． 72 2	12009	． 865	1.365	8.033	． 792	1.36	1.097
67	． 54.9		Dosg	－523	1． $\operatorname{la}_{4} 3^{2}$	0.843	0898		0.816
78	． 575	18.885	0.909	． 565	Hot28	0.896	． 548	120825	0.872
89	－6．95	1．390	9．993	－7am	2.838	2085	－ 9 \％${ }^{5}$	I． 368	1.079
910	04653	8.8279	9.725	－3tis	2． 536	0.576	． 868	8.605	0.453
926	． 502	12．8883	0．329	－ 893	3.3846	0.810	0.898	Hoteral	0．815
1011	－660	30．736	1．008	． 735	2.370	2006ta		20．363	2．098
1023	－ 863	20．8068	0.603	0.359	30865	0.964	－2320	12885	$0.73{ }^{2}$
I1 12	0578	1.81822	0．829	． 525	10，${ }^{2} 939$	0.347	${ }_{0} 8885$	10， 649	0．80］
1813	－599	10806	0.398	－689	10200	0.960	． 627	1．398	0.959
1221	－ 0^{6}	1． 0.58	0.896	． 6359	1．865	0.763	－ 0.488	1.859	0.796
121积	． 60	10 ${ }_{2} 808$	0.949	． 697	1．395	0.980	．650	1．398	0.993
1485	． 535	10429	0.859	0488	13．08588	0.803	． 44.4	$1.80{ }^{\text {g }} 78$	$0.743^{8} 8$
1419	－ 8_{8} 国	1．4．45	0.795	． 2976		0.788	－491	Hotist ${ }^{\text {a }}$	0.807
1516	－298	\＄0．36	8， 069	． 783	20．358	1.093	．823	1.358	I． 1110
1618	－592	2062边	0.920	． 588	3.455	0.338	－ 6.08	1．4．459	0.775
1718	．738	2． 378	1．006	． 788	1.368	1．096	－82\％	1.358	1.810
1819	－53n	Ho4299	0，856	－ 48.8	2， 24.42	0.801	－ 828	1，92782	0.74 .2
1980	－610	20．403	0.95 L	－630	2．393	0.983	． 697	12． 390	0.996
2021	－ 595	E．403	0.935	－629	3， 502	0．95\％	． 628	1.399	0.963
28 29	－ 568	20.859	0.395	.336	1． 2827	0.860	0895	Hosers	0.818
2283	－646	10．392	0.989	－736	1． 58	8．050	． 776	18.365	\＄0036
$232{ }^{2}$	0.888		0．798	． 392	1． 500_{3}	0.658	． 2180	3.560	0.510
2425	－ 290	\＃． 369	3．0099	． 358	2．354	1． 220	． 909	1． 38.4	1．134
2525	－ 288	ㅈ．252	0.748	－392	2．503a	0.659	． 309	1．568	0.50

(a) Linergy eigenvaiues $-x_{j}$

$\mathrm{C}_{2 \mathrm{v}^{\text {syman }} \text { 。 }}$	1	II	ITI
A_{1}	2.621824	204842229	20.269443
	1.661575	1.586302	1.528660
	1.308129	1.250619	1.195549
	0.511458	0.525395	0.575816
B_{2}	2.278414	2.150453	2.083562
	1.317431	1.262543	1.207767
	1.000000	0.981260	0.982092
A_{2}	1.891220	1.860853	1.878580
	1.000000	0,984452	0.993800
	0.704624	0.68895\%	0.716041
B_{1}	2.032624	1.951151	1.924959
	1.277730	1.199052	1.12515\%
	0.792632	0.792341	0.810953
$\sum_{i}\left(\sim x_{i}\right)$	18.397659	17.6487599	17.282978

(b) Bond orders, bond lengtha and β° yalues

Bond	$\mathrm{p}^{\text {I }}$	$8^{\text {a }}$	$\beta^{\text {¹ }}$	$\mathrm{p}^{\text {II }}$	$\Psi^{\text {II }}$	$3^{\text {III }}$	$\mathrm{p}^{\text {III }}$	$8^{\text {min }}$	$\beta^{\prime \prime \prime}$
12	. 590	18.809	0.948	. 588	1.410	0.925	. 593	1.409	0.930
16	- 551	1.417	0.923	- 572	1. 4.16	0.905	. 612	1,402	0.953
18	${ }^{4} 459$	1.436	0.859	${ }_{0}^{4} 53$	10480	0.722	. 371	1.517	0.624
23	${ }_{0} 699$	1.386	3.018	. 711	1.375	1.046	. 720	1.373	1.053
34	. 629	12.400	0.973	. 614	1.402	0.955	. 604	1.405	0.948
45	. 696	2038 ${ }^{3}$	10016	. 708	1.376	1.043	. 736	$1.37{ }^{3}$	1.050
56	-5978	2. ${ }_{2} 107$	0.995	. 596	30407	0.934	600	1.406	0.940
67		10 $R_{4} 39$	0.860	0425	1. 290	0.693	- 349	1.538	0.585
89	. 632	In 400	0.974	0673	2.385	10014	. 758	1. 366	1.079

Table 37 comis ${ }^{9}$ ds
(b) Bond oxtera; bond lengthe and β^{\prime} values

Bond	p^{2}	$i^{\text {d }}$	$\beta^{\text {II }}$	p^{11}	I	$\beta^{\text {® }}$ KI	$p^{\text {IIS }}$	$r^{\text {III }}$	$\beta^{\text {O }}$ III
12	. 746	1.368	1.071	. 788	1.362	1.096	. 813	1.359	1.106
122	. 54.7	10424	0.874	. 510	1.438	0.830	0.481	1.451	0.795
23	. 531	1.830	0.854	-492	1.446	0.808	0464	1.460	0.771
$3 \quad 4$. 565	8.418	0.896	. 553	10422	0.881	. 539	1.427	0.864
38	. 528	10.431	0.851	. 562	10419	0.892	. 597	1.407	0.935
45	. 716	1.374	1.050	. 748	1.369	1.069	. 762	1.366	1.081
56	. 612	1.402	0.953	. 577	20.424	0.912	. 554	1.422	0.882
6. 7	. 713	1.375	1.0477	. 74.5	1.369	1.068	. 760	1.366	1.080
78	. 574	1. 225	0.907	- 560	2.420	0.890	. 543	1.426	0.868
$8 \quad 9$	0499	20443	0.817	${ }^{8} 878$	3.453	0.793	0457	1.464	0.760
$9 \quad 10$	04252	1.467	0.753	- 382	1.510	0.643	- 312	1.559	0.513
922	- 599	2.806	0.938	. 675	2.38\%	1.086	. 737	1.370	1.065
1011	. 593	1.408	0.932	. 603	1.405	0.042	. 609	1.403	0.950
1015	-55\%	1.422	0.882	. 595	3.408	0.933	. 633	1.396	0.975
1112	. 696	1.379	1.033	. 707	1.376	3.043	. 709	1.376	1.044
1215	. 632	-2.396	0.974	.687	2.408	0.959	. 617	1.403	0.958
1314	. 693	1.380	1.031	. 700 L	1.377	1.040	. 706	1.377	1.042
1415	. 600	1.406	0.939	. 612	1.403	0.951	. 617	1.408	0.958
1516	- 437	1.477	0.729	. 360	1. 524	0.605	. 289	1.580	0.472
1617	. 599	1.406	0.938	. 610	1.403	0.950	. 616	1.401	0.957
1621	. 557	1.421	0.886	. 598	3.407	0.937	. 635	1.395	0.978
1718	-694	1.379	1.032	. 704	1.377	1.040	. 706	1.377	1.042
1819	.633	1.396	0.976	. 619	1.400	0.962	. 638	1.400	0.960
1920	.694	1.379	1.032	. 705	1.377	1.041	. 707	1.376	1.043
2021	. 598	1.407	0.936	. 607	1.404	0.947	. 613	1.402	0.955
21 22	0439	1.475	0.733	.366	2.520	0.616	. 297	1.571	0.485

(a) Enexgy cigersuinues $-x_{\text {i }}$

I	TH
2.545488	2.257038
2.381081	2.33907
2.100478	1.942895
1.772976	1.676881
1.595206	1.530009
1.4262327	1.3852\%
1.3443899	1, 240659
1.270274	1. 163248
10085394	0.972738
0.911743	0.984 Ach 0
0.729756	0.736810
0.6825484	0.6666876
0.428567	0.4924488
18.31.0433	17.157\%30

(b) Bonci orcorg bone lingens and β° valu

Eond	$p^{1} z^{\text {I }} \beta^{08}$	$p^{I I} z^{\text {II }} \beta^{\text {orII}}$
12	7131.3851 .047	. 7381.3701 .065
$1{ }^{1}$. 5601.42000 .890
23	\|626 1.40800957	
34	1,709 1. 3761.043	. 7331.3781 .062
45	. 582 E 2.432 0.917	. 5731.48160 .906
56	04791.8250 .792	-449 3.426909 .748
526		. 5691.41780 .901
67		-474 10455 0.785
68	576 8.42480.910	.643 1.393 0.986
78	!. 73818.3661 .079	. 81112.3591 .105
89	52520.8570 .835	-4598. 1.464 .0 .761
920	[5981. 1.8070 .937	-624 1.4020 .956
92	5081808390.827	
1031	6321.3960 .976	-666 1.989\% 1.0007
3R 12	450108080.7809	. $3851.5090 .64{ }^{2}$
19205	5091.23390 .829	. 5191.4550 .830
1215	5961.8080 .934	.602 504050.945
		. 988 10.421 0.983
13 过	696 1. 3891.034^{4}	-7 71.3755 .10046
14. I_{5}	[627 30398 0.969	.608 10404 0.948
2515	\%702 1.3781 .039	. $7171.377^{1} 1.051$
潄 7	5501808850.925	. 5872.4880 .923
27 18	4973.48480 .815	058281.48860 .705
1329	17791.3631 .092	. 8401.03561 .115
298		04251.4880 .769
\%02	618108030.958	.642 1.3930 .985
2.2	6288.3990 .963	.638 10.39\% 0.932
223	4651.04590 .775	. 4214.4880 .703
238	\%5\%8 10.426 0.868	-498 10.80488 0.816
\% ${ }^{3}$.750 1.3681.073	.796 1.361 3.099
2585	524 104870.845	04.878 .45530 .790

Table 33：6m7 benapentapheno

（a）Inergy cigenvalues $-\mathbb{x}_{\text {a }}$
（b）Bond orders，bond lengths and β^{0} values．

C_{81} gy	1 IT
A^{0}	$2.5792600^{2} 2598597$
	2．44935 3.897743
	1．88268\％ 1.705029
	1．394959 1． 3 \％9259
	1．212552 1.03938%
	1．0000000．924805
	0.5058580 .573546
A^{00}	2．286924 2．093624
	1.2980631 .0247750
	1． 24.40752 L ．06092\％
	$0.76282{ }^{4} 0.7{ }^{2} 6704$
	$0.520603{ }^{2} 0.588203$
$\sum_{i}\left(-z_{3}\right)$	3．307096 28.46371

Bored	$p^{\text {L }} \mathrm{E}^{I} \quad \beta^{\text {P }}$	$\beta^{\text {LI }} \mathrm{s}^{I /} \beta^{\text {dII }}$
123	．610 10．403 0.950	．629 1．3970．974
125	．683 A ． 3381.023	．638 1．282 1．027
23	1．662 1．388 1．004	．722 1． 373 L .05 y
8 垩	0.5831 .43780 .833	． 5031.84810 .822
233		－3131．5580．516
38	－577 12．4860．904	05551.4880 .883
	0.5901 .4830 .878	． 52510.4320 .847
		． 5301.450 .30 .353
		．768 1． 3661.081
67	．559 2.4040 .938	． 5381.82330 .880
88	．726 1． $3.378 \cdot 3.057$	．762 1．366 1．081
89	．550 1． 0.8270 .878	－ 2251.4320 .847
910	1．572 1． 21860.904	． 5551.42820 .884
801 I	1．662 $1.3888_{0} 0004$	． 7281.30731 .054
128 12		－ 3 He 8.5580 .517
1家路	－56661．438 0.897	．609 1． 103030.989
1536	．642 R．393 0.985	． 6371.3950 .980

Table 3n: Haghtho $\left(2^{3}-3^{0}, 3-4\right)$ persamphene

(a) Lnergy exigenvalues $-z_{i}$

C_{2} зухй	I II
A	$\overline{2} .53502632 .257236$
	2.2084992 .015300
	1.676602 1.5989889
	1.1612d 1.10238605
	0.5362880 .608269
B	
	2.0000001 .806677
	1. 4142848.3 .304612
	1.197253 1.107040
	1,000000 0.890322
	0.57648820 .627505
	0.3940370 .868842
$\sum_{i}\left(-x_{i}\right)$	22.09821289648565

(b) Dond orders, boad lengthe and β^{3} values

Rond	$z^{\text {L }} z^{\text {I }} \beta^{\text {a }}$	$p^{\text {II }} \mathbf{p}^{\text {II }} \beta^{\text {dII }}$
	049210.4860 .309	- 2111104930.688
15 34	. 5391.4 .450 .840	.54.1 1 1.82870 .866
236	10605 5.4040 .0445	.6301 .3970 .972
	.783 1.363 1.094	. 2481.3591 .117
	-490 1. $2.4844^{4} 70.806$.4061.495 0.680
	.631 1.397 0.373	-682 10383 1.021
h 13	1.5001 .43530818	-494 10.4450.811
	.587 10.428 0.923	-585.10411 0.922
	.5544 1.826 0.870	.512 1.438 0.831
6 BR	. 49661.44450 .824	. 51588.4370 .835
	. 770 1.372 1.060	.772 1. 3641.087
	. 5941.4080 .932	-54. 1.404270 .867
920	. 7291.3581 .059	. 7701.3651 .086
18022	. 54.78 [42850.873	.525 104360.835
18 ${ }^{\text {最 }}$.583 1.433 0.916	. 577 1.424 0.918
1218	. 6931.3910 .992	.6981.372 1.035
1314		. 364.4 .5820 .618
1435	.6301.39\% 0.973	.657 1.369 0.999

Tabla 35: Anthrecono ($\left.2^{3}-11,3-9\right)$ tetraphene

(a) Energy eigenvalues $-x_{i}$

I	II
2.556939	2.262515
20420842	2.168875
2.281184	2.015011
1.948637	1.804990
1.705199	1.605513
1.518789	1.486312
1.439155	1.406693
1.325618	1.270945
1.272037	1.183368
1.137608	1.051806
1.046266	0.913834
0.834681	0.837645
0.719463	0.687653
0.571777	0.615685
0.365130	0.433937
2 m .35 mag	199.684883

(b) Dend Dremes band lenghan and pelueb

Hond	$8^{\frac{1}{2}} \mathrm{za}^{\text {L }} \beta^{\text {a }}$	$p^{I I} s^{1 I} \beta^{1 / 2 I}$
12	. $62 \% 1.3980 .970$. 6091.44030 .949
130	. 6961.3791 .034	. 7201.3761 .045
	. 7021.3781 .038	.726 1.374 1.050
	.580 1.4.35 0.915	. 5871.4800 .924
	- 2971.4 .44400814	04211.4870 .703
$4 \quad 29$. 5451.48250 .872	.5871 .4100 .924
	.780 1.3651.092	-84. 1.3561 .115
	.4991.44430.827	0.424 .1 .4850 .708
	06121.4020 .959	. 6461.39820 .989
728	$\ldots 50812.4590 .827$.5161 .4360 .836
	06191.4000 .961	.6331 .3960 .976
910	. 8701.45780 .780	. 4321.48800 .722
926	. 5061.44000 .824	. 5191.4 .4500 .839
1011	. 52918.4310 .851	.4681 .4580 .776
1023	. 5821.4120 .917	.6561 .3890 .998
1112	. 7601.3661 .080	.8171 .3531 .108
1213	. 5091.43900 .828	.4444.1.472 0.740
1314	06191.4000 .961	.6581 .3891 .000
1322	. 4951.4450 .812	04901.4470 .806
14 15	. 5961.408080 .934	. 6051.4040 .945
1516	.540 1. 42780.865	. 5011.4420 .819
1520	.492 1. 24.460 .808	. 502 1.4420 0.821
1617	.734. 2.3721 .063	.7781 .3631 .093
1718	.591 1.4209 0.928	.5321 .4300 .856
1819	.735 3.7211 .062	-777 云, 368 1.050
1920	.542 1.8 .4260 .868	. $5051.48420 .824^{3}$
2022	1.59010 .4090 .927	. 5981.40070 .936
2222	1.677 8.3950 .980	. 6731.3852 .014
2223	10662 1.462 0.759	0418 1.492 0.653
23 24		
2at 25	.792 1.3678 .078	. 8021.36018 .102
2526	439 3. 575008840	.567 1.459 0.77\%
2627	.596 1. 4070.935	. 5101.4030 .752
2728	1.6360 .3950 .978	-670 3.38010012
2383	5 Hag 4.6690 .749	332 8, 23590.622
8030	5062.4670093	.602 I. 60050.954

(a) Energ ofgenvalueg -mx

$\mathrm{C}_{\mathrm{g}}{ }^{\text {ayma }}$	I IT
A	2.566916 2.2697 2
	2.3068552 .069163
	1.798743 1.6859594
	1.514793 1.422239
	1.271000 20,2035h
	\#.148803 80049660
	0.8550720 .840854
	0.6675350 .639026
	0.3827380 .452170
B	2.8595002 .193953
	2.03663th 1.901348
	1.6716081 .579238
	1.4598991 .373569
	1.372484 10244709
	1.1发3748.008720
	0.7957528 .808933
	0.3520620 .624494
$\sum_{i}\left(-x_{i}\right)$	24.024508 20353902

(ib) Boad onders, bond lansths and β^{0} valuen

Bund	$\mathrm{p}^{4} \mathrm{~F}^{\text {D }} \beta^{\text {d }}$	$\mathrm{p}^{\text {II }} \mathrm{e}^{I I} \beta^{\text {dII }}$
12	.754 8.368 1.076	. $2051 \mathrm{E}, 3601.103$
1818	. 53510.8290 .859	$\bigcirc 8851089000797$
	.5174 .8 .840 .838	-463 [. 56000.770
34	. 59% 1. 60.370 .935	.612 8.802 0.952
336	. 50618.84000825	-520 50.35480 .888
	[.6351.395 0.978	-668 1. 3861.009
	. 84492.84690 .749	. 3821.5800 .643
5 2183	.503 1. 23.390 .828	. 5878.8 .460 .878
6	0596404070.934	. 60240205050.348
138	1.5551 .4230 .278	0587 2. 4100.924
	.696 1.037 1.034	.711 1.375 1.046
129	.628 3.398 0.969	. 60818.4030 .948
\% 10	-.702 1.3781.039	. $717 \mathrm{H}_{0} 377^{4} 1.052$
1202	-530 1.4.43 0.025	.587 1.421 0.923
ER 12	08.9710 .44450 .314	- 222 2. 1.4870 .708
1283	.779 1.365 2.092	$\bigcirc 8828035610125$
4324		
130.5	. 6121.4020 .952	. 6421.3930 .987
1516	. 6201.4000 .962	. 6351.3950 .978
18617	. 468181.8580 .777	.427 1.483 0.713
1788	.579 10.483 0.984	.689 1.392 0.998

Teble 77: 2my, 3m- dthomsicenc

(a) Lnergy oigenvalues - \mathbb{z}_{1}
(b) Bond orders, bond lengthe and β° values

\begin{tabular}{|c|c|}
\hline C_{g} gymim \& 1 II

\hline A^{0}

A00 \& | 2.5610952 .262631 |
| :--- |
| 2.2165052 .0143845 |
| 1.679221 1.587760 |
| 1.550480 8. 859069 |
| 1.2726264 .259073 |
| 10 R14141 0.954108 |
| 0.7702930 .777764 |
| |
| 2. $212267 \mathrm{R}_{4} 2.167020$ |
| 1.9771031 .798199 |
| $1.88632288_{0} 369344_{5}$ |
| 1.327258 8.271372 |
| 1.0727891 .012224 |
| 0.8644 .1660 .755625 |
| 0.4603330 .515571 |

\hline $$
\sum \sum\left(-x_{1}\right)
$$ \& 21.121285 50655712

\hline
\end{tabular}

Bond	$p^{\text {I }} z^{\text {I }} \beta^{\text {d }}$	$p^{\text {II }} z^{\text {II }} \beta^{00^{\text {II }}}$
18	. 7691.3651 .085	. 8301.3571 .112
1 14	. 51818.4350 .838	04461.04710 .744
	. 5021.8442008280	0429204820.716
	.623 l 。399 0.969	.6671 .3861 .008
\% 32	0897 E. 842440.385	. 9938.88460 .809
	. 5921.4090 .930	. 5971.4070 .936
	. 54.18 .4280 .865	. 505104420.828
\% 10		. 5081.484000827
67	.732 1.371 2.062	. 7751.364 .1 .089
	. 5921.40090 .930	. 53611.42880 .860
3	. 7321.3781 .068	. 7741.364 .1 .088
930	. 54441.4260 .870	. 5091.4390 .828
1031	. 58710.4110 .923	. 5891.42100 .926
118	. 6421.3930 .985	.684 2.382 1.023
1218		. 3921.5040 .657
13 ${ }^{3} 4$. 5642.4 .490 .395	.618104010 .959
1316	. 55771.4180 .899	${ }^{.554} 11_{0} 4220.882$
14 15	. 5041.48480 .823	051010.43000830
1617	. 7291.3731 .053	.744 1.3681 .078

(a) Energy oigenvaluea $-\mathbb{Z}_{\text {g }}$

$\mathrm{Ca}_{2} 8 y^{\text {maxa }}$	III
A	2.531827 2.248847
	2.10985
	1.536946 2.429835
	1.306423 1. 168866
	1.0938620 .976 S83
	0.6300180 .665835
B	2.387201 2. 337995
	1.8026759 1.7004.28
	1.80239180 .899896
	1.294806 1.223830
	0.9327610 .912545
	0.7123660 .746294
$\sum_{i}\left(-z_{i}\right) / 8.25860517 .063836$	

(b) Bond orders, bond lengthe and β^{0} values

Hond	$p^{\text {d }} p^{\text {I }} \quad \beta^{\text {I }}$	$p^{\text {II }} p^{\text {II }} \beta^{\text {II }}$
12	.6591.390 0.995	. 7061.3761 .0423
183	.571 1.4160.903	. 5551.8 .4880 .887
83		. 3691.51880 .621
231	0493 2. $0_{0} 868080809$.47781.453 0.798
3 \%	.598 4.4070 .927	06088.4030 .048
38	. 5471.4250 .873	.590 1.41000.227
85	. 693 d. 3801.038	. $7051.3781 .04{ }^{1}$
56	. 6701.3970 .972	-614 1. 4080.955
67	.699 2.373 1.036	. 7121.3751 .046
\% 8	. 583 H. 2.4820 .938	. 5931.4080 .938
89	0.892 [. 8.8460 .808	- 4091.808940 .685
910	. 7841.3631 .094	. 8481.3551 .117
1011	04931.4460 .810	04111.4930 .688
1122	. 6331.3960 .976	.688 1. 3811.027
法34	. 5801.48330 .915	. 5781.4160 .903
13 I4	04744.44550 .786	. 5781.45530 .790

(a) Energy icrenvalues $-x_{i}$

I	$I I$
2.523122	2.241214
2.377673	2.131665
1.123763	1.943341
1.819440	1.690782
1.558519	1.4478011
1.472887	1.408024
1.361068	1.263762
1.230420	1.163712
1.089640	0.991453
1.000000	0.909692
0.752878	0.730016
0.617630	0.655549
0.243616	0.309677
18.170664	16.916902

Table 39 con' ${ }^{5}$ d:

Hond	$\mathrm{P}^{\mathrm{I}} \mathrm{E}^{\mathrm{L}} \quad \beta^{\text {a }}$	$p^{\text {II }} z^{\text {II }} \beta^{\text {e }}$ II
12	.631 1.3970.974	0.6718 .4010 .959
129	.6982.380 1.030	.702 1.378 1.039
	.697 1.979 1.035	. 7081.3761 .043
3 4	. 5844.48120 .920	. 5971.4070 .936
	-489 10.4488 0,8014	-401 1.44980 .672
425	. 54.710 .48240 .874	. 5921.4090 .929
56	.786 1.368 1.094	.8531.354 1.119
67	-4981.4.497 0.307	-404 1.49770 .676
88	.6431.3930.986	. 715 \$. 5751.049
7 2	-483 10\%500.798	-449 1.46990.743
89	.564 2.418 0.895	. 5321.4300 .855
910	-604s 804050.985	.636 1.395 0.979
922	045% 1. 2640.768	0.431 .1 .4800 .720
10.11	. 5921.4090 .928	.600 1.406 0.939
1112	. 5881.45350 .916	.5761.4150.909
1120	.454 104660.755	0.4271 .4830 .714
1213	. 620 1.400 0.962	. 6671.3861 .008
1314	. 53010.4310 .859	0.4731 .4550 .784
1318	.474 1. 24550.785	04531.46670 .754
1\% 15	.741 12.369 1.063	. 7971.361 .1 .099
1516	. 5801.42830 .985	. 505 I 144000.824
1617		. 7961.3611 .099
1728	. 5301.43310 .853	-472 1.45550 .785
1819	.6191 .4000 .961	.660 1. 3871.007
1920	. 5821.18120 .918	.578 1. 4.4140 .912
2021	. 589 2. 21200.926	. 5971.20070 .935
2122	. 6081.40420 .948	.642 1.3930 .985
2223	. 5588.4280 .857	.522 1.4.434 0.843
23 2叐	.663 1. 3831.004	. $733 \mathrm{S.371} 1.062$
2425	.4428 2.44740 .737	. $3621.522^{2} 0.607$
2526	. 6001.4060 .938	.6821 .8020 .953

(a) Linergy oigenvalues $-x_{i}$

C_{8} gyma	\pm	IT
A^{9}	2.573150	2.259404
	20419469	2.160073
	2.150465	$\underline{2} .957846$
	1.809396	1.657658
	1.457722	1.3048200
	1.309285	8.199135
	1.0954884	0.954826
	0.731905	0.703470
AOB	1.978285	1.920526
	1.4787800	8.482320
	1.292270	Ho229525
	1.070259	2.03998
	0.818\% ${ }^{\text {c }}$	0.830360
	0.659703	0.6842688
	0.262107	0.332698
$\sum_{i}\left(-z_{i}\right)$		

(b) Bond orders, bond lengthe and β° valuen

Bone	$\mathrm{p}^{\frac{1}{2}} \mathrm{E}^{\text {d }} \beta^{0^{\frac{1}{2}}}$	$\beta^{\text {II }} \mathrm{s}^{\text {II }} \beta^{\text {d }}$
H 10	. 7411.36018 .068	. 7961.3611 .099
1212	.5301 .4310 .853	. 2751.45440 .786
212	. 6181.80000 .960	.6631.3871.0013
2 24	. 5844.4120 .919	.5821 .4120 .917
$3{ }^{3} 1_{4}$	-597 1.411 0.923	. 5891.4100 .926
316	. 6121.4020 .953	.652 1.390 0.995
486	. 5501.48440 .877	${ }^{5} 5031.44810 .882$
\& 28	.674 20.304 1.025	. 7531.3671 .076
5	. 6081.4040 .948	. 6271.3980 .969
518	04891.4880 .702	. 3221.5530 .532
520	.564 2.48190 .895	.608 1. 6040.948
67	.685 2.382 2.024	. 6901.3801 .028
78	-641 8.3940 .934	.6351.3950.978
89	-684 1.3821 .024	.689 1.381 1.028
920	. 6091.12030 .939	.628 1. 3970.971
10 31	. 58018.4130 .935	05071.84400 .825
1213		. 2.561 .3 .4650 .759
3t 35		. 8331.4790 .723
1617	. 462 L 1.868 0.768	0.4391 .4750 .735
1819	. 6984.4 .4850 .810	0.4531 .4670 .854
2021	.417 1.4890.697	. 3171.5560 .523

(a) Energy cígemvaluem $-\mathbb{Z}_{i}$

C_{2} byymat	I	II
A	2.557832	2.259348
	2.3076.7	2,062669
	1.846024	1.684737
	1.472010	1.409634
	1.278652	1. 296735
	1.158244	$1.11794{ }^{\text {d }}$
	0.86 ¢2472	0.761603
	0.703919	0.706392
	0.246964	0.313922
B	20439063	2.185136
	20095118	1.396835
	1.642043	2.5482788
	1.506263	1.395907
	2.336351	1.281910
	1.0878 .76	0.959818
	0.932182	0.870125
	0.39335	0.4254688
$\sum_{i}\left(-x_{i}\right) / 33.86356322 .110977$		

Bond	$p^{\text {I }} 8^{\text {I }} \beta^{\text {d }}$	$p^{I I} r^{\text {II }} \beta^{\text {II }}$
12	06482.3920 .991	. 7011.3781 .037
8 14	04828.4510 .796	0457104640.761
123	.461 1.4620 .767	. 4071.4950 .681
23	.5702 .41870 .902	
$3 \quad 8$.5923 1.4090 .929	. 6001.4060 .939
$3 \quad 12$		0.4881 .4700 .747
45	-682 104020.955	.6501 .3980 .995
56	. 5321.4 .4500 .859	.488 1.458 0.795
$5 \quad 10$.478 1.4537 0.791	04661.4590 .778
67	.740 1. 3651.067	.798 1.3621.097
78	. 582 1.4312 0.988	0.5721 .44380 .838
89	. 74.01 .3691 .067	.7931 .3621 .098
930	. 5321.48300 .855	0.4791 .4520 .793
1018	. 6151.8010 .956	06531.3900 .995
1112	. 588 1.4410 0.925	.595 1.408 0.933
1283	.576 10.434 0.988	. 56511.4190 .894
1514	. 6301.3980 .972	${ }_{.} 685 \mathrm{~L} .3881 .024$
1425	.508 1. 4.5980 .828	084848.4750 .735.
1516	.759 1.366 1.079	. 81.78 .3581 .108
1617	. 2688804380358	04651045900783
1788	.589 1.4100.925	.6731 .3851 .014

(a) Langgy igenvaluas - In $_{1}$

1
2.533047
2.273711
1.965356
1.641058
1.464570
1.332738
1.198236
1.084844
0.844650
0.660216
0.418589
15.416915

(b) Bond orderes bond loagihe and β^{0} ralueg

Eond	$p^{\text {I }}$	2^{8}	$\beta^{\text {o }}$
12	. 508	10438	0.827
122	. 772	1.3545	1.087
33	- 528	1.438	0.851
231	- 580	1.413	0.915
34	. 756	1.367	1.077
45	-524	1.433	0.845
56	. 568	10.817	0.800
$5 \quad 10$. 530	10433	0.852
67	. 713	1.375	1.048
78	. 614	1.402	0.955
89	. 712	1.375	1.046
930	. 576	1.885	0.910
1011	-495	10.445	0.812
1212	. 473	1.8 .85	0.784
1213	. 632	10396.	0.975
1223	0.694	10445	0.810
1314	. 591	1.409	0.928
14.15	. 542	1.426	0.867
14.19	. 492	B. 84.46	0.808
1516	. 733	1.371	1.062
1617	. 591	1.409	0.928
1718	. 733	1.378	1.062
1819	. 542	1042\%	0.866
1920	-594	1.408	0.939
2021	. 623	1.408	0.938
2128	. 505	20.448	0.823

(b) Bond orders, bond lengehe

1
2.551195
2.409129
2.227686
1.976496
1.704607
1.535281
1.450963
1.345303
1.257323
1.117555
1.069436
0.875695
0.763481
0.488799
0.279873
21.052819

Bone	${ }^{\text {I }}$	$\mathrm{m}^{\text { }}$	β^{08}
12	. 591	1.409	0.929
11	-635	1.395	0.977
23	. 542	1.426	0.867
27	. 491	104487	0.80%
314	. 735	1.378	1.062
45	. 590	$13_{1} 409$	0.927
56	-73n	8.370	1.063
67	. 559	10427	0.864
78	. 597	1.407	0.935
89	. 618	10401	0.959
$9 \quad 10$. 512	1.438	0.832
9 30	-493	1.446	0.810
10 LI	. 756	1.367	1.078
H1 12	. 532	2.430	0.856
1213	-460	1.462	0.765
3229	. 587	10421	0.923
1314	. 649	1.398	0.992
1326	. 483	1.450	0.797
14.15	0.569	10417	0.902
1516	. 592	1.409	0.930
2524	-463	1.462	0.769
1617	-614	10.402	0.905
1718	. 532	8.430	0.856
1722	0478	1.453	0.791
1819	. 739	1.369	1.067
2920	0.582	1.4812	0.988
2021	. 740	1.369	1.067
2122	. 532	1.430	0.855
2283	. 625	8.401	0.956
2384	-589	10.410	0.925
2425	. 575	1.485	0.909
25.26	. 630	8.397	0.973
269 27	. 507	2.440	0.826
2723	. 26.88	\$. 373	1.030
18829	.526	1. 0338	0.849
12930.	${ }_{0}^{81865}$	10459	*.773

(a) Eacray agenvalues $-x_{i}$

C_{5} symam.	I
	2. 592565 2.303672 1.978607 1.638066 1.448394 1. 208682 1.116139 0.810991 0.372999 2.406781 1.984822 1.509046 1.371466 1.140938 0.932709 0.765226 0.358745
$\sum_{i}\left(-x_{i}\right)$	23.938833

(b) Bond axders, bond langthe and β^{0} values.

Hond	$\mathrm{p}^{\text {I }}$	Σ^{1}	β^{88}
115	. 682	1. 382	1.022
118	.621	1.403	0.958
23	.676	1.384	1.087
217	$00_{3} 13$	1.492	0.690
219	. 498	10444	0.855
34	. 550	2.423	0.878
45	. 603	1.405	0.949
413	.472	1.456	0.783
56	-606	8.404	0.986
67	. 536	8.429	0.860
611	0483	1.450	0.797
78	. 737	1.380	1.065
89	. 286	10411	0.922
$9 \quad 10$. 737	1.370	1.065
1018	. 536	1.429	0.860
1112	.606	10404	0.846
1213	. 602	1.405	0.9423
1314	.558	1.423	0.878
14 19	. 675	1.384	1.085
1516	. 644	1.393	0.986
17.18	. 565	2.818	0.897
1920	- 2 gis	1.493	0.693

Table 25 ; 3 mo

(a) Energy aigenvalue $-x_{i}$

1
2.538366
2.371029
2.115733
1.805521
1.573142
1.463090
1.351267
1.234758
1.091378
1.000000
0.741522
0.554934
0.428737
18.269479

(b) Boad ordara, bond lengthe ance β^{0} values.

Bond	P^{8}	m^{1}	β^{8}
12	. 704	1.377	1.080
186	. 578	1.414	0.913
23	. 625	1.398	0.968
34	. 688	1.378	1.035
45	. 594	1.408	0.932
56	-453	1.467	0.755
526	. 543	1.486	0.869
67	. 623	1.399	0.965
623	. 517	1.436	0.837
78	. 612	1.402	0.953
89	. 490	10.8448	0.806
8.21	. 515	10.486	0.835
910	. 785	1.363	1.094
1017	-488		0.804
11.2	. 632	1.396	0.974
1120	. 500	10442	0.818
1213	. 586	1.421	0.922
1314	.54st	10.426	0.870
1318	. 497	10.8444	0.814
1415	. 730	1.371	3.060
1516	. 595	1.408	0.933
1617	. 729	1.372	1.059
1818	. 547	1.425	0.874
1819	. 580	10413	0.915
1920	. 651	1.391	0.993
2021	0439	1.4876	0.732
2122	. 637	1.395	0.979
2223	. 599	10406	0.938
2324	. 503	10.442	0.82?
24 25	. 776	1.364	1.090
2526	. 500	1.4482	0.819

APPUWDIX $\quad \mathbf{B}$

Enezgicon bond orders otco calculated uning the improved $r(p)$ curye of $F i g .3$, and the LonguetHiggins and Salem $\beta^{\prime}(r)$ cuwvo.

Table $4:$ Tatracma

	(a) linorgy cigenvalues $-x_{i}$			
		\%	IS	IIIS
	A_{1} B_{2} A_{2} B_{1}	$\begin{aligned} & 2.46673 \\ & 1.77748 \\ & 1.00000 \\ & 2.19353 \\ & 1.29426 \\ & 1.19353 \\ & 0.29496 \\ & 1.46673 \\ & 0.77748 \end{aligned}$	$\begin{aligned} & 2.278130 \\ & 1.686035 \\ & 0.885439 \\ & 2.050627 \\ & 1.243099 \\ & 1.169672 \\ & 0.336508 \\ & 1.422300 \\ & 0.790870 \end{aligned}$	$\begin{aligned} & 2.248053 \\ & 1.660570 \\ & 0.855706 \\ & 2.036424 \\ & 1.243592 \\ & 1.173807 \\ & 0.364052 \\ & 1.803269 \\ & 0.788936 \end{aligned}$
	$\sum_{i}\left(-x_{i}\right)$	12.46470	11.852699	11.774006

(b) Bond orders, bond lengths and β^{0} valuem

Erond	$p^{\text {I }}$	5^{T}	$\beta^{\text { }}$	${ }^{\text {IT }}$	$8^{\text {II }}$	$\beta^{\text {II }}$	$\mathrm{p}^{\text {III }}$	$s^{\text {III }}$	$\beta^{0 \text { III }}$
13	.618	10.400	0.964	.64\%	1.395	0.981	. 666	1.390	1.008
17	. 584	1,403	0.937	-536	1.420	0.900	. 572	1.418	0.940
23	. 538	1.820	0.898	. 495	1.429	0.869	. 278	1.435	0.870
25	. 741	1.377	1.039	. 778	2.370	1.060	. 799	1.368	1.080
34	. 8785	108334	0.855	. 865	10437	0.843	. 865	1.438	0.868
56	- 582	10809	0.935	. 531	1.4200	0.899	. 503	1.427	0.891
78	- 858	1.4839	0.839	0 给知?	20.348	9.830	. 478	1.435	0.870

Table 2: Pemexccze

	(2) Lnexey eigempadue		
		$1{ }^{2}$	IS III
	A_{1} B_{2} A_{2} $\mathbb{D}_{\mathbb{1}}$	$\begin{aligned} & 2.49551 \\ & 2.00000 \\ & 1.21969 \\ & 2.30078 \\ & 1.601803 \\ & 1.00000 \\ & 1.30278 \\ & 0.61703 \\ & 1.49558 \\ & 1.00000 \\ & 0.21969 \end{aligned}$	
	$\sum_{i}\left(-\mathbb{2}_{i}\right)$	15.27202	14.447025 140662145

(b) Bond orders. bonc Iongelim and β^{0} valuge

Bond		$x^{\text {a }}$	$\beta 0^{8}$	$p^{\text {IE }}$	$5^{\text {II }}$	$8^{\text {II }}$	$\mathrm{P}^{\text {III }}$	$s^{\text {IXI }}$	$\beta{ }^{\text {III }}$
13	. 579	1.809	0.933	. 573	E.4.4	0.929	. 560	$1{ }^{1} 484$	0.930
15	. 622	Hod, ${ }_{2} 00$	0.965	. 655	8.393	0.987	-674	1. 389	0.980
25	- 529	20.422	0.897	- 808	2.453	0.865	0466	108378	0.867
27	. 782	1.377	1.0\%0	. 782	1.370	1.062	${ }^{\text {- } 802}$	1.367	10088
34	0852	$1{ }^{1}$	0.83㐌	0832	20425	0.819	$0^{4} 83$	1.444	0.890
39	- 396	20406	0.945	-603	2.403	0.954	. 623	1.402	0.967
56	- 278	10436	0.84	. 857	\#. 839	0.837	0455	10439	0.860
78	. 579	10409	0.933	-69\%84	108283	0.896	0497	2.429	0.886

Table 3: heracen

(b) Bond ordery, bond lenfêm and β° valueg

Bend	$p^{\text {I }}$	$\mathrm{F}^{\text {I }}$	$\beta^{\circ \frac{1}{2}}$	$p^{\text {II }}$	$8^{\text {II }}$	$\beta^{0.15}$	$p^{\text {III }}$	$2^{\text {LII }}$	$\beta^{\text {III }}$
14	. 599	1. 805	0.948	. 617	1.408	0.955	. 628	1. 399	0.978
110	. 590	1.407	0.949	. 595	2.806	0.939	.594.	1.406	0.953
24	-57\%	1.410	0.932	. 566	1. 2.482	0.920	. 553	1.412	0.937
26	. 623	8.399	0.967	. 699	1.398	0.985	. 679	1.388	1.018
36	-588	1.428	0.896	. 490	1.8538	0.858	0463	1.8337	0.865
38	. 742	1.777	1.039	. 782	2.380	2.055	${ }^{\circ} 803$	1.367	1.081
45	- 44.48	1.444	0.830	- 425	10.8835	0.800	0421	10.446	0.840
67	08271	1.4.36	0.848	0858	1.440	0.829	0448	10448	0.851
89	. 578	8.410	0.932	. 525	1. 2421	0.890	. 494	1.430	0.885
1018	- 843	10.4sy	0.38%	$\bigcirc 418$	10.4.4.7	0.790	. 413	1.448	0.833

$\mathrm{C}_{\mathrm{Cv}_{5} \text { Jyzas }}$	
	 2.236482 .20945532 .026696 \＄0728455 8．6252009 2.619202 2．48282 2.2522982 .252570 1．000000 0.9934983 .006255 0.71845950 .7298490 .74625 0.1342850 .1546500369953
$\sum_{i}\left(\cos _{3}\right)$	

［19n¢	${ }_{23}{ }^{\text {² }}$		$\beta^{\circ 8}$	I	$\mathrm{P}^{\text {I }}$	$\beta^{\text {PIT }}$	$\mathrm{p}^{\text {ITI }}$	$5^{\text {IIS }}$	$\beta^{\text {PIET }}$
$2{ }^{2}$	－ 5×8	D． 209	0.087	． 538	1． 209	0.942	$0{ }^{5} 86$	1.840	0.943
16	－600	3.8087	0.955	． 6.8	1． 2803	0.965	－627	8.808	0.978
26	． 576	2.828	0.930	．56\％	2.4848	0.928	． 552	10647	$0.92{ }^{6}$
28	． 683	30802	0.962	． 655	8．395	0.933	． 673	3．398	1．000
38	． 920	\＄0 2 发	0.983	0890	20.300	0.383	${ }^{88} 8^{9} 9$	20.235	0.873
310	0.743	2．37\％	2.038	． 788	10259	2.078	－203	1． 20.5	1．094
4.5	0848	30.368	0.852	－420		$0.3{ }^{3} 9$	－ 489	或为岳妥	0.846
482	． 593	2.803	0.950	－60\％	1．taca	0.986	． 604	B0806	0.958
67	－ $0_{4} L_{4} 7$	E． 539	0.662	04.30	20， 2422	0.352	8830	± 0.482	0.852
89	$0^{8} 723$		0.828	－ 4600	20.85	0.869	0457	1.4 .438	0.85%
1083	． 578		0.28	． 5296	2.2228	0.907	． 496	12．428	0.883

Tabre 5: 0ctocoma

(a) Linorgy oigenvalues $\sim x_{1}$

$\mathrm{C}_{2 \mathbb{W}}$ вуххам	I	II	III
A_{1}	2.532089	2.351540	2.352318
	2.302776	2.150952	2.149354
	1.879385	1.764802	1.761894
	1.3487296	1.261520	1.260032
	1.000000	0.875488	0.860597
B_{2}	20484759	2.277110	2.277210
	2.118683	1.977607	1.975180
	1.688034	8.528024	1.519298
	1.108781	1.018250	1.013327
${ }^{A_{2}}$	1. 4.484759	8.4405640	1.416355
	1.111613	3.095504	1.107647
	-0.618034	0.632519	0.648952
	0.108781	0.125229	0.138088
B_{1}	1.532089	10488875	1.501286
	1.302776	1.273146	1.284090
	0.879385	0.878948	0.893072
	0.347296	0.370338	0.387746
$\sum_{i}\left(-x_{j}\right)$	23.6894 .68	22.468.389	22.546423

Table 5: Detacmo (cont ${ }^{8}$)
(b) Bond ordere bond longets and $\beta^{\text {B }}$ values

Bond	$\mathrm{g}^{\text {I }}$	$r^{\text {I }}$	$\beta^{\text {I }}$	$\mathrm{p}^{\text {II }}$	${ }^{18}$	$\beta^{\text {IT }}$	$\mathrm{p}^{\text {III }}$	$\mathrm{E}^{\text {III }}$	$\mathrm{B}^{\text {I INI }}$
15	. 594	1.10408	0.951	-603	10406	0.958	. 609	1.405	0.961
113	. 592	1.409	0.9498	0.597	1.407	0.953	. 597	1.407	0.953
25	. 588	10.809	0.946	. 587	1.809	0.946	. 582	1.412	0.948
27	. 601	10807	0.955	. 618	1.803	0.966	-629	1.400	0.973
37	. 576	$1{ }^{1} 6_{3}{ }^{2}$	0.939	. 564	$10.4{ }^{2} 4{ }^{2}$	0.932	. 558	1.418	0.923
39	. 623	1.402	0.969	. 656	1.395	0.989	-67\%	1.391	1.008
419	. 528	H0422	0.908	. 490	1.430	0.885	0466	1.435	0.872
411	. 743	1.377	1.048	. 782	1.369	1.078	. 803	1.364	1.094
56	- 448	10.4840	0.858	. 418	10.4.4.4	0.846	. 416	1.445	0.845
78	. 4 星7	㫫439	0.868	0429	104422	0.858	0428	1.442	0.852
$9 \quad 10$	0492	10.834	0.875	. 459	1.436	0.869	0456	1.437	0.867
1112	- 578	10412	0.940	. 525	1.422	0.907	0495	1.428	0.888
1314	0439	10.440	0.858	. 415	10445	0.844	0.413	1.485	0.845

Table 6: Nomaconc

(a) Lnergy eigenvalues $-x_{i}$

$\mathrm{C}_{2 \mathrm{~V}} \mathrm{syman}^{\text {d }}$	I	II	III
A_{1}	2.537673	2.356228	2.355961
	2.350830	2.192359	2.190361
	2.000000	5.872429	1.898745
	1.536547	3. 238612	1.435907
	1.089819	0.992558	0.985922
B_{2}	2.466732	2.295466	2.294774
	2.193527	2.049381	2.046676
	2.777484	1.666032	2.662596
	1. 294963	1.204546	1.201780
	1.000000	0.87342	0.857743
A_{2}	1.466732	8.426839	10437431
	1. 293527	1.173201	1.183084
	0.777484	0.782108	0.796305
	0.294963	0.336488	0.332690
B_{1}	1.537673	1. 295117	1.507434
	1.350830	1.318202	1.328803
	1.000000	0.991042	1.003663
	0.536547	0.552523	0.568517
	0.089819	0.103303	0.153778
$\sum_{i}\left(\cos _{2}\right)$	26.49515	25.097522	25.37342\%

Table 6: Nombermen (Cont a
(b) Bond orders, bond lengths and β° values

Bond	$\mathrm{p}^{\text {I }}$	$r^{\text {I }}$	β^{01}	$\mathrm{p}^{\text {II }}$	$\Sigma^{\text {II }}$	$\beta^{\text {II }}$	$p^{\text {III }}$	$5^{\text {III }}$	$\beta^{\text {O }}$ III
15	. 591	1.409	0.949	. 595	1.408	0.952	. 594	1.408	0.951
17	. 595	10.408	0.952	. 605	1.406	0.958	. 611	1.404	0.961
27	. 587	1.809	0.946	. 587	1.410	0.945	. 581	1.418	0.942
29	. 601	1.407	0.956	. 619	1.403	0.966	. 629	1.400	0.973
39	. 576	$x_{0} 212$	0.939	. 564	1.4.14	0.938	. 550	1.4417	0.923
311	. 623	1.802	0.969	. 656	1.395	0.989	. 675	1.391	1.002
411	. 528	1.421	0.908	. 490	1.430	0.885	. 866	1.435	0.872
413	${ }^{-743}$	1.377	1.048	. 782	1.369	1.078	. 803	1.364	10094
56	0438	3.440	0.857	0413	80.485	0.843	. 410	$1{ }_{0} 1846$	0.841
$\begin{array}{ll}5 & 15\end{array}$. 593	10400	. 0.950	. 600	1.407	0.955	. 602	10406	0.956
78	. 440		0.858	0487	10.4845	0.885	. 415	10445	0.848
$9 \quad 10$	0448	1.439	0.862	. 428	$1{ }^{1} 8.482$	0.852	- 428	10442	0.851
1112	- 478	10843 ${ }^{2}$	0.875	0459	1.436	0.868	. 456	1.4437	0.867
1314	. 578	10811	0.940	. 525	$11_{2} 1_{2} 2$	0.906	-495	1.429	0,888

Tabie 7: Pymene

(b) Bond orders, bond lengthe and β^{0} valuen

Bond	$\mathrm{p}^{\text {I }}$	${ }^{\text {I }}$	$0^{0 .}$	p^{12}	$\mathrm{m}^{1 / 5}$	β^{85}	$p^{\text {IIT }}$	$\mathbb{F}^{\text {III }}$	$\beta^{\text {III }}$	$\mathrm{p}^{\text {IV }}$	$\mathrm{m}^{\text {IV }}$
12	-594	1.8506	0.94s	. 610	1.403	0.955	. 617	1.4020	0.961	. 620	1.400
15	. 670	1.390	0.996	. 669	1.390	0.996	. 668	1.390	0.996	. 667	1.390
23	- 504	1022\%	0.875	. 459	10439	0.839	. 436	1.3484	0.822	. 424	1.447
27	. 524	1.422	0.898	. 533	\$.419	0.902	. 54.5	1.418	0.909	. 551	1.425
34	. 777	1.361	1.059	. 815	1.366	1.075	. 833	1.364	1.083	. 848	1.362
78	. 536	1.419	0.903	. 523	1.423	0,888	. 501	1.428	0.873	. 489	1.438

Table 8: Coronene
(a) Energy eigenvalues

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& $\left(C_{3 v}\right)$ \& H ${ }^{\text {H }}$ \& IX \& III \& IV

\hline \multirow[t]{2}{*}{} \& A_{1}

B_{2}

A_{2}

B_{1} \& \[
$$
\begin{aligned}
& 2.67513 \\
& 1.67513 \\
& 1.53919 \\
& 0.539917 \\
& 2.21552 \\
& 1.00000 \\
& 1.00000 \\
& 1.67513 \\
& 0.53919 \\
& 2.21432 \\
& 1.21432 \\
& 1.00000
\end{aligned}
$$

\] \& | 2.435168 |
| :--- |
| 1.573301 |
| 1.456050 |
| 0.537891 |
| 2.053330 |
| 20041519 |
| 0.949914 |
| 1.573301 |
| 0.537898 |
| 2.053332 |
| 1.065595 |
| 0.949934 | \& \[

$$
\begin{aligned}
& 2.428158 \\
& 1.566910 \\
& 10442156 \\
& 0.549751 \\
& 2.047872 \\
& 0.952065 \\
& 0.952064 \\
& 1.566920 \\
& 0.549754 \\
& 2.047169 \\
& 1.050000 \\
& 0.952082
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.424069 \\
& 1.564005 \\
& 1.431972 \\
& 0.557263 \\
& 2.044518 \\
& 1.061447 \\
& 0.952176 \\
& 1.318438 \\
& 0.469775 \\
& 2.044544 \\
& 1.043692 \\
& 0.802688
\end{aligned}
$$
\]

\hline \& $\sum_{i} x_{i}$ \& 17.28592 \& 26.227205 \& 6.207292 \& 16.187115

\hline
\end{tabular}

(b) Bond orders, bond lengtha and β° values

Dond		β^{08}	$p^{\text {II }}$	$7^{\text {II }}$	$\beta^{\text {® }}$ II	$\mathrm{p}^{\text {ITI }}$	$\mathrm{s}^{\text {III }}$	$\beta^{\text {III }}$	[p ${ }^{\text {IV }}$	$\mathrm{s}^{\text {IV }}$
12	. 7451.376	1.0424	. 769	1.372	1.055	. 779	1.370	1.068	. 785	1.369
18	. 5381.4818	0.907	. 518	10423	0.888	${ }_{.} 508$	1.426	0.878	. 502	1.427
34	-536 $\mathrm{B}_{0} 438$	0.907	. 562	20483	0.921	. 578	1.410	0.935	. 589	1.407
45	. 522 1. 422	0,896	-582	1.425	2.883	. 504	10.427	0.875	. 498	1.429

Table 9: Ovalena

\begin{tabular}{|c|c|c|c|c|}
\hline \& $\mathrm{C}_{2 \mathrm{es}}$ gyman。 \& I \& II \& HII

\hline \& A_{1}

A_{2}

B_{8}

1 \& $$
\begin{aligned}
& 2.741020 \\
& 2.000000 \\
& 1.697824 \\
& 1.000000 \\
& 0.824152 \\
& 1.950627 \\
& 1.142384 \\
& 0.769052 \\
& 2.434764 \\
& 1.516274 \\
& 1.305800 \\
& 0.605225 \\
& 2.303555 \\
& 1.496453 \\
& 1.126413 \\
& 0.335875
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 2.505390 \\
& 1.865987 \\
& 1.603302 \\
& 0.958520 \\
& 0.843389 \\
& 1.826058 \\
& 1.004370 \\
& 0.759788 \\
& 2.2463748 \\
& 1.429085 \\
& 1.264749 \\
& 0.585008 \\
& 2.137880 \\
& 1.392316 \\
& 1.068442 \\
& 0.355949
\end{aligned}
$$

\] \& | 2.526719 |
| :--- |
| 2.8754 49 |
| 10612745 |
| 0.968476 |
| 0.861882 |
| 1.832752 |
| 0.997019 |
| 0.776765 |
| 2.257539 |
| 10438987 |
| 1.276078 |
| 0.591939 |
| 2. 148662 |
| 1. 399443 |
| 1.078937 |
| 0.374229 |

\hline \& $\sum_{i}\left(-x_{i}\right)$ \& \multicolumn{3}{|l|}{23.24871821 .84660828 .999613}

\hline
\end{tabular}

(b) Bond orders, bond lengths and β^{9} values

Bond	$\mathrm{p}^{1 / 4} \mathrm{~m}^{\text {I }}$			5				
12	. 5111.4226	0.	0475	1.432	0.880	62	438	0.862
15	. 5081.426	0.894	. 513	1.424	0.900	. 520	1.423	0.905
110	. 6041.40	0.95	. 617	1.402	0.967	. 622	1.399	0.978
23	. 7631.373	1.060	. 796	1.36	1.090	. 809	1.365	. 090
34	. 519 1.42	. 90	. 486	1.43	0.885	0898	1.4	0.869
46	. 535 B	0.910	. 555	1.485	0.929	. 568	1.412	0.937
48	. 5571.48	0.925	. 550	1.416	0.925	. 550	1.416	0.923
56	. 526 1. 22	0.90\%	. 514	3.424	0.900	. 504	. 428	0.890
512	-54n 1.42	0.925	. 549	1.417	0.923	. 554	. 415	0.928
67	-521 3.4. ${ }^{\text {2 }}$	0.900	. 516	42	0.904	. 515	10424	. 9
89	. 7261.38	1.035	.740	8. 377	1.047	. 742	$1.37{ }^{2}$	1.060
213	-497 E. ${ }^{\text {d }}$	6, 28.8	0.479		0,282	0.42	8.885	0.869

Rable 10: 2m. Bow dibenzeoronene

(b) Bond orders, bond lengths and β^{8} valuea

Bond	$\mathrm{p}^{\text {I }}$	r^{I}	$\beta^{\text {I }}$	$p^{\text {II }}$	$x^{\text {II }}$	$\mathrm{p}^{\text {II }}$	$\mathrm{p}^{\text {III }}$	$5^{\text {III }}$	$\beta^{\text {IIII }}$
12	. 571	1.416	0.926	. 580	1.411	0.948	. 586	1.410	0.945
19	. 670	1.386	1.017	. 670	1.392	0.998	. 670	1.392	0.998
23	. 5449	1.424	0.902	. 530	1.421	0.909	. 515	1.424	0.900
211	- 510	1.438	0.059	. 512	1.425	0.898	. 517	1.424	0.901
34	. 646	D. 392	3.000	. 688	1.388	1.021	. 707	1.384	1.024
45	. 488	1. 24.49	0.828	0.428	10433	0.876	. 265	1.435	0.872
47	. 487	2. 2488	0.829	-434	$\underline{10424}$	0.855	. 4182	10426	0.842
56	. 567	E0488	0.928	. 579	10312	0.940	. 581	1.412	0.942
513	. 518	D.435	0.868	. 512	1.423	0.903	. 223	$\underline{1} 423$	0.905
78	-789	1.362	8. 103	. 332	3. 338	2,115	. 84 ?	2. 355	1.127
12.13	. 548		0.908	-54.9	3.829	0.298	. 5223	1-618	0.988

Table IR: Anthamblavere

C_{2} gyman	I	II	III
A	20625997	208316783	2.424.732
	2.777859	1.682933	1.689656
	10534285	1.469804	1. 4275348
	1.209902	1.169401	1.183641
	0.874820	0.796329	0.790:549
	0.290959	0.329211	0.353582
B	2.261340	2.108319	20114748
	3.965927	1.859047	1.865204
	1.232394	1.183519	1.185256
	1.103514	1.024573	1.0154.29
	0.750047	0.783785	0.808926
$\sum_{i}\left(-z_{i}\right)$	150626442	14.812682	14.904812

(b) Bond orders, bond lengehs and β° valuea

Bond	$p^{\text {I }}$	$8^{\text {I }}$	$\beta^{\text {a }}$	$p^{\text {II }}$	$\mathrm{r}^{\text {II }}$	$\beta^{\text {III }}$	$p^{\text {III }}$	$2^{\text {III }}$	$\beta^{\text {III }}$
12	. 563	1.415	0.929	. 561	1.415	0.929	. 559	10445	0.928
16	. 507	I. 428	0.091	. 512	${ }_{1}^{1} 8485$	0.898	.521	1.423	0.903
112	. 568	Hosis	0.928	. 5489	1. 81.7	0.922	- 5180	10.429	0.916
23	. 689	H. 299	R.008	. 702	1.886	1.020	.708	1. 384	1.024
34	. 650	-.397	0.983	. 637	- 3939	0.978	. 628	So403	0.972
45	-605	1.406	0.956	. 632	1. 4.80	0.974	-644	1.397	0.982
56	- 520	11.4224	0.900	-523	1. 4222	0.905	-524	11.422	0.906
57	. 494	1. 2.30	0.885	04186	1.439	0.861	. 4285	1.443	0.850
$6 \quad 10$. 550	1.4288	0.920	. 547	1,480	0.928	. 54.0	10489	0.916
78	. 783	1. 369	1.078	. 824	1. 360	1.110	-840	1.357	1.123
8	. 493	1.430	0.885	${ }_{0} 828.8$	10439	0.860	. 423	10.443	0.849
$9 \quad 10$	-48\%	10.432	0.890	0.487	18.438	0.878	${ }^{4} 474$.	1.433	0.877
913	-620	1.399	0.976	. 676	1.391	1.002	. 698	1.388	1.013
10 Ll	-541	$1{ }_{0} 1220$	0.015	. 555	9, 0.46	0.926	. 965	1.434	0.932

APPENDIX C

lnergies, bond orders etco calculated as for

 molecules in Appendix B, but with special provision made for extreme short and long bonds, described $\operatorname{in} 66.3$.Table 1: Pheramehreac
(a) Energy eigenvaiues mis

(b) Bond orderg, bond lenfêha and β^{8} values

Bond	$p^{\text {I }} \mathrm{m}^{\text {I }} \quad \beta^{0}$	$p^{\text {EI }} z^{\text {IL }} \beta^{\text {PII }}$	$p^{\text {IIE }} \varepsilon^{\text {HII }} \beta^{\text {IIE }}$	$P^{\text {IV }} \sum^{\text {IV }} \beta^{\text {IV }}$
12		06081.4050 .960	. 595 [.408 0.952	.5861.4100.985
16	. 359 BO 2600.804	. 3921.41000 .831	0.45104850 .844	04271.44850 .859
18	.607 30405 0.959	-592 1.4090 .948	. 5861.41000 .945	.586 1.4100.945
23	.602 2.3892 .006	. 6961.38961 .017	. 7081.384 .1 .024	. 7161.3821 .030
$3{ }^{3} 4$. 64491.3950 .985	.631 1.400 0.975	. 6191.4020 .967	. 6101.4040 .961
45	0680 I. 390 I.005	.694 1. 3871.015	. 7051.3851 .023	. 7131.3831 .028
58	06321.10000 .975	.623 1. 4040.963	.601 10407 0.955	. 5921.408080 .949
67	. $8951.343^{5} 1.166$	${ }^{\circ} 8631.3521 .140$. 8481.3551 .128	.840 1.356 1.121
89	. 317 10465 0.79]	. 3731.45400821	039510.4490 .832	04051044870.838

Table 2: Twiphenyreme

(a) Enexgy Ligenvaluse - $-x$

$\begin{aligned} & C_{v} \text { gymum } \\ & \left(\mathscr{D}_{3 h}\right) \end{aligned}$	II ITI IY
$\left.\begin{array}{cc} A^{\prime} & \left(A_{2}\right. \\ & (E) \\ & \left(A_{2}\right) \\ & (E) \\ & (D) \\ A^{\prime \prime} & (D) \\ & (D) \\ & \left(A_{2}\right) \\ & (E) \end{array}\right]$	
$\sum_{i}\left(-x_{i}\right)$	12.30915012018713112021864812 .214250

(b) Bond ordera, bond lengthe and β^{0} values

Bozad	$p^{\frac{3}{3}} \bar{z}^{3} \quad \beta^{\text {J }}$	$p^{\text {MI }} x^{\text {II }} \beta^{0^{\text {NI }}}$	$\beta^{\text {III }} p^{\text {PII }} \beta^{\text {IIII }}$	$p^{I V} \mathrm{~F}^{\text {IV }} \quad \beta^{\text {IV }}$
37	. 626123901.002	. 6841.3891 .008	. 6921.3871 .013	0.6971 .3861 .017
29	. 6371.3990 .978	. 626 8.4 4030.971	. 617 1. 4030.965	06111.4040 .962
29	- 30011.4690 .780	. 3341.4620 .800	. 3591.4560 .814	. 3691.4550 .818
211	.613104040 .963	.6031.406 0.957	. 5961.4080 .952	0.5951 .4080 .951
85	.6531.395 0.987	.6431.397 0.982	.6351 .3990 .977	06291.4000 .973

Table 3: 1-2, 3-4, 5-6, 7-8 tetrabenznaphthalene
(a) Energy eigenvalues I_{i}

(b) Bond oxdere, bond lengthe and β^{\prime} values.

Bond	$p^{\text {I }} \mathrm{z}^{\text {I }} \beta^{\text {d }}$	$p^{\text {II }} r^{\text {II }} \beta^{\text {II }}$		$p^{\text {IV }} x^{\text {IV }} \beta^{\text {NV }}$
12	.6281 .4010 .972	. 6091.4 .050 .960	1.5981 .4070 .954	. 5921.4080 .949
16	.605 1.406 0.958	. 5881.4090 .947	1.5861 .4800 .945	. 5862.40400 .946
18	03401.4600 .804	. 3871.45210 .828	-402 1.4480.836	. 409 1. 44860.840
23	.6821 .3901 .006	. 6951.3871 .036	- 7051.3851 .022	. $7121.3831 .02 \%$
34	.648 1.396 0.985	.6331 .4000 .975	.621 I. 4020.968	. 6141.4040 .964
45	.6801 .39081 .005	.693 1.387 2.014	. 7021.3851 .021	. 7081.384 .2 .025
56	. 6341.3990 .976	.616 1.403 0.964	.604 1. 4.060 .958	. 5981.4070 .954
67	.3151 .4660 .790	. 3691.4550 .838	. 38712.4510 .828	. 3941.4490 .832
89	.7931 .3661 .086	.7571 .3781 .044	.7271 .3821 .031	. 7071.3841 .024

Table 43 Lon2 benapyzene

(a) Energy eigenvalues $-x_{i}$

C_{2} symm	$I \quad I I$	III	IV
A°	2.37301 .82 .392873	2.395815	2.397330
	2.0067932 .010938	2.010629	2.010832
	1.4631061 .523436	1.523831	1.524240
	1.2666561 .282303	1.288296	1.290666
	0.8730280 .986286	0.982585	0.980349
	0.6426990 .594362	0.572950	0.564358
A^{00}	1.973509 1.942598	1.933855	1.931314
	1. 2140791.234951	1.243835	1.247376
	0.9639240 .954760	0.953542	0.953830
	0.7737880 .733890	0.721874	0.719255
$\sum_{i}\left(-x_{i}\right)$	13.65060213 .656397	13.627210	13.619549

(i) Bond orders, bond lengths and β^{\prime} values

Bond	$p^{\text {I }} \quad x^{\text {I }} \quad \beta^{\text {I }}$	$\beta^{\text {II }} \pi^{\text {II }} \beta^{\text {IIT }}$	$p^{\text {III }} x^{\text {III }} \beta^{\text {II }}$	$p^{\text {IV }} z^{I V} \beta^{\text {IV }}$
17	. 6761.3911 .002	0.6851 .3891 .009	.6921 .3872 .024	.6971 .3861 .027
19	. 6371.3990 .978	1.624 1.402 0.969	51.4030 .964	.610 1.404 0.961
25	.6951 .3970	421.3980 .981	318.3970 .982	. 6451.3970 .983
29	. 300 1. 4690.780	.3461 .04590 .807	03531.4560 .885	.3681 .4550 .828
215	.6051 .4060 .958	1.577 2.412 0.939	. 5641.41440 .932	. 55591.4150 .928
34	.661. 1.3940 .99	-656 1. 3950.989	. 6521.3960 .986	. 6481.303960 .985
45	.6721 .3921 .000	06781.3901 .003	.682 2.390 2.006	. 6851.3891 .008
56	.6311 .10000 .974	0.6172 .4030 .965	.6091 .4050 .961	.605 1.4060.958
612	.6031	1.5	6	.5682 .41 .30 .934
613	- 3	-392 1.450 0.831	-415 3.4850 .8441	. 4251.4430 .850
78	.654 1. 3950.98	-6	.6341 .3990	.6291 .4000 .97
910	.613 1.404 0.963	. 59	. 5	. 5962.4080 .952
1012	. 3471.4590 .308	1.419 1.4484 0.8461	.4461 .4390 .861	.4571 .4570 .867
1314	. 895 1.345 1.166	. 864 L. 352 L. 340	. 84.491 .3551 .1281	.8421 .3562 .122

Table 5: 1-m, 6m? dibenzpyrene
(a) Energy eigenvalues $-x_{i}$
IV
(b) Bond orders, bond lengths and β^{\prime} values.

Bond	$p^{\text {I }} x^{\text {I }} \beta^{\text {IT }}$	$p^{I I} x^{I T} \quad \beta^{\text {II }}$	$p^{\text {IIX }}{ }^{\text {III }} \quad \beta^{\text {III }}$	$p^{I V} x^{I V} \beta^{\text {IV }}$
14	.6781.390 2.004	1.6871.388 1.010	. 6942.3872 .015	.6981.3861.013
16	.6321 .4000 .975	.621 1. 4020.967	. 6131.4040 .963	.609 1.405 0.961
23	06381.3980 .979	1.6331 .4000 .975	.6311 .4000 .974	.630 2.4000 .974
26	. 3241.4640 .795	. 3551.4570 .812	.3671 .4550 .817	. 3701.4540 .819
28	- 5961.4080 .952	. 5821.4110 .942	. 5761.4820 .938	. 5731.4120 .937
310	.666 1.393 0.995	. 6661.3930 .995	. 6661.3930 .995	. 6661.3930 .995
45	.651 1.396 0.986	1.639 1.398 0.979	.632 1.400 0.975	. 6271.4010 .972
67	. 6061.4060 .958	. 5951.4080 .952	. 5941.4080 .958	. 5951.4080 .952
89	.3741 .454 .0 .822	. 408 1.446 0.840	. 4241.4430 .849	. 4302.4420 .852

Table 6: 2-2, 3-4, 506 tribenzanthracene

(a) Energy eigenvalues $-x_{i}$

I	II	III	IV
2.367521	2.380136	2.383953	2.384104
2.188349	2.204913	2.207058	2.207504
1.950650	1.929108	1.925715	1.924405
1.920537	1.868114	1.880587	1.877545
1.479890	1.539359	1.540036	1.539722
1.291391	1.324966	1.332452	10334107
1.220772	1.256359	1.243024	1.245058
1.170802	1.190104	1.196675	1.198896
1.027011	1.026691	1.027573	1.027714
0.921024	0.905598	0.901975	0.901543
0.831685	0.810828	0.804055	0.802683
0.710626	0.664399	0.651908	0.648304
0.665045	0.619526	0.598278	0.589393
17.746101	17.720101	17.693486	17.680976

Taule 6 contit.

Bond	$p^{\text {I }} \mathrm{r}$	$\mathrm{I}^{\text {II }} \beta^{\prime}$	$\underline{p}^{\text {III }} s^{\text {III }} \beta^{\text {III }}$	$\underline{p}^{\text {IV }} \mathrm{r}^{\text {IV }} \quad \beta^{\text {IV }}$
	.680 1.390 1.005	1.6941 .3871 .015	. 7041.3851 .022	7111.3831 .027
126	. 6492.3960 .925	0.6331 .400 .0 .975	1.628 1.402 0.967	6131.4040 .963
	. 6331.4000 .975	1.6131 .4040 .963	. 6021.4060 .956	5951.4080 .952
	. 3171.4650 .79	03721.4540 .820	0.3921 .4500 .830	4.001 .4480 .835
$3 \quad 24$	0.6071 .4050 .95	1.5901 .4090 .948	$\bigcirc 5871.41300 .986$	5871.4100 .946
	. 6411.3980 .981	1.6321 .4000 .975	. 6261.4010 .971	6231.4020 .969
423	. 5951.4080 .952	1.5691 .4130 .935	. 5591.4150 .929	5561.4160 .926
	. 6511.3960 .986	1.6511 .3960 .985	.652 1.396 0.987	6541.3950 .988
	. 3001.4 .690 .780	1.3451 .4590 .807	. 3611.4560 .815	3661.4550 .817
$6 \quad 19$.5971 .4070 .953	[.56\% 1. 0.4140 .934	. 5581.41460 .925	05481.4170 .921
	. 6371.3990 .978	. 6251.4010 .970	. 6171.4030 .965	6121.4040 .962
$7 \quad 12$.6131 .4040 .9	1.5981 .4070 .953	. 5941.4080 .951	080.951
$8 \quad 9$.676 1.391 1.002	1.6841 .3891 .008	. 691 1. 3831.013	6951.3871 .016
910	. 6541.3950 .980	1.6431 .3970 .982	1.6361 .3990 .977	6311.40000 .974
1012	.676 1. 3921.002	.684 1.369 1.000	1.6901 .3801 .012	6951.3871 .015
1112	. 6381.3981 .25	¢.626 1.402 0.970	. 61.8 I.403 0.966	6131.4040 .963
1213	. 2981.4690 .779	- 03442.4600 .806	. 3591.4560 .814	, 3651.4550 .816
1814	.6382 .3980 .97	1.6251 .4010 .970	1.6171 .4030 .965	.6131.404 0.953
1318	$0.613 ? .4040 .96$	-590 2.4070 .954	. 595 I.408 0.951	. 5951.4080 .952
14.5	.676 1.391 2.002	1.6851 .3891 .008	. 6911.3881 .012	6951.3871 .086
1516	.6541 .3950 .98	1.6421 .3970 .982	1.6361 .3990 .97	\%631 1.400 0.974
1617	.6761 .3911 .002	1.6841 .3891 .008	. 6911.3881 .013	0.6951 .3871 .016
1718	.638 1.399 0.978	1.6241 .4010 .970	. 61711.4030 .965	.613 1.404 0.963
181.9	. 2991.4690 .780	1.3451 .4590 .807	. 360 I. 4560.814	\$.365 1.4.55 0.817
1920	. 652 d .3960 .987	1.653 1.395 0.987	1.6551 .3950 .988	06571.3950 .990
2021	. 6362.3990 .978	1.625 1.401 0.971	. 6201.4020 .967	616.1 .4030 .965
21 22	. 339 l. 46000.804	-392 $\mathbf{- 1 . 4 5 0} 0.830$.4121 .4460 .842	4221.4440 .848
2223	. 895 1.345 1.166	1.865 1. 3511.341	. 8501.3541 .129	. 8431.3561 .123
2324	03381.4610 .303	1.3891 .4500 .829	. 41121.4460 .842	4211.4440 .847
2425	. 628 1.401 0.972	1.6081 .4050 .960	. 5971.4070 .953	947
2526	.682 1.390 1.006	1.6961 .3871 .016	. 7061.384 .1 .023	7251.3831 .028

Table 7: 1-2, 3-4, 5-6, 7-8 cetrabenzanthrecene

(b) Bond orders, bond lonfths and β^{\prime} values.

Bond	$\mathrm{p}^{I} x^{I} \beta^{\text {I }}$	$p^{I I} I^{I I} \beta^{\text {II }}$	$\mathrm{p}^{\text {III }}$ III $\beta^{\text {III }}$	$\beta^{\text {IV }}$
12	.6371 .3990 .978	.623 I.401 0.969	. 6161.4030 .964	. 6121.4040 .962
	. 3001.4700 .780	. 3471.4590 .807	. 3631.4560 .815	. 3681.4550 .818
	.6131 .4040 .963	1.599 1.407 0.953	. 594.1 .4000 .951	. 5951.4080 .951
	.6761 .3911 .002	. 6851.3891 .009	. 6921.3871 .013	.6961 .3861 .016
	.654 1.395 0.980	1.6421 .3960 .981	.634 1. 1.3990 .976	. 629 1. 40000.973
	.6761 .391 1.002	1.684 1. 3892.008	.691 1.388 1.013	.6961 .3871 .016
58	.6381 .3990 .976	[.624 1.401 0.970	0.6171 .4030 .965	.6121 .4040 .962
67	.6011 .4060 .956	1.5761 .4120 .939	. 5661.4140 .932	. 5621.4150 .930
$\begin{array}{ll}6 & 10\end{array}$. 6461.3970 .984	1641 1.398 0.981	. 6401.3980 .980	.6401 .3980 .980
$8 \quad 9$.2991 .4690 .779	1.3451 .4590 .806	.3611 .4560 .814	.3661 .4550 .817

Table 8: 2-92, 2soj dibenzperylene

(a) Energy cigenvalues $-x_{i}$

I	II	III	IV
2.430480	2.448547	2.452237	2.453011
2.153936	2.163320	2.164851	2.165387
2.018463	2.002741	1.997322	1.995066
1.896101	1.861576	1.851943	1.848653
1.495398	1.557778	1.559443	1.560127
1.328533	1.347940	1.355849	1.358894
1.265475	1.288092	1.297511	1.300957
1.130766	1.141567	1.144708	1.145788
0.987265	0.995647	0.989680	0.986252
0.952573	0.945150	0.943301	0.942937
0.880586	0.862350	0.858513	0.888515
0.717348	0.970970	0.657195	0.653378
0.608789	0.551582	0.527768	0.517686
17.865672	17.837261	17.800320	17.786650

Teble $8 \operatorname{con}^{2}{ }^{2} d$ 。

Bond	${ }^{5} y^{\text {a }} p^{\text {1 }}$	$p^{I X} x^{I I} \beta^{I I}$	$\underline{p}^{\text {III }} \mathrm{z}^{\text {III }} \beta^{\text {III }}$	$p^{\text {IV }} r^{\text {IV }} \beta^{\text {IV }}$
12	. 8941.3451 .255	1.8601 .352 1. 130	. 8431.3561 .124	.8341 .3581 .127
$1 \begin{array}{ll}1 & 22\end{array}$. 3421.4600 .804	1.3951 .4490 .832	. 4201.4840 .847	4331.4410 .854
	. 3421.4600 .005	03991.4480 .834	- 4241.4430 .849	4381.4400 .857
$3 \begin{array}{ll}3 & 4\end{array}$.621 1.402 0.968	1.5971 .4070 .953	. 5821.42110 .942	. 5711.4130 .936
$3 \quad 24$. 6061.4050 .959	0.5871 .4090 .946	. 5811.41110 .942	. 5811.41210 .941
	. 6861.3891 .009	07031.3851 .021	. 7151.5831 .030	. 7241.3811 .035
	.6261 .4010 .971	.604 1.406 0.957	. 5891.4090 .948	¢ 5801.4110 .948
	. 3031.4680 .722	-354 2.857 0.811	. 3741.8530 .821	3821.4120 .825
$\begin{array}{ll}6 & 25\end{array}$.616 1.403 0.96	$1.602 ~ 1.4060 .956$.6002 .4070 .955	6011.4060 .956
	.6361 .3990 .976	1621 2.402 0.968	. 6111.4040 .962	. 6051.4060 .958
$? \quad 12$.612 1.404 0.962	1.5961 .4080 .952	. 5911.4090 .949	. 59121.4090 .949
	. 6761.3921 .003	1.687 1.3881 .010	.695 1.3871.015	.7001 .3861 .019
910	. 653 l 1.395 0.987	[.640 1.3980 .980	.631 1.400 0.974	6251.4010 .970
1011	. 6761.3921 .002	. 6861.3691 .009	1.694 1.387 1.015	6991.3861 .019
1112	. 6371.3990 .978	.623 1.402 0.969	. 61.42 .4040 .963	6081.4050 .960
1215	. 301 1.469 0.781	. 3501.4580 .809	1.3501 .4550 .318	30.822
1314	. 6401.39800 .980	1.6321 .4000 .974	. 6281.4010 .972	6251.4010 .971
1326	. 6092.4050 .960	. 5861.4300 .945	05771.4120 .939	[574 3.4120 .937
1415	.667 1.03930 .996	1.660 2.3920 .996	. 6651.3920 .30 .997	67070.3920 .998
1516	.666 1.393 0.995	1.665 1. 3930.994	06631.3930 .993	1.6621 .3940 .992
1617	.641 1.0398	¢ 6353.3990 .976	. 6331.4000 .975	0.6351 .3990 .976
1718	-300 1.469 0.720	.3472 .4590 .807	-363 2.4560 .816	. 3681.4550 .818
1726	.609 1.405 0.960	0.5061 .4100 .945	. 5761.4120 .939	05721.4130 .936
1819	.645 I .3970 .983	06432.3970 .982	.644 1.3970 .982	64.71 .3970 .984
1823	.605 1.406 0.958	. 5771.4220 .939	. 5631.4140 .938	. 5571.4160 .927
1920	06613.3940 .992	1.6551 .3950 .988	$.6501 .3960 .985$. 6451.3970 .983
202	.673 1.391 1.000	06792.390 1.004	. 6841.3891 .008	.6881 .3881 .011
2122	.6301 .4000 .976	[.615 1.403 0.964	.606 1. 4050.959	.600 1.4070.955
2223	.6032 .4060 .957	1.5791 .4120 .942	05701.4330 .935	. 5651.4140 .933
2324	. 3482.4620 .799	103972.4490 .834	$.4222 .4,440.848$. 43221.4420 .853
2425	.601 1.406 0.956	0.5601 .4130 .934.	. 5501.4170 .922	.5401 .4190 .916
2526	. 3311.8620 .799	1.3971 .4490 .354	. 4221.4440 .848	. 432 1.442 0.853

Table 9: 1-32, 2-3, 10-11 tribenzperylene (a) Energy eigenvalues $-x_{i}$

(a) Energy eigenvalues $-x_{i}$

$\mathrm{C}_{2} \mathrm{symm}$ 。	I	II	III	IV
A^{0}	2.449316	2.462744	2.466843	2.468354
	2.063062	2.048616	2.046921	2.045548
	1.926334	1.895398	1.887807	1.885009
	1.334772	1.357595	1.367886	1.370785
	1.271637	1.29363 B	1.302465	1.305872
	1.000000	0.993214	0.994618	0.996062
	0.969123	0.954568	0.949926	0.947550
	0.704 .437	0.652605	0.637795	0.632904
AOO	2.213538	2.216373	2.220206	2.221023
	1.883460	1.848679	1. 84.0284	1.836833
	1.361340	1.379330	1.387786	1.390299
	1.175594	1.187419	2. 193488	1.194732
	0.949310	0.940404	0.939075	0.939226
	0.806859	0.777692	0.773560	0.770258
	0.628579	0.564074	0.548853	0.533710
$\sum_{i}\left(-x_{x}\right)$	20.737358	20.572339	20.548503	20.538163

Teble 9 cont'd.
(b) Bond orders, bond lengths and β^{\prime} yelues

Bond	$p^{I} \quad x^{I} \beta^{\prime \prime}$	$p^{\text {II }} x^{\text {II }} \quad \beta^{\text {III }}$	$p^{\text {III }}$ III $\beta^{\text {MII }}$	$\mathrm{p}^{\text {IV }} \mathrm{r}^{\text {IV }} \beta^{\text {IV }}$
12	. 3021.4690 .781	.352 1.4580 .810	. 371.1 .4540 .820	0.3791 .4520 .823
113	.6511 .4000 .974	$\begin{array}{lll}.613 & 1.4040 .963\end{array}$.603 2.4060 .957	. 5971.4070 .953
115	. 6121.4040 .962	.595 1.408 0.951	. 5903.4090 .948	. 5891.4090 .0947
23	. 6371.3990 .979	. 6221.4020 .968	. 612 1. 4040.962	. 6071.4050 .959
27	. 6131.4040 .963	.5962 .4070 .952	. 5921.4080 .950	. 5931.4080 .950
34	.6761 .391 .1 .002	.6861 .3891 .010	. 6941.3871 .015	.6991 .3861 .019
45	. 6531.3950 .987	.641 1.358 0.981	. 6321.4000 .975	. 6261.4080 .972
56	.6761 .3911 .002	. 6862.3891 .009	. 6931.3871 .014	. 6981.3861 .018
67	. 6371.3990 .978	. 6231.4020 .969	.614 1.404 0.964	.609 1.405 0.960
78	. 3001.4690 .780	.5481 .4590 .808	. 36612.4550 .817	1.373 I. 4.540 .821
89	${ }_{.} 541.1 .3980 .980$.632 1.400 0.975	. 629 1. 40000.973	. 6271.4010 .972
812	.609 1.405 0.960	. 5871.4300 .946	-578 1.412 0.940	. 5741.1 .4120 .937
950	.666 1. 3930.996	.667 2.39330 .995	. 6668 I. 3920.995	1.6681 .3920 .997
1011	. 6661.3930 .995	. 665 L .3930 .995	1.664 1.393 0.994	. 6641.3930 .993
1127	. 641 1. 39880.981	. 5861.4800 .945	1.6321 .4000 .975	. 6311.4000 .975
1215	. 3312.4620 .799	.3961 .4490 .833	.421 1.444 0.847	. 4301.4420 .853
1227	. 6091.4050 .961	. 5861.4100 .945	. 67771.4120 .939	05731.4120 .937
1324	. 60012.3901 .005	. 6921.3871 .013	-700 1.386 1.019	. 7051.3851 .022
1516	. 6061.5050 .958	. 5771.4120 .939	0.5631 .4140 .931	. 5551.4160 .926
1718	. 3001.4690 .780	.3471 .4590 .808	0.3641 .4560 .816	. 3691.4540 .819

Table 10: $1-2,3-4,5-6,10-12$ tetrabenzanthanthrene

(a) Energy eisenvalues $-x_{i}$

$\mathrm{C}_{2} \mathrm{symm}$.	I	III	III	IV
A°	2.480455	2.493082	2.497368	2.498990
	2.151806	2.147603	2.149336	2.149895
	1.945161	1.9100030	1.900673	1.896730
	1.863076	1.825775	1.816195	1.813196
	1.329778	1.352443	1.362409	1.366475
	1.235368	1.250327	1.257278	1.259288
	0.991032	0.966441	0.958534	0.954938
	0.949807	0.940805	0.939393	0.939558
	0.908025	0.892350	0.890530	0.890990
	0.639634	0.574895	0.553274	0.545177
A:0	2.266721	2.272438	2.276283	2.277103
	1.979162	1.958907	I. 955980	1.954646
	1.385193	1.404457	2.412253	1.414810
	1.354335	1.380294	1.391191	1.394933
	1. 122834	1. 251.793	2.136947	1.138187
	0.947052	0.939669	0.939608	0.940351
	0.777817	0.743917	0.735501	0.733410
	0.623887	0.5601 .03	0.539170	0.531458
$\sum_{i}\left(-x_{2}\right)$	24.95815	24.345490	24.711924	24.700135

Table 10 con's.
(b) Bond orders, bond lenths and β^{\prime} values.

Bond				
	.6421.390 0	0.6331 .4000 .975	1.6301 .4000 .974	91.400 0.973
2	-6	1.6	\|.6661.393 0.995	5
	- 3	. 3491.4590 .808	. 36612.4550 .817	731.4540 .820
218	.60	- 58	.5762 .4320 .939	36
	. 6411.3980 .98	1.6331 .4000 .975	.630 1.400 0.973	6281.4000 .973
316	. 6091.4050 .96	- 58	5 5761.4120 .939	. 572 2. A5 0.937
	. 6661.3930 .99	. 66	.6671.393 0.996	6671.3930 .996
	$.666 \geq .3930 .99$	1.6	. 6651.3930 .994	994
	. 64.	1.6	5	. 6321.4000 .975
	- 3	$\bigcirc 3$	-364 1.456 0.816	9
716	. 6	1.5	.5751 .4120 .938	5
	.637 1. 3990.97	. 6	1.6151 .4030 .964	1
823	. 6131.4040 .95	1.	-5	,
$9 \quad 10$. 676 1.392 2.00	1.6851 .3898 .00	16922.3872 .014	7
1012	. 6	1.	. 6341.3990 .976	
12	- 6	1.6		
1213	. 6	1.6		.610 1.405 0.962
1314	. 300 1. 4690.780	- 34812.4590 .80	1.36	0
1415	. 6041.4060 .95	1.5	5671.4140 .933	0
1420	. 6241.3970 .98	. 63	. 6361.3990 .978	1.6361 .3990 .977
1516	. 3321.4620 .800	1	,42	. 4351.4420 .855
15	. 6	- 5	05751.4120 .938	. 5701.4130 .935
1819	.3321 .4620 .799	1.3981 .4480 .834	. 4231.4430 .849	54

Table L1: Hexabenzooronene
(b) Bond orders, bond lengths and β^{\prime} values.

Bond	$p^{\text {I }} x^{\text {I }} \quad \beta^{\text {I }}$	$p^{\text {II }} r^{\text {II }} \beta^{\text {dIT }}$	$p^{\text {III }} 2^{\text {III }} p^{\text {III }}$	$p^{\text {IV }} x^{\text {IV }} \beta^{\text {IV }}$
12	. 6411.3980 .980	.6331 .4000 .975	.630 1.400 0.974	.6291.400 0.973
216	.606 2.3930 .995	. 666 i. 3930.995	. 6661.39330 .995	06651.3930 .995
23	. 3018.4890 .780	. 3492.4580 .809	-367 1.4550 .818	. 3731.4540 .821
214	.609 3.4050 .960	. 5851.4100 .945	0.5751 .4120 .938	. 5711.4130 .935
710	.3331 .4620 .800	-401 1.448 0.836	. 4271.4430 .852	. 4381.4400 .857
1018	. 6061.4050 .959	.583 3.421 0.943	. 5691.4330 .935	.5651 .4140 .932

Table 12: 1-2, 3 - $4=505$, $7-8$ tetrabenztetracene (a) Enexgy eigenvalues $-x_{i}$

(b) Bond orders, bond lengthe and β^{\prime} values.

Bond	$p^{I} I^{I} \quad \beta^{\prime}$	$\mathrm{p}^{\text {II }} \mathrm{r}^{\text {II }} \beta^{\text {PII }}$	$p^{\text {III }} z^{\text {III }} \beta^{\text {PIII }}$
12	. 6721.3920 .999	1.6741 .3981 .001	1.6751 .3911 .001
17	. 6421.3980 .981	1.6391 .3980 .979	. 6391.3980 .979
29	. 6631.3930 .993	. 6652.3940 .992	. 6621.3940 .992
34	.6781 .3901 .003	.682 1.390 2.006	. 6831.3891 .007
35	. 6381.3980 .979	. 6351.3990 .977	$\begin{array}{lll}.634 & 1.399 & 0.976\end{array}$
57	. 2701.4750 .766	.2771 .4740 .769	0.2771 .4740 .769

Ta,ble 14: Diphemyl

(b) Bond orders, bond lengths and β^{\prime} veluee

Bond	p^{I}	2^{I}	$\beta^{\prime I}$	$p^{I I}$	$r^{I I}$	$\beta^{\prime I I}$
1	2	.672	1.392	0.999	.674	1.391
1	3	.642	1.001			
2	5	.663	1.393	0.981	0.993	.640
3	4	1.398	0.980			
.268	1.476	0.765	1.394	0.993		

APPENDIX D

Papers written with Dr ToHoGoodwin.

Reprinted from

TETRAHEDRON LETTERS

The International Organ for the Rapid Publication of Preliminary Communications in Organic Chemistry

Tetrahedron Letters No. 14, pp. 901-904, 1963. Pergamon Press Ltd. Printed in Great Britain.

L.C.A.O. - M.O. CALCULATIONS ON PYRENE BENZOLOGUES

T. H. Goodwin and D. A. Morton-Blake

Chemistry Department, The University, Glasgow, W. 2. (Received 13 March 1963)

AT the suggestion of Dr . E. Clar, we have carried out some calculations on a number of benzologues of pyrene (I)

I

II
in which benzenoid rings are annelated linearly in the 1:2 and 6:7 positions. These have all been found by Clar and his co-workers ${ }^{1}$ to have ultra-violet absorption spectrum bands, the positions of which are remarkably independent of the number of rings on the shorter side. If these molecules were thought of as dibenzoacenes this result would not be anticipated, as the absorption spectra would be expected to exhibit a resemblance to those of the corresponding parent acenes and to show marked and progressive displacement towards longer wave-lengths with increasing length of the acene chains. Moreover, the

[^3]I. A. Macpherson (private communication).
positions of the absorption bands of the pyrene benzo-
logues are very different from those of acenes having
the same number of collinear rings, thus showing that
the former are not just simple derivatives of the latter.
For convenience we shall adopt the following systemto describe the pyrene benzologues: if the molecule canbe regarded as pyrene with n annelated benzene rings onone side and \underline{m} on the other (\underline{m} not greater than \underline{n}) weshall denote it as nPm. Naphtho-[2'.3':1.2]anthraceno-[2".3":6.7]pyrene (II) will therefore be written $3 P 2$.Calculations by the simplest Hutckel method, i.e. with
all overlap integrals neglected and all interaction in-
tegrals between orbitals on neighbouring atoms assumed
equal to β_{o}, show moderate consistency in the energies of
the highest occupied molecular orbitals, and hence in the
transition energies of Clar's p-bands (highest occupied
level to lowest unoccupied). If, however, we recognise
a fundamental asymmetry ${ }^{2}$ in the fully-aromatic benzenoid
rings by allotting β-values in accordance with tendency
towards the development of single-bond and double-bond
character, then much more consistent results obtain.
The molecule 3P2, for example, was supposed to have
an electronic structure indicated diagrammatically at (III).
The bonds shown as single in rings D, E, H, I are,
rather arbitrarily, assigned the value $0.8 \beta_{0}$, those
shown as double $1_{0} \mathcal{I}_{0}$ (for pure single and double bonds
the assignments would be $0 \beta_{0}$ and $1_{0} 20 \beta_{0}$ respectively)
2. E. Clar, Tetrahedron, 5,98 (1959); 18, 1471 (1962)
etc.
while those forming part of a delocalised acene system ${ }^{3}$
and enclosed by broken lines are taken to have values β_{o}.
The "double" bonds in rings H and I have been assumed to

III
have such positions as to provide an induced aromatic sextet ${ }^{2}$ in ring D, thus leaving ring E formally empty in accordance with Clar's picture of these molecules.

The π-bond energies ($E-a$) of the highest occupied molecular orbitals calculated for the pyrene series $3 \mathrm{Pm}, 2 \mathrm{Pm}$ are given in the table together with the measured wavelengths of the p-bands. The consistency of the calculated energies in column 3 is seen to parallel that of the observed wavelengths in column 4. This appears to give strong support to Clar's picture of the aromatic hydrocarbons and, in particular to his conclusion regarding the asymmetry of the benzene ring.
3. E. Clar, Aromatische Kohlenwasserstoffe, p. 79, Springer-Verlag (1952).

MOLECULE	$\begin{gathered} a-E(\\ \text { Simplest } \\ \text { H甘ckel } \end{gathered}$	of β_{0}) Improved Hackel.	Longest p-wavelength measured (A)
$3 P 3$	0.3391	0.3629	4420
3 P 2	0.3549	0.3656	4390
3 Pl	0.3570	0.3658	4390
3 PO	0.3587	0.3663	4420
2 P 2	0.4762	0.5117	3420
2 PI	0.5009	0.5147	3410
2 PO	0.5053	0.5168	3450

The method is being extended to other aromatic
hydrocarbon systems.
One of us (D. A. M.-B.) thanks the D.S.I.R. for a
maintenance grant.

Chemistry Department, The University, Glasgow, W. 2
The Configuration of Diphenyl in the Crystalline and in the Vapour States: A Simple Non-bonded H-H Potential Function

By
T. H. Goodwin and D. A. Morton-Blake

Electron diffraction shows that in the vapour the phenyl rings of diphenyl are inclined at about 42°. This is a compromise between the $2 p_{z}$-orbital overlap, which tends to keep the whole molecule planar, and overcrowding of the $2: 2^{\prime}$ and $6: 6^{\prime}$ hydrogen atoms which causes twisting of the rings to reduce the steric repulsion. A potential function, having an exponential form, has been derived, which gives a minimum at the observed angle.

La diffraction électronique indique qu'en vapeur les anneaux phényles du diphényle s^{\prime} inclinent à 42° approximativement. Cet angle est un compromis entre le recouvrement des orbitales $2 p_{z}$ qui tend à maintenir plan la molécule entière, et l'encombrance des atomes $d^{\prime} h y d r o g e ̀ n e ~ 2: 2^{\prime}$ et $6: 6^{\prime}$ qui font tordre les anneaux pour réduire la répulsion stérique. On a dérivé une fonction potentielle, d'une forme exponentielle, qui a un minimum à l'angle observé.

Die Elektronenbeugung zeigt, daß die beiden Ringe des Diphenyls im Gaszustand um einen Winkel von etwa 42° gegeneinander verdreht sind. Dieser Zustand stellt einen Kompromiß dar zwischen der Ưberlappung der p_{2}-Orbitale einerseits, die das ganze Molekül planar zu halten sucht, und der Pressung der van der Waals-Radien der $2,2^{\prime}$ und $6,6^{\prime}$-Wasserstoffatome andererseits, die die Ringe aus der gemeinsamen Ebene herausdreht, um die sterische Hinderung abzumindern. Für die potentielle Energie wurde eine e-Funktion mit einem Minimum am beobachteten Winkel hergeleitet.
X-ray diffraction studies show that in the crystalline state diphenyl is planar [9] or very nearly so [12], but electron diffraction results [1] indicate that in the vapour phase there is an angle of about 42° between the planes of the phenyl rings. Since in the vapour the molecules may be regarded as free from mutual interaction the configuration in this state may be regarded as an equilibrium compromise between the tendency towards planarity, which is promoted by p_{z}-orbital overlap across the bond between the rings and which favours a lowering of π-electron energy, and that towards non-planarity which favours reduction of steric repulsion energy between the overcrowded hydrogen atoms 2 and $2^{\prime}, 6$ and 6^{\prime}.

1. Calculation of π-electron delocalisation energy across the interphenyl bond

For the planar diphenyl molecule it is a simple matter to calculate the total energy of the π-molecular orbitals by the usual Hückel approximation, particularly if group theoretical methods are used to factorise the 12 th-order secular determinant of $C_{2 v}$ symmetry into the two quartics of the A_{1} and B_{1} symmetry classes and the two quadratics of the A_{2} and B_{2} classes. When the rings are not coplanar the interactions $\beta_{r s}$ between neighbouring atomic orbitals on carbon atoms r, s remain unaltered except for that, $\beta_{1: 1^{\prime}}$, between the orbitals on atoms 1
and 1^{\prime}, which becomes $\beta_{1: 1^{\prime}} \cos \theta, \theta$ being the angle by which one ring has been rotated about the axis $4: 1: 1^{\prime}: 4^{\prime}$ with respect to the other. It follows that, within the limits of the Hückel approximation ($\beta_{r s}=0$ if r and s are not neighbours) the A_{2} and B_{2} determinants remain exactly as for the completely planar molecule since they do not involve the orbitals on the two-fold axis of the twisted structure, and the A_{1} and B_{1} determinants require only the multiplication of $\beta_{1: 1^{\prime}}$ by $\cos \theta$. Thus pseudo- $C_{2 v}$ symmetry remains.

Now the interphenyl bond, as measured by X-ray crystal analysis, is $1.50 \AA$ long [9, 12] whereas the electron diffraction spectrum [1] is interpreted as showing its length to be $1.48 \AA$. Dewar and Schmeising [7] believe that the
 length of apure σ-bond between $s p^{2}$ hybridised carbon atoms is $1.48 \AA$ and this is supported by various other pieces of evidence [10, 13]. We have assumed, therefore, that the small difference of $0.02 \AA$ is significant, that the bond $1: 1^{\prime}$ is stretched a little in the crystalline state to relieve the overcrowding of the hydrogen atoms at 2 and 2^{\prime} and at 6 and 6^{\prime}, and that this extension persists for values of θ not greater than 20°, i.e. \approx half of the observed 42° twist [1].

To calculate the π-electron energy levels for the molecule when $C_{1}-C_{1^{\prime}}=1.48$ and $1.50 \AA$ the corresponding β-values were inferred from the Longuet-Higains and Salem [11] relationship as $0.750 \beta_{0}$ and $0.710 \beta_{0}$ respectively, β_{0} being the interaction integral appropriate to the bond length in benzene, to which the ring bonds of diphenyl approximate fairly closely.

The total π-electron energy is then given, for the ground state, by

$$
\mathscr{E}(\theta)=2 \sum_{i=1}^{6} \varepsilon_{1}(\theta)=12 \alpha-2 \beta_{0} \sum_{i=1}^{6} x_{i}(\theta),
$$

where $x_{i}(\theta)$ is the "Hückel number" (negative for binding orbitals) of the i-th molecular orbital, summation being over the six doubly occupied levels. The π-electron energy of two isolated benzene molecules in their ground states is $12 \alpha+16 \beta_{0}$ and hence the "energy of delocalisation" across the bond 1:1', i.e., the π-electron stabilisation gained by untwisting the molecule, is

$$
\varepsilon_{\pi}(\theta)=-\left[2 \sum_{i=1}^{6} x_{i}(\theta)+16\right] \beta_{0}
$$

Fig. 1 gives the plot of $\varepsilon_{\pi}(\theta)$ against θ

Fig. 1. $\varepsilon_{\boldsymbol{\pi}}{ }^{(\theta)}$ against θ for $0 \leqslant \theta \leqslant \pi / 2$; that the curve is closely sinusoidal is shown by the degree of coincidence with the fitted curve (broken line)

$$
\begin{equation*}
\varepsilon_{\pi}(\theta)=0.196 \beta_{0} \cos ^{2} \theta=-6.375 \cos ^{2} \theta \mathrm{kcal} / \mathrm{mol} \tag{1}
\end{equation*}
$$

when β_{0} is given [8] the value $-32.5 \mathrm{kcal} / \mathrm{mol}$.

2. The Potential Function for Repulsion between the Hydrogen Atoms

The form of the repulsive potentials between the hydrogen atoms at carbons 2 and 2^{\prime} and at carbons 6 and 6^{\prime} is not known with certainty. It is discussed for some similar situations by Coulson and Haigh [4]. Most authors use a BuckingHAM " 6 -exponential" function [5]

$$
\begin{equation*}
V(r)=-A r^{-6}+B e^{-c r} \tag{2}
\end{equation*}
$$

in which r is the distance between the unbound hydrogens. We have worked, however, in terms of the variable θ and since $V(\theta)$ clearly decreases with increasing θ for $|\theta|<\pi / 2$, we shall assume that it may be expressed by an exponential function

$$
\begin{equation*}
V(\theta)=V_{0} \exp \left(-n \theta^{2 m}\right) \tag{3}
\end{equation*}
$$

the shape of which may be adjusted by means of the parameters n and m, m being integral. We have chosen this type of function for its simplicity and because it is symmetrical about a maximum at $0=0$ as the problem requires. V_{0} is the empirical barrier height for internal rotation due

Fig. 2. $V(\theta), \varepsilon_{\boldsymbol{\pi}}{ }^{(\theta), E(\theta) \text { against } \theta}$ to the overcrowded hydrogen atoms alone, though this cannot be measured in the normal way for diphenyl because of the attractive contribution by the π-electrons to the observed barrier. We may, however, estimate it as follows. The energy difference between cis and trans butadiene is found [2] from thermodynamic considerations to be $2.30 \mathrm{kcal} / \mathrm{mol}$. Since the π-electron energy in the two isomers is the same within the approximations of the Hückel theory, this difference must be accounted for by steric repulsions between the hydrogen atoms at the 1 and 4 positions of cis butadiene since in the trans compound no two hydrogen atoms approach within twice their van der Waals radius. Now the distance between the 2 and 2^{\prime} and the 6 and 6^{\prime} hydrogen atoms in diphenyl is very close to that in cis-butadiene. Hence we take V_{0} in the former to be just twice the steric hindrance barrier height in the latter. (3) therefore becomes

$$
\begin{equation*}
V(\theta)=4.60 \exp \left(-n \theta^{2 m}\right) \text { in } \mathrm{kcal} / \mathrm{mol} . \tag{4}
\end{equation*}
$$

3. Minimisation of the Total Energy

That portion of the total energy of diphenyl which is dependent on θ is then given as the sum of (1) and (4)

$$
\begin{equation*}
E(\theta)=4.60 \exp \left(-n \theta^{2 m}\right)-6.375 \cos ^{2} \theta \tag{5}
\end{equation*}
$$

Differentiating and using the fact that there is a minimum at $\theta=42^{\circ}$ we have

$$
\begin{equation*}
-9.20 m n \times 0.7330^{2 m-1} \exp \left(-0.7330^{2 m} n\right)+6.375 \sin 84^{\circ}=0 \tag{6}
\end{equation*}
$$

For $m=1$ no value of n makes $E(\theta)$ a minimum at $\theta=42^{\circ}$ but to each greater integral m there corresponds a value of n satisfying (6). With $m=2,3,4,5$
$V(\theta)$ has a flat portion with $|\theta|$ less than 20° and decreases almost to zero at $|\theta|=45$ or 50°. We have selected (7), with $m=2$,

$$
\begin{equation*}
V(\theta)=4.60 \exp \left(-7.393 \theta^{4}\right) \tag{7}
\end{equation*}
$$

as the most likely of this family of curves since it has the shortest flat portion $\left(|\theta|<10^{\circ}\right)$. With $m=3,4,5 n \approx 18,40,80$ respectively. Curve (7) is shown in Fig. 2 along with $\varepsilon_{\pi}(\theta)$, the π-electron energy across the bond $1: 1^{\prime}$, and the resultant energy $E(\theta)$. We note that besides the minimum in $E(\theta)$ at 42° a shallower minimum is found at 0°. This may account for the planarity in the crystalline state since only $1 \mathrm{kcal} / \mathrm{mol}$ need be supplied by the crystal forces to convert the twisted to the planar configuration.

4. Root Mean Square Amplitude of Twisting

Taking the potential well in $E(\theta)$ at $\theta \approx 42^{\circ}$ as shown in Fig. 2, we may attempt to estimate the root mean square amplitude of the twisting of the phenyl rings with respect to each other by assuming the motion to be simple harmonic and calculating the force constant \varkappa

$$
\begin{equation*}
V(\theta)=\frac{1}{2} x \theta^{2} \tag{8}
\end{equation*}
$$

The best fit of (8) to $E\left(42^{\circ}\right)$ is with $x=0.003$ from which, using Crurcrshank's relationship [6]

$$
\bar{\Phi}^{2}=\frac{2 k T}{x}
$$

where k and T are the Boltzmann constant and the temperature, the mean square amplitude $\bar{\Phi}^{2}$ is found. Because of uncertainty in fitting (8) to (5) there is an appreciable uncertainty in x and hence in $\bar{\Phi}^{2}$ but a smaller uncertainty in $\left(\bar{\Phi}^{2}\right)^{\frac{1}{2}}$, for which the value 28° is found, corresponding to a root mean square twist of each ring of 14° in opposite directions. The only experimental evidence which can be set alongside this calculation seems to be the inferences of Almenningen and Bastiansen [1] that the probability of finding the phenyl rings at any angle θ in the neighbourhood of 42° is quite large and that to reduce this probability to one half of the equilibrium probability the phenyl rings would need to be rotated through 17° in opposite directions.

5. Non-Bonded Repulsion as a Function of \mathbf{r}

It is of interest to express the repulsive potential (7) in terms of the distance r between a pair of overcrowded hydrogen atoms. Using the bond lengths $C_{1} C_{1}=$ $1.490, C_{1} C_{2}=1.398, C_{2} H_{2}=1.084 \AA$ and the angle $C_{1} C_{2} H_{2}=120^{\circ}$

$$
\begin{equation*}
r=(12.4949-9.2397 \cos \theta)^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

When (9) is substituted into (7) we have

$$
\begin{equation*}
V(r)=4.60 \exp \left\{-7.393\left[\cos ^{-1}\left(1.3523-0.1082 r^{2}\right)\right]^{4}\right\} \tag{10}
\end{equation*}
$$

The curve $V(r)$ is shown in Fig. 3. As for most repulsive potential functions it rapidly approaches zero, doing so, in fact, rather abruptly at approximately $2.6 \AA$, i.e., at just over twice the van der

Fig. 3. $V(r)$ against r Waals radius of hydrogen (1.2 \AA).

6. C-H bending

The shoulder in $V(\theta)$ arises, of course, from the selection of a potential of the form (3). In planar and nearly planar molecules some relief of steric repulsion can be achieved by the bending of the $C-H$ bonds (in conjunction with the stretching of the $C-C$ bond) and would also have the effect of lowering (flattening) $V(\theta)$ at low θ. That such bending does occur is revealed by the accurately determined crystal structures of certain overcrowded molecules, e.g., chrysene [3].

The authors acknowledge the award of a maintenance grant to one of us (D.A.M.-B.) by H.M. Department of Scientific and Industria Research.

References

[1] Almenningen, A., and O. Bastiansen: Klg. Norske Videns Selsk. Skrifter 4 (1958).
[2] Aston, J. G., G. Szasz, H. W. Wolley and F. G. Brickwedde: J. chem. Physics 14, 67 (1946).
[3] Burns, D. M., and J. Iball: Proc. Roy. Soc. A 257, 491 (1960).
[4] Coulson, C. A., and C. W. Haigh: Tetrahedron 19, 527 (1963).
[5] See e.g. Ref. [4] for further references.
[6] Cruickshank, D. W. J.: private communication.
[7] Dewar, M. J. S., and H. N. Schmeising: Tetrahedron 5, 166 (1959); 11, 96 (1960).
[8] Goodwin, T. H., and D. A. Morton-Blake: to be published.
[9] Hargreaves, A., and S. Hasan Rizvi: Acta Cryst. 15, 365 (1962).
[10] Lide, D. R.: Tetrahedron 17, 125 (1962).
[11] Longuet-Higains, H. C., and L. Salem: Proc. Roy. Soc. A 251, 172 (1959).
[12] Robertson, G. B.: Nature 191, 593 (1961).
[13] Stoicheff, B. P.: Tetrahedron, 17, 135 (1962).
(Received September 6, 1963)

To be published in "Gownal of the Chamical Society" in Felmary-March, 1964.
β and of the Com and Com Hond Energioe in Aronatie
Hyarocombme.
bys. M. Gownin aza B.A. Hortonomake

The atomic orbital interaction integral β is calculated from appropriate Morse functiona and the Hückel theory of H moleculare orbitals, consistent results being obtained from data for benzene and ethylene. A third value, lying detween these, has been derived from the heats of combustion of some axomstic hydrocarbons and estimates of the σ-bond energies of the $C-C$ and $C-H$ bonds in such compounds have been made.

$$
\text { 1. Calcuration of } \beta(x)
$$

The energy of the 1 th m-electron molecular orbital as calculated using the aimple Kickel theory is of the form

$$
\begin{equation*}
\varepsilon_{\underline{i}}=\alpha-\underline{x}_{y} \beta \tag{1,1}
\end{equation*}
$$

 a negative value for the levels contributing to the ground state, α ie the energy of a $2 g_{n}$ atomic orbital X ioe $\alpha=\int x^{*} H X d \tau$ (in which H is the noneexplicit Hemiltontan operator), and β is the matrix element $\int x_{s}^{*} H X_{t} d t$ expressing the interestion between the two atomic oxbtais X_{8} and $\mathcal{H}_{\mathrm{s}}{ }^{\circ} \quad \beta$ is a function of the distance

(2)
considered negligible unless and a are neighbours, in which case all Pig are token as equal within the compound under discussion al though it Lis frequently proposed to derive bond orders and hence to infer differing bond lengths.

The total π electron energy of the ground state of a molecule containing a system of m neighbouring $2 \sum_{\pi}$ atomic orbitals is obtained by summing (101) over the 起答 doubly occupied levels.

$$
2 \sum_{i=1}^{\frac{1}{2 n}} \varepsilon_{i}=n \alpha-2 \beta \sum_{i=1}^{\frac{1}{3}} x_{i}
$$

from which it may be inferred that the total binding energy of the W -component of the bonds is given by

$$
\begin{equation*}
\varepsilon_{\pi}-2 \beta \sum_{\underset{i}{\dot{j}=\mathbb{l}}}^{\frac{1}{2} \underline{2}} \underline{x}_{\underline{2}} \tag{1.2}
\end{equation*}
$$

For a system in which the $\begin{aligned} & \text {-molecular orbitals are spread over m }\end{aligned}$ equivalent bond the total energy of the $\overline{5}$-component of each of these is $E_{W}=\varepsilon_{\mathbb{F}} / \underline{m}_{0} \quad$ In ethylene $m_{m}=1$ and $\sum \underline{X}_{\underline{1}}=-1$, while for benzene these are 6 and -4 respectively. Hence
ana

$$
E_{m}^{\text {ethylene }}=2 \beta
$$

The temn on the left of (1.3) and (1.4) are, however; not directly measurable, since a froond is know only in association with a bond. Nevertheleco, from the energies of a " $\sigma \pi \%$ bond and of a σ obond of the same length we can calculate the energy of the corresponding pure π-bond if we neglect interaction of σ and \mathbb{F}-electrons. Thus

$$
\begin{equation*}
\mathrm{E}_{\pi}(x) \quad \mathrm{E}_{\infty \rightarrow \pi}(x) \quad-E_{\sigma}(\underline{I}) \tag{1.5}
\end{equation*}
$$

In general. $\mathrm{E} \underset{\mathrm{o} \pi}{ }$ and E are known only at particular, unequal values of r vizo, the equilibrium distance $\underline{I}_{\underline{e}}$. To calculate them at other bond lengthe we require to take into account the energies of ormpression ox expansion of the bonds. This may be done conveniently by use of the Moree function

The quentity a is characteristic of the particular bond and can be calculated from the gtretching force congtant.

However, the further difficulty arises that there is ample evidance ${ }^{2,2,3}$ that $\underset{\sim}{E}(x)$ depends on the hybridisation of the atoms involved and thes C-C In ethylene should be compared not with that in ethane but with that in a hypotsetical $C-C$ obond between ge ohybridised atome. The lergth ox much a bond is not unequivocally eotrolished nors In the neture of thinge can its atwetching force constanf and energy
 ethane. Otherwise our data ase those aelected by Coulson and Dixon and shomia bellow.
(4)

C-C bond	${ }^{\text {Te }}$	$\underline{E\left(E_{e}\right)}$	a
Ethylone	1.338	$151 \mathrm{~kg} \cdot \mathrm{cal}$ /mol.	2.189 ${ }^{-1}$
Benzene	1.39	124	2.093
Ethane $s p^{2}-s p^{2}$	$\begin{aligned} & 1.54 \\ & 1.48 \end{aligned}$	84	2.028

From equations (1.3) to (1.5) we then have

$$
\begin{align*}
& \beta^{\text {ethylene }}(\underline{\underline{x}})=\frac{1}{2}\left\{\mathrm{E}^{\text {ethylene }}(\underline{x})-\underline{E}_{\sigma}(\underline{x})\right\} \tag{1.6}\\
& \beta^{\text {benzene }}(\underline{x})=\frac{3}{6}\left\{E^{\text {benzene }}(\underline{x})-E_{\sigma}(\underline{x})\right\}
\end{align*}
$$

and within the limits of our approximations these should be equal, ioe.o $\beta(x)$ is obtained from two independent sets of data. The results of these calculations are siown in Table io The last line gives a ratio which to frequently used in attemptins to jmprove the simple Hückel approximation by allowing for the dependence of β or \pm and assuming that the β of the aimple Eückel (β_{0} of the nemt section) method is the same for all aromatic compounds.

The difference between the two values of $\beta(1.39), 1.39 \AA$ being the benzene cmb bond length, is only $1.5 \mathrm{Kg}-\mathrm{cal} / \mathrm{mol}$, , ioe. 2.2% 。 Greater reliance should be placed on the benzene curve since ${\underset{\sim}{e}}^{\text {en }}$ is nearer the middle of the renge of revaluee uaed; this results in a more favourable application of the Morse function.

$$
\begin{aligned}
& \text { The "Rest-squares" quedratie expression } \\
& \beta(x)=31.83 x^{2}=149.52 \leq+178.85
\end{aligned}
$$

fite the calculatod curve almost aractlyo

Seble Io

$\beta^{\text {ethylene }}(\underline{m})\left(k_{\text {g. }}\right.$-cal./mol. $) 38.8136 .3834 .0431 .7929 .6427 .5925 .6423 .60$
$\beta^{\text {benzene }(\underline{I})(k g o-c a l . / m o l .)} 36.3034 .3932 .5330 .7128 .9527 .2625 .6324 .08$
$\beta^{\text {benzene }}(\mathrm{y}) / \beta^{\text {benzene }}(1.39) \quad 1.1161 .0571 .0000 .9440 .8900 .838 \quad 0.788 \quad 0.740$

 is a simple editife property of the individual bond energies. For molecule a containing, in addition, n molecular orbitals it is necessary to include a further term even if $0-\pi$ interaction is neglected. This tern is the total m electron energy calculated usually by the simple Hückel approximation and given earlier as equation (1.2).

If we consider the heat of combustion as determined in two steps, first atomisation and accondy the conversion of the atomic fragments into the products of combustion, we have, neglecting energy terms due to changes in hybridisation

where n_{ng} number of $\mathrm{C}-\mathrm{C}$ bond in the Hydrocarbon $\mathrm{C}_{\mathrm{X}} \mathrm{H}^{9}$.

$$
E_{00}=\text { dissociation energy of oxygen molecule, }
$$

$$
\mathrm{G}_{2}=\text { heat of atomisation of } \mathrm{CO}_{2}
$$

$$
\mathrm{M}_{2} \mathrm{O}^{=-}
$$

Adding (20J) and (2.2) we have
 C being the heat of combustion of $C_{X} H_{y}$ ．The available experimental quantities on the right of（2．4）are $\theta_{\mathrm{H}_{2}} \mathrm{O}^{\circ} \mathrm{Q}_{\mathrm{CO}}$ and E_{OO} for which we have taken the following values

Using the known heats of combustion of the three aromatic hydrocarbons benzene，naphthalene and anthracene（789．1，1249．7， $1712.1 \mathrm{kgo-calo/molo)}$ we obtain three equations in the unknowns $E_{C C} E_{C H}$ and β_{0} where β_{0} represente a standard β supposed applicable to all these compounds．Then $c^{\text {benzene }}-789.1=6 \pi 384+3 x 221.2-6 E_{C G}-6 E_{C H}-\left(6+1 \frac{1}{2}\right) E_{00}-8.000 \beta_{0}$ or $\quad 1285.27=8 \beta_{0}+6 E_{C C}+6 E_{C E}$ ， and $\quad 2045.9=13.683 \beta_{0}+11 \mathrm{E}_{\mathrm{CC}}+\mathrm{OE}_{\mathrm{CH}}$

$$
2904.75=19.314 \beta_{0}+16 \mathrm{E}_{\mathrm{CC}}+10 \mathrm{E}_{\mathrm{CH}}
$$

Hence $\quad \beta_{0}=32.96 \mathrm{~kg}-\mathbf{c a l} / \mathrm{mol}$.

$$
\mathrm{E}_{\mathrm{CC}}=77.58 \mathrm{~kg},-\mathrm{cel}_{0} / \mathrm{mol}
$$

$$
E_{\mathrm{CHi}}=92.68 \mathrm{~kg}-6 \mathrm{CaI} . / \mathrm{mol}
$$

This β_{0} value compares very favourably with $\beta(1.39)=32.53$ kgo－calo／mol．determined in the previous section．This is particularly Interesting since（a）β_{0} may wary somewhet from compound to compound and （b）$\beta(\mathrm{x})$ varies vith interatomic distance $\underset{\leq}{ }$ even within the same molecule。 It seems however to encourage confidenes in the $\beta(\underset{X}{ })$ values of the previous ตอction。

$$
\begin{aligned}
& Q_{\mathrm{CO}_{2}}=2 \mathrm{xr} 192=384 \mathrm{kgomal} / \mathrm{mol} \mathrm{Co}_{0}, \\
& Q_{\mathrm{H}_{2} \mathrm{O}}=2 \times 120.6 \approx 221.2 \mathrm{kgomcal} / \mathrm{mol} \mathrm{~m}_{\mathrm{g}} \\
& \mathrm{E}_{00}=219.1 \mathrm{kgo}-\mathrm{cal} / \mathrm{mol} \text { 。 }
\end{aligned}
$$

${ }^{[}{ }^{0} 0^{\circ}$ which we have noted as the E_{0} of the first part of this paper has \& nuerically mallex walue than the 84 kgocal ./mol. which we aupposed to be applicable to the pure $s p^{2}-\underline{g} p^{2} \sigma$ abond. However we know that all the C-C bonds in the reference compounds are substantially shorter than 1.48\%. In ract the average of the 33 bonds ${ }^{5}$ is 1.401% with a spread from 10361 to 1.436 . Applying the Morse equation for the $g g^{2}-\mathrm{gp}^{2} \sigma$-bond to this average gives $E_{\sigma}(1.40)=81.4 \mathrm{~kg}-\mathrm{cal} / \mathrm{mol}$, , which is in reasonable agreement with our $77.58 \mathrm{kgomeal} /$ /mol. when the approximations exe bome in mind.

Subsethtring the values for $\beta_{0}, E_{C C}{ }^{\circ} E_{C H}, Q_{C O}, Q_{H_{2}} O$ and E_{00} in (2.4) the seneral equetion for the heat of combustion of a hydroceston becomes (within the limits of our approximation)

the (negaitive) Hückel numbers being summed over all the (doubly) occupied
 65.92。

Using (2.5) we calculate the following heats of combustion

Phemanthrene	1708.4 kgo-cal. $/ \mathrm{mol}$ 。	$1705.0 \mathrm{kgo}-\mathrm{cel}$ / $/ \mathrm{mol}$.
Triphenylene	2163.6	2164.4
1:2mbenzanthracene	2169.3	2169.8
Chryzene	2166.4	2165.0

(9)

It is interesting to note that the quite small differences between the heats of combustion of the last three compounds are so accurately mimored by the Hückel energies.

The authore thank HoM. Department of Scientific and
Industrial Research for a maintenance grant to $\mathrm{D}_{\mathrm{A}} \mathrm{A} . \mathrm{M}-\mathrm{B}_{0}$, Chemistry Department, University of Glasgow.

Refoxences

1 Coulson and Dixon, Tetrahedron, 1962, 17, 215.

2 Dowar and Schmeising, ibid. 1959, 5: 166; 1960, 11, 96.
3 Coulson, Victor Henri. Memorial Volume, "Contribution à l'Etude de la Structure Moleculaire", Desoer, Liege, 19483 Lide, Tetrahedron, 1962, 17. 125: Bastiansen and Tracticberg, ibido, po147, etc.

4 Cottrell, "The Strengins of Chemical Bonds", Buttexworths, London, 1958.

5 Stoichefri, Canad. J. Phygo 1954, 32, 339; Cruickshank, Acts Crysto; 1956, 9, 915; 1958, 11, 507。

To be published in "Theretica Chamica Acta" As March, 1964.

A Simple Molsoular-Orbital study of the β, α, and p-Bands in Triphenylenes
by T. H. Goodwin and D. A. Morton-Blake

Clear has observed that the spectra of ennelated derivatives of triphenylene such as Is II, III, IV below show remarkable resemblance to those of the phones deified by the central ring of the triphenylene and its two longest scone chains, I and II resembling tetraphene and III and IV pertaphene V_{0} We show that this observation can be explained in terms of a simple modification of the Hückel acleoulas-orbital method.

1. Energy levels in Triphonylenos.

In this paper we discuss the positions of the absorption bands in a large number of annelated derivatives of triphonylene, but since the systemmetio names of these compounds are often decidedly cumbrous we have used the following simple scheme for referring to them. The molecules consist of benzenoid rings annelated at three alternate bonds In benzene; we therefore describe them as gem where g. mi I axe the numbers of rings in the thee limbs. g is separated

$$
2
$$

from the other two indices and refers to the shortest 1inib; 1 is the longest; $s \nmid \ggg$. Triphenylenes with the same m and I are said to form a class. Thus I to \mathbb{V} (below) are desoribed as OB1, 2 ; 1B1,2; 1B2,2; 2B2,2; OB2,2 and the first two and the last three bolong to different classes.

Now Clar and his colleagueg ${ }^{(2)}$ have observed only Vexy small shifts in the positions of the β ultra-violet absorption bands when an aromatio gystom is annelated to a bond of high T-olectron density. In tetraphene, I, (OP1,2), mlecular-orbital calculations, show that the bond $\beta \gamma$ has $\&$ high double bond oharacter corresponding to the chemical properties; for these reasons, and in accordance with Clap's idees concerning these mo:ecules we represent this bond as a formal double bond. The addition of a butadiene system at $\beta \gamma$ of I to give the triphenylene II, (1B1,2) is accompanied by a zero spectral shift of the β band and this leads Clar to conclude that the phene system I is present in II and is unaffected by the presence of the nowly formed benzenoid ring A. The high order of the bond $\beta \gamma$ in I is apparentiy mointained in II with the consequence thet the bonds are also or higher onder and $\alpha \beta, \gamma \delta, \tau \zeta$ of Lower order that tine arerage。

3.

However, if a further ring is annellated to II at B (or A) to give III, it is found that the β-band of longest wavelength now occurs 240 away at $3140{ }^{\circ}$. Thim is almost exactiy the position of the corresponding band.

40
3170 ${ }^{\circ}$, in pentaphene V, and further extension of the ghortest limb of III by a second ring to give IV is acoompanied only by a very small (violet) shifit to 3120 A. Thus, III, IV and V all give rise to the same β-band and presumably have, at the moment of producing the spectrum, the same axomatic conjugation, that of pentaphene. Clar therefore concludes that, as far as the origin of the first β band in concarmed, tine aromatie conjugation of any criphonylene extencs only overs the wo longest limbs and is unaffected by the banzenoid rings of the shortest 11 mb . This is clearly demonstrated in Table I where ali the absorption spectra recorded for phones and triphenylenes are summarised. Fourteen spectra are noted inoluding pairs of spectra for the five clamses $9 B 1,1$, gB1,2, $g B 1,3, ~ g B 1,4, ~ g B 3,3$ and three spectra for the class sB2,2. In no class is the spread of poband heads greatar than 60\%. Similar though lass close agreement is observed in the α - and p-bands.

We must emphasise here that this paper is not concexned with the β^{\prime} bands which, according to Clar, origlnate from one of the two aromatic conjugation zchemes which involve the shoritest limb.

We haye gpplied the method of molecularmorbitals to a large number of triphenylenes not striotly to calculate the positions of the β, $\alpha-$ and \underline{d}-bands, but to determine in units of $\beta_{0}^{\text {关 }}$, the energy levels of the molecular orbitals transitions between whioh are responsible for those bands.

With aiternant hydrocarbons having in carbon atoms in the Helectron system it is well recognised that the E-bands (of intermediate intensity, $\log \varepsilon \approx 4$) arise from transitions bebween the nith and $(\underline{n}+1)$ th olectronic levels (counting the lowest as the first level) while the α - and β monds (of low and high intenstity $\log \varepsilon \approx 2.5$ and 5 resp.) both arise from transitions between the nth and $(\underline{n}+2) t h$ and between the $(\underline{\underline{n}}$ - 1)th and $(\underline{n}+1)$ th levels these being degenerate in the simple forms of the molocularorbital theory in which overlap is neglected. Wo have not here attempted to break this gegeneracy (see oog. ref: ${ }^{4}$ for one method of doing this) being more interested to seo whether Claris observations are oxplicable in terms of a simple molecularmorbital approach so the electronic structures of molecuies. Thus we have required the

* confusion is unlikely to arise between this β and that labeliing the most intense absorption bend.
energies of the highest and penultimate levels of the ground states of the molecules since $2 k_{\underline{2}}$ should be related to the peband wavelengths and $\underline{k}_{n}+\underline{k}_{\underline{n}}+1$ to those of the α and β bands, where k is the (positive) Hunker number i.e. the coefficient of β in the energy expression

$$
\varepsilon_{i}=\alpha+\beta_{i} \beta \text { and } \underline{k}_{2 n+1 \infty}=\underline{k}_{\underline{i}}
$$

Two series of calculations have been carried out. In the first the β values of the bonds were assumed equal except for the extreme single and double bonds. In $\mathrm{VI}_{\text {, }}$ for example, the β ' $\mathrm{m}_{\mathrm{it}} \mathrm{i}$ in the dotted islands were put equal to β_{0} the interaction integral between atomic $2 p_{z}$-orbitals on neighbouring carbon atoms separated by the standard Col distance in benzene, and since the

formulae written by Clear (2) for these triphenylenes show the bonds $\alpha \beta, \gamma \delta, \varepsilon \zeta$ as or low order, we have allotted them the β-values of $0.8 \beta_{0}$. In the benzring A we have supposed the β^{\prime} 's to be alternately $0.8 \beta_{0}$ and $1.1 \beta_{0}, d T$ having, 05 course, the higher value.

In VII and in molecules having a shortest limb or two or more rings ($\mathrm{g} \geqslant \mathrm{Z}$) we have, however, put all β s equal to β_{0} Again the β° s row o $\beta, \gamma \delta, \varepsilon \zeta$ have been taken to be $0.3 / 0^{\circ}$

We have felt justified in this approach by the results of Ahmed and Trotter (1) who have mede a three dimensional examination of the crystal structure of triphenylene and report a mean bond length os 1。4A6h for the Interphenylene bonds corresponding to $\alpha \beta$ otc. of VI and mean lengths of 1.8 .5 (for the bond corresponding tody), 1. A16, 1.377, 1.402, 1.377 and 1. $216 \mathrm{~A}^{\circ}$ round the peripheral rings. $\beta_{i j}$ must depend on the distance between atoms 1 and \mathfrak{j} and these lengths imply $(5,6) \beta$ walues of $0.81 \beta_{0}$ for $\left.\alpha \beta, 0.91 \beta_{0}(1020\}\right), 0.91 \beta_{0}, 1,04 \beta_{0}, 0.95 \beta_{0}=$ $1.04 \beta_{0}, 0.91 \beta_{0}$. our calculations were complete before the work of Ahmed and Trotter became available and in any case tho Xoxay results given above are not only the average Values over all similar bonds in the crystal, but represent
avereges over many minutes ox hours whereas spectroscopy prasents the situation ovex an enormously shorter interval of time. It is therefore of considerable significance that the length reported por the interphenylene bonds corresponds with the β value we have allocated to them and that the pattern of lengths in the peripharal rings corresponds (apart Irom $\alpha \zeta$) with the β 's we have assumed for bonds in rings such as A of VI. We do not compare our selacted β for the bonds between the rings with valuea appropitate to lengths such as the 1.50% Sound by Hergreaves and Easan Rizvi ${ }^{(5)}$ for the sentral hond in diphenyl because we belleve this bond to be elongated by repulsions between the 2:8" and 6:60 pairs of hydrogen atoms (A).

In the second series or calculations Clars scheme was not invoked. The triphenylene gBmel was regarded as formed from ge. mwand Iming acenes joined by low order bonds $\alpha \beta, \gamma \delta, \Sigma \zeta$. The β-values for the bonds of the various limbs were derived from the bond orders calculated for these acenes. In VI, for oramplo. the β is for xing A were β_{0}, as in benzens, and those rok the naphthalene systens wore inferred from the oalculated

Table 1.

Anompanos yom

Rhoses

Series I
Seriea

5 m	n	b	8		\ldots	E	$y_{2} z^{2}$		4	\%n	K	$\underline{k}_{\underline{m}} \cdot \mathrm{k}_{\underline{p}-1}$	A	$\mathrm{k}_{\underline{n}}$	k_{n-1}	$\underline{k}+\frac{1}{n} \underline{n}$	Δ
011	?	29254	3450 A	25	604	0.605	0.769	1.374		0.741	0.816	$1.556 ?$		0.741	0.816	1.556%	
111	9	2840	3400	25\%		0.6849		1.366	0.006	0.749		1.498	0.058	0.749 d		1.498	0.058
012	9	3590	3850	2900		0.453	0.715	1.168		0.502	0.814	1.3167		0.569	0.719	1.2887	22
59	1.	3490	3750	2900	0	0.499	0.714	1.213	0.005	0.536	0.794	1.310	0.006	0.604	0.726	1.330 d	, 0.82
0.3	11.	4525		300		0.327	0.688	1.015		0.357	0.782	$1.139 ?$		0.460	0.728	1.188%	0.020
113	13	4435		31006	10					0.366	0.777	1.143	0.004	0.481	0.727	1.208	0.020
014	3.3	5510	23	3468	50					0.262	0.668	0.9302		0.419	0.678	1.0977	0.002
114	35	3365		30\%	5					0.268	0.674	0.9423	0.012	0.397	0.702	1.099	2.002.
022	11	3590	4230	210	30	0.437	0.521	0.958		0.520	0.545	1.056 \%		0.500	0.620	1.180%	0.050
122	13	3390	3940	910						0.531	0.545	3.076		0.605	0.620	1.225	
222	25	3400	3890	3805						0.532	0.566 d	1.097	0.041	$0.61 .5 d$		1.230	
023	13	4400	4670	35						0.371	0.531	0.902%		0.468	0.597	$2.065 ?$	0.046
123	35									0.378	0.541	0.918	0.028	0.488	0.617	1.105	
223	37			\cdots						0.384	0.546	0.930		0.491	0.620	1.111	
033	35	4230	5190	¢	\%												
333	27	4380	4850														

ه ${ }_{\text {\% }}^{\text {\% }}$	\%ٌ	\%	$\stackrel{7}{j}$
		※ّ.	
4 \%ّู	咢	;	$\stackrel{\stackrel{3}{8}}{\substack{\text { ¢ }}}$
	59\% ${ }^{80}$		\% \% \% \%

ware again $0.8 \beta 0^{\circ}$ In this way it was hoped that the two series of calculations would provide some evidence for or ageinst the Clar theory of aromatiolty. The results are shown in Tables 1 and $20 \quad$ These eiffer only in that Table 1 includes all the spectra of triphenylenes known to us and such Hückel moleculareorbital levels as have been published, either in Coulson and Daudel's "Dictionary of Values of Molecular Constants" ${ }^{\text {T}}$ ox Streitwieaer's "Molecular Orbital Theory for Organic Chemists "9. These Hücker molsoular orbitals are based. as is well known, on the assumpion of an interaction integral $\beta=\beta_{0}$ bstwien all nelghbouring orbitals. Wo have not ourselves made such ealculations for all the many compounds which heve been the subjects of our study here because they seemed less likely to yield the desired explanation of Clar's observations.

Inspection of Tables 1 and 2 shows that our Series I
 in any class or triphenylenes. The series II calculations are not generally quite so oonstant though the superiority of the series I results over those of series II and of the Hixckel method is not so great as to compel out-of mand rejection of the others or to constitute ungquivocal

Fig. $1 \quad \beta$-band frequencies plotted against $k_{n}+k_{n-1}$ - Series I
(1) Series II
Δ Hückel

Fig. 2: p-band frequencies plotted against $2 k_{n}$

Fig. 3: α-band frequencies plotted against $k_{n}+k_{n-1}$

- Series I
(7) Series II
- Hückel

theoretical justification of Clas's conclusions. A more satisfactory comparison is to plot the Irequencies
 conclusion is not accurate to an Ω unit and the slight variations in β-band wavelengths correspond to the variations in $k_{n-1}+k_{n-1} \quad$ Graphical representation of these results is shom in Tigel when it is seen that there is little to choose bebmeen our series I and series II results but that both are better then the Hitucel values whioh show a much greater apread although, there being fewer of them, the romparison is not so ertensive as one could desire。

Generally similar conclusions result from inspection of the values of $\underline{g}_{\underline{m}}$ and Fig. 2 ($p-b a n d$ Irequencies againgt k) and of Fig.3 (α wiond frequenoies against $k_{n}+k_{n-1}$)。

A partioularly amportant point is however that just as the spectra (p, α-and β obends os a whole) of pentaphene ($O B 2,2$) and isoupontaphene (1, zebenztotracene) (0 E 2,3) are distinotly diferent so do the values of
 sBl, 3 differ between the clesges. So Ras this is in accordance with observation, but pentaphene and iso-pentaphene (1, z-benztetracene) have their β mbands at almost exactly
the same wavelength. Our series I calculations suggest $\left(\underline{k}_{n}+\underline{k}_{n-1}\right.$ different $)$ that the bands should differ app:coiadiy but the series II calculations do make them almost equal. This suggests that the series II results are superior. Unfortunately, no other similar comparison can be made fox leos of experimental data on triphenylenes with $m_{1}+1_{1}=m_{2}+1_{2}$ but with mit me mo
2. Bond Length Alternation in a Benzonoid ring.

Consider benzene molecule consisting of two kinds
equal to β_{i} and β_{2}. equal to β_{1} and β_{2}. The molecule would, therefore, have
 This leeds to the following linearly independent molecular orbitals of the A_{1}, tho Ag and the doubly degenerate E classes:

$$
\begin{aligned}
& \Phi\left(A_{1}\right)=\frac{1}{\sqrt{6}}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right) \\
& \Phi\left(A_{2}\right)=\frac{1}{\sqrt{6}}\left(\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}+\phi_{5}-\phi_{6}\right) \\
& \Phi(\Phi)=\frac{1}{2 \sqrt{3}}\left(2 \phi_{1}+2 \phi_{2}-\phi_{3}-\phi_{4}-\phi_{5}-\phi_{6}\right) \\
& \Phi(E)=\frac{1}{2}\left(\phi_{3}-\phi_{4}-\phi_{5}+\phi_{6}\right)
\end{aligned}
$$

Expressing the energies $\overline{\mathcal{E}}$ of these in terms of the interaction integrals $\int \phi_{i-1}^{*} \phi_{i} \phi_{i} d t=\beta$,

$$
\begin{aligned}
& \int \phi_{i}^{*} d \phi_{i+1} d \tau=\beta_{2} \text { and the coulomb integrals } \\
& \int \phi_{i}^{H} \& b \phi_{i} d \tau=\alpha \text { (the subscripts to } \phi \text { being }
\end{aligned}
$$ expressed in modulus 6) we have

$$
\begin{aligned}
& \varepsilon\left(A_{1}\right)=\alpha+\beta_{1}+\beta_{2} \\
& \varepsilon\left(A_{2}\right)=\alpha-\beta_{1}-\beta_{2} \\
& \xi^{ \pm}(\mathbb{E})=\alpha \pm\left\{\beta_{1}^{2}+\beta_{2}^{2}-\beta_{1} \beta_{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

The doubly occupied molecular orbitals of the ground state are $\bar{\Phi}\left(A_{1}\right), \Phi^{\prime}\left(E_{0}\right)$ end $\Phi^{n(E)}$ leading then to the total ground state π electron energy

$$
\begin{align*}
\mathbb{H}(\text { BI }) & =2 E\left(A_{1}\right)+4 \mathcal{E}^{+}(\mathbb{W}) \\
& =6 \alpha+2\left\{\beta_{1}+\beta_{2}+2\left(\beta_{1}^{2}+\beta_{2}^{2}-\beta_{1} \beta_{2}\right)^{\frac{1}{2}}\right\} . \tag{I}
\end{align*}
$$

The π electron energy of the ground state if all cod

$$
\begin{equation*}
F(6 G)=6 \alpha+8 \beta_{0} \tag{2}
\end{equation*}
$$

where β_{0} is the interaction integral for the observed benzene CeO boyd length.

Fig. 4: Relationship between β_{1}^{\prime} and β_{2}^{\prime} to give constant total π electron energy $6 \alpha+8 \beta$ 。

25%

Equating (1) and (2) we obtain a relationship showing how β_{1} and β_{2} must ohange relative to each other. in order to preserve in the Con rodel the same total $^{\text {rin }}$ π-electron energy obtained with the \mathbb{C}_{S} model. Since we are concerned with the relative rather then the actual magnitudes of β_{0}, β_{1}, and β_{2} we shall work in terms of β_{1}^{\prime} and β_{2}^{\prime} the ratios of β_{1} and β_{2} to β_{0}. The required reletionship is then

$$
\begin{equation*}
\beta_{1}^{\prime}=\beta_{2}^{\prime}-\frac{4}{3}\left\{1-\left(4-3 \beta_{2}^{\prime}\right)^{\frac{1}{2}}\right\} \tag{3}
\end{equation*}
$$

This is plotted out in Figos, which is really a single β^{\prime}-space. For an extended range a family of such contours β^{\prime} space, For as eztended range a family of such contouss would be required.

We may now obsarpe the erfect or changing the values of adjeoent bonds in an annelated benzene ring aubjeot to the requirement that the total π electron energy of the annellated benzene ring remains constant. Thus, accepting the validity of Clares explanation or the origin or the β-bands in the spectira of the triphenylenes. we may regaxd one of the three outer rings oi VIII. sey ring A, as having bonds of alternately high and low ordex.

while the other rings constitute a phamathrene system. We may, therofore, vary the β^{\prime}-values for the bonds in this ring isoonexgetically aocording to (i) and, for simpliciny, assume that the β^{\prime} walues for bonds $\alpha \beta$ and If are the seme as those of the low order bonds in ring A. In phenaithrene IX although the bond $\beta \not \gamma^{\prime}$ is not shared with

VIII

anothes ring we may still suppose, for purpoges of comparison, thet the β^{\prime} svalues of bonds $\alpha \beta, \beta \gamma, \gamma \delta$ are agein given by (3).

The results of these calculations are illustrated
in Fig. 5 where the hignest ocoupied molecular ombtal energisa have been plotted in units of $-\beta_{0}$ against $\gamma=\beta_{2} / \beta_{1}$ The curves cross qit $f=2.61$ and, using this with (3) we ind that $\beta_{1}=0.737$ and $\beta_{2}=1.187$. Substitution of these values into a new Eivitel moleculasmorbital
calcuiation on phenanthrene and triphenylene leads to 틀 equal to 0.7407 fo and 0.7403β pespectively, and so confirms the technique described.

DISCUSSION

We do not claim that the calculations described here yet furnish unassailable prooi of Claris theories of arometicity. They are in general agreement with the relerant spoctra of the know triphenylenes and to this extent corroborats the predictions made on the basia of Clary models. EOWOver. the fact that wo are using Hüchel moleculerrontitals as bases procludes the acceptance of localised electaom-pait models. Those cam have no monning in the Fiiongl theory unless wome of the $\beta_{\text {ge }}$ values are assumed to be zero even when I and \ddagger are neighbours. For oxample. is in triphenylere VIII we put the β-ralues for bonds β and one aguel to msso, as would be nocessary if these were conshared to be pure σ bonde, we should obviousiy ind the seoular determinant factorising to give the π-levels of phenanthrene from the conjugated systom to the $20 x$ or and inciuding $\beta \bar{t}$ and those of butadiene (or of obhjiene ix $k \lambda$ also has $\beta=0$) mrom the rest of
 transibion anexgios movid thexeTome be those ox
 support the view that betriecn Ex ${ }^{2}$ whybratsed carbon atoms f is a function of bona lengin and cannot be mero in arombic nydyocarbons. Turther $\beta^{\text {in }}$ eppears always to be betroan 0.7 and 1. that the relative speotral measurenents are prediatable by using β - values lying within this range。

OONCESSIOX

We conclude that the observations of Clam and his colyeaguss on the spectre of the triphenylenss axe explicablo on the Dasis of moleculex orbital celeulethexs guch as ous seziem I ard IT tho letror boing probably the
 the specura $3 x$ detain ax that we are confident that tho
 Indesd we mhom thet it ts possible to vary these in a bonmone zing mithout altesing the highest oceupiod levels等 Wo bope to mopozt in e aubsequent publication on the
17.
result of assuming in the $\mathrm{Bm}_{\mathrm{m}} 1$ portion of the molecule gBm, I that the β^{\prime} 'sare those of the phene OBm.

We graterully acknowledeg many helpful disoussions with Dr. D. Olar and Dr. J. F. Guyom-Vuilleme and the award of a D.S.I.R. Maintenance Grant to one of us (D.A.M. B_{B}) Chemiatry Department, University of Glangom.

Reterencos．

（1）AHMED，F．R．and J．TROTMTR：Acta Cryst．，1963，16，503．
（2）CLAR，E．，A．MCCALJUM and Rotio ROBERTSON： Tetrahedron，1962，18，1471．
（3）COULNON，C．A and R．DAUDEL：＂Diationary of Values of Noleculas Constants＂，Volune II。
（4）GOODWIN，ToH．and D．A．MORTONGBLAKE：Theoretioa Chimioa Acta，in press．
（5）HARCBMAVES，A．and S．HASAN RIZTI：AOta Crysto． 1962，15．365．
（6）LENNARD－JONES，J．E：Proc．ROYOSOO．，1937，A，158，280．
（7）MULTIKEN，R．S．，C．RIEKE and W．G．BPONN：
牙Amer，Chem，Soc：1941，63，48．
（8）PARISER，R：J．Chem．Phys．，1956，24，250．
（9）STREITWIESER，A。，Jx。：MRolecular Orbital Theory for Orgenic Chemists＂，Wiley，New York，1961，po218．

[^0]: FIn digcuscine the regulis of π olectron energy computaitions. it is convegient to spoals of π atebilisation enargiag (π s.e.)

[^1]: (a) xz oqaw

[^2]: mean $\operatorname{mos}_{0} 594$

[^3]: 1. E. Clar, J.-F. Guye-Vuillème, A. McCallum, and
