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SUMMARY

This thesis is concerned with the application of modern 
direct methods techniques to the solution of difficult 
structures. The methods employed have been incorporated into 
the multisolution computer program, MULTAN, thereby producing 
a comprehensive package which is capable of supplying the
crystallographic user with a means of solving the most 
obstinate of structures.

Chapter 1 contains a review of the techniques used, the 
first part placing particular emphasis on the application of 
4- and 5-phase structure invariants (quartets and quintets) in 
phase determination. The second part considers the problems 
of defining a good starting set of reflexions for phase 
expansion and leads to the introduction of
magic-integer / vp-map and random phase set / linear equation 
algorithms. The reliability of these invariant estimates, 
derived from the various probability formulae introduced in
Chapter 1, are investigated in Chapter 2 by analysing the 
results obtained for two centrosymmetric and three 
non-centrosymmetric structures.

The use of these probability formulae for structure
elucidation is introduced in Chapter 3 by employing quartet 
invariants in the structure determination of two benzazete
dimers which crystallize in space group Pi. The second part 
of this chapter describes the structure solution of an 
Ylide : Picric acid complex which involves quartet invariants 
extended to all space groups.

The use of quartets in an active role (and quintets in a 
passive role), fully integrated into the MULTAN system, is 
described in Chapter 4, in which the structures of two 
hexa-host inclusion compounds are determined. Not only do
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both structures comprise fairly large molecules (N=186 and 
N=188) in space groups Pi and P2^ respectively and thereby 
represent a challenge to direct method techniques, but in each 
analysis interesting chemical features promote the use of such 
compounds in trapping novel guest species.

Chapters 5 and 6 deal with the structure determination of 
five natural products, four of which are sesquiterpenoid 
lactones. Chapter 5 discusses the problems encountered in the 
structure elucidation of two germacranolides which involved 
not only the use of quartets and quintets, but also the 
application of magic-integer / vp-map and random phase 
set / linear equation techniques. Chapter 6 involves the 
structure determination of three molecules using, in two 
instances, a rescaling of E-magnitudes via the temperature 
coefficient, B. The final structure solution involved a 
simple modification to the Wilson plot procedure.

The conclusions derived from the techniques employed are 
discussed briefly at the end of the thesis.
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Chapter 1

Some Aspects of Direct Methods



1.0 INTRODUCTION

The essential hurdle remaining in X-ray and
neutron-diffraction analyses of crystal structures is the 
phase problem. The reconstitution of the 'image' which
provided the diffraction spectrum - that is, either the 
electron density or nuclear scattering density in the 
crystallographic cell - requires a knowledge of both the 
magnitudes and phases of the Fourier coefficients (reflexion 
structure factor amplitudes). The relative magnitudes of the 
structure factors, simply related to the square root of the 
observed reflexion intensities, may be obtained routinely and 
with high precision by automatic diffractometry. But
determination of reflexion phases is, in general, far from 
straightforward, and it is the recent developments in this 
area with which this thesis is concerned.

The intensity of a given X-ray reflexion represents the 
sum of the coherently scattered wavelets originating from each 
atom; this sum reflects the phase relationships between the 
different wavelets - which depend on the positions of the 
atoms in the unit cell - and the scattering power of each 
atom. It is this dependence on scattering power which
provides the basis for the majority of crystal structure 
solutions using the heavy atom method. In the absence of a 
heavy-atom derivative or complex, one is left with two ways of 
tackling the phase problem.

The 'trial-and-error' method describes itself - molecules 
of. known structure are moved around the unit cell until 
observed and calculated reflexion intensities are in fair 
agreement. For a large molecule, or even a medium sized one 
with a variety of possible conformations, this method is not a 
practical one although several workers remain interested in 
the possibility of defining structures in an ab initio way 
through computer calculations restrained by sensible 
considerations of inter- and intra- molecular potential 
energ ies.
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The term 'direct1 is usually reserved for those methods 
which attempt to derive the phases of the structure factors 
directly by mathematical means from the measured X-ray 
intensities. Ideally, direct methods reduce the phase 
determining problem to an objective procedure which, once 
formulated, may be solved by a routine sequence of steps in 
which any decisions are of a purely mathematical nature.

i.l DIRECT METHODS

Direct methods of phase solution depend on the physical 
proposition that the electron density is positive throughout a 
unit cell. It was realised some thirty years ago that the 
phases and moduli of reflexion structure factors are related, 
and this has formed the background to all subsequent work. 
Harker and Kasper showed that application of Cauchy-Schwartz 
inequality relationships to the structure factor equation 
immediately led to relationships between the phases of certain 
reflexions, which were illustrated in the solution of 
orthorhombic decaborane

However, as the complexity of the crystal increases, it
becomes necessary to bring in probability methods since
inequalities, by themselves, impose restrictions only on
phases whose intensities are very large. Hence, a few years
after the Harker-Kasper work, a series of papers by Karle and 

2 3Hauptman ' developed the concept of probable relationships 
between phases of reflexions.

The basis for these methods lies in the equation derived4by Sayre (1952) for the special case of centrosymmetric 
crystals:

f, = i f I f , f . , , ,
h v g k - ^  (1-1)



Page 3

where f is the scattering factor for the real atom, g is the 
common scattering factor of the squared atom and V is the unit 
cell volume. However, the derivation of the inequalities 
makes no assumption about the shape of the atoms in the cell. 
In order to introduce the concept that atoms are discrete 
points in reciprocal space, the structure factor (1.1) is 
expressed as a normalised structure factor, E^.

1.2 THE NORMALISED STRUCTURE FACTOR

The normalised structure factor, E^ , in its simplest 
form can be written as:

(observed)
Eh = —  -----------  (1.2)

F^ (expected)

Expressing the expected structure amplitude as the total 
electron density in the unit cell, (1.2) becomes:

2 K|Fh |2|P 1 =  —
V  7  " N f 2 (1.3)

 ̂ 3J=1

where f^ is the atomic scattering factor of the jth. atom in
a unit cell containing N atoms,  ̂is a factor which corrects
for space group extinctions and F^ is a relative structure 
factor which requires the constant scale factor, K, to be 
applied to bring F^ to an absolute scale. The fundamental 
equation (1.3) has two serious drawbacks which prevent it 
being used in this form for accurate calculation of 
E-magnitudes.

1.2.1 Temperature Factor, B

The normal scattering factor curves are calculated on the 
basis of the electron distribution in a stationary atom.
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However, the atoms in crystals are always vibrating about 
their rest points. The effect of thermally induced vibrations 
was first analysed by Debye in 1913 and later corrected by 
Waller. The magnitude of the vibration depends on the 
temperature, the mass of the atom and the firmness with which 
it is held in place by covalent bonds or other forces.

The effect of such thermal vibration is to spread the 
electron cloud over a larger volume and thus cause the 
scattering power of the real atom to fall off more rapidly 
than in the ideal stationary model. The change in scattering 
power is given by:

f = f ^ - B t s i n 20)/ X 2 (14)

- 2where B is related to the mean-square amplitude (CJ ) of atomic 
vibration by:

2 - 2  B = 8 tt U

f is the ideal and f the observed scattering factor for a 
point atom.

1.2.2 Scale Factor, K

An average observed intensity, corrected for Lorentz and 
polarisation factors, may be defined such that:

I = <|F . |2> (1.6)rel rel average

For a unit cell which contains N atoms, it can be shown that 
the theoretical average intensity is given by:

1 h = ^ f ■2 abs 3

Hence the average intensity depends merely on the unit 
cell contents and not atomic positions. Ideally, the ratio of
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I , to I .. should be a scaling factor required to place ab s rex
individual I , ' s on an absolute scale. However, f's are not rel
constants but are functions of (sin©)/A so that Iaj-)S also
varies with sin©/ A . This variation is normally avoided by
dividing reciprocal space into concentric shells, each
dimensioned such that the change of f with (sin©)/A within
the shell can be ignored, and averaging the I ^'s of the
reflexions within each shell. In this way I . can beJ rel
compared with I ^g calculated from the f's appropriate to the 
shell.

The measured, or observed, intensities, I . , arerel
related to those calculated on an absolute scale (for atoms 
that are at rest) , laj3S t by:

I . = K. I . - 2 B s m  ©/ A (1 8jrel abs v 7

where K is a constant scale factor. Rearranging the terms and 
taking natural logarithms of both sides gives

ln(Irel / I f 2 j) = lnK “ 2Bsin2©/ A 2 (1.9)

A plot of the left side of (1.9) as a function of 
2 2(sin ©)/A yields a straight line of slope -2B whose 

intercept on the ordinate at © = 0° determines the scale5factor, K. This is the procedure devised by A.J.C. Wilson . 
In practice, however, it is usual to calculate a least-squares 
line through the Debye points to obtain the Debye-Waller 
factor, B, and the scale factor, K, used to convert F's to 
E's. If the Debye points deviate greatly from a straight 
line, the K-curve method introduced by Karle and Hauptman is 
used.

It cannot be too strongly emphasised that, since all 
direct methods calculations commence with the computation of 
E-magnitudes, it is worthwhile considering the factors which 
affect their actual values. E-magnitudes calculated using
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Wilson plots to obtain values for scale and temperature 
coefficients are subject to alignment of inter- and intra- 
atomic vectors, which illustrates that molecules are not 
random atoms in reciprocal space.

1.3 ORIGIN AND ENANTIOMORPH DEFINITION

1.3.1 Origin Definition

In order to define a crystal structure completely, we 
must be able to specify the atomic positions with respect to a 
frame of reference. This entails setting up a system of axes 
with a fixed origin. In general, there will be a choice of
origin locations since crystal symmetry usually determines the
direction of the axes but not their absolute positions. A 
change in origin position will affect the phases of the 
structure factors (but not their magnitudes), so the selection 
of a particular origin imposes a corresponding pattern of 
relative phases on the diffraction pattern.

The normal structure factor expression is:

F = If. exp(2nih.x.) (3.1)h j 3  3

If the origin is moved a distance A x ,  the structure 
factor becomes:

therefore

= jexP2nih. (Xj"Axj

Fh = Fhexp (“2TTiil*Ax) (3.2)

Thus an origin shift of Ax changes the phase of by
-2nih. A x . In terms of its components, the phase shift is
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given by:

Aj^h^i = -2n(hA.x + kAy_ + lAz,) (3.3)

Thus in space group Pi if the origin is moved from 
(0,0,0) to the point (0.5,0,0) all reflexions with h odd will 
change by an odd multiple of tt (a change of sign) , while those 
with h even will change by an even multiple of tt (retain the 
same sign). Hence it is possible to put reflexions into 
categories according to the parity of h,k or 1, i.e. whether 
or not their signs depend upon origin position in the x,y or z 
direction.

1.3.2 Structure Invariants and Seminvariants

A. Structure Invariants

The cataloguing of reflexions during origin definition
leads to the concept of structure invariants and derived 

7-9seminvariants . From equation (3.2) it has been shown that 
the phases of the structure factors may change with a change 
in origin. Although the signs of individual phases depend on 
the structure and choice of origin, there exist certain linear 
combinations of phases, the structure invariants, whose values 
are independent of the choice of origin. Because of this
dependence on structure alone, it is not surprising that the 
development of the theoretical basis of direct methods of 
phase determination involves the structure invariant in the 
central role.

Clearly ,from (3.2)

0 h = “ 2nll-£ (3.4)
i

where 0 ^ is the phase of the structure factor F^ , with
respect to the new origin shifted r_ from its” previous
position. Considering the linear combinations of both sides
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of (3.4) to have integer coefficients which depend on h 
leads to: ~~

If

then

I A, 0 = I A, 0, -2tt(IA, h).r (3.5)hll il h l l l l  h ^ - -

Z A  h = 0 (3.6)h _

= IW  < 3 ’ 7 >

no matter what the vector r_ may be, and the linear combination 
of the phases (3.7) is a structure invariant since it has the 
same value for every choice of origin.

As a corollary of (3.6); when the summation (3.7) is 
restricted to three vectors with integer coefficients

\  + + *1

is a structure invariant if h+k+_l = 0. The use of structure 
invariants can readily be expanded to include a set of 
f o u r ^ ^ ^  or five"^ phases whose linear combination of 
phases satisfies the integer combination, such that 
h+k_+l_+m = 0, and h+k_+l-fm+n_ = 0 respectively. The occurrence 
of structure invariants and seminvariants lends itself to the 
rule that reflexions used to define the origin cannot, 
themselves, combine to give a structure invariant. Therefore, 
by definition, reflexions used in origin definition should be 
linearly independent.

B. Structure Seminvariants.

Seminvariants arise from using the restrictions imposed 
by space group symmetry when defining the origin. Because of
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this restriction many linear combinations of phases, in 
addition to the universal structure invariants previously 
discussed, will remain unchanged in sign when the origin is 
shifted only in the restricted ways allowed by space group 
symmetry. As an example, in the space group P2^, the linear 
combination

+ i2

is a structure seminvariant if:

h^ + h_ 2 = 0 (mod 2)

-1 + -2 = 0 (mod 2)

In general, the structure seminvariants are the linear 
combinations

l A h K  h £l h
where A^ are integers satisfying

§ V ^ s  = 0(mod- y s>

h is the vector seminvariantly associated with the vector h — s —
and cj is the seminvariant modulus. The usefulness of — s
seminvariants is best illustrated in enantiomorph definition.

1.3.3 Enantiomorph Definition

In the non-centrosymmetric case we also need to define
the enantiomorph. The effect of changing the enantiomorph is
to reverse the signs of all phases, so that d, . .. becomeshkl
~^hkl* This, in turn, will reverse the signs of all the 
structure invariants of the type



This means that the enantiomorph can be defined by 
specifying the value of a particular invariant. In general, 
one of the possible values for a structure invariant or 
seminvariant corresponds to one of the enantiomorphous 
structures permitted by the structure factor magnitudes and 
the second value corresponds to the other enantiomorph. When 
the two enantiomorphs are distinct, one may be selected by 
specifying arbitrarily the sign of a structure seminvariant or 
invariant whose value differs from 0 or tr . For efficient 
enantiomorph definition this seminvariant must involve large 
E-magnitudes.

Having determined that

+ + *1

is a structure invariant and therefore does not depend on 
origin but only on the position of the atoms we now wish to 
predict its value. This is done via probability theory.

I-4 PROBABILITY THEORY 

1.4.1. Introduction

Consider an experiment yielding a set of possible 
outcomes. It is assumed, either because the initial 
conditions are so numerous or poorly defined, or the laws 
governing the relationships between the initial conditions and 
the actual outcome are so complex or poorly understood, that 
it is not possible to predict with certainty the actual result 
of the given experiment. All that is known is that one of a 
well defined set of possible outcomes must occur. If the 
experiment is performed N times, where N is a large number, 
and the outcome X. occurs M times, then the probability of X.1 i
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may be taken as P(X^) = M/N.

In an X-ray diffraction experiment we have a large number 
of invariants and associated E-magnitudes, and wish to know 
the probable value of the invariant.

Algebraically, the calculated normalised structure 
factor, , is defined as:

Eh =  q~q35—  I exp (2nih.£ ) (4.1)
£  3 2 j=1 J

where

and Zj is the atomic number of the jth. atom in the unit cell 
and is the position of the atom labelled j. The reciprocal 
vector h may be fixed and the position vectors r^ regarded as 
random variables or, alternatively, the crystal structure may 
be fixed and the reciprocal vector h regarded as the random 
variable. A random variable is a function which takes on a 
definite value at every point in a sample space. In either 
case E^ is a function of one or more random variables and is 
itself a random variable and on this basis a probable value of 
its phase (2nih.r_j ) may be found.

The distributions to be considered here are of the second 
kind, where one is ordinarily confronted with a fixed but 
unknown crystal structure and a large number of structure 
factor magnitudes sampled from reciprocal space.

1.4.2 Triplets

Triplets are three-phase structure invariants of the
form:
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*3 - * h + * k + *l (4’2)

In the centrosymmetric case the value of restricted
to either 0 or tt which leads to the use of 'signs' in phase 
determination; the signs + or - correspond to phase angles of 
0 or tt respectively. Sayre pointed out, however, that for the 
case where the E-magnitudes involved are large the sign of 
is determined by the agreement in sign among the products of 
the component phases,i.e.

S(Eh ) - S(Ek .E1 ) (4.3)

where S means 'sign of' and may be considered as + 1. For the 
invariant, product of the three signs is most probably
+ , assuming large E-magnitudes are involved. This probability 
increases with an increase in the product of the magnitudes of 
the E's involved.

The first practical probability formula which expressed 
this quantitatively was put forward by Cochran and Woolfson^ 
(1955) for the centrosymmetric case. The probability that:

S(Eh ) .S(Ek ) .S(E]_) = +1
is given by,

P+ = 1/2 + 1/2 tanh A/2 (4.4)

where

A = 2a3 a2_3/2iEhEkE1 l (4.5)

If there are several indications as to the sign of s (Eft) 
then (4.3) becomes:

S(Eh ) - S ( l E k .E1) (4.6)
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and the probability relationship (4.4) is generally expressed 
as :

P* = 1/2 + 1/2 tanh XA/2 (4.7)

The corresponding formulae for non-centrosymmetric
structures, where the phase of |E, | may take on any value from

— 140 to 2 tt, were first introduced by Cochran in 1955. For 
coherence with other sections the nomenclature derived by 
Hauptman is used. The fundamental relationship,

$3 r 0 ^ + 0^ + (4-8)

is expressed as a joint conditional probability 
distribution"^,

1
Pl/3 = P ̂ 3  ! R 1 ' R 2 ' R 3) “ 2 I (A)exp(A cos^3 ̂ (4.9)o

where I is a modified Bessel function of the first kind, o

V V ;  R2=IEk l; R3=iEi 1

are, as expected, parameters of the distribution. Graphs of 
(4.9) are shown in Figures 1(a) and 1(b) for A values of 2.316 
and 0.731 respectively. Note, that owing to symmetry, it is 
sufficient to plot these curves in the intervals 
$ 3 = 0 - 180°.

It is clear that these distributions always have a unique 
maximum at <$3 = 0 and a unique minimum at <$3 = 180°. 
Furthermore, the larger the value of A, the smaller the 
variance of the distribution.
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1.4.3 Statistical Parameters from Joint Conditional 
Probability Distributions

In the non-centric case, the following statistical 
parameters are derived from the relevant joint conditional 
probability distributions, P($).

Modal value of $, (l$m l), is that value which gives the
maximum value of P($).

Mean value of <$, (<l$i>), where

2n
< I $ I > = / $P($)d<$ (4.10)

Of immediate interest when dealing with any phase 
relationship is its variance, V, which is a measure of its 
reliability.

2Variance, V = J ($ - <(<$)>) .P($)d<$ (4.11)

and standard deviation,

a = v1//2 (4.12)

In the centrosymmetric case, where the phase estimate
will only have one of two possible values (0 or tt ) , 
probability formulae give an estimate of its reliability
directly, i.e. P+>0.99 etc.

1.5 THE USE OF TRIPLE PHASE INVARIANTS

1.5.1 Phase Expansion - Relationships - Tangent Formula

Apart from the complexity of the structure, perhaps the 
most important element influencing success or failure of a 
direct solution of the phase problem is the choice of starting 
reflexions. Once the normalised structure factors have been
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calculated a subset is chosen for carrying out sign 
determination.

In the case of centrosymmetric crystals, the most useful
sign determining formula has been that termed the

16I 2  relationship and is given in equation (4.6) with its 
associated probability (4.7). The summation, which is carried 
out over high E-magnitudes, can involve simply one or many 
terms, depending on the stage of the analysis. Hence by the 
use of these triple-phase relationships it is possible, by 
starting with a limited number of phases, to pyramid to a 
number large enough to give a recognisable Fourier 
representation of the structure.

With non-centrosymmetric structures the procedure is 
similar. Employing relationship (4.8) with the joint 
conditional probability distribution (4.9), the probable value 
for the invariant,

0 h + + 161

will be zero if large E-magnitudes are used. It is possible
to combine all the indications for 0 , :h

^h + ^k1 + ^l1 ” 0 

^h’ + ^k2 + ^l2 ~ 0

0 ^ (5.1)

When all the associated phases have been calculated, the
combined probable value of 0, is given by the tangent

17 —formula :
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Th
(5.2)

IlEk -Ellc°s(0k + ^ 1) Bh

Refinement of a set of phases can be achieved by a 
recycling process, employing the tangent formula, which can be 
continued until negligible shifts in the derived phase angles 
are observed from one cycle to the next.

The last fifteen years has seen the increasing use of
multisolution techniques. The crystallographic user has a
wide and varied range of packages from which to choose;
X-RAY 78 (J.M.Stewart), N.R.C.(Ahmed), SHELX (G.M .Sheldrick).
For mini-computers several systems now exist, e.g. Syntex XTL
(R.A.Sparks) , CRYSTAN (H.Burzoff et_. al. ,) . However, perhaps
the most powerful and efficient is the MULTAN package of

18Woolfson, Main and Germain

1.6.1 Selecting the Starting Set

The most difficult part of any multisolution technique is 
the procedure used to select a starting set of reflexions. To 
make use of the derived I 2 relationships (4.6) a small 
starting set of reflexions, which will efficiently expand to 
give new phase information, is required. In normal
application of the multisolution process a number of phases 
may be expressed explicitly (origin and enantiomorph), and 
other phases are represented by reflexions which take on 
different values for each set of tangent refinements. These 
reflexions usually take on values of + TT/4 and ±3rr/4.

In this way the phases of these 'variable' reflexions are 
permuted until the correct sequence is found. If, for

1.6 THE MULTISOLUTION TECHNIQUE
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example, there are n variable reflexions in the starting set, 
then 4n sets of phases would be developed. Four variable 
phases for a non-centrosymmetric structure require 256 
permutations. For this reason, the number of starting set 
reflexions is usually kept to a minimum.

One computer algorithm used to choose the origin-defining
reflexions, which form a good starting point for phase

19determination, is the CONVERGENCE procedure . This algorithm
lends itself to automation. The first step is the calculation 

2of a, , for each reflexion. This is a measure of how h , est
reliably each phase can be determined in terms of all others 
remaining in the data set at any one time and can be 
calculated without knowledge of individual phase angles.

<Qh2>o = (- =ZA h i 2 + 2EZA. , A. h ,)I,(A. .„)h est jy hh h‘h" “ 'ii -*■ Jl'Jl
X (A, , - ) 1  (A, , 1 1)o n_,h1 o h ,h_

where h 1 = h"+h

(6.1)

The summations over h ’ and h" are taken over all 
available I 2  interactions involving 0 ^ .  By using a ^ the
least reliably determined phase is eliminated at each stage, 
leaving at the end those reflexions which are strongly linked 
together and which lead to reliable phase determination by 
giving multiple indications using strong relationships. One 
of the reasons the algorithm is successful is that it looks at 
the way reflexions are linked together through phase 
relationships, and does not look at each reflexion or 
relationship in isolation. It will be shown later that the 
CONVERGENCE procedure can be used to take account of higher 
neighbourhoods of structure invariants.

a h 2  can be usefully compared with another term,1.1 / Q S L
Qh expt ' Is derived from the tangent formula (5.2) as;



Page 18

< a u> . = A, |E, | (T? + B ^ ) 1 / / 2  (6.2)h expt h h ' h h

2For a random set of phases the expectation value of a ,
is given by:

< a h2> random (6‘3)

1.6.2 The Tangent Formula in Multisolution Methods

Application of relationships to non-centrosymmetric
structures usually yields several estimates for the value of 
0 ^ .  Some, particularly those involving large E-magnitudes, 
wTll contribute more strongly to this estimate than others. 
Therefore reflexions at the bottom of the convergence map will 
participate significantly during the early stages of phase 
expansion. In order to use this information in the tangent 
formula a weighting scheme is applied so that reflexions at 
the bottom of the convergence map have a weight of 
approximately unity , while those contributors further up the 
mapping procedure are downweighted. The term ah«.expt ' 
already defined in (6 .2 ), is used as the weighting function.

The weighted tangent formula may be written as:

“i 'Vi1 sini*k + V
tan 0 h = -------------------------------  (6.4)

where w = min( 0 . 2  a, ., 1 .0 ) h_ h,expt' '

which takes into account, by employing a then /s xp t
'strength' of the relationships being used at the time.

This weighting scheme plays an important role during the 
early stages of phase determination, but all the weights
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quickly become unity and so have little effect during the 
latter stages.

1.6.3 Figures of Merit

In the standard MULTAN package three figures of merit are 
computed for each set of phases determined and are output with 
the tangent formula results.

20a) The absolute figure of merit , ABSFOM , is a measure of 
internal consistency among the 2 ^  relationships and is 
calculated from:

a., . a ,
n,est h /  random

ABSFOM =   (6.5)
a - a

h,expt h ,  random

For a set of phases with almost no self-consistency the 
value of ABSFOM will be zero. On the other hand, for the 
correct set of phases one should expect ABSFOM to be close to 
unity.

21b) PSI-ZERQ Another figure of merit which is effective is 
the value of

%  ■ J ' I W j l 1 < 6 '9)

where the inner summation is over all the terms available from 
the set of phases being determined and the outer summation is
over a number of reflexions for which E, is zero or small inh
magnitude. For a good set, v|; is expected to be small since 
the inner summation is essentially a selection of contributors 
to Sayre's equation.

c) Finally, the R„ , figure of merit described by Karle and
2  2  1 -L 6

Karle can also be used. For each in the set of phases 
being determined one calculates —
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I , = KIE. .E, . (6.10)h calc ft k_ h-k_

where K is a constant chosen to give

I|Eh |2obs - IlEh |2calc (6-11)

The residual is then defined by

h 1 ^ h ’obs “ |Eh*calc 1 

R = — ------------------------  (6 .1 2 )
£ ' V o b s

and is a measure of the extent to which the 'squared 
structure 1 resembles the 'structure' for the set of phases 
under consideration.

It is also useful to combine these figures of merit to
give:

ABSFOM - ABSFOMmin
C = 1 -------------------- -

ABSFOM - ABSFOM .max m m

vL/ - Uj+ lj 2  o max o
VL» ~^o max o m m

R - R+ max

R _ Rmax min

where and are weights which are usually chosen as
unity. They may be changed to give more weighting to vp and 
less to ABSFOM for space groups not involving translational 
symmetry. C should be as large as possible and has a maximum 
value of
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1.6.4 Failures of the Multisolution Technique

Sometimes multisolution programs fail and no E-maps can
be found from which a recognisable fragment can be recycled to
derive the complete structure. The pattern of failure is
rather difficult to interpret, as shown in the analysis of a

23number of MULTAN failures reported by Lessinger . There are, 
however, two inherent limitations in the multisolution
technique.

The first limitation concerns the size of the starting 
set. The basic aim is to use a starting set of reflexions 
small enough to give a manageable number of phase permutations 
yet large enough to lead to a strong development of new phase 
information. Hence it is possible to start with a small 
number of reflexions and, by use of ^  relationships and the 
tangent formula , to pyramid to a number large enough to give 
a recognisable Fourier representation of the structure. The 
obvious danger in this approach is that the pyramid is 
balanced on its point and instability can ensue.

If the number of starting reflexions are to be kept at a 
minimal level then, as the thesis will endeavour to 
illustrate, the use of higher invariants with their associated 
probabilities may be used to ensure better phase expansion 
during the convergence mapping procedure of the analysis. 
However, there are alternative methods of initial phase 
assignment which exist; magic-integer phase representation and 
random phase sets coupled with linear equations.

A second limitation is the tangent formula itself. For 
some structures even the correct phases are unstable under the 
process of tangent formula refinement. This instability in 
the formula arises from the assumption that all

1.2 relationships are independent - this is not so. Since 
the formula itself is derived via probability theory it is 
hoped that by using higher invariants (quartets, quintets 
etc.) with their better probability relationships, a weighted



tangent formula using these invariants may prove useful.

1.7 NESTED NEIGHBOURHOODS

In general, structure factor magnitudes determine the
values of the cosine invariants, and therefore, except for a
two-fold ambiguity, the values of the structure invariants
themselves. As already discussed in section 1.4, the
probability of the sign of a triple-phase invariant, /being
zero depends on the size of the E-magnitudes involved in the
construction of the invariant. It is therefore reasonable to
assume that the invariant will be more sensitive to some E's
than others. In an attempt to define the criteria which
bring about this dependence on E-magnitudes the concept of

24nested neighbourhoods was introduced 

A Quartets

The four-phase structure invariant 

$ 4  = + (7.1)

where h + k_+l_ + m = 0

depends, in the first instance, on the values of the principal 
terms

|Eh | , |Ek | , 1 E^| and IEm |.

(R^ / & 2  ' R 3  anc  ̂ R 4  respectively)

However, by considering that a four-phase structure 
invariant can be derived from the sum of two triple-phase 
structure invariants with one vector in common, a number of 
new (cross) terms can be derived:
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*i = K  + + ^-h-k (7-2)

if i | , |E^| and are large, then

and

i 2  = ^i + ^  + ^ +k <7 -3>

Again, if |E^|, 1Em | and lEh+^l are large, then

*2 = 0

Combining (7.2) and (7.3)

44 = $i + $ 2 = <*h + ^k + *(1+ = 0

By taking various combinations of the four principal 
terms, viz.

" W '  1 Ek+ 1 ' ' lEl+tn'' lEh+l'' |Ek+m>' 1 Eh+m

it is found that only three of these are unique,

|Eh+k'' IEk+i' and IEi+h'

(R^ 2  / ^23 anc  ̂ R 31 resPectively)

By addition of the three new cross-terms, derived from 
the principal |E|s, one obtains a different estimate for , 
dependent on these seven magnitudes. Since the first 
estimate, dependent on only the four magnitudes, uses less 
information than the second estimate, dependent on the seven 
magnitudes it is natural to expect that the latter will, at
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least in favourable cases, be mere reliable than the former,
and this in fact is the case.

With more magnitudes the potential for obtaining a small
variance is increased. It is feasible to conjecture that
there exists an additional small set of magnitudes which f when 
added to the previous two sets, will combine to yield a still 
better estimate for the invariant In so doing the concept
of nested neighbourhoods is evolved which is depicted 
schematically in Figure 2.

The first neighbourhood consists of four principal 
magnitudes R^, R^, R ^ , R^ ; the second is the set-theoretic
union of the first neighbourhood and the three additional 
magnitudes are shown in the second shell. The addition of the 
third neighbourhood is accomplished by making £  and £ 
arbitrary reciprocal vectors which satisfy

h_ + _ k + j p + £  = 0 (7.4)
such that

^ + d, + 0 (7.5)pq h '

is a structure invariant.

If,

_ l + m - £ - £  = 0 (7.6)

then

'V = d . + d  — 0 — d (7.7)pq ^1 ^m £ ' 1

is also a structure invariant.

Previously, had been estimated by the 7-magnitudes in 
its second neighbourhood,
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lE^I, |EjlI, lE^I , |Em l, IEh+k.1 ' ' W '  " W  (7’8)-

$ can be estimated by means of the 7-magnitudes in its P3second neighbourhood,

I E J ,  IE,!, |E£ |, |Eq f , l E ^ I ,  l E ^ I ,  I E£ + h ! <7 ‘9 >-

and by means of the 7-magnitudes in its second
h rSineighbourhood,

IE, |, |E |, |E |,|E I, |E, I, |E I, IE , | (7.10).1_ E £ £L i+5L £“£ “£+9L
However, from (7.1), (7.5) and (7.7) it is clear, that

- $ - vp = 0  (7.11)4 pq pq

It can therefore be expected that in the favourable case
when the 7-magnitude estimates yield values for <$., $ and

4  pq
U' in accordance with (7.11), then $ will be well JrSl

estimated in terms of the 2 1 -magnitudes of which only the 
following thirteen are unique,

|Eh |, |Ek l, IEjJ ,  I Em I , IE I, |E I (7.12)

(Rl , R 2  , R 3  , R 4  , R 5  , Rg)

Vi1, 'Vi1' 'Vk1, 'Ve1' 'Ve1' 'Ve1' ‘Ve1 (7-13>
*R12 ' R23 ' R31 ' R15 ' R 25 ' R 35 ' R45^

It is expected that the conditional variance of the
invariant, <$4 , given the 13-magnitudes in its third
neighbourhood, will be small if the three 7-magnitude subsets
of the third neighbourhood, which are the respective second
neighbourhoods of the structure invariants , $ =nd vi;4 pq pq '
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give reliable estimates for the latter in accordance with
(7.11). Thus only those third neighbourhoods are useful for
which IE i and |E I are both large and where £  and £ satisfy £ 3.(7.4) .

When three estimates for the phases of the invariants 
(7.1), (7.5), and (7.7) combine, as in equation (7.11), the
resulting relationship is referred to as a trio. A closer 
look at the trio shows that if < $ 4  has four large principal
terms and three small cross-terms, then, from probability
theory its magnitude will be tt ; if '4' has four largeP̂ Iprincipal terms and three small cross-terms then the value of

„ is also tt and the resultant phase of $ must therefore pq r pq
be zero. This gives a semi-independent estimate of the
quartet magnitudes.

B . Quintets

For the quintet structure invariant:

*5 = \  V  + + + (7-14)

where h + _ k  + l _ + m  + n = 0

25an analogous argument , as applied to quartet structure 
invariants, can be envisaged whereby the five principal 
E-magnitudes,

lEh l, |Ek l, |E l l, I Em I and l E j

may combine to produce a number of cross-terms. A quintet is 
derived from the addition of a four-phase structure invariant 
and a three-phase structure invariant, each with one term in 
common.

4 — d, 4- d d 4* d*1 ' h ^k *®1 ^-h-k-l (7.15)
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If E^, E^ , and E_h_k_^ are large, then

and
-  0

^2 + ^n + ^h+k+1 (7.16)

When E , E and E. ,, are large, m n h+k + 1  * '

Adding(7.15) and (7.16) gives

^5 “ ^1 + ^2 = ^h + ^k + ^1 + ^m + ^n - 0  (7.17)

In this case there are twenty cross-terms associated with 
the second neighbourhood, of which only ten are unique. The 
additional magnitudes are:

Eh + k !' *Eh + l !' iEh+m'' |Eh + n !' |Ek+l’'

Ek+mi' |El+n‘' |EW '  1 Em + n '' |Ek+n

( r 1 2  , R 1 3  , R 1 4  , R 1 5  , r 2 3  ,
R24 ' R25 ' R34 ' R45 ' R35 *

These new cross-terms may then be combined with the five 
principal terms to give a better estimate for the phase of the
invariant, , based on the 15-magnitudes of the second
neighbourhood. Again, third, fourth and fifth etc. nested
neighbourhood sequences can be derived using appropriate
reciprocal vectors until 29-, 37- and 51-magnitude
neighbourhoods are accumulated respectively. At present only 
the first and second neighbourhoods are used.
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By using the nested neighbourhood concept and involving 
more E-magnitudes, it is possible to obtain different values 
for probability estimates and these values should be of 
greater reliability-

1.8 PROBABILITY USING HIGHER INVARIANTS

A. Quartets

An obvious extension of the probability relationships
already derived for the triple-phase structure invariant, <1 ^
is to consider the four-phase structure invariant, This
relationship was already derived and published as the

2relationship by Hauptman . It had also beeen derived,
independently, by Simerska (1956). Using Hauptman's notation
and applying the assumptions employed for triple-phase
probability, the conditional probability distribution, P^ ,
given the four magnitudes, R,,R 0 ,R-,R., has been found for

15centrosymmetric structures

where

P3 = 1 -z4 
K4

(8.1)

4  = exp(±B/2) (8.2)

and
K4 - Z4 + Z4 (8.3)

with

= 2 / P4+ • P4" (8.4)

and

B=-^T(3a3 °2 a4)RlR 2R 3R4 (8.5)
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Comparison of the results derived from (8.1) and (4.4) 
shows little difference, with the most probable value of $ as 
zero. However, a zero estimate for $ with (4.4) is, in 
general, less reliable due to the smaller value of A compared 
to B. The theory of the four-phase structure invariant 
appears to have yielded nothing new.

Consideration of the fact that the structure invariant,
$ 4 , must occasionally be in the neighbourhood of 180°, leads
to an examination of the influence of the cross-terms
involved. By an argument similar to that used to derive P“j, 

15Hauptman has calculated the 7-magnitude conditional 
probability distribution, , for centrosymmetric structures 
a s :

+Pf - 1 -Z7- (8 .6 )
K7

where

Z7 * « P « ?B)C08h« - ^ - Rl2X12)c08h< - ^ - R23Y 23) X
2

cosh ( q-?- )
a,3' 2 3 1  3 1

Y 12 R1R 2 -  R3R4

Y oq — R 0 R_ + R-.R. 23 2 3 —  1 4

Y 31 R 3R 1 -  R 2R4
and

K? = Z+? + Z~ (8.7)

with

= l j  P 7 -P~ (8 .8 )
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In the special case when Rj2'R23' R31 are lar9e ' then
P* is close to 1  and - 0 ; if, on the other hand, R-^' R 23 
and are small, then P^ is close to 0 and - n . The
invariants derived using small cross-terms which give rise to 
phase estimates of tt are called negative quartets.

Hence the additional information of the cross-terms has 
been sufficient, under certain cicumstances, to change the 
most probable value of from 0 ° when only (8 .1 ) is used , to 
180 when (8 .6 ) is used. Thus the comparison between (4.4) 
and (8 .6 ) illustrates with particular force the great change 
which may result as one increases the number of magnitudes on 
which the estimate for the structure invariant depends.

Since the nested neighbourhood concept has developed a 
third neighbourhood, comprising of 13-magnitudes, Hauptman^ 
has derived the conditional probability distribution, ^ 3 / 
which is given in Appendix I. By having more magnitudes 
contributing to the phase estimate, it is expected that phases 
so determined will be more reliable.

Akin to the centrosymmetric formulae, (8.1) and (8 .6 ), 
the associated joint conditional probability distributions, 
Pl / 4  an(̂  R l/ 7 ' ^or non-centrosymmetric structures in space 
group PI have been formulated by Hauptman^.

Pl/4 ~  exp(Bcos<$) (8.9)
4

Pl/7 = i  exp(-2Bcos 4 )Io ( ^ _  R 1 2 Y 1 2 )Io ( - ^ - R 2 3 Y 23) X
2

V2
where
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Y 12 = [R1R2 + R 3R4 + 2r 1r 2R3R4cos^^1/2

Y23 = [R2R3 + R1R4 + 2 r 1 r 2 R 3 R 4 cos^ ] 1 / / 2

Y 31 = [R^R^ + R^r2 + 2R1R2R3R4cos$]1/2

where K is a suitable normalising factor independent of
. 10 The 13-magnitude third neighbourhood, P ] _ / ] _ 3  formula is given

in Appendix II.

In sharp contrast to the distributions (4.9) and (8.9), 
the maximum of (8 .1 0 ) may lie anywhere in the interval 0-180°. 
Figures (3 a,b and c) show typical examples of the 
distribution (8.10) for the parameters given. In general, the 
estimate is good when B is large and when the estimate is near 
zero or 180°. If B is small, or if the estimate is around 
90°, the probability is least reliable. The effect of B 
as a guide to the probability estimate is discussed in greater 
detail in Chapter 2.

The change in value of $ 4  using small cross-terms, 
immediately suggests an escape from the 'all-positive' problem 
which has hindered triple-phase sign relationships in 
symmorphic space groups.

A significant point which emerges is the fact that the 
above distributions, although initially derived for Pi and Pi, 
may be applied to any space group. This is accomplished by 
'converting' the other space groups to triclinic symmetry.
Ideally, each space group could have its individual joint

26 27conditional probability formula , (Hauptman has already
proposed a formula using seminvariants for space group P 2 )̂
but the task of originating all 230 distributions is
formidable.
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B . Quintets

The success of probability formulae as applied to quartet
structure invariants, $4 , has led to the derivation of several
distributions for the five-phase structure invariant, As
with quartet invariant estimates using only the principal
terms, the quintet has an estimated probability of zero when
large principal terms, 1E, |r |E, |, |E,|, |E I and |E | aren k j. m nused on their own. —  _ _ _  _

Again, by taking the ten second neighbourhood magnitudes
28along with the five principal terms, Hauptman has derived 

the conditional probability formula, P̂ ,. , for centrosymmetric 
structures.

P15 “ i ‘Z15 (8 .1 1 )
15

where Z|^ is defined in Appendix(III).

29Schenk has proposed a joint conditional probability
distribution for quintets based on the purely exponential

12expression derived by Hauptman and Fortier . For 
non-centrosymmetric structures the distribution is:

Pl/15 exp[( 6 - 2Ej-cos<$t-] X

n i o (2R12Y 12> <8 ’12)
1 0  terms

The pure exponential form can be expressed as:

P l / l $  ~ lexp( A R 1 R 2 R 3 R 4 R 5 cos$5) (8.13)

Although not as accurate as the exponential-Bessel 
function form, it has a distinct advantage in giving the
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parameter, A , the discriminant of <$c. The discriminant useso
the cross-terms in a different manner. Instead of estimating 
the phase of as 0° or 180° the value of A is used as a 
guide to the reliability of <$j_. For values of A<<0 a negative 
quintet has an increased probability of being correct; and 
likewise with positive quintets where A>>0. For values 
about zero the phase indication should be downweighted. The 
use of the discriminant has also been extended to 
centrosymmetric formulae.

We now have at our disposal several powerful formulae,
P l/ 7 ' Pl/13' Pl/15 a n < 1  related centrosymmetr ic formulae,
which are capable of giving multiple indications of the phase 
of the structure invariant, $. Triple-phase invariants, on 
the other hand, are limited to principal terms. A second 
neighbourhood is available to triplets by assigning arbitrary 
vectors, but at present the probabililty distributions 
available are unstable.

1.8.1 Figures of Merit Using Higher Invariants

The traditional figures of merit, ABSFOM and R„ n , canKarle
be unreliable for symmorphic space groups. By using quartet 
and quintet invariants it is possible to have two additional 
figures of merit which are of a more discerning nature for 
these space groups.

NQEST 3 0  , modified by Gilmore31.

Ihklm “ hklmcos(**h + + * 1  + V
NQEST = ----------------------------------------

^hklm ^hklm

where the summation is over all values of quartets predicted 
to have a modal value of tt, and

u hklm = 1 / 2

°  hklm
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whilst for the centrosymmetric case

co,.., = 11-2P+hklm

NQINT is an analogous function to NQEST, but the summation is 
over all the available quintet invariants:

NQINT =
, •> U, - -l COS (0, + 0, + 0-, + 0 + 0 )hklmn hklmn v,n ’k ^ 1  n

^hklmn ^hklmn

and

(jj = - A /a3hklmn 7

In the centrosymmetric situation

“ hklmn ' - A U - 2 P+

Only those quintets having A< -1.0 are included
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1.9 MAGIC INTEGERS 

32Magic integers are mathematical devices by which a 
single symbol may be made to represent several phases.

1.9.1 The Basic Concept of Magic Integers

If three phases 0 ^ ,  0 ^ ,  0 ^ are expressed in cycles so
that

0  ̂0 < 1

the following equations may be set up:

^ -  3x mod (1)

02 -  4x mod(l)

0 ^ = 5x mod(l)

where, in this case, 3, 4 and 5 are called 'magic integers'. 
The proposition is that, no matter what the value of 0 , for 
some value of the coefficient x in the range 0  x < 1  the
three equations can be approximately satisfied. Thus three 
phases can be expressed in terms of one undefined variable. 
Similarly another three phases can be defined via 
magic-integers in terms of the variable y or z.

At the beginning of the phase expansion procedure there
exist a number of reflexions that have had phase estimates
assigned to them, i.e. origin and enantiomorph reflexions.
There also exist a number of unknown phases that can be

33expressed m  maglc-integer form . These reflexions are 
called primary (P) reflexions. From single triple phase 
relationships containing a pair of P reflexions a second set
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of reflexions is obtained, also in symbolic magic integer 
form. These are secondary (S) reflexions. Having now 
obtained a larger starting set of reflexions comprising (P) 
and (S) reflexions expressed in magic-integer form, the 
problem is how to evaluate the probable values of the
variables {x, y, ......}. This is accomplished by setting up
a Fourier transform, the terms of which are derived from the 
triple-phase relationships involving the coefficients x, 
y ,. . . . etc.

1.9.2 ip-maps

Consider a situation where a number of phases are 
represented in the following manner:

0^  -  3x mod(l) 0^ = 3y mod(l) 0^ = 3z mod(l)

jz* 2  = 4x mod(l) 0 ^ = 4y mod(l) 0^ = 4z mod(l)

0  ̂ = 5x mod(l) 0^ = 5y mod(l) 0g = 5z mod(l)

If there is a phase relationship 

01 + 03 + 0 £ + tt - 0 mod(l) 

this can be represented by

3x + 5x + 5y + t t - 0mod(l)
or

8 x + 5y + tt - 0mod(l)

In general, any relationship involving the phases 
represented by magic-integers and fixed phases can be 
expressed as an equation of the type:
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Hx + Ky + Lz + b - 0mod(l) (9.1)

The 'b' in equation (9.1) arises because of translational 
symmetry in certain space groups, since 0 ' s are considered in 
one asymmetric unit in reciprocal space. Since there must now 
exist a number of I ^ relationships between (P) and (S) 
phases, these may be written in cosine form:

c o s {2tt(Hx + Ky + Lz + b) } I 1 (9.2)

where $ means 'tends to be close to, but must be less than'. 
Relationships of this type which link the combined P and S 
sets give rise to the terms of a Fourier map, the peaks of 
which take into account the strength of the relationships by 
looking for maxima of the function

^(x,y,z) = I[E, E n E !c o s {2tt(H x + K y  + L z  + br) } (9.3)J r lr 2r 3r x r r

The maxima may be sought by evaluating vi>(x,y,z) over the 
range 0 to 1 for each of the variables x, y and z. Adequate 
resolution can be obtained by evaluating the function at about 
four times the maximum index points along each axis; hence 
there is a requirement to keep the magic-integers as low as 
possible. A high peak in the U'-map can be translated into 
phases and these should satisfy the phase relationships 
linking the phases in the initial set.

32However, White and Woolfson have found it necessary to 
refine the initial individual phase angles obtained using the 
parameter shift technique. This method consists of taking the 
phases one at a time, changing their values in steps over a 
small range and shifting them to that value within the range 
which gives the maximum value of ^(x,y,z). At this stage all 
available ^  relationships are employed.
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The origin reflexions are not allowed to change. By 
varying each phase independently the coupling of phases 
through magic integers is broken at this stage. The sets of 
phases so derived are used as starting points for tangent 
formula expansion and refinement.

It should be pointed out that there are two distinct uses 
of magic integer phase representation. Firstly, they can be 
used in the mode which has just been described, viz., in the
setting up of equations which are solved in terms of a Fourier 
summation. Alternatively, they can be used solely in a phase 
permutation process.

A simple illustration of magic integer phase permutation 
is given in Figure 4. The 16 phase combinations produced by 
quadrant permutation on two unknown phases, 0 ^ and 0 ^ , are
plotted in Figure 4(a). A convenient magic integer sequence
(2,3) is used to generate a set of lines as shown in 
Figure 4(b). 0^ now takes only the four values + n/4 and + 31T/ 4 ' ,

the corresponding values of 0 ^ are shown plotted in the
diagram. There are now only 12 phase combinations compared to 
the 16 derived by conventional means. There are two reasons 
for this reduction in number. The first is that the r.m.s. 
error of magic integer phases is slightly higher than the
error of the phases produced by quadrant permutation. The 
second reason for a saving in the number of phase sets can be 
seen from Figure 4 (b) where there is produced a much more
efficiently packed lattice in phase space, and this will be 
true of any magic-integer sequence if defined as described by 
Main34.

The reduction in the number of phase sets becomes very 
large as the number of variable reflexions, n, increases. 
Table 1 compares the number of sets produced by quadrant 
permutation with those produced by magic-integer sequences.
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1.9.3 The Accuracy of Magic Integer Phase Representation 

. 35M a m  has shown that magic-integer phase representation 
introduces errors in the derived phases. These errors are 
best determined as r.m.s. errors with a lower bound limit.

The r.m.s. error, A 0  , can be calculated as:rms

A 0  = 2 tt /d , . rms v/- radiansn (9.4)

- 2where n is the length of the sequence and d is the mean
square distance of any point in (n-1 ) dimensional space.

- 2Since approximations have to be made for d the introduction 
of a lower bound limit of the r.m.s. error as calculated from
(9.4) is found to be:

= 2

fT T( n-l)

n(n+ 1 )

T(n+l)/2 —fl/ (n— 1 )

( £ m i2 ) 1 / 2

radians

1.9.4 Magic Integer Sequences

35For an efficient magic integer sequence the following 
criteria should be met:
a) The integers should be small.
b) The overall r.m.s. error should be small.
c) The r.m.s error should be divided evenly among the phases
represented.

Since criteria a) and b) are mutually opposed a
compromise must be made. In a practical sense there are four 
main rules which should be followed for a good magic integer 
sequence to result.
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Firstly, when the largest integer is fixed, the remaining 
integers should be as large as possible (thus minimising 
Ai^rmg) • tbe integers are also nearly equal, then the
phase errors will be more evenly distributed. A second rule
states that if any integer in the sequence is complemented,
i.e. if m^ is changed to m^-m^, the effect is merely to
reverse the direction of the ith. axis in n-dimensional
space. Finally, if the sum or difference of two integers is 
also a member of the sequence, the r.m.s. error of that 
sequence will be higher than it would be otherwise.

A combination of these rules leads to the most efficient 
magic integer sequences found so far.

1.10 RANDOM PHASE SETS AND LINEAR EQUATIONS

37A triple-phase relationship can be expressed as :

^h —  — ^ 1  + k ~ 0 m°d( 2 TT) (1 0 .1 )

Expressing phases in cycles and using the appropriate 
value of K as a weight, this may be transformed to:

K^h - K^k -  K ^ 1  " K (n'b) (1 0 .2 )

where n is some, generally unknown, integer. If the integers 
are known then the whole system of such equations, normally 
far more numerous than the constituent phases, may be written 
in matrix-algebra notation as:

A^ = C (10.3)

where C = K (n-b)

to give a least-squares solution:
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0= (ATA ) - 1  ATC (10.4)

37Hence, if an approximate set of phases is available 
then nearest integers may be found for the right-hand sides of 
the equations and a process of cyclic refinement carried out 
until the refinement reaches a natural termination when the 
integers do not change. Equation (10.4) has a larger radius 
of convergence than the tangent formula. This radius of 
convergence is such that it can be possible to start with a 
random set of phases which can converge to the correct value.

However, the use of integer values for phase estimates
(in cycles) leads to a serious restriction on the use of
(10.3) and (10.4). In a situation where phase relationships
yield values in the range, say 1.48 - 1.52. For example, it
is difficult to establish what integer values should be
a s s i g n e d  to them. Apart from straight rejection of such
values the sensible course is to introduce a weighting scheme
whereby the equation is retained at its nearest integer value
but given a rather low weight. The device for achieving this

3 6has been shown by Woolfson to be a function of the term a , 
which is the departure from the nearest integer and satisfies:

-0.5 < a < 0.5
such that

f(a) = 2 m“la m

where m > 1. The advantage of this type of weighting scheme 
is that, with K reintroduced, equation (10.2) is easily 
altered to:

K0 + K 0k + = K [n-b+f( a )] (10.6)

where only the vector £ (10.3) is modified at each cycle of 
refinement. As a result of many experiments,Baggio e_t. al.
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3conclude that a good weighting function to use is f(a) = 4 a . 
However, the introduction of a weighting scheme tends to 
obscure the point of completion of the least-squares 
refinement.

The initial starting sets which are used as input to the 
linear equations are obtained via a random number generating 
program which is available on most computers.

By far the most serious problem in using random phase 
sets and linear equations is how best to recognise the correct 
solution. This has been partially overcome with the use of 
negative quartet and negative quintet figures of merit.
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Table 1

n Quadrant ’rms r = 2 XIi—
1 

<
1 4 26.0 4 26.0
2 16 26.0 1 2 29.3
3 64 26.0 28 32.5
4 256 26.0 60 35.2
5 1024 26.0 124 37.0
6 4096 26.0 252 38.4
7 16384 26.0 508 39.4
9 262144 26.0 2040 40.7
1 0 1048576 26.0 4092 41.1



Probability distribution (4.9) 
for three-phase invariants
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7-magnitude probability distribution (8 .1 0 )
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a) Quadrant and b) magic-integer representation 
in 2 -dimensional phase space
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Chapter 2

Investigation of the Py and P ^  Quartet Formul
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2.0 INTRODUCTION

From Chapter 1, Section 1.8, it has been shown, via 
probability theory, that the more E-magnitudes available for 
quartet phase estimation, then the more reliable that estimate 
should be. The two simplest formulae 1  for estimating the sign 
of a quartet of reflexions and its associated probability in 
space group PI are the 7-magnitude two neighbourhood P^ , and 
the 13-magnitude, three neighbourhood P | 3  * In this chapter 
the reliability of these sign estimates, and derived 
probabilities, are investigated for both centrosymmetric 
formulae. An analysis of the invariant phase estimates 
gleaned from the non-centrosymmetr ic P ] _ / 7  an^ the P i / i 2 
formulae is also carried out.

2.1 THE CENTROSYMMETRIC CASE:- P± and P ± 3

P^ and P ^ 3  were studied with a view to resolving the 
following questions:

(i) The relative reliabilities of the two formulae and which 
is most applicable to a given situation.

(ii) The limits of structural complexity each is capable of 
attacking.

(iii) The special problems associated with the third 
neighbourhood and with negative quartets.

To clarify these, and related problems, we consider first 
how Py and P-ĵ  vary in reliability with structural complexity. 
Using this information, a separate discussion of both formulae 
follows, with reference to the special problems posed by
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negative quartets and their reliable estimation.

2.1.1 The Test Data

Two data sets were generated in space group Pi to a sin© 
limit corresponding to the complete copper sphere for two 
idealised structures containing 90 and 208 identical point 
atoms in the unit cell respectively. From these, two sets of 
quartets were generated using the programme QGEN under the 
following conditions:

(a) ANS N=90

13493 quartets were generated for which:

1 Eh I > lEk l ,Er l , IEm | > 2 . 0

For the third neighbourhood:

IE | and |E | > 2.0R 3.

(b) TETRA N=208

49500 quartets were generated for which:

|Eh l > 3.01; i Ek |,|E1 I,!Em I > 2.0

For the third neighbourhood:

IE | and |E | > 2.0R 3
In both cases only those quartets satisfying the

simultaneous conditions:

P| ^ 0.7 or ^ 0 .3
and
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P ^ 3  >, 0.7 or ^ 0.3
were accepted.

2.1.2 Reliability of P* and P ^ 3  a_s a Function of B

Equation(8 .5), Chapter 1, defines B in terms of the 
number of atoms in the unit cell, N, as well as the magnitudes 
of the principal E's involved in the particular invariant. 
Since B (and hence the probability distribution) is a function 
of the complexity of the structure under consideration, 
analyses of P~ and Pj 3  as a function of B were undertaken. 
The reliability of the 7- and 13-magnitude formulae with 
respect to B is best demonstrated by a series of histograms in 
which the percentage failure of a quartet indication is 
plotted against B (A1-A4). In all the histograms a 
theoretical line is drawn representing the expected 
distribution of quartet failures as a function of B, assuming 
that the formulae hold exactly under the conditions specified. 
The lowest accessible B value under these conditions was ca. 
0.2.

In all cases, there is a tendency for quartets to be more 
reliably estimated than either formula would suggest and this 
bias is more pronounced for B values greater than unity. Of 
great importance, however, is the lack of any significant 
decrease in the reliability of quartet sign estimates at B 
values down to 0.2, in any histogram. This is important for 
two reasons:-

(a) As structural complexity increases, the average B value 
for the quartet relationship will fall, and, if quartets are 
to make accessible structure analyses inaccessible via 
triple-phase invariants, it is important to be able to work 
confidently with quartets at low values of B.

(b) Table 1.1 summarises the availability of quartets having 
Py^.0.7 or ^0.3 and p£ 3 ^0.7 or <:0.3 as a function of B. The
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largest number of such relationships is to be found in the 
range 0.6^ B ^.0.3. If we are to make full use of the 
overdeterminacy of the phase problem, it is advantageous to be 
able to work with these quartets, even when it is not strictly 
necessary. An increase in the number of independent 
relationships can often lead to the correct solution for some 
difficult structures.

Having established that no detrimental bias exists with 
respect to B (for values down to 0.2) in both formulae, we can 
now continue the consideration of P| and P | 3  without specific 
reference to B limits.

2.1.3 The P* Formula

Tables adjacent to the histograms (A1-A4) summarise the 
failure rates in a form independent of B. It can be seen that 
there is a considerable tendency to underestimate the 
associated probability and it is more marked for ANS than for 
the larger TETRA. The negative quartets show this bias to a 
greater extent than their positive counterparts. These are 
shown in Histograms and Tables B1-B3.

2.1.4 The P ^ 3  Formula

(a) The calculation of Pj 3

It is of obvious importance that the probability estimate 
associated with each quartet be as reliable as possible. P * 3  

employs a third neighbourhood containing six E-magnitudes;

where £ + q_ + _ l + m  =

coupled with the 7-magnitudes from the 1st. and 2nd.
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neighbourhoods.

Numerous neighbourhoods can be found that satisfy these 
criteria. For ANS, restricting |E 2.0 gave an average of 
1 0  possible third neighbourhoods for each quartet, whereas, 
for TETRA, a similar constraint resulted in a 27 neighbour 
average with some quartets having over 1 0 0  possible third 
neighbourhoods. Each of these neighbourhoods gives a separate 
probability indication, and the problem arises how best to use 
this multiplicity. Three possibilities were investigated:

-i _ ±(l) Combine the n individual probability estimates, '
assuming that these estimates are independent, and hence 
derive a total estimate, P , via:

" jt>±Pt rj = T  13

(i-pt ) r— yi u - jp f 3

Since each estimate shares the first and second
neighbourhood, the assumption of independence is incorrect, 
and this manifests itself in a gross overestimation of the 
total probability. Indeed, for both ANS and TETRA c a . 30% of 
the quartets whose associated probabilities were calculated in 
this manner had net probabilities of 1 . 0  or 0 .0 .

(ii) Take that third neighbourhood which gave the highest
associated probability, Pj 3  , and use only this, at the same
time combining it with the 7-magnitude probability estimate, 
again assuming independence;

(1-Pt) (1-P±) . (1-Pf3)
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The results of these calculations showed the expected 
independence of B, but there was still a severe tendency to
over estimate the associated probabilities. Again, this is a
consequence of an incorrect assumption of independence.

(iii) Use the best third neighbourhood indication only,
without the P= estimate. This appears to give the most

/
reliable probability estimates, and it is this form of P ^  
that is used in the remainder of the discussion.

(b) The Results of P±^

The P ^  formula represents a considerable advance over 
the 7-magnitude estimates for two reasons. As the tables and 
histograms (A1-A4) make clear the tendency to underestimate 
the probability is only slight with P^| and hence gives a
closer agreement with the theoretical failure rate.

Secondly, this better estimate is accompanied by a 
greater number of invariants being made available in each of 
the B ranges. Not only is the total number of quartets
increased in each B range, but, as the probability range tends

+ -fto unity, P ^  produces many more quartets than its P j- variant.
For example, in TETRA, P+ > 0.99, the nP-̂ 2 : n ^ - 7  ratio is
522:3217, which represents a six-fold increase in available
quartets. A similar effect is also exhibited by ANS. The
ratio nP 7 : -ĵ 3  is defined as the ratio of the number of
quartets in a given probability range estimated by P.- to the
number estimated via P-r̂ . The np .n-p ^ ^  13 -ty: P - ^ 2  ratios are summarised
in Table 1.2.

2.1.5 The Special Problems of Negative Quartets

The essence of quartet invariants is their ability to 
give invariant magnitudes other than zero. If full use is to 
be made of this property, then it is important to obtain as
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many negative quartets as possible with high associated 
estimates. As indicated in the previous sections, negative 
quartets have special problems associated with them. In view 
of their critical importance these difficulties are considered 
separately:

(i) It is more difficult to obtain a negative quartet with 
high associated probability than it is for a positive quartet, 
particularly with more complex structures. In consequence, it 
is hard to obtain reliable negative quartets at low B values. 
This is apparent in histograms B1-B3, where the relevant 
features are tabulated in a manner similar to that used in 
discussing positive quartets. In particular the complete 
absence of useful negative quartets at B>0.4 should be noted.

(ii) The bias towards underestimating the associated 
probability is worse for negative quartets than for positive 
quartets: this can be seen from the graphs and adjacent tables 
(B1-B3), where the average failure is well below the 
theoretical line in both P* and P£^ * neither structure
could negative quartets be found having P+ >0.99. However, 
the np7 :llp23 rati°s in Table 1.3 show that Pj-̂  increases the 
associated probabilities quite dramatically from their 
values, making more quartets accessible for use in phase
determining procedures.

From the practical veiwpoint it is possible to solve PI 
structures using only the positive quartets; but such
treatment will, in general, require a multisolution approach 
and hence remove one of the advantages that quartets have over 
triplets. In subsequent chapters it will be shown that by 
including only a small number of negative quartets ( < 1 0  0 ) the 
course of phase refinement is influenced significantly, with 
the result that the structure is obtained at the first
attempt.
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2.2.1 THE NON-CENTROSYMMETRIC CASE:- P a n d  ^1//13

With P* and P ^  the calculated invariants may be assigned 
only one of two values, 0  or tt , and therefore appropriate 
constraints may be applied. In and Pi/13 ' however,
there can be no such constraints, and consequently a spread of
errors is expected in the final invariant estimates. How 
these differences in phase errors between calculated and 
observed phases ( I ̂ 0 j-)S“$caic I ) are distributed over different 
standard deviation intervals was investigated by considering 
three known structures in space groups Pi, P2^ and P2^2^2^.

As with the previous P^ and P ^  formulae, an indication 
was required as to the reliability of the quartets generated, 
and subsequently several topics are discussed:

(i) A comparison of the phase estimate errors employing 
triplet and quartet invariants.

(ii) The relative reliabilities of the two formulae, p ^ / 7  and
p1/13*

(iii) The effect on the reliability if 1,2 or 3 of the second
neighbourhoods are missing in the formula.

2.2.2 Experimental

(I) FOUTRA, N=62

The first structure was a phthalic anhydride ,C2 5 H]_gO,-,
space group PI with Z=l. It was one of the first molecules to

2 3be elucidated with the aid of quartets ' and seemed an ideal 
structure with which to compare calculated and known phases. 
The known phases were supplied to QGEN and the following 
conditions used to generate quartets.
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For t 851 triplets were generated for which:

I Eh I r I Ek I / |E]_| > 1 . 5  

Using P ^ / 7  an^ Pi/i 3  3291 quartets were found for which:

1 Eh 1'1Ek 1'|E1 !'iEm l > 1'50 

For the third neighbourhood:

IE | and |E | > 1.50 H  2 .

For P2/7 missing neighbourhoods 4700 quartets were
derived which satisfied the above conditions.

(II) ACCAGE, N=188

The second structure considered, a novel chiral inclusion 
compound, is discussed more fully in Chapter 4. The molecule 
crystallises in space group P2^ with Z=2.

For P ^ / 3  triplets were generated for which:

1 Eh i, 1 EfcI,|E1 I > 2 . 2

and 3  found 1281 quartets for which:

lEh l,IEk I, |E1 I,|Em l > 2 . 2

For the third neighbourhood;

IE I and IE I > 2.3 H 2 .

2097 quartets were generated via Pjyy for up to three 
missing neighbourhoods using the conditions specified above.
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(III) DITERP, N=50

The final structure examined was a diterpene, C 20H 26°3 ' 
which crystallised in space group P2^2^2^, Z=4. The structure 
was solved by A.Maltz using standard MULTAN techniques.

For Pjy 3  501 triplets were found for:

1 Eh 1 ' 1Ek 1' 1E1 1 > 1 ‘70 

and P 1/7 and P 1/13 found 1353 quartets for which:

iEh l' 1 E k 1 ',E1 I' 1 Em 1 > 1 - 7 0

For the third neighbourhood:

IE | and IE | > 1 . 8 0  R 2
Using ^ 2 / 7  with missing neighbourhoods 391 quartets were 

generated employing the same criteria as above.

2.2.3 The Relative Reliability of Quartets via ^ 2 / 7  

Compared to Triplets via ^ 2 / 3

Many of the factors affecting the reliabilities of 
quartet invariants, already discussed for the centrosymmetric 
case, are also relevant in the case of the three 
non-centrosymmetric structures. In particular, the
approximate independence of B as a function of the quartet 
failure rate, as found for the centrosyminetric examples, is 
also manifest in the ? 2 / 7  and Pl/13 results* this event
the quartet statistics were analysed by comparing the error 
between calculated and final phase values at different 
intervals of a (equation 4.12, Chapter 1). Tables 2.1, 2.2 
and 2.3 summarise these results.

For all structures studied, and for all formulae used,
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there was a general increase in invariant error as a 
increased. Within the range of E-magnitudes used , there was 
a marked increase of available invariants when going from ^ 2 / 3  

to P 2 / 7 ’ In FOUTRA, for example, only 851 triple-phase
invariants were found, whereas 3284 quartets were generated 
for the same lower bound value of a . ACCAGE produced a 
10-fold increase, whilst DITERP shows a less dramatic 2-fold 
increase in available invariants.

2.2.4 The P2/13 Formula

As with £>23' t îe Pl/13 estimate gives rise to several 
third neighbourhoods which will contribute to the final 
invariant magnitude. To determine the usefulness of the 
3rd. neighbourhood formula a detailed listing of all third 
neighbourhood information was generated for two of the
structures under discussion, viz. FOUTRA and DITERP. The 
results showed that where several 3rd. neighbourhood 
contributors were employed, occasionally one or more
discrepant neighbourhoods were found for the P2/13 estimate. 
A discrepant neighbourhood can be defined as follows. As 
previously described for the centrosymmetric case (section 
2.1.4(a)) several (often as many as 20) 3rd. neighbourhoods 
were available as contributors to the final phase estimate for 
a quartet. In many instances there were one or more estimates 
(discrepancies) having different values from the majority of 
calculated phase estimates. The differences can range from 
30° to 180°. When a discrepant relationship occurred the
quartet estimate was likely to be poor. The greater the 
number of discrepancies between 3rd. neighbourhoods, the 
greater the possibility of the quartet estimate being
incorrect.

Tables 2.4, 2.5, 2.6 and 2.7 list the number of quartets 
calculated via P2/13 values of 0 or tt for all third
neighbourhood contributors and display them with a percentage 
error to their final refined values at error intervals of 2 0 ,



Page 54

40 and 60 degrees. Also tabulated are the statistics for 
invariants where one of the 3rd. neighbourhood estimates is 
wrong.

2.2.5 P ] _ / 7  ~ Missing neighbourhoods

Tables 2.8, 2.9 and 2.10 show the effect on the quartet 
phase estimates when one or more of the second neighbourhoods 
are missing from the P 2 / 7  calculati°n • The results conclude 
that there is a worthwhile increase in the availability of 
higher invariants and this could prove useful in data sets 
which are poorly resolved and subsequently few reliable 
relationships are available. The distributions derived by

4Hemerman were used for the calculation of P-J. / 7  missing
neigbourhoods.

2.3 Advantages and Disadvantages of the 13-magnitude 
Formula over the 7-magnitude Formula.

(a) Advantages

It is now possible to consider the relative merits of the 
two formulae. The formula has the following advantages
over its P-, counterpart.

(i) It gives a more reliable estimate for both positive and 
negative quartets, although the underestimation still exists.

(ii) There is a considerable increase in the availability of 
quartets (nP^:nP ^ )  having a high associated probability. 
This increase is most dramatic in the range 1.0 >, P+ 0.99.

(iii) There is also a pronounced increase in the availability
of negative quartets. Without P * no quartets having 
+P 0.05 are available for either structure.
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(iv) In cases of limited data, the multiplicity of third
neighbourhoods can generate strong indications in situations
where alone is of limited use.

(v) Multiplicity of individual estimates also enhances the 
phase estimation procedure.

(b) Disadvantages

The principal disadvantage of P ^  is the computing 
overhead. The determination of- all possible third
neighbourhoods is equivalent to the computation of all 
accessible trios involving the quartet under examination. 
This is a very time consuming process. By allowing
constraints to be levied on |E | and 1E ! this increase in
time can be partially alleviated without reducing,
significantly, the accuracy of the formula.

2.4 The Limits of the Formulae

It is a difficult and unreliable process to extrapolate 
the results of the two analyses to more complex situations, 
but several general conclusions may be drawn.

It is clear that either of the formulae is capable of 
solving both structures. P^ is adequate for ANS, but less so 
for TETRA. In this case the greater number of reliable
relationships made available by the third neighbourhood make 
it more readily accessible to the P ^  formula.

If, as a general guide, we require 40 phase relationships
per atom, then for ANS (N=90) we need ca.. 3600 relationships
and for TETRA (N = 208) ca.. 8000. Let us take as ’useful 1 those
quartets having P+ ^,0.90 . For the P^ formula this requires 
us to use quartets with lower bound limits of B set at 1.0 and 
0.4 for ANS and TETRA respectively. For P ^  these limits are
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raised by 0.1 to 1.1 and 0.5. (A difference of 0.1 in B may 
seem small, but it should be remembered that the number of 
available quartets increases exponentially with decrease in 
B ) . Simple extrapolation of these results to a B limit of 
0 .2 , using the histograms, indicates that structures having 
N=500 should be accessible to Pj^ and structures having N=300 
possibly accessible to P*. The B limit is somewhat 
arbitrarily chosen - if the formulae hold up at B=0.1 then 
structures of twice this complexity may well prove amenable to 
treatment via quartet invariants, assuming that high quality, 
high resolution data are available. In the context of this 
thesis the largest Pi structure solved via quartet invariants 
was a squalene inclusion compound where N=186.
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Table 1.1

Distribution

B-limits

> 1.6 
1 .6-1.2 
1 .2-1.0 
1 .0-0.8 
0 .8- 0.6 
0 .6- 0.4 
0.4-0.2

Ratio of

Probability 
range(P ) 

>0.80 
>0.90 
>0.95 
>0.99

Ratio of PJ 2

Probability 
range(P+ ) 

< 0 . 2 0  

< 0.10 
<0.05

of quartets as a function of B 

Number of quartets
ANS TETRA TOTAL

(N=90) (N=208)
796 35 831

1802 217 2019
2119 527 2646
3272 1546 4818
3918 5358 9276
1586 21933 23519

2 19884 19886

Table 1.2

to P+

p +  / p +
1 3 ' 7

ANS TETRA
1.34 1.03
1.70 2.54
2.02 3.10
3.10 6.16

Table 1.3

to PTj for negative quartets only

P13/P7 
ANS TETRA
3.00 11.56

11. 82
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Table 2.7 
.3rd. neighbourhood Discrepancies.

FOUTRA:- Positive quartets only. Derived from pi1/13

(a) Where all indications are 0°.

Deviation(°) from zero 2 0 40 60 >60
Number correct 167 134 93 181

% correct 29 52 69 31

(b) Where all but one indication are 0 °.

Deviation(°) from zero 2 0 40 60 >60
Number correct 44 30 27 67

% correct 26 30 58 42

Table 2.8

FOUTRA:- Negative quartets only. Derived from ^ ^ ^ 3  

(a) Where all indications are 180°.

Deviat ion (°) from 180° 20 40 60 >60
Number C O r rect 30 31 25 64

% C O r rect 20 41 57 42

(b) Where all but one of the indications are 180°.

Deviation(°) from 180° 20 40 60 >60
Number correct 5 7 10 34



Table 2.9

DITERP:- Positive quartets only. Derived from P*/l3

(a) Where all the indications are zero.

Deviation(°) from zero 2 0 40 60 >60
Number correct 226 2 1 1 155 354

% correct 24 46 63 37

(b) Where all but one indication is zero.

Deviation (°) from zero 20 40 60 >60
Number correct 30 28 25 70

% correct 20 38 54 46

Table 2.10

DITERP:- Negative quartets only. Derived from

(a) Where all the indications are 180°.

Deviation( ) from 180 2 0 40 60 >60
Number correct 6 1 4 9

% correct 30 1 55 45

(b) Where all but one of the indications are 180°.

There were insufficient invariants available for analyses
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For P^O.01 there were 49 quartets, all of which 
were correct.
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A: CRYSTAL STRUCTURE SOLUTION OF THREE ANGULAR DIMERS

3.1.0 INTRODUCTION

Crystal structures in symmorphic space groups are 
traditionally the most difficult problems to solve via direct 
methods, since, as discussed in Chapter 1, the lack of
translational symmetry tends to make the process
ill-conditioned, and the lack of equivalent reflexions can 
give rise to a paucity of sign relationships of high
associated probability. Such factors force a need for a 
relatively large number of possible solutions from which the
correct set may be difficult to extract. The strategy
outlined below was therefore employed in the solution of two 
benzazete dimers, (Ilia) and(IIIc), which crystallize in the 
space group PI. In part B the crystal structure solution of a 
picric acid : ylide complex is described, where the use of 
quartet invariants has been expanded to structures in any 
space group.

3.1.1 AUTOMATION OF QUARTET INVARIANT ANALYSIS

As the first development of a standard program package
whereby quartet invariants could be used routinely in
structure determination, a modification to the program PHASE^

2m  the X-ray 72 System of Stewart et_ al_. (1972) was carried 
out, allowing these higher invariants to be used in an 
automatic procedure. Used conventionally, PHASE generally 
produces a single solution for space groups having 
translational symmetry, where it employs quartets (calling 
them 'relationships of the second kind') which are derived via 
an overlap of two triplets, as demonstrated in Section 1.7 of 
Chapter 1. Since all the associated E-magnitudes are large, 
all such derived quartets in symmorphic space groups will have
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a value of 0 ° for with the result that the problems
discussed previously still remain.

It is, however, a simple task to adapt PHASE to read 
quartets calculated by the quartet generation program QGEN,

• • « "F “f*utilising P^_ and ^ 2 3 ' instead of computing them via triplet 
overlap. The presence of negative quartets tt) alleviates
the lack of translational symmetry and, as seen in Chapter 2, 
there is a large increase in the number of available phase 
relationships of high reliability (albeit these are
interdependent).

For structures (Ilia) and (IIIc) this procedure was used 
to phase the top 100 E-magnitudes and, in both cases, a single 
phase set was produced which revealed the complete crystal 
structure.

3.1.2 THREE BENZAZETE DIMERS

Photolysis of the 4-aryl- and 4-alkyl-
1 ,2 ,3-benzotriazines (I,a-c) yielded the products (Illa-c),
which result from the dimerisation of the corresponding
benzazetes (Ila-c). However, the structures of the dimers
(Illa-c) were in doubt because of the difficulty of
differentiating clearly between the possible regioisomeric

3 4angular dimers, IV-VI ' . The analysis of the three compounds 
(Illa-c) was undertaken to confirm the structures shown, and 
to reveal that, at least in those cases studied, different 
4-substituents in the 1,2,3-benzotriazenes (Ia-c) have not 
resulted in the production of different isomers.



la -c

l la - c

a) R = Ph

b) R= p-MeOCgH4

c) R= t -b u ty l

" 1Q
Q

I l la -c

IV □
. Rii
N

VI

V



Page 59

3.1.3 EXPERIMENTAL 

(Ilia)

Crystal data

Angular dimer of 2-phenylbenzazete, C n,H. 0 N 0  , M =358.6,c o i o z r
triclinic, a=6.711(1), b=12.456(2), c=ll.796(2) A, a =87.0(1), 
(3=78 . 2  ( 1 ), y=74.4(1)°, U=929.8 X3, Dc=1.27, D =1.28 Mgm"3 ,

Z=2, F(000)=376, space group PI, fi(Mo-Ka )’=0,9^cm"^.

Data collection

Instrument used: Hilger-Watts Y290 
Radiation used: Mo-Ka X=0.71069 A

2Filter: Graphite monochromator, cos 20 =0.965
Upper limit for data collection: 20 =60°max
Number of independent reflexions: m=2114
Unobserved cut-off: 3cjj
Number of parameters refined: n=324
Number of reflexions per parameter: m/n=6.53

(Illb)

Crystal data

Angular dimer of 2 - (p-methoxyphenyl) benzazete, C 28H22°2N 2' 
Mr=418.5, monoclinic, a=8.526(1), b=23.003(3), £=12.415(1) A, 
(3=112.5(1)°, U=2250. 2 A 3 , Dc=1.24, Dm=1.24 Mgm"3, Z=4,
F (000 ) =880 , space group P2 1 /c, ji(Mo-Ka ) =0 . B S cm " 1

Data collection

Instrument used: Hilger-Watts Y290 
Radiation used: Mo-Ka , X=0.71069 A

2Filter: Graphite monochromator, cos 2© =0.965
Upper limit for data collection: 20 =54°max
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Number of independent reflexions: m=3184 
Unobserved cut-off: 3 ^
Number of parameters refined: n=376
Number of reflexions per parameter: m/n=8.47

(IIIc)

Crystal data

Angular dimer of 2 - (£-tert-butylphenyl) benzazete, C 24H 26N 2' 
Mr=342.5, triclinic, a=10.185(1), b=9.307(1), c=10.170(1) &, 
a=91.8(1), p=94.9(1), y=103.2(l)°, U = 9 3 3 . 9 A 3, Z=2,

D =1.21, Dm=1.22 Mgm 3 , F(000)=368, space group Pi,
(i (Mo-Ka ) =0. cm 1 .

Data collection

Instrument used: Hilger-Watts Y290 
Radiation used: Mo-Ka X=0.71069 A

2Filter: Graphite monochromator, cos 29=0.965
Upper limit for data collection: 20 =60°max
Number of independent reflexions: m=3752
Unobserved cut-off: 3aj
Number of parameters refined: n=312
Number of reflexions per parameter: m/n=12.03

3.1.4 STRUCTURE DETERMINATION

For the triclinic structures, (Ilia) and (IIIc), 
application of QGEN provided a set of 1926 and 1652 quartet 
invariants respectively; generated for the top 1 0 0  

E-magnitudes (|E|^1.4, for (Ilia); \ E \ > , 2 . 2 for (Illb)), using 
the 7-magnitude, 2nd. neighbourhood formula, P* , derived by 
Hauptman and Green, where P+>0.7 and 0.8 for (Ilia) and (IIIc) 
respectively. The probabilities for acceptance of a triplet,
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a positive quartet and a negative quartet were 0.85, 0.70 and 
0.32 for (Ilia) and 0.75, 0.95 and 0.07 for (IIIc). The
phases thus derived were expanded, as described previously, 
via routine application of triplet phase relationships to 
phase 242 |E| 1 s> 1.8 for (Ilia) and 236 |E|’s> 1.8 for (IIIc). 
The resulting E-maps revealed the positions of all 
non-hydrogen atoms.

Structure (Illb) crystallizes in space group P2^/c, and 
was solved by routine application of PHASE, with triplets 
alone. An E-map derived from 246 !E|'s> 1.85 produced the 
complete structure.

It is noteworthy that application of the unmodified 
version of PHASE to (Ilia) and (IIIc) failed to produce a 
unique solution in either case.

3.1.5 STRUCTURE REFINEMENT

In all three cases the hydrogen atoms were located from a 
difference electron density synthesis. The non-hydrogen atoms 
were refined with anisoptropic thermal parameters using 
CRYLSQ. The hydrogen atom coordinates and thermal parameters 
were refined, except for (IIIc), where the temperature factors 
were fixed at B = 4.0$ . A polynomial weighting scheme was 
employed. At convergence the R factors were 0.045, 0.043 and 
0.060 for (Illa-c) respectively (Rw=0.05, 0.061, 0.057).
Tables 1, 2 and 3 give the atomic coordinates and thermal 
parameters for structures (Illa-c) respectively, while Table 4 
summarises, comparatively, bond distances, interbond angles 
and torsion angles for the three dimers. Figures 1, 2 and 3 
show ORTEP drawings for each molecule.
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3.1.6 DISCUSSION

Confirmation of the structures (Illa-c) indicates that
formation of these angular dimers may be the result of a
Diels-Alder reaction, since the regioselectivity observed is
that anticipated if the addition proceeds through a zwitterion
or involves a transition state with appreciable polar

3character . The structure analysis of (Illa-c) has also 
resolved the ambiguities surrounding the structures of the 
angular dimers formed by 2 -alkyi and by 2 -arylbenzazetes, and 
confirms that the latter compounds are produced by photolysis 
of the corresponding 4-substituted 1,2,3-benzotriazines.

Comparable bond lengths for all three molecules are 
experimentally identical, with the C (2)—N (3) bond virtually 
localised. Bond angles are also virtually identical, with the 
exception of C (13)-N (1)- C (2) in (IIIc), which has a value of 
134.1(2)° in contrast to the values of 128.6(3) and 125.8(1)° 
in (Ilia) and (Illb) respectively. This seems to reflect the 
different degrees of pyramidal nature of N(l) in the three
molecules, rather than distortion of other interbond angles. 
Thus, N (1) in (IIIc) is the most pyramidal (sum of angles at
N (1) 346. 0° ), while that in (Illb) is least pyramidal (sum of 
angles 337.1° ). In all three instances the four-membered 
rings are planar and subtend identical dimensions.

The conformation of the six-membered heterocyclic rings
differ from compound to compound, although all adopt twisted 
and distorted boat conformations in which N(3) forms a shallow 
prow, and C( 8 ) forms a more pronounced prow. Interestingly, 
the conformation in (Ilia) lies between that of (Illb) and

nitrogen atoms where (Illb)< (Ilia)< (IIIc).

Moreover, it is difficult to rationalise these 
conformational differences in terms of steric interactions. 
However, the flattening of N(l) in (IIIc) and associated

(IIIc), which could be inferred from
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expansion of the C (13)-N (1)- C (2) interbond angle has the 
effect of relieving interactions between C(22) of the Jt-butyl 
group and the aromatic ring C(9)-C(14). In this context the 
interbond angles at C(2) in (IIIc) compensate for this effect 
by showing slight expansions and contractions.

On the other hand the same effect associated with C(81) 
of the Jt-butyl group as opposed to the C(81) phenyl groups of 
(Ilia) and (Illb) is absent. However, the overall 
conformation of the molecule is such that this t-butyl group 
projects well away from the less congested face of the 
molecule, whereas the planar configuration of C(2) constrains 
the C(21) substituents within the sphere of serious 
interaction with the rest of the molecule.
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Table 1

Atomic coordinates and thermal parameters for (Ilia).

4(a) Atomic coordinates (xl0 )

ATOM x/a y/b z/c

N 1) 2381 4) -7467 2) 7003 2)
C 2) 2061 5) -6684 3) 7864 3)
N 3) 2731 4) -6628 2) 8819 2)
C 4) 5276 6) -6972 3) 9824 3)
C 5) 6726 6) -7531 4) 9967 4)
C 6) 7116 6) -8363 4) 9212 4)
C 7) 6054 6) -8647 3) 8300 3)
C 8) 3324 5) -8417 2) 7209 3)
c 9) 6058 6) -8436 3) 5083 3)
c 10) 6643 7) -7745 4) 4093 3)
c 11) 5757 6) -6869 3) 4026 3)
c 12) 4227 6) -6609 3) 4922 3)
c 13) 3719 5) -7292 3) 5877 3)
c 14) 4594 5) -8169 3) 5961 3)
c 15) 4565 5) -8105 3) 8516 3)
c 16) 4164 5) -7254 3) 8918 3)
c 21) 0787 5) -5942 2) 7655 3)
c 22) 0596 6) -5054 3) 8410 3)
c 23) -0667 6) -4383 3) 8256 4)
c 24) -1702 7) -4560 3) 7334 4)
c 25) -1501 7) -5421 3) 6574 4)
c 26) -0285 6) -6122 3) 6740 3)
c 81) 1609 5) -9511 2) 7394 3)
c 82) 0326 6) -9852 3) 6578 3)
c 83) -1331 6) -10815 3) 6739 4)
c 84) -1729 7) -11441 3) 7729 4)
c 85) -0472 7) -11125 3) 5537 4)
c 86) 1204 6) -10160 3) 8378 3)



Table 1 (continued)

(b) Anisotropic tempe

N 1) 413 271
C 2) 330 287
N 3) 417 374
C 4) 455 485
C 5) 446 601
C 6) 430 606
C 7) 510 445
C 8) 404 279
C 9) 447 442
C 10) 489 617
C 11) 532 537
c 12) 533 339
c 13) 369 327
c 14) 377 315
c 15) 363 339
c 16) 341 375
c 21) 336 278
c 22) 444 378
c 23) 585 407
c 24) 566 514
c 25) 573 537
c 26) 475 375
c 81) 387 293
c 82) 504 390
c 83) 509 457
c 84) 518 352
c 85) 683 391
c 8 6 ) 539 366

Average e .s .d . 's 
C,N 21 19

re factors (X2  xl 0 4)

U12 U13 °23

124 -059 011
069 -021 015
152 -100 -039
104 -141 -020
108 -198 080
219 -150 146
205 -077 022
136 -040 009
114 -027 -048
048 045 -037

-047 -043 092
046 -128 036
035 -067 -010
060 -039 009
082 -051 055
067 -086 042
085 -066 -001
143 -097 -023
222 -108 -079
293 -234 -042
207 -337 -037
119 -182 -069
106 -013 -014
072 -065 050
026 -122 -021

-016 -020 011
035 -045 116
060 -095 051

16 17 15

r atu

U33

299
333
336
413
539
662
468
317
461
395
342
377
309
331
327
349
349
373
554
728
659
472
322
386
478
561
459
391

21



Table 1 (continued)

4(c) Hydrogen atom fractional coordinates (xl0 )

ATOM x/a y/b z/c U.iso

H 4) 5030 56) -6325(31) 10349 32) 0.058
H 5) 7645 67) -7295 (35) 10559 37) 0.081
H 6 ) 8165 59) -8687(30) 9267 31) 0.054
H 7) 6349 58) -9231 (31) 7724 32) 0.059
H 9) 6630 54) -9034(29) 5141 30) 0.049
H 1 0 ) 7871 65) -7843(33) 3428 36) 0.076
H 1 1 ) 6354 63) -6348(33) 3286 36) 0.075
H 1 2 ) 3591 51) -6012 (28) 4934 28) 0.041
H 2 2 ) 1465 52) -4904 (27) 8985 30) 0.045
H 23) -0817 58) -3767 (31) 8843 33) 0. 064
H 24) -2633 6 6 ) -4118 (34) 7258 36) 0.077
H 25) -2250 64) -5573(33) 5960 35) 0.070
H 26) -0218 47) -6743 (26) 6222 27) 0.033
H 82) 0567 60) -9405(32) 5922 34) 0.067
H 83) -2230 55) -11041 (28) 6158 31) 0.052
H 84) -2857 59) -12040(32) 7826 32) 0.059
H 85) -0806 62) -11602(33) 9246 35) 0.073
H 8 6 ) 2206 57) -9947(26) 8926 29) 0.041



Table 2

Atomic coordinates and thermal parameters for (Illb)

4(a) Fractional coordinates (xl0 )

ATOM x/a y/b z/c

N 1) 5205 3) 1407 1) 2024 1
C 2) 4996 2) 1054 1) 2870 2
N 3) 3928 2) 1162 1) 3354 1
C 4) 1276 4) 1591 1) 3176 2
c 5) -0082 4) 1962 1) 2636 2
c 6) -0070 4) 2330 1) 1762 2
c 7) 1285 4) 2332 1) 1415 2
c 8) 4180 2) 1984 1) 1603 2
c 9) 3188 4) 1845 1) -0812 2
c 10) 3445 4) 1407 1) -1504 2
c 11) 4358 3) 0907 1) -1035 2
c 12) 5095 4) 0808 1) 0170 2
c 13) 4825 2) 1246 1) 0828 2
c 14) 3911 2) 1746 1) 0369 2
c 15) 2654 2) 1962 1) 1936 2
c 16) 2649 2) 1582 1) 2821 2
c 21) 6113 2) 0541 1) 2225 1
c 22) 7603 2) 0493 1) 3015 2
c 23) 8639 2) 0009 1) 3376 2
c 24) 8203 2) -0434 1) 3967 1
0 24) 9110 3) -0930 1) 4363 1
c 241) 10587 4) -1018 1) 4170 2
c 25) 6725 2) -0389 1) 4191 2
c 26) 5684 2) 0086 1) 3812 2
c 81) 5267 2) 2400 1) 2027 2
c 82) 6285 3) 2560 1) 3203 2
c 83) 7280 4) 3049 1) 3621 2
c 84) 7249 4) 3491 1) 2859 2
0 84) 8151 2) 3999 1) 3180 2
c 841) 9299 7) 4059 2) 4362 4
c 85) 6239 4) 3440 1) 1686 2
c 86) 5261 2) 2946 1) 1272 2



Table 2 (continued)

3) Anisotropic temperature par ameters ( A x

U 1 1 U 2 2 U33 U 1 2 U13 °23

N 1 ) 376 354 329 052 174 039
C 2 ) 333 379 320 016 135 038
N 3) 426 479 453 114 247 1 2 0

C 4) 474 514 646 061 353 089
C 5) 436 545 786 044 355 0 1 1

c 6 ) 349 512 649 099 164 004
c 7) 400 455 449 062 141 037
c 8 ) 344 352 338 067 147 057
c 9) 429 475 365 -030 133 053
c 1 0 ) 560 603 329 -142 161 -016
c 1 1 ) 656 501 431 - 1 1 0 266 -115
c 1 2 ) 543 387 459 - 0 2 0 245 -032
c 13) 379 402 338 -024 167 008
c 14) 366 403 359 -007 159 0 2 2

c 15) 339 363 367 0 1 2 137 -015
c 16) 358 406 424 035 197 030
c 2 1 ) 334 393 323 0 2 2 129 029
c 2 2 ) 361 435 392 003 167 049
c 23) 331 514 424 034 166 049
c 24) 368 385 342 056 089 -013
0 24) 475 445 539 143 189 041
c 241) 455 618 637 176 183 -046
c 25) 402 418 456 0 2 0 174 073
c 26) 366 454 436 037 194 070
c 81) 316 378 424 051 175 004
c 82) 433 459 443 045 155 009
c 83) 446 580 538 007 150 - 1 0 1

c 84) 382 469 787 -035 258 -118
0 84) 669 590 1084 -226 337 -205
c 841) 843 984 1140 -363 255 -425
c 85) 445 443 750 019 273 1 0 0

c 86) 391 479 487 017 181 060

fer age esd 1 s
c , N 1 0 1 0 1 0 8 8 8



Table 2 (continued)

4(c) Hydrogen atom fractional coordinates (xl0 )

ATOM x/a y/b z/c u.iso

H 4) 1308 34) 1332 1 1 ) 3791 23) 0.065
H 5) -0977 47) 1948 14) 2961 29) 0.089
H 6 ) -1025 32) 2590 1 0 ) 1353 2 0 ) 0.063
H 7) 1256 29) 2573 1 0 ) 0796 2 0 ) 0.059
H 9) 2633 31) 2164 1 1 ) -1143 2 1 ) 0. 046
H 1 0 ) 3019 34) 1459 1 1 ) -2271 24) 0.059
H 1 1 ) 4490 36) 0633 13) -1580 23) 0.059
H 1 2 ) 5708 31) 0469 1 1 ) 0512 2 0 ) 0.054
H 2 2 ) 7891 26) 0811 1 0 ) 2607 18) 0.048
H 23) 9648 28) -0013 1 0 ) 3208 17) 0.053
H 25) 6515 30) -0704 1 1 ) 4644 17) 0.063
H 26) 4566 27) 0 1 2 0 9) 3947 17) 0.050
H 241A) 10258 34) -1035 1 1 ) 3311 25) 0.068
H 241B) 11092 39) -1372 13) 4519 26) 0.090
H 241C) 11430 41) -0713 1 0 ) 4385 27) 0 . 1 0 1

H 82) 6321 30) 2236 1 0 ) 3745 2 0 ) 0.058
H 83) 8033 44) 3090 13) 4469 29) 0.107
H 85) 6180 31) 3753 1 1 ) 1159 2 1 ) 0.065
H 8 6 ) 4645 29) 2915 9) 0449 2 0 ) 0.054
H 841A) 8806 48) 4061 17) 4871 35) 0.116
H 841B) 10286 75) 3734 23) 4597 47) 0.173
H 841C) 1 0 0 0 0 75) 4437 24) 4191 51) 0.298



Table 3

Atomic coordinates and thermal parameters for (IIIc)

4(a) Fractional coordinates ( xl0 )

ATOM x/a y/b z/c

N 1) 2248 3) 3677 2) 8889 2
C 2) 2860 2) 2818 2) 9707 2
N 3) 3511 2) 1897 2) 9256 2
C 4) 4902 2) 1369 3) 7601 3
C 5) 5367 3) 1545 4) 6372 3
c 6) 4847 3) 2385 4) 5486 3
c 7) 3824 3) 3057 3) 5800 2
c 8) 2121 2) 3450 2) 7397 2
c 9) 2353 2) 6333 3) 6637 2
c 10) 2712 3) 7800 3) 8703 2
c 11) 2580 3) 7699 3) 7346 3
c 12) 2630 3) 6565 3) 9474 3
c 13) 2430 2) 5248 2) 8760 2
c 14) 2294 2) 5135 2) 7388 2
c 15) 3297 2) 2846 2) 7014 2
c 16) 3863 2) 2039 2 ) 7942 2
c 21) 2710 2) 2922 3) 1182 2
c 211) 1319 2) 3173 4) 1418 3
c 212) 2883 4) 1505 4) 1805 4
c 213) 3847 2) 4200 4) 1806 3
c 81) 0701 2) 2509 2) 6846 2
c 811) 0554 3) 2587 4) 5343 3
c 812) 0544 3) 0921 3) 7226 4
c 813) -0404 3) 3135 4) 7411 4



Table 3 (continued)

(b) Anisotropic thermal parameters(2^x10^)

° 1 1 ° 2 2 U33 G t-* to U13 U23

N(l) 437 340 407 1 1 2 064 -032
C (2) 390 350 465 065 063 009
N(3) 511 387 547 152 075 003
C (4) 495 515 798 197 059 -163
C (5) 510 823 854 208 156 -309
C (6 ) 608 932 630 129 232 -215
C (7) 597 704 472 125 124 -082
C (8 ) 422 364 398 105 048 -041
C (9) 550 504 623 150 054 1 1 1

C (10) 699 354 933 153 045 -104
C(ll) 671 403 867 149 051 138
C (12) 650 434 568 163 054 -103
C (13) 415 337 518 107 057 -029
C (14) 434 375 501 116 050 003
C (15) 410 401 465 071 072 - 1 0 1

C (16) 413 369 548 083 084 -098
C (21) 544 504 440 145 092 037
C (2 1 1 ) 746 991 606 322 225 0 2 1

C (2 1 2 ) 918 723 623 263 163 207
C (213) 924 795 529 025 -049 -091
C (81) 433 469 583 106 -015 -132
C (811) 618 983 643 171 -137 -231
C (812) 555 481 1085 - 0 2 2 -044 -092
C (813) 420 781 941 135 0 1 2 -238

Average e.s.d's

C,0,N 14 14 14 11 11 11



Table 3 (continued)

4(c) Hydrogen atom fractional coordinates (xl0

ATOM x/a y/b z/c

H 4) 5328 24) 0886 27) 8283 24)
H 5) 6115 24) 1050 26) 6157 23)
H 6 ) 5011 24) 2403 26) 4585 25)
H 7) 3414 24) 3674 26) 5118 24)
H 9) 2178 23) 6205 26) 5662 24)
H 1 0 ) 2925 24) 8726 28) 9096 24)
H 1 1 ) 2601 23) 8605 27) 6926 23)
H 1 2 ) 2703 24) 6611 27) 10322 24)
H 211A) 0609 25) 2304 28) 11004 24)
H 211B) 1342 23) 4381 28) 11041 23)
H 2 1 1 C ) 1729 25) 3711 28) 12206 25)
H 212A) 2245 25) 0701 28) 11336 24)
H 212B) 3833 25) 1463 27) 11722 25)
H 2 1 2 C ) 2771 23) 1594 26) 12785 25)
H 213A) 4746 26) 4056 28) 11370 25)
H 213B) 3739 23) 5262 28) 11370 24)
H 213C) 3742 24) 4359 26) 12737 25)
H 811A) -0261 26) 2081 27) 5031 25)
H 811B) 1144 26) 2 2 2 0 28) 4970 25)
H 811C) 0798 23) 3799 29) 5040 23)
H 812A) -0282 25) 0421 27) 6849 24)
H 812B) 0639 25) 0830 27) 8190 25)
H 812C) 1105 26) 0555 29) 6955 26)
H 813A) -0487 24) 4134 29) 7108 24)
H 813B) -0317 24) 3125 27) 8407 25)
H 813C) -1223 26) 2550 27) 7171 24)



Table 4

Interatomic distances(R) and angles (°) for (Illa-c)

(a) Bonded distances

DIMER(Ilia) DIMER(Illb) DIMER(IIIc)

N 1) - c 2) 1 . 3 9 5 4) 1 . 3 9 0 2) 1 . 3 8 0 3
N 1) -C 8) 1 . 5 3 5 4) 1 . 5 2 5 2) 1 . 5 1 6 3
N 1) -C 13) 1 . 4 3 4 4) 1 . 4 4 4 2) 1 . 4 44 2

C 2) -N 3) , 1 . 288 4) 1 . 2 9 2 2) 1 . 2 9 2 3
C 2) -C 21) 1 . 4 76 4) 1 . 4 7 4 2) 1 . 5 2 2 3
N 3) -C 16) 1 . 4 16 4) 1 . 4 1 7 2) 1 . 4 1 5 3
C 4) -C 5) 1 . 3 8 0 5) 1 . 3 8 6 3) 1 . 3 7 6 4

C 4) -C 16) 1 . 4 0 3 5) 1 . 4 0 1 3) 1 . 4 07 3
C 5) -C 6) 1 . 3 7 5 6) 1 . 3 7 9 3) 1 . 3 6 2 4
c 6) -C 7) 1 . 3 8 8 6) 1 . 3 8 6 3) 1 . 3 8 6 4
c 7) -C 15) 1 . 3 8 9 5) 1 . 3 8 9 3) 1 . 3 8 9 3

c 8) -C 14) 1 . 5 44 4) 1 . 5 4 3 2) 1 . 53 8 3
c 8) -C 15) 1.  501 4) 1 . 5 10 2) 1.  509 3
c 8) -C 81) 1 . 5 2 2 4) 1 . 5 1 1 2) 1 . 5 5 5 3
c 9) -C 11) 1 . 4 1 4 5) 1 . 3 9 6 3) 1 . 4 0 3 4

c 9) -C 14) 1 . 3 68 5) 1 . 3 7 4 2) 1 . 3 6 4 3
c 1 0 ) - C 11) 1 . 3 8 7 6) 1.  374 2) 1 . 37 3 5
c 1 0 ) - C 12) 1 . 4 06 5) 1 . 4 0 3 3) 1 . 4 0 3 4
c 12) -C 13) 1 . 3 78 5) 1 . 3 70 3) 1 . 3 7 0 3
c 13) -C 14) 1.  389 4) 1 . 3 8 5 3) 1 . 3 8 9 3
c 15) -C 16) 1 . 3 9 8 5) 1 . 4 0 1 2) 1 . 3 9 1 3
c fO

 
t— 1 i o 22) 1 . 4 00 5) 1 . 3 9 5 2)

c

uii—i CN 26) 1 . 3 92 5) 1 . 4 0 1 2)
c 22) -C 23) 1 . 3 8 2 5) 1 . 3 8 5 3)
c 23) -C 24) 1 . 3 8 3 3) 1.  386 2)
c 24) -C 25) 1 . 3 79 6) 1 . 3 9 4 2)
c 25) -C 26) 1 . 390 5) I . 385 3)
c

ui•—i 
00 82) 1.  395 5) 1 . 3 9 2 2)

c 81) -C 86) 1 . 3 88 5) 1 . 3 8 8 2)



Table 4 (continued)

(b) Interbond angles

DIMER(Ilia) DIMER(Illb) DIMER(IIIc)

c 8 ) -N 1 ) -C 2 ) 1 2 1 . 1 2 ) 121.9 1 ) 1 2 2 . 2 2

c 13) -N 1 ) -C 2 ) 128.6 3) 125.8 1 ) 134.1 2

c 13) -N 1 ) -C 8 ) 89.4 2 ) 89.4 1 ) 89. 7 1

N 3) -C 2 ) -N 1 ) 123. 2 3) 123.6 2 ) 1 2 2 . 0 2

C 2 1 ) -c 2 ) -N 1 ) 116.1 3) 116.0 2 ) 118.5 2

C 2 1 ) -c 2 ) -N 3) 1 2 0 . 6 3) 120.3 2 ) 119.4 2

C 16) -N 3) -c 2 ) 118.3 3) 117.9 2 ) 117.5 2

C 16) -c 4) -c 5) 120.5 4) 1 2 0 . 0 2 ) 119.8 2

c 6 ) -c 5) -c 4) 1 2 0 . 2 4) 120.5 2 ) 1 2 0 . 6 3
c 7) -c 8 ) -C 5) 120.3 4) 1 2 0 . 0 2 ) 120. 5 3
c 15) -c 7) -C 6 ) 1 2 0 . 2 4) 120.5 2 ) 1 2 0 . 0 2

c 14) -c 8 ) -N 1 ) 84.9 2 ) 85.3 1 ) 85.4 1

c 15) -c 8 ) -N 1 ) 1 1 0 . 0 2 ) 1 1 0 . 1 1 ) 108.3 2

c 15) -c 8 ) -C 14) 116.0 3) 117.2 1 ) 116.8 2

c 81) -c 8 ) -N 1 ) 1 1 0 . 1 3) 1 1 1 . 8 1 ) 1 1 2 . 1 2

c 81) -c 8 ) -C 14) 116.3 3) 116.6 1 ) 115. 7 2

c 81) -c 8 ) -c 15) 115.1 3) 1 1 2 . 6 1 ) 114.6 2

c 14) -c 9) -c 1 0 ) 115.3 3) 115. 2 3) 115.4 2

c 1 1 ) -c 1 0 ) -c 9) 1 2 1 . 6 4) 122.4 2 ) 1 2 1 . 6 3
c 1 2 ) -c 1 1 ) -c 1 0 ) 123.0 4) 122.3 2 ) 123.0 2

c 13) -c 1 2 ) -c 1 1 ) 113.7 3) 114.0 2 ) 114.3 2

c 1 2 ) -c 13) -N 1 ) 141.1 3) 141.2 2 ) 142.9 2

c 14) -c 13) -C 1 2 ) 124.1 3) 124.3 2 ) 123.1 2

c 14) -c 13) -N 1 ) 94.8 3) 94.5 1 ) 94.0 2

c 9) -c 14) -C 8 ) 146. 9 3) 147.2 2 ) 146.5 2

c 13) -c 14) -c 8 ) 90.7 3) 90.8 1 ) 90.9 2

c 13) -c 14) -c 9) 122.4 3) 121.9 2 ) 1 2 2 . 6 2

c 15) -c 16) -N 3) 124.1 3) 123.9 2 ) 124.3 2

c 4) -c 16) -N 3) 117.0 3) 116.7 2 ) 116.4 2

c 15) -c 16) -C 4) 118.9 3) 119.3 2 ) 119.3 2

c 8 ) -c 15) -c 7) 1 2 1 . 8 2 ) 1 2 1 . 8 2 ) 123.4 3
c 16) -c 15) -c 7) 1 2 0 . 0 3) 119.7 2 ) 119.6 2

c 16) -c 15) -C 8 ) 118. 2 3 ) 118.5 2 ) 117.9 2



Table 4 (b) continued

DIMER (Ilia) DIMER(Illb)

c 22) -C 2 1 ) -C 2 ) 119.6(3) 1 2 2 . 6 2 )
c 26) -C 2 1 ) -C 2 ) 121.6(3) 119.1 2 )
c 26) -C 2 1 ) -C 2 2 ) 118.8(3) 118.3 2 )
c 23) -C 2 2 ) -C 2 1 ) 120.3(3) 1 2 1 . 2 2 )
c 24) -C 23) -C 2 2 ) 120.4 (4) 119.7 2 )
c 25) -C 24) -C 23) 119.9 (4) 119.7 2 )
c 26) -C 25) -c 24) 120.2(4) 120.4 2 )
c 21) -C 26) -c 25) 120.4 (3) 120. 7 2 )
c 82) -C 81) -c 8 ) 119.2(3) 1 2 0 . 0 2 )
c 8 6 ) -C 81) -c 8 ) 122.2(3) 121.7 2 )
c 8 6 ) -C 81) -c 82) 118.5(3) 118.3 2 )
c 84) -C 83) -c 82) 119.4 (4) 119.5 2 )
c 83) -C 82) -c 81) 121.3 (3) 121.4 2 )
c 85) -C 84) -c 83) 120.2 (4) 1 2 0 . 0 2 )
c 8 6 ) -C 85) -c 84) 120.7 (4) 1 2 0 . 2 2 )
c 85) -C 8 6 ) -c 81) 119.9(3) 120.7 2 )
c 23) -C 24) -0 24) 125.3 2 )
c 25) -C 24) -0 24) 115.0 2 )
c 24) -0 24) -c 241) 117.9 2 )
c 83) -C 84) -0 84) 124.5 2 )
c 85) -C 84) -0 84) 115.6 2 )
c 84) - 0 84) -c 841) 118.0 2 )
c 211)-C 2 1 ) -c 2 )
c 212)-C 2 1 ) -c 2 )
c 213)-C 2 1 ) -c 2 )
c 211)-C 2 1 ) -c 2 1 2 )
c 211)-C 2 1 ) -c 213)
c 212)-C 2 1 ) -c 213)
c 811)-C 81) -c 8 )
c 812)-C 81) -c 8 )
c 831)-C 81) -c 8 )
c 811)-C 81) -c 812)
c 811)-C 81) -c 813)
c 812)-C 81) -c 813)

DIMER(IIIc)

110.4 (2) 
110.0 (2 ) 
107.6 (2) 
109.2(2)
115.3 (2)
108.3 (2) 
108.9 (2 ) 
110.3(2) 
109.9(2)
110.5 (3) 
108.4(2) 
108.9(2)



Table 4 (continued)

(c) Torsion angles (selected)

(Ilia) (Illb) (IIIc)

c (8 ) -N(l) -C (2 ) -N(3) 7.8 0.7 8.9
N(l) -C (2 ) -N (3) “C (16) 11.4 14.7 14.9
C (2 ) - N (3) —C (16) -C(15) -14.1 -12.4 -15.9
N(3) - C (16)- C (15) -C (8 ) -3.2 -5.5 -7.5
C (16)- C (15)-C (8 ) -N(l) 19.7 18.4 27.1
C (15)-C ( 8  ) -N (1) -C(2) - 2 2 . 8 -17.1 -29.4
C (13)-N (1) -C (8 ) -C(14) -2.3 -1.3 - 1 . 1

N (1) -C (8 ) - C (14) “C (13) 2.4 1.4 1 . 2

G (8 ) - C (14)- C (13) -N(l) - 2 . 6 -1.4 - 1 . 2

C(14)-C(13)-N (1) -C( 8 ) 2 . 6 1.5 1.3
C(13)-N(l) -C (2) -C(21) 73.3 6 6 . 6 64.4
C (16 ) -N (3 ) -C (2) -C(21) -172.1 -166.9 -167.6
C (8 ) -N(l) -C (2) -C(21) -168.9 -177.8 -168.6
C (13)- C (14)-C (8 ) -C (81) 112.4 113.4 113.6
C ( 7) -C (15 ) -C (8  ) - C (81) 73.5 71.8 81.1
C (16)- C (15)-C (8 ) -C(81) -105.5 -107.1 -98.9
C (2 ) -N(l) -C ( 8  ) (81) 105.2 108.9 98.0
C (13) -N (1) -C ( 8  ) -C(81) -118.5 -118.1 -117.1
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B: CRYSTAL STRUCTURE SOLUTION OF A PICRIC ACID : YLIDE COMPLEX

3.2.1 INTRODUCTION

Ylides have been described as stabilized anions^" which 
have a vicinal zwitterionic electronic structure represented 
generally as >X+-Y~<, where X+= (P,N,As,Sb,S,Se) and 
Y =(C,N,0). Compounds which are included in this category 
are carbon-sulphur ylides (>S+-C~<), carbon-phosphorous ylides 
(>P+-C <), and 1 onium-imine ylides (>X+-N -).

That ylides are stable chemical compounds, whereas anions 
are reactive, must result from some unique stabilization 
afforded the negative atom, Y, by the presence of the adjacent 
X+ grouping, otherwise known as the 'onium residue. However, 
although such stabilization probably occurs, almost all stable 
compounds of this type have an electron-withdrawing group 
attached to the Y portion of the molecule. This 
electron-withdrawing group will have a stabilizing effect on 
the molecule by virtue of its ability to delocalise part of 
the negative charge residing on the Y atom.

It is well known that ylides formed from second and
higher row elements (X=P,A s ,Sb,S ,Se,Br ,I) possess greater

2-5stability than their first row analogues (X=N,0,F) . This
enhanced stability of ylides containing second row 'onium 
species (X+ ) has been attributed to the possibility of a 
Tr-interaction of vacant 3d orbitals on the onium species with 
the lone pairs of electrons on the anionic atom (Y~). Such 
valence shell expansion is not possible for first row 
elements^ since the energy gap to the next vacant orbital is 
sufficiently large to preclude their involvement in any 
appreciable bonding.

(d-p)^ interactions are perhaps best illustrated in 
carbanionic ylides of the second row elements where the
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2carbanionic moiety exhibits trigonal (sp ) geometry. The
lone pair of electrons may be assumed to occupy a p-orbital 
perpendicular to the plane defined by the a-bonds in the

to djT-p^ overlap with a suitable d-orbital of the 'onium 
species.

For 'omium imines (Y=N-), however, a similar general 
inference is difficult to justify, since two lone-pairs are 
available on the nitrogen for bonding. Possibly it would be 
more correct to envisage the two lone pairs occupying 
equivalent orbitals, both of which can interact equally with 
suitable combinations of the d-orbitals of the 'onium group. 
The problem can then be simplified by resolving the d-overlap 
into two mutually perpendicular components, one in the plane 
of the o-bond framework and the other perpendicular to this 
plane.

Thus a possible description of the rr-bonding arrangement 
in the second row 'onium imines is that two equivalent 
lone pairs on the negatively charged nitrogen atom can 
interact with suitable combinations of the d-orbitals on the 
'onium residue to form bonding overlaps which may 
theoretically be resolved into two mutually perpendicular 
components: (i) a 1, in the plane of the a-bond framework, and
(ii) tt , perpendicular to the a-bond framework.

7 8Moreover, it has been found ' that stability in such 
cases may be enhanced by the competition of 'onium and 
stabilizing groups to delocalise the negative charge on the 
anionic atom. Thus, by attaching different groups, Z , to the 
anionic atom centre (in suiphur-nitrogen ylides) additional

>X+-C < moiety. Such an arrangement is ideally suited

dxz Pz
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stabilizing - destabilizing effects can be compared. If Z is 
an electron withdrawing group (eg. carbonyl, cyano carbonyl 
etc.), the ylides are relatively stable, as seen with 
N-sulphonyliminosulphuranes (A) and N-acyliminosulphuranes (B) 
where they are hygroscopic and stable solids at room 
temperature, whereas the N-aryliminosulphuranes (C), with 
electron withdrawing groups (CNOR, NC^) on the ring, are only 
moderately stable (1 - 1 2  months at room temperature) and 
N-aryliminosulphuranes with electron donating substituents on 
the ring are hygroscopic and decompose within a few days or 
weeks at room temperature.

1 2 + -  3R R S -N S0 2 Rj
A

1 2  +R R S -N
c

Recent reports^ of chemical bonds in ylides have claimed 
to demonstrate the importance of ionic interactions as opposed 
to (d-p)^ interactions. However, the nature of the 
stabilization remains complex and debatable, and might be 
attributed to several factors which are not necessarily 
independent.

As part of an examination of the bonding, charge 
distributions and conformation of second row ylides, the 
crystal structure of N-(p-chlorophenyl) iminodimethylsulphur 
(IV) : picrate, which is representative of the class of ylides 
(X=S, Y=N ), has been determined. The choice of this compound
for study was influenced by the recent analyses of A  and7B with which comparisons in geometry can be made in
respect to the protonation and subsequent elimination of a
lone-pair on the former anionic nitrogen.

1 2 + -  3R R S -N COR
B

Ar
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3.2.2 EXPERIMENTAL

(i) Preparation of Crystals

The sulphonium ylide was prepared by the method described
10by Claus and Vilsmaier (1975). Picric acid in ether 

solution was prepared by standard techniques'^.

1 .2 g of the sulphamide was dissolved in the minimum of 
dry ether. The picric acid solution (62ml.) was added 
dropwise (to excess) and stirred for an hour. The mixture was 
filtered and the filtrate (yellow) recrystallised from an 
acetone-ether solution. On standing for a few days the 
solution produced needle-shaped crystals which were used in 
the analysis.

(ii) Crystal data

N-(p-chlorophenyl) iminodimethylsulphur (IV) picrate, 
C 1 4 H 1 3 O 7 N 4 SCI, Mr=416.8, monoclinic, a=7.924(1), b=9.406(1), 
c=23.078(2) A, p=92.19(6)°, U=1718.8 A 3 , D =1.61,
D^=l. 6 lMgm"~3 , Z=4, F(000)=856, space group P2^7n,
|i (Mo Kq) = X 9 v cm 3 .

Data colection

Instrument used: Hilger Watts Y290 
Radiation used: Mo-KQ A=0.71069 A

2Filter: Graphite monochromator, cos 20=0.965
Upper limit for data collection: 20 =60°max
Number of independent reflexions: m=3687 
Unobserved cut-off: 3o\j.
Number of parameters refined: n=153
Number of reflexions per parameter: m/n=24.1
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3.2.3 STRUCTURE DETERMINATION

The structure was solved using quartets in a modified
version of PHASE which is incorporated in the X-RAY 72 suite
of programs. 1031 quartets were produced using QGEN for
E-magnitudes having IEI> 2.10 with P+^ 0.90 (P-^ 0.10),
employing both P* and P-ĵ  formulae. Since the quartets
generated were no longer in a symmorphic space group there
appeared groups of invariants which had all four principal

12terms m  common. These ’families' of quartets are 
eliminated by the ’TIDY 1 feature in QGEN. The number of 
quartets remaining after elimination of families was 955.

Triplet phase relationships were generated for
E-magnitudes greater than 1.6. The probabilities for the
acceptance of a triplet, a positive quartet, and a negative 
quartet were 0.8, 0.95, and 0.07 respectively. The program
arbitrarily selected the three reflexions for origin
definition, which were expanded to phase 341 reflexions (156+, 
185-) for the E-map calculation from which the complete 
structure was revealed.

3.2.4 STRUCTURE REFINEMENT

The structure was refined using CRYLSQ. Atomic and 
isotropic thermal parameters were adjusted by full matrix 
least-squares to an R-value of 0.098. At this point a 
difference map located all the hydrogen atom positions which 
were then introduced into the refinement procedure. 
Anisotropic refinement of all non-hydrogen atoms and 
subsequent isotropic refinement of hydrogen parameters, with 
the introduction of a weighting scheme of the type:

w = where (A=14.0)
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reduced R to a final value of 0.033 (R^=0.044). A drawing of 
the molecule is included in Figure I. Final fractional 
coordinates and thermal parameters appear in Table 1, while 
Table 2 contains all bond lengths and interbond angles.

3.2.5 DISCUSSION

The structure analysis of N-(p-chlorophenyl)
iminodimethylsulphur picrate has allowed a comparison to be 
made with the bonding and charge distribution found in other 
S(IV) ylides and picrate ion moieties.

a) The picrate ion

Table 3 gives relevant bond lengths and angles for the 
title compound with four other picrate ions. As a comparison, 
bond lengths and interbond angles (the latter applying only to 
the benzene ring) for two picrate acid molecules are also 
given. A common feature of all four ions is the shortness of

Othe 0.(1) —C (1) bond, 1.24A, compared to the longer distance,O1.32A, exhibited by the molecular structures. This distance
is comparable to that found in many ketones, aldehydes and

13carboxylic acids and their salts . The C(l)-C(2) and 
C(l)-C( 6 ) bond lengths, 1.453 and 1.457A, correspond to those 
found in conjugated unsaturated systems such as acraldehyde 
and acrylic acid, where the n-electrons of the benzene ring 
have reduced delocalisation to a degree similar to that for 
'single bonds' in short conjugated unsaturated systems.

The picrate molecule, on the other hand, has the shorter
o(benzene type) bond of 1.40A. The remaining bonds in the ring 

do not deviate significantly from values normally found in 
benzene and its derivatives. The small bond angle, 
C (2)-C (1)-C (6 ), of 111.7° is characteristic of picrate ions, 
which, together with the increased bond lengths of adjacent 
atoms, leads the benzene ring to deviate from planarity.
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Intra-molecular distances, 0(1)-0(21) and 0(1)—0 (61) , of 2.646
oand 2.697A respectively, highlight the dissimilar twisting of 

the nitro- groups to the benzene ring; the dihedral angles 
between the planes bounded by N (2 )-0 (2 1 ) - 0  (2 2 ) and
N (6)-0(61)-0 (62) and the benzene ring plane being 13.8 and 
30.2° respectively. The para-nitro- group, as may be 
expected, shows a lesser degree of twisting, with a dihedral 
angle of 9 ° w i t h  th e  r ing  p l a n e .

b) Iminodimethylsulphur(IV) cation

Protonation of the former anionic nitrogen atom does not 
appear to have altered the d-orbital involvement associated
with the S-N bonding system of the ylide moiety. The S-N bond

° '  14(1.631A) is in good experimental agreement with (II)
(1. 640A), (III) 1 4  (1.622A), (IV? (S (2)-N (1) 1.636A) and (V? 5

O(S(2)-N(l) 1.644A). Delocalisation of the single lone pair of 
electrons on the nitrogen atom would seem to suggest that
(d-p)^ overlap requires only the involvement of one pair of 
electrons to completely fill the vacant molecular orbitals of 
the sulphur atom.

The significant lengthening of the N-C (phenyl) bond,
1.415&, compared to (II) and (III), may be attributed to two
factors. Firstly, the exclusion of a lone pair of electrons
from taking part in o' bonding must contribute to the
increased dimension. Lengthening of the N-Z bond is also seen
when comparing (IV) and (V), where N-alkylation gives an
increase in bond length S(l)-N(l) from 1.591A in (IV) to
1.681A in (V), while leaving the S(2)-N(l) length relatively
unchanged. Furthermore, an increase in N-Z bond distance
associated with protonation of the anionic nitrogen can be

16found in the comparison of dibenzenesulphonamide and its
sodium salt cited by Cotton and Stokely., where the only major 
change attributed directly to deprotonation of (CgH^-SC^) 2 NH is 
the decrease of 0.070 (16)A in the mean S-N bond length.
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The decrease in the N-C bond length in (I), however, is 
not as large as may have been expected from consideration of 
the previous examples. This is almost certainly due to the 
inductive effect of the £-chlorine which, via canonical 
representations (see below), will impart a small amount of 
double bond character to the N-C bond. Evidence for this 
indirect contribution of the chlorine on the N-C bond is seen 
when comparing the nitro- deactivated ylides (II) and (III). 
Average values for the bonds adjacent to the carbon adjoiningo othe nitrogen are longer, 1.410A in (II) and 1.423A in (III),

ocompared to the benzene type 1.391A for (I).

As a result of the instability of the ylide (I), when 
removed from solution, it was not possible to make a direct 
comparison of the protonated and deprotonated forms of (I). 
Initially it was hoped that a study could be made of the 
picrates formed with (II) and (III). However, experimentation 
using different solvents proved unsuccessful, due to the 
greater stability of the latter ylides wrought by the 
deactivating effect of the nitro- groups.

2Trigonal, sp ,geometry of the nitrogen atom is suggested 
by the valence angle of 120.4°. Moreover, the torsion angles 
along the N(44)-C(44) bond show the sulphur to be twisted out 
of the benzene ring plane by 25.4°, which is greater than the 
-9.3 and -9.0° experienced in (II) and (III). This is in 
accordance^ with the single lone pair of electrons of the 
nitrogen atom being located in a p-type orbital approximately 
perpendicular to the S-N-C plane , such that valence lone-pair 
repulsions are minimised.
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Table 1

Atomic coordinates and thermal parameters for Ylide:Picric 
Acid Complex

4(a) Atomic coordinates (xl0 )

ATOM x/a y/b z/c

Cl 7707 1 ) 5009 1 ) 3161 1 )
s 1 1 2 0 0 1 ) 11683 1 ) 3567 1 )
0 (1 ) 6164 1 ) 8733 1 ) 5256 1 )
c (1 ) 5689 1 ) 8387 1 ) 4756 1 )
c (2 ) 6130 1 ) 9135 1 ) 4231 1 )
N(2) 7200 1 ) 10382 1 ) 4268 1 )
0 (2 1 ) 7999 2 ) 10644 1 ) 4722 1 )
0  (2 2 ) 7300 1 ) 11144 1 ) 3838 1 )
C (3) 5572 2 ) 8751 2 ) 3682 1 )
C (4) 4533 2 ) 7577 2 ) 3612 1 )
N(4) 3975 2 ) 7172 2 ) 3032 1 )
0(41) 4268 2 ) 7993 2 ) 2633 1 )
0(42) 3199 2 ) 6049 2 ) 2963 1 )
C (5) 4006 2 ) 6807 1 ) 4080 1 )
C (6 ) 4547 2 ) 7204 1 ) 4629 1 )
N( 6 ) 3894 2 ) 6375 1 ) 5101 1 )
0(61) 4762 2 ) 6232 1 ) 5546 1 )
0(62) 2492 2 ) 5827 2 ) 5028 1 )
C(ll) 8786 2 ) 6542 2 ) 3383 1 )
C (22) 9252 2 ) 6710 2 ) 3963 1 )
C (33) 1 0 1 0 0 2 ) 7937 2 ) 4140 1 )
C (44) 10489 2 ) 8972 1 ) 3738 1 )
N (44) 11369 2 ) 1 0 2 0 2 1 ) 3932 1 )
C (441) 13308 2 ) 12081 3) 3368 1 )
C (442) 10882 3) 13016 2 ) 4099 1 )
C (55) 10019 2 ) 8781 2 ) 3154 1 )
C (6 6 ) 9150 2 ) 7564 2 ) 2983 1 )



Table 1 (continued)

2 4(b) Thermal parameters (A xl0 )

U 1 1 U 2 2 U 33 U 1 2 °23 °23

Cl 704(3) 507 (2) 925(4) -062 (2 ) -208(3) -225
s 373 (2) 442(2) 418(2) -044 (1) -123 (1) 133
0 (1 ) 453 459 304 026 -103 -038
C(l) 294 358 321 078 -046 -061
C (2) 274 368 330 040 -017 -082
N(2) 324 428 393 006 008 -087
0 (2 1 ) 545 684 425 -205 -058 -134
0 (2 2 ) 524 524 545 -080 -024 064
C (3) 313 460 308 050 -006 -072
C (4) 335 484 328 046 -052 -137
N (4) 460 739 389 -045 -056 - 1 2 0

0(41) 1051 1243 316 -438 -067 -088
0(42) 661 714 575 -077 -156 -280
C (5) 330 371 427 030 -049 -103
C (6 ) 358 341 364 052 - 0 2 2 -031
N( 6 ) 527 355 445 060 0 2 0 0 0 2

0(61) 846 545 464 -024 -115 113
0(62) 547 6 8 8 713 -123 060 126
C(ll) 375 400 561 057 -070 -131
C (22) 411 351 494 049 -036 005
C (33) 381 371 364 051 -061 008
C (44) 314 379 344 052 -043 -014
N (44) 487 400 373 -055 -168 081
C (441) 467 780 430 -127 -018 134
C (442) 463 407 806 052 -039 026
C (55) 489 531 328 0 0 2 -033 -004
C (6 6 ) 517 • 560 393 049 -081 -119

Average e . s . d . ' s
0,N,C 6 8 7 6 5 5



Table 1 (continued)

(c) Hydrogen atom fractional coordinates )

ATOM x/a y/b z/c ^iso

H (1) 11914 (29) 10188 (24) 4229(11) 0.061 (6 )
H (3) 5891 (24) 9273 (21) 3355 (9) 0. 050 (5)
H (5) 3265 (24) 6016 (2 0 ) 4047 (8 ) 0. 047 (5)
H (22) 8957 (27) 5982 (23) 4232 (10) 0.052 (6 )
H (33) 10403 (26) 8092(23) 4542 (9) 0.054 (6 )
H (55) 10342 (27) 9498 (23) 2885 (10) 0.064(6)
H (6 6 ) 8864 (35) 7461 (29) 2550 (13) 0. 073 (8 )
H(441a) 14015(26) 12051 (23) 3697 (10) 0.064(5)
H(441b) 13309 (31) 13002 (30) 3215 (11) 0.090 (7)
H(441c) 13581 (32) 11382(28) 1062 (1 2 ) 0.081(7)
H(442a) 9880(35) 12866 (26) 4239(11) 0.068 (7)
H(442b) 11800(32) 13005 (26) 4383(11) 0. 063 (7)
H(442c) 10966 (34) 13897 (29) 3903 (12) 0.079 (8 )



Table 2

Interatomic distances(X) and angles(°) for YlideiPicric 
Acid Complex.

(a) Bonded distances

0(1) -C (1) 1.244 2 )
C(l) —C (6 ) 1.457 2 )
C (2 ) - C (3) 1.375 2 )
N (2) -0(22) 1.229 2 )
C (4 ) -N (4 ) 1.443 2 )
N (4 ) -0(41) 1.231 2 )
C (5 ) -C ( 6  ) 1.373 2 )
N ( 6 ) -0(61) 1 . 2 2 2 2 )
Cl -C(ll) 1.743 2 )
S - C (441) 1.788 2 )
C (1 1 )- C (2 2 ) 1.383 2 )
C (22)- C (33) 1.390 2 )
C (44)- N (44) 1.415 2 )
C (55)- C ( 6 6 ) 1.386 3)

C(l) -C (2) 1.453 (2)
C (2) -N (2) 1.448 (2)
N (2) -0(21) 1.229(2)
C (3 ) -C (4 ) 1.383(2)
C (4 ) -C (5) 1. 378 (2)
N (4) -0(42) 1. 230 (2)
C ( 6  ) -N (6 ) 1.452(2)
N ( 6  ) -0(62) 1.231 (2)
S -N (4) 1.631(1)
S - C (442) 1. 780 (2)
C(ll)-C(6 6 ) 1.374 (2)
C (33)- C (44) 1.386(2)
C (44)- C (55) 1.396(2)

Average C-H bond distance: 0. 950 (22); N (4)—H (1) 0.796(24)X



Table 2 (continued)

(b) Interbond angles

c (2 ) -C(l) -0 (1 ) 124.9 1 ) C (6 ) -c ( 1 ) -0 (1 ) 123.3 (
C (6 ) -c (1 ) -C (2) 111.7 1 ) N (2) -C (2) -C (1) 1 2 0 .2 (
C (3) -C(2) -C( 1) 124.2 2 ) C (5) -C (6 ) -C (1) 124.3(
N (6 ) -C( 6 ) -c (1 ) 119.7 1 ) 0 (2 1 ) -N(2) -c (2 ) 119.6(
0 (2 2 ) -N(2) -C (2) 118.8 1 ) C (4) -C (3) -C (2) 119.1(
0 (2 2 ) -N(2) -0 (2 1 ) 121.7 1 ) N(4) -C (4) -C (3) 118.6(
C (5) —C (4 ) -C (3) 121.7 1) N(4) -C (4) -C (5) 119.8(
0(41) -N(4) -C (4) 117.9 1 ) 0(42) -N (4) -C (4 ) 118.7 (
C (6 ) -C(5) -C (4) 119.1 1 ) 0(42) -N (4) -0(41) 123.3(
N( 6 ) -C( 6 ) -C (5) 116.0 1 ) 0(61) -N( 6 ) -C ( 6 ) 119.0 (
0(62) -N( 6 ) -C (6 ) 117.9 1 ) 0  (62) -N( 6 ) -0(61) 123.1(
C (22) -C(ll) -Cl 119. 2 1 ) C (6 6 ) -C(ll) -Cl 119.6(
C (442) -S -N (44) 104.6 1 ) C (44) -S -N (44) 104.8 (
C (44) - N (44) -S 120. 4 1 ) C (442) -S - C (441) 1 0 0 . 8  (
C (6 6 ) -C(ll) - C (2 2 ) 1 2 1 . 2 2 ) C (33) - C (2 2 ) -C (1 1 ) 119.1(
C (55) -C (6 6 ) -C(ll) 119.2 2 ) C (44) - C (33) - C (2 2 ) 1 2 0 .3(
N (44) - C (44) -C (33) 118.9 1 ) C (55) -C (44) -C (33) 119.8 (
C (55) - C (44) - N (44) 121.4 1 ) C (6 6 ) - C (55) -C (44) 119.7(
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Quartets in Larger Structures: 

Two Hexa-host Inclusion Compounds.
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4.0 INTRODUCTION

The structures of two hexa-host inclusion compounds have 
been determined via an enhanced version of MULTAN 78 which 
included quartet and quintet invariants as an integral part of 
the program. The first molecule discussed has squalene 
^ 3 0 H50  ̂ as t^e 9uest' which is, to date (March 1980), 
the largest molecule to be trapped in such compounds, and 
together with the host moiety, comprises 93 atoms in the 
crystallographic asymmetric unit.

As a step towards the concept of asymmetric synthesis, in 
which the crystalline lattice may determine the course of a 
reaction, the structure of a chiral hexa-host clathrate has 
been elucidated in which acetic acid dimers form the guest 
species to give a total asymmetric unit cell content of 8 6  

atoms.

4.1 HIGHER INVARIANTS IN MULTAN

Several extensions to the MULTAN system have been
described recently in which magic integer / M'-map and random
phase set - linear equation algorithms have been employed'*'.
However, they are confined to the use of three-phase
invariants. The considerable activity in deriving formulae
for estimating the magnitudes of four- and five-phase

7 — fistructure invariants has already been stressed in previous 
chapters. Since these relationships contain new phase 
information it is logical to incorporate them as an extension 
of the MULTAN procedure.

Two modes of useage of higher invariants must be 
distinguished:
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a) The active mode in which the invariants are used to 
generate new phase information.

b) The passive mode where the invariants are used only for 
figures of merit for selecting the most probable phase set.

I Quartets

The MULTAN 78 program was modified to use the 
7-magnitude, 2nd. neighbourhood P 2 / 7  and the 13-magnitude f 

3rd. neighbourhood Pi/i 3  joint conditional probability 
distributions of Hauptman^ for the non-centrosymmetric case 
and the corresponding and P ^  formulae for centrosymmetric 
space groups^. These formulae, as described in Chapter 1, 
give reliable estimates for all combinations of the principal 
and cross-terms that comprise a quartet. The 7-magnitude 
formulae are straightforward in their estimation, but as 
pointed out in Chapter 2, pjyi 3  and P ^  are used in such a way 
that any discrepancies occurring between the individual 
3rd. neighbourhood estimates for are excluded from active 
use in phasing procedures. In a similar way quartets which 
exhibit discrepancies between 2nd. and 3rd. neighbourhood 
$ 4  estimates are also excluded.

The use of the 13-magnitude formulae is thus an option in 
the program. When it is applied, a single estimate of or
P-ĵ j is required for later use; the best value encountered in 
the 3rd. neighbourhood search is selected. Missing 
cross-terms in the 2nd. neighbourhood (but not the 3rd.) are 
also permitted as an option. From Chapter 2 it can be seen 
that this option can be useful for poor quality data sets.

II Quintets

As with quartets, there are several quintet distributions 
available (Chapter 1) employing the 1st. and 2nd.
neighbourhoods. Of the formulae we have tested, the P
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5distribution of van der Putten and Schenk (1977) gives 
reliable quintet estimates for the non-centrosymmetric case 
whilst the Pj,. formula of Fortier and Hauptman^ (1977) is used 
for centrosymmetric space groups. These formulae are 
available, in the passive mode only, as a user option in the 
enhanced MULTAN 78 system. Quintets are expensive to 
generate. In this program only the negative quintet subset is 
calculated. As a further check on reliability, the 
discriminant, A  , as defined by Fortier e_t a^. is applied. 
As an empirical observation, quintets having A 4 -1.0 and 
which also have an estimated magnitude of 180° are the most 
reliably negative, and only these invariants are accepted.

Quintets are utilised only in the passive mode since 
their information content for one individual phase is quite 
low and can readily give rise to large accumulated errors when 
used to generate new phase angles, especially in conjunction 
with magic integer phase representation.

Ill Active Use of Quartets

In its original form, MULTAN 78 employs only triplets. 
As a measure of the reliability of each three-phase invariant 
an associated variable is used, where:

Ahkl “ 2 ct3°2 3 / 2  1 W l '  (1>

and E^, and E^ are the three E-magnitudes involved in the 
triplit. —This variable is employed throughout the convergence 
mapping and tangent procedures. In order to mix the quartets 
with these relationships it is necessary to apply the same 
scale of reliability. For the non-centrosymmetric case, this 
is carried out as follows:

a) For each quartet the relevant joint conditional probability 
distribution P($) (where P(<i) is either ^ - ^ / i or Pl/13  ̂
calculated in 45° intervals. The mode, |$|, is found.



Page 75

b) The distribution is normalised via numerical integration 
using Simpson's rule, such that:

= 1 (2 )

c) The associated variance, V,is also found via numerical 
integration of the normalised distribution:

2tr 2V = f o  (*-l$m i r P ( 4 )d$ (3)

d) Each quartet is assigned an equivalent A value, A ® ^  , 
related to V (in degrees^) by an empirically derived equation.

Ahklm " 5583/(V+255) (4)

From experimentation it has been found that only quartets for 
which A ^ 2  > 0 * 6  can be accepted.

A similar procedure is used in the centrosymmetric case, 
but here the probability, P+ , is converted to A^j^ by the 
relationship:

Ahklm = 0.51og10 {max(P+ ,l-P+)/(1.0-max(P+ ,l-P+ )) (5)

In practice this procedure is readily automated and does 
not require large amounts of computer time. The 3- and 4-phase 
invariants can now be freely mixed together throughout the 
convergence mapping and tangent refinement routines.

For the latter a version of the formula of van der Putten 
and Schenk 7  (1979) is used:

(6)
sm, . + sin t n  qua

tan 0h = ------------------
~ cos,. . + cost n  qua
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where:

s i n tri = I ' W h k l  Sin<^Ji +

and

Sinqua = | f ^ W M l E (Sln,<k + * 1  + ^JS + S l $ 4 n

with corresponding cosine expressions for cos,. . and cost n  qua

wh = ta n h { a 3 a23 / 2 ( T h2 + Bh2 ) V 2 }

The variable S = +1 and is chosen such that:

0h + + + + S|* 4 !

is closest to zero. This is only relevant for enantiomorph 
sensitive quartets, which can thus only be employed when a 
value, albeit approximate, can be assigned to

It must be emphasised that equation (6 ) assumes that 
quartets and triplets are independent. In the case of 
triplets and negative quartets this is to a large extent true, 
since the latter utilises small E-magnitudes in the 
cross-terms. This mixture of quartets and triplets is one 
option of the program.

For the strongly positive quartets (those with a zero 
mode and low variance), one or more of the cross-terms will 
involve large E-magnitudes. If these E's are also used in the 
triplets then the independence of the 3- and 4-phase 
invariants is lost. As the number of such cross-terms in the 
quartet increases, this correlation will also increase until a 
point is reached where all three cross-terms involve large 
E-magnitudes. Under these circumstances, the quartet can be 
considered as an overlap of triplets with common phase angles. 
Thus the triplet and quartet contain similar information



Page 77

g
although they are employed in a different way

In the absence of a theoretical estimate of the
covariances of these relationships, a simple linear weighting 
scheme is employed in which A^klm t o r  the quartet is
modified to give A, , .. :

3  hklm

Ahklm * Ahklm -U-n/3) (8 )

where n is the number of cross-terms in the 2 nd. neighbourhood 
for which the corresponding phase angle has been determined. 
The triplets keep the same weight. Thus at the beginning of 
phase determination, where very few phases are known, most 
quartets have their full weight in the tangent formula, but as 
the phasing procedure continues this weight is progressively 
reduced to zero for the strongly positive quartets, whilst the 
best negative invariants maintain their full weight.

This dynamic use of A poses problems during convergence 
mapping, since it is no longer possible to predict an a-priori 
value of A. In this case, the quartets are still included but 
they are given the minimum value of A likely to be achieved 
during phase expansion and refinement. This procedure seems 
to be satisfactory.

The use of quartet and quintet information in the passive 
mode in MULTAN is evoked in the calculation of the figures of 
merit, NQEST and NQINT, already described in Chapter 1. 
Figure 1 displays a flow diagram outlining the procedures and 
options of the program.

4.2 CLATHRATES AND MOLECULAR INCLUSION CHEMISTRY

The first organic clathrate to be discovered was the9hydrogen sulphide included form of quinol by Wohler in 1849. 
Subsequent investigations showed that quinol formed a series



Figure 2

Following the idea that suitable hexa-substituted 
benzenes might have an increased chance of crystallising to 
form non-close packed structures, compounds with general 
formula (I) have been synthesised^'

Y

Y

(I) a) Y = SPh e) Y = CH 2 SCgH^But-£
b) Y = CH2OPh f) Y = CH 2 SeCgH 4 but-£
c) Y = CH2SPh g) Y = CH 2 SCgH^( 1 -adamantyl)-£
d) Y = CH 2 SCH2Ph h) Y = CH 2 S-( 2 -naphthyl)

All of the compounds (Ia-h) exhibit inclusion ability, 
and (Ie) , for example, forms adducts with toluene, 
cycloheptane, phenyl acetylene, bromoform, and iodo-benzene, 
with a host to guest ratio of 1:2 in each case. In some cases 
remarkable guest selectivity is found, 95% o-xylene and 5% 
£-xylene being included by host (Ie) when it is crystallized 
from an equimolar mixture of these solvents. Using this 
versatile hexa-host two compounds were crystallized containing 
unique guests which are reported herein.



Hexa-host
(I)

Squalene guest
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1  ~ THE SQUALENE ADDUCT OF HEXAKIS (p-t-BUTYLPHENYLTHIQMETHYL) 
BENZENE

4 - 1 * 1  introduction

The advent of hexa-host inclusion chemistry, with its 
ability to trap more complex and interesting guests, leads to 
a convenient method whereby molecules that are liquids under 
normal conditions can be studied. In this manner the large 
triterpene, squalene (C^gHgg), was made available to X-ray 
diffraction techniques.

Squalene, found in large quantities in shark liver oil, 
is of biogenetic importance as a precursor to cholesterol via 
lanosterol. The precise course of cyclisation and concerted 
rearrangement of this reaction is determined by the 
conformation in which the flexible all-trans-squalene molecule 
is folded. The conformation adopted when squalene is 'frozen 1 

in the crystalline state, as in I, can be directly compared to 
the conformation found in squalene (-110°C) by Sheldrick

4.1.2 EXPERIMENTAL

Crystal data

Squalene adduct of h e x a k i s (£-t-butylphenylthiomethyl) benzene,
C72H90S6-1/2(C30H 50)' Mr=1353-3 ' triclinic, a=14.710(5), 
b=15.773(6), c=20.417(5) A, a=107.40(2), p=113.93(3),
Y=81. 93(3)°, U=4131. 8  A 3 , Dc=1.09, Dm=1.10 Mgirf3 ,

Z = 2 , F (000) = 1466, space group pi, ^7Mo-Ka ) = 2 .0 1 + cm- 1 .
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Data collection:

Instrument used: Enraf Nonius CAD-4
Radiation used: Mo-KQ A= 0. 71069A
Upper limit for data collection: 20 = 46°max
Number of independent reflexions: m = 4230*Unobserved cut-off : 2.5a-j-
Number of parameters refined: n =374 
Number of reflexions per parameter: m/n =11.3

* This cut-off was applied only in least-squares 
refinement; during structure solution, where it is important 
to have all available data for quartet analyses, some 12297 
independent reflexions were used.

4.1.3 STRUCTURE DETERMINATION

The structure was solved by application of quartet 
invariants to the enhanced version of MULTAN described in the 
preceding section. 582 quartets and 2299 quintets were 
generated via QGEN for the top 120 E-magnitudes > 2.5,
employing the P|, P ^  and the P ^  formulae respectively. For 
a quartet to be accepted P* was > 0 . 6 0  and P ^  was ^ 0-70, 
whilst for a quintet the associated probability was > 0.70.
This quartet information was added to the triple phase
relationships derived from 450 E-magnitudes (|Ej> 2.1) to give 
a total of 2881 invariants for the subsequent CONVERGENCE 
procedure. 49 negative quartets and 351 negative quintets 
( A >  -1.0) were used as contributors to their respective 
figures of merit.

Three origin defining reflexions and three variable 
reflexions resulted in eight solutions being computed which 
gave two E-maps capable of yielding a solution. Table 1.0 
lists the figures of merit derived for these eight solutions.
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The negative quartet-quintet figures of merit, NQEST and 
NQINT, without doubt gave the best indications as to the 
correct E-maps, having values of -0.83, -0.83 and 
-0.83, -0.87 respectively for the two correct solutions. As 
seen from Table 1.0, the three standard figures of merit were 
not quite so decisive, although an indication as to the 
correct solution is still possible.

From the best E-map (No.2), 65 out of a possible 93 atoms 
were located and recycled via the Sim-weighted Fourier option 
in MULTAN. At this stage no squalene molecule had been found.
The consequent map completed all but two carbon atoms of the 
t-butyl groups and revealed eleven out of fifteen atoms of the 
squalene moiety. A further weighted Fourier calculation found 
no more atoms, and at this stage least-squares refinement was 
initiated.

The method by which the crystal structure of (I) was 
elucidated has shown quartet invariants as a worthwhile 
inclusion into an integrated multisolution technique. As an 
experiment, the data were processed via the standard MULTAN 
package, i.e. using triplet information only. Employing the 
same number of variables as before, with the default values 
set by the program, no solution was found; probably 
accountable to the appearance of 'holes' in the early stages 
of the convergence map.

Persevering with the standard MULTAN and changing the 
default values by expanding the number of variables used, one 
could perhaps, obtain the correct solution. However, it is 
worthwhile noting that with 93 atoms in the asymmetric unit,
the number of I2  relationships attained falls short of the 
required quota, if the conventional ratio of relationships per 
atom is to be observed. As illustrated in Chapter 2, quartet
invariants provide the necessary increase to satisfy this
ratio for the number of atoms involved, without having to 
increase the number of E-magnitudes to more than 500.



Page 83

Moreover, by successful application of the enhanced 
version of MULTAN, it took only 103 seconds to generate the 
necessary quartet invariant information, and this compares 
favourably with the more time consuming process (2 0 0 secs.) for 
re-running the program, even once, if the standard MULTAN 
package had been employed.

A . 1 . 4  STRUCTURE REFINEMENT

The structure, was refined using SHELX. Two cycles of 
isotropic refinement produced a difference map which indicated 
two features of the hostrguest molecule from which problems 
were to arise. Firstly, on subsequent location of all the 
atoms of the t.-butyl groups there remained spurious peaks 
adjacent to the refined terminal t-butyl coordinates. This 
was diagnosed as disorder of the t-butyl groups. Bond length 
and angle calculations led to the conclusion that the residual 
peaks were atoms occupying proportional population with the 
existing terminal groups. The disordered peaks were 
incorporated in the isotropic least-squares calculations by 
assignment, and refinement, of the site occupation parameters 
via a free variable for each t-butyl group, such that the sum 
of their values was fixed at 1 .0 .

Secondly, the squalene molecule also appeared to be 
disordered at each end of the chain. However, it was possible 
to resolve this disorder by consideration of an overlap of two 
squalene molecules. From a difference map it was observed 
that the squalene molecule was lying diagonally across the 
unit cell, i.e. from (0 ,0 ,0 ), through the centre of symmetry 
at (0,1/2,1/2), to (0,1,1) as a continuous chain. To make 
sense of this continuous chain disorder it is necessary to 
envisage two squalene molecules overlapping, with one of the 
squalene molecules moved by one isoprene unit with respect to 
the other molecule. Figure 3 shows this diagramatically where 
the second molecule is overlayed on the first, but with the
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required shift. The effect of carrying out this manoeuvre is
to impart a centre of symmetry at either side of the original 
molecular centre of of symmetry, depending on which way the 
single isoprene shift is applied (in this case moving to the 
left of the molecular centre) . In this way the crystal or 
space group centre of symmetry falls across the double bond 
which has had this additional symmetry element conferred on it
by the isoprene shift manoeuvre, and thus effects the
continuity of the chain. As a result the methyl groups at
either 'end' of the chain must assume half population since at 
each end it has been reflected through the centre of symmetry.

The single isoprene displacement is the only shift 
possible, since on moving the second molecule two or more 
isoprene units would result in other methyl groups appearing 
as atoms on the other side of the double bonds - a careful 
study of the difference maps gave no indication of this.

At this stage isotropic refinement converged to an
R value of 0.142. The six benzene rings on the hexa-host were
then refined as rigid bodies, while the sulphur atoms and the
fourteen atoms of the squalene moiety that had unitary
population parameters were refined anisotropically. This
procedure was adopted due to the restrictions, imposed by
SHELX, on the number of atoms that are allowed to be refined
anisotropically. The final least-squares calculation only
included 12 out of a possible 115 hydrogen atom positions, a
fact that is reflected in the final weighted R-value,
R = 0.104. The 12 hydrogens included were the methylenew
hydrogens associated with the carbon atoms adjacent to the
sulphurs in the hexa-host.

Tables 1.1 record the atomic coordinates and temperature 
parameters for both host and guest molecules, with Table 1.2 
showing bond lengths and angle calculations for the host and
Table 1.3 giving bond lengths and angles for the guest
molecule. Figure 8  gives relevant torsion angles for the host 
molecule.



Chiral hexa-host

(II)
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II - THE ACETIC ACID ADDUCT OF HEXAKIS (R-q -PHENYLETHYLSULPHONYL 
METHYL) BENZENE

4.2.1 INTRODUCTION

The possibility of utilising the chirality of crystals to
achieve asymmetric synthesis was considered as early as 

251908 . Asymmetric synthesis through reactions in chiral
crystals involves two aspects: generating chiral crystals and
performing topochemically controlled, solid-state reactions

2 6which yield chiral products

Since many clathrates (e.g. urea, tri-o-thymotide) form
chiral crystals, the use of these materials may represent a
widely applicable method for 'engineering' chiral crystalline
matrices with achiral guest molecules. However, by design of
a chiral hexa-substituted host, where the intermolecular
features are conducive to chiral guest molecules, the prospect

27of asymmetric synthesis is enhanced. Leiserowitz has
considered the packing modes of carboxylic acids and has shown 
that the commonly observed centrosymmetric, hydrogen bonded 
dimer generally results in centrosymmetric, achiral crystals.

The crystal structure of the acetic acid adduct of 
hexakis(R-a-phenylethylsulphonylmethyl)benzene (II) was
therefore undertaken to resolve the chirality of the guest 
species, and the conformation adopted by the novel hexa-host.
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4.2.2 EXPERIMENTAL

Crystal data

Acetic acid adduct of hexakis(R-a-phenylethylsulphonylmethyl) 
benzene, C 6 0 H 6 6 S 6 O12. 4 (CH*02 H) , Mr=14J/ .6 , monoclinic,
a=16. 319(5), b=13.869(4), c=16.731(5)X, P =106.47(3)°,
U=3631. 7 A 3 , D =1.11, D =1.12 Mgm“3 , Z = 2, F(000) = 14-92,,

m  in _ *
space group P21 , [i(Mo-Ka) =2. 6  cm .

Data collection

Instrument used: Enraf Nonius CAD-4
Radiation used: Mo-Ka A= 0.71069 A
Upper limit of data collection: 20 = 54°max
Number of independent reflexions: m = 3378

*Unobserved cut-off : 2.5aI
Number of parameters refined: n = 337
Number of parameters per reflexion: m/n= 10.0

* For structure solution the complete data set of 9408
reflexions was used, which was then reduced for
least-squares analyses.

4.2.3 STRUCTURE DETERMINATION

The structure was solved by direct methods using MULTAN 
which incorporated quartet invariants in an active mode. From 
QGEN, 1279 unique quartets and 6094 quintets were obtained for 
the top 100 E-magnitudes using P-jy7  and (quartets) and
Pl/15 (quintets) with a tf7 / a 1 3  and a 1 5  limit of 50°.

A subset of 110 negative quartets was integrated with
4848 triple phase relationships derived from 470 
E-magnitudes > 1.76 to yield a starting set of reflexions in 
which four variable reflexions were permuted via magic integer



Page 87

phase representation. 266 negative quintets contributed to 
NQINT.

Subsequent tangent refinement resulted in 40 phase 
solutions being calculated with the derived figures of merit 
in close agreement. From the best indication (NQINT = -0.394, 
NQEST =-0.127) an E-map revealed 32 peaks of the host molecule 
which were recycled via Sim-weighted Fourier techniques to 
produce a complete structure in which two acetic acid dimers 
were located.

4.2.4 STRUCTURE REFINEMENT

These approximate atomic coordinates were adjusted by 
several cycles of full-matrix least-squares calculations 
employing the SHELX system, whereby isotropic refinement 
converged at R = 0.126. Subsequently, the six phenyl rings 
were refined as isotropic rigid bodies, and the temperature 
factors of ail other atoms assigned to the anisotropic mode. 
Introduction of the weighting scheme of the type:

w = k / ( a 3 (F) + abs(g).F.F)

where k and g were redetermined after each structure factor
2 2calculation by fitting (FQ-F ) to ( a (F) + abs(g).F.F)/k, 

converged the least-squares calculations after a further four 
cycles of refinement to a final R-value (&w ) of 0.078. As 
with the squalene adduct it was not possible to include the 
80 hydrogen atoms remaining in the structure. A difference 
map located the positions of the two protons associated with 
one of the dimer guest moieties - these hydrogen atoms were 
included in the final least-squares cycle. Atomic fractional 
coordinates and temperature parameters for (II) are given in 
Table 2.1, while Table 2.2 summarises bond length and angle 
calculations along with relevant mean plane geometry. 
Figure 9  displays the torsion angles for the host and
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Table 2.3 gives the relevant geometry for both dimer guests.

4.2.5 DISCUSSION

The crystal structure determination of the title 
compounds show that in (I) an inclusion compound of the 
channel type prevails, with the squalene moiety existing as a 
continuous chain running throughout the crystal lattice 
sandwiched between hexa-host molecules in a host to guest 
ratio of 2:1. In (II) the acetic acid dimers are found as 
discrete entities dispersed in the chiral hexa-host lattice in 
such a manner as to form a true clathrate with a host to guest 
ratio of 1 :2 , where the latter figure refers to a dimer 
molecule. Figures 6  and 7 illustrate the packing arrangements 
for both structures.

a) The Host Molecules.

A view looking directly onto the plane of the central 
benzene ring for each host molecule, (I) and(II), is shown in 
Figures 4 and 5 respectively. In (I) the centroid of the
central benzene ring is located, within experimental error, at 
0,1/4,1/4 (and 0,3/4,3/4) in the unit cell (cf.squalene),
whereas a general position is encountered for (II). A
comparison may be sought between the two hosts, (I) and (II), 
and several other hexa-host molecules, described by MacNicol 
et al., in which the molecule (III), hexakis(benzylthiomethyl) 
benzene , is indicative of the series. The four structures 
referenced therein crystallize in centrosymmetric space groups 
with the centroid of the central benzene ring positioned at a 
centre of symmetry.

It would therefore have been reasonable to expect the 
achiral hexa-host (I), which crystallized in the 
centrosymmetric space group PI, to adopt a similar position in 
the unit cell whereby the centroid of the central ring was
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placed on a centre of symmetry. The fact that this is not so 
suggests competition between the centrosymmetric guest, 
squalene, and the host for the centre of symmetry: a
competition which the guest wins, and the host is relegated to 
the non-crystallographic special position at (0 ,1 / 4 ,1 / 4 ). 
This unique preference afforded the squalene guest is possibly 
due to the difficulty of imposing a centre of inversion on the 
multi-legged host with its encumbent phenyl rings and 
disordered t-butyl groups; whilst it is simpler to satisfy the 
conditions of an intramolecular inversion centre on the 
rationally disordered squalene.

On the other hand, the chiral host, (II), and, for that 
matter, the acentric acetic acid dimer guests, occupy general 
positions in the cell and, as the geometry of both host and 
guest moieties will show, this does not preclude the 
occurrence of approximate pseudo-symmetrical arrangements 
within each species.

This possible correlation between molecular structure and
28crystal symmetry has been shown by Jacques et _al. , who 

reported that molecules having a two-fold symmetry axis, C 2  t

tend to crystallize in chiral structures. Furthermore, the
2 fipostulate by Green , that the probability of adopting a 

chiral structure is enhanced with molecules having three-fold 
symmetry, gives added interest to the conformation of-(II).

The sulphur atoms in the ’legs' of (I) and (II), as with 
(III), are situated alternately above and below the plane of 
the central benzene ring. In each case the legs are staggered 
with the methylene carbon going in the opposite direction, 
with respect to the ring plane, from its sulphur neighbour. 
Tables 1.2c and 2.2c give the deviations of the relevant atoms 
and average displacement of the terminal phenyl rings from the 
mean plane of the central ring for (I) and (II) respectively.

It is noteworthy that in (I) and (III) the deviations for 
the methylene carbons are in the same direction as the
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deviations of the adjacent atoms that comprise the central 
ring; whereas in (II) this sympathetic deviation is absent. 
Although only small deviations are experienced, it is thought 
to be related to the steric hinderance encountered by the 
introduction of the bulkier chiral substituents. In both
cases the phenyl groups alternate above and below the central 
ring plane.

Bond lengths and angles for both hexa-host moieties are 
in good agreement having average central ring values of 
1.399(20)A, 1.397(12)& and 120.2°(12),120.0°(9) for (I) and 
(II) respectively, while the longer methylene-sulphur bonds 
experienced in (I), compared to (II), are a result of
delocalization of the sulphone group.

Consideration of the six torsion angles about the 
ring-methylene plane gives values close to 90° in both
(I) and (II), which, coupled with the proximity of the

* o>C-CH 2 -S-C torsion angles to 180 , reveals approximate
three-fold core symmetry in each case. This is also observed
for (III). An interesting feature of the chiral host is the
all positive signs for the torsion angles about the
methylene-sulphur bonds, and is due to the terminal phenyl
rings adopting a preferred orientation to avoid steric
overcrowding associated with the additional methyl on the
chiral carbon.

The approximate three-fold symmetry is extended in (II) 
beyond the core atoms to the periphery of the host molecule, 
where -CH 0 -S-C*-Me torsion angles have values of 180, 6 8 ,L &
-177, 65, -176 and 6 6 ° while -CH 2 -S-C -Ph torsion angles have
values of 56, -62, 60, -60, 61 and -63°. Since this
three-fold symmetry is only observed for the chiral species it 
could be argued that this is the corollary of the earlier 
proposal by Green.
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b) Squalene

Table 1.3 gives relevant bond distances and interbond 
angles for the guest of (I). The longer bond lengths which 
occur at each end of the molecule are undoubtedly due to the 
disorder already discussed. However, thermal parameters and 
e.s.d's for the central portion of the molecule, C (71)-C (81) , 
do not deviate significantly from values normally associated 
with such molecules, and therefore the salient geometry of the 
squalene guest is worthy of comment.

Double bonds, C(72)-C(74) 1.278(37)A and C(77)-C(79)
o1.305(33)A, though slightly shorter than those found in 

squalene at -110°C, display a characteristic lack of 
delocalization also found in p-carotene and its derivatives. 
Figure 10 shows an ORTEP drawing of the squalene guest whilst 
Figure 11 compares the torsion angles of squalene in (I) with 
those of squalene at -110°C. Distinct conformational 
differences, as could be expected, exist between the two 
conformers. The conformation adopted in (I) can be likened to 
a 1 square-wave ' form, comprised of alternating planar isoprene 
units. The dihedral angle between these alternating isoprene 
units is, on average, ca. 12°. At -110°C a more twisted 
squalene structure is observed.

c) The Acetic Acid Dimers

The guest moiety of (II) consists of two discrete pairs 
of non-coplanar acetic acid dimers occupying different 
positions within the host environment. The first dimer 
considered is sandwiched between the central rings of two host 
molecules in such a manner that each terminal methyl group 
points directly at the central host ring. The average 
distance from the central ring to the methyl group is 3.59a .

Mean plane calculations involving the ring atoms 
C (1)-C (6 ); 0(100), 0(101), C(100) , C(101) , and 0(200), 0(201), 
C (200), C (201) show the mean dimer plane at an angle of 89.8°
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to that of the central ring plane, whilst a dihedral angle of 
17.4° is subtended between the two acid groups.

The bond lengths, Table 2.3, show almost complete 
orientational disorder of the carbonyl groups. The average

OC-0 distance 1.242(31)A can be compared to the distinct C=0
and C-0 distances, 1.206 and 1.321 respectively, found for

o 29acetic acid (-140 C) by Jdnsson (1971) using neutron
diffraction data. The disorder is due to the existence of two
mutually indistinguishable equivalent orientations,
(a) and (b) for the carbonyl dimer.

x

■ - H -

H - o

0 - H

( a )  ( b )

30Currie, Speakman and Curry have shown the differences 
between C=0 (carbonyl) and C-OH (hydroxyl) distances vary

Owidely (0.04-0.12A), accountable to the existence of 
orientational disorder between (a) and (b). Leiserowitz, in 
his comprehensive study of carboxylic acids, has described two 
modes of disorder. These modes are termed static or dynamic, 
depending on whether there is (the latter case) or is not 
proton transfer across the 0-H..... 0 bond.

In the case of dimer A both protons were located. 
However, one hydroxyl proton is bonded to 0(100) 0-.93 A and
the other hydroxyl proton is approximately centrally situated

oin a symmetric O-H-O bond 1.60 A. It is therefore difficult 
to define exactly the disorder present in this dimer, although 
it would appear that in the C (100)-0 (101) and C (200)-0 (201) 
bond systems dynamic disorder, where the C-0 bonds are in a 
state of resonance as the proton undergoes rapid oscillations 
across the 0 (101)-H-0(201) bond, is the major contributor.
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31In tnmesic acid where similar bond lengths
(1.255A (C-OH) and 1.244A(C=0)) are found, there is introduced 
the interesting correlation between disorder and thermal 
motion of the oxygen atoms involved, a factor which 
undoubtedly contributes to the equivalence of the C-0 bonds 
found in dimer A.

The second dimer trapped by the host species, Dimer B, is 
to be found adjacent to the legs carrying atoms S(l) and S( 6 ). 
The high temperature parameters associated with this dimer 
makes interpretation of bond lengths and angles meaningless, 
even on the basis of orientational disorder. From several
I .R . spectra, recorded prior to data collection, it was 
evident that the host:guest ratio was dependent on the sample 
medium used. Since in our X-ray analysis we had enclosed the 
crystal in a capillary with mother liquor it would appear that 
this second dimer is the more volatile component.
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Table 1.0

Figures of Merit (Squalene adduct)

fMSET ABSFOM PSI ZERO RESID NQEST NQINT COMB. FOI

1 1.0195 1.559 24.25 - 0 . 8 8 - 0 . 8 8 4.4464
2 1.0375 1.991 22.95 -0.83 -0.83 4.4565
3 1.0166 2.331 24.42 - 0 . 1 0 -0.47 2.1619
4 0.9961 1.807 26.02 - 0 . 1 0 -0.47 2.1517
5 1.0053 2.197 25.90 -0.33 -0.41 2.0229
6 0.9862 1.677 27.30 -0.33 -0.41 2.0849
7 0.9720 1.873 27.61 0.09 0.04 0.6078
8 0.9912 2.357 26.37 0.09 0.04 0.5578



Table 1.1A

Atomic coordinates and 

(i) Atomic coordinates

thermal parameters for hex 

(xl0 ^)

ATOM x/a y/b z/c

C(l) 8962 (9) 7495 (7) 7330 (6 )
C(01) 7878 (8 ) 7405 (7) 7101 (6 )
S{1) 7375(3) 6502 (2) 6254 (2)
C(ll) 6328 (5) 6191 (5) 6340 (4)
C (12) 6049 5308 5996
C (13) 5212 5011 6015
C (14) 4656 5597 6378 ;
C (15) 4935 6481 6722
C (16) 5772 6778 : 6704 .
C (17) 3727 (10) 5287 (8 ) 6404 (7)
C (171) 3504 (29) 4280(25) 5964 (22)
C (172) 3928 (29) 5365 (26) 7232 (21)
C (173) 2870 (30) 5984 (25) 6199(23)
C (1711) 2969 (24) 4950 (21) 5623 (17)
C (172 1) 3982 (23) 4484 (21) 6772 (18)
C (173 ' ) 3177 (25) 5988 (21) 6830 (19)
C (2) 9639 (10) 6955 (7) 7759 (7)
C (02) 9256 (9) 6229 (7) 7924 (6 )
S (2) 8983 (3) 6641(2) 8764 (2)
C (21) 8443 (7) 5660 (4) 8691 (5)
C (22) 8993 5077 9113 :
C (23) 8579 4284 . 9018
C (24) 7615 4074 8500
C (25) 7064 4658 • 8078
C (26) 7478 5451 8173
C (27) 7171 (12) 3158 (10) 8393 (8 )
C (271) 6196(21) 3367 (17) 8481 (16)
C (272) 7548 (21) 2449 (17) 7895 (16)
C (273) 7634 (19) 2891 (17) 9152 (15)
C (271 ' ) 6038 (39) 3142 (33) 7881 (31)
C (272 1) 8058 (39) 2451 (32) 8580 (30)
C (273 ' ) 6739 (40) 2744 (32) 7470 (28)



Table 1.1A (continued)

ATOM

c 3)
c 03)
s 3)
c 31)
c 32)
c 33)
c 34)
c 35)
c 36)
c 37)
c 371)
c 372)
c 373)
c 371 ’ )
c 372 1)
c 373 *)
c 4)
c 04)
s 4)
c 41)
c 42)
c 43)
c 44)
c 45)
c 46)
c 47)
c 471)
c 472)
c 473)
c 471 ')
c 472 1)
c 473')

x/a

10656 (10) 
11373 (9) 
11645(3) 
12410(6) 
13169 
13777 
13626 
12867 
12259 /  
14275(11) 
15340 (23) 
14554 (25) 
13753 (24) 
15284 (29) 
14318 (31) 
13922 (32) 
11008 (9) 
12104 (9) 
12636 (3) 
13686 (5) 
1399? 
14814 
15329 
15022 ' 
14200 < 

16243 (11) 
16384 (23) 
17172 (24) 
16013 (22) 
16922 (36) 
16983 (36) 
15864 (34)

y/b

7059 (7) 
6525(7) 
5466 (2) 
4883 (5) 
4342 
3837 
3872 
4413 
4918 
3327 (9) 
3053 (20) 
3865(21) 
2463 (20) 
3724 (26) 
2326 (26) 
3389 (27) 
7658 (7) 
7707 (7) 
8595 (2) 
8903 (5) 
9782 

10051 .  ̂
9443 
8565 
8295 
9744 (9) 

10747 (19) 
9114 (20) 
9518 (22) 

10397 (30) 
8965(31) 

10185 (34)

z/c

7995 (6) 
8501 (6) 
7926 (2) 
8589 (4) 
8428 
8906 
9546 -}  
9707 
9229 

10073 (7) 
9967 (17) 

10921 (17) 
9905(17) 

10529(22) 
9650 (22) 

10732 (22) 
7784 (6) 
7983 (7) 
8833 (2) 
8733 (4) 
9062 
9004 : 
8617 
8288 
8346 ; 
8558 (8) 
8861(17) 
8848 (18) 
7696 (16) 
9281 (26) 
8371 (28) 
7900 (25)



Table 1.1A (continued)

ATOM

c 5)
c 05)
s 5)
c 51)
c 52)
c 53)
c 54)
c 55)
c 56)
c 57)
c 571)
c 572)
c 573)
c 571’ )
c 572’ )
c 573 ’ )
c 6)
c 06)
s 6)
c 61)
c 62)
c 63)
c 64)
c 65)
c 66)
c 67)
c 671)
c 672)
c 673)
c 6711)
c 672 ' )
c 673 ' )

x/a

10340 (10) 
10724(9) 
10953 (3) 
11542(6) 
11146 
11591 ; 
12430 .. 
12826 
12381 
12951 (10) 
12566 (27) 
14111 (25) 
12621 (25) 
12205 (32) 
13308 (34) 
13857(31) 
9321 (10) 
8604 (9) 
8297 (3) 
7642 (6 ) 
6609 
6112 
6649 
7683 
8179
6107 (10) 
5990 (2) 
5031 (21) 
6611 (2 2 ) 
5221 (39) 
6848 (37) 
5772 (40)

Y/b

8201 (7) 
8918 (7) 
8461(2) 
9388 (4) 
9703 

10408 
10791 
10484 
9779 

11556 (8 ) 
12455(21) 
11357(21) 
11610 (2 2 ) 
12052(28) 
12260 (26) 
11134(27) 
8094 (7) 
8622 (7) 
9669 (2) 

10273 (5) 
10371 
10884. ' 
11299 
11201 
10688, 
11881 (9) 
11372 (17) 
12170 (18) 
12844(17) 
11374 (31) 
12188 (32.) 
12722(32)

z/c

7359 (6 ) 
7190 (6 ) 
6327 (2) 
6340 (5) 
5707 
5677 - 
6278 ... 
6911 
6942 
6245 (7) 
6632 (18) 
6546 (20) 
5393 (18) 
5605(22) 
6992 (23) 
6034 (25) 
7107 (7) 
6607 (6 ) 
7182 (2) 
6500 (4) 
6423 
5745 . 
5504 
5761 
6259 
4985 (7) 
4199 (15) 
4942 (15) 
5338 (14) 
4315 (26) 
4668 (27) 
5349 (27)



Table 1.1A (continued)

(ii) Thermal parameters (8 x!03

°11 °22 °33 U 12 U 13 °23

c 1) 50
c 01) 30
s 1) 50
c 11) 49
c 12) 69
c 13) 73
c 14) 51
c 15) 71
c 16) 61
c 17) 62
c 171) 110
c 172) 110
c 173) 110
c 171') 110
c 172 ') 110
c 173 ') 110
c 2) 51
c 02) 67
s 2) 99
c 21) 57
c 22) 78
c 23) 75
c 24) 72
c 25) 89
c 26) 76
c 27) 87
c 271) 110
c 272) 110
c 273) 110
c 271’ ) 110
c 272') 110
c 273 1) 110

35 51 23 19 00
59 61 18 14 -06
84 62 10 25 -16

38 63 18 28 -09
48 52 20 31 -06
56 70 19 48 -15



Table 1.1A (continued)

0 11 U 22 U33 U12 U13 U 23

c 3) 48
c 03) 50
s 3) 73
c 31) 53
c 32) 75
c 33) 86
c 34) 64
c 35) 89
c 36) 83
c 37) 77
c 371) 110
c 372) 110
c 373) 110
c 371') 110
c 372') 110
c 373 1) 110
c 4) 36
c 04) 52
s 4) 52
c 41) 50
c 42) 78
c 43) 81
c 44) 56
c 45) 63
c 46) 67
c 47) 78
c 471) 110
c 472) 110
c 473) 110
c 471' ) 110
c 472') 110
c 473 ' ) 110

41
53
63

51
58
79

47
56
60

48
70
65

14
18
26

14
20

14

19
18
25

-09
08
20

15 -08
28 -12
22 -11



Table 1.1B

Atomic coordinates and thermal parameters for squalene guest

4(1 ) Atomic coordinates (xl0 )

ATOM x/a y/b z/c

C (6 8 ) 9761 (27) 0821 (2 1 ) 10254(23)
C (69) 10250 (23) 0100 (23) 9750 (21)
C (70) 10350 (14) 0950 (12) 9300 (16)
C (71) 11345 (11) 1099(13) 8998 (15)
C (72) 11059 (12) 1950 (11) 8701(10)
C (73) 10920 (15) 2781 (14) 9260(11)
C (74) 11165(16) 1925 (12) 8093 (11)
C (75) 10842 (14) 2696 (13) 7723 (9)
C (76) 9972(13) 2384(10) 6984 (9)
C (77) 9572(11) 3120 (11) 6564 (9)
C (78) 9096 (16) 3904 (11) 6917(12)
C (79) 9748(14) 2978 (13) 5953 (11)
C (80) 9407 (13) 3687(12) 5489 (11)
C (81) 10356 (12) 4127 (12) 5579(10)
C (82) 10084 (21) 4688 (11) 4936 (25)
C (83) 10095 (33) 4069 (22) 4164 (21)



Table 1- IB

Atomic coordinates and thermal parameters for squalene guest

4(i) Atomic coordinates (xl0 )

ATOM x/a Y/b z/c

C (6 8 ) 9761(27) 0821 (2 1 ) 10254(23)
C (69) 10250 (23) 0100(23) 9750 (21)
C (70) 10350 (14) 0950 (12) 9300 (16)
C (71) 11345(11) 1099 (13) 8998(15)
C (72) 11059(12) 1950 (11) 8701(10)
C (73) 10920 (15) 2781 (14) 9260 (11)
C (74) 11165(16) 1925 (12) 8093 (11)
C (75) 10842(14) 2696 (13) 7723 (9)
C (76) 9972(13) 2384 (10) 6984 (9)
C (77) 9572(11) 3120(11) 6564 (9)
C (78) 9096 (16) 3904(11) 6917(12)
C (79) 9748(14) 2978 (13) 5953 (11)
C (80) 9407 (13) 3687(12) 5489 (11)
C (81) 10356(12) 4127(12) 5579(10)
C (82) 10084 (21) 4688(11) 4936 (25)
C (83) 10095(33) 4069(22) 4164 (21)



Table 1.1B (continued)

(ii) Thermal parameters (X^xl0^)

U 1 1 U 2 2 °33 U 1 2 °13 U23

C (6 8 ) 127 1 2 0 237 - 0 1 2 114 -019
C (69) 092 ' 157 758 142 -129 -082
C (70) 268 261 768 -049 129 0 0 0

C (71) 147 165 141 105 -003 025
C (72) 088 113 093 037 014 -005
C (73) 161 156 143 0 2 1 077 024
C (74) 186 117 1 1 2 031 049 0 0 0

C (75) 134 167 092 066 0 0 2 -047
C (76) 127 103 097 047 028 -024
C (77) 071 104 082 023 -005 -023
C (78) 169 086 206 -003 098 018
C (79) 129 168 107 087 014 -013
C (80) 1 1 1 169 180 128 053 0 0 0

C (81) 095 159 158 127 015 -007
C (82) 069 099 313 018 028 -013
C (83) 208 074 1 2 1 013 1 1 0 015

Average
C

e . s . d . ' s
24 19 30 16 18 15



Table 1.1C

Atomic coordinates and isotropic thermal parameters
for methylene hydrogen atoms.

ATOM x/a y/b z/c U

H(l) 7748 (8 ) 7268 (7) 7543 (6 ) 0

H( 2 ) 7502 (8 ) 8021 (7) 7000 (6 ) 0

H(3) 8584 (9) 5969(7) 7459 (6 ) 0

H (4) 9814 (9) 5704 (7) 7998 (6 ) 0

H (5) 12052(9) 6885 (7) 8845 (6 ) 0

H (6 ) 11042 (9) 6404 (7) 8850 (6 ) 0

H (7) 12460 (9) 7081 (7) 8072 (7) 0

H (8 ) 12224 (9) 7839 (7) 7534 (7) 0

H (9) 10180(9) 9455 (7) 7125(6) 0

H (10) 11410 (9) 9165(7) 7644 (6 ) 0

H (11) 8939 (9) 8762 (7) 6269 (6 ) 0

H (12) 7936 (9) 8250 (7) 6253 (6 ) 0

iso

.11

.11

.11

.11

.11

.11

.11

.11

.11

.11

.11

.11



Table 1.2

• O OInteratomic distances(A) and angles() for hexa-host(I)

(a) Bonded distances

S

t - b u t y l

(i) Endocyclic

C (1) -C (2)
C (3) -C (4)
C (5)- C (6)

bonds

1.411(16) 
1. 402 (22) 
1.382(20)

C (2)- C (3) 
C (4) -C (5) 
C ( 6  ) -C (1)

1.396 (19) 
1.386(17) 
1.419 (22)

(ii) Exocyclic bonds

Bond Side-chain number
number 1 2  3 4 5

1 1.478 (18) 1.518(21) 1. 520 (17) 1.473(19) 1.497 (21) 1

2 1.832(10) 1.821(14) 1.835(12) 1. 838 (11) 1.844(15) 1

3 1.767 (10) 1.766 (10) 1. 772 (9) 1.779(10) 1. 789 (10) 1

4 1.546(19) 1.594 (19) 1.538(17) 1.550(21) 1.563(22) 1

*5 1.518 (41) 1.566 (48) 1.564(43) 1. 560 (40) 1.563(45) 1

*
The value given is the average value of both contributors to 

the disordered _t-butyl groups.

6

.504(17) 

.830(12) 

.798(9) 

.506(17) 

.564(47)

(iii) Rigid body refinement constrained all bond lengths within the 
terminal phenyl groups to 1.395 (12)X



Table 1.2 (continued)

(b) Interbond angles
t-butyl

4s

(i) Endocyclic angles

C (6 ) -C (1) -C (2) 
C ( 2 ) - C (3)-C (4) 
C (4 ) -C (5) -C (6 )

118.8(13)
120.8 (11)
120.4(12)

C (1) -C (2 ) -C (3) 
C (3 ) -C (4 ) -C (5) 
C (5) -C (6 ) -C (1)

119.4(12) 
119.7(13) 
120.6 (11)

(ii) Exocyclic angles 

Angle Side-chain number
imber 1 2 3 4 5 6

1 1 2 2 .1 (1 1 ) 120.3 (13) 118.6(12) 119.9(11) 120.1 (13) 121.3(12)
2 119.1 (11) 1 2 0 .1 (1 1 ) 120.6(13) 120.4 (12) 119.5(11) 118.1 (13)
3 111.4 (9) 112.3 (8 ) 108.3(8) 110.3(9) 109.8 (8 ) 108.5(8)
4 102.2(5) 97.5(5) 103.4(5) 102.7(6) 99.9(8) 101.0 (5)
5 116.1 (6 ) 1 2 0 .6 (8 ) 116.6(6) 117.8(6) 1 2 2 . 6  (6 ) 120.4 (7)
6 123.9 (6 ) 119.4 (6 ) 123.4 (7) 1 2 2 .2 (8 ) 117.4 (8 ) 119.6(9)
7 120.7 (7) 118.5(8) 121.2(9) 119.9(9) 121.0 (9) 119.0 (10)
8 119.3 (8 ) 121.5(10) 118.8(10) 1 2 0 .1 (1 0 ) 119.0 (8 ) 1 2 1 .0 (1 1 )
*9 110.4 (21) 108.5(22) 110.7 (18) 111.0 (23) 110.5(20) 112.0 (19)

Average value over both t-butyl contributors.

(iii) Rigid body constraints fix all bond angles within the 
terminal phenyl groups to 1 2 0 .0 (1 0 )°



Table 1.2 (continued)

(c) Least-squares Planes, given in the form:

oIX 1 + mY 1 + n Z 1 = d, where X 1, Y', and Z' are coordinates in A,

a) Plane equation (I)

-0.26605X1 + 0.49670Y1 + 0.82614Z1 =12.54031

ob) Deviations of atoms (A) from plane (I)

C(l) 0. 009, C (2) -0.007, C (3) 0.011, C (4) -0.018, 
C (5) 0.022, C (6 ) -0.018

c) Deviations of exocyclic atoms from plane (I)

CH 2  0.137 -0.136 0.088 -0.118 0.142 -0.089
S -1.650 1.481 -1.623 1.553 -1.536 1.616
<Ph> 1.137 -1.194 0.341 -1.280 1.012 -0.798



Table 1.3

o oInteratomic distances(A) and angles( ) for squalene guest

(a) Bonded distances

C (68)- C (69) 1.59 (4) C (69)- C (70) 1.88(3)
C (70)- C (71) 1.87 (4) C (71)- C (72) 1.57 (2)
C (72)-C (73) 1.51(3) C (74)- C (7 2) 1.30 (3)
C (75)-C (74) 1.54 (3) C (75)- C (76) 1.52(2)
C (77)-C (76) 1.56 (3) C(77)-C (78) 1.47 (3)
C (77)-C (79) 1.32(3) C (79)-C (80) 1.59 (3)
C (80)-C (81) 1.57(3) C (81)- C (82) 1.69(5)
C (82)- C (83) 1.59 (6 )

(b) Interbond angles

C (68)- C (69)-C (70) 91(2) C ( 6  9)- C (70)-C (71) 130 (2)
C(70)-C(71)-C(72) 107 (1) .C (71)—C (72)—C (73) 114(2)
C(71)-C(72)-C(74) 119(1) C(73)-C(72)-C(74) 126 (2 )
C(72)-C(74)-C(75) 123 (2) C(74)-C(75)-C(76) 108 (2 )
C(75)-C(76)-C(77) 1 1 2 (1 ) C(76)-C(77)-C(78) 116 (2 )
C(76)-C(77)-C(79) 115(2) C(78)-C(77)-C(79) 128(2)
C(77)-C(79)-C(80) 1 2 0 (2 ) C (7 9)- C (80)- C (81) 108 (1 )
C (80)- C (81)- C (82) 1 1 1 (2 ) C (81)- C (82)- C (83) 113 (2)



Table 2.1A

Atomic coordinates and thermal parameters for hexa-host (II) 

(i) Fractional coordinates 

ATOM x/a

c 1) 8177 (5)
c 01) 9087 (6)
s 1) 9642 (2)
0 1) 9527 (5)
0 01) 9402 (4)
c 10) 10755(6)
c 11) 11259 (7)
c 12) 10896 (7)
c 13) 10918
c 14) 11116
c 15) 11290
c 16) 11268
c 17) 11070
c 2) 8003(5)
c 02) 8744 (6)
s 2) 9023(2)
0 2) 8338 (5)
0 02) 9304 (5)
c 20) 9931 (7)
c 21) 9620 (9)
c 22) 10798 (5)
c 23) 11517
c 24) 12106
c 25) 11975
c 26) 11256
c 27) 10667

(xl0 4)

Y/b z/c

8437 2894 (5)
8310 (8) 2834 (6)
9438 (2) 2907(2)
9981(5) 3600 (5)
9853 (6) 2095 (4)
9072 (9) 3184 (7)

10007 (12) 3253 (8)
8386 (6) 2556(6)
8701 1770
8053 1214
7091 1443
6777 ' 2229
7424 2785
8405 3670(5)
8380 (7) 4456 (6)
7132(2) 4772 (2)
6700 (6) 5013 (6)
6658 (6) 4137 (5)
7236(10) 5687 (7)
7703(15) 6406 (7)
8703 (5) 5594 (5)
9126 5448 '
8558 5198
7567 5094
7143 5240
7711 5490



Table 2.1A (continued)

ATOM x/a y/b z/c

c (3) 7176(6) 8534 3732 (5)
C (03) 7000 (7) 8456 (7) 4581 (6 )
S(3) 7052 (2) 9626 (2) 5069 (2)
0(3) 6483 (5) 10285(6) 4491 (5)
0(03) 7914 (5) 9906 (6 ) 5389 (5)
C (30) 6577 (7) 9381 (9) 5899 (7)
C (31) 6531(11) 10388(12) 6342 (9)
C (32) 7072 (5) 8617 (6 ) 6497 (5)
C (33) 7856 .. 8809 7077
C (34) 8266 8094 7634
C (35) 7891 7187 7611
C (36) 7107 6994 7031
C (37) 6698 7709 6474
0(4) 6500(5) 8595 2990(6)
C (04) 5593 (6 ) 8788 (7) 3056 (7)
S (4) 5022(2) 7666 (2) 3092 (2)
0(4) 4851(5) 7215 (7) 2303 (6 )
0(04) 5468 (5) 7107 (6 ) 3806 (6 )
C (40) 4028 (7) 8025(13) 3241 (8 )
C (41) 3494 (7) 8603 (16) 2481 (10
C (42) 4162 (6 ) 8593(7) 4070 (4)
C (4 3) 4249 8057 4795
C (44) 4325: 8527 , 5550
C (45) 4313 9532 5579
C (46) 4225 10067 , 4857
C (47) 4149 9597 4099



Table 2.1A (continued)

ATOM x/a

c 5) 6641(5)
c 05) 5920(7)
s 5) 5648(2)
0 5) 6409(5)
0 05) 5181 (5)
c 50) 4986 (8)
c 51) 4785 (11)
c 52) 4217 (5)
c 53) 3566 .
c 54) 2847
c 55) 2779 _
c 56) 3430
c 57) 4148
c 6) 7494 (5)
c 06) 7686 (6)
s 6) 7694 (2)
0 6) 8395 (6)
0 06) 6849 (5)
c 60) 7906 (7)
c 61) 8802 (8)
c 62) 7181 (5)
c 63) 6459
c 64) 5799
c 65) 5862
c 66) 6584
c 67) 7243

y/b z/c

8602 2230 (6)
8654 (8) 1432 (6)
9877(3) 1057 (2)

10328 (7) 0988 (5)
10308 (6) 1555 (5)

9666 (11) 0006 (8)
10711 (13) -0375 (8)

9105(7) 0009 (6)
9515 0287 ,
8971 0287 v .
8018 0010
7608 -0267
8152 -0268
8558 2179(6)
8628 (8) 1338 (5)
7495 (3) 0844 (2)
6943 (6) 1326 (5)
7081 (7) 0660 (6)
7788 (12) -0151 (7)
8185 (15) 0048 (8)
8407 (7) -0688 (6)
7944 -1192
8485 - -1712
9487 -1728
9949 -1224
940S -0705



Table 2.1A (continued)

(ii) Thermal parameters (5^x10^)

° 1 1 U 2 2 U33 U 1 2 U13 U 2

C(l) 30 30 41 0 1 08 -03
C (01) 37 57 45 03 17 07
S(l) 38 52 56 03 15 -05
0 (1 ) 52 56 76 -18 2 2 - 1 2

0 (0 1 ) 50 6 8 57 25 1 2 -05
C (10) 26 70 6 6 - 0 2 07 0 1

C(ll) 44 109 89 - 1 0 16 -23
C (12) 62
C (13) 85
C (14) 115
C (15) 1 2 2

C (16) 138
C (17) 92
C (2) 39 28 37 03 15 0 1

C (02) 34 51 47 1 1 05 - 0 1

S (2) 42 52 52 16 0 0 04
0 (2 ) 54 64 1 0 1 23 27 -04
0 (0 2 ) 61 57 60 0 1 07 06
C (20) 61 76 52 1 2 -09 16
C (21) 89 185 26 04 25 13
C (22) 71
C (23) 73
C (24) 97
C (25) 87
C (26) 72
C (27) 55



Table 2.1A (continued)

c 3) 38 40 35 -05 08 -03
c 03) 62 41 43 03 26 -05
s 3) 59 58 49 -06 20 -06
0 3) 95 54 55 03 23 04
0 03) 65 84 72 -21 25 -32
c 30) 70 72 54 00 28 17

c 31) 137 94 80 -19 55 92

c 32) 59
c 33) 75
c 34) 98
c 35) 98
c 36) 109
c 37) 83
c 4) 33 38 45 07 07 03

c 04) 35 40 67 -04 11 -06

s 4) 38 62 71 -09 13 -11
0 4) 73 72 94 -34 19 -19
0 04) 56 62 . 106 11 24 -03

c 40) 30 135 80 01 07 01

c 41) 33 188 110 -11 -04 19
c 42) 68
c 43) 85
c 44) 105
c 45) 104
c 46) 103
c 47) 88



Table 2.1A (continued)

U11 U22 °33 U12 U13 U23

c (5) 2 2 49 42 - 0 1 -03 0 2

C (05) 63 53 45 0 0 - 0 1 14
S (5) 57 71 47 05 -09 15
0(5) 72 74 73 2 0 - 0 2 -08
0(05) 89 71 59 -18 07 18
C (50) 6 8 8 6 51 1 1 -06 24
C (51) 115 1 1 2 59 2 1 -07 35
C (52) 64
C (53) 1 0 2

C (54) 148
C (55) 142
C (56) 1 2 0

C (57) 1 0 0

C (6 ) 26 40 43 0 0 05 0 1

C (06) 41 6 8 19 -07 -05 0 0

S (6 ) 63 75 56 -25 19 - 1 1

0 (6 ) 99 60 81 -07 27 1 1

0(06) 80 97 99 -28 46 -27
C (60) 58 130 53 -29 24 -16
C (61) 65 190 54 -25 2 0 -35
C (62) 80
C (63) 104
C (64) 1 2 1

C (65) 139
C (6 6 ) 131
C (67) 92

Average e .s.d. ' s
S 1 2 2 1 1 1

0 fC



Table 2.IB

Atomic coordinates and thermal parameters for dimer guests.

(i) Fractional coordinates (xl0 4)
ATOM x/a Y/b z/c
0 (1 0 0 ) 3397(7) 7558 -2746(8)
0 (1 0 1 ) 2173 (8 ) 7655 (8 ) -2495(7)
C (100) 2722 (13) 7166 (11) -2692(10)
C( 1 0 1 ) 2560 (12) 6105(11) -2891(11)
0 (2 0 0 ) 3565(7) 9434 (8 ) -2681(7)
0 (2 0 1 ) 2346 (9) 9567 (10) -2427(9)
C (200) 2970 (10) 9939(13) -2595(8)
C (201) 2993 (14) 10973 (13) -2674(13)
0(300) 10856 (10) 5740 (13) 9774 (9)
0(301) 9617(16) 6197(12) 9097 (10)
C (300) 10449 (18) 6291 (19) 9190 (14)
C (301) 10803 (17) 6858 (14) 8656 (13)
0(400) 9807 (21) 9905(15) 9092 (13)
0(401) 11041 (14) 10395 (22) 9873 (17)
C (400) 10572(23) 9985 (23) 9168 (42)
C (401) 10903 (28) 9672 (20) 8447 (20)
H(l) 3297(182) 8300 (261) -2171 (200)
H (2) 2327(62) 8903 (90) -2404(61)



Table 2.IB (continued)

(ii) Thermal parameters (8^x10^)

U 1 1 U 2 2 U33 U 1 2 U13 u 2:

0 (1 0 0 ) 95 83 116 04 27 12
0 (1 0 1 ) 109 83 99 04 31 -18
C (100) 1 0 1 57 91 08 19 13
C (101) 126 58 104 19 -26 - 2 0

0  (2 0 0 ) 79 79 146 1 2 44 - 0 1

0 (2 0 1 ) 125 77 171 -18 87 07
C (2 0 0 ) 6 8 103 64 - 1 0 03 - 0 2

C (2 0 1 ) 155 59 126 1 1  - 0 0 -07
0(300) 141 167 94 -04 -08 09
0(301) 227 146 113 03 - 2 0 54
C (300 ) 146 137 90 -53 -42 2 0

C (301) 232 103 123 57 0 0 -56
0(400) 328 155 166 -41 1 0 1 -59
0(401) 131 245 270 73 91 - 2 1

C (400). 118 1 0 1 588 29 168 -05
C (401) 360 103 242 -09 208 03
H (1) 245
H (2) 72

Average e .s.d. 's
0 ,C 2 0 15 15 1 2 18 15



Table 2.2

o oInteratomic distances(A) and angles( ) for hexa-host(II)

(a) Bonded distances

CH

(i) Endocyclic bonds

Me

C (1) -C (2) 
C (3 ) - C (4 ) 
C (5) -C (6 )

1.401 (12) 
1.406 (13) 
1.416 (12)

C (2)- C (3) 
C (4) -C (5) 
C (6 ) - C (1)

1.397(13) 
1.359(13) 
1.402 (12)

(ii) Exocyclic bonds

Bond 
number 1

Side-chain number 
3 4

1.527 (12) 
1.800 (1 1 ) 
1.815(10) 
1.534 (19) 
1.475 (15) 
1.431 (8 ) 
.427 (8 )

1.522(13) 
1.816 (1 1 )
1.814 (12) 
1. 584 (19) 
1.483(15) 
1.423 (9) 
1.439 (8 )

1.536(13)
1.814 (11) 
1 . 802 (1 1 ) 
1. 594 (21) 
1.535(15) 
1.453 (9) 
1.411 (9)

1.548(13) 
1.819(11) 
1.786(12) 
1.552(23) 
1.547 (16) 
1.412(10) 
1. 436 (10)

1.509(14) 
1 . 828 (1 2 ) 
1.810 (13) 
1.581(24) 
1. 477 (16) 
1.430 (9) 
1. 408 (9)

6

1. 526 (13) 
1.771(11) 
1.836(12) 
1.506(20) 
1.522(16) 
1. 430 (10) 
1. 447 (10)

(iii) Rigid body refinement constrained all bond lengths within theoterminal phenyl groups to 1.395(11)A.



Table 2.2 (continued)

(b) Interbond angles

6

120.7(9)
118.3(9)
114.0 (7)
105.0 (7) 
117.9 (6 ) 
109.8 (9)

7 105.3 (10) 108.4 (10) 106.5(9) 1 1 0 .2 (1 0 ) 103.7(10) 107.8 (9)
8 114.2(11) 116.5(13) 112.9 (10) 112.2(14) 113.8 (12) 117.6(14)
9 106.9(6) 108.4 (6 ) 107.3(6) 107.9(7) 106.6 (6 ) 107.6 (6 )

1 0 109.8 (6 ) 104.2(7) 101.7(6) 105.2(7) 101.7(7) 105.0 (7)
1 1 106.8(6) 109.1 (5) 109.2(6) 110.4 (6 ) 108.1 (6 ) 108.6 (6 )
1 2 109.9(6) 109.2 (5) 109.0 (6 ) 108.4 (6 ) 107.6 (7) 108.8 (5)

(iii) Rigid body constraints fix all bond angles within the terminal 
phenyl groups at 1 2 0 .0 (1 0 ) .

Me

CH 12

(i) Endocyclic angles

C (6 )-C (1)- C (2) 118.1(9) C(l)-C(2)-C(3) 1 2 1 .4(9)
C (2) -C (3) -C (4) 118.1(9) C (3 ) -C (4 ) -C (5) 1 2 2 .3(10)
C (4) -C (5)-C (6 ) 118.8 (9) C (5)- C (6 )-C (1) 1 2 1 .0(9)

(ii) Exocyclic angles

Angle Side-chain number
number 1 2 3 4 5

1 120.7 (9) 118.6(9) 120.0(9) 118.5(9) 118 .8(9)
2 121.2(9) 119.3(9) 121.3(10) 118.8(9) 1 2 2 .4 (10)
3 1 1 1 .2 (8 ) 109.8 (6 ) 111.0(7) 111.6(6) 113 .6 (8 )
4 1 0 2 .6 (6 ) 104.2(7) 101.7(6) 105.2(7) 1 0 1 .7(7)
5 119.6(5) 117.4 (6 ) 117.6(6) 117.0(6) 119 .5(6)
6 110.2(9) 112.1(9) 112.9(10) 111.4(9) 1 1 0 .7(9)



Table 2.2 (continued)

(c) Least-squares planes, given in the form:

I X 1 + m Y 1 + n Z 1 = d, where X 1, Y 1 and Z 1 are coordinates in X,

(i) Plane equation (I)

0.08317X 1 + 0.99480Y1 + 0. 05883Z1 = 12.91623

o(ii) Deviation of atoms (A) from plane (I)

C(l) -0.006, C (2) -0.032, C (3) 0.037, C(4) -0.011
C (5) -0.023, C (6 ) 0.029.

(iii) Deviations of exocyclic atoms from plane (I)

CH 2  -0.076 0.085 -0.046 0.130 -0.094 0.101
S 1.573 -1.587 1.602 -1.487 1.538 -1.480
C* 1.232 -1.271 1.247 -1.123 1.098 -1.107
<Ph> -0.627 0.145 -0.612 0.425 -0.625 0.242



Table 2.3

Bond lengths (A) and angles ( ) for acetic acid guests

DIMER A

(i) Bond lengths

0 (1 0 0 )- C (1 0 0 ) 1.25(3) 0(200)-C (200) 1.24(2)
O(101)-C(100) 1.24(3) 0(201)-C (200) 1.24 (2)
c ( I 0 l ) - c  (100) 1.53 (2) C (201)- C (200) 1.45(3)
0(100)-H (1) 1.46(24) 0(200)-H (2) 1.41(24)
0 (101)-H (1) 1.75(21) 0 (201)”H (2) 0.93 (21)

0 (10 0 ) -0  (200) 2.61 (1 ) 0(101)-0(201) 2.67(2)

(ii) Bond angles

O(100)-C(100)-0(101) 1 2 0  (1 )
O(100)-C(100)-C (101) 120 (2)
O(101)-C(100)-C (101) 120 (2)
C(100)-O(100)-H (1)
0(100)-H (1) -0(200)

0(200)-C (200)-0 (201) 
0(200)-C (200)-C (201) 
0 (201)-C (200)-C (201) 
C (200)-0 (201)-H (2)
0 (101)-H (2) -0 (201)

(iii) Least-squares planes, given in the form:

I X 1 + mY' + nZ ' = d, where X 1, Y' and Z' are coordinates in A

(a) Plane (la) : 0.16782X' - 0.22006Y' + 0.96094Z* = -5.39122
Plane (Ha) : 0.19569X' + 0.08145Y' + 0. 97728Z' = -1. 75403

(b) Deviations of atoms (A) from planes:

Plane (la) : 0(100) - 0 .0 0 2 , 0(101) -0.002, C(100) 0.014,
C(101) -0.003

Plane (Ha) : 0 (200) 0. 001, 0  (201) 0.001, C(200) -0. 005,
C (201) 0.002



Table 2.3 (continued)

(c) Dihedral angles between:

Host (II) (Plane (I) Table 2.2c) and Plane (la) 98.54
Host(II) (Plane (I) Table 2.2c) and Plane (Ila) 81.09
Plane (la) and (Ila) 17.44

DIMER B

(i) Bond lengths

0(300)-C (300) 1. 28 (3)
0 (301)-C (300) 1. 32 (4)
C (301)-C (300) 1.42 (3)

0(300)-0(400) 2.69(3)

(ii) Bond angles

0(400)- C (400) 1.26(5)
0(401)- C (400) 1.32(6)
C (401)-C (400) 1.53(8)

0(301)-0 (401) 2. 53(4)

0(300)- C (300)-0(301) 108(2) 0(400)- C (400)-0(401)
0 (300)-C (300)-C (301) 127 (3) 0 (400)-C (400)- C (401)
0(301)-C (300)-C (301) 124 (2) 0 (401)- C (400)- C (401)

(iii) Least-squares planes, given in the form:

I X 1 + m Y 1 + n Z 1 = d, where X 1, Y' and Z 1 are coordinates

(a) Plane (lb) : -0.12368X’ + 0.76042Y' + 0.63752Z' = 14
Plane (lib): 0.06265X' + 0.91069Y' + 0.40832Z' = 14

116 (5) 
116 (5) 
127 (4)

in A.

. 44083 

.05032



Table 2.3 (continued)

(b) Deviations of atoms (A) from planes:

Plane (lb) : 0(300) -0.010, 0(301) -0.009, C(300) 0.029, 
C (301) -0.010.

Plane (lib): 0(400) 0.006, 0(401) 0.007, C(400) -0.019,
C (401) 0.006.

(c) Dihedral angles between:

Host (II) and Plane (lb) 38.4
Host(II) and Plane (lib) 20.7
Plane (lb) and Plane (lib) 19.0
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Chapter 5

The Use of Magic Integers and Random Phase Sets: 

Structure Determination of Iso- and Acetylchapliatrin.
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5.1 INTRODUCTION

The isolation of three closely related germacranolides^,
which have been named chapliatrin (la), isochapliatrin (lb)

2and acetylchapliatrin(Ic) , afforded two crystalline samples, 
viz. (Ib) and (Ic).

Ri°

(la) R 1 = H , R 2 =Ac 
(Ib) R 1 =Ac, R 2=H 
(Ic) R^, R 2 =Ac

All three compounds possess the hitherto unreported 
5,10-oxygen linkage. Although deduction of the
stereochemistry^ at C(5), C( 6 ), C(7) and C( 8 ) by NMR 
spectroscopy was relatively straightforward, the
stereochemistry assigned to C(3), C(4) and (10) was tentative 
and therefore called for further examination via X-ray 
diffraction techniques. However, structure elucidation in 
both cases was far from routine and many attempts with various 
direct methods techniques were required before the structures 
were finally solved.

5.2 THE USE OF MAGIC INTEGER-vpMAP AND RANDOM PHASE SETS- 
LINEAR EQUATIONS IN MULTAN

The previous chapter has already illustrated the 
usefulness of quartet and quintet invariants as an integral 
part of the MULTAN package. However, it was found necessary 
to expand the package even further and to incorporate magic 
integer phase representation, MAGIC, (see Section



Page 95

8 , Chapter 1) and random phase sets-linear equations, RANDOM, 
(see Section 9, Chapter 1) as fully integrated options within 
the mainframe program. This necessity was brought about by 
the difficulties encountered in the solution of iso- and 
acetylchapliatrin. These difficulties are discussed later. 
An outline of these procedures now follows.

Both MAGIC and RANDOM are run between CONVERGE and 
FASTAN, and provide a large starting set of reflexions for 
phase expansion at very little extra cost.

5.2.1 MAGIC

MAGIC consists of three parts:

(i) A primary set of reflexions (P) is chosen containing the 
origin and enantiomorph defining reflexions plus symbolic 
phases expressed in terms of magic integers. The magic 
integer sequence is selected by the user. A single symbol is 
used to represent three phases. A secondary set (S) of 
reflexions is derived using triplets which involve a pair of P 
reflexions.

(ii) Relationships which link the P and S sets give rise to 
terms in a Fourier map ( vj/-map) . The peaks derived from this 
Fourier are then chosen to represent likely values of the 
symbols and hence each peak represents a likely set of phases 
for all the P and S reflexions under consideration. The
number of peaks thus determined, and translated into crude
phases, are selected by the user as an input parameter.

(iii) Finally, all the relationships linking the P and S set 
reflexions are used to refine the phases in the P and S sets 
employing the parameter shift procedure involving all 
available triplets.



Page 96

5 .2 .2 RANDOM

After a convergence map has been run, the bottom (<150) 
reflexions are selected - usually about 100. These reflexions 
are given random phases from a random number generator and are 
then refined to convergence using linear equations. A second 
set of random phases is then selected and the procedure 
repeated. In this way a specified number of phase sets is 
produced, among which, hopefully, there is a correct set. The 
sets usually consist of about 1 0 0  trials but the number is 
under the control of the user. During linear equation 
refinement pseudo-weighting and enantiomorph discriminating 
weights are employed as discussed in Chapter 1

When either MAGIC or RANDOM is used, the phase sets 
obtained are subsequently input to the FASTAN link of MULTAN 
for phase expansion and refinement. The phases derived from
the above procedures are fixed until the final cycle of
tangent refinement to prevent any drifting away from their 
true values.

When using the MAGIC procedure it is not necessary to 
specify a reflexion for enantiomorph definition. It will be 
fixed automatically by the v^-map peak searching routine,
which limits its search to just one half of the U/-map.

In both MAGIC and RANDOM, if quartets and/or quintets are 
available, they will be used to filter out any obviously 
incorrect solutions before tangent refinement. Since the 
phasing process is independent of the quartet and quintet 
figures of merit, this filtering is very efficient. It is
only employed if the following requirements are met:

(a) There are at least 25 reliable negative invariants 
available.

(b) Quartets/quintets were loaded into the system at the I 2  

stage of the calculation.
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A flow diagram of MULTAN in which the options, MAGIC and 
RANDOM may be used, along with quartet and quintet invariants, 
is shown in Figure I. Neither MAGIC nor RANDOM will work for 
centrosymmetric structures.

5 . 3  EXPERIMENTAL 

Isochapliatrin(Ib)

Crystal data

Isochapliatrin, C 2 4 H 3 2 ° 1 0 ' M r=480.5, orthorhombic, a=7.449(2), 
b=19.898(1), c=16.367(2) A, U=2425.9 X 3, D =1.32, D =1.31 MgnT3 ,— — m c  -j

Z=4, F (000)=1024, space group P2 1 2 1 2^, n(Mo-KQ )= | .\6 cm 

Data collection

Instrument used: Enraf-Nonius CAD-4
Radiation used: Mo-KQ , X=0.71069 &

Upper limit for data collection: 2© =56°max
Number of independent reflexions: m=1967*Unobserved cut-off : 2 . 5 o ^

Number of parameters refined: n=327 
Number of reflexions per parameter: m/n=6.0

* The 2 .5 (7  ̂ cut-off was only applied after structure 
solution in order to decrease the time for least-squares 
analyses.
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Acetylchapliatrin (Ic)

Crystal data

Acetylchapliatr in, c 2 5 H 3 2 ° n '  *^ = 508. 5, monoclinic, a=34.836(3), 
b=13.648(2), c=16.970(2) &, P=138.32(8)0 , U = 5 3 6 7 . 3 1 & 3 ,
Dm =1.26, Dc=1.26 Mgm 3 , Z= 8 , F(000)=2224, space goup C2, 
]i(Mo-KQ ) =f To^cm-1.

Data collection

Instrument used: Hilger Watts Y290
Radiation used: Mo-Ka , X=0.71069 A
Upper limit of data collection: 20 =56°max
Number of independent reflexions: m=2681*Unobserved cut-off : 3 .0 0 ^
Number of parameters refined: n=334 
Number of reflexions per parameter: m/n=8.0

•k As with isochapliatrin, the 2.50^ cut-off was only 
applied for least-squares refinement

5.4 STRUCTURE SOLUTION

(i) Isochapliatrin (Ib)

Initial Wiessenberg photographs defined the space group 
as P 2 ^ 2 ^ 2  , distinguished from P 2 ^ 2 ^ 2  ̂ since all reflexions
were present along the 001 axis. Exhaustive MULTAN runs, with 
and without quartet invariants, failed to produce a solution. 
Several MULTAN runs incorporating MAGIC with several different 
magic integer sequences were also unsuccessful. 800 random 
phase sets were computed employing negative quartet and 
quintet figures of merit, all with the same lack of success.

The structure was eventually solved by an intuitive 
change in the space group to p 2 ^ 2 ^ 2  ̂ , whereby application of
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standard MULTAN techniques produced an E-map based on 250 
E-magnitudes having |E|^ 1.61 which revealed the positions of 
21 out of a possible 33 atoms. Sim-weighted Fourier syntheses 
revealed all but the terminal atoms of the longest side-chain.

The forbidden reflexions {001, where 1=3 to 21 inclusive) 
along the c axis can only be regarded as genuine reflexions 
and not artefacts, since they do not disappear when X-rays of 
different wavelengths are used; thus one of the prerequisites 
for the Renninger effect is transgressed. A possible 
explanation can be derived by considering that the crystal 
symmetry is really monoclinic (say, P 2 1  with two molecules in 
the asymmetric unit) whereby, as a result of molecular packing 
the crystal manifests almost exact orthorhombic symmetry. 
This problem, however, remains unresolved.

(ii) Acetylchapliatrin (Ic)

Both Weissenberg and precession photographs showed the 
space group to be triclinic, PI, with four molecules in the 
asymmetric unit; however, after several cycles of Delauney 
reduction, varying the parameters of the program, a reduced 
cell containing two molecules in the asymmetric unit of the 
monoclinic space group C2 resulted. Structure elucidation via 
MULTAN with and without quartet invariants was unsuccessful. 
This situation was due to two predominant failings within the 
phase determining process.

In the symmorphic space group C2, only two reflexions are 
required to define the origin - usually an hkl reflexion where 
k=2n, and another when k=2n+l. Examination of the convergence 
map revealed the existence of phase islands. In this case the 
first 1 2 0  reflexions at the bottom of the convergence map 
involved only those relationships between reflexions with k 
even - this constituted the first, and most serious phase 
island. After these reflexions, when the second origin 
reflexion (k=2 n+l) was introduced, relationships involving
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reflexions with k= 2 n+l were predominant.

The inclusion of quartet information, although decreasing 
the size of these islands, failed to produce a solution - 
although it should be noted that several fragments were found, 
but these failed to generate the rest of the structure. It 
should be noted that 700 random phase sets were also computed 
without success.

In all cases the figures of merit, in particular vpQ , 
derived from these phase sets gave no clear indication as to 
the correct solution.

Associated with the problem of phase islands, is the loss 
of enantiomorph definition, which was possibly a source of 
difficulty in this structure. The MAGIC procedure can be very 
useful in such cases by employing a larger starting set of 
reflexions in which enanatiomorph definition is resolved by 
computing only half the vp-map. MAGIC was therefore run in the 
manner described previously.

Fifteen primary reflexions were represented by the 
elements of { 8  11 13 14 15} (xyz) and resulted in 22 secondary 
reflexions. The 37 reflexions of the combined primary and 
secondary sets were linked by 14 triplets and a 'P-map was 
calculated for these. The top 50 maxima in the 'P-map were 
refined by a parameter shift technique in which the shifts
were restricted to be < 15 degrees. This was necessary to
prevent large parameter shifts. These solutions were then
refined using the tangent formula. Quartets and quintets,
derived for the top 100 E-magnitudes (|E|^ 2.3) were used to 
provide additional figures of merit. The solution with the 
highest CFOM (3.22 with a theoretical maximum of 5.00) 
revealed the positions of’ 32 atoms in the asymmetric unit. 
The structure was completed with difficulty using Fourier 
techniques.
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The incorporation of quartets and quintets as figures of 
merit was essential for the success of this technique, since

. too'the correct solution was ranked 10th/ in 23rdy in/ABSFOM
^ ^ ^ ^ K a r l e ^ anc  ̂ w°uld not normally have been investigated. 
However, this solution was the only one with both negative 
NQEST (-0.03) and NQINT (-0.28).

5.5 STRUCTURE REFINEMENT

Both structures were refined using SHELX. Refinement of 
(Ib) was hindered by the disorder encountered in the terminal 
acetyl group of the longest side-chain which extends from 
C( 8 ). Several difference Fourier syntheses finally resolved 
the disorder as occurring around 0(7), the terminal oxygen of 
the acetyl function, which has two possible orientations, each 
with a population parameter of ca. 0.5. A final R value of 
0.087 (Rw=0.087) was obtained for full-matrix least-squares
adjustment of positional and anisotropic thermal parameters to 
which the calculated hydrogen parameters had been added, but 
not refined.

The refinement of (Ic) was straightforward with 
full-matrix least-squares adjustment of positional and 

isotropic thermal parameters converging at R=0.121. 
Anisotropic refinement produced a final weighted R value of 
0.087. No hydrogen parameters were included in the final cycles 
of refinement due to the limits imposed by SHELX on the number 
of atoms in anisotropic refinement. Contribution of the 64 
hydrogen atoms is thought to be significant, since, on 
convergence of isotropic refinement, addition of these 
calculated hydrogen positions reduced R from0.121 to 0.104.

Tables 1 and 2 list the final atomic and anisotropic 
thermal parameters for (Ib) and (Ic) respectively. Bond 
lengths and angles are tabulated for both molecules in 
Table 2. Relevant torsion angles have been collated in
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Figure 2. ORTEP drawings are shown in Figures 3 and 4 for 
(Ib) and (Ic) respectively, the former, for clarity, showing 
only one of the 0(7) positions; whilst the latter shows only
one of the molecules in the asymmetric unit.

5 . 6  DISCUSSION

The structure elucidation of iso- and acetylchapliatrin 
has shown that in both cases the cycloheptane rings adopt the 
minimum-energy twist-chair (C2) conformation and the
1 0 -membered ring resembles a low-energy cyclodeca- 1 , 6  diene
conformer. In this respect, both structures may be directly

3compared to bicyclo [4:4:1] undecane-1,6 diol (II) in which 
the 5,10 oxygen bridge of the chapliatrins has been replaced 
by a carbon bridge.

O-H

O-H

Replacement of C(ll) in (II) with an oxygen as in (Ib) 
and (Ic) appears to have little efect on the stereochemistry 
of either of the cycloheptane rings; showing , in both cases, 
minimum energy conformations. The analyses of several

4sesquiterpene lactones by McPhail and Sim lead to the 
derivation of two useful parameters, X 2  and Ig , which can be 
used as a guide to the relevant stereochemistry of such 
molecules.

The values of X 2  and Ig for (Ib) and (Ic) are given 
below along with the calculated values for the pure 
twist-chair conformer.
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(Ib)
Ring A Ring B 

20 15
117 148

(Ic)
Ring A Ring B 

14 10
113 142

(Ic1) Twist
Ring A Ring B chair 

16 1 2  0

117 148 141

The C 2  symmetry axis, in all three molecules, passes 
through C(10) and midway between the C(3)-C(4) bond in ring A, 
and C(5) and bond C (8 > —C (9) in ring B. The conformation of 
the 10-membered rings in (Ib) and (Ic) also approximates 
closely to C 2  symmetry, the axis passing through 0 (1 ) normal 
to the plane of least inertia. These results concur with the 
findings for (II) (the torsion angles are listed in Table 3) 
with all three molecules resembling a trans-

5trans-cyclodeca-1,6 -diene variant described by White and 
Bovil (1975).
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Table 1A

Atomic coordinates and thermal parameters for Isochapliatrin (Ib)

4(1 ) Atomic coordinates (xl0 )

ATOM x/a y/b z/c

0 1) 12137 8) 7127 3) 7411 4)
0 2) 9575 8) 8689 3) 7210 3)
0 3) 7398 9) 9348 4) 7689 4)
0 4) 12914 9) 8580 3) 9049 4)
0 5) 13154 16) 8461 5) 10414 5)
0 6) 12135 17) 10098 7) 8898 14)
0 7) 12524 31) 11029 11) 8859 23)
0 7 ' ) 12254 49) 10219 28) 7871 25)
0 8) 9405 10) 7927 4) 5471 5)
0 9) 16563 9) 8958 3) 5590 4)
0 10) 14108 7) 8762 3) 6369 3)
c 1) 15050 12) 7729 4) 7628 6)
c 2) 15472 12) 7676 5) 6711 7)
c 3) 14222 11) 8043 3) 6110 5)
c 4) 12245 11) 7774 4) 6150 5)
c 5) 11342 11) 7678 4) 6977 6)
c 6) 11069 10) 8271 4) 7548 5)
c 7) 10411 12) 8073 4) 8372 5)
c 8) 11925 13) 7956 5) 9015 6)
c 9) 13102 13) 7347 5) 8810 7)
c 10) 13693 13) 7209 4) 7929 7)

c 11) 9126 12) 8629 5) 8585 6)
c 12) 8546 13) 8937 5) 7844 6)
c 13) 13603 17) 6123 7) 10710 7)
c 14) 11125 12) 8221 5) 5566 6)
c 15) 14568 15) 6501 4) 7889 9)
c 16) 13367 15) 8812 6) 9825 8)

c 17) 14111 15) 9483 6) 9793 12)

c 18) 14841 16) 9778 7) 10402 12)

c 19) 15027 19) 9502 (8) 11325 11)



Table 1A (continued)

C (20) 13960 (16) 9875(6)
C (21) 11543(22) 10551(13)
C (22) 9718(22) 10720 (7)
C (23) 15353 (12) 9165 (4)
C (24) 14960 (13) 9877(4)

2 ^
(ii) Thermal parameters (8 xl0 )

U 1 1 U 2 2 U33 U 1 2

0 (1 ) 39 36 98 - 1 2

0 (2 ) 48 58 42 0 2

0(3) 57 89 6 8 0 1

0(4) 48 61 63 - 1 2

0(5) 189 138 64 -14
0 (6 ) 99 126 454 -161
0(7) 126 136 462 -31
0(7') 133 437 147 75
0 (8 ) 52 91 95 40
0(9) 51 65 74 0 1

0 (1 0 ) 37 38 58 04
C(l) 40 44 78 -03
C (2) 33 48 1 0 2 0 1

C (3) 41 43 51 16
C (4) 41 38 61 24
C (5) 2 1 47 78 06
C (6 ) 29 47 38 0 0

C (7) 43 61 43 - 1 2

C (8 ) 51 64 64 -28
C (9) 51 57 85 -27
C( 1 0 ) 46 42 108 -25
C(ll) 31 78 70 -27

n to 44 55 6 8 03
C (13 ) 70 1 2 1 54 05

i—iu 48 73 47 05

8994 (10) 
8606(11) 
8547 (8 ) 
6019(5) 
6191(6)

U13 U 23

- 1 2 09
- 0 2 -15
- 0 2 -28
-14 05
-51 80
83 -53

-54 48
-50 -176
- 2 2 - 1 1

14 0 2

0 0 - 0 1

-18 0 1

-06 -05
1 1 0 2

-03 03
- 1 2 0 1

- 1 1 03
-05 1 1

-17 1 2

-30 05
-19 - 0 2

-05 15
-09 0 1

-23 03
- 2 1 - 0 1



Table 1A (continued)

U 11 U 22 U33 U 12 U13 U 23

c (15) 67 40 145 - 2 1 -29 -14
C (16) 53 78 90 -06 -13 -03
C (17) 29 6 6 2 1 0 39 07 -06
C (18) 33 89 229 51 16 0 0

C (19) 53 170 238 1 0 2 -43 -19
C (20) 56 69 166 0 2 2 0 0 0

C (21) 8 8 179 97 -84 -19 17
C (22) 161 87 96 2 1 -27 -56
C (23) 46 50 39 07 - 1 0 08
C (24) 53 45 90 -17 - 1 0 03

Average e.s.d.1s 
O rC 7

4(iii) Hydrogen atom fractional coordinates (xl0 )

ATOM x/a y/b z/c U.iso

HO (8 ) 16257 11636 10439 0.103
H (1) 16284 7662 7964 0.103
H(2) 14516 8224 7748 0.103
H(3) 15452 7150 6553 0.103
H (4) 16808 7874 6621 0.103
H (5) 14762 7969 5504 0.103
H (6 ) 12317 7253 5965 0.103
H(7) 9978 7580 6787 0.103
H( 8 ) 12355 8518 7597 0.103
H (9) 9775 7586 8373 0.103
H (10) 11378 7832 9607 0.103
H (11) 14315 7399 9166 0.103



Table 1A (continued)

ATOM x./a y/b z/c U.iso

H (12) 12374 6908 9010 0.103
H (13) 10989 8719 5823 0.103
H (14) 11784 8254 4980 0.103
H (15) 15769 6496 8259 0.103
H (16) 13633 6131 8117 0.103
H (17) 14911 6385 7264 0.103
H (18) 15400 10270 10285 0.103
H (19) 15713 9870 11695 0.103
H (20) 13707 9410 11574 0.103
H (21) 15785 9039 11323 0.103
H (22) 14849 10304 9010 0.103
H (23) 14320 9554 8488 0.103
H (24) 8969 10290 8333 0.103
H (25) 9225 10869 9140 0.103
H (26) 9556 11131 8122 0.103
H (27) 15967 10187 5907 0.103
H (29) 14968 9956 6843 0.103
H (30) 13652 6363 10153 0.103
H (31) 12930 5642 10485 0.103

Hydrogen atoms included in structure factor calculation 
but not refined.



Table IB

Atomic coordinates and thermal parameters for Acetylchapliatrin (Ic 

(i) Atomic coordinates (xl0^)

ATOM x/a y/b z/c

0 1) 7196 3) 5485 7572 5)
0 2) 5616 3) 5365 4) 5226 5)
0 3) 4794 3) 4567 5) 3704 6)
0 4) 6504 3) 3519 5) 7934 5)
0 5) 6364 4) 1896 6) 7758 7)
0 6) 6814 3) 3899 6) 10106 5)
0 7) 6698 4) 5404 7) 10390 8)
0 8) 6268 3) 6667 5) 7851 6)
0 9) 6362 5) 7857 8) 8866 11)
0 10) 6097 4) 8424 6) 6252 8)
0 11) 5246 5) 8751 7) 4445 9)
c 1) 7298 4) 5404 7) 9189 7)
c 2) 7300 4) 6527 8) 9239 8)
c 3) 6761 4) 7030 7) 8139 10)
c 4) 6603 4) 6921 8) 7024 9)
c 5) 6612 4) 5868 7) 6701 8)
c 6) 617-9 4) 5118 6) 6386 8)
c 7) 6290 3) 4073 7) 6277 7)
c 8) 6719 4) 3486 7) 7460 7)
c 9) 7328 4) 3866 7) 8346 8)
c 10) 7459 4) 4984 8) 8623 9)
c 11) 5694 4) 3680 6) 5285 8)
c 12) 5295 4) 4530 8) 4618 9)
c 13) 5504 5) 2773 7) 5007 9)
c 14) 6033 5) 7410 8) 5957 10)

c 15) 8115 4) 5135 10) 9452 10)
c 16) 6331 4) 2682 9) 8000 8)
c 17) 6094 4) 2916 9) 8458 8)
c 18) 5744 5) 2281 12) 8305 10)

c 19) 5547 6) 1284 11) 7756 13)



Table IB (continued)

ATOM x/a

c 20) 6271 4)
c 21) 7003 5)
c 22) 7643 5)
c 23) 6083 6)
c 24) 5786 6)
c 25) 5658 5)
c 26) 5577 6)

0 1 1 ) 7182 3)
0 2 ' ) 5614 3)
0 3 1) 4861 3)
0 4 ' ) 6485 3)
0 5 ' ) 6359 4)
0 6 ' ) 6813 3)
0 7 ' ) 6712 4)
0 8 ' ) 6158 3)
0 9 1) 6271 4)
0 10 ' ) 6042 3)
0 1 1 ’ ) 5196 5)
c 1* ) 7221 4)
c 2 ' ) 7203 4)
c 3 ' ) 6652 4)
c 4 ' ) 6534 4)
c 5 1) 6602 4)
c 6 ' ) 6178 4)
c 7 ' ) 6334 4)
c 8 ' ) 6745 4)
c 9) 7354 4)
c 10 ' ) 7433 4)
c 11 ' ) 5739 4)
c 12* ) 5349 4)
c 13 ' ) 5569 6 )
c 14 1 ) 5986 5)

y/b z/c

3908 9) 8999 8 )
4699 1 1 ) 10729 1 0 )
4674 1 1 ) 11911 1 0 )
7179 9) 8213 1 1 )

10028 1 0 ) 5895 17)
9026 1 0 ) 5414 1 2 )
6788 1 2 ) 7779 1 2 )

3000 5) 2785 5)
2763 5) 0300 5)
1908 5) -1255 6 )
0947 5) 3041 5)

-0665 7) 2812 8 )
1171 6 ) 5233 7)
2672 1 0 ) 5556 1 0 )
4104 5) 2843 5)
5209 8 ) 3984 8 )
5861 6 ) 1261 7)
6105 8 ) -0674 8 )
2900 8 ) 4293 7)
4003 9) 4336 7)
4495 7) 3184 8 )
4369 7) 2104 8 )
3327 7) 1880 8 )
2555 7) 1533 8 )
1532 7) 1467 8 )
0950 7) 2659 8 )
1392 7) 3629 9)
2495 8 ) 3848 8 )
1085 8 ) 0411 7)
1907 7) -0292 8 )
0169 9) 0109 1 1 )
4843 7) 1036 9)



Table IB (continued)

ATOM x/a y/b z/c

C (15 ') 8073(4) 2701.(10) 4723(11)
0(16* ) 6305(4) 0098(9) 3069 (9)
C (17 ’) 6068(4) 0217 (9) 3501 (8 )
C (18 1 ) 5722(5) -0417 (11) 3314 (10)
C (19 ') 5503(7) -1337(16) 2720(15)
C (20 1 ) 6170(5) 1164 (11) 4071 (10)
C (2 1 1 ) 7002(6) 1959(12) 5883 (11)
C (22 1 ) 7650(6) 1950(12) 7027(11)
C (23 1 ) 6007(4) 4559 (9) 3286 (9)
C (24 1 ) 5778(9) 7513 (13) 0714(19)
C (25 1 ) 5610(7) 6438 (9) 0294(15)
C (26 1 ) 5448(5) 4140 (10) 2741 (12)

(ii) Thermal parameters (A 2 xl 0  3)

U 1 1  U 2 2 U33 U12 U13 U 23

0 (1 ) 43 41 54 17 37 08
0 (2 ) 30 36 33 09 19 06
0(3) 36 56 47 -09 2 2 - 0 1

0(4) 38 38 32 -02 25 -06
0(5) 111 36 99 -15 8 8 -26
0 (6 ) 44 6 6 38 03 30 04
0(7) 71 70 73 -02 46 18
0 (8 ) 6 8  49 59 -07 48 0 1

0(9) 1 2 1  82 140 -44 1 0 0 - 1 0

0  (1 0 ) 55 37 92 -04 43 -09
0 (1 1 ) • 90 62 91 15 51 18
C(l) 49 42 28 -06 24 -06
C (2) 46 44 33 01 16 -15
C (3) 60 29 71 -19 49 -17
C (4) 48 48 56 01 39 - 1 0

C (5) 34 37 41 -01 26 -09



Table IB (continued)

U 1 1 U 2 2 °33 U 1 2 °13 U 2

C ( 6 ) 43 24 45 -07 35 -14
C (7) 26 41 36 03 2 1 -05
C (8 ) 36 34 46 -04 34 -03
C (9) 38 40 41 2 2 26 1 2

C (10) 32 49 49 16 27 07
c (1 1 ) 45 2 1 39 - 0 1 32 05
c (1 2 ) 41 49 43 - 1 2 35 -09
C (13) 64 37 50 -09 44 -13
C (14) 60 26 52 -09 29 -16
C (15) 23 89 39 08 08 - 0 1

C (16) 39 50 33 16 24 -07
C (17) 35 8 8 27 14 19 0 2

C (18) 48 1 2 2 60 34 36 -03
C (19) 73 92 1 0 0 19 53 -38
C (20) 40 71 26 0 0 2 0 0 1

C (21) 52 98 55 0 0 45 -06
C (22) 50 95 47 04 23 09
C (23) 105 39 73 -32 6 6 - 1 0

C (24) 77 40 167 -06 77 05
C (25) 43 61 74 23 35 19
C (26) 74 93 94 -33 6 6 - 1 0

0  (1 ') 57 34 56 -09 50 -09
0 (2 ') 32 37 41 - 0 1 2 2 -04
0(3') 51 48 46 -03 28 - 0 2

0(4') 44 48 46 06 36 0 2

0(5') 113 54 105 0 1 8 8 -16
0 (6 ') 58 6 8 56 09 40 18
0(7') 87 150 104 - 2 2 61 39
0 (8 ') 49 43 49 -03 39 -05
0(9') 78 1 2 2 84 -59 61 - 2 2

0  ( 1 0  ' ) 59 37 62 0 1 33 05
0 (1 1 ') 90 64 6 6 18 23 16

C( l ' ) 48 49 34 14 29 18



Table IB (continued)

un

C (2 ') 41 72 27 -08 18 . 03
C (3 1) 33 36 47 - 0 1 26 -06
C (4 1) 32 34 48 -17 29 -15
C (5 1) 28 39 45 0 0 27 0 2

C ( 6  1 ) 44 35 43 0 2 37 08
C (7 ’) 47 36 49 - 1 0 40 -13
C ( 8  1) 49 34 45 -03 36 03
C (9 ’) 42 39 55 0 2 33 13
C ( 1 0 ’) 24 58 43 0 2 2 0 05
C (1 1 ' ) 43 63 23 04 24 -03
C ( 1 2  1) 41 43 37 -09 29 - 1 0

C (13 ' ) 83 39 57 -18 41 -29
C (14 1) 62 28 46 -07 38 -08
C (15 1 ) 41 75 74 -13 42 - 1 2

C (16 ') 43 48 43 0 1 26 - 1 0

C (17 1) 43 72 39 14 27 -03
C (18 1) 46 8 6 56 18 29 -05
C ( 1 9 f) 67 157 99 61 34 - 2 2

C ( 2 0  1) 44 1 0 0 49 15 30 16
C (2 1 ') 90 106 81 -08 74 2 1

C ( 2 2  ') 6 6 109 56 0 2 36 05
C (23 ') 47 73 49 -09 37 0 2

C (24 1 ) 115 48 137 - 1 1 19 -04
C (25 1) 8 6 30 104 -04 52 05
C (26 1) 70 84 98 -17 72 03

Average e.s.d 's
7 6 6 5 6 5



Table 2

Interatomic distances(£) and angles(°) for Iso- 
and Acetylchapliatrin

(a) Bonded distances

(Ib) (Ic) (Ic ')

0 1 ) -C 5) 1.43 1 ) 1.45 1 ) 1.42 1 )
0 1 ) -c 1 0 ) 1.44 1 ) 1.43 1 ) 1. 46 1 )
0 2 ) -C 6 ) 1.49 1 ) 1.44 1 ) 1.48 1 )
0 2 ) -C 1 2 ) 1. 38 1 ) 1.37 1 ) 1.36 1 )
0 3) -C 1 2 ) 1 . 2 1 1 ) 1.19 1 ) 1.19 1 )
0 4) -C 8 ) 1.44 1 ) 1.45 1 ) 1. 46 1 )
0 4) -C 16) 1.39 2 ) 1.33 1 ) 1.33 1 )
0 5) -C 16) 1 . 2 0 2 ) 1.18 1 ) 1 . 2 0 2 )
0 6 ) -C 2 0 ) 1.44 2 ) 1.42 1 ) 1. 52 1 )
0 6 ) -C 2 1 ) 1 . 1 1 3) 1.31 2 ) 1.31 2 )
0 7) -C 2 1 ) 1.27 3) 1 . 2 1 2 ) 1 . 2 0 2 )
0 8 ) -C 3) 1.50 1 ) 1.48 1 ) 1.45 1 )
0 8 ) -c 23) 1.35 1 ) 1.34 2 ) 1.37 2 )
0 9) -c 23) 1 . 2 2 1 ) 1.18 2 ) 1 . 2 0 2 )
0 1 0 )-c 14) 1.42 1 ) 1.43 1 ) 1.42 1 )
0 1 0 )-c 25) - 1.37 2 ) 1.37 1 )
0 1 1 )-c 25) - 1.19 2 ) 1 . 2 0 2 )
c 1 ) -c 2 ) 1.54 1 ) 1. 53 1 ) 1.51 2 )
c 1 ) -c 1 0 ) 1. 53 1 ) 1. 54 1 ) 1. 50 1 )
c 2 ) -c 3) 1. 54 1 ) 1. 50 1 ) 1.53 1 )
c 2 ) -c 4) 1.57 1 ) 1. 53 2 ) 1. 56 1 )
c 4) -c 5) 1.52 1 ) 1. 55 1 ) 1. 54 1 )
c 4) -c 5) 1. 55 1 ) 1.52 2 ) 1.48 1 )
c 5) -c 6 ) 1. 52 1 ) 1.55 1 ) 1.53 1 )
c 6 ) -c 7) 1.49 1 ) 1. 53 1 ) 1.53 1 )
c 7) -c 8 ) 1. 56 1 ) 1. 56 1 ) 1. 56 1 )
c 7) -c 1 1 ) 1.50 1 ) 1.49 1 ) 1.53 1 )
c 8 ) -c 9) 1. 53 1 ) 1. 50 1 ) 1. 53 1 )
c 9) -c 1 0 ) 1. 53 2 ) 1.56 1 ) 1.53 1 )



Table 2 (continued)

(lb) (Ic) (Ic1)

C (10)- C (15) 1.55(1) 1.56 (1) 1.52(1)
C (11)-C (12) 1.43 (1) 1.49(1) 1.45(1)
C (11)- C (13) 1.32 (1 ) 1.31 (1) 1.31 (2)
C (16)-C (17) 1.45(2) 1. 54(1) 1.46 (1)
C (17)- C (18) 1.28(2) 1.35(2) 1.32(2)
C (17)-C (20) 1.53 (2) 1.51(2) 1.49 (2)
C (18)-C (19) 1.61 (2 ) 1.50(2) 1.42(3)
C( 2 1 )-C(2 2 ) 1.40 (2) 1.52(2) 1.52(3)
C(23)-C (24) 1.47 (1) 1.41(2) 1.51(2)
C (25)-C (26) - 1.48 (2) 1.54 (2)

b) Interbond angles

(lb) (Ic) (Ic')

C(10)-O(l) -C 5) 1 2 2 1 ) 123 1 ) 123 1 )
C (4) -C (5) -0 1 ) 1 1 1 1 ) 1 1 1 1 ) 1 1 2 1 )
C (6 ) -C (5) -0 1 ) 119 1 ) 1 1 2 1 ) 113 7)
C(l) -C(10)-O 1 ) 115 1 ) 114 1 ) 113 1 )
C (9) -C(10)-O 1 ) 1 1 0 1 ) 1 1 0 1 ) 109 1 )
C (15)- C (10)-0 1 ) 1 0 2 1 ) 1 0 2 1 ) 1 0 2 1 )
C(12)-0(2) -C 6 ) 1 1 0 1 ) 109 1 ) 1 1 0 1 )
C (5 ) -C ( 6  } -0 2 ) 108 1 ) 107 1 ) 107 1 )
C (7) -C ( 6  ) -0 2 ) 104 1 ) 105 1 ) 104 1 )
0(3) -C (12) -0 2 ) 118 1 ) 1 2 2 1 ) 1 2 0 1 )
C (1 1 )- C (1 2 ) - 0 2 ) 109 1 ) 108 8 ) 1 1 1 1 )
C(ll)-C( 1 2 ) - 0 3) 133 1 ) 131 1 ) 129 1 )
C (16)-0 (4) -C 8 ) 116 1 ) 118 1 ) 119 1 )
C (7 ) -C ( 8  ) -0 4) 105 1 ) 108 1 ) 108 1 )
C (9) -C ( 8  ) -0 4) 113 1 ) 1 1 1 1 ) 1 1 0 1 )
0(5) -C(16)-0 4) 1 2 0 1 ) 126 1 ) 1 2 2 1 )
C (17)- C (16)-0 4) 1 1 1 1 ) 108 1 ) 1 1 2 1 )
C (17)- C (16)-0 5) 128 1 ) 126 1 ) 125 1 )



Table 2 (continued)

(lb) (Ic) (Ic1

c to 1—' 1 o 6 ) -C 2 0 ) 132 2 ) 115 (1) 116 1

c 1 o 2 0 )-0 6) 109 1 ) 106(1) 105 1

0 7) -C 2 1 )-0 6 ) 104 2  f 123 (1)• 124 1

c 22) -C 2 1 )-0 6) 128 2  )* 114 (1) 114 1

c 22) -C 2 1 )-0 7) 114 2 J* 123 (1) 1 2 2 1

c 01roCN

8 ) -C 3) 114 1 ) 1 2 0  (1 ) 117 1

c 2) -C 3) - 0 8 ) 108 1 ) 109 (1) 109 1

c 4) -C 3) - 0 8 ) 105 1 ) 108 (1 ) 107 1

0 9) -C 23) - 0 8 ) 123 1 ) 119(1) 124 1

c 24) -C 23) - 0 8 ) i—
1 

*—
1 

i —
1 1 ) 113 (1) 1 1 0 1

c 24) -C 23) - 0 9) 126 1 ) 128 (1 ) 125 1

c 25) - 0 1 0 )-C 14) - 118 (1 ) 116 1

c 4) -C 14) - 0 1 0 ) 109 1 ) 107(1) 108 1

0 11)-C 25) - 0 1 0 ) - 1 2 2  (1 ) 123 1

c 26) -C 25) - 0 1 0 ) I l l 1 ) 1 1 0  (1 ) 107 1

c 26)-C 25) - 0 1 1 ) - 128(1) 130 2

c 10)-C 1 ) -C 2 ) 114 1 ) 115 (1) 116 1

c 3) -C 2 ) -C 1 ) 118 1 ) 116 (1 ) 116 1

c 9) -C 1 0 )-C 1 ) 1 1 2 1 ) 113 (1) 115 1

c 15) -C 1 0 )-c 1 ) 109 1 ) 1 1 1 (1 ) 1 1 1 1

c 4) -C 3) -C 2 ) 1 1 2 1 ) 117 (1) 115 1

c 5) -C 4) -c 3) 1 2 0 1 ) 116 (1 ) 116 1

c 14) -C 4) -c 3) 106 1 ) 1 1 2  (1 ) 1 1 1 1

c 14) -C 4) -c 5) 1 1 2 1 ) 1 1 0  (1 ) 113 1

c 6 ) -C 5) -c 4) 1 2 0 1 ) 118 (1 ) 117 1

c 7) -C 6 > -c 5) 113 1 ) 113 (1) 1 1 1 1

c 8 ) -C 7) -c 6) 114 1 ) 114 (1) 114 1

c 11)-C 7) -c 6) 103 1 ) 1 0 2 (1 ) 1 0 2 1

c 11)-C 7) -c 8 ) 114 1 ) 117 (1) 116 1

c 9) -C 8 ) -c 7) 113 1 ) 113 (1) 113 1

Disordered side-chain



Table 2 (continued)

(lb) (Ic) (Ic1)

C (12)- C (11)-C (7) 108(1) 107(1) 106 (1 )
C (13)- C (11)-C (7) 128(1) 130 (1) 131(1)
C (10)-C (9) -C (8 ) 1 2 1 (1 ) 1 2 1 (1 ) 1 2 0  (1 )
C (15) -C (10 ) -C (9) 109 (1) 108(1) 107(1)
C (13)-C (ll)-C(12) 1 2 2  (1 ) 1 2 2 (1 ) 123(1)
C (18)- C (17)-C (16) 124(1) 1 2 1 (1 ) 124(1)
C (20)-C (17)-C (16) 118 (1 ) 1 2 1 (1 ) 118(1)
C(20)-C(17)-C (18) 118(1) 1 2 0 (1 ) 117(1)
C (19) - C (18)- C (17) 127(1) 129(1) 131(1)



Flow chart for MULTAN modules

IPATH2=I IPATH2=0 IPATH2=2

NORMAL

FASTAN

RANDOM

SIGMA 2

CONVERGE

MAGIC 78 
PART I

Initial phase refinement 
by steepest descent

QOROI: optional input of
QUARTETS/QUINTETS

Figure I



Figure 2

Ring torsion angles

11112

13114

11 C (5) -0(1) -C(10)
12 C (5) -0(1) -C(10)
13 C (4) -C (5) -0(1)
14 C (6 ) -C (5) -0(1)

Angle Isochapliatrin Acetylchapliatrin (II)
number db) (Ic) (Ic1)

1 -171 -168 -171 -164
2 8 6 84 8 6 85
3 -62 -64 -63 -73
4 47 49 47 54
5 61 63 65 63
6 -172 -171 -174 -166
7 93 89 91 85
8 - 6 6 - 6 8 -69 -71
9 41 48 46 52

1 0 70 64 65 65
1 1 -35 -37 -38 -43
1 2 92 90 91 8 6

13 87 8 8 90 8 6

14 -48 -46 -46 -42

C(l)
C (9)
C (10) 
C(10)



Isochapliatrin (lb )

Figure 3



Acetylchapliatrin ( I c )

C 1 9

011

Figure 4



Chapter 6

Controlling the Normalisation Process:

The Structure Elucidation of Three Natural Products.
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1.0 GENERAL INTRODUCTION

The three structures which follow were each solved by 
routine applications of standard MULTAN procedures, but only 
after recalculation of the E-magnitudes obtained from NORMAL. 
In each case, the successive use of MULTAN with various input 
parameters failed to find a solution for any of the three 
structures. (It should be added that neither MULTAN with 
quartets nor the optional MAGIC procedure described previously 
were available at the time).
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I

THE STRUCTURE ELUCIDATION OF GLAUCOLIDE-F, A SESQUITERPENE 
LACTONE, BY RESCALING OF E-MAGNITUDES

6.1.0 INTRODUCTION

In the first structure to be discussed, a germacranolide- 
type sesquiterpene (glaucolide-F), quartet and quintet 
invariants were employed in an active role using an invariants 
least-squares program described by Gilmore'*'. However, even 
with the use of higher invariants, it was difficult to expand 
the initial starting phases to give strong indications for 
reflexions which could be used as a basis for E-map 
calculations.

The investigation of several novel, highly oxygenated
germacranilide sesquiterpene lactones derived from the species
of genus Vernonia, has resulted in the structure elucidation

2of several of its crystalline forms, viz. glaucolide-A(I ) ,
B (II)^ , D(IIIa)4 , E(IIIb)^ and marginatin(IV)5 . Spectroscopic 
and chemical investigation of a further substrate of the genus 
Vernonia, glaucolide-F, indicated the presence of a saturated 
ten-membered ring and characteristic C (13)-allylic acetate

cfunction . The X-ray crystallographic examination of 
glaucolide-F was therefore undertaken to establish the 
relative stereochemistry of the molecule and the conformation 
of the 1 0 -membered ring.



O  15

10

>Ac

I

OAc
OAc

OAc
CH.

CH

OAc

CH
AcO

CH.

I l i a  R= epoxide

111 b R= ethylene



Page 106

6 .i .i EXPERIMENTAL

Crystal data

Glaucolide-F, ^24H 30°10' M r=477.9, orthorhombic, £=8.481(1),
b=14.448(2), c=19.580(2) A, U=2399.2 I 3 , D =1.31, D =1.32Mgm”3 , _  _  m e ,
Z=4, F (000 ) =1016 , space group P2 1 2 1 21 , |i(Mo-Ka ) =1.11 cm”

Data collection

Instrument used: Hilger Watts Y290
Radiation used: Mo-Ka , X=0.71069 A

2Filter: Graphite monochromator, cos 20=0.960
Upper limit for data collection: 20 =60°max
Number of independent reflexions: m=1106 
Unobserved cut-off: 2.50^
Number of independent parameters: n=308 
Number of reflexion per parameter: m/n=3.6

6.1.2 STRUCTURE DETERMINATION AND REFINEMENT

Despite the inclusion of the atomic coordinates for
7glaucolide-A when calculating E-magnitudes (included as a 

randomly orientated and randomly positioned fragment) numerous 
attempts at structure solution using various options in 
MULTAN 76 were unsuccessful. The generation of quartets for 
the top 120 E-magnitudes produced only about 180 useful 
invariants. Symbolic addition performed by hand through the 
phase expansion procedure encountered difficulty in evaluating 
reliable phase estimates for sufficient reflexions which could 
be used in an E-map calculation. RANDOM (as described in 
Chapter 5) was used to obtain a larger starting set of 
reflexions by employing the bottom 1 0 0  reflexions from the 
convergence map. However, after the calculation of 1500 phase 
sets no least-squares phase minimum had been found.
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As an experiment, the normalised structure factors were
rescaled by assigning specific values to the temperature
coefficient, B. Table 1.1(a) shows the results of this
process, and, not unexpectedly, as B increases the

2distribution of E with sin©/A varies markedly from its 
approximate value of unity. Hence, as B increases the
E-magnitudes associated with high ordered reflexions are given 
increased magnitudes, while reflexions at lower sin©/A values 
are correspondingly reduced.

Table 1.1(b) shows the changes in the origin reflexions 
selected by MULTAN as B is increased. Initially, reflexions 
with low sin©/\ values are predominant, but, as B changes high 
order reflexions become more involved, until, at B = 5.0 all
the origin defining reflexions have high sin0/A values. For
each increase in B MULTAN was re-run with default options for

CONVERGE and FASTAN, until, at B =4.0, the complete 
structure was revealed from an E-map employing 250
E-magnitudes (IE|^ 1.22).

The atomic parameters derived from this E-map were
refined by full-matrix isotropic least-squares, using CRYLSQ
from the X-RAY suite of programs, to an R of 0.136. A further
six cycles of anisotropic refinement reduced R to 0.099.
Since the number of reflexions per parameter was now only 3.6,
refinement of the hydrogen atom coordinates was not possible;
but their inclusion in the structure factor calculation in the
final least-squares cycle reduced R to a final value of 0.093
(R =0.098). Table 1.2 lists the final fractional coordinates w
and thermal parameters for the molecule, while Table 1.3 
summarises relevant bond lengths and angles.

A probable explanation as to the success of the method 
employed in the eventual structure solution can be found by 
considering that by constraining the starting set of 
reflexions the phase determining path was changed sufficiently 
to allow a completely new phase expansion and determination 
process to proceed.
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Several different starting sets of reflexions were used 
to redefine the origin; but, as often occurs during the 
convergence mapping procedure, these reflexions quickly 
generated the original origin reflexions and thereby produced 
solutions which were little different from the first attempts. 
This is because the E-magnitudes, and therefore the 
probability relationships, had not changed significantly. By 
completely changing the E-magnitudes the probability 
relationships were changed and therefore the phase expansion 
procedure would take a different route.

6.1.3 DISCUSSION

Figure 1 shows an ORTEP projection of the molecule. The
molecular structure of glaucolide-F shows the conformation of
the ten-membered ring to be identical (within experimental
error) to that found for glaucolide-A and

2dihydrodesacetoxyglaucoiide-A, and thereby closely resembles 
one of the less-favourable conformations derived for

Qcyclodecane by strain-energy minimisation calculations . The 
conformations are also similar to that of shiromodiol acetate

9£-bromobenzoate(VI) , where the macrocycle contains a double 
bond at C(4)-C(5). Although these germacrane rings have 
related conformations, as shown by the endocyclic torsion 
angles of the rings (Table 4), corresponding bonds have 
different torsion angles. For example, C(7) in 
shiromodiol(VI), the atom carrying the exocyclic substituent 
C(ll), plays the same role as C(l) in glaucolide-A(I ), B(II) 
and F(V).

The endocyclic double bond at C(7)-C(ll) is typical of 
the glaucolide series of germacranilides with the
five-membered y-lactone ring almost planar having no internal 
torsion angles greater than 5°. The shift of the C (11)—C (13) 
double bond, found in most germacranolides, to C(7)-C(ll) (cf.
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chapliatrins) in the glaucolide series, although responsible
for the lack of significant cytotoxic activity of these 

10molecules does not greatly influence the preferred
conformation of the 10-membered ring. The conformation is 
such that the C(14) and C(15) methyl groups are cis and lie on 
the a-face of the macrocycle: this is also observed in
gaucolide-A and its dihydrodesacetoxy derivative.
Conformational similarities also exist among germacrane 
sesquiterpenoids in which C(14) and C(15) carbon atoms are cis 
and p

Glaucolides-D and E, however, adopt considerably 
different conformations from the glaucolides discussed so far. 
This is due to the presence of the double bond at C(l)-C(10) 
in glaucolide-D (and E) instead of the keto function at C(l). 
In glaucolide-F the C( 8 ) ester has a trans configuration about 
the double bond. The torsion angles and stereochemistry of
glaucolide-F conform with the convention designated by Neidle

, 12 and Rogers
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Table 1.2

Atomic coordinates and thermal parameters for Glaucolide-F

4(1 ) Atomic coordinates (xl0 )

ATOM x/a y/b z/c

0 (1 ) 9308(14) 5175 (11) 3829 (7)
0 (2 ) 10555(15) 2609(10) 5125 (8 )
0(3) 9133 (16) 3101 (11) 6450 (7)
0(4) 7491(19) 2913 (10) 7327 (6 )
0(5) 5247(12) 4720 (8 ) 3826 (6 )
0 (6 ) 6277 (16) 4999 (11) 2785(6)
0(7) 7226(14) 6009 (9) 5672 (6 )
0 (8 ) 9609(16) 6120 (14) 6134 (9)

° (9)** 4516 5101 6464
0  (1 0 ) * 5136 6152 7143
C(l) 8190 (19) 4643(14) 3885(10)
C (2) 8145(25) 3635(13) 3763(10)
C (3) 9778 (25) 3185 (15) 3956(12)
C (4) 10374 (21) 3416 (13) 4677(12)
C (5) 9271(24) 3233 (15) 5235(10)
C (6 ) 9343 (22) 3757 (14) 5881(11)
C (7) 7901 (21) 4410(13) 5967(11)
C (8 ) 7698 (21) 5106(12) 5408 (9)
C (9) 6277(21) 4792(15) 4926 (8 )
C( 1 0 ) 6546 (22) 5120 (14) 4179 (9)
C(ll) 7057(23) 4143 (13) 6530 (9)
C (12) 7885 (29) 3311 (16) 6853 (10)
C (13) 5510 (32) 4451 (19) 6940(12)
C (14) 11698(25) 4155 (17) 4777(14)
C (15) 6661 (24) 6194 (13) 4092 (10)
C (16) 5169 (23) 4738 (15) 3138 (10)
C (17) 3616 (29) 4387 (20) 2860(11)
C (18) 8347 (28) 6503 (16) 6006 (1 1 )
C (19) 7859(39) 7405 (20) 6341 (25)



Table 1-2 (continued)

ATOM x/a y/b z/c

C (20) 7141(41) 8021 (30) 6117(31)
C (21) 6423(48) 8076 (34) 5398(22)
C (22) 8581 (37) 7609 (23) 7108(13)
C (23) * 4658 5730 6610
C (24) * 3472 6518 6278

* These atoms, belonging to the disordered side-chain,
were not refined during the final least- squares cycles.

(ii) Thermal parameters (A2 x103 )

U 1 1 cl U 33 U 1 2 °13 U 2

0 (1 ) 34 90 63 -03 06 -06
0 (2 ) 51 58 99 36 07 07
0(3) 59 114 55 2 1 0 0 2 0

0(4) 106 73 47 16 - 0 2 2 0

0(5) 28 50 46 -13 -06 -03
0 (6 ) 60 104 56 - 1 2 1 1 -09
0(7) 45 53 59 03 04 -14
0 (8 ) 41 181 134 i <SJ 0

0 -19 -53
0(9) 237 1 0 2 103 09 80 32
0(10) 149 190 186 17 45 2 1

C (1) 15 73 53 08 08 23
C (2) 677 44 46 06 04 - 1 2

C (3) 50 60 1 0 2 0 2 05 - 1 1

C (4) 24 44 107 09 13 09
C (5) 51 63 54 0 2 0 2 - 2 0

C (6 ) 39 6 8 67 1 0 03 35
C (7) 35 41 77 - 0 2 -15 04
C (8 ) 40 19 69 -04 - 1 0 -07
C (9) 42 76 30 09 -09 2 2

C (10 ) 53 65 36 14 -16 -24



Table 1.2 (continued)

u
1 1 U 2 2 °33 ° 1 2 U13 U 2 :

C(ll) 53 42 44 19 -06 06
C (12) 90 83 48 -32 -32 1 1

C (13) 108 1 2 1 74 19 23 45
C (14) 47 107 129 -44 -17 29
C (15) 73 39 52 17 -17 1 1

C (16) 52 78 55 -05 - 1 0 -24
C (17) 79 156 49 -39 -05 -07
C (18) 98 77 82 -57 50 -25
C (19) 90 49 295 -27 103 -33
C (20) 78 135 387 36 106 126
C (21) 129 238 230 24 - 1 2 108
C (22) 138 163 64 -78 -40 18
C(23) 173 280 90 -126 80 -119
C (24) 375 213 91 40 1 0 64

Average
0,C

e.s.d *s 
1 1 1 0 9 1 2 1 0 1 2



Table 1.3

Interatomic distances(X) and angles (°) for Glaucolide-F

(a) Bonded distances

0 1 ) -C(l) 1.225(22) C (3) -C(4) 1.536 32)
0 2 ) -C(4) 1.468(25) C (4) -C(5) 1.463 29)
0 2 ) -C (5) 1.430 (24) C (4) - C (14) 1.561 29)
0 3) —C ( 6  ) 1.475(25) C (5) -C( 6 ) 1.475 29)
0 3) ”C (1 2 ) 1. 355 (26) C (6 ) -C (7) 1.553 26)
0 4) -C(12) 1.141 (24) C (7) —C ( 8  ) 1.496 26)
0 5) - C (1 0 ) 1.423(21) C (7) -C(ll) 1.371 27)
0 5) - C (16) 1. 349 (21) C (8 ) -C(9) 1.596 24)
0 6 ) - C (16) 1. 226 (23) C (9) ~C (10) 1. 555 23)
0 7) -C (8 ) 1. 460 (20) C(10) ”C (15) 1.564 27)
0 7) ~C (18) 1.356 (26) C(ll) ~ C (1 2 ) 1.529 29)
0 8 ) -C(18) 1.230(28) C(ll) “C (13) 1 . 600 32)
0 9) -C(13) 1.568 C (16) -0(17) 1.513 31)
0 9) - C (23) 0.960 C (18) ”C (19) 1.516 40)
0 1 0 )-C(23) 1.276(49) C (19) - C (2 0 ) 1.165 55)
c 1 ) -C (2) 1.477 (28) C (19) - C (2 2 ) 1. 649 53)
c 1 ) -C (10) 1.658 (25) C (20) -C( 2 1 ) 1.535 71)
c 2 ) -C(3) 1.575(29) C (23) -C(24) 1.652 46)

(b) Interbond angles

C (5) - 0 (2 ) -C(4) 60.6(12) C (1 2 ) - 0  (3) -0 (6 ) 113.0 (15)
C (16)-0(5) - C (1 0 ) 121.0 (13) C (18)-0 (7) -C (8 ) 116.7(14)
C (14)-0 (9) - c (13) 118.9 C(10)-C(l) -0 (1 ) 114.9(17)
C (2 ) - C (1 ) -0 (1 ) 128.6(16) C(10)-C(l) - c  (2 ) 116.4 (15)
C (3) - C (2 ) -C( 1 ) 110.2(16) C (4) -0(3) -C (2) 114.8(17)
C (5) - C (4) -0 (2 ) 58.4 (12) C (14)-C (4) -0 (2 ) 113.1(16)
C (3 ) -C (4 ) -0 (2 ) 114.3 (16) C (5 ) -C (4 ) -C (3) 115.9(16)
C (14)- C (4) -c  (3) 120.1(18) C (14)-C (4) -C (5) 119.3(19)
C (4) - C (5) -0 (2 ) 61.0 (1 2 ) C ( 6  ) -C (5) -0 (2 ) 114.9(16)
C (6 ) - C (5) -C (4) 121.4 (17) C (5) - C (6 ) -0(3) 108.2 (16)



Table 1.3 (continued)

c 7) -C 6 ) - 0 3) 102.3 14) C (7) -C( 6 ) -C(5) 1 1 1 .9 (
c 8 ) -C 7) -C 6 ) 114.8 16) C (11)-C (7) -C( 6 ) 109.2(
c 11)-C 7) -C 8 ) 135.8 16) C (7) -C (8 ) -0(7) 1 1 1 .9 (
c 9) -C 8 ) - 0 7) 104.9 13) C (9) -0 (8 ) -C (7) 109.2(
c 10)-C 9) -C 8 ) 1 1 1 . 0 14) C (9) -C(10 -0(5) 102.7 (
c 15) -C 1 0 )-O 5) 113.5 14) C (9) -C(10 -c  ( 1 ) 108.8(
c 15) -C 10)-C 1 ) 108.8 14) C(l) -C(10 -0(5) 108.3 (
c

uiLD 
1—1 10)-C 9) 114.5 15) C (12) -C (11 -C (7) 108.3 (

c 13) -C 11)-C 7) 138. 9 17) C (13)-C (11 - C (1 2 ) 1 1 2 . 8  (
0 4) -C 1 2 ) - 0 3) 126.1 2 1 ) C(ll)-C (12 -0(3) 107.1 (
c 11)-C 1 2 ) - 0 4) 126.7 2 1 ) C(ll)-C (13 -0(9) 108.1(
0 6 ) -C 16) - 0 5) 1 2 2 . 1 17) C (17)-C (16 -0(5) 113.3(
c 17) -C 16) - 0 6 ) 124. 5 17) 0(8) -C (18 -0(7) 118.1(
c 19) -C 18) - 0 7) 118.0 2 1 ) C (19)-C (18 - 0 (8 ) 122.4(
c 20) -C 19)-C 18) 129.5 47) C (22)- C (19 -C (18) 116.6(
c 22) -C 19) -C 2 0 ) 113.6 39) C (21)-C (20 - C (19) 126.3(
c 24) -C 23) - 0 9) 117.4 37) C(24)-C(23 - 0  (1 0 ) 100.7 (
0 10)-C 23) - 0 9) 137.3 44)

(16)
(16)
(14)
(14)
(14)
(14)
(13)
(16)
(16)
(16)
(20)
(16)
(2 0 )
(24)
(26)
(48)
(29)

(c) Ring torsion angles

C( 1 0 )-c ( 1 ) -C (2) -0(3) -143.3(16)
C (2) -c ( 1 ) - C (1 0 )-0(9) 69.5 (19)
C (1) -C (2) -C (3) -0(4) 52.7(22)
C (2) -C (3) -C (4) -0(5) 53. 0 (24)
C (3) -C (4) -0(5) -0 (6 ) -153.1 (18)
C (4) -C (5) -C ( 6 ) -0(7) 110.7 (20)
C (5) -C (6 ) -C (7) -0 (8 ) -58.3 (21)
C ( 6 ) -C (7) -C (8 ) -0(9) 104.9(17)
C (7) -C ( 8 ) -0(9) -0 (1 0 ) -149.4(15)
C (8 ) -C (9) -C (10) ”0 (1 ) 61.1(17)
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II

THE STRUCTURE ELUCIDATION OF A MIXTURE OF TWO NOVEL 
ISOMERIC SESQUITERPENOIDS

6.2.0 INTRODUCTION

In a search for biologically active natural products,
several new metabolites have been isolated from Eupatorium
anomalum Nash. Spectroscopic investigations failed to define
with certainty the skeletal features of one of the extracts
from which a crystalline material of composition C o„H~,-0 o

Z 0 Z o o
(M.Pt. 152-3 ) was derived. X-ray diffraction investigations 
have established that this extract is a mixture of two novel 
sesquiterpenoid lactones with isomeric ester side-chains, 
2 -methylbutanoate (major component, 1 ) and isovalerate (minor 
component,2 ), co-crystallising in ca. 2 : 1  ratio, in the 
orthorhombic space group P 2 ^ 2 ^ 2 ^.

u OH

1 R=COCHMeCH2Me

2 R=COCH 2 CHMe 2

O
The structure so determined is a highly oxygenated 

quaianolide and the pattern of cis-1,5 and trans-6,7 ring
junctions places it in a category of sesquiterpenoid lactones

. 1 2 three other examples of which, E u p a r o t m  (3), solstitalian (4)3and bromodihydroisophotosantoni lactone acetate (5) have been 
characterised by X-ray studies.



R = COCH-Br

OH
'OH

(4)

O (5)
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6.2.1 EXPERIMENTAL

Crystal data

Eupatorium, C 2 0 H 2 gOg.I/ 2 H 2 O, M r=403.4, orthorhombic, a.= 6.849 (3),
b=28.479(7), c=21.659(5) &, U=4224.6 & 3 , D =1.27, D =1.26 Mqm- 3 ,~  ~  c m _
Z= 8 , F (000) =1720, space group P2 1 2 1 21 , "ji(Mo-Ka ) =/-i3S:cni“ .

Data collection

Instrument used: Hilger Watts Y290
Radiation used: Mo-Kq , X=0.71069 %

Upper limit for data collection: 29 =56°max
Number of independent reflexions: m=2785 
Unobserved cut-off: 2.5a-j.
Number of independent parameters: n=309 
Number of reflexions per parameter: m/n=9.0

6.2.2 STRUCTURE DETERMINATION AND REFINEMENT

Exhaustive trials with both MULTAN and the X-RAY system 
proved unsuccessful. 6513 quartet invariants were generated 
for the top 399 E-magnitudes having |E|^. 1.4. After several 
cycles of invariant least-squares using different starting 
sets of reflexions an E-map was produced which showed two 
5-membered rings and a 7-membered ring in one molecule, and a 
5-membered and 7-membered ring in another. Sim-weighted 
Fourier and difference syntheses calculations failed to 
complete the structure.

Having successfully experimented with the temperature 
coefficient, B, for glaucolide-F, a similar procedure was 
adopted here. Table 2.1 summarises the results for the two 
values of B employed, 2.6 (Wilson plot) and 4.0. An E-map
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calculated from 350 E-magnitudes (lEl^. 1.42) using 5973
triplets gave 42 out of a possible 57 atomic positions. The
structure was completed by using successive difference Fourier
syntheses. However, the unusual spread of electron density,
and concomitant high thermal parameters associated with the
terminal atoms of the ester side-chain in both molecules of
the asymmetric crystal unit, together with the difficulty in

13 1assigning some C and H NMR signals indicated the possible
4co-existence of isomers or homologues .

Structure refinement was completed using SHELX, where,
after adjustment of positional and anisotropic thermal
parameters, a final R value of 0.067 (R =0.067) was attained.w
Table 2.2 lists the final fractional coordinates and 
anisotropic thermal parameters. Table 2.3 summarises relevant 
bond lengths, angles and torsion angles for both molecules, 
while an ORTEP projection of one of the molecules in the 
asymmetric unit is shown in Figure 2.1.

6.2.3 DISCUSSION

This X-ray structure analysis has resolved an asymmetric
crystal unit comprising two C 20H 26°8 molecules linked by a
water molecule, whereby each sesquiterpenoid moiety has
identical conformation (within experimental error). The
conformational analysis of the seven-membered rings indicates
that they take on a conformation which is approximately midway
between the twist-chair (C 2 ) and chair (C ) extremes that
differ in energy by ca. 1 - 2  kcal mol with the former at

5energy minima and the latter at energy maxima , characterised 
by the analyses originally outlined by Hendrickson and 
subsequently by McPhail and Sim^.

As a result of the publication by McPhail and Sim two 
parameters, I 2  and Ig , signifying an axis of symmetry (C2) 
and a plane of symmetry (Cs>, may be usedr as in
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Chapter 5, to denote the degree of strain-energy conferred on 
the sesquiterpene skeleton. Table 2.4 contains the values 
found for the structure under discussion and compares them to 
the values of the ideal boat and chair conformations as well
as the ideal twist boat and twist chair forms. From the
values given, neither of the molecules adopt the minimum 
energy form.

Molecular mechanics calculations for a series of chair
and twist chair conformers', carried out by White e_t a l . , 
indicate that the most stable form of an isolated
methylenecycloheptane is a twist chair form in which the 
approximate axis of the ring passes through the carbon atom
adjacent to that bearing the exocyclic methylene group. Since 
this is not the minimum energy form observed in this
particular case {cf. chapliatrins), the question arises as to 
whether the adoption of this ring conformation can be
accounted for by the constraints imposed by the three
5-membered rings, B, C and D. The arguments for such

o
constraints are set out by White et al. , and are summarised 
briefly here.

The torsion angle C (2)- C (1)- C (5)- C (4) in ring B must be
c a . 0° (experimentally 9°) and, due to the presence of the
cis 3,4-epoxide, the torsion angle C (10)-C (1)- C (5)-C (6 ) is

o 8restricted to c a .  60 . It has previously been established
that if the torsion angle C (11)-C (7)- C (6 )-0 (4) is -28° then
the ring torsion angle C (5)- C (6 )- C (7)- C (8 ) must be ca. 90°.
The fact that this torsion angle is 90° allows only the Cg
conformation to be adopted.

Inspection of the torsion angle geometry of the three 
5-membered rings shows rings B and C to have a C 2  chair 
conformation, the former ring being fairly flat. Ring D has 
an envelope ^ s ) conformation with C(10) being the out of 
plane atom.
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The valency angles in the cycloheptane rings are all 
generally much greater than tetrahedral, the mean values 118.6 
and 118.3° for each ring, being larger than those found in 
other similar sesquiterpenoid systems where the average values 
are in the range 114.5-115.9°. This increase in endocyclic 
valency angles is thought to be due t o .the increased strain 
imposed by the addition of the cis-2,10 fused 5-membered ring 
to the sesquiterpene mainframe.

The two molecules are linked by a water molecule, 
hydrogen bonded to atoms 0(2) and 0(2')* Intramolecular bond 
lengths show these contacts to be 2.852 and 2.764$ 
respectively.

Table 2.4

Molecule I Molecule II Twist Chair Twist Boat

75
53

76
54

0
141

215
0
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Table 2.2

Atomic coordinates and thermal parameters for C 2 q ^ 2 S (~>8 ’

4(1 ) Atomic coordinates (xl0 )

ATOM x/a y/b z/c

0 1) 6071 7) 3618 2) 9034 3)
0 2) 6687 8) 3462 2) 10070 3)
0 3) 7795 9) 4458 2) 10183 3)
0 4) 11364 8) 4919 2) 8712 3)
0 5) 13630 10) 5356 2) 8264 3)
0 6) 10463 10) 3830 2) 7578 2)
0 7) 9031 7) 2957 2) 9197 2)
0 8) 12058 32) 3361 8) 6935 9)
c 1) 9305 11) 3765 3) 9384 3)
c 2) 7135 11) 3764 3) 9578 3)
c 3) 6567 12) 4241 3) 9723 4)
c 4) 8094 13) 4570 3) 9534 3)
c 5) 9887 11) 4289 3) 9284 4)
c 6) 10563 11) 4435 3) 8654 3)
c 7) 12311 12) 4149 3) 8409 4)
c 8) 11826 14) 3717 3) 8067 4)
c 9) 11085 12) 3322 3) 8456 4)
c 10) 9294 10) 3395 2) 8870 3)
c 11) 13423 13) 4527 3) 8055 4)
c 12) 12904 13) 4980 3) 8318 4)
c 13) 14697 16) 4475 4) 7585 5)
c 14) 7361 2) 3520 3) 8544 4)
c 15) 7706 18) 5070 3) 9358 5)
c 16) 10829 42) 3723 12) 6973 6)
c 17) 9101 40) 3849 8) 6576 14)
c 18) 9251 49) 4305 9) 6223 14)
c 19) 8052 44) 3450 9) 6249 11)
c 20) 7735 48) 3077 9) 6762 12)



Table 2.2 (continued)

ATOM x/a y/b z/c

0 8 a) 12501 44) 3651 1 2 ) 6817 1 2 )
c 16a) 10846 61) 3610 16) 7023 1 2 )
c 17a) 8945 52) 3590 1 2 ) 6671 2 0 )
c 18a) 8617 52) 4087 1 2 ) 6428 16)
c 19a) 10463 54) 4156 14) 5994 2 0 )
c 2 0 a) 6916 52) 4044 14) 5940 19)

0 aq) 7481 8 ) 2523 2 ) 10408 3)

0 1  ') 8769 7) 1846 2 ) 8452 3)
0 2 ') 8282 8 ) 1871 2 ) 9497 3)
0 3 ') 7281 8 ) 0880 2 ) 9449 2 )
0 4 ') 3547 8 ) 0547 2 ) 7962 3)
0 5 1) 1279 1 0 ) 0136 2 ) 7453 3)
0 6 ') 4287 1 0 ) 1761 2 ) 7025 3)
0 7 1) 5724 7) 2473 2 ) 8752 3)
0 8 ’ ) 2189 31) 2016 7) 6318 9)
c l 1) 5552 1 0 ) 1635 2 ) 8825 3)
c 2 ' ) 7831 1 0 ) 1627 3) 8963 4)
c 3 ') 8400 1 1 ) 1 1 2 0 3) 8992 4)
c 4 1) 6807 1 2 ) 0821 3) 8787 3)
c 5 ’ ) 5012 1 1 ) 1 1 1 2 2 ) 8638 3)
c 6 ’) 4289 1 1 ) 1036 3) 7976 4)
c 7 1) 2497 1 2 ) 1326 3) 7786 4)
c 8  ') 2898 13) 1806 3) 7524 4)
c 9 ') 3628 13) 2158 3) 7990 4)
c 1 0  ') 5437 1 0 ) 2058 3) 8318 3)
c 1 1 ') 1434 13) 0988 3) 7378 4)
c 1 2 ') 1980 13) 0510 3) 7578 4)
c 13') 0199 18) 1068 4) 6929 5)
c 14 ') 7373 13) 2016 3) 8009 4)



Table 2.2 (continued)

ATOM x/a y/b z/c

C (151) 7140 (16) 0333 (3) 8555(5)
C (16 1) 3794 (37) 1909(11) 6444 (6 )
C (17 1) 5448 (34) 1785 (7) 6007 (10)
C (18 1) 5362(44) 1263 (8 ) 5856 (12)
C (19 1 ) 5211 (37) 2131 (8 ) 5466 (11)
C ( 2 0  ' ) 7240 (38) 2090 (9) 5254 (10)
0  (8 b) 2431 (46) 2193 (10) 6411 (14)
C(16b) 3785 (56) 1944(16) 6445(12)
C (17b) 5758 (50) 2041(11) 6114 (17)
C(18b) 6423 (46) 1555 (11) 5921(15)
C(19b) 7898 (52) 1626 (13) 5377(16)
C (2 0 b) 4677 (53) 1287(13) 5602 (18)

o2 3(n) Thermal parameters (A xl0 )

U11 U 22 U 33 U 1 2 U 13

0 (1 ) 28 67 61 04 -04 0 0

0 (2 ) 35 52 69 06 13 13
0(3) 54 62 61 08 05 0 0

0(4) 47 40 6 6 -05 -03 13
0(5) 61 53 123 -13 08 32
0 (6 ) 8 6 81 37 -03 07 -03
0(7) 27 34 6 6 0 0 -05 1 0

0 (8 ) 190
C(l) 27 43 38 0 0 - 0 2 05
C (2) 28 49 50 0 1 - 0 1 07
C (3) 28 59 57 08 0 2 0 0

C (4) 50 50 45 03 -05 -04
C (5) 31 40 54 - 0 1 -07 0 2



Table 2.2 (continued)

° 1 1 U 2 2 U 33 U 1 2 U 13 U 2

c (6 ) 32 39 48 0 0 -05 07
C (7) 36 40 54 - 0 2 06 1 1

C ( 8 ) 54 56 57 1 1 16 1 2

C (9) 43 44 57 04 13 1 0

C (10) 24 38 57 04 0 2 1 1

C(ll) 40 58 79 0 1 -03 23
C (12) 48 52 75 - 0 1 0 2 2 1

C (13) 53 116 74 0 2 1 0 30
C (14) 39 49 57 0 0 -07 0 2

C (15) 76 49 81 1 0 1 0 07
C(16) 190
C (17) 190
C (18) 190
C (19) 190
C (20) 190
0  (8 a) 148
C(16a) 148
C(17a) 148
C(18a) 148
C(19a) 148
C( 2 0 a) 148

0  (aq) 37 56 58 -07 07 0 0

0 (1 ') 29 57 74 0 0 07 08
0 (2 ') 43 62 69 1 2 -19 -25
0(3') 42 62 52 05 - 0 2 08
0(4') 50 41 67 -03 -06 -16
0(5') 67 55 1 0 1 -13 -14 -25
0 (6 ') 75 84 40 -07 - 0 2 08
0(7') 31 37 74 04 -05 -17
0 ( 8  ') 136
C( l ' ) 2 0 41 45 - 0 2 0 1 -07
c ( 2  1 ) 19 47 56 0 1 01 -07



Table 2.2 (continued)

U 1 1 U 2 2 U33 U 1 2 U13 U 2

C (3 1) 30 49 50 1 0 - 0 1 -03
C (4 ') 41 42 49 - 0 1 - 0 1 0 2

C (5 1) 35 34 44 - 0 1 0 1 -05
C ( 6  1) 35 37 55 0 2 03 - 1 0

C (7 1) 32 46 55 - 0 1 -04 -09
C ( 8  1) 45 52 61 07 -14 03
C (9 1) 41 43 58 05 -05 -04
C (10 ') 2 0 42 49 0 0 0 0 -04
C (11') 39 62 72 - 0 1 -13 - 2 1

C (12 ') 46 62 54 0 1 04 - 2 2

C (13 1) 8 8 79 94 - 1 2 -34 -09
C (14 1) 43 54 54 0 2 07 04
C (15 1) 64 47 8 6 1 2 -15 -14
C (16 1) 136
C (17 ') 136
C (18 1) 136
C (19 1) 136
C ( 2 0  1) 136
0  (8 b) 180
C(16b) 180
C(17b) 180
C(18b) 180
C(19b) 180
C (2 0 b) 180

Average e .s.d. 's
0,C 6 5 5 4 4 4



Table 2.3

Interatomic distances(A) and angles(°) for C20H 26°8‘1/2H20

(i) Bonded distances

0 (1 ) -C 2 ) 1.446 9) 1.424 9)
0 (1 ) -C 14) 1. 409 1 0 ) 1.438 1 0 )
0 (2 ) -C 2 ) 1.403 9) 1. 384 9)
0 (3) -C 3) 1.443 1 0 ) 1.426 1 0 )
0 (3) -C 4) 1.456 9) 1. 480 9)
0 (4) -C 6 ) 1.489 9) 1.483 9)
0 (4) -C 1 2 ) 1.368 1 1 ) 1.362 1 0 )
0 (5) -C 1 2 ) 1.186 1 0 ) 1.199 1 0 )
0 (6) -C 8 ) 1.448 1 1 ) 1. 446 1 1 )
0 (6 ) -C 16) 1.369 16) 1.369 17)
0 (6 ) -C 16a) 1.381 33) 1. 403 31)
0 (7) -C 1 0 ) 1.446 8 ) 1.443 9)
0 (8 ) -C 16) 1.333 39) 1.173 32)
0 (8 a) -C 16a) 1. 224 50) 1.170 51)
c (1 ) -C 2 ) 1. 544 1 0 ) 1.589 1 0 )
c (1 ) -c 5) 1.560 1 0 ) 1. 587 1 0 )
c (1 ) -c 1 0 ) 1.533 1 0 ) 1. 543 1 0 )
c (2 ) -c 3) 1.448 1 1 ) 1.497 1 1 )
c (3) -c 4) 1. 463 1 2 ) 1.453 1 1 )
c (4) -c 5) 1. 563 1 1 ) 1.517 1 1 )
c (4) -c 15) 1.498 1 2 ) 1.495 1 2 )
c (5) -c 6 ) 1. 500 1 1 ) 1. 532 1 1 )
c (6 ) -c 7) 1. 542 1 1 ) 1. 535 1 1 )
c (7) -c 8 ) 1.474 1 1 ) 1. 505 11)
c (7) -c 1 1 ) 1. 525 1 2 ) 1.496 1 2 )
c (8 ) -c 9) 1.494 1 2 ) 1.508 1 2 )
c (9) -c 1 0 ) 1. 534 11) 1.528 1 1 )
c (1 0 ) -c 14) 1. 542 1 1 ) 1. 556 1 1 )
c ( I D -c 1 2 ) 1. 454 1 2 ) 1.477 1 2 )
c (11 ) -c 13) 1. 349 14) 1. 309 15)



Table 2.3 (continued)

C (16)
C (17)
C (17)
C (19)
C(16a) 
C(17a) 
C(18a) 
C(18a)

■C (17) 
■C (18) 
'C (19) 
■C (20) 
■C (17a) 
■C (18a) 
■C (19a) 
•C (20a)

1.506(38) 
1.510(36) 
1.520(37) 
1. 552 (36) 
1.510 (54) 
1. 527 (49) 
1. 588 (53) 
1.578(52)

1.518(31) 
1.523(30) 
1. 540 (31) 
1.550(35) 
1.554(50) 
1.512(44) 
1.575(48) 
1.584(48)

(ii) Interbond angles

c 14) -0 1) -C 2)
c 1) -C 2) -0 1)
c 10) -C 14) -0 1)
c 3) -C 2) -0 2)
c 2) -C 3) -0 3)
c 3) -C 4) -0 3)
c 15) -c 4) -0 3)
c 5) -c 6) -0 4)
0 5) -c 12) -0 4)
c 11) -c 12) -0 5)
c 16a) -0 6 ) -c 8 )
c 9) -c 8 ) -0 6 )
0 8 ) -c 16) -0 6 )
0 8 a) -c 16a) -0 6 )
c 1) -c 10) -0 7)
c 14) -c 10) -0 7)
c 5) -c 1) -c 2 )
c 3) -c 2) -c 1)
c 4) -c 5) -c 1)
c 9) -c 10) -c 1)

1 2

1 1 0 .8 (6 ) 111.5(6)
105.4(6) 106.9(6)
103.8 (6 ) 104.3 (6 )
1 1 0 .6 (6 ) 113.0(6)
113.3 (7) 1 1 0 .6 (6 )
59.3(5) 58.2(5)

115.4(7) 113.4(7)
107.1 (6 ) 105.2 (6 )
1 2 0 . 0  (8 ) 1 2 1 .5 (8 )
131.3(9) 130.6 (8 )
114.4 (18) 118.4 (17)
111.1 (7) 110.0 (7)
110.3(18) 121.7(19)
116.8(33) 118.4 (28)
103.8(6) 106.6 (6 )
108.5(6) 103.6 (6 )
106.6(6) 105.3 (5)
104.6 (6 ) 106.1(6)
103.9(6) 105.6(6)
1 2 0 .9 (6 ) 1 2 2 .2 (6 )



Table 2.3 (continued)

1 2

c 4) -C 3) -C 2) 110.4 7) 110.9(6)
c 15) -C 4) -C 3) 123.6 8) 122.2(7)
c 6) -C 5) -C 4) 114.6 6) 112.6(6)
0 2) -C 2) -0 1) 109.4 6) 109.2(6)
c 3) -C 2) -0 1) 108.1 6) 109.7(6)
c i )  - c 2) -0 2) 114. 7 6) 111.7(6)
c 4) -0 3) -c 3) 60.6 5) 60.0(5)
c 4) -C 3) -0 3) 60.1 5) 61.8(5)
c 5) -C 4) -0 3) 109.4 6) 108.8 (6)
c 12) -0 4) -c 6) 110.4 6) 110.8(6)
c 7) -C 6) -0 4) 103.4 6) 103.0(6)
c 11) -C 12) -0 4) 108.7 7) 107.9(7)
c 16) -0 6) -c 8) 122.2 13) 119.8(12)
c 7) -C 8) -0 6) 109.1 7) 108.7(6)
c 17) -C 16) -0 6) 110.5 22) 108.5(19)
c 17a)-C 16a) -0 6) 107.0 30) 105.4(27)
c 9) -C 10) -0 7) 105. 6 5) 105.5(6)
c 17) -C 16) -0 8) 130.2 22) 127.9 (17)
c 10) -C 1) -c 2) 101. 0 6) 100.3(5)
c 10) -C 1 ) -c 5) 123. 9 6) 124.2 (6)
c 6) -C 5) -c 1) 118.1 6) 116.5 (6)
c 14) -C 10) -c 1) 100.3 6) 102.7 (6)
c 5) -C 4) -c 3) 109.3 6) 110.7 (6)
c 15) -C 4) -c 5) 122. 6 7) 124.0(7)
c 7) -C 6) -c 5) 114.0 6) 115.7(6)
c 8) -C 7) -c 6) 116.0 7) 116.3 (7)
c 11) -C 7) -c 8) 116. 7 7) 116.8 (7)
c 12) -C 11) -c 7) 107.9 7) 107.3(7)
c 10) -C 9) -c 8) 120. 0 7) 121.1(7)
c 13) -C 11) -c 12) 123.4 9) 122.8(9)
c 18) -C 17) -c 16) 116.1 24) 109.4(21)
c 19) -C 17) -c 18) 116.4 24) 117.2 (19)
c 11 ) -c 7) -c 6) 100. 8 6) 101.6 (6)



Table 2.3 (continued)

C (9)
C (13)
C (14)
C (19)
C (20)
C(18a) 
C (20a) 
C(17a) 
C(19a) 
C( 2 0 a)

-C(8 )
-C (11)
-c (10 )
•C(17) 
■C (19) 
■C (17a) 
-C (18a) 
-C (16a) 
■C (18a) 
-C (18a)

-C(7)
-C(7)
-C (9) ' 
~ C (16) 
~ C (17) 
-C(16a) 
-C(17a) 
-0 (8 a) 
-C(17a) 
-C(19a)

114.9(7) 
128.7(9) 
116.8(7) 
117.4(23) 
104.1(21) 
105.4(31) 
105.5(28) 
128.2(28) 
101.6(28) 
1 0 1 . 6  (28)

114.3(7)
129.9(8)
114.7(6)
104.3(18)
100.9(19)
102.9(28)
109.4 (27)
123.5(36)
106.2(26)
102.1(26)

(iii) Ring torsion angles

Ring A 1 2

c ( 6 ) -C(5) -C(l) -C(10) -2.9 -1. 5
C(l) -C(5) -C (6 ) ”C (7) -56.0 -56.6
C (5) —C (6 ) -C(7) -C( 8 ) 88.5 8 8 . 1

C (6 ) -C(7) -C (8 ) “C (9) -72.5 -70.7
C (7) -C( 8 ) -C (9) - C (1 0 ) 56.2 55.4
C (8 ) -C (9) -C(10) -C(l) -60.5 -60.3
C (9) -C (10 ) -C (1) -c ( 5 ) 51. 5 49.6

Ring B 1 2

C (3) -C (2) -C(l) -C(5) - 1 2 . 1 -11.9
C (2) -C(l) -C (5) -C(4) 9.1 1 0 . 1

C(l) -C(5) - C (4) -C(3) -3.4 -4.8
c (5) —C (4 ) -C (3 ) -C(2) -4.2 -3.0
C (4) -C(3) -C (2) -C(l) 1 0 . 2 9.5



Table 2.3 (continued)

Ring C 1 2

0(4)  -C (6) -C (7 ) - C ( l l )  -28.  6 - 2 9 . 7
C(6) -C (7) -C (1 1 )-C (12) 24. 5 26.6
C (7) - C ( l l ) - C ( 1 2 ) - 0 (4) - 10 . 4  - 13 . 0
C (11) - C (1 2 ) -0 (4 )  - C (6) - 9 . 3  - 7 . 3
C (12) -0  (4) -C (6) -C (7) 24. 8 24.0

Ring D 1 2

C(l) -C (2) -0(1) -C (14) 1.6 2.7
C (2) -0(1) - C (14)- C (10) 24.8 20.7
0(1) - C (14)-C (10)-C (1) -40.8 -35.9
C (14)- C (10)-C (1) -C (2) 40.4 35.7
C(10)-C(l) -C (2) -0 (1) -27.0 -24.7

Average e.s.d's of torsion angles is 0.8°.



Figure 2.1
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III

THE CRYSTAL STRUCTURE DETERMINATION OF OXIDOPANAMENS DIACETATE

6.3.0 INTRODUCTION

In a continuing search for novel plant anticancer agents 
it was found that ethanol extracts of the Panamanian plant 
Rondeletia panamensis DC. (Rubiaceae) exhibited cytotoxic 
activity^.

Partition of a methanol extract of the wood stem and stem 
bark of R. panamensis indicated that cytotoxity remained in 
the chloroform phase. Through extensive chromatography with 
concomitant bioassay two cytotoxic compounds, oxidopanamensin 
(II) and panamensin(III), were obtained together with a third, 
closely related but inactive compound, rondeletin(V).

The similarity of the main features of the proton NMR and 
UV spectral data of the three isolates suggested that a 
determination of one of the structures might permit deduction 
of the remaining structures. Interpretation of the spectral 
data did not prove fruitful in terms of a unique skeleton and 
consequently X-ray analysis was carried out. The parent 
compounds were unsuitable for analysis, but crystals of the 
diacetate of oxidopanamensin were found to be appropriate, and 
it was this compound (I) which was therefore analysed.



Page 116

6 .3.i EXPERIMENTAL

Crystal data

Oxidopanamens diacetate, ^24H 32°6' M r=416.5, orthorhombic, 
a=12.430(2), b=10.969(2), c=16.320(2) &, U = 2 2 2 5 . 2 & 3 ,
Dm=1.25, Dc=1.24 Mgm"3 , Z=4, F(000)=896,
space group P2 1 2 1 21 , fi(Mo-Ka) =0.95 cm”1 .

Data collection

Instrument used: Enraf Nonius CAD-4
Radiation used: Mo-KQ , A=0.7169 A
Upper limit of data collection: 29 =60°max
Number of independent reflexions: m=1910 
Unobserved cut-off: 3 ct̂
Number of independent parameters: n=271 
Number of reflexions per parameter: m/n=7.0

6.3.3 STRUCTURE DETERMINATION AND REFINEMENT

The structure was solved by direct methods using
MULTAN 76. Several runs of MULTAN using default options and
K-curve normalising proved unsuccessful. Closer examination
of the statistics from the Wilson plot revealed an
uncharacteristic deviation from the calculated least squares

2line. This deviation only occurred at high sin 0 values
(Figure 3.1). NORMAL was subsequently altered to include the

• 2user option for limiting the value of s m  9 when accepting F's
into the normalisation calculation. A further run of MULTAN 

2with sin 9 =0.39, but otherwise employing default optionsmax r
revealed the complete structure using 300 E-magnitudes having 
|E U  1. 30.

The approximate atomic coordinates were adjusted by the 
least-squares program CRYLSQ from the X-RAY 72 suite of
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programs; with isotropic thermal parameters converging at
R=0.131. Subsequently, a difference Fourier synthesis
revealed 27 out of the 32 hydrogen atoms in the molecule.
These atoms were then incorporated in the refinement procedure
with isotropic thermal parameters while the remaining atoms
were assigned anisotropic parameters. Refinement converged at
R=0. 058 (R =0. 060) . w

Atomic coordinates and thermal parameters are listed in 
Table 3.1 and bond lengths, bond angles, and torsion angles 
are in Table 3.2. The molecular structure is shown in 
Figure 3.2.

One possible explanation as to the difficulty encountered
by MULTAN when using the complete data set may be that the
Phillips high intensity X-ray tube was used during data
collection. In general, this tube makes available high
ordered reflexions which are not normally available with
standard % X-ray tubes. The usefulness of these extra
reflexions is possibly subject to scrutiny when their
structure factors are normalised. Since they occur at very
high sin© values they are subject to small Lorentz
polarisation corrections (1/L ). From Section 2.1, Chapter 1,hduring the calculation of E-magnitudes reflexions having high 
sin© values employ the largest temperature corrections, B. 
The net effect of these two corrections is that their
E-magnitudes are very much larger than their real values and 
any small variation in B can induce a considerable change in 
the E-magnitudes.

6.3.4 DISCUSSION

The analysis establishes that the compound has 
composition and relative stereochemistry I.

Ring A has an envelope-like conformation with atom C(5)
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at the flap. Ring B has a distorted chair conformation with
torsion angles ranging from 41 to 61°; the maximum puckering
of the ring is at C (8 ) and the minimum at C(5). In ring C the
departure from ideal chair geometry is much less pronounced,
the range of torsion angles being 51-58°, and here the 
smallest pucker is at C(13).

In the epoxide group, the C-C bond (1.4808) is slightly
longer than the C-0 bonds (1.440, 1.4468) and the C-O-C angle
(61.7°) is slightly larger than the O-C-C angles (59.0,
59.4°). Moreover, the C-C (epoxide)-C(epoxide) angles
(114.4 and 126.6°) are larger than the corresponding
C-C(epoxide)-0 (epoxide) angles (111.1 and 116.3°), and the
C-C (epoxide)-0 (epoxide)-C(epoxide) torsion angles (106.6 and
118.8°) are larger than the C-C(epoxide)-C(epoxide)- 0 (epoxide)
torsion angles (100.9 and 101.6°). This pattern is a feature

2  3of other terpenoid epoxides ' .
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Table 3.1

Atomic coordinates and thermal parameters for oxidopaname

4(a) Fractional coordinates (x!0 )

ATOM x/a y/b z/c

0 1) 3418 3) 2397 4) 6745 2
0 2) 1686 3) 1911 5) 6919 2
0 3) 3119 4) 0859 3) 5436 3
0 4) 2204 3) 1576 3) 3983 2
0 5) 1570 3) 5234 3) 3515 2
0 6) 0710 3) 4345 4) 2466 2
c 1) 3185 4) 4052 5) 5837 3
c 2) 3188 4) 2864 5) 5961 3
c 3) 3029 4) 1955 5) 5320 3
c 4) 2792 4) 2452 4) 4465 3
c 5) 2383 4) 3766 4) 4437 3
c 6) 2360 4) 4254 4) 3540 3
c 7) 3430 4) 4773 4) 3220 2
c 8) 3916 3) 5704 4) 3828 2
c 9) 4153 3) 5098 4) 4660 2
c 10) 3046 3) 4620 4) 5006 2
c 11) 4588 4) 6097 5) 5233 3
c 12) 5600 4) 6730 5) 4893 3
c 13) 5422 4) 7285 6) 4030 3
c 14) 6495 6) 7704 9) 3675 4
c 15) 7294 6) 7343 15) 3545 6
c 16) 4706 6) 8406 6) 4057 5
c 17) 3327 5) 1779 5) 3793 3
c 18) 1209 4) 3701 5) 4750 3
c 19) 4988 4) 4057 5) 4602 3
c 20) 4920 4) 6306 5) 3459 3
c 21) 2589 5) 1860 5) 7165 3
c 22) 2989 5) 1283 7) 7938 7
c 23) 0754 4) 5126 5) 2970 3
c 24) -0076 5) 6090 6) 3097 4



Table 3-1 (continued)

o 9 4(b) Thermal parameters (A xl0 )

U 1 1 U 2 2 U 33 G
 

I—
1 

to °13 U 23

0 (1 ) 630 972 543 -146 -109 322
0 (2 ) 660 1407 661 -146 -038 159
0(3) 1 2 2 2 567 800 203 1 2 1 181
0(4) 882 483 830 -087 -080 -140
0(5) 449 485 561 -004 -176 -054
0 (6 ) 619 1024 535 027 -173 -142
C(l) 579 616 395 -103 037 003
C (2) 552 742 515 -071 -025 130
C (3) 621 502 624 - 0 1 1 047 106
0(4) 586 440 534 -003 -058 -060
C (5) 427 446 437 -030 -006 -014
C (6 ) 515 420 436 -027 -108 -055
C (7) 524 542 321 - 1 1 0 -067 - 0 1 1

C (8 ) 410 462 340 -038 -052 -034
C (9) 400 472 320 -024 003 -026
0 (1 0 ) 411 452 393 - 0 2 0 0 1 2 - 0 2 2

C(ll) 481 722 347 -077 - 0 1 2 -064
C (12) 491 880 419 -264 -050 - 0 1 2

C (13) 526 915 429 -291 -053 -050
C (14) 782 2077 569 -693 067 -132
C (15) 606 3174 1128 -009 084 -293
C (16) 1081 545 1026 -226 -232 -019
C (17) 947 518 604 089 030 -084
C (18) 543 523 645 -072 -006 -030
C (19) 478 653 584 164 -009 088
C (20) 537 720 346 -105 -029 0 1 1

C (21) 683 643 500 -088 047 055
C (22) 786 926 610 018 085 307
C (23) 456 609 457 -055 -026 083

CNu 551 775 857 053 -072 072

Average
0,C

e .s.d . ' s
28 25 2 0 26 28 2 1



Table 3.1 (continued)

3(c) Hydrogen atom coordinates (xl0 ) and isotropic 
thermal parameters

ATOM x/a y/b z/c Ulso

H 1 ) 323 4) 457 5) 621 3) 0.045
H 6 ) 204 3) 372 4) 321 2 ) 0.031
H 71) 338 4) 523 5) 268 3) 0.068
H 72) 409 5) 405 5) 314 3) 0.098
H 8 ) 340 4) 632 4) 390 3) 0.052
H 1 0 ) 264 4) 535 4) 501 3) 0.034
H 1 1 1 ) 470 5) 581 6 ) 577 4) 0.133
H 1 1 2 ) 404 3) 665 4) 533 3) 0.061
H 1 2 1 ) 623 5) 599 5) 486 3) 0.082
H 1 2 2 ) 572 6 ) 750 6 ) 514 4) 0.107
H 14) 665 7) 844 9) 360 5) 0.164
H 161) 397 5) 817 6 ) 421 4) 0.119
H 162) 454 5) 860 5) 343 4) 0.094
H 163) 475 6 ) 937 7) 417 5) 0.218
H 171) 384 6 ) 079 7) 381 4) 0.064
H 172) 354 4) 217 5) 338 3) 0.039
H 181) 103 4) 456 4) 484 3) 0 . 1 0 2

H 182) 1 2 2 4) 321 4) 536 3) 0.069
H 183) 080 5) 326 5) 441 3) 0.088
H 2 0 1 ) 548 4) 561 4) 334 3) 0.066
H 2 0 2 ) 477 3) 679 4) 293 3) 0.051
H 2 2 1 ) 286 9) 163 1 0 ) 842 6 ) 0.130
H 2 2 2 ) 248 7) 077 7) 811 5) 0.209
H 241) - 0 2 2 7) 637 8 ) 248 6 ) 0.068
H 242) -057 5) 571 5) 350 3) 0.109
H 243) 013 5) 663 7) 330 4) 0 . 1 1 2



Table 3.2

Interatomic distances(X) and angles(°) for oxidopanamens 

(a) Bonded distances

0 (1 ) -0 (2 ) 1.409 6 ) 0(5) ”0(18) 1. 548 (7)
0 (1 ) ”C (21) 1.370 7) 0 (6 ) ”0(7) 1. 534 (7)
0 (2 ) ”C (2 1 ) 1.193 7) 0(7) ”0 (8 ) i:537(6)
0(3) ”0(3) 1 . 2 2 2 6 ) 0 (8 ) ”0(9) 1.541(6)
0(4) ”0(4) 1.440 6 ) 0 (8 ) -C (20) 1.536(6)
0(4) ”0(17) 1.446 8 ) 0(9) -C (10) 1. 576 (6 )
0(5) -0 (6 ) 1.457 6 ) 0(9) ”0 (1 1 ) 1. 538 (6 )
0(5) ”0(23) 1.354 5) 0(9) ”0(19) 1. 546 (7)
0 (6 ) -0(23) 1.188 6 ) 0 (1 1 )”0 (1 2 ) 1.541(7)
C(l) -0 (2 ) 1.319 8 ) 0 (1 2 )”0(13) 1.541(6)
C(l) -C(10) 1.502 6 ) 0(13) ”0(14) 1. 524 (9)
C (2) ”0(3) 1.458 7) 0(13) ”0(16) 1.518(9)
C (3) -0(4) 1.526 7) C (13 -C (20) 1. 553 (7)
C (4) -0(5) 1.546 7) 0(14) ”0(15) 1.090(12)
C (4) -0(17) 1.480 7) 0 (2 1 )- C (2 2 ) 1.497(8)
C (5) -0 (6 ) 1.558 6 ) C (23) ”0(24) 1.494( 8 )
C (5) ” 0 (1 0 ) 1.556 6 )

Average C-H bond distance: 0.980A



Table 3.2 (continued)

(b) Interbond angles

c 2 ) - 0 1 ) -C 2 1 ) 117.2 4
c 4) - 0 4) -C 17) 61.7 3
c 6 ) - 0 5) -c 23) 117.3 4
c 2 ) -C 1 ) -C 1 0 ) 123.2 4
c 1 ) -C 2 ) - 0 1 ) 119.9 5
c 3) -C 2 ) - 0 1 ) 115.5 5
c 1 ) -C 2 ) -C 3) 124.5 5
c 2 ) -C 3) - 0 3) 123.3 5
c 4) -C 3) - 0 3) 120. 7 5
c 4) -C 3) -C 2 ) 115. 9 4
c 3) -C 4) -C 5) 115.4 4
c 3) -C 4) - 0 4) 1 1 1 . 1 4
c 5) -C 4) - 0 4) 116.3 4
0 4) -C 4) -C 17) 59.4 4
c 3) -C 4) -C 17) 114.4 4
c 5) -C 4) -C 17) 126.6 4
c 4) -C 5) -c 6) 1 1 0 . 0 4
c 4) -C 5) -C 1 0 ) 111.9 4
c 4) -C 5) -c 18) 105.1 4
c 6 ) -c 5) -c 1 0 ) 111.3 4
c 6 ) -C 5) -c 18) 108.0 4
c 18) -C 5) -c 1 0 ) 109. 2 4
c 5) -C 6) -0 5) 107.1 3
c 7) -c 6 ) -0 5) 107.5 4
c 5) -c 6 ) -c 7) 114.9 4
c 6 ) -c 7) -c 8 ) 1 1 2 . 2 3
c 7) -c 8 ) -c 9) 110.4 4
c 7) -c 8 ) -c 2 0 ) 1 1 0 . 8 3

C 9) -C 8 ) -C 2 0 ) 1 1 2 . 1 3)
C 8 ) -C 9) -C 1 0 ) 107.0 3)
C 8 ) -C 9) -C 1 1 ) 107.2 4)
C 8 ) -C 9) -C 19) 113.1 3)
C 10)-C 9) -C 1 1 ) 109.0 3)
C 10)-C 9) -C 19) 111.3 4)
C 11)-C 9) -C 19) 109.1 4)
C i )  -c 10)-C 5) 110. 5 4)
C i )  -c 10)-C 9) 1 1 1 . 2 3)
C 5) -C 10)-C 9) 116. 7 3)
C 9) -C 11)-C 1 2 ) 112.9 4)
C 11)-C 12) -C 13) 1 1 2 . 8 4)
C 12) -C 13) -C 14) 109. 8 4)
C 12) -C 13) -C 16) 1 1 2 . 1 5)
C 12) -C 13) -C 2 0 ) 109.3 5)
c 14) -C 13) -C 16) 106.3 6 )
c i—1 i n 13) -C 2 0 ) 109.4 5)
c 16) -C 13) -C 2 0 ) 109.9 5)
c 13) -C 14) -C 15) 139.6 1 2 )
0 4) -C 17) -C 4) 59.0 3)
c 8 ) -C 20) -C 13) 1 1 2 . 8 4)
0 i )  -c 2 1 ) - 0 2 ) 121. 3 5)
0 i )  -c 21) -C 2 2 ) 115. 5 5)
0 2) -C 21) -C 2 2 ) 128.0 5)
0 5) -C 23) - 0 6 ) 123.5 5)
0 5) -C 23) -C 24) 111.4 4)
0 6 ) -C 23) -C 24) 125.1 5)



Table 3.2 (continued)

(c) Torsion angles 

Ring A

C(10)-C(l) -C (2) -C(3) -1.8
C(l) - C (2) - C (3) - C (4) -3.0
C (2) - C (3) - C (4) - C (5) -19.7
C (3) - C (4) - C (5) -C(10) 45.0
C (4) - C (5) -C(10)-C(l) -47.5

Ring B

C (10)- C (5) - C (6 ) - C (7) 40.8
C (5) - C (6 ) - C (7) - C (8 ) -50.4
C (6 ) -C (7) -C (8 ) -C (9) 61.2
C (7) -C (8 ) -C (9 ) -C(10) -^>0.7
C (8 ) - C (9) - C (10)- C (5) 54.3
C (6 ) - C (5) - C (10)- C (9) -44.2

Ring C

C( 20) - C (8) -C (9) - C ( l l )  58.3
C (8) - C (9) -C (11) - C (12) - 57 . 7
C (9) - C ( l l ) - C ( 1 2 ) - C (13) 56.2
C (11) - C (12 ) - C (13) -C (20) - 50 . 6
C (12) - C (13) - C ( 2 0 ) - C (8) 51.7
C (9) - C (8) - C (20) - C (8) - 57 . 9

Epoxide

C (3) -C(4) -0(4) -C(17) -106.6
C (3) -C(4) -C(17)-0(4) 100.9
C ( 5) -C(4) -0(4) -C(17) 118.8
C (5) -C(4) -C(17)-0(4) -101.6

The standard deviations of the torsion angles are ca. 0.5°
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CONCLUSIONS

This thesis has shown that the use of higher invariants 
in both active and passive roles in the MULTAN program 
provides a useful alternative when standard runs of the 
package using triplets alone are unsuccessful. In this 
respect the technique can be compared with the alternatives 
MAGIC and YZARC suggested by Declercq, Germain and Woolfson^. 
Perhaps the most unexpected result was the effect of varying 
the temperature coefficient, B, and subsequent success in the 
structure determination of the two natural products in 
Chapter 6 .

In themselves none of these developments is a panacea 
when difficulties are encountered in direct methods, but they 
offer different methods of attacking otherwise intractable
problems with good prospects of success. The use of negative 
quartets in particular never seems to degrade the performance 
of MULTAN and often enhances it considerably, especially in 
symmorphic space groups. Positive quartets pose more
difficult problems because Of correlation with triplets, and
whereas the weighting scheme proposed here (Chapter 4) is 
successful it probably does not fully exploit the phase 
information contained in these invariants, nor does it solve 
the difficulties inherent in the correlations between the
quartets themselves. These are problems of a theoretical
nature that need to be resolved.

A logical extension to these applications of four- and 
five-phase invariants is to include them in both an active and 
passive way in the magic integer- 'I'-map program MAGIC and the 
random phase set/linear equation system RANDOM where they 
offer the potential of further enhancing these techniques.

1. J. P. Declercq, G. Germain and M. M. Woolfson, Acta Cryst. 
(1979> £35., PP- 622-626.
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APPENDIX II

2/13 Kexp{ 2b123 4 c o s ^ 3 4 2Bl256COS^56 2B3456C O S ^ 3 4  -^56^

X I ( 2  °  3R 12X12) I ( 2  q 3R 23X 23)

X I ( 2  ° 3R31X31) I ( 2  ° 3R 15X15)
3 2 ° 3 2  

°2 °2

X I ( 2  CT 3R 25X25) I ( 2  a 3R35X35)o   ____________ o ---
a^ / 2  a ^ 22 2

X I ( 2  q 3R 45X45) f

a 2

where

B1234 — -----— 4 R 1R2R 3R43
a 2

B 1256 =  ---------—  R 1R2R 5R 6
4

2
B 3456 =    —  R 3R4R5R6

a 3
2

and

X12 [R1R 2 + R 3R4 + R 2 R 2  + 2R 1 R 2 R 3 R 4 cos / 3 4

+ 2 R 3 R 2RgRg SR^R^R^RgCOS ( ^ ^ 4  ^56^

X 2 3  =  [ R 2 R 2  +  R j R ^  +  2 R 1 R 2 R 3 R 4 c o s 0 3 4 )]1 / 2



X31 = [R23Ri  + R2r24 + 2R1R2R3R4coS^ 56] 1/ 2

X15 = [r21R5 + R22R6 + 2R1R2R5R6COS<z!56 ]1 /2

x 25 = [R2 R2 + r2 r2 + 2R1R2R5R6cosiz(56 ] ;L/2

X35 = [r23R5 + r24R6 + 2R3R4R5R6co s^ 3 4  " <*56> ] ^

X 4 5  = [R4 r2 5  + r23R 6 + 2 R 3 R 4 R 5 R 6 cos ( ) Z ( 3 4  - ^ 5 6 ] 1 / 2

and K is a suitable normalising parameter independent of 0 ^ ^  

and 0 ^  and not relevant for the present purpose.

The formula is obtained from p 2/13 integrating
with respect to 0 ^^ from 0  to 2 n :

2 tt

Pl / 1 3  = jfP2 /13  d^56
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P r l l5= ~ z ±K
where

and
iC =  Z + + Z '

1024
Z ± =e xp (  +  T) Yj e x p ( ( / ± K ) ,

>112, ~  -.>145 =  ±  i

T =  -I 7 2 (15(73 — 10cr2 (73 O' 4  +  (7|(75 ')R1 JR->R ^ R 4.R5 ,
o2‘

U — -3 J2 (?/l2-̂ l-̂ 2-̂ 12 + f7l3̂ 1-̂ 3-̂ 13'l"?;14^1-^^14 
<72

*h f7l 5 + ,?23-̂ 2-̂ 3-̂ 23 "h J?24-̂ 2*̂ 2̂A
+  *725^2-^5-^25 +  *734-^3^4-^34 +  *735-^3-^5^3 5 

+  ^ 4 5 ^ 4 ^ 5 ^ 4 -5 )  »

“ 3 j2  [ ( * 7 2 3 *7 4 5 -^ 2 3 -^ 4 5  +  * 7 2 4 * 7 3 5 ^ 2 4 ^ 3 5  Cr2

+ *725*734̂ 25̂ 34)̂ 1 +*? 13*745-̂ 13-̂ 45 
+ *714*73 5-̂ 14̂ 3 5 + *715̂ 34-R 15^34^2 
+  (*7 1 2 *74 5 -^1 2 -^4 5  +  *714*725 -^14 -^25  

+ J7l5,724-R 15̂ 24)̂ 3 + (*712*735̂ 12-̂ 35 
+  *7 l3 *? 2 5 ^ 1  3 -^2 5  +  *715*72 3 -^1  5 ^ 2  3 ) ^ 4  

+  ( * /1 2*?34*^ 1 2 - ^ 3 4 +  * / i  3 *7 2 4 ^ 1 3 -^ 2 4  

+ Vl4V2 3-̂ 14-̂ 23)̂ 5]
3 gi~ p gj) (‘U s R ^ R i R i + r i i s R i s R A R *

+ >734̂ 34-̂ 1̂ 2-̂ 5 + */25-̂25-̂ 1 ̂3-̂ 4 
+ *724̂ 24̂ 1-̂ 3̂ 5 + *723̂ 23̂ 1̂ 4-̂ 5 
+  V l 5-^ 15-^2— 3-^4 + V 1 4 ^ 1 4 -^ 2 ^ 3 -^  5‘

+ tfl3Kl3K2/U?5 + '7l3 Kl2K3R*K5).


