https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

An Electrochemical Study of the

Disation and Dissolution

of Sparingly Soluble Salts.

A Thesis by
Dorothy M. S. Iittle, BoSc. Supervisor, Dr. G. H. Nancollas.

presented for the degree of Doctor of Philosophy
to

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10984182
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ONTENTS
PRETACE i
GENERAL INTMODUCTION 1.
APPARATUS AND EXPERTMENTAL TEGHNIQUE 12.
Measurement of Resistance 13.
Control 15.
Guity Weter 16.
The conductivity Cell 17.
Preparation of Stock and Cell Solutions 20.
Dotermination of Concentration of Seed Suspensions 210
Determination of Call Constant 22.
PAFt 1. Grystallisation of Sparingly Soluble Salts 25.
ITPRODUCTION 26.
PART Ja. Crystallisation of Isad Sulphate. 32.
INERODUCITON 32.
EXPERIMENTAI 36.
Preparation of Solutions 36.
Preparation of Seed Susponsions 38.
Determination of Solubility 42
RESULTS 43.
Ionic Mobility and Equivalent Conductivity 43.
Equivalent Ionic Concentrations 44.
In Presence of Adeorbates 5%
Nonmequivalent Ionic Concentrations 92.
PASE The Cxytiollisation of Barium Sulphate. 99.
TATPODUCITON 100.
EXPERTMENTAL 102.
Preparation of Solutions 102.
Preparation of Seed Suspensions 102.
natnumination ne Onluhility 103.

- 105.
Ionic Mobility and Equivalent Conductivity 105.
Equivaleat Ionic Concentrations 1.07.
DISCUSSION OF RESULIS 116.
PART 2. Dissolution of Sparingly Soluble Salts 127.
INTRODUCITON 128。
PART 28 Dissolution of Lead Sulphate 132.
TNTRODUCTION 132.
EXPERTMENTAL 135.
Preparation of Seed Crystals 135.
Preparation of Cell Solution 135.
RESULTS 135.
Equivalent Ionic Concentrations 136.
In Presence of Adsorbates 137.
PART 2b. Dissolution of Barium Sulphate 153.
TMTRODUCTTON 15% 。
EXPERTMENTAL 156°
Conductinetric Technfique 156.
Rediochemical Techmique 256.
Isotopic Tracers 156.
Counting Technique 157.
Preparation of Labelled Seed Suspenslons 157.
Experimental Technique 158.
RESTIIS 160.
-• 160.
 161.
DISCUSSION OF RESULTS 180.
BIBLIOGRAPHY 189.

GUMARE.

The crybtallisation and diacolution of lead sulphate sud barium sulphate have been atudied by following the change in conductivity which occuis when supersaturated or subsaturated solutions of these salts are inoculated with seed cxysials. The dissolution into water of barium sulphate crystals, labelled with ${ }^{35}$ Sulphur has also been studied by a radiochemical technique.

In Part 1 of this thesis, experiments on the exystallisation of lead sulphate and barium sulphate are described. The growth of mions has been found to follow a second order race 1 and which is preceded, in the cese of lead sulphate, by an initial growth suxge, of order greater than two. This surge has been interpreted in terms of two dimensionel nucleation on the surface of the added seed cryetals. The crystallisation of lead sulphate from aupersaturated wolutions containing nonmequivalent ionic concentrations of lead and sulphete has also been studied.

Sodiun dodecyleulphete, sodium pyrophosphatio, sodium trinetem phosphate and sodium tetrametaphosphate have all been found to retasd the rate of growth, and if present in sufficiently high concentrationg. to stop it entirely. It was obsorved that the duration and apparent kinetic ordex of the initial growh surge increased with increasing concentration of impusity, and this was rore pronovaced when the conductivity weter ured hed been prepared by an ion-erchange method
rather then by distillation．The aditime is acemed to be prearentist adsorbed at active sites on the crystal auphace，and thus fewer sitas are available for nomal second order growh Fresh sites bave therefore to be created by surface nucleation．It would seem that some organic matter is leached off the ionmexchange resin，and that this also occupies some of the available growth sites，thus enhancing the need for twomdimensional nucleation．

The growth of bexium sulphate has been stadied at various temperm atures renging from $15^{\circ}-45^{\circ} \mathrm{C}$ ．，and a value for the eaergy of activati for growth was obtained；$E=8 \mathrm{~K} . \mathrm{Cals}$ 。／mole。
es experiments on the discolution of
Lead shipmave and vaximan sulphate．The dissolution of both salts into subsacurated solution，and or barium sulphate into water，has been found to follow a second order rate law，after a snall initial surge of order greater than two．Anionic adsorbates have been Lownd to retard the rate of solution of lead sulphate，although the concentration required to stop it almost entirely wes considerably greater than for growth．

Barium aulphate dissolution into water has been investigated concuctimetrically and radiochemically at various temperatures botwean 15° and $45^{\circ} \mathrm{C}$ 。，and the energy of activation for dissolution is approximately $12 \mathrm{~K} . \mathrm{Cals}$ ．／mole。

Kinetic Studter of the Precipitation and
 Dissolution of Sparingly Soluble

Eliectrolyteso.

Interest in crystallisation dates from the fith Century, wien recrystallisation was found ta be useful as a method of purificetiono In 1691, Robert Boyle noted the modification of cryatal habit by the rate of deposition fron solution, while in the $19 t h$ Contury? Sweigger (1) reailed that a certain minimus size of geed cyysai was necsssary in order to tnitiate crystallisationo

Modem interest in the exbject, however, dates from 1897 , winen Osiwald (2) determined that the upper limit por the effective gize of a mucleating crystal of sodium chlorate was $10-10$ grams. Modem theories of growth still incorporate many of Ostwald's Ideas, thum he weg the firgt to recogaine thet there are two cloasy desmod segions of muperabramtion, the motantable and the watle ta tho Somer regions no nucleation will teire place uniess it is induced by

Ls Luoreased, however, a motastable Limet is seached, beyond inmediate mucieation takes pleca. Fons in thic labile region th difficult to reproduce, since suth fectors as ducts ege and hisere of the solutions, contact with the walls of the comaining verses have all been shown to induce spontaneous nucleation.

Originally it was bolloved that growth and dissolution allats be zeciprocal procossea. but thin wes ciaproved by Mare (is 5) Sound the rate of dissolution to be fery much fentor then the crystalligation, and this was supporied by the resulte of Lebomsm Schnandt (6) From a foudy of the growth of sead exygtala Sran a
 Led to propose theit at low valuen of muperaturablon axymaly. Whes a aecond order reaction. He tresproted the binoties ix of a very thin adsorbed layer, probably or molecular dinonstors which axisted at the cryetal guriace.

More recently Davies and Jones (7) heve reachod a ainilas onattre Irom their atudy of allver chioxids. Bircuman and Ridejicar. (8) propesed that the zbeps at the crystal - solution intertace wer five-Rold:=

Io Transport of solute to the interface.
2. Adcorption of golube et the interface.

3- Chemical reaction at the ixtertace.
LS Desorption of procuctis from the laterface.
50 Pransport of solute from the interface to the bulk of bhe wembl

Elther growth of diasolution wond take places depandiag on th selative xateb of the stops.

Davies and Jones (7) heve combined stops 2,3 and 4, to giv overall intorface control step, and proposed thet in cryetollt 2.is faster then fo while the reverne holds for diesolution. idee has beon suppoxted by tumbuly (9), Dosemus (10) and 05s and Jehamon (11) o Turnbuld has gtudjed the preciphembon of t sulphate using a conductinetris tochnlque He fowd that in earliest stagen of prectipitation the rate of growh of the exy was Independent of their $日 l=$ and animited by a reaction at the exystel -alution interiaceg after the crystals reached a cex size, however, dirmsion became the controlling mechansen Ds derived growth equations fox an intortace controllod process, Sound good agreenext with the experimental results reported ic silver chromate, atronciun auphate and barium sulphatoo 0: R and Johnson, in a study of baxivn sulphate precipitation, arm a simular conclusion.

On the other hend, Go11ina and Leluewober (12)s whe also investigated baxiun suiphote procipitetion, conciuged thes dis wes the rete-controlling procesp, and tatexpreted their result teman of a theory of tho dimenaional surface muclection on ler planes, proposed by Becker and Doring (13)。

Gibis (V_{4}) suggested that a perfeet crystel should grow 1 repeated two-dimensional nucleation of new layers, with the pe
or sach nucleus providing a growh stop at which moloculen covic to incorporated into the cxystal. Thus, energetically, there shoure w a critical superaaturation bolow which the crystal should not gravo Volmer and Schultee (15), who found a number of ayters in whion such cribical supersaturathon oxisted, auggosted that there was a mobile selfeabsorbed layer in thermodynmic equilibriun with the oxyctai aurface。 Frequent collisions would be aspected betwom constituent particles in thin layer, and from thear the gem
 to the lattice plane below.

Frank (16), bowovers auggented that the aureaces of reat axe rarely perfoct, nearly alwayg containing dislocatome T presence of a dislocation which texminates in the exystel sux ensures that there are always exposed molecular terraces on w growith cen take place: amaimilation of the golute occurs at is the growth steps. Hence, the need for twomdmenaloncl nuclea does not axise at low supersaturations. Indeed. Burbong Gebr Frank (17) have portriated that a guparaaturation groaner tha necessary before mupece nucleation will take pleco: belon th value gexev dialocatione should be the only souxeo of growth However, when ditergion th the medinn is of importones, bunte nucleation would be expected to occus at the comars of the o resuting in dendritic brenching (20)。 in way eases the gro
 and Frank have suggested two powdibla reasoma:

1) That there are too many dialocations too cloge togethors; preventing a critical nucleus from passing between the apixals. or
2) That there are not enough diclocations in the cryghal. The suthors Savour the lotter altometive, athong Gabrere ant
 to grow a large crevtel.

Ajbos (20) considered that in the intital geges of gent Irom a muleus of cxitical size the cyysula axa probably diat free, gince this would onhance their stebility, but that conser betwoen the arystala would remat in the formation of dighocet
 to tmpurition in the exystala, and ovidonce for tha han boon
 Ruch axpeximateal evidonce has beon produece in aupport of Frover ${ }^{5}$ diblocation theory of growth thas seaxa (2) has obec potassiun chlowide and yercusy whiskere to grow by dighacetion Howkink (21) has found a almilar phenomonon with cadriva lodio,
 sulphde orystata fron the vepour to proced by a dianochtom mechanima.
 believe that the growh of bachun autphate proceeds by a two dimensional surfece nucleation mechonien, resulting in a fowe order rate law, whereas, in studies of nearoperfect cyystal Sears (24, 27, 28) has found both the Trank mechanism and grovit by two-dirensional nucleation to be operative on different planc: of a single crystal.

Since preciptiation is so imporbant in quantibative fnomgate analysiag most of the work has bsen doae on spontwaous cryetellisation from the labile region of supersaturationo Suon precipitations have often been found to exhibit on induction pease during which nucieus formation was assuned to be proceeding, When theoretical analyges of apoatanoous crybtallisadion have rewnolet the buildoup of a erition molous as a steady-ntate process congisting of atgpute incorporation of ions Lato joxembry Christiansen (29) has ghow thet dolays in nucination may be anticipated on the basia of the relamation the regurad tor attaiment of the steadynstate concentrations of the enbryer. ovaluation of this rolaxation time is prohibitavgy difetu Collins (30) however, has developed a eolution wht which tho rolaration time can bo dotemaned from oxperimental values m Bud face tension, whorgaturstion and noleculas oncouter frequency.

Ton Womaxn (31) angestod that the rate of paciptitat.
ond the number of particles wes proportional to the degree of supersaturation at the time of precipitation。Christiansen and Nielsen (32) have developed a similar idea, and have ahown that the time of cystallisation varied inversely as some significsmb power of the initial concentration,

$$
\mathrm{k}=c_{0}^{p} T,
$$

where c_{0} is the initiel concentration of the supersaturated solutions T is the induction period, and k and pare constantss p being the number of ions required to form the critical nuclous. This theory prediets a constont nucleus size, with little dependence of the nuciention rate on the mperesturation; the critical nucleus in therefore relabively small. Indoed, values (32) of 8, 9 and 6 for p have been obtained for barium sulphate, calcium fluonido and silver chloride, reapectivaly. Klein, Gordon and Walnut (9), using a similar reletionship, found a nucleus of five jone to he indicated for silver chloride。

These views are in direct contrast with the theory af
Volmex, and Becker and Doring, in which it is essumed that the suporsaturation is built up slowly and homogeneovsly until a critical supersaturation is reached. this would romith in a frriz large nucleus. Support for this theory has been giten by Duta whe Brown (34) who concluded that a nuclous of sufficient size to bo stable in contact with a superseturated solution should contaja
several tons or jons, and by La Mer and Dinegar (35), who calculater that the radius of the critical nucleus for bariun suiphate was 0.02μ.

If spontaneous cryatallisation occurs by homogeneous nucleation and growth, the guestion then arises as to whether nucleation has ceased berose growth sets in, or whether these proosbers take place concurrently. Collins and Leineweber (12), Tumbull (9), and Doremus (10) an savour consecutive processes, with nucleation taking place in an initial burst, and followed by growh therectice. Christiansen and Nielsen, and 0'Rourke and Johnson, however, belisve thet nucleation and crystailhsebion occur simpltaneoust? and Johnson and 0 Rounte (36), who strudied baxima sulphate: derived equetions for the two procestes. They represented tbe initial part of the precipitation by a relation accounting pox simultaneous nucleation and growth, and a good 3 tit with experimental data was obtained for the first gir mimbes of thes reaction. For the remainder of the precipitation they assuraed the nucleation rate to be negligible, and developed a. rete equaition involving ony growith on a fired number of particles. Once again they obtsined good agreement with the experimentol results.

Many of these womkers, however, have considered that the precipitotion was not taking place puraly by a homogenoons proben. In experiments where the supersaturated solution is prepared tr

10cel concentration excesses, which would favour nucleation. La Mer and Dinogar (35), in an attompt to overcome this objaction, studied the precipitation of barium sulphate, and produced sulphate ions in situ by the reacition

$$
\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow 2 \mathrm{SO}_{4}^{2-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}
$$

and obtained constent values for the critical supersaturation. Collins and Leinewebor, hovever, using a similar techique, conchuded. that even in this case the nueleation was hetorogeneous, since they found the relue of the criticel supsrsaturation to be strongly dependent on the purity of the reagents, and other workers heve supported these ideaso. Nielsen (37) found that steaning out of the reaction vessel prior to use reduced the number of nuclei fomed by a factor of tom, and Fischer aven goon as far as to predict thet pure homogeneous mucleation cannot be achieved.

Thus there are many factors which affect the validity of gtudies of spontaneous exygtallisation, and which make reproducibithy almost impossible。 It is obviously more informative to strdy cxystallisation under conditions which engure that only growth, or only nucleation, is toking place。 This can be done very easily by the method explotited by C. W. Davies and his comboners. who prepared supersaturated solutions of silver chioride when remained stable until seed exystals were added ($7,38-40$). Ald
growth then took plece on these enymble（ 41 ），and the rate of cxystallisation was measured conductimetricelly．This technaque has been successfuliy extended to silyer chromate（ 42 ），magaesiuna oxalate（43），and ailver iodate（4．4）。

The dissolution of many electrolytes has been ahown to
follow a first order rete Iaw．This has been interpreted in temms of diffusion of solute away from the hydrated crystal suriace． Diffurion control has been observed for most aystems，but some exceptions have been recorded，at temperatures other then 2500（45）．

This thesis is in two parts，the sirst describing a strody of the kinetics of crystallisation of lead sulphate and berium sulphate．Measurements have been made in the presence of aded impurities，to test the adequacy of the existing theories when there is adsorption on the surfece of the crystels．Bertun sulphate growh has been studiad at various tenperatures，fror $15^{\circ}-45^{\circ} \mathrm{C}$ 。

The second part of the thosis is concemed with a study of the dissolution of lead sulphete into subsaturated nolution at $25^{\circ} \mathrm{C}$ 。，and also in the presence of adsorbates．The dissolution of barium sulphate into waiter at temperatures ranging from $15^{\circ}-45^{\circ} \mathrm{C}$ ．has also been 2 nvestigatod，both concuctimetricaity sud by a radiotracer method．Dissolution into subseturated solution at $25^{\circ} \mathrm{C}$ ．has been followed．

Appereitys gra Expesimemid Yechigue.

The exystal growih of lead sulphate and bariwn suiphaie frow gupersaturated nolutions has been Followed. Suparseburstod colutions of lead sulphate ware prepared by mixing codium sulphate and lead nitrate solutlona of known concentrationa. Similarly, for barium sulphate, superaturated solutions ware prepared fron sodium bulphate and barium chloride. The rate of gryetellination. after inoculation with seed crystals vas rollowad by moasurisg the dacrease in coaductivity mith tino.

Dissolution of lead aulphate into subsatureted soluticm ght of berium sulphate into weter and subarituratod solutions, bers been studied in the same maner. In addition, dissolution at whiue sulphate into water has been studied by a radiochenical metrich. using 35sulphur as tracer.

Moagurament of Rosistance.

An anc acreened Wheabtone notwon of the bypa docently Jones and Joceph (46) and Shedlovsky (47) wae used Sos the conductivity measuremente (figo 1)。
R_{7} was the conductivity noll, R_{2} a Sullivan and Gripftho
nommenctive rentrance box, reading from 0.2 to 20,000 ohe
The reito axme R_{3} and ${ }^{4} / 4$ wexe provided by e. Sullivan high Erequeney 100 ohm decade potentioneter, Eubdivided into form amom

Figure 1.
from 0.01 to 100 ohms. To enable readings to be made to 0.001 chats, the bridge was made more sensitive by the addition of a 1.2 ohm Pye preciaion slide wire in sexies with the decade potentioneter. Since the cell itself behaves as a condenser, a variable Sullivan stable decade mica condenser, C_{1}, reading from 0 to $] \mu$. was connected across R_{2} or R_{2} to balance out any capacity effects between the electrodes, and betwoon the electrodes ond the colt wall. In practice, the condenser was always connected acrose Ry, The output from the bxidge was amplified by a high gain masine operated amplifies (Flesco Electronies Limited) A mans openatok Variable frequency oscillator (Advance model in w I) was uged as a source of trequency. A frequency of 1000 cycles per seconl wes normelly used, this being the optimum for aural detection. Earthed and screened Ieads connected the oscillator to a blamon and acreened Suliven transformer. This trensformer was demead to screen the supply source from the bridge whout arrect... belance of the latter to earth. The trancromer war cone frat th the bridge by gcreened, earthed leads.

A modified Wagner Earth of the type described by Jomea ard Joseph (46) was employed to ensure that the telephone ear-mon was rainteined at ground potential, so thet there was no 1 of current batween the telephone coils and the operator. Wegner Earth (fig。2) is represented by the ressistances R_{5}.
varlable condeneer G_{2} and stiding oontoct g once the bridge was balanced in the usual way, the detector, D, was connected to gromet by switch S_{1}, R_{5} and R_{6} were then adjusted through the contact g_{y} so that $R_{5} / R_{6}=B_{3} / R_{4}$, thua ensuring that B was at earth potontisi. The bridge was again balanced and the process was repeatea unitil no change in the sound minimum ses obeerved between successive neamurernemts.

The call was brought into circuit by two copper leads strotchas from the pletinum mercury contacts of the electrodes to menoury cups supported in the thermostat. The copper leads were of equal Iongth to compensate for their resistance, as were screened $20 e d s$ Irom the mercury cups to the resistance box R_{2} The mercury oupe were kept, in the themostat to ensure that they were at the gane tomperature a.s the cell.

When water and solutions of high resistance wore bojng nowarnat: a 10,000 ohm non-reactive standard resistance wes connected th perallel with the cell。

Thermostat and Tempergiure Control．

A11 conductivity oxperinents were carried out in a constont temperature room，maintained at $25^{\circ} \mathrm{C}$ ；this prevented condensetion on the cell cap．the cell was placed in a largo eaxthed and hoet insulated metal tank，filled with transformer oil，to reduce capecity errors（46）．Tho ofl was stirred by on effective rotary paddle stirrer，to ensure an even tomperature was maintained throughout the tank．The temperature of the bath at $25^{\circ} \mathrm{C}$ 。 was controlled to $\pm 0,005^{\circ} \mathrm{C}$ 。 by a mexcury－toluene spiral regulaton，fitted mith a Sunvic proportionating head．Heat was supplied by a 60 watt bulb，and a continuous sirean of cooling water passed through coppos coils immersed in the bath．

Experinents at 25° ， 35° and 45° ．were carried out using e water silled thermostat，which was fitiod with a booster heator and a refridgerating unit to assist in temperature control．The conductivity cell was held in a small box，which contajned transfommer oil，to eliminate the capacity effects discussed previously．Temperature control was maintained to $\$ 0.01{ }^{\circ} \mathrm{C}$ 。at $15^{\circ}, 35^{\circ}$ ，and $45^{\circ} \mathrm{C}$ 。 Measurement of all temperatures was made with Beckmann themometers which hed been standardjeed against a calibrated platinum resistance thermometer（48）。

During experinents at 35° and $4.5^{\circ} \mathrm{C}$ ．the temperature of the air in the vicinity of the top of the cell was raised by means of
two 60 watt red bulbs, to prevent condensation on the cell capo
Seed suspensions for use at $25^{\circ} \mathrm{C}$. were aged in the constant temperature room. Those for use at other temperatures were maintained at the required temperature for a few days prior to use。

Preparation of Conductivity Water.

The early part of the work was done using deionised wates, which was preparee by passing distilled water over a mixedubed resin (49). Two resins were used:

1) Amberlite IR 120 (H) acid resin and Araberlite IRA 400 basic resin, mixed in a proportion of $1: 2$ by volune。 With guch a column an Intimate mixture was essentlal, so that $\mathrm{H}+\mathrm{j}$ ions liberated from the reain by exchange of cations were frmediatety neutrelised by oft ions liberated from the basic resin by anions.
2) Permutit "Biodeniarolit" which is supplied ready for uen as both a cation and an anion exchanger.

Water obtained in this way was stored in a pyrex flask, atted with a sodarlime guard tube to exclude carbon dioxide. the specific conductivity of this water varied from 0.08 to 0.3×10^{-6} reciprocal ohms.

In later experinents a gas fired Bourdillon still with a tha fractioneting colum was used for preparing conductivity water, to
ensure that it was free from contanination by orgenic tupurity. The supply of pure air was obtained by passing compressed air through tubes filled with glass beads; two of the cubes contained a 30 名 potascium hydroxide solution, and the last contained water. The specific conductivity of this water was 0.2 to 0.6×10^{-6} reciprocal ohms.

Latterly, water from en electrically heated all-glass still. constructed on the model of the Bourdillon still was used. This gave water with a specific conductivity of 0.3 to 0.6×10^{-6} reciprocal ohms.

The Conductivity Colis

The conductivity cell was of the type described by Haxtley and Berrett (50), and was constructed from pyrew glass. The Tect was supplied by Quickit, and had a B. 55 ground giass joint at tho neck. The cap carried the electrodes, an aperture through which the stirrer passed, another for addition of solutions, and a horizontal side asm fitied with a tap, through which caxbon diacha free nitrogen was admitted (Plate 1)。

The electrodes were of greyed platinum, perforated to entury gtizring of the solution botween the plates, which were held whut at a fixed distance by four small pyrex glass rivets. The oleotroder

Plate 1.
were carried by platinum wires which were fused into the glass supporis, but since it is not possible to make a perfect platinum glass seal, a little powdered Araldite thermosetting epoxy resin wis set in the bottom of each support. This was left overnight at $60^{\circ} \mathrm{C}$ 。 to suse, and then allowed to cool slowly, making a perineneat seal. The electrodes were situated near the wall of the cell, and thelr muports were fixad to the cap by two Bo 10 Quickfit jointis, and sealed into position with Araldite。 Aligoment of a mark on cell and cap ensured thet the electrodes were placed in the same poattion relative to the outer container for each experiment. Stirriag was gupplied by a Vibronix notor (Shandon Scientific Gompany), the actual stirrer being a circular glass disk, perforeted Whth conicel holes and fused to a glass sod. The maximum amplitude of the oscillations was 0.03 inches, and the mate of stirring could be varied widely. With this type of stirrex it was possible to ensure that the disc was in the same place relative to the electrodes in evexy experinent.

The cell was kept free of carbon dioxide by the passage of a continuous stream of nitrogen, which was introduced through the side arm. A dust cap sealed the aperture through which additions of solutions were made, and dust was prevented from entering through the stirrer aperture by a subber teat.

Proparation of Stock and Cell Solutions.

Pyrex glass apparatus was used in the preparation and storing of all golutions. Pipettes were of Grade A glandard. Flesks were cleaned with chromic acid and steamed out prior to use; they were filled with distilled water when not in use.

Solids were waighed in pyres sample tubes on a Stanton Model SoMol balance, using platinam plated weights. Solutions were made up by weight trom conductivity water, using a Sartorius balance of 2 Kg . capacity, which ves consitive to 0.005 g . The weights for both balances had been colibrated by the method of Kohlrausch (5I), and al. weights were vacuun corrected.

Analer solts were used throughout, and potessiun chloride used in cell constant determinations was recrystallised three tines from conductivity watar. Stock solutions were prepared by weight from conductivity water. Dilute solutions were freshly made up for each experiment from these stock solutions, the concentration of the former being such that 10 ml . added from a calibrated pipette to about 300 g 。 of conductivity water in the cell would give a cell solution of the required concentration. The dilute solutions were prepared by weight from the stock solutions in exactly the same way.

A typical experiment involved washing the cell thoroughly with distilled and conductivity water, filling it with conductivity water,
and weighing. It was then placed in the themostat, and carboa dioxide was removed by passing nitrogen, which had been presaturated with water at $25^{\circ} \mathrm{C}$., into the cell. When temperature and carbon dioxide equilibrium had been reached, the dilute solutions were added. the second one drop by drop over a period of 5-10 minutes, to prevent the formation of high locel concentrations which would favour spontamous nucleation. After each addition the cell wes ellowed to come to equilibrium again. The conductivity would then remain steady for $24-48$ hours, but in practice, seed crystals were usually added after one hour.

Garbon dioxide was removed from the seed suspension beiore addition to the cell by passing a rapid stream of nitrogen over it for $30-60$ minutes. The seed crystals were added to the cell from a rapid delivery pipette. Zero time for the reaction was token as the time when half of the seed suspension had reached the cell contents. The change in conductivity was determined at minute latervais at the start of the experiment, them at 15 minute and latierly at 30 minute intervals. Wany rung were followed for 24 hours or nowe.

Determination of the Concontration of the Added Seed Suspensions

The concentration of each preparation of seed crystals wat determined by filtration of a 5 ml . sample through a number 4 sitron. drying and weighing. Generally, the average of three such estinations
was used.
In later work, when very high concentrations of seed suspeuefer were being used, it was difficult to add a reproducible amount of solid to each experiment. The concentration of seed crystals adide in each run was then determined by filtration of the final cell solution, in the manner described above.

Deternination of Cell Constant.

The cell constant was determined by the method of Frazer ere Hartley (52). Thrice recrystallised potessium chloride wes usc in the preparation of the stock solutions. A small quantity of pure material wes hoated in a platinum crucible to a dull red hast, Sor about 10 minutes, and stlowed to cod in a desticcetor Abrm Ig. was then weighed out ta a pyras sample tibe and the result: shock solution was approximetely decinomal.

The coll was weighed, and then sbout 250 g , conductivity wh were added. It was then allowed to come to carbon dioxide and temperature equilibrium; this was usuelly attained in $2=3$ hove. and resistance readings would then remain constant for 24 hours or more.

Once the conductivity had remained steady for about one hous additions of the stock solution of potassium chloride were mede fo
the cell, using a weight burette. Equilibriva was usually reached again after about $20-30$ minutes, when the resistance was measurog. The resistance box R_{2} was adjusted until the balence position wes close to the centre of the ratio ame R_{3} and $R_{4} 0$ Values of both R_{3} and R_{4} were obtained, and the value of R_{2} was then changed by iive ohms, and two further readings made on the ratio arms. The average conductivity value wes calculated from both pairs of ratho axms readings, and then corrected for the water resistance. Fuxther aditions trom the weight burette were made unthl tho concontrethon of potessium chloride in the cell was sbout 0.0011. The cell was removed, and after its outer surface hed been cleanol and dried it was weighed again.

The cell constant was calculated by comparing each measured value with the conductivity derived by Shedlovsky (53), at the weme concentration, using the interpolation formula

$$
\Delta=149.92-93.85 c^{\frac{2}{2}}+50 c
$$

where Δ i.s the equivalent conducbivity of potassium chloride of normality $c(54)$. The value of the cell constant for each cell used was obteined from at least twelve determinations (three semieg)。

Col1 A had a cell constant of $0.0700 \div 0.1 \%$
Coll B had a cell monstent or $0.07124 \pm 0.1 \%$
Co11 D had a cell constent of $0.06949 \pm 0.1 \%$
Oell E had a cell constant of $0.07312 \pm 0.2 \%$.

The conductivity bechaique described gbove was used in the first two parte of this work. The radtochemical technique used is described in detail in part 2 b .

Parr io Cxystallisation of Sparinely Soluble Salts

in Agueous Solutions.
13. Inad Sulphote.

1b. Berjum Sulphate.
\qquad

INTRODUCIION.

An equation of the type

$$
-\frac{d m}{d t}=k s\left(m-m_{0}\right)^{n} \quad \cdot \quad \cdot \circ \cdot .(2)
$$

where k is the rate constant, s is a function of surface area, if is the instantaneous ionic concentration, m_{0} is the solubility valva. and n the order of the reaction, has been generally accepted as representing the crystajlisation process, but opinions have differed about the value of n. Values of $2,3,4$ and even 8 (32) have bra reported, and each explained by a different nechanimin of cayste growth. Values of n greater than 2, however, have generally bes obtained from studies of nucleation rather than growth.

In a study of the growth of silver chloride seed crystals, Devies and Jones (7) found a value of 2 for n, and interpreted tho kineties in tems of an adsorbed monolayer of ions at the crystat surface. They made the following two essumptions:
(I) A crystal in contact with an aqueous solution always tends to be covered with a monolayer of hydrated ions, and secomby adsorption on this monolager is negligible.
(2) Cyyatalisation occurs through simultaneous dehydration
of pairs of anions end cations.
When the surface reaches equilibrium the rate of adsorption
of tons from the solution must be surficient to maintain the monolayer intact, and it is assumed that evexy ion striking the suxface from a saturaṫed solution enters this mobile adsorbsd loyer. Then the rate of adsorption of cations $=k_{1} s\left[A_{0}^{m+}\right]$, and of enioas $=$ $k_{1} s\left[\mathrm{~B}_{0}^{\mathrm{n}-}\right]$, where the subscript zero indicates the solubility value of each ion speoies. In an unsaturated solution, lons leave the surfece faster than they are feplaced, while in a supersaturated solution, all ions reaching the surface do not enter the monolages.
 for anlons, are available for deposition. These tons either suther glantic collisions at the surface of the monolayer, or, should a cation and an enion arrive simultaneously at a growth site, the underlying ion pair can becone denydrated and incorponeted tnto tha crystal latice. For a symatrical electrolyte such as silvex buowo or lead sulphate, $n=n$, and the rate equation would become

$$
\begin{aligned}
-\frac{d m}{d t} & =k\left(\left[A^{m+}\right]-\left[A_{0}^{m+}\right]\right)\left(\left[B^{n-}\right]-\left[B_{0}^{n-}\right]\right) \\
& =k\left(m-m_{0}\right)^{2} \circ \circ \cdot \cdot \cdot \cdot \circ \cdot(2)
\end{aligned}
$$

Walton (54) has arrived at a aimilar rate equation from a more theoretical viewpoint, by considering the adsorption of ioms upon sols of the same material as following the Gibbs Adsorption Isotherw,

$$
\Gamma_{A^{*}}=k_{I} \ln \left[A^{+}\right]+\text {constant } t_{1} \circ \cdot . \circ(3)
$$

 A similar expression holds for onions,

$$
\Gamma_{A^{+}}=k_{2} \ln \left[B^{-}\right]+\text {constant }_{2} \cdot . . . \cdot(S
$$

The rate of surface reaction per unit area may be expressed as

$$
J=-k\left(A^{+}+B^{-\prime}\right) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot(\xi)
$$

By substitution from (3) and (4), (5) reduces to

$$
J \cong \frac{k k_{1} k_{2}}{c_{0}^{2}}\left(0 \ldots c_{0}\right)^{2}
$$

in the apocial case where the ionic concentrations are equivalew. and $c \rightarrow c_{0}$ Similar expressions can be derived for non quits ont ionic concentrations, and nonmsymetrical electrolytes

Doremus (10) has suggested two possible mechanisms for the transfer of dehydrated yous from the adsorbed layer to the grot sites. In Model A he proposed that the adsorbed lows combined the surface layer to Ron m neutral "molecules", which then diem along the crystal surface until they reached a suitable growth To explain certain experimental results, in which a third ordo: rate law was found to apply, he postulated, by analogy with ger phase reactions, that an additional adsorbed lon takes part in surface combination process. In Model B, the adsorbed ions are considered to collide directly with a kink in the growth step, resulting in alterative incorporation of cations and anions in the crystal lattice. This model gives rise to a second order ir
equation for a symmetrical electrolyte。
Doremus showed that reeults obtained from spontaneous crystaniom ation experinents on berium sulphate by Turnbull (9), and by Johnson and 0'Rourke (36), ana on silver chromate by Van Hook (56) could bo explained satisfactorily by Model A. On the other hand, data obtained by Howard and Nancollas (42), for the crystallisation of gilver chromate on added seed cxystals, fitted Model g , as did resuth for silver chloride (38) and bariun sulphate (57) . Doremus intertyetot this disperity in tems of the whely diferent supersaturations used in the two sets of experinents.

For Model A, and a symetrical olectrolgte, the rate of precipitation should be proportional to the third power of the gotar concentrgition, whereas for a 1.2 electrolyte such as ailver chrowab the rate should vary with the fourth power of the solute concentrotion. With Model B, however, and a symmetrical electrolyte, the rate of precipitation should depend on the second power of concentrations. while the rate should be proportional to the third powex for a 3 , 2 electrolyte. Thus, at high supersaturations, conditions should favour Model A, while at lower concentrations, Model B should apply.

The supersaturations used in the spontaneous crystallisation experimenta $(9,36,56)$ are moh higher than those used in seeder growth (38, 42, 57) and Doramus considered this to explain the apparently conflicting results obtained with silver chromate and
barium sulphate.
In the above thsories of growth, it was assumed that the adsorbed monolayer contained equal numbers of positive and negaitive ions, but in general it will not be so. If one ion is adsorbed more strongly to the prectpitate than the other, due to difteramon in the adsorption energies, the surface will assune on electrjoct oharge, remulting in an electricel double layer being set up arom the paricie. However, for concentration ratios equal or near to the stoichiometric one this selective adsorption will be negligibio.

When the tonic concentrations are nonequivalent, a different situabion axises. When seed crystals are added to a solution ts
 and a potential difference, ψ, will be set up between the adsomea layer and the solution. In such a situation, the crystal growth Winl be controlled by the concentration of the deficient ion $B^{2 \infty}$ only, gince the surfece concentration of excess ions remains effocto ively constant. The equilibrium value of \mathcal{Y} is such that eationa and anions onter the adsorbed layer in equivalent amounts.

The availability of cations at the suxface is thon given by

$$
\mathrm{k}_{1} \text { s }\left[\mathrm{A}^{\mathrm{MH}^{+}}\right] \exp (-\psi / R T)
$$

and that of amions by

$$
\mathrm{k}_{2} a\left[B^{n-1}\right] \exp \cdot(\psi / \mathrm{RP})
$$

These are equal when if $=n$, hence

$$
\exp \cdot(\psi / R P)=\left[A^{\operatorname{nit}}\right]^{\frac{2}{2}} /\left[B^{n-}\right]^{\frac{3}{2}}=x^{\frac{1}{2}}
$$

Since the number of ions of each type entering the monolayer is mos the rate of crystallisation is given by

$$
\begin{aligned}
-\frac{d m}{d t} & =k s\left(\left[A^{\mathrm{m}+}\right] x^{-\frac{1}{2}}-m_{0}\right)\left(\left[\mathrm{B}^{\mathrm{n}-}\right]_{x^{\frac{1}{2}}}-m_{0}\right) \\
& =k s\left(\left[\mathrm{~A}^{\mathrm{B}+}\right]^{\frac{1}{2}}\left[\mathrm{~B}^{\mathrm{n}-}\right]^{\frac{2}{2}}-m_{0}\right)^{2}
\end{aligned}
$$

which reduces, when $\left[A^{m r r}\right]=\left[B^{n-0}\right]$, to equation (1), with $n=2$ o
Grystallisation of symmetrical electrolytes could thereiore be expected to follow a second order rabe lew, even when the jonte concentrations are not equivalent. This has been shown to be the case for silver chloride (7), barium sulphoie, (56), and magnegho oxalate (43)。

Another mothod of altering the surface of the seed erystale is the addition of impurity molecules which are likely to adsorbon by the cxystals. Davies and Nancollas (39) have studied cyystal. growth in the presence of o. variety of such additives, and found that while they all had a considesable exfect on the rate of growh. the mechanism was unchanged.

Paxt la of this thesis describes a conductinetitic study of tha erystallisation of lead sulphate from supersaturated solutions of equivalent and nonoequivalent ionic concentrations. Experinente were also made in the presence of suriace active agents.

Results obtained at equivalent ionic concentrations were in agreement with the theory described above. Second order growth man observed for most of the reaction, whith the orception of an inithe"
vexy fast growth surge, winch hes been interpreted in terms of onhoneed two dimensional nucleation on the surface of the added seed crystals. Growth in the presence of adsorbates was also fovad to follow a second order rate law, but deviations from this were observed when the concentration of additive was high. Gxystelliseblon at noniequivalent ionic concentrations did not follow the proposed mechanim, and no setisfoctory explanation of the results has bera. made so far.

Part 2b is concemed with the crystallisation of bacion suly at various temperatures. The rate of reaction was found to be temperature dependent, and followed second order kinetics: Heatr of crystallisation have been ovaluated.

PART 1a, Lead Sulphate.

Of the three common sparingly soluble aulphates, that of baz has been most studied, because of its importonce in quantitative analysis. Much of the work on lead sulphate has been concomed with its precipitation and aging, and there is little to be found in the literature concerning the growth process itssle.

The present study was undertakon with the object of dotemunnse the similarities, if any, between the crystallisation behovicore on this asit and barium sulphote. In parifeuler tt would be interest:
to see ix the growth of Iead sulphate was characterised by an inttint. veay Sast gyowth surge bimilar to that found by Nancolles and Purita she Sor the barium salt.

Hahnert (58) described the great differences in the ghapes of lead sulphate crystals produced by varying the mixing time of the reagents, and by the presence of sdded impurities. Fie observed. that the most perfect rhombohedra were formed from dilute soluthow and that as the reagent concentrations were increased, inpenfect cmytals, which he descmibed as "somatoide" appormed.

Kolthorf and his comporkexs $(59,60)$ made similat obsorvabtona and noted that as the concentiations of reagents were increased a size of the prectpitate paxticles passed through a meximum Thot also reported (61) that a considerabie supersaturation could be maintained before spontaneons erystallisation took place, and detemined the criticel concentration product to be 200 tines gr than the activity product of a saturated solution of the salt.

In an earitex sibudy, Kolthofx and Rosenblum $(60,62)$ studjed the rate of aging of lead sulphate precipitates, and found it to in Independent of stiming speed. Since the speed of agitation worta Do imporiant in Ostwald mpening, they concluded that this was rot taking place, and suggested that the aging occurred by recryotanis in a liquid layer round the particles. Kolthofix and Rosenblun (ft alao showed that net ther sodiun sulphete nor lead nitrete wes
gpecifically adzorbed on the suncace of the cygstals. on the oblay hend, dyes such as wool violet (64), were very sitrongly adsoxbed, to the extent of one dye ion per 1.5 lead ions on the surface in neutral solution. If the concentration of wool violet wes sufficiently high, no erystalisation of lead aulphats took plaps.

It has been long known that small amounts of impurities naer apprectably alter the gromb behavionr of exystais (65), and ma workers $(23,66-68)$ have observed a considerable reduction in the rate of growth in the presence of adsorbates. Small concentrathons of orthophosphate, triphosphate, and pyrophoaphate jons heve be Sound to decrease the rate of prechpitation of atrontiun eurphe't, and, if present in auficiently high concentrations, to inhate precipitation entirely $(66,67)$. Inhibition of nucleation has alo been descxibed by Rigterink and Erance (69), Reitemeie s and Buehrer (70), and others (75, 72). Hebit modification hes also been observed in meny systems (72-75), due to slowing of growt by selective adsorption of impurities on perticular Races, while the remaining faces continaed to grow at the normel rate。

Sears (76) has suggested thet small molecules are mosti luks to be adsorbed at kinks in growth stops, and that monostep covarage (77) would bo necossaxy to cause an apprecinble rednct, in the rate of step motion. He proposed (78) that the adsoried inpurities must prevent assimilation of further growth noleculen
into the lettice. If this were not the case, the impurity would be built into tho exystal, and the growth rate would not be mueb retarded. Further advance of a step, once poisoned, can only occur by nucleation of a new step of substrate atoms at the poisoned fape Adsorption of a poison at a growth step should reduce the step oneray, and hence the critical energy for twoodimensional nuclemtion, and an increase in the rate of surface nucleation should regutio For large molecules, however, Cabreve and Vemmivea (19) considered thet the expect is not usually specitic, since thest would bs adsorbed at any point on the crystal because of the dispergion forces. In such a gituation, therefore, the sige ot tho molecule would be one of the most important factors governing fir effectiveness as a growth inhibitor.

Sears (78) has show that a concentration of 2×10^{06} mole fractions of ferric Iluomide was suficient to hinder step motion in lithium sluoride, and that a similar concentration cauced ar apprecjable increase of two dimensional nucleation on perfect lithium fluoride surxaces. Stimilarly (23), potassium chlonide crystals, in the presence of $t w$ parts per million by weight of lead chloride, were observed to thicken without impingenent on another, a phenomenon which must also be due to twomdinenshonel. murface mucleation, since the prasence of load chloride would I the stop energy. Nucleation of etch pits in presence of jmpuri:

considered to be due to the same effect.
 It would be interesting to determine if any similar phenomena could be detected in the study of lead sulphate cryatallisation in the presence of impurities.

Experimental.

Preparation of Solutions.

Analar reagents were used throughout, unless otherwise stated. Stock solutions of lead nitrate and sodium sulphate were properea by weight, the concentration usually being about 10^{-2} moler. Dilute solutions were made up for each run, and 10 ml . of thess solutions were added to the lnown weight of water in the cell, an described previously.

This method of preparation of the supersaturated solution resulted in a high concentration of the supporting electrolyte, sodium nitrate, being present. Attempts were made to prepare lead out sulphate supersaturated solutions with such a supporting electrolyte, using ioneexchange techniques. Axberlite IR 120 (H) resin was prepared by paseing through a 2N. hydrochloric acid solution, mat washing free from chloride lons with distilled water. A Molar golution of lead nitrate was passed slowly through the columa, wioh

A moluthon of sodiun gulphate of the required oncontrat was then passed through, at a rate of about one drop every 20 and the efluent was delivered directly into the cell, and wes The conductivity of this solution was higher than the calculat vailue, and tests with a flame photometer showed some sodinm io stidl to be present. The arinaty os the resin for Iead joma greator than that for sodium ions, and a complete groharge of for sodium was never gehieved.

Attempts were then made using an anion exchange reatn, Pe Demacidite TF (SRA 69). The resin was prepared in the onlowic and converted to sulphete with 2 Molax sodium sulphate auluble The colvun wes wakhed thoxoughly before use. A lean ntrabe ; of the required concentration was then passed through, but the exchange of nitrate for sulphate was oven less complebe than of sodiua lor lead, and Iead sulphate was seen to have precipt on the colums.

Proparibion of Adsorbate solutions.

1. Sodium Dodecylgmighete.

$$
\mathrm{OH}_{3}\left(\mathrm{OH}_{2}\right)_{70} \mathrm{OR}_{2} \mathrm{OSO}_{3} \quad \text { Ne* Molocular Welght }=
$$

A pure sample, kindy given by Imperial Chemicai Industinas, is was used without further purification. Solutions of various concentrations were mede up by weight.
2. Sodium Pyrohosphets.
$\mathrm{Me}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ 10H2O. Molecular Weight. $=446.11$
Ansiar sodium pyrophosphate was used without further purifications and solutions made up as before.

3. Sodium Totrametaphosphate.

$\left(\mathrm{Na} \mathrm{PO}_{3}\right)_{4} 4 \mathrm{H}_{2} \mathrm{O} \quad \quad$ MolecularWeight $=480$
A pure mample, kindly given by Dr. C。Bo Monk, wen used without, surther purification.

4o Sodium Trimetaphosphate.
($\left.\mathrm{Na} \mathrm{PO}_{3}\right)_{3} 6 \mathrm{H}_{2} \mathrm{O} \quad$ Moleculer Weight $=4 \mathrm{~L}_{4} .42$
A pure sample, kindly given by Messrs. Albright and Wilson litd. was used without furthex purification.
5. Cotyl Trimethyl Ammonium Bromide.
$\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{HN}_{3}\right)_{3}^{+} \quad \mathrm{Br}^{-} \quad$ Molocular Welght $=26.65$
A pure sample, kindly given by Imperial Chemical. Industriee, Lid. was used without surther purieication.

Preparetion of Seed Suspensiona

Since lead sulphate has e low temperature coefficient of solubility, preparation of seed crystals by recrystallisaíion wn not feosible, and precipitation techniques were used. Various mothon

```
%
```

were tried, and the nost successrul was found to be dropwise adteron of 100 ml . porbions of 0.1 Molax lead nitrate and 0.1 Molar sumhersa acta to 200 ml of water with constant vibratory gijuring, which zact continued for 24 houms. The seeds thus fomed were usugity wel. characterised rhombs, of average alze 40 ftr, but occasionaily hathos of cryptala which showed highly developed faces were found (Plehn a, bTh : These were genergly needrembaped, but sone had wwase w, or wo the obtusemsmed eross sheoe, as has also been obaerved by Kohbote and Vans't Riet (59).

Attengts to ottain reproducible methods for the production of the various kinds of cygstals have been laxgely unsuccesant: carent control of the conditions of precipitation, stiming, droparate, concentration and tomperature has not yielded any mbina by which the degired type of erfstel shape can be oltoined, exom that the more dilute solubions were usually found to give bettes rhombe.

When a sultable batch of crystals, of uniform ghape nad 3: 2 was obtained, the crystals were washed thoroughly with diswilled water, then with conductivity water, and atored In pyrax stock bottles. They were set astde at $25^{\circ} \mathrm{C}^{\circ}$ to age, for $2=4$ weoks bhora 4ge. Deteits of the susponsions are given in Table I.

Plate 2 .

TABLE．I。

Shape
Conc．$\left(\mathrm{mg} / \mathrm{ml}_{\mathrm{o}}\right)$
Plate 2

A

B
D
E
G
needle
60
65
rhombic 100
rhombic
8
xhomble
100
B，C，D
$B_{1} C_{2} D$
A
A
A

Doteryination of Solubtlityo

The solubility of lead sulphate seed crystals was dowernine by letting cyystallisation and dissolution experiments proceed to equilibriuss．Values obtained from both methods agreed to within I\％of each other．The solublity of lead sulphate was found to th 1.466×10^{-4} moles／I。 at $25^{\circ} \mathrm{C}$ 。，which is intemediete between I。 490×10^{-4} moles／I。（80）and 1.40 moles $/$ I。 at $22 \cdots 23^{\circ} \mathrm{C}$ 。（6）。

The thermodymaic solubility product，K ，given by

$$
\mathrm{K}=\left[\mathrm{Pb}^{2}\right]\left[\mathrm{HO}_{4}^{2 \infty}\right] \mathrm{r}_{2}^{2},
$$

hes the velve 1.7174×10^{-3} ，where Φ_{2} was obtoined from the Davice equation（83），

$$
-\log \varepsilon_{5}=\operatorname{man}_{2} \operatorname{se}\left(\frac{\sqrt{2}}{T \sqrt{2}}-0.25\right)
$$

with $\mathrm{A}=0.5092$.
The solubility value was corrected for fonic strength at the various concentrations of supersaturated and subsaturated solutions used.

Determination of Concentration of Cxyetola Added to the Coll

Since the concentration of sead erystals added to the cell van very high - in the region of $300 \mathrm{mg} / \mathrm{ml}$ 。 - reproducibility was not good, and so the weight of seeds added to each expertnent wha detemined by filtration of the cell solution through a fuaber $;$ form after the yun had been completed.

Experiments in the Presence of Adsorbstes

The required amount of adsorbate solution was added to the supersaturated solution in the cell, before inoculation with seo crystels. Once the cell solution had again reached temperature and carbon dioxide equilibrium, and the conductivity had remaines steady for one hour, seed crystals were added, and the change in conductivity followed in the usual way.

RESULTS.

The experiments cescsibed in this section were carrisd out in order to determine the rate of exystallisation of lead sulphate ab $25^{\circ} \mathrm{C}_{2}$ and to find the effect of inorganic impurities on the growh. Some experiments were also made with non - equivalent concentrabtons of lead and sulphate jonas.

The supersaturated solutions vere stable untll the additio: of seed crystals, and alnce these had been aged for $2-4$ weels prior to use, it was not pegsible for fresh nuclei to be formed th growth therefore took place on the crystals supplied (4i)。

Ionic Mobilities and Equivelent Conductivity.

The Lonic mobility of suiphate was taken as 80.0 (82), and that of lead as 69.40 (83) at $25^{\circ} \mathrm{C}$.

The equivelent conductivity can be obtained from the Oneag equation if the conductivity at infinite dilution and the conce women of the aolution are known。 For lead sulphate, the equivalent conductivity is given by (84)

$$
1^{0} \mathrm{PbSO}_{4}=1^{0}-\left(1.82161^{\circ}+239.44\right) \sqrt{2 m_{1}}
$$

the concentration mi being expressed in go mole./ Io, and s_{0}
The equivalent conductivity can bs evaluated in enother was from reasured conductivity values and the cell constent,

$$
A=\frac{1000 \times 1 / \mathrm{R} \times \operatorname{col1} \text { constant }}{2 \times \mathrm{in}}
$$

Where If is the resistance of the solution corrected for the resistance of water. Calculation of experimental values using equation (2) gave resulitg which agreed to within 0.5% of the theoretical value for all cell solutions. Hence an indopencomb check on the accuracy of preparation of the cell solublions covila bo made.

The activity of the solution was taken as the concentrationg so that over the vexy small concentration changes involved the wales of 1 was considered constant, and taken as 140,56 at the concmatrath 1.774×10^{-4} moles / I. The change in concentration in solutions of equivalent ionic conceutration was evaluated from the expressto:

$$
\Delta I=\Delta I / R \quad K F
$$

where F is given by

$$
\frac{1000 \times \operatorname{col} 11 \text { constant }}{2 \times 1}
$$

Cxystallisation at Equivalent Ionic Concentrations.

Trial experjments were carried out to detemine the injtid cancentration which would give a reasonable rate of growth, ance a supersaturation of go\% was fowd to bs suitable. Typical smocts plota of the reciprocal of resistane agangt time are show in Fig. 6, Takles 4, 7 and 5. The initial rate on crystallisation 3 obtained by meking a short gatrapolation of this growth curve to
zero tine. Disferences batween the instentaneous values of $1 / R$ mad this initiel vaiue of $1 /$ R were used to calculate the anount of lest sulphate precipitated at any time. Plots of the integrated form of the mecond oxder rate equation

$$
-\frac{d m}{d t}=k \approx\left(m-m_{0}\right)^{2}
$$

were Sound to be good stratht lines with the exception of an 1 nttet very fiat growth surge, the order of wich was obviously not two. A typicel plot is show in Figo 2, using data given in Table 3.

The effect of increasing the concentration of need crysteln, and of reducing the initial supersaturation was tested, and the results are gumarised in Table 2, The result of increanlag the beed concentration can be seen fron Ruas 9, 11 and 13, (Teble 4? and rate plots are shown in Tig。3。 Runs 17, 18 and 28 (Table s) and Ruxs 31 and 32 (Toble 6) show the offect of a reduction in supersaburation, and the corresponding second order plota are shown In Figs. 4 and 5.

Resulis with Different Txpos of Seed Cryatalo.

The need exystals used in the experiments described so far were rogular rhombs, of avarage size $40 \mu(P 1 a t e 2 h)$. Some beroros of cayebals, however, were predoninately neodlemhaped, although a

Gxicilusetion of Eead Sylphotos

Experiment Number	Soed Suspension	Seed conc. ($\mathrm{mg} / \mathrm{ml}$)	$\begin{aligned} & \min _{1} \times 10^{4} \\ & \operatorname{moles} / y_{1} \end{aligned}$	Duration of initial part (ming.)	\% zeachlen followor.
9	E	8	1.7740	5	38
11	E	30	1.7740	3	23
13	E	96	1.7740	0	62
17	D	100	1.7740	15	33
18	D	100	1.77740	15	4
28	D	100	1.6780	9	30
31	G	100	1.7740	15	30
32	G	100	1.6250	5	22
14	A	90	1.77702	30	7
15	A	90.	1.7740	30	5
19	B	100	1.77740	30	85

TABED. 3

Cxyevalliagtion of Lead SuIphotes

Run So 2

Cell Bo $\quad \mathrm{F}=0.2548$

$$
I *=\left\{\left(m-m_{0}\right)^{-1}-\left(m_{i}-m_{0}\right)-1\right\} \times 10^{-2}
$$

Figure 2.

Thime	$\begin{array}{r} 10^{3} / \mathrm{R} \\ \text { ohms-1 } \end{array}$	$\begin{gathered} 10^{4} \mathrm{~m} \\ \text { moles } / 1_{0} \end{gathered}$	$\begin{aligned} & 10^{4}\left(\mathrm{~m}-\mathbb{m}_{0}\right) \\ & \text { moles } / 1_{0} \end{aligned}$	$\begin{gathered} 10^{\mathrm{m} / 4} /\left(\mathrm{m}-\mathrm{m}_{0}\right) \\ \mathrm{I}_{0} / \mathrm{mole} . \end{gathered}$	1./nole.
$\begin{gathered} \operatorname{Run} 90 \\ 0 \min \end{gathered}$	1.26030	1.7740	0.2574	0.3885	-
3	1.25834	1.7690	0.2524	0.3962	Or\%
15	I. 25683	1.7652	0.2486	0.4023	8.83
30	1.25530	1.7613	0.2447	0,4087	2,8
2 his 。	1.24770	1.74419	0.2253	0.4439	4.36
3.5	1.24215	1. 7278	0.2112	0.42735	96
7.5	1.23164	1.7010	0.1844	0.5423	$\therefore \%$
8.25	1.22965	1. 6959	0.1793	0.5577	16.92

Run 11.

0 min.	1.25855	1.7740	0.2574	0.3885
3	1.25734	1.7709	0.2543	0.3922
10	1.25632	1.7683	0.2517	0.3973
15	1.25581	1.7670	0.2504	0.3994
30	1.25479	1.7644	0.2478	0.4036
1 hx	1.25175	1.7567	0.2401	0.4165
1.5	1.24921	1.7502	0.2336	0.4251
2.5	1.24417	1.7374	0.229	0.4529
3.5	1.2394	1.7266	0.2080	0.4005

TADEESAS (cont.

Pun 13:

0 min.	1.25161	1.7740	0.2574	0.3885	
3	1.25073	1.7723	0.2557	0.3911	0.2
7	1.24972	1.7692	0.2526	0.3959	
15	1.24795	1.7647	0.2481	0.4031	
30	1.24467	1.7563	0.2397	0.4172	
1 hr	1.23914	1.7422	0.2256	0.4433	
1.5	1.23464	1.7315	0.2149	0.4652	
2	1.23065	1.7206	0.2040	0.4902	1
3.25	1.22173	1.6579	0.1813	0.5516	1

Coll B o $\quad F=0.2548$.

$$
I^{*}=\left\{\left(m-m_{0}\right)-1-\left(m_{i}-m_{0}\right)-1\right\} \times 10^{-2}
$$

Figure 3.

TABLE. 50. Grysicilisation of Lead Sulphate.

Time	$\begin{array}{r} 10^{3} / \mathrm{R} \\ \text { ohns-1 } \end{array}$	$\begin{gathered} 104 \mathrm{~m} \\ \text { moles } / 1 . \end{gathered}$	$\begin{gathered} 104\left(\mathrm{~m}-\mathrm{m}_{0}\right) \\ \mathrm{moles} / \mathrm{l}_{0} \end{gathered}$	$\begin{gathered} 10^{-4} /\left(\mathrm{m}-\mathrm{m}_{0}\right) \\ \mathrm{I}_{0} / \text { mole } \end{gathered}$	I\% 1./noles
Run 17\%	Coli		$F=0.2548$.		
0 min.	1. 26275	1.7740	0.2574	0.3885	\cdots
3	1.25702	1.7594	0.2428	0.4119	2.8
7	1.25627	1.7575	0.2409	0.4151	2.66
15	1.25474	3.7536	0.2370	0.4219	3.3
30	1.25291	1.74.89	0.2323	0.4305	420
1 hr 。	1.24966	1.7406	$0.224,0$	0.4464	58
2.5	1. 24.189	1.7208	0.2042	0.4897	11.12
4	1.23532	1.7041	0.1875	0.5333	14%
Run 18.	Cell	Bo	$F=0.254 .8$.		
$0 \min$	1.27270	1.77740	0.2574	0.3885	m
3	1.26747	1.7607	0.2441	0.4097	ma
9	1. 26619	3.7574	0.2408	0.4153	: 6
15	1.26491	1.7521.	0.2355	0.4246	-
30	1. 26276	1.74.87	0.2321	0.4308	4
1.25 hr .	1.25777	1.7365	0.2179	0.4 .589	\cdots
2	1. 25312	1.7241	0.2075	0.4819	5
3	1.24882	1.7132	0.1966	0.5086	18
4.75	1.23976	1.6901	0.1735	0.5764	1.8

TABLE. 5: (con to)
$\left.\begin{array}{ccccc}\text { Tine } & 10^{3} / \mathrm{R} & 10^{4} \mathrm{~m} & 10^{4}\left(\mathrm{~m}-\mathrm{m}_{0}\right) & 10^{-4} /\left(\mathrm{m}-\mathrm{m}_{0}\right)\end{array}\right]$ T\%

Kun 28:

Cell D. $\quad F=0.2481$.

$$
I^{*}=\left\{\left(m-m_{0}\right)^{-1}-\left(m_{i}-m_{0}\right)^{-1}\right\} \times 10^{-2}
$$

TABLE G G Gystalivation of Ipad subhate.
 ohmsi。 moles/lo moles/1。 1./role. Io/mole.

Run 31.

0 min.	1.21870	1.7740	0.2574	0.3885	-
1	1.21771	1.7714	0.2548	0.3925	0.10
3	1.21545	1.7655	0.2489	0.4018	1.33
9	1.21104	1.7546	0.2380	0.4202	3.17
15	1.20864	1.7477	0.2311	0.4327	4.42
30	1.20431	1.7364	0.2198	0.4550	6.66
1.5 hx	1.19246	1.7054	0.1888	0.5297	1.12
1.75	1.18957	1.6978	0.1812	0.5519	16.34

Run 32.

0 min.	1.12775	1.6250	0.1174	0.8518	
3	1.12680	1.6225	0.1149	0.8703	1.85
9	1.12572	1.6197	0.1121	0.8921	4.03
15	1.12495	1.6177	0.1101	0.9083	5.65
30	1.12379	1.6147	0.1071	0.9337	8.39
1. hr.	1.12049	1.6061	0.0985	1.0152	16.34
2.75	1.11316	1.5870	0.0794	1.2954	46.36

C911 Es $\quad F=0.2614$.

Figure 5

$$
\left.\begin{array}{ccccc}
\text { Time } & 10^{3} / \mathrm{R} & 10^{6} \mathrm{~m} & 10^{4}\left(\mathrm{~m}_{\mathrm{m}} \mathrm{~m}_{0}\right) & 10^{-4} /\left(\mathrm{m} \in \mathrm{~m}_{0}\right)
\end{array}\right] \quad \mathrm{T}
$$

Run 14.

0 min.	1.26950	1.7702	0.2536	0.3943	$=$
1.5	1.24882	1.7172	0.2006	0.4985	11.00
6	1.24126	1.6982	0.1816	0.5507	16.22
15	1.23680	1.6869	0.1703	0.5872	19.87
30	1.23201	1.6747	0.1581	0.6325	24.40
$2 \mathrm{hr9}$	1.21399	1.6288	0.1122	0.8913	50.28
3	1.20617	1.6088	0.0922	1.0846	69.61
405	1.19735	1.5864	0.0698	1.4327	104.42

Run 15.

TABTE. S. SGYStelligetion of Ieri SuIphater

$$
\begin{aligned}
& \text { Time } 10^{3} / \mathrm{R} \quad 10^{4} \mathrm{~m} \quad 10^{4}\left(\mathrm{~m}_{\mathrm{m}} \mathrm{~m}_{0}\right) \quad 10^{-4 / \sqrt{2}-\mathbb{I}_{0}} \quad \text { : } \\
& \text { ohms moles/l. moles/1. 1./mole. I. /nole. }
\end{aligned}
$$

Bun 19.

Cel1 B. $\quad F=0.2458$.

$$
I^{*}=\left\{\left(m-m_{0}\right)^{-1}-\left(m_{i}-m_{0}\right)-1\right\} \times 10^{-2}
$$

Figure 6.

Figure 7
generally larger than the rhombs, of average size 70 μ. When these crystals were used in crystallisation experiments, the initial growth surge was much more pronounced than with the rhombic type. This effect was denonstrated by seed suspensions A and B, and the results are shown in Tables 7 and 8 , and Figs. 6 and7. Due to the very steep initial slope of the plots of the rec iprocal of resistance against time, it was difficult to obtain an accurate value of $1 / R_{i}$ for Runa 14,15 and 19 (Fige 6)。

Crystalingation in the Fresence of Adsorbates.

The adsorbates studied in the present work were sodium dodecylsulphate, sodium pyrophosphate, sodium trimetaphosphate, sodium tetrametaphosphate and cetyl trimethyl amonium bromide. In all cases the adsorbate solution was added to the supersaturated solution, and allowed to reach carbon dioxide and temperature equilibrium before inoculation with seed crystals.

Anionic Additives.

The results are summarised in Tables 10 and 15 , and typical smooth curves obtained on plotting $1 / R$ against time are shown in Figs. $8=11$, Tables $11-14$. The rate of growth of lead sulphate decreased with increasing concentration of impurity, until finally a concentration ws meached at which orowh stopped completely.

A very low concentration of sodium tetrametaphosphate ($100^{-8} \mathrm{M}_{0}$) markedly retarded the rate of growth, with sodium trimetaphosphate, sodium pyrophosphate, and sodium dodecyl sulphate being increasingly less effective, in that order. A comparison of the concentrations of these ions necessary just to retard the growth rate, and to stop growth almost entirely is made in Table 9.

TABIT. 9.

Additive.	Conc. slowing growth (moles/.)	Conc.almost stopping growith (moles/1。)
Dodecylsulphate	3.8×10^{-5}	$8.3 \times 10^{-0 / 4}$
Pyrophosphate	3.6×10^{-6}	$2.0 \times 10^{0.5}$
Trimetaphosphate	$9.5 \times 10^{0-8}$	1.5×10^{006}
Tetrametaphosphate	6.7×10^{-8}	7.7×10^{-7}

The crystallisation process can be represented by the expression

$$
-\frac{d m}{d t}=\operatorname{ks}\left(m-m_{0}\right)^{n}
$$

where n is the order of the reaction, and can be evaluated from a plot of $\log \frac{d m}{d t}$ against $\log \left(m m m_{0}\right)$. For lead sulphate, this graph was composed of two intersecting straight lines, of gradient n_{1} and n_{2}, (Fig. 13) where n_{7} represents the initial growth surge and n_{2}
represents the major part of the growing In axpeximents in the presence of Ampurity, the duration of the fast part and the value of n_{1} were both shown to increase with increasing concentration of the foreign substance (Tables 10 and 1.5).

In experiments carried out with solutions prepared from deionised water, a very low concentrabion of adsorbate was found to affect n_{2} also. Instead of the main part of the growth following a second order rate l.aw, it was found that n_{2} also increased with increasing concentration of additive (Table IO).

When water prepared in a Bourdillon still was used, a much higher concentration of impurity could be added before any deviation from second order growth was observed in the main part of the reaction (Table 15).

A. DETONISED WATER.

1. Sodium Dodecrisulphate.

Concentrations of this adsorbate used reanged from $3.76 \times 10^{-5} \mathrm{M}$. which caused a noticeable slowing of the growth rate of lead sulphate, to $8.29 \times 10^{-0 /} \mathrm{M}_{0}$, at which no growh took place at all. The results are summarised in Table 10, and $1 / R$ ageinst time plots are shown in Fig。 8 (Table 11). Stnce logelog plots indicated the value of n_{2} to be greater then 2, ft was not possible to drav second order rate plots. Even at the highest concentration studied, the critical micelle concentration, 7.7×10^{-3} moles $/ \mathrm{I}$ 。(85) wes not exceeded.

2．Sodium Pyrophosphate．

Slightiy lower concentrations of this additive affected the crystallisation of lead sulphate； 3.41×10^{-6} moles $/ 1$ decreased the rate of growth，and $2.0 \times 10^{-5} \mathrm{moles} / \mathrm{I}$ 。 was sufficient to stop growth entirely．The results are shown in Table 12 ，and plots of I / R against time are presented in Fig．9．

3．Sodium Trimetophosphate．

This additive had a greater effect on the growth of lead sulphate than the two adsorbates discussed previously．A concentration of 9.45×10^{-8} moles $/$ 。 slowed the growth，while at a concentration of 1.49×10^{-6} ，moles／log orystallisation was stopped almost entirely． The results are sumnarised in Table 10，and time plots of $1 / R$ are show in Fig． 10 （Table 13）．

4．Sodium Totrametaphosphate：

This additive proved to be the most effective in retarding the growth of lead sulphate．A concentration of 7.0×10^{-8} moles／3．was sufficient to have a marked effect on the rate of crystallisation， while at 7.69×10^{-7} moles／1．e growth was extremely slow．A summery of the results is made in Table 10 ，and $1 / R$ g．gainst time plots are shown in Fig． 11 （Table I4）。

From Table 10 it can be seen that each adsorbate studied had
$\mathrm{TABLE}_{2} \mathrm{TO}_{2}$ Deiontsed Watra.
63.

Gystullisetion of Iead Surphate in the Presence of Adsorbetes.
Bxporiment Adsombate Soed Conco al Number conc. (mg/ml.)
n_{2}
Duration of $\underset{\substack{\text { Initial Surge } \\ \text { (mins) }}}{ }$

DodecyIsulphate: Seed Ho

43	\cdots	\cdots	18	2	12
4	3.76×10^{-5}	\cdots	21	3	15
50	5.66×10^{-4}	\cdots	$(100$	36	$60)$
51	6.56×10^{-4}	-	$(430$	53	$90)$
48	8.29×10^{-4}	\cdots	No growth.		

Pyrophosphate. Sead J.

68	\cdots	-	16	2	9
61	3.41×10^{-6}	4.8	35	6	15
60	8.50×10^{-6}	3.1	55	3	20
54	1.08×10^{-5}	5.6	$(73$	8	$30)$
55	2.15×10^{-5}	6.8	$(100$	10	$45)$

Trimetephosphate. Seed I.

75	-	3.0	7	2	15
87	9.45×10^{-8}	4.9	10	5	15
85	1.12×10^{-06}	8.9	23	4	30
86	1.49×10^{-6}	5.8	$(54$	14	$30)$

Tetrametaphosphote. Seed J.

68	\cdots	-	16	2	9
78	7.12×10^{-8}	2.9	14	4	30
65	2.76×10^{-7}	4.6	$(40$	19	$60)$
64	7.69×10^{-7}	4.5	$(80$	20	97

Gengs 21 . 66.

Grygellisation of Isad Sulphate in Presence of Dodecylsulphate.

mime	$\underset{\text { ohms }}{(1 / \mathrm{h}) \times 10^{3}}$	$\begin{gathered} \mathrm{m} \times 10^{4} \\ \mathrm{moles} / \mathrm{l} \end{gathered}$	$\begin{gathered} \left(\mathrm{m}_{\mathrm{m}}\right) \times 104 \\ \mathrm{moles} / \mathrm{I} \end{gathered}$

Run 43. $[D D S]=$ zero.

0 min.	1.21600	1.7740	0.2574
1.5	1.20962	1.7573	0.2407
6	1.20499	1.7452	0.2286
15	1.20013	1.7325	0.2159
30	1.19409	1.7167	0.2001
1 hr	1.18378	1.6897	0.1731
2	1.17168	1.6581	0.1415
3.25	1.16177	1.6322	0.1156

Run 4he $[\mathrm{DDS}]=3.76 \times 10^{-5} \mathrm{moles} / \mathrm{l}$.

0 min	1.23900	1.7740	0.2574
1.5	1.22909	1.7171	0.2005
6	1.22462	1.7054	0.1888
15	1.22156	1.6974	0.1808
30	1.21726	1.6875	0.1709
1 hr.	1.21211	1.6727	0.1561
2.25	1.20285	1.6485	0.1319
3	1.19397	1.6384	0.1218

Tino
$(1 / R) \times 10^{3}$
$\mathrm{m} \times 10^{4}$ moles/l.
$\left(m-m_{0}\right) \times 10^{4}$ moles/1.

Run 50. $[$ DDS $]=5,66 \times 10^{-4}$ moles $/ 1$.

0 min.	1.77470	1.7740	0.2574
3	1.74292	1.7693	0.2527
6	1.74239	1.7680	0.2514
15	1.74111	1.7646	0.2430
30	1.73968	1.7609	0.2443
1 hro	1.73818	1.7569	0.2403
3	1.73578	1.7507	0.2341
5.5	1.73399	1.7460	0.2294
22	1.72921	1.7335	0.2169

Run 51. $[\mathrm{DDS}]=6.56 \times 10^{-4} \mathrm{moles} / \mathrm{l}$.

0 min.	1.81825	1.7740	0.2574
3	1.81771	1.7726	0.2560
12	1.81763	1.7724	0.2558
30	1.81715	1.7711	0.2545
$1 . \mathrm{hr}$	1.81683	1.7703	0.2537
2	1.81620	1.7686	0.2520
3.5	1.81580	1.7676	0.2510
6	1.81580	1.7676	0.2510

Run 48. $[D D S]=8.29 \times 10^{4}$ rioles/1. No Grouth.
Coll E $F=0.2615$ 。

Figure 8.

$$
69
$$

TABLE. 72
Gystallisation of Leed Sulphate in Presence of Pyrophosphetoc

$$
I^{*}=\left\{\left(I I-m_{0}\right)^{-1}-\left(m_{i}-m_{0}\right)^{-1}\right\} \times 10^{-2}
$$

$681 \mathrm{E}_{\mathrm{o}}$

$$
F=0.2615
$$

IABET 12. (cont.)

Time	$\begin{gathered} (1 / E) \times 10^{3} \\ \text { ohns } \end{gathered}$	$\frac{\mathrm{m} \geq 10^{4}}{\mathrm{moles} / \mathrm{l}}$	$\begin{aligned} & \left(\mathrm{mam}_{\mathrm{m}}\right) \times 10^{k} \\ & \text { moles } / 2 \end{aligned}$

Run 61. $\left[\mathrm{P}_{2} \mathrm{O}_{7}^{4-}\right]=3.41 \times 10^{-6}$ moles $/ \mathrm{I}$.

0 min.	1.22695	1.7740	0.2574
1.5	1.22081	1.7579	0.24 .13
6	1.21751	1.7493	0.2327
15	1.21506	1.7429	0.2263
30	1.21202	1.7350	0.218%
1 hr	1.20781	1.7239	0.2073
2	1.20183	1.7083	0.1917
2.75	1.19863	1.6999	0.1833

Run 60 $\quad\left[\mathrm{P}_{2} \mathrm{o}_{7}^{4}\right]=8.50 \times 10^{-6} \mathrm{mosiss} / 1$.

0 min	1.23225	1.7740	0.2574
1.5	1.22859	1.7644	0.2478
6	1.22750	1.7616	0.2450
9	1.22680	1.7597	0.2431
30	1.22259	1.7490	0.2324
1 hro	1.21850	1.7380	0.2214
2	1.21515	1.7281	0.2115
2.5	1.21226	1.7217	0.2051
3	1.21030	1.7166	0.2000

TABTE. 12. (conto)

Time	$\begin{gathered} (1 / R) \times 10^{3} \\ \text { ohms }^{-1} \end{gathered}$	$\begin{gathered} \mathrm{m} \times 10^{4} \\ \mathrm{moles} / 1 . \end{gathered}$	$\begin{gathered} \left(\mathrm{m}-\mathrm{m}_{0}\right) \times 10^{4} \\ \text { moles } / \mathrm{I}_{0} \end{gathered}$
Run 54. $\left[\mathrm{P}_{2} \mathrm{O}_{7}^{-}-\right]=1.08 \times 10^{-5} \mathrm{moles} / \mathrm{I}$.			
0 min.	1.22250	1.77740	0.2574
1.5	2.21993	1.7673	0.2507
6	1.21865	1.7633	0.2467
15	1.21737	1.7606	0.2440
30	1.21604	1.7571	0.2405
1 hr	1.21427	1.7525	0.2359
2	1. 21197	1.7465	0.2299
3	1.21025	1.7420	0.2254,

Runi 55: $\left[\mathrm{P}_{2} \mathrm{O}_{7}^{1-}\right]=2.15 \times 10^{-5} \mathrm{moles} / 1$.

0 min.	1.22223	1.7740	0.2574
2	1.22205	1.7735	0.2569
6	1.22180	1.7729	0.2563
15	1.22141	1.7719	0.2553
30	1.22091	1.7705	0.2539
1 hr	1.22032	1.7690	0.2524
2	1.22022	1.7687	0.2521
2.5	1.22012	1.7685	0.2519

Co11 E $\quad F=0.2615$ 。

1/R scale:
$1 \mathrm{~cm} \equiv 5 \times 10^{-6} \mathrm{hmss}^{-1}$

Figure 9.

TABHES 3 3 73.

Cxystialijgation of Lead Sulphate in Prosence of Trimetaphosphote.

Time	$\begin{gathered} 10^{3} / R \\ \text { ohms }- \text { R } \end{gathered}$	$\begin{gathered} 10^{4} \mathrm{~m} \\ \text { moles } / \mathrm{l} \end{gathered}$	$\begin{gathered} 10^{4}(\text { namio }) \\ \text { moles } / 1_{0} \end{gathered}$	$\begin{gathered} 1004 /(\operatorname{mon}) \\ \left.1_{0} / \text { mole }\right) \end{gathered}$	$\stackrel{\text { I* }}{\text { 1./mole。 }}$
Run 75	[TrMP]	zoro.			
0 min.	1. 22800	1.7740	0.2574	0.3885	-
1.5	1. 21943	1.7516	0. 2350	0.4255	3.70
6	1.21545	1.741 .2	0.2246	0.4452	5.67
15	1.21025	1.7276	0.2110	0.4739	8.54
30	1.204,66	1.7130	0.1964	0.5092	12.07
1.75 hr	1.18689	1.6665	0.1499	0.6671	27.86
4	1. 17239	1,6286	0.1120	0.8929	50.44
8	1.16112	1.5991	0.0825	1.2121	82.36
12	1.15692	1.5881	0.0715	1. 3986	101.01
22	1.15088	1.5723	0.0557	1.7953	140.68

Run 87. $[$ TriMP $]=9.45 \times 10^{i 88}$ moles $/$.

0 min	1.23620	1.7740	0.2574	-	-
1.5	1.23427	1.7690	0.2524	-	-
6	1.23252	1.7644	0.2478	-	-
15	1.22936	1.7561	0.2395	-	-
30	1.22556	1.7462	0.2296	-	-
1.5 hr	1.2154 .5	1.7197	0.2031	-	-
3	1.21001	1.7055	0.1889	-	-

TABEP. 13. (cont.)

Tine
$\underset{\text { oluna }}{(1 / 2)} 10^{3}$

Run 85. $[\mathrm{TriMP}]=1.12 \times 10^{-6}$ moles $/ \mathrm{I}$.

0 min.	1.23935	1.7740	0.2574
1.5	1.23787	1.7701	0.2535
6	1.23597	1.7667	0.2501
15	1.23497	1.7625	0.2459
30	1.23277	1.7568	0.2402
$1.5 \mathrm{hrs}$.	1.22924	1.7476	0.2310
3	1.22254	1.7300	0.2134
5	1.21820	1.7187	0.2021
8.25	1.21079	1.6993	0.1827
9.75	1.20850	1.6933	0.1767

Run 86。 $[T r i M P]=1.49 \times 10^{-6}$ moles $/ 1$.

0 min.	1.24 .100	1.7740	0.2574
1.5	1.24038	1.7724	0.2558
6	1.23938	1.7698	0.2532
15	1.23827	1.7669	0.2503
30	1.23702	1.7636	0.2470
1.75 hrs	1.23372	1.7550	0.2384
3	1.23078	1.74 .73	0.2307
5	1.22983	1.7448	0.2282

Figure 10

gabenn

Cyystalifetion of Lead Sulphaie in Presence of Tetremetaphosphate。
Time
$(1 / R) \times 10^{3}$ ohins ${ }^{-1}$
m $\times 104$ moles／1．
$(\mathrm{m}=\mathrm{InO}) \times 1.0^{4}$ moles／l。

Run 78．$[\mathrm{TMP}]=7.12 \times 10^{-8} \mathrm{moles} / \mathrm{l}$ 。

0 min	1.22760	1.7740	0.2574
1.5	1.22017	1.7546	0.2380
6	1.21579	1.7431	0.2265
15	1.21280	1.7353	0.2187
30	1.20991	1.7278	0.2112
$1 \mathrm{hr}_{0}$	1.20552	1.7163	0.1997
2	1.19931	1.7000	0.1834
4	1.19164	1.6800	0.1634
9	1.18083	1.6517	0.1351
22.25	1.16824	1.6190	0.1024

Run 65．［TMP］$=2.76 \times 10^{-7} \mathrm{moles} / 1$.

0 min．	1.23270	1.7740	0.2574
1.5	1.22556	1.7553	0.2387
6	1.22284	1.7482	0.2316
15	1.22156	1.7449	0.2283
30	1.22096	1.7433	0.2267
$1 . \mathrm{hr}$.	1.21564	1.7294	0.2128
2	1.21324	1.7231	0.2065
2.9	1.20781	1.7089	0.1923

2ABLE, 2 2 (cosio)

Tine	$\begin{gathered} (1 / \mathrm{R}) \mathrm{z} 10^{3} \\ \text { Ohago } \end{gathered}$	$\begin{aligned} & m \times 104 \\ & m o l e s / 1 \end{aligned}$	

Run 64s. $[\mathrm{IMP}]=7.67 \times 10^{-7 /} \mathrm{moles} / 1$.

0 min.	1.22820	1.7740	0.2574
1.5	1.22541	1.7667	0.2501
6	1.22363	1.7620	0.2454
15	1.22136	1.7561	0.2395
30	1.21934	1.7508	0.2342
1 hr.	1.21717	1.7452	0.2286
2	1.21515	1.7399	0.2233
4	1.21275	1.7336	0.2170
6	1.21113	1.7294	0.2125
8.25	1.21000	1.7264	0.2098
20.25	1.7134	0.1968	

Ce11 E. $\quad F=0.2615$ 。

Figure 11.
the effect of causing an increase in the values of n_{1} and n_{2} and in the duration of the initial growth surge. In experinents with very high concentrations of adsorbate, little sigaificance can be attached to the large values found for n_{1} and n_{2}, since the growich was extremely slow, and accurate gradients difficult to obtain.

Since impurities present in water prepared by ion-exchange have a definite effect on the crystallisation process, all subsequent experiments were mede using water prepared in a Bourdillon still.

B. WATER PUEIFTED BI DISTITLATTON.

Experiments were carried out with three of the anionie adsorbatos, sodium dodecylsulphate, sodium pyrophosphete, and sodium tetrametam phosphate, for which all the solutions and seed crystals were prepared With distilled water. The results are sumarised in Table 15, and time plots of $1 / R$ are show in Figs. 12 and 14 . In the presence of a low concentration of each of the additives, lead sulphate crysbailis. ation followed a second order rate equation, although the rate of growth was retarded. Second order plots are shown in Fig. 15 (Tables 17-19).

The presence of the impurity caused an increase in the duration of the initial growth surge, and in the value of n_{1}. Run 106, with a tetrametaphosphate concentration of $6.66 \times 10^{-8} \mathrm{moles} / 1_{0}$, which had no initial fast part was the only exception to this (Table 19).

As was found previously with deloni sed water, the value of n_{1}, and the duration of the growth surge increased with increasing concentration of impurity (Table 15)。 With sodium dodecylsulphate and sodium tetrametaphosphate, a concentration was reached at which the kinetjes of the cecond part of the growth followed an order greater than two. This will be discussed later.

Cationic Additive.

Cstyl tamethyl amoniun bromide was the cationic additive studied, and only distilled weter was used in these experimentis. Concentrations ranging from 9.75×10^{-7} moles $/ 1_{\text {。 to }} 1.08 \times 10^{-4}$ moles $/ 1$. had little effect on the rate of crystallisation. If anything, this adsorbste tended to fncrease the growth rate slightly. The results are summarised in Table 20 below, and time plots of $1 / R$ are show in Fig. 16 (Table 21). In Run 116, a slightly laxgex amount of seed cirystals was added, which may account for the small acceleration.

At both concentrations, on infitial growth surge was observed, and the value of n_{1} increased with adsombate concentration. At the lower cetyl trimethyl amonium bromide concentration, n_{2} was two, but at the higher concentration, n_{2} had risen to three, fonic strength corrections having been made.

The solubility of lead bromide is 0.0264 moles $/ 1$. (80), and the solubility product is $1.394 \times 10^{-3} \mathrm{moles}^{3} / \mathrm{I}^{3}$. The value of

TAPTIS. 75.
Crystellisation of Lead Sulphate in Prosence of Adsorbatess
Distillod Hater.

Experinent Number	$\left[\begin{array}{c} \text { Acsorbate } \\ \text { moles } / 1 \end{array}\right]$	Seed conc. $\mathrm{mg} / \mathrm{ml}$ 。	n_{1}	n_{2}	Duration of Init. Suxge. (mins.)
100	-	2.83	-	2	\cdots

Dodecylsulohace.

107	3.39×10^{-5}	2.98	8	2	45
111	2.19×10^{-4}	3.28	13	6	105

Pyrophosphate.

108	2.86×10^{-06}	4.38	29	2	60
110	9.41×10^{-6}	1.34	14	2	75

Tetremetaphosphate

6.66×10^{-8}	2.70	-	2	-
1.23×10^{-7}	3.80	7	2	60
1.64×10^{-6}	1.60	$(50$	28	$15)$

TABLEE 16

Cyystallisation of Lead Sulphate．
Distilled Water．

TIme $\quad 10^{3} / \mathrm{R} \quad 10^{4} \mathrm{~m} \quad 104\left(m-m_{0}\right) \quad 10^{-4} /\left(m-m_{0}\right) \quad \quad$ 米 ohms－1 moles／1。 moles／1。 $I_{0} /$ mole。 $I_{0} /$ mole。

Run 100.

0 min．	1.23395	1.7740	0.2574	0.3885	0
1.5	1.23272	1.7708	0.2542	0.3934	0.49
6	1.23038	1.7647	0.2481	0.4031	1.48
15	1.22725	1.7565	0.2399	0.4168	2.83
30	1.22462	1.77496	0.2330	0.4292	4.077
1 hr.	1.22096	1.7400	0.2234	0.4476	5.91
2	1.21407	1.7220	0.2054	0.4869	9.84
4	1.20489	1.6980	0.1814	0.5513	16.28
6	1.19800	1.6800	0.1634	0.6120	22.35
10	1.18670	1.6504	0.1338	0.7474	35.39
23	1.16980	1.6062	0.0896	1.1161	72.76

Cell $E \quad T=0.2615$ 。

$$
I *=\left\{\left(m-m_{0}\right)^{-1}-\left(m_{1}-m_{0}\right)^{-1}\right\} \times 10^{-2}
$$

83

DStined Hater.

Time	$\begin{aligned} & 10^{3} / R \\ & \text { ohms }-1 \end{aligned}$	$\frac{104}{\mathrm{~m}} \mathrm{moles} / 1$	$\begin{gathered} 104\left(\text { (120 }-\mathbb{m}_{0}\right) \\ \text { moles } / 1 . \end{gathered}$	$\begin{gathered} 10^{-4} /\left(\mathrm{m}-\mathrm{m}_{0}\right) \\ \mathrm{I}_{0} / \text { mole. } \end{gathered}$	$\text { I. } \mathrm{Im}_{0}$
Rup 107.	$[\mathrm{DDS}]=3.39 \times 10^{-5} \mathrm{moles} / 1$.			Coll E_{0}	
0 min.	1.31580	1.7740	0.2574	0.3885	-
6	1. 297777	1.7268	0.2102	0.4757	8.72
15	1. 29318	1.7148.	0.1982	0.5045	11.60
30	1.29003	1.7066	0.1900	0.5263	13.78
I hro	I. 28532	1.6943	0.1777	0.5627	17\%42
3	1. 27222	1.6600	0.1434	0.6974	30.89
6	1. 26035	1.6290	0.1124	0.8897	50.12
10.5	1.24961	1. 6009	0.0843	1.1862	79.77
14	$1.24 \% 00$	1. 2862	0.0695	1.4388	105.03
24.25	1.23372	1.5593	0.0427	2.3419	195.34.

Run 111: [DDS] $=2.19 \times 10^{-1 / 4} \mathrm{moles} / 1$ Cell Es

0 min.	1.30950	1.8435	0.3269	-	-
9	1.30063	1.8203	0.3037	-	-
15	1.29994	1.8185	0.3019	-	-
30	1.29830	1.8142	0.2976	-	-
11 hr	1.29624	1.8088	0.2922	-	-
2.5	1.29192	1.7975	0.2809	-	-
5	1.28615	1.7828	0.2662	-	-
9.75	1.27766	1.7602	0.2436	-	-
2.25	1.26127	1.717%	0.2008	-	-

 Digilited Hatex.

Run 108.	$\left[\mathrm{P}_{2} \mathrm{O}^{4} \mathrm{j}^{-1}\right]=2.86 \times 10^{-6}$ moles $/ 1$.			Call E	
0 min .	1. 25045	1.77420	0.2574	0.3885	-
6	1.24335	1.7554	0.2388	0.4188	3.03
15	1.24 .234	1.7528	0.2362	0.4.234	3.49
30	1.24 .124	1.74499	0.2333	0.4286	4.07
1 hro	1.23958	1.74 .56	0.2290	0.4367	4.82
3	1.23522	2.7342	0.2176	0.4596	7.11
5	1.23138	1.724 .1	0.2075	0.4819	9.3\%
8	1. 226880	1.7121	0.1955	0.5115	12.30
12	1.22121	1.6975	0.1809	0.5528	16.43
27	2.20796	1.6629	0.1/463	0.6835	29.50

Gus 110. $\left[\mathrm{P}_{2} \mathrm{O}_{7}^{4-}\right]=9.41 \times 10^{-6} \mathrm{moles} / \mathrm{A}$. Cell E.

0 min.	1.20775	1.7740	0.2574	0.3885	-
6	1.20611	1.7697	0.2531	0.3951	0.66
15	1.20557	1.7683	0.2517	0.3973	0.88
30	1.20518	1.7673	0.2507	0.3989	1.04
1.5 hr .1 .20434	1.7651	0.2485	0.4024	1.39	
3	1.20377	1.7636	0.2470	0.4049	1.64
5.5	1.20207	1.7591	0.2425	0.4124	2.39
3	1.20052	1.7551	0.2385	0.4193	3.08
25.05	1.39602	1.7433	0.2267	0.411	

 Distilled Water.

$10^{-4} /\left(\operatorname{mom}_{0}\right)$ 1. Hole 。
$\operatorname{Enn} 1040 \quad[\mathrm{MM}]=1.23 \times 10^{-7}$ moles $/ 1$.

0 min.	1.25865	1.7740	0.2574	0.3885	
6	1.25098	1.7539	0.2373	0.4214	3.29
15	1.24992	1.7512	0.2346	0.4263	3.78
30	1.24809	1.7464	0.2298	0.4352	4.67
1 hr	1.24 .511	1.7386	0.2220	0.4505	6.20
2.5	1.23837	1.7210	0.2044	0.4892	10.07
5.5	1.22785	1.6935	0.1769	0.5653	17.68
11	1.21427	1.6579	0.1413	0.7077	31.92
24	1.19617	1.6106	0.0940	1.0638	67.53

Run 106. $[\mathrm{TMP}]=6.66 \times 10^{-8}$ moles $/ \mathrm{I}$ 。

0 min.	1.24080	1.7740	0.2574	0.3885	w
6	1.23482	1.7584	0.2418	0.4136	2.51
15	1.23362	1.7552	0.2386	0.4191	3.06
30	1.23202	1.7512	0.2346	0.4263	3.78
1 hr.	1.22973	1.7450	0.2284	0.4378	4.93
2	1.22462	1.7317	0.2151	0.4649	7.64.
4	1.21692	1.7115	0.1949	0.5131	12.46
8	1.20547	1.6816	0.1650	0.6061	21.76
14.25	1.19193	1.6462	0.1296	0.7716	38.31
25	1.17822	1.6103	0.0937	1.0572	167.87

TABLE. 19. (cont.)

Time	$(1 / R) \times 10^{3}$ ohms-1	m $\times 10^{4}$ moles $/ 1$.	$($ m-mom $) \times 10^{4}$ moles $/ 1$.

Run 103. $[T M P]=1.64 \times 10^{-6}$ moles $/ 1$.

0 min	1.25600	1.7740	0.2574
1.5	1.25428	1.7695	0.2529
6	1.25250	1.7648	0.2482
15	1.25199	1.7635	0.2469
30	1.25139	1.7619	0.24 .53
1 hr	1.25037	1.7593	0.2427
2	1.24921	1.7562	0.2396
4	1.24759	1.7520	0.2354
6	1.24678	1.7499	0.2333
9	1.24486	1.7449	0.2283
23.25	1.7419	0.2251	

[^0]

Figure 12.

Figure 13.

Figure 14.

Figure 15.
$\left[\mathrm{Pb}^{2}\right]\left[\mathrm{Bx}^{-}\right]^{2}$ in these experiments was 2.07×10^{-12} moles $3^{3} / 1^{3}$., so cxystallisation of this salt camnot be the explanation of the third order kineties found.

Since cetyl trimethyl ammonium bromide had such a samll effect on the rate of growth of lead sulphate, no other cationic additives were studied.

TABLE. 20.
Cxystelligation of Lead Sulphate in Presence of
Cetyl Trimethyl Ammonium Bromide.

Experiment Number	Adsorbate conco moles $/ 1$.	Seed conc. (mg/ml.)	n_{1}	n_{2}Duration of Init. surge. (minso)	
100	-	2.83	-	2	-
116	9.75×10^{-7}	3.60	6	2	15
119	1.08×10^{-4}	2.28	12	3	15

Col1 E_{3}

$$
F=0.2615 .
$$

Cxystallisation at NoneEquivalont Ionjc Concentrations.

The experiments at non-equivalent ionic concentrations are recorded in Table 22. Smooth curves of $1 / \mathrm{R}$ against time are showa in Figs. 17 and 18 , and the reaction was usually followed for 12 - 24 hours, corresponding to about 60% of the total growth.

The results were iaterpreted in terms of the amount, Δ, of lead sulphate to be precipitated before equilibrium was reached. The instantaneous concentrations are given by the relationships

$$
\left[\mathrm{Pb}_{\mathrm{O}}^{2+}\right]=\left[\mathrm{Pb}^{2+}\right]-\Delta \quad \text { and }\left[\mathrm{SO}_{4}^{2-}\right]=\left[\mathrm{SO}_{4}^{2-}\right]-\Delta,
$$

where $\left[\mathrm{Pb}_{\mathrm{e}}^{2+}\right]$ and $\left[\mathrm{SO}_{4}^{2-}\right]$ are the equilibrium ionic concentrations which satisfy the solubillty product relationship

$$
\left[\mathrm{Pb}_{\theta}^{2+}\right]\left[\mathrm{SO}_{4 e}^{2 \infty}\right]=\mathrm{K}_{\mathrm{s}}=1.7164 \times 10^{-8} \mathrm{moles} \mathrm{~s}^{2} / 1^{2}
$$

at $25^{\circ} \mathrm{C}$ 。 Therefore,

$$
\left(\left[\mathrm{Pb}_{\theta}^{2+}\right]-\Delta\right)\left(\left[\mathrm{So}_{4-}^{2-}\right]-\Delta\right)=\mathbb{K}_{\mathrm{s}} .
$$

The initial value of Δ can be found since the initial values of $\left[\mathrm{Pb}^{2+}\right]$ and $\left[\mathrm{SO}_{4}^{2-}\right]$ are kowa experimentally, and the change in Δ can be calculated from the measured change in resistance.

The rate of crystallisation may be writiten

$$
-\frac{d m}{d t}=k \operatorname{s}(\Delta)^{n}
$$

where n is nomally 2.
When this method of analysis was applied to the lead sulphate resultis, in values as high as ten for $\mathrm{Pb} / \mathrm{SO}_{4}=1 / 4$ and $4 /$ I were obtained. In 617 cases the gronth was alower than at equivalent ionic
concentrations, but aince the n values were diffexent, exeopt th the $4 / 1$ and $1 / 4$ ratios, only these are strictly comparable. An excess of lead ions caused a greater retardation of the growth rate then an excess of sulphate ions.

Coty Iximethy Ammoniun Bromides

Time $10^{3} / \mathrm{R} \quad 10^{4} \mathrm{~m} \quad 10^{4}\left(\mathrm{~m}_{\mathrm{m}} \mathrm{m}_{0}\right) \quad 10^{-4} /\left(\mathrm{m}-\mathrm{m}_{0}\right) \quad$ I* ohms ${ }^{-1}$ moles $/ 1$ moles $/ 1.1$ 1. mole。 $1 . / \mathrm{mole}$.

Run 116.	$[\mathrm{CrB}]=9.75 \times 10^{-7} \mathrm{moles} / \mathrm{l}$.			Coll E.	
0 min.	1.25780	1.7740	0.2574	0.3885	-
6	1.23482	1.7139	0.1973	0.5068	11.83
15	2.23088	1.7036	0.1870	0.5348	14.63
30	1. 22740	1.6945	0.1779	0.5621	17.36
I. hro	1.22190	1.06801	0.1635	0.6116	22.31
3	1.20918	1.64 .68	0.1302	0.7680	37.95
7	1.19771	1.6168	0.1002	0.9980	60.95
12	1.19010	1.5969	0.0803	1.24.53	85.68
36	1.18216	1.5762	0.0596	1.6779	128.94

Run 119. $[\mathrm{CrB}]=1.08 \times 10^{-4}$ moles $/ 1 . \quad$ Cell E.

0 min.	1.40150	1.7740	0.2467	-	-
6	1.37476	1.7041	0.1768	-	-
15	1.36919	1.6895	0.1622	-	-
30	1.36409	1.6762	0.1491	-	-
1 hr.	1.35684	1.6572	0.1299	-	-
2	1.34853	1.6355	0.1082	-	-
4	1.33979	1.6126	0.0853	-	-
6	1.33590	1.6024	0.0751	-	-
11	1.33100	1.5896	0.0623	-	-

1/R scale:

$$
1 \mathrm{~cm} \equiv 5 \times 10^{-5} \mathrm{hms}^{-1}
$$

Figure 16

Tine	$\underset{\text { ohnsm }}{10^{3} / R}$	$\underset{\substack{\Delta \\ \operatorname{moles} \\ \hline 101}}{4}$	Tine	$\begin{gathered} 10^{3} / R \\ \text { ohm } \mathrm{s}^{\mathrm{om}} \end{gathered}$	$\frac{A}{\operatorname{a} x} 10^{4}$
Hun 327	$\mathrm{Pb} / \mathrm{SO}_{4}=1 / 2$.		Rup 12 L		
0 min 。	1.31730	0.4291	0 min 。	1.37440	0.4291
6	1.30073	0.3858	6	1.35884	0．3884
15	1．29503	0.3709	15	1.35190	0.3703
30	1． 29019	0.3577	30	1．34467	0.3513
1 hr 。	1． 28255	0.3377	1 hr 。	1.33552	0.3274
2	1．27341	0.3142	3	1.31797	0.281 .5
3.5	1．26542	0.2934	5.5	1.30919	0.2586
7	1.25744	0.2726	7	1.30801	0.2555
12	1.25113	0.2560	8	1.30673	0.2521
Run 123．	$\mathrm{Pb} / \mathrm{SO}_{4}=4 / 1$		Run 126．	$\mathrm{Pb} / \mathrm{SO}_{4}=1 / 4$	
0 min．	1.62625	0.3503	0 min ．	1.53445	0.3503
6	1.61864	0.3304	6	1． 52355	0.3218
15	1.61597	0.3234	15	1.51871	0.3091
30	1.61276	0.3150	30	1.51478	0.2989
1 hr ．	1.60866	0.3043	1． hr 。	1.50916	0，2842
2	1.60295	0.2894	2	1.50288	0.2677
4.25	1.59619	0.2717	4	1.49656	0.252
7.5	1.59188	0.2604	6	1.49407	0.2447
23.5	1.58555	－0．2439	22． 25	1.48613	0.2239

Go1 Bo

1/R scale:
$1 \mathrm{~cm} \equiv 5 \times 10^{-6} \mathrm{oh} \mathrm{m}^{-1}$

Figure 17.

Figure 18.
99.

PART 1b。

Crystallisation of Barium Sulphate from

Supersaturated Aqueous Solutions

 at Various Temperatures.
PARP 1b.

INTRODUCITON.

The precipitation of barium sulphate, because of its imporciance in gravimetric anolysis, has been studied extensively. and many mechanisms of nucleation and growth have been advenced (9-12, $26,29,30,32,35,36$) An account of the main theories has bean gives on pages 1-10.

Electron microscope studjes of basium gulphate crystals by Otani (86) revealed that there are two types of crystal shapes formed above and below a concentration of 5×10^{-4} moles/1. In the more dilute solutions reguiar orthorhombic platelets were produced, while dendritic crystals resulted in the more concentreted region. Suito and Taliyama (87) have also shown that the aging of barium sulphate takes place by Ostwald ripening, with the largex paxticles growing at the expense of the smaller ones.

Fischer and Rheinehanmer (88) obsewved that the size and numbar of barium sulphate crystals produced depended on the age of the barium chloride soluzion used in their preparation. an old solution of barium chloride gave fewer and larger crystals than a fresh solution. If a frosh solution was fillered, however, it behaved as an old one, suggesting that the number of nuclei decreased on aging.

Walton and Walden (89) found that bariun sulphate crystals
occluded many cationss including $\mathrm{NH}_{\mathrm{L}}^{+}, \mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Li}^{+}$in the crystal lattice, and established that the comprecipitated lons fomed a substitutional solid solution. An electron microscopical study of colloidal baxium sulphate by Dawson and Mçaffney (90) revealed pores of diameter $15-70$ A in the crystal surface, in which occlusions could be made.

Pert Ib is a report on the crystallisation of barium sulphate Prom its supersaturated solution. Nancollas and Purdie (58) have established that the growth follows a second order rate law, from solutions of equivalent and nonequivalent ionic concentrations at $25^{\circ} \mathrm{G}$., and the study has now been axtended to tomperatures between 15 and $45^{\circ} \mathrm{C}$ 。 In a similar study of silver chloride crystallisation between 15 and $35^{\circ} \mathrm{C}$., Davies and Nencollas (38) reported that the rate constant was unaltered by the change in temperature, indicating an activation energy of zero for the process. In the present work, however, barium sulphate has been found to have a positive energy of activation for growtho

EXPERTMENTAL

Proparation of Solutions.

Supersaturated solutions were prepared by mixing dilute solutions of barium chloride and sodium sulphate in situ. The apparatus and experimental technique used heve already been described in detail In Paxt Ia. With berium sulphate, the cell was washed between experimenta with 1% hydrochloric acid, in addition to the normal washing procedure. In experiments at 35° and $45^{\circ} \mathrm{C}$. , the cap of the cell was brought to the same temperature to minimise condensation.

Preparation of Seed Cryetals.

Due to the low temperature coefficient of solubility, it was not possible to prepare barium sulphate crystals by recrystallisation. Accordingly, the crystals were prepared by simultaneous dropwise addition of oquimolar portions of barium chloride and sulphuric acid, to water at $90^{\circ} \mathrm{C}$. A typical preparation involved addition of 100 ml . portions of 0.1 Molar solutions, to 200 ml of water in an asbestos-lagged beaker, on a hotplate. A magnetic stirring device was employed, and the solution was agitated throughout the addition, end for about $2 / 4$ hours thereafter. The crystals were maintained at $90^{\circ} \mathrm{C}$. for about six hours after the additions were complete, since it has been observed that crystals aged at the higher temperature were more perfectiy formed (88). The cryetels were
washed by decantation twenty times with distilled and conductivity water，and stored in pyrex bottles at $25^{\circ} \mathrm{C}$ ．The seed crystals were uniform rhombohedra，and the suspensions prepared were

Seed suspension A，average size 9.5μ ．
Seed suspension B，average size 5.0μ ．

Determination of Solubility．

Solubility at $25^{\circ} \mathrm{C}$.

Literature values for the solubility of barium sulphate at $25^{\circ} \mathrm{C}$ 。 range from 0.955×10^{-5} moles $/ 1$ ．（91）to $1.403 \times 10^{-5} \mathrm{moles} / \mathrm{l}$ 。（92）． The value found in this work，by allowing dissolution experiments to proceed to equilibrium was 1.024×10^{-5} moles $/ 1$ ．，which agrees with the value of Rosseinsky（93），（1．039 $\times 10^{-5}$ moles $/ 1$ 。）and that of Nancollas and Purdie（57），（1．040 $\times 10^{-5}$ moles／1．）．The themodynamic solubjlity product was

$$
\mathrm{K}=\left[\mathrm{Be}^{2+}\right]\left[\mathrm{SO}_{4}^{2 m}\right] \mathrm{f}_{2}^{2}=0.9880 \times 10^{-10} \mathrm{moles}{ }^{2} / 1^{2}
$$

f_{2} being evaluated using the Davies equation（page 4I）。

Solubility at Other Temperatures．

No values at $15^{\circ}, 35^{\circ}$ ，or $45^{\circ} \mathrm{C}$ ．are quoted in the literature， but these could be interpolated from data reported for temperatures from $0^{\circ}-100^{\circ} \mathrm{C}$ ．（80）．A plot of solubility against temperature resulted in a fairly good straight line，which enabled an estimate
to be made of the solubility at intermediate temperatures. In addition, measurements were made at each temperature, by allowing dissolution experiments to proceed to equilibrium. Agreement with the interpolated values at $15^{\circ}, 35^{\circ}$, and $45^{\circ} \mathrm{C}$. was good, as cen be seen from Table 23.

TABLE 23.
Solubility of Barium Sulphate at Various Tenperatures.

Temperature ($\left.{ }^{\circ} \mathrm{C}.\right)$	```Interpolated So (moles/1.)```	$\begin{gathered} \text { Experimental } S_{0} \\ \left(\text { moles } / 1_{0}\right) \end{gathered}$
15°	0.93×10^{-5}	0.904×10^{-5}
35°	1.22×10^{-5}	1.196×10^{-5}
45°	1.30×10^{-5}	1.389×10^{005}
	-	

The corresponding thermodynamic solubility products were
at $15^{\circ} \mathrm{C}$. $\quad K=0.7725 \times 10^{-10}$ moles $\mathrm{s}^{2} / 1^{2}$,
at $35^{\circ} \mathrm{C}$. $\quad K=1.3401 \times 10^{-10}$ moles $2 / 1^{2}$., at $45^{\circ} \mathrm{C}_{\text {o }} \quad \mathrm{K}=1.7948 \times 10^{-10} \mathrm{~mole} \mathrm{~s}^{2} / 1^{2}$ 。,

Where I_{2} wes again evaluated using the Davies equation, with the appropriate Debyemuckel constants, $A=0.5002$ ai $15^{\circ} \mathrm{C}$., 0.5190 at $35^{\circ} \mathrm{C}$. and 0.5296 at $4.5^{\circ} \mathrm{C}$. (94) 。

RESULTS．

Following on the work of Nancollas and Purdie（57）who established that baxium sulphate crystallised from its supersaturated solution according to a second order rate law at $25^{\circ} \mathrm{C}$ 。 。 the study has now been extended to determine the kinetics of growth at other temperatures．Experiments have been carried out at 15° ， $25^{\circ}, 35^{\circ}$ ，and $45^{\circ} \mathrm{O}$ ，and an estimate of the heat of reaction made． Ionic Mobilities and Equivalent Conductance．

Mobilities of sulphate and barium ions at $15^{\circ}, 35^{\circ}$ ，and $45^{\circ} \mathrm{C}$ 。， were obtained by interpolation of existing data（94）．Values used are eiven in Table 24.

TABLE 24．

Mobilities of Barium and Sulphate Ions．
Temperature（ $\left.{ }^{\circ} \mathrm{C}.\right) \quad$ Sulphate Barium

15
63.0
52.0

25
80.00
63.63

35
45
95.0
75.0
$113.5 \quad 95.0$

The Onsager equations at these temperatures were（95）

$$
\begin{array}{lll}
1=10-\left(1.78961^{\circ}+186.12\right) \sqrt{2 m} \text { at } 15^{\circ} \mathrm{C},, & \left(1^{\circ}=115.0\right) \\
1=10-\left(1.82161^{\circ}+239.44\right) \sqrt{2 m} \text { at } 25^{\circ} \mathrm{C} ., & \left(1^{0}=143.63\right) \\
1=10-\left(1.85761^{\circ}+299.24\right) \sqrt{2 m} \text { at } 35^{\circ} \mathrm{C} ., & \left(1^{0}=170.0\right) \\
1=10-\left(1.89921^{\circ}+363.96\right) \sqrt{2 m} \text { at } 45^{\circ} \mathrm{C} ., & \left(1^{0}=208.5\right)
\end{array}
$$

where m is expressed in g．mols．／1．
Experimental and calculated conductivities of the solutions agreed to within 0.5%（page 43）．

With the small concentrations involved in crystallisation，the value of 1 was taken to be constant， 112.61 at $15^{\circ} \mathrm{C}$ 。； 140.45 at $25^{\circ} \mathrm{C}$ ．$; 165.62$ at $35^{\circ} \mathrm{C}$ ． ；and 202.79 at $45^{\circ} \mathrm{C}$ ．Activity coefficients were assumed to be unity at the low ionic strengths involved．The concentration change during growth was calculated as described on page 44.

Coll Constant．

Vaxiation of the cell constant was considered to be negliglble， since the coefficients of expansion of platinum and pyrex glass are so small．This has been illustrated by Gunning and Gordon（96）， who showed that the total error involved between 15° and $35^{\circ} \mathrm{C}$ 。was only 0．005\％。

Cystalisetion Experiments at $15^{\circ}, 25^{\circ}, 35^{\circ}$, and $45^{\circ} \mathrm{C}_{8}$

The results are summarised in Table 25 and plots of $1 / R$ against time are shown in Fig. 19. The data are plotted according to a second order integrated equation in Fig. 20 (Tables 26-29). It is seen that the growth follows a second order rate law and the rate constents at each temperature are given in Table 25.

The integrated form of the Arrhenius equation is

$$
\ln \mathrm{k}=\operatorname{In} A-E / R T,
$$

and $\log _{10} k$ is plotied against (Temperature) ${ }^{-1}$ in Fig. 21. The best straight line through the points was drawn by the method of least squares, giving an energy of activation of $8 \mathrm{~K} . \mathrm{Cals} . / \mathrm{mole}$.

SABLE 25

Cxystallisgition of Baxium Sulphate.

Experiment Number	Temperature $\left({ }^{\circ} \mathrm{C}_{0}\right)$	Seed conc. $(\mathrm{mg} / \mathrm{ml})$.	$m_{1} \times 10^{5}$ $($ moles/l. $)$	Rate Gonst。 $(1 . /$ mole $/ \mathrm{min})$
7	15	0.06	1.860	125
8	15	0.02	1.860	113
1	25	2.01	2.0505	167
5	35	0.73	2.460	257
3	45	2.59	2.760	450
4	45	2.10	2.760	450

TABEP. 26. Cxrstallisetion of Bariun Sulphate at $15^{\circ} \mathrm{C}$.
109.

Run 7.

0 min.	1.22925	1.8600	0.9377	1.0664	-
5	1.22669	1.8516	0.9293	1.0761	0.97
15	1.22349	1.8411	0.9188	1.0884	2.20
30	1.21570	1.8156	0.8933	1.1194	5.30
1 hr	1.20698	1.7871	0.8648	1.1563	8.99
2.5	1.18305	1.7087	0.7864	1.2716	20.52
5.5	1.14985	1.5999	0.6776	1.4758	40.94
10.25	1.104 .51	1.4517	0.5294	1.8889	82.25
24	1.02155	1.1797	0.2574	3.8850	281.86

Run 8 g

0 min.	1.05140	1.8600	0.9377	1.0664	$=$
5	1.04999	1.8554	0.9331	1.0717	0.53
15	1.04 .703	1.8457	0.9234	1.0830	1.66
30	1.04155	1.8277	0.9054	1.1045	3.81
1 hr.	1.03318	1.8003	0.8780	1.1390	7.26
2	1.02073	1.7595	0.8372	1.1945	12.81
4	1.00028	1.6837	0.7614	1.3134	24.70
7	0.96751	1.5852	0.6629	1.5085	44.21
24	0.92504	1.4461	0.4538	2.2036	113.72

TABTE. 27
Gygetallisation of Berium Sulphate at $25^{\circ} \mathrm{C}$.

Ce11 $E_{0} \quad I *=\left\{\left(m-m_{0}\right)^{-1}-\left(m_{i}-m_{0}\right)^{-1}\right\} \times 10^{-3}$

Coll E $\quad F=0.2143$.

$$
I *=\left\{\left(m-m_{0}\right)^{-1}-\left(m_{i}-m d^{-1]} \times 10^{-3}\right.\right.
$$

The $10^{3} / \mathrm{R} \quad 10^{4} \mathrm{~m} \quad 10^{4}\left(\mathrm{mam}_{\mathrm{m}}\right) \quad 10^{-4} /\left(\mathrm{m}-\mathrm{m}_{0}\right) \quad$ It obras-1 moles/1. moles/10 1./mole 1./E0.

Run 3.

0 min.	3.11750	2.7600	1.3374	0.7477	0
3	3.09516	2.7197	1.2971	0.7710	1.76
10	3.05996	2.6563	1.2337	0.8106	5.72
15	3.03778	2.6163	1.1937	0.8377	8.43
30	2.99450	2.5383	1.1157	0.8963	14.29
1 hr.	2.93828	2.4369	1.0143	0.9659	23.25
2	2.80654	2.1994	0.7768	1.2873	53.39
4.5	2.66200	1.9389	0.5163	1.9369	18.35
6	2.61052	1.8461	0.4235	2.3613	160.79

Tun 40

0 min.	3.13750	2.7600	1.3374	0.7477	-
3	3.10974	2.7100	1.2874	0.7768	2.37
10	3.08220	2.6603	1.2377	0.8080	5.46
15	3.06496	2.6292	1.2066	0.8288	7.54
30	3.02310	2.5538	1.1312	0.8840	13.06
1 hr	2.95050	2.4229	1.0003	0.9997	2.63
2	2.83700	2.2183	0.7957	1.2568	25.32
4.5	2.70798	1.9857	0.5631	1.7759	102.25
7.5	2.59126	1.7753	0.3527	2.8353	208.19

Time (hours)

Fiqure 19.
114.

Figure 20

Figure 21.

DISCUSSTON.

The crystallisation of lead sulphate has been shown to follow a second order rate law, with the exception of an initial, very fast growth surge. Similar results were obtained with barium sulphate (57), and it has been suggested that the initial fast period might be due to two dimensional nucleation on the surface of the added seed crystals. If insufficient sites for growth are provided initially, nucleation will take place at active sites on the crystals, and this will continue until the supersaturation at the crystal surface is reduced to a value at which there are surficient sites available to accommodate the growth Nancollas and Purdie postulated that normal second order growth then sets in, and is the controlling factor. Bulk nucleation could not be the explenation of the growth surge, since this is characteristically associated with an induction period or slow stage, which was never observed.

Results obtained in the present work support the suggestion of surface nucleation. Addition of a larger anount of seod crystals substantially reduced the duration of the fast part (Table 2), and in Run 13 (Fig. 3) it wes eliminated completely. Lowering the inftial supersaturation had a similar effect.

In experiments in which the less regular needle-shaped crystels (Plate 2, B, C, D) were used, it was noticed that the duration of the initial growh surge was longer, suggesting that enhanced two dinenghonal.
was toking place. The paricular faces which are developed in these crystals may contain fewer suiteble sites for normal second order growth than the faces which are present in the rhombic type.

The rate of growth of lead sulphate was retarded by the presence of enionic adsorbetes, a result similer to that described by Otani (65,97). In a study of strontium sulphate precipitation he found that both spontansous crystellisation, and growth on addsd seed crystals were inhlbited almost completely by sodiun triphosphatio. at a concentration of 5×10^{-5} moles $/$. He attributed this observation to adsorption on to the nuclei or growing erystals, and postulated that the triphosphate ion may be preierentially adsorbed at active sites on the crystals, thus retarding layer growh. Since the mole ratio of strontium to triphosphate was $670 / 1$, the inhibition of growth could not be explained by complex formation. Similar resulis heve been obtained with a variety of other phosphates (74

The affectiveness of the various adsorbates can be explained by considering the size of the ions. The larger, more highly charged additives will be attached more firmly to the crystal surface, and will cover a larger area (19).

Dodecylsulphate, the least effective of the additives studied, is composed of a long hydrocarbon chain, terminating in a univalent lonic group. When this ion is atteched to the surface, the hydrocarbon part of the molecule would not be very efficient in blooking other growth sites.

The pyrophosphete ion is compoged of two phosphate tetrahedra, linked through an oxygen atom, the $0-0$ distance being $2.50 \AA^{\circ}$. which compares with an $0-0$ distence of $2.47 \AA$ in the sulphate iono With its four negative charges, electrostatic forces would result in the strong attachment of this ion to the positive aurface of lead sulphate (98,99), but since it is fairly compact it would not cover a very large area. The trimetaphosphate and totrametaphosphate ions ane also composed of phosphate tetrahedra (100, 101) Iinked through caygen atoms, with an $0=0$ distance of 2.51 \&. (100). Tetrametaphosphate, being largar, and heving one more negative charge would be glightig more effective in retarding the crystallisation of lead sulphate. These idear are in agrement with the suggestion of Cabrera and Vemilyea (19) that the size of the fapurity is the moat finportant factor in retarding growh.

Coming and Scholmann (102) have estinated the surface area of the dodecylsulphate ion from surseae tension and suxface potential. measurements (103, 104) made on adorbed and spread films of long chain sulphates at the airmweter interface. They concluded that the liniting area per ion is about $20 \AA^{2}$, under condtitions where the charge on the sulphate group is effectively neutralised.

Mutra and his comonkens (74) have determized the surface area of the triphosphate ion, by considertag its adsomption on stroatjua sulphote crysbels of knom surface area. They armved at a value of $37 \AA^{2}$ for the aroe ocupied per traphosphate molecules and conciuded
that the area covered per phosphate tetrahedron was $12 \mathrm{~A}^{2}$.
In the present study the concentration of irapurity and the amount of seed added in each experiment were known. Hence it was possible to calculate for each run the available surface area of the crystals, and the surface area which would be covered by impurity, assuming a monomolecular adsorbed layer. Such a conparison can only be, at the bast, very qualitative, since estimations of crystal surface area are based on the average size of the crystals, assuned cubic, and having atonically smooth surfaces. However, when this calculation was made, it was established that in Run 103, in which the concentration of sodium tetrametaphosphate was $1.64 \times 10^{-6} \mathrm{moles} / \mathrm{I}_{\mathrm{o}}$, and growth was very slow, the ratio of crystal to adsorbate surface area was $0.8 / 1$. In Funs 1.10 and 111 , with sodium pyrophosphats and sodiur dodecglaulphate respectively, values of this ratio were $3 / 1$ and $230 / 1$, the corresponding concentrations of impurity being $9.41 \times 10^{-6} \mathrm{moler} / 1$. for pyrophosphate, and $2.19 \times 10^{-4} \mathrm{moles} / 1$. for dodecyleulphate.

The results obtained in the presence of adsorbates are consistent with the Idea proposed by Sears (77) that the impurity reduces the critical free energy for twomdimensional nucleation, causing on increase in surface nucleation. As the concentration of additive wes increased, the duration and n - value of the inition growth surge, which has been attributed to twomimensional nucleation, also inereased. The trend in the values of n_{y}, and the
time for which the fast part lasted, cen be seen in Tables 10 and 15. It seems probable that the adsorbate molecules occupy suitable growth sites, and that when fewer of these sites are available, more surface nucleation is needed to accommodate the growth. Whereas the crystallisation of magnesium oxalate (43) and silver chloride (39) has been shown to follow a sscond order rate equation in the presence of adsorbates, this was not the case with Iead sulphate. With this calt, the value of n_{2} was found to increase with increasing concentration of impuxity, this being especially marked when deionised water was used. It ia possible that two dimensional nucleation never stopped completely, although it became less than its initial value of n_{l} (Tables 10 and 15). It seems reasonable to assume that as new sites are created by surface nucleation, some are innediately occupied by the impurity molecules. Further, less extensive nucleation may atill be necessary, and this may continue throughout the entire growth period. With increasing concentration of adsorbate, the value of n_{2} rose from three to as much as 36 (Table 10), but in all cases these values were substantially less than n_{1} 。 Lititle significance can be attached to values as large as 36 , since they refer to growth experiments in which the rates were very slow and gradients correspondingly difficult to obtain.

Although the mathod of preparation of conductivity water did.
not affect the kinetics of crystallisation of silver chloride (45), this has not been found to be tirue for lead sulphate, strontium sulphate (105) or silver iodate (44)。 Deionised water has bsen show to have a marked effect on the kinetics of growth of atrontium sulphate and silver iodate, and of lead sulphate in the presence of Iow concentrations of additives. It has been suggested (33, 105-107) that this is due to the presence of small amounts of organic matrix. which has been leached off the ion-exchenge rasin. Although such orgenic impurity does not increase the conductivity of the wacer, It appears to behave in a similer manner to the inorganic adsorbates studied, by occupying some of the active growth sites, and so enhancing the need for surface nucleation.

The crystallisetion of lead sulphate in the presence of adsorbates was affected by deionised water. In particular, the values of n_{1} and n_{2} were found to increase with increasing concentrstion of additive. When distilled water was used, the value of n_{1} was lower than that in deionised water, at a similar concentration of adsorbate, as can be seen from Table 30 below.

This would be the expected result if organic impurities from the resin block aone of the existing growth sites. In the absence of such additiongi hipurities, more active sites will be available, and surtace nucleation will be reduced.

TABLE. 30
Compaxison of the Pffect of Doionised and Dlstilled Watex on Lead Sulphaice Crystailisation.

[Adsorbate]	Deionised Water	Diatilled Weḃen		
$($ moles/10 $)$	n_{1}	n_{2}	n_{1}	n_{2}

Dodecxlsulphaies.
3.4×10^{-5}
21
3
8
2
4.0×10^{-4}
100
36
13
6

Pyrophosphate.
3×10^{-6}
35
6
29
2
I $\times 10^{-5}$
73
8
14
2

Tourametaphosphate.

7×10^{-8}	14	4	-	2
2×10^{-7}	$:$	40	19	7

With distilled weiter and low concentrations of adsorbate, the Value of 12 did not deviate from two, as can be aeon from Tebles 15 and 30. This is in agreenent with the suggestion made above, thet wen orgenic tmpurities are present, they occupy fone of the active sites created by surface nucleation. Hence, there
are never sufflcient aites for growh to occur purely by the dislocation mechenism, which would give rise to a second order rete 1aw。

At high concentrations of adsorbate, however, values of n_{2} greater than two were observed, but the growth rate in these experiments was extremaly slow. It was posstble to use higher concentrations of additive before growh stopped completely whas distilled water wes used in the preperation of the solutione, and this would also be expected if there are nore growth siteg availabie.

When a cationic adaitive, cetyl trinethyl anmonium bromide, was used, the rate of crystallisation was not reduced, oven at concentrations as high as $10^{-4 / 4}$ moles/1. This contrasts with the results of Davies and Mancollas (39), who found the rate of crystallisotion of gilyer chloride tu be reduced in the presence of the nitrate of this cation.

Crystellisation of lead sulphate fron distilled water solutions containing non-equivalent concentrations of lead and sulohate tons showed devietions from aecond order kinetics, in contrast to results obteined by Mancollas and Purdie (57) with barium surpheto。 Lead gulphate growth was glower with the cation in excess rather then the anion, and a gimiler remult wes obtained with barima sulphate (57) and silver chlorids (7). Buchanan and Heymen (98) have found that the suriece of lead aulphate crystels carriea
a positive charge and it therefore seems reasonable that the rate of adsorption of the amion ahould be greater than that of the cation. No explanation of the change in kinetic order at nonmequivalent ionic concentrations can be advanced at present. This positive charge carried by lead sulphate may be the reason for the ineffectiveness of the cationic additive in affecting the rate of growth.

When cxystallisetion begins with an initigl surge of varying extent it is not possible to compare absolute values for the rate of the aubsequent growth. The concentration at which the transition to second oxder growth takes place must depend on the amount of seed crystals added, and the number of growth sites provided by them. A large amount of seed crystels was added to the solution (500-1500 mg.) and it was not possible to ensure that the seme quantity was used in each experiment.

Barium sulphate has also been found to crystallise from supersaturabed solution according to a second order rate law at $15^{\circ}, 25^{\circ}, 35^{\circ}$, and $45^{\circ} \mathrm{C}$, indicating thet the slow step at the crystalmsolution interface is controlling, but, in contrest to tho results of Nancollas and Purdia (57), no initial growth surge was observed. In general, в. larger weight of crybels wos added to each experinent than in the previous study, and the seed suspension was composed of slightly amoller crystals. The increased surfece orea must therefore have provided aufficient active sites for nomel
growth, meking twomdimenslonal surface nucleation unnecessexy. Indeed, this was obsoryed by Nencollas and Purdie, who succeeded in eliminating the initial growth surge by increasing the amount of seed cirstals added to their experfments.

Davies and Nencollas (38), in a study of silver chloride crystallisetion, found the rate constents to be invariant with temperature, indicating an activation energy of zero for the process. In the present work, the rate constants for barium suiphate growth have been show to jncrease with increasing temperatuce, corresponding to an activation energy of 8 K . Cals./molo.

Little work on temperature coefficients of growth has been reporied, but Lichstein and Brescia (j08), who gtudied the spontaneous prectpitation of magnesiun omalate, also found that the rate ves tomperature dependent, with a heat of activation of N3 K.Cals. They found (109) the kinetics to be first oxder, however: and concluded that diffusion wes the x ate-controlling mechanism, with

$$
\left(\mathrm{MgC}_{2} \mathrm{O}_{4}\right)_{2}+\mathrm{MgC}_{2} \mathrm{O}_{4} \rightarrow\left(\mathrm{MgC}_{2} \mathrm{O}_{4}\right)_{3}
$$

being tha blow gtepg where $\left(\mathrm{MgC}_{2} \mathrm{O}_{4}\right)_{2}$ is the critical nucleus.
One disadventage of the conductinetric technique for gtudying the growih of cxystals is that no information about the slow giep can be obtained, other then that it takes place at the crystalu solution interface. The slow step may be due to the presence of only a Iimited number of suitable grovith sites, to the dehydration of the ions, or to the time taken for a cation and an anion to reach
an active site in a Cavourable orientation for incorporation into the lattice. Of these possibilities, the first is unlikely to bo affected by temperature, hence, if this step were rate controlining, the rate of growth should be independent of temperature. On the other hand, both the gecond and third alternatives are likely to be temperature dependent. The greater mobility of ions in the adsorbed layer as the temparature is raised should result in a . greater number of collisions with growth bites, and thus an increage In the rate or growth.

It would seen, therefore, that in the case of barium sulphates, the rato determining process is not the availability or growth sites, but rather some mechansm such as the dehydration of ione before extering the crystal laitice, or the frequency with which ions in the mobile adsorbed layer collide with growth sites. With silver chloride, for which an onergy of activation for growth of zero has been reported, the slow atep may have been due to e limitation in the number of growth sites available on the crystals.

In conclusion, therefore, it hea been shown that in the crystallisation of both lead sulphate and barium sulphate, the genera. theory of growth proposed by Devies and. Jones was followed for most of the reaction. Deviations from this theory occurred, howover, it the presence of adsorbates, and at nonequivelent ionfc concamrathon with the lead selt. Organic contaminants present in water prepared

PARP 2. Dissolution of Spariagly Soluble Seltr in

Aqueous Solution.

2a. Lead Sulphate.
20. Eaxium Sulphate.

TMTRODUCTION.

One of the earliest theories proposed to explain the phemomenon of dissolution was that of Noyes and Whitney (110) who found that the rate of solution of rods of benzoic acid and lead chloride could be represented by the equation

$$
\frac{d m}{d t}=k_{d} s\left(m_{0}-m\right) \quad \cdot \quad \cdot \cdot \cdot .(1)
$$

where n is the concentration of the solution at time $h_{9} m_{0}$ is the solubility, and sthe surface of exystal exposed. This was modinted by Nernst (111) to include the growih process, so that

$$
\begin{equation*}
\frac{d m}{d t}=\frac{D g}{\delta}\left(m_{0}-m\right) \tag{2}
\end{equation*}
$$

where D is the coefficient of diffustion and δ is the thickness of the layer through which diffusion is toking place. Thus, since $s\left(m-M_{0}\right)$ covld be made equal, but of opposite sign, and $\frac{p}{\delta}$ should be equal for growth and solution, in any system the two procesees should occur at the same rate.

Merc (5), however, esteglished thet the velocity of growth is usually much less than that of solution, indicating that the two processer canot be regarded as reciprocel. Indeed, Mare showed that growth followad, in general, a second order rete equation. Many workers, however, have found that dissolution can be represented
quite satisiactorily by a first order sato law such as that proposed by Mernst, although many velid exiticistas (8) have been made of the assumptions involved.

Nemst assumed that the reaction at the surface was very fast compared with the trensport process, and thet, in a well-stirred system, the concentrabion gradient was confined to a thin layer of thichess δ, adhering to the solld surface. The concentration would vary linearly with the porpendicular distance from the scild surface in this layex, and its thelness woud be a fusction of the rate and type of stirring onployed.

Van Name and Hill (112) disagreed with such a sharp delineation in the relative rates of the diffusion and interface piocesses. They suggested thet heterogeneous processes controlled by diffusion, or by the chemical reaction at the interface are the extreme cases, and that there are many reactions in which these two rates are comparable. Hence, heterogeneous reactions would be expected to show a gredation in order betreen one and two. Despite this, many widely different reactions such as the dissolution of salts into their subsaturated solutions (113), of metals into acids (114, 115), 1iquid amonia (116) and aqueous iodine (117) have all been shown to follow first order kinetics, although higher orders have been reported for the dissolution of silver chloride into water (38).

Many workers have established that the rate of solution increases With the rate of stirring up to very high speeds of agitation, as would be expected for systems in which diffusion is important. From a study of the solution of calcium carbonate in acetic and hydrochloric acids, however, although the rate of solution increessd with the speed of sitrring up to 7000 r.p.me, King and Ling Liu (118) were of the opinion that the rete would tend to reach a maxinura at even higher rateg of egtiation.

Further evidence in support of a diffusion controlled process has been supplied by Riddiford and Bircumshaw (117) who Sound that several metals dissolved at the sane rate in aqueous iodine. From a similer study King and Bravernan (115) have esteblishod that the rate of solution of various metals in hydrochloric acid was the some, suggesting ithet the rete controlling siep was the diffusion of solvent up to the solid surface. On the other hond, Johnson and Macdonald (116) investigated the dissolution of sodium in Inguid ammonie, and concluded that the probable rate determining stop was the diffusion of products oway from the solid surface.

King and his comonkers (115, 118) have also shown that the rate of solution is inversely proportional to the viscosity, and that most of the dissolution reactions studied have a temperature coefficient in the region of I.I . 1.5 par 10° rise, which is of the order of that expected for difrusion control.

Mermst assuraed that the thickness, 8 , of the stationary layex
was approximately the same for anl reactions, under the same conditions of stirring, and Buunner (119) has estimated a value of 0.03 mm . at $20^{\circ} \mathrm{C}$. for 5 . On the other hand, Fage and Townend (120) have shown from ultramicroscope studies that fluid motion persists up to points in the region of $6 \times 10^{-5} \mathrm{~cm}$. from the solid surface. In $\begin{gathered}\text { iew }\end{gathered}$ of this, King (121) modified the picture of Nernst's film, in terms of a layer next to the solid surfece which was still in turbulent flow, and in which the velocity component of turbulence normal to the interface was negligible compared with diffusion for transporing the reagent. In a btudy of the dissolution of zinc and magnesium in acid, he found that δ was proportional to the diffusion coefficient, but that it changed little with viscosity or temperature. .

It seems therefore, that a slightly modifled Nernst diffusion theory provides a satisfactory explanation for most dissolution processes. In those reactions for which a kinetic order greater than one is obeyed, it must be assumed that the chemical reaction at the interface is of comparable rate, or faster than the rate of transporit by diffusion, and hence a different mechanism is controlling。

In the present study, Part $2 a$ deals with the dissolution of lead sulphate into subsaturated solution, and in the presence of sodium tetranetaphosphate. Part 2 b deals with the solution of herfm whehate into whor at temmornturoo ranging from $75^{\circ} \mathrm{m} / 5^{\circ} \mathrm{C}$.
and into subseturated solution at $25^{\circ} \mathrm{G}$. A radiochemical cechnique has also been used, with 35 Sulphur as tracer, to follow the dissolution of labelled barium sulphate seed crystals into water at $15^{\circ}-35^{\circ} \mathrm{C}$ 。

PART 2a Lead Sulphate.

The dissolution of lead sulphate seed crystals into subsaturated solutions, and the effect of added impurities has been studied.

Marc (122) studied the growth and dissolution of potassium chlorate crystale in the presence of the dye Ponceau $2 R$, and found that the same concentration of dye was much more effective in retarding crystallisation than solution. Herzfeld (123), who considered that the breaking loose of an ion from a crystal should not be affected by the presence of an adsorbed molecule, conceded, however, that if such an impurity was aitached simultaneously to more then one surfece $10 n$, or was sufficiently large, the rate of solution could be retarded.

The study of etch pit formation has led to further advences in the theory of dissolution. Burion, Gabrere and Frank (17) suggested that dissolution should take place by the retreat of monomolecular steps across the crybisl surface, individual molecules being renoved from kinks in the surface. Gilman, Johnston and Seare (79) have proposed that dissolution begins with the creation of unit pita, one molecule deep. Thess pite grow as steps retreat across
the cryetal through the action of kinks. On a real crystal, dislocations, due to the energy that is localised at them, may be preferred sites for the initiation of unit pits.

In a study of the dissolution of lithium fluoride crystals (124), it was established that the formation of etch pits was due to traces of ferric ion present. When this was complexed by the addition of amonium hydroxide, even dissolution, with few etch pits was obtained. From a similer investigation (79) it was established that the presence of lerric jons or other cations which adsorb at kinks protect the surface from dissolution, and cause etch pits to form at dislocations.

Sears (78) considers that severe hindrance of solution at a step is associated with complete coverage of adsorption sites on the step. He proposed (124) that the formation of an etch pit at a dislocation occurred by the generation of loops of step concentric with the dislocation, and that the most important effect of the poison depended on the inhibition of general dissolution. Etch pits therefore camot be formed unless an inpurity is present, but, as in the case of lithium fluoride, this may be supplied by the dissolving crystal itself (79).

The solution of lead mulphate into subsaturated solution has been shown to follow a second order rate law, but the apparent kinetic order was $\hat{\text { Sound }}$ to bo extremely eensitive to minute traces of
impurity. Sodium tetrametaphosphate has been found to cause a considerable seduction in the rate of dissolution, and also to cause an increase in the value of \underline{m} in the expression

$$
\frac{d m}{d t}=k_{d} s\left(m_{0}-m\right)^{n} .
$$

EYPERTMEXTLAL.

Proparation of Seed Cyystals.

Seed crystals were prepared by the method described in Part la of this work. Only those rhombic in form (Plate 2A) were used in the dissolution experiments. The amount added to the cell in each experiment was determined by filtration as before.

Preparaition or Cell Solution.

Subsaturated solutions were prepared by the slow mixing of dilute solutions of sodium sulphate and lead nitrate, and after inoculation with seed crystals, the rate of dissolution was measured by following the increase in conductivity with time. Adsorbate solutions were added in the same way as in the crystallisation work.

RESUTTS.

Experiments on the rate of dissolution of lead sulphate into subsaturated solution at $25^{\circ} \mathrm{G}$. have been made. The effect of adding sodium totremetaphosphate has also bsen studied, and experiments with this adsorbate were made using both deionised and distilled water. The initial lonic product used in all the experiments was I. 4982×10^{-8} moles $2 / 1^{2}$

Jigsolution Experiments at Equivaiont Ionic Concentrations.

The results are sumarised in Table 31. Some typical smooth curves obtained by plotting the reciprocel of resistance againgt bime are given in Fig. 22 and show the low degree of scatter of the points.

The rate of increase of conductivity at any instant was determined by measuring slopes of the $1 / R$ against time curve, and hence $d m / d t$ could be calculated. Instantoneous volues of ionic concentration were obtained as described on page 4 . . The solubility of lead sulphate (page 4.I) wes corrected for ionic strength effects using activity coefficients calculated from the Davies squation (p. 41) and a value of 1.476×10^{-4} moles $/ 1$. was used for moo

To determine the order of the dissolution, plots were made of $\log \mathrm{dm} / \mathrm{dt}$ against $\log \left(m_{0}-m\right)$, and these are shown in Fig。23. Two distinct straight lines were obtained, of slopes n_{1} and n_{2}, corresponding to an initial fast part and the subsequent dissolution process. The value of n_{2} wes found to be two, while n_{1} wes always greater than two. Thus, for the main part of the reaction, after the initial surge, the dissolution follows the equation

$$
\begin{equation*}
\frac{d m}{d t}=k_{d} s\left(m_{0}-m\right)^{2} \cdot \circ \cdot \cdot \cdot \tag{I}
\end{equation*}
$$

Graphs of $\mathrm{dm} / \mathrm{dt}$ against $\left(m_{0}-m\right)^{2}$ are given in Fig. 24 , using data Irrom Table 32.

In equation（1），s will be some function of the surfece area of the seed crystals，which decreases as dissolution proceeds． Assuming that s varies linearly with surface area，a more precise form of the rate equation

$$
\frac{d m}{d 亡}\left(\frac{W_{1}}{W_{2}}\right)^{\frac{2}{3}}=k^{\prime}\left(m_{0}-m\right)^{2}
$$

ahould be used，where w_{1} is the initial weight of seed crystals， and w_{2} is their weight at tine to For lead sulphate experiments， relatively large amounts oî seed crystals were used（ $70-900 \mathrm{mg}$ 。） and the decrease in weight was less than 0.01% of the total，making the correction unnecessary．

A number of experiments ware made using solutions prepared from deionised water，and n_{2} was also found to be two．Second order plois are shown in Fig．25，and the data are recorded in Table 33．

Dissolution of Lead Sulphate in Prosence of Sodium Tetranetaphospheto．

Concentrations of sodium tetrametaphosphate ranging from $7.40 \times 10^{-6 t}$ moles $/ 1$ 。to $3.26 \times 10^{0.5}$ moles $/ 1$ ．were studied，and the results are summarised in Table 31．Plots of $1 / R$ against time for data in Tables 34 and 35 are show in Figs． 26 and 27．Although different amounts of seed crystals were used for each experiment， it can be seen quite cleariy that the additive decreases the rate of solution even at concontrations as lov as 7×10^{-8} moles $/ \mathrm{h}$ ．

The effect is rather marked, siace the seed concentrations were generally greater in the experiments with adsorbate (Table 31).

Values of n were obtained as before, and were found to increase with increasing concentration of tetremetaphosphate ions; in all cases n was greater than two. Using deionised water for the adsorbate experiments produced an even larger effect, as can be seen from Table 31. Little significance can be attached, however, to the high velues of n, which are difficult to justify as reaction orders. They correspond to extremely slow rates of solution.

TABEF: 31.

Dissolution of Lead Sulphate.

Experiment Number	Seed Suspension	Seed Conc. $($ mg/mi. $)$	$[$ [mP $]$ $(m o l e s / 1)$.	Cell	n_{2}

Disijilled Water.

97	L	0.2	-	E	2
99	K	0.2	-	E	2
101	M	0.2	-	E	2
115	M	2.8	6.36×10^{-8}	E	3
114	M	0.6	1.15×10^{-7}	E	8
130	M	1.0	4.99×10^{-5}	A	11

Deionised Water.

131	K	2.3	-	A	2
128	K	0.8	-	A	2
92	K	2.4	7.40×10^{-8}	E	3
81	K	1.3	-6.54×10^{-6}	E	12
83	K	2.5	1.22×10^{-5}	E	(47)
90	K	2.5	3.24×10^{-5}	E	(135)

TAELE 32. Digsolution oz Lead splphete.
Disuliged Hatex.

Run 97.

0 min	0.86999	1.2240	0.2523	-	0.6366
6	0.87100	1.2266	0.2497	9.05	0.6235
15	0.87310	1.2320	0.2443	5.28	0.5968
30	0.87662	1.2411	0.2352	4.83	0.5532
1 hr.	0.88245	1.2562	0.2201	4.52	0.4844
3	0.90017	1.3020	0.1743	2.95	0.3038
5	0.91330	1.3360	0.1403	2.26	0.1968
7.25	0.92603	1.3689	0.1074	1.51	0.1153
10.5	0.93460	1.3910	0.0853	1.08	0.0728
23.5	0.95504	1.4439	0.0324	0.21	0.0105

Run 99.

0 min.	0.77380	1.0868	0.3895	-	1.5171
6	0.78233	1.1089	0.3674	10.0	1.3498
15	0.78603	1.1184	0.3579	7.52	1.2809
30	0.79089	1.1310	0.3453	6.68	1.1923
1 hr.	0.79895	1.1518	0.3245	6.14	1.0530
2	0.81292	1.1879	0.2884	4.83	0.8317
4	0.83476	1.2444	0.2319	4.20	0.5378
7	0.85833	1.3053	0.1710	2.80	0.2924
10	0.87447	1.3471	0.1292	1.05	0.1669
23.5	0.90299	1.4206	0.0555	0	0.0308

TABCE. 32. ($\operatorname{con} t$.

Time $\quad 10^{3} / R \quad 10^{4} \mathrm{~m} \quad 10^{4}\left(\mathrm{~m}_{0}-\mathrm{m}\right) \quad \mathrm{dm} / \mathrm{dt} \times 10^{8} \quad 10^{9}\left(\mathrm{mon}^{-m}\right)^{2}$ ohms ${ }^{-1}$ moles/l. moles $/ 1$. moles ${ }^{2} / 1^{2}$.

Rum 101.

0 min	0.87850	1.2240	0.2523	-	0.6366
1.5	0.88316	1.2360	0.2403	18.7	0.5774
6	0.88800	1.2486	0.2277	15.25	0.5185
15	0.891 .57	1.2578	0.2185	9.48	0.4774
30	0.895777	1.2686	0.2077	6.68	0.4314
1 hr.	0.90245	1.2859	0.1904	5.34	0.3625
2	0.91272	1.3125	0.1638	3.86	0.2683
3	0.92121	1.3344	0.1419	3.02	0.2014
5	0.93419	1.3680	0.1083	2.11	0.1173
7	0.94371	1.3926	0.0837	0.77	0.0701

Dispolution of Tpad Sulphats
Daionsed Hater.

Run 128.

0 min.	0.91120	1.2240	0.2523		
1.5	0.91657	1.2373	0.2390	39.10	0.5712
6	0.92321	1.2537	0.2226	23.64	0.4955
15	0.92952	1.2693	0.2070	17.60	0.4285
30	0.93869	1.2920	0.1843	13.10	0.3397
$1 \mathrm{hx}_{0}$	0.95176	1.3244	0.1519	9.61	0.2307
3	0.97999	1.3943	0.0820	3.14	0.0672
5	0.99064	1.4206	0.0557	1.29	0.0310
7	0.99542	1.4324	0.0439	0.87	0.0193

Run 131.

0 min.	0.90360	1.2240	0.2523	-	
1.5	0.90706	1.2326	0.24 .01	20.04	0.5765
6	0.91071	1.2416	0.2347	12.42	0.5508
15	0.91473	1.2515	0.2248	10.64	0.5054
30	0.92099	1.2670	0.2093	9.48	0.4381
1.47.	0.93101	1.2918	0.1845	8.00	0.3404
3	0.95711	1.3564	0.1199	3.79	0.1438
5.5	0.97373	1.3976	0.0787	1.90	0.0619
7	0.97960	1.4121	0.0642	1.24	0.0412.

Fiqure 22.

Figure 23.
145.
$20 \mathrm{dm} / \mathrm{dt} \times 10^{8}$

0
12.

8 8. $\mathrm{dm} / \mathrm{dt} \times 10^{8}$

Figure 24.

Figure 25.

TABE 32
Deqoyised Waters
Disgolution of Lead Sulphate In Presence of Totxanotsphosphato．

Time	$\begin{gathered} 10^{3} / \mathrm{n} \\ \text { ohme } \end{gathered}$	$\begin{aligned} & \max 10^{4} \\ & \operatorname{moles} / \mathrm{I} \end{aligned}$	$\begin{gathered} \left(\mathrm{in}_{\mathrm{o}}-\mathrm{m}\right) \times 10^{4} \\ \mathrm{moleg} / \mathrm{m}_{0} \end{gathered}$
Run 92．［TMP］$=7.40 \times 10^{-8} \mathrm{moles} / \mathrm{l}$ 。			
0 min 。	0.87650	1． 2240	0.2523
3	0.88210	1.2385	0.2378
6	0.88455	1.2448	0.2315
15	0.88954	1.2577	0.2186
30	0.89656	1.2757	0.2004
1.5 hrs 。	0.91569	1.3253	0.1510
3	0.93232	1.3683	0.1080
5.5	0.94751	1.4077	0.0636
26	0.96558	1.4543	0.0220

Run 81．$[T M P]=6.54 \times 10^{-6}$ moles $/$ ．

0 min．	0.89706	1.2240	0.2523
1	0.89757	1.2253	0.2510
6	0.89851	1.2277	0.21886
15	0.89927	1.2297	0.2466
30	0.90003	1.2317	0.2446
1 hr.	0.90126	1.2348	0.2415
2	0.90408	1.2421	0.2342
3	0.90601	1.24 .71	0.2292

HABER. 26 (cont. $)$

Time	$\begin{gathered} 10^{3} / \mathbb{R} \\ \text { ohnem } \end{gathered}$	$\begin{aligned} & \mathrm{m} \times 10^{2} \\ & \mathrm{moles} / \mathrm{y} \end{aligned}$	$\begin{gathered} \left(m_{0}-m\right) \times 10^{k} \\ \text { moles } / 1 . \end{gathered}$
Frun 83. $[\mathrm{MP}]=1.22 \times 10^{-5} \mathrm{moles} / \mathrm{I}$.			
0 min.	0.91350	1.2240	0.2523
1.5	0.91448	1.2265	0.2498
6	0.91547	1.2291	0.2472
15	0.91657	1.2319	0.2444
30	0.91749	1.2343	0.24 .20
1 hr .	0.91911	1.2385	0.2378
3	0.92084	1.24.30	0. 2330
6.25	0.92129	1.2441	0.2322
21	0.92451	1. 2525	0.2238

Run 90。 $[T M P]=3.24 \times 10^{-5}$ moles $/ 1$.

0 min.	0.97545	1.2240	0.2523
1	0.97564	1.2245	0.2518
6	0.97639	1.2264	0.2499
15	0.97685	1.2276	0.2487
30	0.97717	1.2284	0.24 .79
1 hr	0.97748	1.2292	0.2471
2.5	0.97826	1.2313	0.2450
3.5	0.97877	1.2326	0.24 .37

Digrolution of Load Syiphate in Fresence of Teitramotaphosphate.

Time	$10^{3} / \mathrm{R}$	$\begin{aligned} & \operatorname{man} 10^{4} \\ & \text { moles } / 1 \end{aligned}$	
Run 115. $[\mathrm{MP}]=6.36 \times 10^{-8} \mathrm{moles} / 1$.			
0 min 。	0.89790	1. 2240	0.2523
6	0.90626	I. 24.56	0.2307
15	0.90917	1.2531	0.2232
45	0.91631	1.2716	0.2047
1.25 hrs 。	0.92206	1. 2865	0.1898
4	0.94110	1. 3357	0.1406
9.5	0.95922	1.3825	0.0938
12.25	0.964,23	1.3955	0.0808
23.25	0.97416	1.4211	0.0552

Run 114. $[T M P]=1.15 \times 10^{-7} \mathrm{moles} / 1$.

0 min.	0.89090	1.2240	0.2523
6	0.89437	1.2330	0.2433
15	0.89567	1.2363	0.2400
30	0.89721	1.2403	0.2360
1 hr.	0.89908	1.2451	0.2312
3	0.90303	1.2554	0.2209
8	0.90888	1.2705	0.2058
15.25	0.91327	1.2818	0.1945
23.5	0.91712	1.2918	0.1845

SABUE. 35 (cont.)

Time	$\begin{array}{r} 20^{3} / R \\ \text { ohas }-1 \end{array}$	$\begin{aligned} & m \times 10^{4} \\ & \text { moles } / 1 \end{aligned}$	$\begin{gathered} \left(\mathrm{m}_{\mathrm{o}}-\mathrm{m}\right) \times 10^{4} \\ \mathrm{moles} / \mathrm{m}^{2} \end{gathered}$
Run 130. [TMP] $=4.99 \times 10^{-6} \mathrm{moles} / \mathrm{I}_{0}$			
0 min 。	1.03735	1. 2240	0.2523
1.5	1.03772	1. 224.9	0.2514
6	1.03814	1.2250	0.2503
15	1.03856	1.2270	0.2493
30	1.03897	1. 2288	0.2483
1 hr 。	1.04001	1.2306	0.24 .57
2	1.04105	1.2332	0.2432
3.5	1.04231	1. 2363	0.2400
7.75	1.04398	1.2404	0.2359.
9.25	1.04481	1.2429	0.2334

Cell E.

151.

Figure 26.

Figure 27.

Dissolution of Barium Sulphate

into. Water and Subsaturated Solutionsat Various Temperatures.```
 A* when - waty
```












## PART. $2 \mathrm{~B}_{\mathrm{s}}$

TRPRODUCTTON.

Although a large amunt of work has been done on the precipitation of barium sulphate, little attention has been paid to its dissolution. The present study wes carried out to determine the effect of temperature on the rate of solution.

Johnson and MacDonald (136) studied the rate of solution of sodium in liquid amonia at various temperatures, and by applying the Arrhemius equation,

$$
\ln k=\ln A-E / R P_{g}
$$

obtained a value of 4.2 K Cals. / mole for E , the apparent energy of activation for diffusion, Howard, Nancollas and Purdie (113) investigated the dissolution of silver chloride seed crystals into subsatureted solutions, and sound a value of $4.5 \mathrm{~K} . \mathrm{Cals}$ 。/mole for the erergy of activation. Van Name (126), who studied the dissolution of cadmium in an aqueous solution of lodine in potassium lodide at temperatures between $0^{\circ}$ and $65^{\circ} \mathrm{C}$., found the energy of activation obe 4okK. Cals./mole. Moolwyn-Hughes (127), who considered the temperature variation of diffusion ceefficients, and assumed the thickness of the interfacial layer to be independent of temperature, calculated the energy of activgtion for diffusion to be about $4.5 \mathrm{~K} . \mathrm{Gals}$ 。/mola.

Davies and Mancolles (38), who observed the rate of
dissolution of silver chloride into water to be proportional to (subsaturation) ${ }^{3 / 2}$ at $15^{\circ}$ and $25^{\circ} \mathrm{C}$., and the second power at $35^{\circ} \mathrm{O} \circ$, found an activation energy of 15.4 K .Cals./ mole. It seems unlikely that such a high value would be observed for a process in which diffusion wes imporitant, and this is confirmed by the higher orders obtained for the kinetics of the process.

In the present work, the dissolution of barium sulphate sead cxystals into subsaturaced solutions at $25^{\circ} \mathrm{C}$., and into water at $15^{\circ}-4.5^{\circ} \mathrm{C}$. has been studied conductimetrically. An indopendent study of the dissolution into water has alao been made at $15^{\circ}-35^{\circ} \mathrm{C}$ 。 using a redioactive tracer technique。 Barim sulphate seed crystals labelled with 35 sulphate were allowed to dissolve in water, and the rate of the reaction was followed by measuring the increase in activity of the solucion with time. A similar method has been employed by Jones (128), who found first order kinetics for the dissolution of a silverasilver chloride electrode into water.

Dissolution of barium sulphate into water and subsaturated solution has been found to follow a second order rate law, which suggests that for this sparingly soluble salt, as for lead sulphate, diffusion is less important than some chemical reaction at the crystal-solution interface.

## 1. Conductinetric Studies.

## Praparation of Seed Ceystala.

The seed crystals used were prepared by the method described on page 102. Suspension $B$ contained crystals of average size $5 \mu$ 。 The weight of crystals added to each experiment was determined by filtration of the final cell solution ass described previously.

## Procedure.

Dissolution tnto water was studied at $15^{\circ}, 25^{\circ}, 35^{\circ}$, and $45^{\circ} \mathrm{G}$, and into subsaturated solutions ot $25^{\circ} \mathrm{C}$. The cell was filled with a known weight of conductivity water, and once carbon dioxide and tempereiture equilibriun had been attained, carbon dioxide free seed suspensions were added. Subsaturated solutions were prepared In situ as described in Paxt 2a, and the change in conductivity with time after inoculabion with seed crystals was followed.

## 2. Radiochomical Studios.

## Trotopic Tracers.

The isotope used in this study was 35 Sulphur, which is supplied by the Radiochemical centre as $\mathrm{Na}_{2}{ }^{35} \mathrm{SO}_{4}$ in aqueous solution. It is
a weak $\beta$-emitier, of energy 0.167 MeV ., with a half life of 87.1 days.

Preliminary experiments were also made using 133 barium, which emits weak $\gamma$-rays ( 0.36 MeV .) and has a half life of 7.5 years. With the counting techniques available, however, the barium isotope gave no improvement in statiatics over the sulphur one, and its use was discontinued.

Counting Technique.

A thin end-window Geiger-Muller counter, type EHM 2/S, with window thiceness $1.7-2.1 \mathrm{mg} . / \mathrm{cm}^{2}$, and operating voltage 1500 volts was used in conjunction with an Ekco Electronics probe unit type N558B, and an Eikco scalar, type N 529B. The counter was mounted in a lead castle type 1065D, with 4 cm . thicl walls, and the resulting background count was never in excess of nine counts per minuto。

## Preparation of Label1ed Seed Crystals.

5 mC . of $\mathrm{Ne}_{2} 35 \mathrm{SO}_{4}$ were added to the sulphuric acid used in the precipitation of the csystals, which were then prepared as described on page 102. The crystals were washed thoroughly and set astide to age as before. Seed suspension $D$ consisted of reguls. rhombohedra, of average aize $10 \mu$.

## Exporimental Techaiques.

The cell used in these experiments was a 500 ml . threemecked round-bottomed guickfit flask, and rotary stirring was supplied by a Citenco motor. An efficient waier thermostat, the temperature of which was controlled to $\pm 0.1^{\circ} \mathrm{C}_{0}$, was used.

Samples of solution to be counted were withdrawn by suction through a Number 4 sinter, thus ensuring that the seed crystals remained in the cell (Fig. 28). Approximately 0.5 ml . samples were then removed with a greduated pipette, trensferred to a nickeluplated mild steel planchet ( $2,2 \mathrm{~cm}$. diameter, 1 mm . deep) and weighed. Due to the low energy of the $\beta$ radiation, it was not possible to count the solution, since selfeabsorption was oppreciable。 Hence, two drops of ethanol (129) were added to each sample, which was then allowed to evaporate to dryness under a radient lamp. The addition of ethanol assisted the even evaporation of the samples, and the plenchets were thoroughly cleaned berore use by boiling in detergent. The maximum anount of solid per planchet was about $5 \times 10^{-5} \mathrm{go}$, and reproducibility to $\pm 1.5 \%$ was obtainable using this technique (over 10,000 cousts).

A typical exporinent invouved filling the cell with about 450 ml 。ar conductuity weter, and allowing it to come to tomperature gquilibrim in the thernostat. Four ml. of seed suspension was then added using a ranid delivesy pipette, and samplen of solution were


Figure 28.


#### Abstract

withdrem at frequent time intervals, weighed, evaporated to dryness and counted. Solution remaining in A (Fig. 28) aftor removal of the sample was blown back into the cell. Counting was generally continued until 10,000 counts had been registered - this usually took about 30 minutes at the start of an experiment. The volume of cell solution was not depleted by more than $1.5 \%$ in any experiment。


## RESULTS.

The experiments described in thils section were made to investigate the kinetics of dissolution of barium sulphate at various temperatures, and to determine whether there is a chenge of reaction order such as that observed by Davies and Nancollas (38)。 Distilled water only was ueed in the oxperiments with barium sulphate.

## 1. Conductinetric Studiss.

Since there was a considerable concentration change in dissolution experinents into water, it was not possible to consider $\Delta$ constant, as in the crytullisation experiments. Values of 1 were therafore ovaluated for each concentration using the appropriate Onsager equations.

DAEsintion Expertments gt $15^{\circ} 25^{\circ}, 35^{\circ}$, wad $65^{\circ} \mathrm{C}$.

The results are sumarised in Table 36 and some typical time plots of $1 / \mathrm{R}$ at $15^{\circ}, 25^{\circ}, 35^{\circ}$, and $45^{\circ} \mathrm{C}$. are shown in Fig. 29, the corresponding data being given in Tables $37-40$ 。 To obtain the order of the dissolution reaction, $\log \mathrm{dm} / \mathrm{dt}$ was plotted against $\log \left(m_{0}-7 i\right)$, and this was found to consist of two intersecting straight lines, gradients $n_{1}$ eud $n_{2}$, the value of $n_{2}$ being two. These plots are shown in Fig. 30. Thus, the equation

$$
\frac{d m}{d t}=k_{d} g\left(m_{0}-m\right)^{2}
$$

holds after an initial dissolution surge, and plots of $\mathrm{dm} / \mathrm{dt}$ against $\left(m_{0}-m\right)^{2}$ are given in Fig. 31.

Dissolution into salutions of $30 \%, 60 \%$ and $90 \%$ subsaturation was also found to follow a second order rate law, and the results are given La Fig. 32, and Table 41.

## 2. Radiochemical Studies.

The results are sumarised in Table 42, and plots of count rate against time are showa in Erg. 33. The initial count rate was obtained by applying a short extrapolation to zero time, and background corrections were made. All counts were then converted
to counts per minute per gram of solution, and the statisticel accuracy expressed in texms of the standard deviation, given by $\sqrt{N}$, where H is the total number of counts.

All diasolution experiments were allowed to go to equilibrium, and the final count rate was determined and corrected for decay. The final concentration was measured conductimetrically, and was found to be close to the solubility value of barium sulphate. Independent conductimetric determinations, in which carbon dioxide was rigorously excluded from the cell led to the same solubility value. Since the count sates of these final solutions were known, intermediate count rates during a run could be converted to molar concentrations.

The kinetics of dissolution were found to obey a second order rate law,

$$
\frac{d m}{d t}=k_{d} a\left(n_{0}-m\right)^{2}
$$

and $\mathrm{dm} / \mathrm{dt}$ is plotted against $\left(m_{0}-m\right)^{2}$ in Fig. 34, from data presented in Tables $43-45$.

## TABIE. 36.

Dissolutjon of Barium SuIphate.

| Experiment | Temperature ( $\left.{ }^{\circ} \mathrm{G}.\right)$ | $\begin{aligned} & \operatorname{mi}_{i} \times 10^{5} \\ & \text { moles } / \mathrm{I} \end{aligned}$ | Seed Suspension | Seed Conc. (mg/ml.) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 15 | - | B | 0.037 | 2.95 |
| 17 | 15 | - | B | 0.035 | 2.75 |
| 20 | 25 | - | $B$ | 0.017 | 5.25 |
| 22 | 25 | - | B | 0.016 | 5.20 |
| 37 | 35 | $\cdots$ | B | 0.026 | 7.50 |
| 26 | 45 | - | B | 0.066 | 17.50 |
| 28 | 45 | - | B | 0.032 | 12.50 |
| 34 | 25 | 0.8567 | B | 0.094 | 2.90 |
| 35 | 25 | 0.6476 | B | 0.086 | 18.00 |
| 36 | 25 | 0.3263 | B | 0.065 | 20.00 |

TABLE. $3 \%$
Dissolution of Barium Sulphate at $15^{\circ} \mathrm{C}_{0}$


Bun 16. Cell E2

| 0 min. 0.12353 | - | 0.9036 | - | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.13116 | 0.0242 | 0.8794 | 0.7733 | 4.78 |
| 15 | 0.14 .580 | 0.0711 | 0.8325 | 0.6931 | 2.68 |
| 30 | 0.15552 | 0.1022 | 0.8014 | 0.6422 | 2.36 |
| 1 hr. | 0.17121 | 0.1525 | 0.7511 | 0.5642 | 1.777 |
| 3 | 0.22363 | 0.3210 | 0.5826 | 0.3394 | 1.08 |
| 4 | 0.24159 | 0.3789 | 0.5247 | 0.2753 | 0.92 |
| 6 | 0.26909 | 0.4676 | 0.4360 | 0.1901 | 0.65 |
| 28 | 0.32072 | 0.6346 | 0.2690 | 0.0724 | - |

Run 17. Cell e.

| 0 min. | 0.06164 | - | 0.9036 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.06809 | 0.0206 | 0.8830 | 0.7797 | 4.06 |
| 15 | 0.08166 | 0.0639 | 0.8397 | 0.7051 | 2.52 |
| 30 | 0.09146 | 0.0883 | 0.8153 | 0.6647 | 1.83 |
| 1 hr. | 0.10379 | 0.1347 | 0.7689 | 0.5912 | 1.45 |
| 3.5 | 0.15250 | 0.2912 | 0.6124 | 0.3750 | 0.86 |
| 5 | 0.17286 | 0.3568 | 0.5468 | 0.2990 | 0.62 |
| 7 | 0.19482 | 0.4276 | 0.4760 | 0.2266 | 0.43 |
| 24.5 | 0.26856 | 0.6661 | 0.2375 | 0.0564 | - |



## Dissolytion of Bardun Sulphate at $25^{\circ}{ }^{\circ}$

Tine $\quad 30^{4} / \mathrm{R} \quad 10^{5} \mathrm{~m} \quad 10^{5}\left(\mathrm{~m}_{\mathrm{omm}}\right) \quad 10^{10}\left(\mathrm{~m}_{\mathrm{m}}-\mathrm{mm}\right)^{2} \quad \mathrm{dm} / \mathrm{dt} \times 10^{8}$ ohms mil moles/1. moles $/ 1$. moles $2 / 1$ ?

Run 20,

| 0 min | 0.11269 | - | 1.0246 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.12753 | 0.0379 | 0.9861 | 0.9724 | 9.36 |
| 15 | 0.16369 | 0.1305 | 0.8935 | 0.7983 | 5.20 |
| 30 | 0.18665 | 0.1895 | 0.8345 | 0.6964 | 4.28 |
| 1 hr. | 0.22042 | 0.2764 | 0.7476 | 0.5589 | 2.91 |
| 3.5 | 0.32233 | 0.5400 | 0.4840 | 0.2343 | 1.24 |
| 7 | 0.38838 | 0.7109 | 0.3131 | 0.0980 | 0.62 |
| 11 | 0.42667 | 0.8104 | 0.2136 | 0.0456 | 0.30 |
| 30.25 | 0.47842 | 0.9450 | 0.0790 | 0.0062 | - |

Bun 22.

| 0 min. | 0.05912 | - | 1.0246 | - | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.07388 | 0.0377 | 0.9863 | 0.9728 | 6.96 |
| 15 | 0.10401 | 0.1748 | 0.9092 | 0.8266 | 4.35 |
| 30 | 0.12617 | 0.1717 | 0.8523 | 0.7264 | 3.63 |
| 1 hr. | 0.15785 | 0.2532 | 0.7708 | 0.5941 | 2.89 |
| 2 | 0.20889 | 0.3849 | 0.6391 | 0.4084 | 1.72 |
| 5 | 0.30094 | 0.6231 | 0.4009 | 0.1607 | 0.99 |
| 7 | 0.33672 | 0.7259 | 0.3081 | 0.0949 | 0.76 |
| 24 | 0.38440 | 0.8397 | 0.1843 | 0.0340 |  |

Col1. ${ }^{\text {s. }}$

TABLE. 39.
Dissolution of Barium Sulphate at $35^{\circ} \mathrm{C}$.


Ron 37

| 0 min. | 0.16850 |  | 1.1960 |  | $=$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1.5 | 0.18857 | 0.0433 | 1.1527 | 1.3287 | 21.58 |
| 6 | 0.22512 | 0.1225 | 1.0735 | 1.1524 | 10.88 |
| 15 | 0.26291 | 0.2045 | 0.9915 | 0.9831 | 7.58 |
| 30 | 0.30360 | 0.2931 | 0.9029 | 0.8152 | 5.23 |
| 1 hr. | 0.36353 | 0.4239 | 0.7721 | 0.5961 | 3.67 |
| 1.5 | 0.41202 | 0.5300 | 0.6660 | 0.4436 | 2.87 |
| 2.5 | 0.47597 | 0.6702 | 0.5258 | 0.2765 | 2.33 |
| 3 | 0.51840 | 0.7634 | 0.4326 | 0.1871 | 1.91 |
| 7 | 0.63112 | 1.1565 | 0.0395 | 0.0156 | 0.31 |

Coll ${ }^{\text {E }}$

TASLE 40
Dissolution of Berjun Sulohate,

| T3ne | $\begin{gathered} 10^{4} / \mathrm{R} \\ 0 \mathrm{hmg} \mathrm{R}^{-1} \end{gathered}$ | $\begin{gathered} 10^{5} \mathrm{~m} \\ \text { moles } / 1 \end{gathered}$ | $\begin{gathered} 105^{5}\left(\mathrm{~m}_{0}-\mathrm{m}\right) \\ \text { moles } / \mathrm{ln} \end{gathered}$ | $\operatorname{loles}^{10}\left(\frac{\mathrm{~m}}{2}-\mathrm{m}\right)^{2} \mathrm{dm} / \mathrm{dt} x$ |
| :---: | :---: | :---: | :---: | :---: |

Run 26.

| 0 min。0.14.531 | - | 1.3890 | - | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.29040 | 0.2565 | 1.1325 | 1.2826 | 53.92 |
| 15 | 0.46376 | 0.5653 | 0.8237 | 0.6785 | 12.35 |
| 30 | 0.54081 | 0.7031 | 0.6859 | 0.4705 | 7.56 |
| 1 br. | 0.68991 | 0.9705 | 0.4185 | 0.1751 | 4.09 |
| 3.5 | 0.80466 | 1.1721 | 0.2169 | 0.0470 | 1.16 |
| 7.5 | 0.87320 | 1.3004 | 0.0886 | 0.0078 | 0.30 |
| 24 | 0.91937 | 1.3838 | 0.0052 | 0.0003 | - |

Run 28.

| 0 min | 0.144 .02 | - | 1.3890 | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0.23507 | 0.1607 | 1.2283 | 1.5087 | 39.13 |
| 15 | 0.38326 | 0.4241 | 0.9649 | 0.9310 | 11.78 |
| 30 | 0.4 .5830 | 0.5579 | 0.8311 | 0.6907 | 7.37 |
| $1 \mathrm{hr}$. | 0.56034 | 0.7403 | 0.6487 | 0.4208 | 4.85 |
| 4 | 0.78202 | 1.1384 | 0.2506 | 0.0628 | 1.10 |
| 7.5 | 0.84539 | 1.2526 | 0.1364 | 0.0186 | 0.33 |
| 24.75 | 0.89904 | 1.3493 | 0.0397 | 0.0016 |  |

Ce11. Es

## TABEE M

Disgolytion of Bariyn Sulphets into Sigbaturated Solution.


Pun 36. 90\% Subsaturated.

| 0 min | 0.28570 | 0.3263 | 0.6977 | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1.5 | 0.29936 | 0.3616 | 0.6624 | 0.4388 | 14.90 |
| 6 | 0.32639 | 0.4315 | 0.5925 | 0.3511 | 8.56 |
| 15 | 0.35517 | 0.5057 | 0.5183 | 0.2686 | 5.47 |
| 30 | 0.37815 | 0.5650 | 0.4590 | 0.2107 | 4.41 |
| 1 hx. | 0.41610 | 0.6630 | 0.3610 | 0.1303 | 2.72 |
| 3.5 | 0.49825 | 0.8751 | 0.1489 | 0.0222 | 0.37 |
| 5 | 0.51080 | 0.9075 | 0.1165 | 0.0136 | 0.30 |
| 6 | 0.51840 | 0.9272 | 0.0968 | 0.0094 | 0.21 |

Run 35. $60 \%$ Subsaturated.

| 0 min. | 0.54590 | 0.6474 | 0.3766 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.56461 | 0.6959 | 0.3281 | 0.1076 | $\$ .06$ |
| 9 | 0.57518 | 0.7232 | 0.3008 | 0.0905 | 2.15 |
| 15 | 0.58084 | 0.7378 | 0.2362 | 0.0819 | 1.51 |
| 30 | 0.59020 | 0.7620 | 0.2620 | 0.0686 | 1.14 |
| $1.4 r$ | 0.60099 | 0.7898 | 0.2342 | 0.0548 | 0.95 |
| 2.5 | 0.62490 | 0.8516 | 0.1724 | 0.0297 | 0.55 |
| 4.5 | 0.64435 | 0.9018 | 0.1222 | 0.0149 | 0.21 |

TABIE. 42 (cont.)

| Time | $\begin{gathered} 304 / \mathrm{R} \\ \text { ohms } \end{gathered}$ | $\begin{gathered} 10^{5} \mathrm{~m} \\ \text { moles } / 1 . \end{gathered}$ | $\begin{gathered} 10^{5}\left(m_{o-m i n}\right) \\ \text { moles } / 1 . \end{gathered}$ |  | $\mathrm{dm} / \mathrm{dt} \times 10^{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Run 34: $30 \%$ Subsaturation.

| 0 min. | 0.69090 | 0.8567 | 0.1673 | - |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1.5 | 0.69281 | 0.8616 | 0.1624 | 0.2638 | 16.01 |
| 6 | 0.69644 | 0.8710 | 0.1530 | 0.2341 | 8.69 |
| 15 | 0.70045 | 0.8814 | 0.1426 | 0.2033 | 6.15 |
| 30 | 0.70300 | 0.8879 | 0.1361 | 0.1852 | 4.65 |
| 1 hr. | 0.70850 | 0.9022 | 0.1218 | 0.1484 | 4.39 |
| 2 | 0.71660 | 0.9231 | 0.1009 | 0.1018 | 2.97 |
| 4 | 0.72735 | 0.9508 | 0.0732 | 0.0536 | 1.89 |
| 6 | 0.73481 | 0.9701 | 0.0539 | 0.0291 | 0.56 |

Cel1 E.

$$
\mathscr{F} \text { Subsaturation }=\frac{\text { Solubility product }- \text { initial conc. product }}{\text { Solubility Product }}
$$



Fiqure 29
171.


Figure 30.





Figure 31


Figure 32.

## Dissolution of Bexium Sulphate into Water. <br> Rediochomical Study.

| Experinent <br> Number | Temperature ( $\left.{ }^{\circ} \mathrm{G}.\right)$ | Seed <br> Suspension | $\begin{gathered} k_{\tilde{d}} \\ \text { moles }^{2} / 1_{1} 2_{0} / \min _{0} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 50 | 15 | D | 1100 |
| 42 | 25 | D | 1600 |
| 43 | 25 | D | 1400 |
| 45 | 35 | D | 44.00 |

TABLE 43.

## Dissolution of Berium Sulvhate at $15^{\circ} \mathrm{C}$.

| Time | Weight of Solution | c.p.mo/gm. | $\begin{gathered} 10^{5} \mathrm{~m} \\ \operatorname{moles} / 1 \end{gathered}$ | $\begin{aligned} & 10^{10}\left(\mathrm{~m}_{0}-\mathrm{m}\right)^{2} \\ & \mathrm{moles} 2 / \mathrm{m}^{2} . \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |

Run 50.

| 15 min. | 0.515 | $54.4 \pm 2.8$ | 0.082 | 0.675 | 8.04 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 30 | 0.505 | $129.5 \pm 3.5$ | 0.195 | 0.502 | 4.82 |
| 1 hr. | 0.508 | $176.6 \pm 4.0$ | 0.266 | 0.407 | 3.34 |
| 2 | 0.508 | $290.6 \pm 4.4$ | 0.438 | 0.217 | 1.99 |
| 4.25 | 0.499 | $419.7 \pm 5.7$ | 0.632 | 0.074 | 0.87 |
| 5.5 | 0.501 | $14.4 .9 \pm 5.0$ | 0.669 | 0.055 | 0.63 |
| 7.5 | 0.510 | $503.4 \pm 6.1$ | 0.758 | 0.021 | 0.42 |
| 10 | 0.511 | $519.0 \pm 5.7$ | 0.782 | 0.015 | - |
| 24.25 | 0.509 | $582.7 \pm 6.3$ | 0.878 | 0.007 | - |

## 



Run 42.

| 2 min. | 0.987 | $30.0 \pm 1.6$ | 0.025 | 0.998 | 16.23 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 0.989 | $217.5 \pm 4.6$ | 0.181 | 0.711 | 13.32 |
| 30 | 0.987 | $422.6 \pm 5.8$ | 0.352 | 0.452 | 6.70 |
| 1 hx. | 0.986 | $618.5 \pm 7.5$ | 0.515 | 0.259 | 3.71 |
| 1.5 | 0.987 | $717.0 \pm 3.3$ | 0.597 | 0.182 | 2.46 |
| 4 | 0.986 | $924.9 \pm 7.0$ | 0.770 | 0.065 | 0.69 |
| 6 | 0.989 | $1010.5 \pm 7.3$ | 0.841 | 0.033 | 0.22 |
| 24 | 0.983 | $1200.1 \pm 6.3$ | 0.999 | - | - |
| 72 | 0.990 | $1230.0 \pm 7.5$ | - | - | - |

Run 43.

| $1.5 \min$ | 0.512 | $90.0 \pm 3.1$ | 0.099 | 0.356 | 13.59 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 0.513 | $218.9 \pm 5.5$ | 0.218 | 0.650 | 8.45 |
| 30 | 0.509 | $346.4 \pm 6.7$ | 0.344 | 0.462 | 5.477 |
| 1 hr. | 0.513 | $464.8 \pm 7.4$ | 0.462 | 0.316 | 3.43 |
| 2 | 0.514 | $576.2 \pm 8.2$ | 0.573 | 0.204 | 1.67 |
| 3 | 0.506 | $672.8 \pm 5.5$ | 0.669 | 0.126 | 1.07 |
| 6 | 0.510 | $838.0 \pm 9.6$ | 0.833 | 0.036 | 0.68 |
| 7.5 | 0.502 | $875.2 \pm 10.4$ | 0.870 | 0.024 | 0.61 |
| 12 | 0.517 | $1000.2 \pm 19.9$ | 0.994 | 0.009 | 0.20 |
| 26 | 0.510 | $1017.4 \pm 9.9$ | 1.012 | 0.002 | $\ldots$ |

WABLE. 45
Dissolution of Bayum Sulohate et $35^{\circ} \mathrm{C}$.

| Time | Weight of Solution (gmo) | c.p.m. $/ \mathrm{gm}$. | $\begin{gathered} 105 \mathrm{~m} \\ \operatorname{moles} / \mathrm{I} \end{gathered}$ | $\begin{gathered} 10^{10}\left(\mathrm{~m}_{\mathrm{o}}-\mathrm{m}\right)^{2} \\ \text { moles } 2 / 1 \end{gathered}$ | $\mathrm{dm} / \mathrm{dt} \times 3.10^{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Bun 45.

| 1.5 min. 0.507 | $298.7 \pm 5.4$ | 0.317 | 0.7773 | 33.22 |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 15 | 0.507 | $568.5 \pm 7.1$ | 0.603 | 0.551 | 23.80 |
| 30 | 0.506 | $748.2 \pm 9.0$ | 0.794 | 0.162 | 7.69 |
| 1 hr. | 0.511 | $927.2 \pm 10.5$ | 0.984 | 0.045 | 3.35 |
| 2 | 0.510 | $1003.1 \pm 8.7$ | 1.064 | 0.017 | 0.92 |
| 3 | 0.509 | $1054.4 \pm 11.8$ | 1.119 | 0.006 | 0.44 |
| 5 | 0.505 | $1096.6 \pm 9.8$ | 1.164 | 0.001 | 0.19 |
| 28.25 | 0.513 | $1100.5 \pm 12.3$ | 1.168 | - | - |
| 72 | 0.509 | $1127.0 \pm 9.9$ | 1.196 | - |  |



$20 \mathrm{dm} / \mathrm{dt} \times 10^{8}$



Figure 34 .

## 180.

DISCUSSION.

After a short initial fast part, the diasolution of both lead sulphate and barium sulphate into subsaturated solutions at $25^{\circ} \mathrm{C}$. has been found to follow a second order rate law,

$$
\frac{d m}{d t}=k_{d} s\left(m_{0}-m\right)^{2}
$$

This was also observed for barium sulphate dissolution into water at temperatures between $15^{\circ}$ and $45^{\circ} \mathrm{C}$. Under similar experimental conditions, Howard, Hencollas and Purdie (113) found first order kinetics for the dissolution of both silver chloride and gilver chromate into subsaturated solutions, while Davies and Nancollas (38) showed that the dissolution of silver chloride into water was proportional to (subsaturation) ${ }^{3 / 2}$ 。 Jones mentioned (128) that lead sulphate dissolution followed a second order rate law, but did not state whether this was into water or subsaturated solution. It would seem, therefore, that the solution of sparingly soluble salts is not always a straightforward diffusion-controlled procese, and that for some 2:2 electrolytes some other step, possibly occurring at the crystal surface, is rate determining.

Dissolution must involve the following sinple steps:

1) Removal of a pair of ions from the crystal latice
2) Separation of the ions
3) Hydration of the ions
4) Difnsion avay from the mantace.

If I, 2, and 3 are auflciently rapid, the rate controlling mechenism will be one of diffusion of ions away from the surtace ( 4 ), and dissolution will follow a first oxder rate law, as has been found for silver chloride. The slow etop could, however, involve the removal of a pair of poaltive and negative lons from the crystel lattice, and their separation againsi mutual stisaction, and aubsequent hydration - i.e., steps 7, 2 and 3. In this case we might expoct a kinetic order grecter than unity. It is interesting thot gecond order kinetics have been observed for the dissolution of 2:2 electrolytes, since electrostatic forces of attraction between the Lons in the cxystel hateices, and bstween the fons thembelves will be much stronger than for a 1:1 pait. The work required to separate the lons will therefore be greater then for a I.I selt, and this is reflected in the differences in latice energy. The lattice energy of berium sulphate was estimated by the method of Kapustinskif (130), using the expression

$$
0=28 \%, 2 \ln \frac{z_{1} z_{2}}{r_{c}+r_{\mathrm{a}}}\left(1 \cdots \frac{0.345}{r_{\mathrm{c}}+x_{\mathrm{a}}}\right)
$$

where $J$ is the latitice onergy, $z_{2}$ and $z_{2}$ are the ionic charges, $x_{c}$ and $r_{2}$ are radius of cation and enion respectively, and $B_{n}$. is the number of ions in the molecule. The latitee energy was Sound to be approximately 540 K . Cals, and the value for lead sulphate will be stular. This can be compared with 207 KoGals .
for silver chloride.
The lower lattice energy associated with the 1:I electrolyte will mean that less energy is required to semove the ions from the crystal, and since a first order rate equation was usually followed, the subsequent diffusion of hydrated ions away from the surface must be slower than the seperation of ions from the crystal lattice. For 2:2 electrolytes the reaction at the suxface may be slower than the rate of diffusion, resulting in the observed second order kinetics. In supporit of this, the rete of golution of bertum sulphate was much less then that of silver chloride, although the two salts have similar solubilitles.

Unfortunately, the heat of hydration of the sulphate ion has not been reported in the Interature, end so it is not useful to attempt a comparison of the relative heats of hydration of 1:1 and 2:2 melta. It is interesting to note, howevex, that the Values (131) for $\mathrm{Pb}^{2 *}$ and $\mathrm{Ba}^{2+}(168$ and $210 \mathrm{~K} . \mathrm{Calsa}$ ) are not much


The rate of dissolution of baxium sulphate seed cxystals Was found to be greater when folloved by the radiochemical technique, as can be geon Iron Tables 36 and 42. There are two possible explenations for that, firctly the different fluid dynamica in operation in the two tochniques, due to chengea in the shape of the cells and the nethod of stiming. Secondy, the
greater efficiency of stirring by the rotary method, in comparison with the vibratory stirring, necessarily used in the conductivity experiments (113)。 With the large weights of seed crystals used in these experiments, a fair proportion may have been resting on the bottom of the cell, causing a reduction in the effective surface area available.

The lack of correlation in bariun aulphate crystallisation experiments (Table 25) between the weight of seed crystals supplied and the resulting rate constant could also be explained if a proportion of these exystals was inactive at the bottom of the cell, instead of paricipating fully in the growth process. Previous studies (132) have show a direct relationship to hold between rate constant and surface area of seeds used for inoculation. Because of the initial fast start of varying extent in both lead sulphate and barium sulphete dissolution experiments, it is not worthwhile to compare the subsequent rate constants with the weight of seed crystals used.

The initial dissolution suxge may be due to rapid solution occurring at aites of high locelised energy, such as the centres of dislocations, which, in the case of a divalent salt, will carry a fairly high charge. This would reauti in rapid dissolution from inner regions of the crystol, rather than uniform dissolution over the crystel surface, and would cease when the energy at the centre
became equal to that at the edge of the dishocation at the suriace. Dissolution would then proceed by the second order mechenism, the removal of lons from the lattice being the slow step. The method of preparation of the seed crystala of lead sulphate and barium sulphate, by precipitation rather than the alow recrystallisation method used for silver chloride, will favour the formation of many dislocetions.

Although this initiel surge wes observed without exception in the conductivity experiments, it was not found in the radiochemical study. It is possible that the sampling technique used in the trecer experiments was not suficiciently accurate, and that the surge was in Sact present, although undetected, since its duration was rarely more than 15 minutes. The initial pari of the radiochemical experiments was ucually the least accurate, since the length of time required to iemove a sumple for counting was such that a maximum of three meadings was possible in the first 15 minutes. Also, the count rate was lower at the gtart of a run, and the time taken to remove a sample, which could be as much as half a minute, had the greatest offect on the sccumacy. Adsomption of activity on the walls of the ginter tube into which the solution was dremm, and on the pipette with wich the sample was removed, would aiso have the greatest effoct during the early stages of the erperiment. With go many possible souxces of error in the indtial pointe, therefore,
little significance can be attached to the apparent lack of an initial surge in the tracer experiments.

When the logarithns of the rate constants at the three temperatures studied were piotted against the reciprocal of the temperature in degrees Absolute, the slope of the line corresponded to an energy of activation of 12 K . Cals./mole. Writing the solution process
$\mathrm{Ba}^{2+} \mathrm{SO}_{4}^{2-}(\mathrm{s}) \xrightarrow{\mathrm{Eg}_{\mathrm{g}}} \mathrm{Ba}^{2+} \mathrm{SO}_{4}^{2-}($ aq. $) \xrightarrow{-\mathrm{E}_{\mathrm{C}}} \mathrm{Sa}^{2 *}(\mathrm{aq}) \div \mathrm{SO}_{4}^{2-}$ (aq.) where $\mathrm{Ba}^{2 *} \mathrm{SO}_{4}^{2-}(\mathrm{aq}$ ) represents the activated intermediate in the hydrated monolayer, the heat of solution, $\Delta H=E_{s}-E_{c}=4 \mathrm{~K}$. Cals。 In view of the uncertainties in the detemination of $E_{C}$, and particularly in the radiochemical calculation of $E_{s}$, this agrees fairly well with the heat of solution of 5 K .Cals./mole calculated from the solubility of barium sulphate at various temperatures.

The rate of discolution of lead sulphote crystals was greatly retarded in the presence of tetrametaphosphate ions. A concentration of $7 \times 10^{\infty 8}$ moles $/ 1$. was sufficient to ceuse a small reduction in the rate of solution, and this is comparable with the concentration required to produce a similar effect in growth experiments. Slow yates of dissolution could just be detected at adsorbate concentrations as high as $5 \times 10^{-0} 5$ noles $/ 2$., and this contrasics with crystallisation, which was stopped by a concentration of $7 \times 10^{-7}$ moles/1. These

Observations are similer to those of Marc (5) who studied the growth and dissolution of potassium chlorate crystals and found that the dye Ponceau $2 R$ had a much greater effect on crystallisation than solution.

The adsorption of tetremetaphosphate ions on a crystal surface has been discussed on page 119. Assuning a monomolecular leayer of adsorbate molecules, the effective area which they would cover in Run 130 is 300 times greater than the available crystal surface area, which illustrates the inefficioncy of such impuritios for inhibiting dissolution. The presence of the adsorbate also led to an increase in the vaiues of $n$, an effect which was observed with both distilled and delonised waier, although more pronounced with the latter. This can be seen from Table 31.

Gilman, Johnston and Sears (79) heve postulated that dissolution of a perfect crystal surface in a solvent begins by the creation of unit pitis, one molecule deep, and that these pite grous as stops retreat across the surface by the action of kinks. On a real cxystal dislocations are likely to be preferential sites for the infitiation of such unit pits, and it may be assumed that dissolution proceeds from these sitos of localised high energy on the crystal faces. The energy of the dislocation will, however, be lowered by the presence of fmpurity molecules, since these will adsorb at the active sites. Thus, the rate of fomation of unit
pits, and hence the rate of solution, will be reduced.
Gilman, Johntion and Sears, who aade a photomicroscopic study of etch pit formetion in lithium fluoride crystels, observed the rafe of solution to be reduced by a factor of 10 in the presence of ferric lons. They found that the etch pits became deeper as the concentration of impurity was increased, because the poison retanded the movement of monomolecular steps so that dissolution proceeded more rapidy tnto the crystal then over ite surface.

In the lead suiphate experinents it is probable that the tetremetaphosphate ions lowered the energy at the dislocations, causing a decrease in the rate of solution. When a large concentration of impurity is present, it seers reasonable to assume that the energy of the dislocation will be reduced to such an extent that it is the same $2 \mathrm{as}^{2}$, or even less then, the remainder of the crystal suriace. In such a gituebion, with adsorbate ions occupying octive aites on the surface, there will be no preferential astes for the creation of unit pitis, and the rate of dissolution will be greatly seduced. Tnit pits would have to be initiated in energetically unfavourable conditions, and this will proceed slowly all over the surface, causing the obgerved Increase in the value of $n$. Even when a pit is fomed, it is likely to be quickly sovered by inpuxity molecules which will inhibit eny further dissolution. The presence of oxgenic contaminant fron deionised water would enhance
this effect, leading to the larger $n$ values for experiments in which this water was used. These can be seen from Table 31.

The presence of tetranetaphosphate ions only had a small effect on the duration of the initial surge, and this may be due to the size of the ions preventing them from entering the dislocation centres. Thus, the initial surge was able to take place, but once the energy differences were equalised, the rate of the subsequent second order dissolution was greatly reduced by the presence of the additive.

In two interesting papers Spitsyn and his comorkers (133,134) stated that the solubility in water or bariun sulphate cryatal.s labelled with radioective tracers changed with the specific activity of the salt. Uaing 35 sulphur, they observed a maximum solubility at an activity of $2 \mathrm{mG} / \mathrm{gm}$ of berium sulphate, although this maximum was leas pronounced when sulphuric acid was used in the precipitation instes of sodiuin sulphate Romette and Andergon (135) attempted to reproduce these results and found a constant solubility for barium sulphate at activities of 5,20 , and 50 mC //gin sulphur, corresponding to $0.75,3.0$, and 7.5 mC ./gm barium sulphote。 In the present work, the speciaic activity was approximately InCo/ Em , bamizm sulphate, and athough sulphume aidd was used in the proparation of the cyrystals, no variation in solubility was observed. This is in agrement with the results of Ramette and Anderson.

## BIBLIOGRAPHY。

（1）．VAN HOOK，＂Crystallisation，in Theory and Practice＂， Reinhold Publ．Coxpo，19\％1．
（2）．OSTWALD，Z．Physik．Chemo，1897，22，289．
ibid．，1897，23， 365.
ibid．，1900，24，444。
（3）．FISCHER，Anal．Chim．Acta，1960，22，501．
（4）．MARC，
Z．Physik．Chemo，1908，67， 385
（5）．MARC，
Z．Physik．Chem．， $1909,67,470$ ．
（6）．LEBLANC \＆SCFMANDT，
Z．Physik．Chemo，1911，77， 614
（7）。DAVIES \＆JONES，
Trans．Far．Soc．，1955，51， 812.
（8）．BIRCUMSHAW \＆RTDDIFORD，Quar＇C．Rev．，1952，6， 157.
（9）．TURNBULL，Acta．Met．，1953，1，684．
（10）．DOREMUS，J．Amer．Chem．Soc．，1958，80，1068．
（11）．O＇ROURKE \＆JOHNSON，Anal．Chemo，1955，27，1699．
（12）．COLLINS \＆LETNEWEBER，J．Phys．Ohem．，1956，60，389．
（13）．BEGKER \＆DORING，Ann．Physik．，1935，24，719．
（14）．GIBBS，＂Collected Works＂，Longmens，London，1928．
（15）．VOLMER \＆SGEUTIZE，Z。Phys。Cheme，193I，156A， 1.
（16）．FRANK，Disc．Far．Soc．，1949，5，48．
（17）．BURTON，CABRERA \＆FRAMK，Phil．Tgons．Roy．Soce，1951，A2L3， 299.
（18）．FRANK，Advenc．Phys． 1952.1991.
（19）．CAPRERA 品 VERMILYEA，＂Growth and Perfection of Crystals＂，
ed．Doramis，Roberts and Turnbull，p． 393
（20）A ALBON，
（21）．NEWKIRK，
（22）．NEWKIRK，
（23）．SEARS，
（24）．SEARS，
（25）．REYNOLDS \＆GREENE，
（26）．NIELSEE，
（27）．SEARS，
（28）．SEARS，
（29）．CHRISTIANSEN，
（30）．COLLINS，
（31）．VON WEIMARN，
（32）．CHRISTIANSER \＆NIELSERN，Acta Chem．Scand． $1951,5,673$.
（33）．KIEIN，CORDON \＆WALNUT，Talanta，1959，3， 187.
（34）．DUKE \＆BROWN，
（35）．LA MER \＆DINEGAR，
（36）．JOHNSON \＆ $0^{8}$ ROURKE， （37）．NIELSEEN，
（38）．DAVIES \＆NANCOLLAS，
（39）．DAVIES \＆NANCOLLAS，
（40）．DAVIES，JONES \＆NANCOLLAS，
（41）．TING \＆MCCABI，Ind。\＆Eng。Ohemo，1934，26，1201．
（42）．HOWARD \＆HANCOLLAS，
（43）．Nancollas \＆PJTDIE，

Phil。Mago，1963，ㅇ， 1335.
Acta。Meto，1955，3， 121.
Acta．Met．，1957，5， 52.
J．Chem．Phys．，1958，29， 979.
Acta．Meto，1955，2，361．
J．Appl。Phys．，1958，29，559．
Acta．Chem．Scand．，1959，13，784．
Acta．Met． 0 1953，1，457．
Acta。Meto，1955，3，367．
Acta Chem。Scand ${ }_{0}$ ，1954，8，909。
Z．Elektrochemo，1955，52，404．
Chem。Revo，1925，2， 217.

J．Amer．Chem．Soc．，1954，76，1443．
J．Amer．Chem．Soc．，1951，73，380。
J．Amer．Chem．Soc．，1954，76， 2124 。
Acta Chem．Scand．，1957，11，1512．
Trans．Fax．Soc．，1955，51，818．
ibid，1955，51，823．
ibid，1955，51，1232．

Trens．For．Soc．，1957，53，1449。
ibid，1951，57，2272．
（44）．CAMPBELLL \＆NANCOLLAS，
（45）．NANCOLLAS，
（46）．JONES \＆JOSEPH，
（47）．SHEDLOVSKY，
（48）．NAIR \＆NANCOLLAS，
（49）．DAVIES \＆NANCOLIAS，
（50）．HARTLEE \＆BARRATT，
uapublished resuilts．
Ph．D．Thesis，Wales， 1951.
J．Amer．Chem．Soc．，1928，50，1049。
J．Amer．Chem．Soc．，1930，52，1793．
J．Chem．Soc．，1958，41440
Chem．\＆Ind．，1950，7，129．
J．Chem．Soc．，1913，786．
（51）．KOHLRADSCH，＂Textbook of Analytical Chemistry＂， Treadwoll \＆Hall，5th od．，New York， 1924.
（52）．FRAZER \＆HARTLEY，
（53）．SHEDLOUSKY，
（54）．DAVIES，
（55）．WALTON，
（56）．VAN HOOK，
（57）．NAVCOLLAS \＆PURDIE，
（58）。 HaHRERET，
（59）．KOLTHOTF \＆VAN＇T RIET，J．Phys．Ghemo，1959，63， $81 \%$
（60）．KOLTHOFF \＆ROSENBTLM，J。Aner．Chem．Soc．，1935，57，2577．
（61）．KOLTHOMF \＆VAM＇T RIET，J．Phys．Chemo，1960，64，1045．
（62）．KOLTHOPE \＆ROSEIBBLIM，
（63）．KOLTHOFF \＆ROSERBLUM，
（64）．KOLTHOFF \＆ROSENBLDM，
（65）．BUCKIEY，＂Crystal Growh＂，Wiley，New York，1951，p．330．
（66）．OTANI
Bull．Chem．Soc．Japan，1960，33， 1543.
（67）．MIJURA，OTANI EP AL．，BuII．Chem．Soc．Japan，1963，36，1091． （68）．COLeman \＆SEARS，Acta Met．，1957，2， 131.
（69）．RIGTERINK \＆FRANCE，J．Phys．Chemo，1938，42，1079。
（70）．REITEMEIR \＆BUEHRER，J．Phys．Chem．，1940，圱，535．
（71）．PACKTER，
J．Phys．Chem． $1955,59,1140$ 。
（72）．MICHABLS \＆COLVILIE，J．Phys．Chem，1960，64； 13.
（73）．MICHAEJS \＆TAUSCH，J。Phys．Chem。，1961，65， 1730.
（74）．MIURA ET AL。，J．Phys．Chemo，1962，66， 252.
（75）．RAISTRICK，
Disc．Fax．Soco，1949，5，234。
（76）SEARS，J．Chera。Phys．，1956，25，154．
（77）SEARS，＂Growth and Perfection of Crystals＂； ed．Roberts，Doremus and Turnbull，p．441．
（78）．SEARS，J．Chem。Physo，1958，29，1045．
（79）．GILMAN，JOHNSTON \＆SEARS，J。Appl．Phys．，1958，29，747．
（80）．SEIDELL，＂Solubilities of Inorganic and Metal Organic Compounds＂，3xd edition，Vol．1，New York．
（81）．DAVIES，J．Chem．Soc．，1938， 2093.
（82）．JENKINS \＆MONK，J．Amer Chem．Soc．，1950，72， 2695.
（83）．NATR \＆NANCOLLAS，J．Chem．Soc．，1955，1458。
（84）．HARNED \＆OWEN，＂Physical Chemistry of Electrolyte Solutions＂． Reinhold Publ．Corpo，New York，1943，p．127．
（85）．GODDARD，HARVA \＆JONES，Trene．Far．Soc．，1953，49，980．
（86）．OTANI ET AL．，BuII．Chem．Soc．Japan，1959，32，68．
（87）．SUITO \＆TAKIYAMA， Bull．Chem．Soc．Japan，1954，27，123．
（38）．FTSCHER \＆RETNEHAMMER，Anal．Chem．，1953，25，1544．
（89）．WALTON \＆WALDEN， J．Amer．Chem．Soc．，1946，58，1742．
（90）．DAWSON \＆MCGAFINEX， 4th International Conference on ElectronMicroscopy，Berlin，1958．
（91）．NEUMANN， J．Amer．Chem．Soc．, 1933，55，879．
（92）．NORBERG \＆CLEMENDSON， Arkiv．Kemi．，Mineral Geolo，194．2，A16，
（93）．ROSSEINSKY， Trans．Far．Soc．，1958，54，116。
（94）．ROBINSON \＆STOKES，＂EIectrolyte Solutions＂，Butterworth＇s
Scientific Publications， 1955.
（95）．HARNED a OWEN，＂Physical Chemistryox Electrolyte Solutions＂，
Reinhold Publ．Corp．，1943，p．127．（2nd ed．）
（96）．GUNNING \＆GORDON， J．Chem．Phys．，1942，10，126．
（97）．OTANI ET AL．， Bul1．Chem．Soc．Japan，1962，33；1．54．9．
（98）．BUCHANAN \＆HETMAMM， J．Colloid Scio，1949，4，137。
（99）．BUCHANAN \＆HEXMANT， Proc．Roy．Soc．，1948，A195， 150.
（100）．VAN WAZER，＂Phosphorus and its Compounds＂，Vol．I，
Interscience，New York，1958，p．p．686，698．
（101）．AODRTETH \＆HILL， ..... J．Chem。Ed。，1948，25，80．
（102）．CTMING \＆SCHOLMANN， Aust．J．Chem．，1959，12，413．（103）．PETHICA \＆FEW，（104）．MATTJEVIC \＆PETHICA，（105）．CAMPBELL \＆NANCOLTAS，

Disc．Fas．Soc． $1954,18,258$ 。
Trans．Far．Soc．，1958，54， 1382. unpublished results．
（106）．VINOENT，Ph．D．Thesis，GIasgow，1963．
（107）．IVES \＆JANZ，＂Reference Electrodes＂，Academic Press，1961，

$$
\text { p. } 62 .
$$

（108）．LIGHSTETM \＆BRESCIA，J．Amer．Chem．Soc．，1957，72，1591． （109）．PEISACH \＆BRESCIA，ibid，1954，76，5946．
（110）．WOYES \＆WHITNBY，Z．Physik．Chean，1897，23，689．
（111）．RERNST，
ibid，1904，47，52．
（112）．VAN NAME 8：HILL，Amər，J。Sci。，1916，42， 301.
（113）．HOWARD，HANCOLIAS \＆PURDTE，Trans．Far．Soc．，1960，56，278．
（114）．KTNG \＆SCHAGK J．Amer．Ghem．Soc．，1935，57，1212．
（115）．KING ze BRAVERMANN，ibid，1932，54，1744．
（116）．JOHNSON \＆MACDONALD，ibid，1950，72， 666.
（1177）RTDDIFORD \＆BIRCUMSHAN，J．Chem．Soc． $1952,698$.
（118）．KING \＆LING LIU，J．Amer．Ghem。Soc．，1933，55， 1928
（119）．BRUNNER，Z．Physik。Chemo，1904，47，56．
（120）．FAGE \＆TOWNEN，Proc．Roy．Soc．，1932，A135，656．
（121）．KING，J．Amer．Chem，Soc．，1935，57， 828.
（122）．MARC，Z．Physik．Chemo，1912，79，71．
（123）．HERZFELD，Colloid Symposium Monograph，1930，p． $51=5 \%$
（124）．SEARS，
（126）．VAN NAME，
J．Chem，Phys．，1960，32，1317．
（127）．MOELWM－FUGHES，＂Rinetics of Reactions in Solutions＂， 2nd．Ed．，Gambridge，1947，po 370.
（128）．JONES，Trans．Far．Sne．，1963，59，2355．
（129）．FRANGIS，MOLLIGAN \＆WOMMALL，＂Isoṫopic Tracerg＂， Athione Press， 1954.
（130）．KAPUSTITNSKII，Quart．Rev．，1956，10，283．
（131）．BENJAMIN \＆GOLD，Trame．Fax．Soc．，1954，50，797．
（132）．HOWARD，Ph．D．．Thesis，Glasgow， 1958.
（133）．SPIYSXN，TORCHBRKOVA \＆GLAZKOVA，Dokl．Akad．Nauk．S．S．S．I 1960，132， 449 （Eng。Tro）
（134）．SPITSYN，TORCHENKOVA \＆GLAZKOVA，ibid，1960，133，929． （Eng。Tro）
（135）．RAMETTE \＆ANDERSON，JoInorg。 and Nucl．Cheme，1963，25，\％


[^0]:    Col1 $E_{0} \quad E=0.2615$.

