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Abstract

Interactions in mobile devices normally happen in an explicit manner, which means that they

are initiated by the users. Yet, users are typically unaware that they also interact implic-

itly with their devices. For instance, our hand pose changes naturally when we type text

messages. Whilst the touchscreen captures finger touches, hand movements during this in-

teraction however are unused. If this implicit hand movement is observed, it can be used

as additional information to support or to enhance the users text entry experience. This the-

sis investigates how implicit sensing can be used to improve existing, standard interaction

technique qualities. In particular, this thesis looks into enhancing front-of-device interaction

through back-of-device and hand movement implicit sensing.

We propose the investigation through machine learning techniques. We look into problems

on how sensor data via implicit sensing can be used to predict a certain aspect of an interac-

tion. For instance, one of the questions that this thesis attempts to answer is whether hand

movement during a touch targeting task correlates with the touch position. This is a com-

plex relationship to understand but can be best explained through machine learning. Using

machine learning as a tool, such correlation can be measured, quantified, understood and

used to make predictions on future touch position. Furthermore, this thesis also evaluates the

predictive power of the sensor data.

We show this through a number of studies. In Chapter 5 we show that probabilistic modelling

of sensor inputs and recorded touch locations can be used to predict the general area of future

touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit

sensing from general mobile interactions is user-specific. This can be used to identify users

implicitly. In Chapter 6, we also show that touch interaction errors can be detected from

sensor data. In our experiment, we show that there are sufficient distinguishable patterns

between normal interaction signals and signals that are strongly correlated with interaction

error. In all studies, we show that performance gain can be achieved by combining sensor

inputs.
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Chapter 1

Introduction

Interactions in mobile devices normally happen in an explicit manner, which means that they

are initiated by the users. We touch, we speak, we hold and we gaze at our devices in order

to interact. This requires a specific set of sensors to capture these interactions. Yet, users

are typically unaware that they also interact implicitly with their devices. For instance, our

hand pose changes naturally when we type in our text messages. Whilst capacitive sensors

of the touchscreen capture touch position, hand movement during this interaction is unused.

If this implicit movement is observed, it can be used as additional information to support or

to enhance the users’ text entry experience. This is the form of implicit interaction that this

thesis is based upon.

Modern commercial devices are equipped with a variety of sensors. Although these sen-

sors are specific to certain types of explicit interaction (e.g. microphone to sense voice,

accelerometer to sense device orientation), they also can be potentially used for implicit in-

teraction. The idea of leveraging existing sensors for implicit interaction is not new, in fact

most of implicit interaction techniques using mobile devices are based on the concept of

implicit sensing. However, the focus of this thesis is quite different; instead of using mobile

sensors to derive new implicit interaction techniques, this thesis investigates how implicit

sensing can used to improve existing, standard interaction technique qualities. In particular,

this thesis will look into enhancing front-of-device interaction through back-of-device and

hand movement implicit sensing.

This thesis approaches the investigation through machine learning techniques. It primarily

looks into problems on how sensor data via implicit sensing can be used to predict a certain

aspect of an interaction. For instance, one of the questions that this thesis attempts to answer

is whether hand movement during a touch targeting task correlates with the touch position.

This is a complex relationship to understand but can be best explained through machine

learning. Using machine learning as a tool, such correlation can be measured, understood

and used to make predictions on future touch position. Furthermore, this thesis also evaluates
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the predictive power of the sensor data.

This thesis will present a number of implicit interaction techniques to enhance the way the

user interacts with mobile devices. In particular, it will demonstrate how implicit sensing

enables prediction of touch contact position ahead of time. Besides that, implicit sensing

also can be embedded into standard touch interaction to identify users transparently. It also

will show that touch interaction errors can be inferred from observing patterns in mobile

sensors data. Moreover, this thesis also will show that the combination of multiple sensor

inputs could yield performance gains in predictions. These techniques can be beneficial for

mobile devices since a wide array of sensors are now a part of standard commercial devices.

We run a number studies to support our hypothesis. We show tha sensor inputs and recorded

touch locations can be modelled to predict the general area of future touches on touchscreen.

Furthermore, we show that data from implicit sensing from general mobile interactions is

user-specific. This can be used to identify users implicitly. We also show that touch inter-

action errors can be observed from sensor data. In our experiment, we show that there are

sufficient distinguishable patterns between normal interaction signals and signals that are

strongly correlated with interaction error. In all experiments, we show that performance gain

can be achieved by combining back-of-device and accelerometer.

1.1 Thesis Statement

The goal of this thesis is to examine the use of mobile sensors for implicit interaction to en-

hance standard mobile interaction. Due to the complex nature of interaction between human

and mobile device, we use machine learning techniques to learn and model this relationship.

Our assertion is that we can use machine learning to infer implicit behaviours which could

improve the explicit interaction itself.

1.2 List of Contributing Papers

The work described in this thesis has led to two conference papers1. These papers are as

follows:

[1] M.F. Noor, S.Rogers, J.Williamson. ”Detecting Swipe Errors on Touchscreens using

Grip Modulation”, in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems New York, New York, USA: ACM Press, May 2016.

1The work in the these papers was primarily carried out by the author. The exception is the designing

and developing the hardware prototypes, which was implemented by colleagues, Andrew Ramsay and Stephen

Hughes.
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[2] M. F. Mohd Noor, A. Ramsay, S. Hughes, S. Rogers, J. Williamson, and R. Murray-

Smith, ”28 Frames Later: Predicting Screen Touches from Back-of-Device Grip Changes”,

in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

New York, New York, USA: ACM Press, April 2014, pp. 2005 – 2008

Chapter 5 of this thesis is based on the first paper whereby Chapter 6 is based on the second

paper. Analyses given in this thesis are based on the expanded version of the work in the

papers.

1.3 Overview of Thesis and Research Contributions

The contributions of this thesis are:

• A hardware design and acquisation methods to capture salient information from back–

of–device (BoD) grip changes during touch interaction.

• A touch area prediction model based on Gaussian Processes which describes the non-

linear relationship between BoD sensor inputs and front-of-device touch locations.

• A detailed study on identifiying user implicitly from the way the device is grasped.

• A detailed examination on the use of BoD grip and hand motion changes as manifes-

tation of cognitive errors in swipe-based tasks.

The remainder of the thesis is organised as follows:

Background

Chapter 2 discusses the research literature which this thesis is built on. The chapter begins

with presenting important distinctions between explicit and implicit interactions and relates

it with other terms used closely in this area. Next, the main motivation behind implicit

interaction is given. This includes explanation of the problems with standard explicit existing

interaction is given where can be minimised using implicit interaction. Also given is several

implicit interaction approaches used in the literature to overcome the constraints imposed by

standard interaction.

Chapter 3 gives a detailed look on the proposed hardware design and sensor technologies

for mobile implicit interaction, which is used as a data collection tool in this thesis.

Chapter 4 introduces the machine learning (ML) techniques used in this thesis which in-

cludes data pre-processing and exploratory analysis techniques. Also given in this Chapter

is discussion on the approaches taken to evaluate prediction performance.
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Contributions

Chapter 5 presents the use Gaussian Process regression to model general touch area from

BoD and accelerometer sensor inputs. The results from this study show that touch locations

are correlated with sensor inputs up to several hundred milliseconds before touch.

Chapter 6 examines the use of grip and hand motion changes as an implicit input to recog-

nise swipe errors which can be detected accurately using Support Vector Machine (SVM)

and Random Forest (RF) classifiers.

Chapter 7 shows the application of implicit interaction for identification purposes. In par-

ticular, it explores identification method using implicit sensing of hand grip and hand motion

from two standard mobile interactions to identify users automatically. The results show that

there is sufficient user-specific information in each input modality.

Conclusions

Chapter 8 summarises the work and contributions, provides potential avenues for future

research and subsequently concludes this thesis.
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Chapter 2

Background

Summary

This chapter provides an overview of the relevant research literature related to this work.

This includes a review on explicit and implicit interactions and the relationship between

these two. Also given is the main motivation behind implicit interaction, focusing on the

standard interaction enhancements that can be achieved using implicit interaction. Several

use of implicit interaction to overcome constraints imposed by standard interaction are given

in the remainder of this chapter.

2.1 Introduction

This thesis presents approaches to predict interaction in mobile device using machine learn-

ing techniques. In particular, these are achieved through the use of implicit interaction at the

back of mobile device with the purpose to improve the quality of standard explicit interac-

tion. The implicit approach to interaction is not a new concept and has been well explored.

This chapter begins with a view on the problems with standard interaction and efforts to

improve it by focusing on implicit methods.

A thorough review of previous work on implicit interaction is given Section 2.2. This in-

cludes approaches, mobile sensing technology and development of hardware for implicit

interaction. Also given is the machine learning techniques adopted by these approaches.

Section 2.3 gives an overview of applications using implicit method for interaction. This

looks into three application domains where implicit interaction excels in enhancing standard

mobile interaction.
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2.2 Explicit and Implicit Interactions

The terms explicit [96] and implicit interaction [61, 60] which have been used widely in

the literature can be related to Buxton’s foreground/background interaction model. It de-

fines human-computer interactions into two general categories: (1) foreground interaction

which refers to the activities that are fore to human consciousness (intentional activities)

and (2) background interaction which refers to the tasks that occurs behind foreground ac-

tivities [14]. Therefore based on this model, foreground interaction can be considered as

explicit interaction since it involves deliberate action perform by the user to achieve his/her

goal (i.e. typing, clicking). On the other hand, implicit interaction can be regarded as back-

ground interaction, since the interaction happens in parallel during explicit interaction. For

instance, changes in grip strength (background/implicit) during typing (foreground/explicit).

In the context of mobile devices, Hinckley et al. view foreground interaction as deliberate

user activity or while attending the device whereas background interaction as unconscious

activity that occurs naturally. By using sensors, background interaction can be sensed and

used to complement foreground interaction [52].

For instance, almost all user interactions with mobile devices depend on the screen. This

follows the conventional desktop computer interaction model where a user interacts with the

main display using an input device such as a mouse, keyboard or touchscreen, requiring di-

rect attention from the user. However, passive or indirect interactions such as eye and hand

movements occur simultaneously when interacting with the display. Therefore, based on the

foreground/background interaction model established by Hinckley et al. [52], these indirect

interactions can be measured using front-facing camera (eye movement) and accelerometer

(hand movement) sensors which in turn can be used as an additional input to support touch-

screen interaction. In other words, implicit interaction foregrounds the human while putting

the technology in the background.

The distinction between explicit and implicit interactions can be determined by the level of

controlibility that the user possesses during an interaction. For instance, interaction using

keyboard, mouse or multi-touch touchscreen is considered as explicit interaction because the

user has the control over what needs to be done (i.e. typing, pressing, tapping). However

when the device senses user’s physiology information such as heart and breathing rates as

input command, this is considered as implicit interaction because the user has no control

over these attributes. Figure 2.1 shows the continuum of interaction methods, from explicit

to implicit.
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Figure 2.1: Continuum from explicit to implicit interaction.

2.2.1 Implicit Interaction in Mobile Devices

Unlike desktop computers, users use mobile devices in many different ways and environ-

ments. Users bring their mobile devices when they drive, when they go out running and

when they go to bed. These situations create different interaction contexts that requires dif-

ferent actions from the user. However, users do not have the luxury to interact with mobile

devices explicitly for all the time. Implicit interaction attempts to address this by learning

the context and adapting the interaction to suit the current task or situation. For example it

may be useful to activate a mobile device’s voice operated mode when driving and turning

off notification system at bedtime without having the user to do so. Therefore given an input

(i.e. moving speed), the device has the ability to understand what needs to be done (i.e. ac-

tivate voice operated mode). In particular, this assumes that the device has the knowledge of

a certain context and use this as an additional input to achieve the goal. In other words, im-

plicit interaction can be defined as an interaction that is based on two concepts: 1) perception

(context) and 2) interpretation (knowledge) [116].

Sensors are fundamental to implicit interaction. Almost every implicit technique in the lit-

erature is based around the concept of implicit sensing – that is using sensors as an implicit

input for interaction. Today, mobile devices are equipped with various of sensors and many

research in this area have leveraged these sensors to create new implicit interaction tech-

niques for mobile devices. For instance, phone’s accelerometer has been the popular choice

of input for many implicit interaction techniques based on movement and motion for in-

stance in personal health [99] and activity tracking [77]. Similarly, eye-gaze interaction

is achieved by leveraging phone’s front-facing camera [37, 62] whereas microphones have

been used to implicitly recognise speaker’s emotion [97]. Apart from leveraging built-in sen-
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sors, there are also techniques that adopt additional sensors to create new implicit interaction

techniques. Chang et al. [19], Cheng et al. [23] and Cheng et al. [24] for instance augmented

back and sides of a standard mobile device with capacitive sensors to enable hand grip-based

implicit interactions.

2.3 Applications of Implicit Interaction in Mobile De-

vices

In this section we review related techniques for implicit interaction in mobile devices that

can be found in the literature. In relation to this thesis, we focus the work on the implicit

interaction techniques in three application domains: 1) authentication 2) touch interaction

and 3) error detection. In addition, we also discuss about the benefits these techniques can

offer as well as their limitations.

2.3.1 Authentication

In general, implicit authentication in mobile devices attempts to authenticate users without

requiring the users to provide their identity proof such as PIN and password explicitly. Im-

plicit authentication is designed mainly to minimise memory challenges and cumbersome

time consuming verification procedures. There are a significant number of implicit authen-

tication mechanisms that have been proposed previously for smartphone that are centred

around the idea that all users behave differently. Based on this notion, much of the work

in this area attempts to design an authentication mechanism that functions through user be-

havioural indicators. The following sections give an overview on techniques proposed for

implicit method for authentication for mobile devices.

Gait

Identifying people from the way they walk was first introduced by Cutting and Kozlowski in

the the late 1970s [33]. Since then, researchers have attempted various techniques to iden-

tify people from the way they walk both visually and physically. Ailisto et al. [1] and Liu

et al. [81] for instance used an accelerometer attached to the users waist to identify people

from their gait pattern. This technique is considered practical for smartphones because most

of the modern smartphones have built-in accelerometers and it can be implemented with-

out additional hardware. However there are many factors that can alter gait pattern such as

footwear, ground surface and carrying load and therefore can significantly affect the recog-

nition results [41]. Besides that, gait recognition system requires user to walk in order for the
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system to authenticate. This can be a problem in a situation where the user has been seated

for a long time.

Keystroke

Another approach that has been proposed for implicit authentication is keystroke dynam-

ics. In general, this approach measures the keystroke latency or time span between two

keystrokes. Over years, researchers have enhanced this technique by adding several other

factors such as key hold time and error rates when performing the keystrokes [28, 90]. Zahid

et al. [150] in their work have considered the use of on-screen keyboard perform keystroke

dynamics analysis. Their system has to be trained with a minimum of 250 keystrokes in

order to achieve a low Equal Error Rate1 (ERR) of approximately 2%. Alternatively, Giuf-

frida et al. [42] used hand movement whereas Saevanee and Bhattarakosol [108] adopted

finger pressure from keystrokes to authenticate users. Both achieved EER of 0.08% and 1%

respectively. In another study, Angulo and Wästlund [2] proposed a keystroke authentication

system by enhancing the existing graphical pattern lock found in most Android smartphones

with biometrics. They considered two features; time taken to place the finger in the dot and

the speed to move the finger from one dot to another. Their approach managed to achieve

ERR of 10.39%. Albeit of the positive result, this technique is still considered partly implicit

since it requires the user to draw the pattern on the screen explicitly in order to unlock and

use the smartphone.

Location

The inclusion of a GPS sensor as standard in modern smartphones has motivated researchers

to explore and design an authentication mechanism that could learn from user whereabouts.

This approach generally assumes that users tend to visit same places every day, for instance

going to an office or a bus station. However, this kind of authentication may not be suitable

to be used on its own as users may travel or go to unfamiliar places. Instead Shi et al. [124]

proposed an authentication method based on Gaussian Mixture Model (GMM) trained using

multiple user’s behavioural features acquired from smartphone sensors, user biometric infor-

mation and smartphone applications usage. They demonstrated that by combining together

users location information with other features allows them to better distinguish a legitimate

user from an adversary.

1EER is a value where False Accept Rate (FAR) and False Reject Rate (FRR) are equal.
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File System and Network Access

An authentication method based on the file system access and network usage has been pro-

posed by Yazji et al. [148]. They investigated if a user can be identified from their network

activities and file access behaviour, using K-means clustering to construct a model of the file

system and network behaviour. They considered a client-server architecture in their approach

where detection of anomalous events is performed on the server side. While this approach is

able to distinguish between normal use and attack with an accuracy of approximately 90%, it

however requires between 80 MB to 25 GB of training data observed over two weeks. Apart

from that, they also reported that the system has a detection latency of five minutes which

may not be reasonable for security concerned applications. The authors propose to use this

kind of authentication in combination with other features.

Grasp

The Smart Gun project, used a piezo-resistive sensor sheet embedded in the grip of a proto-

type gun to measure the static pressure of the hand-grip when the gun is being held in order

to identify its owner [121]. They used Support Vector Machines (SVM) and Likelihood-

Ratio Classifiers (LRC), and reported their technique to have an Equal Error Rate (ERR)

average of 3.5% using LRC and 5.7% using SVM. While this result may not be sufficient for

guns, which are only ever used in life threatening situations, this technique could be adapted

to work with mobile devices where performance is less critical. Similarly, the use of grip

pressure sensor has shown to be able to differentiate between car drivers from the way they

grasp and grip the steering wheel [22].

2.3.2 Touch Interaction

Analogous to desktop computing, touch interaction is an explicit interaction method that

requires full engagement between user and the device. However, despite being the de-facto

interaction method in today’s mobile devices, it still possess some interaction issues. One of

the common problems is hand/finger occlusion – a situation where the touch target is blocked

by the user’s finger/hands which impairs the accuracy of touch. Implicit interaction has been

used to reduce occlusion problem. In general, this method is based around the idea of implicit

sensing using mobile device’s internal sensors such as accelerometer or additional sensors

such as capacitive sensor to sense the user’s unconscious actions that associated with touch

(i.e. hand grips, grasps, tremors). The following Sections discusses on implicit approaches

proposed to improve the quality of touch interaction using touchscreens.
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Pre-Touch

This method uses information sensed before the actual touch in order to estimate the actual

touch with the purpose to improve the quality of touch interaction. The pre-touch sens-

ing method in mobile device was first demonstrated in SmartPad where they used position

sensors based on capacitive sensing, embedded underneath the phone keypad to recognise

finger proximity before the user actually presses the key [104]. PreSense keypad is an ex-

tension of SmartPad using a similar sensing technique to recognise which button is about to

be pressed [103]. Both used the proximity information from the sensors to initiate content

previews on the screen prior to touch to help the user to decide before pressing the key.

The use of capacitive-based touchscreens in modern mobile devices in theory, offers a huge

prospect for pre-touch sensing. However, most modern touch-based devices use mutual-

capacitance touchscreens resulting in weaker capacitance signal for pre-touch sensing pur-

poses. Sony developed a capacitive touchscreen technology called Floating Touch2 that runs

both self-capacitance (stronger signal but only capable to sense only one finger) and mutual-

capacitance sensors at the same time to measure finger proximity from the touchscreen whilst

allowing multi-touch interaction. Besides Floating Touch, similar technology also is used by

Synaptics’ ClearPad3 and Fogale’s Sensation4 touchscreens.

The application of pre-touch sensing using capacitive touchscreen has been used in Air Hook

– an interface that estimates the distance of finger or stylus pen from the touchscreen [149].

This valuable information is then used to preload remote and local data before the user per-

forms touch actions, allowing the device to response faster. Ostberg and Matic on the other

hand used hover cursor interaction by leveraging ClearPad touchscreen in Samsung Galaxy

S4 to assist with small-target selection [93]. Their method produces fewer selection errors

when compared to standard touch target selection method. Hinckley et al. explored three

interaction design strategies that can be offered by pre-touch sensing [53]. Using a proto-

type mobile device equipped with Fogale’s Sensation touchscreen, they demonstrated how

pre-sensing can be used to create dynamic user interface (i.e. present appropriate interface

as fingers approaching the screen), as an additional information to support touch actions (i.e.

distinguish between flick and select) and as hybrid touch and hover gesture for menus.

Besides capacitive touchscreens, other input sensors such as 3-dimensional capacitive sen-

sors [142], infra-red (IR) sensors [131], proximity sensors [13, 73] and magnetic sensors [67]

have been used to acquire approximation of finger distance from the touchscreen/device.

Outside of mobile devices, pre-touch sensing also has been used in interactive tabletop sys-

tems [102, 25] and notebooks [27].

2http://developer.sonymobile.com/knowledge-base/technologies/

floating-touch/
3http://www.synaptics.com/products/touch-controllers
4http://www.fogale-sensation.com/technology

http://developer.sonymobile.com/knowledge-base/technologies/floating-touch/
http://developer.sonymobile.com/knowledge-base/technologies/floating-touch/
http://www.synaptics.com/products/touch-controllers
http://www.fogale-sensation.com/technology
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Back–of–Device

Back-of-device (BoD) is an interaction method that provides the possibility of extending

the small interaction space of mobile devices through the effective use of unused physical

surfaces at the back and around the device. This can be especially useful for small devices

where the selection of a target is extremely difficult [6]. BoD also can be very useful for

interactions when the device screen is not in the user’s sight. In the context of implicit

interaction, BoD has been used to complement standard touch interaction methods.

Unlike touch, interaction with BoD systems is normally initiated using the palm of the hand.

Therefore majority of the work on implicit BoD interaction uses information associated with

palm such as hand grip and grasp. For instance Chang et al. [19] created a mobile user inter-

face (UI) that takes hand grip as input. Through this UI, the phone application is launched

based on a particular grip pattern. In order to achieve this, they used 64 capacitive sensors

distributed at the back and sides of a mobile phone to capture hand grip patterns. Naive

Bayes (NB) and support vector machine (SVM) classifiers were used to recognise grip pat-

terns associated with 5 common mobile applications: phone dialler, text messaging, camera,

video and game applications. Their recognition system was able to achieve average accuracy

of 79% (NB) and 96% (SVM) in all applications.

Although the built-in accelerometer has been used to automate device screen orientation, in

some situations, such as lying on one side, users may want to keep current viewing orienta-

tion regardless of device orientation. In order to allow finer control on screen rotation, Cheng

et al. [23] proposed a screen rotation method based on hand grasp. Their intuition is based on

the fact that users grasp the device differently in protrait and landscape orientations when ly-

ing on one side. Similar to technique used in grip-based UI [19], grasp data was acquired via

44 capacitive sensors laid on the back and sides of a phone protoype. Recognition of portrait

and landscape grasps was done using SVM classifiers which they reported to achieve classi-

fication accuracy of 75% for portrait, 66% for left-landscape and 93.3% for right-landscape.

Another use of grasp input is for soft keyboard positioning and layout adjustments. Through

this technique, grasp is used to determine position and layout by sensing the way the device

is being grasped. For instance grasping with two hands may require split keyboard layout

to better suit typing using thumbs. In this work Cheng et al. [24] used 46 capacitive sensors

placed at both long edges of a protoype tablet to capture grasp patterns and compared typing

performance between manual and automatic adjustments of the keyboard. Their method

shows improvement in typing speed from 24.8 to 26.6 word per minute (WPM).

Bar of Soap on the other hand is a rectangular object developed by Taylor and Bove Jr. [132]

to explore the use of an object as grasp-based user interface. The object which measures

11.5 × 7.6 × 3.3 cm uses 72 capacitive sensors placed around the box to sense grasp. This

study is similar to grip-based UI in [19], however rather than focusing just on grasps for
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mobile phone applications, Bar of Soap explores other grasps of which users have previous

experiences such as the rubric cube. Ball of Soap is a similar grasp sensitive object based on

a small rhombicosidodecahedron with 62-sided Archimedean solid. The grasp recognition

system is evaluated using two grasp manipulation studies: 1) rubric cube (Bar of Soap) and

2) pitch selection (Ball of Soap). They used six classifiers namely template matching, neural

networks, K-nearest beighbours, parzen windows, Bayes and general linear discriminants

(GLD). Their system was able to recognise individual user’s grasp with over 90% accuracy,

indicating that grasp has substantial information for recognition.

2.3.3 Error Detection

Perhaps, the biggest sources of errors in human computer interaction are indeed the users

themselves [101]. There are a number of factors associated with user errors such as informa-

tion overload, interface complexity as well as other cognitive factors. Reason [101] defined

two types of error in HCI: 1) slip 2) mistake. Slip is when the action made is not what was

intended whereby mistake is when the action is not appropriate. For instance using a dialler

application to text someone is called a mistake, however calling or texting a wrong person

is called a slip. Both types of error can happen during the course of interaction however

according to Sternberg, slips are more prone to happen if a routine is deviated [126],

Detecting interaction errors has been of great interest to the HCI community. There is abun-

dant empirical literature exploring methods to recognise and detect human errors from in-

teraction [136, 137, 79, 34]. This is mostly based around the idea of observing a specific

indicator that is highly correlated with interaction errors. Typically, this indicator is the re-

sult of a natural response (interaction) which is unknown (implicit) to the users. Examples

of response being used are brain signal, breathing and heart rates. Studies have shown that

errors can recognised by observing these indicators through the use of physiological as well

as non-physiological sensors. The following sections give an overview on the approaches

using both type of sensors.

Physiological Approach

Most established approaches to recognise errors in HCI are achieved through brain computer

interface (BCI) [89]. When people make errors, there is a characteristic signal observable

in EEG – the Error-related Negativity (ErrN). ErrN is a pattern that appears in the ongoing

EEG signals when users have feedback about their response accuracy [54]. It is also known

to appear when users are confused or unsure about their actions [115] (i.e. without explicit

correct/incorrect feedback).
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In HCI, ErrN signals have been shown to be useful in detecting errors in spelling [34, 87,

21]. Besides BCI spelling applications, ErrN has also been used to detect errors in diverse

interactive tasks [136] [137]. These studies used a commercially available EEG headset to

capture ErrN signals triggered from Flanker, button selection and pointing tasks. Using a

logistic regression classifier, ErrN signals were classified with an accuracy of about 70%,

65%, 80% in Flanker, button selection and pointing tasks respectively. EEG-based BCI has

also been used to detect ErrN during tactile human-machine interaction [79].

Various attempts have been made to bring BCI to mobile devices. NeuroPhone for instance

is a mobile phone that allows user to interact with mobile application using P300 neuro

signals from the EEG headset [15]. ? on the other hand proposed a software platform for

EEG oriented applications. Although EEG offers extra dimensionality of information, they

however required end-user to wear additional peripheral which makes it impractical in almost

any mobile context. Similarly, wireless EEG headband has been used to interact with the

mobile phone dialing application [140]. Despite potential use in initiating interaction using

the brain, no work has been done to study the presence of ErrN signals when interacting

directly with a mobile phone.

Whilst using brain waves to detect error is well established, it is not a practical approach

for most interactions. There is less work on physiological signals and body channels which

might produce similar signals when a mistake is made (other than measurements such as

GSR or heart rate modulations, which tend to be too slow to identify individual errors in an

interaction [122]).

Non–Physiological Approach

Outside of BCI, there is less research on physiological indicators of error in human com-

puter interaction, particularly in mobile contexts. There are sophisticated auto-correct mech-

anism which detect and correct typing mistakes on mobile device through various techniques

such as keypress timings [29], touch position distributions [44] and geometric pattern match-

ing [75]. Weir et al. on the other hand have used touch pressure as an uncertainty indicator

before correcting the typing error [141]. Although these approaches can reduce typing time

and error levels they can also be irritating [85].

Inertial sensors such as accelerometers and gyroscopes have been fundamental to mobile

human activity recognition systems [100]. There have been attempts to study unusual or

anomalous human dynamics from sensor data [16] to detect of unexpected events or ac-

cidents [80, 134, 4], although these focus on large scale events (falling over) rather than

micro-movements related to touch screen gesturing.



2.4. Conclusion 15

2.4 Conclusion

This chapter has discussed the important distinction between explicit and implicit interac-

tions. This includes the role of implicit interaction in mobile devices. A discussion on

sensor-based approach to implicit interaction techniques has been given. Finally, literature

related to the work that will be presented in the rest of this thesis has been reviewed, with par-

ticular focus on three application domains – where a number of examples from the literature

were presented.
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Chapter 3

Hardware and Experimental Tools

Summary

In this chapter, we give a review of the related work found in the literature that employ

motion and capacitive sensing. We provide a brief discussion on the decision of using motion

and back-of-device (BoD) capacitive sensing in our work. Finally, we provide technical

specifications of our hardware prototypes, experimental user study tools and BoD sensor

design at the end of this chapter.

3.1 Introduction

This thesis is based on studies on inferring interactions from two input modalities: 1) hand

motion and 2) hand grip. In general, this involves modelling the data acquired from the sen-

sors to make inferences from it. Acquiring hand motion data from a mobile device is a very

straightforward procedure since majority of mobile devices today have built-in accelerom-

eter and can be easily accessed via Application Programming Interface (API) provided by

the mobile operating system (OS) such as Android and IOS. Although there are many varia-

tions of accelerometer used in mobile devices, these sensors typically measure acceleration

along three orthogonal axes (x, y and z). Depends on the application context, accelerome-

ter readings can be used as either 1) measurement of velocity and position, 2) 3-dimensional

orientation sensor or 3) vibration sensor. In this chapter we focus on the use of accelerometer

as a 3-dimensional orientation sensor to capture hand motion.

Accelerometer has been widely used to study motion-based interaction with mobile devices.

Prior to using mobile phone internal accelerometer, researchers relied on the external ac-

celerometers to measure hand motions particularly related to gesture. For example, SoapBox

is a wireless sensor device equipped with accelerometers used to capture hand motion ges-

tures for operating video cassette recorder (VCR), lighting system and 3D software appli-
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cation using hand gestures [65]. Similarly, to explore the variability and dynamics of hand

motion gestures, Williamson and Murray-Smith used an external sensor pack mounted on

the hand [143]. Apart from hand gestures, external accelerometer also is a popular sensor

for studying whole body interaction. For instance external accelerometers have been used to

recognise human daily activities such as walking, running and standing [100, 5].

The inclusion of accelerometer in mobile phones has accelerated many research efforts per-

taining mobile interactions. Although the primary use of accelerometer is to sense device

orientation, researchers have explored other potential uses of accelerometer such as for iden-

tification [57], gesture-based interaction [26] which can be used as input for game [59].

Fitness-based applications such as Google Fit1 and Strava2 leverage built-in accelerome-

ter to track and recognise human activities. In health, accelerometer in mobile phone has

been used to monitor cardiac outpatients [139] and many other home-based rehabilitation

programmes [71, 138, 95]. Beyond mobile phones, accelerometer is an established input

modality in wearable devices such as smartwatches and activity trackers. From this, many

new interaction methods based on hand movements have been explored such as finger-based

gestures [147, 153], office-space gestures [9] as well as for detecting anomalous activity [48].

Although most modern mobile devices come with multitude of sensors, none of these sensors

are capable to sense hand grip. In nearly every case, users hold their mobile devices using

one of the following basic grips: 1) one-handed use, 2) cradling with two hands and 3) two-

handed use [127]. As shown in Figure 3.1, in all positions, hand will be gripping the back and

sides of the phone. Based on these positions, it is sensible to place sensors at these locations

in order to sense grips. In terms of sensing technologies, researchers have explored various

sensors based on capacitive [70, 23, 24, 132, 112, 144], force/pressure [121, 22, 49, 76],

optical [94, 145], light/infrared [47] and proximity [13] technologies to acquire grip related

information. However, capacitive technology is expected to be more adaptable on mobile

devices compared to other sensing technologies since it is a proven sensing technology (core

sensing method on touchscreens) and relatively low in cost. Even though grip sensing is yet

to be implemented in mobile devices, several phone manufacturers have begun to include

BoD sensing as an additional input to complement standard touch interaction. For instance

Oppo NI3 use a touch sensitive panel at the back of the device to allow users to interact using

index finger – this could help users to navigate single handed without the need to change

their grip position (i.e. from single handed to cradling).

As mentioned earlier, sensor location is important in order to capture salient information

pertaining hand grip. Although some devices (i.e. DG800 and Oppo N1) provide such sens-

ing capability, they are purpose-specific and do not provide enough coverage to sense whole

1http://fit.google.com/
2http://www.strava.com
3http://www.oppo.com/en/smartphone-n1

http://fit.google.com/
http://www.strava.com
http://www.oppo.com/en/smartphone-n1
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(a) One-handed (b) Cradled (c) Two-handed

Figure 3.1: Typical mobile device grip positions [127].

hand grip. Due to this, we designed a capacitive sensing system that can be attached at the

back and sides of a mobile phone. By placing capacitive sensors at these locations, we could

sense a wider grip contact from the hand, thus allowing us to observe more grip variations

which is essential in all of our experiments. For this thesis, we built two prototype systems

with BoD capacitive sensing capabilities based on the actual smartphones. Section 3.2 gives

an in-depth specification on how we achieved these systems.

Capacitive-based sensing is a popular technology in the HCI community, particularly when

investigating grip and grasp based interactions. For instance Kim et al. used capacitive elec-

trodes at the back and sides of their prototype device to acquire hand grip contacts, learn

the patterns and subsequently map them to the intended mobile applications [70]. Simi-

larly, Cheng et al. attached capacitive sensors at the back and sides of an iPod touch to sense

and recognise grasp to automate screen orientation [23]. Same sensing method also has been

applied on a tablet in order to make the layout and position of the virtual keyboard changes

according to the way the tablet is grasped [24].

Besides augmenting standard mobile devices with capacitive sensors, researchers also used

dedicated prototypes developed specifically for grasp-based sensing system. Bar of Soap [133]

for example, is a rectangular box with capacitive sensors covering the back and sides of the

box to sense grasps. Using this prototype, Taylor and Bove demonstrate how grasps can be

used to differentiate different between camera, phone and remote control poses [133]. In

the follow-up study, Taylor and Bove Jr. used Ball of Soap – another prototype with similar

functionalities as Bar of Soap but in spherical form factor to measure the way users hold and

manipulate objects [132]. This concept is similar to Tango – a graspable input prototype for

3D environments. However, unlike Bar of Soap, Tango measures hand grip contact pressure

instead of capacitive contact of hand [76].

Besides capacitive sensing, researchers also have successful used force/pressure sensing

technology to acquire hand grip information. GripUI for example is a mobile user inter-

face that uses grip pressure to interact [49]. To acquire pressure from grip, Higuchi and
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Okada used pressure sensors placed at both sides and top half at the back of the phone pro-

totype. As mentioned previously, Tango [76] is a ball-like prototype that uses hundreds

of pressure sensors to track grasps with the focus to recognise hand shapes. Tango offers a

free-form whole hand interaction which was previously achievable only through glove-based

approaches [130]. Force and pressure sensors also have been used as an input to biometric

system. For instance, Shang and Veldhuis used piezo-resistive elements underneath the pistol

grip to acquire grip patterns for identification purposes [121]. Apart from gun, similar grip-

pressure based identification technique also can be used to identify car driver. To acquire

driver’s grip, the pressure sensors were embedded in the steering wheel [22].

The purpose of this chapter is to give technical specification of hardware prototypes including

sensing technologies that we used in our work. As stated earlier, motion and capacitive

sensing technologies were chosen due to their popularity and have been actively researched

within HCI community. Moreover, BoD capacitive sensing also has been adopted by several

phone manufacturers and is expected to be included in more mobile devices in the near

future. We developed two prototypes with BoD capacitive sensing capability to capture hand

grip information. For hand motion, we leverage the built-in accelerometer. The following

section discusses about our first prototype system including work that employs this system.

Our second prototype is discussed in Section 3.3.

3.2 Prototype 1

Our first prototype system consists of a Sony Xperia Mini Pro (SK7i) smartphone, SHAKE

SK7 sensor pack, an external array of capacitive sensors on a flexible printed circuit board

(PCB) and a plastic housing. The role of the smartphone in this system is to log data from

the external capacitive sensors. This is achieved via bluetooth connection from SHAKE SK7

which acts as an interface to the capacitive sensors. For this prototype, we used 24 capacitive

sensors pads positioned at the back and sides when attached to the plastic housing. As

shown in [127], users tend to apply grip at this location when interacting with mobile phone.

Figure 3.2 (a) shows each component of the prototype. When assembling the whole system,

the SHAKE SK7 is kept at the bottom of the housing (see Figure 3.2 (b))

The external capacitive sensors have 8 bit dynamic range – each sensor gives proximity

values between 0 (not touched) and 255 (touched). The capacitive sensors are quite sensitive

to the way the prototype is held and also due to the gaps between the sensor pads and surface

of the plastic housing. To overcome this, we calibrated each sensor by correcting the offset

error prior to every experiment. The total size of this prototype is 65mm (H) x 150mm (L) x

25mm (D) and weighs approximately 145 grams. As can be seen in Figure 3.2 (b), the size

of this prototype is slightly larger than the average sized modern smartphones, however we
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(a)

(b)

Figure 3.2: (a) Individual component of Prototype 1 (b) Prototype 1 when fully-assembled

(SHAKE SK7 is hidden underneath the front cover).

feel it still relevant in our study since it has the ’bar’ form factor of a mobile phone.

3.2.1 Sony Xperia Mini Pro

The Sony Xperia Mini Pro is a smartphone running Android version 4.0.4 (see Figure 3.3(a)).

The dimension of this phone is 92mm (H) x 53mm (W) x 18mm (D) and weighs 136 grams.

The phone diminutive size allows it to be fit inside the plastic housing easily. It has 76mm

capacitive touchscreen display with resolution of 320 × 480 pixels. Internally, the phone

is powered by 1GHz single-core processor with with 512 MB of RAM. The phone uses

BMA250 accelerometer, a 3-axis accelerometer manufactured by Bosch Sensortec. It has

acceleration range of ±2g with 12-bit dynamic range.

An Android data logging application (Figure 3.3 (b)) was developed on the phone to log data

from both external capacitive sensors and phone’s internal accelerometer (see Figure 3.3(b)).
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(a) Sony Xperia Mini Pro (b) Logging application

Figure 3.3: (a) Sony Xperia Mini Pro (b) Screenshot of data logging application.

Data from the capacitive sensors were transmitted from SHAKE SK7 via bluetooth con-

nection, whilst data from the accelerometer was acquired directly from the Android API.

In terms of sampling rate, the SHAKE SK7 is capable to stream data with frequency up to

256Hz whilst for the Android, we request the values from the API using the highest possi-

ble sample rate. In order to synchronise data streams from both sensors (accelerometer and

SHAKE SK7), we fixed the sampling rate of the logging to 100Hz by writing values from

both sensors to a file in comma separated values format (CSV) into phone’s internal storage.

3.2.2 SHAKE SK7

Figure 3.4: SHAKE SK7 sensor pack

The SHAKE SK7 is an external sensor pack developed by SAMH Engineering Services

that comes with various sensors, including accelerometer, gyroscope, magnetometer, digital

compass and vibro-tactile motor. Shake SK7 is a valuable tool used by researchers in the

areas of HCI and has been used in many work involving motion gestures [143], touchscreen
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interaction [8] and in understanding human personality [110]. The sensor pack dimension is

43mm (L) x 32mm (H) x 18mm (D) and weighs 22 grams. SHAKE SK7 can communicate

through bluetooth or emulated serial communication (COM) port via universal serial bus

(USB).

In this thesis, we used SHAKE SK7 as an interface and controller to the external capacitive

sensors. This is done by connecting the external capacitive sensors to a 4 pole 2.5mm socket

(auxiliary socket) to allow SHAKE SK7 to communicate with the sensors using the I2C

protocol. We used bluetooth to communicate and transmit data from SHAKE SK7 to the

logging application.

3.3 Prototype 2

Our second prototype is based on Nokia N9 smartphone. The device has dimension of

61.2mm (W) x 116.45mm (H) x 12.1mm (D) and weighs 135 grams. It has 99.1mm capac-

itive touch display with 854 x 480 pixel resolution. The phone runs MeeGO 1.2 operating

system and is powered by a single-core 1GHz processor with 1 GB of RAM. It uses a 3-axis

LIS3LV02DL STMicroelectronics accelerometer that has acceleration range of ±2g with

12-bit dynamic range. The sensor has been pre-configured to sample data at 160Hz.

We added capacitive sensors around the device in order to sense hand grip. This is achieved

by using an external array of 24 capacitive pads on a flexible PCB wrapped around the

N9. Figure3.5 (b) shows the capacitive pads arrangement. This asymmetrical layout of sen-

sor pads was chosen since we believe it could capture grip contacts from typical grip posi-

tions [127] effectively. As shown in Chapter 5, 6 and 7, this layout has shown to give good

results in the predictive tasks. We expect similar results if a symmetrical layout version of

ours is used. However different sensor layouts such as used in [70, 144] and [24] may have

consequence on the results.

Unlike the approach we used in the first prototype, the external sensors are wired directly

to the phone through the internal I2C bus interface provided by the N9 (see Figure 3.5 (a)).

As shown in Figure 3.5 (c), we fit a silicon case to the N9 to protect the sensor pads from

grime/dirt which could affect the contact capacitance signals. The modified N9 with around

device capacitive sensing adds an approximately 1mm of thickness to the original dimension

however this does not affect the original form factor of the phone.

The external capacitive sensors use 16-bit data representation – each sensor gives contact

capacitance value between 0 (no contact) to 65535 (full contact). In comparison to our first

prototype, this range provides a much finer contact measurement and can also be used to

represent grip pressure. Each sensor is calibrated prior to every experiment by correcting the

offset error.
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Figure 3.5: Nokia N9 with BoD sensing.

The acquisition of acceleration data from the built-in accelerometer is done by reading di-

rectly sensor values from the operating system file (a file handle to I2C system call) via N9

Linux environment, which MeeGo is based on. The use of Linux as system backend in the

N9 allows us to have full control over the operating system and access to various system

files. To acquire capacitive data, we wrote a custom Linux kernel module to allow the N9

to communicate with the external sensors through the I2C bus. This creates a file handle to

which the data obtained from the sensors is stored. We used a Python logging application

which we wrote on the N9 to read the data from both sensor system files. This process was

done at 100Hz. The application then writes the data to a file (CSV format) and stores the file

in the phone internal storage.

3.4 Capacitive Sensing Technology

Our BoD sensors are based on capacitive sensing technology that measures capacitance

changes from single electrode sensors. The sensor electrode on the PCB comprises one

plate of a virtual capacitor. The other plate of the capacitor is the user’s finger, which is

grounded with respect to the sensor input. This sensing method also is known as transmis-

sion or loaded method. As shown in Figure 3.6, the excitation source charges the plate of

the capacitor and when human body such as finger (or other grounded object), comes close

to the sensor electrode, the virtual capacitor is formed, with the user’s finger acting as the

second capacitor plate.

When a finger approaches the sensor, the total capacitance associated with the sensor changes.

Therefore in order to register a sensor activation, the total capacitance needs to exceed a cer-
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Figure 3.6: BoD capacitive touch sensing method. (Adapted by author from Analog Devices

AD7147 data sheet [117]).

tain of threshold. Since it uses threshold for activation, this sensing method also can be ef-

fectively used to measure non-contact proximity, for instance when the finger is approaching

the sensor (pre–touch sensing). Moreover, the sensor is grounded object activated, therefore

it can be concealed under any non-conductive material (e.g. plastic housing, silicon case),

making it a practical sensing solution for our work.

Host 
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Figure 3.7: BoD capacitive sensing solution.

In our setup, we use Analog Devices AD7417 capacitance–to–digital converters (CDC)

which contains the excitation source and a 16–bit ADC while the electrode is constructed

on a flexible PCB as an external capacitance sensor. The AD7417 can interface up to 12

capacitance sensors, therefore we used 2 × AD7417 to interface 24 BoD sensors in our pro-

totypes. AD7417 uses I2C interface to communicate with the SHAKE SK7 and N9. Our

BoD sensing solution is illustrated in Figure 3.7.
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3.5 Conclusion

In this chapter, description and technical specifications of both hardware prototypes used

through out this thesis are given. We state the factors that influence our decision to use

motion and capacitive sensing technology for implicit sensing. We focus on the technical

aspect of the hardware by showing how back and around device grip sensing is added to our

prototypes and techniques to acquire data from these sensors for logging purposes. Although

external capacitive sensors were used in our prototypes, this does not affect the original form

factor of the mobile device, thus making our prototypes still relevant in all the work presented

in this thesis.
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Chapter 4

Prediction Using Machine Learning

Summary Machine learning is one of the most important components in this thesis. In this

chapter, we provide an in-depth discussion of machine learning techniques we used to model

implicit interaction from mobile sensor data. We also discuss about exploratory data analysis

we use to inform model choices. We discuss our core prediction techniques: classification

and regression. Model selection and evaluation techniques, including performance metrics

are given at the end of this chapter.

4.1 Introduction

This chapter provides references to the analysis techniques we use throughout this thesis.

We use machine learning techniques to explore patterns in the sensor data, model them and

subsequently make predictions using sensor data.

Data exploration is a preliminary analysis that seeks to understand about the sensor data.

Depends on the goal, there are many exploratory analysis techniques can be used for this

purpose. In this chapter we discuss about Principal Component Analysis (PCA) whose goal

is to uncover important structures in the data and Canonical Correlation Analysis (CCA)

where we are interested to understand relationship between two multivariate datasets.

Our machine learning framework involves four main components: 1) input feature 2) training

3) algorithm and 4) evaluation. This is illustrated in Figure 4.1. The first component involves

identifying characteristics from the data that best represent the problems to be modelled.

The second component involves the process of establishing a model by learning from a set

of examples, which makes our learning tasks supervised, in that it uses labeled values or

measurements to learn patterns in the data. The third component is selecting supervised

learning algorithm to model the data. Depends on the task, this can be either classification or
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Figure 4.1: Machine learning main components.

regression problem, where the output takes discrete class labels in the former and the latter

takes continuous values. We use both types of learning algorithm in this thesis.

Given the models, the next step is to make predictions on new and unseen data and evaluate

how good is the model in predicting the unseen data (test data). This makes the final compo-

nent of our framework. There are many performance measures can be used to evaluate the

model. A detailed discussion about performance measures we use to evaluate the models is

given in Section 4.6.

This chapter is organised as follows:

• Section 4.2 discusses the initial exploratory data analysis we took to gain insight into

patterns that exist in the data.

• Section 4.3 and 4.4 describe two supervised methods we used to make predictions.

Evaluation methods for model selection.

• Section 4.6 gives a review on all evaluation metrics we used to assess prediction per-

formance in this thesis.
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4.2 Exploratory Data Analysis

We perform exploratory data analysis (EDA) as the first step in our analysis in all of the

work. EDA allows us to build an intuition for data which can be used as the basis for

choosing machine learning techniques. This pragmatic approach was promoted by Tukey

in 1977 [135]. EDA involves extracting important statistics from the dataset and visualising

them. EDA helps to uncover and expose important underlying structures and could highlight

outliers in the dataset.

In order to identify patterns and detect potential outliers in data we perform linear trans-

formation using Principal Component Analysis (PCA). This transformation is described in

Section 4.2.1. In Section 4.2.2, we show the techqnique to investigate the relationship be-

tween two multivariate input variables using Canonical Correlation Analysis (CCA). Finally

in Section 4.2.3 we use Mutual Information Analysis as a basis to perform feature input

selection.

4.2.1 Principal Component Analysis

Patterns in two and three dimensional data can be easily visualised by plotting them on

a graph in their respective axis. However as the number of dimension increases, plotting

them using their original axes is no longer possible. PCA is a technique to identify patterns

that exist in data by highlighting their differences and similarities by viewing them from a

particularly good angle. PCA can be a powerful tool for analysing high dimensional data.

In this thesis, we mainly deal with high dimensional datasets and thus PCA is a sensible

technique to analyse and reveal the underlying patterns. Although there are other techniques

that can be used to reduce dimensionality (e.g Factor Analysis), PCA is chosen because

we are only interested in reducing dimensions of the data for visualisation and inspection

purposes. PCA is used in Chapter 5 and 7 to explore the data in two-dimensional space.

PCA transforms data by performing linear projection of data into a lower-dimensional space [10].

Linear projection here means that each projected dimension is a linear combination (sum of

vectors multiplied by a scalar) of the original dimensions. The linear combination xn can be

defined as:

xn = w⊺yn

Therefore if we are interested in projecting yn from M to D dimensions, there will be

M -dimensional of D vectors wd and the d-th element of the projection xnd (where xn =

[xn1, xn2, . . . , xnD]
⊺) is therefore:

xnd = w
⊺
dyn
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The goal of PCA is to choose wd such that the variance in xnd is maximised. The first princi-

pal component w1 is the projection that captures the most variance. The second component

w2 captures the most variance but is orthogonal to the first, that is w
⊺
1w2 = 0:
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Figure 4.2: Dataset X in the original (a) standardised (b) and transformed (c) space.

Covariance for X can be defined as follows:

CX =
1

N
X⊺X (4.1)

The next step is to find eigenvector u and eigenvalue w pairs from covariance matrix in 4.1.

The eigenvectors are then ordered according to its respective eigenvalues, from the highest to

lowest. The eigenvalues show how much variance can be explained by its associated eigen-

vector and therefore, the highest eigenvalue indicates the highest variance in X observed in

the direction of its eigenvector. Eigenvector with the highest eigenvalue is called principal

component which represents the projection axes of the maximum variance.

Figure 4.2 (b) shows the first w1 (dashed) and second w2 (dotted) principal components

for X along their respective variance. Accordingly, variance explained by each component

also can be expressed in terms percentage of the total variance explained by each principal

component:

σ2

P =
λm

∑M

m=1
λm

(4.2)

σ2
P also is called proportion of variance explained, which tells how much of variance is

accounted relative to overall variance captured by each component.
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To transform the data into new axes, simply multiply the data with the eigenvectors: X
′

=

w⊺X⊺. Figure 4.2 (c) shows the projection of X into new axes, namely the first and second

principal components.

4.2.2 Canonical Correlation Analysis

Correlation analysis can be used to quantify the relationship between two univariate datasets

(e.g. measuring relationship between body height and weight). On the other hand, multi-

ple correlation analysis is normally used when the analysis involved of several independent

variables and one dependent variable (e.g. relationship between temperature and humidity

against mould growth rate). However when the analysis involves several independent vari-

ables and several dependent variables, multiple correlation analysis can no longer be used

to measure the relationship. In order to measure such relationship, canonical correlation

analysis (CCA) can be used.

CCA was developed by Hotelling [55] and has been widely used in many areas such as in

economics [88] and medical studies [118]. Computation of CCA leads to the extraction

of more than one set of linear combination of weighted sums (canonical roots) from each

dataset. Specifically the number of canonical root will be equal the minimum number of

dimension in either dataset. For instance if the dimension of the first and second datasets

are 5 and 3, then the maximum number of canonical roots that can be extracted will be 3.

When extracting more than one canonical root, each successive canonical root will explain

additional variability of the two datasets, which means that they are uncorrelated with the

previous extracted canonical root and decreasing in variability.

Computing Canonical Correlation

In order to measure the correlation, CCA finds new derived variables called canonical vari-

ates from each dataset and find the correlation such that it maximises the linear correlation

between the two. Each canonical variate is formed through a linear combinations of weighted

sum score of the variables. For example, consider datasets X and Y with M and N variables

respectively.

X =











x1

x2

...

xM











Y =











y1
y2
...

yN











where M ≤ N . Let W and V be the canonical variates of x and y respectively. Therefore

the weighted sum scores of W :
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W1 = a11x1 + a12x2 + · · ·+ a1MxM

W2 = a21x1 + a22x2 + · · ·+ a2MxM

...

and V :

V1 = b11y1 + b12y2 + · · ·+ b1NyN

V2 = b21y1 + b22y2 + · · ·+ b2NyN

...

can be defined as (Wi, Vi) as the ith canonical variate pair. Since M ≤ N , there are M

canonical variate pair that can be computed. a and b correspond to the weighted sum coeffi-

cients. The correlation between (Wi and Vi) can be determined by calculating their respective

variance:

σ2

Wi
=

M
∑

k=1

M
∑

l=1

aikailσxkxl
(4.3)

σ2

Vi
=

M
∑

k=1

N
∑

l=1

bikbilσykyl (4.4)

and find the cross-covariance between Wi and Vi as:

σWiVi
=

M
∑

k=1

N
∑

l=1

aikbilσykyl (4.5)

The specific correlation between Wi and V i is called canonical correlation which can be

calculated by taking their covariance and divide it by the square root of the product of the

variances:

ρi =
σWiV i

√

σ2
Wi

√

σ2
Vi

(4.6)

The goal of CCA therefore is to find linear combinations that maximises ρ. For the first pair

(W1, V1) the coefficients a11, a12, · · · , a1M and b11, b12, · · · , b1N need to selected such that

ρ1 is maximised, subject to the constraint that variances of W1 and V1 are equal to 1.

CCA in general requires that all of the remaining correlations to be zero:
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σ2

Wi
= σ2

Vi
= 1

σ2

W1Wi
= σ2

V1Vi
= 0

σ2

W2Wi
= σ2

V2Vi
= 0

...

σ2

Wi−1Wi
= σ2

Vi−1Vi
= 0

In other words, the first pair of canonical variate accounts the highest variability between x

and y and each successive pair will explain a unique additional proportion of variability.

4.2.3 Mutual Information Analysis

The next exploratory technique looks into relationship between two variables by measuring

how much of information is communicated on average, in one random variable about another.

For instance, let random variables X represents a roll of fair die and Y represents the parity

of the outcome of the roll (0 = even, 1 = odd). In this example, the value of X could

tell about Y and vice versa. Therefore here X and Y are said to share mutual information.

However if X is the roll of a die and Z is the roll of another die, then X and Z do not share

mutual information because X does not contain any information about Z and vice versa. X

and Z are statistically independent.

This is the basis to mutual information analysis (MIA) which is based on information theory.

Entropy is a measurement of predictability or uncertainty of a random variable. For example,

if random variable X represents the outcome of tossing a coin (1 = head, 2 = tail) and

random variable Y represents the number that comes up from rolling a die, X is said to have

greater entropy than Y because predicting head or tail is much easier than predicting the

outcome of rolling die which takes values 1 through 6.

If X takes values from set X = {x1, x2, · · · , xM} and is defined by probability P (X), then

entropy of random variable X can be formally defined as:

H(X) = −
∑

x∈X

P (x) log2 P (x) (4.7)

When dealing with a pair of random variables simultaneously, the entropy can be obtained

from the joint probability distribution of the random variables. For instance, if two random

variables X and Y take values from set X = {x1, x2, · · · , xM} and Y = {y1, y2, · · · , yN}

respectively, and their joint probability distribution is defined as P (X, Y ), therefore the joint

entropy of X and Y is:
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H(X, Y ) = −
∑

x∈X

∑

y∈Y

P (x, y) log2 P (x, y) (4.8)

and the average entropy of Y conditional on the value of X , averaged over all values in set

X is:

H(Y |X) = −
∑

x∈X

P (x) H(Y |X = x) (4.9)

Based on these two entropies, the chain rule for joint entropy defines that the total pre-

dictability about the value of X and Y is equal to the predictability about X combined with

predictability of Y (average) given X . Therefore joint entropy of X and Y can be rewritten

as:

H(X, Y ) = H(X) +H(Y |X) (4.10)

Based on the joint entropy equation (4.8), mutual information I(X;Y ) between X and Y can

be defined as the relative entropy between joint distribution P (X, Y ) and product distribution

of X and Y :

I(X;Y ) = −
∑

x∈X

∑

y∈Y

P (x, y) log2
P (x, y)

P (x)P (y)
(4.11)

which means that how much of entropy X is reduced when predictability Y is increased:

I(X;Y ) = H(X) +H(X|Y ) (4.12)

If X is perfectly informative (when information from Y is not required), then the mutual

information between X and Y is simply the entropy of X:

I(X;X) = H(X) (4.13)

In this thesis, we use MIA as a tool to measure the informativeness of sensor inputs towards

prediction tasks. MIA is a sensible choice of exploring data, since it could capture the non-

linearity properties in our dataset. For instance, in Chapter 7 we used MIA to estimate the

usefulness of a particular BoD sensor to determine the correct user identity.
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4.3 Classification

In classification, the goal is to predict a category. For instance given a set of n training points,

x1, . . . ,xn with class labels tn = {−1,+1} which describes which class object n belongs

to. The goal of classification is therefore to assign x to either class −1 or +1. When there

are only two classes, this is called two-class or binomial classification. When there are more

than two classes involved, this problem is called multi-class classification. We only deal with

two-class classification problem in this thesis.

4.3.1 Support Vector Machines

Support Vector Machines (SVM) was developed by in the 1990’s and is considered as one of

the best general purpose classifiers today. SVM is chosen as the classifier for classification

tasks in this thesis because it has the ability to handle high-dimensional data. Another reason

is due to fact that SVM can separate non-linear data through the use of kernels which gives

flexibility in the decision boundaries. Lastly, SVM is perhaps one of the popular classifiers

used in HCI, therefore by using SVM it is easier to compare our results with the results from

other work in the literature.

Fundamentals of SVM
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Figure 4.3: Example of two-dimensional (a) linear (b) not linearly separable datasets.

In classification, we are typically presented with a dataset X, composed of N elements xn in

D dimensions in either class t = 1 or t = −1. Therefore our training data can be represented

in the following form:

X = {xn, tn} where n = 1 . . . N, tn ∈ {1,−1}, x ∈ ℜD
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As shown in Figure 4.3 (a), the two classes (denoted by different marker and colour combi-

nation) in two-dimensional dataset X can be separated by a straight decision boundary line

(or a hyperplane if dimension D > 2). Figure 4.3 (b) shows an example of when dataset X

is not linearly separable, where drawing a straight line is not possible. There are infinite pos-

sible straight lines (hyperplanes) that can be drawn on the graph in Figure 4.3 (a) to separate

the two classes. Therefore the goal here is not only to find the best hyperplane that correctly

separates but also maximises the orthogonal distance between the closest data points from

both classes to the hyperplane. In other words, the objective of SVM is to orientate the

separating hyperplane as far as possible from the closest data points from both classes.

In SVM the decision line or hyperplane that separates the classes is formally defined as:

w · x+ b = 0 (4.14)

where w is normal to the hyperplane, b is the bias term and b
‖w‖

is the orthogonal distance

from the hyperplane to the origin. From this equation, the objective of SVM is to choose

variables w and b so that the training data X can separated by a hyperplane based on the

their class labels as follows:

w · xn + b ≥ +1 for tn = +1 (4.15)

w · xn + b ≤ −1 for tn = −1 (4.16)

tn(w · xn + b)− 1 ≥ 0, for all n (4.17)

As shown in Figure 4.4, the distance from H1 and H2 to the separating hyperplane H0 is

defined as γ1 and γ2 respectively, where γ1 = γ2. The combination of these two is known

as margin. In order to determine the optimal orientation of the hyperplane, SVM needs to

maximise the margin. Data points that fall onto H1 and H2 are known as support vectors

(circled data points) which can be be formally defined as:

w · xn + b = 1 for H1 (4.18)

w · xn + b = −1 for H2 (4.19)

SVM margin (di + d2) can be defined as 1

‖w‖
and to maximise this margin requires applying

the constraint in equation (4.17):
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Figure 4.4: Linearly separable SVM classification example. H0 is the decision hyperplane

whereas circled data points correspond to support vectors.

max ‖w‖ subject to tn(w · xn + b)− 1 ≥ 0, for all n (4.20)

This constraint optimisation is equivalent to minimising 1

2
‖w‖2 which makes it easier to

solve via quadratic programming (QP), therefore equation (4.20) is equivalent in determin-

ing:

min
1

2
‖w‖2 such that tn(w · xn + b)− 1 ≥ 0, for all n (4.21)

To solve equation (4.21) requires allocating a set of Lagrange multipliers α, where αn ≥

0, for all n which gives the new objective function NP :

NP ≡
1

2
‖w‖2 −

N
∑

n=1

αn(tn(w · xn + b)− 1)

≡
1

2
‖w‖2 −

N
∑

n=1

αntn(w · xn + b) +
N
∑

n=1

αn

(4.22)

The goal of the optimisation is to find the parameters w and b that minimises, and α that

maximises equation (4.22). This is achieved by partially differentiating NP with respect to

w and b and setting these derivatives to zero:
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∂NP

∂w
= 0 =⇒ w =

N
∑

n=1

αntnxn (4.23)

∂NP

∂b
= 0 =⇒

N
∑

n=1

αntn = 0 (4.24)

Substituting equations (4.23) and (4.24) in equation (4.22) gives a new objective function

definition which must be maximised with respect to αn rather that w:

ND ≡
N
∑

m=1

αn −
1

2

N
∑

n,m=1

αmαntmtnxm · xn (4.25)

The new objective function ND is known as the Dual form of the Primary NP which needs

to be maximised subject to the following constraints:

αn ≥ 0, for all n,

N
∑

n=1

αntn = 0

To solve the optimisation problem, we use libSVM solver which is based on Sequential

Minimisation Optimisation (SMO) [11] to compute the optimal αn and substituting this in

equation (4.23) gives w. Any x that satisfies equation (4.24) is a support vector xs which

can be defined as:

ts(xs ·w + b) = 1

and substituting in equation (4.23) gives:

ts(xs ·
∑

m∈S

αmtmxm + b) = 1

where S corresponds to the set of support vector indices, which is determined by finding

indices n where αn > 0. By multiplying both sides of the equation with ts and define t2s = 1

from equations (4.18) and (4.19) gives:

t2s(xs ·
∑

m∈S

αmtmxm + b) = ts

b = ts −
∑

m∈S

αmtmxm · xs

(4.26)

Prediction on new data xnew is made by evaluating the following equation:
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tnew = sgn(w · xnew + b)

= sgn





N
∑

n=1

αntnxn · xnew + b





(4.27)

Soft Margin

As shown in Figure 4.4, dataset X is linearly separable by the hyperplane. This is a hard

margin SVM. However in cases that are not fully linearly separable, the constraints set in

equation (4.15) and equation (4.16) are relaxed to allow misclassification of training points.

This is achieved using soft margin SVM, where a positive slack variable ξn, n = 1, 2, · · · , N

is used, thus the constraint in equation (4.17) now becomes:

tn(w · xn + b) ≥ 1− ξn where ξn ≥ 0, for all n (4.28)

The idea of soft margin SVM is that it applies a penalty to the training points that sit on

the incorrect side of the decision plane and increases it as the distance from the hyperplane

(margin) increases. Therefore by adapting objective function in equation (4.21) the new

objective function is:

min
1

2
‖w‖2 + C

N
∑

n=1

ξn subject to tn(w · xn + b)− 1 + ξn ≥ 0, for all n (4.29)

where parameter C controls the trade-off between slack variable penalty and size of the

margin. In other words, C determines to what extent that the misclassifications need to be

avoided. A large C value denotes that smaller margin is preferred and vice versa if a small

C value is used.

Following the form in equation (4.25), the task now is to find the maximum of the following

quadratic programming problem:

max
α

N
∑

m=1

αn −
1

2

N
∑

n,m=1

αmαntmtnxm · xn

subject to 0 ≤ C ≤ ξn for all n and

N
∑

n=1

αntn = 0
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Figure 4.5: Decision boundary and support vectors for sample dataset in Figure 4.3 (b) as

the γ parameter for Gaussian RBF kernel is increased.

where the upper bound of αn is now set to C which implies the upper bound of any training

point can have to influence the decision hyperplane.

Kernel Method

Figure 4.3 (b) shows a dataset where linear decision boundary would not be appropriate. To

handle non-linearly separable cases, SVM uses kernel trick. In all of our work, we approach

our classification problems using this method.

Classification using kernel method involves transformation of data from into a new space

φ(xn). SVM operates exclusively on the inner products of the data (x⊺
nxm) therefore after

the transformation, the inner products in the new space needs to be computed: φ(xn)
⊺φ(xm).

This transformation is achieved using positive definite kernel function k(xn,xm) = φ(xn)
⊺φ(xm) [?

]. The function used for transformation is called as kernel function.
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In this thesis, we use Gaussian kernel function in all of our work which is defined as follows:

k(xn,xm) = exp{−γ(xn − xm)
⊺(xn − xm)} (4.30)

where γ controls the complexity of the function. Gaussian kernel also is referred as Ra-

dial Basis Function (RBF). Therefore by incorporating kernel function (4.30) into equation

(4.25), the objective function (soft margin) now becomes:

max
α

N
∑

m=1

αn −
1

2

N
∑

n,m=1

αmαntmtnk(xm,xn)

subject to 0 ≤ C ≤ ξn for all n and

N
∑

n=1

αntn = 0

and the kernelised decision function version of equation (4.27) for prediction:

tnew = sgn





N
∑

n=1

αntnk(xn,xnew) + b





The combination use of soft margin SVM with kernel function requires the selection of opti-

mal C and γ parameters simultaneously. To select these parameters, we use cross-validation

method which is explained in Section 4.5.

As shown in Figure 4.5, the SVM is able to separate the two classes (blue and red) after

applying transformation on the data using RBF kernel function. Classification in high di-

mension space can be imagined as ‘raising’ the red circles and then separate them from the

blue squares with a plane (hyperplane). The gamma parameter γ, controls the shape of the

peaks of this ‘raise’ where a small gamma value correspond to a pointed bump, while a large

gamma corresponds to a broader bump in the higher dimension.

Using libSVM [17] implementation which uses SMO-type algorithm, an RBF SVM has

training computational complexity of O(dn2), where d is the number of features and n is the

number of training/testing examples. On the other hand, the time complexity for prediction

is O(dn). This makes it possible to implement in a mobile phone, where the models can be

trained offline (i.e PC) and use them in a mobile phone for real-time prediction.

As mentioned earier, the main advantages of SVM is the ability to handle non-linear data,

highly scalable and works well with high-dimensional data. However, there is no method for

determining hyperparameters without performing cross validation.
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Composite Kernel

Besides building classifiers using kernel from each data type, we also are interested in build-

ing classifiers using composite kernel from both data types. This is achieved by constructing

separate kernel for each data type and combine both kernels additively by applying kernel

weight a to each kernel. The composite kernel K is given by:

K = aKi + (1− a)Kj

where 0 ≤ a ≤ 1 with 0 representing only the Kj kernel and 1 representing only the Ki

kernel. Although it is possible to combine both data types into same kernel, however this

would make it hard to assess the relative contribution each data type on the classification

performance. To select parameter a we fix the optimal kernel γ parameter for each data

type and use cross-validation method to choose the optimal composite kernel weight a. We

used this method in Chapter 7 and 6 when combining both accelerometer and back-of-device

kernels.

4.3.2 Random Forest

Outlook

Sunny Cloudy

Wind

Heavy

Y N

Light Strong

Light

N

YNY

Warm Hot

Rainy

Figure 4.6: This decision tree classifies whether the weather is suitable for outdoor cycling.

An example is classified by sorting through the box (leaf node) based on the variables and

returns the associated class Yes or No.

A decision tree is a hierarchy of rules used to classify data into classes or categories. An input

is entered at the top and as it traverses down the tree the data gets divided into smaller and

smaller sets. Consider the example in Figure 4.6 where the tree is used to decide whether or
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not to go out cycling based on the weather conditions. For instance, if the outlook is sunny

and the temperature is less than or equal to 30 degree, then it is probably good to go out

cycling. However, decision trees are prone to overfitting and therefore does not generalise

well.

Training data

Random 
subset 1

Random 
subset 2

Random 
subset N

. . .

Figure 4.7: A random forest is formed by combining trees constructed from N random

subsets of the training data.

Random Forests (RF) on the other hand is an extension of decision tree classifier based on

an ensemble learning method. Developed by Breiman [12], this method constructs multiple

decision trees (predictors) at training time to form a classifier. It based on the principle that

a set ‘weak predictors’ can be grouped together to form a ‘stronger predictor’. In order to

so, RF adds some randomness when constructing the trees. As shown in Figure 4.7, this is

achieved by combining trees constructed from random subsets of the training data through

bootstrap aggregating. This stabilises the predictions thus reducing variance and overfitting.

To make a prediction, RF averages the predictions from all subsets (trees) in the forest.

Just like decision trees, RF have low bias and by using more decision trees to build RF, it

minimises the variance (discussion on tradeoff between bias and variance is given in Sec-

tion 4.5). Moreover unlike SVM, RF has only one parameter to tune which is the number of

trees and therefore faster to construct. Due to this simplicity, RF is a very popular classifier

choice in many applications. We use RF in Chapter 6 to classify hand grip data.

4.4 Regression

Similar to classification, regression is concerned with inferring the values of one (or more)

response variables, for a given set of predictor variables that have not yet been observed. In

this thesis, we used regression in Chapter 5 to predict pair of touch coordinates (pixels) on

touchscreen.
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4.4.1 Gaussian Processes

In contrast to standard regression techniques which assume that the input data has some

underlying parametric function (e.g. f(x) = mx+c), Gaussian Processes (GPs) on the other

hand approaches the problem differently. GPs are a non-parametric regression technique

because instead of trying to fit parameters of the selected basis functions (e.g. linear, cubic),

GPs define how all data points are correlated via a specific covarince function typically by

taking the features, x, as input.

Using GPs, the goal is to represent a function f(xn) based on a set of training examples so

that prediction can be made for unseen x by exploiting the correlation between the traning

points and test. The function value of xn, f(xn) is it self a random variable, fn. Here the

function output for f(xn) is fn. The main assumption made by the GP is that the collection

of function outputs fn for all possible subsets subset of x input values xn are consistently

jointly Gaussian distributed.

GP is fully specified by a mean µ(xn) and covariance functions k(xn,xm) which means that

function f is distributed as a GP with mean function µ and covariance function k. The mean

and covariance functions are used to compute the elements of the mean vector and covariance

matrix that define the Gaussian distribution. In most applications there is no prior knowledge

about the mean function µ of a given GP, it is commonly assumed that the mean function to

be zero: µ(xn) = 0 [10].

By using zero mean function means that the entire GP is defined by the covariance function.

The covariance function k(xn,xm) can be any general function that takes two arguments,

such that k(xn,xm) generates a positive definite covariance matrix K. A popular choice of

covariance function is squared exponential:

k(xn,xm) = σ exp
(

−γ||xn − xm||
2
)

. (4.31)

where σ > 0 is the signal variance and γ > 0 is the lengthscale. This covariance function

also is referred as Radial Basis Function. From equation (4.31), it shows that the covariance

between the inputs is really close to one (k(xn,xm) ≈ 1) if they are close to each other (xn ≈

xm) and decreases exponentially if the distance increases. Lengthscale hyperparameter γ

controls the smoothness of a function. Small lengthscale value means that function values

can change quickly (rough) or slowly (smooth) if large value lengthscale is used. Signal

variance hyperparameter σ is a scaling factor that determines the variation of function from

their mean. Small value corresponds to the functions that stay close to the mean where large

value allows more variation to the functions.

The choice of γ and σ parameters can significantly influence the performance of the GPs. In

this thesis, all GPs hyperparameters are optimised by maximising the marginal likelihood of
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a GP. The output of the GP is a Gaussian distribution of functions expressed in terms of mean

and variance. The mean value can be interpreted as the most likely output of the function

while variance is the measure of confidence.

Prediction with Gaussian Processes
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Figure 4.8: Some observation data (red markers) with the prediction point (dashed line).

Prediction using GPs is no different with typical prediction problem in standard regres-

sions, that is given a set of N observations y = [y1, y2, · · · , yN ]
⊺ at certain time points

[x1, x2, · · · , xN ]
⊺ such that yn = f(xn) what is the best estimate of y∗ at a new time point

xN+1 ? To illustrate this, Figure 4.8 shows some training data (red circles) and the x values

where the prediction going to take place (dashed lines). ∗ is used to differentiate between

data at the existing points and data at the points where the GPs will be predicting.

Formally the training set can be organised into function input vector x = [x1, x2, · · · , xN ]
⊺

and function output vector y = [y1, y2, · · · , yN ]
⊺ while the prediction set can be organ-

ised into function input vector x∗ = [x∗
1, x

∗
2, · · · , x

∗
L]

⊺ and function output vector y∗ =

[y∗1, y
∗
2, · · · , y

∗
L]

⊺ respectively, where yn = f(xn), y
∗
n = f(x∗

n) and L corresponds to the

number of testing points in the prediction set.

A GP model implies that the function values at all input points (training and test) comes from

the GP, thus the joint distribution of the finite vectors ŷ = [y,y∗]⊺ is given by a Gaussian

distribution allowing us to easily condition on the traning observation/function values.

In order to perform GP regression, the covariance matrices of all possible combinations must

be calculated using covariance function in Equation 4.31. A covariance matrix for training

data:
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K =















k(x1, x1) k(x1, x2) · · · k(x1, xN)

k(x2, x1) k(x2, x2) · · · k(x1, xN)
...

...
. . .

...

k(xN , x1) k(xN , x2) · · · k(xN , xN)















(4.32)

a covariance matrix for testing data:

K∗ =















k(x∗
1, x

∗
1) k(x∗

1, x
∗
2) · · · k(x∗

1, x
∗
L)

k(x∗
2, x

∗
1) k(x∗

2, x
∗
2) · · · k(x∗

1, x
∗
L)

...
...

. . .
...

k(x∗
L, x

∗
1) k(x∗

L, x
∗
2) · · · k(x∗

1, x
L
L)















(4.33)

and a N × L cross–covariance matrix:

R =















k(x∗
1, x

∗
1) k(x∗

1, x
∗
2) · · · k(x∗

1, x
∗
L)

k(x∗
2, x

∗
1) k(x∗

2, x
∗
2) · · · k(x∗

1, x
∗
L)

...
...

. . .
...

k(xN , x
∗
1) k(xN , x

∗
2) · · · k(xN , x

∗
L)















(4.34)

As mentioned earlier the key assumption in GP modelling is that the data follows Gaussian

density. Therefore assuming zero mean, the GP model can be written as follows:

[

y

y∗

]

∼ N

(

0,

[

K R

R⊺ K∗

]

)

. (4.35)

This model tells that all elements (function values at the training and prediction points) are

covary. The goal of prediction consists in estimating the mean value and the variance of

y∗. Given the model in Equation 4.35 the first step now is to determine the conditional

probability p(y∗|y), that is given y, how likely is a certain prediction for y∗?. This probability

distribution is Gaussian and can be written as follows:

p(y∗|y) = N (R⊺K−1y,K∗ −R⊺K−1R). (4.36)

The best estimate for y∗ therefore is the mean of this distribution:

ȳ∗ = R⊺K−1y. (4.37)

and the variance captures the certainty of this estimation:
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Var(y∗) = K∗ −R⊺K−1R. (4.38)

Figure 4.9 (a) shows the distribution of y∗ at x∗ with blue circle represents the mean value

and error bar showing plus and minus one standard deviation. Figure 4.9 (b) shows the

distribution of predictions when using larger γ hyperparameter value. From these two GP

models, (a) is likely to be chosen due to low variance in its estimation on y∗.
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Figure 4.9: Prediction of y∗ at x∗ using two different lengthscale γ values.

Often the data are noisy (e.g. measurement errors) therefore each observation in y can be

modelled as being affected by some independent Gaussian noise ǫ with variance σ2:

tn = fn + ǫn

where p(ǫn) = N (0, σ2), which means that tn is the true function value with additive Gaus-

sian noise. Conditioning t on y gives the following distribution:

p(t| y, σ2) = N (y, σ2IN)
1 (4.39)

In most cases, we are interested to predict y∗ rather than the corrupted t∗ at a set of input x∗.

To do so, we need to construct the joint density similar in Equation (4.35) by replacing with

new prior covariance:

[

t

y∗

]

∼ N

(

0,

[

K+ σ2IN R

R⊺ K∗

]

)

. (4.40)

Thus the mean distribution to best estimate y∗:

1p(tn| yn = fn)
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ȳ∗ = R⊺(K+ σ2IN)
−1t. (4.41)

In contrast to SVM, a GP has training computational complexity of O(n3) while the com-

plexity for prediction is O(n), where n is the number of training/testing examples. In terms

of implementation, it is possible to implement this on mobile phone, since only the prediction

part is implemented on mobile phone whilst the GP models are trained offline (i.e PC).

The primary advantage of GP is the fact that it is probabilistic. In contrast to SVM, the

probabilitistic nature of GP allows direct hyperparameter optimisation and model-selection

without the need of time-consuming cross validation. However GP does not scale as well as

SVMs. In other words, GP tends to be slower as more training points is used.

4.5 Performance Evaluation

Figure 4.10: Example of data partitioning.

All classifiers must be evaluated prior to selecting the final model. This is to check for

classifier’s generalisation ability by estimating how well the classifier can classify new and

unseen data. This involves partitioning the dataset into two independent sets: training and

testing. Further split is made on the training set, normally in 75% (training) 25% (testing)

ratio for validation purposes. Example of the partitioning is shown in Figure 4.10 where

two thirds of the data is used for training where 25% of this is for model validation. The

remaining is used for testing the model. The partition is to ensure that the final model does

not lead to optimistically biased conclusion, that is when the model is trained and tested on

the same data.

Bias and variance tradeoff in general is a model selection problem that emphasises on bal-

ancing between error due to bias and variance with respect to classification error:
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classification error = error due bias+ error due variance

Classification error due to bias is the error (on average) that is substantially different from the

expected true value while classification error due to variance is the amount of error from one

training set differs from the errors from all training sets. Both high bias and high variance

model leads to poor classification results. In general, a model with high bias is too simple

for the particular problem therefore will underfit data. On the other hand, a model with low

bias and high variance is too complex thus will overfit data.

Underfitting can be evidenced by high error in both validation and training processes. Low

error in training and high in validation on the other hand is a sign of overfitting. The error

in validation is normally equal or slightly higher than the error in training for a good fit

model. Whilst underfitting can be avoided by increasing classifier complexity (i.e linear to

polynomial), overfitting on the hand can be estimated through cross-validation (CV).

In this thesis we used two variations of CV to evaluate our models. The first variation is

called holdout method or 2-fold CV where data is randomly partitioned into two indepen-

dent training and validation sets using a particular ratio, for instance two-third of data is used

for training and one-third of data for evaluation (see Figure 4.10). To estimate overall per-

formance of the model, the CV process is repeated for m times with different holdouts and

average of the performance from m holdouts is taken.

The second variation of CV is called k-fold. In this variation, data is randomly divided into k

disjoint (non-overlapping) subsamples of equal size and use the k−1 subsamples as training

set and k subsample as evaluation set. The CV process is repeated for k times (the folds) to

train and test the classifier. This gives k performance results which are then averaged.

CV can be used to select the best parameters for a classifier by estimating the generalisation

error. When more than one parameters need to be optimised (i.e. SVM kernel parameters),

grid-search method can be used. In this technique, the model is trained and evaluated using

CV for different combination of parameters which lies on a grid of parameters. The best

parameters for the particular model are then selected.

4.6 Performance Metrics

Depends on the problem, the performance of a classifier can be reported using different

metrics. The following sections give an explanation each of the performance metric we used

in this thesis. Although there are many other evaluation metrics exist, we opted the following

as these are the most common metrics used in the literature.
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4.6.1 Accuracy

Accuracy is the most simplistic approach to measure performance of a classifier. It measures

how accurate the classifier classifies data in terms of number success (correct) classifications.

Accuracy is expressed as ratio of correct classifications over all classifications. In binary

classification, all correct classifications from both classes are called true positives and true

negatives whereby all incorrect classifications from both classes are called false positives

and false negatives. Therefore, accuracy can be defined as:

accuracy =
true positives+ true negatives

true positives+ false positives+ true negatives+ false negatives

Accuracy assumes that instances from both positive classes are balanced, that is 50% of the

instances are from either class. However in real setting (as in all of our experiments), the

number of instances from each class is unlikely to be balanced. For example if 99% of the

instances in a dataset belong to class A and 1% belong to class B, it is possible to achieve

0.99 accuracy by always predicting class A. The classifier in this case appears to produce

high classification accuracy, however in reality it would not be able to predict any instances

from class B.

One of the techniques to overcome this is to balance the class by resampling the dataset

to even-up the classes. In our case, we always resample the majority class as many as the

number of instances are there in the minority class by randomly selecting instances from the

majority class. For instance, if class A (majority) and B (minority) contain 1000 and 250

training examples respectively, the training/test set will have all examples from class B and

250 examples selected randomly from class B.

4.6.2 Confusion Matrix

Predicted class

Positive Negative Total

Actual class
Positive TP FN P

Negative FP TN N

Total P ′ N ′

Table 4.1: Binary classification confusion matrix.

As mentioned in Section 4.6.1, there are four possible outcomes from a binary classification.

When positive and negative instances are classified correctly, they are known true positive

(TP ) and true negative (TN ). Otherwise they are known as false positive (FP ) and false
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negative (FN ). These four outcomes can be tabulated in a table of called confusion matrix

(also known as contingency table) to show the relationship between these instances. Ta-

ble 4.1 shows a confusion matrix for a binary classification. The rows represent the number

of actual class labels and columns represent the number of predicted class labels in the test

data. The diagonal of confusion matrix is the number of correct classifications while the

opposite is the number of incorrect classifications or errors (confusion) made by a classifier.

As shown previously, accuracy is the proportion of correct classifications, therefore from the

confusion matrix this is equivalent to:

accuracy =
TP + TN

P +N

Besides accuracy, there are several additional metrics that can be calculated from confusion

matrix:

• True positive rate (hit rate) is the proportion of positives classified correctly:

TPrate =
TP

P

• True negative rate is the proportion of negative instances classified correctly

TNrate =
TN

N

• False positive rate or false alarm/accept rate (FAR) is the proportion of incorrectly

classified negative instances:

FPrate =
FP

N

• False negative rate or false reject rate (FRR) is the proportion of incorrectly classified

positive instances:

FNrate =
FN

P

Each metric derived from confusion matrix is used to describe performance of a classifier in

different contexts. For instance, in Chapter 7 we used confusion matrix to evaluate classifiers

in terms of their false accept (FPrate) and false reject (FNrate) errors when predicting user

identity.

4.6.3 Receiver Operating Characteristics Analysis

Receiving operating characteristics (ROC) analysis is a technique to evaluate performance

of a classifier using a graph by depicting relative tradeoffs between false positive and true
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Figure 4.11: A ROC graph constructed from a binary classification outputs using SVM clas-

sifier. The diagonal dashed line (y = x) denotes the random performance while the intersec-

tion of the curve with opposite line (y = 1− x) denotes the Error Equal Rate (EER).

positive rates of a classifier. It plots the cost (FPrate) of classifying data at a particular

performance (TPrate). In other words, the goal of ROC analysis is to visualise the effect of

TPrate on FPrate.

Consider a ROC graph for a SVM classifier in Figure 4.11. The x- and y-axis correspond to

false positive rate and true positive rates of a binary classification. In SVM, an instance will

be classified as positive if the score (signed distance from the decision hyperplane) is above

a certain threshold (zero if using hard margin) or negative if otherwise. Comparing this with

the actual class label would produce either true positive (correctly classified) or false positive

(incorrectly classified) which is then used to compute TPrate and FPrate. These two values

constitute a ROC point on the ROC graph (FPrate = x, TPrate = y). The blue curve (ROC

curve) as shown in Figure 4.11 is the combination of all ROC points plotted together, sorted.

Bottom-left corner of the graph (FPrate = 0, TPrate = 0) denotes a threshold where the

classifier never classifies anything to positive class whereby top-right corner (FPrate =

1, TPrate = 1) signifies a threshold where the classifier never classifies anything to nega-

tive class. A perfect classifier would have a ROC curve that hits top-left corner of the graph

(FPrate = 0, TPrate = 1).

The diagonal dashed line (y = x) in Figure 4.11 corresponds to ROC points or ROC curve

of a random classifier. For instance, if a random classifier guesses the positive class 70%

correct of the time, it can be expected to classify 70% of the positive instances correct but

at the same time increases the false positive rate to 70%. Therefore a random classifier is

estimated to produce ROC points that sit on the diagonal line (TPrate = FPrate) on the ROC

graph. The opposite of the random performance diagonal line (y = 1 − x) is Error Equal

Rate (EER), which is the performance at the classification threshold that gives equal FRrate

and FPrate. That is at threshold where number of misclassifying positives as negatives and
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negatives as positives are at the same rate. The lower the EER value, the higher the accuracy

of the classification.

In most cases, there will more than one classifiers to be compared during model selection

process. In order to provide a single scalar value for comparison, area under the ROC curve

(AUC) is used. AUC is a portion of the area of the unit square therefore it has a value be-

tween 0 and 1.0. Unlike accuracy, AUC is insensitive and more robust in class imbalance

situations. One drawback of using AUC from ROC analyses is that it does not generalise to

the multiclass setting. However this can be solved by turning multiclass setting into several

binary classification problems. ROC analysis and AUC are used in Chapter 7 and Chap-

ter 6 when evaluating SVM classifiers. This is due the fact that most of our classifications

problems involve class imbalance situation.

4.6.4 Root-Mean-Squared Error

In contrast to classification, regression gives an estimation of the prediction (continuous

output) rather than class membership. In order to quantify the error from regression problem,

mean-squared error (MSE) can be used. MSE in general measures the error in terms of

residuals of the fitted regression line to data points. MSE is computed by taking the mean of

the squared distance between each test point and its corresponding predicted value. Formally

this is:

MSE =
1

n

n
∑

i=1

(yi − ỹi)
2

where n is the number of points, yi is the predicted value obtained from regression and ỹi

is the actual value. From MSE, root-mean-squared error (RMSE) is computed by simply

taking the square root of the MSE:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ỹi)2

RMSE is thus the distance on average of a data point from the fitted regression line, measured

along a vertical line (x−axis). RMSE has the same units as data plotted on the vertical axis

(y−axis). We use RMSE when reporting performance of GP regression in Chapter 5.



54 CHAPTER 4. PREDICTION USING MACHINE LEARNING

4.7 Wilcoxon Sign-Rank Test

Statistical hypothesis testing is used to determine whether there is enough evidence to ”re-

ject” a hypothesis about the results. For instance, prior to every experiment, we guess that

sensor data does not have any predictive power. This guess forms a ”null” hypothesis. The

experiments are performed to acquire sensor data to find evidence and potentially reject the

”null” hypothesis and accepting an ”alternative” hypothesis (i.e. sensor data has predictive

power).

In this thesis we are mainly interested to investigate if there is statistically significant im-

provement in performance when two different classifiers are used (i.e single vs composite

kernel or back–of-device vs accelerometer). When comparing performance results from two

different classifiers, we use the non-parametric Wilcoxon Sign-Rank Test. By using this test,

we assume that the data (prediction results) are not normally distributed.

The Wilcoxon Sign-Rank Test concerns the population median of the difference scores be-

tween two datasets. Thus the testing hypotheses (null H0 and alternative H1) need to be first

stated:

H0 : The median difference is zero

H1 : The median difference is positive at α = 0.05

4.7.1 Computation

The rank is computed by finding the paired difference: di = xi − yi where xi, yi are the

pairs from two predictions. Next the difference scores di are then ranked by ignoring the

signs (i.e. assign rank 1 to the smallest, rank 2 to the next etc.). The sign of the rank is then

assigned according to the actual sign of di. The test statistic for the Wilcoxon Signed-Rank

W is computed by summing up the positive and negative signed dis:

W+ =
n

∑

i=1

+di

W− =
n

∑

i=1

−di

From this summation, the null hypothesis H0 is true if both W+ and W− are similar. Other-

wise the alternative hypothesis is true if the number positive ranks are more than the negative
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ranks (W+ > W−). To determine whether W supports null or alternative hypothesis by us-

ing tables of critical values, such that if W is less than or equal to the critical value, H0 will

be rejected or if W exceeded the critical value, H0 will not be rejected. In this thesis, the

whole computation has been simplified using MATLAB ranksum function, with alpha

significance level set at 0.05.
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Chapter 5

Predicting Screen Touch Locations

From Hand Grip and Motion Changes

Part of the work presented in this chapter has won Honourable Mention award at the Con-

ference on Human Factors in Computing Systems (CHI) 2014.

Summary: This chapter demonstrates the use of implicit sensing of hand grip and motion

changes for touch location estimation on a touchscreen. Specifically, we show that using

back–of–device (BoD) hand grip and accelerometer, touch locations on the touchscreen can

be predicted before touch contact. We also show that time of touch contact can be predicted

accurately using both input modalities. Each hand grip sensor is analysed to measure its

relevancy in predicting touch locations and we show the locations of these sensors. At the

end of this chapter, we demonstrate our technique as a touch location predictor implemented

in the real product.

5.1 Introduction

Although touch has been a de facto mode of input for modern mobile devices, is still sub-

ject to a number of inherent challenges. Common issues such as input space constraints and

accuracy have motivated researchers to propose complementary interaction techniques that

not only enhances but also extends the capabilities of standard touch in mobile devices. This

includes finger hover tracking for gesture-based interaction [151, 27], full-finger pose esti-

mation to improve touch accuracy [106, 74], BoD [6] and around-device interaction (ADI)

as an extension to touch input space [146, 67, 13].

These techniques employ sensors as an additional input modality to complement touch. In

ADI for instance, common touch actions such as zooming, dragging and swiping can be ex-
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CHAPTER 5. PREDICTING SCREEN TOUCH LOCATIONS FROM HAND GRIP AND

MOTION CHANGES

(a) (b)

Figure 5.1: Grip changes as the the thumb targets different areas. Thumb target shown as

dashed crosshairs. Notice the changes in the contours of the phalanges and finger tips (solid

lines) as the thumb moves from top left (a) to bottom right (b) target.

pressed using motion gestures such as tilting and pivoting, thus freeing up the display from

touch [51]. Researchers have also used hand capacitive profiles in order to determine hand

postures, which brings extra interaction dimensions to conventional touch screens [112].

This is particularly useful in one hand operation as well as an effort to minimise the en-

cumbrance effect – a situation where user’s interaction is hindered with another task such as

carrying typical objects (e.g. shopping bags, books) during interaction [91].

In this chapter we present an implicit sensing technique to enhance standard touch by pre-

dicting the location of screen touches from BoD hand grip and motion changes sensed using

BoD capacitive sensors and an accelerometer respectively. This is based on the observation

that when holding a phone single-handed, it is impossible to target with the thumb across the

whole screen without changing the grip position and device pose, as illustrated in Figure 5.1.

In order to make inference of touch locations, we use Gaussian Process (GP) regression

to find mappings between the two sensor inputs capacitive readings and accelerations, and

touch locations. We use these mappings to estimate the touch contact location and touch

contact time of fingers before they reach the touchscreen. By modelling these interesting dy-

namics, a number of enhancements can be potentially fitted into standard touch interactions.

We outline three possible applications of this technique:

1. Content Pre-Loading

Off-device, cloud-based processing offers many opportunities for mobile interaction.

One of the key issues that impeding the success of cloud-based processing in mobile

environment is execution latency. This is evidenced by the existence of numerous

techniques to accelerate execution of cloud-based applications to avoid latency [68,
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45]. Despite fast connections, retrieving content over a wireless link may be prone

to network latencies of 100–200ms and this can increase linearly with data size [78].

This level of delay is very noticeable, and can disrupt the rhythm of an interaction.

For example, content in a webpage will be loaded when initiated explicitly by a user

– tapping the associated button/link. However, given the fact that mobile phones have

less computational power and poorer internet connections than other computers, the

content may not appear immediately. Therefore through prediction of touch contacts,

the interface components that the user was about to touch can be identified and content

pre-loaded ahead of time. The accuracy of this touch prediction determines how much

of content needs to be downloaded. For instance high accuracy denotes prediction

of the exact touch location. This may involve downloading content for a single UI

component. On the other hand, lower accuracy can be interpreted as estimation of

larger touch location area that accommodates more than one UI components. This

flexibility shows the feasibility of the content pre-loading.

2. Feedback Responsiveness Enhancement

Another potential application of touch contact prediction is enhancing auditory and

tactile touch feedback. Existing feedback solutions can increase user confidence that

touches have been registered but introduce latency of their own (e.g. audio buffering

delay). A delay of 30 ms between touch and response is a common scenario. By

predicting touch contact times, audio or vibro-tactile feedback can be queued to trigger

exactly on the predicted touch contact time. This requires high predictive accuracy but

only at the fraction of a second immediately preceding a touch. Whilst this approach

is appealing, it needs to be balanced with the errors of predicting contact times of a

touch when no touch happens.

3. Assistive User Interface

Although it is possible to interact with mobile phones single-handedly using a thumb,

this however is limited to the display area reachable by the thumb of the hand that is

holding the device. This reachable area is known as the thumb’s functional area and is

dependent on hand size and relative to display size [7]. In other words, the larger the

display the smaller the functional area. Most mobile devices now come with display

sizes larger than 5.0 inches (12.7 centimetres). It can be hard to reach targets located

outside of thumb’s functional area without changing the position of grip (e.g. top-left

area with right hand thumb). By using prediction of touch contacts, the user interface

can adapt to hand size by enlarging the predicted target area and assist users in reaching

the target. This is particularly useful for users with below average adult hand size or

when two-handed interaction is not possible (e.g. carrying a bag on the other hand).
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MOTION CHANGES

5.1.1 Research Goals

The remainder of this chapter is organised around several research questions, which we an-

swer via several experiments:

RQ1 Is there any observable relationship between touch position and hand grip / hand

pose?

This is the preliminary investigation that acts as the foundation of this study. In order

to investigate and understand the relationship, we measure the correlation between

touch locations and sensor input (hand grip and hand pose). This provides us an early

insight about the relationships and structures that exist in the dataset which could help

us to make decision on the touch prediction strategy. The result of this experiment is

presented at the beginning of Section 5.3 and Section 5.3.1.

RQ2 Can we predict screen touch locations better than random using hand grip / hand

pose?

The main goal of this chapter is to measure to the extent to which touch locations

can be predicted better than random from sensor input. We also compare prediction

performance between hand grip and pose. We report prediction performance of our

technique in Section 5.3.2.

RQ3 Can we predict time of touch contact better than random?

Apart from predicting touch locations, we also are interested to see if contact time

can be predicted from sensor input before the actual touch better than random. This

is essentially the same process as RQ2 but using contact time as output. Results for

contact time prediction is shown in Section 5.3.3.

RQ4 Do we need all sensors to predict screen touch locations better than random?

Whilst predicting touch locations using BoD sensors is interesting on its own, we are

intrigued to see if the prediction can be made better than random when the number

of sensors is reduced, that us when using a subset of BoD sensors. Furthermore we

also investigate the location of BoD sensors that can effectively capture grip patterns

to predict touch location. We show results from this analysis in Section 5.3.4.

5.2 Experiment

We run an experiment to answer each of the research questions. In the first experiment,

the goal is to investigate if an observable relationship exists between the sensor inputs x

and output y (touch locations in (x, y) coordinates) (RQ1). Prior to evaluating the relation-

ship, we first identify the structure in hand grip and hand pose data during the touch. We
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compute Principal Component Analysis (PCA) on both M dimensional sensor inputs: BoD

xc = [xc
1,x

c
2, . . . ,x

c
M ], where M = 24 and accelerometer xa = [xa

1,x
a
2,x

a
3] (where xa

1,x
a
2

and xa
3 correspond to the accelerations along 3-axis accelerometer) at touch contact time to

investigate if structures such as clustering exist in the data. PCA is a linear transformation of

data that allows us to inspect the differences and similarities of the dataset by viewing them

from a different angle. Please refer the more in-depth description of PCA in Chapter 4.2.1.

5.2.1 Canonical Correlation Analysis

Next we measure the correlation between sensor inputs: BoD xc and accelerometer xa (from

now onwards, we will use x when referring to either one of these sensor inputs) and touch

location y = [x, y] (where x and y are the x– and y–coordinates in pixels). In other words,

we would like to understand the relationship between pairs of variables: sensor values x and

touch location y. Given that x and y are two multi-dimensional variables, it requires a mul-

tivariate analysis technique to explain the relationship. For that purpose, we use Canonical

Correlation Analysis (CCA) [55].

In this case, CCA computes two derived variables (canonical variates) Wx (weighted sum

scores of sensor input variables) and Vy (weighted sum scores of touch location variables)

and find the correlation between these two variables. The goal of CCA therefore is to find lin-

ear combination that maximises the correlation between Wx and Vy. For further explanation

on CCA, please refer to Section 4.2.2.

In short, CCA generalises multivariate correlation between x and y to bivariate correlation

between Wx and Vy. The relationship between these two pairs of variables can tell how

well touch location y can be predicted from sensor input x. The correlation between these

two variables can be visualised on a graph by plotting Wx against Vy. Results from CCA

can provide an insight into the level of performance to be expected from the regression task.

This is shown in Section 5.2.2.

5.2.2 Touch Location and Time of Touch Contact Predictions

The main goal of this study is to predict the intended touch location y using BoD (hand grip)

and accelerometer (device pose) sensors inputs x (RQ2). Furthermore, we also are interested

to find if time of touch contact t can be predicted from both sensor inputs x (RQ3). This

is naturally viewed as a regression task, that is we are interested to find how well the set of

sensor input x variables can predict touch locations y and time of touch contact t. To make

predictions, Gaussian Process Regression (GP) is used. GP is a flexible, non-parametric

approach to regression analysis [98]. A detailed review of GP is given in Section 4.4.1.
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In order to define a GP, we first define a prior mean regression function (in our case; f(x) =

0) and a prior covariance function that defines the smoothness of the regression function. We

train a separate, independent GP for each coordinate axis and time of touch contact. We use

the squared exponential (SE) covariance function throughout this chapter in the following

form:

kSE(xn,xm) = σ exp
(

−γ||xn − xm||
2
)

.

where the lengthscale hyperparameter γ determines the smoothness of the function whereby

signal variance hyperparameter σ2 controls the variation of functions from their mean. SE

covariance function is chosen because it and can be integrated againsts a wide range of

functions, making it a sensible choice for this task. We use the MATLAB implementation

of GP from GP for Machine Learning (GPML) toolbox1 for all the work described in this

chapter.

To evaluate prediction errors, we use root-mean-square error (RMSE) in millimetres, that is

the distance on average between the fitted regression line to the actual data points (detailed

explanation of RMSE can be found in Section 4.6.4). As a basis for comparing prediction

errors, we use RMSE of always of guessing the centre of the screen as a baseline to compare

our predictions with random predictions. In addition to the baseline, we also compare our

predictions with the standard touchscreen button size to put the performance into a realistic

context. In other words, what would like to know what would the performance mean in the

actual product. We use Android standard button size which is 48 density-independent pixel

(dp)2 or 7.62 mm according to N9 screen density.

5.2.3 Sensor Selection

Although we use 24 capacitive sensors at the back and sides of the prototype mobile phone,

we argue that some of these sensors may have no predictive power at all, that is they may have

no effect on the outcome of the prediction. Moreover, from a design point of view, the fewer

sensors the better. This is based on the observation that when targeting the touch screen,

some sensors remained untouched. Therefore our final goal in this study is to determine the

relevancy of each BoD sensor in the prediction tasks and select only the relevant sensors to

make predictions (RQ4). Similar to the technique in R3, we use a GP in this experiment.

To determine the relevance of the sensors we use a GP Automatic Relevance Determination

(ARD) SE covariance function. Using this function, an individual hyperparameter length-

scale σm is learnt for each sensor xm. Here σm determines the relevancy of xm. If σm has

1http://www.gaussianprocess.org/gpml/code/matlab/doc/
2http://www.google.com/design/spec/layout/metrics-keylines.html

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.google.com/design/spec/layout/metrics-keylines.html
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a very large value, then the covariance will become almost independent of xm thus mak-

ing it irrelevant. ARD SE covariance function for M -dimensional input can be rewritten as

follows:

kSE(xn,xm) = σ exp



−
M
∑

d=1

(xnd − xmd)
2





By removing irrelevant sensors, we can propose a minimum number of sensors required to

predict screen touch locations efficiently. From a design point of view, the fewer sensors the

better. Moreover, the experiment can reveal the location of the relevant sensors at the back

of the prototype phone – valuable information that can be used by hardware designers.

5.2.4 User Study

We carried out a preliminary user study in order to answer all research questions we stated

previously. The goal was to collect hand grip and pose examples from human subjects. To do

so, we use a prototype mobile device based around a Nokia N9 smartphone. A brief technical

specification of this prototype is given in Section 3.3. From the examples collected, we seek

to measure the following:

1. Relationship between sensor input and touch locations.

2. Performance of sensor input as touch target and time of contact predictors.

3. Relevancy of sensors to the predictions.

Participants

We recruited 20 participants locally (12 males and 8 females) aged between 25 − 40 (mean

= 28.9, sd = 4.92) to participate in our experiment after gaining ethics approval on June 28th

2013. The small population size is chosen since this is a pilot study and has shown to be ade-

quate to capture a plausible range of grip contacts [144, 24, 43]. All of our participants were

current smartphone users and therefore had experience in operating touch screen device. We

had 17 right and 3 left handed participants in total.

5.2.5 Data Acquisition

As mentioned earlier, we used the N9 prototype smartphone in this study. We wrote custom

software in Python that ran on the phone to coordinate the acquisation of touch–grip/pose
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Figure 5.2: During targeting experiment, participants were required to touch (tap) random

target (crosshair) displayed on the screen using their thumb, single handed.

examples from both capacitive and accelerometer sensors. The sampling rate of both sensors

was set at 100 Hz. As shown in Figure 5.2, the software displayed touch targets (crosshairs)

on the screen that the participants had to touch using their thumb, single handed. Information

pertaining to session and remaining targets was displayed at the top of the screen.

Every participant was given the same touch targets. We used unique random target coor-

dinates (x, y) generated uniformly using Python built-in pseudo-random number generator

library3. A half second delay was used between targets to encourage participants to return

to a rest pose before the next target was shown. Audio feedback was given if the participant

touches the target correctly. A correct touch requires a stable thumb contact within the min-

imum target area for at least 500 ms. We used a circle with 1 cm diameter (98.8 pixels) as

target area in this experiment.

From each participant, we recorded timestamps (milliseconds), targets and touch locations

(x, y coordinates in pixels) and BoD capacitive and accelerometer sensors readings into the

phone’s internal storage for subsequent off-line analysis.

In this experiment, participants were required to interact with the N9 prototype by touch-

ing/tapping the random targets shown on the touch screen using their only their thumb, sin-

gle handed. We used 250 unique touch targets in this experiment. In order to ensure that

we are not observing only a single grip pattern but a range of plausible grips/poses, we split

the experiment into 5 different sessions in which we collected 50 touch actions using unique

targets in each session, for each participant. Participants were required to switch their hand

after each session, therefore each hand has an equal number of unique touches. There was a

5 minute break given between sessions to minimise the repetition effects – a condition where

3https://docs.python.org/2/library/random.html

https://docs.python.org/2/library/random.html
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participants perform targeting task without conscious effort as a result of repetitive moveme-

ments over time [72]. In total, we recorded 500 touch actions in total from both hands, from

all participants.

In this study we were not interested in how the participants initially picked up the phone,

therefore the recordings began when the phone was held by the participants. Every par-

ticipant was required to start the experiment with their dominant hand. Participants were

seated on a chair the whole time during the experiment, facing a table where they can put the

phone down when switching hand/session. Participants were debriefed prior to performing

the experiment. In particular we explicitly mentioned that touch accuracy and speed were

not being evaluated to ensure participants performed the experiment comfortably. They also

were given a trial run to allow them to familiarise with the system. Overall, the experiment

took between 15− 20 minutes (mean = 17.50, sd = 1.28) to complete.

5.2.6 Data Preprocessing

Prior to analysing our data, all targets and touch locations were rescaled such that they were

in a unit square centred on the origin. The origin used by the phone’s coordinate system

was in the upper right corner of the screen in portrait mode. This rescaling was based on

the device screen size, such that a target at the rightmost edge of the screen would have

an x coordinate of 0.5, and a target at the bottom of the screen an y coordinate of 0.5. In

the case where we predict the intended locations from BoD capacitive and accelerometer

sensor values, this make the zero mean function of the GP correspond to the centre of the

screen. Predicting the centre of the screen in the absence of data is a slightly more sensible

assumption than predicting the upper right corner. We transform the coordinates back to a

millimetre scale when computing prediction errors.

Feature Extraction

The raw signals from both BoD capacitive and accelerometer sensors were noisy and sam-

pled at a slightly different rate. Therefore before proceeding to the analysis stage we first

reduced the amount of data by downsampling the raw signals from both sensors to 50 Hz

to equate the sample rate of both signals. Furthermore, the BoD capacitive sensors in our

prototype also were occasionally affected by noise spikes. In order to remove these spikes,

we ran a simple length 3 median filter over the downsampled signals.

The main goal of this study is to estimate touch locations using sensor values. In particular,

we are interested to find how well the GP can learn from the sensor values to estimate touch

locations, by varying the time before the finger touches the screen. To investigate this, we

divided the timeseries into blocks of 100 ms interval up to 500 ms before touch contact. 0 ms
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denotes the point of touch. For example, a 100 ms block = data from 0 ms – 100 ms before

touch contact, a 200 ms block = data from 0 ms – 200 ms before touch contact and so on.

We then extracted the mean from each block from each sensor as a feature. This provides us

with a fixed-length 24–dimensional BoD (xc) and 3–dimensional accelerometer (xa) feature

vectors for each timeseries block. By taking the mean values, we were only observing static

components of hand grip and pose. We then normalised the data by rescaling the values

linearly into a new minimum–maximum range after observing the minimum and maximum

values from the original data.

We also extended our feature vectors by adding the first and second derivates of both sen-

sor (before normalisation), estimated using a Savitzky-Golay filter [113] (4th order, 600 ms

width), resulting in 74– and 11–dimensional feature vectors respectively. Savitzky–Golay

filter is a low–pass filter that performs a least squares fitting on a set of points in the signal to

a polynomial and take the central of the fitted polynomial as the new smoothed point. This

filter was chosen over commonly used moving average filter due to its ability at retaining

the shape of the original signal. The primary goal of this extension is to investigate if the

derivatives of the original signal contain important information which has non-linear rela-

tionship with touch location. By extracting these additional information, it is hoped that the

estimation errors can be improved.

5.3 Results

We use the non-parametric Wilcoxon Signed Rank Test with p−value threshold of 0.05 to

test the significance level of the results. We begin the analysis by exploring the structure in

our data by applying a linear transformation to the data using Principal Component Analysis

(PCA). Prior to that, we standardised the feature data using standard scores (subtract sample

mean from each observation then dividing by the sample standard deviation; mean=0, std=1)

to ensure that each dimension is on the same scale.

Figure 5.3 shows the first (x-axis) and second (y-axis) principal components for each modal-

ity and from each hand for 10 participants selected randomly. Distinct participant clusters

can be seen in both sensor plots for both hands, suggesting that every participant may have

different ways of holding when interacting (targeting) with the mobile device. This also

suggests that any predictive model based on hand grip and hand pose may need to be user–

specific.

As shown in the Figure 5.4, the first and second principal components of BoD feature from

the right hand account 27.5% of the variance of the original feature whereby for left hand,

only 29.6% of the variance is accounted by the first and second principal components. More-

over, both plots also show that the variances decay slowly suggesting that the information
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(a) BoD, left hand (b) BoD, right hand

(c) Accelerometer, left hand (d) Accelerometer, right hand

Figure 5.3: First and second principal components of BoD (a, b) and accelerometer (c, d)

features from 10 random participants. Each colour/symbol combination represents one par-

ticipant. The ellipses correspond to the Gaussian for each participant. For simplicity, only

100 observations are shown from each participant.

pertaining to hand grip sits beyond the first and second principal components, indicating that

many components are required to capture most of the variance.

Besides per-participant analysis, we also performed per-hand transformations on the feature

set. This is to see if hand grip and pose differs between hand. In order to do this, we perform

PCA on 100 random hand grip and pose examples of both hands pooled from 10 random

participants. From Figure 5.5 both BoD and accelerometer features show distinct groupings

between right and left hand. This suggests that it is possible to determine handedness using

either of the sensor input.

5.3.1 Correlation Analysis

To investigate the relationship that exists between touch position and BoD and accelerome-

ter features, we used Canonical Correlation Analysis (CCA). As mentioned in Section 5.2.1,

CCA measures the correlation between x and touch location y by finding the optimal linear

combinations of variables from each modality such that the correlation is maximised. Simi-
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(b) Right hand

Figure 5.4: Variances explained (in percent) for each principal component for BoD feature.

It is clear that the variances decay slowly, indicating that the information is dispersed across

many principal components.

lar to the data treatment we used in PCA, we standardised our feature set before measuring

the correlation.

This analysis attempts to answer if sensor inputs and touch locations are correlated (RQ2).

We also would like to test if there is a clear correlation in both user-specific and pooled

settings. To do so, we performed CCA in individual and pooled settings. In the former, we

used observations from one participant selected randomly and the latter was done by pooling



5.3. Results 69

(a) BoD (b) Accelerometer

Figure 5.5: First and second principal components of BoD (a) and accelerometer (c) features

from 10 participants. Red and blue markers represent right and left hand data respectively

and each symbol represents one participant. The ellipses correspond to the Gaussian for each

hand. For simplicity, only 100 observations are shown from each participant.
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(d) Left hand

Figure 5.6: Examples of the first canonical component using individual data from one user

selected randomly for each hand and for each sensor. x and y axes correspond to the first

canonical variate Ws and Vo respectively. Red line corresponds to the least-squares line.

100 random observations from all participants. We show the first and canonical components

(the most correlated) from this experiment for both input modalities and for both hands in
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(d) Left hand

Figure 5.7: Examples of the first canonical component using pooled data for each hand and

for each sensor. x and y axes correspond to the first canonical variate Ws and Vo respectively.

Red line corresponds to the least-squares line.

Figure 5.6 and 5.7.

The scatterplots of CCA show that there is a correlation between individual feature input and

touch location (CCA determines the weighted average (canonical roots) of x and y) for both

hands and sensors. The statistical test (Wilks’ Lambda) on the first canonical correlation

coefficient shows that the correlation is significant for left hand BoD (p < 0.001) and right

hand BoD (p < 0.001). The correlation also is significant for both left (p < 0.0001) and right

(p < 0.0001) hand using accelerometer. Based on this test, we can reject the null hypothesis

that all canonical variate pairs are uncorrelated.

The correlation is apparent when we used observations from all participants, however the

correlation coefficient is lower compared to when using individual data. Given these corre-

lations, we anticipate good touch location predictions using BoD and accelerometer sensors

values.
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(a) BoD, right, 0 ms (b) BoD, right, −200 ms (c) BoD, left, 0 ms (d) BoD, left, −200 ms

(e) Accelerometer, right, 0 ms (f) Accelerometer, right,

−200 ms

(g) Accelerometer, left, 0 ms (h) Accelerometer, left,

−200 ms

Figure 5.8: Example of touch target predictions for a random participant, for both hands and

sensor inputs at t = 0ms and t = −200ms. Black markers correspond to real targets and red

markers correspond to the predicted targets.

5.3.2 Touch Prediction

Predicting intended touch locations from BoD and accelerometer sensor inputs is the main

goal in this study (RQ2). Therefore using GP regression, the task is to find mapping f

between a set of inputs: BoD xc, accelerometer xa and touch targets y with the purpose to

infer the relationship f between sensor input x and touch targets y:

f(x) = y

By using GP we assume that regression to be non-linear. Despite CCA depicting linear

correlation, a non-linear ML model may capture more of the information since the linear

correlation is not 1. Morever, we use GP mainly due to its flexibility (i.e. choice of covari-
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ance functions). Although other techniques such as Neural Network exist, these techniques

however requires a lot of data which is one of the limitations of this study.

As described in Section 5.2.2, we would like to evaluate the prediction performance at dif-

ferent point of times – that is by varying the time where the GP is trained. This is to see

how early the GP can predict the touch target. In all experiments, the data are split into

independent training and test sets. For simplicity, individual GP models are trained for each

dimension (co–ordinate axis). A more elaborate mode would correlate the two dimensions

though (e.g. a multi-task kernel).

We used data from the first to fourth sessions as training set and the fifth session as a test-

ing set. The hyper-parameters are optimised by maximising the marginal likelihood on the

training set [98]. As described in Chapter 4.4, predictions using GP regression are proba-

bilistic, however we are only interested in estimating touch locations and thus neglecting the

probabilites (uncertainty) of the predictions. Nevertheless the probabilistic nature of GP is

exploited in the training of the hyperparameters though the evidence optimisation.

Figure 5.8 shows predictions of 25 touch targets selected randomly from the test set of a

random participant at t = 0 ms and t = −200 ms. From the plots, it shows that even if we

use data captured before the touch, GP is still able to predict touch target with a relatively

low root-mean square error (RMSE).

In Figure 5.9 and 5.10, we show the mean prediction RMSE from all participants when we

vary the time up to 500 ms before touch. In general, using BoD data, the RMSE decreases as

the thumb approaching touch target (t = 0), however using accelerometer data (Figure 5.10),

it shows that the RMSE increases slightly at −300ms bringing the RMSE to approximately

20 mm for right hand and 19 mm for left hand at −100 ms. This indicates that participant’s

hand pose may not change that much compared to hand grip when targeting targets on the

touch screen.

To evaluate the performance of the GP, we compare RMSE of all predictions with the base-

line performance and standard Android touch button size. As mentioned in Section 5.2.2,

baseline performance is the RMSE of always predicting the centre of the screen. In all cases,

we would like the GP to predict better than random. Comparing with standard Android touch

button size allows the performance to be interpreted in a more realistic context. In Figure 5.9

and 5.10, random performance is denoted by a solid red while dashed black line corresponds

to standard touch button size. From the results it is clear that all predictions remain below the

baseline RMSE for both sensor inputs. However, the RMSE is generally higher than the size

of standard touch button. This indicates that both sensor inputs can be used to predict coarse

touch locations (i.e. top right area, bottom left area, etc.), however may not be sufficient to

predict intended exact touch target precisely.

Given the two input modalities that we have, it is interesting to see how the combination
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Figure 5.9: RMSE of touch target predictions using BoD data including ± standard errors

before touch contact for x and y axis and combination of both axes for right (a, b and c)

and left (d, e and f) hand averaged across 20 participants. Solid red and black dashed lines

correspond to baseline RMSE and standard Android button size respectively.

RMSE (mm)

Hand −400ms −200ms 0ms (touch) Baseline Button size

B
o
D Left 19.67 16.61 15.80

23.36 8.50
Right 17.57 16.90 16.35

A
cc

el Left 17.81 17.55 18.54
26.97 8.50

Right 20.21 19.82 19.66

C
o
m

b Left 16.48 14.79 13.94
20.88 8.50

Right 16.66 15.53 14.93

Table 5.1: Mean RMSE of touch target predictions at 400ms, 200ms and 0ms (touch) before

touch contact using BoD, accelerometer and combination of both data. Baseline is RMSE of

predicting the centre of the screen. Button size RMSE follows the size of standard Android

touch button.

of both modalities would influence the predictions. In order to combine both modalities,

we simply concatenated both feature vectors resulting in a new 85 dimensional composite

feature vector xca. We then repeat the experiment using this new feature to predict touch

location y by varying the time before touch contact. Prediction results using composite

feature for both hands are shown in Figure 5.11. From the plots, it is clear the combination
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Figure 5.10: RMSE of touch target predictions using accelerometer data including ± stan-

dard errors before touch contact for x and y axis and combination of both axes for right (a, b

and c) and left (d, e and f) hand averaged across 20 participants. Solid red and black dashed

lines correspond to baseline RMSE and standard Android button size respectively.
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Figure 5.11: RMSE of touch target predictions using combination of BoD and accelerome-

ter data including ± standard errors before touch contact for combination of both axes for

both hands averaged across 20 participants. Solid red and black dashed lines correspond to

baseline RMSE and standard Android button size respectively.

of both modalities produces lower mean RMSE for both hands compared to using BoD or

accelerometer data alone.

Table 5.1 summarises the mean RMSE for all touch location predictions (xy) for both input

modalities and combination of both for left and right hands. Compared to accelerometer,

touch location can be predicted statistically significant better using right hand BoD data at
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400ms (p < 0.05) and 200ms (p < 0.05) before touch contact. However when using left

hand data, the difference is not statistically significant despite the BoD producing lower

mean RMSE. Similarly, the difference in mean RMSE between right and left hands is not

statistically significant for both input modalities for all time points before touch contact.

Although using composite feature greatly reduced the mean RMSE of the predictions, only

prediction at 200ms (p < 0.05) before touch contact is statistically significant.

5.3.3 Time of Touch Contact Prediction
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Figure 5.12: Distribution of 500 time predictions from both hands using BoD (a, b) and

accelerometer (c, d) examples within 0 ms – 1000 ms time range, pooled randomly from all

participants, from all sessions.

Besides predicting intended touch locations, we also are interested to find if sensor inputs

can be used to make time of touch contact predictions (RQ3). Therefore using GP regression,

the goal here is to find a mapping f between a set of input: BoD xc, accelerometer xa and

touch target contact time t.
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f(x) = t

In all experiments we pooled 2500 random examples within 0 ms to 1000 ms time before

touch range from all participants. From this, we used 2000 examples to train the GP and the

remaining 500 examples for testing. All data were standardised (mean = 0, std = 1) prior

to training and testing. Here we again used squared exponential (SE) covariance function

to train the GP (see Section 5.2.2). The hyperparameters were optimised by maximising the

marginal likelihood on the training set.

The distributions of predicted time against actual time for both both sensor data are shown

in Figure 5.12. From the boxplots, it is apparent that time of touch contact can be predicted

using both input modalities. Using BoD data, the time of touch contact for both right and

left hands can be predicted reasonably well up to 700 ms before touch contact. This suggests

that left and right grips are similar in temporal domain.

Predictions using accelerometer data also show similar performance for both hands, indi-

cating that regression for this task may be invariant on poses from any hand. As shown in

Figure 5.12 (c) and (d), the GP was able to predict time of touch contact relatively well up

to 500 ms for both right and left hands. However, regression using accelerometer data shows

more outliers compared to BoD, suggesting that accelerometer may not be as stable as BoD

grip contact.

Apart from touch location, our results indicate that both modalities also are correlated with

time of touch contact. As discussed earlier in this chapter, if time of touch contact can be

determined ahead of time, it can be used as an indicator to queue auditory and tactile touch

feedback so that they can be triggered them exactly at the predicted touch contact times. This

in return can potentially decrease the latency of feeding in the feedback into the system.

5.3.4 Sensor Relevance

In all experiments we use 24 BoD capacitive sensors to capture hand grip contact with the

purpose to predict intended touch locations. Whilst the results from Section 5.3.2 and 5.3.3

indicate that input from 24 sensors could produce low RMSE, we are curious to see the

relevance of each sensor to the GP regression task. In other words, the relevancy test could

determine which sensors are redundant and give an insight on possible minimum number of

sensors required to make predictions (RQ4).

Using the GP, the relevancy of the sensors can be determined by finding redundant mappings

between sensor input x and touch targets y. A redundant mapping is characterised by an

input (sensor) with a very large characteristic lengthscale hyperparameter γ [98]. As men-

tioned in Section 5.2.2 we use GP with squared exponential (SE) covariance function that
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(b) Right-hand, y-axis
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Figure 5.13: Mean hyperparameter characteristic lengthscale for each BoD sensor, for each

axis determined by ARD for both hands from all participants at 200ms before touch. The

horizontal black dashed line corresponds to the threshold used to determine sensor relevancy.

implements Automatic Relevance Determination (ARD) to learn which sensors are relevant

for predictions.

To determine relevant sensors, we repeat the touch location prediction experimentsment us-

ing 24-dimensional BoD feature from all participants. We used data from the first to fourth

sessions as training set and the fifth session as testing set. SE covariance function with ARD

has a separate lengthscale for each input dimension m = 24, for a total 25 hyperparameters

(including signal variance σ2 hyperparameter). All lengthscale and signal variance were ini-

tialised to 1 (in log space). This is due to the fact that the input has been re-scaled to [0, 0.5].

The signal variance was set to 1 to reflect the geometry of the screen which is bounded. We

optimised the hyperparameters by maximising the marginal likelihood on the training set.

We show the mean sensor hyperparameter lengthscales from all participants for each axis

at 200ms before touch in Figure 5.13 (a) and (c). Notice that some sensors have very large
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Sensor ID

Hand 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

x

Left ◦ ◦ ◦ ◦ ◦ ◦ × ◦ × × ◦ × ◦ ◦ × ◦ × × × ◦ ◦ ◦ × ◦
Right ◦ × ◦ ◦ × ◦ × ◦ ◦ × ◦ ◦ × ◦ × × ◦ ◦ × × × × ◦ ◦

y

Left ◦ ◦ ◦ ◦ ◦ ◦ × ◦ × × × ◦ ◦ ◦ × × × × × × ◦ ◦ ◦ ◦
Right ◦ ◦ ◦ ◦ ◦ ◦ × ◦ ◦ × × ◦ ◦ ◦ ◦ × ◦ ◦ × × × × ◦ ◦

Table 5.2: Tabulation of BoD sensors according to their lengthscale for each axis and hand.

Circle corresponds to a sensor with lengthscale smaller than the threshold lengthscale (rel-

evant). Cross corresponds to a sensor with lengthscale larger than the threshold lengthscale

(redundant).

hyperparameters lengthscales, particularly for x-axis. Table 5.2 shows the tabulation of rele-

vant and redundant sensors by comparing individual sensor’s lengthscale with the threshold

lengthscale (mean lengthscale from all 24 BoD sensors). For convenience, we marked (red)

the position of relevant sensors in Figure 5.14 (a) and (b). From the diagram, it appears that

these sensors are located around the palm and finger tips areas.

To test whether fewer sensors can be used to predict touch location, we again repeat the ex-

periment in Section 5.2.2 using only the relevant BoD sensors for x-axis and y-axis estimated

at 200ms before touch contact. Results from this experiment are shown in Figure 5.15. In

comparison to the results with all sensors (Figure 5.9), the RMSE curve decays quite linearly

with time before touch contact when using fewer sensors. This is expected since using fewer

sensors resulted in information loss, particularly when we varied the time further back be-

fore touch. The summary of the predictions are given in Table 5.3. From the table, it shows

that the lowest mean RMSE at 200ms before touch for right hand is given by sensors for x–

axis while for left hand, this is given by y–axis. These are comparable and not significantly

different from the mean RMSE of predictions with all sensors at similar time before touch

contact.

RMSE (mm)

Hand 400ms 200ms 0ms (touch) Baseline Button size

x

Left 20.58 18.73 17.40 26.46
8.50

Right 20.01 17.67 15.24 22.84

y

Left 19.53 16.74 15.80 21.84
8.50

Right 23.75 21.62 18.31 26.78

Table 5.3: Mean RMSE of touch target predictions at 400ms, 200ms and 0ms (touch) before

touch contact using only the relevant BoD sensors. Baseline is RMSE of predicting the

centre of the screen. Button size RMSE follows the size of standard Android touch button.

Our results indicate that it is possible to use fewer than 24 sensors to make touch location

predictions without impacting the performance significantly. However the location of these
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Figure 5.14: Position of relevant BoD sensors (marked red) from Table 5.2 for x- and y-axis

prediction for right (a, b) and left (c, d) hands determined using GP with ARD.

sensors is crucial in order to capture all plausible grips to predict touch locations. In most

cases, using fewer sensors is favourable in mobile devices since it could simplify the sensing

mechanisms, reduce power consumption as well as minimise the cost of manufacturing.

Furthermore, sensor reduction also could help to simplify the learning algorithm, in our case

the GP, to learn the mappings efficiently.

5.4 Online Touch Prediction System

To demonstrate how our technique would perform in the actual product, we implemented an

online prediction system on the N9 in real-time. Due to N9’s limited computational power,

we wrote a simplified version of GP predictor based on Python. Similar to the pre-processing

technique described in Section 5.2, we configured the N9 to sample data at 100Hz and ap-
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Figure 5.15: RMSE of touch target predictions using relevant sensors for x– (a, b) and

y–axis (c, d) as tabulated in Table 5.2, including ± standard errors before touch contact for

combination of both axes, for both hands averaged across 20 participants. Solid red and black

dashed lines correspond to baseline RMSE and standard Android button size respectively.

plied Savitzky-Golay smoothing filter to the capacitive signals prior to predicting every touch

location. The predictor was based on the BoD only GP models, which were trained offline

using data pooled from all participants.

We ran the prediction in two modes: horizontal and vertical. This was done by splitting the

screen equally into two halves, and predict which half the thumb was going to touch. The

system will highlight the half it is predicting (blue/red) before the thumb touches it, and stop

predicting when it detects touch contact. We let the participants use the system, however no

formal evaluation was made on the predictions.

Our online prediction system demonstrates how implicit BoD sensing can be used to predict

touch location in real-time. As shown in Figure 5.16, the blue and red bars on the the screen

represent the probable area that is going to be touched, which can contain many UI compo-

nents such as buttons, hyperlinks in the web browser and icons. As discussed earlier in this

chapter, we can pre-load the associated content to these respective UI components as soon

as we know the area to be touched, thus reducing launching/loading times.
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(a) Horizontal (b) Vertical

Figure 5.16: Real-time prediction using simplified GP predictor on the N9 in (a) horizontal

and (b) vertical modes.

5.5 Conclusion

In this study we presented a technique to predict screen touches from BoD grip and hand

pose. We collected touch–grip/pose examples from 20 participants and we formulated four

main research questions that we answered through scientific experiments.

In the first question, we are interested to test if there is any relationship between touch loca-

tions and sensor inputs (RQ1). To answer this we measured the correlation between multi-

dimensional sensor inputs and touch location (x, y coordinates). The analysis revealed that

there is a linear correlation in both individual data and data pooled from all participants.

Given the relationship shown in the correlation analysis, we are curious to see if we can

make touch location predictions ahead of time from sensor data, which is our second research

question (RQ2). Even tough there is a linear correlation, a non-linear ML model may capture

more of the information. Thus by using machine learning, we trained a GP and made touch

location predictions on a per– and pooled–participant basis. Our method achieved RMSE

of 16mm using BoD data and 17mm using accelerometer data extracted at 200ms before

touch. With this level of error, we conclude that touch location prediction can be made from

sensor data.

Apart from touch locations, we are also intrigued to see if time of touch contact can be

predicted from sensor data (RQ3). In order to answer this, we performed another experiment

where we trained the GP to learn mappings between sensor data and time of touch contact.

Results show that using BoD data, time of touch contact can predicted fairly well up to

500ms before touch. This shows that apart from touch locations, sensor data can also be
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used to predict time of touch contact.

Finally we would like to investigate whether every BoD sensor is relevant to the predic-

tion task (RQ4). This is answered through an experiment using GP with ARD covariance

function. From this experiment we show that not every sensor is relevant and therefore can

be effectively removed from the input. Moreover, we also show the location of the relevant

sensors on the BoD PCB layout to illustrate the effective sensor location to capture hand

grip.

Besides achieving interesting result in touch prediction, our technique could be applied to

extend user interfaces (e.g. with mid-air taps) or to improve error correction (e.g. as a more

robust measure of finger slip), and it has immediate and compelling application to reduce

latency in mobile applications.
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Detecting Swipe Errors on

Touchscreens Using Hand Grip and

Motion

Part of the work presented in this chapter has been published at the Conference on Human

Factors in Computing Systems (CHI) 2016.

Summary

We show that when users make errors on mobile devices they have immediate and distinct

physical responses that can be observed with standard sensors. We used three standard cog-

nitive tasks (Flanker, Stroop and SART) to induce errors from 20 participants. Using sim-

ple low-resolution capacitive touch sensors placed around a standard mobile device and the

built-in accelerometer, we demonstrate that errors can be predicted at low error rates from

micro-adjustments to hand grip and movement in the period shortly after swiping the touch-

screen. Specifically, when combining features derived from hand grip and movement we

obtain a mean AUC of 0.96 (with false accept and reject rates both below 10%). Our re-

sults demonstrate that hand grip and movement provide strong and low latency evidence for

mistakes. The ability to detect user errors in this way could be a valuable component in fu-

ture interaction systems, allowing interfaces to make it easier for users to correct erroneous

inputs.

6.1 Introduction

Touch gestures are a common way of interacting with smartphones. Common examples are

scrolling through a phonebook by flicking upwards, or accepting or rejecting a call by swip-

ing left or right whereby zooming in and out a photo is achieved by pinching and spreading
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using two fingers on the touchscreen. Even though interactions can be initiated using other

methods such as voice commands, touch gestures are likely to remain as a preferred method

since they are analogous to the controls used in desktop environments, making them easier

to understand [56].

Despite the simplicity of touch gestures, users often make mistakes when interacting with

mobile devices [84], particularly when in attention-demanding situations in mobile contexts.

With simple swipes, these mistakes can be both errors in gesture performance and recogni-

tion, and higher-level cognitive errors. Detection of these mistakes could be used to support

recovery from error. For example, an error-detecting system could provide additional verifi-

cation to check if the selection was as intended. This process requires timely detection of an

error signal – a sensor measurement which correlates strongly with user error.

To date, most techniques to identify interaction errors in HCI have been done through EEG-

based brain-computer interface (BCI). This is achieved by observing the presence of error-

related negativity (ErrN), a sub-component of error-related potential (ErrP) [39, 34, 20].

This is a distinct electrical variation in the EEG occurring 100-300ms after an error has been

made [89]. Over the years, BCI equipment has been simplified and made available commer-

cially, allowing this technology to be more approachable by consumers for everyday use. For

instance, Vi and Subramanian have used an off-the-shelf EEG headset to detect error-related

negativity (ErrN) when a user makes a mistake [136]. Using a similar headset, the ErrN

signals present when observing someone else making a mistake are described in [137].

Whilst using brain waves to detect error is well established, it is not a practical approach

for most interactions. There is less work on physiological signals and body channels which

might produce similar signals when a mistake is made (other than measurements such as

GSR or heart rate modulations, which tend to be too slow to identify individual errors in an

interaction [122]).

6.1.1 Swipe Errors Detection

In this study, we investigate whether subtle fluctuations in hand grip and movement can be

used to detect cognitive errors in gesture based interfaces on a mobile phone.

In particular, we are interested to see if hand grip and movement contain sufficient informa-

tion to reliably detect errors from swipe gestures. In order to do so, we collect swipe gestures

from three swipe-based cognitive tasks using a prototype mobile phone and train classifiers

to distinguish be tween error-related and correct swipes. We evaluate the performance of

both input modalities, and the combination of the two over different period after the swipe is

made.
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We hypothesise that when an error is made on a touchscreen interface, there are physical

changes in the grip and pose of the device, such as gripping the phone more tightly or tilting

it. Distinctive modulation of grip as a function of emotional state was detected by Coombes

et al. [31] and Noteboom et al. [92] found that pinch grasps were modulated by the potential

unpleasant stimuli. Our hypothesis is that when users realise they have made such errors

they induce similar modulations of their grasp.

These post-error ’flinches’ might be detectable with contact and inertial sensors on the de-

vice. We set out to experimentally demonstrate the existence and character of these signals,

by augmenting a standard device with wraparound capacitive sensing (and built-in inertial

sensing), and designing a series of onscreen tasks to induce cognitive errors.

We use sensors that can be practically integrated into mobile devices: ultra-thin, lightweight,

low-cost and low-power capacitive sensors alongside standard inertial sensors. This makes

our approach suitable for devices such as tablets and smartphones which could serve as a

foundation for sensor-based gestural error detection technique for mobile device.

6.1.2 Example Use Case: Mobile Application

(a) (b)

Figure 6.1: Screenshots of Android Tinder application. Tinder relies heavily on swipes –

(a) swipe right to accept or (b) swipe left to pass on. Undo features are only available for

premium users.

Tinder1 is a popular dating application that is based entirely on swipes; left to recom-

mend/pass the person to someone else or right to like the person. In the event of a mistake, a

user may swipe to the wrong direction, resulting in liking or disliking someone unintention-

ally, a potentially sensitive and embarrassing mistake. This occurs so frequently that Tinder

1https://gotinder.com

https://gotinder.com
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has added a (premium) undo feature to the application2. Prediction of error could be used to

identify if the swipe that the user just made was intentional or unintentional, allowing users

to retract the swipe without explicit undo. A more sophisticated input could have the user

simply reverse the direction of a swipe to cancel a detected possible error.

A similar approach could be applied to common scrolling–based applications such as contact

lists. While flicking through a list of names, people often miss the name they were going for.

If this ’overshoot’ error can be detected, the scrolling can be slowed and gently reversed to

transparently recover from the slip. The detection of errors also has applications in instru-

mented usability and analytics, for logging likely mistakes or confused actions on the part of

the user. Developers could use this to optimise error-prone elements of their applications.

6.1.3 Research Goals

In this chapter we investigate the subtle hand movements that occur following mobile device

gestures when an error is made. We examine BoD capacitive and device motion to infer

mistakes in interaction. The underlying hypothesis is that after making a mistake, a user

will modulate their grip, affecting the contact with the phone and its orientation. We inves-

tigate whether these subtle hand-micro movements captured by BoD capacitive sensors and

accelerometer can be used to reliably recognise user error. In order to establish our find-

ings, we organise this study around the following research questions in which we attempt to

answer through a number of experiments:

RQ1 Can we use hand grip and hand movement to detect swipe errors?

As mentioned earlier in this chapter, we are interested to see if swipe errors can be

detected from two input modalities 1) BoD hand grip and 2) hand movement. In

particular, we would like to measure the performance of this method in recognising

swipe errors during the course of interaction. Section 6.2 describes the experiment to

answer this question and we present the results in Section 6.4.

RQ3 Can we generalise this method across users and tasks?

Our investigation involves a user study with different swipe-based cognitive tasks.

Based on this, we are interested to see if a generic detection model can be established

to detect swipe errors across all users and across tasks. In order to answer this question,

we run an experiment in Section 6.2, whilst the results are shown in Section 6.4.

RQ4 Can we improve the detection by combining both input modalities?

Apart from evaluating detection performance for each input modality, we are curious

to know if combining both inputs could lead to performance gain. We demonstrate

2https://www.gotinder.com/faq

https://www.gotinder.com/faq
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our multimodal detection approach in Section 6.2 and we compare our results with

individual input approach in Section 6.4.

RQ5 How much of data is required to detect swipe errors accurately?

Our approach detects swipe errors shortly after they happened. To quantify this, we

measure detection performance as a function of time. This also indirectly quantifies

the amount of data that needs to be observed in order to detect swipe errors accurately.

We show the detection performance of by varying the time in Section 6.4.

There are two main factors that motivate using BoD and accelerometer. First, by leveraging

built-in sensors, we are able to avoid using additional peripherals (i.e. headsets) to capture

error-related signals, making it more practical for real devices. Second, since both BoD and

accelerometer sensors can be built into a device at a low power cost, the sensors can give an

always available channel for detection.

In Section 6.2 where we describe our study in detail, including the experimental protocol

used to induce users into making swipe mistakes. In Section 6.3, we explain our swipe error

detection method. In Section 6.4, we present the main findings based on the research ques-

tions outlined previously. We discuss and give insights about our technique in Section 6.5

before we finally conclude this chapter in Section 6.6.

6.2 Experiment

This section discusses about experiments that we designed to answer research questions we

established earlier. In general, we investigate if swipe errors can be detected using BoD grip

and hand movement sensor data. We answer this question through a user study that involves

acquisition of swipe response samples from cognitive tasks using the N9 prototype.

6.2.1 Hardware

As mentioned in previous chapters, we used a custom BoD capacitive sensors wrapped

around a Nokia N9 (see Section 3.3 for details) to capture hand grip. In contrast to tactile

sensing used in [49], we opted for capacitive sensing technology because it is a well proven

touch sensing technology which is practically implementable on mobile devices. The pro-

totype was configured to sample data from all 24 BoD and built-in accelerometer sensors

at 150Hz, with 16 bit resolution. A Python client application was developed on a PC to

coordinate the data acquisition from the prototype.



88

CHAPTER 6. DETECTING SWIPE ERRORS ON TOUCHSCREENS USING HAND

GRIP AND MOTION

6.2.2 Cognitive Tests

(a) Flanker (b) Stroop (c) SART

Figure 6.2: Example of incongruent stimulus used in Flanker and congruent stimuli in Stroop

and SART tasks. In (a) and (b) the correct swipe direction would be right, whereby in (c) it

would be left.

To stimulate error-related responses, we designed three experiments that require significant

cognitive effort, based on well-established protocols in the psychology literature. The first

task was based on the Flanker task [38] where the goal is to specify the direction of a central

arrow that is bordered by flanking arrows. There were two types of arrows, with each type

had two stimuli: congruent stimuli (<<<<< and >>>>>) and the incongruent stimuli

(<<><< and >><>>). We also used no-go stimuli (♦♦ <> ♦♦) where no specification

of arrow direction is required.

Our second experiment is based on Stroop task [129]. The stimuli used in this task were

texts of colours (i.e. Blue, Yellow, Green) where the objective is to determine whether the

word matches the colour used by the text. Congruent stimuli are matching colour/word and

incongruent stimuli otherwise. For example, the word blue written in blue is a congruent

stimuli whilst the word green written in blue is incongruent. For no-go stimuli we used

unrelated words within the context of colour (i.e. Book, Grin, Back).

The final task used Sustained Attention to Response Task (SART) [105]. There were two

conditions used in this task: Non-Zero and Specific. In the former, a series of 6 digits is

presented containing mostly zeros. The objective is to determine if the series contain a non-

zero number. In the Specific condition, a series of 6 digits is presented containing different

non-zero digits. Here the goal is to determine if a particular digit appears in the series. In

contrast to Flanker and Stroop, there is no no-go stimulus used in SART.

We developed a Python application on the N9 to run the experimental software. Unlike

classic computer-based cognitive tests which typically use a physical keyboard or mouse,

we adapted the tests to use standard swipe-gestures on the N9 touchscreen. Participants

responded to the stimulus by swiping the N9 touchscreen horizontally. We picked swiping
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over tapping since swiping does not require us to place occluding buttons on the stimulus

screen and swiping is a very common task on modern touchscreen devices. We mapped the

rightwards swipe for congruent stimuli and left swipe for incongruent stimuli for the SART

and Stroop tests. For Flanker, however, the direction of swipe is based on the direction of the

central arrow regardless of the stimulus type. Participants were required to withhold their

responses (i.e. not touch the screen) when no-go stimuli are presented.

6.2.3 Swipe as a Response

Since our experiments used swipes rather than key presses from dedicated buttons, it is

important to clearly define valid swipes. For this purpose, we defined a swipe as a touch

stroke with length of at least 30 pixels (3.04 mm). The direction of the swipe is determined

by measuring the angle of the straight line connecting the start and end points of the swipe.

Duration of swipes was required to be within 50 − 150ms. The lower limit is to ensure that

the swipe was not accidental (click/tap) and the upper limit is to prevent participants from

leaving their finger on the touchscreen.

6.2.4 Participants and Data Acquisition

N = 20 participants, 18 right-handed and 2 left-handed were recruited locally after thhe

formal ethics has been granted. This included 16 males and 4 females, aged between 25−35

(mean = 29.4, sd = 3.15) each with at least one year of experience in using a smartphone.

They performed Flanker, Stroop and SART tests whilst seated in a lab, with the phone in a

single handed grip, swiping with the thumb in a portrait orientation. All participants were

briefed and given a practice session before the main experiment.

For each touch event, we recorded timestamps, accelerometer and BoD capacitive readings

for subsequent offline analysis. Each recording was performed in three sessions, separated

by an approximately 5 minute break. This was done by asking participants to put down

the phone on the table at the end of every session. This ensures that we are not observing

temporary grip patterns, but a range of plausible grips for each user.

Each session consisted of 30 trials (swipe responses), resulting in 90 trials in total for each

of the three tasks and a total of 270 trials per participant. Each trial begins with a start

screen. Prior to showing the stimulus, a 2000ms waiting time is given to allow participants

to prepare themselves. We used a red circle at the centre of the screen that would reduce its

radius relative to the remaining waiting time. The stimulus is shown immediately after the

waiting time. Participants were required to respond to the stimulus within a designated time.

We fixed the response time to 1000ms and reduced/increased the time based on the error rate
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after the 10th trial. We reduce the time by 100ms if the error rate stays below 25% or increase

it by the same amount if the error rate is higher. The minimum and maximum response time

were capped at 100ms and 1000ms respectively. This adaptive procedure induces errors at

a consistent level across participants of varying skill and performance. A notification of

correct or incorrect responses was given immediately at the end of each trial. We used plain

black ’Incorrect’ and ’Correct’ texts on white background as feedback stimuli. This stimuli

was shown for 2000ms before returning back to the start screen for next trial.

Overall experiment time ranged from 25 to 43 minutes per participant (mean = 33.74, sd =

5.89). A single Flanker session (30 trials) ranged between 1.9 − 2.4 minutes (mean = 2.14,

sd = 0.12), Stroop between 1.88−2.35 minutes (mean = 2.11, sd = 0.14) and SART between

2.5− 2.8 minutes (mean = 2.64, sd = 0.08).

Table 6.1 breaks down the complete set of trials over all participants. On average, perfor-

mance across the three trials are broadly equivalent with many more correct swipes than

incorrect. The number of mistakes per user varies quite dramatically. For the SART test,

users have between 0 and 28 errors. Such an imbalance between the two classes poses a

challenge to classification. We discuss the approach we took to overcome class imbalance in

Section 6.4.

6.3 Analysis

The following section explains the method we used to analyse swipe responses recorded

during the user study. The main objective of this investigation is to detect errors in swipe

responses. We use standard machine learning classification approach where the goal is to

solve a binary classification problem: that is to distinguish between mistake (positive class)

and non-mistake (negative) swipe responses.

6.3.1 Feature Extraction

The prototype produces 24 capacitive and 3 acceleration time series for each swipe action

(one time series per sensor). The BoD sensors in our prototype are occasionally affected by

noise spikes which we first remove and interpolating the gaps left by the spikes with a linear

fit. This method is sufficient since all spikes in the signal were short (mean = 4 samples).

For each trial we extract a time segment consisting of 1000ms before and after the feedback

(notification to the user of whether or not they have made a mistake). In order to create a

fixed length representation from the time series (the sampling rate from the sensors exhibited

small variability) sampling rate was down sampled linearly to 100Hz. Thus we are left with

an equal length of 200 x 24 BoD and 200 x 3 accelerometer time series vectors (100 samples
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before and 100 samples after the feedback (notification)). Both BoD and accelerometer

signals were smoothed using an 3rd order Savitzky-Golay filter with frame size of 5. This

applies a very mild low-pass filtering.
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Figure 6.3: Example of the BoD total magnitude signal showing four consecutive trials for

one participant in the Stroop task. The vertical lines denote the key moments in the trials.
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Figure 6.4: 20 swipe trials overlayed from one participant, from the Stroop task before (a,

c) and after normalisation (c, d). Vertical dashed line correspond to the moment when the

feedback was shown to the user.
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The time series typically exhibited long term trends (e.g. gradually increasing grip strength

across a session). An example is shown in Figure 6.3. To remove this, data was normalised

for each trial by subtracting the mean of the values before feedback from the vector (i.e. for

each sensor, the values were normalised to that the time series had zero mean for the first

100 values). Figure 6.4 shows the difference before and after data normalisation.

In all experiments we compared keeping all of the distinct sensor values as well as using the

total magnitude (the square root of the sum of squared values). The total magnitude over-

comes the problem of handedness (for both BoD and accelerometer) and gives, for BoD, a

value that can be considered a proxy for the grip strength. Comparison of the individual sen-

sors and the total magnitude can therefore help us to decide whether the classification signal

is based on grip strength (total magnitude) or also requires grip shape (individual sensors).

6.3.2 Classification

The primary goal of this study is to measure the extent to which hand grip and hand move-

ment can distinguish swipes that are related to mistake. This is as a binary classification task

where the problem is to determine whether the swipe belongs to either the positive (mistake)

or negative class (non-mistake/normal). As well as investigating if classification is possible,

we are interested in investigating classification performance when we vary the time. To this

end, in all experiments we investigate features derived from 6 different time segments. Each

segment starts at −100ms (100ms before feedback) but has a different end point (0s, 200ms,

400ms, 600ms, 800ms and 1000ms). In all experiments, the data is split into independent

training (70%) and testing (30%) sets. Due to very small incorrect response examples in

every session, we randomly partitioned incorrect response data instead of partitioning them

by session. To perform classification, we used Support Vector Machine (SVM) and Random

Forests (RF) classifiers implemented in Matlab (for SVM we used MATLAB’s libSVM tool-

box [18] whereas for RF, we used Matlab’s TreeBagger function). The same train/test

splits were used for the different classifiers to facilitate paired statistical testing.

RF is an ensemble approach for approximating the optimal decision boundary function be-

tween classes. Since it is effectively non-parametric, RF can be a sensible choice if no prior

knowledge is available about the underlying model which is the case here. To classify data

using RF, we used an ensemble of 100 trees.

The Support Vector Machine (SVM) classifier is a discriminative classifier that creates a

separating hyperplane between the classes in a feature space defined by a kernel function. An

in-depth description of SVM is given in Section 4.3.1. We use SVM because it has shown to

be able to identify ErrNs [136, 137] and also exhibits general state-of-the-art performance in

many data classification problems (in particular for large numbers of features and imbalanced
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class, as is the case here). For classification using SVM, we used Gaussian (RBF) kernels

throughout. The form of the kernel function is given in Section 4.3.1.

As well as being interested in the relative performance of BoD and accelerometer features,

we also investigated combining the data sources (BoD and accelerometer) through kernel

combination with the SVM and feature concatenation for the RF. In the kernel combination

approach, a weighted sum of the two kernel matrices (BoD and accelerometer) is used, with

an additional parameter a controlling the influence of each kernel. We explain more about

this procedure in Chapter 4.3.1.

When combining Touchstroke and BoD features into the same classifier, we used a linear

combination of kernels with an additional parameter a that controls the influence of each ker-

nel where 0 ≤ a ≤ 1 with 0 represents only BoD kernel and 1 representing only Touchstroke

kernel. Optimising a allows us to measure the relative contribution of each data modality.

We explain more about this procedure in Chapter 4.3.1.

Optimal parameters γ and C were selected via 3-fold cross-validation method on the training

set with AUC as selection criteria. When optimising a, we fixed the γ parameter for each

kernel to their respective optimal values and searched for the best a and C combination.

6.4 Results

The following results are organised according to the research questions (see Section 6.1.3).

Prior to reporting our main findings, we first show the differences between swipes. This is

to give an insight into what distinguishable features are contained in the signals. In the first

experiment we would like to answer whether hand grip/motion from swipe responses can be

used to detect swipe mistake (RQ1). The second experiment answers whether our approach

can be generalised (RQ3) whereby in the third experiment we show whether combination

of both inputs could lead to an improved error detection (RQ4). To evaluate classification

performance, we use Area Under the ROC Curve (AUC), False Accept Rate (FAR) and

False Reject Rate (FRR). We use AUC of random classifier as baseline to all classification

results, computed by permuting training data labels. See Section 4.6 for a review on these

performance evaluation metrics.

6.4.1 Preliminary Analysis

Before performing any classification, we visualised the mean trial of normalised time series

across all participants. The time series can be seen in Figure 6.5 for BoD sensors (top three

plots) and accelerometer (bottom three). In all plots, the blue lines show the mean (plus and

minus standard error) for all correct swipes and the red for all incorrect swipes. Various
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Figure 6.5: Mean total magnitude of signals from the 24 BoD capacitive sensors (a, b, c) and

3-axis built-in accelerometer sensor (d, e, f) from all participants. Blue and red solid lines

correspond to correct and incorrect responses respectively. The x axis is the time before and

after the notification moment. The y axis is total magnitude of the sensors. The blue and red

dashed lines are ± standard error of the mean total magnitude. The black dashed line is the

feedback moment.

interesting features are visible in these plots. Firstly, there appears to be a clear difference

in the lines for the Stroop test, suggesting that there are signals that could be classified to

detect errors. Secondly, the differences appear to start before feedback (dashed vertical line),

suggesting that users know when they have made a mistake. Such changes are not so visible

in the other tests (there is a small difference in the accelerometer plot for Flanker but nothing

for SART) suggesting that the different tests reveal different physical responses from the

participants. Note also that the BoD features for Flanker errors have quite large standard

error. This is due to the relatively small number of errors in this test (see Table 6.1).

6.4.2 Experiment 1: Can We Classify Swipe Errors Automati-

cally?

The grand average plots of Figure 6.5 suggest that there are systematic variations in the

measured grip and pose when errors are made. To determine whether this could be reliably

distinguished automatically, we trained classifiers to recognise error swipes.

Our first approach trained user-specific classifiers. The classifiers were trained using both
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Figure 6.6: Classification results using individual model averaged across all participants for

BoD (a, b, c) and accelerometer (d, e, f). Solid and dashed lines correspond to mean AUC

from all participants (with ±standard errors) for SVM (green) and random forest (purple)

classifiers respectively. Red solid line is the reference baseline.

the total magnitude and multi-sensor features. The results of this experiment are shown in

Figure 6.6. It shows that error swipes can be classified automatically from the sensors we

have, with AUCs well above baseline performance. Here the baseline remains 0.5 because

AUC under the ROC is insensitive to class imbalance. There is also significant user variation

in classification performance, possibly due to the large variance in numbers of errors made

by users.

In all cases, observing longer periods of sensor data did not improve classification, and per-

formance 200ms after feedback was comparable with feedback including subsequent time

points. In particular, we chose 200ms to denote time in the actual use-case (e.g. Tinder),

where a user is unlikely to be able to correct the swipe manually.

We found that the multi-sensor features (time series of 24 pad values) gave better perfor-

mance than total magnitude for the BoD sensors. The RF performed better than the SVM for

Flanker and SART, giving AUC of 0.80 and 0.70 respectively after 200ms of data. In Stroop

however, the performance of RF and SVM is similar, producing classification AUC of about

0.65 after 200ms observing BoD data.

For the accelerometer features, total magnitude performed much better than individual axis
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classification, with mean AUC of 0.80 at 200ms in all tests, compared to 0.60 at 200ms for

individual axes. This may be due to the device being held at slightly different orientations,

leading to big offsets in the individual axis data, but having no effect on the total magnitude of

the accelerometer vector. The SVM performs better than RF for accelerometer classification,

particularly in Stroop and SART tests.

The RF performance is very poor for Stroop and SART accelerometer classification, possibly

due to the very small number of swipe error examples available for these tasks. We required

at least 5 training examples of both correct and incorrect responses to train the classifiers.

Due to insufficient numbers of error swipe examples, we could not train classifiers for some

participants. We used 8 users for Flanker, 15 for Stroop and 18 for SART.

6.4.3 Experiment 2: Can We Build Classifiers That Do Not Re-

quire Individually Trained Models?
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Figure 6.7: Classification results using pooled model for BoD (a, b, c) and accelerometer (d,

e, f). Solid and dashed lines correspond to AUC (with standard errors) for SVM and random

forest classifiers respectively. Solid red line is the reference AUC baseline.

Having to train a specific classifier for each potential user is problematic in real-world use: it

requires a potential user to explicitly enroll in the system, online training must be performed,

and we must know which user is using the device at all times. A universal, user-insensitive
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model would be much more useful. We set out to determine if all participants share common

error-related grip or hand motion patterns.

To determine if a general model can be trained to classify error swipes, we constructed classi-

fiers using a leave-one-user-out (LOUO) strategy. Through this strategy, we used a particular

participant swipe data as test data and trained the classifiers using swipe data sampled from

the other 19 participants. Our results are summarised in Figure 6.7. Surprisingly, the general

classification model performs much better than the individual model, with AUCs of > 0.9

for RF classification of BoD features 200ms after feedback. This improvement is likely to

be due to the increase in quantity of training data available.

Again, we found that the best classification performance for BoD used the multi-sensor fea-

tures while total magnitude worked best for the accelerometer. We also again found that

additional time periods after 200ms did not significantly improve classification performance.

For BoD the RF has an AUC > 0.90 at every point of time after the feedback in all tests. This

suggests that there is highly discriminative hand grip pattern that happens early during error

swipes. For accelerometer, the SVM matches the AUC of RF 100ms after the feedback but

drops slightly when more data points is observed by the classifiers particularly at 200ms after

the feedback onwards in Stroop and SART tests. In contrast, the AUC using RF increases

when more data point is used to build the classifiers.

6.4.4 Experiment 3: Can We Improve Performance by Fusing

The Accelerometer and BoD Sensors?

Given that we have both the accelerometer and BoD sensors, we wanted to test whether

they were providing the same information or if they had separate elements; and if there was

separate information, could this be used to improve classification performance. We built

composite classifiers using the best performing feature of each input modality: multi-sensor

for BoD and total magnitude for accelerometer.

For the SVM, we can use a weighted linear combination of kernels, parameterised by a the

kernel weight a (0=accelerometer only to 1=BoD only). For the RF we simply concate-

nate the feature vectors. The relative influence of each input cannot be assessed with this

approach.

Table 6.2 shows the overall performance of the classifiers with the composite features. The

random forest has better performance overall, and suffers much less from the class imbalance

problems that cause the SVM to have extremely high FRR rates and very low FAR rates.

The results are summarised in Figure 6.8. Composite classifiers give better AUCs than either

accelerometer or BoD for both individual and pooled models. The best AUC for individual
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Figure 6.8: Classification results using combination of BoD and accelerometer kernels for

individual (a, b, c) and pooled (d, e, f) models. Solid green and purple lines correspond to

AUC for RF and SVM classifier respectively. Dashed lines are the standard errors. Reference

AUC baseline is represented by the solid red lines.

Task Accuracy (%) FAR (%) FRR (%)

S
V

M

Flanker 78.9 0 2.1
Stroop 80.7 15.2 23.2
SART 89.3 0.4 20.9

R
F

Flanker 95.8 5.3 3.2
Stroop 91.8 8.6 7.7
SART 89.8 10.7 9.8

Table 6.2: The overall performance of the classifiers for the pooled model in terms of accu-

racy, FAR and FRR at t = 200ms with the composite features.
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Figure 6.9: Optimal mean kernel weight a for composite SVM classifier as a function of

time (second) for individual (red) and composite (blue) models.
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models uses the SVM classifiers, producing AUC > 0.80 in all tests. For pooled model, the

RF classifiers outperform the SVM in all tests, producing AUCs > 0.95 for all time periods.

For the SVM model, we found that the best composite kernel weight a varied with the task:

the Flanker test performed better with a high BoD weighting, while SART and Stroop per-

formed better with a lower BoD weighting. As shown in Figure 6.4.4, optimal a was neither

0 nor 1.0, indicating that the classifier found independent information from both sensors.

In order to investigate if the optimal a is statistically significant, we ran a Wilcoxon paired

signed-rank test (p–value threshold = 0.05) between the balanced composite features (a =

0.5) and the individual features for each BoD (a = 1.0) and accelerometer (a = 0) features

at t = 200ms following feedback. The null hypothesis is that there is no improvement in

performance using composite features.

From the test we found out that there were no significant improvements in all tests for com-

posite features versus accelerometer. However for BoD, the improvement was significant in

SART (p < 0.01) but not in Flanker and Stroop.

For the individual user models, we found statistically significant improvements for SART

and Stroop tests for BoD versus composite (p < 0.001 and p < 0.001 respectively). Im-

provement over accelerometer alone was not statistically signficant for any task with the

individual models. For the pooled model we found a statistically significant improvement

over accelerometer alone for Flanker and Stroop (p < 0.01 and p < 0.05 respectively).

For the RF model, statistically significant improvements with the composite model were not

observed for the individual or pooled models over either BoD or accelerometer. We also

compared performance of the SVM and RF classifiers on the composite features, again with

a paired Wilcoxon signed-rank test (p–value threshold = 0.05). For the pooled models,

the RF has significantly better AUC for Flanker, Stroop and SART (p < 0.05, p < 0.01,

p < 0.01 respectively). For individual models, the SVM has significantly better AUC for

SART (p < 0.05), but there is no significant difference for Flanker and Stroop.

6.5 Discussion

In this work, we show that swipe errors from cognitive tasks performed in a controlled lab

setting can be classified automatically using hand grip and movement data. In particular we

show that our composite classifiers can classify swipe errors with AUC ≥ 0.80 at 200ms

after feedback (Figure 6.8). In terms of reaction time, it is highly unlikely for a user to be

able to react to any stimuli within 200ms after they were shown [64]. In fact we show that

our technique can achieve similar performance earlier than 200ms, that is at t = 0ms and

t = 100ms. Therefore based on this level of performance, we believe that our technique can



6.5. Discussion 101

be useful for a system/application that requires instantaneous swipe errors detection (e.g.

Tinder), before the user be able to correct themselves. By detecting the error early, it is

possible to verify them with the user later.

Test

Back-of-Device Accelerometer

Flanker Stroop SART Flanker Stroop SART

T
ra

in

Flanker 0.95 0.57 0.48 0.98 0.86 0.89
Stroop 0.60 0.96 0.69 0.97 0.96 0.98
SART 0.49 0.68 0.92 0.80 0.84 0.99

Flanker + Stroop + SART 0.92 0.99 0.99 0.99 0.99 0.99

Table 6.3: Cross-task classification AUC using RF classifiers constructed using back-of-

device (multi-sensor) and accelerometer (total magnitude) features at t = 200ms after the

feedback.

To this end, we evaluated the classification performance based on swiping task. It is useful

to see if the error signals are indeed task-specific or generic across tasks. To investigate this

we ran another experiment by evaluating the classification using mismatched models. As

shown in Table 6.3 training on specific specific models and testing on mismatched tasks (e.g.

training on Flanker and testing on SART) has very good performance for the accelerometer

(AUC 0.80 − 0.99) however weaker for the BOD, possibly due to the high dimensional

features with relatively small training sets. Training with a multi-task model significantly

improves test performance over training on just the matching task (p < 0.05, H0 = test

performance using mismatched task does not lead to improvement). This indicates that it is

possible to establish a generic model that can be adopted by various swipe-based interaction

that requires swipe error detection.
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Figure 6.10: Distribution of mutual information for each BoD sensor on per-user basis.

Our prototype phone has 24 back of device sensors. Our study has suggested that the spatial

information encoded in these sensors is useful in detecting errors. It would be useful to be

able to extract from such data where the sensors should be best positioned to make error

predictions. The distinct differences between grip across users makes this impossible with



102

CHAPTER 6. DETECTING SWIPE ERRORS ON TOUCHSCREENS USING HAND

GRIP AND MOTION

the current data (we have too few errors per user). Indeed, a preliminary mutual information

analysis (Figure 6.5) with our data reveals no clear patterns in the information content of

the different sensors. In our studies, we investigated the effect of time on the classification

performance. On the whole, we found classification performance to remain fairly constant

over time, suggesting that the error information is present very early in the time series.

6.6 Conclusion

In this chapter, we addressed automatic detection of errors (swiping the wrong way) in swipe

gesture based interfaces by detecting subtle fluctuations in hand grip and movement. We

used BoD capacitive sensors and accelerometer to detect these changes. Three swipe-based

cognitive tests based on the classic Flanker, Stroop and and SART tasks were used to induce

errors. From the recorded sensor data, we trained classifiers Support Vector Machines and

Random Forests which could reliably detect errors shortly after their performance. It should

note that, these conclusions are based on this particular small-scale experiment. In summary,

we have shown that:

Swipe errors can be detected.

In our controlled lab setting and specific tasks – swipe errors have a distinctive signature

that can be automatically classified. AUCs well above baseline were achieved for individual

models (Figure 6.6) (e.g. AUC > 0.80 using the SVM on accelerometer data for all tasks).

Swipe errors patterns generalise over users

When we pooled data from multiple users and did not use user-specific models, we were

still able to classify swipe errors reliably. In fact, AUC increased from around 0.62 − 0.83

to 0.91− 0.99 with the pooled model. This suggests that classification performance may be

limited by the available dataset size rather than inter-user variability.

Specific sensors work best with different transforms.

BoD performance was best with the full 24 sensor time series compared to total magnitude

(SVM AUC increased from 0.85 to 0.95 at 200ms). This suggest that there are relevant

changes in the pose of the hand, and not just overall grip strength. The accelerometer, in

contrast, had better performance with total magnitude than individual axis features. This

may be because of variations in orientation which are removed by the magnitude transform.

Composite features are the best.

We found the best classification when combining the accelerometer and the BoD sensors,

both with simple concatenation of the feature vectors (RF) and with composite kernels

(SVM). This suggests that the accelerometer and BoD sensors contribute independent in-

formation about the error signal.
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There is little change in classification performance over time.

In all of our results, classification performance reached a peak by 200ms after feedback and

did not vary significantly after that. Even at feedback time (t = 0), before the user has had

a chance to react to the feedback we are able to classify the error signal. This suggests the

error-related movements happen early, and may anticipate the feedback (users are responding

to internal knowledge of the error they have made). This also indicates that observing longer

periods of sensor data will not change detection performance. Despite of this, it should

note that this is purely based on a small scale experiment that we conducted, thus further

experiments may be needed to conclude this finding.

Random forests generally perform better than the SVM.

The random forest classifier was more effective for all of the pooled models (although per-

formed very poorly in the individual models where training data was sparse). As can be seen

in Table 6.2 the SVM did not deal well with the imbalanced classes and led to very high FRR

rates. The random forest had better overall performance for the pooled models, and a much

more balanced FAR/FRR result.

Performance was similar for SART, Stroop and Flanker tasks.

We were able to classify errors with a similar accuracy (Table 6.2) for errors made in SART,

Stroop and Flanker tasks, suggesting that the results are indeed capturing a general error

signal, and not simply a task-specific anomaly.

In summary, our results suggest that hand grip and hand movement from BoD sensors and

accelerometer can be used to reliably and rapidly detect cognitive errors in swipe-based in-

terfaces. While back-of-device sensing is not yet mainstream, some commercial devices

(e.g. the Doogee DG800 or the Oppo N1) already provide BoD touch sensors that may have

sufficient resolution to capture grip modulations. Although our experimental models are spe-

cific to the cognitive tests that we used, many mobile tasks have very similar components:

a mentally demanding task with simple swipe gestures as input. Our results are both practi-

cally relevant in developing forgiving interfaces that can recover from errors gracefully, and

suggest that there is much more to be explored in error-related micro-movements in touch

screen gesture interfaces.

These results form a concrete contribution to building a rich, multi-sensor mobile phone

interaction error detection system. While hand grip and hand movement alone may be in-

sufficient to perform precise detection, it can form part of an array of contributing virtual

sensors in a hybrid in recognising a users true intention.
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Chapter 7

Implicit User Identity Prediction

The work presented in this chapter will be published in TOCHI journal. The co-authors are

John Williamson1 and Simon Rogers2

Summary

This chapter discusses the use of back-of-device (BoD) and accelerometer sensors as an input

to predict users’ identity. We present two methods that perform prediction during: 1) phone

pick-up action and 2) touchscreen interaction by replicating previous accelerometer [30]

and touchscreen [40] techniques and compare the results with our technique that uses hand

grip. We demonstrate that the identity of users can be predicted significantly better than

the previous techniques using BoD hand grip sensing in different phone’s usage scenarios.

Furthermore, we also show that predictions can be improved when both input modalities are

combined. We also show the optimal location of the BoD sensors to sense salient hand grip

information for identification purposes.

7.1 Introduction

Implicit authentication (IA) methods on mobile devices have been developing rapidly in

recent years. The methods which use observed user behaviour such as location, phone ac-

tivity and body motion offer a spectrum of usability enhancements, from subtle adaptations

of the user interface to specific users [107] to complementing existing PIN/password secu-

rity [58]. Their application has shown to improve both usability and security of devices when

compared to explicit method [58]. However, despite being advocated as more usable than

explicit authentication schemes, false rejects and significant delay in detection with implicit

authentication can be a source of annoyance and increased security concerns [119, 69].

1School of Computing Science, University of Glasgow, UK (JohnH.Williamson@glasgow.ac.uk)
2School of Computing Science, University of Glasgow, UK (Simon.Rogers@glasgow.ac.uk)
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In contrast to the obtrusive nature of standard biometric systems, the majority of IA tech-

niques employ ’soft’ or behavioural biometrics to continuously accumulate evidence about

the user over time and transparently recognise and validate their identity [32]. This is typi-

cally done by leveraging standard smartphone sensors to acquire users’ biometrics informa-

tion. For instance, keystroke analysis uses touchscreen keyboard input to distinguish user

typing behaviour [35, 109], while user gait pattern [36] and phone answering pick-up mo-

tion [30] can be recognised using the built-in inertial sensors. A recent paper demonstrated

the utility of standard touch interactions to identify users [40], whilst subtle hand micro-

movement and dynamics captured by inertial and touchscreen sensors can also be used to

continuously verify users [125]. An interesting technique based on Transient Evoked Otoa-

coustic Emission (TEOAE) [66] uses built-in ear-phone and microphones to identify user

through their ear canal acoustic response patterns [82]. Beyond smartphones, sensors are

also found in most smartwatches and activity trackers, suggesting that IA could be the future

authentication method for wearables [50].

The use of hand grip as an input for identification purpose is not new and has been well ex-

plored. For instance, Kauffman et al. designed and evaluated a user-verification system for a

smart gun which is based on grip-pattern recognition [120]. Their technique uses likelihood-

ratio (LRC) and support vector machine (SVM) classifiers to verify user grip pressure images

acquired from the piezoresistive sensors in the grip of the gun. The reported error equal rate

(EER) – the rate at which false acceptance and false rejection rates are equal, are approxi-

mated at 15.2% (LRC) and 10.6% (SVM). These rates are still above the minimum require-

ment (expected gun failure rate is 1 in 10000 or 10−4 [46]), making its implementation in the

real gun a controversial.

Besides the smart gun, researchers also used hand grip on steering wheels in order to recog-

nise the identity of the driver [22]. To sense users’ hand grip pressure, they mounted a

pressure-sensitive pad on the steering wheel. Whilst their technique achieved mean accep-

tance rates of 85.4%, the mean false acceptance rates on the other hand was not reported. In

the context of identification, false acceptance rate corresponds to the likelihood that the sys-

tem will accept an access attempt by an unauthorised user while false reject rate corresponds

to the likelihood that the system will reject an access attempt by an authorised user. Their

technique is a promising biometric technology which can be adapted in smart car design

such as personalised driving.

The results from smart gun and driver recognition studies indicate that handgrip contains

valuable information for identity verification. Therefore in this chapter, we investigate the

utility of phone grip as an input modality to predict user identity. In contrast to previous

work, we investigate whether back-of-device (BoD) capacitive sensors can be reliably used

to distinguish user handgrip patterns implicitly during interaction. As a basis for compar-

ison, we compare our results to the existing implicit methods based on inertial and touch
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capacitive sensors. To do so, we replicated the work by Frank et al. [40] and Conti et al. [30]

and augmented their methods with BoD sensing. Conti et al. used hand movement when an-

swering and placing a phone call to identify users whereas Frank et al. predict user identity

by observing their unique touch behaviour on the touchscreen.

Apart from previous work, there are a number of factors that motivate us to use mobile device

grip via BoD sensing to identify users. First, BoD sensing does not require any explicit

interactions with the mobile device, making it less intrusive than other implicit front-of-

device (FoD) techniques. Second, the sensors are in continuous contact whenever a user uses

a mobile device, giving a reliable, always available channel for identification. Third, BoD

interaction reduces the chance of shoulder-surfing [35, 114] attacks, where the dynamics of

FoD screen touches are emulated by an impostor. In comparison to FoD interaction which

can be susceptible to forgery [3, 152], the BoD is less accessible and depends more on

specific user physiology.

7.2 Research Questions

In order to investigate whether hand grip can be used as an identity predictor, we compare our

method with existing methods by augmenting the experiments used in previous methods with

BoD input. From the experiments we attempt to answer the following research questions:

RQ1 Can user identity be determined from their grip patterns?

The main goal of this chapter is to measure the extent to which user identiy can be

predicted better than random (guessing) from BoD sensor inputs. Using a standard

machine learning approach, we train classifiers to predict identity from user hand grip.

RQ2 Does the BoD method perform better than the existing methods?

Specifically, we are interested to compare our approach to existing approaches based

on touchscreen and accelerometer inputs as identity predictor. To compare this, we

replicated previous techniques and augmented them with BoD sensing.

RQ3 Is there any performance gain when combining sensor data?

Apart from comparing prediction performance between sensor inputs, we also are in-

terested to investigate whether the performance can be improved by fusing together

sensor data from the touchscreen and BoD. In particular, we evaluate the fusion by

finding the optimal weight from each input in order to achieve highest prediction ac-

curacy.

RQ4 Can we minimise the amount of data required to predict user identity?

We would like to test the influence of the amount of data in prediction performance.
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To do this, we run predictions at different periods during the course of interaction. By

doing this we can evaluate and estimate how much data the classifier needs to observe

in order make accurate prediction.

RQ5 Do we need all BoD sensors to make predictions?

Although we use 24 BoD capacitive sensors in all experiments, we investigate whether

we need all sensors to make predictions on user identity. By investigating this, we are

able to estimate the minimum number of sensors required as well as their locations at

the back of the device.

The contribution of this chapter is a study investigating the potential use of hand grip in-

formation for IA in which we achieve using a prototype device that can sense users’ hand

grip. We also demonstrate the optimal sensor locations to capture salient identity information

from the sensors, and propose a minimum set of sensors for effective identification. We also

provide insights into the performance gain from combining both front and BoD modalities.

Finally, we discuss the various tradeoffs in using BoD to identify users.

These results form a concrete contribution to building a rich, multi-sensor mobile phone

identification system. While grip alone may be insufficient to perform secure authentication,

it can form part of an array of contributing virtual sensors in a hybrid continuous authentica-

tion system.

7.3 Experiment Replication

The following sections describe the experiments that we used to answer the research ques-

tions established in Section 7.2. The first experiment serves as a preliminary investigation on

the utility of hand grip as identity predictor where the second experiment is a more elaborate

investigation to evaluate to which extent that hand grip can be used to predict user identity.

As mentioned previously, this chapter involves replicating previous work and augmenting

them using BoD sensing. In other words, we repeat the experiments using our prototype

devices with the purpose to compare prediction performance between their technique and

ours.

7.4 Experiment 1

Mind How You Answer Me! : Transparently Authenticating the User of a Smartphone

when Answering or Placing a Call [30]
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In this work, Conti et al. propose an IA method that offers transparency by identifying if the

user that is answering (or placing) a call is the authorised one. In particular, they investigated

if a user can be authenticated just by using the hand movement that the user performs – that

is the moment when the user presses ”start” (to initiate a call), until the user takes the phone

to the ear. They refer to this movement as a pattern which can be treated as a biometric

feature. In this work they used a Google Dev 1 phone which is based on HTC Dream to

capture user’s hand movement and phone orientation using the internal accelerometer and

orientation sensors.

They wrote an application to log accelerometer (acceleration on x, y and z-axis) and orien-

tation (pitch, roll and yaw) sensor values and asked 10 participants to use this application to

collect data. In particular, participants were asked to perform the phone pick-up action when

using this application, which begins when the participants press ”start” and ends when the

phone reaches participants’ ear. However, no information on the number of times the phone

pick-up action is performed by each participant is given. In order to recognise users, they ap-

plied a Dynamic Time Warping (DTW) algorithm on both sets of input data (accelerometer

and orientation) for each axis/orientation to compare the similarity of user’s sensor time-

series. This is done by finding sum of the shortest distance of every point between user’s

current and stored timeseries. Zero sum denotes that both timeseries are identical. A thresh-

old value is defined for each sensor instance to control the similarity decision.

To evaluate performance of their technique, they used two performance metrics: 1) False

Accept Rate (FAR) which is the percentage of successful accesses by unauthorised users

and 2) False Reject Rate (FRR) which is the percentage of rejected accesses by authorised

users. The decision threshold was varied to find a balance between FAR and FRR. Using the

accelerometer sensor, they achieved FAR and FRR of 20.66% and 12.88% respectively while

using the orientation sensor, they achieved FAR and FRR of 9.33% and 4.44%. However,

they did not mention which axis/orientation that these results correspond to.

From this study, they show that there are sufficient differences between different users, such

that the movement can be effectively used for identification. In this way, as soon as a call is

answered (or placed), the phone can promptly evaluate if the user is authorised to perform

this action, and block the system in case of non authorised users.

We recreated Conti et al.’s experiment [30] by adding BoD hand grip information. In par-

ticular, we are interested in investigating whether dynamic sensing of grip contact can aid in

the identification of users during the call answering process (RQ1). Furthermore, this also

allows us to compare performance between hand grip and hand movement methods (RQ2)

as well as to investigate if performance gain can be achieved if both inputs are used to build

the identity predictor (RQ3).

In order to capture hand grip contact we developed a prototype system which consists of a
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Sony Xperia Mini Pro (SK7i) smartphone connected via Bluetooth to a SHAKE SK7 sensor

pack3 that interfaces an external array of 24 capacitive sensors that detect proximity of the

hand to the rear and sides of the case. Apart from BoD sensors, the SK7 is also equipped

with various other sensors, including accelerometer, gyroscope and magnetometer. The total

size of this prototype is 25 mm (H) x 150 mm (L) x 65 mm (W). For more information about

this prototype, please refer to Section 3.2.

The 24 capacitive sensor values (with 8 bit dynamic range) and 3 accelerometer values (in

the ±2g range, with 12 bit dynamic range) were transmitted from the SK7 to the phone

via Bluetooth with a sample rate of 50 Hz. An application was developed on the phone to

perform the experiment and record the data for subsequent offline analysis.

7.4.1 User Study

For this study, 12 participants consisted of 6 males and 6 females, aged between 25 and 35

years old (mean=26.91, sd=2.15) were recruited locally after formal ethical approval been

granted on 6th of May 2014. Each participant recorded data over 6 separate sessions, 3

with their left hand and 3 with their right. Each left/right session was separated by a 3-

minute break to minimise repetition effects – a condition where users becoming skilled after

making similar action repetitively [83]. Therefore by separating the task into sessions, we

are not capturing only a single hand grip/movement pattern but a range of plausible hand

grip patterns.

To acquire sensor data, we developed an Android application on the Sony Xperia Mini Pro

smartphone. The application communicates with another application that we wrote on a PC

to trigger a phone call on the smartphone. This allows us to coordinate the data acquisition

process without the need to rely on the real GSM network. The BoD sensors were calibrated

prior to every data acquisition session. This was done using simple two-point calibration of

the capacitive sensors, that is by measuring untouched and touched each sensor’s capacitance

values.

Each session required the participants to perform 10 answering actions while seated in front

of a desk. Each action started with the phone ringing. On hearing this, the user picked up

the phone (with whichever hand they were using in this session) and lifted the phone to the

same ear (i.e. if a right-hand session, the phone was lifted to the right ear). They were then

asked to hold the phone there for at least 3 seconds. Data logging started when the phone

rang and finished when the phone vibrated. From each call answering action, we recorded

timestamps, acceleration along x, y and z-axis and 24 BoD capacitive sensor values. All data

3http://code.google.com/p/shake-drivers/

http://code.google.com/p/shake-drivers/
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were stored in the external storage of the phone for subsequent offline analysis. Examples of

recorded signals for one call answering action can be seen in Figure 7.1.

(a) Accelerometer

(b) BoD

Figure 7.1: Signals from accelerometer and BoD for one phone answering action using right

hand selected randomly from one user.

7.4.2 Analysis Methods

Similar to the approach proposed by Conti et al. [30], we used classifiers to identify to

which group (authorised/non-authorised) the observation (phone answering action) belongs

to. This represents a standard setting where some training data from a particular user would

be compared with a pooled set of training data from other users.

We began by pre-processing our data by converting the time series into fixed length feature

vectors. This was done by first removing the empty signal at the beginning (data logged

between the phone ringing and the users’ first touch) by deleting all data until the total

output from the capacitive sensors reached 150 which is approximately 3 seconds after the

trial starts (flat section of the timeseries in Figure 7.1).

The remaining data for each sensor was then split into K equal length blocks and the mean

value of the sensor within this block was extracted as a feature. For example, for K = 6,
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each sensor time series would be converted into K = 6 mean values, resulting in a total of

24 × 6 = 144 capacitive features and 3 × 6 = 18 accelerometer features. All features were

normalised to have mean zero and standard deviation one prior to the next step of analysis.

We used a Support Vector Machine (SVM) classifiers in this work. The decision on using

SVM classifier is justified by their previous use in this area [70, 40] and their general state-of-

the-art performance for data classification. Furthermore, SVM is one of the best classifiers

which can handle high–dimensional data as in the case here. An in-depth discussion on SVM

classifier is given in Section 4.3. We used Gaussian (RBF) kernel functions throughout.

Because of the large discrepancy in number of features between the capacitive and ac-

celerometer data, we built separate kernels for each. Putting them into the same kernel would

make it difficult to assess the relative contribution to performance from each data type, and

would also possibly result in the influence of the accelerometer data being drowned out by the

larger number of capacitance values. When using both data types, the kernels were combined

additively by applying kernel weight a to each kernel where 0 ≤ a ≤ 1 with 0 representing

only the BoD kernel and 1 representing only the accelerometer kernel. Optimising a allows

us to measure the relative contribution of each data modality. We explain this technique in

more detail in Section 4.3.1.

7.4.3 Results

We begin by reporting the performance of the classifier in distinguishing between a particular

user and data from all other users. To identify a user, we used a One-vs-All (OVA) classifi-

cation strategy where we treat data from a particular user (user of interest) as belonging to

the positive class and data from the other 11 users as belonging to the negative class. To train

the classifiers, we used 20 samples for the user of interest taken from the first two sessions

and 80 random samples from other users also from the first two sessions. To test, we used 10

samples from the user of interest from session 3 and 80 random samples from session 3 of

other users. This is to reflect the typical phone use case where calibration data is collected

at some point (sessions 1 and 2) and then the user uses the phone sometime in the future

(session 3).

One-vs-All

In all SVMs, the margin parameter C was set to 103 (making this a hard-margin SVM [123]).

The kernel parameter γ was set through a Leave-One-Out Cross Validation (LOOCV) pro-

cedure on data for each user (from the first two sessions of a particular hand) and 20 random

samples drawn from the other eleven users (with the same hand). We use area under the ROC

curve (AUC), accuracy and false accept rate (FAR) which is the proportion of misclassifying
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a sample from another user as coming from the user of interest, and false reject rate (FRR)

which is the proportion of misclassifying a sample from user of interest as coming from

another user. See Section 4.6 for a review on these performance measures. To compute sta-

tistical significance of results, we use the non-parametric Wilcoxon Signed Rank Test with

threshold of 0.05. In all classifications, K = 6 blocks were used.

Classification results for each user are shown in Table 7.1. From the table, we see that perfor-

mance is typically high (AUC > 0.9). In general the capacitive models slightly outperform

those trained on accelerometer data – indicated by higher accuracy and a lower number of

false rejects and false accepts.

Composite Input

To investigate whether combining two sensor inputs could improve the performance of the

individual sensor spaces we used a composite kernel as described previously. Figure 7.2

shows classification AUC as a function of a, the kernel weighting parameter. Note that

a = 0 corresponds to just capacitive sensing and a = 1 to just accelerometer sensing. For

left hand the curve decreases gradually as a increases up to a = 0.9 before decreasing as a

approaches 1. For right hand, the AUC curve increases gradually from a = 0 to a = 0.1

and gradually increasing up to a = 0.9 before the AUC drops when the kernel contains only

accelerometer data (a = 1). Whilst sensor combination for left hand shows no performance

improvement (highest AUC is given by a = 0), the right hand however shows that the gain

can be achieved through sensor combination, however the gain is not statistically significant.

From the results, it suggests that classifiers constructed using combination of capacitive and

accelerometer data could give better performance, particularly when using right hand data

(optimal a = 0.9). This indicates that the capacitive and accelerometer data contribute

independent information about user identity.

Feature Dimension

Finally, in Figure 7.3 we show how the classification performance varies as we increase the

number of blocks (K) which is the fixed length segmentation of the timeseries where the

feature is extracted, from 1 to 50. This is based on combining both data types, with the

optimal value of a from Figure 7.2. The performance increases rapidly and then plateaus

before dropping slowly as K is increased. This is to be expected – simply taking the mean

for each sensor over time (K = 1) is unlikely to be optimal. Similarly, increasing K above

some value is likely to result in different parts of the answering action ending up in different

blocks (and hence different features) for examples from the same person, causing a slight

decrease in performance.
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Figure 7.2: Classification performance (AUC) averaged across users including ± standard

error as the kernel weighting parameter is varied from just capacitive data (left, a = 0) to

just accelerometer data (right, a = 1). Solid vertical red lines correspond to the optimal a

value.
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Figure 7.3: Classification performance (AUC) averaged across users including ± standard

error, as the number of blocks is varied from static (K = 1) to highly dynamic (K = 50).

Performance plateaus appears at K = 6 for both hands.

7.4.4 Discussion

Although we managed to achieve mean classification AUC and accuracy of all above 0.9,

it should be noted that the sample size here (12 participants) is too small for us to be able

to make comments as to how this technique might work in an actual implicit identification

system. Nevertheless, it does allow us to compare classification performance between ac-

celerometer and capacitive sensors.

In One-v-All classification setting, it shows that users can be identified with similar level

of performance using hand grip and motion data. This suggests that both sensors can be

used interchangeably to identify users’ unique hand grip and motion patterns from the phone

pick-up action. This can be useful in some phone answering scenarios such as answering
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while walking/on the move where hand grip is more consistent compared to hand motion.

Moreover the results also show that the performance for right and left hands are nearly similar

suggesting that this technique may generalise for right and left handed users.

The phone answering tasks that we used in this study were constrained to only two pick-up

motions: picking-up with the right hand and bringing it to the right ear and picking-up with

the left hand and bringing it to the left ear. It is therefore interesting to explore how other

possible pick-up motions (e.g. picking up the phone using left hand and bringing it to the

right ear) would impact the classification performance.

Despite improving performance when using composite classifiers, the mean improvement

however was marginal and not statistically significant. This indicates that the addition of

hand grip or hand motion information to the kernel may not necessary lead to an improve-

ment. Nevertheless, from Figure 7.2, it is clear that single kernel classifiers could already

produce very high classification AUC using either hand grip or hand motion data and thus

composite classifiers might not be needed.

7.5 Experiment 2

Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for

Continuous Authentication [40]

In this study, Frank et al. lay foundational work for continuous authentication schemes that

uses the touchscreen as an input. They investigated if it is possible to authenticate users

while they perform basic navigation steps on a touchscreen device, without any dedicated

explicit security action that requires attention from the user.

In order to investigate this authentication scheme, they designed two experiments involving

touchscreen interaction. 41 participants were recruited to participate in the experiments.

They consider two common interactions on the touchscreen for this study: 1) touch–scroll

and 2) touch–swipe. For touch-scroll, participants were required to read three documents on

an Android mobile phone. To ensure natural interaction with the touchscreen, participants

were not told that their touch behaviours are being assessed. Furthermore, participants also

were asked to set aside the phone to fill out a sheet with multiple-choice questions about

the document. This allows them to provoke the participants to randomly pick up the phone,

possibly causing the participants to hold it in another way. As a result, interaction with each

document can be regarded as a new session. For touch–swipe, the participants were asked to

spot differences in pairs of similar images. They stopped the participant after approximately

two minutes, and repeated this procedure for the second image pair. No multiple-choice

questions were given in between. One week later, a follow-up study was conducted with only
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one document and one image comparison. After finishing all experiments, the participants

were explained the true nature of the study.

An application was developed to record touch behaviour from the experimental reading and

spot–the–differences tasks. For the first task, the application contained links to documents

about Wind, Tulip Mania and Yosemite National Park. All of them were excerpts from fea-

tured Wikipedia articles. The images used to spot differences are publicly available spot-the-

difference comics. The participants can see one image on one panel, and two screen–sizes

away–separated by a black panel–is the second image. This means that participants need at

least two strokes to get from one image to the other. They however were free to go back

and forth as often as they wanted. During the experiments, the phones recorded the partici-

pants touch data sampled with a variable frequency. The touch data consists of several raw

features: an event code (e.g., finger up, finger down, finger move, multitouch), the absolute

event time in milliseconds, and the device orientation. For each touch they recorded its x

and y–coordinates, its pressure on the screen, the area of the screen covered by the finger,

the finger orientation with respect to screen and the screen orientation.

They divided the recorded touch data into individual strokes. Strokes with too small dis-

placement were considered single clicks and therefore discarded. However they did not

specifically mention the exact minimum displacement for a stroke to be considered as a sin-

gle click. From each stroke 31 features (Touchalytics) were extracted. They measured the

informativeness of each feature with respect to the user’s touch behaviours by computing rel-

ative mutual information between the feature and user ID. Touchalytics features are listed in

Table 7.2. From the table, the five most informative single features for spot-the-differences

experiment are 1) area covered by fingertip, 2) 20%-percentile of the stroke velocity, 3) fin-

gertip pressure on screen, 4) the direction of the stroke and 5) locations of the end-points of

the trajectory.

Two classifiers were chosen to classify strokes: 1) k-nearest neighbours (kNN) and 2) Sup-

port Vector Machine (SVM). For kNN they used Euclidean distance with paramater k se-

lected from all odd numbers between 1 and 7 via cross-validation on the training data. For

SVM they used a Gaussian radial-basis function as the kernel. Two relevant parameters γ

and C were selected via five-fold cross-validation on the training data. The classifiers were

trained according to three application scenarios:

1. Interweek – In this scenario, the classifiers were trained using data collected from the

first round of the experiment (enrollment) and tested against data collected the week

after. (authentication).

2. Intersession – Classifiers in this scenario were trained using data from the first and

second session and tested against the third session, collected on the same day (first

round of the experiment).
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3. Short-term – To emulate this scenario, the classifiers were trained using data drawn

randomly from all available sessions.

The authors used Error-Equal rate (EER) when evaluating classification performance. This is

an error rate at which both false acceptance rate (FAR) and false reject rate (FRR) are equal.

Further explanation of these measures are given in Section 4.6. The lower this rate the more

accurate the classification. In general the median EER across all scenarios ranges from 0%−

4% for both k–NN and SVM, for both scrolling (reading) and swiping (spot-the-differences)

classifiers. For intrasession and intersession, the median EERs are approximately 0% and

4% respectively for both scrolling and swiping using both classifiers. Interweek median

EER for scrolling is approximately 0% whereby for swiping median EER of approximately

2% and 3% are achieved for kNN and SVM respectively. The results show that the EER

increases with increasing temporal distance to the training phase (enrolment). For instance,

with exception to scrolling interweek, the lowest EER is achieved in intrasession (shortest)

followed by intersession (medium) and interweek (longest). From the results also it shows

that lower EER is achieved when using SVM to classify strokes from scrolling and swiping

tasks.

7.5.1 Back-of-Device Sensing Augmentation

The purpose of this study is to identify whether features from capacitive BoD sensing can

be used to identify users, and to compare performance with Touchalytics [40] methods. In

particular we are interested to see if back-of-device hand grip contains sufficient information

to reliably discriminate a particular user from a group of users. In practice, this reflects a

typical single-user phone use-case where the phone attempts to identify whether or not the

current user is the phones owner.

To do so, we replicated the Touchalytics study as a directly comparable baseline, extended

their experimental method to BoD sensing, and developed classifiers for the BoD data. We

evaluated the performance of both of these methods, and the combination of the two, and es-

timated bounds on the minimal set of sensors required, and the minimum calibration/training

time.

7.5.2 Experimental Setup

As mentioned previously, we used a custom BoD capacitive sensor prototype. The proto-

type is based around a Nokia N9, which we modified to include around device sensing to

sense hand grip contact. Details of this prototype is given in Chapter 3.3. In contrast to tac-

tile sensing used by the grip-based user interface in [49], we opted to use capacitive sensing
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MI rank Feature Description

1 Mid–stroke area covered Area covered by the fingertip.

2 20% percentile pairwise velocity 20% percentile of the stroke velocity.

3 Mid–stroke pressure Pressure applied by the fingertip during the

stroke.

4 Direction of end–to–end line Direction of a straight line connecting the

start and stop of the stroke.

5 Stop x x coordinate at the end of the stroke.

6 Start x x coordinate at the start of the stroke.

7 Average direction Average direction of the stroke.

8 Start y y coordinate at the start of the stroke.

9 Average velocity Average velocity of the stroke.

10 Stop y y coordinate at the end of the stroke.

11 Stroke duration (ms) Time taken from touch–down to touch–up.

12 Direct end–to–end distance Length of a straight line connecting the start

and stop coordinates of the stroke.

13 Length of trajectory Length of the stroke.

14 80% percentile pairwise velocity 80% percentile of the stroke velocity.

15 Median velocity at last 3 points self-explanatory

16 50% percentile pairwise velocity 50% percentile of the stroke velocity.

17 20% percentile pairwise acceleration 20% percentile of the stroke acceleration.

18 Ratio end-to-end distance and length of

trajectory

Proportion of the straight line connecting the

start and stop of the stroke and stroke length.

19 Largest deviation from end-to-end line Furthest distance of a point in the stroke tra-

jectory from the end–to–end line.

20 80% percentile pairwise acceleration 20% percentile of the stroke acceleration.

21 Mean resultant length Quantities of how directed the stroke is [86].

22 Median acceleration at first 5 last

points

self-explanatory.

23 50% percentile deviation from end-to-

end line

50% percentile stroke deviation from end-to-

end line.

24 Inter-stroke time Time between two consecutive strokes.

25 80% percentile deviation from end-to-

end line

80% percentile stroke deviation from end-to-

end line

26 20% percentile deviaiton from end-to-

end line

20% percentile stroke deviation from end-to-

end line .

27 50% percentile pairwise acceleration 50% percentile of the stroke acceleration.

28 Phone orientation Portrait or landscape

29 Mid–stroke finger orientation angle of finger orientation in the middle of a

stroke

30 Up/down/left/right flag Direction of the stroke in terms of screen

quadrants.

31 Change of finger orientation angle of finger orientation.

Table 7.2: Description of Touchalytics [40] features proposed by Frank et al. ranked accord-

ing to their relative mutual information for spot-the-difference experiment.

technology because it is a well proven touch sensing technology which is practically imple-

mentable on mobile devices. The prototype is configured to sample data from all 24 sensors
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at 50Hz, with 16 bit resolution. A Python application was developed on the prototype to

coordinate the data acquisition.

7.5.3 User Study

(a) (b) (c)

Figure 7.4: Example of reading article (a) and images (b, c) used in the experiment.

In order to collect touch grip samples, 20 right-handed participants were recruited locally,

12 male and 8 female, age range 25–35 (mean = 29.4, sd = 3.15) each with at least one

year of experience in using a smartphone. We want to compare Touchalytics features to BoD

features, therefore we recreated the Touchalytics experiments to collect vertical (scroll) and

horizontal (swipe) strokes. We followed the protocol used in Touchlytics by asking partic-

ipants to read three articles, each of which required vertical scrolling, and compare three

cartoon pairs via horizontal swiping while seated, with the phone in a single handed grip,

portrait orientation. To encourage participants to navigate naturally, we let them perform

the experiment at their own pace. We used six articles about Coffee, Bicycle, Cat, Running,

Smartphone and Glasgow freely available on Wikipedia and six spot-the-difference cartoon

images4. We randomly selected three from each for each participant. We edited all articles

to have equal number of words and each pair of image to have precisely five differences.

Example of the reading and spot-the-difference application is shown Figure 7.4.

Each task begins as soon as the article/image pair is displayed on the screen. There is an

exit button at the bottom of the article in the reading task to ensure participants read/scroll

through the article until the end. For the image comparison, the exit button was shown at the

top of the screen to the participants one minute after the task started. The participants are

allowed to continue until they find all five differences. In the spot-the-difference task, we

followed the technique used in Touchalytics by placing a blank panel between the images to

ensure that at least two strokes are required to get from one image to another.

4http://easyfunpuzzles.com/category/spot-the-differences
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For each task, we recorded timestamps, screen touch coordinates (x, y) in pixels and ca-

pacitive readings from the BoD into the prototype’s internal storage for subsequent offline

analysis. Each recording was performed in three sessions, and separated by an approxi-

mately five minute break. This is done by asking the participants to put down the phone

on the table at the end of every session. This is to ensure that we are not observing only a

single temporary grip pattern, but a range of plausible strokes and grips for each participant.

Furthermore, the use of session also helps us to organise our training and test set data more

fairly, by training on two sessions and testing on the third.

Overall experiment time ranged between 38–83 minutes per participant (mean = 52.6, sd =

9.2). A single reading task ranged between 6.1–21.7 minutes (mean = 8.4, sd = 0.5) while

image comparison ranged between 1.2–2.4 minutes (mean = 1.2, sd = 0.11).

7.5.4 Feature Extraction

(a) User 7 (b) User 17 (c) User 20

(d) User 7 (e) User 17 (f) User 20

Figure 7.5: Examples of raw reading and game touch stroke from three different participants

captured by the N9 prototype during reading (blue) and game (red) experiments. Differences

between the participants are clearly visible. For participant 7 we highlighted the accidental

touches (black circles) that were removed during pre-processing.

Touchstrokes Features

Each touchstroke is a sequence of touch coordinates (x, y) in pixels that begins with touch-
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ing the screen and ends with lifting the finger. Prior to extracting the features, we filter out

all accidental touches from the raw touch data to ensure that only plausible strokes are used

in our study. We define an accidental touch to be a very short stroke with total displace-

ment less than 10 pixels. Accidental touches have been highlighted in Figure 7.5 (d). To

extract features from the raw touch data, we follow the techniques outlined in Touchalyt-

ics study. However, due to hardware constraints, we were unable to collect touch pressure,

touch contact size and finger orientation data from our prototype. Moreover, we also omitted

phone orientation from our feature set since our experiment was done in portrait mode only.

Therefore, out of 31 features used in Touchalytics, we extracted 26. To avoid confusion with

features from Touchalytics, we call our version of Touchalytics features Touchstrokes.

BoD features

The BoD sensors produce 24 capacitive timeseries for each touch stroke action (one time-

series per sensor). The sensors in our prototype are occasionally affected by noise spikes

which we remove using a simple length 3 median filter. These timeseries were reduced to 24

features by taking the mean value from each sensor across the stroke. Thus we only observe

the static component of the grip during each stroke.

7.5.5 Analysis Methods

To visualise the overall structure of the stroke and BoD features we perform Principal Com-

ponent Analysis (PCA). PCA enables us to see if any cluster structure exists within our

feature sets and may also highlight session effects (i.e. differences within a user caused by

multiple usage sessions). For further explanation, See Section 4.2.1.

As shown in Figure 7.6, distinctive user clusters can be clearly seen within the BoD features

but, in Touchstroke features, this characteristic clustering is not visible. This suggests that

participants may may be more distinct in their grip patterns than their touch characteristics.

It might be possible that participants are linearly separable with the BoD features but not

with Touchstrokes features. One experimental concern is whether user behaviour is consis-

tent throughout the experiment. To show this behaviour, we show the data for the different

experimental sessions using numbers and colour for one random user (user 17) in Figure 7.7.

The plot suggests that the participant may have consistent touch behavior in all sessions, but

different grip behaviour where distinct session clusters exist.

Next we perform mutual information analysis (MIA) between each feature modality, Ftouch

, Fcap and the user ID in our dataset. Please refer to Section 4.2.3 for a review on MIA. This

measure corresponds to how well the user can be determined from the other users (com-

bined) within the dataset. Features with 0% relative mutual information do not contain any

information about the user identity whereas 100% means that the feature could be used to
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(a) scrolling (b) swiping

(c) scrolling (d) swiping

Figure 7.6: PCA plot in the global user space for (a, b) touchstroke and (c, d) BoD features,

highlighting only user 17.

perfectly separate this user from the others. To compute relative mutual information between

a feature F and user ID U , we first transform the feature to discrete variables by binning the

values into 50 equally spaced bins ranging from the 10th to 90th quantile of the features. As

shown in the Touchalytics study, this range makes our mutual information calculation more

robust to outliers.

As shown in Figure 7.8 (a) and 7.8 (b), the five features with highest mutual information in

Touchstrokes features are given by (1, 2) start-x, y, (3, 4) end-x, y positions of the stroke and

(5) stroke duration in seconds. This differs from the original Touchalytics study [40] where

the top 5 features were given by (1) mid-stroke area covered, (2) 20% percentile pairwise ve-

locity, (3) mid-stroke pressure, (4) direction of end-to-end line and (5) x-coordinate of stroke

stop position. Out of these, 2 features (mid-stroke area covered and mid-stroke pressure)

were absent from our feature set due to hardware constraint. Interestingly, 20% percentile

pairwise velocity scored 0% relative mutual information in our version but was the second
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Figure 7.7: PCA in the global user space showing only user 17 for (a, b) touchstroke and (c,

d) BoD features from every session. Each number/colour combination marker corresponds

to session ID.

highest feature in the original Touchalytics study. This discrepancy could be due to the fol-

lowing reasons: (1) we used a slightly smaller sample population than Touchalytics; (2) users

may possess similar touch behaviour; (3) our experimental tools (reading/game) may have

provided different user experience from the one used in Touchalytics study.

Figure 7.9 shows the mutual information of the BoD features, allowing us to get some insight

into which BoD locations are useful for sensing hand grip. It is clear from the figure that

sensors with high mutual information are located at the top-left and left side of the back-

of-device (note that the image is reversed). This analysis also shows that sensor mutual

information for the game task (Figure 7.9(b)) is much higher than that for the reading task

(Figure 7.9(a)), suggesting that user hand grip is perhaps less variable in the former.
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Figure 7.8: Mutual information analysis for Touchstrokes (a, b) and static back-of-device

data type (c, d) for both reading (a, c) and game (b, d) tasks. From the figures, back-of-

device data type clearly depict higher information content than Touchalytics in both tasks.

(a) scrolling (b) swiping

Figure 7.9: Hand overlay over back-of-device sensors shaded according to their respective

relative mutual information values. Bright red shading corresponds to high whereas dark red

shading corresponds to low relative mutual information.
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7.5.6 Classification

The primary goal of this study is to measure the extent to which BoD features can be used

to distinguish a specific user from a pool of other users. To measure this, we perform user

classification by classifying a user of interest from the rest of users in our dataset (owner-

versus-world). Within an authentication context, this represents the setting where a multi-

user authentication system attempts to identify the current user from a set of users. This is

a binary classification task where the problem is to determine whether the data belongs to

either the positive (user of interest) or negative class (the rest).

In all experiments, the data was split into independent training and testing sets. Instead of

randomly partitioning the data, we used the first and second sessions as training data and

the third session as testing data. If there are session effects present, this will provide a more

conservative estimate of performance than random splits.

The Support Vector Machine (SVM) classifier is a discriminative classifier that creates a

separating hyperplane between the classes in a feature space defined by a kernel function.

The SVM is a popular choice in solving user identification problems [40, 111, 119] and also

exhibits general state-of-the-art performance in many data classification problems. Gaussian

(RBF) kernel functions were used throughout this study. The form of the kernel function is

given in Section 4.3.1.

When combining Touchstrokes and BoD features into the same classifier, we used a linear

combination of kernels with an additional parameter a that controls the influence of each

kernel where 0 ≤ a ≤ 1 with 0 represents only BoD kernel and 1 representing only Touch-

strokes kernel. Optimising a allows us to measure the relative contribution of each data

modality. We explain more about this procedure in Chapter 4.3.1.

Prior to all experiments, all features were normalised to have mean zero and standard de-

viation one. Data subsampling was used to address the class imbalance problem between

positive (user of interest) and negative (the rest) classes. This was done by randomly sam-

pling only as many data points in the negative class as there are in the positive class for each

user. For all models, the C and γ parameters were selected via 10-fold cross-validation on

the training set using a grid-search and AUC as the performance metric. For the multiple

kernel models, we fixed the γ parameters for each kernel to the optimal individual values

and optimised C and a with a 10-fold cross-validation procedure.

We compared the classification results using classifiers built using Touchstoke and BoD data

alone, as well as the two data modalities combined. We used the following performance

measures to evaluate the classifiers: the area under the ROC curve (AUC), False Accept Rate

(FAR), False Reject Rate (FRR) and Equal Error (EER) rates. For further explanation, please

refer to Section 4.6.
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7.5.7 Results

In the following section, we report individual classification AUC (blue bars in plots) for all

experiments. Our baseline is the performance of a classifer with randomised test data labels

(i.e. with no predictive power). This is denoted by red bars, each of which has AUC of

approximately 0.5. We use the non-parametric Wilcoxon Signed Rank Test with p-value

threshold of 0.05 to test the significance level of the results.
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Figure 7.10: Individual test data classification for both Touchstrokes (a, c) and back-of-

device (b, d) features. Blue and red bars correspond to classification and baseline AUC

respectively.

One vs All

This experiment represents the typical user authentication scenario where the classifier is

trained to distinguish between the owner (user-of-interest) and other potential users. Here,

we use user-specific classifiers trained using examples collected during the first and second
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sessions and tested using the third session. This is to reflect the typical use case where

calibration data is collected at some point (sessions 1 and 2) and then the user uses the

device sometime in the future (session 3).

The results are presented in Table 7.3. In terms of overall performance, the mean AUC

of BoD classifiers matches the mean AUC of Touchstrokes classifiers for the reading task.

However, as shown in Figure 7.10(a) Touchstrokes classifiers depict a more stable individual

performance compared to BoD (Figure 7.10(c)), particularly for user 17 where the AUC is

much lower than the population mean AUC. This may be due to the session effects for user

17 highlighted in the previous PCA plots (Figure 7.7(c)). On the other hand, classification

performance in the game task is dominated by the BoD classifiers. As shown in Figure

7.10(d), the BoD performance is much higher than Touchstrokes and able to classify users

remarkably well most of the time.

Based on the single input result, we extended the classification task to see if any performance

gain can be achieved by combination of the classifiers. To do so, we constructed a compos-

ite classifier by linearly combining Touchstrokes and BoD kernels. As shown in Table 7.3

and Figure 7.11 (a), a small improvement in AUC is achieved when both kernels is com-

bined for the reading experiment, particularly for user 17. This improvement however is not

statistically significant.
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Figure 7.11: Individual test data classification for reading and game using composite classi-

fiers. Blue and red bars correspond to classification and baseline AUC respectively.

As shown in Table 7.3, Touchstrokes produces higher mean FAR and EER compared to BoD

in both tasks although these differences are not statistically significant. However, a relatively

high mean FRR of 20.66% is given by BoD classifiers in the reading experiment. In the game

task, Touchstrokes produces a significantly higher mean FAR, FRR and EER compared to

BoD (p ≤ 0.0001). The mean FAR for reading is reduced significantly from 9.08% to 2.30%

(p ≤ 0.0006) when using the composite kernel. Reduction also is achieved for FRR and
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Features FAR (%) FRR (%) EER (%) AUC

Touchstrokes 9.08 10.16 9.62 0.95
BoD 3.52 20.66 7.41 0.95
Touchstrokes + BoD 2.30 20.49 6.23 0.96

(a) reading

Features FAR (%) FRR (%) EER (%) AUC

Touchstrokes 20.35 15.33 18.84 0.88
BoD 0.85 2.62 0.77 0.99
Touchstrokes + BoD 9.34 4.18 1.20 0.99

(b) game

Table 7.3: Mean classification errors (FAR, FRR, EER) and mean AUC for each feature type

from all users.

EER, however these are not significant. Similar to the single kernel classification, the error

rates for BoD are significantly lower than Touchstrokes in the game experiment (p ≤ 0.004).

Training Time

In this experiment the goal is to evaluate the effect of training time on the performance of

the classifiers. In particular, we are interested to see how much data the classifier needs to

achieve high AUC. In practice, this represents the enrolment/calibration phase of an authen-

tication system which should ideally be as short as possible. To simulate the calibration

phase, we train the classifier using subsets of the data collected between the start and 60

seconds of the first and second sessions and evaluate performance with data from the entire

third session.

As shown in Figure 7.12 (a) and (c) for reading, Touchstrokes may take more than 60 seconds

from the beginning of the session to reach the highest recorded AUC value, whereas, BoD

the highest AUC is already achieved at the beginning of the session and shows no discernible

increase in AUC over time. In Figure 7.12 (b), we see that Touchstroke requires about 30

seconds to achieve the highest AUC in the game task. BoD (Figure 7.12 (d)) on the other

hand can achieve this as soon as the session starts. Combining the back-of-device with the

Touchalytics features brings the training time down to the very short time required for BoD

as shown in Figure 7.12 (e). For game (Figure 7.12 (f)) similar performance is achieved as

when using single kernel classifier. Out plots suggest that for both tasks, incorporating BoD

data can substantially reduce the potential calibration time.
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Figure 7.12: Test data classification AUC averaged across users with ± standard error (blue)

and mean number of training examples (grey) using Touchstrokes, back-of-device and com-

bination of both features as amount of time t is varied between the start and 60 seconds of

the session.

Feature Selection

We now test whether a subset of features with high mutual information can be used to build a

classifier that can match the performance of the classifier using all of the features. Reduction

in the number of BoD features is desirable as it reduces the number of new sensors required
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(a) reading (b) game

Figure 7.13: Position of the 8 most informative BoD sensors numbered according to their

relative mutual information rank. Bright red shading corresponds to high relative mutual

information whereas dark red shading corresponds to low relative mutual information.

on the device.

We begin by ranking the features according to the relative mutual information. Then we train

the classifier using the single feature at the highest rank and then add the features one by one

in order of rank. We again use data collected from the first and second sessions for training

and data from the third session for testing. Figure 7.14 shows classification performance

using features with the highest to lowest relative mutual information averaged across users.

From the analysis, we see that Touchstrokes requires only the 5 most informative features to

match the classifier trained with all features (c.f. Table 7.3). For BoD, optimal performance

requires roughly 8 sensors. The position of these sensors is illustrated in Figure 7.13.

We now repeat our timing experiments for back-of-device with the smaller feature subset.

We train the classifier using only the 8 highest relative mutual information sensors and test

the classifier using the same procedure as in the training time experiment. Figure 7.15 shows

the result for this experiment. Despite reducing the numbers of sensors, the training time is

still very short for both tasks.

7.5.8 Discussion

Our results show that hand grip at the back-of-device interaction can be used to distinguish

users. As shown in Table 7.3, it is evident that BoD could match the classifcation of per-

formance of Touchsrokes in reading task. An FAR of 3.52% and FRR of 20.66% suggests

that BoD would be insufficient as a primary authentication mechanism, but would contribute

significant information to a continuous authentication system.

In the game task, BoD performance shows a significant improvement from 0.8758 to 0.9974

in AUC (p ≤ 0.0001) over Touchstrokes. Moreover, the BoD also produces a significantly
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Figure 7.14: Test data classification AUC averaged across users (± standard error) for Touch-

strokes (a, c) and BoD (b,d) as number of features ranked from having highest to lowest

relative mutual information is increased.

lower FAR of 0.85% and FRR of 2.62% suggesting that BoD in this type of horizontal swipe

task might be very effective. However, we anticipate different levels of performance if the

touch pressure feature as used in the original Touchalytics [10] were to be included.

During the experiment we noticed that some users changed their grip every time they put

down the device. We call this a session effect. For instance, such an effect is depicted by user

17 as shown in Figure 7.7(c), where the session examples are clearly separated into groups.

Since our method relies on a model constructed from session examples, drastic change in

grip may lead to poor classification, which is the case with user 17. This effect appears to

be more obvious in the reading than game experiment. We hypothesise that after spending 5

or more minutes reading in the first session, a user may feel uncomfortable with the current

grip position and alter it for comfort.

To validate the cause of this effect we repeated our analysis using randomised session la-
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Figure 7.15: Test data classification AUC averaged across users with ± standard error (blue)

and mean number of training examples (grey) using 8 most informative back-of-device sen-

sors (relative mutual information) classifiers as amount of time t is varied between the start

and 60 seconds of the session.
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Figure 7.16: Individual test data classification for game (Touchstrokes) and reading (BoD)

using classifiers trained using data assigned with random session ID. Blue and red bars cor-

respond to classification AUC and baseline AUC respectively.

bels (i.e. mixing up all the sessions). Here the classifiers were trained in similar fashion

using new surrogate sessions 1 and 2 and tested against session 3. The result is shown in

Figure 7.16. The surrogate labels decrease individual AUC in Touchstrokes but gives perfect

classification for all users in BoD. This suggests that session effect may be more significant

in BoD recognition than on front-of-screen swiping.

Classification AUC can be improved by combining both Touchstrokes and BoD kernels to-

gether. This is particularly useful when building classifiers for users with session effect in

one of the inputs. As in the case of user 17, the composite kernel increases individual AUC

for reading from 0.63 to 0.78. Apart from session effect, the composite kernel generally also

improves AUC and reduces both FAR and FRR. For instance, in the game experiment where
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Touchstrokes performs much worse than BoD, the composite kernel significantly improves

the mean AUC from 0.8758 to 0.9965 (p ≤ 0.0001), from 15.33% to 4.18% in mean FAR

(p ≤ 0.004) and from 20.35% to 9.34% in mean FRR (p ≤ 0.0015) over Touchstrokes.

Training time is one of the important factors in any authentication or identification sys-

tem. Reading using Touchstrokes requires around 60 seconds (approximately 18 strokes)

to achieve ≥ 0.85 AUC, and for the game task, similar performance can be achieved slightly

earlier at about 30 seconds (approximately 40 strokes). For BoD, the classifier can distin-

guish the correct user with ≥ 0.85 AUC as soon after the first stroke is observed in both

tasks.

Feature selection presents another interesting question in this study. Although this study uses

classifiers built from all the computed features, it is evident that not every feature from the

feature set is useful. This is particularly true for Touchstrokes as 5 out of 26 features show

no predictive power at all. We demonstrate that by reducing the dimension of the features

and number of original sensors, it is still possible to match the AUC of the full-featured

classifiers.

7.6 Conclusion

In this chapter, we investigated whether hand grip sensed via BoD capacitive sensors can

be used to distinguish users (RQ1). We chose two user distinguishing methods based on

1) hand movement [30] and 2) touchscreen touch behaviour [40] as direct comparison. We

recreated the experiments used by both methods and augmenting them with hand grip input.

Our results show that hand grip contains valuable information that can be used to distinguish

users.

In the first study, we collected phone pickup action from 12 participants using a prototype

mobile phone. From this, we extracted 3 features from the accelerometer input and 24 fea-

tures from the BoD input. We then trained user classifiers using Gaussian RBF kernel SVM

for each input and combination of both.

However a particular limitation of the study is that, it is based on a very small scale ex-

periment. In the case of identification, the results are normally highly dependent on how

many subjects/users are to be distinguished. Moreoever, the way the phone is picked up is

constrained to only one particular setting (while seated) thus it is not known how this will

generalise to actual real-world scenario.

In the second study, we ran similar experiments as described in [40] to record touch scrolling

and touch swiping data using the N9 prototype from 20 participants. We then extracted 26

features from the touchscreen data and 24 features from the BoD and trained user classifiers
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using Gaussian RBF kernel SVM. We obtained similar classification performance as the orig-

inal study [40] method despite using different hardware, classification and pre-preprocessing

techniques.

In both studies, we clearly show that a combination of BoD grip sensing and accelerometer

motion signatures can be used to identify users in the few seconds between making con-

tact with a device and lifting it to interact. Although BoD input dominate the classification

performance in the second study (RQ2), the inclusion of touchscreen input does produce

significant performance gains in some tasks (RQ3).

In the second study also, we show that the number of BoD sensors can be reduced to just

six without impacting performance (RQ5). We also show that BoD input does not require

lengthy training process to achieve high classification performance (RQ4). Although we used

user–specific interaction classifiers, in practice, a system using a pooled model combined

with a small individual training sample may provide adequate performance without requiring

a lengthy enrollment process.

BoD sensors may not yet mainstream presently, however some commercial devices (e.g. the

Doogee DG800 or the Oppo N1) already provide BoD touch sensors to enhance touchscreen

interaction. These sensors may have sufficient resolution to capture hand grip for identifi-

cation purposes. We anticipate BoD sensors with wider sensing surface to be included in

commercial devices in the near future to allow grip-based interaction such in [49] which can

be effectively used for grip-based implicit authentication.

In summary, these results form a concrete contribution to building a rich, multi-sensor mobile

phone identification system. While hand grip alone may be insufficient to perform secure au-

thentication, it can form part of an array of contributing virtual sensors in a hybrid continuous

authentication system or as a lightweight identification model. The performance obtained in

our experiments also suggest that these techniques could be readily applied to non-critical

identification tasks (such as user identification with communal devices like remote control)

or could feed into a larger authentication system as evidence for user identity.
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Chapter 8

Conclusions

Implicit sensing of standard interactions allows the interaction to be understood from a dif-

ferent perspective. In this thesis we have shown that hand grip contact during touch targeting

correlates strongly with the touch position on the touchscreen. We showed that hand grip

while performing swiping and scrolling gestures are user–specific. We have also shown that

users make subtle changes in their grip and hand pose when touch gesture mistakes are made.

By using these implicit signals, we have demonstrated a number of enhancements to standard

interaction.

Sensors perhaps are the most integral component in our work. A mobile phone is a sensor-

laden device, making it an ideal platform for this purpose. We have used two input modali-

ties: hand movement and back-of-device grip. While inertial sensors were used to measure

the former, the latter sensing method was achieved by augmenting a standard mobile phone

with a wrap-around capacitive sensor. These two modalities have been shown to contain

valuable information that can be used to improve interaction.

We have proposed the use of machine learning techniques to enhance standard interaction

using sensor data from two input modalities. We looked at the non-parametric Gaussian Pro-

cess algorithm and non-probabilistic Support Vector Machine classifiers as well as decision

tree based Random Forest classifiers. Using these we constructed: 1) implicit grip-based

interaction models to estimate future touch location, 2) user-specific models based on grip

and hand motion to implicitly identify users and 3) we trained the models to recognise touch

gesture mistakes.

Our goal in applying these algorithms on mobile sensor data was to show that by modelling

implicit interaction, we can provide measurable enhancements to the interaction thus offering

benefits to the user. In this thesis we have shown that these models can be potentially used

to improve touch targeting experience, complement existing phone authentication mecha-

nism and detect mistakes from touchscreen interaction automatically, but more generally we



138 CHAPTER 8. CONCLUSIONS

believe our work stands as an example of the value of modelling implicit components of

standard interactions.

8.1 Summary of Contributions

This thesis makes a number of contributions, which were motivated by our thesis statement

in Section 1.1. In support of the assertion that implicit interactions improves standard explicit

interactions, we have made the following contributions:

• Chapter 5 presented grip and hand movement models based on Gaussian Process re-

gression which describes the relationship between BoD sensor inputs and touch loca-

tions. We demonstrated how these models can be used to make predictions on general

touch areas on the touch screen. We achieved prediction performance that is much

better than random at a few hundred milliseconds before the actual touch. In addi-

tion, we implemented a real-time and simplified version of touch area predictor based

on Gaussian Process models to demonstrate how our technique can be applied to the

actual mobile phone to predict touch location.

• Chapter 6 presented a machine learning technique to detect swipe mistakes from grip

and hand movement during cognitive demanding interaction. We showed that swipe

mistakes manifests themselves as subtle flinches in the hand grip and movement which

are made unconsciously during the interaction. Using SVM and Random Forest classi-

fiers, we demonstrated that these flinches can be classified accurately several hundred

milliseconds after the mistake was made. The automated detection of mistakes is a

valuable component in touch interaction to allow users to recover from error grace-

fully.

• Chapter 7 presented two studies on identifying user implicitly from the way the device

is being grasped/moved during normal interaction. We replicated two state of the art

implicit identification techniques based on phone call answering pick-up motion and

two native touch gestures and augmented them with hand grip and movement modali-

ties. We showed that hand grip and movement during interaction are user-specific and

using SVM classifiers, these can be identified with a higher level of accuracy compared

to the previous techniques.

8.2 Future Work

There are a number of interesting avenues for future work which could follow from the

results presented in this thesis. The following sections will describe these.
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8.2.1 Modelling Dynamic Hand Grip and Movement

In this thesis, all of the predictions were based on the models constructed using static com-

ponents of the hand grip and movement. GP models in Chapter 5, were trained using sensor

values at different time points prior to the touch and we used these to predict touch locations.

Similarly, in Chapter 6 and 7, the features used to train the SVM classifiers were mean values

extracted from different segments in the sensor timeseries.

Despite achieving good prediction performances, our static modelling approach may lose

useful information encoded at a certain segment of the sensor timeseries. For example, our

models did not capture the whole changes in hand grip and motion changes when performing

a particular task, rather it only captured snapshots of the changes. Using the whole timeseries

as a feature will allow us to construct models that represent the whole interaction and enable

us to conduct a more realistic analysis.

Implementing dynamic modelling and measuring how its performance compares to static

modelling is a useful area of work in the future. To do this, a small change in the sensor

data pre-processing is required. Instead of extracting mean values from several blocks in the

timeseries, the models can be trained using the entire timeseries. This requires decimating or

interpolating the signals to fix the length of the timeseries thus, producing a higher dimen-

sional feature data. Theoretically, this will not scale up the computational complexities of

the learning algorithms, thus making it an appealing approach to model the interaction on.

8.2.2 Realistic Mobile Phone Usage Scenarios

In Chapter 7, the phone answering task we used in the first user study was constrained to two

simple pick-up variations, that is picking up the phone with right/left hand and bringing it to

the right/left ear. In reality, this is not always the case, in fact, during the user study, we saw

that some participants naturally brought the phone to the opposite ear (right hand to the left

ear). We believe that covering more than two pick-up variations is an interesting avenue for

future work in this area, particularly when building robust model involving security.

In the second user study of the same chapter, all user classifiers were constructed using

data collected from different sessions in a day. Although we achieved good identification

performance from this study, this represents only one phone usage scenario. Therefore, in

the future it is useful to see how different scenarios such as evaluating the models using data

collected from from different days or weeks affect the identification performance.

Similarly in Chapter 6 our data was collected in a very controlled setting using well-defined

cognitive tasks. It is an important step to further demonstrate that detection is possible in a

more realistic context. For example, it is unclear how user movement would effect predic-
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tions derived from the accelerometer, or how the signals would change when a user was less

engaged with the task.

Based on these observations, the next step therefore is to consider a wider range of realistic

mobile phone usage scenarios when designing experimental user studies. In addition to that,

using a larger population also is another potential direction of future work.

8.2.3 Additional Sensing Input for Back-of-Device Interaction

Our 24 back-of-device (BoD) sensors are based on the popular, robust and yet low–cost ca-

pacitive sensing technology. As depicted in all of our results, these sensors were able to cap-

ture salient information from the grip contact to model implicit BoD interaction. Although

grip contact alone contains sufficient predictive power, we believe that using additional sen-

sor input for BoD interaction would be an interesting line of work in the future.

One of the important grip characteristics that related closely to grip contact is grip strength.

This can be be measured using force sensors [121, 128]. In terms of application, this seems

feasible since sensing technology that combines capacitive and force sensors is already made

available for the masses1 which can be practically adapted to BoD. The use of pressure in-

formation will add an extra dimension to the BoD grip interaction, for example in Chapter 5,

grip pressure can be used as another measurement (or in combination to grip contact) to

construct GP models for touch location prediction.

8.2.4 Effect of Different Type of Gesture and Error

In Chapter 6, we have only studied one type of gesture, and one type of error. It would be par-

ticularly interesting to look at whether similar performance is possible within a completely

different domain. For example, when entering text, many different error types are possible:

physical errors (hitting the wrong key), cognitive errors (spelling a word incorrectly) and

system errors (incorrectly auto-correcting a word). It is possible that the signals from the

user (if they exist) would be different in these three cases although detecting these different

situations would allow us to make smart correction systems.

As discussed in Section 6.5, we found classification performance to remain fairly constant

over time, suggesting that the error information is present very early in the time series. Vi-

sual inspection of Figure 6.5 suggests that the error signal appears slightly earlier in the ac-

celerometer data than it does in the BoD data. This is worth investigating further, for which

a larger dataset is required to ensure sufficient statistical power to identify these changes.

1http://www.apple.com/uk/iphone-6s/3d-touch/
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8.3 Summary and Conclusions

In this thesis we have shown how implicit sensing from standard interactions can be used to

enhance touch interaction and usability of authentication system in mobile devices. We have

built both probabilistic and non-probabilistic models and used their predictions to estimate

future front-of-device touch locations, identify users transparently and detect swipe errors

automatically. Further, we have shown that the combination use of BoD grip and hand

movement in modelling implicit interaction can lead to better prediction performances.

Although there are still many outstanding issues to consider, we believe that the work pre-

sented here in this thesis is a compelling case for the power of machine learning techniques in

solving problems in this area. Implicit interaction particularly using BoD is often neglected

in the literature, and our results show that this has resulted in loss of useful and interesting

information which can be used to improve the quality of interaction using mobile devices.
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