

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk

INTERACTIONS OF ANHYDROUS IRON(III) CHLORIDE WITH

CHLORINE, HYDROGEN CHLORIDE AND 1,1,1-TRICHLOROETHANE

.

A Thesis presented to the University of Glasgow

for the Degree of

Doctor of Philosophy

by

THERESE DRAPER

Department of Chemistry, University of Glasgow.

с. н. К

November, 1980.

ProQuest Number: 10984230

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10984230

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

ACKNOWLEDGEMENT

I should like to thank my supervisor, Dr. J.M. Winfield, for his advice, encouragement and interest throughout the course of this work. I would like to acknowledge my industrial supervisors, Dr. A. Prescott and Dr. N. Winterton (I.C.I. Ltd., Mond Division). I am also grateful to Dr. K.C. Campbell, Mr. T. Boyle, other members of staff and my fellow research students for many useful discussions. The award of a research studentship by the Science Research Council is gratefully acknowledged.

Finally, I wish to record my gratitude to my husband, my mother, the other members of my family and my friends for their encouragement and support over the last three years.

ABSTRACT

The catalytic ability of iron(III) chloride in the chlorination and hydrochlorination of hydrocarbons is well established and is of great commercial importance. Of equal importance is the dehydrochlorination of partially chlorinated ethanes, attributed to FeCl₃. In this work properties of FeCl₃ which are relevant to its catalytic behaviour were investigated.

The lability of the Fe(III)-Cl bond towards Cl_2 was investigated by performing heterogeneous reactions between FeCl₃ and ${}^{36}Cl_2$. Three types of FeCl₃ were used in this investigation and the surface area of each was determined by the B.E.T. method using 85 Kr as adsorbate. The interaction between ${}^{36}Cl_2$ and FeCl₃ was studied by two experimental techniques and the results showed that ${}^{36}Cl$ exchange between ${}^{36}Cl_2$ and FeCl₃ was not observed at room temperature under anhydrous conditions. ${}^{36}Cl_2$ was adsorbed by FeCl₃ and there was a qualitative correlation between adsorption and the surface area of FeCl₃.

To investigate the effect of dissolving FeCl₃ in a non-aqueous solvent the reaction between FeCl₃ and acetonitrile was examined. Previous work had shown that complexation, solvolysis and a slow reaction

to give [Fe^{II}(CH₃CN)₆] [Fe^{III}Cl₄]₂ can occur. In the present work the $Fe^{III} \rightarrow Fe^{II}$ reduction was followed by electronic spectroscopy. The reaction was characterized by the colour changes red \rightarrow orange \rightarrow pale yellow and required about a week. The effect of adding chlorine to this system was studied. Chlorine was appreciably soluble in acetonitrile and 36 Cl, underwent exchange with FeCl, readily in this solvent Exchange was the result of chlorination of at 298K. the solvent. This reaction involved solvolysis of FeCl₃ and an Fe^{II} |Fe^{III} redox cycle. The extent of chlorination of the solvent was examined by GLC analysis. Chlorination of acetonitrile was significant and far greater than in the absence of FeCl₃. The ability of FeCl₃ to act as a catalyst for the chlorination of acetonitrile is related to the redox cycle Fe^{III} | Fe^{II} and a mechanism for this reaction is suggested.

Heterogeneous reactions between $H^{36}Cl$ and $FeCl_3$ show that ^{36}Cl exchange was not observed between anhydrous $H^{36}Cl$ and anhydrous $FeCl_3$ at room temperature. Under these conditions $H^{36}Cl$ was not adsorbed by the $FeCl_3$ surface. ^{36}Cl exchange and adsorption of $H^{36}Cl$ both occur in the presence of small quantities of water. The exchange characteristics of the reactions between $FeCl_3$ (treated with water vapour) and $H^{36}Cl$, ' $FeCl_3.H_2O$ ' and $H^{36}Cl$ and $FeCl_3.6H_2O$ and $H^{36}Cl$ were compared.

The dehydrochlorination of 1,1,1-trichloroethane was investigated by studying the reaction between FeCl₃ and both unstabilized and stabilized CH₃CCl₃. The reaction between FeCl, and unstabilized CH₃CCl, produces vinylidene chloride and HCl. Iron(II) and Iron(III) analysis of the FeCl, showed that in the presence of light some reduction of $Fe^{III} \rightarrow Fe^{II}$ occurred. The effect on the production of vinylidene chloride and Fe^{II} of adding HCl, H₂O and CH₃CN to a mixture of FeCl, in CH₃CCl, was investigated. Storing mixtures of FeCl₃ in CH_3CCl_3 in the dark also affected the amount of vinylidene chloride produced. 36-Chlorine exchange was not observed between H³⁶Cl and a mixture of FeCl, in CH₃CCl₃ under anhydrous conditions at room temperature. Addition of water to this system resulted in ³⁶Cl exchange. The interaction of FeCl, with stabilized CH_3CCl_3 showed no evidence for the production of either vinylidene chloride or HCl and ³⁶Cl exchange occurred between H³⁶Cl and a mixture of FeCl₃ in stabilized CH3CC13.

CONTENTS

	•	
		Page Number
CHAPTER 1	INTRODUCTION:- A Survey of Iron(III) Chloride's Chemistry.	1
1.1	Solution Chemistry of Iron(III) Chloride	2
1.1.1	Non-Aqueous Solutions	3
1.1.2	Aqueous Solutions	11
1.2	Fe ^{II} /Fe ^{III} Photoreactions	13
1.3	Friedel-Crafts Reactions	16
1.4	Chlorinated Solvents	17
1.4.1	Chlorination Reactions	18
1.4.2	Dechlorination Reactions	21
1.4.3	Hydrochlorination Reactions	22
1.4.4	Dehydrochlorination Reactions	23

CHAPTER 2	EXPERIMENTAL	26
2.1	Equipment	26
2.1.1	The Vacuum System	26
2.1.2	The Inert Atmosphere Box	27
2.1.3	Electronic Spectroscopy	27
2.1.4	Infrared Spectroscopy	28

Page	Number	
	28	

2.2		Preparation of Materials	28
	2.2.1	Preparation of FeCl ₃	28
		Method A. Preparation of FeCl ₃	28
		FIOM Fe(wile) + Ci ₂	20
		From SOCL, Dehydration of	29
		FeCl ₃ .6H ₂ O	
		Method C. Commercial FeCl ₃	30
	2.2.2	Preparation of Tetraethylammonium	30
		Tetrachloroferrate	
	2.2.3	Preparation of 36-Chlorine	30
	2.2.4	Preparation of Hydrogen 36-Chloride	31
		Method A	32
		Method B	32
2.3		Analytical Techniques	33
	2.3.1	Analysis of Chlorine and Hydrogen Chloride	33
	2.3.2	Analysis of Iron(III) Chloride	35
	2.3.3	Analysis of Iron's Oxidation State	36
2.4		Purification Methods	37
	2.4.1	Purification of Hydrogen Chloride	37
	2.4.2	Purification of Acetonitrile	38
	2.4.3	Purification of 1,1,1-Trichloroethane	39
2.5		Determination of Specific Activity By Geiger-Muller(GM) Counters	39
	2.5.1	Plateau Curve	40
	2.5.2	Dead Time	41

42 Background 2.5.3 43 Self-Absorption 2.5.4 44 Statistical Errors 2.5.5 45 Exchange Reactions 2.6 2.6.1 Exchange Method A 46 Exchange Method B 2.6.2 48 Gas-Liquid Chromatography 49 2.7 Surface Area Determination 2.8 50

Page Number

CHAPTER 3 SURFACE AREA DETERMINATION OF 53 IRON(III) CHLORIDE

CHAPTER 4	INTERACTION OF IRON(III) CHLORIDE WITH CHLORINE	57
4.1	Exchange Reactions	57
4.1.1	Choice of Isotope	60
4.2	Experimental	61
4.2.1	Adsorption of ³⁶ Cl ₂ by the Reaction Vessel	61
4.2.2	FeCl ₃ (Sample A) and ³⁶ Cl ₂ :- Exchange Method A	62
4.2.3	FeCl ₃ (Sample A) and Cl ₂ :- Exchange Method A	63

		Page Number
4.2.4	FeCl ₃ (Sample B) and ³⁶ Cl ₂ :- Exchange Method A	64
4.2.5	FeCl ₃ (Sample B) and Cl ₂ :- Exchange Method A	64
4.2.6	FeCl ₃ (Sample C) and ³⁶ Cl ₂ :- Exchange Method A	65
4.2.7	FeCl ₃ (Sample C) and Cl ₂ :- Exchange Method A	65
4.2.8	FeCl ₃ (Sample C) and CHCl ₃ :- Exchange Method A	65
4.2.9	FeCl ₃ (Sample A) and ³⁶ Cl ₂ :- Exchange Method B	65
4.2.10	FeCl ₃ (Sample B) and ³⁶ Cl ₂ :- Exchange Method B	66
4.2.11	FeCl ₃ (Sample C) and ³⁶ Cl ₂ :- Exchange Method B	67
4.2.12	FeCl ₃ CH ₃ CN ³⁶ Cl ₂ : RUN I	67
4.2.13	FeCl ₃ CH ₃ CN ³⁶ Cl ₂ : RUN II	68
4.2.14	Analysis of Iron's Oxidation State in FeCl ₃ CH ₃ CN and FeCl ₃ CH ₃ CN Cl ₂	68
4.2.15	Electronic Spectra of $FeCl_3 CH_3 CN$ and $FeCl_3 CH_3 CN Cl_2$	69
4.2.16	GLC Analysis of $CH_3CN Cl_2$, FeCl_3 CH_3CN and FeCl_3 CH_3CN Cl_2	70
4.2.17	GLC Analysis of FeCl ₃ CH ₃ CN Cl ₂ Using Varying Amounts of Cl ₂	72
4.2.18	GLC Analysis of [Fe(CH ₃ CN) ₆] [PF ₆] ₂ CH ₃ CN Cl ₂ Using Varying Amounts of Cl ₂	72

4.3		Results From the Heterogeneous Reactions	75
	4.3.1	Exchange Method A	75
	4.3.2	Exchange Method B	80
4.4		Discussion of the Heterogeneous Reactions	85
4.5		Results from the Homogeneous Reactions:- Iron(III) Chloride Dissolved in Acetonitrile	89
	4.5.1	Interaction of FeCl ₃ with CH_3CN and ${}^{36}Cl_2$:- RUN I	90
	4.5.2	Interaction of FeCl ₃ with CH_3CN and $^{36}Cl_2$:- RUN II	92
	4.5.3	Oxidation State of Iron in the $FeCl_3 CH_3CN \text{ and } FeCl_3 CH_3CN Cl_2$ Systems	94
	4.5.4	Chlorination of the Solvent	97
4.6		Discussion of the Homogeneous System:- Iron(III) Chloride Dissolved in Acetonitrile	99

Page Number

1

CHAPTER 5 INTERACTION OF IRON(III) CHLORIDE 113 WITH HYDROGEN CHLORIDE 114 5.1.1 Experimental 114 5.1.1 Interaction of H³⁶Cl with the 114 Glass Exchange Vessel 5.1.2 Interaction of FeCl₃ and H³⁶Cl 116

			Page Number
	5.1.3	Interaction of FeCl ₃ (Treated with Water Vapour) and H ³⁶ Cl	117
	5.1.4	Interaction of 'FeCl ₃ .H ₂ O' and H ³⁶ Cl	119
	5.1.5	Interaction of $FeCl_{3}.6H_{2}O$ and $H^{36}Cl$	120
	5.1.6	Interaction of $[(C_2H_5)_4N]$ [FeCl ₄] and H^{36} Cl	122
5.2		Results	122
	5.2.1	Interaction of H ³⁶ Cl with the Glass Reaction Vessel	122
	5.2.2	Interaction of FeCl ₃ and HCl	123
	5.2.3	Interaction of FeCl ₃ (Treated with Water Vapour) and H^{36} Cl	124
	5.2.4	Interaction of 'FeCl ₃ .H ₂ O' and H ³⁶ Cl	127
	5.2.5	Interaction of FeCl ₃ .6 H_2^{O} and $H^{36}Cl$	127
	5.2.6	Interaction of $[(C_2H_5)_4N]$ [FeCl ₄] and H^{36} Cl	129
5.3		Discussion	130

CHAPTER 6	INTERACTION OF IRON(III) CHLORIDE WITH 1,1,1-TRICHLOROETHANE	136
6.1	Experimental	138
6.1.1	IR Analysis of the Vapour From	138
	the $FeCl_3 CH_3CCl_3$ System	

Page Number GLC and Fe^{II} Analysis of the 138 6.1.2 FeCl₃|CH₃CCl₃ System Electronic Spectra of the 139 6.1.3 FeCl₃|CH₃CCl₃, FeCl₃|CH₃CCl₃|HCl and FeCl₃ |CH₃CCl₃ |HCl |H₂O Interaction of FeCl₃ with CH₃CCl₃ 140 6.1.4 and H³⁶Cl Monitored by Exchange Method A Interaction of FeCl₃ (Treated with 142 6.1.5 Water Vapour) with CH3CCl3 and H³⁶Cl Monitored by Exchange Method A 6.1.6 Interaction of FeCl₃ with CH₃CCl₃ 144 and H³⁶Cl Monitored by Exchange Method B 6.1.7 IR Analysis of the Vapour from 145 FeCl₃ | stabilized CH₃CCl₃ GLC and Fe^{II} Analysis of 6.1.8 146 FeCl₃ | stabilized CH₃CCl₃ FeCl₃ | stabilized CH₃CCl₃ | HCl 6.1.9 Electronic Spectra of 146 FeCl₃ | stabilized CH₂CCl₃ FeCl₃ | stabilized CH₃CCl₃ | HCl 6.1.10 Interaction of FeCl₃ with stabilized CH₃CCl₃ 147 and H³⁶Cl Monitored by Exchange Method A 6.1.11 Interaction of FeCl, with stabilized CH₂CCl, 148 and H³⁶Cl Monitored by Exchange Method B

6.2.	Results	
6.2.1	Interaction of FeCl ₃ with CH_3CCl_3	149
6.2.2	GLC and Fe ^{II} Analysis of the FeCl ₃ CH ₃ CCl ₃ System	149
6.2.3	Electronic Spectra of	150
	$\begin{aligned} & \operatorname{FeCl}_{3} \operatorname{CH}_{3} \operatorname{CCl}_{3}, \operatorname{FeCl}_{3} \operatorname{CH}_{3} \operatorname{CCl}_{3} \operatorname{HCl} \\ & \operatorname{and} \operatorname{FeCl}_{3} \operatorname{CH}_{3} \operatorname{CCl}_{3} \operatorname{HCl} \operatorname{H}_{2} \operatorname{O} \end{aligned}$	151
6.2.4	Interaction of FeCl ₃ with CH ₃ CCl ₃ and H ³⁶ Cl Monitored by Exchange Method A	151
6.2.5	Interaction of FeCl ₃ (Treated with Water Vapour) with CH ₃ CCl ₃ and H ³⁶ Cl Monitored by Exchange Method A	153
6.2.6	Interaction of FeCl ₃ with CH ₃ CCl ₃ and H ³⁶ Cl Monitored by Exchange Method B	154
6.2.7	Interaction of FeCl ₃ with stabilized CH ₃ CCl ₃	155
6.2.8	Oxidation State of Iron in FeCl ₃ stabilized CH ₃ CCl ₃ and FeCl ₃ stabilized CH ₃ CCl ₃ HCl	156
6.2.9	Interaction of FeCl ₃ with stabilized CH ₃ CCl ₃ and H ³⁶ Cl Monitored by Exchange Method A	157
6.2.10	Interaction of FeCl ₃ with stabilized CH ₃ CCl ₃ and H ³⁶ Cl Monitored by Exchange Method B	159
6.3	Discussion	159

Conclusions.

165

C H A P T E R O N E

CHAPTER 1

INTRODUCTION:- A SURVEY OF IRON(III) CHLORIDE'S CHEMISTRY

Metal chlorides (FeCl₃, NiCl₂, CuCl₂ and AlCl₃) are used as catalysts for the addition of Cl₂ to alkenes and alkynes and HCl to alkynes. FeCl₃ is of the greatest commercial importance as the chlorination of acetylene, in liquid tetrachloroethane is probably the longest established route to chlorinated hydrocarbons. Of equal importance is the dehydrochlorination of partially chlorinated ethanes which is a problem in the industrial preparation of chlorinated hydrocarbons and is also attributed to FeCl₃. An example of a hydrochlorination reaction is shown in reaction scheme 1. I

 $CH_{2} = CHCl + HCl \xrightarrow{FeCl_{3}} CH_{3} - CHCl_{2}$ $\downarrow Cl_{2}$ $CH_{2} = CCl_{2} \xrightarrow{-HCl} CH_{3} - CCl_{3} + HCl$ $+ (FeCl_{3}) + CHcl = CHCl CH_{2} + Hcl$

Scheme 1.I

The reasons for iron(III) chloride's catalytic ability are not well understood as was illustrated by an explosion which occurred during the course of this work. An iron(III) chloride plant owned by Dow Chemical in Pittsburg, California exploded, killing two and injuring 101 workers.¹

The explosion occurred when iron(III) chloride unexpectedly decomposed to form iron(II) which reacted with the chlorinated pyridine solvent present to form tars, regenerating the iron(III) chloride. The iron(III) chloride then reacted with some iron, forming more iron(II) chloride and thereby starting a chain reaction. One of the side-products from this reaction was hydrogen chloride, and it was the build-up in pressure due to the formation of this gas which caused the explosion.² Some aspects of this reaction have not been fully clarified eg. it is unclear why the iron(II) chloride was initially formed and why the chlorinated solvent, which was believed to be inert, should have participated in the reaction.

There is much in this area of chemistry which is not fully understood and this work was undertaken to investigate the role of iron(III) chloride in some of these reactions and in particular to examine the lability of the $\overrightarrow{Fe-Cl}$ bond.

1.1 SOLUTION CHEMISTRY OF IRON(III) CHLORIDE.

Iron(III) chloride is an effective catalyst in the preparation of chlorinated hydrocarbons. FeCl₃, however, is sparingly soluble in many of these reaction mixtures and there is evidence that catalysis depends on the presence of a 'co-catalyst' which dissolves the iron(III) chloride. Thus donor solvents such as water, organic-nitro compounds and, in general, organic Lewis bases should increase the catalytic activity.^{3,4,5.} The reaction rate is often enhanced initially by water, but total inhibition can occur if the concentration of the co-catalyst is too high.⁴ Nitroalkanes and nitrobenzenes appear both to improve the solubility of FeCl₃ in chloroalkanes and to increase the rate at which these reactions proceed.

1.1.1. NON-AQUEOUS SOLUTIONS.

The types of species which FeCl₃ exists as when dissolved in a non-aqueous solvent are important as these may be the catalytically active species. The following equilibria, based on evidence obtained by ultra-violet spectroscopy, represent different extents to which chloride ion dissociation can occur when iron(III) chloride is dissolved in a non-aqueous solvent, S.^{6,7,8} (Scheme 1.II.)

$$[\operatorname{FeCl}_{3}]_{x} + \operatorname{yS} \longrightarrow [(\operatorname{FeCl}_{3})_{x}\operatorname{Sy}]$$

$$0.5x \operatorname{Fe} \operatorname{S}_{4}\operatorname{Cl}_{2}^{+} + 0.5x \operatorname{FeCl}_{4}^{-} + (\operatorname{y-2x})\operatorname{S}_{4}^{-}$$

$$\operatorname{FeS}_{4}\operatorname{Cl}_{2}^{+} \xrightarrow{\operatorname{S}}_{C1}^{-} \operatorname{FeS}_{5}^{-} \operatorname{Cl}_{4}^{2} + \operatorname{S}_{6}^{-}$$

Scheme 1.II

In non-aqueous solvents, the species formed will depend upon the specific properties of the solvent. The species which predominate in solution will be dependent on the donor-strength, solvating power and dielectric constant of the solvent. This means that a strong donor solvent will cause more chloride ion dissociation than a weak donor solvent. A highly polar, strongly solvating solvent will promote ionisation. The polar solvent will interact more strongly with charged ions than with FeCl₃ molecules. A solvent with a low dielectric constant will inhibit charge separation whilst a high dielectric constant will promote it. The donor-strength of a solvent towards a cation is difficult to measure directly. The relative donor strengths of a solvent can be estimated by comparing enthalpy data obtained from the gas phase or a poorly solvating solvent. When a series of similar ligands are used information on the size of the metal ion-ligand interaction can be gained from the spectrochemical parameter Dq. The solvating properties of a solvent can be estimated by comparing the association constant, Kas, for tetraalkylammonium halides in the solvents of interest. Useful information can also be gained by comparing the Z values of the solvents.⁹ These are measures of the effect solvation has on the energy of the charge-transfer transition of an N- substituted pyridinium ion.

From these considerations it can be seen that the choice of solvent will determine the iron species formed in solution. The existence of the Fe_2Cl_6 dimer has been reported in the vapour phase ¹⁰ (Formula 1.I) but despite claims that the dimer exists in non-donor solvents such as benzene, toluene and ether,¹¹ it has been shown that in these solvents the type of species is $[(FeCl_3), Sy]$.^{12,13}

In these solvents FeCl_3 is photosensitive and upon irradiation reacts with the solvent yielding FeCl_2 and chlorinating the solvent.¹².

In a recent Mossbauer study¹⁴, it was established that iron(III) chloride exists solely in the dimeric or polymeric forms in benzene and nitrobenzene. In acetone, acetonitrile, pyridine and dimethylformamide both monomeric and dimeric (or oligomeric) solvates exist, whilst in ethanol only the monomeric form exists. This investigation, however, was performed on samples which were frozen immediately after being prepared and would therefore only give information on the species initially formed in solution. If the equilibria reactions of complexation through to solvolysis are established slowly then this investigation gives no information on the final species formed in solution.

It has also been reported that iron(III) chloride exists as the dimer in concentrated solutions of methanol.¹⁵ This was established by X-ray techniques which compared the radial-distribution functions of the FeCl₃ - methanol solutions with those from an electrondiffraction study of vapour-phase Fe₂Cl₆. Another investigation in which the ultraviolet spectra of this solution were examined stated that both FeS_5Cl^{2+} and $Fes_4Cl_1^{\dagger}$ exist in solution.⁸ Methanol is a complex solvent since it is capable of extensive hydrogen bonding interactions. As it is a good donor solvent it would seem more likely that dissociation of iron(III) chloride would occur in this solvent. At the moment, therefore, there is no conclusive evidence in the literature for the existence of the Fe₂Cl₆ dimer in solution.

The solvent equilibria, shown in Scheme 1.II are very dependent on the solvent used. Dimethylsulphoxide has a

sufficiently high dielectric constant to lead to solute ionization and is a fairly good Lewis base. It is expected to exhibit good donor ability towards the metal ion, good anion solvation and to be capable of supporting It has been shown, by spectroscopic measureionization. ments, that when iron(III) chloride is dissolved in dimethylsulphoxide, (DMSO), the main species present are [Fe(DMSO)₅Cl]²⁺ and Cl⁻. An X-ray structure determination has been performed on crystals obtained from a solution of anhydrous iron(III) chloride in DMSO. These crystals were composed of trans- $[FeCl_2(DMSO)_4]^+$ and $FeCl_4^-$ ions.¹⁶ The species which exist in solution, however, are not necessarily the same as these in the solid state. In N-methyl formamide, a solvent with slightly less donor ability but which is a very good solvating solvent, FeCl₃ exists primarily as Fe(NMA)₆³⁺ and Cl^{-.8} Acetonitrile is a weak donor, of moderate solvating ability and the main species present in this solvent are [Fe(CH₃CN)₄Cl₂]⁺ and FeCl, -. 17

The solution chemistry of FeCl₃ is further complicated in some solvents by the reduction of Fe^{III} to Fe^{II} and the chlorination of the solvent. A slow reduction of FeCl₃ occurs in acetonitrile and after a week at room temperature $[Fe^{II}(CH_3CN)_6]$ $[Fe^{III}Cl_4]_2$ can be isolated from solution.¹⁸ The structure of crystals obtained from a solution of iron(III) chloride in acetonitrile has been obtained and found to contain two tetrahedra $(Fe^{III}Cl_4^{-})$ and one octahedron $[Fe^{II}(CH_3CN)_6]^{2+.19}$ The extent of the reduction from Fe^{III} to Fe^{II} is influenced by metal chlorides. When strong chloride ion acceptors such as antimony penta-

chloride are added to a solution of FeCl, in acetonitrile then complete reduction from Fe^{III} to Fe^{II} occurs and the species formed is [Fe^{II}(CH₃CN)₆][SbCl₆]₂. The addition of a chloride ion donor, example LiCl, causes no reduction of Fe(III) to Fe(II) and the species formed is Li(CH₃CN)₄ (FeCl₄).²⁰ The explanation offered for these incomplete reductions is that when FeCl₃ is dissolved in acetonitrile, the species formed in solution are $Fe(CH_3CN)_4Cl_2^+$ and FeCl₄. The cation, Fe(CH₃CN)₄Cl₂⁺ is much more easily reduced than the tetrachloroferrate ion and results in only one-third of the iron being reduced to Fe²⁺. It would appear that Fe³⁺ is only stable in acetonitrile when it is surrounded by four chloride ions as the introduction of strong chloride ion acceptors resulted in the complete reduction of the iron(III) whereas chloride ion donors effectively stopped the reduction. It has been shown that the compound $[Fe(CH_3CN)_6][FeCl_4]_2$ can be prepared directly from iron wire and chlorine in acetonitrile.²¹ (Equation 1.I).

$$3Fe + 4Cl_2 + 6CH_3CN \longrightarrow [Fe^{II}(CH_3CN)_6] [Fe^{III}Cl_4)_2$$

Equation 1.I.

It has been suggested that nitromethane behaves in a similar manner to acetonitrile when used as a solvent for iron(III) chloride.²² In the partial reduction of iron, chlorination of the solvent must occur with evolution of HCl, but this aspect of the reaction was not studied. Chlorination of acetonitrile by other transition metal chlorides has been reported and it is known that a number

of metal chlorides are reduced to a lower oxidation state of the metal when reacted in excess acetonitrile. Vanadium(IV) chloride forms the complex $VCl_4 ^{2}CH_3 ^{CN}$ when reacted with acetonitrile in a carbon tetrachloride solution but when reacted directly in an excess of acetonitrile, the vanadium is reduced and $VCl_3 ^{3}CH_3 ^{CN}$ is formed.²³ This reaction also occurred in other alkyl cyanide solutions, RCN where R = Et, Pr^n . In this reaction HCl is evolved which implies that chlorination of the solvent has occurred. Although the oxidation products are not fully investigated, when only a slight excess of acetonitrile is used the infrared spectrum of the volatile liquid shows C-Cl stretching frequencies. This indicates that some chlorination of the acetonitrile has occurred.

When molybdenum(V) chloride, tungsten(VI) and tungsten(V) chloride are dissolved in acetonitrile, they are completely reduced.²⁴

- 1. $MOCl_5$ gave $MOCl_4 (CH_3CN)_2$
- 2. WCl₆ gave WCl₄(CH₃CN)₂
- 3. WCl₅ gave WCl₄ (CH₃CN)₂

The oxidation products from these reactions were not identified but it was noted that on removal of all the volatile material, the infrared spectrum showed no evidence of any halogenated species. It was suggested in both these papers that as hydrogen chloride was formed, a hydrogen atom must have been abstracted from the acetonitrile thus leaving the radical $\cdot CH_2CN$ which could dimerise or initiate further polymerisation. It was noted that hydrogen chloride can form the unstable compound

[CH₃CNH]⁺[HC1₂]⁻ on reaction with acetonitrile.

In the reduction of ReCl_5 to $\text{ReCl}_4(\text{CH}_3\text{CN})_2$ in the presence of acetonitrile, the oxidation products were examined.²⁵ After extraction of the reaction products, an oil was isolated with an empirical formula of $C_{8.5}^{\text{H}}$, NCl_2 and a molecular weight of 240 in benzene. This molecular weight neither corresponds to, nor is it a multiple of, the empirical formula which suggests that a mixture of compounds has been isolated. An infrared spectrum was recorded and contained bands due to the C-Cl stretching frequencies.

The main organic oxidation product has been fully characterized in only one instance, the reaction between VCl₄ and excess acetonitrile. The product was identified by chemical analysis, mass spectrum, infrared spectrum and NMR spectroscopy and found to be 2-methyl-4,6-bis(trichloromethyl)-1,3,5-triazine. (Formula 1.II)²⁶

Formula 1.II

The mechanism proposed for the formation of this product is shown in scheme 1.III

Scheme 1.III

Only the final product from this reaction scheme was actually characterized and no evidence was given for the formation of CCl₃CN or of CH₂ClCN, which would be a reason-The initial stages in this reaction, able precursor. therefore, are not clear.

The reverse process to the reduction of transition metal chlorides by acetonitrile is the ability of monochloro, dichloro and trichloroacetonitrile to oxidise and complex with various transition metal chlorides. 27,28 Both tungsten(V) and tungsten(VI) chloride react to give the same complex, WCl₆.2CCl₃CN on treatment with trichloroacetonitrile. ie. tungsten(V) has been oxidised to tungsten(VI) in the presence of CCl₃CN. X-ray work has shown that this compound exists as trans-[(CCl₃CN)WCl₄-(NCCl₂CCl₃)]. Titanium(III) chloride can be oxidised by

mono-, di- and trichloroacetonitrile yielding the compounds TiCl₄.2CH₂ClCN, TiCl₄.2CHCl₂CN and TiCl₄.CCl₃CN respectively. Treatment of the trichloroacetonitrile complexes with a small amount of acetonitrile causes replacement of the trichloroacetonitrile ligands by acetonitrile ligands. This means that even in systems where acetonitrile is oxidised to the CCl₃CN, only the acetonitrile complex would be observed in the presence of even a slight excess of acetonitrile.

1.1.2. AQUEOUS SOLUTIONS.

It is extremely difficult to obtain anhydrous iron(III) chloride and, therefore, water is often a contaminant in the reaction mixtures of iron(III) chloride in chlorohydro-The type of species which FeCl₂ exists as in carbons. an aqueous solution is of some importance. Many investigations have been carried out on aqueous solutions and some conflicting results have been obtained. I.R., U.V. and Mossbauer spectra obtained from neutral solutions of iron(III) chloride suggest that a complicated polymeric structure is formed.³⁰ In highly acidic solutions, evidence from U.V. spectra suggests that the predominant species is the FeCl₄ anion.³¹ X-ray diffraction techniques have also been used to investigate these solutions. Standley and Kruh^{32} found the tetrachloroferrate ion, FeCl_4 , is the principal species in acidic solutions They also suggest that $FeCl_4$ is the predominant species in neutral solutions. They do point out, however, that this would require that chlorines are shared between iron atoms. Brady et. al. 33 found that in concentrated acidic solutions a polymeric

species is formed. This consisted of alternating FeCl₄ and FeCl₄(H₂O)₂ units, with adjacent units sharing a chloride ion. (Formula 1.III)

Formula 1.III

This polymer only occurs in concentrated solutions and on dilution with concentrated HCl, the tetrachloroferrate ion is formed in solution. (Equation 1.II)

$$[\text{FeCl}_4 \text{ FeCl}_2 (\text{H}_2\text{O})_2]_x + 2\text{xCl} \longrightarrow 2\text{xFeCl}_4 + 2\text{xH}_2\text{O}.$$

Equation 1.II

In neutral solutions they suggest that the main species is FeCl₄ (H₂O) 2^{-} and that this is surrounded by a hydration sheath.

A detailed investigation has been carried out by examining the Raman spectra obtained from ferric chloride hexahydrate in the melt, in neutral and in acidic solutions.³⁴ From this it was concluded that the structure of FeCl₃.6H₂O differs in the crystalline state, in the melt and in solution. In the crystalline state FeCl₃.6H₂O exists as $[FeCl_2(H_2O)_4^+]Cl^-.2H_2O$ and the crystal structure of this has been determined.³⁵ There are, of course, other hydrates of iron(III) chloride and the iron(III) chloride - water phase diagram reveals four hydrates. These are FeCl₃.2H₂O, FeCl₃.2½H₂O, FeCl₃.3½H₂O and FeCl₃.6H₂O. The crystal structure of FeCl₃.2½H₂O has also been obtained and consists of a distorted tetrahedral FeCl_a anion, a distorted octahedral tetraquo-cisdichloro-iron(III) cation and a single solvate water molecule, that is [FeCl₂(H₂O)₄]⁺.[FeCl₄⁻].H₂O.³⁶ From Raman spectra it was interpreted that in the melt, FeCl₃.6H₂O exists predominantly as $FeCl_4^-$ and $Fe(H_2^0)_4Cl_2^+$ ions. When the melt is saturated with dry HCl or LiCl, all the Fe(H₂O)₄Cl₂⁺ ions are converted to FeCl₄⁻, and the only species present is FeCl₄. The type of species present in solution depend on the concentration of solution. Thus in both concentrated neutral and moderately acidic solutions a polymeric species exist. This consists of higher chloroferrates, $FeCl_5.H_2O$ and $FeCl_6$ randomly orientated in a polymeric network along with significant concentrations of $Fe(H_2O)_4Cl_2^+$ and $Fe(H_2O)_5Cl^{2+}$. The stability of this species is dependent on the temperature and water content of the system though a strong hydration sheath surrounds the polymeric species and lends stability to the complex. When these solutions are saturated with dry HCl, the polymer is completely converted into FeCl, . On dilution, dissociation of the polymeric species occurs resulting in the formation of $Fe(H_2O)_4Cl_2^+$, $Fe(H_2O)_5Cl^{2+}$ and even $Fe(H_2O)_6^{3+}$. This is thought to be due to the strong competition of water molecules with the Cl ions.

1.2 Fe^{II/}Fe^{III} PHOTOREACTIONS.

There are many instances in the literature of redox Fe^{II}/Fe^{III} reactions, where irradiation of FeCl₃ solutions by UV light results in the oxidation of the organic solvent.

On irradiation, a solution of iron(III) chloride with pinacol in acetonitrile results in the photoreduction of Fe^{III} to Fe^{II} and the concomitant oxidation of pinacol to acetone.³⁷ Acetone is the only oxidation product and is obtained at nearly 100% yield based on the amount of ferric chloride which is present. When water is used as solvent in place of acetonitrile no reaction takes Presumably this is due to water forming strong place. hydration complexes with iron(III) chloride which stops the reduction of Fe^{III} to Fe^{II}. It has been shown in an acetone solution of anhydrous iron(III) chloride and pinacol that after irradiation has ceased, all the Fe^{II} present is spontaneously oxidised back to Fe^{III}.³⁸ In this process all the Fe^{III} is recovered. This cycle, which was repeated three times, consists of the photochemical reduction of Fe^{III} to Fe^{II} and then the thermal oxidation of Fe^{II} to Fe^{III}, and was shown to be photochromic. The mechanism proposed for these reactions are shown in scheme 1.IV.

When oxygen is bubbled through a solution of iron(III) chloride in pyridine and the solution is irradiated, this reacts with mono- and di-substituted olefins to give α -chloroketones and with tri and tetrasubstituted olefins to give dichloroketones.³⁹ The scheme postulated for this type of reaction is shown in scheme. lV.

Scheme 1V

It was noted that no reaction took place in the dark. Presumably this reaction is initiated by iron(III) chloride reacting, on irradiation, to give iron(II) chloride and a chlorine radical. (Scheme 1.VI) The chlorine radical would subsequently react with the olefin.

Scheme 1.VI

Interestingly, it was noticed that if these reactions were performed in the presence of a chlorinated solvent, for example CCl_4 or $CHCl_3$, then iron(III) chloride behaved as a catalyst. In this case, a chlorine radical from CCl_4 could oxidise the Fe^{II} back to Fe^{III}.

1.3 FRIEDEL - CRAFTS REACTIONS.

A Friedel-Crafts reaction is any substitution, isomerization, elimination, cracking, polymerization or addition reaction which takes place under the catalytic influence of Lewis acid acidic halide or proton acid.⁴⁰ The ability of iron(III) chloride to accept electrons pairs and act as a Lewis acid is well established and its ability to function as a Friedel-Crafts reagent was first cited in 1877.⁴¹ FeCl₃ is a milder catalyst than AlCl₃ and is useful for reactions where AlCl₃ causes decomposition. An example of FeCl₃ as a Friedel-Crafts' reagent is shown in this Friedel-Crafts' alkylation. (scheme 1.VII) In this substitution reaction, FeCl₃ is being used to produce a carbonium ion.

Scheme 1.VII

1.4. CHLORINATED SOLVENTS.

Chlorinated hydrocarbons are used extensively as cleaning solvents. They have many applications and can be used to clean a wide variety of substances ranging from heavy industrial cleaning to dry-cleaning of clothes. Their usefulness as cleaning solvents is due to their low intermolecular attractions which gives them solubility parameters similar to those of oil and greases.⁴² In the UK they are made exclusively by ICI Ltd. The solvents most commonly used are trichloroethylene CHCl = CCl₂, tetrachloroethylene CCl₂ = CCl₂, 1,1,1-trichloroethane CH₃CCl₃ and methylene chloride CH₂Cl₂. The EEC commission has estimated the yearly demand of these solvents to be:-

$$\begin{array}{c} \text{CHCl} = \text{CCl}_2 \\ \text{ccl}_2 = \text{CCl}_2 \\ \text{CH}_3 \\ \text{CCl}_3 \\ \text{CH}_2 \\ \text{Cl}_2 \end{array} \begin{array}{c} \text{tonnes per year} \\ \text{combined} > 300,000 \\ 200,000 \\ 250,000 \end{array}$$

Transition metal chlorides are used as catalysts in the preparation of these solvents. There are three main ways in which they function as catalysts.

- They can display their lewis acid ability and act as electron pair acceptors
- They can act as free radical inhibitors in chlorine substitution reactions. (scheme 1.VIII)

Scheme 1.VIII

3. They can act as oxychlorination catalysts. This

applies particularly to CuCl₂. (scheme 1.IX)

$$2 \operatorname{CuCl}_{2} + \operatorname{CH}_{2} = \operatorname{CH}_{2} \longrightarrow 2 \operatorname{CuCl} + \operatorname{CH}_{2} \operatorname{ClCH}_{2} \operatorname{Cl}_{2}$$

$$2 \operatorname{CuCl} + \frac{1}{2} \operatorname{O}_{2} \longrightarrow \operatorname{Cu} \operatorname{O} \operatorname{CuCl}_{2}$$

$$\operatorname{Cu} \operatorname{O} \operatorname{CuCl}_{2} + 2\operatorname{HCl} \longrightarrow \operatorname{CuCl}_{2} + \operatorname{H}_{2} \operatorname{O}$$

Scheme 1.IX

Iron(III) chloride is frequently used as a catalyst in the preparation of these chlorinated hydrocarbons as it can catalyse chlorination, hydrochlorination and dehydrochlorination reactions.

1.4.1. CHLORINATION REACTIONS

In the presence of chlorine, iron(III) chloride can function as a chlorination catalyst, though it is also possible for FeCl₃ to chlorinate hydrocarbons in the absence of chlorine. The chlorination of acetylene by FeCl₃ is performed in liquid tetrachlorethane and is an established route in the production of chlorinated hydrocarbons. (Equation 1.III)

$$C_2^{H_2} + Cl_2 \xrightarrow{FeCl_3} l, l, 2, 2, C_2^{H_2}Cl_4$$

Equation 1.III

Originally, FeCl₃ was prepared 'in situ' by the direct chlorination of scrap iron. Under the conditions used little chlorination of the iron occurred unless the solvent contained traces of water. Water may be necessary to oxidise the iron or it may be functioning as a cocatalyst whose role is to produce a protic acid. Later FeCl_3 was used directly in the chlorination of acetylene to give tetrachloroethane. The reaction rate was dependent on the specific surface area of the $\operatorname{FeCl}_3^{43}$. A poisoning effect was noted if too high a concentration of water was present in this reaction mixture. This could be overcome by increasing the concentration of iron(III) chloride used.⁴⁴ This poisoning effect is probably due to the removal of FeCl₃ by hydrolysis.

Iron(III) chloride is used as a catalyst for the chlorination of ethylene to give 1,2,dichloroethane. The mechanism suggested for this reaction is that FeCl_3 functions as a Lewis acid and causes heterolytic cleavage of the chlorine.⁴² (scheme 1.X)

Scheme 1.X

Iron(III) chloride can also inhibit the production of radical chains which lead to over-chlorination by reacting with chlorine atoms to give chlorine and ferrous chloride. In the presence of only 100 ppm ferric chloride almost the sole product of ethylene chlorination is 1,2,dichloroethane.

The cationic polymerisation of vinyl chloride (Formula 1.IV), vinylidene chloride (Formula 1.V) and 1,2 dichloroethylene (Formula 1.VIA + 1.VIB) can be promoted by iron(III) chloride, particularly in the presence of moisture.⁴⁵ In the case of vinyl chloride, this is achieved by the formation of

the reactive carbonium ion CH₃⁺CHCl, which like other carbonium ions initiate further polymerisation of vinyl chloride,⁴⁶ with the formation of oligomeric and polymeric products.

Benzene can be chlorinated by iron(III) chloride in the presence of chlorine though water plays an important role in this reaction. Some work has been carried out to determine the influence of water on the reaction rate of benzene catalysed by FeCl, in a homogeneous reaction It was concluded that iron(III) chloride medium. 3 monohydrate ie. FeCl₃.H₂O was the active catalyst species. If the water content of the system was increased to give a higher hydrate species then a poisoning effect was observed. The greater catalytic ability of FeCl₃.H₂O compared to FeCl₃ was linked to the fact that FeCl₃.H₂O is more soluble in benzene. It has been determined that the higher hydrates are also less soluble in benzene than the monohydrate.⁴⁷ In the production of 1,2 dichloroethane, obtained by introducing chlorine and ethylene into a catalyst solution in 1,2 dichloroethane, a similar conclusion was established.⁴⁸ The efficiency of $FeCl_3 \cdot H_2O$ as a catalyst over FeCl, or the higher hydrates was again greater and this was also linked to its increased solubility
in the organic solvent. As already stated, apart from catalysing the chlorination by a polar mechanism, the catalyst functions as a free-radical inhibitor. Traces of water, therefore, would be beneficial in helping to maintain the FeCl₃ concentration.

1.4.2. DECHLORINATION REACTIONS.

The dechlorination of chlorohydrocarbons is catalysed by ferrous chloride. The oxidation of iron(II) chloride by carbon tetrachloride in acetonitrile has been studied spectrophotometrically and leads to the formation of iron(III)chloride and tetrachloroethylene.⁴⁹ In this reaction trichloromethyl radicals are captured by iron(II) chloride to give a carbenoid complex which decomposes into iron(III) chloride and tetrachloroethane. (scheme 1.XI)

$$Fe^{2+} + CCl_{4} \rightleftharpoons FeCl^{2+} + CCl_{3}$$

$$Fe^{2+} + CCl_{3} \rightleftharpoons Fe(CCl_{3})^{2+}$$

$$2 Fe(CCl_{3})^{2+} \longrightarrow 2 FeCl^{2+} + C_{2}Cl_{4}$$

Scheme 1.XI

If this reaction is carried out in the presence of an olefin, then the .CCl₃ radical can react with the olefin as shown in scheme 1.XII.

$$\begin{array}{c} \cdot \operatorname{ccl}_{3} + c = c \longrightarrow \operatorname{ccl}_{3} - c - c \cdot \\ \operatorname{ccl}_{3} - c - c \cdot + \operatorname{FeCl}^{2+} \longrightarrow \operatorname{ccl}_{3} - c - c - c + \operatorname{Fe}^{2+} \\ \operatorname{Scheme 1.XII} \end{array}$$

A solution of iron(II) chloride in dimethylsulphoxide (DMSO) brings about the dechlorination of organic halides.⁵⁰ In this iron(II) chloride tetrahydrate is dissolved in DMSO and reacted with benzylic or alkylic halides. The reaction mechanism proposed is shown in scheme 1.XIII

$$R - X + Fe^{II}Lm(SH)_{n} \longrightarrow R - XFe^{II}Lm.(SH)_{n}^{1}$$

$$HX + R - S + Fe^{II}Lm(SH)_{n} \qquad R \cdot + Fe^{III}XLm - 1 (SH)_{n}$$

where $L = DMSO, H_2O$ X = HALIDE IONSH = protonic solvent.

Scheme 1.XIII

The R' radicals, which are formed by the halide iron salt complex undergoing a one-electron transfer, can recombine to give the product R-R.

1.4.3. HYDROCHLORINATION REACTIONS.

The most important industrial hydrochlorination reactions involve addition of HCl to vinyl chloride, vinylidene chloride and 1,2 dichloroethylene. Iron(III) chloride is an efficient catalyst for hydrochlorination but is not very soluble in chlorohydrocarbons, therefore, the catalyst is used as a slurry. For example the hydrochlorination of vinylidene chloride to give 1,1,1-trichloroethane (Equation 1.IV) uses a slurry of anhydrous iron(III) chloride in perchloroethylene. The catalyst is

$$CH_2 = CCl_2 + HCl \xrightarrow{FeCl_3} CH_3 - CCl_3$$

Equation 1.IV

difficult to handle and causes blockages in the reactor. It was noticed that in high local concentrations of the catalyst,polymerisation of the vinylidene chloride occurred. It is known that in the presence of stronger Lewis acids, eg. A1Cl₃, polymerization of vinylidene chloride occurs readily.⁴⁵ To overcome the problems of a heterogeneous reaction, reactions are often performed in which the iron(III) chloride has been dissolved in a donor solvent.

However in some of these solvents, for example, 1,4 dioxan and CH₃CN, the complex formed inhibits the hydrochlorination reaction. Nitroalkanes and nitrobenzenes are efficient both at increasing the solubility of FeCl₃ in chloroalkanes and in increasing the rate of hydrochlorination⁴. The role of iron(III) chloride as a catalyst for this reaction is thought to involve ionization of HCl, followed by protonation of vinylidene chloride with subsequent addition of chloride ion to give 1,1,1-trichloroethane.

1.4.4. DEHYDROCHLORINATION REACTIONS.

Chloroethanes can decompose with the loss of hydrogen chloride (Equation 1.V)

RCHC1.CH₂R'
$$\longrightarrow$$
 RCH = CHR' + HCl
Equation 1.V

It is desirable to drive the equilibrium to the lefthand side and to increase the stability of chloroethanes. It is necessary to add stabilizers which prevent the loss of HCl. Hydrogen chloride is more readily lost from nonsymmetric chloroethanes. For chloroethanes which contain a CHCl₂ group, the thermal stability of the compound increases with the degree of chlorination of the neighbouring methyl group ie.

CH₃CHCl₂ < CH₂ClCHCl₂ < CHCl₂CHCl₂.

However, the stability drops on going to pentachloroethane ie. CCl₃CHCl₂. Chloroethanes which contain a methyl group are also more stable as the degree of chlorination of the neighbouring group increases

 $CH_3CH_2Cl < CH_3CHCl_2 < CH_3CCl_3$.

Dehydrochlorination reactions can be performed by thermal cracking, by base or in the presence of iron(III) chloride as catalyst. In the latter case the dehydrochlorination (Equation 1.VI) has been carried out in the liquid phase with an excess of solid FeCl₃ present.⁵

Equation 1.VI

Although it is thought that these reactions are homogeneous, it is necessary to have some excess solid iron(III) chloride present. Nitroethane and 1 - nitropropane increase the solubility of FeCl₃ in tetrachloroethane and also increase the rate of dehydrochlorination of 1,1,1,2tetrachloroethane. In the reaction scheme proposed (scheme 1.XIV), it is suggested that the co-catalyst solvates the FeCl₃. However the complex which is formed, must be capable of at least partial dissociation to produce the catalytic species.

$$\begin{aligned} \operatorname{Fe}_{2}\operatorname{Cl}_{6} &+ 2\operatorname{m} \operatorname{EtNO}_{2} &\longrightarrow 2 \operatorname{FeCl}_{3} (\operatorname{Et} \operatorname{NO}_{2})_{m} \\ \operatorname{FeCl}_{3} (\operatorname{EtNO}_{2})_{m} &\rightleftharpoons \operatorname{FeCl}_{3} (\operatorname{EtNO}_{2})_{m-n} &+ \operatorname{n} \operatorname{EtNO}_{2} \\ \operatorname{R} &- \operatorname{Cl} &+ \operatorname{FeCl}_{3} (\operatorname{EtNO}_{2})_{m-n} &\longrightarrow [\operatorname{R}^{+} &+ \operatorname{FeCl}_{4} (\operatorname{EtNO}_{2})_{x}] \\ [\operatorname{R}^{+} &+ \operatorname{FeCl}_{4} (\operatorname{EtNO}_{2})_{x}^{-}] &\longrightarrow \operatorname{olefin} &+ \operatorname{FeCl}_{3} (\operatorname{EtNO}_{2})_{m-n} &+ \operatorname{HCl} \end{aligned}$$

Scheme 1.XIV

This scheme does not explain why it is necessary to have solid FeCl₃ present in the reaction but a possibility is that the solid FeCl₃ removes any impurities for example water.

The importance of iron(111)chloride in the preparation of chlorohyrocarbons is well established but its role is not clear in many cases. 25.

CHAPTER TWO

CHAPTER 2 - EXPERIMENTAL

In this work, it was important to ensure that all moisture and air were excluded from reactions examined, since water can function as a co-catalyst with iron(III) chloride.^{3,4} All the work was, therefore, performed in vacuo (10^{-4} mm Hg) or in an inert atmosphere box ($H_20 \leq 10$ ppm) and every precaution was taken to exclude water.

2.1 EQUIPMENT.

2.1.1. THE VACUUM SYSTEM.

The vacuum line (Figure 2.I) was an enclosed pyrex glass structure which was pumped by means of a mercury diffusion pump and an oil-sealed rotary pump to a pressure of 10^{-5} mm. Hg. The pumps were, protected from any volatile material in the line, by waste traps. These were situated directly before the pumps and were long glass tubes surrounded by liquid nitrogen which trapped any volatile substance. The vacuum line consisted of a manometer, a vacustat and the main manifold. The manometer was used to measure the pressure of liquids and gases contained in the line, while the vacustat was used to measure the pressure which the pumping system achieved. The main manifold consisted of various outlets to which rotaflo vessels, of the type shown in Figure 2.II, were These rotaflo vessels were made of pyrex attached. glass and had a side-arm. They were sealed off from

the atmosphere by a rotaflo tap. This tap was made of PTFE and when screwed into a glass vessel made a continuous seal with the glass (Figure 2.II, Seal 1). A further seal was made by tightening an inner screw in the rotaflo tap (Figure 2.II, Seal 2). Operations could thus be performed, from one vessel to another, in a dry atmosphere, by opening seal 1 and keeping seal 2 closed.

To further ensure that all moisture adsorbed on to the surface of the glass was removed, the glass vessels and the line were flamed out with a gas/oxygen flame while the system was pumped.

2.1.2. THE INERT ATMOSPHERE BOX.

An argon atmosphere Lintott box $(H_20 \le 10 \text{ ppm})$ was used when handling and storing all samples. Glass vessels used were previously evacuated and flamed out before being transferred to the box. The box contained a balance which allowed samples to be weighed in this dry atmosphere. All solutions and samples were prepared in this box.

2.1.3. ELECTRONIC SPECTROSCOPY.

Electronic spectra were recorded on a Beckman Spectrophotometer UV 5270, using the UV cell shown in Figure 2.III. This consisted of a quartz UV cell joined by a glass limb to a small rotaflo vessel. Solutions were prepared accurately in the inert atmosphere box and degassed twice before recording the spectra. Solutions were degassed by being cooled to 77K and then pumped. 27

2.1.4. INFRARED SPECTROSCOPY

The IR work was performed on a Perkin-Elmer (577) Grating Infrared Spectrophotometer. Both the solution and gas IR cells had KBr windows.

2.2. PREPARATION OF CHEMICALS

2.2.1. PREPARATION OF FeCl3.

Three types of FeCl₃ have been used in an attempt to characterize any differences in their surface areas and in their exchange behaviour. These were

- a) FeCl₃ prepared by the passage of Cl₂ over iron wire,
- b) FeCl₃ prepared by SOCl₂ dehydration of FeCl₃.6H₂O,
- c) Commercial FeCl₂ (anhydrous)

METHOD A. PREPARATION OF FeC1, FROM Fe(WIRE) + C1, 51

 $2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3 \dots \text{Eq. 2.I.}$

The apparatus used is shown in Figure 2.IV. The glass reaction vessel consisted of three compartments, D, E and F, which were joined by constricted segments. The reaction vessel was surrounded by a furnace whose temperature could be controlled. Before entering the reaction vessel, the gases were passed through an empty bubbler (A), to prevent splash-back, an H_2SO_4 bubbler (B) and a drying tube containing phosphor u_5 (V) oxide (C). After the reaction vessel, the gases were passed through another phosphorus (V) oxide drying tube(G), an empty bubbler (H) and finally a bubbler containing nujol (I),

used to detect any blockages in the system. When chlorine was passed through this system an extra bubbler (J) containing NaOH was added to prevent any release of chlorine gas to the atmosphere.

Iron wire (Goodfellow Metals, Purity 99.99+) was placed in the compartments D, E and F. Before the reaction was performed, the reaction vessel was flamed out and the iron wire reduced by passing hydrogen gas over it at 473K for 24h. After this, the system was flushed out with nitrogen, which was dried by passage through activated molecular sieves (Type 4A) and a cold trap held at 195K by solid CO₂. Chlorine gas was passed over the iron wire at 473K leading to the formation of green crystals of FeCl₃ in the reaction compartments D, E and F. These were sealed by melting the glass at the constricted segments of the reaction vessel and stored in an inert atmosphere box.

- <u>ANALYSIS</u> OBTAINED:- Fe 33.9% Cl 65.1% REQUIRED:- Fe 34.43% Cl 65.57%
- METHOD B. PREPARATION OF FeC1₃ FROM SOC1₂ DEHYDRATION OF FeC1₃.6H₂O.⁵²

 $\operatorname{FeCl}_3.6H_2O$ + $\operatorname{6SOCl}_2 \longrightarrow \operatorname{FeCl}_3$ + $\operatorname{6SO}_2$ + 12HCl Eq. 2II

Finely ground iron(III) chloride hexahydrate (20g; 0.074 mmol) was placed in a round-bottomed flask and 50ml of freshly distilled thionyl chloride added at room temperature. Sulphur dioxide and hydrogen chloride were immediately evolved. After the bubbling stopped, the slurry was refluxed for 1-2h, the flask attached to the vacuum line and excess thionyl chloride removed. The FeCl₃ obtained was pumped for several hours before being transferred to the inert atmosphere box.

METHOD C. COMMERCIAL FeCl₃ (anhydrous).

This sample was provided by ICI Ltd., Mond Division and was made on a bulk industrial scale.

2.2.2. PREPARATION OF TETRAETHYLAMMONIUM TETRACHLORO-FERRATE.⁵³

The salt was precipitated by adding $[(C_2H_5)_4N]Cl.H_2O$ (0.6426g; 3.50 mmol) in 12M HCl to a 12M HCl solution of iron(III) chloride (0.4975g; 3.01 mmol). The yellow crystals obtained were filtered, washed with 12M HCl and dried by suction before being transferred to a vacuum line where they were pumped overnight.

ANALYSIS

OBTAINED:- C 29.4%, H 6.0%, N 4.2%, Cl 43.3% REQUIRED:- C 29.3%, H 6.15%, N 4.3%, Cl 43.25%.

2.2.3. PREPARATION OF 36-CHLORINE.

The main considerations in the preparation of ${}^{36}\text{Cl}_2$ were to produce anhydrous ${}^{36}\text{Cl}_2$ with a high specific activity. The uncertainty in a count N is \sqrt{N} . If an active sample can produce 10⁴ counts, this leads to an uncertainty of only 1%. In exchange reactions, in case of fast exchange, it is desirable to monitor the system at short intervals. The sample, therefore, must be sufficiently active to produce a large number of counts in a short counting time. The preparation of ³⁶Cl₂ was carried out by the following procedure using the apparatus shown in Figure 2.V.

$$KMnO_4 + 4H^{36}Cl \rightarrow K^{36}Cl + MnO_2 + 2H_2O + 3/2^{36}Cl_2$$

..... Eq. 2.111

The ground-glass joints in the apparatus were sealed with Kel-F wax and the whole system, apart from the threeneck flask, was evacuated before the reaction. 0.55 ml of 0.1 - 0.3 M H 36 Cl (50 μ Ci, Radiochemical Centre) was diluted with 100 ml 2M HCl and placed in a three neck round-bottom flask. A solution of 2M KMnO4 was added dropwise and the mixture stirred. The chlorine liberated was distilled through traps A and B at 77 K. These traps contained solid $KMnO_4$ which removed any HCl still present. The chlorine was then distilled through traps C and D, which contained P_2O_5 , to remove any moisture The ³⁶Cl₂ was collected and stored in a prepresent. evacuated steel bomb which contained P205.

2.2.4. PREPARATION OF HYDROGEN 36-CHLORIDE.

The main considerations were to produce anhydrous $H^{36}Cl$ with a high specific activity. This proved more difficult than with ${}^{36}Cl_2$ and two techniques were used.

31

Figure 2V

METHOD A.

Sodium chloride (11.1146g; 0.1902 mol.) was dissolved in 50 ml of distilled water and 0.55 ml of $0.1 - 0.3M H^{36}Cl$ (50 µCi, Radiochemical Centre) was added. After mixing, the solution was placed under an infrared lamp for several hours to obtain crystals of $Na^{36}Cl$. The $Na^{36}Cl$ was transferred to a rotaflo flask and pumped under vacuum for 48h. The flask was removed to a dry box where the $Na^{36}Cl$ was transferred to a stainless steel bomb. Anhydrous HCl gas (0.5128g; 0.0141 mol) was distilled into the bomb, which was then held at 353K for 48h. The $H^{36}Cl$ gas was removed and its activity determined.

This method produced very dry $H^{36}Cl$ but with a low specific activity. (87 ± 8 count (600sec)⁻¹ mg⁻¹).

METHOD B.

This was adapted from a literature method 54 to suit the radiochemical purpose.

 $H^{36}Cl aq. + H_2SO_4 \rightarrow H^{36}Cl + H_2SO_4 \dots Eq. 2.IV.$ $H^{36}Cl$ was produced using the apparatus shown in Figure 2.VI. This consisted of a 50ml dropping funnel which was sealed to a capillary tube and a 500 ml separating funnel. The separating funnel was connected by glass tubing to a Woolfe bottle which contained concentrated sulphuric acid. This was connected by a glass outlet to a 350 ml rotaflo vessel in which the gas produced was collected.

Figure 2VI

Hydrogen 36-chloride was produced by mixing 0.55 ml 0.1-0.3 M H³⁶Cl (50µCi, Radiochemical Centre) with 5 ml of concentrated HCl. This was placed in the dropping funnel. When the solution of H³⁶Cl was added dropwise to the separating funnel, containing 75 ml of concentrated H_2SO_4 , gaseous H³⁶Cl was produced and collected in the rotaflo vessel at 77K.

This method produced rather wet $H^{36}Cl$ with a high specific activity. (736 ± 33 count (600 sec)⁻¹mg⁻¹)

2.3. ANALYTICAL TECHNIQUES.

2.3.1. ANALYSIS OF CHLORINE AND HYDROGEN CHLORIDE.

To determine their specific activities, ${}^{36}Cl_2$ and $H^{36}Cl$ were converted to $Ag^{36}Cl$ and counted in the solid phase. The activity balance in a reaction should be ≥ 95 %, therefore the conversion procedure should be carried out with an efficiency ≥ 95 %. The procedure used was adapted from a literature method to suit the radiochemical purpose.

 $\begin{cases} {}^{36}\text{Cl}_2 + 2\text{NaOH} & \rightarrow & \text{Na}^{36}\text{Cl} + \text{NaO}^{36}\text{Cl} + \text{H}_2\text{O} \\ {}^{4}\text{H}_{36}\text{Cl} + & \text{NaOH} & \rightarrow & \text{Na}^{36}\text{Cl} + \text{H}_2\text{O} \\ {}^{NaO^{36}\text{Cl}} + & \text{H}_2\text{O}_2 & \rightarrow & \text{Na}^{36}\text{Cl} + \text{H}_2\text{O} + \text{O}_2 \\ {}^{Na^{36}\text{Cl}} + & \text{AgNO}_3 & \rightarrow & \text{Ag}^{36}\text{Cl} + \text{NaNO}_3. \end{cases}$

³⁶Cl₂ was distilled into a slight excess of sodium hydroxide in vacuo. The solution was removed to a beaker by several washings of water. A calculated amount of hydrogen peroxide was added to convert all the NaOCl to sodium chloride. The solution was acidified with 1 ml of 1:1 nitric acid. Silver chloride was precipitated by the slow addition of a slight excess of silver nitrate solution and the suspension heated to just below boiling for approximately two hours. The solution was set aside and allowed to cool.

A filter crucible was washed with an alcohol/ether solution, dried under suction for ten minutes and placed in a desiccator for a further twenty minutes before it was weighed. The precipitate of Ag³⁶Cl was collected in this weighed filter crucible, washed with small portions of 0.01M nitric acid followed by distilled water before being dried by the procedure outlined above.

The same conversion procedure was used for $H^{36}Cl$. This conversion procedure was carried out with an efficiency $\geq 95\%$ for both $^{36}Cl_2$ and $H^{36}Cl$. (Table 2.I)

	Ag ³⁶ Cl Obtained g	Ag ³⁶ Cl Required for Complete Conversion g	<pre>% Efficiency</pre>
³⁶ Cl ₂ (0.0270g)	0.1062	0.1090	97.4
н ³⁶ Cl (0.0153g)	0.0580	0.0602	96.3

CONVERSION OF ³⁶Cl₂ AND H³⁶Cl TO Ag³⁶Cl.

TABLE 2.1

2.3.2. ANALYSIS OF IRON(III) CHLORIDE.

The purity of ${\rm FeCl}_3$ samples was checked by the following method. 56

A sample of FeCl₃ was dissolved in 50 ml distilled water and 5 ml concentrated nitric acid and the solution heated to boiling. A solution of ammonia was then slowly added with stirring until an excess of NH₃ was present as indicated by the odour. A small amount of ashless filter paper was then added to coagulate the precipitate. The solution was removed from the heat, filtered and washed with hot 1% ammonium nitrate followed by distilled water. A porcelain crucible was ignited, allowed to cool for lh. in a desiccator and weighed. The precipitate was placed in the crucible and this procedure repeated. In this way the amount of Fe₂O₃ recovered was accurately determined.

All the washings were kept and the chloride ion precipitated as AgCl by adding an excess of AgNO₃ as outlined in section 2.3.1.

Both the iron and chloride analysis were carried out with an efficiency >95%. (Table 2.II)

ANALYSIS OF IRON (III) CHLORIDE

SAMPLE	CHLO % Obtained	RIDE % Required	% Efficiency	IR(% Obtained	DN % Required	% Efficiency
FeC1 ₃ (0.1526g)	63.8	65.6	97.2	34.1	34.4	98.9

The specific activity of the chloride ion in active samples of FeCl, was determined as silver chloride.

2.3.3. ANALYSIS OF IRON'S OXIDATION STATE.⁵⁷

Iron(II) can be determined spectrometrically as the 2-2' bipyridyl complex $(C_5H_4N)_2$. The Fe (bipyridyl)₃²⁺ ion gives a strong absorbance with its ϵ max = 522 nm. A quantitative method for determining the amount of Fe^{II} present in a sample involved converting all the Fe^{II} to the Fe (bipyndyl),²⁺ ion. A calibration curve was obtained by measuring the absorbance of varying concentrations of Fe(bipyridyl)₃²⁺ at the λ max. The calibration curve was obtained using Analar ammonium iron(II) sulphate. A series of solutions containing between 1-25 mg Fel⁻¹ Was prepared. A 10 ml aliquot of each of these solutions was pipetted into a 100 ml conical flask, followed by 10 ml of 1 MHCl and the mixture boiled for five minutes. Five ml of 10% w/w hydroxylamine hydrochloride solution was added and the flask heated for five minutes to ensure all the iron was present as Fe^{II}. The solution was neutralised with 2 ml ammonia, boiled for a further five minutes and allowed to cool. The solution was buffered by the addition of 10 ml 20% w/w ammonium acetate before 2 ml of 0.1% 2-2' bipyridyl was added to complex the Fe^{II}. The solution was made up to 50 ml with distilled water. The calibration curve, obtained from plotting the iron concentration against the absorbance,

36.

is shown in Figure 2.VII and it obeys the Beer-Lambert Law over the concentration range used.

To determine the amount of Fe^{II} and Fe^{III} present in a sample, a solution was prepared from which two separate 10 ml aliquots were taken. The method outlined above was followed but hydroxylamine hydrochloride was only added to one of the solutions to convert all the iron present to Fe^{II}. The iron(II) present, in both solutions, was then converted to Fe(bipyridyl)²⁺. The absorbance from the solution, to which hydroxylamine hydrochloride was added, was due to the total amount of iron present in the initial sample, whereas in the other solution it was due only to the amount of Fe^{II} present in the initial sample.

This method was used to determine the amount of total iron, of Fe^{II}, and hence by difference, the amount of Fe^{III} in a solution.

2.4. PURIFICATION METHODS.

2.4.1. PURIFICATION OF HYDROGEN CHLORIDE.

This method was used to purify and dry both active and inactive hydrogen chloride.

Impure HCl in its solid form at 77K has a 'rose-red' colour.⁵⁸ The HCl was purified by warming to 143K in a n-pentane slush bath and distilling it into a trap held at 77K. The distillate was further distilled from a 40% ether - 60% ethanol slush bath at 133K over a 2.5h period into a trap at 77K. The

Figure 2.VII

solid distillate obtained was then colourless.

2.4.2. PURIFICATION OF ACETONITRILE.

Acetonitrile was purified to remove traces of acrylonitrile and any other impurities. Two methods were used.

METHOD A.

Reagent grade CH_3CN was refluxed over CaH_2 for several hours before being distilled into a flask containing P_2O_5 over which it was also refluxed for several hours. The CH_3CN was distilled into another flask containing fresh P_2O_5 over which it was again refluxed for several hours before being finally refluxed over CaH_2 for 1h. The CH_3CN was stored over activated molecular sieves (Type 4A) in an inert atmosphere box.

METHOD B.

Reagent grade CH_3CN was refluxed over anhydrous $CuCl_2$ for several hours before being distilled into a flask containing P_2O_5 over which it was refluxed for several hours. The CH_3CN was then distilled into another flask containing fresh P_2O_5 over which it was again refluxed for several hours before being stored over activated molecular sieves (Type 4A) in an inert atmosphere box.

Both these methods produced pure CH_3CN as shown by their electronic spectra (Figure 2.VIII) which has a cut-off point below 200 nm.⁵⁹

Electronic Spectrum of CH₃CN

2.4.3. PURIFICATION OF 1,1,1,-TRICHLOROETHANE.

Two types of CH₃CCl₃ were used. These were a) Hopkin and Williams Analar 1,1,1-trichloroethane and b) the commercial solvent Genklene N. They were both purified by distilling the solvent within its boiling range.

The purity of these solvents was checked by examining their gas chromotographic (GC) traces. Solvent (a) was pure and showed only the presence of the solvent peak. (Figure 2.IX) Solvent (b), however, contained some components which had not been removed by distillation. (Figure 2.X) These components were stabilizers which are deliberately added to Genklene during the manufacturing process.

2.5. DETERMINATION OF SPECIFIC ACTIVITY BY GEIGER-MULLER (G.M.) COUNTERS.

36-Chlorine is a beta-emitter (β) with a half-life of 3 x 10⁵ years. In this type of decay, negative electrons are emitted and the atomic number is increased by one unit. As the half-life of this isotope is so long, no correction to the observed count was needed as the activity would be constant over the period of counting.

Radioactive chlorine was counted in the solid state as $Ag^{36}Cl$ and in the gaseous state as $H^{36}Cl$ and ${}^{36}Cl_2$ using a Geiger-Muller counter. In its normal form a Geiger-Müller tube consists of an earthed cylindrical case containing a gas. Along the axis of the counter a

Figure 2X

positively charged electrode is suspended. Ionising radiation incident on the window of the counter, produces an electrical pulse which is amplified in order that it may be recorded. An electronic scaler records the pulses from the counter and produces an output which is proportional to the strength of the initial ionising radiation.

2.5.1. PLATEAU CURVE

2

In a G.M. counter no counts are recorded until the applied potential is large enough to attract the free electrons to the anode. As the applied potential is increased above this minimum value, Vo, the counting rate increases sharply, until a plateau is reached.

Figure 2XI

The plateau is never flat due to the generation inside the counter of spurious discharges which are not directly initiated by the arrival of particles. These, however, can be quenched by the presence of some alcohol vapour in the counter. As the potential increases, the quencher gas cannot cope with the large number of spurious discharges and the counter begins to discharge.

Plateau regions were determined regularly for every Geiger-Muller tube used by sweeping through the voltage region whilst monitoring the count obtained from a 137-Caesium source. Figure 2.XII shows a typical plateau curve obtained. The working voltage was set in the middle of the plateau region.

2.5.2. DEAD TIME

Immediately after the collection of electrons in a G.M. tube discharge, positive ions are still left in the counter and most of them are very near the centre wire. These positive ions form a space charge which limits the electric field near the centre wire.

If a second particle passes through the counter whilst the positive ions are in this region, an electron avalanche is unable to form, owing to the reduced field near the centre wire. The pulse size which a counter is able to deliver is reduced whilst there are positive ions in the counter. Each pulse from the GM tube is thus followed by a period during which no particles can be detected. This lasts until the positive ions have moved far enough from the centre wire to allow an output

pulse large enough to operate the recording equipment. This insensitive period is known as the dead time of the counter, and in accurate counting experiments a correction is necessary for counts lost in such periods, especially if the counting rate is high.

It was, therefore, necessary to make dead time corrections on all the counts observed. The G.M. tube used had a dead time of 120 μ s but the scalar had a dead time set at 300 μ s to give the counter time to recover. The dead time of the scaler was used in all calculations. The true count rate (Nt) was related to the observed count rate No by the relation

$$= \underbrace{N_{O}}_{(1 - N_{O}\tau)}$$

where τ is the dead time.

N₊

2.5.3. BACKGROUND.

The counter will register some counts in the absence of any source. These counts are due partly to cosmic radiation and partly to γ -radiation from the earth or from traces of radioactive materials in the walls of the room.

The background of a G.M. counter can be reduced by enclosing the counter and source in a container often called a castle. Castles are usually made of lead as this lessens the contribution of any stray radiation. The castle provides the added advantage of allowing an active sample to be placed at the same distance and position from the counter each time. As scattering of β -particles increases with the atomic number of the scatterer, it is necessary to ensure that the inside of the castle is lined with a material of low atomic weight. For the same reason, the supports of the counter and source must be made of these materials.

The castle was only used for solid $Ag^{36}Cl$. ${}^{36}Cl_2$ and $H^{36}Cl$ were counted in a glass reaction vessel and thus had a higher background count.

2.5.4. SELF-ABSORPTION.

As 36-chlorine is a β -emitter care was taken to ensure that the GM counters were always the same distance from the sample because of the absorption of β -radiation. This was important when gaseous ${}^{36}\text{Cl}_2$ and H^{36}Cl were counted.

When counting solid $Ag^{36}Cl$, however, a correction for the absorption of β -particles within the solid itself must be made unless the same weight of material is used in all comparative measurements. This is done by measuring apparent β -activity obtained from different thicknesses of samples of identical specific activity. These measurements were obtained for $Ag^{36}Cl$ and a graph, called a self-absorption curve, constructed by plotting the log of activity per mg. against the weight of $Ag^{36}Cl$. The graph obtained using three separate batches of $Ag^{36}Cl$ is shown in Figure 2.XIII. The absorption correction

Self-Absorption Curve for Ag³⁶Cl

necessary to relate observations at one thickness to observations at any other thickness within the experimentally determined range is equal to the quotient of the values of log of activity/mg at the two weights.

In all calculations, the activity was related to a weight of 15mg.

In all counts, therefore, corrections were made for background, dead time and self-absorption. (Table 2.III)

Sample	Amount Counted mg.	Counts-1 600sec	- Background Counts (600sec) ⁻¹	Corrected For Dead Time Counts -1 (600sec)	Counts/ mg ⁻¹ Counts (600sec) ⁻¹ mg ⁻¹	Corrected for Self- Absorption Counts (600sec) ⁻¹ mg ⁻¹
Ag ³⁶ Cl	23.7	14327	14493	14599	616	892

CORRECTIONS MADE TO OBSERVED COUNT

TABLE 2.III

2.5.5. STATISTICAL ERRORS.

All random processes including radioactive decay are subject to fluctuations in measurements due to the statistical nature of the process. Thus even if a source of constant activity is measured under conditions which exclude all errors in measurement, the number of disintegrations observed in successive periods of fixed duration will not be constant.

The distribution of events in a truly random process

such as radioactive decay can be described by a Poisson distribution.

To check that a Poisson distribution was obtained from the counting system, a ${}^{137}C_5$ source was used to give 50 readings of 1 minute duration and the total count from each reading, uncorrected for background was used to obtain the distribution shown in Figure 2.XIV. In a Poisson distribution, the square root of the average value, $x^{-\frac{1}{2}}$, is equal to the standard deviation (Equation 2.V)

This relationship was found to hold for the observed distribution. The statistics of all GM tubes used were checked periodically.

All errors quoted on specific activities are the combined errors from the uncertainty in the weight of a sample and from the uncertainty in the count obtained.

2.6. EXCHANGE REACTIONS.

The exchange reactions were monitored by two techniques. Method A enabled the system to be continuously monitored over a short time interval without affecting the stoichiometry. It could, however, only be used to monitor a reaction for approximately 12h as the GM tubes were attacked, when exposed to 36 Cl₂ and H 36 Cl for longer periods, causing them to continuously discharge. Method B was more suitable for reactions where FeCl₃ was dissolved in a solvent and could also be used to follow reactions over

Poisson Distribution
several days.

2.6.1. EXCHANGE METHOD A.

This method used the apparatus shown in Figure 2.XV which consisted of two G.M. tubes contained in an evacuated glass vessel. Care was taken to ensure that both G.M. tubes were at the same height so that the geometry presented to each was identical. A movable boat enabled any solid sample to be placed directly under one of the G.M. tubes. It was important to make certain that only the G.M. tube with an active solid beneath it registered the activity from that solid. This was tested by placing 137-Caesium directly under one G.M. tube and monitoring the counts from both tubes. (Table 2.IV) The tube with 137-Caesium directly beneath it gave a large count, whereas the other tube gave only a background count.

	TUBE 1 COUNTS MIN ⁻¹	TUBE 2 COUNTS MIN ⁻¹
BACKGROUND	74	65
¹³⁷ Cs. under 1	7210	71
¹³⁷ Cs under l	6989	63
¹³⁷ Cs under 2	72	6298
137 _{Cs} under 2	81	6273

COUNTS MONITORED BY EACH G.M. TUBE FROM THE SOLID PHASE.

TABLE 2.IV

Before every exchange reaction, it was necessary to determine the plateau region of both GM tubes and to monitor the background count. As counting characteristics vary slightly, the two tubes were intercalibrated by taking counts using varying pressures of radioactive gas. A graph of pressure vs. counts should give a straight line which passes through the origin. A typical set of results is illustrated in Table 2.V. and the graph shown in Figure 2.XVI. When the counts from both tubes

Pressure of H ³⁶ Cl Torr	Counts Min ⁻¹					
11.5 ± 0.02	490 ± 22					
44.1 ± 0.09	1519 ± 40					
63.3 ± 0.12	2551 ± 50					
110.6 ± 0.20	3576 ± 60					
118.4 ± 0.23	3902 ± 62					

PRESSURE VS. COUNTS.

TABLE 2.V

were plotted (Figure 2.XVII) a straight line was obtained whose gradient was equal to the counting ratio between the two GM tubes. This counting ratio should remain constant and was normally in the region of 1.10

Pressure of H³⁶Cl vs. Counts min⁻¹

Figure 2.XVII

In an exchange reaction, iron(III) chloride was weighed in an inert atmosphere box and placed in a rotaflo vessel which had previously been flamed and pumped out. It was transferred to a vacuum line where the FeCl₃ flask was evacuated before it was joined to the counting vessel containing the two G.M. tubes. (Figure 2.XV) The system was pumped for several hours before the flask was opened and the FeCl₃ allowed to fall into the movable boat, which was placed directly under one of the GM tubes.

Vessel V_1 contained a weighed amount of ${}^{36}\text{Cl}_2$ or $H^{36}\text{Cl}$ which was admitted to the counting vessel. The GM tube which had the FeCl₃ beneath it gave a count due to both the solid and gas whilst the other tube gave a count due only to the gas. The reaction was followed by monitoring the counts from both tubes over a period of time. At the end of the reaction the gas was removed and analysed as outlined in 2.3.1. and the FeCl₃ analysed as outlined in 2.3.2.

2.6.2. EXCHANGE METHOD B.

This method used the vessel shown in Figure 2.XVIII which consists of two bulbs of accurately known volume and the ratio was such that $V_1 >> V_2$ ($V_1 = 350.1$ ml, $V_2 = 10.5$ ml). The vessel was flamed and pumped out on a vacuum line before being transferred to an inert atmosphere box where a known amount of FeCl₃, either as the solid or in solution, was added to V_1 . The vessel was removed, attached to a vacuum line and evacuated. A known pressure of radioactive gas was added and the vessel stored in a thermostat bath at 298K. At intervals radioactive gas was removed by allowing gas into V_2 and as the ratio of $V_1:V_2$ was known, the amount of gas in V_2 was calculated. This sample of gas was distilled into a NaOH solution at 77K, converted to Ag^{36} Cl and its activity determined. At

the end of the reaction, the FeCl₃ was hydrolysed and the chloride ion precipitated as silver chloride which allowed any activity incorporated into the sample to be determined.

2.7. GAS-LIQUID CHROMATOGRAPHY.

Gas chromatography is used for the analysis of volatile substances. The substances to be analysed are distributed between two phases, one of which is stationary and the other mobile. In gas-liquid chromatography the column is packed with a porous solid coated with a thin layer of involatile liquid as the stationary phase. Separation is due to differences in solution behaviour. Components of the mixture distribute themselves between the gas phase and the stationary liquid phase according to their partition coefficients. The solid functions only as a support for the liquid stationary phase, enabling it to present a large surface to the gas.

The mobile phase is a gas that is not retained by the stationary phase. Its role is to carry the sample molecules through the chromatographic column and is generally called the carrier gas. At the column outlet there is a detector, which indicates the presence of the compounds emerging at different times in the carrier gas. A flame ionisation detector was used in this work. This operates by burning hydrogen gas in a small metal jet. The jet forms one electrode of the cell and the other, which may be a piece of brass or platinum wire, is mounted at some point near the tip of the flame. The potential difference across the electrodes is about 200V. Pure hydrogen or a hydrogen/carrier gas mixture gives rise to a small background signal which may be offset electrically. A signal is recorded when a substance is ionised in the flame.

The separation of components can be controlled by altering both the flow of the carrier gas and the

temperature of the column. Conditions are selected which give rise to good separation of the components to be analysed.

To determine quantitatively the amount of a component in a solvent it is necessary to construct a calibration This is done by mixing known concentrations of curve. the component in the solvent and measuring the peak heights caused by the component. The amount of sample injected into a column is generally very small and, therefore, any discrepancy in the injection size affects the peak height of the component. To overcome this, a known amount of an internal standard (IS) is mixed with the sample. The peak height ratio of the component and the IS is plotted against the concentration of the component in the Thus if the injection size was slightly low, solution. the size of the component peak and the IS peak would be smaller but the peak height ratio would be the same.

Gas-liquid chromatography (GLC) was used for the quantitative analysis of mono- and tri-chloroacetonitrile in acetonitrile and of vinylidene chloride in 1,1,1-trichloroethane.

2.8. SURFACE AREA DETERMINATION.

The surface areas of the different iron(III) chloride samples prepared were examined using the ⁸⁵Kr-B.E.T. method.^{60.61.} Surface areas are normally measured by determining the amount of gas adsorbed at a given temperature as a function of pressure. When the surface area to

be measured is small, that is below lm^2 , the change in pressure cannot be measured accurately by conventional techniques. For these small areas 85-Krypton is used as the adsorbate and the small changes in pressure can be accurately determined. This is achieved by calibrating the pressure, determined by a Pirani Gauge, against the activity of the Krypton in counts sec⁻¹, determined by a Geiger-Muller tube. This method makes use of the B.E.T. equation (Equation 2.VI) which relates the gas pressure to the amount of gas adsorbed.

$$\frac{P}{x(P^{O}-P)} = \frac{1}{x_{m}C} + \frac{1}{x_{m}} \frac{P}{P^{O}} \qquad \dots \qquad Eq. 2.VI$$

where x = number of molecules adsorbed at pressure P.

 P^{O} = saturated vapour pressure of the gas at the adsorptive temperature. (S.V.P. of Kr at 77K = 0.62 mm Hq)

The apparatus shown in Figure 2.XIX was a vacuum system which consisted of bulbs of accurately known volume, a counting cell, a Geiger-Muller tube and a storage vessel for the krypton. The volume can be altered by filling the bulbs with mercury and thus changing the pressure, P. For every surface area determination a graph of volume versus Temperature/Pressure was obtained. This gave a straight line which

where	vol	1	=	63.07 ml	vol	5	=	17.18	ml
		2	=	29.53 ml		6	=	42.39	ml
		3	=	8.79 ml		7	Ξ	10.90	ml
		4	=	5.19 ml		8	=	6.32 r	nl.

٢

R = ⁸⁵Kr storage vessel. C = thin-walled counting vessel. S = the adsorbent sample bulb.

Figure 2.XIX

intercepted the y-axis at a volume equal to the dead space of the apparatus. The sample being examined was then held at 77K by liquid nitrogen. A correlation was made to take account of the effective volume of the apparatus when part of the system was cooled to 77K (i.e. an increase in effective volume). A straight line of different gradient was obtained when volume versus T/P was plotted. The amount of 85 Kr adsorbed was calculated by taking the difference in volume, ΔV , between these two lines. The number of Kr molecules adsorbed (x) is given by Equation 2.VII

 $x = \frac{P \triangle V}{77} \cdot \frac{N}{R} \cdot \frac{1}{760 \times 10}3$ Eq. 2VII

where N = Avogadro number (6.02 x 10^{23} mol 1^{-1}) R = gas constant (0.082 l atm mol⁻¹ K⁻¹)

From the B.E.T. equation it was known that $P_{x(Po-P)}$ vs $\frac{P}{PO}$ gave a straight line with gradient 1, where x_{m} is equal to the number of Kr molecules required to form a monolayer. Thus the surface area was calculated from equation 2.VIII.

The surface area = $x_m \cdot \frac{19.5 \times 10^{-20}}{\text{wt. of sample}} = m^2 g^{-1} \dots E_q \, \sqrt{m}$ 19.5 x 10^{-20} m^2 is the molecular area of Kr. CHAPTER THREE

•

I.

•

CHAPTER 3

SURFACE AREA DETERMINATION OF IRON(III) CHLORIDE.

As a preliminary to heterogeneous exchange reactions, the surface areas of various iron(III) chloride samples were determined in an attempt to correlate any differences in surface areas with different exchange rates. Three samples of iron(III) chloride were examined and these were:-

Sample A	FeCl ₃ prepared by the passage of Cl ₂ over iron wire, (cf. 2.2.1.A)
Sample B	FeCl ₃ prepared by SOCl ₂ dehydration of FeCl ₃ .6H ₂ O (cf. 2.2.1.B),
Sample C	Commercial anhydrous FeCl ₃ (cf. 2.2.1.C)

When a gas is allowed to come into contact with the surface of a solid, the gas may be adsorbed by the surface depending upon the experimental conditions. This adsorption is either chemical or physical in nature depending upon the type of bond formed between the gas molecules, the adsorbate, and the solid surface, the adsorbent. In adsorption, the extent of coverage of the surface is related to the pressure of the adsorbate To determine the surface area of a sample it is qas. necessary to determine when the adsorbed monolayer is This is done using the B.E.T. equation complete. which relates the gas pressure to the amount adsorbed (cf. 2.8. Eq. 2.VI).

The surface areas of the iron(III) chloride samples were determined using the radio-isotope 85-krypton as adsorbate. The advantage of using radioactive gas is that small changes in pressure can be determined relatively rapidly and with a high precision. The apparatus used is described in section 2.8. Since it was necessary to examine these samples under anhydrous conditions, they were prepared in an inert atmosphere box where they were ground to a uniform size using a mortar and pestle. It was not possible to machine-grind these samples as they had to be prepared in an anhydrous atmosphere.

A typical calculation is shown in Table 3.I and Figure 3.I. The number of krypton molecules (x) is given by

$$x = \frac{P \Delta V}{T} \cdot \frac{N}{R} \cdot \frac{1}{760} \times 10^3$$

where P = Pressure (mm Hg)

 ΔV = Change in volume (ml)

 $N = Avogadro number (6.022 \times 10^{23} mol^{-1})$

T = Temperature at which adsorption isotherm is determined, that is 77K.

R = gas constant (0.082 l at
$$mol^{-1} K^{-1}$$
).

The B.E.T. equation states that

$$\frac{P}{x(P^{O}-P)} = \frac{1}{x_{m}} \frac{P}{P^{O}} + \frac{1}{x_{m}C}.$$
Therefore, a graph of $x(P^{O}-P)$ versus P/P^{O} gives a straight line whose gradient is equal to the reciprocal

TABLE	
3.I.	

·····												······
0	17.2	59.6	76.8	90.8	120.4	183.3	0	17.2	76.8	120.4	183.3	Vol. ml.
8756	7720	5902	5371	5046	4412	3486	14619	12267	7495	5828	4459	Counts (100sec) ⁻¹
8675	7639	5821	5290	4965	4331	3405	14538	12186	7414	5747	4378	Counts (100sec) ⁻¹ - Background
8907	7818	5924	5375	5040	4388	3440	15201	12649	7583	5848	4436	Counts (100sec) ⁻¹ Corrected for Dead Time
89.07	78.18	59.24	53.75	50.40	43.88	34.40	152.01	126.49	75.83	58.48	44.36	Counts (sec) ⁻¹
0.099	0.086	0.065	0.059	0.055	0.048	0.038	0.171	0.142	0.083	0.064	0.049	P mm Hg.
2.99	3.42	4.53	4.98	5.34	6.12	7.72	1.72	2.07	3.51	4.56	5.98	$\frac{T}{P} \times 10^{-3}$
33	34	36	38		40	43						Δν
0.405	0.365	0.292	0.280	0.267	0.239	0.204						x x10 ¹⁸
0.522	0.534	0.555	0.561	0.565	0.572	0.582						р ^о – Р
0.212	0.195	0.162	0.157	0.151	0.137	0.119						x(P ⁰ -P) x10 ¹⁸
0.466	0.442	0.402	0.376	0.364	0.351	0.320						$\frac{P \times 10^{-18}}{x(P^0 - P)}$
0.159	0.139	0.105	0.095	0.089	0.077	0.061						P Po

SURFACE AREA CALCULATION.

Figure 3.I

I

of the number of Kr molecules required to form a monolayer. (Figure 3.II).

Gradient =
$$\frac{(0.4730 - 0.3525)}{0.16 - 0.08} \times 10^{-18}$$

 $\frac{1}{x_m} = 1.51 \times 10^{-18}$
 $\Rightarrow x_m = 0.66 \times 10^{18}$

The Surface Area =
$$\frac{x_m \times \text{molecular area of Kr.}}{\text{sample weight}}$$

= $\frac{0.66 \times 10^{18} \times 19.5 \times 10^{-20}}{0.8941}$
= $0.14 \text{ m}^2\text{g}^1$

Several results were obtained, using different samples, for each of the three types of iron(III) chloride (Table 3.II). In all cases the surface areas obtained are small and their order of magnitude is such that

Sample A < Sample B < Sample C.

Single crystal and powder pattern X-ray studies performed at room temperature on FeCl₃, prepared by the passage of Cl₂ over iron wire, indicate that the chlorine atoms are hexagonally close packed with the iron atoms in a layered array in the interstices of the chlorine lattice. The sequence of atom planes is Cl, Fe, Cl, Cl, Fe, Cl, etc. with two-thirds of the possible Fe

Figure 3.II

sites occupied. The iron atoms are in sites of approximately octahedral symmetry.^{11.} (Formula 3.I).

The X-ray powder pattern of FeCl₃ prepared by thionyl chloride dehydration of FeCl₃.6H₂O indicates that stacking faults exist in its structure.⁶². This will cause the surface to be less regular and result in sample B having a larger surface area than sample A. Sample C is made commercially on a large scale and is not expected to be as pure as sample A. The presence of impurities would lead to sample C having a larger surface area.

SURFACE AREAS OF IRON(III) CHLORIDE SAMPLES

	Surface Areas. m ² g ⁻¹
	0.14 ± 0.02
SAMPLE A	0.15 ± 0.02
	0.15 ± 0.02
	0.20 ± 0.02
SAMPLE B	0.23 ± 0.02
	0.22 ± 0.02
	0.34 ± 0.02
SAMPLE C	0.36 ± 0.02
	0.37 ± 0.02

TABLE 3.II.

1

CHAPTER FOUR

. .

•

CHAPTER 4

INTERACTION OF IRON (III) CHLORIDE WITH CHLORINE

In the presence of molecular chlorine, iron(III) chloride can function as a chlorination catalyst, though it is also possible for FeCl, to chlorinate hydrocarbons non-catalytically in the absence of chlorine. The catalytic ability of iron(III) chloride is well established though the reasons for this are not completely To investigate the role of FeCl, understood. as a catalyst and especially the Fe(III)-Cl bond lability in situations relevant to catalysis, exchange reactions were performed between FeCl₃ and 36-chlorine. In the preparation of chlorinated hydrocarbons, FeCl, is sparingly soluble in many reaction mixtures and a donor solvent is often used to dissolve the FeCl,. Exchange reactions were, therefore, performed under homogeneous conditions by dissolving FeCl, in acetonitrile. In the homogeneous medium, the chemical effects of dissolving FeCl, in acetonitrile have been fully investigated using electronic spectroscopy, Fe^{II} and Fe^{III} analysis and gas chromatography.

4.1. EXCHANGE REACTIONS.

Exchange reactions occur when atoms of a given element interchange between two different chemical states. Exchange can be observed by labelling one of the elements with a radioisotope and following the position of the isotope.^{63.} (41)

$$AB^* + BC \longrightarrow AB^* + BC \dots (4I).$$

At first only the heavy elements with naturally occurring radioactive isotopes could be used to follow exchange reactions. Artificial radioactivity was discovered in 1934 when aluminium foil which had been bombarded with α -particles gave off radiation after the bombardment had ceased (4II) and this led to the availability of radioisotopes of the lighter elements.⁶⁴

Due to the low neutron fluxes available at this time only short-lived isotopes of low specific activity were After 1945, the development of nuclear produced. react ors and particle accelerators enabled the production of both short and long-lived radioisotopes of nearly all This removed most of the restrictions on the elements. systems which could be examined and exchange reactions have provided much information on a wide variety of topics, for example molecular structure, bond types and reaction kinetics.65.66. They are also very useful in investigating phenomena relating to catalysis. The sensitivity of detection of radioactivity makes it of considerable value in the study of surface processes.⁶⁷.

Exchange reactions follow a first-order rate law regardless of the number of atomic species which participate, since there can be no change in the concentration of the reactants.⁶⁸. It is possible, therefore, to carry out quantitative investigations of exchange reactions. Results can be expressed by the fraction of activity exchanged (f) which has occurred, where f is defined by equation I.^{69.70}.

$$f = \frac{\frac{xA_{1}}{xA_{1} + yA_{2}}}{\frac{xM_{1}}{xM_{1} + yM_{2}}} \dots (Eq. 4.1)$$

where A = activity in count min⁻¹
M = number of mmol.
x,y = number of exchangeable atoms in species
l,2 = exchangeable species (species 1 has
no radioactivity initially).

The value obtained for f indicates the degree to which exchange has occurred (Table 4.I) between two species, one of which was originally inactive.

EXPLANATION OF f-VALUES

f-value	
0	No exchange
0 → 1	Partial exchange
1	Complete exchange
>1	Adsorption or ex- change & adsorption

TABLE 4.I.

Obviously when no exchange takes place, f will be O. If complete exchange occurs and the label is randomly distributed between the two different chemical states then f will equal 1. A value greater than 1 means that more activity is present in the species, which was originally inactive, than can be accounted for solely by exchange and is indicative of adsorbtion of the active species by the inactive species or isotopic fractionation.

4.1.1. CHOICE OF ISOTOPE.

In general the choice of isotope is determined by three factors. These are

- a) the availability of the isotope,
- b) the length of its half-life,
- c) the ease of detection.

In this study, exchange reactions were used to investigate Fe(III)-Cl bond lability in situations relevant to catalysis. Thus a radioisotope of chlorine was used in the exchange reactions. The most common isotopes of chlorine are shown in Table 4.II.

ISOTOPES OF CHLORINE

Isotope	% Abundance	Half Life	Principal Mode of Decay (Energy MeV).		
³⁵ cl	75.53	Stable	-		
³⁶ Cl	_	3.0x10 ⁵ y.	β (0.714)		
³⁷ c1	24.47	Stable	-		
³⁸ C1	-	37.3 m.	β (4.81,1.11,2.77)		

TABLE 4.II

The 36-chlorine isotope is the most suitable owing to the length of its half-life.

4.2. EXPERIMENTAL.

Exchange reactions were carried out between iron(III) chloride and 36 Cl₂ under both homogeneous and heterogeneous conditions. In the latter case, three different types of FeCl₃ were investigated in an attempt to relate exchange behaviour with the mode of preparation and the surface area of the FeCl₃. The three types used were:-<u>Sample A</u> FeCl₃ prepared by the passage of Cl₂ over iron wire. (cf. 2.2.1.A.)

- Sample B FeCl₃ prepared by SOCl₂ dehydration of FeCl₃.6H₂O. (cf. 2.2.1.B.)
- Sample C Commercial anhydrous FeCl₃ (cf. 2.2.1.C.)

4.2.1. ADSORPTION OF ³⁶Cl₂ BY THE REACTION VESSEL.

This reaction was performed using exchange method A. (cf. 2.6.1.) The flask, V_1 , (Figure 2.XV) was filled with ${}^{36}\text{Cl}_2$, attached to the line and the system pumped overnight. The background reading was obtained from both GM tubes. (TABLE 4.III). A known pressure (34mm) of ${}^{36}\text{Cl}_2$ (equivalent to 0.0654g; 0.92 mmol.), measured by the manometer, was admitted to the reaction vessel. Tap B was closed and the radioactivity monitored over a period of 4.75h. (Table 4.IV). The ${}^{36}\text{Cl}_2$ was removed to volume, V_5 . (Figure 2.XV) and the system pumped overnight. This procedure was repeated twice using (0.0596g; 0.84 mmol) and (0.0569g; 0.80 mmol.) of ${}^{36}\text{Cl}_2$ respectively. (Tables 4.V + 4.VI). The background

TABLE
4.IV

5828	5717	5827	6225	6434	6843	7238	7261	9906	1806	10139	10339	10464	10399	Counts min ⁻¹ Tube 1
5435	5324	5434	5832	6041	6450	6845	6868	8673	8688	9746	9946	10071	10006	- Background
5587	5470	5586	6007	6229	6665	7088	7112	9066	9082	10245	10466	10605	10533	Corrected for Dead Time
6581	6644	6725	6787	7605	7691	8238	8060	9586	5566	10658	10896	10800	11159	Counts min ⁻¹ Tube 2
5729	5792	5873	5935	6753	6839	7386	7208	8734	9101	9086	10044	9948	10307	-Background
5898	5965	6051	6116	6869	7081	7669	7478	5516	5535	10312	10575	10469	10867	Corrected for Dead Time
285	280	270	240	195	180	160	153	50	35	15	10	8	თ	Time Min.

ADSORPTION OF ³⁶Cl₂ BY REACTION VESSEL - RUN I.

TABLE 4.V

1					_	_			
7104	7100	7357	7681	8186	8794	9444	10514	10818	Counts min ⁻¹ Tube 1
6563	6559	6816	7140	7645	8253	8903	9973	10277	– Background
6786	6781	7056	7404	7949	8608	9318	10496	10834	Corrected for Dead Time
8246	8560	8588	8765	9173	9529	10071	10207	11126	Counts min ⁻¹ Tube 2
7341	7655	7683	7860	8268	8624	9166	9302	10221	- Background
7621	7960	7990	8182	8625	9013	9606	9756	10771	Corrected for Dead Time
285	240	195	180	120	50	30	10	б	Time Min

ر

Adsorption of ${}^{36}\text{Cl}_2$ by the Reaction Vessel - Run II.

TABLE
4.VI

1043 1043 1027 990
6 6 7 2 5
10006 9803 9808 9647 9277
10308 10314 10136 9728
10531 10248 10139 10004
9497 9214 9105 8970
9970 9659 9539 9391
50 120 180 195

ر

Adsorption of ${}^{36}\text{Cl}_2$ by the Reaction Vessel - Run III

readings after each exposure to ${}^{36}\text{Cl}_2$ are shown in Table 4.III.

	GM.1 Count Min ⁻¹	GM.2 Count Min ⁻¹
Initial	393 ± 20	852 ± 29
After 1st exposure	541 ± 23	905 ± 30
After 2nd exposure	629 ± 25	1034 ± 32
After 3rd exposure	720 ± 27	1296 ± 36

BACKGROUND FROM REACTION VESSEL AFTER EXPOSURE TO ³⁶Cl₂.

TABLE 4.III

4.2.2. FeCl₃ (sample A) AND ³⁶Cl₂:- EXCHANGE METHOD A.

Iron(III) chloride (0.9805g; 6.04 mmol.) was placed in a previously flamed-out reaction vessel in an inert atmosphere box. It was transferred to a vacuum line where the FeCl₃ flask was evacuated before it was attached to the counting vessel via a ground glass joint. (Figure 2.XV., section 2.6.1.). The system was pumped for several hours before this flask was opened and the FeCl₃ allowed to fall into the movable boat. The boat, containing the FeCl₃ was placed directly under one of the GM tubes.

A bulb (vol. = 124.6 ml) was evacuated and weighed before the addition of anhydrous 36 Cl₂. The specific

activity of the ${}^{36}\text{Cl}_2$ had been determined and was 233 ± 13 counts min⁻¹ mg⁻¹. The bulb was reweighed, attached to the vacuum line at position V₁ and the system pumped overnight. Tap C was closed and ${}^{36}\text{Cl}_2$ admitted to the reaction vessel, which was then isolated from the rest of the system by closing tap B. The amount of ${}^{36}\text{Cl}_2$ in contact with the FeCl₃ was calculated as follows.

The initial
$${}^{36}\text{Cl}_2$$
 sample $(N_I) = 1.287 \text{ mmol}.$
 $\cdot \cdot {}^{36}\text{Cl}_2$ in reaction vessel $(N_F) = N_I \frac{V_R}{V_T}$
here V_R = volume of reaction vessel = 498.7 ml
 V_T = total volume of system = 650.3 ml.
(that is the bulb = 124.6 ml., the
reaction vessel = 498.7 ml, the dead
space = 27 ml.)
 $\cdot \cdot N_F = \frac{1.287 \times 498.7}{650.3}$

= 0.99 mmol.

Ŵ

After the addition of ³⁶Cl₂ (0.070lg; 0.99 mmol.) the counts from both tubes were monitored for 22.5 hours (Table 4.VII). The chlorine was removed, precipitated as silver chloride and its specific activity determined. (cf. 2.3.1.)

4.2.3. <u>FeCl₃ (sample A) AND Cl₂: EXCHANGE METHOD A</u>. After the removal of ³⁶Cl₂ from FeCl₃ (sample A), a bulb containing a weighed amount of inactive chlorine

1	Ľ
İ	BL
	E
	<
	Η

c.

34447	34514	34404	34214	34694	34639	30870	30287	29737	29292	29202	28053	27030	27567	27834	Counts(5min) ⁻¹ in solid & Gas Phases
28807	28874	28764	28574	29054	28999	25230	24647	24097	23652	23562	22413	21390	21927	22194	Background
29661	29732	29616	29414	29923	29865	25883	25270	24692	24225	24131	22927	21858	22419	22698	Corrected for Dead Time
31441	31516	31393	31179	31718	31656	27436	26786	26174	25678	25568	24301	23170	23764	24060	Tubes inter- calibrated
16233	16970	17661	18274	18421	18605	25740	25672	25820	26251	26382	25389	27204	28038	27417	Counts(5min) ⁻¹ in Gas Phase
9671	10408	11099	11712	11859	12043	19178	19110	19258	19689	19820	18827	20642	21476	20855	Background
9765	10518	11224	11851	12001	12190	19553	19482	19636	20084	20221	19188	21077	21947	21299	Corrected for Dead Time
21676	20998	20169	19328	19717	19466	7883	7304	6538	5594	5347	6201	2093	1817	2761	Surface Activity of FeCl ₃ Counts (5min) ⁻¹
1350	1230	1170	1040	980	920	90	70	60	50	37	35	10	6	0	Time Min.

RESULTS FROM EXCHANGE METHOD A FOR IRON(III) CHLORIDE (SAMPLE A)

(0.1040g; 1.46 mmol.) was attached to the line at position V_1 and the system pumped overnight. Before Cl_2 was admitted to the FeCl_3 (sample A), which had previously been in contact with ${}^{36}Cl_2$, the count from both GM tubes was monitored. After the addition of Cl_2 (0.0798g; 1.12 mmol. in the reaction vessel) the system was monitored for a further 5h. (Table 4.VIII). After this time, the chlorine was removed and the FeCl_3 analysed as outlined in section 2.3.2. The specific activity of the FeCl_3 was determined by precipitating the chloride ion as silver chloride and the FeCl_3 was found to be inactive.

4.2.4. FeCl₃ (sample B) AND ³⁶Cl₂: EXCHANGE METHOD A.

The reaction between FeCl₃ (sample B) (0.7948g; 4.90 mmol.) and 36 Cl₂ (0.1387g; 1.95mmol. in the reaction vessel) was performed by the method outlined in 4.2.2. and the system monitored over a period of 8.5h. (Table 4.IX). The specific activity of the 36 Cl₂ was determined before and after the reaction.

4.2.5. FeCl₃ (sample B) and Cl₂: EXCHANGE METHOD A.

After the removal of ${}^{36}\text{Cl}_2$ from FeCl₃ (sample B), the reaction between the latter and Cl₂ (0.0915g; 1.29 mmol in the reaction vessel) was performed by the method outlined in 4.2.3. and the system monitored for 5h. (Table 4.X). The FeCl₃ was analysed and its specific activity determined. This sample was found to be inactive. TABLE 4.VIII

.

2//07 10057
19105
20251
1003
220
157
20122
60

Results from Exchange Method A for FeCl₃ (Sample A) + Inactive Cl_2 .

.

1

	19496	18805	18370	17726	18118	17828	17397	17418	16356	16216	16155	16045	15684	14948	15481	13073	14118	Counts(100sec) ⁻¹ in Solid & Gas Phases
	16782	16091	15656	15012	15404	15114	14683	14704	13642	13502	13441	13331	12970	12234	12767	10359	11404	-Background
i	17672	16907	16427	15720	16150	15832	15360	15383	14224	14072	14006	13886	13495	12700	13275	10691	11808	Corrected for Dead Time
	19086	18260	17741	16978	17442	17099	16589	16614	15362	15198	15126	14997	14575	13716	14337	11546	12753	+ Tubes inter- calibrated
TADIE / TV	4462	5146	5512	5660	6089	6525	6570	7492	8490	8801	9426	9635	9/36	9811	9902	10192	10664	Counts(100sec) ⁻¹ in Gas Phase
	2851	3535	3901	4049	4478	4914	4959	5881	6879	7190	7815	8024	8125	8200	8291	8581	9053	-Background
-	2876	3573	3947	4099	4539	4987	5034	5987	7024	7349	8003	8222	8328	8407	8502	808	9306	Corrected for Dead Time
	16210	14687	13794	12879	12903	12112	11555	10627	8338	7849	7123	6775	6247	5309	5835	2738	3447	Surface Activity of FeCl ₃ Counts (100sec) ⁻¹
	510	390	320	275	240	210	180	150	79	60	45	30	20	15	10	ъ	0	Time Min.

RESULTS FROM EXCHANCE METHOD A FOR IRON(III) CHLORIDE (SAMPLE B)

TABLE 4.IX
TABLE 4.X

•

ł

i

	1			r	·····	· · · · ·	1	
16844	16972	16889	16808	16905	17006	16934	Counts(100sec) ⁻¹ in Solid & Gas Phases	
14130	14258	14175	14094	14191	14292	14220	Counts(100sec) ⁻¹ -Background +	Results fro
14756	14895 .	14805	14716	14822	14932	14854	Counts(100sec) ⁻¹ Corrected for Dead Time	m Exchange Meth
15937	16087	15990	15894	16008	16127	16043	Tubes Inter- calibrated	od A for FeCl ₃
1669	1697	1664	1674	1693	1689	1672	Counts(100sec) ⁻¹ In Gas Phase	(Sample B) + In
58	86	53	63	82	78	61	Counts(100sec) ⁻¹ -Background ↓	active Cl ₂ .
58	86	53	63	82	. 78	61	Counts(100sec) ⁻¹ Corrected for Dead Time	
15879	16001	15937	15831	15926	16049	15982	Surface Activity of FeCl ₃ counts(100sec) ⁻¹	
300	240	180	130	60	30	0	Time Min	·

•

•

.

4.2.6. FeCl₃ (sample C) AND ³⁶Cl₂: EXCHANGE METHOD A.

Using the method outlined in 4.2.2., the reaction between FeCl₃ (sample C) (0.5846g; 3.60 mmol.) and 36 Cl₂ (0.1853g; 2.61 mmol in the reaction vessel) was monitored for 8h. (Table 4.XI). The specific activity of the 36 Cl, was determined before and after the reaction.

4.2.7. FeCl₃ (sample C) AND Cl₂: EXCHANGE METHOD A.

After the removal of 36 Cl₂ from FeCl₃ (sample C), the reaction between the latter and Cl₂ (0.1200g; 1.69 mmol in the reaction vessel) was performed by the method outlined in 4.2.3. and the system monitored over a period of 5h. (Table 4.XII). After this time the inactive Cl₂ was removed.

4.2.8. FeCl₃ (sample C) AND CHCl₃: EXCHANGE METHOD A.

After the removal of Cl₂ from FeCl₃ (sample C), the reaction between the latter and CHCl₃ vapour (0.4478g; 6.31 mmol in the reaction vessel) was performed by the method outlined in 4.2.3. and the system monitored for 6h. (Table 4.XIII). The CHCl₃ vapour was removed, the FeCl₃ analysed and its activity determined.

4.2.9. FeCl₃ (sample A) AND ³⁶Cl₂: EXCHANGE METHOD B.

This reaction was performed using exchange method B (cf. 2.6.2.) and the apparatus shown in Figure 2.XVIII. This apparatus was pumped and flamed-out on a vacuum line before being transferred to an inert atmosphere dry box where a weighed amount of FeCl₃ (sample A) (1.5896g; 9.80 mmol) was placed in V_1 . The vessel was transferred

TABLE
4.XI

29374	26535	26507	23961	24011	23411	23870	25445	26249	24776	27234	Counts(100sec) ⁻¹ in Solid & Gas Phases
28687	25848	25820	23274	23324	22724	23183	24758	25562	24089	26547	-Background
31388	27595	27988	25021	25079	24386	24916	26745	27685	25965	28844	Corrected for Dead Time
8877	10470	11113	11426	12837	13259	14591	17379	18441	18338	18878	Counts(100sec) ⁻¹ in Gas Phase
8359	9952	10595	10908	12319	12741	14073	16861	17923	17820	18360	-Background +
8574	10258	10943	11277	12792	13247	14693	17759	18942	18826	19430	Corrected for Dead Time
9431	11284	12037	12405	14071	14572	1 6 162	19535	20836	20709	21373	Tubes Inter- calibrated
21957	16311	15951	12616	11008	9814	8754	7210	6849	5256	7471	Surface Activity of FeC1, Counts (100Sec) ⁻¹
485	335	278	225	150	115	80	15	12	10	0	Time Min.

TABLE 4.XII

.

•

ł

sec) ⁻¹ Gas	sec) ⁻¹	sec) ⁻¹	sec) ⁻¹ se (Sam	ec) ⁻¹	ec) ⁻¹ ^N .	-	ivity ec) ⁻¹	
Counts(100 .in Solid Phases	Counts(100 -Background	Counts(100 Corrected Dead Time	Counts(100 in Gas Pha	Counts(100 -Background 4	Counts(100 Corrected Dead Time ↓	Tubes Inte calibrated	Surface Ac of FeCl ₃ Counts(100	
19639	18952	20095	569	51	51	56	20039	
19533	18846	19975	573	55	55	61	19914	
19571	18884	20018	554	36	36	40	19978	
19622	18935	20076	589	71	71	78	19998	
19719	19032	20184	591	73	73	80	20104	
19485	18798	19921	557	39	39	43	19878	
19654	18967	20111	561	43	43	47	20064	

`

:

•

;

TABLE 4.XIII

.

t I I

		·	·····	·			
19678	19653	19425	. 19629	19703	19601	19679	Counts(100sec) ⁻¹ in Solid & Gas Phases
18991	18966	18738	18942	19016	18914	18992	Counts(100sec) ⁻¹ -Background
20138	20110	19854	20088	20166	20052	20139	Counts(100sec) ⁻¹ Corrected for Dead Time
554	569	532	581	573	613	598	Counts(100sec) ⁻¹ in Gas Phase ↓
36	51	14	63	55	95	80	Counts(100sec) ⁻¹ -Background ↓
36	51	14	63	55	95	80	Counts(100sec) ⁻¹ Corrected for Dead Time +
40	56	15	69	61	105	88	Tubes Inter- calibrated
20098	20054	19839	20014	20105	19947	20051	Surface Activity of FeCl ₃ Counts(100sec) ⁻¹
300	240	180	120	60	30	0	Time Min

Results from Exchange Method A for FeCl₁ (Sample C) + Inactive CHCl₁.

•

.

•

ر

to a vacuum line and evacuated before the addition of 36 Cl₂ (0.4544g; 6.40 mmol). The initial specific activity of the 36 Cl₂ was determined, by converting a sample to Cl and precipitating it as Ag³⁶Cl, before it was added to the FeCl₂. The exchange vessel was stored in a thermostat bath at 298K. The specific activity of 36 Cl₂ was monitored periodically by attaching the exchange vessel to the vacuum line and allowing the gas into V_2 at room temperature. The ratio $V_1:V_2$ was known accurately, hence the amount of 36 Cl₂ in V₂ was calculated. The 36 Cl, contained in V, was distilled into a NaOH solution at 77K , precipitated as Ag³⁶Cl and its specific activity determined. This process was repeated a number of times. (Table 4.XIV). After all the ³⁶Cl₂ was removed, the FeCl3 was hydrolysed, the iron precipitated as iron oxide and the chloride ion as silver chloride. The 36 Cl specific activity in FeCl₃ was determined as AgCl.

4.2.10. FeCl₃ (sample B) AND ³⁶Cl₂: EXCHANGE METHOD B.

The reaction between FeCl₃ (sample B) (0.5790g; 3.57 mmol.) and 36 Cl₂ (0.1565g; 2.20 mmol) was performed as outlined in 4.2.9. The 36 Cl₂ was removed at intervals, precipitated as Ag 36 Cl and its specific activity determined. (Table 4.XV). At the end of the reaction, the FeCl₃ was analysed by precipitation of the iron as Fe₂O₃ and of the chloride ion as AgCl. The specific activity of FeCl₃ was determined as AgCl. TABLE 4.XIV

* Corrected count :- Corrected for Background + Dead Time. Initial Stoichiometry :- 9.8 mmol of FeCl₃ : 6.4 mmol of ${}^{36}Cl_2$ Final Stoichiometry :- 9.8 mmol of FeCl₃ : 4.8 mmol of ${}^{36}Cl_2$

Final	2nd.	lst.	Initial	Sample
24.2	23.3	18.9	26.4	(1) Amount AgCl Counted mg.
7514	7153	5955	10439	(1) * Corrected Count Counts (300sec) ⁻¹
310	307	315	395	(1) Counts (300(sec) ⁻¹ mg ⁻¹
448	429	371	610	(1) Corrected for Self Absorption
21.6	23.7	17.3	22.0	(2) Amount of AgC1 Counted mg.
7106	7323	6228	0066	(2) Corrected [*] Count Counts(300sec) ⁻¹
329	309	360	450	(2) Counts(300sec) ⁻¹ mg ⁻¹
433	435	403	597	(2) Corrected for Self Absorption
440	432	387	604	Average Counts (300sec) ⁻¹ mg ⁻¹
119	30.25	5.5	0	Time h.

1

ر

RESULTS FROM EXCHANCE METHOD B FOR IRON(III) CHLORIDE (SAMPLE A)

TABLE 4.XV

Final Stoichiometry ï Corrected for Background + Dead Time 3.57 mmol. FeCl₃ : 2.2 mmol. ${}^{36}Cl_2$ 3.57 mmol. FeCl₃ : 1.08 mmol. ${}^{36}Cl_2$

Initial Stoichiometry **Corrected** Count ;; ;;

1							
*	Final	4th	3rd.	2nd.	lst.	Initial	Sample
	26.7	24.2	22.4	22.5	21.4	23.1	(1) Amount AgCl Counted mg
	34123	34640	32616	31710	29864	36502	(1) * Corrected Count Counts (300sec) ⁻¹
	1278	1431	1456	1409	1396	1580	(1) Counts(300sec) ⁻¹ mg ⁻¹
	1982	2066	1968	1911	1811	2176	(1) Corrected for Self Absorption
	23.7	27.7	21.9	19.8	19.4	23.9	(2) Amount AgCl Counted mg
	33250	38010	28098	26972	28758	35905	(2) * Corrected Count Counts(300sec) ⁻¹
	1403	1372	1283	1362	1482	1502	(2) Counts (300sec) ⁻¹ mg ⁻¹
	1977	2193	1694	1670	1792	2134	(2) Corrected for Self Absorption
	1980	2130	1831	1790	1802	2155	Average Counts (300sec) ⁻¹ mg ⁻¹
	455.33	219.25	165.83	45.25	20.33	0	Time h.

RESULTS FROM EXCHANGE METHOD B FOR IRON(III) CHLORIDE (SAMPLE B)

4.2.11. FeCl (sample C) AND ³⁶Cl₂: EXCHANGE METHOD B.

The reaction between FeCl₃ (sample C) (0.4641g; 2.86 mmol) and 36 Cl₂ (0.2712g; 3.82 mmol) was performed as outlined in 4.2.9. The 36 Cl₂ was removed at intervals, precipitated as Ag 36 Cl and its specific activity determined. (Table 4.XVI). After the 36 Cl₂ was removed, the FeCl₃ was analysed by precipitating the iron as Fe₂O₃ and the chloride ion as AgCl and its specific activity determined.

4.2.12. <u>FeCl₃ | CH₃ CN | 36 Cl₂: RUN I.</u>

This reaction was performed using exchange method B (cf. 2.6.2.) and the apparatus shown in Figure 2.XVIII. This apparatus was pumped and flamed out on a vacuum line before being transferred to an inert atmosphere dry box. In the dry box, a solution of FeCl₃ in CH₃CN was prepared by weighing FeCl₃ (0.1622g; 1.00 mmol) into a 50ml standard flask and dissolving it in acetonitrile. The concentration of the solution was 2.0 x 10^{-2} mol L⁻¹. This solution was transferred to V_1 of the exchange vessel. The vessel was removed from the dry box and the solution degassed twice before a weighed amount of 36 Cl₂ (0.5886g; 8.29 mmol) was admitted. The initial specific activity of the 36 Cl, was determined before the addition. The exchange vessel was thermostated at 298K. After 6h. the exchange vessel was attached to the vacuum line and the FeCl₃|CH₃CN solution held at 209.5K by a chloroform slush bath. The ³⁶Cl₂ was removed by allowing the gas into V_2 , converted to 36 Cl⁻(aq), precipitated as Ag 36 Cl

TABLE 4.XVI

* Corrected Count :- Corrected for Background + Dead Time Initial Stoichiometry :- 2.86 mmol. FeCl₃ : 3.82 mmol. ³⁶Cl₂ Final Stoichiometry :- 2.86 mmol.FeCl₃ : 2.47 mmol. ³⁶Cl₂

Final	4th	3rd	2nd.	lst.	Initial	Sample	171
19.2	23.1	23.8	24.4	21.4	24.2	(1) Amount AgC1 Counted mg	LESULTS FROM E
19139	21389	25164	23518	21687	24952	(1) * Corrected Count Counts (300sec) ⁻¹	XCHANGE METHOD
997	926	1057	964	1013	1031	$(1) \\ Counts (300 sec)^{-1} \\ mg^{-1} $	B FOR IRC
1179	1275	1502	1392	1314	1476	(1) Corrected for Self Absorption	N(III) CHLO
16.0	19.5	22.2	29.2	20.5	25.4	(2) Amount AgC1 counted mg	RIDE (SAMPLE
16994	20238	22602	26922	21439	25349	(2) * Corrected Count Counts (300sec) ⁻¹	C
1062	1038	1018	922	1046	866	(2) Counts(300sec) ⁻¹ mg ⁻¹	
1118	1255	1360	1542	1304	1488	(2) Corrected for Self Absorption	
1148	1265	1431	1467	1309	1482	Average Counts (300sec) ⁻¹ mg ⁻¹	
431.33	152.66	29.75	25.75	6	0	Time h.	

ر

and its specific activity determined. The procedure was repeated at intervals until the amount of ${}^{36}\text{Cl}_2$ collected became too small to count accurately. (Table 4.XVII). After 30h, the solvent was removed by vacuum distillation at 77K. The remaining solid was analysed by hydrolysing the sample, the iron was precipitated as Fe₂O₃ and the chloride ion as AgCl. The specific activity of the FeCl₃ was determined as AgCl. (Table 4.XVII).

4.2.13. <u>FeCl₃ | CH₃CN | ³⁶Cl₂: RUN II</u>.

A solution (50 ml) of FeCl₃ in acetonitrile was prepared as outlined in 4.2.12. The concentration of the solution was 2.0 x 10^{-2} mol 1^{-1} . The initial specific activity of 36 Cl₂ was determined before a weighed amount (0.4217g; 5.94 mmol) was added to the solution. Samples of 36 Cl₂ were removed at intervals and its specific activity determined as Ag 36 Cl, until the amount of 36 Cl₂ collected became too small to count accurately. (Table 4.XVIII.) After 42h. the solvent was removed by vacuum distillation at 77K. The remaining solid was analysed by hydrolysing the sample, the iron precipitated as Fe₂O₃ and the chloride ion as AgCl. The specific activity of the FeCl₃ was determined as AgCl.

4.2.14. ANALYSIS OF IRON'S OXIDATION STATE IN <u>FeCl₃|CH₃CN AND FeCl₃|CH₃CN|Cl₂.</u>

×.

In the inert atmosphere box, a solution of

68.

TABLE 4.XVII

where %Cl Recovered = $\frac{\text{AgCl Obtained}}{\text{AgCl Required}} \times 100$

* Corrected Count :- Corrected for Background + Dead Time

Remain- ing Solid	2nd•	lst	Initial	Sample
After Solvent Removal	20.5h	3.25h	0	Time
1	Orange	Red	Red	Colour
121.1	31.8	52.0	94.6	%C1 Recovered
17.3	12.4	11.7	17.5	Amount AgCl Counted(1) (mg)
10387	8053	7445	12974	Corrected [*] Count Counts(300sec) ⁻¹ (1)
600	650	636	741	$\frac{\text{Counts(300sec)}^{-1}}{\text{mg}^{-1}}$ (1)
671	587	558	829	Corrected for Self Absorption (1)
17.6	I	13.4	18.3	Amount AgCl Counted (2)
10724	I	8174	14139	Corrected [*] Count Counts(300sec) ⁻¹ (2)
609	I	610	773	Counts(300sec) ⁻¹ mg ⁻¹ (2)
686	1	564	887	Corrected for Self Absorption (2)
678	587	561	858	Average Count Counts(300sec) ⁻¹ mg ⁻¹

RESULTS FROM EXCHANGE REACTION:- RUN I

TABLE 4.XVIII

where % C1 recovered = $\frac{AgC1 \ Obtained}{AgC1 \ Recovered} \times 100$

Re ma in- ing Solid	2nd.	lst	Initial	Sample
After Solvent Removal	6.16h	2h.	Ō	Time
1	Orange	Red	Red	Colour
130.4	43.7	80.1	98.3	%Cl Recovered
18.4	17.4	10.0	15.5	Amount AgC1 Counted (mg) (1)
10005	6066	5806	10961	Corrected Count Counts(300sec) ⁻¹ (1)
544	349	581	707	Counts(300sec) ⁻¹ mg ⁻¹ (1) +
632	390	464	727	Corrected for Self Absorption (1)
19.1	15.2	15.4	13.6	Amount AgC1 Counted (mg) (2)
10490	5590	7350	9772	Corrected Count Counts(300sec) ⁻¹ (2)
549	368	477	718	$\frac{\text{Counts(300sec)}^{-1}}{\text{mg}^{-1}}$ (2) +
651	374	491	684	Corrected for Self Absorption (2)
642	382	478	706	Average Count Counts(300sec) ⁻¹ mg ⁻¹

RESULTS FROM EXCHANGE REACTION:- RUN II

ï

.

÷

FeCl₃ in CH₃CN was prepared by weighing FeCl₃ (0.1622g; 1.00 mmol) into a 50ml standard flask and adding acetonitrile. The concentration of this solution was 2.0 x 10^{-2} mol 1^{-1} . A series of 5ml aliquots was removed and diluted to 50ml with acetonitrile. The concentration of Fe in each of these solutions was 11.2 mg 1^{-1} . The solutions were placed in rotaflo vessels, which had been pumped and flamed out previously; they were then transferred to a vacuum system where they were degassed twice. Weighed amounts of Cl₂ (Table 4.XXXVI) were distilled into half of these solutions at 77K. The two systems, that is FeCl₃|CH₃CN and FeCl₃|CH₃CN|Cl₂, were examined for the presence of Fe^{II} and total Fe, at various stages of the reaction by the method outlined in section 2.3.3.

4.2.15. ELECTRONIC SPECTRA OF FeCl₃|CH₃CN AND FeCl₃|CH₃CN|Cl₂.

Two U.V. cells (Fig. 2.III) were pumped and flamedout before being transferred to an inert atmosphere box. Two solutions with a concentration of $1.0 \times 10^{-1} \text{ mol } 1^{-1}$ were prepared as 5 ml solutions of FeCl₃ in CH₃CN. FeCl₃ (0.0811g; 0.50 mmol) was weighed into a 5ml standard flask and dissolved in CH₃CN. The solutions were placed in the UV cells and transferred to a vacuum system where they were degassed twice. A weighed amount of Cl₂ (0.1543g; 2.17 mmol) was added to one of the UV cells by holding the solution of FeCl₃ in CH₃CN at 77K and distilling the 36 Cl₂ into the cell. Both solutions were monitored over a period of time.

4.2.16. <u>G.L.C. ANALYSIS OF CH₃CN Cl₂, FeCl₃ CH₃CN AND FeCl₃ CH₃CN Cl₂.</u>

Three rotaflo vessels were pumped and flamed out on a vacuum line before being transferred to an inert atmosphere box. Two solutions (10 ml) of FeCl, in CH₃CN were prepared by weighing FeCl₃ (0.0324g; 0.20 mmol) in a 10 ml standard flask and adding analar CH₃CN. The solution's concentration was 2.0 x 10^{-2} mol 1^{-1} . A further 10 ml of CH₂CN was measured into an empty 10 ml standard flask. These three samples were placed in the rotaflo vessels and transferred to a vacuum system where they were degassed twice. A weighed amount of Cl₂ (0.1278 g; 1.80 mmol.) was distilled into the vessel containing acetonitrile and another (0.1775g; 2.50 mmol) into one of the FeCl₂ |CH₂CN solutions. These three flasks were stored in a thermostat bath at 298K for 20h. before the chlorine was removed by holding the solutions at 209.5K and distilling the Cl₂ at 77K. The solvent from each mixture was removed by vacuum distillation at 77K and examined by GLC for the presence of monochloroacetonitrile and trichloroacetonitrile. The GLC work was performed under the conditions shown in Table 4.XIX. A calibration curve relating the measured peak height to the amount of CH_ClCN present in CH_CN was obtained by making up solutions with known concentrations of CH₂ClCN in CH₂CN and measuring the size of peak obtained. (Figure 4.I). The peak heights observed for CH₂ClCN in these three systems are shown in Table 4.XX. No CCl₃CN was detected in any of these solutions.

Calibration Curve for CH_2CICN in CH_3CN

PEAK HEIGHTS OF CH2CICN

System	CH ₂ ClCN Peak Height mm	Vol. of CH ₂ ClCN Vol of CH ₃ CN x100
CH3CN C12	3.5	0.016
FeCl ₃ CH ₃ CN	_	-
FeCl ₃ CH ₃ CN Cl ₂	55.5	0.290

TABLE 4.XX

GLC ANALYSIS CONDITIONS

c

Performed on	Pye Unicam GCD Chromatograph
Column	9' by ¼ " Glass, 15% carbowax on universal support
Temperature	131°C
Carrier Gas	Nitrogen
Carrier Flow	40 ml min ⁻¹
Injection Size	l µl

TABLE 4.XIX

.

•

4.2.17. <u>G.L.C. ANALYSIS OF FeCl₃ CH₃CN Cl₂ USING</u> <u>VARYING AMOUNTS OF Cl₂.</u>

Five rotaflo vessels were pumped and flamed out on a vacuum system before being transferred to a dry box. Fifty ml of a solution of $FeCl_3$ in CH_3CN was prepared by weighing FeCl, (0.1622g; 1.00 mmol.) in a 50 ml standard flask and adding analar acetonitrile. A 5ml aliquot of this solution was pipetted into each of the rotaflo vessels. Each solution had a concentration of 2.0 x 10^{-2} mol⁻¹. The vessels were transferred to a vacuum system where they were degassed twice before adding weighed amounts The vessels were stored in a thermostat bath at of Cl₂. 298K for 7 days after which the Cl₂ was removed. The solvent from each was distilled into a trap at 77K. and examined by GLC for the presence of CH₂Cl CN and The GLC work was performed under the conditions CCl₃CN. shown in Table 4.XXI and calibration curves were constructed for both CH2ClCN and CCl3CN in CH3CN. In this calibration, toluene was (Figures 4II + 4III). used as the internal standard as outlined in Section 2.7. The peak height ratios observed for both CH₂ClCN and CCl₃CN are shown in Table 4XXII.

GLC ANALYSIS CONDITIONS

Performed on	Carlo Erba Capillary GC Unit Fractovap 2351 AC	
Column	50 m carbowax 20M on glass	
Temperature	lll°C	
Carrier Gas	Helium	
Carrier Flow	2 ml min ⁻¹	
Split Mode	50/1 (1 through column)	
Injection Size	10 µl	
Internal Standard	100 µl Toluene (AR) T O 50 ml SAMPLE.	

4

TABLE 4.XXI

Calibration Curve for CH_2CICN in CH_3CN

Peak Height Ratio w 1.6 1.2 0.8 0.4 T 0 0.6 0.8 0.2 0.4 1 0 $\frac{\text{Vol. of CCl}_{3}\text{CN} \times 100}{\text{Vol. of CH}_{3}\text{CN}}$

Calibration Curve for CCl₃CN in CH₃CN

Figure 4.III

Amount Cl ₂ Added mmol	Peak Height Ratio CH ₂ ClCN:IS	vol.CH ₂ ClCN vol.CH ₃ CN x100	Peak Height Ratio CCl ₃ CN: IS:	vol.CCl ₃ CN vol.CH ₃ CN x100
0.915	0.375	0.392	0.338	0.160
2.14	0.505	0.332	0.237	0.112
2.99	0.473	0.494	0.710	0.332
4.91	0.398	0.418	0.866	0.405
6.40	0.055	0.046	1.95	0.900

GLC RESULTS FROM THE FeC1 3 CH 3CN C1 SYSTEM.

TABLE 4.XXII

4.2.18. <u>G.L.C. ANALYSIS OF [Fe(CH₃CN)₆][PF₆]₂|CH₃CN|Cl₂ USING VARYING AMOUNTS OF Cl₂.</u>

In a dry box, 50 ml of a solution of $[Fe(CH_3CN)_6]$ - $[PF_6]_2$ in CH_3CN was prepared by weighing $[Fe(CH_3CN)_6]$ - $[PF_6]_2$ (0.5920g; 1.00 mmol) in a 50 ml standard flask and adding analar acetonitrile. The concentration of the solution was 2.0 x 10^{-2} mol 1^{-1} . The analysis was performed by the method outlined in 4.2.17 using identical GLC conditions (Table 4.XXI) and calibration curves. (Figures 4.II + 4.III). The peak height ratios observed for both CH_2ClCN and CCl_3CN are shown in Table 4.XXIII.

G.L.C.	RESULTS	FROM	THE	$[Fe(CH_2CN)_{\epsilon}][PF_{\epsilon}]_2 CH_2CN Cl_2$
	SYSTEM.			

Amount Cl ₂ Added mmol.	Peak Height Ratio CH ₂ ClCN: IS	vol.CH ₂ ClCN vol.CH ₃ CN x100	Peak Height Ratio CCl ₃ CN: IS	vol.CCl ₃ CN vol.CH ₃ CN x100
1.15	0.685	0.725	· –	-
2.53	0.833	0.863	_	_
2.86	0.853	0.906	-	_
4.17	0.449	0.472	0.163	0.080
4.54	0.410	0.430	0.175	0.086
14.30	0.091	0.090	0.717	0.335

TABLE 4.XXIII

.

4.3. RESULTS FROM THE HETEROGENEOUS REACTIONS

Hetereogeneous reactions between FeCl₃ and 36 Cl₂ have been monitored by two different techniques.

4.3.1. EXCHANGE METHOD A

In this method the interaction between ${}^{36}\text{Cl}_2$ and FeCl₃ is monitored by two G.M. tubes contained in an evacuable counting vessel which has been described earlier (cf. 2.6.1., Fig. 2.XV). 36-Chlorine exchange between ${}^{36}\text{Cl}_2$ and FeCl₃ or adsorption of ${}^{36}\text{Cl}_2$ on the solid results in an increased count from the tube monitoring the solid plus gas and a decreased count from that monitoring the gas phase alone.

When a known pressure (34mm) of 36 Cl₂ (0.0654g; 0.92 mmol) is admitted to the reaction vessel in the absence of FeCl₃, the count rates from both GM tubes decrease. (Figure 4.IV). After the removal of ${}^{36}Cl_2$, the surface activity of the glass is greater than the initial background which indicates that 36 Cl, is adsorbed by the glass reaction vessel. When a second sample of 36 Cl₂ (0.0596g; 0.84 mmol) is admitted to the reaction vessel, the decrease in the count rate is not so great as in the previous reaction (Figure 4.IV) but the surface activity of the glass again increases. After the third exposure of the reaction vessel to ³⁶Cl₂ (0.0569g; 0.80 mmol) the decrease in the count rate is much less (Figure 4.IV) which indicates that less ³⁶Cl, is adsorbed by the reaction vessel. The surface activity of the vessel has again increased though this value decreases slightly after overnight pumping.

Figure 4.IV

After exposure to 36 Cl₂, the GM tubes used in the reaction vessel also exhibit surface activity.

These results show that ${}^{36}\text{Cl}_2$ is adsorbed on to the reaction vessel and, therefore, pretreatment of the vessel with ${}^{36}\text{Cl}_2$ is essential before the reaction between FeCl₃ and ${}^{36}\text{Cl}_2$ is performed.

When a known pressure (37 mm) of 36 Cl₂ (0.070lg; 0.99 mmol) is admitted to FeCl₃ (Sample A, prepared from iron wire + Cl₂) (0.9805g; 6.04 mmol) the count rate from the gas plus solid increases with time and that from the gas alone decreases (Figure 4.V). The difference in count rates gives the surface ³⁶Cl activity of FeCl₃, and the variation of this with time is shown in Figure 4.VI. The surface activity is unaffected by the removal of 36 Cl, from the gas phase and also by the introduction of a fresh sample of inactive Cl₂. Analysis of the FeCl₃ after Cl, has been removed indicates that the ratio Fe:Cl is 1:3.0 (Table 4.XXIV) and that FeCl₃ is inactive (Table 4.XXV). 36-Chlorine exchange, therefore, has not occurred under the conditions used but ³⁶Cl₂ is adsorbed by the FeCl₃. The amount of ³⁶Cl₂ adsorbed can be estimated as shown in the following calculation.

After 22h, the surface activity of FeCl₃ (sample A) = 72 counts sec⁻¹. From the graph showing the pressure of 36 Cl₂ vs counts (Figure 4.VII) it can be seen that 72 counts sec⁻¹ \equiv 30.5 mm. Assuming that the counting efficiency in gas \equiv counting efficiency in solid, then the number of mmol of 36 Cl₂ present $= \frac{PV}{RT}$

TABLE 4.XXIV

~

ANALYSIS OF FeC13 SAMPLES FROM EXCHANGE METHOD A

TABLE 4.XXV

	Specific Activity from Initial Chlorine Counted as Ag ³⁶ C1 Counts min ⁻¹ mg ⁻¹ .	Specific Activity from Final Chlorine Counted as Ag ³⁶ C1 Counts min mg ⁻¹ .	Specific Activity from FeCl ₃ . Counted as Ag ³⁶ Cl. Counts min ⁻¹ mg ⁻¹ .
FeCl ₃ (Sample A)	233 ± 13	215 ± 12	0.9 ± 0.6
FeCl ₃ (Sample B)	347 ± 14	311 ± 14	1.1 ± 0.7
FeCl ₃ (Sample C)	129 ± 11	115 ± 11	1.2 ± 0.8

SPECIFIC ACTIVITIES OF THE REACTANTS FROM EXCHANGE METHOD A

where $P = \text{ pressure of } {}^{36}\text{Cl}_2$ V = volume of reaction vessel (ml). $R = \text{ gas constant (82.053 ml atm K}^{-1} \text{ mol}^{-1})$ T = temperature (K)

The number of mmol of ${}^{36}Cl_2$ present = $\frac{0.040 \times 498.7}{82.053 \times 297}$

= 0.82 mmol

The number of ${}^{36}\text{Cl}_2$ molecules = 0.82 x 10^{-3} x 6.022 x 10^{23} = 4.94×10^{20}

The weight of FeCl₃ (sample A) = 0.9805 g Surface area of FeCl₃ (sample A) = $0.15m^2g^{-1}$ Therefore, the surface area of this sample = 0.9805 x 0.15 = $0.147m^2$ = $0.147 \times 10^{20}A^2$

From single crystal and powder pattern X-ray studies,⁶² it can be deduced that there are 3 Fe atoms per unit cell, that is, 3 Fe atoms in 93.53\AA^2 . Assuming for a monolayer coverage, that one ${}^{36}\text{Cl}_2$ is adsorbed by one Fe atom, then if

 93.53\AA^2 corresponds to 3 Fe atoms

0.147 x 10^{20} Å² corresponds to 4.72 x 10^{17} Fe atoms. Therefore 4.72 x 10^{17} molecules of 36 Cl₂ are required for monolayer coverage. The number of 36 Cl₂ molecules adsorbed by the surface was 4.94 x 10^{20} , which is more than is required for monolayer coverage.

When 36 Cl₂ (0.1387g; 1.95 mmol) is admitted to FeCl₃ (sample B, prepared by SOCl₂ dehydration of FeCl₃.6H₂O)

(0.7948g; 4.90 mmol) the count rate from the gas plus solid increases with time and that from the gas alone The variation of the surface ³⁶Cl activity decreases. of FeCl, with time is shown in Figure 4.VIII. The surface activity is unaffected by the removal of ³⁶Cl, from the gas phase and also by the introduction of a fresh sample of inactive Cl₂. Analysis of the FeCl₂ after Cl, has been removed indicates that the ratio Fe:Cl is 1:3.0 (Table 4.XXIV) and that FeCl₃ is inactive (Table 4.XXV). 36-Chlorine exchange, therefore, has not occurred under the conditions used but ³⁶Cl, is adsorbed The amount of ³⁶Cl₂ adsorbed can be by the FeCl₃. estimated as shown in the following calculation.

After 8.5h, the surface activity of FeCl_3 (sample B) = 162 counts sec⁻¹.

This is equivalent to a pressure of 66 mm.

. . number of mmol of ${}^{36}Cl_2$ present = $\frac{PV}{RT}$

$$= \frac{0.087 \times 498.7}{82.053 \times 297}$$
$$= 1.78 \text{ mmol}$$

. number of ${}^{36}\text{Cl}_2$ molecules = 1.78 x 10⁻³ x 6.022 x 10²³ = 1.07×10^{21}

weight of FeCl₃ (sample B) = 0.7948gSurface area of FeCl₃ (sample B) = $0.22 \text{ m}^2\text{g}^{-1}$

. surface area of this sample = 0.175 m²
= 0.175 x
$$10^{20}$$
²

93.53Å² corresponds to 3 Fe atoms 0.175 x 10^{20} Å² corresponds to 5.61 x 10^{17} Fe atoms.

This implies that 5.61 x 10^{17} molecules of ${}^{36}\text{Cl}_2$ are required for monolayer coverage. The number of ${}^{36}\text{Cl}_2$ molecules adsorbed by the surface was 1.07 x 10^{21} , which is more than required for monolayer coverage.

When ${}^{36}\text{Cl}_2$ (0.1853; 2.61 mmol) is admitted to FeCl₃ (sample C, commercial anhydrous FeCl₃) (0.584g; 3.60 mmol) the same effect as in the two previous reactions is observed and the variation of surface ${}^{36}\text{Cl}$ activity of FeCl₃ with time is shown in Figure 4.IX. The surface activity is unaffected by the removal of ${}^{36}\text{Cl}_2$ from the gas phase and also by the introduction of a fresh sample of inactive Cl₂ or inactive CHCl₃. Analysis of the FeCl₃ after CHCl₃ has been removed indicates that the ratio Fe:Cl is 1:3.0 (Table 4.XXIV) and the FeCl₃ is inactive (Table 4.XXV). No ${}^{36}\text{Cl}$ exchange has occurred but the amount of ${}^{36}\text{Cl}_2$ adsorbed by the FeCl₃ has been estimated.

After 8.0h., the surface activity of FeCl₃ (sample C) = 220 counts sec⁻¹. This is equivalent to a pressure of 91 mm

. number of mmol of 36 Cl₂ present = 2.45 mmol. . number of 36 Cl₂ molecules = $2.45 \times 10^{-3} \times 6.022 \times 10^{23}$ $= \frac{1.48 \times 10^{21}}{1.48 \times 10^{21}}$ weight of FeCl₃ (sample C) = 0.5846gsurface area of FeCl₃ (Sample C) = $0.36m^2g^{-1}$. surface area of this sample = $0.210m^2$ $= 0.210 \times 10^{20}A^2$

93.53Å² corresponds to 3 Fe atoms

0.210 x 10^{20} ^{A²} corresponds to 6.74 x 10^{17} Fe atoms. This implies that 6.74 x 10^{17} molecules of 36 Cl₂ are required for monolayer coverage. The number of 36 Cl₂ molecules adsorbed by the surface was 1.48 x 10,²¹ which is more than is required for monolayer coverage.

4.3.2. EXCHANGE METHOD B

In this method the interaction between ${}^{36}\text{Cl}_2$ and FeCl₃ is monitored by removing aliquots of ${}^{36}\text{Cl}_2$ at intervals as described earlier (cf. 2.6.2, Fig. 2.XVIII). 36-Chlorine exchange between ${}^{36}\text{Cl}_2$ and FeCl₃ would result in a decrease in the specific activity of the ${}^{36}\text{Cl}_2$ removed and incorporation of activity into the FeCl₂.

The initial specific activity of the ${}^{36}\text{Cl}_2$ is determined before ${}^{36}\text{Cl}_2$ (0.4544g; 6.40 mmol) is admitted to FeCl₃ (Sample A) (1.5896g; 9.80 mmol). The change in the specific activity of ${}^{36}\text{Cl}_2$ with time, after it is admitted to FeCl₃, is shown in Table 4.XXVI. The values obtained are lower than the initial specific activity which suggests that exchange does occur. Analysis of the FeCl₃ sample after ${}^{36}\text{Cl}_2$ has been removed indicates that the ratio Fe:Cl is 1:3.0 (Table 4.XXVII) and that FeCl₃ is inactive (Table 4.XXVIII). Complete exchange

<u>SPECIFIC ACTIVITIES OF ³⁶Cl₂ FROM THE INTERACTION</u> OF FeCl₃ (SAMPLE A) AND ³⁶Cl₂.

Specific Activity of ³⁶ Cl ₂ counted as Ag ³⁶ Cl. Counts (5min) ⁻¹ mg ⁻¹	Time h
604 ± 20	0
387 ± 15	5.5
432 ± 16	30.25
440 ± 16	119

TABLE 4.XXVI

between ${}^{36}\text{Cl}_2$ and FeCl₃ would result in ${}^{36}\text{Cl}$ specific activities of 37 ± 3 counts min⁻¹ mg⁻¹. There appears to be a drop between the initial reading for the specific activity of ${}^{36}\text{Cl}_2$ and those taken thereafter but not the corresponding incorporation of activity into FeCl₃. This discrepancy cannot be explained by the adsorption of ${}^{36}\text{Cl}_2$ by FeCl₃ as this would not alter TABLE 4.XXVII

FeCl₃ (Sample C) FeCl₃ (Sample B) FeCl₃ (Sample A) % Obtained 64.0 57.4 62.5 CHLORINE % Required for FeCl₃ 65.6 65.6 65.6 % Obtained 30.3 33.4 33.1 IRON % Required for FeCl₃ 34.4 34.4 34.4

ANALYSIS OF FeC1 3 SAMPLES FROM EXCHANGE METHOD B

TABLE 4.XXVIII

FeCl ₃ (Sample C) 21	FeCl ₃ (Sample B)	FeC1 ₃ (Sample A)	Speci Initi as Ag min ⁻¹ r
96 ± 9	431 ± 13	l21 ± 4	fic Activity from al Chlorine Counted 36Cl. Counts ng ⁻¹ .
230 ± 7	396 ± 12	88 + 3	Specific Activity from Final Chlorine Counted as Ag ³⁶ Cl. Counts min ⁻¹ mg ⁻¹ .
1.0 ± 0.7	1.4 ± 0.8	0.9 ± 0.6	Specific Activity From FeCl3. Counted as Ag ³⁶ Cl. Counts min ⁻¹ mg ⁻¹ .

SPECIFIC ACTIVITIES OF THE REACTIONS FROM EXCHANGE METHOD B

the specific activity of the ³⁶Cl₂. Since the specific activity drops, this implies that some form of inactive chlorine is removed with ³⁶Cl₂ when it is This could be caused by trace amounts of sampled. water hydrolysing the FeCl, to a very small extent, producing HCl, followed by slow exchange between HCl + ³⁶Cl₂. It is known that the half-life of the gas phase exchange reaction between hydrogen chloride and chlorine is very dependent on the amount of water present and under the conditions in this reaction exchange would be slow.⁶⁵ Analysis of the FeCl₃ sample, however, indicates that the correct ratio Fe:Cl of 1:3.0 is obtained, though the sensitivity of ³⁶Cl is greater than that achieved by conventional wet analysis.

Another explanation for this anomaly is that a systematic error exists in the conversion of ³⁶Cl to Ag³⁶Cl (apart from the uncertainty in the sample weight and the uncertainty inherent in the count.) The results in Table 4.XIV, however, show that there is excellent agreement in the specific activity between the two readings taken, within the limits of the counting and weighing errors, for each sample removed. This suggests that the drop in specific activity is a real effect and is not due to an error in the conversion process. This, however, does not completely rule out the possibility of a systematic error. The significance of the drop is not clear, but it is apparently not due to ³⁶Cl exchange between ${}^{36}\text{Cl}_2$ and FeCl₃.

The change in the specific activity of ${}^{36}\text{Cl}_2$ when ${}^{36}\text{Cl}_2$ (0.1565g; 2.20 mmol) is admitted to FeCl₃ (sample B) (0.5790g; 3.57 mmol) is shown in Table 4.XXIX. The specific activity of ${}^{36}\text{Cl}_2$

SPECIFIC ACTIVITIES OF ³⁶Cl₂ FROM THE INTERACTION OF FeCl₃ (SAMPLE B) AND ³⁶Cl₂.

Specific Activity of ³⁶ Cl ₂ Counted as Ag ³⁶ Cl Counts (5min) ⁻¹ mg ⁻¹	Time h
2155 ± 67	0
1802 ± 52	20.33
1790 [±] 50	45.25
1831 ± 53	165.83
2130 ± 65	219.25
1980 ± 58	455.33

TABLE 4.XXIX

drops though there is a random fluctuation in the values obtained. Analysis of the FeCl₃ sample after ${}^{36}\text{Cl}_2$ has been removed indicates that the ratio Fe:Cl is 1:3.0 (Table 4.XXVII) and that FeCl₃ is inactive (Table 4.XXVIII). Complete exchange between ${}^{36}\text{Cl}_2$ and FeCl₃ would result in ${}^{36}\text{Cl}$ specific activities of 125 ± 8 counts min⁻¹ mg⁻¹. Although there is a decrease between the initial and final values of ${}^{36}\text{Cl}_2$ specific activities, no activity is incorporated into the FeCl₃ sample and, therefore, no exchange occurs.

The change in the specific activity of ${}^{36}Cl_2$ when ${}^{36}Cl_2$ (0.2712g; 3.82 mmol) is admitted to FeCl_3 (sample C) (0.4641g; 2.86 mmol) is shown in Table 4.XXX. The

SPECIFIC ACTIVITIES OF ³⁶Cl₂ FROM THE INTERACTION OF FeCl₃ (SAMPLE C) AND ³⁶Cl₂

Specific Activity of ³⁶ Cl ₂ Counted as Ag ³⁶ Cl Counts (5min) ⁻¹ mg ⁻¹	Time h
1 148 ± 45	0
1309 ± 41	6
1467 ± 44	25.75
1431 ± 43	29.75
1265 ± 39	152.66
1148 ± 37	431.33

TABLE 4.XXX

specific activity of 36 Cl₂ fluctuates but there is a decrease between the initial and final values obtained. Analysis of the FeCl₃ sample after 36 Cl₂ has been removed indicates that the ratio Fe:Cl is 1:3.0 (Table XXVII and that the FeCl₃ is inactive (Table 4.XXVIII). Complete exchange between 36 Cl₂ and FeCl₃ would result in 36 Cl specific activities of 6l ± 4 counts min⁻¹mg⁻¹. Although there is a decrease between the initial and final values obtained for 36 Cl₂ specific activity, no activity is incorporated into the FeCl₃ sample and, therefore, no exchange has occurred.

4.4. DISCUSSION OF THE HETEROGENEOUS REACTIONS

The results from exchange method A, in which the total 36 Cl activity is monitored, show that 36 Cl₂ is adsorbed by the glass reaction vessel. The decrease in gas phase activity exhibited when 36 Cl₂ is admitted to all three samples of FeCl₃ suggests that either (1) exchange is taking place or (2) that chlorine is adsorbed by the FeCl₃. If assumption (1) is correct then analysis of the FeCl₃ samples would result in the production of Ag 36 Cl and 36 Cl exchange between FeCl₃ and inactive Cl₂ would also be expected. It can be concluded, therefore, that chlorine is merely adsorbed by FeCl₃. Comparison of the variation of surface 36 Cl activity with time from each of the FeCl₃ samples shows that there is a qualitative correlation between the amount of chlorine adsorbed and the surface area of the FeCl₃ sample. (Figure 4.X). Most 36 Cl₂ is adsorbed by FeCl₃ (sample C), which has the largest surface area, and least by FeCl₃ (sample A), which has the smallest surface area.

Two types of adsorption can take place between a gas and the surface of a solid, chemisorption and physical adsorption. Chemisorption involves the formation of a chemical bond between the gas molecule and the solid surface. A chemisorbed molecule can be either associatively adsorbed or dissociation of the molecule can occur and the species be dissociatively adsorbed by the surface. No chemical bonds are formed between the surface and a physically adsorbed molecule and the forces involved are weak attractive forces similar to van der Waals forces.⁶⁷

If ${}^{36}\text{Cl}_2$ is physically adsorbed by the reaction vessel and the FeCl₃, it should be possible to remove the ${}^{36}\text{Cl}_2$ by prolonged pumping of the system at room temperature. Prolonged pumping of the system should not remove a chemisorbed species, which implies that ${}^{36}\text{Cl}_2$ is chemisorbed. ${}^{36}\text{Cl}_2$ could be either associatively or dissociatively adsorbed by the glass. It is known that chloride ion can replace hydroxyl groups on an alumina surface⁷¹ and it is suggested, in an analogous manner, that adsorption occurs by Cl⁻ or Cl⁻ species replacing hydroxyl groups from the silicate in glass.

 ${}^{36}\mathrm{Cl}_2$, therefore is dissociatively adsorbed by the glass. If ${}^{36}\mathrm{Cl}_2$ is dissociatively adsorbed by FeCl₃, this would lead to randomization of the chloride ions attached to iron and thus to incorporation of activity into FeCl₃. No activity is incorporated into FeCl₃ which suggests that ${}^{36}\mathrm{Cl}_2$ is associatively adsorbed at the coordinatively unsaturated metal sites (diagram 4.I)

DIAGRAM 4.I

There is no evidence for the adsorbed ${}^{36}\text{Cl}_2$ on hydrolysis of FeCl₃ as the ratio Fe:Cl obtained is J:3.0. This implies that the chemisorbed species is lost during the analysis of FeCl₃ which is very probable since this analysis involves dissolving the FeCl₃ in acid and boiling the solution (cf.2.3.2).

The results from exchange method B for all three samples of FeCl₃ show that there is a decrease between the initial and final activities of ${}^{36}\text{Cl}_2$ but no activity incorporated into FeCl₃. Although the significance of this drop is not clear it can be concluded that ${}^{36}\text{Cl}$ exchange does not occur between ${}^{36}\text{Cl}_2$ and FeCl₃.

The chemisorbed species depicted in diagram 4.I is formed due to iron(III) chloride's ability to behave as a Lewis acid. Ethylene reacts with Cl, in the presence of iron(III) chloride to give 1,2-dichloroethane (cf. 1.4.1) and it has been suggested that FeCl₃ is responsible for the heterolytic cleavage of Cl, in the reaction via its Lewis acid activity. (Scheme 1.X). This, however, is inconsistent with the lack of ³⁶Cl exchange between ³⁶Cl₂ and FeCl₃. Benzene can be chlorinated by iron(III) chloride in the presence of chlorine (cf. 1.4.1) though water plays an important role in this reaction. It has been suggested that the role of water is to form 'FeCl₃.H₂O' which has a greater solubility in benzene than $FeCl_3$ or the higher hydrates.³ The catalytic effect of anhydrous AiCl, depends on trace amounts of water or hydrogen halides being present which act as promoters or co-catalysts 40,72 and it has been suggested that this effect is general to Lewis acids. It is extremely difficult to obtain a Lewis acid metal halide in a completely anhydrous state especially in an industrial process. It is probable, therefore, that water is present when ethylene reacts with Cl₂ in the presence of FeCl₃ to give 1,2-dichloroethane and that the catalytic ability of FeCl, is dependent on trace amounts of water which behave as a co-catalyst with FeCl₃. In an analogous manner, in the chlorination of benzene by chlorine via an intermediate with FeCl₃, water may be necessary not only to increase the solubility of the

catalyst but actually to provide the catalytic species by making iron(III) chloride a more effective Lewis acid.

An alternative explanation from these results is that adsorption of Cl_2 by FeCl₃ weakens the Cl-Cl bond which then reacts more readily with C = C.

In summary, examination of the heterogeneous system between anhydrous FeCl_3 and ${}^{36}\text{Cl}_2$ has shown that although ${}^{36}\text{Cl}_2$ is chemisorbed by FeCl_3 no exchange occurs. This implies that, under these anhydrous conditions, the Fe(III)-Cl bond is not labile towards Cl_2 and that the suggested role of FeCl_3 as a chlorination catalyst is incorrect.

4.5. <u>RESULTS FROM THE HOMOGENEOUS SYSTEM: - IRON(III)</u> CHLORIDE DISSOLVED IN ACETONITRILE.

If water and possibly other Lewis bases can behave as catalyst promoters or co-catalysts with FeCl₃ then the presence of a Lewis base should affect Fe^{III} -Cl lability and therefore have an effect on the interaction of 36 Cl₂ with FeCl₃. This has been investigated using acetonitrile.

When anhydrous FeCl₃ is dissolved in acetonitrile, in an inert atmosphere box at room temperature, a bloodred solution is initially obtained which gradually becomes orange and then pale yellow. The colour change from red to orange takes approximately 24h and the pale yellow stage is achieved in about 14 days. When chlorine is added to a solution of FeCl₃ in acetonitrile, the colour sequence is vastly accelerated. The time taken is dependent on the amount of chlorine added but the sequence of changes is complete within 24h. to 48h.

INTERACTION OF FeC1₃ WITH CH₃CN and ³⁶C1₂:-4.5.1. RUN I.

This reaction was performed using exchange method B. In this method the interaction between 36 Cl₂ and a solution of FeCl₃ in acetonitrile is monitored at intervals by removing aliquots of 36 Cl₂ as described earlier (cf.2.6.2) (Fig. 2.XVIII). If 36-Chlorine exchange occurs the specific activity of ³⁶Cl₂ will decrease and incorporation of activity into FeCl, will be observed.

When 36 Cl₂ (0.5886g; 8.29 mmol) is admitted to a solution of FeCl₃ in CH_3CN (2.0 x 10^{-1} mol 1^{-1}) the specific activity of ³⁶Cl₂ drops by approximately one-third after 3h and thereafter remains constant. (Table 4.XXXI) After 20.5 h the amount of ³⁶Cl, removed was too small to count accurately. It became progressively more difficult to remove ³⁶Cl₂ from this reaction as indicated in Table 4.XXXI by the column headed '%Cl Recovered'. This is defined by

EXCHANGE RESULTS FROM THE INTERACTION OF FeCl₃ WITH CH₃CN AND ³⁶Cl₂:- RUN I.

Sample	Time h	Colour	%Cl Recovered	Activity Counts(5min) ⁻¹ mg ⁻¹
Initial ³⁶ Cl ₂	0	Red	94.8	858 ± 35
lst. ³⁶ Cl ₂	3.25	Red	52.0	561 ± 33
2nd ³⁶ Cl ₂	20.5	Orange	31.8	587 ± 25
Remaining Solid	After solvent removed	-	121.1	678 ± 29

TABLE 4.XXXI

The reaction shows the characteristic colour changes and after 30h. the solution is pale yellow. Analysis of the solid sample after the solvent has been removed indicates that the ratio Fe:Cl is 1:3.9 (Table 4.XXXII) and that it is radioactive (Table 4.XXXI). Complete exchange between 36 Cl₂ and FeCl₃ would result in 36 Cl₂ specific activities of 726 ± 30 counts (5min) ${}^{-1}$ mg ${}^{-1}$ for both species.

ANALYSIS OF THE SOLID FROM THE INTERACTION OF FeC1₃ WITH <u>CH₃CN AND ³⁶Cl₂:- RUN I</u>.

	Amount Obtained g	Amount Required for FeCl ₃ used g
Iron	0.0524	0:0558
Chlorine	0.1285	0.1064

TABLE 4.XXXII

4.5.2. <u>INTERACTION OF FeCl₃ WITH CH₃CN AND ³⁶Cl₂:-</u> <u>RUN II</u>.

When ${}^{36}\text{Cl}_2$ (0.4217g; 5.94 mmol) is admitted to a solution of FeCl₃ in CH₃CN (2.0 x $10^{-1} \text{ mol } 1^{-1}$) the specific activity of ${}^{36}\text{Cl}_2$ drops with time (Table 4.XXXIII) until the amount of ${}^{36}\text{Cl}_2$ removed becomes too small to count accurately. This indicates that the pressure of ${}^{36}\text{Cl}_2$ in the reaction vessel is falling. The reaction showed the characteristic

EXCHANGE RESULTS FROM THE INTERACTION OF FeC13 WITH

 $\underline{CH_3CN}$ and $\underline{^{36}Cl_2:-}$ RUN II.

Sample	Time	Colour	%Cl Recovered	Activity Counts (5min) ⁻¹ mg ⁻¹
Initial ³⁶ Cl ₂	ο	Red	98.3	, 706 ± 36
lst ³⁶ Cl ₂	2	Red	80.1	478 ± 30
2nd ³⁶ Cl ₂	6.16	Orange	43.7	382 ± 28
Remaining Solid	After solvent removed	-	130.4	642 ± 35

TABLE 4.XXXIII

colour sequence and after 42h. the solution became pale yellow. Analysis of the solid sample after the solvent has been removed indicates that the ratio Fe:Cl is 1:3.9 (Table 4.XXXIV) and that it is active (Table 4.XXXIII). <u>ANALYSIS OF THE SOLID FPOM THE INTERACTION OF FeCl₃ WITH</u> <u>CH₃CN AND ³⁶Cl₂:- RUN II</u>.

	Amount Obtained g	Amount Required for FeCl ₃ used
Iron	0.0552	0.0558
Chlorine	0.1380	0.1064

TABLE 4.XXXIV

Complete exchange between 36 Cl₂ and FeCl₃ would result in 36 Cl specific activities of 564 ± 29. counts $(5min)^{-1}mg^{-1}$ for both species.

The results show that exchange occurs between ${}^{36}\text{Cl}_2$ and FeCl₃ in acetonitrile and indicate that this exchange is due to a chemical reaction in which Cl₂ is consumed and which results in a higher ratio Fe:Cl than can be accounted for by FeCl₃. This system was more fully investigated to elucidate the chemical reaction.

4.5.3. OXIDATION STATE OF IRON IN THE FeCl₃|CH₃CN AND FeCl₃|CH₃CN|Cl₂ SYSTEMS.

The oxidation state of iron was examined at various stages in both the $\text{FeCl}_3 | \text{CH}_3 \text{CN} \text{ and the FeCl}_3 | \text{CH}_3 \text{CN} | \text{Cl}_2$ systems by spectrophotometric analysis (cf. 2.3.3). The iron containing species present in both systems were identified by recording the electronic spectra of the solutions at various times during the reaction.

Spectrophotometric analysis of these solutions show no evidence for the presence of Fe^{II} up to seven days. Thereafter Fe^{II} is present and its concentration remains constant even after four weeks. (Table 4.XXXV). Paradoxically in the FeCl₃|CH₃CN|Cl₂ system, Fe^{II} is detected in solution after 20h though the amount of Fe^{II} present is very dependent on the quantity of chlorine

Time	Colour	Fe(II) mg 1-1	Total Iron mg l
Initial	Red	-	11.4
lh.	Red	-	11.2
20h.	Orange	-	11.2
7 d.	Orange	1.7	11.2
4w.	Yellow	3.4	11.1

SPECTROPHOTOMETRIC ANALYSIS OF FeC1 CH CN SYSTEM.

TABLE 4.XXXV

added to the system. After 20h, the concentration of Fe^{II} in solution decreases and after 44h it is no longer observed. This implies that in the presence of chlorine the reduction of Fe^{III} to Fe^{II} is more rapid than in the FeCl₃|CH₃CN system.

The electronic spectra of the two systems, $FeCl_3|CH_3CN \text{ and } FeCl_3|CH_3CN|Cl_2$, were recorded over a period of time. Spectroscopic examination of the $FeCl_3|CN_3CN \text{ system shows the gradual growth of the}$ $Fe(II)(CH_3CN)_6^{2+}$ cation as indicated by a peak at 10900 cm⁻¹ and a shoulder at 8500 cm⁻¹ which compare favourably with the literature value for this species.²¹

Time	Colour	Cl mmöl.	Fe(II) mg 1-1	Total Iron mg l ⁻¹
lh	Orange	1.60	_	11.3
20h	Yellow	3.01	2.2	11.0
20h	Yellow	3.53	2.8	11.1
44h	Yellow	2.71	-	11.2
4w.	Yellow	3.28	_	11.1

SPECTROPHOTOMETRIC ANALYSIS OF FeC13 CH3CN C12 SYSTEM.

TABLE 4.XXXVI

This peak is due to the ${}^{5}D$ ground state of iron(II) being split by the octahedral field into a lower ${}^{5}T_{2g}$ and an upper ${}^{5}Eg$ level and is unsymmetrical as a result of Jahn-Teller distortion of the ${}^{5}Eg$ level. This peak is observed in the FeCl₃|CH₃CN system after seven days and thereafter remains present in these solutions. At the same time, the spectra show the growth of the tetrachloroferrate ion, FeCl₄ (Table 4.XXXVII and Figure 4.XI).

SOLUTION SPECTRUM OF FeC1___.

Literature Values 21 of the Solution _ Spectra of FeCl ₄ cm ⁻¹	Observed Values cm ⁻¹
48000	Not Observed
41700	41300
37200	37500
32000	31900
27600	27800
22200	22500
19800	Not Observed
18800	18900
16600	16800
16200	16300
14400	14600

· ·

TABLE 4.XXXV II

Figure 4XI

In the FeCl₃ $|CH_3CN|Cl_2$ system, growth of Fe(CH₃CN)₆²⁺ is observed during the first twenty hours but thereafter it decays until after 44h. it is no longer observable. Simultaneously the spectra show the growth of the FeCl₄⁻ ion and after 48h. this is the only iron-containing species observed in solution. (Figure 4.XII).

4.5.4. CHLORINATION OF THE SOLVENT.

The formation of Fe^{II} in these solutions suggests that chlorination of the solvent occurs with the concomitant evolution of HCl. The solvents from the three systems, $CH_3CN|Cl_2$, $FeCl_3|CH_3CN$ and $FeCl_3|CH_3CN|Cl_2$, were examined by GLC for the presence of monochloroacetonitrile and trichloroacetonitrile to establish the extent of chlorination.

The systems were prepared under comparable conditions at room temperature and examined after 20h. In two cases monochloroacetonitrile is formed (Table 4.XXXVIII) but no trichloroacetonitrile was observed in any solution.

Figure 4XII

· .

GLC. ANALYSIS OF REACTION SOLUTIONS.

	CH. Vol.CH ₂ ClCN	CICN	
	Vol.CH ₃ CN ×100	Mol 1 ⁻¹	
CH ₃ CN Cl ₂	0.016	0.003	
FeCl ₃ CH ₃ CN	-	-	
FeCl ₃ CH ₃ CN Cl ₂	0.290	0.046	

TABLE 4.XXXVIII

Under these conditions, no CH_2ClCN was detected in the $FeCl_3|CH_3CN$ system. In the $FeCl_3|CH_3CN|Cl_2$ system, chlorination of the solvent is significant and far greater than in the absence of $FeCl_3$.

The effect of varying the FeCl₃:Cl₂ ratio on the extent of chlorination is shown in Table 4.XXXIX . In these experiments the solutions were allowed to react at 298K for 7 days. Both mono- and trichloroacetonitrile are formed in these solutions and as more chlorine is added the amount of CH₂ClCN decreases but TABLE 4.XXXIX

CONCENTRATION OF FeCl₃ IN $CH_3CN = 2.0 \times 10^{-2} \text{ mol } 1^{-1}$

6.40	4.91	2.99	2.14	0.915	Cl ₂ mmol.	
0.046	0.418	0.494	0.532	0.392	vol.CH ₂ ClCN vol.CH ₃ CN Xloo	сн,стс
0.007	0.066	0.078	0.084	0.062	mol 1 ⁻¹	Z
0.900	0.405	0.332	0.112	0.160	vol.CCl ₃ CN vol.CH ₃ CN ×100	LTJ CN
0.090	0.040	0.033	0.011	0.016	mol 1 ⁻¹	_

EXTENT OF SOLVENT CHLORINATION FROM THE FeC1 3 CH3CN C12 SYSTEM.

•

the amount of CCl₃CN present increases. These results indicate that the extent of chlorination is dependent on the amount of chlorine added.

It has been shown that $Fe(CH_3CN)_6^{2+}$ is oxidised by Cl_2 in CH_3CN to give $FeCl_4^-$ as the only ironcontaining product.⁷³ The solvent from this was examined to determine the extent of chlorination which occurs when the $[Fe(CH_3CN)_6][PF_6]_2:Cl_2$ ratio is varied. (Table 4.XL). Both mono- and trichloroacetonitrile are formed in these solutions and as more chlorine is added the amount of CH_2ClCN decreases but the amount of CCl_3CN present increases.

4.6. <u>DISCUSSION OF THE HOMOGENEOUS SYSTEM: - IRON(III)</u> CHLORIDE DISSOLVED IN ACETONITRILE.

When ${}^{36}\text{Cl}_2$ is added to a solution of FeCl₃ in acetonitrile, ${}^{36}\text{Cl}$ exchange takes place. This is indicated by a decrease in the specific activity of the ${}^{36}\text{Cl}_2$ and the incorporation of activity into FeCl₃. Under the experimental conditions used, the specific activity of ${}^{36}\text{Cl}_2$ has decreased by <u>ca</u> 30% after 3h. These results were obtained using exchange method B which, due to the results discussed in section 4.3.2, makes this figure of TABLE 4.XL

CONCENTRATION OF $(PF_6)_2$ Fe $(CH_3CN)_6$ IN $CH_3CN = 2.0 \times 10^{-2} \text{ mol } 1^{-1}$

14.30	4.17	2.86	2.53	1.15	C12 mmo1.
0.090	0.472	0.906	0.863	0.725	vol.CH2ClCN vol.CH3CN ×1
0.014	0.075	0.143	0.136	0.115	CH ₂ ClCN 00 mol 1 ⁻¹
0.335	0.080	1	I	1	CC1 ₃ C vol.CC1 ₃ CN <u>vol.CH₃CN</u> x100
0.033	0.008	1	١	I	N mol 1 ⁻¹

EXTENT OF SOLVENT CHLORINATION FROM THE $[Fe(CH_3CN)_6]$

١

CH3CN C12 SYSTEM.

30% slightly suspect. Analysis of FeCl₃, after the removal of the solvent, indicates that the ratio Fe:Cl is 1:3.9 which could result from the almost complete conversion of FeCl₃ to the tetrachloroferrate ion. It appears that the ³⁶Cl exchange observed is the result of a chemical reaction.

The reaction is characterized by the colour changes red \rightarrow orange \rightarrow pale yellow. The coordination model put forward by Drago et. al. 6,7,8 and shown in scheme 1.II suggests that when iron(III) chloride is dissolved in acetonitrile, complexation and solvolysis occur. It has been suggested that the species formed are $[Fe(CH_3CN)_4Cl_2]^+$ and $FeCl_4^{-.74}$ It is also known that in acetonitrile, partial reduction of the FeCl₃ occurs and after a week [Fe^{II}(CH₃CN)₆][Fe^{III}Cl₄]₂ can be isolated from a pale yellow solution.¹⁸ A crystal structure of this compound has been obtained and found to contain two tetrahedrons ($\text{Fe}^{\text{III}}\text{Cl}_4$)⁻ and one octahedron [$\text{Fe}^{\text{II}}(\text{CH}_3\text{CN})_6$]²⁺.⁷⁵ It has been suggested that the presence of water and light play an important role in the reduction of FeCl₃ by It was found when FeCl₃ is dissolved in a nitriles. nitrile, RCN, under rigorously anhydrous conditions and protected from light that highly unstable red crystals

These crystals decomposed on exposure to were formed. light, heat and traces of moisture. Chemical analysis of the crystals showed that the chlorine to iron ratio was 2.83±0.09 and that the ligand to iron ratio was 1.84. This data is compatible with the compound [Fe(CH₃CN)₄Cl₂][FeCl₄]. An X-ray diffraction study was carried out on the crystals obtained from FeCl₃ dissolved in C₂H₅CN and the lattice contained eight FeCl₄ 75 tetrahedra for every four $[Fe(C_2H_5CN)_5C1]^{2+}$ octahedra, This structure agreed with the chemical analysis which showed that the ligand to iron ratio was 1.7.76 These results imply that the partial reduction of FeCl₃ in acetonitrile may be catalysed by trace amounts of water.

From these various studies it appears that the colour changes observed are due to the formation of different species in solution. In an attempt to relate the colour changes observed with the species formed, the oxidation state of the iron was examined. The results show that after a week Fe^{II} is detected in solutions of $FeCl_3$ in CH_3CN and that the Fe^{II} concentration increases until one third of the iron is present as Fe^{II} . Electronic spectra indicate that this species is $Fe^{II}(CH_3CN)_6^{2+}$ and that the rest of the iron is present as $FeCl_4^-$. At this stage the solution is pale yellow and since $Fe^{II}(CH_3CN)_6^{2+}$ is effectively colourless, $FeCl_4^-$ must be responsible for this yellow colour.

The sequence of colour changes can, therefore, be explained as follows. Complexation occurs between FeCl₃ and CH_3CN giving rise to the red colour observed initially. Solvolysis then occurs and, as acetonitrile is a weak donor of moderate solvating ability, $[Fe(CH_3CN)_4Cl_2]^+$ and $FeCl_4^$ are gradually formed in solution. The $[Fe(CH_3CN)_4Cl_2]$ cation can dissociate to give $[Fe(CH_3CN)_5C1]^{2+}$ (scheme 4.I) but, due to acetonitrile's solvating properties, this equilibrium lies to the left. It has

$$[\text{Fe}(\text{CH}_3\text{CN})_4\text{Cl}_2]^+$$
 $(\text{Fe}(\text{CH}_3\text{CN})_5\text{Cl})^{2+}$

Scheme 4.I.

been shown that $[Fe(CH_3CN)_5Cl]^{2+}$ does not dissociate to give $[Fe(CH_3CN)_6]^{3+}$, as $[Fe(CH_3CN)_6]^{3+}$ is too powerful an oxidising agent to exist under these conditions.⁷³ The solvated iron(III) species, $[Fe(CH_3CN)_4Cl_2]^+$ formed in solution is then slowly reduced and after a week $[Fe(CH_3CN)_6]^{2+}$ is present in solution. (scheme 4.II)

$$[Fe(CH_3CN)_4Cl_2]^+ \xleftarrow{} [Fe(CH_3CN)_6]^{2+} + Cl + Cl + Cl$$

Scheme 4.II

Although every effort was taken to exclude trace quantities of water in the present work, this step may be catalysed by trace amounts of water. Reduction of the Fe^{III} species results in $[Fe(CH_3CN)_6]^{2+}$ and $FeCl_4^-$ being present in solution after a week. Chemical analysis of iron's oxidation state confirms that the ratio $Fe^{II:}Fe^{III}$ is 1:2.

When FeCl₃ is dissolved in CH₃CN in the presence of

chlorine, Fe^{II} is detected in solution after only 20h. and at this stage ca 20% of the iron is present as Fe^{II}, although the exact amount is dependent on the amount of chlorine added to the system. Thereafter, the concentration of Fe^{II} decreases until after 44h. it can no longer be detected. Electronic spectra identified the Fe^{II} species as [Fe(CH₃CN)₆]²⁺. In contrast, the concentration of $FeCl_4$ increases throughout the reaction and after 44h this is the only species observed. Paradoxically in the presence of an oxidising agent, Fe^{II} is detected earlier in solution. A possible explanation for these results is that, after complexation and solvolysis occurs to give [Fe(CH₃CN)₄Cl₂]⁺ and FeCl, , the cationic species is reduced and, in the presence of chlorine, oxidised to the $[Fe(CH_3CN)_5C1]^{2+}$ The [Fe(CH₃CN)₅Cl]²⁺ ion is immediately reduced ion. giving [Fe(CH₃CN)₆]²⁺. (Scheme 4.III)

Scheme 4.III

Presuming that $[Fe(CH_3CN)_5C1]^{2+}$ is reduced more quickly than $[Fe(CH_3CN)_4C1_2]^+$ and that the reduction is

103

more rapid than the oxidation, then this will lead to a more rapid build-up of the Fe^{II} species in solution. In this system, however, after 44h all the iron is present as FeCl_{λ}. In the reduction of the cationic iron(III) species to $Fe(CH_3CN)_6^{2+}$ and in the latters oxidation by chlorine, chlorination of the solvent must occur with the concomitant evolution of HCl. Free HCl is not detected in any of the systems studied, that is FeCl₃|CH₃CN, CH₃CN|Cl₂ and FeCl₃|CH₃CN|Cl₂. This implies that HCl is consumed in these reactions. There are a number of ways in which it has been suggested that HCl can react with acetonitrile. These are a) formation of the solvent adduct CH₃CN.xHCl;⁷⁷ b) formation of the acetamido dichloride⁷⁸ (Fig. 4.XIIIA) c) addition across the CEN bond to give the chloroacetiminium $chloride^{79}$ (Fig. 4.XIIIB) and d) formation of the hydrogen dichloride ion ^{80,81,82} (Fig. 4.XIIIC).

$$CH_{3} - CH_{2} = CH_{2} = CH_{2} + CH_{2} = CH_{2} + CH_{2} + CH_{3} + C$$

Fig. 4.XIII

The infrared spectra of the three systems, FeCl₃|CH₃CN, CH₃CN|Cl₂ and FeCl₃|CH₃CN|Cl₂, were recorded

and examined in an attempt to match the bands obtained to those assigned for these structures. This, however, was not possible as very little could be discerned from these spectra apart from the CH2CN bands. As the amount of HCl which would be produced is small, then the concentration of the product in solution may be too small If, however, the HCl had added across the to observe. CEN bond then it is expected that some of the bands, for example the strong C-Cl stretching mode at 750 $\rm cm^{-1}$ would have been observed. If the hydrogen dichloride ion species had been formed then it is highly unlikely that any bands due to this species would be observed as the hydrogen dichloride ion would be strongly hydrogen In the FeCl₂ |CH₂CN |Cl₂ system, bonded in solution. there is another possibility in which the HCl reacts with a solvated iron(III) species [FeCl_x(CH₃CN)_{6-x}] (3-x)+ to produce $FeCl_d$. (Scheme 4.IV)

$$[\text{FeCl}_{x}(\text{CH}_{3}\text{CN})_{6-x}]^{(3-x)+} + \text{HCl} \rightarrow \text{FeCl}_{4}^{-} + \text{CH}_{3}\text{CNH}^{\oplus}$$

Scheme 4.IV

Thus the total conversion of all the iron species to the tetrachloroferrate ion in the $\text{FeCl}_3|\text{CH}_3\text{CN}|\text{Cl}_2$ system can be explained as follows. The redox reaction between the Fe^{II} and Fe^{III} species results in chlorination of the solvent and the production of HCl. The HCl produced reacts with the cationic Fe^{III} species to give the redox inactive FeCl₄, thus breaking the redox cycle. The overall reaction in this system is shown in 4.III.

 $\text{FeCl}_3 + \text{CH}_3\text{CN} + \text{Cl}_2 \rightarrow \text{FeCl}_4 + \text{CH}_2\text{ClCN} + \text{H}^+(\text{solv.})\dots 4.\text{III}$

Separate experiments have established that $[Fe(CH_3CN)_6]^{2+}$ is oxidised by Cl_2 in acetonitrile to give $FeCl_4^-$ as the only iron-containing product.⁷³ The $[Fe(CH_3CN)_6]^{2+}$ is oxidised to give $[Fe(CH_3CN)_5C1]^{2+}$ which is immediately reduced back to the Fe^{II} species thus resulting in a redox cycle. This redox cycle results in chlorination of the solvent with the concomitant evolution of HCl. The HCl produced breaks the redox catalytic cycle by reacting with the cationic Fe^{III} species to form the redox inactive $FeCl_4^-$. This experiment is important as it indicates that the catalytic redox cycle is initiated by either a cationic Fe^{II} or Fe^{III} species.

When FeCl₃ is dissolved in CH₃CN, the ratio of Fe^{II} to Fe^{III} is 1:2. It has also been reported that where iron(III) chloride is dissolved in acrylonitrile, one-third of the iron is reduced to iron(II) accompanied by chlorination of the solvent.⁸³ Although the ratio Fe^{II}:Fe^{III} has been found to be 1:2 in a number of reactions, no satisfactory explanation for this has been given. The ratio found for Fe^{II}:Fe^{III} can be explained by the reactions shown in scheme 4.V.

$$[(\operatorname{FeCl}_3)_{x}\operatorname{CH}_3\operatorname{CN}_{y}] \rightleftharpoons 3 [\operatorname{Fe}(\operatorname{CH}_3\operatorname{CN})_{4}\operatorname{Cl}_{2}]^{+} + 3\operatorname{FeCl}_{4}^{-}$$

$$2 [\operatorname{Fe}(\operatorname{CH}_3\operatorname{CN})_{4}\operatorname{Cl}_{2}]^{+} \rightleftharpoons 2 [\operatorname{Fe}(\operatorname{CH}_3\operatorname{CN})_{6}]^{2+} + \operatorname{CH}_2\operatorname{ClCN} + \operatorname{HCl} + 2 \operatorname{Cl}^{-}$$

$$[\operatorname{Fe}(\operatorname{CH}_3\operatorname{CN})_{4}\operatorname{Cl}_{2}]^{+} + 2\operatorname{HCl} \rightleftharpoons \operatorname{FeCl}_{4}^{-} + 2\operatorname{CH}_3\operatorname{CNH}^{\oplus}$$

Scheme 4.V

Hathaway and Holah found when iron is reacted with chlorine in acetonitrile that the product formed is [Fe(CH₃CN)₆] [FeCl₄]₂.²¹ In this reaction, iron has been oxidised to form a mixed oxidation state complex with a third of the iron present as Fe^{II} and two-thirds present as Fe^{III}. The authors expressed surprise that chlorine, which is a powerful oxidising agent, did not oxidise all the iron(II) to iron(III). They explained this by suggesting that the tetrachloroferrate formed is sufficiently stable to prevent complete oxidation of iron to iron(III). As a result of the present work an alternative explanation is offered. It is known⁷³ that an iron(III) species is not stable when octahedrally surrounded by acetonitrile ligands and that an acetonitrile ligated iron(III) species can only exist when stabilized by ligands such as chlorine. $[Fe(CH_3CN)_4Cl_2]^+$ and $FeCl_4^$ will, therefore, be formed in solution and will react as shown in scheme 4.V to achieve the ratio of lFe^{II}:2Fe^{III}. Results show that when chlorine is added to a solution of FeCl₃ in CH_3CN all the iron is present as $FeCl_4^-$.
The mixed oxidation state compound formed from the reaction of iron with chlorine in acetonitrile is a concentration effect caused by only enough chlorine being added to form $[Fe(CH_3CN)_4Cl_2]^+$ and $FeCl_4^-$. If more Cl_2 had been added all the iron species would have been converted to $FeCl_4^-$ as previously discussed.

In the FeCl₃ |CH₃CN |Cl₂ system and in other reports of reduction or partial reduction of metal chlorides by acetonitrile, the reduction of the metal ion must result in chlorination of the solvent and evolution of HC1. Although the final product from the reaction of VCl_{A} and excess acetonitrile has been characterized and the formation of trichloroacetonitrile proposed (scheme 1.III), the initial stages of this reaction have not been elucidated. As the formation of trichloroacetonitrile is necessary in this mechanism, it is reasonable to assume that monochloroacetonitrile is As chlorination of the solvent occurs a precursor. in the CH₃CN|Cl₂ system, this suggests that a free-In the FeCl₃ | CH₃CN | Cl₂ radical mechanism is involved. system, substantial chlorination occurs, the extent of which is dependent on the amount of chlorine added, and both CH_ClCN and CCl_CN are formed in solution. As more chlorine is added the concentration of CCl₃CN increases but that of CH₂ClCN decreases. It has been observed that treatment of acetonitrile by hydrogen chloride increases the rate of chlorination.⁸⁴ If the first step in the chlorination is the attack of the

solvent by a free radical, Cl[•], leading to the formation of CH₂ClCN then HCl will be liberated. The HCl liberated adds to the partly chlorinated nitrile forming a nitrilium salt which is more readily chlorinated than acetonitrile.⁸⁴ (Scheme 4.VI).

$$cl' + CH_{3}CN \rightarrow CH_{2}CN + HCl$$

$$CH_{2}CN + Cl_{2} \rightarrow CH_{2}ClCN + Cl'$$

$$CH_{2}ClCN + HCl \rightarrow (CH_{2}ClCNH)^{+}Cl^{-}$$

$$(CH_{2}ClCNH)^{+}Cl^{-} + Cl_{2} \rightarrow (CHCl_{2}CNH)^{+}Cl^{-} + HCl$$

$$(CHCl_{2}CNH)^{+}Cl^{-} + Cl_{2} \rightarrow (CCl_{3}CNH)^{+}Cl^{-} + HCl$$

$$(CCl_{3}CNH)^{+}Cl^{-} \rightarrow CCl_{3}CN + HCl$$

Scheme 4.VI

The increase in the CCl_3CN concentration and the decrease in the CH_2CICN concentration as more Cl_2 is added is explained by the preferential chlorination of the nitrilium salt. The number of times the redox cycle has been repeated is estimated by examining the extent of chlorination which occurs when varying amounts of chlorine were added to $FeCl_3$ in CH_3CN . This is shown in the following calculation.

Each 5ml solution contains 0.1 mmol of FeCl₃, therefore 0.1 mmol FeCl₃ + nCH₃CN \rightleftharpoons FeCl₃ (MeCN) $\underset{n}{\longrightarrow}$ 0.05 mmol [Fe(CH₃CN) $\underset{4}{4}$ Cl₂]⁺ + 0.05 mmol FeCl₄⁻ 0.05 mmol [Fe(CH₃CN) $\underset{4}{4}$ Cl₂]⁺ \rightleftharpoons 0.05 mmol [Fe(CH₃CN) $\underset{6}{6}$]²⁺ + 0.025 mmol CH₂ClCN + 0.025 mmol HCl + CV⁻

0.05 mmol
$$[Fe(CH_3CN)_6]^{2+} + Cl_2 \rightleftharpoons 0.05 \text{ mmol} [Fe(CH_3CN)_5C1]^{2+}$$

+ 0.025 mmol CH_2ClCN + 0.025 mmol HCl

0.05 mmol
$$[Fe(CH_3CN)_5C1]^{2+} \rightleftharpoons 0.05 \text{ mmol } [Fe(CH_3CN)_6]^{2+}$$

+ 0.025 mmol CH₂ClCN + 0.025 mmol HCl.

Assuming complete conversion in every stage of the reaction, then the first cycle produces 0.075 mmol CH_2CICN and thereafter each cycle produces 0.05 mmol CH_2CICN .

When 0.915 mmol Cl_2 was added to a solution of FeCl₃ in CH_3CN it produced 0.062 mol 1^{-1} CH_2ClCN and 0.016 mol 1^{-1} CCl_3CN . Therefore in 5 ml, there were 0.31 mmol CH_2ClCN and 0.08 mmol CCl_3CN which in total is equivalent to the production of 0.55 mmol CH_2ClCN . This would require the redox cycle to be repeated a minimum of 10 times.

6.40 mmol Cl₂ produces 0.007 mol 1⁻¹ CH₂ClCN

$$\implies$$
 0.035 mmol in 5 ml.
and 0.090 mol 1⁻¹ CCl₃CN
 \implies 0.45 mmol in 5ml
 \equiv 1.35 mmol of CH₂ClCN in 5ml

 The total amount of CH₂ClCN produced = 1.385 mmol. This would require the redox cycle to be repeated a minimum of 27 times.

These results, therefore, confirm the formation of CH₂ClCN and CCl₃CN in the initial stages of the reaction.

In the absence of chlorine, that is in the FeCl₃|CH₃CN system, no chlorination was observed. This solvent, however, was examined only after 20h and chlorination of the solvent would not be expected until some Fe^{II} had been formed in solution which takes about a week under the conditions used.

An overall reaction mechanism for iron(III) chloride dissolved in acetonitrile in the presence of chlorine is given in scheme 4.VII. In this initial complexation and solvolysis occurs between FeCl₃ and CH₃CN forming $[Fe(CH_3CN)_4Cl_2]^+$ and $FeCl_4^-$. The $[Fe(CH_3CN)_4Cl_2]^+$ ion is reduced giving the iron(II) species, $[Fe(CH_3CN)_6]^{2+}$ which is oxidised by the chlorine giving [Fe(CH₃CN)₅Cl]²⁺. The $[Fe(CH_3CN)_5C1]^{2+}$ ion is also reduced to the iron(II) species, thus forming a redox cycle. The redox cycle can be regarded as catalytic since it results in chlorination of the solvent. The lifetime of the cycle is limited due to the production of HCl which reacts with the cationic iron(III) species leading to the redox inactive FeCl, . This redox cycle is also formed when [Fe(CH₃CN)₆][PF₆]₂ is dissolved in acetonitrile in the presence of chlorine and this again results in chlorination of the solvent. This shows that either the cationic Fe^{II} species or the cationic Fe^{III} species can initiate the redox cycle which leads to the chlorination of the solvent.

The 36 Cl exchange observed when 36 Cl₂ is added to a solution of FeCl₃ in acetonitrile is a result of the chemical reaction shown in scheme 4.VII. It can therefore be concluded that in this reaction, the presence of the

Lewis base has a labilising effect on the Fe^{III}-Cl bond and that chlorination of the solvent is a result of the redox cycle.

.

ç

Scheme 4.VII

$$\begin{aligned} &\operatorname{FeCl}_{3} + \operatorname{nCH}_{3}\operatorname{CN} \rightleftharpoons [\operatorname{FeCl}_{3} (\operatorname{CH}_{3}\operatorname{CN})_{n}] \rightleftharpoons [\operatorname{Fe} (\operatorname{CH}_{3}\operatorname{CN})_{4}\operatorname{Cl}_{2}]^{+} + \operatorname{Fecl}_{4}^{-} \\ &\operatorname{Fe} (\operatorname{CH}_{3}\operatorname{CN})_{4}\operatorname{Cl}_{2}]^{+} \rightleftharpoons [\operatorname{Fe} (\operatorname{CH}_{3}\operatorname{CN})_{6}]^{2^{+}} + \overset{1}{_{2}}\operatorname{CH}_{2}\operatorname{ClCN} + \overset{1}{_{3}}\operatorname{HCl} + c^{-} \\ &\operatorname{Fe} (\operatorname{CH}_{3}\operatorname{CN})_{6}]^{2^{+}} + \operatorname{Cl}_{2} & \quad [\operatorname{Fe} (\operatorname{CH}_{3}\operatorname{CN})_{5}\operatorname{Cl}]^{2^{+}} + \overset{1}{_{3}}\operatorname{CH}_{2}\operatorname{ClCN} + \overset{1}{_{3}}\operatorname{HCl} \\ &\operatorname{Fe} (\operatorname{CH}_{3}\operatorname{CN})_{5}\operatorname{Cl}]^{2^{+}} \rightleftharpoons [\operatorname{Fe} (\operatorname{CH}_{3}\operatorname{CN})_{6}]^{2^{+}} + \overset{1}{_{3}}\operatorname{CH}_{2}\operatorname{ClCN} + \overset{1}{_{3}}\operatorname{HCl} \\ &\operatorname{FeCl}_{x} (\operatorname{CH}_{3}\operatorname{CN})_{6-x}]^{(3-x)^{+}} + \operatorname{HCl} & \quad \operatorname{FeCl}_{4}^{-} + \operatorname{CH}_{3}\operatorname{CNH}^{\oplus} \end{aligned}$$

, · · ~

CHAPTER FIVE

•

.

i

113.

CHAPTER 5

INTERACTION OF IRON (III) CHLORIDE WITH HYDROGEN CHLORIDE.

Iron(III) chloride is an efficient hydrochlorination catalyst and is used industrially for the addition of HCl to vinyl chloride, vinylidene chloride and 1,2 dichloroethylene (cf. 1.4.3). Reactions are often performed in which the iron(III) chloride has been dissolved in a donor solvent and it has been postulated that the reactions occur via the ionization of HCl. (eq. 5.1)

$$\operatorname{FeCl}_3$$
 + HCl \rightleftharpoons H⁺(solvated) FeCl_4 (Eq. 5.i)

If this is correct then it is expected that exchange will occur between $H^{36}Cl$ and $FeCl_3$. The equilibrium shown in Equation 5.1 will be effected by the presence of water which could react with $FeCl_3$ to give $H_3O^+FeCl_4^$ and thus lead to ${}^{36}Cl$ exchange. It has been shown by a study of the iron(III) chloride - water phase diagram that four hydrates exist; $FeCl_3.2H_2O$, $FeCl_3.2\frac{1}{2}H_2O$, $FeCl_3.3\frac{1}{2}H_2O$ and $FeCl_3.6H_2O.^{85}$ The structures of these hydrates have been determined and are shown in Table 5.I. The production

STRUCTURE OF FeC1, HYDRATES

Compound	Structure	Method of Determination
FeC1 ₃ .2H ₂ 0	$trans = [FeC1_2(H_2O)_4]^{+} [FeC1_4]^{-}$	IR ⁸⁶ ,Mðssbauer ⁸⁷
FeC1 ₃ .2 ^{1/2} H ₂ 0	cis[FeC1 ₂ (H ₂ 0) ₄] ⁺ [FeC1 ₄] ⁻ .H ₂ 0	X-ray ³⁶ ,Mössbauer
FeC1 ₃ .3 ^{1/2} H ₂ O	cis[FeC1 ₂ (H ₂ 0) ₄] ⁺ [FeC1 ₄] ⁻ .3H ₂ 0	Mössbauer ⁸⁷
FeC1 ₃ .6H ₂ 0	trans [FeC1 ₂ (H ₂ 0) ₄] ⁺ C1 ⁻ .2H ₂ 0	X-ray ³⁵ ,Mossbauer

TABLE 5.1

of FeCl₄ and Cl in the formation of these hydrates is expected to have an effect on 36 Cl exchange and the exchange could involve [Fe(H₂O)₄Cl₂]⁺, FeCl₄ or Cl depending on the amount of water present.

To develop a better understanding of hydrochlorination reactions, experiments were carried out between FeCl_3 and H^{36} Cl, to ascertain the conditions under which exchange occurs.

5.1. Experimental

These reactions were all monitored by Exchange method A. In this method the interaction between $H^{36}Cl$ and $FeCl_3$ is monitored by two GM tubes contained in an evacuable counting vessel which has been described earlier (cf. 2.6.1. Fig. 2.XV). ^{36}Cl exchange between $H^{36}Cl$ and $FeCl_3$ or adsorption of $H^{36}Cl$ by the solid results in an increased count from the tube monitoring the solid plus gas and a decreased count from that monitoring the gas phase only.

5.1.1. Interaction of H³⁶Cl with the glass exchange vessel.

A sample of $H^{36}Cl$ was purified by the procedure given in 2.4.1. and was colourless at 77K. Flask V_l (Fig. 2.XV) was evacuated, flamed-out and weighed before the anhydrous $H^{36}Cl$ was added. The flask was reweighed, attached to the vacuum line and the system pumped overnight. Initial background counts were obtained from both GM tubes. Tap I was closed and $H^{36}Cl$ admitted to the reaction vessel, which was then isolated from the rest of the system by closing tap B. The amount of H^{36} Cl in contact with the FeCl₃ was calculated as follows.

Pressure of $H^{36}Cl$ in line (measured by the manometer) = 228mm. . . number of mmol in reaction vessel = $\frac{PV}{RT}$ = $\frac{0.30 \times 498.7}{82.053 \times 294}$

$$= 6.20 \text{ mmol}.$$

After the addition of $H^{36}Cl$ (0.226g; 6.20 mmol) the count rate from both tubes was monitored for 5h. (Table 5.II). The $H^{36}Cl$ was removed by distillation into a trap held at 77K and a rose red colouration was observed. Background counts were obtained from both GM tubes and were essentially identical to those obtained initially. (Table 5.III)

BACKGROUND COUNTS

	G.M.l	G.M.2		
Initial Counts Min ⁻¹	208	146		
Final Counts Min ⁻¹	210	134		

TAB
E
ა
11

1193	1117	1118	1049	1142	1105	1105	1077	1139	1034	1041	1034	1059	Counts min ⁻¹ From G.M.1. +
985	606	910	841	934	897	897	869	931	826	833	826	851	-Background +
066	516	914	844	938	901	106	873	935	829	836	829	855	Corrected for Dead Time
1159	1056	1124	1065	1045	1079	1025	1025	1015	940	983	943	975	Counts min ⁻¹ From G.M.2. +
1013	910	978	919	668	933	879	879	869	794	837	797	829	-Background +
1018	914	886	526	£06	937	883	883	873	797	840	800	832	Corrected for Dead Time
-28	-1	-69	-79	35	-36	18	-10	62	32	-4	29	23	(G.M.1-G.M.2) Counts min
300	96	55	35	30	25	20	15	10	5	4	2	0	Time Min

H³⁶C1 AND REACTION VESSEL

The procedure described above was repeated using a second sample of H^{36} Cl. The results were identical except that the H^{36} Cl removed after the experiment was complete was colourless at 77K.

5.1.2. Interaction of FeCl₃ and H³⁶Cl.

Iron(III) chloride [Sample A] (0.5120g; 3.16 mmol.) was weighed in a previously flamed-out reaction vessel in the inert atmosphere box. The flask containing the FeCl₃ was removed and evacuated before being attached to the counting vessel shown in Figure 2.XV. This system was pumped for several hours before the FeCl, was admitted to the movable boat and placed directly under one of the GM tubes. Background counts were obtained from both GM tubes. A known pressure (214 mm) of H³⁶Cl (0.212g; 5.81 mmol in the reaction vessel) was admitted to the FeCl₃ and the system monitored for 3.5h. (Table 5.IV). The H³⁶Cl was removed by distillation into a trap held at 77K. and background counts were obtained from both GM tubes. (Table 5.V).

Several reactions were performed using different ratios of FeCl_3 to anhydrous H^{36}Cl and in each case similar results to those shown in Table 5.IV were obtained. Background counts obtained from both GM tubes after the reactions were essentially identical to those obtained initially. (Table 5.V).

1	TA
	BLE
	ა ყ
	<

					_	· · · · · · · · · · · · · · · · · · ·								
1077	1143	1138	1180	1117	1110	1092	1103	1145	1147	1036	1092	1085	1018	Counts min ⁻¹ in Solid & Gas Phases +
867	933	928	970	907	900	882	893	935	937	826	882	875	808	-Background +
871	937	932	975	911	904	886	897	939	941	829	886	879	811	Counts min ⁻¹ Corrected for Dead Time
922	955	910	989	970	929	920	933	939	906	863	924	911	890	Counts min ⁻¹ in Gas Phase +
788	821	776	855	836	795	786	799	805	772	729	790	777	756	-Background +
791	824	779	859	840	798	789	802	808	775	732	793	780	759	Counts min ⁻¹ Corrected for Dead Time +
891	929	878	968	947	668	889	903	910	873	825	894	879	855	Tubes Inter- calibrated
-20	60	54	7	-36	S	-3	-6	29	68	4	-8	0	-44	Surface Activity of FeCl ₃ -1 Counts min
210	180	150	120	105	70	55	45	35	25	15	5	J)	0	Time Min

FeCl₃ and H³⁶Cl

•

	FeC1 ₃ mmol.	HC1 mmol.	INITIAL H FeCl ₃ Counts min ⁻¹	BACKGROUND Counts min ⁻¹	FINAL BA FeCl ₃ Counts min ⁻¹	ACKGROUND Counts min ⁻¹
Sample A	3.16	5.81	159	142	151	148
Sample A	3.88	4.30	87	100	92	99
Sample A	0.94	1.90	190	210	201	195
Sample C	5.69	6.14	74	78	80	71

BACKGROUND COUNTS FROM FeC1 and H³⁶C1 REACTIONS.

TABLE 5.V

When this reaction was repeated using $H^{36}Cl$ which was red when held at 77K, a different result was obtained. A known pressure (144mm) of $H^{36}Cl$ (0.142g; 3.89 mmol in the reaction vessel) was admitted to FeCl₃ (0.5120g; 3.16 mmol) and the system monitored for 1.5h (Table 5.VI). The $H^{36}Cl$ was removed by distillation and surface activity was detected on the FeCl₃. The surface activity of FeCl₃ decreased slightly on pumping overnight.

5.1.3. Interaction of FeCl₃ (Treated with water vapour) and H³⁶Cl.

Iron(III) chloride (0.63lOg; 3.89 mmol) was placed under a G.M. tube as outlined in 5.1.2. A flask containing distilled water (Temp,= 298K; V.P. = 23.756mm Hg) was attached to the line at V_1 and the system pumped for

TABLE
Ś
Ĭ

.

1058	1066	1003	1073	1057	1022	1052	1035	966	976	686	954	963	909	Counts min ⁻¹ in Solid & Gas Phases +
938	946	883	953	937	902	932	915	846	856	869	834	843	789	-Background +
942	950	887	958	941	906	936	919	850	860	873	838	847	792	Counts min ⁻¹ Corrected for Dead Time
891	668	875	913	888	874	931	920	872	878	941	921	941	908	Counts min ⁻¹ in Gas Phase +
771	779	755	793	768	754	811	800	752	758	821	801	821	788	-Background
774	782	758	796	771	757	814	803	755	761	824	804	824	791	Counts min ⁻¹ Corrected for Dead Time
168	168	129	162	170	149	122	116	<u>5</u> 6	66	49	34	23	1	Surface Activity of FeCl ₃ -1 Counts min ⁻¹
91	86	81	76	71	61	56	51	41	36	21	17	11	0	Time Min

FeCl₃ + 'RED' H³⁶Cl

several hours. The flask was opened and the water vapour left in contact with the FeCl₃ for 3h. After this time, tap B was closed and the flask containing the distilled water removed. Flask V_1 , which contained anhydrous H^{36} Cl, was attached to the line and the system pumped for several hours. A known pressure (288mm) of H^{36} Cl (0.282g; 7.42 mmol in the reaction vessel) was admitted to the FeCl₃ and the system monitored for 3.8h. (Table 5.VII).

This reaction was repeated and the specific activity of each component assayed. A known pressure (198mm) of H^{36} Cl (0.194g; 5.32 mmol) with a specific activity of 716 ± 31 counts (5 min)⁻¹ mg⁻¹ was admitted to FeCl₃ (0.1526g; 0.94 mmol.), which had been pretreated with water vapour, and the system monitored for 2h. (Table 5.VIII). The H^{36} Cl was removed by distillation into a solution of NaOH, precipitated as Ag³⁶Cl and its activity determined. (cf. 2.3.1) (Table 5.IX). The FeCl₃ was analysed by hydrolysing this sample, precipitating the iron as Fe₂O₃ and the ³⁶Cl⁻ as Ag³⁶Cl. (Table 5.X). The activity of the FeCl₃ was determined as AgCl.

(Table 5.IX)

ANALYSIS OF FeCl3.

	% Obtained	% Required for FeCl ₃
Iron	34.1	34.4
Chlorine	63.8	65.6

118.

TABLE 5.X.

BLE
5.VII

* Counted for 1000 secs.

*		*	*		*		*		*		*				
10513	661	10285	10150	664	10201	644	10097	612	10209	598	10131	604	561	612	Counts min ⁻¹ In Solid & Gas Phases +
8840	561	8562	8477	564	8528	544	8424	512	8536	498	8458	504	461	512	-Background +
8864	562	8584	8499	566	8550	545	8445	513	8560	499	8480	505	462	513	Counts min ⁻¹ Corrected for Dead Time
8582	499	8679	8544	506	8788	506	8880	513	8818	524	8908	533	531	573	Counts min ⁻¹ In Gas Phase +
6915	399	7012	6877	406	7121	406	7213	413	7151	424	7241	433	431	473	-Background +
6929	400	7027	6891	407	7136	407	7229	414	7166	425	7257	434	432	474	Counts min ⁻¹ Corrected for Dead Time
1935	162	1557	1608	159	1414	138	1216	66	1394	74	1223	71	30	39	Surface Activity of FeCl ₃ -1 Counts min
230	220	180	147	135	97	95	67	65	37	35	7	5	2	0	Time Min

.

FeCl₃ (TREATED WITH WATER VAPOUR) + H³⁶Cl. - I

.

TABLE
5.V
III

T		*	T	*	<u> </u>	*		*	<u> </u>	l
	2390	11628	2346	11337	2229	10944	2168	12099	3294	Counts min ⁻¹ in Solid & Gas Phases +
	1809	8723	1765	8432	1648	8039	1587	9194	2713	-Background
2	1826	8800	1781	8504	1662	8104	1600	9279	2750	Counts min ⁻¹ Corrected for Dead Time
7661	1552	7621	1457	7709	1517	7837	1592	8983	2781	Counts min ⁻¹ in Gas Phase +
7207	1315	6436	1220	6524	1280	6652	1355	7798	2544	-Background
C113	1324	6478	1227	6567	1288	9699	1364	7859	2577	Counts min ⁻¹ Corrected for Dead Time ↓
6016	1412	6911	1309	7006	1374	7143	1455	8384	2749	Tubes Inter- calibrated
r 206	414	1889	472	1498	288	961	145	895	1	Surface Activity of FeC1 ₃ -1 Counts min ⁻¹
1.47	100	97	75	67	50	37	25	7	0	Time Min

Counts corrected for dead time and background.

⊁

FeC13	Final H ³⁶ Cl	Initial H ³⁶ Cl	Sample
22.0	14.9	17.0	Amount of Ag ³⁶ C1 Counted mg.
860	9580	11203	(1) * Counts(5min) ⁻¹ +
39	643	659	(1) Counts(5min) ⁻¹ mg ⁻¹ ↓
52	639	724	(1) Counts(min) ⁻¹ mg ⁻¹ Corrected for self absorption
22.4	15.7	16.7	(2) Amount of Ag ³⁶ C1 Counted mg. +
918	9765	10838	(2)* Counts(5min) ⁻¹ +
41	622	649	(2) Counts(5min) ⁻¹ mg ⁻¹ ↓
55	647	708	(2) Counts (5min) ⁻¹ mg ⁻¹ Corrected for self absorption
54±3	645±31	716±31	Average Specific Activity Counts (5min) ⁻¹ mg ⁻¹

ر

i

SPECIFIC ACTIVITIES FROM FeCl $_3$ (TREATED WITH WATER VAPOUR) AND $\mathrm{H}^{36}\mathrm{cl}$

TABLE 5.IX

The radiochemical balance for this reaction is shown in the following calculation.

$$36.45g H^{36}C1 = 143.32g Ag^{36}C1.$$

$$0.194g H^{36}C1 = 0.7628g Ag^{36}C1.$$

$$162.2g FeC1_{3} = 3 \times 143.32g AgC1$$

$$\therefore 0.1526g FeC1_{3} = 0.4045g AgC1$$
The initial specific activity of H³⁶C1, counted as Ag³⁶C1 = 716 counts (5min)⁻¹ mg⁻¹

$$\therefore the total initial activity of H36C1, counted as Ag36C1 = 0.7628 \times 10^{3} \times 716 = 5.46 \times 10^{5} counts (5min)^{-1}$$
The total final activity of H³⁶C1, counted as Ag³⁶C1 = 0.7628 \times 10^{3} \times 645
$$= 4.92 \times 10^{5} counts (5min)^{-1}$$
The total final activity of FeC1₃ counted as Ag³⁶C1 = 0.4045 \times 10^{3} \times 54
$$= 2.18 \times 10^{4} counts (5min)^{-1}$$

. The total final activity = 5.14 x 10⁻⁷ counts $(5min)^{-1}$ which is in good agreement with the initial amount of activity.

5.1.4. Interaction of 'FeCl₃.H₂O' and H³⁶Cl.

A solid whose overall composition corresponded to FeCl₃.H₂O was prepared by mixing FeCl₃ (1.0969g; 6.76mmol) with distilled water (0.1217g; 6.76 mmol). FeCl₃ was weighed in the inert atmosphere box, removed and placed in a small beaker. The water was syringed on to the FeCl₃ and the resulting sticky compound was placed in the movable boat. The boat was returned to the reaction vessel and the system pumped for several hours before $H^{36}Cl$ (0.2664g; 7.31 mmol) was admitted to the 'FeCl₃.H₂O'. (0.360g; 1.99 mmol). The count rate from both tubes was monitored for 3.5h. (Table 5.XI). The $H^{36}Cl$ was removed by distillation and the count rate from each tube monitored.

5.1.5. Interaction of FeCl_{3.6H2}O and H³⁶Cl.

Iron(III) chloride hexahydrate (0.6717g; 2.49 mmol) was placed under a GM tube as outlined in 5.1.2. A known pressure (214 mm) of H^{36} Cl (0.210g; 5.76 mmol in the reaction vessel) was admitted to the reaction vessel and the system monitored for 2.75h. (Table 5.XII). The H^{36} Cl was removed by distillation and the count rate from both tubes monitored.

This reaction was repeated and the specific activity of each component assayed. A known pressure (479mm) of H^{36} Cl (0.4702g; 12.9 mmol) with a specific activity of 901 ± 32 counts (5 min)⁻¹ mg⁻¹ was admitted to FeCl₃.6H₂O (1.5615g; 5.78 mmol) and the system monitored for 3.3h. (Table 5.XIII). The H^{36} Cl was removed by distillation into a solution of NaOH, precipitated as Ag³⁶Cl and its activity determined. (Table 5.XIV). The FeCl₃.6H₂O was analysed by hydrolysing the sample and precipitating the iron as Fe₂O₃ and the ³⁶Cl⁻ as Ag³⁶Cl. (Table 5.XV). The specific activity of the FeCl₃.6H₂O was determined as Ag³⁶Cl. (Table 5.XIV).

1	н
	ABL
	ர ப
	ň

* Counted for 1000 secs.

*		*		*		*		*			*			
18464	1144	18566	1071	17629	1066	17187	1047	16697	965	942	15195	797	677	Counts min ⁻¹ in Solid & Gas Phases +
17214	1069	17316	996	16379	991	15937	972	15447	890	867	13945	722	602	-Background +
17303	1075	17406	1001	16460	996	16014	977	15519	894	871	14004	725	604	Counts min ⁻¹ Corrected for Dead Time
7642	434	7942	476	8177	497	8155	495	8489	519	558	9200	567	723	Counts Min ^{−1} in Gas Phase ↓
6542	418	6842	410	7077	431	7055	429	7389	453	492	8100	501	657	-Background +
6555	419	6856	411	7092	432	7070	430	7405	454	493	8120	502	659	Counts min ⁻¹ Corrected for Dead Time +
7023	449	7346	440	7599	463	7575	461	7934	486	528	8700	538	706	Tubes Inter- calibrated
10280	626	10060	561	8861	533	8439	516	7585	408	343	5304	187	-102	Surface Activity of FeCl ₃ -1 Counts min
197	195	147	115	97	90	67	55	37	30	25	7	S	0	Time Min

'FeCl₃.H₂O' AND H³⁶Cl.

•

TABLE 5.XII

* Counted for 1000 secs.

	*	·	*		*			*			*			
994	16811	866	17257	1100	17622	1078	1106	17657	1162	1045	16832	851	589	Counts min ⁻¹ in Solid & Gas Phases +
606	15394	913	15840	1015	16205	993	1021	16240	1077	957	15415	766	504	-Background +
913	15465	917	15916	1020	16284	866	1026	16320	1083	962	15487	769	505	Counts min ⁻¹ Corrected for Dead Time +
945	16011	949	16478	1056	16859	1033	1062	16896	1121	996	16034	796	523	Tubes Inter- Calibrated
213	3683	194	3870	216	4045	243	269	4312	261	277	5310	336	466	Counts min ^{−1} in Gas Phase ↓
125	2216	106	2403	128	2578	155	181	2845	173	189	3843	268	378	-Background +
125	2217	106	2406	128	2580	155	181	2847	173	189	3847	268	379	Counts min ⁻¹ Corrected for Dead Time
820	13794	843	14072	928	14279	878	881	14049	948	807	12187	528	144	Surface Activity of FeCl ₃ -1 Counts min
165	147	140	97	95	67	65	55	37	35	25	7	5	0	Time Min

 $\frac{\text{FeCl}_{3.6\text{H}_2\text{O}} \text{ and } \text{H}^{36}\text{cl.} - \text{RUN I}}{3}$

1
A
LE
с С
×
H
н

1

						·								·	• • • • • • • • • • • • • • • • • • •
	20305	19988	20102	20215	20411	20684	21113	21102	21545	21701	21935	21975	21480	17403	Counts min ⁻¹ in Solid & Gas Phases +
	20110	19793	19907	20020	20216	20489	20918	20907	21350	21506	21740	21780	21285	17208	-Background +
	22358	21967	22108	22247	22489	22828	23361	23348	23902	24097	24391	24442	23820	18828	Counts min ⁻¹ Corrected for Dead Time
	3396	3418	3648	3773	3824	4338	4310	4512	5090	5395	6018	7820	9787	11534	Counts min ⁻¹ in Gas Phase
rABLE 5.XIII	3196	3218	3448	3573	3624	4138	4110	4312	4890	5195	5818	7620	9587	11334	-Background
	3248	3271	3508	3637	3691	4225	4196	4407	5012	5334	5992	7922	10070	12015	Counts min ⁻¹ Corrected for Dead Time
	19110	18686	18600	18610	18798	18603	19165	18941	18890	18763	18399	16520	13750	6813	Surface Activity of FeCl ₃ -1 Counts min ⁻¹
	165	147	140	97	56	67	65	55	37	35	25	7	G	0	Time Min

FeCl₃.6M₂O AND H³⁶C1 - RUN II

st Counts corrected for dead time and background.

FeC13	Final H ³⁶ Cl	Initial H ³⁶ Cl	Sample
25.1	24.6	23.7	(1) Amount of Ag ³⁶ C1 Counted mg.
6530	6674	14599	(1) * Counts(5min) ⁻¹ ↓
260	271	616	(1) Counts(5min) ⁻¹ mg ⁻¹ ↓
383	392	892	(1) Counts(min) ⁻¹ mg ⁻¹ Corrected for self absorption
22.9	23.2	18.8	(2) Amount of Ag ³⁶ C1 Counted mg. ↓
5911	6412	14532	(2)* Counts(5min) ⁻¹ +
258	276	773	(2) Counts(5min) ⁻¹ mg ⁻¹ +
351	380	910	Counts(5min) ⁻¹ mg ⁻¹ Corrected for self absorption
367±13	386±13	901±32	Average Specific_Activity Counts(5min) mg

SPECIFIC ACTIVITIES FROM FeC13.6H20 + H³⁶C1

.

TABLE 5.XIV

ANALYSIS OF FeCl₃.6H₂O.

	% Obtained	% Required for FeCl ₃ .6H ₂ O
Iron	20.0	20.7
Chlorine	38.8	39.4

TABLE 5.XV

The radiochemical balance for this reaction is shown in the following calculation.

36.45g HCl ≡ 143.32g AgCl . . 0.4702g HCl ≡ 1.85g AgCl. 270.2g FeCl₃.6H₂O \equiv 3 x 143.32g AgCl . . 1.5615g FeCl₃.6H₂O ≡ 2.49g AgCl. The initial specific activity of H³⁶Cl, counted as $Ag^{36}Cl = 90l \text{ counts } (5min)^{-1} mg^{-1}$. . the total initial activity of H³⁶Cl, counted as Ag³⁶Cl $= 1.85 \times 10^3 \times 901$ = 1.67×10^6 counts $(5min)^{-1}$ The total final activity of H³⁶Cl, counted as Ag³⁶Cl $= 1.85 \times 10^3 \times 386$ = 7.14×10^5 counts $(5 min)^{-1}$ The total final activity of FeCl₃.6H₂O, counted as Ag³⁶Cl $= 2.49 \times 10^3 \times 367$ $= 9.14 \times 10^5 \text{ counts } (5 \text{min})^{-1}$

The total final activity = 1.63×10^6 counts $(5min)^{-1}$ which is in good agreement with the initial value.

5.1.6. Interaction of $[(C_2H_5)_4N]$ [FeCl₄] and H³⁶Cl.

Tetraethylammonium tetrachloroferrate (0.4427g; 1.35 mmol) was placed under a GM tube as outlined in 5.1.2. H^{36} Cl (0.2435g; 6.68 mmol) was admitted to the reaction vessel and the system monitored over a period of 2h. (Table 5.XVI). The H^{36} Cl was removed and the background reading taken. (Table 5.XVII).

	G.M.1 [(C ₂ H ₅) ₄ N][FeCl ₄]	G.M.2
Initial Counts min ⁻¹	74	75
Final Counts min ⁻¹	79	75

BACKGROUND READINGS

TABLE 5.XVII

5.2. RESULTS

```
5.2.1. Interaction of H<sup>36</sup>Cl with the glass reaction vessel.
```

When $H^{36}Cl$ (0.226g; 6.20 mmol) is admitted to the reaction vessel at room temperature, the count rates from both GM tubes are identical and remain constant over a period of 5h. The initial and final background

TABLE 5.XVI

* Counted for 1000 secs.

*		*			*			*			*			
6698	526	8924	552	498	8764	530	544	8742	534	497	8840	528	500	Counts min ⁻¹ in Solid & gas Phases ↓
7599	460	7824	486	432	7664	464	478	7642	468	431	7740	462	434	-Background +
7616	461	7842	487	433	7682	465	479	7660	469	432	7758	463	435	Counts min ⁻¹ Corrected for Dead Time +
8225	514	8469	543	483	8297	519	535	8273	524	482	8379	517	486	Tubes Intercalib- rated
9499	595	9533	571	587	9498	557	575	9559	591	594	9555	605	561	Counts min ⁻¹ in Gas Phase +
8249	520	8283	496	512	8248	482	500	8309	516	519	8305	530	486	-Background +
8270	521	8304	497	513	8268	483	501	8330	517	520	8326	531	487	Counts min ⁻¹ Corrected for Dead Time
-45	-7	165	46	-30	29	36	34	-57	7	-38	53	-14	Ļ	Surface Activity of FeCl ₃ -1 Counts min ⁻¹
122	120	97	95	85	67	65	60	37	35	25	7	S	0	Time Min.

ر

 $^{[(}C_2H_5)_4N]$ [FeC1₄] AND H³⁶C1

readings are identical, within the uncertainty in the count, and indicate that $H^{36}Cl$ is not adsorbed by the reaction vessel. Similar behaviour is exhibited when this reaction is repeated with fresh $H^{36}Cl$.

5.2.2. Interaction of FeCl₃ and HCl.

When H^{36} Cl (0.212g; 5.81 mmol) is admitted to FeCl₃ (0.512g; 3.16 mmol) the count rate from the gas plus solid and that from the gas alone remain constant. On removal of H^{36} Cl, the background reading obtained from each tube is identical to the value obtained for the initial reading. This shows that neither exchange nor adsorption occurs between anhydrous H^{36} Cl and anhydrous FeCl₃ at room temperature. This reaction was repeated with different samples of FeCl₃ and H^{36} Cl and the same results obtained.

This reaction was carried out using $H^{36}Cl$ which was red when held at 77K and when this $H^{36}Cl$ (0.142g; 3.89 mmol) is admitted to anhydrous FeCl₃ (0.5120g; 3.16 mmol), the count rate from the gas plus solid increases with time and that from the gas alone decreases. The difference in count rate gives the surface ³⁶Cl activity of FeCl₃, and the variation of this with time is shown in Figure 5.I. The surface activity is retained when $H^{36}Cl$ is removed though it decreases slightly after overnight pumping.

5.2.3. Interaction of FeCl₃ (Treated with water vapour) and H³⁶Cl.

When H^{36} Cl (0.282g; 7.74 mmol) is admitted to FeCl₃ (0.63lOg; 3.89 mmol), which has been previously treated with water vapour, the count rate from the gas plus solid increases with time and that from the gas alone decreases. The variation of the surface ³⁶Cl activity of FeCl₃ with time is shown in Figure 5.II. The surface activity is unaffected by the removal of H^{36} Cl from the gas phase though it decreases slightly after overnight pumping. The apparent fraction of ³⁶Cl activity exchanged between H^{36} Cl and FeCl₃(f) is <u>ca</u> 30% after 2h. (Table 5.XVIII).

Repetition of this reaction using FeCl_3 (0.1526g; 0.94 mmol), which has been previously treated with water vapour, and H^{36} Cl (0.194g; 5.32 mmol) gave rise to similar results though the apparent fraction of 36 Cl activity (f), is greater. (Table 5.XVIII). Analysis of FeCl₃, after H^{36} Cl has been removed, indicates that the ratio Fe:Cl is 1:3.0 and that FeCl₃ is slightly active. (Table 5.XIX). Analysis of the H^{36} Cl, before and after the reaction, shows that the specific activity of the H^{36} Cl has decreased.

97 0.28 ± 0.01 0.62 ± 0.02 1.20 ± 0.03 1.51 ± 0.03	0.03 1.47 ± 0.03 1.50 ± 0.03 1.51 ± 0.03	
97 28 ± 0.01 52 ± 0.02 50 ± 0.03 51 ± 0.03 51 ± 0.03	51 ± 0.03	46 ± 0.03
147 0.32 ± 0.01 0.67 ± 0.02 1.29 ± 0.03 1.53 ± 0.03 1.48 ± 0.03	1.53 ±	1.48 ± 0

Apparent Fraction of ³⁶Cl Activity Exchanged.

•

•

SPECIFIC ACTIVITIES FROM THE INTERACTION OF FeCl₃ (TREATED WITH WATER VAPOUR) AND H³⁶Cl.

Sample	Specific Activity Counts (5min) ⁻¹ mg ⁻¹
Initial H ³⁶ Cl, counted as Ag ³⁶ Cl	716 ± 31
Final H ³⁶ Cl, counted as Ag ³⁶ Cl	645 ± 31
$Fe_{Ag}^{36}Cl_{3}$, counted as $Ag_{Ag}^{36}Cl^{3}$	54 ± 3

TABLE 5.XIX

Complete exchange between H^{36} Cl and FeCl₃ would result in ³⁶Cl specific activities of 468 ± 20 counts $(5min)^{-1} mg^{-1}$. The value obtained for H^{36} Cl is higher than this and that for FeCl₃ very much lower, indicating that only partial exchange has occurred. The fraction of ³⁶Cl activity exchanged, calculated from the specific activity measurements, is 0.12 ± 0.02. The difference in the f-values, calculated from the total counts and surface activities and those calculated from the specific activity measurements, gave an indication of the quantity of H^{36} Cl retained by the FeCl₃. In this case, H^{36} Cl is adsorbed by the FeCl₃. The amount of H^{36} Cl adsorbed is estimated in the following calculation.

The difference in the f-values is 0.55.

Assuming that the total count from the gas plus solid phase will be the same then the number of counts, x, from the solid phase due to adsorbed H³⁶Cl is calculated from

$$\frac{x}{8913} = 0.55.$$

$$\frac{3 \times \text{mmol FeCl}_3}{3 \times \text{mmol FeCl}_3 + 1 \text{ mmol H}^{36}\text{Cl}}$$

$$\frac{x}{8913} = 0.55$$

$$0.3464 = 0.55$$

$$x = 0.55 \times 0.3464 \times 8913$$

$$= 1698 \text{ counts min}^{-1}$$

From the graph showing the pressure of H³⁶Cl vs counts, this is equivalent to a pressure of 66 mm.

The number of mmol. of $H^{36}Cl$ present = $\frac{0.087 \times 498.7}{82.053 \times 296}$

= 1.78 mmol.

. The number of H³⁶Cl molecules adsorbed

$$= 1.78 \times 10^{-3} \times 6.022 \times 10^{23}$$
$$= 1.07 \times 10^{21}$$

5.2.4. Interaction of 'FeCl₃.H₂O' and H³⁶Cl.

When H^{36} Cl (0.2664g; 7.31 mmol) is admitted to a solid, whose overall composition corresponds to $FeCl_3.H_2O$, (0.360g; 1.99 mmol) the count rate from the gas plus solid increases with time and that from the gas alone decreases. The difference in count rates gives the surface 36 Cl activity of FeCl₃, and the variation of this with time is shown in Figure 5.III. The surface activity is unaffected by the removal of ${\rm H}^{36}{\rm Cl}$ from the gas phase though it decreases from 10280 counts min⁻¹ to 8834 counts min⁻¹, after overnight pumping. The apparent fraction of ³⁶Cl activity exchanged between H³⁶Cl and 'FeCl₃.H₂O', (f), has been calculated at various stages of the reaction. In this reaction, the f-value is (Table 5.XVIII). greater than 1, after only 37 min.

5.2.5. Interaction of FeCl_{3.6H2}O and H³⁶Cl.

When H^{36} Cl (0.2101g; 5.76 mmol) is admitted to FeCl₃.6H₂O (0.6717g; 2.49 mmol) the count rate from the gas plus solid increases with time and that from the gas alone decreases. The variation of the surface ³⁶Cl activity of FeCl₃ with time is shown in Figure 5.IV. The surface activity is unaffected by the removal of H^{36} Cl from the gas phase though it decreases after overnight pumping. The apparent fraction of ³⁶Cl activity exchanged between H^{36} Cl and FeCl₃.6H₂O, f, has been calculated at various stages of the reaction. (Table 5.XVIII). After only 7 min, the f-value is

greater than 1.

This reaction was repeated using $\text{FeCl}_3.6\text{H}_2\text{O}$ (1.5616g; 5.78 mmol) and H^{36}Cl (0.4702g; 12.9 mmol) with similar results. (table 5.XVIII). Analysis of $\text{FeCl}_3.6\text{H}_2\text{O}$, after H^{36}Cl has been removed, indicates that the ratio Fe:Cl is 1:3.0 and that $\text{FeCl}_3.6\text{H}_2\text{O}$ is active. (Table 5.XX). Analysis of the H^{36}Cl , before and after the reaction, shows that the specific activity of the H^{36}Cl has decreased. Complete exchange between H^{36}Cl and FeCl_3 would result in ^{36}Cl specific activities of 384 ± 14 counts (5 min)⁻¹ mg⁻¹. This value is identical, within the error limits,

SPECIFIC ACTIVITIES FROM THE INTERACTION OF FeC13.6H20 AND H³⁶C1.

Sample	Specific Activity Counts (5min) ⁻¹ mg ⁻¹
Initial $H^{36}Cl$, counted as $Ag^{36}Cl$	901 ± 32
Final $H^{36}Cl$, counted as $Ag^{36}Cl$	386 ± 13
$Fe^{36}Cl_{3}$, counted as $Ag^{36}Cl^{3}$	367 ± 13

TABLE 5.XX

to the values obtained for the specific activities. The fraction of 36 Cl activity exchange has also been calculated

from the specific activity measurements and found to be 1.00 ± 0.02 . The difference in the f-values, calculated from the total counts and surface activities and those calculated from the specific activity indicate the H³⁶Cl is being retained by the surface. The amount of H³⁶Cl adsorbed is estimated in the following calculation.

The difference in the f-values = 0.48

Therefore, the number of counts (x) from the gas phase due to adsorbed $H^{36}C1$ is calculated from

$$\frac{x}{21967} = 0.48$$

0.5734
$$x = 0.48 \times 0.5734 \times 21967$$

$$= 6046 \text{ counts min}^{-1}$$

This is equivalent to a pressure of 287 mm. The number of mmol. of $H^{36}Cl$ present = $\frac{0.378 \times 498.7}{82.053 \times 297}$

 $= \underline{7.73 \text{ x}} \text{ mmol}.$

The number of
$$H^{36}Cl$$
 molecules adsorbed
= 7.73 x 10⁻³ x 6.022 x 10²³
= 4.65×10^{21}

5.2.6. Interaction of $[(C_2H_5)_4N]$ [FeCl₄] and H³⁶Cl.

When $H^{36}Cl$ (0.2435g; 6.68 mmol) is admitted to $[(C_2H_5)_4N][FeCl_4]$ (0.4427g; 1.35 mmol), the count rate from the gas plus solid and that from the gas alone

remain constant. The initial and final background readings are identical. This indicates that neither exchange nor adsorption occur.

5.3. DISCUSSION.

A sample of H³⁶Cl was purified as outlined in 2.4.1. and was colourless at 77K. After prolonged exposure to the vacuum line this sample gave a rose-red colour when held at 77K. This red form of solid HCl at 77K 88 has been previously observed and it was noted that the red colour disappears when the solid is warmed to 98K, which is the transition temperature between two crystalline modifications of HCl.⁵⁸ Mass spectrographic analysis showed less than 0.1% of any impurity in the mass range 6 to 100. The addition of small quantities of H,, 02, N2, Cl2, Hg and NO2 had no effect on the production of the red colour whilst the addition of $10^{-4} - 10^{-5}$ mole fraction of NO intensified the red colour. It has been suggested, from this evidence, that the red colour is not due to separable impurities in HCl but is caused by imperfections in its crystal lattice and that traces of NO favours the production of these imperfections.89 It was shown, however, when HCl was slowly vacuum distilled from 133K to 77K that it failed to produce a This suggests that the red form of solid red colour. HCl at 77K is due to separable impurity. The impurity is probably not red at 77K but produces crystal imperfections in solid HC1.⁵⁸ The final step in the purification process of the H³⁶Cl used in these reactions

involves vacuum distillation from 133K to 77K but prolonged exposure of the H^{36} Cl to the vacuum system results in the reappearance of the red colour at 77K. When this H^{36} Cl is reacted with FeCl₃, the count rate from the gas plus solid increases with time and that from the gas alone decreases which suggests that either ³⁶Cl exchange between H^{36} Cl and FeCl₃ or adsorption of H^{36} Cl by FeCl₃ occurs. It is possible that H^{36} Cl becomes contaminated by trace amounts of water from the surface of the glass apparatus and that water causes crystal imperfections in the solid HCl which results in the red colour at 77K.

Hydrogen chloride does not exchange with iron(III) chloride under anhydrous conditions nor is it adsorbed by the surface. When this reaction is repeated using FeCl, which has previously been treated with water vapour, exchange occurs to some extent. Presumably water reacts with FeCl_3 to give $[\text{Fe}(H_2O)_4Cl_2]^+[\text{FeCl}_4]^-$ (cf. Table 5.I) and, assuming that this reaction occurs on the surface, the chemical identity of the catalyst has ³⁶Cl exchange must result from the now changed. interaction of $H^{36}Cl$ with either $[Fe(H_2O)_4Cl_2]^+$ or $FeCl_4^-$. No exchange, however, occurs between $FeCl_4^-$, as its tetraethylammonium salt, and H³⁶Cl. This is surprising since tetrahedral $FeCl_4^-$, which is a high-spin d⁵ complex, is expected to be labile. This suggests that although the equilibrium

 $\operatorname{FeCl}_3 + \operatorname{HCl} \rightleftharpoons \operatorname{H}^+ \operatorname{FeCl}_4^-$

exists in solution it does not occur at room temperature between anhydrous FeCl₃ and anhydrous HCl. This could be because either H⁺ needs to be solvated or molecular FeCl₃ is not involved. It must be the interaction between $[Fe(H_2O)_4Cl_2]^+$ and $H^{36}Cl$ which results in ${}^{36}Cl$ exchange and this could occur either as shown in diagram 5.I or by coordinatively unsaturated Fe^{III} cations on the surface providing active sites.

DIAGRAM 5.I

The difference in the f-values, calculated from the total counts and surface activities and those calculated from the specific activity measurements, indicate that $H^{36}Cl$ is adsorbed by the FeCl₃ surface. Analysis of the FeCl₃ shows that the correct ratio Fe:Cl of 1:3.0 is obtained which suggests that any adsorbed $H^{36}Cl$ is lost in the work-up procedure during analysis.

It has been suggested, when FeCl₃ is used as a catalyst in the preparation of some chlorohydrocarbons (cf. 1.4.1.), that the catalytically active species is FeCl₃.H₂O. Although there is no evidence for the

existence of this compound, exchange reactions were performed between H³⁶Cl and a sticky compound whose overall composition corresponds to FeCl₃.H₂O. This compound is probably a mixture of the known hydrates and will have the structure [FeCl₂(H₂O)₄]⁺[FeCl₄]⁻ xH₂O. When $H^{36}Cl$ is admitted to 'FeCl₃.H₂O' the count rate from the gas plus solid increases with time and that from the gas alone decreases. The apparent fraction of ³⁶Cl activity exchange between H³⁶Cl and 'FeCl₃.H₂O' is greater than 1 after 37 min. This evidence suggests that ³⁶Cl exchange occurs between H³⁶Cl and 'FeCl₃.H₂O', in an analogous manner to that observed between H³⁶Cl and FeCl₃ (treated with water vapour), and that H³⁶Cl is adsorbed by the surface, since the apparent fraction of ³⁶Cl activity has values greater than 1.

Complete ³⁶Cl exchange occurs between $H^{36}Cl$ and FeCl₃.6H₂O, which exists as [Fe(H₂O)₄Cl₂]⁺ Cl⁻.2H₂O, and this could occur via a reaction between the chloride ion and $H^{36}Cl$ (Diagram 5.II) followed Cl⁻ + $H^{36}Cl \longleftrightarrow [Cl^{----H^{-----}}Gcl] \rightleftharpoons HCl + {}^{36}Cl^{-}$

Diagram 5.II

by either exchange of 36 Cl⁻ with H 36 Cl or with Fe-Cl as depicted in diagram 5.I. The difference in the f-values, calculated from the total counts and surface activities and those calculated from the specific activity measurements, indicate that H 36 Cl is adsorbed by the FeCl₃.6H₂O. Analysis of FeCl₃.6H₂O shows that the correct ratio Fe;Cl of 1:3.0 is obtained which suggests that any adsorbed H³⁶Cl is lost in the work-up procedure during analysis.

The comparison between the increase in surface 36 Cl activity for FeCl₃ (pretreated with water vapour) and 36 Cl, 'FeCl₃.H₂O' and 36 Cl and FeCl₃.6H₂O and 36 Cl is shown in Figure 5.V. Water, obviously has a strong labilising effect towards the Fe(III)-Cl bond in the reaction between FeCl₃ and 36 Cl.

Vinylidene chloride reacts with HCl in the presence of iron(III) chloride to give 1,1,1,trichloroethane (cf. 1.4.3) and it has been suggested that anhydrous FeCl₃ causes ionization of HCl followed by protonation of vinylidene chloride with subsequent addition of a chloride ion to give 1,1,1-trichloroethane (scheme 5.I)

$$FeCl_{3} + HCl \xrightarrow{H^{+}FeCl_{4}} H^{+}FeCl_{4}$$

$$H^{+}FeCl_{4} - FeCl_{4} - [CH_{3}C^{\oplus}Cl_{2}]$$

$$\downarrow \downarrow \downarrow$$

$$FeCl_{3} + CH_{3}CCl_{3}.$$

Scheme 5.I.

This, however, is inconsistent with the lack of exchange between anhydrous FeCl_3 and anhydrous HCl. Exchange takes place only when water is present which suggests that the catalytically active species is $[\text{Fe}(\text{H}_2\text{O})_4\text{Cl}_2]^+$ which is formed in the hydrolysis of FeCl₃. When water is present in the reaction between

 FeCl_3 and HCl, both exchange and adsorption occur. An alternative scheme for the hydrochlorination of vinylidene chloride by FeCl_3 could result from the adsorption of HCl by $\left[\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_4\operatorname{Cl}_2\right]^+$ weakening the H-Cl bond, thus causing slight ionization of HCl which results in protonation of vinylidene chloride with subsequent addition of a chloride ion giving l,l,l-trichloroethane. This also explains the inhibition of hydrochlorination reactions in the presence of excess water since water is a better Lewis base than vinylidene chloride.

It is known when FeCl_3 is dissolved in other donor solvents, for example nitroalkane and nitrobenzene, that the rate of hydrochlorination increases (cf. 1.4.3). This is probably due to the solvolysis of molecular FeCl_3 giving the species $[\text{Fe}(L)_4\text{Cl}_2]^+$ which behaves in an analogous manner to $[\text{Fe}(H_2O)_4\text{Cl}_2]^+$.

These results show, therefore, that molecular FeCl₃ is not the catalytically active species in the hydrochlorination of chloroalkanes.

CHAPTER SIX

i.

I.

CHAPTER 6

INTERACTION OF IRON(III) CHLORIDE WITH 1,1,1-TRICHLOROETHANE

Iron(III) chloride can catalyse the dehydrochlorination of chloroethanes (cf. 1.4.4). To develop a better understanding of dehydrochlorination reactions the FeCl₃ - catalysed dehydrochlorination of 1,1,1-trichloroethane to give vinylidene chloride has been investigated. (Eq. 6.I).

$$CH_3CCl_3 \iff CH_2 = CCl_2 + HCl$$
Eq. 6.I

The addition of anhydrous FeCl₃ to 1,1,1-trichloroethane must result in the production of HCl and vinylidene chloride. The factors which effect the production of vinylidene chloride were determined by adding HCl, water and acetonitrile to a mixture of FeCl₃ in 1,1,1trichloroethane.

It has been suggested⁵ that the dehydrochlorination mechanism involves a carbonium ion intermediate as shown in scheme 6.I and this would result in the

$$CH_{3} - CCl_{3} + FeCl_{3} \rightarrow [CH_{3}CCl_{2}^{+} + FeCl_{4}^{-}]$$

$$[CH_{3}CCl_{2}^{+} + FeCl_{4}^{-}] \rightarrow CH_{2}CCl_{2} + FeCl_{3} + HCl$$
Scheme 6.1

tetrachloroferrate ion being observed in solution. UV spectra from the $\text{FeCl}_3 | \text{CH}_3 \text{CCl}_3$ system were examined for the presence of the FeCl_4^- ion.

Since the dehydrochlorination of CH_3CCl_3 by FeCl₃ is an equilibrium reaction, the introduction of $H^{36}Cl$ to a mixture of FeCl₃ in CH_3CCl_3 should lead to incorporation of activity into FeCl₃ as shown in Scheme 6.II.

 $CH_{3}CCl_{3} \rightleftharpoons CH_{2} = CCl_{2} + HCl$ several times $H^{36}Cl + CH_{2} = CCl_{2} \rightleftharpoons CH_{3}C^{36}Cl_{3}$ $CH_{3}C^{36}Cl_{3} + FeCl_{3} + [CH_{3}C^{36}Cl_{2}^{+} + Fe^{36}Cl_{4}^{-}]$ $[CH_{3}C^{36}Cl_{2}^{+} + Fe^{36}Cl_{4}^{-}] + CH_{2} = C^{36}Cl_{2} + Fe^{36}Cl_{3} + H^{36}Cl_{4}$

Scheme 6.II

H³⁶Cl was chosen to introduce the radiochemical label into the FeCl₃ |CH₃CCl₃ system rather than Fe^{36} Cl₃ or CH₃C³⁶Cl₃ owing to the lack of a suitable radiochemical laboratory. It was not possible to prepare anhydrous $Fe^{36}Cl_3$ from the reaction with either 36 Cl₂ or H^{36} Cl. Heating iron wire and 36 Cl₂ in a Monel bomb did not produce a sufficient yield of active FeCl₃ to perform an exchange reaction. Active FeCl₃ could be produced in a similar way to inactive FeCl₃ as outlined in 2.2.1 but this requires a large fume hood built to radiochemical standards which was To produce active CH₃CCl₃ requires not available. GC facilities suitable for radiochemical work. H³⁶Cl was therefore used in the exchange reactions performed.

Stabilizers, which amongst other things, inhibit the formation of HCl, are often added to CH₃CCl₃ for large scale use of this compound. Reactions were performed using both unstabilized and stabilized 1,1,1-trichloro-ethane.

6.1. EXPERIMENTAL

6.1.1. <u>IR ANALYSIS OF THE VAPOUR FROM THE FeCL</u>₃ | <u>CH</u>₃<u>CCL</u>₃ <u>SYSTEM</u>.

A rotaflo vessel was pumped and flamed out before being transferred to an inert atmosphere box. A mixture of FeCl₃ in CH₃CCl₃ was prepared in the box by weighing FeCl₃ (0.1543g; 0.95 mmol) into the rotaflo vessel and adding 25ml of CH₃CCl₃. The FeCl₃ did not dissolve completely and the orange-brown solution contained some undissolved solid. The vessel was removed from the box and the mixture degassed twice. The vapour from this reaction was monitored by expanding the vapour into the vacuum manifold, which contained a gas infrared cell, and recording its infrared spectrum. Vapour pressures obtained were measured using a mercury manometer and were in the range 150 - 190 mm Hg. The HCl was detected by its characteristic bands at 3050 cm⁻¹ -2650 cm⁻¹.

6.1.2. <u>G.L.C. AND Fe^{II} ANALYSIS OF THE FeCl₃ | CH₃CCl₃ SYSTEM.</u>

Twenty identical solutions of FeCl_3 in CH_3CCl_3 were prepared in the inert atmosphere box by weighing FeCl₃ (0.0324g; 0.20 mmol) into a rotaflo vessel and adding 10 ml of CH₃CCl₃. The FeCl₃ did not dissolve completely in CH₃CCl₃. These mixtures were transferred to the vacuum line and degassed twice. The mixtures were used to determine the effect of adding HCl, H20 or CH₃CN on the production of vinylidene chloride and Fe^{II} and these reagents were added to selected solutions as shown in Table 6.I. In two cases, solutions were stored in the dark so that any photochemical contribution to the formation of Fe^{II} and vinylidene chloride could be determined. The Fe^{II} analyses were performed as outlined in section 2.3.3 and G.L.C. measurements were carried out under the conditions shown in Table 6.II using a calibration curve constructed for vinylidene chloride in CH₃CCl₃. (Figure 6.1). Toluene was used as the internal standard as outlined in section 2.7.

6.1.3. <u>ELECTRONIC SPECTRA OF FeCl₃ $|CH_3CCl_3, FeCl_3|CH_3CCl_3|$ </u> <u>HCl AND FeCl₃ $|CH_3CCl_3|HCl|H_2O$ </u>.

Three UV cells were pumped and flamed out before being transferred to the inert atmosphere box. A mixture of FeCl₃ in CH_3CCl_3 was prepared by weighing FeCl₃ (0.0324g; 0.20 mmol) into each UV cell and adding 5 ml of CH_3CCl_3 . The UV cells were transferred to the vacuum line and the mixtures degassed twice. A weighed amount of HCl (0.0288g; 0.79 mmol) was 139.

AMOUNTS OF HC1, H20 AND CH3CN ADDED TO THE FeC13 CH3CC13 SYSTEM.

AMOUNTS OF HC1, H2O AND CH3CN ADDED TO THE FeC13 CH3CC13 SYSTEM.

Sample	Added Water mmol.	Added HC1. mmol.	Added CH ₃ CN mmol.	Time
1A	-		-	6 days
18	-	1.38	_	6 days
2A	-	_	-	4 days
2B	-	1.01	-	4 days
3A	-	-	-	2 days
38	-	1.09	-	2 days
4A	-	-	-	l day
4B	-	1.12	_	l day
5A	-	-	_	3h.
5B	-	1.14	_	3h.
м	0.088	1.19	-	3h.
Q	0.088	1.56	-	l day
Р	0.066	1.44	-	2 days
0	0.077	0.95	-	4 days
N	0.079	1.24	-	6 days
R		-	-	l d a y
S	-	-	-	5 d ays
v	_	0.96	3.83	2 days
U	_	1.20	3.83	3 days
Т	-	0.54	3.83	5 days

. . 1

* Solutions Stored in the Dark.

TABLE 6.I.

Performed On	Carlo Erba Capillary GC Unit Fractovap 2351AC
Column	50 m Carbowax 20M on Glass
Temperature	81 [°] C
Carrier Gas	Helium
Carrier Flow	lml min ⁻¹
Split Mode	50/1 (1 through column)
Injection Size	10µ1
Internal Standard	100µ1 Toluene (AR) TO 50ml sample.

. . 1

Calibration Curve for CH_2CCl_2 in CH_3CCl_3

added to one of the UV cells by holding the mixture of FeCl₃ in CH_3CCl_3 at 77K and distilling the HCl into the cell. A flask containing distilled water (T. = 297K, V.P. = 22.377 mm Hg) was attached to the vacuum line and the system pumped for several hours before the flask was opened and the vapour allowed to expand into the manifold which contained an empty rotaflo vessel (vol = 65.23 ml). After 10 minutes, the rotaflo vessel was closed, the distilled water removed from the line and the system The water vapour (0.0014g; 0.079 mmol) pumped. contained in this vessel was transferred under vacuum into one of the FeCl₃ |CH₃CCl₃ mixtures and a weighed amount of HCl (0.0205g; 0.56 mmol) then added to this Electronic spectra of the three mixtures mixture. were recorded at intervals over three weeks.

6.1.4. <u>INTERACTION OF FeC1₃ WITH CH₃CCl₃ AND H³⁶Cl</u> MONITORED BY EXCHANGE METHOD A.

This reaction was performed using exchange method A (cf. 2.6.1). Iron(III) chloride (0.2899g; 1.79 mmol) was weighed in a previously flamed-out reaction vessel in the inert atmosphere box. The flask containing the FeCl₃ was removed and evacuated before being attached to the counting vessel shown in Figure 2XV. The system was pumped for several hours before the FeCl₃ was admitted to the movable boat and placed directly under one of the GM tubes.

1,1,1-Trichloroethane was purified as outlined in 2.4.3. and transferred to the inert atmosphere box where it was placed in a previously flamed-out rotaflo vessel. It was transferred to a vacuum line and degassed twice. Vessel V_1 (Vol. = 551.9ml) was attached to the vacuum line and evacuated. The flask containing CH₃CCl₃ was opened and the vapour allowed to expand into V_1 (Temperature = 298K, V.P. = 127 mm Hg). Vessel V_1 , therefore, contained 3.77 mmol of CH₃CCl₃.

A bulb (Vol. = 124.6 ml) was evacuated and weighed before the addition of anhydrous H³⁶C1. The specific activity of the H³⁶Cl had been determined and was 788 \pm 34 counts (5min)⁻¹ mg⁻¹. The H³⁶Cl (0.1692g; 4.64 mmol) was then vacuum distilled at 77K into vessel V1, which contained the CH3CCl3. The vessel was then attached to the vacuum line (Figure 2.XV) and the system pumped overnight. Tap C was closed and the mixture of $H^{36}Cl$ and CH_3CCl_3 admitted to the reaction vessel, which was isolated from the rest of the system by closing tap B. The amount of H³⁶Cl in the counting vessel and in contact with FeCl₃ was 0.0783g; 2.15 mmol and the amount of CH_3CCl_3 was 0.2327g; 1.74 mmol . The counts from both tubes were monitored for 2h. After 2h the CH₃CCl₃|H³⁶Cl mixture (Table 6.III). was removed by vacuum distillation. The mixture was separated by fractional distillation from 188K to 77K,

TABLE
6.III

* Counts for 10 min.

	INTE RACT D	ON HE TWEEN FeC	$\frac{1}{2} \left \frac{\text{CH}_3 \text{CC1}_3}{3} \right \frac{\text{H}^{36} \text{C}}{3}$	1:- EXCHANCE M	E THOD A.				
	Counts min ⁻¹ in → Solid & Gas Phases	-Background →	Counts min ⁻¹ Corrected for Dead Time	Counts min ⁻¹ in → Gas Phase	-Background →	Counts min ⁻¹ Corrected for Dead Time	Tubes Inter- calibrated	Surface Activity of FeC1 -1 Counts min	Time Min.
	1407	1243	1251	1234	1044	1049	1248	u	J
*	14321	12681	12762	12573	10673	10731	12770	-8	10
	1434	1270	1278	1241	1051	1057	1257	21	25
*	14298	12658	12739	12391	10491	10546	12547	192	30
	1426	1262	1270	1212	1023	1028	1223	47	45
*	14321	12681	12762	12124	10224	10276	12226	536	50
	1454	1290	1298	1222	1033	1038	1235	63	70
*	14559	12919	13003	12164	10264	10317	12274	729	75
	1467	1303	1312	1221	1031	1036	1233	79	85
	1471	1307	1316	1220	1030	1035	1232	84	90
*	14714	13074	13160	12098	10198	10250	12195	965	95
	1473	1309	1318	1207	1017	1022	1216	102	120

ï

 $H^{36}Cl$ being recovered from the 77K fraction. The $H^{36}Cl$ was then distilled into a frozen solution of NaOH, $^{36}Cl^-$ precipitated as $Ag^{36}Cl$ and its activity determined. (Table 6.IV). The FeCl₃ was analysed by hydrolysing the sample, precipitating the iron as Fe₂O₃ and the Cl⁻ as AgCl. (Table 6.V). The FeCl₃ was found to be inactive (Table 6.IV).

ANALYSIS OF FeCl₃ FROM THE INTERACTION OF FeCl₃ WITH CH_3CCl_3 AND $H^{36}Cl$ MONITORED BY EXCHANGE METHOD A.

	% Obtained	<pre>% Required for FeCl₃</pre>
Iron	34.2	34.4
Chlorine	65.1	65.6

TABLE 6.V

6.1.5. <u>INTERACTION OF FeC1₃ (TREATED WITH WATER VAPOUR</u>) <u>WITH CH₃CCl₃ AND H³⁶Cl MONITORED BY EXCHANGE METHOD A</u>.

Iron(III) chloride (0.3469g; 2.14 mmol) was placed under a GM tube as outlined in 6.1.4. A flask containing distilled water (Temp. = 298K, V.P. = 23.756 mm Hg) was attached to the line at V_1 and the system pumped for several hours. The flask was opened and the water vapour left in contact with the FeCl₃ for 3h. After this time, * Counts Corrected for Dead Time and Background

FeCl₃. Initial H³⁶C1 Final H³⁶Cl Sample (1) Amount of Ag³⁶Cl Counted 17.2 15.9 16.9 mg None Observed (1)Counts(5min)⁻¹ * 12108 8793 ¥ . (1) Counts(5min)⁻¹ 553 716 ł ¥ Sample ' Inactive (1) Counts(5min)⁻¹ 575 784 Corrected for Self-Absorption (2) Amount of Ag³⁶C1 Counted 17.5 15.4 16.3 mg ¥ (2) Counts(5min) None Observed 12355 -1 * 8913 ¥ Counts(5min)⁻¹ mg⁻¹ 547 706 F $Counts(5min)^{-1}$ mg⁻¹ Sample Inactive 583 792 Corrected for Self-Absorption 579 ± 788 Sample Inactive Average Specific Activity Counts(5min) mg⁻¹ 1+ 27 34

SPECIFIC ACTIVITIES FROM FeC1₃ CH₃CC1₃ H³⁶C1:- EXCHANGE METHOD A

٢

TABLE 6.IV

the remaining H_2^0 vapour was removed by pumping. Тар В was then closed and the flask containing the distilled water removed. Flask V,, which contained anhydrous $H^{36}Cl$ (0.1872g; 5.13 mmol) and CH_3CCl_3 (0.5042g; 3.77 mmol) prepared as described in 6.1.4, was attached to the line and the system pumped for several hours. $H^{36}Cl$ (0.0865g; 2.37 mmol in the reaction vessel) and CH₃CCl₃ (0.2327g; 1.74 mmol in the reaction vessel) were admitted to the $FeCl_3$ and the system monitored (Table 6.VI). The CH₃CCl₃|H³⁶Cl mixture for 2h. was removed by vacuum distillation at 77K. The mixture was separated, the H³⁶Cl distilled into a frozen solution of NaOH, precipitated as Ag³⁶Cl and its activity determined. (Table 6.VII). The FeCl₃ was analysed by hydrolysing the sample, precipitating the iron as Fe_2O_3 and the ${}^{36}Cl^-$ as $Ag^{36}Cl$ (Table 6.VIII). The activity of the FeCl₃ was determined as Ag³⁶Cl (Table 6.VII).

ANALYSIS OF FeC1₃ FROM THE INTERACTION OF FeC1₃ (WATER VAPOUR) WITH CH₃CC1₃ and H³⁶C1.

	% Obtained	<pre>% Required for FeCl₃</pre>
Iron	34.2	34.4
Chlorine	65.1	65.6

TABLE 6.VIII

TABLE 6.VI

,

* Counts for 10 min.

	<u> </u>	_ *		*	<u> </u>	*	<u> </u>	*	r	*	·		······
2187	2110	21592	2152	22510	2272	22676	2252	22316	2239	20044	1593	1475	Counts min ⁻¹ in Solid & Gas Phases ↓
2017	1940	19892	1982	20810	2102	20976	2082	20616	2069	18344	1423	1 305	-Background
2031	1954	20092	1996	21029	2117	21198	2097	20830	2084	18514	1433	1314	Counts min ⁻¹ Corrected for Dead Time
1094	1103	11281	1127	11517	1148	11534	1169	12228	1214	13006	1381	1447	Counts min ⁻¹ in Gas Phase +
900	606	9341	983	9577	954	9594	975	10288	1020	11066	1187	1253	-Background
904	913	9385	938	9623	959	9640	980	10341	1025	11127	1194	1261	Counts min ⁻¹ Corrected for Dead Time
1127	1041	10707	1058	11406	1158	11558	1117	10488	1059	7387	239	53	Surface Activity of FeCl ₃ Counts min ⁻¹
120	105	95	90	75	70	50	45	30	25	10	5	0	Time Min

	FeC13.	Final H ³⁶ Cl	Initial H ³⁶ Cl	Sample	SPECIFIC
	14.8	17.5	15.4	(1) Amount of Ag ³⁶ Cl Counted mg	ACTIVITIES F
	444	9782	12613	(1) Counts(5min) ⁻¹ *	ROM FeC1 ₃ (TR
	30	559	819	(1) Counts(5min) ⁻¹ mg ⁻¹ +	EATED WITH WA
	30	627	835	(1) Counts(5min) ⁻¹ mg ⁻¹ Corrected for Self-Absorption	TER VAPOUR) CH
	22.4	16.3	15.9	(2) Amount of Ag ³⁶ C1 Counted mg +	<u>зссі з н³⁶сі .</u>
,	591	9405	13006	(2) Counts(5min) ⁻¹ * +	
	26	577	818	Counts(5min) ⁻¹ mg ⁻¹ +	-
	36	615	851	Counts(5min) ⁻¹ mg ⁻¹ Corrected for Self-Absorption	
	33 ± 3	621 ± 28	843 ± 40	Average Specific Activity ₁ -1 Counts(5min) mg ⁻¹	

-

.

* Counts Corrected for Dead Time

TABLE 6.VII

6.1.6. INTERACTION OF FeCl₃ WITH CH₃CCl₃ AND H³⁶Cl MONITORED BY EXCHANGE METHOD B.

The reaction was performed using exchange method B (cf. 2.6.2) and the apparatus shown in Figure 2.XVIII. This apparatus was pumped and flamed-out on a vacuum line before being transferred to the inert atmosphere A mixture of FeCl, in CH₂CCl, was prepared by box. weighing FeCl₃ (0.1000g; 0.62 mmol) into V_1 of the exchange vessel and adding 50ml of CH₃CCl₃. The vessel was removed from the dry box and the mixture degassed twice before a weighed amount of H³⁶Cl (0.2196g; 6.02 mmol) The specific activity of a sample of the was added. H³⁶Cl used was determined before the addition. The exchange vessel was thermostated at 298K. At intervals the exchange vessel was attached to the vacuum line and the FeCl₃ CH₃CCl₃ mixture held at 188K. The H³⁶Cl was removed by allowing the gas into V_2 . The H^{36} Cl was then distilled into a frozen solution of NaOH, precipitated as Ag³⁶Cl and its specific activity After the removal of all determined. (Table 6.IX). the H^{36} Cl, the solvent was removed by vacuum distillation and the FeCl₃ analysed by hydrolysing the sample, precipitating the iron as Fe₂O₃ and the chloride ion as AgC1. (Table 6.X). The FeCl, was found to be inactive. (Table 6.IX).

* Correct	FeCl ₃	4th	3rd	2nd	1st	Initial	Sample
ed for Backgro	After sol- vent Removed	48h	24h	6h	3h	0	Time
ound and Dea	20.8	23.6	16.7	16.0	16.3	14.3	Amount AgC1 Counted mg
d Time	ĩ	94	86	179	742	6514	Corrected Count Counts(10min)
	ſ	3.98	5.15	11.2	45.5	455	Counts(10min) ⁻¹ mg ⁻¹
TABLE 6	I	5.56	5.62	11.8	48.6	443	Corrected for Self-Absorption
. TX	21.1	17.7	16.9	16.3	24.8	20.6	Amount AgCl Counted mg
	I	139	92	183	980	7694	Corrected Count * Counts(10min) ⁻¹
	I	7.8	5.4	11.2	39.5	373	Counts(10min) ⁻¹ mg ⁻¹
	I	8.8	6.01	12.0	57.2	470	Corrected for Self-Absorption
	I	7.18	5.7	11.9	52.9	456	Average Count Counts(10min) ⁻¹ mg ⁻¹
	r •	1					1

INTERACTION BETWEEN FeC1₃ CH₃CC1₃ H³⁶C1:- EXCHANGE METHOD B

.

;

TABLE 6.IX

ANALYSIS OF FeC1₃ FROM THE INTERACTION OF FeC1₃ WITH <u>CH₃CC1₃ AND H³⁶C1 MONITORED BY EXCHANGE METHOD B</u>.

	% Obtained	<pre>% Required for FeCl₃</pre>
Iron	33.8	34.4
Chlorine	64.9	65.6

TABLE 6.X

6.1.7. IR ANALYSIS OF THE VAPOUR FROM FeC1₃ AND <u>STABILIZED CH₃CC1₃.</u>

A rotaflo vessel was pumped, flamed out and transferred to the inert atmosphere box. A mixture of $FeCl_3$ in stabilized CH_3CCl_3 was prepared in the box by weighing FeCl_3 (0.1120g; 0.69 mmol) into a rotaflo vessel and adding 50ml of stabilized CH_3CCl_3 . The FeCl_3 did not completely dissolve in this solvent. The vessel was removed from the box and the mixture degassed twice. The vapour from this reaction was monitored regularly over a three week period by expanding the vapour into the vacuum manifold, which contained a gas infrared cell, and recording its infrared spectrum. Vapour pressures obtained were measured using a mercury manometer and were in the range 91 - 106 mm Hg.

6.1.8. <u>G.L.C. AND Fe^{II} ANALYSIS OF FeCl₃ STABILIZED</u> <u>CH₃CCl₃ AND FeCl₃ STABILIZED CH₃CCl₃ HCl.</u>

Two rotaflo vessels were pumped, flamed out and transferred to the inert atmosphere box. Two mixtures of FeCl, in stabilized CH₃CCl₃ were prepared in the box by weighing FeCl, (0.1120g; 0.69 mmol) into each rotaflo vessel and adding 50ml of stabilized CH₃CCl₃. The FeCl₃ did not completely dissolve in stabilized CH₃CCl₃. The rotaflo vessels were transferred to the vacuum line and the mixtures degassed twice. A weighed amount of HCl (0.1480g; 4.06 mmol) was added to one of the rotaflo vessels by holding the mixture of FeCl, in stabilized CH₃CCl₃ at 77K and distilling the HCl into the vessel. After three weeks both solutions were yellow-green and contained no undissolved solid. The solvent was removed and examined by GLC and the solid remaining was analysed for Fe^{II} and total iron as described in section 2.3.3.

6.1.9. <u>ELECTRONIC SPECTRA OF FeC1</u>₃ STABILIZED CH₃CC1₃ <u>AND FeC1</u>₃ STABILIZED CH₃CC1₃ <u>HC1</u>.

Two UV cells were pumped, flamed-out and transferred to the inert atmosphere box. A mixture of FeCl_3 in stabilized CH_3CCl_3 was prepared by weighing FeCl_3 (0.0324g; 0.2 mmol) into each UV cell and adding 5ml of stabilized CH_3CCl_3 . The UV cells were transferred to the vacuum line and the mixture degassed twice. The FeCl₃ did not dissolve completely in stabilized CH_3CCl_3 . A weighed amount of HCl (0.0312g; 0.86 mmol) was added to one of the UV cells by vacuum distillation. The electronic spectra of both mixtures were monitored over three weeks and after this time all the FeCl₃ has dissolved.

6.1.10. INTERACTION OF FeCl₃ WITH STABILIZED CH₃CCl₃ AND H³⁶Cl MONITORED BY EXCHANGE METHOD A.

The reaction between FeCl₃ (0.1630g; 1.01 mmol), H^{36} Cl (0.0887g; 2.43 mmol in the reaction vessel) and stabilized CH_3CCl_3 (0.2327g; 1.74 mmol in the reaction vessel) was performed as described in section 6.1.4. and the system monitored for 2.83h (Table 6.XI). After 2.83h the $H^{36}Cl|stabilized CH_3CCl_3$ mixture was removed by vacuum distillation. The mixture was separated by fractional distillation from 188K to 77K, H³⁶Cl being The H³⁶Cl was then recovered from the 77K fraction. distilled into a frozen solution of NaOH, ³⁶Cl⁻ precipitated as Ag³⁶Cl and its activity determined. (Table 6.XII). The solid remaining was analysed after hydrolysis by precipitating the iron as Fe₂O₃ and the chloride ion as $Ag^{36}Cl$ (Table 6.XIII). The activity of the solid was determined as Ag³⁶Cl. (Table 6.XII).

			1	1	7					
2673	2601	2586	2788	2353	2148	2321	2043	1872	1470	-1 Counts min in Solid & Gas Phases +
2616	2544	2529	2731	2296	2091	2264	1986	1815	1413	-Background
2651	2577	2561	2769	2323	2113	2290	2006	1832	1423	Counts min ⁻¹ Corrected for Dead Time
1074	1098	1091	1132	1187	1248	1266	1271	1335	1470	Counts min ⁻¹ in Gas Phase ↓
1017	1041	1035	1075	1130	1191	1209	1214	1278	1413	-Background
1022	1046	1039	1081	1136	1198	1216	1221	1286	1423	Counts min ⁻¹ Corrected for Dead Time
1629	1531	1522	1688	1187	915	1074	785	546	0	Surface Activity of FeCl ₃ Counts min ⁻¹
170	110	95	75	35	25	15	6	2	0	Time Min

TABLE 6.XI

-:

T

INTERACTION BETWEEN FeC1₃ STABILIZED CH₃CC1₃:- EXCHANCE METHOD A.

.

Remaining Solid After Solvent Removed	Final H ³⁶ Cl	Initial H ³⁶ Cl	Sample
24.9	16.0	13.2	(1) Amount of Ag ³⁶ C1 Counted mg
307	1920	2049 .	(1) Counts(5min) ⁻¹ * +
12	120	155	(1) Counts(5min) ⁻¹ mg ⁻¹ +
18	123	144	(1) Counts(5min) mg ⁻¹ Corrected for Self-Absorption
22.0	18.8	17.0	(2) Amount of Ag ³⁶ Cl Counted mg +
346	2068	2346	(2) Counts(5min) ⁻¹ *
16	110	138	Counts(5min) ⁻¹ mg ⁻¹
21	129	152	Counts(5min) ⁻¹ mg ⁻¹ Corrected for Self-Absorption
20 ± 2	126 ± 6	154 ± 8	Average Specific Activity Counts(5min) mg ⁻¹

SPECIFIC ACTIVITIES FROM FeC1₃ STABILISED CH₃CC1₃:- EXCHANCE METHOD A.

-

ï

TABLE 6.XII

;

* Counts Corrected for Dead Time and Background

ANALYSIS OF THE REMAINING SOLID FROM THE INTERACTION OF FeC1₃ WITH STABILIZED CH₃CC1₃ AND H³⁶C1.

	Amount Obtained g	Amount Required for FeCl ₃ Used g	
Iron	0.0554	0.0561	
Chlorine	0.1258	0.1069	

TABLE 6.XIII

6.1.11. INTERACTION OF FeCl₃ WITH STABILIZED CH₃CCl₃ AND H³⁶Cl MONITORED BY EXCHANGE METHOD B.

The reaction between a mixture of FeCl_3 (0.1622g; 1.00 mmol) in 50ml of stabilized CH_3CCl_3 and H^{36}Cl (0.2847g; 7.81 mmol) was performed as described in section 6.1.6. After 1h the amount of H^{36}Cl which could be removed from the $\text{FeCl}_3|$ stabilized CH_3CCl_3 mixture was too small to count accurately and after a further 3h, no H^{36}Cl could be removed. After 48h, the solvent was removed by vacuum distillation and the solid remaining was analysed by hydrolysing the sample, precipitating the iron as Fe_2O_3 and the chloride ion as Ag^{36}Cl . (Table6.XIV). The ^{36}Cl specific activity of the solid was determined as Ag^{36}Cl (Table 6.XV).

· · · · · · · · · · · · · · · · · · ·		
Remaining Solid After Solvent Re- moved	Initial H ³⁶ C1	Sample
15.8	15.6	(1) Amount of Ag ³⁶ Cl Counted mg
1194	1287	(1) * Counts(5min) ⁻¹ *
78	82	(1) Counts(5min) ⁻¹ mg ⁻¹
97	84	(1) Counts(5min) ⁻¹ mg ⁻¹ Corrected for Self-Absorption
18.7	14.1	(2) Amount of Ag ³⁶ Cl Counted ↓
1401	1362	(2) Counts(5min) ⁻¹ *
75	96	Counts(5min) ⁻¹ mg ⁻¹
88	94	Counts(5min) ⁻¹ mg ⁻¹ Corrected for Self-Absorption
84 ± 4	89 ± 6	Average Specific Activity Counts(5min) ⁻¹ mg ⁻¹

SPECIFIC ACTIVITIES FROM FeC1₃ STABILIZED CH₃CC1₃:- EXCHANCE METHOD B.

;

.

*

Counts corrected for Dead Time and Background.

TABLE 6.XV
ANALYSIS OF THE REMAINING SOLID FROM THE INTERACTION OF FeC1₃ WITH STABILIZED CH₃CC1₃ AND H³⁶C1.

	Amount Obtained g	Amount Required for FeCl ₃ Used g
Iron	0.0483	0.0558
Chlorine	0.1403	0.1064

TABLE 6.XIV

6.2. RESULTS

6.2.1. INTERACTION OF FeCl₃ WITH CH₃CCl₃.

FeCl₃ does not dissolve completely in CH_3CCl_3 but forms an orange-brown solution which contains some undissolved solid. Infrared spectra of the vapour from a mixture of FeCl₃ (0.1543g; 0.95 mmol) in 25ml of CH_3CCl_3 show that HCl is present after 30min. which indicates that FeCl₃ is catalysing the dehydrochlorination of CH_3CCl_3 . GLC analysis confirms that vinylidene chloride is formed when FeCl₃ is added to CH_3CCl_3 .

6.2.2. GLC AND Fe^{II} ANALYSIS OF THE FeCl₃ CH₃CCl₃ SYSTEM.

The effect on the production of vinylidene chloride and Fe^{II} of adding HCl, H₂O or CH₃CN was determined by adding these reagents to selected solutions of FeCl₃ (0.0324g; 0.20 mmol) in CH₃CCl₃ (lOml). In two cases solutions were stored in the dark so that any photochemical contribution to the formation of ${\rm Fe}^{{\tt I}{\tt I}}$ and . . vinylidene chloride could be determined. The results are shown in Table 6.XVI. Samples $1A \rightarrow 5A$ and $1B \rightarrow 5B$ were prepared under identical conditions though HCl was added to samples $1B \div 5B$. The addition of HCl decreases the amount of vinylidene chloride formed but has no effect on the amount of iron present as Fe^{II}. Samples 5A and 5B, which were examined after only 3h, show that less vinylidene chloride and Fe^{II} are present than in samples 4A and 4B which were examined after 1 day. Samples which were left for longer than 1 day show very little change in the amount of vinylidene chloride and Fe^{II} formed. The addition of water to samples $M \rightarrow N$ reduces both the amount of vinylidene chloride and Fe^{II} The addition of CH_3CN to samples V \rightarrow T stops formed. the formation of vinylidene chloride but has no effect on the amount of Fe^{II} produced. Samples R and S were stored in the dark and show a vast increase in the amount of vinylidene chloride formed compared to the samples in the light. In both solutions stored in the stored dark the production of Fe^{II} is totally inhibited.

E F FE C T	OF	ADD ING	HC1.	н.0	AND	CH CN	ON	тнг	FoC1	CH CCI	SNSTEM
			<u> </u>	$\underline{11}_{2}$	TUD	OL CN	UN	1 DC	reci		SISTEM.

			· · · · · · · · · · · · · · · · · · ·			
Sample	Added Water mmol.	Added HC1 mmo1	Added CH ₃ CN mmo1	Time	Amount of Vinylidene Chloride Present mol -'	%Fe ^{II} Present of Total Iron
1A	-	_	-	6 days	0.1250	24
18	-	1.38	_	6 days	0.0707	28
2A	_	-	-	4 days	0.0631	28
2B	_	1.01	-	4 days	0.0569	24
3A	-	-	-	2 days	0.0767	24
3B	-	1.09		2 days	0.0726	22
4A	-	-	-	l day	0.0842	16
4B	-	1.12	-	l day	0.0413	24
5A	-	-	-	3h.	0.0179	8
5B	-	1.14	-	- 3h.	0.0132	10
М	0.088	1.19	-	3h.	0.0129	0.8
Q	0.088	1.56	-	l day	0.0452	21
P	0.066	1.44	-	2 days	0.0279	19
0	0.077	0.95	-	4 days	0.0394	16
N	0.079	1.24	-	6 days	0.0432	20
R	-	_	-	l day	0.109	None Detected
S	-	-	-	5 days	2.25	None Detected
v	-	0.96	3.83	2 days	None Detected	24
U	-	1.20	3.83	3 days	None Detected	25
T	_	0.54	3.83	5 days	None Detected	28

* Solutions stored in the dark.

+

*

TABLE 6.XVI

6.2.3. <u>ELECTRONIC SPECTRA OF FeCl₃ $|CH_3CCl_3, FeCl_3|$ </u> <u>CH₃CCl₃ $|HCl AND FeCl_3|CH_3CCl_3|HCl|H_2O$ </u>.

The electronic spectra of the three systems, $FeCl_3|CH_3CCl_3, FeCl_3|CH_3CCl_3|HCl and FeCl_3|CH_3CCl_3|HCl|H_2O$, were recorded over a period of time. Spectroscopic examination of the $FeCl_3|CH_3CCl_3$ and $FeCl_3|CH_3CCl_3|HCl$ systems in the region 12500 cm⁻¹ to 22000 cm⁻¹ shows no evidence for the formation of the tetrachloroferrate ion even after three weeks. In the $FeCl_3|CH_3CCl_3|HCl|H_2O$ system, bands at 16400 cm⁻¹, 18900 cm⁻¹, and 20400 cm⁻¹ (cf. Table 4.XXXVII) indicate that the $FeCl_4^-$ ion is present in solution after 4h.

6.2.4. INTERACTION OF FeCl₃ WITH CH₃CCl₃ AND H³⁶Cl MONITORED BY EXCHANGE METHOD A.

When H^{36} Cl (0.0783g; 2.15 mmol) and $CH_{3}CCl_{3}$ (0.2327g; 1.74 mmol) are admitted to FeCl₃ (0.2899g; 1.79 mmol) and the resulting distribution of 36 Cl activity monitored by two GM tubes, the count rate from the gas plus solid increases with time and that from the gas alone decreases. The surface activity of FeCl₃ is decreased by the removal of the $H^{36}Cl|CH_{3}CCl_{3}$ mixture and totally removed by overnight pumping. Analysis of the FeCl₃ indicates that the ratio Fe:Cl is 1:3.0 and that FeCl₃ is inactive (Table 6.IV). This shows that no exchange has occurred between FeCl₃ and the H³⁶Cl|CH₃CCl₃ mixture. Previous results have shown that H³⁶Cl is not adsorbed by FeCl₃ so the surface activity exhibited by the FeCl₃ in this reaction is probably due to either CH₃C³⁶Cl₃ or CH₂ = C³⁶Cl₂ being adsorbed by the FeCl₃. ³⁶Cl activity would be incorporated into both CH₃C³⁶Cl₃ and CH₂ = C³⁶Cl₂ as shown in scheme 6.II. Analysis of the H³⁶Cl, before and after the reaction shows a decrease in the specific activity of the H³⁶Cl. (Table 6.XVII). This is probably due to the formation of inactive HCl produced by the dehydrochlorination of CH₃CCl₃ by FeCl₃.

SPECIFIC ACTIVITIES OF THE REACTANTS FROM THE INTERACTION OF FeCl₃ WITH CH₃CCl₃ AND H³⁶Cl.

Sample	Specific Activity Counts (5min) ⁻¹ mg ⁻¹
Initial H^{36} Cl, counted as Ag^{36} Cl	788 ± 34
Final $H^{36}Cl$, counted as $Ag^{36}Cl$	579 ± 27
FeCl ₃ counted as AgCl	Not active

TABLE 6.XVII

6.2.5. INTERACTION OF FeCl₃ (TREATED WITH WATER VAPOUR) WITH CH₃CCl₃ AND H³⁶Cl MONITORED BY EXCHANGE METHOD A.

Examination of the ³⁶Cl activity distribution in the heterogeneous system when H³⁶Cl (0.0865g; 2.37 mmol) and CH₂CCl₂ (0.2327g; 1.74 mmol) are admitted to FeCl₂ (0.3469q; 2.14 mmol), which has been treated previously with water vapour, indicates that the count rate from the gas plus solid increases with time while that of the gas alone decreases. The variation of the surface 36 Cl activity of FeCl₃ with time is shown in Figure 6.II. The surface activity is unaffected by the removal of H³⁶Cl and CH₃CCl₃ though it decreases slightly after pumping overnight. Analysis of the FeCl₃ after H³⁶Cl and CH₃CCl₃ have been removed, indicates that the ratio Fe:Cl is 1:3.0 and that FeCl₃ is slightly active. (Table 6.XVIII). Analysis of the H³⁶Cl, before and after the reaction shows that the specific activity of the H³⁶Cl has decreased. The decrease in the specific activity of the H³⁶Cl is due to the production of inactive HCl and to exchange between $H^{36}Cl$ and wet FeCl₂.

SPECIFIC ACTIVITIES FROM THE INTERACTION OF FeCl₃ (TREATED WITH WATER VAPOUR) WITH CH₃CCl₃ AND H³⁶Cl.

Sample	Specific Activity Counts (5min) ⁻¹ mg ⁻¹
Initial $H^{36}Cl$, counted as $Ag^{36}Cl$	843 ± 40
Final H ³⁶ Cl, counted as Ag ³⁶ Cl	621 ± 28
FeCl ₃ , counted as Ag ³⁶ Cl	33 ± 3

TABLE 6.XVIII

6.2.6. INTERACTION OF FeCl₃ with CH₃CCl₃ AND H³⁶Cl MONITORED BY EXCHANGE METHOD B.

In this method the interaction between $H^{36}Cl$ and a solution of FeCl₃ in CH_3CCl_3 is monitored at intervals by removing aliquots of $H^{36}Cl$. If ³⁶Cl exchange occurs the specific activity of $H^{36}Cl$ will decrease and incorporation of activity into FeCl₃ will be observed. The specific activity of $H^{36}Cl$ will decrease, however, due to the production of inactive HCl caused by the FeCl₃-catalysed dehydrochlorination of CH_3CCl_3 . When $H^{36}Cl$ (0.2196g; 6.02 mmol) is admitted to a solution of FeCl₃ (0.1622g; 1.00 mmol) in 50ml of CH_3CCl_3 the specific activity of $H^{36}Cl$ drops with time until after 6h the values obtained are too small to be meaningful. (Table 6.XIX). Analysis of the FeCl₃ after the removal of HCl and CH_3CCl_3 indicates that the ratio Fe:Cl is 1:3.0 and that FeCl₃ is inactive.

SPECIFIC ACTIVITIES OF H³⁶Cl FROM THE INTERACTION OF FeCl₃ WITH CH₃CCl₃ and H³⁶Cl.

Specific Activity of H ³⁶ Cl Counted as Ag ³⁶ Cl Counts (lOmin) ⁻¹ mg ⁻¹	Time h.
456 ± 21	0
53 ± 3	3
12 ± 1	6
6 ± 1	24
7 ± 1	48

TABLE 6.XIX

6.2.7. INTERACTION OF FeC1 WITH STABILIZED CH3CC13.

FeCl₃ does not completely dissolve in stabilized CH_3CCl_3 but forms an orange-brown solution which contains some undissolved solid. After three weeks, however, the solution is yellow-green and contains no undissolved solid. Infrared spectra of the vapour from a mixture of FeCl₃ in CH₃CCl₃ show no evidence for the production of HCl and GLC analysis of the solvent indicates that no vinylidene chloride is formed in solution.

6.2.8. <u>OXIDATION STATE OF IRON IN FeCl₃ STABILIZED</u> <u>CH₃CCl₃ AND FeCl₃ STABILIZED CH₃CCl₃ HCl.</u>

The oxidation state of iron from $\text{FeCl}_3|$ stabilized CH_3CCl_3 and $\text{FeCl}_3|$ stabilized $\text{CH}_3\text{CCl}_3|$ HCl was examined by spectrophotometric analysis (cf. 2.3.3.) and the electronic spectra of the solutions recorded at various stages during the reaction.

Spectrophotometric analysis of these solutions indicate that Fe^{II} is formed in both systems. (Table 6.XX).

Fe^{II} ANALYSIS OF FeCl₃ STABILIZED CH₃CCl₃ AND FeCl₃ STABILIZED CH₃CCl₃ HCl.

System	% Fe ^{II} Present of Total Iron
Fecial STABILIZED CH3CU3	14.4
FeC1 STABILIZED CHEL HC1	12.6

TABLE 6.XX

Spectroscopic examination of the $\text{FeCl}_3|$ stabilized CH_3CCl_3 system shows that FeCl_4^- is present in solution after 14h. The $\text{FeCl}_3|$ stabilized $\text{CH}_3\text{CCl}_3|$ HCl system shows that FeCl_4^- is present in solution after only 1h. FeCl_4^- can be detected in both solutions after three weeks.

The reduction of FeCl_3 to Fe^{II} suggests that chlorination of the solvent may occur, though it is also possible that the stabilizers added to CH_3CCl_3 could be responsible for the production of Fe^{II} and FeCl_4^- . A stabilizer such as CH_3CN would lead to the production of both these species. The presence of the stabilizers will have an effect on the exchange reaction between a mixture of FeCl_3 in stabilized CH_3CCl_3 and H^{36}Cl as the production of FeCl_4^- will lead to the incorporation of activity into the solid.

6.2.9. <u>INTERACTION OF FeC1₃ WITH STABILIZED CH₃CC1₃</u> AND H³⁶C1 MONITORED BY EXCHANGE METHOD A.

When $H^{36}Cl$ (0.0887g; 2.43 mmol) and (0.2327g; 1.74 mmol) are admitted to $FeCl_3$ (0.1630g; 1.01 mmol) and the resulting distribution of ^{36}Cl activity monitored by two GM tubes, the count rate from the gas plus solid increases with time and that from the gas alone decreases. The difference in count rates gives the ^{36}Cl activity of FeCl₃ and the variation of this with time is shown in Figure 6.III. The surface activity is unaffected by the removal of $H^{36}Cl$ and stabilized CH_3CCl_3 from the gas phase though it decreases slightly after overnight pumping. Analysis of the remaining solid, after $H^{36}Cl$ and stabilized CH_3CCl_3 have been removed, indicates that the ratio Fe:Cl is 1:3.6 and that the solid is slightly active. (Table 6.XXI).

<u>SPECIFIC ACTIVITIES OF THE REACTANTS FROM THE INTER-</u> ACTION OF FeCl₃ WITH STABILIZED CH₃CCl₃ AND H³⁶Cl.

Sample	Specific Activity Counts (5min) ⁻¹ mg ⁻¹
Initial H^{36} Cl, counted as Ag^{36} Cl	154 ± 8
Final $H^{36}Cl$, counted as $Ag^{36}Cl$	126 ± 6
Remaining Solid, counted as Ag ³⁶ Cl	20 ± 2

TABLE 6.XXI

Analysis of the H^{36} Cl, before and after the reaction shows that the specific activity of the H^{36} Cl has decreased.

This exchange reaction is caused by the stabilizers present in CH_3CCl_3 since under identical conditions no exchange was observed in the FeCl_3 | unstabilized $CH_3CCl_3 | H^{36}Cl$ system

6.2.10. INTERACTION OF FeCl₃ WITH STABILIZED CH₃CCl₃ AND H³⁶Cl MONITORED BY EXCHANGE METHOD B.

When HCl (0.2847g; 7.81 mmol) is admitted to a mixture of FeCl₃ (0.1622g; 1.00 mmol) in 50ml of stabilized CH₃CCl₃, the pressure of H³⁶Cl in the vessel drops so rapidly that even after lh. it is not possible to remove any H³⁶Cl. On removal of the solvent, analysis of the remaining solid indicates that the ratio Fe:Cl is 1:4.6 and that the solid is active.

These results indicate that not only do the stabilizers added to CH₃CCl₃ prevent the formation of HCl but they consume any HCl added to the system.

6.3. DISCUSSION.

Iron(III) chloride catalyses the dehydrochlorination of l,l,l-trichloroethane to produce HCl and vinylidene chloride. The amount of vinylidene chloride formed in a mixture of FeCl₃ in CH_3CCl_3 is decreased by the addition of HCl, H_2O and CH_3CN though it is increased if the mixture is stored in the dark. Since light obviously plays a role in the production of vinylidene chloride, mixtures of FeCl_3 in CH_3CCl_3 were analysed for the presence of Fe^{II} . The amount of Fe^{II} present is unaffected by the addition of HCl or CH_3CN , decreased by the addition of H₂O and totally inhibited when the mixture is stored in the dark.

It has been suggested⁵ that the dehydrochlorination of l,l,l-trichloroethane involves a carbonium ion intermediate as shown in scheme 6.I and this would

 $CH_{3}CCl_{3} + FeCl_{3} \rightarrow [CH_{3}CCl_{2}^{+} + FeCl_{4}^{-}]$ $[CH_{3}CCl_{2}^{+} + FeCl_{4}^{-}] \rightarrow CH_{2}CCl_{2} + FeCl_{3} + HCl_{4}^{-}]$

Scheme 6.I.

result in the $FeCl_{4}$ ion being formed in solution. This, however, is inconsistent with the spectroscopic investigation which shows no evidence for the formation of FeCl₄ in mixtures of FeCl₃ in CH₃CCl₃ unless water The formation of the tetrachloroferrate ion is present. would lead to exchange occurring between a mixture of FeCl₃ in CH₃CCl₃ and H³⁶Cl as outlined in Scheme 6.II. Although the specific activity of the H³⁶Cl added to a mixture of FeCl, in CH3CCl, decreases, this is due to the production of inactive HCl from the dehydrochlorination of CH₃CCl₃ and no exchange occurs. When this reaction is repeated using FeCl₃, which had previously been treated with water vapour, exchange occurs to some Presumably this is due to the reaction between extent.

wet FeCl₃ and H^{36} Cl discussed in Chapter 5.

The formation of Fe^{II} in these solutions suggests that there is a photochemical reduction of Fe^{III} to Fe^{II} with concomitant production of a chlorine radical (Scheme 6.III).

$$\begin{array}{ccc} & & \\ & & & & \\ & & & \\ & &$$

Scheme 6.III

The chlorine radical formed could react with CH_3CCl_3 and provide an alternative mechanism for the production of $CH_2 = CCl_2$ (Scheme 6.IV). The reaction

$$cl' + CH_3CCl_3 \rightarrow HCl + CH_2CCl_3$$
$$CH_2CCl_3 \rightarrow CH_2 = CCl_2 + Cl$$
$$cl' + CH_2CCl_3 \rightarrow CH_2ClCcl_3$$

1

Scheme 6.IV

between FeCl₃ and CH₃CCl₃, however, was not examined for the presence of any other organochloro compounds. The production of vinylidene chloride caused by the photochemical reduction of Fe^{III} to Fe^{II} explains both the

. . . .

formation of vinylidene chloride and Fe^{II} in mixtures of FeCl₃ in CH₃CCl₃. Since the dehydrochlorination of CH_3CCl_3 is an equilibrium reaction (eq. 6I) the reduction in the amount of vinylidene chloride formed in solution when HCl is added to a mixture of FeCl₃ in CH₃CCl₃ is probably due to the excess HCl present disturbing this equilibrium. When H20 is added to a mixture of FeCl₃ in CH₃CCl₃ both the amount of CH₂CCl₂ and Fe^{II} produced decreases. Presumably the water reacts with FeCl₃ to give $[Fe(H_2O)_4Cl_2^+]$ -[FeCl₄] (cf. Table 5.I) leaving less FeCl₃ available for the photochemical pathway and thus reducing the amount of vinylidene chloride and Fe^{II} produced. It has been shown⁹⁰, however, that the reaction between $CH_{3}CCl_{3}$ and hydrated iron(III) chloride results in the formation of acetic acid, (Eq. 6.II) though

$$CH_3CCl_3 + 2H_2O \xrightarrow{FeCl_3} CH_3CO_2H + 3HCl \dots Eq. 6.11$$

as the FeCl₃ becomes anhydrous, dehydrochlorination becomes predominant and vinylidene chloride is formed. When CH_3CN is added to a mixture of FeCl₃ in CH_3CCl_3 , no vinylidene chloride is formed although Fe^{II} is present. Presumably this is due to solvolysis of the FeCl₃ by CH_3CN which leads to the production of $[Fe^{II}(CH_3CN)_6][FeCl_4]_2$ and explains the presence of Fe^{II} in solution. When a mixture of FeCl₃ and CH_3CCl_3 is stored in the dark, the photochemical reduction ceases

and no Fe^{II} is detected. Surprisingly the amount of vinylidene chloride formed is greatly increased which indicates that there is another route to the formation of vinylidene chloride which does not involve the Molecular FeCl₃ must be present chlorine radical. when a mixture of FeCl₃ in CH_3CCl_3 is stored in the dark. A possible explanation for the increased vinylidene chloride concentration in this mixture is that the CH₃CCl₃ is adsorbed on coordinatively unsaturated sites on the surface of the FeCl, which causes slight ionization of the CH₃CCl₃ and results in loss of HCl. The reaction between FeCl₃ and a mixture of $H^{36}Cl$ and CH_3CCl_3 (cf. 6.2.4) indicated that some adsorption took place between FeCl₃ and either CH_3CCl_3 or $CH_2 = CCl_2$. When water, CH_3CN or another stronger Lewis base is added to a mixture of FeCl, in CCl₃CH₃, they cause solvolysis of the FeCl₃ thus decreasing the amount of vinylidene chloride formed.

In summary, iron(III) chloride catalyses the dehydrochlorination of 1,1,1-trichloroethane both by the photochemical reduction of Fe^{III} to Fe^{II} which produces a chlorine radical and by the interaction of vinylidene chloride with molecular FeCl₃. The light initiated reaction probably results not only in the formation of vinylidene chloride but also in other organochloro compounds. Molecular FeCl₃, therefore, appears to be the most efficient dehydrochlorination 163.

catalyst since most vinylidene chloride is produced when no species are present to solvate FeCl₃ and the reaction is performed in the dark.

•

CHAPTER SEVEN

.

CHAPTER 7

CONCLUSIONS

36-Chlorine exchange is not observed between anhydrous FeCl₃ and anhydrous ³⁶Cl₂ which indicates that the Fe(III)-Cl bond is not labile towards Cl₂ under anhydrous conditions. Under these conditions ³⁶Cl₂ is merely adsorbed by the FeCl₃. ³⁶Cl exchange occurs between FeCl₃ and ³⁶Cl₂ in acetonitrile as a result of chlorination of the solvent. The reaction involves solvolysis of FeCl₃ and an Fe^{III} |Fe^{II} redox cycle. Fe(CH₃CN)₆²⁺ is oxidised by chlorine in acetonitrile and therefore shows similar behaviour to FeCl₃. The lifetime of the cycle is limited due to the production of HCl which reacts with the cationic Fe^{III} species forming the redox inactive tetrachloroferrate ion.

These results suggest that the catalytic ability exhibited by FeCl_3 in chlorination reactions could be caused by Lewis bases reacting with FeCl_3 to form a catalytically active species. In the heterogeneous reaction the adsorption of Cl_2 by molecular FeCl_3 could weaken the Cl-Cl bond thus causing it to react more readily with an alkene or alkyne.

³⁶-Chlorine exchange is not observed between anhydrous FeCl₃ and anhydrous H³⁶Cl under heterogeneous conditions. ³⁶-Cl exchange and adsorption of H³⁶Cl both occur in the presence of small quantities of water but it is considered that these processes involve $[Fe(H_2O)_4Cl_2][FeCl_4]xH_2O$ rather than $FeCl_3$. No exchange is observed between $H^{36}Cl$ and $FeCl_4^{-}$ which implies that exchange involves $H^{36}Cl$ and $[Fe(H_2O)_4Cl_2]^+$.

Hydrochlorination of chloroalkanes in the presence of FeCl₃ and H₂O, as a co-catalyst, presumably involves adsorption of HCl by $[Fe(H_2O)_4Cl_2]^+$ which It has been noted elsewhere weakens the HCl bond. that if the concentration of water is too high or if solvents such as acetonitrile are used then hydrochlorination is inhibited. This is presumably due to the fact that both these solvents will promote the formation of FeCl₄. The ability of FeCl₃ to function as a hydrochlorination catalyst is not due to molecular FeCl₃ but to the species present when FeCl₃ is dissolved in certain solvents. The choice of solvent is very important as the species formed on reaction with FeCl₃ must be capable of causing ionization of the HCl.

In the dehydrochlorination of chloroethanes catalysed by FeCl₃, the catalytically active species appears to be molecular FeCl₃. In these reactions the chloroalkane is adsorbed by the molecular FeCl₃. Donor solvents inhibit dehydrochlorination as they reduce the amount of molecular FeCl₃ present. In dehydrochlorination reactions, FeCl₃ is often dissolved in solvents such as nitroethane and 1-nitropropane though unless excess solid iron(III) chloride is present the reaction is totally inhibited. A possible explanation for the observed increase in the rate of dehydrochlorination is that the species formed when the co-catalyst solvates the FeCl₃ could adsorb the HCl produced in the reaction. The molecular FeCl₃ present adsorbs the chloroalkane and thus the rate of dehydrochlorination increases.

Future work in this area could investigate the reactions of FeCl₃ with non-aqueous solvents and the ability of the species formed to function as catalysts. The preparation of Fe³⁶Cl₃ would enable the lability of the Fe(III)-Cl bond to be more thoroughly investigated. The preparation of labelled chlorohydrocarbons and a thorough investigation of their behaviour with FeCl₃, both with and without the presence of a co-catalyst, would yield much useful information on the mechanisms involved in these reactions.

167.

REFERENCES

- 1. Chemical and Engineering News (1979) June 4th pg. 8.
- 2. Chemical and Engineering News (1979) June 18th pg. 5.
- H. Van den Berg and R.M. Westerink, <u>Ind. Eng. Chem</u>. Fundam, (1976) 15 164.
- 4. I.C.I., Private communication.
- 5. I.C.I., Private communication.
- D.W. Meek and R.S. Drago, <u>J. Am. Chem. Soc</u>., (1961)
 <u>83</u> 4322.
- R.S. Drago, R.L. Carlson and K.F. Purcell, <u>Inorg. Chem.</u>, (1965) <u>4</u> 15.
- R.S. Drago, D.M. Hart and R.L. Carlson, <u>J. Am. Chem. Soc</u>., (1965) <u>87</u> 1900.
- 9. E.M. Kosower, J. Am. Chem. Soc., (1958) 80 3253.
- M. Hargittai, J. Tremmel and I. Hargittai,
 J. Chem. Soc., <u>Dalton Trans.</u>, (1980) 87.
- 11. A.F. Wells "Structural Inorganic Chemistry" Clarendon Press Oxford (1962) p. 5 3rd Edition.
- J. Fajer and H. Linschitz, <u>J. Inorg. Nucl. Chem</u>., (1968) 30 2259.

- R.A. Work and R.L. McDonald, <u>Inorg. Chem</u>., (1973)
 <u>12</u> 1936.
- A. Vertes, I. Nagy-Czako and K. Burger, <u>J. Phys. Chem</u>., (1978) <u>82</u> 1469.
- 15. D.L. Wertz and R.F. Kruh, <u>J. Chem. Phys</u>. (1969) <u>50</u> 4013.
- 16. M.J. Bennett, F.A. Cotton and D.L. Weaver, <u>Acta Cryst.</u>, (1967) <u>23</u> 581.
- K.F. Purcell and J.C. Kotz "Inorganic Chemistry"W.B. Saunders Company (1977) p. 237.
- J. Reedijk and W.L. Groeneveld, <u>Rec. Trav. Chim. Pays-Bas</u>, (1968) <u>87</u> 1293.
- 19. G. Constant, J.C. Daran and T. Jeanin, <u>J. Organomet. Chem</u>., (1972) <u>44</u> 353.
- 20. J. Reedijk and W.L. Groeneveld, <u>Rec. Trav. Chim. Pays-Bas</u>, (1968) <u>87</u> 513.
- 21. B.J. Hathaway and D.G. Holah, J. Chem. Soc. (1964) 2408.
- 22. P.A.O. de Maine and E. Koubek, <u>J. Inorg. Nucl. Chem</u>. (1959) <u>11</u> 329.
- M.W. Duckworth, G.W.A. Fowles and R.A. Hoodless,
 J. Chem. Soc. (1963) 5665.

- 24. E.A. Allen, B.J. Brisdon and G.W.A. Fowles, J. Chem. Soc. (1964) 4531.
- 25. G. Rouschias and G. Wilkinson, <u>J. Chem. Soc. (A)</u>, (1968) 489.
- 26. C.A.A. Van Driel and W.L. Groeneveld, <u>Rec. Trav. Chim</u>. <u>Pays-Bas</u>, (1969) <u>88</u> 891.
- G.W.A. Fowles, D.A. Rice, N. Rolfe and R.A. Walton,
 J. Chem. Soc. Chem. Comm., (1970) 459.
- 28. G.W.A. Fowles, K.C. Moss, D.A. Rice and N. Rolfe, J. Chem. Soc. Dalton Trans. (1972) 915.
- 29. M.G.B. Drew, K.C. Moss and N. Rolfe, <u>Inorg. Nucl. Chem. Letts</u>., (1971) <u>7</u> 1219.
- 30. S. Balt, J. Inorg. Nucl. Chem., (1967) 29 2307.
- 31. G.A. Gamlen and D.O. Jordan, J. Chem. Soc., (1953) 1435.
- 32. C.L. Standley and R.F. Kruh, <u>J. Chem. Phys.</u>, (1961) <u>34</u> 1450.
- 33. G.W. Brady, M.B. Robin and J. Varimbi, <u>Inorg. Chem</u>. (1964) <u>3</u> 1168.
- 34. S.K. Sharma, J. Chem. Phys., (1974) 60 1368.
- 35. M.D. Lind, J. Chem. Phys., (1967) 47 990.
- 36. J.T. Szymanski, Acta Cryst., (1979) B35 1958.

*

- 37. H. Inoue, N. Komakine and E. Imoto, <u>Bull.Chem. Soc. Jap.</u>, (1968) <u>41</u> 2726.
- 38. J. Sima, E. Horvath and J. Gazo, <u>Inorg. Chim. Acta.</u>, (1978) <u>31</u> L460.
- 39. E. Murayama, A. Kohda and T. Sato, <u>Chem. Letts</u>., (1978) 161.
- 40. G.A. Olah, "Friedel-Crafts and Related Reactions" Interscience Publishers (1963) Vol. I.
- 41. C. Friedel and J.M. Crafts., <u>Compt. Rend. Acad. Sci. Paris</u> (1877) <u>85</u> 74.
- 42. A. Campbell "The Modern Inorganic Chemicals Industry" The Chemical Society (1977) Editor R. Thompson.
- 43. I.C.I., Private Communication.
- 44. I.C.I., Private Communication.
- 45. A.E. Kulikova and E.N. Zil'Berman, <u>Russ. Chem. Revs</u>. (1971) 40 256.
- 46. L. Schmerling, <u>J. Am. Chem. Soc</u>., (1946) <u>68</u> 1650.
- 47. H. Van den Berg, J. Chem. Eng. Data, (1978) 23 51.
- 48. I.C.I., Private Communication
- 49. M. Asscher and D. Vosfi, J. Chem. Soc. (B) (1968) 947.

- 50. T. Shirafuji, Y. Yamamoto and H. Nozaki, <u>Bull. Chem. Soc. Jap</u>. (1971) <u>44</u> 1994.
- 51. B.R. Tarr, Inorg. Synth., (1950) 3 191.
- 52. A.R. Pray, Inorg. Synth., (1957) 5 153.
- 53. J.L. Ryan, Inorg. Synth., (1974) 15 231.
- 54. R.N. Maxson, Inorg. Synth, (1939) 1 147.
- 55. R. Belcher and A.J. Nutten "Quantitative Inorganic Analysis" Butterworth and Co. Ltd., (1970) p. 56 3rd Edition.
- 56. R. Belcher and A.J. Nutten "Quantitative Inorganic Analysis" Butterworth and Co. Ltd., (1970) p. 66 3rd Edition.
- 57. I.C.I., Private Communication.
- 58. I.M. Pearson and C.S. Garner, <u>J. Chem. Phys.</u> (1960) <u>32</u> 1214.
- 59. M. Walter and L. Ramaley, <u>Analytical Chem</u>., (1973) <u>45</u> 165.
- 60. D.W. Aylmore and W.B. Jebson, <u>J. Scientific Instruments</u> (1961) <u>38</u> 156.
- 61. G.A. Kolta, G. Webb and J.M. Winfield, <u>J. Fluorine Chem</u>. (1979) <u>14</u> 331.

- 62. S. Blairs and R.A.J. Shelton, <u>J. Inorg. Nucl. Chem</u>., (1966) <u>28</u> 1855.
- 63. D.R. Stranks and R.G. Wilkins, Chem. Rev. (1957) 57 743.
- 64. F. Joliot and I. Curie, Nature (1934) 133 201.
- 65. M.F.A. Dove and D.B. Sowerby, "Halogen Chemistry", Editor V. Gutmann, Academic Press, (1967) <u>1</u> 41.
- 66. G.T. Seaborg, Chem. Rev. (1940) 27 199.
- 67. S.J. Thomson and G. Webb, 'Heterogeneous Catalysis' Oliver and Boyd (1968).
- 68. H.A.C. McKay, Nature (1938) 142 997.
- 69. C.J.W. Fraser, D.W.A. Sharp, G. Webb and J.M. Winfield, J. Chem. Soc., <u>Dalton Trans</u>. (1972) 2226.
- 70. R.M. Adams, R.B. Bernstein and J.J. Katz, J. Chem. Phys. (1954) 22 13.
- 71. P.A. Sermon, G.C. Bond and G. Webb, <u>J. Chem. Soc</u>. Faraday Trans., (1979) <u>75</u> 395.
- 72. A.L. Glasebrook, N.E. Philips and W.G. Lovell,J. Am. Chem. Soc. (1936) 58 1944.
- 73. J.H. Cameron and J.M. Winfield, <u>J. Chem. Soc.</u>, Dalton Trans., (1980) in press.

- 74. K.F. Purcell and J. C. Kotz "Inorganic Chemistry"W.B. Saunders Company (1977) p. 238.
- 75. G. Constant, J.C. Daran and T. Jeanin, <u>J. Organomet. Chem</u>., (1972) 44 353.
- 76. G. Constant, J.C. Daran and T. Jeanin, <u>C.R. Acad. Sci. Ser. C</u>, (1973) <u>277</u> 1013.
- 77. F.E. Murray and W.G. Schneider, <u>Can. J. Chem</u>., (1955) <u>33</u> 797.
- 78. L.E. Hinkel and G.J. Treharne, J. Chem. Soc. (1945) 866.
- 79. J.M. Williams, S.W. Peterson and G.M. Brown, <u>Inorg. Chem</u>. (1968) 7 2577.
- G.J. Janz and S.S. Danyluk, <u>J. Am. Chem. Soc</u>., (1959)
 <u>81</u> 3850.
- 81. T.C. Waddington, J. Chem. Soc. (1958) 1708.
- 82. D.W.A. Sharp, J. Chem. Soc. (1958) 2558.
- 83. R.J. Kern, J. Inorg. Nucl. Chem. (1963) 25 5.
- 84. E.M. Movsum-Zade, Russ. Chem. Revs. (1979) 48 282.
- 85. H.W.B. Roozeboom, Z. Phys. Chem (1892) 10 477.
- 86. M.T. Kossar-Nechan ad J. Roziere, <u>C.R. Acad. Sci. Paris Ser.C</u>, (1974) <u>279</u> 461.

. .

- 87. C. Bordeleau and D.R. Wiles, <u>Inorg. Chim. Acta</u>, (1980), <u>41</u> 195.
- 88. W.F. Giauque and R. Wiebe, J. Am. Chem. Soc., (1928) 50 101.
- W.H. Johnstone and R.E. Martin, <u>J. Chem. Phys</u>. (1952),
 <u>20</u> 534.
- 90. M.E. Hill, J. Org. Chem., (1960) 25 1115.

. . 1