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SUMMARY

TITLE. "The Glaciation and Deglaciation of 
Upper Nithsdale and Annandaie".

AUTHOR. John A. May, Research Student,
Geography Department, University of Glasgow.

Introduction.

The purpose of this thesis is to examine the glacial 
geomorphology of an area in the central Southern Uplands.
By detailed examination of glacially and fluvioglacially 
eroded landforms and glacial and fluvioglacial depositional 
forms, the sequence of events and processes at work during 
the last major period of glaciation and deglaciation can 
be reconstructed.

Recent research work, Price (1961), Clapperton (1967), 
McLelland (1967) and Holden (1977), in adjacent areas has 
virtually encircled Upper Nithsdale and Annandaie. As a 
result, implications regarding the glacial history of the 
area had been made from a variety of sources. However, 
little detailed study of the glacial and fluvioglacial 
landforms and deposits to be found here had been carried 
out. Consequently,, the purpose of the thesis was two
fold,
a) to ascertain the glacial history of an area 

only previously examined in a perfunctory 
fashion, mainly during the early decades
of the twentieth century.

b) to attempt to bring together previous 
research and provide a unified theory 
for the build-up outward movement and 
dissipation of the laste ice sheet to 
cover a large part of Southern Scotland.

Procedure.

A wide variety of literature was examined during the 
course of the study period. Accounts making direct 
reference to Upper Nithsdale and Annandaie are scarce. 
Consequently, a strong emphasis was placed on the 
examination of literature pertainging to glacial and/...



and fluvioglacial conditions and processes in adjacent 
areas and similar upland regions elsewhere, both in 
Britian and abroad. Reference was also made to 
methodology used in a variety of glacial geormorphological 
studies.

' Large - scale maps (1 : 10,560) 
displaying the glacial geomorphology of the thesis area 
were compiled after consultation of borehole records, 
air photographic coverage, and detailed fieldwork 
examination of both the landforms and deposits to be 
found in Upper Nithsdale and Annandaie. The total 
amount'of fieldwork exceeded 8 months and was carriedi
out mainly during the summers of 1977 and 1978. In 
both fieldwork seasons till fabric analysis were 
completed and samples brought back to the laboratory 
for further analysis. Also during 1977, 3 weeks was 
spent in south-east Iceland examining comtemporary 
upland glaciers.

Conclusions
1) All of the evidence in Upper Nithsdale and 

Annandaie indicates that the last major ice 
sheet to submerge the entire area built up 
during the Late-Devension, approximately
25.000 years B.P.

2) Between .25,000 years B.P. and approximately
18.000 years B.P. ice originating from local 
dispersal centres in the Tweedsmuir and Lowther 
Hills, and beyond the western boundary of the 
thesis area in the uplands surrounding Carinsmore 
of Carsphaim, became confluent over Upper 
Nithsdale and Annandaie and completely covered 
the landscape.

3) At the ice sheet stage, the dominant direction
CDvSt-

of ice movement was south/south-w»w4wards 
across the thesis area.



The period of deglaciation and dissipation 
of the ice sheet was dominated by the 
varying regional importance of ice from 
each of the 3 main centres.
During the deglaciation period the 
development of extensive fluvioglacial 
landform assemblages depended strongly 
upon the interaction of glaciological 
with underlying relief conditions.
From 18,000 years'B.P. to approximately 
;10,000 years B.P. the deglaciation of the 
’ area was completed.
After the main period of deglaciation there 
was a return to colder conditions over the 
higher parts of the thesis area, between 
approximately 11,000 years B.P. and 10,000 
years B.P., and small glaciers were 
established/re-established in the Lowther 
and Tweedsmuir Hills.

John A. May, B.Sc. 
January, 1981.
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CHAPTER 1 

INTRODUCTION

1.1 INTRODUCTION

The aim of this thesis is a comprehensive study of the 

glacial geomorphology of a limited area in the Southern 

Uplands of Scotland. The term ’’glacial geomorphology”, 

embraces both the processes and the results of erosion 

and deposition arising from the presence of an ice mass 

on the landscape.

The former existence of such an ice mass is clearly shown 

by the abundant evidence of both glacial and associated 

fluvioglacial landforms and deposits. By the accurate 

mapping of these features, as found today in northern Dumfries 

and Galloway and southern Strathclyde, comparisons of form 

and distribution can be made with known areas of contemporary 

glaciation. As a result, a greater knowledge and more 

accurate understanding of the condition and extent of the last 

ice mass over the central Southern Uplands will be obtained 

for a variety of stages in its build up and dissipation.

It is only by adopting an all encompassing approach and 

including both the periods of glaciation and deglaciation, 

that a full understanding of the various processes at work 

during the several thousand years that ice directly influenced 
the thesis area, resulting in the fossilised glacial landscape 

of Upper Nithsdale and Annandaie at the present day, can be 

obtained.

1.2/...



BACKGROUND TO THE STUDY

MIn keeping with the rest of South Scotland, Dumfriesshire 

is practically virgin territory for the glacial georaorphologis 

(Stone, 19571 P53)- Since this date, a number of detailed 

studies concerning evidence of former glaciation have been 

carried out in the Sbuthern Uplands and their associated 

lowlands.

Price (1961) studied an area in Peebleshire, Clapperton (1967) 
an area in Roxburgh and Selkirk, while McLellan (1967) and 
Holden (1977) worked in Central Lanarkshire and Central 

Ayrshire respectively. Despite this insurgence of modern 

geomorphological ideas into Southern Scotland in the last 

two decades, much of Dumfriesshire has remained apparently 

shunned by the glacial geomorphologist. Indeed, recent 

research work has virtually encircled Upper Nithsdale and 

Annandaie, with the result that implications regarding 

directions of ice movement and ice activity generally 

within this area have been made from a variety of sources, 

but until now little detailed study of the glacial land

forms and deposits to be found here has been carried out. 

Consequently, this research was undertaken in an attempt 

to bring together previous research and hopefully provide 

a unified theory for the build up, outward movement and 

wastage of the last ice sheet to cover a large part of 

Southern Scotland.

The thesis area was systematically mapped in detail and the 

results analysed in the light of the most recent glacial 
geomorphological/...
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geomorphological concepts and techniques, obtained by 

research in areas both presently undergoing and having 

formerly undergone modification by glacial ice. Developments 

in both areas have shown the benefits that can be gained by 

the use of modern techniques such as aerial and satellite 

photography, drift analyses, radiometric dating, pollen 

analyses, etc., when examining the sequence of events that 

characterise the glaciation and deglaciation of any particular 

region. (APPENDIX I, II, III).

1.3 UPPER NITHSDALE AND ANNANDALE - LOCATION AND EXTENT

Scotland falls very simply into a threefold division on the

basis of morphological and geological considerations; the

Highlands, the Central Lowlands and the Southern Uplands.

On both sides, the Central Lowlands are bounded by a

series of discontinuous faults which run diagonally from

south-west to north-east across the country and separate this

region from the uplands to the north and south. These faults

are known collectively as the Highland Boundary fault in the

north and Southern Uplands fault in the south. As the thesis

area lies almost completely to the south of this latter

demarcation on the landscape, it is contained within the hilly
2land of Southern Scotland, and indeed occupies 725 km of the 

Central Southern Uplands in the vicinity of the Lowther Hills 
(Fig. 1.1).

The boundary lines delimiting the thesis area are complex. 

(Fig. 1.2). The eastern boundary is represented by the 

3orders/Dumfries and Galloway Regional boundary, until 
i t s/...



its junction with the north-south grid line NT 20, at 

grid reference NT 200 083, whereafter the regional boundary 
is replaced by this linear demarcation, (Fig. 1.2).

The northern boundary to the thesis area can be divided 

into three portions. The eastern portion is again represented 

by the Borders/Dumfries and Galloway Regional boundary until 

it reaches NT 0̂ +7 1̂ 0, where it is replaced by the east-west 

grid line NS/NT 1^ for 25 km, depicting the central portion 

of the northern boundary. The western portion of the 

boundary follows the course of the Crawick Water for a short 

distance, linking grid line NS l*f to NS 17, the latter 

continuing westwards to its junction with the Strathclyde/ 

Dumfries and Galloway Regional boundary. (Fig. 1.2).

Similarly, the western boundary can also be divided into 

three portions. The northern portion is represented by the 

aforementioned Strathclyde Regional boundary, the central 

portion links several local hill crests to grid reference 

NS 800 050, whereafter the north-south grid line NS 80 
depicts the southern portion of the limit. (Fig. 1.2).

The southern delimitation of the thesis area is principally 

represented by the east-west grid line NS/NT 00. However, 

along the central portion of this limit the boundary locally 

juts further south for a short distance following a course 

which links several hill crests, but returns northwards 
to the grid line along the north-west boundary to the Forest 

of Ae (Fig. 1.2). The main settlements contained within 

this area are Kirkconnel, Sanquhar, Mennock, Wanlockhead, 
Bnterkinfoot,/...



Enterkinfoot, Durisdeer, Moffat and Beattock. National 

grid lines were used to demarcate parts of the thesis area 

in order to keep the scope of the study within manageable 

proportions. However, the shortage of natural physical 

boundaries in no way detracts from the significance of 

this area in the context of the Southern Uplands as a 

whole.

The central Southern Uplands (in effect the thesis area) 

are believed by Ogilvie (1952), to represent a separate 

physical entity between the contrasting landscapes to 

the south-west and north-east. To the south-west is found 

the highly dissected, rugged topography associated with 

the harsh grandeur of the granite intrusions of Galloway.

The highest peak in Southern Scotland, Merrick (842 m.o.d.), 

is found here and several other peaks exceed 700 m.o.d.

To the north-east is the more open and smoothly rounded 

landscape of Tweedale, often regarded as characteristic 

of the Southern Uplands as a whole. In this area the 

highest hills lie near the headwaters of the Tweed and 

Annan, where Broad Law, White Coomb, Hart Fell and other 

summits all exceed 700 m.o.d. in altitude. The thesis area 

thus incorporates part of both of these very different 

landscapes and as such is distinctive within the Southern 

Uplands as a whole.

UPPtiS NITriojjHljj Atijj ûtTIAiDAioij — GuGLCGf AND

"The Southern Uplands are remarkable for an extraordinary

complexity of geological structure. But this complexity



is so uniform in its character, and so widespread in its 

distribution that it produces results on the topography 

such as might be expected only from a much simpler 

arrangement of the rocks " (AhGeikie, 1901, ? 310).

It would appear that Geikie was referring to the previously 

mentioned smooth, rounded landscape which is dominant in 

the thesis area. Two-thirds of a century later, the explanation 

for this "smooth and rounded topography" remained basically the

same. Sissons (1976) stated,"  the typical Southern

Uplands scenery of rounded hills and smooth slopes....

relate largely to the rapid lithological variations and 

often steep dip that cause individual beds to have narrow 

outcrops that have not favoured the production of large 

structurally-controlled features. Weathering of these rocks 

rarely results in the production of boulders, but instead 

produces mainly small flattish stones and lesser debris that 

contribute further to the rounded appearance " (P 8).

Clearly therefore, a detailed account of the underlying 

geology is inherent in any description of landscape in the 

thesis area.

It can be seen from figure 1.3 that the greater part of the 

area is underlain by strata of Lower Palaeozoic age. These 

Ordovician and Silurian sediments, whose complex stratigraphy 

was first studied on the basis of graptolite successions 
(Lppworth, l8?8, P2^0 - 3L6 ) are believed to consist of

alternating steeply dipping and horizontal beds which together

suggest,"....  a series of monoclines (or grossly asymmetrical

anticlines)" (Craig, 19051 P 220). in addition, the beds have 

been extensively faulted. Together, the folding and faulting, 
both/....



both of which occurred during the Caledonian orogenic period, 

imparted a strong south-west to north-east trend upon the 

structures of the thesis area.

The older Ordovician rocks outcrop mainly in the western 

part of the thesis area, in the uplands flanking Nithsdale.

These consist mainly of greywackes, grits, shales and 

siltstones of Llandeilo and Caradoc age. However, there was 

also limited contemporary volcanic activity, Bail Kill in 

the Lowther foothills to the north-east of Kirkconnel consisting 

of vent agglomerates also of Caradoc age (Fig. 1.3)• The 
Ordovician strata are succeeded stratigraphically by the 

Silurian, which underlie more than half the thesis area 

(Fig. 1.3)• Indeed, the definition of the Ordovician/Silurian 

boundary within the British Isles was moved from,M.....Llandovery 

in Wales to Dobb's Linn, near Moffat, because of the fact that 

there is no hint of unconformity here and a complete sequence 

representing all of the Upper Ordovician and Lower Silurian 

graptolite zones is exposed" (Cocks, Holland, Rickards 

and Strachan, 19711 P 10̂ -). The Silurian strata, having 

accumulated in the same type of deep-water environment as 

the Ordovician, are basically similar in character and again 

consist for the most part of greywackes, grits, black shales, 

mudstones and siltstones. The Silurian succession, like 

the Ordovician, is also divided on the basis of graptolite 

zones, rocks of Llandovery and Wenlock age dominating in the 

thesis area. Only the older series of the Silurian succession 

are present as a result of uplift and associated erosion 

of the Lower Palaeozoic rocks in Late Silurian - Early 
Devonian/...



Devonian times. These final spasms of the Caledonian 

orogeny resulted in the initiation of two major north-east 

to south-west trending fault-lines in the thesis area, in 

addition to reinforcing the characteristic "grain" of the 

topography previously referred to.

A section of the Southern Uplands Fault, which extends from 

Dunbar to 30 km south of Girvan, is found in the extreme 

north-west of the thesis area (Fig. 1.3)- However, only 

a very small part of the area studied lies on the north

western, downthrown side of this normal fault, which may 

have been re-activated as recently as the Pleistocene 

(Lumsden and Davies, 1965). The second major tectonic 

feature initiated at this time is found further east and 

extends for 20 km down the length of Moffatdale. However, 

this fault has involved strike-slip and not normal displacement.

The uniform lithology of the Lower Palaeozoic strata generally, 

while lending a homogeneous character to the upland terrain, 

has helped little in the determination of former directions 

of ice movement by the study of distinctive erratics in the 

glacial deposits.

Both extrusive and intrusive igneous rocks of Devonian age 

are found in the thesis area, but are of limited extent 

(Fig. 1.3)• Andesites,basalts and lava conglomerate are 

found solely on the downthrown side of the Southern Uplands 

Fault, while a sill of granodiorite outcrops in the centre 

of the area along a ridge crest in the Lowther Hills,

Similar granodioritic intrusions are found outside of the 

thesis/...



thesis area at Loch Doon, Cairnsmore of Fleet, Cairnsmore 

of Carsphairn, Crifell and Spango. However, unlike the 

more extensive Lower Palaeozoic rocks, these limited Devonian 

outcrops are important as sources of distinctive erratics 

by which ice movement into and across the thesis area and 

over much of the Southern Uplands generally can be determined,

(Chariesworth, 1926a; Simpson and Richey 1936; Fyles et al, 

19̂ 9; Sissons, 1967a).

Carboniferous deposits are restricted to two outliers in 

the Nith Valley, at Sanquhar and Thornhill, (Fig. 1.3)« 

"Throughout Britain, a three-fold classification of the 

sequence of rocks which constitute the Carboniferous system, 

based mainly on lithology has been adopted. The Carboniferous 

Limestone series at the bottom is succeeded by the Millstone 

Grit Series which, in turn, passes up into the Coal Measures" 

(Greig, 1971, P 6l).

The deposits of the Nith Valley are predominantly of Upper 

Carboniferous age and several suggestions have been put 

forward to explain their occurence. Trueman (19̂ 7), suggested 

that during Coal Measure times even the Southern Uplands, 

which formed a barrier between the two main depositional 

areas (Midland Valley and Northumbrian trough) in the Lower 

Carboniferous, finally became submerged, as evidenced by the 

full Coal Measures development at Sanquhar and Thornhill. 

However, Davies (1970) believed that during Lower Carboniferous 

times access to the Nith Valley from the depositional trough 

of the Midland Valley was restricted and postulated that 

movements along the Southern Uplands Fault (George, I960), 
were/...
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were the controlling factors that influenced deposition 

in this area. Whatever the exact reason, Coal Measure deposits 

are over 600m thick in Sanquhar, but thin in the direction 

of Thornhill, where only l̂ Ora are present. The deposits in 

both areas however, take the form of cyclic developments 

of sandstones, siltstones, mudstones, coals and seatclays 

and are extensively faulted. In parts of the Upper Coal 

Measure deposits at Sanquhar, secondary reddening by oxidation 

has taken place, but at Thornhill the effects of oxidation 

were more severe, removing coals which may have been present 

in the cyclic sequence originally, as well as giving rise to 

secondary reddening of the associated strata.

In addition to sedimentary deposition,there is also limited 

evidence of igneous activity in the thesis area during the 

Carboniferous period. In particular, it is now believed 

that "Permian” basaltic lavas (Simpson and Richey, 193b), 

associated with the Sanquhar and Thornhill basins are in 

fact of Carboniferous age (Mykura, 1965)-

Towards the end of the Carboniferous and before the 

deposition of the earliest New Red Sandstone strata, there 

was a period of non-deposition, while the rocks of Southern 

Scotland were folded and faulted by the earth movements of 

the Armorican orogeny. These earth movements were responsible 

for the oxidation of the Coal Measure deposits. Another 

result of the orogenic activity is that the New Red Sandstone 

lies unconformably on deposits of Carboniferous and earlier 

age throughout its distribution in the thesis area.

The New Red Sandstone deposits are mainly Permian in age 

and/.•.
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and are found in the two main river valleys of the thesis 

area, outcropping along the floor and lower slope, throughout 

almost the entire length of Annandale, but only in the 

Thornhill basin in Nithsdale. (Fig. 1.3) • The rocks sire all 

continental red beds and occur either as sandstones or 

breccias. The sandstones are predominantly aeolian in 

origin, while the breccias consist of greywacke and other 

associated Lower Palaeozoic rocks eroded from surrounding 

uplands.

The New Red Sandstone outliers in Nithsdale and Annandale 

occupy structural basins aligned in a north-south direction. 

Concerning the origin of these ’’basins", it was suggested 

by Bott and Masson-Smith (i960) after carrying out gravity 
surveys of the area, that the deposits were neither the remnants 

of New Red Sandstone age valleys draining into the Carlisle 

Basin, as postulated by White (19^9)1 nor the isolated 
"... relics of a large massof sandstones and breccias which 

at one time covered a great portion of the South of Scotland " 

(Harkness, 1856, P 265). In contrast, they postulated 
that the New Red Sandstone outcrops represent the deposits 

of "... contemporaneously sinking basins" (Bott and 

Masson-Smith, I960, P32b),and suggested further, that downwarp 

may have taken place locally as a direct consequence of the 

uplift of neighbouring regions of relatively negative gravity 

anomalies towards isostatic equilibrium.

No sedimentary rocks representative of the time between the 

Triassic and Pleistocene periods are found in the thesis area, 

or/...



or indeed anywhere in Southern Scotland. However, Greig 

(1971) believed that,".... early Jurassic sediments were 

deposited in the region, at least as extensively as the 

Permian and Triassic rocks which now remain and that in 

the Upper Cretaceous the chalk was laid down over most of 

the region" (P 96). Although such a possibility cannot be 
completely dismissed, in the light of recent research work 

in the North Sea (Zeigler (197*0 j Halstead (1977 pers.comm.)), 

it is now generally believed that a chalk cover was not 

present over Southern Scotland in Cretaceous times.

The only rocks of the Triassic-Pleistocene interval now present 

are basic Tertiary dykes which cross the thesis area in a 

north-west to south-east direction (Fig. 1.3)* The 

majority of these dykes are fairly narrow and generally 

less than one kilometre in length, but one form, the 

Eskdalemuir dyke which m s  south of Moffat, is over 55m 

in width and continuous throughout the thesis area.

Strong geological control over relief conditions in Upper 

Nithsdale and Annandale is therefore readily apparent. The 

comparatively resistant Lower Palaeozoic strata are responsible 

for the dominantly upland character of the thesis area; 

both the Tweedsmuir and Lowther Hills contain extensive 

areas of terrain lying above 550 m.o.d. and are 
characterised by relative relief values which generally 

exceed 170 m.o.d.. Similarly, it is only in the vicinity of 

the two main valleys, where the younger and generally less 

resistant strata outcrop, that there is noticeable 

diversification/...



diversification from the repetitive rolling upland topography.

It was suggested by several authors that the uplands of 

the thesis area and the South of Scotland in general, have 

been incised by one or more erosive processes to produce 

distinctive planation surfaces at certain altitudes. 

Hollingworth (1938), working in south-west Scotland 

suggested the presence of surfaces at 790-820, 325,
220-245, 170 and 120 m.o.â  George (1955), in a study of 

the west-central Southern Uplands identified horizontal 

planation surfaces at 8l0, 700, 510, 325 and 180 m.o.d.
In the same area, Jardine (1959, 1966), identified 

surfaces at 790-850, 58O-6IO, 520-550, 410-425, 300-335, 
230-260, 180-215, 135-150 and 60 m.o.d. Halstead (1954), 

in his hypsographic survey of the Southern Uplands as 

a whole, recognised surfaces at 300, 700 and 800 m.o.d.

Two main theories were invoked to explain the formation 

of these planation surfaces or "tablelands". The first 

favoured a marine origin and the exponents of this theory 

generally gave a limited vertical range or no range at all 

for specific surfaces. Hollingworth (1938), George (1955) 

and Jardine (1959, 1966),were all adherents to this belief, 

formation of the horizontal marine surfaces occurring when 

relative stillstands interrupted a period of emergence. 

However, only surfaces at 800 m.o.d., which represent the 

altitude of the summits in the area, and at 300 m.o.d., 
were recognised by all three authors.

The second theory suggested a subaerial origin for the 

planation/...



planation surfaces and assigned a greater altitudinal range 

to individual surfaces. This, in many respects, was a mere 

realistic view when the variability of geological structure 

and rock resistance to erosion is taken into consideration. 

However, there was much disagreement as to the exact method 

of subaerial denudation, although one of the strongest 

advocates of the theory, Linton (1951, 1959 ),postulated 

formation by slope retreat under sub-tropical climatic 

conditions.

Sissons (1960c),attempted to link both the marine and 

subaerial hypotheses,"The formation of an extensive 

subaerial planation surface implies the contemporaneous 

development of a marine planation surface in suitable 

locations. With subsequent uplift, the valley slopes and 

marine cliffs bounding such features may be envisaged 

as continuing to retreat, while a new surface of subaerial 

and marine origin is developed at a lower level" (P 25)*

Halstead (1974 pers. comm.), also accepted the possibility 

that the planation surfaces may have been created by combined 

subaerial and marine erosion, but in more specific terms 

believed that altipianation was, and still is, a major 

factor influencing formation. Halstead also postulated 

differential isostatic readjustment as an explanation for 

the tilting of benches and the occurrence at varying altitudes 

of surfaces formed contemporaneously in Southern Scotland.

Although in theory, the identification of planation surfaces 

in the thesis area should be made easier by the generally 

uniform/..•



uniform litnology of the underlying bedrock, even here their 

recognition over an extended area is far from simple. In 

this respect, Upper Nithsdale and Annandale may suoport 

tne differential affects of isostatic readjustment within 

a small area, as suggested above by Halstead (197*0. One 

of the few facts concerning the surfaces that can be stated 

with any certainty is their age; they were produced after 

the intrusion of the Tertiary dykes, 50-55 million years ago. 

Consequently, the author is forced to arrive at a similar 

conclusion to that of Sissons (1976),"... while there is 

no doubt that planation surfaces exist in many parts of 

Scotland, it is far from established how individual 

remnants relate to each other". (P 25)* Therefore, the 

importance of planation surfaces in the relief of the 

thesis area cannot be accurately assessed, but it can be 

assumed that they played a significant role in the evolution 

of drainage networks, both fluvial and glacial.

UPPER NITHSDALE AND ANNANDALE - EVOLUTION OF PRESENT DRAINAGE SYSTEM 

The origin of the fluvial drainage system of Southern Scotland 

has given rise to almost as much speculation and controversy 

as the formation of the planation surfaces. Early writers,

A.Geikie (1865)1 Mackinder (1902), Peach and Horne (1910 and 
1950) and Mort (1918), put forward the concept of south-east 

flowing streams initially dominating the Scottish landscape.

Indeed, Mort (1913) suggested that the present River Nith 

was all that remained of a larger river which rose in the 

Western Highlands and flowed across the Central Lowlands to 

its destination in the Solway Firth. However, such a 

situation/...



situation seems highly improbable.

A second theory, postulating initial eastward flowing 

drainage, was suggested by Ramsay (1878), Cadell (1886) 
and Bremner (l9*+2). However, Linton (1951) is probably the 

best-known contributor to this group. Linton developed 

Bremner*s ideas and invoked the superimpo'sition of the 

present drainage of most of Scotland from a Cretaceous 

chalk cover tilted eastwards. As previously mentioned, 

however, recent research in the North Sea has rendered

Linton's theory unlikely also.

A third interpretation was introduced by Hollingworth (1938) 

and applied by George (19551 1965» 1966). It is known 

that Scotland suffered severe erosion during early Tertiary 

times, (e.g. George 1955* 19651 1966; Sissons 1967a, 1976; 

Halstead 1977» pers. comm.) and George suggested that with a 

subsequent rise in sea-level the whole country was at one 

time submerged. During later pulsed uplift marine surfaces 

were produced on which the present drainage system was 

initiated. However, there is no direct evidence for the 

submergence of Scotland at this time (Sissons 19o7a, 1976).

Sissons (1976),by combining the above hypotheses put forward 
a fourth theory in which he too, like Linton, invoked the 

origination of the drainage network on a Mesozoic, (perhaps 

Cretaceous), surface. He further suggested that severe 

erosion during early Tertiary times and uplift and volcanic 

activity associated with the separation of the Greenland and

Scotland tectonic plates in the later Tertiary, accentuated

the major watershed of the country, (thought to have been 

approximately/...



approximately nortn-south trending, as at the present day).

These processes were also believed to be responsible for 

the initiation of minor watersheds in Southern Scotland.

Marine erosion associated with the late tertiary uplift 

was an additional factor to be considered and Sissons 

stated.with each period of uplift streams would be 

extended seawards over the emerging marine benches"

(Sissons, 1976, P 36)• In effect, 3 issons identified the 
major geological events that have taken place in the last 

225 million years and developed his theory around these.

Lastly, Halstead (1977 pers. comm.) postulated that the main 

drainage network originated in the early Tertiary and that 

since this time many of the main rivers have been able to 

keep pace with isostatic uplift, thus imparting an antecedent 

character'on the drainage. By this explanation, Halstead can 

account for the epigenetic character of many of the rivers in 

Southern Scotland.

As with the examination of the closely associated planation 

surfaces in the previous section, it is impossible to state 

conclusively which, if any of the theories on drainage initiation 

is completely accurate. Such information can only be utilised 

to supply a suitable background from which a more detailed 
study of the present drainage network in the thesis area can 

be extended.

As the title given to the thesis implies, the rivers Nith 

and Annan and their associated tributaries, all 01 which tend 
to flow in a southerly direction, are dominant within the 

area studied (Fig. l.*f). However, rivers following northerly 

courses/•..



courses, mainry representative of tributaries of the 

Upper Clyde are also of major significance (Fig. 1.*+).
This fundamental distinction between northward flowing 

and southward flowing drainage is taken to be the most 

suitable method of subdividing the river network within 

the thesis area. Lebon (1935)* also separated the 

rivers draining north and south from the principal 

watershed of the Lowther Hills. However, he stressed 

the fact that this watershed is "markedly asymmetrical" 

and as such "... must be unstable.... The northern flowing 

Upper Clyde is a perfect example of stream maturity, while 

the southward flowing streams are vigorously youthful"

(Lebon, 1935, P 7).

Looking first at the "more active" southward flowing drainage 

and the Nith in particular, the river which dominates the 

west-central Southern Uplands rises outside the thesis area 

on the western slopes of Cairnsmore of Carsphairn, entering 

the area along its north-west margin, mid-way between New 

Cumnock and Kirkconnel. At this point, the Nith flows in 

an east to south-east direction, adopting its more southerly 

course further downstream in the vicinity of Enterkinfoot.

It is generally believed (e.g. George, 1956; I.dnton, 1933) 

that the Nith is a composite river, "... embodying both 

consequent and subsequent elements in its present course"

(Lintnn,1933, P 171)* However, the exact delimitation of 

such stretches along the course of the river is extremely 

ai^ic ur t.
Borehole evidence (Lumsden and Davies, 19̂ 5), indicates that 

the Nith possesses a buried channel which stretches across 

the/...



the Southern Uplands £ault from four miles west of New 

oumnock, eastwards to Sanquhar. Lumsden and Davies 

believe that the buried channel represents a pre-glacial 

course of the Nith itself, whose present subterranean 

form relates to movement along the Southern Uplands Fault 

and subsequent infilling by drift during the Quaternary.

The River Annan similarly dominates the east-central 

Southern Uplands but unlike the Nith, has its source 

within the thesis area. The Annan rises in the vicinity 

of the Devil’s Beef Tub and follows a southward course 

throughout the thesis area. It is joined just south of 

Moffat by its two major tributaries, the Evan Water from 

the north-west and the Moffat Water, a fault-line 

subsequent, from the north-east.

The Annan and Nith Valleys have a great deal in common, in 

particular the fact that both are extensively floored by 

younger and less resistant deposits of Carboniferous 

and New Red Sandstone age (Fig. 1.3)» In each dale, the 

excavation of the younger sediments proved much more facile 

than valley cutting in the surrounding Lower Palaeozoic 

strata. Consequently, this favoured location enabled rapid 

headward regression of the youthful Nith and Annan in 

comparison to the more mature and northward flowing Clyde 

and Tweed. The watershed in this part of the Southern 

Uplands is thus being pushed northward, with the inevitable 

inference, that drainage basins on the southern side (Nith 

and Annan) must be growing, while those on the northern side 

must be contracting. In such circumstances, as suggested 

previously/...



previously, piracy is unavoidaole and the evolution of the 

drainage pattern within the thesis area is marked by 

repeated encroachment on the Clyde,and to a lesser extent 

Tweed, river systems. Indeed, "... some 5Cml2 (128 km2) 
of the Clyde and Tweed basins" (Lebon, 1935, P 13),are 

believed to have been annexed by the northward offensive 

of the Nith and Annan. Several spectacular cases of piracy 

have resulted from this but these will be examined in later 

chapters.

Other significant rivers which trend in a broad southerly 

direction within the thesis area include the Wamphray and 

Garpol, tributaries to the Annan,and Carron, Mennock and 

Crawick, tributaries to the Nith (Fig. 1.9-).

The Upper Clyde and its tributaries are the principal 

northward flowing streams,and these are found wholly to the 

north of the Lowther Hills watershed. Within the thesis 

area the Clyde itself is of little significance and it is 

the upper part of its tributaries, the Daer and Potrail, 

which exert the greatest influence on the landscape.

However, as mentioned, such streams are substantially 

modified in their pattern by encroachments and beheading 

from the south-east and south-west, such that the significance 

of the Clyde Basin as a whole in the Central Southern Uplands 

is continually being reduced. Other important streams 

which follow a generally northward course are the Buchan and 

Kello,tributaries to the Nith, which anomalously lie to the 

south of the main watershed, but these will also be examined 

in greater detail in later chapters.

In/...



In conclusion, it can be seen that the Nith and Annan 

drainage basins are growing at the expense of the Clyde (and 

to a lesser extent the Tweed). Although the Clyde is by far 

the longest of the three rivers in Central and Southern 

Scotland, it has a much gentler gradient than the southward 

draining Nith, Annan and their tributaries. When taken into 

consideration with the relative susceptibility to erosion 

of the Upper Palaeozoic rocks of Nithsdale and Annandale, 

these factors together help explain the development of the 

present drainage network in the Central Southern Uplands.

1.6 ORGANISATION OF THE THESIS

The thesis consists of six chapters. The first chapter details 

the nature of the study and introduces the area in terms 

of geology, relief and drainage. The second chapter summarises 

the published literature on the glaciation of Southern 

Scotland as a whole, but with particular reference to Upper 

Nithsdale and Annandale,and briefly reviews the development 

of Quaternary studies to the present day. Chapters 3,  ̂

and 5 describe and analyse the affects of glaciation on the 
landscape of Upper Nithsdale and Annandale. For the sake 

of convenience, the thesis area has been arbitrarily 

divided into three sub-areas (Fig. 1.5), although an 

attempt was made to relate each of these to one of the 

main drainage systems, i.e. the Annan, Clyde and Nith.

Area I is discussed in chapter 3, Area II in chapter 

and Area III in chapter 5- In each of these chapters, the 

location, extent, relief, drainage and geological conditions 

of the area concerned are outlined prior to a detailed 

description and analysis of the features and deposits 

related/...



related to glaciation. In respect of the highly varied 

affects of glaciation, the account for each area is sub

divided under the headings of glacial erosion, glacial 

deposition, fluvioglacial erosion and fluvioglacial deposition. 

Under each heading the form and distribution of the characteristic 

landforms and/or deposits is detailed,often depicted at an enlarged 

scale, and accompanied by the results of particle-size, 

till fabric and erratic count’ analyses where appropriate.

At the end of each of these chapters this diversified 

information is gathered together and the main ice sources, 

directions of movement and nature of ice wastage for the sub- 

area ascertained. A tentative glacial chronology is also 

suggested in the conclusions for chapters 3,  ̂and 5- 
Chapter 6 is the overall conclusion. In this chapter the 

inter-relationship of points arising in the foregoing 

conclusions for each of the three areas are assessed and 

an overall model for the glaciation and deglaciation of 

Upper Nithsdale and Annandale put forward. A mere detailed 

glacial chronology on the basis of pollen analyses and 

radiometric dates from this and adjacent areas is also 

suggested. Finally, the findings of research in surrounding 

areas are re-examined in conjunction with the conclusions 

for Upper Nithsdale and Annandale,and the main sources and 

general pattern of ice movement over a large part of southern 

and west-central Scotland during the last major glaciation 

depicted.



CHAPTER 2

LITERATURE REVIEW

Any appraisal of the literature concerning the glacial 

geomorphology 01 a selected part of Scotland must examine, 
at least superficially, the origins of the glacial theory 

itself and its progression to the present day. Consequently, 

in this section of the thesis it is intended to briefly 

summarise the evolution of the glacial theory and examine the 

way in which developments in Quaternary studies generally have 

influenced the literature written on the thesis area.

Today, it is accepted that the Scottish landscape owes much of 

its grandeur and mantle of superficial deposits to the actions 

of glacial ice. However, at the beginning of the nineteenth 

century, few geologists anywhere in Europe regarded glaciers, 

or land ice in general, as anything more than a phenomenon 

peculiar to high altitudes and high latitudes, with no major 

role in geological processes. At this time, ".... only the 

unorthodox thought of trying to explain the structure and 

history of the earth outside the framework which the Mosaic 

account provided" (North, 19*+3, P« 2). Conseauently, the 

Reliquiae Diluvanae (Great Submergence, Buckland 1823) or 

Noachian Flood was seen as being responsible for the origin 

of the landforms and superficial deposits in Scotland. There 
was an awareness by the l820's of the concept of glacier 
movement, the ability of glaciers to transport debris and 

the former greater extent of Alpine glaciers. (Scheuchzer 1723; 

Martel 17*+*+; Hutton 1795; Playfair lS02, 1822; Eskmark 1827) 

However, such ideas received little credence from the more 

emminent scientists of the period and consequently did not gain 
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widespread recognition and acceptability. A more pressing problem 

was the explanation of anomalies in the nature of the superficial 

deposits within the framework of the existing methodology, in 

particular their generally unstratified nature, the angularity 

of clasts, and the widespread occurrence among the clasts of rock 

types exotic to a specific area. Visits to areas of contemporary 

glaciation by Lyell (1833) led to the introduction of floating 
ice into the theory of submergence and Lyell used "iceberg 

deposition" to account for the depositional irregularities 

described above. It is argued that this single modification 

prevented the rapid acceptance of the glacial theory and "... 

delayed for decades its achieving dominance" (Hansen, 1970, P 137).

In l8*+0, Louis Agassiz became the first "recognised scientist" to 
support the glacial theory, when he presented "his" paper on 

glaciation to the Societe Helvetique des Sciences Naturelles at 

Neuchatel. This theory was basically similar to earlier statements 

invoking the former greater extent of glaciers, with the possible 

exception that Agassiz realised its application to areas such as 

Britain, where although no glaciers existed in the nineteenth 

century, their former presence was certainly implied from 

descriptions of the landscape. However, because of the prominent 

position that Agassiz held in the scientific world at that time, 

the origins of the glacial theory are often attributed to him.

Agassiz visited 3ritain in l8*+0, travelled widely and found abundant 
evidence for the former existence of glacier ice. This visii. 

generated local interest in the glacial theory and led 10 its 
acceptance by certain prominent geologists of the period, 

including/...



including Buckland, Lyell and Darwin, all formerly advocates 

of the Great Suomergence. Nevertheless, overall acceptance was 

not forthcoming, mainly as a result of the influential Murchison, 

who supported the floating-ice hypothesis. The glacial theory 

was not disproved, but argued out of importance. Murchison 

persuaded Buckland to back down from his glacial stance in l8*+l 
and ".... by his eloquence and influence delimited the general 

outlook of British geology for at least two decades" (Hansen, 

1970, P. I*t0).

Although the acceptability of the glacial theory waned over the 

period l8*+0 - i860, research by individual workers continued and 
for the first time, some of this research had direct relevance 

to the thesis area. Chambers (l353) stated, "... I have found a 

large lateral moraine near Maxwellton House in Kirkcudbrightshire 

and seen fine smoothings with striations on the surface of 

Corncockle Muir in Dumfriesshire" (P. 2*f*+). In this article, the 

author also speculated upon a general glaciation of Scotland, 

followed by a more restricted glaciation which he termed a "...sub 

aerial valley glaciation" (P. 2Mf). In a later paper, Chambers 

(1855) elaborated upon moraines in general and stated that they 
occur, ".... in the more elevated class of mountains, being 

usually placed in front of these (glaciers) as a fender is placed 

before a fire. On lately visiting for the first time the well- 

known Loch Skene in Dumfriesshire, I found it to be formed ’ey a 

moraine of this order ....In a 50uth.-l0cK.ing recess, backea oy 
a lofty wall of bare rock, and on a platform which cannot be 

less than 1,200 feet (366 m.o.d.) above sea level xies tne 
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cerebrated lake, nemmed m  towards the south by a bewildering 

number of hillocks and ridges of grey coarse drift, the manifest 

spoils of the ice which once filled the recess. In front of a 

similar sinus to tne westward, we have the same lines and humns 

of detritus, out the water has there made a passage for itself 

and escaped" (PP 99 ~ 1005. From these statements, Chambers 

implies that the Loch Skene moraines are common knowledge among 

glacial theorists of the time, but no mention of these well- 

preserved features can be found prior to this date. However, 

Chambers' paper generated wider interest, and after visiting the 

site with A.Geikie in the early l360's, Young (l86*+) wrote a 
classic paper on the moraines of the Loch Skene area. In his 

paper, Young remarked upon the extent of country lying above 

762 m.o.d. in this vicinity and stated, "This wide plateau 

and these long slopes would, under other climatical conditions, 

form an extensive snow-field whence glaciers might descend to 

the valleys beneath" (P. *+53)* Young postulated the former 

directions of movement of individual glaciers and classified 

these as,"... social or solitary..." (P. *+53), depending on 

whether, in his opinion, they became confluent downslope. He 

also differentiated between lateral and frontal moraines and 

identified more than twelve of the latter in the Loch Skene area. 

In conclusion, Young suggested that the 1,000 feet (305 m.o.d.) 
contour marked the lower limit of glaciation for the district and 

stated.".... nor is it probable that the glaciers ever extended 

much lower beyond the moraines ... which illustrate the last 

stages of decay" (P. *+62). The detail oi foung’s work is 

admirable (Fig. 2.1) and it will be later seen that many of his 
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lindings still withstand rigorous scrutiny today.

Young’s publication on Loch Skene represented the first 

paper specifically written on the thesis area after the revival 

of the glacial theory in the early iScO’s, the revival itself 

brought about mainly as a result of studies by Jamieson (lSo2) 
and Ramsay (1862). 3oth men were firmly convinced that Scotland 

had formerly been completely covered by ice. More importantly 

however, their work convinced Archibald Geikie, the first of a 

family combination that was to have a greater influence on the 

development of the glacial theory in 3ritain than any other two 

men in the evolution of the subject, of the significance of a 

former ice cover in Scotland. With his book "The Scenery of 

Scotland", first published in 1865, A.Geikie effectively 

disposed of the "Deluge" and "Ice-berg" theories by detailed 

analysis of striae and ice moulding, the results of which clearly 

showed that terrestial and not floating ice could have been the 

sole agent of formation. "After long years of doubt and discussion, 

geologists are at length led to believe that during a comparatively 

recent geological period, the whole of the northern half of Great 

Britain was cased in ice, as North Greenland is today" (A Geikie, 

1865, P. 78).

A.Geikie was also a significant figure in the Geological Survey 

of Scotland and contributed a great deal to early geological 

"Memoirs" or "Explanations" in the second half of the nineteenth 

century; those of particular interest with regard to the thesis 

area being the Explanations for sheet 9, Kirkcudbright (north-east 

part) and Dumfriesshire (south-west part), 1677 sheet 15, 
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Dumfriesshire (north-west part), Lanarkshire (southern part), 

Ayrshire (south-east part), 1371. Based upon evidence derived 

from the study of striations, roches moutonees and erratics,

A.Geikie et al suggested the directions of former movement and 

origins of the last ice mass to occupy these areas. The summary 

for sheet 15 stated, "It appears that the high grounds ranging 

from the sources of the Afton north-eastwards through the Lowther 

and Leadhills to the Clyde, have served as a central axis of 

dispersion for the ice of the glacial period. This is shown by 

the fact that the striae on the rocks diverge from this axial 

line to the low grounds on the north and south" (Geikie et al,

1871, P. 38).

For the more westerly area encompassed by sheet 9, Geikie et al 

postulated a generally eastward movement of ice from dispersion 

centres in the vicinity of Cairnsmore of Carsphairn, into the 

thesis area. However, on reaching the Nith Valley it was believed 

that the course of this eastward moving ice was,"... deflected 

towards the south" (P.37)- In the third edition of "The Scenery 

of Scotland", =,Geikie (1901) summarised the literature which had 

appeared in several disjointed Explanations of the Geological Survey, 

to speculate upon the build up, dispersion and wastage of glacier 

ice over Southern Scotland as a whole. "... It is evident that the 

Southern Uplands formed another centre of dispersion, for the 

southern part of the Scottish ice-sheet. (To speak more accurately 

there were several distinct centres of movement of the ice that 

lay on these uplands. But the southern ice-field may be regarded 

as one vast sheet that moved outwards and downwards into the lev/ 

ground on all sides)". (P. 3*+I - 3*+2). A.Geikie further stated,"... 

that/...
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that valley-glaciers continued in the "coombs" and "hopes" 

of the Southern Uplands as they did in the corries and glens 

of the Highlands, after the ice-sheet had crept back from the 

lower grounds, is admirably revealed by many a grout) of moraines" 

(P. 3̂ f - 3̂ 5). Both Loch Skene and parts of the Lowther Hills 

are cited as areas exhibiting such features. Archibald Geikie was 

therefore the first person to provide a unified theory for the 

glaciation of Scotland, drawing on information from all parts 

of the country and who, with particular reference to the thesis 

area, stressed the importance of the Southern Uplands as an 

independent source of glacier ice.

James Geikie, Archibald’s brother, fulfilled a similar role in the 

development of the glacial theory with the publication in 1873 
of his book, "The Great Ice Age". This volume not only dealt 

with Scottish landforms and deposits, but extended its boundaries 

to include the origin and stratigraphy of deposits in England, 

Ireland, Scandinavia, Switzerland and North America. J.Geikie 

reiterated the main points that his brother had made regarding 

ice action in the Southern Uplands, but in addition stressed more 

forcefully the significance of high altitude moraines in indicating 

that there was either a prolonged halt during, or subsequent re- 

introduction of small glaciers after, the general decay of 

the last ice sheet. Using Loch Skene as a typical example, he 

stated, "The mounds and concentric ridges of the Highlands ana 

Southern Uplands can only be terminal moraines and point to a

time when snow covered the higher districts c4 tne country ....
lust these g_sciers reaujLy Cc—ong uns c—os—û  per—so. of >#ul:

Sreat Ice Age, is proved by the fact that in tne Scutnern 
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1pianas <*hej nave sometimes scooped out liie moraine of earlier 
times from the bottom 01 the valley, but have left it untouchea 
at neights on the hili-slopes which the later glaciers were 

unable to reach. Yet not a few of these latest glaciers were 

of considerable importance, as one may judge from the size 

and position of the moraines. Even the most extensive however, 

were but pigmies when compared to those of earlier cold periods"
(J.Geikie, 1373, P. 269}.

Despite Scotland’s position at the forefront of major developments 

in Quaternary studies, as a result of the Geikie brothers, in 

the first 23 years of the twentieth century the most significant 
advances occurred outside the country in areas of contemporary 

glaciation, particularly Alaska. (Tarr and Martin lQOb; Tarr 

1909; Tarr and Butler 1909; ''on Engeln 1912; Tarr and Martin 

191̂ ; Muir 19i3)- Another event of particular significance 

during this period took place in England, with the publication 

in 1902 of Kendall's famous paper concerning, "A system of Glacier- 

lakes in the Cleveland hills". Kendall postulated that ice was 

watertight and could act as a dam to permit the development of 

large lakes in valleys not otherwise occupied by ice. As will 

be seen later, the general acceptance of this theory of ice- 

dammed lakes and associated overflow channels, retarded the 

development of alternative ideas in fluvioglacial studies 

until the 1950's.
The major contributor to glacial research in Southern Scotland 

over the oerioo. 1920 - 30 was J.n.Chariesworth, ms most notable 

papers both published in 1926:-
(a) Glacial Geology 01 the Southern Upwards, west 

of Annandale and Upper Clydesdale.

(b)/...



(b) The Re-advance marginal k am a-moraine of the 

south 01 Scotland and some later stages of 
retreat.

Only the first paper dealt specifically with landforms 

and deposits found in the thesis area. By extremely detailed 

fieldwork based on the identification of striae and erratic 

boulders, Charlesworth postulated upon the build up and 

outward movement of ice from the Western Southern Uplands.

He concluded, "The Southern Uplands west of Annandale and Upper 

Clydesdale were glaciated (in the main) by local ice centred 

in the hills extending from the Merrick, Corserine (in the 

Rhinr.s of Kells) ,Cairnsmore of Carsphairn and Lowther Hills" 

(Charlesworth, 1926 a , P. 23). Having established the main 

source areas, Charlesworth then turned his attention to the 

identification of retreat stages in the decay of the Southern 

Uplands ice sheet from its maximum extent. The retreat stages 

were delimited by moraines or outwash fans, "... due to the 

general absence of meltwater channels in the area" (p. 8).
On this basis, Charlesworth ascertained that with the onset of 

deglaciation, the regional ice sheet backwasted into a series 

of independent glaciers which occupied the major valleys of south

west Scotland. Further decay was then indicated by the moraines, 

formed during temporary stillstands or readvances within the 

valleys themselves; the last stage marked by corrie moraines 

(Fig. 2.2). By attempting to delimit stages in the build up and 

decay of the last ice sheet, Charlesworth was adopting an approach 

similar to that used by Young (l36̂ +) for the Loch Skene area. 

However, Young was dealing with definite morainic forms over a 

L̂imited area, whereas Charlesworth was attempting to correlate 
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stages in glacier retreat over many miles by the use of 

moraines whose origins as such were by no means certain, 
as will be shown later.

In the second paper, Charlesworth (1926 b ) postulated a 

major re-advance of Highland ice,marked by his "Lammermuir- 

Stranraer Moraine" which stretched along the northern flanks 

of the Southern Uplands, but did not extend into the thesis 

area itself. This outermost "moraine" and a series of "retreat 

moraines" which Charlesworth also identified, "... present the 

appearance of a rolling belt of country in which countless hillocks 

and hollows, ridges and troughs succeed each other rapidly and 

tumultuously. They exhibit the bold, billowy relief of the swell 

and sag topography, with rapidly shifting curves and choppy 

surface, or a more subdued relief and gently undulating scenery" 

(PP. 25 - 26).

Also at this time, Gregory (1926, 1927) after extensive fieldwork 

similar to that of Charlesworth, published his results, again in 

two articles

(a) The Scottish Kanes and their evidence on the 

glaciation of Scotland (1926).

(b) The moraines, boulder clay and glacial sequence of 

south-west Scotland (1927)•

The first paper was a county by county Scottish study of the 

distribution of ridges of sand and gravel. Reference m  this 

was made to several such features in the central Southern 

Uplands but none of these lay within the thesis ares itseli.

on the main slopes of the Lowther -il-̂ s at _evels of over 1,020 i- 
(505 m.o.d.) and... in the hills around Loch Skene, on the Keggat 
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Water down to 1,000 feet (305 ra.o.d.) ana on the Moffat Water 

down oo feet C152 m.o.d.)" (1927V F» 36). The studies

carried ou* oy Gregory and Charreswortn give a good indication 

of the scat? 01 knowledge regarding the nature of ice build
up and decay, and the emphasis on specific glacial landform 

identification prevalent in the 1920's.

In 1927, Eckford and Manson again made reference to "Glacial 

Phenomena around Loch Skene" (PP. 508 - 310), but this paper 
merely repeated what had previously been observed and published 

by Chambers (1355) and Young (186*0.

In the 1930's and *tO's only the officers of the Geological 

Survey of Scotland were actively involved in adding to the 

literature on the glacial geomorphology of Upper Nithsdale 

and Annandale. The Summary of Progress for 1930, postulated 

upon the directions of both ice advance and retreat across part 

of the thesis area. From a study of Spango granite and Crawfordjohn 

essexite erratics in the vicinity of Crawfordjohn, a north-east 

movement of ice across the north-west part of the thesis area was 

invoked. In addition, "... west of Kirkconnel and south of 

the river Nith... a number of overflow channels were mapped.

The channels in every case slope down towards the east and 

supply further evidence of a westerly retreat of ice"

(Simpson, Pichey et ai, 1933, P. 2b).
Of greater significance however, was the revision of the geology 

in the Upper Nith Valley, which led to the publication of "The 

Geology of the Sanquhar Coalfield" (Simpson and P.ichey, 1338).

The glacial landforms were mapped (Fig. 2.3) and che glacial 

history of the area summarised on the basis 01 xoca^ evidence:
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1. An advance of a regional ice sheet down the Nith Valley 

from west to east, which resulted in the formation of a boulder 

clay now covering and largely masking the solid rocks; 2. A 

subsequent retreat in the reverse direction during which 

extensive spreads of raorainic gravels were deposited on top 

of the boulder clay and many well-defined marginal drainage

channels were formed by the glacial meltwaters....  After

the waning of the general ice-sheet, local centres of dispersal 

remained or re-established themselves on the higher parts of the 

Southern Uplands" (Simpson and Richey, 1936, PP. 91 - 92). 

However, there is no evidence in the Nith Valley itself ".... 

that a later boulder clay of local origin overlies that 

deposited by the eastwards moving ice..." due to the fact that, 

"... the ice sheet situated to the west was still large enough 

to nourish and maintain a powerful glacier in a main river 

valley like the Nith as far as or further east than Sanquhar, 

at a time when the high ground in that neighbourhood was partly 

ice-free and sustained only a small ice-cap. From this, ice 

moved westwards from the higher ground in times of re-advance 

but was prevented from depositing material in the already ice- 

filled Nith Valley" (P. 92). In the context of this latter 

statement, Simpson and Richey made no mention of lower limits 

regarding this re-^dvance in the Upland ar̂ as.but merely 

implied that at its maximum extent the re-adva.nr0 ice was 
confluent with ice already present in the mam river valley.

A postulated date for this secondary glacial phase was aj.su omitted 

although it may have been correlated with Charj.esworth' s (_9<m b ) 
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ljammermuir - otranraer Re-advance. Whatever the date however, 

the re-advance suggested by Simpson, and Richey was much more 

extensive than those previously suggested on the basis of 

high altitude moraines by J.Geikie (1873), Young (l36V, 
and Gregory (192?).

The Memoir for the Sanquhar Coalfield indicated the progress 

that the Geological Survey had made in the seventy years 

since their first publications had appeared. No longer were 

points of glacial interest divided into separate categories such 

as erratics, striae etc, but the varied landforms and deposits 

were brought together in an attempt to gain a more accurate 

overall conception of the advance and retreat of the last 

ice-sheet to affect the area. It is also significant that in 

this Memoir, there was a tendency towards greater emphasis on 

glacial drainage channels.

Throughout the period 19^0 - 19̂ 0, the importance of meltwater 

in the overall glacial process became more apparent, mainly as 

a result of fluvioglacial studies in areas of contemporary 

glaciation. Scandinavian workers made the biggest impact in 

such studies, with Mannerfelt (l9*+5» 19̂ 9) leading the field. 

Accompanying the increasing awareness of the importance of 

fluvioglacial activity, there was increasing acceptance of 

glacial retreat by downwastage, widespread stagnation and decay 

in situ, as opposed to backwastage. This latter idea was first 

developed by Flint (1929) and later expanded upon by the 

Scandinavians (Mannerfelt 19^5i 19a9l Hoppe 1950; Gillberg 195o; 

Holdar 1957; Gjessing i960). "Hollingworth (1952) was the first 

British worker to apply the conclusions of tne Scandinavian workers 
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in Britain, but it was Sissons (1933 9 , 1938 b , 1933 c ,

19b0 a , i960 b , I96I a , 19ol b , 1961 c ) who really 

foxxowed vine Scandinavians methodology and apulied their 

concepts of downwastage and subglacial and englacial 

drainage with great success" (Price, 1973, P. 10).

Sissons (1938 0 , i960 b , 1961 a utilised the new information

on fluvioglacial erosion initially to disprove Kendall's (1902) 
statements on the supposed common occurrence of ice-dammed 

lakes during deglaciation. He recommended that evidence other 

than the existence of "overflow channels" had to be sought 

before the former presence of ice-dammed lakes could be invoked 

and that most of Kendall's "overflow channels" were in fact 

meltwater channels produced by supraglacial, englacial or 

subglacial streams during downwastage. By detailed analysis 

of meltwater channel patterns and fluvioglacial deposits,

Sissons also ascertained the minimum altitude of the former ice 

surface, the probable slope of this surface and the mode of 

ice dissipation in various parts of southern Scotland (1938 a , 

1961 b 1961 c ).
The new concept of downwastage and ice stagnation and the 

increased significance of fluvioglacial landforms and deposits, 

meant a re-appraisal of existing descriptions of glacial and 

fluvioglacial features in Upper Kithsdaie and Annandale. Stone 

(1957, 1939) applied these concepts to part of Kid-Kithsdale, 

just south of the thesis area (Pig. 2.b)„ As a result, Stone 
cuestioned several of the conclusions that Cnariesv.ortn (-nc a ) 

arrived at concerning glacial retreat m  tne hitn vâ xey.

"Although J-.K.Charlesworth states that ice-margmax enamels are 
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not widely round m  hithsuale, tney are in fact well-developed 

.eauures in the area examined", and ".... detailed mapping 

of the kame and kettle topography makes it readily apparent 

that there are no cj.ear.Ly defined crescentic trends 

as described by J..K.Charlesworth" (Stone 1939 PP. 169 - l6b).
In contrast to the findings of Charlesworth, (1926 a ), Stone 

concluded,"The picture envisaged of downwastage in Mithsdale 

is therefore one of a jerky, yet fairly continuous recession....

On downwasting down to the height of 130 - 200 feet (96-61 m.o.d.) 

the dwindling glacier seems to have been no longer active but to 

have become shattered by great fissures and crevasses into blocks 

of "dead" ice which wasted away in situ" (Stone, 1957, P. 69). 

Sissons also questioned some of Charlesworth's conclusions, 

in particular the existence of his Lamraermuir - Stranraer 

moraine (Sissons 19bl c ). Sissons stated that the central 

and eastern parts of this moraine are composed almost

everywhere of fluvioglacial deposits found in association with 

dead ice" (1961 c , P. 391). However, having concluded 

that the Lammermuir - Stranraer morainic belt was not 

representative of a major re-advance of ice Sissons himself 

(1963 a , 1969) propounded a re-advance based upon an original 

hypothesis by Simpson (1933), the Perth Re-advance. The evidence 

for this was based mainly on morphology and stratigraphy in 
scattered localities. In the context of the tnesis area, at 

the maximum of the supposed Perth Re-advance ice from the 

Southern Uplands completely."... occupied tne region south of 

a. line from Xaybole to hew Cumnock" .̂Sissons c. qi j , ig. •-•ji

In 1967, Sissons brought together the wealth ci mi ormat ion tnat 

'had/...



nad accumulated on quaternary studies in Scotland since the 

mid-nineteenth century, with the publication of his book,

"The Evolution of Scotland's Scenery". In this, Sissons 

postulated two other major re-advances postdating the 

maximum of the last glaciation, in addition to the Perth 

Readvance; an older Aberdeen-Lammermuir Readvance, and the 

most recent Loch nomond Readvance (Fig. 2.5)• Both re—advances 

have since been disproved, the Aberdeen-Lammermuir by Glapperton 

and Sugden (1972) and the Perth by Paterson (197*0.

Consequently, it is now generally agreed that conclusive 

evidence exists for only one major re-advance,the Loch Lomond 
Re-advance.

Detailed regional studies in areas adjacent to Upper Nithsdale 

and Annandale were carried out by Price (i960), McLellan (196?) 
and Holden (1977)- Lhe research by Price and Holden is of 

particular interest in that the areas studied, Peeblesshire 

and Central Ayrshire respectively, immediately adjoin the 

north-east and north-west boundaries of the thesis area.

The principal conclusions arrived at by Price (i960) were 

as follows :-
1. At the glacial maximum, Peeblesshire was completely 

overriden by ice originating in the Southern 

Uplands.
2. One of the centres of dispersal of this ice-sheet 

lay to the south-west or Peeblesshire, there being

a generally northward movement of ice across she area 

stuuied.
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3» During downwastage, hills, ridges and s'du^s emerged

as nunataks and ice remained longest in the valleys.
The meltwater drainage system that became

estaouished on and in the ice-sheet ignored 

the underlying relief. Parts of this drainage 

system were superimposed onto the underlying 
relief.

k. After the final wastage of the ice sheet there was 

a local re-advance in the Tweedsmuir Hills. A 

series of end moraines indicate that these 

valley glaciers descended to about 1,100 feet 
(335 m.o.d.).

Holden (1977) ,in his summary similarly emphasised several points of 

particular reference to Upper Nithsdale and Annandale :-

1. Central Ayrshire was crossed by two ice masses, from 

the West Highlands and Southern Uplands, which merged 

over the area.

2. Southern Uplands ice from the high ground at the 

head of the Afton Valley and Loch Doon occupied the 

southern part of Central Ayrshire. In the east, the 

Southern Uplands ice was deflected by Highland

ice to flow in a generally east to north-east 

direction into Dumfriesshire. Part of this ice 

stream also moved east to south-east down the 

Uith Valley.

3. A local r^-advonce of ice m  the upwards oi southern 

Central Ayrshire was suggested by the presence oi 

moraines similar to those detailed by Price (i960) 

in/...



in the Tweedsmuir Hills. By their altitude 

and situation, Holden attributed the formation 

oi these moraines to the Loch Lomond Re-advance.

Tne Nith Valley v;as a major routeway for eastward 

trending meitwater throughout the period of 
deglaciation.

McLellan (196?)1 suggested that Central Lanarkshire, like Central 
Ayrshire (nolden 1977) »was also affected by two confluent ice 

masses, one iron tne southern Uplands, which moved from a 

generally west to south-west direction and the other of Highland 

origin, which moved from a west to north-west direction.

An abridged but updated version of "The Evolution of Scotland’s 

Scenery" was produced by Sissons in 1976, entitled 
"The Geomorphology of the British Isles - Scotland".

The publication is heavily slanted towards recent research in 

glacial geomorphology but generally in the national context, 

with only passing reference made to the thesis area.

The only other recent publications of interest to Quaternary 

studies in the thesis area have centred upon the assessment of 

sand and gravel resources in southern Scotland. McLellan (1967, 
1969) initiated this research, it was continued by Goodlet (1979) 

and most recently by the Institute of Geological Sciences, with 

the publication of "Sands and Gravels of the Dumfries and 

Galloway Region of Scotland" (Cameron 1977)• Such literature 

on sand and gravel resources could have proved beneiicial to 

Quaternary research, 'with the increasing emphasis piaceo on 

fluvioglacial processes since 19it$« uowever, it nas genera^y 

been the case that, with tne exception 01 *ic.ue]— an'3 worx 
(I967, 1969), the sana and gravel reports for southern Scotland 

do/...



41

do nou represent a re-appraisax of the field evidence in the 

light of recent research, out merely a re-appraisal of the 

existing literature on the areas concerned. As a result, 

such reports have added little to the existing knowledge on 

the distribution of,and processes responsible for, fluvioglacial 

landforms in the thesis area.

Much of the chronological reconstruction of the last major 

glaciation to affect Scotland, mentioned above, has since the 

1950's been confirmed, or more commonly disproved, by the use 
of relative and/or absolute methods of dating. Determinations of 

relative age are mostly based on stratigraphical relations, mainly 

by nhe use of pollen ana/v^ s, a result of the widespread 

occurrence of pollen in Quaternary sediments. The pollen 

assembiages,mainly obtained from lake sediments and peat bogs, 

indicate successive changes in vegetation, and by correlation 

climate, that have taken place since the final stages of deglaciation. 

The pollen succession is divided into eight main zones of which 

the first three are grouped together as Lateglacial and the last 

five as Postglacial. The ages of the zoned boundaries were 

approximately determined by absolute radiocarbon dating

(Godwin 1961).
Radiocarbon dating is the most commonly utilised means of

absolute dating and is based upon the measurement of the
14-radiocarbon activity C"1" C) of biogenic material such as wood, 

peat end shells. The radiocarbon is incorporated into the 

biosphere by the intake of carbon dioxide, carconates ana 

bicarbonates 'which, upon the death of tne organism, decay at
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a caj.cu_i.5ued rate. By measuring the radioactivity oi fossil 

biogenic material containing carbon, the date at which death 
took place can be determined.

roj.j_en analysis and radiocarbon dating have been little 

utilised in previous studies of the thesis area, the only 

known references being to pollen sites at Loch Skene (Lewis 

190o, Erdtman 1923) and Sanquhar (Bishop and Coope, in Lowe and 

Gray, 1977)• However, when considered in association with research 

in adjacent parts of southern Scotland (Donner 1957, 1970;
Moar 19b3, 1969; Bishop 1963; Bishop and Coope 1977) and in 

the country as a whole (summarised in Sissons 19b7a, 1Q76;
Lowe and Gray 1977),it is possible to suggest an accurate

chronology for the last major glaciation to affect Upper 

Nithsdale and Annandale

1. Most if not all of Upper Nithsdale and Annandale 

was ice free 26,000 - 27,000 years ago.
2. The last major glaciation in Scotland, the Dev^sian,

started approximately 25,000 years ago and attained 
its maximum extent, covering the whole of the country, 

some 17,000 - 18,000 years ago.
3. Downwastage and retreat of the ice sheet was rapid

and much if not all of the thesis area was ice-free

by 12,500 years 3.P.
4. There was a return to cold conditions and advance

or of fee from the higher parts of the

country between approximately 11,000 - 10,000 years 
B.P. Pollen lone III or lounger Oryas times.

This cold period is known in Scotland as tne Loch 

Lomond/*••
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Lomond (Re) advance.

5« There is no evidence to suggest the re

establishment of glaciers after approximately 

10,000 years B.P.
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CHAPTER 5 

AREA I

5.1 : INTRODUCTION : LOCATION AND EXTENT

The boundary lines by which Area I is delimited (Fig. 5.1), 

represent a combination of physical and cartographic 

considerations. As with many other studies of this size and 

scope, it was deemed necessary in terms of manageability to 

introduce grid lines as boundary markers in certain localities. 

Consequently, to the east, the area is delimited by the Borders 

Regional boundary until its junction with the north-south grid 

line NT 20, whereafter the grid line is adopted. To the north, 

the boundary separating the Borders Region from the Dumfries 

and Galloway Region again represents the limit of the area 

until the junction with the Strathclyde Regional boundary at 

grid reference NT 0^71^0. The western demarcation is initially 

represented by the Strathclyde Regional boundary until its 

junction with the north-south grid line NT 00, after which the 

grid line continues southward. The southern boundary is again 

a grid line, in this case NT 00 which-runs eas.t-west.

Within the area enclosed by these boundaries a wide selection 

of glacial and fluvioglacial landforms and deposits occur.

5.2 : RELIEF AND DRAINAGE

Area I contains the upper segments of 3 major river systems, the 

Evan Water, the Moffat Water and the River Annan (Fig. 3.2). 

These 3 river valleys form a trident configuration and as such 

are an obvious means by which to further subdivide the area. 

A/...
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A fundamental diotinction in terms of relief can be mads 

between the areas to the west and east of the rlyer Annan, 

the central axis of the trident.

To the west, the terrain rises gradually to a maximum altitude 

of 567 m.o.d. in the Lowther foothills. Only in the extreme 

north-west are there rapid increases in altitude, and this is 

essentially a gently undulating area, mainly below 305 m.o.d. 
and of low relative relief values, which slopes eastwards to 

the Annan and Evan Water. Such descriptions could not be applied 

to the area east of the river Annan. Here, in the Tweedsmuir 

and Eskdalemuir Hills, the maximum altitude is 820 m.o.d., 
and large parts of the area lie above ^57 m.o.d.. Much of this 

extensive upland plateau has been greatly affected by glacial 

processes, lending it a deeply dissected, sometimes rugged 

character, with high relative relief values. Deep, steep

sided valleys separated by smooth, rounded ridges and hill tops 

are therefore typical, and well-illustrated by those forms 

occupied by the Dryfe Water, Wamphray Water, Carrifran Burn 

and Blackhope Burn (Fig. 3*2).

The River Annan, which rises in the Devil’s Beef Tub, a deep steep

sided serai-circular depression, follows a fairly constricted course 

in its upper reaches to the north of the town of Moffat. Just 

south of Moffat however, the floodplain almost doubles in width 

to over 800m and has been artificially straightened and 
constrained by levees. Here, the two major tributaries, the Evan 

Water and the Moffat Water, become confluent with the main stream. 

The Annan continues southwards out of the thesis area, following 

a gently meandering course across a floodplain 700-800m m  

width/...
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The Evan Water, which joins the Annan from the north-west 

follows a gently sinuous course, its floodplain seldom 

exceeding f̂OOm in width and continually bounded by steeply- 

inclined slopes, except near the confluence with the Annan.

Indeed, the valley could almost be termed ngorge-likeM in 

places. The Evan Water has 2 significant tributaries, the 

Cloffin Burn and the Garpol Water, both of which rise in the 

Lowther foothills and join the river from the west. The width 

restrictions emplaced upon the Evan Water floodplain are the 

result of narrow, rocky valley sides, in great contrast to the 

glacial and fluvioglacial deposits which flank the Annan.

The Moffat Water valley is similarly characterised by steep, 

bedrock walls along its upper course, although fluvioglacial’ 

deposits extend across the lower valley sides near the junction 

with the Annan. The valley, which joins Annandale from the north

east, is remarkably straight, having been incised along the line 

of a major fault and shatter belt. The faulting severely weakened 

the surrounding rocks and left them highly susceptible to erosional 

processes, particularly those associated with glaciation. As a 

result, a wider, deeper valley than might otherwise be expected has 

been produced, such that although Moffatdale follows a direct 

route to its junction with Annandale, the Moffat Water itself 

follows a very sinuous course across a comparatively wide 

floodplain, (500-600m maximum width).
As would be expected of any river flowing between 2 upland 
masses which exceed 6l0 m.o.d., the Moffat Water has a large 

number of tributaries. Throughout its upper course, these 

are/...v 9



axe generally small and join the river from the north, principally 

the Carrifran and Blackhope but also the Tail Burn which leads 

down from Loch Skene. Further downstream, nearer the junction 

with the Annan, the tributaries are mainly derived from the hills 

to the south, the largest of these being the Selcoth and Cornal 
Burns.

It can be seen, therefore, that the valleys of the Evan Water,

Annan and Moffat Water direct the drainage of their surrounding 

uplands in a generally southward direction at the present day.

3.5 : GEOLOGY

The geology of Area I (Fig. 3-3)1 is dominated by rocks of Silurian 
age, approximately 90% of the area being underlain by greywackes, 
grits, dark grey shales or black siltstones which are highly folded 

and faulted around a north-east to south-west axis. The uniform 

lithology of Area I may have aided the formation of extensive 

upland surfaces, but has certainly not been of assistance in the 

identification of former directions of ice movement by examination 

of the erratic content of the glacial deposits.

Small outcrops of slightly older Ordovician rocks, again mainly 

greywackes and shales can be seen at scattered localities 

throughout Area I (Fig. 3.3)1 but are best-revealed by faulting 
in a narrow belt south and east of the Moffat Water. As both 

Silurian and Ordovician rock types are essentially similar, there 

is no superficial expression of the change from one to the other. 

Only the New Red Sandstone outcrops, of Upper Palaeozoic age, 

break the monotony of the Lower Palaeozoic rocks to any real 

degree (Fig. 3.3). These red sandstones and breccias, which 

rest unconformably on the underlying Silurian rocks, form a 

'narrow/...
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narrow north-soui-h trending belt which extends down the Annan 

valley from the Devil's Beei Tub. The comparative susceptibility 

of the New Red Sandstone rocks to erosive processes has played 

a major role in the formation of the broad, gently sloping 

valley sides which typify much of Annandale, and indeed in the 

establishment of any fairly extensive lowlying region within 
Area I as a whole.

The youngest solid rocks in the geological sequence to be found 

in Area I, and the only igneous rocks, are the Tertiary dykes 

(Fig. 3.3). There are 9 of these features scattered across the 

area, all indicating various degrees of discontinuity. The 

dykes are of basic composition and follow a generally west-north

west to east-south-east trend, cutting across all 3 major valley 
systems, but with little surface expression.

5.** : GLACIAL EROSION

"In areas of considerable local relief, the results of glacial 

erosion are easily recognised" (Price, 1973? P.32). This 

statement is of particular relevance to Area I, for as illustrated 

in figures 3*̂  and. 3«5i there are numerous major and minor 
landforms of glacial erosion to be found here. The landforms 

vary in dimension from small-scale grooves and striations 

produced by clasts at the base of moving ice, to large-scale 
and often spectacular glacial troughs, where a variety of 

glacial processes were concentrated.
GLACIAL TROUGHS. "In some localities, as at the head of Annandale, in 

Talla Water, round Loch Skene, and in several of the glens that open 

into the Vale of the Moffat Water, the smooth contourof the hillside is 

varied/...
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varied by the occurrence of abrupt craggy scars and precipices 

which present scenes suggestive rather of parts of the northern 

Highlands than of the soft pastoral air of the Southern Uplands"

(A. ueikie, l863» P. 160). It is fairly evident from the above 

description, that ueijiie is referring to the main glacial troughs 

of the Tweedsmuir Hills (Fig. 3.5).
Principal among the troughs of Area I is the steep-sided trench 

occupied by the Moffat Water, orientated in a north-east to south

west direction (Plate 3* A). It can be seen from figure J>.6 that 

this valley possesses the characteristic U-shaped or more 

correctly parabolic (Svennson 1959; Graf 1970; Sugden and 

John 1976), cross-profile associated with glacial troughs. The form 

of Moffatdale is not solely attributable to glacial erosion however, 

for as mentioned the valley also follows a major fault and shatter 

belt (Fig. 3-3)* The importance of this line of former tectonic 

action cannot be underestimated, "... a crucial part of glacial 

erosion involves any process which loosens or weakens blocks of 

rock beneath a glacier”, (Sugden and John, 1976, P. 157)•

Consequently, it was the interaction of tectonic and glacial 

processes which resulted in the linear, steep-sided form of 

Moffatdale at the present day.

The cross-sections taken at various localities within Moffatdale 

(Fig. 3.6), indicate that the trough widens and deepens in the 
south-west direction. When considered in conjunction with the alignment 

of striations and roches moutonnees along the valley sides (Fig. 3«5)i 

this strongly suggests that a major ice mass moved south-west 

down the Moffat Water valley.

The Carrifran and Blackhope valleys, which join Moffatda^e 

from/...
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from the north-east, are very similar in character both to each 

other and to the main valley (Plates 3B, 3C’). Both these 

tributary vaxleys again possess the parabolic cross-sectional 

form associated with glacial troughs and have steep, often 

scree-covered slopes leading down from craggy tops (S’ig* 3*6).
Both valleys descend abruptly from the upland surface at 

the valley heads and at their mouths curve round to present 

a smooth, ungraded junction with Moffatdale. Similarly, both 

valleys contain evidence in the form of moraines for a more 

recent glaciation which post-dates trough formation.

At the head of the Carrifran trough, local terrain rises ^OOm, 

mainly over smoothed, polished bedrock, in just over one 

kilometre (Fig. 3*6). A similar steep rise, in this case of 

370m over the same horizontal distance, is found at the head of 
the Blackhope trough, both trough heads tending to be convex., 

upwards (Fig. 3.6). There is no indication of cirque development 

in the vicinity of either trough head, and no obvious local source 

for glacial ice.

Similarities regarding morphology can be drawn between the Carrifran 

and Blackhope troughs and troughs in the Cairngorm mountains 

described by Sugden (1968) as, "... ending abruptly in trough 

heads whose cliffs rise more than 300m to the plateau behind"

(P. 85). Sugden suggested that the trough forms owe their origin 

to the former existence of an ice cap over the Cairngorm plateau 

at the glacial maximum, their form and location representative of 

the major routes taken by ice flowing off the plateau. He termed 

such troughs "Icelandic", after Linton’s (1963) classification 

of glacial troughs; "... here (with the Icelandic type) the areas 

of/...
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of ice accumulation have been plateau surfaces only exceptionally 

dominated by higher ground and discharge has been by steep ice 

falls into the ends oi valleys, dissecting the plateau” (Linton,

19b3i 9)« By implication, the Carrifran and Blackhope Valleys were

similarly carved by descending tongues of ice fed by an ice cap 

over the Tweedsmuir Hills, these particular troughs representative 

of the main southern routeways of ice discharge during the last 

major glaciation to affect the area.

By examining the interrelationship of the glacial troughs in the 

vicinity of Moffatdale, some indication as to the sequence of 

events leading to the build up of ice over this area can be gained. 

Embleton and King (1975a)stated that, "In order to erode effectively... 

there must .... be a free outlet for the ice to lower ground" (P. 271)- 
Such conditions have obviously prevailed for the ice masses descending 

the Carrifran and Blackhope troughs and the resultant combined ice 

mass moving south-west down Moffatdale. The ice masses descending 

the Tail and Polmoody valleys did not have such ready access to 

lower ground however, because of the larger ice mass occupying 

Moffatdale itself (Fig. 3-5). As a result, these valleys were 

left "hanging", 152m above the main valley floor in the case of the 
Polmoody and 173m in the case of the Tail. Postglacial fluvial 

activity created waterfalls at both these localities, the more 

spectacular of the two, the "Grey Mare's Tail", found where the 

Tail 3urn joins Moffatdale (Plate 3D ). The Tail and Polmoody 

valleys are classic examples of "hanging valleys" produced by the 

deepening and widening of the m a m  vaxley, (a_ong the fault line and 

shatter belt), by glacial erosion, at a rate more rapid than that 

at which the tributary valleys were cut. Figure 3»7 illustra-es 

' the/...
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uhe sequence Oi events relating to the build up of ice which 

resulted in the creation of similarly orientated hanging 

valleys, Tail and Polmoody, and glacial troughs, Carrifran 

and Blackhope, within 2 - 3 km of each other.

Similar trough forms, though not as well-developed as those 

previously mentioned, lead down from the western Tweedsmuir 

Hills towards Annandale (Figs. 3.*t, 3-5) • The Auchencat,

Lochan and Tweedhope valleys all fall into this category, 

their ice-modified form the result of supply via cols at the 

valley heads. All 3 troughs terminate well-above the floor of 

Annandale which, on the basis of striae and roche moutonnee 

evidence (Fig. 3*5)» fulfilled a similar function to that of 

Moffatdale and acted as a major routeway for southward flowing 

ice. The fact that the cross-sectional profile of the Annan 

valley (Fig. 3-6). does not suggest extensive modification by 

glacial ice, and that the junctions between the tributary valleys 

and the main valley are not characterised by spectacular waterfalls, 

as in Upper Moffatdale, is strongly related to the comparative 

ease with which the New Red Sandstone rocks which occupy the lower 

flanks and floor of Annandale were eroded.

The steep-sided Evan Water valley also acted as a major ice 

routeway, bringing external ice from the north-west into Area I 

(Fig. 3.5; Plate 3E). With regard to the more sinuous nature 

of this trough, Sugden and John (1976) stated, ”... a sinuous 

trough represents the exploitation of a pre-existing river valley by 

a glacier. Troughs of this type seem to occur most frequently 

when they lie approximately parallel to the direction of ice 

movement” (P.l85). Linton (1963) also postulated a south-east movement 

o*f/...
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Oi ice in thj.s vicinity, ?... Beattock Summit (at the head of 

the Evan Water valley) heads a trough that carried Clyde ice into 
Annandale" (P. 10).

The troughs to the east and south-east of Moffatdale form a 

radiating pattern outward from the vicinity of Ettrick Head 

(Fig* 3-5)» the principal trough following the course of the 

Wamphray Water south-west, in a direction parallel to Moffatdale 

itself. All of the troughs have glacially-breached cols at 

their heads, such that although some locally derived ice may 

have contributed to the moulding of this eastern landscape, the 

major source apparently lay further to the north-west, in the 

vicinity of Moffatdale itself. During the build up of ice on the 

southern side of the Tweedsmuir Hills, the ice masses descending 

the Carrifran, Blackhope and Moffat Water troughs coalesced in 

Central Moffatdale, a logical progression from Stage 1, figure 

3.7. As a result, overspillage of ice into the Ettrick Water 

valley via the series of cols along the eastern flank of Moffatdale 

took place (Stage 2, Fig. 3*7). 031 entering the Ettrick catchment
area, some of this Tweedsmuir ice moved north-east down the Ettrick 

Valley itself, but of greater significance to Area I, was the 

build up of ice in the vicinity of Ettrick Head and resultant 

outward movement from here, predominantly in a southerly 

direction.

GLACIALLY- BREACHED COLS. "When a glacier fills a valley above the 

height of the notches in its watershed, it flows over these notches, if 

it is not hindered by ice masses on the other side of the pass. By 

overflowing it exercises on the pass a conspicious erosive action/...



action by which the pass is lowered and widened" (A. Penck,

19051 P.ll). There are over 60 examples of such "overflowing" 
or glacial breaching in Area I (Fig. 3*5). The glacially- 

breached cols are typically flat-floored, often possess 

concave sides and are markedly catenary in cross—profile.

The altitude of the cols ranges from 2^3 - 732 m.o.d.. When 
taken in conjunction with the fact that most of the summits 

in the area exhibit some degree of ice moulding, this strongly 

suggests that Area I was entirely covered by ice at the maximum 

of the last major glaciation. With this in mind, Embleton and 

King (1975a) differentiated between two types of glacially- 
breached col produced at different stages in the glaciation of 

an area, the diffluence col and the transfluence col, (P. 26k -269). 

Diffluence cols are produced in a manner similar to that described 

by Penck above, and by definition are therefore associated with 

the early stages of ice accumulation over an area. Transfluence 

cols by contrast refer to those forms produced when, "... all 

available cols are used by a series of diffluent ice streams" 

(Embleton and King, 1975a, P. 17*0* suggesting ice cap or ice 

sheet conditions, at or near the glacial maximum. It should 

be stressed however, that in practise it is often very difficult with 

individual forms to differentiate between the two stages of formation. 

The orientation and altitude of all the cols in Area I is indicated 

on figure 3.8. While there must be some doubt as to the relative 

importance of glacial as opposed to preglacial processes influencing 

the alignment of any particular col, and as such the suitability of 

cols in general as indicators of former directions of ice movement, 

the clusters oroduced on figure 3*8 sufficiently confirm witn other 

indicators/...
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indicators of ice movement in Area I (ie troughs, striae, roches 

moutonnees etc indicated on figure 3»5)j as to suggest that for 

the most part the cols of Area I are an integral cart of the 

landscape of glacial erosion. On the basis of the information 

depicted on figures 3-5 and 3.8., , the cols of Area I can be 
separated regionally into 3 main groups.

(1) In the far west of ,Area I, there is a concentration of

cols between 366 - 533 m.o.d., orientated in a generally 
east-west direction., These cols reflect the eastward

movement of diffluent ice across the watershed which marks

the western boundary to the area.

(2) South of Moffatdale, a much more diffuse pattern for the

cols is indicated, but with two main concentrations.

Firstly, there is a concentration of forms between

396 - +̂88 m.o.d., aligned in a generally north-north- 

east to south-south-west direction. These cols reflect 

the overall south-west movement of ice across this area, 

as indicated by the alignment of the two main troughs found 

here, Moffatdale and the Wamphray valley. Secondly, a 

slightly higher cluster of cols occurs between *+27 - 56*+ m.o.d., 
orientated in a generally east-west direction. This latter 

concentration reflects the overflow of ice from the two 

principal troughs mentioned above, in particular the 

eastward flow of ice into the vicinity of Ettrick Head.

Most of the breaching in this south-east area has taken 

place as a result of glacial diffluence. A particularly 

good example of diffluent ice flow is represented by the 

col which separates Big Hill (NT 127 036) and Yadburgh 

Hill/...
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(NT 13^ 033)» This col is one of the largest in 

Area I; it is over 700m in length and incised more than 

300m below the surrounding upland surface (Fig. 3-9).

(3) To the north of Moffatdale, the pattern of regional ice 

movement is again well-indicated, with a distinct 

concentration of cols in the north-north-east to south- 

south-west direction between 329 - 518 m.o.d.• A second, 

very diffuse pattern,is also evident above 610 m.o.d..
The lower group of cols owe their origin to diffluent

ice flow, but the altitude and alignment of the higher group

has puzzled previous workers in the Tweedsmuir Hills.

Price (1961), viewing these higher cols from the region 

to the north of Area I stated, MThe occurrence of these 

through cols in the southern and eastern sides of the Upper 

Tweed Basin is puzzling when it is realised that the best 

evidence of glacial erosion, in the form of cirques ....

indicates a movement of ice to the south and east ....

The location and alignment of the through cols suggest that 

they are related to the stage in the glaciation of the area 

when the whole surface was covered by ice with the centre 

of the ice sheet being outside the Upper Tweed Basin, 

possibly to the west or south-west" (P. 60 - 62). Like 

Price, the author believes that the cols were incised when 

the entire urland surface was covered by ice, but nor 

necessarily all at the same rime, or for that marter 

by ice from the same source.
There seems little doubt that the easterly cols referred 

to by Price, located along the northern margin of Area I, 

/ere/...
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were incised by ice centred locally over the Tweedsmuir 

Hills themselves- However, regarding the more southerly 

forms, which lie to the north-west of Area I, there are 

two possible explanations- These may have been incised 

by ice from an external source following a north-east 

course into the Upper Tweed Basin- Alternatively, the 

ice-breached cols were incised at a stage when an axis 

of dispersion, as opposed to a centre of dispersion, lay 

across a sizeable part of the Tweedsmuir Hills, aligned in 

a broadly east-west direction.

CIHQUES. "A cirque is a hollow, open downstream but bounded upstream by 

the crest of a steep slope (headwall), which is arcuate in plan around 

a more gently sloping floor. It is "glacial” if the floor has been 

affected by glacial erosion while part of the headwall has developed 

subaerially, and a drainage divide was located sufficiently close to 

the top of the headwall for little or none of the ice that fashioned the 

cirque to have flowed in from outside" (Evans and Cox, 197̂ -, P.15l)« On 

the basis of this definition, 8 landforms were identified as ciraues in 
Area 1 (Fig- 3-5). All of these features were found in the upland 

north-east corner of Area I, bounded by the river Annan to the west 

and Moffat Water to the south.
The cirnue forms which best-illustrate the above characteristics are 

those incised into the flanks of White Coombe (ciraues s , G, H, rig- 3»5)i 

and Lochraig Head (cirque J, Fig. 3»5)» The latter is by far the most 

spectacular ciraue in Area I, its steep, scree—covered headwall rising 

over 2̂ -Ora above the cirque floor, which is/...
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is presently occupied by the moraine-dammed Loch Skene,

Other cirque forms perched along the upper flanks of the Carrifran 

and Blackhope troughs (cirques 3, C, D, E, Fig. 3.5), are not as 

clearly-developed (Plate 3^). Although possessing the

arcuate plan form and steep headwall, the gently sloping floor is 

poorly-developed in these cirques. This variation in cirque 

morphology is a direct result of their location along the flanks 

of two major troughs. As Linton (1963) stated, "... corries 

(cirques) have been reduced to trifling dimensions by the 

paving away of the lateral spurs by trough glaciers” (P. 2*0. 

Excavation by trough glaciers has removed all traces of the 

existence of cirques from the north-east side of the Blackhope 

valley. However, their former presence in this locality is 

strongly implied by the steep-sided, narrow arete ridge which 

separates the Carrifran and Blackhope valleys (Fig. 3«5)i its 

form resulting from cirque headwall erosion on both its north-east 

and south-west flanks.

Figure 3»10 indicates the altitude and orientation of all cirque 

forms within Area I. Sissons (1967a *P. 6l - 63) and Flint 
(1971, P. 136), both noted that cirque floors tend to lie at or 
slightly above the snowline at the time of their formation. By 

making the assumption that all of the cirques within Area I relate 

to one, and the same, period of glaciation, it can be 

stated that during the period of their formation, the regional 

firn-line over the Tweedsmuir Kills was at an altitude of 

approximately *+20 m.o.d..
With regard to the orientation of the cirques (-fig. 3«T0>, the 

majority are found between north-east and east-soutn-east,

fi/. • •
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a similar alignment to cirque forms in other parts of Scotland 

(Sissons 1967 a . P. 56 - 63; 1976 P.51 - 5k • Sugden 1969).
Sucn orientations reflect the interaction of a number of factors 

contributing to cirque formation, but in particular the nature 

and orientation of the preglacial relief with regard to climatic 

conditions during the onset of the glacial period. Although there 

are too few cirques within Area I to draw any major conclusions 

regarding former climatic conditions, the dominant east-north- 

east alignment does suggest that during the period of their 

formation, the main snow-bearing, winds were from the south and 

west. Embleton and King (1975a) stated, "... hollows most 

favourable for snow accumulation and therefore cirque glacier 

growth were those facing in the opposite direction, (from the 

snow-bearing winds), where drifting show could most effectively 

collect" (P. 222).

It was suggested by Eckford (1958), that the steep-sided, semi

circular hollow at the head of Annandale, known locally as the 

"Devil's Beef Tub" (Fig. 3-*Oi was also representative of cirque 

formation. However, although this feature is arcuate in plan, 

orientated in a south-east direction, and shows evidence of 

modification by glacial erosion, its low altitude (the foot of 

the"headwall" is at 27b m.o.d.), effectively dissociates this 

form from the other cirques in Area I. It is more likely that 

the Devil's Beef Tub owes its origin to the concentration of 

glacial processes, associated witn southward flowing ice, in a 

narrow zone of comparatively less resistant geological strata, 

marked bv the former greater extent of the adjacent New Red 

Sandstone rocks (Plate 3^).

STRimONS/...
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STOI^IONS^ROCffiS^MOOTONNEES AND ICE-MOULDED BEDROCK- Several 
localities where glacial striations are to be found in Area I are 

indicated on the Geological Survey 1-inch and 6-inch maps which 
cover the area. Some of these striations, although by no means all, 

were located in the field, but others not indicated on the mans were 

also identified. All of the above-mentioned forms are indicated on 

figure 3-5-
In general however, striations are not particularly abundant or

readily identifiable in Area I, as A. Geikie (1863) stated, MThe
decomposing nature of the Silurian strata, which conroose so large

a proportion of the southern counties of Scotland, tends to obliterate

the finer traces of the general abrasion .... I have geologized
2over several 100 ml of the Silurian district of the south of Scotland, 

and yet the instances of striations which I have met with might be 

reckoned on the fingers" (P.28). Although their usefulness as indicators 

of former directions of ice movement has been questioned on many occasions 

(e.g. Embleton and King, 1975a, P. 182 - 187), and it is continually 

stressed that striations only indicate basal ice movements at a 

particular locality and need not be in accord with long-term regional 

ice movements (e.g. Flint, 1971, P- 90-95), it is interesting to 

note that the striations in,Area I generally parallel the three main 

river valleys, the Moffat Water in the east, and the Annan and Evan 

Water further west.
Roches moutonnees are, "... the universal earmark of the invasion of 

an area by glacier ice" (Fluckiger, 193^, P» 23), their smooth, 

streamlined stoss and shattered and plucked lee sides being characteristic 

of the unique erosional capabilities of ice/...
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ice masses. However, not only do roches moutonnees indicate 

the former presence of an ice mass over an area, but also by 

their shape, the direction of movement that the ice mass followed.

As Flint (19/1) stated, "Because of their pronounced asymmetry, 

stoss—and—lee hills (roches moutonnees) are more reliable guides 

to the direction of glacier motion (at least within 10 - 15° of 
are) than are most striations and also withstand postglacial 

erosion through a larger time” (P. 98 - 99).
Roches moutonnees are well-represented in Area I, (Fig. 3.5), 

varying in size from small mounds 2m high and 10 - 15m in length, 
to ridge crests which rise 50 - 60m above the surrounding terrain 
and are several 100m in length. Their location is as varied as 

their size, and roches moutonnees occur along the floors and walls 

of glacially-breached cols, cirques and glacial troughs, at hill top 

locations and indeed anywhere in Area I where conditions were 

favourable for their formation and preservation. The orientation 

of the roches moutonnees within the area again indicate that the 

principal directions of ice movement paralleled the 3 major 
valleys, in a broadly southward direction. There are slight 

deviations from this general pattern in the extreme eastern 

and western parts of the area (Fig. 3.5)1 where a more easterly 
direction for ice movement is indicated.

At a similar scale to the roches moutonnees are a series of 

streamlined mounds, hillocks and mils consisting entirely 01 
bedrock, which were collectively termed "ice-moulded forms"

(Fig. 3.5). Such features characteristically possess steep 

stoss slopes lacing the direction of ice advance, with streamlined, 

tapering lee slopes. The ice-moulded forms also suggest a generally 

southward/...
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southward movement of ice across Area I.

SUMMARY. The large and small-scale landforms of glacial erosion combine 

to indicate the principal directions of movement followed by the last 

major ice mass to cross Area I, as depicted on figure 3.11. From 

this, it would appear that there were two major centres of ice 

dispersal, one at least partly within the area itself, the other 

wholly external.

The principal centre was the ice cap over the upland surfaces of 

the Tweedsmuir Hills. Ice from here followed a broadly southerly 

course, eventually covering much of the central and eastern parts of 

Area I. Initial directions of outward ice movement were strongly 

controlled by the pre-existing relief. Consequently, processes 

associated with subglacial erosion were also concentrated in such 

localities, and in parts of the area this remained the case throughout 

the glacial period. The fossil pattern of large-scale landforms in 

the Tweedsmuir Hills indicate that many, if not all, of the cirques and 

glacial troughs were principally incised shortly after the onset of 

glacial conditions. Not all of the erosional landforms can be 

attributed to this early stage however, and with particular reference 

to the ice-breached cols, it is extremely difficult to accurately 

ascertain when these were produced. Nevertheless, from their altitude 

and alignment, the higher cols at least suggest formation at or near 

the glacial maximum when the axis of dispersion in the enlarged ice 

mass over the Central Southern Uplands still ran through this local 

centre of dispersion, approximately along the northern boundary of 

Area I itself.
The western part of Area I was crossed by ice whose source lay outside 

the area, to the west or north-west. The exact location of -his 

secondary/...
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secondary centre of dispersal will be examined in greater detail 

in Chapter +̂. Ice from the two sources, both following broadly 

parallel courses, coalesced over Area I and continued southwards 
down Annandale (Fig. 3.11).
3-3 : GLACIAL DEPOSITION

"In the Highland and upland districts superficial deposits appear 

to be for the most part restricted to valleys ... the rounded 

swellings of the south of Scotland showing but little trace of 

them at the higher elevations" (J. Geikie, 1877, P. k - 3). This 

situation is well-illustrated in Area I (Fig. 3.*0, where deposits 

of both glacial and fluvioglacial origin cover the valley floors 

and lower valley slopes. At higher altitudes only peat and solid 

rock are present at the surface.

The dominance of glacial erosion, (previous section) obviously 

restricted deposition in Area I, but nevertheless extensive parts 

of the area are masked by accumulations of glacial till (Fig. 3«^)» 

The greatest till deposition has taken place across lower valley 

flanks below 275 m.o.d.# Although till does occur above this 

altitude, it is only as a sporadic,- discontinuous veneer, which 

extends into upland valleys to an altitude of approximately 

JfOO m.o.d.# It is difficult to give an exact figure for the vertical 

extent of till in Area I as a result of varying local topography, 

but a further complication is that in an area of such uniform 

lithology it also becomes increasingly difficult to differentiate 

between till and other superficial material produced by mass wastage 

with increasing altitude. This problem is particularly acute in 

the well-developed glacial troughs in the north-east of Area j..
Both types of valley-fill deposit descend from the valley sides 

towards/...
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towards the present stream in the form of sloping benches and 

it is often only possible to discriminate between the two by 

analyses of the orientations of individual clasts within the 

matrix, li the material is the product of mass wastage, the 

clasts will be aligned at right angles to the valley axis and 

if glacially derived in situ, parallel to the axis. Consequently, 

above 400 - 450 m.o.d., the true character of a deposit, whether 

it be till or slope material, the latter possibly derived from 

the former by solifluction, could not always be stated 

conclusively from the poor exposures often found here. The 

delimitation of the till deposits at higher altitudes in Area I, 

as depicted in figure 3*4, is therefore by definition tentative.

The largest section in Area I reveals l8m of till. It should be 

stressed, however, that it is only in the vicinity of valley 

floors that the till thickness exceeds 3m and that away from here 
thicknesses are generally less than 2m. It may well be that 

the thickness of till revealed by the largest section is 

exceeded at depth, below the sand and gravel deposits on the 

floor of the Annan and/or Moffat Water valleys. However, without 

supporting evidence from borehole records, and there are no records 

of drift thickness from the few borings made in this vicinity, 

(Institute of Geological Sciences, Edinburgh) only speculative 

estimates as to the maximum till thickness can be made at present. 

The tills of Area I generally consist of angular, sub-angular and 

sub-rounded clasts of Lower Palaeozoic greywackes, grits, shales 

and siltstones in a coarse gritty, clayey matrix. The only 

exceptions are the tills occupying southern Annandale, where 

fragments of Permo-Triassic sandstones and breccias dominate 

the/...
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the deposit and the matrix itself is less compact, containing 

a much higher percentage of. sand. The occurrence of this 

sandier till in an area where sand and gravel deposits 

are abundant, led to problems of till identification at 
certain localities.

The colour of the till is indicative of the geological source

areas, but not necessarily indicative of the bedrock on which

the deposit rests. However, once again the uniform lithology

in Area I prevented any great variety cf till colour, although

minor variations do occur. Dark brown tills are dominant,

but along the floor of the Annan valley the colour changes to

a reddish-brown, while in Moffatdale the tills are generally

darker, reflecting the enhanced development of black shales

along the line of the valley (Greig, 1971» P. 3^ - ^9)-

Only one till unit is found overlying bedrock in Area I,

although in some localities the till itself is overlain by

fluvioglacial deposits. This till, although differing in colour locally

is of a generally compact nature throughout. Together, these factors

strongly suggest that it is lodgement till (Goldthwait, 1971»

P. 3 - 26), which is widespread in Area I.
More detailed examination of the best-exposed till sections in 

Area I, (Exposures 3L - 3R, Fig. 3**0, was carried out in an 

attempt to aid description and identify any local variations in 

character which were not initially apparent. At each of the o 

sites, preferred-stone orientation analysis particle size 

analysis and erratic counts were carried out, the results of 

which are depicted in table 3«li table 3*2 and figure 3-12.

Exposure/...
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Exposure J>L is in the valley of the Lochan Burn, close to its 

confluence with the Kinnel Water (Fig. 3.if; Table 3.1).
From a preferred-stone orientation analysis, a mean orientation

Ox stones contained in the till of 162^ was calculated
(AppendixII Table 3.2; Fig. 3.12). A chi -square value

of 32*1 was also calculated for the mean orientation
(Appendix III ; Table 3.2). When tabulated with 8 degrees
of freedom this value, known as the orientation strength, is

statistically significant at the 99.9% confidence level. The

larger the orientation strength, the greater the concentration of pebbles

around a specific orientation, there being a fairly strong concentration

in this case. A dip-strength value of 2 was also calculated.

(Appendix III ; Table 3*2), which when tabulated with one degree 

of freedom is not statistically significant at the 95% confidence 
level. There is therefore no evidence in this case to suggest an 

uneven distribution in the angle of dip of the clasts.

The importance of results such as these has been recognised for 

many years. As early as 1884, Miller stated, ”... the longer 

axis of the stone is often directed in the line of glaciation"

(P. 167). Such initial research into till fabrics and stone 

orientations was elaborated upon by a number of workers, (e.g.

Richter 1932, 1936; Holmes 19^1; Harrison 1957; Harris 1968;

Andrews 1971). Nevertheless, the original postulation, that the 

majority of clasts tend to have their long axes aligned parallel 

to the former direction of ice movement, is still generally 

accepted. There is a major division in opinion however, as to the 

direction in which such stones should dip. Many of tne earlier 

workers, (Richter 1932, 193^1 Holmes 19^1, Harrison 1957),

were/...



67

were of the opinion that the stones have a tendency to have their 

long axes dipping down from the horizontal in an up-glacier 

direction. Harris (1968, 1969)*, held the opposite viewpoint 

and suggested that the stones have a tendency to dip in a down— 

glacier direction. Therefore, from the alignment of the long 

axes of clasts in till, it can be stated that the depositing ice 

moved in one of two directions parallel to the long axes orientation, 

the two directions separated by l80°. However, it cannot be 

stated conclusively which of the two directions is correct on 

the basis of pebble orientation alone.

In this manner, the mean orientation at Site 3L (Table 3.1;

Fig. 3*12), of 162° is indicative of a depositing ice medium 

moving from either the north-north-west or south-south-east. 

Examination of other characteristics of the till itself and the 

alignment of adjacent indicators of the direction of ice movement, 

e.g. striations, roches moutonnees etc., may clarify the situation. 

Directions of ice movement are also interpreted from the positive 

identification of indicator rocks or erratics, from well-mapped 

sources (e.g. Holmes 1952; Dreimanis 1956; Sissons 1967a ;

Goldthwait 1971). However, once again the uniform lithology 

of Area I renders this method largely unsuitable at exposure 

3L and the other 5 sites in the area. Nevertheless, an erratic 

count of 30 pebbles was made at each site.
With regard to exposure 3L , all of the erratics are of Lower 

Palaeozoic origin. If ice movement was from the south—south

east direction it might have been expected to find New Red 

Sandstone clasts in the matrix (ifig. 3«3)» However, their 

total/...
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total absence supports the suggestion of movement from the 

dominant area of Lower Polaeozoic rocks, to the north and 
west of exposure 3L.

Similar analyses were carried out at each of the other 5 sites 

examined in detail in Area I (Exposures 3M - 3R, Fig. 3.*0; the 

results are depicted in tables 3.1, 3*2 and figure 3-12. The 

combined information relating to the till exposures in Area I 

indicate the principal directions of ice movement responsible 

for deposition at each of the 6 sites and suggest the broad 
pattern of movement over the area as a whole. The 6 exposures 
can be broken down into 3 closely linked groups of two : in

Moffatdale, exposures 3P and 3Q; at the head of Annandale, 

exposures 3M and 3N; and downstream on the flanks of Annandale, 

exposures 3^ and 3̂ . The rose diagrams for stone orientations at 

each of these sites (Fig. 3»12). indicate a south-south-west or 

north-north-east movement of ice in Moffatdale at the head of 

Annandale, but a north-north-west or south-south-east movement 

further down the Annan valley. Locally, at the head of Annandale, 

the erratic content of the tills can for once be utilised to 

clarify the direction of movement of the depositing ice mass, as a 

result of local geological conditions. The till at exposure 3M 

(Stotfield Gill), rests upon red sandstone bedrock, while that 

of exposure 3^ (Auchencat Burn;, is found only 100 - 200m 

from the distinctive red outcrops, although resting on greywacke. 

New Red Sandstone rocks occupy the lower flanks and floor of 

Annandale and extend down the valley for 30 kms (fig. 3»3)» 

Nevertheless, New Red Sandstone erratics are totally absent 

from/...
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from both of these exposures (Table 3-2), which strongly suggests 

that the depositing ice massi moved down Annandale from a broad 
northerly direction.

With regard to the other sites, the rose diagrams in Moffatdale 

(Exposures 3P, 3Q, Fig. 3.12). indicate an ice movement parallel 
to the alignment of the valley itself. It was previously 

suggested, on the evidence from landforms of glacial erosion 

(Fig. 3-5), that Moffatdale was occupied by south-west flowing 

ice during the last major glaciation and the alignment of clasts 

at both exposures 3P and 3Q would therefore tend to support this. 
Lower down the Annan valley the stone orientations at exposures 

3 and 3R relate to a generally south to south-east movement of 

ice, again on the basis of adjacent landforms of glacial erosion 

(Fig. 3.5). Clasts of New Red Sandstone origin might have been 

expected to occur in the erratic count at exposure 3̂  (Beldcraig 

Wood), and thus substantiate the claim of a north-westerly source 

(Table 3«2), but their absence can be accounted for in terms of 

local ice movements. This lower eastern part of Annandale was 

glaciated by ice descending Moffatdale which was re-directed along 

a more southerly course at its junction with the Annan valley 

(Fig. 3-5).
The partide-size information relating to all 6 exposures 
(Table 3.2), indicate little variation in the character of the 

tills throughout Area I. This is only to be expected when the 

uniform lithology of the area and the similarity in whe erratic 

counts at each of the 0 sites (Tabie 3»2), is taken into 

consideration. Two slight anomalies indicated in table 3»2 

need/...
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reed explanation however. The high concentration of cobbles 

and boulders at exposure 3Q (Grey Mare's Tail), may reflect 

the proximity of the ice source to this till site and subsequent 

lack of comminution that occurred during the short distance of 

transport (Plate 3E). In a similar fashion, although no sizeable 

erratics of Mew Red Sandstone rocks were recovered from exposure 

3M (Sto.tfield Gill) , the high concentration of sand-sized particles 

in the deposit is thought to reflect the at least limited presence 

of the underlying sandstone, and by contrast with the previous 

site, its susceptibility to comminution.

DRUMLINS. Although the morphological expression of glacial deposition 

was mainly restricted to a masking of the underlying bedrock by a 

comparatively thin veneer of till, in places the till deposits and 

indeed bedrock also, were moulded into drumlinoid forms. These 

external morphological expressions of glacial deposition (and erosion) 

were also useful in ascertaining former directions of ice movement, 

but only over a limited part of Area I. Drumlins are restricted to 

selected parts of the floor and lower flanks of the Annan1 valley 

(Figs. 3.4, 3.13). Table 3.3 (Fig. 3.13), also indicates the dimensions 

of the principal drunlin forms and their postulated constituents. The 

scarcity of borehole evidence severely restricted accurate determinations 

of the internal constituents however, and consequently, the descriptio s I
in table 3.3 are based solely upon limited surface exposures (Plate 31).

Drumlins which apparently consist mainly or wholly of till 

are/...
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are restricted to the floor of the Annan valley, below 110 m.o.d.,. 
The higher forms, found along the eastern flank of the valley 

up to an altitude of approximately 2̂ -0 m.o.d. consist either 

partly or wholly of bedrock (Fig. 3.13)_ Occasionally, the 

larger or "Megadrumlin" forms have smaller drumlinoid forms 

superimposed upon their flanks or crest, e.g. drumlins A and E, 

figure 3.13 (After Rose and Letzer, 1977). The existence of 

more than one size population of drumlins in an area is 

indicative of/'... variations in available energy and sediment 

supply at the ice debris interface ....", and suggests that,

"... the two populations are related to a diminishing energy 

regime" (Rose and Letzer, 1977, P. ^77). Such statements imply 

that drumlin formation occurred at a late stage in the period of 

glaciation, but the exact method of formation is still the subject 

of great debate, (Smalley and Unwin 1968; Boulton 1975; Aario 1977; 

Gillberg 1977).
It is generally agreed, however, that drumlins trend approximately 

parallel to the direction of ice movement, the stoss-end usually 

pointing upstream, in the direction from which the ice has 

moved, (Gravenor 1953; Flint 1971; Embleton and King 1975a).

All of the drumlins in Area I (Fig. 3.13), with the possible 

exception of drumlin B, have their stoss—end facing north and thus 

also suggest a southerly movement of ice across this part of the 

study area.

MORAINES. Mcranic landforms and deposits are restricted to the 

extreme north-east part of Area I, (Fig. 3.4), in the upland valleys 

of/...
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of the Carrifran, Blackhope and Tail Burns, the principal south

east trending outlets from the Tweedsmuir Hills and tributaries 

to the Moffat Water. By far the best morainic forms are found 

in the Upper Tail Burn, in the vicinity of Loch Skene. These 

moraines have previously been mentioned by Chambers (1355) and 

A. Geikie (1863), and described in greater detail by Young (1864) 
and Fckford and Manson (1927).• More recently, the moraines in 

the vicinity of Loch Skene and similar morainic landforms in 

the upper parts of the adjacent northward trending Tall a-, Megget, 

Gameshope and Fruid valleys were described by Price (1961) and 
Sissons (1967 b , 197^) • ■ .

Air photographs, at a scale of approximately 1:10,000, of those 

valleys containing moraines, were examined stereoscopically and 

then taken intd the field where the initial landform pattern 

was checked by detailed field mapping. As a result, it was 

possible in many cases to accurately locate individual mounds 

(Fig. 3.14).
a) Loch Skene Moraines. . "Mounds of detritus lie below the 

smoothed but nowhere striated declivity at its (Loch Skene) 

head, and skirt the loch on either side, while beneath the 

water, whose depth is unknown, appear the ruins of heaps which 

near the outflow project their tops above the surface. The stream 

cuts through a series of mounds arranged in concentric curves 

pointing down in the axis of the lower half of the loch",(Young, 

1864, P. 457). From the description by Young and by reference to 

figure 3.14r.it can be seen that the Loch Skene moraines encircle 

the steeo—sided cirques at the head Oi the loch itself and the 

immediately/...
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immediately adjacent Midlaw Burn (Plate 3J). The morainic 

landforms consist of a series of mounds and ridges which vary 

in height between 2 — lorn. In terms of length, there is a 

marked contrast between ridge forms, such as "the Causey"

3.15), which runs discontinuously along the eastern side 

of Loch Skene for almost a kilometre, (the steep, western 

face to the ridge is 11m in height, but when viewed from an
i

easterly direction the ridge crest rises only 2 - 3m above the 
surrounding terrain), and areas of short, badly-slumped 

hummocky mounds only Z - 3m in length (Plate 3k). The 

true dimensions and indeed total areal extent of the moraines 

are difficult to assess accurately in certain parts, because of 

extensive peat development which has filled or partially»filled 

every depression found in association with the depositional forms.

5 - 6m of peat have accumulated in places, the greatest peat thicknesses 

occurring to the east of Loch Skene, at the head of the Winterhope 

valley.. Nevertheless, it can be stated with a reasonable degree 

of confidence that all the mound and ridge forms in the vicinity 

of Loch Skene lie between ^57 - 610 m.o.d.
The extensive peat development has also limited the availability 

of exposures illustrating the internal constituents of the moraines, 

but several good sections have been incised through ridge forms by 

the Tail B u m  (Plate 3L). These exposures typically reveal a 

grey-brown, gravelly matrix containing a large number of angular 

and sub-angular clasts of local origin; the clasts are generally 

less than ^cm in diameter, although larger blocks up to 50cm 
also occur. Boulders up to 6m in diameter are found scattered 

across/...
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across the surface of the mounds and ridges. Thera is no 

evidence of sorting or stratification in any of the exposures 

examined and no indication of the compact dark brown till found 

at lower altitudes in other parts of the Tweedsmuir Hills.

The constant alignment of successive mound and ridge forms at 

the furthermost extent of the morainic deposits and again in the 

vicinity, of the cirque heads suggests that in these localities 

at least, the moraines relate to the ice margin of a retreating 

but active ice tongue and as such are probably end moraines.

3etween the two areas where end moraines can be identified, there 

is a more chaotic landscape with, no apparent preferential alignment 

to the mound or ridge forms. This "chaotic landscape" is termed 

hummocky moraine. The end moraines and associated areas of 

hummocky moraine in the vicinity of Loch Skene are indicated on 

figure 3.15.

A multiple and moraine sequence extends down the Tail Burn from 

the southern shore of Loch Skene in association with the well- 

developed ridge form, "the Causey" (Fig. 3.15; Plate 3M).

These ridges have steeper sides and are higher than any other 

forms in the vicinity of Loch Skene, exceeding 15 - l6m in places. 
The width of ridge crests varies between forms. Along most of 

its length,, the crest of "the Causey" is only 3 - 6m wide, but 
one of the end moraine ridges flanking the southern shore of 

Loch Skene has a crest width of 50 - 60m (Fig. 3.15). Several 

of the wider ridge forms in this multiple sequence have kettle 

hole depressions along their crest, suggesting that in part 

the ridges were originally ice—cored. The best example of sucn a 

depression is Hogg's Well (Fig. 3.1c), a kettle hole approximately 

30m in diameter which still retains a sizeable volume of water 

(Plate 3N)./...
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(Plate 3n ). In profile, all of the moraine ridges along the southern 

shore of Loch Skene have convex sides facing downstream in a 

southerly direction and concave flanks facing upstream, their 

method of formation suggested by Chambers (1855), "... being 

usually placed in front of these (glaciers) as a fender is 

placed before a fire" (P. 99)• The moraine ridges which extend 

down the course of the Tail Burn are believed to represent the 

maximal limits and initial stages of subsequent intermittent 

retreat of a small ice mass in the vicinity of Loch Skene.

Clearly identifiable.discontinuous ridge forms, again taken to 

represent end moraines, are also found in the Midlaw and 

Loch Skene cirque heads. Referring to the area near the head 

of the Midlaw Burn, A. Geikie (1863) stated, "... the bottom of 
the corrie (cirque) for about mile (360m) is a flat plain .... 
from which the hills rise with single abruptness. This plain has 

all the appearance of having been at one time occupied by a lake.

It’s lower end is barred across by a great convex rampart of earth 

and stones about ^Oft (12.5m) 'high, pointing down the valley, and 

sloping away up on the north-eastern side into a well-defined 

ridge of the same materials, which runs along the hill which 

bounds the valley to the north-east. This transverse mound is a 

true terminal moraine; and the ridge on the hill-side above 

is in like manner, a lateral moraine" (P. 162; Fig. 2.15). At 

the head of Loch Skene, a similar sequence of end moraines to 

that of the Midlaw cirque is.found along the north-east lower 

cirque wall. The discontinuous pattern of postulated frontal 

and lateral end moraines which occupy the Midlaw and Loch Skene 

cirques most-likely represent several late-stages m  the retreat 

af/...
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of the ice mass previously referred to. The former existence 

of a small lake, whose waters were retained by a morainic dam 

at the head of the Midlaw cirque in a similar fashion to Loch 

Skene at the present day, could be neither verified or disproved.

A boring revealed one metre of peat overlying coarse angular 

debris, with no evidence of lake clays. However, as the 

'’morainic dam” is breached at two localities, it, is possible 

that the short-lived nature of the lake limited the development 

of such deposits (Plates 301 3P* 3Q)«
Young (186*0 described the area between the postulated morainic 

dam in the Upper Midlaw valley and Loch Skene as ”... a sea of 

mounds showing no trace of order, their surface strewn with 

large blocks” (P. *1-56). Such a statement typifies the 

difficulties of describing the chaotic landscape generally 

associated with areas of hummocky moraine. There are two main 

areas of hummocky moraine in the vicinity of Loch Skene: at

the head of the Winterhope valley, to the north of "the Causey” 

end moraine; and on the regional slope leading down from the 

Upper Midlaw. Burn to the Tail Burn. In both areas there is a 

complete intermixture of mound and minor ridge forms aligned in 

a variety of directions, whose dimensions apparently vary at will. 

Some of the forms are flat-topped and exceed 100m in width, often 

with kettle holes interspersed across their surfaces, others are 

narrow ridges only 1 - 2m in width. The kettle holes, small 

meltwater channels, and irregular peat accumulation, ~urther add 

to the disordered appearance. Generally however, relative relief 

values in the areas of hummocky moraine are oetween - 10m 

(Plate 3R)./...
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(Plate 3r ).

A third, area of hummocky moraine may be found beneath the waters 

of Loch Skene itself, the only indication of this being the small 

morainic islands, representative of the crests of mounds and 

ridges, which project above the loch surface. The limited 

nature of the bathymetric survey work which has been carried 

out at Loch Skene (Fig. 3.16), makes it impossible to substantiate 

such a claim at the present time.

b) Moraines in the Carrifran &'Blackhope Valleys. Similar

morainic' landforms, but less abundant and certainly less well- 

developed than those in the vicinity of Loch Skene, are found on the 

floors of the ,steep-sided Carrifran and ..Blackhope troughs (Figs. 3 .17 ,
3.IS).. The moraines in both valleys are represented by a series of 

boulder-strewn mounds whose dimensions vary up to 10m in height 
and 50 - 70m in length. However, such a statement regarding 

dimensions is slightly misleading as the majority of the forms 

are indistinct and possess only low-angle sides, occasionally 

blending imperceptibly into the valley flanks. No readily 

identifiable end moraines are visible. Indeed, it is difficult 

to identify any pattern to the scattered mound forms in either 

the Carrifran or Blackhope valleys, but if anything they appear 

to be aligned downvalley, at a low angle to the regional contour 

pattern.
Slope processes on the steep valley sides, for which tnere is 

abundant evidence particularly in the Upper Carrifran (Fig. 3.18), 

may have masked the full extent of the morainic accumulations and 

at least partially contributed to their ill-defined appearance at 

the/...
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the present day. All evidence relating to the occurrence of 

morainic landforms in the Carrifran and Blackhope valleys is 

found between - 366 m.o.d., within approx. 60m of the 
valley floors. Therefore, although there is little doubt that 

moraines are found in the Carrifran and Blackhope valleys, their 

numbers, dimensions and morphology are far inferior to the similar 
forms in the vicinity of Loch Skene.

c) Formation of Morainic Mounds in Area I. "There can be little

doubt but that the mountainous area around Loch Skene was an 

independent centre of dispersal during the Great Ice Age and there 

is evidence that towards the close of the period a recurrence of 

colder' conditions gave rise to valley glaciers" (Eckford and Manson, 

1927, P. 508 - 509). The morainic mounds in the vicinity of Loch 

Skene, and in the Carrifran and Blackhope valleys, other similar 

high-altitude forms in the Southern Uplands, and more extensive and 

dateable forms in the Highlands, are believed to have formed 

during the "recurrence of colder conditions" associated with the 

Loch Lomond, Zone III or Younger Dryas readvance or advance of 

ice, either during or after the main period of deglaciation 

associated with the last ice sheet (Sissons, 1967b, 1976,

1979a; Gray and Lowe 1977)-

A tentative reconstruction of the last glaciers to oe present in 

Area I, based principally upon the extent of the morainic landforms, 

is illustrated in figure 3.19. In the vicinity of Loch Skene, 

the ice masses spawned in the cirques at the head 01 ^och Skene 
and the Midlaw B u m  coalesced, and tongues of ice extended down 

the V/interhope and Tail valleys. The maximum extent of -hsse ice 

lobes/...
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lobes and their initial stages of retreat are well-marked by end 

moraine mounds and ridges. During the later stages of decay 

it appears that this enlarged Loch Skene ice mass again became 

dissociated into two separate cirque glaciers, the final stages 

in dissipation of these also being well-marked by end moraines.

The location, morphology and extent of the morainic accumulations 

in the Carrifran and 31ackhope valleys suggest formation in 

association with two narrow, low-lying glaciers occupying mainly 

the valley floors. The extensive evidence of mass movement down 

the steep flanks of both valleys, in close association with the 

moraines, may relate to enhanced periglacial activity when the 

glaciers were present.

3.6 : FLUVIOGLACIAL EROSION

The erosive capacity of meltwater is well-exhibited in Area I.

Most of the channel forms were identified in the field by the anomalous 

positions of their in-takes and outlets in relation to the present- 

day drainage pattern. Other forms were identified only with 

difficulty, being occupied along at least part of their course 

by stream activity. The vast majority of channel forms are 

incised across the slopes of the major valley systems into bedrock, 

although a few forms are cut wholly into drift material in the 

valley floors. Postglacial modification of channel form was 

particularly significant in relation to channel development in 

the upland areas, where infilling by mass wastage and the formation 

of peat often masked true channel dimensions.

Several hundred channels were identified m  Area I (Figs. 3*^i 3.20), 

but the uneven distribution of these makes it desirable to sub

divide/. ..
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divide the area and examine the main concentrations individually.

As suggested above, channel concentrations are found in association 

with the major valley systems, and on this basis a three fold 

division of Area I was adopted (3.20).

CIiANNEL_SYSTEMS^IN^MOFFATDALE. Geikie wrote the following lines 

referring to the Silurian district of southern Scotland, "... there 

occur, numerous ravines and narrow valleys, either with one or both 

ends cut off running along the sides of the hills, especially where 

these border a principal valley. Such depressions are cut through 

the solid rock; tney have frequently steep sides and have every 

resemblance to water courses,, but they are either quite dry or are 

traversed merely by the drainage of small springs issuing from the 

hillside" (A.Geikie, 1863, P. 28). Such statements may well have 

been written about Moffatdale, for as illustrated on figures 3.4, 

3.20, there is a dense if discontinuous record of meltwater activity 

across the flanks of the valley, running generally parallel or at a 

low angle to the contour pattern. A greater understanding of glacial 

conditions at the time of this meltwater activity may be gained by 

detailed examinations of individual channel systems and their 

relationship to surrounding glacial and rluvioglacial deposits. 

Channel systems C and D (Figs. 3.20, 3.21), consist of a series of 

two-sided channels and one-sided bench forms which were incised 

into the north-west flank of Moffatdale, on the slopes of Carrifran 

Gans. The highest channels in these systems (D1 and D2, Fig. 3.21) , 

have their in-takes at altitudes between 701 - 732 m.o.d., and plunge 

directly downslooe towards the Carrifran Burn, to terminate at 

altitudes/...



81

altitudes between W  - 533 m.o.d.. However, these channels 

are unrepresentative of the main part of the system (D3 - D12,

Fig. 3.2l), which runs across the slope, generally narallel to the 

contour pattern and to the alignment of the Moffat Water valley- 

itself. Channel D3 (Fig. 3.21), takes the form of a one-sided 

bench, l8m wide, incised wholly into bedrock throughout its 

length. The in-take is found at 686 m.o.d., but the nature 
of the bench is such that where it terminates, having run across 

the slope in a south-westerly direction for 220m, it is only a 
few. metres lower in altitude. Another bench of similar dimensions 

is found 5 - 6m below D3, but this form D*t (Fig. 3..21"), although 

again principally following a course- across the regional slope, 

also possesses a segment which trends more directly downslope 

from the bench for J> - b-m before terminating abruptly. D5 is yet 

another bench, and the most continuous form in the system. The 

bench, which is l^m wide at its in-take, begins at approximately 

GkO m.o.d. and although breached by postglacial stream activity 

a short distance along its course, continues across the slope 

for 660m. Throughout its length the bench closely follows the 

contours of the hillslope, falling only 15 - 20m in altitude, 
although it gradually narrows to -̂m in width at its outlet. The 

gradient of D5 is approximately l:*tO.

Channel forms DIO and Dll, (Fig. 3.2l), are found between 
^ 2  - V79 m.o.d.. In both cases it is not an individual channel 
form which is represented, but a series of closely spaced narrow 

benches, seDarated by only 1 - 2m in altitude, all of which run 

■parallel or at a low angle to the contour pattern, xhe benches 

represented by DIO are replaced over the last 100m of -heir 

b-OOm/...
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^OOm length by a single channel fora, 8a deep and with a flat 
floor 22m wide, which is incised into the northern flank of the 
rock knoll, Dun Knowe. oimilarly, the lower bench forms of 

Dll are replaced i70m along their course by a channel form 

(D12, Fig. 3.21), 5m deep and with a flat floor 3m wide, which 

trends more obliquely downslope for 275m towards Dun Knowe. In 

the- vicinity of the rock knoll, the course of this latter channel 

changes dramatically to plunge directly downslope for l80m at 
right angles to the contour pattern, finally terminating at 

2̂ +3 m. o. d. •
Channel system C (Fig. 3.21'), is found 300 - ^00m to the north-east 

of system D, the channel forms occurring at broadly similar altitudes. 

However, there are several significant differences between the two 

systems. Firstly, the channel forms of system C are all incised 

across a poorly-developed spur descending eastwards from Carrifran 

Gans, and not on the south-west to north-east trending main valley 

slope, as was the case with system D. Secondly, the orientation of 

the higher channels, particularly those above 580 m.o.d., indicate 
formation by meltwater derived from a more northerly source than 

that which formed system D. However, the alignment of the channels 

strongly suggests that on joining the main valley, the meltwater 

which incised system C has followed a more south-westerly course 

and may also have incised system D downvalley. Thirdly, whereas 

with system D, all the channel floors sloped down in a south-west 

direction from their point of in-take, several of the long-profiles 

for channels in system C suggest formation by meltwater which .j.ov/ed 

uphill along at least part of its course. Channel C5 -g. 3.21), 

illustrates this situation well. The channel has twin m-takes 

at/...
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at k72 m.o.d. which merge upslope to form a wide, flat-floored 

form which is incised across the crest of the spur. Where best- 

developed the floor of the channel is 85m wide and 5m deep. On 

ohe southern flank of the spur crest, the channel form narrows, 

but is clearly continuous, finally terminating at an altitude of 

approximately 335 m.o.d. . It is difficult to be certain as to the 

exact limit of meltwater erosion on this southern flank of the 

spur, as part of channel C5 has been subsequently utilised by 

postglacial stream activity.

On the southern side of the Moffat Water valley a similar 

discontinuous channel pattern to that found on the flanks of 

Carrifran Gans is represented by systems N and 0 (Figs. 3.20r 3-22), 
which are incised across spurs projecting into Moffatdale from 

Croft Head. The highest channel form is Ml (Fig. 3.22)» 

a bench 30 - 35m wide, which runs across the crest of the spur 
for 175m at an altitude of 5^0 m.o.d.. The bench stops abruptly 

at the southern edge of the spur crest, but there is evidence 

in the form of a small channel, (2m deep with a flat floor one 
metre wide), to suggest that at some time a small flow of 

meltwater continued downslope on the lee side of the spur, 

albeit only for 60 - 70m. The other channel forms of system 

N are of similar dimensions to Ml and occur at successively lower 

altitudes across the spur, the lowest at -̂27 m.o.d.. In all 

cases the forms are incised across the crest of the spur, and 

trend parallel to the alignment of the Moffat Water valley itself. 

The highest channels of system 0 (Fig. 3.22), run directly downslope 

on the southern flank of the spur between 503 ~ '+57 m.o.d.. ^hese 

five channels represented by 01, 02 and 03 (■? ig« 3.22) r all posoess 

similar/...
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similar dimensions. They are 3 - 6m deep, with flat floors 3 - 4m 
in width. Channel 03 is of particular interest in that it has a 

semi-circular in-take to its downslope course. There is no 

evidence of meltwater erosion across the crest of the spur in 

the vicinity of these channels. Lower down the spur, channels 

are incised directly across the crest at a variety of angles,

but broadly parallel to the alignment of the main valley. One

of the largest forms is channel 06 (Fig. 3.22 0, found at 381 m.o.d..
The channel is 150 - 160 m.o.d. in length, has aflat floor 9® in

width, and is incised 5m into bedrock. When viewed in long-profile, 

the channel can be seen to be humped, with the high point of the 

channel floor coinciding approximately with the crest of the spur. 

Several other discontinuous channel systems are incised into both 

the northern and southern flanks of the valley further down 

Moffatdale near its junction with Annandale (systems I, J, K,L,

P, Q, R, S, Figs. 3.4, 3.20). The channel forms are again most 

commonly found incised into the spurs which extend into Moffatdale 

itself.

The meltwater channel pattern within Moffatdale as a whole can 

therefore be seen to be aligned essentially in a north-east to 

south-west direction, parallel to the main valley and generally 

parallel to the regional contour pattern also. The only deviations 

from this are found at the junction of Moffatdale with Annandale, 

where meltwater has followed a route more directly southwards, 

and at those parts within the valley itself where locally there 

was a tendency for meltwater to trend more directly downsj.ope 

(Figs. 3-^, 3-.2D).

CHANNEL/-••
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CHANNEL.SYSTEMS IN UPPER ANNANDALE

a.) Area to the North of Moffat. The meltwater drainage

pattern in this area differs greatly from that incised in the 

vicinity of Mofxatdale, for although there is evidence of meltwater 

entering this part of Area I from the north and north-west up 

to altitudes exceeding 615 m.o.d. (Figs. 3. ,̂ 3.20), the vast 

majority of channel forms are found below 2̂ -3 m.o.d.. Furthermore, 

as also indicated on figures. 3.*+, 3.20 the channel forms found 

here generally trend directly downslope at a high angle to the 

local contour pattern and that only in isolated cases do they 

run parallel to the contour pattern in the manner typical of 

Moffatdale. This fact is well-illustrated by channel systems BB, 

CC, EE, FF, GG, II (Fig. 3.20, 3.23, .3.24).

Channel system II (Fig. 3.23 ), is located on the lower western 

flank of Annandale and consists of a series of channel forms 

which are aligned directly downslope, at right angles to the 

contour pattern. The highest in-take of the system is that of 

II. l(Fig. 3.23 ), at approximately 250 m.o.d., on the western side 

of the B719 road. At the road itself, the channel is incised 

5m into bedrock and possesses a flat floor 2m wide. An indistinct 

bench form continues for just over one hundred metres to the 

north-west of the main point of in-take. Moving downslope from 

here across the road, channel dimensions gradually increase, and 

the principal meltwater flow down channel Ix 1 was augmented by 

two smaller tributaries from the south. The lower part of the 

channel, slightly disconnected from the upper segments and here 

termed 112 (Fig. 3.23), is presently occupied oy the .ooiehouse 

Linn Bum. Over this part of the charms- -ength me_twater has 

cut/...
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cut a deeply-entrenched feature into bedrock, 15 - l6m in 
depth, with a narrow floor 1 - 2m wide. Channel II 1 - II 2 

terminates abruptly at its junction v/ith the Annan floodplain 

at jAo m.o.d.. Channel II k (Fig. 3.23)/ has two semi-circular 

plunge-pool in-tatces, a northern form and a western form, the 

latter partly hidden by the road; both are at approximately 

227 m.o.d. and laterally within lCCm of each other. Along the 

first J>00 - 350m of II ^ meltwater flowed at a fairly low angle 
to the contour pattern, across the slope, in a channel 8m 
deep and 15m wide. The course of the channel then changes 

abruptly at 213 m.o.d., and plunges more directly downslope, 

becoming deeply-incised. Along this part of the course, the 

channel is 10m deep but the floor only 1 - 2m in width. The 

channel finally bifurcates to give twin outlets, both of which 

grade into the Annan floodplain at 146 m.o.d... Of the two outlets, 

the southern form is the more deeply-incised, but of limited 

length, as it becomes a tributary to channel II 5 (Fig- 3.23 ). 

Channel II 5 also starts its course abruptly, again with a semi

circular plunge pool in-take, but at the slightly lower altitude of 

213 m.o.d.. The channel runs directly downslope throughout its 

500ra length. At the point of in-take it has a flat floor 4 - 5m 

wide and is incised 8m into bedrock. Moving downslope the channel 

narrows but deepens, such that after the junction with channel II +̂, 

floor width is only 2m but the channel is incised to a depth of 12ra. 
The smaller channel forms, II 6, 8 and 9 (Fig* 3.23), all start 

abruptly also, but run downslope for only a short distance before 

terminating equally abruptly, their courses extending -rom 1^9 - 

170 m.o.d., 167 - 1^9 m.o.d., and 197 - 167 m.o.d. respectively, 
^art/...
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Part of the course of channel II 7 (Fig. 3.23), has also been 
occupied by postglacial fluvial activity, in this case by 

the Gardenholm Linn Burn.

On the eastern flank of Annandale between the Granton and Lochan 

Burns there is another detailed channel pattern, and once again 

the largest and best-developed examples of fluvioglacial erosion 

are occupied by present day streams, in this case the lower courses 

of the misfit Lochan, Auchencat and Granton Burns, in association 

with which channel systems CC, EE, FF and GG are found.

Channel system CC is dominated by the channel presently occupied 

by the Lochan. Burn (CC 1, Fig. 3.24)- This feature has a flat floor, 

kjm in width and is incised to a depth of 10m through drift material 
into the underlying bedrock. The wide, deeply-incised nature of the 

Lochan B u m  is first evident at approximately 228 m.o.d. and the 

channel form continues downstream to 197 m.o.d., where it blends 
into the Annan floodplain. There is only one small channel, CC 2 

(Fig. 3*2^), leading into the main channel. In a similar fashion, 

the channel occupied by the Auchencat Burn dominates channel system 

EE (Fig. 3.24). Enlargement of the fluvial form by meltwater erosion 

first becomes apparent again, at approximately 228 m.o.d., where 
the Auchencat Burn plunges down a steep-sided gorge which opens 

out to become a wide, flat-floored channel, deeply-incised through 

drift deposits into the underlying bedrock. The floor of the channel 

varies between 30 - ^Om in width, the channel sides rising 10 - 13m 
above this. The Auchencat channel (EE 1, Fig. 3.24), joins the 
Annan floodplain at approximately lo7 m.o.d.. The only large feeder 

for this channel is the "Herring Loup", channel EE 2 (Fig. 3»24), 

which follows a short course, starting abruptly at 205 m.o.d. 

where/...
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where meltwater has incised through sand and gravel deposits 

into bedrock, to a depth of 12m. This channel runs for only 

200m before smoothly joining the Auchencat channel at 195 m.o.d.. 
There is another small feeder to the Auchencat channel, channel 

EE 3 (Fig. 3.24)1 which joins the main channel from the north 

and is incised entirely into drift deposits (Plate 3S).

All of the channels of system FE (Fig. 3.24), found between the 

Auchencat and. Granton Burns are cut entirely into drift deposits 

and run downslope at a high angle to the contour pattern. These 

forms are not as! deeply-incised or sharply-defined as the forms 

incised through to. bedrock, and as such are often difficult to 

identify, being only a few metres wide and 1 - 2m in depth. The 

points of in-take for these channels vary slightly in altitude, 

as do the outlets, one form (FF 1, Fig. 3.24), leading across 

the slope to debouch into the Granton channel, while the two 

others (FF 2, FF3, Fig. 3-2*0, trend more directly downslope to 

the Annan floodplains (Plate-3T').

The Granton channel is the major meltwater routeway of system 

GG (Fig. 3„24). The channel has two major points of in-take; 

at 221 m.o.d., where the course of the Mere Beck Burn swings 

through 90 degrees coming down from the uplands (GG 1, Fig. 3.-24), 

and at 197 m.o.d., along the lower course of the Granton Burn 

itself (GG2, Fig. 3.,24). Where best-developed, the Granton channel 

is 20 - 30m wide and incised l8 - 20m through drift deposits into 
bedrock. This major channel narrows at its outlet to grade smoothly 

into the Annan floodplain at 162 m.o.d.. In addition to the channel 

forms which lead into the Granton channel from the north, there are 

also smaller features, again incised entirely into drift deposits, 

tyhich run obliquely across the regional slope to join the main 

channel from its southern side (Channels GG5i GGo, GG7, £ig- 3.24). 
Channel/...
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Channel GG 8 (Fig. 3.24), "Hind Gill", which is aligned 
approximately north-south and has its in-take to the south of 

channels GG 1 - GG 7» at 235 m.o.d., is believed to have formed 

in intricate association with the other channels in systems EE,

FF and GG. Hind Gill (GG 8), has an up-down long profile, is 
. incised to a depth of 7 - 9m into bedrock and has a flat floor 
15 - 20m wide (Plate 3U).

In order' to fully understand the mode of formation of channel 

systems CC, EE, FF and GG, brief mention must be made at this 

point of the close association of the channel forms with evidence 

of fluvioglacial deposition in this vicinity (Fig. 3.24). The 

points of in-take of all the channel forms of systems CC, EE, FF 

and GG, with the exception of those presently occupied by the Lochan, 

Auchencat and Granton Bums themselves, are found in close association 

with, and often commence at, fairly narrow, level, terrace-like 

spreads of sand and gravel found along this eastern flank- of the 

valley. From exposures, the narrow gravel spreads can be seen 

to consist of 3 - *fm of poorly-bedded, sub-rounded and sub- 

angular pebbles, mainly less than 2cm in diameter, in a clayey- 
gritty matrix and by their constituency, morphology and location 

are tentatively termed marginal lake deposits (Fig. 3.24). 

Fluvioglacial deposits continue downslope of the marginal lake 

deposits, but as a series of irregular mounds and short ridges, 

generally aligned at a high angle to the contour pattern and 

dissected by the meltwater activity associated with systems CC, EE,

FF and GG (Plate 3V).
b) Area to the South of Moffat. As indicated on figures

3.*+, 3.20 all of the channels in this area are incised entirely 

♦into/...
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into drift deposits, mainly sand and gravel. As a result,

channel form is often indistinct and channel dimensions vary

greatly. All points of in-take and outlet are found below 122 m.o.d..

CHANNEL SYSTEMS IN THE VICINITY OF THE EVAN WATER VALLEY.
The channel systems in the vicinity of the Evan Water

(Figs. 3*20), have similarities in distribution with both
the contrasting patterns which are dominant in Moffatdale and

Annandale respectively, described above. Although channel forms

are not well-developed on the steep sides of the Evan Water valley

itself,, to the west of the Evan Water both benches and channels are found

incised across the crests and flanks of west-east aligned spurs and

ridges. Much of the meltwater activity in this western area has

been masked by the work of the Forestry Commission in recent years

and as a result was mapped by the examination of air photographs.

Despite this limitation on fieldwork however, clear correlation 

of the higher channel pattern of the area with the channels 

incised across the spurs of Moffatdale is readily apparent. The 

forms incised across spurs in the vicinity of the Evan Water trend 

in a south to south-east direction and dominate the regional pattern, 

Locally however, within the Garpol Water valley (System TT, Fig. 3.20'), 

channels trend directly downslope and have developed in close 

association with fluvioglacial deposits, as in Upper Annandale.

Channel system KR (Fig. 3.25), is incised across the crest of 

Tarnis Head and the two spurs which descend in a south-easterly 

direction from here on either side of the Tarnis Burn. All the 

individual channel forms slope down in a broadly southward direction, 

although/...
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although slight local variations are readily apparent from 
figure 3*25.

The forms incised across Tarnis Head itself, at approximately 

396 m.o.d., typify the channels in this vicinity, in that they 

have been heavily infilled with peat, which masks their true 

dimensions. Despite infilling however, the best-developed 

of these higher forms, RE 13, RE Ik (Fig. 3.25), are incised 

16 - l8m into bedrock and have flat floors 20 - 6Cm in width. 
Channels EE 13 - 17 (Fig. 3.25), are not in fact incised across 

the entire ridge crest, but principally developed on the south

eastern flank. Indeed, dominant development on the southern side 

of the spur crests is characteristic of the vast majority of 

the channels in the area of Tarnis Head and is particularly 

well-illustrated by the anastomosing patterns of channels RE 9 

and RR 10. With both channels, the dimensions of the complex 

forms are similar, with incision into bedrock to a depth of 

5 - 8m and flat peat-filled floors 10 - 20m in width.
In contrast to those forms incised mainly or solely into the 

southern side of the spur crest, are the channels developed 

across both the northern and southern sides of the crests and 

which possess a humped or up-down profile, e.g. channels RR 6,
12, 25, 26, 29, 30 (Fig. 3.25). Such forms characteristically 

have a short northerly uphill section, less than 100m in 
length, but as before are best-developed down the southern 

flank of the spur crests.
Regardless of the exact form and location of any particular 

channel, two general conclusions can oe drawn ^rom the pattern 

depicted/...
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depicted on figure 3*25 • 1) the channels occur at successively

lower altitudes when followed eastwards down the spurs5 
2) it seems highly probable, by their altitude and alignment, 

that the meltwater which incised the higher channels of system 

RR (RE 9 - 15, Fig. 3.25), was also responsible for the incision 

of at least some of the forms RR l8 - 32 (Fig. 3.25), although 

it is impossible to mai;ch the two groups of channels accurately. 

Channel system RR therefore mirrors the larger pattern for 

the area in the vicinity of the Evan V/ater as a whole (Fig. 3.20)1 
with channel forms aligned in a south-to south-east direction 

concentrated across west-east trending spurs and ridges.

Channel system TT (Fig. 3.26), found in the Garpol Water valley,, 

is fundamentally different from the higher channel systems in this 

area. The channels of system TT do not cut across the grain of 

the local topography, but are incised downslope at a high angle 

to the contour pattern, towards the Garpol Water, and occur in 

close association with fluvioglacial landforms and deposits. 

Channel in-takes are concentrated between 213 - 2^3 m.o.d., 

the forms generally terminating at the valley floor (approximately 

182 m.o.d.). The Garpol Glen, which links the Garpol Water with 

the Evan V/ater, and is incised 16 - l8m through drift deposits 

into bedrock, with a flat floor 25 - 30m wide, acted as a major 
routeway for meltwater leaving the valley. Channel forms on 

the adjacent Beattock Hill, (e.g. at "Hell's Hole"), indicate 

meltwater flow in a south to south-east direction at altitudes 

over approximately 2^3 m.o.d..
Summarising meltwater conditions m  this western par^ of Area x, 

.channel/...
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channel forms at higher altitudes, generally above 2̂ -3 m.o.d., 

are incised in a south to south-east direction across the 

underlying topography, while those below this level tend to 

run. downslope at some high angle to the local contour pattern.

CONDITIONS_LEADING TO THE FORMATION OF THE MELTWATER CHANNEL. 
PATTERN_IN AREA_I.

The complex and highly varied meltwater channel pattern in 

Area I, is indicative of formation by meltwater encountering 

the equally varied underlying relief in several different glacial

environments. Taking an overall view of meltwater movements
/

across the area (Fig. 3^20) t it can be seen that there was 
no single source responsible for this pattern. In the west 

of Area I, those channels which do not plunge downslope at right- 

angles to the local contour pattern, slope generally south to 

south-east. Over Annandale a dominant southerly flow of meltwater 

is indicated, while in the vicinity of Moffatdale the principal 

direction of meltwater flow was south-west. Price (1973) 

suggested that, MThe general direction of meltwater movement 

also gives a general indication of the surface slope of the 

ice mass and therefore general direction of ice movement”

(P. 128). As the above southward trending pattern of meltwater 

channels is found at all but the lowest altitudes, the surface 

slope of the ice mass during downwastage is also believed to 

have declined in this direction across Area I.

The densest concentration of channels, as previously mentioned, 

is found in Moffatdale. The discontinuous nature of the 

channel forms found here and their occurrence either parallel *-0 

or/...
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or at a low angle to the regional contour pattern, is generally

associated with formation in a marginal or sub—marginal

environment (Von Engeln 1908; Mannerfelt 19*+9; Sissons

1961a; Price 1961). Both one-sided Dench and two-sided gulley

forms are found together and while bench forms were formerly

considered to represent formation along an ice margin, with

ice forming one wall of the channel and rock slope the other,

the development of bench or channel is now considered to be

dependent upon the length of time that a rock slope was exposed

to meltwater erosion and as such, bench forms can also be produced

in a submarginal position (Sissons, 196la, P. 15 - 16). In all

probability the vast majority of the channel forms across the

flanks of Moffatdale were incised in a submarginal position (Tarr

1909; Von Engeln 1912)- Formation in an entirely marginal

position is impossible to prove with any certainty, but a

distinction between these two end members of what is virtually

a continuum of forms based upon the gradient of the channels

was suggested by Sugden and John (1976, P. 312). On such a

basis, the more continuous channels, such as D5 (Fig. 3.21),

with gradients of approximately 1:40, are the only forms which

may possibly have been incised in a wholly marginal position.

It is further suggested that a submarginal origin is more

probable for the forms which trend obliquely downslope at

some intermediate angle between approximately parallel, and at
»

right-angles, to the contour pattern, in the manner well- 

illustrated by channels throughout Moffatdale.

The vast majority of the channel forms flanking Moffatdale are 

short features, seldom extending across a slope for more
/
than/...



95

than 300 - ^OOm and generally not incised more than 3 - km, 
except where found running downslope at right-angles to the 

contour pattern. In addition, there is little interlinkage 

of channel forms, it being more common to find a series of 

minor channels which have developed individually across a spur 

or hillslope (e.g. systems F, M, N, 0 Figs. 3.*+, 3.2o). Such 

a pattern of channel development was principally determined 

by the underlying relief conditions in the vicinity of Moffatdale 

during downwastage of the last ice sheet (Figs. 3.6, 3*20). By 

comparing the cross-sectional.form of Moffatdale with figures 

3.^, 3*20 illustrating channel distribution, it becomes readily 
apparent that there was no marginal (this term referring to all 

channel forms produced in the lateral zone of a downwasting 

ice mass, generally occurring at a low angle to the local contour 

pattern) channel development along the steeply sloping south-east 

flank of Moffatdale upvalley of Bodesbeck (NT 015097, Fig. 3«*0» 

or on the steeper lower slopes below 305 m.o.d. throughout the 

valley. Marginal channel development was concentrated above 

305 m.o.d., where the rise to higher ground is achieved more 
gradually, the longest and most continuous channel forms occurring 

on the more gently-inclined slopes. On this basis,it is suggested 

that where t*he confining hill-slopes to a downwasting ice mass are 

steeply— inclined, marginal meltwater flow is more likely to cut 

into the ice than the rock slope (Fig. 3*27), and consequently 

the evidence of the meltwater drainage pattern must necessarily 

be of a fragmented nature. Such a situation is illustrated even 

on individual spurs, the large channel 06 (Fig. 3.22), occurring 

where locally the steepness of the spur slope is reduced. Thio

* channel/...
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channel attains mucn larger- dimensions than any of the other 

forms incised into the steeper parts of the slope in this 
vicinity.

As indicated on figure 3.20 the channel forms are found both 

along the. valley flanks and across the spurs which join the 

main valley from the north-west, in Upper Moffatdale and 

south-east#down-valley near the junction with Annandale.

There is no discernible pattern to channel development, other 

than the relationship to steepness of slope, in either location. 

However, there does appear to be a greater concentration of 

channel forms on the spurs, although their exact location 

on these varies enormously. Some channels merely run across 

the crest of the spur, or part of the crest, the floor of the 

channel generally sloping down in a south-west direction,

(e.g. N 1, N 2 and N 3i (Fig. 3.22); others have a short 

up-hill section from their in-take, but fade away over the 

ridge crest itself, (e.g. C 1, C 2, M 2 Figs. 3.21, 3.22); 

others still run uphill from their in-take to the crest of the 

spur and then continue for a short distance down the lee slope 

of the spur, to produce an up-down or humped profile, (e.g. 0 6,

0 7, Fig. 3-..22); while some channel forms have developed solely 

on the lee side of ridge crests, (e.g. 0 1, 0 2, 0 3? Fig. 3.22)• 
Shreve (1972), related the frequent occurrence of channels on 

bedrock convexities and their location upon a particular prominence 

to variations in the pressure gradient responsible for subglacial 

meltwater flow at the base of active ice (Fig. 3.28). Where there 

is no forward movement of the ice (A, 2 ig. 3.28), there is a 

downstream increase in transporting capacity whicn causes the 

erosion/...
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erosion of a rock, channel across the divide, and an up-down 

or humped channel is produced. V/ith ice movement across the 

divide (B, Fig. 3.28 , the zone of erosion is shifted towards 

the lee side, and it is in this vicinity that meltwater incision 
is concentrated.

Sugden and John (1976) used the part of Shreve's theory invoking 

subglacial meltwater flow beneath great thicknesses of ice, to 

account for the discontinuous nature of meltwater channels 

across bedrock convexities. Such channels were formerly 

attributed to the superimposition of englacial meltwater routes 

onto the underlying topography as the ice thinned during 

downwastage, the depth of meltwater incision being controlled 

by a descending zone of meltwater penetration (Price 1961,

1973; Derbyshire 1961; Embleton 1961; Sissons 1963; Clapperton 

1968).
It is tempting to adopt Shreve's theory in its entirety to 

explain the channel pattern over Moffatdale and indeed Area I 

as a whole. In this manner, the high percentage of channel forms 

best-developed on the lee sides of spurs and other convexities 

would be attributed to formation during forward movement of the 

ice mass, and the up-down channels produced during periods of 

stillstand.
However, the close areal association of these two channel types 

in Area Iv often both upon.the same spur, or the presence of 

different forms at similar altitudes on adjacent spurs, wouid 

suggest on the basis of Shreve's theory very xitful ice movement 

ever short distances. In addition, the theory does noi. explain 

the forms which are best-developed on the stoss sides of spurs. 

Consequently/...
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Consequently, it is believed that both subglacial meltwater 

flow beneath active ice and superimposition of englacial (and 

supraglacial) streams during downwastage, have played their 

part in the establishment of the channel pattern across 

bedrock convexities in Area I, although it is impossible to 

isolate channels formed by the two processes. Locally, over 

Moffatdale, the superimposition hypothesis is preferred 

because of the high frequency of poorly-developed channel and 

bench forms, the low gradients exhibited by the more continuous 

channels, and the improbability of wholly .subglacial meltwater 

flow descending and re-ascending through altitudes up to 500m 
over horizontal distances as small as one kilometre. A dense 

network of englacial streams, derived both supraglacially and 

extraglacially from ice-free uplands and occupying lateral 

positions in relation to the valley slopes, are therefore 

believed to have impinged upon the steeply-sloping topography 

of Moffatdale for short periods during downwastage.

The channel pattern in Moffatdale does not solely relate to 

formation by south-westward flowing meltwater occupying 

a marginal position however, for in places channels plunge 

directly downslope in the manner associated with subglacial 

chutes (Mannerfelt 19^5). Most of the chute forms are found 
on the north-west flank of Moffatdale (Fig. 3/0, often at "he 

junction of steeply-incised valley and upland plateau, suggesting 

that during downwastage gaps in the decaying ice mass developed in 

such localities, allowing supraglacial or englacial streams to 

flow more directly downslope. Elsewhere m  the area however, 

subglacial chutes are found m  association with the marginal 

drainage/...
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drainage pattern, indicating the re-direction of meltwater 

from a course sub-parallel to the regional contour pattern, 

to a course directly downslope at right-angles to the contour 

pattern (Fig. 3»̂ )» The re-direction of meltwater flow was 

the result of changing relief and/or glaciological conditions 

during downwastage. Consequently, meltwater has become 

increasingly focused downslope into the ice mass itself during 

the period of deglaciation, as evidenced by the total absence of 

marginal channel forms below the level of many chute in-takes 

in Moffatdale (Fig. 3»̂ )» Such a theory, implying the concentration 

of meltwater in mid-valley at the deepest point, has been suggested 

by several authors (Shreve 1972; Weertman 1972; Sugden and John 

1976). Therefore, at a late-stage in the downwastage of the 

ice mass over Moffatdale, the local channel pattern suggests 

that subglacial and englacial drainage formed a three-dimensional 

dendritic tunnel pattern within the ice, leading down to a 

subglacial master tunnel which ran along much of the length of 

Moffatdale. Consequently, although the steep-sided form of the 

fault-line valley is mainly attributed to the actions of glacial 

erosion, it is believed that Moffatdale itself represents the 

largest meltwater channel in the area and that the valley floor 

was further deepened by concentrated fluvioglacial erosion by 

meltwater following a south-westerly course.

In complete contrast to the situation in Moffatdale, the majority 

of the channels in Annandale occur at low altitudes and trend 

downslope at a high angle to the contpur pattern, indicative of 

a subglacial origin as stated above. The scarcity of channels 

at higher altitudes in Annandale can be attributed to <*he inter

action of two factors : 1) It was previously stated that the

ice gradient over Annandale sloped from north to south, ice 
being/...
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being derived both locally from the Tweedsmuir Hills and from

an external source to the north-west of Area I. During

downwastage however, although the. principal direction of

meltwater drainage over Annandale was in a southerly

direction, it is believed that much of the drainage from

the Tweedsmuir Hills followed the major ice routes, that is

the Auchencat and Lochan Valleys, swinging southwards only

at the junction with Annandale itself. Sugden and John

(1976) stated, "Where pre-existing valleys run in the direction

of ice movement, there may be no recognizable channels since the

meltwater tends to follow the valley'1 (P. 316). In this way,

the absence of channels from spurs in this vicinity can be explained.

2) This also involves consideration of underlying relief conditions

in that there are no major convexities aligned at right-angles

to the direction of ice movement in Annandale, unlike Moffatdale.

Consequently, at higher altitudes the southward trending meltwater

drainage over Annandale remained confined almost wholly within

the ice mass itself, coming into contact with the underlying

relief and thus supplying evidence to its existence, only rarely.

The above situation changed dramatically at approximately 

2kj, m.o.d.. It is at this altitude that the points of in-take 

of channel system II (Fig. 3.23)1 are found, the system itself 
being supplied by meltwater from the north-west. The plunge 

pool in—takes of several o£ these channel forms indicates that 

they were fed by streams descending tnrough the ice and encountering 

the subglacial rock with considerable force (Price, 1973, 119;

Fig. 3.29). The frequency! of similar channel forms in this 

vicinity all trending downslope at right angles to the contour 

pattern/...



pattern, suggests that there was some fundamental change in 

glaciological conditions within the downwasting ice mass at 

approximately 2̂ -3 m.o.d.,. As a result, meltwater which formerly 

followed a south to south-east course, leaving little trace of 

its presence, was forced to plunge down through the ice in the 

form of subglacial chutes onto the western flank of the Annan 

valley. In a similar fashion, all of the channel forms across 

the lower slopes of eastern Annandale also have their in-takesi
below 2̂ +3 m.o.d. and as mentioned were formed in association 

with several narrow marginal lakes which developed between the 

valley side and the downwasting ice mass over the valley floor 

(Figs. 3.24, 3.30A). The major source of meltwater for the

Auchencat marginal lake was the Auchencat valley itself, although 

the Lochan valley may possibly have augmented this. The source 

of meltwater for the Granton lake is not so readily apparent, with 

only one small sinuous channel, GG k (Fig. 3.24), leading into thi 

area. However, it is possible that the main channel GG 1 (Fig. 3. 

was itself initially depositional in nature before cutting down 

through the lacustrine deposits at a later stage. Possible supply 

from supraglacial and englacial streams must also be taken into 

consideration. Channel 8, "Hind Gill", (Fig. 3.24)t with, its 

intake at 235 m.o.d. at the southern end of the Granton lake, 

acted as a major overflow channel, although it is possible that 

there may have been a submarginal channel in this vicinity
i

prior to the formation of the lake itself.
The similar altitude of the terrace-like lacustrine forms and the 

concentration of*channels and fluvioglacial deposits below uhis
i

level suggests that both the Granton and Auchencat marginal lakes

were/...*
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were controlled by an englacial water-table, found between 213 - 
2^3 ffi-o.d. • Xt was the collapse of this water-table and subsequent 

drainage of the lakes that produced the subglacial channel forms 

found in this vicinity. Channel CC 1 the Lochan Burn valley 

Channel EE 3 and channels FF 1, FF 2, FF 3 (Fig. 3.24), all 
acted as subglacial drainage outlets from the Auchencat lake.

From the altitudes of their in-takes, it would appear that 

channels FF 1, FF 2, FF 3 EE 3 were utilised in succession,
I

but from their degree of incision, little meltwater evidently 

followed these courses. Indeed, the main subglacial drainage 

outlet, (Gillberg 1956), was the Auchencat valley itself, with 

meltwater also joining this via the Herring Loup (EE 2, Fig. 3.24). 

Similarly with the Granton lake, prior to the collapse of the 

water-table meltwater escaped from here via channel GG 8 
(Hind Gill), but with collapse several outlets aligned 

downslope were again utilised. Channel GG 5 (Fig. 3-24), acted 

as a minor outlet for the lake, but of far greater significance 

were the deep subglacial courses incised by channels GG 1 and 

GG 2. Support for the postulation that the Granton valley functioned 

as a major meltwater routeway is supplied by the fact that channels 

FF 1 and GG 3, GG 6 and GG 7 (Fig. 3.24), all lead down to, but 
are left hanging above, the wide, flat channel floor (.?ig.

3.30B) .
The deeply—incised nature of the lower Granton, Auchencat and 

Lochan valleys is not solely attributable to the actions of 

meltwater and postglacial stream activity however. It snould 

also be noted in this context, that there is a fundamental change 

in bedrock lithology along the eastern flame of Upper Annandale 

between/...
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between 198 - 2^3 m.o.d. (Fig. 3.3). At these altitudes, the 

Silurian greywackes and grits are replaced downslope by 

comparatively less resistant breccias and sandstones of 

New Red Sandstone age. Therefore, it was the combination of 

concentrated subglacial meltwater erosion in an area of 

comparatively less resistant bedrock, that resulted in the 

enhanced dimensions of the channel forms to be found along 
the lower eastern flank of Annandale.

The collapse of th£ englacial water-table within the decaying 

ice mass over Annandale at approximately 213 - 2̂ 3 m.o.d., 

perhaps as a result of complete stagnation, was also responsible 

for the sudden downward movement of meltwater at a similar 

altitude on the western valley side which resulted in the 

incision of the subglacial chute forms of channel system II.

Also associated with the collapse, and the final wastage of ice 

in Annandale, are the fluvioglacial deposits along the valley 

floor and lower slopes, particularly on the eastern valley 

side. Fluvioglacial deposits are best-developed to the south of 

the town of Moffat, the channels found here being incised between 

and among the mounds and depressions which typify dead-ice 

topography (Fig. 3.*f). These channels are representative of 

subglacial and proglacial drainage during the final stages of 

ice decay.
The similarities in occurrence of channel forms in the vicinity 

of the Evan V/ater valley with those in Moffatdale and Annandale, 

as previously described, suggest similarities in their methods of 

formation. The presence tof discontinuous channel systems at 

higher altitudes over this western area which are incised across 

bedrock convexities (e.g. systems 00, PP, QQ, RR, S3, XX,
(Fig. 3.201, reintroduces the subglacial/superimposition debate. 
It/...



It could be argued that there is greater justification for 

attributing a higher percentage of these channels to formation 

by subglacial meltwater flow associated with active ice, on the 

greater restriction of channel forms to spur crests, and the 

less extreme relief conditions to be found in this western 

area than in Moffatdale. With this in mind, the fact that 

the best-developed channel forms of system RR (Fig. 3.25), are 

all found on the lee sides of divides and the anastomosing 

patterns of RR 9 and RR 10 (Fig. 3.25), only found in such 

a locality, is readily explained (Fig.. 3.28). However, elsewhere 

in this area and with particular reference to system XX (Figs. 

3.20f 3.3l), the close association of the channels with landforms 

of fluvioglacial deposition, strongly suggests that locally 

both fluvioglacial erosion and deposition were carried out 

by the superimposition of englacial streams during downwastage. 

(Channel system XX and the fluvioglacial deposits associated 

with this are discussed in greater detail in the section devoted 

to fluvioglacial deposition).

Again therefore, it is impossible to state with absolute certainty 

that a particular group of channels incised across a bedrock 

convexity were formed by wholly subglacial or superimposed 

englacial meltwater flow. Instead, it would appear that both 

types of meltwater stream may have been in existence and that 

the greater importance of one over the other in a particular area 

was dependent upon local glaciological and/or underlying relief 

conditions.
The channels at lower altitudes over the Evan Water district, 

generally below 2̂ +3 m.o.d., e*g» system TT (̂ ig. 3.26), r̂end 

downslope/...
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downslope at a high angle to the conour pattern, in a similar 

manner to the forms in Upper Annandale. Such channels were also 

formed at a late—stage in downwastage when glaciological conditions 

facilitated themovement of large amounts of meltwater down through the 

ice opto the underlying terrain. The close association of system TT 

with fluvioglacial deposits suggests that a residual tongue of 

ice stagnated and wasted away in the Garpol Water valley. However, 

the similarity in altitude of the in-takes for the subglacial 

chute forms in the Garpol Water valley with the altitude at which 

downslope meltwater activity began in Annandale, suggests that 

meltwater erosion over a large part of Area I was controlled 

by the same englacial water-table, even at such a late-stage in 

ice wastage.

SUMMARY. The overall pattern of meltwater activity in Area I, although 

complex, may therefore be summarised as follows:

1) Within Area I, the highest channel forms occur at altitudes 

exceeding 700 m.o.d., which suggests that during the last major 

glaciation, ice covered the area to at least this altitude.

The orientation and form of channels above 243 m.o.d. indicates 

that the surface slope of this ice mass declined in a broadly 

southward direction.

2) During downwastage ice lingered longest in Moffatdale and Annandale 

on the periphery of the Tweedsmuir Hills and further west in the 

vicinity of the Evan Water valley.

3) The nature and distribution of channels incised in association

with these decaying ice masses was strongly controlled by the underlying 

relief conditions, channel forms at higher altitudes being best-developed 

on bedrock convexities aligned at/...
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at right angles to the direction of meltwater flow.

*f) , The majority of the higher channel forms were cut by a 

series of englacial meltwater streams, their depth of incision 

controlled by an englacial water-table. With dcwnwastage and 

the lowering of this water-table, the englacial streams became 

superimposed onto the underlying relief. Over Moffatdale such streams 

were concentrated in a marginal position. In some localities where 

conditions were favourable, channels produced by the superimposition 

of the englacial drainage network are found alongside channels 

incised by subglacial flow controlled by pressures within the 

ice mass. It is difficult to differentiate between such forms.

5) The collapse of the englacial water-table, perhaps as a result 

of complete stagnation, occurred at an altitude between 213 - 2*+3 
m.o.d., and led to the rapid downslope movement of the englacial 

drainage in the manner of subglacial chutes. Over the eastern 

flank of Ann and ale, subglacial meltwater flow of this type

took place in association with the drainage of several small 

and short-lived marginal lakes.
6) Other subglacial chute forms were incised at higher altitudes 

where the steepness of terrain facilitated the creation of gaps 

between the ice mass and the rock slope.

7) Final decay of the ice sheet in Area I took place in the 

valley floors and resulted in the incision of channels between 

and through landforms of fluvioglacial deposition.

3.7 : FLUVIOGLACTAL DEPOSITION
The extensive evidence of meltwater erosion in Area I is 

paralleled by the similarly extensive occurrence of landforms 

and deposits associated with fluvioglacial deposition. Sand 

and/...



and gravel deposits are found in all three major valleys and 

discontinuously throughout the area as a whole between 

366 - 391 m.o.d.. To facilitate a more detailed examination 

of the varied character and morphology of these deposits, a 

similar tripartite division of Area I to that used in the 

previous section is adopted. The three sub-divisions are 

therefore Moffatdale, Upper Annandale and the region in the 

vicinity of the Evan Water valley.

MOFFATDALE. The narrow, steep-sided character of Upper Moffatdale 

has limited fluvioglacial deposition to a series of discontinuous, 

badly slumped terrace forms (Fig. 3.4). It is only in the 

lower part of the valley, where valley sides are less steep and 

a comparatively more open valley form is found, that there is 

evidence of an uninterrupted sequence of depositional landforms 

along the lower valley slopes. A series of terraces between 

99 - 167 m.o.d. are found in close association with areas 

characterised by an irregular assemblage of mounds, ridges and 

hollows (Fig. 3.4). A 10m exposure in the side of one of the 

terraces (Exposure 3S, Fig. 3.4), illustrates the character of 

the fluvioglacial deposits. A sequence of intermixed sand and 

gravel beds, which lie almost horizontally or dip slightly in a 

south-west direction, are overlain by a more compact, clayey 

deposit. The nature of the sand and gravel beds varies 

considerably, with layers of fine sand—clay found together 

with beds of coarse gravel or cobbles. All of the clasts 

within the gravel layers exhibit some degree of rounding and 

although the vast majority are less than one centimetre m
idiameter/... I
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diameter, cobbles up to 50 - 70 cms in diameter are also found. 
Geologically, all of the pebbles are of local origin, with a 
predominance of greywackes.

The thinner, more discontinuous deposit overlying the sands 

and gravels is of a more compact, clayey nature and as a result 

slightly overhangs these beds. A large number of clasts are 

contained within this light-brown clayey matrix; the clasts 

varying in size from 1 - *fOcm in diameter, and in shape, from 
angular to rounded. This exposure is of particular interest in 

that the clayey deposit not only overlies the sand and gravel
Ibeds, but extends down through these in a wedge form in

length. The formation of the wedge seems to have been 

responsible for the folding of the sand and gravel beds and for 

the small-scale faulting that is also apparent around the wedge 

form. Within the upper part of the wedge itself, the incorporated 

clasts exhibit no common orientation, but when traced vertically 

down the form, the clasts take on a vertical alignment. Further

more, formerly bedded gravels have slumped against the northern 

side of the wedge and in doing so have lost much of their 

stratified character. On the basis of the above descriptions, 

it is apparent that the wedge-shaped clayey deposit is an ice- 

viedge cast (Johnsson 1959; French 1976), the cast itself 

representative of secondary infilling as a former ice-wedge 

slowly melted (Plate 3W and 3X).
Morphologically, the terrace form in which this exposure is 

revealed has a fairly level surface 120 - 1̂ +Om in width, 

with a steep north-west face, 17 - lSm in height. The 

morphology, internal sedimentary characteristics and location 

of this fea£utre, perched onto the lower valley slopes, indicate 

that/...
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that it is a kame terrace, ”... deposited by meltwater flowing 

along the edge of an ice mass betv/een the ice and the valley 

wall". (Embleton and King, 1975* P. 3̂5). As indicated 

on figure 2.32,this particular kame terrace, (Kame terrace A), 

is one of several such features which extend for 2-Jkms down both 
flanks of lower Moffatdale. The altitudes of the kame terraces 

decrease downvalley; the highest form, terrace A-, found to the 

north-east and the lowest, terraces C and D, to the south-west 

(Fig. 3.32; Plate 3Y).

Despite the density of channel forms at higher levels in Moffatdale, 

there is little indication of the meltwater streams responsible 

for the accumulation of the kame terrace forms. However, esker 

1 (Fig. 3.32) , which terminates 500ni to the north-east of 

terrace A at an altitude of 130 m.o.d., may represent the former 

course of one such feeder stream. The occurrence of the esker at 

an altitude below that of the terrace itself does not rule out 

such a possibility. The ridge form may have accumulated in a 

supraglacial or englacial environment and was subsequently let 

down onto the sub-ice surface with continued ice-wastage in the 

manner described by Price (1973i P» 131 - 178). In general 
however, the paucity of erosional or depositional channel forms 

across the lower slopes of Moffatdale suggests that truly 

marginal or submarginal drainage contributed little to the 

formation of the kame terraces and that these '’marginal” 
landforms in fact accumulated by deposition in association

;

with supraglacial and/or englacial streams occupying a 

mid-valley position. Similarly, with particular reference so 

terrace A, as there is also no indication as to how the small 

marginal/...
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marginal lake in which the terrace accumulated has drained, it 

must be assumed that drainage took place through extensively 

decayed and crevassed ice occupying the valley floor.

Terraces 3 and E (Fig. 3.32), despite their location on opposite 

valley sides are believed, by their similar altitudes, to have 

formed contemporaneously (Sissons, 1967a,P. 113 - 117). Both 

kame terraces are highest at their north-east extremities,

(122 - 130 m.o.d.), and slope very gradually downvalley to 
terminate at approximately 114' m.o.d.. Once again there is little 

indication of feeder channels for the terrace forms. In contrast 

however, the drainage of these small marginal lakes has taken 

place, at least partly, along channels 2 and 3 (Pig* 3,32), 

which run directly downslope from terraces B and E, indicating 

a sudden subglacial escape of water beneath the retaining ice walls. 

The lowest, but most extensive terrace forms, terraces C and D 

(Fig. 3*32), at the mouth of Moffatdale are 'also believed to have 

formed contemporaneously. Terrace D is heavily wooded and as 

such difficult to identify in parts but generally both terraces 

are fairly level and best-developed around 106 m.o.d.. There is 

also the suggestion of lower, narrower terrace forms 2 - 
below the altitude of terraces C and D, adjacent to the river 

itself (Fig. 3.32). However, it is difficult to be certain that 

these lower terrace, forms relate wholly to depositionai processes 

and were not produced by meltwater incision into the higher 

terraces at the constricted valley mouth.

The absence of channel forms at the upper limits of cerraces C 

and D again suggests that aggradation occurred from supraglacial 

and/or englacial streams, and with particular reference to terrace 

C,/...
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C, drainage took place in a similar fashion, through the decaying 

ice. 3y contrast, drainage' of the marginal water-body in which 

terrace D accumulated was by a subglacial route, via the large 

channel on the south-west flank of the kame terrace (Channel 

Fig. 3.32). The well-developed, north-south trending asker 

found in close association with both terrace D and channel k 

(Esker 2, Fig. 3.32), acted neither as feeder nor outlet for 

the kame terrace. This esker formed at a later stage in 

downwastage, in association with the meltwater drainage pattern 

of the decaying ice mass in Upper Annandale.

The series of kame terraces, decreasing in altitude downvalley, 

and closely related kettle holes, kames and eskers also depicted 

in figure 3.32, are indicative of formation in association with 

a stagnant ice mass in Moffatdale, which with continued downwastage 

retreated downvalley in a south-west direction. Within this 

decaying ice mass, the presence of an englacial water-table for 

at least part of the time during the final stages of deglaciation 

controlled the altitude of fluvioglacial deposition in small 

marginal lakes along both valley sides. Continued downwastage 

resulted in the lowering of this water-table, as reflected by the 

decreasing altitude of the kame terraces. The extensive nature 

of terraces C and D strongly suggests formation in the proglacial 

rather than the marginal environment. Extraglacial meltwater moving 

down Moffatdale was dammed by the final vestiges of the Moffatdale 

ice mass blocking the valley mouth. A more irregular sequence of 

fluvioglacial mounds and associated kettle holes are found in those 

parts of Moffatdale where, as a result of glaciological and/or 

geological conditions during deglaciation, the accumulation of 

deposits/...



deposits in short-lived marginal lakes was not possible.

Despite the abundance of marginal and sub-marginal channels at 

higher altitudes in Moffatdale, most of the meltwater flow near 

the valley floor took place in a supraglacial, englacial or even 

subglacial mid—valley environment. Figure 3.33 indicates postulated 

stages in the formation, of the kame terraces and other accompanying 

fluvioglacial landforms in lower Moffatdale.

UPPER ANNANDALE. The fluvioglacial deposits of Upper Annandale 

can be sub-divided on the basis of their morphology, altitude and 

areal distribution into two groups? a group to the south-east of 

Moffat and a group to the north-west of the town (Fig. 3.34).

a) Fluvioglacial deposits to the south-east of Moffat. Topographically, 

this is essentially a low-lying area where the river Annan is joined 

by its major tributaries, the Evan Water, Birnock Water and Moffat 

Water and where as a result, the Annan floodplain attains its greatest 

dimensions. The floodplain is flanked on all sides by steeply 

rising uplands and it is on and against the lower flanks of these 

uplands that the fluvioglacial deposits have accumulated.

All of the sand and gravel deposits are found below 220 m.o.d. and 

over much of the area occur below 120 m.o.d.. Delimitation of 

the deposits depended primarily upon their distinctive morphology, 

but with the concentration of fluvial activity in this area, there 

are also many more exposures visible than in Moffatdale.

A particularly good, although "man-made11, section is revealed at 

Rogermoor Farm (NTOO, 095050), where 3 - 4m of coarse gravel 

consisting mainly of sub-rounded clasts in a gritty matrix is 

revealed/...



revealed (Exposure 31, Fig. 3.4). The vast majority of the clasts 

are greywackes and less than 4cm in diameter, although cobbles 

up to 30cm in diameter are also present. There is little 

evidence of sorting or stratification, although an occasional 

small lense of sand or fine gravel is revealed in the face.

The sands and gravels rest upon an uneven surface of red 

sandstone breccia. This exposure is found on the western side 

of a large gravel mound which has become detached from surrounding 

deposits as a result of fluvioglacial and/or fluvial erosion.

Elsewhere in this vicinity, up to 6m of sand and gravel can be 

seen, or be inferred, to overlie bedrock.

In addition.to isolated exposures revealed by fluvial and/or 

human incision, excavation involved in the laying of a gas pipeline 

across the area also provided useful information and a more continuous 

record regarding the thickness of fluvioglacial deposits and their 

relationship with other drift deposits in the area. Although.much 

of the pipeline course had been excavated and re-filled prior 

to the commencement of this research project, test sections, 

generally 100 - 150m in length, remained unfilled and the 

information gained from these is depicted on figure 3*35*

The nature of the sand and gravel deposits remained basically 

similar at all 5 test sections. Numerous sub-rounded and sub- 

angular clasts, mainly the former, were found in a grey-brown 

coarse sandy-fine gravelly matrix. The clasts were generally 

less than 4cm in diameter although cobbles up to 50cm in diameter 
were also present. There was little evidence 01 sorting or 

stratification at any of the exposures examined. .Although the 

pipeline cuttings indicate a minimum thickness of 3 ■ ^  tne 

fluvioglacial deposits in this vicinity, it seems highly probable 

that/...
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that accumulations in the central part of the Upper Annan valley 
would far exceed this figure.

As indicated on figure J>.k, the morphological expressions 

of fluvioglacial deposition in this area are complex, with 

several varied forms found in close association. Such variation 

is well-illustrated in the vicinity of Dyke Farm (NTOO, 086036)
(Fig. 3.36). Here, a heavily fragmented terrace form, k - 6m 
above the Annan floodplain at 95 - 106 m.o.d., extends for 

ljkm to the north of the Evan Water. The surface of this 

terrace,.although still fairly level in parts, is more commonly 

heavily pitted as a result of numerous kettle hole formation. The 

kettle holes vary greatly in their dimensions, (but commonly possess 

a circular plan-shape, the diameter at the lip of the hollow 

generally exceeding JOm. Steeply-dipping sides to an often 

marshy floor, 2 - 5m below the general surface level, also 
characterise these depressions. A similar form to the kettle 

holes is the steep-sided indentation along the eastern flank 

of the terrace (A, Fig. 3.36). This semi-circular depression 

has a diameter exceeding 200m and is 7 - 8m in depth, viewed 
from its western flank. Such large depressions that are not 

quite enclosed are termed ’’dead ice hollows” (Clapperton 1968).
The surface of the terrace is also disrupted by several kame mounds 

which stand above its general level, and by esker 1 (Fig. 3.36).

This short, discontinuous ridge, the total length of which is less 

than 300m, is aligned in a north-south direction and is approximately 
^m in height. On t£e surface, of the terrace itself the ridge 

bifurcates (Fig. 3.36), the two segments separated by a kettle hole 

deep. However, neither segment continues for any great 

distance and as they are followed southwards, there is a gradual 

d̂ecrease in the steepness of the ridge flanks, and corresponding 
increase/...
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increase in the width of the ridge crests, until both segments 

blend smoothly into the terrace.surface (Plate 3Z).
It is strongly suggested that the Dyke Farm terrace and its 

associated landforms are continued on the southern side of the 

Evan Water to the vicinity of Tassies Height (Fig. 3.*+, 3.37).

In this area also, the horizontality of a terrace-like surface 

at approximately 100 m.o.d., is disrupted by kettle holes and 
kame mounds, but not to the same degree as is found further 

north. In addition, the southern terrace form is not as fragmented, 

although a large meltwater channel (channel 1, Fig. 3.37), does 

lead off in a southerly direction from its southern flank. This 

channel, cut entirely into drift, runs around Tassies Height to 

join the Annan floodplain. It is over 1700m in length and has a 

wide, flat marshy floor, l^Om in width. Channel sides rise 

8 - 10m above the floor, but as they are cut into drift they are 
not particularly well-developed. In the vicinity of the channel 

there appears to be a greater concentration of kame mounds, kettle 

holes and generally hummocky topography, than on the surface of the 

terrace itself to the north of the channel in-take.

The morphological and sedimentological characteristics of the 

fluvioglacial landforms described above, on both the northern and 

southern flanks of the Evan Water, are indicative of formation in 

association with a mass of stagnant ice. The extensive terrace 

developments, with locally adjacent eskers, kames and kettle holes, 

are representative of kame terraces which accumulated as a result 

of ponding along the western margin of the decaying ice mass which
1

formerly occupied the Annan valley floor. The horizontality of the 

kame terrace remnants indicates that deposition in the marginal 

environment/...
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environment was controlled by an englacial water-table at an 

altitude of approximately 100 m.o.d.. However, the density of 
kettle holes in the northern part of the terrace at Dyke Farm 

suggests that in this vicinity at least, part of the terrace 

deposition took place in an englacial-marginal and not wholly 

extraglacial-marginal environment (Fig. 3.38). Sissons (I96?a) 

described a similar situation in the Eddleston Valley, ".... the

ice wasted back from the hillslope ...  to allow a small lake

to develop in which rapid sedimentation took place. Such a lake 

could not be held up- by the rotten ice of the marginal zone but 

was impounded by the firm ice further back from the margin" (P. l8), 
(Fig. 3.38).' As in Moffatdale, there is little evidence of the 

meltwater streams that supplied this marginal lake, with the exception 

of esker 1 (Fig. 3.36), but this is merely representative of one 

small feeder for the northern part of the kame terrace.

Consequently, it must again be assumed that much of the meltwater 

was supplied by supraglacial and/or englacial streams following a 

generally southerly course within the decaying ice mass, or by 

extraglacial flow along the Evan Water valley itself (Fig. 3.38,).

The level of the marginal lake was controlled not only by the 

englacial water-table but also by channel 1 (Fig. 3.37, 3.38), 

which acted as a subglacial outlet from the lake in a southerly 

direction. '
With continued dissipation of the dead ice mass occupying the 

Annan valley floor, the englacial water-table collapsed and 

drainage of the Evan Water marginal lake took place. Along the
I

southern margin of the kame terrace, drainage of the lake resulted 

in the development of kame and kettle topography across the lower 

^lopes/...
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slopes of the upstanding till hillocks which comprise Tassies 

Height. On the northern flank of the terrace, the post- 

depositional concentration of fluvioglacial and fluvial erosion 

in the immediate vicinity of the Annan and Evan Water floodplains 

has resulted in the present fragmented appearance of the 

depositional landforms.

b) Fluvioglacial deposits to the north-west of Moffat. The area 

to the north-west of Moffat extends up Annandale to the Devil's Beef 

Tub and in effect represents the head o^ the Annan river valley.

This is an area of high relative relief values such that, although
ifed by several substantial south-west draining tributaries, this 

part of the Annan valley is characterised by a generally narrow 

floodplain, only 300 - 450m in width. The western margin to the 

floodplain is represented by steeply-rising terrain, particularly 

between 152 - 274 m.o.d., leading upslope locally to Ericstane 

Hill (427 m.o.d.). The gently-inclined lower slopes of the 

Tweedsmuir Hills constitute the eastern margin to the floodplain, 

but above 218 - 305 m.o.d. the terrain here also rises steeply, 

in this case to altitudes exceeding 762 m.o.d..

Almost all of the evidence relating to fluvioglacial deposition 

is restricted to a narrow band along the eastern flank of the valley 

betwen 122 - 260 m.o.'d. (Fig. 3.34). Within the southern part of 

this band, between Moffat and the' Granton Burn (Fig. 3.24), the 

fluvioglacial deposits are distinguished primarily by their 

distinctive hummocky morphology, with only limited support from
Ia few, small exposures. Such' exposures reveal less than one 

metre of unsorted and unstratified gravels in a dark brown, coarse
s

sandy matrix. The included clasts are sub—rounded and sub—angular 
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in shape and generally 1 - 3cms in diameter, although larger 
clasts 15 - 30cms in diameter are also present.
Morphologically the deposits are represented by a series of kame 

mounds and minor ridge forms, both of which are aligned either 

directly downslope towards the valley floor, or downvalley at a 

high angle to the local contour pattern. These mound and ridge 

forms vary greatly in their dimensions, but are generally less 

than 100m in length, and between 3 - 8m in height. In places, 

one or both sides of a mound have been washed by small-scale 

meltwater action.

Nearer the head of Annandale, the fluvioglacial deposits at the mouth 

and to the north of the Granton Burn are again in places characterised 

by kame mounds aligned downvalley, at a high angle to the contour 

pattern (Figs. 3»*S 3.24). However, in association with these 

areas of irregular mound topography are found a series of fairly 

narrow, terrace-like forms which from exposures can also be 

seen to consist of sands and gravels. Exposures are most 

abundant at the head of the valley, reflecting the greater 

concentration of fluvial activity from the Tweedsmuir Hills.

One such exposure at Herring Loup (Exposure 3U, Fig. 3»if)i the 

side of one of the narrow terrace-like forms, reveals ^m of sand 

and gravel overlying red sandstone. The lower 1 - l-jm of drift 

is poorly-bedded fine gravel, consisting of sub-rounded and sub- 

angular clasts, less than 3cm in diameter, in a dark brown sandy- 
clayey matrix. This is overlain by 2.\ - 3® coarse, unsorted 

and unstratified gravel. The higher gravel layer consists of 

numerous sub-rounded and sub-angular clasts and cobbles in 

a fine gritty matrix; the majority are less than 3cm in 

diameter/...
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diameter, but a large number are 2 - 5cm in diameter, and 
some exceed 25cm.

Another section is revealed in the face of an old quarry 

excavated into the northern side of White Hill (Exposure 3V,

Fig. At this site, only the upper 2m of the level terrace

like surface of White Hill is clearly, exposed, the remainder of the 

6m section being obscured by slumping. The top 50cm of the 

exposure is characterised by unsorted and unstratified clasts 

in a sandy matrix. The clasts are again generally less than 

5cm in diameter, although forms up to 30'Cm in diameter are also 
present. Below the coarse gravels, a layer of amber coloured 

sand, containing only scattered sub-rounded pebbles less than 

2cm in diameter, extends a further 1-̂m down the exposure, 
the remainder being obscured by slumped material.

Other smaller exposures in this area illustrate a similar 

intermixture of stratified and non-stratified deposits, although 

where only the upper part of a section can be seen, it generally 

consists of unstratified and unsorted gravels. Throughout the 

area to the north of the Granton Burn, 1 - 3m of sand and gravel 

overlies bedrock.
The mode of origin of some of the fluvioglacial deposits has 

been previously mentioned in connection with the meltwater 

channel pattern (Fig. ,3..24). The narrow, level, terrace-like 

spreads of sand and gravel are taken to represent accumulation 

in several narrow, short-lived marginal lakes which formed 

between the eastern valley side and the downwasting ice mass 

over the valley floor. The meltwater which supplied these 

lakes /...
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lakes was primarily derived ext raglaci ally,' along the valleys 

which drained the adjacent Tweedsmuir Hills, the principal 

direction of meltwater drainage in the ice mass itself being 

southwards. Initial ponding of meltwater from the Tweedsmuir 

Hills occurred at 250 - 260m.o.d. in the Tweedhope valley 

(Fig. 3-̂ )j but evidence of more extensive ponding, apparently 

controlled by an englacial water-table is found at lower 

altitudes. The similarity in altitude of the marginal lake 

accumulations, (Fig. 3.-24), and the concentration of subglacial 

channels downslope from these, indicate that deposition within 

and at the margins of the decaying ice mass occupying Upper 

Annandale was controlled by such a water-table at approximately 

2^3 m.o.d.i The altitude of the water-table was determined by 

the large meltwater channel Hind Gill (Channel GG8, Figs. 3-̂ i 

3.24, 3.3C), which leads southwards around Gallow Hill to the

Birnock Water valley.. The water-table and marginal lakes ceased 

to exist when continued ice-decay allowed meltwater to drain 

to the valley floor. Associated with the collapse of the 

water-table was the deposition of a chaotic assemblage of kame 

mounds at and below the western margins of the lacustrine 

deposits. The number and size of these kame mounds indicate 

that the decaying ice mass had a high debris content.

The concentration of fluvioglacial deposits along the eastern 

slopes of Upper Annandale and the almost total absence of such 

deposits along the western slopes is the direct result of 

differential insolation and local sources of sediment supply. 

Flint (1971), attributed the more extensive development of 

kame terraces on eastern as opposed to western slopes m  north- 

south/. ..
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south orientated valleys to differential insolation, "___

the eastern parts of the former glacier lobes having received 

solar radiation during the afternoon, when the western parts 

lay in the shadow of the western sides of the valley” (P. 210). 

Complementing this was the fact that although during the early 

stages of ice downwastage over Upper Annandale the principal 

direction of meltwater movement was southwards, as downwastage 

continued the main valleys draining the Tweedsmuir Hills in 

a westerly direction became ice-free and carried an increasing 

amount of meltwater. The sediment load from these extraglacial 

meltwater streams accumulated upon, against and within the 

eastern margins of the decaying ice mass. When combined, the 

two factors of differential insolation and source of sediment 

supply thus account for the asymmetrical pattern of fluvioglacial 

deposition.

The distribution and character of the fluvioglacial landforms 

and deposits in Upper Annandale, both to the south-east and 

north-west of Moffat are therefore indicative of formation in 

association with a stagnant, downwasting ice mass over the area 

as a whole.
The extensive development of kame terraces and other landforms 

characteristic of accumulation in short-lived marginal lakes 

at approximately and 100m.o.d. in.Annandale, and

their close association with meltwater channels where present, 

strongly indicates that fluvioglacial deposition at these 

altitudes was at least partly controlled by an englacial 

water-table. Re—establishment of the water-table at the lower 
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altitude of 100 m.o.d. may be.the direct result of the concentration 
of large amounts of southward flowing extraglacial meltwater and 

its associated sediment load from the upper parts of the Annan,

Evan Water and Moffat Water valleys, against, upon and within 

the stagnant ice mass which occupied Annandale at the confluence 

of all three valleys. Between 100 - 2^3m.o.d., the landscape 

of fluvioglacial deposition is more irregular and characterised 

by an often chaotic intermixture of kames, eskers and kettle 

holes. With the final disappearance of ice from Upper Annandale, 

the similar concentration of postglacial fluvial activity in the 

vicinity of the tripartite river confluence, destroyed or 

fragmented many of the fluvioglacial landforms and removed many 

of the deposits.

FLUVIOGLACIAL DEPOSITS IN THE VICINITY OF THE EVAN WATER VALLEY.

As in Upper Moffatdale, the steep-sided character of the Evan 

Water valley limited fluvioglacial deposition to isolated 

terraces perched on the lower valley slopes. Consequently, the 

main concentrations of deposits are found further west in the 

eastward draining Lochan, Garpol and Cloffin valleys (Fig. 3.39). 

Greatest deposition occurred in the Garpol Water and-Lochan 

valleys- and these will be examined in greater detail,

a) Garpol Water Valley. The evidence of fluvioglacial 

erosion in the Garpol Water valley has been previously detailed 

(P. 92 ). The same meltwater streams that incised the

channels also deposited sands and gravels, the morphological 

expressions of which are a series of kame mounds and esker 

ridges (Fig. 3.2^. Traces of fluvioglacial deposits are 

found/...
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found between 177 - 238 m.o.d. in the Garpol Water valley, the 

greatest thickness occurring near the valley floor.

The nature of the fluvioglacial deposits is revealed at 

exposure 3W (Fig. 3.26), where esker 1 has been truncated 
by the river. The esker is 8m high at this point, but only 
the lowest 4m of drift immediately abovê  the river itself, are 

well-exposed. Numerous rounded and sub-rounded clasts, generally 

less than 3cm in diameter, are revealed in a, dark brown sandy 
matrix. Larger boulders 50 - 70cm in diameter are also present, 

but. even these exhibit some degree of rounding. The clasts are 

sorted into indistinct beds which present an anticlinal appearance, 

being generally horizontal in the central core of the ridge but 

curving round to'parallel the ridge sides towards the flanks.

Esker 1, in which the exposure occurs, is 850m in length and 

first emerges, from a fairly flat-topped kame mound, at 

approximately 210 m.o.d. (Fig. 3 ..26). 1 The esker emerges 2m 
below the surface of the kame and at this point is itself 2m in 
height. The height of the ridge crest gradually increases as 

the sinuous course of the esker is followed downslope in a 

northerly direction.. At 190 m.o.d. the ridger now jfyn high 

and with a crest width of 5 - 7m, swings north-west'across the 
regional slope for 200m, before returning to a more direct 
northerly course towards the valley floor (Fig. 3.26 

Throughout, the latter part of its length, the height and. width
1

of the ridge-crest both continue to increase downslope, before 

terminating at the river (Fig. 3.26). Along the lower part 

of its course, kame mounds are found in close association with 

esker 1, particularly along1its south-east flank (Plate 3AA).
i
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The series of mounds and minor ridges,. 2, 3, 4, 5, 6 and 7 
(Fig. 3,26), which vary in height from 2 - 8m and in length 
from 80 — 150m are believed to represent the discontinuous 
remains of a second esker form. The west-east orientation 

.of this esker and its location just above the floodplain, have 

resulted in its "beaded" appearance at the present day. There 

are no large exposures in any of the mounds or ridges, but 

several small sections reveal numerous rounded and sub-rounded 

pebbles in a fine, gravelly matrix.

It would appear from their alignment, and the alingment of

adjacent fluvioglacial landforms that esker 1 and esker 2 - 7
were not deposited by the same meltwater stream, but relate 

to two separate directions of meltwater flow. The presence of 

the two eskers at right angles appears at first glance to 

strongly contradict the belief that, eskers show a close 

correspondence with the most recent direction of regional ice 

movement, in this instance generally southwards, as suggested 

by several authors, (Embleton 1964; Sissons 1967a; Price 

1973; Sugden and John 1976). However, when taken into 

consideration with other fluvioglacial landforms in the 

vicinity, both depositional and erosional (Fig. 3.26), it is 

believed that the landforms in the Garpol Water valley were 

produced at a stage in ice downwastage when local movement of ice 

and meltwater were of greater significance than regional. All 

of the fluvioglacial landforms and deposits in the Garpol Water 

valley indicate formation in association with a stagnant or dead

ice mass which downwasted in situ.
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Regional movement of meltwater to the west of the Evan Water 

was in a south-east direction. As a result, with downwastage 

meltwater flow across the southern rim of thê  Garpol Water valley 

was controlled by the deeply-incised channel, "Hells's Hole", 

the floor of which is at 2*fl m.o.d. (Fig. 3.26). when the 

altitude of meltwater incision fell below this level, ice- 

directed meltwater flow in a south-east direction collapsed and 

free, downslope movement of meltwater was established. The 

features of fluvioglacial erosion and deposition within the 

Garpol. Water valley relate to this latter stage in:ice down

wastage. Movement'of meltwater was downslope towards the valley 

floor and hence to the Evan Water valley via the deeply-entrenched 

Garpol Glen. The variable width of the ridge crest of esker 1 is 

a clear indication of ponding along the course of the stream which 

formed the esker, and is further testimony to the fact that the ice 

mass which occupied the Garpol Water had become extensively decayed 

and crevassed at this time and was in effect "dead" (Price, 1973*

P. 26;. Fig. 3.40).
b) Lochan Valley. The Lochan valley, like that of the .

Garpol Water has a fairly open form, with gently-inclined valley 

sides throughout most of its length. It is only in the vicinity of 

the valley head, at the edge of the Lowther Hills, that the valley 

sides steepen significantly. The fluvioglacial deposits extend 

down both' flanks of the Lochan valley in a narrow band between 

213 -• 335 m.o.d., but are thickest along the northern valley 
side (Fig. 3.*0. Also included with the "Lochan valley" for the 

purpose of' this study are the limited fluvioglacial deposits
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of the adjacent Upper Kinnel Water valley, (Fig. 3 A). As 

indicated on both figures 3 A  and 3.31, the sand and gravel 

deposits of tnis area are again found in close association with 

evidence of fluvioglacial erosion and characterised morphologically 

by kame mounds and esker ridges.

Exposure 3X(Fig. 3.31), is in the Kinnel Water valley where 

esker 2 is breached by the Threepen Bum. At this point the 

esker is 10 - 11m in height, but because of slumping only part 
of the exposure is visible. Numerous sub-rounded and sub-angular 

clasts, mainly the latter, are revealed in a coarse, dark brown, 

gritty matrix. The clasts are;generally less than 3cm in diameter, 
although small boulders up to 50cm are also present. The deposit 

is poorly-bedded.

Similar- erosive action by the Lochan Burn reveals numerous sub

rounded and sub-angular clasts in another badly-slumped section, 

where esker 1 is incised (Exposure JY, Fig. 3..31). Here also 

the pebbles are generally less than 3cm in diameter, although

larger boulders up to one metre in diameter are present near the
\

top of the 20m exposure. A large sand lense found parallel to 

the steep northern flank of the ridge indicates that some degree 

of sorting has taken place, although this has subsequently.been 

modified by slumping (Plate 3BB).
There are three well-developed esker ridges within the area 

encompassed by the Lochan valiey (•‘•'io* 3.3l), eskers 1 and 3 

the southern side of Peat Hill and esker 2 to the north. Esker ± 

is altitudinally the highest of the three forms, emerging from the 

hillside below the col separating Peat Hill from Harestanes Heights

sit/ • • •



at approximately 355 m.o.d. (Fig. 3.31). The ridge follows a 

steep, sinuous course downslope, generally at right angles to 

the contour pattern, finally terminating on the southern side 

of the Lochan Burn at 315' m.o.d.. Although initially only 1 - 2m 
in height and morphologically indistinct, ridge dimensions 

increase downslope, such that at its southern extremity the esker 

is l8 - 20m in height, with steep symmetrical sides- Similarly, the 

width of the ridge crest increases from 2 - 3m at the northern end 
of the esker to over f̂Om where the ridge is incised by the Lochan 

Burn. Upslope from the north end of the ridge in the floor of the 

col, are found 3 small, indistinct meltwater channels which trend 
in a southerly direction (Channels 1, 2, 3» part- of system XX,

Fig. 3.31).

Esker 2 is similar to esker 1 in that it too is aligned in a north- 
south direction, commences on the slopes of Peat Hill and follows 

a course at right angles to the contour pattern down to the valley 

floor; in this case however, it is the Kinnel Water valley. 

Regarding morphology- and altitudinal extent however, the two ridge 

forms are fundamentally different. Esker 2 is found between 280 -
f

311 m.o.d. and follows a generally straight course, particularly on 

the valley floor itself.
At its upslope limit, esker 2 emerges from the surface of a terrace. 

This terrace, perched on the northern slope of Peat Hill at 3^5 m.o. 

is over 100m in width and has steep, marginal slopes leading down in 
both east and west directions. The highest point on the terrace is 

found where the esker emerges from the otherwise level surface toI
begin its downslope course. It is worth noting a- '-his pom- that 

50m upslope from the terrace, the in-take of a well-developed up-



down channel form incised 15 - 20m into bedrock is found (Channel 

XX5, Eig- 3*31). This northern in-take is at an altitude of 

520 m.o.d., the high point of the channel at 530 m.o.d. and the 

outlet, on the southern flank of Peat Hill at 300 m.o.d.. The 

varying dimensions of eskdr 2 along its course are indicated on 
figure 3.41 (Plate 3CC).

Esker 3j located between the Lochan Burn and the southern slopes 

of Peat Hill (Fig. 3.3l), is aligned in a north-east to south-west 

direction and is of more limited altitudinal extent than the previous 

two forms. The ridge is found between 289 - 298 m.o.d.,•being best- 

developed along the north-east part of its course where it emerges 

gradually from surrounding peat to attain a height of 12m.. In this 

vicinity the ridge crest is 5 - 8m in width. As it is followed 

south-west, the ridge bifurcates at a pond which occupies the floor 

of a large kettle hole. The main portion of the esker continues in 

a southerly direction, but a minor tributary ridge, 2 - 3m in 
height, leads westwards. The main ridge is only 6m in height where 
breached by the Hoarlaw Burn and continues to decrease in height 

south-westwards, finally terminating against the eastern flank of 

a flat-topped kame mound, 2m below the surface of this feature.
The mound is approximately 50 ~ 60m in width but varies in height 

■from 8 - 12m, being generally higher and steeper along its southern 
and eastern- flanks. The discontinuous tributary of the main ridge 

also terminates'at this mound form (Fig. 3.31 )•■ It is difficult to 

be certain as to the continuation of the esker system beyond the 

flat-topped kame, but the presence of an isolated mound of sand 

and gravel 80 - 90m further.east at Lochanhead, suggests that the 

system originally continued in this direction.

Esker/...
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Esker 3 also developed in close association with evidence of 

fluvioglacial erosion. Approximately 100m beyond the north

eastern origin of the ridge, a short but deeply-incised channel, 

(incised 10 - 12m into bedrock), parallels the esker course 
(Channel XX6 , Fig. 3.31)# The floor of this channel, although 

heavily peat-infilled, clearly slopes upwards in a south-west 

direction. There is no obvious continuation of Channel XX6 to 
the north-east, but by its alignment it appears to be intricately 

associated with the channel forms cut across the eastern slopes of 

Peat Hill, in particular channel XX7 (Fig. 3.31; Plate 3DD).

The above descriptions clearly indicate that the morphology, location 

and orientation of eskers 1*2 and3(Fig. 3.31), are all closely 

linked with the network of meltwater channels incised across the 

crest and slopes of Peat Hill. As previously mentioned, these 

channels and others in the regional pattern indicate formation by 

a series of southward flowing englacial streams which become,

”... superimposed onto the underlying land surface when the zone of 

meltwater penetration descends downwards as the ice surface downwastes" 

(Price, 1973, P. 119). Similarly, Clapperton (1968) showed the 

tendency, for such englacial drainage to become concentrated 

over/in cols in the underlying relief as a result of lateral 

migration of meltwater within the ice itself. Although there is 

only slight'evidence of fluvioglacial erosion in the floor of the 

col between Peat Hill and Harestanes Heights, at 3^1 m.o.d.,

(Fig. 3.31), 2km to the south the floor of the col between Lamb 

Hill and Lonnachie Rig, at 366 m.o.d. and lying just outside the 

thesis area, has been deeply—incised by southward -lowing meltwater. 

Assuming that meltwater flow,..was concentrated along the line of these 

.low/...



low points in the underlying terrain, the pattern of fluvioglacial 

erosion suggests that the gradient of the meltwater stream(s) 

following this course was similar to that depicted in figure 3.42 

the meltwater being wholly contained within the ice mass at the 

Peat Hill col, but subglacial at the Lamb Hill col.

With continued downwastage of the ice surface, the zone of meltwater 

penetration fell below the level of the Lamb Hill col. As a result, 

the through-flow of meltwater was restricted, meltwater velocity 

decreased, and deposition occurred within the englacial tunnel(s) 

over the area between the two cols. The sinuous depositional course 

of one such englacial stream was let down onto the sub-ice surface 

as esker 1, adjacent mounds and minor ridges produced in a similar 

fashion (Fig. 3-42).

Eventually, the zone of meltwater penetration dropped below the level 

of the Peat Hill col and alternative lower courses were found for 

continued englacial flow in a southerly direction. The distribution 

of channels in the vicinity of Peat Hill indicates that meltwater 

flow below 366m.o.d. was re-directed around the eastern side 
of the hill. The best-developed channel along this eastern slope 

is channel XX5 (Fig. 3.31). • This deeply-incised form with its 

distinctive up-down profile, is also attributed to the superimposition 

of englacial drainage, in the manner described by Price (1973)- "The 

major cart of the channel was cut as the superimposition of the 

englacial stream proceeded and continued until the meltwaters 

flowing in the ice—tunnel were able to cut down faster than the 

meltwaters flowing in the channel cut through the spur. The 

meltwater stream then had to flow up-hill under hydrostatic 

pressure, if it was to continue along its course through uhe spur 

(P. 122), (Fig. 3.1*3). When the zone of meltwater penetration dropped
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to such. s. level that the head of water necessary for up—hill flow 

under hydrostatic pressure could no longer be maintained, this 

meltwater developed a depositional role and esker 2 was formed.
The decrease in water velocity initially resulted in englacial 

ponding, as indicated by the kame terrace, form at the in-take of 

esker 2, but with the continued supply of meltwater to this point, 
a subglacial route down to the valley floor was created. At the 

junction with the valley floor, increased deposition occurred as 

a result of the reduction in meltwater velocity, but generally 

the esker follows a straight course and as such typifies the 

Msubglacially engorged or slope eskprs”, referred to in the 

literature (Mannerfelt 19^5; Sugden 1970; Embleton and King 1973a; 

Sugden and John 1976; Fig. 3.43).

Although locally meltwater forced a route down to the valley floor, 

the regional pattern remained unchanged, as indicated by the 

sequence of channel and bench forms below channel XX5 on the 
eastern flank of Peat Hill (Fig. 3.31). Several of these minor 

forms coalesce at the circular, plunge-pool in-take of channel XX7

(Fig. 3.31), which flows downhill in a southerly direction to
\

terminate at approximately 275 m.o.d. • A short distance to the 

south-west of the outlet of,channel XX7, channel XXb (Fig. 3.31),
i

has its in-take and it appears likely that the two forms were 

incised by the same meltwater stream. The uphill gradient of 

the floor of channel XXo can again be explained by meltwater flow 

under hydrostatic pressure. With the reduction of meltwater 

velocity in the south-westerly direction, deposition of esker 3 

in a subglacial, or possibly englacial, environment near the base 

of the ice took place. The sinuous, bifurcating nature Ox thio 

ridge is a reflection of the meandering nature of the mê -t.vater 

*course/...



course itself.

Fluvioglacial landforms in the Lochan valley therefore relate 

to formation during three different stages in the downwastage of 

ice over this area. Each esker ridge and its associated channel 

forms reflect local adjustments to the pattern of meltwater drainage, 

necessitated by the altitudinal descent of the zone of meltwater 

penetration, and its interaction with underlying relief conditions 

(Fig. 3.44). The more sinuous south-westerly course followed by 

esker 3» strongly suggests that at the time of its formation, 

regional control over meltwater drainage was waning and that the ice 

mass occupying the Lochan valley was in a semi-stagnant condition. 

General movement of glacier ice and its associated meltwater across 

the area in the vicinity of the Evan Water valley was in a southerly 

direction. With the dominant alignment of the underlying topography 

at right-angles to this, continued downwastage resulted in the 

detachment of stagnant ice masses which wasted away in situ, in 

each of the major east-west trending valleys. As a result, the 

landforms of fluvioglacial deposition found in these transverse 

valleys, with the exception of certain forms at higher altitudes, 

owe their distinctive characteristics' to the control exerted by 

local topography over meltwater conditions within extensively 

decayed or stagnant ice masses and not to widespread regional 

dictates.

SUMMARY . The deposits of fluvioglacial origin are found in close 

association with the three major valley systems of Area I, and when 

considered in conjunction with the landforms of fluvioglacial erosion, 

indicate stages in the decay and disappearance of the last ice sheet 

over this area.

In/...
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In the vicinity of ohe Evan Water, valley* the earliest phases of 

deglaciation are represented by ice-directed meltwater channels and 

associated eskers. However, with downwastage, ice occupying the 

east-west orientated valleys of this area became cut off from its 

source of supply and stagnated in situ, providing ideal situations 

for the concentration of meltwater and formation of fluvioglacial 

landforms (Sugden 1970).

The Annan and Moffat Water valleys run parallel to the regional 

direction of ice movement, but still possess extensive fluvioglacial 

deposits across their lower slopes. These deposits decrease in 

altitude in a southerly direction, their morphology and internal 

constituents strongly suggesting that almost all deposition took 

place in an ice-contact environment.

It therefore appears that over this central and eastern area also, 

ice remained longest in the valley floors. Similar conditions of 

ice wastage were described by Hoppe (1950)i 0 Holmsen (1963) and 
Sugden (1970). Holmsen’s (19o3) description would appear to equate 

most accurately with prevailing conditions during the later stages of 

deglaciation in Annandale and Moffatdale: "Glaciofluvial deposits

in adjacent valleys suggest that "dead” plateau glaciers existed while 

ice bodies occupied valleys. Meltwater from ice on the plateaux 

carried sand and gravel to the valleys, deposited the material along 

or upon remnant ice bodies" (P. 887). The general absence of sand and 

gravel deposits below an altitude of 91 m.o.d., suggests that final 

meltwater drainage occurred very rapidly, perhaps as a result of the 

establishment of a subglacial escape route through the "remnant ice 

body" occupying the Upper Annan valley.
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3.8 : CONCLUSIONS

From the evidence relating to the landforms and deposits produced 

by glacial and fluvioglacial processes in Area I, it is possible 

to suggest the sources,, directions of movement, and mode of decay 

of the last major ice sheet to affect the area:—

1) The glacial landforms and deposits in Area I indicate that 

the region was crossed by ice from two distinct source areas, one 

at least partially internal, the other wholly external. Over

the western part of the area an external source to the west-north- 

west is indicated^ but over the central and eastern parts of Area I 

most glacial features radiate southwards from the high ground of 

the Tweedsmuir Hills.

2) The Tweedsmuir Hills acted as a primary centre of ice dispersal 

during the last major glaciation to affect Scotland, as tentatively 

suggested by previous authors. (A Geikie 1863; Young 1864; J Geikie 1873; 

Eckford and Manson 1927; Eckford 1955; Charlesworth 1957; Price 1961;

Greig 1971; Sissons 1979c).. The upland surfaces of this area 

supported an ice cap or ice dome (after Manley 1951, 1955, 1959), from 

which outlet glaciers flowed radially, presumably guided, at least 

initially, by the upper reaches of the principal valleys. It was

the divergent outward flow of ice from here in the south and south—
I

west directions that eventually covered much of Area I.

3)/.



135

3) A second, external source, in the general vicinity of the 

Lowther Hills, supplied ice which entered the western part of 
Area I from a west-north-west direction.

4) These two ice masses became confluent in Area I and together 

flowed southwards down Annandale.

5) The presence of meltwate^ channels and glacial breaches at 

the highest altitudes in Area I, and the streamlined form of many 

hill and ridge crests, indicates that the area was probably 

completely covered by ice at the maximum of the last glaciation.

6) Throughout Area I meltwater channels are best-developed across 

spurs and bedrock convexities aligned transversely to the regional 

directions of ice movement. The vast majority of these channel 

forms were incised by the superimposition of ice-directed supraglacial 

and englacial streams onto the underlying topography as the ice 

surface downwasted, the depth of meltwater incision controlled by a 

descending zone of meltwater penetration. Other channel forms may
r

have been produced by subglacial meltwater flow at the base of the ice.

7) Meltwater channels which plunge directly in the manner of subglacial 

chutes, and fluvioglacial deposits, are concentrated below 243 m.o.d. 

over a large part of Area I. These landforms and deposits strongly 

suggest formation in association with stagnant ice. Relict patches

of stagnant ice, isolated from their source or supply, downwasted m  

situ/...
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situ in the Annan, Moffat Water, Garpol and Cloffin valleys.

8) Meltwater from ice-free uplands carried deposits into, onto 

and against the stagnant ice masses, with deposition at certain 

altitudes controlled by the presence of an englacial water-table.

i

9) The general absence of fluvioglacial deposits below 91 m.o.d. 

suggests that final meltwater;drainage from Area I was very rapid, 

through or between decaying ice masses.

10) Either during or after the general dissipation of the last ice 

sheet, there was a return to colder conditions in pollen Zone III 

times, approximately 11,000 - 10,000 years 3.P., when glaciers were 

(re-)established in the Blackhope, Carrifran and Tail valleys of the 

Tweedsmuir Hills. The limits of these glaciers, and stages in their 

retreat in the case of the ice mass occupying the Tail valley,are 

indicated by moraine mounds and ridges. Periglacial slope processes were 

also important during Zone III.
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CHAPTER if 
AREA II

^.1 INTRODUCTION : LOCATION AND EXTENT
Area II is the central, upland part of the thesis area and extends 
over approximately 230 sq. km. (Fig. 4.1). In order to deal 
with an entirely upland area and also to later examine the Upper 
Nith Valley as one unit, (Area III), part of the western and 
southern boundaries of Area II were drawn parallel to the Nith 
itself, along the upland edge of the Lowther Hills.
The northern boundary of Area II is the simplest of the 
delimitations, represented by the east-west grid line NS 1*+, 
from its eastern junction with the Strathclyde .Regional boundary 
at NT 0V7 1^0 to the Crawick Water Valley, NS 7851̂ +0. The 
western boundary parallels the upland edge and is represented by 
a line linking the crests of Knockenhair (kok m.o.d.), Auchensow 
(̂ 20 m.o.d.), Black Hill (531 m.o.d.) and East Morton (328 m.o.d.). 
The southern limit to Area II also follows the upland edge linking 
East Morton (328 m.o.d.) to the north-western edge of the Forest of 
Ae, through the peak of Nether Dod (351 m.o.d.). The boundary 
to the forested region also represents the southern part of the 
eastern boundary to Area II, but is replaced by the north-south 
grid line NT 00 at their junction, at NT 000998- The grid line 
in turn is replaced by the Strathclyde Regional boundary, which 
represents the eastern boundary of Area II to the north of 
NT 000 0V7.
Area II contains evidence of glacial erosion, glacial deposition, 
fluvioglacial/...
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fluvioglacial erosion and fluvioglacial deposition* The upland 
character of the area restricted the processes of deposition, 
both glacial and fluvioglacial and as a result landforms of 
erosion dominate* Detailed analysis of all these landforms and 
deposits will enable the major ice sources, and directions of ice 
movement across the area, to be hypothesised.

k.2 RELIEF AND DRAINAGE
The boundary line by which Area II is delimited effectively 
encompasses the central part of the Lowther Hills, and as such 
gives the area a homogeneous upland character (Fig. **.2).
Relative relief values generally exceed 175m and summit values 
rise to over 650 m.o.d., for example, Queensberry (697 m.o.d.), 
Gana Hill (668 ta.o.d.), Ballendeach Law (691 m.o.d.), Rodger 
Law (688 m.o.d.), Lowther Hill (725 m.o.d.), Green Lowther 
(732 m.o.d.), Dungrain Law (667 m.o.d.). Locally, valley sides 
are steepest and the terrain most rugged in the valleys radiating 
from the Lowther Hill - Green Lowther - Dungrain Law ridge, in 
particular the Glen Franka, Peden, Riccart, Lang, Potrenick, 
Carron and Enterkin valleys (Fig. .̂2). In the east and south
east parts of Area II, relative relief values are slightly lower 
and although the terrain is still deeply-incised, valley slopes 
are generally less steep and hill and ridge crests smoother and 
more rounded in character.
The Lowther Hills also represent the principal watershed within 
the thesis area and a major divide for north and south flowing 
streams in Southern Scotland as a whole. The northward flowing 
gf.-ppanifi which rise in Area II form an extensive dendritic pattern,

but/...
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but are all tributary to one of two major rivers, the Potrail 
Water and the Daer Water. The valleys of both the Daer and 
Potrail contain glacial drift, now mostly redistributed by the 
meandering streams to form floodplains 300 - 500m in width.
The course of the larger Daer Water is disrupted by the 
construction of a reservoir along its length. Both the Potrail 
and Daer merge along the northern boundary of Area II to form 
the Upper Clyde. The southward flowing streams are all tributary

I
to the Nith or Annan rivers, mainly the former. Principal among 
these are the Carron Water and Mennock Water,both of which occupy 
steep-sided, gorge-like valleys, the valley sides rising 
250 - 300m from narrow floodplains, throughout their course in 
jArea II. Both rivers are incised entirely into bedrock and it is 
extremely unlikely that the present Carron or Mennock carved these 
valleys* There is little indication of glacial drift along the 
flanks of either valley. The other southward flowing streams 
generally follow a short, often steep course in Area II, but 
as with the Mennock and Carron, frequently occupy large valleys 
which far surpass their present erosive capabilities.
As mentioned in Chapter I, capture of the headwaters of northward 
flowing streams in the Lowther Hills was carried out by tributaries 
of the river Nith. The Carron Water illustrates one example of 
this. It is suggested (George 1956) that the Dinabid Linn and 
its associates formerly flowed into the Potrail Water, and that 
the Dalveen Lane is a "... secondarily adjusted reversed obsequent 
stream " (George, 1956, P. 1*0. Capture took place as a result 
of local geological conditions which are described below.



GEOLOGY
As was the case in Area I, the geology of Area II is dominated 
by rocks of Lower Palaeozoic age (Fig. 4.3). Over 93% of 
Area II is underlain by Ordovician or Silurian greywackes, grits, 
shales or siltstones, highly folded and faulted in a north
east to south-west direction. The older Ordovician rocks 
are again in the minority, although they occur over a 
sizeable area in the north-west of Area II (Fig. 4.3). Bocks 
representative of accumulation in a geosynclinal environment are 
typical, but in addition there are two T anomalous outcrops
of igneous rock, also of Ordovician age. In the extreme north
west corner of the area, two limited outcrops of extrusive ash and 
spilitic lava occur* The more extensive deposits of Silurian 
age rest conformably on the Ordovician. The boundary separating 
the two groups of rock is irregular (Fig. 4.3), but parallels the 
regional trend, being orientated in a north-east to south-west 
direction. With the similarity in rock types of the Ordovician 
and Silurian deposits, there is no superficial expression of 
the change from one to the other.
The rocks of Devonian age in Area II are represented as igneous 
intrusions (Fig. 4.3). In the west-central part of the area 
a granodiorite sill caps the ridge which connects Ballencleuch 
Law with Bodger Law, while further north-west, two small dykes 
of acid-porphyrite composition occur.
Three small disconnected outcrops along the western boundary and

i
just beyond the upland edge, represent the extent of Carboniferous rocks 
in Area II (Fig. 4.3). The most northerly of the three is revealed



by faulting and comprises sandstones, shales, coal seams, 
seat earths, mudstones and limestones of the Coal Measure and 
Carboniferous Limestone Series. The southerly outcrops consist 
of sandstones, shales, mudstones and coal seams of the Coal Measure 
Series, which in places are overlain by olivine-basalt lavas. The 
latter outcrops are found in association with younger deposits of 
New Red Sandstone age, in a north-south orientated basin which 
extends down Nithsdale in a similar fashion to the New Red Sandstone 
basin in Annandale (Figs. 3-3 and 4.3). Only marginal parts of the 
basin lie within Area II however.
The New Red Sandstone rocks, which rest unconformably on the 
Carboniferous, are represented by red desert sandstones and 
breccias. The younger deposits of this basin, however, are 
generally more susceptible to erosion than the surrounding 
Lower Palaeozoic rocks. As a result, incision by the Carron 
Water along the line of the basin took place at a much greater rate 
than similar incision by the Potrail Water to the north. This is 
suggested as the reason behind the "capture” of the headwaters of 
the Potrail Water by the Carron mentioned above (George 1956).
Once flgflTTi the youngest solid rocks in the geological sequence 
are the igneous intrusions of Tertiary age. In Area II however, 
only one major dyke is present. This feature follows a north
west to south-east trend and is continuous across Area II, but 
has little or no surface expression on the landscape.

GLACIAL EROSION
Landforms produced by glacial erosion in upland areas are well- 
exhibited in Area II (Figs. 4.4, 4.5).
-GLACIAI/. • •
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Si^I^J32HSS* There are two major types of glacial trough 
found within Area II. Firstly, there are the trough forms which 
originate in the higher parts of Area II leading down from upland 
surfaces and often with cirques at their head or along their flanks. 
Such troughs are most common in the north-west part of Area II 
(Fig. 4.5), and generally follow the valley systems which descend from 
the vicinity of Green Hill and more significantly the Dungrain Law - 
Lowther Hill ridge. The more deeply-incised of these troughs follow 

, a broadly southward course, and are presently occupied by the 
Glendyne, Mennock, Enterkin, Lang, Riccart and Peden streams.
(Figs. *+.4, 4.5).
The second type of glacial trough has a more scattered distribution
and is found incised across the regional watershed, with no readily

!
apparent source areas (Figs. 4.4, 4.5). The troughs are generally 
open at both ends and often have glacially-breached cols at their 
heads. The ‘’watershed troughs" are shorter in length than the forms 
which originate in the higher parts of Area II, and are occupied by 
only the headwaters of the Carron, Kirk, Glenleith, Capel, Lochan, 
Kinnel and Cloffin streams (Fig. 4.4). The alignment of these 
troughs was strongly controlled by the location of the watershed 
itself, and consequently they form a divergent pattern between 
50° east and west of the southern compass direction.
As indicated on figure 4.6, the troughs which originate in the 
higher parts of Area II are generally larger and more deeply- 
incised than the forms found across the watershed* There are 
two major exceptions to this rule however, the "watershed troughs"/...



troughs" occupied by the Kirk Burn and the Carron Water 
(Figs. 4.5, 4.6). The Kirk trough, like many of the more 
southerly watershed forms is characterised by a fairly narrow, 
steeply sloping floor. However, in this case the floor flattens 
and widens as it is followed southwards across the watershed, such 
that near the trough mouth the floor exceeds l40m in width. The 
trough is incised more than 300m into bedrock, but is surpassed in 
this respect by the neighbouring Carron trough, the steep sides 
of which descend over 360m below the surrounding upland surface. 
This latter trough, also known locally as the Dalveen Pass, has 
a wide, flat, drift-filled floor, approximately 300m in width 
(Plate 4A ). The larger dimensions of the Kirk and Carron troughs 
in comparison with the other forms which are incised across the 
watershed, (Fig. 4.6), is attributable to the comparative 
susceptibility to erosion, both fluvial and glacial, of the 
New Red Sandstone rocks which outcrop at the mouth of both 
forms (Fig. 4.3)«
Within the group of troughs incised across the watershed, it is 
possible to make a general distinction between those trending in 
a north-south and those trending in a west-east direction. The 
north-south aligned troughs (Fig. 4.5), although shorter than the 
forms in the north-west part of Area II, all generally exceed 
1-J km in length and possess the previously mentioned steeply 
sloping floors. The forms aligned west-east across the watershed 
(Fig. 4.5), are all less than one kilometre in length and have 
gently sloping floor gradients by comparison. The differences 
in trough dimensions are attributable to differences in the pre
glacial valley forms. Rapid headward regression by the southward 
flowing/...
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flowing streams (Lebon, 1935, P.8; George, 1956, P.13), 
produced steep gradients in the uplands which were accentuated 
by glacial erosion. In contrast, the eastward flowing streams 
are characterised by gentle gradients in their upper reaches, 
and as a result are not as spectacularly enlarged.
The dendritic pattern of troughs descending from the higher parts of 
Area II concentrated glacial action in the Mennock and Potrenick 
valleys (Fig. 4.5). This is well-reflected in trough dimensions 
(Fig. 4.6). The Mennock however (Plate 4b ), is only one of three 
major troughs, the Glendyne and Enterkin being the other two, which 
drain the north-west part of Area II in a south-south-west direction. 
In all three cases the trough form disappears at the upland edge, 
where ice descending these troughs joined the Nith Valley.
The tributary troughs which join the Potrenick also originated 
locally. The Loch and Riccart troughs descend steeply from the 
upland surface around Green Lowther, while the Lang trough has 
a well-developed cirque at its head. All three troughs merge 
smoothly at their junction with the Potrenick, there being no 
evidence of hanging valleys in this vicinity (Plate 4C ). The 
close proximity of the troughs however, imposes a rugged 
character onto this part of the Lowther Hills which contrasts 
markedly with the smoothed topography of these uplands generally.
The Potrenick trough, its tributaries, and the Peden trough 
further north, all indicate an east-south-east movement of ice 
from this upland core of the Lowther Hills. The Lang, Riccart and 
Peden troughs also contain evidence in the form of moraines for 

3/...
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a more recent glaciation which post-dates trough formation, and in 
this respect are similar to the major troughs which descend from 
the Tweedsmuir Hills in Area I.
The two main types of glacial trough distinguished within Area II 
can, on the basis of their form and location, be related to different 
stages in the build-up and movement of ice across the area* The 
troughs in the north-west part of Area II are similar to the '’Alpine1’ 
or ’’Icelandic” forms described by Linton (1963)* and indicative of 
formation from local source areas of ice accumulation, either cirque 
or plateau glaciers. In contrast, the forms incised across the 
watershed in the southern 1 and eastern parts of Area II represent 
’’open” or ’’through” troughs (Sugden and John, 1976, P.151 - 209), 
which ”... have been eroded beneath ice sheets” (P. 179)• Therefore, 
it is suggested that local centres of ice accumulation were established 
at an early stage in the glacial period over the uplands in the 
north-west part of Area II and that ice descending from these 
centres was responsible for the pattern of glacial troughs found 
here. At a much later stage, when most, if not all, of Area II 
was covered by ice, the open troughs were incised across the 
watershed by an almost radial outward movement of ice from a 
north-west source.
GLACIALLY-BREACHED COLS Glacially-breached cols are numerous 
"in Area II, with over 60 examples identified (Figs. 4.4, 4.5).

The cols are generally flat-floored and cut abruptly into the 
surface of the uplands. All of the cols possess an open, catenary 
cross-section. Hov/ever, where large amounts of ice were concentrated, 
as in the col linking the Enterkin/...
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Enterkin trough with the Carron trough, col sides are steeper and 
the floor restricted in width, giving the form more of a V-shape 
(Plate k D ). Alt itudinally, glacial breaching occurred between 
305 — 636 m.o.d. but as many of the summits in this area exhibit 
some degree of ice moulding, it is strongly suggested that like 
Area X, Area II was entirely covered by ice at the maximum of the 
last glaciation.
The orientation and altitude of the glacially-breached cols in 
Area II were examined in an attempt to gain a greater insight into 
the former directions of ice movement across the area (Fig. *+.7).
On the basis of the information depicted on figure *t.7i the cols can 
be separated regionally into two groups, a southern and eastern group, 
and a north-western group. The two groups are separated by a line 
which follows ,the Potrail and Carron Waters, linking the two rivers 
across the watershed at Dalveen Lane (Fig. A-.5)«
To the south and east of the Potrail-Carron line three main 
concentrations of cols can be identified (Fig. .̂7)» The first 
group, found between 315 - ^83 m.o.d. in altitude and aligned in a 
broadly east-west direction are dominant along the eastern boundary 
of Area II, and were previously described in relation to Area I,
(Pages 53-57 )• The majority of these cols were incised across 
the watershed by generally eastward moving diffluent ice. In 
places, as at the head of the Lochan and Cloffin Valleys (Fig. ^.5), 
such breaches lead into open troughs of the type mentioned above.
By their location, the breaches at the head of the open troughs 
strongly suggest that although initially produced by diffluent 
ice, they also acted as major through routes for ice at or near 
the/...
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the glacial maximum.
A second, higher group of cols can be identified between 381 - 
602 m.o.d., aligned in a north-east to south-west direction 
(Fig. .̂7). These cols are similar to the first group in that 
they reflect movement across the watershed, but in this case 
across the higher, southern portion of this divide. The largest 
and best-developed breaches are found at the head of the Kirk and 
Capel troughs (Fig. .̂5)* The Kirk breach is incised more than 
152m below the upland surface and has craggy, scree-covered slopes,
bounding a flat-floor 80 - 100m in width (Plate 4-E ). Again

1
therefore, although many of the cols were produced by southward 
trending diffluent ice, there is evidence to suggest that certain 
forms were established, or more likely enlarged, by ice following 
a similar course, but under conditions of ice transfluence.
The first two groups of cols can be taken together as representative 
of the build-up and overspillage of ice from the Upper Potrail and 
Daer Valleys across the Lowther Hills watershed, in broadly easterly 
and southerly directions. Directions of ice movement appear to have 
remained basically similar at a later stage in the glacial period, 
with several of the breaches acting as feeders for open troughs 
incised beneath a more extensive ice cover.
The third group of cols extend between 305 - ô fO m.o.d., in 
altitude, but are concentrated below m.o.d. These cols are 
aligned in a north-west to south-east direction and occur 
throughout the- area to the south and east of the Potrail-Carron 
line. With the exception of two forms along the northern boundary 
(Fig. ^.5), these breaches are taken to represent a generally 
south-east movement of ice across much of Area XI, (on the basis 
of/...
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of roche moutonees,striations etc.). Although developed across 
the watershed where local relief conditions encouraged breaching 
in this direction, this third group of cols are most obvious in 
the uplands flanking the higher north-west part of Area II, and to 
the south of the regional watershed, along the upland edge (Fig. 4.5). 
The cols along the northern boundary, were produced by ice following the 
opposite north-north-west course into the Upper Clyde Valley, on the 
basis of other landforms of glacial erosion in this vicinity. 
Consequently, the pattern of cols found across the area to the 
south and east of the Potrail-Carron line suggests an almost radial 
outward movement of ice in north, east, south-east and southerly 
directions.
To the north-west of the Potrail-Carron line there are no such 
readily identifiable concentrations of glacially-breached cols 
(Fig. 4.7)- The cols are found at generally higher altitudes 
than those to the south and east, but form a very diffuse pattern, 
particularly above 580 m.o.d. There is evidence of diffluent ice 
breaching in a south-west direction from the Potrenick, Lang and 
Siccart troughs, but two kilometres further north, diffluent ice 
from the Peden trough incised a large breach in a north-west 
direction (Fig. 4.5). The altitude of the glacially-breached 
cols in the area where the large scale affects of glacial erosion 
are most evident and their generally diffuse pattern, are taken 
to be attributable to formation in close association with the local 
centres of ice accumulation which were established in this vicinity.
Some of the lower altitude cols were incised by diffluent ice during 
the outward movement of glaciers at early stages in the glacial period. 
However, most of the higher cols formed beneath the ice cap/ice dome 
which/...



which existed over this core region of the Lowther Hills 

during the later stages of glaciation, when directions of ice 

movement were controlled more by regional than local considerations.

The pattern of glacially-breached cols in Area II as a whole, suggests 

that much of the ice that covered the area originated in the north-west 

upland core of the Lowther Hills, and that outward movement from 

here was in broadly easterly and southerly directions. The location, 

and alignment of the higher cols and open troughs also suggests, that 

when the whole surface was covered by ice, the centre of the ice sheet 

lay over the central part of Area II itself.

CIRQUES. Twelve cirques were identified in Area II. (Figs. 4.4, 4.5). 

Nine of these features are concentrated in the higher north-west 

part of the area, the other three cirques found in the uplands 

flanking the headwaters of the river Daer. The best-developed 

cirque forms are deeply-incised into the eastern flank of the 

ridge linking Lowther Hill with Dungrain Law, at the head of the 

Lang and Peden troughs (cirques H and I respectively, fig. 4.5;

Plate 4C). Both cirques possess an arcuate plan form and have steep 

headwalls, 160 - 170m in height. However, there is no development 

of a gently sloping floor in either cirque, with the result that 

beyond the foot of the headwall the cirque form blends imperceptibly 

with the upper part of the trough in both cases. Ciraues A and 3,

(Fig. 4.5), occupy similar locations to cirques H and I at the head 

of the Glendyne and Glenclach troughs. Referring to cirques in the 

Alps, Penck (1909) stated, "The true corries (cirques) with basins 

in their bottoms are therefore mostly the/...
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the beds of isolated hanging glaciers which did not descend far 
below the snow limit ••••.••• But if on the slopes we have glaciers
which feed the valley glaciers then we have usually to deal only
with an increase of their cross-sections and their bottoms descend 
without interruption" (p. 16). Penck referred to the latter forms, 
similar to cirques A, B, H, and I in Area II, as "open corries’1 
(cirques).
Cirques E and F, (Fig. 4.5), perched along the western flank of 
the Enterkin trough, have a more directly eastern orientation 
than cirques H and I, but again are characterised by the arcuate 
plan form and steep headwall, although here the headwall is 
only 100 - 110m in altitude. As before however, there is little 
development of cirque floors. Cirques E and F, and the similar
forms C and D on the flanks of the adjacent Mennock trough, are
identical to the cirques along the upper flanks of the Carrifran and 
Blackhope troughs, described in the previous chapter (cirques B, C,
D, E; Fig. 3.4). The similarity in location and morphology is 
attributable to a similarity in the mode of formation, the cirques of 
the Enterkin and Mennock troughs reduced in size and left hanging 
along the upper flanks by the more vigorous erosive action of the 
trough glaciers; as in the Carrifran and Blackhope troughs.
Cirques J, K and L, (Fig. 4.5), to the south-east of the main group, 
all possess east or north-east orientations and are located on the 
lee side of fairly extensive upland surfaces. None of these cirques 
are as well-developed as the forms in the main group, their headwalls 
being generally less than 30m high.
Figure 4.8 indicates the orientation and altitude of all cirque forms 
within Area II. The majority of the cirques are orientated in an 
.east/...
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east-south-east direction, a slightly more southerly aspect than 
the forms in Area I (Fig, 3«IQ)* It is interesting to note in this 
context that all the cirques in Area II, with the exception of 
cirques C and D, occupy positions on the lee side of upland surfaces* 
This reinforces the previously stated belief that wind-blown drifting 
snow was an important factor in cirque formation (Embleton and King, 
1975» P.222), and suggests a west or west-north-west source for the 
main snow-bearing winds during the glacial period.
With regard to cirque altitudes, (Fig* -̂.8), assuming contemporaneous 
formation for all of the forms in Area II, a regional fim-line at 
approximately 3&) m.o.d. is indicated for the Lowther Hills during 
the period of cirque genesis. This altitude is only kQm below that 
suggested for the Tweedsmuir Hills further east.
The morphology, ‘altitude and orientation of the cirques give a 
further indication to the manner in which glacial conditions became 
established over Area II. The first glaciers were the cirque forms 
in the higher north-west part of Area II. At this early stage in the 
glacial period, Dort (1957) stated, " Ice is formed faster than it 
flows from the cirque. As a result the upper surface of the ice 
attains elevations higher than the top of the headwall and the summit
area into which the cirque is being eroded This upland ice
will of course flow off the summit area toward all points of the 
compass” (P. 5̂ 0). The establishment of such ice caps or ice domes 
over the higher upland surfaces in the north-west part of Area II 
is also supported by the postulated altitude of the regional firn-line 
(Manley 19̂ 9, 1955). Tbe presence of local centres of ice 
accumulation and dispersal explain the pattern of troughs radiating 
from this area and the closely associated open cirques, the latter 
produced/...



152

produced by the concentration of ice from ice caps, down ore- 

glacial valleys via the cirque heads. In this respect, it is

interesting to note that Evans (1969) stated, "....  open

ciraues are more common well above the snowline, in major glacial 

source areas of high relief" (P.371)* Open ciraues are only 

found in the north-west part of Area II.

STRIATIONS AND ROCHES MOUTONNEES• Striations are not common in 

Area II (Fig. ^.3). Several localities where striations are to be 

found however, are indicated bn the geological maps which cover 

the area, but not all of these were located in the field. By 

combining the information from the geological maps and the writer's 

own fieldwork, a total of only 15 striations were identified in 
Area II. The 15 forms can be readily broken down into two widely 

separated groups (Fig. *+.5); a north-west group and a south-east 

group.

The north-west group consists of only two striations, both aligned 

in a north-east to south-west direction, broadly parallel to the 

troughs which are found in this vicinity. The south-east group are 

found in close association with the regional watershed and 

consequently can be sub-divided into those found along the eastern 

part of the watershed and those found along the southern part. The 

striations along the eastern margin of Area II indicate the movement 

of ice in a broadly eastward direction across the watershed. 

Similarly the more southerly forms indicate a southward movement 

of ice, again crossing the watershed.

Two further striations were identified to the south of the Daer 

Reservoir, both aligned in a north—south direction, with locally 

a northward movement of ice suggested as being responsible for the 

formation/...
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formation of one of the forms by the Geological Survey (Fig. 4.5). 
This latter striation is the only form which does not suggest a 
broadly southward or eastward movement of ice across the south
east part of Area II.
Roches moutonnees are more abundant than striations in Area II and 
are more accurate indicators of former ice movements (Fig. 4.5)•
The roches moutonnees are also most common along the watershed 
region, often found as small mounds and ridges generally less than 
30m in length and Jm in height, on the floors of glacial breaches 
or open troughs. Once again, movement of ice across the watershed in 
a direction between east and south along the southern and eastern 
margins of Area II is strongly indicated. Further west, the 
affinity of roches moutonnees for breaches in the watershed is 
emphasised at the head of the Carron trough, where three forms 
indicate a west-south-west movement of ice broadly parallel to the 
alignment of the trough itself (Fig. 4.5). In the vicinity of the 
Daer Reservoir, near the centre of Area II, several moutoneed 
forms indicate an east-south-east movement of ice (Fig. 4.5).
Two other roches moutonnees are worthy of note. The first is 
found along the western upland edge between the Mennock and 
Enterkin troughs (Fig. 4.5)* and indicates a south-east movement 
of ice parallel to the Nith Valley, but at right-angles to the 
alignment of the troughs themselves. This form was produced at 
or near the glacial maximum by ice following the course of the 
Nith Valley, but also exerting its influence along the upland 
edge. The second roche moutonnee is found along the northern 
boundary of Area II, (Fig. 4.5), and indicates a northward movement
of ice.
The/.••
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The small-scale features of glacial erosion are therefore in 

agreement with the larger forms in suggesting an almost radial 

pattern of ice movement outward from the higher parts of Area II. 

SUMMARY. The landforms of glacial erosion indicate the principal 

directions of movement followed by the last major ice mass to cross 

Area II and strongly suggest that much of this ice originated within 

the area itself (Fig. 4.9). A local centre (or centres) of ice 

accumulation existed over the upland surfaces linking Green Hill 

with Dungrain Law in the north-west part of Area II, from which 

glaciers descended principally westwards, southwards and eastwards. 

Tie courses followed by these glaciers were initially strongly 

controlled by the upper reaches of the existing valley systems and 

in the case of some southward and westward trending forms, this 

remained the situation throughout their length in Area II. However, 

with particular reference to the eastward flow of ice, on escaping 

the upland constraints continued movement away from the core area 

of the Lowther Hills was fan-like.

Ice from the Lowther Hills moved northwards into the Upper Clyde 

valley, (Chariesworth, 1926b, P-7)^ but more significantly southwards 
and eastwards to accumulate against, overspill across, and eventually 

be incised through the restraining pre-glacial watershed. Although 

an almost radial outward movement of ice from the Lowther Hills is 

strongly suggested for the area as a whole, most of the ice which 

crossed the extensive central and eastern part of Area II followed 

a course between east and south.
Along the upland edge which parallels the west and south-west 

boundaries/...
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boundaries of Area IX a south-east movement of external ice down 
the Nith Valley is indicated* Ice following this course overspilled 
onto the lower flanks of the Lowther Hills at the glacial maximum*

Jf.5 GLACIAL DEPOSITION
Glacial deposits are not widespread in Area II and indeed are 
restricted to the floors and lower flanks of certain valleys, 
in all cases thinning out rapidly with increasing altitude* The 
surface of this upland area is dominated by the presence of peat, 
solid rock or debris derived from mass wastage, with the result 
that glacial till is severely limited in its distribution* The 
continuous upland character and uniform lithology make it even 
more difficult to readily identify till deposits and delimit their 
extent than was the case in Area I. Lodgement till, soliflucted 
till and superficial material produced by mass wastage are all 
similar in character in Area II and difficult to differentiate from 
the often limited exposures which are available. All three types of 
valley-fill descend from the valley sides towards the present 
streams in the form of sloping benches and can only be distinguished 
by stone orientation analyses* Consequently, no attempt was made 
to delimit the full extent of glacial till within Area II (Fig. **.**), 
although tentative limits are indicated in peripheral areas where the 
true character of the deposit can be ascertained with greater certainty* 
In these peripheral parts, glacial till can be identified up to an 
altitude of 366 m.o.d., but it is speculated that in scattered pockets 
in the central part of the Lowther Hills, "till’1 may extend upslope 
in places to **11 m.o.d.
As/...
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As was the case in Area I, good natural exposures revealing 
deposits which are taken to represent glacial till are rare, 
but where found generally occur in the vicinity of valley floors, 
the result of fluvial incision. The largest section indicates a 
till thickness of 12m-overlying a layer of disintegrated bedrock.
In many cases, however, the true thickness of the deposit cannot 
be ascertained as the lower part of the exposure is obscured by 
slumped material.
Areas I and II are also similar geologically, the dominance 
of Lower Palaeozoic rocks over much of Area II again resulting 
in the formation of a coarse, gritty till containing mainly 
greywackes, grits and silt stones. It is only along the west and 
south-west margins of the area that the character of the till 
changes slightly, with the presence of sandstones, shales, lavas 
and tuffs of Carboniferous and New Red Sandstone age in the deposit. 
The matrix of the tills in these marginal areas appears to be 
slightly more compact than that derived from wholly Lower 
Palaeozoic outcrops. Throughout Area II however, the shape of 
the included clasts remains generally constant, angular and sub- 
angular clasts dominating, although sub—rounded forms are 
also occasionally present. The colour of the tills also remains 
constant, despite the slight difference in geological source areas, 
with dark brown tills dominant. Along the south-west margin of the 
area however, the dark brown colour of the till is tinged with red, 
reflecting the influence, although slight, of underlying red sandstone. 
All of the exposures of till in Area II indicate a single unit 
overlying bedrock with the exception of Site 4F (Fig. in the
Lower Capel Valley, but this exposure will be examined in greater 
detail later. At no exposure was sand and gravel revealed overlying 
till/...
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till, but on several occasions the number of angular clasts 
contained within the deposit increased towards the top of the 
section, suggesting that the till in fact merged vertically with 
superficial material produced by mass wastage.
In Area II, more so than any other area, detailed examinations of 
till characteristics were completed at various sites where the 
deposit was best-exposed. There were two main aims behind this:-
(a) to verify that the deposit examined was in fact glacial 

till,
(b) to indicate the origin and former direction of movement of 

the ice by which the till was deposited.
In total, 9 exposures of till were examined (Fig. *+.*+, Sites *+A - 
*+J), the nature of the deposit and dimensions of its included 
clasts described, and preferred-stone orientation analyses, particle- 
size analyses and erratic counts carried out. The results obtained 
from each of the sites are summarised on figures *+.10, *+.11 and 
tables *+.1, *+.2, *+.3. Several points are readily apparent from 
these figures and tables.
The rose diagraoB for stone orientations within Area II (Fig. *+.10) 
and table *+.2, suggest a complex pattern of movement by the ice 
mass responsible for till deposition. The alignment of the long 
axes of clasts contained within the tills indicate that deposition 
in most of Area II was carried out either by an ice mass flowing 
radially outwards from this area or by an ice mass (or masses) 
moving into the Lowther Hills from all compass directions. Along 
the west and south-west margins of Area II, a more consistent north- 
'west/.•.
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west or south-east movement of ice is indicated by the preferred- 
stone orientation results. Throughout Area XX however, the 
suggested directions of ice movement imply that local relief 
conditions exerted a strong control over the pattern of ice flow.
The identification of erratics within the tills helped to clarify 
the pattern of ice movement slightly, but once again the uniform 
lithology over much of Area II greatly restricted the widescale 
adoption of this method (Figs. *f.3i **.11 and Table *f.3). The 
Lowther Hills consist almost entirely of greywackes and grits of 
Lower Palaeozoic age and this is strongly reflected in the 
constituents of the tills found over most of Area II. Only 
along parts of the west and south-west margin are outcrops of 
younger rocks of Carboniferous and New Red Sandstone age found. 
Sandstones and extrusive igneous rocks dominate these fairly small 
peripheral outcrops, although more extensive outcrops of a similar 
lithology are present in other parts of the Nith Valley (Figs. *+.3* 
*f.l2). As Carboniferous and New Red Sandstone rocks are only 
found in the Nith Valley, the presence of these characteristic 
"Nithsdale erratics" for example at sites **A, kF (Figs. *f.ll, *f.l2), 
is taken to indicate ice movement into Area II from a generally 
west or north-west direction. Consequently, the erratic content 
of glacial tills in Area II, (Fig. **.11; Table *+.3), strongly 
suggests that during the last major glaciation, ice from a generally 
west or north-west source was restricted to the west and south-west 
margins of the area. The remainder of Area II was covered by an 
ice mass which deposited a till sheet containing only Lower 
Palaeozoic/...
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Palaeozoic rocks of the type which are found locally in the 
Lowther Hills.
The particle-size data on till constituents, (Table .̂3), 
indicates relative homogeneity in the composition of the tills 
of Area II. The gritty tills characteristic of derivation from 
Lower Palaeozoic rocks in Area I are similarly dominant in Area II, 
with again the concentration of clasts in the coarser particle-size 
range. The exposures along the west and south-west margin of Area II 
which contain Nithsdale erratics (Sites *+A, *+F, Fig. k.k), do not 
have the concentration of larger clasts found elsewhere, and as 
a result tend to have more compact and tenacious matrices. The 
high percentage of sand in the lower Capel Bum till, (Site *+F,
Fig. .̂4; Table *f.3)i reflects the red sandstone on which the 
deposit rests, although no sizeable erratics of red sandstone were 
identified in the till itself. The slight differences in particle- 
size distributions between those tills consisting wholly of Lower 
Palaeozoic rocks and those containing Carboniferous and New Hed 
Sandstone erratics, is a reflection of the relative resistance 
to erosion of the erratics during transport by the ice mass.
Flint (1971) stated, 11 non-durable rocks such as sandstones....
broke up or wore out in transit to a greater extent than did their 
durable neighbours" (P. 8l). The comparatively greater resistance 
to erosion of the greywackes and grits explains the predominance 
of the coarser fraction in the tills consisting wholly of Lower 
Palaeozoic erratics.
By combining the information obtained from stone orientation 
analyses,/....
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analyses, erratic counts and particle-size analyses with 
evidence of the direction of ice movement derived from the examination 
of the landforms of glacial erosion (Fig. 4.9), the pattern of 
ice movement responsible for glacial deposition in Area 11 can 
be more closely established. Once again it is strongly indicated 
that a local centre of ice dispersal was present over the higher 
parts of the Lowther Hills during the last major glaciation to 
affect the area. Ice followed an almost radial pattern outward 
from the local centre, as indicated by the divergent alignments of 
the mean stone orientations for the tills at exposures 4B, 4D,
4G, and 4h (Fig. 4.10). The full extent of Lowther ice cannot 
be delimited, but the erratic content of the tills suggests that 
local ice extended across most of Area II. Along the foothill 
zone which marks the west and south-west margin of the area however, 
there is evidence to suggest that local ice became confluent with 
an ice mass moving down the Nith Valley. The dominant direction of 
movement of the Nithsdale ice mass was south-east, but it appears, 
again from erratic evidence, to have overspilled into Area II 
at only scattered localities (e.g. Sites 4A, 4F, Fig. 4.11), 
probably at the glacial maximum. This south-east movement of 
ice is strongly reflected in the rose diagram for Site 4E,
Garroch Water (Fig. 4.10), although Nithsdale erratics are totally 
absent from the till itself (Fig. 4.12; Table 4.3)• This 
indicates that ice following a southerly course from the Lowther 
Hills was forced eastwards on becoming confluent with the more 
powerful Nithsdale ice mass.
The/...
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The varying influence of Lowther and Nithsdale ice over the 
zone of confluence along the south-west margin of Area II is 
reinforced by the complex nature of the glacial deposits at Site 
4F in the Lower Capel Valley (Fig. if. 10; Plate k? ). Two till 
units are found here, a lower till 9°* in thickness overlying red 
sandstone, and an upper till 1.5 - 2m in thickness which rests 
conformably on the lower unit. Preferred-stone orientations, 
particle-size analyses and erratic counts were carried out on 
both till units (Figs. if.10, 4.11; Tables 4.1, 4.2, 4.3).
The mean stone orientation for clasts in the lower till is 
250° but for the upper till the alignment is 133.4° (Fig. 4.10; 
Table 4.2). This would suggest that the two tills were deposited 
by two ice masses following fundamentally different courses, the 
lower unit by ice which moved from a north-east or south-west 
direction, and the upper unit by ice following a south-east or 
north-west course. The chi-sauare values for the two tills 
(Table 4.2), indicate that there is a much stronger concentration 
of clasts around a specific orientation in the lower till than 
in the upper till. Similarly, regarding the dip-strengths 
(Table 4.2), the alignment of clasts in the lower till unit 
indicate a strong concentration of dips in a south-west direction, 
whereas the clasts in the upper unit have no apparent preferential 
dip direction. The particle-size data (Table 4.3), indicate that 
the lower till unit contains a higher percentage of fines, 
although the high concentration of sand was previously explained.

lower unit is the more compact of the two, the upper till 
being/...
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being of generally coarser character with more clasts present in 
the matrix. Examination of the erratic content of the two tills 
however (Fig. 4.11;Table -̂.3), reveals no great difference between 
the two deposits. Greywackes and other Lower Palaeozoic rocks dominate 
the two units, but erratics of Nithsdale origin are also present 
in both tills.
The Nithsdale and Lowther ice masses were confluent along the 
southern margin of Area II at the glacial maximum. On the basis 
of the above evidence, the lower and more dominant till unit was 
deposited at a time when Lowther ice, following a generally southward 
course down the Capel Valley, exerted the greater influence over 
regional ice movement in this vicinity, only a fairly small 
percentage of Nithsdale erratics being incorporated into the 
deposit. It appears however, that at a later period, deposition 
in association with the same ice mass, as indicated by the 
similar erratic content, was controlled more by the regional 
influence of Nithsdale ice. As a result, the clasts in the coarser 
and thinner upper till unit, which may represent an ablation or 
flow till and not a lodgement till, are aligned in the dominant 
north-west to south-east direction. This suggests that during the 
later glacial period, ice following a south-east course parallel to 
the local direction of Nithsdale ice, exerted a greater influence in 
the foothill zone along the south and south-west margin of Area II, 
than did ice moving south-south-west from the Lowther Hills.

MORAINES. The only morphological expression of glacial deposition to 
be found within Area II, apart from the sloping benches of till which/...



which descend from the lower valley flanks towards the present 

streams in scattered localities, is found in the upper parts of 

several of the valleys which drain the high ground linking Lowther 

Hill to Dungrain Law. On the valley floors and lower valley flanks 

of the Lang Cleuch, Riccart Cleuch and Upper Peden Burn are found 

a series of hummocky mounds (Figs. *+.*+, *+.13). The irregular 

assemblage of mounds is similar to the moranic tonography described 

in the Tail, Blackhope •aid Carrifran valleys of Area I, and the 

landforms in the Lowther Hills are also taken to represent moraines.

As before, air photographs at a scale of approximately 1:10,000 

of the valleys containing moraines were examined stereoscopically 

and then taken into the field where the landform pattern was checked 

by detailed field mapping.

Moraines in the Lang Cleuch Valley. The Lang Cleuch Valley is a 

steep-sided glacial trough with a narrow floor, and a well-developed 

cirque at its head. The morainic mounds are not found at the cirque 

head, but extend along the floor and lower valley sides between 

approximately 396 - *+88 m.o.d. (Fig. -̂.13; Plate *+G). By nature 

of their location, the moraines are generally neither well-developed 

nor particularly distinct, and it looks very much as if some mounds 

were destroyed by fluvial erosion or hidden by the processes of mass 

wastage down the steep valley flanks. The mounds which remain are 

found on both lower flanks near their upper valley limit, but become 

restricted downvalley to a narrow belt just over one kilometre in 

length along the northern side of the stream, (Fig. *+.13). Individually, 

the mounds range between 2 - 6m in height and 20 - 100m in length.

They are generally/...



generally steep-sided only along the flank which faces downslope 
towards the stream, and often merge imperceptibly upslope into 
the valley side. Although it is difficult to generalise on the 
distribution of this moundy spread, it would appear that in the 
upper part of the valley the more elongate forms are aligned 
downslope at a high angle to the contour pattern, towards the 
Lang Cleuch. Moving downvalley, the mounds tend to be aligned parallel 
to the contour pattern. Occasionally between,and in places cutting 
through, the mound forms there is evidence of small-scale fluvioglacial 
erosion; the channels generally 1.5 - *+m in depth with floors 
1 - 1.5«n in width.
Incision by the Lang Cleuch into the side of one of the mound forms 
at Site *+K (Fig. *+.13), reveals their internal composition. There 
is no apparent bedding and mainly angular clasts are found in a 
loose, brown, gritty matrix. Numerous fines less than 2cm in 
diameter are present, but a wide variety of clast sizes, including 
angular boulders 1.5m in diameter are scattered together. All of 
the clasts are of local origin.
The importance of slope processes in the modification of the
morainic topography is thought to have been considerable.
Numerous angular blocks and boulders up to 2m in diameter, have 
slumped down the northern side of the valley against the morainic 
mounds near their downstream limit (Fig. *+.1̂ ). On the steeper 
southern flank of the valley the affects of mass wastage are more
extensive. Scree slopes extend down to the Lang Cleuch along the
valley side, while near the valley head terraces of unconsolidated 
slope deposits cover the lower flanks and abut against the morainic 

forms.
Overall/...



Overall, the morainic mounds of the Lang Cleuch Valley are generally 

indistinct and dispersed in their distribution. It would annear 

that their original morphology and extent have been greatly 

modified by the processes of mass wastage down the steep valley 
flanks.

Moraines in the Riccart Cleuch Valley  ̂ The Riccart Cleuch Valley 
lies one kilometre to the north-east of, but runs parallel to, the Lang 
Cleuch Valley (Fig. *+.13). The Riccart is also a steep-sided glacial 
trough, the only difference between the two valleys being that there 
is no evidence of cirque development at the head of the Riccart.
By contrast, the valley head merely descends abruptly from the upland 

surface in the vicinity of Green Lowther.

The distribution of morainic mounds in the Riccart Valley is similar 

to that in the Lang Valley, (Fig. *+.13). The mound forms are 

again concentrated along the valley floor and lower valley slopes 

between approximately 396 - *+88 m.o.d., although more mounds are 

evident, and they are generally more sharply-defined, in the Riccart 

Valley. As before, there is evidence to suggest that the processes 

of mass wastage were active down the steep valley flanks.

The moraines were again best-developed in a narrow belt which extends 

down the northern side of the valley for approximately one kilometre 

in length. Individually, these mounds are readily identifiable as 

steep-sided, sharply-defined forms up to 8m in height and 80m in 
length. However, once more the steeper side to the mound is that 
which faces downslope towards the stream, the upslope side again 

often merging imperceptibly into the valley side. At site *+L,

(Fig. *+.13), the steeper southern side of one particular mound 

was incised by stream activity to reveal numerous angular and sub- 

angular/. ..
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angular clasts of local origin, generally less than 3 - 4  cms 
in diameter, in a loose, brown, gritty matrix. Once again, there 
is no evidence of bedding and larger blocks 30 - 60cms in 
diameter are incorporated in the deposit.
There are few elongate, forms within the moundy spread, but 
collectively the mounds appear to be aligned downslope towards 
the stream at a high angle to the local contour pattern. Where 
mounds are particularly concentrated, as along parts of the northern 
flank, several forms have coalesced to encircle kettle holes which 
attain depths of in places. Evidence of small-scale fluvioglacial 
erosion is again present, the meltwater generally channelled towards 
the present stream course.
As in the Lang Valley, the most extensive evidence of mass movement 
in association with slope processes in the Riccart Valley is found 
down the southern flank. Near the downvalley limit of the mound 
forms, there is an extensive spread of scree material along the 
southern valley side (Fig. 4.13)• An exposure in this material,
Site 4M (Fig. 4.13), reveals 8 - 10m of angular clasts in a very 
loose, gritty matrix. The majority of the clasts are less than 
2cm in diameter, although larger blocks up to one metre in diameter 
are also present. The more elongate clasts tend to have their long 
axes aligned directly downslope towards the stream. Along the 
northern valley side, several small alluvial fans, post-dating 
the deposition of the moraines, have transported blocks up to 
Pm in diameter, against and on top of the mound forms.
The moraines in the Riccart Valley are more readily identifiable 
and concentrated in their distribution than the forms in the 
Lang, but the location and extent of morainic mounds in the two
valleys/.•.



valleys is basically similar.
Moraines in the Upper Peden Valley. The Peden Burn also occupies- 
a well-developed glacial trough, but the valley sides here are not 
as steep, nor the floor as narrow, as in the Lang and Riccart Valleys 
(Fig. 4.13). Similar to the Lang Valley however, a well-developed 
cirque is found at the head of the Peden Valley.
The moraines of the Peden Valley are found some distance from the 
valley head, across the lower and less-steep valley slopes between
375 - 427 m.o.d. (Fig. 4.13). The moundy spread is concentrated

x 2into a small area less than 300ni which extends down both sides of the 
stream, although in this case the moraines are best-developed on 
the southern flank of the valley. The mounds are easily- 
distinguished and stand out as sharply-defined features up to 8m 
in height and 100m in length. However, by the nature of their 
location, the steepest side to the mounds is once again that which 
faces downslope towards the stream.
Several exposures reveal the internal constituents of the mounds 
to be basically similar to previous descriptions. At Site 4N,
(Fig. *+.13)i numerous angular and sub-angular clasts, all of local 
origin, are found in a brown gritty and in places slightly clayey
matrix. There is no bedding and the majority of the pebbles are
less than 4cm in diameter, although larger blocks up to one 
metre in diameter are also found.
There is evidence of quite extensive meltwater aotivity in close
association with the moranic mounds. Most of the channels are
small, less than 4m in depth with floors 1 - 2m in width, and 
rum between the mound forms, generally parallel or at a low 
angle/...
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angle to the local contour pattern for much of their length.

However, all of the channels eventually curve downslope towards 

the Peden Burn near the head of their course. Collectively, 

the mounds themselves also appear to be aligned generally parallel, 

or at a low angle, to the local contour pattern along both valley 

sides. There is little indication of mass movement of slope material 

in the vicinity of the Peden Valley moraines (Fig. *+.13), a fact which 

strongly reflects the gentler slppe conditions found here in 

comparison to the Lang and Riccart Valleys.

The moraines of the Upper Peden Valley are concentrated into 

a comparatively small area at slightly lower altitudes than the 

forms in adjacent valleys, but they are basically similar in terms

of morphology and internal composition.

Formation of Moranic Mounds in Area II. As in the Tweedsmuir Hills 

(Area I), the moraines in the 3 main valleys which drain eastwards from 

the Lowther Hill-Dungrain Law ridge are believed to relate to a 

recurrence of colder conditions either after or during the main 

period of deglaciation. A Zone III age for this cold period was 

previously suggested. On the basis of the distribution of the 

moraines, the former presence of small glaciers occupying the floors 

and lower flanks of the Lang, Riccart and Peden Valleys during this 

period, can be inferred (Fig. *+.l*+).

*+.6 FLUVIQGL AC IAL EROSION
Landforras of fluvioglacial erosion are unevenly distributed and 

developed in Area II (Figs. *+.*+, *+.15). The highest meltwater

channels are found on the spurs leading down from Lowther Hill at

altitudes exceeding m.o.d. , but the densest concentration of/...
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of channel forms is found below ̂ >50 m.o.d. along the southern 
margin of Area XX. Closely interlinked channel systems are 
not typical of Area IX as a whole however, and away from the 
southern margin, meltwater channels are often found individually, 
or in closely spaced but unlinked groups.
Almost all the channel forms are incised into bedrock, but they 
still vary considerably in their form and dimensions. Many are 
small depressions only 1,- 2m in width and less than 2m deep 
throughout their length. At the other end of the scale, however, 
are the forms which begin unimpressively, but develop into V*. 
shaped notches incised over 30® into the surrounding terrain.
Between these extremes are a multitude of forms exhibiting various 
characteristics of form and size.
Within Area II, channels are best-developed across the crests of 
spurs and in cols along the regional watershed. Figure ^.15 
locates the main channel systems more accurately and indicates, from 
the dominant slope of the channel floors, the principal direction 
of meltwater flow responsible for channel formation.
It becomes readily apparent from an examination of figures k.k 
and. **.15, that channel systems are best-developed in the peripheral 
parts of Area II, and that along the north-north-west, south-south- 
west, and eastern boundaries, the systems are indicative of 3 
distinct, but different, directions of meltwater flow. Similarly, 
in the central part of the area also, a characteristic pattern to 
the landforms of fluvioglacial erosion can again be identified. 
Channel systems in each of the k areas mentioned will be examined 
individually/...
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individually, in an attempt to clarify the local conditions 
of fluvioglacial erosion and hopefully aid in the better 
understanding of the pattern of deglaciation over Area II as 
a whole.
CHAfllffiL_JYSTOMS_ I|L ABM. II- *
(a) Channels along the North and North-Western Bo™n̂ «T*y« All of 

the channels in this area were incised by northward

flowing meltwater. However,, by altitude it is possible to 
distinguish between the forms found below **50 m.o.d. 
along the upland edge adjacent to the Nith valley, and the 
forms incised into spurs and cols in the upland core, generally 
above 520 m.o.d. (Fig. Jf.15).
Of the group of channels which are developed along the north-west 
upland edge of the Lowther Hills, (Fig. +̂.15), the forms which 
comprise system B, (Fig. *f.l6), are the best-developed 
(Plate ). Channel Bl, (Fig. A-.16), with its in-take at 
approximately kOk m.o.d., occupies the floor of a north-east 
to south-west aligned glacial breach. The channel starts 
abruptly, is deeply-incised into bedrock and follows a sinuous 
course northwards downslope to terminate at 350 m.o.d. Where 
best-developed, it is incised 16 - l8m into bedrock with only a 
narrow floor (3 - but near the outlet the width of the
channel floor increases to 10 - l̂ m. Channel B2, like Bl, 
also originates in the floor of a glacial breach and follows 
a deeply-incised, sinuous course downslope in the northerly 
direction. There is evidence to suggest a concentration of 
meltwater in the vicinity of this breach, with two feeders 
on/...
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on the floor of the breach leading to the channel in—take 
(at 440 m.o.d.) and a hanging meander, 7m above the floor 
on the eastera side of the channel- Where best-developed 
however, the channel is ravine-like, over 24m deep with 
steep bedrock sides rising from a floor only 3® width.
The outlets for channel B2 are found at approximately 366 m.o.d., 
but it is likely that the poorly-developed form B3 was also incised 
by meltwater from channel B2, and consequently the final 
termination of meltwater flow in this part of the system was 
also at approximately 350 m.o.d. B4 is a small chute-form 
developed on the northern side of the spur between 457 - 
427®- o. d. Channel B5 is similar to forms Bl and B2 in that 
it too commences in the floor of a well-developed glacial 
breach. The channel in-take is at approximately VfO m.o.d. 
and it follows a short, sinuous course downslope, terminating 
at 400 m.o.d. It is incised over 13m into the floor and 
northern flank of the breach, the width of channel floor 
varying between 4 - 6m.
The higher group of channels in the core of the Lowther Hills 
is represented by system Z (Figs. 4,15» 4.17). Channels Z1 
and Z2, (Fig. 4.17), are incised across the crest and 
northern flank of the spur linking Dun Law to Kneesend.
Z1 begins on the crest of the spur, at approximately 540 m.o.d. 
and runs down the northern flank in chute—like form, 
terminating at 51^ m.o.d. The channel is thickly infilled 
with peat, but although initially indistinct it developes 
downslope/...



downslope to become incised over 7m into bedrock with a floor 

5 — 7m in width. Channel Z2 was incised completely across 

the crest of the spur, hut again the southern portion of 

the channel is partly obscured by peat. The channel however, 

is best-developed where it leaves the.crest and starts to 

run down the northern flank of the spur. In this vicinity 

it is incised to a depth of 9m, with a floor 4 - 5m in width.

When followed further downslope the channel gradually loses 

its form, terminating at approximately 530 m.o.d..

Channels Z3, Z4 and Z5 (Fig. 4.17) originate on the floor of 

the glacial breach known locally as Big Windgate Hass at 

an altitude of 570 m.o.d., and lead down from here in a north

west direction. Z5, the lowest channel in the system, 

terminates at approximately 470 m.o.d..

Channels along the South and South-Western Boundary. The densest 

concentration of meltwater channels is found incised across'the 

spurs which form the upland edge along the south and south-west 

boundaries of Area II. More than 120 channel forms, the majority 

of which slope down in a south-east direction, are found in a 

narrow band 7km in length and 2km in width (Figs. 4.15, 4.13). In 

places the channel forms are incised in close association with 

landforms of fluvioglacial deposition (Place 41).

On the most westerly of the spurs examined in detail, (Spur N 

Fig. 4.18), the highest channel Nl, is found across the crest 

and south-east side of the spur, having its in—take at 600 

m.o.d. and its outlet at 549 m.o-d.. This channel is 

incised/...
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incised 11m into bedrock and has a floor 8 - 11m in 
width where best—developed, but its dimensions gradually 
diminish when followed down the south-east flank of the spur.
On the steeper south-west end of the spur, channel forms are 
generally not as clearly defined (Fig. *+.l8). However, 
channel N3 is an exception. It is a large chute with a semi
circular plunge-pool in-take, that is incised 14 - l6m into 
the spur end. The chute is a fairly short feature however, 
and runs downslope for only *tO - 50m. Channels N5, N6, N7 
(Fig. ^.18) all have up-down profiles, with short, poorly- 
developed, uphill sections in the westerly direction, and 
comparatively long, deeply-incised courses to the south-east. 
Below 3^6 m.o.d., the lowest channel forms of system N are 
mainly concentrated in the floor and along the lower slopes of 
the glacial breach which separates Garroch Fell from Auchenleck 
Hill. The majority of these channels are small, generally 
incised 5 - 8m into bedrock with narrow floors 2 - 3o in- 
width, but form complex interlinking systems, particularly 
on the north-west side of the breach, (Fig. -̂.18). It is 
worthy of note that above an altitude of 366 m.o.d., which 
is approximately the altitude of the floor of the breach, 
meltwater channels in this vicinity are wholly directed in 
a south-east direction. However, at approximately 366 m.o.d. 
there was a fundamental change in fluvioglacial conditions* 
Although channels on the south-east side of the breach (e.g.
N8, N9, Fig. ^.l8) indicate a continuation of meltwater flow 
in a south-east direction, channel forms on the north-west 
side of the breach indicate meltwater flor in a north-west 
direction/...
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direction (Fig. 4.18). Channel Nil, (Fig. 4.18), 
is in fact a large up-down channel, best-developed on the 
floor of the breach, which was perhaps utilised by meltwater 
which flowed first south-east, but then at a later stage in 
deglaciation reversed its direction to follow a north-west 
course.
The highest channel on the spur on which system 0 is 
developed, 01 (Fig. 4.l8), begins at 535 m.o.d. and is again 
incised partly across the crest but principally down the 
south-east side, terminating at approximately 4-95 m.o.d.
The channel is heavily infilled with peat but incised into 
bedrock to an apparent depth of 9 - 10m, the flat channel 
floor varying between 15 - 25m in width. Channel 02 (Fig. 4.18), 
is similarly best-developed on the south-east flank of the 
spur, but preference for such a location is more strongly 
indicated by channels 03 - 010 (Fig. 4.l8). These mainly 
small channels are all developed solely on the south-east 
flank of the spur between 450 - 430 m.o.d. Below this altitude, 
the channel forms are mainly found across the spur end, parallel 
or at a low angle to the local contour pattern, in a south-east 
direction (Fig. 4.18). The bench 021 (Fig. 4.l8), is typical 
of these forms, although slightly more continuous than is 
generally the case. It is incised 8 — 9m into bedrock and 
runs across the spur end for 600m varying in width between 
15 - 30m, but varying little in altitude about 396 m.o.d.
The alignment arid altitude of 021 suggests that it may mark 
the/.••
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the continuation of the meltwater course which incised
channel N5. To the south-east of the bench outlet a
series of small chute forms, 020 022 (Fig. 4.18), follow short 
courses directly downslope. At 320 m.o.d., the chute forms 
are in turn replaced by south-east trending channels which 
again mainly parallel the contour pattern, although occasionally 
they swing downslope at their outlets. Channel 028 (Fig. 4.l8) 
is the largest of these lower forms, incised 12 - 15m into 
bedrock with a floor 15 - 25m in width. The in-take of the 
channel is marked by a well-developed plunge-pool.
Channel system P is incised across the spur which lies on the
eastern side of the Kenriva Burn (Fig. 4.l8), and is similar
in many respects to system 0. There is however, evidence 
of fluvioglacial deposition in association with system P.
The highest channel of system P, PI (Fig. 4.18), is a well- 
developed up-down form incised across the crest of the spur 
at approximately 480 m.o.d. The western, uphill section to 
the channel is approximately 80m in length, but the downhill 
eastern part of the course is two to three times this length, 
and more deeply-incised. A ridge of sand and gravel begins 
100m beyond the outlet of channel PI, at approximately 
473 m.o.d. Channel P2 (Fig. 4.l8), is similar in dimension 
to PI, but developed solely on the eastern side of the spur 
crest with no uphill section in its course. Again there is 
evidence of fluvioglacial deposition in the vicinity of the 
channel outlet, just below 427 m.o.d. (Fig. 4.l8).
Fluvioglacial/...
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Fluvioglacial depositional activity is also evident at 
the outlet of channel P6 (Fig. f̂.l8), at approximately 
396 m.o.d.
Downslope from P6 on the spur end, there are several well- 
developed channel forms which trend parallel to the contour 
pattern in a south-east direction for a short distance and 
then plunge downslope in the form of subglacial chutes 
(Fig. ^.18). Channel P10 exhibits this well, its course 
parallel to the contour pattern disrupted by sections which 
plunge directly downslope. By contrast, channel P12 (Fig. 4.l8) 
follows the contour pattern round the spur end continually 
for a distance of 1.2km, varying between channel and bench 
form throughout its length (Plate ^K).P12 begins at approx.
335 m.o.d. as a southward trending bench, l^m in width. The bench 
is replaced by a well-developed channel form, incised 12m into 
bedrock with scree-covered slopes, 150m along its course.
The channel swings south-eastwards for a distance of 300m, 
but in turn is replaced by another larger bench ^Om in width, 
for the next 300m. Channel form is once again regained at a 
marked step in the floor, l8m in height, which leads down 
to a large and well-developed plunge-pool. A certain amount 
of meltwater left this plunge-pool in a southerly direction 
via channel Pl6, but most of the meltwater flow continued 
south-eastwards to descend a second step, 8m in height, to 
a second plunge-pool a further 100m along the channel length. 
Meltwater leaving the second plunge-pool also continued in a 
south-east direction, running across the regional slope to 
gradually/...
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gradually fade away at approximately 290 m.o.d. Once again 
there is evidence of fluvioglacial deposition, in this case as 
a terrace form, at the channel outlet. It is interesting to 
note that to the east of the outlet of channel P12 there 
are a series of small, deeply-incised chute forms (P17 - P19*
Fig. *f.l8), most of which have plunge-pool in-takes, that trend 
directly downslope to also terminate at 290 m.o.d., at the 
depositional terrace form (Plate Channel P21 (Fig. ^.18),
also has a depositional terrace form at its outlet, but at 
the slightly higher altitude of 310 m.o.d.
Channel system Q is the most easterly of the systems which 
are incised across the upland edge of the Lowther Hills within 
this southern part of Area II (Fig. ^.18). The highest channel 
in the system, Ql, is found at approximately k?0 m.o.d. in the 
floor of the glacial breach which separates Queensberry Hill 
from Wee Queensberry. The channel is aligned in a south-east 
direction and incised to a depth of 13m into bedrock, with 
a flat, peat-filled floor 8 - 10m in width. As indicated 
on figure A-.18, most of the channels below the highest form 
parallel its south-east alignment, although they tend to be 
concentrated across the crests and down the lee sides of 
the two spurs which flank the Bran Burn.
Two of the lowest forms, Q13 and Ql*f (Fig. *f.l8), are developed 
around either side of the conical hill, MThe Law", both channels 
leading into the Bran Bum Valley. Q13, the slightly higher 
of the two, has its in-take at 290 m.o.d. and leads south
east from the Capel Bum Valley. The channel floor is 
20 - 30m in width but heavily peat-infilled. Channel Ql4, 
withy...
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with its slightly lower intake at 282 m.o.d., also carried 

meltwater south-east from the Capel Burn Valley. It is 

believed that both channels formed in close association 

with the extensive terrace developments at the mouth of the 

Capel Burn Valley.

(c) Channels along the Eastern Boundary. All of the channels along 

the eastern boundary of Area II were incised by meltwater 

following a broadly eastward course (Fig. 4.15). Evidence of 

fluvioglacial erosion is found between 390 - 549 m.o.d., although 

the channels vary in their exact location, and are present on 

both the floors and' flanks of glacial breaches, as well as across 

ridge and hill crests. The nature of the meltwater activity is 

well-illustrated by channel system U (Fig. 4.19).

The highest channels in system U (U1 and U2) are found at 

approximately 480 m.o.d., incised in a north-east direction 

across the ridge crest linking Beld Knowe to Mount Joe.

At slightly lower altitudes, between 411 - 457 m.o.d., channel 

forms U3 - U6 (Fig. 4.19), are incised across the western flank 

of Beld Knowe in an east-south-east direction, towards the 

glacial breach at the head of the Shiel Burn. These lower 

forms are only incised 3 - 4m into bedrock, with wide peat- 

filled floors 15 - 25m in width. Channel U7, developed across 

the crest of Earlside (Fig. 4.19), is a more obvious feature and 

is incised 6 - 7m into bedrock, with a flat floor 20 - 30m in 

width. U7 is aligned in an easterly direction towards the 

glacial breach which separates Mosshope Fell from Gill Kr.cwe.

The floor of this breachhas been deeply-incised/. . .
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incised ty meltwater activity (Channel U8, Fig. 4.19), 

the degree of incision increasing eastwards. Where 

best-developed the channel is incised over 30m into bedrock 

with a wide, flat floor exceeding 60m in width.

Although there is no direct evidence of feeder channels 

leading into U8, there are indications of fluvioglacial 

erosion across the spur flanking the glacial breach on its

southern side, between 430 - 480 m.o.d. (Channels T1 -
T8, Fig. 4.19). These channel forms are mainly small, the

largest and lowest, T8 at 432 m.o.d., incised 7m into 

bedrock with a floor 12 - 15m in width. All of the channels

in system T indicate an eastward movement of meltwater and

it is suggested that lateral migration of englacial streams 

in the manner described by Clapperton (1968), resulted in the 

concentration of fluvioglacial erosion in the floor of the 

glacial breach. Regardless of the main source of meltwater 

however, there can be little doubt that the large and well- 

developed channel U8 was a major routeway for eastward flowing 

meltwater across the watershed.

(d) Channels in the Central Part of Area II. The meltwater channels 

of this area do not differ dramatically in their dimensions 

or altitude from forms described in other parts of Area II. 

However, with regard to the size of the area examined, channels 

are comparatively fewer in number, and whereas individual 

channel forms and channel systems in each of the peripheral zones 

generally possessed a common alignment/...
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alignment, this is not the case in the central part of 
Area II (Fig. 4.15). A fundamental distinction can be 
made within this central area however, between the channel 
forms above and below 396 m.o.d. Of the channel forms above 
396 m.o.d., it is intended to examine systems F, K and R 
(Fig. 4.15), in detail.
Channel system F is found in the vicinity of Wether Hill, a 
spur leading down from Lowther Hill, and consists of only three 
channel forms (Fig. 4.20). The highest of these channels,
FI at 560 m.o.d., is incised into the flank of the glacial 
breach at the head of Dinabid Linn. The channel is 8 - 9m 
in depth, with a narrow floor 2 - 3m in width; the floor 
sloping down in a south-west direction. Channel F2, with 
its in-take at approximately 550 m.o.d., is a larger form, 
found across the crest and down the western flank of the 
spur, terminating at 503 m.o.d. The channel is best- 
developed across the crest of the spur, where it is incised 
more than 11m into bedrock and has a flat floor 20 - 25m in 
width. Once again, the channel is aligned in a south-west 
direction. Channel F3, (Fig. 4.20), the lowest of the group, 
is also the most spectacular. As before, this form is 
incised across the crest and down the western flank of the 
spur, having its in-take at 515 m.o.d. and outlet at 
457 m.o.d. The channel has a wide, open in-take but 
narrows westwards across the spur, such that although incised 
20 - 25m into bedrock, the floor is only 4 - 5m in width 
near/...
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near the western outlet* Movement of meltwater in a south
west direction from a north-east source is again indicated. 
Channel systems G, H and J flanking the Carron Valley 
(Fig. 4.15), to the south and east of system F, also 
indicate a south-west movement of meltwater*
Channel system K consists of two well-developed channels 
incised into the upland ridge linking Ballencleuch Law 
with Durisdeer Hill (Fig. 4.21). Kl, at 608 m.o.d., 
is the higher of the two channels and is incised 7m into 
bedrock, with a flat peat-filled floor 7 - 8m in width.
The channel floor is humped in profile, but the dominant 
slope is undoubtedly in a south-east direction. Channel K2 
is found at an altitude of 545 m.o.d. and is larger than Kl; 
it is incised 10 - 12m into bedrock with a flat floor 20m 
in width. The channel again possesses a slightly up-down 
profile across the spur crest, but formation by meltwater 
following a south-west course is strongly indicated. Therefore, 
although both incised across an upland ridge within 2km 
horizontally and 50m vertically of each other, the two well- 
developed channel forms Kl and K2 trend in strongly divergent 
directions.
To the south-east of system K, the channels of system R 
(Fig. 4.22), indicate 3 fundamentally different directions 
of meltwater flow. The highest forms incised across Eamcraig 
Hill and at the head of the Daer Water (HI, R2, R3, Fig. 4.22), 
indicate a southerly movement of meltwater across the watershed. 
The/...



182

The slightly lower channels incised across the crest of 
the spur at approximately 480 m.o.d. (R4, R5, Fig. 4.22), 
in contrast indicate an easterly flow of meltwater. In 
turn, the lowest form (R6, Fig. **.22), which falls into the 
second category of channels found in this central area as it is 
developed entirely below 396 m.o.d., was incised by meltwater 
following a northerly course. Beyond the outlet of channel R6 
there is also evidence of fluvioglacial deposition.
As with channel R6 (Fig. 4.22), all of the channels in system 
X (Fig. 4.23), are developed entirely below 396 m.o.d. Channel 
system X consists of three forms incised across the crest and 
western flank of the spur which leads northwards from Coom 
Rig (Fig. 4.23)* XI, at 370 m.o.d., is incised solely across 
the crest of the spur to a depth of 7m- The floor of the 
channel is 4 - 5m ia width and slopes down in a west-north- 
west direction. Channel X2 is the best-developed of the 
three forms. The in-take of the channel, on the eastern 
flank of the spur, is at approximately 362 m.o.d. and the 
channel follows a sinuous course from here across the crest 
and down the western flank, to terminate at 340 m.o.d. The 
channel is incised to a depth of 9 - 10m throughout its 
length, but floor width decreases westwards from l6m to 9m.
X2 was incised by meltwater following a west-north-west 
course. Channel X3 (Fig. 4.23), is a short form which 
starts and stops abruptly. As with channel R6, it is 
interesting to note that there is evidence of fluvioglacial 
deposition along the lower western flank of the spur on 

which/...
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which channel system X is incised, approximately 10m 

below the altitude of the outlets of channels X2 and X3 

(Fig. 4.23).

It is difficult to summarise the affects of fluvioglacial 
erosion over the central part of Area II. However, above

396 m.o.d. there appears to be an almost radial channel 

pattern leading out from the higher parts of the area, with 

widely-spaced channels aligned in south-westerly, southerly, 

south-easterly and easterly directions (Fig. 4.15). The 

few channel systems which occur below 396 m.o.d. have no 

obvious pattern to their distribution, their only common 

characteristic being that they tend to be found in close 

association with fluvioglacial deposits.

By bringing together the information obtained from the four 

local areas, it is possible to speculate upon the main sources 
of meltwater, and fluvioglacial conditions generally at the 

time of channel formation for different parts of Area II. 

GLACIAL CONDITIONS LEADING TO THE ESTABLISHMENT OF THE MELTWATER 

CHANNEL PATTERN IN AREA II. In attempting to explain the uneven 

distribution and highly varied alignment of meltwater channels in 

Area II, it is important to consider the factors that influence

meltwater flow. As previously mentioned, it is generally agreed 

from observations in many parts of Britain and Scandinavia, tnat the 

alignment of meltwater channels across an area gives a general 

indication of surface slope of the ice mass and therefore closely 

corresponds to the former directions cf ice movement as depicted by 

striations, roches moutonnees and transport of erratics, (J Gjessing 

1960; Sollid 1963/64; Sissons 1967a; Sugden 1970; Clappertcn 1970,

l°71a, 1971b; Price/...
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Prico 1973? Sugden and John 1976). Over Area II, it was suggested 
in previous sections that ice built up locally over the higher 
ground and moved radially outwards from here to cover much 
of the area. However, along the west and south-west boundary of 
Area II, local ice merged with external ice descending the Nith 
Valley in a south-east direction. Consequently, with the onset 
of deglaciation^ meltwater channel network became established 
in association with two highly individual, but confluent ice masses, 
each with differing ice gradients, on both the local and regional 
scale. For this reason, meltwater channel formation in association 
with Nithsdale ice will be examined separately from that in association 
with Lowther ice.
(a) Fluvioglacial Erosion in Association with Nithsdale Ice

The channels which fall into this category are developed along 
the north-west, south and south-west margins of Area II, in 
the Lowther foothills flanking the Nith Valley, and are 
represented by systems A, B, C, E, I, L, M, N, 0, P, Q,
(Fig. .̂15). A ready-made subdivision within the Nithsdale 
group separates those channels which are aligned in a 
northerly direction, across the upland edge, from those forms 
aligned in a south-east direction, parallel to the upland 
edge.
The channels which indicate a northerly movement of meltwater 
are restricted to the north-west corner of Area II and 
depicted by systems A, B and C (Figs. ^.151 ^*16). In all 
three cases, the channels are located at low points on broadly 
east-west orientated spurs, at altitudes ranging between 
366/ . . .
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366 - 430m. o«.d.
The tendency for the channels of this group to be most marked 
on convexities in the underlying topography reflects,
".... the primary control of active ice movement in their 
formation" (Sugden and John, 1976, P.303), and by definition 
such channels are ice-directed. Evidence relating to the 
direction of ice movement in this vicinity, in the form of 
striations, alignment of cols etc, is indecisive and indicates 
either a south-west or north-east passage of ice (Fig. 4.5)*
The channel alignments suggest an ice surface sloping down 
in a northerly direction from a southerly centre in the general 
vicinity of the Nith Valley. The overspillage of Nithsdale ice 
across the upland edge and into the Lowther foothills is 
therefore strongly indicated.
Although it can be stated that the ice surface gradient sloped 
down in a northerly direction and that meltwater paralleling 
this direction incised a channel pattern on transversely 
aligned bedrock convexities, the exact mode of channel 
formation can only be speculated upon. Once again, it is not 
possible to state conclusively whether these ice-directed 
channels were incised by the superimposition of supraglacial 
and/or englacial streams, or by subglacial meltwater flow 
beneath active ice. The tendency for development on the lee 
side of spur crests perhaps lends greater support to the 
latter postulation (Shreve 1972). However, regardless of 
the exact mode of formation, there is no evidence of ice- 
directed meltwater drainage in the north-west part of Area II 
below/...
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below 366 m.o.d. This suggests that at approximately this 
altitude, the regional northerly movement of meltwater across 
the upland edge was replaced by drainage down local valley 
systems.
Away from the north-west corner of Area II, it is more typical 
for the channel systems produced in association with Nithsdale 
ice to follow a south-east course. This alignment is well- 
illustrated by systems E, I, L, M, N, 0, P, Q (Fig. 4.15, 4.l8). 
The channels of this group range in altitude between 305 - 
600 m.o.d. and as before there is a strong development of ice- 
directed forms across bedrock convexities, although in this area 
ice movement has paralleled the upland edge.
Channel systems E and I (Fig. 4.15), are incised across the 
crests of spurs along the western boundary of Area II,but the 
greatest density of channels possessing the south-easterly 
alignment is found along the south-west boundary. The 
highest channel forms of systems N, 0, P, Q (Fig. 4.l8), 
generally above 427 m.o.d., are incised across the crests 
and lee slopes of spurs that slope southwards to the upland 
edge. The altitude of the highest channel on each spur also 
decreases in the sputh-easterly direction. At lower altitudes 
across the spur ends between 330 - 427 m.o.d., channels still 
tend to follow south-east courses but at a relatively shallow 
angle to the local contour pattern (Fig. 4.18). Below 330 m.o.d., 
although there are a few channels which still run across the 
spur end, paralleling the contour pattern, the majority tend 
to run more directly downslope (Fig. 4.l8). The channels below 

427 m.o.d./...
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427 m.o.d* are collectively, representative of forms which 
were produced in marginal and sub-marginal environments.
The highest and ice-directed group of channels (above 
427 m.o.d.), tend again to be represented by individual forms. 
Occasionally these channels are incised completely across the 
spur crest, e.g. PI (Fig. 4.18), with its well-developed up- 
down profile, but more commonly begin on the crest and run 
down the eastern, lee side of the spur, e.g. Nl, 01, 02, P2,
P4 (Fig. 4.l8). Other forms are developed solely on the lee 
side of the spur crest, e.g. 03 - Oil (Fig. 4.18). Once 
again, it is impossible to state conclusively whether such 
forms were incised by wholly subglacial meltwater flow or by 
superimposition. However, the presence of plunge-pool in-takes 
for some of the channels, e.g. N3, Q6 (Fig. 4.l8), indicates 
that these forms at least were not produced by meltwater following 
a wholly subglacial course. Nevertheless, it is not possible 
to state on the basis of these two channel forms alone, that 
all the channels above 427 m.o.d. were incised by the super
imposition of englacial and/or supraglacial streams.
The channel forms developed across the spur ends between 330 - 
427 m.o.d. are also ice-directed, in that they follow a 
generally south-east course parallel to the former direction 
of ice movement. However, by the fact that they also tend to 
parallel the local contour pattern, it is suggested that they 
relate to formation near a glacier margin, in this case the 
margin of the Nithsdale ice mass. As in Moffatdale, where 
similar/....
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similar dense channel patterns are found, it cannot be 
stated conclusively that a particular form was incised in 
a truly marginal or sub-marginal environment. It was 
previously suggested, as a result of work by Sissons 
(1961 a ), that channels with gradients less than 1 : 50 
may be marginal. On this basis, the more continuous bench 
form 021, the bench-channel form P12 and others such as Q9 
and Q12 (Fig. .̂18), were perhaps incised at the ice margin 
itself. However, the more common solitary forms, which run 
downslope at an oblique angle to the contour pattern, and 
anastomosing patterns, with channel segments running at 
relatively gentle gradients along the spur end separated by 
segments running more directly downslope, are more likely 
representative of combined marginal and sub-marginal meltwater 
flow, or formation entirely beneath the ice margin. Both two- 
sided channel and one-sided bench forms are present, with 
perhaps a slight preference for bench development along the 
south-west spur margins (Fig. *f.l8). The concentrated 
but discontinuous channel pattern which is developed across 
successive spur ends along the south-west margin of Area II, 
was incised in a similar fashion to the pattern in Moffatdale.
A dense network of englacial and supraglacial streams occupying 
lateral positions in the Nithsdale ice mass and following 
generally south-east courses, impinged upon the spurs for short 
periods during downwastage. The depth of incision is once 
again believed to have been controlled by an englacial water- 
table./...
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table.
The concentration of channels which trend directly 
downslope in the form of subglacial chutes below 330 m.o.d., 
(e.g. channels 026 - 030, P.17 - P.21, Q15, Fig. h.l8), and 
the.fact that many of these channels possess plunge-pool 
intakes, suggests that there was a fundamental change 
in the control of fluvioglacial conditions within the 
Nithsdale ice mass at this altitude. It is suggested that the 
zone of meltwater penetration which controlled the super- 
imposition of englacial and supraglacial streams collapsed 
at approximately 330 m.o.d. As a result,meltwater plunged 
directly downslope to incise the chute forms. The high 
frequency of plunge-pool in-takes clearly indicates that 
superimposition of meltwater streams was taking place and 
that the marginal channel pattern along the south-west 
boundary of Area II was not incised by wholly subglacial 
flow beneath active ice. It would appear however, that the 
collapse of the zone of meltwater penetration was not total, 
as there is evidence in the form of extensive fluvioglacial 
terrace remnants at concordant altitudes of 290 m.o.d. at the 
mouth of the Capel Burn, to suggest its re-establishment.
The termination of many of the chute forms, (e.g. P17, Pl8, 
P19, P21, Fig. 4.l8), and indeed marginal forms (e.g. P12,
Fig. ^.18), at the altitude of these terrace remnants, 
reinforces this belief.
The reason for the initial collapse of the englacial water- 
table/ ...
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table is not readily apparent* However, it is interesting 
to note that in the vicinity of Backhill Moss, on the north
west side of th6 glacial breach which separates Garroch Fell 
from Auchenleck Hill (Fig. A-.18), the direction of meltwater 
flow was reversed at approximately J>SO m.o.d., the altitude 
of the floor of the breach. As a result, meltwater which 
formerly followed a south-east course through the glacial 
breach towards channel systems 0, P and Q, changed direction 
to flow down the north-west side of the breach (channels 
N10, Nil, N12, N13, Fig. A-.18). It is possible that the 
reduction in the supply of meltwater from a north-west direction, 
as a result of the zone of meltwater penetration falling below 
the altitude of the breach, was responsible for the collapse 
of the englacial water-table controlling marginal drainage 
along the upland edge, further to the south-east.
All of the channels which trend in a south-easterly direction 
along the south-west margin of Area II have been up to now 
attributed to the erosive action of meltwater streams 
associated with Nithsdale ice only. However, as it is believed 
that the Nithsdale and Lowther ice masses merged over the 
foothills in this vicinity, it is possible that the alignment 
of channel forms relates not solely to formation in association 
with one particular ice mass, but to the dominant direction of 
ice movement across this area (Fig. 4.2*f). It was earlier 
stated that at the glacial maximum, the south-east course 
followed by Nithsdale ice was dominant in this vicinity. 
Consequently/..•
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Consequently, Lowther ice breaching the southern part 
of the watershed in a generally southward direction swung 
round to a south-east course on merging with the more 
powerful Nithsdale ice mass. As a result, although the 
higher ice-directed channel forms which follow a 
south-easterly course were attributed to formation in 
association with Nithsdale ice, it might be more accurate 
to state that they formed in association with an ice mass 
paralleling the course of Nithsdale ice. That is to say, 
that the higher meltwater channels, Nl, 01, 02, PI (Fig. *+.l8), 
were perhaps incised by meltwater streams originating on 
Lowther ice (Fig. *+.2*+).
With the onset of deglaciation, downwastage and marginal 
recession would eventually result in the partition of the 
two confluent ice masses. However, at early stages in the 
deglacial period, the principal direction of meltwater 
drainage along the western margin of the Lowther ice mass 
was south-west (systems F, G, H, J, K, Fig. *+.15» Fig. *+.2*+).
Such a course must have channelled vast amounts of meltwater 
from the Lowther Hills onto, into and against ice occupying 
the Nith Valley (Fig. *+.25 A). In addition, with downwastage, 
the upper parts of the Glenbuith, Kenriva and Capel valleys 
would become ice free before the lower parts (Fig. *+.25 B) • . 
Extraglacial meltwater moving down these valleys therefore further 
supplemented existing marginal flow in the Nithsdale ice. The 
concentration/.••
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concentration of meltwater drainage along the north-east 
flank of the downwasting Nithsdale ice mass, in the manner 
described above, was obviously an important factor in the 
establishment of the dense channel networks across the spurs 
which delimit the south-west boundary of Area II*
There is depositional as well as erosional evidence to 
substantiate the claim of partition of the two ice masses 
and the ice-free nature of the southward trending valleys.
At the mouth of the Capel valley, ground vacated by ice became 
flooded by a glacial lake which was ponded to the south by 
Nithsdale ice. Terrace forms were deposited in this lake by 
systems of meltwater channels from the Nithsdale ice, augmented 
by extraglacial meltwater flow down the Capel valley (Fig.
4.25 O  * It seems likely that an englacial water-table 
controlled the level of deposition. The Capel Lake is 
examined in greater detail in the section devoted to 
fluvioglacial deposition.

(b) Fluvioglacial Erosion in Association with Lowther Ice

The channel systems attributable to formation in association 

with ice derived locally in the Lowther Hills, are found 

over the central and western part of Area II (systems D, F,

G, H, J, K, R, W, X, Fig. 4.15), and along parts of the 
eastern and northern margins (systems S, T, U, V and Y, Z, 
respectively, Fig. 4.15). It is difficult to detect common 
trends within this complex pattern of channel systems, but 
as oreviously stated, a fundamental distinction can be made 
on/...
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on 'the basis of altitude between forms occurring above 
and below 396 m.o.d.
The higher group of channels, above 396 m.o.d., is by far 
the more dominant and is represented by a series of widely 
spaced, generally individual forms, incised across bedrock 
convexities and into the floors and flanks of glacial breaches. 
Channel systems F, G, H and J (Fig. 4.15), are all aligned in 
a south-west direction and although incised completely across 
convexities in places, more commonly begin on the crest and 
run down the lee slope of spurs for a short distance (e.g.
F2, F3, Fig. 4.20). Locally there is a tendency for channels 
to seek out the low points in ridge and spur crests.
Channel K2 (Fig. 4.21), also has a south-west alignment, 
and is again best-developed on the lee side of the ridge 
crest, but nearby Kl is aligned in a south-east direction.
The highest channels of system R (Rl, R2, R3 and R4, R5,
Fig. 4.22), are aligned in southerly and easterly directions 
respectively.
Channel systems S, T, U, V (Fig. 4.15), are all incised across 
the watershed in a broadly eastward direction and again 
generally favour low points in the divide, mainly glacial 
breaches. The channels of system Z (Figs. 4.15, 4.17), 
are similarly located, but aligned in north and north-west 
directions.
All of the channels which comprise this higher group tend to 
be aligned parallel to the suggested directions for ice 
movement over this area (Figs. 4.9, 4.25 (Based upon 
previously/...
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previously mentioned findings on the occurrence of striations, 
roches moutonnees, distribution of erratics etc.). When taken 
into consideration with the fact that the channels also tend to 
be most marked on convexities in the underlying topography 
and in glacial breaches, it seems likely that all of these 
higher forms are ice-directed in character and again "..... 
reflect the primary control of active ice movement in their 
formation1' (Sugden and John, 1976, P.303)- Consequently, the 
almost radial alignment of the higher channels in the Lowther 
Hills, strongly indicates that the surface gradient of the 
Lowther ice mass sloped down in all directions from a source 
in the vicinity of the Lowther Hill - Dungrain Law ridge 
(Fig. if. 15, 4.25).
As before, it is not possible to be conclusive on the exact 
mode of formation of the radial channel pattern. Formation by 
subglacial meltwater flow at the base of active ice cannot be 
overlooked as a possibility, but the discontinuous nature of 
the channel pattern, the ruggedness of the terrain and the 
proximity of the local ice centre, suggest that the majority 
of this higher group of meltwater channels were incised by 
the superimposition of supraglacial and/or englacial streams 
during downwastage. The direction of meltwater flow was 
determined by the ice gradient and the depth of incision by 
the zone of meltwater penetration. The comparative scarcity 
of channel forms found in association with the Lowther ice 
mass generally, but particularly near the local centre of ice 
dispersal, can be attributed to meltwater drainage utilising 
the pre-existing valley network, as in the central part of 
the Cheviot massif (Clapperton, 1970, P. 121).
The/.•.
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The channel forms found below 396 m.o.d., (R6, XI, X2, X3,
Z6, Z7, Z8, Z9, Figs. *+.15, *+.17, *+.22, *+.23), are similar 
to the higher group in that they too have no specific alignment, 
but fluvioglacial erosion of these forms occurred at a stage 
in downwastage when regional controls over meltwater drainage 
were superseded by local relief and meltwater considerations.
At varying altitudes between 360 - 396 m.o.d. in different 
parts of the Lowther Hills, there was a fundamental change in 
the control of fluvioglacial conditions within the downwasting 
Lowther ice mass. Where locally the height of the englacial 
water-table controlling fluvioglacial erosion fell below the 
level of the watershed or other bedrock convexities, the 
pattern of meltwater flow was disrupted and re-directed 
downslope under the control of local relief conditions.
In the case of channels XI, X2, X3 and R6 (Figs. *+.22, *+.23), 
this resulted in the re-direction of meltwater back towards 
the main source area, but with channels Z6 - Z9 (Fig. *+.17) , 
collapse of the water-table merely forced water directly 
downslope and several of the channels have plunge-pool in-takes. 
Localised fluvioglacial deposition also occurred at this time, 
but much of this late-stage meltwater drainage probably left 
Area II in a northerly direction, along the pre-existing valley 
network.
The pattern of meltwater channels produced in association with 
the Lowther ice mass reinforces the belief that a local centre 
of ice dispersal was present over the higher parts of the Lowther 
Hills during the last major glaciation to affect the area.

( c ) / . . .



) SUMMARY. There can be little doubt that the complex channel 

pattern in Area II (Fig. 4.15)/ was established in association 

with two highly individual ice masses which merged over the area. 

Channels along the west and soth—west margin were incised 

by meltwater flow controlled by Nithsdale ice, which spilled 

across the upland edge into the Lowther foothills (Fig. 4.25). 

Elsewhere in Area II however, the almost radial pattern of channel 

development suggests formation in association with a local centre 

of ice dispersal over the higher parts of the Lowther Hills 

themselves (Fig. 4.25). Deglaciation, subsequent downwastage, and 

marginal recession, resulted in the partition of the two ice masses. 

However, south-west flowing meltwater from the Lowther ice mass 

augmented the existing meltwater drainage along the north-east 

margin of the Nithsdale ice mass and contributed to the dense 

channel network found along the foothills which delimit the 

south-west margin of Area II.

FLUVIOGLACIAL DEPOSITION

Evidence of fluvioglacial deposition in Area II is restricted to 

small pockets of sand and gravel which occur in widely scattered 

localities (Fig. 4.26). There is no readily apparent pattern to 

the occurrence of the fluvioglacial deposits, but they do appear 

to be slightly more extensive along the south-west margin of the 

area, where the greatest density of meltwater channels is also to 

be found. A better understanding of the distribution pattern of 

the fluvioglacial deposits, their mode of formation and the nature 

of deglaciation generally, may be facilitated by a detailed 

examination of the morphology and character of the deposits at 

several of the localities indicated on figure 4.26.

Capel/...
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Capel Valley* The Capel valley, in the southern part of Area II 

(Fig. 4.26), runs southwards from the watershed, with a gently 

inclined western flank leading down from Hard Kill - Haggie Hill, 

but steeply sloping eastern flank leading up to Queensberry Hill 

(Fig. 4.27). The fluvioglacial deposits, morphologically 

represented by a series of mound, ridge and terrace forms, are 

concentrated along the western flank of the valley and at the 

valley mouth, where it leaves the foothill zone (Fig. 4.27). As 

previously mentioned, fluvioglacial deposition in the Capel Valley 

was closely linked to. fluvioglacial erosion, and the numerous 

meltwater channels which are incised across adjacent spurs.

The most northerly evidence of fluvioglacial deposition in the 

Capel valley takes the form of four discontinuous mounds which 

extend down the western flank between 435 - 360 m.o.d. (AA, Fig. 4.27). 

The mounds vary in length from 25 - 70m and in height from 4 - 11m. 

However, there is a general increase in both length and height as the 

mounds are followed downslope, the lowest being the best-developed 

of the four forms. The internal constituents of the mounds are not 

well-exposed, but appear to be a coarse gravel. There is no 

evidence of fluvioglacial erosion in the immediate vicinity of the 

mounds. Despite this last factor however, the four mounds are 

believed to represent the remains of an esker ridge which was implaced 

by englacial or supraglacial meltwater following an easterly course. 

Further south, the ridge form BB (Fig. 4.27), again emerges from 

the hillslope at approximately 435 m.o.d., but in this case runs 

continuously downslope for 250m in a north—north—east direction, 

before/...
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before fading away at approximately 4l5 m.o.d. Where best- 
developed the ridge exceeds 12m in height, with a crest width 
of 9*n. Again there are no good sections in the ridge, but small 
exposures indicate that it consists of sub—rounded and sub—angular 
clasts (l-4cm in diameter), in a sandy matrix and as such is 
also taken to represent an esker. The feeder channel for the 
fluvioglacial ridge is readily apparent and has its outlet 100m 
to the west of where the esker begins. This channel, PI (Fig. 4.27), 
is incised to a depth of 17 - l8m across the crest of the spur and 
has a well-developed up-down long profile.-
There is slight evidence of fluvioglacial deposition, in the form 
of two small terraces 3 - 4m in height at the outlets of channels 
P2 and P3, at approximately 427 m.o.d. (Fig. 4.27). However, 
continuing the movement south down the Capel valley, a more obvious 
indication of fluvioglacial deposition is the sinuous, discontinuous 
ridge CC (Fig. 4.27), which follows a south-east course across the 
valley side. The main part to this ridge, which begins at 402 m.o.d., 
consists of four segments. The two most northerly are mounds over 
10m in height, but dimensions fade southwards, the last segment 
being only 4m in height and terminating at 335 m.o.d.
Small exposures reveal that this discontinuous ridge in turn also 
consists of sand and gravel and as such is again taken to represent 
an esker form. It is possible that the course of the esker may have 
originally continued further downslope and that the short ridge DD, 
(Fig. 4.27), at 320 m.o.d., represents the former continuation
of this. Channels P2 and P3, again incised across the crest of the 
sour linking Hard Hill to Haggie Hill, but without the up—down long— 
profile/...
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profile of PI, were the main feeders for esker CC (and DD).
The depositional form EE, at approximately 375 m.o.d., is a 
large steep-sided terrace, the flat surface of which is 
100 - 120m in width. The steep eastern face of the terrace 
is 20 - 22m in height and small exposures in this vicinity 
indicate that the feature consists of numerous sub—rounded and 
sub-angular pebbles, in a coarse, gravelly matrix. On the basis of 
its morphology and constituents, EE is taken to represent a kame 
terrace. Three small mound forms, all less than 4m in height and 
40m in length, are found on the southern flank of the terrace. All 
three mounds are aligned downslope in a south-south-east direction 
and also believed to consist of sand and gravel, although no exposures 
are visible. The main feeder for the kame terrace, and probably 
also the adjacent mound forms was channel P6 (Fig. 4.27)•
Flanking the Capel Burn itself, at approximately 305 m.o.d.,there 
is another well-developed terrace form (FF, Fig. 4.27)» the steep 
eastern face of which is 16 - l8m in height. This terrace was 
at least partly deposited by meltwater following the oourse 
of channel P21 (Fig. 4.27), which blends into the surface of the 
terrace itself. However, the largest and most spectacular terrace 
forms are found flanking the mouth of the Capel Valley where it 
leaves the foothill zone (Plate 4L'* 4m).
The terrace GG (Fig. 4.27), is found along the western flank 
of the foothills at an altitude of approximately 290 m.o.d.
The flat-surface to the feature, which extends out from the hillslope, 
is over 70m in width, while the steep south-east face is 30 - 35m 
in height. Exposures revealed by the incision of small streams into 
the/...
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the steep face of the terrace, indicate that it consists of 
numerous sub—rounded and sub—angular pebbles, mainly the 
former, in a loose, gravelly matrix. A wide variety of clast 
sizes, from 1 - 30cm in diameter, are found jumbled together 
with no indication of stratification. An isolated mound of 
sand and gravel protrudes 3 “ above the otherwise flat surface 
of the terrace. Numerous channel forms both marginal/sub- 
marginal and subglacial chutes terminate at the altitude of the 
terrace (Fig. .̂27).
On the eastern side of the mouth of the Capel Valley, a similar 
extensive terrace form, HH (Fig. +̂.27), also at 290 m.o.d., 
is apparent. This terrace generally rises 40m above the Capel 
Burn itself, but the southern part has been incised by fluvial 
activity and lies at the slightly lower altitude of 275 m.o.d.
The constituents of this eastern terrace are similar to those 
of terrace GG and it would appear that the two terraces may 
formerly have merged, to form a continuous spread of sand and 
gravel across the mouth of the Capel Valley. There are no 
indications of feeder channels leading to the terrace HH.
In attempting to explain the landforms of the upper Capel Valley, 
Charlesworth (1926 b.', P.17) termed the ridge forms (AA, BB, CC,
DD, Fig. ^ . 2 7 "lateral moraines", but their internal constituents 
and close association with adjacent meltwater channels, leave little 
doubt that the features described above are indeed fluvioglacial 
in origin and are therefore eskers. Consequently, a more accurate 
explanation of the mode of formation of the depositional landforms 
in the Capel Valley must pay due consideration to the mode of 
formation/...
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formation of the adjacent, and closely interlinked, landforms of 
fluvioglacial erosion.
It is stated in the previous section that the channel pattern 
across spur crests and spur ends along the south-west margin of 
Area II was incised by englacial and supraglacial streams, occupying 
lateral positions in the Nithsdale ice mass, as they impinged upon 
the sub-ice surface during downwastage. The superimposition of 
these streams, all following a broad south-easterly course, was 
controlled by a zone of meltwater penetration or englacial 
water-table. Across the Hard Hill - Haggie Hill spur, on the 
western flank of the Capel Valley, such streams first became incised 
between *+57 - *+80 m.o.d. (PI, P2, P3, P*+,Fig **.27)• Continuing on 
a south-east course, the streams became englacial over the Capel 
Valley itself, but were again superimposed-onto the Queensberry- 
Wee Queensberry spur at the slightly lower altitude of *+50 - *+57i 
(Ql, Q6, Fig. *+ .27; Stage 1, Fig. *+.28). However, it would appear 
that when locally the water-table fell below the level of the major 
channels Ql and Q6, approximately *+50 m.o.d., the Queensberry - Wee 
Queensberry spur in effect acted as a temporary barrier to meltwater 
drainage. Meltwater crossing the Hard Hill - Haggie Hill spur was 
unable to follow a through route across the Capel Valley and out of 
Area II, and consequently, meltwater velocity declined on the 
eastern side of the spur and deposition of eskers AA, BB, CC (Fig. *+.27)i 
occurred. The fact that all three ridges begin at approximately the

l

same altitude, *+35 m.o.d., suggests that the englacial water-table 
became stabilised at this altitude for a period and that the englacial 
channel responsible for esker AA and channels PI* P2, P3 and P*+
(Fig. *+.27)/....
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(Fig. ^»27), all carried meltwater at this time. It is impossible 
to state conclusively whether the eskers were deposited in an 
englacial or subglacial environment. However, the fact that esker 
CC follows a very sinuous course, finally terminating at some 
altitude between 320 - 335 m.o.d., suggests that the englacial 
theory of formation and subsequent lowering onto the sub-ice surface 
with continued downwastage is more likely, at least in this case,
(Stage 2, Fig. *f.28). Continued lowering of the water-table resulted 
in the meltwater drainage over the Capel Valley adjusting to a more 
southerly course; channels Q7 and Q8 (Fig. +̂.27), were incised over 
a lower part of the Queensberry - Wee Queensberry spur and the through- 
flow of meltwater was re-established.
The alignment of the Capel Valley, transverse to the direction of 
regional ice movement and surrounded by ridges exceeding A-57 m.o.d. 
in altitude on all but its southern side, suggests that it would 
become cut off from its source of supply early during downwastage 
of an ice sheet, and that ice in the valley would stagnate in situ, 
further facilitating fluvioglacial deposition, (Stage 3» Fig. .̂28).
The ice mass occupying the Upper Capel Valley certainly appears to have 
wasted away more rapidly than the main Nithsdale ice mass which lay 
over the foothill zone at the valley mouth. As a result, ponding of 
meltwater from Nithsdale ice, augmented by extraglacial meltwater 
moving down the Capel Valley itself, took place against the main 
Nithsdale ice mass at the mouth of the valley. Initially such ponding

I

occurred at approximately 3̂ 5 m.o.d. and a small lake extended up 
the Capel Valley (Stage 4, Fig. *f.28). This lake drained either 
subglacially or extraglacially via channel Q13 (Fig. *f.27), into 
the/...



the valley of the Bran Burn, and left the delta—kame terrace 

(FF, Fig. 4.27), perched on the western valley side. A second 

lower but larger ice—dammed lake appeared at the mouth of the

Capel valley at approximately 290 m.o.d.. Along the western 

margin, this lower lake appears to have extended, at least 

initially, into the Nithsdale ice mass itself, where extensive 

deposition by a series of subglacial chutes and marginal channels 

was carried out. This source of meltwater was also probably supplemented 

by extraglacial flow coming down the Capel valley, (Stage 5, Fig. 4.28).. 

The lower lake also appears to have drained or at least overflowed in 

a south-east direction, in this case via channel Q14 (Fig. 4.27).

The subsequent drainage of the temporary lake and incision of the 

deposits which accumulated there by postglacial fluvial activity, 

has left delta-kame terraces GG and HH (Fig. 4.27), perched on either 

side of the mouth of the Capel valley. Charlesworth (1926b) also

supported the establishment of an ice-damned lake at the mouth of 

the Capel valley, but believed that the main source of meltwater was 

supplied by an actively retreating glacier at the head of the valley.

"The water issuing from this glacier was apparently impounded to form 

a lake south-west of "The Law", by a glacier standing in the valley 

of the Garroch Water (Nithsdale Ice)" (P.17).

Backhill Moss* This area also'lies in the foothill zone along the 

south-west margin of Area II and as the name suggests is heavily 

.infilled with peat (Fig. 4.26). The fluvioglacial deposits are again 

identified primarily by their distinctive morphology, protruding through 

the peaty floor as a series of mounds and ridges, although small

exposures revealing/...



204

revealing sand and gravel also testify to their character. Two main 
groups of mounds can be identified, a northern group at the head of 
the Kettleton Burn and a southern group in the vicinity of the 
Cample Water (Fig. 4.29).
The northern group of mounds (Fig. 4.29)» vary in their dimensions 
from 2 - 7m in height and 30 - 50m in length. Small exposures in 
the flanks of several of the forms reveal numerous sub-angular and 
sub-rounded clasts in a coarse, gravelly matrix. However, despite 
the fact that there are 15 mounds in this group, there is no obvious 
preferential alignment to the mound crests, and a haphazard 
distribution is indicated.
The southern group consists of two mounds and a short ridge form, 
separated from each other by the Cample Water (Fig. 4.29). The two 
mounds on the western side of the Cample Water are aligned in a 
north-west to south-east direction and are both 5 - 7m in height 
and 50 - 60m in length. The more continuous ridge on the eastern 
side of the stream, although originally following a similar alignment, 
swings more directly southwards and bifurcates near the end of its 
course. The ridge is approximately 250m in length and varies from 
8 - 10m in height. Small exposures in all three forms reveal 
numerous sub-angular and sub-rounded clasts, generally less than 
2cm in diameter, in a loose, reddish-brown sandy matrix. It is 
believed that the three mound/ridge forms were formerly continuous 
and together represent an esker ridge, the ridge supplied by meltwater 
from a north-west or south-east direction.
The foothill zone in the vicinity of Backhill moss was crossed by 
south-east trending Nithsdale ice during the last major glaciation 
(Fig. 4.9)/...
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(Fig. *+.9)» With the onset of deglaciation, meltwater drainage 

followed a similar south-east course at higher altitudes, as 

indicated by channels LI, L2, Ml, M2, (Fig. k.29). However, as 

previously stated, with continued downwastage and descent of the 

zone of meltwater penetration below an altitude of approximately 

360 m.o.d., the height of the floor of the breach on the south-east
side of Backhill Moss which separates Garroch Fell from Auchenleck

!
Hill, the direction of meltwater drainage was reversed (Figs. *+.l8, 
*+.29)• Meltwater which formerly flowed south-eastwards across this 
area reversed its course to flow north-west down into Backhill Moss, 
as indicated by channels Nil, N12, N13, (Figs. *f.l8, 4.29). It was 
at this later stage that the north-west to south-east trending 
esker ridge flanking the Cample Water was deposited.
On the north-west side of Backhill Moss there is another glacially- 
breached col again at an altitude of approximately 360 m.o.d., in 
this case separating Glenleith Fell from Rottencraig Head (Fig. *f.29)« 
There is no evidence of fluvioglacial erosion on the slopes leading 
down from this latter breach. The presence of these two glacial 
breaches, and the associated uplands, which together encircle Backhill 
Moss, strongly suggests that with continued downwastage, this 
depression aligned transversely to the direction of regional ice 
movement would be occupied by a mass of stagnating ice, which wasted 
away in situ. Such a situation is ideal for the concentration of 
meltwater and formation of fluvioglacial landforms, (Sugden, 1970).
All of the landforms of fluvioglacial deposition and some of the 
landforms of fluvioglacial erosion in the vicinity of Backhill Moss, 
were produced in association with this stagnant ice mass, meltwater 
finally/...
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finally escaping the area south-westwards via the Kettleton and 
Cample Valleys.

Xn the central upland area of the Lowther Hills, conditions 

during deglaciation were basically similar to those in the peripheral 

area, as exemplified by the landforms and deposits in the vicinity 

of the Daer Reservoir and Nether Fingland (Fig. 4.26).

Daer Reservoir. In the vicinity of the Daer Reservoir (Fig. 4.30), 

fluvioglacial deposits, again identified by their distinctive morphology, 

are found at the mouths of the Carsehope Burn and Kirkhope Cleuch. 

Charlesworth (1926b, P.15), interpreted the mounds as moraines, to 

be more specific, the "Nether Fingland Series" of moraines, formed 

during the retreat of the "Upper Clydesdale Glacier". However, 

exposures in the flanks of the mounds reveal coarsely bedded sands and 

gravels, which, when taken into consideration with their often 

close relationship with adjacent meltrrater channels, makes a 

fluvioglacial origin more likely.

At the mouth of the Carsehope Burn, a well-developed ridge of 

sand and gravel, 5 - 7m in height, follows a north-south course 

parallel to the main Daer Valley for 350m (Fig. 4.30). The ridge, 

found at approximately 366 m.o.d., is steepest on its eastern flank 

where it was incised by meltwater action paralleling its course. Beyond 

the northern limit of the ridge and close to the mouth of the meltwater 

channel there are a series of mound forms, some almost conical in 

shape, resting against the regional slope. These mounds, found 

between 350 — 366 m.o.d., are generally steep—sided and vary 

between 6 - 9m in height. There is no obvious pattern to the 

occurrence/...
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occurrence of the mounds.
At the mouth of the Kirkhope Cleuch (Fig. If. 30), the evidence of 
fluvioglacial deposition is even less spectacular. Two mound 
forms, again aligned in a north-south direction, are found along the 
shore of the reservoir at approximately 330 m.o.d. The mounds 
are 6 - 8m in height and kO - 50m in length. Exposures, revealed 
by wave action, indicate numerous sub-rounded and sub-angular 
pebbles mainly 1 - ^cm in diameter, in a coarse sandy-fine gravelly 
matrix. Larger more angular blocks, 30 - 30cm in diameter, are also 
present along the lower flanks of the mounds. It is believed that the 
two mounds were originally continuous and formed a small esker ridge. 
There is no evidence of fluvioglacial erosion in this vicinity.
Other landforms and deposits relating to fluvioglacial deposition 
in this vicinity were either hidden or destroyed in the formation of 
the Daer Reservoir. However, a series of borings carried out prior 
to the construction of the dam give some indication as to the nature 
and thickness of drift deposits at the northern end of the reservoir 
(Figs. .̂30, .̂31). It can be seen from figure ^.31* that below 
310 m.o.d. several metres of gravel overlie the basement rocks, 
particularly along the more gently inclined western valley flank.
It is suggested that gravel deposits underlie much of the Daer 
Reservoir, particularly below 325 m.o.d.
With the regional movement of Lowther ice across this area in a broad 
easterly direction, as indicated by roches moutonnees on figure *f.30, 
the Upper Daer Valley, aligned north-south and surrounded by high 
ground, is believed to have retained a mass of stagnant ice which 
wasted away in situ during downwastage; a similar situation to that 
previously/...
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previously described in Backhill Moss. At higher altitudes over this 

area the regional direction of meltwater flow was also in an east- 

south-east direction (Fig. 4.15). However, as indicated by channel 

R6 (Fig. 4.30), and the adjacent esker form, towards the later stages 

or deglaciation the direction of meltwater drainage was reversed 

and re-directed northwards into the Daer Valley itself, where 

fluvioglacial deposition was concentrated. Many of the fluvioglacial 

landforms in the vicinity of the Daer Reservoir were probably 

destroyed prior to the construction of the reservoir itself with the 

re-establishment of the northward drainage pattern in the 

postglacial period.

Nether Fingland. The fluvioglacial landforms on the eastern side of the 

Potrail Water at Nether Fingland (Fig. 4.26), were also termed moraines 

by Charlesworth (1926b, P.15), who believed this to be the type- 

site for the previously mentioned "Nether Fingland retreat stage" 

of the "Upper Clydesdale Glacier". However, once again exposures 

clearly indicate the fluvioglacial character of the landforms and 

this is confirmed by their close association with meltwater channels 

incised across Pin Stane (Fig. 4.23; Plate 4N).

A large sinuous ridge, starting gradually at approximately 320 m.o.d., 

runs initially downslope in a westerly'direction, but swines southwards 

near its junction with the Potrail Water floodplain (Fig. 4.23). 

Exposures in the steep/ western face of the ridge reveal numerous 

s u b - r o u n d e d  and sub-angular clasts 1 - 2cm in diameter, although larger 

forms up to 30cm in diameter are also present, all in a coarse, 

gravelly matrix. The ridge is approximately 30Om in length, and

10/...
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10 - 11m in height when viewed from the floodplain. On swinging 
southwards near where it terminates, the ridge appears to have almost 
enclosed a marshy terrace area 100 - 120m in width. This terrace 
stands 8 — 9® above the present river floodplain and can be seen 
from small sections to consist of numerous pebbles in a gravelly 
matrix. A large marshy hollow is found in the surface of the 
terrace.
The sinuous fluvioglacial ridge is another esker form, in this 
case found in association with a small kame terrace, the surface 
of which is pitted with a marshy kettle hole. The esker and 
associated forms were deposited by meltwater following the courses 
of channels XI, X2, X3 (Fig. *f.23)i but particularly the largest 
form X2, which was the main feeder for the esker itself.
As the regional direction of ice movement and consequently meltwater 
drainage at higher altitudes was broadly eastwards over this vicinity, 
westward-trending channel system X and its associated fluvioglacial 
deposits must have formed during a later period in downwastage, 
possibly when stagnating ice occupied the adjoining, north-south 
aligned, Potrail and Daer Valleys. Concentration of lateglacial 
and postglacial drainage in the pre-existing river valley destroyed 
any other fluvioglacial deposits formerly present in the Potrail 
Water, and has undercut the existing deposits to produce the steep 
face which flanks the floodplain at the present day.
SUMMARY. The patchy distribution and relatively limited extent of 

fluvioglacial deposition in Area XI is a direct result of the complex 

interrelationship between glaciological and relief conditions during 

deglaciation. The/...
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The irregular upland topography of Area II placed major restrictions 
on the deposition of characteristic sand and gravel forms. Sugden 
and John (1976) believed that fluvioglacial deposits were less 
common in glacial troughs in uplands, M...because valley glaciers 
often remain active during retreat, inhibiting the survival of subglacial 
or englacial meltwater streams and allowing fluvioglacial landforms 
to persist only in ice-narginal and pre-glacial situations” (P.333). 
Certainly, over the central part of Area II, which was covered by 
locally derived ice from the Lowther Hills, meltwater channels and 
corresponding fluvioglacial deposits are poorly developed.
Similarly, the best-developed fluvioglacial landforms, both erosional 
and depositional, are found along the south-west margin of Area II 
where Lowther ice and externally derived Nithsdale ice were 
confluent. With deglaciation, downwastage and partition, 
fluvioglacial activities were concentrated along the marginal zone 
of these two ice masses, particularly the Nithsdale ice mass.
A closely-linked factor also influencing fluvioglacial deposition 
was the direction of regional ice movement. Originating over the 
higher ground of the Lowther Hills, initially much of the dispersing 
Lowther ice followed the pre-glacial valley network. However, with 
increasing distance from the source, the direction of ice movement 
became more independent of the underlying relief, crossing valleys, 
spurs and ridge crests transversely. During the period of 
deglaci^tion, ice masses occupying valleys and depressions 
transverse to the direction of ice movement became isolated from 
their source of supply and downwasted in situ. As mentioned, these 
conditions are highly conducive to the concentration of meltwater 
and/. •.
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and formation of fluvioglacial landforms, but there is comparatively 
little evidence for this having taken place over the irregular 
topography of Area II. The patchy distribution of sand and gravel 
forms in potentially suitable localities suggests that stagnation 
and downwastage in situ did occur, but that many of the meltwater 
features which were deposited on the relatively narrow valley floors 
were destroyed, or buried, by pro-glacial and/or postglacial drainage.

4.8 CONCLUSIONS
The glacial geomorphology in Area II is dominated by landforms
of erosion, both glacial and fluvioglacial in origin. From the
study of these landforms and associated though more limited evidence from
glacial and fluvioglacial deposits, the sources and directions of ice
movement can be inferred and the nature of ice dissipation over
this essentially upland area suggested.
1. Area II was occupied by ice from two main sources (Figs. 4.5,

4.9).
Most of the area was crossed by a locally derived ice mass 
which radiated outwards from the high ground in the vicinity 
of Green Hill - Lowther Hill - Dungrain Law. However, along 
the foothills which represent the west and south-west margin 
of Area II the dominant source of ice was external.

2. Evidence from the erratic content of tills and till fabrics
(Figs. 10, 4.11, 4.12), indicates that the external ice 
mass moved down Nithsdale in a predominately south-east 
direction, but only overspilled into the marginal uplands
of Area II itself where local relief and ice conditions
permitted. The presence of erratics derived solely from
local/...



local Lower Palaeozoic rocks in tills over most of 
Area II, reinforces the belief that the higher parts 
of the Lowther Hills, like the Tweedsmuir Hills, were 
a primary centre of ice dispersal during the last major 
glaciation to affect Scotland. Geikie (l8?l) stated,
” It appears that the high grounds ranging from the sources 
of the Afton north-eastwards through the Lowther and Leadhills 
to the Clyde have served as a central axis of dispersion for 
the ice of the glacial period” (P.38), a view that is supported 
by Charlesworth (1926 b , P.23).
As in the Tweedsrauirs, the higher surfaces of the Lowther 
Hills supported an ice cap or ice dome, from which outlet 
glaciers flowed radially, guided initially by the upper 
reaches of the principal valleys. However, on escaping 
these constraints, continued outward movement of ice was 
fan-like, particularly in the easterly direction, to eventually 
cover most of Area II and overspill across the eastern boundary 
into Area I.
The Lowther and Nithsdale ice masses became confluent over 
the west and south-west margins of Area II, together following 
a south-easterly course controlled by the more powerful 
Nithsdale ice mass at the glacial maximum.
Evidence of glacial breaching and fluvioglacial erosion are 
found at altitudes exceeding 610 m.o.d. which, in association 
with the glacial moulding of hill and ridge crests, strongly 
suggests that Area II was completely covered by ice, either 
internally or externally derived, during the last major 
glaciation.
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5* Fluvioglacial landforms and deposits produced during
downwastage are poorly developed in Area II as a whole, 
but evidence of concentrated fluvioglacial activity is 
found in the vicinity of the zone of confluence of the 
Lowther and Nithsdale ice masses.

6. As in Area I, evidence of fluvioglacial erosion is best- 
developed across spurs and bedrock complexities aligned 
transverse to the regional direction of ice movement, in 
association with both Lowther and Nithsdale ice. Most
of the meltwater channels were incised by the superimposition 
of ice-directed supraglacial and englacial streams onto the 
underlying topography as the ice surface downwasted, the 
depth of meltwater incision controlled by a zone of meltwater 
penetration or englacial water-table. However, a few of the 
channel forms may represent formation by subglacial meltwater 
flow at the base of an active ice mass.

7. The pattern of meltwater channels produced in association with 
the Lowther ice mass radiates outwards from the higher uplands 
in a similar fashion to the landforms of glacial erosion 
(Fig. *+.25). Such regional control over fluvioglacial erosion 
applies only to channels above 396 m.o.d. however, as below 
this level local relief considerations played a more important 
role in governing channel formation, principally because of 
the disruption of the englacial water-table during the later 
stages of downwastage. Comparatively few channels were 
produced in association with the Lowther ice mass, much of 
the meltwater drainage taking place down the existing valley 
systems. As a result of this latter factor, many fluvioglacial 
deposits/...
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deposits produced during the terminal stages of downwastage in 
association with stagnant ice masses occupying valleys 
transverse to the direction of regional ice movement, were 
destroyed or re-worked by meltwater activity.

8. Fluvioglacial activity in association with the Nithsdale ice 
mass is more complex (Fig. *t.25)• Over the north-west part of 
Area II the gradient of the Nithsdale ice mass locally sloped 
down in a northerly direction and meltwater channels paralleling 
this course were incised across the upland edge of the Lowther 
Hills. More commonly however, the gradient of the Nithsdale 
ice mass reflected the dominant direction of ice movement 
along the west and south-west margins of Area II and sloped 
down in a south-east direction. In this respect, the term 
"Nithsdale ice mass" also refers to confluent Lowther ice which 
similarly followed a south-east course in this vicinity. Regional 
ice gradients concentrated both Nithsdale meltwater drainage
and south-south-west flowing Lowther drainage along the margin 
of the Nithsdale ice mass, and accounts for the enhancement of 
fluvioglacial activity along the south-west margin of Area II.
The englacial water-table controlling regional fluvioglacial 
erosion collapsed in this area at approximately 330 m.o.d., 
and meltwater was re-directed downslope.

9. With downwastage below the level of the regional watershed, 
and partition of the two ice masses, Nithsdale ice remained 
longer over the south-west margin of Area II than did Lowther 
ice. As a result, the upper parts of southward trending 
valleys in the foothill zone became ice free. Ground vacated 
by ice at the mouth of the Capel Valley was flooded by glacial 
lakes/...
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lakes which were ponded to the south by Nithsdale ice.
Deposition in the lakes was carried out by channels from 
the Nithsdale ice mass itself, but also by extraglacial 
meltwater flowing down the Capel Valley. The altitude of 
deposition was controlled by the presence of an englacial 
water-table which extended into the decaying ice mass itself.

10. In places along the south-western foothill zone, patches of 
ice became detached from their source of supply and downwasted 
in situ, in a similar fashion to the final stages of dissipation 
in the central part of the Lowther Hills.

11. The absence of fluvioglacial features below 290 m.o.d. indicates 
the establishment of a "subglacial escape route" at a 
comparatively early stage in decay which effected the rapid 
drainage of meltwater from the area.

12. The presence of moraines in the valleys which drain the higher 
parts of the Lowther Hills, indicates that there was a return 
to colder conditions after or during the main period of 
deglaciation. Similar morainic forms in the Tweedsmuir Hills 
were attributed to deposition during the Zone III period, and 
the moraines of the Lowther Hills are believed to be of 
comparable age. Small, narrow glaciers were re-established
in the Lang, Riccart and Peden Valleys. The limits of these 
glaciers, indicated by the extent of the morainic mounds, are 
not always well-defined as a result of periglacial slope 
processes.



CHAPTER 5

AREA III

INTRODUCTION : LOCATION AND EXTENT
Area III is the western part of the thesis area and its 
boundary lines were drawn in such a fashion that it delimited 
a substantial length of the Upper Nith valley (Fig. 5.1). As 
a result the area, which is approximately 195hm^ in extent, is 
shaped like a narrow parallelogram, the river Nith running down 
the middle of the figure. The northern limit of Area III is 
represented by the east-west grid line NS 17, to its junction 
with the Strathclyde/Dumfries and Galloway Regional boundary at 
NS 723170. The regional boundary is then followed south-west as 
it swings across the Nith to McCrierick's Cairn, NS 668101. Both 
the western and eastern limits of Area III are represented by lines 
drawn parallel to the course of the river itself, linking together 
local hill crests. The western boundary connects McCrierick's 
Cairn (556 m.o.d.), Corserig Hill (393 m.o.d.) and Cairn Hill 
(339 m.o.d.) to grid reference NS 800050, whereafter the north- 
south grid line NS 80 is adopted for the southern part of the limit 
The east-west grid line NS 00 represents the southern boundary 
of Area III from NS 800000 to its eastern junction with the upland 
edge of the Lowther Hills, (Area II), at NS 902000. The eastern 
boundary to Area III is the previously referred to western limit of 
Area II, which follows the upland edge of the Lowther Hills as a 
line connecting the crests of East Morton, Black Hill, Auchensow 
and Knockenhair, to the Crawick Water at NS 7851^. The most 
northerly part of the eastern boundary is represented oy the course
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of the Crawick Water itself to its junction with grid line NS 14 
at NS 8o6l40.
The boundaries of Area III enclose the upper part of a mature valley 
system, in which there is extensive evidence for the development of 
landforms relating to the glacial period. In contrast to Area II, 
landforms of glacial erosion are not well-developed in the Upper 
Nith Valley and it is essentially a low-lying area where depositional 
processes, both glacial and fluvioglacial were dominant.

5.2 RELIEF AND DRAINAGE
Area III is divided into two halves by the River Nith, there being 
a fundamental distinction in terms of relief between the northern 
and southern valley flanks (Fig. 5*2). North of the river, the 
valley side generally rises steeply from the floodplain onto a local 
structural surface between 229 - 259 m.o.d. before rising again, but 
much more abruptly, into the Lowther foothills.
The upland northern part of Area III lies mainly between 350 - 520m.o.d., 
the principal summits being Halfmerk Hill (451 m.o.d.), Kirkland 
Hill (509 m.o.d.), Todholes Hill (480 m.o.d.), Polholm Rig (491 m.o.d.) 
and Shiel Hill (486 m.o.d.). Locally, relative relief values 
exceed 270m along the fault line edge of the hills, but the uplands 
generally represent an area of smoothed and rounded ridge and hill 
crests only occasionally deeply-incised by fluvial activity.
South of the river there is a gentler but continuous increase in 
altitude, with no sudden breaks in slope, despite the fact that 
the highest summit within Area III, McCrierick’s Cairn, is found 
along the southern margin. Generally however, the terrain along 
-the/...



the southern flank rises little above 386 m.o.d. and local relief 
values are less than 80m.
The drainage of Area III is naturally dominated by the river Nith,
but the character of the river itself varies considerably (Plate 5^ )•
Between the north-west boundary of the area and Kirkconnel, the river 
follows a broad easterly course and occupies a narrow floodplain, 
less than 150m in width, incised into glacial drift (Fig. 5«2).
Between Kirkconnel and Mennock the Nith, now following a south-east 
course, is joined by two of its major tributaries, the Kello Water
and Euchan Water, and the floodplain, again flanked by extensive
deposits of glacial drift, increases considerably in width to 
500 - 600m. Downstream from Mennock, there is a steepening of the 
river gradient as it swings more directly south to leave the area 
via a narrow and steep-sided gorge, more than 80m deep. This part 
of its course is broken by numerous small falls and rapids. The 
constriction in valley width is attributed to local geological 
conditions by George (1955)t smd to glacial breaching, by Highland ice 
descending the Nith Valley, by Sissons (1967&- P42). There is extensive 
evidence of glacial and fluvioglacial deposition not only along the 
lower flanks of the Nith, but also at depth beneath the river, where 
Lumsden and Davies (1965) have detected a buried channel, possibly 
a former course of the Nith itself, containing 10 - 30ra of glacial 
drift.
The two major southern tributaries, the Kello Water and Euchan Water, 
represent the principal elements of a rich tributary system that 
follows a broadly north-east course to join the Nith. The stream 
density south of the Nith far surpasses that to the north, where 
three/...
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three large rivers, the Mennock Water, Crawick Water and Carron 
dominate the tributary system. The Crawick Water is the most 
continuous within Area III, following a southerly course along a 
deep, steep-sided valley to its junction with the Nith. This 
river, like many of the southward draining streams to the Nith, 
has a steep gradient, which accelerated headward erosion and 
facilitated piracy (George 1955)- Drift terraces are found along 
the flanks and at the mouth of the Crawick Water. The Mennock 
Water, like the Crawick, follows a steep, deeply-incised course, 
but the Carron by contrast, on leaving the Lowther foothill zone 
occupies a wide, shallow-sided valley" flanked with drift deposits.

5.3 GEOLOGY
Although rocks of Ordovician and Silurian age are again most abundant 
in area III, they underlie 50 - 55% oi the total area, the geology 
of the Upper Nith Valley is dominated by two disconnected basins 
of younger Carboniferous and New Red Sandstone strata (Fig. 5«3)«
The differences between the Upper and Lower Palaeozoic rocks in 
terms of susceptibility to erosion and tectonic control, is strongly 
reflected in the contrasting relief conditions of Area III described 
above.
The Lower Palaeozoic rocks, Silurian and Ordovician greywackes, grits, 
shales and siltstones*are more resistant to erosion within Area III 
and constitute the uplands which border the river Nith along its 
higher northern and southern flanks. Rocks of Ordovician age are 
most extensive, Silurian outcrops being restricted to the south
west of the area, but as before rocks of both ages are essentially 
similar in character and highly faulted and folded in the north
east/. ..
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east to south-west direction. There is also evidence for 
contemporary volcanic activity, Bail Hill in the Lowther 
foothills consisting of vent agglomerates of Ordovician age 
(Fig. 5-3).
The only rocks of Devonian age within Area III are also igneous 
in origin and outcrop along the extreme north-west margin (Fig. 5»3)» 
Andesites, basalts and lava conglomerates all lie on the north
west, downthrown side of the Southern Uplands fault and were formed 
in association with local volcanic centres at Spango Hill and 
Polshill, both outside the thesis area. The fault itself originated 
in Late Silurian - Early Devonian times, but there is evidence to 
suggest re-activation and displacement along the fault-line of a 
much more recent nature (Lumsden and Davies, 1965)- There is however, 
no readily apparent surficial expression of the Southern Uplands 
fault in Area III.
Upper Palaeozoic rocks rest unconformably as outliers on the Lower 
Palaeozoic rocks in Area III, the two main areas of occurrence being 
the Sanquhar Basin in the north-central part of the area and the 
Thornhill Basin in the south-west (Fig. 5.3). The Sanquhar outlier 
underlies an area of about 45km^ along the floor and lower flanks of 
the Nith Valley and consists almost entirely of strata of Carboniferous 
age. The rocks are in fact mainly Upper Carboniferous of the Coal 
Measure Series and consist of sandstones, siltstones, mudstones, 
shales, coals and seatclays. However, much of the sequence on the 
northern side of the Nith was subjected to secondary reddening by 
oxidation to locally produce the Barren Red Measures. As indicated 
on Figure 5.3, the strata of the Sanquhar Basin are downthrown along 
a series of faults marking the edge of the Lowther Hills. The fault- 
,scarps/...



scarps are readily apparent in the landscape and contrast markedly 
with the gentle slopes along the southern edge of the basin where 
there are no major faults.
In the Thornhill Basin, which is aligned down the Nith Valley in 
a north-south direction, the Carboniferous beds crop out in a 
fringe around the strata of New Red Sandstone age. They are 
mainly red and purple in colour and consist of cyclic sequences 
of sandstone, siltstone, mudstone and seatclay of the Coal Measure 
Series. Coals which were formerly present were removed by oxidation, 
which also gave rise to the secondary reddening of the associated 
strata.
The New Red Sandstone rocks rest unconformably on top of the 
Carboniferous strata and are found only in the Thornhill Basin 
(Fig. 5*3)• They consist of olivine-basalt lavas, overlain by red 
sandstones and breccias deposited in a desert environment.
Igneous intrusions of Tertiary age represent the youngest solid 
rocks in Area III. Five dolerite dykes with the characteristic 
north-west to south-east Tertiary trend are found in the Sanquhar 
Basin (Fig. 5-3). There is also a more extensive sill of similar 
composition found in close association with the dykes. As before, 
there is little surface expression of the Tertiary outcrops.

GLACIAL EROSION
Landforms of glacial erosion are not well-developed in Area III.
Only in the Lowther foothills and other generally upland localities

i

within the area is there scattered evidence of glacial erosion. 
Elsewhere, and particularly along the floor and lower flanks of 
the Nith Valley, glacial and fluvioglacial deposits mask any 
erosional/...
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erosional landforms which may be present (Fig. 5.5).
GLACIAL TROUGHS. Few of the valleys in Area III show large-scale
modification of their form by glacial action. Indeed, only those
occupied by the Glenaylmer, Crawick, Kello and Euchan streams
(Fig. 5-5), resemble the glacial troughs found in the uplands of
Area II.
The Crawick trough follows a sinuous north-east to south-west course- 
of approximately 5km in length within Area III, terminating at the 
edge of the Lowther foothills. It is characterised by steep slopes 
rising 182 — 2*f3m~ above a fairly narrow, flat floor and it possesses 
the typical parabolic cross-profile (Plate 5B). The flat floor is 
the result of glacial and postglacial depositional infilling to an 
unknown depth, depositional terrace forms also being found along 
the flanks and at the mouth of the valley. There is no indication 
of cirque development in the vicinity of the trough or indeed anywhere 
within Area III. Although the head of the Crawick trough lies 
outside the thesis area, Mciver (19̂ 7) points out that, ”.... there 
is a real contrast between the Crawick and Mennock valleys in that
the latter merely leads up to a high level col ....  whereas the
Crawick leads up to a beautiful through trough, which it could 
never have excavated but which provides an easy route through the 
waterparting and so to the valley of the Duneaton Water and the 
Clyde Basin” (P.80). This strongly suggests that the Crawick trough was 
a major routeway for ice through the Lowther Hills during the last 
glaciation, the principal direction of movement being either south-west 
or north-east/...



e-ast. The lower portion of the Spothfore Talley, which"joins 
the Crawick from a north-west direction, also shows evidence of 
glacial moulding along its flanks, but the valley itself is left 
hanging 20 - 3Otn above the floor of the main trough (Fig. 5«5)»

The Glenaylmer trough is also aligned in a north-east to south
west direction, but it is much shorter and straighter than the 
Crawick. The trough extends for less than 2km in the Lowther 
foothills, terminating at the sharply-defined upland edge. However, 
throughout its length the Glenaylmer trough is characterised by 
steep, craggy slopes which rise 122 - 152m above a narrow floor.
The head of the trough also rises abruptly, in this case through a 
vertical distance of 76m, to a well-developed col, the col having 
a similar alignment to the trough itself. As before, the Glenaylmer 
trough was formed by ice following a north-east or south-west course

Alo&g the south-west margin of Area III, the form of the Kello and 
Euchan valleys is also indicative of large-scale modification by 
glacial erosion. However, the deeply-incised nature of these troughs 
gradually diminishes on approaching their junction with Nithsdale and 
as such is not maintained for any distance within the thesis area 
itself, Nevertheless, both the Kello and Euchan, aligned in 
north-east to south-west directions, would appear to have acted as 
major routeways for the transportation of ice into Area III during 
the last major glaciation to affect the area.
GLACIALLY-EREACHED COLS. Fifteen glacially-breached cols were 
identified in Area III, 13 of the forms/...



forms occurring in the northern part of the area in the Lowther 
foothills (Fig. 5*5). The altitude of the col floors ranges 
between 290 - -̂57 m.o.d. which, when taken into consideration 
with the fact that most of the summits in the area exhibit some 
degree of ice moulding, strongly suggests that Area III was 
completely covered by ice during the last glaciation- As was 
previously found to be the case, the cols tend to be flat-floored, 
often with concave sides and are generally catenary in cross-profile.
The alignment and altitude of all glacially-breached cols within 
Area III is indicated on figure 5*6. Two main concentrations are 
readily apparent. A major group of cols, 10 in number and found 
between 290 - +̂57 m.o.d. in altitude, are aligned in a north-east 
to south-west direction. A second smaller group extend over a 
similar altitudinal range, but are aligned in a north-west to 
south-east direction.
The larger north-east to south-west aligned group are concentrated 
along the edge of and within the upland zone which represents the 
northern margin of the Nith valley. The cols parallel the alignment 
of the troughs in this area, but other adjacent landforms of glacial 
erosion, i.e. striations or roches moutonnees do not clearly indicate 
whether the principal direction of ice flow was to the north-east or 
south-west. However, research by Holden (1977) in the area immediately 
to the north-west of Area III, indicated that the high-level landforms 
of glacial erosion along the northern margin of the Nith Valley were 
formed by an ice-mass following a north to north-east course. This 
suggests that within the thesis area itself ice occupying the Nith Valley 
also/...
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also overflowed into the Lowther foothills in a north-east 
direction, as was found to be the case in the north-west of 
Area II. The lowest cols along the upland edge were incised by 
diffluent ice, but the higher forms in more central parts of the 
uplands were formed under conditions of glacial transfluence, when 
the regional direction of ice movement along the northern.margin 
of the area was also broadly north-eastwards. The only col found 
on the south side of the Nith valley is also aligned in a north
east to south-west direction, but in contrast to the forms described 
above was moat likely incised by ice following a south-west course.

The smaller north-west to south-east aligned group of ice-breached 
cols is focused along the watershed which represents the north-west 
margin of Area III, separating Nith drainage from that of the Lugar 
Water. These cols reflect the dominant movement of ice down the Nith 
valley in an east to south-east direction and as such were most likely 
incised under conditions of glacial transfluence. The only form 
incised across the upland edge along the south-east margin of the 
area, which also possesses this orientation, was also incised by 
Nithsdale ice, and is further testimony to the importance of the 
Nith valley as a major routeway for ice movement in Area III.
STRIATIONS AND ROCHES MOUTONNEES. Twelve striations were recorded in 
Area III (Fig.5.5). Their main concentration is along the gentler 
south-west flank of the Nith valley, with only one form found on the 
north-west side of the river, along the upland edge. Ten of the 
striations are aligned in a north-west to south-east direction parallel 
to the Nith valley itself/...
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itself. Of the two anomalous forms, one is found in the southern 
part of Area III aligned in a north-south direction parallel to the 
local trend of the Nith, but the second striation is found in the 
floor of the north-east to south-west trending Euchan Water valley 
and possesses an alignment parallel to this valley. The only 
striation on the northern flank of the Nith is also aligned
north-west to south-east parallel to the main valley, despite the 
fact that it occurs at the mouth of the Crawick trough.
Twelve roches moutonnees were also identified in Area III (Fig. 5.5), 
but these tend to be more randomly distributed than the striations, 
although both erosional forms are occasionally found in close 
proximity. Six roches moutonnees are found to the north of the 
river Nith, and 6 to the south, but in both areas the landforms 
are represented by generally small mounds, less than *+m in height 
and 30m in length.
Along the northern flank of the Nith, three distinct groups of 
roches moutonnees are readily identifiable, each group consisting 
of two mounds. The forms vary in altitude between 305 - 3̂ 1 m.o.d., 
but in all cases the smoothed stoss side of the mound faces north
west and the shattered lee side south-east, indicating a south-east 
movement of ice down this part of Nithsdale. No roches moutonnees 
are found in the uplands along the northern margin of Area III.
On the southern flank of Nithsdale, the roches moutonnees are again 
found in three distinct groups of two, but at generally lower 
altitudes between 228 - 305 m.o.d.. The alignment of the bedrock 
mounds parallels the alignment of adjacent striations and is again 
indicative of a south-east movement of ice down the Nith valley.
The/...
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The most southerly of the roches moutonees forms do however, 
suggest that locally ice movement was more directly eastwards.
The roches moutonees on both the northern and southern flanks 
of the Nith valley and similarly aligned striations, all found below 
381 m.o.d., indicate that Nithsdale was a major routeway for ice 
during the last glacial period and that the direction of ice movement 
was strongly controlled, at least initially, by the alignment of the 
Nith valley itself.
SUMMARY. The limited evidence labia from the landforms of glacial 
erosion in Area III, suggests that there were two main directions 
of ice movement across the area. The dominant movement of ice was 
directed in a south-east direction down the Nith valley itself. 
Initially the main ice mass was restricted to the confines of the 
valley supplied by glaciers from a west to north-west source descending 
the Euchan and Kello troughs, as well as the Upper Nith. It was at 
this stage that the majority of the lower striations and roches 
moutonnees was produced. The increasing thickness of the ice mass 
over the valley floor resulted in the overspill of ice across the 
upland edge, via ice—breached cols, into the Lowther foothills 
in a dominantly north to north-east direction. Most of the valleys
in this part of the Lowther Hills are aligned transverse to a
northward direction of ice movement and conseauently, were not 
greatly modified by ice action during the glacial period. However, 
this was not the case with the pre-existing south-west to north-east 
aligned Crawick Valley, which acted as a major routeway for ice
through the Lowther Hills into the Upper Clyde Basin.
T h e/.. .
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The formation of the Glenaylmer trough is more difficult to explain, 
but was perhaps the result of erosive processes being concentrated along 
a line of weakness produced in association with the adjacent fault- 
scarp- At the glacial maximum, the dominant south-east direction of 
ice movement extended beyond the confines of the Nith valley into the 
foothill zone, and it was at this stage that the highest roches 
moutonnees and striations were produced (Fig. 5*7).
The directions of ice movement depicted on figure 5*7 are similar 
to those postulated by Holden (1977i P. 1^9 - 173)i for the region 
to the north-west of Area III. Holden suggested a south-east 
movement of ice down the Nith valley, although in his area fed from 
a dominantly southerly source, and the northward movement of ice 
across the higher northern flanks of Nithsdale. He further suggested 
that the northward movement of ice was forced north-eastwards by 
the presence of ’’Highland Ice" (the main source of which was the 
West Highlands of Scotland) encroaching upon the north-west foothills 
of the Southern Uplands.

5.5 GLACIAL DEPOSITION
Evidence pertaining to the depositional affects of glaciation is 
much more prominent than that for glacial erosion in Area III.
Glacial deposits are extensively developed along the floor and 
lower flanks of the Nith alley, often in close association with 
deposits of a fluvioglacial origin. Till covers approximately 
half of the surface area of Area III (Fig. 5«*0* the remainder 
being occupied by sands and gravels of fluvioglacial and fluvial 
origin, peat, solid rock and debris derived from mass wastage.
The/...
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The greatest till thicknesses are attained along the floor of the 
Nith ralley, where approximately 30m of the deposit is found 
(Lumsden & Davies, 1965)- However, as indicated on figure 5-3, till 
thins rapidly upslope from the valley floor, with little evidence of 
the deposit above 27*+ m.o.d. in Nithsdale itself. At higher altitudes 
"till is restricted to isolated pockets, generally less than 10m 
in thickness, along the floors and lower flanks of valleys in the 
Lowther foothills. Even here however, there is no indication of the 
deposit above *+00 m.o.d. and with increasing altitude it again becomes 
increasingly difficult to differentiate between till and other 
superficial material produced by mass wastage.
The extensive occurrence of Upper Palaeozoic rocks and the generally 
more varied geological character of Area III (Fig. 5-3)1 in 
comparison with Areas I or II, has led to a greater variety in till 
composition and colour. Across the higher flanks of the Nith Talley 
and in the Lowther foothills, the tills contain a large admixture of 
Lower Palaeozoic erratics and are coarse and gritty, due to the 
dominance of greywackes, grits and siltstones. As before, these 
tills are generally dark brown in colour. Over the Carboniferous 
outliers, the till assumes a much darker tint, becoming dark brown/ 
dark grey or occasionally black in colour, and the matrix is more 
clayey and tenacious. Although Lower Palaeozoic erratics are still 
dominant, there is a higher percentage of shales, mudstones and 
sandstones in the deposit. However, where the Barren Red Measures 
of the Carboniferous series are present at the surface, to the north 
of Kirkconnel on the northern flank of the Nith Valley, the till 
becomes redder in colour. In the Thornhill Basin, a similar 
tenacious/...



tenacious brick red till was derived from Permian sandstone 
outcrops. Regardless of the colour of the deposit, the shape of 
the included clasts remains generally constant; angular and 
sub—angular clasts dominating, although sub-rounded and even 
rounded forms are also present in certain localities.
It is generally the case that only one till is found overlying 
bedrock in Area III. However, at some exposures a second thin 
till is revealed overlying the main unit, while at depth, distinct 
till units are occasionally separated by thin lenses of sand and 
gravel (Fig. 5*8). At various localities, till can also be seen to 
both rest upon, and be overlain by, sand and gravel deposits.
More detailed examinations of till characteristics were completed at the 
best-exposed sites in Area III, in an attempt to aid the description 
of this highly varied deposit and determine whether more than one 
basal unit was present in the area. The more detailed analyses also 
enabled the origins and former directions of ice movement responsible 
for till deposition, to be determined more accurately. Seven 
exposures of till were examined (Fig. 5-̂ i Exposures 5A - 5G;
.Table 5.1), and as before the nature of the deposit and dimensions 
of the included clasts were described, and preferred-stone 
orientation, particle—size and erratic count data- depicted in tabular 
form. The results obtained from each of the sites are summarised 
on figures 5*9* 5*10 tables 5«li 5*2, 5*3 â d
The rose diagrams for preferred—stone orientations at the scattered 
till sites suggest a highly varied pattern of ice movement in 
Area III (Fig. 5-9; Table 5-2)* The alignment of the long axes of 
clasts contained within the till at Site 5A (Polneul Bridge), near 
.the/..•
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near the head of Nithsdale, indicates a north-west or south-east 
movement of ice, broadly parallel to the valley itself. Sites 
5B (Glengap Burn) and 5C (Shiel Rig), in contrast, indicate a 
north-east or south-west movement of ice either into or out from 
the Lowther foothills. The orientation of the clasts at Site 5D 
(Whing Burn Ford) and 5E (Old Mains), similarly suggest a north
east or south-west movement of ice into or out from the Nith Valley, 
although in the case of Site 5E, a large number of clasts are also 
aligned parallel to the valley itself. The two most southerly 
exposures, Sites 5F(Burnsands Burn) and 5G (Cairn Burn), both 
indicate either a north or south movement of ice, again broadly 
parallel to the Nith Valley itself. In the more upland areas of 
the Lowther foothills (Sites 5B, 5C), and also on the southern flank 
of Nithsdale (Sites 5F, 5G), the orientation of the long axes of the 
clasts was strongly controlled not only by the direction of regional 
ice movement, but also by the nature of local relief conditions and 
particularly the pre-glacial alignment of local valley systems.
The erratic content of tills in the vicinity of Area III greatly 
helped in the accurate identification of the pattern of ice movement.
A considerable amount of work on directions of ice movement in south
west Scotland, based upon the identification of erratics derived mainly 
from several igneous sources, was carried out by Charlesworth (1926 a ) 
and Simpson and Richey (1936). Although none of the main igneous 
masses lie in Area III, their distinctive erratics were identified 
at sites within the Upper Nith valley and in other areas adjacent to 
this (Fig. 5.10). It should be noted however, that the arrows on 
figure 5.10 indicate the generalised routes followed by the ice, 
which/.•.
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which were often, far less direct in reality. For example, the 
pebbles of Loch Doon granite found in the Tipper Nith valley were 
deposited by ice moving south-east down the Nith Valley (Eyles et 
al, 19̂ +9)• Similarly, the erratics of kylite identified in rill 
sections near Sanquhar also indicate a south-east movement of ice 
down Nithsdale via the valley head (Simpson and Richey, 1936). The 
radial distribution pattern of Spango granite erratics is more difficult 
to account for, but Charlesworth (1926 a )attributed this to 
oscillations of a confluent Southern Upland-Highland ice mass.
However, from a wider study of the occurrence of other erratics in 
this area, Charlesworth too reached the conclusion that, "In 
Nithsdale there was a general south-east transport of drift", 
(Charlesworth, 1926 a , P. 7). In addition to the identification 
of igneous erratics, Charlesworth also found erratics of Carboniferous 
sandstone in the Upper Crawick valley, suggesting a north-east 
movement of ice from the Nith valley.
Despite the fact that neither of the granites, nor kylite, were 
found among the erratics at the till exposures examined in detail 
(Table 5.3), although identified at other till exposures in Area III, 
the erratics which are present still indicate a south-east movement 
of ice down Nithsdale (Fig. 5-10; Table 5-3)* Principal among this 
latter group of indicator stones are erratics of lava conglomerate,
Old Red Sandstone lava and tuff, which all outcrop along the 
northern flank of the Nith Valley but are found at Sites 5A and 
5E in the valley floor to the south-,east (Fig. 5*10). The tuff 
erratics were possibly derived from an alternative, smaller outcrop 
on the southern flank of Nithsdale (Fig. 5.10), but even if this was 
the/...
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the case, a general south-eastward movement of ice is still 
indicated. Similarly, the only felsite outcrop in the vicinity 
of Area III is found beyond the western boundary of the area and 
therefore the presence of felsite in the till at Site 5D suggests 
an east to north-east movement of ice into the Nith valley 
(Fig. 5.10).
The predominance of erratics derived from Lower Palaeozoic 
outcrops at all the sites in Area III (Table 5-3)i and the 
restriction of Upper Palaeozoic erratics to sites at lower altitudes 
in the vicinity of' the valley floor, reinforces the belief that 
greywackes, grits and siltstones are more resistant to erosion 
during transport than sandstones and shales. It also indicates that 
ice movement was strongly controlled by the alignment and relief 
of the Nith Valley itself. In summary therefore, the erratic 
content of tills in and around Area III strongly suggests that during 
the last major glaciation, ice from a west to north-west source entered 
the area at several points along its western margin, but was channelled 
principally down the Nith valley itself in a south-east direction.
Along the southern margin of Area III this ice mass turned more 
directly south to again parallel the alignment of the Nith valley.
Only along the northern margin, where ice overflowed into the Lowther 
foothills in a north-east direction, is there any indication of the 
overall pattern of ice movement strongly diverging from the' general 
south to south-east course.
The erratic content of the tills and their differing resistances to 
erosion are also reflected in the particle—size characteristics 
of the till units (Table 3A), It is generally the case, that 
the/...
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the till units found in close association with the Upper Palaeozoic 
outcrops have a lower percentage of cobbles and boulders in the 
matrix than those derived entirely from Lower Palaeozoic strata, 
but a higher percentage of particles in the sand and silt-clay 
fractions* As a result, the tills containing Upper Palaeozoic 
erratics are generally more tenacious. Furthermore, it is suggested 
that the consistently high percentage of gravel-sized particles in the 
tills of Area III reflects the general dominance of Lower Palaeozoic 
erratics in all the tills (Tables 5-3* 5«̂ )i but that the higher 
percentage of the finer fractions in the tills containing Upper 
Palaeozoic erratics is a further reflection of the greater 
susceptibility of these to comminution during transport. In 
a similar context Flint (1971) stated, ’’Shales yield till that is 
chiefly clay. The stones present are mainly rocks other than shale 
and are derived from elsewhere” (P. l8l).
From table 5.1, it can be seen that at certain of the sites examined, 
a second till was identified overlying the lower basal unit. This 
upper till is best exposed at Site 5E (Old Mains), where it 
consists almost entirely of sandstone blocks, varying in size from 
30cm - lm in diameter, in a very sandy-slightly clayey matrix 
(Plate 5C ). The blocks tend to be equidimensional and as such 
unsuitable for stone orientation analysis. Similarly, the generally 
large size of the blocks and their tendency to crumble on excavation 
prevented accurate particle-size analysis. There is evidence of 
bedding in sandy layers within the till, and some of the larger 
blocks were apparently dropped into these bedded deposits shortly 
after their deposition, as the beds can be seen to curve round the 
base/...
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base of the blocks as continuous units (Plate 5D ).
Intercalated lenses of sand and fine gravel, 15 - 20cm in 
thickness, are also present in the till, and on closer 
examination indicate deposition by meltwater following a generally 
southerly course. There is no obvious orientation to the sandstone 
blocks or other smaller clasts in this upper till unit and 
they all appear to be randomly distributed. The upper till, 
which varies between 1.5 - ^m in thickness, is overlain by 
3m of poorly bedded sands and gravels. The upper till unit at 
Old Mains is believed to represent an ablation till (Fig. 5«H)« 
uAblation till is deposited from drift in transport upon or 
within the terminal area of a shrinking glacier. As the ice 
melts inward from terminus, top and base, this drift slides, 
flows, is dumped or subsides onto the ground. The resulting till 
is therefore loose, noncompact, and nonfissile, and its clasts 
are less strongly abraded than those in lodgement till. During 
the process of settling, fines are washed away selectively, and all 
particles are reorientated by settling as their matrix of ice melts". 
(Flint, 1971, P. 171 - 172). The presence of stratification in 
the till unit at Site 5E (Old Mains), indicates that at the time 
of deposition the water content of the till was very high and that 
a large amount of movement or flowage of the deposit occurred. In 
this respect, 3oulton (1968, P. 3̂) 1 differentiated between flow 
till and melt-out till under the general category of "ablation 
tills". It would appear, that the upper till at Site 5E is mainly 
a flow till, but it is impossible to state conclusively that the 
entire unit was formed in this manner.
T h e/.. .
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The high concentration of sandstone blocks in the uoper till 
indicates that the erratics were not transported far before 
deposition,

and that the direction of ice movement prior 
to their deposition was south-east down Nithsdale, across the 
Upper Palaeozoic outcrops. When considered in association with 
the rose diagram for Site 5E (Fig. 5*9)i this suggests that the 
basal unit, with comparatively few sandstone clasts, was 
deposited at an early stage in glaciation by ice following a 
north-east course into the Nith Valley. At the junction with 
the main valley this ice mass curved south-eastwards. As the 
glacial period continued, Nithsdale became a major routeway for 
ice flow and this change in the dominant direction of ice movement 
is reflected in the substantially higher percentage of sandstone 
clasts and blocks in the upper unit, derived mainly from the head 
of the valley.
The upper till at Site 5D (Whing Burn Ford) is only 2m in thickness 
(Table 5.1), and is not as well-exposed as that at Old Mains. 
Nevertheless, it can be seen to consist of a loose, brown, earthy 
matrix, in this case containing mainly greywacke clasts and blocks, 
but again the clasts have no readily apparent orientation. This 
upper unit at Whing Burn Ford is also believed to represent an 
ablation till, formed in a similar manner to that depicted on 
figure 5.11, but because of the poorly-exposed nature of the 
section, flowage of this till prior to deposition cannot be readily 
ascertained.
Although difficult to prove conclusively that there is not more than 
one lodgement till present at depth in the Nith Valley (Fig. 5*3), 
the/...



the irregular occurrence of the sand and gravel deposits which 
separate the till units, their limited thickness, and the 
similarity in descriptions applied to tills above and below 
the fluvioglacial deposits, strongly suggests that the depositional 
sequences indicated relate to one till unit. The interstratified 
sands and gravels merely represent breaks within a single process 
of glacial deposition.
DRUMLINS. As in Upper Annandale (Area I), glacial deposition in 
parts of Nithsdale is morphologically characterised by distinctive 
drumlinoid forms (Plate 5E). Groups of drumlins are found along 
both lower flanks of the Nith valley, generally at altitudes between 
170 - 2^0m.o.d. (Fig. 5-12). Table 5»5 indicates the number of 
forms to be found in each group, the dimensions of the drumlins and 
their postulated constituents. Borehole evidence from Upper Nithsdale 
indicates that few of the forms consist wholly of drift deposits 
and that, as previously mentioned, with movement upslope from the 
valley floor the thickness of till overlying bedrock gradually 
diminishes, although the shape of the drumlin mounds remains 
basically the same. Less than ljtn of till overlies bedrock at 
drumlin Al, while at the slightly lower D1 the drift thickness is 3m 
(Table 5.5; Figs. 5.*f, 5.12). Only in the immediate vicinity of 
the valley floor itself, for example at drumlin C2 where there is a 
till thickness of 13m, can it be said with any degree of certainty 
that the drumlins are formed entirely of drift. Further down the 
Nith valley from group C, borehole evidence is scarce and any 
assessment of the internal constituents of the drumlins must be 
based upon limited natural exposures. In drumlin swarm F (Fig.5. 13)/..



238

(Fig. where numerous drumlinoid forms are found together,
such exposures again suggest that only a thin veneer of drift 
overlies bedrock.
Although there would appear to be great variety in the ratio of 
drift to bedrock representing the internal composition of 
individual forms, drumlin shape by contrast remains generally 
homogeneous. With only a few exceptions, the steeper stoss end , 
to the mounds point up the Nith valley in a north to north-west 
direction and the gentler lee slope tapers south to south- 
eastwards. The drumlins therefore, are in agreement with other 
indications of the direction of ice flow in suggesting a south-east 

' movement near the head of the Nith valley, curving more directly 
south further downvalley, to follow the changing alignment of 
Nithsdale itself.
The longest, largest and most streamlined drumlin forms are found 
in groups A and D near the head of the valley (Figs 5«1+i 5-12;
Table 5.5). Chorley (1959)» associates the greater elongation 
of such forms with more powerful ice flow. By contrast, the 
smallest forms are found further down Nithsdale (Group F,
Figs 5.12, 5.13; Table 5-5)1 which by definition suggests that 
as a result of relief constrictions and/or other factors, the 
rate of ice movement diminished as it curved more directly 
southwards.
There is no indication of the formation of moraines within the 
boundaries of Area III.

5.6 FLUVIOGLACIAL EROSION
Although/.. .
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Although landforras of glacial erosion are poorly represented in 
Area III, landforras of fluvioglacial erosion by contrast are 
extensively developed and form complex patterns across both flanks 
of the Nith valley (Fig. 5»*+)« The distribution and development 
of raeltwater channels varies considerably however, the highest and 
best-developed forms being found incised into bedrock in the 
Lowther foothills up to altitudes exceeding *+27 m.o.d., while 
near the valley floor channels only a few metres in depth and 
width are incised wholly into drift deposits. The channels 
developed in bedrock, although larger, tend to occur individually, 
whereas the forms across the lower valley flanks are often 
interlinked to form complex anastomosing patterns. Figure 5-1*+ 
indicates the location of the main channel systems in Area III and 
from the dominant slope of the channel floors, the principal 
direction of raeltwater flow responsible for channel formation.
Two dominant, groups of channels can be distinguished by altitude : —
(a) A higher group of ice-directed channels, found generally 

above 300 m.o.d., incised across spurs and into cols.
(b) A lower group of channels, below 300 m.o.d., whose formation 

was apparently greatly influenced by local relief conditions.
CHANNEL SYSTEMS_IN_AREA_III.

(a) Higher Group of Channels above 300 m.o.d. The limited amount 
of Area III which lies above 300 m.o.d. (Fig. 5.2), has restricted 
the location of these channels to peripheral zones, but two main 
sub-groups can be identified along the northern and south-eastern 
margins. Most of the channels along the northern margin of the 
area were incised by meltwater/...
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meltwater following a north to north-east course 5 those along 
the south-east margin by south to south-east flowing meltwater.
The northern group of channels is represented by systems D, E,
F, G, H (Figs 5.Jf, 5.1*0* of which System G (Fig. 5.15), is the 
best-developed. Channel system G is incised across the north
west to south-east trending spurs which flank the Back Burn, a 
tributary of the Crawick Water (Plate 5F ). Channel G1 (Fig. 5.15), 
occupies the floor of a glacial breach and has a well-developed 
up-down long profile. The in-take of the channel is at approximately 
366 m.o.d., the high point along the channel floor at 373 m.o.d. 
and the outlet at 355 m.o.d. The channel attains its greatest 
dimensions down the north-east side of the breach, where it is 
incised 22 - 25m into bedrock, with a flat floor 10 - l4m in 
width. The channel swings more directly east near its outlet.
G2 (Fig. 5*15)* is incised across the crest of the same spur, but 
at approximately 330 m.o.d.. This channel also follows a north
east course and again has a slightly up-down profile. Where best- 
developed however, this form is only incised l*fm into bedrock.
Channel G3 (Fig. 5*15)* is similar in alignment to both 61 and G2, 
but is only incised across the crest of the spur to a depth 
of 6m.
On the north-east side of the Back Burn, channels G*f and G5 are 
found in the glacial breach which separates Castle Hill from 
Cruereach Hill (Fig. 5.15). G4 is one of the largest channels in 
Area III, being incised into the floor of the breach to a depth 
exceeding 30m, with a peat-infilled floor 10 - 15m in width.
The channel has its in-take at approximately 366 m.o.d. and runs 
across/...
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across the floor of the breach in a north-east direction. G5
is incised into the northern side of the breach and although
initially represented as a bench form, when followed north
eastwards it takes on channel proportions and is incised 10 - 11m 
into bedrock. This channel swings downslope towards the floor 
of the breach, but terminates 6 - 8m above the floor of 04.
Channels G6 - G10 (Fig. 5*15)» all found in close association, are 
incised into the spur end. The main channel, G6, has a plunge- 
pool in-take at 305 m.o.d. and runs across the spur end in a north
east direction. It is incised 10 - 12m into bedrock and has a flat
floor 12 - 15m in width. A short chute form, G7 (Fig. 5«15)1 100m 
in length, leads directly downslope from the main channel to 
terminate at 298 m.o.d.# Two hanging meanders begin at this 
altitude, where the steep spur end flattens slightly, (G8, G9,
Fig. 5-15)i but there is no obvious connection with channel G7.
The two meanders are both deeply-incised to a depth of 16 - 17m 
into bedrock, with floors 4 - 5m in width, but even these are not 
noticeably linked. Channel G10 (Fig. 5-15)» is a small form 
which also trends in a north-east direction. By their altitudes 
and similar alignments, it seems highly likely that channel forms 
G6 - G10 were incised by north-east flowing meltwater also 
responsible for the incision of channels G1 and/or G2.
The tendency for the channels of system G to be located across 
convexities in the underlying topography and to be most marked 
at low points along spur or ridge crests, indicates that such 
channels are ice-directed. It was previously suggested that 
Nithsdale ice moved across this part of the Lowther foothills and 
up/...
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up the Crawick Valley in a north to north-east direction. This 
direction of ice movement is supported by the similar alignment 
of the meltwater channels, which indicate that locally the ice 
surface gradient sloped down to the north-north-east from the 
vicinity of the Nith valley.
It would appear that the channels were mainly incised by the super
imposition of supraglacial and englacial streams. The presence 
of semi-circular plunge-pool in-takes, as for example with 
channel G6 (Fig. 5-15)i has been previously taken to be an 
indication of superimposition, and the hanging meanders G8 and 
G9 (Fig. 5»15)i suggest a similar mode of formation. Sharp 
(l9*+7)i Hoppe (1950), Common (1957) and Price (1973) all believe 
that such crescentic or in-out channels, as they are also termed, 
were formed, ”.... by meandering supraglacial or englacial streams 
that cut down through the ice on to the slope beneath” (Price,
1973, P. 113 - 11*0.
There is little indication of northward trending meltwater channels 
below 300 m.o.d., which suggests that regional control over 
meltwater drainage in this vicinity was replaced by drainage down 
local valley systems at approximately this altitude. Overall, 
the location and alignment of meltwater channels along the northern 
margin of Area III supports the suggested north-east direction of 
ice movement across this area and the importance locally of the 
Crawick valley as a major routeway for ice.
Two other channel systems A and B (Figs. 5-̂ » 5.1*0 » located along 
the north-west margin of Area III adjacent to the Nith Valley, also 
lie/..•
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lie above 300 m.o.d., but were incised by meltwater following a 
south-east and not a northerly course. In this respect, systems 
A and B are more similar to systems L and T (Fig. 5.14), near the 
south-east margin of the area, and as such will be examined in 
this wider context.
Channel system T (Fig. 5*16), is incised across the upland edge of 
the Lowther foothills which separate Area III from Area II. T1 
(Fig. 5-16), the highest channel in the system, is aligned across 
the crest of a ridge in a south-east direction, at approximately
320 m.o.d..o The channel is 5m deep, with a flat peat-infilled floor
5 - 6m in width. The other channels in system T (T2 - T7, Fig. 5-16), 
are all incised into the flanks or floor of the north-west to south
east aligned glacial breach which separates East Morton Hill from 
Morton Mains Hill. The largest channel, T6 (Fig. 5-16), occupies 
the floor of the breach and is incised 9 - 10m into bedrock, with a
floor 6 - 7m in width. All of the channel forms are located on the
eastern side to the breach at its junction with the Kettleton valley 
and slope down in a south-east direction. Although not all of the 
channels and benches are wholly incised above 300 m.o.d., their 
common alignment and obvious close relationship resulted in their inclusion 
in the higher group.

By their location the channel forms of system T are similar to 
those of the previously mentioned system G, and as such are ice- 
directed. Once again superimposition of supraglacial and englacial 
streams, their depth of incision controlled by a zone of meltwater 
penetration, seems the most likely method of channel formation.
There/. . .



There can be little doubt that as previously, meltwater erosion 
was concentrated at a low point in the upland topography, 
with the largest channel found in the floor of the col as 
a result of lateral migration of meltwater in the ice
(Clapperton 1968). The location and alignment of channel
system T and also system L (Figs, 5-**i 5-1*0* indicate formation 
in association with an ice mass moving south-east down the Nith 
yalley. Adjacent channel systems with a similar alignment, but 
incised across the upland edge in Area II (Systems L, M, N, 0, P,
Q, Fig. *+.15), have been previously attributed to formation in 
association with Nithsdale ice, (Chapter *0. Consequently, 
channel systems T and L and indeed A and B in the north-west of 
Area III (Fig. 5-1*01 are also attributed to formation by 
supraglacial and englacial streams of the main Nithsdale ice 
mass, where ice overspilled into the Lowther foothills.
The high altitude channels of system X (Figs. 5-*S 5-1*+) » 
also relate to formation in association with the Nithsdale ice 
mass, but in this vicinity the ice followed a south to south
west course. However, further east, the ice-surface gradient 
responsible for the formation of channel system P (Figs. 5-0 5-1̂ 0 »
was fundamentally different from that responsible for nearby system T.
The channel floors of system P slope down in a westerly direction, 
indicating formation in association with ice emanating from the 
Lowther Hills into the Nith Talley in this vicinity.
Generally therefore, the higher group of meltwater channels in 
Area III, found above 300 m.o.d., are ice-directed in character 
, and/...
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and with the exception of system P, indicate formation by the 
superimposition of supraglacial and englacial streams produced 
in association with Nithsdale ice. Along the northern margin 
of the area, the surface gradient of the Nithsdale ice mass sloped 
down in a north to north-east direction across the Lowther foothills. 
However, within the main part of the Nith valley the dominant surface 
slope of the ice mass was south to south-east, parallel to the 
alignment of the valley itself. Locally, along the south-east 
margin in the vicinity of system P, channel formation took place 
in association with a Lowther ice mass.
(b) Lower Group of Channels Below 500 m.o.d.. The greater 
availability of meltwater at the later stages in downwastage of 
an ice mass, is well-illustrated by the fact that the majority 
of meltwater channels within Area III lie below J>00 m.o.d.. However, 
the channel pattern is also much more complex at lower altitudes, 
for with the zone of meltwater penetration falling below the 
altitude of the flanking uplands, local relief conditions, as opposed 
to regional ice sheet conditions, have exerted the greater control over 
fluvioglacial erosion. The importance of relief in the development 
of channels at lower altitudes is clearly indicated by systems S 
and J (Fig. 5«1^)•
Channel system S (Fig. 5-16),is found along the south-east margin 
of Area III at the base of the steep scarp to the upland edge, 
across which channel system T is incised. The in-take of channel 
SI (Fig. 5.16), at 213 m.o.d., is represented by a spectacular, 
steep-sided plunge-pool which is hollowed to a depth of /...



- l8m into bedrock (Plate 5G )• Escaping meltwater 
left the plunge-pool downslope in a westerly direction, but 
after a short distance curved northwards across the regional 
slope in a channel 7m deep. The main channel is joined by 
a tributary, S2 (Fig. 5»l6), which also possesses a well- 
developed plunge-pool. In this case however, the plunge-pool 
is found a short distance beyond the channel in-take at 213 m.o.d., 
but is only 6 - 7m in depth. S2 runs south as a steep- 
sided narrow form incised 10 - 12m into bedrock, but is left 
hanging 8 - 10m above the main channel floor at its outlet.
Channels S3 and Sk (Fig. 3«l6), both trend directly downslope 
from the main channel, at approximately 172 m.o.d., in the 
manner of subglacial chutes, the former terminating at 152 m.o.d., 
but the latter continuing further downslope to 128 m.o.d. S5 
(Fig. 5.16), represents the continuation of the main channel SI 
across the regional slope in a northerly direction. The floor of 
S5 has a slightly up-down profile, the channel form gradually 
fading away completely at approximately 178 m.o.d. .
The location of channel system S vertically below system T, 
is a direct result of the disruptive influence of the north-south 
aligned upland edge on the meltwater drainage pattern during 
downwastage. As previously mentioned, channel system T was 
incised by the superimposition of south-east trending supraglacial/ 
englacial streams into the floor and flanks of the glacial breach 
separating East Morton Hill and Morton Mains Hill. The depth of 
incision was controlled by an englacial water-table and lateral 
migration/...
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migration of channels within the ice resulted in the concentration 
of incision into the floor of the breach itself (Stages A and B,
Fig* 5«17). With further downwastage and the descent of the zone 
of meltwater penetration below the level of the lowest ooint along 
the upland edge, that is the floor of the glacial breach, the 
scarp in effect acted as a barrier to the through flow of meltwater. 
As a result, the water-table collapsed and concentrated meltwater
flow plunged directly downslope to the foot of the scarp, where it
encountered the underlying topography with considerable force and 
incised the plunge-pools mentioned above (Stage C, Fig. 5-17)• 
Initially, this re-aligned system T, or system S as it is now 
known, flowed across the regional slope, but with further ice 
decay meltwater flow was re-directed downslope once more, towards 
the Carron valley floor.
Channel system J is also incised across the upland edge of the 
Lowther foothills, but in this case along the eastern margin of 
Area III, where the Mennock valley joins Nithsdale (Figs. 5*1̂ 1 
5.18; Plate 5H ). The highest channel in the system, J1
(Fig. 5.18), is a deeply-incised chute form which runs down the
steep northern flank of the Nith valley. The channel in-take is 
at 295 m.o.d. and it terminates abruptly downslope at 152 m.o.d^. 
Throughout its length the chute is incised to a depth of 16 - l8m, 
with a very narrow floor 2 - 3m in width. Moving west along the 
scarp face which overlooks the river Nith, channel J2 (Fig. 5-18), 
is very similar in character to Jl. J2 has a gradual in—take at 
235 m.o.d. and runs south across the edge and down the scarp face 
as/...
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as a chute form, to terminate again at approximately 152 m.o.d.. J3 
(Fig. represents a series of small interlinked channel forms
incised across the crest of Druidle Hill. in a southerly direction 
at approximately 2^3 - 250 m.o.d.. The channels are generally less 
than - 5® in depth, -̂m in floor width, and terminate either at 
the scarp edge or a short distance downslope.
Two of the largest and most spectacular channels in Area III are 
represented by and J5 (Fig. 5«l8). Both channels are deeply- 
incised into the low-lying area which separates Overtown Hill 
from Druidle Hill in a south to south-west direction. Channel J*f 
has its in-take at approximately 205 m.o.d. on the southern side 
of the Auchensow Burn. However, J6 on the northern side of the 
burn by its altitude and alignment, is believed to represent a 
former up-channel continuation of Jk and consequently the original 
in-take for the channel was slightly higher, at approximately 
213 m.o.d.. Along the northern part of its course J4 has an up- 
down profile, but is only 6 - 8m in depth, with shallow sides and 
a flat floor 13 - 15m in width. At approximately 200 m.o.d. however, 
the channel floor abruptly descends l6m to a large plunge-pool. 
Down-channel from this plunge-pool the course is much more 
spectacular, being incised 25 - 30® into bedrock with a flat- 
floor 20 - 25m in width. This larger part to the course of Jk 
continues south-west for 5̂0m. Evidence of large-scale meltwater 
erosion in association with the channel finally terminates at 
approximately 1̂ 5 m.o.d., although smaller channel-forms are 
found below this altitude down to 130 m.o.d. (J8, Fig. 5.18). 
Channel/...



Channel J5 (Fig. 5«l8), has a twin in—take, both origins occurring 
at approximately 205 m.o.d. and both located on the southern side 
of the Auchensow Burn. In this case, there is no large-scale 
evidence for a continuation of meltwater incision in association 
with channel J5 on the northern side of the burn, although some of 
the minor forms of J7 (Fig. 5-18), were perhaps feeders. The long- 
profile of J5 is smooth in comparison to that of J*+, with no abrupt 
steps in the floor of the channel. Instead, there is a gradual 
increase in the depth of incision as the channel is followed south
west. Where best-developed, J5 is also incised 25 - 50® into 
bedrock, with steep-sides and a floor 15 - 25m in width. The 
channel terminates abruptly at approximately 155 m.o.d., 9 - 10m above 
the floor of J*f, the two channels linked by only a small, steep
sided gorge. J9 and J10 (Fig. 5*18), represent a series of small 
channel forms incised across the crests of Overtown Hill and Mennock 
Hill Heights, at approximately 215 m.o.d.o The two groups of 
channels, both trending south-westwards and generally less than 
k - 5m in depth, were probably incised by the same meltwater 
streams. The lowest channel in the system, (Jll, Fig. 5-18), is 
deeply-incised into bedrock between Overtown Hill and Kiln Hill, 
again in a southerly direction. The channel in-take is at 
approximately 155 m.o.d. and it terminates at 157 m.o.d.. Although 
short in length and of limited altitudinal range, Jll is incised 
to a depth of 20 - 50m and has a steeply-sloping floor 20 - 25m 
in width.
The channels of system J follow a fundamentally different course 
■from/...



from that previously identified as being typical of Nithsdale 
as a whole. Generally, at higher altitudes, and also at lower 
altitudes as indicated on figure 5»l̂ i the meltwater channels 
of the Nith valley follow courses between east and south, parallel 
to the alignment of the valley itself and the direction of ice 
movement. However, the channels of system J are aligned at right- 
angles to the majority of the channels in Nithsdale and follow a south
to south-west course. There are two possible reasons for this :-
(1) Locally during downwastage, the ice-surface gradient over this 

part of the Lowther foothills, which was adjacent to the
zone of confluence between the Nithsdale and Lowther ice
masses (Fig. *+.25), sloped down in a south-west direction.

(2) South-east trending meltwater in Nithsdale ice, occupying 
channels located beyond the upland edge at altitudes generally 
below J>00 m.o.d., was forced more directly southwards and 
indeed south-westwards by the manner in which the Lowther 
foothills just out into Nithsdale itself at this constricted 
part of the valley. The north-south aligned Auchensow Hill - 
Dalpeddar Hill ridge which lies entirely above 315 m.o.d. 
would, with the lowering of the zone of meltwater penetration, 
effectively act as a barrier to the continued south-east flow 
of meltwater (Figs. 5-2, 5-̂ * 5*19)•

It may well be that both factors have worked together in the 
establishment of system J. Furthermore, it seems likely that at 
the later stages of downwastage, extraglacial meltwater descending 
the Mennock valley also augmented the existing southerly flow. 
However/...



However, as before, it is suggested that most of the channels were 
incised subglacially by the superimposition of supraglacial/ 
englacial drainage onto the underlying topography. As indicated 
on figure 5*19̂  with the initial re-direction of meltwater drainage 
southwards, the highest channels were incised by a series of small 
independent streams (Stage 2, Fig. 5-19). With continued down
wastage and the lateral migration of the drainage network downslope 
in a generally westerly direction, meltwater became concentrated 
into the two large channels J4 and J5, which occupy a low point along 
the scarp edge between Overtown Hill and Druidle Hill (Stage 3,
Fig. 5-19). The depth of incision of all these early channel forms 
was apparently controlled by an englacial water-table at approximately 
152 m.o.d... At a later stage in deglaciation, raeltwater drainage 
was concentrated over the Mennock valley itself. Channel Jll 
(Fig. 3-18), between Kiln Hill and Overtown Hill, represents the 
most direct route from the Mennock to the Nith valley for southward 
flowing meltwater and was incised by englacial and extraglacial 
streams during this late-period (Stage 4, Fig. 3*19)•
Local relief conditions were also of fundamental importance in the 
establishment of channel systems Y and Z (Figs. 5-̂ 1 5-l20 1 along 
the south-west margin of Area III. The generally downslope alignment 
of these channel systems and their close association with 
fluvioglacial depositional landforms, indicated that the Druidhill 
and Burnsands valleys respectively were occupied by stagnant ice 
masses which wasted away in situ. However, the fluvioglacial 
landforms in these valleys, both erosional and depositional, are 
examined/...



examined in greater detail in the section devoted to fluvioglacial 
deposition.
In the Nith valley itself, there is also ample evidence of channel 
development towards the later stages of downwastage in close 
association with drift deposits. As indicated on figure 5-l̂ N 
both lower flanks of the valley below 182 m.o.d. are scarred by 
numerous short and generally discontinuous channel forms. However, 
even at this late-stage in downwastage, local relief conditions 
exerted a strong influence on channel development, with by far the 
greatest concentration of channels found on the gentler sloping 
southern flank of the valley. Channel system BB (Fig. 5-20), 
typifies the forms which are found here (Plate 31 )•
Two of the highest channels in the system ,BB1 and BB2 (Fig. 5.20), 
share the same in-take at 185 m.o.d.. BB1 runs across the regional 
slope in an easterly direction for a short distance. It is only 
incised to a depth of 3 - ^  and it terminates abruptly at 175 m.o.d.. 
BB2 runs more obliquely downslope and is 6 - 7m deep with a flat floor 
7 - 8 m in width. The higher southern side to this channel is incised 
into bedrock, but the less steeply-inclined northern flank appears 
to be incised wholly into till. BB2 terminates at 170 m.o.d., but 
100m beyond this outlet, the similar altitude and alignment of 
channel BB3 (Fig. 5.20), strongly indicates that meltwater flow 
continued its easterly course downslope via this channel. BB3 
is a larger form than BB2, being incised to a depth of 8m, with 
a floor 12 - 15m in width. As before, the southern flank of the 
channel is the more deeply-incised. BB3 is also a fairly short 
form/..•



form, and after running obliquely downslope for *+50m, terminates 
159 m.o.d.. Once again however, only a short gap separates the 

outlet of BB3 from the in-take of BB*f (Fig. 3.20), and the latter 
channel has continued meltwater drainage down to the floor of the 
Nith valley. BB̂ f is the most deeply-incised of the 4 forms in this 
discontinuous series, with 5® of drift revealed overlying *fra of 
bedrock in the channel sides. Several outlets for the main channel 
are found incised between/through mounds of till and sand and 
gravel adjacent to the Nith floodplain, these being utilised at 
different periods during ice decay.
Channel BB5 (Fig. 5-20), is very similar in its alignment, but 
much more continuous in its form to the channels immediately 
upslope. The principal in-take to the channel is at 167 m.o.d. 
and as before, meltwater has followed an oblique course downslope 
in an easterly direction towards the Nith valley floor. Meltwater 
was also supplied from a more northerly source via channel BB6. Although 
a continuous form, both sides to the channel are not evident 
throughout its length, with only the more deeply-incised southern 
flank represented in places. Throughout its length the channel 
appears to be entirely incised into drift deposits. Along the lower 
part of the channel course, meltwater flow was again concentrated 
between/through till and fluvioglacial mounds, evidence of incision 
finally terminating as before at the Nith floodplain.
Channels BB7 - 8 and BB9 - 10 (Fig. 5-20), are very similar to 
the forms previously described. As before, the channels have 
their in-takes at altitudes between 167-182 m.o.d. and run 
obliquely/...
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obliquely and discontinuously downslope, gradually increasing 
in size to finally terminate at the Nith floodplain. The 
channels are incised into drift deposits throughout most of their 
length and adjacent to the floodplain itself again follow courses 
between/through glacial and fluvioglacial mounds- Parts of the channel 
courses, often near the in-take, are represented by bench and not 
channel forms. Therefore, the alignment and altitude of all 
the channels in system BB suggest that they were incised under 
similar conditions at approximately the same period during 
deglaciation.
Channels of a similar nature to those in system BB are not as 
common on the northern flank of the Nith valley, but can still be 
identified at several scattered localities, as for example at the 
mouth of the Crawick valley (System I, Fig. 5«2l). The higher 
channels of system I, although initially running parallel or at a 
low angle to the local contour pattern, tend to be mainly directed 
downslope towards the valley floor. II (Fig. 5«2l), with twin 
in-takes at 180 and 195 m.o.d., is deeply-incised through till 
into bedrock to a depth of 8m, with a flat floor 10 - 15m in 
width. The channel terminates abruptly at approximately 159 m.o.d. 
where it joins 15 (Fig. 5.21). 15 is a well-developed up-down form
which runs at right-angles to II, curving in a south to south-east 
direction across the regional slope. It is incised mainly into 
till around a large bedrock/till mound and where best-developed is 
over 9m deep, with a flat, peat-infilled floor 15 - 20ra in width.
The in-take of channel 15, at approximately 152 m.o.d., lies
- 5m above the floor of the larger channel 15 (Fig. 5*21). The 

channel/..•



channel outlet lies only a few metres below this altitude, but 
near the outlet the channel curves more directly downslope 
towards the valley floor.. Channel 14- (Fig. 5.21), is similar to 
13 in a number of ways. 14- also curves across the regional slope, 
around a large mound, in a south-east direction and possesses an 
up-down long profile. Furthermore, the channel in-take is at 
approximately 156 m.o.d., 3 - *+m above the floor of I3i and the 
outlet of 14- occurs at 14-5 m.o.d.. As before, meltwater flow was 
focused more directly downslope towards the valley floor near the 
channel outlet. 14- is incised 6m into till and has a flat floor 
10 - 15m in width.
Adjacent to the Crawick Water itself, 15 (Fig. 5-21), is also very 
similar in character to 13 and I4-. This channel has its in-take 
at 14-5 m.o.d. and runs south-east across the regional slope from the 
remnants of kame terrace forms flanking the Crawick valley at 
approximately the same altitude. The channel is incised to a 
depth of 10m, mainly into drift, with a wide, flat floor 30 - 4-Om 
in width. Once again this channel curves around a large bedrock/ 
till mound, to terminate: at approximately 137 m.o.d. in the floodplain 
of the river Nith. Other minor channels, 16, 17, 18 (Fig. 5»2l), 
are found directed downslope in the manner of subglacial chutes 
between fluvioglacial mounds and kettle holes.
Basically, the channels of system I are similar in character to 
those of system BB and were produced at approximately the same 
period in downwastage. However, there was a greater tendency for 
meltwater to be directed down, rather than across, the steeper 
and more irregular topography of the northern valley flank.
Channel/...
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Channel systems BB and I, and the other similar forms incised 
across the lower flanks of the Nith valley (AA, CC, DD, EE 
Fig. 5.1*0, are described by Simpson and Richey (1936) as, 
numerous well-defined marginal drainage channels sloping down 
to the east and formed along the sides of the valley glacier as 
it retreated westwards11 (P. 94). Working in the Nith valley to the 
south of the thesis area, Stone (1957, 1959) also attributed the 
formation of channels M... which flow almost parallel to the 
contours ..." to "... meltwater flowing along a glacier margin....1* 
and speculated that "... successive channels appear to represent 
stages in downwastage, each.halt in recession marked by a channel 
cut through drift and solid rock1* (Stone, 1959i 168). Although 
there is some disagreement as to the exact mode of retreat of the 
ice mass, both Stone and Simpson/Richey concur with the belief 
that the channel patterns were incised in close proximity to the 
ice margin. The possibility of such channels being produced in an 
entirely marginal location however, has been previously discussed 
in relation to Area I, and consequently it seems more likely that 
the majority of the forms found over the lower slopes of Nithsdale 
were incised submarginally. The oblique alignment of the channels 
downslope and their general discontinuity, both well-illustrated 
by system BB, tend to reinforce this belief.
In the light of previously related, findings in Areas I, II and 
III, as well as in other parts of Scotland, the theory of general 
downwastage (as suggested by Stone), as opposed to backwastage 
(as suggested by Simpson/Richey), is the more acceptable. However, 
with the uncertainty over the exact environment of channel formation, 
lt/. . .
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it is not possible to correlate successive channels running across 
a hillsiope with stages during downwastage.
Consequently, all of the channels across the lower flanks of the 
Nith valley were incised in the marginal zones of a decaying ice 
mass during the later stages of downwastage, most likely by combined 
supraglacial/englacial and extraglacial meltwater flow. As 
mentioned, local relief conditions were again important, the 
greatest channel concentrations found across the gentler southern 
flank of the valley. As Sissons (1967a) stated, "... on till- 
covered slopes of gentle or moderate gradient, small channels may 
occur in great numbers and form complex interconnected systems”
(P. 103).
The principal direction of the submarginal drainage at this late- 
stage was obliquely downslope towards the valley floor in a generally 
easterly direction, which indicates that throughout the period of 
downwastage, meltwater flow over much of Nithsdale was directed in an 
east to south-east direction, parallel to the alignment of the valley 
itself. Furthermore, the similar outlet altitudes of several channels 
along the northern side of the valley, Jl, J2, Ĵf, J5 (Fig« 5*18) and 
II (Fig. 5.21) all terminate at approximately 152 m.o.d., suggests that 
the depth of incision of streams flowing towards the valley floor was 
controlled by an englacial water-table. At the mouth of the Crawick 
Talley, control of fluvioglacial, activity by an englacial water-table 
is further supported by the occurrence of kame terrace forms, 
also at 152 m.o.d.. In fact, it would appear that channels 13, I*t 
and 15 (Fig. 5.21), acted as overflow channels for the temporary 
lakes in which the terraces accumulated, as indicated on figure 5*22 
•(Plate 5J )./...
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(Plate 5J ).
On the southern flank of the valley however, there is more limited
evidence of an englacial water-table controlling fluvioglacial 
processes at 152 m.o.d.* Small terrace forms are found at this
altitude at the outlets from two channels in system AA (Fig. 5«̂ 0, 
but the evidence from other channel forms is less convincing.
Where the direction of meltwater flow was oblique to the hillslope, 
there is generally only a short gap in the channel form, the 
replacement of a channel with a bench, or occasionally no 
indication at all of any control over fluvioglacial erosion at 
an altitude of 152 m.o.d. (System BB, Fig. 5-20). It can only 
be assumed that as a result of relief and/or glaciological conditions, 
the meltwater streams aligned more directly downslope on the northern 
valley side became incised to the altitude of 152 m.o.d. at an 
earlier stage in downwastage than those trending obliauely across 
the southern flank. Consequently, by the time that many of the 
meltwater streams on the gentler southern flank descended to this 
level, any control over the depth of incision was severely weakened, 
or had disappeared altogether, such that incision continued through/ 
between fluvioglacial and glacial deposits to the valley floor. 
Alternatively, some of the more continuous channel forms, such 
as BB5 and BB7 (Fig. 5.20), were perhaps incised by supraglacial 
or extraglacial streams descending the Euchan valley at a late
st age in ice decay, well-after the collapse of the englacial 
water-table.
Despite the uncertainty over the amount of control exerted by an 
englacial water-table in the final stages of ice decay, there is 
little doubt that throughout the later stages of downwastage 
meltwater/..•



meltwater was directed downslope through the ice mass towards the 
floor of the valley itself. It therefore seems likely that as in 
Moffatdale, the subglacial and englacial drainage network formed 
a three-dimensional tunnel pattern within the ice, leading 
down to a subglacial master tunnel which ran along much of the 
length of Upper Nithsdale. Although in Moffatdale there were 
no borehole records to support or refute the former existence of 
a master tunnel, the situation in Upper Nithsdale, with the 
presence of coal seems in the underlying Carboniferous strata, 
is entirely different. Geikie et al (1871), first made reference 
to, ".... former river courses .... found under the drift in the
course of mining operations ....  In the valley of the Nith to
the west of Kirkconnel, a series of borings showed the existence 
of a deep trench worn out of the Carboniferous rocks and filled
up with boulder clay (till)  A little to the east of
Sanquhar a similar buried water-course was encountered  and
in this instance sand was found to lie between the boulder clay 
and the rocks below" (P. 39)- More recently, Lumsden and Davies 
(1965) mapped the extent of the "buried channel, of the river Nith" 
from the borehole date available (Fig. 5«23)« The channel, which 
extends across the Southern Uplands fault is generally a few 
hundred metres across, although it widens to a kilometre around 
New Cumnock. It is infilled with drift deposits to a maximum 
thickness of 53m, these consisting mainly of sands and gravels 
varying in thickness un to ^Om and overlain by till as much 
as 20m thick. Lumsden and Davies consider, but dismiss, glacial 
erosion as the cause of the buried feature and conclude instead 
that/...
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that it is a preglacial river course. They further believe, 
from the gradient of the base of the buried channel (Fig. 5.23), 
that movement of the Southern Uplands fault, with downthrow 
to the north-west of 50 - 60m, occurred late in the history of 
the Nith river system but prior to the last glaciation of the 
area.
However, the downslope alignment of channel forms along the lower 
flanks of Upper Nithsdale towards an unknown base-level in mid
valley allows an alternative mode of formation to be suggested; 
that the portion of the buried channel that lies to the east of the 
Southern Uplands fault was incised by concentrated subglacial 
meltwater activity. It would certainly appear that if not 
entirely the result of subglacial fluvioglacial erosion, the buried 
Nith channel was at least modified by such action. The fact that 
south-east flowing meltwater incised a channel which, to the 
east of the fault, is most prominent in the Sanquhar Basin itself, 
tempts the suggestion that the less resistant Carboniferous strata 
have facilitated fluvioglacial erosion. Alternatively, the proven 
extent of the buried channel, depicted on figure 5*23, may merely 
reflect the distribution pattern of boreholes in Upper Nithsdale.
It may well be the case that the two portions of the buried channel 
developed independently; the larger and wider portion to the west 
of the Southern Uplands fault reflecting after all the influence 
of glacial erosion, as originally suggested by Lumsden and Davies. 
However, Holden (1977) indicated a similar east to south-east movement 
of meltwater to that in Area III for the area to the west of New 
Cumnock. This tends to suggest that the two parts of the buried 
channel may indeed have been linked and formerly occupied by a 
major/...
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major subglacial master channel into which meltwater from 
Upper Nithsdale was focused.
SUMMARY* Regional control over fluvioglacial erosion
was much more limited below 300 m.o.d. than at higher altitudes.
With the descent of the englacial water-table below the altitude 
of the flanking uplands, local relief conditions played a much 
more important role in the establishment of the meltwater channel 
pattern. As a result, the lower group of channels is not as 
strongly ice-directed in character as the higher group and 
locally follow courses fundamentally different from the regional 
directions of ice and meltwater movement. This local re-alignment

1

of meltwater flow is most evident in the more rugged topography 
along the north and south-west flanks of Nithsdale. However, 
over a large part of the valley the direction of meltwater flow 
remained south to south-east, generally parallel to the direction 
of ice movement, throughout the period of downwastage. Such 
channels are best-developed across the more gently sloping 
southern flank of the Nith valley, while the superimposition of 
supraglacial and englacial streams supplemented by extraglacial 
meltwater took place. Once again there is evidence to suggest 
that the depth of meltwater incision was controlled by an englacial 
water-table, but only down to an altitude of approximately 152 m.o.d.. 
At the later stages of downwastage, with the collapse of the 
englacial water-table, extraglacial, supraglacial, englacial and 
subglacial drainage became concentrated in a subglacial channel at 
the base of the stagnant ice mass occupying the floor of Nithsdale. All 
of the channels below 300 m.o.d., with the possible exception of 
system J (Fig. 5.1*0, were incised in association with Nithsdale ice. 
Figure 5.2*+ indicates the general pattern of meltwater drainage both 
above and below JOO m.o.d. over Area III.

5.7/---



FLUVIOGLACIAL DEPOSITION
Fluvioglacial deposits and depositional landforms in Area III, like 
their glacial counterparts, are best-developed along the floor 
and lower flanks of the Nith valley (Figs. 5.*+, 5.25). In 
Nithsdale, there is abundant evidence of sand and gravel deposits 
between 137 - 2*+3 m.o.d. and particularly below 182 m.o.d., often 
in close association with the previously mentioned dense channel 
network. Away from the principal valley, more limited accumulations 
of sand and gravel are found at similar altitudes in certain of 
the tributary valleys to the Nith (Fig. 5*25), again in close 
association with channel forms. As before, in an attempt to aid 
explanation of the distribution pattern of the fluvioglacial 
deposits, their mode of formation and the nature of deglaciation 
over Area III as a whole, more detailed examination of the character 
and morphology of the deposits at several of the sites depicted 
on figure 5.25 will be made. In this respect, the smaller accumulations 
in the tributary valleys will be briefly examined prior to the main 
spread in Nithsdale itself.
Burnsands Valley. Fluvioglacial deposits in the Burnsands Valley 
(Figs. 5.*+, 5.25), although limited in extent, are typical of all 
the tributary valleys, and clearly indicative of the nature of ice 
wastage during the later stages of deglaciation (Fig. 5*26). The 
depositional landforms depicted on figure 5-26 consist solely of a 
kame terrace and an esker ridge. The kame terrace (Terrace A,
Fig. 5.26), is found on/...
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on the southern side of the valley at approximately 213 m.o.d..
The surface to the terrace is 80m wide and it has a steep north 
face 7 - 8m in height. Small exposures in this face reveal 
numerous sub-rounded and sub-angular clasts in a loose, gravelly 
matrix. A second terrace (Terrace B, Fig. 5.26), is also 
perched along the lower southern flank of the valley again 
7 - 8m above the floodplain of the Burnsands Burn, but at the 
slightly lower altitude of 190 m.o.d.. However, this lower 
terrace differs from terrace A in two major respects.

IFirstly, exposures in the face of terrace B indicate that it 
consists of a stiff, reddish-dark brown till, and secondly, 
terrace B has an esker ridge running across its surface 
(Fig. 5-26). The esker in fact begins further upslope, 
emerging from the valley-side at approximately 216 m.o.d.. It 
runs almost directly downslope, gradually increasing in size, 
and only becomes sinuous across the surface of the terrace itself 
(Plate 5K )• Where best-developed, the esker stands more than 
8Jm above the till terrace and is incised by the Burnsands Burn 
to reveal numerous sub-angular and sub-rounded pebbles in a coarse, 
gravelly matrix. A high percentage of the clasts are sub-angular 
in shape and tend to be less than 1 - 2cm in diameter, although 
forms up to 60cm in diameter are also present.
The depositional landforms have developed in close association 
with channel system Z, incised across the southern flank of the 
Burnsands valley (Fig. 5-26). All of the channels in this system 
start/...
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start abruptly, with their in-takes between 195 - 27*f m.o.d. and 
trend either directly or obliquely downslope towards the valley 
floor. Several of the in-takes are characterised by deeply- 
incised semi-circular plunge-pools, for example Zl, Z8, Z10, Zll,
(Fig. 5-26), while Z3 has a plunge-pool part of the way along 
its length. Channel Zl (Fig. 5-26), the largest in the system, is 
incised into bedrock to a depth of 20 - 22m, but as with adjacent 
forms Z2 and Z3, meltwater incision terminated downslope at 
approximately 213 m.o.d.. Similarly with channels Z6, Z7, Z8 and 
Z9 (Fig. 5*26), meltwater erosion terminated abruptly at approximately 
213 m.o.d.. Channel Z5 (Fig. 5-26), directly upslope from the 
esker ridge, also appears to have initially terminated at this 
altitude, but then continued downslope to the valley floor at a 
later date.
The landforms of both fluvioglacial erosion and deposition in 
the Burnsands Valley are strongly indicative of formation in 
association with a stagnant and decaying ice mass, which 
downwasted in the valley itself. The direction of ice movement 
and meltwater drainage at higher altitudes in this vicinity was 
generally south to south-east (Figs. 5.7, 5*24). However, with 
the onset of deglaciation and descent of the zone of meltwater 
penetration below the altitude of the uplands flanking the 
Burnsands valley, the englacial water-table collapsed and locally, 
free downslope movement of meltwater onto the less steep southern 
flank of the valley was established. This resulted in the 
characteristic subglacial chute-form exhibited by all of the 
channels/...
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channels in system Z, in places accompanied by plunge—pool 
in-takes. However, the similarity in altitude of many of the 
chute outlets with that marking the upslope limit of fluvioglacial 
deposits, strongly indicates that locally an englacial water- 
table was re-established at approximately 213 m.o.d.. Kame 
terrace A was apparently supplied by channel Z3 (Fig. 5«26), 
while channel Z5 was the main feeder for the esker ridge at this 
time. The ridge itself is typical of previously mentioned 
subglacially-engorged or slope eskers in that it represents the 
infilling of a subglacial chute (Embleton and King, 19751 
P. V76). Such forms are generally produced, ".... at an 
advanced stage of ice disintegration when their orientation is 
controlled above all by local topography .... They are shorter 
and straighter than normal eskers and because of their situations,
they are seldom destroyed by proglacial meltwater erosion 11
(Sugden and John, 1976, P. 331)• With the final collapse of the 
englacial water-table, meltwater in the residual ice mass was 
directed towards the valley floor, as indicated by channels Z5, 
Z10, Zll (Fig. 3.26), and no doubt left the valley in an easterly 
direction. Meltwater drainage late in the glacial period and 
in postglacial times may well have destroyed other depositional 
landforms, glacial as well as fluvioglacial. Consequently, the 
fluvioglacial landform assemblage in the Burnsands Valley is 
essentially the result of local relief conditions disrupting the 
regional pattern of ice down-wastage and leading to the detachment 
of a residual ice mass which decayed in situ.
T h e / . . .
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,The fluvioglacial landforms and deposits in the three tributary 
valleys, Marr, Druidhill and Carron (Figs. 5.if, 5.25), indicate 
that conditions of ice wastage at each of these localities were 
essentially similar to those described above for the Burnsands 
valley. As a result of local relief conditions, stagnant ice 
masses again became detached during the later stages of downwastage 
in each of the three valleys and wasted away in situ. Consequently, 
the fluvioglacial landform assemblages found here owe their 
distinctive morphological characteristics to the control exerted 
by local topography over meltwater conditions in extensively decayed 
ice masses.
Similar conditions of downwastage to those described in the tributary 
valleys were responsible for the deposition of the fluvioglacial 
landforms in the Nith valley itself. For the purposes of more 
detailed examination, the isolated accumulations along the northern 
flank of the valley will be looked at separately from the more
continuous spread along the floor and lower southern flank - ---
(Eigs. 5-̂ +1 5.25).
Todholes. At Todholes( Fig. 5-25), which lies at the foot of the 
scarp slope delimiting the upland edge of the Lowther Hills along 
the northern flank of the Nith valley, there are two well-developed 
kame terrace forms (Fig. 5-27). The higher of the terraces 
(Terrace A, Fig. 5*27), at approximately 250 m.o.d., is a narrow 
form which extends across the slope parallel to the upland edge for 
600ra. There is no clearly distinguishable ice-contact slope to the 
terrace as locally deposition has taken place against a bedrock mound, 
but exposures indicate/...
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indicate that 6 - 7m of sand and gravel are present. The pebbles
are mainly sub—rounded forms, less than 4cm in diameter, in a
coarse, gravelly matrix. The lower terrace (Terrace B, Fig. 5.27),
has a sloping surface and extends more down than across the
regional slope, between 235 - 213 m.o.d.. It is approximately
650m in length, but also 200 - 250m in width. There is a steep
south-west face to the terrace, 6 - 7m in height, and the nature
of the deposits is well-exposed here along the course of the
Spout Sike. Numerous sub-rounded and sub-angular pebbles are
revealed, again in a coarse, gravelly matrix. The majority of the
pebbles are less than 4cm in diameter, but forms up to 15 cm are
also present. The pebbles are poorly-bedded, but lenses of sandy-
clay and fine gravel are also exposed in the face. By their alignment>
such features indicate that meltwater responsible for deposition flowed
from a north-east direction.
Both terraces A and B formed in small lakes at the margin of the 
downwasting Nithsdale ice mass. Their altitude and location at the 
upland edge, indicate that they were laid down at a fairly early 
stage of decay when a considerable mass of ice still remained in the 
centre of the valley. The depositing meltwater streams may have 
been supraglacial, englacial or subglacial, but the deeply-incised 
nature of the Spout Sike and Grain Burn across the upland edge 
strongly suggests that extraglacial meltwater following these 
courses was also of major significance. There is no clear indication 
as to how the small lake in which terrace A was deposited drained but, 
an indistinct channel leading south-east from the terrace suggests 
that if meltwater did not escape directly into the ice itself, it 
followed/...



followed this more marginal route. The deeply-incised nature 
of the Spout Sike beyond the southern edge of terrace B, 
strongly suggests that in this case meltwater escaped 
subglacially, towards the present course of the Polbower Burn.
Nith Valley Floor. Fluvioglacial deposits near the Nith valley 
floor extend discontinuously down both sides of the river for 
approximately 16km from the north-west margin of Area III 
(Figs. 5*4, 5-25). As previously mentioned, these are best-developed 
on the more gently-sloping southern flank of the valley and also 
where the valley floor is widest, disappearing completely downstream 
of Mennock, where the floor width is drastically constricted. The 
landorm assemblage depicted on figure 5*4, is basically similar 
in character, although more extensive in distribution, to the 
irregular topography of mounds, ridges and meltwater channels in 
the Burnsands and/or Carron valleys. However, although more 
extensive, it remains eaually difficult to distinguish any pattern 
to the depositional landforms, and indeed it is often difficult to 
be certain that a particular mound or ridge for* consists wholly of 
sand and gravel.
As indicated in table 5.1, the basal till deposit exposed over 
the floor and lower valley flanks of Nithsdale is occasionally 
overlain by a second till unit, which is generally less compact 
than the lower unit and contains a higher percentage of clasts.
With limited field exposures, this upper or ablation till is often 
difficult to distinguish from unstratified and unsorted sands and 
gravels, oarticularly where there is a high percentage of sandstone/.•
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sandstone clasts in the matrix, as at Old Mains (Site 5E,
Fig. 5-̂ ; Table 5-1). To further complicate matters, the 
ablation till overlies sand and gravel accumulations in some 
localities, a fact referred to by Stone (1957) further down the 
Nith valley, "Above the stratified drift there is often 1 - 3  feet
(35cm - lm) of superglacial till (ablation till) " (P. 34).
Consequently, the limits of fluvioglacial deposits depicted on 
figures 5-4, 5-25* often based on morphology alone, are by 
definition tentative. It would be wrong however, to assume that 
the floor and lower flanks of Nithsdale are entirely covered by a 
thin layer of ablation till and it should be stressed that the 
extent of this deposit is highly localised.
Good exposures of sand and gravel are nevertheless visible in 
this area. At Site 5H (Fig. 5*28), a large, terrace feature 
bounded by a steep ice-contact slope on its northern side, is 
incised by the Polmeur Burn to reveal 5 - 6m of poorly-bedded 
pebbles in a gravelly, in places slightly clayey, matrix (Plate %  ).
Most of the pebbles exhibit some degree of rounding and are 
generally less than 3cm in diameter, although forms up to 20cm 
are also present. Nearer the valley floor, at Site 5J (Fig. 5-28), 
incision by the Polneul Burn has similarly revealed 4 - 6m of 
sub-rounded and sub-angular clasts in a coarse, sandy matrix. The 
pebbles at this exposure are unsorted and unstratified, but generally 
less than 2cm in diameter, although larger forms up to 30cm in 
diameter can be found. At Site 5«J, the fluvioglacial deposits 
overlie a stiff dark brown till.
The borehole information, depicted on figure 5.8, gives further
insight as to the occurrence and thickness of fluvioglacial 
✓
d e p o s i t s / . . .
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deposits near the valley floor. , This diagram would appear to 
suggest that generally only a thin layer of sand and gravel 
overlies till. However, it also re-stresses the complicated 
interrelationship of the drift deposits along the valley floor 
and reveals that the greatest thicknesses of fluvioglacial 
deposits are found at depth. A maximum thickness of 19m of sand 
and gravel is found below the Nith valley floor in this area.
Returning to the landform assemblage across the floor and lower 
southern flank of the Nith depicted on figure 5-28, although no 
pattern is identifiable, individual landforms can be readily 
distinguished. Near the upslope limit of the fluvioglacial 
deposits, a discontinuous ridge form (Ridge A, Fig. 5*28), runs 
obliquely across the valley flank in a north-east direction for several 
hundred metres. The ridge begins abruptly at 230 m.o.d. and as it is 
followed downslope bifurcates, both segments terminating at 
approximately 213 m.o.d.. It is 8 - 10m in height and sections 
revealed by stream incision show that it consists entirely of badly 
slumped, poorly-bedded sands and gravels resting upon bedrock. The 
majority of the pebbles are sub-rounded in shape and less than 3cm 
in diameter. The morphology and internal constituents of ridge A 
indicate that it is an esker. The eastern section of the esker 
terminates just below the previously referred to large fluvioglacial 
terrace. The terrace (Terrace B, Fig. 5*28), extends 
across the slope for approximately 900ra, varying in width between 
100 - 300m. The surface of the form slopes only slightly 
northwards at 2 - 3°, but the northern edge is marked throughout 
its length by a steep ice-contact slope 7 - 9m in height.
Along/. . .
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Along the north-west edge of the terrace, closest to the esker 
ridge, k kettle holes 2 - 4m in depth disrupt the otherwise 
fairly level nature of its surface. This extensive landform 
is another kame terrace which has accumulated in a small lake 
along the southern margin of the decaying ice mass over 
Nithsdale. A meltwater stream following the course of the 
esker, ridge A, would appear to have supplied at least part of 
the sediment which accumulated in this lake. The absence of 
meltwater channels in the vicinity of the kame terrace suggests 
that drainage of the lake took place through the ice mass itself. 
This large kame terrace is the most extensive of several widely 
scattered forms found along both flanks of the Nith.
Along the floor of the valley, generally below 182 m.o.d., the 
fluvioglacial deposits are concentrated between and across the 
lower flanks of the larger drumlin forms found here, as irregular 
spreads or groups of small hummocky mounds (Figs. 5*4, 5*28). The 
relative relief values in this kame and kettle-like topography 
are generally less than 4m, Meltwater flow was also
concentrated between the drumlins however, but in such an irregular 
landscape it is impossible to state conclusively whether the role 
of meltwater at a particular locality was erosional or depositional. 
Nevertheless, although the topography in the immediate vicinity 
of the valley floor is chaotic, it is still readily apparent that 
there are no clearly-defined crescentic trends to the mound forms 
as suggested by Charlesworth (1926 a ). Charlesworth stated,
'•Sand and gravel moraines cover the broad floor of the Nith valley 

over the stretch between Sanquhar and New Cumnock. Below Sanquhar 

'the/...
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the crescentic and concentric ridges curving along the hillside are 
convex to the south, while between Old and New Cumnock they are 
convex to the north; the change in the direction of convexity 
appears to take place east of Kirkconnel" (P. 1*0. Charlesworth 
attributed these supposed moraine ridges, his "Kirkconnel 
Series", to the "... Minnoch stage of retreat of the Nith glacier"
(P. 1*0. All of the ridges in the vicinity of the Nith valley floor 
are short esker forms, believed to relate to a general period of 
downwastage, and not a specific stage in backwastage. As mentioned 
previously, there is no indication of moraines anywhere in Area III. 
Indeed all of the fluvioglacial landforms and deposits in this 
area relate to an advanced stage in the decay of the downwasting ice 
mass over Nithsdale. The early stages of downwastage were marked 
by the marginal:terrace accumulations at Todholes and along the 
higher southern flank of the Nith valley, but it is only when the 
zone of meltwater penetration in the extensively decayed and 
crevassed residual ice mass collapsed, at an altitude of approximately 
152 m.o.d., that meltwater was directed freely downslope and 
widespread fluvioglacial deposition could occur (Plate 5M ).
The fluvioglacial mounds and hollows which developed at this late- 
stage in ice decay are termed "ice-disintegration features" by 
Clayton (196*0, and have been similarly described by other authors 
(J. Gjessing i960; Sollid 1963-64; Sissons 1967a, P. 108-12*t;
Sugden 1970; Sugden and John, 1976, P.333 - 336). They formed in 
ice-marginal, subglacial, englacial or supraglacial situations, 
wherever cavities happened to be available for the receipt of water
borne sediment. As a result, it is not surprising to find that such 
landforms/...
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landforms tend to accumulate in close association with deposits 
of ablation till and that there is, "... often so much mixing of
till and fluvioglacial materials  that differentiation becomes
impossible" (Sugden and John, 1976, P. 333). However, the 
concentration of meltwater downslope towards the valley floor did 
not always result in deposition. Extensive erosion of the 
fluvioglacial deposits also took place at this time and this is a 
major reason for their present discontinuous distribution and often 
limited thickness. Although the englacial water-table had collapsed, 
the low base-level of the master channel along the floor of the Nith 
valley resulted in incision and not deposition over parts of the lower 
flanks, as evidenced by the extensive channel networks developed in 
drift deposits.
Further support for the Nith Valley as a major focus of meltwater 
drainage during the later stages of downwastage and also for the 
presence of a residual ice mass occupying the floor of the valley at 
this time, is supplied by Simpson and Richey (1936). MAt Sanquhar, 
abundant pebbles of Spango granite in the gravels derived from 
the Crawick valley, show that the materials here were to some 
extent obtained from sources in the hills adjoining the 
Nith valley which must have been in part at least, free of ice 
during the retreat of the Nith glacier" (P. 9̂ )- Indeed, several 
stages in downwastage are indicated by kame terrace forms in the 
Crawick valley, the altitude of the terraces increasing with 
movement north-east up the valley from its confluence with the 
Nith (Figs. 5.̂ 1 5.21, 5--25).
■SUMMARY. The fluvioglacial deposits along the Nith valley/...
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valley floor, as in other parts of Area III, relate to formation 
in association with a stagnant ice mass which downwasted in situ.
At the time of greatest deposition, an extensively decayed and 
crevassed residual mass of ice extended for several kilometres along 
the Nith Valley bottom. The most wide-spread accumulations of 
sands and gravels were laid down on the gentler valley slopes and 
in hollows between drumlin forms. However, meltwater flow directed 
towards the valley floor was also concentrated in such localities, 
and as the Nith valley remained an important routeway for the dispersion 
of meltwater throughout the later stages of ice decay, the survival of 
fluvioglacial deposits was strongly dependent upon the length of time 
that a particular channel was utilised. In some localities, the 
fluvioglacial deposits were completely removed to be re-distributed 
further down-valley and as a result scoured basal till now represents 
the surface deposit.

5.8 CONCLUSIONS
As in Areas I and II, the glacial and fluvioglacial landforms 
and deposits of Area III indicate the main sources and directions 
of movement of the last major ice sheet to cross the area. The 
increased diversity of geological conditions in and around Area III 
and the extensive development of drift deposits in this essentially 
low-lying area, enabled a far greater use to be made of distinctive 
erratics in the determination of the pattern of ice movement. The 
nature of ice wastage from its maximum extent is also suggested.
(1) Almost all of Area III was crossed by ice from an external 

source following an east to south-east course, much of this 
ice entering the area via the head of the Nith Talley
(Fig. 5.7)./...
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(Fig- 5-7)- Along the northern margin of the area 
however, ice streams followed a north to north-east 
course across the Lowther foothills and into the Upper 
Clyde drainage basin. From the alignment of landforms of 
glacial erosion and the occurrence of erratics in drift 
deposits, the main source for the ice mass appears to have
lain in the western Southern Uplands, in the hills surrounding
Loch Doon (Sissons 1967a, 1976; Holden 1977).
Locally, along the south-east margin, a small part of Area III
may have been crossed by Lowther ice following a generally 
southerly course (Fig. 5-2*0. Any such Lowther ice merged 
with the main Nithsdale ice mass over Area III to flow 
south-eastwards.

(2) Glacial striations, roches moutonnees (Fig. 5-5)» and evidence 
from the erratic content of tills and till fabrics (Figs.
5.9* 5-10), all indicate that the Nith valley was the major 
routeway for ice crossing Area III, the direction of ice 
movement generally following the alignment of the valley 
itself. This dominantly south to south-east movement of ice 
extended beyond the confines of the Nith valley into the 
foothills of the flanking uplands.

(3) Evidence of glacial breaching and fluvioglacial erosion are 
found at altitudes exceeding *+57 m.o.d. which, when taken into 
consideration with the fact that most of the hill and ridge 
crests flanking Nithsdale are streamlined in form, strongly 
indicates that Area III was completely covered by ice during 
the/...
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the last major glaciation.
W  There is extensive evidence of deposition both glacial 

and fluvioglacial in Area III. Borehole information 
indicates that both till and sand and gravel are thickest 
at depth below the floor of the Nith valley. Only one basal 
till is found in the area, but at localities near the valley 
floor, a thin layer of ablation till occasionally overlies 
this lower unit.

(5) The meltwater channel pattern over Area III is dense (Fig. 5*1̂ )» 
but can be divided into two distinctive groups on the basis
of altitude. A higher group of channels, found above 300 m.o.d. 
are ice-directed in character and best-developed in glacial 
breaches and across bedrock convexities. The majority of 
these channels indicate formation by the superimposition 
of supraglacial and englacial streams as the surface of 
the Nithsdale ice mass downwasted. As in Areas I and II, 
the depth of incision was controlled by a zone of meltwater 
penetration. Consequently, most of the higher channels 
are aligned in a south to south-east direction, although 
along the northern margin of Area III, where ice overspilled 
from the Nith Galley, it is more common to find a north-east 
alignment. Only locally along a small part of the south
east margin of the area is there a significantly different 
channel pattern, produced in association with Lowther ice
(Fig. 5.1*0.

(6) With the lower group of meltwater channels, below 300 m.o.d., 
regional control over fluvioglacial erosion was much more 
limited/...
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limited. As the ice surface downwasted and the zone of
meltwater penetration continued to drop correspondingly,
local relief conditions played a more important role in the 
establishment of the channel pattern. As a result, channels in 
the lower group locally follow courses fundamentally different 
from the regional directions of ice and meltwater movement.
Most of the channels below 300 m.o.d. were incised submarginally 
or subglacially, again by superimposed supraglacial and englacial 
streams supplemented by extraglacial meltwater. Control over 
the depth of meltwater incision exerted by the englacial water-
table ceased to apply below 152 m.o.d... At the final stages of
downwastage, meltwater drainage was focused downslope towards 
a subglacial master channel at the base of the stagnant ice 
mass which occupied the floor of Upper Nithsdale. The 
subglacial channel is thought to be at least partly 
responsible for the erosion of the drift-filled trench that 
extends for several kilometres along the valley floor.

(7) The most extensive fluvioglacial sand and gravel accumulations 
are found in close association with the lower group of 
meltwater channels. Over most of Area III deposition of 
this kind took place against, on top of, within or at the 
base of relict patches of ice, isolated from their source 
of supply, which stagnated and downwasted in situ in the 
Nith, Carron, Burnsands, Marr and Druidhill valleys. Many 
of the fluvioglacial landforms produced during the final 
stages of decay were destroyed and their deposits 
re-distributed by postglacial meltwater activity.
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CHAPTER 6 
CONCLUSIONS

l

6.1 MODELLING THE LAST MAJOR GLACIATION AND DEGLACIATION 
IN UPPER NITHSDALE AND ANNANDALE

The main purpose in using models is to provide a simpler 
explanation than that offered by the real world. As defined 
by Chorley and Hagget (1967)1 a model is, ”... a simplified 
structuring of reality which presents supposedly significant
features or relationships in a generalized form”, and that,

1

”... as such they are valuable in obscuring incidental detail 
and in allowing fundamental aspects of reality to appear” (P.22). 
In this section therefore, an attempt will be made to summarise, 
in simplified form, the main processes involved in the build up 
of, and landforms resulting from, the last glacial system 
over a part of Southern Scotland. However, it must be 
recognised that Upper Nithsdale and Annandale cannot be 
examined in isolation, but must be considered in association 
with other areas affected by the last ice sheet, at both the 
regional and national scale.
Numerous theories invoking climatic change have been put 
forward to explain the initiation of glacial periods during 
the Quaternary. However, no one interpretation has yet gained 
general acceptance and it would appear that the true explanation 
lies in the combination of two or more of the six theories 
most frequently advanced, (Flint, 1971, P- 804 - 805) •
1. Variations in solar emissivity.
2. Veils of cosmic dust.

3 • / • • •
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3* Geometric variations in the earth's motions.
Variations in transmissivity and absorptivity of the
earth's atmosphere.
Lateral and vertical movements of the earth's crust.

6. Changes in the system of atmosphere/ocean circulation.

The above factors (and others) have interacted by a series of 
positive and negative feedbacks to produce multiple periods 
of glaciation in the British Isles during the Quaternary 
(Shackleton and Opdyke 1976). Consequently, the landforms and 
indeed landscapes which characterise the initial stages in ice 
accumulation and outward movement reflect a net landscape 
response to moulding during a number of successive glacial 
episodes. As such, unlike the pattern of glacial deposition, it 
can only be assumed that ice accumulation and advance were similar 
during each of the main glacial periods when ice penetrated 
far south across Britain. As Price (1973) stated, "The 
landforms and deposits that develop during one glaciation will 
affect the build-up and expansion of any subsequent ice mass and 
the landforms and deposits it develops" (P. 198)* However, it 
is impossible to measure this affect.
The onset of the last glacial period was most likely 
characterised by only a relatively slight cooling but 
substantially increased precipitation, "... fluctuations of 
the mean annual temperature of the order of 5 - 8°C seem to 
be generally agreed" (Sparks and West, 1972, P. 7)* Snow, and 
eventually ice, began to accumulate in situations where they 
were/.••
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were able to collect and survive from one year to the next*
In the British Isles the morphological and climatological 
conditions most suitable for the build-up and retention of ice were 
found in the mountains and uplands of Scotland, Northern England 
and Vales* In each of these areas the form of the pre-glacial 
(or pre-last glaciation) surface determined the nature of the 
initial ice form and its subsequent development (Fig. 6*1).
The first snow accumulation often occurred in a valley head, 
but with continued deterioration of climate and falling snow
line it was likely that the,'1*** snow bank in the valley head 
will grow both in extent and thickness and a "cirque glacier"
will develop  Once the ice mass becomes so large that
movement begins to take place within it then the term "valley 
glacier” can be applied" (Price, 1973* l8l)> (Fig. 6.2A).
Alternatively, valley glaciers may originate from ice sources 
on upland surfaces above valley heads* In such situations 
continued climatic deterioration led to the establishment 
of "plateau glaciers" or "ice caps”, the valley glaciers 
descending from here to fill the drainage network of the 
upland concerned (Fig. 6.2B). Within the British Isles, and 
in the particular context of the thesis area, existing evidence 
suggests that initial ice accumulation took place in both 
cirque and plateau glaciers, dependent upon local upland 
morphology.
In Upper Nithsdale and Annandale 20 cirques were identified, 
the majority of these in the Lowther Hills. As previously 
described, the Lowther Hills are generally heavily dissected 
with/.••
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with only limited development of upland surfaces above the 
valley heads* Cirques in this area are found incised into
the east and south-east flanks of the uplands and are r,open
cirques" (Penck, 1905* P«l6), at the head of major troughs.
Such cirques are indicative of the extension of initial cirque 
glaciers into valley glacier forms as the glacial period 
progressed. In the Tweedsmuir Hills by contrast, there is 
more limited evidence of cirque formation, "open cirque" forms 
being particularly scarce. Several of the cirque forms in these 
uplands are found on the flanks of glacial troughs, but have had 
their dimensions trimmed by more powerful erosive action associated 
with ice occupying the trough itself. In the Tweedsmuir Hills 
therefore, unlike the Lowthers, it would appear that the local 
cirque forms were not the main source of ice supply. The
fairly level upland surface of the Tweedsmuir Hills which lies
above 610 m.o.d. and stretches for 7 km in a north-west to south
east direction, seems from other evidence to have nourished a 
plateau glacier or ice cap and as such acted as the major 
local ice source during the last glaciation. Manley (1955) 
stated that it may be reasonable to assume that, "... in a 
disturbed temperate climate a summit 1,000m broad is likely 
to retain a snow cap and form a "dome" (of ice) if it rises 
200m above the local firn line" (P. 5̂5). With such a broad 
summit, the Tweedsmuir Hills are likely to have developed an 
ice dome (or plateau glacier) when the firn line was 
considerably less than 200m from the summit. Once a 
permanent dome of ice had become established, it would 
continue to grow higher and higher above the snow-line with 
continued/...
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continued availability of precipitation, its surface gradient 
would increase and eventually outlet glaciers spread down 
towards the lower ground, channeled via pre-existing valley heads.

Outlet valley glaciers of this type, also known 
as "Icelandic” (Linton, 19̂ 3» 9)->kave steep rounded trough 
heads, and in the thesis area flowed south-west from the 
Tweedsmuir Hills (Plate 6A ). Evidence from the northern and 
eastern flanks of the Tweedsmuir Hills (Price i960), indicated 
that similar trough forms are found here also and imply that 
there was a generally radial outward movement of ice from 
the Tweedsmuir ice cap (dome).
It seems highly likely that with the climatic deterioration 
at the onset of the last glacial period other broad summits in 
the thesis area and throughout Southern Scotland as a whole 
supported ice domes. Furthermore, it is evident that cirque 
glaciers, either individually or in groups, developed where 
morphological conditions restricted the development of ice domes. 
However, within Upper Nithsdale and Annandale the evidence from 
glacial striae, erratics, meltwater channels, roche moutonnees 
and large scale features of glacial erosion, suggests that 
there were only two major centres of ice dispersal, the 
aforementioned Tweedsmuir ice cap and an amalgam of smaller 
ice domes and cirque glaciers in the Lowther Hills* A third 
centre of dispersal, external to the thesis area but of major 
significance in terms of ice movements affecting the area, lay 
beyond its western boundary in the uplands surrounding Loch 
Doon. Ice from these three centres is termed Tweedsmuir,
Lowther/.•.



Lowther and Nithsdale respectively, and a postulated early 
stage in the build-up of the three ice masses in the thesis 
area is indicated on figure 6.3.
Although initial ice movement outward from the accumulation 
area was strongly controlled by local morphology, with 
increasing ice thickness and distance from the source a 
stage was reached where ice movements often disregarded 
the nature of the underlying relief and followed courses 
dictated by climatic conditions in the fashion of Flint's 
(1971) theory of "highland origin and windward growth"
(Figs. 6.1 and 6.*f). As a result, the principal directions of 
ice movement across the thesis area on nearing the glacial 
maximum were broadly southwards (Manley 1959)1 although 
interaction between ice streams also exerted a strong 
influence on the regional flow of ice (Fig. 6.5)• With 
the coalescence of the three major ice masses over Upper 
Nithsdale and Annandale, ice from the more powerful Nithsdale 
and Tweedsmuir sources greatly restricted the movement of 
Lowther ice and concentrated its flow almost directly southwards 
(Fig. 6.5)• Similarly, the presence of an ice mass of Scottish 
Highland origin along the northern margin of the Southern 
Uplands, in conjunction with the Lowther dispersal centre over 
the central uplands, forced part of the Nithsdale ice stream 
north-eastwards along the upland margin (Fig. 6*5)• Even at 
this advanced stage in the glacial period however, the principal 
directions of ice movement within this enlarged Southern 
Upland/.••
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Upland ice mass paralleled the alignment of the two major 
yalleys in the area, Nithsdale and Annandale, such that 
the role of the underlying topography cannot be completely 
discounted (Jig, 6*1).
Eventually, ice from the three sources affecting the thesis 
area, other major sources in Scotland and upland centres 
in England and Wales coalesced and thickened, such that 
at the maximum of the last glaciation a British ice sheet 
covered most of of the country and was confluent with ice 
of Scandinavian origin (Fig. 6.6). The presence of ice- 
breached cols and meltwater channels at altitudes exceeding 
732 m.o.d. in the thesis area suggests that at least in the 
vicinity of Upper Nithsdale and Annandale, the landscape was 
totally submerged by an ice cover at this time. The summit 
height for the ice sheet as a whole is estimated at 1,800m 
(1,700m over the Southern Uplands, which supports the above 
statements), with a speculated total volume of 3^6*000 km3 
(Boulton et al, 1977)* At the glacial maximum, Boulton et 
al (1977) also suggest that the British ice sheet was 
characterised by an outer zone of melting where ice was at 
or above the pressure melting point, succeeded up-glacier 
by a zone where basal temperatures were below the melting 
point. In terms of glacial erosion, where ice velocity is 
of major importance (Boulton 1975), it becomes readily apparent 
that conditions under the centre of ice outflow e.g. Scottish 
Highlands, Southern Uplands etc, characterised by low ice 
velocities and possibly sub-melting point temperatures if the 
above assumption is correct, ”... would not be conducive 
to high rates of erosion by any process" (Boulton et al,
1977, P. 2̂ 0).
As/...
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As such, it is suggested that the landscapes of intense glacial 
erosion, which generally characterise the dispersal centres, 
although admittedly only locally developed in the central Southern 
Uplands, were not primarily achieved at or near the last or a 
previous glacial maximum* Instead, it is proposed that the 
greatest erosion took place, ”••• during periods of much more 
limited glacierization, when these (source) areas merely 
maintained local ice-caps and valley glaciers and when 
high local ablation gradients produced rapid local glacier 
movement” (Boulton et al, 1977, P* 2*f0). It is speculated that 
the landscape of the Southern Uplands dispersal centre is not 
as deeply eroded as that underlying other major sources,
”••• because of its lower elevation compared with the other 
centres of outflow, which did not enable it to support as 
much active local ice during the periods when no large British 
ice-sheet existed* It suffered less erosion during these 
periods and the smaller erosional intensity that it shows 
compared with surrounding areas is a product of this and low 
erosional rates beneath source areas during periods of more 
intensive ice-sheet glaciation” (Boulton et al, 1977, P« 2*f0- 
2*fl).
Sissons (1979a, P 199 - 203), also believed that glacier 
development in the Southern Uplands was retarded during the 
initial stages of the glacial period in comparison with other 
major accumulation centres* Sissons however, attributed this to 
climatic factors, in particular the availability of precipitation 
associated with the location of the Polar Front in the Atlantic 
.Ocean*/***
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Ocean* He suggested that the zone of maximum precipitation
shifted southwards from the West Highlands of Scotland with
the migration of Polar Water, causing optimal conditions of
glacier accumulation during ice sheet growth to pass over the
Southern Uplands, but at a stage when extensive expansion of ice
masses had already occurred further north* The southward
movement of this front was a major factor in the growth of
the British ice sheet to the glacial maximum during the last prolonged
cold period.
Climatic amelioration following the maximum of the last ice 
sheet initiated the period of deglaciation. The rate of 
ablation in the ablation area of the ice sheet exceeded the 
rate of replenishment in the accumulation area and so with the 
establishment of a negative mass balance, rapid downwastage 
and marginal recession took place* Information concerning the 
rates of retreat of the last British ice sheet is very limited 
although Price (1980), after studies in areas of contemporary 
glaciation, suggested that "*•• during deglacierization it is 
•*• reasonable to expect that land will emerge from beneath ice 
at the rate of between 10-100m per year depending upon local 
conditions” (P. 82). It is however, generally believed that its 
break up into streams largely controlled by the underlying 
topography probably occurred fairly early in the period of 
deglaciation (Price, 1973, P. 210). Indeed, the nature of the 
underlying relief conditions became of increasing importance 
as ice-wastage progressed, particularly in upland areas 
(Pig. 6.1).
I t / . . .
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It is during the period of recession of an ice mass that the 
importance of meltwater and fluvioglacial processes in the 
glacial system become increasingly apparent. In this respect, 
the temperature of the ice mass gains priority. If the ice 
mass lies below the pressure melting point, no meltwater can 
exist within the glacier in liquid form. Temperate glaciers 
by contrast can contain meltwater throughout their mass.
Although it was previously suggested that at the glacial 
maximum the basal temperature of the ice sheet underlying 
the centres of outflow in the British Isles lay below the 
pressure melting point (Boulton et al 1977)» such conditions 
are not believed to have prevailed throughout the period of 
deglaciation. The abundant evidence of landforms indicative 
of fluvioglacial erosion and/or deposition up to the highest 
altitudes in Upper Nithsdale and Annandale and other adjacent 
areas, (Price I960; Mclellan 1967; Sissons 1967a; Clapperton 
1970; Holden 1977)» strongly suggests that the decaying ice 
sheet was at the pressure melting point throughout much of 
the period of its dissipation, at least over a large part of 
Southern Scotland.
During ice wastage, meltwater activity developed in association 
with each of the three confluent ice masses which covered 
the area. The fluvioglacial landform patterns therefore 
indicate not only the nature of deglaciation over the area 
as a whole, but more specifically the changing interrelationship 
of these three ice masses during this period.
The close association of the alignment of many meltwater 
channels/.••
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channels (and fluvioglacial ridge forms) with former 
directions of ice movement has frequently been referred to,,
(Flint 1971; Gjessing I960; Sissons 1967s; Clapperton 1971a; 
Price 1973)* This relationship is taken to indicate the strong 
control exerted by the regional slope of the ice surface over 
the regional direction of meltwater drainage; such channels 
which parallel the former directions of ice movement have been 
termed ”ice-directedu (Clapperton 1971a). Ice-directed meltwater 
channels and deposits are common throughout Upper Nithsdale and 
Annandale, particularly at higher altitudes and as suggested, 
have developed independently in association with each of the 
three major ice masses, as a comparison of figures 6*3 and 
6.7 indicates. Such channels are found incised across spurs 
and bedrock' convexities aligned transversely to the regional 
direction of ice movement, and are best-developed above 
230 m.o.d. Both single forms and complex channel systems are 
apparent, the greatest concentrations occurring in the areas of 
confluence of ice streams from the major centres. In the thesis 
area, regional surface slopes focused meltwater activity onto the 
terrain delimiting part of the southern boundary. South and 
south-west flowing meltwater from the Lowther ice mass augmented 
the existing south-east trending meltwater drainage along the 
margin of the Nithsdale ice, to concentrate erosional and to 
a lesser extent depositional activity in this vicinity. The 
vast majority of the ice-directed channels here and indeed 
throughout the thesis area were incised by the superimposition 
of supraglacial and englacial streams as the ice surface 
 ̂downwasted/...
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downwasted, the depth of meltwater incision being controlled by 
a descending zone of meltwater penetration. Although in the 
case of the Lowther ice mass much of the meltwater produced 
during downwastage appears to have been channelled into the pre
existing radial valley system, the regional directions of 
meltwater drainage over the area as a whole did not change 
dramatically until the zone of meltwater penetration became 
increasingly disrupted by the underlying relief. A tentative 
figure of 250 m.o.d. is suggested for the widespread disruption 
of ice-directed drainage in the thesis area (Fig. 6.7), but 
in reality this altitude varied considerably on the local scale and 
was strongly controlled by the nature of the topography in different 
parts of the area. In the generally upland terrain which characterises 
Upper Nithsdale and Annandale, disruption of the regional meltwater 
drainage pattern obviously occurred at higher altitudes than 
would be the case where the emerging topography had local relief 
values of only tens of metres.
Therefore, the ice-directed channels and of more limited develop
ment eskers, in Upper Nithsdale and Annandale represent the 
earliest phases of deglaciation (Sugden 1970) and to reiterate, 
indicate that during this period meltwater drainage essentially 
paralleled former directions of ice movement.
With continued downwastage and marginal recession, areas where 
several ice masses were confluent are often the first to become 
ice free and in such localities small and temporary ice-dammed 
lakes may develop (Clapperton 1971b). On a similar theme,
Price (1973) stated that, "... such lakes may develop in 
tributary/...
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tributary valleys because of differential rates of retreat 
in different glaciers” (P. 205), and this was in fact the 
case in part of the thesis area* The thinning and associated 
marginal retreat of the Lowther ice mass caused its southern 
terminal area to part from its confluence with the more 
powerful Nithsdale ice at the mouth of the Cairn Valley and 
withdraw a short distance northward; the ground vacated by 
the ice became flooded by a small glacial lake* The altitude 
of this lake was apparently controlled by the local stabilisation 
of the englacial water table, but its existence was only short
lived, overflowing initially across low points along the valley 
flanks into adjacent ice-free valleys, before finally draining 
subglacially into/through the Nithsdale ice-dam itself. Other 
small ice-dammed lakes formed in valleys tributary to the Nith 
during the period of partition of the Nithsdale-Lowther ice 
masses, but there is no evidence to suggest the formation of 
similar lakes in the zone of confluence of the Lowther/ 
Tweedsmuir ice during downwastage, mainly because the ice 
streams here followed parallel courses prior to converging.
The final stages of deglaciation were characterised by the 
balance in the complex interrelationship between ice cover and 
underlying topography and their oscillating influence over 
glacial and fluvioglacial processes, swinging strongly in 
favour of the emerging landscape (Fig. 6.1). With continued 
thinning of the ice cover, mountains and hills gradually 
appeared above the ice surface, underlying valley systems 
became dominant in determining the flow lines within the ice 
and/. ••
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and the end result was that emerging interfluves cut off some 
glaciers from their accumulation areas* In such situations,
"... all forward motion ceases**** the ice mass becomes stagnant 
and ablation rates are the sole determinant of rates of 
thinning and marginal retreat" (Price, 1973, P. 200). The 
most suitable locations for the retention of stagnant masses 
of ice, often hundreds of metres in thickness and several 
kilometres in length (Flint, 1929), appear to have been 
troughs and other depressions aligned transversely to the 
direction of regional ice movement* However, in addition to 
these, as indicated on figure 6*8, major remnant ice masses also 
became detached and stagnated in situ in the Nith and Annan 
valleys themselves. Stagnation and downwastage in situ provided 
ideal situations for the concentration of meltwater and hence 
the formation of suites of fluvioglacial landforms (Sugden 1970). 
It is principally upon the occurrence of these characteristic 
landform assemblages that the main areas of ice stagnation 
and downwastage are identified* Ablation till often supplements 
the fluvioglacial material and covers a wide area of stagnant 
ice either supraglacially or englacially. Consequently, a 
complex ice-contact environment of deposition evolves as 
downwastage< continues. The end product is a confused 
landscape of mounds, hollows, ridges and terrace forms with 
little or no apparent orientation, consisting mainly of 
fluvioglacial deposits although flow and melt-out tills are 
often intricately intercalated with these (Boulton 1967).
Such an environment also produces characteristic channel forms. 
These commonly plunge directly downslope, a consequence of the 
re-direction/•«•
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re-direction of meltwater upon the collapse of the zone 
of meltwater penetration at the onset of stagnation. Whatever 
the exact alignment of channel forms produced in association 
with stagnant ice, unlike the higher indications of meltwater 
drainage, their occurrence is always strongly controlled by 
local topographic conditions. As previously implied, channels 
formed under conditions of strong topographic as opposed to 
glaciological control are found mainly below 250 m.o.d. in the 
thesis area (Figs. 6.1, 6.8). Therefore, in the final stages 
of deglaciation, ice lingered longest in valley floors and basins, 
with the possible but by no means definite exception of a few 
plateau snowfields (Fig. 6.8). This final period of dissipation 
resulted not only in the chaotic dead-ice landscape described 
above, but also in the concentration of late-stage meltwater 
activity in pre-existing valley floors. In the context of the 
thesis area the late-stage meltwater drainage pattern, like the 
present fluvial drainage pattern focused flow in the two main 
valleys, Nithsdale and Annandale. Although initially such 
concentrated meltwater activity may have led to spectacular 
erosion, as in the case of the buried valley in Upper Nithsdale, 
depositional processes gradually became dominant and both 
Nithsdale and Annandale are extensively floored with fluvioglacial 
as well as glacial deposits. With particular reference to the 
latter fact, it is assumed that throughout the period of 
deglaciation, (and also perhaps prior to this) extensive 
glacial deposition took place in the form of lodgement till, 
fluted ground moraine and/or drumlins wherever conditions 
were suitable. The survival of the glacial deposits and their 

* retention/...
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retention of a morphological expression however, were heavily 
dependent upon the time and location of their deoosition in 
relation to subsequent glacial, and more particularly 
fluvioglacial activity.
During the course of the shrinkage and disappearance of the 
British ice sheet, it has been suggested that, ".... small 
ice caps or valley glaciers will be left on highlands if net 
accumulation remains in these areas" (Vest, 1977, P. 19). It 
is however, difficult to be certain whether or not such 
remnants of the ice sheet were retained in Upper Nithsdale 
and Annandale during the last stages of deglaciation. There 
is certainly evidence in the form of hummocky moraines to 
suggest that small glaciers did exist in certain localities 
within the thesis area (Fig. 6.9)1 and other parts of Britain* 
after the main period of ice wastage. However, whether these forms 
relate to a period of re-advance of ice or separate advance post
dating the total removal of ice from the landscape, is not 
yet completely clear, although existing evidence from various 
parts of the country tends to support the latter theory. (Sissons 
1976, 1979a; Gray and Lowe 1977)* In the context of the thesis
area, the location of the morainic topography indicates that the 
major areas of ice accumulation during this subsequent cold period 
were essentially the same as during the initial stages of ice 
build-up associated with the growth of the last ice sheet itself.

6.2 CHRONOLOGY AND CLIMATIC IMPLICATIONS
The build up of the last Quaternary ice sheet to cover the thesis 
area referred to in the previous section, is believed to have taken 
jplace/...



place in Late Devensian times, beginning approximately 25,000 
years ago, reaching its maximum 18,000 years ago and wasting 
away either partially or completely by approximately 12,500 years. 
Between approximately 11,000 and 10,000 years B.P., there was 
a return to colder conditions and the re-advance or re
establishment of glaciers in the more upland parts of the 
British Isles (Sissons 1967a, 1976, Pr* 79 - 90); Penny et 
al 1969; Bowen 1977; Gray and Lowe 1977). As suggested on 
several occasions there is still considerable debate as to 
whether the ice sheet disappeared completely at the end of 
the last major glaciation or remained in patches throughout the 
Scottish Lateglacial period. (Gray and Lowe (1977) define the 
Scottish Lateglacial as consisting of the Lateglacial Interstadial, 
"The period between the start of the apparently rapid thermal 
improvement that occurred between about 1^,000 and 13,000 B.P. 
and the beginning of the marked thermal decline that took place 
around 11,000 B.P."; and the Loch Lomond Stadial, "The period 
between the start of the marked thermal decline that occurred 
around 11,000 B.P. and the international chronostratigraphic 
boundary for the beginning of the Flandrain, viz. 10,000 B.P." 
(PXiii).)
Peacock (1971, 1977); Sugden (1970, 1973a, 1973b, 197*0;
Sugden and Clapperton (1975), bold with the belief that a major 
active ice sheet existed throughout the Lateglacial, and that 
morainic landforms attributed to an independent advance of 
ice during this period merely reflect a minor fluctuation during 
the decline of the ice sheet. The opposing viewpoint, that total 
deglaciation of the last ice sheet to cover the British Isles 
•occurred/...
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occurred prior to the subsequent re-advance has been led by- 
Sissons (1967a, 1972, 1973a, 1973b, 197̂ +a, 1976 ; Sissons and 
Grant 1972). Over 60 Lateglacial pollen sites in Scotland 
indicate that large areas of the country were deglaciated during 
the Lateglacial Interstadial and therefore support the latter 
theory* Several of these sites are in Southern Scotland, and 
one within the thesis area itself, at Sanquhar.
The exposure containing vegetation remains, at the Sanquhar 
Brickworks quarry, was first described by Simpson and Richey 
(1936), who discovered, ”... a bed of peat resting on sands and 
gravels .... overlain by, apparently, boulder clay (till)11
(P. 9*0.

Ft* Ins* M. Cms.
Soil ...........  1 0 0 30
Stiff Dark Clay with Stones up to
a foot in length (? Boulder Clay)   3  ̂ 1 2
Alternating Layers of Silt and
Peat ...........  0 6 0 15
Peat with much coarse Vegetable Debris, 
containing Wing-Cases of Beetles, 
and with small patches of Vivianite 
(Hydrous Ferrous Phosphate locally
plentiful) ........... 1 3 0 36
Yellow sand with a bed of grey Silt  2 0 0 6l
Sandy Gravel with small pebbles, many
of Spango Granite, resting upon rock ..*. 1 3 0 38

(Simpson & Richey, 1936, P.9*0

Simpson and Richey concluded from the above section that,
”... this evidence .... favours a glacial origin for the 
supposed boulder clay (till), and in consequence a readvance of 
the ice must be postulated after a period when the sands and 
gravels/...



gravels were deposited and the peat was formed" (Simpson and 
Richey 1936, P. 9̂ )* No date was suggested for this re-advance. 
The same vegetation site was re-examined by Bishop and Coope 
(1977) who decided that the peat bed was overlain not by till 
but, ••• by about lm of solifluction on which a soil profile 
had developed", and that on the basis of, "... faunal and 
stratigraphical grounds there can be no doubt that the deposits 
here are of Lateglacial age" (P. 82). No material was removed 
for radiocarbon dating from this site and as the quarry has since 
been filled, the possibility of now obtaining a date for the 
vegetation remains seems unlikely. However, Bishop and Coope 
(1977) estimated the age of the peaty layer on the basis of 
several considerations :
"Stratigraphically this deposit must surely post-date the retreat 
of the ice from this part of the Southern Uplands. The peaty 
horizon, though somewhat compacted, does not bear the intense 
compressional features characteristic of peats that have been 
overriden by ice sheets •••• The deposit is plainly overlain 
by a layer of solifluction that includes clay with stones that 
might well be mistaken for a till .... The most appropriate time 
interval for this solifluction deposit is during the Loch Lomond 
Stadial. The insect faunas from this deposit would also support 
a Lateglacial age for these deposits" (P. 83)* A more exact 
date for the vegetation layer was suggested as, "between 
13,000 - 12,000 B.P." (Bishop and Coope, 1977, P. 85).
However, although the lowlands of Upper Nithsdale were apparently 
ice—free between approximately 13,000 ■* 12,000 B.P., this does not 
completely rule out the possibility that the surrounding Uplands 
pould/...
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could 11376 retained substantial glacier remnants* Nevertheless, 
faunal and floral climatic implications suggest that this is 
unlikely.
The morainic landforms and deposits found in the more upland 
parts of the Lowther and Tweedsmuir Hills (Fig* 6*9)i would 
therefore appear to relate not to a halt or re—advance associated 
with the dissipation of the last ice sheet, but to a separate and 
limited advance of ice after the period of general retreat 
and climatic amelioration* The altitude, location and morphology 
of the morainic accumulations suggest that they 
relate to the Loch Lomond Stadial (Gray and Lowe 1977)» the 
limits of which have been well mapped in other parts of the 
country (Sissons 1979a). There is at present still considerable 
uncertainty about the timing of the build up of the Loch Lomond 
Advance glaciers with Sissons(1979a) suggesting that, ".... 
glaciers may have begun to develop ••*. by 11,500 B.P." and 
subsequent ".... attainment of glacier maxima - C.10,800 B.P., 
markedly out of phase with much other evidence" (P. 202).
The deterioration of climatic conditions associated with the 
Loch Lomond Stadial resulted not only in the formation of the 
morainic topography, but also in more widespread periglacial 
action away from the immediate proximity of the re-established 
glaciers themselves. Many of the products of mass wastage, in 
particular the sloping solifluction benches which descend from 
both valley flanks towards the present stream in parts of the 
uplands, are believed to have formed either partially or 
completely during the Lateglacial period. There is no apparent 
pattern to the occurrence of benches of this type, but their 
total/...
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total absence from any of the valleys which contained glaciers 
during the Loch Lomond Stadial strongly suggests that the major 
period of bench formation, and by definition periglacial activity, 
occurred before and/or during this advance of ice. Similarly, 
the presence of a fossil ice-wedge in kame terrace gravels at 
the mouth of Moffatdale (Fig. 3* 32 ) is further testimony to
severe climatic conditions during and/or after the decay of the 
last ice sheet. The ice-wedge cast implies the former existence of 
permafrost in this area, the thickness of which was at least as 
great as the length of the cast (Flint 1971). Mean annual air 
temperature at the time of formation of the ice-wedge was in 
the region of -6 to -8° centigrade (Pewe 1966, 1973)• Sissons 
(1979a, P.200) also refers to fossil frost wedges within the 
limits of the Loch Lomond Advance near sea level in Scotland, 
thus emphasising the wisespread occurrence of permafrost during 
this period. It is not generally possible to give an exact date 
for the formation of fossil periglacial features, but Sissons 
(1976) stresses the importance of the Lateglacial period in this 
respect. "Some of the fossil periglacial features on the Scottish 
mountains may have been formed when the lower ground was still 
covered by the downwasting ice sheet, but the severe climatic 
conditions that accompanied the Loch Lomond Re-advance(Stadial) 
were of major importance " (Sissons, 1976, P.110). Tentative
support for Sissons belief is supplied by the section containing 
vegetation remains at Sanquhar. If the peaty layer was indeed 
formed during the Lateglacial Interstadial as suggested by 
Bishop and Coope (1977), then one metre of soliflucted debris has 
slumped on top since approximately 12,000 years B.P.; the 
„vast/.••



vast majority of deposition undoubtedly taking place during 
the period of the Loch Lomond Stadial* By implication, a 
similar if not greater thickness of material derived from 
mass wastage can be assumed to have accumulated across the lower 
slopes of the uplands flanking Nithsdale, in closer proximity 
to the glaciers themselves* This also has the wider implication 
that extensive re-modification of the morphology and nature of 
the drift deposits in the thesis area may have taken place 
since their formation during the main period of ice sheet decay* 
However, such studies of post-depositional modification, as have 
been carried out in other parts of Scotland (Dickson et al 1976), 
are outwith the scope of this thesis.

RELATIONSHIP OF FINDINGS TO PREVIOUS RESEARCH IN ADJACENT AREAS.
In the last two decades the Southern Uplands and West-Central 
Scotland have figured largely in research undertaken by former 
or present staff and/or students in the Geography Department at 
Glasgow University. To reiterate, Price (1961) worked in 
Peebleshire and was responsible for the initiation of 
subsequent research by Mclellan (1967), in West-Central Lanarkshire 
Gemmell (1971) in Arran; Ward (pers. comm. 1975) in Renfrew and 
North Ayrshire; Holden (1977) in Central Ayrshire, and the present 
work in Southern Lanarkshire and Northern Dumfriesshire (Fig. 6.10) 
Although, as indicated on figure 6.10, total coverage of this 
substantial area has not yet been achieved, it is possible to 
combine the information gathered to date and distinguish the main 
source areas and directions of ice movement to have affected a 
large part of West-Central and Southern Scotland during the last 
.major glacial period (Fig. 6.11).
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Ice from the West Highlands and the Southern Uplands became 
confluent over this area (Fig. 6.11), and all of the authors are 
in agreement that at the maximum stage of the last ice sheet, 
this part of Scotland was entirely covered by ice. Highland ice 
entered the area from sources to the north-west, but was 
deflected south-west down the Firth of Clyde and north-east towards 
the Firth of Forth on encountering the Southern Uplands ice mass. 
Three major source areas for the southern ice mass were identified, 
the uplands surrounding Loch Doon, the Lowther Hills, and the 
Tweedsmuir Hills.
The Loch Boon centre was the largest and most important. At the 
glacial maximum there was a radial outward movement of ice from 
here, although ice flowing directly northwards was deflected 
north-eastwards by the presence of the Highland ice mass.
Of particular importance to much of the thesis area was the 
presence of eastward flowing Loch Doon ice which, in association 
with Highland ice to the north, restricted the pattern of outward 
ice movement from the smaller centres over the Lowther and 
Tweedsmuir Hills. However, at the ice sheet maximum a major axis 
of ice dispersal in the Central Southern Uplands lay over and 
linked the Lowther and Tweedsmuir Hills. Ice to the north of 
the axis, confluent with Loch Doon ice and Highland ice, flowed in 
a generally north to north-east direction; to the south 
movement was almost directly southwards, except in the area 
adjacent to Nithsdale where the pressure from Loch Doon ice 
enforced a south-east course.
In 1901 Geikie stated, "From the direction of striae it is 
evident that the Southern Uplands formed another centre of 
dispersion/...



dispersion, for the southern part of the Scottish ice-sheet.
(To speak more accurately there were several distinct centres 
of movement of the ice that lay on these uplands") (Geikie, 1901, 
P. 341-5^3). The main findings of this thesis strongly reinforce 
Geikie*s beliefs, but in addition, have enabled several of the 
main dispersal centres to which he refers to be identified and 
the varying influence which they have exerted during the last 
period of glaciation and deglaciation to be assessed.
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APPENDIX I 

PARTICLE-SIZE ANALYSIS OF SEDIMENTS

Particle-size analysis of tills was carried out to enhance 
the description of individual exposures and to aid in the 
identification of the origin and direction of movement of 
the ice mass by. which they were deposited. All exposures 
of till selepted for particle-size analysis were at least 
3 metres in thickness. At each site the face was cleared 

, of slumped or loosened material and a sample of 50kg. 
collected from several random localities across the exposure.
The sample weight was ascertained using a spring balance.
The sample was then passed through a set of sieves (in the 
field) and the amount of material retained on each sieve 
was weighed using the spring balance. The sieves used had 
mesh sizes of 8cm, 4cm and 3cm. About 10kg. of the material 
which passed through the 3cm sieve was then taken back to the 
laboratory for further analysis.

It is generally accepted that for the purpose of 
particle-size analysis of till deposits, wet sieving is a more 
accurate method than dry sieving. For this reason wet 
sieving ky the method advocated in British Standard 
Publication B.S. 1377, was used for the fraction coarser 
than and including 6jum, with sieves at the British 
Standard Size Range of 63am, 12^um, 25Qnm, 500am, 1200am,

i '

200Qjim, 335Qam, 635Qum, 1270Q«m and 2570Qam. The coarseness 
of the till deposit throughout the thesis area meant that the 
hydrometer method of particle-size analysis for the fraction 
finer than 7̂ um was not utilised.

PROCEDURE
1) The sample (of approximately 10kg) was oven-dried at a

temperature of 100-120 C for 24 hours.
2) The dried sample was then lightly crushed with a 

rubber-headed pestle and mortar. Great care was taken
not to crush individual particles.

3) 3,000gm of material was then weighed to O.Olgm and
placed in glass beakers where it was covered -with distilled
water containing a dispersing agent (Sodium hexametaphosphate). 
This was warmed, mechanically stirred for 15 minutes and then
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left for 30minutes.
4) The sample was then washed through a nest of sieves 

(3350jim, 635Qum, 12700jim, and 25700/um) using wet 
sieve apparatus connected to the sink. Great care 
was taken not to flood any of the sieves as this 
could lead to the loss of some material.

5) The sieves were removed and oven-dried at 50 C.
A piece of paper was placed beneath the sieves to 
collect material falling through during the drying 
process.

6) When dry, the sieves were nested and shaken 
mechanically for 20 minutes. The sample in 
each sieve was then carefully brushed onto a 
sheet of paper, emptied onto the balance and 
weighed to O.Olgm. The amount of material 
in the gravel fraction was thus ascertained.

7) A 200gm. sample of the material passing through 
the 200(Jum mesh sieve was placed in a glass 
beaker and a dispersing agent again added. ’ This 
was warmed, stirred mechanically for 30 minutes and 
left for one hour.

8) A nest of sieves between 6^um and 2000mhi (6 ûm, 12§mm, 
500jum, 120Qjun and 2000jum) was placed on the wet 
sieving apparatus and the sample again washed through.

9) The sieves were oven-dried at 50 C, again resting on 
a piece of paper to collect material passing through, 
nested and mechanically shaken for 20 minutes.
The samples were then carefully brushed from the 
sieves onto a large piece of paper, emptied onto 
a balance and weighed to’O.Olgm. This enabled the 
amount of material in the sand fraction to be 
ascertained.

CALCULATIONS
The weight of material retained on each sieve was used to 
determine the percentage weight retained and then the 
percentage weight passing each sieve size. These figures 
only applied to the two sub-samples, but were related to the 
initial sanrole collected in the field so that the cumulative 
percentage weight passing each sieve size could be 
calculated. Any gross errors in weighing were determined 
by adding together all the weighings of materials retained
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on each sieve and the weight of material retained in the 
bottom tray*

It is felt that the above procedure gave a fairly 
accurate assessment of relative particle-size. The 
relative proportions of cobbles-boulders, gravel, sand and 
silt-clay were used in simplified, form to distinguish 
important differences between exposures in different parts of the 
thesis area (Tables 3.2, 4.3, 5.4).
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APPENDIX II 

PREFERRED - STONE ORIENTATION

As indicated in the text, the purpose of preferred-stone 
orientation analysis on tills in the thesis area is to 
indicate the direction of movement of the ice mass by 
which they were deposited^
PROCEDURE In the field, those exposures whose

I
potential usefulness for the determination of former 
ice movements in both a local and regional context was 
greatest were chosen for examination.

1) The exposure was cleaned and the outer 0.3m removed 
in case .of disturbance (Andrews, 1971). The sampling 
was generally carried out on.vertical exposures, nearly
entirely "the resul"t fluvial incision.
2) Avoiding the top 0.5m of the exposure in case of 
disturbance, 5 trenches were cut at random intervals
into the vertical face to provide horizontal working faces. 
These trenches were slowly excavated with a trowel until 
a suitable stone was located. A suitable stone was one 
which had a "a" axis to "bM axis ratio of at least 3:2.
That is to say, all of the stones examined were clearly 
longer than they were broad, and the direction of 
elongation could be readily identified. It was common, 
with the exception of the upper deposit at exposure 5E 
Area III (Old Mains), for there to be sufficient silty- 
clay in the matrix of the till for the stone to be 
carefully removed leaving its cast. A non-magnetic 
rod (in this case a wooden cocktail-stick) was inserted 
into the cast exactly duplicating the dip and 
orientation 'bhe s*0116 for measurement purposes.
Stones that lay adjacent to large boulders or touched 
each other were avoided.
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3) The orientation of the stones was measured using a
Suunto fabric compass. However, as it is generally
considered that such readings are only accurate to 

o+ 5 , regardless of the care taken during measurement,
the readings were merely recorded to the nearest 
5° orientation.
4) The measurement of the dip was completed by 
measuring the inclination of the non-magnetic rod 
representative of the former dip of the "a" axis.
Both the orientation and the dip were recorded for 
50 stones at each exposure examined (10 stones from 
each of the 5 pits excavated in the face of the 
exposure).

I



APPENDIX III

ANALYSIS OF RESULTS' FROM PREFERRED-STONE ORIENTATIONS

The results of the preferred-stone orientations have 
been portrayed both graphically and statistically. In 
diagrammatic form the recorded data is represented on rose 
diagrams (Pigs. 3.12., 4.•10; 5.9). With these, the 
orientations are grouped into 20 class intervals from 
0° - 360° • The 20a class intervals are in turn grouped 
through 180° to produce an identical appearance either side 
of the mean (Andrews, 1965, 1971). The rose diagrams have 
been used in the text to give a clear, and instantly 
identifiable summary of the orientation data obtained from 
each site.

In terms of statistical analysis of the data, a mean 
stone orientation was calculated using the following formula

1 = Xa + C uf( x) 
f( x)

Where Xa is the middle point of the distribution, and C 
is the interval between classes. This calculation has 
been carried out on the data recorded for exposure 4A ih- 
Area II in order to aid understanding. In this example 
the model frequency is just east of south and the data will 
be tabulated from 60° to 240° with opposite 20° cell units 
summed together (Table IIIA) .

Mean
• TABLE IIIA 

Orientation of Till deposit at Exposure 4A.

Class (Degrees) Frequency( f( x)) u Scale uf(x)
60-79, 240-259 1 -4 -4
80-99, 260-279 3 -3 -9
100-119,280-299 4 -2 -8
120-139,300-319 4 -1 -4
140-159,320-339 8 0 0
160-179,340-359 12 1 12
180-199,360-19 9 2 18
200-219, 20-39 4 3 12
220-239, 40-59 5 4 20

50 ?7

X = 150 + 20 . 37
50

= 150 + 14.8 = 164.8°
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The Chi-squared test is calculated to provide a
i

numerical value for the orientation-strength and the
dip-strength. "Statistical analysis requires that
1) the sample data be tested against a null hypothesis
and that 2) the probability that the distribution differs
from that of the null hypothesis is tested at a particular
level of significance. If a confidence limit of 95% is
accepted, this implies that such a difference is due to
chance. In the analysis of the till.fabric, data** the null hypothesis
is that the-observed distribution (0)-of orientations and dips of the
"a"V.axis of elongate pebbles is uniform. The. distribution of
the "a" axes ranges from 0 - 360°. Chi-squared consists
of testing an observed distribution (0) against the
expected distribution (E) which in this case is uniform"
(Andrews, 1965, Appendix A). For acceptable Chi-squared 
results, the expected frequencies have to be at least equal 
to 5 (Andrews, 1971)• Therefore, orientations are divided
into 9 x 40 classes, 0° - 39°, 40°- 79°,.......   end the
number of pebble orientations (0) recorded for each class 
(Table IIIB). As 50 pebbles were examined, the expected 
uniform distribution for each class is therefore 50/9 (i.e. total 
number of observations/number of class groups) or 5.55 pebble 
orientations for every 40° division. Chi-squared is 
determined by using the following formula:-

X2 = (0 - E)2
E

TABLE IIIB

Chi-square for Orientation of till deposit at Site 4A

■al value Observed Frequency 
(0)

Expected Frequency 
(S)

(0-E)

0 8 5.55 2.45
40 3 5.55 2.55
80 0 5.55 5.55
120 8 5.55 2.45
160 12 5.55 6.45
200 8 5.55 2.45
240 4 5.55 1.55
28<* 3 5.55 2.55
320 4 5.55 1.55

X = (2.45)2 + (2-55)2 + (5.55) 2 .....+ ( 2.55)2 + (1.55)
= 108.25 = 19.50

5.55
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There are (N - 1) degrees of freedom, where N is the number 
of class groups. The Chi-square tables indicate that with (N- 
1) = 8, the 95% confidence level is 15.51. The calculated 
value for 4A is 19.50. As this is greater than 15.51 it can 
be said that there is a significant difference between the 
observed distribution of the "a" axis orientations and the 
expected uniform distribution. Therefore, the null hypothesis 
that the pebble orientations are evenly distributed can be 
rejected. "Obviously the figure becomes larger the more 
observations are concentrated within specific class divisions. 
Thus orientation - strength is a measure of concentration or 
isolation (Andrews, 1965; Appendix A).
The Chi-squared test was also used to give a dip-strength 
value of the stones in the till fabric. It is obtained 
by dividing the observed stone fabric into halves at right 
angles to the mean orientation. "The null hypothesis is 
that it is expected that the pebbles lie uniformly on 
either side with equal numbers dipping up - or down - 
glacier. Thus the Chi-square( d) tests are an attempt 
to gauge the departure from a pattern which shows no 
influence of being affected by preferred orientation or 
dip". (Andrews, 1965; Appendix A). If there are no 
horizontal pebbles, then the expected distribution of the 
dips would be 50/2 = 25, but if 2 horizontal pebbles are 
present, the expected value is 48/2 =24. In the case 
of the till deposit exposed at Site 4A, no stones are 
horizontal. There are 18 pebbles dipping up-glacier and 
32 pebbles dipping down-glacier. The Chi-square value 
is therefore:-

f18-25)2 + (32-25)2 = 98 = 3.92
25 25

With (N - 1) degrees of freedom the tabulated value at the 
95% confidence level is 3.84. As the calculated value 
exceeds the tabulated value the null hypothesis is 
rejected (i.e. there is a significant difference between 
the observed and expected distributions).
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