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ABSTRACT

Fatigue failure of large fabricated structures can occur through the 
propagation of several small defects which either pre-exist in the structure as 
a result of the fabrication process or which initiate under the action of cyclic 
loading. The propagation of these small defects results in the coalescence of 
several small defects to form a dominant fatigue crack which then 
propagates to cause failure. In welded components such as the tubular 
joints of offshore jacket structures the dominant crack is often a semi
elliptical surface crack at the toe of the fillet weld. Existing methodologies 
offer simplistic approaches to predict the behaviour of adjacent surface 
defects. In general fracture mechanics offers a rational approach for the 
assessment of such problems.

This work utilised numerical and experimental techniques to investigate the 
coalescence of co-linear surface defects by fatigue crack growth to form 
single semi-elliptical crack shapes. A numerical study of defect interaction 
utilising the line spring model was supported by experimental observations. 
In addition a numerical evaluation of the stress intensity factor distribution 
around the crack periphery immediately after the coalescence of two defects 
was conducted utilising the line spring model and a universal weight 
function approach.

The line spring model analysis showed that the interaction between 
adjacent colinear defects was a second order effect and would have little 
effect on component life, this was supported by the experimental 
observations. In addition existing defect assessment methodologies were 
shown to be at best unrealistic in their approach to defect interaction and 
generally over-conservative for the cases considered here. Both the 
numerical investigations and the experimental data indicated that a 
significant magnification of the stress intensity factor occurs at the re-entrant 
sector of the coalesced crack immediately the defects coalesce. This 
magnification results in a rapid propagation of this sector to form a single 
semi-elliptical crack. Based on this analysis and the supporting experimental 
observations it was concluded that this behaviour was of sufficiently short 
duration that it could be ommitted for the purpose of life prediction 
calculations.

In conclusion it was proposed that co-linear defects growing by fatigue 
should be considered as individual defects up until the point where the 
defects meet at the adjacent tips, at this point the defects should be re
characterised as a single crack with depth equal to that of the deepest defect 
and surface length equal to the combined length of the two defects.
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1. INTRODUCTION

It has been accepted for some time that large fabricated structures often fail 
due to the presence of cracks. Such cracks are often the result of small 
defects introduced to the structure during the fabrication process although 
they can initiate during the lifetime of the structure. Once this ’initiation' 
phase has occurred these small defects can propagate under the action of 
cyclic loads on the structure due to the environment or operating practice for 
the plant. It is known that crack like flaws can cause catastrophic failure of 
components and structures on attaining some critical size determined by 
factors such as material properties, loading, and geometry. This behaviour 
merits attention in order that rules can be developed which will enable the 
designer to guarantee the integrity of the structure over the envisaged 
operational life. In the case of nuclear power plant or offshore platforms the 
design life of the structure may be of the order of twenty to thirty years and 
hence predictive tools must enable extrapolation of data obtainable from 
short term laboratory tests.

There is however a dilemma in formulating such rules. The behaviour to be 
predicted is complex and as such simplifications are required in formulating 
the models. Such simplifications must ensure a conservative estimate of the 
lifetime if failure is to be avoided. If however the derived criteria are 
excessively conservative then unnecessary expense may be incurred by 
premature shutdown of plant which is capable of safe operation for several 
more years.

In recent years several design and assessment methodologies for structures 
subject to cyclic loading have evolved. Generally these can be grouped 
under two categories;

i) those which use an empirical 'S-N' or Wohler approach and
ii) those based on a Fracture Mechanics approach.

These techniques have been discussed more fully in Chapter 5, but in 
essence the S-N approach is empirical with suitable correction factors
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applied to account for geometry, mean load and other significant factors 
whereas the fracture mechanics approach attempts to model the behaviour 
of a specific crack, allowing geometry and other influences to be considered 
in a more physically meaningful way. While the fracture mechanics approach 
is more versatile in its applicability it requires a certain amount of expertise to 
formulate the solution, further in order to apply the criterion a crack must be 
analysed and since at the design stage a crack size is not available some 
difficulty can be found. For these reasons the S-N approach is more widely 

adopted at the design stage particularly since designers generally do not 
have a great knowledge of fracture mechanics principles. The fracture 
mechanics methodologies are more generally used in the assessment of 
defects found during the service life of the structure. In this case the crack 
size and location are known and a more accurate assessment can be made. 
To facilitate this several methodologies have evolved such as the ASME XI, 

GEGB R6 and British Standards PD 6493 recommended routes. These 
methods are principally concerned with the prediction of unstable extension 
of a crack to cause failure. Each methodology makes some recommendation 
as to how existing defects should be postulated to grow under the action of 
cyclic loading to reach the critical size, further both the ASME and BS routes 
give guidelines on how adjacent defects should be taken to coalesce. Both 

methodologies assume that the defects will coalesce at some critical 
separation. No justification is given for this assumption and it must be 
assumed that this guideline was based on engineering judgement in order 
to maintain conservatism in the case of multiple defects.

The purpose of this work was to examine the coalescence of shallow surface 

defects to form larger cracks in order to establish whether the assumptions of 
existing guidelines are reasonable and, if possible, to indicate practicable 
improvements to these techniques. The work reviews current methodologies 
and reports the results of a numerical and experimental examination of the 
problem.
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CHAPTER 2 

FRACTURE MECHANICS

3. Introduction

The purpose of fracture mechanics is to predict the failure of a structure 
containing known cracks. In achieving this three preliminary procedures are 
required. Primarily the stress system in the defective area of the structure 
must be determined, this would normally be accomplished by conventional 
stress analysis of the uncracked body by means of numerical or analytical 

techniques. In addition non-destructive examination of the component or 
structure may be necessary to determine the size, location and orientation of 
the cracks to be examined and finally the determination of the pertinent 
material properties required by the assessment techniques. The first of these 
procedures is complex and must account for all operational and fault loading 
conditions including cyclic loads such as startup-shutdown cycles, wave 

loadings, pressure and thermal cycles; environmental influences, and both 
'normal' fault or extreme operating conditions and the most extreme fault 
conditions possible for the structure. This information together with the 
starting crack sizes are then used as the input to the fracture mechanics 
analysis. Within this analysis cracks can be assessed to determine whether 
they will cause fracture under the postulated conditions and, further whether 

they will grow towards some critical size during the operating life of the plant 
or structure under the action of cyclic loadings and/or corrosive 
environments. The behaviour of the cracks will depend on the material 
properties and in particular the ability of the material to sustain loads in the 
presence of cracks, the 'toughness' of the material. Broadly the behaviour of 

cracked bodies can be split into two categories. Brittle where fracture occurs 

under generally elastic conditions by rapid, unstable propagation of sharp 
cracks. Conversely ductile crack propagation is accompanied by extensive 
plastic deformation, normally leading to crack tip blunting and some stable 
propagation or tearing behaviour prior to instability. Consequently two 
fracture mechanics analysis disciplines have developed to enable the 
assessment of cracked bodies under each category : Linear Elastic Fracture
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Mechanics ( LEFM ) for brittle behaviour and elastic Plastic Fracture 
Mechanics (EPFM) or Post Yield Fracture Mechanics (PYFM) for the more 
ductile materials. LEFM has been considered in some detail here, however 
non-linear fracture mechanics was not utilised in this work and has therefore 
not been considered in this review. The reader is referred to standard texts 
for a discussion of this behaviour.

2.2 Linear Elastic Fracture Mechanics (LEFM)

The basis of LEFM is generally recognised as the work of Griffith [1,2] in 
1921-24. Griffith considered an infinite plate of unit thickness with a central 
transverse crack of length 2a loaded remotely by either a fixed displacement, 
fixed grip loading, or a uniform load, Figure 2 .1. Griffith showed that when the 
total energy of the system is decreased by the crack extension then 

propagation is energetically favourable and unstable extension of the crack 
will occur. By considering an energy balance between the loss of potential 
energy, U, of the plate due to a small change in the crack half length, da, and

the energy required to create the new crack surface area (=4yda : y=  surface 

energy per unit area for the plate) Griffith predicted a fracture stress o f :

4yE

1 TZ 3  ;

1 /  2

for plane stress

(1)

Of =
4yE / 2

( 1 -v 2)rca/ for plane strain

Where x> is Poisson's ratio and E is Young’s modulus. Irwin and Orowan [3,4] 

later modified the Griffith criterion after observing that even in brittle 

materials, such as glass, the main energy absorbing process was plastic flow 
at a small region at the crack tip. However the Griffith equation can still be

used if the 4y term is interpreted as the total potential energy release rate of 

the system including the plastic work at the crack tip. This is usually denoted



Gc and termed the critical strain energy release rate. It should however be

noted that the resulting term stills shows a dependence on an a"1/2 term. This 
dependence is the basis of modern LEFM approaches and is the most 
important result of Griffith's findings.

2.2.1 The Stress at a Crack Tip.

The faces of a crack can be considered to move relative to each other in one 
of three different ways, Figure 2.2.Stresses acting normal to the crack faces 
give rise to the opening mode or mode I loading. In-plane shear stress gives 
rise to a sliding mode normally termed mode II loading. Out-of-plane shear 

stresses lead to a tearing mode known as mode III loading. Superposition of 
these three modes enables the general load case to be fully described. 
Mode I is considered to be the most important since in practice cracks are 
generally found to propagate and fail under mode I conditions.

Westergaard [5] used a complex variable formulation of the Airy stress 

function 0 to solve two dimensional boundary value problems. This method 

is generally referred to as Westergaard stress functions and has been used 
to solve two dimensional problems in cracked structures. Under mode I 
loading the stresses at the tip of an elastic crack in an infinite body can be 
shown to be :

(2)

g z  =  0  plane stress

gz = u(ox + Gy) plane strain 
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where ’+...' represents further higher order terms which are normally 
neglected for small r. The co-ordinate system used to describe the stress field 
is shown in Figure 2.3. Kj is the mode I stress intensity factor. Clearly if K| is 
known then the stress system at the crack tip is fully defined irrespective of 
the geometry of the body in which the crack is contained. Similar solutions 
can be derived for the displacements in the vicinity of the crack tip and 
indeed for the stresses and displacements at a crack tip under the action of 

mode II and mode III loadings. The stresses at the crack tip may be 
generalised as :

ii = - 3 =  fii(0)
(3)ai ' = m ,|j

where fjj(0) are known dimensionless functions of 0. Kj must have the 

dimensions ‘stressVlength’. Since the only stress defined in the problem is 

the remote stress a and the only available length is that of the crack, ‘a’, then 

the stress intensity factor must take the form :

K| = acrs/a (4)

The dimensionless parameter a is dependent on the geometry and the 

nature of the remote boundary conditions. In the case of the Griffith problem 

of an infinite elastic plate with an embedded crack of length 2a a equals Vrc.

It is conventional that this Vtc factor is taken out of a and that ‘a’ is equivalent 

to the crack length when there is only one crack tip and half the crack length 
when two crack tips are present ie. for embedded cracks. Hence the general 
equation for K is:

K| = acr/rca (5)

a  has been calculated for many standard geometries and is tabulated in 

various compendia [6,7]. Methodologies for calculating stress intensity
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factors for non standard geometries include finite element techniques and 
weight functions, these techniques will be discussed in some detail later.

Given that K characterises the stresses at the crack tip it is reasonable to 
expect that the fracture stress may be related to some critical value of K ,Kc, 
which is a material characteristic. In fact re-arranging (5):

Kc
aVia (6)

and comparing with the Griffith equations in (1) with the Irwin-Orowan 

modification of Gc leads to :

Kc = EGC for plane stress

(7)

Kc = E G ^ I -D2) for plane strain

Hence although K has been developed as a parameter which characterises 
the stress system at a crack tip, it can also be related to the energetics of the 

fracture process.

Under mode I conditions it is found that the critical value of K is dependent 

on the thickness of the specimen. This thickness effect is demonstrated in 
Figure 2.4. As the thickness is increased Kc tends towards a lower limit. This 
is the plane strain condition and this lower limit to Kc is termed Kjc the plane 
strain fracture toughness and is a material property. Hence for a linear elastic 
body if the calculated K at a crack tip exceeds K|c for the material then the 
crack will be predicted to propagate.

2.2.2 The Plastic Zone - Limitations of LEFM

The argument so far has used the term LEFM without precise definition. 
Clearly equation(s) (2) predict an infinite stress at the crack tip. This is not 
possible in metallic materials because plasticity will occur when the stress



exceeds the yield stress, consequently a plastic zone develops at the crack 
tip, Figure 2.5. This contradicts the term linear elastic, however as long as the 
size of the plastic zone remains small compared to the crack size and 
specimen dimensions LEFM is considered valid, the so called small scale 
yielding condition. An initial estimate of the plastic zone size ahead of the

crack (0 = 0 ) in plane stress can be made by substituting CyS for ay in 

equation (2) giving :

r* Kf
P 2 rcofs (8 )

In reality the plastic zone size must be greater than this to allow the load 
represented by the shaded area in Figure 2.5 to be carried, hence the plastic 
zone may be represented schematically by Figure 2.5b. Irwin [8,9] argued 
that the occurrence of plasticity at the crack tip causes the crack to behave as 
if it were physically longer. The argument is that due to the plastic 
deformation the displacements in the elastic body will be larger and the 
stiffness will be lower than for the purely elastic case and hence that the 

plate behaves as if there was a larger crack present. It was then proposed 

that the actual crack size, a, should be increased to a+Aa for fracture 

mechanics calculations where Aa is a plasticity correction for the crack size. 

Several expressions for Aa have been proposed since Irwin's work including 

the Dugdale model [10], and similar models proposed by Barenblatt [11] and 
Duffy et al [12]. However it has already been stated that in order for LEFM to 

be valid the plastic zone must be small and hence it is arguable whether 
such corrections are required.

In order to gain a better representation of the plastic zone size including the 

variation of the extent of plasticity with respect to 0 a suitable yield criterion 

must be used. This is normally either the Tresca or the Von Mises yield 

criterion. The crack tip stress fields (2) can be recast in terms of the principal 
stress components as :

8



° 1 =

op = , K| cos (^-(1-sin (&•])
V2tcF \2 /v \2 r

(9)

03 = 0 Plane stress or

03 = 2v - cos 
0 V2ir Plane strain

The plastic zone boundary can then be calculated as a function of 0 by 

substituting (4) into the appropriate yield function. If the Mises yield function 

is used this results in :

r -  K2rp - -------
47COys

[-sin2(0) + (1-2v)2(1+cos(0))j
for plane strain and

rn =
47COys

1 + |sin2(0) + cos(0))j

(11)

for plane stress

If the Tresca yield criterion is assumed :

rn =_ K£
27tOys

cos(|)(1 + |s in ( | ) ] ‘
for plane stress

and the larger o f :
(12)
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for Plane strain

The resulting plastic zone size is therefore slightly different according to 
which yield criterion is adopted as shown in Figure 2.6. The plastic zones 
calculated using Tresca are slightly larger than the equivalent Von Mises 
ones. Similar analysis can be performed for mode II and III plastic zone 

shapes.

In calculating the plastic zone shapes shown in Figure 2.6 the same error 
has been made as in deriving equation (8), that is by limiting the stress to the 
yield stress the extra load from the plastic zone must be redistributed 
somewhere outside the calculated elastic boundary thus increasing the 

plastic zone size. Further neither equilibrium or compatibility have been 
satisfied in the calculation of the plastic zone size. Correction of this error 
requires more complex analysis and has been attempted by several authors 
[13,14] and more recently [15,16]. Verification of the analysis by experimental 
methods is difficult since elastic and plastic strains cannot easily be 
distinguished, if at all. Several workers [eg 17,18] have attempted to 

measure plastic zone shapes using surface techniques such as replication, 
photoelasticity and Moire fringes with varying degrees of success. Hahn and 

Rosenfield used an etching technique [19,20,21] to avoid these difficulties 
and concluded that none of the theoretical approaches gave an accurate 
estimate of the plastic zone size, particularly directly ahead of the crack, ie. at

0= 0. Broek [22] used a technique based on the diffusion of incident light to 

show that the plastic zone shape in plane stress most closely resembles that 
predicted by Tuba [15].



States of plane stress and plane strain are limiting cases. In reality plane 

strain conditions may apply at the centre of a cross section but at the free 

surfaces of the plate az = 03 = 0 , and hence plane stress conditions apply. 

Consequently the plastic zone size must increase from the centre of the plate 
outwards, Figure 2.7. The extent of the plane stress region is dependent on 
the specimen thickness. As the size of the plastic zone approaches the plate 
thickness then a state of plane stress can develop. However if the plastic 
zone is small when compared to the plate thickness then deformation in the

ez direction is constrained by the surrounding elastic material and 

consequently the plastic zone size is restricted leading to significantly higher 
stress levels in the plane strain condition. This behaviour can be used to 
explain the thickness dependence of K|c, Figure 2.4,[23].
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CHAPTER 3

DETERMINATION OF STRESS INTENSITY FACTORS

3.1 Introduction

The applicability of LEFM hinges on the determination of the stress intensity 
factor for a specific crack in a particular component geometry. Having 
evaluated the appropriate stress intensity factor assessments of residual 
strength, crack growth rate and fitness for purpose can be made using crack 
growth models and measured material fracture toughness values. Such 
assessments form the basis of repair/no repair decisions for defects found in 
service and remnant life estimates for operating plant.

It has already been shown that the stress intensity factor can be generalised 
as :

Kj = acWrca (5)

where a accounts for geometrical factors. The applied stress, a, and the 

crack length, a, can be determined by conventional stress analysis and 
inspection techniques respectively ( at the design stage the crack length, a, 
will be defined ), hence the evaluation of the stress intensity factor reduces to

the determination of the appropriate calibration constant (a). For standard

crack geometries several compendia are available [6,7,24,25] which give a 

in graphical or tabular form as a function of normalised crack length, a/W, 

where W is some characteristic length. Unfortunately 'real' components 

seldom look like any of the standard geometries and hence the stress 
intensity factor has to be evaluated using suitable techniques.

Many methods have been developed for the evaluation of stress intensity

19



factors, and it is beyond the scope of this thesis to describe each in detail. 
This section has therefore been limited to an overview of the techniques 
available with a more detailed description being given only to the techniques 
which have been utilised in this work. For a more detailed coverage the 
reader is referred to standard texts such as those by Cartwright and Rooke 
[26], Sih [27] and parts I and II of Tada [24]. Broadly the available techniques 
can be split into three categories; analytical, numerical and experimental. 
Each of these categories has been considered separately.

3.2 Analytical Methods

Analytical methods for the calculation of stress intensity factors form the base 
from which fracture mechanics developed as it was these which led to the 
fundamental equations for crack tip stress and strain fields (2 ). However 

since analytical techniques attempt to solve the boundary conditions exactly 
their range of applicability is limited to relatively simple 2-D cases such as 
infinite plates.

In general the analytical solutions endeavour to find an Airy stress function,^, 

to solve the problem under consideration. The stresses can then be given by:

~  3  (j) _  3 2<|> d2(|>
^ x x  — r ~ r  ^ y y —t - r  °*xy — (1 3 )3y2 dx2 dxdy

which automatically satisfy both the compatibility and equilibrium conditions 
since the Airy function satisfies the biharmonic condition :

V2 (V2<(.) (14)

The precise form of <j) is determined by the imposed boundary conditions. 

For mode I problems Westergaard[5] proposed a complex formulation of <|>:

<t>| = Re[Z|] +ylm[Z|] (15)
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where

Z(z) = ReZ + ilmZ with z = x + iy (16)

Z| is the Westergaard stress function and :

dZj/dz = Z, dZj/dz = Z, and dZ,/dz = Z,' (17)

Combining (13) and (17) gives:

ax = ReZ| - ylmZ,' (18)

Gy = ReZ| + ylmZf (19)

Txy = -yReZj' (20)

The stress intensity factor in terms of the Westergaard stress function for a

crack tip situated at z = a becomes :

K| = V2 rcLimx_>a{Y(z-a)Z| (21)

The simplest configuration considered by Westergaard was that of a crack in

an infinite sheet subject to uniform biaxial tension (a) at infinity. For this 

situation Westergaard used the stress function :

z i = - 7 = =  (22>V (z2 - a2

This technique was used to derive the equations for the stress field at a crack 

tip (2). However a non-singular term in the cx equation was added later after 

an oversight in the Westergaard analysis was discovered by Sih [28] and 
Eftis and Liebowitz [29], the additional term has no effect on the singular 
terms. The Westergaard analysis has been applied to several other crack 
problems by various workers [eg. 30,31,32].
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Other forms of complex stress function have been proposed. One that has 
received much attention is the solution of Muskhelishvili [33] since it enables 
conformal mapping of cracks to holes. This method is discussed in detail by 
Sih [34] and was used for example by Erdogan [35] to analyse cracks in 
infinite sheets loaded by point forces and moments. Other analytical 
techniques which have been utilised in the analysis of cracked bodies 
include methods based on dislocation models [36,37], Greens functions 

[38,39], Integral transforms [40] and a method which uses the stress 
concentration results of Neuber [41] to obtain theoretical expressions for 
stress intensity factors [42].

3.3 Numerical Techniques

With the advent of large computers it became possible to use numerical 
procedures to calculate approximate values of stress intensity factors. Initially 
these methods were developed as numerical solution procedures of the 
analytical functions described above. In particular the complex stress 
functions of Muskhelishvili [33] and Williams [43] have been used in the 
boundary collocation and conformal mapping techniques. The boundary 

collocation method expands the stress function as a power series in 
normalised distance from the crack tip. A set of simultaneous equations is 
formed and the coefficients of the power series derived to satisfy the 
boundary conditions. Gross, Strawley and Brown [44,45] used this method to 
solve a variety of problems including the determination of size correction 
factors for fracture toughness specimens and by Isida [46] to solve the 
problem of a crack approaching a hole. Conformal mapping was used by 
Bowie [47] to treat the problem of cracks emanating from holes. The 
technique involves deriving accurate polynomial approximations to the 
mapping function which transforms the cracked domain into a circular region. 

This reduces the solution of the stress functions in the transformed area to 
the solution of a system of finite equations. A combination of the boundary 

collocation and conformal mapping techniques, the so called mapping 
collocation procedure, was used by Bowie and Neal [48] in the analysis of an 
orthotropic plate. Other techniques available include the solution of singular
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integral equations as used by Cruse [49] in the analysis of three dimensional 
crack profiles and the body force method [50].

3.4 Finite Element Methods

3.4.1 Overview

The finite element method is now widely used in structural analysis and the 
theory is well documented [51]. Briefly the technique involves the 
discretisation of the structure into small elements. Within each element the 
shape, number of nodes and form of the displacement variation are assumed 
according to the element formulation. From this information a complete set of 

equations is formulated for the structure which allows stresses, strains and 
displacements to be calculated for a given load system (e.g. thermal, 
mechanical or centrifugal loading on the structure). Generally the smaller the 
elements used in the discretisation the more accurate the solution. 
Conversely the more elements the more expensive the analysis in terms of 
computing resources. The number of elements used to describe a model is 
then a compromise between accuracy and cost. This situation can be 
improved by using graded mesh (element) sizes ie. a fine mesh is used in 
the regions of particular interest such as areas local to stress concentrations 

and a coarse mesh is used where stresses are low or uniform.

The evaluation of stress intensity factors using the finite element method has 
been reviewed by Gallagher [52], Jerram and Hellen [53], and Rice and 

Tracey [54]. Three types of solution were identified; first and most obvious 
were the so called direct methods which determine the stress intensity factor 
from the calculated stress and strain fields, secondly the indirect methods 

which utilise some form of numerical differentiation to calculate related 
quantities such as energy release rates or compliance, and finally methods 

which use specially formulated crack tip elements to model the 
displacements at the crack tip. Each category has been considered briefly 
here with more detailed attention paid to the most widely used techniques
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and the techniques relevant to this work.

3.4.2 Direct Methods

By performing a conventional finite element analysis it is possible to 
calculate the stresses and displacements at the node points in the vicinity of 
the crack tip. Substitution of these values into the equations for the stress 
and strain fields at the crack tip (3) together with the co-ordinates of the node 
gives values of K|. Since the Westergaard equations are normally 
represented by only the singular terms it is necessary to extrapolate back to 
the crack tip, Figure 3.1. It has generally been reported [55] that the 
displacement method gives better results than the stress method. This would 
be expected since the primary variables in the finite element method are the 
nodal displacements with the stresses being calculated by some 

extrapolation procedure. The direct method has been used to derive stress 
intensity factors by several authors [55 - 59] with varying degrees of accuracy 
depending on element formulations and mesh refinement. Chan et al [55] 
investigated the effect of mesh size and the comparative accuracy of each 
technique. The nature of both methods requires several nodes within the

immediate vicinity of the crack tip at any given 0 in order to allow accurate 

extrapolation. This necessitates a large number of elements and hence 

makes even simple models very expensive in terms of computer resources.

3.4.3 Indirect Methods

The advantage of using indirect methods to evaluate stress intensity factors 
is that exact modelling of the singular stress and displacement fields at the 

crack tip is not critical. It is therefore possible to derive sufficiently accurate 
values using relatively coarse meshes and conventional elements. Several 
indirect methods are now in common use and it is outwith the scope of this 
work to describe all the available techniques in detail. For this reason only 
the most common methods and those relevant to this work are discussed 
here. Other techniques are mentioned with references for completeness.
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3.4.3.1 Strain Energy Release Rate

It has already been shown that the stress intensity factor can be related to the 
elastic energy of the cracked body through equation (7). Where G, the strain 
energy release rate, can be defined as :

and U is the elastic energy stored in the cracked body. Hence performing 
several finite element analyses for different crack lengths and numerical 
differentiation of the elastic strain energy stored with respect to crack length 
allows the calculation of G and subsequently the stress intensity factor K. 
This method has the disadvantage that several finite element runs are 
required. Encouraging results have however been demonstrated by several 
workers. Watwood [60] used the method to analyse a centre cracked panel of 
finite size with a reported difference of the order of 2 percent compared to 

Isida's [61] mapping solution. Swanson [62] used the method in the analysis 
of radially cracked cylinders subject to internal pressure. Other workers [63- 
65] have demonstrated the accuracy of the method by comparison with other 
techniques.

3.4.3.2 The Virtual Crack Extension Method

A variation on the strain energy release rate described above is the virtual 
crack extension technique. While the method is similar to the above 
technique it economises on computation by considering only small (virtual) 
crack extensions, Figure 3.2, while maintaining a constant load and 
recalculating only the change in the stiffness matrix due to the elements local 

to the crack tip. Two formulations of the virtual crack extension technique 
have been proposed; Parks [66] proposed a method based on the stiffness 
derivative local to the crack tip and used this in conjunction with contour 
integration to evaluate stress intensity factors; Hellen [67,68] used a property 
of Gaussian elimination called a front solution [69] to evaluate local energy
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changes and hence to calculate stress intensity factors. These technique are 
now widely implemented in finite element codes such as ABAQUS [70] and 

BERSAFE [71].

3.4.3.3 Contour Integration

An alternative method for direct evaluation of the strain energy release rate is 
based on contour integration of the form :

This integral was originally formulated by Eshelby [72] and independently 
formulated for crack problems by Rice [73] and Cherepanov [74] and is 
normally termed the J-integral. In the above equation W is the strain energy 
density, Tj are the applied tractions, uj are displacements and Xj are

cartesian coordinates normally taken with the origin at the crack tip. r  is a 

contour which begins on one crack face and ends on the other crack face, ds 

is an element of the path T  Figure 3.3. Path independence can be 

demonstrated by reference to Figure 3.3b. Here a closed path is shown 
which does not include the crack tip consisting of four segments such that,

By compatibility J=0 over r , if the stress and displacement gradients are 

continuous. Further along contours r 2 and r 4 the tractions, Tj, are zero and 

by definition dX2=0 . The contributions of r 2 and r 4 to J must therefore 

vanish. Since r-j and r 2 are in opposite sense then it can be concluded that 

since the value of J integrated over the two paths must be identical to zero 

then the value of J for each path must be equal in magnitude. Since these 
paths were chosen in a random manner the path independence of the J

integral has been demonstrated. If r  is allowed to shrink towards a small

(24)

r = r 1 + r 2 + T g + r^
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contour round the crack tip such that the radius, r, of the contour tends 
towards zero the second term of (24) vanishes and J becomes :

Therefore J represents the total energy stored at the crack tip. Due to the 
path independence of J demonstrated above this can be evaluated from a 
zone remote from the crack tip and therefore remote from the singularity. 

Once more this enables the stress intensity factor to be calculated without 
excessive mesh refinement at the crack tip.

The J-integral is now a widely utilised method for the evaluation of energy 
release rates and stress intensity factors and has been included as a facility 
in many of the commercial finite element packages suitable for fracture 

mechanics applications. Evaluation of the integral can be done at the post 
processing stage of the analysis allowing any chosen number of contours to 
be used without the need for repeat stress and strain analysis. Several 
authors [55,58,75] have used the method and shown favourable 
comparisons with other techniques, particularly the displacement substitution 
method.

In certain circumstances the path independence of J is lost. This can occur 
due to the presence of secondary strains, for axisymmetric problems or in 
non-homogeneous environments. A generalised form of J, J* has been 

proposed by Blackburn [76] to overcome these problems. Other authors have 

proposed alternative path independent integrals for the evaluation of stress 
intensity factors [77-80].

3.4.3.4 Special Elements

In conventional finite element formulations the displacement variation is fitted 

by a polynomial approximation, however it has already been shown, 
equation (2), that the displacements local to a crack tip vary as Vr, where r is 
the distance from the crack tip. It then follows that the nature of conventional 
elements is not suitable for modelling crack tip stress and strain fields and

(25)
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therefore large numbers of small elements are required to give adequate 
representation of crack tip conditions. This situation can be improved by the 

use of elements whose displacement variations are forced to include a Vr 
term local to the crack tip. Such elements are termed special or singular 
elements. Several special elements have been proposed including [81-85] 
and it is not intended to review these elements here. For a comprehensive 
review of special crack tip elements the reader is referred to [86,87]. 
Generally the elements include the crack tip at a specified node and model 
the displacement variation radially from this node. More recently Henshell 
and Shaw [88] and Barsoum [89] showed, independently, that the Vr 
displacement function can be achieved in quadratic isoparametric elements 
by moving the midside nodes to the quarter position nearest the crack tip, 
Figure 3.4. This holds for both triangular and quadrilateral elements in both 
two and three dimensions, provided that in the three dimensional case only 

nodal movements normal to the crack plane are made. This technique has 
the advantage that special element formulations are not required. While this 
methodology is generally attractive in the case of complex three dimensional 
problems considerable effort may be required to ensure the midside nodes 
are correctly positioned. Commercial finite element packages such as 
ABAQUS [90] have incorporated this methodology.

3.4.4 Other Finite Element Methods

Other numerical methods for the determination of linear elastic fracture 
mechanics parameters include crack closure work and compliance 
techniques. The compliance technique is based on the same principle as the 

experimental method described in the following section with the only 

difference being that the compliance of the cracked component is evaluated 
numerically. This method has been used by several authors [91-92] with 
varying degrees of success. In the crack closure work method [93] the 
displacement of the first node along the crack flank is calculated under the 

action of the required external loading system. Then a unit load is applied to 
this node normal to the crack face and a further set of displacements is 
obtained. By extrapolation the force required to close this increment of crack 
can be calculated and hence the strain energy release rate evaluated. This
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offers an advantage over other energy approaches since only one run of the 
model is required with two load cases.

3.5 Experimental Methods

Experimental estimates of stress intensity factors are useful in many 
circumstances. They can be used to confirm analytical or approximate 
solutions or in their own right. The stress intensity factor cannot be measured 

directly and must therefore be found through its relationship with other 
measurable quantities such as strain, displacement or compliance. Since 
there are always errors in experimental measurement of these quantities, 
particularly in complex geometries, and further since other unknowns such 
as residual stresses or material inhomogeneity will be unquantified 
experimental techniques can only give approximate solutions. Several 
methods exist and are widely reported in the literature. Only a brief overview 
is given here and the reader is referred to standard fracture mechanics texts 
such as Broek [94] and Knott [95] or to specific papers for more detail.

Most techniques are based on the measurement of crack tip stress and/or 
strain fields. One such technique commonly used is photoelasticity including 
the use of frozen stress techniques for three dimensional problems. In this 
case the cracked geometry is modelled using a transparent material, such as 
epoxy resin, with a machined slit to represent the crack it is impractical to 
produce sharp cracks in photoelastic materials. Once deformed the 
photoelastic material displays a fringe pattern when viewed through a 
polariscope. This fringe pattern can be related to the shear stress in the 

component and hence the stress intensity factor obtained from :

K| = xV(27cr)/f(0) (26)

As in the direct finite element techniques described above the correct 
solution is only obtained by extrapolating back to the crack tip, r=0 . 
Consequently the accuracy of the resulting stress intensity factor is 

dependent on the extrapolation. This is further confused by the fact that the 
fringes close to the crack tip cannot be used since they will be influenced by
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blunt notch effects. Photoelasticity has been used to examine simple cases 
[eg.96] with reasonable accuracy and expanded using more elaborate 

techniques to examine crack tip stress fields [97,98,99] but without the 
additional steps required to calculate K. It is also possible to use 
photoelasticity to study mixed mode fracture mechanics problems [100].

A more generally applicable technique makes use of conventional strain 
gauge technology to measure crack tip strain fields [101,102,103]. Once 

again the stress intensity factor is evaluated by extrapolating back to the 
crack tip. Care must be taken when using this technique that the strain 
gauges are positioned outside the plastic zone at the crack tip. In addition it 
should be realised that a strain gauge can only measure the average strain 
within the area it covers and that since steep strain gradients may exist close 
to the crack tip significant errors may be incurred, however reasonable 
results have been reported using this technique. The method has the 

advantage that it can readily be applied to cracked components in 
operational plant.

One of the most widely applied experimental techniques uses the 
relationship between the compliance of the specimen and the strain energy 

release rate, G :

which can be combined with the relationship between K| and G (7) to give :

K can then be found from the relationship between the compliance and the 
crack length. Once this relationship is known for a particular specimen 

geometry K can be determined from the measurement of load and load point 
displacement. Several workers [104,105,106] have produced reasonable

(28)
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results using compliance measurements on tapered cantilever beam 
specimens and other similar specimen geometries. However in the case of 

edge and centre cracked plates loaded in tension the compliance of the 
specimen does not change significantly with crack length and hence reliable 
K values cannot be expected.

A further experimental technique which can be used to estimate stress 
intensity factors that was utilised in this work was proposed by James and 
Anderson[107]. The basis of the technique is an empirical relationship of the 
form :

^ -  = f(AK) (29)

between the fatigue crack growth rate and AK. The form of the equation can 

be particularised based on experimental observations using specimens with 
known K solutions. Having derived the relationship the stress intensity factor 
can be derived for a crack growing in a more complex geometry by

measuring the crack growth rate and hence calculating AK. Care is required 

in the use of the method since no account of complexities such as crack 
closure, residual stresses and material effects is accounted for in equation
(29).

3.6 Other Methods for the Determination of K

Several other approximate methods exist for the estimation of stress intensity 
factors. One such technique is the weight function method which will be 

discussed at some length here since it has been utilised in this work. Other 
techniques provide a means of obtaining an idea of the stress intensity factor 
for complex geometries subject to complex loading conditions. These 
methods are only discussed briefly here but are reviewed in more detail in 
[108].
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3.6.1 Weight Functions

Beuckner's principle [109] allows the problem of determining stress intensity 

factors at a stress free crack in a loaded body to be reduced to that of a crack 
with pressure applied to its faces. The boundary conditions for the reduced 
problem are that all tractions and displacements are zero and that the 
pressures on the crack faces are equivalent to the stresses over the same 
area in the uncracked body subject to the original boundary tractions and 
displacements. Beuckner's principle is shown schematically in Figure 3.5. 
The ability to utilise the stress distribution in the uncracked body forms the 
basis of several methods used in the determination of stress intensity factors 
including Green's function, weight functions and superposition techniques.

The weight function method for the determination of stress intensity factors 
was proposed by Beuckner [110] and Rice [111]. A more direct derivation of 
the same results was later given by Paris et al [112] and the method was 
generalised by Labbens et al [113] to enable three dimensional crack 
problems to be considered in a practical manner. In a general form the 

weight function concept suggests that a point load P q  acting at point Q on a 
crack front will produce an opening mode stress intensity factor at point Q’ on 

the crack front, Figure 3.6. Where the stress intensity factor at Q’ due to 
the force at point Q is given by :

KpootWqq. = - ^  (30)
TQ

Where W q q * is termed the weight function. For an opening mode pressure 
acting on the crack surfaces,qQ, the stress intensity factor at point Q\ K q *, is 
given by an integral over one crack surface area,A, given by :

kQ' = JJa WQQ^Q'd a Q (31)

Where dAQ is an infinitesimal area around point Q and qQ may vary across 
the crack surface. Wq q * is independent of the form of qQ, the pressure
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distribution over the crack faces. Further, following Beuckner's principle qQ 

can be replaced by ojj the stress distribution at the crack location in the 

uncracked body. If the appropriate weight function can then be determined 

the stress intensity factor at any point on the crack front can be readily 
calculated for any given load case. The weight function W q q * can be shown 

to b e :

Wqq' = ̂ t M | ^  (32)1+kK |\dx /QQ'

Where k = 3-4a) for plane strain and

= 3-\) for plane stress 
1+0)

\ i is the shear modulus. K | is a known stress intensity factor solution for the

particular geometric configuration under consideration and v*q q * is the 

displacement of the crack surfaces for the known condition.

Closed form solutions for W q q » are known for a limited number of problems. 

Tada [114] derived the solution for a circular crack in an infinite solid as :

W qq . = ^ = : M ^ )  (33)
PQ 7cViilg>Q'

Where

Iq q . = the distance from Q to Q' on the crack front 

a = the radius of the crack front 
r = the distance from point Q to the centre of the crack

Other closed form solutions for W q q * are known for a semi-infinite straight 
fronted crack in an infinite solid [115] and for a circular ligament in an infinite
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body [114] a s :

P q  n fK l& Q '
(34)

and

(35)

respectively. Where Iq q », a and r are defined as before. From (33) and (34) it 

would appear that the weight function is dependent on the inverse square of 
the distance between points Q and Q' and the geometry (curvature) of the 
crack front. However for the third solution (35) these observations do not hold 
for the first term. If however the ligament is large compared to the distance 
lQQ. then the first term becomes negligible and the observation is valid for 
the dominant second term. Oore and Burns [116] utilised this observation to 
formulate a generalised weight function approach. The resulting expression 
for the weight function was :

where s is the crack front, ds is an infinitesimal portion of the crack front and 
Pq  is the distance from Q to ds, Figure 3.7. The line integral term accounts for 

both the geometry of the crack front and the position of the point load within 
the geometry. This approach was further generalised to allow an arbitrary 
pressure (stress) to act over the crack face resulting in a generalised 
expression for K q » as :

(36)
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W q q ’ =
KPqQ'

" P ^
f2 gQdAQ

jcISq' ds

s * /

1/2
(37)

Expression (37) is generally referred to as the O-integral. The validity of the
(37) was demonstrated by comparison with existing solutions for embedded 
crack geometries [116,117].

The O-integral was further developed for application to arbitrary shaped 
surface cracks subject to arbitrary loading. This technique will be discussed 
further in the discussion of surface crack problems in a later section.

3.6.2 Simple Estimation Procedures

Approximate techniques may be utilised to estimate stress intensity factors 
for complex or 'non-standard' geometries or loadings. Generally these 
techniques make use of known results to either bound or estimate the 
unknown case. One such technique [118] uses stress concentration factor 

solutions to derive the stress intensity factor by extrapolating to an infinitely 

sharp notch. Other techniques make use of load relief factors [119] and 
compounding approaches [120]. A detailed review of these techniques is 
given elsewhere [eg. 108] and is beyond the scope of this work.
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CHAPTER 4

3-D CRACK PROBLEMS 

Embedded and Surface Crack Behaviour

4.1 Introduction

The preceding sections have discussed the behaviour and analysis of 2D 
crack problems, in which the crack has a straight front which extends 
through the thickness of the structure or specimen. However in reality 
failures may develop from flaws which pre-exist within a structure due to 
inclusion clusters or welding defects such as lack of fusion, slag inclusion or 
porosity or from a surface imperfection such as a weld detail, arc strike site 
or simply as a result of the cyclic stress imposed at a local stress 
concentration. In these cases a complex 3D crack geometry will exist. 

Generally the crack front will be curved (to a closed form for submerged 
defects) and the crack will be sited in a non-uniform multiaxial stress system. 
This in turn means that the stress field, and hence the crack tip 
characterisation parameter such as K, will vary along the crack front. In a 
structure the problem may be further exacerbated by the proximity of free 
surfaces, other defects and geometrical complications. The complexity of 
the problem rapidly becomes obvious. However the application of fracture 
mechanics to structures demands the solution of these problems in order to 
guarantee the integrity of large fabricated structures such as nuclear power 

plant, aircraft, and offshore installations, which cannot be manufactured 
defect free. The challenge is then to utilise the data which can be readily 
generated in the laboratory on simple specimens to assess the behaviour of 
cracked components. To facilitate this goal it is necessary to make use of 
several assumptions and to utilise several of the approximate fracture 
mechanics analysis techniques discussed in the previous section.

The first assumption which must be made regards the defect shape. In 
general it is assumed that surface breaking defects will assume a semi-
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elliptical form and that submerged defects will form as ellipses. Defects 
discovered in service which do not conform to these geometries are 
recharacterised into suitable forms using established rules [eg.121,122] for 
the purpose of assessment. This work was principally concerned with the 
behaviour of semi-elliptical surface defects and in particular the coalescence 
of multiple co-linear defects and hence this section will be focused towards 
analytical and numerical techniques suitable for these geometries. 
Embedded defects will be considered briefly prior to discussion of the 

surface defect problem, however a full review of this area is beyond the 
scope of this work.

4.2 Embedded Defect Solution

The basis of most modern elliptical crack solutions and indeed the extension 

of these to semi-elliptical crack problems is the work of Irwin [123]. A 
precursor to this work was the analysis of a so called 'penny-shaped' crack 
by Sneddon [124] and Sack [125] and the analysis of the stress field around 
an ellipsoidal cavity by Green and Sneddon [126]. Irwin used the calculated 
stresses and displacements to derive the following expression for the stress 
intensity factor for an embedded elliptical crack acted upon by a uniform 

remote tensile stress:

K, = fflSa/sin20 + a^cos20 ) I
<D c2 (38)

Where O is an elliptical integral of the second kind, given by

and a and c are defined as shown in Figure 4.1. From (38) and (39) it is clear 
that K| will vary round the crack front having a maximum value at the end of 

the minor axis and its lowest value at the end of the major axis ie.:
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K|(0 =tc/2) = and K|(0 =o = °Vrca?/-c
(40)

These expressions form the basis for most modern solutions of elliptical 
crack problems including semi-elliptical surface cracks and quarter elliptical 
corner cracks and are therefore of great practical interest. Application of the 
above solution to surface breaking defects is generally achieved by applying 
a number of correction factors to (38). Normally (38) may be modified to 
account for the varying plastic zone size round the crack perimeter giving:

Where Q is termed the 'flaw shape parameter' and includes the plasticity 
correction:

4.3 Analysis of Semi-elliptical Surface Cracks

4.3.1 Overview

A surface flaw may be considered to be comparable to an edge crack and it 
has been shown [127] that the stress intensity factor for an edge crack in a 
semi infinite body is approximately 12% greater than that for an equivalent 

centre crack. It then follows that to apply (38) and (41) to surface crack 

problems a so called 'back face correction factor' can be applied and that 
this will be of the order of 12% for long shallow surface flaws. In a similar 
manner the proximity of the free surface in front of the crack can be 
accounted for by addition of a front surface correction factor, as can the 
effects of the finite width, also referred to as the finite area, of the component

K, = SJSEfsin20 +a^cos20 )4
2 (41)

Q = <£2 - 0.212-2?-
<r2 y s (42)
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or specimen. For a surface crack loaded in tension the stress intensity factor 
can then be represented by the expression:

KSurface(0) = MpMsMvvKEnribedded (43)

where,

KEmbedded = K *or an embedded elliptical defect 
with the same aspect ratio loaded 
by the same remote tensile stress.

Mp = The front face correction factor

Mg = The back face correction factor

Myy = A correction to account for finite 
area.

This can be further simplified to :

KSurface(0)= ^ E m b e d d e d ^ )  (44)

with,

M = f(a/c,a/t,c,w,0)

The analysis of surface crack behaviour under tensile loading is therefore 
reduced to the evaluation of M, a geometry dependent factor. Where the 

defect is loaded by a combination of bending and tensile stress, Figure 4.2, 
M will be dependent on both the geometry and loading such th a t:

KSurface(0 ) = (Mb%  + Mtot)f(0 )V(7ta)/a» (45)

where f(0) gives the variation of K around the crack front and the subscripts
'b' and T refer to bending and tensile components respectively.
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Due to the practical importance of the surface crack problem to engineering 

components and structures there has been a great deal of interest in the 
evaluation of the magnification factors, M, in equation (45) and in the 
generalisation of these for application to more complex geometries and 
loading conditions. Since the pioneering work of Irwin, numerous stress 
intensity factor solutions have been proposed for the surface crack problem. 
These solutions have been reviewed in some detail in the open literature 

[128-132] and the reader is referred to these sources for a more 
comprehensive review of the available solutions. This section will be limited 
to a brief overview of some of the methods which have been utilised and will 
give detail only for solutions relevant to this work.

The available solutions can be categorised as those based on analytical 

approaches, numerical analyses and empirical approaches based on 
experimental observations. The first of these categories is necessarily 
limited by the complexity of the problem. Of the analytical procedures 
proposed one of the most successful is the alternating method [133]. For 
three dimensional crack problems the alternating method has been used in 
conjunction with numerical procedures to solve surface crack type problems 

[134-136]. More recently Nishioka and Atluri [137-139] have used the 
alternating method in conjunction with a finite element model to obtain stress 
intensity factors for more complex geometries. Experimental approaches to 
the problem have been attempted by correlating crack growth rates 

[140,141] and by photoelastic stress freezing methods [142,143]. While 
these techniques are extremely valuable for the verification of theoretical 

solutions their applicability is limited by practical difficulties and cost when 
attempting to analyse complex geometries and loading conditions.

It is clear from the above discussion that analytical and experimental 
solutions to the surface crack problem are valuable but limited, and further 
that the complexity of analytical approaches, such as the alternating method, 
often necessitates the use of numerical solution procedures. For this reason 
several numerical procedures have been developed for the analysis of 
surface crack problems. The objective of all of these methodologies is to
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provide sufficient flexibility to analyse complex cracked component 
geometries and cracks in non-uniform stress systems. Of these approaches 

the finite element method is one of the most popular. The general methods 
used to calculate stress intensity factors within the finite element method 
were discussed in the previous chapter and will not be repeated here. 
Several authors have used the method for the analysis of surface crack 
geometries [144-147]. Newman [131] compared the calculated stress 
intensity factors at the point of maximum depth for a surface crack using 
fourteen different solutions. The variation between different solutions was 
shown to be as much as 80% for crack depths of a/t = 0 .6 .

4.3.2 Finite Element Solutions - Newman Raju

In an effort to improve this situation Newman and Raju [148,149] produced 

solutions using the finite element method for a wide range of defect 
geometries in flat plates. As part of the analysis a sensitivity study was 
undertaken to study the convergence of the solutions using a range of mesh 
refinements from 1500 to 6900 degrees of freedom. Scott and Thorpe [132] 
and Newman and Raju [150] later produced empirical equations by fitting 
these solutions which enable stress intensity factors to be calculated for any 
specified surface crack subject to tension and bending loadings. The 
Newman and Raju equations allow the stress intensity factor to be evaluated 
at all points around the crack periphery whereas Scott and Thorpe only 
consider the deepest point and the point where the crack intersects the free 

surface.

The Newman - Raju solution is valid for a range of defects in flat plates 
bounded by :

Aspect Ratio : 0 < a/c < 1.0 

Depth : 0 < a/t < 1.0 

and Finite Width : c/b < 0.5
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For Parametric angles : 0 < 0  < n

Where b is the half width of the plate. For a cracked plate with outer fibre 
bending stress, S^, and remote tensile stress, Ŝ , the stress intensity factor at 
any point on the crack periphery is then given by :

K| = (St + HSb)V(jta/Q)F(a/t,a/c,c/b,0) (46)

Where Q is the shape factor for an elliptical crack as described in (39). A 
useful approximation to this expression is :

Q = 1 + 1 ,464(a/c)1 65 for (a/c < 1.0) (47)

and

Q = 1 + 1 .464(c/a)1 65 for (a/c > 1.0) (48)

Newman [131] found that the maximum error in the calculated stress 
intensity factor induced by using these expressions was of the order of 
0.13%. F and H in equation (46) were defined such that the boundary 
correction factor for tension is equal to F and that for bending is equal to the 
product of H and F. The function F is given as :

F = [M-| + M2 (a/t)2 + M3 (a/t)4 ]f0 gfw (49)

where

M1 =1.13-0.09 (a/c) (50)

M2 = -0.54 + 0.89/(0.2+(a/c)) (51)

M3 = 0 .5 -1 .0/(0.65+(a/c)) + 14(1.0 - (a/c))24  (52)

g = 1 + [0.1 +0.35(a/t)2](1 -sin0 )2 (53)
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f0  is an angular function from the embedded elliptical crack solution [126]:

f0  = [(a/c)2cos20  + sin20 ] ^ 4 (54)

The function is a finite width correction factor taken from [151]:

fw = [sec((7t/2)(c/bW(a/t)]1/2 (55)

For the bending component H is given by :

H = Hi +(H2 -Hi)sinP0 (56)

Where

p = 0.2 + (a/c) + 0.6(a/t) (57)

H1 = 1 - 0.34(a/t) -0.11 (a/c)(a/t) (58)

H2 = 1 + G1 (a/t) + G2 (a/t)2 (59)

and

G-| =-1.22-0.12(a/c) (60)

G2 = 0.55 -1 .05(a/c)0-75 + 0.47(a/c)1 -5 (61)

This solution is now widely recognised and has become the standard with 
which alternative techniques are evaluated. The solution does however 
have obvious limitations. Few engineering components can be considered 

as flat plates under simple tension or bending loading. In reality the analyst 
is required to assess cracks at nozzle/vessel intersections or in tubular joints 
with complex weld geometries and stresses which vary along both the minor 
and major axis of the crack. In these cases the empirical equations
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described above are of limited use. It is true that the original work of 
Newman and Raju [148,149] may give useful information as to how the finite 

element method should be applied to these problems but in practice 3D 
finite element modelling of cracked component geometries is prohibitively 
expensive in both time and computing cost. Approximate techniques have 
therefore been developed in order to allow the analysis of these complex 
problems, the alternating technique mentioned above is one such 
technique. Two techniques used in this study which can be applied to both 

complex loading conditions and geometries, but also to more complex crack 
shapes are the weight function method and the line spring technique. Due to 
their relevance to this work each of these techniques will be considered as 
separate sections in turn.

4.3.3 The Line Spring Technique

The line spring model was introduced by Rice and Levy [152,153] as an 
approximate method for the analysis of surface cracks in plate and shell type 
geometries. In essence the method reduces a complex three dimensional 
crack analysis problem to a quasi two dimensional shell type analysis. If the 
model is incorporated within a finite element package for use in the analysis 
of engineering components the savings in terms of the computing resources 
required are clearly substantial, of the order of one order of magnitude 
compared to the equivalent 3-D model, and hence the method is 

commercially very attractive.

The line spring model, henceforth LSM, concept is demonstrated in Figure 
4.3. Figure 4.3a shows the surface crack in a plate, or shell, of thickness t. 
The crack has a surface length of 2c and has a maximum depth equal to a at 
x=0 with a=a(x) along the crack length. Figure 4.3b shows a 2-D idealisation 
of the 3-D geometry where the surface crack is represented as a through 
crack of length 2c with a series of one dimensional springs linking the crack 
surfaces together, the so called line springs. The plate is loaded remotely by 
a membrane force N and a bending moment M per unit length. Since the 
ligament length, t-a(x), varies along the crack length the membrane and
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bending forces which must be carried by the ligament must also vary along 
the crack length and may be represented as N*(x) and M*(x) respectively. In 
the 2-D idealisation N*(x) and M*(x) must be transmitted by the line springs. 

If it is then assumed that 8(x) and 0 (x) represent the relative displacements 

and rotations of the crack faces at the plate mid surface respectively, then 
these may in turn be related to the plate mid-surface displacements Ux(x,y), 
Uy(x,y) and Uz(x,y) by :

8(x) = Uy(x,0+) - Uy(x.O-) (62)

, auz(x,o') auz(x,o+)
e(x) — ^ --------------d T ~

(63)

The LSM relates the local N*(x) and M*(x) to 8(x) and 0(x) using

8(X)

.0 (X ).

Cl 1 (X) C i2(X) 
C21(X) C22(X)J

N(X)
LM(X)

(64)

Where X=x/I, a dimensionless coordinate, and C and S.= are the local 

compliance and stiffness matrices respectively.

Application of the model requires the local compliance C.(X) to be 
determined. It is assumed that these can be obtained at each spring location 
by analogy with the edge cracked strip solution, Figure 4.3c. An edge crack 
of depth equal to the local crack depth at the spring is considered in a strip of

width t loaded by a membrane force, N*(X), and bending moment M*(X). If 8C 

and 0C are the load point displacement and rotations due to the crack in the 

edge cracked plate under elastic conditions :

V Pn(X) P12(X) 1 N

-®C- ,Pai(X ) P22(X). .M
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R  can be derived from available stress intensity factor solutions for the 

SECP [eg. 114]. It is then assumed that C. = P and hence, implicitly, that 5C

and 0C can be used for 8 and 0 as defined in equations (62) and (63) for the 

surface crack problem.

When implemented in a finite element code the method then requires the 
springs to be placed across a through crack in a suitable shell model of the

geometry to be analysed. The resulting equations are then solved for 8(x)

and 0(x) enabling N*(x) and M*(x) to be calculated using equations (64) and 

(65). The local stress intensity factor can then be determined from :

K|(x) = (jta(x))1/2{Fi (a(x)A)N*(x)A

+ F2 (a(x)/t)6M*(x)/t2)} (66)

Where F-j and F2 are determined from the appropriate edge cracked plate 

solutions.

In the analysis of Rice and Levy classical Kirchoff type plate and shell 
theories were utilised in the formulation of the model. More recent work has 
used a more general plate/shell theory allowing transverse shear 
deformations to be accounted for. These results have shown good 
agreement with full 3-D solutions [154-161]. The LSM as implemented in 
the commercial finite element code ABAQUS was utilised in this work. 

ABAQUS uses the line spring elements coupled to 'S8R' general shell 

elements which allow transverse shear. In general the accuracy obtainable 
is considered to be more than acceptable for the purposes of engineering 
analysis. Parks [156] has shown agreement within a few percent of the Raju 
Newman finite element solutions for a wide range of surface crack 
geometries in flat plates.

The line spring concept has been extended to consider non-linear problems 

by considering plastic deformations in the ligament [156,158,159,162-165].
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Application to more complex geometries has been demonstrated by 
Hancock and co-workers [166,167] in their analysis of tubular joints. 

Erdogan has extended the model to enable the analysis of embedded 
defects [168] and to cracks in shells under mixed mode loading conditions 
[169]. Application to the analysis of crack growth problems was considered 
by Miyoshi et al [170].

The LSM model has been demonstrated to give satisfactory results in all of 

the above cases at a fraction of the cost of conventional analytical 
techniques. It was therefore an obvious technique to consider for the 
numerical modelling of coalescing defects.

4.3.4 Weight Functions Applied to Elliptical Defects

The basis of the weight function method for the determination of stress 
intensity factors was discussed in section 3.6.1. Equations (30) and (31) give 
the general form of the weight function formulation as :

WQQ'qQ-dAQ

(31)

where W q q * is the weight function and is given by:

(32)

k = 3-4d for plane strain

= 3 - d for plane stress

1+D

p = Shear modulus 
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Application of this technique to surface cracks would appear, in principle, to 

be relatively straight forward. The problem arises in the paucity of solutions 
suitable for use as reference cases. Most of the solutions to surface crack 
problems available in the open literature are for simple geometries such as 
flat plates or plane cylinders and these solutions only report the calculated 
stress intensity factors with no information regarding crack face 
displacements. It is therefore necessary to determine the reference solution 
using an alternative method prior to application of the weight function 
method for most problems. An obvious candidate method for the 
determination of reference solutions is the finite element method. However 
for complex component geometries with semi-elliptical crack shapes, a 
detailed 3D FE analysis is required for each crack geometry. Given these 
results the stress intensity factors for the crack shapes modelled can be 

obtained for any loading condition through use of the weight function 
method as a post processing option. The cost of such analysis is 
considerable in terms of the computational resources required, the time 
taken to prepare the models themselves and the cost of the cpu time 
required to execute the analysis. Stress intensity factor solutions for surface 
crack type geometries are often required to calculate critical defect sizes and 
locations in complex components and to determine the behaviour of growing 
cracks. In order to analyse problems of this nature using the basic weight 
function technique would be impractical due to the prohibitively high cost 

and the time required to generate the solutions.

A significant amount of effort has been directed towards overcoming the 

practical limitations of the weight function technique in order to produce a 
more useable form. Labbens et al [113] proposed a simplification which 
enabled several crack geometries to be considered within one finite element 
run without the need for re-meshing. This is achieved by the application of 

closure forces to the crack faces as a series of separate load cases. The 
closure forces are applied to nodes close to the preceding crack tip in order 

to produce a smaller crack geometry and therefore to enable several crack 
sizes to be examined within a single FE run. The FE analysis therefore 
produces the reference solutions for several crack geometries under one
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simple load system eg. uniform tension. Weight functions are then applied 
at the post processing stage for all other load cases required. The cost 
savings using this method could be considerable if solutions were required 
for several crack sizes, at the same location under a number of different load 
conditions eg. pressure loadings, thermal shock, residual stress etc., as may 
be required in practice. While the benefits to be gained from this technique 
are clearly attractive the requirement for 3D FE analysis, even in this 
reduced form, makes the weight function approach impractical for many 
applications. Petroski and Achenbach [171] recognized this limitation and 
proposed an approximation for the displacement field which would allow SIF 
solutions from the open literature to be utilised as the reference load case. 
The approximation is based on a general form of crack opening 
displacement u(a,x), approximately ellipsoidal, and a specific solution 
determined by considering the special case of the reference and required 

load case being identical. Petroski and Achenbach applied the method to a 
number of simple 2-D crack problems in their paper and showed good 
agreement with analytical solutions. Application of the method is simply a 
matter of numerical quadrature and requires no FE or other complex 
analysis but does require a suitable SIF solution from the literature. The 
method is particularly attractive for the analysis of cracks under complex 

stress systems such as those caused by thermal shock or residual stresses, 
where although solutions for simple load cases are available they will not be 
available for the stress distributions for specific problems. Mattheck et al 
[172,173] have used the method of Petroski and Achenbach in their 
analyses of surface cracks in plates loaded by stress gradients and shown 
favourable comparison with FE results from the literature. Grebner [174] 

used a similar method to analyse thermal shock problems for pipes with 
circumferential surface cracks. Niu and Glinka [175,176] have extended the 
method to consider stepped plates and weldment geometries.

An alternative approach developed by Oore and Burns [116,117] was 
introduced in section 3.6.1. The method was based around the O-lntegral 
concept with a view to enable the analysis of irregular crack shapes under 
arbitrary normal stress fields. The O-lntegral was derived for an irregular 
embedded crack, Figure 3.8, based on some observations of existing closed
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form solutions and is given as equation (37) and repeated here for 

completeness:

oq is the stress which would exist at point Q in the absence of the crack. 

The O-lntegral offers a very convenient method for the evaluation of stress 
intensity factors around the periphery of any embedded defect under a state 
of stress obtained from analysis of an uncracked body. Extension of this to 
surface crack geometries is based on the hypothesis that: .-

K(0) of embedded crack of the same half geometry 

with the same 'half loading on both halves 
of the crack (Figs 4.4b and 4.4c)

Where C is a constant dependent on geometry but not on loading.

Hence for the particular case of a semi-elliptical surface crack in a plate we 

have:

f2  a QdAQ (37)

K(0) of surface crack subjected to

anv stress distribution (Figs 4.4a and 4.4b )_______ = C (67)

Ksu(9) KS|(0) _ Ks|(0) Constant (68)
Keu(0) Kei(0) Ke,(0)

where the stress intensity factors K(0) are :

Ksu(0) For a semi-elliptical surface crack subjected to
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uniform stress, c2

Keu(0) For the equivalent embedded elliptical crack 

subjected to uniform stress, g z.

KS|(0) For a semi-elliptical surface crack subjected to 

linearly varying stress, oz, Figure 4.5a

Ke|(0) For the equivalent embedded elliptical crack 

subjected to symmetrical linear stress, g z.

Figure 4.5b.

Ksv(0) For a  semi-elliptical surface crack subjected 

to arbitrary normal stress, g z

Kev(0) For the equivalent embedded elliptical crack 

subjected to symmetrical arbitrary normal stress, 

oz . Figs 4.5c.

For the case of semi-elliptical surface cracks in plates it should then be 
possible to evaluate the stress intensity factor of the equivalent embedded 
elliptical crack using the O-lntegral and to calculate the required surface 

crack solution utilising

Ksv =  K e v ( e ) M  (69)
Keu(e)

Where Ksu/Keu can be obtained from literature solutions such as those of 
Raju and Newman. Extension of this to the case of irregular crack shapes 
under arbitrary stress assumes that the crack geometry has no effect on the 
magnification factors ie.:
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Kisv =  K ie v ( 6 ) ^ ! M  
Keu(9)

(70)

Where Kjsv is the SIF at Q' for an irregular surface crack of the same half 
geometry and loading as the irregular embedded crack geometry used to 
calculate the embedded crack solution Kjev. The magnification factor 

Ksu/Keu >n this case is taken for a semi-elliptical surface crack which bounds 
the irregular surface crack.

The method of Oore and Burns therefore has the advantage over that of 
Petroski and Achenbach in that it can easily allow for arbitrary stress 
variation both in the depth and surface length directions with respect to the 
crack surface and in it's ability to analyse arbitrary crack geometries.
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CHAPTER 5

FATIGUE AND FATIGUE CRACK GROWTH

5.1 Introduction

Fatigue loadings on a structure cause cyclic stress variations of either a 
constant or variable amplitude. Typical examples of sources of fatigue loadings 
on structures are vibrations from rotating machinery, wave loadings on offshore 

installations and thermal transient behaviour in power and petrochemical plant. 
These can result in sudden catastrophic failure after the structure has performed 
reliably over a prolonged period. Understanding the fatigue failure process is 
therefore essential if the integrity of critical plant is to be assured.

Fatigue failure is generally considered to be a three stage process. Initiation of 
small crack like defects is followed by a propagation stage where stable crack 

growth behaviour is observed prior to fracture. The fatigue life of a structure or 
component can be assessed using two types of analysis. In the S-N or Wohler 
approach, empirical curves are used to relate the magnitude of the alternating 
stress levels to the expected fatigue life. Corrections exist to account for the 
varying severity of the geometry and to enable variable amplitude conditions to 

be considered. The method is relatively simple to apply, is generally favoured 

by designers and has been adopted by several design codes such as BS5500. 

Alternatively a fracture mechanics based approach can be utilised to quantify 
the propagation and final fracture stages of the failure process. This requires 
considerably more expertise than the empirical approach but has a much better 
physical basis. Difficulty arises at the design stage since no known crack exists 
to analyse. Knowledge of the fabrication process and the resolution of the 
inspection techniques used during pre-service examination can allow 

'maximum’ initial defect sizes to be specified and analysed.
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Since this work utilises a fracture mechanics approach this review of fatigue will 
consider only fracture mechanics based models. A brief description of fatigue 
mechanisms is also included. For a more comprehensive review of the topics 
the reader is referred to the pertinent literature [eg. 93,177]. The first section of 
this chapter considers fatigue in a general sense as applied to 2 -D problems. 

Mechanisms, models and the factors which may effect fatigue life are 
considered. Following this general discussion the fatigue of semi- elliptical 

surface cracks is discussed in some detail.

5.2 Fatigue Mechanisms in Metals

Under the action of cyclic stresses local plastic deformation may occur at a 
microstructural level, even if the nominal stress is well below yield [178,179]. 
Several models have been proposed to explain the fatigue crack initiation 
process based on this local plastic deformation [178,180, 181]. The model of 
Wood [178] is widely used to demonstrate the initiation process and is shown 
schematically in Figure 5.1. During the increasing portion of the load cycle slip 

occurs on a favourably oriented crystal log raphic plane. As the load starts to fall 
the slip plane changes to a parallel plane and slip occurs in the reverse 
direction. The model suggests that the preferential plane changes due to the 
effects of hardening and oxidation of the newly created surface. This cyclic slip 
mechanism can give rise to intrusions and extrusions at the free surface. 
Continued slip due to the cyclic loading may cause an intrusion to develop into 

a small crack.

Once initiated a fatigue crack may continue to grow by a reversed slip 
mechanism [182,183]. Figure 5.2 shows a schematic representation of slip at an 
initially sharp crack tip. Due to the large stress concentration caused by the 
crack tip, slip occurs along planes of maximum shear stress leading to an 

increase in length. Work hardening and increasing stress levels will limit the 

amount of slip in any given plane and activate alternative planes above and 
below the crack along perpendicular shear directions resulting in the blunt,
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extended crack tip shown. This slip process represents localised plastic 
deformation at the crack tip during the opening part of the cycle. As the crack is 
unloaded the surrounding elastic body will compress the local plastic zone 
resulting in further, compressive, plastic deformation at the crack tip. This 
compressive deformation will tend to resharpen the crack tip and leave a ripple 
on the fatigue crack surface at the location of the previous crack tip. Evidence of 

such ripples can be observed on a fatigue fracture surface under an electron 
microscope, and are usually referred to as fatigue striations.

This mechanism is widely accepted as the mechanism of ductile fatigue crack 
growth. Fatigue cracks may also propagate under other mechanisms such as 
microcleavage, where striations may still result but through local brittle fractures, 
and microvoid coalescence. It has also been argued, [184,185], that there is no 
crack initiation period since pre-existing defects will be present in the slip 
bands. These small cracks begin propagation immediately the fatigue loading is 
applied and are arrested by obstructions such as grain boundaries if the fatigue 
loading is very small, thus explaining the fatigue limit observed in many metals. 
Although some experimental evidence may be used to support this it has yet to 

be confirmed.

5.3 Crack Growth Models

For large fabricated engineering structures defects will pre-exist, probably in 
weldments, and the fatigue life of the structure will be largely determined by the 

fatigue crack growth (FCG) process. In general FCG is dominated by mode I 
loadings and this review will limit itself to this type of crack propagation, the 

effects of mixed mode loadings are discussed in some depth in [186].

In the case of high cycle fatigue, where a large number of cycles are required to 

cause failure of the structure, the applied stress range is relatively low and 
consequently the plastic zone at the crack tip is small in comparison to all other 
dimensions. It is therefore reasonable to assume that the stress intensity factor 
will give an accurate representation of the crack tip stress environment and
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hence may be a suitable parameter for fatigue crack growth models. It follows 
that the fatigue crack growth rate per cycle, da/dN, is related to the stress 
intensity factor range K :

da/dN = f{AK> = f{(Smax - Smin)V(7ta)} = f{2SaV(na)} (71)

Where S max and S mjn are the maximum and minimum stress in the cycle 
respectively and Sa (it is conventional to represent stress as S in fatigue) is the 
cyclic stress amplitude, Figure 5.3. Paris [187] and Paris et al [188] were the first 
to point this propose this type of relationship.ln constant amplitude fatigue

where Smjn > 0 :

AK -  Kmax - Kmjn (72)

If the crack growth rate, da/dN, is plotted against AK on a log-log axis, the curve

generally exhibit three regions, Figure 5.4. In region I, when AK is low, the crack 

growth rate is very low and decreases abruptly indicating a threshold below 

which no crack growth will occur,AK^. In the central region of the curve an 

approximately linear region is observed which can be represented by :

log(da/dN) = nlog(AK) + C (73)

and hence :

%  = CAKn (74)
dN

This is the well known equation for fatigue crack growth originally proposed by 
Paris and Erdogan [187]. As the maximum stress intensity factor approaches the 
critical value Kc then the crack growth rate will accelerate rapidly as final 
fracture approaches and this behaviour is responsible for region III of Figure
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5.4. The Paris law (74) can only describe the central region, region II, type of 
behaviour. To represent the whole range of crack growth rates an inverse 
hyperbolic tangent model has been proposed [190]:

log(da/dN) = 0 ,  + C2Tanh- 1 [f(AKeff)j (75)

Where C-j and C2 are material constants and f(Keff) is a function of the effective 
stress intensity factor range which can be determined by considering the crack 
closure stress.

If log(da/dN) versus log(AK) is plotted for a range of materials it is found that the 

relationship in region II is generally linear but that different material data will lie 
on lines of different slopes. This may tend to imply that 'n' in equation (74) is a 
material property. From the ductile fatigue crack growth mechanism discussed 
above it would appear that the amount of growth per cycle is closely related to 
the crack opening. Some attempts have been made to correlate the crack 
growth rate with the crack opening on this basis resulting in the following types 
of models [191,192]:

d a  =C(AK )2 da_ = c [AK.|2 i76)
dN Eays dN IE  I v '

Where E is Young’s modulus and GyS is the cyclic yield stress for the material. It 

has been shown [193] that data for a large variety of materials fall within a 

reasonable scatter band when plotted on the basis of AK/E v's da/dN as 

suggested by the second expression in (76). Conversely materials with almost 
identical elastic moduli have been found to exhibit substantially different crack 
growth rates. It would therefore appear that crack propagation is influenced by 
more parameters than these simple models can account for.

In general a fatigue cycle can be defined in terms of its frequency and two stress
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parameters. These can be the mean stress and the stress amplitude, the 
maximum and minimum stress in the cycle or any other combination of this type. 
A further useful parameter in fatigue is the R-ratio where R=Smjn/S max. When 
R is approximately zero then it would appear to be reasonable to discuss crack

propagation in terms of the range of stress intensity factor, AK, since S mjn 

would be approximately zero as would Kmjn. When R is not equal to zero there 
is a dilemma as to whether the crack propagation should be determined by the

range of stress intensity factor in the cycle, AK, or the maximum stress intensity 

factor in the cycle Kmax or both. As may be expected it has been shown that the 

crack propagation rate is a function of both AK and Kmax [194,195] so th a t;

d a  = f1(K,R) = f2 (Kmax,R) = f3 (AK,Kmax) (77)

Several investigators have fitted empirical relationships which attempt to 
incorporate the effects of R ratio. Broek and Schijve [194] proposed the 

following simple equation:

:7K7 = CKmaxAK

A similar equation was proposed by Erdogan [195] and Walker re-cast these in 

a more general form [196,197]:

da.=  CKfflaxAKn (79)

which was then modified by introducing the concept of the effective stress 

intensity factor range AK* yielding:

^ -= C A K n where AK = Smax(1-R)mV(jia)' (80)
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Alternatively Foreman et al [198] proposed a model which attempted to include 

the R-ratio effect and the effects observed in stage III of the da/dN v's AK curve.

Foreman argued that as Kmax approaches K|C then the crack growth rate da/dN
must approach infinity. The expression proposed was:

da _ CAKn_______________CAKn (81\
dN (1-R)K|0-AK (1-R)(K|o-Kmax)

which can be re-arranged as:

da CAKmKmax / q o \
dN K|C- Kmax

All of these expressions are of a similar nature and none of them are universaly 
applicable. The user must therefore select an appropriate model for his 
application. For the purposes of engineering calculations the Paris- Erdogan 
model is often chosen for simplicity.

5.4 Factors Affecting Fatigue Crack Propagation

Many factors are known to affect fatigue crack growth rates. Among these the 
most prominent are the environment, mean stress, history effects (for variable 

amplitude fatigue), temperature, thickness, material variability and of course the 

particular material. Only the effects of history, environment and mean stress will 

be discussed here as the most significant factors affecting operating plant.

5.4.1 Effect of the Environment

Of the factors which affect the crack propagation rate, the influence of 

environment may be one of the most difficult to account for in predictive 

calculations. Fatigue tests are seldom conducted in a similar environment and
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frequency to that which the component will see during service, partly due to the 
problem of identifying the operating environment and reproducing it in the 
laboratory. For example sub-sea conditions representative of those which 
offshore platform jackets may be exposed to, or wet steam conditions that power 
station boiler components will endure over a twenty year period. It would be 
reasonable to assume that in corrosive conditions, such as sea water, the metal 
surface will be degraded due to corrosion pitting and that these pits would act 
as stress raisers thus reducing the initiation life and hence the life of the 
structure. This model may be extended to the growing crack tip where newly 
exposed material is exposed to the corrosive environment. Interaction between 
the fatigue process and the corrosive action would generally be expected to 
enhance the crack growth rate.

The influence of environment has been the subject of a great many 
investigations on a number of materials [eg. 199-205]. Among these 
investigations it was shown that the crack growth rate in wet air can be an order 
of magnitude higher than in vacuum [200,203]. Hartman attributed this to the 
water content of the air rather than oxygen by observing equal growth rates in 

wet oxygen and wet argon and equal, but much lower, growth rates in dry 
oxygen and argon. However it was concluded that this may be material 
dependent. In sea water solutions the crack growth rate for steels has been 
shown to be up to three times greater than in air [206], although this has been 
shown to be frequency dependent [207]. This frequency dependence can be 

attributed to the time dependent nature of the corrosion process.

5.4.2 Mean Stress Effects

The effect of mean stress on the fatigue crack growth rate is normally small in 

region II of the da/dN v's AK curve but can be significant in both region I and III 

[208-210]. In general terms the effect of increasing mean stress is to move the 

sigmoidal da/dN v's AK curve to the left thus reducing the threshold stress 

intensity factor range in region I. In region III the crack growth rate increases
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rapidly as Kmax approaches Kc or Kjc and hence since as the mean stress 
increases, for the same stress amplitude, Kmax must increase then the

transition to region III behaviour will occur at lower AK's. These effects can be

accounted for using the models of Foreman and Walker discussed above.

5.4.3 Sequence Effects

The effect of variable amplitude cycling on fatigue crack growth is important 
since few structures will experience constant amplitude cycling during their 
lifetime. So called sequence effects can have a substantial effect on the fatigue 
crack growth in a structure. This can be demonstrated by applying periodic 
overloads during a constant amplitude fatigue test [211 ,212 ]. The effect is 
shown schematically in Figure 5.5. Figure 5.6 illustrates the reason for the 
retardation effect shown in Figure 5.5. An overload introduces a large plastic 
zone at the crack tip. As the load is removed the surrounding elastic body 
compresses this extended plastic zone resulting in compressive residual 
stresses at the crack tip. These residual stresses will tend to close the crack tip 
and hence subsequent cycling can only result in crack growth if the tensile 
stresses applied at the crack tip exceed the compressive residual levels. Hence 

the crack growth rate is retarded until the crack tip has grown through the 
overload plastic zone. Similar interaction effects can occur during random 
loading.

Several authors have presented models to predict fatigue crack growth under 
variable amplitude conditions [213-216] with varying degrees of success. This 

work considers only constant amplitude fatigue and as such a complete review 

of these models is beyond the scope of this thesis. The reader is referred to the 
relevant references for further information and to standard texts [eg. 93] for a 
more general coverage of the subject.

5.5 Fatigue of Surface Cracks

In reality fatigue cracks initiate from discrete points along stress concentrations
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such as weld toes. These cracks are not straight fronted and have a finite 
surface length and depth. As a first approximation these so called surface 
cracks are normally represented as semi-ellipses. Due to the curved crack front 
and the possibility that the crack front may lie in a non-uniform stress field then it 
will be probable that the stress intensity factor and hence the stress intensity 
factor range will vary around the crack front. If a simple Paris type law is 
assumed to describe the crack growth behaviour then it would be reasonable to 
assume that the crack may grow at different rates around the periphery and 

hence change shape as it grows. Several authors have considered this 
problem and ’code' type approaches offer some guidance on the analysis of 
surface cracks under the action of fatigue loadings. In this section a brief over
view of the available guidlines is given followed by a short review of some 

relevant literature approaches.

5.5.1 Code Type Approaches

i) British Standard PD 6493.

PD 6493 [122] provides guidance on the assessment of defects in structures 
under the action of different load conditions. For planar defects it is 
recommended that the defect is bounded by a rectangle and idealised by an 
ellipse inscribed within the rectangle, for embedded defects, or a semi-ellipse 
inscribed within the rectangle, for surface cracks, with semi-minor axis equal to 
the depth of the rectangle and major axis equal to the total length of the 

rectangle as illustrated in Figure 5.7. Under the action of fatigue loading the 
shape of the defect is again idealised in a simplified manner which can be 
discussed using the notation of PD6493:

1. If the bending component of stress, Pb, is less than 20% of the total stress 
acting on the area of the defect, NB. stresses are evaluated for an uncracked 

body, then the defect will grow in depth until the aspect ratio, a/c, reaches unity, 
ie. the defect becomes semi-circular. This shape will then remain constant as 
the defect grows until the defect depth equals 90% of the plate thickness at
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which point it will become a through thickness crack.

2. If the bending component of stress, P^, is greater 20% than of the total stress 
acting on the defect area then the defect will be re-characterised as an edge 

crack where the surface length becomes infinite and only growth in the depth 
will be considered.

ii) ASME XI Appendix A

In the ASME approach [121], defects are bounded and idealised in a similar 
manner to that described above for PD 6493, the ASME approach is given in 
Figure 5.7. Article A-5200 of Appendix A describes the treatment of fatigue crack 
growth for the assessment of defects and is reproduced here :

1. Determine the maximum range of K| fluctuation associated with the transient 

AKj.

2. Find the incremental flaw growth a corresponding to Kj from the fatigue crack 
growth data.

3. Update the flaw size by assuming the flaw grows to a geometrically similar, 

larger flaw with a minor half diameter a+Aa.

4. Proceed to the next transient.

In the presence of significant bending stresses the ASME approach allows for 
no change in crack shape in contrast to the rather drastic re-characterisation 
procedure in PD 6493.

5.6 Literature Data
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Several authors have considered the behaviour of surface cracks growing by 
fatigue, lida and Kawahara [217] presented an empirical model developed 
within a larger project by the Japan Welding Engineering Society. A large 
number of fatigue tests were carried out on A533B plate material under a 
number of different crack configurations. The model has three forms :

i) For a sufficiently small initial flaw

b/a = A - B.b/t (83)

ii) For an initially shallow and long flaw

b/a(1 - en/an)1/n = A - B.b/t (84)

iii) For an initially deep and short flaw

b/a = A/(1 - fn/bn)1 /n - B.b/t (85)

where

A = 0.98 + 0.07Rb (86)

B = 0.06 + 0.94Rb (87)

Rb = sb/(s m + Sb) (88)

Sb,Sm ; the bending and membrane stress ranges 
n : an empirical constant near 2.0

e , f : transient constants determined from the initial flaw shape
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This model is attractive due to it’s simplicity in application, however its use is 
limited by the fact that it is empirical and was derived from flat plate data. 
Application of the model to surface cracks in component geometries and stress 
states other than those used to fit the model must therefore be considered as 
extrapolation. Since the model has no sound physical basis there can be little 
confidence in such extrapolations without experimental backup.

Scott and Thorpe considered the problem of surface crack growth in some 
detail [132] and observed that experimental data in the literature [218-223] 
demonstrated that surface cracks will tend to adopt preferred shapes under 
tension or bending loadings. Figure 5.8a and 5.8b show the preferred aspect 
ratio behaviour schematically for tension and bending load cases respectively. 

In general, for surface cracks in flat plates it was observed that under tension 
loading the preferred aspect ratio was nearly semi-circular but decreased 
slightly as the depth increased. For the bending case the cracks showed a 
rapidly decreasing aspect ratio with increasing depth. For both load cases if the 
initial crack shape was significantly different from the preferred (Scott and 
Thorpe suggest equilibrium) crack shape then a rapid change in shape occurs 

to achieve the preferred conditions. Following a review of available stress 
intensity factor solutions Scott and Thorpe proposed that adequate predictions 
of surface crack shape development could be obtained by evaluating the stress 
intensity factor range at the deepest point of the defect and at the surface of the 
plate and growing the crack according to the Paris law at each of these points. A 
similar procedure was adopted in this work and is described in more detail in a 

later section. Kang-Sian et al [224] found that contrary to Scott and Thorpe the 

Paris law type approach could predict the growth at the surface of the plate well 
but that the growth into the thickness was not well correlated. No reason for this 
is offered, however it is possible that the stress intensity factor solution which 
was adopted was inadequate. The discussion of SIF solutions for surface 
cracks by Newman [131] showed that there can be significant differences 
between solutions, the review conducted within Scott and Thorpe's work was 
designed to minimise the problem by determining the most appropriate solution. 
It is therefore possible that use of a better SIF solution provided adequate
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results. Morgan [225] noted that there may be an anomaly in the results of Scott 
and Thorpe which results in adequate description of the fatigue crack shape 
development whilst giving inaccurate values of the SIF. To investigate this, 
surface fatigue crack growth data were used to determine stress intensity factors 
using the approach of Scott and Thorpe and the resulting data compared with 
the mean air line for compact tension specimen geometries. The surface crack 

data showed that the data for both growth into the depth of the plate and at the 
plate surface were well correlated by a single Paris law line, suggesting that 

aspect ratio development would indeed be well predicted, but that this line was 
displaced from the CTS line by approximately a factor of 1.5 on SIF. No 
explanation was given to resolve this but it was noted that other workers had 
observed similar phenomena. An extension of the method is proposed to 
determine the shape development at stress concentrations such as welded 
joints. Some success was demonstrated by applying the SCF to the stress 
range used to calculate the SIF range at the surface intersection of the crack.

Muller et al [226] considered the effects of crack closure on the development of 
fatigue crack shape and compared this with predictions based on local SIF 

solutions as used above and the possibility that averaged SIF's should be 
utilised to predict the crack shape development. The closure model chosen was

proposed by Jolles and Tortoriello [228] and suggests that effective AK's at 

points A and B, Figure 5.9 can be described by :

AKA,eff = UA AKA; AK B>eff = UB.AKB (89)

Measurements of and UB have been made by Fleck et al [229] and are 

given as = 0.85 and UB = 0.75. The ratio of these factors UB/U ^ = 0.88 is 

very similar to an empirical factor introduced by Newman and Raju [150] in their 
analysis of surface crack growth. A general application of this factor would 
however imply that the ratio of UB/U^ is independent of crack shape, loading 
condition, crack size etc. Some improvement in the predicted crack shape 
development was noted in some of the results using closure and averaged
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stress intensity factor ranges, however the work was inconclusive although it 
indicated that further study of closure effects may yield improvements. This type 
of study has also been extended to prediction of fatigue crack growth in more 
complex geometries such as weldments and tubular welded joints [230-232]. 
More recently statistical methods have been utilised to predict the aspect 
variability and crack shape development for surface cracks [233-235]. These 
approaches consider fatigue as a stochastic process and attempt to consider 

the effect of material variability and the inaccuracies in some of the solutions 
adopted.

In summary, fatigue crack growth is a complex process. No definitive answer 
has yet been proposed to the problem of fatigue crack growth, particularly for 
complex crack shapes, such as surface cracks, in real component geometries 
under the action of complex stress fields. Several procedures have been 
proposed and included in codes and recommended practises to allow analysis 
for design and assessment purposes. The intention of these procedures has 
been to assure integrity at all times and to enable the analysis to be conducted 
by designers who have limited or no fracture mechanics expertise. To this end 
relatively simple models, such as the Paris equation, have been adopted in 
conjunction with conservative safety factors.
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CHAPTER 6

MULTIPLE DEFECT BEHAVIOUR

6.1 Introduction

In practice cracks will initiate in structures at regions of stress concentration 
or from defects pre-existing in the structure due to the fabrication process. In 
large welded structures there will therefore be multiple sites where fatigue 
crack initiation is possible, or probable, and therefore it is conceivable that 
several defects will initiate and grow simultaneously. It is important to gain 
an understanding of how multiple defects in a structure will interact if a 
reliable prediction of the life of the structure is to be made. This can be 
particularly critical in the case of part penetrating defects in structures where 
'leak-before-break' arguments are utilised to justify continued service. 
Clearly the geometry of the crack is critical in assessing whether it will snap 

through the section to form a stable through thickness crack, and hence a 
leak condition, or become unstable and continue to propagate resulting in a 
catastrophic failure of the plant. The shape of the defect at the point of snap- 
through will be heavily influenced by the growth and coalescence of the 
multiple defects which lead to the dominant crack. Three distinct areas can 
be considered when examining such behaviour :-

1. The interaction between two adjacent defects and the resultant effect 
on the crack growth rate and shape development of the individual 
defects.

2 . The coalescence of the individual defects to form a single crack.

3. The subsequent growth of the coalesced crack through the structure to 
cause failure.
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This chapter reviews the available literature on multiple defect behaviour as 
a pre-cursor to the next chapter which describes a detailed numerical and 
experimental study of the problem. The review given here starts by 
considering current recommended practice as described in 'code' type 
procedures. A brief review of some pertinent results for two dimensional, 
fully penetrating defects is then given prior to a review of literature on the 
interaction between co-linear surface cracks and finally the fatigue and 
coalescence of multiple surface cracks.

6.2 Current Recommended Practice

Three documents are currently widely adopted for fracture mechanics 
analysis in an industrial environment; British Standards PD6493, ASME XI, 
and the CEGB R6 Procedure [122, 121, 233]. Each of these documents 

contains recommendations for the 'recharacterisation' of multiple defects to 
single defects based on assumed interaction effects. These procedures are 
detailed here and will be referenced when assessing the significance of the 
findings of this work.

6.2.1 British Standards PD 6493

PD 6493 criterion for the recharacterisation for co-linear surface cracks is 
shown schematically in Figure 6.1. In essence two defects are combined into 
one single bounding crack when the separation becomes less than or equal 
to the average defect surface length ie. for two similar surface defects 

coalescence is considered to occur by an instantaneous process when the 

gap between the two equals the surface length of a single defect. The 
recharacterised crack has a surface length equal to the sum of the two 
individual defects surface lengths plus the gap between them and has a 
depth equal to that of the deepest single defect. This resultant crack is 
obtained by bounding the existing separate defects by a rectangle and 
inscribing this rectangle with a semi-ellipse. A considerable amount of 'load 

carrying' material is removed in this procedure, Figure 6.1, which may result 
in an over-conservative life assessment if the assumed interaction is 
excessive.
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6.2.2 ASME XI

The ASME recharacterisation procedure is based on the defect depth as 
opposed to the surface length based procedure of PD 6493 described 
above. A pair of co-planar surface defects are merged when the gap 
between the closest points becomes less than or equal to twice the 
maximum defect depth as shown in Figure 6 .2 . As in PD 6493 the resulting 
single crack shape has a depth equal to the maximum depth of the 
individual defects and a surface length equal to the sum of the two individual 
defect surface lengths plus the ligament between the two.

6.2.3 CEGB R6 Procedure

The R6 procedure allows three levels for the assessment of interaction 
effects for co-linear defects given in order of increasing complexity and 
decreasing pessimism of assessment. These are

i) "Consider all ligaments between defects or between defects and 

surfaces to be part of the defect region." That is bound all existing defects 
by one single large crack without considering the range of any interaction 
effects. This type of approach is obviously conservative and could be 
adopted as a 'first estimate' type calculation to determine the severity of 
the problem and therefore to establish whether a more sophisticated 

analysis will be required.

ii) "Use the interaction criteria of British Standards Institution, PD 6493 or 
ASME Boiler and Pressure Vessel Code, Section XI." As described 
above.

iii) "Estimate K-solutions with the ligaments present". That is perform an 

analysis of the problem 'as is'. This will naturally be the most realistic 
approach but will also be the most expensive and complex and will 
probably require sophisticated techniques such as the finite element
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method.

The R6 procedure offers the most flexible approach and by virtue of option 
(iii) allows the possibility of adopting new technologies as they become 
available thereby allowing some scope for the reduction of the conservatism 
often inherent in fracture mechanics analysis. It may be unsuitable for use by 
analysts who are not experienced in fracture mechanics methods since it 
gives no clear guidance on the most appropriate procedure for any specific 
problem. Both PD 6493 and ASME XI, conversely, offer a very simple 
approach. There is no indication, however, as to the level of conservatism 
inherent in the assumptions or how over conservatism could be reduced.

6.3 Interaction of Fullv Penetrating Cracks

The interaction between fully penetrating cracks was studied by 
Westergaard [5], Irwin [8] and Koiter [234]. In these studies an analyses of a 
periodic array of co-linear cracks in an infinite plate was considered, Figure 
6.3. The resulting expression for the stress intensity factors at the 
'interacting' crack tips was given as :

This solution was then utilised as the basis for the derivation of solutions for 
a central crack in a finite plate by considering the non-zero stress 
components along lines AB and CD in Figure 6.4. Isida [61] developed 
mapping functions te derive appropriate stress concentrations for this 

geometry which were subsequently used to determine stress intensity 

factors [127]. Fedderson [235] showed that these results could be closely 

approximated b y :

(90)

(91)

92



If these solutions are normalised using the SIF for a central crack in an 

infinite plate ( = cW(rca) ) and compared, some preliminary indications of the 

effect of defect interaction become apparent. Figure 6.3 shows a plot of the 

two solutions from which the following observations were made :-

i) For 2a/W < 0.3 there is very little increase in SIF due to either defect 
interaction or finite width, the increase in SIF over the infinite plate 
solution ( = 1 on the plot) is less than 10%.

ii) The effect of finite width and crack-crack interaction are comparable, 
ie. the two solutions lie close to each other.

iii) As 2a/W increases beyond 0.5, the effect of defect interaction and 
finite width are substantial. That is the SIF is magnified by more than 20% 
compared to the infinite plate solution with the magnification tending 

towards infinity as 2a/w approaches 1.

Observation (iii) indicates that when the gap between two co-linear crack 
tips is of the order of the total crack size interaction effects become 
significant. This is consistent with the recharacterisation procedures given in 
PD 6493 as discussed above.

6.4 Interaction Between co-linear Surface Cracks

The results for two dimensional crack problems discussed above give rise to 
some concern when considering the behaviour of surface cracks. If the 

stress intensity factor at a crack tip can be magnified by more than twenty 

percent due to the presence of another crack then it would follow from a 
simple Paris law with an exponent of approximately three, typical for steels, 
that the fatigue crack growth rate would be enhanced by approximately 80%. 
Based on Figure 6.3 the two cracks growing towards each other in a co- 
linear manner would be expected to accelerate rapidly once the gap 

between them was less than the crack size. An effect of this magnitude 

would have a considerable implications for life prediction calculations.
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The problem becomes more complex for surface cracks. It has been shown 
that the stress intensity factor can generally be expected to vary around the 
crack periphery according to the component geometry and loading 
conditions. It may therefore be expected that defect interaction will influence 
the stress intensity factor distribution around the crack periphery which will 
alter the fatigue crack growth rates around the periphery and consequently 
the crack shape development characteristics will deviate from the preferred 

shape observed for single cracks. As discussed in the introduction to this 
chapter any effect on the crack shape development may be particularly 
critical where leak-before-break arguments may be utilised to justify 

continued plant operation.

Murakami [236] and Isida [237] considered this problem using the body force 
method. Their results are reproduced from the Japanese Publications 

[238,239] in [7]. The results were considered at three points; A, B and C, 
Figure 6.5, and for aspect ratios ranging from 0.25 to infinity (the 2-D 
solution). For all the points considered it was shown that the interaction 
would increase as the aspect ratio increased ie. the solutions tend towards 
the 2-D results for higher aspect ratios. As would be expected point A shows 
the most significant effect with SIF's magnified by up to 45% for the 2-D case 
as the defects approached each other, some magnification due to interaction 
was shown at point B reaching a maximum of 11.7% for the 2-D case, point 
C showed very little effects. It is notable that the results considered only the 

case where a/t is approximately zero ie. a half space. Given that the 
indication would appear to be that the interaction effects increase towards 

the 2-D solution as the aspect ratio increases, it may be that finite thickness 

and hence finite area effects will be significant. The work of Murakami was 
extended to consider the case of the interaction between dissimilar defects 
[238] ( also presented in [7]). For dissimilar defects it was shown that K 
around the periphery was significantly enhanced due to the presence of a 
larger defect while the larger defect SIF's were relatively unaffected. For 
more detail of these results the relevant literature should be consulted as the 

results were not directly relevant to this work.

O'Donaghue et al [239,240] investigated the interaction between axial co-
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linear surface cracks in cylindrical pressure vessels using the finite element 
alternating method. The defects considered had an aspect ratio of 0.67 and 

the defects separation was equal to 0.75 times the surface length. Two 
depths were considered; a/t = 0.5 and 0.667. It was demonstrated that the 
SIF was increased by interaction. From the results presented in the paper it 
would appear that the interaction was larger for the deeper defects as would 
be expected. It is not possible to draw positive conclusions from these 
results since only two specific cases were considered. The maximum 
enhancement to K was of the order of 15% at point A for the deepest defect 
case. This would be expected to result in an increase in fatigue crack growth 
rate of approximately 52%. Miyoshi et al [241] utilised the line spring model 
to evaluate the SIF distribution around single surface cracks, twin co-linear 
cracks and some simple 'irregular' shaped cracks represented by triangles 
and rectangles. The paper only presents results for defects with an aspect 
ratio of 0.6 and a/t of 0.8 with varying degrees of separation. Interaction was 
shown to become significant as the gap between the defect tips decreased. 
A maximum magnification due to interaction of around 25% was presented 
graphically for the case of defects separated by an eighth of the total surface 
length (2c) of one crack. The validity of the line spring model for the defects 
considered is not clear.

6.5 Fatigue of Multiple Surface Cracks

The most comprehensive study of surface crack coalescence by fatigue 

crack growth was conducted by the AFC sub-committee of the Japanese 

Welding Society to determine the applicability of the ASME XI fracture 
mechanics guidlines. A large experimental programme was used to 
generate a database and a predictive method was proposed. The work was 
reported in a series of publications by lida et al [217, 242, 243]. In the 
predictions no interaction between defects was considered, crack shape 
development was governed by the empirical model described for single 

defects in section 5.2. The stress intensity factor at the deepest point was 
evaluated using a suitable solution and this point was then propagated 
using a Paris law type equation. The surface length was altered according to
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the shape change model. Coalescence was assumed to occur when the 
crack tips touched. At this moment the defect was recharacterised by a 
single bounding semi-ellipse, ie. it was assumed that no cycles are required 
to form the single crack shape following coalescence. The model is 
empirical and no justification was given for the assumptions, however the 
results appear impressive. Whether the model could be extrapolated from 
the tension and bending of flat plates considered in its derivation to complex 
component geometries is not clear.

Grandt et al [244, 245] considered the coalescence of defects along the bore 
of a hole. Surface and corner crack geometries were considered, a similar 
philosophy to that of lida was adopted in that defects were assumed to 
coalesce when they touched. The cracks were propagated by evaluating K 
at the surface and deepest point and growing them using a Paris law. 
Interaction was included via 'interaction factors' evaluated in [246] for two 
symmetrical corner cracks at the bore of a hole in a flat plate. Soboyejo et al 
[247, 248] considered the fatigue and coalescence of semi-elliptical surface 
cracks using 3-D finite element methods and experimental investigations. 
Twaddle and Hancock [249] studied the interaction and coalescence of co- 
linear surface cracks using a line spring model.
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CHAPTER 7

A NUMERICAL STUDY OF THE INTERACTION 
BETWEEN CO-LINEAR SEMI-ELLIPTICAL DEFECTS

7.1 Introduction

The primary objective of this work as set out in the introduction was to 
investigate the process whereby surface cracks develop through the 
coalescence of small surface defects.

As the first step towards understanding the coalescence of co-linear surface 
cracks a numerical study was undertaken to determine the influence that 
adjacent defects have on each other. Any interactive effects between 
adjacent defects would be expected to significantly influence the local 
fatigue crack growth rate. This would in turn affect the individual defect 

shape development and hence the development of the final coalesced crack 
shape. It was shown in section 5.6 that surface fatigue cracks tend to adopt 
preferential shapes according to the applied loading. Initial crack shapes 
which significantly deviate from the so called preferred shape were shown to 
grow rapidly towards it by propagating preferentially at either the plate 
surface or into the thickness. On this basis the shape of the crack developed 

by coalescence of small defects could be expected to play a significant part 

in the determination of the useful life of the component or structure.

This chapter describes a finite element study of the interaction between 
adjacent co-linear surface defects. The flexibility, sim plicity and 
computational efficiency of the line spring method coupled with the quality of 
the results available in the open literature, as discussed above, made it the 

obvious choice for this analysis. The present work utilised the line spring 
model as implemented in the ABAQUS commercial finite element package 

[70].
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A brief description of the models utilised in this work has been given prior to 

presentation of the results. The results were then reviewed with regard to 
their significance in respect of existing design methodologies and defect 
assessment procedures. Finally pertinent conclusions were drawn.

7.2 Geometries Considered

The notation utilised to describe and discuss the geometries utilised in this 
work is given in Figure 7.1.

A total of twelve defect geometries were utilised for this analysis. Due to the 
flexibility of the line spring method this required only one basic finite element 
mesh, Figure 7.2. The ABAQUS finite element package was chosen for this 

analysis and the mesh consisted of two hundred and twenty five 'S8R' eight 
noded generalised shell elements and ten 'LS3S' symmetrical line spring 
elements. Each defect geometry was created by simply changing the depth 
information for the line spring elements, Three defect aspect ratios, a/c, were 
considered, 0 .2 , 0.4 and 0.6. Four defect depths, a/t, were considered for 
each aspect ratio, 0 .2 , 0.4, 0.6, and 0.8. The different defect shapes were 
obtained by modifying the specified depths at each line spring element.

A c/L ratio of two was utilised for all defect geometries considered in this 
study (c/b=0.667). For the case of multiple defects this represents a defect 
separation equal to c, that is half of the total surface length of one defect. 
Clearly this defect spacing would result in immediate coalescence utilising 

the methodology outlined in BS PD6493 as described in section 6 .2.1 and 
possibly that of ASME XI, depending on the defect depth, and it must 
therefore be assumed that current design approaches consider that 
significant interaction should be expected.

7.3 Assumptions and Boundary Conditions

Due to symmetry only one quarter of the plate was modelled, Figure 7.2. 
Symmetrical boundary conditions were imposed along the plate edge at
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X=0 and along the ligament length of the plate at Y=0. No symmetrical 
boundary conditions were required along the defect plane as the LS3S line 
spring element has built in symmetry. In order to consider the case of 
multiple defects a periodic boundary condition was considered to act along 
the plate edge at Y=c+L (=2b). This was achieved by specifying constraint 
equations using the ABAQUS "EQUATION' option, which forces the edge to 
remain plane while allowing it to displace in X. In effect the solver calculates 
the X displacement for the first node on the edge and imposes this on the 
remainder. By applying this periodic boundary condition the resultant model 
effectively considered an infinite array of self similar defects. The separation, 
defined as the distance between the crack tips, of these defects was equal to 
twice the ligament length, L, for the single defect model ie. equal to c, half 
the defect surface length.

The plate material was assumed to be linear elastic for the

purpose of this analysis and an elastic modulus of 2x10^ MPa and a 

Poisson's ratio of 0.3 were specified for all geometries considered.

7.4 Load Cases

Two options were considered for applying the load to the plate models; 
either a uniform stress, bending or tensile as appropriate. Alternatively a 
fixed displacement (tension) or rotation (bending) could be applied. For the 
case of uniform stress being applied at the free boundary it would be 
reasonable to expect a non-uniform displacement and, similarly, for a fixed 

displacement a non-uniform stress distribution may be expected along the 
free surface.

Displacement controlled load conditions were selected for the purpose of 
this analysis. Justification for this decision was based on consideration of the 
possible application of the results. The objective was to consider the 

development of cracks through defect coalescence on the basis that this 
may be a possible mechanism for defect development and hence failure in 
large fabricated structures. Compatibility considerations would therefore 
imply that the constraint of the surrounding structure would prevent the non-
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uniform displacement which would result from the uniform stress boundary 
condition. In such a structure the loading would be more consistent with the 
displacement controlled boundary conditions.

Two load steps were run for each defect geometry, one with an imposed 
displacement in the Y direction along the top surface and a second with an 
imposed rotation. Both load steps were included in both the single defect 
and periodic defect models resulting in a total of forty eight cases.

7.5 Results

7.5.1 a/c = 0.2

Figures 7.3 to 7.6 and Figures 7.7 to 7.10 present the results for the analysis 
of the lowest aspect ratio defect under tension and bending conditions 
respectively. For each case the results have been presented as plots of 
normalised stress intensity factor versus 0 , the parametric angle. The stress

intensity factors were normalised by aavV(7ia) for all cases. Where cav was 

the average stress applied along the top edge of the plate and a was the 

defect depth. For the bending load cases aav was the average outer fibre 

stress. Superimposed on each plot is the appropriate Newman and Raju 
solution [150] for the geometry and loading. Two variations on the Newman 
Raju solution have been shown on each plot, the first is the complete 

solution as described in section 4.3.2, the second omits the correction for 
finite area, fw. The results were presented in this manner to demonstrate the 
magnitude of the finite area correction for comparison with the magnitude of 

any interaction effects which were observed.

Figures 7.3 and 7.7 also show the normalised stress intensity factor for an 

edge crack of equivalent depth as determined from solutions 1.1.20 and 
1.1.21 of [6]. The edge crack solution utilised was the equivalent solution for 
the recharacterised defect assuming the methodology of British Standards 
PD6493 were adopted. Due to the required compression of the y-axis it was 
not feasible to include the edge cracked plate solution on the other figures.
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The effect of recharacterisation has been considered further in the 

discussion of these results.

7.5.2 a/c = 0.4

Figures 7.11 to 7.13 and 7.14 to 7.16 present the results for the analysis of 
the intermediate aspect ratio defect under tension and bending load cases 
respectively. As above the Newman Raju solutions, with and without the 
finite area correction fw, were superimposed on each plot. Similarly the 
recharacterised edge crack solutions were also presented for the shallowest 

defect cases, Figures 7.11 and 7.14.

7.5.3 a/c = 0.6

Figures 7.17 to 7.20 and 7.21 to 7.24 present the results for the case where 
the defect aspect ratios were 0.6 for the tension and bending load cases 
respectively. As above the Neman Raju solutions both with and without the 
finite area correction fw were superimposed on each plot and the 
recharacterised edge crack solutions have been included presented for the 

shallowest defect cases only.

7.6 Discussion

7.6.1 Validation of the Line Spring Solution

Before considering the effects of interaction based on the results of this 

analysis the suitability of the methodology was checked by comparison with 
the Newman Raju solution.

In general the results were more than acceptable, particularly for the 
shallowest defect for each case. As the defect depth, a/t, increased the 
discrepancy between the Newman Raju solution and the line spring results 
also increased. In particular it was noted that as the defect depth increased 
the line spring solution tended to underestimate the stress intensity factor at 
the deepest po in t, 0 = 90 degrees although the magnitude of this effect was

106



never greater than that of the finite width correction. This was apparent for 
both the tension and bending load cases.

There are two possible explanations for this effect. First the validity of the line 
spring solution must be in doubt for deep defects and particularly where the 
aspect ratio is high due to its basis on the plane strain edge crack solution. 
The validity of the line spring solution is limited by the validity of the edge 
crack plate solution itself as the crack gets deeper, eg. the Gross and 

Strawley solution [45] as utilised by Rice and Levy [152] quoted a range of 
applicability of 0.1<a/t<0.7, and further by the fact that as the surface length 
of the crack reduces relative to the plate thickness then the plane strain 
assumptions of the edge crack plate model and the shell model formulation 
may become less accurate. It may therefore be possible that the deviation 
between the two solutions was simply due to problems with the line spring 
solution. An alternative explanation may be the form of the loading. Newman 
and Raju used a uniform stress loading condition in their finite element 

analysis and consequently the empirical equations utilised here are based 
on an applied uniform stress. Conversely in this analysis a uniform 
displacement or rotation was applied along the top edge of the plate. For 
shallow defects both types of loading condition would be expected to 

produce the same results and this was clearly demonstrated in the figures 
for the shallowest defect cases. However for deeper defects the loading 
conditions become slightly different. It is therefore feasible that for the 
deeper defects the applied conditions in this analysis were less severe than 

those of Newman and Raju due to the effects of load shedding at the 
minimum ligament resulting in lower stress intensity factors at the deepest 

point of the defects.

It should also be noted that the geometry considered in this work was 
marginally outside the applicability of the Newman Raju solution. The 
defined range of suitability for the empirical solution is limited by c/b < 0.5 
whereas the geometries considered in this analysis all had c/b = 0.667. On 

the basis that the purpose of the Newman and Raju solutions was simply to 

determine the suitability of the line spring models it was thought that this 
relatively small extrapolation was acceptable.
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7.6.2 Defect Interaction Effects

Figures 7.3 to 7.24 show that there was very little interaction effects between 
adjacent defects. The single and periodic defect results are closely similar. If 
anything the periodic defect stress intensity factor distribution always lies 
below that for the single defect. However the maximum difference observed 
was of the order of a few percent. On the basis that the line spring model 

itself and the finite element method in general are approximations then 
errors of this magnitude may be expected from the solution itself. Hence, 
accounting for the limitations of the method the results must be taken to 
demonstrate that there was no difference between the two solutions.

The resulting deduction was that the interaction effect between defects in a 

periodic array acted upon by a remotely applied displacement was of a 
similar order to the finite width correction, fw, for a single defect in a plate of 
width 2(c+L) where 2L is the gap between periodic defects. Qualitatively this 
would seem reasonable since the so called ’finite width' correction of 
Newman and Raju can be considered more generally as a finite area 
correction. Given that a periodic array of defects reduces the load bearing 

material area by an identical amount as a single defect in a plate then the 
effect may be expected to be of the same magnitude. For defects with higher 
aspect ratios this may not hold as, locally the conditions approach the 

penetrating crack. This would be consistent with the results of Murakami et al 

[236,238] who considered interaction between semi-elliptical cracks in a half 
space and found negligible interaction for aspect ratios of less than unity but 
some interaction for higher aspect ratio defects. As the finite area correction 

must be zero for a half space no interaction effects would be expected for 
defects with low aspect ratios on the basis of the above discussion.

In engineering applications defects may not be expected to exist in periodic 
self similar arrays, however the magnitude of the interaction between the 

adjacent tips of co-linear defects would be expected to be of the same order 
as that evaluated for the periodic array ie. the finite area correction 
described above would still apply. The magnitude of this effect, and hence
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the implications for component life prediction, for specific defects may be 

judged by the difference between the Newman Raju solutions with and 

without fw as presented on Figures 7.3 to 7.24. The indication would appear 
to be that the effect for shallow defects, a/t = 0 .2 , would be small, less than 
10%, for all of the aspect ratios considered and would increase for deeper 
defects. For the problem addressed by this work of small defects coalescing 
to form the more dominant single cracks the shallow defect results are the 
most relevant. On this basis it would appear that the errors would be small if 
such defect behaviour was modelled by consideration of single defects only, 
with no interaction effects.

The consequence of this finding for defect assessment and sentencing in 
engineering components for the purposes of fatigue crack development are 
therefore fairly simple. Rather than recharacterising defects as at present 
adjacent defects can simply be assessed as single defects with a finite area 
correction applied as a function of half the ligament length 
between the two defects. Such a methodology would allow the defect shape 
development and the fatigue crack growth rate to be predicted using simple 
algorithms. The significance of these results for current practice is discussed 
further in the following section.

7.6.3 Comparison with Existing Procedures

Ultimately the significance of the results of this work must be assessed by 
whether they may present any possibility for improvement of defect 
assessment methodologies. To determine this it was therefore necessary to 

review the results against the practice dictated by the code type 
methodologies described in section 6 .2 .

Three methodologies were presented, British Standards PD 6493, ASME XI 
and the CEGB R6 method. The R6 approach offered a three level solution 
varying from the assumption that all ligaments were part of the crack up to 
performing a finite element analysis of the individual situation. PD 6493 
would recharacterise all defects as edge cracks since the gap between the 
defects was less than the total surface length, 2c, of the single crack. ASME
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XI is more complex to apply since it is based on the ligament between the 
defects being less than the depth of the largest defect, in fact only the defects 

with an aspect ratio of 0.6 would be recharacterised by the ASME XI 
approach. Clearly any recharacterisation which was deemed necessary by 
these methodologies would result in an edge crack replacing the periodic 
array. Figures 7.3, 7.7, 7.11, 7.14, 7.17 and 7.21 show the edge cracked 
plate stress intensity factor superimposed for the shallowest defect cases. 
Table 7.1 summarises the results for the remaining geometries.

Table 7.1 shows that the recharacterisation procedure is extremely severe. 
In all cases the recharacterised SIF, the edge cracked plate solution, is 
significantly greater than the maximum calculated value. Even for the least 
severe condition, a/c=a/t=0.2 under tension, the recharacterised defect has a 
normalised stress intensity factor of approximately 18% greater than the 
peak calculated value. If this was utilised as input to a fatigue crack growth 
calculation using a Paris law with exponent three, the calculated fatigue 
crack growth rate could be over estimated by approximately 64%.

The consequences of excessive conservatism for plant operation could be 
considerable. If the remaining life of a defective structure was evaluated 
using such a procedure then then unnecessary repairs or even shutdown 
may be deemed necessary. In addition to the excess conservatism in the 
calculated stress intensity factors and the resulting propagation rate, defects 
recharacterised as edge cracks or very long surface cracks provide a 
considerably more severe condition if leak-before-break approaches could 
be adopted. It is unlikely that very long surface cracks would pass such an 

assessment and it is not possible for edge cracks to be treated in this way.

This argument suggests that shallow surface defects are currently treated in 
an extremely conservative manner. A simple evaluation procedure based on 
single defect analysis would appear to offer a more realistic solution since 
the interaction between shallow, co-linear semi-elliptical defects has been 

shown to be small. For the assessment of deeper defects, single defect 
solutions have been shown to be appropriate if a finite area correction is 
applied.
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7.7 Conclusions for Chapter 7

1. The line spring model was shown to offer a very effective and inexpensive 

tool for the analysis of complex surface crack problems.

2 . The interaction between a periodic array of co-linear semi-elliptical 

defects was shown to be of the same magnitude as the finite area correction 
for the case of a single defect in a plate of the repeated cell size for the array.

3. Current methodologies were shown to be over conservative for the cases 
considered. Improved procedures could be developed by considering the 
defects individually and applying finite area type corrections.
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TENSION

a/c a/t Kmax
<rl(%a)

0
(Peg)

ECP
NSIF

0.2 0.2 1.16 90 1.370
0.4 1.41 90 2.113
0.6 1.76 90 4.05

0.8 2.08 90 9.06*

0.4 0.2 1.06 90 1.37
0.4 1.18 90 2.113
0.8 1.42 49 9.06*

0.6 0.2 0.98 90 1.37
0.4 1.04 90 2.113
0.6 1.10 90 4.05
0.8 1.56 41 9.06*

a/c a/t

BENDING

Kmax
cpl(na)

0
(Deg).

ECP
NSIF

0.2 0.2 0.852 90 1.052
0.4 0.749 60 1.255
0.6 0.808 30 1.906

0.4 0.2 0.757 90 1.052
0.4 0.661 20 1.255
0.8 0.598 16 3.72*

0.6 0.2 0.695 45 1.052
0.4 0.620 16 1.255
0.6 0.560 16 1.906
0.8 0.495 16 3.72*

* Beyond validity of ECP solution

Table 7.1
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CHAPTER 8

AN EXPERIMENTAL STUDY OF 
DEFECT COALESCENCE

8.1 introduction

In order to support the numerical study presented in the previous chapter 
and to demonstrate the coalescence process, a series of experiments were 
conducted. This chapter gives details of the procedures utilised before 
presenting the results. The results have then been discussed in some detail 

with relevant information from the literature and other pertinent sources used 
for comparison where possible. Finally conclusions based on the result of 
the experimental observations and subsequent analysis have been 
presented.

8.2 Experimental Procedure

The material chosen for the experimental investigation was a plain carbon 
manganese steel described as grade 50D under British Standard 
specification 4360. This material is typical of that used in the fabrication of 
tubular welded joints for offshore structures operating in the North Sea.

In Chapter 5 evidence from the open literature was presented that indicated 

that surface cracks growing under bending appear to grow towards relatively 
low stable aspect ratios, Figure 5.8. On this basis it would be expected that, 
after an initial transient period, the crack growth at the surface of the plate 
would be greater than at the deepest point and hence the defects would 
tend to coalesce more quickly. If any defect interaction effects were to occur it 
was thought that they may be demonstrated more clearly under bending 
conditions. For this reason three point bending tests were chosen for the 
purpose of this work.
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Two test plates were manufactured to the geometry shown in Figure 8.1. The 
starter notches were machined perpendicular to the rolling direction using a 
fine diamond slitting wheel 70mm diameter and 0.15mm thick, producing 
two initial defects nominally 2mm deep with a surface length of 25mm and a 
part circular cross section. The initial defect separation was 25mm ie. equal 

to the surface length of one defect.

A beach marking technique was chosen to monitor the defect development 
during the tests. The procedure utilised was similar to that presented in 
[141], briefly this was

1. Utilising the Newman Raju solution [150] the stress intensity factor at 
the surface and the deepest point the defect was evaluated..

2.The number of cycles required to grow the crack into the plate 
thickness by a specified amount, normally 1-2mm, was then calculated 
utilising a suitable fatigue crack growth law. In this case Paris law 
constants were taken from [250] which had been determined for the 
same batch of material. The law utilised was:

= 8.02 x 10‘12AK2-92 m/cycle (92)
dN

This was the mean line for the specimens tested.

3. The crack growth at the plate surface was then calculated using the 
stress intensity factor from (1) and the number of cycles from (2 ) in 

equation (92). At the end of this step the crack shape was re-defined.

4. The applied stress range was then modified for the beach marking 

cycle block by increasing the minimum stress to what had previously 
been the mean while the peak stress was maintained constant.

5. The applied stress intensity factors at the deepest point and at the
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plate surface were then calculated for the defect shape at the start of the 
beach marking block and the number of cycles required to propagate the 

crack by 0 .1mm calculated. 0 .1mm was thought to be sufficient crack 
growth to produce a visible beach mark.

6 . The stress range was then re-defined for the main crack growth cycle 
block.

7. The defect shape was then updated prior to the start of the next 
increment of crack growth, that is return to step (1).

Figure 8.2 shows the stress history for the beach marking process 

schematically.

The test on the plate was then conducted according to the cycle limits 
defined from the above algorithm. A stress ratio of 0.1 was utilised 
throughout the tests and care was taken to maintain a peak stress intensity 
factor of less than 30 MPaVm in order to maintain linear elastic conditions. 
Both tests were conducted using an ESH servo hydraulic testing machine 
using a standard three point bending rig and a loading frequency of 20 Hz.

After the defects had grown past coalescence, observed by the meeting of 
the crack tips at the plate surface, and the final single crack shape had been 
given time to develop the test was stopped. The specimens were then 
cooled in liquid nitrogen and fractured to reveal the fatigue crack surface. 
Fractographs were made using a medium format camera to allow accurate 

measurement of the beach mark separation.

8.3 Results

The beach marks on the first specimen were extremely faint, particularly 
during the early part of the crack growth. Why this occurred was not clear, 
however the test was paused over night and it may have been possible that 
the crack surface was either damaged when the specimen was unloaded or 
that the beach marks were lost due to corossion effects on the new surface.
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For this reason there were only limited data which could be extracted from 
the first specimen. The available results have been presented where 

possible.

Figure 8.3 shows the two specimen surfaces and identifies the starter 
notches, the point at which the defects coalesced and the final, coalesced 
crack.

Three regions of interest were identified for analysis and presentation of 
results, Figure 8.4. These were the growth of the initial defects through the 
thickness of the plate, the growth of the initial defects at the plate surface 
both towards each other and towards the plate edge and finally the 
development of the final crack shape after the two defects coalesce.

Figure 8.5 shows the defect growth into the plate thickness. The crack length 
axis has been normalised by the plate thickness and the cycles by the total 
number of cycles in the test, in order to present the data from both tests on a 
single graph. As mentioned above only limited data was available for test 1. 
Data has been presented for both individual defect deepest points and the 
'line of coalescence', ie. the growth from the point at which the defects 

coalesced into the plate thickness. The line of coalescence growth becomes 
the deepest point growth of the final coalesced crack after coalescence.

Figure 8.6 presents the defect growth along the plate surface before, during 

and after coalescence, no data was available from the first test for the 
surface growth.

8.4 Analysis and Discussion

8.4.1 General Observations from Fracture Surfaces

Some general observations were possible from simple examination of the 
fracture surfaces. These have been shown in Figures 8.3, 8.7 and 8 .8 . 
Qualitatively Figure 8.3 shows no indication of distortion of the semi-elliptical 
shape of the individual defects as may have been expected if significant
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interaction had occurred. Figures 8.7 and 8.8 show indications of shear lips 
on the fracture surface. It was observed that on both specimens coalescence 

appeared to occur by a final shear process, seen as a line on the 
fractographs where coalescence occurred. Several of these shear areas 
were also observed along the starter notches as demonstrated in Figure 8 .8 . 
In both specimens the defects apparently grew co-linearly until the last few 
millimeteres before coalescence at which point they turned to grow past 
each other and coalesced by a shear process as they overlapped. This 

behaviour has been shown schematically in Figure 8.9. No obvious 
explanation for this was apparent other than that coalescence by shear may 
be energetically more favourable and that this may cause the observed 
behaviour. Similar shear lines along the starter notch fronts, Figure 8 .8 , were 
attributed to coalescence of several smaller defects which initiated along the 
notch prior to formation of the single defect. In fact, the same coalescence 

behaviour as at the centre of the plate.

The first beach mark after the coalescence, Figure 8.7, showed that the crack 
had a re-entrant shape at this stage as would be expected. Propagation of 
this re-entrant corner into the plate thickness would appear to have been 
extremely rapid in comparison with the growth at the individual defect fronts 

such that the final, single crack shape formed very rapidly after the defects 

first coalesced.

8.4.2 Analysis of Crack Growth Behaviour

Observations regarding the crack growth rate through the thickness were 

substantiated by the crack growth behaviour shown in Figure 8.5 for both 
tests where the 'line of coalescence' growth merges with the individual 
defects almost immediately.

Figure 8.6 shows that there was apparently no interaction at the surface of 
the plate. The growth of the defects towards the free edges of the plate 

overlays the growth of the defects towards coalescence. Defect 1 showed a 
marginally slower growth rate towards the free surface than defect 2 , this 
was attributed to uneven initiation around the notch periphery which resulted
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in defect 1 lagging a little in this direction. No dramatic acceleration of the 
adjacent tips was observed as may have been expected from the guidelines 

of PD6493.

Figure 8.10 shows the variation of the stress intensity factor at the deepest 
point of the individual defects and at the line of coalescence as the defects 
propagated into the plate before, during and after coalescence. 
Superimposed on the figure is the stress intensity factors calculated utilising 
the Newman Raju solution for single defects of the same aspect ratio and 
depth as those measured. Although there was some discrepancy between 
the experimental and calculated stress intensity factors during the early 
stages of growth, the agreement is generally good. The discrepancy during 
the early stages can be explained by the irregular initiation behaviour 
indicated by the shear marks along the notch front.

On this basis it would appear that reasonable agreement was obtained after 
stable defect geometries had formed. The stress intensity factor at the 
deepest point of the two defects decreased as coalescence approached, 
coalescence occured when both defects had an aspect ratio of 
approximately 0.4. Following coalescence the stress intensity factor at each 
crack tip rose with increasing crack depth. At the point of coalescence the 
stress intensity at the re-entrant sector of the crack was extremely high. A 
rapid reduction in the stress intensity factor at this point was then observed 

as the depth at this point increased rapidly towards that at the centre lines of 
the starter notches, Figure 8.5. As the three points approached the same 
depth the stress intensity factors merged towards similar levels. The point 
where these three lines merge on Figure 8.10 effectively defines the 
completion of the coalescence process as the stress intensity factor 
distribution around the crack front returns to that for a single crack. As before 
the agreement between the calculations and the experimental data for the 
stress intensity factor was shown to be satisfactory even though no attempt 
was made to model defect interaction indicating that any interaction effects 

were at best second order.

In order to assess the possibility of predicting the coalescence behaviour
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using simple procedures based on existing knowledge, the crack shape 
development was predicted and compared to that observed in the 

experiments. Two predictive techniques were utilised for this study.

The first prediction utilised the solution of Newman and Raju in conjunction 
with the fatigue crack growth law given in (92). For the purpose of the 
prediction it was assumed that there was no interaction between the 
adjacent defects. The stress intensity factors were evaluated at the deepest 
point and at the intersection with the plate surface for the 
individual defects and the defect depths were then extended by a small 
increment into the plate thickness. Equation 8.1 was then utilised to 
determine the required number of cycles to produce the increment of crack 
growth at the deepest point and subsequently to re-calculate the crack 
surface length based on the evaluated stress intensity factor and the 

determined number of cycles. This procedure was repeated until the defects 
were predicted to touch at the adjacent crack tips. At this point the defects 
were recharacterised as a single semi-elliptical crack of the same depth as 
the individual defects and with a surface length equal to the combined 
length of the two.

In addition a prediction of the defect shape development was made using 
the empirical model presented by lida [217, 242, 243], and described in 
section 5.6 for single defects. Briefly the model describes the developing 
aspect ratio for defects with initially low aspect ratios by :

a/c = (A - B.a/t)(1-(e/c)n)1/n (93)

Where

A = 0.92 + 0.03Rb 

B = 0.10 + 0.80Rb 

Rb ~ ASb/(ASm +ASJ-))

ASfo and ASm are the bending and membrane stress components 
respectively, n is an empirical constant given as 2.8 and e is a constant
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determined from the initial conditions.

Figure 8.11 shows the resulting predictions superimposed on the 
experimental data. The data from the two individual defects deviate slightly 
as they propagate into the thickness of the plate. This behaviour may be 
explained by the initiation procedure for each defect along the notch fronts 
resulting in marginally different aspect ratios developing in the early stages 
of growth. The prediction based on the Newman Raju stress intensity factor 
solution lies between the two experimental data sets and was therefore 
considered to provide an excellent prediction. The lida model predicted the 
early stages of growth well but slightly overestimated the aspect ratio as the 
crack depth increased and consequently predicted coalescence at a slightly 
greater defect depth. Coalescence of the two defects appears as a step 
change on the figure as the aspect ratio of the final coalesced crack in the 
tests was determined by bounding the entire crack in a similar way to that 
used to coalesce the cracks in the predictions. Both of the predictions 
essentially coincided for the coalesced crack shape and lay very close to the 

experimental data.

Both the predictions and the data presented in Figure 8.11 appear to show 
the initial defects and the final crack growing towards a similar prefered 
aspect ratio of the type presented in section 5.6 and observed in [132]. This 
behaviour has been discussed further with respect to the ASME guidlines 
below.

The success of the predictions would again indicate that the interaction 

between the adjacent defects was a minor effect since neither model 
included any allowance for interaction.

8.4.3 Comparison with Existing Procedures

In order to determine the significance of the results reported above they 

were evaluated with respect to existing practices. Section 6 outlined the 
main approaches to be considered. Only PD6493 and ASME XI have been 
utilised for this comparison, the R6 offers more scope for variation, including
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full analysis of the actual situation and was not utilised here.

The methodology given in British Standards PD 6493 directs that if the 
bending stress component is greater than twenty percent of the total stress 
then the defect should be recharacterised as an edge crack. Hence for the 
experimental work considered here there was no coalescence to consider 
and both defects were enveloped by a single edge crack. Solution 1.1.21 
from [6 ] was utilised to determine the stress intensity factor for the 

recharacterised defect geometry. The defect was then propagated 
incrementaly by assuming 0 .1mm growth, calculating the number of cycles 
required to produce this growth using (92), re-calculating the stress intensity 
factor and repeating until the edge crack reached the same depth as the 
final crack shape.

Figure 8.12 shows the resulting crack growth prediction superimposed on 
the experimental data for growth into the depth of the plate. Using this 
procedure the recharacterised crack was predicted to reach the same depth 
as the experimental defects in approximately two hundred and thirty 
thousand cycles. By comparison the test was halted after approximately 
seven hundred and sixty five thousand cycles.

ASME XI assumes that the aspect ratio of semi-elliptical cracks will stay 
constant as they propagate and that coalescence will occur when the gap 
between the two defects is equal to twice the depth of the deepest. The 
procedure indicates that the maximum stress intensity factor around the 

crack front should be evaluated and that this should then be utilised to 

calculate the fatigue crack growth rate. Using these guidlines as a basis and 

a crack growth procedure similar to that described above, a prediction of the 
crack propagation rate into the plate thickness was made. The Newman 
Raju solution was utilised to calculate the stress intensity factor around the 
crack periphery for the purposes of the prediction.

The ASME XI prediction has also been superimposed on to Figure 8.12. 
Coalescence was predicted to occur after approximately eighty thousand 

cycles and at a crack depth of 3.8mm. Failure occured, defined by c/b = 0.85

145



ie. when the surface length of the crack was equal to 85% of the plate width, 
after approximately one hundred and twenty four thousand cycles and at a 

crack depth of 5.8mm. In the experiment coalescence of the defects occured 
after approximately six hundred and sixty five thousand cycles and when the 
individual defect dephts were approximatly 10mm and the test was stopped 
after seven hundred and sixty five thousand cycles.

Clearly both of the predictions based on existing methodologies significantly 
under-estimated the duration of the test, PD 6493 by a factor of 3.3 and 
ASME XI by a factor of 6.2. The possible consequences of such over 
conservatism could be considerable when applied to high integrity plant. For 

example if an assessment was done on a power station component which 
was required to last for twenty years then on the basis of ASME it would 
have to actually be suitable for one hundred and twenty four years in order 
to be considered fit for purpose. Such an example is extremely crude but it 
does demonstrate a valid point. A more realistic consideration would be the 
sentencing of defects found during in-service inspection. Often defects are 
found during the routine inspection of plant and critical decisions must be 
made as to whether the plant must be shut down immediately or whether it is 
acceptable to continue operation until the next scheduled shutdown when 

repairs can be undertaken. The commercial implications of these decisions 
are important. If an offshore platform had to close down production outwith a 
scheduled programme the loss in production alone could amount to many 
millions of pounds per day. It is perhaps in this circumstance that the 
limitations of current procedures must be viewed as unacceptable.

Both methodologies significantly under estimated the aspect ratio of the 
growing defects and coalesced crack shape. PD 6493 was the most 
dramatic in that no consideration for finite defect surface length was given 
due to the recharacterisation procedure. ASME XI also significantly 
underestimated the aspect ratio due to the fixed aspect ratio growth 
stipulation. It was however noted that if the initial defects had been of a 

higher aspect ratio the ASME predicion would have resulted in a much 
shorter final crack size, although the defects would have been coalesced 
earlier. This poor prediction of aspect ratio could also have significant
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implications for defect assessment. By over estimating the defect surface 
lengths leak-before-break conditions would be unlikely to be met. That is 

where a defect may have been sentenced as acceptable, at least until a 
convenient repair opertunity, due to the fact that it would not result in 
catastrophic failure of a component but only a leak condition would be 
deemed as critical. Conversely for defects of higher aspect ratios a leak 
condition may be predicted due to the under estimate of crack surface length 
when in fact fracture would occur.

8.4.4 An Alternative Prediction

Due to the apparent inadequacy of the above methodologies for the 
prediction of coalescing behaviour an attempt was made to predict the 
experimental results utilising the Newman Raju stress intensity factor 

solution and the fatigue crack growth law given as equation (92) above. In 
making the crack growth predictions the finite width correction was 
determined from each of three methods :

i) fw was calculated by specifying the plate width for the single defect as the 
distance from the notch centre line to the edge of the plate.

ii) fw was calculated by specifying the plate width as the distance from the 
notch centre line to the middle of the ligament between the two defects ie. 
b=c+L.

iii) To determine the significance of the finite width correction on the single 

defect growth fw was determined based on a single defect in the centre of 
the plate.

In all cases the defects were assumed to coalesce when they touched. 
Coalescence was assumed to occur instantly such that the coalesced defect 
could be considered as a single semi-elliptical crack with depth, a, equal to 

that of the single defects at the point of coalescence and surface length, 2c, 
equal to the combined length of the single defects.
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All three predictions have been superimposed on Figure 8.12. All three 
predicted a significantly shorter life than that observed in the test, a 

maximum of six hundred and ten thousand cycles compared to seven 
hundred and sixty five thousand in the test. Evaluation of fw based on 
methods (i) and (iii) produced very similar results with only a small deviation 
during the later stages of growth, the prediction based on (ii) was similar 
during the early stages but deviated after approximately 50% of the 
predicted life.

The developing aspect ratio predicted by all three methods was identical. It 
is important to recognise that an accurate prediction of the developing 
aspect ratio, Figure 8.11, does not mean that the predicted life will also be 
accurate. Due to the aspect ratio prediction, all three methods predicted 
identical defect depths at coalescence and identical behaviour following 
coalescence. The defect depth at coalescence was predicted as 11.9mm 
compared with approximately 10 and 11mm for the two defects in test 2 and 
approximately 11.6mm in the first test.

It was not expected that the life would be under estimated by these 
predictions. No interaction effect was assumed other that the finite width 

correction utilised in (ii) which produced an under estimate of life of 
approximately 36%. Even the prediction which assumed a single defect in 
the centre of the plate for the calculation of fw, (iii), under estimated the life 
by approximately 20%. The reason for this apparent conservatism in the 
predictions was not clear. The predictions and the experimental data 
deviated from very early in the life. In particular the experimental crack 

growth into the thickness appears to slow between 230-350 thousand 
cycles. It may be possible that the specimen was inadvertantly overloaded at 
this point leading to retardation of the crack growth, however no overload 
was observed during the test. A beach marking cycle block was included at 
230000 cycles and the problem could have occured there although great 
care was taken. An alternative explanation can be found in the form of the 

crack initiation around the notch fronts. The shear lines around the notch 

periphery, Figure 8 .8 , were thought to represent the coalescence of several 
small defects which initiated at different points along the notch front. This
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behaviour had not been fully resolved by three hundred thousand cycles as 
can be determined by counting the beach marks with respect to the data 
points of Figure 8 .12. The decrease in crack growth rate and consequently 
the surprisingly long test duration may have been a result of this initial defect 
formation.

Qualitatively the predicted curve shapes were of the same form as the 
experimental data. The sharp increase in crack growth rate at coalescence 

was accurately predicted and the defect depth at coalescence and aspect 
ratio was well predicted. In any case the predictions represented a 
co n s id e ra b le  im provem ent ove r those  based on the 
methodologies of PD 6493 or ASME XI. Prediction of the aspect ratio may 
provide some significant advantage when assessing leak before break type 
problems as discussed above. Further work would be required to verify the 
life prediction, although on the basis of this data assuming an individual 
defect in a plate with a free surface at the middle of the ligament between 
defects would appear promising.

8.5 Conclusions

1. Experimental evidence has been presented which supports the finding of 
the previous chapter that defect interaction is a second order effect.

2. A considerable magnification of the stress intensity factor at the re-entrant 
crack sector immediately after coalescence results in rapid propagation and 

formation of the final stable crack shape. The rate at which the final crack 

shape is formed is rapid enough that this stage can be ignored for predictive 

purposes.

3. BS PD 6493 and ASME XI procedures for assessing and propagating co- 
linear cracks have been demonstrated to be unrealistic and extremely 
conservative.

4. A prediction based on the Newman Raju stress intensity factor results was 
shown to provide improved predictions.
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CHAPTER 9

A NUMERICAL STUDY OF THE STRESS INTENSITY
FACTOR DISTRIBUTION AROUND A CRACK 

IMMEDIATELY AFTER COALESCENCE

9.1 Introduction

During the experimental investigation of defect coalescence a considerable 
magnification effect on the stress intensity factor at the re-entrant sector of 
the newly coalesced crack was observed. This sector then propagated 

rapidly into the plate thickness to produce a single semi-elliptical crack 
geometry. As the semi-elliptical crack shape was approached the stress 
intensity factor at the re-entrant sector reduced to a magnitude consistent 
with the rest of the crack front. This behaviour was of some interest as it 
provided the basis for the assumption that a predictive technique may be 
developed in which defects are combined to form a single semi-ellipse as 

soon as the adjacent tips meet. In order to gain further insight into this 
behaviour a numerical study was undertaken to determine the stress 
intensity factor distribution around the crack front immediately after 
coalescence.

Two numerical methods were chosen for this investigation. Firstly the line 

spring method was selected due to the ease with which the crack shape 
could be defined within the model. In addition the universal weight function 

or O-integral technique of Oore and Burns [116,117] was utilised. Two 
independent techniques were chosen due to the irregular defect shape to be 
analysed in the hope that some consistency between the two solutions 
would validate the results. Although the line spring methods applicability to 

surface crack problems has been widely confirmed for elliptical cracks there 
are very few solutions for irregular defects. Similarly, although irregular 
defects were analysed by Oore and Burns in their original papers [116,117]
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little validation of this solution is available.

The crack geometry analysed was taken from the first beach mark after 
coalescence for the second test specimen as described in Chapter 8 . By 
adopting this defect shape, comparison with the experimental results for the 
bending load case was possible and provided a further source of validation.

This Chapter describes the methodologies adopted and the assumptions 

made, particularly with respect to the weight functions method. Results have 
been presented for the re-entrant crack geometry under both tension and 
bending. Where relevant, comparisons have been made between these 
results and the experimental data presented in Chapter 8 .

9.2 Numerical Models

9.2.1 Line Spring Model

The line spring model was formulated using the philosophy described in 
Chapter 7 for the defect interaction study, with the exception that in this case 
the depth specified at each line spring element was determined from the 
beach marked specimen. As before a quarter plate model was possible 
through the use of symmetrical boundary conditions and the ABAQUS 
symmetrical line spring elements. A total of one hundred and twenty two 
generalised eight noded second order shell elements were utilised in the 
mesh. As in the defect interaction study loading was applied along the top 
edge of the plate. Both fixed displacement and uniform stress boundary 

conditions were applied in both tension and bending cases.

9.2.2 Universal Weight Function Model

The generalised weight function concept was introduced in section 3.6.1 as 
a methodology formulated for use in the analysis of irregular defect 
problems. In order to utilise this methodology a numerical procedure must 
be developed to solve the so called O-lntegral equation given as equation 
(37) and repeated here :
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In this work (37) was solved in two stages. Initially a model of the crack 
geometry to be analysed was created utilising the FEMGEN finite element 
pre-processor. It should be noted that the O-integral is only applicable to 
embedded defects and for surface cracks a full geometry was created by 
reflection about the free surface as shown in Figure 9.1. A mesh of 
quadrilateral elements was then created over the crack surface with the 
elements getting progressively smaller towards the crack periphery. 
Refinement towards the crack periphery was included to account for the

sensitivity of the solution to the evaluation of the 1/I2q q * term. Figure 9.2 

shows the quantities from equation (37) which must be evaluated in the 
solution. For the purposes of this analysis the stress intensity factor was 
evaluated at every node on the crack perimeter. The first step in the solution 
procedure was to evaluate the area of each element as dAQ, with point Q 
assumed to be the centre of the element, and the line integral term 
associated with that particular area segment. This information was then 

stored along with the coordinates of the element centroid.

In the second stage of the analysis the required stress distribution was 

specified and gq evaluated to determine KQfor each node around the crack 

periphery. Splitting the procedure into two steps in this manner allowed a 
number of stress distributions to be considered without the need for re- 

evaluation of the area parameters for the crack geometry. Several 
magnification factors could also be utilised in the second stage by specifying 
different plate thicknesses or widths for use in the solution..

In order to apply the universal weight function technique to surface crack 
problems corrections must be applied to account for the proximity of free 
surfaces and finite areas as discussed in section 4.3.4. The hypothesis 
presented by Oore and Burns was that the ratio of the stress intensity factor
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for an embedded crack to that of a surface crack of the same half geometry 
and loading was a constant independent of crack shape. Hence :

KsuW _ KjsuW = KjsvW „  constant 
Keu(0) Kjeu(0) Kjev(0)

where subscript 's' represents a surface crack, 'i' an irregular crack, 'e' an 
embedded crack, 'u' uniform loading and V  arbitrary loading. To apply the 

solution of the O-lntegral to the case of a surface crack it was necessary to 
determine the above correction. On the basis that the correction is the same 
irrespective of crack geometry the Newman Raju solution was utilised to 
determine the correction using the following method.

Newman Raju present the solution for the stress intensity factor for a surface 

crack under uniform loading as :

K = (W(rca/Q).F(a/t,a/c,c/b,0 )

within the expansion of F there is a function f0 which determines the angular 
variation of K around the crack front.

F = (M1 + M2 (a/t)2 + M3 (a/t)4 )f0gfw

f0 = ((a/c)2cos20 + sin20 )1/2 

The Irwin solution for an embedded elliptical crack under uniform tension is :

K = cW(7ca/Q)((a/c)2cos20 + sin20)1/2 

An alternative representation of the Newman Raju solution would then be : 

Ksu = (Mf + M2(a/t)2 + M3(a/t)4)gfw.Keu
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with subscripts as before. This formulation allows the correction required for 

the O-lntegral solution to be determined and was adopted in this work.

This correction procedure was included in the second stage of the 
evaluation procedure described above. Hence once the area parameters 
had been evaluated for any crack geometry a solution could be determined 
for any number of surface crack depths under any stress distribution. It was 
felt that the flexibility offered by this procedure justified the two step method.

In order to validate the numerical procedure developed the stress intensity 
factor variation around an embedded elliptical crack under uniform loading 
was evaluated. An ellipse of aspect ratio 0.5 was chosen for this benchmark 
study. Figure 9.3 shows the comparison between the 0-integral solution and 
the Irwin solution. In general the solution was acceptable although some

oscillation was observed towards the end of the major axis, 0 =0 , this was 

thought to be due to the relative coarseness of the mesh in this region. The 
quality of this solution gave confidence in the general methodology for use 
in the analysis of the re-entrant crack geometry.

In order to analyse the re-entrant crack geometry a model of the crack 
surface was created and meshed as described above. A total of almost 

fifteen hundred elements were used to evaluate the O-lntegral. The 
corrections required to determine the equivalent surface crack solution were 
obtained using the methodology described above for an elliptical crack of 
semi-minor axis equal to the maximum depth of the re-entrant crack and 
semi-major axis equal to half the entire surface length. The surface crack 
depth, a/t, was specified as the maximum crack depth along the front, c/b 

was determined on the basis of the experimental plate width.

9.3 Results

Figures 9.4 and 9.5 present the results of the numerical analysis of the re
entrant crack shape for tension and bending respectively. The normalised 
stress intensity factors have been plotted against x/c, where x is the distance 

from the line of coalescence. This axis was chosen in preference to the
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parametric angle, 0 , to avoid ambiguity in it’s definition for the irregular crack 
shape. The Newman Raju solution for an equivalent semi-elliptical crack of 
the same maximum depth and surface length has been superimposed on 
each graph and the experimental data has been included in Figure 9.5 at 
the appropriate locations.

9.4 Discussion

Figures 9.4 and 9.5 show good agreement between the line spring and 
universal weight function solutions. Both exhibit a peak stress intensity factor 
at the re-entrant sector as observed from the experimental data. The two 
solutions apparently diverge slightly towards the point where the crack 
intersects the free surface for the bending load case. It was thought that this 
may have been due to some distortion of the grid used for the numerical 

integration in the O-lntegral evaluation in this region.

The agreement between the experimental data and the numerical results, 
particularly the line springs, at the re-entrant sector and at the surface 
intersection was excellent. Some discrepancy was noted at the deepest 
point of the crack with both analyses apparently over-estimating the stress 
intensity factor at this point. It is possible that this discrepancy was a function 
of the analysis of the experimental data at this point. In order to follow the 
development of the re-entrant sector it was necessary to beach mark the 
specimen frequently just after coalescence. As a result of this the beach 

marks at the deepest point of the individual defects became very closely 
spaced and difficult to resolve accurately. A typical separation was less than 
1mm. Errors in measuring the beach mark separation at this point may have 
resulted in errors in the calculated fatigue crack growth rate and 
consequently in the estimation of the stress intensity factor. Alternatively part 
of the discrepancy may have been due to the fatigue crack growth law 
utilised to evaluate the stress intensity factors from the experimental data 
being incorrect for the specimen utilised. This explanation was thought to be 

less probable due to the accuracy of the solution at the re-entrant sector and 
the surface intersection.
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The Newman Raju solutions for the bounding semi-elliptical crack show very 
good agreement with the line spring solutions along most of the crack 
length. The re-entrant crack solution deviates from the semi-elliptical 
solution only over a small region local to the re-entrant crack sector. This 
observation gave further confidence in the numerical solution and indicated 
that the misgivings concerning the accuracy of the experimental results at 
the deepest point as discussed above may be correct.

Both numerical techniques clearly predicted the magnification of the stress 
intensity factor at the re-entrant sector as observed from the experimental 
data. From this the rapid crack propagation at this region to form a single 
semi-elliptical crack shape in a relatively small number of cycles could have 
been accurately predicted from the numerical analysis alone. This result has 
relevance to two particular areas. Firstly it confirms the proposal presented 

in the preceding chapter that fatigue life prediction calculations need not 

consider the coalescence process explicitly due to its short duration. 
Secondly it may indicate some consequence for defect assessment 
procedures for brittle materials. If two such cracks coalesced it may be 
possible that the magnification of the stress intensity factor at the point of 
coalescence would result in local brittle crack propagation. This problem 
was beyond the scope of this work but may merit some attention.

A possible explanation for the severity of the magnification of the stress 

intensity factor at the re-entrant sector may be derived by consideration of 

the crack face displacements. It was shown in section 4.2 that an embedded 

elliptical defect under uniform tension will have the maximum stress intensity 

factor at the end of the minor axis and the minimum stress intensity factor at 
the end of the major axis. This behaviour is due to the crack face 
displacements. Given that the displacement at the centre of the crack must 
be the same on both the minor and major axis the displacement local to the 
crack tip itself must be more on the minor axis than the major. Since the 
crack tip opening displacement can be related to the stress intensity factor 

directly it then follows that the stress intensity factor must be largest on the 
minor axis. If this argument is then transferred to the re-entrant crack 
considered in this work then it may be postulated that as soon as the two
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defects coalesce the crack faces along the major axis would attempt to 
displace in an elliptical form. This displacement would however be 

restrained due to the short re-entrant sector which, if considered as an edge 
crack, would adopt a much smaller displacement under the same loading. 
The resulting displacement would therefore be a compromise between 
these two and would result in a significant amplification of the local stress 
intensity factor at the re-entrant sector as observed. A more detailed study 
would be required to demonstrate this behaviour utilising more involved 

procedures such as three dimensional finite element modelling. Such 
models are complex and expensive computationally and were not attempted 
as part of this work.

9.5 Conclusions

1. A numerical procedure was presented to enable the universal weight 
function technique to be utilised for the analysis of irregular crack 
geometries.

2. A numerical study utilising universal weight functions and line spring 
models was used to predict the magnification of the stress intensity factor at 
the re-entrant crack sector observed in the experimental investigation.

3. The numerical solutions were verified utilising both the experimental data 
and the Newman Raju solution for a bounding semi-elliptical crack.
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CHAPTER 10

DISCUSSION AND CONCLUSIONS

Chapters 7,8 and 9 presented the results of a numerical and experimental 
investigation of the coalescence of co-linear semi-elliptical defects by 
fatigue. In this chapter the significance of these results has been discussed 
prior to drawing the overall conclusions.

The results have been reviewed in three sections. Initially the interaction 

between defects has been discussed by reference to the numerical and 
experimental results. A brief discussion of the coalescence process itself has 
then been presented. Finally, the implications of the results have been 
discussed in terms of current recommended practice. Possible 
improvements to these procedures have been indicated where relevant.

10.1 Defect Interaction

A numerical study of defect interaction was presented in Chapter 7. The line 
spring model was shown to be an efficient methodology for the analysis of 
complex surface crack problems. The suitability of the model was 
demonstrated for aspect ratios ranging from 0.2 to 0.6, and for normalised 

defect depths, a/t, ranging from 0.2 to 0.8. It was shown that the interaction 
between two co-linear defects under tension or bending loads was of the 
same order as the finite area correction, fw. This was supported by the 
observations from the experimental investigation described in Chapter 8. No 
enhancement to the fatigue crack growth rate at the adjacent crack tips was 
observed during the tests indicating that no significant magnification to the 

local stress intensity factor occured due to defect interaction. Further, it was 

found that the developing aspect ratio could be accurately predicted using 
models which did not consider interaction between the defects. That is, there
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was apparently no deviation from the shape development which would have 
been expected for a single a defect growing under the same loading.The 
test durations predicted by models which did not consider interaction 
between the adjacent defects were found to be less than the observed test 
lives. If significant interaction had occured between the defects these 
predictions would have over estimated the test durations. This further 
supported the finding that the interaction between defects is simply due to 

the finite area of the test plate.

The combined experimental and numerical results demonstrated that the 
growth of co-linear defects could be adequately predicted using isolated 
defect solutions, such as those of Newman and Raju, with an appropriate 
finite area correction. It was also noted that the ability of any given model to 
predict the developing aspect ratio did not imply that an accurate prediction 

of life could be produced. Test durations were predicted in Chapter 8 using 
three different methods to determine the finite area correction. The results 
showed variations in the predicted life but identical aspect ratio development 

predictions.

10.2 The Coalescence Process

The results of the numerical study of the stress intensity factor distribution 
around the crack periphery immediately after coalescence showed a 
significant magnification of the stress intensity factor at the re-entrant sector. 

This was consistent with the observations from the experimental results. It 

was found that the re-entrant sector propagated rapidly into the plate 

resulting in the final crack shape developing in relatively few cycles. The 
stress intensity factors calculated from the beach marks were consistent with 
those determined from the numerical analysis.

During the coalescence process itself, the two adjacent crack tips were 
observed to deviate from their co-linear growth during the final few 

millimeters of growth before combining by a shear process. Similar shear 
lips were observed around the notch peripheries indicating that the initiation 
along the notches had occured at several discrete points resulting in several
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small defects which coalesced to form the semi-elliptical defect which grew 
from the notch.
The high stress intensity factor produced at the re-entrant sector of the crack 
resulted in rapid propagation of this sector to form the final crack shape. The 
duration of this process was extremely short when compared to the total test 
duration. It would therefore be reasonable to consider the coalescence 
process as instantaneous for the purpose of any predictive model. Both the 
life predictions and the aspect ratio predictions presented in Chapter 8 
would support this proposal. If the coalescence process need not be 
considered then relatively simple prediction procedures could be developed 
on the basis of single defect solutions as indicated in 10.1. That is, co-linear 
defects could be analysed separately and assumed to coalesce to form a 
bounding elliptical crack as soon as the adjacent tips meet.

The implications of the magnification to the stress intensity factor at the re
entrant sector of the coalescing crack for brittle material may merit some 
investigation. If the local stress intensity factor was greater than the material 
fracture toughness then local brittle crack extension could occur. 
Consequently unstable crack advance may occur along a larger area of the 
crack front before arresting. Clearly this problem would need to be 

addressed in the formulation of new models for fatigue life prediction 
designed to assess multiple crack problems.

10.3 Significance With Respect to Existing Procedures

The relevance of this work must ultimately be assessed against whether it 

offers any indication towards possible improvements to current procedures. 
Three current procedures were presented during the discussion of multiple 
defects in Chapter 6, ASME XI, British Standard PD6493 and the CEGB R6 

approach. The R6 approach was the most flexible and included the option of 
conducting a detailed analysis of the specific problem. Conversely the two 
‘code’ type approaches proposed more rigid rules for the assessment of 
multiple defects. Since the R6 approach offered no detailed guidance it was 
not suitable for comparison with the results of this analysis and has not been 
considered further.
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Both PD6493 and ASME XI provide guidance as to how the defect aspect 

ratio should be controlled as it grows. ASME XI suggests that the aspect 
ratio should be kept constant irrespective of the loading condition. PD6493 
differentiated between applied stress distributions with less than 20% of the 
total as bending stress, and those with larger bending components. Where 
the bending stress is less than 20% of the total, the defect surface length is 
assumed to remain constant and the depth increased until an aspect ratio of 
unity is reached. A constant aspect ratio is then assumed for the remaining 
growth. If however the bending stress component is greater than twenty 

percent of the total, the defect is recharacterised as an edge crack. Both of 
these procedures were found to be unrealistic. ASME XI significantly 
underestimated the developing aspect ratio for the test plates. PD6493 did 
not recognise that the defects would grow as surface cracks at all since the 
tests were conducted under bending and hence PD6493 recharacterised 
the defects as a single edge crack. It was found that the developing aspect 
ratio could be accurately predicted using either the empirical model of lida or 
using a simple numerical procedure based on single defect stress intensity 
factor solutions.The simplistic approach of both ASME and British Standards 
procedures would not be suitable for the assessment of cracked 

components where leak-before-break arguments could be utilised to justify 
continued service due to the inadequate predictions of the crack shape 
development.

The recharacterised edge crack was shown to considerably over estimate 
the stress intensity factor at the crack tips even for shallow, low aspect ratio 

co-linear defects. It was shown in Chapter 7 that the conservatism due to the 

recharacterisation increased for deeper defects and higher aspect ratios. 
Since the analysis presented in Chapter 7 included the effects of defect 
interaction then the assumptions of PD 6493 were shown to be excessively 
conservative.

ASME XI and PD6493 also give guidance as to how adjacent defects 
should be taken to coalesce. The ASME XI rules are based on a comparison 
between the defect maximum depth and the separation between the
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adjacent tips. PD6493 compares the largest defect surface length with the 
separation. Specific recommendations were presented in Chapter 6 and 

discussed in Chapters 7 and 8. It was found that the codified procedures did 
not accurately reflect the observed behaviour. The numerical results for both 
tension and bending load cases, presented in Chapter 7 showed that there 
was no significant interaction between the defects and hence no 
requirement to coalesce the defects at some level of separation was 
indicated. This was supported by the experimental observations where no 

interaction between the coalescing crack tips was observed and 
coalescence was found to occur only after the crack tips overlapped. 
Consequently when the code guidelines were utilised to predict the crack 
growth behaviour for the test conditions they were both found to be 
extremely conservative. Further the defect shape at coalescence and the 
final ‘failed’ crack shape was poorly predicted. The PD6493 prediction was 
based on a growing edge crack due to the rechacterisation. The ASME 
guidelines also resulted in the crack surface length being grossly over
estimated. PD6493 under-estimated the test duration by a factor of 3.3 while 
ASME under-estimated by a factor of 6.2. The commercial implications of 
these inadequacies in terms of the assessment of operating plant could be 
considerable due to over conservative predictions resulting in premature 

shut down or unscheduled outages.

If the findings from the defect interaction study and the experimental 
observations were utilised to develop a predictive model using single defect 
solutions with finite area corrections then more realistic assessments could 
be produced. It may also be possible to develop the method for use at the 
design stage by considering statistical distributions of initial defects and 
therefore predicting the size and locations of cracks which could develop in 
the structure. The intial defect size would be specified based on experience 
of the fabrication process. That is through prior knowledge of the type of 
defects which may be introduced through specific welding processes or 
production techniques. A possible application for this type of analysis would 

be the reliability assessments of high integrity plant such as offshore jacket 
structures or nuclear power station components. The benefit of the statistical 
approach would be that there would be no requirement to specify the initial
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crack for analysis during the design stage thus making the use of fracture 
mechanics technology at the design stage more practicable. It would be 
possible to update these calculations using the results of conventional in 
service inspection routinely carried out on high integrity plant.
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10.4 Overall Conclusions

1. The line spring model was shown to offer an efficient and inexpensive tool 
for the analysis of complex surface crack problems.

2. It was demonstrated that the interaction between a periodic array of co- 
linear semi-elliptical defects was of the same magnitude as the finite area 
correction for the case of a single defect in a plate of the repeated cell size 
for the array. This was supported by the experimental observations.

3. A numerical procedure was presented to enable the universal weight 
function technique to be utilised for the analysis of irregular crack 

geometries.

4. A numerical study utilising universal weight functions and line spring 
models was used to predict the magnification of the stress intensity factor at 
the re-entrant crack sector observed in the experimental investigation.

5. A considerable magnification of the stress intensity factor at the re-entrant 
crack sector immediately after coalescence, resulted in rapid propagation 

and formation of the final stable crack shape. The rate at which the final 
crack shape is formed was found to be rapid enough that this stage can be 
ignored for predictive purposes. The enhanced stress intensity factor was 
predicted by both the line spring and weight function models.

6. BS PD 6493 and ASME XI procedures for assessing and propagating co- 

linear cracks have been demonstrated to be unrealistic and extremely 

conservative.

7. A prediction based on the Newman Raju stress intensity factor solution for 
single defects was shown to provide improved predictions.
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